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Quote

“When you want something, all the universe con-
spires in helping you to achieve it.”

Paulo coelho



Abstract

In these recent years, several connected objects such as computer, sensors and
smart watches became part of modern living and form the Internet of Things (IoT).
The basic idea of IoT is to enable interaction among connected objects in order to
achieve a desirable goal. IoT paradigm spans across many areas of our daily life
such as smart transportation, smart city, smart agriculture, smart factory and so
forth. Nowadays, IoT networks are characterized by the presence of billions of het-
erogeneous embedded devices with limited resources (e.g. limited memory, battery,
CPU and bandwidth) deployed to enable various IoT applications. However, due to
both resource constraints and the heterogeneity of IoT devices, IoT networks are
facing with various problems (e.g. link quality deterioration, node failure, network
congestion, etc.). Considering that, it is therefore important to perform an efficient
management of IoT low power networks in order to ensure good performance of
those networks. To achieve this, the network management solution should be able
to perform self-configuration of devices to cope with the complexity introduced by
current [oT networks (due to the increasing number of IoT devices and the dy-
namic nature of IoT networks). Moreover, the network management should provide
a mechanism to deal with the heterogeneity of the IoT ecosystem and it should also
be energy efficient in order to prolong the operational time of IoT devices in case
they are using batteries. Thereby, in this thesis we addressed the problem of con-
figuration of IoT low power networks by proposing efficient solutions that help to
optimize the performance of IoT networks. We started by providing a comparative
analysis of existing solutions for the management of IoT low power networks. Then
we propose an intelligent solution that uses a deep neural network model to deter-
mine the efficient transmission power of RPL networks. The performance evaluation
shows that the proposed solution enables the configuration of the transmission range
that allows a reduction of the network energy consumption while maintaining the
network connectivity. Besides, we also propose an efficient and adaptative solution
for configuring the IEEE 802.15.4 MAC parameters of devices in dynamic IoT low
power networks. Simulation results show that our proposal improves the end-to-end
delay compared to the usage of the standard IEEE 802.15.4 MAC. Additionally, we

develop a study on solutions for congestion control in IoT low power networks and



il

propose a novel scheme for collecting the congestion state of devices in a given rout-
ing path of an IoT network so as to enable an efficient mitigation of the congestion
by the network manager (the device in charge of configuration of the IoT network).

Keywords : Internet of Things, Low power and lossy networks, network man-

agement, network performance, machine learning.



Resumé

Durant cette derniére décennie, plusieurs objets connectés tels que les ordina-
teurs, les capteurs et les montres intelligentes ont intégrés notre quotidien et forment
aujourd’hui ce que l'on appelle I'Internet des Objets (IdO) ou Internet of Things
(IoT) en anglais. L’IoT est un nouveau paradigme permettant une interaction entre
les objets connectés afin d’améliorer notre qualité de vie, notre facon de produire
des biens et notre facon d’interagir avec notre environnement. De nos jours, I'loT se
caractérise par la présence, de par le monde, de milliards d’objets connectés a faibles
ressources (batterie, mémoire, CPU, bande passante disponible, etc) et hétérogénes,
déployés pour permettre diverses applications couvrant de nombreux domaines de
notre société tels que la santé, I'industrie, les transports, I’agriculture, etc. Cepen-
dant, en raison des contraintes lié¢ aux ressources et de I’hétérogénéité des objets
connectés, les réseaux loT a faibles ressources présents font face a des problémes de
performance, notamment la dégradation de la qualité des liens radio, la défaillance
(logiciele ou matérielle) de certains objets du réseau, la congestion du réseau, etc.
Ainsi, il est donc important de gérer efficacement les réseaux [oT & faible ressources
afin d’assurer leur bon fonctionnement. Pour ce faire, la solution de gestion du ré-
seau doit étre autonome (pour faire face a la nature dynamique des réseaux IoT),
tenir compte de I’hétérogénéité des objets connectés et étre moins consommatrice
en énergie pour répondre aux défis de I'loT. Dans cette thése, nous nous sommes
intéressés au probléme de gestion des réseaux loT a faibles ressources et avons pro-
posés des solutions efficaces pour permettre une optimisation des performances de
ces types de réseaux. Dans un premier temps nous avons procédé a une étude com-
parative des solutions de gestion des réseaux IoT & faibles ressources afin d’identifier
les verrous techniques. Ensuite, nous avons proposé une solution intelligente qui se
base sur un modéle de réseau de neurones profonds pour permettre une configura-
tion de la portée radio dans les réseaux sans fil a faibles ressources de type RPL
(IPv6 Routing Protocol for Low power and Lossy Networks). Une évaluation des
performances de cette solution montre qu’elle est capable de déterminer la portée
radio permettant une réduction de la consommation énergétique du réseau tout en
garantissant une connectivité des objets connectés. Nous avons également proposé

une solution efficace et adaptative pour configurer les paramétres de la couche MAC



iv

dans les réseaux dynamiques de type IEEE 802.15.4. Les résultats des simulations
démontrent que notre solution améliore le délai de transmission bout en bout par
rapport a l'utilisation des paramétres par défaut de la MAC IEEE 802.15.4. En
outre, nous avons proposé¢ une étude des solutions existante pour la gestion des
problémes de congestion des réseaux [oT a faibles ressources et par la suite nous
avons proposé un procédé d’acheminement de I'information de congestion des objets
connectés présents sur un chemin de routage donné dans des réseaux a ressources
limitées. Cette méthode a pour but de permettre une réponse efficace aux problémes
de congestion.

Mots Clés : Internet des Objets, gestion des réseauz, performance des réseaut,

machine learning.



Acknowledgment

First of all, I would like to thank God for all his blessing and for me giving
strengh to achieve this work.

I would like to express my sincere gratitude to my thesis supervisors professor
Abdelmadjid BOUABDALLAH and Dr Mounir KELLIL. They provided me with
valuable advice, encouragement and guidance that helped me to carry out this re-
search work.

I would like to express my deep gratitude to M. Pierre ROUX for his availabil-
ity since the beginning of this thesis and also for fruitful discussions and valuable
remarks that helped in better improving the work done during this research work.

I would like to thank Pr. Lorenz PASCAL and Pr. Ahmed MEHAQOUA for their
valuable time in reviewing this manuscript. I would also like to thank Dr. Kervella
BRIGITTE and Pr. Walter SCHON for their precious work as examiners.

I would like to thank Dr Ari Ado ABBA ADAMOU for his advice that helped
me strengthening my motivation for this PhD work.

I would like to thank all my colleagues in LSC and Heudiasyc laboratories for
their sympathy and all good times we spent together.

Last but not the least, I would like to thank my family, especially my father
Moussa ABOUBAKAR and my mother KOAH ABONE Yvonne Seraphine for sup-

porting me during my whole life.






Contents

[Abstract] i
Resumél iii
[Acknowledgment| v
Lable of contents| vii
[List of Figures| Xi
[List_of Tables xiii
[List of Algorithms| XV
[List of Abbreviations xvii
[List of Publications] xxi
|General Introduction| 1
T T3 ol -
(1 Background| 9
[LI TIntroductionl . . . . . . . . . . ... 9
(1.2 Overview of Io'l' low power networks| . . . . . .. ... .. ... ... 9
(L3 Architecture of IoT networksl. . . . . .. ... ... ... ... ... 10
(1.4 Applications of IoT low power networks|. . . . . . ... ... ... .. 12
[1.5 Requirements and challenges of Io'l' low power networks|. . . . . . .. 14
(1.5.1 Requirements| . . . . . . .. .. ... ... ... 14

(1.5.2  Challenges| . . . . . . . ... Lo 15

[L6 Conclusionsl . . . . . . . . . ... 16

2 Management of IoT low power networks| 17
RI TIntroductionl . . . . . . . . . ... 17



viii

Contents

2.2 Overview of traditional network management|. . . . . . . . . . . . .. 18
[2.3  Management ot [0l low power networks| . . . . ... ... ... ... 21
[2.3.1 Network management protocols| . . . . . . .. ... ... ... 21
[2.3.2 o'l network management based on Cloud frameworks|. . . . . 24
[2.3.3 o'l network management based on SDN trameworks . . . . . 27
[2.3.4 o'l network management based on Semantic technologies|. . . 29
[2.3.5 o'l network management based on Machine Learning techniques| 30

2.4 Conclusion|. . . . . . . . . 36
LI Contributions| 37
(3 Efficient transmission range for IoT low power networks| 39
3.1 Introductionl . . . . . . . . . ... 39
[3.2  Background . . . ... ... o o 42
.21 RPLnetworksl . . . . ... ... ..o 42
[3.2.2  Multilayer perceptron|. . . . . . . . ... 43

[3.3 Efficient transmission range for static RPL networks|. . . . . . . . .. 44
[3.3.1 Assumptions and problem description|. . . . . . . . . ... .. 44
[3.3.1.1 Assumptions| . .. . . ... ... ... 44

[3.3.1.2  Problem description| . . . . . ... ... ... ... 44

[3.3.2  Description of our solution| . . . . . . . ... ... ... .. .. 45
[5.3.3  Performance evaluationl. . . . . . . ... ... 0000 46

[3.4  Efficient transmission range for dynamic RPL networks| . . . . . . .. 49
[3.4.1 Problem statement| . . . . . . . ... ... 0L 50
[3.4.2  Scenario A: Adaptive transmission range for dynamic RPL |
networks deployed in a 2D environment|. . . . . . .. ... .. 50

[3.4.2.1  Assumptions| . ... ... ... ... 50

[3.4.2.2  Description of our solution|. . . . . . . .. ... ... 51

[5.4.2.3  Performance evaluationl . . .. ... ... ... ... 56

[3.4.3  Scenario B: Adaptive transmission range for dynamic RPL |
networks deployed in a 3D environment|. . . . . . . . ... .. 62

[3.4.3.1 Assumptions| . ... ... ... ... L. 62

[3.4.3.2  Description of our solution|. . . . . . . . .. ... .. 62

B.4.3.3 Performance evaluationl . . ... ... ... .. ... 64

[3.5  Deployability of our solution| . . . . . . . ... ... ... ... .. 67
3.6 Conclusion|. . . . . . . . . .. 69



Contents ix

[4 Efficient configuration of IEEE 802.15.4 MAC| 70
4.1 Introductionl . . . . . . . ..o 70
(4.2 Background| . . . ... ... 71
4.3  Overview on existing solutions| . . . . . . . . . ... ... ... .... 72
4.4 Context aware configuration of [EEE 802.15.4 MAC|. . . . . . . . .. 73

[4.4.1 Assumptions and problem formulation| . . . .. ... ... .. 73
[4.4.2  Description of our solution| . . . . . . . .. ... ... ... .. 74
443 Performance evaluationl. . . . . . . .. ... ... 81
M5 Conclusionl. . . . . . . . . 81

[p Congestion control in loT low power Networks| 82
H.1 Introductionl . . . . . . . ..o 82
[>.2  Background| . . .. .. ... 83
[>.3  Existing solutions for congestion control in Io'T' low power networks| . 84
[>.4  The use of machine learning for congestion control in Io'l' low power |

I networksl . . . ... 89

b.4.1 Motivation|. . . . . . . . . ... 89
[5.4.2  Congestion control with machine learning based on imbal- |
anced datal. . . . . .. ... 89

[5.4.2.1  Assumptions and problem formulation . . . . . . .. 89

[5.4.2.2  Description of our experiment| . . . . . . . . ... .. 90

b.4.2.3 Performance evaluationl . . .. ... ... ... ... 93

b.4.24  Discussionl. . . . . ... 95

h.o Conclusion|. . . . . . . . . 96

6 CIB: Congestion Information Block for loT low power networks 97
6.1 TIntroductionl . . . . . . . . .. . ... 97
[6.2 Proposed scheme for congestion state notification| . . . . . . . . . .. 98

[6.2.1  Assumption and problem formulation| . . . . . . . .. ... .. 98
[6.2.2  Design of the proposed congestion notification scheme|. . . . . 99
[6.3  Simulation and pertformance evaluation| . . . . . . ... ... ... .. 102
[6.3.1  Simulation environmentl . . . . ... ... ... 102
[6.3.2 Results and discussionl . . . . . . . .. ... 103
6.4 Conclusion|. . . . . . . . . 106

[7__Conclusion and Future Research Directions| 107

[(.1 Conclusionl. . . . . . . . . .. 107




X Contents

IBibliography| 111




List of Figures

[ 1.1 ToT architectures) . . . . . . . . . . . . . . ... .. ... ... 11
[ 1.2 Overview of IoT low power networks applications.| . . . . . . .. . . .. 13
[ 2.1 Network management entities overview. . . . . . . . . . . .. ... ... 18
2.2 TWM2M architecturel . . . . . . . . ... ... ... .. 21
[ 2.3 Example of architecture for management of Io'l" devices over a sensor |
[ cloud infrastructurel) . . . . . ... oo o 26
2.4 SDN architecture . . . . . . . . ... oL 28
2.5 Different Machine learning algorithms used for Iol' network management.| 32
2.6 Reinforcement learning model.| . . . . . . . . ... ..o 32
2.7 Workflow of machine learning for networking [160[.| . . . .. ... ... 33
3.1 Example of DODAG construction.|. . . . . . ... ... ... ... ... 42
3.2 Example of an architecture ot a Multilayer Perceptron.| . . . . . . . .. 44
3.3 Comparison of control messages transmitted.|. . . . . . . . . ... ... 45

3.5 RPL DODAG resulting from the predicted transmission range for the |

I
I
I
I
I
I
I
[ 3.4 Neural network architecture for efficient transmission range prediction.| 47
I
I
I
I
I
I
I
I

RPL network topology 'I2.|. . . . ... ... ... .. ... ....... 48

3.6 RPL DODAG resulting from the predicted transmission range for the |
network topology 13.| . . . . . . . . ... ... 49

3.7 Workflow of our proposal.| . . . . ... .. ... ... ... 49
3.8 Homogeneous deployment of nodes on a square surface.| . . . . . . . .. 52
3.9 Example of a generated topology with 100 nodes.| . . . . . . . . . . .. 53
3.10 Comparison of the accuracy ot the TPE, random search and anneal |
[ searchl] . . . . . ... 58
[ 3.11 Box and Whister plot of the distribution of test set accuracy of the [
[ MLP trained on different test set sizes| . . . . . .. .. ... ... ... 58
L3.12 Plot of ITrain and Test Loss of our MLP modell . . . . ... ... ... 59
[ 3.13 Comparison of the M AFE of different machine learning models.| . . . . . 60
[ 3.14 Comparison of the MSE of different machine learning models.| . . . . . 60
| 3.15 Comparison of the R* score of different machine learning models.| . . . 61

[ 3.16 Energy consumption generated by the tranmission range estimated by |

| different machine learning models.|. . . . . . . . ... ... ... 61




[ 3.17 Example of configuration of Cooja node deployed in 3D environment.| . 63
[ 3.18 Comparison of the Mean Absolute Error of difterent machine models.| . 64
[ 3.19 Comparison of the Mean Square Error of different machine models.| . . 65
[ 3.20 Comparison of the network energy consumption generated by the trans- |
| mission range of different machine learning models.| . . . . . . . . . .. 66
[ 3.21 High-level illustration of deployment of our solution in loT networks.,| . 67
[ 3.22 Topology discovery.| . . . . . . . . . . ... oL 68
L_4.1 Fvent-driven simulator for wireless sensor networks. . . . . . .. . . .. 76
[ 4.2 Scheme for definition of optimal IEEE 802.15.4 MAC parameters using |
| a machine learning model.| . . . . . . .. ..o 76
[ 4.3 Prediction of the values of [EEE 802.15.4 MAC parameters.| . . . . . . 78
[ 4.4 End-to-end delay comparison.| . . . . . ... ... ... ... 81
[ 5.1 Example of a congested wireless sensor network.| . . . . . . ... . . .. 83
[ 5.2 Scatter plot of the original imbalanced dataset.| . . . . . .. ... ... 91
[ 5.3 Scatter Plot of the articial data generated using BorderlineSMOTE.| . . 92
[ 5.4 Scatter Plot of the articial data generated using RandomUnderSampler.| 92
[ 5.5 Worflow of our proposal for congestion control,|. . . . . . . . ... . .. 93
[ 5.6 Output of the classification report function for imbalanced data.| . . . 94
[ 5.7 Output of the classification report function for balanced data using [
| under-sampling.| . . . . . ... Lo 94
[ 5.8 Output of the classification report function for balanced data using [
| over-sampling.| . . . . . ... 95
[ 6.1 Example of an o1 low power network on Omnet++ simulator| . . . . 99
[ 6.2 'Transmission of a CIB of a given routing path.|. . . . . . . ... . ... 100
| 6.3 Example of a CIB block in a data packet (case of a UDP packet)| . . . 100
[ 6.4 Generation of a CIB by a leatnode.| . . . . . ... ... ... ... ... 101
[ 6.5 Insertion of a Cl into a CIB by an intermediate node.| . . . . . . . . .. 101
[ 6.6 Analyze of the CIB by the network manager.|. . . . . . . . . . ... .. 102
| 6.7 Traffic comparison (CIB sending Interval = exponential (15ms)) . . . . 103
| 6.8 Traffic comparison (ECN sending Interval = exponential (15ms))[. . . . 104
| 6.9 Traffic comparison (CIB sending Interval = exponential (25ms))| . . . . 104
| 6.10 Traffic comparison (ECN sending Interval = exponential (25ms))[. . . . 104
| 6.11 Troughput comparison (sending Interval of control messages = expo- |
| nential 15ms)| . . . . ... 105
| 6.12 Troughput comparison (sending Interval of control messages = expo- |
| nential 25ms)| . . . ... 105
[ 6.13 Divergence between observed and real congestion states.| . . . . . . .. 106




List of Tables

1.1 Difterent IoT low power networks.| . . . . . . .. .. ... ... ... ..

2.1 Messaging protocols used in ol networks.| . . . . . .. ... ... ...

2.2 A comparison of [oT low power networks management protocols.|. . . .

2.3 Cloud of Things platforms features.| . . . . . . .. ... ... ... ...

10
23
24
25

2.4 A comparison of lo'l network management frameworks based on Cloud.| 27

2.5 A comparison of [oT network management frameworks based on SDN.| 29
2.6 A comparison of o'l network management frameworks based on Se- |
manticl. . . . .. 30

[ 2.7 A comparison of [0l network management frameworks based on Ma- [
| chine learning.|. . . . . . . . ... 35
[ 3.1 Simulation parameters.| . . . . . . . . ... L L 46
[ 3.2 Performances of our MLP modell . . . . . ... ... ... ... .... 47
[ 3.3 Energy consumption for the RPL network topology T2.|. . . . . . . .. 48
[ 3.4 Simulation parameters.| . . . . . . .. ... Lo 55
[ 3.0 MLP parameters.| . . . . . . . .. .. ... o 58
[ 3.6 Transmission range values estimated by different machine learning mod- [
| els (inm). . . . .. 62
[ 3.7 MLP parameters| . . . . . . . .. ... ... . ... ... 63
[ 3.8 Comparison of the MAE of MLP for different training sets.| . . . . . .. 66
[ 4.1 TEEE 802.15.4 MAC parameters value.| . . . . . . ... ... ... ... 72
[ 4.2 Best hyperparameters of Random Forest Classifier obtained with TPE.| 79
[ 4.3 Best hyperparameters of KNeighbors Classifier obtained with TPE.| . . 79
| 4.4 Best hyperparameters of Decision Tree classifier obtained with TPE.|. . 79
[ 4.5 Best hyperparameters of the Multilayer Perceptron Classifier obtained |
I with TPEL . . . o o 80
[ 4.6 Comparison of the performance of different machine learning models.| 80
[ 4.7 90% confidence interval of classification accuracy of different machine |
| learning models.|. . . . . ..o oo 80
[ 5.1 Comparison of various solutions for congestion management in resource- |
[ constramned networks). . . . . . .. ..o 87



[ 5.1 Comparison of various solutions for congestion management in resource- |

6.1 Simulation parameters. . . . . . . ... Lo L 103

| constrained networks) . . . . ..o o000 88
| 5.2 Analysis of the dataset proposed in [59].| . . . . . .. ... ... ... 91
[ 5.3 Performance comparison.. . . . . ... ... ... ... ... ... ... 95
[ 5.4 A guide for applying a resampling technique.| . . . . . . . . ... .. .. 96
|




