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Thesis rationale

This manuscript is a research thesis in Computer Science, Mathematics
and Statistics, applied to biological and clinical contexts. My thesis consists
in the development of a novel methodological approach to reconstruct net-
works starting from biological and clinical data, that overcomes the problem
of existing methods to accomplish this task. Our algorithm (MIIC) allows
the study of discrete, continuous and mixed datasets with any type of prob-
ability and density distributions, taking into account the possible presence
of latent variables, which are very important in real contexts where it is not
possible to collect the whole possible set of variables. A consistent part of
my thesis have been devoted to the algorithm coding and to the creation of
an easy to use web server, providing the possibility to freely use our tool,
without the need of any computer science skill, along with the development
of an R package available on CRAN. The last part of my thesis was com-
pletely devoted to the analysis of real life applications: from gene regulatory
network reconstruction and protein contact map reconstruction, to the study
of patients affected by cognitive disorders or breast cancer.

I am very glad of this work, both because it has passionate me during all
my three PhD years, and for the fact that it has allowed me to work in a
rich environment made of people with different backgrounds and knowledge.
For me it was very exciting and challenging to work on the development and
application of computational approaches to questions relevant to the medical
environment. The last part of my thesis has probably been the most interest-
ing one, since I was working side by side to physicians, learning new things
on medical fields, and really applying all the framework that we have built
up.
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Thesis organization

This manuscript has been organized in 3 parts and 9 chapters. Part I contains the first 3
chapters and introduces the subject matter of this thesis, reporting notions on networks,
network reconstruction algorithms and the information theoretic framework on which our
algorithm is based. Part II, from chapter 4 to chapter 6, presents the MIIC algorithm,
proposed by our team, reporting the advantages it brings with respect to state of the art
algorithms. Chapter 5 is devoted to the online web-server which provides a web powerful
and easy to use interface to our algorithm. Chapter 6 introduces an extension of the
MIIC algorithm to deal with continuous data having an arbitrary distribution, that allows
the analysis of real life medical applications, where continuous (e.g. exam scores) and
discrete variables coexist. Part III corresponds to the last section of the thesis, presenting
some applications to real life biological datasets: gene regulatory network reconstruction
and protein contact map prediction; or medical datasets: a cognitive study on patients
affected by cognitive disorders treated in at La Pitié-Salpêtrière hospital in Paris and a
breast cancer application on female breast cancer patients treated in Paris and St. Cloud
Institut Curie hospitals.
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Chapter 1

Concepts and state of the art

1.1 Networks and graphs

The object of this thesis is the study of biological and clinical networks. A network is
made of a set of actors or entities, called “nodes” or “vertices”, and a set of interactions
among them, called “edges”. In Mathematics, networks are studied in a field named
“Graph Theory”. This science dates back to 1736 with Leonhard Euler’s book “The
Solution of a Problem Relating to the Theory of Position”. The idea of the book was the
study of a geographic practical question, known as “The konigsberg bridge problem” [1],
where Euler formulated the problem of finding a connected trail that crosses each bridge
exactly once, starting and ending from/to the same point. The Pregel river divides the
city of Konigsberg in Germany into two islands linked to the land with some bridges, as
shown in Figure 1.1.

Figure 1.1: Konisberg island.

The possibility of solving the problem depends only on the connections of the bridges
and not on their geometry or position in the island. The corresponding network can be
seen as a graph in Figure 1.2.

A lot of mathematicians and experts of that time tried to solve the problem, but
without being able to reach the goal. Euler himself claimed that the problem has no
possible solution but he was not able to prove it formally. The proof arrived only in
1870, when the mathematician Carl Hierholzer analysed the problem from a different
prospective and took into consideration the degrees of nodes in the corresponding graph:

13



Figure 1.2: Konisberg island graph.

the searched path does not exist, because of the topology of the network.
This problem and its solution played a very important role in science, since they de-

viate from the usual Mathematics of the time, related to geometry, position and calculus.
The new science and perspective gave rise to the field of Graph Theory.

1.2 Graphical models

This section describes the theory of networks and some concepts that will be used all
along the thesis.

1.2.1 Networks

A network is formally defined as a graph G:

G = (V,E)

that is composed by two components: V is the set of nodes or vertices, and E is a set of
edges among nodes. An edge can be of 3 different types:

• directed (X → Y ) this interaction indicates the presence of an asymmetric relation
between two nodes, for instance when a variation on X is causing a variation on Y
but not vice versa.

• undirected (X−Y ) this interaction reports a simple symmetric relation, for instance
because the relation is not causal, or because it is not possible to determine the
direction of the relation from the data we dispose.

• bi-directed (X ↔ Y ) this double orientation suggests the presence of an unobserved
common cause which is making the two variables being related. This interaction
indicates the presence of a “latent variable”, concept that will be explained in
Section 1.3.

A network composed only of directed edges is called directed graph, while a mixture of
the first two interactions generates a partially oriented graph. A directed graph with
no cycles is called DAG (Directed Acyclic Graph) and a partially oriented one with
no cycles is called PDAG (Partially Directed Acyclic Graph). Networks containing
bi-directed edges will be introduced in Section 1.4 on Ancestral graphs.

14



1.2.2 Conditional independence and d-separation in DAGs

If no relation exists between nodes a and b without taking into consideration any other
possible variable, the two nodes are said to be independent (a |= b|∅). In this case

p(a, b) = p(a)p(b) (1.1)

The independence criteria becomes more complicated when dealing with more than
two variables, since we need to condition on other nodes, in order to find the conditional
independence. Node conditioning can be seen like fixing the values for other variables and
see for each value of the conditioned variable if there is still a relation or not between a
and b (e.g. testing the partial correlation between them). We can image a setting where
we hypothesize that taking an anti-inflammatory drug can cause overweight in some
patients and that being overweight prompts the presence of hearth diseases (Figure 1.3).
For the sake of simplicity we will assume that there are no confounding variables in our
small model, and that the only negative effect of the anti-inflammatory drug is some
weight gain. If we only observe the 2 variables: “anti-inflammatory drug” and “heart
diseases”(Figure 1.4), a correlation analysis will show a direct relation between the two,
but is the drug really causing the illness? If we add a third variable “being overweight”,
the first two variables are not directly correlated, since we imagined that there is no
confounding and that overweight people have a higher propensity to become ill.

Figure 1.3: A simple model with 3 variables.

Figure 1.4: A simple model with only 2 variables observed.

Explaining the theoretical framework in more detail, we can have different types of
relations between 3 ore more nodes in a graph:

• Tail-to-tail:

Figure 1.5: Tail to tail relation.

Figure 1.6: Tail to tail relation observing c.

15



Joint distribution: p(a, b, c) = p(a|c)p(b|c)p(c)
a and b are not independent (a 6 |= b|∅):

p(a, b) =
∑
c

p(a|c)p(b|c)p(c) 6= p(a)p(b) (1.2)

a and b are conditionally independent given c (a |= b|c):

p(a, b|c) =
p(a, b, c)

p(c)
= p(a|c)p(b|c) (1.3)

• Head-to-tail:

Figure 1.7: Head to tail relation.

Figure 1.8: Head to tail relation observing c.

Joint distribution: p(a, b, c) = p(b|c)p(c|a)p(a) = p(b|c)p(a|c)p(c)
a and b are not independent:

p(a, b) = p(a)
∑
c

p(b|c)p(c|a) 6= p(a)p(b) (1.4)

a and b are conditionally independent given c:

p(a, b|c) =
p(b|c)p(a|c)p(c)

p(c)
= p(b|c)p(a|c) (1.5)

which is identical to tail-to-tail structure Eq (1.3).

• Head-to-head:

Figure 1.9: Head to head relation.

Figure 1.10: Head to head relation observing c.
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Joint distribution: p(a, b, c) = p(c|a, b)p(a)p(b)
a and b are independent:

p(a, b) =
∑
c

p(c|a, b)p(a)p(b) = p(a)p(b) (1.6)

a and b are not conditionally independent given c:

p(a, b|c) =
p(c|a, b)p(a)p(b)

p(c)
6= p(a|c)p(b|c) (1.7)

An example of head-to-head connection can be evaluated using the burglar, earth-
quake and alarm example, connected between them as shown in Figure 1.11:

Figure 1.11: Burglar, earthquake and alarm Bayesian network.

In this model an alarm can be turned on by a burglar entering the house or by the
presence of an earthquake. We can set a prior probability for burglar (B) and earthquake
(E):

P (B = 0) = 0.999;P (B = 1) = 0.001
P (E = 0) = 0.998;P (E = 1) = 0.002

The alarm is conditioned on both variables and has also a certain amount of unreliability,
giving for example this joint probability:

P (A = 1|B = 1, E = 1) = 0.95
P (A = 1|B = 1, E = 0) = 0.94
P (A = 1|B = 0, E = 1) = 0.29
P (A = 1|B = 0, E = 0) = 0.001

We imagine a situation where the alarm E is on. The posterior probability of E, knowing
that the alarm was on is:

P (E = 1|A = 1) = P (A=1|E=1)P (E=1)
P (A=1)

where:

P (A = 1|E = 1) =
∑

B∈{0,1}
P (A = 1|B,E = 1)P (B) = 0.29066

as P (A|B,E)P (B) = P (A,B,E) P (B)
P (B,E) = P (A,B|E) since P (B,E) = P (B)P (E)

and:

P (A = 1) =
∑

B∈{0,1}

∑
E∈{0,1}

P (A = 1|B,E)P (B)P (E) = 0.002516

17



giving: P (E = 1|A = 1) = 0.29066∗0.002
0.002516 = 0.2310

The posterior probability of E, knowing that a burglar was in the house and the alarm
was on is:

P (E = 1|A = 1, B = 1) = P (A=1|E=1,B=1)P (E=1|B=1)
P (A=1|B=1)

where:

P (A = 1|B = 1) =
∑

E∈{0,1}
P (A = 1|E,B = 1)P (E) = 0.94002

and

P (E = 1|B = 1) = P (E = 1) = 0.002

giving:

P (E = 1|A = 1, B = 1) = 0.95∗0.002
0.94002 = 0.002021

which results to be much lower than P (E = 1|A = 1) = 0.2301. This means that
knowing a burglar was in the house drastically reduces the chance of having also an
earthquake, creating a relation between the two events, that before the alarm being on,
were independent. This particular open triplet with two edges pointing to a particular
node is called a v-structure and takes a fundamental role in the network reconstruction
task. This importance is due to the fact that the node “Alarm” where the v-structure is
pointing to, is not involved in explaining the correlation between the two other nodes,
and conditioning on it generates a spurious correlation between “Burglar” and “Earth-
quake”. This structure is the simplest one that allows for some causal reasoning, as
we will see later in the thesis. All other possible open configurations X → Z → Y ,
X ← Z → Y , X ← Z ← Y are called non-v-structures and belongs to the same con-
ditional independence class (X |= Y |Z), meaning that there is no statistical possibility to
distinguish one particular structure from the others solely based on observational data.

1.2.3 Markov equivalence

Two DAGs are Markov equivalent if and only if (iff), based on the Markov condition,
they entail the same conditional independencies (same skeleton and same V-structures).
Formally let G1 = (V,E1) and G2 = (V,E2) be two DAGs containing the same set of
nodes V. Then G1 and G2 are called Markov equivalent if, for every three mutually
disjoint subsets A, B, C ∈ V , A and B are d-separated by C in G1 iff A and B are
d-separated by C in G2 .

Suppose we have a DAG G = (V,E) and an uncoupled meeting X − Z − Y . Then
the following are equivalent:

• X − Z − Y is a head-to-head meeting (“v-structure”)

• There exists a set not containing Z that d-separates X and Y (might be empty).

• No set containing Z does d-separate X and Y .

The set of equivalent graphs is called Markov equivalent class. For example, consider
DAGs on the variables {X1, X2, X3}. Then X1 → X2 → X3, X1 ← X2 ← X3 and X1 ←
X2 → X3 form a Markov equivalence class, since they all imply the single conditional
independence relationship X1 |= X3|X2, that is, X1 is conditionally independent of X3

given X2. Another Markov equivalence class is given by the single DAG X1 → X2 ← X3,
since this is the only DAG with skeleton X1 −X2 −X3 that implies the unconditional

18



Figure 1.12: Markov equivalence (ME) example. Graph connected by red connections
are markov equivalent while green ones are NOT markov equivalent. G3 is not ME to
G2 since to remove edge X,Y we need W , while we do not need it in G2. G4 is not ME
to G3 since to remove X,Y we need Z which is at the tip of a v-structure in G3.

independence relationship X1 |= X3 alone. Markov equivalence classes of DAGs can be
described uniquely by a completed partially directed acyclic graph (CPDAG). Another
example of Markov equivalent DAGs is presented in Figure 1.12.

In the case of causal sufficiency (no common hidden cause is present) and faithful-
ness (no fortuitous fine tuned independences) a DAG can always be re-conducted to its
Markov equivalence class. Markov equivalent graphs lead to identical likelihoods because
the sets of distributions obeying the Markov property associated with the graphs are the
same. Thus, for the purposes of interpreting a model, it is often important to charac-
terize those features that are common to all the graphs in a given class[2]. Algorithms
based on the research of conditional independence relations are called constraint-based
algorithms, and a prominent example is the PC algorithm, presented in section 2.6.

1.3 Complications arising from latent and selection vari-
ables

We suppose our data was generated by a process represented by a directed acyclic graph
(DAG) with a complete set of variables. However, in general, we may only have ob-
served a subset of the whole set of variables participating in the studied process, since
some variables could be unmeasured or unknown. Statistically speaking, these variables
are marginalized out. Moreover, there can be selection variables, that is, unmeasured
variables that determine whether or not a measured unit is included in the data sample.
Statistically speaking, these variables are conditioned on[3]. Hence, some variables in
the underlying DAG could be not observed (“latent”), while other variables, specifying
the specific sub-population from which our data was sampled, could be conditioned upon
(“selection variables”). Even though the underlying model is a DAG, the conditional
independence structure holding among the observed variables, conditional on the selec-
tion variables, cannot always be represented by a DAG containing only the observed
variables. A big problem is that causal inference based on the d-separation criteria could
be incorrect. For example, consider the DAG in Figure 1.13 with observed variables
X = {X1, X2, X3} and latent variables L = {L1, L2}. There is only one DAG on X
that implies this single conditional independence relationship, namely X1 → X2 ← X3,
and this will therefore be the output if constraints based algorithms (Figure 1.13(b)).
This output might lead us to believe that both X1 and X3 are causes of X2. But this
is clearly incorrect, since in the underlying DAG with latent variables, there is neither a
directed path from X1 to X2, nor one from X3 to X2.

These problems can be solved by introducing a new class of graphs on the observed
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Figure 1.13: (a) DAG with latent variables,(b) CPDAG, (c) PAG

variables, called maximal ancestral graphs(MAGs)[2]. Several DAGs can lead to the
same MAG. In fact, a MAG describes infinitely many DAGs since no restrictions are
made on the number of latent and selection variables.

1.4 Ancestral graphs - MAGs

The statistical models associated with ancestral graphs retain many of the desirable prop-
erties that are associated with DAG models. MAGs encode conditional independence
relationships among the observed variables via m-separation which is a generalization of
the d-separation. The basic motivation for ancestral graphs is to enable one to model
the independence structure over the observed variables that results from a DAG con-
taining latent and/or selection variables without explicitly including such variables in
the model. Regarding edges in ancestral graphs, bi-directed edges (↔) may arise from
unobserved parents. Likewise, undirected edges (−) may arise from children that have
been conditioned on in the selected sub-population from which the sample is taken. We
use the following terminology to describe relations between vertices in a mixed graph G,
which allows now three types of edges.

A graph, which may contain undirected (−), directed (←) or bi-directed edges (↔)
is ancestral if:

1. there are no directed cycles (i.e. X → · · · → Y with Y → X )

2. it does not contain almost directed cycles (i.e. X → · · · → Y with Y ↔ X )

3. for any undirected edge Xi −Xj in E, Xi and Xj have no parents or spouses.

DAGs form hence a subset of ancestral graphs. A vertex a is said to be an ancestor
of a vertex b if either there is a directed path a→ · · · → b from a to b or a = b. Further,
if a is an ancestor of b, then b is said to be a descendant of a.

The edge set E can contain (a subset of) the following six types of edges: → directed),
↔ (bi-directed), − (undirected), ◦−◦ (non-directed ), ◦− (partially undirected) and ◦ →
(partially directed). The endpoints of an edge are called marks and they can be tails,
arrowheads or circles. The symbol “◦” can be either tail or arrowhead in at least one
Markov equivalent representative graph.

1.5 Markov equivalence in ancestral graphs - PAGs

A key difference between DAGs and MAGs is that having the same adjacencies and
the same v-structures, though necessary, is no longer sufficient for Markov equivalence.
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Consider the graphs shown in Figure 1.14. G1 and G3 contain the same adjacencies and
the same unshielded colliders, but these two graphs are not Markov equivalent to each
other[2]. In G1, x is m-separated from y given q; but according to G3, x is m-connected
to y given q.

Figure 1.14: Markov equivalence example in Ancestral Graphs.

If G1, G2 are MAGs, then G1 is Markov equivalent to G2 if and only if G1 and G2

have the same adjacencies and the same invariated ends (same head (>) or tail (-) of each
arrow). The set of all the invariated terminations forms the so called Partial Ancestral
Pag (PAG).

Consider again the graphs in Figure 1.13 the only conditional independence relation-
ship among the observed variables is X1 |= X3, and this is represented by the PAG in
Figure 1.13(c). This PAG implies that X2 is not a cause (ancestor) of X1 , X3 or a
selection variable, and this is indeed the case in the underlying DAG in Figure 1.13(a)
and is true of any DAG that, assuming faithfulness, could have implied X1 |= X3. The
two circle marks at X1 and X3 in Figure 1.13(c) represent uncertainty about whether
or not X1 and X3 are causes of X2. This reflects the fact that the single conditional in-
dependence relationship X1 |= X3 among the observed variables can arise from the DAG
X1 → X2 ← X3 in which X1 and X3 are causes of X2, but it can also arise from the
DAG in Figure 1.13(a) in which X1 and X3 are not causes of X2.

4
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Chapter 2

Network reconstruction algorithms

Network reconstruction is the research area dealing with deduction of relations (e.g.
interaction and causal dependencies among system components) from a given dataset.
Network reconstruction becomes necessary when we want to have a whole vision of a
complex system, where many actors interact together, forming a complex network of in-
teractions. The contribution of Graph Theory is the focus shift from single components
towards the entire interacting system. Recently, methodological advances in the field
have been seeking to learn causal relationships using time series or controlled pertur-
bation experiments [4] [5]. However, such strategies can be technically impracticable or
costly, if not unethical, in many biological and medical contexts.

A second approach to network reconstruction consists on learning the set of relations
by simply observing enough random variations in unperturbed data. The currently avail-
able approaches to network reconstruction performed using unperturbed observational
data can be classified into different classes with respect to the mathematical framework
on which they are based in the learning phase, and depending whether they can analyse
discrete, continuous and (for few of them) mixed variables:

• sparse inverse covariance estimation methods

• maximum entropy methods

• Bayesian search-and-score methods

• Constraint-based methods

2.1 Graphical lasso

In recent years a number of authors have proposed the estimation of sparse undirected
graphical models through the use of L1(lasso) regularization. The basic model for con-
tinuous data assumes that the observations have a multivariate Gaussian distribution
with mean µ and covariance matrix Σ. If the ijth component of Σ−1 is zero, then
variables i and j are conditionally independent, given all the other variables. Thus, it
makes sense to impose an L1 penalty for the estimation of Σ−1 to increase its sparsity.
Authors have proposed algorithms for the exact maximization of the L1-penalized log-
likelihood; [6], [7] and [8] adapt interior point optimization methods for the solution to
this problem. Those papers also establish that the simpler approach of Meinshausen,
Nicolai and Bühlmann [9] can be viewed as an approximation to the exact problem. The
solution proposed by Friedman et al. [10], and implemented in the glasso R package
cycles through the variables, fitting a modified lasso regression to each variable in turn.
The individual lasso problems are solved by coordinate descent. The glasso R code is
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expected to solve a 1000 node problem (∼ 500, 000 parameters) in at most a minute and
is 30–4000 times faster than competing methods [11]. The formalisation of the problem
is to maximize the log likelihood

log detΘ− tr(SΘ)− ρ‖Θ‖1 (2.1)

over non-negative definite matrices Θ where tr denotes the trace and ‖Θ‖1 is the L1
norm minus the sum of the absolute values of the elements of Σ−1. Expression 2.1 is
the Gaussian log-likelihood of the data, partially maximized with respect to the mean
parameter µ.

A fundamental step of the graphical lasso-estimation lies on the choice of the param-
eter ρ, which can take values in (0, 1), with 0 indicating no regularisation. A general
method to tune the ρ parameter consists in the usage of the Bayesian Information Cri-
terion (BIC) penalty, choosing the parameter that minimizes the BIC value (i.e. that
maximizes the log-likelihood with BIC penalty):

rho <− seq ( 0 . 0 1 , 1 , 0 . 0 1 )
b i c <− rho
for ( j in 1 : length ( rho ) ){
a <− g l a s s o (S , rho [ j ] )
p_off_d <− sum( a$wi !=0 & col (S)<row(S ) )
b i c [ j ] <− −2∗( a$ l o g l i k ) + p_off_d∗log (n)

}

bestRho = rho [which .min( b i c ) ]

Using a dataset generated from the Tetrad tool (see Section 6.4) with 30 gaussian
variables and 100k samples, I evaluated the BIC value for values of rho ranging from 0.01
to 1, with a 0.01 step, comparing it with the F-score value of the reconstructed network,
Figure 2.1.
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Figure 2.1: F-score and bic score evaluations for a random network with 30 variables
and 100k samples

We can notice that the BIC method for the best ρ value search gives ρ = 0.91, which
corresponds to an F-score of 0.06. However, the ρ for the best F-score corresponds
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to ρ = 0.71, and gives a much better F-score ∼ 0.6. This indicates that the BIC
optimization in this case does not provide the best value for the network reconstruction
task and that the choice of ρ is very important to provide a reliable network. Similar
results (Fig. 2.2) were achieved using the alarm network with 100k samples. Moreover,
the graphical lasso algorithm is restricted to the reconstruction of the skeleton of a graph,
without being able to derive any conclusion for edge directions.

bic

fscore

0.00 0.25 0.50 0.75 1.00

0.1

0.2

0.3

0.4

2300

2400

2500

2600

2700

2800

rho

va
lu

e

Figure 2.2: F-score and bic score evaluations for the Alarm network (37 variables) with
100k samples

2.2 Gaussian Graphical Models Using Ridge Penalty

This network reconstruction method was firstly analysed to solve the problem of con-
structing gene co-expression networks, estimating high-dimensional partial correlation
matrix by a three-step approach. The method first obtains a penalized estimate of a
partial correlation matrix using ridge penalty, selects the non zero entries of the matrix
for hypothesis testing, and re-estimates these values in the last phase. Authors applied
this new methodology to simulations and to yeast cell cycle gene expression data, show-
ing that their method delivers better predictions of the protein–protein interactions than
the Graphical Lasso [12].

Formally speaking, let Ω = Σ−1 be the inverse of the covariance matrix Σ, with its
element at ath row and bth column denoted by Σab. Σ−1 is also called concentration
matrix or precision matrix. The partial correlation between Xa and Xb is a measure of
the linear relationship between Xa and Xb after accounting for the linear effects of all
the remaining variables [13]. The partial correlations can be obtained by the off diagonal
elements of the negative definite matrix −scale(Ω):

R = [ρab]p×p = −scale(Ω) (2.2)

where the scale is an operator defined for a square matrix. Let diag(A) be a diagonal
matrix constructed by the diagonal elements of A, then
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scale(A) = diag(A)−1/2Adiag(A)−1/2 (2.3)

An edge exists between two variables if and only if ρab 6= 0. Since the resulting partial
correlation matrix turns out not to be sparse, authors proposed a novel approach

using a hypothesis testing approach by tuning the λ parameter. Secondly they re-
estimate the partial correlation coefficients at the non-zero entries of the partial correla-
tion matrix of the first step, basing their method on the sparsity assumption. As shown
in Figure 2.3, the proposed method has uniformly a better sensitivity and specificity
than the GLasso in estimating network structure.

Figure 2.3: The ROC curves for identifying zero entries of partial correlation matrix using
the ridge penalty or GLasso for three simulation settings: (a) Multivariate Gaussian for
n = 100, p = 50, and |E| = 45. (b) Multivariate Gaussian for n = 100, p = 200,and
|E| = 160. (c) Multivariate t-distribution for n = 75, p = 194, and |E| = 160 [12].

The algorithm is coded in the GGMridge R package.

2.3 LINGAM

LINGAM (Linear Non-Gaussian Acyclic Model for Causal Discovery) is able to discover
the complete causal structure of continuous-valued data, under the assumptions that
(a) the data generating process is linear, (b) there are no unobserved confounders, and
(c) disturbance variables have non-Gaussian distributions of non-zero variances. Work-
ing with continuous variables, methods usually takes advantage of a linear-Gaussian
assumption on data. Authors showed that when working with continuous-valued data,
a significant advantage can be achieved by departing from the Gaussianity assumption,
since a linear-non-Gaussian setting allows the full causal model to be estimated, with
no undetermined parameters [14]. LINGAM is however making 3 assumptions on the
underlying model:

1. The observed variables can be arranged in a causal order, such that no later variable
causes any earlier variable (The network is a DAG).

2. The value assigned to each variable xi is a linear function of the values already as-
signed to the earlier variables, plus a ‘disturbance’ (noise) term ei, and an optional
constant term ci, that is

xi =
∑

k(j)<k(i)

bijxj + ei + ci (2.4)

3. The disturbances ei are all continuous-valued random variables with non-Gaussian
distributions of non-zero variances, and they are independent from each other.
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LINGAM is implemented in a Matlab and R package. For our analysis we used the
implementation, available in the pcalg package. The functions is taking as argument
only a n ∗ p data matrix, but there is no other possible parameter to tune the method.

2.4 ARACNE

ARACNE is an information-theoretic algorithm for the reverse engineering of transcrip-
tional networks from microarray data. The method identifies candidate interactions by
estimating pairwise gene expression profile mutual information (MI) using a Gaussian
Kernel estimation and then filters them using an appropriate threshold, I0, computed for
a specific p-value, p0, in the null-hypothesis of two independent genes. In a second step
ARACNE removes the vast majority of direct candidate interactions (ψij = 0) to be con-
sistent with a well-known information theoretic property: the data processing inequality
(DPI). In ref [15] the authors assess ARACNE’s ability to reconstruct transcriptional
regulatory networks using both a realistic synthetic dataset and a microarray dataset
from human B cells, reaching better performances with respect to Bayesian Networks al-
gorithms[15]. SinceMI is always non-negative, its evaluation from random samples gives
a positive value even for variables that are, in fact, mutually independent. Therefore,
authors eliminate edges comparing theMI evaluation against a random shuffling of gene
expressions. The algorithm examines each gene triplet for which all three MIs are greater
than I0 and removes the edge with the smallest value. This is to be consistent with the
DPI which states that if genes g1 and g3 interact only through a third gene, g2, (i.e., if the
interaction network is g1 ⇔ ... ⇔ g2 ⇔ ... ⇔ g3 and no alternative path exists between
g1 and g3), then I(g1, g3) ≤ min[I(g1, g2); I(g2, g3)]. A possible application of the data
processing inequality is shown in Fig 2.4. ARACNE results in being a quite fast algo-
rithm with respect to methods that require the exploration of a super exponential space
of networks, such as Bayesian methods. As a result, ARACNE can efficiently analyse
networks with tens of thousands of genes. However, the algorithm lacks a mathematical
model able to find edge directions and to infer causality in the data. One possibility,
applicable only to gene regulatory networks is to consider transcription factors (TFs) as
super-regulator genes affecting their targets, assuming the direction of edges being from
a TF to the target. However, this is not applicable for TF-TF interactions.

2.5 GGM and GCGM (BDgraph)

BDgraph provides statistical tools for Bayesian structure learning in undirected graphical
models for continuous, discrete, and mixed data. The corresponding bdgraph() function
consists of several sampling algorithms for Bayesian model determination in undirected
graphical models. The function provides two different methods: ggm and gcgm. Op-
tion "ggm" is for Gaussian graphical models based on Gaussianity assumption. Option
"gcgm" is for Gaussian copula graphical models for the data that not follow Gaussian-
ity assumption (e.g. continuous non-Gaussian, discrete, or mixed dataset). For all the
benchmarks we used the default "bdmcmc" algorithm, based on Birth-Death Markov
Chain Monte Carlo algorithm. In this method, edges are added or removed via birth or
death events where the time between jumps to a larger dimension (birth) or a smaller
one (death) is taken to be a random variable with a specific rate. In ref. [16], the authors
illustrated the efficiency of the method on a broad range of simulated data and applied
the method on large-scale real applications from human and mammary gland gene ex-
pression studies to show its empirical usefulness[16]. Like ARACNE, this algorithm does
not provide the possibility of finding the causal model underlying the data generation.
The method is implemented in the R package BDgraph, available on CRAN.
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Figure 2.4: Examples of the data processing inequality. (a) g1, g2, g3, and g4 are con-
nected in a linear chain relationship. Although all six gene pairs will likely have enriched
mutual information, the DPI will infer the most likely path of information flow. For ex-
ample, g1 ⇔ g3 will be eliminated because I(g1, g2) > I(g1, g3) and I(g2, g3) > I(g1, g3).
g2 ⇔ g4 will be eliminated because I(g2, g3) > I(g2, g4) and I(g3, g4) > I(g2, g4).
g1 ⇔ g4 will be eliminated in two ways: first, because I(g1, g2) > I(g1, g4) and
I(g2, g4) > I(g1, g4), and then because I(g1, g3) > I(g1, g4) and I(g3, g4) > I(g1, g4).
(b) If the underlying interactions form a tree (and MI can be measured without errors),
ARACNE will reconstruct the network exactly by removing all false candidate interac-
tions (dashed blue lines) and retaining all true interactions (solid black lines) [15].

2.6 Constraint based algorithms: the PC algorithm

Constraint based algorithms recovers the network model by means of Conditional Inde-
pendence tests, usually through an hyper-parameter α used as a statistical significance
threshold for the edge removal phase. The output of the algorithm corresponds to a
CPDAG (Complete Partially Directed Acyclic Graph) where directed and undirected
edges coexist. The algorithm uses correlation and p-value test, along with a variables
conditioning methodology applied to each possible edge in the network. The purpose
of the algorithm is to remove dispensable edges, to keep only direct relations between
the observed variables. PC-algorithm reconstructs a true graph in the limit of infinite
number of samples but in real applications it suffers of two non negligible problems: its
complexity becomes exponential if the data do not allow to remove many edges from
the graph, which corresponds to the reconstruction of a dense graph and it is not robust
to sampling noise. This second issue leads to the reconstruction of a different network
even for small variation in the initial dataset. PC algorithm takes its name from Pe-
ter Spirtes and Clark Glymour who proposed the algorithm in 1991[17][18]. The PC
algorithm can be decomposed in 3 different phases: skeleton reconstruction through
conditional independence tests, v-structures orientation and propagation of orientations
from v-structures to downstream edges.

2.6.1 Skeleton reconstruction

The PC algorithm starts from a complete, undirected graph and deletes edges based on
conditional independence decisions, conserving in the end the set of undirected edges
that were not removable using the analysed data. As a first step PC algorithm applies
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an independence test for each edge, without conditioning on other nodes (X |= Y |∅?). As
a second step it defines a level variable l = 1 and for each edge X,Y conserved after
the first step, it iteratively looks for neighbours of X and/or Y , storing them as possible
contributors in the separation set(S) for the edge X,Y , such that |S| = l and performs
an independence test on X |= Y |S. Once every possible edge have been tested for |S| = l,
l is incremented and the algorithm continues the research for possible contributors, until
no other possible contributor can be added to each separation set. At the end of this
process the edges that have not been removed are the ones that compose the skeleton
of the reconstructed graph. The key feature that makes the PC algorithm efficient in
sparse graphs is that the neighbours of each node are dynamically updated when an edge
is removed. Therefore, the number of conditional independence tests is small when the
true graph is sparse[18].

