

Caractérisation expérimentale du comportement des métaux rares au cours de la différenciation des carbonatites et des magmas alcalins

Zineb Nabyl

► To cite this version:

Zineb Nabyl. Caractérisation expérimentale du comportement des métaux rares au cours de la différenciation des carbonatites et des magmas alcalins. Sciences de la Terre. Université d'Orléans, 2020. Français. NNT : 2020ORLE3048 . tel-03142658

HAL Id: tel-03142658 https://theses.hal.science/tel-03142658v1

Submitted on 16 Feb 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

UNIVERSITÉ D'ORLÉANS

ÉCOLE DOCTORALE Energie, Matériaux, Sciences de la Terre et de l'Univers

INSTITUT DES SCIENCES DE LA TERRE D'ORLEANS

Zineb NABYL

soutenue le : 11 mars 2020

pour obtenir le grade de : Docteur de l'Université d'Orléans

Discipline/ Spécialité : Sciences de la Terre

Caractérisation expérimentale du comportement des métaux rares au cours de la différenciation des carbonatites et des magmas alcalins

THÈSE dirigée par : Fabrice GAILLARD

RAPPORTEURS : Tahar HAMMOUDA Lydéric FRANCE Directeur de Recherche, ISTO, Orléans

Professeur des Universités, LMV, Clermont-Ferrand Maître de conférences, CRPG, Nancy

JURY : Michel PICHAVANT

Tahar HAMMOUDA Lydéric FRANCE Fleurice PARAT Michel GREGOIRE Kathryn GOODENOUGH Johann TUDURI Fabrice GAILLARD

Directeur de Recherche, ISTO, Orléans, Présient du jury

Professeur des Universités, LMV, Clermont-Ferrand Maître de conférences, CRPG, Nancy Maître de conférences, Géosciences Montpellier Directeur de Recherche, GET, Toulouse Principal Geologist, BGS Edinburgh Ingénieur géologue, BRGM, Orléans Directeur de Recherche, ISTO, Orléans

Remerciements :

Je ne sais pas par où commencer ! Alors apparemment, c'est ici qu'on se lâche, qu'on dévoile ses états-d'âme très fluctuants syn-thèse (petit jeu de mot, poum poum tchak) etc.... mais c'est aussi la partie où on remercie tous les gens qui sont intervenus de près ou de loin au cours de ce long chemin qu'est la thèse. Ça a été pour moi une belle et tumultueuse aventure, qui ne s'est bien-entendu pas accomplie tout seule, mais grâce à l'aide d'innombrables personnes. Ma seule hantise, c'est d'oublier de remercier quelqu'un...alors je m'excuse d'emblée si par malheur j'ai oublié quelqu'un, tête en l'air que je suis !

Tout d'abord je souhaite remercier les membres du jury qui ont bien voulu examiner ce travail : Tahaar Hammouda, Lydéric France, Fleurice Parat, Michel Grégoire, Kathryn Goodenough et Michel Pichavant. Merci à vous tous pour avoir accepté d'évaluer le manuscrit, ainsi que pour vos commentaires et pour la discussion très enrichissante au cours de la séance de questions à la soutenance.

Je souhaite ensuite remercier mon directeur de thèse Fabrice Gaillard. Il y a eu un long chemin avant la thèse....Merci de m'avoir fait découvrir le monde de l'expérimentation en stage de master (« Attention Zineb, l'expérimental c'est les mains dans le cambouis hein, il faut aimer ça ! »), et surtout de m'avoir fait confiance pendant ces quelques mois de transition avant la thèse pour monter et aboutir ce projet qui nous tenait à cœur. Merci de m'avoir appris les rouages complexes du monde de la recherche, de m'avoir poussé à dépasser mes limites, et de m'avoir appris à faire face aux diverses situations compliquées que l'on peut rencontrer quotidiennement en recherche (la loooongue soumission du premier article par exemple...). Un GRAND merci à toi pour tout ce soutien au cours de ces années et pour ton écoute !

Egalement, je souhaite remercier mon encadrant Johann Tuduri. Je ne sais pas si je te l'ai déjà dit ou si tu t'en rappelles : quand j'étais en master à l'ENAG et que c'était le moment de trouver un stage, on a parlé ensemble de mes candidatures de stage, et tu m'as permis de me rendre compte que j'avais vraiment envie de faire de la recherche. Tu m'as permis de rencontrer Fabrice et de monter le stage de recherche avec Jérémie Melleton. Donc merci à toi Johann, pour m'avoir relancé dans cette voie ! Et merci pour ton coaching tout au long de cette aventure. Promis je vais les faires ces cornes de gazelle !

Je tiens aussi à remercier Jérémie Melleton et Laurent Bailly qui ont également participé au montage de ce projet de thèse. Merci à vous pour avoir permis la mise en route du projet, ainsi que pour vos conseils et votre aide tout au long de ce travail.

Une autre personne que je souhaite vraiment remercier, et qui a été essentielle à la réalisation de ce travail, c'est Ida Di Carlo....merci Ida pour ton aide incommensurable ! A la microsonde (cette capricieuse !), au MEB, mais aussi pour tous les couacs techniques/analytiques que j'ai eu au cours de la thèse (il y en a eu beaucoup hein...) et que tu m'as très souvent aidé à surmonter. Merci aussi pour m'avoir appris des notions de base en italien (un bicchiere di vino rosso, per favore !) et pour Kiki ma licorne (tu n'imagines pas comment ça m'a fait du bien au moral haha !). GRACIE MILE mama Ida !

Un grand merci à Jean-Luc Devidal du LMV (Clermont-Ferrand) pour son immense aide avec les analyses LA-ICP-MS et le traitement des données depuis mon stage de Master. Merci beaucoup Jean-Luc, tu m'as appris beaucoup lors de mes passages au LMV ! Merci également à Mathieu Roskosz

pour son accueil à la nano-SIMS de l'IMPMC (Paris) et à Laurent Remusat pour son aide au cours des analyses à la nano-SIMS. Merci à toi Laurent pour m'avoir coaché sur ce nouveau monde que j'ai découvert en dernière année de thèse ! J'en profite aussi pour remercier le BRGM pour m'avoir laissé utiliser régulièrement le MEB de table, ce qui m'a beaucoup dépanné entre deux expériences.

Je tiens aussi à remercier Anne-Verlaguet pour m'avoir appris les fondamentaux de la recherche au cours de mes stages de master à l'ISTeP (Jussieu). Ces premières expériences de recherche avec toi m'ont été très bénéfiques et enrichissantes, merci !

Maintenant, c'est le tour de l'ISTO ! Il y a tellement de personnes à remercier! Tout d'abord un merci général pour cette fabuleuse ambiance qui y règne, et qui permet de bien garder le moral 😳

Merci à toute l'équipe de l'administration (ISTO et OSUC) pour les échanges tout au long de ces années : Nathalie, Olivier, Marie-Noëlle, Marie-France, Martine.

Merci à Giada, pour toutes les discussions qu'on a pu avoir, pour ton aide au LA-ICP-MS à mes débuts et aussi quand j'avais le bras dans le plâtre ! Sans oublier les discussions boucles d'oreille ! Un grand merci aussi à Rémi (aussi appelé « grand Rémi ») pour son aide très régulière et indispensable à l'utilisation des piston-cylindres et des autoclaves. Merci à David, le « padre » des piston-cylindres qui m'a tout appris pour leur fonctionnement alors qu'il était en dernière année de thèse. Et merci à Anne-Aziliz pour avoir pris le temps en fin de thèse de me ré-expliquer toutes les étapes. Je remercie aussi les piston-cylindres (PC1 et PC2 de leurs noms) tant qu'on y est : ce n'était pas facile notre relation, mais on a fini par y arriver ! Merci à Juan pour m'avoir aidé à l'utilisation des autoclaves. Là aussi, la relation avec « Gros bleu » et « Gros vert » n'était pas simple... (Je m'en rappellerai de cette manipe de 3 semaines que j'ai dû refaire 10 fois, et qui a bien confirmé mon surnom de « chat noir du labo »). Merci à toi également, pour les échanges de chocolat (bizarrement, il me restait toujours du chocolat à 90%, ce qui te rendait le plus heureux ^^). Merci à Malcolm pour le coaching en stage de master (non, tu n'étais pas mon encadrant, ne prend pas la confiance ; et il est finit mon stage !), et aussi pour toutes les discussions très intéressantes et constructives au cours de la thèse. Merci à Clément et Fabien pour m'avoir aidé à confectionner les standards nécessaires à certaines analyses. Merci à Grégory et à Manu pour les coups de mains (très nombreux) pour les calculs et modèles. Merci à Patricia pour ton aide quotidienne, à la métallisation, au MEB, mais aussi pour les échanges « loisirs-créatifs » !

Merci à Michel pour les discussions très enrichissantes qu'on a pu avoir en se croisant, ou quand je venais quémander de l'aide. Merci pour les visites matinales, et aussi pour les supers moments passés aux sessions irlandaises dans les bars orléanais ! Merci aussi à Clairette pour toutes les discussions où on refaisait le monde, et surtout merci à toi pour tes visites quotidiennes en fin de journée pendant ma rédaction de thèse qui m'ont apporté beaucoup de baume au cœur! Merci à toi aussi Aneta, pour tous ces moments de rigolades (mais aussi de sérieux !) passés ensemble.

Merci aux « mimiles de la méca » (vous ne l'avez pas volé celle-là haha!) : Fred, Esteban et Rémy (alias « petit Rémy »), pour tous leurs coups de main au cours de ces années. Bon, et aussi pour les blagues « pouet-pouet » quand-même (même-ci des fois...ce n'était vraiment pas le moment! ⁽ⁱⁱⁱ⁾).

Un grand merci également à toutes les autres personnes, de l'équipe « Magma » ou non, avec qui j'ai pu interagir tout au long de ce travail : Arnaud (merci pour ton aide et les conseils pour le traitement des données ICP), Sébastien, Gaëlle, Jacques, Laurent, Florian, Caroline, Bruno, Saskia, Stéphane et Didier. Merci aussi aux différents gardiens que j'ai croisé régulièrement. Je ne connais malheureusement pas vos noms...mais les discussions qu'on a pu avoir étaient toujours très sympathiques et revigorantes !

Voilà aussi venu le moment de remercier les cinq bureaux par lesquels je suis passée tout au long de ma thèse...oui oui, 5 bureaux. On en a vécu des choses ensemble ! Merci à vous pendant cette aventure, vous m'avez beaucoup soutenu. Du coup, il faut bien remercier les co-bureaux qui allaient avec ! Tout à commencer avec Leïla, première co-bureau d'une longue série. Aaaaah je m'en rappelle de mon arrivée dans ton bureau : petite stagiaire que j'étais, à perturber ta bulle de thésarde en fin de thèse que tu étais... je me rappelle encore de ton super accueil (« ça c'est ma plante « Yvo », en l'honneur de mon ancien co-bureau ! » en fronçant les sourcils). Et finalement une belle amitié s'est créée et on a passé de supers moments dans ce bureau ! Merci à toi Leïla pour ce début dans l'aventure, et pour toute l'aide que tu m'as apporté quand je n'étais qu'un bébé-recherche. Puis il a y eu le bureau avec Quentin, et celui avec Colin, moi-même seule pendant 2-3 mois (compagnie des plus plaisante) et Ilaria (gracie mile pour tes petites attentions régulières !). Celui-là c'était mon séjour le plus long ! Ensuite il y a eu l'aquarium avec Julie....on était bien dans cet aquarium mon chouchou ! Et enfin, le dernier bureau qui m'a vu finir la rédaction, en compagnie de Hao, dernier co-bureau de cette longue série. Que de bons moments avec vous tous !

Je tiens également à remercier les amis qui ont rendu ces années bien plus agréables !

Merci à tous les anciens thésards de l'ISTO avec qui on a passé de très bons moments: Leïla (je ne l'ai pas mentionné plus haut, mais merci aussi pour la découverte des cercles de femmes !), Malcolm, David, Alexandra, Hugo, Adoum, Julie, Chloé, Eloïse, Kévin, Clément, Rabi, Flo, Anne-Aziliz, Colin, Thomas. Et merci à mes amis thésards avec qui on a vécu cette aventure ensemble : Morgane (radio Momooo, première radio de Bretagne !), Maria (mulata cachundaaaa), Nicolas, Lucille, Jonas, Enora (merci pour m'avoir fait élever mon écran d'ordinateur pour rédiger, ce qui m'a évité un mal au cou non négligeable en fin de thèse), Clément, Lauriane...

Merci aussi aux amis rencontrés à Orléans pendant toutes ces années : Pauline (bonjouriiiin), Cédric, Arnaud, Max Piko, Meïssa, Marie, Charlène, Nico de juju, Nico ducognac, Antoine, Renaud, Cha, Carotte...

Un grand merci aussi à Vivi la colloc. On en a passé de bons moments dans cet apart ! Merci à toi pour le soutien au quotidien ©

Merci également aux amis de la période Jussieu (où les « parigots de juju ») : Almoitmoit, Léa, Vivi, Marianou, Sandrouche, Céline, Elwyn (c'était trop bien de te croiser aux conf !), Aïda, Ben, Marie, Alberto... Merci aussi aux amis de longues date (Sam, Pisey, Audodo, Leïla, Vincent, Clément, Edouard, Sylvie, Déborah, Audrey).

Enfin, je finis cette longue liste de remerciements par ma famille, famille qui m'a soutenu de près ou de loin.

Tout d'abord, je ne peux pas écrire cette section sans avoir une énorme pensée pour mon grand-père Roger Serpolay qui était professeur de physique de l'atmosphère à Clermont-Ferrand. On en a eu des discussions sur la géologie quand je me cherchais encore ! Merci à toi pépé.

Merci à ma couzoc de choc Blandine (une sorte de mélange entre une cousine et une colloc). Merci à toi pour ces superbes 3 années passées ensemble à Paris, et à ton soutien qui n'a jamais cessé. Merci à mon oncle Rémy (tonton meuhmeuh) pour son accueil et les apéros mojitos lors de mes visites clermontoises. Merci aussi à mon oncle Aziz, géologue de formation, pour toutes les discussions qui m'ont aidé à aiguiller mes choix avant et pendant la thèse.

Merci à mes neveux Valentin et Clément trop mignons ! Merci à ma sœur Myriam, qui m'a bien évité un grand moment de solitude et de honte en me corrigeant les fautes d'orthographe.

Merci à toi Maxime qui m'a beaucoup soutenu. Merci pour ta patience, surtout à la fin de la rédaction où j'étais au summum de ma forme ! Merci pour tout, tu m'as été d'un soutien sans nom ⁽ⁱ⁾

Enfin, mes parents...Je ne pourrai jamais être assez reconnaissante de mes parents, sans qui je n'aurais jamais pu faire une thèse. Pendant ma première année de licence, j'ai emprunté un livre à mon père : c'était « Voyage au centre de la Terre » de Jules Vernes, une très vieille édition de 1932. Je l'ai bien sûr lu plusieurs fois ! Et désolée papa, je l'ai bien abîmé ce beau livre...en tout cas je pense qu'il a grandement participé à mon envie de comprendre les tréfonds terrestres. Merci à vous deux pour votre soutien tout au long de mes études, pour m'avoir poussé à faire ce que j'avais envie, à m'y accrocher et à pousser mes limites pour y arriver. MERCI à vous pour votre soutien au cours de ces années de thèse !

En tout cas, j'ai eu chaud pour la soutenance : à une semaine près et je ne pouvais pas la passer en public....Ouf !

Tables des matières

I. Introduction	1
I.1. Le magmatisme alcalin : définition	4
I.1.1. Source des magmas alcalins et fusion du manteau en présence de CO ₂ et de H ₂ O	4
I.1.2. Sources et nature des éléments volatils	7
I.1.2.1. H ₂ O et CO ₂	7
I.1.2.2. Autres volatils : F, Cl, P et S	9
I.1.3. Différenciation des magmas alcalins	9
I.1.4. Les carbonatites, roches magmatiques particulières	11
I.1.5. Processus de formation des carbonatites et genèse des liquides carbonatés	13
I.2. Les métaux rares dans les magmas alcalins	16
I.2.1. Les métaux rares : définition et contexte économique	17
I.2.2. Carbonatites et roches magmatiques alcalines : principaux gisements de métaux rares	17
I.2.2.1. Les gisements associés aux carbonatites	17
I.2.2.2. Les gisements associés aux complexes magmatiques alcalins	19
I.2.3. Processus de formation des gisements	21
I.3. Enrichissement en métaux rares au stade magmatique: objectifs de la thèse	23
II Ftat de l'art	26
	. 20
II.1. Magmas silicatés alcalins et carbonatites : éléments volatils et structure	29
II.1.1. Éléments volatils dans les roches magmatiques alcalins et les carbonatites	29
II.1.2. Solubilité du CO ₂ et de H ₂ O dans les liquides alcalins et carbonatés	31
II.1.3. Structures des liquides silicatés et carbonatés, et effets des volatils	34
II.2. Immiscibilité entre magmas silicatés et carbonatés	36
II.2.1. Champ de composition et domaine de stabilité des liquides immiscibles	36
II.2.2. Partage des éléments traces entre liquides carbonatés et silicatés	40
II.2.3. Rôle de la structure des liquides et des volatils sur le partage des éléments	44
II.2.3.1. Effet de la structure des liquides	44
II.2.3.2. Rôle des volatils sur le partage des métaux rares entre liquides-liquides	44
II.3. Comportement des éléments traces entre cristaux et liquides magmatiques	47
II.3.1. Partage des métaux rares entre cristaux et liquides silicatés	47
II.3.2. Partage des métaux rares entre cristaux et liquides carbonatés	51
II.3.3. Modèles de partage préexistant : influence de la structure des cristaux ou des liquides ?	52
II.4. Rôle du fluide sur l'immiscibilité et sur le comportement des métaux rares	56
II.5. Questions à résoudre	58
III. Méthodologie	. 59
III.1. Matériaux de départ	62
III.1.1. Stratégie expérimentale	62
III.1.2. Préparation des produits de départ	63
III.1.3. Préparation des capsules	66
III.2. Expériences	67
III.2.1. Piston-cylindre	67

III.2.2. Autoclave à chauffage interne III.2.3. Polissage des échantillons	69 70
	70
III.3. Methodes analytiques	۲۷
III.3.2. Microsonde électronique	72
	72
III 3.4 Nano-SIMS	
III 4. Calcul du coefficient de partage d'un élément entre deux phaces et de l'erreur as	
11.4. Calcul du coefficient de partage d'un element entre deux phases et de l'erreur as	sociee 80
IV. Enrichissement en terres rares des carbonatites du cours de la differenciation (7es 87
IV.1. Avant-propos:	85
IV.2. Introduction	87
IV.3. Methods	90
IV.3.1. Starting materials	90
IV.3.2. Experiments	90
IV.3.3. SEM and Electron microprobe-analysis	93
IV.3.4. Laser ablation ICP-MS analysis	93
IV.3.5. REE partition coefficients	94
IV.4. Results	95
IV.4.1. Run product textures	95
IV.4.2. Composition of immiscible melts	
IV.4.3. REE partitioning between carbonate and silicate melts	100
IV.5. Discussion	105
IV.5.1. The differentiation effect on the REE contents of immiscible carbonatite	105
IV.5.2. Carbonatite REE composition modelling	105
IV.5.2.1. D _{Ca} ^{CL/SL} modelling and melt structures	105
IV.5.2.2. D _{REE} ^{CL/SL} – D _{Ca} ^{CL/SL} model	108
IV.5.2.3. Calculation of carbonatite REE composition	112
IV.5.3. Predicting carbonatite REE magmatic enrichments	113
IV.5.3.1. Identifying coeval immiscible carbonate-silicate liquids	113
IV.5.3.2. Carbonatite REE enrichments across the differentiation course of alkaline magmas	114
IV.6. Conclusion	122
IV.7. Supplementary material	122
IV.8. Comportement des REE entre liquides carbonatés et silicatés au cours de la différ	enciation
des magmas alcalins: Bilan	129
V. Effets des éléments volatils sur l'enrichissement en métaux rares des liquides c	arbonatés
et silicatés	132
V.1. Effet du F. Cl et P sur l'enrichissement en métaux rares des liquides carbonatés	
V = 1 Textures des liquides silicatés et carbonatés enrichis en F. Cl. et P.	125
V.1.2. Composition chimique des liquides silicatés et carbonatés enrichis en F. Cl et P	
V.1.3. Partage des métaux rares entre liquides enrichis en F. Cl et P	
- ' '	-

V.1.4. Enrichissement en métaux rares : effets du F-Cl-P, ou effet de la composition chimique du li silicaté ?	quide
V.1.4.1. Effet du F, Cl et P ?	153
V.1.4.2. Effet de la composition chimique du liquide silicaté	157
V.1.4.3. Application du modèle D _{Ca} -D _{REE} dans des systèmes enrichis en F, Cl et P, et aux donnée	5
naturelles d'inclusions vitreuses ± enrichies en F, CI et P	158
V.1.5. Presence d'une phase fluide	166
V.2. Bilan de l'effet du F, Cl et P sur l'enrichissement en métaux rares des liquides carbon silicatés	atés et 167
V.3. Etude préliminaire de l'effet du CO ₂ sur la composition de liquide silicaté alcalin en	
saturation en carbonates.	168
VI. Partage des métaux rares entre cristaux et liquides au cours de la différenciation	173
VI.1. Caractérisation des minéraux	176
VI.1.1. Minéraux en coexistence avec des liquides de type néphélinite-phonolite et des liquides	
carbonatés	176
VI.1.2. Minéraux coexistant avec des liquides enrichis en F, Cl et P.	184
VI.2. Composition chimique des minéraux	
VI.2.1. Composition des clinopyroxènes	187
VI.2.2. Composition des grenats	192
VI.2.3. Autres minéraux	193
VI 3 Partage des métaux rares entre cristaux et liquides	194
VI 3.1 Métaux rares entre minéraux et liquide silicaté	194
VI.3.1.1. Clinopyroxène	194
VI.3.1.2. Grenat	199
VI.3.1.3. Apatite	201
VI.3.1.1. Titanite	204
VI.3.1.2. Calcite	205
VI.3.1.3. Pérovskite	209
VI.3.2. Métaux rares entre minéraux et liquide carbonaté	210
VI.4. Enrichissement en métaux rares des minéraux au cours de la différenciation des ma	gmas
alcalins: effet de la composition chimique du liquide silicaté ou du minéral ?	217
VI.4.1. Clinopyroxène dans les systèmes alcalins: compétition entre la structure du liquide silicaté	et la
structure du minéral ?	217
VI.4.1.1. Effet de la composition chimique du liquide silicaté	217
VI.4.1.2. « Lattice Strain Modelling » et effet de la structure du minéral	220
VI.4.1.3. Relation entre les paramètres de structure des clinopyroxènes et du liquide silicaté, et	test de
paramétrisation	228
VI.4.2. Enrichissement en REE et Nb de la titanite au cours de la différenciation des magmas alcali	ns et
Carbonates	235
VI.4.2.1. Effet de la composition du liquide sincate	235
VI.4.2.2. Modele d'enformssement en NEL et ND de la calcite et de l'anatite au cours de la	257
différenciation	
VI.4.3.1. Grenats	241
VI.4.3.2. Calcite : effet de la composition du liquide silicaté sur l'enrichissement en REE	243

VI.4.3.3. Apatite	. 245
VI.5. Bilan de l'enrichissement en métaux rares des cristaux	.248
VII. Synthèse générale et perspectives	249
VII.1. Devenir des métaux rares au cours de la différenciation des magmas alcalins et des	
carbonatites	.252
VII.1.1. Différenciation des magmas alcalins : clé de l'enrichissement en REE des carbonatites	. 252
VII.1.2. Formation des magmas alcalins et des carbonatites, et optimum d'enrichissement des liquides	
carbonatés	. 253
VII.1.3. Rôle des volatils et phase fluide	. 256
VII.1.4. Cristallisation : devenir des métaux rares dans les cristaux	. 257
VII.2. Perspectives	.259
VII.2.1. Volatils	. 259
VII.2.2. Modèles de partage des métaux rares dans les cristaux	. 259
VII.2.3. Minéralisation en métaux rares dans les carbonatites et dans les complexes alcalins	. 260
Références bibliographiques	261
ANNEXES	281

I. Introduction

1

Cette introduction a pour but de présenter les principes généraux de formation du magmatisme alcalin et de genèse des carbonatites, ainsi que des gisements de métaux rares associés.

La première partie définit les processus fondamentaux de formation des magmas alcalins et des magmas carbonatés. Les notions de source des magmas alcalins et de fusion du manteau en présence de CO_2 et de H_2O sont abordées afin de comprendre leurs conditions de formation. Les carbonatites, qui sont des roches magmatiques très particulières, sont également définies. Enfin seront abordés les processus de formations de ces magmas : processus de fusion, cristallisation fractionnée et processus d'immiscibilité.

La deuxième partie concerne l'aspect économique des roches magmatiques alcalines et des carbonatites, qui constituent les principaux gisements de métaux rares dans le monde. Tout d'abord, les éléments constituant le groupe des métaux rares tels qu'étudiés dans le cadre de la thèse sont définis. Puis les gisements à métaux rares associés aux carbonatites et aux magmas alcalins sont présentés. Enfin les processus de formation de ces gisements sont abordés ainsi que le lien avec les processus magmatiques à l'origine de ces roches.

Les objectifs de ce travail de thèse sont présentés à la fin de cette introduction.

I.1. Le magmatisme alcalin : définition

I.1.1. Source des magmas alcalins et fusion du manteau en présence de CO₂ et de H₂O

Le magmatisme sur Terre se produit dans des contextes géodynamiques différents. Les caractéristiques chimiques et physiques des magmas peuvent varier en fonction de ces contextes géologiques (Hall, 1987; Winter, 2001). On distingue trois principaux types de magmatisme sur Terre: le magmatisme des rides médio-océaniques produit au niveau des zones d'accrétion océanique et qui permet la formation des volcans de dorsales, le magmatisme de subduction océanique ou continentale permettant la formation de volcans d'arc insulaire ou de type cordillère, et enfin le magmatisme intraplaque continental ou océanique dont les îles volcaniques formées par des points chauds sont les plus connues.

Le magmatisme dit « alcalin » se produit principalement en contexte de volcanisme intraplaque, dans les zones de rifts continentaux (comme le Rift Est Africain), de cratons continentaux stables (provinces magmatiques d'Ilimaussaq au Groenland, Khibiny et Lovozero en Russie, Thor Lake au Canada...) et de points chauds (Hawaii, Îles Canaries, Îles du Cap Vert...). Ce type de magmatisme est classiquement décrit comme étant la trace en surface d'un panache mantellique profond sousjacent, et résulte de la fusion partielle à faible taux (0,1 à 5 %) du manteau profond. Il est à l'origine d'une grande variété de magmas silicatés ainsi que de magmas carbonatés. Ces magmas sont caractérisés par un enrichissement en éléments incompatibles (Na, K, terres rares, Th, U, Pb, Zr, Hf, Ti, Nb, Ba, Sr etc...) c'est-à-dire des éléments qui se concentrent dans les liquides magmatiques résiduels au cours de la cristallisation fractionnée, ce qui indique une source mantellique enrichie en ces éléments et/ou un faible taux de fusion. Dans la littérature, le terme de « roches alcalines » peut à la fois être attribué aux roches magmatiques contenant des minéraux de types feldspathoïdes, et à la fois aux roches pauvres en silice et riches en éléments alcalins (Edgar, 1987).

De nombreux travaux expérimentaux ont permis de mieux contraindre la source de ces magmas et de mettre en avant l'importance des processus mantelliques dans la genèse des magmas alcalins. L'une des hypothèses qui est la plus souvent suggérée pour expliquer la formation de ce type de magma ainsi que son enrichissement en éléments incompatibles, est la fusion d'un manteau lithosphérique métasomatisé (Bailey, 1982; Edgar, 1987; Halliday *et al.*, 1995; Niu, 2008; Pilet *et al.*, 2008). Des études ont en effet montré que des fluides ou des liquides magmatiques riches en certains éléments (CO₂, H₂O, Na et K) peuvent modifier localement la composition du manteau (Bailey, 1982; Green and Wallace, 1988; Rudnick *et al.*, 1993; Bell and Simonetti, 1996, 2010; Pilet *et al.*, 2008; Tappe *et al.*, 2017) et que ce métasomatisme pourrait être à l'origine des laves alcalines. Une autre hypothèse propose une origine par le recyclage de croûte océanique ou continentale (Hofmann, 1997) au travers des plumes mantelliques des points chauds (OIB, Ocean Island Basalts). Enfin, d'autres modèles suggèrent que le magmatisme alcalin est issu de la fusion de péridotite en présence de CO₂ (Hirose, 1997; Dasgupta *et al.*, 2007).

Un modèle de fusion de péridotite mantellique (« pyrolite model » ; Green and Falloon, 1998; Foley et al., 2012; Green, 2015) basé sur la troisième hypothèse proposée ci-dessus, est souvent mis en avant dans la littérature afin d'expliquer la production de liquides magmatiques de compositions différentes (Fig.I.1). Dans ce modèle, le domaine de faible taux de fusion (« incipient melting », en gris clair dans la Fig.I.1) est délimité par le solidus de la péridotite (de type lherzolite) anhydre et celui de la péridotite avec \pm de H₂O et CO₂. Au-delà du solidus de la péridotite anhydre se trouve le domaine de fusion partielle (« major melting ») où sont formés les magmas de type MORB (Green and Falloon, 1998). Les différents types de magmas alcalins (leucitite, mélilitite, néphélinite et basanite ; voir

Tableau I.1) sont ainsi produits dans ce domaine de faible taux de fusion, par la fusion de péridotite \pm H₂O et CO₂; les magmas les plus mafiques de types leucitite/mélilitite sont formés à plus forte pression, c'est-à-dire plus grande profondeur (Fig.I.1). Ceci implique que la position du solidus de la péridotite \pm H₂O et CO₂ joue un rôle très important quant à la fenêtre de formation de ces magmas dépendante de la présence de H₂O et CO₂ dans la péridotite.

Figure 1.1. Origine et formation du magmatisme alcalin en contexte intraplaque, modifié d'après Green and Falloon (1998). Le champ de faible taux de fusion (incipient melting) en gris clair est délimité par le solidus de la péridotite anhydre (courbe noire) et de la péridotite avec \pm de CO₂ et H₂O (courbe marron), et correspond au domaine de formation des liquides alcalins de la leucitite aux basaltes alcalins. Le domaine de formation des liquides carbonatés (gris foncé) est situé principalement entre 2 et 3 GPa et longe en profondeur le solidus de la péridotite avec \pm de CO₂ (fO₂) dans le manteau en profondeur. Le champ beige correspond au domaine de fusion par « redox melting », c'est-à-dire au domaine de transition de l'état oxydant du manteau à l'état réduit, qui se traduit par une transition entre le domaine de stabilité des carbonates, et le domaine du graphite/diamant.

Dans le manteau terrestre, l'eau et le CO2 sont les éléments volatils les plus importants (élément pouvant être dissous dans les liquides, ou sous la forme de gaz) avec des concentrations pouvant atteindre plusieurs centaines de ppm (Green and Falloon, 1998; Hirschmann, 2006; Dasgupta and Hirschmann, 2010; Green et al., 2010). De nombreux travaux expérimentaux ainsi que d'études de xénolithes mantelliques ont permis de mettre en évidence leur rôle important dans la fusion partielle de la péridotite mantellique. L'eau est principalement présente dans des minéraux hydratés tels que la pargasite (amphibole alumineuse) pour des pressions inférieures à 3 GPa (Fig.I.1), ou la phlogopite (Green et al., 2010), mais également dans certains minéraux silicatés anhydres tels que l'olivine (Kohlstedt et al., 1996; Hirschmann, 2006) et le pyroxène. En revanche, le stockage du carbone dépend essentiellement des conditions red/ox qui règnent dans le manteau supérieur. Le carbone est ainsi sous la forme de carbonates (dolomite, magnésite) dans les conditions oxydantes, et sous la forme de graphite ou de diamant dans des conditions réductrices plus en profondeur (Fig.I.1), c'est-àdire à partir de 150 km de profondeur (Green and Falloon, 1998; Stagno et al., 2013) voire de 250 km (Rohrbach and Schmidt, 2011), selon les auteurs. La fO_2 diminue donc avec la pression dans le manteau (Fig.I.1). La zone de transition entre l'état oxydant du manteau qui va permettre la stabilité des magmas carbonatés, et l'état réduit qui permet la formation de diamant est appelée zone de « redox

melting », c'est-à-dire la zone de fusion par oxydation (Rohrbach and Schmidt, 2011; Stagno *et al.*, 2013; Hammouda and Keshav, 2015). Cette zone de redox melting est essentielle pour permettre la formation des magmas carbonatés ainsi que des magmas alcalins (Foley, 1988).

La Figure I.2 indique les conditions de pression et de température du solidus de la péridotite anhydre et de la péridotite avec \pm CO₂ et H₂O. À basse pression (< 2GPa), les solidus de la péridotite anhydre et avec du CO₂ sont presque équivalents, jusqu'à se séparer vers 2 GPa de quelques centaines de degrés. En effet, la température de fusion de la péridotite anhydre est drastiquement diminuée en présence de CO₂, et également de H₂O (Wallace and Green, 1988; Dasgupta et al., 2013). Les solidus avec \pm CO₂ et H₂O changent brutalement de pente formant ce qui est communément appelé un « ledge » dans la littérature (Eggler, 1987a; Eggler, 1987b). Ce « ledge » délimite la zone de formation possible des liquides carbonatés (Keshav and Gudfinnsson, 2013; Novella et al., 2014; Hammouda and Keshav, 2015), avec des liquides de plus en plus riches en CO_2 et pauvres en silice en se rapprochant des solidus de la péridotite avec \pm CO₂ et H₂O (Fig.I.2). Cette limite sépare le domaine où le CO_2 est sous la forme de carbonates liquides (P > 2 GPa; champ gris, près du solidus de la péridotite avec \pm CO₂ et H₂O) du domaine où il est sous la forme vapeur ou dissous dans le liquide silicaté (P < 2GPa; Green, 2015; Hammouda and Keshav, 2015). Le domaine de liquide carbonaté est également décrit dans le modèle de Green and Falloon (1998) de la Figure I.1, situé principalement entre 2 et 3 GPa. La limite inférieure de ce domaine dépend des conditions redox du manteau (Stagno et al., 2013; Sifré et al., 2014; Hammouda and Keshav, 2015). Les liquides proches du solidus de la péridotite anhydre sont plus riches en silice et moins riches en CO₂. Certaines études ont en effet montré que la transition entre les liquides carbonatés ($CO_2 > 40$ poids %) et les liquides silicatés soussaturés en silice et riches en CO_2 de type kimberlitiques-mélilitiques (voir compositions dans le Tableau I.1) dépend du degré de fusion (Keshav and Gudfinnsson, 2013; Novella et al., 2014; Hammouda and Keshav, 2015), ce qui implique que différents liquides sous-saturés en silice peuvent être le produit de la fusion d'une même source en fonction des conditions de pression et de température (Hammouda and Keshav, 2015).

Figure 1.2. Formation des liquides carbonatés et conditions P-T du solidus de la péridotite anhydre (courbe noire, Hirschmann, 2000), en présence de CO_2 (courbe rouge, Dasgupta et al., 2013) et en présence de CO_2 et H_2O (courbe marron, Wallace and Green, 1988; Brey et al., 2009), modifié d'après Massuyeau et al. (2015). Le solidus de la péridotite carbonatée et hydratée correspond à la combinaison des solidus de Wallace and Green (1988) et Brey et al. (2009). Les flèches indiquent la diminution de la silice (flèche bleue) et l'augmentation du CO_2 (flèche noire) dans le liquide en s'approchant du solidus de la péridotite carbonatée et hydratée. Le champ gris correspond au domaine de formation par faible taux de fusion des liquides présenté dans la Fig.I.1 : les liquides carbonatés très riches en CO_2 et pauvres en silice sont formés dans des conditions P-T proches du solidus de la péridotite avec CO_2 et H_2O . Les liquides silicatés sont formés

dans des conditions P-T proches du solidus de la péridotite ; ceux sous-saturés en silice et riches en CO_2 (kimberlites ou mélilites) évoluent vers le solidus de la péridotite avec CO_2 et H_2O . Le champ blanc correspond au domaine possible d'immiscibilité entre liquides carbonatés et silicatés, où ils peuvent coexister à l'équilibre, pour des pressions supérieures à 2,5 GPa.

I.1.2. Sources et nature des éléments volatils

Les éléments volatils majeurs présents dans les magmas sont H_2O , CO_2 , S, Cl et F. Leur présence dans le manteau profond, et particulièrement de H_2O et CO_2 , implique des processus complexes à l'origine de l'évolution géodynamique et géochimique de la Terre (Hirschmann, 2006; Dasgupta and Hirschmann, 2010; Hammouda and Keshav, 2015; Foley and Fischer, 2017). Les magmas produits par le magmatisme alcalin sont riches en ces éléments volatils.

I.1.2.1. H₂O et CO₂

L'eau est l'espèce volatile la plus abondante dans le manteau (Green *et al.*, 2010) avec des concentrations estimées entre 50 et 200 ppm dans le manteau supérieur (Hirschmann, 2006) et 300 à 1000 ppm dans le manteau profond. Elle est principalement recyclée au travers des zones de subduction (Fig.I.3a). Sa présence dans les magmas dépend de l'état de stabilité des minéraux qui en sont porteurs en fonction des conditions P-T du manteau ou de la source (pargasite et phlogopite, partie I.1.1). L'eau diminue les températures de fusion du manteau, et sa présence peut ainsi provoquer des zones de fusion préférentielles (Fig.I.3a). Trois régions sont proposées comme étant les principales sources de H₂O dans le manteau supérieur : les zones de subduction au niveau du « mantle wedge » (coin mantellique), les zones de points chauds qui sont les lieux de production des magmas alcalins de type OIB, et également la zone de transition entre le manteau supérieur et le manteau inférieur (Hirschmann, 2006).

Le deuxième élément volatil le plus abondant dans le manteau est le CO₂ (Jambon, 1994; Symonds, 1994). Tout comme le cycle de l'eau, le cycle du carbone mantellique implique différentes zones possibles de fusion carbonatée (Fig.I.3b). Le carbone peut être introduit dans le manteau dans les zones de subduction. Au niveau du « mantle wedge » peut se produire la fusion d'éclogite carbonatée (Dasgupta et al., 2004, 2006; Hammouda et al., 2009). Les liquides carbonatés ainsi formés ont une faible viscosité (Treiman and Schedl, 1983; Dobson et al., 1996) et peuvent percoler dans le manteau en provoquant ainsi un métasomatisme local. Les carbonates peuvent aussi être emportés par le slab jusqu'à la zone de transition, et peuvent potentiellement être enfouies dans le manteau inférieur (Hammouda et al., 2009; Dasgupta and Hirschmann, 2010). De plus, d'autres zones de péridotites dans le manteau lithosphériques peuvent être carbonées localement (Fig.I.1 et I.2), en contexte intraplaque ou au niveau des rides océaniques et des points chauds. Le carbone présent dans le manteau supérieur peut alors soit provenir du manteau inférieur profond (panaches mantelliques profonds), soit du recyclage de lithosphère subductée. Rappelons que la présence de phases carbonatées dépend principalement de la fugacité de l'oxygène du manteau, avec une zone de fusion par oxydation (redox melting) qui permet une transition de l'état de carbone réduit à l'état de carbonate (Fig.I.3b; Fig.I.1).

La plupart des roches carbonatées (carbonatites) identifiées sont situées sur le continent Africain qui est actuellement le témoin d'un rift intracontinental (Bailey, 1993; Woolley and Kjarsgaard, 2008). Foley and Fischer (2017) ont proposé que la lithosphère continentale ainsi que cette zone de rift intracontinental jouent un rôle primordial sur le budget de carbone profond en permettant le stockage d'une importante quantité de carbone. Ils proposent que les volcans centraux dans le rift qui sont les plus récents produisent principalement des basaltes, alors que les volcans situés aux bords du rift qui correspondent quant à eux à des stades plus précoces du rifting produisent des magmas alcalins

silicatés riches en CO_2 de type mélilites et néphélinites, ainsi que des carbonatites (Fig.I.4). Les occurrences de magmas riches en CO_2 dans les rifts continentaux seraient la conséquence de l'accumulation du carbone à long terme sous la lithosphère épaisse et de sa remobilisation dynamique par remontée au travers du rift actif. Le craton sous-jacent, et de manière générale les lithosphères épaisses (Tappe *et al.*, 2018) constitue ainsi une importante source de carbone.

Figure 1.3. Schémas du cycle de l'eau (a) et du cycle du carbone (b) dans le manteau profond, respectivement d'après Hirschmann (2006) et Hammouda and Keshav (2015). Légende du cycle de l'eau dans le manteau (a) : a-fusion dans le coin mantellique (« wedge ») des zones de subduction, b-fusion en zone de point chaud (OIB), c-fusion au niveau des dorsales océaniques (MORB), d-fusion au niveau de la zone de transition (410 km), et f-fusion dans le manteau inférieur.