List of Algorithms

[3.1 Output labelingl . . . ... ... ... oo 46
[ 3.2 Topologies generation| . . . . . .. ... ... ... .. ... ... ... 54
[3.3 Data collectionl . . . . . . .. ... 55
[ 3.4 Process at the network manager| . . . . . .. .. ... ... ...... 68
[3.5 Process at the network devicel . . . . . . . . ... ... 68







List of Abbreviations

AdaR: Adaptive Routing

ASCI: Agriculture Sensor-Cloud Infrastructure

AGR: Aggregation Gradient Routing

AMQP: Advanced Message Queuing Protocol

BLE: Bluetooth low Energy

BE: Backoff exponent

CSMA-CA: Carrier Sense Multiple Access with Collision Avoidance

CMIP: Common Management Information Protocol

CEB: Cloud-Edge-Beneath

CEA: French Alternative Energies and Atomic Energy Com-
mission

CIB: Congestion Information Block

CNN: Convolutional neural network

CODA: Congestion Detection and Avoidance

CoMTI: CoAP Management Interface

CoAP: Constrained Application Protocol

CC: Correlation Coefficient

CW: Contention Windows

DAO: Destination Advertisement Object

DDS: Data-Distribution Service for Real-Time Systems

DBN: Deep Belief Network

DIS: DODAG Information Solicitation

DIO: DODAG Information Object

DODAG: Destination Oriented Directed Acyclic Graph

DIRL: Distributed Independent Reinforcement Learning

DRL: Deep-Reinforcement Learning

ECODA: Enhanced Congestion Detection and Avoidance

ECN: Explicit Congestion Notification

ETX: Expected Transmission Count

ELT: Expected Lifetime metric



EDRD:
FACC:
FROMS:
H-SMSR:
HSR:
IBA:
ICN:

[oT:

IdO:

IDS:
ITWSN:
IETF:
KNN:
LSPI:
LPWA:
LR-WPAN:
MAC:
MAE:
MSE:
MIB:
ML:
MDP:
MQTT:
MQTT-SN:
MLP:

NETCONEF:

OSI:

OFs:
OMA-DM:
PRR:

QoS:
RMSE:
RNN:
RPL:

SDN:
SI:
SDCSN:

Energy Distance Ratio per bit
Fairness-Aware Congestion Control
Feedback ROuting to Multiple Sinks
Hierarchical Scalable Multipath Source Routing
Hierarchical Source Routing

Index of Balanced Accuracy

Implicit Congestion Notification
Internet of Things

Internet des Objets

Intrusion Detection System

Intelligent Wireless Sensor Network
Internet Engineering Task Force
K-Nearest Neighbor

Least Squares Policy Iteration

Low Power Wide Area

Low-Rate Wireless Personal Area Network
Media Access Control

Mean Absolute Error

Mean Square Error

Management Information Base
Machine Learning

Markov Decision Process

Message Queuing Telemetry Transport
MQTT for Sensor Networks
Multi-layer Perceptron

Network Configuration Protocol

Open system Interconnect

Objective Functions

Open Mobile Alliance - Device Management
Packet Reception Rate

Quality of Service

Root Mean Square Error

Recurrent Neural Network

[Pv6 Routing Protocol for Low-Power and Lossy Net-

works
Software Defined Network
Stability Index

Software-Defined Clustered Sensor networks



SVM:
SVMs:

SNMP:

SMI:
TPE:

UHCC:

WSN:
WSNs:

XMPP:

Support Vector Machine

Support Vector Machines

Simple Network Management Protocol
Structure of Management Information
Tree-structured Parzen Estimators
Upstream Hop-by-hop Congestion Control
Wireless Sensor Network

Wireless Sensor Networks

Extensible Messaging and Presence Protocol






List of Publications

1 International Conference

¢ Moussa Aboubakar, Mounir Kellil, Abdelmadjid Bouabdallah, Pierre
Roux. “Toward intelligent reconfiguration of RPL networks using super-
vised learning.” In proceedings of 2019 IEEE Wireless Days (WD), April
2019, pages 1-4.

¢ Moussa Aboubakar, Mounir Kellil, Abdelmadjid Bouabdallah, Pierre
Roux. “Using Machine Learning to Estimate the Optimal Transmission
Range for RPL Networks.” In Proceedings of NOMS 2020 IEEE/IFIP
Network Operations and Management Symposium, April 20, pp. 1-5.

¢ Moussa Aboubakar, Pierre Roux, Mounir Kellil, Abdelmadjid Bouab-
dallah. “An Efficient and Adaptive Configuration of IEEE 802.15.4 MAC
for Communication Delay Optimisation” In Proceedings of 11th Interna-
tional Conference on Network of the Future, October 2020.

¢ Moussa Aboubakar, Pierre Roux, Mounir Kellil, Abdelmadjid Bouab-
dallah. “CIB: Congestion Information Block for [oT low power networks.”
Submitted to 17th IFIP/IEEE Symposium on Integrated Network and Ser-
vice Management (IM 2021) .

2 International Journal

© Moussa Aboubakar, Mounir Kellil, Pierre Roux and Abdelmadjid
Bouabdallah “Machine Learning for Congestion Control in Wireless Sen-
sor Networks: A comparative analysis” Submitted to Springer Journal

anals of telecommunications.

© Moussa Aboubakar, Mounir Kellil and Pierre Roux “A review of IoT
Network Management: Current Status and Perspectives” Submitted to
Elsevier Journal of King Saud University-Computer and Information Sci-

ENnces.

3 Patent



¢ Moussa Aboubakar, Mounir Kellil, Pierre Roux. “Procédé de trans-

mission d’information de gestion dans un réseau maillé” Patent submitted
in guly 2019 to INPI.

4 Other Publications

The others research activities conducted by the author are given in the follow-

ing

¢ Blaise Omer Yenké, Moussa Aboubakar, Chafiq Titouna, Ado Adamou
Abba Ari, Abdelhak Mourad Gueroui. “Adaptive scheme for outliers
detection in wireless sensor networks.” International Journal of Computer
Networks and Communications Security 5.5 (2017): 105.



General Introduction

Context

The Internet of Things (IoT) has witnessed a rapid growth these last years thanks
to the development of smart devices and new communication technologies. Coined
by Kevin Ashton [17], the term IoT refers to a paradigm where the physical objects
of our daily life (e.g. sensors, actuators, home appliances and so forth) are connected
to the internet and are able to communicate in an intelligent fashion. Nowadays,
[oT landscape encompasses billions of heterogeneous devices which enable a wide
range of applications that improve our daily life. These applications include smart
homes, smart cities, smart agriculture, factory of the future and so forth.

In the current IoT ecoystem, embedded devices with limited power, memory, and
processing resources are enablers of an important number of IoT applications. This
has been made possible by the development of different protocols [140] (e.g. RPL ,
CoAP, 6LoWPAN); etc.) and communication technologies [I70] (e.g. BLE, Zigbee,
NFC, etc.). Nevertheless, due to resource limitations of IoT devices and often the
constraints related to the deployment of those devices in hard to reach areas (e.g.
pipelines, war zones, earth-quake or chemical spill areas), IoT networks are facing
many problems that affect their performance. These problems include link quality
deterioration, network congestion, failure of devices, and contribute to a significant
reduction of the performance of IoT networks. Besides, it is worth to note that IoT
networks are suffering from heterogeneity of the IoT ecosystem and the scalability
issue due to the increasing number of IoT devices and/or the increasing number of
IoT applications. In this context, it is therefore important to perform an efficient
management of IoT networks in order to ensure good performances and to maintain
the network operational for a longest period of time possible when battery powered
devices are used [172].

In the literature, various network management protocols have been proposed
by different standardization organizations such as Internet Engineering Task Force
(IETF), OneM2M and Broadband Forum [I33, 125, [121], to help to perform
configuration of IoT devices. Likewise, different solutions for management of IoT

low power networks have been proposed by the research community [I10} I75] 160].



Those protocols and solutions for network management can operate in a centralized,
distributed or hybrid architecture.

Since IoT networks are being exponentially deployed both in public (smart
cities, smart buildings, etc.) and private areas (smart homes, smart factories, etc.),
network managment becomes the cornerstone of IoT networks to achieve the best
network performance and maintain a high level of network availability. Nevertheless,
achieving such a performance objective is not straightforward, because of the
intrinsic characteristics of loT low power networks (scarce resources, lossy channels,
device/node failure, and device/node deployment constraints like node/device
reachability). In view of that, the network management solutions need to fulfill a
number of critical features, encompassing scalability, self-configuration, and energy-
efficiency. However, these features are not well considered by the existing network

management solutions [138] [141].

Objectives and contributions

The objective of this thesis is to address the problem of management of IoT low
power networks and propose efficient solutions to those problems. Our contributions

are summarized in what follows:

1) In our first contribution, we provided a survey that includes a classification of
existing solutions for IoT network management and proposes a comparative
study of those solutions according to different requirements. Moreover, we
pointed out a number of challenges and open issues relating to IoT networks

management.

2) In our second contribution, we proposed centralized solutions that enable
to configure the transmission power of IoT low power networks based on
a particular machine learning model called Multilayer Perceptron (MLP).
The proposed solutions enable a reconfiguration of dynamic RPL networks
deployed following a 2D or a 3D environment. We performed simulation of
these solutions and compared them with other machine learning models. We
evaluated our solutions based on various metrics such as the accuracy of the
machine learning models and the energy consumption. The results show that
our solutions can help to define the transmission power that enables to reduce

the network energy consumption while maintaining the network connectivity.

3) In our third contribution, we proposed an intelligent solution that enables
to configure the TEEE 802.15.4 MAC parameters for dynamic IoT low



power networks based on machine learning techniques such as multiouput
decision tree, multioutput random forest, multioutput K-nearest neighbors and
multioutput MLP. The proposed solution enables the selection of the optimal
IEEE 802.15.4 MAC parameters according to the network characteristics and
network traffic conditions. We performed and evaluation of the proposed
solution based on metrics such as end-to-end delay and the accuracy of the
machine learning model. The results obtained prove that the MAC parameters
estimated using the random forest classifier perform better compared to the
default MAC parameters of IEEE 802.15.4 standard.

4) In our fourth contribution, we proposed a comparative analysis of a number
of solutions for congestion management in resource-constrained networks.
We highlighted the need for a machine learning solution for congestion
control in resource-constrained networks. We provided a guide for devising
machine learning based solution with imbalanced data for congestion control

in resource-constrained networks.

5) In our fifth contribution, we proposed a novel scheme for efficient agregation
of congestion information in IoT low power networks. The proposed scheme
enables the transmission of congestion state of nodes in given routing path
into a single data packet sent to the network manager. The congestion
states are aggregated into a block called Congestion Information Block (CIB),
which contains binary values representing the state of nodes. The simulation
results obtained show that the proposed scheme provides a good performance
compared to Explicit Congestion Notification (ECN) mechanism in terms of
network throughput, network overhead and offers low divergence (regarding
the time of observation) between the network congestion observed by the

network manager and the real congestion of nodes.

Organization of the manuscript

The rest of this thesis is organized as follows.

e In Chapter [I we give a background knowledge concerning IoT low power
networks. We firstly provide an overview on IoT low power networks, followed
by a presentation of the architecture of IoT networks. Then, we present
some applications of IoT low power networks and provide a presentation of

requirements and challenges of IoT low power networks.



e In Chapter 2] we present a comprehensive overview on existing solutions
for IoT networks management. In particular, we provide a classification of
existing solutions for management of IoT low power networks according to
their design objectives. Then, we provide a comparative analysis of those

solutions according to different requirements.

e In Chapter we present the proposed intelligent solution that determine
the efficient transmission power of devices in [oT low power networks. This
solution uses a deep neural network model to estimate the efficient transmission
power of an RPL network. We firstly provide an overview on existing methods
for configuring the transmission power of IoT low power networks. Then, we
provide a description of the proposed models that enable to determine the
efficient transmission power of static and dynamic IoT low power networks.
We also provide the obtained performance evaluation results and a description

of deployability of the proposed solution.

e In Chapter [ we present the proposed solution that helps to efficiently
configure the IEEE 802.15.4 MAC parameters in dynamic IoT low power
networks. Our solution is based on a supervised learning technique and it
enables to define the IEEE 802.15.4 MAC parameters according to the current
network traffic conditions and the network characteristics. We start this
chapter by presenting background knowledge regarding the IEEE 802.15.4
MAC. Then, we present an overview of existing methods for configuring the
IEEE 802.15.4 MAC parameters. After that, we present the proposed solution
that allows an efficient configuration of IEEE 802.15.4 MAC parameters and

we evaluate of the performance of our proposed solution.

e In Chapter [f] we present a comparative analysis of existing solutions for
congestion control schemes in resource-constrained networks. Then, we point
out the need for a machine learning based solution for congestion control in
resource-constrained networks. Moreover, we provide a guide for applying
machine learning techniques for congestion control in resource-constrained

networks based on imbalanced data.

e In Chapter [0, we present the proposed scheme for efficient aggregation of
congestion state of nodes, in a given routing path, into a block called Conges-
tion Information Block (CIB). This proposal enable an efficient notification of
congestion state of IoT devices managed by a central entity. We confirm the

efficiency of our proposal through series of simulation.



e In Chapter [7] we conclude this research work by presenting a summary of our

contributions and present a number of research perspectives.
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1.1 Introduction

For more than a decade, IoT networks have been widely investigated by
reseachers due to the potential applications of those networks in our everyday’s
life (e.g., smart cities, smart agriculture, health monitoring, etc.). IoT networks are
composed of a large number of devices that collaborate together in order to provide
a service for the benefit of our society. In particular, among those devices, billion of
them are resource-constrained and they constitute [oT low power networks. In this
chapter, we provide a background knowledge about those networks.

The rest of the chapter is organized as follows: Section [1.2| presents an overview
on IoT low power networks. Section [I.3] presents the architecture of IoT networks.
Section presents applications of IoT low power networks. Section lists

different requirements of IoT low power networks. Section |1.6|concludes this chapter.

1.2 Overview of IoT low power networks

In the current ecosystem of Internet of Things (IoT), IoT low power networks

have attracted a lot of attention from industrials and academics due to their potential
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applications in our daily life. An IoT low power network refers to a network

composed of devices (e.g. sensors, actuators) with limited resources (memory,
battery, bandwidth and CPU) and interconnected using lossy links. In the literatue,
we found that the are two main categories of IoT low power networks [9]: 1)

Low Power Wide Area Networks (LPWA) and 2) Low-Rate Wireless Personal Area

Network (LR-WPAN). We provide in Table [L.1] a description of those networks.

Table 1.1 — Different IoT low power networks.

Network Proprietary Standards remarks
technologies
Low Power Sigfox, LoRa, LoRaWAN, Supports long range trans-
Wide Area Ingenu RPMA, | enhanced MTC | mission and low data rate
(LPWA) Telensa (eMTC), transmission
Networks NarrowBand
[oT (NB-IoT),
802.15.4g,
DASHT7
Low-Rate - 6LowPAN, Supports short range trans-
Wireless Zigbee, mission and low rate data
Personal Area Bluetooth low transmission
Network Energy (BLE),
(LR-WPAN) Z-Wave,
WirelessHart

1.3 Architecture of IoT networks

In the literature, different architecture for IoT have been proposed [134] [96].

These architectures include three or five layer architectures as shown in Figure [I.1]
The three-layers architecture represents the basic architecture of IoT while the five-
layers architecture represents an extension of the three layer architecture to meet

the expected development of IoT.

e Perception layer:
The perception layer represents the physical layer and it enables an interaction
with physical devices and components through smart devices (e.g. RFID,
sensors, actuators and so forth). This layer aims at sensing some physical

parameters or identifying other smart objects in the environment.

e Network layer:

The network layer is used to determine the route for information provided
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by the perception layer. By doing so, it enables the interconnection of IoT

devices.

e Application layer:
The application layer provide various application service to users. These
applications include smart agriculture, smart transportation, smart cities and
so forth.

e Transport layer:
The transport layer layer is responsible for transfering data from the perception

layer to the processing by using networks such as BLE, RFID, etc.

e Processing layer:
The processing layer is responsible for storing, analyzing and processing data
received from the transport layer. This layer can manage and provide a set of
services to the lower layers. For example, in smart transportation, this layer
can provide a prediction of the future traffic conditions by processing the data

about the traffic information (e.g. traffic flow, occupancy rate, etc.).

e Business layer:
The business layer is responsible for the management of the entire IoT system,

including applications, business and profit models and users privacy.

e A
Business layer
Application layer

. vy
Application layer
/ A 4 J
Network layer Processing layer
N—
p N Transport layer

Perception layer

Perception layer
b vy A J

L J L J
| Al

Three layers Five layers

Figure 1.1 — IoT architectures.
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1.4 Applications of IoT low power networks

Due to capabilities offered by [oT low power devices, including sensing, actuation,
and communication, various applications have emerged in our daily lives. These
applications include smart home, smart factory, smart agriculture and so forth. We

provide an overview of those applications in Figure [1.2

e Smart home:
Smart home refers to a house equipped with devices such as sensors or other
appliances (e.g. refrigerators, laundry machines) that are connected to IoT
in order to control features (e.g. lighting) of the home. The interest for such
houses lies in the fact that they allow remote control of the devices in house and

enable an efficient management of the energy consumption of those devices.

e Smart city:
Smart city corresponds to a city that uses various devices such as sensors or
actuators in order to collect data (e.g. from people or from environment),
analyze them and take a decision that helps to improve our daily life.
The benefits of a smart city can be observed in many use cases, notably
water supply distribution, waste management, parking management, traffic
management, environment monitoring and so forth. To date, many cities

accross the world are shifting from traditional city towards smart city [12].

e Smart factory:
A smart factory is a production facility composed of sensors and other
connected devices that aim at improving the industrial processes through
automation (to reduce human error in production line) and self-optimization.
Concretely, smart factories foster the increase of the productivity and the

reduction of the costs of production.

e Smart agriculture:
Smart agriculture refers to using IoT devices such as sensors in farming to
enhance the agricultural production and reduce the cost of production. In
fact, those devices can help to monitor parameters such as soil and water
quality in order to provide farmers with a mean to adapt their strategy (e.g.

adjustment of the quantity of pesticides).

e Smart healthcare:
Smart healthcare corresponds to health system where IoT devices such as
sensors and wearable devices are used in order to improve the diagnosis of

a disease and improve the treatment of the patients. The benefits of such
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system for a doctor is the improvement of its efficiency by accessing to more
information about patients (e.g. through real time monitoring of patients),

which in turn will be satisfied by the outcomes of their treatments.

e Smart transportation:
Smart transportation refers to a transport system based on modern technolo-
gies and management strategies. In such transport systems, IoT devices such
as sensors can be used in vehicles for collision avoidance and anti-skidding to
increase the safety of the system. Moreover, those systems can help to reduce

traffic congestion and to improve the quality of the environment.

N

hpd! L (=i A

Smart city

Smart home

—_—
—

é

000
E IoT low power network . 3 &
11 +mb

applications +
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=

Smart factory

ﬁ Smart agriculture

Smart transportation

Figure 1.2 — Overview of loT low power networks applications.
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1.5 Requirements and challenges of IoT low power

networks

1.5.1 Requirements

In order to operate under a good performance, IoT low power networks need
to satisfy requirements as: scalability, fault tolerance, energy efficiency, Quality of

Service (QoS) and security.

e Scalability
A scalable IoT low power network corresponds to a network where new
devices or services can be added without negatively affecting the network
performance. As the current deployment of IoT low power networks low power
is characterized by the presence of billion of resource-constrained devices, the
scalability requirement need to be satisfy in order to avoid having poor network

performance.

e Fault tolerance
Fault tolerance is the ability of a system to continue operating in the event
of failure of any of its components [35]. This requirement is necessary in
order to guarantee that the network will fulfill its expected functioning in
presence of fault (e.g. node fault, network fault, sink fault, software fault)
in the network. In particular, this requirement is important for IoT low
power networks since they may be subject to failure of devices because of their
characteristics (limited battery, memory and CPU) and/or the environment

in which they are deployed (e.g. war zone, pipeline, chemical spill area).

e Quality of Service (QoS)
QoS refers to the measurement of overall performance of service in order
to assess user satisfaction. This performance is evaluated using these
metrics: packet loss, latency, bandwidth and end-to-end delay in the network.
Concretely, the level of QoS in IoT low power networks depends on the type of
application. For example, [oT applications such as smart metering are delay
tolerant while another IoT applications (e.g. forest fire detection) are not
delay tolerant. Therefore, to avoid having poor network performance, it is

important to consider the QoS requirement when designing the network.

e Energy effeciency
One of the main requirement of IoT low power is the energy efficiency [126].

