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Ecole Doctorale Mathématiques et Sciences et Technologies de l’Information et de

la Communication (MathSTIC)
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Abstract

This report describes my research activities since I defended my PhD thesis. Chapter 1 outlines my
research interests and summarises the background and main contributions of my research. These are
organised into strands of work representing my research interests which can very roughly be classified
into conditional extreme value analysis, multivariate extreme value theory and its offshoots, extremes
in missing data contexts and risk assessment using extreme value theory. This last theme of research is
currently my primary area of work. Chapter 2, which is the main chapter of this report, then expands
further upon my contributions to this field, mostly through the introduction, study and estimation of
risk measures at extreme levels, presenting and discussing the main results of my work in detail and
providing some perspectives for future research.
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Chapter 1

Introduction

This first chapter starts by a general description of my research interests and activities since I obtained
my PhD, before describing in more detail my main directions of work and the results I obtained. The
final section of this chapter contains an outline of the organisation of the remainder of the manuscript.

1.1 An overview of my research activities and collaborative network

The unifying thread of the vast majority of my research work is the statistical analysis of extreme
values. An early but excellent example of extreme value problem was set by the Dutch government in
the 20th century: given 100 years of flood data, can one determine how high dykes along the coastline
should be so that they protect the country against a once-in-10,000-years flood? This problem is crucial
to, among others, urban risk planners and insurers, but at first sight, it appears to have no solution.
Indeed, if no specific assumption is made about the underlying distribution, one needs much more than
10,000 years (let alone 100 years) of data to carry out inference about a once-in-10,000-years event.
This is where extreme value theory comes into play: under a very mild modelling assumption, it can
be shown that the right tail of the underlying distribution (here, of water height) can be approximated
by a Generalised Pareto distribution. The parametric form of this approximation then allows for an
extrapolated estimation of the once-in-10,000-years return level. Modern developments in extreme
value theory focus not only on the estimation of extreme quantiles, but also on, among others, the
estimation of extreme regions in the multivariate case, the development of extreme value procedures
accommodating temporal dependence and the introduction of techniques to deal with non-stationarity.

I got interested in the statistical aspects of extreme value theory and risk assessment when studying for
my PhD, which I defended in November 2011 at the University of Strasbourg. My PhD work focused
on two distinct topics: (i) the use of hidden Markov models for the description of, and inference
about, loss processes in insurance and (ii) the development of extreme value-based procedures for the
estimation of a right endpoint, or of a frontier when a conditional endpoint is of interest instead. This
body of work directly or indirectly resulted in the six publications [26, 27, 28, 29, 30, 31].

After my PhD, I first worked in the broader context of conditional extreme value analysis, where
my main interest was to develop, and analyse the theoretical properties of, conditional extreme value
index estimators in nonparametric contexts [9, 21, 24, 25]. Working on asymptotic properties of
nonparametric estimators led me to investigate potential convergence results in functional spaces; it
became apparent to me that for kernel estimators, such as the one I worked on in [21], this was not a
straightforward task. This drove me to work on negative results for the functional convergence of the
Parzen-Rosenblatt kernel density estimator in [17, 23]. In parallel, I became interested in multivariate
data problems where the interest is in getting a properly multivariate, rather than conditional, un-
derstanding of extremes, which led me to start working on the analysis of extremes of a multivariate
distribution [15, 19]. This then drove me to learn more about concepts of multivariate extreme value
theory; one of my recent lines of work has been to investigate the construction of characteristic func-
tions as an offshoot of such concepts [2, 6, 16]. I had already experimented with this kind of thinking
in [20] where a procedure for transformation to distributional symmetry is developed based on the

5



so-called probability weighted empirical characteristic function. Aside from my interest in conditional
and multivariate extreme value analysis, one of the more recent orientations of my research has been
towards the statistical analysis of extremes in missing data frameworks such as random censoring and
truncation [8, 18, 22]. Another of my current efforts is to develop the applied side of my research, in the
sense of using existing tools (rather than developing new methods) to solve real data problems [7, 13].

What has, however, arguably constituted my most important strand of work in the last few years is
the development and use of extreme value tools for risk assessment [1, 3, 4, 5, 10, 11, 12, 14]. This
has stemmed from the increasing understanding, not only within the academic world but also from
industrial and regulatory perspectives, that relying solely on quantiles for risk assessment can be an
issue in practical setups, not least because the quantile risk measure only depends on the frequency
of the tail event and not on the actual values of the risk variable on such an event. Motivated by a
number of real data applications in insurance and finance, my research activities in this subfield of
extreme value analysis have focused on the design, study, and estimation of extreme risk measures
that carry information both about the frequency of tail losses and their values. The distributional
framework I have been working in is the family of heavy-tailed distributions, which have been shown
to describe the extreme value behaviour of most financial and actuarial data quite well. Three main
theoretical tools that have formed the backbone of my research within this context are asymptotic
Gaussian approximations of the tail empirical quantile process, convergence theorems for M-estimators
defined by minimising convex criteria, and semiparametric constructions of Weissman-type extrapo-
lated estimators. Based on these tools, as well as on simulated and real data illustrations, my work has
in particular provided evidence that the use of estimators constructed by minimising asymmetrically
weighted Lp criteria has the potential to become part of the standard risk management toolbox.

My research activities have given me the opportunity to work on an array of real data problems
coming from insurance, finance, reliability analysis, medicine and law with an international network
of colleagues from France, the UK, Germany, Belgium, Denmark, Greece and Canada. I have also
recently started forging research collaborations with colleagues from Italy, Switzerland and Japan.
Some of my latest published and forthcoming work has originated from my supervision activities:
for instance [7] follows the undergraduate research internship of Oliver Church whom I supervised
during the 2017/2018 summer term at the University of Nottingham. The submitted article [35] is
written with (among others) my PhD student Emily Mitchell, also at the University of Nottingham,
while [32, 33] have been written with my post-doctoral research assistant Antoine Usseglio-Carleve,
whose 2-year contract at INRIA Grenoble Rhône-Alpes started in October 2018. I have, finally, started
to supervise the PhD thesis of Abdul Haris Jameel at the University of Nottingham in October 2019
(on a 4-year project on the applied analysis of medical data) and I have been informally supervising
the PhD dissertation of Hibiki Kaibuchi (The Graduate University for Advanced Studies, SOKENDAI,
Japan), a former undergraduate student of mine at the University of Nottingham, since early 2019.

1.2 Main strands of work and results

This section gives more information about the main results I have obtained so far in my directions of
research as part of my work post-PhD. For each direction, I first give an idea of the context in which
my work was carried out, before summarising the results linked to each publication.

1.2.1 Conditional extreme value analysis

Background Understanding the extremes of a random phenomenon is a major question in vari-
ous areas of statistical application. In addition to the prediction of the intensity of extreme floods,
further climate-related examples of extreme value problems are the estimation of extreme daily wind
speeds [50] and the estimation of extreme rainfall at a given location [187]. Besides, extreme phe-
nomena may have strong adverse effects on financial institutions or insurance companies, and the
investigation of those effects has received good attention in the extreme value literature, see for in-
stance [221]. Such problems typically ask for the estimation of an extreme quantile of a univariate
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random variable Y (amount of rainfall, wind speed, loss size) based on a small sample of data.

In practical applications, the variable of interest Y can often be linked to a covariate X. In the
aforementioned applications linked to climate science, geographical location is certainly an important
covariate; in actuarial science, the claim size depends on the sum insured by the policy. In such
situations, the extreme value index and quantiles of the random variable Y given X = x are functions
of x which are referred to as the conditional extreme value index and conditional quantile functions.
Their estimation was at first mostly considered in the “fixed design” case, namely when the covariates
are non-random [71, 88, 89, 128, 129, 148, 234]. By contrast and despite the obvious interest in practice,
the study of the random covariate case had been initiated only shortly before I started working on the
topic of conditional extremes in early 2013. As far as I am aware, available methods were [85] which
used a fixed number of nonparametric conditional quantile estimators to estimate the conditional
tail index, later generalised in [84] to a regression context with conditional response distributions
belonging to the general max-domain of attraction, [130] who introduced a local generalised Pickands-
type estimator and [254], based on a maximum likelihood approach in a conditional heavy-tailed
context. A different approach had been developed in a quantile regression model: the pioneering
paper is [74], subsequently built upon in [252, 253].

My contribution to this area The state of the art at the time when I wrote [25] was that, in the
random covariate case, there was only a single estimator of the conditional extreme value index which
was not restricted to the Fréchet max-domain of attraction (that is, the space of conditional heavy-
tailed distributions). This estimator, introduced in [84], is a local version of a Pickands-type estimator.
As such, it relies on a finite number of high order statistics and is thus wasteful of relevant information
about the tail, resulting in an estimator having a large variance. In [25], I develop and study a
local adaptation of the moment estimator of [92], whose computation relies on an increasing number
of high order statistics as the sample size increases, and therefore intuitively makes a more efficient
use of the available data. The pointwise consistency and asymptotic normality of the estimators are
established. These results are obtained under conditional adaptations of traditional extreme value
conditions plus a condition on the local uniform oscillation of the conditional tail quantile function.
This latter condition is extensively analysed to reveal its connections with more intuitive assumptions
on the regularity of the functions involved and the bandwidth sequence used to compute the estimator.
This discussion is in turn used to find the optimal rates of pointwise convergence of the estimator.
The proposed methodology is compared to the local Pickands-type estimator of [84] on simulated data
and is showcased on a real set of fire insurance data. It is in particular seen that the local moment
estimator typically has a lower Mean Squared Error than the local Pickands-type estimator, illustrating
the benefit of taking a growing number of high order statistics into account in the calculation.

I observed during my reading of the literature and when writing [25] that the choice of the number of
top order statistics k = kx to be used in local versions of conditional extreme value index estimators,
such as the local moment estimator, was an even more difficult problem than in unconditional setups.
This is mainly due to the fact that such estimators are constructed at each point x by (i) selecting
observations close to x, and then (ii) having to keep only some of the largest observations in this smaller
sample. Effective sample sizes in conditional extreme value analysis are therefore typically much lower
than in univariate extreme value analysis. Standard selection rules such as those based on finding a
“stability region” (formalised in e.g. [106, 123]) are, at those lower sample sizes and with observations
whose distribution is only“close” to the target distribution, not guaranteed to perform well. In [24], we
tackle this problem by studying an averaged-out version of the local Hill estimator [153] for conditional
heavy-tailed distributions; a similar idea in the unconditional case is developed by [216]. The idea
is that averaging out local Hill estimators, with respect to k = kx, will produce smoother sample
paths and thus will make the selection of kx easier. Uniform (in x) consistency in probability and
pointwise asymptotic normality are established; the uniform consistency result was, to the best of my
knowledge, the first one of its kind to be shown for a conditional extreme value index estimator. The
conditions of this result are relatively weak: in particular, the only conditions linked to the presence of
the covariate are the continuity of the tail index function and Hölder continuity of the density function

7



of the covariate, plus an assumption on the local uniform oscillation of the quantile function. We also
construct a selection rule for the choice of kx. The estimator is compared to several competitors in a
finite-sample study, including to a localised version of the standard Hill estimator. I later carried on
developing the theoretical side of conditional extreme value analysis by working on the rate of strong
uniform consistency of a different, kernel version of the Hill estimator in [21]. The main idea of the
proof dates back to [150] and is based on showing strong uniform consistency over a well-selected grid
while controlling the oscillation of the estimator.

While investigating the uniform consistency properties of local or kernel versions of extreme value
index estimators, I noted that working out the functional convergence of such estimators, and indeed
of kernel estimators in general, appeared to be a very difficult question. In the case of functional
convergence in a space of continuous functions, the intuition is that while finite-dimensional conver-
gence of kernel estimators is easy to establish using the Cramér-Wold device, the components of the
limiting distribution are in fact asymptotically independent. The candidate for a functional limit is
thus white noise, which is not an admissible limit since it does not define a continuous process. It is in
fact possible to extend these arguments to other functional spaces: it is shown in [211, 222] that the
suitably rescaled Parzen-Rosenblatt kernel density estimator does not converge to a Borel measurable
limit in the L2 space on Rd endowed with its standard topology. In [23], I extended this negative
result to weighted Lp spaces, with p ≥ 1 and finite, and in [17] I tackled the case of the L∞ space; the
latter is more delicate than the former, since L∞ spaces on Rd are not separable, but one can still show
that a nontrivial functional convergence result for the kernel density estimator in such spaces cannot
be written. It is worth noting that those negative results do not contradict the earlier, numerous
available results on the uniform or quadratic consistency of kernel estimators, shown among others
in [58, 99, 112, 113, 132, 133, 147, 232, 236, 237]. They merely show that, as far as kernel estimators
are concerned, rates of uniform or quadratic consistency cannot be obtained as corollary of general
functional convergence results in the spirit of those obtained in e.g. [247, 248], and thus that for these
estimators, results on uniform or quadratic deviations can only be obtained using adapted tools.

Recently, in [9], I worked on the estimation of the conditional extreme value index (and conditional
extreme quantiles) for conditional heavy-tailed distributions when the covariate belongs to a Polish
metric space but is otherwise possibly functional. The class of conditional tail index estimators de-
veloped therein, coined integrated functional estimators, is based on calculating a weighted integral
of log-spacings of a local version of the empirical quantile function. We explain how this construc-
tion allows the class of estimators to encompass several local versions of well-known semiparametric
estimators, such as the Hill and Zipf estimators (for the latter, see e.g. [189, 225]). The pointwise
asymptotic distributions of our estimators are derived and the estimators are showcased on a real set
of chemometric data linking percentage of fat content in a piece of meat to its absorbance curve.

1.2.2 Multivariate extreme value analysis

Background There are many real data applications in which the problem of interest is inherently
multivariate, rather than conditional. If a data set containing the amount of rainfall at several sites
across a given region is available, then an interesting question from the extreme value point of view is to
estimate the probability of rainfall reaching an extreme level across two or more sites. Similarly, when
considering data on the losses of an insurance company across several lines of business, an important
question is to estimate the probability of extreme losses across two or more of these lines of business,
since these are likely to represent a threat to the company’s survival.

With the question of analysing multivariate extremes comes the question of what, exactly, means being
extreme in several dimensions. One way to approach this question is to forget about the extreme value
context at first, and work on an acceptable definition of a quantile in the multidimensional world; once
this is done it becomes possible to declare that an extreme observation in a multivariate setup is one
“exceeding” a multivariate extreme quantile in a certain sense. The search for what constitutes a good
definition of quantile in Rd (d ≥ 2) has been a very fruitful avenue of work; a review of the broad
families of available techniques is [228]. My research in the area of multivariate extremes has so far
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focused on multivariate geometric quantiles, introduced by [70]. Such geometric quantiles are obtained
by the minimisation of a loss function, constructed in a way that extends to the multivariate case the
well-known absolute loss minimisation framework for univariate quantiles [181, 182]. Geometric quan-
tiles are indexed by a vector u ∈ Bd, where Bd is the unit open Euclidean ball of Rd, and are vectors
themselves. As such, a geometric quantile q(u) ∈ Rd possesses a direction and a norm. Geometric
quantiles are in fact special cases of M−quantiles in the sense of [63, 184]. They also benefit from var-
ious desirable properties: they are equivariant under any orthogonal transformation [70], characterise
the underlying distribution [184] and generalise the well-known L2−geometric median [233].

My contribution to this area The aforementioned papers almost completely focus on central
properties of geometric quantiles and their sample versions. [70] though labels geometric quantiles
as “extreme” when ‖u‖ is close to 1, and later [69] used such extreme geometric quantiles in an
application to multivariate outlier detection, but no specific analysis of extreme geometric quantiles
had been done to justify how or indeed why they should be used in such a context. In [15, 19] we
provide what is to the best of my knowledge the first in-depth study of the behaviour of geometric
quantiles as ‖u‖ ↑ 1. We provide first- and second-order asymptotics for both their direction and
norm. In [15], we find in particular that the norm of the geometric quantiles of a given distribution
always tends to infinity as ‖u‖ ↑ 1, even if the distribution has a compact support, and that the norm
of the extreme geometric quantiles of a random vector X having a finite covariance matrix grows at a
fixed rate and is equivalent to a quantity uniquely determined by this covariance matrix. We also show
that, at the sample level, extreme geometric quantile contours generally give a poor idea of the shape
of the data cloud: for instance, for elliptically contoured distributions, extreme geometric quantile
contour plots and density level plots are in some sense orthogonal. We showed in [19] that, somewhat
surprisingly, geometric extreme quantiles of a random vector X having an infinite second moment do
contain some information about the multivariate extremes of X, under an assumption of multivariate
regular variation introduced in [67] on the (assumed to exist) probability density function of X. This
distinction between finite and infinite second moment is arguably unnatural and unwieldy though, and
we conclude that, even though central geometric quantiles are certainly an important and valuable
notion in multivariate statistics, practitioners should be very cautious when using extreme geometric
quantiles for outlier detection or multivariate extreme value analysis.

1.2.3 Characteristic functions as offshoots of multivariate extreme value concepts

Background Besides the need for a sensible definition of what it means to be extreme in several
dimensions, there is also the necessity for the construction of a sound theoretical framework for the
study of multivariate extremes. This question has been investigated extensively. One particularly
interesting framework is obtained by extending the univariate definition of extreme value distributions,
found from the convergence of linearly normalised sample maxima, to the multivariate case via the
use of the componentwise maximum operator. This gives rise to the class of multivariate max-stable
distribution functions. Much is known about such distributions: although they cannot be be written
in a simple parametric form (unlike in the univariate case), they can be represented in an exponential
form using the concept of angular measure. A theory of multivariate regular variation, at the heart
of which the angular measure lies, can also be written. This constitutes a reasonable framework for
inference about extreme events in multidimensional settings. Standard references are [118, 215].

Although this is by no means obvious, a common thread through multivariate extreme value the-
ory can be found using the notion of D−norm [118]: loosely, there is a simple, explicit one-to-one
correspondence between max-stable distributions with negative exponential margins and the set of
D−norms. When I learnt about this notion in late 2015 at the Winter Course (taught by Michael
Falk) preceding the CMStatistics 2015 conference, D−norms had mainly been studied for their poten-
tial to unify the presentation of multivariate extreme value theory and trivialise certain proofs, such
as those of Takahashi’s characterisations of complete dependence or independence of the components
of a max-stable distribution [239, 240]. As a mathematical object themselves, however, D−norms are
interesting as well, and their theory remains in full development.
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My contribution to this area A D−norm is constructed on a generator, which is a d−dimensional
nonnegative random vector (Z1, . . . , Zd) whose components all have expectation 1. Mathematically,
a D−norm with generator (Z1, . . . , Zd) is the mapping (x1, . . . , xd) 7→ E (max{|x1|Z1, . . . , |xd|Zd}).
It is known that any D−norm has infinitely many different generators, such as those obtained by
multiplying all of the Zi by an independent nonnegative random variable X having expectation 1.
It is remarkable though that the knowledge of the slightly different D−norm (x0, x1, . . . , xd) 7→
E (max{|x0|, |x1|Z1, . . . , |xd|Zd}) fully identifies the distribution of (Z1, . . . , Zd). By 1-homogeneity,
knowing this function for x0 = 1 is in fact enough to characterise the distribution of (Z1, . . . , Zd),
which motivated us to introduce in [16] the max-characteristic function

(x1, . . . , xd) 7→ E (max{1, x1Z1, . . . , xdZd}) , x1, . . . , xd > 0,

for any nonnegative random vector (Z1, . . . , Zd) having integrable components with nonzero expec-
tations. We show in [16] (see also Section 5.1 in the monograph [117]) that this function indeed
characterises the joint distribution of any such random vector. Unlike the standard Fourier transform-
based characteristic function, it has a simple closed form for generalised Pareto distributions, which
are of prime importance in extreme value theory. We then prove that the convergence of a sequence
of max-characteristic functions to a max-characteristic function is equivalent to convergence of the
underlying distributions in the Wasserstein metric; in other words, convergence of max-characteristic
functions is equivalent to convergence in distribution plus convergence of the sequence of first moments.
We also provide some insight into the structure of the set of max-characteristic functions, and we state
and prove an inversion formula making it possible to retrieve a distribution from its max-characteristic
function. We then noted that taking x0 = 1 above was indeed convenient but destroyed the norm
structure. In [6], we focus directly on the mapping

(x0, x1, . . . , xd) 7→ E (max{|x0|, |x1|Z1, . . . , |xd|Zd}) , x1, . . . , xd ∈ R,

again for any nonnegative random vector (Z1, . . . , Zd) having integrable components with nonzero
expectations. This norm, which we call F−norm, extends the max-characteristic function and there-
fore characterises the distribution of (Z1, . . . , Zd); we study it as a mathematical object. We provide
examples of such F−norms and a complete characterisation of F−norms when d = 2. We also study
the geometry of F−norms, their estimation based on a sample from (Z1, . . . , Zd), their links with
convergence in the Wasserstein and Hausdorff metrics, as well as their algebra and an extension to
general random vectors (not necessarily assumed to be nonnegative).

The concept of max-characteristic function applies to nonnegative random vectors having integrable
components. The integrability requirement is a substantial restriction, and prevents one from using
this max-characteristic function for very heavy-tailed generalised Pareto distributions, for instance,
although we know from [16] that lighter-tailed generalised Pareto distributions have a simple max-
characteristic function. This appears to be a rather unnatural limitation. In [2], we start by noting
that, like linear projections [79], the max-linear projections {max(t1X1, . . . , tdXd), t1, . . . , td > 0}
characterise the distribution of any random vector (X1, . . . , Xd) with nonnegative components. We
then remark that, in dimension 2, min(t1X1, t2X2) = t1X1 + t2X2 − max(t1X1, t2X2), which may
suggest that a multivariate distribution with nonnegative components is also characterised by its min-
linear projections {min(t1X1, . . . , tdXd), t1, . . . , td > 0}. We prove that this is indeed the case, as
long as the Xi are strictly positive with probability 1, and we then study the companion notion of
min-characteristic function

(x1, . . . , xd) 7→ E (max{1, x1X1, . . . , xdXd}) , x1, . . . , xd > 0,

for any random vector (X1, . . . , Xd) having strictly positive components. We show that the distribution
of such a random vector is indeed determined by its associated min-characteristic function, which turns
out to be a continuous and concave distribution function itself. We give a number of examples of
calculations of the min-characteristic function (including in the generalised Pareto case, where it has a
simple explicit form) and we prove that the convergence of a sequence of min-characteristic functions
to a min-characteristic function is equivalent to weak convergence of the underlying distributions. We
discuss the structure of the set of min-characteristic functions, their estimation, as well as an extension
to general random vectors and a couple of applications to D−norm theory.
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1.2.4 Extremes in missing data frameworks

Background The problem of missing data is frequently encountered in certain fields of statistical
applications. A famous example of missing data framework is random right-censoring, found most
notably in medicine in the study of the survival times of patients to a given chronic disease in follow-
up studies. In mathematical terms, the information then available to the practitioner is the pair (Z, δ),
where Z is the minimum between the survival time Y and censoring time T , and δ is the 0-1 variable
equal to 1 if and only if the survival time is actually observed. Random right-censoring is also found
in, among others, reliability data analysis [204] and non-life insurance [217]. It should not be confused
with other types of missing data mechanisms such as right-truncation, where one observes the variable
of interest Y if and only if it is less than or equal to the truncation variable T , in which case the full pair
(Y, T ) is actually observed, with nothing being recorded otherwise. Truncated data may be collected
in various cases, for instance when estimating incubation times for a given disease [171, 172, 192], in
physics [166, 197], when accounting for reporting lags in insurance data [152, 173, 194] or when dealing
with failure and warranty data [161, 162, 202].

In the aforementioned examples, the estimation of extreme parameters of the underlying distribution
of the variable of interest Y would ultimately lead to the analysis of survival times of exceptionally
strong/weak patients to a given disease, extreme losses/payouts in insurance, or failure times for highly
resistant/unreliable devices. When I started working on this topic in 2013, extreme value analysis with
missing data was a recent but rapidly developing field. The censored case had been tackled using an
adaptation of the Peaks-Over-Threshold framework in [48, 49], the construction of corrected versions
of standard extreme value estimators in [110, 139], Huber-type robust estimators [223] and, for heavy-
tailed variables, the interpretation of the extreme value index as an average of log-excesses [260]. An
adaptation of [110] had also been developed in the conditional heavy-tailed case by [205]. By contrast,
the truncated case had only been considered by [37] when the right-truncation point is unknown but
non-random.

My contribution to this area I first worked within the framework of random right-truncation.
In this situation, the available data is made of independent copies of (Y ∗, T ∗), where (Y ∗, T ∗) has
the distribution of (Y, T ) given that {Y ≤ T}. In the case of a heavy-tailed variable of interest Y
truncated by a heavy-tailed T , we provide in [22] the first examples of tail index and extreme quantile
estimators. The fundamental idea behind the construction of the extreme quantile estimator is to,
based on the heavy-tailed assumption, extrapolate an empirical estimator of a quantile from a so-
called intermediate level where it is consistent, using an estimator of the tail index of Y . This follows
the classical ideas of [256] for fully observed data. The intermediate quantile estimator is built using
an identity showing that the cumulative hazard function can be directly calculated in terms of the
marginal distribution functions of the observed pair (Y ∗, T ∗) [259]. Its consistency and asymptotic
normality are shown using analytical results warranted by the heavy-tailed structure and a martingale
argument inspired by [238]. The tail index estimator, at the heart of the extrapolation procedure, is
obtained after noting that Y ∗ and T ∗ are also heavy-tailed with tail indices that are simple functions
of those of Y and T . A suitable combination of the two marginal Hill estimators of Y ∗ and T ∗ thus
provides a consistent estimator of the tail index of Y . The consistency and rate of convergence of our
extreme quantile estimator are then established. The finite-sample behaviour of our extreme quantile
estimator is examined on a real set of reliability data.

In parallel, I noted that the literature on conditional extreme value analysis with random right-
censoring was, at the time I started working in this research area, restricted to [205] and thus limited
to the conditional heavy-tailed case. In the context of their real data application to the estimation
of survival time to AIDS given age at diagnosis, this seems like a rather strong assumption: there is
indeed no guarantee a priori that the distribution of survival time conditional to age has a heavy tail.
In [18], I introduce a local version of the moment estimator of the extreme value index adapted to
the random right-censoring context provided by [110]. Pointwise consistency, asymptotic normality
and the optimal rate of convergence of the estimator are discussed; the proofs combine ideas of [110],
which shows the asymptotic normality of a moment estimator adapted to random censoring in the
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unconditional case, with technical tools from [25] to deal with the conditional context. The estimator
is used, along with a local extreme quantile estimator, to revisit the AIDS data set of [110, 205]. It
is observed that extreme quantiles of the survival time, which can be interpreted as survival times of
very resistant patients, are fairly stable for patients aged between 20 and 53 years and decrease sharply
afterwards. This may be interpreted as a consequence of immunosenescence, namely the deterioration
of the immune system as age increases. This phenomenon is of course especially critical in the case of
AIDS, since HIV targets cells of the immune system; the significant effect of increasing age on survival
rates for AIDS has been shown numerous times in the medical literature [45, 87, 196, 219]. It is also
apparent that there is indeed heterogeneity in tail behaviour, and in particular it is not clear that the
distribution of survival time for older patients has a heavy right tail.

One common feature between my work in [18] and the earlier paper [205] is the assumption of condi-
tional independence between survival time and censoring time. More generally, all the aforementioned
papers on random right-censoring work under an independent censoring assumption. This kind of
assumption is arguably standard in the context of random right-censoring since the pioneering pa-
per [174] on the product-limit estimator for the survival function. And yet, cases in which there are
strong suspicions of dependence between the variable of interest and the censoring time have been
reported several times over the last decades. In medical studies especially, a common cause of the
probable violation of the independence hypothesis is a sizeable number of patient dropouts [164, 167].
Crucially, using traditional estimators relying on the independence assumption when there is in fact
dependence may lead to invalid inferences [108, 178] and even identifiability issues [243]. In [8], using
the example of an extreme value copula dependence structure [91, 126, 144] between Y and T , I prove
that in such a situation (i) the right-tail behaviour of the observed time Z is essentially that of the
variable with the lightest tail in the pair (Y, T ) and (ii) the tail censoring probability, which describes
how often the extremes of Y are censored, is equal to 1 when the tail of Y is heavier than that of T .
This implies that in such a setup, the estimators of [48, 110, 139] are not consistent. I then argue,
using further asymptotic considerations on the behaviour of the distribution of the pair (Z, δ) for Z
large, that the identifiability of the extreme value index of Y is more generally unclear. This is in
stark contrast with the independent censoring case, in which we know from [110] that the problem of
inferring this parameter can indeed be solved in a simple way based on the behaviour of the pair (Z, δ)
for large Z alone. I also explain why, if the extreme value copula describing the censoring mechanism
is assumed to be known, then the extreme value index of Y becomes clearly identifiable, and I outline
a couple of possible strategies that may lead to consistent estimators of this extreme value index in
future work.

1.2.5 Extreme value theory and risk assessment

Background The class of quantiles is one of the basic tools in risk management. A leading quantile-
based risk measure in banking and other financial applications is Value-at-Risk with a confidence level
τ ∈ (0, 1). It is informally defined as the τth quantile q(τ) of a non-negative loss distribution, with τ
being close to 1, and as −q(τ) for a real-valued profit-loss distribution, with τ being close to 0. As such,
the Value-at-Risk is very easy to interpret. However, a single quantile q(τ) of a random variable X
is only determined by the frequency of the relevant tail event and not by the actual values that X
takes on this event; to put it differently, one can readily construct examples of distributions sharing a
common quantile but whose actual tail behaviours beyond that quantile are very different. A single
Value-at-Risk thus does not and cannot provide a complete picture of tail risk. Furthermore and from
the axiomatic point of view, quantiles do not, in general, define coherent risk measures in the sense
of [44], because they lack the important subadditivity property, meaning that they do not abide by
the intuitive diversification principle.

There has been a substantial effort in the literature towards the definition and study of alternative
families of risk measures. My work in this area, which I started in 2016, has mostly focused on the
analysis and estimation, at extreme levels, of risk measures either built on weighted integrals of the
quantile function or generated from Lp−minimisation. From an inferential point of view, the attention
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devoted to those risk measures had so far been mostly restricted to ordinary, central risk measures
staying away from the tails of the underlying distribution. Notable exceptions are [114] and [249],
which respectively studied the estimation of the extreme so-called Conditional Tail Moments in a
regression setup and certain extreme Wang distortion risk measures [250] for pricing of reinsurance
premiums; Wang distortion risk measures are integrals of the quantile function, which are weighted
according to the distortion function, yielding a coherent risk measure when the distortion function is
concave. My work was carried out in the context of heavy-tailed distributions, which has been found
to describe the tail structure of financial and actuarial data fairly well, see e.g. [115, 215].

My contribution to this area My first contribution in [14] was to provide a couple of methods
for the inference of extreme Wang distortion risk measures (DRMs) of a random variable X. In this
context, “extreme”means that the focus is on a fixed Wang DRM of the variable X given that X > q(τ),
with τ close to 1. The estimators rely on either an asymptotic proportionality relationship linking
extreme Wang DRMs with tail quantiles, or a functional plug-in of the tail empirical quantile function,
plus an extrapolation method in the spirit of [256]. The asymptotic distribution of each estimator is
obtained; in the case of the functional plug-in estimator, the proof uses a Gaussian approximation of
the tail empirical quantile function to control the gap between the estimator and the Wang DRM to be
estimated. Finite-sample studies, on simulated and real financial and actuarial data, make it possible
to assess the behaviour of the estimators in practice. One of the conclusions of the finite-sample
study is that the performance of both estimators gets worse as the value of the tail index increases.
In the case of the functional plug-in estimator, we argue in [11] that this is a natural consequence
of how it is constructed: since this estimator is in general a linear combination of (a power of) the
data above a high threshold in the sample, the propensity of heavier-tailed distributions to generate
highly variable top order statistics will tend to adversely affect the quality of the estimates. This
is illustrated numerically on a simple example in [11], after which we introduce trimmed/Winsorised
versions of our functional plug-in estimator in a effort to solve this issue. The methodology is based
on (i) trimming/Winsorising the estimator to reduce its variability and (ii) introducing a correction
factor to deal with the negative bias thus introduced. The consistency and asymptotic normality of
our estimators are shown. We compare these modified versions to the original estimator on simulated
and real data, and we highlight to which extent our robustified estimators perform better than the
functional plug-in estimator.

It is remarkable that the class of Wang DRMs encompasses the class of quantiles. Indeed, the quan-
tile q(τ) is exactly obtained by taking the distortion function g : [0, 1]→ R equal to 0 before 1−τ and 1
otherwise. An entirely different way of looking at quantiles is via the well-known absolute loss minimi-
sation framework for univariate quantiles [181, 182]. Substituting a squared loss for the absolute loss
results in the class of expectiles, introduced in [209]; using a more general Lp−loss produces the class
of Lp−quantiles introduced in [73]. Quantiles, expectiles and Lp−quantiles more generally are in fact
M-quantiles in the sense of [63]. Expectiles in particular have been receiving substantial attention as
risk measures in statistical finance and actuarial science since the pioneering paper [190]. They depend
on both the tail realisations and their probability, and thus allow to measure extreme risk based on
both the frequency of tail losses and their severity. Most importantly, expectiles, for τ > 1/2, induce
the only coherent risk measure that is also elicitable, the latter meaning that the quality of expectile
forecasts can be evaluated in a straightforward fashion [134, 265]. However, while the estimation of
expectiles has been extensively tackled at central levels [157, 188], an inference theory for extreme
expectiles remains to be developed. In [12], we study two estimation methods, either relying on an
asymptotic proportionality relationship with quantiles or a direct, empirical asymmetric least squares
procedure. The limiting distributions of the estimators are established; for the latter estimator, the
proof relies on theoretical tools developed by [180] linking the asymptotic behaviour of minimisers
of convex random functions to that of this sequence of functions itself. We then use our analysis of
tail expectiles to define and study an expectile-based analogue of the Marginal Expected Shortfall
studied by [42, 64, 116] and by [68] in an extreme value context specifically. We finally discuss the
choice of the expectile level to consider, and examine the behaviour of our estimators on real actuarial
and financial data. In [1], we take the idea of estimating tail expectiles one step further by deriving
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weighted Gaussian approximations of the tail empirical expectile process. This is substantially harder
than showing the corresponding results for the tail empirical quantile process (see e.g. [81, 101, 111])
because empirical expectiles only have an implicit formulation. We state and prove an approximation
of the tail empirical expectile process by a Gaussian process with drift and we investigate its joint
asymptotic behaviour with the tail empirical quantile process. These results are used to introduce
and study the asymptotic distributions of new estimators of, among others, extreme expectiles and a
coherent expectile-based version of the Expected Shortfall, which are then showcased on real actuarial
and financial data as well.

Our work in [10] focuses on the general class of Lp−quantiles. Their existence requires E|X|p−1 <∞,
which, when p < 2, is a weaker condition than the assumption E|X| < ∞ required for the existence
of expectiles. When p > 1, Lp−quantiles also take into account the whole tail information about
the underlying distribution, unlike quantiles. They do thus steer an advantageous middle course be-
tween quantiles (p = 1) and expectiles (p = 2). We analyse therein the asymptotics of population
Lp−quantiles, as their level τ tends to 1, before constructing an estimator of extreme Lp−quantiles
based on asymmetrically weighted Lp−minimisation and a competitor using the asymptotic propor-
tionality relationship between Lp−quantiles and standard quantiles. Their asymptotic distributions
are investigated in a suitable context of strictly stationary and mixing observations: it is seen in partic-
ular that the estimator based on asymmetrically weighted Lp−minimisation is asymptotically normal
essentially as soon as E|X|2(p−1) <∞, which when 1 < p < 2 is less restrictive than the corresponding
condition E|X|2 < ∞ needed for tail expectile estimation. In other words, when p < 2, extreme
Lp−quantile estimators can be used in a larger class of heavy-tailed distributions. However, and even
though Lp−quantiles with 1 < p < 2 are more widely applicable than expectiles and take into account
the whole tail information, they are neither easy to interpret nor coherent as risk measures. This
drove us to work on procedures, based on the asymptotic connection between quantiles, expectiles and
Lp−quantiles, making it possible to use Lp−quantiles as vehicles for extreme quantile and expectile
estimation. The methodology and its potential for better forecasts of traditional extreme quantiles
are illustrated on financial data from the S&P500 index.

In [3] I used this experience of working on Lp−quantiles to construct and study a different notion of
risk measure based on Lp−optimisation, whose motivation can be summarised as follows. When the
underlying distribution function of X is continuous and has a finite first moment, the Conditional
Tail Expectation CTE(τ) := E[X |X > q(τ)] defines, unlike the quantile, a coherent risk measure.
Besides, since the expectile of a random variable Y is its expectation, the quantity CTE(τ) is nothing
but the expectile of X given that X > q(τ). As such, the asymptotic normality of its empirical
estimator requires a finite second moment; this can potentially be a strong integrability restriction.
Since Lp−quantiles, for 1 < p < 2, are more widely applicable than expectiles, this led us to study the
Lp−quantiles of X given that X > q(τ), which we call the class of tail Lp−medians of X. This class
of risk measures encompasses the Conditional Tail Expectation, for p = 2, but also the important
Median Shortfall [185, 186]. Unlike Lp−quantiles though, tail Lp−medians focus solely on the tail
event, and this makes their theoretical analysis substantially different. We study the asymptotics of
population tail Lp−medians, as their level τ tends to 1, and we show that they can asymptotically
be written as a weighted average (with coefficients depending on p) of the Median Shortfall and the
Conditional Tail Expectation. This in turn is instrumental in the development of the interpretation
of a tail Lp−median, and can be used to design a rule for the choice of p when a pre-determined
compromise between Median Shortfall and the Conditional Tail Expectation is set. We then construct
two estimators of tail Lp−medians above extreme levels, whose asymptotic behaviour we study. It is,
similarly to the Lp−quantile technique, found that tail Lp−median estimation is, when 1 < p < 2,
applicable to a wider class of heavy-tailed distributions than extreme Conditional Tail Expectation
estimation. The methodology is applied to the estimation of a simple middleway between the Median
Shortfall and Conditional Tail Expectation on a real fire insurance data set showing very heavy tails.

Tail Lp−quantiles and medians can therefore be used as a way to estimate more appealing risk mea-
sures at extreme levels. For instance, extreme expectiles, which define an L2−risk measure, can be
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estimated using extreme Lp−quantiles. However, and although expectiles generalise the mean, they
do not in general benefit from a simple closed formulation in terms of expectations. This makes them
more difficult to interpret than quantiles or Conditional Tail Expectations; while there is a dual rep-
resentation of expectiles in terms of the gain-loss ratio [52], this is not likely to appeal to practitioners
outside finance and insurance. Moreover, expectiles, with τ > 1/2, are not comonotonically additive:
this is best seen by combining the results of [191, 265] which imply that the only law-invariant, coher-
ent, elicitable and comonotonically additive risk measure is the expectation. In financial applications,
this is a serious problem from the point of view of the regulator, as expectiles may artificially give
a sense of diversification when there is in fact none. In an effort to tackle these issues, we introduce
in [5] a new notion of L2−risk measure, called extremile. Like expectiles, extremiles are an L2−version
of quantiles as well as a generalisation of the expectation, and define a law-invariant and coherent
risk measure. Unlike expectiles, however, they are comonotonically additive and benefit from various
equivalent explicit formulations and more intuitive interpretations, most notably as average values of
maxima of a (specified) number of losses. Being law-invariant, coherent and comonotonically additive,
extremiles can in fact be seen as Wang DRMs with concave distortion functions, which naturally em-
beds them in a framework of pessimistic decision theory in the sense of [46] where the corresponding
distortion function acts to depress the likelihood of the most favourable outcomes and to accentu-
ate the likelihood of the least favourable ones. From an inferential point of view, extremiles can be
estimated using L-statistics, M-statistics, linearised M-statistics and PWM-estimators. We estimate
extremiles at extreme levels using asymmetric least squares estimation and an asymptotic connection
to tail quantiles, and we analyse the convergence in distribution of these estimators. We also compare
tail extremiles with tail quantiles and Conditional Tail Expectations, and we find that tail extremiles
are more conservative than tail quantiles but less conservative than extreme Conditional Tail Expec-
tations. As such, extremiles constitute a law-invariant, coherent and comonotonically additive risk
measure which has the potential to appeal to financial institutions and regulators alike. Being eas-
ily interpretable, extremiles are also very likely to be appealing to risk managers outside insurance
and finance, for example those working in environmental science or reliability analysis. Our inference
methods are illustrated on two real sets of insurance data.

Finally, my contribution in [4] aims towards the multivariate analysis of random vectors with heavy-
tailed marginals with applications in view in, among others, multivariate risk management. This piece
of work originates in the observation that while the

√
k−asymptotic normality of the Hill estimator

(where k denotes the effective sample size) is now a very well-studied question, analysing the joint
asymptotic normality of marginal Hill estimators for a random vector with heavy-tailed marginal
distributions is a much more difficult problem. This comes from the fact that the Hill estimator is
written in terms of log-spacings of top order statistics, which are significantly harder to handle than
the original data (assumed here to be independent and identically distributed). As a consequence, how
to evaluate the asymptotic dependence between several Hill estimators is far from obvious. Such joint
convergence results have only been proven very recently in [94, 156, 177]. The methods of proof therein
rely on advanced theoretical methodologies, namely multivariate vague convergence in [94, 177] and
multivariate empirical process theory in [156], as well as on various ad hoc technical conditions. And
yet, rewriting the Hill estimator γ̂(k) as an average of log-excesses above a high random threshold,
one can note that replacing the random threshold by its non-random high quantile counterpart results
in a pseudo-estimator γ̃(k) written in terms of sums of independent random variables, and it is a
consequence of a result of [136] that γ̂(k) and γ̃(k) have the same

√
k−asymptotic distribution. Having

observed that, one may wonder whether the stronger relationship γ̂(k) = γ̃(k) + oP(1/
√
k) holds. This

asymptotic relationship would make obtaining joint convergence results between Hill estimators a
simple corollary of the Cramér-Wold device. The proof of this relationship is the motivation for [4].
More precisely, I embed the Hill estimator in a wider class of average excesses and then provide a simple
representation of those empirical average excesses above a high random threshold in terms of their
pseudo-estimator versions with a non-random threshold. I show in particular how the results of [94],
on the joint asymptotic normality of marginal Hill estimators for a random vector with heavy-tailed
marginal distributions, can be recovered and generalised under weaker assumptions and by elementary
techniques. I also prove an analogue asymptotic representation for a class of expected shortfalls, which
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includes the family of Conditional Tail Moments of [114]. I then highlight a couple of applications of
these general asymptotic representations, including to the obtention of joint convergence results on
empirical Conditional Tail Moments that may be of interest in, for instance, testing whether certain
tail moments of two asymptotically dependent variables are equal. Such an idea has already been used
in a financial risk assessment context in [156].

1.2.6 Other contributions

This section gathers the research I have had the opportunity to participate in but which does not fit
in one of the above main themes. For each piece of work, I briefly outline the context and the paper’s
contribution.

In [20], we concentrate on the development of a transformation to distributional symmetry. Trans-
formations are often applied to given data sets in order to facilitate statistical inference by inducing
finite moments, light tails and/or symmetry, the rationale being that certain statistical procedures
are applicable or perform well only under such assumptions. Symmetry, in particular, has definite
advantages in the context of regression, see [57, 208] for adaptive and efficient regression estimators
under symmetric errors, and quasi-maximum likelihood estimation in GARCH models [142, 210]. The
contribution of [20] is, first, to construct a nonparametric analogue of the probability weighted char-
acteristic function (PWCF) introduced in [203] in a fully parametric setup. The PWCF is essentially
a version of the traditional characteristic function, based on a Fourier transform, where the tails of
the underlying distribution are penalised in a suitable way. The empirical counterpart of the PWCF,
obtained by plugging in the empirical distribution function, is called the PWECF (where E stands
for empirical). We then pair the PWECF with a parametric family of transformations, such as the
popular Box-Cox family [61] or a more modern alternative such as the Yeo-Johnson family [262], and
define a procedure based on finding the parameter for which the imaginary part of the PWECF of the
transformed sample has an L2−norm closest to 0. This method is inspired by the well-known result
that a distribution is symmetric if and only if its characteristic function is real-valued; integral criteria
for transformation to symmetry using the empirical characteristic function have been considered in
e.g. [263]. The benefit of using the PWECF is that it is square-integrable and therefore can be used
directly as part of an L2−procedure, while to do so with the empirical characteristic function requires
choosing a weight function to control its behaviour away from the origin. The strong consistency of
our estimator is shown and we examine the finite-sample behaviour of our estimator on a simulation
study and a real set of stock market data.

The two articles [7] and [13] are applied contributions to law and finance, respectively. The paper [13]
concentrates on CAT bonds, which are part of the wider class of insurance-linked securities. Such bonds
pay regular coupons to investors with the principal being contingent on a predetermined catastrophic
event defined in the bond indenture. We first provide a new premium principle for such bonds,
called the financial loss premium principle. The novel feature of this premium principle is that it
takes market performance into account, allowing us to improve substantially upon the simpler linear
premium principle in the prediction of post-2008 financial crisis CAT bond premiums. The second
contribution of the paper is the introduction of simple formulae for the calculation of the expected
loss of a bond, which is key to its pricing in both the linear premium principle and our financial loss
premium principle. These formulae rely on extreme value theory and in particular on an extended
regular variation formulation of the standard domain of attraction condition. We illustrate our work
by constructing a fictitious wildfire CAT bond whose behaviour we examine using data from the 2016
Fort McMurray wildfire in Canada.

In [7], I supervised my undergraduate mathematics student Oliver Church in the mining of a data
base of law decisions across the European Union in the area of design law, which is part of the broader
area of law covering intellectual property rights. Together with Estelle Derclaye, who specialises in
intellectual property law, we analysed, among others, the presence of differences in the proportion of
designs found valid and infringed as a function of the level of the courts, the type of design right, the
dimension of design and the level of specialisation of the judges, using standard techniques such as
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χ2−independence tests and proportion comparison tests. The findings are interpreted in the context
of the EU design framework; the conclusions of the paper have been discussed during several meetings
in Brussels with the relevant department of the European Commission, which directly reports to
lawmakers of the European Parliament.

1.3 Structure of the manuscript

Chapter 2, the main chapter of this report, contains a more detailed presentation of the main results
of my contributions in [1, 3, 4, 5, 10, 11, 12, 14] to the field of extreme risk assessment in heavy-tailed
models, which currently constitutes my principal area of research. Perspectives for future work related
to each of these contributions are also discussed.
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Chapter 2

Statistical aspects of extreme risk
assessment in heavy-tailed models

The structure of this main chapter is the following. Section 2.1 elaborates on our setting and introduces
notation which shall be used throughout. Section 2.2 focuses on Wang distortion risk measures and
their estimation at extreme levels. Section 2.3 adopts a different point of view and studies inference
on extreme expectile-based risk measures. Section 2.4 then moves to the more general Lp context,
with the examples of extreme Lp−quantile and tail Lp−median estimation. Section 2.5 returns to the
L2 world and concentrates on the new class of extremiles. Section 2.6 concludes with the presentation
of some technical tools for joint inference about heavy tails, illustrated by a couple of applications to
the joint estimation of extreme (marginal) risk measures for a random vector. Extended discussions,
details on the simulation studies, further real data examples and all necessary mathematical proofs
can be found in each referenced paper and their associated online Supplementary Material documents:

• For Section 2.2, see [11, 14].

• For Section 2.3, see [1, 12].

• For Section 2.4, see [3, 10].

• For Section 2.5, see [5].

• For Section 2.6, see [4].

This is recalled in the title of each section.

2.1 Setting and notation

We work throughout this chapter in a framework of heavy-tailed distributions, which describe the tail
structure of actuarial and financial data fairly well; see, among others, p.9 of [115], p.1 of [215], as well
as [72] and the references therein. A distribution function F of a real-valued random variable X is
said to be heavy-tailed if the associated survival function F := 1− F satisfies the following first-order
regular variation condition:

C1(γ) There exists γ > 0 such that

∀x > 0, lim
t→∞

F (tx)

F (t)
= x−1/γ .

The parameter γ is called the tail index of the distribution function F . In other words, the distribution
of X has a heavy tail with tail index γ if and only if its survival function F is regularly varying with
index −1/γ, in the terminology of [59].
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An equivalent, very useful way of rephrasing that condition is found using the tail quantile function U
associated to F . This is defined as U(t) = inf{x ∈ R | 1/F (x) ≥ t} for any t > 1. With this notation,
condition C1(γ) is equivalent to the assumption that U is regularly varying with index γ, that is,

∀x > 0, lim
t→∞

U(tx)

U(t)
= xγ .

Condition C1(γ) can be rewritten either F (x) = x−1/γ`(x) (for large x) or U(t) = tγL(t), where `, L
are slowly varying functions (i.e. regularly varying with index 0). The interpretation of C1(γ) is then
that the distribution of X is in some sense close, in its tail, to the Pareto distribution with tail index γ
(for which L ≡ ` ≡ 1).