Figure I.4. Schéma du magmatisme riche en carbone, en relation avec la structure du Rift Est Africain, d'après Foley and Fischer (2017). a) Carte schématique du Rift Est Africain (gris) avec les occurrences de carbonatites (points bleu) et de magmas alcalins sous-saturés (points rose) réparties autour du rift et à l'extrémité, entre le craton et la lithosphère non cratonique ; b) Coupe schématique transversale du rift, montrant l'occurrence de volcanisme de type basaltique au centre du rift, et de volcanisme de type alcalins (mélilites et néphélinites) et carbonaté au niveau des bords ; c) Coupe schématique longitudinale du rift, indiquant la formation de ce magmas riches en carbone au niveau de l'extrémité du rift et aux abords de la lithosphère cratonique épaisse

I.1.2.2. Autres volatils : F, Cl, P et S

Les magmas alcalins sous-saturés en silice ainsi que les magmas carbonatés sont également connus pour contenir des concentrations relativement importantes en halogènes (F et Cl essentiellement) ainsi qu'en S et P. Ces éléments sont également amenés dans le manteau via la dynamique des zones de subduction (Barnes *et al.*, 2018). Une importante partie du Cl subducté est réémis à la surface au travers du magmatisme d'arc (70% poids ; Philippot et al., 1998; Frezzotti and Ferrando, 2018), le reste étant enfouis dans le manteau. Pour le F, seule une infime partie est considérée comme étant éruptée via ce magmatisme (Straub and Layne, 2003; Frezzotti and Ferrando, 2018): une quantité relativement importante est ainsi transportée dans le manteau. Cependant le cycle profond des halogènes est encore mal contraint (Klemme and Stalder, 2018).

Dans le manteau, le F, Cl, P et S sont principalement stockés dans des minéraux impliqués dans le métasomatisme tels que l'apatite, l'amphibole ou la phlogopite, mais aussi dans des minéraux silicatés anhydres appelés NAM (en anglais, « Nominally anhydrous minerals » : olivine, grenat et pyroxène ; (Frezzotti and Ferrando, 2018; Klemme and Stalder, 2018).

I.1.3. Différenciation des magmas alcalins

Le magmatisme alcalin permet la formation de roches appartenant à la série magmatique alcaline, caractérisée par des compositions de magmas sous-saturés en silice (Fig.I.5; Tableau I.1), tels que les basanites pour les termes les moins différenciés et les phonolites pour les termes les plus fractionnés, mais également les kimberlites, mélilitites et néphélinites qui correspondent aux termes les plus sous-saturés en silice (Tableau I.1). Ces roches contiennent majoritairement des minéraux sous-saturés en silice tels que les feldspathoïdes (néphéline, leucite, sodalite...), des feldspaths alcalins (sanidine..), des clinopyroxènes, des amphiboles (de type kaersutite, arfvedsonite) ainsi que d'autres minéraux (plagioclase, biotite...). La Figure.I.5 présente les roches de cette série magmatique pour le Rift Est Africain (bleu), exemple actuel d'un rift intra-continental actif et témoin de la fusion du manteau lithosphérique sub-continental, ainsi que de deux sites résultant d'un point chaud : les Îles Canaries (vert) et les Îles du Cap Vert (rouge ; base de données GEOROC). Pour les trois sites, les roches évoluent des termes mélilitiques à phonolitiques, voir phono-trachytiques. Le Rift Est Africain présente également des roches hyper-alcalines (*i.e.* très sous-saturées en silice par rapport à leurs concentrations en éléments alcalins). Ces roches proviennent du volcan Ol Doinyo Lengai en

Tanzanie, caractérisé par des laves très alcalines suivant un chemin de fractionnement différent de celui des roches magmatiques des deux autres sites (De Moor *et al.*, 2013; Mattsson *et al.*, 2013).

Dans les roches naturelles, certaines études ont permis de mettre en évidence les concentrations relativement élevées en volatils que peuvent contenir ces magmas alcalins. En effet, des études ont montré la présence d'inclusions vitreuses dans des roches magmatiques alcalines contenant des concentrations non négligeables de CO₂ (de l'ordre du % poids) aux Îles Canaries (Wallace, 1998; Wiesmaier *et al.*, 2011; Longpré *et al.*, 2017) ainsi que dans le Rift Est Africain (Fischer *et al.*, 2009; De Moor *et al.*, 2013; Baudouin *et al.*, 2018). De plus, des roches silicatées sous-saturées en silice et très riches en CO₂ (15 à 30% poids de CO₂) telles que les kimberlites (Tableau I.1) ont été observées à la surface, ainsi que des roches carbonatées appelées les carbonatites très pauvres en silice et contenant > 40% poids de CO₂.

Tableau I.1. Compositions moyennes représentatives des magmas alcalins, des kimberlites aux phonolites. Les concentrations correspondent à la Kimberlite de Jericho au Canada (Brooker et al., 2011b), aux mélilitites, néphélinites, et basanite localisées au niveau du Lac Natron-Engaruka en Tanzanie (Mattsson et al., 2013), aux néphélinites alcalines du volcan Ol Doivyo Lengai également en Tanzanie (Mattsson et al., 2013), et aux basaltes alcalins et phonolites du complexe volcanique que forment le Teide et le Pico Viejo à Tenerife aux Canaries (Ablay et al., 1998).

	Kimberlite	Mélilitite	Néphélinite	Néphélinite	Basanite	Basalte alcalin	Phonolite
Provenance	Jericho,	Lac Natron- Engaruka	Lac Natron- Engaruka	Ol Doinyo Lengai	Lac Natron- Engaruka	Teide-Pico Viejo	Teide-Pico Viejo
% poids							
SiO ₂	34,37	34,99	42,08	43,46	46,28	46,21	59,51
TiO ₂	0,65	4,54	3,76	1,58	2,64	2,94	0,77
Al ₂ O ₃	1,64	7,69	9,53	12,89	11,08	12,73	18,98
Cr_2O_3	0,26	-	-	-	-	-	-
Fe ₂ O ₃	2,78	16,11	15,45	12,16	14,5	12,65	3,68
FeO	4,66	-	-	-	-	-	-
MnO	0,18	0,27	0,23	0,43	0,2	0,17	0,19
MgO	28,19	12,44	11,26	1,49	8,68	9,81	0,56
CaO	24,99	17,16	14,34	11,96	11,9	9,84	1,1
Na ₂ O	0,18	2,31	2,68	7,95	2,5	3,44	8,6
K ₂ O	0,52	1,93	1,27	4,88	1,05	1,41	5,34
P_2O_5	0,79	1,18	0,94	0,85	0,38	0,71	0,11
Total	99,21	98,62	101,54	97,65	99,21	99,91	98,84

Figure 1.5. Roches magmatiques de la série alcaline provenant du Rift Est Africain, des Îles Canaries et des Îles du Cap Vert, représentées dans un diagramme TAS (Total Alkali Silica ; Le Bas et al., 1986). Bleu: Rift Est Africain (données de De Moor et al., 2013; Mattsson et al., 2013; Mana et al., 2015; ainsi que de la base de données GEOROC); Rouge : Îles du Cap Vert (GEOROC); Vert : Îles Canaries (GEOROC) ; A : picro-basalte ; B : trachy-basalte ; C : trachy-andésite basaltique ; D :trachy-andésite ; E : trachy-dacite ; F : trachyte ; G : basanite ; H : tephrite ; I :phono-tephrite; J : tephri-phonolite ; K : phonolite ; L : foïdite.

I.1.4. Les carbonatites, roches magmatiques particulières

Les carbonatites sont des roches magmatiques constituées principalement de carbonates (> 50 % modale ; calcite, ankérite et dolomites) et très pauvres en silice (SiO₂ < 20% poids ; Le Bas, 1981; Le Maitre et al., 2005). Elles présentent également de fortes concentrations en Sr et Ba, ainsi qu'en LREE

(terres rares légères en anglais, « light rare earth elements ») en comparaison aux autres roches ignées (Loubet *et al.*, 1972; Nelson *et al.*, 1988; Woolley and Kempe, 1989; Jones *et al.*, 2013). Ces roches magmatiques sont très riches en CO_2 (> 50% poids), ainsi qu'en d'autres espèces volatiles telles que les halogènes (F et Cl), le S et le P (Nelson *et al.*, 1988; Jones *et al.*, 2013).

Les carbonatites sont principalement localisées dans les zones de production du magmatisme alcalin (Fig.I.6), c'est-à-dire les zones de rift intra-continental actif (Bell and Simonetti, 1996; Keller and Zaitsev, 2012), de cratons continentaux stables (Woolley and Kjarsgaard, 2008; Woolley and Bailey, 2012) et les points chauds (Nelson *et al.*, 1988; Hoernle *et al.*, 2002; Mourão *et al.*, 2010; Schmidt and Weidendorfer, 2018). Woolley and Kjarsgaard (2008) ont référencés plus de 500 occurrences de carbonatites dans le monde, et ont montré que la majorité de ces carbonatites sont magmatiques (Fig.I.6) et souvent spatialement associées à des roches alcalines sous-saturées en silice (néphélinites, ijolites, phonolites, syénites-néphélinites, trachytes, mélilites, kimberlites, basanites). Ces associations ont souvent suggéré une relation génétique entre ces deux types de roches magmatiques, et indiquent un lien avec des panaches mantelliques profonds ainsi que la présence d'une source mantellique riche en carbone (Woolley and Kjarsgaard, 2008; Bell and Simonetti, 2010). Ces roches permettent le transport du carbone du manteau vers la croûte, et sont ainsi largement impliquées dans le cycle profond du carbone (Dasgupta and Hirschmann, 2010; Hammouda and Keshav, 2015).

Figure I.6. Carte mondiale des occurrences de carbonatites magmatiques (carrés pleins) vs carbonatites carbohydrothermales (carrés vise), d'après Woolley and Kjarsgaard (2008).

Les carbonatites naturelles peuvent être directement caractérisées comme étant intrusives, extrusives ou encore hydrothermales. Woolley and Kempe (1989) ont proposé une classification de ces roches basée principalement sur les proportions modales des minéraux carbonatés les constituant, distinguant les calcio- (pôle Ca), les magnésio- (pôle Mg) et les ferro- (pôle Fe) carbonatites (Tableau I.2). Les carbonatites sont ainsi caractérisées en fonction de leur composition en éléments majeurs. Les Ca-carbonatites appelées « sövites » (rapport CaO / (CaO+FeO+MgO) > 0,8 ; Woolley and Kempe, 1989) sont principalement constituées de calcite et sont décrites comme étant les plus abondantes. Les Fe-carbonatites ((FeO+MnO) > MgO ; Woolley and Kempe, 1989) sont plutôt constituées d'ankérites, et les Mg-carbonatites (MgO > (FeO+MnO)) de dolomites. Une autre classification de ces roches proposée par Mitchell (2005) porte sur les processus de formation de ces carbonatites (Fig.I.6): elle

distingue les carbonatites primaires qui correspondent aux carbonatites magmatiques souvent associées aux magmas alcalins sous-saturés en silice du manteau (néphélinites, mélilites, kimberlites etc...), des carbonatites dites « carbothermales » formées par des processus hydrothermaux et liées à des fluides riche en CO_2 , H_2O et F (Mitchell, 2005; Jones *et al.*, 2013).

Il existe un autre type de carbonatite : les natrocarbonatites (voir le Tableau I.2). Le volcan Ol Doinyo Lengai situé en Tanzanie est le seul volcan au monde à produire actuellement des coulées de laves carbonatitiques caractérisées comme étant uniques (Dawson, 1962a) car seulement identifiées dans ce volcan : ce sont des natrocarbonatites, constituées principalement de gregoryite et de nyerereite (respectivement des Na-K-carbonates et Na-carbonates). Ce sont des laves très riches en éléments alcalins (Na₂O + K₂O autour de 40% poids ; Keller and Zaitsev, 2012), ainsi qu'en F, Cl, P₂O₅ et SO₃. Leur température de fusion est très basse et leur importante fluidité indique une viscosité très faible.

	Ca-carbonatite [*]	Mg-carbonatite [*]	Fe-carbonatite [*]	Na-carbonatite [#]
% poids				
SiO ₂	2,72	3,63	4,7	0,22
TiO ₂	0,15	0,33	0,42	0,01
Al ₂ O ₃	1,06	0,99	1,46	0,01
Fe ₂ O ₃	2,25	2,41	7,44	0,45
FeO	1,01	3,93	5,28	-
MnO	0,52	0,96	1,65	0,46
MgO	1,8	15,06	6,05	0,44
CaO	49,12	30,12	32,77	15,6
Na ₂ O	0,29	0,29	0,39	32,35
K ₂ O	0,26	0,28	0,39	7,63
P_2O_5	2,1	1,9	1,97	0,89
CO ₂	36,64	36,81	30,74	32,24
BaO	0,34	0,64	3,25	1,28
SrO	0,86	0,69	0,88	1,36
F	0,29	0,31	0,45	2,48
Cl	0,08	0,07	0,02	3,38
S	0,41	0,35	0,96	-
SO ₃	0,88	1,08	4,14	2,75
H_2O	0,76	1,2	1,25	0,14
Total	101,54	101,05	104,21	101,69
ррт				
$\sum REE$	3730,7	4212,08	10359,3	1366,33
Hf	-	3.2	-	0.03
Zr	189	165	127	0.8
Та	5	21	0.9	-
Nb	1204	569	1292	35

Tableau I.2. Composition moyenne en éléments majeurs (% poids) et en métaux rares (ppm) des Ca-, Mg-, Fe- et Nacarbonatites naturelles. * : données de Woolley and Kempe (1989) ; # : données de Keller and Zaitsev (2012).

I.1.5. Processus de formation des carbonatites et genèse des liquides carbonatés

Trois principales hypothèses de formation des carbonatites sont principalement discutées dans la littérature :

- Ces carbonatites ont une origine mantellique et proviennent de la fusion partielle à faible taux d'un magma primaire (Wallace and Green, 1988; Rudnick *et al.*, 1993; Bell and Simonetti, 2010; Dasgupta *et al.*, 2013), de type péridotite enrichie en CO₂ (Fig.I.1 et I.2).
- Elles sont séparées de liquides silicatés par des processus d'immiscibilité (Kjarsgaard and Hamilton, 1988; Lee and Wyllie, 1994; Veksler *et al.*, 1998, 2012; Mitchell, 2005; Brooker and Kjarsgaard, 2011; Martin *et al.*, 2013), c'est-à-dire qu'elles coexistent à l'équilibre sans s'homogénéiser avec des liquides silicatés.

- Elles sont formées par la cristallisation fractionnée très avancée d'un magma alcalin silicaté riche en CO₂ (Lee and Wyllie, 1994; Mitchell, 2005; Weidendorfer *et al.*, 2016).

La première hypothèse relie la genèse des carbonatites aux modèles de formation des magmas alcalins silicatés présentés précédemment. Ces modèles ont montré l'existence du domaine de stabilité des liquides carbonatés mantelliques (Fig.I.1 et I.2, partie I.1.1), pour des pressions > 2 GPa (> 60 km de profondeur), et à des conditions de manteau oxydant (< 150 ou 250 km de profondeur selon les auteurs ; Green and Falloon, 1998; Rohrbach and Schmidt, 2011; Stagno et al., 2013). Les carbonatites mantelliques à l'équilibre avec des péridotites ont une composition de type dolomitique (Ca-Mg carbonatite ; Hammouda and Keshav, 2015). De nombreuses études montrent que ces liquides carbonatés mantelliques peuvent être impliqués dans le métasomatisme du manteau (Green and Wallace, 1988; Wallace and Green, 1988; Rudnick *et al.*, 1993; Hammouda and Laporte, 2000; Hammouda and Keshav, 2015; Tappe *et al.*, 2017). Cependant, très peu d'occurrences de carbonatites mantelliques ont été retrouvées à la surface. Des expériences de décompression ont en effet montré que ces liquides deviennent instables à des pressions inférieures à 2 GPa (Canil, 1990), ce qui implique qu'ils n'atteignent jamais la surface (Doucelance *et al.*, 2010; Hammouda and Keshav, 2015; Schmidt and Weidendorfer, 2018).

La deuxième hypothèse - hypothèse d'immiscibilité - est la plus souvent utilisée dans la littérature pour expliquer la formation des liquides carbonatés. L'immiscibilité entre liquides silicatés et carbonatés a été principalement démontrée par de nombreux travaux expérimentaux dans une large gamme de conditions de pression et de température. Dans le manteau, l'immiscibilité peut se produire dans le domaine de stabilité des carbonates, sous le « ledge » définit précédemment (Fig.I.2). Des expériences d'immiscibilité ont été réalisées à des conditions mantelliques dans des systèmes de compositions simplifiés de type CMS-CO₂ (Ca, Mg, Si et CO₂; Keshav et al., 2011), CMAS-CO₂ (Ca, Mg, Al, Si et CO₂; Keshav and Gudfinnsson, 2013; Novella et al., 2014), CNAS-CO₂ (Ca, Na, Al-Si et CO₂; Kjarsgaard and Hamilton, 1988; Brooker and Hamilton, 1990; Lee and Wyllie, 1996; Brooker, 1998; Brooker and Kjarsgaard, 2011), mais également dans des systèmes de compositions plus complexes (Dasgupta et al., 2006; Martin et al., 2012, 2013; Massuyeau et al., 2015). Des expériences ont également été réalisées à des conditions de pression et de températures crustales pour des compositions également plus complexes (Freestone and Hamilton, 1980; Hamilton et al., 1989; Kjarsgaard and Peterson, 1991; Lee and Wyllie, 1994; Jones et al., 1995b; Kjarsgaard et al., 1995; Kjarsgaard, 1998; Veksler et al., 1998, 2012; Weidendorfer et al., 2019). Les expériences d'immiscibilité ont donc permis de mettre en évidence que les liquides silicatés et carbonatés peuvent coexister à l'équilibre, pour des conditions de pression et de température crustales et mantelliques. La Figure I.7 présente les gammes de compositions observées expérimentalement, des liquides silicatés et carbonatés sans alcalins obtenus aux conditions mantelliques (triangles bleus; Keshav and Gudfinnsson, 2013; Novella et al., 2014), aux liquides hyper-alcalins de type Ol Doinyo Lengai (orange et marron clair; Hamilton et al., 1989; Veksler et al., 2012). Les données expérimentales des différentes études ainsi que les solvus séparant les deux liquides (domaine de formation des deux liquides à l'équilibre) indiquent globalement une évolution de la composition des liquides vers un pôle plus alcalin, pour des conditions plus basses de pression et de température (Fig.I.7).

Dans les roches naturelles, l'immiscibilité est souvent suggérée par l'association spatiale et temporelle de carbonatites et de magmas alcalins comme expliqué précédemment (Kjarsgaard and Hamilton, 1988; Mitchell, 2005; Woolley and Kjarsgaard, 2008; Woolley and Bailey, 2012; Bodeving *et al.*, 2017). Elle est également renforcée par la découverte d'inclusions vitreuses présentent dans certains minéraux des roches magmatiques alcalines et contenant à la fois des liquides silicatés alcalins et carbonatés (Mitchell, 2009; Guzmics *et al.*, 2012, 2015, 2019; Baudouin *et al.*, 2018). Ces inclusions ont principalement été observées dans les roches alcalines et hyperalcalines du Rift Est Africain en

Tanzanie, au volcan Ol Doinyo Lengai où sont formées les natrocarbonatites, mais également aux volcans Kerimasi et Hanang. Les liquides silicatés et carbonatés de ces inclusions présentent des compositions cohérentes avec les compositions mises en évidence dans les expériences d'immiscibilité (domaines gris, Fig.I.7), avec des liquides très alcalins (Guzmics *et al.*, 2012, 2019) à hyperalcalins pour le volcan Ol Doinyo Lengai (Mitchell, 2009) et dont la composition des liquides carbonatés est similaire à la composition des natrocarbonatites naturelles (étoile rouge, Fig.I.7). Kjarsgaard et Peterson (1991) ont également observé des nodules carbonatés riches en Ca dans des néphélinites du volcan Shombole au Kenya, et ont reproduit expérimentalement les conditions de formations de liquides carbonatés ayant la même composition que ces globules et coexistant avec un liquide silicaté de type néphénélitique (courbe verte, Fig.I.7).

Figure 1.7. Diagramme ternaire de composition des liquides silicatés et carbonatés immiscibles. Les compositions des liquides immiscible sont représentées dans la projection de Freestone and Hamilton (1980). Chaque trait droit relie un couple de liquide silicaté (situé plus vers le pôle SiO₂+TiO₂+Al₂O₃ du diagramme) et de liquide carbonaté (vers les pôles CaO+MgO+FeO, ou Na₂O+K₂O) coexistant à l'équilibre au cours d'expériences réalisées à des conditions P-T précises. Des compositions expérimentales représentatives des systèmes simplifiés CMAS-CO₂ (triangles bleus, Keshav and Gudfinnsson, 2013; Novella et al., 2014) et CNAS-CO₂ (courbes pointillées, Brooker and Kjarsgaard, 2011) sont aussi représentées. Les systèmes plus complexes sont également représentés, pour des compositions de néphélinites coexistant avec des liquides carbonatés (courbe verte, Kjarsgaard and Peterson, 1991; marron foncé, Kjarsgaard 1998), et des compositions plus phonolitiques (marron clair, Hamilton et al., 1989) et phonolitiques hyperalcalines coexistant avec des liquides carbonatés de type natrocarbonatites (orange, Veksler et al., 2012). L'étoile rouge correspond à la moyenne de la composition naturelle des natrocarbonatites du volcan Ol Doinyo Lengai en Tanzanie (de Keller and Zaitsev, 2012). Les champs de compositions des liquides coexistant dans des inclusions vitreuses naturelles retrouvées dans des roches alcalines (champs gris) contiennent les données correspondant au volcan Ol Doinyo Lengai (noté "OL"; Mitchell, 2009) et Kerimasi (noté "KE"; Guzmics et al., 2012; Guzmics et al., 2019) en Tanzanie.

La formation de liquides carbonatés est également parfois suggérée par une combinaison de la deuxième et de la troisième hypothèse : ils peuvent se former par immiscibilité à partir du fractionnement d'un liquide silicaté alcalin de type mélilitique ou néphélénitique très riche en CO_2 (Kjarsgaard and Peterson, 1991; Kjarsgaard *et al.*, 1995; Lee and Wyllie, 1996; Woolley and Kjarsgaard, 2008). Dans le cas des natrocarbonatites du volcan Ol Doinyo Lengai, certaines études ont proposé une origine des natrocarbonatites par exsolution à partir d'un liquide silicaté de type

néphélinite hyper-alcalin (Kjarsgaard *et al.*, 1995). Une autre étude (Weidendorfer *et al.*, 2017) a proposé la formation des natrocarbonatites par la cristallisation fractionnée d'un liquide carbonaté calcitique riche en alcalins (8 - 9 % poids de $Na_2O + K_2O$), et propose une origine commune aux Caet Na- carbonatites (Fig.I.8). Cette hypothèse implique que le liquide carbonaté parent soit suffisamment enrichi en éléments alcalins pour permettre la saturation en carbonates sodiques (nyéréréite) et la formation des natrocarbonatites à des températures relativement basses. Les natrocarbonatites sont dans ce cas un produit de fractionnement à un stade très avancé de magmas carbonatés.

Figure I.8. Diagramme de phase dans le système $CaCO_3$ -(Na,K)CO_3, représentant la fomration de natrocarbonatites à partir de la cristallisation fractionnée de calciocarbonatite, d'après Weidendorfer et al. (2017).

L'immiscibilité entre les magmas carbonatés et les magmas silicatés alcalins est l'hypothèse principale de genèse des liquides carbonatés suivie au cours de cette étude. Nous tenterons de relier la formation des liquides carbonatés par immiscibilité à la différentiation des liquides alcalins sous-saturés en silice de type néphélinite-phonolite, ainsi qu'au comportement des métaux rares entre ces deux liquides.

I.2. Les métaux rares dans les magmas alcalins

Le magmatisme alcalin produit des magmas riches en éléments incompatibles (I.1.1). Ceci suggèrent que les roches magmatiques alcalines et les carbonatites sont enrichies en éléments traces en comparaison aux autres roches magmatiques. Ces roches sont en effet connues pour contenir des éléments traces en relativement grandes concentrations ; elles sont en effet particulièrement riches en métaux rares, c'est-à-dire la famille des terres rares (Rare Earth Elements en anglais, noté REE) - qui inclue les lanthanides (15 éléments, du La au Lu), l'Y et le Sc (selon les auteurs) - ainsi que le Zr, Hf, Ta et Nb (Linnen *et al.*, 2014). En conséquence, certaines carbonatites sont actuellement exploitées pour leurs concentrations économiquement intéressantes en métaux rares, et d'autant plus depuis ces dernières années du fait de l'augmentation importante de la demande internationale. Les gisements de carbonatites ou de magmas alcalins présentent des caractéristiques parfois très particulières. Les processus d'enrichissement de ces métaux ont été très étudiés dans la littérature afin de mieux comprendre les conditions optimales d'enrichissement de ces roches.

I.2.1. Les métaux rares : définition et contexte économique

Dans le cadre de cette étude, le groupe des métaux rares est définit comme comprenant principalement la famille des REE, qui comprend les lanthanides (15 éléments, du La au Lu) et l'Y, ainsi que le Zr, Hf. Ces métaux sont en forte concentration dans les roches ignées alcalines et péralcalines évoluées (Dostal, 2016), ainsi que dans les carbonatites (Kanazawa and Kamitani, 2006; Linnen *et al.*, 2014; Dostal, 2016; Smith *et al.*, 2016; Verplanck *et al.*, 2016).

Les REE forment un groupe, qui contrairement à ce que leur nom indique, ne sont pas rares dans la croûte terrestre (Henderson, 1984; Chakhmouradian and Wall, 2012). Les REE correspondent principalement à la famille des lanthanides (du La au Lu) ; on y ajoute souvent l'Y qui est un élément proche en terme de rayon ionique et de charge de coordination. Le Sc est également selon certains auteurs assimilé à ce groupe, mais n'est pas considéré en tant que tel dans cette étude. Le groupe des REE présente souvent un comportement cohérent et similaire, ce qui en fait d'important marqueurs de nombreux processus géologiques et notamment magmatiques (Henderson, 1984; Jones et al., 1995a; Chakhmouradian and Wall, 2012; Linnen et al., 2014). On distingue classiquement les terres rares légères (light REE en anglais, noté LREE ; du 57La au 64Gd) des terres rares lourdes (heavy REE, HREE ; du ⁶⁵Tb au ⁷¹Lu). Dans certains cas, les REE du ⁶²Sm au ⁶⁴Gd peuvent constituer le sousgroupe des terres movennes ou intermédiaires (middle REE, MREE). Ces éléments possèdent des propriétés magnétiques, optiques, électroniques et catalytiques exceptionnelles et sont ainsi utilisés dans de nombreuses applications industrielles (luminophores, aimants, batteries ...; Chakhmouradian and Wall, 2012; Linnen et al., 2014). Les HREE sont plus rares et ont une plus forte importance économique que les LREE. Les autres métaux rares (Zr, Hf, Ta et Nb) présentent aussi ce type de propriétés chimiques et physiques qui en font également des métaux très demandés dans de nombreux domaines industriels (Mitchell, 2015; Dostal, 2016; Verplanck et al., 2016).

L'activité minière concerne principalement les REE et le Nb, et ne se limite qu'à un nombre réduit de gisements inégalement répartis (Mitchell, 2015; Smith *et al.*, 2016). La demande de ces métaux augmente drastiquement du fait de leur utilisation intensive dans de nombreuses technologies nouvelles ainsi que dans les énergies renouvelables (éoliennes, panneaux solaires, batteries électriques etc...; (Kanazawa and Kamitani, 2006; Chakhmouradian and Zaitsev, 2012; Kynicky *et al.*, 2012; Mitchell, 2015; Dostal, 2016; Smith *et al.*, 2016; Verplanck *et al.*, 2016). Cette forte demande ainsi que le fait que leur exploitation ne soit limitée qu'à un nombre très réduit de mines, impliquent de les inclure dans la liste des « métaux critiques » de nombreux états (Chakhmouradian and Wall, 2012; Hatch, 2012; Mitchell, 2015; Goodenough *et al.*, 2016; Smith *et al.*, 2016). Afin de palier à ce problème, les pays consommateurs de ces métaux tentent de diversifier leurs approvisionnements et encouragent les actions visant à faciliter la découverte de nouveaux gisements (Charalampides *et al.*, 2015; Guyonnet *et al.*, 2015; Goodenough *et al.*, 2016, 2017).

I.2.2. Carbonatites et roches magmatiques alcalines : principaux gisements de métaux rares

I.2.2.1. Les gisements associés aux carbonatites

Les carbonatites constituent les roches ignées les plus enrichies en métaux rares. Parmi les > 500 occurrences de carbonatites référencées dans le monde (Woolley and Kjarsgaard, 2008), seules quelques-unes sont actuellement exploitées, principalement en partie pour les REE et en partie pour le Nb (Fig.I.9).

Les principaux minéraux à REE dans les carbonatites sont des fluoro-carbonates tels que la bastnaesite $((Ce, La)(CO_3)F)$ ou la synchysite $(Ca(Ce, La, Nd, Y)(CO_3)_2F)$, et des phosphates tels que la monazite $((Ce, La, Nd, Th) PO_4)$ et l'apatite $(Ca_5(PO_4)_3(OH, F, Cl))$.

Figure 1.9. Carte géologique des occurrences de mine et de gisement de REE et de Nb associés aux carbonatites et aux complexes alcalins, modifié d'après Woolley and Kjarsgaard (2008).

Les REE et particulièrement les LREE, sont exploitées dans 4 principaux gisements associés aux carbonatites (Kanazawa and Kamitani, 2006; Smith *et al.*, 2016; Verplanck *et al.*, 2016) :

- La mine de Bayan Obo en Chine, qui constitue la plus importante ressource mondiale en REE, avec des concentrations en REE₂O₃ > 6% poids (Yang *et al.*, 2011; Lai *et al.*, 2012; Verplanck *et al.*, 2016).
- Les deux gisements conjugués de Maoniuping et de Dalucao (Mianing deposit) également situés en Chine, qui contiennent environ 3% poids de REE₂O₃ (Hou *et al.*, 2009; Verplanck *et al.*, 2016).
- Le gisement de Mountain Pass, associé à la carbonatite de Suphide Queen en Californie (Etats-Unis), qui contient environ 8% poids de REE₂O₃ (Mariano and Mariano, 2012; Verplanck *et al.*, 2016). Ce gisement a constitué la principale source de REE au monde entre 1965 et 1995 (Castor, 2008) avant de se faire progressivement dépasser par ceux situés en Chine.
- Le gisement de Mount Weld en Australie, correspondant à une carbonatite primaire non économique et dont les processus d'altération supergène ont permis la reconcentration des REE (8% poids de REE₂O₃) dans la partie latéritisée de la carbonatite (Lottermoser, 1990, 1992; Verplanck *et al.*, 2016).

Les Fe-carbonatites sont généralement considérées comme étant les plus enrichies en REE (Tableau I.2), bien que les grands gisements actuellement exploités soient associés à des Ca-carbonatites (*e.g.* Bayan Obo et Mountain Pass).

Les profils de ces carbonatites normalisées aux chondrites indiquent un fort enrichissement en LREE (Fig.I.10a), qui semble varier de manière importante au sein même de certain gisement. On peut par exemple observer une variation d'enrichissement de 4 ordres de grandeur pour la carbonatite de Bayan Obo (Fig.I.10a). D'autres carbonatites constituent également d'importantes cibles d'exploration, telles

que la carbonatite de Bear Lodge aux Etats-Unis (orange; Moore et al., 2015; Verplanck et al., 2016), celle de Kangankunde au Malawi (Wall and Mariano, 1996; Broom-Fendley *et al.*, 2016; Verplanck *et al.*, 2016), ou encore celle de Lofdal en Namibie (Verplanck *et al.*, 2016; Bodeving *et al.*, 2017). La plupart de ces gisements (et mines) sont associés à des complexes alcalins (Mountain Pass, Bayan Obo, Mount Weld, Bear Lordge etc...).

La deuxième substance la plus exploitée dans les carbonatites est le Nb (Fig.I.9). Ce métal est principalement exploité dans les mines d'Araxá (Traversa *et al.*, 2001; Smith *et al.*, 2016; Verplanck *et al.*, 2016) et de Catalão au Brésil (Verplanck *et al.*, 2016) pour des concentrations respectivement de 2.5 et de 0.9 % poids de Nb₂O₅, et à la mine de Niobec au Québec dans la carbonatite de Saint-Honoré pour des concentrations de 0.4% poids de Nb₂O₅ (Mitchell, 2015; Verplanck *et al.*, 2016). Dans ces carbonatites, le principal minéral exploité pour le Nb est le pyrochlore de formule (Ca, Na, REE)₂Nb₂O₆(OH,F), qui peut également être considéré comme un minerai de REE.

Tous ces gisements de REE ou de Nb associés aux carbonatites ont été qualifiés de « large deposits », pour un tonnage de ces métaux > 1,7 x 10^6 tonnes (Smith *et al.*, 2016), à l'exception de l'important gisement de Bayon Obo qui est lui qualifiée de « giant deposit» (> 1.7×10^7 tonnes de REE ; Smith et al., 2016).

I.2.2.2. Les gisements associés aux complexes magmatiques alcalins

Les gisements à métaux rares peuvent également être associés aux roches magmatiques alcalines soussaturées en silice. A l'inverse des gisements associés aux carbonatites, ils sont bien plus enrichis en HREE (et en Y). On distingue deux principaux types de gisements: ceux associés aux complexes alcalins lités liés aux grandes provinces magmatiques alcalines (roches de type syénites néphéliniques), et ceux associés aux granites péralcalins.

Les gisements à métaux rares les plus importants sont ceux liés à des grandes provinces magmatiques alcalines intrusives constituées de complexes alcalins sous-saturés en silice et très différenciés de type syénite néphélinite (Kogarko, 1990; Dostal, 2016). Ces complexes alcalins présentent des textures caractéristiques constituées de cumulas de cristaux lités en bandes successives, contenant le plus souvent des minéraux à REE. La minéralogie en REE des complexes alcalins est bien plus compliquée que celle des carbonatites (Dostal, 2016): les principaux minéraux de REE sont des silicates tels que l'eudialyte et la steenstrupine, des fluorocarbonates (bastnaesite, synchisite), de la loparite (pérovskite à REE et Nb) ou encore des phosphates (apatite, monazite et xénotime). L'eudialyte et la steenstrupine ne sont pas encore considérés comme des minerais à REE ; des études sont actuellement en cours afin de proposer un procédé de traitement économique de ces minéraux.

Les complexes les plus connus sont (Fig.I.10b):

- Le complexe magmatique d'Ilimaussaq situé dans la province du Gaardar au Groenland (Sørensen *et al.*, 2006; Marks and Markl, 2015; Dostal, 2016) contenant plus de 200 espèces minérales exotiques dont certaines ne proviennent que de cet endroit. De plus, ce complexe constitue la localité-type des roches dites agpaïtiques (syénites néphéliniques péralcalines).
- Les complexes alcalins de Khibiny et de Lovozero dans la péninsule de Kola en Russie (Zaitsev *et al.*, 1998; Arzamastsev *et al.*, 2001; Kogarko *et al.*, 2010; Dostal, 2016). Le complexe principalement constitué de syénites est actuellement exploité pour l'apatite (engrais phosphatés) et la loparite (minerais de Nb et REE) ; on y trouve également une carbonatite qui ne présente pas d'enrichissement en métaux rares particulier.
- Le gisement de Thor Lake au Canada (Sheard, 2010; Sheard et al., 2012; Dostal, 2016).

Figure 1.10. Composition en REE des gisements associés aux carbonatites (a) et aux complexes alcalins (b), normalisés aux chondrites (McDonough and Sun, 1995). a) Les profils des carbonatites normalisés aux chondrites correspondent aux mines de Bayan Obo (Yang et al., 2011; Lai et al., 2012), Mianing deposits (Hou et al., 2006), Mountain Pass (Verplanck et al., 2016) et Mount Weld (Verplanck et al., 2016), ainsi que des gisements de Bear Lodge (Moore et al., 2015; Verplanck et al., 2016), Lofdal (Bodeving et al., 2017) et Kangankunde (Verplanck et al., 2016); b) Les profils de complexes alcalins normalisés aux chondrites correspondent à Lovozero et Khibiny (Arzamastsev et al., 2001, 2008), Thor Lake (Sheard, 2010) et d'Ilimaussaq (Bailey et al., 2001; Sørensen et al., 2006).

Le profil de ces complexes normalisés aux chondrites (Fig.I.10b) indique un enrichissement en HREE qui se traduit par un fractionnement beaucoup moins prononcé entre les LREE et les HREE, en comparaison aux carbonatites (Fig.I.10a). L'enrichissement en REE peut également varier fortement au sein même d'un gisement, ce qui peut soit être dû aux processus de formation des gisements, soit au caractère cumulatif de certains niveaux de ces complexes lités.

Tous les autres complexes alcalins, tels que ceux de Norra Kärr (Suède) et de Red Wine Mountains (Canada), sont en cours d'exploration (Dostal, 2016). Dans tous ces complexes, les REE sont principalement contenus dans la steenstrupine et l'eudialyte. L'extraction des REE dans ces minéraux se révèle très difficile à cause de leur structure cristalline très complexe (Chakhmouradian and Wall, 2012; Dostal, 2016).

Le deuxième type de magma alcalin qui peut constituer des gisements à métaux rares correspond aux granites peralcalins. Ces granites formés dans les mêmes contextes géodynamiques, ne présentent pas de structure litée, mais plutôt des niveaux pegmatitiques contenant la minéralisation en REE (Dostal, 2016). Le granite peralcalin le plus connu est celui de Strange Lake au Canada (Dostal, 2016; Vasyukova and Williams-Jones, 2019a, 2019b) et est actuellement en cours d'exploration.

I.2.3. Processus de formation des gisements

Dans les carbonatites, les fortes concentrations dites « économiques » en REE et en Nb ont principalement été décrites dans la littérature comme pouvant résulter de processus tardi-magmatiques avec la circulation de fluides hydrothermaux, ou encore post-magmatiques par des processus d'altération supergènes (Smith *et al.*, 2016; Verplanck *et al.*, 2016).

En effet, les REE sont caractérisées comme pouvant être solubles dans certains fluides aqueux, soit provenant de processus hydrothermaux, soit percolant à la surface (Humphris and Henderson, 1984; Williams-Jones *et al.*, 2012; Gysi and Williams-Jones, 2015; Migdisov *et al.*, 2016; Verplanck, 2017). Les fluides impliqués dans la concentration, le transport et le dépôt des REE sont souvent décrit comme pouvant être riches en F et en Cl (Williams-Jones *et al.*, 2012), permettant ainsi la formation de complexes stables fluorés et chlorés. Les REE sont alors fractionnés dans ces fluides hydrothermaux, les LREE étant plus mobiles et plus stables dans des complexes chlorés que les HREE (Migdisov *et al.*, 2016).

Dans les carbonatites, le mode d'enrichissement par les fluides hydrothermaux a été souvent utilisé pour expliquer les fortes concentrations en REE, notamment pour les carbonatites minées de Bayan Obo (Yang *et al.*, 2011; Lai *et al.*, 2012; Verplanck *et al.*, 2016), de Maoniuping et Dalucao (Hou *et al.*, 2009; Verplanck *et al.*, 2016) et de Mountain Pass (Castor, 2008), ou encore les gisements de Bear Lodge (Moore *et al.*, 2015; Verplanck *et al.*, 2016), et de Kangankunde (Wall and Mariano, 1996; Broom-Fendley *et al.*, 2016). Les minéraux à REE cristallisant à partir de ces fluides sont souvent les fluorocarbonates ou les phosphates décris précédemment dans la partie I.2.2.1 (principalement bastnaesite et monazite), et présentent souvent une texture de grains fins (en cluster ou en agrégats).

De plus, des processus post-magmatiques d'altération ont été décrits comme responsables des enrichissements en métaux rares dans certaines carbonatites : c'est le cas pour les mines de Nb d'Araxá, Catalão (Traversa *et al.*, 2001; Smith *et al.*, 2016; Verplanck *et al.*, 2016) et Niobec (Mitchell, 2015), ainsi que la mine de REE de Mount Weld (Lottermoser, 1990, 1992; Verplanck *et al.*, 2016) et la carbonatite de Bear Lodge (Verplanck *et al.*, 2016). Les carbonatites d'Araxá et de Mount Weld ont même subi une altération très poussée, les transformant totalement en latérites en surface (Verplanck *et al.*, 2016).

Enfin, des minéraux magmatiques primaires de REE présentant une texture de grands cristaux automorphes ont également été décrit à Mountain Pass (Castor, 2008; Mariano and Mariano, 2012; Verplanck *et al.*, 2016) avec la caractérisation de bastnaesite magmatique, et à Saint-Honoré pour les REE et le Nb respectivement avec la formation de bastnaesite et de pyrochlore (Mitchell, 2015; Néron *et al.*, 2018). La découverte de ces minéraux indique un pré-enrichissement d'origine magmatique de ces carbonatites.

Pour tous ces gisements associés aux carbonatites, ces processus peuvent se superposer, comme c'est le cas par exemple à Mountain Pass, avec l'identification de phases à REE magmatiques et hydrothermales, ou encore à Bear Lodge avec l'identification de processus hydrothermaux et supergènes. Dans certains cas, la superposition des différents processus rend la compréhension de la minéralisation en métaux rares très complexe. Le gisement de Bayan Obo en est le cas typique : la Figure I.10a indique une importante variation de l'enrichissement en REE de ce gisement qui reflète tous les épisodes de minéralisation provoqués par différents processus. L'histoire géodynamique complexe de la région et de la carbonatite rend l'identification de l'enrichissement primaire en REE lié aux processus magmatiques de formation de cette carbonatite très difficile (Verplanck *et al.*, 2016).