An energy efficient network is a network that has the capability to execute
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operations with a minimum energy consumption so that the network lifetime
can be maximized. This requirement is particularly desirable in an [oT low
power network since its composed of devices powered with battery which has
a limited lifetime and often cannot be replace. Moreover, if the energy of the
resource-constrained devices is consumed quickly, the network may experience

a loss of connectivity which may cause an interruption of the network.

e Security
Security is an important concerns for IoT network as reviewed in [61]. In fact,
having a secure network may help to prevent the potential risks for tampering
the communication data by unauthorized entity. Having a secure IoT low
power network is particularly desirable to ensure the security of data exchanged
by the different devices involved in the network. Nevertheless, in IoT low
power networks, more attention should be paid because the mechanisms for
security developed for traditional network are not always suitable for resource-

constrained devices [91].

e Self configuration
This requirement refers to the capability of IoT low devices to adapt their
behavior according to the network state. In fact, self configuration is important
for IoT low power networks since these networks are subject to frequent update
caused by the traffic patterns, the mobility of devices, the failure of devices
and so forth. Moreover, this requirement is necessary because it is not realistic
to perform manual configuration of billion of IoT low power devices. Thereby,
having a self configurable IoT low power network can help to avoid human
error due to manual configuration, and thus help to provide good network

performances.

1.5.2 Challenges

Fulfilling the requirements of IoT low power networks mentioned in the previous
section remains a research challenge due to the limitation of resources of IoT devices,
the dynamic nature of IoT low power networks and the constraints related to the
environment in which IoT devices may be deployed (e.g. war zone, pipeline, etc.). In
the current literature, various network management protocols, network management
platforms and various mechanisms have been proposed in order to meet those
requirements. However, the proposed solutions are still not able to address correctly
the requirements of IoT low power networks. This is because they are not suitable

for resource-constrained devices and they do not address well the heterogeneity of
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[oT devices |79, 141]. Therefore, in order to satisfy the requirements of IoT low
power networks, it is necessary to develop mechanisms or protocols that help to

realize an efficient management of resource-constrained devices [172].

1.6 Conclusions

In this chapter, we provided basic knowledge concerning IoT low power networks.
In addition, we provided the requirement of those networks and pointed out the need
for having solutions for efficient management of IoT networks so as to ensure good
network performance. In the next chapter, we will dive into existing solutions for

management of IoT low power networks.
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2.1 Introduction

In order to ensure a good functioning of IoT low power networks, different
network management solutions have been proposed in the literature [125] 110, 11, [83],
14]. These solutions are ranging from lightweight networks management protocols,
SDN-based frameworks, cloud-based frameworks, Semantic-based frameworks and
Machine Learning based frameworks. In fact, these solutions have been developed
in order to meet the requirement of IoT low power networks mentioned earlier (cf.
section and to cope with the heterogeneity of IoT ecosystem (e.g. in terms of
[oT device protocols) and the inherent resource constraints of IoT devices (limitation
in term of battery, memory, CPU, bandwidth and so forth). In this chapter, we
present a comprehensive review on existing management solutions of IoT low power
networks.

The rest of the chapter is organized as follows: section presents an overview
on traditional network management; section presents different frameworks for

management of IoT low power networks; section concludes this chapter.
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2.2 Overview of traditional network management

Network management consists in performing operations such as devices moni-
toring, routing management and security management in order to ensure a good
network performance (e.g. low latency, low energy consumption, low packet loss,
etc.). Basically, a typical network management is based on three logical elements:
network manager, managed devices and agents. Figure gives an overview of
the different functional elements involved in network management. The “network
manager” represents the device used to manage a group of managed nodes. A
“Managed device” refers to a network device exposing a number of parameters
(e.g. IP address, CPU usage, residual battery, etc.) that are managed (through
read /write operations) by the network manager. The “agent” refers to the software
which runs on managed device. It collects raw data from the managed device to
transfer it, in a comprehensible or exploitable format, to the network manager.
The “management database” contains information concerning the managed device
parameters. The “messaging protocols” can be used to exchange information between
the network manager and the managed devices. This allows the network manager
to get parameters from managed devices and accordingly take appropriate decision

concerning the reconfiguration of network devices.

— Network Manager

Messaging protocol

————%
A 4
e 1 * .
- | 1 \*
- T “
] - 1 ~ “
i * ~
‘ Managed device | | Managed device | | Managed device ‘
« Agent o Agent + Agent

« Management
database

+ Management

* Management database

database

Figure 2.1 — Network management entities overview.

Typically, a network management system needs to support the following

operations:

1) Configuration management: It refers to the process that helps setting
devices parameters such as IP adress and routing table. It encompasses
different operations related to the configuration and reconfiguration of all the

(writable) network device parameters.
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2)

3)

Topology management: It corresponds to a set of operations that help to

maintain the network connectivity while providing good network performance.

Security management: This operation prevents unauthorized access to an
intruder. For this purpose, it includes a wide range of operations such as

encryption (key distribution techniques), threat detection and recovery.

QoS management: It refers to a mechanism that helps to configure the
network so as to obtain a desirable network performance in term of data

latency, packet loss, throughput.

Fault management: It corresponds to a mechanism that helps detecting,
isolating and resolving network problems without affecting the proper func-

tioning of the network.

Network maintenance: It refers to a set of operations to perform in order
to maintain the network running. It encompasses operations such as software
maintenance (e.g. firmware update and bug fixes) and troubleshooting network

problems.

To manage traditional networks, various network management protocol such as
SNMP [103], CMIP [70], NETCONF [47], RESTCONF [164], CWMP [121] and
OMA-DM [13] have been proposed.

e Simple Network Management Protocol (SNMP)

SNMP is a network protocol developed by IETF (Internet Engineering Task
Force) for remote monitoring of IP devices. It supports a set of operations
including monitoring, configuration and/or reconfiguration of network device
parameters. SNMP involves the three elements of network devices manage-
ment (agents, nodes and manager) described above. It relies on Structure of
Management Information (SMI) and Management Information Base (MIB).
MIB designates database used for managing the entities in communication
network while SMI defines the structure and types of objects stored in the
MIB.

Common Management Information Protocol (CMIP)

CMIP is a network protocol responsible for the communication between the
network manager and the managed devices. CMIP enables various network
management operations such as fault management, security management,
performance monitoring and so forth. CMIP was designed to be used on
Open Systems Interconnection (OSI) and it extends the capability of SNMP.
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Nevertheless CMIP has not been widely adopted because of slowness in the

process of its standardization.

e Network Configuration Protocol (NETCONF)

NETCONF has been introduced to improve SNMP. It introduces new features
in network management such as multiple configuration data stores (candidate,
running, startup), distinction between configuration and state data. NET-
CONF uses Extensible Markup Language (XML) based data encoding for
both the configuration data and the protocol messages. NETCONF uses the
YANG model which is a data modeling language used to model configuration
and state data manipulated by the NETCONF protocol [25].

e RESTCONF
RESTCONTF protocol has been designed with the goal of extending NETCONF
protocol in order to enable the possibility of performing network management
operations through web applications. Concretely, RESTCONF provides a
way to realize CRUD (Create, Retrieve, Update, Delete) operations through
execution of HT'TP methods to access to configuration data defined in YANG,
using the datastore concepts defined in NETCONF.

e CPE WAN Management Protocol (CWMP)
CWMP is a protocol defined by Broadband Forum in TR-069 Technical report
in order to remotly manage customer-premises equipment (CPE) connected
to an Internet Protocol (IP) network. This protocol allows performing tasks
such as auto-configuration, software or firmware image management, software

module management, status and performance management, and diagnostics.

e OMA-DM
OMA-DM is a secure device management protocol specified by the Open
Mobile Alliance (OMA) Device Management (DM) Working Group and
the Data Synchronization (DS) Working Group. It enables performing
management tasks such as device provisionning, device configuration, software

upgrade and fault management.

Nevertheless, the above network management protocols were designed before
the emergence of IoT paradigm, and it was rather obvious that those protocols
did not consider a number of IoT characteristics and constraints (e.g. devices
resource constraints) that raise technical barriers for their applicability in the IoT
environment. Therefore, new network management protocols and frameworks have
been proposed in order to cope with the inherent constraints of IoT environment.

We discuss about those solutions in the next section.
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2.3 Management of IoT low power networks

In order to fulfill the requirement of IoT low power networks mentioned in section
1.5 several IoT networks management solutions have been proposed for resource-
constrained devices. These network management solutions includes new network
management protocols, SDN based frameworks, Cloud based frameworks, Semantic

based frameworks and machine learning based frameworks.

2.3.1 Network management protocols

In the literature, different network management protocols have been proposed

in order to remotely manage resource-constrained devices. These protocols include:

LWM2M, CoMI, NETCONF light and 6LowPAN-SNMP.

o LWM2M
LWM2M is a client-server protocol developed for the management of IoT low
power devices. This protocol has been designed by Open Mobile Alliance
(OMA) and is based on protocol and security standards from the IETF. It
provides several features such as connectivity monitoring, resources monitoring
and firmware upgrade. In Figure 2.2] we depict a high-level view of LWM2M
architecture. LWM2M server is located at the network manager device and
LWM2M client are typically located on managed devices. IoT device resources
are organized into objects (e.g. Location object contains all resources that
provide information about the location of IoT devices). A description of the

implementation of that protocol is provided by the authors in [125].

Device management
application

[ LWM2M server ]
Interfaces Stack
Bootstrapping Efficient payload
Registration CoAP protocol
Object/Resource access DTLS security
Reporting UDP or SMS bearer

( LWM2M Client ]

Object 0 Object 1 Object 2

Resource 1 Resource 1 Resource 1
Resource 2 Resource 2 Resource 2
Resource 3 Resource 3 Resource 3
Resource 4 Resource 4 Resource 4

Figure 2.2 - LWM2M architecture.
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e CoAP Management Interface(CoMI)
CoMI is a management interface dedicated for IoT low power devices and net-
works. This network management protocol enables performing management
operations on IoT device resources specified in YANG, or SMIv2 converted to
YANG by accessing them through the CoAP protocol. The specification of
that protocol is given in [I55].

e 6LowPAN-SNMP

6LowPAN-SNMP is an adaptation of SNMP for IPv6 Low-Power Wireless
Personal Area Network (6LowPAN) proposed in [33]. It has been designed
to work in resource-constrained networks and offers the possibility to perform
SNMP operations over IPv6 Low-Power Wireless Personal Area Networks. To
achieve that, a mechanism of compression of SNMP header is performed in
order to reduce the number of SNMP messages generated. The compatibility
with standard SNMP is ensured by using a proxy forwarder that helps to
convert SNMP messages into 6LowPAN-SNMP messages.

e NETCONTF light
NETCONTF light is a network management protocol developed by TETF [133]
in order extends NETCONTF to enable the management of resource-constrained
devices. It provides tools to install, manipulate, and delete the configuration

of network devices by using only a set of NETCONF operations.

It is worth mentionning that network management protocols are often associated
with messaging protocols in order to enable the management of resource-constrained
devices [97, I3T]. These messaging protocols include: CoAP (Constrained Applica-
tion Protocol) [139], XMPP (Extensible Messaging and Presence Protocol) [129],
DDS (Data-Distribution Service for Real-Time Systems) [63], MQTT (Message
Queuing Telemetry Transport) [109], MQTT-SN (MQTT for Sensor Networks) [146]
and AMQP (Advanced Message Queuing Protocol) [23]. We provide a comparison
of those messaging protocols in Table 2.1]

In Table 2.2] we summarized a comparison of different protocols for management
of resource-constrained networks according to the requirement formulated in section
[I.5] Nevertheless, these network management protocols are not able to satisfy all
the requirements of IoT low power networks mentioned earlier. To achieve that,
it is necessary to associate those protocols with other mechanisms to fulfill the
requirement such as self configuration and scalability. In the next section we will

discuss about those mechanisms.
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Protocol | Suitability | Messaging Architecture | QoS QoS Level Interoperability
for Con- | type
strained
devices
CoAP +++ - Publish/ | Client/Server | Yes - Con- | Yes
subscribe firmable
- Request/ message
Response - Non-
confirmable
message
AMQP + - Publish/ | Client/Server | Yes - At-most- | Yes
subscribe once
- At-least-
once
- Exactly
once
MQTT ++ - Request/ | Client/Broker | Yes - QoS 0 | Partial
Response (fire  and
- Publish/ forget)
subscribe - QoS 1
(delivered
at least
once)
- QoS 2
( delivery
exactly
once)
MQTT- | ++ - Request/ | Client/Broker | Yes - QoS O0]-
SN Response (fire  and
- Publish/ forget)
subscribe - QoS 1
(delivered
at least
once)
- QoS 2
( delivery
exactly
once)
XMPP + - Request/ | Client/server | No - Yes
Response
- Publish/
subscribe
DDS + Publish/ Brokerless Yes 23 levels of | Yes
subscribe QoS

+++ Excellent, ++ Fair, + Poor

Table 2.1 — Messaging protocols used in IoT networks.
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Network Scalability | Fault tol- | Energy | QoS Security | Self
management erance efficient configu-
protocol ration
LWM2M - - V - V -

CoMI - - v - V -
6LowPAN- - - vV - V -

SNMP

NETCONTF light | - - vV - V -

v/ The requirement can be handle by the Network management protocol.

Table 2.2 — A comparison of IoT low power networks management protocols.

2.3.2 IoT network management based on Cloud frameworks

According to [105], cloud computing refers to a model which enables ubiquitous,
convenient, on-demand network access to a shared pool of configurable computing
resources (e.g., networks, servers, storage, applications, and services) that can
be rapidly provisioned and released with minimal management effort, often over
the internet. These services are provided through a cloud platform. A cloud
platform according to a definition given in [I1], is "a unique sensor data storage,
visualization and remote management platform that leverage [sic|] powerful cloud
computing technologies to provide excellent data scalability, rapid visualization, and
user programmable analysis.". Cloud computing infrastructure can provide needed
resources for data storage or computing power to [oT low power networks. For this
reason, various project aiming implementation of sensor cloud have been conducted
by researchers [67]. Additionally, several clouds of things platform have emerged to
foster blend of cloud paradigm and IoT networks in order to enable management of
connected devices over the cloud platform.

Table presents some cloud IoT platforms from the literature and their
characteristics. Generally, the architecture for management of IoT low power
networks over a cloud plateform consists in three levels: 1) the first level is
composed of resource-constrained devices, 2) the second level is composed by cloud
infrastructure and 3) the third level is composed of IoT applications. We provide
an example of such architecture in Figure [2.3]

Yuriyama and Kushida [I75] proposed a management solution for sensors
network based on a cloud infrastructure. In the proposed solution, physical sensor
devices are virtualized in order to enable the management of heterogeneous resource-
constrained devices over a cloud platform infrastructure. Likewise, Xu and Helal
[167] proposed an architecture for management of IoT devices called Cloud-Edge-

Beneath (CEB). This proposal leverage the benefits of cloud platforms in order to
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IoT cloud | Protocols for data | Configuration | Device Communication | Resource
platform collection management | Monitor- technologies con-

ing strained
devices
Mbed [16] HTTP, HTTPS, | / - BLE, Thread, | /
CoAP, MQTT 6LowPAN,
Wi-Fi, LoRa
Arkessa [15] | - vV - - -
Xively [100] | MQTT, CoAP, | / vV Thread, LoRa, | v/
HTTP sigfox
Thethings.io| HTTP, CoAP, Sigfox,  Wi-Fi,
[150] MQTT, LoRa, GSM
WebSockets
Arrayent - - - -
[148]
ThingWorx | - - -
[152]
Autodesk CoAP, HTTP, - -
Fusion XMPP, DDS,
Connect MQTT
[19]
IBM  IoT | MQTT, HTTP - - -
2]
Artik Cloud | REST/HTTP, - - -
[130] websockets,
MQTT, CoAP
Carriots HTTP, MQTT - - -
1]
Echelon [46] | - vV - WiFi, Ethernet | -
KAA [81] MQTT, CoAP, | / V Z-Wave, vV
XMPP, TCP, Zigbee, LoRa,
HTTP Bluetooth,
WiFi,
6LoWPAN
Ayla  IoT | - V - Wi-Fi, Ethernet, | v/
Platform Zigbee
[L11]
Thinger.io MQTT, CoAP Sigfox V
[151] and HTTP
SiteWhere MQTT, - - -
[143] AMQP, Stomp,
WebSockets, and
direct socket

connection

Table 2.3 — Cloud of Things platforms features.
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Figure 2.3 — Example of architecture for management of IoT devices over a sensor cloud
infrastructure.

provide a management solution for large-scale and dynamic IoT networks. Similarly,
Ojha et al. [I12] proposed a solution for management of wireless sensor networks
based on a cloud platform. The proposed solution enables dynamic scheduling of
duty in order to extend the network lifetime. Along the same lines, Kim et al.
[88] proposed a routing scheme called H-SMSR (hierarchical scalable multipath
source routing) in the context of IoT low power devices managed over a cloud
platform called Agriculture Sensor-Cloud Infrastructure (ASCI). The proposed
routing protocol includes hierarchical source routing (HSR) and aggregation gradient
routing (AGR) in order to increase the network lifetime. Das et al. [38] proposed
an energy efficient model for the management of IoT low power devices over a
cloud platform. This solution includes a predictive model that helps to reduce the
network transmission overhead. Suciu et al. [147] proposed a framework based on
a cloud platform to enable management of IoT low power devices in the context
smart cities. The proposed framework allows an improvement of the network traffic

quality through an autonomic management of IoT devices.

The above frameworks for management of IoT low power networks exhibit
different functionalities. We summarized those frameworks in Table 2.4 and
evaluated them against the requirements of IoT low power networks formulated
in section [I.5] From the table, we see that none of the existing solutions fulfill all
the requirements of IoT low power networks. Therefore, additional mechanisms are

needed in order to meet requirements of IoT low power networks.
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Network Scalability | Fault tol- | Energy | QoS Security | Self
management erance efficient configu-
framework ration

[175] - - J - 5

[167] v - YV - -

[12) : : : v |-

5] v : v |- :

5 : : v |- :

<

L7 v : VARRE v

v/ The requirement can be handle by the network management framework.

Table 2.4 — A comparison of IoT network management frameworks based on Cloud.

2.3.3 IoT network management based on SDIN frameworks

Over the last decade, the number of resource-constrained devices present in
the IoT ecosystem has increased dramatically. These devices are often running
many events which imper on the network performance. To cope with this issue,
Software Defined Network (SDN) has been used in order to achieve energy efficient
management of IoT low power networks [110]. According to [87], SDN is a paradigm
where a central software program called a controller dictates the overall network
behavior. SDN advocates separating control plane of the network (where decisions
about how packets should flow through the network is taken) from the data plane of
the network ( traffic forwarding plan). Figure gives an overview of an SDN
architecture. Network devices are considered as simple packet routing devices
(data plan) and the control logic is implemented at the controller (control plane).
Southbound interface is the relay between programmable switches and the software
controller. Several southbound API has been proposed in literature [I35], notably:
OpenFlow, ForCES, PCEP, etc. Openflow [94] is considered as the most common
southbound SDN interfaces. Openflow exists in several software releases [137] :
NOX, POX, Beacon, Floodlight, MuL,, Maestro, Ryu, etc. Northbound interface
enables communication among the higher-level components. In fact, northbound
interface allows exchange of information between network and application running
on top of it.

De Gante et al. [40] proposed a centralized architecture for the management
of wireless sensor networks. The proposed architecture leverages the benefits of
SDN paradigm, notably it allows prolonging the network lifetime. In the same
vein, Costanzo et al. [37] and Jacobsson and Orfanidis [77] proposed network
management solutions for resource-constrained devices based on SDN. Moreover,

Orfanidis [114] proposed an architecture for management of IoT low power networks
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High level Network Applications

Northbound interface

Control plane
(e.q. controller: NOX, POX, Beacon, Floodlight, MuL, Maestro)

Southbound interface (eg: OpenFlow)

Data plane Data plane Data plane

(loT device) (IoT device) (loT device)

Figure 2.4 — SDN architecture.

based on SDN with a machine learning model. Similarly, Bera et al. [2I] proposed
a centralized network management scheme called software-defined wireless sensor
network architecture (Soft-WSN) in order to configure IoT low power networks
according to policies defined by the network management entity. Huang et al.
[69] proposed a framework for management of IoT low power networks based on
SDN and reinforcement learning. The proposed framework enables reduction of the
overhead of control traffic by filtering redundancy and performing a load-balancing
routing mechanism according to data flows with the required QoS. Additionally,
Wu et al. [I66] proposed a framework based on SDN to mitigate security attack in
wireless sensor networks. The proposed framework enable dynamic reaction against
unknown attacks. However, since these solutions are centralized, in a large network,
they may suffer from scalability problem. To cope with this issue, Olivier et al. [113]
proposed an architecture called software-defined clustered sensor networks (SDCSN).
The proposed network management framework uses clustering technique to organize
the network in clusters where each cluster head plays the role of the controller. In the
same line, Oliveira et al. [41] proposed an implementation of a scalable framework

for management of wireless sensor networks based multiple SDN controller.