Many of the results we shall see in this chapter are linked to this intuitive proximity between the
distribution of the variable of interest X and a Pareto distribution. To derive precise asymptotic
results, such as the asymptotic normality of estimators of risk measures at extreme levels, it becomes
necessary to quantify the error term in the convergence given by condition C1(γ). This prompts us to
introduce the following second-order regular variation condition:

C2(γ, ρ,A) The function F is second-order regularly varying in a neighbourhood of +∞ with index
−1/γ < 0, second-order parameter ρ ≤ 0 and an auxiliary measurable function A having constant sign
and converging to 0 at infinity, that is,

∀x > 0, lim
t→∞

1

A(1/F (t))

[
F (tx)

F (t)
− x−1/γ

]
= x−1/γ

xρ/γ − 1

γρ
,

where the right-hand side should be read as x−1/γ log(x)/γ2 when ρ = 0.

This second-order condition on F controls the rate of convergence in C1(γ): the larger |ρ| is, the faster
the function |A| converges to 0 (since |A| is regularly varying with index ρ, in virtue of Theorems 2.3.3
and 2.3.9 in [145]) and the smaller the error in the approximation of the right tail of X by a purely
Pareto tail will be. Further interpretation of this assumption can be found in [47, 145] along with
numerous examples of commonly used continuous distributions satisfying it. More generally, condition
C2(γ, ρ,A) is satisfied by any distribution whose survival function F admits an asymptotic power-type
expansion of the form

F (x) = x−1/γ
(
a+ bx−c + o(x−c)

)
as x→∞,

where a > 0, b ∈ R \ {0} and c > 0 are constants. This contains in particular the Hall-Weiss class of
models [163]. Let us finally mention that it is a consequence of Theorem 2.3.9 in [145] that C2(γ, ρ,A)
is actually equivalent to the following, sometimes more convenient extremal assumption on the tail
quantile function U :

∀x > 0, lim
t→∞

1

A(t)

[
U(tx)

U(t)
− xγ

]
= xγ

xρ − 1

ρ
.

Here the right-hand side should be read as xγ log x when ρ = 0.
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2.2 Estimation of extreme Wang distortion risk measures [11, 14]

2.2.1 Introduction

Extreme quantile estimation is relevant in many areas of statistical application, and especially so
in insurance and finance. For example, insurance companies wishing to operate in the European
Union should comply with the Solvency II directive, which requires each company to calculate its own
solvency capital so as to be able to survive the upcoming calendar year with a probability not less
than 0.995. This calculation is precisely an example of extreme quantile estimation. Of course, the
estimation of a single extreme quantile only gives incomplete information on extreme risk, since two
distributions may well share a quantile at some common level although their respective tail behaviours
are different. This is one of the reasons why other quantities, which take into account the whole right
tail of the random variable X modelling the risk, were developed and studied. Examples of such
indicators include the Tail Value-at-Risk (TVaR), also called Expected Shortfall, and the Stop-loss
Premium for reinsurance problems, see [115, 201]. When the survival function of X is continuous, these
measures can be obtained by combining the VaR and a Conditional Tail Moment (CTM) introduced
by [114].

A way to encompass all these indicators in a unified framework is to consider the flexible class of
Wang Distortion Risk Measures (DRMs), introduced by [250]. Wang DRMs are weighted averages of
the quantile function, the weighting scheme being specified by the so-called distortion function; the
aforementioned VaR, TVaR and CTM actually are particular cases of Wang DRMs, and so are many
other interesting objects such as the tail standard deviation premium calculation principle [125], the
Wang transform [251], and the recently introduced GlueVaR of [51]. The estimation of Wang DRMs
above a fixed level of risk has been the subject of a number of papers: in particular, we refer the reader
to [95, 96, 169, 206]. Our first objective in [11, 14] is to show how a simple linear transformation allows
one to construct an extreme analogue of a Wang DRM. In a nutshell, starting with a Wang DRM with
distortion function g, we show that the Wang DRM of X given that X > q(β) is also a Wang DRM,
obtained via a simple and explicit transformation of g, and we focus on this kind of DRM when β
is close to 1. We consider the estimation of extreme Wang DRMs under classical conditions in the
analysis of heavy tails. We shall consider two estimators: one based on an asymptotic proportionality
relationship linking our concept of extreme Wang DRM with the corresponding extreme quantile, and
another, called the functional plug-in estimator, constructed upon plugging the empirical quantile
function in the weighted integral defining the Wang DRM. Our methods, it appears, provide a unified
framework for the study of many frequently used extreme risk metrics, and we shall underline in
particular that several results of the literature can be recovered from our own results.

The functional plug-in estimator closely mimics the structure of the true Wang DRM to be estimated.
An appealing feature of this estimator in general is that it takes into account all the order statistics
above a high threshold in its computation. As such, it uses all the information provided by the sample
about the right tail of the underlying distribution. Of course, this is not without drawbacks at the
finite-sample level. A particular disadvantage is that the finite-sample performance of the functional
plug-in estimator decreases sharply in terms of mean squared error as the tail of the underlying dis-
tribution gets heavier. This is due to the propensity of heavier-tailed distributions to generate highly
variable top order statistics and, therefore, to increase dramatically the variability of the estimates.
We shall then show that robustifying the functional plug-in estimator by deleting certain top order
statistics and/or replacing them by lower order statistics, namely trimming or winsorising the es-
timator, enables one to obtain estimators with improved finite-sample performance in situations of
very heavy tails. This is done by a two-stage methodology: trimming/winsorisation is first applied
to reduce the variability of the estimator, followed by a bias correction warranted by the heavy-tailed
context.

The outline of this section is the following. We first recall the definition of a Wang DRM in Sec-
tion 2.2.2. In Section 2.2.3, we present a simple way to build extreme analogues of Wang DRMs and
we consider their estimation. Section 2.2.4 then introduces and studies our trimmed and winsorised
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Risk measure Rg(X) Distortion function g
VaR at level β g(x) = I{x ≥ 1− β} where 0 ≤ β < 1

TVaR above level β g(x) = min

{
x

1− β
, 1

}
where 0 ≤ β < 1

Proportional Hazard transform g(x) = xα where 0 < α < 1

Dual Power g(x) = 1− (1− x)1/α where 0 < α < 1

MAXMINVAR g(x) = (1− (1− x)α)1/α where 0 < α < 1

MINMAXVAR g(x) = 1− (1− x1/α)α where 0 < α < 1
Gini’s principle g(x) = (1 + α)x− αx2 where 0 < α ≤ 1

Denneberg’s absolute deviation g(x) =

{
(1 + α)x if 0 ≤ x ≤ 1/2
α+ (1− α)x if 1/2 ≤ x ≤ 1

where 0 < α ≤ 1

Exponential transform g(x) =

{
(1− exp(−rx))/(1− exp(−r)) if r > 0
x if r = 0

Logarithmic transform g(x) =

{
(log(1 + rx))/(log(1 + r)) if r > 0
x if r = 0

Square-root transform g(x) =

{
(
√

1 + rx− 1)/(
√

1 + r − 1) if r > 0
x if r = 0

S-inverse shaped transform g(x) = a

(
x3

6
− δ

2
x2 +

(
δ2

2
+ β

)
x

)
where a =

(
1

6
− δ

2
+
δ2

2
+ β

)−1
with 0 ≤ δ ≤ 1 and β ∈ R

Wang’s transform g(x) = Φ(Φ−1(x) + Φ−1(α))
where Φ is the standard Gaussian distribution function and 0 ≤ α ≤ 1

Beta’s transform g(x) =

∫ x

0

1

β(a, b)
ta−1(1− t)b−1dt

where β(a, b) is the Beta function with parameters a, b > 0

Table 2.1: Some risk measures and their distortion functions.

estimators. Section 2.2.5 is devoted to the study of the finite-sample performance of our estimators
on simulated and real data. Section 2.2.6 concludes by offering some perspective on future work.

2.2.2 Wang distortion risk measures [14]

We say throughout this section that g : [0, 1] → [0, 1] is a distortion function if it is right-continuous
and nondecreasing with g(0) = 0 and g(1) = 1. The Wang DRM of a positive random variable X with
distortion function g is then

Rg(X) :=

∫ ∞
0

g(1− F (x))dx,

where F is the cumulative distribution function of X. An alternative, easily interpretable expression
of Rg(X) can be found. Let m = inf{α ∈ [0, 1] | g(α) > 0} and M = sup{α ∈ [0, 1] | g(α) < 1}.
Assume for the moment that the quantile function q, defined by q(τ) = inf{x ∈ R |F (x) ≥ τ} for any
τ ∈ (0, 1), is continuous on V ∩ (0, 1) with V an open interval containing [1 −M, 1 −m]. Noticing
that F is the right-continuous inverse of q, a classical change-of-variables formula and an integration
by parts then entail that Rg(X), provided it is finite, can be written as a Lebesgue-Stieltjes integral:

Rg(X) =

∫ 1

0
g(α)dq(1− α) =

∫ 1

0
q(1− α)dg(α).

A Wang DRM can thus be understood as a weighted version of the expectation of the random vari-
able X. Specific examples include the quantile at level β or VaR(β), obtained by setting g(x) =
I{x ≥ 1− β}, with I{·} denoting the indicator function; the Tail Value-at-Risk TVaR(β) in the
worst 100(1 − β)% of cases, the average of all quantiles exceeding VaR(β), is recovered by taking
g(x) = min(x/(1 − β), 1). Table 2.1 gives further examples of classical DRMs and their distortion
functions. Broadly speaking, the class of Wang DRMs allows almost total flexibility as far as the
weighting scheme is considered. Besides, any spectral risk measure of X (see e.g. [78]) is also a Wang
DRM.
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Risk measure Expression as a combination of CTMa(β) and VaR(β)
CTE(β) CTM1(β)

ω1CTM1(β) + ω2CTM1(α) + ω3VaR(α)

GlueVaRh1,h2

β,α where ω1 = h1 −
(h2 − h1)(1− β)

β − α
, ω2 =

(h2 − h1)(1− α)

β − α
and ω3 = 1− ω1 − ω2 = 1− h2, with h1 ∈ [0, 1], h2 ∈ [h1, 1] and α < β

SP(β) (1− β)(CTM1(β)−VaR(β))

CTV(β) CTM2(β)− CTM2
1(β)

TSDλ(β) CTM1(β) + λ
√

CTM2(β)− CTM2
1(β) where λ ≥ 0

CTS(β) CTM3(β)/(CTM2(β)− CTM2
1(β))3/2

Table 2.2: Link between the CTM and some risk measures when the distribution function of X is
continuous.

Furthermore, we note that if h : [0,∞) → [0,∞) is a strictly increasing, continuously differentiable
function, then the Wang DRM of h(X) with distortion function g is

Rg(h(X)) =

∫ 1

0
h ◦ q(1− α)dg(α). (2.2.1)

For instance, the choices g(x) = min(x/(1 − β), 1), β ∈ (0, 1) and h(x) = xa, with a a positive real
number, yield, after integrating by parts,

Rg(X
a) = CTMa(β) := E(Xa|X > q(β)),

provided F is continuous. This is the Conditional Tail Moment (CTM) of order a of the random
variable X, as introduced in [114]. Especially, when F is continuous, the TVaR coincides with the
Conditional Tail Expectation of X. Table 2.2 gives several examples of risk measures, such as the
Stop-loss Premium (SP), that can be obtained by combining a finite number of CTMs and the VaR.
In an actuarial context, a DRM is a coherent risk measure (see [44]) if and only if the distortion
function g is concave [258]. Coherency of a risk measure reflects in particular on the diversification
principle which asserts that aggregating two risks cannot be worse than handling them separately [44].
Especially, while the VaR is not a coherent risk measure in general, the TVaR is, for instance, and
this has already been noted several times in the recent literature.

Yet another property of risk measures, namely elicitability [134, 265], has gained prominence in recent
years since it has been argued to allow for correct forecast performance comparisons. While the VaR
is an elicitable (and consistent) risk measure, the TVaR is not; more generally, it has been shown
recently by [185, 255] that Wang DRMs different from either the VaR or the simple expectation do
not satisfy such a property. An example of a risk measure that is both coherent and elicitable is the
expectile [190, 209] when it is larger than the expectation. The estimation of extreme expectiles, which
to the best of our knowledge cannot be written as a simple combination of extreme Wang DRMs of
X, is tackled in Section 2.3 (see [1, 12]).

2.2.3 Framework and estimation [14]

2.2.3.1 Extreme versions of Wang DRMs

Extreme versions of Wang risk measures may be obtained as follows. Let g be a distortion function
and for every β ∈ (0, 1), consider the function gβ defined by

∀y ∈ [0, 1], gβ(y) := g

(
min

[
1,

y

1− β

])
=

 g

(
y

1− β

)
if y ≤ 1− β

1 otherwise.

Such a function, which is deduced from g by a simple piecewise linear transform of its argument, is
thus constant equal to 1 on [1− β, 1]. Especially, if g gives rise to a coherent Wang DRM, so does gβ.

22



We now consider the Wang DRM of X with distortion function gβ:

Rg,β(X) :=

∫ ∞
0

gβ(1− F (x))dx.

Because the inequality F (x) ≥ β is equivalent to x ≥ q(β), we have:

Rg,β(X) =

∫ ∞
0

g(1− Fβ(x))dx with Fβ(x) := max

[
0,
F (x)− β

1− β

]
. (2.2.2)

When moreover q is continuous and strictly increasing in a neighbourhood of β, then

Fβ(x) = max

[
0,
F (x)− F (q(β))

1− q(β)

]
= P(X ≤ x|X > q(β)),

which makes the interpretation of the risk measure Rg,β(X) clear: it is the Wang DRM of X given
that it lies above the level q(β). In other words, we have shown the following.

Proposition 2.2.1. Assume that for some t > 0, the function q is continuous and strictly increasing
on [t, 1). Then for all β > t and any strictly increasing and continuously differentiable function h on
(0,∞),

Rg,β(h(X)) = Rg(h(Xβ)) with P(Xβ ≤ x) = P(X ≤ x|X > q(β)).

When β ↑ 1, we may then think of this construction as a way to consider Wang DRMs of the extremes
of X. Choosing h(x) = x makes it possible to recover some simple and widely used extreme risk
measures: the usual extreme VaR is obtained by setting g(x) = I{x = 1}, and an extreme version
of the TVaR is obtained by taking g(x) = x. The same idea yields extreme analogues of the various
risk measures shown in Table 2.1. Furthermore, as highlighted in Section 2.2.2, choosing g(x) = x
and h(x) = xa, a > 0, yields an extreme version of a CTM of X, and therefore extreme versions of
quantities such as those introduced in Table 2.2 can be studied.

It is worth noting at this point that the construction presented here is different from that of [249]. In
the latter paper, the authors consider the Wang DRM Rg of (X −R)I{X > R} = max(X −R, 0) for
large R. Their construction is thus adapted to the examination of excess-of-loss reinsurance policies
for extreme losses; their work is, by the way, restricted to the case of a concave function g satisfying a
regular variation condition in a neighbourhood of 0. It therefore excludes the simple VaR risk measure,
for instance, as well as the GlueVaR of [51]. Our idea is rather to consider a conditional construction
in the sense that we look at the Wang DRMs of X given that it lies above a high level, with conditions
as weak as possible on the function g, in an effort to be able to examine the extremes of X in as unified
a way as possible.

2.2.3.2 Estimation using an asymptotic equivalent

We now give a first idea on how to estimate this type of extreme risk measure. Let (X1, . . . , Xn) be a
sample of independent and identically distributed copies of a random variable X having distribution
function F , and let (βn) be a nondecreasing sequence of real numbers belonging to (0, 1), which
converges to 1. Assume for the time being that X is Pareto distributed,

∀x > 1, P(X ≤ x) = 1− x−1/γ

where γ > 0 is the so-called tail index of X. In this case, the quantile function of X is q(α) = (1−α)−γ

for all α ∈ (0, 1). Using (2.2.1) in Section 2.2.2 and a simple change of variables, we get:

Rg,βn(h(X)) =

∫ 1

0
h ◦ q(1− α)dgβn(α) =

∫ 1

0
h ◦ q(1− (1− βn)s)dg(s)

=

∫ 1

0
h(q(βn)s−γ)dg(s). (2.2.3)
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In this case, an estimator of Rg,βn(h(X)) would then be obtained by plugging estimators of q(βn)
and γ in the right-hand side of (2.2.3).

Of course, in general, a strong relationship such as (2.2.3) cannot be expected to hold, but it stays true
to some extent when X has a heavy-tailed distribution. We also suppose that the quantile function q
of X is continuous and strictly increasing in a neighbourhood of infinity, which makes possible the
use of (2.2.1) for n large enough. Finally, we assume that the function h is a positive power of x:
h(x) = xa, where a > 0. This choice allows us to consider estimators of a large class of risk measures
of X, including the aforementioned CTM. In this case, one can show that

Rg,βn(Xa) = [q(βn)]a
∫ 1

0
s−aγdg(s)(1 + o(1)) as n→∞,

provided
∫ 1
0 s
−aγ−ηdg(s) <∞ for some η > 0. This suggests that the above idea for the construction

of the estimator can still be used provided n is large enough. Specifically, if q̂n(α) = Xdnαe,n denotes
the empirical quantile function, in which X1,n ≤ · · · ≤ Xn,n are the order statistics of the sample
(X1, . . . , Xn) and d·e is the ceiling function, we set

R̂AEg,βn(Xa) := Xa
dnβne,n

∫ 1

0
s−aγ̂ndg(s)

where γ̂n is any consistent estimator of γ. This estimator is called the AE estimator in what follows.
Notice that the integrability condition

∫ 1
0 s
−aγ−ηdg(s) <∞, which should be thought of as a condition

that guarantees the existence of the considered Wang DRM, makes the estimator introduced here well-
defined with probability arbitrarily large when n is large enough, due to the consistency of γ̂n. For a
related but different idea, see [249].

An appealing feature of the AE estimator is that it is easy to compute in many cases:

• in the case of the Conditional Tail moment of order a, i.e. g(x) = x, the estimator reads

R̂AEg,βn(Xa) = Xa
dnβne,n

∫ 1

0
s−aγ̂nds =

Xa
dnβne,n

1− aγ̂n

when aγ̂n < 1. In particular, this provides an estimator different from the sample average
estimator of [114];

• in the case of the Dual Power risk measure, i.e. g(x) = 1 − (1 − x)1/α where 0 < α < 1 and
a = 1, then when r := 1/α is an integer, the estimator is

R̂AEg,βn(X) = Xdnβne,n

∫ 1

0
rs−γ̂n(1− s)r−1ds =

r!Γ(1− γ̂n)

Γ(1− γ̂n + r)
Xdnβne,n

provided γ̂n < 1. Here Γ is Euler’s Gamma function, Γ(x) =
∫∞
0 tx−1e−tdt;

• in the case of the Proportional Hazard transform, i.e. g(x) = xα where 0 < α < 1 and a = 1,
the estimator is

R̂AEg,βn(X) = Xdnβne,n

∫ 1

0
αsα−γ̂n−1ds =

αXdnβne,n

α− γ̂n
provided γ̂n < α.

In order to examine the asymptotic properties of our estimator, it is necessary to compute the order
of magnitude of its asymptotic bias. We do so by working under condition C2(γ, ρ,A), which allows
us to write our first main result.

Theorem 2.2.2. Assume that U is regularly varying with index γ > 0. Assume further that βn → 1
and n(1− βn)→∞.
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1. Pick a distortion function g and a > 0. If there is some η > 0 such that∫ 1

0
s−aγ−ηdg(s) <∞

and γ̂n is a consistent estimator of γ, then

R̂AEg,βn(Xa)

Rg,βn(Xa)
− 1

P−→ 0 as n→∞.

2. Assume moreover that U satisfies condition C2(γ, ρ,A) and
√
n(1− βn)A((1− βn)−1)→ λ ∈ R.

Pick a d−tuple of distortion functions (g1, . . . , gd) and a1, . . . , ad > 0. If for some η > 0,

∀j ∈ {1, . . . , d},
∫ 1

0
s−ajγ−1/2−ηdgj(s) <∞,

then, provided we have the joint convergence√
n(1− βn)

(
γ̂n − γ,

Xdnβne,n

q(βn)
− 1

)
d−→ (Γ,Θ)

it holds that the random vector

√
n(1− βn)

(
R̂AEgj ,βn(Xaj )

Rgj ,βn(Xaj )
− 1

)
1≤j≤d

asymptotically has the joint distribution ofaj
−λ

∫ 1

0
s−ajγ

s−ρ − 1

ρ
dgj(s)∫ 1

0
s−ajγdgj(s)

+

∫ 1

0
s−ajγ log(1/s)dgj(s)∫ 1

0
s−ajγdgj(s)

Γ + Θ




1≤j≤d

.

Because of the restriction n(1− βn)→∞, Theorem 2.2.2 only ensures that the estimator consistently
estimates so-called intermediate (i.e. not “too extreme”) Wang DRMs. This restriction will be lifted
in Section 2.2.3.4 by the introduction of an estimator adapted to the extreme value framework.

2.2.3.3 Estimation using a functional plug-in estimator

Our idea here is to introduce an alternative estimator obtained by making a single approximation
instead of the two successive ones

q(1− (1− βn)s) ≈ q(βn)s−γ ≈ Xdnβne,ns
−γ̂n ,

which we can then expect to perform better than the AE estimator. Recall that

Rg,βn(h(X)) =

∫ 1

0
h ◦ q(1− (1− βn)s)dg(s).

We consider the statistic obtained by replacing the function s 7→ q(1 − (1 − βn)s) by its empirical
counterpart s 7→ q̂n(1− (1− βn)s) = Xdn(1−(1−βn)s)e,n. This yields the functional plug-in estimator

R̂PLg,βn(h(X)) =

∫ 1

0
h ◦ q̂n(1− (1− βn)s)dg(s)

which we call the PL estimator. Contrary to the AE estimator, the PL estimator is well-defined and
finite with probability 1, and does not require an external estimator of γ. Its expression is a bit more
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involved though; in the case when n(1−βn) is actually a positive integer and g is continuous on [0, 1],
it is easy to show that it takes the simpler form

R̂PLg,βn(h(X)) = h(Xnβn+1,n) +

n(1−βn)−1∑
i=1

g

(
i

n(1− βn)

)
[h(Xn−i+1,n)− h(Xn−i,n)].

Our aim is now to examine the asymptotic properties of the PL estimator. While it would be straight-
forward to obtain the asymptotic properties of this estimator for a fixed order β through L-statistic
techniques, see e.g. [169], a difficulty here lies in the fact that β = βn ↑ 1. As a consequence, theoretical
developments involve knowing the behaviour of the quantile process s 7→ q̂n(s) on [βn, 1]. The crucial
tool is a corollary of the powerful distributional approximation stated in Theorem 2.1 of [101], relating
this tail quantile process to a standard Brownian motion up to a bias term.

Theorem 2.2.3. Assume that U satisfies condition C2(γ, ρ,A). Assume further that βn → 1, n(1 −
βn)→∞ and

√
n(1− βn)A((1− βn)−1)→ λ ∈ R. Pick a d−tuple of distortion functions (g1, . . . , gd)

and a1, . . . , ad > 0. If for some η > 0,

∀j ∈ {1, . . . , d},
∫ 1

0
s−ajγ−1/2−ηdgj(s) <∞,

then √
n(1− βn)

(
R̂PLgj ,βn(Xaj )

Rgj ,βn(Xaj )
− 1

)
1≤j≤d

d−→ N (0, V )

with V being the d× d matrix whose (i, j)−th entry is

Vi,j = aiajγ
2

∫
[0,1]2 min(s, t)s−aiγ−1t−ajγ−1dgi(s)dgj(t)∫ 1

0 s
−aiγdgi(s)

∫ 1
0 t
−ajγdgj(t)

.

This asymptotic normality result, unsurprisingly, is also restricted to the case n(1− βn)→∞, as was
Theorem 2.2.2. We can draw an interesting consequence from Theorem 2.2.3: for b ∈ R, consider the
class Eb([0, 1]) of those continuously differentiable functions on (0, 1) such that s−b|g′(s)| is bounded
for s in a neighbourhood of 0. For instance, any polynomial function belongs to E0([0, 1]), and the
Proportional Hazard [250] distortion function g(s) = sα, α ∈ (0, 1), belongs to Eα−1([0, 1]).

Corollary 2.2.4. Assume that U satisfies condition C2(γ, ρ,A). Assume further that βn → 1, n(1−
βn)→∞ and

√
n(1− βn)A((1− βn)−1)→ λ ∈ R. Pick a d−tuple of distortion functions (g1, . . . , gd)

and a1, . . . , ad > 0. Assume there are b1, . . . , bd ∈ R such that for all j ∈ {1, . . . , d}, we have gj ∈
Ebj ([0, 1]). If

∀j ∈ {1, . . . , d}, γ < 2bj + 1

2aj
,

then √
n(1− βn)

(
R̂PLgj ,βn(Xaj )

Rgj ,βn(Xaj )
− 1

)
1≤j≤d

d−→ N (0, V )

with V as in Theorem 2.2.3.

In particular, the condition on γ we get for the asymptotic normality of the CTM of order a, obtained
with g(x) = x and thus g ∈ E0([0, 1]), is γ < 1/2a, which is the condition obtained by [114]. One may
also readily check that the asymptotic variance is the same as in Theorem 1 there.

Just like the AE estimator, the PL estimator is only consistent when (βn) is an intermediate sequence.
Our purpose is now to remove this restriction by using the extrapolation methodology of [256].
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2.2.3.4 Estimating extreme Wang DRMs of arbitrary order

For any s ∈ (0, 1) and a > 0 we have

[q(1− (1− δn)s)]a =

(
1− βn
1− δn

)aγ
[q(1− (1− βn)s)]a(1 + o(1))

as n → ∞, as a consequence of the regular variation property of U , and provided that (βn) is a
sequence converging to 1 such that (1 − δn)/(1 − βn) converges to a positive limit. Integrating this
relationship with respect to the distortion measure dg therefore suggests that

Rg,δn(Xa) =

(
1− βn
1− δn

)aγ
Rg,βn(Xa)(1 + o(1)).

A way to design an adapted estimator of the extreme risk measure Rg,δn(Xa), when n(1 − δn) →
c < ∞, is thus to take a sequence (βn) such that n(1 − βn) → ∞, and to plug in any relatively
consistent estimator R̂g,βn(Xa) of the intermediate Wang DRM Rg,βn(Xa). This yields a Weissman-
type estimator of Rg,δn(Xa) (see [256]):

R̂Wg,δn(Xa;βn) :=

(
1− βn
1− δn

)aγ̂n
R̂g,βn(Xa).

This principle can of course be applied to the AE and PL estimators to obtain two different extrapolated
estimators. Our asymptotic result on this class of estimators is the following.

Theorem 2.2.5. Assume that U satisfies condition C2(γ, ρ,A), with ρ < 0. Assume further that
βn, δn → 1, n(1 − βn) → ∞, (1 − δn)/(1 − βn) → 0,

√
n(1− βn)/ log([1 − βn]/[1 − δn]) → ∞

and
√
n(1− βn)A((1 − βn)−1) → λ ∈ R. Pick a d−tuple of distortion functions (g1, . . . , gd) and

a1, . . . , ad > 0. If for some η > 0,

∀j ∈ {1, . . . , d},
∫ 1

0
s−ajγ−1/2−ηdgj(s) <∞

and
√
n(1− βn)(γ̂n − γ)

d−→ ξ, then provided

∀j ∈ {1, . . . , d},
√
n(1− βn)

(
R̂gj ,βn(Xaj )

Rgj ,βn(Xaj )
− 1

)
= OP(1)

we have that √
n(1− βn)

log([1− βn]/[1− δn])

(
R̂Wgj ,δn(Xaj ;βn)

Rgj ,δn(Xaj )
− 1

)
1≤j≤d

d−→

 a1ξ
...
adξ

 .

In the particular case d = 1, a = 1 and g(x) = 0 if x < 1, we recover the asymptotic result about
Weissman’s estimator, see Theorem 4.3.8 in [145]. For g(x) = x and d = 1, we recover a result similar
to Theorem 2 of [114] if the intermediate estimator is the PL estimator. In practical situations, the
estimation of the parameter γ is of course a central question. Classical tail index estimators (see
Section 3 of [145] and the review in Section 5 of [138]), when computed with the top 100(1− βn)% of
the data, typically converge at the required rate

√
n(1− βn).

2.2.4 Trimmed and winsorised versions of the functional plug-in estimator [11]

2.2.4.1 Heavy tails, top order statistics and finite-sample variability

A problem with the use of the PL estimator can arise in practice when g is strictly increasing in a
left neighbourhood of 1, which is for instance the case for the Tail-Value-at-Risk, Dual Power and
Proportional Hazard risk measures. In that case, the PL estimator takes into account all the data
above level Xdnβne,n in the sample, and in any sample where some of the highest order statistics are far
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from their population counterparts, this will result in inappropriate estimates. Such situations appear
regularly: suppose here that X has a Pareto distribution with parameter 1/γ, i.e.

∀x ≥ 1, F (x) = 1− x−1/γ so that ∀α ∈ (0, 1), q(α) = (1− α)−γ .

The probability that the sample maximum Xn,n exceeds a multiple of its population counterpart,
namely the quantile q(1− n−1), is then

P(Xn,n > Kq(1− n−1)) = 1−
[
1− P(X > Kq(1− n−1))

]n
= 1−

[
1− K−1/γ

n

]n
≈ 1− exp(−K−1/γ) for large enough n.

This result is, of course, linked to the fact that sample quantiles at extreme levels do not estimate
the corresponding true quantiles consistently; a related point is that, sample-wise, the most extreme
values tend not to give a fair picture of the extremes of the underlying distribution [131]. Carrying on
with this example, it follows that in the case γ = 0.49, K = 3, and n = 1000, the sample maximum
is larger than 88.54, which is three times the quantile at level 0.999, with probability approximately
equal to 0.101. In this sense, approximately 10% of samples feature at least one unusually high value.
Besides, as the above calculation shows, the probability that a sample features one or several very large
values increases as γ increases, i.e. as the tail gets heavier. The influence of such values on extreme
Wang DRM estimates should of course not be underestimated. In the case of the Tail-Value-at-Risk,
obtained for g(s) = s, namely:

TVaR(β) = RId,β(X) =
1

1− β

∫ 1−β

0
q(1− α)dα =

(1− β)−γ

1− γ
,

a simulation study not reported here shows that, on 5000 replicates of a sample of 1000 independent
random copies of the aforementioned Pareto distribution conditioned on the fact that the sample
maximum is larger than 88.54, the relative bias of the Tail-Value-at-Risk PL estimator,

R̂PLId,β(X) =
1

1− β

∫ 1−β

0
q̂n(1− α)dα =

1

n(1− β)

n(1−β)∑
j=1

Xn−j+1,n,

at level β = 0.95 is approximately 0.389. In other words, the PL estimator is, on such samples, on
average a little less than 40% higher than it should be. Of course, this could have been expected
since it is straightforward to see that the above PL estimator is adversely affected by high values
of Xn,n (just as the sample mean is). The concern here is rather that problematic cases, through
the apparition of very high values of the sample maximum and more generally of the highest order
statistics, appear more and more frequently as γ increases, even when γ is such that the estimator
R̂PLId,β(X) is asymptotically Gaussian. Our first objective is to introduce estimators which deal with
this variability issue.

2.2.4.2 First step of improvement: Reducing finite-sample variability

A simple idea to tackle the problem highlighted in Section 2.2.4.1 is to delete the highest problematic
values altogether, namely to trim the PL estimator, by considering the statistic

R̂Trim
g,βn,tn(h(X)) =

∫ 1

0
h ◦ q̂n(tn − (tn − βn)s)dg(s),

where (tn) is a sequence of trimming levels, i.e. a sequence such that βn < tn ≤ 1. This is the empirical
estimator of

RTrim
g,βn,tn(h(X)) =

∫ 1

0
h ◦ q(tn − (tn − βn)s)dg(s),

which in many cases is actually the Wang DRM of h(X) given that X lies between q(βn) and q(tn),
as the following result shows.
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Proposition 2.2.6. Let β ∈ (0, 1) and t ∈ (0, 1] such that t > β. If q is continuous and strictly
increasing on an open interval containing [β, 1) then:

RTrim
g,β,t (h(X)) = Rg(h(XTrim

β,t )) with XTrim
β,t

d
= X|X ∈ [q(β), q(t)].

In practice, it is very often the case that ntn and n(tn−βn) are positive integers (see Section 2.2.5). In
that particular case, the trimmed estimator R̂Trim

g,βn,tn
(h(X)), which we shall call the Trim-PL estimator,

can be conveniently rewritten as a generalised L-statistic:

R̂Trim
g,βn,tn(h(X)) =

n(tn−βn)∑
i=1

h(Xntn−i+1,n)

∫ 1

0
I{xi−1,n(βn, tn) ≤ s < xi,n(βn, tn)}dg(s)

+ h(Xnβn,n)

[
g(1)− lim

s→1
s<1

g(s)

]
with xi,n(βn, tn) =

i

n(tn − βn)

=

n(tn−βn)∑
i=1

h(Xntn−i+1,n)

 lim
s→xi,n(βn,tn)
s<xi,n(βn,tn)

g(s)− lim
s→xi−1,n(βn,tn)
s<xi−1,n(βn,tn)

g(s)


+ h(Xnβn,n)

[
1− lim

s→1
s<1

g(s)

]
.

When the function g is moreover continuous on [0, 1], this can be further simplified as

R̂Trim
g,βn,tn(h(X)) = h(Xnβn+1,n) +

n(tn−βn)−1∑
i=1

g

(
i

n(tn − βn)

)
[h(Xntn−i+1,n)− h(Xntn−i,n)].

It should thus be clear at this stage that the Trim-PL estimator R̂Trim
g,βn,tn

(h(X)) is both the empirical

counterpart of RTrim
g,βn,tn

(h(X)) and a trimmed estimator of Rg,βn(h(X)) in the sense that the top order
statistics Xntn+1,n, . . . , Xn,n are discarded for the estimation. This amounts to a trimming percentage
equal to 100(1− tn)% in the highest values of the sample. The original, intermediate PL estimator is
recovered for tn = 1.

Although the idea of trimming seems appealing because it is expected to curb the estimator’s vari-
ability, it may not be the best method available in that it effectively reduces the available sample size.
The overall bias of the estimator, meanwhile, would be negatively affected as well, since despite their
high variability, the highest order statistics in the sample are those who carry the least bias about the
extremes of the underlying distribution. One could try reducing the loss of information that trimming
entails by winsorising the estimator R̂PLg,βn(h(X)) instead, which amounts to considering the following
so-called Wins-PL estimator:

R̂Wins
g,βn,tn(h(X)) =

∫ 1

0
h ◦ q̂n(min(tn, 1− (1− βn)s))dg(s).

When ntn and n(tn−βn) are positive integers it is easy to see that, contrary to the trimmed estimator,
the winsorised estimator replaces the data points Xntn+1,n, . . . , Xn,n by Xntn,n. This estimator can of
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course also be written as a generalised L-statistic, viz.

R̂Wins
g,βn,tn(h(X)) = h(Xntn,n)

∫ 1

0
I{0 ≤ s < xn(1−tn),n(βn, 1)}dg(s)

+

n(1−βn)∑
i=n(1−tn)+1

h(Xn−i+1,n)

∫ 1

0
I{xi−1,n(βn, 1) ≤ s < xi,n(βn, 1)}dg(s)

+ h(Xnβn,n)

[
g(1)− lim

s→1
s<1

g(s)

]

=

n(1−βn)∑
i=n(1−tn)+1

h(Xn−i+1,n)

 lim
s→xi,n(βn,1)
s<xi,n(βn,1)

g(s)− lim
s→xi−1,n(βn,1)
s<xi−1,n(βn,1)

g(s)


+ h(Xnβn,n)

[
g(1)− lim

s→1
s<1

g(s)

]
+ h(Xntn,n) lim

s→xn(1−tn),n(βn,1)

s<xn(1−tn),n(βn,1)

g(s).

If g is continuous on [0, 1], this reads:

R̂Wins
g,βn,tn(h(X)) = h(Xnβn+1,n) +

n(1−βn)−1∑
i=n(1−tn)+1

g

(
i

n(1− βn)

)
[h(Xn−i+1,n)− h(Xn−i,n)].

Like the Trim-PL estimator, the Wins-PL estimator is a direct empirical estimator, of the quantity

RWins
g,βn,tn(h(X)) =

∫ 1

0
h ◦ q(min(tn, 1− (1− βn)s))dg(s),

which is actually essentially the Wang DRM of h(X) given that X is larger than q(βn) and clipped
above level q(tn):

Proposition 2.2.7. Let β ∈ (0, 1) and t ∈ (0, 1] such that t > β. If q is continuous and strictly
increasing on an open interval containing [β, 1) then:

RWins
g,β,t (h(X)) = Rg(h(XWins

β,t )) with XWins
β,t

d
= XI{q(β) ≤ X < q(t)}+ q(t)I{X ≥ q(t)}.

The focus in this section is to study the merits of trimming/winsorising in the context of the estimation
of extreme Wang DRMs, both theoretically and at the finite-sample level. The crucial tool will, once
again, be a Gaussian approximation of the tail quantile process.

Our final step prior to studying the Trim-PL and Wins-PL estimators is to highlight that they are
actually part of a common class of estimators. For 0 < β < t ≤ 1, let F(β, t) be the set of those
nonincreasing Borel measurable functions ψ taking values in [0, 1] such that

ψ(0) = t, ψ(1) = β and ∀s ∈ [0, 1], 0 ≤ 1− (1− β)s− ψ(s) ≤ 1− t.

Let now (ψn) be a sequence of functions such that for all n, ψn ∈ F(βn, tn), and set

Rg,βn(h(X);ψn) :=

∫ 1

0
h ◦ q ◦ ψn(s)dg(s),

whose empirical counterpart is the estimator

R̂g,βn(h(X);ψn) =

∫ 1

0
h ◦ q̂n ◦ ψn(s)dg(s) =

∫ 1

0
h(Xdnψn(s)e,n)dg(s).

All estimators in this class only take into account data points among the Xi,n, dnβne ≤ i ≤ dntne, and
can therefore be considered robust with respect to change in the most extreme values in the sample
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when n(1−tn) ≥ 1. The class of estimators R̂g,βn(h(X);ψn) is a reasonable, unifying framework for our
purpose: indeed, particular examples of the sequence (ψn) are s 7→ tn−(tn−βn)s which appears as the
argument of the empirical quantile function in the Trim-PL estimator, and s 7→ min(tn, 1− (1− βn)s)
giving rise to the Wins-PL estimator. These two examples should be those coming to mind when
reading the asymptotic results below. Finally, the case ψn(s) = 1 − (1 − βn)s, corresponding to the
original PL estimator, is recovered by setting tn = 1.

The first result below shows that R̂g,βn(h(X);ψn) is a
√
n(1− βn)−asymptotically normal estimator

of Rg,βn(h(X)) when h is a power function, under suitable conditions on βn and tn.

Theorem 2.2.8. Assume that U satisfies condition C2(γ, ρ,A). Assume further that (ψn) is a sequence
of functions such that for all n, ψn ∈ F(βn, tn), with 0 < βn < tn ≤ 1, βn → 1, n(1 − βn) → ∞ and
(1 − tn)/(1 − βn) → 0. Pick distortion functions g1, . . . , gd and a1, . . . , ad > 0, and assume that for
some η > 0, we have

∀j ∈ {1, . . . , d},
∫ 1

0
s−ajγ−1/2−ηdgj(s) <∞, and

√
n(1− tn)

(
1− tn
1− βn

)ε
→ 0,

for some ε ∈ (0,min(1/2, η)). If furthermore
√
n(1− βn)A((1− βn)−1)→ λ ∈ R, then:

√
n(1− βn)

(
R̂gj ,βn(Xaj ;ψn)

Rgj ,βn(Xaj )
− 1

)
1≤j≤d

d−→ N (0, V ),

with the matrix V as in Theorem 2.2.3.

The estimators R̂g,βn(Xa;ψn) thus share the same limiting Gaussian distribution under the classical
bias condition

√
n(1− βn)A((1−βn)−1)→ λ ∈ R, when hypothesis

√
n(1− tn)[(1−tn)/(1−βn)]ε → 0,

relating the order tn to the intermediate level βn, holds true. This condition implies that tn should
converge to 1 quickly enough, or, in other words, that not too many values should be deleted from the
sample for asymptotic unbiasedness to hold. The necessity of such a condition appears in the earlier
works of [80, 83] in the context of mean estimation by the trimmed sample mean: in the former paper,
it is shown that discarding a fixed number of order statistics does not create asymptotic bias, while
the latter paper states that this may not be true for more severe trimmings. It should be noted that
the present assumption is clearly satisfied for tn = 1− c/n, with c being a fixed nonnegative integer,
corresponding to the case when the top c order statistics are discarded and the trimming/winsorising
percentage across the whole sample is 100c/n%. Finally, taking tn = 1 in Theorem 2.2.8 yields
Theorem 2.2.3.

The next result, analogously to Corollary 2.2.4, sums up what can be said when g belongs to a space
Eb[0, 1] for b > −1.

Corollary 2.2.9. Assume that U satisfies condition C2(γ, ρ,A). Assume further that (ψn) is a se-
quence of functions such that for all n, ψn ∈ F(βn, tn), with 0 < βn < tn ≤ 1, βn → 1, n(1−βn)→∞
and (1 − tn)/(1 − βn) → 0. Pick distortion functions g1, . . . , gd and a1, . . . , ad > 0. Assume there
are b1, . . . , bd > −1 such that gj ∈ Ebj [0, 1] for all j ∈ {1, . . . , d}. If γ < (2bj + 1)/(2aj) for all
j ∈ {1, . . . , d} and

√
n(1− βn)A((1− βn)−1)→ λ ∈ R and

√
n(1− tn)

(
1− tn
1− βn

)ε
→ 0,

for some ε ∈ (0,min(0, b1 − a1γ, . . . , bd − adγ) + 1/2) then:

√
n(1− βn)

(
R̂gj ,βn(Xaj ;ψn)

Rgj ,βn(Xaj )
− 1

)
1≤j≤d

d−→ N (0, V ),

with the matrix V as in Theorem 2.2.3.
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2.2.4.3 Second step of improvement: Finite-sample bias correction

The estimators introduced above have been shown to be asymptotically normal estimators of Wang
DRMs. It should be noted that on finite-sample situations, such estimators can be expected to carry
some (negative) bias, all the more so as the trimming/winsorising order tn increases. An intuitive jus-
tification for this behaviour is that the estimator R̂g,βn(Xa;ψn) is actually the empirical counterpart of
Rg,βn(Xa;ψn), which is in general different from, and especially less than, the target DRM Rg,βn(Xa).
For instance, in the case of extreme Tail-Value-at-Risk estimation for the Pareto distribution with tail
index γ, then the Tail-Value-at-Risk of X in the worst 100(1− βn)% cases is

Rg,βn(X) =
(1− βn)−γ

1− γ
,

see Section 2.2.4.1. By contrast, the trimmed Tail-Value-at-Risk given that X lies between levels q(βn)
and q(tn) is obtained for ψn(s) = tn − (tn − βn)s and is

RTrim
g,βn,tn(X) =

∫ 1

0
q(tn − (tn − βn)s)dg(s) =

∫ 1

0
[1− tn + (tn − βn)s]−γds

=
(1− βn)1−γ − (1− tn)1−γ

(1− γ)(tn − βn)
.

Rewriting this as

RTrim
g,βn,tn(X) = Rg,βn(X)

{
(1− βn)1−γ − (1− tn)1−γ

(1− βn)−γ(tn − βn)

}
,

results in an expression of RTrim
g,βn,tn

(X) as Rg,βn(X) multiplied by a quantity depending on βn, tn and γ
and smaller than 1. In the case n = 1000, βn = 0.9, tn = 0.99 and γ = 1/2, namely the top 100
observations are selected and the top 10 observations among them are eliminated, the reduction factor
is actually 0.760, i.e. the expected relative bias is −0.240. When the number of observations removed
is halved (tn = 0.995) this factor becomes 0.817 for an expected relative bias of −0.183. The smallest
trimming percentage, obtained when tn = 0.999, for removal of the sample maximum only, results in
a reduction factor of 0.909, which is still an expected relative bias of −0.091.

To retain the reduction in variability brought by the estimator R̂g,βn(X;ψn) and at the same time
obtain an estimator with acceptable finite-sample bias, we design a new estimator based on the previous
calculation. More precisely, in the case of Tail-Value-at-Risk estimation, estimating γ by a consistent
estimator γ̂n and plugging in the previous estimator R̂g,βn(X;ψn) = R̂Trim

g,βn,tn
(X) in the left-hand side

of the above equality gives the corrected estimator

R̃g,βn(X;ψn) = R̂g,βn(X;ψn)

{
(1− βn)1−γ̂n − (1− tn)1−γ̂n

(1− βn)−γ̂n(tn − βn)

}−1
.

Note that the correction factor is in fact{
(1− βn)1−γ̂n − (1− tn)1−γ̂n

(1− βn)−γ̂n(tn − βn)

}−1
=

Rg,βn(Yγ̂n)

Rg,βn(Yγ̂n ;ψn)
,

where Yγ has a Pareto distribution with tail index γ.

Of course, in practice the underlying distribution of X is not known, but in many cases the Pareto
distribution (or a multiple of it) still provides a decent approximation for X in its right tail. It can
thus be expected that in a wide range of situations and for n large enough,

Rg,βn(Xa) = Rg,βn(Xa;ψn)
Rg,βn(Xa)

Rg,βn(Xa;ψn)
≈ Rg,βn(Xa;ψn)

Rg,βn(Yaγ)

Rg,βn(Yaγ ;ψn)
.

This motivates the following class of corrected estimators:

R̃g,βn(Xa;ψn) = R̂g,βn(Xa;ψn)
Rg,βn(Yaγ̂n)

Rg,βn(Yaγ̂n ;ψn)
= R̂g,βn(Xa;ψn)

∫ 1
0 [(1− βn)s]−aγ̂ndg(s)∫ 1
0 [1− ψn(s)]−aγ̂ndg(s)

.

This estimator should be seen as the result of a two-stage procedure:
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• first, compute an estimator of the target extreme Wang DRM using a trimmed/winsorised sam-
ple, thus reducing variability;

• then, use what can be found on the tail behaviour of the sample to shift the previous estimate
back to an essentially bias-neutral position.

Let us emphasise that this bias-correction procedure is a simple one, much closer in spirit to the
construction of the corrected sample variance estimator when the population mean is unknown than
to bias-reduction methods based on asymptotic results in a second-order extreme value framework, of
which an excellent summary is Section 5.3 in [138]. In particular, the multiplicative correction factor
introduced here only depends on the tail index γ, but not on the second-order parameter ρ. Finally,
note that the correction factor might depend on the top values in the sample, but can only actually
do so through the estimator γ̂n. For instance, the Hill estimator of γ,

γ̂βn =
1

dn(1− βn)e

dn(1−βn)e∑
i=1

log (Xn−i+1,n)− log
(
Xn−dn(1−βn)e,n

)
,

or its bias-reduced versions considered in the simulation study below depend on the top values only
through their logarithms, which sharply reduces their contribution to the variability of our final esti-
mator.

The next result shows that any member of this new class of corrected estimators shares the asymptotic
properties of its uncorrected version. Our preference shall thus be driven by finite-sample considera-
tions.

Theorem 2.2.10. Assume that U satisfies condition C2(γ, ρ,A). Assume further that (ψn) is a se-
quence of functions such that for all n, ψn ∈ F(βn, tn), with 0 < βn < tn ≤ 1, βn → 1, n(1−βn)→∞
and (1 − tn)/(1 − βn) → 0. Pick distortion functions g1, . . . , gd and a1, . . . , ad > 0, and assume that
for some η > 0, we have

∀j ∈ {1, . . . , d},
∫ 1

0
s−ajγ−1/2−ηdgj(s) <∞, and

√
n(1− tn)

(
1− tn
1− βn

)ε
→ 0,

for some ε ∈ (0,min(1/2, η)). If furthermore√
n(1− βn)A((1− βn)−1)→ λ ∈ R and

√
n(1− βn)(γ̂n − γ) = OP(1),

then:

∀j ∈ {1, . . . , d},
√
n(1− βn)

(
R̃gj ,βn(Xaj ;ψn)

R̂gj ,βn(Xaj ;ψn)
− 1

)
P−→ 0,

and therefore √
n(1− βn)

(
R̃gj ,βn(Xaj ;ψn)

Rgj ,βn(Xaj )
− 1

)
1≤j≤d

d−→ N (0, V ),

with the matrix V as in Theorem 2.2.8.

2.2.4.4 Adaptation to extreme levels

Like in Sections 2.2.3.2 and 2.2.3.3, the empirical estimators developed so far in Section 2.2.4 only
work provided βn is an intermediate level, namely n(1 − βn) → ∞. The next and final step is to
design an estimator working for arbitrarily extreme levels as well. The construction mimics that of
Section 2.2.3.4: suppose that n(1− δn)→ c <∞, take a sequence (βn) such that n(1− βn)→∞ and
define

R̃Wg,δn(Xa;ψn) :=

(
1− βn
1− δn

)aγ̂n
R̃g,βn(Xa;ψn),
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where γ̂n is the consistent estimator of γ appearing in R̃g,βn(Xa;ψn). This is again a Weissman-type
estimator of Rg,δn(Xa), see [256]. Weissman’s estimator is actually recovered for a = 1, tn = 1 and
g(s) = 0 if s < 1, and the extrapolated PL estimator of Section 2.2.3.4 is obtained for tn = 1. The third
and final main result examines the asymptotic distribution of this class of extrapolated estimators.