Certains auteurs proposent également une origine par des processus d'immiscibilité. Kynicky et al. (2019) ont récemment proposé l'influence de ces processus sur l'enrichissement en REE de dykes carbonatites associées à un pluton de type syénite néphélinite (Lugiin Gol, Mongolie). En effet les auteurs ont identifiés des minéraux de REE associées à des complexes de calcite et fluorite, situés à la fois dans les dykes de carbonatites et la syénite. Ces complexes sont considérées comme étant les résidus d'un liquides carbonaté-fluoré qui aurait été immiscibilité entre les liquides carbonatés-fluorés et silicatés est suggérée comme étant associée à la minéralisation en REE. Bodeving et al. (2017) ont également proposé que la carbonatite de Lofdal en Namibie qui constitue un gisement de REE assez important (Verplanck *et al.*, 2016), a pu être formée par immiscibilité avec un liquide silicaté soussaturé en silice de type phono-tephritique ou phonolitique.

En ce qui concerne les complexes alcalins (Fig.I.10b), l'enrichissement est souvent décrit comme étant dû à des processus magmatiques tardifs (cristallisation fractionnée extensive) dans une première étape de minéralisation, puis à la circulation de fluides orthomagmatiques/hydrothermaux (Dostal, 2016). Au cours de leur différentiation, les liquides résiduels s'enrichissent ainsi en REE, Nb et autres métaux rares, mais également en éléments volatils (CO₂, H₂O, Cl, F, S et P). Le degré de cristallisation fractionnée de ces liquides magmatiques a une forte implication sur le taux d'enrichissement en éléments incompatibles : plus un liquide est différencié, plus il est enrichi en éléments incompatibles. Ceci implique qu'à un stade très avancé de cristallisation fractionnée, le liquide résiduel peut saturer en ces éléments. En fonction de la composition du magma, des minéraux primaires de REE (ou autres métaux rares) peuvent cristalliser directement à partir du magma. Les métaux rares peuvent aussi rester incompatibles et se concentrer dans les liquides résiduels jusqu'à la saturation d'une phase fluide, qui peut alors s'enrichir en éléments volatils ainsi qu'en ces métaux (stade hydrothermale). C'est le cas dans les complexes alcalins lités d'Ilimaussaq (Sørensen et al., 2006; Marks and Markl, 2015; Dostal, 2016), de Lovozero-Khibiny (Zaitsev et al., 1998; Kogarko et al., 2010; Dostal, 2016) et de Thor Lake (Sheard et al., 2012; Dostal, 2016) où une première phase de minéralisation à REE (eudialyte et steenstrupine principalement) a souvent été caractérisée, ainsi qu'une deuxième phase de minéralisation liée aux fluides orthomagmatiques/hydrothermaux, pouvant ainsi se superposer ou effacer la minéralisation primaire.

Les carbonatites et les complexes alcalins lités peuvent ainsi présenter des enrichissements en métaux rares très importants, qui peuvent parfois en faire des gisements à caractère économique dont les processus de formation ne sont pas toujours identifiés. Cependant, comme expliqué ci-dessus, les processus postérieurs aux processus magmatiques effacent la plupart du temps les traces éventuelles d'enrichissement en métaux rares au stade magmatique, et donc ainsi toute possibilité de relier ces enrichissements aux processus de formation des magmas parents.

I.3. Enrichissement en métaux rares au stade magmatique: objectifs de la thèse

Nous avons vu précédemment que de nombreuses études expérimentales ont permis d'identifier et de mieux comprendre les processus de formation des magmas alcalins et des magmas carbonatés. Elles ont permis de mettre en évidence la richesse en éléments incompatibles des magmas parents, ainsi que la nécessité de certains éléments volatils pour leur formation.

Les carbonatites sont les roches les plus enrichies en REE ; cependant, certaines carbonatites naturelles de compositions similaires présentent de fortes concentrations en métaux rares et d'autres non. L'enrichissement primaire, c'est-à-dire magmatique, en métaux rares des magmas carbonatés à l'origine de ces roches est très mal contraint dans les roches naturelles (Chakhmouradian and Zaitsev, 2012; Smith *et al.*, 2016; Verplanck *et al.*, 2016) car les processus tardi- et post-magmatiques ne permettent pas d'en conserver la trace. De même, les études expérimentales ne permettent pas encore de mettre en évidence les conditions optimales d'enrichissement de ces roches au stade magmatique.

Les travaux d'immiscibilité entre liquides silicatés et carbonatés évoqués précédemment ont montré l'existence d'un vaste champ de composition chimique de ces deux liquides coexistant à l'équilibre, et notamment pour des gammes de compositions riches en éléments alcalins. L'immiscibilité entre liquides alcalins silicatés et liquides carbonatés implique des conditions de pression et de température mantelliques et crustales, correspondant aux conditions de formation des magmas alcalins et de leur différenciation. Plusieurs paramètres doivent influencer fortement l'enrichissement initial en métaux rares d'un liquide carbonaté immiscible avec un liquide silicaté alcalin:

- Le partage des éléments entre les deux liquides: comment se répartissent les REE et autres métaux rares entre un liquide carbonaté et un liquide alcalin silicaté?
- La différenciation de ces magmas : comment évolue le partage de ces éléments entre les deux liquides au cours de leur différenciation? Quelle est l'influence de leur composition chimique ?
- la cristallisation : comment évoluent les partages des métaux rares entre les cristaux formés et les liquides silicatés/carbonatés ?
- Les volatils : quel est l'impact des éléments volatils (CO₂, H₂O, F, Cl, P) sur l'enrichissement de ces magmas ?

Les paramètres contrôlant l'enrichissement en métaux rares au cours de la formation des magmas alcalins et des carbonatites n'ont pas encore été ciblés.

L'objectif de ce travail de thèse est d'évaluer par une approche expérimentale l'enrichissement en métaux rares des magmas alcalins et des carbonatites au cours de leur différenciation. L'outil expérimental permet de reproduire les conditions de pression et de température de formation de ces magmas, dans le but de comprendre le comportement de ces métaux entre les différentes phases cristallines, les liquides carbonatés et les liquides silicatés, afin notamment de caractériser les conditions optimales d'enrichissement des liquides carbonatés à l'origine des carbonatites. Pour cela des expériences de cristallisation et d'immiscibilité entre liquides silicatés alcalins sous-saturés en silice et liquides carbonatés ont été réalisées, reproduisant les conditions de formation et de différenciation de ces magmas.

Le **Chapitre II** présente l'état des connaissances sur: i) la teneur en éléments volatils des liquides silicatés alcalins et des liquides carbonatés, ainsi que leur structure, ii) les travaux d'immiscibilité entre liquide silicaté et carbonaté et le partage des éléments traces entre ces liquides; iii) le comportement des métaux rares entre les cristaux et les liquides, avec une présentation des modèles de partage déjà préexistant et iv) le rôle de la phase fluide.
Le **Chapitre III** détaille la méthodologie expérimentale et analytique employée dans le cadre de cette thèse. Le protocole et les techniques expérimentales utilisées y sont détaillés, ainsi que les différentes méthodes analytiques utilisées pour caractériser les échantillons expérimentaux.

Le **Chapitre IV** constitue le point de départ et le centre de cette étude, et présente un modèle d'enrichissement en REE des carbonatites au cours de la différentiation des magmas alcalins. Ce chapitre s'articule autour d'un article accepté à GCA (Geochimica et Coscmochimica Acta). Il présente des données expérimentales de partage des REE entre liquides carbonatés et liquides silicatés de type NaK-néphélinite à phonolite. Ce chapitre met en évidence que les REE suivent le calcium dans ces systèmes alcalins. Le calcium est alors utilisé comme « proxy » du comportement des REE entre les liquides carbonatés et les liquides silicatés alcalins. Une paramétrisation de l'enrichissement en REE des carbonatites qui se base sur ces expériences d'immiscibilité, ainsi que sur une base de données expérimentale est proposée. Cette paramétrisation indique que le stade de différenciation et le degré de polymérisation des liquides silicatés au moment où l'immiscibilité se produit contrôle l'enrichissement en REE des carbonatites.

Le **Chapitre V** porte sur l'effet des éléments volatils sur la composition des liquides silicatés alcalins et carbonatés immiscibles, ainsi que sur leur enrichissement en métaux rares. La première grande partie s'intéresse particulièrement au rôle des éléments halogènes (F et Cl) et du phosphore : des résultats d'expériences d'immiscibilité dans des systèmes enrichis en F, Cl et P sont présentés. L'effet de ces éléments sur la composition et l'enrichissement en métaux rares des liquides est étudié. L'effet de composition et de structure du liquide silicaté mis en évidence dans le chapitre IV est également dominant dans ces systèmes encichis en volatils. Le modèle d'enrichissement en REE des liquides carbonatés présentés dans la chapitre IV est aussi validé pour ces compositions enrichis en F, Cl et P.

La deuxième partie de ce chapitre V présente les premières données de concentrations de CO_2 et de H_2O dans les liquides silicatés alcalins (néphélinite-phonolite) à saturation en carbonates liquides, ainsi qu'une étude préliminaire des effets du CO_2 sur la composition de liquides et sur le comportement des métaux rares.

Le **Chapitre VI** traite des cristaux formés au cours de la différenciation des magmas alcalins et carbonatés. Cette partie s'intéresse particulièrement au partage des métaux rares entre les cristaux coexistant avec les liquides silicatés et carbonatés décrits dans le chapitre IV ainsi que ceux \pm enrichis en F, Cl et P décrits dans le chapitre V (clinopyroxène, grenat, titanite, apatite...). Les paramètres qui influencent l'enrichissement en métaux rares des minéraux formés au cours de la différenciation des magmas alcalins et des liquides carbonatés sont mis en évidence. Pour tous ces minéraux, la composition du liquide silicaté joue un rôle majeur sur leur enrichissement en métaux rares.

Le Chapitre VII présente une synthèse regroupant tous les résultats obtenus.

II. Etat de l'art

Ce chapitre présente un état des connaissances approfondies sur le comportement et le devenir des REE dans la différenciation des magmas alcalins.

Une première partie présente la richesse en éléments volatils des magmas alcalins et carbonatés et la structure des liquides. Les concentrations en éléments volatils dans ces magmas sont tout d'abord présentées. Les modèles de solubilité en H_2O et en CO_2 pour des compositions de magmas alcalins sous-saturés en silice et carbonatés sont exposés. Enfin un troisième point aborde la structure de ces liquides magmatiques (silicatés et carbonatés) ainsi que l'effet des éléments volatils sur cette structure.

La deuxième partie s'intéresse aux processus d'immiscibilité responsables de la formation des liquides carbonatés en coexistence avec des liquides silicatés. Le champ de composition des deux liquides caractérisés expérimentalement est présenté, ainsi que les données préexistantes de partage des éléments traces entre liquides carbonatés et silicatés. Enfin, les relations entre la structure des liquides, la solubilité des volatils dans ces liquides et leur enrichissement en métaux rares sont discutés.

La troisième partie traite du comportement des métaux rares entre les cristaux formés au cours de la différenciation des magmas et les liquides. Le partage de ces éléments entre les cristaux et les liquides silicatés/carbonatés est présenté ainsi que le rôle de la structure des cristaux et des liquides sur ce partage.

La quatrième partie aborde brièvement le rôle de la phase fluide, à la fois sur la formation de ces liquides immiscibles ainsi que sur le comportement des métaux rares.

Une dernière partie résume les points non résolus de la littérature et les relie aux objectifs de la thèse.

II.1. Magmas silicatés alcalins et carbonatites : éléments volatils et structure

II.1.1. Éléments volatils dans les roches magmatiques alcalins et les carbonatites

Les magmas alcalins et les carbonatites sont relativement enrichis en éléments volatils (partie I.1.2). La présence à la surface de carbonatites ainsi que de roches magmatiques silicatés très riches en CO_2 tels que les kimberlites ou les mélilitites, témoigne de processus mantelliques profonds impliquant des concentrations importantes en CO_2 (Bailey, 1993; Dasgupta and Hirschmann, 2010). Nous avons vu précédemment (I.1.2.1) que ces magmas font partie intégrante des cycles profonds du carbone et de l'eau (Hirschmann, 2006; Dasgupta and Hirschmann, 2010; Green *et al.*, 2010; Hazen and Schiffries, 2013; Hammouda and Keshav, 2015, 2015; Yaxley *et al.*, 2019).

La source des magmas alcalins (manteau profond) est riche en H₂O et en CO₂. Les roches volcaniques formées à la surface ne présentent pas de concentrations élevées en ces éléments étant donné que les magmas dégazent au cours de leur remontée à la surface et au contact de l'air (différence à 100 de la composition des roches totales < à 2% poids). L'étude des inclusions vitreuses piégées dans les minéraux de ces roches permet d'accéder à la composition chimique des liquides relatifs aux conditions pré-éruptives dans la chambre magmatique (Frezzotti, 2001; De Moor *et al.*, 2013), et ainsi de connaître les concentrations en éléments volatils dissous dans ce liquide. Les inclusions vitreuses ont ainsi mis en évidence les concentrations importantes en volatils dans les roches alcalines soussaturées en silice (Wallace, 1998; Longpré *et al.*, 2017; Baudouin *et al.*, 2018), jusqu'à quelques % poids (Tableau II.1). Pour le volcan Ol Doinyo Lengai, l'étude de ces inclusions a ainsi montré les fortes concentrations en CO₂ et H₂O qui peuvent être dissous dans des liquides alcalins sous-saturés en silice de type néphélinite-phonolite (Fig.II.1 ; Tableau II.1): ces liquides peuvent en effet contenir jusqu'à environ 9% poids de CO₂ et 10 % poids en H₂O (De Moor *et al.*, 2013). Certaines de ces inclusions présentent également des carbonates immiscibles avec les liquides silicatés (Fig.II.1).

Figure II.1. Compositions en CO_2 et en H_2O des inclusions vitreuses seules et en présence de carbonates ainsi que du verre matriciel des roches du volcan Ol doinyo Lengai, d'après De Moor et al. (2013).

Les magmas alcalins sous-saturés en silice et les carbonatites contiennent également des concentrations relativement importantes F, Cl, S et P (partie I.1.2.2; Tableau I.1). Dans les roches magmatiques de type phonolite/trachyte, les concentrations du F et du Cl ont été évaluées

respectivement autour de 0,1 à 1,2% poids et 0,02 à 1,1 % poids (Metrich and Rutherford, 1992; Aiuppa *et al.*, 2009; Webster *et al.*, 2018), y compris pour les roches du volcan Ol Doinyo Lengai (Mangler *et al.*, 2014). Mattsson et al. (2013) et Ablay et al. (1998) ont respectivement mis en valeur la présence de concentrations relativement importantes en P dans des roches silicatées alcalines du rift (0,5 à 2% poids dans des mélilites et des néphélinites ; voir Tableau I.1) et des Canaries (0,1 à 1,4% poids dans des basanites et phonolites ; Tableau I.1).

Ces gammes de concentrations ont également été identifiées dans les inclusions vitreuses de liquides silicatés (Tableau II.1). Certaines de ces études mettent en évidence la présence d'inclusions vitreuses constituées de liquides silicatés de type néphélinite coexistant avec des liquides carbonatés (Mitchell, 2009; Guzmics *et al.*, 2012, 2019) ; certains de ces liquides peuvent être relativement très riches en F (> 14% poids ; Guzmics et al., 2019), Cl, P et SO₃ (Tableau II.1) et coexistent avec des liquides de type Ca-Na-carbonatites (Fig.I.7, croix noires). De même, d'autres études ont également montré la présence de liquides fluorés-chlorés coexistant avec des liquides silicatés dans des inclusions vitreuses (Frezzotti, 2001; Panina, 2005; Panina and Motorina, 2008).

Tableau II.1. Compositions moyennes en volatils d'inclusions vitreuses de liquides silicatés et carbonatés des volcans du Rift Est Africain (Mitchell, 2009; Guzmics et al., 2012, 2019; De Moor et al., 2013; Baudouin et al., 2018) et des volcans des Îles Canaries (Wallace, 1998; Longpré et al., 2017). *: liquides coexistant dans les mêmes inclusions vitreuses; #: concentration en CO_2 calculée par Longpré et al., 2017.

	Composition (% poids)	H_2O	CO ₂	F	Cl	P_2O_5	SO ₃	S
Ol Doinyo Lengai	• • •					-		
Mitchell et al., 2009	Néphélinite*	-	-	-	0,39-0,43	0-0,43	1,47-3,86	-
	Carbonatite*	-	-	-	0,31-2,06	1,48-2,85	2,09-4,53	-
De Moor et al., 2013	Néphélinite-phonolite	0,92 -	2,76 - 8,75	0,22 - 0,97	0,26 - 0,63	0,05 - 0,86	-	0,27 à 0,96
Kerimasi								
Guzmics et al., 2012	Mélilite-néphélinite*	-	-	0,08-0,28	0,01-0,03	1,99-2,28	1,10-1,79	-
	Carbonatite*	-	-	0,25-0,99	0,01-0,02	3,18-7,71	0,05-0,38	-
Guzmics et al., 2019	Néphélinite*	-	-	1,01-2,62	00,05-0,65	0,02-0,65	0,16-0,99	-
	Carbonatite*	-	-	5,12-14,32	0,67-2,61	1,65-3,91	1,60-4,91	-
Hanang								
Baudoin et al., 2018	Phonolite	-	0,43	0,91-1,58	0,28-0,87	0,10-0,30	-	-
El Hierro (Canaries)								
Longprè et al., 2017	Basanite	0,38-3,05	0,01-0,34	0,12-0,22	0,06-0,12	0,57-1,12	-	0,05-0,5
			$>1^{#}$					
Gran Canaria								
Wallace 1998	Basalte	0,09-1,38	0,01-0,14	-	-	-	-	-

Les carbonatites contiennent également d'importantes concentrations en ces éléments. Les natrocarbonatites naturelles du volcan Ol Doinyo Lengai contiennent 1,2 à 4,5 % poids pour de F et de Cl, 2- 5% poids de SO₃ et 0,6-1,3 % poids de P₂O₅ (Tableau I.2; Keller and Zaitsev, 2012). De plus, les études expérimentales portant sur la genèse des natrocarbonatites ont mis en valeur un effet primordial du F sur leur formation (Jago and Gittins, 1991; Weidendorfer *et al.*, 2017). Les fortes concentrations en F, ainsi que la présence d'autres agents fondant (SO₃ ou P₂O₅), permettent d'abaisser la température du liquidus et de briser la barrière thermique imposée par la composition de la nyerereite (Fig.I.8).

Les roches silicatées alcalines et les carbonatites sont donc riches en éléments volatils, et particulièrement en H_2O et CO_2 . Des modèles de solubilité ont été réalisés sur les magmas alcalins sous-saturés en silice afin de comprendre le comportement de ces volatils en fonction des conditions P-T.

II.1.2. Solubilité du CO₂ et de H₂O dans les liquides alcalins et carbonatés

Le terme de solubilité correspond ici à la teneur en H_2O ou CO_2 dissout dans le liquide silicaté à saturation en fluide CO_2 - H_2O . La solubilité de H_2O et de CO_2 a été expérimentalement étudiée pour de nombreuses gammes de compositions magmatiques, et notamment pour des compositions de magmas de la série alcaline, sous-saturés en silice. De manière générale, l'eau et le CO_2 dans les magmas sont dépendants des fugacités respectives de H_2O et de CO_2 .

La solubilité de H_2O a été définie dans les liquides alcalins de composition relativement mafiques de type basaltes alcalins (Scarfe, 1973; Lesne *et al.*, 2011b; Iacono-Marziano *et al.*, 2012; Shishkina *et al.*, 2014), néphélinites (Shishkina *et al.*, 2014), ou leucitite (Schanofski *et al.*, 2019), et également dans des compositions plus différenciées de type phono-tephrite (Behrens *et al.*, 2009; Iacovino *et al.*, 2013) ou encore phonolite (Carroll and Blank, 1997; Schmidt and Behrens, 2008; Schanofski *et al.*, 2019). Moussallam et al. (2016) ont également caractérisé la solubilité de l'eau pour des liquides de type kimberlites très pauvres en SiO₂. La majorité des études n'ont observé aucun effet prédominant de la composition des liquides sur la solubilité de l'eau (Schmidt and Behrens, 2008; Behrens *et al.*, 2009; Iacono-Marziano *et al.*, 2012; Schanofski *et al.*, 2019). Moussallam *et al.* (2016b) ont mis en évidence que les kimberlites, qui sont très sous-saturées en silice, peuvent contenir des concentrations en eau similaires à celles des basaltes (Fig.II.2a). Les gammes de concentrations en H₂O dans les liquides semblent similaires pour les différentes compositions en fonction des pressions (Fig.II.2a).

Figure II.2. Solubilité de H_2O et du CO_2 pour les liquides silicatés de transition, d'après Moussallam et al. (2016b). a) H_2O dissous (% poids) dans le liquide silicaté en fonction de la fugacité en H_2O , pour différentes études (Behrens et al., 2009; Shishkina et al., 2010; Vetere et al., 2011; Moussallam et al., 2016b); b) CO_2 dissous (% poids) en fonction de la fugacité en CO_2 , pour mêmes études ainsi que de Moussallam et al. (2015) représentées avec les croix noires.

De même que pour l'eau, la solubilité du CO_2 a été très étudiée dans les gammes de compositions des liquides alcalins. Les concentrations possibles des liquides silicatés en fonction des conditions P-T ont été étudiées pour les kimberlites et mélilitites (Brey and Green, 1976; Brooker *et al.*, 2001a; Moussallam *et al.*, 2015, 2016b), les basanites et néphélinites (Mysen *et al.*, 1975; Shishkina *et al.*, 2014), les basaltes alcalins (Lesne *et al.*, 2011a; Iacono-Marziano *et al.*, 2012; Shishkina *et al.*, 2014), les leucitites et phono-tephrites (Thibault and Holloway, 1994; Behrens *et al.*, 2009; Iacovino *et al.*, 2013; Schanofski *et al.*, 2019) et enfin les phonolites (Schanofski *et al.*, 2019). Le CO₂ est généralement moins soluble que l'eau dans les liquides silicatés (Fig.II.2b). La solubilité du CO₂ dans les liquides silicatés augmente généralement avec la pression, et est fortement dépendante de la composition chimique des liquides (Dixon, 1997; Brooker *et al.*, 2001a; Iacono-Marziano *et al.*, 2012; Ni and Keppler, 2013). La Figure II.2b indique les fortes variations de concentrations du CO₂ dans ces liquides, évoluant de concentrations très faibles dans les basaltes jusqu'à des concentrations de l'ordre de 20% poids dans les kimberlites (Moussallam *et al.*, 2016b).

Parmi les études expérimentales de solubilité présentées ci-dessus, certaines ont analysé à la fois la solubilité de l'eau et du CO₂ (Dixon, 1997; Papale, 1997; Papale *et al.*, 2006; Behrens *et al.*, 2009; Shishkina *et al.*, 2010; Iacono-Marziano *et al.*, 2012; Iacovino *et al.*, 2013; Shishkina *et al.*, 2014; Moussallam *et al.*, 2016b; Schanofski *et al.*, 2019). En général, à saturation en phase fluide, la solubilité du CO₂ est anti-corrélée avec celle de l'eau : les magmas riches en CO₂ sont plus pauvres en eau (Fig.II.3). A cela s'ajoutent les effets de pression et de la composition pour le CO₂ : les liquides silicatés alcalins de composition plus mafique (de type néphélinite par exemple) et formés à plus haute pression, sont les plus enrichis en CO₂ et appauvris en eau (Fig.II.3), par rapport aux magmas moins mafiques tels que les basanites ou les basaltes alcalins.

Figure II.3. Solubilité de H_2O et de CO_2 coexistant avec un fluide H_2O-CO_2 dans des liquides alcalins mafiques, modifié d'après Shishkina et al. (2014). Les données de solubilité correspondent à des liquides de type néphélinite (rouge), basanite (orange) et basalte alcalin (vert), à 100 MPa (gris) et 500 MPa (noir).Les lignes pleines correspondent aux lignes isobares, et sont continuées à 500 MPa en pointillés par extrapolation, pour des valeurs de H_2O plus élevées dans les liquides. Deux isoplets correspondant à la proportion d'eau dans le fluide ($X^{fl}H_2O$) (gris pointillé) sont représentées.

Très peu de données de solubilité des volatils existent pour les liquides carbonatés. De par leur caractère ionique (Jones *et al.*, 2013), les liquides carbonatés formés de groupes carbonates $CO_3^{2^{\circ}}$ ne peuvent sûrement pas présenter une structure polymérisée comme on peut retrouver chez les liquides silicatés. De ce fait, le quench (trempe rapide) des carbonates ne permet pas la formation de verre (Genge *et al.*, 1995), à l'exception de certaines rares compositions (Jones et al., 2013). Ainsi ces structures sont très difficiles à analyser avec les méthodes habituellement employées pour les verres silicatés (FTIR, SIMS etc...). Néanmoins, Keppler (2003) a pu évaluer expérimentalement les concentrations en H₂O de liquides carbonatés riches en Ca, Na et Mg. Cette étude a permis d'apporter les seules données de solubilité de l'eau dans les liquides carbonatés : ces liquides peuvent contenir jusqu'à 10 % poids de H₂O à 1,5 kbar (Fig.II.4 ; Keppler, 2003), ce qui est 2 à 3 fois plus que les liquides silicatés aux mêmes conditions de pression (Fig.II.2a).

Figure II.4. Solubilité de l'eau dans les liquides carbonatés, modifié d'après Keppler (2003).

L'eau et le CO_2 , peuvent donc être très solubles dans les liquides silicatés et carbonatés. Dans les liquides silicatés, la solubilité de H_2O varie surtout avec la pression, alors que la solubilité du CO_2 varie également en fonction de la pression mais aussi de la composition des liquides. La présence de ces volatils dans les liquides peut ainsi jouer un rôle sur leur composition, et notamment sur le comportement des éléments majeurs et des éléments traces. Ces volatils peuvent ainsi également avoir un impact sur la structure de ces liquides et doivent être considérés dans l'étude des magmas alcalins sous-saturés en silice et des magmas carbonatés.

II.1.3. Structures des liquides silicatés et carbonatés, et effets des volatils

La structure des liquides silicatés est régie par leur composition (Mysen *et al.*, 1982; Mysen, 2004). Les liquides silicatés sont formés de tétraèdres de type TO_4^{4-} avec T le cation métallique formateur de réseaux (Si⁴⁺, pouvant parfois être remplacé par Al³⁺, Fe³⁺ ou Ti⁴⁺), et qui sont liés entre eux par des oxygènes pontants, dits « bridging oxygen » en anglais (Mysen, 1990). Les cations modificateurs de réseaux (K⁺, Na⁺, Ca²⁺, Mg²⁺, ou encore Fe²⁺ et Al³⁺) viennent compenser le déficit de charge et ainsi perturber cette structure, en cassant les liaisons T-O-T et en créant ainsi des oxygènes non pontants, appelés « non bridging oxygen » en anglais (NBO).

La structure des liquides silicatés est souvent caractérisée par le paramètre NBO/T qui correspond au ratio des « non bridging oxygen » et des tétraèdres (T). Ce paramètre traduit le degré de polymérisation des liquides : plus il est proche de 0, plus le réseau des liquides silicatés est formé de tétraèdres et est ainsi polymérisé ; à l'inverse, plus ce ratio augmente et plus les liquides sont dépolymérisés. Ce paramètre peut être décrit selon l'équation suivante (d'après Iacono-Marziano et al. 2012):

$$NBO/T = \frac{2*((K_2O + Na_2O + CaO + MgO + FeO - Al_2O_3) - TiO_2)}{(SiO_2 + Al_2O_3)}.$$
(1)

Cependant, comme expliqué précédemment, les liquides silicatés alcalins peuvent être riches en CO_2 et H₂O, et le calcul du NBO/T ne prend pas en compte ces éléments. Or ces volatils peuvent atteindre

quelques % poids dans ces liquides (Fig.II.1 et II.2 ; Tableau II.1); ces concentrations importantes doivent avoir un impact sur ce paramètre et donc sur la structure de leur réseau.

En effet certaines études ont suggéré que la solubilité des éléments volatils et particulièrement du CO₂ dans le liquide silicaté peut avoir un effet sur sa structure (Watson, 1976; Mysen, 1983; Brooker et al., 2001a; Brooker et al., 2001b; Iacono-Marziano et al., 2012; Morizet et al., 2014). Le CO₂ se dissout dans les liquides silicatés pour former des complexes CO_3^{2-} (Pearce, 1964; Eggler and Rosenhauer, 1978; Mysen, 1983; Brooker *et al.*, 2001b), ce qui modifie le NBO/T des liquides (Mysen, 1983; Brooker *et al.*, 2001a; Iacono-Marziano et al., 2012). Iacono-Marziano et al. (2012) et Brooker et al. (2001) ont montré que les liquides silicatés dépolymérisés (NBO/T élevé) incorporent plus le CO₂. La solubilité du CO₂ est ainsi une fonction du NBO/T (Fig.II.5) : plus le liquide silicaté est dépolymérisé (NBO/T augmente), plus il contient de CO₂. Ceci est cohérent avec les données de solubilités du CO₂ dans les kimberlites (Fig.II.2b), qui sont caractérisées par un NBO/T > 3 (Moussallam *et al.*, 2016b). Cet effet est plus marqué à plus haute pression, étant donné que la solubilité du CO₂ augmente avec la pression (Fig.II.5).

Figure II.5. Représentation schématique de la solubilité du CO_2 (% poids) en fonction du NBO/T, d'après Brooker et al. (2001a). La solubilité du CO_2 augmente dans les liquides dépolymérisés, et cet effet est décuplé avec la pression. Le domaine grisé correspond au domaine où le NBO/T n'est pas utilisable pour caractériser la structure des liquides, à savoir pour les liquides carbonatés ($CO_2 > 40-50\%$ poids).

De plus, il a également été proposé que l'alcalinité des liquides peut jouer un rôle primordial sur la solubilité du CO_2 dans les liquides silicatés : les liquides présentant une alcalinité élevée peuvent ainsi être plus riches en CO_2 (Ni and Keppler, 2013; Morizet *et al.*, 2014) ;

La structure des liquides carbonatés est très peu connue, en comparaison aux liquides silicatés. Les liquides carbonatés sont des liquides ioniques constitués d'anions carbonates CO_3^{2-} interagissant avec des cations métalliques (Genge *et al.*, 1995; Jones *et al.*, 2013), mais aucune structure précise n'a été décrite entre ces carbonates et ces cations (Treiman and Schedl, 1983; Jones *et al.*, 2013). Leur structure est ainsi très différente de la structure des liquides silicatés par polymérisation ; il n'existe pas de paramètres équivalents au NBO/T pour caractériser leur structure. L'effet de la solubilité du CO_2 dans ces liquides en fonction de leur polymérisation ne peut pas être caractérisé comme pour les

liquides silicatés (Fig.II.5, champ gris). Cependant, Morizet et al. (2014) ont observé des groupes de carbonates $CO_3^{2^-}$ isolés dans le réseau silicaté de liquides néphélinitiques et ont suggéré que ces liquides peuvent constituer les précurseurs possibles de liquides carbonatés.

De même, le F a été caractérisé comme étant très soluble dans les liquides silicatés (Dingwell, 1986), et pouvant se complexer à des éléments majeurs tels que le Na ou l'Al (Schaller *et al.*, 1992). Ponader and Brown (1989a) ont proposé que le F joue un double rôle dans les liquides silicatés : il peut à la fois être impliqué dans la dépolymérisation ou dans la polymérisation des liquides. Cet élément semble ainsi avoir un effet sur la structure des liquides.

Les magmas silicatés alcalins et les magmas carbonatés peuvent présenter d'importantes concentrations en éléments volatils, qui peuvent avoir un effet sur leur composition et leur structure, et par conséquent sur le comportement des éléments. Ces magmas peuvent être formés par les processus d'immiscibilité, et coexister à l'équilibre. La présence des volatils dans ces magmas peut ainsi également influencer leurs compositions respectives en éléments majeurs et en éléments traces. La partie suivante s'intéresse particulièrement à ces liquides silicatés et carbonatés immiscibles et à leurs compositions.

II.2. Immiscibilité entre magmas silicatés et carbonatés

Dans les roches naturelles, l'immiscibilité entre un liquide silicaté alcalin et un liquide carbonaté est souvent suggérée par l'association spatiale des roches magmatiques alcalines et des carbonatites, par la présence d'inclusions vitreuses contenant à la fois des liquides silicatés et des liquides carbonatés, ou encore par la présence de globules carbonatés dans des roches silicatées alcalines (voir parties I.1.5 et I.2.3; Fig.I.7). Les conditions de formation de tels liquides immiscibles ont été étudiées expérimentalement. Les travaux expérimentaux ont permis d'étudier les gammes de compositions de ces liquides immiscibles ainsi que le comportement des éléments majeurs et traces entre ces liquides.

II.2.1. Champ de composition et domaine de stabilité des liquides immiscibles

Le terme « d'immiscibilité » implique la coexistence de deux liquides chimiquement à l'opposé (Greig, 1927; Roedder, 1978; Freestone and Hamilton, 1980), dans notre cas silicaté et carbonaté, et qui ne se mélangent pas. De nombreux travaux expérimentaux ont mis en évidence que l'immiscibilité entre un liquide carbonaté et un liquide silicaté peut se produire à des conditions de pression et température crustales (P < 1 GPa) et mantelliques (P > 1GPa), et pour une large gamme de composition (Fig.I.7).

Les premiers travaux d'immiscibilité cherchant à reproduire la coexistence à l'équilibre de deux liquides silicatés et carbonatés ont été réalisé dans les années 1960-1970 dans des systèmes alcalins très simplifiés de type NAS-CO₂ (Koster Van Groos and Wyllie, 1966, 1968, 1973) ou encore KAS-CO₂ (Wendlandt and Harrison, 1979). Des travaux ont également été réalisés dans des systèmes sans éléments alcalins à des conditions P-T mantelliques, mais sans obtenir d'immiscibilité (Brey and Green, 1976; Wyllie, 1977). Des études plus récentes ont cependant montré l'existence de liquides carbonatés de type dolomitiques à l'équilibre avec des liquides silicatés dans des systèmes simplifiés de type CMAS-CO₂ et CMS-CO₂ (Keshav and Gudfinnsson, 2010, 2013; Novella *et al.*, 2014) aux conditions mantelliques. Cependant ces compositions de type mantelliques ne sont pas représentatives de la composition des roches naturelles carbonatées et silicatées alcalines identifiées à la surface (voir partie I.1.5).

L'immiscibilité ayant été prouvée en présence d'alcalins (Na et K), d'autres études successives se sont intéressées à des systèmes de type CNAS-CO₂ (Kjarsgaard and Hamilton, 1988; Brooker and

Hamilton, 1990; Lee and Wyllie, 1996; Veksler et al., 1998; Brooker and Kjarsgaard, 2011) plus ou moins riches en ces éléments, et à des systèmes plus complexes proches des compositions des magmas naturels alcalins sous-saturés en silice telles que celles retrouvées dans le Rift Est Africain (Freestone and Hamilton, 1980; Kjarsgaard et al., 1995; Brooker, 1998; Kjarsgaard, 1998; Veksler et al., 1998, 2012; Martin et al., 2012, 2013; Weidendorfer et al., 2019). Ces études visent principalement à caractériser les conditions P-T d'immiscibilité pour des compositions de magmas appartenant à la série alcaline (Fig.I.5), ainsi qu'à expliquer l'origine des natrocarbonatites du volcan Ol Doinyo Lengai (Fig.I.7 et I.8). De plus, parmi les études effectuées dans des systèmes complexes certaines se sont particulièrement intéressées à la formation des Ca-carbonatites (Brooker and Hamilton, 1990; Lee and Wyllie, 1996) qui sont les carbonatites les plus abondantes sur Terre (partie I.1.4), et ont montrées que ces Ca-carbonatites sont formées à haute température (> 1000 °C) (Irving and Wyllie, 1975; Lee and Wyllie, 1996; Keshav et al., 2011; Hammouda et al., 2014), en comparaison aux natrocarbonatites formées à basse température (Fig.I.8, T<600 °C). Enfin, d'autres études d'immiscibilité ont également été réalisées dans des systèmes de composition complexes différents, de type éclogites carbonatées (Dasgupta et al., 2004, 2006; Hammouda et al., 2009; Litasov and Ohtani, 2010), ou encore pélites carbonatées (Thomsen and Schmidt, 2008) ou encore de MORB (Jones et al., 1995b).

Dans le système de compositions simplifié CNAS-CO₂, Brooker and Kjarsgaard (2011) ont mis en évidence un effet de la pression et de la température sur le solvus des deux liquides, à savoir sur le domaine de stabilité de ces liquides. Ce solvus s'élargit au fur et à mesure que la température décroît à pression constante (Fig.II.6a), agrandissant ainsi le domaine de stabilité des deux liquides. De même, ce solvus s'élargit à pression plus élevée et à température constante (Fig.II.6b). Les paramètres P et T exercent ainsi un rôle très important quant à la stabilité de ces deux liquides.

Figure II.6. Effet de la température (a) et de la pression (b) sur le solvus des deux liquides, d'après Brooker and Kjarsgaard (2011). a) Ouverture du solvus des deux liquides, à température décroissante (1550 à 1225 °C) et à pression constante (1,5 GPa); b) ouverture du solvus à pression croissante (0,2 à 2,5 GPa) et à température constante (1300°C).

Les gammes de compositions des liquides immiscibles étudiés à différentes conditions P-T sont représentées dans la Figure II.7. Les compositions des liquides carbonatés à l'équilibre avec des liquides silicatés dans des systèmes simplifiés de type CNAS-CO₂, et les compositions obtenues dans des systèmes plus complexes proches des compositions des roches de la série magmatique alcaline, sont représentées dans un diagramme TAS (Total Alcali Silica, Le Bas et al., 1986). Ce diagramme classiquement utilisé pour caractériser les roches magmatiques, est ici étendu aux valeurs de silice plus faibles et aux valeurs en alcalins plus élevées, afin de représenter les compositions des liquides carbonatés pauvres en silice et plus riches en alcalins.

Les systèmes CMS-CO₂ ou CMAS-CO₂ n'y sont pas représentés, étant donné que ces systèmes ne contiennent pas d'éléments alcalins. Les études réalisées à partir d'échantillons naturels de composition typique des volcans du Rift Est Africain sont représentées en rouge (Freestone and Hamilton, 1980; Hamilton *et al.*, 1989; Kjarsgaard *et al.*, 1995; Kjarsgaard, 1998; Veksler *et al.*, 2012; Weidendorfer *et al.*, 2019) et indiquent des compositions de liquides silicatés très alcalins (de 10 à > 30 % poids de Na₂O + K₂O; Fig.II.) et relativement bas en silice (35 à < 60 % poids de SiO₂), coexistant avec des liquides carbonatés de peu à très riches en alcalins (de type natrocarbonatites, > 30% de Na₂O+K₂O), en comparaison aux autres systèmes de compositions complexes représentés en bleu (Jones *et al.*, 1995b; Brooker, 1998; Veksler *et al.*, 2012, 2013; Massuyeau *et al.*, 2015). Les études réalisées dans des systèmes plus simples (Brooker and Hamilton, 1990; Lee and Wyllie, 1996; Brooker and Kjarsgaard, 2011) balayent des gammes de compositions plus étendues, allant des compositions de liquides silicatés sous-saturés en silice et pauvres en alcalins (Fig.II.7).

Figure II.7. Champs de composition des expériences d'immiscibilité entre liquides silicatés alcalins et liquides carbonatés. Les expériences réalisées dans des systèmes simples (ronds vides) de type CNAS-CO₂ (Brooker and Hamilton, 1990; Lee and Wyllie, 1996; Brooker and Kjarsgaard, 2011) et dans des systèmes plus complexes, naturels de type Rift Est Africain (ronds rouges; Freestone and Hamilton, 1980; Hamilton et al., 1989; Kjarsgaard et al., 1995; Kjarsgaard, 1998; Veksler et al., 2012; Weidendorfer et al., 2019) ainsi que d'autres systèmes complexes variés (ronds bleus; Jones et al., 1995; Brooker, 1998; Veksler et al., 2006; Thomsen and Schmidt, 2008; Litasov and Ohtani, 2010; Martin et al., 2012; Martin et al., 2013; Massuyeau et al., 2015) sont représentées dans un diagramme TAS (Total Alkali Silica ; Le Bas et al., 1986). Le champ gris foncé regroupe les liquides carbonatés ; le champ gris clair correspond aux liquides silicatés. Les concentrations en Na₂O, K₂O et SiO₂ des liquides silicatés sont reportées sur une base volatil-free. La ligne noire correspond à la limite inférieure du champ de compositions possibles de liquides carbonatés et silicatés immiscibles proposé par Schmidt and Weidendorfer (2018).

La Figure II.8 met en évidence les pôles de composition des liquides coexistant en fonction des systèmes de composition présentés ci-dessus. Les liquides carbonatés pauvres en silice (Fig.II.8a) ont des compositions très variables en CaO, qui sont anti-corrélées avec les compositions en Na₂O (Fig.II.8b) pour tous les systèmes chimiques étudiés. Les liquides étudiés expérimentalement varient d'un pôle calcitique (Ca-carbonatite) à un pôle sodique (Na-carbonatite ; Fig.II.8b).

Figure II.8. Composition en éléments majeurs des liquides carbonatés et silicatés immiscibles de la base de données expérimentales. Les concentrations en CaO (% poids) sont reportées en fonction des concentrations en SiO₂ (a) et en Na₂O (b) des liquides carbonatés (carrés) à l'équilibre avec des liquides silicatés (ronds), pour des systèmes expérimentaux présentés dans la Figure II.1., de type CNAS-CO2 (gris), Rift Est Africain (rouge) et d'autres systèmes complexes variés (bleu).