2.6.2 The stable PC algorithm

Incorrectly removing or retaining an edge would result in the changes in the neighbour
sets of other nodes, as the graph is updated dynamically. Therefore, the output graph
is dependent on the order of the conditional independence tests[19]. If an edge X,Y is
removed at a certain particular moment, the set of neighbours for X and Y changes, and
other edges connected to X (but not to Y ) or to Y (but not to X) will no more consider
the node Y and X respectively, resulting in a possibly different skeleton with respect of
a reconstruction made using a different order for testing edges (different variable order
in input dataset). Colombo et al. proposed a modification to the original-PC algorithm
to obtain a stable output skeleton which does not depend on how variables are ordered
in the input dataset[20]. In this method (called stable-PC algorithm), the neighbour
(adjacent) sets of all nodes are kept unchanged at each particular level, leaving the
possibility to condition on node’s neighbours even if the edge has been marked as “to
remove”. This modifications requires the method to perform more independence tests
with respect to the “non stable” version, increasing significantly the execution time for
dense graphs.

2.6.3 Orientation of v-structures

This steps consists of analysing all possible triplets of nodes characterized by having
only 2 edges (open triplets), in the form X − Z − Y . In this case X and Y are not
connected and the removal of the edge could be possible with a separation set S being
empty or containing some other nodes. The only possibility to orient the two edges of
the v-structure falls in the case when Z 6∈ S. In this case Z was not necessary to remove
the X,Y edge, which supposing the causal sufficiency assumptions gives the possibility
of orienting edges forming a v-structure. All other 3 possible graphical configurations
(X → Z → Y or X ← Z ← Y or X ← Z → Y ) would necessarily require the
conditioning on Z for the X,Y edge removal, being Z in the path between X and Y or
a common parent of the two.

2.6.4 Propagation of v-structures

In this phase the PC algorithm propagates the information which is coming from V-
structures with two hypothesis:

• All V-structures have been found in the precedent step

• The original model is a DAG and has no cycles.
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Some rules are defined for allowing propagation:

• R1 Orient j − k into j → k whenever there is an arrow i → j such that i and k
are non-adjacent

• R2 Orient i− j into i→ j whenever there is a chain i→ k → j

• R3 Orient i− j into i→ j whenever there are two chains i− k → j and i− l→ j
such that k and l are non-adjacent

• R4 Orient i− j into i→ j whenever there are two chains i− k → l and k → l→ j
such that k and j are non-adjacent and i and l are adjacent.

2.6.5 Conditional independence tests

The conditional independence test that are implemented in the PC algorithm are: the
χ2 used when dealing with discrete variables and the test for the significance of the
Pearson correlation coefficient, used when dealing with continuous variables that nicely
approximate the normal distribution. The most important choice when reconstructing
a network with PC algorithm or a method that search for conditional independence
through statistical test is the choice of the α statistical significance parameter. A high
value (α > 0.05) tends to remove less edges, providing a more connected network and
more false positives, while a small value (α < 0.01) will do the opposite, introducing
more false negatives. There is not a magic tool to find the best α for a particular
reconstruction, and the choice becomes fundamental when the number of samples is not
much bigger than the number of variables, since statistical stability cannot be reached
in this case, that is slightly different α values can lead to very different graphs, with the
consequential difficulty of trusting and interpreting a particular graph with respect to
others.

2.6.6 kPC

Kernel PC (kPC) algorithm aims at causal structure learning and causal inference using
graphical models. kPC is a version of PC algorithm that uses kernel based independence
criteria in order to be able to deal with non-linear relationships and non-Gaussian noise.

2.7 Causal Discovery with Hidden Variables: FCI

When dealing and allowing for the presence of latent variables or selection variables,
and hence removing the causal sufficiency principle, the network reconstruction task
becomes more complicated and advanced mathematical model must be introduced to
deal with such type of variables. In practice, this intrinsic difficulty arising from latent
variables has been addressed through more complex algorithmic approaches, such as
the FCI algorithm (Fast causal inference) [21] and its more recent approximate variant,
RFCI (Really Fast Causal Inference)[3]. The algorithm is inspired from the PC algorithm
and is based on a first run of PC on the observed variables in order to recover a first
skeleton of the reconstruction, where all edges are represented in their undirected form
◦ − ◦. The second step consists on orienting all V-structures using the R0 rule. A third
step related to latent variables extend the search of separation sets to nodes connected
through collider paths. The last step applies 10 rules (from R1 to R10) to orient all other
edges [22] and to look for latent variable (possibly removing some edges that were kept
in the first run of the pc-algorithm). FCI algorithm differs from PC algorithm because it
is able to find conditioning nodes of X,Y that are not necessarily neighbours of the node
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X nor of node Y [21, 3]. An example of the necessity to look for non-neighbour nodes
is shown in Figure 2.5. In this case in order to remove the node between Z and T , it
is necessary to condition on W since W is an ancestor of Y and X that are respectively
causes of T and Z. The conditioning on X and Y in this case is not enough to state
independence since conditioning on Y would activate the path W → Y ← L → Z
because conditioning on a V-structure (head to head arrow) activates the path that is
instead non transmitting if the node at the tip of the collider is not conditioned on. If
we want to state that Z |= T , it becomes necessary to condition on the three nodes X,
Y and W . If a dataset built under this model is reconstructed under the PC-algorithm,
the edge Z, T will be kept, since PC-algorithm is not conditioning on non neighbours
nodes and an algorithm using all observed nodes must be taken into consideration. It
could in principle be possible to create a pc-algorithm that looks for all sets of possible
contributors not restricting to the neighbours of the two nodes, but this would need to
test for all possible combination of nodes, rising the network reconstruction to an NP-
hard problem, not solvable even for small cases. The FCI algorithm is performing the
following steps:

1. Use PC algorithm to find an initial skeleton C, separation sets and unshielded
triple list

2. Use the orientation step R0 (v-structures only) to orient v-structures

3. Use PC algorithm to find the final skeleton, by extending separation sets, with
respect to nodes connected to a given edge through collider paths which can induce
spurious correlations upon conditioning.

4. Use the orientation step R0 (v-structures only) to orient v-structures

5. Use rules (R1)–(R10) to orient as many edge marks as possible

Despite its name, FCI is computationally very intensive for large graphs[3]. The RFCI
algorithm tries to shorten the execution time modifying the constraint that are applied
after the PC reconstruction, looking for possible “discriminating paths”. RFCI uses fewer
conditional independence tests than FCI, and its tests condition on a smaller number
of variables. However, sometimes RFCI keeps some edges that should be removed with
respect to the generating DAG, since RFCI is not looking for nodes in the separation
set that do not appear in an unshielded triple or in a discriminating path between two
variables.

Figure 2.5: Learning causal networks with latent variables. a) Original DAG. b) Con-
ditional independence in the presence of latent variables requires to be conditioned on
non-adjacent variables, in general, such as for the pair {Z, T} which needs to be con-
ditioned on X, Y and non-adjacent W , Z |= T |X,Y,W , as one cannot condition on the
unobserved latent variables, L or L′ , e.g. Z |= T |X,L or Z |= T |Y, L

′ .

2.8 Search and score algorithms

The task of search and score algorithms can be formulated as that of finding a net-
work structure that maximizes some scoring function defined relative to the given data.
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Unfortunately, the task of finding a network structure that optimizes the score is a
combinatorial optimization problem, and is known to be NP-hard [23]. The standard
methodology for addressing this problem is to perform heuristic search over some space.
Many algorithms have been proposed along these lines, varying both on the formulation
of the search space, and on the algorithm used to search the space. The algorithm used
in this thesis for network reconstruction benchmarks is the Bayesian_hc present in the
bnlearn R package. The idea of the algorithm is explained in section 2.8.2.

2.8.1 Bayesian Network Structure Learning

The goal is to find a network structure G that is a good predictor for the data. The most
common approach is to define the task as an optimization problem. We define a scoring
function score(G : D), which evaluates different networks relative to the data D. We
then need to solve the combinatorial optimization problem of finding the network that
achieves the highest score. Several scoring functions have been proposed: most common
are maximum likelihood functions with BIC/MDL penalty[24] or the BDe penalty[25].
An common used property in network reconstruction is the score decomposability in the
sum of scores associated with individual nodes and their parents:

s(G) = score(G) =
n∑

i=1

score(Xi, PaG(Xi)) (2.5)

The final task is finding
argmaxG score(G) (2.6)

This formulation results to be NP-hard due to the combinatorial number of possible
configurations for edges. An important property for the score being able to be evaluated
is the assumption of the data generating model being a DAG as the choice of parent set
for one node imposes constraints on the possible parent sets for other nodes, in order
to not create cycles. The most common solution for finding a high scoring network
is some variant of local search over the space of networks using the operators of edge
addition, deletion, and reversal. The decomposability property of scores and the use of
sufficient statistics allow these operators to be evaluated very efficiently. Most typically,
the algorithm performs greedy hill-climbing search, with occasional random restarts to
address the problem of local maxima[23].

2.8.2 Greedy hill-Climbing with random restarts

This methods, which falls on the area of NP-hard problem optimisation allows to re-
construct a network from data in a fast manner, despite the super exponential number
of possible configurations, providing a good network candidate that is not necessarily
proven to be the optimal one. The algorithm starts with a possible network configura-
tion (a possible DAG) G and assigns to it a score s(G). A small structure modification
is then performed to G (opposite direction of one edge, suppression or addition of one
edge) and a score s(G) is evaluated on this second graph. The graph which provides
the best score is then saved and the other one is possibly stored in a list, to avoid to
perform again the test on the same graph. This process is iterated until there is no
more G1 which has a better score than G. In this method the nbr_restarts represents
the number of times that the whole algorithm is repeated starting from a new graph, in
order to mitigate the local minima problem. At the end, the network maximizing the
score function is given as output.
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2.9 MXM

The MXM algorithm addresses the problem of constraint-based causal discovery with
mixed data types, such as continuous, binary, multinomial, and ordinal variables. The
authors of [26] use likelihood-ratio tests based on appropriate regression models and
show how to derive symmetric conditional independence tests, that can be easily used
as independence tests on existing methods, such as the PC and FCI algorithms. MXM
is implemented in an R package [27]. The type of conditional independent test they
propose suffers of symmetry problems in low sample sizes (they depend on variable
order), that authors faced using different approaches like performing both tests and
combining them appropriately. In the main paper [26] they performed simulations to
investigate the properties of mixed tests based on regression models, showing that the
proposed symmetric test significantly outperforms competing methods in BN learning
tasks.

2.10 CausalMGM

The CausalMGM algorithm can be used for finding directed graphs over mixed data types
(continuous and discrete variables). It can identify variables directly linked to disease
diagnosis and progression in various multi-modal datasets, including clinical datasets
from chronic obstructive pulmonary disease (COPD) [28]. CausalMGM first learns an
undirected graph over mixed data using a likelihood ratio test (LRT) based procedure
for conditional independence testing of mixed data types. Instead of starting from a fully
connected graph as other methods, CausalMGM first calculates an undirected graph as
in [29] and uses it as starting point for PC-stable and CPC-stable. The authors call these
algorithm variants MGM-PCS and MGM-CPCS, respectively. The key modification with
respect to PC-algorithm is the modification of the conditional test in order to deal with
mixed variables: they perform linear or multinomial logistic regressions if the dependent
variables are both continuous or categorical, respectively. If X and Y are of different
variable types, we have a choice of whether X or Y should be the independent variable
that determines whether we perform logistic or linear regressions[28]. The undirected
graph is then used as the skeleton to run local directed graph searches. The authors have
shown that CausalMGM can efficiently reconstruct graphs from simulated data (high-
and low-dimensional) with high precision, although recall is more challenging.

2.11 CAM

Authors proposed maximum likelihood estimation and its restricted version for the class
of additive structural equation models (i.e., causal additive models, CAMs)[30]. A key
component of the approach is to decouple order search among the variables from feature
or edge selection in DAGs

2.12 Network analysis

The main question that arises related to graph analysis of large networks is “How can
we extract knowledge from a graph?”. Related to this aspect there are principally two
problems: visualization and interpretation. Usually, graphs can be plotted, visualized,
and each interaction can be analysed. However medium-large networks with more than
300 nodes are often hard to plot or show on a screen because their visualization is often
unreadable. In this case we can analyse the graph and find the node with more edges,
the node that is more central by shortest paths or the node that can be reached in less
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steps. The analysis of node importance is called “Centrality measure analysis” and the
most common measures are implemented in the MIIC web-server, described in Chapter
5. The algorithm for the analysis was developed during my master intern and thesis. I
hence decided to adapt my master work adding to MIIC online some of the measures I
coded. The centrality measure evaluation is automatically performed once the network
has been reconstructed.
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Chapter 3

Information theory

This chapter is intended to provide a short introduction on entropy and information
theory, that will be used to describe the MIIC algorithm in chapter 4.

3.1 Entropy

The entropy of a random variable is a measure of its uncertainty and is defined as

H(X) = −
∑
x∈X

p(x) log p(x) (3.1)

with entropy measured in bits (base 2 of the logarithm). If the base of the logarithm is e,
the entropy is measured in nats. The entropy of a random variable is a lower bound on
the average number of bits required to represent the random variable. It does not depend
on the actual values taken by the random variable X, but only on the probabilities, and
it is always positive. We can extend the definition to a pair of random variables, where
the joint entropy H(X,Y ) of a pair of discrete random variables (X,Y ) with a joint
distribution p(x, y) is defined as

H(X,Y ) = −
∑
x∈X

∑
y∈Y

p(x, y) log p(x, y) (3.2)

Conditional entropy H(X|Y ), which is the entropy of a random variable condi-
tional on the knowledge of another random variable is

H(Y |X) = −
∑

x∈X,y∈Y
p(x, y) log

p(x, y)

p(x)
(3.3)

Note that

1. H(Y |X) = 0 iff the value of Y is completely determined by the value of X

2. H(Y |X) = H(Y ) iff the value of Y is completely independent by the value of X

The conditional entropy can be derived from the joint and marginal entropy

H(Y |X) = H(X,Y )−H(X) (3.4)

and using the Bayes’ rule one can deduce

H(Y |X) = H(X|Y )−H(X) +H(Y ) (3.5)
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3.2 Mutual information

The amount of information that one random variable contains about another random
variable is called the mutual information I(X;Y ). For two random variables X and
Y it is defined as

I(X;Y ) = H(X)−H(X|Y ) =
∑

x∈X,y∈Y
p(x, y) log

p(x, y)

p(x)p(y)
(3.6)

The mutual information I(X;Y ) is symmetric in X and Y and always non-negative. It
is equal to zero if and only if X and Y are independent. The mutual information is the
reduction in the uncertainty of X due to the knowledge of Y , hence

I(X;Y ) = H(Y )−H(Y |X) = H(X)−H(X|Y ) (3.7)

Since H(X,Y ) = H(X) +H(Y |X), we have

I(X;Y ) = H(X) +H(Y )−H(X,Y ) (3.8)

For any two random variables X and Y it holds that

I(X;Y ) ≥ 0 (3.9)

with I(X;Y ) = 0 if and only if X and Y are independent.
We can also express the conditional mutual information of two random variables

conditioned on a third

I(X;Y |Z) =
∑
z∈Z

∑
y∈Y

∑
x∈X

p(x, y, z) log
p(z)p(x, y, z)

p(x, z)p(y, z)
(3.10)

or
I(X;Y |Z) =

∑
z∈Z

∑
y∈Y

∑
x∈X

p(x, y, z) log
p(x, y|z)

p(x|z)p(y|z) (3.11)

which written in terms of joint and conditional entropies becomes

I(X;Y |Z) = H(X|Z) +H(Y |Z)−H(X,Y |Z) (3.12)

For any two random variables X, Y and Z it holds that

I(X;Y |Z) ≥ 0 (3.13)

with I(X;Y |Z) = 0 if and only if X and Y are conditionally independent given Z.
We can now define the 3-point information I(X;Y ;Z) = I(X;Y )−I(X;Y |Z), which

is in fact invariant upon permutations between X, Y and Z, as seen in terms of entropy
functions

I(X;Y ;Z) = H(X)+H(Y )+H(Z)−H(X,Y )−H(X,Z)−H(Y,Z)+H(X,Y, Z) (3.14)

Differently from mutual information, 3-point information, I(X;Y ;Z) can be positive
or negative (if I(X;Y ) < I(X;Y |Z)), unlike 2-point mutual information, which is always
positive, I(X;Y ) ≥ 0.
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Part II

MIIC algorithm
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Chapter 4

Miic algorithm

This chapter is devoted to the presentation of the MIIC (Multivariate Information In-
ductive Causation) algorithm, proposed by our team. MIIC is a novel network recon-
struction method, which exploits the best of two types of structure learning approaches:
constrained-based and search and score methods, to reliably reconstruct graphical mod-
els despite inherent sampling noise in finite observational datasets. To this end, we have
developed a robust information-theoretic method to confidently ascertain structural inde-
pendences in causal graphs based on the ranking of their most likely contributing nodes.
Conditional independences are derived using an iterative search approach that identifies
the most significant indirect contributions to all pairwise mutual information between
variables. This local optimization algorithm, outlined below, amounts to iteratively sub-
tracting the most likely conditional 3-point information from 2-point information between
each pair of nodes. The resulting network skeleton is then partially directed by orienting
and propagating edge directions, based on the sign and magnitude of the conditional
3-point information of unshielded triples. Identifying structural independences within
such a maximum likelihood framework circumvents the need for adjustable significance
levels (α) and is found to be more robust to sampling noise from finite observational
data, even when compared to constraint-based methods intending to resolve the order-
dependence on the variables. This chapter is based on the paper Verny, Sella, Affeldt,
Plos Computational Biology, 2017 [31].

4.1 Constrained based methods with information theoretic
framework

Constraint-based approaches start from a fully connected network and proceed by iter-
atively removing dispensable edges between variables X and Y for which a conditional
independence can be found. This rationale of constraint-based methods can be inter-
preted from an information perspective [32] using the generic decomposition of mutual
information, I(X;Y ), relative to a variable A or a set of variables {Ai}

I(X;Y ) = I(X;Y ;A) + I(X;Y |A) (4.1)

I(X;Y ) = I(X;Y ; {Ai}) + I(X;Y |{Ai}) (4.2)

where I(X;Y ; {Ai}) can be seen as the global indirect contribution of {Ai} to I(X;Y )
and I(X;Y |{Ai}) as the remaining (direct) contribution.
Conditioning Eq 4.1 on {Ai}n−1 and setting A ≡ An yields

I(X;Y |{Ai}n−1) = I(X;Y |{Ai}n) + I(X;Y ;An|{Ai}n−1) (4.3)
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which can be combined with Eq. 4.2, setting {Ai}m = {Ai}n−1 or {Ai}n, to yield the
following iterative scheme on the contribution increment of the collected set {Ai}n

I(X;Y ; {Ai}n) = I(X;Y ; {Ai}n−1) + I(X;Y ;An|{Ai}n−1) (4.4)

As shown in 4.4, only positive information terms, I(X;Y ;An|{Ai}n−1) > 0, effec-
tively contribute to the global mutual information betweenX and Y through the iterative
decomposition of Eq. 4.3,

I(X;Y) = I(X;Y ;A1)+I(X;Y ;A2|A1)+ · · ·+I(X;Y ;An|{Ai}n−1)+I(X;Y |{Ai}n) (4.5)

where the most likely contributors An after collecting the first n−1 contributors {Ai}n−1

is chosen by maximizing I(X;Y ;An|{Ai}n−1) > 0, while taking into account the finite
size N of the dataset.

The approach provides also a natural ranking of the edgesXY of the graph, R(XY ;An|{Ai}n−1),
based on the likelihood of their best next contributor An, as discussed in 4.3.

The robustness of the approach lies on picking the most likely contributors first to
avoid a later accumulation of incorrect contributors in an attempt to compensate for
early errors. Choosing the most likely contributors one by one requires, however, to take
into account the finite size of the dataset as detailed in the next sections.

By contrast, the main computational complexity of constraint-based methods stems
from their attempt to uncover directly a valid combination of contributing nodes {Ai}
for each dispensable edge XY . In absence of latent variables, the combinatorial search
can be restricted to the neighbours of X or Y , which are sufficient to intercept all
information contributions from indirect paths [33, 34]. However, this efficient algorithm
cannot be used in the presence of latent variables, as collider paths may require to extend
the combinatorial search for conditioning set {Ai} to non-adjacent variables of X and
Y [21], as seen in Figure 2.5. In practice, this intrinsic difficulty stemming from latent
variables has been addressed through much more convoluted algorithmic approaches,
such as the FCI algorithm [21] and its more recent approximate variant, RFCI [3]. For
the MIIC algorithm the latent variable extension falls naturally on looking for all the set
of nodes instead of only neighbours, without the combinatorial computational complexity
bound of other constraint based algorithms, since MIIC does not look at sets of variables
for each test, but collects iteratively the best contributors one by one.

4.2 Signature of causality versus indirect contributions to
information in graphs

We first discuss the rationale of the information-theoretic method to learn ancestral
graphs with the assumption that an infinite amount of data is available, before discussing
in the next section the necessary corrections needed, in practice, to account for the finite
size of the dataset.

We will thus assume that the measured distribution P (X) is stable or faithful to
the underlying graph model G, implying that each structural independence under m-
separation criterion [35] (i.e. each excluded edge X,Y in G) corresponds to a vanishing
conditional mutual information as,

(X ⊥m Y |{Ai})G ⇐⇒ (X ⊥⊥ Y |{Ai})P
⇐⇒ I(X;Y |{Ai}) = 0 (4.6)
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Theorem 1 Signature of causality vs indirect contributions in G, Affeldt & Isambert
2015 [36] Given some data with a distribution P (X) faithful to a graph G,

• i) Signature of causality: If ∃X,Y, Z∈V and {Ai}⊆V \{X,Y, Z} s.t. I(X;Y |{Ai})=
0 and I(X;Y ;Z|{Ai}) < 0, then G is necessarily causal, i.e. it has at least one v-
structure.

• ii) Indirect contribution: ∀X,Y, Z∈V and ∀{Ai}⊆V \{X,Y,Z} s.t. I(X;Y ;Z|{Ai})>
0, then I(X;Y |{Ai}) = I(X;Y ;Z|{Ai})+I(X;Y |Z, {Ai}) > 0 and I(X;Y ;Z|{Ai})>
0 can be seen as the positive contribution to the remaining conditional mutual infor-
mation I(X;Y |{Ai})>0 (and equivalently to I(X;Z|{Ai})>0 and I(Y ;Z|{Ai})>
0 by symmetry of I(X;Y ;Z|{Ai})).

See sketch of proof on the original paper [31] for more details.
Theorem 1 i), which characterizes the signature of causality in observational data,

will be used to orient v-structures, once Theorem 1 ii) has been used to learn structural
independences by collecting one-by-one the significant contributors {Ai} and partitioning
iteratively mutual information terms into positive contributions from indirect paths as

I(X;Y ) = I(X;Y ;A1) + I(X;Y |A1)

= I(X;Y ;A1) + I(X;Y ;A2|A1) + I(X;Y |A1, A2)

= I(X;Y ;A1) + I(X;Y ;A2|A1) + . . .

. . .+ I(X;Y ;An|{Ai}n−1) + I(X;Y |{Ai}n) (4.7)

with I(X;Y ;Ak|{Ai}k−1)>0 for all k. Hence, conditional independence, I(X;Y |{Ai}n)=
0, is eventually retrieved (if it holds) after subtracting successive significant positive
three-point conditional information from the original two-point conditional information
[36, 37] as,

I(X;Y |{Ai}n) = I(X;Y )− I(X;Y ;A1)− . . .− I(X;Y ;An|{Ai}n−1) (4.8)

4.3 Finite size effect and most likely contributor score

This section addresses finite size corrections to multivariate information and introduce
a heuristic score to collect the most likely contributors {Ai}n in Eq. 4.8.

Given N independent samples from some available data D, the Maximum Likelihood,
LD|G , that they might have been generated by the graphical model G, is given by [38],

LD|G =
e−NH(p,q)

ZD,G
=
eN

∑
x p(x) log q(x)

ZD,G
(4.9)

where H(p, q) = −∑x p(x) log q(x) is the cross entropy between the “true” probability
distribution p(x) of the data D and the theoretical probability distribution q(x) of the
model G, and H(p) = −∑x p(x) log p(x) is the entropy of the data and ZD,G a data-
and model-dependent factor ensuring proper normalization condition.

In particular, the conditional mutual information, I(X;Y |{Ai}), for structural in-
dependence, Eq. 4.8, cannot be exactly zero, given a finite dataset of N independent
samples, and has to be compared to a finite threshold, I(X;Y |{Ai}) < kX;Y |{Ai}/N ,
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where kX;Y |{Ai} > 0 is related to the likelihood normalization ratio between graphs
including or excluding edge XY with separation set {Ai} [36],

LD|G\XY |{Ai}

LD|G
=

e−NI(X;Y |{Ai})

ZD,G\XY |{Ai}
/ZD,G

= e−NI(X;Y |{Ai})+kX;Y |{Ai} (4.10)

kX;Y |{Ai} = log
(
ZD,G/ZD,G\XY |{Ai}

)
(4.11)

where kX;Y |{Ai} tends to limit the complexity of the models by favoring fewer edges. A
common complexity criterion in model selection is the Bayesian Information Criterion
(BIC) or Minimum Description Length (MDL) criterion [39, 40], which is simply related
to the maximum likelihood normalization constant reached in the asymptotic limit of a
large dataset N →∞ (Laplace approximation). However, this limit distribution is only
reached for very large datasets in practice. Alternatively, the normalization of the maxi-
mum likelihood can also be done over all possible datasets including the same number of
samples to yield a (universal) Normalized Maximum Likelihood (NML) criterion [41, 42]
and its decomposable version [43, 44]. All application results presented in this thesis are
obtained with the XY -symmetric decomposable NML criterion introduced in [37], which
was shown to yield significantly better results than BIC/MDL criterion on benchmark
networks.

Thus, finite size effects in graphical model comparison can be included by redefining
two-point and three-point conditional multivariate information as,

I ′(X;Y |{Ai}) = I(X;Y |{Ai})−
kX;Y |{Ai}

N
(4.12)

I ′(X;Y ;Z|{Ai}) = I(X;Y ;Z|{Ai})−
kX;Y ;Z|{Ai}

N
(4.13)

where conditional three-point information including finite size corrections, I ′(X;Y ;Z|{Ai}),
and their associated complexity terms, kX;Y ;Z|{Ai}, are defined with respect to two-point
information including finite size corrections and their associated complexity terms

Hence, Eq. 4.8 including finite size corrections becomes,

I ′(X;Y |{Ai}n) = I ′(X;Y )− I ′(X;Y ;A1)− . . .− I ′(X;Y ;An|{Ai}n−1) (4.14)

where the conditional two-point and tree-point multivariate information are related to
the following maximum likelihood ratios, using Eq. 4.11,

LD|G\XY |{Ai}

LD|G
= e−NI′(X;Y |{Ai}) (4.15)

LD|G\XY |{Ai},Z

LD|G\XY |{Ai}

= eNI′(X;Y ;Z|{Ai}) (4.16)

with conditional independence including finite size effect corresponding to I ′(X;Y |{Ai})6
0.

Hence, learning, iteratively, the most likely edge to be removed XY and its corre-
sponding separation set {Ai} will imply to simultaneously minimize two-point informa-
tion (Eq. 4.15) while maximizing three-point information (Eq. 4.16). In fact, the sign
and magnitude of conditional three-point information included finite size corrections,
I ′(X;Y ;Z|{Ai}), determine the probability that Z should be included in or excluded
from the sepset candidate {Ai} as:
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• If I ′(X;Y ;Z|{Ai}) > 0, Z is more likely to be included in {Ai} with probability,

Pnv(X;Y ;Z|{Ai}) =
LD|G\XY |{Ai},Z

LD|G\XY |{Ai}
+LD|G\XY |{Ai},Z

=
1

1 + e−NI′(X;Y ;Z|{Ai})(4.17)

• If I ′(X;Y ;Z|{Ai}) < 0, Z is more likely to be excluded from {Ai}, suggesting
obligatory causal relationships in the form of a v-structure between X,Y, Z with
probability,

Pv(X;Y ;Z|{Ai}) = 1− Pnv(X;Y ;Z|{Ai}) =
1

1 + eNI′(X;Y ;Z|{Ai}) (4.18)

But, in the case I ′(X;Y ;Z|{Ai}) > 0, Eq. 4.16 can also be interpreted as quantifying
the likelihood increase that the edge XY should be removed from the model by extend-
ing the candidate sepset from {Ai} to {Ai} + Z, i.e. LD|G\XY |{Ai},Z

= LD|G\XY |{Ai}
×

exp(NI ′(X;Y ;Z|{Ai})) > LD|G\XY |{Ai}
, as exp(NI ′(X;Y ;Z|{Ai})) > 1. Yet, as the

three-point information, I ′(X;Y ;Z|{Ai}), is actually symmetric with respect to the
variables, X, Y and Z, the factor exp(NI ′(X;Y ;Z|{Ai})) provides in fact the same
likelihood increase for the removal of the three edges XY , XZ and ZY , conditioned on
the same initial set of nodes {Ai}, namely,

LD|G\XY |{Ai},Z

LD|G\XY |{Ai}

=
LD|G\XZ|{Ai},y

LD|G\XZ|{Ai}

=
LD|G\ZY |{Ai},x

LD|G\ZY |{Ai}

= eNI′(X;Y ;Z|{Ai}) (4.19)

However, despite this symmetry of three-point information, I ′(X;Y ;Z|{Ai}), the likeli-
hoods that the edges XY , XZ and ZY should be removed are not the same, as they de-
pend on different 2-point information, I ′(X;Y |{Ai}), I ′(X;Z|{Ai}) and I ′(Z;Y |{Ai}),
Eq. 4.15. In particular, the likelihood ratio between the removals of the alternative edges
XY and XZ is given by,

LD|G\XY |{Ai},Z

LD|G\XZ|{Ai},Y

=
LD|G\XY |{Ai}

LD|G\XZ|{Ai}

=
e−NI′(X;Y |{Ai})

e−NI′(X;Z|{Ai}) (4.20)

and similarly between edges XY and ZY .

Hence, for XY to be the most likely edge to be removed conditioned on the sepset
{Ai} + Z, not only Z should contribute through I ′(X;Y ;Z|{Ai}) > 0 with probabil-
ity Pnv(X;Y ;Z|{Ai}) (Eq. 4.17), but XY must also correspond to the ‘weakest’ edge
of XY , XZ and ZY conditioned on {Ai}, as given by the lowest conditioned 2-point
information, Eq. 4.20. Note that removing the edge XY with the lowest conditional
2-point information is consistent, as expected, with the Data Processing Inequality,
I(X;Y |{Ai}) 6 min(I(X;Z|{Ai}), I(Z;Y |{Ai})), in the limit of large datasets. How-
ever, quite frequently, XZ or ZY might also have low conditional 2-point information,
so that the edge removal associated with the symmetric contribution I(X;Y ;Z|{Ai})
will only be consistent with the Data Processing Inequality (DPI) with probability,

Pdpi(XY ;Z|{Ai}) =
LD|G\XY |{Ai}

LD|G\XY |{Ai}
+ LD|G\XZ|{Ai}

+ LD|G\ZY |{Ai}

=
1

1 + e−NI′(X;Z|{Ai})

e−NI′(X;Y |{Ai})
+ e−NI′(Z;Y |{Ai})

e−NI′(X;Y |{Ai})

(4.21)
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In practice, taking into account this DPI-consistency probability Pdpi(XY ;Z|{Ai}), as
detailed below, significantly improves the results obtained by relying solely on the ‘non-
v-structure’ probability Pnv(X;Y ;Z|{Ai}). Conversely, the DPI-consistency probability
Pdpi(XY ;Z|{Ai}) is not sufficient on its own to uncover causal relationships between
variables, which require to compute three-point information I(X;Y ;Z|{Ai}) and the
probability Pnv(X;Y ;Z|{Ai}) (see Proposition 1 and Proposition 2, below).