Theorem 2.2.11. Assume that U satisfies condition C2(γ, ρ,A), with ρ < 0. Assume further that
(ψn) is a sequence of functions such that for all n, ψn ∈ F(βn, tn), with 0 < βn < tn ≤ 1, βn → 1,
n(1−βn)→∞ and (1−tn)/(1−βn)→ 0; let finally a sequence δn → 1 be such that (1−δn)/(1−βn)→ 0
and

√
n(1− βn)/ log[(1−βn)/(1−δn)]→∞. Pick now distortion functions g1, . . . , gd and a1, . . . , ad >

0, and assume that for some η > 0, we have

∀j ∈ {1, . . . , d},
∫ 1

0
s−ajγ−1/2−ηdgj(s) <∞ and

√
n(1− tn)

(
1− tn
1− βn

)ε
→ 0,

for some ε ∈ (0,min(1/2, η)). If furthermore√
n(1− βn)A((1− βn)−1)→ λ ∈ R and

√
n(1− βn)(γ̂n − γ)

d−→ ξ,

then: √
n(1− βn)

log([1− βn]/[1− δn])

(
R̃Wgj ,δn(Xaj ;ψn)

Rgj ,δn(Xaj )
− 1

)
1≤j≤d

d−→

 a1ξ
...
adξ

 .

Again, in the case tn = 1, we recover the asymptotic normality result of [14] for the class of extrapolated
PL estimators. Our robust extreme risk measure estimators have therefore got the same asymptotic
distribution as the original PL estimator, under the same technical conditions. It can thus be concluded
that considering trimmed/winsorised estimators results in a generalisation of the existing theory of
estimators of extreme Wang DRMs. The next section shall show that the trimmed/winsorised versions
are of value when the underlying distribution has a very heavy tail.

2.2.5 Finite-sample study [11, 14]

2.2.5.1 Finite-sample performance on simulated data

The finite-sample performance of our extrapolated estimators is examined on simulation studies in [11,
14], where we consider a couple of classical continuous heavy-tailed distributions and three different
distortion functions g:

• the expectation function g(x) = x. Under our construction, the associated distortion function gβ
generates the Conditional Tail Expectation (CTE, equivalently TVaR) above level q(β);

• the Dual Power (DP) function g(x) = 1 − (1 − x)1/α with α ∈ (0, 1). When r := 1/α is a
positive integer, the related DRM is the expectation of max(X1, . . . , Xr) for independent copies
X1, . . . , Xr of X,

• and the Proportional Hazard (PH) transform function g(x) = xα, α ∈ (0, 1). When c := 1/α is a
positive integer, the related DRM is the expectation of a random variable Y whose distribution
is such that X has the same distribution as min(Y1, . . . , Yc) for independent copies Y1, . . . , Yc
of Y , see [75].

The level βn, and the truncation level tn for the CTrim-PL and CWins-PL versions of the PL estimator,
are chosen based on stability region arguments whose details can be found in [11, 14]. Our results
show that:

• For examples with moderately large values of γ, the PL estimator performs at least as well as
the AE estimator. Besides, the PL estimator performs markedly better than the AE estimator
for smaller samples or when the risk measure puts more weight on the highest order statistics.
See Section 4 in [14].

34



• For examples with larger values of γ but such that Theorem 2.2.11 holds, the proposed CTrim-
PL and CWins-PL estimators perform slightly worse in terms of bias than the original PL
estimator. This is not surprising: the correction method, based on an approximation of the
upper tails of the underlying distribution by a purely Pareto tail, cannot be expected to recover
all the information the (highly variable) top order statistics carry about the extremes of the
sample. By contrast, the CTrim-PL and CWins-PL estimators perform essentially comparably
to or better than the standard empirical extreme Wang DRM estimator in terms of MSE; for
extreme CTE estimation with values of γ close to but less than 1/2, the improvement is close
to up to 40% in the case of the Fréchet distribution. The performance of the trimmed and
winsorised estimators relatively to the PL estimator deteriorates, however, when ρ gets closer to
0. This is not surprising either, since the correction step is based on an approximation of the
right tail of the underlying distribution by the right tail of (a multiple of) a Pareto distribution,
which gets less accurate as |ρ| decreases. See Section 4.1 in [11].

• For examples with yet heavier tails, when Theorem 2.2.11 fails to hold, the CTrim-PL and
CWins-PL estimators perform similarly but both represent overall a substantial improvement
over the PL estimator especially in samples featuring at least one unusually large observation.
See Section 4.2 in [11].

2.2.5.2 Data example 1: The Secura Belgian Re actuarial data set [14]

We consider here the Secura Belgian Re data set on automobile claims from 1998 until 2001, introduced
in [47] and further analysed in [249] from the extreme value perspective. The data set consists of
n = 371 claims which were at least as large as 1.2 million Euros and were corrected for inflation.

We start by estimating the tail index γ. We use the Hill estimator and a bias-reduced version inspired
by the work of [212]:

γ̂RBβ (τ) =
1

ρ̂β1(τ)
γ̂β +

(
1− 1

ρ̂β1(τ)

)
γ̂Sβ
2γ̂β

,

with

γ̂Sβ =
1

dn(1− β)e

dn(1−β)e∑
i=1

(
logXn−i+1,n − logXn−dn(1−β)e,n

)2
and ρ̂β1(τ) is the consistent estimator of ρ presented in Equation (2.18) of [122], which depends on
a different sample fraction 1 − β1 and a tuning parameter τ ≥ 0. Theorem 2.1 in [212] states the
asymptotic distribution of γ̂RBβn , which can then be used to construct asymptotic confidence intervals.

We take β1 = 1 − dn0.975e/n ≈ 0.0882, as recommended by [66]. Results using the stability region
selection procedure presented in Section 5.2 of [14] are given in Table 2.3. Retaining the median
estimate of γ yields γ̂ = 0.261 for β∗ = 0.792 and τ = 1/2, with ρ̂ = −1.064. Table 2.4 gives estimates
of some risk measures for this data set.

The main example of excess-of-loss reinsurance policy that [249] considered, namely the net premium
principle, can actually be recovered from these estimates. Indeed, according to [249], the net premium
NP(R) for a reinsurance policy in excess of a high retention level R is

NP(R) =

∫ ∞
R

[1− F (x)]dx.

Rearranging Equation (2.2.2) and setting g(x) = x gives the identity

NP(q(β)) = (1− β)(Rg,β(X)−VaR(β))

and, in particular, the right-hand side is actually SP(β). When R is equal to 5 million Euros, as
considered in [249], it can be seen that the exceedance probability P(X > R) is estimated to be
approximately 0.02, or in other words that R is essentially the estimated VaR at the 98% level.
Estimates of our risk measures at this level are provided in Table 2.4; in particular, the net premium

35



is estimated to be approximately 36,000 Euros, which is in line with the 41,798 Euros that [249]
obtained, with our estimate being slightly lower partly because a bias-reduced estimate of γ was used
in the present work, whereas [249] computed a simple Hill estimate.

Estimator γ̂ β∗ Estimate
Hill 0.854 0.292

Bias-reduced, τ = 1 0.782 0.263
Bias-reduced, τ = 3/4 0.792 0.262
Bias-reduced, τ = 1/2 0.792 0.261
Bias-reduced, τ = 1/4 0.792 0.260
Bias-reduced, τ = 0 0.792 0.258

Table 2.3: Secura Belgian Re data set: estimates of the tail index γ.

δ Estimator V̂aR ĈTE ŜP

0.98
AE

4989 6750 35.220
[3505, 6473] [4742, 8758] [24.744, 45.696]

PL
4989 6864 37.500

[3505, 6473] [4822, 8906] [26.346, 48.654]

0.99
AE

5978 8087 21.092
[3673, 8283] [4969, 11205] [12.960, 29.224]

PL
5978 8224 22.459

[3673, 8283] [5053, 11395] [13.800, 31.118]

0.995
AE

7163 9690 12.636
[3770, 10556] [5100, 14280] [6.6506, 18.621]

PL
7163 9854 13.455

[3770, 10556] [5186, 14522] [7.0817, 19.828]

0.999
AE

10899 14744 3.8452
[3506, 18291] [4743, 24745] [1.2371, 6.4533]

PL
10899 14993 4.0944

[3506, 18292] [4823, 25163] [1.3172, 6.8716]

Table 2.4: Secura Belgian Re data set: extreme risk measure estimation (measurement unit: thousands
of Euros). Between square brackets: asymptotic 95% confidence intervals.

2.2.5.3 Data example 2: French commercial fire losses [11]

We consider data on n = 1,098 commercial fire losses recorded between 1 January 1995 and 31
December 1996 by the FFSA (an acronym for the Fédération Française des Sociétés d’Assurance),
available from the R package CASdatasets by prompting data(frecomfire). The data, originally
recorded in French francs, is converted into euros, and denoted by (X1, . . . , Xn).

The first step in the analysis of this data set is again to estimate the tail index γ. To this end, we
use a slightly different bias-reduced version of the Hill estimator, introduced in [65] and implemented
in the function mop of the R package evt0 (further discussed in [137]). The sample fraction chosen
to compute the tail index, following the stability region procedure presented in Section 4 of [11] is
then 1 − β∗ ≈ 0.120, for an estimate γ̂β∗ ≈ 0.697. This suggests a very heavy tail, in the sense that
γ̂β∗ > 1/2 and therefore the underlying distribution seems to have an infinite variance. In particular,
we know that this may adversely affect the PL estimator of the extreme TVaR and of the extreme DP
risk measure, which justifies comparing the PL estimates to those obtained using our CTrim-PL and
CWins-PL estimators.

We then compute, at the extreme level δ = 0.999 ≈ 1 − n−1, the PL, CTrim-PL and CWins-PL
estimators of the extreme TVaR and DP(1/3) risk measures, using the parameter selection procedure
of Section 4 of [11]. Results are summarised in Table 2.5. It is not clear, from these results, which
estimator should be chosen. Our goal is now to offer some insight into this choice, using the mean
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Estimator Order t∗
Number of top

Estimate (in euros)
order statistics cut

PL N/A N/A 225,122,925
TVaR estimation CTrim-PL 0.9736 29 219,814,856

CWins-PL 0.9909 10 208,538,799

PL N/A N/A 459,285,394
DP(1/3) estimation CTrim-PL 0.9663 37 452,920,888

CWins-PL 0.9863 15 404,498,511

Table 2.5: French commercial fire losses data set: estimating some risk measures in the case δ = 0.999.

excess plot of the n(1− β∗) = 132 data points used in the present analysis. The rationale behind the
use of the mean excess plot, i.e. the plot of the function

u 7→
∑n

i=1(Xi − u)I{Xi > u}∑n
i=1 I{Xi > u}

,

is that its empirical counterpart u 7→ E(X − u|X > u) is linearly increasing when 0 < γ < 1 and X
has a Generalised Pareto distribution [89]. Therefore, the extremes of the data set should be indicated
by a roughly linear part at the right of the mean excess plot. This plot can be tricky to use though:
apart from the choice of the lower threshold u above which the mean excess function is computed
(which is here chosen to be Xnβ∗,n), it has been observed that the mean excess function has very
often a non-linear behaviour at the right end of the mean excess plot [131]. This is again because the
top order statistics in the sample suffer from a very high variability, and as a consequence the mean
excess function is, in its right end, averaging over just a few high-variance values. In other words, the
intermediate, roughly linear part of the plot indicates which ones among the top data points can be
trusted from the points of view of both bias and variability, and the unstable part at the right end of
the mean excess plot represents those highly variable values that may be cut from the analysis using
the CTrim-PL and CWins-PL estimators.

We then plot on Figure 2.1 copies of the mean excess plot above the value u = Xnβ∗,n where the
values cut from the analysis by the CTrim-PL and CWins-PL estimators are highlighted. The least
squares line related to the data points kept for the analysis is also represented. It can be seen on these
plots that there is indeed an unstable part at the right end of the plot, which suggests to use either
the CTrim-PL or CWins-PL estimator in order to gain some stability. The linear adjustment for the
selected data points (using the tn selection technique presented in Section 4 of [11]) is also reasonable
in all cases. It is arguable though that the CTrim-PL estimator is too conservative in the sense that
the number of data points it discards is high: in the DP case in particular, the estimator trims 37 top
order statistics, which is 29% of the available data above the selected threshold Xnβ∗,n. The CWins-PL
estimator discards much less data points (less than half of what the CTrim-PL estimator discards, see
also Table 2.5), and therefore does not have to compensate for the loss of information this entails as
much as the CTrim-PL has to, while the linear adjustment of the least squares line is still perfectly
acceptable. It can be argued then that the CWins-PL estimator is preferable here, both for extreme
TVaR and DP risk measure estimation. The estimates it yields are appreciably lower (roughly 10%
less) than the standard PL estimates, and this makes us think that the extreme TVaR and DP risk
measure are actually overestimated by the PL estimator. The conclusion is that, using the CWins-PL
estimator, the average loss in the worst 0.1% of cases is estimated to be 208.5 million euros, and the
average value of the maximal loss recorded after three extreme fires (i.e. each belonging to the worst
0.1% of fires) to be 404.5 million euros.

2.2.6 Perspectives for future research

Inference theory for very heavy tails Substantial improvements are obtained in practice by using
the CTrim-PL and CWins-PL estimators in very heavy-tailed cases, that is, when γ is so large that
the estimators are still consistent but Theorem 2.2.11 does not apply. In the case of the Conditional
Tail Expectation, this represents the case 1/2 < γ < 1 of an infinite variance but a finite expectation.
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Figure 2.1: French commercial fire losses data set: mean excess plots. Top: the mean excess plot of
the top n(1 − β∗) = 132 data points, where data points excluded from the TVaR estimation when
using the CTrim-PL and CWins-PL estimators are highlighted using red triangles; left: CTrim-PL
estimator, right: CWins-PL estimator. Bottom: the mean excess plot of the top n(1 − β∗) = 132
data points, where data points excluded from the DP(1/3) estimation when using the CTrim-PL and
CWins-PL estimators are highlighted using blue squares; left: CTrim-PL estimator, right: CWins-PL
estimator. In all four cases the straight line is the least squares line for the set of black data points.
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No theoretical results on the asymptotic distribution of our estimators are currently available in such
cases. By analogy with the estimation of a mean when the variance of the underlying distribution is
infinite, one might expect a reduced rate of convergence and an asymptotic distribution which is a
function of a stable distribution (see e.g. Section XVII of [119]). This is worth pursuing, for instance
to be able to construct asymptotic confidence intervals for extreme Wang DRMs in cases when the
estimate of γ is too high to apply Theorem 2.2.11.

An improved correction step The correction step implemented in the CTrim-PL and CWins-PL
estimators is a simple one, based on an asymptotic equivalent of the ratio of a trimmed/winsorised
extreme Wang DRM and of its full counterpart. Especially, this correction method does not take into
account second-order information. This is why the CTrim-PL and CWins-PL methods should not be
expected to show an improved finite-sample performance compared to that of the basic empirical plug-
in estimator when ρ is close to 0. It would be very interesting to design another correction factor taking
into account second-order information, in order to close the gap between the finite-sample performance
of the proposed technique and that of the full PL estimator in standard cases with low |ρ|, and retain
or even improve its finite-sample performance further in difficult cases. Two reasons why this is a
difficult problem are that:

• Estimators of ρ typically have a rate of convergence lower than that of typical tail index estima-
tors, see e.g. p.2638 in [135] and p.298 in [140]. This suggests that estimators of the second-order
parameter are in general quite volatile;

• Tail index estimators tend to have a poor finite-sample behaviour for low |ρ|, be it because of
their bias if they are not bias-corrected, or of their increased asymptotic variance if they are
bias-corrected.

Multiplying the Trim-PL or Wins-PL estimators by a correction factor adapted to low values of |ρ|
might therefore, if not done carefully, entail multiplying by a highly variable quantity and ultimately
wipe out part of or all that was gained in terms of variability from using the trimming/winsorising
scheme. The problem of constructing a second-order-adapted correction factor is therefore challenging
and worthy of future research.
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2.3 Inference methods for extreme expectile-based risk measures [1,
12]

2.3.1 Introduction

The class of Wang DRMs is of course not the only way to encompass the class of quantiles. An
alternative way to do so, which has proven very useful for example in regression contexts, is using
L1−minimisation: given an order τ ∈ (0, 1), it is shown in [182] that the τth quantile of the distribu-
tion of a random variable Y , denoted throughout this section by qτ , can be obtained by minimising
asymmetrically weighted mean absolute deviations, as

qτ ∈ arg min
θ∈R

E {ρτ (Y − θ)− ρτ (Y )} ,

with equality if the distribution function of Y is increasing, where ρτ (y) = |τ − I{y ≤ 0}| |y| is the
so-called quantile check function. This successfully extends the conventional definition of quantiles as
left-continuous inverse functions. The concept of expectiles is a least squares analogue of quantiles,
which summarises the underlying distribution of a random variable Y in much the same way that
quantiles do. It was introduced by [209] by substituting the L1 loss function with the L2 loss to define
the population expectile of order τ ∈ (0, 1) as the minimiser

ξτ = arg min
θ∈R

E {ητ (Y − θ)− ητ (Y )} , (2.3.1)

where ητ (y) = |τ − I{y ≤ 0}| y2. Although formulated using a quadratic loss, problem (2.3.1) is well-
defined as soon as E|Y | is finite, thanks to the presence of the term ητ (Y ). Expectiles are a natural
generalisation of the usual mean E(Y ) just as the class of quantiles generalises the median. Both
expectiles and quantiles are useful descriptors of the higher and lower regions of the data points in
the same way as the mean and median are related to their central behaviour. An advantage of using
expectiles is that their estimation makes more efficient use of the available data, since weighted least
squares rely on the distance to data points, while empirical quantiles only utilise the information on
whether an observation is below or above the predictor [38, 209, 235]. Furthermore, unlike sample
quantiles, sample expectiles provide a class of smooth curves as functions of the level τ , see e.g. [226].

Our focus here is to discuss the estimation of extreme expectiles, and more generally expectile-based
alternatives to popular risk measures such as the Expected Shortfall (ES) and Marginal Expected
Shortfall (MES). Motivating advantages are that expectiles are more alert than quantiles to the mag-
nitude of infrequent catastrophic losses, as they depend on both the tail realisations of Y and their
probability, while quantiles only depend on the frequency of tail realisations [190]. Most importantly,
from the point of view of the axiomatic theory of risk measures, [53] shows that the only M-quantiles
that are coherent risk measures are the expectiles above the mean. Very recently, [265] has proved
that expectiles are the only coherent law-invariant measure of risk which is also elicitable. Elicitability
corresponds to the existence of a natural backtesting methodology; in comparison, it has been shown
that the ES, although a popular coherent risk measure, is not elicitable [134], but jointly elicitable
with VaR [120].

In terms of interpretability, the τ -quantile is the point below which 100τ% of the mass of Y lies, while
the τ -expectile specifies the position ξτ such that the average distance from the data below ξτ to ξτ
itself is 100τ% of the average distance between ξτ and all the data:

τ = E (|Y − ξτ |I{Y ≤ ξτ}) /E |Y − ξτ | . (2.3.2)

Thus the τ -expectile shares an interpretation similar to the τ -quantile, replacing the number of ob-
servations by the distance. In a financial context, [52] provide a transparent financial meaning of
expectiles in terms of the gain-loss ratio, which is a popular performance measure in portfolio man-
agement and is well-known in the literature on no good deal valuation in incomplete markets (see [52]
and references therein). Also, [109] shows that expectiles are optimal decision thresholds in certain
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binary investment problems. The theoretical and numerical results obtained by [52] seem to indicate
that expectiles are perfectly viable alternatives to standard VaR and ES.

On the statistical side, and although least asymmetrically weighted squares estimation of expectiles
dates back to [209] in the linear regression framework, it has recently regained growing interest in the
context of nonparametric, semiparametric and more complex models, see for example [235] and the
references therein, as well as the two recent contributions [157, 188] for advanced theoretical develop-
ments. In the statistical literature, attention has been, however, restricted to ordinary expectiles of
fixed order τ staying away from the tails of the underlying distribution. In the latter two references,
for example, several powerful asymptotic results such as uniform consistency and a uniform central
limit theorem are shown for expectile estimators, but the order τ is assumed therein to lie within a
fixed interval bounded away from 0 and 1. In [1, 12], our focus is to extend the estimation of expectiles
and their asymptotic theory far enough into the tails. This translates into considering the expectile
level τ = τn → 0 or τn → 1 as the sample size n goes to infinity. This has been initiated at the
population level by [52, 53, 198, 199], which studied the connection of extreme population expectiles
with their quantile analogues when Y belongs to the domain of attraction of a Generalised Extreme
Value distribution. The literature has not, however, considered the question of their inference. This
is precisely our focus here.

Let us point out the main contributions of [1, 12]. First, we estimate the intermediate tail expectiles
of order τn → 1 such that n(1 − τn) → ∞, and then extrapolate these estimates to the very extreme
expectile levels τ ′n which approach one at an arbitrarily fast rate in the sense that n(1− τ ′n)→ c, for
some nonnegative constant c. Two such estimation methods are considered. One is indirect, based on
the use of asymptotic approximations involving intermediate quantiles, and the other relies directly
on least asymmetrically weighted squares (LAWS) estimation. Second, we provide adapted extreme
expectile-based tools for the estimation of the MES, an important factor when measuring the systemic
risk of financial firms. Denoting by X and Y , respectively, the loss on the return of a financial firm
and that of the entire market, the MES is equal to E(X|Y > t), where t is a high threshold reflecting
a systemic crisis, i.e. a substantial market decline. For an extreme expectile t = ξτ ′n and for a wide
nonparametric class of bivariate distributions of (X,Y ), we construct two estimators of the MES. A
competing procedure introduced by [68] is based on extreme quantiles. Third, and with a motivation
to estimate expectile-based ES risk measures at extreme levels, we show that the aforementioned
convergence result on the LAWS estimator of an intermediate expectile can be generalised to what
we shall call the tail empirical expectile process. We will prove that this process can be approximated
by a sequence of Gaussian processes with drift and we will also analyse the difference between the
tail empirical expectile process and its population counterpart. These powerful asymptotic results
will then be used to introduce and study a further class of extreme expectile estimators as well as to
estimate a novel expectile-based analogue of the quantile-based ES, called XES, at intermediate and
extreme levels. Finally, we unravel the important question of how to select theoretically the extreme
level τ ′n so that each expectile-based risk measure (VaR, MES and XES) at this level coincides with its
quantile-based analogue at a given tail probability αn → 1 as n→∞. The obtained level τ ′n = τ ′n(αn)
needs itself to be estimated, which results in two final composite estimators of the risk measure. Our
main results establish the asymptotic distributions of all presented estimators.

The organisation of this section is the following. Section 2.3.2 discusses the basic properties of the
expectile at high levels, including its connection with the standard quantile-VaR for high levels τn → 1.
Section 2.3.3 presents two estimation methods of intermediate and extreme expectiles. Section 2.3.4
considers the problem of estimating the MES when the related variable is extreme. Section 2.3.5
generalises the convergence result of Section 2.3.3 to Gaussian approximations of the tail empirical
expectile process and outlines statistical consequences of such results. Section 2.3.6 addresses the
important question of how to select the extreme expectile level in the three studied risk measures.
A brief discussion of the finite-sample performance of our estimators and concrete applications to
medical insurance data and financial data are provided in Section 2.3.7. Section 2.3.8 concludes with
a discussion of perspectives for future work.
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2.3.2 Basic properties [12]

We consider here the generic financial position Y to be a real-valued random variable, and the available
data {Y1, Y2, . . .} are considered as the negative of a series of financial returns. The right tail of the
distribution of Y then corresponds to the negative of extreme losses. Following [209], the expectile ξτ
of order τ ∈ (0, 1) of the variable Y can be defined as the minimiser (2.3.1) or, equivalently, as

ξτ = arg min
θ∈R

{
τE
[
(Y − θ)2+ − Y 2

+

]
+ (1− τ)E

[
(Y − θ)2− − Y 2

−
]}
,

where y+ := max(y, 0) and y− := min(y, 0). The presence of terms Y 2
+ and Y 2

− makes this problem
well-defined indeed as soon as Y ∈ L1, i.e. E|Y | < ∞. The related first-order necessary condition for
optimality can be written in several ways, one of them being

ξτ − E(Y ) =
2τ − 1

1− τ
E [(Y − ξτ )+] .

This equation has a unique solution for all Y ∈ L1. Hence expectiles of a distribution with finite
absolute first moment are well-defined, and we will assume in the sequel that E|Y | < ∞. Expectiles
summarise the distribution function in much the same way that the quantiles qτ := F−1Y (τ) = inf{y ∈
R : FY (y) ≥ τ} do. A justification for their use to describe distributions and their tails, as well as to
quantify the “riskiness” implied by the return distribution under consideration, may be based on the
following elementary properties (see [38, 53, 209]):

(i) Law invariance: two integrable random variables Y and Ỹ , with continuous densities, have the
same distribution if and only if ξY,τ = ξ

Ỹ ,τ
for every τ ∈ (0, 1).

(ii) Location and scale equivariance: the τth expectile of the linear transformation Ỹ = a + bY ,
where a, b ∈ R, satisfies

ξ
Ỹ ,τ

=

{
a+ b ξY,τ if b > 0
a+ b ξY,1−τ if b ≤ 0.

(iii) Constancy: if Y = c ∈ R with probability 1, then ξY,τ = c for any τ .

(iv) Strict monotonicity in τ : if τ1 < τ2, with τ1, τ2 ∈ (0, 1), then ξτ1 < ξτ2 . Also, the function τ 7→ ξτ
maps (0, 1) onto its range {y ∈ R : 0 < FY (y) < 1}.

(v) Preserving stochastic order: if Y ≤ Ỹ with probability 1, then ξY,τ ≤ ξỸ ,τ for any τ .

(vi) Subadditivity: for any variables Y, Ỹ ∈ L1, ξY+Ỹ ,τ ≤ ξY,τ + ξỸ ,τ for all τ ≥ 1
2 . Also, ξY+Ỹ ,τ ≥

ξY,τ + ξỸ ,τ for all τ ≤ 1
2 .

(vii) Lipschitzianity with respect to the Wasserstein distance: for all Y, Ỹ ∈ L1 and all τ ∈ (0, 1), it
holds that |ξY,τ − ξỸ ,τ | ≤ τ̃ · dW (Y, Ỹ ), where τ̃ = max {τ/(1− τ), (1− τ)/τ} and

dW (Y, Ỹ ) =

∫ ∞
−∞
|FY (y)− FỸ (y)|dy =

∫ 1

0
|F−1Y (t)− F−1

Ỹ
(t)|dt.

(viii) Sensitivity versus resistance: expectiles are very sensitive to the magnitude of extremes since
their gross error sensitivity and rejection points are infinite. Whereas they are resistant to
systematic rounding and grouping since their local shift sensitivity is bounded.

The convention we have chosen for values of Y as the negative of returns implies that extreme losses
correspond to levels τ close to 1. Only [52, 53, 198, 199] have described what happens for large
population expectiles ξτ and their link with high quantiles qτ when Y has a heavy-tailed distribution
with tail index 0 < γ < 1. Writing F Y := 1 − FY for the survival function of Y , [52] have shown in
the case γ < 1 that

F Y (ξτ )

F Y (qτ )
∼ γ−1 − 1 as τ → 1, (2.3.3)
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or equivalently F Y (ξτ )/(1 − τ) ∼ γ−1 − 1 as τ → 1. It follows that extreme expectiles ξτ are larger
than extreme quantiles qτ (i.e. ξτ > qτ ) when γ > 1

2 , whereas ξτ < qτ when γ < 1
2 , for all large τ . The

connection (2.3.3) between high expectiles and quantiles can actually be refined under the second-order
condition C2(γ, ρ,A); this is the first main result of this section.

Proposition 2.3.1. Assume that condition C2(γ, ρ,A) holds, with 0 < γ < 1. Then

F Y (ξτ )

1− τ
= (γ−1 − 1)(1 + ε(τ))

with ε(τ) = −(γ−1 − 1)γ

qτ
(E(Y ) + o(1))− (γ−1 − 1)−ρ

γ(1− γ − ρ)
A((1− τ)−1)(1 + o(1)) as τ ↑ 1.

One can use this result to quantify precisely the bias term in the asymptotic expansion of ξτ/qτ .

Corollary 2.3.2. Assume that condition C2(γ, ρ,A) holds, with 0 < γ < 1. If FY is strictly increasing,
then

ξτ
qτ

= (γ−1 − 1)−γ(1 + r(τ))

with r(τ) =
γ(γ−1 − 1)γ

qτ
(E(Y ) + o(1))

+

(
(γ−1 − 1)−ρ

1− ρ− γ
+

(γ−1 − 1)−ρ − 1

ρ
+ o(1)

)
A((1− τ)−1) as τ ↑ 1.

Other refinements under similar second order regular variation conditions can also be found in [198,
199]. [Note also that the requirement that FY be strictly increasing is in fact unnecessary, see Propo-
sition 2.3.12 in Section 2.3.5.1 below, corresponding to Proposition 1 in [1].]

An extension to a subset of the Gumbel domain of attraction is also derived in Proposition 2.4 in [52]. In
practice, the tail quantities ξτ , qτ and γ are unknown and only a sample of random copies (Y1, . . . , Yn)
of Y is typically available. While extreme value estimators of high quantiles and of the tail index
γ have been widely used in applied statistical analyses and extensively investigated in theoretical
statistics, the problem of estimating ξτ , when τ = τn → 1 at an arbitrary rate as n → ∞, has not
been addressed yet. This motivated us to construct estimators of large expectiles ξτn and derive their
limit distributions when they are located within or beyond the range of the data, where their empirical
counterparts usually fail due to data sparseness. We shall assume the second-order regular variation
condition C2(γ, ρ,A) to obtain our convergence results.

2.3.3 Estimation of extreme expectiles [12]

Our main objective in this section is to estimate ξτn for high levels τn that may approach 1 at any rate,
covering both scenarios of intermediate expectiles with n(1 − τn) → ∞ and extreme expectiles with
n(1 − τn) → c, for some nonnegative finite constant c. We assume that the available data consist of
independent copies (Y1, . . . , Yn) of Y , and denote by Y1,n ≤ · · · ≤ Yn,n their ascending order statistics.

2.3.3.1 Intermediate expectile estimation

Estimation based on intermediate quantiles The rationale for this first method relies on the
heavy-tailed assumption and on the asymptotic equivalence (2.3.3). Given that Y is heavy-tailed,
Corollary 2.3.2 above (or Proposition 2.3 of [52]) entails

ξτ
qτ
∼ (γ−1 − 1)−γ as τ ↑ 1. (2.3.4)

Therefore, for a suitable estimator γ̂ of γ, we suggest estimating the intermediate expectile ξτn by
ξ̂τn := (γ̂−1−1)−γ̂ q̂τn , where q̂τn := Yn−bn(1−τn)c,n and b·c stands for the floor function. This estimator
is based on the intermediate quantile-VaR q̂τn and crucially hinges on the estimated tail index γ̂. A
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simple and widely used estimator γ̂ is the popular Hill estimator, written in terms of the k log-excesses
above an intermediate order statistic Yn−k,n as

γ̂H =
1

k

k∑
i=1

log
Yn−i+1,n

Yn−k,n
, (2.3.5)

where k = k(n) is an intermediate sequence, namely k(n)→∞ and k(n)/n→ 0 as n→∞.

Next, we formulate conditions that lead to asymptotic normality for ξ̂τn .

Theorem 2.3.3. Assume that FY is strictly increasing, that condition C2(γ, ρ,A) holds with 0 < γ < 1,
that τn ↑ 1 and n(1− τn)→∞. Assume further that√

n(1− τn)

(
γ̂ − γ, q̂τn

qτn
− 1

)
d−→ (Γ,Θ). (2.3.6)

If
√
n(1− τn)q−1τn → λ1 ∈ R and

√
n(1− τn)A((1− τn)−1)→ λ2 ∈ R, then

√
n(1− τn)

(
ξ̂τn
ξτn
− 1

)
d−→ m(γ)Γ + Θ− λ

with m(γ) := (1− γ)−1 − log(γ−1 − 1) and

λ := γ(γ−1 − 1)γE(Y )λ1 +

(
(γ−1 − 1)−ρ

1− γ − ρ
+

(γ−1 − 1)−ρ − 1

ρ

)
λ2.

When using the Hill estimator (2.3.5) of γ with k = dn(1 − τn)e, sufficient regularity conditions
for (2.3.6) to hold can be found in Theorems 2.4.1 and 3.2.5 in [145]. Under these conditions, the
limit distribution Γ is then Gaussian with mean λ2/(1 − ρ) and variance γ2, while Θ is the centred
Gaussian distribution with variance γ2. Lemma 3.2.3 in [145] shows that these two Gaussian limiting
distributions are independent. As an immediate consequence we get the following for γ̂ = γ̂H .

Corollary 2.3.4. Assume that FY is strictly increasing, that condition C2(γ, ρ,A) holds with 0 < γ <
1, that τn ↑ 1 and n(1−τn)→∞. If

√
n(1− τn)q−1τn → λ1 ∈ R and

√
n(1− τn)A((1−τn)−1)→ λ2 ∈ R,

then √
n(1− τn)

(
ξ̂τn
ξτn
− 1

)
d−→ N

(
m(γ)

1− ρ
λ2 − λ, v(γ)

)
,

with m(γ) and λ as in Theorem 2.3.3, and

v(γ) = γ2

[
1 +

(
1

1− γ
− log

(
1

γ
− 1

))2
]
.

Yet, a drawback to the resulting estimator ξ̂τn lies in its heavy dependency on the estimated quantile
q̂τn and tail index γ̂ in the sense that ξ̂τn may inherit the vexing defects of both q̂τn and γ̂. Note
also that ξ̂τn is asymptotically biased, which is not the case for q̂τn ; it should be pointed out though
that one may design a bias-reduced version of the estimator ξ̂τn . Indeed, the bias components λ1
and λ2 appearing in Theorem 2.3.3 can be estimated, respectively, by using λ̂1 =

√
n(1− τn)q̂−1τn

and by applying the methodology of [65] in conjunction with the Hall-Welsh class of models to get an
estimator λ̂2 of λ2. Plugging these, along with the empirical mean Y , the estimator γ̂, and a consistent
estimator ρ̂ of the second-order parameter ρ (a review of possible estimators ρ̂ is given in [138]), into
the expression of λ, we get a consistent estimator λ̂ of this bias component. This in turn enables one
to define a bias-reduced version of ξ̂τn , for instance as

ξ̂RBτn := ξ̂τn

(
1−

[
m(γ̂)

1− ρ̂
λ̂2 − λ̂

]
1√

n(1− τn)

)
.
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Of course, one should expect the value of the asymptotic variance of this estimator to be even higher
than that of ξ̂τn , similarly to what is observed when bias reduction techniques are applied to the Hill
estimator (see e.g. Theorem 3.2 in [65]).

Another efficient way of estimating ξτn , which we turn to now, is by joining together least asymmet-
rically weighted squares (LAWS) estimation with our heavy-tailed framework.

Asymmetric least squares estimation Here, we consider estimating the expectile ξτn by its
empirical counterpart defined through

ξ̃τn = arg min
u∈R

1

n

n∑
i=1

ητn(Yi − u),

where we recall that ητ (y) = |τ − I{y ≤ 0}|y2 is the expectile check function. Clearly

√
n(1− τn)

(
ξ̃τn
ξτn
− 1

)
= arg min

u∈R
ψn(u) (2.3.7)

with ψn(u) :=
1

2ξ2τn

n∑
i=1

[
ητn

(
Yi − ξτn −

uξτn√
n(1− τn)

)
− ητn(Yi − ξτn)

]
.

Note that (ψn) is a sequence of almost surely continuous and convex random functions. Theorem 5
in [180] then states that to examine the convergence of the left-hand side term of (2.3.7), it is enough
to investigate the asymptotic properties of the sequence (ψn). Building on this idea, we get the
asymptotic normality of the LAWS estimator ξ̃τn by applying standard techniques involving sums of
independent and identically distributed random variables. Let us recall the notation Y− = min(Y, 0)
for the negative part of Y .

Theorem 2.3.5. Assume that there is δ > 0 such that E|Y−|2+δ <∞, that 0 < γ < 1/2 and τn ↑ 1 is
such that n(1− τn)→∞. Then

√
n(1− τn)

(
ξ̃τn
ξτn
− 1

)
d−→ N (0, V (γ)) with V (γ) =

2γ3

1− 2γ
.

In contrast to Theorem 2.3.3 and Corollary 2.3.4, the limit distribution in Theorem 2.3.5 is derived
without recourse to either the extended regular variation condition C2(γ, ρ,A) or any bias condition.
A moment assumption and the condition 0 < γ < 1/2 suffice. Most importantly, unlike the indirect
expectile estimator ξ̂τn , the new estimator ξ̃τn does not hinge by construction on any quantile or
tail index estimators. A comparison of the asymptotic variance V (γ) of ξ̃τn with the asymptotic
variance v(γ) of ξ̂τn is provided in Figure 2.2. It can be seen from the left panel that both asymptotic
variances are stable and close for values of γ < 0.3, with an advantage for V (γ) in dashed line as
visualised more clearly in the right panel. Then V (γ) becomes appreciably larger than v(γ) for γ > 0.3
and explodes in a neighbourhood of 1/2, while v(γ) in solid line remains lower than the level 1.25.

2.3.3.2 Extreme expectile estimation

We now discuss the important issue of estimating extreme tail expectiles ξτ ′n , where τ ′n → 1 with
n(1 − τ ′n) → c < ∞ as n → ∞. The basic idea is to extrapolate intermediate expectile estimates of
order τn → 1, such that n(1− τn)→∞, to the very extreme level τ ′n. This is achieved by transferring
the device of [256] for estimating an extreme quantile to our expectile setup. Note that the levels τ ′n
and τn are typically set to be τ ′n = 1− pn for a pn not greater than 1/n, and τn = 1− k(n)/n for an
intermediate sequence of integers k(n).

A combination of the heavy-tailed assumption with (2.3.4) suggests that when τn and τ ′n satisfy suitable
conditions, we may write:

qτ ′n
qτn

=
U((1− τ ′n)−1)

U((1− τn)−1)
≈
(

1− τ ′n
1− τn

)−γ
and thus

ξτ ′n
ξτn
≈
(

1− τ ′n
1− τn

)−γ
.
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Figure 2.2: Asymptotic variances V (γ) of the LAWS estimator ξ̃τn in dashed line, and v(γ) of the
indirect estimator ξ̂τn in solid line. Left panel: γ ∈ (0, 1/2), right panel: γ < 0.3.

This approximation motivates the following class of plug-in estimators of ξτ ′n :

ξ
?
τ ′n
≡ ξ?τ ′n(τn) :=

(
1− τ ′n
1− τn

)−γ̂
ξτn (2.3.8)

where γ̂ is an estimator of γ, and ξτn is either the estimator ξ̂τn or ξ̃τn of the intermediate expectile ξτn .

We actually have ξ
?
τ ′n
/ξτn = q̂?τ ′n/q̂τn , where q̂τn = Yn−bn(1−τn)c,n is the intermediate quantile estimator

introduced above, and q̂?τ ′n is the Weissman extreme quantile estimator

q̂?τ ′n ≡ q̂
?
τ ′n

(τn) :=

(
1− τ ′n
1− τn

)−γ̂
q̂τn . (2.3.9)

We then show that ξ
?
τ ′n
/ξτ ′n − 1 has the same limit distribution as γ̂ − γ with a different scaling.

Theorem 2.3.6. Assume that FY is strictly increasing, that condition C2(γ, ρ,A) holds with 0 < γ < 1
and ρ < 0, and that τn, τ ′n ↑ 1, with n(1− τn)→∞ and n(1− τ ′n)→ c <∞. If moreover

√
n(1− τn)

(
ξτn
ξτn
− 1

)
d−→ ∆ and

√
n(1− τn)(γ̂ − γ)

d−→ Γ,

with
√
n(1− τn)q−1τn → λ1 ∈ R,

√
n(1− τn)A((1−τn)−1)→ λ2 ∈ R and

√
n(1− τn)/ log[(1−τn)/(1−

τ ′n)]→∞, then √
n(1− τn)

log[(1− τn)/(1− τ ′n)]

(
ξ
?
τ ′n

ξτ ′n
− 1

)
d−→ Γ.

More specifically, we can choose ξτn in (2.3.8) to be either the indirect intermediate expectile estimator

ξ̂τn , the resulting extreme expectile estimator ξ̂?τ ′n := ξ
?
τ ′n

being

ξ̂?τ ′n =

(
1− τ ′n
1− τn

)−γ̂
ξ̂τn =

(
γ̂−1 − 1

)−γ̂
q̂?τ ′n , (2.3.10)
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or we may choose ξτn to be the LAWS estimator ξ̃τn , yielding the extreme expectile estimator

ξ̃?τ ′n =

(
1− τ ′n
1− τn

)−γ̂
ξ̃τn , (2.3.11)

Their respective asymptotic properties are given in the next two corollaries of Theorem 2.3.6.

Corollary 2.3.7. Assume that FY is strictly increasing, that condition C2(γ, ρ,A) holds with 0 < γ < 1
and ρ < 0, and that τn, τ ′n ↑ 1 with n(1− τn)→∞ and n(1− τ ′n)→ c <∞. Assume further that√

n(1− τn)

(
γ̂ − γ, q̂τn

qτn
− 1

)
d−→ (Γ,Θ).

If
√
n(1− τn)q−1τn → λ1 ∈ R,

√
n(1− τn)A((1 − τn)−1) → λ2 ∈ R and

√
n(1− τn)/ log[(1 − τn)/(1 −

τ ′n)]→∞, then √
n(1− τn)

log[(1− τn)/(1− τ ′n)]

(
ξ̂?τ ′n
ξτ ′n
− 1

)
d−→ Γ.

Corollary 2.3.8. Assume that FY is strictly increasing, there is δ > 0 such that E|Y−|2+δ < ∞,
condition C2(γ, ρ,A) holds with 0 < γ < 1/2 and ρ < 0, and that τn, τ ′n ↑ 1 with n(1 − τn) → ∞ and
n(1− τ ′n)→ c <∞. If in addition √

n(1− τn)(γ̂ − γ)
d−→ Γ

and
√
n(1− τn)q−1τn → λ1 ∈ R,

√
n(1− τn)A((1− τn)−1)→ λ2 ∈ R and

√
n(1− τn)/ log[(1− τn)/(1−

τ ′n)]→∞, then √
n(1− τn)

log[(1− τn)/(1− τ ′n)]

(
ξ̃?τ ′n
ξτ ′n
− 1

)
d−→ Γ.

2.3.4 Estimating an extreme expectile-based Marginal Expected Shortfall [12]

2.3.4.1 Setting and objective

With the recent financial crisis and the rising interconnection between financial institutions, interest
in the concept of systemic risk has grown. Systemic risk is defined in [42, 64, 116] as the propensity of
a financial institution to be undercapitalised when the financial system as a whole is undercapitalised.
An important step in constructing a systemic risk measure for a financial firm is to measure the
contribution of the firm to a systemic crisis, namely a major stock market decline that happens once
or twice a decade. The total risk measured by the expected capital shortfall in the financial system
during a systemic crisis is typically decomposed into firm level contributions. Each financial firm’s
contribution to systemic risk can then be measured as its Marginal Expected Shortfall (MES), i.e. the
expected loss on the firm’s return X conditional on the loss Y in the aggregated return of the financial
market being extreme. More specifically, the MES at probability level (1− τ) is defined as

QMES(τ) = E{X|Y > qY,τ}, τ ∈ (0, 1),

where qY,τ is the τth quantile of the distribution of Y . Typically, a systemic crisis defined as an extreme
tail event corresponds to a probability τ at an extremely high level that can be even larger than 1−1/n,
where n is the sample size of historical data that are used for estimating QMES(τ). The estimation
procedure in [42] relies on daily data from only one year and assumes a specific linear relationship
between X and Y . A nonparametric kernel estimation method has been performed in [64, 116], but
cannot handle extreme events required for systemic risk measures (i.e. 1 − τ = 1 − τn = O(1/n)).
Very recently, [68] have proposed adapted extreme value tools for the estimation of QMES(τ) without
recourse to any parametric structure on (X,Y ). Here, instead of the extreme τth quantile qY,τ , we
shall explore the use of the τth expectile analogue ξY,τ in the marginal expected shortfall

XMES(τ) = E{X|Y > ξY,τ}
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at least for the following reason: as claimed by [190, 209, 235], expectiles make a more efficient use of
the available data since they rely on the distance of observations from the predictor, while quantile
estimation only knows whether an observation is below or above the predictor. It would be awkward to
measure extreme risk based only on the frequency of tail losses and not on their values. An interesting
asymptotic connection between XMES(τ) and QMES(τ) is provided below in Proposition 2.3.9. The
overall objective is to establish estimators of the tail expectile-based MES and unravel their asymptotic
behaviour in a general setting.

2.3.4.2 Tail dependence model

Suppose the random vector (X,Y ) has a continuous bivariate distribution function F(X,Y ) and denote
by FX and FY the marginal distribution functions of X and Y , assumed to be increasing in what
follows. Given that our goal is to estimate XMES(τ) at an extreme level τ , we adopt the same
conditions as [68] on the right-hand tail of X and on the right-hand upper tail dependence of (X,Y ).
Here, the right-hand upper tail dependence between X and Y is described by the following joint
convergence condition:

J C(R) For all (x, y) ∈ [0,∞]2 such that at least x or y is finite, the limit

lim
t→∞

tP(FX(X) ≤ x/t, F Y (Y ) ≤ y/t) =: R(x, y)

exists, with R(1, 1) > 0. Here FX = 1− FX and F Y = 1− FY .

The limit function R completely determines the so-called tail dependence function ` (see [107]) via the
identity `(x, y) = x+ y−R(x, y) for all x, y ≥ 0 (see also Section 8.2 in [47]). Regarding the marginal
distributions, we assume that X and Y are heavy-tailed with respective tail indices γX , γY > 0, or
equivalently, for all z > 0,

UX(tz)

UX(t)
→ zγX and

UY (tz)

UY (t)
→ zγY as t→∞,

with UX and UY being, respectively, the left-continuous inverse functions of 1/FX and 1/F Y . Com-
pared with the quantile-based MES framework [68], we need the extra condition of heavy-tailedness
of Y which is quite natural in the financial setting. Under these regularity conditions, we get the
following asymptotic approximations for XMES(τ).

Proposition 2.3.9. Suppose that condition J C(R) holds and that X and Y are heavy-tailed with
respective tail indices γX , γY ∈ (0, 1). Then

lim
τ↑1

XMES(τ)

UX(1/F Y (ξY,τ ))
=

∫ ∞
0

R(x−1/γX , 1)dx (2.3.12)

and lim
τ↑1

XMES(τ)

QMES(τ)
=

(
γ−1Y − 1

)−γX . (2.3.13)

The first convergence result indicates that XMES(τ) is asymptotically equivalent to the small ex-
ceedance probability UX(1/F Y (ξY,τ )) up to a positive multiplicative constant. Since usually in the
financial setting 0 < γX , γY < 1/2, the second result shows that XMES(τ) is less extreme than
QMES(τ) as τ → 1. This is visualised in Figure 2.3 in the case of the restriction of the standard
bivariate Student tν-distribution to (0,∞)2, having density

fν(x, y) =
2

π

(
1 +

x2 + y2

ν

)−(ν+2)/2

, x, y > 0,

where ν = 3 on the left panel and ν = 5 on the right panel. It can be seen that QMES(τ) becomes
overall much more extreme than XMES(τ) as τ approaches 1.
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Figure 2.3: QMES(τ) in solid line and XMES(τ) in dashed line, as functions of τ ∈ [0.95, 1). Case of
the Student tν-distribution on (0,∞)2. Left: ν = 3, right: ν = 5.

2.3.4.3 Estimation and results

The asymptotic equivalences in Proposition 2.3.9 are of particular interest when it comes to proposing
estimators for the tail expectile-based MES. Two approaches will be distinguished. We consider first
asymmetric least squares estimation by making use of the asymptotic equivalence (2.3.12). Subse-
quently we shall deal with a nonparametric estimator derived from the asymptotic connection (2.3.13)
with the tail quantile-based MES.

Asymmetric least squares estimation On the basis of the limit (2.3.12) and then of the heavy-
tailedness assumption on X, we have for τ < τ ′ < 1 that, as τ → 1,

XMES(τ ′) ≈
UX(1/F Y (ξY,τ ′))

UX(1/F Y (ξY,τ ))
XMES(τ) ≈

(
F Y (ξY,τ )

F Y (ξY,τ ′)

)γX
XMES(τ).

It follows then from Proposition 2.3.1 that

XMES(τ ′) ≈
(

1− τ ′

1− τ

)−γX
XMES(τ). (2.3.14)

Hence, to estimate XMES(τ ′) at an arbitrary extreme level τ ′ = τ ′n, we first consider the estimation of
XMES(τ) at an intermediate level τ = τn, and then we use the extrapolation technique of [256]. For
estimating XMES(τn) = E{X|Y > ξY,τn} at an intermediate level τn → 1 such that n(1 − τn) → ∞,
as n→∞, we use the empirical version

X̃MES(τn) :=

∑n
i=1XiI{Xi > 0, Yi > ξ̃Y,τn}∑n

i=1 I{Yi > ξ̃Y,τn}
,

where ξ̃Y,τn is the LAWS estimator of ξY,τn . As a matter of fact, in actuarial settings, we typically
have a positive loss variable X, and hence I{Xi > 0} = 1. When considering a real-valued profit-loss
variable X, the MES is mainly determined by high, and hence positive, values of X as shown in [68].
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We shall show under general conditions that the estimator X̃MES(τn) is
√
n(1− τn)-relatively consis-

tent. By plugging this estimator into approximation (2.3.14) together with a
√
n(1− τn)-consistent

estimator γ̂X of γX , we obtain the following estimator of XMES(τ ′n):

X̃MES
?
(τ ′n) ≡ X̃MES

?
(τ ′n; τn) :=

(
1− τ ′n
1− τn

)−γ̂X
X̃MES(τn). (2.3.15)

To determine the limit distribution of this estimator, we need to quantify the rate of convergence in
condition J C(R) as follows:

J C2(R, β, κ) Condition J C(R) holds and there exist β > γX and κ < 0 such that

sup
x∈(0,∞)
y∈[1/2,2]

∣∣∣∣ tP(FX(X) ≤ x/t, F Y (Y ) ≤ y/t)−R(x, y)

min(xβ, 1)

∣∣∣∣ = O(tκ) as t→∞.