Le « contour » du domaine de compositions des liquides silicatés et carbonatés immiscibles n'a jamais été caractérisé précisément ou défini thermodynamiquement. Dans le manteau, l'immiscibilité est supposée se produire sous le « ledge » décrit dans la partie I.1.1, dans le domaine de stabilité des liquides carbonatés mantelliques (Fig.I.2). Dans des systèmes de compositions plus ou moins riches en éléments alcalins et proches des compositions observées dans la nature, ce domaine pourrait correspondre aux gammes de compositions étudiées expérimentalement (champs gris clair et foncé,

Fig.II.7 ; Fig.II.8), pour différentes conditions P-T. Schmidt and Weidendorfer (2018) ont cependant proposé une limite minimale au domaine possible de coexistence de ces liquides à partir des travaux réalisés expérimentalement (ligne noire, Fig.II.7), en ne considérant que des compositions suffisamment riches en éléments alcalins pour permettre la formation de ces liquides. Ceci suggère que seuls les liquides suffisamment riches en éléments alcalins pour permettre la formation de ces liquides. Ceci suggère que seuls les liquides suffisamment riches en éléments alcalins peuvent produire l'immiscibilité. Cependant certaines études réalisées dans des systèmes complexes voire naturels indiquent la présence des deux liquides à l'équilibre pour des compositions inférieures à cette limite (Fig.II.7), indiquant ainsi que cette limite n'est pas clairement définie.

II.2.2. Partage des éléments traces entre liquides carbonatés et silicatés

Parmi les études d'immiscibilité entre liquides silicatés et carbonatés à l'équilibre, certaines se sont particulièrement intéressées aux comportements des éléments traces entre ces deux liquides.

Le coefficient de partage de Nernst noté D est utilisé pour décrire l'enrichissement d'un élément i entre deux phases cristallines ou liquides. Dans notre cas, les deux phases correspondent au liquide carbonaté et au liquide silicaté. Ce coefficient correspond au rapport des concentrations massiques de cet élément i dans le liquide carbonaté (noté LC) et le liquide silicaté (noté LS), selon l'équation suivante :

$$D_i^{LC/LS} = \frac{m_i^{LC}}{m_i^{LS}}.$$
(2)

Avec m_i^{LC} et m_i^{LS} les concentrations massiques de l'élément *i* respectivement dans le liquide carbonaté et le liquide silicaté.

Lorsque ce coefficient est > à 1, l'élément *i* est plus concentré dans le liquide carbonaté ; à l'inverse si ce coefficient est inférieur à 1, l'élément est plutôt dans le liquide silicaté. Les coefficients de partage des éléments traces caractérisés entre deux liquides carbonatés et silicatés dans les études expérimentales d'immiscibilité sont représentés dans la Figure II.9. Ils ont été caractérisés pour différentes conditions P-T (voir Fig.II.10), dans les systèmes de compositions complexes de type Rift Est Africain (Hamilton et al., 1989; Veksler et al., 2012; Weidendorfer et al., 2019) ou d'autres systèmes complexes (Wendlandt and Harrison, 1979; Jones et al., 1995b; Veksler et al., 1998; Martin et al., 2012, 2013), présentés dans les Figures II.7 et II.8. Pour ces différentes expériences, tous les éléments dont le coefficient de partage est supérieur à 1 ont un comportement incompatible dans le liquide silicaté, et se concentrent ainsi dans le liquide carbonaté. Certains alcalins (Cs, Rb) ainsi que les métaux de transition (Sc, V, Cr, Mn, Fe, Co et Cu) ont un comportement variable. Les autres éléments alcalins tels que le K, Na et Li présentent également des comportements variables, avec toutefois une plus forte tendance de compatibilité dans les liquides carbonatés. De même, les alcalinoterreux tel que le Ba, Sr et Ca sont globalement compatibles dans les liquides carbonatés. Les HFSE (de l'anglais « high field strength elements »; Th, U, Hf, Zr, Ti, Ta et Nb), qui comprennent les métaux rares tels que décrits dans la partie I.2.1 (Zr, Hf, Ta et Nb) sont à l'inverse tous globalement incompatibles dans le liquide carbonaté et plutôt concentrés dans le liquide silicaté. Il en est de même pour les métalloïdes (Si et Ge) et certains autres métaux (Al, Ga, Zn) qui présentent des coefficients de partage inférieurs à 1.

Toutefois une famille d'éléments se démarque des autres éléments chimiques. L'évolution du partage des REE (champ gris dans la Fig.II.9), indique en effet une forte variation : on observe à la fois un

comportement fortement compatible dans les liquides carbonatés, avec des coefficients de partage très élevés (jusqu'à > 30 pour le La par exemple ; Martin et al., 2013), et un comportement incompatible avec une préférence des REE pour le liquide silicaté (coefficient de partage minimal à 0,15 pour le La; Weidendorfer et al., 2019). Autrement dit, l'enrichissement en REE des liquides carbonatés varie sur 2 ordres de grandeur, avec à la fois des liquides carbonatés qui peuvent être très appauvris en REE, et d'autres très enrichis, jusqu'à 30 fois plus que le liquide silicaté coexistant (Fig.II.9). Ces coefficients ont été obtenus pour des gammes de compositions de liquides variées, de néphélinites (Weidendorfer *et al.*, 2019) à phonolites-trachytes (Martin *et al.*, 2013). Les processus d'immiscibilité entre deux liquides carbonatés et silicatés semblent ainsi considérablement influencer l'enrichissement en REE des liquides carbonatés et des liquides silicatés.

Figure II.9. Coefficients de partage des éléments traces caractérisés expérimentalement entre liquides carbonatés et liquides silicatés. Les coefficients de partage $(D^{LC,LS})$ sont représentés pour différentes études (Wendlandt and Harrison, 1979; Hamilton et al., 1989; Jones et al., 1995b; Veksler et al., 1998, 2012; Martin et al., 2013; Weidendorfer et al., 2019). Le champ gris correspond aux coefficients de partage des REE.

Les études présentées ici et réalisées sur différentes gammes de pression et de température (Fig.II.10) ont tenté d'identifier les paramètres responsables d'une telle variation d'enrichissement en REE dans les liquides carbonatés. Dans leur étude, Hamilton et al. (1989) ont réalisé des expériences à différentes températures et ont mis en évidence un effet de ce paramètre sur les coefficients de partage des REE : plus la température décroît plus ces coefficients augmentent et plus les REE se concentrent dans le liquide carbonaté.

Par ailleurs, Martin et al. (2013) ont caractérisé des coefficients de partage très élevés en présence d'eau (triangles vides, Fig.II.9) et ont suggéré un effet de l'eau sur le partage des REE en faveur des liquides carbonatés. Ces deux études ont ainsi ciblé des paramètres pouvant impacter l'enrichissement en REE des liquides carbonatés pour les compositions étudiées. Cependant aucun modèle regroupant toutes ces études et prenant en compte les différents paramètres (P, T, composition, éléments volatils etc...) pouvant influencer ces partages n'existe pour expliquer cette grande variation de comportement des REE entre les liquides carbonatés et silicatés.

Figure II.10. Conditions de pression et de température des expériences de partage des éléments traces entre liquides carbo, natés et liquides silicatés. Chaque point correspond à une expérience réalisée à une condition P-T précise dans les études présentées dans la Figure.II.11.

Nous avons vu que les liquides silicatés et carbonatés immiscibles de compositions différentes (Fig.II.7 et II.8) peuvent présenter des enrichissements en REE très variables (fig.II.9). On peut se questionner alors sur le rôle exercé par la structure de ces liquides de compositions variables, ainsi que des éléments volatils qu'ils contiennent.

II.2.3. Rôle de la structure des liquides et des volatils sur le partage des éléments

II.2.3.1. Effet de la structure des liquides

De nombreuses études ont montré l'effet de la structure des liquides silicatés sur le partage des éléments traces (Watson, 1976; Ponader and Brown, 1989b; Kohn and Schofield, 1994; Gaetani, 2004; Mysen, 2004; Schmidt *et al.*, 2006). Mysen (2004) a montré que le paramètre NBO/T joue un rôle direct sur le comportement des éléments traces dans les liquides silicatés et sur leur partage entre cristaux et liquides. Les éléments traces (dont les REE et les HFSE) peuvent en effet être en compétition avec les éléments majeurs et se substituer aux éléments modificateurs de réseaux dans le liquide silicaté, du fait de leurs rayons ioniques ou de leur charge trop élevés (Mysen, 2004). Ces éléments traces peuvent ainsi se comporter comme des modificateurs de réseau (Mysen, 2004).

Hamilton et al. (1989) et Martin et al. (2013) ont observé une corrélation entre le NBO/T (équation (1)) et le partage des REE entre liquides carbonatés et silicatés: plus les liquides silicatés sont polymérisés (NBO/T proches de 0) plus les coefficients de partage des REE sont élevés et donc plus les liquides carbonatés coexistants sont enrichis en REE. La Figure II.11a représente ces coefficients de partage ainsi que les autres de la littérature présentés dans la Figure II.9, en fonction du NBO/T des liquides silicatés. Pour toutes ces études, les coefficients de partage des REE entre liquides carbonatés et silicatés les plus élevés (Fig.II.11a; Martin et al., 2013) correspondent globalement aux liquides silicatés les plus polymérisés (NBO/T les plus bas), et les coefficients les plus faibles aux liquides dépolymérisés (NBO/T plus élevés ; Weidendorfer et al., 2019). Dans ce cas, le comportement des REE semble être influencé par la structure des liquides silicatés. A l'inverse, aucune corrélation claire ne semble ressortir pour les autres métaux rares (Nb, Ta, Zr et Hf ; Fig.II.11b). Ces éléments étant incompatibles dans les liquides carbonatés, ils sont systématiquement concentrés dans les liquides silicatés, polymérisés ou dépolymérisés.

II.2.3.2. Rôle des volatils sur le partage des métaux rares entre liquides-liquides

Nous avons vu précédemment que la solubilité des éléments volatils dans le liquide silicaté peut avoir un effet sur sa structure (partie II.1.3; Watson, 1976; Mysen, 1983; Brooker et al., 2001a; Brooker et al., 2001b; Iacono-Marziano et al., 2012; Morizet et al., 2014). Or le partage des éléments traces, et particulièrement des REE, semble être influencé par la structure des liquides silicatés (Fig.II.11a). La présence de ces volatils dissous dans des liquides silicatés sous-saturés en silice qui coexistent avec des liquides carbonatés, peut ainsi avoir un effet sur le comportement des éléments traces entre ces deux phases.

Les halogènes (F, Cl), le phosphore et le soufre sont les éléments dont l'impact sur le comportement des métaux rares a été le plus étudié expérimentalement. En effet, les carbonatites naturelles présentent des teneurs importantes en ces éléments (partie II.1.1) ; de plus ces roches qui constituent l'une des principales ressources en métaux rares au monde peuvent contenir des fluoro-carbonates de REE (partie I.2.2), ou également des phosphates de REE (apatite ou monazite). Ceci indique un lien entre les éléments F-Cl-P et les REE, ainsi qu'une probable source riche en ces éléments.

Figure II.11. Coefficients de partage des métaux rares entre liquides carbonatés et liquides silicatés, en fonction du NBO/T des liquides silicatés coexistant. Les coefficients de partage du La et du Lu comme représentatifs des autres REE (a) et ceux des autres métaux rares (b), sont représentés en fonction du degré de polymérisation des liquides silicatés caractérisés par le paramètre NBO/T, pour les données de la littérature (Hamilton et al., 1989; Jones et al., 1995b; Veksler et al., 1998, 2012; Martin et al., 2013; Weidendorfer et al., 2019).

Des études expérimentales ont été effectuées dans le but d'identifier le rôle du F, Cl, P et S sur le comportement des éléments traces entre deux liquides immiscibles, et notamment des métaux rares (Veksler et al., 2005, 2012). Veksler et al. (2012) ont caractérisé le partage des éléments traces entre liquides ioniques (c'est-à-dire dont les constituants principaux sont des espèces ioniques) de type fluorés-chlorés-phosphorés-sulfatés, et liquides silicatés (Fig.II.12). Pour les métaux rares, les coefficients de partage caractérisés entre liquides fluorés (F > 38% poids), phosphatés (P₂O₅ > 45% poids) ou sulfatés (SO₃ autour de 40% poids) et liquides silicatés sont très élevés, indiquant un enrichissement considérable dans ces liquides ioniques. L'enrichissement des REE varie globalement d'un facteur 10 à > 100, par rapport aux liquides silicatés (Fig.II.12). Ces coefficients de partage atteignent des valeurs plus élevées que ceux décrits dans la littérature dans un système de liquides carbonatés et silicatés (Fig.II.9; en gris dans la Fig.II.12). De plus, le comportement des autres métaux rares (Hf, Zr, Ta et Nb) varie dans ces liquides, d'un comportement incompatible à compatible. Tous ces métaux montrent ainsi une forte préférence pour les liquides fluorés, phosphorés et sulfatés principalement (également chlorés) en coexistence avec des liquides silicatés. La présence de ces espèces dans les liquides carbonatés pourrait dans ce cas éventuellement avoir un effet positif sur leur enrichissement en métaux rares.

Figure II.12. Coefficients de partage des éléments traces entre liquides ioniques et liquides silicatés, d'après (Veksler et al., 2012). Les données de partage caractérisées entre liquides fluorés (rouge), chlorés (bleu), phosphatés (orange) et sulfatés (vert), et liquides silicatés sont représentées ; les données caractérisées entre liquides carbonatés et silicatés présentées dans la Fig.II.11 sont également représentées (gris).

Le F a été caractérisé comme étant très soluble dans les liquides silicatés (Dingwell, 1986), et pouvant se complexer aux REE. Ponader and Brown (1989a) ont en effet montré que certaines REE (La, Gd et Yb) peuvent former des complexes avec le F au sein même de la structure du réseau silicaté. Cet effet n'est pas observé pour le Cl. Schaller et al. (1992) ont également proposé que la présence du F dans 46

les liquides granitiques permette d'augmenter la solubilité des HFSE par la formation de complexes avec les éléments NBO (éléments modificateurs de réseau). Le F semble donc avoir un effet sur la structure des liquides, comme le CO₂ (Fig.II.5), mais également sur le comportement des REE et des HFSE. Dans ce cas, une probable forte influence du F sur l'enrichissement en REE observé (Fig.II.12) pourrait être reliée à la structure des liquides silicatés.

L'effet du CO_2 sur la structure des liquides silicatés peut aussi éventuellement avoir un impact sur le partage des éléments traces. Cependant aucune étude expérimentale n'a pour l'instant étudié une potentielle influence de cette espèce volatile sur l'enrichissement en métaux rares des liquides.

Les études expérimentales réalisées ont montré que l'immiscibilité entre liquides silicatés alcalins et carbonatés peut se produire à différentes conditions P-T et sur une large gamme de composition. L'étude du partage des éléments traces entre ces deux liquides a permis de mettre en évidence une grande variation de l'enrichissement en REE des liquides carbonatés. L'effet de la structure des liquides ainsi que de la concentration en volatils (CO₂, H₂O, F, Cl et P) sur cet enrichissement va être approfondi dans cette étude.

Les métaux rares peuvent se concentrer dans certaines phases cristallines au cours de la différenciation des magmas alcalins et des carbonatites. La partie suivante est consacrée à la présentation des travaux expérimentaux qui ont permis de caractériser ces enrichissements entre cristaux et liquides silicatés ou carbonatés, à différentes conditions P-T, ainsi qu'aux modèles de partage des éléments traces qui existent dans la littérature.

II.3. Comportement des éléments traces entre cristaux et liquides magmatiques

Au cours de la différenciation magmatique, des minéraux se forment par cristallisation fractionnée des liquides silicatés et/ou carbonatés. Ces minéraux coexistent ainsi à l'équilibre avec les liquides. Le partage des éléments traces entre cristal et liquides définit les niveaux d'enrichissement et/ou appauvrissement atteints dans les liquides résiduels. Cependant dans le cas de cette étude, ces liquides résiduels peuvent être silicatés et carbonatés.

Dans cette section sont résumées les observations empiriques sur les coefficients de partage cristalliquide (silicaté et carbonaté) ; puis un état de l'art sur les traitements théoriques / prédictifs de ces partages ainsi que de leurs limites est présenté.

II.3.1. Partage des métaux rares entre cristaux et liquides silicatés

Le partage des éléments entre cristaux et liquides peut à la fois être décrit à partir de leur distribution dans les roches naturelles, ainsi qu'à partir d'expériences.

Les minéraux présents dans les roches silicatées alcalines naturelles sont principalement des clinopyroxènes, des amphiboles, des feldspathoïdes et des feldspaths alcalins. Kjarsgaard (1998) a aussi montré expérimentalement la formation de grenat, minéraux du groupe de la mélilite, wollastonite et calcite, pour des conditions P-T variables, et en coexistence avec des liquides de type néphélinitiques-phonolitiques et des liquides carbonatés. Brooker and Kjarsgaard (2011) ont également observé la formation de calcite dans le système CNAS-CO₂. D'autres minéraux accessoires susceptibles de concentrer les métaux rares tels que la titanite, la perovskite, le pyrochlore, l'apatite ou encore l'eudialyte, la steenstrupine et les phosphates de REE ont également été identifiés dans les roches naturelles du Rift Est Africain (Peterson, 1989; Dawson *et al.*, 1994) ou encore à Ilimaussaq (Larsen and Sørensen, 1987; Marks and Markl, 2003, 2015).

De nombreux travaux expérimentaux ont permis de caractériser les coefficients de partage des éléments traces - et notamment des métaux rares - entre différents types de minéraux et liquides silicatés, dans des systèmes de compositions variés. Les coefficients de partage entre pyroxènes et liquides silicatés sont les plus étudiés expérimentalement. Ils ont été décrits dans des systèmes de composition basaltiques (Shimizu, 1980; Colson et al., 1988; Johnson, 1998; Green et al., 2000; Di Stefano et al., 2019), tonalitiques (Klein et al., 2000; Barth et al., 2002) et également dans des systèmes simplifiés de type CNMAS (Blundy and Dalton, 2000; Hill et al., 2000, 2011). Hammouda et al. (2009) et Sweeney et al. (1995) ont également caractérisé les coefficients de partage entre clinopyroxènes et éclogites carbonatées. En revanche, peu d'études expérimentales similaires ont été réalisées dans le système alcalin. Certaines études ont caractérisé les coefficients de partage entre clinopyroxène et liquide silicaté riche en volatils tels que les kimberlites (Keshav et al., 2005), entre clinopyroxène et liquide de type basanitique (Green et al., 2000; Adam and Green, 2006) ou encore de type basalte alcalin (Shimizu, 1980). Une seule étude expérimentale a permis de caractériser ces coefficients dans le système phonolitique (Beard et al., 2019), entre des clinopyroxènes de type aegirine et des liquides phonolitiques. Pour les autres types de compositions de magmas alcalins (néphélinite à phono-trachyte), les coefficients sont estimés à partir des roches naturelles (matrice ou roche totale) et des cristaux qu'elles contiennent (Larsen, 1979; Olin and Wolff, 2010; Mollo et al., 2016; Baudouin and France, 2019).

La Figure II.13a présente les patterns typiques des coefficients de partage des métaux rares (REE, Hf, Zr, Ta et Nb) entre clinopyroxènes et liquides silicatés, pour les expériences réalisées dans les systèmes alcalins tels que les basaltes alcalins (en noir ; Shimizu, 1980), les basanites (marron, Green *et al.*, 2000; Adam and Green, 2006) et les phonolites (rouge ;Beard *et al.*, 2019). Les HFSE (Hf, Zr, Ta et Nb) sont incompatibles dans les clinopyroxènes des basanites (rouge ; $D_{HFSE}^{CP_{VLS}} < 1$), avec un fractionnement plus marqué pour le Ta et Nb. On peut observer la même tendance dans les roches naturelles (gris, Fig.II.13a ; Olin and Wolff, 2010; Mollo et al., 2016; Baudouin and France, 2019). En revanche, ces éléments sont compatibles dans les clinopyroxènes des phonolites (rouge, $D_{HFSE}^{CP_{VLS}} > 1$;Beard *et al.*, 2019), à l'exception du Ta et du Nb dans certains échantillons.

L'évolution des coefficients de partage des REE est souvent caractérisée par une parabole, montrant un fractionnement entre les LREE et les MREE-HREE (Fig. II.13a). Les REE sont de manière générale incompatibles dans les clinopyroxènes des basaltes alcalins et des basanites et sont plutôt concentrées dans les liquides silicatés ($D_{REE}^{CPx/LS} < 1$, noir et marron Fig.II.13a). Dans les échantillons naturels de composition de type néphélinite, phonolite, et phonotrachyte, les LREE sont généralement incompatibles et les MREE-HREE varient entre un comportement incompatible et compatible (gris, Fig.II.13a). En revanche, les coefficients expérimentaux dans les phonolites (rouge, Fig.II.13a) indiquent globalement une préférence des REE pour les clinopyroxènes ($D_{REE}^{CPx/LS} > 1$). De plus, certaines données montrent également un comportement différent des HREE, et notamment de Yb et Lu, avec une augmentation des coefficients de partage qui se traduit par la forme sigmoïdale de la courbe des coefficients de partage. On peut observer cette tendance pour les compositions de type phonolitiques dans les données expérimentales (rouge, Beard *et al.*, 2019), ainsi que les néphélinites (rond vide gris,Baudouin and France, 2019) et les phonolites naturelles (croix grises, Olin and Wolff, 2010). Cette tendance a également été caractérisée pour des compositions naturelles de rhyolite , (Olin and Wolff, 2010).

Le comportement des métaux rares semble donc fortement varier dans les clinopyroxènes des systèmes alcalins, montrant une forte préférence pour le liquide silicaté ou au contraire pour les cristaux. Cette forte variation n'a pas encore été expliquée.

Figure II.13. Coefficients de partage des métaux rares entre cristaux et liquides silicatés dans le système alcalin. Les coefficients de partage expérimentaux des métaux rares (Hf, Zr, Ta, Na, REE) entre clinopyroxènes et liquides silicatés notés $D^{Cpx/LS}$ (a) et entre grenats et liquides silicatés $D^{Gnt/LS}$ (b) sont représentés pour les compositions de type basalte alcalin (noir, Shimizu, 1980), les basanites (marron, Green et al., 2000 ; Adam and Green, 2006) et les phonolites (rouge, Beard et al., 2019). Les coefficients de partage pour les clinopyroxènes de roches naturelles sont également présentés (en gris ; Îles Canaries, Olin and Wolff, 2010 ; wollastonite du Ol Doinyo Lengai, Baudouin and France, 2019; Campi Flegrei en Italie, Mollo et al., 2016).

Le comportement des éléments traces entre les grenats et les liquides silicatés a été caractérisé dans les mêmes gammes de compositions présentées ci-dessus, à savoir dans les systèmes de type basaltiques (Shimizu, 1980; Johnson, 1998), tonalitiques (Klein *et al.*, 2000; Barth *et al.*, 2002), kimberlitiques (Girnis *et al.*, 2006) et éclogitiques (Hammouda *et al.*, 2009). De même que pour les clinopyroxènes, peu de données expérimentales de partage des éléments traces entre grenat et liquide alcalin sous-

saturé en silice sont disponibles, à l'exception des basanites (Green *et al.*, 2000; Adam and Green, 2006) et des basaltes alcalins (Shimizu, 1980). Pour ces compositions, les HFSE et les LREE sont fortement incompatibles dans les grenats (noir et marron, Fig.II.13b). Les coefficients de partage augmentent de manière conséquente pour les HREE ($D_{HREE}^{Gnt/LS} > 1$) et indiquent ainsi une préférence de ces éléments pour les grenats.

Enfin, les coefficients de partage des éléments traces ont également été caractérisés expérimentalement entre la tinatite et les liquides silicatés dans des systèmes simples de type CNKAS (Prowatke and Klemme, 2005, 2006a) et des systèmes de type lamproite (Tiepolo *et al.*, 2002). Olin and Wolff (2012) ont également étudié le comportement des REE et HFSE entre la titanite et les phonolites naturelles provenant des Îles Canaries. Tous les métaux rares (REE, Hf, Zr, Ta et Nb) sont compatibles dans la titanite (Fig.II.14), indiquant ainsi que ce minéral est fortement susceptible de concentrer ces métaux. Pour les REE, le « pattern » général des coefficients de partage présente une différence de comportement pour les MREE qui partitionnent plus dans la titanite que les LREE et les HREE $(D_{MREE}^{Tm/LS} > D_{LREE}^{Tm/LS})$ et $D_{HREE}^{Tm/LS}$). De plus, Prowatke and Klemme (2005) ont montré que l'enrichissement en métaux rares (courbes bleues claires, Fig.II.14) varie très fortement en fonction de la composition des liquides silicatés, sur deux ordres de grandeur.

Figure II.14. Coefficients de partage des métaux rares entre titanites et liquides silicatés. Ces coefficients ont été définis expérimentalement pour des compositions de liquides silicatés simples de type CNKAS (bleu clair, Prowatke and Klemme, 2005) et également de type lamproites (bleu foncé, Tiepolo et al., 2002). Olin and Wolff (2012) ont également caractérisé le partage de ces éléments entre titanite et phonolite naturelles des Îles Canaries (gris).

Le partage des éléments a aussi été caractérisé entre les apatites et les liquides silicatés (Prowatke and Klemme, 2006b), et montre que les REE sont fortement compatibles dans l'apatite. En revanche, peu de données de partage de ces éléments entre calcite ou pérovskite et liquides silicatés alcalins existent.

II.3.2. Partage des métaux rares entre cristaux et liquides carbonatés

Des travaux expérimentaux de partage des éléments traces entre cristaux et liquides carbonatés ont également été réalisés dans la littérature. Les données de partage de ces éléments sont cependant beaucoup moins nombreuses et moins variées que pour les systèmes silicatés.

Les minéraux les plus caractérisés sont les clinopyroxènes. En effet, certaines études ont défini les coefficients de partage entre clinopyroxène et liquide carbonaté de type Ca-Mg-carbonatites principalement à des conditions P-T mantelliques (> 1000°C et 2GPa), pour des systèmes chimiques simples de type CNMAS (Blundy and Dalton, 2000) à plus complexes (Brenan and Watson, 1991; Green *et al.*, 1992; Klemme *et al.*, 1995; Sweeney *et al.*, 1995; Adam and Green, 2001; Girnis *et al.*, 2006; Hammouda *et al.*, 2009). Aucune donnée de partage n'a pour l'instant été caractérisée dans des systèmes complexes de type naturels riches en éléments alcalins (Na et K).

Pour toutes ces études, les coefficients de partage de tous les métaux rares mettent en valeur le comportement fortement incompatible de ces éléments dans les clinopyroxènes avec des valeurs presque toujours inférieures à 1 (Fig.II.15a). De même que pour le partage de ces éléments entre clinopyroxène et liquide silicaté, la forme parabolique marque le fractionnement entre les LREE et les MREE-HREE dans les clinopyroxènes. Le comportement de ces éléments a aussi été défini entre les grenats et les liquides carbonatés, dans les travaux expérimentaux effectués dans des systèmes de compositions complexes mais non alcalins (Sweeney et al., 1995, Adam and Green, 2001; Girnis et al., 2006; Hammouda et al., 2009). Ces études permettent de mettre en avant la même tendance observée pour le partage de ces éléments entre grenats et liquides silicatés, c'est-à-dire un enrichissement en HREE des grenats par rapport aux liquides (Fig. II.15b).

Chebotarev et al. (2019) ont caractérisé les coefficients de partage des métaux rares entre calcite et liquides carbonatés dans le système synthétique Ca-Na-CO₃-P₂O₅-F, et ont permis de mettre en évidence le comportement incompatible des métaux rares dans la calcite avec une préférence de ces métaux pour des liquides de type Ca-Na-carbonatés \pm riches en F/P₂O₅ (10 à 20% poids). En ce qui concerne la titanite, le partage des éléments traces n'a pas encore été défini expérimentalement. En revanche Klemme and Dalpé (2003) et Hammouda et al. (2010) ont réalisé des expériences afin d'identifier le comportement des éléments traces entre apatite et liquides carbonatés. Klemme and Dalpé (2003) ont montré que les éléments traces sont globalement incompatibles dans l'apatite (D^{Ap/LC} <1) et se concentrent préférentiellement dans les liquides carbonatés. En revanche, Hammouda et al. (2010) ont mis en évidence le comportement compatible des REE dans l'apatite (D^{Ap/LC} >1), qui serait principalement dû à des concentrations de SiO₂ relativement élevées dans l'apatite.

Toutes ces données expérimentales comme celles des roches naturelles mettent en évidence l'importance du comportement des métaux rares entre cristaux et liquides. Le partage de ces éléments entre les différentes phases au cours de la cristallisation des magmas va en effet régir leur enrichissement (ou non) en ces métaux. Parmi les études d'immiscibilité entre liquides carbonatés et liquides silicatés présentées dans la partie II.2.1 et qui ont permis de caractériser les coefficients de partage des éléments traces entre les deux liquides, seules quelques-unes ont montré la formation de très rares cristaux au cours des expériences (Brooker and Kjarsgaard, 2011; Jones *et al.*, 2013; Martin *et al.*, 2013; Weidendorfer *et al.*, 2019). Aucune de ces études n'a caractérisé les coefficients de

partage entre cristaux et liquides, au cours de la différenciation de ces deux liquides. Kjarsgaard (1998) et Kjarsgaard and Peterson (1991) ont simulé la cristallisation fractionnée de liquides silicatés de type néphélinite en coexistence par immiscibilité avec des liquides carbonatés, mais aucune caractérisation du comportement des éléments traces n'a été effectuée.

Figure II.15. Coefficients de partage des métaux rares entre cristaux et liquides carbonatés, pour les clinopyroxènes (a) et les grenats (b). Ces coefficients ont été caractérisés expérimentalement (Brenan and Watson, 1991; Green et al., 1992; Klemme et al., 1995; Sweeney et al., 1995; Blundy and Dalton, 2000; Adam and Green, 2001; Hammouda et al., 2009).

II.3.3. Modèles de partage préexistant : influence de la structure des cristaux ou des liquides ?

Nous avons vu précédemment que la structure des liquides silicatés peut influencer le partage des éléments traces entre cristaux et liquides (partie II.2.3). De nombreuses études ont en effet montré

l'effet de la structure des réseaux silicatés sur le partage entre certains cristaux et le liquides silicaté (Kohn and Schofield, 1994; Linnen and Keppler, 2002; Gaetani, 2004; Mysen, 2004; Schmidt *et al.*, 2004, 2006; Prowatke and Klemme, 2005).

D'autres études ont également cherché à relier le partage de ces éléments à la structure des réseaux cristallins de minéraux. Brice (1975) a déposé les prémices d'un modèle quantitatif de partage des éléments traces entre cristaux et liquides basé sur les principes thermodynamiques. Ce modèle a été réalisé par Blundy and Wood (1994), et est communément utilisé dans la littérature, pour caractériser ces partages, et notamment dans la plupart des travaux de partages des éléments traces entre cristaux (clinopyroxènes, grenat, wollastonite, titanite , apatite) et liquides présentés précédemment, (Green *et al.*, 2000; Hill *et al.*, 2000, 2011; Klein *et al.*, 2000; Barth *et al.*, 2002; Keshav *et al.*, 2005; Prowatke and Klemme, 2005, 2006a; Adam and Green, 2006; Hammouda *et al.*, 2009; Olin and Wolff, 2010, 2012; Baudouin and France, 2019; Di Stefano *et al.*, 2019). Ce modèle appelé « Lattice strain modelling » (Blundy and Wood, 1994; Wood and Blundy, 1997) permet de prédire le partage d'un cation seulement à partir des propriétés physiques du site cationique correspondant dans le réseau cristallin. Ce modèle implique que le coefficient de partage définit dans l'équation (2) est relié à l'état d'équilibre thermodynamique, aux conditions P-T et également à la composition des phases (Blundy and Wood, 1994, 2003). Les coefficients de partage entre cristaux et liquides sont définis selon l'équation suivante :

$$D_{i} = D_{0} * \exp\left(\frac{-4\pi E_{M} N_{A} \left[\frac{r_{0}}{2} (r_{i} - r_{0})^{2} + \frac{1}{3} (r^{i} - r_{0})^{3}\right]}{RT}\right)$$
(3)

Avec D_i le coefficient de partage de l'élément i, D_0 le coefficient de partage de l'élément 0 dont le rayon ionique r_0 (en Ä) est de la même taille que celui du site cristallographique d'intérêt, E_M le module d'Young du site M, r_i le rayon ionique de l'élément i, N_A le nombre d'Avogadro, R la constante des gaz parfait (en g.Ä.s⁻².mol⁻¹.K⁻¹) et T la température (en K).

Cette formule définit une relation parabolique entre le rayon ionique des cations et leurs coefficients de partage (Fig.II.16a). Cette relation présente une bonne reproductibilité des coefficients de partage obtenus expérimentalement (Fig.II.16b). Wood and Blundy (1997) ont adapté cette relation pour prédire le partage des REE entre clinopyroxènes et liquides silicatés anhydres. Ces cations considérés comme étant de valence 3+ sont en effet supposés se substituer au Ca²⁺ du fait de leurs rayons ioniques similaires (Shannon, 1976), dans le site M2 des clinopyroxènes en coordination-8 (Wood and Blundy, 1997; Hill *et al.*, 2000). Hill et al. (2011) ont également montré une préférence des HFSE pour le site M1 des clinopyroxènes. Dans ces deux cas, le module d'Young de l'équation (3) correspond alors au site M1 (E_{M1}) ou au site M2 (E_{M2}).

Figure II.16. Modèle de partage des éléments traces entre cristaux et liquides, d'après Blundy and Wood (1994). a) Schéma de l'effet des paramètres présentés dans l'équation (3) sur le coefficient de partage des éléments (Wood and Blundy, 1997). L'élément « idéal » le plus adapté au site cristallographique du minéral a un rayon ionique r_0 et un coefficient de partage correspondant D_0 au niveau du sommet de la parabole. Le module d'Young E_s est caractéristique du site cristallographique. Les coefficients de partage décroissent au fur et à mesure que les rayons ioniques des éléments diminuent ou augmentent autour de r_0 . b) Exemple de paramétrisation du « Lattice strain modelling » sur des données expérimentales (symboles) de partage entre clinopyroxènes et liquides (Blundy and Wood, 1994). Les courbes sont obtenues par régression au moindres carrés à partir de l'équation (3), pour les cations de charge 1 + (Na, K, Rb et Cs), 2 + (Ca, Sr et Ba) et 3 + (La, Nd, Sm, Y, Yb), pour le site M2.

Comme énoncé précédemment (Fig.II.13a), certaines études indiquent une différence de comportement des HREE (Olin and Wolff, 2012; Baudouin and France, 2019; Beard *et al.*, 2019): les coefficients de partage de l'Yb et du Lu entre clinopyroxènes et liquides silicatés augmentent (forme sigmoïdale de la courbe), alors que la plupart des expériences ont permis d'observer une diminution de ces coefficients de partage (Fig.II.13a). Ces études ont ainsi suggéré que les HREE peuvent se substituer également aux Fe^{2+} ou au Mg^{2+} dans le site M1 des clinopyroxènes en coordination-6 (Olin and Wolff, 2010; Mollo *et al.*, 2016; Dalou *et al.*, 2018; Baudouin and France, 2019). Dans ce cas, la formule du « Lattice strain modelling » présentée dans l'équation (3) qui ne prend en compte qu'un seul site cristallographique, ne suffit pas à elle seule pour caractériser le partage des HREE. Dalou et al. (2018) ont proposé un modèle appelé « Double Fit » et permettant de calculer les coefficients de partage des éléments traces pouvant se substituer aux éléments majeurs dans les deux sites de différents minéraux (clinopyroxènes, grenats, amphiboles, micas...). Ce modèle modifie l'équation (3) pour y inclure deux termes correspondants respectivement au site M1 et au site M2, selon l'équation suivante :

$$D_{i} = D_{0}^{M1} * \exp\left(\frac{-4\pi E_{M1}N_{A}\left[\frac{r_{0}^{M1}}{2}(r_{i} - r_{0}^{M1})^{2} + \frac{1}{3}\left(r^{i} - r_{0}^{M1}\right)^{3}\right]}{RT}\right) + D_{0}^{M2} \\ * \exp\left(\frac{-4\pi E_{M2}N_{A}\left[\frac{r_{0}^{M2}}{2}(r_{i} - r_{0}^{M2})^{2} + \frac{1}{3}\left(r^{i} - r_{0}^{M2}\right)^{3}\right]}{RT}\right)$$
(4)

Cette formule définit deux paraboles propres à chaque site qui relient les rayons ioniques des éléments à leurs coefficients de partage (Fig.II.17). Ces coefficients sont ainsi estimés en additionnant les effets des deux sites du réseau cristallin des minéraux.

Figure II.17. Exemple d'application du modèle « Double Fit » sur des données expérimentales de partage entre orthopyroxènes et liquides de type basaltiques, pour les cations trivalents, d'après Dalou et al. (2018). La courbe noire est obtenue à partir de la somme des $D_i^{M1/iquide}$ (courbe tiretée) et $D_i^{M2/iquides}$ (courbe pointillée) présentés dans l'équation (4).

Les modèles de partage entre cristaux et liquides présentés ne prennent pas en compte directement les paramètres de structures des liquides silicatés qui définissent leur degré de polymérisation (NBO/T par exemple). Cependant, Blundy and Dalton (2000) ont appliqué ce modèle pour le partage des éléments entre clinopyroxènes et liquides carbonatés, et ont déduits des valeurs différentes par rapport aux coefficients de partage entre clinopyroxènes et liquides silicatés. Les auteurs ont suggéré que cette différence de comportement des éléments traces peut être due aux changements de composition des liquides qui semblent ainsi contrôler ces coefficients de partages.

De plus, les études concernant le partage des éléments traces entre la titanite et les liquides silicatés ont montré un effet important de la structure des liquides silicatés sur l'enrichissement en éléments traces des titanites (Prowatke and Klemme, 2005, 2006a; Olin and Wolff, 2012). Prowatke and Klemme (2005) ont en effet montré que le partage des REE, du Nb et du Ta est fortement influencé par la composition chimique des liquides silicatés et varie en fonction du NBO/T. Ils ont également proposé que cet effet de la structure des liquides prédomine sur l'effet de la structure cristalline des titanites.

Comme précisé dans la partie II.2.3, des études ont suggéré une forte dépendance du partage entre cristaux et liquides à la composition des liquides silicatés (Watson, 1976; Kohn and Schofield, 1994; Linnen and Keppler, 2002; Mysen, 2004; Schmidt *et al.*, 2004). Il semble donc qu'il puisse y avoir une compétition entre l'effet de la structure des liquides, et l'effet du réseau cristallin des minéraux sur le comportement des éléments traces entre cristaux et liquides.

Le comportement des métaux rares (REE, Hf, Zr, Ta et Nb) entre cristaux et liquides silicatés ou carbonatés a été définit dans la littérature pour des compositions de liquides très différentes, et indique une forte variation pour les LREE et les HFSE dans les clinopyroxènes ainsi qu'une préférence des

HREE pour les grenats. Certains minéraux dits accessoires, mais qui peuvent parfois être en concentrations importantes dans les roches naturelles, tels que la titanite ou l'apatite, peuvent concentrer tous ces métaux. Cependant, le comportement de ces métaux dans les systèmes alcalins est peu caractérisé expérimentalement, de même que dans les systèmes de liquides silicatés et carbonatés immiscibles. Néanmoins, il a été montré que le comportement des métaux rares dépend des paramètres cristallins des minéraux mais également de la structure des liquides. Au cours de la différenciation des magmas silicatés et carbonatés, le partage de ces métaux peut ainsi être influencé à la fois par les paramètres structuraux des liquides, et à la fois par la structure des minéraux.

II.4. Rôle du fluide sur l'immiscibilité et sur le comportement des métaux rares

Les liquides silicatés et carbonatés peuvent contenir d'importantes concentrations en CO_2 et en H_2O (partie II.1.1 ; Fig.II.1 et II.2). Il est possible alors qu'au cours de leur différenciation, ces liquides arrivent à saturation en ces volatils (± H_2O , CO_2 etc...), et qu'une phase fluide se forme. Le dégazage important des volcans du rift en témoigne par exemple (Fischer *et al.*, 2009; Foley and Fischer, 2017).

Brooker and Kjarsgaard (2011) ont montré l'importance de la saturation en CO_2 dans un système où coexistent des liquides silicatés et carbonatés à l'équilibre. En effet, le système est considéré par ces auteurs comme étant sous-saturé en CO_2 lorsque la quantité en CO_2 n'est pas suffisante pour saturer en une phase fluide (Fig.II.18). Plus le système est sous-saturé en CO_2 , et plus le solvus qui délimite le domaine de formation des liquides silicatés et carbonatés décrits dans la Fig.II.6 se resserre (plus on se rapproche d'un domaine à un seul liquide). Au contraire, plus le système est saturé en CO_2 et plus les deux liquides coexistent avec une phase vapeur (Fig.II.18). La présence de phase fluide et le degré de saturation en constituants CO_2 et H₂O peuvent ainsi influencer le domaine de formation des deux liquides et l'écartement du solvus.