We provide a comparison of the above frameworks in Table according to the
requirement formulated in section [I.5] It is worth mentioning that SDN needs to

be associated with another mechanisms [102] such as machine learning in order to
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fulfill the requirements of IoT low power networks.

Reference Scalability | Fault tol- | Energy | QoS Security | Self
erance efficient configu-
ration

0] : : v |- : :

] : : VAR : :

I : : VARE : :
[113] v v VAR RV AR E

[ v : VARE : :

166 : : v |- VAR
2] : v VARRE : v
14 : v : : : v
69 : v v v - v

v/ The requirement can be handle by the network management framework.

Table 2.5 — A comparison of IoT network management frameworks based on SDN.

2.3.4 IoT network management based on Semantic technolo-
gies

The presence of billion of heterogeneous and resource-constrained devices in
IoT environment raises the need for handling heterogeneity of devices management
solutions. For this purpose, semantic technology has been used to cope with IoT
devices heterogeneity while ensuring good network performance.

Katasonov et al. [83] present a middleware for self management of heterogeneous
[oT devices. This middleware is based on agent technologies and it enables
interoperability by using semantic technologies. Vlacheas et al. [I56] proposed
a framework for management of IoT devices deployed in context of smart cities
applications. The proposal is based on the concept of cognition and proximity
and provides mechanisms to face heterogeneity of connected things. In the same
vein, Ismail et al. [76] proposed a framework based on semantic technology
in order to enable management of [oT devices. The proposed framework ease
automatic management of IoT devices by using ontology to enable management
of heterogeneous network devices. Likewise, Sahlmann et al. [128| proposed a
framework based on the oneM2M ontology (a structured vocabulary that describes a
certain domain of interest ) in order to ease automatic configuration of heterogeneous
[oT devices. The proposed solution uses NETCONF and MQTT protocols for
management of resource-constrained devices. Further, Datta et al. [39] proposed a

framework based on semantic technologies to enable management of heterogeneous
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[oT devices. The proposed framework includes automatic discovery of the mobile
devices, provisioning of sensors and IoT domains, semantic reasoning on sensor data
and actuation based on the suggestions. The authors claim that their proposal can
help to efficiently use the resources of IoT devices. In the same vein, Aissaoui et
al. [6] proposed an extension of SAREF ontology in order to manage heterogeneous
[oT devices. The proposed model enables cross-system data interoperability and
knowledge enrichment through reasoning.

Based on this state of the art on IoT networks management based on semantic,
we observed that existing solutions focused on enabling automatic management of
heterogenous [oT devices. However, in order to meet the requirement of IoT low
power networks formulated in section [I.5] those solutions should be enhanced. We

summarize in Table [2.6] a comparison of these solutions.

Network Scalability | Fault tol- | Energy | QoS Security | Self
management erance efficient configu-
framework ration

[156] - - - - -

I76] - - - - -

139] - - 7 - -

28] - _ : - -

6 - - - - -

Y=

I83] - - - - -

v/ The requirement can be handle by the network management framework.

Table 2.6 — A comparison of IoT network management frameworks based on Semantic.

2.3.5 IoT network management based on Machine Learning

techniques

Nowadays, [oT networks generate a huge amount of data due to the dynamic
nature of these networks and /or the number of resource-constrained devices. In order
to leverage the benefits of those data, machine learning techniques have been used
in order to help in taking decision of network management [14] 160, 93]. Machine
Learning (ML) refers to the process that gives a computer the ability to mimic the
human brain in order to perform complex tasks based on their knowledge. It has
been useful for IoT network management because it provides predictive mechanisms
that help taking decision such as routing table reconfiguration, network scheduling,
parameter adaptation according to the current states of the network. In general,

ML techniques can be divided into supervised learning, unsupervised learning and
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reinforcement learning as depicted in Figure 2.5] Supervised Learning is a ML
method which provides a way to predict the outcome of unseen values by using
classification or regression with pre-labelled data. It is based on two steps namely
training (phase which involves dataset training and designing of classification model)
and testing (which involves classification of unseen value). The common supervised
learning algorithms used for IoT network management include : Support Vector
Machine (SVM), regression tree, neural network, Convolutional neural network
(CNN), Deep Belief Network (DBN) and Recurrent Neural Network (RNN). Unlike
supervised learning, unsupervised learning is not based on pre-labeled. It uses
instead unlabeled dataset to perform classification of data into cluster by discovering
common pattern within those unlabeled dataset. The common unsupervised
learning algorithms used for network management include: K-MEANS, Autoclass,
Deep Belief Network and Deep Boltzmann machine. Reinforcement learning is
another approach of ML that enables to find the ideal behavior in particular context
by machines and software agent in order to maximize performance. Basically, the
reinforcement learning is described as a Markov Decision Process (MDP). Figure
[2.6] shows a high level overview of a reinforcement learning model. The agent can
visit a set of finite environment states S by performing actions. In visiting a state,
a numerical reward will be collected in order to measure the success or failure of an
agent’s actions in a given state. The common reinforcement algorithms used for IoT
network management include: Sarsa, Q-learning and Policy Gradient.

Generally, the usage of ML for solving networking problem is done by following
specific steps as shown in [I60]. These different steps are described in Figure
and include problem formulation, data collection, data analysis, model construction,
model validation, deployment and inference.

In the following, we present some existing solutions for management of IoT low
networks based on ML.

e IoT network management solutions based on supervised learning
Wang et al. [162] proposed a framework based on decision tree learners, a
supervised learning algorithm, in order to predict the link quality in IoT
low power networks. The proposed solution aims to optimize the network
performance by taking routing decision that helps improving the data delivery
rate and data latency. Likewise, Liu and Cerpa [98] proposed a framework
called 4C, to estimate the link quality in IoT low power networks. The
proposed framework is based on logistic regression and uses PHY parameters
of the last received packets and packet reception rate (PRR) to estimate the
link quality. The authors claim that very little data (5-7 links for a couple of

minutes) are needed in order to train the models in the environments tested.
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Figure 2.5 — Different Machine learning algorithms used for IoT network management.
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Figure 2.7 — Workflow of machine learning for networking [160)].

In the same vein, Feo-Flushing et al. [5I] presented a scheme to perform
an online learning using a supervised learning algorithm in order to predict
the link quality in a given wireless sensor network. The authors claim that
strategies that keep balanced the set of training samples in terms of ranges
of target values provide better accuracy and faster convergence. Further,
Kaplantzis et al. [82] proposed a centralized intrusion detection system (IDS)
based on Support Vector Machines(SVMs) and sliding windows for wireless
sensor networks. The proposed IDS uses only 2 features to detect selective

forwarding and black hole attacks.

e IoT network management solutions based on unsupervised learning
Barbancho et al. [20] proposed a solution called Intelligent Wireless Sensor
Network (IWSN) in order to manage data route by IoT devices. The proposed
solution is based on neural network which allows the selection of the route that
optimize the network performance in presence of node failure. Additionally,
Moustapha and Selmic [I08] proposed a dynamic model for fault detection in
wireless sensor networks. The proposed framework includes neural network
modeling approach for sensor node identification and fault detection in the
network. Further, Branch et al. [28] proposed a method for outlier detection
method in WSNs using k-nearest neighbors. The authors claim that their
proposal is well suited for applications in which the confidence of an outlier
rating may be calculated by either an adjustment of sliding window size or by
the number of neighbors used in a distance-based outlier detection technique.
Another framework for management of loT low power networks was proposed
by Chang et al. [32]. The proposed framework aims at controlling the topology
of ultra-dense wireless sensor networks. The proposed framework is based on
K-Means, an unsupervised learning algorithm, and it enables an optimization

of the network lifetime by balancing energy consumption.
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o IoT network management solutions based on reinforcement learning
Stampa et al. [145] proposed a framework based on Deep-Reinforcement
Learning (DRL) agent for routing optimization. The proposed framework
helps to define tailored configurations that minimize the network delay.
Additionally, Shah and Kumar [136] proposed a framework called Distributed
Independent Reinforcement Learning (DIRL), for resource/task management
in wireless sensor networks. The proposed framework is based on Q-learning
and it allows each sensor device to autonomously schedule its tasks and allocate
its resources by a learning process. Another framework for management of
[oT low power networks based on reinforcement learning was proposed by
Mihaylov et al. [I06]. The proposed framework enables scheduling the wake-
up cycles of nodes in a wireless sensor network according to their interactions
with neighbouring nodes. Further, a framework based on reinforcement
learning for routing management in wireless sensor has been proposed in
[161]. The proposed framework called AdaR (Adaptive Routing) uses Least
Squares Policy Iteration (LSPI) and allows sensor nodes to learn the optimal
routing strategy regarding a set of optimization goal. Furthermore, Forster
and Murphy [54] proposed a framework called Feedback ROuting to Multiple
Sinks (FROMS), to optimize routing selection in wireless sensor network.
The proposed framework based on reinforcement learning helps to define the
optimal multicast routes using different cost metrics (e.g. hops, geographic
distance, latency and remaining battery). Moreover, FROMS enables quick

recovery in case of failures and sink mobility.

We summarized frameworks for [oT low power networks management based on
machine learning in Table and compared them according to the requirement of
IoT low power formulated in section[I.5] From this study, we can see that additional
effort are needed to develop efficient solutions in order to meet the requirement of

[oT low power networks.
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Network Scalability | Fault tol- | Energy | QoS Security | Self
management erance efficient configu-
framework ration

Supervised Learning
[162) : v : v T v
52 : : : : VAR Y
55 : v : : : v
51 : J : : : v,
Unsupervised Learning
[20] : N, v N, : N,
[108] - i - - - Vv
28] - - - - Vv v
52) : : N, : : v
Reinforcement Learning
5] : : : v : N,
[136] - - - Vv - v
[106] - - v - - v
[161] - - Vv - - Vv
54 J J v : : v

v/ The requirement can be handle by the network management framework.

Table 2.7 — A comparison of IoT network management frameworks based on Machine

learning.




36 CHAPTER 2. MANAGEMENT OF I0T LOW POWER NETWORKS

2.4 Conclusion

In this chapter, we presented a comprehensive overview on existing solutions for
management of IoT low power networks and provided a comparison of those solutions
according to the requirement of [oT low power networks. From this review, we can
see that there is still research effort to be done in order to meet the requirement of
[oT low power networks. In the remainder of this thesis, we will present improvement
of these solutions with our contributions presented in chapter [3], chapter [d, chapter
] and chapter [6]
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3.1 Introduction

Nowadays, I[oT low power networks have been largely adopted in various
scenarios such as the factory of the future, smart agriculture, smart cities, and
so forth. These networks allow the interconnection of resource-constrained devices
(e.g. actuators and sensors) using wireless communication links. In such networks,
having energy-efficient routing protocols is necessary in order to increase the battery
lifetime of devices. However, many factors may influence the energy consumption
in IoT low power networks. These factors include the transmission power of
devices, the data routing strategy, etc. One of the most widely adopted routing
protocol for those networks is the IPv6 Routing Protocol for Low-Power and Lossy
Networks (RPL). RPL is a proactive routing protocol that enables the construction
and maintenance of dynamic routes using various objective functions (OFs) [165].
This protocol constructs the network topology as a Destination Oriented Directed
Acyclic Graph (DODAG). Each node within the network selects a preferred parent

among a list of available parents to route data toward the RPL root. Nevertheless,
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RPL performance can be negatively affected by frequent changes of the preferred
parents [73, B]. Although those changes are driven by the OF function, they
can substantially reduce the performance of the RPL protocol by inducing high
communication overheads and excessive energy consumption because of the required
path reconstruction. In the literature, various improvements of RPL objective
functions have been proposed in order to improve the network performance. Aslani
and Sargolzaey [18] proposed a new approach to compute the RPL routing metric
ETX (Expected Transmission Count) in order to optimize the routing path selection
so as to improve the RPL network performance. In the same vein, Yang et al. [169]
proposed a routing metric named Stability Index (SI) to improve RPL routing table
stability. The proposed metric uses control message transmission rate to measure
the stability of node and routing topology. Based on that metric, more stable
nodes are selected to form more stable routes. Likewise, Iova et al. [74] proposed
a routing metric called Expected Lifetime metric (ELT) in order to improve the
network lifetime of RPL networks. The proposed routing metric helps to create
an energy balanced topology. Furthermore, Gaddour et al. [55] proposed a new
objective function called fuzzy logic objective function (OF-FL). The proposed OF
is based on fuzzy logic and it uses several important routing metrics to enable route

selection in RPL networks.

However, in the aforementioned approaches, the efficiency of the best parent
selection-based methodology to ensure energy-efficient routing in RPL networks is
questionable since these approaches do not consider the impact of the network
transmission range on their intrinsic performance. In other words, existing
approaches may fail to minimize the network energy consumption whenever the
transmission range value is not well chosen, resulting in a non-efficient energy
consumption in the RPL network. In practice, varying the transmission range is
done by varying the transmission power.

Nevertheless, the evaluation of the efficient transmission range for data routing,
given an RPL network topology, is challenging since short or long transmission
range values cannot guarantee a good network performance. Indeed, as pointed out
by [104], simply setting the transmission range, for data routing, to a minimal
or maximal value does not guarantee network lifetime maximization. In fact,
having a short transmission range may generate excessive energy consumption by
intermediate hops in a multi-hop communication network. Likewise, having a long
transmission range may require an important energy consumption for data routing.
Therefore, given an RPL network topology, an efficient transmission range needs to

be calculated so that the network lifetime will be maximized.

Kubisch et al. [92] proposed a method that helps to dynamically adjust the
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transmission power level (or transmission range) of IoT low power networks in
a distributed fashion. Additionally, Zhang and Gorce [I77] proposed an energy
efficiency metric for periodic monitoring applications called the Energy Distance
Ratio per bit (EDRb). The proposed metric enables to determine the transmission
range that minimizes the energy consumption in wireless sensor networks (WSNs).
Similarly, Deng et al. [44] proposed a per hop method to determine the transmission
range that miminizes the network energy consumption in IoT low power networks.
Further, Yi et al. [I73] proposed a method to control the transmission range for
energy-harvesting wireless sensor networks. The proposed method helps to increase
the transmission range when a surplus of energy is generated to decrease the number
of relay hops. In these approaches, data routing is based on the assumption that each
node is only aware of the nodes within its transmission range. With such distributed
routing path construction strategy, the resulting network routing infrastructure may
comprise disjoint network segments, making end-to-end data routing impossible.

Song et al. [144] show that the evaluation of the efficient transmission range of
sensor nodes is NP Hard. For such type of problem, machine learning techniques
may be a good candidate to solve it [2].

In this chapter, we address the effect of the transmission power on energy
consumption in RPL networks (RPL : IPV6 Routing Protocol for Low-Power and
Lossy Networks) and propose new solutions based on a multi-layer perceptron (MLP)
model to estimate the transmission range of RPL networks that reduces the network
energy consumption while preserving the network connectivity. In particular, we

propose intelligent solutions to determine the efficient transmission range for:
e RPL networks with a fixed number of nodes;

e Dynamic RPL networks (where the network size may vary with the time
because of node failure, adding or removing nodes to/from the network and

so forth) deployed following a 2D topology;
e Dynamic RPL networks deployed following a 3D topology.

The reminder of this chapter is organized as follows. Section presents
background on RPL and MLP; section [3.3] presents our solution to determine the
efficient transmission range of RPL networks with a fixed size; section [3.4] presents
our solution to determine the efficient transmission range of dynamic RPL networks;
section [3.5| presents a discussion concerning the deployability of our solution; section
gives concluding remarks.
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3.2 Background

3.2.1 RPL networks

RPL constructs the network topology (or DODAG) based on a rank of a node
(the position of a node in relation to the RPL root) which is computed using an
objective funtion. The objective function allows to define how an RPL node selects
a preferred parent for data routing by using one or more routing metrics (e.g. Hop
Count, Link Throughput, Link Quality Level, node remaining energy, etc.). The

establishment of a DODAG is done using these control messages:

e DIS (DODAG Information Solicitation): this message is used to request
information (e.g. DODAG Information Object) from neighboring RPL nodes.

It allows a node to discover new routes.

e DIO (DODAG Information Object): this message is used to define upward
routes. This message contains informations (DODAG identifier, the Objective

Function, the Rank of the node and so forth) that allow a node to discover an

RPL Instance.

e DAO (Destination Advertisement Object): this message is used to define

downward routes.

Figure shows an example of RPL DODAG construction.  After the
convergence of RPL, the protocol will continue to produce control messages in order
to maintain the routing tables up-to-date. This may generate an excessive energy

consumption whenever the transmission range of RPL nodes is not well chosen
[68, 3].

Rank 1

Rank 2

Rank 3

/

Figure 3.1 — Example of DODAG construction.
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3.2.2 Multilayer perceptron

The multilayer Perceptron (MLP) is a deep neural network model which allows
to perform classification and regression on a given set of historical data. It has been
used in IoT low power networks to solve tasks such as localization and intrusion
detection. Typically, the MLP model is composed of an input layer, an output
layer and at least one hidden layer as depicted in Figure 3.2l The input layer is
an M-dimensional vector that takes the values of the input features, denoted by
V = (z1,v1,%2,Y2, -+, Tar, Yar)- In our case, the vector V contains the coordinates
of each node for a given RPL network topology. The inputs are propagated through
the hidden layer(s) towards the output layer. The hidden layer is located between
the input layer and the output layer. The output hf of the neurons in the hidden
layer is defined as follows [124]:

ni—1
= (it 1)
k=1
Fori=2--- Nand j=1,--- n;.

Where w,ijjl is the weight between the neuron £ in the hidden layer 7 and the
neuron j in the hidden layer ¢ + 1. n; is the number of neurons in the ¢th hidden

layer.

The output layer is a vector obtained through the following equation:
ny
vi=f (Z wﬁjh’fv) (3:2)
k=1

Where w,i\f ; 1s the weight between the neuron £ in the Nth hidden layer and the
neuron j in the output layer. ny is the number of the neurons in the Nth hidden

layer.

When the MLP is applied to a supervised learning problem, it generally performs
training using the backpropagation algorithm [78] in order to generate a model that
can accurately realize the task for which it is being trained. In our proposal, the goal
is to accurately estimate the efficient transmission range for a given RPL network
topology based on a set of data collected beforehand (data composed of network

topologies and their associated efficient transmission range).
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Hidden layer 1 Hidden layer N
Wo Wi

- N ) -

Input layer N

Hidden layer Output layer

Figure 3.2 — Example of an architecture of a Multilayer Perceptron.

3.3 Efficient transmission range for static RPL net-

works

3.3.1 Assumptions and problem description
3.3.1.1 Assumptions

We considered an RPL network composed of k£ nodes randomly deployed in an
area of interest. The set of nodes is represented by D = {d;,ds, - - - ,dy}. Each node
has a unique identifier ¢ in the network (i € {1,--- ,k}). Also, each RPL node can
communicate with another node if the node is within its transmission communication
range. Moreover, we considered that all the devices are homogeneous in terms of
wireless communication technology, computational capabilities and have the same
amount of initial energy. Furthermore, we assumed that the nodes are topologically

static.

3.3.1.2 Problem description

We conducted a two-step investigation on a Cooja emulator [I15] running an RPL
network composed of 50 motes. In the first step, we used the default communication
range of 50 meters and observed the control messages generated. In the second step,
we manually reduced the communication range to 20 meters and observed also the
control messages generated with this new parameter value. After one hour, we noted
that the number of control messages in the second step is significantly lower than the
one of the first step (cf. Figure . Thus, in the second step, few control messages
(which implies less energy consumption) are needed to discover and maintain the

routes. However, as shown in [104], a minimal value of transmission range may not
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ensure an optimal network performance. Thereby, our goal here is to determine the
efficient transmission range that helps to enhance the performance for static RPL

networks with a defined number of nodes.