This is exactly condition (a) in [68] under which an extrapolated estimator of QMES(τ ′n) converges to
a normal distribution. See also condition (7.2.8) in [145]. We also need to assume that the tail quantile
function UX (resp. UY ) satisfies the second-order condition C2(γX , ρX , AX) (resp. C2(γY , ρY , AY )). The

following generic theorem gives the asymptotic distribution of X̃MES
?
(τ ′n). The asymptotic normality

follows by using for example the Hill estimator γ̂X of the tail index γX .

Theorem 2.3.10. Suppose that condition J C2(R, β, κ) holds, that there is δ > 0 such that E|Y−|2+δ <
∞, and that UX and UY satisfy conditions C2(γX , ρX , AX) and C2(γY , ρY , AY ) with γX , γY ∈ (0, 1/2)
and ρX < 0. Assume further that

(i) τn, τ ′n ↑ 1, with n(1− τn)→∞, n(1− τ ′n)→ c <∞ and
√
n(1− τn)/ log[(1− τn)/(1− τ ′n)]→∞

as n→∞;

(ii) 1− τn = O(nα−1) for some α < min

(
−2κ

−2κ+ 1
,

2γXρX
2γXρX + ρX − 1

)
;

(iii) The bias conditions
√
n(1− τn)q−1Y,τn → λ1 ∈ R,

√
n(1− τn)AX((1 − τn)−1) → λ2 ∈ R and√

n(1− τn)AY ((1− τn)−1)→ λ3 ∈ R hold;

(iv)
√
n(1− τn)(γ̂X − γX)

d−→ Γ.

Then, if X > 0 almost surely, we have that√
n(1− τn)

log[(1− τn)/(1− τ ′n)]

(
X̃MES

?
(τ ′n)

XMES(τ ′n)
− 1

)
d−→ Γ.

This convergence remains still valid if X ∈ R provided

(v) E|X−|1/γX <∞; (2.3.16)

(vi) n(1− τn) = o
(

(1− τ ′n)2κ(1−γX)
)

as n→∞. (2.3.17)

Let us point out here that condition (ii), which also appears in Theorem 1 of [68], is a strengthening
of the condition 1 − τn = o(1). It essentially allows to control additional bias terms that appear in
conditions J C2(R, β, κ) and C2(γX , ρX , AX). Condition (vi), which is also utilised in [68], is another
bias condition that makes it possible to control the bias coming from the left tail of X.

Estimation based on tail QMES On the basis of the limit (2.3.13), we consider the alternative
estimator

X̂MES
?
(τ ′n) :=

(
γ̂−1Y − 1

)−γ̂X Q̂MES
?
(τ ′n), (2.3.18)
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where γ̂X , γ̂Y and Q̂MES
?
(τ ′n) are suitable estimators of γX , γY and QMES(τ ′n), respectively. Here,

we use the Weissman-type device

Q̂MES
?
(τ ′n) =

(
1− τ ′n
1− τn

)−γ̂X
Q̂MES(τn) (2.3.19)

of [68] to estimate QMES(τ ′n), where

Q̂MES(τn) =
1

bn(1− τn)c

n∑
i=1

XiI{Xi > 0, Yi > q̂Y,τn},

with q̂Y,τn := Yn−bn(1−τn)c,n being an intermediate quantile-VaR. As a matter of fact, [68] have sug-

gested the use of two intermediate sequences in γ̂X and Q̂MES(τn) to be chosen in two steps in practice.

To ease the presentation, we use the same intermediate sequence τn in both γ̂X and Q̂MES(τn). Next,

we derive the asymptotic distribution of the new estimator X̂MES
?
(τ ′n).

Theorem 2.3.11. Suppose that condition J C2(R, β, κ) holds, and UX and UY satisfy conditions
C2(γX , ρX , AX) and C2(γY , ρY , AY ) with γX ∈ (0, 1/2) and ρX < 0. Assume further that

(i) τn, τ ′n ↑ 1, with n(1− τn)→∞, n(1− τ ′n)→ c <∞ and
√
n(1− τn)/ log[(1− τn)/(1− τ ′n)]→∞

as n→∞;

(ii) 1− τn = O(nα−1) for some α < min

(
−2κ

−2κ+ 1
,

2γXρX
2γXρX + ρX − 1

)
;

(iii) The bias conditions
√
n(1− τn)q−1Y,τn → λ ∈ R and

√
n(1− τn)AX((1− τn)−1)→ 0 hold;

(iv)
√
n(1− τn)(γ̂X − γX)

d−→ Γ and
√
n(1− τn)(γ̂Y − γY ) = OP(1).

Then, if X > 0 almost surely, we have that√
n(1− τn)

log[(1− τn)/(1− τ ′n)]

(
X̂MES

?
(τ ′n)

XMES(τ ′n)
− 1

)
d−→ Γ.

This convergence remains still valid if X ∈ R provided that (2.3.16) and (2.3.17) hold.

2.3.5 Gaussian approximations for the tail empirical expectile process [1]

Theorem 2.3.5 is, to the best of our knowledge, the first asymptotic result on the direct sample
counterpart of an intermediate expectile. It does not, however, allow for simultaneous consideration
of several intermediate sample expectiles. By contrast, much more is currently known about the
convergence of intermediate empirical quantiles. For example, Gaussian approximations of the tail
empirical quantile process have been known for at least three decades; see, among others, [81, 111]
as well as their more modern formulations in [101] and Theorem 2.4.8 in [145]. These powerful
asymptotic results, and their later generalisations, have been successfully used in the analysis of a
number of complex statistical functionals, such as test statistics aimed at checking extreme value
conditions [98, 105, 165], bias-corrected extreme value index estimators [146] as well as the results
presented in Section 2.2 (i.e. those of [11, 14]) on the estimation of extreme Wang distortion risk
measures.

The aim of this section is to fill this gap by showing that the tail empirical expectile process can
be approximated by a sequence of Gaussian processes with drift, and deriving its joint asymptotic
behaviour with the tail empirical quantile process. We will use this main theoretical result to, first,
construct and study a general class of weighted estimators for intermediate expectiles ξτn , by combining
the direct and indirect estimators of intermediate expectiles of Section 2.3.3.1. We will then move to
the estimation of an expectile-based analogue of the quantile-based ES. We shall show first that the
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expectile-based form of ES introduced in [242] is not a coherent risk measure. Instead, we will define a
coherent alternative form that we call XESτ , and which is an average of tail expectiles. Its structure will
make it easily estimated by an average of the empirical tail expectile process, whose discrepancy from
the true XESτn can be unravelled thanks to our Gaussian approximations. We will also extrapolate
our estimators to the very far tails of the distribution of Y using the argument of [256].

2.3.5.1 Setting and main results

It is well-known that, under condition C2(γ, ρ,A), the tail empirical (intermediate) quantile process

(0, 1]→ R, s 7→ q̂1−ks/n := Yn−bksc,n,

can be approximated by a sequence of scaled Brownian motions with drift. Namely, one can construct
a sequence Wn of standard Brownian motions and a suitable measurable function A0 such that

sγ+1/2+ε

∣∣∣∣√k( q̂1−ks/nq1−k/n
− s−γ

)
− γs−γ−1Wn(s)−

√
kA0(n/k)s−γ

s−ρ − 1

ρ

∣∣∣∣
converges in probability to 0 uniformly in s ∈ (0, 1] for any sufficiently small ε > 0 (see Theorem 2.4.8
in [145]). In addition to satisfying k →∞ and k/n→ 0, the sequence of integers k = k(n) should also
satisfy

√
kA0(n/k) = O(1). The proof of this approximation result reveals that it is valid for a suitable

version of the quantile process, equal to the original one in distribution, on a rich enough probability
space (potentially different from the original space on which the Yi are defined). We will work in the
sequel with this version of the quantile process and thus with the associated Yi. Our weak convergence
results to follow on extreme expectile and Expected Shortfall estimation are of course unaffected by
this choice. Besides, the function A0 is actually asymptotically equivalent to A, see Theorem 2.3.9
in [145]. We may therefore write:

q̂1−(1−τn)s

qτn
= s−γ

(
1 +

1√
n(1− τn)

γs−1Wn(s) +
s−ρ − 1

ρ
A((1− τn)−1)

+ oP

(
s−1/2−ε√
n(1− τn)

))
uniformly in s ∈ (0, 1], (2.3.20)

where we set k = n(1− τn), with τn → 1, n(1− τn)→∞ and
√
n(1− τn)A((1− τn)−1) = O(1).

By analogy with the tail empirical quantile process, we define the tail empirical expectile process to be
the stochastic process

(0, 1]→ R, s 7→ ξ̃1−(1−τn)s.

Here ξ̃ is the LAWS estimator introduced in Section 2.3.3.1. To show a result analogue to (2.3.20)
for this tail empirical expectile process in the greatest possible generality (within the heavy-tailed
framework), we first strengthen the asymptotic expansion stated in Corollary 2.3.2 and linking high
quantiles and expectiles.

Proposition 2.3.12. Assume that E|Y−| <∞ and condition C2(γ, ρ,A) holds, with 0 < γ < 1.

(i) We have, as τ → 1,

ξτ
qτ

= (γ−1 − 1)−γ
(

1 +
γ(γ−1 − 1)γ

qτ
(E(Y ) + o(1))

+

(
(γ−1 − 1)−ρ

1− γ − ρ
+

(γ−1 − 1)−ρ − 1

ρ
+ o(1)

)
A((1− τ)−1)

)
.
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(ii) Let τn → 1 be such that n(1− τn)→∞, and pick s ∈ (0, 1]. Then

ξ1−(1−τn)s

ξτn
= s−γ

(
1 + (sγ − 1)

γ(γ−1 − 1)γ

qτn
(E(Y ) + o(1))

+
(1− γ)(γ−1 − 1)−ρ

1− γ − ρ
× s−ρ − 1

ρ
A((1− τn)−1)(1 + o(1))

)
.

Part (i) of this proposition relaxes the conditions in Corollary 2.3.2 by removing the unnecessary
assumption of strict monotonicity of F . Part (ii) gives the asymptotic expansion of intermediate
expectiles akin to condition C2(γ, ρ,A) for intermediate quantiles, which also reads as

q1−(1−τn)s

qτn
= s−γ

(
1 +

s−ρ − 1

ρ
A((1− τn)−1)(1 + o(1))

)
.

We are now ready to generalise Theorem 2.3.5 to a uniform approximation of the tail expectile process
s 7→ ξ̃1−(1−τn)s. This is the first main result of this section.

Theorem 2.3.13. Suppose that E|Y−|2 < ∞. Assume further that condition C2(γ, ρ,A) holds, with
0 < γ < 1/2. Let τn → 1 be such that n(1 − τn) → ∞ and

√
n(1− τn)A((1 − τn)−1) = O(1). Then

there exists a sequence Wn of standard Brownian motions such that, for any ε > 0 sufficiently small,

q̂1−(1−τn)s

qτn
= s−γ

(
1 +

1√
n(1− τn)

γ
√
γ−1 − 1 s−1Wn

(
s

γ−1 − 1

)

+
s−ρ − 1

ρ
A((1− τn)−1) + oP

(
s−1/2−ε√
n(1− τn)

))

and
ξ̃1−(1−τn)s

ξτn
= s−γ

(
1 + (sγ − 1)

γ(γ−1 − 1)γ

qτn
(E(Y ) + oP(1))

+
1√

n(1− τn)
γ2
√
γ−1 − 1 sγ−1

∫ s

0
Wn(t) t−γ−1 dt

+
(1− γ)(γ−1 − 1)−ρ

1− γ − ρ
× s−ρ − 1

ρ
A((1− τn)−1)

+ oP

(
s−1/2−ε√
n(1− τn)

))
uniformly in s ∈ (0, 1].

In the particular case s = 1, Theorem 2.3.13 entails

√
n(1− τn)

(
ξ̃τn
ξτn
− 1

)
d−→ γ2

√
γ−1 − 1

∫ 1

0
W (t) t−γ−1 dt

where W denotes a standard Brownian motion. The right-hand side is a centrred Gaussian random
variable, whose variance is

γ3(1− γ)

∫ 1

0

∫ 1

0
min(s, t)(st)−γ−1 ds dt =

2γ3

1− 2γ
.

We do therefore recover Theorem 2.3.5 (i.e. Theorem 2 in [12]), subject to the additional condition√
n(1− τn)A((1 − τn)−1) = O(1), but under the reduced moment condition E|Y−|2 < ∞. Note that

the bias condition
√
n(1− τn)A((1 − τn)−1) = O(1) is also required in order to establish the desired

approximation (2.3.20) for the tail quantile process, and is instrumental in the evaluation of the bias
of extreme value estimators. The conditions γ ∈ (0, 1/2) and E|Y−|2 < ∞, meanwhile, essentially
guarantee that the loss variable Y has a finite variance.
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Nevertheless, Theorem 2.3.13 does not compare directly the tail expectile process with its population
counterpart s 7→ ξ1−(1−τn)s. Our second main result analyses the gap between these two quantities.
Such a comparison is particularly relevant when developing the asymptotic theory for integrals of
the tail expectile process, as discussed below in the estimation of the extreme, expectile-based Ex-
pected Shortfall. This result cannot be obtained as a direct corollary of Theorem 2.3.13, because
Proposition 2.3.12(ii) is not a uniform result.

Theorem 2.3.14. If the conditions of Theorem 2.3.13 hold with ρ < 0, then there exists a sequence
Wn of standard Brownian motions such that, for any ε > 0 sufficiently small,

ξ̃1−(1−τn)s

ξ1−(1−τn)s
= 1 +

1√
n(1− τn)

γ2
√
γ−1 − 1 sγ−1

∫ s

0
Wn(t) t−γ−1 dt

+ oP

(
s−1/2−ε√
n(1− τn)

)
uniformly in s ∈ (0, 1].

Note that the Gaussian term appearing in Theorem 2.3.14 is exactly the same as in the approximation
of the tail expectile process in Theorem 2.3.13. Both theorems open the door to the analysis of
the asymptotic properties of a vast array of functionals of the tail expectile and quantile processes.
We discuss in the next sections particular examples where these results can be used to construct
general weighted estimators of extreme expectiles and of an expectile-based analogue for the Expected
Shortfall risk measure. Theorems 2.3.13 and 2.3.14 will be the key tools when it comes to unravel the
asymptotic behaviour of these estimators.

2.3.5.2 Extreme expectile estimation revisited

In this section, we first return to intermediate expectile estimation by combining nonparametric asym-
metric least squares estimates with semiparametric quantile-based estimates to construct a more gen-
eral class of estimators for high expectiles ξτn such that τn → 1 and n(1− τn)→∞ as n→∞. Then
we extrapolate the obtained estimators to the very high expectile levels that may approach one at an
arbitrarily fast rate.

Instead of using either the indirect or direct intermediate expectile estimators ξ̂τn and ξ̃τn of Sec-
tion 2.3.3.1, one may actually combine these two estimators to define, for β ∈ R, the weighted estima-
tor

ξτn(β) := β ξ̂τn + (1− β) ξ̃τn .

The two special cases β = 0 and β = 1 correspond to the estimators ξ̃τn and ξ̂τn , respectively. In
the sequel we consider that the tail index estimator γ̂ = γ̂τn used in the construction of the indirect
estimator ξ̂τn is the Hill estimator (2.3.5) with k = bn(1− τn)c.

The limiting distribution of the linear combination ξτn(β) crucially relies on the asymptotic dependence
structure between the tail expectile and quantile processes established in Theorem 2.3.13, since ξτn(β)
is built on both of these processes. More specifically, it relies on the following asymptotic dependence
structure between the Hill estimator γ̂τn and the intermediate sample quantile q̂τn and expectile ξ̃τn .

Theorem 2.3.15. Suppose that E|Y−|2 <∞. Assume further that condition C2(γ, ρ,A) holds, with 0 <
γ < 1/2. Let τn → 1 be such that n(1−τn)→∞, and suppose that the bias condition

√
n(1− τn)A((1−

τn)−1)→ λ1 ∈ R is satisfied. Then,

√
n(1− τn)

(
γ̂τn − γ,

q̂τn
qτn
− 1,

ξ̃τn
ξτn
− 1

)
d−→ N (m,V)

where m is the 1× 3 vector

m :=

(
λ1

1− ρ
, 0, 0

)
,
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and V is the 3× 3 symmetric matrix with entries

V(1, 1) = γ2, V(1, 2) = 0, V(1, 3) =
γ3

(1− γ)2
(γ−1 − 1)γ ,

V(2, 2) = γ2, V(2, 3) = γ2
(

(γ−1 − 1)γ

1− γ
− 1

)
, V(3, 3) =

2γ3

1− 2γ
.

Based on the joint asymptotic normality in Theorem 2.3.15, we obtain the following limit distribution
of the weighted estimator ξτn(β) for an intermediate level τn.

Theorem 2.3.16. Suppose that the conditions of Theorem 2.3.15 hold with the additional bias con-
dition

√
n(1− τn)/qτn → λ2 ∈ R. Then, for any β ∈ R,

√
n(1− τn)

(
ξτn(β)

ξτn
− 1

)
d−→ β

(
b + [(1− γ)−1 − log(γ−1 − 1)]Ψ + Θ

)
+ (1− β)Ξ

where the bias component b is b = λ1b1 + λ2b2 with

b1 =
(1− γ)−1 − log(γ−1 − 1)

1− ρ
− (γ−1 − 1)−ρ

1− γ − ρ
− (γ−1 − 1)−ρ − 1

ρ
,

b2 = −γ(γ−1 − 1)γE(Y ),

and (Ψ,Θ,Ξ) is a trivariate Gaussian centred random vector with covariance matrix V as in Theo-
rem 2.3.15.

When β = 1, we recover the convergence of the “indirect” estimator ξ̂τn obtained in Corollary 2.3.4.
When β = 0, we get the convergence of the “direct” estimator ξ̃τn stated in Theorem 2.3.5. [These are
respectively Corollary 2 and Theorem 2 in [12].]

In the very far tails where the expectile level τ = τ ′n → 1 is such that n(1− τ ′n)→ c ∈ [0,∞), just like
the initial estimators ξ̃τn and ξ̂τn , the estimator ξτn(β) becomes unstable and inconsistent due to data
sparsity. We use the same Weissman-inspired device as in Section 2.3.3.2 to define the following class
of extreme expectile estimators:

ξ
?
τ ′n

(β) :=

(
1− τ ′n
1− τn

)−γ̂τn
ξτn(β). (2.3.21)

The two special cases β = 0 and β = 1 correspond to the previously studied, extrapolated direct and
indirect expectile estimators. The next theorem gives the asymptotic behaviour of this generalised
extreme expectile estimator ξ

?
τ ′n

(β). Here again γ̂τn is the Hill estimator computed on the k = bn(1−
τn)c top order statistics in the available data.

Theorem 2.3.17. Suppose that the conditions of Theorem 2.3.16 hold. Assume also that ρ < 0 and
n(1− τ ′n)→ c <∞ with

√
n(1− τn)/ log[(1− τn)/(1− τ ′n)]→∞. Then, for any β ∈ R,√
n(1− τn)

log[(1− τn)/(1− τ ′n)]

(
ξ
?
τ ′n

(β)

ξτ ′n
− 1

)
d−→ N

(
λ1

1− ρ
, γ2
)
.

One can observe that the limiting distribution of ξ
?
τ ′n

(β) is controlled by the asymptotic distribution
of γ̂τn . In particular, in the cases β = 1 and β = 0, we exactly recover Corollaries 2.3.7 and 2.3.8 on
the convergence of the extrapolated indirect and direct expectile estimators. [These are respectively
Corollary 3 and Corollary 4 in [12].]
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2.3.5.3 Estimation of expectile-based tail Expected Shortfall

Background An important alternative to VaRτ is Expected Shortfall at level τ . Recall that this is
defined as

QESτ :=
1

1− τ

∫ 1

τ
qt dt. (2.3.22)

When Y is continuous, QESτ is identical to the Conditional Tail Expectation defined by QCTEτ :=
E[Y |Y > qτ ]. Both QESτ and QCTEτ can then be interpreted as the average loss incurred in the
event of a loss higher than VaRτ . Note though that QESτ defines a coherent risk measure but QCTEτ
does not in general (see [41, 257]).

Expectile-based Expected Shortfall Motivated by the merits and good properties of expec-
tiles, [242] has introduced an expectile-based form of Expected Shortfall (ES) as the expectation
XCTEτ := E[Y |Y > ξτ ] of exceedances beyond the τth expectile ξτ of the distribution of Y . This
expectile-based CTE was actually implemented by [242] only as an intermediate instrument for the
ultimate interest in estimating the conventional quantile-based form QCTEτ , or equivalently, the co-
herent version QESτ under the continuity assumption on Y . Although the interpretability of XCTEτ
is straightforward, its coherence as a proper risk measure has been an open question so far.

This is now elucidated below in Proposition 2.3.18, showing the failure of XCTEτ to fulfill the coherence
property in general. Instead, by analogy with QESτ itself, we propose to use the new expectile-based
form of ES

XESτ :=
1

1− τ

∫ 1

τ
ξt dt, (2.3.23)

obtained by substituting the expectile ξt in place of the quantile qt in the standard form (2.3.22) of ES.
It turns out that, in contrast to XCTEτ , the new risk measure XESτ is coherent in general. This is
the focus of the following result.

Proposition 2.3.18. For all τ ≥ 1/2,

(i) XESτ induces a coherent risk measure;

(ii) XCTEτ is neither monotonic nor subadditive in general, and hence does not induce a coherent
risk measure.

The coherence property of XESτ , contrary to that of QESτ , is actually a straightforward consequence
of the coherence of the expectile-based risk measure ξτ , for τ ≥ 1/2.

Next, we show under the heavy-tailed assumption that XESτ is asymptotically equivalent to XCTEτ
as τ → 1, and hence inherits its direct meaning as the conditional expectation E[Y |Y > ξτ ] for all τ
large enough.

Proposition 2.3.19. Assume that E|Y−| < ∞ and that Y has a heavy-tailed distribution with tail
index 0 < γ < 1. Then

XESτ
QESτ

∼ ξτ
qτ
∼ XCTEτ

QCTEτ
and

XESτ
ξτ

∼ 1

1− γ
∼ XCTEτ

ξτ
as τ → 1.

Propositions 2.3.18 and 2.3.19 then afford arguments to justify that the new form XESτ of expectile-
based ES provides a better alternative to XCTEτ not only as a proper risk measure, but also as an
intermediate tool for estimating the classical quantile-based version QESτ . Indeed, XESτ is coherent
and keeps the intuitive meaning of XCTEτ as a conditional expectation when τ → 1, since XESτ ∼
XCTEτ . Most importantly, XESτ may be adopted as a reasonable alternative to QESτ itself. As is
the case in the duality (2.3.4) between the expectile ξτ and the VaR qτ , the choice in any risk analysis
between the expectile-based form XESτ and its quantile-based analogue QESτ will then depend on the
value at hand of γ ≶ 1

2 . More precisely, the quantity XESτ will be more (respectively, less) extreme
than QESτ and hence more (respectively, less) pessimistic or conservative in practice, for all τ large
enough, if γ > 1

2 (respectively, γ < 1
2).
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The connections in Proposition 2.3.19 are very useful when it comes to interpreting and proposing
estimators for XESτ . Also, by considering the second-order regular variation condition C2(γ, ρ,A),
one may establish a precise control of the remainder term which arises in the asymptotic equivalent
XESτ/ξτ ∼ (1− γ)−1.

Proposition 2.3.20. Assume that E|Y−| <∞. Assume further that condition C2(γ, ρ,A) holds, with
0 < γ < 1. Then, as τ → 1,

XESτ
ξτ

=
1

1− γ

(
1− γ2(γ−1 − 1)γ

qτ
(E(Y ) + o(1))

+
1− γ

(1− γ − ρ)2
(γ−1 − 1)−ρA((1− τ)−1)(1 + o(1))

)
.

This result will prove instrumental when examining the asymptotic properties of our tail expectile-
based ES estimators below.

Estimation and asymptotics Propositions 2.3.12(i) and 2.3.20 indicate that the expectile-based
ES satisfies a regular variation property in the same way that quantiles and expectiles do. To estimate
an extreme value XESτ ′n , where τ ′n → 1 and n(1− τ ′n)→ c <∞, we may therefore start by estimating
XESτn , with τn being an intermediate level, before extrapolating this estimator to properly extreme
levels using an estimator of the tail index γ. A natural estimator of XESτn is its direct empirical
counterpart:

X̃ESτn :=
1

1− τn

∫ 1

τn

ξ̃t dt,

obtained simply by replacing ξt in (2.3.23) with its sample version ξ̃t. Since this estimator is a linear
functional of the tail empirical expectile process, Theorem 2.3.14 is more adapted than Theorem 2.3.13
for the analysis of its asymptotic distribution.

Theorem 2.3.21. Under the conditions of Theorem 2.3.14,√
n(1− τn)

(
X̃ESτn
XESτn

− 1

)
d−→ N

(
0,

2γ3(1− γ)(3− 4γ)

(1− 2γ)3

)
.

On the basis of Proposition 2.3.12(ii) and then Proposition 2.3.19, we have for τ ′n > τn → 1 that

XESτ ′n
XESτn

∼
ξτ ′n
ξτn
≈
(

1− τ ′n
1− τn

)−γ
.

Therefore, to estimate XESτ ′n at an arbitrary extreme level τ ′n, we replace γ by the Hill estimator γ̂τn
and XESτn at an intermediate level τn by the estimator X̃ESτn to get

X̃ES
?

τ ′n
:=

(
1− τ ′n
1− τn

)−γ̂τn
X̃ESτn . (2.3.24)

The next result analyses the convergence of this Weissman-type estimator.

Theorem 2.3.22. Assume that the conditions of Theorem 2.3.17 hold. Then√
n(1− τn)

log[(1− τn)/(1− τ ′n)]

(
X̃ES

?

τ ′n

XESτ ′n
− 1

)
d−→ N

(
λ1

1− ρ
, γ2
)
.

One can also design alternative options for estimating XESτ ′n by using the asymptotic connections
in Proposition 2.3.19. For example, the asymptotic equivalence XESτ ′n ∼ (1 − γ)−1ξτ ′n , established
therein, suggests that XESτ ′n can be estimated consistently by substituting the tail quantities γ and

ξτ ′n with their consistent estimators γ̂τn and ξ
?
τ ′n

(β) described in (2.3.5) and (2.3.21), respectively. This
yields the extrapolated estimator

XES
?
τ ′n

(β) := [1− γ̂τn ]−1 ξ
?
τ ′n

(β), (2.3.25)

with a weight β ∈ R, whose asymptotic normality is established in the following result.
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Theorem 2.3.23. Assume that the conditions of Theorem 2.3.17 hold. Then, for any β ∈ R,√
n(1− τn)

log[(1− τn)/(1− τ ′n)]

(
XES

?
τ ′n

(β)

XESτ ′n
− 1

)
d−→ N

(
λ1

1− ρ
, γ2
)
.

Theorems 2.3.22 and 2.3.23 are, like Theorem 2.3.17, derived by noticing that, on the one hand,
the asymptotic behaviours of X̃ES

?

τ ′n
and ξ

?
τ ′n

(β) are controlled by the asymptotic behaviour of the

extrapolation factor {(1− τ ′n)/(1− τn)}−γ̂τn , which is itself governed by that of γ̂τn only. This is why,

in Theorems 2.3.22 and 2.3.23, the asymptotic distributions of X̃ES
?

τ ′n
and XES

?
τ ′n

(β) coincide. On
the other hand, the non-random remainder term coming from the use of Proposition 2.3.19 can be
controlled thanks to Proposition 2.3.20.

2.3.6 Extreme level selection [1, 12]

An important question that remains to be addressed is the choice of the extreme expectile level τ ′n in
the risk measures ξτ ′n , XMES(τ ′n) and XESτ ′n .

In the case of quantile-based risk measures qαn , QMES(αn) and QESαn , it is customary to choose tail
probabilities αn → 1 with n(1 − αn) → c, a finite nonnegative constant, to allow for more “prudent”
risk management. In the case of expectiles, we propose to select τ ′n so that each expectile-based risk
measure has the same intuitive interpretation as its quantile-based analogue. This translates into
choosing τ ′n such that ξτ ′n ≡ qαn for a given relative frequency αn. It has been suggested in [52] to
pick out τ ′n which satisfies ξτ ′n ≡ qαn , but this is restricted to a Gaussian random variable Y . Here,
we wish to extend this elegant device to a random variable Y in our heavy-tailed framework.

Thanks to the connection (2.3.2), it is immediate from ξτ ′n ≡ qαn that τ ′n(αn) := τ ′n satisfies

1− τ ′n(αn) =
E {|Y − qαn | I{Y > qαn}}

E |Y − qαn |
.

As a matter of fact, under the model assumption of Pareto-type tails, it turns out that the expectile
level τ ′n(αn) depends asymptotically only on the quantile level αn and on the tail index γ, but not on
the quantile qαn itself.

Proposition 2.3.24. Suppose Y is heavy-tailed with a tail index 0 < γ < 1. Then

1− τ ′n(αn) ∼ (1− αn)
γ

1− γ
, as n→∞.

Hence, by substituting the estimated value

τ̂ ′n(αn) = 1− (1− αn)
γ̂

1− γ̂
(2.3.26)

in place of τ ′n, both extreme expectile estimators ξ̂?τ ′n in (2.3.10) and ξ̃?τ ′n in (2.3.11) estimate the same
Value at Risk ξτ ′n(αn) ≡ qαn as the Weissman quantile estimator q̂?αn in (2.3.9). It is easily seen that

the latter estimator is actually identical to the indirect expectile estimator ξ̂?τ̂ ′n(αn)
. Indeed, we have

in view of (2.3.9), (2.3.10) and (2.3.26) that

ξ̂?τ̂ ′n(αn) =
(
γ̂−1 − 1

)−γ̂ (1− τ̂ ′n(αn)

1− τn

)−γ̂
q̂τn = q̂?αn .

This quantile-based estimator q̂?αn ≡ ξ̂?τ̂ ′n(αn)
may be criticised for its reliance on a single order statis-

tic q̂τn = Yn−bn(1−τn)c,n, and hence because it may not respond properly to the very extreme losses.

By contrast, the direct expectile-based estimator ξ̃?τ̂ ′n(αn)
relies on the asymmetric least squares esti-

mator ξ̃τn , and hence bears much better the burden of representing a sensitive risk measure to the
magnitude of infrequent catastrophic losses. The next result shows that the asymptotic behaviour of
the original extrapolated estimators ξ̂?τ ′n and ξ̃?τ ′n , established in Corollaries 2.3.7 and 2.3.8, remains the

same for the resulting composite estimators ξ̂?τ̂ ′n(αn)
and ξ̃?τ̂ ′n(αn)

, under the same technical conditions.
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Theorem 2.3.25. (i) Suppose the conditions of Corollary 2.3.7 hold with αn in place of τ ′n. Then√
n(1− τn)

log[(1− τn)/(1− αn)]

(
ξ̂?τ̂ ′n(αn)

qαn
− 1

)
d−→ Γ.

(ii) Suppose the conditions of Corollary 2.3.8 hold with αn in place of τ ′n. Then√
n(1− τn)

log[(1− τn)/(1− αn)]

(
ξ̃?τ̂ ′n(αn)

qαn
− 1

)
d−→ Γ.

Let us now turn to X̃MES
?
(τ̂ ′n(αn)) in (2.3.15) and X̂MES

?
(τ̂ ′n(αn)) in (2.3.18) that estimate the

same marginal expected shortfall XMES(τ ′n(αn)) ≡ QMES(αn) as the estimator Q̂MES
?
(αn) defined

in (2.3.19). Actually X̂MES
?
(τ̂ ′n(αn)) is nothing but Q̂MES

?
(αn).

Theorem 2.3.26. (i) Suppose the conditions of Theorem 2.3.10 hold with αn in place of τ ′n. Then√
n(1− τn)

log[(1− τn)/(1− αn)]

(
X̃MES

?
(τ̂ ′n(αn))

QMES(αn)
− 1

)
d−→ Γ.

(ii) Suppose the conditions of Theorem 2.3.11 hold with αn in place of τ ′n. Then√
n(1− τn)

log[(1− τn)/(1− αn)]

(
X̂MES

?
(τ̂ ′n(αn))

QMES(αn)
− 1

)
d−→ Γ.

Finally, by substituting τ̂ ′n(αn) in place of τ ′n ≡ τ ′n(αn) in the extrapolated estimators X̃ES
?

τ ′n
and

XES
?
τ ′n

(β) described in (2.3.24) and (2.3.25), we obtain composite estimators that estimate XESτ ′n(αn) ∼
QESαn , by Proposition 2.3.19. The convergence results in Theorems 2.3.22 and 2.3.23 of the extrap-

olated estimators X̃ES
?

τ ′n
and XES

?
τ ′n

(β) still hold true for their composite versions as estimators of
QESαn , with the same technical conditions.

Theorem 2.3.27. Suppose the conditions of Theorem 2.3.17 hold with αn in place of τ ′n. Then, for
any β ∈ R, √

n(1− τn)

log[(1− τn)/(1− αn)]

(
X̃ES

?

τ̂ ′n(αn)

QESαn
− 1

)
d−→ N

(
λ1

1− ρ
, γ2
)
,

and

√
n(1− τn)

log[(1− τn)/(1− αn)]

(
XES

?
τ̂ ′n(αn)

(β)

QESαn
− 1

)
d−→ N

(
λ1

1− ρ
, γ2
)
.

2.3.7 Finite-sample study [1, 12]

2.3.7.1 Finite-sample performance on simulated data

Detailed simulation results on the finite-sample performance of our estimators can be found in [1, 12].
We obtain that:

• Overall, the direct estimation method (via asymmetric least squares) is more efficient relative
to the indirect method in the case of real-valued profit-loss variables, whereas the rival indirect
method tends to be superior in the case of non-negative loss distributions. The latter method
seems to be also better in the case of extremely heavy tails.

• Taking a weighting parameter β is beneficial in certain cases of non-negative loss distributions.

• These conclusions carry over to when the objective is to use extreme expectile-based risk measures
as a way to estimate their extreme quantile-based counterparts.
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2.3.7.2 Data example 3: The Society of Actuaries medical data set [12]

The SOA Group Medical Insurance Large Claims Database records all the claim amounts exceeding
US $25,000 over the period 1991-92. As in [47], we only deal here with the n = 75,789 claims for 1991.
The histogram and scatterplot shown in Figure 2.4 (a) give evidence of an important right-skewness.
Insurance companies are then interested in estimating the worst tail value of the corresponding loss
severity distribution.

One way of measuring this value at risk is by considering the Weissman quantile estimate

q̂?αn = Yn−k,n

(
k

npn

)γ̂H
as described in (2.3.9), where γ̂H is the Hill estimator defined in (2.3.5), with αn = 1 − pn and
τn = 1 − k/n. According to the earlier study of [47] (p.123), insurers typically are interested in
pn = 1/100,000 ≈ 1/n for these medical insurance data, that is, in an estimate of the claim amount
that will be exceeded (on average) only once in 100,000 cases. Similar recent studies in the context of
the backtesting problem, which is crucial in the current Basel III regulatory framework, are [72, 141],
who estimate quantiles exceeded on average once every 100 cases with sample sizes of the order of
hundreds. Figure 2.4 (b) shows the quantile-VaR estimates q̂?αn against the sample fraction k (solid
line). Here, a stable region appears for k from 150 up to 500, leading to an estimate between 3.73 and
4.12 million. This estimate does not exceed the sample maximum Yn,n = 4,518,420 (indicated by the
horizontal line), which is consistent with the earlier analysis of [47] (p.125 and p.159).

The alternative expectile-based estimator ξ̃?τ̂ ′n(αn)
introduced in Section 2.3.6, which estimates the same

VaR qαn ≡ ξτ ′n(αn) as the quantile-based estimator

q̂?αn ≡ ξ̂
?
τ̂ ′n(αn)

,

is also graphed in Figure 2.4 (b) in dashed line. As an asymmetric least-squares estimator, it is
more affected by the infrequent great claim amounts visualised in the top panel of Figure 2.4. Its
plot indicates a more conservative risk measure between 3.92 and 4.33 million, over the stable region
k ∈ [150, 500].

2.3.7.3 Data example 4: Financial data of three large American banks [1, 12]

We consider the same investment banks as in the studies of [64, 68], namely Goldman Sachs, Morgan
Stanley and T. Rowe Price. For the three banks, the dataset consists of the loss returns, i.e. the
negative log-returns (Xi) on their equity prices at a daily frequency from July 3rd, 2000, to June 30th,
2010. We follow the same setup as in [68] to extract, for the same time period, daily loss returns (Yi) of
a value-weighted market index aggregating three markets: the New York Stock Exchange, American
Express Stock Exchange and the National Association of Securities Dealers Automated Quotation
system.

Marginal Expected Shortfall estimation given an extreme loss in the global market [12]
In [68], the quantile-based marginal expected shortfall QMES(αn) = E{X|Y > qY,αn} is estimated

by Q̂MES
?
(αn), where αn = 1 − 1/n = 1 − 1/2,513, with two intermediate sequences involved in γ̂X

and Q̂MES(τn) to be chosen in two steps. Instead, we use our expectile-based method to estimate
QMES(αn) ≡ XMES(τ ′n(αn)) = E{X|Y > ξY,τ ′n(αn)}, with the same extreme relative frequency αn

that corresponds to a once-per-decade systemic event. We employ the rival estimator Q̂MES
?
(αn) with

the same intermediate sequence τn = 1− k/n in both γ̂X and Q̂MES(τn). The conditions required by
the procedure were already checked empirically in [68]. It only remains to verify that γY < 1/2 as it
is the case for γX . This assumption is confirmed by the plot of the Hill estimates of γY against the
sample fraction k (dashed line) in Figure 2.5 (a). Indeed, the first stable region appears for k ∈ [70, 100]

with an averaged estimate γ̂Y = 0.35. Hence, by Proposition 2.3.9, the estimates X̂MES
?
(αn) and
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Figure 2.4: SOA Group Medical Insurance data. (a) Histogram and scatterplot of the log-claim
amounts. (b) The VaR plots k 7→ ξ̃?τ̂ ′n(αn)

(k) in dashed line and k 7→ q̂?αn(k) in solid line, along with
the sample maximum Yn,n in horizontal line.

X̃MES
?
(αn) are expected to be less extreme than the benchmark values Q̂MES

?
(αn). As a matter of

fact, both X̂MES
?
(αn) and X̃MES

?
(αn) estimate the less extreme risk measure XMES(αn) and not

the desired intuitive tail measure XMES(τ ′n(αn)) ≡ QMES(αn).

The interest here is rather on the composite estimators X̂MES
?
(τ̂ ′n(αn)) and X̃MES

?
(τ̂ ′n(αn)), where

X̂MES
?
(τ̂ ′n(αn)) is actually nothing but Q̂MES

?
(αn). The two rival estimates Q̂MES

?
(αn) and

X̃MES
?
(τ̂ ′n(αn)) represent the average daily loss return for a once-per-decade market crisis. They

are graphed in Figure 2.5 (b)-(d) as functions of k for each bank: (b) Goldman Sachs; (c) Morgan
Stanley; (d) T. Rowe Price. The first stable regions of the plots (b)-(d) appear, respectively, for
k ∈ [80, 105], k ∈ [90, 140] and k ∈ [75, 100]. The final estimates based on averaging the estimates
from these stable regions are reported in the left-hand side of Table 2.6, along with the asymptotic
95% confidence intervals derived from Theorem 2.3.26 with the bias condition λ2 = 0 (the asymptotic
distribution then being N (0, γ2X) due to the use of the Hill estimator of γX , see the discussion below
Theorem 2.3.3). It may be seen that both expectile- and quantile-based MES levels for Goldman Sachs
and T. Rowe Price are almost equal. However, the MES levels for Morgan Stanley are substantially
higher than those for Goldman Sachs and T. Rowe Price. It may also be noted that the estimates

Q̂MES
?
(αn), obtained here with a single intermediate sequence, are slightly smaller than those ob-

tained in Table 1 of [68] by using two intermediate sequences. Also, these quantile-based estimates
appear to be less conservative than our asymmetric least squares-based estimates, but not by much:

this minor difference can already be visualised in Figure 2.5 (b)-(d), where the plots of Q̂MES
?
(αn),

in dashed line, and X̃MES
?
(τ̂ ′n(αn)), in solid line, exhibit a very similar evolution for the three banks.

In our theoretical results we do not enter into the important question of serial dependence. We only
consider independent and identically distributed random vectors (X1, Y1), . . . , (Xn, Yn). One way to
reduce substantially the potential serial dependence in this application is by using lower frequency
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Daily loss

Bank X̃MES
?
(τ̂ ′n(αn)) Q̂MES

?
(αn)

Goldman Sachs 0.3123 (0.20,0.42) 0.3077 (0.19,0.41)
Morgan Stanley 0.5622 (0.34,0.78) 0.5552 (0.33,0.77)
T. Rowe Price 0.3308 (0.25,0.52) 0.3098 (0.23,0.50)

Weekly loss

X̃MES
?
(τ̂ ′n(αn)) Q̂MES

?
(αn)

0.3423 (0.17,0.51) 0.3375 (0.16,0.50)
0.6495 (0.26,1.03) 0.6641 (0.26,1.05)
0.3407 (0.19,0.48) 0.3405 (0.19,0.48)

Table 2.6: Expectile- and quantile-based MES of the three investment banks. The second and third
columns report the results based on daily loss returns (n = 2,513 and αn = 1 − 1/n). The last two
columns report the results based on weekly loss returns from the same sample period (n = 522 and
αn = 1− 1/n). Each MES estimate is followed by the 95% asymptotic confidence interval.

Bank X̃ES
?

τ̂ ′
n(αn) 95% C.I. Q̂ES

?

αn
95% C.I. Yn,n

Goldman Sachs 0.445 (0.194, 0.620) 0.495 (0.226, 0.680) 0.365
Morgan Stanley 0.817 (0.384, 1.305) 0.883 (0.366, 1.478) 0.904
T. Rowe Price 0.386 (0.213, 0.511) 0.407 (0.216, 0.548) 0.305

Table 2.7: ES levels of the three investment banks, with the 95% confidence intervals and the sample
maxima. Results based on weekly loss returns, with n = 522 and αn = 1− 1/n.

data. As suggested by [68], we choose weekly loss returns in the same sample period. This results
in a sample of size n = 522. The final results, obtained following a similar procedure as the one
used for daily data, are reported in the right-hand side of Table 2.6. They are very similar to those
obtained in [68] by resorting to two intermediate sequences. Both expectile- and quantile-based MES
estimates are qualitatively robust to the change from daily to weekly data: they are still almost equal
for Goldman Sachs and T. Rowe Price, while almost twice as high for Morgan Stanley.

Extreme Expected Shortfall estimation [1] We now turn to the estimation of the stan-
dard quantile-based expected shortfall QESαn , or equivalently the expectile-based expected shortfall
XESτ ′n(αn), for each bank. We work here with weekly loss returns, for a total sample size of n = 522.

In this situation of real-valued profit-loss distributions, our experience with simulated data indicates
that the composite estimator X̃ES

?

τ̂ ′n(αn)
provides the best QESαn estimates in terms of MSE and

bias. In the estimation, we employ the intermediate sequence τn = 1 − k/n as before. For our

comparison purposes, we use as a benchmark the direct quantile-based estimator Q̂ES
?

αn of [114].

For each bank, we superimpose in Figure 2.6 the plots of the two competing estimates X̃ES
?

τ̂ ′n(αn)

and Q̂ES
?

αn against k, as rainbow and dashed black curves respectively, along with their associated
asymptotic 95% confidence intervals constructed using their limiting Gaussian distribution. The effect
of the Hill estimate γ̂H on X̃ES

?

τ̂ ′n(αn)
is highlighted by a colour-scheme, ranging from dark red (low γ̂H)

to dark violet (high γ̂H). The superiority of the composite expectile-based estimator X̃ES
?

τ̂ ′n(αn)
in

terms of plots’ stability, including confidence intervals, can clearly be visualised in Figure 2.6 for the
three banks. The final estimated ES levels are reported in Table 2.7, along with the asymptotic 95%
confidence intervals of the ES. Based on the X̃ES

?

τ̂ ′n(αn)
estimates (in the second column), the ES levels

for Goldman Sachs and T. Rowe Price seem to be close (around −38% to −44%), whereas the ES level
for Morgan Stanley is almost twice as high (around −81%). It is worth noticing that the difference

between the X̃ES
?

τ̂ ′n(αn)
levels for Goldman Sachs and T. Rowe Price is very close to the difference

between their respective maxima Yn,n. The Q̂ES
?

αn estimates (in the fourth column) point towards
slightly more pessimistic risk measures for the three banks.

2.3.8 Perspectives for future research

Inference in the Weibull domain of attraction Our results are derived under the assumption
of a heavy right tail, motivated by applications in insurance and finance. The extension of our results
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Figure 2.5: (a) Hill estimates γ̂Y based on daily loss returns of market index (dashed), along with γ̂X
based on daily loss returns of Goldman Sachs (solid), Morgan Stanley (dashed-dotted), and T. Rowe

Price (dotted). (b)-(d) The estimates Q̂MES
?
(αn) in dashed line and X̃MES

?
(τ̂ ′n(αn)) in solid line for

the three banks, with n = 2,513 and αn = 1− 1/n.
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Figure 2.6: Results based on weekly loss returns of the three investment banks: (a) Goldman Sachs, (b)

Morgan Stanley, and (c) T. Rowe Price, with n = 522 and αn = 1− 1/n. The estimates X̃ES
?

τ̂ ′n(αn)
as

rainbow curve and Q̂ES
?

αn as dashed black curve, along with the associated asymptotic 95% confidence
intervals in, respectively, dotted blue lines and solid grey lines. The sample maximum Yn,n is indicated
in horizontal dashed pink line.
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to the case of an underlying distribution belonging to the Weibull max-domain of attraction is an open
problem. A distribution in this domain has a finite right endpoint, making it unlikely to be suitable
in applications to the management of catastrophic risk in insurance and finance. In this context, the
anticipation is rather that expectiles would allow the development of competitive procedures for right
endpoint estimation and thus for monotone frontier estimation, since they bring valuable information
about the tail. This problem is of great interest in economics and particularly in the field of economic
efficiency analysis, see e.g. [97].

Time series adaptation Our current results are limited to independent and identically distributed
observations. Of major interest in finance is the adaptation of our approach to a time-dynamic
setting, i.e. the prediction of extreme expectiles in the future conditional on having observed the
past. Already [190, 242] have initiated the use of expectiles to estimate VaR and ES in conditional
autoregressive expectile models. The use of expectiles to estimate MES may also work by allowing for
dynamics in the covariance matrix via a multivariate GARCH model, similarly to the quantile-based
method of [64]. From the perspective of extreme values, one way to deal with the heteroscedasticity
present in series of financial returns, similarly to e.g. [200] and [201] (see p.263 therein) is by applying
our method to residuals standardised by GARCH conditional volatility estimates.

Joint inference for several risk variables Our results focus, for the most part, on a single
risk variable Y . Our work on the Marginal Expected Shortfall considers an individual financial risk
given an extreme level of risk in the global market, but does not give an idea of the joint, bivariate
extreme risk for two companies. An important problem is to develop joint inference procedures for
the analysis of extreme individual risks in several actuarial/financial institutions, or several lines of
business in a given company. Of particular interest will be the understanding of the joint asymptotic
behaviour of several LAWS intermediate expectile estimators attached to different risk variables; this
will be crucial to gain insight on how asymptotic dependence between two risk variables influences
their extreme expectile estimators. The extrapolation step, meanwhile, can be solved using tools we
shall introduce in Section 2.6 if it is carried out using the Hill estimator to estimate the tail index.
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2.4 Using Lp−techniques for the estimation of extreme risk mea-
sures [3, 10]

2.4.1 Introduction

An intrinsic difficulty with expectiles is that their existence requires E|X| < ∞, which amounts to
supposing γ < 1. Even more seriously, the condition γ < 1/2 is required to ensure that asymmetric
least squares estimators of ξτn are asymptotically Gaussian. Already in the intermediate case, where
n(1 − τn) → ∞ as τn → 1, good estimates may require in practice γ < 1/4. Similar concerns
occur with the Expected Shortfall (or equivalently, the Conditional Tail Expectation for continuous
distributions) and more generally certain extreme Wang distortion risk measures such as those we
studied in Section 2.2.5. This restricts appreciably the range of potential applications as may be seen
in the actuarial and financial setting from the Danish fire insurance data set considered in Example
4.2 of [215], emerging market stock returns data [154, 195] and exchange rates data [155], as well as
from the R package CASdatasets where realised values of the tail index γ were found to be larger
than 1/4 in several instances.