To optimize the likelihood that the edge XY can be accounted for by the additional
contribution of Z conditioned on previously selected {Ai}, we propose to combine the
maximum of three-point information (Eq. 4.17) and the minimum of 2-point information
(Eq. 4.21) by defining the score S lb(Z;XY |{Ai}) as the lower bound of Pnv(X;Y ;Z|{Ai})
and Pdpi(XY ;Z|{Ai}), since both conditions need to be fulfilled to warrant that edge
XY is likely to be absent from the model G,

S lb(Z;XY |{Ai}) = min
[
Pnv(X;Y ;Z|{Ai}), Pdpi(XY ;Z|{Ai})

]
(4.22)

Hence, the pair of nodes XY with the most likely contribution from a third node
Z and likely to be absent from the model can be ordered according to their rank
R(XY ;Z|{Ai}) defined as,

R(XY ;Z|{Ai}) = max
Z

(
S lb(Z;XY |{Ai})

)
(4.23)

Then, Z can be iteratively added to the set of contributing nodes (i.e. {Ai} ← {Ai} +
Z) of the top edge XY = argmaxXYR(XY ;Z|{Ai}) to progressively recover the most
significant indirect contributions to all pairwise mutual information in a causal graph.

4.4 Algoritmic pipeline

The implementation of the information-theoretical approach miic proceeds in three steps
corresponding to the following algorithmic pipeline:

• Algorithm 1: Learning skeleton taking into account latent variables

• Algorithm 2: Confidence estimation and sign of retained edges

• Algorithm 3: Probabilistic orientation and propagation of remaining edges

4.4.1 Algorithm 1: Learning skeleton taking into account latent vari-
ables
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Algorithm 1: Skeleton reconstruction in the presence of latent variables

In: observational data of finite size N , complexity criterion NML (or MDL)
Out: skeleton of ancestral graph G

Initiation
Start with complete undirected graph
forall edges XY do

if I ′(X;Y )<0 then

XY edge is non-essential and removed
separation set of XY : SepXY = ∅

else

find the most contributing node Z and compute its rank,
R(XY ;Z|∅)
(Z can be restricted to neighbours of X and Y if latent variables are
excluded)

end
end

Iteration
while ∃ XY edge with R(XY ;Z|{Ai}) > 1/2 do

for edge XY with highest rank R(XY ;Z|{Ai}) do
expand contributing set {Ai} ← {Ai}+ Z

if I ′(X;Y |{Ai})<0 then

XY edge is non-essential and removed
separation set of XY : SepXY = {Ai}

else

find the next most contributing node Z and compute rank,
R(XY;Z|{Ai})
(Z can be restricted to neighbours of X and Y if latent variables are
excluded)

end

update highest rank edge

end
end
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4.4.2 Algorithm 2: Confidence estimation and sign of retained edges

Once a first skeleton has been obtained using Algorithm 1, the confidence on each re-
tained edge can be estimated through an edge specific confidence ratio CXY based on
the probability PXY to remove a directed edge X → Y from the graph G, as defined by
Eq. 4.15,

PXY =
LD|G\XY |{Ai}

LD|G
= e−NI′(X;Y |{Ai}) (4.24)

CXY =
PXY

〈P rand
XY 〉

(4.25)

where 〈P rand
XY 〉 is the average of the probability to remove the XY edge after applying

a random permutation on the dataset for each observable. Hence, the lower CXY , the
higher the confidence on the XY edge.

In practice, 〈P rand
XY 〉 is not actually evaluated looking for contributors {Ai} as done

for PXY (since there should be no contributors nor edges after randomization of the
data) but just computing 〈P rand

XY 〉 = 〈e−NI′(X rand;Y )〉, where the X rand variable is as-
signed randomly permutated values of X across the different samples (randomizing Y or
both variables is statistically equivalent). As a result, CXY is slightly overestimated (as
ignoring contributors actually underestimates 〈P rand

XY 〉) but can be computed efficiently
by averaging over hundreds of permutated values at each vertex. The filtering of retained
edges is implemented in Algorithm 2.

Algorithm 2: Filtering retained edges according to an edge specific confidence
ratio CXY

In: Skeleton obtained from Algorithm 1, confidence level Cs<1, nb
permutations rmax

Out: Revised skeleton, after filtering out lower confidence edges with CXY > Cs

forall vertices Xi do
forall random permutations r < rmax do

Assign Xrand
i values through random permutation of Xi values

forall Xj adjacent of Xi with j > i do
Compute I ′r(Xrand

i ;Xj)← max
(
0, I ′(Xrand

i ;Xj)
)

end
end
forall Xj adjacent of Xi with j > i do

Compute 〈P rand
XiXj
〉=〈e−NI′r(X rand

i ;Xj)〉rmax

Compute CXiXj = PXiXj/〈P rand
XiXj
〉 and remove edge XiXj , if CXiXj > Cs

end
end

4.4.3 Algorithm 3: Probabilistic orientation and propagation of re-
maining edges

Given the skeleton obtained from Algorithm 1, possibly filtered through Algorithm 2,
based on edge specific confidence ratio, Eqs. 4.17 and 4.18 can then be used to establish
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the following Proposition 1 and Proposition 2 for probabilistic orientation and propaga-
tion rules of unshielded triples.

To this end, let us first introduce three different endpoint marks associated to edges
in mixed graphs: they are the tail (−), the head (>) and the unspecified (◦) endpoint
marks. In addition, we will use the asterisk symbol (∗) as a wild card denoting any of
the three marks and define orientation probabilities at either one or two (underlined)
endmarks using Propositions 1 and 2 below.

Proposition 1 [Robust orientation of v-structures from finite dataset including latent
variables]
Assuming that the underlying graphical model is an ancestral graph G on V ,
if ∃X,Y, Z, {Ai} ∈ V s.t. I ′(X;Y ;Z|{Ai}) < 0 then,

i. if X,Y, Z form an unshielded triple, X ∗−◦ Z ◦−∗ Y with X 6 Y , then it should
be oriented as X ∗→ Z ←∗Y , with endmark probabilities at Z,

P ◦X∗→Z = P ◦Y ∗→Z =
1 + eNI′(X;Y ;Z|{Ai})

1 + 3eNI′(X;Y ;Z|{Ai}) (4.26)

ii. similarly, if X,Y, Z form an unshielded triple, with one already known converg-
ing arrow into the middle node, X ∗→ Z ◦−∗ Y , with endmark probability at Z,
PX∗→Z > P ◦X∗→Z , then the second edge should be oriented to form a v-structure,
X ∗→ Z ←∗Y , with endmark probability at Z,

PY ∗→Z = PX∗→Z

(
1

1 + eNI′(X;Y ;Z|{Ai}) −
1

2

)
+

1

2
(4.27)

Proof. The implications (i.) and (ii.) rely on Eq. 4.18 to estimate the probability
that the two edges form a v-structure. We start proving (ii.) using the probability
decomposition formula:

PY ∗→Z = PX∗→Z
PX∗→Z←∗Y

PX∗→Z←∗Y + PX∗→Z→Y

+ (1− PX∗→Z)
PX←Z←∗Y

PX←Z←∗Y + PX←Z→Y

= PX∗→Z

(
1

1 + eNI′(X;Y ;Z|{Ai}) −
1

2

)
+

1

2
(4.28)

which also leads to (i.) if one assumes PX∗→Z = PY ∗→Z by symmetry in absence of prior
information on these orientations. �

Following the rationale of constraint-based approaches, it is then possible to ‘prop-
agate’ further the orientations downstream of v-structures, using Eq. 4.17 for positive
(conditional) three-point information. For simplicity and consistency, we only imple-
ment the propagation of orientation based on likelihood ratios, which can be quantified
for finite datasets as proposed in the following Proposition 2. Hence, we do not ap-
ply the complete propagation rules for ancestral graphs [45], which inforce in particular
acyclic constraints, that are necessary to have a complete reconstruction of the Markov
equivalent class of the underlying ancestral graph model.

Proposition 2 [Robust propagation of orientations from finite dataset including latent
variables]
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Assuming that the underlying graphical model is an ancestral graph G on V ,
∀X,Y, Z, {Ai} ∈ V s.t. I ′(X;Y ;Z|{Ai}) > 0, if X,Y, Z form an unshielded triple with
one already known converging orientation, X ∗→ Z ◦−∗ Y , with endmark probability
at Z, PX∗→Z > 1/2, then this orientation should be ‘propagated’ to the second edge as
X ∗→ Z→ Y , with endmark probability at Z and Y ,

PZ→Y = PX∗→Z

(
1

1 + e−NI′(X;Y ;Z|{Ai}) −
1

2

)
+

1

2
(4.29)

Proof. This results is shown using the probability decomposition formula,

PZ→Y = PX∗→Z
PX∗→Z→Y

PX∗→Z←∗Y + PX∗→Z→Y

+ (1− PX∗→Z)
PX←Z→Y

PX←Z←∗Y + PX←Z→Y

= PX∗→Z

(
1

1 + e−NI′(X;Y ;Z|{Ai}) −
1

2

)
+

1

2
(4.30)

�

Proposition 1 and Proposition 2 lead to the following Algorithm 3 for the orientation
of unshielded triples of the graph skeleton obtained from Algorithm 1 with possibly
additional edge filtering through Algorithm 2.

4.5 Benchmarks on latent variables

We have assessed the performance of miic on a broad range of causal and non-causal
benchmark networks from real-life as well as simulated datasets from P = 30 up to
500 variables and N = 10 up to 50, 000 independent samples. The causal benchmark
networks, which include an increasing fraction (0% to 20%) of hidden latent variables,
are derived using partially observed Bayesian networks, that is, considering some vari-
ables as hidden. The non-causal benchmark datasets have been obtained from Monte
Carlo sampling of Ising-like interacting networks sharing approximately the same two-
point direct correlations with real-life benchmark causal networks but lacking causal-
ity. Reconstructed causal networks have been compared to partial ancestral graphs
(PAGs) which are the representatives of the Markov equivalent class of all ancestral
graphs consistent with the conditional independences in the available data. In prac-
tice, benchmark PAGs have been derived by hiding some variables in the benchmark
DAGs using the dag2pag function of the pcalg package with slight modifications [46,
47]. PAGs have been generated for an increasing fraction (0% to 20%) of randomly
picked latent variables having a significant topological effect on the underlying net-
work (i.e. excluding parentless vertices with a single child or vertices without child).
The results are evaluated in terms of skeleton Precision (or positive predictive value),
Prec = TP/(TP+FP ), Recall or Sensitivity (true positive rate), Rec = TP/(TP+FN),
as well as F-score = 2×Prec×Rec/(Prec+Rec) for increasing sample size from N=10
to 50,000 data points. We also define additional Precision, Recall and F-scores taking
into account the edge endpoint marks of the predicted networks against the correspond-
ing benchmark PAGs. This amounts to label as false positives, all true positive edges
of the skeleton with different arrowhead endpoint marks (i.e. arrowhead (>) versus tail
or undefined (−/◦) endpoint marks) as the PAG reference, TPmisorient, leading to the
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Algorithm 3: Probabilistic Orientation / Propagation of edges including latent
variables

In: Graph skeleton from Algorithm 1, possibly filtered through Algorithm 2,
and corresponding conditional three-point information I ′(X;Y ;Z|{Ai}).

Out: Partially oriented causal graph G with endmark orientation probabilities.

Probabilistic Orientation / Propagation Step including latent variables

sort list of unshielded triples, Lc = {〈X,Z, Y 〉X 6 Y }, in decreasing order of their
endmark orientation/propagation probabilities initialized at 1/2 and computed
from:

- (i.) Proposition 1, if I ′(X;Y ;Z|{Ai})<0, or
- (ii.) Proposition 2, if I ′(X;Y ;Z|{Ai})>0

repeat

Take 〈X,Z, Y 〉X 6 Y ∈ Lc with highest endmark orient./propa. probability
> 1/2.

if I ′(X;Y ;Z|{Ai}) < 0 then

Orient/propagate edge direction(s) to form a v-structure X ∗→Z←∗Y
with endmark probabilities PX∗→Z and PY ∗→Z given by Proposition 1.

else
Propagate second edge direction to form a non-v-structure
X ∗→Z→Y assigning endmark probabilities PZ→Y from Proposition 2.

end

Apply new orientation(s) and sort remaining list of unshielded triples
Lc ← Lc\〈X,Z, Y 〉X 6 Y after updating propagation probabilities.

until no additional endmark orient./propa. probability >1/2;

orientation-dependent definitions TP ′ = TP − TPmisorient and FP ′ = FP + TPmisorient

with the corresponding PAG Precision, Recall and F-scores taking into account arrow-
head endpoint marks. The alternative inference methods used for comparison with miic
are the FCI algorithm [21] and its most recent approximate variant RFCI [3] implemented
in the pcalg package [46, 47]. Results are shown for an adjustable significance level
α = 0.01 and using the stable implementation of the skeleton learning algorithm, as well
as the majority rule for the orientation and propagation steps [48], which give overall
the best results. For each sample size (N=10 to 50,000) and fraction of hidden variables
(0% to 20%), miic and RFCI inference methods have been tested on 20 combinations of
hidden variables and 50 dataset replicates each. Results are shown in Figure 4.1. Miic
outperforms classical constraint-based approaches, including its advanced approximate
variant RFCI, Fig 4.1 (E), especially on networks with many underlying parameters.
It achieves significantly better or comparable results with much fewer samples and is
typically ten to hundred times faster. Furthermore, no causality is predicted by miic for
non causal datasets, even from small effective numbers of independent samples (see [31]
for complements pictures).
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Figure 4.1: (E) F-score (harmonic mean of Precision and Recall) of miic algorithm (warm
colors) for 0%, 5%, 10% and 20% of latent variables (top to bottom curves), compared
to the RFCI algorithm [3] (cold colors) on benchmark networks of increasing complexity
disregarding (dashed lines) or including (solid lines) edge orientations: Alarm [37 nodes,
avg. deg. 2.5, 509 parameters], Insurance [27 nodes, avg. deg. 3.9, 984 parameters] and
Barley [48 nodes, avg. deg. 3.5, 114,005 parameters]. (F) Computation times of miic
(warm colors) compared to RFCI (cold colors). Inserts: computation times in log scale
showing a linear scaling (solid bar) in the limit of large datasets, τcpu ∼ N1±0.1, with
miic, and a close to quadratic scaling (dashed bar), τcpu ∼ N1.8±0.3, with RFCI.
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4.6 Evaluation of the effective number of samples

Miic algorithm, as many others (e.g PC algorithm, ARACNE), expects to analyze an in-
put data where samples are independent, unlike observed in time (or Monte Carlo) series,
for which future (or consecutive) samples are not independent and exhibit correlations
between them. To correct for such dependency bias, we have analyzed autocorrelation
functions that refer to the correlations of a time (or consecutive) series. Autocorrelation
is also sometimes called “lagged correlation” or “serial correlation”, which refers to the
correlation between members of a series of numbers arranged in time. Positive autocor-
relation might be considered a specific form of “persistence”, a tendency for a system to
remain in the same state from one observation to the next. As an example, Geophysical
time series are frequently autocorrelated because of inertia or carryover processes in the
physical system. It is very important to note that autocorrelation complicates the ap-
plication of statistical tests by reducing the number of independent observations. It is
possible to analyze the autocorrelation in time series since it is predictable, probabilisti-
cally, because future values depend on current and past values.

In order to evaluate our ability to reconstruct a network in the presence of correlated
samples, real causal networks, such as Alarm and Insurance, have been transformed into
non-causal Ising-like networks (with binary spin variables xi = ±1) by setting pairwise
interacting parameters kij between connected variables Xi and Xj , so as to approxi-
mately reproduce the pairwise conditional mutual information I(Xi;Xj |AXiXj ) of the
original real-life causal network. This yields benchmark networks sharing approximately
the same two-point direct correlations with the original causal networks but lacking
causality, as the couplings kij between spins are all symmetric by construction.

One million configurations of these Ising-like interacting systems have been generated
using Monte Carlo sampling approach. It consists in flipping a fraction of the spins ran-
domly and accepting each newly generated configuration with probability min

(
1, exp(−∆Ek)

)
,

where ∆Ek = Ek+1−Ek, is the interacting energy difference between successive configu-
rations, Ek = −∑edges

i<j kijxixj . The fraction of spins randomly flipped (∼10%) has been
ajusted to ensure that about half of the newly generated configurations are accepted
at each Monte Carlo iteration, in order to efficiently sample configuration space. This
leads, however, to significant correlations between successive accepted configurations
with a roughly exponential decay between n distant samples, C(n) ' C(0) exp(−n/R) =

C(0)αn, where C(n) = C(k − `) = 〈∑i δx
(`)
i δx

(k)
i 〉 is the average autocorrelation with

lag between the kth and `th samples (with n = k − `), where δx(k)
i = x

(k)
i − x̄i.

The effective number of independent samples N∗eff can then be estimated through the
apparent increase of variance between the N partially correlated samples as [49],

VN =
1

N2

∑
k

∑
`

〈
∑
i

δx
(k)
i δx

(`)
i 〉

=
1

N2

∑
k

∑
`

C(k − `)

=
1

N

[
C(0) + 2

(
1− 1

N

)
C(1) + 2

(
1− 2

N

)
C(2) + · · ·+ 2

N
C(N − 1)

]
which leads for a first order Markov process with C(n) = C(0)αn to,

VN =
C(0)

N

[
1 + 2

(
1− 1

N

)
α+ 2

(
1− 2

N

)
α2 + · · ·+ 2

N
αN−1

]
' C(0)

N

1 + α

1− α =
C(0)

N∗eff
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Figure 4.2: Scaling factor for computing effective sample size from original sample size
for autocorrelated time series. For a given first-order autocorrelation, the scaling factor
is multiplied by the original time series..

yielding a smaller effective number of samples N∗eff < N for correlated datasets (α > 0)
as,

N∗eff = N
1− α
1 + α

(4.31)

This estimate suggests to use N∗eff , instead of N , to compute the finite size corrections
of the miic approach, in order to correct for the correlations between successive sam-
ples generated through Monte Carlo sampling. The adjustment to effective sample size
becomes less important the lower the autocorrelation, but a first-order autocorrelation
coefficient as small as r1 = 0.10 results in a scaling to about 80 percent of the original
sample size (Figure 4.2).

Yet, as the presence of correlations between successive samples is a priori incompatible
with the requirement of independent samples in the maximum likelihood framework, we
have first assessed miic performance over the full range of possible effective sample size,
i.e. 0 < Neff/N 6 1, for N = 1, 000 to 300, 000 successive samples from the one-million-
long sample series we generated.

The results are shown in figure 4.3 in terms of Precision, Recall, F-score and Fraction
of (wrongly) directed edges for the Alarm-like and Insurance-like undirected networks,
since the .

The nearly exponential decay of the autocorrelation function for Alarm-like (figure
4.3, R = 7.758, α = 0.872) undirected network leads to very close values for the predicted
effective number of samples for these graphs according to Eq. 4.31, N∗eff/N ' 0.068.

Interestingly, we found that the F-score, which is a trade-off between optimizing
Precision and Recall, reaches a maximum for all sample sizes (N = 1, 000 to 300, 000)
around the predicted effective number of samples, that is whenNeff/N = N∗eff/N ' 0.068,
see vertical dashed lines in F-score in figure 4.3. We found also that the fraction of
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Figure 4.3: Alarm-like undirected network. Precision, Recall, F-score, percentage of
(wrongly) directed edges and decay of the autocorrelation function with lag between
successive samples for N = 1, 000 to 300, 000 consecutive partially correlated samples
(with predicted effective number of independent samples in brackets). Vertical dashed
lines correspond to the predicted * effective number of independent samples N eff/N
0.068, see Undirected benchmark network section.

(wrongly) directed edges is close to zero at the predicted effective number of samples,
N∗eff , providing that it is not too small, i.e. N∗eff > 300.

These results demonstrate that the theoretical estimate of N∗eff , Eq. 4.31, yields the
best compromise between over-fitting and under-fitting graphical models given the finite
and partially correlated available datasets.

4.7 Are contributors with many NAs good contributors?

We recently received a clinical dataset including about 32,000 patients treated in the
hospital through our collaboration with the new Direction of Data (X.Fernandez) and
the Hospital (F. Reyal) of Institut Curie. This dataset is built from 3 older datasets from
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Paris and Saint Cloud hospitals, and merges several versions and different encodings.
This causes the presence of a very important number of “NA” values, that need a careful
attention on the feature engineering process and in the analysis. The analysis of this
dataset allowed us to pinpoint some problems of the MIIC algorithm, notably in the
presence of a very high NA percentage:

• I(X;Y ) 6= 0 if X or Y is a categorical variable and its #levels = #samples
(e.g. sample identifiers), while no relation should be kept between X and Y . We
fixed this problem by simply isolating each node that has non repeated categorical
values.

• I(X;Y |Z) = 0 if Z is notNA only for one specific level ofX or Y . This happens for
example for the variables X=metastasis (y/n), Y=still living (y/n) and Z=type of
treatment for metastasis. Obviously the type of treatment for metastasis is present
if and only if the person has or had a metastasis. We hence added to the code the
constraint not to retain possible contributors if they restrict the variable X or Y
to have a single category.

• The high amount of NA reduces a lot the number of samples that the method can
use for the search of a possible contributor and the possible conditioning on it. We
must take care that such a process does not lead to evaluations of joint probability
distributions of variables X and Y that once conditioned on Z (hence removing
samples with additional NA on Z) are too far from the initial joint probability of
X and Y . For this reason we implemented in the MIIC algorithm the Kullback-
Leibler divergence between the joint probability distribution of X and Y and the
joint distribution on samples for which values are not NA for the Z taken into
consideration. The Kullback-Leibler divergence (also called relative entropy) is a
measure of how one probability distribution diverges from a second probability
distribution:

DKL(P ||Q) =
∑
i

P (i) log
P (i)

Q(i)
(4.32)

and it corresponds to the expectation of the logarithmic difference between the
probabilities P and Q, where the expectation is taken using the first probability
P. This metric is used for every couple of variables X and Y . Once a possible
contributor has been added to the list of contributors, the joint probability of X
and Y is updated keeping only the samples where no NA is present on X, Y nor on
any contributor. The value of the KL divergence is used in the decision whether a
Z can be considered as a possible contributor candidate (i.e. for cond > 1) where:

cond = e−N DKL+log(N) (4.33)

where DKL is the Kullback-Leibler divergence, N is the number of samples for
which no NA is included in X, Y nor in any contributor Ui.

The difference on using the Kullback-Leibler divergence on a real medical dataset
is reported in Chapter 8.

4.8 Centrality measure role in inference

An important question that can arise when dealing with network reconstruction is: “how
can the topology of the network affect the ability of reconstructing it?” Marbach et
al. [50] performed an important evaluation on performances of gene networks inference
methods in-silico, generating realistic structures for the benchmark networks and the

54



corresponding kinetic models and using these models to produce synthetic gene expres-
sion data by simulating different biological experiments. Data in these experiments have
been created with the GeneNetWeaver software. For the challenge, participants were
asked to submit their network predictions in the form of a ranked list of predicted edges.
The number of teams participating corresponded to 29. A general analysis authors made
on teams predictions revealed that the main difficulties on network reconstruction arise
in the presence of network motifs and, most of all, that most inference methods failed to
accurately predict combinatorial regulations, which derives in a drastic drop of the pre-
diction confidence as the number of inputs increases. In order to evaluate MIIC against
some of the state of the art algorithms, we performed an analysis using the networks
proposed for the challenge, containing in-silico data from E.coli and Yeast. The networks
have 50 and 100 nodes for each of the two organisms. Firstly, we took the furnished true
networks, evaluating some centrality measures with the Cytoscape tool, among: average
shortest path length, betweenness centrality, closeness centrality, clustering coefficient,
eccentricity, in degree, neighborhood connectivity, out degree and stress. We then recon-
structed the networks comparing MIIC results towards different state of the art methods:
Aracne, Hybrid mmhc and the PC algorithm.

As suggested by the paper[50], the measure that affects the most the results is the
number of combinatorial regulations (in degree). In Figure 4.4 we present some results
taken from the 100 nodes network of E.coli for the four inference methods. We can clearly
notice that a higher in-degree corresponds to poorer f-score in the corresponding network
reconstruction. The ARACNE algorithm seems to present a bump in higher in-degree
values, but this is only due to the fact that for low values the recall is near to one but
the precision in essentially 0. As it can be seen, all algorithms are affected by the ability
of recovering edges that point to a node with a high number of contributors, and this is
expected since the combinatorial amount of interactions makes each interaction difficult
to disentangle, mostly if the number of sample is limited. However, MIIC algorithm is
the one that is less affected by this problem , showing to outperform all other competitors
in network reconstruction.

4.9 Miic c++ implementation

The most important features of an algorithmic implementation are correctness and per-
formances. We worked hard to obtain an efficient and handy version of the method,
to use in all executions of benchmarks and real-life network reconstructions, and this
process took some months of my first PhD year.

4.9.1 Code rewriting

MIIC algorithm was initially written in the R programming language, with only a func-
tion coded in C: the evaluation of the two point mutual information. The first objective
was to code a faster and more efficient version of the method, completely written in a
C-like language, which flowed towards an equally faster but easier to deal with C++ im-
plementation, along with an efficient internal structure to represent all necessary objects.
An important obstacle stood in the help that we could initially exploit: the C function to
evaluate the 2 point mutual information, since this code reported some memory problems
when applied to large datasets. For this reason we decided to rewrite this code part,
including in the function also the research of the best contributor and the 3 point mutual
information evaluation. In Figure 4.7 we can notice the difference in time between the
R and the C++ execution, both in normal (left) and log scale (right). We can notice
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Figure 4.4: Miic, Aracne, Pc and Mmhc f-score performances with respect to in-degree,
ranging from 100 to 10.000 samples. The first number of each column corresponds to
the in degree, the second to the number of connections of that type (e.g. 1.53 means
that there are 53 edges that link a node with in-degree 1).
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Figure 4.5: R vs c++ implementation
Figure 4.6: R vs c++ implementation - log
scale

Figure 4.7: Execution time for benchmark networks, from 8 nodes (Asia) to 200 nodes
(KM200).

that the distance between the two curves in log scale is increasing, showing that in the
translation there has been also some algorithmic amelioration.

4.9.2 Code optimization

After the code translation to C++ and its results compared with the R code, an op-
timization step was necessary to obtain a more efficient code, in order to decrease the
most the execution time and gain in future efficiency during all executions. Beyond being
necessary, it was also a challenge to find the sections that were most demanding in the
execution of a large network, and looking for a possible code amelioration. For this task
we used the Valgrind and KCacheGrind tools, a profiler and a visualization tool able to
monitor all functions calls in the code execution, reporting in a plot the percentage of
processing time that has been spent in each of them. A large amount of time ( 20% in
the KM200 nodes and 30% in the KM100 nodes), was spent in the malloc() and free()
functions, that corresponds to the dynamic memory allocation and de-allocation. This
amount was related to the fact the function used to evaluate the 2 and 3 point mutual
information, and the research of Z was allocating the necessary space to evaluate the
required quantities in the original data for each call of the function. An evident man-
ner to avoid this costly operation is to allocate (when possibly) that space once, at the
beginning of the code, and use it through a structure, paying attention to respect the
limits of the allocation for each function call. Another part that we could ameliorate
was the evaluation of a term used in the complexity evaluation that was computed many
times and that we could store using the memoisation technique, consisting in storing the
results of expensive function calls and returning the cached result when the same inputs
occur again. This allowed us to speedup the execution of the KM100 network from 13
sec to 9.8 sec and of the KM200 from 1min 23sec to 1 min 1sec.

The second optimization we could perform in order to obtain a faster code is to
exploit the multi-threading, coding a parallel implementation of MIIC. This idea was
easily applicable to two parts of the code in the skeleton initialization phase: the test for
I(X,Y ) edge without conditioning, and the search for the first best contributor for all
edges that has passed the cut test without conditioning. A more difficult multi-threading

57



optimization that we implemented was the research of other contributors for every edge,
since at this step the edge for which we have to look for a contributor is evaluated
according to the edge rank score, which is updated after a contributor is found. The
multi-threading implementation (that before was done for each edge) must now be done
on the list of contributors of the chosen edge (by rank score) and has to be positioned
inside the test for the best contributor, dividing the list of contributors by the number
of threads, evaluating the best one among all lists, and finally finding the best one. The
evaluation of our parallel implementation performed on 6 threads, shows a speed-up of
around 2,2x for the larger 200 nodes network.

Property KM 100 nodes KM 200 nodes
No threads – no memory already set 13sec 1m 23sec
No threads – yes memory already set 9.8sec 1m 1sec
Yes threads – no memory already set 7.5sec 37sec
Yes threads – yes memory already set 3.8sec 23sec

4.10 Consistency constraint

Network reconstructions have the final purpose of explaining the model that is associated
to the data and the direct connections that remain after conditioning on other nodes.
In the case of edges removed by conditioning, it is necessary to know which variables
have allowed the edge elimination, and how the information that was flowing between
two nodes was blocked by conditioning on contributors.

Since the algorithm starts from a complete network and iteratively prunes edges, it
could happen that a node Z, used to remove an edge A,B, is no longer linked directly
to A or B, nor included in a path between the two nodes, as in Figure 4.8. In this case
the node C or D cannot explain the edge dismissal from a graphical point of view, since
no path exists from A to B passing through nodes C or D. In this situation the final
network skeleton is said to be non consistent (with respect to the collected separation
set).

Figure 4.8: Example of network where we can imagine nodes A and B being linked with
no conditioning but becoming no longer connected due to conditioning on C or D.

Moreover, the orientation of v-structures and the propagation of orientation (see
algorithm 3, Chapter 4) use the conditioning set collected during Algorithm 1 in order
to test for negative 3-point information (which suggests the presence of a v-structure
against a non v-structure). A consistent separation set (with respect to the final graph
skeleton) will hence result in a more correct evaluation of 3-point information and hence
to more precise v-structures.
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4.10.1 MIIC consistent version

In order to solve the problem, we added to MIIC the possibility to test for network
consistency at the end of the skeleton phase (MIIC section, algorithm 1). If the network
results being inconsistent, due to an edge A,B removed conditioning on a node C which
is not in a path between A and B, the node C is marked as being an inconsistent
contributor for A,B, and the skeleton is re-evaluated after dismissing C as a possible
contributor of A,B interaction. The same operation is applied for all edges that falls
in the described case. Algorithm 1 is then iterated until a consistent skeleton is found.
In practice, this method can lead to a loop between different skeletons that suggests to
build a final consistent skeleton made by the union of all skeletons in the loop.

4.10.2 Test of consistency

In the algorithm sketched in the previous section, one of the unitary operations is to test
if a vertex Z can be a possible consistent member of the separation set of a pair X,Y ,
which requires Z lying in a simple path connecting X and Y . There are two possible
solutions for checking if Z is included in a path P = X · · ·Z · · ·Y :

1. Check on the existence of simple path

2. Get the set S of all consistent candidates, and check if Z ∈ S.

Even if it is conceptually simple to check the second strategy, it rapidly becomes
infeasible from a computational point of view, as the complexity of getting all simple
paths between two vertices can be large, depending on the density of the graph. The
first option is hence chosen for the test, dividing the search of this path in 2 different
steps:

1. check a path between X and Z.

2. check a path between Z and Y , excluding the path between X and Z.

but since the chosen path between X and Z can already have taken the only possible
path between Z and Y , this would result in Z being wrongly set as not consistent. If no
path is found we hence need to test for the reverse case:

1. check a path between Y and Z.

2. check a path between Z and X , excluding the path between Y and Z.

If one of the two possible cases holds, Z is a possible good contributor for the edge X,Y .

4.10.3 Benchmarks with consistency constraint

In order to test for the performances of MIIC with the consistency check enabled, we
performed a benchmark using Barley, a network with 48 nodes, 84 edges and 114.005
parameters, which is a difficult network to reconstruct due to the high number of param-
eters used for the data generation. The generated data are discrete for all nodes. The
network is shown in Figure 4.9.

The performances of MIIC using the consistency check against the version with no
consistency constraint are shown in Figure 4.10. The consistent version of MIIC retrieves
more edges than the non consistent version (higher recall), with a very thin decrease in
precision. Overall f-score performance results to be slightly ameliorated in the consistent
version. What really makes the consistent version interesting is the score difference on
orientation (dashed lines), that shows better performances both in recall and precision.
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Figure 4.9: Preliminary model for barley developed under the project: "Production
of beer from Danish malting barley grown without the use of pesticides" by Kristian
Kristensen , Ilse A. Rasmussen and others.