Control messages with default communication range (50m) —+—

50000 Control message with communication range equals to 20m —=—

40000 r

30000 r

20000 *

Number of control messages

10000

0 10 20 30 40 50 60
Time (in min)

Figure 3.3 — Comparison of control messages transmitted.

3.3.2 Description of our solution

The main idea behind our solution that enables an adjustment of the transmission
range of an IoT network which implement RPL is to ensure the reduction of the
network energy consumption and a maintain of the network connectivity. To achieve
that, our solution uses nodes position in order to estimate the efficient transmission
range through a neural network.

Our proposed solution to estimate the transmission range of RPL networks with
a fixed number of nodes works in three steps. The first step is the data collection
phase, which is done on Cooja emulator. The second step consists in building,
offline, the learning model. Finally, the third step consists in testing our model on
a set of new network topologies.

In order to generate the dataset to construct a predictive model that determines
the efficient transmission range of static RPL networks, we setup a network of
30 nodes, running RPL protocol using Contiki Cooja tool [I15]. These nodes are
periodically sending messages to the sink node, which means that a certain amount
of energy is consumed in that RPL network. For this network setting, we measured
the total energy consumed by all the RPL nodes. The simulation parameters are
depicted in Table [3.1]

Algorithm [3.1] shows the pseudo code of the labeling process. The inputs of our
dataset are composed of the positions of the different nodes, and the output is the
efficient transmission range. This transmission range is chosen such that each node
is reachable by the DODAG root (either directly or through multiple hops) while

the total energy consumption of the RPL network is minimized.
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Table 3.1 — Simulation parameters.

Parameter value

Deployment area (m? ) 100 x 100

Number of nodes 30

Initial Energy(uAh) 1000000

Packets rate 1 packet/60s

Simulation time (ms) 1200000

Successful transmission ratio (Tx) | 0.9

Successful receiving ratio (Rx) 1.0

Transmission range (m) (Tx) 20,30,40,50,60,70,80,90,100

We performed the training of our neural network model based on the collected
dataset using WEKA [64]; a well-known machine learning library that contains tools
for data preparation, classification, regression, etc. Figure [3.4] shows the structure
of our MLP, which consists of an input layer, two hidden layers and a single output

layer.

Algorithm 3.1: Output labeling

1: n <+ 100

2: T = [ty,ts,...,t,] // a set of topologies

3: for t; in T do
bestTransmissionRange < P,
Default EnergyConsumption < 6;
for P; in {20, 30, 40, 60, 70, 80, 90, 100} do

if (all motes have parent) then

if (Econsumed < Default EnergyConsumption) then
bestTransmissionRange < P;

10: De fault EnergyConsumption < E,.onsumed
11: end if
12: end if
13:  end for
14:  dataset.add(t;, bestTransmissionRange)
15: end for
16: return dataset

3.3.3 Performance evaluation

To illustrate the performance of our trained model, we have deployed 30 Cooja
motes on an area of 100 x 100 m? and generated a set of 5 topologies for testing:
TO,..., T4. We used nodes position to get the efficient transmission range through
our machine learning model. Then, we performed simulation using Cooja network

emulator on Contiki 3.0. For the performance evaluation, we have considered
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Figure 3.4 — Neural network architecture for efficient transmission range prediction.

the following metrics: the total energy consumption of the RPL network and the

accuracy of the learning model.

Evaluation of the neural network model

To evaluate the performance of our learning model, we have considered three
metrics from the WEKA tool: the Mean Absolute Error (MAE), the Correlation
Coefficient (CC), and the Root Mean Square Error (RMSE). The MAE metric
measures the average difference between the original values and the predicted values
The WEKA'’s tool CC metric indicates the correlation between the predicted value
and the original value. In order to have a perfectly correlated set of predictions, the
value of the coefficient of correlation should be 1 otherwise the value 0 indicates a
worst predictive model. The RMSE represents the average amount of errors made
on the test set in the unit of the output variables.

We report the performance of our learning model in Table [3.2] This table shows
that our model is capable of predicting a good transmission range value based on
our training dataset. In fact, the resulting CC is very close to 1, whereas the values
of MAE and RMSE are relatively low compared to the minimum transmission range

value (20 m) considered in this work.

Table 3.2 — Performances of our MLP model.

Correlation Coefficient 0.9925
Mean Absolute Error 6.0684
Root Mean Squared Error | 6.5782

Energy efficiency and network connectivity

We compared the total energy consumption generated by the default transmis-

sion range with the energy consumption generated with the estimated transmission
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range. For some simulated RPL network topologies, we found that our model is

able to estimate the transmission that enables a reduction of the network energy
consumption (cf. Table while ensuring the convergence of the RPL DODAG

(cf. Figure [3.5)).

Table 3.3 — Energy consumption for the RPL network topology T2.

default transmission | Estimated transmis-
range (50 m) sion range (72.03 m)
Energy consumed | 1229 1059

(nAh)

Figure 3.5 — RPL DODAG resulting from the predicted transmission range for the RPL
network topology T2.

Discussion

As noted in above section, our proposed MLP model is able to determine the
efficient transmission range for static RPL networks. However this solution presents

some limitation:

e In one of the five topologies we used for testing, the estimated transmission
range has generated a disconnected DODAG (some network nodes are isolated
so that they cannot join the RPL DODAG) as show in Figure . This might

be due to the fact that our training dataset does not contain enough data.
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Figure 3.6 — RPL DODAG resulting from the predicted transmission range for the network
topology T3.

e In a realistic deployment scenario, RPL networks are generally dynamic (i.e

node can be added or removed to the network).

Considering these limitations, we propose an extension of our proposal in order to
estimate the efficient transmission range of dynamic RPL networks. We discuss

about that in the next Section.

3.4 Efficient transmission range for dynamic RPL

networks

In this section, we provide a description of our solution that allows to determine
the efficient transmission range for dynamic RPL networks. Figure [3.7] presents a

high level view on the differents steps involved in our proposal.

Deployment of the
model on RPL network

Model
LData collection J:D Data preprocesslngJ:DL ST JZDL Model validation
Prepare data to fit
into a vector of fixed
size
Split dataset into
raining and test set

Figure 3.7 — Workflow of our proposal.

Train our ML
model using
training set

Test our ML model
using test set

Inference
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3.4.1 Problem statement

Let N,ue and N,,;, be respectively the maximal and the minimal number of
nodes of an RPL network over a network lifetime L. Let N; denotes the number of
nodes of an RPL network at time ¢ such that Ny € [Nyin, Nimaz]- Let T, be the set
that contains the position (the coordinates) of each node for a given RPL network
topology deployed in an area of interest. The prediction of the efficient transmission
range for a given topology is defined as solving a function y through historical
measures of the efficient transmission range for a set of RPL network topologies.
Nevertheless, IoT application domains such as smart cities and smart manufacturing,
are characterized by RPL networks composed of resource-constrained devices whose
number varies over the time due to node failure or node insertion into the network.
For such IoT networks, our solution presented in section cannot be used since its
limited to scenarios where RPL networks size is fixed. Thereby, the main challenge
here is to determine the efficient transmission range that improves the performance

of an RPL network with a varying number of nodes.

3.4.2 Scenario A: Adaptive transmission range for dynamic

RPL networks deployed in a 2D environment
3.4.2.1 Assumptions

We consider an [oT low power network with N, static nodes deployed on

a two-dimensional square field of X x Y surface area, with a stationary base

X Y
272

are homogeneous in terms of wireless communication technology, computational

station located at the coordinates ( ) Moreover, we assume that all nodes
capabilities, transmission power and have the same amount of initial energy on
network setup.

In addition, we adopt the following model for total energy consumption of nodes:

Econsumed = Z (EA(t) + EL(t) + ERx(t) + ETaf(t» (33)

t=1

Where E 4 refers to the energy consumed in active state over a period of time
t, By refers to the energy consumed in low power CPU state over a period of time
t, Er, refers to the energy spent in receiving state over a period of time t and Fr,
represents the energy consumed in the transmission state over a period of time ¢.

To generate the training dataset, we performed 10500 simulations using 1500 dif-
ferent network topologies (in terms of number of nodes and/or nodes position). For

each topology, we varied the transmission range R, such that R € {40,50,---,100}.
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Similarly to [I53], we assume that the transmission power increases with the
distance.

With the above considerations, we use the version 3.0 of the network simulator
Cooja of Contiki [IT15] in order to obtain the transmission range that maximizes
the network lifetime while maintaining the network connectivity for a set of RPL

network topologies with various sizes.

3.4.2.2 Description of our solution

Since our proposal is based on a Supervised Learning algorithm, a set of data
for the learning phase should be provided. For this purpose, we proceed to the
collection of a historical set of efficient transmission ranges (the maximal distance to
which a node can send its data to another one while minimizing the network energy
consumption and preserving the network connectivity) and their associated network
topology. To do this, we firstly generate a set of random RPL network topologies,
with various sizes. During the topology generation phase, a minimum distance d,,;,
between each two neighboring nodes is fulfilled. This minimum distance is used
to guarantee that VR € {40,50,---,100}, the resulting RPL. DODAG will be fully
connected.

The minimum distance d,,;, can be formulated as follows:

Apmin = % (3.4)

Where [ is a parameter that we determine experimentally by considering n

network nodes homogeneously spread over a square surface as depicted in Figure

3.8

HEEE;

Figure 3.8 — Homogeneous deployment of nodes on a square surface.

From the Figure (3.8 we can deduce that the distance d between two neighboring

nodes 1is:

C

d:
vn—1

(3.5)
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Where C' is the length of the side of the square and n > 1. From ({3.5)), we can

deduce that: o o
d= — 3.6
Ji—1"_n (36)

However, for each node, we know that C' > R,u (Rpmee is the maximal

transmission range of a given node). Hence, from (3.6)) we can deduce that:

C’ Rmar

d> — 3.7
> 5 (3.7)
Where R4, €]0,C.
Likewise, V3 €]0, Ryqz[, we deduce that:
g fmez o B (3.9)

vnooovn

Therefore, we chose the minimal distance between two neighboring nodes d,,;,

(dmin < d) as expressed in (3.4)).
Figure shows an example of a topology generated with 100 nodes based on

the d,,;, constraint.
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Figure 3.9 — Example of a generated topology with 100 nodes.

The pseudo-code depicted in Algorithm [3.2] illustrates the generation process of
N topologies per number of nodes. For the sake of experimentation, we choose
N = 100 and vary the number of nodes from 30 to 100 with a step of 5. The
variation of the number of nodes allows to obtain a set of data composed with
different network topology (in term of size and/or number of nodes)

After the generation of all the topologies, we used the Cooja simulator with the

parameters depicted in Table [3.4 and performed the simulation of all the generated
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Algorithm 3.2: Topologies generation

1: N+ 100
2: total NodesNumber = 100
3: X « 500
4: 'Y + 500
9 XTg X/2
6: Yo < Y/2
70 Dy = @
8: for k < 30; k < nodesNumber; k =k +5 do
9 for m <+ 1 to k do
10: for 1< 1to N do
11: TN nodeNumber-add(Zo,Y0)
12: generate (x;,y;)
13: check < 0
14: compute d,,;, according to Equation (3.4))
15: j —1
16: while 7 # 0 do
17: jeij—1
18: compute D; ; = \/(xZ — )+ (i — )’
19: if (Di,j < Dma;r) and (dmin < Di,j) then
20: check + +
21: else if ( D;; < din) then
22: generate (z;,y;)
23: ]
24: else if (check == 0) and (j == 0) then
25: generate (x;,y;)
26: R
27: end if
28: end while
29: TN nodeNumber'add<xiayi>
30: end for
31: topologies.add(TyN nodeNumber)
32:  end for -
33: end for

34: return topologies
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network topologies. Since we need to evaluate the efficient transmission range of each
topology, we incrementally varied the transmission range R from 40 to 100 with a
step of 10. Once the full simulation completed, we collected the position of each node
and the associated efficient transmission range (the transmission range that minimize
the network energy consumption while ensuring the network connectivity). In total,
we performed 10500 simulations on an OpenStack virtual machine comprising 24
CPUs running at 2.299 GHz each. The RAM size of the virtual machine is 16 GB
and each simulation lasts 1200s. The pseudo-code of the data collection is shown in
Algorithm [3.3] which is illustrated hereafter.

Algorithm 3.3: Data collection
1: n <« 100
. P =40, 50, ...,100]
: node Number = [30, 35, ..., 100]

2

3

4: generate topologies for node Number nodes using Algorithm 1
5. T.add(topologies)

6: for t; in T' do
7
8
9

bestTransmissionRange < P,
Default EnergyConsumption < 6;
for P, in P do

10: if (all motes have parent) then

11: if (Econsumed < Default EnergyConsumption) then
12: bestTransmissionRange < P;

13: De fault EnergyConsumption < Eonsumed

14: end if

15: end if

16:  end for

17:  dataset.add(t;, bestTransmissionRange)
18: end for

19: return dataset

Table 3.4 — Simulation parameters.

Parameter value

Deployment area (m? ) 500 x 500

Number of nodes 30,35,40,45,50,55,60,65,70,75,80,85,90,95,100
Initial Energy(uAh) 1000000

Packets rate 1 packet,/60s

Simulation time (ms) 1200000

Successful transmission ratio (Tx) 1.0

Successful receiving ratio (Rx) 0.9

Transmission range (m) (Tx) 40,50,60,70,80,90,100

Since our model aims to predict the value of the efficient transmission range of
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an RPL network with a variable size, while the MLP inputs should be fixed, the
length of the inputs of the MLP should be adapted so as to handle inputs of different
sizes. For that purpose, we fixed L,,,, as the length of the input vector V of our
MLP model. Thereby, during the training or testing steps, when the input vector
length is shorter than L,,,,, the shorter input is padded to L,,,.. In other words,
zeros are added to the input vector in order to get an input vector of size L4z
Based on the collected dataset, we used Keras [34] and scikit-learn [120] libraries

to build and train machine learning models.

3.4.2.3 Performance evaluation

To quantitatively assess the overall performance of our MLP model, we
considered the Mean Absolute Error (M AFE), the Mean Square Error (MSFE) and
the Coefficient of determination (R?) in order to estimate the prediction accuracy.
The M AE metric measures the average difference between the original values and

the predicted values:

1 < R
MAE = EZL%‘—?M (3.9)
=1

Where y; is the original value, g; is the predicted value and n represents the
total number of predictions.
MSE is a metric corresponding to the expected value of the squared (quadratic)

error or loss and it is defined as follows [120)]:

n—1

MSE= - 3"(y— )’ (310)

i=0
R? is a metric which indicates how well the regression predictions approximate

the real data points. Its best value is 1 and it is defined as follows [43]:

ZZL_Oll (9 — yi)j (3.11)
Zi:() (yi - y)

In addition, we performed test of our model on some RPL network topologies

R*=1-

in order to assess the energy efficiency of our model compared to other machine

learning models.

Prediction accuracy evaluation

To evaluate our predictive model that enables to estimate the efficient transmis-

sion range for RPL networks, we randomly splitted our dataset into two subsets:
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® M;,qin : training set, which is composed of 80% of the data from our collected

dataset.

e M, : testing set, which is composed of 20% of the data from our collected
dataset.

MLP has many parameters called hyperparameters that need to be defined before
the training. Two possible methods can be used to define these hyperparameters.
The first method consists in manually finding the good values of hyperparameters
and then combining them. Nevertheless, this approach is not straightforward and
can be an exhausting endeavor since it is based on manual search of the better
combination of hyperparameters value over a large space of parameters. The
second method is based on search algorithms such as Grid search, Random search,
Simulated annealing and Tree-structured Parzen Estimators (TPE) [22].

We used an automated algorithm for hyperparameters optimization since it can
rapidly provide the best parameters compared to the manual approach. However, the
choice of an algorithm for hyperparameters optimization depends on the machine
learning problem. Nonetheless, when the number of hyperparameters increases,
the grid search algorithm becomes time consuming and computationally expensive.
Thereby, we chose to evaluate the accuracy of the TPE, the random search and
the Anneal search in order to select an algorithm for hyperparameters optimization.
For this purpose, we used hyperopt library [90] to implement those algorithms. In
addition, we run those algorithms using the same set of hyperparameters. The
results of comparison of those algorithms are depicted in Figure [3.10} TPE turns
out to be significantly more efficient than random search and anneal search. In fact,
we observed that the validation accuracy of the TPE increases rapidly as the number
of iterations increases compared to random search and anneal search. Therefore, we
chose the best parameters provided by the TPE to build our model. The values of
the hyperparameters of our model are depicted in Table [3.5]

However, since the size of the training set may impact the performance of the
machine learning model, we evaluated the impact of the training set size on the
accuracy of our model. Therefore, we performed several trainings on datasets with
400, 600, 800, 1000, 1200 and 1400 entries. We created a box and whisker plot (cf.
Figure to show the distribution of the test accuracy for each trained dataset.
As depicted in Figure [3.11], we observed that the box and whisker plot shows that
the dataset with 1000 instances provides a good spread of accuracy compared to
other dataset. Hence, our M;,,;, is composed of 1000 instances of the generated
dataset.

We trained our MLP using the Mj,.q4;,. As shown in Figure [3.12] we observed
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Figure 3.10 — Comparison of the accuracy of the TPE, random search and anneal search.

Table 3.5 — MLP parameters.

Parameter value
Type of activation function relu, linear
Loss function MAFE
Batch size 70
Number of epochs 1200
Training optimization algorithm Adamax
Dropout regularization 0.5
Number of the hidden layer 4
Number of neuron in hidden layer 600

accuracy (%)
& & 2 ®

o

|

400 &00 800 1000

1200 1400

Size of train dataset

Figure 3.11 — Box and Whister plot of the distribution of test set accuracy of the MLP

trained on different test set sizes.
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that the loss of both training and validation decreases as the number of epochs (one
forward and backward pass on all the training set) increases. This indicates that

our model gains a high degree of accuracy as the number of epochs increases.

05 | — ftraining
validation
0.6
w
[T}
L2 04
0.2 1
001 . . . . . .
o 200 400 B00 BOO 1000 1200

epoch

Figure 3.12 — Plot of Train and Test Loss of our MLP model.

In order to compare the MAE, MSE and R? of our MLP with other existing
machine learning algorithms, we splitted our dataset obtained through simulation
into k-folds. We used each fold once for validation and the remaining folds for the
training. In our experimentation, we set the value of k to 4. Figure [3.13] shows the
spread of the M AFE accross each cross validation fold for each algorithm. This shows
that our MLLP model exhibits good performance compared to other machine learning
models. Figure shows the spread of the MSE accross each cross validation
fold for each algorithm. In this case, the support vector regression exhibits good
performance compared to other machine learning models. Figure [3.15] shows the
spread of the R? score accross each cross validation fold for each algorithm. From
that Figure, we can observe that MLP performs better compared other machine
learning models.

Since M AE is a robust metric compared to M SE [29], we can conclude that our

MLP model outperforms the other machine learning models.

Energy efficiency evaluation

We used the transmission range obtained through the different machine learning
models (cf. Table to evaluate the energy consumption of five RPL network
topologies. As shown in Figure [3.16] it is not always possible to obtain a minimal
energy consumption with our MLP model. This can be explained by the fact that
we used padding technique in order to adapt the input of our MLP model so that
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Figure 3.13 — Comparison of the M AFE of different machine learning models.
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Figure 3.14 — Comparison of the MSE of different machine learning models.
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Figure 3.15 — Comparison of the R? score of different machine learning models.

it can handle dynamic RPL networks. In fact, as shown by the authors in [45], this

technique may impact the performance of a given neural network.
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Figure 3.16 — Energy consumption generated by the tranmission range estimated by
different machine learning models.