Figure II.18. Schéma du solvus des deux liquides en fonction de la concentrations en CO_2 (% poids), modifié d'après Brooker and Kjarsgaard (2011) et De Moor et al (2013). Le domaine délimité par le solvus correspond au domaine de stabilité des liquides silicatés (SL) et des liquides carbonatés (CL) coexistant à l'équilibre (« 2 Liq »); ces deux liquides peuvent coexister avec une phase vapeur (« vapor ») par saturation en CO_2 des deux liquides (domaine « 2Liq.+vapor »). En revanche, une sous-saturation en CO_2 du système provoque la fermeture du solvus, et correspond au domaine d'un seul liquide.

La formation d'une phase fluide peut aussi impliquer le fractionnement des éléments majeurs et traces entre la phase fluide formée et les liquides. Comme expliqué dans la partie I.2.3, des fluides hydrothermaux peuvent concentrer des éléments majeurs ainsi que des éléments traces.

Le comportement des REE a été étudié entre phases fluides et liquides carbonatés de composition riche en Ca, Na et Mg, à des conditions P-T d'hydrothermalisme (700-800°C et 0,1-0,2 GPa; Song et al., 2016). Les REE restent concentrées dans le liquide carbonaté en présence d'une phase fluide \pm riche en F et Cl ($D_{REE}^{Fluide/LS} < 1$). Song et al. (2016) ont ainsi proposé que la formation des gisements à REE soit principalement reliée à la cristallisation fractionnée des liquides carbonatés, plutôt qu'à des fluides hydrothermaux. Or des minéraux à REE présents dans des gisements de carbonatites ont été identifiés comme résultant de la circulation de ces fluides, comme la bastnaesite par exemple (partie I.2.3).

Ceci suggère que les métaux rares peuvent fractionner dans les fluides hydrothermaux et que cet enrichissement de la phase fluide doit impliquer une relation complexe entre les processus de partage des éléments, les conditions P-T de saturation en une phase fluide et de solubilité des volatils dans les magmas sources. Cette transition entre les processus magmatiques et hydrothermaux ne sera pas abordée de manière approfondie dans cette étude.

II.5. Questions à résoudre

Les études sur les roches naturelles alcalines et les carbonatites ainsi que les travaux expérimentaux ont permis de mettre en évidence l'effet supposé de la structure des liquides silicatés et des fortes concentrations en éléments volatils sur l'enrichissement en métaux rares de ces liquides. Ceci implique que l'enrichissement en ces métaux des magmas alcalins au cours de leur fractionnement et des processus d'immiscibilité sur une large gamme P-T, doit être étudié en prenant en compte les propriétés particulières de ces magmas, à savoir la forte variabilité de la structure des liquides (dépolymérisés), et les fortes concentrations en CO₂, H₂O, F, Cl et P.

Cependant certains points importants ne sont pas résolus dans la littérature et ne permettent pas encore d'expliquer comment s'enrichissent exactement les magmas alcalins et carbonatés au cours de leur différenciation :

1. La forte variation d'enrichissement en REE des liquides carbonatés immiscibles avec les liquides silicatés :

Nous avons vu précédemment que l'enrichissement en REE des liquides carbonatés peut varier sur deux ordres de grandeur (Fig.II.9). Ceci pourrait potentiellement être lié à la structure des liquides silicatés (Fig. II.11). Cependant aucun paramètre lié aux conditions optimales d'enrichissement des liquides carbonatés et prenant en compte la structure des liquides silicatés n'a encore été défini. De plus, cette grande variation d'enrichissement n'a pas encore été reliée au degré de différenciation des magmas alcalins sous-saturés en silice.

2. L'effet de la concentration des volatils et de la structure des liquides sur l'enrichissement en métaux rares:

La structure des liquides silicatés à un effet sur le comportement des éléments traces (Fig. II.11) ainsi que sur la solubilité des éléments volatils (Fig.II.5). Les halogènes (F et Cl) et le P sont supposés jouer un rôle sur l'enrichissement en métaux rares des liquides carbonatés (Fig.II.12). Cependant, l'effet de ces volatils dans un système de liquides carbonatés et silicatés immiscibles n'est pas encore bien contraint. De plus, dans le cas des liquides alcalins sous-saturés en silice immiscibles avec des liquides carbonatés, les concentrations en H_2O et CO_2 n'ont pas encore été décrites dans la littérature, pour des liquides silicatés à saturation en carbonates liquides. L'effet de la solubilité en ces éléments volatils sur l'enrichissement en métaux rares des liquides carbonatés n'est donc pas encore connu.

3. L'effet du fractionnement des liquides silicatés sur l'enrichissement en métaux rares des liquides carbonatés :

Le partage des métaux rares a été défini dans la littérature entre les différents cristaux et les liquides carbonatés et silicatés (Fig.II.13 à 15). Cependant les données préexistantes de partage cristaux-liquide existent dans le système alcalin sous-saturé en silice ne permettent pas encore d'être reliées au degré de différenciation des magmas silicatés et des carbonatites.

Ces trois principaux points seront respectivement abordés dans le chapitre IV, le chapitre V et enfin le chapitre VI.

III. Méthodologie
Cette section a pour but de présenter les techniques expérimentales et analytiques employées au cours de cette étude.

La première partie présente la stratégie expérimentale appliquée. Le choix des produits de départ utilisés pour les expériences ainsi que des conditions de pression et de température étudiées sont détaillés. La préparation de ces matériaux de départ synthétiques est également présentée, ainsi que la préparation des capsules utilisées dans les expériences.

Dans la deuxième partie, les deux techniques expérimentales utilisées dans cette étude sont présentées : le piston-cylindre et l'autoclave à chauffage interne. Une section est également consacrée à la préparation minutieuse des échantillons expérimentaux post-expériences.

La troisième partie présente toutes les techniques analytiques utilisées dans le cadre de cette thèse : le microscope électronique à balayage (MEB) qui a principalement servi à caractériser les phases et les textures des échantillons, la microsonde électronique afin d'identifier la composition en éléments majeurs des différentes phases, le LA-ICP-MS (ablation laser couplée à un spectromètre de masse à plasma à coupage inductif) afin d'en caractériser les concentrations en éléments traces et notamment en métaux rares dans le cadre de notre étude, et enfin la nano-SIMS (spectrométrie de masse ionique secondaire) qui a été utilisée dans le but de définir les concentrations de CO_2 et H_2O (également en F et Cl) des liquides silicatés.

Une dernière section concerne le calcul des coefficients de partage des éléments utilisé tout au long de l'étude, ainsi que le calcul de propagation des erreurs associées à ces coefficients

III.1. Matériaux de départ

III.1.1. Stratégie expérimentale

Le comportement des métaux rares au cours de la différenciation et du fractionnement des liquides silicatés alcalins de type néphélinites-phonolites coexistant avec des liquides carbonatés et différents cristaux n'a pas encore été caractérisé. L'approche expérimentale vise ici à reproduire les conditions de différenciation des magmas alcalins coexistant avec des magmas carbonatés par le biais d'expériences d'immiscibilité et de cristallisation, afin d'identifier le devenir des métaux rares au cours des processus magmatiques.

Les travaux d'immiscibilité précédents ayant permis la caractérisation des coefficients de partage des éléments traces entre liquides silicatés et carbonatés (voir partie II.2.1; Wendlandt and Harrison, 1979; Hamilton et al., 1989; Jones et al., 1995; Veksler et al., 1998; Veksler et al., 2012; Martin et al., 2013; Weidendorfer et al., 2019) ont été effectués à des gammes variables de pression et de température, de 0,1 à 3 GPa et de 800 à 1300 °C (Fig. II.12). Cependant aucune de ces études n'a simulé de cristallisation fractionnée au cours de la différenciation des magmas alcalins silicatés et carbonatés, et ainsi ne permet d'étudier le comportement des métaux rares à la fois entre les deux liquides magmatiques, et dans les cristaux formés.

Il existe cependant des études expérimentales couplant différenciation et immiscibilité, mais ne traitant pas des éléments traces. Kjarsgaard (1998) a en effet réalisé des expériences d'immiscibilité en utilisant un échantillon de néphélinite naturelle provenant du volcan Shombole au Kénya et caractérisé par Peterson (1989). Cette néphélinite est relativement pauvre en MgO (< 2% poids), et contient environ 12% poids d'alcalins (Na₂O+K₂O) ainsi que de CaO (composition détaillée dans l'Annexe A.1.1). Cette roche présente également des globules de carbonates riches en Ca qui sont considérés comme étant les traces d'un liquide carbonaté qui aurait trempé au moment de l'éruption (Peterson, 1989). Kjarsgaard and Peterson (1991) ont réalisé une série d'expériences sur des néphélinites du volcan Ol Doinyo Lengai plus alcalines - mais de composition relativement similaire- et contenant également ces globules. Ces néphélinites ont été dopées en natrocarbonatites synthétiques. Les auteurs ont ainsi pu caractériser le solvus relatif à la formation de liquides de type néphélinite coexistant avec des liquides carbonatés riches en Ca et Na (Fig.I.5, courbe verte). Dans son étude, Kjarsgaard (1998) a procédé de la même manière : il a réalisé des expériences d'immiscibilité avec comme produit de départ la néphélinite de Shombole à laquelle ont été rajoutés 10% poids de calcite synthétique (Annexe A.1.1). Ces expériences ont été réalisées à 0,2 - 0,5 GPa et 900 - 1040 °C, et ont montré la formation de liquides carbonatés à l'équilibre avec des liquides silicatés évoluant de composition néphélinitique à phonolitique, dont le fractionnement a permis la formation de cristaux (± clinopyroxène, mélanite, mélilite, néphéline, wollastonite, apatite, calcite, pérovskite, titanite et spinelle). Les phases obtenues sont cohérentes avec les phases caractérisées dans l'échantillon naturel de néphélinite, ainsi que dans les autres roches magmatiques alcalines de la même gamme de composition (Peterson, 1989; Kjarsgaard, 1998). Cependant le comportement des éléments traces n'a pas été caractérisé entre liquides et cristaux dans cette étude.

Dans le cadre de notre étude, le protocole de Kjarsgaard (1998) est idéal pour effectuer des expériences d'immiscibilité entre liquides de type néphélinites-phonolites et liquides carbonatés riches en Ca, et également pour étudier le comportement des métaux rares entre les liquides et les cristaux formés au cours de la différentiation magmatique.

Deux types d'expériences ont été réalisés :

- des expériences d'immiscibilité entre des liquides de type néphélinites-phonolites-carbonatites dopés en REE et Nb, basées sur le protocole de Kjarsgaard (1998). Ces expériences complètent le champ P-T déjà étudié dans la littérature (Fig.II.12), et ont été réalisées à des pressions et températures variant sur une gamme plus large (0,2 à 1,5 GPa, et 725 à 975 °C) que celles de Kjarsgaard (1998), afin de parcourir les conditions P-T relatives à l'évolution de ces magmas. Les résultats de ces expériences sont présentés dans les chapitres IV et VI.
- des expériences d'immiscibilité entre liquides alcalins de types néphélinites phonolites carbonatites ± dopés en F, Cl et P, et également en métaux rares (REE, Hf, Zr, Ta et Nb), et également. Ces éléments volatils sont en effet susceptibles d'influencer le comportement des métaux entre les deux liquides (partie II.2.3). Ces expériences vont permettre de caractériser l'effet de ces volatils sur l'enrichissement des liquides carbonatés à un stade avancé de différentiation (phonolitique). Ces expériences ont été réalisées à 0,8 GPa et 850 1050 °C. Le détail du choix de la composition de départ est présenté dans l'Annexe A.1.2. Les résultats sont présentés dans les chapitres V et VI.

Dans chacune de ces expériences d'immiscibilité des cristaux se sont formés en réponse aux variations en pression, température, activité de l'eau et d'autres constituants volatils. Les compositions des cristaux, leur teneur en métaux rares et le partage métaux rares / liquides silicatés et/ou carbonatés sont exposés dans le chapitre VI et dans les Annexes C et D.

III.1.2. Préparation des produits de départ

Deux lots de compositions relatifs aux deux types d'expériences ont été préparés dans cette étude. Pour ces deux types de compositions, les matériaux de départ correspondent à des mixtures formées à partir du mélange de poudres synthétiques. Au total, 7 compositions ont été préparées dans cette étude (Tableau III.1).

Trois compositions (Mix 8, Mix 9 et Mix 10) correspondent au protocole de Kjarsgaard (1998) dopé en métaux rares. Le matériel de départ principal, appelé Mix 8 (Tableau III.1) correspond à la néphélinite présentée précédemment et très peu hydratée, à laquelle 10% poids de calcite ont été rajoutés (Annexe A.1.1). Cette composition est ainsi relativement pauvre en SiO₂ (< 36 % poids), riche en CaO (> 15% poids) ainsi qu'en CO₂ (> 12% poids ; différence à 100). Les Mix 9 et Mix 10 ont une composition très similaire, et correspondent respectivement au Mix 8 dopé en potassium (ajout de 5 % poids de K₂CO₃) et dopé en F (5% poids de CaF₂).

Quatre compositions supplémentaires ont été fabriquées (« PhCbn », en gris dans le Tableau III.1), et correspondent principalement au mélange d'une phonolite et d'une carbonatite (50 : 50, détails dans Annexe A.1.2 ; PhCbn 1) auxquelles ont été rajoutées 5% poids de P_2O_5 (PhCbn 2), de F (PhCbn 3) ou de Cl (PhCbn 4) élémentaires. Ces compositions sont très pauvres en SiO₂ (environ 25% poids) et très riches en CO₂ (25% poids). La composition non dopée en halogènes et P_2O_5 (PhCbn1) est également plus alcaline que le Mix 8 (16% poids de Na₂O+K₂O vs 10% poids).

0,1% poids d'un mélange de REE-Y a été rajouté dans ces 7 mixtures ; du Nb a également été ajouté dans les deux types de compositions (les « Mix » et les « PhCbn »), ainsi que du Hf, Zr, et Ta dans les compositions de type « PhCbn » (Tableau III.1).

Toutes ces mixtures ont été préparées selon trois étapes principales :

• Calcul des compositions :

La première étape consiste à calculer les proportions en constituants choisis pour réaliser la composition souhaitée. Les mixtures sont préparées à partir du mélange de différents composants

chimiques ; cette étape permet de calculer les concentrations exactes de ces composants afin de respecter les proportions molaires de chaque élément (Si, Al, Ca, Mg, Na, K etc...) ainsi que les quantités de CO₂ nécessaires pour permettre la formation de liquides carbonatés. Les composants utilisés sont principalement des oxydes purs de synthèse (SiO₂, TiO₂, Al₂O₃, Fe₂O₃, FeO, MnO₂, Cr₂O₃, Nb₂O₅, Ta₂O₅, ZrO₂, HfO₂, Sc₂O₃, La₂O₃, CeO₂, Pr₆O₁₁, Nd₂O₃, Sm₂O₃, Eu₂O₃, Dy₂O₃, Y₂O₃, Er₂O₃ et Yb₂O₃), des carbonates de synthèse (CaCO₃, Na₂CO₃, K₂CO₃, MnCO₃, BaCO₃ et SrCO₃), des minéraux naturels (apatite et dolomite de Saint-Colombe-sur-Guette), des fluorures (AlF₃, NaF, CaF₂, SrF₂, GdF₃ et HoF₃), des chlorures (AlCl₃ et NaCl), des éléments purs (Tb et Lu), mais également du phosphate d'Al (AlPO₄) et de la wollastonite de synthèse.

Tableau III.1. Composition chimiques des produits de départ synthétiques utilisés dans les expériences. Les concentrations en éléments majeurs (% poids) et en éléments traces (ppm) ont été analysées par ICP-MS sur poudres (ALS Global). Les compositions Mix 8, Mix 9 et Mix 10 (blanc) correspondent aux compositions de type néphélinites–carbonatites de Kjarsgaard -1998). Les compositions notées « PhCbn » correspondent aux néphélinites-carbonatites avec ± F, Cl et P (gris). Le Mix 10 ainsi que certains éléments n'ont pas pu être analysés: ces concentrations ont été calculées sur une base normalisée à 100 (*).

	Mix 8	Mix 9	Mix 10	PhCbn 1	PhCbn 2	PhCbn 3	PhCbn 4
Eléments	majeurs % poi	ds					
SiO ₂	35,39	33,31	34,80 *	25,47	24,32	24,37	24,01
TiO ₂	1,7	1,61	1,78 *	0,34	0,32	0,32	0,31
Cr_2O_3	0,01	0,01	0,01	0,01	0,01	0,01	0,01
Al ₂ O ₃	11,34	10,88	11,07 *	9,47	9,36	8,95	8,88
Fe ₂ O ₃	9,26	8,84	8,98 *	3,88	3,67	3,7	3,52
MnO	0,26	0,25	0,25*	0,31	0,29	0,29	0,28
MgO	2,05	1,93	1,66 *	1,06	1	0,98	0,97
CaO	15,67	14,79	17,74 *	14,88	14,16	14,25	13,65
Na ₂ O	7,22	6,86	7,38 *	12,19	11,51	11,5	11,07
K ₂ O	2,85	5,75	2,84 *	4,01	3,95	3,7	3,54
P_2O_5	0,31	0,28	0,29 *	0,76	5,13	0,76	0,71
SrO	0,46	0,43	0,44 *	0,77	0,7	0,68	0,66
BaO	0,26	0,24	0,25 *	0,56	0,54	0,54	0,54
F	0,14 *	0,13 *	1,31 *	1,12	1,03	5,83 *	1,03
Cl	0,13 *	0,13 *	0,13 *	0,34	0,34	0,28	4,72 *
S	-	-	-	0,06	0,06	0,06	0,05
LOI	12.96	14.55	11.07 *	24.77	23.72	23.78	26.07
Total	100	100	100	100	100	100	100
Élé	ments traces (p	opm)					
Ba	2300	2110	2353 *	5340	5080	5370	5410
Sr	4080	3750	3820 *	7000	6450	6380	6120
Hf	-	-	-	23,4	22,5	17,9	24,4
Zr	-	-	-	407	379	371	377
Nb	276	263	261 *	197	198	185	163,5
Та	-	-	-	12,4	9,7	4,4	6
La	86,6	83,1	71 *	52,5	50,9	49,8	48,9
Ce	93,2	88,5	71 *	61	59,6	60,4	56,6
Pr	60	57,1	71 *	51	51,4	49,4	47,2
Nd	63,2	59,8	71 *	53,6	53,6	51	50,2
Sm	56,4	55,1	71 *	56,1	55,8	54,3	50,1
Eu	61,2	56	71 *	55	55,7	53,9	52,5
Gd	59,4	63,7	71 *	61,5	55,3	56,6	55,4
Tb	52	51,9	71 *	52,4	50,7	52,1	50,1
Dy	58,5	58,7	71 *	57,3	56,8	56,5	56,7
Но	56	54,9	71 *	52,6	53,3	54,2	52,5
Er	57	55,3	71 *	57,7	57,2	58,8	58,5
Yb	58,7	57,4	71 *	54,9	55,3	56	54,6
Lu	53,8	52,1	71 *	49,9	49,7	49,9	48,3
Y	70,1	65,7	71 *	67,4	67,7	64,9	63,5
Sc	-	-	-	64	58	56	60
Cr	-	-	-	140	120	120	120

Tous ces composants ont été combinés de manière à satisfaire les concentrations en éléments souhaitées. Les proportions exactes de ces composants utilisés pour fabriquer les poudres sont présentées dans l'Annexe A.1.3. Certains composants supplémentaires ont également été testés pour les calculs (tels que FeC₂O₄, FeCO₃, CaO, Ca₂P₂O₇, P₂O₅, K₂O, BaO ou encore Ag₂C₂O₄), mais ont été exclus soit à cause de leur manipulation trop complexe (forte instabilité à l'air ambiant des poudres de P₂O₅, CaO et K₂O par exemple), soit du fait de l'impossibilité de reproduire les concentrations initiales en éléments souhaitées en les utilisant (en CO₂ principalement).

Au total, au moins 16 constituants (sans les REE) ont été nécessaires pour fabriquer les compositions de type « Mix », et 21 constituants pour les compositions de type « PhCbn ». Celles-ci ont nécessité plus de composants, pour respecter à la fois les quantités en éléments majeurs, en halogènes-P rajoutés, ainsi qu'en CO_2 (Annexe A.1.3, Tableau A.3).

Afin de faciliter une bonne homogénéisation des REE dans les produits de départ qui sont en très petites quantités dans ces compositions, un mélange d'environ 2 à 3 g de REE a été confectionné à part. 14 poudres ont ainsi été combinées afin de préparer ce mélange (Annexe A.1.3, Tableau A.4).

• Préparation des mixtures :

Les mixtures ont été préparées à partir du mélange de ces constituants de synthèse/naturels. Au total, environ 15g de poudres ont été préparés pour chaque composition. Avant leur manipulation, toutes les poudres (Fig.III.1a) ont été conservées dans une étuve chauffée à 120 °C afin d'éviter leur hydratation. En effet, certaines poudres sont très hygroscopiques et s'hydratent très rapidement à l'air ambiant (Na₂CO₃, K₂CO₃, CaCO₃, NaF, CaF₂, AlF₃ et AlCl₃). Les carbonates ont été conservés dans une étuve à 200 °C, température à laquelle l'eau est totalement extraite de leur structure. D'autres poudres, tels que les chlorure/fluorure/phosphate d'Al (AlCl₃, AlF₃ et AlPO₄) sont instables à une température >50°C, et ont été conservées dans une cloche sous vide. Ces poudres ont été utilisées pour les compositions de type « PhCbn ». Les compositions PhCbn 3 et 4 respectivement enrichies en F et Cl (Tableau III.1) ont nécessité des quantités plus importantes en AlF₃ et AlCl₃ (Annexe A.1.3, Tableau A.3), qui sont particulièrement hygroscopiques. Ces compositions ont ainsi été fabriquées dans une boite à gants mobile (modèle Captair Pyramid 2200 ANM-XLS ; Fig.III.1b) sous atmosphère contrôlée (Ar), afin d'éviter une hydratation à l'air ambiant de ces poudres trop importante. Tous les constituants ont été posés dans cette boîte à gants.

• Mélange homogène :

Les poudres utilisées, parfois grossières, ont été pré-broyées si nécessaire dans un pilon métallique puis dans un mortier en agate (numéros 1 et 2, Fig.III.1c), et enfin ajoutées à la mixture dans un bol mélangeur en agate (3, Fig.III.1c). Les compositions de départ étant très riches en CO_2 (> 12% poids), aucune fusion n'a été effectuée sur les produits de départ afin d'obtenir un verre homogène. Le seul moyen d'assurer une bonne homogénéisation des poudres est de bien les mélanger.

Dans un premier temps, un mélange manuel de 15-20 minutes a été effectué entre chaque ajout de poudre dans le bol en agate (numéro 3, Fig.III.1c), afin d'assurer une bonne homogénéisation des produits petit à petit. Le mélange de REE a été utilisé de manière à respecter les quantités souhaitées, à savoir une proportion équivalente à 0,1 % poids de la masse totale de composition (0,1 % poids d'environ 15g). Puis dans un deuxième temps, une fois que tous les constituants ont été ajoutés (y compris le mélange de REE), le bol ainsi que des billes en agate ont été placés dans un broyeur automatique à faible vitesse, trois à quatre fois pendant 15 minutes. Ceci permet d'assurer une bonne homogénéisation des poudres.

Figure III.1. Etapes réalisées pour la confection des produits de départ. a) Préparation des poudres de synthèse utilisées dans la fabrication des produits de départ. Chaque petit pot contient un composant (oxyde, carbonate, minéral naturel etc...); b) Boîte à gants pyramidale utilisée pour préparer certaines poudres contenant les composants les plus hygroscopiques ; c) Pilon métallique (1), mortier en agate (2) et bol mélangeur avec billes en agate (3), utilisés pour bien mélanger de manière homogène les constituants utilisés pour fabriquer les produits de départ ; d) Tubes en Au pur ou Au₈₀Pd₂₀ utilisés pour préparer les capsules (1), ainsi que les capsules nettoyées, soudées en partie et prêtes à l'emploi (2).

III.1.3. Préparation des capsules

Pour les expériences réalisées dans le cadre de cette étude, les capsules ont été confectionnées à partir de tubes métalliques de 2,5 - 2,9 mm de diamètre, en Au ou en Au₈₀Pd₂₀ (numéro 1, Fig.III.1d) pour les expériences réalisées à plus haute température. La taille des capsules varie entre 0,8 et 1,5 cm de longueur en fonction des expériences réalisées (<1cm pour le piston-cylindre, >1 cm pour l'autoclave). Les tubes sont tout d'abord découpés en fonction de la taille nécessaire. Afin d'éliminer toute impureté qui pourrait éventuellement contaminer les échantillons, les cylindres découpés sont ensuite nettoyés en 2 étapes : une première étape de nettoyage consiste à insérer les capsules dans un bécher contenant de l'acide chlorhydrique HCl et de l'eau distillée, et de tout porter à ébullition (300 °C) ; puis la deuxième étape consiste à rincer les capsules dans de l'eau distillée également à 300°C. Les capsules sont ensuite égouttées et chauffées à l'aide d'un chalumeau avec une flamme à 1300 °C, afin de rendre le métal plus facilement malléable.

L'un des côtés des capsules est ensuite poinçonné et soudé par soudure électrique (numéro 2, Fig.III.1d) qui se produit au contact d'une pointe métallique et du métal de la capsule. Le matériel de départ est alors inséré dans la capsule à l'aide d'un petit entonnoir en plastique. En général, 15 à 30 mg au maximum de poudre ont pu être insérés, en fonction de la taille des capsules. Les masses de la capsule vide, ainsi que de la poudre sont bien notées au fur et à mesure afin de vérifier une éventuelle perte de matière après les expériences.

De l'eau a également été ajoutée dans certaines capsules à l'aide d'une micro-seringue (de 1, 5 ou 10 μ L). L'eau est insérée en premier dans la capsule (avant la poudre) afin de ne pas contaminer la seringue. De plus, du graphite a également parfois été ajouté, afin de tamponner la fugacité de l'oxygène au tampon CCO et de créer ainsi un environnement réduit.

Une fois les capsules remplies, elles sont fermées puis de nouveau soudées. Les capsules contenant de l'eau ont été soudées à l'aide d'azote liquide afin de geler la capsule pour éviter l'évaporation de l'eau. 66 Après la soudure, les capsules sont pesées pour vérifier la perte ou non de masse, puis trempées dans un bain d'huile chauffé afin de vérifier la présence d'éventuels trous dans la soudure.

III.2. Expériences

Deux types d'expériences ont été réalisés dans le cadre de cette étude au laboratoire de l'ISTO à Orléans : des expériences en piston-cylindre pour les plus hautes pressions (0,8 et 1,5 GPa), et des expériences en autoclave à chauffage interne pour des pressions les plus basses (0,2 et 0,4 GPa).

III.2.1. Piston-cylindre

Les expériences au piston-cylindre ont été réalisées à 0.8 et 1.5 GPa, pour des températures variant entre 850 et 1050 °C. Des assemblages ³/₄ de pouces ont été utilisés pour toutes les expériences (Fig. III.2). Ces assemblages sont constitués de l'extérieur au centre de talc (numéro 4, Fig.III.2a), de pyrex (5) et enfin d'un four en graphite (6). Les capsules sont contenues dans un cylindre en alumine emboité dans deux bouchons de MgO (Fig.III.2b). En général, 4 capsules sont insérées par assemblage. Afin d'éviter la présence de porosité entre les capsules, elles sont recouvertes de poudre constituée d'un mélange dans les proportions 50 : 50 d'hématite et de AlSiMag (Al+Si+Mg). La présence d'hématite implique un milieu oxydant, avec une fugacité de l'oxygène (fO_2) estimée entre QFM et QFM + 2. La poudre doit bien être tassée tout autour des capsules pour éviter tout écrasement lors de la montée en pression. L'ensemble capsules - alumine - bouchons de MgO est ensuite inséré dans l'assemblage (Fig.III.2b). Deux plugs en inox (numéro 2, Fig.III.2a) entourés d'un anneau de pyrophyllite (1 ; Fig.III.2a) sont positionnés aux deux extrémités de l'assemblage. Le plug positionné au sommet ainsi que le bouchon en MgO du haut sont percés afin d'introduire le thermocouple (7; Fig.III.2a). Le thermocouple est de type B (Pt₉₄Rh₆-Pt₇₀Rh₃₀) et permet de mesurer la température au cours de l'expérience. Le talc, couche la plus externe de l'assemblage, joue un rôle de lubrifiant dans l'enclume. L'assemblage ainsi que les deux plugs en inox sont entourés de téflon afin de faciliter l'extraction de l'échantillon à la fin de l'expérience et de réduire les frictions.

Figure III.2. Photo et schéma de l'assemblage ³/₄ de pouces utilisé dans les expériences en piston cylindre. a) Plugs en inox et anneau de pyrophyllite (1 et 2) positionnés au cours des expériences aux extrémités de l'assemblage ³/₄ de pouces (3) qui est constitué d'un cylindre de talc (4), de pyrex (5) et de graphite(6) ; tige en alumine (7) percée de deux trous par lesquels vont être insérés les fils du thermocouple utilisé pour mesurer la température pendant l'expérience; b) Schéma de l'assemblage expérimental contenant les 4 capsules : les capsules sont contenues dans un cylindre en alumine rempli d'un

mélange hématite-AlSiMag et encastré entre deux bouchons en MgO; cet ensemble est inséré dans l'assemblage $\frac{3}{4}$ de pouces.

Le principe du piston cylindre est relativement simple (Fig.III.3a) : la pression solide est appliquée par pression d'huile sur les pistons, et l'assemblage est contenu dans une enclume centrale (enclume de pression, Fig.III.3b) maintenue par ce système de piston. L'enclume centrale est équipée d'un système de refroidissement (enclumes de refroidissement ; Fig.III.3b) permettant la circulation d'eau froide tout au long de l'expérience. Le piston cylindre permet en général d'administrer des pressions de 0,5 à 4 GPa. La pression appliquée directement sur l'assemblage est celle du piston poussant sous l'échantillon (« piston » ; Fig.III.3b). L'erreur de mesure sur la pression est estimée à \pm 0,1 GPa (Dasgupta *et al.*, 2004).

Un courant électrique circule au travers de tout le système expérimental, y compris dans le graphite qui permet ainsi la chauffe de l'assemblage par effet Joule. La température est mesurée par le thermocouple inséré dans l'assemblage, qui est relié à un eurotherme régulant l'intensité du courant, afin de maintenir la température souhaitée. L'erreur de mesure pour ce type de thermocouple et de piston cylindre a été estimée à $\pm 12^{\circ}$ C (Dasgupta *et al.*, 2004). Des expériences réalisées par (Sifré *et al.*, 2015) sur la même machine ont permis de reproduire les conditions P-T de fusion de la dolomite, ce qui indique la fiabilité de ces expériences.

L'assemblage est tout d'abord mis sous pression, puis la température est augmentée petit à petit jusqu'à atteindre la température souhaitée. Pour la plupart des échantillons, un « under-cooling » (pallier de haute température, par rapport à la température souhaitée) a été effectué : l'échantillon subit d'abord une température plus élevée que la température souhaitée (975 °C pendant environ 2h, en fonction des échantillons) afin d'assurer la fusion et la bonne homogénéisation de l'échantillon. Kjarsgaard (1998) a en effet montré que, pour la composition de départ choisie pour le premier type d'expérience, un seul liquide homogène est formé à 1000 °C et à 0,2 et 0,5 GPa (sub-liquidus). La température finale est ensuite atteinte en quelques minutes. Chaque expérience est arrêtée par une trempe isobarique (« quench » en anglais), qui s'effectue par la coupure du courant en maintenant la pression constante. Cette trempe permet ainsi de vitrifier instantanément les liquides silicatés. La durée des expériences varie en fonction des échantillons, globalement entre 2 et 5 jours.

Figure III.3. Photo et schéma du piston cylindre. a) Piston cylindre utilisé pour les expériences(ISTO); b) Coupe schématique du piston cylindre indiquant le montage expérimental mis en œuvre pour les expériences. L'assemblage contenant les capsules est inséré dans l'enclume de pression qui est positionnée au centre de tout le montage.

III.2.2. Autoclave à chauffage interne

Des expériences ont également été réalisées en autoclave à chauffage interne (Fig.III.4a), pour des pressions de 0,2 et 0,4 GPa et des températures de 725 à 925 °C. Cet appareil consiste en une enceinte de haute pression à gaz (0,4 GPa au maximum) et de gros volumes pouvant contenir un four (Champallier, 2005). On distingue trois parties dans l'autoclave : une enceinte externe, une enceinte interne contenant le four, et 2 obturateurs surmontés de 2 bouchons placés aux extrémités du four (Fig.III.4b). Le circuit de refroidissement est situé entre l'enceinte externe et l'enceinte interne contenant le four. L'obturateur du haut est fixe et permet le passage de l'arrivée de gaz (Fig.III.4b). En revanche, l'obturateur du bas est mobile. Il peut être fixé au four, ainsi qu'à tous les branchements électriques (connectiques ; Fig.III.4b) permettant de contrôler et de mesurer à la fois la température et la trempe. Le four correspond à deux bobines de Molybdène ou de Kanthal (deux résistances) situées des deux côtés du four et se recouvrant en partie. Ces deux bobines entourent un cylindre de céramique et le chauffent lorsqu'un courant est envoyé. Les deux extrémités des bobines placées en haut et en bas du four sont contrôlées indépendamment afin d'éviter ou de réduire un possible gradient de température au cours de l'expérience (gradient estimé à \pm 5°C ; Champallier, 2005).

Deux thermocouples de type S ($Pt_{90}Rh_{10}$) sont ancrés dans l'obturateur du bas (Fig.III.5). Les capsules sont positionnées soit dans une nacelle en alumine (Fig.III.5a), soit dans une cage en Pt (Fig.III.5b), suspendues tout en haut à l'aide d'un fil très fin de Pt ou de Rh (sous H₂) aux cannes de trempe, qui sont associées au thermocouple du haut. Les échantillons sont ainsi situés dans la zone chaude pendant l'expérience (Fig.III.5b), et localisés entre les deux thermocouples (gradient < 2-3 °C le long des échantillons; Di Carlo et al., 2006; Andújar et al., 2013).

Les expériences consistent à mettre sous pression le four contenant les échantillons en injectant du gaz inerte tel que l'Ar. Un mélange d'Ar-H₂ a également été utilisé dans les expériences afin de varier la fO_2 . Pour les conditions P-T-X_{H2} réalisées dans cette étude, la fO_2 imposée par le mélange Ar-H₂ dans une capsule saturée en H₂O (i.e. $a(H_2O) = 1$) est estimée entre NNO+2,1 et NNO+0,9 (estimation à partir de Gaillard et al., 2001), ce qui est équivalent à QFM+2,5 et QFM+1,5 (estimation à partir de Frost, 1991). La fO_2 des capsules qui sont sous-saturées en eau est estimée abaissée de 0,5 unité-log, c'est-à-dire respectivement à QFM+2 et QFM+1.

De même que pour le piston cylindre, les deux thermocouples sont reliés à un eurotherme permettant de réguler la température au cours des expériences. Une fois l'autoclave mis sous pression, la température est augmentée petit à petit jusqu'à la valeur souhaitée. Les expériences ont été réalisées pendant 5 jours à 3 semaines pour les températures les plus basses (725 °C). Un « under-cooling » à environ 1000 °C a également été effectué pour chaque expérience, suivi d'une diminution de la température en quelques minutes. Une trempe rapide a également été effectuée pour ces expériences : cette trempe consiste à envoyer une décharge électrique dans les cannes de trempe, ce qui provoque la rupture du fil fin de Pt ou Rh, et ainsi la chute brutale des échantillons dans la zone froide (en bas, zone bleue ; Fig.III.4b).

Figure III.4. Photo et schéma de l'autoclave à chauffage interne. a) Photo de l'autoclave de l'ISTO et nommée « gros vert »; b) Coupe schématique de la structure interne de l'autoclave (schéma de Ferraina, 2018). Les capsules sont positionnées tout en haut du four pendant les expériences, dans la « zone chaude » (rouge).

Figure III.5. Mise en place des capsules sur les cannes de trempe de l'obturateur. Les capsules sont insérées dans une nacelle en alumine (a) ou dans une cage en Pt (b), accrochée au niveau des cannes de trempe, et situées entre le thermocouple du haut et le thermocouple du bas.

Les tableaux récapitulatifs des conditions expérimentales (pression, température, durée, type de capsules, etc...) sont présentés dans les chapitres de résultats relatifs aux deux types d'expériences, à savoir les expériences d'immiscibilité de type néphélinite-carbonatite-cristaux (chapitre IV et VI), et les expériences d'immiscibilité de type néphélinite-phonolite-carbonatite-cristaux \pm F, Cl et P (chapitre V et VI).

III.2.3. Polissage des échantillons

Après les expériences, les capsules sont pesées afin de vérifier une éventuelle perte de matière. La plupart des capsules ont ensuite été sciées à l'aide d'une micro-scie (1, Fig.III.6a) : les capsules sont 70

d'abord fixées (2 ; Fig.III.6a), puis sciées dans la longueur (3). De l'éthanol est utilisé pour scier plutôt que l'eau qui peut dissoudre les phases carbonatés. Cette méthode permet de récupérer le plus possible de matière et de conserver au mieux les assemblages de phases formés pendant les expériences. Certaines capsules ont également été ouvertes manuellement à l'aide de pinces, et les petits morceaux d'échantillon ont été directement récupérés.

Les échantillons (moitiés de capsule ou morceaux) sont ensuite enrobés de résine de type epoxy (EpoFIX Resin, Struers). Après durcissement de la résine, les plots sont polis à l'éthanol suivant deux étapes : une première étape de polissage manuel à l'aide de tapis de polissage de taille de grains (silice) variant de grossier à très fin, puis une deuxième étape à l'aide d'un appareil de polissage automatique avec des tapis de polissage de 9, 3 et 1 μ m (voir 0,5 μ m pour les échantillons présentant des surfaces difficiles à polir) et de stick diamantés. La dernière étape (1 ou 0,5 μ m) permet d'affiner le polissage afin d'obtenir une surface nette et lisse. Les sections polies (4 ; Fig.III.6a) sont ainsi prêtes pour les différentes analyses.

Figure III.6. Préparation des échantillons pour analyse. a) Préparation des capsules après expérience : une micro-scie (1) est utilisée pour scier les capsules qui sont fixées sur un petit sucre (2) ; les capsules sont sciées en longueur (3), puis sont polies dans un plot en résine (4). b) Echantillons pour analyse à la nano-SIMS : les capsules sciées sont extraites de la résine, placées dans un plot en Al et incorporées dans de l'indium, ou alors les morceaux d'échantillons très petits sont polis dans des carrés de résine (< 2 mm d'épaisseur) et collés sur les mêmes plots par un scotch en cuivre. Les deux types d'échantillons sont métallisés à l'Au.

Une préparation particulière a été effectuée pour les échantillons analysés à la nano-SIMS. Les capsules ont été polies selon le protocole présenté précédemment, puis ont été extraites des plots en résine en les chauffant légèrement sur une plaque chauffante afin de ramollir la résine (50°C). Les moitiés polies ont ensuite été fixées dans de l'indium pur qui a été chauffé afin d'être plus facilement manipulable. L'ensemble capsule-indium a ensuite été tassé dans un anneau en Al (1 cm de diamètre) afin de bien faire affleurer l'échantillon à la surface, en faisant bien attention de ne pas le rayer (Fig.III.6b). Pour les morceaux d'échantillon, la préparation a été plus difficile. Le dos des plots en résine a d'abord été réduit jusqu'à atteindre une épaisseur de 2mm au maximum. Puis la surface des échantillons a été repolie. Les « galettes » ainsi obtenues < 2mm ont ensuite été chauffées: ceci a permis de ramollir la résine pour pouvoir facilement découper des petits carrés (1 à 3 mm de côté) autour des échantillons. Ces petits carrés ont ensuite été fixés sur du scotch cuivre collé sur des plots en Al (1 cm de diamètre ; Fig.III.6b).

III.3. Méthodes analytiques

Les échantillons expérimentaux ont été analysés tout d'abord au microscope électronique à balayage (MEB) afin d'identifier les phases formées au cours des expériences, à la microsonde électronique pour caractériser leur composition en éléments majeurs, au LA-ICP-MS afin de caractériser les concentrations en éléments traces de ces phases, et enfin à la nano-SIMS afin d'identifier les concentrations en éléments volatils dissous dans les liquides silicatés. (CO_2 , H_2O , F et Cl).

III.3.1. Microscope électronique à balayage (MEB)

Le MEB est une technique de microscopie électronique qui consiste à balayer la surface d'un échantillon par un faisceau d'électrons primaires généré par un filament de tungstène, et qui va interagir avec les atomes constituant l'échantillon. Ces atomes émettent alors différentes particules qui sont analysées par des détecteurs et qui permettent de reconstituer une image en 3D de l'échantillon. Tout d'abord, les électrons secondaires qui sont émis par les couches superficielles des atomes, permettent de reconstituer une image de la surface des échantillons (topographie de l'échantillon). Ensuite les électrons rétro-diffusés résultent de l'interaction en profondeur entre les électrons primaires et le noyau des atomes. Les atomes les plus lourds qui présentent un numéro atomique élevé vont réémettre plus d'électrons et vont ainsi paraître plus clairs, alors que les atomes plus légers présenteront des tons plus foncés. Ces électrons rétrodiffusés permettent ainsi d'observer des contrastes de densité entre les différentes phases cristallines ou liquides. Enfin les rayons X émis après excitation de la surface des échantillons sont caractéristiques de chaque élément et sont détectés par un spectromètre à dispersion d'énergie (EDS) qui permet de réaliser des analyses semi-quantitatives en éléments. Ces rayons permettent ainsi d'avoir une première estimation (qualitative) de la composition chimique des différentes phases.