Instead of the asymmetric absolute or squared loss, a natural modification of the check function is to
use the power loss function ητ (x; p) = |τ − I{x ≤ 0}||x|p, for p ≥ 1, leading to

qτ (p) = arg min
q∈R

E(ητ (X − q; p)− ητ (X; p)).

These quantities were called Lp−quantiles by [73] and are special cases of M-quantiles as introduced
in [63]. Their existence requires E|X|p−1 < ∞. This is a weaker condition, compared with the
condition of existence of expectiles, when p < 2. The class of Lp−quantiles, with p ∈ (1, 2), steers
an advantageous middle course between the robustness of quantiles (p = 1) and the sensitivity of
expectiles (p = 2) to the magnitude of extreme losses. For fixed levels τ staying away from the
distribution tails, inference on qτ (p) is straightforward using M-estimation theory. The goal of [10], on
which we will focus in the first part of this section, is to extend the estimation of qτ (p) and its theory
far into the upper tail τ = τn → 1 as n→∞.

More specifically, we shall establish two estimators of qτn(p) for a general p and unravel their asymptotic
behaviour for τn at an extremely high level that can be even larger than 1 − 1/n, in a framework of
heavy tails motivated by the aforementioned financial and actuarial applications. To do so, just as
for quantiles and expectiles, we first estimate the intermediate tail Lp−quantiles of order τn → 1
such that n(1− τn)→∞, and then extrapolate these estimates to the properly extreme Lp−quantile
level τn which approaches 1 at an arbitrarily fast rate in the sense that n(1 − τn) → c, for some
finite nonnegative constant c. The main results state the asymptotic normality of our estimators
for distributions with tail index γ < [2(p − 1)]−1. As such, unlike expectiles, extreme Lp−quantile
estimators cover a larger class of heavy-tailed distributions for p < 2. It should also be clear that, in
contrast to standard quantiles, generalised Lp−quantiles take into account the whole tail information
about the underlying distribution for p > 1. These additional benefits raise the following important
question: how to make a choice of p in the interval [1, 2]? This choice is mainly a practical issue that we
first pursue here through some simulation experiments. Although the value of p minimising the Mean
Squared Error of empirical Lp−quantiles depends on the tail index γ, Monte Carlo evidence indicates
that the choice of p ∈ (1.2, 1.6) guarantees a good compromise for Pareto-type distributions with
γ < 1/2. In contrast, when the empirical estimates are extrapolated to properly extreme levels τn, the
underlying tail Lp−quantiles seem to be estimated more accurately for p ∈ [1, 1.3] or p ∈ [1.7, 2]. We
explore further this question from a forecasting perspective, trying to perform extreme Lp−quantile
estimation accurately on historical data.

Yet, the Lp−quantile approach is not without disadvantages. It does not have an intuitive interpreta-
tion as direct as ordinary L1−quantiles. More precisely, the generalised quantile qτ (p) exists, is unique
and satisfies

τ =
E
[
|X − qτ (p)|p−1I{X ≤ qτ (p)}

]
E [|X − qτ (p)|p−1]

. (2.4.1)
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It can thus be interpreted only in terms of the average distance from X in the (nonconvex when
1 < p < 2) space Lp−1. However, one can recover the usual quantiles qαn ≡ qαn(1) of extreme order
αn → 1 and their strong intuitive appeal from tail Lp−quantiles qτn(p), τn → 1, that coincide with
qαn(1). Indeed, given a relative frequency of interest αn, the level τn such that qτn(p) ≡ qαn(1) can be
written in closed form as

τn =
E
[
|X − qαn(1)|p−1I{X ≤ qαn(1)}

]
E [|X − qαn(1)|p−1]

(2.4.2)

in view of (2.4.1). One can then estimate τn via extrapolation techniques before calculating the
corresponding Lp−quantile estimators. In this way, we perform tail Lp−quantile estimation as a
main tool when the ultimate interest is in estimating the intuitive L1−quantiles themselves. We can
similarly employ tail Lp−quantiles qτn(p) as a tool for estimating extreme expectiles ξαn ≡ qαn(2)
by applying again (2.4.1) in conjunction with similar considerations to the above in extreme quantile
estimation. Building on the presented extreme Lp−quantile estimators, we construct three different
tail expectile estimators and derive their asymptotic normality. Two among these new estimators
appear to be competitive with respect to the extreme expectile estimators we studied in Section 2.3
(namely, the estimators of [12]).

The second part of this section presents the contribution of [3], which uses some of the experience and
insight gained in the study of extreme Lp−quantiles in order to design a class of tail Lp−indicators that
realise a compromise between the sensitivity of the Conditional Tail Expectation and the robustness
of the Median Shortfall of [185, 186]. Recall that the latter, at level α ∈ (0, 1), is nothing but
the quantile or VaR at level (1 + α)/2. We will start by showing that these two quantities can be
obtained in a new unified framework, which we call the class of tail Lp−medians. A tail Lp−median
at level α ∈ (0, 1) is obtained, for p ≥ 1, precisely by calculating the Lp−quantile of order 1/2 (or
Lp−median) of the variable X |X > q(α). In particular, we will note that the Median Shortfall is the
tail L1−median, while the Conditional Tail Expectation is the tail L2−median. Like Lp−quantiles,
tail Lp−medians with p > 1 depend on both the frequency of the event {X > q(α)} and the actual
behaviour of X beyond q(α). At the technical level, a condition for a tail Lp−median to exist is
that γ < 1/(p− 1), and it can be empirically estimated at high levels by an asymptotically Gaussian
estimator if γ < 1/[2(p − 1)]. When p ∈ (1, 2), the tail Lp−median and the Lp−quantile therefore
simultaneously exist and are accurately estimable in a wider class of models than the CTE is.

However, there are a number of differences between tail Lp−medians and Lp−quantiles. For example,
the theoretical analysis of the asymptotic behaviour of tail Lp−medians, as α→ 1− (where throughout,
“→ 1−” denotes taking a left limit at 1), is technically more complex than that of Lp−quantiles. The
asymptotic results that arise show that the tail Lp−median at level α is asymptotically proportional to
the quantile q(α), as α→ 1−, through a non-explicit but very accurately approximable constant, and
the remainder term in the asymptotic relationship is exclusively controlled by extreme value parameters
of X. This stands in contrast with Lp−quantiles, which also are asymptotically proportional to
the quantile q(α) through a simpler constant, although the remainder term crucially features the
expectation and left-tail behaviour ofX. The remainder term plays an important role in the estimation,
as it determines the bias term in our eventual estimators, and we will then argue that the extreme value
behaviour of tail Lp−medians is easier to understand and more natural than that of Lp−quantiles.
We will also explain why, for heavy-tailed models, extreme tail Lp−medians are able to interpolate
monotonically between extreme MS and extreme CTE, as p varies in (1, 2) and for γ < 1. By
contrast, Lp−quantiles are known not to interpolate monotonically between quantiles and expectiles,
see Figure 2.7 below. The interpolation property also makes it possible to interpret an extreme tail
Lp−median as a weighted average of extreme MS and extreme CTE. This is likely to be helpful as far
as the practical applicability of tail Lp−medians is concerned, to the extent that it allows for a simple
choice of p reflecting a pre-specified compromise between the extreme MS and CTE.

We shall then examine how to estimate an extreme tail Lp−median. We start, as we shall do in the
estimation of extreme Lp−quantiles, by suggesting two estimation methods in the so-called interme-
diate case of a tail Lp−median level αn satisfying n(1− αn) → ∞. Although the design stage of our
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tail Lp−median estimators has similarities with that of the Lp−quantile estimators, the investigation
of the asymptotic properties of the tail Lp−median estimators is more challenging and technically
involved. These methods will provide us with basic estimators that we will extrapolate at a proper
extreme level αn, which satisfies n(1− αn)→ c ∈ [0,∞), using the heavy-tailed assumption. We will,
as a theoretical byproduct, demonstrate how our results make it possible to recover or improve upon
known results in the literature on extreme Conditional Tail Expectation estimation. Our final step will
be to assess the finite-sample behaviour of the suggested estimators. Our focus will not be to consider
heavy-tailed models with a small value of γ: for these models and more generally in models with finite
fourth moment, it is unlikely that any improvement will be brought on the CTE, whether in terms
of quality of estimation or interpretability. Our view is rather that the use of tail Lp−medians with
p ∈ (1, 2) will be beneficial for very heavy-tailed models, in which γ is higher than the finite fourth
moment threshold γ = 1/4, and possibly higher than the finite variance threshold γ = 1/2. For such
values of γ and with an extreme level set to be αn = 1− 1/n, we shall then evaluate the finite-sample
performance of our estimators on simulated data sets, as well as on the real set of fire insurance data
already studied in Section 2.2.5.3, featuring an estimated value of γ larger than 1/2.

This section is organised as follows. Section 2.4.2 focuses on the study of population and sample
extreme Lp−quantiles. Section 2.4.2.1 starts by describing how population Lp−quantiles qτ (p) are
linked to standard quantiles qτ (1) as τ → 1. Section 2.4.2.2 deals with the estimation of intermediate
and extreme Lp−quantiles qτn(p) for p > 1. Estimators of the extreme level τn in (2.4.2) are discussed
in Section 2.4.2.3, with implications for recovering composite estimators of high quantiles qαn(1). We
also discuss extrapolated high expectile (p = 2) estimation therein. A brief discussion of the finite-
sample performance of our estimators is included in Section 2.4.2.4 and a concrete application to the
analysis of data from the S&P500 Index is given in Section 2.4.2.5 to illustrate the usefulness of the
extreme Lp−quantile methodology. Section 2.4.2.6 concludes this first part by discussing potential
avenues for future research. Section 2.4.3 then turns to the study of the tail Lp−median, of which
we give a rigorous definition and elementary properties in Section 2.4.3.1. Section 2.4.3.2 focuses on
the analysis of asymptotic properties of the population tail Lp−median. Estimators of an extreme
tail Lp−median are introduced and studied in Section 2.4.3.3. A short discussion of the finite-sample
behaviour of our estimators is included in Section 2.4.3.4 before they are applied to a set of real fire
insurance data in Section 2.4.3.5. Section 2.4.3.6 again discusses perspectives for future work on this
topic.

2.4.2 Extreme M-quantiles as risk measures: From L1 to Lp optimisation [10]

2.4.2.1 Extreme population Lp−quantiles

This section describes in detail what is the behaviour of large population Lp−quantiles and how they
are linked to large standard quantiles. We assume for the sake of simplicity throughout Section 2.4.2
that the distribution function of the random variable X of interest is continuous. Recalling
the notation X− = max(−X, 0) for the negative part of X, we first have the following asymptotic
connection between F (qτ (p)) and F (qτ (1)) ≡ 1− τ .

Proposition 2.4.1. Assume that the survival function F satisfies condition C1(γ). For any p > 1,
whenever E(Xp−1

− ) <∞ and γ < 1/(p− 1), we have

lim
τ↑1

F (qτ (p))

1− τ
=

γ

B(p, γ−1 − p+ 1)

where B(x, y) =

∫ 1

0
tx−1(1− t)y−1dt stands for the Beta function.

Note that when the function F satisfies condition C1(γ) and γ < 1/(p − 1), we have E(Xp−1
+ ) < ∞

with X+ = max(X, 0). This entails together with condition E(Xp−1
− ) < ∞ that E|X|p−1 < ∞, and

hence the Lp−quantiles of X are indeed well-defined. Even more strongly, we get the following direct
asymptotic connection between qτ (p) and qτ (1) themselves.
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Figure 2.7: Behaviour of γ ∈ (0, 1/2] 7→ C(γ; p) for some values of p ∈ [1, 2].

Corollary 2.4.2. Under the conditions of Proposition 2.4.1, we have

lim
τ↑1

qτ (p)

qτ (1)
=

[
γ

B(p, γ−1 − p+ 1)

]−γ
.

Accordingly, extreme Lp−quantiles are asymptotically proportional to the usual extreme quantiles,
for all p > 1. The evolution of the proportionality constant

C(γ; p) :=

[
γ

B(p, γ−1 − p+ 1)

]−γ
with respect to γ ∈ (0, 1/2] is visualised in Figure 2.7, for some values of p ∈ [1, 2]. It can be seen that
the usual quantile qτ (1) is more spread (conservative) than the Lp−quantile qτ (p) as the level τ → 1.

Next, we shall derive some asymptotic expansions of Lp−quantiles, which shall be very useful when it
comes to establish the asymptotic normality of extreme Lp−quantile estimators in the next section.
From now on, we denote by F− the survival function of −X. Also, a survival function S will be said
to be light-tailed (and by convention, we shall say it has tail index 0) if it satisfies xaS(x) → 0 as
x → +∞, for all a > 0. The following second-order based refinement of Proposition 2.4.1 is the key
element in order to obtain the desired asymptotic expansion of Lp−quantiles.

Proposition 2.4.3. Assume that p > 1 and:

• F satisfies condition C2(γr, ρ, A);

• F− is either light-tailed or satisfies condition C1(γ`);

• γr < 1/(p− 1), and γ` < 1/(p− 1) in case F− is heavy-tailed.
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Then
F (qτ (p))

1− τ
=

γr

B(p, γ−1r − p+ 1)
(1 +R(τ, p))

where

R(τ, p) = − γr

B(p, γ−1r − p+ 1)

(
(1− τ)(1 + o(1)) +K(p, γr, ρ)A

(
1

1− τ

)
(1 + o(1))

)
−(p− 1)

([
γr

B(p, γ−1r − p+ 1)

]min(γr,1)

Rr(qτ (1), p, γr)

−
[

γr

B(p, γ−1r − p+ 1)

]γr/max(γ`,1)

R`(qτ (1), p, γ`)

)

as τ ↑ 1, with

K(p, γr, ρ) =



1

γ2rρ

[
γr

B(p, γ−1r − p+ 1)

]−ρ
×
[
(1− ρ)B(p, (1− ρ)γ−1r − p+ 1)−B(p, γ−1r − p+ 1)

]
if ρ < 0,

p− 1

γ2r

∫ +∞

1
(x− 1)p−2x−1/γr log(x)dx if ρ = 0,

Rr(q, p, γr) =


E(XI{0 < X < q})

q
(1 + o(1)) if γr ≤ 1,

F (q)B(p− 1, 1− γ−1r )(1 + o(1)) if γr > 1,

and R`(q, p, γ`) =


−E(XI{−q < X < 0})

q
(1 + o(1))

if γ` ≤ 1

or F− is light-tailed,

F (−q)B(γ−1` − p+ 1, 1− γ−1` )(1 + o(1)) if γ` > 1.

When X ∈ L1, and in particular when expectiles of X can be computed, the asymptotic expansion of
Lp−quantiles reduces to the following.

Corollary 2.4.4. Under the conditions of Proposition 2.4.3, if E|X| <∞, then

F (qτ (p))

1− τ
=

γr

B(p, γ−1r − p+ 1)
(1 + r(τ, p))

as τ ↑ 1, where

r(τ, p) = −(p− 1)

[
γr

B(p, γ−1r − p+ 1)

]γr 1

qτ (1)
(E(X) + o(1))

− γr

B(p, γ−1r − p+ 1)
K(p, γr, ρ)A

(
1

1− τ

)
(1 + o(1)).

Finally, we get the following refined asymptotic expansion of qτ (p) itself with respect to the ordinary
quantile qτ (1).

Proposition 2.4.5. Under the conditions of Proposition 2.4.3, if in addition F is strictly increasing:

qτ (p)

qτ (1)
= C(γr; p)

(
1− γrR(τ, p) +

{
1

ρ

[[
γr

B(p, γ−1r − p+ 1)

]−ρ
− 1

]
+ o(1)

}
A

(
1

1− τ

))

as τ ↑ 1.
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2.4.2.2 Estimation of high Lp−quantiles

Suppose, as will be the case in the remainder of Section 2.4.2, that we observe a random sample
(X1, . . . , Xn) of independent copies of X and denote by X1,n ≤ · · · ≤ Xn,n the ascending order
statistics of this sample. The overall objective in this section is to estimate extreme Lp−quantiles
qτn(p) of X, where τn → 1 as n → ∞. Here τn may approach one at any rate, covering the special
cases of intermediate Lp−quantiles with n(1−τn)→∞ and extreme Lp−quantiles with n(1−τn)→ c,
where c is a finite nonnegative constant.

For the sake of simplicity, and to make it easier to compare our results to those of the other sections of
this report, we focus throughout this section on the independent and identically distributed case. The
asymptotic theory in [10] is derived in a more general framework of strictly stationary and φ−mixing
observations. We shall say more about this, and in particular about the limitations of such a framework,
in our discussion of perspectives for future work in Section 2.4.2.6.

Intermediate levels We define the empirical least asymmetrically weighted Lp estimator of qτn(p)
as

q̂τn(p) = arg min
u∈R

1

n

n∑
i=1

ητn(Xi − u; p) = arg min
u∈R

1

n

n∑
i=1

|τn − I{Xi ≤ u}||Xi − u|p.

Clearly √
n(1− τn)

(
q̂τn(p)

qτn(p)
− 1

)
= arg min

u∈R
ψn(u; p)

where

ψn(u; p) :=
1

p[qτn(p)]p

n∑
i=1

ητn

(
Xi − qτn(p)− uqτn(p)/

√
n(1− τn); p

)
− ητn (Xi − qτn(p); p) .

Since this empirical criterion is a convex function of u, the asymptotic properties of the minimiser
follow directly from those of the criterion itself by Theorem 5 in [180].

Theorem 2.4.6. Assume that p > 1 and:

• There is δ > 0 such that E(X
(2+δ)(p−1)
− ) <∞;

• F satisfies condition C2(γ, ρ,A), with γ < 1/[2(p− 1)];

• τn ↑ 1 is such that n(1− τn)→∞;

• We have
√
n(1− τn)A((1− τn)−1) = O(1).

Then √
n(1− τn)

(
q̂τn(p)

qτn(p)
− 1

)
d−→ N

(
0, γ2V (γ; p)

)
as n→∞,

with

V (γ; p) =
B(p− 1, γ−1 − 2p+ 2)

B(p− 1, p)
=

Γ(2p− 1)Γ(γ−1 − 2p+ 2)

Γ(p)Γ(γ−1 − p+ 1)
.

Note that the condition γ < 1/[2(p−1)] implies γ < 1/(p−1) and hence E(Xp−1
+ ) <∞. Moreover, the

condition E(X
(2+δ)(p−1)
− ) <∞ implies E(Xp−1

− ) <∞. Hence E|X|p−1 <∞, and thus the Lp−quantiles

exist and are finite. Note also that conditions γ < 1/[2(p − 1)] and E(X
(2+δ)(p−1)
− ) < ∞ ensure the

convergence of the (convex) empirical criterion ψn(u; p), which entails the convergence of its minimiser.

In the special cases p ↓ 1 and p = 2, we recover the asymptotic normality of intermediate sample
quantiles and expectiles, respectively, with asymptotic variances

V (γ; 1) =
Γ(1)Γ(γ−1)

Γ(1)Γ(γ−1)
= 1 and V (γ; 2) =

Γ(3)Γ(γ−1 − 2)

Γ(2)Γ(γ−1 − 1)
=

2γ

1− 2γ
.
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Figure 2.8: Asymptotic variance γ ∈ (0, 1/2] 7→ V (γ; p) for some values of p ∈ [1, 2]. Black line: p = 1;
Red line: p = 1.2; Yellow line: p = 1.4; Purple line: p = 1.6; Green line: p = 1.8; Blue line: p = 2.

The behaviour of the variance γ 7→ V (γ; p) is visualised in Figure 2.8 for some values of p ∈ [1, 2], with
γ ∈ (0, 1/2]. It can be seen in this figure that for values of p close to but larger than 1, the asymptotic
variance of the intermediate sample Lp−quantile is appreciably smaller than the asymptotic variance of
the traditional sample quantile. In particular, values of p between 1.2 and 1.4 seem to yield estimators
who may be more precise than the sample quantile in all applications where the variance of the loss
variable is finite (for which γ ∈ (0, 1/2]).

Extreme levels We now discuss how to extrapolate intermediate Lp−quantile estimates of order
τn ↑ 1, such that n(1− τn)→∞, to properly extreme levels τ ′n ↑ 1 with n(1− τ ′n)→ c <∞ as n→∞.
The key argument is to use the asymptotic equivalence

qτ (p) ∼ C(γ; p)qτ (1) as τ ↑ 1, (2.4.3)

shown in Corollary 2.4.2, to get the purely Lp−quantile approximation

qτ ′n(p)

qτn(p)
≈
(

1− τ ′n
1− τn

)−γ
.

This motivates us to define the Weissman-type estimator

q̂Wτ ′n (p) :=

(
1− τ ′n
1− τn

)−γ̂n
q̂τn(p) (2.4.4)

for some
√
n(1− τn)−consistent estimator γ̂n of γ ≡ γr, with q̂τn(p) being the empirical least asym-

metrically weighted Lp−estimator of qτn(p).

Theorem 2.4.7. Assume that p > 1 and:
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• F is strictly decreasing and satisfies C2(γr, ρ, A) with γr < 1/[2(p− 1)] and ρ < 0;

• F− is either light-tailed or satisfies condition C1(γ`);

• γ` < 1/[2(p− 1)] in case F− is heavy-tailed.

Assume further that

• τn and τ ′n ↑ 1, with n(1− τn)→∞ and n(1− τ ′n)→ c <∞;

•
√
n(1− τn)(γ̂n − γr)

d−→ ζ, for a suitable estimator γ̂n of γr and ζ a nondegenerate limiting
random variable;

•
√
n(1− τn) max

{
1− τn, A((1− τn)−1), Rr(qτn(1), p, γr), R`(qτn(1), p, γ`)

}
= O(1) (in this bias

condition the notation of Proposition 2.4.3 is used);

•
√
n(1− τn)/ log[(1− τn)/(1− τ ′n)]→∞.

Then √
n(1− τn)

log[(1− τn)/(1− τ ′n)]

(
q̂Wτ ′n (p)

qτ ′n(p)
− 1

)
d−→ ζ as n→∞.

Another option for estimating qτ ′n(p) is by using directly its asymptotic connection (2.4.3) with qτ ′n(1)
to define the plug-in estimator

q̃Wτ ′n (p) := C(γ̂n; p) q̂Wτ ′n (1), (2.4.5)

obtained by substituting in a
√
n(1− τn)−consistent estimator γ̂n of γ and the traditional Weissman

estimator

q̂Wτ ′n (1) =

(
1− τ ′n
1− τn

)−γ̂n
q̂τn(1), (2.4.6)

of the extreme quantile qτ ′n(1), where q̂τn(1) = Xn−bn(1−τn)c,n.

Theorem 2.4.8. Assume that p > 1 and:

• F is strictly decreasing and satisfies C2(γr, ρ, A) with γr < 1/(p− 1) and ρ < 0;

• F− is either light-tailed or satisfies condition C1(γ`);

• γ` < 1/(p− 1) in case F− is heavy-tailed.

Assume further that

• τn and τ ′n ↑ 1, with n(1− τn)→∞ and n(1− τ ′n)→ c <∞;

•
√
n(1− τn)

(
Xn−bn(1−τn)c,n/qτn(1)− 1

)
= OP(1);

•
√
n(1− τn) (γ̂n − γr)

d−→ ζ, for a suitable estimator γ̂n of γr and ζ a nondegenerate limiting
random variable;

•
√
n(1− τn) max

{
1− τn, A((1− τn)−1), Rr(qτn(1), p, γr), R`(qτn(1), p, γ`)

}
= O(1) (in this con-

dition the notation of Proposition 2.4.3 is used);

•
√
n(1− τn)/ log[(1− τn)/(1− τ ′n)]→∞.

Then √
n(1− τn)

log[(1− τn)/(1− τ ′n)]

(
q̃Wτ ′n (p)

qτ ′n(p)
− 1

)
d−→ ζ as n→∞.

A brief comparison of the performance of the plug-in Weissman estimator q̃Wτ ′n (p) and the least asym-

metrically weighted Lp estimator q̂Wτ ′n (p) is provided in Section 2.4.2.4. We now turn to the use of
Lp−quantiles for the estimation of extreme quantiles and expectiles.
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2.4.2.3 Recovering extreme quantiles and expectiles from Lp−quantiles

Extreme Lp−quantile methodology for extreme quantile estimation The Lp−quantiles do
not have, for p > 1, an intuitive interpretation as direct as the original L1−quantiles. If the statistician
wishes to estimate tail Lp−quantiles qτ ′n(p) that have the same probabilistic interpretation as a quantile
qαn(1), with a given relative frequency αn, then the extreme level τ ′n can be specified by the closed
form expression (2.4.2), that is,

τ ′n(p, αn; 1) =
E
[
|X − qαn(1)|p−1I{X ≤ qαn(1)}

]
E [|X − qαn(1)|p−1]

,

or equivalently

1− τ ′n(p, αn; 1) =
E
[
|X − qαn(1)|p−1I{X > qαn(1)}

]
E [|X − qαn(1)|p−1]

. (2.4.7)

The statistical problem is now to estimate the unknown extreme level τ ′n(p, αn; 1) from the avail-
able historical data. To this end, we first note that under condition C1(γr) and if γr < 1/(p − 1),
Proposition 2.4.1 entails

F (qτ ′n(p))

1− τ ′n
∼ γr

B(p, γ−1r − p+ 1)
as n→∞.

It then follows from qτ ′n(p) ≡ qαn(1) and F (qαn(1)) = 1− αn that

1− αn
1− τ ′n

∼ γr

B(p, γ−1r − p+ 1)
as n→∞.

Therefore τ ′n ≡ τ ′n(p, αn; 1) satisfies the following asymptotic equivalence:

1− τ ′n(p, αn; 1) ∼ (1− αn)
1

γr
B

(
p,

1

γr
− p+ 1

)
as n→∞.

Interestingly, and like for the selection of expectile levels in Section 2.3.6, 1−τ ′n(p, αn; 1) in (2.4.7) then
asymptotically depends on the tail index γr but not on the actual value qαn(1) of the quantile itself. A
natural estimator of 1− τ ′n(p, αn; 1) can now be defined by replacing, in its asymptotic approximation,
the tail index γr by a

√
n(1− τn)−consistent estimator γ̂n as above, to get

τ̂ ′n(p, αn; 1) = 1− (1− αn)
1

γ̂n
B

(
p,

1

γ̂n
− p+ 1

)
. (2.4.8)

Next, we derive the limiting distribution of τ̂ ′n(p, αn; 1).

Theorem 2.4.9. Assume that p > 1 and:

• F satisfies condition C2(γr, ρ, A);

• F− is either light-tailed or satisfies condition C1(γ`);

• γr < 1/(p− 1), and γ` < 1/(p− 1) in case F− is heavy-tailed.

Assume further that

• τn and αn ↑ 1, with n(1− τn)→∞;

•
√
n(1− τn) (γ̂n − γr)

d−→ ζ, for a suitable estimator γ̂n of γr and ζ a nondegenerate limiting
random variable;

•
√
n(1− τn) max

{
1− αn, A((1− αn)−1), Rr(qαn(1), p, γr), R`(qαn(1), p, γ`)

}
= O(1) (here the

notation of Proposition 2.4.3 is used).
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Then: √
n(1− τn)

(
1− τ̂ ′n(p, αn; 1)

1− τ ′n(p, αn; 1)
− 1

)
= OP(1)

as n→∞. If actually√
n(1− τn) max

{
1− αn, A((1− αn)−1), Rr(qαn(1), p, γr), R`(qαn(1), p, γ`)

}
→ 0

then: √
n(1− τn)

(
1− τ̂ ′n(p, αn; 1)

1− τ ′n(p, αn; 1)
− 1

)
d−→ −

{
1 +

1

γr

[
z
(

1

γr
− p+ 1

)
−z

(
1

γr
+ 1

)]}
ζ

γr

as n→∞, where z(x) = Γ′(x)/Γ(x) denotes Euler’s digamma function.

In practice, given a tail probability αn and a power p ∈ (1, 2], the extreme quantile qαn(1) can be
estimated from the generalised Lp−quantile estimators q̂Wτ ′n (p) and q̃Wτ ′n (p) in two steps: first, estimate

τ ′n ≡ τ ′n(p, αn; 1) by τ̂ ′n(p, αn; 1) and, second, use the estimators q̂Wτ ′n (p) and q̃Wτ ′n (p) as if τ ′n were known,

by substituting the estimated value τ̂ ′n(p, αn; 1) in place of τ ′n, yielding the following two extreme
quantile estimators:

q̂Wτ̂ ′n(p,αn;1)(p) =

(
1− τ̂ ′n(p, αn; 1)

1− τn

)−γ̂n
q̂τn(p)

and q̃Wτ̂ ′n(p,αn;1)(p) = C(γ̂n; p) q̂Wτ̂ ′n(p,αn;1)(1).

This is actually a two-stage estimation procedure in the sense that the intermediate level τn used
in the first stage to compute τ̂ ′n(p, αn; 1) need not be the same as the intermediate levels used in
the second stage to compute the extrapolated Lp−quantile estimators q̂Wτ ′n (p) and q̃Wτ ′n (p). For the
sake of simplicity, we do not emphasise in the asymptotic results below the distinction between the
intermediate level used in the first stage and those used in the second stage. It should be, however,
noted that when the estimation procedure is carried out in one single step instead, i.e. with the
same intermediate level in both τ̂ ′n(p, αn; 1) and the extrapolated Lp−quantile estimators, then the
composite version q̃Wτ̂ ′n(p,αn;1)

(p) is nothing but the Weissman quantile estimator q̂Wαn(1). Indeed, in that

case, we have by (2.4.6) and the definition of C(·, ·) below Corollary 2.4.2 that

q̃Wτ̂ ′n(p,αn;1)(p) = C(γ̂n; p) q̂Wτ̂ ′n(p,αn;1)(1)

=

 γ̂n

B(p, γ̂−1n − p+ 1)
·

(1− αn) 1
γ̂n
B
(
p, 1

γ̂n
− p+ 1

)
1− τn

−γ̂n q̂τn(1)

=

[
1− αn
1− τn

]−γ̂n
q̂τn(1) ≡ q̂Wαn(1).

Our next two convergence results examine the asymptotic properties of the two composite estimators
q̂Wτ̂ ′n(p,αn;1)

(p) and q̃Wτ̂ ′n(p,αn;1)
(p). We first consider the estimator q̂Wτ̂ ′n(p,αn;1)

(p).

Theorem 2.4.10. Assume that p > 1 and:

• F is strictly decreasing and satisfies C2(γr, ρ, A) with γr < 1/[2(p− 1)] and ρ < 0;

• F− is either light-tailed or satisfies condition C1(γ`);

• γ` < 1/[2(p− 1)] in case F− is heavy-tailed.

Assume further that

• τn and αn ↑ 1, with n(1− τn)→∞ and n(1− αn)→ c <∞;

•
√
n(1− τn) (γ̂n − γr)

d−→ ζ, for a suitable estimator γ̂n of γr and ζ a nondegenerate limiting
random variable;
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•
√
n(1− τn) max

{
1− τn, A((1− τn)−1), Rr(qτn(1), p, γr), R`(qτn(1), p, γ`)

}
= O(1) (in this con-

dition the notation of Proposition 2.4.3 is used);

•
√
n(1− τn)/ log[(1− τn)/(1− αn)]→∞.

Then √
n(1− τn)

log[(1− τn)/(1− αn)]

(
q̂Wτ̂ ′n(p,αn;1)

(p)

qαn(1)
− 1

)
d−→ ζ as n→∞.

As regards the alternative extrapolated estimator q̃Wτ̂ ′n(p,αn;1)
(p), we have the following asymptotic

result.

Theorem 2.4.11. Assume that p > 1 and:

• F is strictly decreasing and satisfies C2(γr, ρ, A) with γr < 1/(p− 1) and ρ < 0;

• F− is either light-tailed or satisfies condition C1(γ`);

• γ` < 1/(p− 1) in case F− is heavy-tailed.

Assume further that

• τn and αn ↑ 1, with n(1− τn)→∞ and n(1− αn)→ c <∞;

•
√
n(1− τn) (γ̂n − γr)

d−→ ζ, for a suitable estimator γ̂n of γr and ζ a nondegenerate limiting
random variable;

•
√
n(1− τn) max

{
1− τn, A((1− τn)−1), Rr(qτn(1), p, γr), R`(qτn(1), p, γ`)

}
= O(1) (in this con-

dition the notation of Proposition 2.4.3 is used);

•
√
n(1− τn)/ log[(1− τn)/(1− αn)]→∞.

Then √
n(1− τn)

log[(1− τn)/(1− αn)]

(
q̃Wτ̂ ′n(p,αn;1)

(p)

qαn(1)
− 1

)
d−→ ζ as n→∞.

A comparison and validation on financial data, which we provide in Section 2.4.2.5 below, shows that
the two-stage estimation procedure may afford more accurate estimates q̂Wτ̂ ′n(p,αn;1)

(p) and q̃Wτ̂ ′n(p,αn;1)
(p)

of qαn(1) than the traditional Weissman estimator q̂Wαn(1) defined in (2.4.6).

Recovering extreme expectiles from Lp−quantiles We focus now on the estimation of extreme
L2−quantiles, or equivalently expectiles, and we assume therefore that E(X−) < ∞ and γr < 1 to
guarantee their existence. The first basic tool is the following asymptotic connection between the
extreme expectile qαn(2) and its Lp−quantile analogue qαn(p):

qαn(2) ∼ C(γr; 2) · qαn(1) as αn ↑ 1

∼ C(γr; 2) · C−1(γr; p) · qαn(p) as αn ↑ 1,

when p > 1 is such that γr < 1/(p− 1) [in particular, this is true for any p ∈ (1, 2] since it is assumed
here that γr < 1]. This asymptotic equivalence follows immediately by applying Corollary 2.4.2 twice.
One may then define the alternative estimator

q

∧p
αn(2) := C(γ̂n; 2) · C−1(γ̂n; p) · q̂Wαn(p) (2.4.9)

≡ (γ̂−1n − 1)−γ̂n
[

γ̂n

B(p, γ̂−1n − p+ 1)

]γ̂n
q̂Wαn(p),

obtained by substituting in a
√
n(1− τn)−consistent estimator γ̂n of γr and the extrapolated ver-

sion q̂Wαn(p) of the least asymmetrically weighted Lp−quantile estimator, given in (2.4.4). The idea
is therefore to exploit the accuracy of the asymptotic connection between population Lp−quantiles
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and traditional quantiles in conjunction with the superiority of sample Lp−quantiles in terms of
finite-sample performance. Note that by replacing q̂Wαn(p) in (2.4.9) with the plug-in estimator q̃Wαn(p)
introduced in (2.4.5), we recover the indirect estimator described in Section 2.3.3.1. As a matter of
fact, q

∧p
αn(2) approaches q̂Wαn(2) when p tends to 2, whereas it approaches q̃Wαn(2) when p tends to 1.

Another way of recovering extreme expectiles from Lp−quantiles is by proceeding as in the case of
ordinary quantiles. To estimate the extreme expectile qαn(2), the idea is to use a tail Lp−quantile
qτ ′n(p) which coincides with (and therefore has the same interpretation as) qαn(2). Given αn and the
power p, the level τ ′n such that qτ ′n(p) ≡ qαn(2) has the explicit expression

τ ′n(p, αn; 2) =
E
[
|X − qαn(2)|p−1I{X ≤ qαn(2)}

]
E [|X − qαn(2)|p−1]

(2.4.10)

in view of (2.4.1). This closed form of τ ′n ≡ τ ′n(p, αn; 2) depends heavily on qαn(2), but for any p > 1
such that γr < 1/(p− 1), condition C1(γr) and Proposition 2.4.1 entail that

F (qτ ′n(p))

1− τ ′n
∼ γr

B(p, γ−1r − p+ 1)
as n→∞.

It follows from qτ ′n(p) ≡ qαn(2) that

F (qαn(2))

1− τ ′n
∼ γr

B(p, γ−1r − p+ 1)
as n→∞.

We also know (see e.g. Section 2.3.2) that

F (qαn(2)) ∼ (1− αn)(γ−1r − 1) as n→∞.

Therefore τ ′n in (2.4.10) satisfies the asymptotic equivalence

1− τ ′n(p, αn; 2) ∼ (1− αn)(γ−1r − 1)
1

γr
B

(
p,

1

γr
− p+ 1

)
as n→∞.

By substituting a
√
n(1− τn)−consistent estimator γ̂n in place of the tail index γr, we obtain the

following estimator of τ ′n(p, αn; 2):

τ̂ ′n(p, αn; 2) := 1− (1− αn)
(
γ̂−1n − 1

) 1

γ̂n
B

(
p,

1

γ̂n
− p+ 1

)
.

Finally, one may estimate the extreme expectile qαn(2) ≡ qτ ′n(p,αn;2)(p) by the following composite
Lp−quantile estimators

q̂Wτ̂ ′n(p,αn;2)(p) =

(
1− τ̂ ′n(p, αn; 2)

1− τn

)−γ̂n
q̂τn(p) (2.4.11)

and q̃Wτ̂ ′n(p,αn;2)(p) = C(γ̂n; p) q̂Wτ̂ ′n(p,αn;2)(1), (2.4.12)

obtained by replacing τ ′n in q̂Wτ ′n (p) and q̃Wτ ′n (p) with τ̂ ′n(p, αn; 2). It is remarkable that these two

estimators are intimately linked to the Lp−quantile based extreme L1−quantile estimators, since

q̂Wτ̂ ′n(p,αn;2)(p) = C(γ̂n; p)q̂Wτ̂ ′n(p,αn;1)(p) and q̃Wτ̂ ′n(p,αn;2)(p) = C(γ̂n; p)q̃Wτ̂ ′n(p,αn;1)(p).

Theory similar to Theorems 2.4.10 and 2.4.11 can be written for these composite extreme expectile
estimators; we omit the statements of these results for the sake of brevity.
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2.4.2.4 Finite-sample performance on simulated data

A simulation study is carried out in [10] to assess the finite-sample behaviour of our estimators. I
describe below its main conclusions.

For which p can Lp−quantiles be accurately estimated? For large values of γ (say γ ≥ 0.2),
expectile estimation appears to be the most difficult. By contrast, for these large values of γ (although
this seems to be true for smaller γ as well), estimation is more accurate for small values of p, say
p ≤ 1.45. The choice of p ∈ (1.2, 1.6) seems to be a good global compromise.

This conclusion is, however, no longer valid when it comes to estimate extreme Lp−quantiles qτ ′n(p)
with, for instance, τ ′n ∈ [1− 1/n, 1), as revealed by a comparison of the extrapolated least asymmetri-
cally weighted Lp−estimators q̂Wτ ′n (p) in (2.4.4) and the plug-in Weissman estimators q̃Wτ ′n (p) in (2.4.5). It

may be seen that both extreme Lp−quantile estimators are more accurate for p ∈ [1, 1.3] or p ∈ [1.7, 2].
The best accuracy is generally not achieved at p = 1 or p = 2. We shall discuss in Section 2.4.2.5 below
the important question of how to pick out p in practice in order to get the most accurate estimates
from a forecasting perspective.

Which extreme Lp−quantile estimator: q̂Wτ ′n (p) or q̃Wτ ′n (p)? For non-negative random variables,

it appears that q̃Wτ ′n (p) behaves overall better than q̂Wτ ′n (p). In the case of the Student distribution,

representing a profit-loss distribution, it may be seen that q̃Wτ ′n (p) remains still competitive, but q̂Wτ ′n (p)
becomes more reliable for large values of p, say, p ≥ 1.9. Interestingly, for p close to 1 and for positive
distributions, the two estimators seem to perform comparably. The important gap in performance
which sometimes occurs as p increases is most certainly due to the sensitivity of the least asymmetri-
cally weighted estimator to the top extreme values in the sample. The estimator q̃Wτ ′n (p) does of course
benefit from more robustness since it is computed using a single sample quantile.

Extreme expectile estimation using Lp−quantiles Our experience with simulated data suggests
to favour the use of q

∧p
αn(2) with p very close to 1 for non-negative loss distributions, and with p very

close to 2 for real-valued profit-loss random variables. It is in the latter case that q

∧p
αn(2) may appear to

be appreciably more efficient relatively to both estimators q̂Wαn(2) and q̃Wαn(2), especially for profit-loss
distributions. We also find that q̂Wτ̂ ′n(p,αn;2)

(p) in (2.4.11) behaves very similarly to q

∧p
αn(2) in (2.4.9). In

particular, q̂Wτ̂ ′n(p,αn;2)
(p) exhibits better accuracy relative to both rival estimators q̂Wαn(2) and q̃Wαn(2)

in the case of profit-loss distributions with heavy tails. By contrast, the second composite estimator
q̃Wτ̂ ′n(p,αn;2)

(p) in (2.4.12) does not bring Monte Carlo evidence of any added value with respect to the

benchmark estimators q̂Wαn(2) and q̃Wαn(2).

Our real data application in Section 2.4.2.5 below highlights the potential of the Lp−quantile method-
ology for the forecast and validation of extreme quantile estimators.

2.4.2.5 Data example 5: Historical data of the S&P500 index

Here, we focus on the case when the interest is in an estimate of the loss return amount (negative
log-return) that will be fallen below (on average) only once in N cases, with N being typically larger
than or equal to the sample size n. More specifically, we wish to use q̃Wτ ′n (p) and q̂Wτ ′n (p) as estimators

of the (1/n)th L1−quantile q1/n(1) ≡ qτ ′n(p), for which verification and comparison is possible thanks
to its elicitability property [134, 265]. Following the ideas of [134, 265], we consider in this section
the evaluation and comparison of the competing estimators q̃Wτ ′n (p) and q̂Wτ ′n (p) with the standard

left tail Weissman quantile estimator q̂W1/n(1) from a forecasting perspective, trying to give the best
possible point estimate for tomorrow with our knowledge of today. The portfolio under consideration is
represented by the S&P500 Index from 4th January 1994 to 30th September 2016, which corresponds
to 5,727 trading days. The corresponding log-returns are reported in Figure 2.9.

We now explain how we use the elicitability property. Let the random variable X model the future ob-
servation of interest. If the (τ ′n)th Lp−quantile qτ ′n(p) coincides with the (1/n)th L1−quantile q1/n(1),
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Figure 2.9: Log-returns of the S&P500 Index, from 4th January 1994 to 30th September 2016.

then the definition of a quantile as a minimiser of an absolute error loss exactly means that it equals
the optimal point forecast for X given by the Bayes rule

qτ ′n(p) ≡ q1/n(1) = arg min
q∈R

E [Ln(q,X)] ,

under the asymmetric piecewise linear scoring function

Ln : R2 → [0,∞), (q, x) 7→ η 1
n

(x− q; 1),

where Ln(q, x) represents the loss or penalty when the point forecast q is issued and the realisation x
of X materialises. Following [134, 265], the point estimates q̂Wτ ′n (p), q̃Wτ ′n (p) and q̂W1/n(1) of qτ ′n(p) can
then be compared and assessed by means of the scoring function Ln. Suppose that, in T forecast cases,

we have point forecasts
(
q
(m)
1 , . . . , q

(m)
T

)
and realising observations (x1, . . . , xT ), where the index m

numbers the competing forecasters

q
(1)
t := q̂W1/n(1), q

(2)
t := q̂Wτ ′n (p) and q

(3)
t := q̃Wτ ′n (p)

that are computed at each forecast case t = 1, . . . , T . These purely historical estimates can then be
ranked in terms of their average scores (the lower the better):

L̄(m)
n =

1

T

T∑
t=1

Ln

(
q
(m)
t , xt

)
, m = 1, 2, 3. (2.4.13)

In our motivating application concerned with the logarithmic returns of the S&P500 Index, the three
estimates were computed on rolling windows of length n = 2,510, which corresponds to T = 3,217
forecast cases. Based on the US market, there are on average 251 trading days in a year, and hence
each rolling window of size n = 10× 251 trading days corresponds to a period of 10 years. Therefore,
the tail quantity of interest qτ ′n(p) ≡ q1/n(1) represents the daily loss return (negative log-return) for
a once-per-decade market crisis. With the sign convention for values of Y = −X as the negative of
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returns, the quantile of interest, q1/n(1), can be written as −Q1−1/n(1), where Qτ (p) stands for the τth
Lp−quantile of Y . The extreme level τ ′n such that Qτ ′n(p) = Q1−1/n(1) has the closed form expression
τ ′n(p, αn; 1) described in (2.4.7), with αn = 1−1/n, and can be estimated by τ̂ ′n(p, 1−1/n; 1) in (2.4.8).
Alternatively, without recourse to this sign convention as the negative of returns, it is not hard to
check that the level τ ′n such that qτ ′n(p) = q1/n(1) can directly be estimated by

τ̂ ′n(p, 1/n) :=
1

n

1

γ̂n
B

(
p,

1

γ̂n
− p+ 1

)
where γ̂n is an estimator of the left tail index of X. This suggests the following strategy at each
forecast case t = 1, . . . , T :

(a) Calculate the first competing estimate q
(1)
t = q̂W1/n(1);

(b) For a given value of p ∈ (1, 2], calculate the τ ′n estimate τ̂ ′n(t) = τ̂ ′n(p, 1/n);

(c) Calculate the other competing estimates q
(2)
t = q̂Wτ ′n (p) and q

(3)
t = q̃Wτ ′n (p) by substituting the

estimated value τ̂ ′n(t) in place of τ ′n.

As a matter of fact, we use in step (c) the two-stage estimators q
(2)
t = q̂Wτ̂ ′n(t)

(p) and q
(3)
t = q̃Wτ̂ ′n(t)

(p):

first, we estimate τ ′n by τ̂ ′n(t) in step (b) and, second, we use the estimators q̂Wτ ′n (p) and q̃Wτ ′n (p), as if τ ′n
were known, by substituting τ̂ ′n(t) in place of τ ′n. [Of course, the computation of the different point
estimates in steps (a), (b) and (c) requires the determination of the values of the sample fraction k
involved in the intermediate levels τn of these estimates. The selection procedure is explained in detail
in Section 6.3 of [10].]

In order to decide on the global accuracy of the three competing methods, we rank the values of their

realised losses L̄
(m)
n by making use of the T forecasts and realising observations, as described in (2.4.13).

The plots of the realised losses versus k are graphed in Figure 2.10 (a) for q̂W1/n(1) and q̂Wτ ′n (p), with

various values of p ∈ {1.1, 1.2, . . . , 1.9, 2}, and in Figure 2.10 (b) for the q̂W1/n(1) benchmark and q̃Wτ ′n (p)
with the same values of p.

The optimal values of the realised losses for the three methods (the lower the better), displayed in
Table 2.8, indicate that the popular Weissman quantile estimator q̂W1/n(1) does not ensure the most

accurate forecasts of the classical risk measure q1/n(1).

L̄
(1)
n = 5.758 · 10−5

p = 1.1 p = 1.2 p = 1.3 p = 1.4 p = 1.5

L̄
(2)
n 5.856 · 10−5 5.842 · 10−5 5.632 · 10−5 5.861 · 10−5 5.727 · 10−5

L̄
(3)
n 5.755 · 10−5 5.752 · 10−5 5.748 · 10−5 5.745 · 10−5 5.742 · 10−5

p = 1.6 p = 1.7 p = 1.8 p = 1.9 p = 2

L̄
(2)
n 5.712 · 10−5 5.847 · 10−5 5.918 · 10−5 6.024 · 10−5 6.118 · 10−5

L̄
(3)
n 5.739 · 10−5 5.735 · 10−5 5.919 · 10−5 6.030 · 10−5 6.025 · 10−5

Table 2.8: Optimal values L̄
(1)
n , L̄

(2)
n and L̄

(3)
n of the realised loss for the three forecasters q̂W1/n(1),

q̂Wτ ′n (p) and q̃Wτ ′n (p), respectively. Results based on daily loss returns.

The top forecaster is q̂Wτ ′n (p) for p = 1.3, 1.6, 1.5, then q̃Wτ ′n (p) for p = 1.7, 1.6, 1.5, 1.4, 1.3, 1.2, 1.1, and

finally the basic Weissman estimator q̂W1/n(1). Their optimal values obtained in the first and last
forecast cases are shown in Table 2.9. In the forecast case t = 1, based on the loss returns observed
during the first decade, no forecast of the VaR q1/n(1) succeeds in falling below the worst recorded

loss return X1,n. Yet, all of the generalised Lp−quantiles q̂Wτ ′n (p) and q̃Wτ ′n (p) appear to be smaller and
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Figure 2.10: (a) Plots of the realised loss k 7→ L̄
(m)
n (k) for q̂W1/n(1) in magenta and q̂Wτ ′n (p) with different

values of p. (b) Results with q̃Wτ ′n (p) in place of q̂Wτ ′n (p). Results based on daily loss returns.

hence more conservative than the usual L1−quantile q̂W1/n(1). Here, the tail index estimate is found

to be γ̂ = 0.256. In the forecast case t = T , based on the last decade of observations, all forecasts
of the VaR were capable of extrapolating outside the minimal loss return X1,n. This is due to the
turbulent episodes that have been experienced by financial markets during 2007-2008, see Figure 2.9.
In particular, the tail index estimate becomes γ̂ = 0.359. Yet, the top forecasters q̂Wτ ′n (p) and q̃Wτ ′n (p)

appear to be larger and hence less pessimistic than the extrapolated L1−quantile estimate q̂W1/n(1).