3.4. EFFICIENT TRANSMISSION RANGE FOR DYNAMIC RPL NETWORKS

61

Table 3.6 — Transmission range values estimated by different machine learning models (in

Model Topology | Topology | Topology | Topology | Topology
1 2 3 4 5

MLP function 86.07 86.05 94.18 94.15 100.00

Linear 90.34 87.77 95.53 95.86 96.61

Regression

Support vector | 93.11 94.84 96.40 97.34 97.57

regression

Regression Tree | 89.99 99.99 79.99 99.99 99.99

3.4.3 Scenario B: Adaptive transmission range for dynamic

RPL networks deployed in a 3D environment
3.4.3.1 Assumptions

We consider an IoT low power network with N; static nodes deployed in a

three-dimensional field of X x Y x Z surface area, with a stationary base station
XY Z
272772
are homogeneous in terms of wireless communication technology, computational

located at the coordinates ( ) Likewise, we assume that all the nodes
capabilities, transmission power and have the same amount of initial energy on
network setup. For the energy model, we adopt the same as in section [3.4.2.1}

3.4.3.2 Description of our solution

In a real deployment environment, IoT low power devices are generally deployed
following a 3D topology and their number may vary over the time due to device
failure, addition or removal of devices to/from the network and so forth. These
events lead to an update of the network topology. Our proposal aims at providing a
predictive model that determines the efficient transmission range of dynamic RPL
networks deployed following a 3D environment. In the first step of our solution, a set
of historical data containing 3D topologies and their efficient transmission range is
collected. Then, we proceeded to extensive simulations of various network topologies
in an X xY x Z area on Cooja simulation tool [IT15] where X = 100m, Y = 50m and
Z = 200m. The difference among the simulated topologies lies in nodes positions
(coordinates) and the network size. An example of the configuration of a given node
deployed following a 3D topology in Cooja is given in Figure [3.17]

For a given network topology, we varied the transmission range values in order to

obtain the one that minimizes the network energy consumption while maintaining
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<mote>
<breakpoints />
<interface_config=
org.contikios.cooja.interfaces.Position
<X>T<[x>
<y>23 </y>
<z>63</z>
<finterface_config>
<interface_config=>
org.contikios.cooja.mspmote.interfaces.MspClock
<deviation>1.0</deviation=>
</interface_config=>
<interface_config>
org.contikios.cooja.mspmote.interfaces.MspMotelD
<id>1</id>
<finterface_config>
<motetype_identifier>z12</motetype_identifier=
|&/mote

Figure 3.17 — Example of configuration of Cooja node deployed in 3D environment.

the network connectivity. We repeat this process for various network topologies
sizes. In our simulation, we varied the number of devices from 30 to 100 with a step
of 5. For each simulated RPL network, we incrementally varied the transmission
range from 40 to 100 with a step of 10. In total, we performed 10500 simulations
on an OpenStack virtual machine comprising 24 CPUs running at 2.299 GHz each.
The RAM size of the virtual machine is16 GB and each simulation lasts 1800s. At
the end of the simulation, we obtained a dataset composed of 1500 entries. Each
entry is composed of the efficient transmission range value and the associated RPL

network topology.
After the collection of the historical data composed of 3D topologies and their

efficient transmission range, we applied the same techniques as in our model that
determines the efficient transmission range in dynamic RPL networks deployed in
2D environment. In fact, we applied padding technique to allow the MLP consider
dynamic RPL networks. Additionally, we used TPE in order to optimize the

hyperparameters of our model. The values of those hyperparameters are depicted
in Table

Table 3.7 — MLP parameters

Parameters Value
Type of activation function relu, linear
Loss function MAE
Batch size 90
Number of epochs 800
Dropout regularization 0.5
Number of the hidden layer 3
Number of neuron in hidden layer 300
Training optimization algorithm Adam
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3.4.3.3 Performance evaluation

To evaluate the performance of our MLP model, we considered the Mean
Absolute Error (MAE) and the Mean Square Error metrics. Furthermore, we
also compared the energy consumption generated using our model to the energy
consumption generated using other state of the art machine learning models. We

evaluated the perfomance of our MLP model in three steps:

Step 1

We splitted our dataset into k-fold and used each fold once for validation and
the remaing folds for the training. In our experimentation, we set the value of k to
6. We compared the performance of our MLP model with some state of the the art
machine learning models based on the same training and validation set. Figure[3.1§]
and shows the spread of the MAE and MSE accross each cross validation fold
for each algorithm. These results show that our MLP exhibits a good performance
compared to other machine learning models such as linear regression, support vector
regression and regression tree. This proves that our MLP model can estimate well

the efficient transmission range compared to other machine learning models.
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Figure 3.18 — Comparison of the Mean Absolute Error of different machine models.
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Figure 3.19 — Comparison of the Mean Square Error of different machine models.

Step 2

We randomly splitted our dataset obtained through simulation in two subsets as
follows: 80 % for training and 20 % for the test. After that, we reduced successively
10% and 20% of the output of our training set in order to obtain a dataset with
missing values. By doing so, we can observe the performance of our MLP model
when using a dataset with a reduced size during the training. In fact, for a given
machine learning model, the size of the training set may impact the performance
of the model. Additionally, in real world it is not straighforward to create 10k
network topologies and identify their efficient transmission range as we did during
simulations.

We employed two strategies to deal with the remaining training set. The first
strategy is to predict the missing output values using the linear regression. In
the second strategy, we removed the entries containing the missing output. We
obtained different types of training dataset namely: D1 and D4, the training set
composed respectively of 10% and 20% of predicted values; D2 and D5, the training
set composed respectively of 10% and 20% of deleted rows. D3 is the training
set without missing values. We trained different MLP models using those training
dataset and the hyperparameters given in Table (3.7, The results given in Table
[3.8] show that models based on the training set with missing rows provides MAE

values close to the MAE of the model based on training set without missing values.
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This means that our model can provide a good performance in a real world with a

reduced training dataset.

Table 3.8 — Comparison of the MAE of MLP for different training sets.

Training set MAE

D1 (dataset with 10 % of predicted values) | 0.10
D4 (dataset with 20 % of predicted values) | 0.10
D3 (dataset without missing values) 0.02
D2 (dataset with 10 % of deleted rows ) 0.01
D5 (dataset with 20 % of deleted rows ) 0.02

Step 3

Concerning the energy efficiency of our model, we performed various simulations
of a number of network topologies on Cooja using the transmission range estimated
by the different machine learning models. Each simulation lasted 1800 s and we
evaluated the network energy consumption generated when using the transmission
range estimated using the different machine learning models. Figure|[3.20|shows that
it is not always possible to obtain a minimal energy consumption using our MLP
model. This limitation is due to the error (difference between the predicted and the

real value) obtained during the training of our model.
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Figure 3.20 — Comparison of the network energy consumption generated by the transmis-
sion range of different machine learning models.
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3.5 Deployability of our solution

Our solution can be deployed in an RPL network managed by a central entity
(e.g. the RPL root) (cf. Figure [3.21). We assumed that this entity is a node with
a powerful computing capacity so that the training of our model can be performed
by that entity. In order to enable the update of the value of transmission range
in RPL network, the network manager should be aware of the network topology.
For that purpose, each node in the network notifies its presence to the network
manager through a message containing the position of the node. After that, the
network manager will compute the efficient transmission range by using our ML
model and then trigger the update of the transmission range value of nodes in the
RPL network. Figure [3.22] shows the process of topology discovery and the update

of nodes transmission range value.

Algorithm [3.4]shows an overview of the process executed by the network manager
in order to update the transmission range of an RPL network. The process executed
by each node is summarized in algorithm [3.5] Each RPL node is responsible for
sending its position to the network manager so that it can receive and update of its

transmission range.

Network management MLP
entity model

Sensor
devices

- /

Figure 3.21 — High-level illustration of deployment of our solution in IoT networks.
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Figure 3.22 — Topology discovery.

Algorithm 3.4: Process at the network manager

—

: build MLP model using collected data

wait for a network topology (x)

if (new topology is received) then
use MLP model to estimate the efficient transmission range
send the efficient transmission range to network devices
go back to (x)

end if

Algorithm 3.5: Process at the network device

1: while energy of device is not exhausted do
2:  send its position to the network manager (x)
wait for the efficient transmission range
if transmission range is received then
update the transmission range
end if
if device position is updated then
go back to (x)
else
10: wait device position update
11: go back to (x)
12:  end if
13: end while
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3.6 Conclusion

In this chapter, we investigated the problem of determining the efficient
transmission power of RPL networks and then, we proposed intelligent solutions
based on MLP in order to estimate the efficient transmission range in those IoT
low power networks. Our proposed solutions consider RPL nodes positions in order
to determine the transmission range that enables a reduction of the network energy
consumption while maintaining the network connectivity. The results of comparison
show that our solutions outperform other existing machine learning models such as
linear regression, support vector regression and regression tree. These solutions have
been published in [3] 4].
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4.1 Introduction

Owing to the limitation of IoT low power networks (e.g. low memory and limited
CPU of IoT devices), the optimization of their performance has been extensively
studied in the literature |75, 118]. In those networks, the desired performances
metrics are: low end-to-end delay, low packet loss and high throughput with low
energy consumption. These requirements are critical for IoT applications such as
forest fire detection, target tracking and warehouse tracking [27]. To achieve that,
it is necessary to select the appropriate protocols. In IoT low power networks, the
IEEE 802.15.4 standard has been widely used in various solutions [60] (e.g. Thread,
Zigbee, 6LoOWPAN) and proved to be suitable for resource-constrained networks.

The IEEE 802.15.4 standard defines the MAC layer and physical layer, which
allow to access to the wireless medium for the transmission of MAC frames in Low-
power and Lossy Networks. Due to the resource constraints of IoT devices, it has
been shown that it is necessary to select the appropriate MAC parameters in order
to satisfy the performance requirements for IoT applications [116]. In the literature,
various approaches that enable the definition of IEEE 802.15.4 MAC parameters

have been proposed [127, B0]. Nonetheless, in dynamic IoT low power networks,
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existing solutions are inefficient since they do not include mechanisms that help to
dynamically adapt the MAC parameters according to network characteristics and
network traffic conditions, hence optimizing the communication delay. To cope
with this issue, machine learning techniques can be exploited [36, 8| in order to
devise a solution that enables an efficient definition of values of IEEE 802.15.4 MAC
parameters in dynamic IoT low power networks.

In this chapter, we present a novel solution based on a supervised learning
algorithm, to define the values of IEEE 802.15.4 MAC parameters, according to
the current network traffic conditions and the network characteristic. The proposed
solution helps in improving the end-to-end network latency.

The rest of the chapter is organized as follows: section presents background;
section presents an overview on existing solutions for configuring IEEE 802.15.4
MAC parameters; section presents the proposed solution and the performance
evaluation; section concludes this chapter.

4.2 Background

The Media Access Control (MAC) and physical (PHY) layer for Low-Rate
Wireless Personal Area Networks (LR-WPAN) are defined by the IEEE 802.15.4
standard [86]. The IEEE 802.15.4 MAC supports the Carrier Sense Multiple Access
with Collision Avoidance (CSMA-CA) mechanism for channel access [49]. This
mechanism helps to avoid collision during the data transmission and it can operate
in slotted or unslotted mode. The slotted mode works in beacon-enabled mode while
the unslotted mode works in a non beacon-enabled mode. The unslotted mode is
adapted for IoT low power networks as shown in [I58]. We will focus on that mode
in this work.

The performance of a network using CSMA-CA depends on the MAC parameters
such as the Backoff exponent (BE), the Maximum CSMA backoff (macMaxCS-
MABackoffs) and the Maximum frame retries limit (macMaxFrameRetries) [10], 127].
In CSMA-CA a sender must sense the channel before packet transmission. If
the channel is not free it must wait for a specified number of backoff periods
determined by the variable Backoff Exponent (BE) (0 - (28F — 1 )). The
BE is initiated at 'macMinBE’ value and it is doubled after each unsuccessful
channel sensing until it reaches 'macMaxBE’. Once this value is reached, there
is no more doubling of the BE value after unsuccessful channel sensing. The
macMaxCSMABackoffs represents the number of times a given sensor device stays
in the backoff stage after unsuccessful channel sensing before the packet is dropped.

The macMaxFrameRetries represents the maximum number of retransmissions of
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a paquet when there is no acknowledgement. The value of those parameters as
suggested by the standard [30} 8| are given in Table [1.1]

Table 4.1 — IEEE 802.15.4 MAC parameters value.

Parameter Value Range Default value
macMinBE 0-7 3
macMaxBE 3-8 )
macMaxCSMA Backoffs 0-5 4
macMaxFrameRetry 0-7 3

4.3 Overview on existing solutions

In order to improve the performance of IoT low power networks that use the IEEE
802.15.4 MAC, the authors in [89] 117, B0] have demonstrated that it is necessary
to efficiently define the values of IEEE 802.15.4 MAC parameters to achieve a
good network performance. In these works, they showed that the optimal values
of parameters of IEEE 802.15.4 MAC depend on network traffic characteristics (e.g.
sending frequency of data). In the literature, various method have been proposed
to enable the selection of the set of IEEE 802.15.4 MAC parameters that allows
to achieve a good network performance. In particular, due to dynamic nature of
[oT low power networks (caused by the mobility of devices, the dynamic nature of
wireless sensor networks and so forth), various approaches based on machine learning
algorithms have been proposed to improve the performance of IEEE 802.15.4 MAC
[24].

Alberola and Pesch [42] proposed a method based on a reinforcement learning
algorithm (q-learning), in order to allow defining the duty cycle so as to achieve
good network performance. In the same vein, Liu and Elhanany [99] proposed a
novel MAC protocol that employs a reinforcement learning algorithm to dynamically
adjust the duty cycle of sensor devices. The reinforcement learning algorithm helps
to infer the state of other sensor devices in order to allow a given sensor node to
consider both its own traffic load and the traffic load of its neighbouring to adjust
its duty cycle. However, in these works, the authors do not consider the 802.15.4
MAC parameters such as Backoff exponent and the Maximum frame retries limit.
Consequently, non-optimal MAC parameters may be used, leading to a network with
a poor performance characterized by a high end-to-end delay for data transmission
and an excessive network consumption.

Collotta et al. [36] proposed an approach based on fuzzy controller to allow a

dynamic adjustement of the Contention Windows (CW) and the Backoff Exponent
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according to the throughput and the workload of an industrial IEEE 802.15.4
wireless sensor network. However, in this work, the authors do not consider other
MAC parameters such as the maximum frame retry, which may also impact the
network perfomance.

AL-KASEEM et al. [8] proposed a method based on artificial neural networks
and genetic algorithms to select the 6LowPAN MAC parameters (backoff exponent,
maximum CSMA backoff and maximum frame retries limit) that lead to a good
network performance. However, in the proposed method, the dataset used by the
authors do not consider the network traffic characteristics which is also a key element
to determine the optimal set of IEEE 802.15.4 MAC parameters.

Considering the limitation of the above works, we propose a novel scheme based
on machine learning in order to dynamically define the optimal values of IEEE
802.15.4 MAC parameters by considering the network characteristic (the network
density) and the characteristic of the network traffic (the sending rate frequency and
the paquet interarrival time). Our solution aims at improving the end-to-end delay
in IoT low power networks based on IEEE 802.15.4 MAC.

4.4 Context aware configuration of IEEE 802.15.4
MAC

4.4.1 Assumptions and problem formulation

Let us consider a wireless sensor networks composed of N; devices randomly
deployed in a disk area of radius 500 meters centered around a sink node, that
is aimed at monitoring the parameters of an environment such as temperature,
pollution and so forth. Let d;, be the density (defined as the average number of
neighbor of each node in the network) of a given network topology. Let f;, be
the average interval between sensing events at nodes level. Let ¢;, be the average
delay between packet arrivals at the sink node. N;, d;, f; and t; represents some
characteristics of a WSN and they can be considered to define an optimal set of
[EEE 802.15.4 MAC parameters. Due to the dynamic nature of WSNs (caused for
example by the addition or failure of nodes), for a given wireless sensor network, an
infinite possible values exists for N;, d;, f; and t;. Those values should be considered
in order to define the optimal set of IEEE 802.15.4 MAC parameters. In the
literature, machine learning techniques have been used to solve such kind of problem
[53]. Nonetheless, their application in IoT low power networks remains a research

challenge because of the inherent constraints of those networks (e.g. limitation in
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terms of CPU, memory and battery).

In the context of network management, machine learning techniques are generally
based on a set of metrics (e.g. routing metrics) that helps building a model that
can be used to take decision such as routing path update or the reconfiguration of
network device parameters. In this work, our goal is to build a model that can enable
the reconfiguration the IEEE 802.15.4 MAC parameters based on the network and
data traffic characteristics.

Let S = {N,D,F,T, P1, P2, P3, P4}, be the training dataset of k elements
composed of network charasteristic as inputs and the optimal IEEE 802.15.4 MAC

parameters as outputs. N = {Nj,---,N,} represents the set that contains the
number of nodes in the network; D = {dy,--- ,d,} represents the set that contains
different network density; F' = {fi, -, fn} represents the set that contains the
values of average interval between sensing events at nodes level; T' = {t1,--- ,t,}

represents the set that contains the values of average delay between packet arrivals
at the sink node. P1 = {p},---,p'} represents the set that contains different
value of parameter pl (macMinBE). P2 = {pi,---  p3} represents the set that
contains different value of parameter p2 (macMaxBE). P3 = {pi,--- , p%} represents
the set that contains different value of parameter p3 (macMaxCSMABackoffs).
P4 = {p},--- ,pi} represents the set that contains different value of parameter p4
(macMaxFrameRetry). The problem consists in learning a multi-target predictive
model from S so that we can build a model that allows to predict the approriate
values of parameters of IEEE 802.15.4 MAC.

4.4.2 Description of our solution

Before describing our proposal, we provide a description of the process of

generation of our dataset for buiding a machine learning model.

Training data generation

We performed various simulations using a simulator (cf. Figure for wireless
sensor networks, which has been developed in LSC laboratory of the French
Alternative Energies and Atomic Energy Commission (CEA). This simulator offers
the possibility to generate random mesh network layouts deployed around a single
root node or sink node. It is event driven rather than time driven for the sake of
efficiency. Each node generates sensing events according a Poisson random process.
This type of event translate then into packet transmission events either from the
source node or from intermediate nodes toward the sink that behave as routing

nodes. The simulator embeds a simple radio communication model which allows to
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address coverage and packet collision issues. Standard IEEE 802.15.4 CSMA/CA
state machines has been included in each node in order to address mechanisms such
as packets collisions, packet acknowledgments, repetitions and so on. Finally, the
simulator can be used in a graphic mode where the state of each node in the mesh
network is shown according to color codes (cf. Figure [i.1). Moreover, it is also
possible to run the simulator in non graphic scriptable mode.

During the generation of the training dataset, we varied the number of nodes
in the network from 400 to 500 with a step of 1. For each network size, we have
instanciated different network topologies and varied the average interval between
two sensing. The event generation at each node is following the poisson distribution.
Each simulation lasts « seconds and at the end of each one, we retain the inputs and
outputs that allow both a reduction of the packet loss and the average end-to-end
delay for transmission of paquets. At the end we obtained a dataset composed of

9090 entries. The pseudo code describing the process of generation of our training
data is given in Algorithm

Algorithm 4.1: Training data generation
1. N <« [400,401, ..., 500]

2: nDensity < [dy, s, ..., d|]

3: MacParams < [paramsy, paramss, ..., params,]
4: [ + [i17i27...,im]

5. bestMacParams < defaultMacParameters

6: for nNodes in N do

7. for density in nDensity do

8: for interval in I do

9: for parameters in MacParams do

10 if (end-to-end delay is reduced) then
11: if (packet loss is reduced) then

12: bestMacParams < parameters
13: end if

14: end if

15: end for

16: save(nNodes, density, interval, best M acParams)
17: end for

18: end for

19: end for

Intelligent (re)configuration of IEEE 802.15.4 MAC parameters

Our proposed mechanism for defining the optimal IEEE 802.15.4 MAC param-
eters is depicted in Figure [£.2] The proposed mechanism leverage the benefit of
machine learning techniques in order to predict the values of IEEE 802.15.4 MAC
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Figure 4.1 — Event-driven simulator for wireless sensor networks.

parameters that allows a reduction of the end-to-end delay. The configuration of
the MAC parameters is performed during network startup and also when there is

an update in the network.

| Network startup I
pper layer

"\ sending rate macMinBE
| Determine optimal | number of nodes MACHINE | aMaxBE
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Figure 4.2 — Scheme for definition of optimal IEEE 802.15.4 MAC parameters using a
machine learning model.

Based on the state of the art of machine learning techniques used in networking,
we considered multilayer perceptron, random forest, K-nearest Neighbors and
decision tree algorithms in order to build a predictive model that enables to
determine the optimal parameters for IEEE 802.15.4 MAC.