Les sections polies ont principalement été observées sur un MEB de type Merlin Compact Zeiss (tension de 15 kV) équipé d'un système de micro-analyse EDS (Bruker-Quantax-XFlash6) d'une résolution de 129 eV, et avec une distance de travail de 10 mm. Certains échantillons ont également été observés sur un MEB de table de type Hirox SH-3000 (au BRGM, Orléans) équipé d'un système EDS Bruker-AXS intégré, d'une résolution de 133 eV. Dans le cadre de cette étude, les analyses réalisées au MEB ont principalement permis d'identifier les phases présentes dans les échantillons, par une étude de leur texture ainsi que par une brève analyse de leur composition en éléments majeurs (spectres à rayon X). Toutes les photographies MEB présentées dans cette étude sont obtenues principalement par électrons rétro-diffusés (BSE, Back-Scattered Electron en anglais).

Des cartographies chimiques semi-quantitatives qui consistent au balayage répété de la surface de l'échantillon par le faisceau, ont également été réalisées afin d'identifier les variations de concentrations en éléments majeurs au sein même des phases. Ces cartographies ont notamment été utilisées pour les liquides carbonatés qui présentent une texture de trempe très particulière, afin d'avoir une idée de la répartition globale des éléments au sein même d'une zone de liquides carbonatés.

III.3.2. Microsonde électronique

Les analyses effectuées à la microsonde électronique ont été réalisées à l'ISTO sur une microsonde de type Cameca SXFive. La microsonde électronique permet d'analyser quantitativement la composition chimique en éléments majeurs de phases solides. Un faisceau d'électrons est envoyé à la surface de l'échantillon, excitant ainsi les atomes de l'échantillon qui réémettent alors des photons du domaine des rayons X. Les analyses s'effectuent par dispersion de longueur d'onde (WDS), c'est-à-dire que les photons X sont répartis par dispersion sur un cristal. A chaque cristal correspond une gamme de 72

longueurs d'onde caractéristiques d'un nombre limité d'éléments. La microsonde Cameca SX Five contient cinq spectromètres qui eux-mêmes contiennent entre 2 et 4 cristaux diffracteurs (cristaux de type TAP, PET, LIF, LTAP, TPET, LLIF, PC0, PC1 et PC2), ce qui permet d'analyser plusieurs éléments à la fois. Ces cristaux détectent ainsi les éléments à analyser, avec un temps de comptage précis pour chaque élément. Cette méthode est quantitative et nécessite l'utilisation de standards de référence : albite, apatite, orthose, andradite, topaze, vanadinite, MgO, Al₂O₃, Fe₂O₃, MnTiO₃, Cr₂O₃, NbLi, BaSO₄, et SrSO₄.

Deux types de programmes d'analyse ont été suivis, en fonction des phases à analyser : un programme principal d'analyse pour les verres silicatés, les liquides carbonatés et la plupart des cristaux (clinopyroxène, grenat, titanite, calcite, néphélinite, spinelle etc...) ainsi qu'un programme plus rarement utilisé, pour les cristaux d'apatite présents dans certains échantillons.

Pour le programme silicate-carbonate, les analyses ont été réalisées avec une tension de 15 kV et une intensité de courant de 6nA. Le temps de comptage des éléments a été modifié en fonction des phases analysées et des échantillons (Tableau III.2). Les éléments analysés sont tous les éléments majeurs contenus dans les produits de départ présentés dans la partie III.1.2 (voir Tableau III.1), à savoir : SiO₂, TiO₂, Al₂O₃, FeO, MnO, MgO, CaO, Na₂O, K₂O, P₂O₅, SrO, BaO, F, Cl et S. Afin d'éviter la perte de Na au cours des analyses, les zones de verres silicatés et de liquides carbonatés ont été analysées avec des tailles de faisceau relativement larges, variant de 10 à 70 μ m en fonction de l'espace disponible. De plus, une vérification systématique a été effectuée pour chaque échantillon en comparant les concentrations obtenues pour une taille de faisceau relativement petite (10-15 μ m) et pour une taille plus élevée ; les analyses présentant des concentrations en Na aberrantes (hors valeur moyenne) ont été exclues. Pour les liquides carbonatés qui présentent une texture de trempe particulière (voir partie II.1.3), cette méthode permet aussi d'assurer une bonne homogénéité des analyses en moyennant les concentrations par rapport à une grande surface. Les cristaux ont tous été analysés avec un faisceau de taille normale (1 μ m).

Elément	Raie spectrale	Cristaux diffracteurs	Temps de	Standard
Na	Κα	LTAP	10	Albite
Mg	Κα	LTAP	10	MgO
Al	Κα	TAP	10	Al_2O_3
Si	Κα	TAP	10	Albite
K	Κα	PET	10	Orthose
Ca	Κα	LPET	10	Andradite
Ti	Κα	PET	10	MnTiO ₃
Mn	Κα	LIF	10	MnTiO ₃
Fe	Κα	LIF	10	Fe_2O_3
Cr	Κα	LPET	10 ou 30	Cr_2O_3
F	Κα	LTAP	10 ou 60	Topaze
Р	Κα	LPET	10, 30, 60 ou 120	Apatite
Cl	Κα	LPET	10, 20 ou 30	Vanadite
S	Κα	LPET	60	$SrSO_4$
Sr	Lα	PET	30	$SrSO_4$
Ba	Lα	LPET	10 ou 20	$BaSO_4$
Nb	Lα	PET	30	NbLi

 Tableau III.2. Paramètres d'analyses à la microsonde électronique pour le programme silicates-carbonates.

Des cartographies chimiques ont également été réalisées sur certaines zones de liquides carbonatés dans trois échantillons, dans le but d'observer les variations de concentrations en éléments (K, Na, Fe, Na et Ba) en fonction de la texture des liquides carbonatés. Ces cartographies ont été réalisées à 15kV et 100nA, avec un pas de 1µm et un temps de comptage de 0,05 à 0,1s (voir Annexe A.2); elles sont plus précises que celles réalisées au MEB.

Des analyses ont également été réalisées sur des cristaux d'apatite. Ces cristaux sont relativement de petite taille dans tous les échantillons qui en contiennent (généralement < 10µm) et présentent également une texture poreuse, rendant très difficile leur analyse (voir chapitre VI). Les éléments analysés sont SiO₂, FeO, MnO, CaO, Na₂O, K₂O, P₂O₅, SrO, BaO, Y₂O₃, La₂O₃, Ce₂O₃, F et Cl. Un premier essai a été réalisé sur des cristaux d'apatite de taille très petite (< 7 µm), avec une tension de 15 kV et une intensité de 10 nA, mais certains éléments (Ba, Y, La et Ce) sont systématiquement en dessous de la limite de détection, ou alors les analyses effectuées sur des cristaux très petits indiquent une contamination par le liquide silicaté environnant. Un autre programme a été réalisé à 15 kV et 20 nA sur des cristaux légèrement de plus grande taille, et avec des temps de comptage assez élevés, pour des taille et la texture des cristaux, quelques analyses effectuées ont pu être conservées (chapitre VI). Le logiciel de la microsonde utilisé permet d'appliquer une correction au total analysé (appelé « geoquant ») afin de quantifier les concentrations en H₂O contenus dans les cristaux d'apatite.

Elément	Raie spectrale analysée	Cristaux diffracteurs	Temps de comptage (s)	Standard
F	Κα	PC1	10	Topaze
Na	Κα	TAP	10	Albite
Si	Κα	TAP	10	Albite
Р	Κα	LPET	10	F-apatite
Cl	Κα	LPET	10	Vanadite
Κ	Κα	LPET	10	Orthose
Ca	Κα	LPET	10	F-apatite
Mn	Κα	LIF	10	MntiO3
Fe	Κα	LIF	10	Fe2O3
Sr	Lα	LPET	10	SrSO4
Y	Lα	TAP	10	YPO4
Ba	Lα	LPET	240	BaSO4
La	Lα	LPET	120	LaPO4
Ce	Lα	LPET	120	CePO4
Pr	Lβ	LIF	240	PrPO4

Tableau III.3. Paramètres d'analyse à la microsonde électronique pour les programmes apatite.

III.3.3. LA-ICP-MS

Lß

Nd

L'ablation laser couplée à la spectrométrie de masse à plasma induit (LA-ICP-MS, Laser Ablation Inductively Coupled Plasma Mass Spectrometry en anglais) est une technique qui permet de quantifier les concentrations en éléments traces dans des échantillons solides. Un faisceau laser est focalisé à la surface de l'échantillon et ablate la matière (Fig.III.7), qui est alors envoyée et transportée par de l'He, puis ionisée dans un plasma chauffé à Ar et He ; du N₂ peut également être utilisé en fonction des machines. La torche à plasma permet ainsi de séparer les atomes et de les ioniser. Les ions sont alors extraits du plasma via une série de cônes vers le spectromètre (quadrupole ou secteur magnétique). Les ions sont ensuite séparés en fonction de leur masse atomique avant de croiser un détecteur, qui correspond à un compteur d'ions ou à une cage Faraday (pour les éléments en concentrations élevées). Ce détecteur permet enfin de quantifier leurs concentrations.

LIF

240

NdPO4

Figure III.7. Photo MEB en électrons rétro-diffusés (BSE), d'ablation laser. Les trous sont formés par des analyses LA-ICP-MS dans un échantillon expérimental préparé selon le protocole présenté ci-dessus.

Trois principaux appareils ont été utilisés dans le cadre de cette étude : un spectromètre de masse à secteur magnétique de type Thermo Element XR du laboratoire de l'IRAMAT (Orléans), et deux spectromètres quadrupoles de type Agilent 7500 CS du laboratoire LMV (Clermont-Ferrand) et Agilent 7900 du laboratoire de l'ISTO. Ces trois ICP-MS sont couplés à un laser Excimer Resonetics à 193 nm. Le Tableau III.4 présente les caractéristiques de chacune de ces machines. Les analyses des verres silicatés et des liquides carbonatés ont été globalement réalisées à une fréquence d'ablation de 2 à 4 Hz et une énergie de 1,5 à 4mJ. Les analyses de phases provenant d'un même échantillon et réalisées par deux des appareils (Thermo Element et Agilent 7500) ont été comparées afin de vérifier un éventuel biais analytique entre les deux machines, mais aucune différence majeure de concentrations en éléments n'a été observée. Les zones de liquides silicatés et carbonatés ont été analysées avec un faisceau variant de 14 à 100 µm en fonction de l'espace disponible. Les analyses effectuées à des tailles différentes sur une même phase ont également été comparées, et de même, aucune différence de concentrations significatives n'a pu être observée. Pour les liquides carbonatés qui présentent une texture de trempe complexe, une attention particulière a été apportée à la taille des analyses, en favorisant le plus possible les larges analyses pour assurer une bonne représentation des concentrations.

Les cristaux ont également été analysés à des conditions analytiques légèrement différentes du fait de leur petite taille (Tableau III.4). Les analyses ont été réalisées à une fréquence de 1 à 2 Hz pour une énergie d'ablation d'environ de 1,5 à 4 mJ. Les tailles d'analyses sont également adaptées en fonction des cristaux, de 4 µm pour les plus petits à 60 µm pour les plus grands. Le signal obtenu pour les analyses effectuées à des petites tailles est en général très faible : les analyses ne sont acceptables que si la phase analysée est assez enrichie pour que le signal soit assez important (nombre de coups élevé malgré la petite taille). C'est le cas des cristaux d'apatite par exemple, qui sont assez riches en REE.

Tableau III.4. Récapitulatif des conditions analytiques relatives aux trois LA-ICP-MS utilisés dans le cadre de cette étude. ; Liq. : liquides; Cx : cristaux.

	Spectromètre	Laser	Flux de gaz (mL/min)			Fréquen	ce (Hz)	Energie (mJ)	Taille (µm)		
			He	Ar	N_2	Liq.	Cx	Liq.	Cx	Liq.	Cx	
Thermo Element XR	Secteur magnétique	Excimer Resonetics 193 nm	650	950	-	2 à 4	2	4	4	25 à 100	9 à 60	
Agilent 7500 CS	Quadrupole		550	850	2	2	1 à 2	1,5 à 3	1,5 à 3	20 à 60	4 à 33	
Agilent 7900	Quadrupole		350	930	-	2	-	2	-	14 à 20	-	

Toutes les analyses ont été réalisées sur un temps de 90s environ, avec un temps prévu pour le bruit de fond de 20 à 30 s au début de l'analyse. Les isotopes principaux analysés sont : ²⁷Al, ²⁹Si, ³⁴S, ⁴³Ca, ⁴⁴Ca, ⁴⁵Sc, ⁴⁹Ti, ⁵³Cr, ⁵⁵Mn, ⁸⁸Sr, ⁸⁹Y, ⁹⁰Zr, ⁹³Nb, ¹³⁷Ba, ¹³⁹La, ¹⁴⁰Ce, ¹⁴¹Pr, ¹⁴⁶Nd, ¹⁴⁷Sm, ¹⁵³Eu, ¹⁵⁹Tb, ¹⁶³Dy, ¹⁶⁵Ho, ¹⁶⁶Er, ¹⁷²Yb, ¹⁷⁵Lu, , ¹⁷⁸Hf, ¹⁸¹Ta, ainsi que ¹⁹⁷Au and ¹⁰⁵Pd afin de vérifier une potentielle contamination des capsules. La liste exacte des isotopes analysés en fonction des appareils utilisés est présentée dans l'Annexe A.3 (Tableau A.6).

Le traitement des spectres a été effectué sur le logiciel GLITTER 4.4 (Van Achterbergh *et al.*, 2001), afin d'obtenir les concentrations en éléments de toutes les phases analysées (cristallines et liquides). Les standards utilisés comme matériaux de références sont les standards de synthèse NIST 610 et NIST 612 (Pearce *et al.*, 1997; Jochum *et al.*, 2016), ainsi que le verre de type MORB BCR-2G (Rocholl, 1998; Jochum *et al.*, 2016). Les NIST contiennent de nombreux éléments, dont 61 éléments traces ; le NIST 610 est le plus enrichi, dopé en environ 400 ppm pour chaque élément. Le standard BCR-2G est un verre basaltique naturel appauvri et qui ne contient pas tous les éléments traces. Ce verre ainsi que le NIST 612 sont principalement utilisés pour vérifier la validité des analyses. Le NIST 610 est choisi comme matériel de référence pour traiter les analyses et quantifier les concentrations en éléments traces. Le calcium, en concentration relativement importante dans toutes les compositions de départ utilisées (Tableau III.1), est utilisé comme standard interne, c'est-à-dire comme élément de référence dans les phases analysées (dont la concentration a d'abord été quantifiée à microsonde électronique).

Les concentrations en éléments sont calculées en fonction de l'intensité du signal obtenu pendant l'analyse : plus l'intensité est élevée (nombre de coups/s), plus la concentration d'un élément est importante. Le logiciel GLITTER fait tout d'abord une moyenne des concentrations du signal correspondant au bruit de fond, qui est ensuite soustraite au signal de chaque élément. La quantification des éléments se fait alors par le calcul du nombre de coups du Ca dans le standard interne par rapport au Ca dans l'échantillon, puis par le calcul du nombre de coups de chaque élément dans l'échantillon par rapport au standard interne (voir détails dans Van Achterbergh et al., 2001). Le logiciel permet également de quantifier une erreur analytique sur chaque mesure (appelée « σ error ») à partir d'un calcul complexe prenant en compte une erreur relative de 1% sur les concentrations du Nist 610 et de 3% sur la valeur du standard interne (paramètres par défaut du logiciel).

Tous les standards sont analysés aux mêmes conditions analytiques que les échantillons (fréquence, énergie, taille de faisceau) afin d'assurer une bonne représentativité des analyses.

III.3.4. Nano-SIMS

Des analyses ont été réalisées à la nano-SIMS (Nanoscale Secondary Ion Mass Spectrometry en anglais) dans le cadre de cette étude afin de quantifier les concentrations en éléments volatils dans les verres silicatés coexistant avec les liquides carbonatés. Les analyses correspondantes sont présentées dans le chapitre V. Ce travail a cependant été réalisé à la fin du doctorat et ces résultats sont préliminaires.

La nano-SIMS est une technique d'analyse très sensible et de haute précision permettant d'analyser les éléments légers (C, H, O, F et Cl). Cette méthode consiste à envoyer un faisceau d'ions primaires à la surface d'un échantillon (canon à Cs ou O), qui ionise les atomes et abrase légèrement la surface à analyser sur environ 10 nm d'épaisseur. Les ions secondaires de l'échantillon sont envoyés dans un spectromètre de masse à champ magnétique qui les sépare en fonction de leur masse, et les envoie aux détecteurs. L'appareil est équipé d'un système de multi-collection constitué de 5 détecteurs (1 fixe et 4 mobiles), et permettant ainsi la collecte de 5 isotopes à la fois. Le principe de fonctionnement est le

même qu'une SIMS, mais la nano-SIMS permet d'effectuer des analyses à plus hautes résolution spatiale et d'analyser les éléments à l'échelle du nm.

La nano-SIMS utilisée est la sonde ionique Cameca NanoSIMS N50 du Museum d'Histoire Naturelle de Paris portée par l'IMPMC (Paris). Les échantillons, tels que préparés selon le protocole présenté dans la partie III.2.3 (Fig.6b), sont métallisés à l'Au afin de permettre une bonne conduction du faisceau d'ions à la surface de l'échantillon, puis sont placés dans un porte échantillon et insérés dans une chambre sous vide $(2.10^{-9} à 2.10^{-10} \text{ Torr})$. La nano-SIMS utilisée contient un canon à ion Cs⁺, et les analyses sur verres silicatés ont été réalisées avec un courant primaire de 20 pA ainsi qu'une accélération des ions primaires de 16 keV. L'implantation du signal, dit « presputtering » en anglais (nettoyage de la surface de l'échantillon sur la zone à analyser) a été réalisée pendant 2 minutes avec une intensité de 250 pA. Cette implantation se fait sur un carré de 5µm de côté ; les analyses sont ensuite effectuées à l'intérieur sur un carré de 3µm de côté, avec une collecte des ions sur un carré au milieu de seulement 1,1 µm de côté. Le signal correspondant à chaque isotope (¹²C, ¹⁶O, ¹⁹F, ²⁸Si et ³⁵Cl) a été collecté pendant environ 10 minutes. Au total 100 cycles de 1,024s chacun, répartis en 10 blocs ont été cumulés. Afin de séparer les ions à analyser des interférences créées par des molécules ionisées, une résolution de masse de 7000 (MRP, mass resolving power ; Hauri et al., 2002) a été utilisée pour ces analyses.

Pour connaître les concentrations en volatils des verres silicatés, des standards de référence sont utilisés. Ces standards sont analysés régulièrement tout au long des mesures sur l'échantillon afin de s'assurer de la qualité du signal.

Les standards utilisés pour le F et le Cl sont les NIST 610 et 612 présentés précédemment (Pearce *et al.*, 1997; Jochum *et al.*, 2016). Un verre silicaté contenant 50% poids de silice (VF3 ; Hammouda, 1995) riche en F (environ 1,8 % poids) a également été testé pour quantifier les concentrations en F dans les verres. Cependant ce verre n'est pas adapté à ces conditions analytiques, la forte concentration en F ayant provoqué la saturation du signal (nombre de coups > 400000). La composition des NIST en éléments majeurs ainsi qu'en F et Cl est présentée dans le Tableau III.5.

Pour le CO_2 et H_2O_2 , le choix des standards est plus complexe car ces standards doivent présenter une composition similaire aux échantillons analysés à la fois en éléments majeurs et en éléments volatils, afin d'éviter un effet de matrice trop important. Les verres étudiés dans le cadre de cette étude, fabriqués à partir des matériaux de départ présentés dans le Tableau III.1, sont très alcalins et soussaturés en silice, et contiennent des concentrations en CO₂ et en H₂O relativement importantes (différence à 100 des produits de départ entre 12 et 14% poids, avec parfois \pm de H₂O rajouté dans les capsules). Aucun standard actuel ne convient parfaitement à leur analyse. Des verres de type kimberlitiques ont ainsi été fabriqués spécialement pour effectuer ces analyses. Les kimberlites sont en effet de parfaits candidats pour analyser des verres sous-saturés en silice et riches en CO₂ et en H₂O. Ces verres ont été synthétisés en autoclave à chauffage interne (1200 °C et 0,3 GPa) par Clément Ferraina dans le cadre d'une mission de post-doctorat, à partir de la composition TA12 de Moussallam et al. (2015) et avec \pm de H₂O rajouté ; ils contiennent en moyenne 38 à 40% poids de SiO₂, 1,8 à 2% poids de CO₂ et 0,1 à 3,2 % poids de H₂O (voir Tableau III.5). Des verres de types Stromboli (Bureau et al., 2003) ont également été utilisés afin de prendre en compte des valeurs de concentrations plus basses en CO₂ et H₂O dans la calibration (Tableau III.5). Enfin un dernier standard très pauvre en H₂O a été utilisé, le standard B de type rhyolitique (Morgan and London, 2005; Acosta-Vigil et al., 2016)

Des droites de calibration sont tracées à partir de l'analyse de ces standards, avec le rapport $\Gamma^{/28}$ Si correspondant à l'intensité (nombre de coups) de l'ion volatil analysé $\Gamma^{(12}C, {}^{16}OH, {}^{19}F$ et ${}^{35}Cl$) divisé par l'intensité de l'isotope 28 Si, en fonction du rapport des concentrations mesurées dans le standard des éléments Γ et 28 Si. Un calcul de régression (programme R) effectué sur ces droites de calibration 77

(par Laurent Remusat, IMPMC) permet ainsi de quantifier les concentrations de l'élément I⁻ dans l'échantillon. Au total quatre droites de calibration sont nécessaires pour calculer les concentrations en 12 C, 16 OH, 19 F et 35 Cl des verres silicatés. Pour cette étude, 8 calibrations (deux séances d'analyses) au total ont été réalisées pour calculer les concentrations en CO₂, H₂O, F et Cl. Ces calibrations sont présentées dans l'Annexe A.4 (Fig.A.2 et A.4).

Tableau III.5. Compositions en éléments majeurs et en volatils (CO_2 , H_2O , F et Cl) des standards utilisés pour quantifier les concentrations en volatils des échantillons. Les éléments majeurs sont en % poids ; CO_2 , H_2O , F et Cl sont en ppm. Les verres Kim 3-5-12-15 de type kimberlitique ont été synthétisés en autoclave (1200 °C – 0,3 GPa). Les STR (9, 10, 11 et 13) correspondent à des verres de basaltes de type Stromboli (Bureau et al., 2003). Les NIST 610 et 612 correspondent à des verres de synthèse (Pearce et al., 1997; Jochum et al., 2016). Le standard B provient de Morgan and London (2005); *: concentrations recalculées à partir des autres standards de type kimberlite ; a : concentrations de la composition de départ, pour tous les STR (Bureau et al., 2003).

	Kim 3		Kim 5		Kim 7		Kim 12		Kim 15		STR 9	STR 10	STR 11	STR 13	В	NIST 610		NIST 612	
Ν	28		83		74		19		22										
(% poids)		σ		σ		σ		σ		σ							σ		σ
SiO ₂	40,73	0,43	38,63	0,55	21,04	0,8	40,29	0,51	40,88	0,38	50,2ª	50,2 ^a	50,2ª	50,2ª	77,95	69,97	0,39	71,9	0,96
TiO ₂	0,78	0,12	0,86	0,11	0,6	0,05	0,9	0,17	0,91	0,17	1,0 ^a	1,0 ^a	1,0 ^a	1,0 ^a	-	0,08	0,01	0,01	0
Al ₂ O ₃	9,81	0,2	9,61	0,18	5,43	0,16	9,2	0,22	9,32	0,27	18,0ª	18,0ª	18,0ª	18,0 ^a	12,78	2,04	0,16	2,11	0,16
FeO	3,59	0,22	3,63	0,25	1,23	0,16	3,49	0,31	3,44	0,33	7,2ª	7,2 ^a	7,2 ^a	7,2 ^a	-	0,06	0,02	0,02	0
MnO	-		-		-	-	0,07	0,09	0,07	0,09	-	-	-	-	-	0,05	0,01	0,01	0
MgO	9,38	0,13	9,56	0,13	8,31	0,22	8,68	0,15	8,87	0,11	5,6ª	5,6 ^a	5,6 ^a	5,6 ^a	-	0,07	0,01	-	-
CaO	21,36	0,15	20,85	0,25	36,79	0,59	19,43	0,23	20,48	0,25	11,3 ^a	11,3 ^a	11,3 ^a	11,3 ^a	0,02	11,45	0,23	11,93	0,22
Na ₂ O	0,66	0,04	0,68	0,04	0,36	0,03	1,35	0,08	1,42	0,08	2,7 ^a	2,7 ^a	2,7 ^a	2,7 ^a	4,51	13,35	0,68	13,98	0,56
K ₂ O	5,72	0,11	5,83	0,16	2,62	0,12	5,32	0,27	5,51	0,22	2,2 ª	2,2 ª	2,2 ª	2,2 ª	4,73	0,06	0	0,01	0
P_2O_5	0,39	0,07	0,34	0,07	0,18	0,03	0,31	0,2	0,29	0,14	-	-	-	-		0,12	0	0,01	-
Total	92,42	-	89,99	-	76,56	-	89,04	-	91,2	-	98,2	98,2	98,2	98,2	99,99	97,24	-	99,98	-
(ppm)																			
CO ₂	18910	1670	17800	510	154590	3070	64802*	-	53105*	-	556	664	632	864	-	-	-	-	-
H ₂ O	26720	2860	31780	1610	39560	2570	9700*	-	29100*	-	2600	2700	7900	4450	300	-	-	-	-
F	-	-	-	-	-	-	-	-	-	-						295	-	50	-
Cl	-	-	-	-	-	-	-	-	-	-						470	160	50	-

III.4. Calcul du coefficient de partage d'un élément entre deux phases et de l'erreur associée

Dans cette section est détaillé le calcul du coefficient de partage d'un élément entre deux phases utilisé dans toute la suite de l'étude, ainsi que le calcul des incertitudes par propagation d'erreur employé pour estimer l'erreur associée à ce coefficient.

Le coefficient de partage de Nernst noté D utilisé pour décrire l'enrichissement d'un élément i entre deux phases A et B (cristallines ou liquides) correspond au rapport des concentrations massiques de cet élément i dans la phase A et la phase B, et est défini selon l'équation suivante :

$$D_i^{A/B} = \frac{m_i^A}{m_i^B}.$$
(5)

Avec m_i^A et m_i^B les concentrations massiques moyennes de l'élément *i* respectivement dans la phase *A* et la phase *B*.

Afin d'estimer la représentativité des mesures, une erreur statistique (« standard deviation » en anglais, s.d.) est calculée pour ces coefficients, par propagation des erreurs sur les moyennes des concentrations massiques utilisées pour dans l'équation (5).

L'erreur sur le coefficient de partage de l'élément *i* entre la phase *A* et la phase *B*, notée σ ($D_i^{A/B}$) est calculée selon l'équation suivante :

$$\sigma\left(D_{i}^{A/B}\right) = D_{i}^{A/B} * \sqrt{\left(\frac{\sigma_{i}^{A}}{m_{i}^{A}}\right)^{2} + \left(\frac{\sigma_{i}^{B}}{m_{i}^{B}}\right)^{2}} \tag{6}$$

avec σ_i^A et σ_i^B les écart-types sur la moyenne des concentrations massiques de l'élément *i* dans la phase *A* et la phase *B* (respectivement notées m_i^A et m_i^B).

Cette méthode par propagation des erreurs permet d'apprécier la bonne représentativité des échantillons analysés. Cette erreur est calculée pour tous les coefficients de partage liquide-liquide ou cristaux-liquide, présentés dans cette étude (chapitres IV, V et VI).

IV. Enrichissement en terres rares des carbonatites au cours de la différenciation des magmas alcalins

Ce chapitre présente des résultats d'expériences simulant l'immiscibilité entre liquides carbonatés et liquides silicatés au cours de la différenciation des magmas alcalins. Il constitue le point de départ de cette étude.

Le partage des REE entre liquides carbonatés et liquides silicatés alcalins est défini dans ces expériences et est directement relié au degré de différenciation des magmas alcalins.

Ce chapitre contient un article accepté à Geochimica et Cosmochimica Acta intitulé « A window in the course of alkaline magma differentiation conducive to immiscible REE-rich carbonatites ».

Une introduction développe les principaux thèmes abordés dans cet article et les relie aux objectifs de cette thèse. Puis une conclusion finale permet de faire le bilan sur l'effet de la différenciation des magmas alcalins mis en valeur dans cette étude.

IV.1. Avant-propos:

Les carbonatites et les roches magmatiques alcalines constituent les principaux gisements de REE (partie I.2). Le pré-enrichissement magmatique en REE de ces roches est souvent suggéré et doit être relié aux processus de formation ainsi qu'à la source mantellique de ces magmas (partie I.I). Cependant aucune étude ne permet pour l'instant d'expliquer une possible variation de cet enrichissement magmatique dans des liquides carbonatés au cours de leur différenciation.

Nous avons vu précédemment que l'immiscibilité est suggérée entre des roches alcalines sous-saturées en silice et des carbonatites par des études de terrain, et également par l'étude d'inclusions vitreuses. Les travaux expérimentaux d'immiscibilité ont permis de mettre en évidence une variation importante de l'enrichissement en REE des liquides carbonatés immiscibles avec les liquides silicatés (Fig.II.9). Aucun paramètre n'a pour l'instant permis d'expliquer une telle différence de comportement des REE dans les liquides carbonatés coexistant avec ces liquides silicatés de compositions variées.

Le degré de différenciation des magmas silicatés joue-t-il un rôle sur le partage des REE entre les deux liquides ? Si oui, comment évolue cet enrichissement pour des liquides carbonatés immiscibles avec des liquides silicatés alcalins de plus en plus différenciés ? Est-il possible que ces liquides carbonatés atteignent des concentrations similaires aux concentrations des gisements d'intérêt mondial actuels (partie I.2.1) ?

La structure du liquide silicaté semble influencer le comportement des REE entre les deux liquides (partie II.2.3.1 ; Fig.II.11). En effet, les coefficients de partage des REE entre les deux liquides semblent évoluer en fonction du paramètre NBO/T, ce qui suggère un effet de la polymérisation du liquide. Cependant ce paramètre ne semble pas être suffisant pour caractériser l'enrichissement en REE des liquides carbonatés. Pour l'instant, l'effet de la composition du liquide silicaté n'est pas clairement associé à cet enrichissement, et aucun lien n'a été établi entre l'enrichissement en REE des liquides carbonatés et la lignée de différenciation alcaline.

Dans ce chapitre, l'article présenté est centré sur le comportement des REE entre les liquides carbonatés et silicatés. Il aborde l'effet de la différenciation des magmas silicatés coexistant avec des magmas carbonatés, sur leur enrichissement en REE.

Dans cette étude sont présentées :

- les expériences d'immiscibilité entre liquides de type NaK-néphélinite/phonolite et carbonatite présentées dans la partie III.1.1. Ces expériences ont été réalisées au piston-cylindre et en autoclave à chauffage interne, entre 725 et 975 °C et 0,2 à 1,5 GPa (partie III.2). Les textures d'immiscibilité typiques observées dans les échantillons sont présentées dans l'article ; une planche photo détaillée de ces textures est également présentée dans l'Annexe B.1, ainsi qu'une cartographie chimique d'une zone de liquide carbonaté dans l'Annexe A.2.2 (Fig.A.1)
- des résultats de partage des REE entre les deux liquides : la composition en élément majeurs et en éléments traces des deux liquides coexistant a été caractérisée, ainsi que les coefficients de partage tels que calculés dans l'équation (5) (partie III.4).
- une paramétrisation de ces partages, calibrée à partir des données expérimentales présentées dans cet article, ainsi que de celles provenant de la littérature (parties II.2.1 et II.2.2). Cette paramétrisation permet de calculer les coefficients de partage des REE ainsi que les concentrations en REE des liquides carbonatés, seulement à partir de la composition des liquides silicatés.

- un modèle d'enrichissement des carbonatites en REE au cours de la différenciation des magmas silicatés. Ce modèle permet de cibler l'optimum d'enrichissement en REE des carbonatites au cours de la différenciation.

La paramétrisation mise en place dans cette étude permet non seulement de prédire l'enrichissement en REE des carbonatites supposées coexister à l'équilibre avec une roche silicatée alcaline, mais également de prédire le stade où l'immiscibilité entre les deux magmas s'est produite, tout au long de la lignée de différenciation alcaline.

La version après correction de l'article est présentée. Les figures et tableaux sont intégrés au texte, leur numérotation suit la mise en forme générale du manuscrit ; les figures et tableaux supplémentaires sont ajoutés à la fin de l'article. Les références ne sont pas listées dans ce chapitre, car elles sont pour la plupart déjà utilisées dans le reste du manuscrit. Elles sont toutes présentées dans la liste bibliographique finale de la thèse.

Pour clôturer ce chapitre, l'article est suivi d'un bilan des principaux résultats, afin de resituer cette étude dans le cadre de la thèse.

A window in the course of alkaline magma differentiation conducive to immiscible REE-rich carbonatites

Accepted in Geochemica et Cosmochemica Acta (july 2019)

Zineb Nabyl^{*}, Malcolm Massuyeau, Fabrice Gaillard, Johann Tuduri, Giada Iacono-Marziano, Grégory Rogerie, Emmanuel Le Trong, Ida Di Carlo, Jérémie Melleton, Laurent Bailly

Abstract

Rare earth element (REE) enrichments in carbonatites are often described as resulting from late magmatic-hydrothermal or supergene processes. However, magmatic pre-enrichment linked to the igneous processes at the origin of carbonatites are likely to contribute to the REE fertilisation. Experimental constraints reveals that immiscibility processes between carbonate and silicate melts can lead to both REE enrichments and depletions in carbonatites making the magmatic processes controlling REE enrichments unclear.

We link REE contents of carbonatites to the magmatic stage at which carbonatites are separated from silicate magma in their course of differentiation. We present results of experiments made at pressure and temperature conditions of alkaline magmas and associated carbonatites differentiation (0.2 to 1.5 GPa, and 725 to 975 °C), simultaneously addressing crystal fractionation of alkaline magmas and immiscibility between carbonate and silicate melts. The experimental data shows that the degree of differentiation, controlling the chemical composition of alkaline melts, is a key factor ruling the REE concentration of the coexisting immiscible carbonate melts. In order to predict carbonate melt REE enrichments during alkaline magma differentiation, we performed a parameterisation of experimental data on immiscible silicate and carbonate melts, based exclusively on the silica content, the alumina saturation index and the alkali/alkaline-earth elements ratio of silicate melts. This parameterisation is applied to more than 1600 geochemical data of silicate magmas from various alkaline provinces (East African Rift, Canary and Cape Verde Islands) and show that REE concentrations of their potential coeval carbonatite melts can reach concentration ranges similar to those of highly REE enriched carbonatites ($\Sigma REE > 30\,000$ ppm) by immiscibility with phonolitic/phono-trachytic melt compositions, while more primitive alkaline magmas can only be immiscible with carbonatites that are not significantly enriched in REE.

IV.2. Introduction

Magmatic processes are believed to be at the origin of concentrations of many elements (e.g., Ni, Co, Pt, Pd, Au, Mo, Cu, Sn, Li, Zr, Nb, Ta, rare earth elements) yielding most of the giant ore deposits (Cerny *et al.*, 2005; Naldrett, 2010; Botcharnikov *et al.*, 2011; Wilkinson, 2013; Linnen *et al.*, 2014; Dostal, 2016; Smith *et al.*, 2016; Song *et al.*, 2016; Verplanck *et al.*, 2016). Capturing the chain of processes involved in the formation of ore deposits thus requires the behaviour of metals in magmatic systems to be understood. Geochemical studies have related the behaviour of metal ions in magmatic systems, the oxidation state of the magma, the presence of volatiles and the molecular structure of both melt and coexisting crystals (Watson, 1976, 1979; Ponader and Brown, 1989b; Blundy and Wood, 2003; Mysen, 2004; Naldrett, 2010; Botcharnikov *et al.*, 2011; Davidson *et al.*, 2013; Linnen *et al.*, 2014; Duc-Tin and Keppler, 2015; Song *et al.*, 2016; Maimaiti *et al.*, 2019). Among these metals in magmatic systems, the rare earth elements (REE) usually behave incompatible during magmatic

differentiation (Schilling and Winchester, 1967; Loubet *et al.*, 1972; Henderson, 1984; Nelson *et al.*, 1988; Chakhmouradian and Zaitsev, 2012; McLennan and Taylor, 2012), i.e., they tend to remain in the residual silicate liquid and are therefore unlikely to form ore deposits. REE are relatively abundant in CO₂-rich magma, e.g., carbonatite and alkaline magma (Green and Wallace, 1988; Nelson *et al.*, 1988; Chakhmouradian and Zaitsev, 2012; Verplanck *et al.*, 2016), being strongly depolymerised liquids (Moussallam *et al.*, 2016a) and whose formation is related to the enigmatic deep carbon cycle (Rudnick *et al.*, 1993; Tappe *et al.*, 2017). REE-deposits associated to such magmatism remain very rare and capturing the processes that can concentrate REE in these CO₂-rich magma therefore constitute a major scientific objective (Nelson *et al.*, 1988; Verplanck *et al.*, 2016).

Carbonatites are igneous rocks composed of > 50 modal % primary carbonate minerals and less than 20 weight % (wt%) SiO₂ (Le Bas, 1981; Le Maitre et al., 2005). Carbonatites are generally enriched in REE compared to other igneous rocks (Loubet et al., 1972; Nelson et al., 1988; Woolley and Kempe, 1989), although their REE concentrations vary by two order of magnitudes (ΣREE around 0.05 to 4 wt%; Woolley and Kempe, 1989). More than 500 carbonatites are referenced worldwide (Woolley and Kjarsgaard, 2008) and only a few reach sufficient REE concentrations to warrant mining operation (Chakhmouradian and Wall, 2012; Chakhmouradian and Zaitsev, 2012; Wall, 2014; Verplanck et al., 2016; Smith et al., 2016). Late- to post-magmatic processes are usually suggested to produce the high concentrations, due to a combination of REE transport and deposition processes by fluids (Wall and Mariano, 1996; Yang et al., 2011; Chakhmouradian and Wall, 2012; Chakhmouradian and Zaitsev, 2012; Wall, 2014; Migdisov et al., 2016; Smith et al., 2016; Verplanck et al., 2016). On the other hand, primary REE fluoro-carbonates have also been suggested as magmatic phases (Wall and Mariano, 1996; Castor, 2008; Smith et al., 2016; Verplanck et al., 2016; Néron et al., 2018). While field descriptions (Castor, 2008; Broom-Fendley et al., 2016; Verplanck et al., 2016; Giebel et al., 2017) and thermodynamic modelling (Migdisov et al., 2016) leave no doubt as to the occurrence of hydrothermal or supergene events in several carbonatite deposits, REE are likely to be primarily concentrated during the primary magmatic processes at the origin of carbonatite genesis (Chakhmouradian and Zaitsev, 2012; Smith et al., 2016; Song et al., 2016; Verplanck et al., 2016).

The origin of carbonatites is a matter of long-standing debate (Nelson et al., 1988; Woolley and Kjarsgaard, 2008; Jones et al., 2013; Smith et al., 2016) and is generally explained by three main hypotheses: i) carbonatites derive from primary magma produced by low degree of mantle partial melting (Wallace and Green, 1988; Rudnick et al., 1993; Bell and Simonetti, 2010; Dasgupta et al., 2013); ii) they are formed by extensive fractional crystallisation of a CO₂- bearing silicate parent magma (Lee and Wyllie, 1994; Mitchell, 2005; Tappe et al., 2017); iii) they are segregated from a silicate magma by immiscibility processes (Kjarsgaard and Hamilton, 1989; Lee and Wyllie, 1994; Veksler et al., 1998, 2012; Mitchell, 2005; Brooker and Kjarsgaard, 2011; Martin et al., 2013). The first hypothesis relates the high REE contents of carbonatites to the low degree of mantle melting and the incompatible behaviour of REE (Rudnick et al., 1993; Mitchell, 2005; Bell and Simonetti, 2010; Doucelance et al., 2010; Smith et al., 2016), but very few occurrences of primary mantle carbonatite have been so far described (Doucelance et al., 2010; Schmidt and Weidendorfer, 2018). The immiscibility hypothesis is suggested by field evidences showing carbonatite and alkaline magma spatial associations (Kjarsgaard and Hamilton, 1989; Mitchell, 2005; Woolley and Kjarsgaard, 2008), and supported by experimental surveys (Kjarsgaard and Hamilton, 1989; Lee and Wyllie, 1994; Veksler et al., 1998, 2012; Brooker and Kjarsgaard, 2011; Martin et al., 2013). A combination of hypothesis ii) and iii) has also been proposed, with the formation of a carbonate melt by immiscibility with a highly fractionated CO_2 -rich alkaline silicate magma (Woolley and Kjarsgaard, 2008). The immiscibility hypothesis implying that carbonatite can segregate by liquid-liquid immiscibility at some

stage in the alkaline magma differentiation course, is the most currently used to explain carbonatite genesis (Kjarsgaard and Hamilton, 1989; Weidendorfer *et al.*, 2017).