0 2000 4000 6000 8000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

colnames(scoresListPrecision[[foldersEdge]])

P
re

ci
si

on

0 2000 6000 10000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

colnames(scoresListRecall[[foldersEdge]])

R
ec

al
l

0 2000 4000 6000 8000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F
−

sc
or

e Scores

miic_mixed
miic_mixed_Consistent

Figure 4.10: Precision, Recall and F-score for the consistent and non consistent version of
MIIC. Skeleton scores are displayed with solid lines, while orientation scores are displayed
with dashed lines.
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Abstract
Learning causal networks from large-scale genomic data remains challenging in absence of

time series or controlled perturbation experiments. We report an information- theoretic

method which learns a large class of causal or non-causal graphical models from purely

observational data, while including the effects of unobserved latent variables, commonly

found in many genomic datasets. Starting from a complete graph, the method iteratively

removes dispensable edges, by uncovering significant information contributions from indi-

rect paths, and assesses edge-specific confidences from randomization of available data.

The remaining edges are then oriented based on the signature of causality in observational

data. The approach and associated algorithm, miic, outperform earlier methods on a broad

range of benchmark networks. Causal network reconstructions are presented at different

biological size and time scales, from gene regulation in single cells to whole genome dupli-

cation in tumor development as well as long term evolution of vertebrates. Miic is publicly

available at https://github.com/miicTeam/MIIC.

Author summary

The reconstruction of causal networks from genomic data is an important but challenging

problem. Predicting key regulatory interactions or genomic alterations at the origin of

human diseases can guide experimental investigation and ultimately inspire innovative

therapy. However, causal relationships are difficult to establish without the possibility to

directly perturb the organisms’ genome for ethical or practical reasons. Besides, unmea-

sured (latent) variables may be hidden in many genomic datasets and lead to spurious

causal relationships between observed variables. We propose in this paper an efficient

computational approach, miic, that overcomes these limitations and learns causal net-

works from non-perturbative (observational) data in the presence of latent variables. In
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addition, we assess the confidence of each predicted interaction and demonstrate the

enhanced robustness and accuracy of miic compared to alternative existing methods.

This approach can be applied on a wide range of datasets and provide new biological

insights on regulatory networks from single cell expression data or genomic alterations

during tumor development. Miic is implemented in an R package freely available to the

scientific community under a General Public License.

Introduction

Network reconstruction methods have become ubiquitous to analyze large-scale information-

rich data from the latest genomic technologies. Recently, methodological advances in the field

have been seeking to learn causal relationships using time series or controlled perturbation

experiments [1, 2]. However, such strategies can be technically impracticable or costly, if not

unethical, in many biological contexts.

Alternatively, graphical models can be learned by simply observing enough random varia-

tions in unperturbed data, as for the reconstruction of gene regulatory networks from single-

cell gene expression data. However, most methods based on this principle, such as Bayesian

search-and-score [3], sparse inverse covariance estimation [4], maximum entropy [5] or diffu-

sion map [6] methods, assume as underlying models either causal networks with only directed

edges or non-causal networks with only undirected edges. Thus, they cannot uncover nor rule

out causality in observational data. By contrast, constraint-based methods [7–10], which iden-

tify structural constraints corresponding to all dispensable edges in a graph, can in principle

uncover causality from purely observational data. Advanced constraint-based methods [9, 10]

reconstruct Markov equivalent models of a broad class of “ancestral graphs” [11], that include

undirected (−), directed (!) and possibly bidirected ($) edges originating from latent com-

mon causes, L, unobserved in the available data (i.e.⇠ L⇢). However, constraint-based meth-

ods are often not robust on small datasets and have algorithmic complexity issues when

including unobserved latent variables [9–12]. Yet, latent variables are commonly found in

many real applications, as in the case of an unobserved transcription factor TF co-regulating

two co-expressed genes, i.e. G1 ⇠ TF⇢ G2 (see example of single cell transcriptomics in the

Results section). These unobserved variables should not be ignored in practice, as they actually

impact the causal relationships between observed variables, leading to spurious causal associa-

tion between co-regulated genes G1 and G2 in the previous example. While the algorithmic dif-

ficulties of constraint-based methods have so far limited their applicability in practice,

understanding cause-effect relationships [13] remains of primary interest to model complex

biological systems and anticipate their response to environmental changes or genetic

alterations.

We report here an information-theoretic method, that simultaneously circumvents the

complexity and robustness issues of constraint-based approaches, and demonstrate its applica-

bility to real biological data. The method builds on an earlier information- theoretic approach

[14], in order to i) include latent variables, a notorious conceptual and algorithmic difficulty in

causal network reconstruction [9–13], and ii) provide an edge specific confidence assessment

of retained edges, which lacks in traditional constraint-based methods. Both aspects are impor-

tant in practice to reconstruct robust networks from actual biological data. The approach is

applied to reconstruct causal networks from a variety of genomic datasets at different biologi-

cal size and time scales, from single cells to organisms and entire phyla.
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Results

Background: Signature of causality and unobserved latent variables in

observational data

Our information-theoretic method for network reconstruction is based on the analysis of mul-

tivariate information [14–19], I(X; Y; Z; � � �), which extends the concept of mutual information

[20] beyond two variables, I(X;Y) = ∑x,y p(x,y)log(p(x,y)/p(x)p(y)), where p(x), p(y) and p(x,y)

are the measured probability distributions of single or joint variables X and Y from the avail-

able data D (see Materials and methods). Most importantly, unlike two-point mutual informa-

tion, I(X;Y), which cannot distinguish causal from non-causal relations between variables X
and Y, multivariate information involving more than two points, I(X;Y;Z;� � �), may imply

cause-effect relationships between the underlying variables, S1 File.

In fact, the signature of causality in purely observational data is associated to a unique cor-

relation pattern involving at least three variables [13, 21]: it concerns two mutually (or condi-

tionally) independent variables, I(X;Y) = 0, which are therefore not connected to each other,

yet both connected to a third variable Z, Fig 1A. This situation entails the orientations of a ‘v-

structure’ or ‘unshielded’ collider, X! Z Y, because the edges XZ and YZ cannot be undi-

rected, nor Z be a cause of X or Y, as these alternative graphical models imply correlations that

would contradict independence between X and Y. V-structures are the hallmark of causality in

observational data: networks with v-structures are necessary causal, while causal models with-

out v-structures can be shown to be equivalent to their undirected counterparts from the view-

point of observational data.

Beyond v-structures, colliders may also be found in series along a collider path, as in X! Z
$ Y W, Fig 1B & 1C, where the bidirected edge, Z$ Y, indicates that Z is not a cause of Y
nor Y a cause of Z. It implies that the correlation between Z and Y is due to at least one latent

common cause, L, unobserved in the available dataset, Z⇠ L⇢ Y, as outlined above. Hence,

statistical dependencies and independencies in purely observational data can, in principle, pro-

vide structural constraints for network reconstruction as well as information on causal rela-

tionships across observed and possibly unobserved latent variables. These results underline the

wealth of information which cannot be captured from two-point correlations only.

An information-theoretic method to learn causal networks with latent

variables

The signature of causality and unobserved latent variables in multi-point correlation statistics

enables to rephrase constraint-based methods [7–10] within an information-theoretic frame-

work. Constraint-based approaches, sketched in Fig 1D, start from a fully connected network

and proceed by iteratively removing dispensable edges between variables X and Y for which a

conditional independence can be found, i.e. I(X; Y|{Ai}) = 0 (Fig 1D, step 1). This rationale of

constraint-based methods can be interpreted from an information perspective [22], using the

generic decomposition of mutual information, I(X; Y), relative to the set of variables {Ai},

IðX; YÞ ¼ IðX; Y; fAigÞ þ IðX; YjfAigÞ; ð1Þ

where I(X; Y; {Ai}) can be seen as the global indirect contribution of {Ai} to I(X; Y) and I(X; Y|

{Ai}) as the remaining (direct) contribution (see Eq 8 in Materials and methods). Conditional

independence, I(X; Y|{Ai}) = 0, then implies that {Ai} is a ‘separation set’ which intercepts all

indirect paths contributing to the total mutual information, i.e. I(X; Y) = I(X; Y; {Ai}). In prac-

tice, however, conditional mutual information cannot be exactly zero for finite datasets but the

probability that the XY edge should be removed can be estimated from the available data as,

Learning causal networks with latent variables
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PXY * exp(−NI(X; Y|{Ai})), up to some normalization constant, where N is the number of

independent samples (S1 File). The undirected network ‘skeleton’, resulting from the removal

of all dispensable edges, is then partially directed by orienting all v-structures (Fig 1D, step 2),

based on the signature of causality, outlined above, and propagating these orientations on

Fig 1. Learning causal networks with latent variables. (A) A v-structure. (B) Bidirected edges in collider paths indicate the presence of

latent common cause(s), L, unobserved in the dataset. (C) Conditional independence in the presence of latent variables requires to be

conditioned on non-adjacent variables, in general [9, 10], such as for the pair {Z,T} which needs to be conditioned on X, Y and non-adjacent

W, I(Z; T|X,Y,W) = 0, as one cannot condition on the unobserved latent variables, L or L0, e.g. I(Z; T|X,L) = 0 or I(Z; T|Y,L0) = 0. (D) Outline of

the successive steps of constraint-based approaches (see also Algorithm steps in Materials and methods). (E) F-score (harmonic mean of

Precision and Recall, S1, S2 and S3 Figs) of miic algorithm (warm colors) for 0%, 5%, 10% and 20% of latent variables (top to bottom

curves), compared to the RFCI algorithm [10] (cold colors) on benchmark networks of increasing complexity disregarding (dashed lines) or

including (solid lines) edge orientations: Alarm [37 nodes, avg. deg. 2.5, 509 parameters], Insurance [27 nodes, avg. deg. 3.9, 984

parameters] and Barley [48 nodes, avg. deg. 3.5, 114,005 parameters]. (F) Computation times of miic (warm colors) compared to RFCI
(cold colors). Inserts: computation times in log scale showing a linear scaling (solid bar) in the limit of large datasets, τcpu * N1±0.1, with

miic, and a close to quadratic scaling (dashed bar), τcpu * N1.8±0.3, with RFCI.

https://doi.org/10.1371/journal.pcbi.1005662.g001
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downstream edges (Fig 1D, step 3), based on specific propagation rules consistent with ances-

tral graphs [23].

The main computational complexity of constraint-based methods is to uncover a valid

combination of contributing nodes {Ai} for each dispensable edge XY. In absence of latent var-

iables, the combinatorial search can be restricted to the sole neighbors of X or Y, which are suf-

ficient to intercept all information contributions from indirect paths [7, 8]. However, this

efficient algorithm cannot be used in the presence of latent variables, as collider paths may

require to extend the combinatorial search for conditioning set {Ai} to non-adjacent variables

of X and Y [9], as illustrated in Fig 1C. In practice, this intrinsic difficulty stemming from

latent variables has been addressed through more complex algorithmic approaches, such as the

FCI algorithm [9] and its more recent approximate variant, RFCI [10]. Beyond algorithmic

complexity issues, traditional constraint-based methods are also known to be highly sensitive

to sampling noise inherent to finite datasets and are not robust on typical datasets of interest

(e.g. expression data of 30 to 40 genes measured in a few hundreds to thousands of single cells

[24], see application and Fig 2 below).

The present algorithmic approach, miic (multivariate information-based inductive causa-

tion), circumvents the complexity and robustness issues of standard constraint-based methods

by avoiding to directly tackle the combinatorial search of complete separation sets. Instead, it

progressively collects, one-by-one, their most likely contributors, {Ai}n = {A1, A2, � � �, An},

based on a quantitative score for each pair of variables XY (S1 File). The global indirect contri-

bution is then obtained iteratively as,

IðX; Y; fAignÞ ¼ IðX; Y; fAign� 1Þ þ IðX; Y; AnjfAign� 1Þ; ð2Þ

Fig 2. Network reconstruction at cellular level. (A) Hematopoietic / endothelial differentiation in single cells from mouse embryos [24]. (B)

Principal component analysis and (C) K-means clustering of gene expression data [24] with histograms showing the relative proportions of

cell populations at each data point (E7.0 to E8.25). (D) Hematopoietic / endothelial differentiation regulatory network between hematopoietic

specific (red), endothelial (violet), common (blue) and unclassified (gray) TFs. Graph predicted with miicR-package and visualized using

cytoscape (blue edges correspond to repressions).

https://doi.org/10.1371/journal.pcbi.1005662.g002
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where I(X; Y; An|{Ai}n−1)> 0, corresponds to the contribution of the most likely nth variable

An after collecting the first n−1 most likely contributors, {Ai}n−1 (see Eq 10 in Materials and

methods). We demonstrate in the current study that this iterative framework, which proved to

be robust to sampling noise in absence of latent variables [19], can in fact be extended to

include latent variables by collecting the contributors {Ai} within the whole set of observed var-

iables, instead of amongst the sole neighbors of X and Y in absence of latent variables [14].

This simple approach to include latent variables circumvents the algorithmic complexity of

standard constraint-based methods [9, 10], while improving ten to hundred folds their perfor-

mance in both prediction accuracy and running time, as discussed in the next section.

Algorithmic performance on causal and non-causal benchmark datasets

We have assessed the performance of miic on a broad range of causal and non-causal bench-

mark networks from real-life as well as simulated datasets from P’ 30 up to 500 variables and

N = 10 up to 50,000 independent samples (Materials and methods). The causal benchmark

networks, which include an increasing fraction (0% to 20%) of hidden latent variables, are

derived using partially observed Bayesian networks, that is, considering some variables as hid-

den. These unobserved variables are usually present in many real applications and cannot be

ignored in practice, as they actually impact the causal relationships between observed variables,

as illustrated in Fig 1B–1D. The non-causal benchmark datasets have been obtained from

Monte Carlo sampling of Ising-like interacting networks sharing approximately the same two-

point direct correlations with real-life benchmark causal networks but lacking causality.

Monte Carlo sampling leads, however, to significant correlations between successive samples,

which needs to be taken into account through an effective number of independent samples

(Materials and methods).

Reconstructed causal networks have been compared to partial ancestral graphs (PAGs) [23],

which are the representatives of the Markov equivalent class of all ancestral graphs consistent

with the conditional independences in the available data. In practice, benchmark PAGs have

been derived by hiding some variables in benchmark directed acyclic graphs (DAG) using the

dag2pag function of the pcalg package with slight modifications [25, 26]. The alternative

inference methods used for comparison with miic are the FCI algorithm [9] and its recent

approximate variant RFCI [10] implemented in the pcalg package [25, 26]. The results

obtained with FCI and RFCI are in fact very similar and we only present here comparisons

with the more recent RFCI algorithm [10]. RFCI’s results are shown for an adjustable signifi-

cance level α = 0.01 and using the stable implementation of the skeleton learning algorithm, as

well as the majority rule for the orientation and propagation steps [27], which give overall the

best results. The results have been evaluated in terms of running time, as well as, Precision (or

positive predictive value), Recall or Sensitivity (true positive rate), and F-score, which is the

harmonic mean of Precision and Recall (Materials and methods). Precision, Recall and F-

score have been derived for the undirected skeleton of the networks (dashed lines in Fig 1E) or

taking into account edge orientations (solid lines in Fig 1E).

The results on benchmark networks are presented in Fig 1E and 1F, as well as S1, S2, S3, S4,

S5, S6 and S7 Figs. Miic outperforms classical constraint-based approaches, including its

advanced approximate variant RFCI, Fig 1E, especially on networks with many underlying

parameters. It achieves significantly better or comparable results with much fewer samples

(Fig 1E, S1, S2 and S3 Figs), and is typically ten to hundred times faster (Fig 1F). In addition,

miic’s ability to learn complex ancestral networks, which require conditioning on non-adja-

cent variables, can be directly demonstrated on the example of Fig 1C network, S4 Fig. The

complexity of miic algorithm, while difficult to evaluate exactly, proves to be linear in terms
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of sample size (Fig 1F) and quadratic in terms of network size for sparse graphs irrespective of

the inclusion of latent variables (S5 Fig). By contrast, traditional constraint-based methods

exhibit roughly quadratic complexity in terms of sample size (Fig 1F) and much steeper com-

plexity scaling in terms of network size, especially when latent variables are included [12]. Fur-

thermore, no causality is predicted by miic for non causal datasets, even from small effective

numbers of independent samples (Materials and methods and S6 and S7 Figs). This underlines

miic accuracy to uncover true causality.

Edge confidence assessments

This information-theoretic method and its algorithmic implementation (S1 Software) are very

general and can be applied to a wide range of datasets, provided a sufficient number of inde-

pendent samples is available. We report here the results obtained with genomic datasets span-

ning a broad range of biological size and time scales from single cells and tissues to organisms

and entire phyla. In addition to including latent causal variables, we have also assessed the con-

fidence of predicted edges with an edge specific confidence ratio CXY ¼ PXY=hP rand
XY i, where

PXY is the probability to remove the XY edge, introduced above, and hP rand
XY i the average of the

same probability after randomizing the datasets for each variable (see Materials and methods,

and S1 File section 2.2 for details). Hence, the lower CXY, the higher the confidence on the XY
edge, which can be used to retain only high confidence edges in the predicted networks.

Interestingly, the effect of confidence filtering on the reconstruction of benchmark net-

works (S8 & S9 Figs) demonstrates that the filtering of individual edges improves the Precision

of the reconstruction (at the expense of its Sensitivity or Recall) not only for the network skele-

ton, as expected, but also for the network orientations, while retaining overall similar F-scores.

This demonstrates the interest and consistency of using such confidence filtering to obtain an

enhanced and tunable precision of the reconstructed networks for real biological applications.

Indeed, an enhanced precision might be desirable in many practical applications for which the

correctness of predicted edges is more important than the occasional dismissal of less certain

edges. All network reconstructions presented in Figs 2, 3 & 4 have been obtained with an edge

specific confidence CXY < 10−3, while network skeletons obtained before edge filtering are dis-

played in S11, S14 and S15 Figs.

The general three-step reconstruction scheme of miic (i.e. Step 1- graph skeleton, Step 2-

edge filtering, Step 3- edge orientation) is also sensitive to the fine tuning of other algorithmic

parameters such as the complexity criterion introduced to estimate finite size effects. All results

presented in this paper have been obtained with the decomposable Normalized Maximum

Likelihood (NML) criterion introduced in [28, 29], which was shown to yield significantly bet-

ter results than more traditional BIC/MDL criterion on benchmark networks, especially on

small datasets, leading to simultaneous improvements in both recall and precision [19].

Choosing the BIC/MDL instead of NML criterion in the three genetic network applications,

Figs 2, 3 & 4, leads to somewhat sparser reconstituted networks including 82% to 100% of ini-

tial edges, yet no additional edges (i.e. consistent with a lower recall), and 66% to 75% con-

served edge orientations (i.e. identical, —!, and$ edges), see S1 Table.

Analysis of expression data in single cells

At cellular level, we reconstructed regulatory networks from single cell expression data at the

time of endothelial and hematopoietic differentiations from the primitive streak cells of the

mouse early embryo, Fig 2A. This concerns the formation of primitive erythroid cells, a dis-

tinct and transient red blood cell lineage arising directly from mesodermal progenitors with
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restricted hematopoietic potential [32], by contrast to the highly studied definitive erythroid

cells which arise from multipotent hematopoietic stem cells.

The dataset for this application is from Moignard et al [24] and includes the expression of

33 transcription factors (TFs) along with 13 non-TF genes (markers) in 3,934 single cells

extracted at 4 different times of the mouse embryo development (days E7.0, E7.5, E7.75 and

E8.25), Fig 2A–2C and S10 Fig. The cells extracted from E8.25 were also divided by the authors

in two different pools: potential endothelial precursors and potential hematopoietic precursors

based on the expression of the Runx1 hematopoietic marker. Gene expression was collected

using single cell qRT-PCR and binarized by the authors, leading to two-state (on / off) expres-

sion levels in the available dataset. Pooling all cells together regardless of their developmental

timing (from day E7.0 to E8.25), we first analyzed their population heterogeneity using

Fig 3. Network reconstruction at tissue level. (A) Tumor development and drug resistance in the presence of tetraploid tumor cells

following whole genome duplication (WGD). (B) Ploidy distribution in the 807 tumor samples and (C) genomic alterations: ploidy, mutations,

normalized under-expression and over-expression changes from COSMIC database [34]. (D) Genomic alteration network obtained between

average ploidy (violet), gene mutations (yellow, lower case) and under- or over-expressions (green, upper case). Graph predicted with miic
R-package and visualized using cytoscape (blue edges correspond to repressions).

https://doi.org/10.1371/journal.pcbi.1005662.g003
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principal component analysis (PCA), Fig 2B, and K-means clustering, Fig 2C. Three main cell

populations are identified and can be interpreted, based on gene functional classification

(Materials and methods), as progenitor, endothelial precursor and hematopoietic precursor

populations, whose relative proportions vary from E7.0 to E8.25, Fig 2C.

The network predicted by miic, Fig 2D, includes 75 edges with CXY < 10−3 out of 82 edges

in the unfiltered skeleton, S11 Fig. The differentiation bifurcation between endothelial and

hematopoietic precursors, seen through principal component (Fig 2B) and clustering (Fig 2C)

analyses, also clearly appears in the reconstructed regulatory network, Fig 2D, after labelling

hematopoietic specific TFs (in red), endothelial TFs (in purple) and common TFs expressed in

both precursor lineages (in blue), Materials and Methods. In fact, most predicted regulatory

interactions across lineage specific TFs correspond to regulatory inhibitions (in blue), which

might originate either from direct regulatory repressions or possibly through indirect

Fig 4. Network reconstruction at organismal and phylogenetic levels. (A) Two rounds of whole genome duplication (WGD) have led to

the evolutionary radiation of vertebrates (and similarly with a third 300-MY-old WGD in teleost fish). (B) Biased distributions of genomic

properties within ‘non-ohnolog’ and ‘ohnolog’ genes retained from WGDs in early vertebrates [45]. Numbers in brackets indicate the

numbers of genes for which each property is identified, Materials and Methods and S1 Data. (C) Genomic property network of human genes,

see main text. Graph predicted with miicR-package and visualized using cytoscape (blue edges correspond to repressions).

https://doi.org/10.1371/journal.pcbi.1005662.g004

Learning causal networks with latent variables

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005662 October 2, 2017 9 / 25



‘ancestor’ regulations involving unobserved intermediary TFs. In addition, a number of

known regulatory interactions are correctly predicted in the inferred network, Fig 2D, such as

Ikaros! Gfi1b and Ikaros! Lyl1 [31], Tal1! Fli1 and Tal1! Lmo2 [32] as well as HoxB4
! Erg (with opposite orientation) and Sox7! Erg [24]. Yet, there are also many predicted reg-

ulations in miic network that have not been reported so far as well as a number of regulations

documented in definitive erythroid cells [32] that appear to be missing in primitive erythroid

cells (e.g. Est1! Tal1, Sfpi1! Tal1 and Sfpi1!Myb). These results suggest a number of test-

able predictions, including five bidirected edges consistent with the absence of direct regula-

tions reported between these genes. Indeed, bidirected edges imply the necessity to invoke

unobserved latent co-regulators between such genes. In particular, the unmeasured Gata2
expression is possibly implicated in the co-regulation of Erg$ Lyl1, based on an earlier study

[33]. Hence, beyond the consistency with earlier reports as well as testable predictions, miic
results may also help pinpoint possible latent regulators unobserved in Moignard et al’s study

[24], such as regulators specific to the initial progenitor cells, not yet committed to either

hematopoietic or endothelial lineages and accounting for about 70% of analyzed cells at day

E7.0, Fig 2C.

Analysis of genomic and ploidy alterations in breast tumors

At tissue and organismal levels, we analyzed genomic alterations on breast tumors from the

online Catalog of Somatic Mutations in Cancer (COSMIC) datase [34], Fig 3A–3C.

The dataset, which contains 807 samples without predisposing BRCA1/2 germline muta-

tions, includes somatic mutations (from whole exome sequencing) and expression level infor-

mation for 91 genes. These 91 genes have been selected based on earlier studies on mutation

and/or expression alterations in breast cancer, Materials and Methods. Gene non-synonymous

mutation status is binarized (yes / no) and gene expression status is categorized as under-, nor-

mal- or over-expressed by the COSMIC database. S12 Fig provides the distribution of altered

expressions and S13 Fig the distribution of mutations for the 91 genes of interest. In addition

to gene mutations and altered expression levels, we also integrated information on sample

average ploidy, provided by the COSMIC database (release v76) and discretized the clearly

bimodal ploidy distribution (Fig 3B) with ploidy < 2.7 considered as diploid cells and� 2.7

taken as tetraploid cells, in agreement with COSMIC convention [34]. Among the 807 samples,

401 correspond to diploid tumoral cells and 398 to tetraploid tumoral cells (8 samples have no

ploidy information). As expected, TP53, RB1 and PTEN tumor suppressors tend to be mutated,

downregulated or lost, especially in tetraploid tumors, Fig 3B & 3C, which also exhibit signifi-

cant normalized expression alterations, Fig 3C.

The network predicted by miic is shown Fig 3D. We first note that, due to the limited

numbers of samples (N = 807) and recurrent gene mutants (Fig 3C and S13 Fig), most gene

mutations are not confidently linked to any altered expression levels (compare Fig 3D with

edge confidence CXY < 10−3 to the unfiltered skeleton, S14 Fig), with the notable exceptions of

TP53 and RB1 mutations, which have a significant impact on gene expressions, Fig 3D. Inter-

estingly, the overall effect of tetraploidization on normalized gene expression, Fig 3C, is pre-

dicted to be largely indirect and mediated by TP53 mutations which lead to dysregulation of

mitosis controling genes, such as the under-expression of PPP2R2A [35] and over-expression

of AURKA and CENPA genes. In addition, tetraploidy and TP53 mutations tend also to be con-

comitant with over-expression of metabolic (GMPS) and cell-growth modulating genes

(TSPYL5, NDRG1 and FOXM1) [36], favoring tumor progression and metastasis, as well as

higher expression of APOBEC3B, which promotes mutational heterogeneity within tumors

and, thereby, their drug resistance through subclonal selection [37]. Hence, miic results
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provide a direct link between the long-known incidence of TP53 mutations in (breast) cancer

and the tetraploidization of tumor cells. These results, supported by a number of recent reports

[35, 37–40], shed light on the poor prognosis associated with tetraploid tumors and their resis-

tance to chemotherapy [40]. This presumably occurs as tetraploid cells can exploit their

genome redundancy and heterogeneity to evolve resistance strategies under drug treatments,

Fig 3A.

Interestingly, this dynamics of tetraploid tumors in the course of cancer progression and

treatment echoes the success of tetraploid species in the course of eukaryote evolution. Indeed,

genome doubling events, possibly associated to environmental changes, have repeatedly led to

successful evolutionary radiations of biodiverse subphyla, such as the vertebrates and the flow-

ering plants [41], although the underlying selection mechanism has remained a matter of

debate [41–44].

Analysis of two rounds of tetraploidization in vertebrate evolution

We have investigated with miic this long term evolution following the two rounds of tetra-

ploidization that occurred in early vertebrates some 500 million years ago, Fig 4A. While long

lost species and subphyla cannot be directly studied, the genetic make up of extant vertebrates

provides an information-rich data on the selection processes at work since these ancient

genome duplications. In particular, we aimed at identifying the genomic properties potentially

responsible for the biaised retention of ‘ohnolog’ gene duplicates [45] retained from these

genome duplications in early vertebrates.

We obtained 20,415 protein-coding genes in the human genome from Ensembl (v70) and

collected information on the retention of duplicates originating either from the two whole

genome duplications at the onset of vertebrates (‘ohnolog’) or from subsequent small scale

duplications (‘SSD’) as well as copy number variants (‘CNV’), Fig 4B and S1 Data [45]. 5,504

ohnolog genes retained from the two rounds of whole genome duplications (WGDs) in the

common vertebrate ancestor were obtained from the ‘Ohnologs’ server based on multi-species

comparison of synteny [45]. All the small scale duplicates (SSDs) in the human genome were

obtained from Ensembl Compara using BioMart [46], and were restricted to the 4,506 genes

duplicated after the WGDs. Genes with copy number variants (CNVs) were obtained from the

Database of Genomic Variants [47]. A total of 5,185 genes were identified to be CNV genes as

their entire coding sequence fell within one of the CNV regions in this database.

We then collected information on the genomic properties of these 20,415 human genes,

including their sequence conservation (‘Ka/Ks ratio’), protein autoinhibitory folds and partici-

pation to protein complexes, their expression levels across tissues, association with dominant

or recessive diseases and susceptibility to cancer mutations as well as their essentiality for

development and reproduction, see Materials and methods.

The resulting causal network, predicted by miic, relates the origin of duplicated genes in

the human genome (i.e. ‘ohnolog’, SSD or CNV gene duplicates) to their genomic properties

and association to diseases, Fig 4C. The reconstructed network implies that the retention of

ohnolog duplicates is more directly linked to their susceptibility to dominant mutations and

protein autoinhibitory folds than other genomic properties such as dosage balance constraints

in protein complexes [42], gene essentiality or expression levels, which do not exhibit direct

links to ohnolog retention, Fig 4C, even on the network skeleton obtained before edge confi-

dence filtering, S15 Fig. Hence, miic analysis based on observational data provides an inde-

pendent confirmation as well as significant extension of earlier reports based on correlations

between two or three genomic properties [43] and on simple population genetic models [48].

All together, these results support an evolutionary retention of ohnologs by purifying selection
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through dominant diseases in tetraploid species (consistent with the retention of ohnologs

with low Ka/Ks ratio, Fig 4C, indicating sequence conservation) while small scale duplicated

genes have been retained through positive selection (consistent with their higher Ka/Ks ratio,

Fig 4C, indicative of underlying adaptation).

Discussion

We report in this paper a novel information-theoretic method that learns a broad class of net-

work models including latent causal effects from purely observational data, that is, in absence

of time series or controlled intervention experiments, which can be technically impractical,

costly or unethical to obtain in many biological contexts.

The methodology of our approach is quite general and follows a three-step scheme:

• Step 1- Find a graph skeleton taking into account latent variables.

• Step 2- Remove weakly supported edges based on a confidence criterion.

• Step 3- Determine edge orientations based on the signature of causality.

While resembling traditional constraint-based methods such as FCI, miic is in fact

designed to be much faster and more robust to finite sample size through greedy algorithmic

strategies based on quantitative information-theoretic scores at each algorithmic step, i.e. Step

1: iterative collection of most likely contributors based on an contributor ranking scheme, Step

2: filtering of weakly supported edges through an edge-specific confidence assessment, and

Step 3: successive orientation of the remaining edges based on decreasing orientation

probabilities.

Unlike earlier robust methods for network reconstruction [3–6], this general scheme cir-

cumvents the need to choose between causal and non-causal graphical models a priori, as the

most appropriate class of models is directly learned from the available data. In addition, the

approach can uncover the effect of unobserved latent variables, a notorious conceptual and

algorithmic difficulty in causal network reconstruction [13]. Yet, latent variables are usually

present in many real applications and cannot be ignored in practice, as they actually impact

the causal relationships between observed variables.

More specifically, miic relies on the analysis of multivariate information [14–19], which

extends the concept of mutual information to more than two variables. In practice, miic inte-

gration of constraint-based methods within an information-theoretic framework leads to

greatly improved performances in both prediction accuracy (Fig 1E) and running time (Fig

1F) as well as favorable scalings in terms of sample size (Fig 1F) and network size (S5 Fig). The

likelihood ratio formalism also enables to derive an edge specific confidence index, CXY, which

allows to filter predicted edges to obtain an enhanced and tunable precision of the recon-

structed networks. This might be desirable in many applications for which the correctness of

predicted edges is more important than the occasional dismissal of less certain edges.

We have used miic to reconstruct causal networks from a variety of genomic datasets at

different biological size and time scales, from gene regulation in single cells (Fig 2) to whole

genome duplication in tumor development (Fig 3) as well as long term evolution of vertebrates

(Fig 4). In all these applications, miic provides testable predictions and new biological

insights summarized below:

1. on the hematopoietic / endothelial differentiation network (Fig 2), miic results shed lights

on the regulatory interactions in primitive erythropoietic differentiation for which much

less is known compared with definitive erythropoiesis [30]. We predict, in particular, the

central role of regulators such as Ikaros in the hematopoietic precursor population, and
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Sox7 and Erg in the endothelial precursor population, as well as the causal effects of unob-

served latent variables such as the transcription factor Gata2;

2. on the development of breast cancer, miic network reconstruction (Fig 3) highlights the

direct association between tetraploidization and TP53 mutations, by contrast with earlier

studies on non-cancerous cell lines [40, 49] but in agreement with findings on actual

tumors and their resistance to treatments [38, 40]. These results are also consistent with the

high incidence of tetraploid tumors in patients with BRCA1/2 germline mutations [50];

3. finally, concerning the impact of whole genome duplications in vertebrate evolution, miic
results (Fig 4) refute the general view in the field on the retention of ohnologs through dos-

age balance constraints [42]. Instead, miicmultivariate analysis demonstrates the role of

dominant deleterious effects on the retention of ohnologs, which significantly extends and

confirms earlier reports based on correlations between two or three genomic properties

[43, 44] and independent population genetic results based on first-principles evolutionary

models [48].