A multilayer perceptron (MLP) is a type of neural network which has been used
to perform classification and regression tasks based on a given set of data. We

provided more details about MLP in section [3.2.2
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The decision tree is a type of machine learning algorithm which enables to
perform classification or regression tasks based on a given set of historical data.
Typically, a decision tree consists of root nodes, hidden nodes and a lot of terminal
nodes or leaves. The implementation of decision tree classifier using scikit-learn
library [119] includes various parameters, namely criterion, splitter, max depth,
min samples split, to name a few. In the context of wireless sensor networks, the
decision tree algorithm has been used to perform tasks such as anomalies detection.

The K-nearest Neighbors classifier is a type of machine learning algorithm, which
can be used for regression or classification tasks. The idea behind this classifier is
to find distance (e.g. Euclidian distance, Minkowsky distance, Hamming distance)
between the test data and each of the training data to determine the final output.
The implementation of that classifier using scikit-learn [I19] uses these parameters:
n_neighbors, weights, algorithm, leaf size and so forth. In the context of wireless
sensor networks, the K-nearest Neighbors has been used for solving problems such
as target location.

Random forest classifier corresponds to a collection of decision trees used to
perfom machine learning tasks such as classification or regression. The classifier can
be implemented using scikit-learn library [I19] and it uses these parameters: n_-
estimators, criterion, max _depth, min_samples split and so forth. In the context
of wireless sensor network, this classifier has been used for solving problem such as
intrusion detection.

Figure illustrates the process of construction of our learning model that
enables to select the values of IEEE 802.15.4 MAC parameters. The dataset we
collected is used to devise models that output each a value of IEEE 802.15.4 MAC
parameters. However, given the fact that certain events do not occur frequently
in WSNs, during the generation of our training dataset, it is likely to obtain an
imbalanced set of data. Building a learning model based on imbalanced dataset
may lead to obtaining a biased model that allows taking wrong decisions. This may
have severe impact on the network performance. Thereby, to cope with this issue, for
each model, we performed a resampling by using Borderline-SMOTE, an algorithm
that helps to avoid having an imbalanced dataset [66]. By doing so, we obtained
different datasets to devise models that help to determine the optimal values of
IEEE 802.15.4 MAC parameters.

In order to select the model that perform well for determining the values of IEEE
802.15.4 MAC parameters in dynamic loT low power networks, we trained the above
classifier using the different training sample. We used TPE in order to search the
best hyperparameters of those classifiers. The best values we obtained for those
classifiers are depicted in Table 4.2} [4.3] and [4.4]. We compared those models by
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Figure 4.3 — Prediction of the values of IEEE 802.15.4 MAC parameters.

considering the Geometric mean, the precision, the accuracy and F-score metrics.

These metrics are defined as follows [56]:

e Geometric — mean (G — mean): is a metric commonly used to evaluate a

classifier trained using imbalanced data:

G — mean = v/ Recall * speci ficity (4.1)
: fpsa TN _ _TP "
where: specificity = 7yrpp and recall = x7p- TP or True Positive

corresponds to the amount of samples predicted as class C when they truly
belong to class C. T'N or True Negative corresponds to the amount of samples
not belonging to C and not classified as C. F'P or False Positive corresponds
to the amount of samples not belonging to class C while classified as C. F'N
or False Negative corresponds to the amount of samples that are not classified

as C while they belong to class C.

The best value of G — mean is 1 and the worst value is 0.

e Accuracy: this metric corresponds to the ratio of the number of correctly
classified instances to the total number of input samples. The formula of

Accuracy is:
TP+TN

TP+TN+ FP+FN

Accuracy = (4.2)

e Precision: this metric corresponds to the percentage of examples that are

correctly labeled as positive [56]. The formula of Precision is:

TP
Precision = ——— 4.
recision = o s (4.3)

The best value of Precision is 1 and the worst value is 0.

e ' — score: this metric represents a weighted average of the precision and
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recall. The best value of F' — score is 1 and worst score at 0. The formula of

F — measure is:

(1 + 8?) * precision x recall

F= (4.4)

B2 * precision + recall

Table 4.2 — Best hyperparameters of Random Forest Classifier obtained with TPE.

Parameter Value
max_depth 4000.0
max_features log2
min_samples leaf 2.0
min_samples split 90.0

Table 4.3 — Best hyperparameters of KNeighbors Classifier obtained with TPE.

Parameter Value
algorithm brute
leaf size 430.0
n_neighbors 65.0
weights distance

Table 4.4 — Best hyperparameters of Decision Tree classifier obtained with TPE.

Parameter Value
criterion gini
max_depth 3010.0
max_features None
min_samples leaf 130.0
min samples split 202.0

Table [4.6]shows the comparison of the accuracy, precision, F-score and Geometric
for different machine learning. Additionally to the comparison of those models based
on the above metrics, we also evaluated the confidence interval of classification
accuracy of those classifiers. As mentioned in [80], the confidence interval tells
us how precise our estimate is likely to be. Table shows the 90% confidence
interval of classification accuracy of different machine learning models. It shows that
Random forest and K-nearest Neighbors perform well compared to other machine
learning classifiers since they provide the smaller confidence interval. Based on those

results we chose the random forest in order to estimate the appropriate values of
IEEE 802.15.4 MAC parameters.
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Table 4.5 — Best hyperparameters of the Multilayer

TPE.
Parameter Value
batch size 350.0
learning rate invscaling
max __iter 300.0
number of hidden layer 1.0
number of neurons 56.0
solver adam

Perceptron Classifier obtained with

Table 4.6 — Comparison of the performance of different machine learning models.

Model Precision | Accuracy | F-score Geometric
mean

multioutput Decision Tree | 0.4181 0.4765 0.4013 0.5362

multioutput Random Forest | 0.4656 0.4924 0.4275 0.5548

multioutput K-nearest | 0.4523 0.4822 0.4430 0.5591

Neighbors

multioutpout Multilayer | 0.2676 0.4761 0.3206 0.5013

Perceptron

Table 4.7 — 90% confidence interval of classification accuracy of different machine learning

models.
Model Interval
multioutput Decision Tree +/-0.0523
multioutput Random Forest +/-0.0520
multioutput K-nearest Neighbors +/-0.0520
multioutpout Multilayer Perceptron +/-0.0522
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4.4.3 Performance evaluation

To evaluate the performance of our proposed approach that aims at finding
optimal values for IEEE 802.15.4 MAC parameters, we considered the average end-
to-end delay metric. This metric corresponds to the average delay between packet
generation in a source node and packet receiving in the sink node.

We analysed the end-to-end delay of our proposed scheme to determine the
optimal values for IEEE 802.15.4 MAC parameters by varying the average interval
between sensing at each node. Figure [4.4] shows the average end-to-end latency
versus the average sensing interval for a sensor network composed of 400 devices.
We observed that MAC parameters estimated using the random forest classifier can
help achieving a better performance compared to the default parameters suggested
by the IEEE 802.15.4.

mEm default MAC
0.030 Random forest MAC

0020
0.015
0010
0.005
0.000 T T T T T
4 5 & 7 B 9

Interval

=
=]
[}
Ln

End-to-end latency

Figure 4.4 — End-to-end delay comparison.

4.5 Conclusion

In this chapter, we proposed an efficient and adaptative solution for defining
the IEEE 802.15.4 MAC parameters of dynamic IoT low power networks, by taking
into account the network and data traffic characteristics. In the proposed solution,
the IEEE 802.15.4 MAC parameters are defined using a predictive machine learning
model. The results of simulation show that the parameters of IEEE 802.15.4 MAC
determined using random forest classifier help to reduce the end-to-end latency
compared to the default MAC parameters of IEEE 802.15.4 standard. The proposed
solution has been published in [5].
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5.1 Introduction

[oT low power networks are based on resource-constrained networks such as
Wireless Sensor Networks (WSNs) which consist of a collection of small sensor
devices with limited resources (energy, bandwidth, processing and memory) and
deployed in an area of interest in order to collect the physical conditions of the
environment and send them to a sink or a base station. In our daily life, WSN
applications include smart agriculture, smart factory, smart homes, and so forth.
However, since nodes in a WSN are resource constrained, during the lifetime of a
WSN;, a congestion can occur at any point in the network when the amount of traffic
load exceeds available resources. Congestion in WSNs is generally observed at node
or link level, as pointed out in [52] (cf. Figure [5.1). Specifically, where network
congestion results in packet losses, an increase of delays of packet transmission and
a reduction of the network lifetime [52]. Therefore, it is crucial to design efficient

mechanisms for congestion control in resource-constrained networks.
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.Sensor node
Node level congestion
(buffer overflow)

Link-level congestion . .

(link collision)

Figure 5.1 — Example of a congested wireless sensor network.

In this chapter, we review the existing solutions for congestion control in IoT low
power networks. In this review, we point out the limitations of the existing solutions
and motivate the need for a machine learning approach to adress the problem of
congestion control in resource-constrained networks. Moreover, we also provide an
insight for designing a congestion control solution for resource-constrained networks
using imbalanced dataset (a type of dataset where the number of observation per
class is unequally distributed).

The remaining of this chapter is organized as follows. In section [5.2 we present
the background related to congestion management in IoT low power networks. Then,
in section [5.3] we provide an overview of existing solutions for congestion control in
IoT low power networks. In section [5.4] we discuss the use of machine learning
techniques for congestion control in resource-constrained networks. Finally, section
[b.5] concludes this chapter.

5.2 Background

Congestion management mechanisms are generally operating in three steps:

congestion detection, congestion notification and congestion control [57].

Step 1: Congestion detection consists in monitoring the resource constrained network
in order to identify both the presence and location of a congestion. The
identification of congestion is generally done by monitoring parameters such

as buffer occupancy and channel load.

Step 2: After the detection of a congestion problem, the upstream or downstream

nodes are notified in order to take the right decision to face the congestion.
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The upstream or downstream nodes are informed through explicit notification
(it consists in sending congestion information in a specific control packet to the
upstream or downstream nodes) or implicit notification (it consists in sending

congestion information by piggybacking it in a payload of a packet header).

Step 3: After the detection and notification of a congestion problem in the network, a
mechanism of control of congestion is performed in order to mitigate the effect
of congestion. This can be achieved using techniques such as transmission rate

control, load balancing and duty cycle adjustment.

5.3 Existing solutions for congestion control in IoT

low power networks

In the literature, a large number of solutions that address the problem of
congestion in resource-constrained networks have been proposed. In [I57], a
solution called CODA (Congestion Detection and Avoidance) has been proposed.
This solution uses two strategies to mitigate congestion in resource constrained
networks . These strategies are: open-loop hop-by-hop backpressure (this enables an
adjustment of the sending rate hop-by-hop) and closed loop multi-source regulation
(this helps regulate the sending rate of nodes according to the feedback of the
sink). However, the feeback messages used in this proposal may lead to a waste
of network resources. To cope with this issue, the authors in [149], proposed
an improvement of CODA called Enhanced Congestion Detection and Avoidance
(ECODA), which uses dual buffer thresholds and weighted buffer difference for
congestion detection. Moreover ECODA uses flexible queue scheduler for packets
scheduling and a bottleneck-node-based source sending rate control scheme. On
the other hand, a rate-based Fairness-Aware Congestion Control (FACC) protocol
has been proposed in [I74]. This proposal enables classification of sensor nodes
according to their position to the sink in order to achieve an approximately fair
bandwidth allocation. The nodes classified as near-source nodes maintain a per-
flow state and allocate an approximately fair rate to each passing flow by comparing
the incoming rate of each flow and the fair bandwidth share. The nodes classified
as near-sink nodes use lightweight probabilistic dropping algorithm based on queue
occupancy and hit frequency. Additionally, an upstream hop-by-hop congestion
control (UHCC) protocol based on cross-layer design has been proposed in order
to mitigate congestion in resource constrained networks [159]. UHCC uses buffer
size and packet delivery rate to detect congestion. After congestion detection, the

congestion is mitigated through an adjustment of the traffic rate.



84 CHAPTER 5. CONGESTION CONTROL IN IOT LOW POWER NETWORKS

However, the above solutions are not able to anticipate the onset of congestion
in resource constrained networks since they do not include a predictive mechanism.
To cope with this limitation machine learning based solutions for congestion control
in resource constrained networks have been proposed. Many of these solutions are
based on supervised learning (a category of machine learning algorithms) techniques.
Supervised learning techniques allow performing classification or regression using
pre-labelled data in order to build a function that allows to determine the class
label of unseen inputs.

In [142], the authors proposed a congestion detection model for IoT low power
networks. The proposed model operates on the sink node and it is based on a
neural network. This neural network model uses the number of active source nodes
in the system, the buffer occupancy and the traffic rate to correctly detect the
level of congestion. In the same vein, the authors in [101] proposed a model based
on classification by regression to detect congestion level in a resource constrained
network. Using NS2 network simulator, the authors generated a data set composed
of packet loss, packet delivery ratio, packet service time and packet inter-arrival
time. This generated data set has been used to provide a model that enables
classification of network congestion level. However, these machine learning based
approaches are limited to congestion detection. To answer this concern, the authors
in [I07] proposed a method which includes a congestion control mechanism. The
proposed method is based on a neural network, which is embedded in the sink
node. This neural network uses a number of parameters such as the delay of
data transmission and the node energy to identify the source of congestion and
take a decision of reconfiguration of the resource constrained network in order to
mitigate the congestion. Furthermore, in [71], a method based on a radial basis
function network [[] to improve the performance of routing protocol in a resource
constrained network has been proposed. In this proposal, the data loss ratio and
memory occupancy have been used to detect congestion in the network at the base
station. Then, transmission rate adjustment is performed to mitigate the congestion
in resource constrained networks.

In [48], the authors proposed a congestion control scheme for resource-
constrained networks based on a neural network. The proposed approach called
“Modified Neural Network Wavelet Congestion Control” (MNNWCC) enables
congestion detection, notification and control. This solution is implemented at a sink
node, which uses a neural network that takes the buffer occupancy status as input

to estimate the traffic so that the data transmission rate of nodes can be adjusted

LA type of neural artificial neural network that uses radial basis functions as an activation
functions



5.3. EXISTING SOLUTIONS FOR CONGESTION CONTROL IN IOT LOW POWER
NETWORKS 85

to mitigate the network congestion. However, the proposed machine learning model
has not been evaluated in order to assess its accuracy.

On the other hand, in [59], Gholipour et al. proposed a hop-by-hop congestion
avoidance method for resource constrained networks. The proposed method is
based on the Support Vector Machine (SVM) model and enables performing an
adjustement of the transmission rate to mitigate congestion in resource constrained
networks. To achieve this, the authors of this proposal generated a dataset composed
of the buffer occupancy ratio and the congestion degree to build a model that
adjusts the transmission rate that mitigates the congestion in resource constrained
networks.The perfomance of their model has been improved by using genetic
algorithm to tune the parameters of their SVM model. In the same vein, the works
in [85] and [84], improve the classification accuracy of the previous work by using
the differential evolution [I32] and grey wolf optimization [50] algorithms to tune
the SVM parameters.

We provided in Table [5.1, a comparison of the above solutions for congestion
management according to the following elements: Congestion detection, Congestion
notification, Congestion control, Functioning, Performance metrics, Source of
dataset, Imbalanced dataset, Compared with, Remarks. From that comparative
study, we observe that most of the existing solutions based on supervised learning
techniques for congestion management in resource constrained networks do not
consider the presence of imbalanced data during the design of their learning models.
In particular, for machine learning based solutions for congestion control, this may
lead to biaised classification models, which result in wrong decisions for congestion
mitigation and thus cause a reduction of the network performance. To cope with
this issue, various data resampling techniques can be used as in [122], [168] and
[123], in order to reduce the effect of the skewed class distribution in the learning
process .

In the following section, we provide a comparative analysis of different resampling
techniques applied for the design of machine learning models for congestion

mitigation in resource constrained networks.
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5.4 The use of machine learning for congestion

control in IoT low power networks

5.4.1 Motivation

As mentioned earlier, resource constrained networks may experience congestion
during their operation when the traffic load exceeds the available resources. This
results in resource-constrained networks with poor performance, characterized by a
high energy consumption, a long delay for data transmission and so forth. To cope
with the congestion problem, a number of machine learning techniques have been
proposed. The benefits introduced by machine learning techniques for congestion

control in resource-constrained networks can be summarized as follows:

e Machine learning based solutions can help to provide an accurate prediction
of the wireless link quality [98]. This is useful for congestion control schemes
in resource constrained networks since it enables the selection of the optimal
path for data routing with minimal end-to-end delay between a node and the

base station.

e Machine learning based solutions in resource constrained networks is beneficial
for congestion mitigation in dynamic networks involving an important number
of nodes [93]. In fact, in such networks, machine learning can help to predict
the onset of congestion according the current state of the network. This allow

to take a decision that help to avoid network congestion.

5.4.2 Congestion control with machine learning based on

imbalanced data
5.4.2.1 Assumptions and problem formulation

We supposed a wireless sensor network composed of N nodes randomly deployed
in an area of interest in order to monitor the environmental parameters such as air
quality. After the detection of an event, each sensor node sends its sensed value to
a sink or a base station through child-to-parent links in a multihop routing. We
assume that sensor devices are homogeneous in terms of wireless communication
technology, computational capabilities and have the same amount of initial energy.
During the network operation, the problem of congestion can occur due to resource
limitations of sensor devices. To enable the design of a supervised learning model

for congestion control, a set of parameters are collected.
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In resource-constrained networks, some events may occur rarely, causing thus
an imbalanced training data. Likewise, due to the limitation in terms of energy of
nodes, the collection of the training data may be done only in a given period of time
T in order to avoid interfering with the main network services. This may results in
having an imbalanced training data.

In this context, the main challenge is to determine for different scenarios, the
strategy that helps mitigate congestion in wireless sensor networks using imbalanced
data.

5.4.2.2 Description of our experiment

In this subsection, we study of the performance of different resampling techniques
used to build machine learning models for congestion mitigation in wireless sensor
networks based on imbalanced set of data. For this purpose, we use the dataset
provided by the authors in [59]. This dataset is composed of 400 entries. To obtain
that dataset, a network deployed in an area of 100m x 100m and composed of 100
nodes has been simulated [59]. During the simulation phase, the buffer occupancy
ratio (AB), the congestion degree (AC'), the data transmission rate (AR) and the
number of packet retransmissions have been collected. A B represents the difference
between the buffer occupancy ratio of a given node and the buffer occupancy ratio
of its downstream node. This parameter allows an estimation of the state of the
buffers. The congestion degree on the other hand allows to evaluate the changing
tendency of the queue buffer in a period of time. AC represents the difference
of the congestion degree of a node and its downstream node. AR represents the
value that enables an adjustement of the transmission rate in order to mitigate the
congestion in resource constrained networks. The number of packet retransmissions
is determinated based on the values of AB, AC and AR.

However, the machine learning model proposed in [59] for determining the
transmission rate that mitigates the congestion in a resource constrained networks is
not efficient since it is based on imbalanced dataset. In fact, as shown in Table [5.2]
the number of data points available for the different classes is inequally distributed.
In such situations, the proposed machine learning model cannot be used in a given
application as shown in [7]. To tackle this issue, we propose in this work to generate
synthetic data to build a machine learning model that can enable an adjustement
of the transmission rate in order to mitigate the problem of congestion in resource

constrained networks.

Figure[5.2] [5.3]and [5.4] respectively depict the scatter plot of the original dataset,

the scatter of artificial data obtained by performing over-sampling and the scatter
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Table 5.2 — Analysis of the dataset proposed in [59].

Class | Number of data points
Class 1 43/400
Class 2 44/400
Class 3 67/400
Class 4 101/400
Class 5 79/400
Class 6 30/400
Class 7 35/400
Class 8 1/400

plot of the artificial dataset obtained by performing under-sampling. This illustrates

the difference of data distribution introduced by each resampling method.
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Figure 5.2 — Scatter plot of the original imbalanced dataset.

In order to mitigate the problem of congestion in the network, we have to adapt
the transmission rate of a given node according to the buffer occupancy ratio and

the congestion degree. We designed a solution based on a machine learning model

trained using imbalanced dataset and it is divided into these steps:

e The first step is to build the machine learning model that enables to determine
the transmission rate that mitigates the problem of congestion in resource
constrained networks. This is done following the different steps depicted in
Figure 5.5 The imbalanced dataset is used to generate an artificial dataset

that we used to build our machine learning model. This step is followed by a

validation of our machine learning model according to some metrics.
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Figure 5.3 — Scatter Plot of the articial data generated using BorderlineSMOTE.
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Figure 5.5 — Worflow of our proposal for congestion control.

e The second step concerns the functioning of our solution to update the
transmission rate of sensor nodes. This task is perfomed periodically by each
parent node after receiving the congestion degree and the buffer occupancy

from one of its child nodes.