Numerous experimental studies using both simplified synthetic and natural compositions have shown that immiscibility between carbonate and silicate melts can occur in a wide range of pressure and temperature (P-T) conditions, from the mantle to the crust (Lee and Wyllie, 1994; Kjarsgaard et al., 1995; Kjarsgaard, 1998; Veksler et al., 1998, 2012; Brooker and Kjarsgaard, 2011; Martin et al., 2012, 2013; Massuyeau et al., 2015). The range of carbonate and silicate melt compositions subject at equilibrium to immiscibility remains however debated (Martin et al., 2013; Schmidt and Weidendorfer, 2018). A limited number of experimental studies (Hamilton et al., 1989; Veksler et al., 1998, 2012; Martin et al., 2013) has focused on trace element partitioning between immiscible carbonate and silicate melts. The carbonate-silicate melt partition coefficients (D_x^{CLSL}) , with the element x) define the affinity of elements either for the carbonate liquid $(D_x^{CL/SL} > 1)$ or the silicate liquid $(D_x^{CL/SL} < 1)$. These experimental partition coefficients reveal surprisingly large variations of the REE behaviour during immiscibility, ranging from a moderate affinity for the silicate melt ($D_r^{CL/SL} < 1$; Hamilton et al., 1989; Veksler et al., 1998; Veksler et al., 2012; Martin et al., 2013) to a strong affinity for the carbonate melt ($D_x^{CL/SL} > 1$; Hamilton et al., 1989; Martin et al., 2013). These contrasting REE behaviours during carbonate-silicate partitioning could be linked to the large range of REE contents in natural carbonatites (by two order of magnitude; Woolley and Kempe, 1989). However, no prevailing experimental parameter (P-T conditions, oxygen fugacity or experimental inconsistencies) has been identified to explain such large REE behaviour variations. Hamilton et al. (1989) proposed a pressure and temperature influence on REE partitioning between carbonate and silicate melts. The polymerisation of the silicate liquid has also been suggested to control these variations (Hamilton et al., 1989; Martin et al., 2013). However, silicate melt polymerisation, being usually addressed by the non-bridging-oxygen parameter (Mysen, 1990), does not take into account the CO_2 and the water contents of the melts (Moussallam et al., 2016a). Noteworthy, the highest REE partition coefficients (D_{RFF}^{CLSL}) correspond to hydrous compositions (Martin *et al.*, 2013) offering a sound link between REE enrichment and late-magmatic hydrothermal events. Nonetheless, such an effect of water has not been systematically characterised since, in the current experimental database, the water content of the silicate melt co-varies with other parameters (P-T conditions). Likewise, halogens and more specifically fluorine, are assumed to play an important role on REE behaviour (Ponader and Brown, 1989a; Keppler, 1993; Wall and Mariano, 1996; Veksler et al., 2005, 2012; Chakhmouradian and Zaitsev, 2012; Aseri et al., 2015; Duc-Tin and Keppler, 2015; Song et al., 2016; Chebotarev et al., 2019). Indeed, halogens may occur in carbonatites as immiscible salt melts in melt inclusions (Panina and Motorina, 2008). Primary REE fluoro-carbonate minerals have also been recognised as magmatic phases by textural evidences (Wall and Mariano, 1996; Castor, 2008; Verplanck et al., 2016; Néron et al., 2018). Such occurrences suggest the special role of salt liquids (carbonate, phosphate, fluoride and chloride) in REE partitioning, which have been tested by a few experimental studies (Veksler et al., 2005; Song et al., 2016; Yang and Van Hinsberg, 2019).

This brief analysis reveals that a combination of melting, differentiation, and liquid-liquid immiscibility processes must contribute to the genesis of carbonatites. Most experimental studies on REE behaviour between carbonate and alkaline melts have however only focused on liquid-liquid immiscibility (Kjarsgaard *et al.*, 1995; Kjarsgaard, 1998). This implies that the REE behaviour along the differentiation path of alkaline magma – carbonatite pairs have not been addressed yet.

We present experiments simulating the immiscibility between carbonate and silicate melts during crystal fractionation of alkaline silica-undersaturated magmas, in order to assess the parameters controlling carbonatite REE enrichments over the course of alkaline magma differentiation. Our

experiments are performed to complete the pressure-temperature space of previous work (Freestone and Hamilton, 1980; Hamilton *et al.*, 1989; Jones *et al.*, 1995b; Veksler *et al.*, 1998, 2012; Martin *et al.*, 2013) in order to match the moderate pressure - temperature conditions of differentiation of alkaline magmas and associated carbonatites (Hamilton *et al.*, 1989; Kjarsgaard *et al.*, 1995; Kjarsgaard, 1998; Martin *et al.*, 2013). We propose the parameterisation of carbonate melt REE enrichments by closer analysis of the silicate melt composition role during alkaline magma differentiation. This parameterisation highlights the occurrence of a carbonatite REE enrichments optimum along the differentiation course of alkaline magma.

IV.3. Methods

IV.3.1. Starting materials

The starting material used for the experiments consisted of a mixture between synthetic hydrated nephelinite powder and synthetic calcite, in a ratio 90:10 respectively (bulk composition from Kjarsgaard, 1998). The nephelinite powder was made from the mixture of synthetic powders $(SiO_2,$ TiO₂, Al₂O₃, Fe₂O₃, FeO, MnO₂, Mg(OH)₂, CaCO₃, Na₂CO₃, K₂CO₃, wollastonite, NaF, NaCl, SrCO₃, SrF_2 , BaO, BaCO₃, Nb₂O₅), natural dolomite (CaMg(CO₃)₂) and apatite. The bulk composition is reported as Mix 8 in Table 1. For two samples, two supplementary starting materials were synthetised by mixing Mix 8 with pure K_2CO_3 in a ratio of 95:5 respectively (Mix 9, Table IV.1) and with pure CaF_2 in a ratio 97:3 (Mix 10), to investigate of potential effect of K and F in silicate and carbonate melt compositions. The starting materials are CO₂ and H₂O-rich (calculated concentrations of around 12 and 0.77 wt % respectively). In selected samples, the starting mix was doped for specific tests (Table IV.1 and IV.2): water and graphite was added, the latter to create a more reduced environment and check its effect on silicate and carbonate melt compositions. Each of the starting compositions was doped with 0.1 wt% Σ REE and Y, added in the form of oxides, elements or fluorides (La₂O₃, CeO₂, Pr₆O₁₁, Nd₂O₃, Sm₂O₃, Eu₂O₃, GdF₃, Tb, Dy₂O₃, HoF₃, Er₂O₃, Yb₂O₃, Lu, and Y₂O₃). All the synthetic powders were preserved in a dry oven at 120°C. Given the low concentration of REE, a good homogenisation was ensured by preparing about 15g of each starting composition. The powder was mixed in an agate mortar first by hand (20-30 minutes), and then by an automatic grinder with agate mortar and ball mill (30 minutes).

IV.3.2. Experiments

34 experimental charges were synthetised using piston cylinders (for P>0.5 GPa) and internally heated pressure vessels (P<0.5 GPa) at the ISTO laboratory (Institut des Sciences de la Terre d'Orléans, France). The experimental pressures and temperatures ranged from 0.2 to 1.5 GPa and 725 to 975°C (Table IV.2). About 20mg of starting material was loaded into either Au capsules (diameter of 2.5-2.9 mm) or Au₈₀-Pd₂₀ capsules for the experiments at higher pressure (0.8 and 1.5 GPa)

Piston-cylinder experiments were performed at 850, 925, 950 and 975°C, and 0.8 to 1.5 GPa during 5 days using end-loaded piston-cylinder devices. The capsules were inserted in an alumina tube, filled with a powdered mixture of 50% AlSiMag (mix of Al, Si and Mg) – 50% hematite and closed at the top and the bottom by two MgO-plugs. The hematite powder provide an oxidised environment and we estimate the fO_2 of the experiments between FMQ and FMQ+2. Then the assemblage was loaded into a classical ³/₄-inch piston cylinder assembly, constituted of graphite, pyrex and talc cylinders. On top and bottom of the assembly, two steel-plugs surrounded by pyrophyllite were placed to maintain the assemblage and the thermocouple (B-type, Pt₉₄Rh₆-Pt₇₀Rh₃₀) localised on the top of the sample. For all experiments, melting and homogenisation of the bulk composition was ensured by first bringing the

assemblage at a higher temperature than the final required temperature during 2 hours (1100°C for the experiment at 950-975°C, and 1000 °C for experiments at 925°C). The final temperature was then reached within a couple of minutes. Each experiment was ended by an isobaric quench, by switching off the electrical source of heating at constant pressure. Uncertainties are considered to be ± 12 °C for the temperature and ± 0.1 GPa for pressure (Dasgupta et al. (2004) and reference therein).

Table IV.1. Chemical composition of the synthetised starting materials, composed of synthetic nephelinite powder and synthetic calcite (in a ratio 90:10). Mix 9 is K-richer (Mix 8 and additional K_2CO_3 in a ratio of 95:5 respectively) and Mix 10 is F and Ca-richer (Mix 8 and additional CaF_2 in a ratio of 97:3 respectively). Major elements (weight %) and trace elements ($\mu g/g$, i.e. ppm) of Mix8 and Mix 9 were analysed by ICP-MS analysis on powders (ALS Global). F, Cl and all the Mix 10 have not been analysed: concentrations are calculated on a normalised basis (*).

	Mix 8	Mix 9	Mix 10
Major e	lements in	weight %	
SiO ₂	35.39	33.31	34.80 *
TiO ₂	1.70	1.61	1.78 *
Al ₂ O ₃	11.34	10.88	11.07 *
Fe ₂ O ₃	9.26	8.84	8.98 *
MnO	0.26	0.25	0.25*
MgO	2.05	1.93	1.66 *
CaO	15.67	14.79	17.74 *
Na ₂ O	7.22	6.86	7.38 *
K ₂ O	2.85	5.75	2.84 *
P_2O_5	0.31	0.28	0.29 *
SrO	0.46	0.43	0.44 *
BaO	0.26	0.24	0.25 *
F	0.14 *	0.13 *	1.31 *
Cl	0.13 *	0.13 *	0.13 *
LOI	12.96	14.55	11.07 *
Total	100	100	100
Trace e	lements in p	ug/g (ppm)	
Ba	2300	2110	2353 *
Sr	4080	3750	3820 *
Nb	276	263	261 *
La	86.6	83.1	71 *
Ce	93.2	88.5	71 *
Pr	60	57.1	71 *
Nd	63.2	59.8	71 *
Sm	56.4	55.1	71 *
Eu	61.2	56	71 *
Gd	59.4	63.7	71 *
Tb	52	51.9	71 *
Dy	58.5	58.7	71 *
Но	56	54.9	71 *
Er	57	55.3	71 *
Yb	58.7	57.4	71 *
Lu	53.8	52.1	71 *
Y	70.1	65.7	71 *

Experiment	Starting	Р	Т	\mathbf{H}_2	Duration	Capsule	Added	Added	Observed phases
	material	(Gpa)	(°C)	(Mpa)	(h)	material	water (wt %)	graphite (wt %)	
T14_01	Mix 8	0.8	975	-	116	$Au_{80}Pd_{20}$	-	-	SL + CL + CPx + Fe-Spl + Gnt + V
T14_02	Mix 8	0.8	975	-	116	$Au_{80}Pd_{20}$	0.2	-	SL + CL + CPx + Fe-Spl + Gnt + V
T16_01	Mix 8	0.8	950	-	118.5	$Au_{80}Pd_{20}$	-	-	$SL + CL + CPx + Ttn^* + Gnt^* + V$
T16_02	Mix 8	0.8	950	-	118.5	$Au_{80}Pd_{20}$	-	1	SL + CL + CPx + Nph + Fe-Spl*
T16_03	Mix 8	0.8	950	-	118.5	$Au_{80}Pd_{20}$	4.5	-	$SL + CPx^* + Fe-Spl + V$
T16_04	Mix 8	0.8	950	-	118.5	$Au_{80}Pd_{20}$	5.4	1	V + SL
T18_01	Mix 8	1.5	925	-	118.5	$Au_{80}Pd_{20}$	-	-	SL + CL + CPx + Cc + Fe-Spl + Afs + V
T18_02	Mix 8	1.5	925	-	118.5	$Au_{80}Pd_{20}$	-	1	CL + CPx + Al-Spl + Ilm + Nph + Afs + V
T18_03	Mix 8	1.5	925	-	118.5	$Au_{80}Pd_{20}$	2.1	-	SL + CL + CPx + Cc + Fe-Spl
T18_04	Mix 8	1.5	925	-	118.5	$Au_{80}Pd_{20}$	1	1	SL + CL + CPx + Cc + Fe-Spl
T17_01	Mix 8	0.8	925	-	119	$Au_{80}Pd_{20}$	-	-	SL + CL + CPx + Ttn + Fe-Spl + Gnt + V
T17_02	Mix 8	0.8	925	-	119	$Au_{80}Pd_{20}$	-	1	$SL + CL + CPx + Ttn + Nph + Afs + Cc^* + Fe-Spl^* + Ap^* + V$
T17_03	Mix 8	0.8	925	-	119	$Au_{80}Pd_{20}$	4	-	$SL + CPx^* + Fe-Spl + V$
T17_04	Mix 8	0.8	925	-	119	$Au_{80}Pd_{20}$	3	1	SL + CL + CPx + Fe-Spl + V
AK02_01	Mix 8	0.4	925	0.5	118	Au	-	-	SL + CL + CPx + Cc + Ttn + Fe-Spl* + V
AK02_02	Mix 8	0.4	925	0.5	118	Au	-	1	SL + CL + CPx + Cc + Ttn + Al-Spl + Nph + Prv + V
AK02_03	Mix 8	0.4	925	0.5	118	Au	1.6	-	SL + Cpx + Fe-Spl* + V
AK02_04	Mix 8	0.4	925	0.5	118	Au	1	1	SL + CL + CPx + Ttn + Fe-Spl* + V
AK01_01	Mix 8	0.2	925	0.5	122	Au	-	-	SL + CPx + Al-Spl + Nph + Prv + Ap + Mll + V
AK01_02	Mix 8	0.2	925	0.5	122	Au	-	1	SL + Al-Spl + Nph + Prv + Ap + Mll + V
AK01_03	Mix 8	0.2	925	0.5	122	Au	1.3	-	SL + Cpx + Prv + Gnt + Mll + V
AK01_04	Mix 8	0.2	925	0.5	122	Au	2.7	1	SL + Cpx + Prv + Mll + V
T19_01	Mix 8	0.8	850	-	120.5	$Au_{80}Pd_{20}$	-	-	SL + CL + CPx + Cc + Ttn + Fe-Spl + Nph + Afs + V
T19_02	Mix 8	0.8	850	-	120.5	$Au_{80}Pd_{20}$	-	1	CL + CPx + Cc + Ttn + Fe-Spl + Ilm + Nph + Afs + V
T19_03	Mix 8	0.8	850	-	120.5	$Au_{80}Pd_{20}$	3	-	SL + CL + CPx + Cc + Ttn + Fe-Spl + Ap + V
T19_04	Mix 8	0.8	850	-	120.5	$Au_{80}Pd_{20}$	3	1	SL + CL + CPx + Cc + Ttn + Fe-Spl + Nph + V
AK05_01	Mix 8	0.4	825	0.1	63	Au	-	-	SL + CL + CPx + Cc + Ttn + Fe-Spl + Nph + Ap + V
AK05_02	Mix 8	0.4	825	0.1	63	Au	2	-	SL + CL + CPx + Cc + Ttn + Fe-Spl + Ap + V
AK05_03	Mix 8	0.4	825	0.1	63	Au	4	-	SL + CL + CPx + Cc + Ttn + Fe-Spl + Ap + Gnt + V
AK05_04	Mix 8	0.4	825	0.1	63	Au	2	1	CL + CPx + Cc + Ttn + Fe-Spl + Nph + Afs + V
AK05_05	Mix 8	0.4	825	0.1	63	Au	10	-	SL + CL + CPx + Cc + Fe-Spl + Ap + Gnt + V
AK06_01	Mix 8	0.4	725	0.1	450	Au	5	-	SL + CL + CPx + Cc + Ttn + Fe-Spl + Ap + Gnt + Phl + V
AK06_02	Mix 9	0.4	725	0.1	450	Au	5	-	SL + CL + CPx + Cc + Ttn + Fe-Spl + Ap + Gnt + Phl + V
AK08_03	Mix 10	0.4	725	0.1	140.5	Au	5	-	SL + CL + CPx + Cc + Ttn + Fe-Spl + V

Table IV.2. Experimental conditions and run products. P: total pressure; T: temperature; H_2 : partial pressure of hydrogen; SL: silicate liquid; CL: carbonate liquid; CPx: clinopyroxene (diopside-hedenbergite-aegirine solution); Cc: calcite; Ttn: titanite; Fe-Spl: iron-spinel (magnetite-titanomagnetite solid solution); Al-Spl: alumino-spinel; Ilm: ilmenite; Nph: nepheline; Afs: alkali feldspar; Prv: perovskite; Ap: apatite; Gnt: garnet (andradite); Mll: melilite; Phl: phlogopite; V: vapour phase; *: estimated from mass balance.

Internally heated pressure vessel experiments were performed at 725-825-925 °C and pressure of 0.2 and 0.4 GPa during 5 days at temperatures $> 825^{\circ}$ C, and three weeks for the experiment at lower temperature (Table IV.2). Capsules were pressurised using Ar-H₂ (0.1-0.5 MPa of H₂ for total pressures of 0.2 and 0.4 GPa) in order to vary fO_2 conditions. In experiments loaded with 0.1 MPa and 0.5 MPa of Ar-H₂, the fO_2 is estimated at NNO+2.1 and NNO+0.9 in the autoclave respectively (estimation from Gaillard et al., 2001), which is equivalent to FMQ+2.5 and FMQ+1.5 for the experiment P-T conditions (after Frost, 1991), at water activity equals to unity. The fO_2 truly prevailing in experimental charges being water under-saturated (Table IV.2) is estimated lowered by 0.5 logunits, that is to say, FMQ+2 and FMQ+1 respectively. The pressure is recorded by a transducer calibrated against a Heise Bourdon gauge with an accuracy of ± 2 MPa (Gaillard *et al.*, 2001; Andújar et al., 2013). The experiments were performed in a double-winding molybdenum and kantal furnaces with near-isothermal conditions in the 2-3 cm long hotspot (Di Carlo et al., 2006). Two S-type thermocouples (Pt₉₀Rh₁₀; uncertainty of \pm 5°C) were placed at the top and the bottom of the sample and indicated gradients < 2-3°C along the samples (Di Carlo *et al.*, 2006; Andújar *et al.*, 2013). In order to ensure the growth of large crystals all experiments were initiated by a high T stage (i.e., 1000°C), followed by a ramp forcing the dwell temperature to be reached within a few minutes. The capsules were placed in an alumina tube fixed in the furnace hotspot at the top by a thin Pt wire. A drop-technique was used to ensure fast isobaric quench (rate of ~100°C/s; Di Carlo et al., 2006).

IV.3.3. SEM and Electron microprobe-analysis

After the experiments, the run products were cut in length and mounted in resin. All the samples were polished using ethanol instead of water to avoid the dissolution of carbonate phases. The polished samples have been observed with a Merlin Compact Zeiss electron microscope (15 kV), equipped with a micro-analyser system with a resolution of 129 eV (EDS Bruker-QUANTAX-XFlash6), to identify the phase assemblages in each sample and examine their textures.

Electron microprobe (EMP) analyses were conducted on carbonate and silicate phases, using a Cameca SXFive electron microprobe (Institut des Sciences de la Terre d'Orléans, France) equipped with a WDS detector. All the analyses were performed at 15kV and 6nA, using the larger possible beam sizes (from 10 to 70 μ m depending on the silicate and carbonate melt zone sizes), in order to reduce Na-loss during analysis, and to sample the average composition of the carbonate blebs. Based on a set of analyses varying the EMP beam-size (on samples AK05_01 and AK02_01 as representative of other samples), we estimated that measurements conducted on glasses with a 10 μ m beam size can underestimate the Na content by 10 % at maximum. We however decided not to correct the measured Na content since this variation is in the range of uncertainty (Table IV.3). Standards used for calibration were albite, apatite, orthose, andradite, topaze, vanadinite, MgO, Al₂O₃, Fe₂O₃, MnTiO₃, Cr₂O₃, NbLi, BaSO₄, and SrCO₃. A double-check has been made on secondary standards (albite, andradite, olivine and orthose) to confirm the validity of all the analysis. The count time for peak and background were 10s for all the elements, expect for the Ba (20s) and the Sr (30s).

IV.3.4. Laser ablation ICP-MS analysis

REE concentrations of the carbonate and the silicate melts were determined using two LA-ICP-MS (Laser Ablation Inductively Coupled Plasma Mass Spectrometry) facilities: the Thermo Element XR magnetic sector ICP-MS of the IRAMAT-CEB laboratory (CNRS, Orléans, France; He: 650 mL/min; Ar: 950 mL/min), and the Agilent 7500 CS quadrupole ICP-MS of the LMV laboratory (Clermont-Ferrand, France; He: 550 mL/min; N₂: 2mL/min; Ar: 850 mL/min). Both systems employ a 193 nm excimer laser system (laser Resonetics), coupled to the mass spectrometer with He flushing the

ablation cell. The analysis were performed with a laser repetition rate of 2-4 Hz and an ablation energy of 1.5 - 4 mJ, for both the carbonate and the silicate melts. Silicate and carbonate phases were analysed with both spectrometers for one sample (sample T19_01; Table IV.2 and IV.4) and indicated similar REE concentrations. Silicate glasses were analysed with spot sizes of 15 to 100 µm, depending on the available analysable surface. We compared the concentrations obtained for the same glass using different spot sizes, without finding any significant differences. Because carbonate liquids are impossible to quench into glasses, carbonate blebs- i.e. carbonate liquids quenched in two interlayered microcrystalline carbonates- were more difficult to analyse. The analysis were adapted to their heterogeneous textures and performed at different beam sizes (15-80 µm), in order to ensure a good accuracy of their composition. The mean value and the reasonable associated standard deviation support the validity of all the analysis (Table IV.4). The following isotopes were analysed: ¹³⁹La, ¹⁴⁰Ce, ¹⁴¹Pr, ¹⁴⁶Nd, ¹⁴⁷Sm, ¹⁵³Eu, ¹⁵⁹Tb, ¹⁶³Dy, ¹⁶⁵Ho, ¹⁶⁶Er, ¹⁷²Yb, ¹⁷⁵Lu, ⁸⁹Y, ⁵⁵Mn, ⁸⁸Sr, ¹³⁷Ba, ⁹³Nb, ¹⁹⁷Au and ¹⁰⁵Pd (to verify a possible contamination by capsule during experiment), ⁴³Ca, ⁴⁴Ca and ²⁹Si.

Data reduction has been performed using GLITTER4.4 software (Van Achterbergh *et al.*, 2001) providing REE concentrations for both carbonate and silicate phases and analytical uncertainty for each analysis. All elements were quantified using the NIST 610 standard glass (Pearce *et al.*, 1997) and a checking has been made with other standards: NIST 612 and BCR-2G natural basaltic glass (Pearce *et al.*, 1997; Rocholl, 1998; Jochum *et al.*, 2016). Standards were analysed at the same beam size, frequency and energy ablation to check the accuracy of the analyses. The element that was used as internal reference is Ca, which is precisely determined by electron microprobe analyses in both the carbonate and the silicate phases. Glitter software also calculates the analytical uncertainty (the " σ error") on each analysis which is estimated by considering a relative error of 1% on the external standard concentrations, and of 3% on the internal reference element (default parameters).

IV.3.5. REE partition coefficients

The Nernst partition coefficient D is used to describe REE partitioning between carbonate and silicate liquids. This coefficient corresponds to a mass concentration ratio (in wt%) and is defined following the equation:

$$D_x^{CL/SL} = \frac{m_x^{CL}}{m_x^{SL}}.$$
(7)

with m_x^{CL} the mean concentration of the element x in the carbonate liquid (CL) and mx^{SL} the mean concentration in the silicate liquid (SL).

The standard deviation (i.e., the statistical uncertainty based on the number and the reproducibility of analysed samples) of each partition coefficient value, σ ($D_x^{CL/SL}$), has been calculated by error propagation from equation (8).

$$\sigma\left(D_{\chi}^{CL/SL}\right) = D_{\chi}^{CL/SL} * \sqrt{\left(\frac{\sigma_{\chi}^{CL}}{m_{\chi}^{CL}}\right)^2 + \left(\frac{\sigma_{\chi}^{SL}}{m_{\chi}^{SL}}\right)^2}.$$
(8)

with σ_x^{CL} and σ_x^{SL} the standard deviations of the mean concentrations m_x^{CL} and m_x^{SL} , respectively.

IV.4. Results

IV.4.1. Run product textures

The experiments were conducted at P-T conditions relevant to the evolution of alkaline magmas in the lithospheric mantle and the crust. At all P-T conditions, except at the lowest pressure (i.e., 0.2 GPa; Table IV.2 and Table IV.S8), the conditions of immiscibility were reached producing a carbonate liquid coexisting at equilibrium with an alkaline silica-undersaturated melt (Fig. IV.1). Among the 34-synthetised samples (Table IV.2), 23 of them present the characteristic of immiscibility between carbonate and silicate liquids and thus constitute the main focus of this study. In the other samples, only one melt (silicate or carbonate melt, see Table IV.2) coexisting or not with crystals occurs.

Silicate melts quenched into homogeneous and microlite-free glasses, while carbonate melts quenched into carbonate blebs with inter-crystallised Na-enriched and Ca-enriched bands (Fig. IV.1), which are typical textures of unquenchable carbonate liquids (Brooker and Kjarsgaard, 2011; Martin *et al.*, 2013). The attainment of equilibrium between the immiscible liquids at investigated P-T conditions is attested by the sharp geometry of the carbonate-silicate interfaces (Fig. IV.1), the homogeneity of the chemical composition of each liquid phase and the size of the carbonate liquid sections (i.e., up to 100µm). All these criteria exclude immiscibility by quench-related processes (Brooker and Kjarsgaard, 2011).

Bubble occurrence in most samples attests saturation in a fluid phase (Table IV.2). Clinopyroxene is the dominant crystalline phase, being present all along the crystallisation sequence, while, in strongly fractionated samples, other phases are present in significant proportions (i.e., titanite, spinel, calcite, nepheline, garnet, etc...; Fig. IV.1 and Table IV.2). The chemical features of the mineral phases are not discussed further, as this study focuses on liquid-liquid partitioning upon magmatic differentiation.

Figure IV.1. BSE images of typical carbonate-silicate liquid immiscibility textures. Silicate melts quenched into homogeneous and microlite-free glasses, while carbonate melts quenched into carbonate blebs with inter-crystallized Na-rich and Ca-rich bands, which are typical textures of unquenchable carbonate liquids (Brooker and Kjarsgaard, 2011). CL: carbonate liquid; SL: silicate liquid; Cpx: clinopyroxene; Fe-Spl: spinel; Cc: calcite; Nph: nepheline. Au: gold capsule.
IV.4.2. Composition of immiscible melts

The concentrations of major elements in the carbonate and silicate melts are presented in Table IV.3 (and Table IV.S8). Standard deviation on the compositions of each phase attests the homogeneity of the run products and equilibrium attainment.

The total alkali and silica contents of carbonate and silicate liquids at all experimental conditions are reported in a TAS diagram (Fig. IV.2a), classically used to discriminate magmatic rocks, and which shows the composition of the immiscible carbonate and silicate liquid couples at different experimental conditions. In response to variable degrees of crystallisation, the silicate liquid compositions vary from nephelinite to phonolite, with SiO₂ contents from 44.3 \pm 0.7 to 55.6 \pm 0.7 wt%, and Na₂O+K₂O contents from 14.7 ± 0.7 to 20.9 ± 0.5 wt% (on a volatile-free basis; Fig. IV.2a and Table IV.3). Silicate liquids with the lowest SiO_2 contents contain high CaO concentrations (Fig. IV.2b). The silicate liquid CaO contents decrease as crystals fractionation proceeds, in response to Carich minerals formation (clinopyroxene and calcite; see Table IV.2). In all experimental run products, the silicate melts resulting from low to high degree of differentiation are peralkaline, i.e the alumina saturation index (ASI) defined as Al₂O₃/(CaO+Na₂O+K₂O) on a molar basis (Shand, 1947) is lower than 1 and vary from 0.33 to 0.80 (Fig. IV.2c, Table IV.3). The peralkalinity of the silicate melts is also supported by the alkalinity index (AI) defined as Al_2O_3 - (Na₂O+K₂O) (molar basis; Shand, 1947) which is lower than 0 for all the samples (from -0.07 to -0.01; Table IV.3). The most differentiated silicate melts (lowest CaO contents) present the highest ASI, which indicates an evolution toward almost metaluminous compositions upon crystal-liquid fractionation. The alkali/alkaline-earth cation ratio ($(Na_2O+K_2O)/(CaO+MgO)$; molar basis) of the silicate melts varies from low values for undifferentiated silicate melts, to high values for the most differentiated ones (Fig.IV.2d). It is worth mentioning that both F and K doped samples have silicate melt compositions following the same trends (samples AK06_02 and AK08_03, Table IV.2 and Table.IV.3), indicating that both elements do not affect this differentiation trend.

The coexisting carbonate liquids vary from 0.11 ± 0.04 to 9.2 ± 0.8 wt% SiO₂, and from 9.8 ± 2.2 to 24.9 ± 3.3 wt% Na₂O+K₂O (Fig.IV.2a). Carbonate liquids become richer in sodium and also poorer in calcium during the differentiation, as shown by the decrease of the CaO contents from 37.8 ± 1.6 to 20.9 ± 1.0 wt% along with an increase of the Na₂O contents from 6.8 ± 3.2 to 24.9 ± 3.3 wt% (Fig.IV.3). The other major elements do not present significant variation (see Table IV.3).

Both coexisting silicate and carbonate melts hence have compositions evolving during the differentiation, with peralkaline silicate liquids become alkali- and silica-richer while the coexisting carbonate liquids become highly alkaline and increasingly silica-poorer as temperature decreases and crystallisation proceeds.

Figure IV.2. Crystal fractionation effect on liquids composition. Major elements compositions of liquids from this study (coloured data symbols) and previous experimental investigations (grey dots; Hamilton et al., 1989; Veksler et al., 1998; Veksler et al., 2012; Martin et al., 2013). (a) Total alkali versus SiO₂ (TAS; (Le Bas et al., 1986) diagram of immiscible carbonate and silicate liquids (a: picro-basalt; b: basalt; c: basaltic andesite; d: andesite; e: dacite; f: rhyolite; g: tephribasanite; h: trachy-basalt; i: basaltic trachy-andesite; j: trachy-andesite; k: trachyte; l: foïdite; m: phono-tephrite; n: tephriphonolite; o: phonolite). The silicate liquid compositions are on a volatile-free basis. Each line connects a carbonate liquid (CL) coexisting at equilibrium with a silicate liquid (SL). Error bars indicate the standard deviation. Silica content (b), alumina saturation index (b) and alkaline/alkaline earth cations ratio (c) versus the CaO contents of the silicate melt. SiO₂ and CaO contents are in wt % on a volatile free basis, and the alumina saturation index and alkaline/alkaline earth cations ratio are in molar fractions. For (b) to (d), data from this study are compared to data from Kjarsgaard (1998; grey dots) which also experimented crystal fractionation.

	T14_01		T14_02		T16_01		T16_02		T18_01		T18_03		T18_04		T17_01		T17_02		T17_04		AK02_01		AK02_02	
P (GPa)	0.8		0.8		0.8		0.8		1.5		1.5		1.5		0.8		0.8		0.8		0.4		0.4	
T (°C)	975		975		950		950		925		925		925		925		925		925		925		925	
SL																								
Analysis	11		10		5		5		5		6		9		5		9		17		14		5	
		s.d.		s.d.		s.d.		s.d.		s.d.		s.d.	s.d.	s.d.		s.d.		s.d.		s.d.		s.d.		s.d.
SiO ₂	47.24	0.71	48.14	0.59	39.90	0.59	44.31	1.82	52.13	1.24	47.01	0.81	49.99	0.87	46.82	1.15	48.20	1.58	38.87	0.60	43.16	0.80	48.21	1.07
TiO ₂	0.95	0.12	0.94	0.12	1.84	0.16	2.01	0.11	0.87	0.08	1.07	0.14	0.94	0.12	1.30	0.19	1.34	0.26	1.70	0.16	1.14	0.09	0.86	0.10
	17.04	0.37	19.26	0.40	13.45	0.14	14.55	1.32	20.40	0.41	16.37	0.48	17.74	0.33	17.46	0.19	18.33	0.52	13.18	0.19	16.05	0.32	18.19	0.54
FeO	4.55	0.23	3.94	0.39	8.07	0.24	5.33	0.59	3.42	0.16	4./1	0.46	4.40	0.24	5.74	0.28	5.04	0.70	1.43	0.33	0.33	0.42	4.13	0.39
MnO	bd1	-	bdl	-	0.33	0.04	0.33	0.00	bdl		bd1	-	bdl		bal	-	bdl	-	bdl 1.25	-	bdl	-	bd1	-
	0.95	0.08	4.06	0.05	1.20	0.05	11 21	1.22	1.67	0.02	4.28	0.02	2.01	0.02	5.22	0.09	4.00	0.05	1.23	0.04	0.85	0.00	4.04	0.02
Na.O	8.05	0.35	4.90	0.41	0.86	0.20	10.05	0.53	0.54	0.03	4.20 8.53	1.12	0.23	0.11	10.16	0.39	4.09	0.37	0.20	0.33	8.02	0.17	4.94	0.52
K ₂ O	4 56	0.40	5.15	0.45	3.63	0.12	4 10	0.33	6.25	0.54	4 64	0.12	4.87	0.05	5 10	0.30	5 57	0.39	3.74	0.21	4 39	0.40	4 91	0.30
P-05		-	bdl	-	bdl	-	bdl	-	bdl	-	hdl	-	-1.07 hdl	-	bdl	-	bdl	-	bdl	-	bdl	-	hdl	-
BaO	bdl	-	bdl	-	bdl	-	bdl	_	bdl	-	bdl	-	bdl	-	bdl	_	bdl	-	bdl	-	bdl	_	bdl	-
SrO	bdl	-	bdl	-	bdl	-	bdl	-	bdl	-	bdl	-	bdl	-	bdl	-	bdl	-	bdl	-	bdl	_	bdl	-
F	0.62	0.14	bdl	-	bdl	-	bdl	-	bdl	-	0.59	0.07	bdl	-	0.55	0.20	bdl	-	0.73	0.24	bdl	-	1.03	0.12
Cl	0.14	0.03	0.12	0.02	0.16	0.02	0.16	0.02	0.12	0.02	0.14	0.02	0.15	0.01	0.11	0.04	0.12	0.02	0.16	0.02	0.19	0.03	0.14	0.02
Total	92.03	-	92.59	-	89.27	-	92.95	-	94.72	-	88.04	-	90.78	-	93.03	-	94.53	-	87.74	-	89.81	-	93.20	-
Na ₂ O+K ₂ O	13.51	0.62	14.66	0.59	13.49	0.24	14.15	0.93	15.79	1.14	13.17	1.24	14.10	0.73	15.26	1.03	16.97	0.59	12.94	0.37	13.29	0.63	15.19	0.60
AI [Al ₂ O-(Na ₂ O+K ₂ O)]	-0.02		-0.01		-0.05		-0.04		-0.01		-0.02		-0.02		-0.03		-0.05		-0.04		-0.02		-0.03	
ASI $[Al_2O_3/(CaO+Na_2O+K_2O)]$	0.52		0.64		0.34		0.35		0.80		0.61		0.69		0.55		0.57		0.33		0.45		0.58	
Fe # [FeO/(FeO+MgO)]	0.73		0.80		0.78		0.79		0.86		0.79		0.80		0.85		0.87		0.77		0.81		0.82	
CL																								
Analysis	6		8		4		5		4		4		6		4		6		7		12		7	
		s.d.		s.d.		s.d.		s.d.		s.d.		s.d.		s.d.		s.d.		s.d.		s.d.		s.d.		s.d.
SiO ₂	3.61	1.23	1.15	0.54	4.83	0.66	3.51	0.97	0.44	0.12	3.20	1.59	1.95	0.70	2.56	0.76	1.58	0.33	7.76	2.82	6.98	0.82	3.46	0.25
TiO ₂	0.32	0.18	bdl	-	0.54	0.06	0.51	0.10	bdl	-	bdl		bdl	-	0.40	0.12	0.42	0.11	0.97	0.24	0.54	0.07	bdl	-
	0.47	0.14	bdl	-	0.55	0.12	0.19	0.09	0.10	0.01	0.94	0.54	0.40	0.20	0.27	0.07	0.11	0.05	1.59	0.64	0.82	0.19	0.24	0.03
FeO	1.09	0.42	0.96	0.20	2.93	0.48	2.28	0.30	6.03	0.29	5.02	2.15	5.91	0.51	3.47	0.82	3.17	0.71	3.84	1.34	4.76	0.61	3.39	0.26
MnO	1 70	0.08	DOI 1.25		1.86	0.03	0.24	0.05	0.70	0.15	0.88	0.52	2.08	0.09	0.40	0.11	0.44	0.07	0.31	0.05	DOI 1 29	-	0.45	0.06
MgO	1.79	0.52	1.35	0.21	1.80	0.44	0.94	0.29	2.49	0.21	2.42	0.65	3.08 20.44	0.17	1.75	0.40	22.02	0.21	1.70	0.79	1.58	0.10	26.44	0.09
CaO Na O	8 90	1.67	077	1.56	979	2.27	0.72	2.80	27.90	0.20	10.02	4.59	10.00	1.50	10.22	2.20	14 55	1.59	5.00	2.70	7.91	1.95	0.16	2.22
K ₂ O	0.00	0.27	9.77	0.26	0.70	0.20	2.16	0.34	14.10	0.78	1 24	4.50	1 17	0.31	161	0.36	2 49	0.18	1 74	0.42	2.04	0.31	2.06	0.35
R ₂ O P ₂ O5	0.89	0.27	1.78	0.20	1.72	0.20	2.10	0.34	1.91	0.22	4.85	4 31	1.17	0.31	1.01	0.30	1.22	0.18	1.74	1 18	2.04	0.31	1.72	0.35
BaO	0.86	0.11	0.98	0.10	0.99	0.33	0.96	0.20	0.98	0.45	1.05	0.31	1.72	0.33	1.05	0.37	0.81	0.16	0.70	0.14	0.72	0.05	0.82	0.11
SrO	1.97	0.20	1.92	0.10	1.47	0.06	1.65	0.17	1.24	0.26	1.07	0.24	1.30	0.19	1.87	0.31	1.35	0.26	1.31	0.17	1.41	0.16	1.68	0.18
F	2.45	0.69	2.20	0.79	3.49	0.81	4.04	2.87	2.17	0.46	2.58	1.14	2.12	0.29	5.36	3.05	2.62	1.45	2.21	0.93	1.40	0.31	2.28	1.14
- Cl	0.22	0.14	0.44	0.17	0.36	0.18	0.20	0.09	0.61	0.33	0.27	0.09	0.27	0.07	0.29	0.07	0.29	0.08	0.11	0.04	0.40	0.18	0.26	0.04
Total	59.94	-	59.95	-	64.06	-	65.23	-	60.51	-	58.61	-	59.22	-	66.53	-	63.01	-	64.66	-	64.71	-	62.94	-
Na ₂ O+K ₂ O	10.46	1.95	11.55	2.17	10.50	2.47	11.88	3.14	16.08	1.00	11.26	6.17	11.16	2.11	11.84	2.75	17.04	1.84	6.83	3.20	9.85	2.20	11.22	2.57

Table IV.3. Major element compositions of experimental silicate and carbonate liquids (weight %) analysed by EMPA; SL: silicate liquid; CL: carbonate liquid; Bdl: below detection limit; s.d.: standard deviation, statistical uncertainty calculated on the mean value. The AI, ASI and Fe# are in molar fraction.