Beyond the three genomic network reconstructions presented in this paper (Figs 2, 3 and

4), we anticipate that this information-theoretic approach may help uncover cause-effect rela-

tionships in other information-rich datasets from different fields of biological interest, such as

developmental biology, neuroscience, clinical data analysis and epidemiology. The causal net-

work learning tool, miic, is implemented in an R-package software with open source code

and freely available under a General Public License (S1 Software).

Materials and methods

Application

Gene functional classification in hematopoiesis/epithelial differentiation. The early

hematopoiesis single cell transcription data come from Moignard et al., 2015 [24]. The expres-

sion of 33 TFs and 13 non-TF genes (markers) have been obtained by single cell qRT-PCR and

binarized (on/off) by the authors. The 33 TFs can be classified into 3 categories related to their

function, using the Mouse Genome Database [34] as well as the TF expressions at the different

time points in the original experiment [24]:

• “Hematopoietic”: This group gathers the TFs for which we found a function in hematopoi-

etic differentiation, without finding any evidence of a role in endothelium formation in the

litterature. The corresponding genes linked to hematopoietic function are: Eto2, Sfpi1/PU.1,
Runx1, Nfe2, Myb, Mitf, Ikaros, Gfi1b, Gfi1, Gata1.

• “Endothelial”: For these genes, the main function found in the litterature is in endothelial

development. The corresponding genes linked to endothelial function are: Ets2, Erg, Tbx3,
Tbx20, Sox7, Sox17, Notch1, HoxB4.

• “Common”: These TFs have been shown to be involved in both hematopoietic and endothe-

lial differentiation. The corresponding genes linked to both hematopoietic and endothelial

functions are: Fli1, Etv6, Etv2, Ets1, Tal1, Meis1, Mecom, Lyl1, Lmo2, Ldb1, Hhex.

Signature gene set in breast cancer progression. The choice of specific genes for moni-

toring genomic alterations has been guided by earlier studies and breast cancer-specific molec-

ular tests [51], which demonstrate that altered expression profiles can reveal patient overall

outcome [52]. In particular, the MammaPrint genomic assay relies on a 70-gene expression

profile to assess patient breast cancer recurrence risk [52]. This signature classifies patient
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either as high-risk or low-risk for long-term development of distant metastasis. The relevance

of the MammaPrint 70-gene profile has already been assessed by multiple studies, e.g. [52, 53].

Interestingly, although the MammaPrint biomarker genes were selected from a completely

data-driven approach, they are enriched with specific cancer hallmarks [54] acquired in the

course of tumorigenesis and metastasis progression [55].

In this study, we investigated the interrelations between ploidy, mutation and expression

level alterations for 91 genes in breast tumors. Specifically, we first considered the mutation

status and expression levels of 50 genes out of the 70 Mammaprint biomarkers for which a

hallmark of cancer has been identified [55]. We also considered 18 commonly altered genes in

breast cancer (ERBB2, ESR1, TP53, RB1, MYC, JUN, CDKN2A, BCL2, APOBEC3B, PTEN,
MDM2, USP7, UBE3A, SPDYE7P, PLK1, BAX, MET, FOXM1) [56]. In addition, 23 genes

related to ploidy alteration were also included (TP73, LATS2, MAPK14, CDKN1A, CHEK1,
AURKB, AURKA, BRCA1, BRCA2, DUSP5, MST1, PPP1R13L, BIRC3, TGFA, ETS1, ETS2,
HIF1A, LDHA, FOXO1, NDRG1, PPP2R1A, PPP2R2A, CCNE1) [38, 40].

Genomic properties of ohnolog genes in vertebrates. The genomic properties suscepti-

ble to be associated with the retention of ‘ohnolog’ gene duplicates (as well as SSD and CNV

duplicates) in the human genome have been obtained from various resources:

• Cancer mutations. Cancer mutation profiles for all the protein coding genes were obtained

from the COSMIC database [34]. We counted all the non-synonymous mutations per unit

length in all the available samples, and partitioned the 18,538 genes with available mutation

information into three equal frequency bins (S1 Data).

• Disease genes. Human disease genes were collected from OMIM, GeneCards [57], and from

published curated lists [44, 58] and combined to give a total of 7,171 disease genes.

• Recessive vs dominant genes. Based on the inheritance information from Online Mendelian

Inheritance in Man (OMIM) database, we could obtain 981 and 952 genes that were

described as autosomal dominant and autosomal recessive genes respectively.

• Autoinhibition. Genes with autoinhibitory protein folds were obtained from search and

manual curation in PubMed and in various databases (OMIM, SwissProt, NCBI Gene and

GeneCards). Additional autoinhibitory candidates with the domains known to be frequently

implicated in autoinhibition (e.g. SH3, DH, PH, CH, Drf and Eth domains) were obtained

based on the domains identified using HMMER search [59] against Pfam database [60]. This

led to a total of 881 genes with autoinhibitory protein folds (S1 Data).

• Essentiality. A total of 6,436 1-to-1 mouse orthologs obtained using BioMart and tested for

lethality or infertility phenotypes on loss-of-function or knockout mutations in mouse were

obtained from the Mouse Genome Informatics database [32]. 2,729 [resp. 3,227] of these

6,436 genes were found to be essential [resp. non-essential] genes in mouse.

• Protein complex. A total of 6,119 genes involved in protein complex formation were

obtained by combining the protein complexes from Human Protein Reference Database

[61], CORUM database [62], the human soluble protein complex census [63], and the

human genes belonging to the Gene Ontology term “protein complex” under Cellular

Component.

• Ka/Ks ratio. We obtained Ka/Ks (or dN/dS) ratios between human and amphioxus (Bran-
chiostoma floridae) orthologs using the KaKs_Calculator 2.0 [64]. Ka/Ks ratios were retrieved

for a total of 15,508 genes and partitioned into 75% lower ratio < 0.2 (i.e. more conserved

sequences) and 25% higher ratio� 0.2 (i.e. rapidly evolving sequences)
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• Expression levels. Gene expression levels for 78 healthy human tissues and cell types [65]

were downloaded from BioGPS [66]. Affimetrix tags were mapped to Ensembl gene IDs

using BioMart and annotation provided by BioGPS. Expression levels from different tags for

the same gene were averaged after removing the tags that bind to multiple genes. A total of

13,425 genes with an expression level were partitioned into three equal frequency bins based

on the their median expression across 78 tissues/cell types.

These genomic properties susceptible to be associated with the retention of ‘ohnolog’, SSD

and CNV gene duplicates are provided as S1 Data.

For each genomic property or combination of properties for which a number of samples

presents missing data, multivariate information, such as I(X; Y|{Ai}), are computed on the

number of available samples Na without missing data for X, Y and {Ai} variables (Na < N).

Finite size corrections are then estimated based on Na instead of N samples (S1 File). This

assumes that the missing data is missing completely at random.

Methodology

Ancestral graphs. The miic software reconstructs Markov equivalent models of the

broad class of ‘ancestral graphs’ [11] which can contain three types of edges, undirected (−),

directed (!) and bidirected ($) edges, but:

1. no directed cycles (i.e. X!! � � � !! Y with X Y)

2. no almost directed cycles (i.e. X!! � � � !! Y with X$ Y)

3. no arrowheads pointing to an undirected edge (i.e.! − or$ −)

Multivariate information and most likely information contributors. The miic algo-

rithm is an information-theoretic method that learns graphical models by progressively uncov-

ering the information contributions of indirect paths in terms of multivariate information.

The multivariate information between p variables, I(X1; � � �; Xp), is defined through alter-

nating (inclusion-exclusion) sums of multivariate entropies H({Xi}) = −∑{xi}
p({xi})log p({xi})

over all subsets of variables {Xi}� {X1,� � �,Xp} as [15–17],

IðX1; � � � ; XpÞ ¼
X

i

HðXiÞ �
X

i<j

HðXi;XjÞ þ
X

i<j<k

HðXi;Xj;XkÞ � � � �

ð� 1Þ
k� 1
X

i1<���<ik

HðXi1
; � � � ;Xik

Þ þ � � � ð� 1Þ
p� 1HðX1; � � � ;XpÞ

ð3Þ

In particular, for p = 2 and 3 variables, it yields,

IðX; YÞ ¼ HðXÞ þHðYÞ � HðX;YÞ ð4Þ

IðX; Y; AÞ ¼ HðXÞ þHðYÞ þ HðAÞ � HðX;YÞ � HðX;AÞ � HðY ;AÞ þ HðX;Y;AÞ ð5Þ

where the 3-point information, I(X; Y; A), can be positive or negative unlike the 2-point

(mutual) information, I(X; Y), which is always positive [20]. Conditional multivariate informa-

tion, I(X1; � � �; Xp|A), are defined similarly as multivariate information, I(X1; � � �; Xp), but in

terms of conditional multivariate entropies [18], H({Xi}|A). In particular, conditional mutual
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information is defined as,

IðX; YjAÞ ¼ HðXjAÞ þHðYjAÞ � HðX;YjAÞ

¼ � HðAÞ þ HðX;AÞ þHðY;AÞ � HðX;Y;AÞ
ð6Þ

using the definition of conditional entropy [20], H(X|A) = H(X,A) − H(A). Then combining

the expressions of I(X; Y|A) and I(X; Y; A) yields a generic decomposition rule relative to a var-

iable A or a set of variables {Ai}m = {A1,A2,� � �,Am} as,

IðX; YÞ ¼ IðX; YjAÞ þ IðX; Y; AÞ ð7Þ

IðX; YÞ ¼ IðX; YjfAigmÞ þ IðX; Y; fAigmÞ ð8Þ

and conditioning Eq 7 on {Ai}n−1 and setting A� An yields,

IðX; YjfAign� 1
Þ ¼ IðX; YjfAignÞ þ IðX; Y; AnjfAign� 1

Þ ð9Þ

which can be combined with Eq 8, setting {Ai}m = {Ai}n−1 or {Ai}n, to yield the following itera-

tive scheme on the contribution increment of the collected set {Ai}n (see Results),

IðX; Y; fAignÞ ¼ IðX; Y; fAign� 1
Þ þ IðX; Y; AnjfAign� 1

Þ ð10Þ

As explained in S1 File, only positive information terms, I(X; Y; An|{Ai}n−1)>0, contribute to

the global mutual information between X and Y through the iterative decomposition of Eq 9,

IðX; YÞ ¼ IðX; Y; A1Þ þ IðX; Y; A2jA1Þ þ � � � þ IðX; Y; AnjfAign� 1Þ þ IðX; YjfAignÞ ð11Þ

where the most likely contributors An after collecting the first n−1 contributors {Ai}n−1 is cho-

sen by maximizing I(X; Y; An|{Ai}n−1)> 0, while taking into account the finite size N of the

dataset (S1 File). The approach provides also a natural ranking of the edges XY of the graph, R
(XY;An|{Ai}n−1), based on the likelihood of their best next contributor An (Eq. S20 in S1 File).

By contrast, negative information, I(X; Y; An|{Ai}n−1)< 0, do not contribute to I(X; Y) but

are the signature of causality in observational data and are used to orient v-structures, such as

X! An Y (S1 File).

Description of miic algorithmic pipeline. The implementation of the information-the-

oretical approach miic proceeds in three steps corresponding to the following algorithmic

pipeline, Fig 1D (S1 File):

• Step 1: Learning skeleton taking into account latent variables
Starting from a fully connected undirected graph, miic iteratively removes all dispensable

edges after collecting one-by-one their most likely contributors {Ai} based on the edge rank-

ing order, R(XY; An|{Ai}n−1) (Eq. S20 in S1 File), and using the following pseudocode,

Repeat: take the top edge XY with highest rank R(XY; An|{Ai}n−1):

– Update its contributor list: {Ai}n {Ai}n−1 + An

– If I(X; Y|{Ai}n) is not significant (given the finite number N of samples): remove edge XY

– Else: Search for the next best contributor An+1 of edge XY (if one exists with I(X; Y; An+1|

{Ai}n)> 0) and update the ranking order R(XY; An+1|{Ai}n)

Until: no more edges can be removed

• Step 2: Confidence estimate and sign of retained edges
Once a first skeleton has been obtained using Step 1, the confidence on each retained edge

can be estimated through an edge specific confidence ratio CXY based on the probability PXY

Learning causal networks with latent variables
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* exp(−NI(X; Y|{Ai})) to remove a directed edge X! Y from the graph G (S1 File),

CXY ¼
PXY

hP rand
XY i

ð12Þ

where hP rand
XY i is the average of the probability to remove the XY edge after randomly per-

mutating the dataset for each variable. Hence, the lower CXY, the higher the confidence on

the XY edge. We favor the confidence estimate CXY based on likelihood ratios (Eq. S21 in

S1 File) to the alternative confidence estimate based on p-value, which corresponds to the

probability that P rand
XY � PXY over random permutations. Indeed, p-value estimates require

much more random permutations than CXY estimates for strong edges with NI(X; Y|{Ai})

� 1, as virtually all random permutations correspond to P rand
XY > PXY in that case, leading

to under-estimated p-values ’ 0.

In addition, the sign of each retained edge, X − Y, is defined by the sign of the partial correla-

tion coefficient, ρXY�A, between X and Y conditioned on its derived contributors A = {Ai} in

Step 1, with positive edges corresponding to positive partial correlations and negative edges

corresponding to negative partial correlations, i.e. partial anti-correlations (S1 File).

• Step 3: Probabilistic orientation and propagation of remaining edges
Given the skeleton obtained from Step 1, possibly filtered through Step 2, initially unspeci-

fied endpoint marks (�) can be established, as arrow tail (−) or head (>), following probabi-

listic orientation and propagation rules of unshielded triples hX, Y, Z iX⌿Y, S1 File (where �

below stands for any endpoint mark),

Repeat: take the top hX, Y, Z iX⌿Y with highest endmark orientation / propagation probability

– If I(X; Y; Z|{Ai}n)< 0 and X� − �Z� −�Y or X�! Z� − �Y, orient edge(s) to form a v-

structure X�! Z �Y

– Else If I(X; Y; Z|{Ai}n)> 0 and X�! Z� − �Y or X�! Z�!Y, Propagate second edge

direction to form a non-v-structure X�! Z! Y
Until: no additional endmark orientation / propagation probability >1/2

Algorithmic performance on benchmark networks with latent variables. The perfor-

mance of the information-theoretic method miicwas tested on benchmark ancestral graphs

with latent variables using partially observed real-life networks (i.e. considering some variables

as hidden) as well as random networks generated with the causal modeling tool Tetrad V

(http://www.phil.cmu.edu/tetrad). Reconstructed networks are compared to partial ancestral
graphs (PAGs) [23], which are the representatives of the Markov equivalent class of all ances-

tral graphs consistent with the conditional independences in the available data. In practice,

benchmark PAGs have been derived by hiding some variables in benchmark directed acyclic

graphs (DAG) using the dag2pag function of the pcalg package with slight modifications

[25, 26]. PAGs have been generated for an increasing fraction (0% to 20%) of randomly picked

latent variables having a significant topological effect on the underlying network (i.e. excluding

parentless vertices with a single child or vertices without child).

The results are evaluated in terms of skeleton Precision (or positive predictive value),

Prec = TP/(TP + FP), Recall or Sensitivity (true positive rate), Rec = TP/(TP + FN), as well as F-

score = 2 × Prec × Rec/(Prec + Rec) for increasing sample size from N = 10 to 50,000 data

points. We also define additional Precision, Recall and F-scores taking into account the edge

endpoint marks of the predicted networks against the corresponding benchmark PAGs. This

amounts to label as false positives, all true positive edges of the skeleton with different
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arrowhead endpoint marks (i.e. arrowhead (>) versus tail or undefined (−/�) endpoint marks)

as the PAG reference, TPmisorient, leading to the orientation-dependent definitions TP0 = TP −
TPmisorient and FP0 = FP + TPmisorient with the corresponding PAG Precision, Recall and F-

scores taking into account arrowhead endpoint marks.

The alternative inference methods used for comparison with miic are the FCI algorithm

[9] and its recent approximate variant RFCI [10] implemented in the pcalg package [25, 26].

The results obtained with FCI and RFCI are in fact very similar and we only present here

comparisons with the more recent RFCI algorithm [10]. RFCI’s results are shown for an

adjustable significance level α = 0.01 and using the stable implementation of the skeleton learn-

ing algorithm, as well as the majority rule for the orientation and propagation steps [27], which

give overall the best results.

For each sample size (N = 10 to 50,000) and fraction of hidden variables (0% to 20%), miic
and RFCI inference methods have been tested on 20 combinations of hidden variables and 50

dataset replicates each. S1, S2 and S3 Figs give the average results over these multiple combina-

tions of latent variables and dataset replicates and compare the reconstructed networks includ-

ing orientations (solid lines) or without orientation (i.e. skeleton, dashed lines) to the

theoretical PAG (or its skeleton) of the benchmark network.

Algorithmic performance on undirected benchmark networks. The performance of

miicwas also tested on non-causal benchmark networks reconstructed from Monte Carlo

sampling of Ising-like interacting systems.

To this end, real-life causal networks, such as Alarm and Insurance, have been transformed

into non-causal Ising-like networks (with binary spin variables xi = ±1) by setting pairwise

interacting parameters kij between connected variables Xi and Xj, so as to approximately repro-

duce the pairwise conditional mutual information I(Xi; Xj|AXi Xj) of the original real-life causal

network. This yields benchmark networks sharing approximately the same two-point direct

correlations with the original causal networks but lacking causality, as the couplings kij

between spins are all symmetric by construction.

One million configurations of these Ising-like interacting systems have been generated

using Monte Carlo sampling approach. It consists in flipping a fraction of the spins randomly

and accepting each newly generated configuration with probability, min (1, exp(−ΔEk)), where

ΔEk = Ek+1 − Ek, is the interacting energy difference between successive configurations,

Ek ¼ �
Pedges

i<j kijxixj. The fraction of spins randomly flipped (*10%) has been ajusted to

ensure that about half of the newly generated configurations are accepted at each Monte Carlo

iteration, in order to efficiently sample configuration space. This leads, however, to significant

correlations between successive accepted configurations with a roughly exponential decay

between n distant samples, C(n)’ C(0)exp(−n/R) = C(0)αn, where CðnÞ ¼ Cðk � ‘Þ ¼
h
P

idxð‘Þi dxðkÞi i is the average autocorrelation with lag between the kth and ℓth samples (with n
= k−ℓ), where dxðkÞi ¼ xðkÞi � �xi .

The effective number of independent samples N�eff can then be estimated through the appar-

ent increase of variance between the N partially correlated samples as [67],

VN ¼
1

N2

X

k

X

‘

h
X

i

dxðkÞi dxð‘Þi i

¼
1

N2

X

k

X

‘

Cðk � ‘Þ

¼
1

N
Cð0Þ þ 2 1 �

1

N

� �

Cð1Þ þ 2 1 �
2

N

� �

Cð2Þ þ � � � þ
2

N
CðN � 1Þ

� �

ð13Þ
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which leads for a first order Markov process with C(n) = C(0)αn to,

VN ¼
Cð0Þ

N
1þ 2 1 �

1

N

� �

aþ 2 1 �
2

N

� �

a2 þ � � � þ
2

N
aN� 1

� �

’
Cð0Þ

N
1þ a

1 � a
¼

Cð0Þ
N�eff

ð14Þ

yielding a smaller effective number of samples N�eff < N for correlated datasets (α> 0) as,

N�eff ¼ N
1 � a

1þ a
ð15Þ

This estimate suggests to use N�eff , instead of N, to compute the finite size corrections of the

miic approach, in order to correct for the correlations between successive samples generated

through Monte Carlo sampling. Yet, as the presence of correlations between successive sam-

ples is a priori incompatible with the requirement of independent samples in the maximum

likelihood framework, we have first assessed miic performance over the full range of possible

effective sample size, i.e. 0< Neff/N� 1, for N = 1,000 to 300,000 successive samples from the

one-million-long sample series.

The results are shown in S6 Fig and S6 Fig in terms of Precision, Recall, F-score and Frac-

tion of (wrongly) directed edges for the Alarm-like and Insurance-like undirected networks.

The nearly exponential decay of the autocorrelation function for Alarm-like (S6 Fig,

R = 7.758, α = 0.872) and Insurance-like (S6 Fig, R = 7.676, α = 0.87) undirected networks

leads to very close values for the predicted effective number of samples for these graphs

according to Eq 15, N�eff=N ’ 0:068 � 0:069.

Interestingly, we found that the F-score, which is a trade-off between optimizing Precision

and Recall, reaches a maximum for all sample sizes (N = 1,000 to 300,000) around the pre-

dicted effective number of samples, that is when Neff=N ¼ N�eff=N ’ 0:069, see vertical dashed

lines in F-score in S6 Fig and S6 Fig. We found also that the fraction of (wrongly) directed

edges is close to zero at the predicted effective number of samples, N�eff , providing that it is not

too small, i.e. N�eff > 300.

These results demonstrate that the theoretical estimate of N�eff , Eq 15, yields the best com-

promise between over-fitting and under-fitting graphical models given the finite and partially

correlated available datasets. They underline also miic accuracy to discard spurious causality

in observational data, even from relatively small effective numbers of independent samples, i.e.
N�eff > 300 in S6 Fig and S6 Fig.

Supporting information

S1 File. Supplementary text. Contents: 1. Information-theoretic approach to network recon-

struction; 1.1. Signature of causality versus indirect contributions to information in graphs; 1.2.

Finite size effect and most likely contributor score. 2. Algorithmic pipeline of the information-the-

oretic approach miic; 2.1. Algorithm 1: Learning skeleton taking into account latent variables;

2.2. Algorithm 2: Confidence estimation and sign of retained edges; 2.3. Algorithm 3: Probabilis-

tic orientation and propagation of remaining edges. 3. Algorithmic implementation and tools;

3.1. miicR-package; 3.2. miic and FCI executables. 4. References for Supplementary Text.

(PDF)

S1 Fig. Real-life Alarm network with hidden latent variables. [37 nodes, 46 links, 509

parameters, Average degree 2.49, Maximum in-degree 4]. Precision, Recall, F-score and com-

puting time for PAG skeletons (dashed lines) and PAGs including orientations (solid lines).
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The results are given for the miic algorithm (warm colors) compared to the RFCI algorithm

[10] (cold colors) for 0, 2, 4 and 6 latent variables out of the 37 nodes. Computation times in

log scale show a linear scaling in the limit of large datasets, τcpu * N0.9, for the miic algo-

rithm, and a stronger nonlinear increase, τcpu * N1.5, with the RFCI algorithm.

(TIFF)

S2 Fig. Real-life Insurance network with hidden latent variables. [27 nodes, 52 links, 984

parameters, Average degree 3.85, Maximum in-degree 3]. Precision, Recall, F-score and com-

puting time for PAG skeletons (dashed lines) and PAGs including orientations (solid lines).

The results are given for the miic algorithm (warm colors) compared to the RFCI algorithm

[10] (cold colors) for 0, 1, 2, and 4 latent variables out of the 27 nodes. Computation times in

log scale show a linear scaling in the limit of large datasets, τcpu * N1.0, for the miic algo-

rithm, and a stronger nonlinear increase, τcpu * N1.7, with the RFCI algorithm.

(TIFF)

S3 Fig. Real-life Barley network with hidden latent variables. [48 nodes, 84 links, 114,005

parameters, Average degree 3.5, Maximum in-degree 4]. Precision, Recall, F-score and com-

puting time for PAG skeletons (dashed lines) and PAGs including orientations (solid lines).

The results are given for the miic algorithm (warm colors) compared to the RFCI algorithm

[10] (cold colors) for 0, 2, 4 and 7 latent variables out of the 48 nodes. Computation times in

log scale show a nearly linear scaling in the limit of large datasets, τcpu * N1.1, for the miic
algorithm, and a stronger nonlinear increase, τcpu * N2.3, with the RFCI algorithm.

(TIFF)

S4 Fig. Reconstruction of Fig 1C network from simulated data. miic and RFCI [9, 10]ver-
sus 3off2 [19] and PC [7, 8, 25] reconstructions of Fig 1C network are performed from simu-

lated data generated with Tetrad V, N = 10–50,000 samples. Precision, Recall and Fscore are

given for skeleton (dashed lines) and PAG including orientations (solid lines).

(TIFF)

S5 Fig. Random benchmark networks of increasing size. miic reconstruction of random

networks of increasing size (P = 10–500 nodes) and fixed average degree 3 from N = 1,000

samples generated with Tetrad V. The average CPU time exhibits an optimal quadratic com-

plexity in terms of network size, τcpu * P2 (solid bar), with only a small time increase when

considering latent variables (orange) as compared to excluding them (red).

(TIFF)

S6 Fig. Alarm-like undirected network. Precision, Recall, F-score, percentage of (wrongly)

directed edges and decay of the autocorrelation function with lag between successive samples

for N = 1,000 to 300,000 consecutive partially correlated samples (with predicted effective

number of independent samples in brackets). Vertical dashed lines correspond to the pre-

dicted effective number of independent samples N�eff=N ’ 0:068, see Materials and methods.

(TIFF)

S7 Fig. Insurance-like undirected network. Precision, Recall, F-score, percentage of

(wrongly) directed edges and decay of the autocorrelation function with lag between successive

samples for N = 1,000 to 300,000 consecutive partially correlated samples (with predicted effec-

tive number of independent samples in brackets). Vertical dashed lines correspond to the pre-

dicted effective number of independent samples N�eff=N ’ 0:069, see Materials and methods.

(TIFF)

S8 Fig. Edge confidence filtering on real-life Alarm network. [37 nodes, 46 links, 509 param-

eters, Average degree 2.49, Maximum in-degree 4]. Precision, Recall, F-score and computing
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time for network skeleton (dashed lines) and oriented network CPDAG (solid lines) for a

decreasing edge-specific confidence filtering, CXY = 1 (no filtering) 0.01, 0.001 and 0.0001. For

sample size >100, confidence filtering of individual edges improves the precision (at the

expense of recall) not only for the skeleton (dashed lines), as expected, but also for the oriented

networks (solid lines). In addition, limited filtering, i.e. keeping edges with CXY < 10−3−10−2,

tends to yield equivalent F-scores as unfiltered benchmark reconstructions.

(TIFF)

S9 Fig. Edge confidence filtering on real-life Insurance network. [27 nodes, 52 links, 984

parameters, Average degree 3.85, Maximum in-degree 3]. Precision, Recall, F-score and com-

puting time for network skeleton (dashed lines) and oriented network CPDAG (solid lines) for

a decreasing edge-specific confidence filtering, CXY = 1 (no filtering) 0.01, 0.001 and 0.0001.

For sample size >100, confidence filtering of individual edges improves the precision (at the

expense of recall) not only for the skeleton (dashed lines), as expected, but also for the oriented

networks (solid lines). In addition, limited filtering, i.e. keeping edges with CXY < 10−3−10−2,

tends to yield equivalent F-scores as unfiltered benchmark reconstructions.

(TIFF)

S10 Fig. Gene expression distribution in 3,934 single cells from mouse embryos. Expression

data on the 33 TFs are obtained from [24]. Percentage of samples with expressed genes (red)

and non-expressed genes (gray).

(TIFF)

S11 Fig. Unfiltered network skeleton for hematopoiesis differentiation data. Hematopoietic

/ endothelial gene expression data in 3,934 single cells from mouse embryos [24]. 7 out of 82

edges (8.5%) with CXY > 10−3 have been filtered in Fig 2D (blue edges correspond to anti-cor-

relations).

(TIFF)

S12 Fig. Expression alterations in 807 samples of breast tumor data from COSMIC data-

base [34]. Percentage of samples with normalized over-expression (red), normalized under-

expression (blue) and unchanged normalized expression (gray) for each gene based on COSMIC.

(TIFF)

S13 Fig. Mutations in 807 samples of breast tumor data from COSMIC database [34]. Per-

centage of mutated samples (red) for each gene.

(TIFF)

S14 Fig. Unfiltered network skeleton for breast tumor ploidy-mutation- expression data

from COSMIC database [34]. Due to the limited numbers of samples (N = 807) and recurrent

gene mutants (Figure -figure supplement 2), most gene mutations (yellow) are not confidently

linked to any altered expression levels (green) and have been filtered in the high confidence

network Fig 3D (CXY < 10−3), with the notable exceptions of TP53 and RB1 mutations, which

have a significant impact on gene expressions, Fig 3D, see main text (blue edges correspond to

anti-correlations).

(TIFF)

S15 Fig. Unfiltered network skeleton for ohnolog retention data in human. Genomic data

for the 20,415 human coding genes is provided in S1 Data. The only edge with confidence

ratio CXY > 10−3 is RecDominance− ProteinComplexwith CXY = 0.25 (blue edges cor-

respond to anti-correlations).

(TIFF)
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S1 Software. Software and tools. miic software is provided in two formats: an R-package to

be used in the R environment, and miic and FCI executables, which were used for all bench-

marks included in the paper.

(ZIP)

S1 Data. Dataset of human genomic properties. This dataset contains all genomic data for

the 20,415 human genes analyzed in Fig 4.

(XLS)

S1 Table. Effect of BIC/MDL versus NML criteria in applications. Choosing the BIC/MDL

instead of NML criterion in the three genetic network applications, Figs 2, 3 & 4, leads to

somewhat sparser reconstituted networks including 82% to 100% of initial edges, yet no addi-

tional edges (i.e. consistent with a lower recall), and 66% to 75% conserved edge orientations

(i.e. identical −,!, and$ edges).

(XLS)
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26. Kalisch M, Bühlmann P. Robustification of the PC-Algorithm for Directed Acyclic Graphs. J Comp

Graph Stat. 2008; 17(4):773–789. https://doi.org/10.1198/106186008X381927

27. Colombo D, Maathuis MH. Order-Independent Constraint-Based Causal Structure Learning. J Mach

Learn Res. 2014; 15:3741–3782.
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Chapter 5

MIIC online

This chapter is devoted to the presentation of the web server running the MIIC algorithm,
published in the Bioinformatics journal in 2018[51].

Even if the reconstruction of graphical models has become ubiquitous to analyze the
rapidly expanding, information-rich data of biological interest, all available network re-
construction servers are restricted to specific types of data and make an a priori choice
on the causal or non-causal nature of the underlying model, such as BNW [52] perform-
ing Bayesian Network reconstructions, LEGUMEGRN [53] learning directed regulatory
networks or EVFOLD [54] and DCA [55] predicting undirected protein contact inter-
actions from amino acid homologous sequences. In particular, up to date, there is no
web server performing general network analysis for a broad range of biological or med-
ical data. MIIC Online is a web interface to the MIIC algorithm. The starting section
“Workbench” is used to upload an observational dataset formatted as a table with vari-
able names specified as column names (or row names). A data set generated using
the Alarm benchmark is provided as example (available in the online Bayesian Network
Repository). The expansion of the “Algorithm advanced parameters” part allows to set
the tunable algorithm parameters (otherwise set to default values). These parameters
permit to choose the preferred complexity criterion (BIC/MDL or NML), the possibility
to perform or not the orientation step (see Section 3), the effective number of indepen-
dent samples, Neff , useful when analysing correlated samples in the form of time-series or
Monte Carlo simulated datasets, the search for latent variables, the possibility to recon-
struct a consistent network (see Chapter 4.10) and the option to test for Kullback-Leibler
joint probability distributions on the search for possible contributors. The effective num-
ber of independent samples is estimated by MIIC Online through the sample-to-sample
correlation analysis and reported in the results page. The options consent to exclude the
research of causality relations (orientation), providing an undirected graph, to propagate
orientations (propagation) or to allow the search for latent variables, relevant for all real
life applications, when the whole set of features is not available. Optionally, additional
files can be uploaded, see Section 5.2. Finally, the edge filtering procedure can be applied
when activating the confidence cut and setting its specific parameters. This process is
useful in all applications for which the correctness of predicted edges is more important
than the occasional dismissal of less certain edges, mostly in the case of datasets with
small sample sizes.