Forecaster q̂Wτ ′
n

(1.3) q̂Wτ ′
n

(1.6) q̂Wτ ′
n

(1.5) q̃Wτ ′
n

(1.7) q̃Wτ ′
n

(1.6) q̃Wτ ′
n

(1.5)

t = 1 -0.067901 -0.067169 -0.067288 -0.066846 -0.066841 -0.066837
t = T -0.105717 -0.103084 -0.104613 -0.101254 -0.102211 -0.103131

Forecaster q̃Wτ ′
n

(1.4) q̃Wτ ′
n

(1.3) q̃Wτ ′
n

(1.2) q̃Wτ ′
n

(1.1) q̂W1/n(1) X1,n

t = 1 -0.066832 -0.066828 -0.066824 -0.066820 -0.066816 -0.071127
t = T -0.104016 -0.104870 -0.105695 -0.106493 -0.107266 -0.094695

Table 2.9: Optimal values of the top forecasters, obtained in the first and last forecast cases, along
with the sample minimum X1,n. Results based on daily loss returns.

Finally, we would like to comment on the evolution of the extreme Lp−quantile level τ̂ ′n(t) with t.
The optimal estimates t 7→ τ̂ ′n(t), obtained for the different values of p, are graphed in Figure 2.11. It
can be seen that τ̂ ′n(t) decreases, uniformly in t, as p increases. Also, it may be seen that the curve
corresponding to the best choice p = 1.3 (dark blue) exhibits two different trends before and after the
severe losses of 2007-2008. Both trends appear to produce much more extreme levels than the quantile
level 1/n ≈ 4 · 10−4.
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Figure 2.11: The final estimates t 7→ τ̂ ′n(t), obtained for p ∈ {1.1, 1.2, . . . , 1.9, 2}.

2.4.2.6 Perspectives for future research

Adaptation to a general weak dependence framework The theory in [10] is actually derived
in a context of φ−mixing observations, see [62]. This is theoretically convenient because it allows
the use of limit theorems from [245] to prove the convergence of intermediate empirical Lp−quantiles.
The φ−mixing framework allows to handle m−dependent sequences as well as certain processes fea-
turing Markovian dependence. This condition is, however, quite restrictive: for instance, it is only
satisfied for a very small class of autoregressive processes (see the Introduction in [218]). The work
of [102, 103, 104] provides tools making it possible to examine the asymptotic properties of a wide
class of statistical indicators of extremes of strictly stationary and dependent observations in a much
more general β−mixing context. As [104] shows, this assumption covers, among others, processes
obtained by solving certain stochastic recurrence equations (including ARCH processes) and ARMA
models under reasonably general conditions. Writing an inference theory for this β−mixing context
would greatly enhance the applicability of the Lp−quantile methodology. A possible strategy, at the
intermediate step, is to note that the criterion ψn(u; p) can be rewritten as the combination of a non-
random term and tail array sums in the sense of [220], and then apply central limit theory developed
therein. The extrapolation step can be handled using results on tail index estimators in the β−mixing
framework [104].

In-p-functional convergence We analyse the convergence of intermediate and extreme estimators
of qτn(p). This is done pointwise in p ∈ [1, 2], as our ultimate interest is to use extreme Lp−quantiles
with a fixed p to derive a simple methodology for the estimation of extreme quantiles and expectiles.
A further interesting question is to prove the weak convergence of the suitably normalised process
p 7→ q̂τn(p) (for p in a compact subinterval of (1, 2), or potentially p ∈ [1, 2] itself). This would provide
an appealing theoretical ground for plotting p 7→ q̂τn(p) and the estimators we derive from extremes
Lp−quantiles. Such a functional result would also open the door to the analysis of further estimators
of extreme quantiles and expectiles, constructed by e.g. averaging our composite estimators over a
suitable range of values of p. Potentially useful tools for this problem are Theorem 1 in [176] and
its Pollard-type corollary (see [213]). These results are dedicated to the study of stochastic processes
obtained by minimising convex functions, of which Lp−quantiles are part.
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2.4.3 Beyond tail median and conditional tail expectation: extreme risk estima-
tion using tail Lp−optimisation [3]

2.4.3.1 Definition and first properties

Let X be a real-valued random variable. It is assumed throughout this section that the
distribution function F of X is continuous, so that F (q(α)) = α for any α ∈ (0, 1). Our
construction is motivated by the following two observations. Firstly, the median and mean of X can
respectively be obtained by minimising an expected absolute deviation and expected squared deviation:

q(1/2) = arg min
m∈R

E (|X −m| − |X|)

and E(X) = arg min
m∈R

E
(
|X −m|2 − |X|2

)
(provided E|X| <∞).

The minimiser on the right-hand side of the first identity may actually not be unique, although it is
if F is strictly increasing. Our convention throughout this section will be that in such a situation,
the minimiser is taken as the smallest possible minimiser, making the identity valid in any case. Note
also that subtracting |X| (resp. |X|2) within the expectation in the cost function for q(1/2) (resp.
E(X)) makes it possible to define this cost function, and therefore its minimiser, without assuming
any integrability condition on X (resp. by assuming only E|X| <∞), as a consequence of the triangle
inequality (resp. the identity |X −m|2 − |X|2 = m(m − 2X)). These optimisation problems extend
their arguably better-known formulations

q(1/2) = arg min
m∈R

E|X −m| and E(X) = arg min
m∈R

E(X −m)2

which are only well-defined when E|X| < ∞ and E(X2) < ∞ respectively. Secondly, since F is
continuous, the Median Shortfall MS(α) = q([1 + α]/2) is the median of X given X > q(α), see
Example 3 in [185]. Since CTE(α) is the expectation of X given X > q(α), we find that

MS(α) = arg min
m∈R

E (|X −m| − |X| |X > q(α))

and CTE(α) = arg min
m∈R

E
(
|X −m|2 − |X|2 |X > q(α)

)
(provided E(|X| |X > q(α)) <∞).

Our construction now encompasses these two quantities by replacing the absolute or squared deviations
by power deviations.

Definition 2.4.1. The tail Lp−median of X, of order α ∈ (0, 1), is (when it exists)

mp(α) = arg min
m∈R

E (|X −m|p − |X|p |X > q(α)) .

Let us highlight the following important connection between the tail Lp−median and the notion of
Lp−quantiles: recall from [10, 73] that an Lp−quantile of order τ ∈ (0, 1) of a univariate random
variable Y , with E|Y |p−1 <∞, is defined as

qτ (p) = arg min
q∈R

E (|τ − I{Y ≤ q}||Y − q|p − |τ − I{Y ≤ 0}||Y |p) .

Consequently, the Lp−median of Y , obtained for τ = 1/2, is

q1/2(p) = arg min
q∈R

E (|Y − q|p − |Y |p) .

For an arbitrary p ≥ 1, the tail Lp−median mp(α) of X is then exactly an Lp−median of X given
that X > q(α). This construction of mp(α) as an Lp−median given the tail event {X > q(α)} is what
motivated the name “tail Lp−median” for mp(α).

We underline again that subtracting |X|p inside the expectation in Definition 2.4.1 above makes the
cost function well-defined whenever E(|X|p−1 |X > q(α)) is finite (or equivalently E(Xp−1

+ ) < ∞,
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where X+ = max(X, 0)). This is a straightforward consequence of the triangle inequality when p = 1;
when p > 1, this is a consequence of the fact that the function x 7→ |x|p is continuously differentiable
with derivative x 7→ p|x|p−1 sign(x), together with the mean value theorem. If X is moreover assumed
to satisfy E(Xp

+) <∞, then the definition of mp(α) is equivalently and perhaps more intuitively

mp(α) = arg min
m∈R

E (|X −m|p |X > q(α)) .

The following result shows in particular that if E(Xp−1
+ ) <∞ for some p ≥ 1, then the tail Lp−median

always exists and is characterised by a simple equation. Especially, for p ∈ (1, 2), the tail Lp−median
mp(α) exists and is unique under a weaker integrability condition than the assumption of a finite first
tail moment which is necessary for the existence of CTE(α).

Proposition 2.4.12. Let p ≥ 1. Pick α ∈ (0, 1) and assume that E(Xp−1
+ ) <∞. Then:

(i) The tail Lp−median mp(α) exists and is such that mp(α) > q(α).

(ii) The tail Lp−median is equivariant with respect to increasing affine transformations: if mX
p (α)

is the tail Lp−median of X and Y = aX + b with a > 0 and b ∈ R, then the tail Lp−median
mY
p (α) of Y is mY

p (α) = amX
p (α) + b.

(iii) When p > 1, the tail Lp−median mp(α) is the unique m ∈ R solution of the equation

E[(m−X)p−1I{q(α) < X < m}] = E[(X −m)p−1I{X > m}].

(iv) The tail Lp−median defines a monotonic functional with respect to first-order stochastic domi-
nance: if Y is another random variable such that E(Y p−1

+ ) <∞ then

(∀t ∈ R, P(X > t) ≤ P(Y > t))⇒ mX
p (α) ≤ mY

p (α).

(v) When E|X|p−1 <∞, the function α 7→ mp(α) is nondecreasing on (0, 1).

Let us highlight that, in addition to these properties, we have most importantly

MS(α) = m1(α) and CTE(α) = m2(α). (2.4.14)

In other words, the Median Shortfall is the tail L1−median and the Conditional Tail Expectation is the
tail L2−median: the class of tail Lp−medians encompasses the notions of MS and CTE. We conclude
this section by noting that, like MS, the tail Lp−median is not subadditive (for 1 < p < 2). Our
objective here is not, however, to construct an alternative class of risk measures which have perfect
axiomatic properties. This work is, rather, primarily intended to provide an interpretable middleway
between the risk measures MS(α) and CTE(α), for a level α close to 1. This will be useful when the
number of finite moments of X is low (typically, less than 4) because the estimation of CTE(α), for
high α, is then a difficult task in practice.

2.4.3.2 Asymptotic properties of an extreme tail Lp−median

Our first focus is to discuss whether mp(α), for p ∈ (1, 2), does indeed provide a middle ground between
MS(α) and CTE(α), as α→ 1−, when X has a heavy-tailed distribution with tail index γ. Since the
existence of a tail Lp−median requires finite conditional tail moments of order p − 1, our minimal
working condition on the pair (p, γ) will be γ < 1/(p − 1) throughout. We start by providing some
insight into what asymptotic result on mp(α) we should aim for under condition C1(γ). A consequence
of this condition is that above a high threshold u, the variable X/u is approximately Pareto distributed
with tail index γ, or, in other words:

∀x > 1, P
(

X

q(α)
> x

∣∣∣∣ X

q(α)
> 1

)
→ x−1/γ as α→ 1−.
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This is exactly the first statement of Theorem 1.2.1 in [145]. The above conditional Pareto approxi-
mation then suggests that when α is close enough to 1, the optimisation criterion in Definition 2.4.1
can be approximately written as follows:

mp(α)

q(α)
≈ arg min

M∈R
E [|Zγ −M |p − |Zγ |p]

where Zγ has a Pareto distribution with tail index γ. For the variable Zγ , we can differentiate the
cost function and use change-of-variables formulae to get that the minimiser M of the right-hand side
should satisfy the equation gp,γ(1/M) = B(p, γ−1 − p + 1), where gp,γ(t) :=

∫ 1
t (1 − u)p−1u−1/γ−1du

for t ∈ (0, 1) and B(x, y) =
∫ 1
0 v

x−1(1− v)y−1dv denotes the Beta function. In other words, and for a
Pareto random variable, we have

mp(α)

q(α)
=

1

κ(p, γ)
where κ(p, γ) := g−1p,γ(B(p, γ−1 − p+ 1))

and g−1p,γ denotes the inverse of the decreasing function gp,γ on (0, 1). Our first asymptotic result states
that this proportionality relationship is still valid asymptotically under condition C1(γ).

Proposition 2.4.13. Suppose that p ≥ 1 and C1(γ) holds with γ < 1/(p− 1). Then:

lim
α→1−

mp(α)

q(α)
=

1

κ(p, γ)
.

This first-order result is similar in spirit to other asymptotic proportionality relationships linking ex-
treme risk measures to extreme quantiles; in particular, similarly to extreme Lp−quantiles, an extreme
tail Lp−median mp(α) contains both the information contained in the corresponding quantile q(α)
plus the information on tail heaviness provided by the tail index γ. However, the asymptotic propor-
tionality constant κ(p, γ) ∈ (0, 1) does not have a simple closed form in general, due to the complicated
expression of the function gp,γ . It does have a nice explicit expression though in the two particular
cases p = 1 and p = 2:

• For p = 1, one can show that κ(1, γ) = 2−γ . This clearly yields the same equivalent as the one
obtained using the regular variation of the tail quantile function U with index γ:

m1(α)

q(α)
=
q((1 + α)/2)

q(α)
=
U(2(1− α)−1)

U((1− α)−1)
→ 2γ as α→ 1−.

• For p = 2 and γ ∈ (0, 1), one has κ(2, γ) = 1 − γ. Since in this case, m2(α) is nothing but
CTE(α), Proposition 2.4.13 agrees here with the asymptotic equivalent of CTE(α) in terms of
the exceedance level q(α), see e.g. [163].

For other values of p, an accurate numerical computation of the constant κ(p, γ) can be carried out
instead. Such numerical computations, on the domain (p, γ) ∈ [1, 2] × (0, 1), show that p 7→ κ(p, γ)
and γ 7→ κ(p, γ) appear to be both decreasing. This entails in particular that, for all p1, p2 ∈ (1, 2)
such that p1 < p2, we have, for α close enough to 1:

MS(α) = m1(α) < mp1(α) < mp2(α) < m2(α) = CTE(α).

The tail Lp−medianmp(α) can therefore be seen as a risk measure interpolating monotonically between
MS(α) and CTE(α), at a high enough level α. Actually, Proposition 2.4.13 yields, for all p ∈ [1, 2]
and γ < 1/(p− 1) that, as α→ 1−,

mp(α) ≈ λ(p, γ)MS(α) + [1− λ(p, γ)]CTE(α), (2.4.15)

where the weighting constant λ(p, γ) ∈ [0, 1] is defined by

λ(p, γ) := lim
α→1−

mp(α)− CTE(α)

MS(α)− CTE(α)
=

1− (1− γ)/κ(p, γ)

1− 2γ(1− γ)
. (2.4.16)

85



Extreme tail Lp−medians of heavy-tailed models can then be interpreted, for p ∈ (1, 2), as weighted
averages of extreme Median Shortfall and extreme Conditional Tail Expectation at the same level.
It should be noted that, by contrast, the monotonic interpolation property (and hence the weighted
average interpretation) is demonstrably false in general for Lp−quantiles, as is most easily seen from
Figure 2.7 in Section 2.4.2.1: this figure suggests that high Lp−quantiles define, for γ close to 1/2, a
decreasing function of p when it is close to 1 and an increasing function of p when it is close to 2.

The fact that γ 7→ κ(p, γ) is decreasing, meanwhile, can be proven rigorously by noting that its
partial derivative ∂κ/∂γ is negative (see Theorem 2.4.16 below). More intuitively, the monotonicity
of γ 7→ κ(p, γ) can be seen as a consequence of the heavy-tailedness of the distribution function F .
Indeed, we saw that heuristically, as α→ 1−,

mp(α)

q(α)
≈ arg min

M∈R
E [|Zγ −M |p − |Zγ |p]

where Zγ is a Pareto random variable with tail index γ. When γ increases, the random variable
Zγ tends to return higher values because its survival function P(Zγ > z) = z−1/γ (for z > 1) is
an increasing function of γ. We can therefore expect that, as γ increases, a higher value of M =
mp(α)/q(α) will be needed in order to minimise the above cost function.

Our next goal is to derive an asymptotic expansion of the tail Lp−median mp(α), relatively to the
high exceedance level q(α). This will be the key theoretical tool making it possible to analyse the
asymptotic properties of estimators of an extreme tail Lp−median. For this, we need to quantify
precisely the error term in the convergence given by Proposition 2.4.13. This is the focus of the next
result.

Proposition 2.4.14. Suppose that p ≥ 1 and C2(γ, ρ,A) holds with γ < 1/(p− 1). Then, as α→ 1−,

mp(α)

q(α)
=

1

κ(p, γ)

(
1 + [R(p, γ, ρ) + o(1)]A

(
(1− α)−1

))
with

R(p, γ, ρ) =
[κ(p, γ)]−(ρ−1)/γ

(1− κ(p, γ))p−1
× 1− ρ

γρ

[
B(p, (1− ρ)γ−1 − p+ 1)− gp,γ/(1−ρ)(κ(p, γ))

]
.

This result is, again, similar in spirit to second-order results that have been shown for other extreme
risk measures: see e.g. Proposition 2.4.5 in Section 2.4.2.1 (corresponding to Proposition 3 of [10]) for
an analogue result used as a basis to carry out extreme value-based inference on extreme Lp−quantiles.
It should, however, be underlined that the asymptotic expansion of an extreme tail Lp−median depends
solely on the extreme parameters γ, ρ and A, along with the power p. By contrast, the asymptotic
expansion of an extreme Lp−quantile depends on the expectation and left-tail behaviour of X, which
are typically considered to be irrelevant to the understanding of the right tail of X. From an extreme
value point of view, the asymptotic expansion of extreme tail Lp−medians is therefore easier to under-
stand than that of Lp−quantiles. Statistically speaking, it also implies that there are less sources of
potential bias in extreme tail Lp−median estimation than in extreme Lp−quantile estimation. Both
of these statements can be explained by the fact that the tail Lp−median is constructed exclusively
on the event {X > q(α)}, while the equation defining an Lp−quantile qp(α) is (see [73]):

(1− α)E((qp(α)−X)p−1I{X < qp(α)}) = αE((X − qp(α))p−1I{X > qp(α)}).

The left-hand side term ensures that the central and left-tail behaviour of X will necessarily have
an influence on the value of any Lp−quantile, even at an extreme level. The construction of a tail
Lp−median as an Lp−median in the right tail of X removes this issue.

Like the asymptotic proportionality constant κ(p, γ) on which it depends, the remainder term R(p, γ, ρ)
does not have an explicit form in general. That being said, R(1, γ, ρ) and R(2, γ, ρ) have simple explicit
values:
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• For p = 1, one can show that R(1, γ, ρ) = (2ρ − 1)/ρ (recall the convention (xρ − 1)/ρ = log x
for ρ = 0). We then find back the result that comes as an immediate consequence of (2.4.14)
and our second-order condition C2(γ, ρ,A):

m1(α)

q(α)
=
U(2(1− α)−1)

U((1− α)−1)
= 2γ

(
1 +A((1− α)−1)

2ρ − 1

ρ
(1 + o(1))

)
.

• For p = 2 and γ ∈ (0, 1), (2.4.14) and the second-order condition suggest that:

m2(α)

q(α)
=

∫ ∞
1

U((1− α)−1x)

U((1− α)−1)

dx

x2
=

1

1− γ

(
1 +

1

1− γ − ρ
A((1− α)−1)(1 + o(1))

)
which coincides with Proposition 2.4.14, given that R(2, γ, ρ) = 1/(1− γ − ρ).

We close this section by noting that all our results, and indeed the practical use of the tail Lp−median
more generally, depend on the fixed value of the constant p. Just as when using Lp−quantiles, the
choice of p in practice is a difficult but important question. Although [73] introduced Lp−quantiles in
the context of testing for symmetry in non-parametric regression, it did not investigate the question
of the choice of p. For extreme tail Lp−medians, which unlike extreme Lp−quantiles satisfy an
interpolation property, we may suggest a simple and (potentially) intuitive way to choose p. Recall
the weighted average relationship (2.4.15):

mp(α) ≈ λ(p, γ)MS(α) + [1− λ(p, γ)]CTE(α), with λ(p, γ) =
1− (1− γ)/κ(p, γ)

1− 2γ(1− γ)

for α close to 1. In practice, given the (estimated) value of γ, and a pre-specified weighting constant λ0
indicating a compromise between robustness of MS and sensitivity of CTE, one can choose p = p0 as
the unique root of the equation λ(p, γ) = λ0 with unknown p. Although λ(p, γ) does not have a simple
closed form, our experience shows that this equation can be solved very quickly and accurately with
standard numerical solvers. This results in a tail Lp−median mp0(α) satisfying, for α close to 1,

mp0(α) ≈ λ0MS(α) + (1− λ0)CTE(α).

The interpretation of mp0(α) is easier than that of a generic tail Lp−median mp(α) due to its explicit
and fully-determined connection with the two well-understood quantities MS(α) and CTE(α). The
question of which weighting constant λ0 should be chosen is itself difficult and depends on the require-
ments of the situation at hand; our real data application in Section 2.4.3.5 provides an illustration
with λ0 = 1/2, corresponding to a simple average of extreme MS and CTE.

2.4.3.3 Estimation of an extreme tail Lp−median

Suppose that we observe a random sample (X1, . . . , Xn) of independent copies of X, and denote by
X1,n ≤ · · · ≤ Xn,n the corresponding set of order statistics arranged in increasing order. Our goal in
this section is to estimate an extreme tail Lp−median mp(αn), where αn → 1− as n →∞. The final
aim is to allow αn to approach 1 at any rate, covering the cases of an intermediate tail Lp−median
with n(1 − αn) → ∞ and of a proper extreme tail Lp−median with n(1 − αn) → c, where c is some
finite nonnegative constant.

Intermediate case: direct estimation by empirical Lp−optimisation Recall that the tail
Lp−median mp(αn) is, by Definition 2.4.1,

mp(αn) = arg min
m∈R

E (|X −m|p − |X|p |X > q(αn)) .

Assume here that n(1−αn)→∞, so that bn(1−αn)c > 0 eventually. We can therefore define a direct
empirical tail Lp−median estimator of mp(αn) by minimising the above empirical cost function:

m̂p(αn) = arg min
m∈R

1

bn(1− αn)c

bn(1−αn)c∑
i=1

(|Xn−i+1,n −m|p − |Xn−i+1,n|p) .
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We now pave the way for a theoretical study of this estimator. We clearly have the equivalent definition

ψn(u; p) =
1

p[mp(αn)]p

bn(1−αn)c∑
i=1

(∣∣∣∣∣Xn−i+1,n −mp(αn)− ump(αn)√
n(1− αn)

∣∣∣∣∣
p

− |Xn−i+1,n −mp(αn)|p
)
.

Note that the empirical criterion ψn(u; p) is a continuous and convex function of u, so that the
asymptotic properties of the minimiser follow directly from those of the criterion itself by the convexity
results of [180]. The empirical criterion, then, is analysed by using its continuous differentiability (for
p > 1) in order to formulate an Lp−analogue of Knight’s identity [179] and divide the work between,
on the one hand, the study of a

√
n(1− αn)−consistent and asymptotically Gaussian term which is

an affine function of u and, on the other hand, a bias term which converges to a non-random multiple
of u2.

This programme of work is broadly similar to that of the proof of the convergence of the direct
intermediate Lp−quantile estimator. The difficulty in this particular case, however, is twofold: first,
the affine function of u is a generalised L−statistic, in the sense of for instance [60], whose analysis
requires delicate arguments relying on the asymptotic behaviour of the tail empirical quantile process.
For Lp−quantiles, this is not necessary because the affine term is actually a sum of independent,
identically distributed and centred variables. Second, the bias term is essentially a doubly integrated
oscillation of a power function with generally noninteger exponent. The examination of its convergence
requires certain precise real analysis arguments which do not follow from those developed in [10] for
the asymptotic analysis of intermediate Lp−quantiles.

With this in mind, the asymptotic normality result for the direct intermediate tail Lp−median esti-
mator m̂p(αn) is the following.

Theorem 2.4.15. Suppose that p ≥ 1 and C2(γ, ρ,A) holds with γ < 1/[2(p − 1)]. Assume further
that αn → 1− is such that n(1− αn)→∞ and

√
n(1− αn)A((1− αn)−1) = O(1). Then we have, as

n→∞: √
n(1− αn)

(
m̂p(αn)

mp(αn)
− 1

)
d−→ N (0, V (p, γ)) .

Here V (p, γ) = V1(p, γ)/V2(p, γ) with

V1(p, γ) =
[κ(p, γ)]1/γ

γ

(
B(2p− 1, γ−1 − 2(p− 1)) + g2p−1,γ (κ(p, γ))

)
+ [1− κ(p, γ)]2(p−1)

while V2(p, γ) is defined by: V2(1, γ) = 1/γ2 and, for p > 1,

V2(p, γ) =

(
p− 1

γ
[κ(p, γ)]1/γ

[
B(p− 1, γ−1 − p+ 2) + gp−1,γ (κ(p, γ))

])2

.

Moreover, the functions V2(·, γ) and V (·, γ) defined this way are right-continuous at 1.

The asymptotic variance V (p, γ) has a rather involved expression. Numerical studies show that γ 7→
V (p, γ) appears to be increasing. This reflects the increasing tendency of the underlying distribution to
generate extremely high observations when the tail index increases, see Section 2.2.4.1, thus increasing
the variability of the empirical criterion ψn(·; p) and consequently that of its minimiser. Besides, it
turns out that, somewhat surprisingly, the function p 7→ V (p, γ) is not in general a monotonic function
of p. One can actually remark that we have V (p, γ) < V (1, γ) for any (p, γ) ∈ (1, 1.2] × [0.25, 0.5].
This suggests that for all heavy-tailed distributions having only a second moment (an already difficult
case as far as estimation in heavy-tailed models is concerned), a direct Lp−tail median estimator with
p ∈ (1, 1.2] will have a smaller asymptotic variance than the empirical L1−tail median estimator, or,
in other words, the empirical Median Shortfall.

We conclude this section by noting that, like the constants appearing in our previous asymptotic
results, the variance term V (p, γ) has a simple expression when p = 1 or p = 2. In the case p = 1,
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we can prove that V (1, γ) = 2γ2. Statement (2.4.14) suggests that this should be identical to the

asymptotic variance of the high quantile estimator M̂S(αn) = Xn−bn(1−αn)/2c,n, and indeed

√
n(1− αn)

(
M̂S(αn)

MS(αn)
− 1

)
=
√

2

√
n(1− αn)

2

(
Xn−bn(1−αn)/2c,n

q(1− (1− αn)/2)
− 1

)
d−→ N

(
0, 2γ2

)
by Theorem 2.4.8 p.52 in [145]. For p = 2, we have V (2, γ) = 2γ2(1 − γ)/(1 − 2γ). This constant
should coincide with the asymptotic variance of the empirical counterpart of the Conditional Tail
Expectation, namely

ĈTE(αn) =
1

bn(1− αn)c

bn(1−αn)c∑
i=1

Xn−i+1,n.

This is indeed the case as Corollary 1 in [114] shows. In particular, the function γ 7→ V (2, γ) tends to
infinity as γ ↑ 1/2, reflecting the increasing difficulty of estimating a high Conditional Tail Expectation
by its direct empirical counterpart as the right tail of X gets heavier.

Intermediate case: indirect quantile-based estimation We can also design an estimator
of mp(αn) based on the asymptotic equivalence between mp(αn) and q(αn) that is provided by Propo-
sition 2.4.13. Indeed, since this result suggests that mp(α)/q(α) ∼ 1/κ(p, γ) when α → 1−, it makes
sense to build a plug-in estimator of mp(αn) by setting m̃p(αn) = q̂(αn)/κ(p, γ̂n), where q̂(αn) and γ̂n
are respectively two consistent estimators of the high quantile q(αn) and of the tail index γ. Since we
work here in the intermediate case n(1 − αn) → ∞, we know that the sample counterpart Xdnαne,n
of q(αn) is a relatively consistent estimator of q(αn), see Theorem 2.4.1 in [145]. This suggests to use
the estimator

m̃p(αn) :=
Xdnαne,n

κ(p, γ̂n)
.

Our next result analyses the asymptotic distribution of this estimator, when the pair (γ̂n, Xdnαne,n) is

jointly
√
n(1− αn)−consistent.

Theorem 2.4.16. Suppose that p ≥ 1 and C2(γ, ρ,A) holds with γ < 1/(p− 1). Assume further that
αn → 1− is such that n(1− αn)→∞ and

√
n(1− αn)A((1− αn)−1)→ λ ∈ R, and that√

n(1− αn)

(
γ̂n − γ,

Xdnαne,n

q(αn)
− 1

)
d−→ (ξ1, ξ2)

where (ξ1, ξ2) is a pair of nondegenerate random variables. Then we have, as n→∞:√
n(1− αn)

(
m̃p(αn)

mp(αn)
− 1

)
d−→ σ(p, γ)ξ1 + ξ2 − λR(p, γ, ρ),

with the positive constant σ(p, γ) being σ(p, γ) = − 1

κ(p, γ)

∂κ

∂γ
(p, γ). In other words,

σ(p, γ) =
B(p, γ−1 − p+ 1)[z(γ−1 + 1)−z(γ−1 − p+ 1)]−

∫ 1
κ(p,γ)(1− u)p−1u−1/γ−1 log(u) du

γ2[1− κ(p, γ)]p−1[κ(p, γ)]−1/γ

where z(x) = Γ′(x)/Γ(x) is Euler’s digamma function.

Again, the constant σ(p, γ) does not generally have a simple explicit form, but we can compute it
when p = 1 or p = 2. For p = 1, σ(1, γ) = log 2, while σ(2, γ) = 1/(1 − γ). Contrary to our
previous analyses, it is more difficult to relate these constants to pre-existing results in high quantile
or high CTE estimation because Theorem 2.4.16 is a general result that applies to a wide range of
estimators γ̂n. To the best of our knowledge, there is no general analogue of this result in the literature
for the case p = 1. In the case p = 2, we find back the asymptotic distribution result in Theorem 2.2.2
in Section 2.2.3.2 (corresponding to Theorem 1 in [14]):√

n(1− αn)

(
m̃2(αn)

CTE(αn)
− 1

)
d−→ 1

1− γ
ξ1 + ξ2 −

λ

1− γ − ρ
.
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It should be highlighted that, for p = 2, Theorem 2.4.16 is a stronger result than Theorem 2.2.2 in
Section 2.2.3.2, since the condition on γ is less stringent. As the above convergence is valid for any
γ < 1, one may therefore think that the estimator m̃2(αn) is a widely applicable estimator of the CTE
at high levels. Since it is also more robust than the direct empirical CTE estimator due to its reliance
on the sample quantile Xdnαne,n, this would defeat the point of looking for a middle ground solution
between the sensitivity of CTE to high values and the robustness of VaR-type measures in very heavy-
tailed models. The simulation study in [14] shows however that in general, the estimator m̃2 fares
worse than the direct CTE estimator m̂2, and increasingly so as γ increases within the range (0, 1/4].
The benefit of using the indirect estimator m̃p will rather be found for values of p away from 2, when
a genuine compromise between sensitivity and robustness is sought.

Theorem 2.4.16 applies whenever γ̂n is a consistent estimator of γ that satisfies a joint convergence
condition together with the intermediate order statistic Xdnαne,n. As an example, we get the following
asymptotic result on m̃p(αn) when the estimator γ̂n is the Hill estimator, which we write in this section
as γ̂Hn :

γ̂Hn :=
1

bn(1− αn)c

bn(1−αn)c∑
i=1

log (Xn−i+1,n)− log
(
Xn−bn(1−αn)c,n

)
.

Corollary 2.4.17. Suppose that p ≥ 1 and C2(γ, ρ,A) holds with γ < 1/(p− 1). Assume further that
αn → 1− is such that n(1− αn)→∞ and

√
n(1− αn)A((1− αn)−1)→ λ ∈ R. Then, as n→∞:√

n(1− αn)

(
m̃p(αn)

mp(αn)
− 1

)
d−→ N

(
λ

(
σ(p, γ)

1− ρ
−R(p, γ, ρ)

)
, v(p, γ)

)
,

where v(p, γ) = γ2
(
[σ(p, γ)]2 + 1

)
.

A numerical study shows that the indirect estimator has a lower variance than the direct one. The
difference between the two variances becomes sizeable when the quantity 2γ(p − 1) gets closer to 1,
as should be expected since the asymptotic variance of the direct estimator asymptotically increases
to infinity (see Theorem 2.4.15), while the asymptotic variance of the indirect estimator is kept under
control (see Corollary 2.4.17). This seems to indicate that the indirect estimator should be preferred
to the direct estimator in terms of variability. However, the indirect estimator is asymptotically biased
(due to the use of the approximation mp(α)/q(α) ∼ 1/κ(p, γ) in its construction), while the direct
estimator is not. We will see that this can make one prefer the direct estimator in terms of mean
squared error on finite samples, even for large values of γ and p.

Extreme case: a Weissman-type extrapolation device Both the direct and indirect estimators
constructed so far are only consistent for intermediate sequences αn such that n(1 − αn) → ∞. Our
purpose is now to extrapolate these intermediate tail Lp−median estimators to proper extreme levels
βn → 1− with n(1 − βn) → c < ∞ as n → ∞. The key point is then that, when γ < 1/(p − 1), the
quantity mp(α) is asymptotically proportional to q(α), by Proposition 2.4.13. Combining this with
the standard Weissman approximation on ratios of high quantiles suggests the following extrapolation
formula:

mp(βn) ≈
(

1− βn
1− αn

)−γ
mp(αn).

An estimator of the extreme tail Lp−median mp(βn) is obtained from this approximation by plug-
ging in a consistent estimator γ̂n of γ and a consistent estimator of mp(αn). In our context, the
latter can be the direct, empirical Lp−estimator m̂p(αn), or the indirect, intermediate quantile-based
estimator m̃p(αn), yielding the extrapolated estimators

m̂W
p (βn) :=

(
1− βn
1− αn

)−γ̂n
m̂p(αn) and m̃W

p (βn) :=

(
1− βn
1− αn

)−γ̂n
m̃p(αn).

We note moreover that the latter estimator is precisely the estimator deduced by plugging the Weiss-
man extreme quantile estimator q̂W (βn) in the relationship mp(βn)/q(βn) ∼ 1/κ(p, γ), since

m̃W
p (βn) =

(
1− βn
1− αn

)−γ̂n
×
{
Xdnαne,n

κ(p, γ̂n)

}
=
q̂W (βn)

κ(p, γ̂n)
.
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The asymptotic behaviour of the two extrapolated estimators m̂W
p (βn) or m̃W

p (βn) is analysed in our
next main result.

Theorem 2.4.18. Suppose that p ≥ 1 and C2(γ, ρ,A) holds with ρ < 0. Assume also that αn, βn → 1−

are such that n(1−αn)→∞ and n(1− βn)→ c <∞, with
√
n(1− αn)/ log([1−αn]/[1− βn])→∞.

Assume finally that
√
n(1− αn)(γ̂n − γ)

d−→ ξ, where ξ is a nondegenerate limiting random variable.

(i) If γ < 1/[2(p− 1)] and
√
n(1− αn)A((1− αn)−1) = O(1) then, as n→∞:√

n(1− αn)

log[(1− αn)/(1− βn)]

(
m̂W
p (βn)

mp(βn)
− 1

)
d−→ ξ.

(ii) If γ < 1/(p− 1) and
√
n(1− αn)A((1− αn)−1)→ λ ∈ R then, as n→∞:√

n(1− αn)

log[(1− αn)/(1− βn)]

(
m̃W
p (βn)

mp(βn)
− 1

)
d−→ ξ.

This result shows that both of the estimators m̂W
p (βn) and m̃W

p (βn) have their asymptotic properties
governed by those of the tail index estimator γ̂n. This is of course not an unusual phenomenon for
extrapolated estimators; it was, in our context, already observed below Theorems 2.3.17 and 2.3.23.

Let us highlight though that while the asymptotic behaviour of γ̂n is crucial, we should anticipate
that in finite-sample situations, an accurate estimation of the intermediate tail Lp−median mp(αn) is
also important. A mathematical reason for this is that in the typical situation when 1 − βn = 1/n,
the logarithmic term log[(1− αn)/(1− βn)] has order at most log(n), and thus for a moderately high
sample size n, the quantity

√
n(1− αn)/ log[(1 − αn)/(1 − βn)] representing the rate of convergence

of the extrapolation factor may only be slightly lower than the quantity
√
n(1− αn) representing the

rate of convergence of the estimator at the intermediate step. Hence the idea that, while for n very
large the difference in finite-sample behaviour between any two estimators of the tail Lp−median at
the basic intermediate level αn will be eventually wiped out by the performance of the estimator γ̂n,
there may still be a significant impact of the quality of the intermediate tail Lp−median estimator
used on the overall accuracy of the extrapolated estimator when n is moderately large.

2.4.3.4 Finite-sample performance on simulated data

It was highlighted in (2.4.15) and (2.4.16) that, for p ∈ [1, 2] and γ < 1/(p − 1), an extreme tail
Lp−median mp(α) can be understood asymptotically as a weighted average of MS(α) and CTE(α).
In other words, defining the interpolating risk measure

Rλ(α) := λMS(α) + (1− λ)CTE(α),

we have mp(α) ≈ Rλ(α) as α→ 1− with λ = λ(p, γ) as in (2.4.16). It then turns out that at the popu-
lation level, we have two distinct (but asymptotically equivalent) possibilities to interpolate, and thus
create a compromise, between extreme Median Shortfall and extreme Conditional Tail Expectation:

• Consider the family of measures mp(α), p ∈ [1, 2];

• Consider the family of measures Rλ(α), λ ∈ [0, 1].

The simulation study of [3] considers the estimation of the tail Lp−median mp(αn) for both intermedi-
ate and extreme levels αn, and how this estimation compares with direct estimation of the interpolating
measure Rλ(αn). The latter is done at the intermediate level using the estimator

R̂λ(αn) := λXn−bn(1−αn)/2c,n + (1− λ)ĈTE(αn)

with ĈTE(αn) = m̂2(αn) =
1

bn(1− αn)c

bn(1−αn)c∑
i=1

Xn−i+1,n.
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An extrapolated estimator at a level βn → 1 such that n(1− βn) = O(1) is then

R̂Wλ (βn, k) :=

(
n(1− βn)

k

)−γ̂Hn (k) [
λXn−bk/2c,n + (1− λ)ĈTE(1− k/n)

]
where k = k(n) is the effective sample size of the Hill estimator, satisfying k →∞ and k/n→ 0. The
two paragraphs below give a summary of the conclusions of the simulation study of [3].

Intermediate case We examine the cases γ ∈ {1/4, 1/2, 3/4}, corresponding to, respectively, a
borderline case for finite fourth moment, a borderline case for finite variance, and a case where there
is no finite variance. It can be seen that, on the Burr distribution, the indirect estimator m̃p(αn)
has a lower Mean Log-Squared Error (MLSE) than the direct estimator, except for γ close to 1
and p close to 2. By contrast, the direct estimator is generally more accurate than the indirect
one when the underlying distribution is a Student distribution, especially for p ≥ 1.6. Furthermore,
it should be noted that the direct estimator m̂p(αn) performs overall noticeably better than the

estimator R̂λ(p,γ)(αn). This confirms our theoretical expectation that estimation of mp(αn) should

be easier than estimation of Rλ(p,γ)(αn), since m̂p(αn) is relatively
√
n(1− τn)−consistent as soon

as γ < 1/[2(p − 1)], which is a weaker condition than the assumption γ < 1/2 needed to ensure

the relative
√
n(1− τn)−consistency of R̂λ(p,γ)(αn) (due to its reliance on the estimator ĈTE(αn)).

In other words, on finite samples and at intermediate levels, it is preferable to interpolate between
extreme MS and extreme CTE via tail Lp−medians rather than using direct linear interpolation, even
though these two ideas are asymptotically equivalent at the population level.

Extreme case The conclusions reached in the intermediate case remain true in the extreme case
βn = 1 − 1/n: on the Burr distribution, the extrapolated indirect estimator of mp(βn) performs
comparably to or better than the extrapolated direct estimator, except for γ close to 1 and p close
to 2. The reverse conclusion holds true on the Student distribution. The extrapolated direct estimator
also performs generally better than the extrapolated linear interpolation estimator R̂Wλ(p,γ)(βn, k̂opt).

[Here k̂opt is a selected value of k obtained following a procedure presented in Section 5.2 of [3].] There
is a noticeable improvement for p ∈ [1.25, 1.75] in the case γ = 1/2 and even more so for γ = 3/4,
which are the most relevant cases for our purpose. The accuracy of the extrapolated direct estimator
is also comparable overall to that of R̂Wλ(p,γ)(βn, k̂opt) for γ = 1/4, although this is not the case we
originally constructed the tail Lp−median for.

2.4.3.5 Data example 2 revisited: French commercial fire losses

We revisit here the data set of Section 2.2.5.3, made of n = 1,098 commercial fire losses recorded be-
tween 1st January 1995 and 31st December 1996 by the Fédération Française des Sociétés d’Assurance,
and available from the R package CASdatasets as data(frecomfire).

Our first step in the analysis of the extreme losses in this data set is to estimate the tail index γ.
Using the Hill estimator, and a selection procedure of the effective sample size which is explained
in Section 5.2 of [3], we find an estimate γ̂H = 0.67. This estimated value of γ is in line with the
findings of Section 2.2.5.3, and it suggests that there is evidence for an infinite second moment of the
underlying distribution. We know, in this context, that the estimation of the extreme CTE is going
to be a difficult problem, although it would give a better understanding of risk in this data set than a
single quantile such as the VaR or MS would do. It therefore makes sense, on this data set, to use the
class of tail Lp−medians to find a middle ground between MS and CTE estimation by interpolation.

Estimates of the tail Lp−median mp(1− 1/n), obtained through our extrapolated direct and extrap-
olated indirect estimators, are depicted on Figure 2.12. These estimates are fairly close overall on
the range p ∈ [1, 2]. There is a difference for p close to 2, where the increased theoretical sensitivity
of the direct estimator to the highest values in the sample makes it exceed the more robust indirect
estimator; note that here γ is estimated to be 0.67, which is sufficiently far from 1 to ensure that the
instability of the indirect estimator for very high γ is not an issue, and the estimate returned by the
indirect extrapolated method can be considered to be a reasonable one.
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With these estimates at hand comes the question of how to choose p. This is of course a difficult
question that depends on the objective of the analysis from the perspective of risk assessment: should
the analysis be conservative (i.e. return a higher, more prudent estimation) or not? We do not
wish to enter into such a debate here, which would be better held within the financial and actuarial
communities. Let us, however, illustrate a simple way to choose p based on our discussion at the very
end of Section 2.4.3.2. Recall from (2.4.15) and (2.4.16) that a tail Lp−median has an asymptotic
interpretation as a weighted average of MS and CTE:

mp(1− 1/n) ≈ λ(p, γ)MS(1− 1/n) + (1− λ(p, γ))CTE(1− 1/n)

with λ(p, γ) =
1− (1− γ)/κ(p, γ)

1− 2γ(1− γ)
.

We also know from our simulation study that it is generally more accurate to estimate mp(1 − 1/n)
rather than the corresponding linear combination of MS(1− 1/n) and CTE(1− 1/n). With λ0 = 1/2,
representing the simple average between MS(1−1/n) and CTE(1−1/n), choosing p = p̂ as the unique
root of the equation λ(p̂, γ̂) = λ0 yields p̂ = 1.711. The corresponding estimates, in million euros, of
the linear combination

λ0MS(1− 1/n) + (1− λ0)CTE(1− 1/n)

are m̂W
p̂ (1 − 1/n) = 160.8 and m̃W

p̂ (1 − 1/n) = 155.4. It is interesting to note that, although these
quantities estimate the average of MS(1− 1/n) = m1(1− 1/n) and CTE(1− 1/n) = m2(1− 1/n), we
also have m̂W

1 (1− 1/n) = 106.3 and m̂W
2 (1− 1/n) = 225.2 so that

m̃W
p̂ (1− 1/n) = 155.4 < m̂W

p̂ (1− 1/n) = 160.8 <
1

2

[
m̂W

1 (1− 1/n) + m̂W
2 (1− 1/n)

]
= 165.8.

The estimate m̂W
p̂ (1 − 1/n) of the simple average between MS(1 − 1/n) and CTE(1 − 1/n) obtained

through extrapolating the direct tail Lp−median estimator is therefore itself a middleway between the
indirect estimator m̃W

p̂ (1 − 1/n), which relies on a VaR estimator, and the direct estimator of this
average which depends on a highly variable estimator of CTE(1− 1/n).

2.4.3.6 Perspectives for future research

Uncertainty quantification for very heavy tails The straightforward estimator of the inter-
polating measure Rλ(αn) generally fares worse than our estimators and, for γ > 1/2, its asymptotic
distribution is not clear. For nonnegative distributions, the indirect estimator seems to give more
accurate point estimates and, for any p ∈ [1, 2] and γ ∈ (0, 1), its asymptotic normality is provided
in Section 2.4.3.3. The variance of this distribution depends only on γ, whose estimation is possible
through e.g. the Hill estimator, and thus asymptotic confidence intervals for tail Lp−medians and the
interpolating measure can be constructed. Our simulation results did not, however, investigate the
accuracy of these asymptotic confidence intervals (in terms of coverage probability) suggested by our
theoretical findings. An interesting further question in this direction would be to look for the asymp-
totic distribution of the direct estimator of Rλ(αn), for γ > 1/2, first at intermediate and then extreme
levels. This will presumably involve a reduced rate of convergence (of the order of [n(1−αn)]1−γ) and
an asymptotic stable distribution. Such a result would rigorously establish that the indirect estimator
converges at a faster rate than the direct estimator of the measure Rλ(αn).

Composite estimation of Median Shortfall and Conditional Tail Expectation The asymp-
totic proportionality relationship in Proposition 2.4.13 can be used to connect the extreme Median
Shortfall and Conditional Tail Expectation to the tail Lp−median. In the case of the Conditional Tail
Expectation, for instance, one has, for any p ∈ [1, 2) and γ ∈ (0, 1), CTE(α)/mp(α) ≈ κ(p, γ)/(1− γ)
for α close to 1. This might suggest to estimate CTE(α) by estimating first mp(α) and then multiplying
by an estimator of the proportionality constant on the right-hand side. Early numerical investigations
suggest that such an estimator is not competitive. However, since α 7→ mp(α) is regularly varying
at 1, one has

CTE(α) ≈ κ(p, γ)

1− γ
mp(α) ≈ mp(β) with β = 1−

[
1− γ
κ(p, γ)

]1/γ
(1− α).
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Figure 2.12: Real fire insurance data set. Extrapolated tail Lp−median estimators m̂W
p (1 − 1/n)

(dashed line) and m̃W
p (1− 1/n) (dotted line) as functions of p ∈ [1, 2].

This indicates that, just like extreme quantiles and expectiles can be estimated using Lp−quantiles at
other levels, an extreme Conditional Tail Expectation at level α can be estimated using an estimator
of mp(β). The same principle applies to the Median Shortfall. One may then, like in Section 2.4.2.3,
define composite, tail Lp−median based estimators of the Median Shortfall and Conditional Tail
Expectation at extreme levels. The investigation of their practical properties is worthy of further
research.
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2.5 Extremiles: A new perspective on asymmetric least squares [5]

2.5.1 Introduction

Even though the risk measures we have worked on so far are valuable tools, they have all been criticised
in the literature for either axiomatic or practical reasons. For example, the expectile terminology coined
for eτ is frustrated by the absence of any closed form expression in terms of tail expectations in the
same way that the quantile qτ is explicitly determined by the generalised inverse of the distribution
function. This makes them more difficult to interpret than quantiles or Conditional Tail Expectations.
Moreover, expectiles, with τ > 1/2, are not comonotonically additive. This is a serious problem from
a regulatory point of view, as expectiles can then give a false sense of diversification. The Conditional
Tail Expectation, meanwhile, is (at least for continuous distributions) law-invariant, coherent and
comonotonically additive, but relies exclusively on the tail event it is calculated on, and as a result
tends to induce a conservative risk measure. This makes it appealing to regulators but less so to
individual financial institutions.

The present section, based on [5], proposes a new L2 analogue of quantiles, called extremiles, which de-
fines a valuable alternative option for general statistical diagnoses. As shown in the following section,
the new class is a generalisation of the usual central moment E(Y ), which summarises the distribution
of Y in the same way as quantiles do. Extremiles are by construction more alert/sensitive to the
magnitude of extreme values than quantiles and make more efficient use of the available data since
they rely on both the distance to observations and their probability, while quantiles only depend on
the frequency of observations below or above the predictor and not on their values. Unlike expectiles,
extremiles benefit from various equivalent explicit formulations and more intuitive interpretations.
They are proportional to specific probability-weighted moments (PWMs) and can be estimated by
L-statistics, M-statistics, linearised M-statistics and PWM-estimators. In addition, inference on ex-
tremiles is much easier than inference on expectiles, since their various estimators have closed form
expressions and are straightforward to compute. Also, these estimators steer an advantageous middle
course between the robustness of ordinary quantile estimators and sensitivity of extreme quantile esti-
mators in the sense that the extremile estimators of order τ tend to be more tail sensitive than the τth
quantile estimators for ordinary levels τ , but become more resistant for extremely high/low levels τ .
Finally, extremiles are very closely connected to quantiles from an extreme value perspective, and
provide an appropriate theory that better displays the interesting features of long-tailed population
distributions. Although extremiles have been used in [86] in the context of estimating a frontier cost
function (involving a conditional expectation), the paper [5] is the first to introduce the notion of
extremiles as a new class of least squares analogues of quantiles, and to give a full study of this class,
including relationships with expectiles and quantiles, as well as extensive statistical inference within
this class.

The presented M- and L-estimates of extremiles, as well as their linearised M- and PWM-estimates,
suffer from instability at very far tails due to data sparseness, especially for heavy-tailed distributions.
This motivated us to extend their estimation and the underlying asymptotic theory far enough into
the tails, which translates into considering the level τ = τn → 1 as the sample size n goes to infinity.
We show that these high τnth extremiles are asymptotically connected to extreme τnth quantiles by
a constant depending on the tail index of the underlying distribution. Our first estimation method is
based on this asymptotic connection, so that extreme value estimators of large quantiles and of the tail
index can be used for extrapolation beyond the range of the data. Our second method relies directly
on asymmetric least squares estimation. Although both approaches work quite well and either might
be used in practice, we have a particular preference for the second due to some theoretical findings
and simulation evidence.