We chose to evaluate, the most used machine learning algorithms for congestion
control in resource constrained networks. In particular, we considered Support
Vector Machine (SVM), Random Forest, K-Nearest Neighbor (KNN), Decision Tree

and Naives bayes algorithms.

5.4.2.3 Performance evaluation

We implemented our machine learning models using sklearn [119] and
imbalanced-learn library [95]. Sklearn is a library which offers implementation
of various machine learning algorithms, while imbalanced-learn is a library which
provides various techniques for data re-sampling. The evaluation has been done
based on the following metrics: G-mean, Index of Balanced Accuracy(IBA),
Accuracy, Precision and F-measure.

We compared different resampling strategies in context of congestion control in
resource constrained networks based on imbalanced data. In fact, we performed over-

sampling and under-sampling in order to balance the dataset provided in [59]. Then,
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we used the generated artificial dataset to build an efficient machine models that
helps to determine the transmission rate that mitigates the congestion in a resource

constrained network. Figure [5.6] Figure and Figure 5.8 show respectively :

e The output of the classification report function for SVM model based on

imbalanced data;

e The output of the classification report function for SVM model based on data

generated using under-sampling technique;

e The output of the classification report function for SVM model based on the

balanced data generated using over-sampling technique.

We can see that oversampling technique works better compared to under-sampling
since it improves the precision of classes that are not handled by the machine learning

model based on imbalanced data or artificial data generated using under-sampling

technique.
precision recall fl-score  support
Class 1 0.45 0.29 0.36 17
Class 2 0.00 0.00 0.00 9
Class 3 0.00 0.00 0.00 10
Class 4 0.40 0.78 B0.53 18
Class 5 0.64 0.64 0.64 11
Class 6 0.00 0.00 0.00 5
Class 7 0.67 0.60 0.63 10
accuracy 0.40 80
macro avg 0.31 0.33 0.31 80
weighted avg 0.36 0.40 0.36 80

Figure 5.6 — Output of the classification report function for imbalanced data.

precision recall fl-score support

Class 1 0.40 0.50 0.44 8
Class 2 0.29 0.20 0.24 10
Class 3 0.25 0.15 0.19 13
Class 4 0.00 0.00 0.00 1
Class 5 0.40 0.86 0.55 14
Class 6 0.00 0.00 0.00 5
Class 7 0.50 0.30 0.37 10
accuracy 0.38 61
macro avg 0.26 0.29 0.26 61
weighted avg 0.33 0.38 0.32 61

Figure 5.7 — Output of the classification report function for balanced data using under-
sampling.
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precision recall fl-score  support

Class 1 B.32 0.30 0.31 50
Class 2 .11 0.13 0.12 38
Class 3 B.22 0.36 0.27 53
Class 4 0.50 0.82 0.03 61
Class 5 B.35 0.72 0.47 75
Class 6 0.49 0.60 0.54 83
Class 7 0.50 0.081 0.02 81
accuracy 0.33 441
macro avg 0.35 0.31 0.25 441
weighted avg 0.38 0.33 0.27 441

Figure 5.8 — Output of the classification report function for balanced data using over-
sampling.

We built various machine learning models using the artificial data we generated
and compared them according to the metrics presented in section We used
80% of that dataset for training and the remaining for the test. We summarized
in Table the results of the comparison of random forest, SVM, KNN and Naive
Bayes. We can see that, machine learning models based on data generated using
over-sampling provide good performance compared to machine learning models built

using data generated with under-sampling technique.

Table 5.3 — Performance comparison.

Metric Resampling Random forest SVM KNN Decision tree Naive Bayes
F-measure over-sampling 0.5535 0.26782 0.5391 0.5376 0.2337
under-sampling 0.5126 0.2230 0.4449 0.2034 0.1184
Geometric mean over—sampli{]g 0.4897 0.1433 0.5145 0.49028 0.0
under-sampling 0.4934 0.0 0.4451 0.0 0.0
Index balanced accuracy overfsamplifxg 0.2302 0.0193 0.2541 0.2305 0.0
under-sampling 0.2341 0.0193 0.1898 0.0 0.0
Precision over-sampling 0.5560 0.3835 0.5558 0.5396 0.2374
under-sampling 0.5681 0.2128 0.5309 0.2447 0.1144
Accuracy over-sampling 0.5578 0.3287 0.5328 0.5396 0.2857
under-sampling 0.4918 0.2950 0.4262 0.2131 0.1311

5.4.2.4 Discussion

In resource-constrained networks, having an imbalanced data may occur fre-
quently. Machine learning models developed using imbalanced data generally exhibit
a worst predictive accuracy in the minority class. In particular this may pose
problem for congestion congestion control solutions based on machine learning
models build using imbalanced data. To tackle this issue, it may be necessary
to perform a resampling of the imbalanced data so that machine learning model
can perform well and enable an optimization of the network performance through
an appropriate decision of congestion mitigation. As an example, in this work, we
showed that oversampling technique may help improving the accuracy performance
of machine learning models based on small dataset. We provide in Table [5.4]a guide

for choosing a resampling technique according to the network architecture.
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Table 5.4 — A guide for applying a resampling technique.

Resampling method Architecture of the net- Training dataset size Comment
work
Distributed Small This strategy may help to balance the

dataset and thus improve the accuracy of the

Over-sampling machine learning model.

Large This strategy may not be adapted for bal-
ancing a large dataset [62]. Moreover, ma-
nipulating a large dataset on resource con-
strained nodes may lead to a rapid exhaus-
tion of resources such as memory and battery

Small This strategy may help to balance the
dataset and improve the accuracy of the
machine learning model.

Centralized

Large This strategy may not be adapted for bal-

ancing a large dataset [62].
Distributed Small This strategy may not be adapted for bal-

Under-sampling ancing a small dataset [62].
Large This strategy may help to balance the

dataset and thus improve the accuracy of the
machine learning model. However, due to
resource constraints, it may be necessary to
perform the training of the machine learning
model on a device with powerful resources.

Centralized Small Thlri strategy may not be adapted for bal-
ancing a small dataset
Large This strategy may help to balance the

dataset and thus enable an improvement of
the machine learning accuracy.

5.5 Conclusion

In this chapter, we provided an overview of existing solutions for congestion
management in resource-constrained networks and pointed out their limitations. We
also motivate the need for using machine learning techniques to adress the problem
of congestion control in IoT low power networks. For machine learning based
approaches, we showed that it is necessary to pay attention to the distribution of the
training data so as to avoid having a machine learning model that leads to wrong
decisions for congestion mitigation. Furthermore, we showed that for a small training
dataset size, over-sampling technique may be useful for balancing the training data in
both distributed and centralized IoT low power networks. Additionally, we provided
a guide that may help to choose a strategy for resampling training data in context

of IoT network low power networks.
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6.1 Introduction

[oT low power networks can be defined as networks composed of embedded
devices with limited power, memory, and processing resources, and typically commu-
nicating over a wireless links. Today, such networks are used in various applications
of our daily life such as smart factory, smart home, smart transportation, smart
healthcare, smart agriculture and so forth [65]. However, due to their limited
resources, [0T low power networks will face network congestion whenever the traffic
load exceeds the available capacity at any point in the network [57]. This situation
contributes in decreasing the network performance. This is typically characterized
by the increase of packet loss ratio and the degradation of the throughput of the
wireless channel.

In order to cope with the congestion problem in IoT low power networks, various
congestion control mechanisms have been proposed [26]. These mechanisms operate
in three steps, including congestion detection, congestion notification and congestion
mitigation. Congestion detection refers to the process of monitoring IoT low power
networks in order to find both the presence and location of a congestion. This
is done by monitoring parameters such as buffer occupancy (queue length), and

channel load. Congestion notification allows the node concerned by the congestion
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problem or risk to notify the upstream or downstream nodes so that the appropriate
congestion control decision can be taken. In general, the notification of the upstream
or downstream nodes is done through Explicit Congestion Notification (ECN) or an
Implicit Congestion Notification (ICN). An ECN notification consists in sending
congestion information in a specific control packet to the upstream or downstream
nodes [I71]. An ICN notification consists in sending congestion information by
piggybacking the congestion information in a payload of a packet header [20].
After the detection and notification of a congestion problem in the network, the
mitigation strategy of the network congestion is done using various techniques such
as transmission rate control, load balancing and duty cycle adjustment.

Congestion notification represents an important step for congestion control in
IoT low power networks since it allows taking the right decision against congestion,
according to the network state. However, in an event driven application of IoT low
power networks (e.g. forest-fire detection), existing congestion notification schemes
like ECN may generate an important network traffic that will increase the risk of
network congestion, and thus cause the deterioration of the network performance.

In this chapter, we propose a novel congestion notification scheme that enables
the transmission of congestion state of [oT low power devices in a given routing path
into a Congestion Information Block (CIB) sent to a central entity (the network
manager). The proposed scheme allows an efficient aggregation of congestion state
of nodes in a given routing path into the CIB by using binary values. Compared
to an ECN scheme, our proposed solution offers a good performance in terms of
network throughput, network overhead and it offers low divergence (regarding the
time of observation) between congestion observed by the network manager and the
real congestion of nodes.

The rest of the chapter is organized as follows: section describes our solution;
this is followed by the performance evaluation of our proposal in section [6.3} and
the conclusion of this chapter is presented in section [6.4]

6.2 Proposed scheme for congestion state notifica-

tion

6.2.1 Assumption and problem formulation

We consider an event-driven [oT low power network composed of k& nodes
scattered in a 2-dimentional area. The set of nodes is represented by S =

{n1,ng, -+ ,ni}. Each node has a unique identifier i € {1,---,k}. We assume
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that all nodes are homogeneous (in terms of wireless communication technology and
computational capabilities) and are topologically static. We also assume that our
network is managed by a central entity, which is responsible for mitigating network
congestion (cf. Figure . Moreover, we supposed that each node is monitoring
its buffer occupancy in order to notify the network manager. A threshold value 6
is used by each node so that when buffer occupancy ratio is above #, the node is
considered as congested otherwise the node is not congested.

The problem consists in providing an optimal method to notify the congestion

state of nodes to the network manager while ensuring good network performance.

pirelessNetwork
Data packets received: 0 =
ControlMsg packets received: 0 &

netmanager

¢ & @&

node1 node2 node3 noded

é

node5 node6 node? node8

& ¢ @&

node9 node10 nodet1
node12 node13 nodel4

node15 nodel16 node17 node18

node19 node20 node21 node22

Figure 6.1 — Example of an [oT low power network on Omnet++ simulator.

6.2.2 Design of the proposed congestion notification scheme

In order to solve the above mentioned problem, we propose a novel scheme for
congestion notification that allows to efficiently aggregate the congestion state of
nodes in a given routing path into a block called Congestion Information Block
(CIB). Compared to ECN and ICN, the proposed scheme provides the following
benefits:

e No additional packet is required to send congestion state of nodes to the

network manager.

e Only a single packet is require to send the congestion state of nodes in a given

routing path.
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Figure illustrates the transmission of the CIB toward the network manager.
The transmission of the CIB is initiated by leaf nodes during the transmission of
a data packet. For each packet to be sent to network manager, each node located
in the routing path will insert its congestion state. The CIB is inserted into the
payload of a packet as depicted in Figure[6.3] Typically, each node inserts a binary
value representing its Congestion Information (C'7) in the packet payload according

to this rule:

1 ifb O >0
of — if buf ferOccupancy (6.1)
0 if buf ferOccupancy < 0

o ]

ORONO w0 ]

Figure 6.2 — Transmission of a CIB of a given routing path.

Scenario 1
Congestion information
1
r A
ojo|j1joj1jojojogtij1yt1gijogo upp IPV4 MAC PHY
T . g J
Payload Header
Scenario 2

Congestion information
o

1jojt1jojo upp IPV4 MAC PHY

T ’ s
Payload Header

Figure 6.3 — Example of a CIB block in a data packet (case of a UDP packet).
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We provide in Figure [6.4) an overview of different operations related to CIB
generation by leaf nodes. In Figure 6.5, we give an overview on operations executed

by intermediate nodes after the reception of a packet with a CIB.

Generate an empty CIB

buf ferOccupancy = @

l No Yes l

Insert 0 in CIB Insert 1 in CIB

i

Send CIB to parent node

End

Figure 6.4 — Generation of a CIB by a leaf node.

Reception of a CIB

buf ferOccupancy = 6

l No Yes l

Add 0in CIB Add 1in CIB

\
l

Send CIB to parent node

End

Figure 6.5 — Insertion of a CI into a CIB by an intermediate node.

To process the CIB, the network manager verifies each binary value along with
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its index (node identifier) in the CIB so that all nodes concerned by the congestion

control decision are known by the manager (cf. Figure . The congestion control

decision may consist, for instance in a reconfiguration of the routing table or an

adjustment of the sending rate of nodes.

i=i+1

Reception of a CIB

l

Get BIC sender address

No y

End of BIC

Yes

Congestion mitigation
while considering "list of
congested nodes”

Address of node | is in routing table

Add node i in "list of
congested nodes”

Address is in routing table
and BIC is not empty

Error

End

Figure 6.6 — Analyze of the CIB by the network manager.

6.3 Simulation and performance evaluation

6.3.1 Simulation environment

We evaluate the performance of our proposed scheme for congestion notification

by performing series of simulation in various scenarios using Omnet+-, an object-

oriented modular discrete event simulator [I54]. Moreover, we simulated the realistic
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behavior of nodes using INET framework, an open-source OMNeT++ model suite
for wired, wireless and mobile networks [I]. The main parameters used in the

simulation are shown in Table

Table 6.1 — Simulation parameters.

Parameter Value
Bitrate 100kps
Max queue size 50 packets
Number of Nodes 23
Number of ECN sources 22
Number of CIB sources 9
Data packet generation exponential (8ms)
CIB/ECN generation | exponential(15ms), exponential(25ms)
Experiment duration 120s
Communication range 200m
Deployment area 1000m x 1000m

To evaluate the performance of our proposed scheme for congestion notification,

we performed a comparison with ECN [I7I], a well known scheme for congestion

notification.

6.3.2 Results and discussion

1) Control messages overhead: In Figure and we plotted the
percentage of data packets and notification messages received by the network

when varying the sending interval of CIB and ECN. Overall, our proposed

scheme for congestion notification with CIB generates less control messages

compared to ECN.

CIB messages

ata packets

Figure 6.7 — Traffic comparison (CIB sending Interval = exponential (15ms))
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ECN messages

Data packets

Figure 6.8 — Traffic comparison (ECN sending Interval = exponential (15ms))

CIB messages

ata packets

Figure 6.9 — Traffic comparison (CIB sending Interval = exponential (25ms))

ECN messages

Data packets

Figure 6.10 — Traffic comparison (ECN sending Interval = exponential (25ms))
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2) Throughput: Figure and show different throughput curves obtained
when simulating CIB and ECN notification schemes. The throughput of CIB

is less than that of ECN.

Throughput comparisan

o 10 20 30 40 50 60 70 80 90 100 110 120
1600 *CIB »ECN 1600
1400 1400
1204 -1200
-
3 . oo
2 1004 | ) | -1000
o | |
E ao00r |y | " I 800
E [
(= | L] |I ' H |||||Hl| II I | ‘ [
600|; ' ‘ 110 Il IIIII |'l III [ J| H Il ||||| il I ‘I NI I|| 600
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| .
" || ||| ||| 00
i ‘ 200
1]
100 110 20
Thne [ln 5}
Figure 6.11 — Troughput comparison (sending Interval of control messages = exponential
15ms)
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Figure 6.12 — Troughput comparison (sending Interval of control messages = exponential

25ms)

3) Divergence between congestion observed by network manager and the real

congestion state at nodes: We measured the mean time necessary to notify

the network manager that the state of node(s) changed. We observed that our

proposed scheme for congestion notification is faster than ECN (cf. Figure

6.13).
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70000
gooop | NN CIB
50000
40000
30000

20000

Mean time (in s)

10000 4

D.
case 1 case 2
Comparison of congestion notification methods

Figure 6.13 — Divergence between observed and real congestion states.

6.4 Conclusion

In this chapter, we proposed a novel scheme for congestion notification in IoT low
power networks. The proposed scheme allows to efficiently aggregate the congestion
state of nodes in a given routing path into a single data packet by using a CIB, which
contains binary values representing the congestion state of nodes. The simulations
results show that our proposed scheme performs well compared to ECN in terms of
network throughput, control messages overhead and it offers low divergence between

the congestion observed by the network manager and the real congestion of nodes.
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7.1 Conclusion

[oT is a new paradigm that allows the interconnection of various things such
as industrial sensors, actuators, smart home appliances and RFID tags in order
to facilitate and/or enrich experience in various domains such as transportation,
agriculture, healthcare and so forth. The research on IoT has attracted the attention
of researchers from academic and industry sectors due to the potential benefits of
[oT applications in our daily lives. Nowadays, [oT landscape is characterized by the
presence of billions of heterogeneous devices with limited storage capacity, processing
capabilities, and energy, that are communicating over error prone wireless links. Due
to that limitation, IoT networks are facing many problems of performance, including
link quality deterioration, network congestion and failure of devices. In this context,
an efficient management of IoT low power networks becomes important in order to
improve the network performance. Nonetheless, achieving efficient management of
[oT networks is not straightforward because of IoT characteristics and constraints
(e.g. devices resource constraints) that raise a number of challenges (e.g. scalability,
energy efficiency and fault tolerance).

In this thesis we addressed the problem of management of IoT low power
networks and proposed novel solutions for efficient management of those resource-
constrained networks.

First, we provided a background knowledge on IoT low power networks and a

comparative analysis of existing solutions for management of IoT low power networks
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based on different requirements. Based on the limitation of existing solutions for
management of IoT low power networks, we proposed in chapter [3] intelligent
solutions for determining the efficient transmission power of RPL networks. Our
proposed solutions are based on a deep neural network model, which uses nodes
position to estimate the efficient transmission power of RPL networks. We performed
extensive simulations of proposed solutions on COOJA network emulator in order
to demonstrate its efficiency. The results of performance evaluation show that our
proposed solutions can help to define the transmission power that enables a reduction
of the network energy consumption while maintaining the network connectivity.

On the other hand, we proposed in chapter [d] a novel solution to efficiently
configure the parameters of IEEE 802.15.4 MAC in dynamic [oT low power networks.
The proposed solution is based on a supervised learning technique and it enables to
select the IEEE 802.15.4 MAC parameters according to the network and data traffic
characteristics. The results of performance evaluation of our proposal show that
the MAC parameters defined using our solution help to reduce the end-to-end delay
for data transmission compared to the default MAC parameters of IEEE 802.15.4
standard.

Further, in chapter [5] we proposed a comparative analysis of solutions for
congestion control in IoT low power networks and pointed out their limitation and
the benefits for having machine learning based solution for congestion control in such
resource-constrained networks. Moreover, we also provided a guide for designing a
congestion control solution for resource-constrained networks using imbalanced data.

Furthermore, in chapter [0, we proposed a novel congestion notification scheme
that enables efficient aggregation of congestion state of nodes in a given routing path
into a Congestion Information Block, which contains binary values representing the
congestion states of nodes. The obtained results of performance evaluation show
that our proposal perform well in terms of network throughput, network overhead
and offers low divergence between congestion observed by the network manager and

the real congestion of nodes compared to the well known ECN.

7.2 Future Research Directions

Our solutions for management of IoT low power networks presented in this thesis
have led to encouraging results. For the next steps, we plan to address the following

issues:

1) As future work, we envisage to extend our solution that allows to determine the

efficient transmission power of RPL networks in order to meet the scalability
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requirement of IoT low power networks. This goal could be achieved by

including clustering techniques in our proposal.

We plan to further analyze our solution that enables to define the IEEE
802.15.4 MAC parameters to evaluate its energy efficiency. Moreover, we
intend to implement our solution on real IoT devices in order to perform

an evaluation of its performance in real physical environment.

We plan to investigate an online learning based solution for congestion control
in resource-constrained networks by considering the insight we provided in
chapter In fact, as shown in [163], in various domains, the information
required for learning is rarely available a priori. In such cases, an online
learning can be used to build machine learning models. However, since IoT
lower networks are suffering from resources limitation, the proposed solution
have to be energy efficient and it should not introduce an overhead in the

networks.

In our future work, we plan to extend our proposed scheme for congestion
notification that enables efficient aggregation of congestion state of nodes in
a given routing path into a Congestion Information Block, by integrating a

congestion mitigation scheme.
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