5.1 Network visualization and analysis

Once a reconstruction has been launched and completed, the job’s result page is au-
tomatically presented. The web-embedded Cytoscape display enables to visualize and
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interactively rearrange the resulting graphical model. An advanced and customizable
visualization is available through the “Go!” button. This section allows to visualize all
network features, filtering edges or nodes and saving the network both as image (svg, pdf
or png format) or as a network file (xgmml, Graphml or sif formats). The “summary”
tab provides a complete analysis of each retained or deleted edge, with an associated
list of information containing the set of ancestors, conditional mutual information and
its complexity measurement, along with orientation information and the partial corre-
lation measurement, when possible. This information, together with the probability of
the presence of v-structures provided in the “Probabilities” tab, is relevant for a detailed
analysis of the reconstruction process and of the sign of causality found in the data (see
supplementary information). The “Cross correlation” tab reports a plot of the samples
auto-correlation detected, along with an exponentiality test, that suggest if the effective
number of samples correction or some other pre-processing filtering methodology should
be applied to the dataset. Moreover, MIIC Online displays the most common topological
measure (e.g. degree, clustering coefficient, etc) to allow the topological characterization
of the nodes in the network. Finally, the ”Download” section allows to download all files
shown online.

5.2 Supplementary files

MIIC Online allows to upload some supplementary file, that will be used for network
reconstruction, analysis or visualization: the true edges of the network, to evaluate the
method performance or to compare with others reconstructions; a network layout; a
file containing the specific ordering for each categorical variable, necessary to evaluate
the correlation values and a list of edges to be excluded from the reconstruction of the
network, if a priori information is available.

• True edges: an optional file allowing to evaluate the performances of MIIC online
reconstruction against a known Directed Acyclic Graph (DAG).The reference DAG
should be provided as a two-column table, without column names, where each row
corresponds to an edge, with the first column including a source node and the
second column a target node (see example in the download section). The returned
performance measures are ‘Precision’, ‘Recall’ and ‘F-score’.

Figure 5.1: True edges file exemple.

• Network layout: an optional file specifying node positions in the 2D representation
of the network, containing an x y coordinate pair for each node (separated with
a separator).The nodes are considered in the same order as in the input dataset,
unless an optional first column is added, specifying the name of each node. It is also
possible to upload a network in the “xgmml” format, in order to use the same node
position as in the provided layout file. This option is useful when we want to save
a particular network configuration for a reconstruction (this option is available in
the “Advanced visualization” through the pression of the “Go” button, then “Save
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file” → “XGMML”) and use this layout in other network reconstruction of the same
set of nodes, in order to fix their position as in the saved reconstruction.

• Category order: An optional file providing information about how to consider the
different states of categorical variables. It will be used to compute the signs of
the edges (using spearman correlation coefficient) by ranking the levels of each
variable according to the order given in the file. This file is necessary (except
for numerical variables) to obtain edge colors corresponding to the signs of their
partial correlations (positive in red, negative in blue). The file has up to 4 possible
columns: “var_names” for node names, “var_type” to set if the data related to
a node are discrete (value 0) or continuous (value 1), “levels_increasing_order”
to provide an ordering to categorical variables and “group” for colouring nodes
according to a particular group. If it is not possible or desirable to order the
states of some variables, the column “levels_increasing_order” can be left empty
for these variables. The edges involving those variables are then coloured in gray
in the reconstructed network. Values for column “levels_increasing_order” can be
also set to NA of left empty for continues variables, avoiding to write all values of
continues variables (that already have a clear ordering).

Figure 5.2: State order file example, using all 4 possible columns.

• Excluded edges: An optional file containing any prior knowledge about edges that
should be excluded in the reconstructed network. It should be formatted as a two-
column file, Node1 Node2, with a field separator between them, like for the true
edges file.

5.3 Network comparisons

In order to be able to compare networks, mostly for the analysis of real-life applications,
we added to the MIIC server the possibility to compare networks drawn from different
datasets or reconstructed from the same data but using different algorithm parameters
like computational complexity (NML or MDL), confidence cut and the search for latent
variables. This feature is available in the “results” page, after having selected two or more
network reconstructions (through their checkBoxes) and pressing the “Compare” button.
MIIC online allows for different types of comparison on two reconstructed networks,
depending on the operation we want to perform on the node set of a network A (N1)
and a network B (N2) and the edge set of A (S1) and B (S2), to retrieve the resulting
network with nodes Nr and edges Er:
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• A ∪B: Nr = N1 ∪N2;Er = E1 ∪ E2

• A ∩B: Nr = N1 ∩N2;Er = E1 ∩ E2

• A−B: Nr = N1;Er = E1 − E2

• B −A: Nr = N2;Er = E2 − E1

• (A−B) ∪ (B −A): Nr = N1 ∪N2;Er = (E1 − E2) ∪ (E2 − E1))

If more than two networks (N1, N2,. . .,Nn) have been selected for comparison, only
two comparisons will be available:

• Union : Nr = N1 ∪N2 ∪ . . . ∪Nn;Er = E1 ∪ E2 ∪ . . . ∪ En

• Intersection: Nr = N1 ∩N2 ∩ . . . ∩Nn;Er = E1 ∩ E2 ∩ . . . ∩ En

5.4 Centrality measures

This section describes the different centrality measures computed in the network analysis
phase. Centrality measures are important to analyse the role of nodes in the network in-
formation flowing process. As MIIC online reconstructs mixed networks, some measures
have “in” and “out” versions. Moreover, since each edge is inferred with a confidence
assessment, the analysis provides also confidence weighted measures in addition to non-
weighted measures. A distribution plot is present over each index, giving the possibility
to download it as a pdf. Note that bi-directed edges indicating latent variables are
excluded from the analysis, while undirected edges are taken as both in-coming and out-
going arrows (i.e., two-node cycles).
The indexes listed below (except the first 4 ones) are calculated using the python imple-
mentation of the Igraph package.
For more information see documentation at http://igraph.org/python/#docs.

• Activates: the number of outgoing activations

• Inhibits: the number of outgoing inhibitions

• Activated: the number of incoming activations

• Inhibited: the number of incoming inhibitions

• Out degree: the number of outgoing edges

• In degree: the number of incoming edges

• Total degree: the sum of out degree and in degree

• Eccentricity out: the maximum number of nodes to pass through in order to reach
the farthest node.

• Eccentricity in: the maximum number of nodes to pass through in order to reach
the node itself starting from the farthest node.

• Node entropy (weighted/not weighted): it is evaluated as the Shannon Entropy
of the weights of its connecting edges. The measure is defined on the network
skeleton.
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• Betweenness weighted/not weighted: the sum of the fraction of shortest paths
among every pair of nodes, that pass through the studied node, over all the shortest
paths between the two nodes.

• Local clustering coefficient weighted/not weighted: it calculates the local transitiv-
ity (clustering coefficient) of the node in the graph. The transitivity measures the
probability that two neighbours of a vertex are connected. The local transitivity is
calculated separately for each vertex. The not weighted local transitivity measure
applies for not weighted graphs only; the weighted one calculates the weighted local
transitivity proposed by Barrat et al. ([56]).

• Closeness in/out weighted/not weighted: it calculates the closeness centralities of
the node in the graph. The closeness centrality of a vertex measures how easily
other vertices can be reached from it (or the other way: how easily it can be reached
from the other vertices). It is defined as the number of vertices minus one divided
by the sum of the lengths of all geodesics from/to the given vertex. If the graph is
not connected, and there is no path between two vertices, the number of vertices is
used instead of the length of the geodesic. This is always longer than the longest
possible geodesic.

• Assortativity: it returns the assortativity of the graph based on connectivity de-
grees of the vertices. This coefficient characterizes the connection biases between
nodes of similar degrees.

• Diameter: the size of the longest shortest path in the graph.

5.5 Decision trees on reconstructed networks

MIIC online is equipped with the possibility of building decision tree on a discrete variable
using only the variables that are adjacent to it (that report a positive conditional mutual
information). The network reconstruction acts in this case as feature selection of possible
variables influencing a particular one, using the learned network. To do this MIIC
online takes advantage of the R “FFTrees” package available on CRAN, which can fastly
build a decision tree on a chosen variable, given the set of other variables. Fast-and-
frugal decision trees (FFTs) are simple, transparent decision strategies that use minimal
information to make decisions [57, 58]. They are frequently preferable to more complex
decision strategies (such as logistic regression) because they rarely over-fit data[59] and
are easy to interpret and implement in real-world decision tasks[60]. They have been used
in real world tasks from detecting depression [61], to making fast decisions in emergency
rooms [62].

Another possible decision tree method that is included in the MIIC online server is
the “J48” algorithm, which generates a pruned or not pruned C4.5 decision tree [63].
This algorithm is an extension of ID3 algorithm and possibly creates a small tree. It
uses a divide and conquers approach to growing decision trees that was leaded by Hunt
and his co-workers [64].

5.6 MIIC web-server publication on Bioinformatics, 2017
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Abstract

Summary: We present a web server running the MIIC algorithm, a network learning method combining
constraint-based and information-theoretic frameworks to reconstruct causal, non-causal or mixed
networks from non-perturbative data, without the need for an a priori choice on the class of reconstructed
network. Starting from a fully connected network, the algorithm first removes dispensable edges by
iteratively subtracting the most significant information contributions from indirect paths between each pair
of variables. The remaining edges are then filtered based on their confidence assessment or oriented
based on the signature of causality in observational data. MIIC online server can be used for a broad
range of biological data, including possible unobserved (latent) variables, from single-cell gene expression
data to protein sequence evolution, and outperforms or matches state-of-the-art methods for either causal
or non-causal network reconstruction.
Availability: MIIC online can be freely accessed at https://miic.curie.fr
Contact: herve.isambert@curie.fr
Supplementary information: Supplementary Materials are available at Bioinformatics online.

1 Introduction
The reconstruction of graphical models has become ubiquitous to analyze
the rapidly expanding, information-rich data of biological interest.
However, to date, all available network reconstruction servers are restricted
to specific types of data and make an a priori choice on the causal or
non-causal nature of the underlying model, such as BNW (Ziebarth et al.
(2013)) performing Bayesian Network reconstructions, LEGUMEGRN
(Wang et al. (2013)) learning directed regulatory networks or EVFOLD
(Marks et al. (2011)) and DCA (Morcos et al. (2011)) predicting undirected
protein contact interactions from amino acid homologous sequences.

MIIC online server aims to fill this gap by learning the most
appropriate causal, non-causal or mixed graphical model from the available
data. MIIC can be used for a broad range of biological data, from single-
cell transcriptomics or genomic alterations in tumor progression to long
term evolution of proteins and genomes (Fig. 1 and Figs. S1-S4 and Verny
et al. (2017)). MIIC online server is outlined below with more detailed
information available in Supplementary Materials and online Tutorial and
User Guide documentation available at https://miic.curie.fr.

2 Methods

2.1 MIIC algorithm

MIIC (Multivariate Information-based Inductive Causation) algorithm
relies on a novel information-theoretic method that combines constraint-
based learning approach and maximum likelihood framework (Verny
et al. (2017), Affeldt et al. (2016), Affeldt et al. (2015)). Starting from
a fully connected graph, MIIC iteratively removes dispensable edges,
by uncovering significant information contributions from indirect paths,
and orients the remaining edges, based on the signature of causality
in observational data. MIIC also provides an edge specific confidence
assessment of retained edges. The approach outperforms traditional
search-and-score and constraint-based methods on a broad range of
benchmark networks (Verny et al. (2017), Affeldt et al. (2016), Affeldt
et al. (2015)). It achieves significantly better results with much fewer
samples and is typically ten to hundred times faster than existing methods
taking into account the causal effects of unobserved latent variables (Verny
et al. (2017)).
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2.2 MIIC online input and main options

MIIConlinepipeline (Fig. S1) is a web interface for the MIIC algorithm.
The Workbench is used to upload the user’s dataset formatted as a table
with variable names specified as column names (or row names). This is the
only required input to reconstruct a network using basic (default) settings.
Algorithm advanced parameters. This section allows the user to specify
the following parameters: (i) Neff , the effective number of independent
samples in the submitted dataset (also estimated by MIIC itself, see
below), (ii) Complexity criterion, either MDL/BIC (Minimum Description
Length / Bayesian Information Criterion) or NML (Normalized Maximum
Likelihood) (Affeldt et al. (2016)), (iii) Orientation step (optional),
orienting ‘v-structures’, (iv) Propagation step (optional), if the orientation
step is performed, and (v) latent variables, to take into account or ignore
the causal effects of unobserved (latent) variables (Verny et al. (2017)).
Supplementary files. Supplementary files can be uploaded (optional), in
particular, to exclude specific edges based on prior knowledge, to provide
a user-defined network layout (x, y coordinates of nodes) or to provide
an order of categorical (non-numerical) variables for assigning edge signs
based on correlations or causal effects between variables.
Confidence cut. A threshold can be provided (default 10−2) to filter
retained edges based on their confidence estimated over a number of
randomizations of the available data (default 100 randomizations).

3 Results

3.1 MIIC online output: visualization and analysis

Once the learning process is finished, the web server redirects the user to
the results page, that contains several sections, displaying the network
and reporting some analysis. The Advanced visualization tab uses a
web-embedded Cytoscape display to visualize and interactively rearrange
the resulting network. It is also possible to open a new browser tab
(“Go!” button) to visualize and filter network edges based on their
residual (partial) correlation or edge-specific confidence and save the
graph visualization in various formats.The Summary tab contains all the
processed information on each retained or deleted edges. The Probabilities
tab contains information relative to the orientation and propagation steps
of the network reconstruction and is relevant for a quantitative analysis
of the causal relations in the data (see Supplementary Information).The
Centrality measures tab provides a topological analysis of the network
using graph theoretical measures. The Cross correlation tab displays
a plot of the sample cross-correlation decay along with an exponential
test. In the presence of correlation biases between successive samples,
a warning message is displayed on the results page and an estimate of
the effective number of independent samples, Neff , is used to reconstruct
a more reliable network model (Verny et al. (2017)).The Download tab
allows to download all the results associated with a network reconstruction.

3.2 Examples of causal versus non-causal networks

3.2.1 Gene regulatory network in hematopoiesis
This first example concerns the reconstruction of a regulatory network from
2,167 single-cell gene expression profiles of blood stem cells from (Hamey
et al. (2017)), see Supporting Information. Fig. 1 displays MIIC online
results page with a zoomed view of the regulatory network including 34
transcription factors, see full network in Fig S2. MIIC predicted network
exhibits a number of known central regulators such as MECOM|EVI1,
GATA1 and GATA2, with regulatory interactions documented in the
literature, such as MECOM → PBX1, MECOM → GATA2 and GATA2 →
TAL1|SCL, see Supporting Information for details. Note, in particular, that
nearly all predicted edges are directed, as expected for a transcriptional
regulatory network, with red edges indicating gene activation and blue
edges indicating gene repression regulations.

Fig. 1. View of MIIC online output page with a network visualization. It corresponds
to a zoom of a regulatory network reconstructed from single-cell expression data from
hematopoietic stem cell differentiation, Hamey et al. (2017), See full network in Fig S2.

3.2.2 Protein undirected contact map
By contrast, the second example concerns an inherently non-causal
network corresponding to the physical contact map of amino acid residues
within a protein structure reconstructed from 12,533 aligned homologous
sequences of an abundant protein domain family: the response regulator
receiver domain (Pfam code PF00072). MIIC contact prediction results
are presented in Figs. S3 & S4 and provide similar accurate predictions of
the protein contact map, without a priori choice or bias on the causal or
non-causal class of reconstructed networks, as compared with the state-
of-the-art method for protein contact prediction, plmDCA Ekeberg et al.
(2013), although MIIC performance on protein structures with fewer
homologous sequences is found to be less accurate, Fig. S5.
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1 User Documentation

A Tutorial and detailed User Guide documentations for MIIC online server are available at https://miic.curie.fr

2 MIIC online pipeline

The work-flow of MIIC online server is outlined in Fig. S1.

It consists of i) an input layer including the data, default or user-defined parameters and optional supple-
mentary files uploaded by the user, ii) the algorithmic core of the network reconstruction and iii) an output
layer with all interactive visualizations and analyses about the results.

MIIC algorithmic core (ii) includes three main steps detailed in the Methodological Sections of [Verny et al., 2017].

These three algorithmic steps are summarized below:

Step1: Learning the network ‘skeleton’

Starting from a fully connected undirected graph, MIIC iteratively prunes the edges that are not required to
account for the observed correlations in the available data, as the corresponding correlations can already been
explained by indirect paths without the need for additional edges between some of the nodes. MIIC algorithm
proceeds as follows based on information-theoretic results [Affeldt et al., 2015, Affeldt et al., 2016].

Given two nodes X and Y , MIIC looks for the most significant contributors susceptible to explain the mutual
information between X and Y , I(X;Y ), and iteratively removes their contributions as,

I(X;Y |{Ai}) = I(X;Y )− I(X;Y ;A1)− I(X;Y ;A2|A1)...− I(X;Y ;Ai|{Ai−1}) (1)

until the residual conditional mutual information between X and Y given {Ai}, I(X;Y |{Ai}), becomes lower
than the associated complexity loss of the graphical model without the XY edge, kX;Y |{Ai}/N , where N is
the number of independent samples. Otherwise, if I(X;Y |{Ai}) > kX;Y |{Ai}/N , the XY edge is retained, if
no additional contributor can be found to account for the residual conditional mutual information between X
and Y . This first step of MIIC algorithm returns an undirected graph, referred to as the network ‘skeleton’.
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Step2: Edge filtering (optional) based on Confidence ratio

The edge filtering step (optional) allows to remove additional edges from the first network skeleton obtained in
Step 1, according to an edge-specific confidence assessment [Verny et al., 2017]. It is based on the probability
to delete the edge XY between nodes X and Y , which can be estimated as,

PXY = e−NI′(X;Y |{Ai}) (2)

where N is the number of independent samples in the data and I ′(X;Y |{Ai}) = I(X;Y |{Ai})−kX;Y |{Ai}/N .

The probability PXY is then evaluated for each retained edge of the skeleton obtained using the actual
dataset versus multiple randomized instances of the same dataset. This allows to compute the following
edge-specific confidence ratio:

CXY =
PXY

〈P rand
XY 〉

(3)

where 〈P rand
XY 〉 is the mean probability to remove the edge XY averaged over multiple randomized datasets.

Hence, a smaller confidence ratio, CXY , implies a higher statistical confidence on the retained XY edge.

Step3: Edge orientation

Finally, given the skeleton obtained in Step 1, possibly filtered in Step 2, MIIC infers edge orientations based
on the signature of causality in observational data as follows [Verny et al., 2017].

First, MIIC sorts unshielded triples, i.e. X − Z − Y without XY edge, by decreasing absolute value of their
three-point conditional mutual information including finite size complexity correction, |I ′(X;Y ;Z|{Ai})|,
where {Ai} is the (possibly empty) set of contributors accounting for the removal of the XY edge, i.e. with
I ′(X;Y |{Ai}) < 0. Then, MIIC orients the XZ and/or ZY edges as,

• If I ′(X;Y ;Z|{Ai}) < 0, it forms a V-structure: X∗→ Z ←∗Y
• If I ′(X;Y ;Z|{Ai}) > 0 andX∗→ Z, the second edge is oriented as to form a non-v-structure: X∗→ Z → Y

where the endpoint mark ∗ stands for either an arrow head > or tail −. This enables, in particular, to
obtain bidirected edges, e.g. Z ↔ Y , shared by two v-structures, e.g. X∗→ Z ↔ Y ←∗W , which reflects the
presence of unobserved (latent) causes such as, Z L99 L 99K Y .

3 Examples of causal versus non-causal networks

In this section we illustrate the use of MIIC online server with two examples of network reconstruction from
real biological data.

The first example is an inherently causal network corresponding to directed regulatory interactions between
specific transcription factors involved in hematopoietic stem cell differentiation, while the second example
is a non-causal network corresponding to undirected symmetric physical interactions between amino acid
residues in close contact in a protein structure.

As discussed in the main text, these different types of causal and non-causal networks cannot be reconstructed
with the single existing online server, which are all designed to learn specific classes of directed or undirected
networks without the possibility to compare between alternative classes of graphical models. This prevents
all existing network reconstruction servers to uncover or rule out causality in observational data.
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By contrast, MIIC online does not require the user to select a priori the type of causal or non-causal
underlying model, as MIIC algorithm learns the most appropriate causal, non-causal or mixed model given
the available data.

3.1 Reconstruction of regulatory networks from single cell expression data

This first example concerns the reconstruction of blood stem cell regulatory network models from single-cell
molecular profiles. The mammalian blood system is maintained throughout the adult lifetime by hematopoi-
etic stem cells (HSCs) that differentiate into all mature blood cell types. Differentiation of HSCs toward
alternative lineages is controlled by transcription factors within organized regulatory programs that can be
modeled as transcriptional regulatory networks.

While hematopoiesis in adult has been extensively studied and well-characterized at cell population level,
cell fate decisions are in fact made at the level of individual cells and lead to heterogeneous cell populations.
Recent developments of high-throughput single-cell technologies, such as quantitative real-time PCR (qRT-
PCR) and RNA sequencing (RNA-Seq), now provide unique tools to study such differentiation processes
and corresponding regulatory networks at single-cell level.

In this section, we analyze the recent dataset obtained by [Hamey et al., 2017], which contains qRT-PCR
gene expression profiles of 48 genes including 34 transcription factors for 2,167 single HSCs and progenitor
cells.

The input dataset used for MIIC online reconstruction includes all 34 transcription factors and has been
discretized into binary levels corresponding to expressed versus non-expressed genes, as suggested by the
clearly bimodal distributions of qRT-PCR expression profiles. As expected, no significant correlation bias
between successive single cell samples is identified with MIIC online correlation analysis. Hence, all 2,167
single cell expression profiles can be considered as independent samples for the network reconstruction.

The network inferred by MIIC online is displayed in Fig. 1 of the main text (zoomed view) and Fig. S2 (full
network). The edges in the reconstructed network have been filtered using a confidence ratio threshold of
10−1 (Step 2 of MIIC algorithm) and their width reflects their estimated confidence. They represent direct
regulatory interactions between regulator and target transcription factors. In particular, we observe that
nearly all predicted edges are directed, as expected for transcriptional regulatory networks, with red edges
indicating gene activation and blue edges indicating gene repression regulations.

MIIC predicted network corresponds to a global transcriptional regulatory network, as it combines expres-
sion profiles of HSCs with different progenitor cell types [Hamey et al., 2017]. This network exhibits a
number of known central regulators such as MECOM|EVI1, GATA1 and GATA2, with regulatory inter-
actions documented in the literature, such as MECOM → PBX1 [Yuan et al., 2015], MECOM → GATA2
[Yuasa et al., 2005] and GATA2 → TAL1|SCL [Chan et al., 2006].

3.2 Reconstruction of residue-residue interaction network in protein structure
from homolog genomic sequences

The three-dimensional structure similarity between homologous proteins imposes strong constraints on their
sequence variability. This gives rise to correlated substitution patterns among amino acid residues at dif-
ferent sequence positions of a protein family. It has long been suggested that these correlations can be
exploited to infer spatial contacts within the tertiary protein structure [Altschuhet al., 1987][Neher, 1994].
In the last years several methods have been proposed to disentangle direct and indirect correlations, that rep-
resents one of the major difficulties for the success of the approach [Burger et al., 2008] [Weigt et al., 2009]
[Morcos et al., 2011] [Marks et al., 2011].
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In this section, we show the efficacy of MIIC algorithm to retrieve the internal protein contact network
for a widely studied protein family: the response regulator receiver domain (Pfam code PF00072). This
extremely abundant protein family is involved in bacterial signal transduction and acts as a transcription
factor interacting with specific DNA binding domains. This family is especially suited to assess the per-
formance of inference methods for protein contact network as (1) it contains a great number of sequenced
proteins (63,624), (2) several protein structures belonging to this family have been experimentally resolved,
and (3) it is a classical example that has already been studied in depth in the literature [Weigt et al., 2009],
[Uguzzoni et al., 2017].

The input dataset consists of a multiple sequence aligment (MSA) including 112 positions of the homologous
sequences, which can be downloaded from the Pfam database [Bateman et al., 2004]. When the whole
dataset including the 63,624 homologous sequences is used as input file on MIIC online server, a warning
message appears in the Result page to indicate significant correlations between samples, which do not simply
decay exponentially between successive sequences in the MSA. These correlations have been discussed in the
literature and are due to the phylogeny, multiple-strain sequencing, and a biased selection of sequenced
species. To overcome this issue, we have used a standard procedure to reduce the redundancy due to
sequence bias [Morcos et al., 2011]. Namely, we filtered the MSA by randomly selecting sequences that
differ from each other for at least 30% of their positions and removing the other sequences from the MSA.
After this preprocessing of the data, the resulting filtered MSA contains 12,533 sequences.

The results of MIIC network prediction are presented in Figs. S3 & S4. The edges in the reconstructed network
represent the residue-residue physical proximity in the 3D structure. Using Pymol [DeLano et al., 2017], we
can visualize the contact predictions and overlay them to available crystallographic structures.

In Fig. S3, we report the contact predictions mapped on an experimentally resolved structure (1nxs) down-
loaded from the PDB database [Berman et al., 1999]. Note that MIIC predictions provide an accurate de-
scription of the contact map of the protein (green edges). Quite remarkably, we also observe that MIIC does
not predict any directed edges despites its lack of a priori restriction on the class of (undirected, directed
or mixed) reconstructed network; this prevalence of undirected edges is in fact expected from the symmetry
of the physical contacts between amino acid residues, by contrast to the asymmetric regulator-target gene
relationships in the transcriptional regulation network described above. In addition, we found that most
false positive contacts (red edges in left panel and red dots in right panel) are actually very close to true
contacts in the 1nxs protein structure (black dots in right panel) and are related to the intrinsic heterogeneity
of the different protein structures within this large family. This is clearly apparent in Fig. S4, where MIIC

predictions are compared to the union of 11 contact maps of homologous protein structures, see Fig. S4
caption. As a result, most of these apparently false positive contacts in the 1nxs protein structure turn
out to be true positive contacts once the structure heterogeneity of this large protein family is taken into
account.

Finally, when these results are compared with the state-of-the-art method for protein contact prediction,
plmDCA [Ekeberg et al., 2013], we find that MIIC predicts a similar list of contacts and achieves similar
performance as plmDCA, as shown in Fig. S4 and Fig. S5 (upper panel). However, it is important to stress
that MIIC predicts a finite list of 179 contacts, while plmDCA sorts all potential pairwise contacts using a
rank but without predicting an explicit cutoff to distinguish between actual contacts and non-contacts. Note,
also, that contacts involving residues closer than 5 AA along the sequence are not displayed in Figs. S3-
S4 & S5, as they correspond to ‘trivial’ contacts and are possibly affected by small gap statistics in the MSA
[Feinauer et al., 2014]. Hence, Figs. S3 & S4 display in fact 75 long-distance contacts out of the 179 contacts
predicted by MIIC and the first 75 potential long-distance contacts inferred by plmDCA. Interestingly, most
of remaining long-distance false positive contacts, predicted by the two methods in Fig. S4, have been shown
to correspond to intermolecular contacts across homodimers rather than intramolecular contacts within a
single protein domain as reported in [Uguzzoni et al., 2017]. Hence, while these predicted contacts are not in
the tertiary structure, they nonetheless correspond to real coevolutionary signals in the MSA due to direct
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physical interactions between individual monomers in the quaternary assembly of the protein homodimers.

To further assess the performance of MIIC on protein contact map predictions, we have analyzed two addi-
tional protein families containing fewer homologous sequences. These are the 1a3a:a PDB protein structure
with a total of 31,922 homologous sequences and the 1mb6:a PDB protein structure with a total of 246
sequences.

We apply the same filtering procedure as for the response regulator receiver domain (1nxs) above. This
amounts to filtering sequences with more than 70% identity to reduce phylogenetic or other sampling biases,
which leads to significantly reduced datasets of only 2,897 out of 31,922 sequences for the 1a3a:a structure
and only 53 out of 246 sequences for the 1mb6:a structure.

Comparisons of MIIC and pmlDCA ranked predictions of protein map contacts are presented in Fig. S5 and
show a lower accuracy of MIIC with respect to pmlDCA for these two datasets containing fewer homologous
sequences. Yet, we note that, unlike MIIC, plmDCA uses the complete homologous sequence datasets through
a weighting scheme of similar sequences to compensate for phylogenetic or other sampling biases. By contrast,
as noted earlier, MIIC has the useful feature of providing a finite number of (mostly correct) predictions,
while plmDCA provides a ranked list of predictions including essentially all possible pairs without clear
cut-off, Fig. S5.
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USING CONFIDENCE RATIO

Step 3 - ORIENTATION OF THE V-STRUCTURES
PROPAGATION OF THE ORIENTATIONS TO 

NON-V-STRUCTURES

VISUALIZE THE PREDICTED NETWORK WITH:
CYTOSCAPE WEB OR IGRAPH PLOTS

CONSULT TABLES INCLUDING STATISTICS ABOUT EDGES,
NODES AND NETWORK

Figure S1: MIIC online server workflow. It consists of i) an input layer including the data, default or user-
defined parameters and optional supplementary files uploaded by the user, ii) the algorithmic core of the
network reconstruction including three main steps and iii) an output layer with all interactive visualizations
and analyses about the results.
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Figure S2: MIIC online reconstruction of the regulatory network of hematopoietic stem cell differentiation
from single-cell expression data taken from [Hamey et al., 2017]. See main text and Supplementary Materials
for detailed information.
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Figure S3: MIIC residue-residue contact predictions of the response regulator receiver domain (PF00072)
mapped on an experimentally resolved structure (1nxs PDB). Contacts are defined as residues with a prox-
imity of less than 8Å. Left panel: protein 3D structure with correct predictions in green and apparent errors
in red, see however Fig. S4. Right panel: 2D contact map with experimental contacts in black and predictions
with same color code as in the left panel.
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Figure S4: Contact map predictions of MIIC (upper triangular region) and plmDCA (lower triangular region)
compared with the union of 11 experimental contact maps (from the following PDB structures: 1nxs, 1zes,
2pln, 2zwm, 3nnn, 3r0j, 2rdm, 6chy, 1l5y, 2vuh, 4l4u). Structural contacts are displayed in black (if shared in
all 11 models) or gray (if present in at least one of the 11 structures), while correct and erroneous predictions
are shown in green and red, respectively. Note that the two methods present only small differences in the
number of correct and erroneous predictions. Besides, many of the apparently erroneous contact predictions
are in fact due to intermolecular interactions across the protein homodimers [Uguzzoni et al., 2017].
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Figure S5: Fraction of true positive (TP) contacts amongst the first predicted pairs ranked by MIIC (red
curves) and plmDCA (black curves) for three protein structures: 1nxs (Figs S3 & S4), 1a3a:a and 1mb6:a.
PlmDCA predictions make use of the full datasets which requires a reweighting scheme to compensate for
sampling biases of similar sequences. By contrast, MIIC results are based on reduced datasets filtering out
sequences with more than 70% identity. This corresponds to reduced datasets including 12,533 out of 63,624
sequences for 1nxs (upper panel), 2,897 out of 31,922 sequences for 1a3a:a (middle panel) and 53 out of 246
sequences for 1mb6:a (lower panel). Note, however, that MIIC predicts a finite number of contacts, while
plmDCA ranks predictions without a clear cut-off.
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Chapter 6

MIIC for mixed-type data

MIIC is an information theoretic method based on the evaluation of the conditional mu-
tual information, which is mathematically defined for discrete variables. This chapter
presents an extension of miic to deal with continuous and mixed (continuous-discrete)
datasets, with no a priori assumption on variable distributions (i.e. non-gaussian, multi-
modal). This approach leads to the possibility to perform network reconstruction on real
datasets where discrete variables coexist with continuous ones, as in the case of many
clinical datasets. This is a major innovative step forward in the field, as no existing
method is able to satisfactorily integrate such heterogeneous datasets inherent to clinical
records.