The extremile and the quantile of Y with the same level τ are actually identical to the mean and the
median, respectively, of a common asymmetric distribution Kτ (F ), where F stands for the distribution
function of Y and Kτ is a well-specified power transformation. The use of extremiles appears then
naturally in the context of any decision theory where “optimistic” and “pessimistic” judgements are
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contrasted such as, for instance, extreme risk analysis, survival analysis and medical decision mak-
ing. We focus here more specifically on the actuarial and financial risk management context, where
extremiles bear much better than quantiles the burden of representing an alert risk measure to the
magnitude of infrequent catastrophic losses. In particular, they are comonotonically additive, coherent
spectral risk measures of law–invariant type. Also, they belong to the class of Wang DRMs with a
concave distortion function that acts to downweight the likelihood of the most favourable outcomes,
yielding a risk measure appropriate for the pessimistic decision theory formalised in [46]. To illustrate
these ideas, we consider real data examples on trended hurricane losses and large claims in medical
insurance.

This section is organised as follows. Section 2.5.2 presents a detailed description of the proposed new
class, including its motivation, interpretation and basic properties. Section 2.5.3 deals with estimation
of extremiles within the range of the data and beyond the sample maximum. Section 2.5.4 provides
an interesting connection between extremiles and coherent law-invariant measures of risk in actuarial
and financial management. Section 2.5.5 discusses the behaviour of the proposed notion of extremiles
on simulated data and on two real data examples. Section 2.5.6 discusses potential avenues for further
research.

2.5.2 The class of extremiles

2.5.2.1 Definition and motivation

For ease of presentation, we assume throughout that F is continuous. It is not hard to verify
that qτ is identical to the median of a random variable Zτ having cumulative distribution function
FZτ = Kτ (F ), where

Kτ (t) =

{
1− (1− t)s(τ) if 0 < τ ≤ 1/2,

tr(τ) if 1/2 ≤ τ < 1

is a distribution function with support [0, 1], and r(τ) = s(1 − τ) = log(1/2)/ log(τ). Hence, the τth
quantile can be derived from the alternative minimisation problem

qτ ∈ arg min
θ∈R

E {Jτ (F (Y )) · [|Y − θ| − |Y |]} ,

with the special weight-generating function Jτ (·) = K ′τ (·) on (0, 1). This does not seem to have been
appreciated in the literature before. The parallel concept to the quantile qτ , which we call extremile
of order τ of Y , is then defined in a similar way by substituting the squared deviations in place of the
absolute deviations:

ξτ = arg min
θ∈R

E
{
Jτ (F (Y )) · [|Y − θ|2 − |Y |2]

}
. (2.5.1)

As a matter of fact, while qτ coincides with the median of the transformation Zτ , it is easily seen that,
whenever E|Zτ | <∞,

ξτ = E(Zτ ). (2.5.2)

We shall see in Proposition 2.5.2 below that the condition E|Zτ | < ∞ is implied by E|Y | < ∞, and
therefore extremiles of any order exist as soon as Y has a finite first moment. Denote by y` = inf{y :
F (y) > 0} and yu = sup{y : F (y) < 1} the lower and, respectively, upper endpoint of the support
of F . One way of defining the extremile ξτ , for 0 ≤ τ ≤ 1, is as the explicit quantity

ξτ =


−
∫ 0

y`

{
1− [1− F (y)]s(τ)

}
dy +

∫ yu

0
[1− F (y)]s(τ) dy for 0 ≤ τ ≤ 1/2,

−
∫ 0

y`

[F (y)]r(τ) dy +

∫ yu

0

(
1− [F (y)]r(τ)

)
dy for 1/2 ≤ τ ≤ 1.

(2.5.3)

This follows from a general property of expectations (see p.117 of [231]). Clearly, FZτ reduces to F
when τ = 1/2, and ξ1/2 is just the expectation of Y , while the endpoints y` and yu of the support of F
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coincide respectively with the lower and upper extremiles ξ0 and ξ1, since s(0) = r(1) =∞ in (2.5.3).
A thorough description of basic properties of ξτ is given in Section 2.5.2.3.

Extremiles can be of considerable importance for modelling extremes of natural phenomena. When
τ ≥ 1/2 with r(τ) = 1, 2, . . . the τth extremile has a nice interpretation: it equals the expectation
of the maximum of r(τ) independent copies Y 1, . . . , Y r(τ) of Y , i.e. ξτ = E[max(Y 1, . . . , Y r(τ))]. Of
interest is the case τ ↑ 1, or equivalently r(τ) → ∞, which leads to access the upper endpoint yu of
the support of F . Likewise, if τ ≤ 1/2 with s(τ) = 1, 2, . . . we have ξτ = E[min(Y 1, . . . , Y s(τ))], the
expectation of the minimum of s(τ) i.i.d. observations from Y . Of interest is also the case τ ↓ 0, or
equivalently s(τ) → ∞, which leads to access the lower bound y` of the support of Y . For a general
order τ , we have

E
[
max

(
Y 1, . . . , Y br(τ)c

)]
≤ ξτ ≤ E

[
max

(
Y 1, . . . , Y br(τ)c+1

)]
if

1

2
≤ τ < 1,

E
[
min

(
Y 1, . . . , Y bs(τ)c+1

)]
≤ ξτ ≤ E

[
min

(
Y 1, . . . , Y bs(τ)c

)]
if 0 < τ ≤ 1

2
,

where Y 1, Y 2, . . . are i.i.d. observations from Y . The bracketing of ξτ becomes narrower when τ ↑ 1
or τ ↓ 0.

Yet, there is still another way of looking at ξτ for orders τ in (0, 1). These extremiles are likely to be
most useful when the quantile function q can be written in closed form, for then we have

ξτ =

∫ 1

0
F−1Zτ

(u)du =

∫ 1

0
qt dKτ (t) =

∫ 1

0
Jτ (t)qt dt. (2.5.4)

These expressions are key when it comes to proposing an estimator for an extremile. They clearly link
the τth extremile of the random variable Y to its quantile function as a weighted average of q, which
is the most convenient way of evaluating ξτ .

2.5.2.2 Relating extremiles and probability-weighted moments

Extremiles are closely related to the concept of probability-weighted moments (PWMs) introduced
by [143] and defined by the quantities

Mp,r,s = E [Y p{F (Y )}r{1− F (Y )}s] ,

where p, r, s ≥ 0. These moments have been extensively utilised in extreme value procedures (see
e.g. [47, 145]). Generally, a distribution is characterized either by the moments M1,0,s (s = 0, 1, 2, . . .)
or by the moments M1,r,0 (r = 0, 1, 2, . . .). In our approach, the moments M1,0,s (with s ≥ 0) are
favoured for describing the distribution of the population in the left tail (i.e. for τ ≤ 1/2), but a more
convenient definition for ξτ in the right tail (τ ≥ 1/2) is formulated by considering the moments M1,r,0

(with r ≥ 0). Indeed, for 0 < τ < 1, we can rewrite (2.5.4) as

ξτ =

∫ 1

0
Jτ (t)qt dt = E [Y Jτ (F (Y ))] , (2.5.5)

or equivalently

ξτ =

{
s(τ)M1,0,s(τ)−1 for 0 < τ ≤ 1/2

r(τ)M1,r(τ)−1,0 for 1/2 ≤ τ < 1.
(2.5.6)

Thus, extremiles are proportional to specific PWMs. The weight-generating function Jτ (·) being
monotonically increasing for τ ≥ 1/2 and decreasing for τ ≤ 1/2, the extremile ξτ in (2.5.5) depends
by construction on all feasible values of Y , putting more weight to the high values for τ ≥ 1/2 and
more weight to the low values for τ ≤ 1/2. Therefore ξτ is sensitive to the magnitude of extreme
values for any order τ ∈ (0, 1). In contrast, the τth quantile qτ is determined solely by the probability
level (relative frequency) τ , and so it may be unaffected by extreme values whatever the shape of the
tail distribution, unless τ is very extreme. In addition, when sample quantiles break down at τ ↓ 0
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or τ ↑ 1, the various extremile estimators discussed below in Section 2.5.3 remain more resistant to
extreme values thanks to their formulation as L-functionals whose weighting function Jτ converges
to 0 pointwise on (1/2, 1) at a geometrically fast rate as τ ↑ 1. Hence, the new class represents a
compromise between the robustness of ordinary quantiles and the sensitivity of the extreme ones.

The interpretation in terms of expected minimum and expected maximum of a sample from Y , the
impact on the lower and upper tails of the underlying distribution, the sensitivity and resistance
properties to extremes and the proportionality to PWMs are of particular interest in extreme value
theory. This inspired the name extremiles for this class. As a matter of taste, we prefer to regard
equation (2.5.5), or equivalently (2.5.4), as the most convenient definition of extremiles from a math-
ematical perspective. It should be clear that the first-order necessary condition for optimality related
to the initial definition of extremiles as an L2 risk measure in (2.5.1) leads to

ξτ =
E [Y Jτ (F (Y ))]

E [Jτ (F (Y ))]
,

which in turn gives the identity (2.5.5), since E [Jτ (F (Y ))] = 1 for all τ ∈ (0, 1) by continuity of F .
Note also that the transformed random variable Zτ in (2.5.2) has the same expectation ξτ as the
random variable Y Jτ (F (Y )), but not necessarily the same continuous distribution. In the particular
case where τ ≥ 1/2 and r(τ) is an integer, it is easily seen that Zτ is the maximum of r(τ) independent
copies of Y ; similarly, when τ ≤ 1/2 and s(τ) is an integer, Zτ is the minimum of s(τ) independent
copies of Y . In the general setting, we have the following characterization of Zτ .

Proposition 2.5.1. For a random variable Y with continuous distribution function F and quantile
function q, and for τ ∈ (0, 1), define

φτ = q ◦K−1τ ◦ F i.e. φτ (y) = qK−1
τ (F (y)).

Then Zτ
d
= φτ (Y ).

2.5.2.3 Basic properties

An alternative justification for the use of extremiles to describe probability distributions may be based
on the following propositions. As established in Proposition 2.5.2, extremiles have basic properties
similar to those of quantiles and expectiles.

Proposition 2.5.2. (i) If E|Y | < ∞ then ξτ exists for any τ ∈ (0, 1) and (if Y is not a constant)
defines a continuous increasing function which maps (0, 1) onto the set {y ∈ R | 0 < F (y) < 1}.

(ii) Two integrable random variables Y and Ỹ have the same distribution if and only if ξY,τ = ξ
Ỹ ,τ

for every τ ∈ (0, 1).

(iii) The τ th extremile of the linear transformation Ỹ = a+ bY , a, b ∈ R, is given by

ξ
Ỹ ,τ

=

{
a+ b ξY,τ if b > 0,
a+ b ξY,1−τ if b ≤ 0.

(iv) If Y has a symmetric distribution with mean µ, then ξ1−τ = 2µ− ξτ for any τ ∈ (0, 1).

(v) If Y and Ỹ are comonotone [i.e. there exists a third random variable Ȳ and increasing functions
u and v such that Y = u(Ȳ ) and Ỹ = v(Ȳ )], then ξ

Y+Ỹ ,τ
= ξY,τ + ξ

Ỹ ,τ
.

The wide range of distributions covered by property (i) can be extended further by relaxing the con-
dition of finite “absolute” first moments. By (ii), a distribution with finite absolute first moment is
uniquely defined by its class of extremiles. Expectiles satisfy this law invariance property as well, but
(to the best of our knowledge) for distributions with continuous densities, see Theorem 1 in [209].
Extremiles are also location and scale equivariant by property (iii) in the same way as quantiles
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and expectiles are. The desirable properties (iv) for symmetric distributions and (v) on comono-
tonic additivity are also shared by quantiles. Expectiles also satisfy property (iv), but they are not
comonotonically additive. This is a serious problem for a regulatory risk standard.

We now describe what happens for large extremiles ξτ and how they are linked to extreme quantiles qτ
when F is attracted to the Fisher-Tippett distributions of extreme value types:

(Fréchet) Φγ(y) = exp{−y−1/γ} with support [0,∞) and γ > 0;

(Weibull) Ψγ(y) = exp{−(−y)−1/γ} with support (−∞, 0] and γ < 0;

(Gumbel) Λ(y) = exp{−e−y} with support R.

Let DA(·) denote the maximum domain of attraction of an extreme value distribution, i.e. the set of
distribution functions whose asymptotic distributions of suitably normalised maxima are of an extreme
value type. Recall the notation Γ(·) for Euler’s Gamma function.

Proposition 2.5.3. Suppose that E|Y | <∞.

(i) If F ∈ DA(Φγ) with γ < 1, then

ξτ
qτ
∼ Γ(1− γ){log 2}γ as τ ↑ 1.

(ii) If F ∈ DA(Ψγ), then yu <∞ and

yu − ξτ
yu − qτ

∼ Γ(1− γ){log 2}γ as τ ↑ 1.

(iii) If F ∈ DA(Λ) and yu =∞, then ξτ ∼ qτ as τ ↑ 1. If on the contrary yu <∞, then yu−ξτ ∼ yu−qτ
as τ ↑ 1.

Note that the moments of F ∈ DA(Φγ) do not exist when γ > 1. The index γ tunes the tail
heaviness of the distribution function F , with higher positive values indicating heavier tails. A con-
sequence of Proposition 2.5.3 is that the extremiles of distributions with heavy tails of index γ < 1
are asymptotically more spread than the quantiles since Γ(1 − γ){log 2}γ > 1. Indeed, the function
ϕ : y 7→ log (Γ(1− y){log 2}y) has derivative

ϕ′(y) = −z(1− y) + log(log 2), for all y ∈ (0, 1),

where z(x) = Γ′(x)/Γ(x) denotes Euler’s digamma function. Because z is increasing and z(1) ≈
−0.577 (see Formulae 6.3.2 and 6.3.21 in [39]), the function ϕ is increasing. Hence, for any γ ∈ (0, 1),
Γ(1−γ){log 2}γ > exp(ϕ(0)) = 1 as announced. A similar property holds for short-tailed distributions
F ∈ DA(Ψγ) depending on the value of the extreme value index: numerically, when −0.2907 < γ < 0,
extremiles are asymptotically closer to the right endpoint than quantiles are. By contrast, when γ <
−0.2907, we rather have that quantiles are asymptotically closer to the right endpoint than extremiles
are. Finally, ξτ and qτ are asymptotically equivalent for light-tailed distributions F ∈ DA(Λ). A
similar proposition can of course be given when F is rather in the minimum domain of attraction of
a Fisher-Tippett extreme value distribution.

2.5.3 Estimation of extremiles

This section shows that results for ordinary and trimmed extremiles are easily obtained by means
of L-statistics theory. By contrast, asymmetric least squares estimation of high extremiles leads to
non-trivial developments from the perspective of extreme value theory. Our theorems are derived for
independent and identically distributed random variables.
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2.5.3.1 Ordinary extremiles

Given a random sample Y1, Y2, . . . , Yn from Y, a natural estimator for the extremile of fixed order
τ ∈ (0, 1) is easily obtained by replacing F with its empirical version F̂n in (2.5.3), or equivalently,
by replacing qt with its empirical analogue q̂t in (2.5.4), leading to an L-statistic generated by the
measure dKτ :

ξ̂Lτ =

∫ 1

0
q̂t dKτ (t) =

n∑
i=1

{
Kτ

(
i

n

)
−Kτ

(
i− 1

n

)}
Yi,n,

where Y1,n ≤ Y2,n ≤ · · · ≤ Yn,n denotes the ordered sample. Thanks to this special closed-form

expression for ξ̂Lτ , we can rely for example on tools of [227, 231] for proving its consistency, asymptotic
normality, and deriving the Berry-Esséen rate of uniform convergence O

(
n−1/2

)
.

Theorem 2.5.4. For any index τ ∈ (0, 1),

(i) if E|Y |κ <∞ for some κ > 1, then ξ̂Lτ
a.s.−→ ξτ as n→∞.

(ii) if E|Y |κ < ∞ for some κ > 2, then
√
n
(
ξ̂Lτ − ξτ

)
has an asymptotic normal distribution with

mean zero and variance σ2τ =
∫ 1
0

∫ 1
0 (s ∧ t− s t) Jτ (s) Jτ (t) dF−1(s) dF−1(t).

(iii) If E|Y |3 < ∞, then supt∈R

∣∣∣P(√nστ (ξ̂Lτ − ξτ) ≤ t)− Φ(t)
∣∣∣ = O

(
n−1/2

)
, for any τ ∈ [1 −

(1/2)1/3, (1/2)1/3], where Φ stands for the standard normal distribution function.

Alternatively, one may estimate ξτ from its formulation (2.5.5) as a probability-weighted moment.
Estimating the expectation by the empirical moment and replacing F by its empirical version F̂n
leads to the τth sample extremile

ξ̂LMτ = ξτ (F̂n) =
1

n

n∑
i=1

Jτ

(
i

n

)
Yi,n.

This estimator is another L-statistic, whose asymptotic properties are closely linked to those of ξ̂Lτ
since the finite differences built on the function Kτ in the estimator ξ̂Lτ can be approximated by the
derivative Jτ when n is large. Note further that an M-estimator ξ̂Mτ of ξτ is provided by solving the
empirical least squares problem minθ∈R

∑n
i=1 Jτ

(
i
n

)
|Yi,n−θ|2, which yields the closed form expression

ξ̂Mτ =

∑n
i=1 Jτ

(
i
n

)
Yi,n∑n

i=1 Jτ
(
i
n

) ≡ ξ̂LMτ
1
n

∑n
i=1 Jτ

(
i
n

) .
Since the denominator 1

n

∑n
i=1 Jτ

(
i
n

)
in the last equality converges to 1 as n→∞, the L-statistic ξ̂LMτ

in the numerator can thus be viewed as a Linearised variant of the M-estimator ξ̂Mτ . Both ξ̂LMτ and ξ̂Mτ
are first-order equivalent to ξ̂Lτ . It is also easily seen that the asymptotic distributions of ξ̂Lτ , ξ̂LMτ and
ξ̂Mτ are identical (see Example A pp. 277–278 in [227] and Example 1 in [230]).

Of particular interest are the expected minimum ξτ = E[min(Y 1, . . . , Y s(τ))] and expected maximum
ξτ = E[max(Y 1, . . . , Y r(τ))] which correspond respectively to the cases where s(τ) and r(τ) in (2.5.6)
are positive integers. In these special cases, estimation of ξτ might be most conveniently based on
unbiased estimators of the probability-weighted moments M1,0,s (s = 0, 1, 2, . . .) and M1,r,0 (r =
0, 1, 2, . . .) given respectively by (see [193])

M̂1,0,s =
1

n

n−s∑
i=1

 s∏
j=1

n− i+ 1− j
n− j

Yi,n and M̂1,r,0 =
1

n

n∑
i=r+1

 r∏
j=1

i− j
n− j

Yi,n.

Then, when s(τ) and r(τ) in (2.5.6) are positive integers, the statistic

ξ̂PWM
τ =

{
s(τ)M̂1,0,s(τ)−1 for 0 < τ ≤ 1

2

r(τ)M̂1,r(τ)−1,0 for 1
2 ≤ τ < 1
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is an unbiased estimator of the extremile ξτ . It is straightforward to see from the asymptotic normality
of M̂1,0,s(τ)−1 and M̂1,r(τ)−1,0 (see [159]) that ξ̂PWM

τ converges to the same normal distribution as the

estimators ξ̂Lτ , ξ̂LMτ and ξ̂Mτ do.

2.5.3.2 Large extremiles

In the domain of attraction of heavy-tailed distributions with tail index γ < 1, which plays in particular
a crucial role in financial and actuarial considerations, extremiles ξτ are more sensitive to the magnitude
of heavy right tails than quantiles qτ are, as τ ↑ 1. However, the use of sample counterparts such as, for
instance, ξ̂Lτ to estimate such large population extremiles is typically not appropriate in the extreme
region τ = τ ′n ∈ [1− 1/n, 1). We construct below two extreme value type estimators for ξτ ′n when τ ′n ↑ 1
at an arbitrary rate as n→∞. The first one is based on the use of the asymptotic connection between
extremiles and quantiles, while the second one relies directly on asymmetric least squares estimation.

Estimation based on extreme quantiles A first option to estimate the extremile ξτ ′n is by using its
asymptotic equivalence ξτ ′n ∼ qτ ′n G (γ) obtained in Proposition 2.5.3 (i), where G(s) := Γ(1−s){log 2}s,
s < 1, and γ is the tail index of Y . This suggests to define the quantile-based estimator

ξ̂Q,?τ ′n
:= q̂?τ ′n G (γ̂) (2.5.7)

by substituting in suitable estimators q̂?τ ′n of qτ ′n and γ̂ of γ. Thenceforth, ξ̂Q,?τ ′n
and q̂?τ ′n inherit the same

property about the spread of their population counterparts. On the other hand, the naive sample
maximum Yn,n will not be a consistent estimator of the extreme quantile qτ ′n . In order to extrapolate
outside the range of the available observations, one may use the traditional Weissman estimator q̂?τ ′n
already seen in (2.3.9):

q̂?τ ′n ≡ q̂
?
τ ′n

(τn) :=

(
1− τ ′n
1− τn

)−γ̂
q̂τn , where q̂τn := Yn−bn(1−τn)c,n

with τn → 1 such that n(1− τn)→∞ as n→∞.

Our first step in order to establish the limiting distribution of ξ̂Q,?τ ′n
/ξτ ′n is to analyse the bias incurred

by using the estimator ξ̂Q,?τ ′n
, i.e. the approximation error in Proposition 2.5.3 (i).

Proposition 2.5.5. Suppose that E|Y | < ∞, and that condition C2(γ, ρ,A) holds with γ < 1. Recall
the notation G(s) = Γ(1− s){log 2}s, for s < 1. Then, as τ ↑ 1:

ξτ
qτ
− G(γ) = C1(γ, ρ)A((1− τ)−1) + C2(γ)(1− τ) + o(A((1− τ)−1)) + o(1− τ).

Here

C1(γ, ρ) =


G(γ + ρ)− G(γ)

ρ
if ρ < 0

(log 2)γ
∫∞
0 e−tt−γ (log(log 2)− log(t)) dt otherwise,

and

C2(γ) = −1

2
G(γ) +

[
1 +

log 2

2

]
G(γ − 1)− log 2

2
G(γ − 2).

This result makes it possible to obtain the rate of convergence of the estimator ξ̂Q,?τ ′n
via standard

extrapolation arguments in the spirit of Theorem 4.3.8 in [145]. The next result goes in this sense.

Theorem 2.5.6. Suppose that E|Y | <∞ and:

(i) condition C2(γ, ρ,A) holds with γ < 1 and ρ < 0;

(ii) τn → 1, n(1− τn)→∞ and
√
n(1− τn)A((1− τn)−1)→ λ ∈ R as n→∞;
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(iii)
√
n(1− τn) (γ̂ − γ)

d−→ Z, for a suitable estimator γ̂ of γ, where Z is a nondegenerate limiting
random variable;

(iv) n(1− τ ′n)→ c <∞ and
√
n(1− τn)/ log[(1− τn)/(1− τ ′n)]→∞.

Then √
n(1− τn)

log[(1− τn)/(1− τ ′n)]

(
ξ̂Q,?τ ′n

ξτ ′n
− 1

)
d−→ Z as n→∞.

We shall discuss in Section 2.5.5 below a concrete application to medical insurance data using ξ̂Q,?τ ′n
in

conjunction with the Hill estimator γ̂H of γ and the Weissman estimator q̂?τ ′n of qτ ′n . Other estimation
methods of qτ ′n and γ, such as those of the Peaks-Over-Threshold approach and maximum likelihood

techniques, can of course be used as well in (2.5.7) to define ξ̂Q,?τ ′n
.

Estimation based on intermediate extremiles Here, we first consider estimating a high extrem-
ile ξτn of intermediate level τn satisfying τn → 1 and n(1− τn)→∞ as n→∞. Then, we extrapolate
the resulting estimate to the very extreme level τ ′n which approaches 1 at an arbitrarily fast rate in
the sense that n(1− τ ′n)→ c, for some finite nonnegative constant c.

A natural estimator of the intermediate extremile ξτn follows from the solution of the asymmetric least
squares problem as

ξ̂Mτn =

∑n
i=1 Jτn

(
i
n

)
Yi,n∑n

i=1 Jτn
(
i
n

) =

∫ 1
0 Jτn

(
dnte
n

)
Ydnte,n dt

1
n

∑n
i=1 Jτn

(
i
n

) .

This is the M-estimator ξ̂Mτ presented in Section 2.5.3.1 when τ = τn. Alternative estimators can be
defined by plugging τ = τn in our L-estimator and LM-estimator, resulting in the following estimators:

ξ̂Lτn =
n∑
i=1

{
Kτn

(
i

n

)
−Kτn

(
i− 1

n

)}
Yi,n =

∫ 1

0
Jτn(t)Ydnte,n dt

and ξ̂LMτn =
1

n

n∑
i=1

Jτn

(
i

n

)
Yi,n =

∫ 1

0
Jτn

(
dnte
n

)
Ydnte,n dt.

The asymptotic normality of these estimators requires, in addition to condition C2(γ, ρ,A), to control
the empirical quantile function t 7→ Ydnte,n in the central part of the distribution of Y . This is why we
introduce the following extra condition:

(H) The support of Y is an interval, and on its interior F is twice differentiable with positive prob-
ability density function f and

sup
0<t<1

t(1− t) f
′(qt)

[f(qt)]2
<∞.

Condition (H) makes it possible to approximate the empirical quantile process t 7→ Ydnte,n by a
sequence of standard Brownian bridges in the central part of the interval (0, 1), as well as in the far left
tail due to the geometrically strong penalisation of left tail quantiles by the weighting function Jτn . A
rigorous statement can be found in Theorem 6.2.1 of [82] and Proposition 2.4.9 in [145], among others.
Finally, we shall slightly strengthen the heavy-tailed assumption by assuming:

lim
t→+∞

t
f(t)

1− F (t)
= γ. (2.5.8)

This von Mises condition indeed implies the heavy-tailed assumption, as shown in Theorem 1.11 p.17
of [145] and Proposition 2.1 p.60 of [47]. All examples of commonly used Pareto-type distributions
satisfy (2.5.8); see pp.59–60 of [47]. Under these assumptions, we unravel the common limit distribution
of the normalised estimators ξ̂Lτn/ξτn , ξ̂LMτn /ξτn and ξ̂Mτn/ξτn .

Theorem 2.5.7. Suppose that E|Y | <∞ and:
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• conditions C2(γ, ρ,A), (H) and (2.5.8) hold with γ < 1/2;

• the sequence τn ↑ 1 is such that n(1− τn)→∞ and
√
n(1− τn)A((1− τn)−1) = O(1).

Then, if ξ̂τn is either ξ̂Lτn, ξ̂LMτn or ξ̂Mτn , we have

√
n(1− τn)

(
ξ̂τn
ξτn
− 1

)
d−→ γ

√
log 2

Γ(1− γ)

∫ ∞
0

e−ss−γ−1W (s)ds

where W is a standard Brownian motion. In other words, the above limit distribution is Gaussian
centered with variance

V (γ) =

(
γ

Γ(1− γ)

)2

(log 2)

∫ ∞
0

∫ ∞
0

e−s−t(st)−γ−1(s ∧ t) ds dt.

Turning now to the extreme level τ ′n, we have under the model assumption of heavy-tailed distributions
that

ξτ ′n
qτ ′n
∼ G (γ) ∼ ξτn

qτn
and hence

ξτ ′n
ξτn
∼
qτ ′n
qτn

as n→∞,

in view of Proposition 2.5.3 (i). This motivates the alternative purely extremile-based estimator

ξ̂M,?
τ ′n

:=

(
1− τ ′n
1− τn

)−γ̂
ξ̂Mτn . (2.5.9)

This is still a Weissman-type device which, in contrast to ξ̂Q,?τ ′n
in (2.5.7), relies crucially on our inter-

mediate asymmetric least squares estimator ξ̂Mτn . Another option would be to replace the intermediate

M-estimator ξ̂Mτn in (2.5.9) by either the L-estimator ξ̂Lτn or the LM-estimator ξ̂LMτn . The resulting

extrapolated L- and LM-estimators can easily be shown to share the asymptotic properties of ξ̂M,?
τ ′n

stated below. However, experiments with simulated data indicate that these estimators perform no
better than ξ̂M,?

τ ′n
. We therefore restrict our attention to the latter estimator.

Theorem 2.5.8. Suppose that E|Y | <∞ and:

• conditions C2(γ, ρ,A), (H) and (2.5.8) hold with γ < 1/2 and ρ < 0;

• the sequence τn ↑ 1 is such that n(1− τn)→∞ and√
n(1− τn) max(A((1− τn)−1), 1− τn) = O(1);

•
√
n(1− τn) (γ̂ − γ)

d−→ Z, for a suitable estimator γ̂ of γ, where Z is a nondegenerate limiting
random variable;

• n(1− τ ′n)→ c <∞ and
√
n(1− τn)/ log[(1− τn)/(1− τ ′n)]→∞.

Then √
n(1− τn)

log[(1− τn)/(1− τ ′n)]

(
ξ̂M,?
τ ′n

ξτ ′n
− 1

)
d−→ Z as n→∞.

Like the quantile-based estimator ξ̂Q,?τ ′n
, the extrapolated M-estimator ξ̂M,?

τ ′n
inherits the limit distribu-

tion of γ̂ with a slightly slower rate of convergence.

2.5.4 Extremiles as risk measures

We investigate below the properties of the extremile functional from the point of view of the axiomatic
theory of risk measures. The discussion in Section 2.5.4.1 pertains to non-negative loss distributions,
while Section 2.5.4.2 focuses on real-valued profit-loss random variables. Section 2.5.4.3 examines the
connection between tail extremiles, expectiles and ES.
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2.5.4.1 Coherency, regularity and pessimism

Taking ξτ as a margin (amount of capital as a hedge against extreme risks), a larger ξτ is then a
more prudential margin requirement and results in larger τ . As such, the index τ reflects the level of
prudentiality to be typically set by regulators and/or the management level. When τ = 1/2, ξτ is the
net expected loss. When τ < 1/2, the values of the risk measure ξτ are less than E(Y ), which is not
appropriate when Y ≥ 0 is a loss random variable. Hence, a natural range for the security level τ is
given by [1/2, 1]. The use of ξτ as a proper risk measure can be justified further as follows. Recall the
class of (coherent) Wang distortion risk measures,

Π[Y ] =

∫ ∞
0

g(1− F (y))dy, (2.5.10)

where g is a nondecreasing and concave function with g(0) = 0 and g(1) = 1. The review article by [257]
discusses a number of important distortion functions including those we considered in Section 2.2.5:
the Proportional Hazard transform g(t) = PHλ(t) := tλ, for the so-called risk-aversion index λ ∈ (0, 1],
and the Dual Power transform g(t) = DPr(t) := 1−(1−t)r for r ≥ 1. The ES (or equivalently CTE, in
our context of continuous distribution functions) can be expressed in terms of the distortion function
t 7→ (t/(1− τ))I{0 ≤ t < 1− τ}+ I{1− τ ≤ t ≤ 1}. While the VaR and ES use only a small part of
the loss distribution, both PH and DP distortion functions utilise the whole loss distribution and are
more reliable for the purpose of differentiating between more and less risky distributions. Extremiles
themselves clearly belong to the class of risk measures of the form (2.5.10), with the alternative concave
distortion function

gτ (t) := 1−Kτ (1− t) = 1− (1− t)r(τ), 1

2
≤ τ ≤ 1.

It turns out that this function is very closely related to the DP transform in the sense that gτ = DPr(τ).
Its formulation in terms of the asymmetry parameter τ ∈ [1/2, 1] allows, like the tail probability τ in the
VaR qτ and ES ντ = E[Y |Y > qτ ], for better interpretability compared to the distortion parameter
r ∈ [1,∞) in the DP transform. Let us highlight in particular that the asymmetric least squares
formulation makes the comparison of extremiles (and, incidentally, of DP transforms) with both VaR
and ES easier and more insightful than the purely distortion-based interpretation: being least squares
analogues of quantiles, extremiles rely on the distance to observations and depend by construction on
both the tail losses and their probability, making thus more efficient use of the available data, whereas
VaR only depends on the frequency of tail losses and ES only depends on the tail event. Besides, the
extremile distortion function gτ results in a more widely applicable risk measure than the PH-measure,
at least in the following respect: the empirical estimators of both measures allow one to determine the
price of an insurance risk without recourse to any fitting of a parametric model. However, as shown
by [169], the asymptotic normality of the empirical PH-measure,

∫∞
0 (1 − F̂Y (y))λdy, does not cover

the range 0 < λ ≤ 1/2, and requires the assumption that E|Y |κ <∞, for some κ > 1/(λ− 1/2), when
1/2 < λ ≤ 1. Hence, the number κ of required finite moments tends to +∞ as λ ↓ 1/2. By contrast,
as shown in Theorem 2.5.4, inference on ξτ is feasible for any index τ , under the weaker assumption
that E|Y |κ <∞ for some κ > 2.

It is straightforward to see that the extremile-based risk measure Πτ [Y ] := ξY,τ , for τ ∈ (1/2, 1),
satisfies the following two natural properties related to risk loading:

(A1) Positive loading and no ripoff: E(Y ) < Πτ [Y ] < yu, limτ→1/2 Πτ [Y ] = E(Y ), and limτ→1 Πτ [Y ] =
yu.

(A2) No unjustified risk-loading: if P (Y = b) = 1 for some constant b then Πτ [Y ] = b.

More importantly, the extremile risk measure also satisfies the requirements for being a coherent risk
measure:

(A3) Translation and scale invariance: Πτ [a+ bY ] = a+ bΠτ [Y ], for any a ∈ R and b > 0.

(A4) Subadditivity: Πτ [Y + Ỹ ] ≤ Πτ [Y ] + Πτ [Ỹ ], for any loss variables Y and Ỹ .
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(A5) Preserving of stochastic order: Πτ [Y ] ≤ Πτ [Ỹ ] if Y ≤ Ỹ with probability 1.

Finally, Πτ [·] is a regular risk measure since it fulfills the following additional fundamental conditions
(as imposed e.g. in Definition 5 of [46]):

(A6) Law invariance: Πτ [Y ] = Πτ [Ỹ ] if Y and Ỹ have the same distribution.

(A7) Comonotonic additivity: Πτ [Y + Ỹ ] = Πτ [Y ] + Πτ [Ỹ ] if Y and Ỹ are comonotone.

According to Theorem 1 in [46], being coherent and regular, Πτ [·] is then a pessimistic risk measure
in the sense that the corresponding distortion function gτ acts to depress the implicit likelihood of
the most favourable outcomes, and to accentuate the likelihood of the least favourable ones (see
Definition 4 in [46] for a formal characterisation of pessimistic risk measures). As such, the index τ
becomes a natural measure of the degree of pessimism. Note also that equation (2.5.4) makes Πτ [·] a
spectral risk measure in the sense of [40].

2.5.4.2 Real-valued profit-loss random variables

The extremile-based risk measure Πτ [Y ] can still be defined when Y is an asset return, which can take
any real value, by using the more general expression (2.5.3), that is,

ξτ =

∫ 0

−∞
[gτ (1− F (y))− 1] dy +

∫ ∞
0

gτ (1− F (y))dy,

or its various equivalent formulations described in Sections 2.5.2.1-2.5.2.2, where

gτ (t) := ts(τ)I{0 ≤ τ < 1/2}+ [1− (1− t)r(τ)]I{1/2 ≤ τ ≤ 1}.

A number of studies, including [46, 169] and the references therein, have recognised the usefulness
of such Choquet integrals in actuarial and financial applications as well as in the area of measuring
economic inequality. The coherency axioms of the risk measure Πτ [Y ] := −ξY,τ for asset returns can
easily be checked by making use of the alternative formulation (2.5.5) of ξτ as a probability-weighted
moment. The key argument is that the special weight-generating function Jτ (·) is an admissible risk
spectrum in the sense of [40].

Proposition 2.5.9. For the profit-loss Y of a given portfolio and for any 0 < τ < 1/2,

Πτ [Y ] = −ξY,τ ≡ −E [Y Jτ (F (Y ))]

is a coherent spectral risk measure.

In the special case where the power s(τ) in the distortion function gτ is an integer, we recover the
particularly attractive and very intuitive interpretation of the so-called MINVAR risk measure intro-
duced in [75], namely the negative of the expected minimum of s(τ) independent observations from Y .
See also [121].

Despite their statistical virtues and all their nice axiomatic properties as spectral risk measures and
concave distortion risk measures, extremiles have an apparent limitation when applied to distributions
with infinite mean. This should not be considered to be a serious disadvantage however, at least in
financial and actuarial applications, since the definition of a coherent risk measure for distributions
with an infinite first moment is not clear, see the discussion in Section 3 of [207]. Whether operational
risk models in which losses have an infinite mean make sense in the first place has also recently been
questioned by [76].
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2.5.4.3 Connection between extremiles, expectiles and Expected Shortfall

We consider both cases of non-negative loss distributions and real-valued profit-loss distributions with
heavy right tails. In the case of a profit-loss distribution, the financial position Y stands for the
negative of the asset return so that the right tail of F corresponds to the negative of extreme losses.
Accordingly, as established in Proposition 2.5.3, the corresponding extremile-based risk measure ξτ is
more pessimistic, from the risk management viewpoint, than the traditional quantile-VaR qτ for large
values of τ . Next, we show that ξτ is more pessimistic than the expectile-based VaR eτ as well, in
the standard case of finite-variance distributions, but it is always less pessimistic than the ES ντ , for
large τ . The key ingredients to show this are the following asymptotic connections.

Proposition 2.5.10. Suppose that E|Y | < ∞ and Y has a heavy-tailed distribution with tail index
0 < γ < 1. Then, as τ → 1,

ξτ
eτ
∼ Γ(1− γ){(γ−1 − 1) log 2}γ and

ξτ
ντ
∼ Γ(2− γ){log 2}γ .

We now show how Proposition 2.5.10 entails that high extremiles are more conservative than high
expectiles at the same level, when γ ∈ (0, 1/2). The idea is simply to note that for γ ∈ (0, 1/2), we
have γ−1−1 > 1, and therefore Γ(1−γ){(γ−1−1) log 2}γ > Γ(1−γ){log 2}γ > 1, establishing thus that
ξτ > eτ for τ large enough when the underlying distribution has a finite variance. This is, however, no
longer valid for the heaviest tails since the proportionality constant Γ(1 − γ){(γ−1 − 1) log 2}γ tends
to log 2 < 1 as γ → 1. More precisely, a numerical study shows that high extremiles shall be more
conservative than high expectiles if and only if 0 < γ < γ0, with γ0 ≈ 0.8729. By contrast, that
high extremiles are always less conservative than their ES analogues is a consequence of the inequality
Γ(2− γ){log 2}γ < {log 2}γ < 1, for all γ ∈ (0, 1).

Finally, we would like to stress why our finding in Proposition 2.5.10 that qτ < ξτ < ντ , as τ → 1,
is not a contradiction to Theorem 13 in [93]. This theorem states that any coherent, law-invariant
risk measure satisfying the Fatou property and greater than or equal to qτ (for every Y ∈ L∞) must
also be greater than or equal to ντ . The extremile ξτ defines a law-invariant, coherent, and hence
convex risk measure, satisfying thus the Fatou property, see Theorem 2.1 in [170] and Theorem 2.2
in [244]. However, the key condition of Delbaen’s theorem that qτ ≤ ξτ is not fulfilled for short-tailed
distributions with a large |γ|, as discussed below our Proposition 2.5.3.

2.5.5 Finite-sample study

2.5.5.1 Finite-sample performance on simulated data

The finite-sample performance of the two rival estimators ξ̂Q,?τ ′n
in (2.5.7) and ξ̂M,?

τ ′n
in (2.5.9) is consid-

ered in Section 3.3.3 of [5] on the Student t1/γ distribution, the Pareto distribution and the Fréchet

distribution, for a tail index γ ∈ {1/4, 1/3, 2/5}. In terms of the relative MSE, it may be seen that ξ̂M,?
τ ′n

has a very similar behaviour to ξ̂Q,?τ ′n
in the Fréchet model, but performs better in both the Pareto and

Student models, for all considered values of γ. It may also be seen that ξ̂M,?
τ ′n

is superior in terms of
bias in all scenarios. Although either might be used in practice, we would therefore have a particular
preference for the purely extremile-based estimator ξ̂M,?

τ ′n
.

2.5.5.2 Data example 6: Trended hurricane losses

We first consider a dataset on trended or, equivalently, inflation-adjusted (to 1981 using the U.S.
Residential Construction Index) hurricane losses that occurred between 1949 and 1980. Figure 2.13
(left panel) displays the histogram and scatterplot of the recorded n = 35 trended hurricane losses
in excess of $5 million (in units of $1,000). An analysis of this data set conducted from a central
point of view is presented in [169]; our focus here is rather on the right tail of the observations from
a descriptive point of view. We treat the 35 amounts as the outcomes of i.i.d. non-negative loss
random variables Y1, . . . , Y35. The corresponding sample mean and standard deviation are 199,900
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Figure 2.13: Trended Hurricane Losses data. Left panel: histogram and scatterplot, right panel:
empirical expected shortfall, extremile, expectile and quantile τ -risk measures.

and 325,807, respectively. The empirical estimates of the expected shortfall, quantile, expectile and
extremile risk measures are graphed in Figure 2.13 (right panel) against the security level τ . The
first impression to be gained from this figure is the lack of smoothness and stability of both sample
quantile-VaR q̂τ (blue) and ES ν̂τ (orange): their discreteness as piecewise constant functions of the
argument τ is a serious defect, especially in the upper tail. Indeed, a small change in τ can trigger
a (severe) jump in the values of the estimated VaR and ES, while the “steps” result in the same or
similar measures for significantly different risk levels. By contrast, the sample extremile ξ̂τ = ξ̂Lτ (red)
and expectile êτ (green) are very stable and change continuously and increasingly without recourse to
any smoothness procedure.

When comparing the four estimated risk measures at the same level τ , it can be seen that the ES ν̂τ ,
in orange, is much larger and hence more conservative than the extremile ξ̂τ in red. By contrast, the
quantile q̂τ , in blue, remains less alert to extreme risks than ξ̂τ until it breaks down at τ = (n−1)/n =
0.9714. Thenceforth, for all τ > 0.9714, q̂τ becomes identical to ν̂τ which in turn coincides with the
maximum catastrophic loss Yn,n = 1,633,000, whereas ξ̂τ provides less pessimistic values. Finally,

although the expectile êτ , in green, exhibits a smooth evolution, it diverges from ξ̂τ in the region
τ ∈ [0.8, 0.975] and becomes less alert to infrequent disasters. The extremile in red seems to provide
a compromise between the pessimistic ES in orange and the optimistic expectile in green.

Of particular interest is the deviation between the estimated extremile ξ̂τ and quantile q̂τ . Being the
estimates, respectively, of the mean and the median of the same asymmetric distribution Kτ (F ) of
the transformation φτ (Y ), a significant deviation between their values diagnoses a heavier right tail
of Y . Thereby the comparison above with the same level τ may be viewed as an explanatory tool for
quantifying the “riskiness” implied by the distribution of Y , rather than as a method for final analysis,
especially since we know that non-extrapolated sample extremiles and quantiles will be inconsistent
in the typical extreme range τ ≥ 1− 1/n.
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2.5.5.3 Data example 3 revisited: The Society of Actuaries medical data set

We revisit here the data set studied in Section 2.3.7.2. A histogram of the data is given again in
Figure 2.14 (a). As in Section 2.3.7.2, we deal here only with the 75,789 claims for 1991 and we
compare risk measures estimates at the extreme level τ ′n = 1− pn, with pn = 1/100,000 < 1/n.

Figure 2.14 (b) shows the Weissman estimate q̂?τ ′n against the effective sample size k = n(1− τn) (solid
black curve). A stable region appears for k from 150 up to 500, leading to estimates between 3.73 and
4.12 million, with an averaged estimate around 3.90 million. This tail risk estimate does not exceed
the sample maximum Yn,n = 4.51 million (indicated by the horizontal pink line).

An alternative estimator of the same extreme quantile-VaR qτ ′n is found from Section 2.3.6:

ê?τ̂ ′n =

(
1− τ̂ ′n
1− τn

)−γ̂H
êτn where τ̂ ′n = 1− 1− τ ′n

γ̂−1H − 1
= 1− pn

γ̂−1H − 1

and êτn stands for the empirical counterpart of the expectile eτn , with τn = 1 − k/n. The plot of
this composite expectile estimator ê?τ̂ ′n

against k (dashed grey curve) indicates an averaged estimate of

around 4.13 million for k ∈ [150, 500]. In contrast to q̂?τ ′n which relies on a single order statistic Yn−k,n,
the extrapolated expectile estimator ê?τ̂ ′n

is based on the least asymmetrically weighted squares estima-
tor êτn , and hence is more sensitive to the magnitude of infrequent large claims. Yet, both ê?τ̂ ′n

and q̂?τ ′n

actually estimate the median qτ ′n of the asymmetric heavy-tailed distribution Kτ ′n(F ) of Zτ ′n
d
= φτ ′n(Y ),

see Proposition 2.5.1. The burden of representing a pessimistic risk measure is thwarted by the ro-
bustness properties of the median, especially in a heavy-tailed context. The mean of Zτ ′n , which is
nothing but the extremile ξτ ′n , bears naturally much better this burden. The plots of its two estima-

tors ξ̂Q,?τ ′n
(rainbow curve) and ξ̂M,?

τ ′n
(dotted black curve), defined respectively in (2.5.7) and (2.5.9),

clearly afford more pessimistic risk information than the plots of q̂?τ ′n and ê?τ̂ ′n
. The final results based

on averaging these extremile estimates from the stable region k ∈ [150, 500] are 4.83 million for ξ̂Q,?τ ′n

and 4.78 million for ξ̂M,?
τ ′n

. These estimates deserve indeed to be qualified as “pessimistic” since they do
lie beyond the range of the data, but not by much. This might be good news to practitioners whose
concern is to contrast “pessimistic” and “optimistic” judgments as in the duality between the mean
and the median. Besides this duality, it should also be clear that the resulting extremile estimates
have their own intuitive interpretation. Indeed, since τ ′n = (1/2)1/r with r ≈ 69,314, the quantity
ξτ ′n ≡ E[max(Y 1, . . . , Y r)] gives the expected maximum claim amount among a fixed number of 69,314
potential claims.

The risk estimates q̂?τ ′n , ê?τ̂ ′n
, ξ̂M,?
τ ′n

and ξ̂Q,?τ ′n
, graphed in Figure 2.14 (b), are all based on the Hill estimator

γ̂H of γ and the Weissman estimator q̂?τ ′n of qτ ′n . Instead, one may choose to use the maximum likelihood
(ML) and Peaks-Over-Threshold (POT) estimators of γ and qτ ′n . The POT estimator of qτ ′n has the
form

q̃?τ ′n = Yn−k,n +
σ̃ML

γ̃ML

((npn
k

)−γ̃ML

− 1

)
,

where σ̃ML and γ̃ML are chosen here to be the ML estimates for the parameters σ and γ of the
Generalised Pareto approximation (see e.g. p.158 of [47]). Replacing γ̂H and q̂?τ ′n by their respective

analogues γ̃ML and q̃?τ ′n in the expectile and extremile risk estimates ê?τ̂ ′n
, ξ̂M,?

τ ′n
and ξ̂Q,?τ ′n

, we get the
alternative versions

ẽ?τ̃ ′n :=

(
1− τ̃ ′n
1− τn

)−γ̃ML

êτn where τ̃ ′n = 1− 1− τ ′n
γ̃−1ML − 1

= 1− pn

γ̃−1ML − 1
,

ξ̃M,?
τ ′n

:=

(
1− τ ′n
1− τn

)−γ̃ML

ξ̂Mτn and ξ̃Q,?τ ′n
:= q̃?τ ′n G (γ̃ML) .

The plots of the alternative risk estimates q̃?τ ′n , ẽ?τ̃ ′n
, ξ̃M,?

τ ′n
and ξ̃Q,?τ ′n

are graphed in Figure 2.14 (c).
These plots seem to be more volatile than those obtained via the Weissman extrapolation method in
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Figure 2.14: SOA Group Medical Insurance data. (a) Histogram and scatterplot of the log-claim
amounts. (b) Using the Weissman extrapolation method and the Hill estimator: the extremile plots
k 7→ ξ̂Q,?τ ′n

(rainbow) and k 7→ ξ̂M,?
τ ′n

(dotted black), along with the quantile plot k 7→ q̂?τ ′n (solid black),

the expectile plot k 7→ ê?τ̂ ′n
(dashed grey) and the sample maximum Yn,n (pink line). (c) Using the

POT approach and the maximum likelihood estimator of γ: the extremile plots k 7→ ξ̃Q,?τ ′n
(rainbow)

and k 7→ ξ̃M,?
τ ′n

(dotted black), along with the quantile plot k 7→ q̃?τ ′n (solid black), the expectile plot

k 7→ ẽ?τ̃ ′n
(dashed grey) and the maximum Yn,n (pink line).
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Figure 2.14 (b). A stable region appears, however, for k from 200 up to 500, leading to the averaged
estimates q̃?τ ′n = 4.10 million, ẽ?τ̃ ′n

= 4.52 million, ξ̃M,?
τ ′n

= 5.32 million and ξ̃Q,?τ ′n
= 5.17 million. These

POT and ML-based risk values are larger and hence more conservative than their Weissman and Hill-
based analogues q̂?τ ′n = 3.90 million, ê?τ̂ ′n

= 4.13 million, ξ̂M,?
τ ′n

= 4.78 million and ξ̂Q,?τ ′n
= 4.83 million.