6.1 Mutual information estimation

As mutual information is primarily defined between discrete variables, its estimation for
continuous or mixed-type variables is notoriously difficult beyond the gaussian approx-
imation of continuous distributions, for which a simple relation exists with correlation
coefficient. In particular, arbitrary discretization of continuous variables tends to under-
estimate mutual information for small number of bins, while overestimating it for large
number of bins due to limited number of samples, as sketched below in Figure 6.5. More-
over, so far, no rationale provides optimum bin partitions to estimate mutual information,
especially for small sample size. Different methods have been proposed to estimate mu-
tual information on continuous/mixed variables, based on kNN (k-nearest neighbour) or
by dividing the gene expression space into discrete bins of fixed size (ARACNE), where
the number of bins selected for the analysis depended on the number of samples and had
to be chosen in a preprocessing step.

6.2 Mutual information for multivariate normal distribu-
tions

Our network reconstruction method MIIC is based on the estimation of multivariate
information. For two discrete variables X ans Y , mutual information is defined as

I(X;Y ) =
∑
y∈Y

∑
x∈X

p(x, y) log
p(x, y)

p(x)p(y)
(6.1)

where p(x, y) is the joint probability function of X and Y , and p(x) and p(y) are the
marginal probability distribution functions of X and Y respectively.
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Mutual information is also defined for continuous bivariate normal distributions: it
is a monotonic transformation of the correlation as:

I(X;Y ) = 1/2 ln (1− ρ(X,Y )2) (6.2)

where ρ(X,Y ) is the correlation between variable X and Y . It is also formulated for
conditional mutual information on multivariate normal distributions as a function of the
partial correlation:

I(X;Y |Z) = 1/2 ln (1− ρ(X,Y |Z)2) (6.3)

where ρ(X,Y |Z) is the partial correlation of X and Y conditioned on a set of nodes
Z. We decided to integrate this formulation inside MIIC, allowing the evaluation of the
mutual information for the multivariate normal distribution case. As complexity term,
we chose to use MDL, setting the formula as:

cplx = 1/2 Nv log(n) (6.4)

where Nv corresponds to the number of variables (X,Y and possible contributors).
In order to correctly use the evaluation of the mutual information for normal distri-

butions, it is necessary to know in advance which variables are indeed gaussian. For this
purpose we used the Lilliefors (Kolmogorov-Smirnov) test for the composite hypothe-
sis of normality, rejecting the null hypothesis of normality with an alpha set to 10−2.
The fundamental step in the MIIC algorithm is the research of the best contributors to
explain the mutual information I(X;Y ). In order to be consistent with the gaussian
evaluation of the conditional mutual information and to be able to evaluate the score
for each possible contributor we added also the evaluation of the score for each possible
contributor, following the gaussian formulation of 2 points and 3 points information.
This score evaluation is performed if and only if all variables in the dataset are gaussian.
This implementation allows us to obtain performances comparable to the best state-
of-the-art methods which take advantage of gaussian assumptions, when variables are
indeed gaussian, like for the PC algorithm that implements the gaussian conditional in-
dependent test. Figure 6.1 and 6.2 report the performances (precision, recall, f-score and
runtime) for Miic and state-of-the-art algorithms like Aracne, Bayesian hill climbing, PC
algorithm (alpha 0.01 and 0.05), graphical lasso and Ridge estimation of partial correla-
tion. Plots have been made averaging 5 random networks with 50 nodes, 50 edges and
100 nodes, 100 edges respectively. Values for each network are evaluated as the average
of 10 sub-samplings of n samples, starting from data matrices with 100k samples. It
can be noticed that Miic performances are very promising and comparable to the best
state-of-the-art algorithm (PC with alpha 0.01) but with a much better balance between
Precision and Recall.

6.3 Mutual information for non-gaussian distributions

In the assumption of infinite number of samples, mutual information for continuous
variables can be formulated as [65]:

I(X;Y ) = lim
∆→∞

I([X]∆; [Y ]∆) (6.5)

and its curve can be seen in Figure 6.3, where ∆ stands for the number of tested bins.
This assumption is not true however for finite (real) datasets, since the number of

samples for each bin is dependent on the total number of samples, and a model with too
many bins overestimates the mutual information, as can be seen in Figure 6.4. Our idea is
hence to exploit the complexity term introduced in section 4.3 to penalize discretizations
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Figure 6.1: Average Precision, Recall, F-score and runtime for Miic, Aracne, Bayesian
hill climbing, PC algorithm (alpha 0.01 and 0.05), graphical lasso and Ridge estimation
of partial correlation matrix for 5 random networks with 50 nodes and 50 edges. Dashed
lines: graph skeleton, solid lines:CPDAG
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Figure 6.2: Average Precision, Recall, F-score and runtime for Miic, Aracne, Bayesian
hill climbing, PC algorithm (alpha 0.01 and 0.05), graphical lasso and Ridge estimation
of partial correlation matrix for 5 random networks with 100 nodes and 100 edges.
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Figure 6.3: Mutual information estimation for continuous variables and infinite size
datasets [66]

with too many bins, and to find the “optimal” discretization that best approaches the
theoretic mutual information (Figure 6.5). We hence want to estimate I(X;Y ) as an
optimization problem:

I(X;Y ) = max∆[I ′([X]∆; [Y ]∆)] (6.6)

where I ′([X]∆; [Y ]∆) = I([X]∆; [Y ]∆) − k∆
xy(N), with k∆

xy(N) ' 1
2(∆ − 1)2 log(N)

N , in
the case of BIC complexity. This is inspired by a single variable histogram density
estimation [66] in order to discretize a continuous distribution taking into account the
finite size of the dataset, as in Figure 6.6. This yields in an algorithm with N2×(max
bins) computational complexity. To estimate I(X;Y ), we implemented a discretization
scheme which iteratively optimizes each variable taking the discretization of the other
variables as fixed and discretizing all variables using the discretization already performed
so far. The process halts when the estimate of I(X;Y ) converges.

6.4 Mixed-data generation for benchmarks

Different tools exist for the generation of mixed data (discrete-continuous), but they all
suffer of a big problem: they do not generate a mixed model where discrete variables can
influence continuous ones and vice-versa, but they just discretize continuous data once
the data generation is completed.

• TETRAD: this tool allows the generation of benchmark networks and correspond-
ing data following the multivariate distribution. From version 6.2 Tetrad added
the possibility to generate mixed data using the Lee and Hastie [67] algorithm.
The model generates continuous data for all the variables, but some or all of the
variables may be discretized at random. This algorithm has a fundamental prob-
lem, since the underlying data are not generated with a mixed model but with a
continuous one, and variables are discretized only at the end.

• BDgraph: this R package simulates multivariate distributions with different types
of underlying graph. Based on the underling graph structure, it generates four
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Figure 6.4: Mutual information estimation for continuous variables and finite size
datasets

Figure 6.5: Optimization of the mutual information estimation for continuous variables
and finite size datasets

Figure 6.6: Optimum histogram discretization for continuous variables and finite size
datasets
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different types of datasets, including multivariate Gaussian, non-Gaussian, dis-
crete, or mixed data. In the mixed case, data are transferred from multivariate
normal distribution to mixture of ’count’, ’ordinal’, ’non-Gaussian’, ’binary’ and
’Gaussian’, respectively. Since data are not generated with an underlying mixed
model, but they are just discretized, also this method is not suitable for testing
the algorithm in the mixed case.

To overcome this lack of method, we developed a new algorithm to generate mixed
data that overcomes the problems of the other tools and implements a model containing
relations among discrete and continuous variables. The method first generates a network
of n nodes and then randomly assigns the required fraction of discrete and continuous
variables. Secondly, we generate data for all the nodes without parents, according to their
data type (discrete or continuous). For the continuous case the underlying distribution
is a gaussian mixture model. Finally we iteratively generate data for each node that have
all the parents with already generated data. There can be different types of relation,
according to the type of parents p of a child node c for which we want to generate data:

• c discrete, p discrete: this is the simplest relation since we just need to set the
possible number of levels of c and set the joint probabilities for all the combination
of levels of ancestor nodes. This is exactly the algorithm that TETRAD uses for
discrete variables.

• c discrete, p continuous/discrete: in this case we need to discretize the values of
parents with a continuous distribution and then run the discrete-discrete method
explained above. The discretization is performed by finding the valleys of its kernel
density estimation. If any single bin has more than 90% of the values and its
standard deviation is superior to a threshold (0.05), its content is re-discretized with
an unsupervised equal-frequencies discretization method with log(n_samples)− 2
bins.

• c continuous, p discrete/continuous: in this case we use the Michaelis-Menten
and Hill kinetic models with random reaction parameters. Discrete variables are
transformed to continuous one generating for each variable a gaussian mixture
with a number of picks equal to the number of levels in the discrete variable.
Michaelis-Menten and Hill kinetics are then applied to continuous variables, like
for the SynTReN algorithm. The reaction parameter we used are reported in the
SynTReN Paper [68] and in [69].

The distributions of variables values for a random network of 20 nodes (8 discrete
and 12 continuous) is shown in figure 6.7.

6.5 Benchmarks for mixed variables

We tested the mixed-type data extension of MIIC network reconstruction method on
benchmark mixed-type data. Datasets were generated based on non-linear bayesian
rules using the code described in the section above. The resulting reconstructed network
F-scores are shown in Figure 6.8 for an increasing proportion of continuous variables over
discrete variables and compared to alternative methods, MXM[26] and CausalMGM[28],
also designed to analyze mixed-type data. Comparisons with fully continuous datasets
were also performed with additional methods, CAM[30], rank-PC and rank-FCI[46] al-
gorithms, Figure 6.9 and confirm the better performance of MIIC over alternative con-
tinuous or mixed-type network learning methods.
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Figure 6.7: Data distributions generated for mixed data in a random network of 20 nodes
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Figure 6.8: Reconstruction of benchmark networks for mixed-type, non-linear, non-
Gaussian datasets. CPDAG F-scores obtained for benchmark random networks with 100
nodes and average degree 3 reconstructed from N=100–5,000 samples. F-scores obtained
with our parameter-free information-theoretic approach MIIC (magenta) are compared
to the best results obtained with alternative mixed-type data methods, CausalMGM [28]
(blue) and MXM [26] (green), by optimizing CausalMGM regularization parameters (λ)
and MXM significance parameter (α), for each sample size N .
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Figure 6.9: Reconstruction of benchmark networks for continuous, non-linear, non-
Gaussian datasets. Skeleton (a) and CPDAG (b) Precision, Recall and F-scores ob-
tained for benchmark 100 node random networks with average degree 3 reconstructed
from N = 100− 5, 000 samples. Results obtained with our parameter-free information-
theoretic approach MIIC are compared between optimum non-uniform bin sizes and
equal frequency bin sizes as well as to the best results obtained with alternative con-
tinuous data methods: PC with Gaussian conditional independence test, rankPC and
rankFCI from the pcalg package [46], kPC with the Helbert-Schmidt Independence Cri-
terion [70, 71] and CAM[30] algorithms, after optimizing their respective parameter (α)
for each sample size N . Performances of miic on discretized datasets (equal-frequency
binning on all variables with N1/3 bins) are also shown.
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Part III

Application to real life datasets
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Chapter 7

Examples of causal versus
non-causal networks

In this section, taken from our paper [51], I illustrate the use of MIIC online server with
two examples of network reconstruction from real biological data. The first example is
an inherently causal network corresponding to directed regulatory interactions between
specific transcription factors involved in hematopoietic stem cell differentiation, while the
second example is a non-causal network corresponding to undirected symmetric physical
interactions between amino acid residues in close contact in a protein structure. As
discussed in Chapter 5, these different types of causal and non-causal networks cannot
be reconstructed with the existing online servers, which are all designed to learn specific
classes of directed or undirected networks without the possibility to compare between
alternative classes of graphical models. This prevents all existing network reconstruction
servers to uncover or rule out causality in observational data. By contrast, MIIC online
does not require the user to select a priori the type of causal or non-causal underlying
model, as MIIC algorithm learns the most appropriate causal, non-causal or mixed model
given the available data.

7.1 Reconstruction of regulatory networks from single cell
expression data

This first example concerns the reconstruction of blood stem cell regulatory network
models from single-cell molecular profiles. The mammalian blood system is maintained
throughout the adult lifetime by hematopoietic stem cells (HSCs) that differentiate into
all mature blood cell types. Differentiation of HSCs toward alternative lineages is con-
trolled by transcription factors within organized regulatory programs that can be mod-
eled as transcriptional regulatory networks.

While hematopoiesis in adult has been extensively studied and well-characterized at
cell population level, cell fate decisions are in fact made at the level of individual cells
and lead to heterogeneous cell populations.

Recent developments of high-throughput single-cell technologies, such as quantitative
real-time PCR (qRT-PCR) and RNA sequencing (RNA-Seq), now provide unique tools
to study such differentiation processes and corresponding regulatory networks at single-
cell level.

In this section, we analyse the recent dataset obtained by Hamey et al.[72], which
contains qRT-PCR gene expression profiles of 48 genes including 34 transcription factors
for 2,167 single HSCs and progenitor cells.

The input dataset used for MIIC online reconstruction includes all 34 transcription
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factors and has been discretized into binary levels corresponding to expressed versus
non-expressed genes, as suggested by the clearly bimodal distributions of qRT-PCR ex-
pression profiles. As expected, no significant correlation bias between successive single
cell samples is identified with MIIC online correlation analysis. Hence, all 2,167 sin-
gle cell expression profiles can be considered as independent samples for the network
reconstruction.

The network inferred by MIIC online is displayed in Figure 7.1. The edges in the re-
constructed network have been filtered using a confidence ratio threshold of 10−1 (Step 2
of MIIC algorithm) and their width reflects their estimated confidence. They represent
direct regulatory interactions between regulator and target transcription factors. In
particular, we observe that nearly all predicted edges are directed, as expected for tran-
scriptional regulatory networks, with red edges indicating gene activation and blue edges
indicating gene repression regulations.

MIIC predicted network corresponds to a global transcriptional regulatory network,
as it combines expression profiles of HSCs with different progenitor cell types [72]. This
network exhibits a number of known central regulators such as MECOM|EVI1, GATA1
and GATA2, with regulatory interactions documented in the literature, such as MECOM
→ PBX1 [73], MECOM → GATA2 [74] and GATA2 → TAL1|SCL [75].

Figure 7.1: MIIC online reconstruction of the regulatory network of hematopoietic stem
cell differentiation from single-cell expression data taken from [72].

Hamey et al. [72] performed an accurate analysis on Single-Cell Expression Profiles in
order to disentangle rules and regulations driving cell differentiation from hematopoietic
stem cells (HSCs) to megakaryocyte–erythroid progenitors (MEPs) and lymphoid-primed
multipotent progenitors (LMPPs). The study partitions the 2,167 cells into different cell
types, according to Figure 7.2.

The authors used “pseudotime” in order to sort cells as they progress through dif-
ferentiation, based on the strength of similarities between individual expression profiles.
The diffusion map analysis on single cell profiles identifies two lineage branches originat-
ing from HSCs, showing either MEPs or LMPPs as terminal cells. Ordering cell through
“pseudotime” reported significant variations on transcription factor profiles in the two
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Figure 7.2: The hematopoietic hierarchy, with populations profiled by qRT-PCR high-
lighted in boxes. (Hamey et al, Fig. 1 [72].)

different trajectories, as shown in Figure 7.3. One of the genes showing a strong varia-
tion in the two lines is the Notch gene, which increases its expression along the LMPP
trajectory while remaining undetected in the MEP line.

Figure 7.3: Heatmaps showing changes in transcription factor expression levels along
pseudotime for MEP and LMPP trajectories. (Hamey et al, Fig. 2 [72].)

In order to find regulatory shifts along the two trajectories, authors used continuous
gene expression levels to identify potential regulatory relations through correlation net-
works (using partial correlation evaluation) and pseudotime ordering, along with Boolean
Network Reasoning. Correlation coefficients were binarized, with significances > 0.01 set
to 0. Finally, the top 100 correlating pairs, plus self-activation for each gene, were taken
as potential edges in order to perform the Boolean reasoning phase.
Using the same idea we built gene regulatory networks using continue single cell profiles
from the two distinct cell trajectories: from HSC to MEP and from HSC to LMPP.
Continuous profiles can be used for analysis since these profiles have been normalized
after amplification against 3 house keeping genes. In order to define the two populations
we used cell types reported in the original data to create two datasets including the
shared first part of the tree, where cells are not yet differentiated. The LMPP trajectory
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contains LT-HSC, FSR-HSC, MPP and LMPP, while the MEP trajectory consists of
LT-HSC, FSR-HSC, MPP, preMegE, CMP and MEP. The number of cells of each type
is reported in Table 7.1.

LT-HSC FSR-HSC MPP LMPP preMegE CMP MEP
759 432 188 178 154 147 124

Table 7.1: Cell type frequencies on cell differentiation.

The HSC to LMPP trajectory includes 1,557 cells, while the second trajectory from
HSCs to MEP includes 1,804 cells. The two datasets were uploaded to the MIIC web
server with a defined layout for all genes, in order to simplify the comparison between the
two reconstructed networks, that are reported in Figure 7.4 (MEP trajectory) and 7.5
(LMPP trajectory). The two networks are quite dense, showing respectively 72 and 78
edges, but even if the number of connections does not vary so much, they present many
differences (66 edges), as can be seen in Figure 7.6. This network has been made by
highlighting the differences between the two networks with the comparison tool available
on the server (see section 5.3). It can be noticed that the networks include genes known to
play an important role in the differentiation process, namely Gata1, Gata2, Lyl1, Meis1,
Nfe2 and Etv6. Yet, a huge difference with the two networks built by these authors is
the difference in the number of connections, that decreases from an average degree > 6.5
in Hamey et. al paper to an average degree around 4.5 for MIIC reconstruction. These
authors identified also a strong regulation implying Gata2 control of Nfe2 and Cbfa2t3h
in MEP differentiation, not present in the LMPP network model. Our analysis supports
this finding, except for the Gata2 - Cbfa2t3h link, which is found to be completely
mediated by Nfe2. A second big difference with their paper is the absence of many
connections that are found in the MEP and LMPP networks for the Cbfa2t3h gene, that
is instead poorly connected in our network.

An alternative way to identify genes that play a role in cell differentiation is to use
all cells in a single network reconstruction (starting from the original data), and add a
node that reports the cell type for each sample (Cell_type). This network reconstruction
mixes one discrete node (Cell_type) with many continuous nodes (gene profiles), showing
another interesting application that the mixed version of MIIC can do. The reconstructed
network (shown in Figure 7.7) reports biologically verified connections between genes as:
Gata1 [76], Gata2 [76] [77], Tal1 [76] [77], Gfi1 [76], Runx1 [77], Meis1 [77], Gata3 [76],
Ikzf1 (Ikaros) [76] and Nfe2 [78].

7.2 Reconstruction of residue-residue interaction network
in protein structure from homolog genomic sequences

The three-dimensional structure similrity between homologous proteins imposes strong
constraints on their sequence variability. This gives rise to correlated substitution pat-
terns among amino acid residues at different sequence positions of a protein family. It
has long been suggested that these correlations can be exploited to infer spatial contacts
within the tertiary protein structure [79][80]. In the last years several methods have
been proposed to disentangle direct and indirect correlations, that represents one of the
major difficulties for the success of the approach [81] [82] [55] [54].

In this section, we show the efficacy of MIIC algorithm to retrieve the internal protein
contact network for a widely studied protein family: the response regulator receiver
domain (Pfam code PF00072). This extremely abundant protein family is involved in
bacterial signal transduction and acts as a transcription factor interacting with specific
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Figure 7.4: Gene regulatory network ruling HSC to MEP differentiation as predicted by
MIIC.
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Figure 7.5: Gene regulatory network ruling HSC to LMPP differentiation as predicted
by MIIC.
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Figure 7.6: Differences between HSC to MEP and HSC to LMPP differentiation as
predicted by MIIC.
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120



DNA binding domains. This family is especially suited to assess the performance of
inference methods for protein contact network as (1) it contains a great number of
sequenced proteins (63,624), (2) several protein structures belonging to this family have
been experimentally resolved, and (3) it is a classical example that has already been
studied in depth in the literature [82], [83].

The input dataset consists of a multiple sequence alignment (MSA) including 112 po-
sitions of the homologous sequences, which can be downloaded from the Pfam database
[84]. When the whole dataset including the 63,624 homologous sequences is used as input
file on MIIC online server, a warning message appears in the Result page to indicate sig-
nificant correlations between samples, which do not simply decay exponentially between
successive sequences in the MSA. These correlations have been discussed in the litera-
ture and are due to the phylogeny, multiple-strain sequencing, and a biased selection of
sequenced species. To overcome this issue, we have used a standard procedure to reduce
the redundancy due to sequence bias [55]. Namely, we filtered the MSA by randomly
selecting sequences that differ from each other for at least 30% of their positions and
removing the other sequences from the MSA. After this preprocessing of the data, the
resulting filtered MSA contains 12,533 sequences.

The results of MIIC network prediction are presented in Figs. 7.8 and 7.9. The edges
in the reconstructed network represent the residue-residue physical proximity in the 3D
structure. Using Pymol [85], we can visualize the contact predictions and overlay them
to available crystallographic structures.

In Fig. 7.8, we report the contact predictions mapped on an experimentally resolved
structure (1nxs) downloaded from the PDB database [86]. Note that MIIC predictions
provide an accurate description of the contact map of the protein (green edges). Quite
remarkably, we also observe that MIIC does not predict any directed edges despites its
lack of a priori restriction on the class of (undirected, directed or mixed) reconstructed
network; this prevalence of undirected edges is in fact expected from the symmetry of the
physical contacts between amino acid residues, by contrast to the asymmetric regulator-
target gene relationships in the transcriptional regulation network described above. In
addition, we found that most false positive contacts (red edges in left panel and red
dots in right panel) are actually very close to true contacts in the 1nxs protein structure
(black dots in right panel) and are related to the intrinsic heterogeneity of the different
protein structures within this large family. This is clearly apparent in Fig. 7.9, where
MIIC predictions are compared to the union of 11 contact maps of homologous protein
structures, see Fig. 7.9 caption. As a result, most of these apparently false positive
contacts in the 1nxs protein structure turn out to be true positive contacts once the
structure heterogeneity of this large protein family is taken into account.

Finally, when these results are compared with the state-of-the-art method for protein
contact prediction, plmDCA [87], we find that MIIC predicts a similar list of contacts
and achieves similar performance as plmDCA, as shown in Fig. 7.9 and Fig. 7.10 (upper
panel). However, it is important to stress that MIIC predicts a finite list of 179 contacts,
while plmDCA sorts all potential pairwise contacts using a rank but without predicting
an explicit cutoff to distinguish between actual contacts and non-contacts. Note, also,
that contacts involving residues closer than 5 AA along the sequence are not displayed
in Figs. 7.8-7.9 and 7.10, as they correspond to ‘trivial’ contacts and are possibly af-
fected by small gap statistics in the MSA [88]. Hence, Figs. 7.8 & 7.9 display in fact
75 long-distance contacts out of the 179 contacts predicted by MIIC and the first 75
potential long-distance contacts inferred by plmDCA. Interestingly, most of remaining
long-distance false positive contacts, predicted by the two methods in Fig. 7.9, have
been shown to correspond to intermolecular contacts across homodimers rather than in-
tramolecular contacts within a single protein domain as reported in [83]. Hence, while
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these predicted contacts are not in the tertiary structure, they nonetheless correspond
to real coevolutionary signals in the MSA due to direct physical interactions between
individual monomers in the quaternary assembly of the protein homodimers.

To further assess the performance of MIIC on protein contact map predictions, we
have analyzed two additional protein families containing fewer homologous sequences.
These are the 1a3a:a PDB protein structure with a total of 31,922 homologous sequences
and the 1mb6:a PDB protein structure with a total of 246 sequences.

We apply the same filtering procedure as for the response regulator receiver domain
(1nxs) above. This amounts to filtering sequences with more than 70% identity to reduce
phylogenetic or other sampling biases, which leads to significantly reduced datasets of
only 2,897 out of 31,922 sequences for the 1a3a:a structure and only 53 out of 246
sequences for the 1mb6:a structure.

Comparisons of MIIC and pmlDCA ranked predictions of protein map contacts are
presented in Fig. 7.10 and show a lower accuracy of MIIC with respect to pmlDCA for
these two datasets containing fewer homologous sequences. Yet, we note that, unlike
MIIC, plmDCA uses the complete homologous sequence datasets through a weighting
scheme of similar sequences to compensate for phylogenetic or other sampling biases.
By contrast, as noted earlier, MIIC has the useful feature of providing a finite number
of (mostly correct) predictions, while plmDCA provides a ranked list of predictions
including essentially all possible pairs without clear cut-off, Fig. 7.10.

Figure 7.8: MIIC residue-residue contact predictions of the response regulator receiver do-
main (PF00072) mapped on an experimentally resolved structure (1nxs PDB). Contacts
are defined as residues with a proximity of less than 8Å. Left panel: protein 3D structure
with correct predictions in green and apparent errors in red, see however Fig. 7.9. Right
panel: 2D contact map with experimental contacts in black and predictions with same
color code as in the left panel.
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Figure 7.9: Contact map predictions of MIIC (upper triangular region) and plmDCA
(lower triangular region) compared with the union of 11 experimental contact maps
(from the following PDB structures: 1nxs, 1zes, 2pln, 2zwm, 3nnn, 3r0j, 2rdm, 6chy,
1l5y, 2vuh, 4l4u). Structural contacts are displayed in black (if shared in all 11 models)
or gray (if present in at least one of the 11 structures), while correct and erroneous
predictions are shown in green and red, respectively. Note that the two methods present
only small differences in the number of correct and erroneous predictions. Besides,
many of the apparently erroneous contact predictions are in fact due to intermolecular
interactions across the protein homodimers [83].
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Figure 7.10: Fraction of true positive (TP) contacts amongst the first predicted pairs
ranked by MIIC (red curves) and plmDCA (black curves) for three protein structures:
1nxs (Figs S3 & S4), 1a3a:a and 1mb6:a. PlmDCA predictions make use of the full
datasets which requires a reweighting scheme to compensate for sampling biases of similar
sequences. By contrast, MIIC results are based on reduced datasets filtering out sequences
with more than 70% identity. This corresponds to reduced datasets including 12,533 out
of 63,624 sequences for 1nxs (upper panel), 2,897 out of 31,922 sequences for 1a3a:a
(middle panel) and 53 out of 246 sequences for 1mb6:a (lower panel). Note, however,
that MIIC predicts a finite number of contacts, while plmDCA ranks predictions without
a clear cut-off.
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Chapter 8

Application to medical records of
eldery patients with cognitive
disorders.

This chapter aims at describing one application of the MIIC algorithm for mixed variables
on a clinical context: medical records of 1,628 elderly patients consulting for cognitive
disorders at La Pitié-Salpêtrière hospital in Paris. This work was firstly initiated by a
former PhD student in our group (Louis Verny), who studied this dataset during his
PhD [89]. During this period the algorithm for dealing with mixed data was still under
development and not ready to be used, so he discretized continuous variables with respect
to state of the art well caracterized thresholds, giving rise to the resulting reconstruction
shown in Figure 8.1

Figure 8.1: Network taken from Louis thesis[89], reconstructed from medical records of
1,628 eldery patients with cognitive disorders.
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Since the coding phase of the extension for mixed variables has been completed
and the algorithm has been largely tested on benchmarks, we re-analysed the cognitive
dataset, using all original values, without discretizing continuous variable and adding the
Kullback-Liebler test for the contributor search, in order to obtain a more complete and
stable reconstruction showing the clinical context. The dataset Louis built contained 107
variables, of which 19 variables are indeed continuous. In Figure 8.1 only 91 variables
are shown since 16 of them were not connected to the network, principally because of
the data discretization process that brakes the relations between variables and to the
KL distance test who was not coded. The reconstructed network using the actual MIIC
online server is shown in Figure 8.2, where all 107 variables are present. In this network
only 5 nodes result having no connections. Louis’ network was counting 117 edges, while
the last one presents 68 additional edges, for a total of 175 edges. Both networks are
reconstructed using a confidence threshold cut of 10−2.

8.1 Network analysis

The variables of the clinical network, Figure 8.2, can be grouped into clusters associ-
ated to specific dementia disorders and patient clinical context, including comorbidities
(diabetes, hypertension, etc) and related comedications.

8.1.1 Parkisonian syndromes

The first group of nodes contains variables classically linked to primary degenerative de-
mentias associated to parkinsonian syndromes (Park_Sd), notably the rarity and slow-
ness of movements, tremor at rest and muscle stiffness, caused either by a parkinso-
nian dementia (PARK_DEM, 80% of cases) or a dementia with Lewy bodies (LEWY,
15% of cases). Park_Sd are identified with the Unified Parkinson Disease Rating Scale
(UPDRS) which distinguishes them from Parkinson plus syndromes such as Progres-
sive Supranuclear Palsy (PSP), Cortico Basal Degeneration (CBD) or Multiple System
Atrophy (MSA). PARK_DEM and Park_sd are also linked to idiopathic Parkinson’s
disease (IPD) and associated to orthostatic hypotension (OHT), in agreement with pre-
vious studies [90]. By contrast, dementia with Lewy bodies (LEWY) is found to be
directly associated to fluctuations, halluciations and Rapid eye movement sleep Behav-
ior Disorder (RBD) as well as indirectly connected (2nd neighbor) to confusions, falls
and behavioural changes assessed through the Neuro Psychiatric Inventory (NPI) score.
LEWY diagnoses are also correctly associated with dopamine transporter imaging (DAT-
scan) examination [91].

8.1.2 Alzheimer’s versus dysexecutive syndromes

The second and largest group of nodes mostly consists of the results from neuropsycho-
logic tests used to assess the cognitive functions of patients and diagnose Alzheimer’s
disease versus dysexecutive syndromes. Two types of tests can be distinguished: simple
tests probing a precise cerebral function and composite tests combining the results of
multiple simple tests to explore more global cognitive processes. The Trail Making Test
part A (TMTA) is a simple test primarily used to examine cognitive processing speed
(continuous score) by recording the time needed by the patient to connect ordered nodes
(from 1 to 25) randomly placed on a sheet of paper. Our network analysis shows that
TMTA is directly connected to a number of other simple tests, such as forward memory
spans probing attentional capacity, backward memory spans probing immediate work-
ing memory, immediate recall of Taylor or Rey complex figures, verbal semantic fluency
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(Issacs set test) and the clock-drawing test. This highlights the rationale of neuropsychol-
ogy in combining simple tests into more informative composite tests. Three composite
tests are included in the clinical network, the Mini Mental State (MMS), the Frontal
Assessment Battery (FAB) and the Montreal Cognitive Association (MoCA) tests.

• The Mini Mental State (MMS) test assesses cognitive functions related to memory,
spacial and temporal orientations but not to executive functions, which require to
integrate multiple information sources. MMS is found to be the main hub (with 14
neighbors) of the reconstructed network, as it is directly connected, as expected,
to most of the memory test results (forward / backward verbal and visuospatial
memory spans, biographic memory and delayed recalls of Taylor or Rey–Osterrieth
complex figures). By constrast, MMS is found to be negatively correlated to the
Alzheimer’s diagnostic, through the MMS 3 word memory test, which is known to
be one of the most specific tests for Alzheimer’s disease, together with the Free
and Cued Selective Reminding (FCSR) test. Interestingly, our network analysis
shows that the Alzheimer’s disease diagnostic is directly connected to the FCSR
test through the low percent reactivity to cueing, which identifies genuine storage
deficits (not facilitated by cueing) due to amnesic syndrome of the hippocampal
type known to be characteristic of Alzheimer’s disease [92].

• The Frontal Assessment Battery (FAB) test is complementary to MMS, as it is
entirely focussed on executive functions, centralized in the frontal cortex; it is thus
very consistent that FAB is found to be directly connected and negatively correlated
to dysexecutive syndrome. Note, however, that patients suffering from dysexecu-
tive syndrome do not typically show poor FCSR scores unlike Alzheimer patients.
This confirms the specificity and sensibility of the FCSR test to Alzheimer’s disease
[93].

• Finally, the Montreal Cognitive Association (MoCA) composite test integrates a
variety of other tests such as the clock-drawing test, the phonetic fluency test
as well as semantic fluency test (Isaacs Set Test), which is consistent with the
direct connections recovered between MoCA and these three individual tests in
the inferred network.

8.1.3 Psychiatric conditions

The third group of nodes concerns variables associated with the psychiatric conditions
of patients. It includes their past psychiatric history (Psy_Hist) and present psychiatric
conditions, i.e., anxio-depressive or bipolar (BIPO) syndromes, associated treatments
(antidepressants, psychotropes, benzodiazepine BZD and neuroleptics NLP) and finally
scores used to diagnose depression (GDS_15) and a deterioration in the quality of life
(QoL). The analysis of all the links between these variables confirms the overall con-
sistency of this psychiatric cluster: a good quality of life is closely associated with a
low GDS_15 score (corresponding to a low probability of depression). Note, however,
that psychiatric pathologies are all linked to each other, underlying the difficulty to dis-
tinguish them accurately. Yet, our network analysis shows that patients with bipolar
syndrome (BIPO) tend to show better scores at the FCSR recall test.

8.1.4 Vascular versus mixed forms of dementias

The fourth group of nodes of the clinical network is associated with variables impli-
cated in vascular dementias (VASC_DEM) originating from cerebral vascular accidents
(CVA) which damage brain regions essential for cognitive processes. Different types
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and sizes of vascular accidents are distinguished from microbleeds to ischemic stroke
(clot) and lacunae (empty spaces in the deep brain structures). These more severe vas-
cular accidents may also lead to degenerative dementia syndromes, corresponding to a
mixed form of dementia (MIXED_FORMS), which is inferred to be directly associated
to low MMS scores and poor scores at the FCSR Recall test (i.e., negative direct links).
VASC_DEM and MIXED_FORMS are also found to be connected to the Fazekas scale
[94], which detects and quantifies white matter hyperintensities in the brain that are
the consequence of cerebral small vessel disease including demyelination and axonal loss
of neuronal cells. The Fazekas scale is found to be directly associated to low cognitive
processing speed (TMTA) and also strongly correlated to the Scheltens scale [95] quanti-
fying the severity of hippocampal atrophy, in agreement with a recent independent report
[96]. The hippocampus is a brain structure involved in memory and space navigation,
which is consistent with our finding of a direct negative association between Scheltens
scale and MMS score. Interestingly, this predicted association between the Fazekas and
the Scheltens scales, inferred from our unsupervised global network analysis, provides
some physiological insights linking the consequence of vascular accidents (Fazekas scale)
to the atrophy of important brain structures (Scheltens scale) and, thereby, to cogni-
tive and functional impairments, as reported in clinical studies linking white matter
hyperintensities (Fazekas scale) to cognitive impairment [97].

8.1.5 Patient clinical context

The last important group of nodes of the clinical network includes variables associ-
ated with the patient clinical context including comorbidities, related examinations and
treatments. These are different anterior chronic diseases, such as arterial hyperten-
sion (AHT), diabetes, chronic obstructive pulmonary disease (COPD), atrial fibrillation
(AFib), that might have an impact on the patient’s vital prognosis. All the links within
this comorbidity cluster are very consistent, each pathology being directly associated
with its known risk and predisposition factors, biological markers, specific examinations
and treatments. In particular, diabetes is associated with a high body mass index (BMI),
glycated hemoglobin blood test (HbA1c), treatment by oral antidiabetic (OAD) drugs
and statin; COPD is associated with sleep apnea syndrome (SAS) and the risk of respira-
tory failure, the use of bronchiodilator drugs and the necessity to quit smoking; AHT is
associated with an increase risk of mixed form dementia and treatments by angiotensin
receptor blockers (ARBs), beta-blockers and other anti-hypertension (Anti HT) drugs;
Finally, AFib, detected by electrocardiogram (ECG), is associated with an increased risk
of heart failure and high levels of thyroid-stimulating hormone (TSH) and treated with
vitamine K antagonist (VKA) and direct oral anticoagulants (DOAC).

8.2 Discussion

Beyond uncovering consistent groups of nodes, the reconstructed clinical network cap-
tures also some facets of the neurologist’s reasoning behind the diagnoses of these dis-
tinct dementias. In particular, diagnosis nodes can be interpreted as “explanatory”
variables associated to a number of “explaining-away effects” [98] in the form of “v-
structures”, i.e., D1 → S/E ← D2, whenever alternative diagnoses, D1 or D2, can
independently explain a given syndrome, S, or the result of a specific examination, E.
Examples discussed in more details above are PARK_DEM → PARK_Sd ← LEWY,
ALZHEIMER a FCSR_React_to_cueing ← DYSEXECUTIVE_Sd, VASC_DEM →
Fazekas←MIXED_FORMS and VASC_DEM→ Ischemic_Stroke←MIXED_FORMS.
In addition, anticorrelations between different diagnostic nodes reflect the alternative
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choices of diagnosis by the neurologist, either in the form of “differential diagnoses”
through a reasoning by elimination, in particular, to diagnose Alzheimer’s disease, i.e.,
BIPOaALZHEIMER and VASC_DEMaALZHEIMER or in the form of a latent vari-
able, visualized as bidirected dotted edges and corresponding to alternative diagnoses by
the neurologist, e.g., ALZHEIMERL99diagnosis99KMIXED_FORMS. Latent variables
may also represent the clinician’s decisions between alternative treatments, e.g., APDL99
clinician_decision99KVKA or a nonrecorded or implicite information in the patient per-
sonal or medical history, e.g., active_smokerL99ever_smoked99Kquit_smoking, Fig. 8.

The main strengths of our clinical network reconstruction method are three-fold.
First, it performs an unbiased check on the database content (expected, yet missing
direct links in the reconstructed network hint to likely problems in the database e.g., er-
roneous or missing data). Second, it does not need any expert-informed hypothesis
and provides, without prior knowledge in the field, graphical models complementing
analyses by experts. Finally, it can discover novel unexpected direct interdependencies
between clinically relevant information, such as the direct connection between Fazekas
and Scheltens scales, Fig. 8, which may provide some physiological insights and suggest
new research directions for further investigation.

Hence, beyond the challenge of learning clinical networks from mixed-type data,
our method offers a user-friendly global visualisation tool of complex, heterogeneous
clinical data which could help other practitioners visualize and analyze direct, indirect
and possibly causal effects from patient medical records.

We will now inspect the effect of adding the KL distance and the differences with the
new algorithm for dealing with mixed data, modifications that brought us to obtain the
last version of the network reconstructed with this dataset (Figure 8.2) .

8.3 Kullback-Leibler distance

The Kullback-Leibler (KL) distance (which tests the inclusion of a contributor looking
at the X,Y joint distribution) was implemented after Louis’ thesis and hence was not
available at the time Louis studied this network. The reconstruction performed with
the same discretized data Louis used and enabling the KL test reports 24 additional
edges, for a total of 141 edges. The difference of these 24 edges is shown in Figure 8.3.
Note that the KL distance can only result in adding some edges, since it only denies the
conditioning on contributors that slice the X,Y joint distribution in a biased manner.

The node presenting the largest difference in connectivity is MMS (Mini Mental State)
which assesses cognitive functions related to memory, spacial and temporal orientations.
In Table 8.1 we report the Z that allowed to remove the edge without considering the
KL distance along with the sample reduction it comes with.

X Y Z NXY Zsamples NXY samples

MMS Biographic_Memory Bw_visuospatial_memspan 1064 1286
MMS FAB MoCA 345 1478
MMS ReyTaylor_Figures MoCA 197 1014
MMS Clock MoCA 257 1017
FAB Phonetic_Fluency MoCA 269 1143

Table 8.1: Table reporting the contributor and the relative sample reduction for edges
kept enabling the KL distance.

As it can be noticed in Table 8.1, most of the edges are removed after conditioning
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on MoCA, a variable reporting values for the Montreal Cognitive Association test. The
frequencies of possible values for the MoCA variable, shown in Figure 8.4, clearly shows
a high number of NA values, which consequently decrease the number of samples on
which edges are tested once conditioned on “MoCA” (see NXY samples and NXY Zsamples

columns for Table 8.1). Figure 8.5 shows the distribution of “MMS” and “Clock”, while
Figure 8.6 shows the distribution of the two when “MoCA” is also defined (not NA).
As it can be noticed from Figure 8.7, there is a significant difference between the two
distribution, and some values covered by the original distribution are no more present
in the distribution when conditioning on “MoCA”.
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Figure 8.4: Value counts for the MoCA variable (discrete variable).
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Figure 8.5: Frequencies on joint distri-
bution of “MMS” and “Clock”.
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“MoCA” is also defined (no variable is
NA).
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Chapter 9

Application to clinical breast cancer
patient data

This second clinical context study (Neorep) was carried out thanks to the collaboration
with the team Residual Tumor and Response to Treatment Laboratory in Institut Curie
Hospital, under the supervision of Pr. Fabien Reyal and Dr. Anne-Sophie Hamy-Petit.
The work was started by a former student in our group (Louis Verny), who first stud-
ied this dataset during his PhD. The dataset contains information about 1197 patients
received and treated for breast Cancer in Curie Hospital. In this chapter we will dis-
cuss the clinical context and the network reconstructed using the clinical dataset, which
counts 93 variables including patient data, co-morbidities, tumor size evaluations, prog-
nosis, hormonotherapy, chemotherapy, surgery, metastasis, relapse and patient survival
data. In this study all patients have undergone chemotherapy before surgery (Neoadju-
vant chemotherapy). The first dataset Louis analysed contained only 28 variables and
is shown in Figure 9.1 (in french). This chapter aims at reporting new relations found
in the data thanks to the extension of the algorithm to deal with mixed variables and
giving a global picture of breast cancer from a clinical point of view.

The natural time order of possible treatments is the following one: neoadjuvant
treatments (treatments before surgery to reduce tumor size, simplify surgery and make it
less invasive) as neoadjuvant chemotherapy and/or neoadjuvant trastuzumab (for HER2
positive patients), surgery, radiotherapy, adjuvant treatments (treatments after surgery)
as adjuvant chemotherapy and/or adjuvant trastuzumab and hormonotherapy as last
treatment in time line. All patients in the study had a neoadjuvant chemotherapy.

9.1 The clinical dataset

Variables in the dataset we analysed (94 variables) can be divided in different categories:

• Hospital: if the patient was treated in Paris or St. Cloud (Center)

• History: contains family history of breast cancers (Family history)

• Clinical baseline: age (Age), menopausal state (Menopausal status), body mass
index (BMI ), if she smokes (Smoking status), the tumor clinical size evaluated
through palpation by the doctor (Clinical size), the tumor size evaluated by mam-
mography (Mammography size), the size of the tumor reported using Nuclear Mag-
netic Resonance (MRN size), pathological staging of lymph nodes related to cancer
spread (Clinical Nodal status) that can be:

135



Figure 9.1: Network taken from Louis Verny’s thesis[89], reconstructed from Neorep
dataset using only 28 variables.

– N0: Either of the following:

∗ No cancer was found in the lymph nodes
∗ Only areas of cancer smaller than 0.2 mm are in the lymph nodes

– N1: The cancer has spread to 1 to 3 axillary lymph nodes and/or the internal
mammary lymph nodes.

– N2: The cancer has spread to 4 to 9 axillary lymph nodes. Or it has spread
to the internal mammary lymph nodes, but not the axillary lymph nodes.

– N3: The cancer has spread to 10 or more axillary lymph nodes. Or it has
spread to the lymph nodes located under the clavicle, or collarbone. It may
have also spread to the internal mammary lymph nodes. Cancer that has
spread to the lymph nodes above the clavicle, called the supra-clavicular
lymph nodes, is also described as N3.

.

• Baseline histology: the origin of the cancer is ductal or lobular (Histology),
tumor grade (Grade) divided in:

– Grade 1: well differentiated (score 3, 4, or 5). The cells are slower-growing,
and look more like normal breast tissue.

– Grade 2: moderately differentiated (score 6, 7). The cells are growing at a
speed of and look like cells somewhere between grades 1 and 3.

– Grade 3: poorly differentiated (score 8, 9). The cancer cells look very dif-
ferent from normal cells and will probably grow and spread faster.

the percentage of Ki-67-positive cells among overall cell population (Ki67 ):
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– Ki-67 < 20: the tumor is considered as low proliferating.

– Ki-67 ≥ 20: the tumor is considered as highly proliferating (score 3).

the percentage of tumor volume occupied by invasive tumors cells before neo-
adjuvant chemotherapy (pre-NAC Cellularity), the ratio of the number of cells un-
dergoing mitosis to the number of cells not undergoing mitosis before neo-adjuvant
chemotherapy (pre-NAC Mitotic Index ), if ductal carcinoma in situ non-invasive
or pre-invasive breast cancer (DCIS) is found before neo-adjuvant chemotherapy
(pre-NAC DCIS ), if breast cancer is growing or not in response to the hormone
oestrogen (ER status) or to progesterone (PR status), if breast cancer test is pos-
itive for a protein called human epidermal growth factor receptor 2 (HER2 ) and
the cancer subtype (Subtype) among:

– HER2: breast cancer is hormone-receptor negative and HER2 positive

– Luminal: breast cancer is hormone-receptor positive

– TNBC: triple-negative breast cancer, it is hormone-receptor negative (estrogen-
receptor and progesterone-receptor negative) and HER2 negative

• Treatment: the type of chemotherapy before surgery (NAC type), if the pa-
tient has taken trastuzumab (a monoclonal antibody used to treat breast can-
cer) before surgery (Neoadjuvant trastuzumab), is she has undergone radiotherapy
(Radiotherapy), if she had chemotherapy after surgery (Adjuvant chemotherapy),
trastuzumab after surgery (Adjuvant trastuzumab) or if she has undergone hor-
monotherapy (Hormonotherapy).

• Surgery: if a lumpectomy or mastectomy was done (Breast surgery), if a breast
reconstruction was performed (Oncoplasty), the type of axillary surgery that was
performed (Axillary surgery) among:

– Sentinel lymph node biopsy: if there is no evidence at diagnosis that the
cancer has spread to the lymph nodes, then a sentinel lymph node biopsy
(SLNB) will be performed.

– Axillary node dissection: when diagnostic tests before surgery have shown
that there are cancer cells in lymph nodes, an axillary node dissection (AND)
is needed to remove the nodes in levels one and two of the axilla.

– Both: the two techniques are performed.

the number of removed nodes (Number of nodes), if the margins of the removed
region contain cancer cells (margins)

• Pre-NAC pathology: if lymphovascular invasion (LVI) is present before neoadju-
vant chemotherapy (Pre-NAC LVI ), the amount of tumor-infiltrating lymphocytes
in stromal cells before neoadjuvant chemotherapy (Pre-NAC stromal TILs), the
amount of tumor-infiltrating lymphocytes in intra tumoral cells before neoadju-
vant chemotherapy (Pre-NAC IT TILs)

• Post-NAC pathology: tumor size at the microscope Histological size, the per-
centage of tumor volume occupied by invasive tumor cells after neoadjuvant chemother-
apy (post-NAC Cellularity), the ratio of the number of cells undergoing mitosis
to the number of cells not undergoing mitosis after neo-adjuvant chemotherapy
(Post-NAC Mitotic Index ), if ductal carcinoma in situ non-invasive or pre-invasive
breast cancer (DCIS) is found after neo-adjuvant chemotherapy (post-NAC DCIS ),
the amount of tumor-infiltrating lymphocytes in stromal cells after neoadjuvant
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chemotherapy (Post-NAC stromal TILs), the amount of tumor-infiltrating lym-
phocytes in intra tumoral cells after neoadjuvant chemotherapy (Post-NAC IT
TILs), if lymphovascular invasion (LVI) is present after neoadjuvant chemother-
apy (Post-NAC LVI ), the number of removed nodes in which there are cancer cells
(Number of positive nodes).

• Changes during NAC: the variation of stromal tumor-infiltrating lymphocytes
before and after neoadjuvant chemotherapy (Stromal TILs variation), the varia-
tion of intra tumoral tumor-infiltrating lymphocytes before and after neoadjuvant
chemotherapy (IT TILs variation), cellularity variation (Cellularity variation) and
mitotic Index variation (Mitotic Index variation).

• Treatment response: the Residual Cancer Burden: estimated from routine
pathological sections of the primary breast tumor site and the regional lymph
nodes after the completion of neoadjuvant therapy (RCB), which is used to eval-
uate the pathological complete response (pCR) indicating the achievement of no
residual histological evidence of tumor after chemotherapy at the time of surgery.
A third indicator is the (Clinical response) divided in

– 1: complete response
– 2: partial response ≥ 50%
– 3: partial response < 50%
– 4: no response
– 5: progression

• Survival: if the patient has a local relapse (Local relapses), a distant metasta-
sis (Distant metastases), a relapse or a distant metastasis (Relapse Free Survival
status), a contralateral breast cancer (Contralateral BC ), a second cancer (Second
cancer) and if she is still alive (Death).

• Delay: the delay in months between cancer diagnosis and the relapse (Time to
local relapse), between cancer diagnosis and the distant metastasis (Time to dis-
tant metastasis), between diagnosis and second cancer (Time to second cancer),
between diagnosis and contralateral cancer (Time to contralateral cancer), between
surgery and radiotherapy (Time surgery to RT), between neoadjuvant chemother-
apy and surgery (Time NAC to surgery), the neoadjuvant chemotherapy duration
(NAC duration), the time between diagnosis and neoadjuvant chemotherapy (Time
diagnosis to NAC ) and between treatment and a relapse or a distant metastasis
(Time Relapse Free Survival).

• Metastasis: if the patient had bone metastasis (Bone metastasis), lung metastasis
(Lung metastasis), Numb Chin Syndrome (NCS) (a rare yet potentially ominous
sensory neuropathy characterised by unilateral hypoesthesia or paraesthesia over
the lower lip, chin and occasionally gingival mucosa) metastasis (NCS metastasis),
liver metastasis (Liver metastasis), lymphatic nodes metastasis (Node metastasis),
metastasis on the gynaecological apparatus (Gynecologic metastasis), metastasis
on viscera (Visceral metastasis) or metastasis on all lymphatic nodes blocking
the lymphatic system (Lymphangite metastasis), other types of metastasis (Other
metastasis) and if metastasis markers are present (Increased tumor markers).

• Comedications: the number of co-medications she is taking (Number of comedica-
tion), if she is using medications for nervous system (Nervous medication), cardiac
medications (Cardio medication), drugs for feeding problems (Alimentary medica-
tion) and thyroid drugs (Thyroid medications).
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• Comorbidities: the number of illnesses beyond breast cancer (Number of comor-
bidities), the presence of high blood pressure (Hypertension), if patient suffers of
migraine (Migraine), diabetes (Diabetes), if she has an abnormal amount of lipids
in the blood (Dyslipidemia), a depressive state (Depression), if she suffers of gas-
tric ulcer (Ulcere gastritis), thyroid problems (Thyroid disorders), if she has cases
of blood clot that starts in a vein (VTE disorders), heart problems (Heart disease)
and insomnia due to anxiety (Anxiety - Insomnia).

• Relapse: if the patient had or not a local relapse (Local relapses), the site of the
local relapse, if any (Local relapse site).

• Socio-economic: the average neighbourhood income of each patient (Average
neighbourhood income) and the distance (in kilometres) to the hospital where the
patient is treated (Distance to center).

9.2 Different links with respect to previous analysis

• RevenuMed → BMI: this link is no longer found by MIIC, as suggested by the
joint distribution plot in Figure 9.2, and as expected, since the Average neighbor-
hood income reports the average richness of the patients neighborhood, and not the
patient income directly. The connection that was highlighted was probably due to
the a-priori data discretization of BMI into the 3 classical classes (underweight:
<19, normal weight: 19–25, overweight: >25.0).

Figure 9.2: Distribution of Average neighborhood income and BMI (both continuous
variables).

• Menopause → BMI: this link is no longer direct, the effect is totally mediated
by Age.

• Age - comedication: this link is no longer direct, the effect is totally mediated
by Cardio Medication, which is then connected to Age. The relation between Age
and Number of comedications is relatively weak (MI = 0.025), as can be seen in
Figure 9.3.

• transtuzumab → HER2: in the old network HER2 was directly connected to
transtuzumab, and to pCR. The connection meant that the HER2 state is as-
sociated with an augmented pCR, but in reality the effect is mediated by the
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Figure 9.3: Distribution of Number of comedications and Age (both continuous vari-
ables).

transtuzumab intake, as expected. Moreover Adjuvant Trastuzumab is not found
connected to pCR, as opposed to the link Neoadjuvant Trastuzumab - pCR which
also suggests the presence of a latent variable related to the two.

• Metastasis - TILS_postNAC25: this link is no longer present: metastasis is
connected neither with intra tumoral neither with stromal TILS. The edge was
probably due to data discretization, and the effect in the old network was seen as
weak.

• ER→ pCR: this link is not found as directed, it is mediated by the administration
of a hormonotheraphy and the cancer sub-type. Since the hormonotherapy is given
almost only to “luminal” and “HER2” patients (77.79% and 21.44%), it is possible
to guess the ER status knowing the Subtype and the Hormonotherapy status.

• pCR - TILS_dynamics: this link is no longer direct, it is mediated by Post-
NAC Cellularity, who is not directly linked to pCR because of the presence of the
RCB variable, which is instead directly linked to Post-NAC Cellularity. Their joint
distribution is shown in Figure 9.4.

• Time to distant metastasis → Time to local relapse: this link was found in
the previous analysis, in agreement with Baulie et al. [99], but the orientation was
found in the opposite direction with respect to the literature, probably due to a
wrong v-structure.

9.3 Network analysis

The MIIC reconstruction is shown in Figure 9.5.
In our reconstruction the type of chemotherapy regimen is found to be associated

with the duration of NAC, reflecting the fact that anthracyclines-based regimen usually
comprise 4 cycles whereas sequential anthracyclines followed by taxanes regimen last 6 or
8 cycles. The number of removed axillary nodes is linked to the type of axillar surgery,
consistent with the fact that sentinel node biopsy procedures have been developed to
reduce the number of removed lymph nodes. Beyond cancer, significant associations
are also found between depression and psycholeptic use, thyroid disorders and thyroid
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Figure 9.4: Distribution of post-NAC_cellularity and RCB (both continuous variables).

hormones use, hypertension and drugs for cardiovascular diseases, mellitus diabetes and
drugs for metabolism. More generally, the use of co-medications is associated with the
type of NAC, reflecting the fact that less toxic regimen are more likely to be prescribed to
fragile patients than to patients without co-medication. Among clinical patterns, MIIC
identifies factors known to be epidemiologically associated, such as the positive associ-
ation between age and BMI, both of which are risk factors for hypertension. Moreover
our method enables to visualize links between a pattern measured with different modal-
ities. Pre-NAC tumor size is evaluated clinically, with mammography, and with MRI,
and these measurements show strong relations. Several associations reflect decisions for
clinical practice applicable throughout breast oncology centres. As examples, the “lob-
ular” histologic type of tumors as well as the presence of margins at first surgery are
associated with a higher likelihood of mastectomy, as well as the presence of margins at
first surgery. A breast conservative surgery is commonly followed by radiotherapy. The
addition of adjuvant chemotherapy after NAC, aiming at decreasing the risk of relapse,
is recommended in case of poor prognostic factors, such as a high lymph node involve-
ment. Finally, tobacco was not identified as a major factor interacting with any of the
characteristics of patients, tumor, treatments or outcome. This is probably due to the
fact that our cohort is made of people who already have breast cancer.

9.4 Centre: two different patients cohort

The dataset merges patients treated in two hospitals: Paris and St.Cloud (647 vs 550
patients respectively). The variable Center results in having 18 links and being the most
connected node of the network, highlighting different patient profiles as well as different
clinical practices among centres. Paris hospital has a higher frequency of grade III tu-
mors, less grade II tumor and a bunch of grade I tumors, while St. Clouds presents grade
II and grade III with similar frequencies and few grade I, similarly to Paris. However,
St.Cloud reports larger mammography sizes with median 30 against a median of 25 in
Paris.

The TILS micro environment (Pre-NAC IT TILS ) is found to have the same median
value in the two centres (5), even if Paris reports a more skewed distribution, with values
covering {30, 40, 50, 60, 70}, while St. Cloud maximum is found around value 20.

The proliferative capacity and differentiation Pre-NAC Cellularity is also found to
be higher in Paris, with a median of 70, with respect to St. Cloud, with a median of 50.
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The type of neoadjuvant chemotherapy is very different among centres, with a fre-
quency of 93.66%, 3.86%, 3.32% and 0.15% of “AC-Taxanes” (anthracyclines followed
by taxanes), “Taxanes”, “AC” and “Others” in Paris, against a frequency of 43.64%, 0%,
40% and 16.36% respectively. Consistently, the neoadjuvant chemotherapy duration is
also found to be different, reflecting the fact that anthracyclines-based regimen usually
comprise 4 cycles whereas sequential anthracyclines followed by taxanes regimen last 6 or
8 cycles. Oncoplasty is only performed at the Paris hospital. Paris shows also to have a
lower time lapse between the end of the neoadjuvant therapy and surgery (median = 31)
with respect to St. Cloud (median = 36) and between the diagnosis and the beginning
of neoadjuvant therapy (median = 22 in Paris, median = 38 in St.Cloud).

Regarding the treatment response, Post-NAC stromal TILs is linked to Center, but
the connection is not so clear, since the two centres report the same median, although
Paris contains values in {1, 2, 3, 5, 7, 10, 15, 20, 25, 30, 40, 50, 60}, while St.Cloud contains
values in {5, 10, 20, 25, 30, 40, 50, 60}, without reporting any of the small values that
Paris shows. The difference is hence difficult to interpret and could be simply linked to
a different evaluation method.

Interestingly, insomnia for anxiety reasons is found to be related to Center, showing
a higher frequency (24 cases) in Paris with respect to St. Cloud (only 6 cases).

9.5 Treatment response: pCR, Clinical Response and RCB

Pathological complete response (pCR) after neoadjuvant therapy has been shown to be a
surrogate marker for disease-free survival (DFS) and overall survival [100]. It is derived
from the continuous RCB index (Residual Cancer Burden), which represents the response
to treatment and is used to infer pathological complete response (RCB = 0 → pCR =
“Yes”, RCB > 0 → pCR = “No”). If RCB > 0 residual disease have been categorized
into three predefined classes of RCB index: minimal (RCB-I), moderate (RCB-II) and
extensive (RCB-III)[101]. The index score is derived (and consistently linked in MIIC
reconstruction) from the largest area (Histological size) and cellularity (Post-NAC Cellu-
larity) of residual invasive primary cancer, the number of involved lymph nodes (Number
of positives nodes) and the size of largest metastasis (we only have the metastasis state
as Distant metastasis), forming strong negative 3 point mutual information on the RCB
node (i.e. NI ′(Post − NACCellularity;Numberofpositivenodes;RCB) = −42.395).
RCB has been split in these three classes on the basis of predefined cut points of 1.36
and 3.28 index scores, found by maximizing the profile log-likelihood of a multivariate
Cox model that included the clinical covariates and the dichotomized RCB index. The
first cutoff point (RCB-III v RCB-I/II) was selected as the 87th percentile (RCB, 3.28),
and the second (RCB-I v RCB-II) corresponds to the 40th percentile (RCB, 1.36)[102].

pCR is also connected to Neoadjuvant Trastuzumab, which results in increasing pCR
from 19% to 46.8% and to Subtype, reporting pCR of 6.4%, 36.8% and 38.4% respectively
for luminal, triple negative and HER2 subtypes.

pCR is a conservative predictor for patient survival and its relation with the survival
status can be seen in Figure 9.6, where the frequency of deaths for patients with no
complete response and with complete response decreases from ∼ 23% to ∼ 6%. By
contrast, MIIC algorithm does not report a direct interaction between death and pCR
(MI = 0.034), but identifies the Residual Cancer Burden (RCB) variable as the origin
of pCR, which contains all the information that pCR shares with Death (RCB = 0 →
pCR =“’Yes’ and RCB > 0 → pCR =“No”). The relation between RCB and Death
(MI = 0.067) is shown in Figure 9.7, where values close to 0 shows a higher chance of
survival. MIIC algorithm is based on information theory and as we have seen in Chapter
6, continuous variables are discretized based on the optimization of conditional mutual
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information. Figure 9.8 shows the optimal discretization of RCB values that maximizes
the mutual information between RCB and Death, showing a partition of RCB scores in
3 classes, with cut-offs corresponding to 1.77 and 4.25, that differ a bit from the ones
proposed by [102]; in particular MIIC suggests to combine RCB = 0 (pCR = “Yes”) and
RCB < 1.77 into a single class. RCB results in being the best evaluation of survival,
suggesting that the pCR class corresponding to RCB=0 should not be distinguished (at
least for the considered dataset) from the low-RCB class.

Figure 9.6: Probabilities of Death and pCR variables.

Figure 9.7: Distribution of Death and RCB variables.

Another variable strongly connected to Death and not included in the RCB score is
the Post-NAC Mitotic Index (MI = 0.069), reporting the grade of cell proliferation and
giving an important score able to predict the survival state. Our network reconstruction
suggests that a new index score could be built merging the actual RCB and the cell
proliferation state, in order to have a new more reliable predictor for survival. Clinical
T stage has been shown to be a very strong predictor of pathological complete response
rate after neoadjuvant chemotherapy in breast cancer patients[103], but our analysis do
not find these connection, which is mediated by Histological Size.
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Figure 9.8: Optimal discretization of RCB values to maximize the mutual information
with the variable Death.

The third variable related to treatment response (Clinical response) is not connected
to Death; it is completely mediated by the number of positive nodes, included in the
RCB score. Clinical response is instead found connected to NAC duration, showing that
complete responses are more associated with chemotherapies that last longer (38% of
cases had NAC of 150 days against 10% with NAC of 100 days). It is also linked to Age,
showing that young breast cancer patients have a higher chance to achieve a complete
or high Clinical response, (see figure 9.9).

Figure 9.9: Optimal discretization of Histological size values to maximize the mutual
information with the variable Clinical response.

An important indicator used in survival studies is the Time Relapse Free Survival,
reporting the time after primary treatment during which no relapse of metastasis is found,
also called RFS. In our analysis RFS is not connected to any of the three treatment
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responses described above, even without the need of conditioning for removing these
edges. As it can be seen in Figure 9.10, the shape of the distribution of RFS is very
similar for every Clinical Response category. Subtype results instead in strong relation
with RFS (MI = 0.14), reporting a median RFS time of 12.64, 27.8 and 52.07 months
for triple negatives, HER2 and luminal tumors, respectively. The frequency of relapse
corresponds to 30.67%, 24.15% and 35.2% respectively, but no edge is found by MIIC
linking RFS status and Subtype (MI = 0.004). This means that Subtype is not related to
relapse or metastasis, but that in case of relapse, it assumes a much more important role
in predicting RFS. LVI has been found to be a good predictor for survival (Death)[104]
but in our reconstruction the two are not linked; LVI before neoadjuvant chemotherapy
(Pre-NAC LVI ) is instead linked to RFS (see Figure 9.11), showing that patients with
a Lymphovascular Invasion before adjuvant chemotherapy are much more likely to have
a shorter RFS (median 23.31 vs 37.98).

Figure 9.10: Distribution of Time Relapse Free Survival for every Clinical Response
category.

9.6 Socio-economic variables

This dataset contains two variables representing the socio-economic status of the neigh-
bourhood of each patient, evaluating the Neighbourhood average income and the distance
to the Hospital (Distance to center) where the patient is treated. It is reassuring to no-
tice that the two variables do not seem to influence any pathological variable, nor patient
prognosis, indicating that income does not affect (positively or negatively) therapy and
that distance is not preventing patients living far from Paris or St. Cloud to have a
treatment comparable to high income and close-by living patients. Average income is
found as negatively connected to the distance to center, according to the poverty map
in France, see Figure 9.12, where richness being concentrated in Paris neighbourhood.

146



Figure 9.11: Distribution of Time Relapse Free Survival for positive and negative Lym-
phovascular Invasion states.

Figure 9.12: Poverty map in France, DGFIP-Cnaf,Cnav,CCMSA, 2012
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9.7 Discussion

Our network reconstruction algorithm has different interesting properties on analysing
real life data, as in the case the breast cancer dataset in Curie and St. Cloud hospitals
described in this Chapter. First of all MIIC has helped our physician collaborators
perform data control, check if expected links are indeed found by the algorithm and if
links that should not be there are indeed absent. Second, the MIIC online visualization
provides an optimal tool for data quality control, for inspecting distributions, plotting
the relations found, and highlighting how continuous variables should be discretized, in
order to maximize the information between variables. Last but not least, MIIC provides
to physicians a full picture of breast cancer, redrawing the natural history of the disease
and pointing out different clinical practices and unsuspected associations that were not
obvious to pinpoint without a complete network reconstruction approach.
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