The most important difference is 0.54 million, between the two extremile estimators ξ̃M,?
τ ′n

and ξ̂M,?
τ ′n

,
followed by a difference of 0.39 million between the expectile estimators ẽ?τ̃ ′n

and ê?τ̂ ′n
. Taking a closer

look to the construction of these competing asymmetric least squares estimators, we see that their
substantial deviation is mainly due to the use of the Hill estimator γ̂H in the Weissman extrapolation
method and the ML estimator γ̃ML in the POT method. The volatility of the POT plots can thus be
explained, on the one hand, by an averaged estimate γ̃ML = 0.38 slightly higher than γ̂H = 0.36 (these
estimates were averaged over k ∈ [200, 500] and k ∈ [150, 500], respectively), and most importantly, on
the other hand, by ML estimates of γ being far more volatile than their Hill counterparts as functions
of k. The advantageous stability of γ̂H relative to γ̃ML becomes clear by comparing the colour-schemes
in Figures 2.14 (b) and (c).

2.5.6 Perspectives for future research

Forecast evaluation and validation We showed that extremiles define a law-invariant, coherent,
and comonotonically additive risk measure. It follows that, for τ 6= 1/2, they are not elicitable [191,
265], contrary to expectiles (which are not comonotonically additive). Elicitability is a key part of the
appeal of expectiles to actuarial and financial risk managers, because it corresponds to the existence
of a natural forecast verification and comparison methodology. Yet, it is known that certain spectral
risk measures are jointly elicitable with quantiles (see [120]). Although this result in its current form
focuses on finite convex combinations of Expected Shortfall at multiple levels and therefore does not
apply to extremiles, it is reasonable to investigate whether a similar result dedicated to this class can
be shown. This would then pave the way for a validation procedure of extremile forecasts.

Extreme value inference outside the class of heavy-tailed distributions Our results on
extremile estimation at high levels are, like the results we obtained for expectiles in Section 2.3, derived
under the assumption of a heavy right tail, motivated by applications in insurance and finance. Unlike
the situation for expectiles, an extension of our results to the Weibull and Gumbel domains of attraction
has an interest in itself, since extremiles benefit from several interpretations, in particular in terms
of expected maxima and minima, and are therefore likely to appeal to risk analysts in fields such as
environmental science, where distributions from the Weibull and Gumbel domains of attraction either
naturally appear or are used as modelling tools [77, 124, 246]. A crucial first step before developing
an inference method for high extremiles adapted to such setups will be to generalise the asymptotic
expansion in Proposition 2.5.5 outside of the class of heavy-tailed distributions.

Adaptation to the regression context Like quantiles and expectiles, extremiles can be formulated
as the minimiser of a convex criterion. For quantiles and expectiles, this is most useful in regression
contexts; as a matter of fact, expectiles were introduced by [209] specifically in a regression context.
The extension of extremile estimation to a regression context is therefore a very natural step. Already
the implications of Proposition 2.5.2 (iii) and (iv) on regression extremiles are clear. For example,
conditional extremile curves will be parallel to each other if the conditional distributions of the response
are homogeneous. Also, for any τ , the lower and upper τth conditional extremile curves will be
symmetric about the mean curve if the conditional distributions of the response are symmetric. From
an inferential point of view, the closed form expression of extremiles as weighted averages of the
quantiles suggests that regression extremiles may be estimated by an integral of the generalised inverse
of a nonparametric kernel estimator of the conditional distribution function; the functional convergence
of the latter has been extensively investigated, see e.g. [158]. At extreme levels, the connection between
extremiles and quantiles at high levels through an asymptotic proportionality constant only depending
on the tail index hints at the possibility of constructing extreme conditional extremile estimators by
combining conditional tail index estimators (such as the averaged local Hill estimator in [24]) and
extreme conditional quantile estimators (such as the one of [85]).
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2.6 Towards multivariate risk management: technical tools on the
joint behaviour of extreme value estimators for heavy tails [4]

2.6.1 Introduction

All the risk measures we have worked on so far in Chapter 2 (Wang DRMs, expectiles, Lp−quantiles,
tail Lp−medians, extremiles) are, in heavy-tailed models, asymptotically proportional to tail quan-
tiles. As such, their estimators at extreme levels can be extrapolated from empirical estimators at
intermediate levels via straightforward adaptations of Weissman’s method by relying on tail index
estimators. Tail index estimation is therefore a central question in the statistical analysis of extreme
risk measures, as it is in the development of inference procedures for the extremes of heavy-tailed
distributions in general. The most popular and well-known tail index estimator in heavy-tailed mod-
els is arguably the Hill estimator [153], which we have worked with several times throughout this
report. Since this estimator is central to the motivation and writing of this section, we recall once
again its expression: assuming that X1, . . . , Xn is a random sample of copies of a variable X having
a heavy-tailed distribution with tail index γ, the Hill estimator of γ is

γ̂(k) :=
1

k

k∑
i=1

log
Xn−i+1,n

Xn−k,n
.

Here, k = k(n) is such that k → ∞ and k/n → 0, and X1,n ≤ X2,n ≤ · · · ≤ Xn,n denote the order
statistics related to X1, . . . , Xn. It is well-known that, under an appropriate second-order condition on
X controlling the gap between the underlying distribution and the Pareto distribution, this estimator is√
k−asymptotically normal. A variety of proofs of this result are available, including arguments based

on a representation of log-spacings in terms of independent exponential random variables (see Section
4.4 in [47]), Rényi’s representation of order statistics (see pp.74–75 in [145]) or the tail empirical
process (see Proposition 9.3 p.302 in [215]). A common aim of these approaches is to deal with
the structure of the Hill estimator in terms of top order statistics, which are significantly harder to
handle than the original X1, . . . , Xn. Although this theoretical difficulty is now well-understood, it is
further compounded if one wants to show the joint asymptotic normality of marginal Hill estimators
for a random vector with heavy-tailed marginal distributions, since one then also needs to take into
account the asymptotic dependence structure within the underlying multivariate distribution. Such
joint convergence results have only been proven very recently by [94, 156, 177]. The methods of
proof therein rely on advanced theoretical methodologies, namely multivariate vague convergence
in [94, 177] and multivariate empirical process theory in [156], as well as on various ad hoc technical
conditions. These joint asymptotic results have been found useful for testing the tail homogeneity
assumption across marginals of a multivariate heavy-tailed distribution in environmental or financial
contexts [156, 177] and constructing improved tail index estimators by pooling [94].

The Hill estimator can be written in several different ways. When there are no ties in the sample
X1, . . . , Xn (this is for example the case when the distribution function of X is continuous), one has
k =

∑n
i=1 I{Xi > Xn−k,n}. Noting then that

γ̂(k) =

∑n
i=1[logXi − logXn−k,n]I{Xi > Xn−k,n}∑n

i=1 I{Xi > Xn−k,n}

suggests that a major difficulty in the theoretical analysis of the Hill estimator lies in the fact that the
high threshold Xn−k,n, used to guarantee the consistency of the estimator by retaining only the high
values in the sample, is random. Indeed, if we could, in the asymptotic analysis of γ̂(k), replace the
random quantity Xn−k,n, which is nothing but the empirical quantile at level 1−k/n, by the unknown
but non-random population quantile q(1− k/n), we would find the pseudo-estimator

γ̃(k) =

∑n
i=1[logXi − log q(1− k/n)]I{Xi > q(1− k/n)}∑n

i=1 I{Xi > q(1− k/n)}

which is conceptually far easier to analyse than γ̂(k): for independent X1, . . . , Xn, this pseudo-
estimator is a ratio of sums of independent variables constructed on the Xi, and thus can easily
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be handled by a combination of Lyapunov’s central limit theorem and the Cramér-Wold device. The
striking and perhaps unexpected point here is that the asymptotic distributions of γ̂(k) and γ̃(k) are
identical, as can be seen by comparing Theorem 3.2.5 in [145] and Theorem 4.3.1 in [136]. On this
basis, one may therefore ask whether a relationship of the form

γ̂(k) = γ̃(k) + oP

(
1√
k

)
(2.6.1)

can be shown. Such a relationship has not, to the best of our knowledge, been proven so far in the
literature. Its validity is not obvious either, since γ̃(k) is obtained from γ̂(k) by replacing Xn−k,n
with q(1 − k/n), and we know that Xn−k,n/q(1 − k/n) − 1 only converges to 0 at the rate

√
k (see

Theorem 2.4.1 in [145]), which is the common rate of convergence of γ̃(k) and γ̂(k). Let us also point
out straightaway that although Equation (2.6.1) would give an additional proof of the convergence of
the Hill estimator γ̂(k), this is not where its full value lies, since the asymptotic properties of the Hill
estimator are well-known. It really becomes useful when, for instance, analysing the joint convergence
of marginal Hill estimators since, in contrast to the joint convergence of the randomly thresholded
versions, the joint convergence of the non-randomly thresholded versions is easy to obtain (under an
appropriate upper tail dependence condition) by a combination of standard central limit theory and
the Cramér-Wold device.

The proof of Equation (2.6.1) is the motivation for the paper [4], whose contribution we present in this
section. More precisely, the objective of the paper is to embed the Hill estimator in a wider class of
average excesses and then provide a simple representation of those empirical average excesses above a
high random threshold in terms of their pseudo-estimator versions with a non-random threshold. The
class of average excesses we consider includes the Hill estimator, and can be modified in a very simple
way to encompass Conditional Tail Moments (CTMs). We show in particular how the results of [94],
on the joint asymptotic normality of marginal Hill estimators for a random vector with heavy-tailed
marginal distributions, can be recovered and generalised under weaker assumptions and by elementary
techniques. We shall then highlight a couple of applications of this joint asymptotic normality result,
including to the obtention of the asymptotic properties of the tail index estimator introduced by [22]
when the variable of interest is randomly right-truncated. The question of the convergence of this
estimator was considered first by [22] under restrictive assumptions, and then by [54] using a delicate
theoretical argument based on the weighted tail copula process and a joint tail assumption on the
observed pair. Our results will make it possible to unify and extend the results of [22, 54], without
either resorting to the former’s advanced methodology and joint dependence condition or to the latter’s
technical conditions. In doing so, we will also be able to give a very simple expression of the asymptotic
variance of the limiting normal distribution. Finally, and motivated by the ideas of [156], we shall apply
our results to find joint convergence results on empirical CTMs that may be of independent interest,
for instance in testing whether certain tail moments of two asymptotically dependent variables are
equal. We will highlight how such results nicely complement results of [14, 114].

The outline of this section is the following. Our framework and main results are stated in Section 2.6.2.
Applications of our results, to the joint convergence of Hill and CTM estimators and to the convergence
of a tail index estimator under random right-truncation, are presented in Section 2.6.3. Section 2.6.4
concludes by discussing perspectives for future work.

2.6.2 Framework and main results

We assume in this section that the data is made of independent copies X1, . . . , Xn of a random vari-
able X. We assume for ease of presentation that the distribution function F is continuous, so
that, with probability 1, there are no ties in the sample X1, . . . , Xn. This is not restrictive for our
purposes, as our applications of the main results presented here focus on the obtention of joint conver-
gence results for several estimators of extreme value indicators pertaining to a multivariate random
vector with heavy-tailed marginal distributions. Such an endeavour indeed typically requires the stan-
dardisation of the marginal distributions to uniform distributions (made convenient by the continuity
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assumption), in order to obtain a meaningful description of the relevant extremal dependence struc-
ture. Our results can still be shown, at the expense of extra technical details, if F is only continuous
in a neighbourhood of infinity.

Let us now define the central concepts we will focus on in this section. Again, let us recall our
motivation, which is to link the Hill estimator γ̂(k) to its pseudo-estimator version γ̃(k). One
interpretation of the Hill estimator γ̂(k) is that it is a sample version of the average log-excess
E(logX − logU(n/k) |X > U(n/k)) (see p.104 of [47], and p.69 of [145]); it should also be clear
that γ̃(k) is a pseudo-estimator of this average log-excess. This motivates us to carry forward the
notion of average excess with the following definition.

Definition 2.6.1. Let X be a heavy-tailed random variable and f be a continuous function on a
neighbourhood of infinity such that for some t0, the quantity E(|f(X)| |X > t0) is well-defined and
finite. For any t ≥ t0, we define the average f -excess of X above level t to be

AEf (t) := E(f(X)− f(t) |X > t) =
E([f(X)− f(t)]I{X > t})

F (t)

and the empirical average f -excess of X above level t to be

ÂEf (t) :=
n−1

∑n
i=1[f(Xi)− f(t)]I{Xi > t}

F̂n(t)
, where F̂n(t) :=

1

n

n∑
i=1

I{Xi > t}.

We also define the expected f -shortfall above level t as

ESf (t) := E(f(X) |X > t) = AEf (t) + f(t)

and the empirical expected f -shortfall above level t as

ÊSf (t) :=
n−1

∑n
i=1 f(Xi)I{Xi > t}

F̂n(t)
= ÂEf (t) + f(t).

With this definition, letting f = log, we find

ÂElog(Xn−k,n) = γ̂(k), ÂElog(U(n/k)) = γ̃(k)

and AElog(U(n/k)) = E(logX − logU(n/k) |X > U(n/k)).

The other main example allowed by Definition 2.6.1 which we will consider in this section is obtained
by choosing f = fa : x 7→ xa for some a > 0. We then get, for any t > 0,

ESfa(t) = E(Xa |X > t) =: CTMa(t),

where CTMa is the Conditional Tail Moment of order a introduced in [114]. This definition makes sense
for any a < 1/γ, since all conditional tail moments of X of order smaller than 1/γ are finite (a rigorous
statement is Exercise 1.16 in [145]). An empirical counterpart of CTMa(U(n/k)) = ESfa(U(n/k)) is
then

1

k

k∑
i=1

Xa
n−i+1,n = ÊSfa(Xn−k,n) = ÂEfa(Xn−k,n) +Xa

n−k,n.

Common features of the above two examples are that they crucially hinge on the notion of average
f−excess, and most importantly that the derivative of the function f involved in their construction is
a power function. This observation provides the motivation for our first main result, which provides
an asymptotic relationship between ÂEf (Xn−k,n) and ÂEf (U(n/k)) when f ′ is regularly varying at
infinity.
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Theorem 2.6.1. Suppose that X satisfies condition C2(γ, ρ,A). Let k = k(n)→∞ be such that k/n→
0 and

√
kA(n/k) = O(1). Assume finally that f is continuously differentiable in a neighbourhood of

infinity, ultimately increasing, and that f ′ is regularly varying with index a − 1, where 0 ≤ 2aγ < 1.
Then we have:

ÂEf (Xn−k,n)

AEf (U(n/k))
− 1 =

(
ÂEf (U(n/k))

AEf (U(n/k))
− 1

)
+ aγ

(
F̂n(U(n/k))

F (U(n/k))
− 1

)
+ oP

(
1√
k

)
.

In particular
√
k

(
ÂEf (Xn−k,n)

AEf (U(n/k))
− 1

)
d−→ N

(
0,

1

1− 2aγ
+ a2γ2

)
.

Theorem 2.6.1 provides an asymptotic representation of the empirical average f−excess ÂEf (Xn−k,n),
whose expression hinges on top order statistics, in terms of sums of independent and identically
distributed random variables constructed on the Xi in a simple way. Note that, due to the continuity
of F , we have F (U(n/k)) = k/n; writing F (U(n/k)) instead of k/n, as we will do in this section, is
to emphasise that the second term on the right-hand side is centred. Assumptions k = k(n) → ∞,
k/n→ 0 and

√
kA(n/k) = O(1) are standard for the asymptotic analysis of extreme value estimators;

the assumption 0 ≤ 2aγ < 1, meanwhile, ensures that ÂEf (U(n/k)) is
√
k−asymptotically normal,

and therefore that Theorem 2.6.1 provides an expression of ÂEf (Xn−k,n) in terms of ÂEf (U(n/k))

and F̂n(U(n/k)) that is meaningful for the asymptotic analysis.

In particular, setting f = log (and therefore a = 0) in Theorem 2.6.1 allows us to show that the
motivating representation (2.6.1), of the Hill estimator in terms of sums of independent and identically
distributed random variables, holds indeed. This is the focus of the following corollary.

Corollary 2.6.2. Suppose that X satisfies condition C2(γ, ρ,A). Let k = k(n) → ∞ be such that
k/n→ 0 and

√
kA(n/k) = O(1). Then we have

γ̂(k) = γ̃(k) + oP

(
1√
k

)
where

γ̂(k) =
1

k

k∑
i=1

log
Xn−i+1,n

Xn−k,n
and γ̃(k) =

∑n
i=1[logXi − logU(n/k)]I{Xi > U(n/k)}∑n

i=1 I{Xi > U(n/k)}
.

Corollary 2.6.2 can of course be used to provide yet another proof of the asymptotic normality of the
Hill estimator, via the Lyapunov central limit theorem and the Cramér-Wold device applied to get
the
√
k−asymptotic normality of γ̃(k). This is not, however, where the value of Corollary 2.6.2 lies,

if only because its proof uses an approximation of the tail empirical process x 7→ F̂n(xU(n/k)) by a
Gaussian process, which can itself be used to provide a direct proof of the asymptotic normality of
the Hill estimator (see pp.162–163 of [145]). A much more relevant impact of Corollary 2.6.2 lies in its
potential for the analysis of the joint convergence of several Hill estimators. For instance, if X1, . . . , Xn

and Y1, . . . , Yn are independent copies of random variables X and Y , which are both heavy-tailed and
satisfy a second-order condition, then we have under suitable assumptions on k that:(

γ̂X(k)
γ̂Y (k)

)
=

(
γ̃X(k)
γ̃Y (k)

)
+ oP

(
1√
k

)
with obvious notation. The benefit of writing this is that while showing directly the joint convergence
of the random pair on the left-hand side is difficult and appears to require advanced theoretical
arguments (see [94, 156]), the convergence of the right-hand side is much easier to obtain since it is
nothing but a pair of (ratios of) sums of independent and identically distributed random variables.
We will return to this in Section 2.6.3.1 to show how this observation leads to conceptually simple
proofs of the joint asymptotic normality of several Hill estimators.
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Theorem 2.6.1 is somewhat tedious to apply if the focus is on an average shortfall, such as in the case
of a CTM. The following theorem provides an analogue of Theorem 2.6.1 specifically dedicated to the
analysis of ÊSf (Xn−k,n), under a slightly stronger condition on f .

Theorem 2.6.3. Work under the conditions of Theorem 2.6.1, under the additional assumption that
xf ′(x)/f(x)→ a > 0 as x→∞. Then:

ÊSf (Xn−k,n)

ESf (U(n/k))
− 1 =

(
ÊSf (U(n/k))

ESf (U(n/k))
− 1

)
+ aγ

(
F̂n(U(n/k))

F (U(n/k))
− 1

)
+ oP

(
1√
k

)
.

In particular
√
k

(
ÊSf (Xn−k,n)

ESf (U(n/k))
− 1

)
d−→ N

(
0,

2a2γ2(1− aγ)

1− 2aγ

)
.

Setting f = fa, we find back the asymptotic variance of the empirical estimator ÊSfa(Xn−k,n) of
CTMa(U(n/k)); see Theorem 1 of [114] in the regression case. The condition 2aγ < 1, part of
Theorems 2.6.1 and 2.6.3, also naturally appears in the asymptotic normality results of [114] and
ensures in particular that the conditional tail variance of Xa is finite. Again, the main value of the
above result does not lie in the fact that it gives the asymptotic distribution of the empirical average
expected shortfall, but rather in that it allows one to establish the joint convergence of several of those
estimators with no conceptual difficulty. With an eye on the latter, we state the following corollary of
Theorem 2.6.3, which is easier to use in practice.

Corollary 2.6.4. Work under the conditions of Theorem 2.6.3. Then:

ÊSf (Xn−k,n)

ESf (U(n/k))
− 1 = aγ

(
n−1

∑n
i=1[f(Xi)− f(U(n/k))]I{Xi > U(n/k)}

E([f(X)− f(U(n/k))]I{X > U(n/k)})
− 1

)
+ oP

(
1√
k

)
.

Let us point out that Corollary 2.6.4 gives an asymptotic representation of ÊSf (Xn−k,n) as a single
sum of independent, identically distributed and centred random variables. Its use does not even involve
any linearisation (unlike Theorems 2.6.1 and 2.6.3), making it particularly simple to apply.

Our objective in the rest of this section is to show how the main theoretical results of this section
can be applied to finding a solution to two theoretical questions: the joint convergence of marginal
Hill estimators, and the joint convergence of marginal Conditional Tail Moments. We shall also
explore how our result on the joint convergence of Hill estimators can be fruitfully applied to solve
the question of the convergence of a specific tail index estimator, introduced by [22] to tackle the case
when the heavy-tailed variable of interest is randomly right-truncated. Before that, we conclude this
section on a generalisation of Theorem 2.6.1 and Corollary 2.6.2 to the case when the order statistic
Xn−k,n is replaced by an arbitrary

√
k−consistent estimator Û(n/k) of the quantile U(n/k). In this

context, ÂEf (Û(n/k)) cannot be represented by sums of independent, identically distributed and
centred random variables anymore, but interestingly Corollary 2.6.2 still stands.

Theorem 2.6.5. Work under the conditions of Theorem 2.6.1. Then we have:

ÂEf (Û(n/k))

AEf (U(n/k))
− 1 =

(
ÂEf (U(n/k))

AEf (U(n/k))
− 1

)
+ aγ

(
F̂n(U(n/k))

F̂n(Û(n/k))
− 1

)
+ oP

(
1√
k

)

for any estimator Û(n/k) of U(n/k) such that Û(n/k)/U(n/k)− 1 = OP(1/
√
k).

Corollary 2.6.6. Suppose that X satisfies condition C2(γ, ρ,A). Let k = k(n) → ∞ be such that
k/n → 0 and

√
kA(n/k) = O(1). Assume finally that Û(n/k) is an estimator of U(n/k) such that

Û(n/k)/U(n/k)− 1 = OP(1/
√
k). Then we have

γ(k) = γ̃(k) + oP

(
1√
k

)
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where

γ(k) =

∑n
i=1[logXi − log Û(n/k)]I{Xi > Û(n/k)}∑n

i=1 I{Xi > Û(n/k)}

and γ̃(k) =

∑n
i=1[logXi − logU(n/k)]I{Xi > U(n/k)}∑n

i=1 I{Xi > U(n/k)}
.

We observe that Theorem 2.6.5 and Corollary 2.6.6 are indeed generalisations of Theorem 2.6.1 and

Corollary 2.6.2: when Û(n/k) = Xn−k,n, one has F̂n(Û(n/k)) = F̂n(Xn−k,n) = k/n = F (U(n/k)) by
continuity of F and γ(k) = γ̂(k).

2.6.3 Applications

2.6.3.1 Joint convergence of marginal Hill estimators

Let (Xi)1≤i≤n, with Xi = (X
(1)
i , X

(2)
i , . . . , X

(d)
i ), be a sample of independent copies of a random vector

X = (X(1), X(2), . . . , X(d)) such that each component X(j) has a continuous distribution function Fj
and satisfies condition C2(γj , ρj , Aj). Our first goal is to establish a joint convergence result for the
Hill estimators of the γj built on this sample, that is:

γ̂j(kj) =
1

kj

kj∑
i=1

log(X
(j)
n−i+1,n)− log(X

(j)
n−kj ,n)

where kj = kj(n) → ∞, with kj/n → 0. This theoretical question is addressed in [94] and further
discussed in [177] under the assumption γj = γ for all j ∈ {1, . . . , d}.

Since each γ̂j(kj) is built on top order statistics from the corresponding X(j), our objective of analysing
the joint convergence of the γ̂j(kj) calls for some sort of extremal dependence assumption between the
X(j). We shall work under the following condition on the pairwise upper tail dependence between any
two components X(j) and X(l):

J (R) For any (j, l) with 1 ≤ j < l ≤ d, there is a function Rj,l on [0,∞]2 \ {(∞,∞)} such that we
have the convergence

lim
t→∞

tP
(
F j(X

(j)) ≤ xj
t
, F l(X

(l)) ≤ xl
t

)
= Rj,l(xj , xl)

for any (xj , xl) ∈ [0,∞]2 \ {(∞,∞)}.

This condition appears, among others, in [68] as well as, in a slightly different form, in [156], and
is a generalisation of condition J C(R) in Section 2.3.4.2. It is a convenient way to describe the
asymptotic dependence structure of the bivariate random vector (X(j), X(l)), while being weaker than
a pairwise bivariate regular variation assumption (in the sense of e.g. [214]) and a fortiori weaker than
a multivariate regular variation assumption on the random vector X such as the one of [94]. The
function Rj,l is sometimes called the tail copula of (X(j), X(l)) (see [224]).

Second-order regular variation of each marginal distribution and the above pairwise upper tail depen-
dence assumption turn out to be sufficient to obtain the joint convergence of the γ̂j(kj), as the next
result shows.

Theorem 2.6.7. Assume that, for each 1 ≤ j ≤ d, X(j) satisfies condition C2(γj , ρj , Aj), and suppose
that condition J (R) holds. Let, for 1 ≤ j ≤ d, kj = kj(n)→∞ be such that:

• kj/n→ 0 and
√
kjAj(n/kj)→ λj ∈ R;

• k1/kj → cj ∈ (0,∞) (with then c1 = 1).
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Set c = (c1, c2, . . . , cd). Then we have:√
k1 (γ̂j(kj)− γj)1≤j≤d

d−→ Nd (b(c), V(c))

with

bj(c) =
√
cj

λj
1− ρj

and Vj,l(c) =

{
cjγ

2
j if j = l,

γjγlRj,l(cl, cj) if j < l.

Let us briefly highlight that the structure of the asymptotic bias component b(c) is quite strongly
constrained by the values of the second-order parameters ρj : for all its components to be non-zero
(or equivalently, for all the constants λj to be non-zero), all the second-order parameters ρj should be
equal. This is due to the fact that the kj are proportional and each function |Aj | is regularly varying
with index ρj . For the same reason, if ρ∗ = max1≤j≤d ρj , then bj(c) = 0 whenever j is such that
ρj < ρ∗.

Our Theorem 2.6.7 contains Theorem 3.3 and Corollary 3.4 in [94], which are stated under more
restrictive conditions, including equality of all tail indices γj , a multivariate regular variation as-
sumption on X, von Mises conditions on each marginal distribution of X, and a uniform ana-
logue of condition J (R) [note also that Corollary 3.4 in [94] should, with their notation, read

Γi,j = cicjνi,j(c
1/α
i , c

1/α
j ) in the case i < j; as stated, their covariance matrix may fail to be positive

semi-definite, for instance for d = 2 and small c2. Compare with Proposition 1 in [177]]. Theorem 2.6.7
also contains Proposition 1 in [168], which is limited to the case d = 2 and X(2) = −X(1). Another
result related to Theorem 2.6.7 is Proposition 3 in [156], although the present result and that of [156]
are more difficult to compare since the latter is stated within the particular context of time series
analysis. Our proof of Theorem 2.6.7 is also conceptually less involved than that of [94], which rests
upon a multivariate functional central limit theorem (see Theorem 7.1 and Corollary 7.2 therein).
Finally, and without taking the time series framework into account, the result of [156] is based on
delicate arguments involving a multivariate, joint Skorokhod construction of Gaussian approximations
for marginal tail empirical processes. Our proof, meanwhile, rests on the standard Lyapunov central
limit theorem and Corollary 2.6.2, whose proof is based only on a univariate Gaussian approxima-
tion of the tail empirical process. It should nonetheless be made clear once again that Proposition 3
in [156] holds in a framework of β−mixing time series, and as such is not restricted to independent
and identically distributed observations, unlike our Theorem 2.6.7.

Results such as Theorem 2.6.7 may be applied to define a test of tail homogeneity, that is, equality
of tail indices across marginals. If there is no evidence to reject this assumption, one may then define
improved estimators of the common value of the tail index by pooling together the marginal Hill
estimators. These ideas are considered in [94, 177]. To illustrate how our results can be applied to
such problems, we state a corollary of Theorem 2.6.7 in the case d = 2 of a bivariate distribution with
heavy-tailed marginals.

Corollary 2.6.8. Suppose that X and Y have continuous distribution functions FX and FY , which
satisfy conditions C2(γX , ρX , AX) and C2(γY , ρY , AY ), respectively. Assume that there is a function R
on [0,∞]2 \ {(∞,∞)} such that we have the convergence

lim
t→∞

tP
(
FX(X) ≤ x

t
, F Y (Y ) ≤ y

t

)
= R(x, y) for any (x, y) ∈ [0,∞]2 \ {(∞,∞)}.

Let kX = kX(n), kY = kY (n) be such that kX , kY →∞ and:

•
√
kXAX(n/kX)→ 0 and

√
kYAY (n/kY )→ 0;

• kX/kY → c ∈ (0,∞).

Let also

RXi :=

n∑
j=1

I{Xj ≤ Xi} and RYi :=

n∑
j=1

I{Yj ≤ Yi}

117



denote the ranks of observations Xi and Yi and R̂k(x, y) be the nonparametric estimator of R(x, y)
defined by

R̂k(x, y) :=
1

k

n∑
i=1

I{RXi ≥ n− kx, RYi ≥ n− ky}

(see [107]). Then the following hold:

(i) Unless c = 1 and (X,Y ) are asymptotically perfectly dependent in the sense that R(x, y) =
min(x, y), we have:

kX
[γ̂X(kX)− γ̂Y (kY )]2

γ̂2X(kX) + cγ̂2Y (kY )− 2γ̂X(kX)γ̂Y (kY )R̂kX (c, 1)

d−→

χ
2
1 if γX = γY ,

+∞ if γX 6= γY .

(ii) If moreover γX = γY = γ, then the estimator

γ̂(kX , kY ) :=
c− R̂kX (c, 1)

1 + c− 2R̂kX (c, 1)
γ̂X(kX) +

1− R̂kX (c, 1)

1 + c− 2R̂kX (c, 1)
γ̂Y (kY )

satisfies √
kX (γ̂(kX , kY )− γ)

d−→ N
(

0, γ2
c−R2(c, 1)

1 + c− 2R(c, 1)

)
and has the minimal possible asymptotic variance among the class of convex combinations of
γ̂X(kX) and γ̂Y (kY ).

Corollary 2.6.8(i) complements Proposition 2 in [177] in the case d = 2: the latter is stated under
significantly stronger assumptions, although it includes the possibility of different sample sizes for
the X and Y samples, which may be relevant in specific applied setups. Corollary 2.6.8(ii) provides,
under the tail homogeneity condition γX = γY = γ, a simple expression of the convex combination of
γ̂X(kX) and γ̂Y (kY ) that is optimal for the estimation of γ in terms of asymptotic variance. It therefore
constitutes, in the case d = 2, an explicit version of the BEAR estimator given on pp.159–160 of [94].
With our notation, this estimator can be written, for a general value of d, as

γ̂BEAR(k1, . . . , kd) :=
d∑
j=1

µ̂j γ̂j(kj), with (µ̂1, . . . , µ̂d) = arg min
u∈[0,1]d

u1+···+ud=1

u>V̂u

and V̂ is a consistent estimator of the asymptotic covariance matrix V defined in Theorem 2.6.7. Let
us highlight that the estimator γ̂(kX , kY ) is analysed here under weaker conditions than those of [94]
and, due to the particular choice d = 2, without having to resort to a numerical optimisation routine
for the calculation of the estimator. It is worth noting that since

c−R2(c, 1)

1 + c− 2R(c, 1)
−min(c, 1) = − [min(c, 1)−R(c, 1)]2

1 + c− 2R(c, 1)
≤ 0,

the estimator analysed in Corollary 2.6.8(ii) indeed has an asymptotic variance which is lower than
each of the asymptotic variances of γ̂X(kX) and γ̂Y (kY ), and we can quantify this improvement. More
precisely, since the function

r 7→ [min(c, 1)− r]2

1 + c− 2r

is decreasing on [0,min(c, 1)], the improvement in asymptotic variance brought by the use of the
pooled estimator γ̂(kX , kY ) gets stronger as the asymptotic dependence structure of (X,Y ) gets closer
to asymptotic independence. In the case of asymptotic independence, we have√

kX (γ̂(kX , kY )− γ)
d−→ N

(
0, γ2

c

1 + c

)
.
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This is rather intuitive: since γ̂(kX , kY ) is then essentially the weighted average of two independent
quantities, made respectively of kX independent log-excesses from X (with weighting c/(1 + c)) and
kY ≈ kX/c independent log-excesses from Y (with weighting 1/(1+c)), each with individual variance γ2

by Corollary 2.6.2, we should expect the total asymptotic variance to be

γ2
[

c2

(1 + c)2
+ c

1

(1 + c)2

]
= γ2

c

1 + c
,

just as we found through our rigorous asymptotic analysis.

2.6.3.2 Convergence of a tail index estimator for right-truncated samples

We now illustrate how our results can be used to complete the analysis of the convergence of a tail index
estimator when the available data is subject to random right-truncation. The context we consider is
the following: let (Y1, T1), . . . , (Yn, Tn) be n independent copies of a random pair (Y, T ), where Y
and T are independent, nonnegative, and have continuous marginal distribution functions FY and FT .
Assume also that Y and T have heavy-tailed distributions with tail indices γY and γT . In the random
right-truncation problem considered here, it is assumed that the pair (Yi, Ti) is observed if and only if
Yi ≤ Ti; otherwise, no information on this pair is available at all. The objective is to estimate γY . This
problem has only been considered very recently, starting with [22], where the focus was the estimation
of extreme quantiles of Y . Several studies have since then proposed alternative techniques for tail
index estimation in this context; we refer to [55, 56, 149, 261]. The random right-truncation context
should not be mistaken for random right-censoring, where the available information is made of the
pairs (min(Yi, Ti), I{Yi ≤ Ti}), 1 ≤ i ≤ n.

Our focus in this section is to revisit the asymptotic properties of the estimator of [22] using the tools
we have developed in Sections 2.6.2 and 2.6.3.1. Let us introduce some notation beforehand: let N be
the total (random) number of observed pairs (Yi, Ti) such that Yi ≤ Ti. Such pairs shall be denoted
as (Y ∗i , T

∗
i ), 1 ≤ i ≤ N . It is straightforward to show the following:

• N has a binomial distribution with parameters n and p := P(Y ≤ T ), where we assume through-
out this section that p > 0;

• Given N , the pairs (Y ∗i , T
∗
i ), 1 ≤ i ≤ N are independent copies of a random pair (Y ∗, T ∗) having

joint distribution function H∗(y, t) = P(Y ≤ y, T ≤ t |Y ≤ T ), and corresponding marginal
survival functions

F
∗
Y (y) :=

1

p

∫ ∞
y

F T (z)dFY (z) and F
∗
T (t) :=

1

p

∫ ∞
t

FY (z)dFT (z).

It is also reasonably easy to show that in this context, F
∗
Y and F

∗
T are heavy-tailed, with tail indices

γ∗Y := γY γT /(γY + γT ) and γT (see Lemma 3 in [22] as well as the Introduction of [54]). Rewriting
this equality as γY = γ∗Y γT /(γT − γ∗Y ) motivates the following estimator of γY :

γ̂Y (kN , k
′
N ) :=

γ̂∗Y (kN )γ̂T (k′N )

γ̂T (k′N )− γ̂∗Y (kN )

with γ̂∗Y (kN ) :=
1

kN

kN∑
i=1

log
Y ∗N−i+1,N

Y ∗N−kN ,N
and γ̂T (k′N ) :=

1

k′N

k′N∑
i=1

log
T ∗N−i+1,N

T ∗
N−k′N ,N

.

Here (km) and (k′m) are two non-random sequences of integers and (kN , k
′
N ) := (km, k

′
m) given N = m.

The asymptotic distribution of this estimator, under the condition that km/k
′
m → 0 or k′m/km → 0

as m → ∞, is examined in [22]. This technical restriction was imposed because the analysis of the
dependence between the two Hill estimators γ̂∗Y (kN ) and γ̂T (k′N ) is difficult; assuming that either
km/k

′
m → 0 or k′m/km → 0 ensures that one of the estimators converges at a slower rate than the

other, and therefore imposes its asymptotic distribution to γ̂Y (kN , k
′
N ). The asymptotic distribution of
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this estimator was subsequently studied in [54] when km = k′m and under a condition on the asymptotic
dependence between Y ∗ and T ∗. The main result of this section, which we state now, examines the
general case km/k

′
m → c ∈ [0,∞].

Theorem 2.6.9. Assume that Y ∗ and T ∗ satisfy conditions C2(γ∗Y , ρ∗Y , A∗Y ) and C2(γT , ρ∗T , A∗T ), re-
spectively. Let (km) and (k′m) be two sequences of integers tending to infinity such that

• max(km, k
′
m)/m→ 0,

√
kmA

∗
Y (m/km)→ λ1 ∈ R and

√
k′mA

∗
T (m/k′m)→ λ2 ∈ R;

• km/k′m → c ∈ [0,∞].

Then the following hold, as n→∞:

(i) If c = 0,

√
kN (γ̂Y (kN , k

′
N )− γY )

d−→ N

(
γ2Y
γ2T

λ1
1− ρ∗Y

[
1 +

γT
γY

]2
,
γ4Y
γ2T

[
1 +

γT
γY

]2)
.

(ii) If c =∞, √
k′N (γ̂Y (kN , k

′
N )− γY )

d−→ N
(
−
γ2Y
γ2T

λ2
1− ρ∗T

,
γ4Y
γ2T

)
.

(iii) If 0 < c <∞,

√
kN (γ̂Y (kN , k

′
N )− γY )

d−→ N

(
γ2Y
γ2T

{
λ1

1− ρ∗Y

[
1 +

γT
γY

]2
−
√
c

λ2
1− ρ∗T

}
,
γ4Y
γ2T

{
c+

[
1 +

γT
γY

]2})
.

With convergences (i) and (ii), we essentially find back Theorem 3 in [22], which was stated under
a slightly different set of second-order extreme value conditions. The value of our result, however,
mainly resides in the general convergence result (iii), whose proof, unlike that of Theorem 2.1 in [54],
does not hinge on a Gaussian construction for the weighted tail copula process. Most importantly
for practical setups, and contrary to Theorem 2.1 in [54], Theorem 2.6.9(iii) does not rely on any
assumption on the form of asymptotic dependence between Y ∗ and T ∗. The reason for this is that
the combination of the independence assumption between Y and T with the heavy-tailed framework
is actually sufficient to ensure that Y ∗ and T ∗ are asymptotically independent, in the sense that

lim
t→∞

tP
(
F
∗
Y (Y ∗) ≤ x1

t
, F

∗
T (T ∗) ≤ x2

t

)
= 0

for any (x1, x2) ∈ [0,∞)2. With this in mind, our result offers a simplified expression of the asymptotic
variance of γ̂Y (kN , k

′
N ), compared to the one provided in [54]. We also point out that, taking this

asymptotic independence result into account, the asymptotic distribution we find in the case c = 1
essentially coincides with that of [54], although it should be pointed out that the bias term µ therein
should read like a difference rather than a sum (this is revealed by inspecting Equation (3.10) therein)
and their variance σ2 should be divided by 2 (otherwise the Gaussian representation stated early in
their Theorem 2.1 would contradict their asymptotic normality result). Finally, our result includes the
possibility of taking proportional sequences kN and k′N , which is useful since one may obtain better
finite-sample performance by selecting a value k′N different from kN if the marginal distributions of Y ∗

and T ∗ have very different second-order parameters ρ∗Y and ρ∗T . A related point about the estimation
of a common tail index based on several samples of data is made in the Introduction of [94].

2.6.3.3 Joint convergence of marginal Conditional Tail Moments

Another consequence of our theoretical results can be formulated in terms of the joint convergence
of high marginal Conditional Tail Moments (CTMs). As in Section 2.6.3.1, let (Xi)1≤i≤n, with Xi =

(X
(1)
i , X

(2)
i , . . . , X

(d)
i ), be a sample of independent copies of a random vector X = (X(1), X(2), . . . , X(d))

such that each component X(j) has a continuous distribution function Fj and satisfies condition
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C2(γj , ρj , Aj). We let also, for 1 ≤ j ≤ d, kj = kj(n)→∞ be such that kj/n→ 0. The CTM of order
aj of the variable X(j) above its high quantile Uj(n/kj) is then

CTM(j)
aj (Uj(n/kj)) = E([X(j)]aj |X(j) > Uj(n/kj)).

With the language of Definition 2.6.1, this quantity is exactly the expected faj−shortfall of X(j) above
the quantile Uj(n/kj), where faj (x) = xaj for x > 0. Following the ideas of Section 2.6.2, its empirical
counterpart is

ĈTM
(j)

aj (Uj(n/kj)) =
1

kj

kj∑
i=1

[X
(j)
n−i+1,n]aj .

This estimator is studied in [14, 114] (see also Section 2.2.3.3). The asymptotic results therein provide
information on the joint convergence of estimators of several CTMs of a single variable X. Our next
result below adopts the point of view of joint convergence of these estimators across marginals.

Theorem 2.6.10. Work under the conditions of Theorem 2.6.7, with
√
kjAj(n/kj)→ λj ∈ R replaced

by the weaker assumption
√
kjAj(n/kj) = O(1). Let also a1, a2, . . . , ad > 0 be such that 2ajγj < 1 for

any j. Then √
k1

 ĈTM
(j)

aj (Uj(n/kj))

CTM
(j)
aj (Uj(n/kj))

− 1


1≤j≤d

d−→ Nd (0, Σ(a, c))

with

Σj,l(a, c) =


cj

2a2jγ
2
j (1− ajγj)

1− 2ajγj
if j = l,

ajγjalγl(1− ajγj)(1− alγl)
∫ 1

0

∫ 1

0

Rj,l (clu, cjv)

uajγj+1valγl+1
du dv if j < l.

A corollary of Theorem 2.6.10 is the following result on the joint convergence of several CTM estimators

ĈTMaj (U(n/k)) =
1

k

k∑
i=1

X
aj
n−i+1,n

of a single heavy-tailed random variable X. This corollary immediately follows from the fact that the
random pair (X,X) is asymptotically perfectly dependent, in the sense that

lim
t→∞

tP
(
F (X) ≤ x1

t
, F (X) ≤ x2

t

)
= min(x1, x2)

for any (x1, x2) ∈ [0,∞]2 \ {(∞,∞)}.

Corollary 2.6.11. Suppose that X satisfies condition C2(γ, ρ,A). Let k = k(n) → ∞ be such that
k/n→ 0 and

√
kA(n/k) = O(1). Let also a1, a2, . . . , ad > 0 be such that γ < 1/2aj for any j. Then

√
k

(
ĈTMaj (U(n/k))

CTMaj (U(n/k))
− 1

)
1≤j≤d

d−→ Nd (0, M(a))

with

Mj,l(a) =
ajalγ

2(2− [aj + al]γ)

1− (aj + al)γ
.

This result complements Theorem 2 in [14] (which in the present manuscript is Theorem 2.2.8), for
distortion functions all equal to the identity function. A related result, in the presence of a finite-
dimensional covariate, is Theorem 1 in [114].

While Theorem 2.6.10 is informative regarding the structure of the dependence between CTM esti-
mators at high levels, its scope may however be limited from the practical point of view, as the focus
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in applied setups is usually on risk measures at out-of-sample levels. To put it differently, one would
generally want to estimate a CTM of the form

CTM(j)
aj (Uj(1/pn)) = E([X(j)]aj |X(j) > Uj(1/pn))

where pn → 0 is such that npn = O(1), a typical choice then being pn = 1/n. In this context,

following [14, 114], one may replace the estimator ĈTM
(j)

aj by an extrapolated Weissman-type version:

CTM
(j)
aj (Uj(1/pn)) :=

(
kj
npn

)aj γ̂j(kj)
ĈTM

(j)

aj (Uj(n/kj)).

Here γ̂j(kj) is the jth marginal Hill estimator introduced in Section 2.6.3.1. A combination of Theo-
rems 2.6.7 and 2.6.10 makes it possible to obtain the following joint asymptotic normality result for
these extrapolated estimators across marginals.

Corollary 2.6.12. Work under the conditions of Theorem 2.6.7. Let a1, a2, . . . , ad > 0 be such
that 2ajγj < 1 for any j. Assume also that ρj < 0 for any j, and that npn → C < ∞ and√
k1/ log(k1/[npn])→∞. Then

√
k1

 1

aj log(kj/[npn])

CTM
(j)
aj (Uj(1/pn))

CTM
(j)
aj (Uj(1/pn))

− 1


1≤j≤d

d−→ Nd (b(c), V(c))

with the notation of Theorem 2.6.7.

In the case a1 = a2 = · · · = ad, such a result may then be used to test the equality of CTMs across
marginals. For instance, if d = 2 and a1 = a2 = 1, one may test whether the two variables X(1)

and X(2) have the same Expected Shortfall at high levels. The possibility of assessing the equality
of financial tail risk within a multivariate context using such results is explored in Sections 3 and 4
in [156]; a related result is Proposition 3 in [156], albeit for a different type of estimator of the Expected
Shortfall, and in a time series context.

2.6.4 Perspectives for future research

Stationary and weakly dependent sequences As [156] argues, assessing tail homogeneity of
the marginals of a random vector is of particular interest in certain financial applications, where it is
important to develop asymptotic theory for dependent but stationary sequences. Since the cornerstone
of the proofs of Theorems 2.6.1 and 2.6.3 is a weighted Gaussian approximation of the univariate tail
empirical process, it is reasonable to expect that analogues of these two results can also be shown
in this kind of framework: for instance, [104] proves such an approximation in the case of β−mixing
sequences under certain regularity conditions and upper bounds on the size of clusters of exceedances.
This would therefore result in analogues of Theorems 2.6.1 and 2.6.3 and ultimately of Theorems 2.6.7
and 2.6.10. We note though that the expression of the asymptotic covariance matrices in such analogues
of Theorems 2.6.7 and 2.6.10 would certainly be more complicated than in the present section, which,
among others, makes the derivation of a testing procedure of tail homogeneity a difficult task. This
issue is avoided in [156] by resorting to a self-normalised test statistic in the spirit of [229], although
the limiting distribution does not have a simple expression. An interesting open question is to, based
on an analogue of Theorem 2.6.7 in a dependent and stationary setting, construct an asymptotically
chi-squared test statistic of tail homogeneity and contrast its finite-sample performance with that of
the test statistic of [156].

Applications to multivariate extreme risk analysis The potential of Theorems 2.6.1 and 2.6.3
for the analysis of random vectors with marginal heavy tails is briefly described in Section 2.6.3.3
through the statement of the joint convergence of empirical and extrapolated Conditional Tail Moments
estimators. The implications of these theoretical results on joint convergence of risk measures at
extreme levels are wider. Indeed, we already know that our Weissman-type estimators in Sections 2.2–
2.5 have their convergence dictated by that of the tail index estimator used, but this statement can
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be strengthened in the form of an asymptotic representation of such extrapolated estimators involving
this tail index estimator. To see this, let rτ be a risk measure satisfying the extrapolation relationship

rτ ′n ≈
(

1− τ ′n
1− τn

)−γ
rτn

where τn → 1 is an intermediate sequence and τ ′n → 1 is an extreme sequence, i.e. n(1 − τn) → ∞
and n(1− τ ′n)→ c <∞. Assume that, at the intermediate level τn, there is a

√
n(1− τn)−relatively

consistent estimator r̂τn of rτn , and let γ̂n be a
√
n(1− τn)−consistent tail index estimator. Define a

Weissman-type estimator of rτ ′n by

r̂Wτ ′n :=

(
1− τ ′n
1− τn

)−γ̂n
r̂τn .

This construction is exactly the one we used for the estimation of extreme expectiles, Lp−quantiles,
tail Lp−medians and extremiles. Write then

log

(
r̂Wτ ′n
rτ ′n

)
= (γ̂n − γ) log

(
1− τn
1− τ ′n

)
+ log

(
r̂τn
rτn

)
− log

([
1− τ ′n
1− τn

]γ rτ ′n
rτn

)
.

The second term on the right-hand side converges at the rate
√
n(1− τn), so under a bias condition

allowing to control the third term, the first term dominates, that is:√
n(1− τn)

log[(1− τn)/(1− τ ′n)]
log

(
r̂Wτ ′n
rτ ′n

)
=
√
n(1− τn)(γ̂n − γ) + oP(1).

This means that the joint convergence of the extrapolated estimators of extreme risk measures across
marginals is exactly that of the tail index estimators of those marginals. When the tail index estimator
is chosen to be the Hill estimator, this convergence is given by Theorem 2.6.7. In other words, and at
extreme levels, the results of [4] automatically give the joint convergence of Weissman-type estimators
of any risk measure whose (empirical, say) estimator at intermediate levels converges at the standard√
n(1− τn) rate. Of course, this does not give a complete picture of the joint inference for such

large risk measures, as we know that the behaviour of the (asymptotically negligible) estimator at the
intermediate step may nonetheless have a substantial influence upon finite-sample performance. An
interesting and challenging topic is therefore to analyse the joint convergence of empirical risk measure
estimators at intermediate levels to gather some more insight as to how asymptotic dependence drives
the joint behaviour of extreme risk measure estimators in multivariate problems.
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