Table IV.3. Continued

Experiment P (GPa)	AK02_04 0.4		T19_01 0.8		T19_03 0.8		T19_04 0.8		AK05_01 0.4		AK05_02 0.4		AK05_03 0.4		AK05_05 0.4		AK06_01 0.4		AK06_02 0.4		AK08_03 0.4	
$T(^{\circ}C)$	925		850		850		850		825		825		825		825		725		725		725	
SL			_		_		_															
Analysis	14		7		7		7		9		10		8		8		12		16		11	
(10)	12.20	s.d.	<i></i>	s.d.	11.02	s.d.	10.00	s.d.	10.02	s.d.	17 44	s.d.	11.22	s.d.		s.d.	17.10	s.d.	17.61	s.d.	10.25	s.d.
SiO ₂	42.29	0.62	51.45	0.63	44.92	0.47	49.30	1.03	49.93	0.38	47.64	0.99	44.23	0.90	41.31	0.75	47.42	0.66	47.64	0.44	49.25	0.69
1102	1.42	0.11	0.68	0.06	0.81	0.06	0.59	0.06	bal	-	0.52	0.06	0.61	0.04	bal	-	bdl	-	bal	-	bdl	-
	14.91	0.37	19.28	0.36	17.08	0.26	19.08	0.46	18.44	0.45	18.44	0.20	17.16	0.29	18.05	0.22	18.10	0.17	15.97	0.21	18.48	0.32
FeO M-O	0.32	0.29	5.24	0.20	5.70	0.23	2.84	0.25	5.8/	0.16	5.18	0.16	5.//	0.18	5.19	0.20	2.41	0.11	5.55	0.17	2.41	0.19
MINO	Dal	-	0.27	-	0.57	-	0.20	-	Dal	-	0.21		Ddl		Dal		0.10	0.02	0.19	-	0.06	0.11
MgO	0.88	0.04	0.27	0.01	0.57	0.04	0.30	0.04	0.15	0.04	0.51	0.02	0.42	0.04	0.50	0.03	0.19	0.02	0.18	0.02	0.12	0.02
CaU N- O	0.14	0.12	1.24	0.04	5.02	0.10	1.54	0.19	1.75	0.30	1.41	0.05	2.70	0.08	2.89	0.10	0.74	0.00	0.61	0.05	1.10	0.05
	9.14	0.15	6.01	0.50	9.70	0.55	5 76	0.19	6.27	0.23	5.42	0.34	5.02	0.20	10.35 5.16	0.32	12.33	0.28	9.00	0.18	9.49	0.85
	4.05	0.15	0.01 h.41	0.18	4.65	0.15	5.70	0.24	0.57	0.17	5.45	0.21	5.05	0.11	5.10	0.11	4.49	0.14	0.33 h.41	0.23	4.05	0.12
P ₂ 05	bdi	-	bd1	-	bdl bdl	-	bdi	-	-	-	bul h 41	-	bdi	-	bdi	-	bui h.di	-	001 h.41	-	0.14	0.02
DaU SmO	bdl	-	bdl	-	bdl	-	bdl	-	bdl	-	bdl	-	bdl	-	bdl	-	bdl	-	bdl	-	0.14	0.02
SIO E	bdi hdi	-	bul 1641	-	0.60	- 0.11	bd1	-	bul	-	bul	-	0.64	-	0.66	- 12	0.78	- 0.12	b.41	-	1.95	0.00
	0.20	0.22	0.12	0.02	0.00	0.11	0.15	0.05	0.12	-	0.10	0.02	0.04	0.19	0.00	0.12	0.78	0.15	0.10	0.02	1.65	0.18
Ci	89.42	0.02	0.12	0.02	0.20 85.53	0.01	80.58	0.05	0.15	0.00	87.74	0.05	85.30	0.02	82.27	0.02	86.84	0.0	85.80	0.02	0.19 87.76	0.02
$N_{2}O + K_{1}O$	13 10	0.33	16.25	0.54	14.63	0.50	15 07	0.43	16.00	0.42	16.05	0.75	15 61	0.37	15 50	0.63	17.04	0.42	17.05	0.43	14 14	0.05
Na ₂ O+K ₂ O	15.19	0.55	10.25	0.54	14.05	0.50	13.97	0.45	10.90	0.42	10.05	0.75	15.01	0.57	15.50	0.05	17.04	0.42	17.95	0.45	14.14	0.95
AI [Al-O-(Na-O+K-O)]	-0.03		-0.03		-0.03		-0.03		-0.04		-0.04		-0.04		-0.04		-0.06		-0.07		-0.02	
$ASL [Al_2O_2/(CaO+Na_2O+K_2O)]$	0.39		0.75		0.64		0.75		0.67		0.71		0.62		065		0.67		0.62		0.82	
Fe # [FeO/(FeO+MgO)]	0.80		0.87		0.79		0.84		0.94		0.85		0.84		0.78		0.88		0.91		0.92	
CL																						
Analysis	8		7		6		5		11		9		6		5		2		9		9	
		s.d.		s.d.		s.d.		s.d.		s.d.		s.d.		s.d.		s.d.		s.d.		s.d.		s.d.
SiO ₂	9.22	0.82	0.84	0.39	0.66	0.74	0.97	0.06	1.22	0.42	1.60	0.40	3.74	1.44	3.44	1.21	0.26	0.11	0.25	0.20	1.66	0.24
TiO ₂	0.69	0.08	bdl	-	bdl	-	bdl	-	bdl	-	bdl	-	Bdl	0.03	bdl	-	-	-	-	-	bdl	-
Al ₂ O ₃	1.19	0.11	0.08	0.02	0.25	0.17	0.14	0.02	0.09	0.02	0.27	0.23	0.58	0.30	0.62	0.30	bdl	-	bdl	0.01	0.26	0.13
FeO	4.78	0.49	3.96	1.05	1.16	0.25	3.38	0.30	2.08	0.35	2.11	0.36	2.48	0.69	1.82	0.51	1.25	0.22	0.90	0.28	2.04	0.10
MnO	bdl	-	0.63	0.12	0.68	0.16	0.68	0.15	0.46	0.07	0.57	0.09	0.59	0.15	0.41	0.13	1.33	0.36	0.67	0.14	0.44	0.10
MgO	1.31	0.11	1.86	0.34	1.38	0.44	2.16	0.13	0.49	0.25	1.48	0.38	1.39	0.50	1.53	0.55	1.89	0.28	0.62	0.12	0.99	0.07
CaO	33.87	1.10	28.48	1.48	35.60	3.05	28.53	1.61	30.48	1.50	29.00	2.51	29.41	5.73	30.81	2.32	20.87	1.04	21.90	1.27	36.86	1.08
Na ₂ O	6.82	2.45	14.33	1.87	10.45	2.19	14.25	1.38	16.45	1.26	16.86	0.65	14.56	2.50	9.73	0.94	20.90	1.75	21.42	1.89	12.27	0.90
K ₂ O	2.12	0.26	1.81	0.22	0.72	0.18	1.65	0.12	2.47	0.29	1.92	0.38	1.75	0.54	1.58	0.33	0.59	0.04	3.52	1.41	0.93	0.15
P ₂ O5	1.73	0.43	1.62	0.93	4.31	2.04	2.78	0.25	1.09	0.39	2.12	0.68	2.18	0.60	1.38	0.28	1.75	0.03	0.95	0.20	0.82	0.12
BaO	0.68	0.07	1.14	0.24	1.45	0.23	1.28	0.13	1.46	0.50	1.58	0.31	1.36	0.22	1.36	0.30	6.06	0.29	2.13	0.50	1.60	0.10
SrO	1.35	0.18	1.49	0.21	1.54	0.26	1.48	0.17	1.84	0.34	1.53	0.19	1.79	0.44	2.64	0.53	1.50	0.19	1.37	0.21	1.76	0.21
F	bdl	-	1.87	0.95	3.38	1.00	3.82	0.30	1.66	0.75	3.43	1.44	2.58	0.65	1.74	0.41	5.60	1.45	2.23	0.74	14.93	0.68
Cl	0.65	0.26	0.45	0.10	0.19	0.12	0.41	0.05	0.33	0.20	0.31	0.14	0.16	0.12	0.10	0.05	0.25	0.01	0.34	0.14	0.30	0.06
Total	64.41	-	58.57	-	61.78	-	61.54	-	60.13	-	62.76	-	62.59	-	57.16	-	62.26	-	56.31	-	74.87	-
Na ₂ O+K ₂ O	8.94	2.71	16.15	2.09	11.17	2.36	15.90	1.50	18.92	1.54	18.78	1.03	16.31	3.04	11.30	1.27	21.48	1.79	24.94	3.30	13.20	1.05

Figure IV.3. Variation of carbonate liquid compositions during the differentiation. CaO contents versus the Na_2O contents of the carbonate liquids in wt%, for all P-T conditions. Carbonate liquids evolved from a Ca-rich pole towards a Na-rich pole along the differentiation. CL: carbonate liquid.

IV.4.3. REE partitioning between carbonate and silicate melts

REE concentrations in carbonate and silicate liquid phases were measured using LA-ICP-MS (Table IV.4 and Table IV.S9). Standard deviations on the compositions of each phase attests the homogeneity of the run products and equilibrium attainment (Table IV.4; the σ error is presented in Tables IV.S9 and IV.S10).

REE partition coefficients between carbonate and silicate liquids are presented in Table IV.5. For most of the experimental conditions, carbonate liquids are richer in REE than the coexisting silicate liquids (Fig. IV.4a, Table IV.4 and IV.5), but the partition coefficients vary greatly, from 1.6 ± 0.1 to 48.9 ± 4.4 for La, and from 0.48 ± 0.04 to 9.1 ± 0.7 for Lu. The variations are more important for light REE (LREE) than for heavy REE (HREE), since carbonate liquids are more enriched in LREE. The highest REE partition coefficients (Fig.4a) correspond to the most evolved carbonate and silicate melts, in other words to the most differentiated carbonate and silicate melts (Fig. IV.2 and IV.3). It is worth mentioning that no clear variation of D_{REE}^{CLSL} is observed with pressure and temperature, the highest partition coefficients corresponding to both the lowest and the highest P-T conditions (respectively $725^{\circ}C - 0.4$ GPa and $925^{\circ}C - 1.5$ GPa; Fig. 4a and Fig. IV.S12).

One sample is doped in F compare to the other samples as mentioned in the 2.1 section (Table IV.2). We did not observe any relationships between the fluorine content and the REE partitioning, while the fluorine concentrations in carbonate melts varied from 0.8 to 14.9 wt% (Table IV.3 and IV.5, Fig. IV.S13). The highest La partition coefficients, 48.9 and 43.8, respectively correspond to carbonate melts containing 2.2 and 14.9 wt% F (Table IV.3 and IV.5, samples AK06_02 and AK08_03). Moreover, the F contents in the silicate melts being often below the detection limit (Table IV.3), no correlation between F and La (as representative of other REE) partition coefficients could be observed.

Table IV.4. Trace elements concentrations of experimental silicate and carbonate liquids ($\mu g/g$, i.e. ppm) measured by LA-ICP-MS. SL: silicate liquid; CL: carbonate liquid; bdl: below detection limit; s.d.: standard deviation, statistical uncertainty calculated on the mean value; *: sample analysed by the Thermo Element XR ICP-MS; #: sample analysed by the Agilent 7500 CS ICP-MS.

Experiment	T14_01 [#]		T14_02 [#]		T16_01 [#]		T16_02#		T18_01 [#]		T18_03#		T18_04 [#]		T17_01 [#]		T17_02 [#]		T17_04 [#]		AK02_01*		AK02_02	2*
P (GPa)	0.8		0.8		0.8		0.8		1.5		1.5		1.5		0.8		0.8		0.8		0.4		0.4	
T (°C)	975		975		950		950		925		925		925		925		925		925		925		925	
SL																								
Analysis	4		3		5		5		7		6		5		6		6		5		6		6	
		s.d.		s.d.		s.d.		s.d.		s.d.		s.d.		s.d.		s.d.		s.d.		s.d.		s.d.		s.d.
La	66.3	9.0	46.7	1.6	74.2	1.4	100.4	3.3	6.2	0.5	21.6	0.7	14.1	0.4	45.9	2.2	37.9	3.0	74.7	0.5	47.9	1.1	34.8	0.8
Ce	68.1	9.8	49.1	1.5	85.7	1.6	114.8	3.5	8.7	1.0	28.0	0.9	18.7	0.4	53.8	1.2	46.3	3.0	85.6	0.5	56.6	1.5	41.9	0.9
Pr	36.0	1.6	28.9	1.5	50.9	1.1	69.8	2.0	5.3	0.4	17.2	0.6	11.5	0.2	30.4	0.7	27.9	1.5	50.5	0.2	34.0	1.6	24.6	0.4
Nd	35.7	1.7	27.1	0.5	56.6	1.1	77.4	2.2	5.5	0.9	18.3	0.7	12.4	0.3	33.1	0.5	30.3	1.3	57.4	0.7	38.9	1.9	26.4	0.9
Sm	22.6	0.7	17.3	2.3	53.3	1.4	72.2	2.2	6.1	0.7	19.2	0.9	12.4	0.2	26.8	1.1	29.2	1.3	52.4	0.4	37.5	2.6	25.2	1.3
Eu	20.4	0.2	15.1	0.9	57.3	1.6	77.0	2.0	6.5	0.4	21.3	0.6	15.4	0.3	29.3	1.3	32.1	1.4	56.0	0.4	38.8	2.5	26.3	0.5
Tb	12.4	1.1	10.8	0.4	51.1	1.6	65.0	2.1	6.1	0.6	18.4	0.5	13.3	0.3	20.0	2.2	31.5	0.9	48.6	0.3	34.1	1.6	25.9	0.7
Dy	13.1	1.0	11.3	0.3	58.5	1.7	78.1	2.7	8.2	0.3	24.1	1.0	17.9	0.1	22.3	3.4	39.4	1.8	57.5	0.4	41.4	1.5	32.7	0.9
Y	15.5	1.1	13.0	0.2	66.1	1.8	84.7	3.1	10.0	0.6	28.0	0.9	20.8	0.2	27.6	4.5	47.7	3.2	66.2	0.4	46.4	1.6	41.2	1.5
Но	11.5	1.1	10.2	0.2	58.9	1.9	78.3	3.0	8.9	0.7	24.4	1.0	18.2	0.2	21.2	4.0	41.5	2.2	57.9	0.4	41.7	1.7	34.7	0.7
Er	10.3	1.2	9.4	0.1	55.9	1.9	73.5	3.0	10.0	0.8	25.7	0.9	19.6	0.4	20.0	3.8	41.3	3.0	54.3	0.4	42.0	2.3	34.8	1.1
Yb	11.7	1.3	10.8	0.6	60.2	2.6	76.6	3.1	12.9	1.2	30.3	1.1	24.5	0.3	22.6	4.9	47.3	4.5	58.2	0.3	50.8	2.5	43.8	0.3
Lu	11.3	0.9	10.3	0.2	53.2	2.0	65.4	2.8	11.6	0.8	27.3	0.9	22.7	0.1	21.1	4.4	41.8	4.5	51.8	0.2	40.9	1.6	37.7	0.6
Nb	256.5	6.7	307.7	10.6	265.2	11.6	378.9	22.5	309.3	20.8	349.3	10.0	331.0	9.4	261.8	17.8	324.6	23.7	256.5	2.1	203.0	19.4	158.5	7.4
Mn	1577.4	113.0	1377.5	62.9	1948.3	26.7	1809.8	22.6	681.5	38.0	1423.2	41.1	1255.8	58.0	1096.7	30.3	1407.9	46.2	1637.4	7.6	1918.5	65.8	1260.1	14.0
Sr	2834.9	37.6	1990.0	15.8	3133.7	47.2	3270.7	30.7	526.7	34.9	1451.7	41.0	1124.4	13.2	1928.0	83.8	1298.5	92.9	3330.1	14.9	2337.2	73.9	1375.7	21.9
Ba	1849.7	57.7	1731.9	56.0	2070.6	54.2	2259.3	81.1	711.3	55.2	1648.2	52.7	1555.3	48.1	1606.8	123.1	1171.2	74.1	2095.1	8.2	1691.9	64.4	1350.9	18.5
CL																								
Analysis	5		3		5		5		5		6		5		4		5		5		10		7	
		s.d.		s.d.		s.d.		s.d.		s.d.		s.d.		s.d.		s.d.		s.d.		s.d.		s.d.		s.d.
La	282.2	41.9	294.1	13.4	173.1	5.1	158.8	11.3	216.5	7.7	181.4	13.7	226.0	6.4	267.3	21.5	207.6	7.8	175.5	6.0	153.0	5.4	189.3	7.4
Ce	236.1	34.9	248.4	13.0	172.9	5.4	154.5	10.9	243.8	8.3	204.5	16.6	253.5	7.4	262.1	17.6	205.0	6.9	178.9	6.7	150.6	6.1	178.2	5.8
Pr	119.7	5.9	139.1	6.4	98.2	3.1	87.5	6.3	141.2	4.3	121.1	9.9	147.7	3.6	138.8	8.0	116.8	4.0	102.3	4.4	85.8	2.5	99.5	3.6
Nd	115.5	4.1	126.2	6.6	107.5	4.0	93.5	6.5	152.8	3.9	129.9	11.4	159.4	2.1	146.4	5.1	124.0	3.7	114.3	6.0	93.3	3.3	104.6	2.2
Sm	61.4	2.3	67.1	1.3	88.3	3.4	74.0	6.0	137.4	5.2	119.3	10.8	138.0	2.5	95.0	2.9	96.8	3.1	94.8	3.9	76.7	3.1	80.5	1.3
Eu	50.7	2.5	55.0	3.0	91.0	3.0	77.0	4.7	130.3	2.5	123.5	11.6	156.1	3.7	93.2	6.8	103.5	2.6	96.8	4.5	78.0	3.6	85.4	2.2
Tb	25.8	3.6	29.8	1.3	71.7	2.6	53.3	4.2	109.7	3.9	96.7	8.8	120.9	2.7	48.9	7.1	79.7	2.4	76.9	4.8	58.0	3.0	65.7	1.3
Dy	24.3	3.4	27.8	1.3	75.8	3.1	58.4	4.6	135.3	5.4	117.5	10.3	147.4	2.5	47.2	8.8	87.0	2.6	86.0	4.9	65.7	3.5	74.0	1.3
Y	29.2	4.4	33.0	1.4	85.0	2.7	63.4	4.9	153.5	6.9	132.1	11.3	164.3	3.7	57.1	10.1	101.4	3.4	98.8	6.0	75.1	3.9	89.8	5.7
Но	20.1	3.5	23.5	1.0	72.0	2.9	54.5	4.2	131.3	4.3	111.8	10.0	140.8	2.2	39.8	8.4	83.0	2.5	82.7	5.4	61.9	3.7	72.2	3.1
Er	16.0	3.5	19.0	1.0	62.7	2.6	46.6	3.7	128.3	5.6	108.2	9.4	136.1	3.4	33.1	7.9	71.8	2.1	72.7	5.2	55.2	3.4	63.7	2.4
Yb	14.5	3.3	16.3	0.6	55.1	1.6	38.6	3.2	123.6	3.9	103.5	9.4	134.0	3.4	28.4	6.8	60.2	2.4	68.3	5.7	53.6	3.9	59.2	2.1
Lu	13.0	3.0	14.1	0.6	46.1	1.1	31.1	2.3	105.3	4.2	89.7	8.1	116.1	3.4	24.8	6.0	48.4	2.1	57.7	5.3	42.9	2.9	48.1	1.5
Nb	190.7	42.8	175.0	34.2	187.0	22.5	177.5	21.6	289.1	42.8	298.5	111.3	239.5	129.6	192.7	34.4	205.9	5.9	210.3	18.9	165.7	16.0	117.4	6.0
Mn	2725.6	309.3	2751.2	64.3	2396.0	261.9	1433.4	98.4	5081.0	257.7	4180.7	462.0	4999.0	113.8	2208.9	172.6	2629.3	193.0	2196.1	83.8	2461.3	166.6	2176.0	117.4
Sr	14819.6	370.1	14893.4	76.4	10401.9	201.7	11611.4	228.3	8766.1	105.6	8008.9	205.3	9589.7	157.7	12561.0	501.3	11273.9	238.2	9713.8	158.0	9041.1	343.1	10275.0	107.3
Ba	6693.7	208.8	7883.9	292.6	5399.7	403.1	6127.5	269.8	6395.9	240.2	6935.7	814.0	8501.5	321.2	6603.6	283.8	6369.1	593.5	4618.8	191.5	4296.3	323.2	5888.0	466.7

Table IV.4. Continued.

Experiment	AK02_0)4*	T19_01 ^{*.#}		T19_03 [#]		T19_04*		AK05_01	l [*]	AK05_02#		AK05_03#		AK05_05#		AK06_01*		AK06_02	*	AK08_03*	
P (GPa)	0.4		0.8		0.8		0.8		0.4		0.4		0.4		0.4		0.4		0.4		0.4	
T (°C)	925		850		850		850		825		825		825		825		725		725		725	
SL																						
Analysis	6		10		8		10		14		9		7		9		11		11		7	
		s.d.		s.d.		s.d.		s.d.		s.d.		s.d.		s.d.		s.d.		s.d.		s.d.		s.d.
La	58.9	1.5	5.8	0.5	21.4	0.7	7.3	1.9	16.8	1.7	14.6	0.8	31.8	1.6	38.9	1.0	11.0	0.9	6.1	0.2	8.59	0.56
Ce	69.1	1.5	7.5	0.9	26.1	0.8	9.3	2.1	22.2	2.2	17.4	0.9	37.1	1.5	40.8	1.2	13.0	0.7	7.9	0.2	10.78	0.55
Pr	39.6	0.9	4.3	0.3	13.9	0.4	5.0	1.0	12.3	1.2	9.9	0.4	20.0	0.8	19.0	0.8	6.1	0.3	4.3	0.1	6.03	0.59
Nd	43.9	1.1	4.3	0.5	15.5	0.6	5.3	1.0	13.5	1.3	10.8	0.5	20.9	0.8	14.2	1.0	6.3	0.6	4.8	0.2	6.34	0.81
Sm	39.1	0.9	4.6	0.6	14.5	0.5	5.3	0.8	14.3	1.4	10.9	0.5	18.6	1.0	5.4	0.8	6.5	0.5	4.9	0.3	6.34	1.01
Eu	42.6	0.7	5.1	0.7	19.0	0.5	5.8	0.7	16.4	1.7	11.6	0.6	20.2	0.9	3.5	0.6	7.8	0.4	5.1	0.2	6.75	0.70
Tb	34.0	0.4	5.2	0.5	15.3	0.1	6.1	0.7	16.5	1.5	12.7	0.7	18.9	1.2	1.8	0.5	9.5	0.6	5.3	0.2	7.37	0.45
Dy	43.1	0.8	7.1	1.0	20.9	0.2	7.7	1.1	22.6	1.8	17.4	1.1	24.4	1.6	1.5	0.5	12.7	1.1	6.9	0.2	10.51	0.95
Y	51.2	0.9	9.6	1.5	27.1	0.3	10.4	1.6	29.9	1.8	24.7	1.8	33.5	2.2	1.8	0.5	20.8	1.9	10.3	0.5	15.96	1.60
Но	43.1	0.6	8.0	1.3	23.5	0.3	8.6	1.2	25.2	2.0	19.4	1.2	26.7	1.8	1.3	0.4	15.5	1.2	7.9	0.5	12.15	0.96
Er	41.9	0.8	9.0	1.6	25.3	0.4	9.7	1.4	26.3	2.2	22.2	1.6	28.0	1.9	1.2	0.4	17.6	1.4	8.5	0.6	13.76	0.97
Yb	48.2	1.0	13.6	2.5	35.3	0.4	14.4	2.1	33.6	2.5	32.0	1.7	36.6	2.5	1.7	0.5	24.9	2.0	12.6	0.9	21.45	1.41
Lu	40.7	0.6	12.5	2.3	32.7	0.4	13.0	1.5	28.0	2.3	27.6	1.1	32.5	1.9	1.9	0.4	24.7	1.9	12.3	0.8	20.39	1.55
Nb	228.6	5.6	120.6	16.3	150.2	1.8	145.2	11.2	225.8	48.4	138.8	10.4	186.3	8.5	66.0	5.7	60.5	3.5	80.8	1.6	76.06	5.10
Mn	1513.7	14.2	622.9	35.8	1142.6	19.3	669.2	26.4	807.5	26.1	966.9	18.0	1416.3	40.1	1091.3	31.3	719.8	32.2	636.5	12.9	536.90	28.88
Sr	2433.5	54.3	408.5	10.4	1154.9	19.3	465.8	10.8	560.1	36.0	672.5	7.6	1295.1	10.5	1930.8	43.9	241.9	6.7	169.3	2.9	376.62	17.40
Ba	1662.9	48.3	685.3	25.7	1799.2	34.0	909.8	61.1	901.1	101.7	1419.8	24.6	1808.6	39.4	1808.2	51.2	1162.0	32.0	508.2	11.9	823.70	39.25
CL			_		_																_	
Analysis	10		7		5		9		11		8		6		9		2		11		5	
		s.d.		s.d.		s.d.		s.d.		s.d.		s.d.		s.d.	170.0	s.d.		s.d.		s.d.		s.d.
La	150.5	9.5	168.0	19.2	338.4	40.0	195.7	11.9	198.6	34.2	336.4	29.4	391.2	34.4	459.8	30.2	447.7	60.1	298.3	26.0	376.79	10.01
Ce	151.9	10.8	160.7	20.2	349.5	44.0	190.0	10.3	194.4	27.3	330.7	27.3	376.0	27.9	410.9	17.8	394.0	79.1	278.1	16.0	345.24	7.41
Pr	85.3	5.5	92.0	6.5	1/3.7	22.7	105.4	5.2	103.8	13.0	167.7	17.0	189.4	16.8	174.6	10.0	193.7	39.7	154.5	9.4	177.62	4.43
Nd	91.8	4.9	92.9	7.9	192.7	29.2	112.1	5.4	109.9	13.4	178.2	19.6	188.9	14.3	126.8	7.4	205.2	40.5	160.6	7.3	172.92	4.75
Sm	/3.5	3.9	/6.0	3.8	156.8	25.4	92.9	5.2	90.6	8.6	144.7	19.2	142.9	13.5	42.0	5.2	170.5	35.2	128.8	6.5	131.33	2.96
Eu	/6.4	4.0	/6.6	7.4	187.9	29.0	89.8	5.1	91.6	8.8	138.2	19.0	140.5	10.2	25.3	4.3	1/1.8	49.7	117.8	8.3	135.62	4.30
10	54.2	2.8	65.4	5.9	155.2	18.7	82.3	5.9	/1.3	8.4	121.5	19.5	112.7	12.5	11.0	2.6	160.5	44.5	93.6	6.7	110.25	4.87
Dy	03.3	5.7	72.0	4.4	108.0	27.1	90.7	5.8	85.2	9.9	142.1	24.8	128.5	12.5	8.7	2.5	181.2	49.2	101.9	8./	132.31	5.40
Y Y	/4.8	4.1	93.1	1.9	202.4	22.3	115.7	8.1	105.0	15.2	182.7	35.0	162.9	22.3	10.1	2.8	304.1	28.4	130.8	15.0	201.80	5.12
HO	54.2	3.0	72.6	4.8	1/1.0	21.0	90.5	0.3	82.5	10.4	143.5	20.2	132.0	9.9	0.7	1.9	188.4	52.0	97.8	9.4	137.21	3.94
Er	54.2	2.0	07.5	5.5	104.7	19.5	87.2	0.4	13.3	9.9	139.5	20.4	117.1	13.4	5.4	1.0	184.8	52.9	80.3	9.7	130.20	1.50
YD	51.2	2.5	/1.3	5.0	1/4.0	19.5	90.9	0.5	05.5	8.9	140.9	21.2	113.3	10.2	5.7	1.1	1/3.3	01.2	80.2	14.0	130.30	4.02
LU	41.9	1./	62.2	4.2	105.9	52.9	/0.0	5.5 29.7	49.0	8.7	110.1	21.5	90.0	9.5	5.9	1.0	155.4	47.4	0/./	14.5	115.00	5.49
IND Mm	198.0	14.9	49.9	10.0	5072.0	1240 5	108.9	26.7	01.2	20.9	130.0	47.5	21/.8	1272.2	0/.1	242.2	03.5 5002.5	228 2	40.0	51./	43.74	25.02
IVIN Sm	1893./	202.6	2847.0	209.9	30/3.0	1249.5	4097.3	123.8	21/1.8	542.4 641.9	5009.3	1527.0	5500./ 12684.2	1212.3	3380.3	342.3 650.0	5992.5	328.2 724.6	5500.8 6858 4	313.3	1939.00	35.83
Sr Bo	6540.0	120.2	8/10.3	209.2	12220.5	451.4	9390./ 0010 C	1/3.0	10290.2	041.8	11510.0	3/3.9	12084.2	745.0	180/9.0	602.0	0332.3	/34.0	0838.4	1226 1	10/08.41	110.42
ва	4152.7	130.2	SSS6./	563.0	14120.7	3881.9	8848.6	1122.0	//48.4	1570.0	15519./	3286.1	14127.1	2652.9	11181.4	692.9	21654.4	3207.1	10457.9	1336.1	9132.87	185.06

We establish here a link between the REE concentrations of carbonatites and the differentiation of alkaline silicate magmas accounting for by the large variation of REE partition coefficients between carbonate and silicate melts. We plotted the La partition coefficient, $D_{La}^{CL/SL}$, as representative of other REE, as a function of the wt% CaO content in silicate melts (Fig. IV.4b), which is a good proxy of mineral fractionations during alkaline magma differentiation (Fig. IV.2b-d). In the experimental samples, the CaO content of the silicate melt decreases in response to the crystallisation of Ca-rich minerals during differentiation (section IV.4.2; Fig. IV.1 and Table IV.2). Fig. IV.4b clearly shows that La preferentially partitions in the carbonate liquid as crystal fractionation proceeds, establishing a direct link between carbonatite REE contents and differentiation of alkaline magmas.

Moreover, our data also show a very good correlation between both La and Ca partitioning (respectively $D_{La}^{CL/SL}$ and $D_{Ca}^{CL/SL}$; Fig. IV.4c). This correlation is also observed for other REE, though the correlation coefficient tends to decrease as the REE become heavier (Fig. IV.S14). This indicates that REE behave similarly to calcium, as expected given the similar ionic radii of REE³⁺ and Ca²⁺ (Shannon, 1976).

Figure IV.4. REE behaviour between carbonate and silicate liquids. REE partition coefficients (D_{REE}^{CLSL}) from this study and previous experimental investigations (grey dots; Hamilton et al., 1989; Veksler et al., 1998; Veksler et al., 2012; Martin et al., 2013). (a) Ca and REE partition coefficients measured between carbonate and silicate liquids. (c) and (d) La partition coefficients (D_{La}^{CLSL}) respectively versus the wt% CaO in the silicate melts and Ca partition coefficients (D_{Ca}^{CLSL}). CL: carbonate liquid; SL: silicate liquid.

Experiment	T14_01		T14_02		T16_01		T16_02		T18_01		T18_03		T18_04		T17_01		T17_02		T17_04		AK02_01		AK02_02	
P (GPa)	0.8		0.8		0.8		0.8		1.5		1.5		1.5		0.8		0.8		0.8		0.4		0.4	
T (°C)	975		975		950		950		925		925		925		925		925		925		925		925	
<u>C-</u>	5.09	s.a.	7.62	s.a.	2 27	s.a.	2 20	s.a.	16.75	S.G.	6 11	S.G.	10.24	s.a.	6 77	S.G.	8.07	s.a.	2.12	s.a.	2.01	s.a.	7 20	S.G.
Ca Lo	3.08	0.54	6.20	0.70	2.27	0.14	3.29	0.00	24.76	0.55	0.11 9.41	1.08	16.05	0.00	5.92	0.81	6.07 5.47	1.19	5.12 2.25	0.54	2.10	0.25	7.30 5.42	0.39
La	4.20	0.80	5.06	0.30	2.33	0.08	1.30	0.12	27.88	3.14	7 31	0.70	13.50	0.07	J.85 4 87	0.33	1.47	0.40	2.35	0.08	2.66	0.13	1 25	0.24
Dr	3.47	0.71	4.81	0.31	1.02	0.07	1.55	0.10	27.00	2.30	7.05	0.63	12.59	0.49	4.67	0.34	4.45	0.32	2.09	0.08	2.00	0.13	4.25	0.17
Nd	3 24	0.19	4.61	0.35	1.90	0.07	1.25	0.09	27.55	2.2 4 4.47	7.03	0.65	12.07	0.39	4.37	0.20	4.10	0.27	1.99	0.09	2.52	0.14	3.96	0.15
Sm	2 71	0.13	3.88	0.53	1.50	0.08	1.02	0.09	27.55	2 72	6.20	0.63	11.14	0.28	3 54	0.19	3 31	0.19	1.99	0.08	2.10	0.17	3.19	0.15
Eu	2.48	0.13	3.64	0.29	1.59	0.07	1.00	0.07	20.04	1.36	5.80	0.57	10.16	0.31	3.18	0.27	3.22	0.16	1.73	0.08	2.01	0.16	3.24	0.10
Tb	2.08	0.34	2.76	0.16	1.40	0.07	0.82	0.07	17.85	1.80	5.26	0.50	9.11	0.27	2.45	0.45	2.53	0.11	1.58	0.10	1.70	0.12	2.54	0.09
Dy	1.85	0.30	2.46	0.13	1.30	0.06	0.75	0.06	16.45	0.89	4.87	0.47	8.26	0.15	2.11	0.51	2.21	0.12	1.50	0.09	1.59	0.10	2.26	0.08
Ŷ	1.88	0.31	2.54	0.12	1.29	0.05	0.75	0.06	15.32	1.20	4.72	0.43	7.89	0.20	2.07	0.50	2.13	0.16	1.49	0.09	1.62	0.10	2.18	0.16
Но	1.75	0.35	2.31	0.11	1.22	0.06	0.70	0.06	14.77	1.30	4.58	0.45	7.72	0.14	1.87	0.53	2.00	0.12	1.43	0.09	1.48	0.11	2.08	0.10
Er	1.56	0.39	2.01	0.11	1.12	0.06	0.63	0.06	12.87	1.13	4.21	0.39	6.95	0.22	1.65	0.50	1.74	0.14	1.34	0.10	1.31	0.11	1.83	0.09
Yb	1.24	0.31	1.51	0.09	0.92	0.05	0.50	0.05	9.57	0.90	3.41	0.33	5.47	0.16	1.26	0.41	1.27	0.13	1.17	0.10	1.05	0.09	1.35	0.05
Lu	1.15	0.29	1.37	0.07	0.87	0.04	0.48	0.04	9.08	0.69	3.29	0.31	5.12	0.15	1.18	0.38	1.16	0.13	1.11	0.10	1.05	0.08	1.28	0.05
Nb	0.74	0.17	0.57	0.11	0.71	0.09	0.47	0.06	0.93	0.15	0.85	0.32	0.72	0.39	0.74	0.14	0.63	0.05	0.82	0.07	0.82	0.11	0.74	0.05
Mn	1.73	0.23	2.00	0.10	1.23	0.14	0.79	0.06	7.46	0.56	2.94	0.34	3.98	0.20	2.01	0.17	1.87	0.15	1.34	0.05	1.28	0.10	1.73	0.10
Sr	5.23	0.15	7.48	0.07	3.32	0.08	3.55	0.08	16.64	1.12	5.52	0.21	8.53	0.17	6.52	0.38	8.68	0.65	2.92	0.05	3.87	0.19	7.47	0.14
Ba	3.62	0.16	4.55	0.22	2.61	0.21	2.71	0.15	8.99	0.77	4.21	0.51	5.47	0.27	4.11	0.36	5.44	0.61	2.20	0.09	2.54	0.21	4.36	0.35
Experiment	AK02_04		T19_01		T19_03		T19_04		AK05_01		AK05_02		AK05_03		AK05_05		AK06_01		AK06_02		AK08_03			
P (GPa)	0.4		0.8		0.8		0.8		0.4		0.4		0.4		0.4		0.4		0.4		0.4			
T (°C)	925	a d	850	ad	850	a d	850	a d	825	a d	825	. d	825	a d	825	مط	725	. d	725	ad	725	a d		
Ca	3 35	0.12	23.00	1.42	11.80	1.00	21.25	3.26	17 37	3.05	20.55	1.01	10.67	2.10	10.67	0.88	28.24	2.62	35.83	2.86	33 14	1.70		
La	2.55	0.12	23.00	4.09	15.82	1.09	26.98	7.09	11.82	2 34	23.01	2 35	12.30	1 25	11.82	0.83	40.83	6.46	48.94	2.80 4.44	43.87	3.09		
Ce	2.20	0.16	21.39	3.65	13.40	1.73	20.90	4 75	8 76	1.52	18.96	1.83	10.13	0.86	10.07	0.53	30.31	6.29	35.04	2.27	32.02	1 77		
Pr	2.15	0.15	21.39	2.28	12.53	1.67	21.24	4.36	8.41	1.34	16.94	1.87	9.46	0.92	9.21	0.64	31.62	6.63	35.82	2.30	29.47	2.99		
Nd	2.09	0.12	21.41	3.16	12.41	1.94	21.25	4.11	8.16	1.28	16.56	1.99	9.05	0.77	8.91	0.82	32.36	7.12	33.69	1.98	27.27	3.54		
Sm	1.88	0.11	16.49	2.27	10.79	1.79	17.45	2.75	6.33	0.87	13.32	1.89	7.68	0.84	7.79	1.45	26.40	5.81	26.37	2.21	20.70	3.34		
Eu	1.79	0.10	15.02	2.49	9.88	1.55	15.60	2.02	5.58	0.78	11.95	1.74	6.96	0.60	7.15	1.67	21.99	6.46	23.18	1.82	20.10	2.19		
Tb	1.59	0.08	12.55	1.68	8.68	1.22	13.39	1.82	4.33	0.65	9.55	1.62	5.97	0.76	6.22	2.17	16.98	4.83	17.55	1.46	14.96	1.13		
Dy	1.47	0.09	10.13	1.59	8.07	1.30	11.83	1.85	3.68	0.53	8.16	1.52	5.27	0.62	5.71	2.44	14.26	4.06	14.71	1.36	12.58	1.25		
Y	1.46	0.08	9.71	1.72	7.46	0.83	11.08	1.87	3.51	0.55	7.38	1.54	4.86	0.74	5.57	2.19	14.61	1.92	12.74	1.60	12.65	1.30		
Но	1.40	0.07	9.05	1.60	7.30	0.93	10.54	1.68	3.27	0.49	7.40	1.43	4.95	0.50	5.18	2.17	12.19	3.87	12.42	1.39	11.29	0.95		
Er	1.29	0.05	7.51	1.44	6.51	0.78	8.96	1.43	2.78	0.44	6.30	1.28	4.18	0.56	4.66	2.21	10.50	3.12	10.18	1.33	9.46	0.87		
Yb	1.06	0.06	5.24	1.06	4.95	0.56	6.34	1.02	1.95	0.30	4.40	0.88	3.10	0.35	3.37	1.18	6.96	2.52	6.38	1.20	6.36	1.61		
Lu	1.03	0.04	4.98	0.97	5.07	1.62	5.87	0.78	1.77	0.34	3.99	0.79	2.77	0.33	3.14	0.92	6.21	1.98	5.51	1.22	5.67	0.47		
Nb	0.87	0.07	0.41	0.10	0.80	0.34	0.75	0.21	0.36	0.12	0.94	0.35	1.17	0.38	1.02	0.41	1.08	0.99	0.50	0.39	0.60	0.08		
Mn	1.25	0.13	4.57	0.51	4.44	1.10	6.12	1.11	2.69	0.43	5.18	1.58	3.74	0.90	3.10	0.33	8.32	0.59	5.20	0.91	3.65	0.21		
Sr	3.51	0.15	21.47	0.86	10.59	0.41	20.17	0.60	18.37	1.65	17.11	0.59	9.79	0.58	9.67	0.40	26.18	3.12	40.50	1.48	28.59	1.36		
No.	250	0.11	× 11	0.88	7.85	2.16	9.73	1.40	8.60	1.99	10.93	2.32	7.81	1.48	6.18	0.42	18.62	2.81	20.58	2.67	11.09	0.57		

Tableau IV.5. Trace elements and calcium partition coefficients between silicate and carbonate liquids. s.d.: standard deviation, calculated statistical uncertainty

IV.5. Discussion

IV.5.1. The differentiation effect on the REE contents of immiscible carbonatite.

REE partition coefficients between carbonate and silicate melts have been compared to previous investigation (grey dots, Fig. IV.4a). The same large variation observed in this study has also been noticed in literature data (Hamilton *et al.*, 1989; Veksler *et al.*, 1998, 2012; Martin *et al.*, 2013). Similarly, REE partition coefficients from other experimental studies, obtained in a vast range of P-T conditions (grey dots, Fig. IV.4a and Fig. IV.S12), essentially vary in response to changes in the melt composition. Such behaviour suggests that the large variation in REE partitioning shown in Fig. IV.4a is related to the change in the melt composition (Fig. IV.2a), being in turn due to crystal-liquid fractionation (Fig. IV.2b-d).

The correlation between both La and Ca partitioning (respectively $D_{La}^{CL/SL}$ and $D_{Ca}^{CL/SL}$, Fig.IV.4c) noticed in this study, and already highlighted in one previous study (Martin *et al.*, 2013), is also observed in all the other experimental works (see grey dots in Fig.IV.4c; Hamilton et al., 1989; Veksler et al., 2012). REE seem to behave similarly to calcium for all ranges of composition - i.e. Krich (sample AK06_02 from this study; Martin et al., 2013), F-bearing (sample AK08_03 from this study; Veksler et al., 2012) and alkaline-rich (this study; Hamilton et al., 1989; Veksler et al., 2012) compositions - suggesting that the $D_{Ca}^{CL/SL}$ represents a powerful proxy for REE partitioning. In brief at the magmatic stage, Ca-rich carbonatites immiscible at equilibrium with Ca-poor alkaline silica-undersaturated magmas are the most enriched in REE, while carbonatites immiscible with Ca-rich alkaline magmas are the REE-poorest.

The crystal fractionation trend (i.e. $D_{La}^{CL/SL}$ vs the wt% CaO content in silicate melts) observed in our experiments is less clear for some of the previous experimental data (grey dots in Fig.IV.4b; Hamilton et al., 1989; Veksler et al., 2012). This scatter of the literature data indicates that the CaO content of the alkaline liquids is not the only parameter capturing the systematic behaviour of REE during immiscibility.

In order to optimise the use of this D_{Ca}^{CLSL} as a proxy for the D_{REE}^{CLSL} , we propose below a series of parameterisations considering the molecular structure of the silicate melt.

IV.5.2. Carbonatite REE composition modelling

A modelling framework is proposed to calculate REE composition of carbonate liquids from the compositions of the coexisting silicate liquids. This empirical modelling follows three successive steps, based on the results of the present study and the existing literature data: i) calculating the Ca partition coefficient ($D_{Ca}^{CL/SL}$) from the silicate liquid composition, ii) establishing the correlation between REE and Ca partition coefficients, iii) predicting REE concentrations of carbonatite, from the silicate liquid composition, by the combination of the previous steps.

IV.5.2.1. $D_{Ca}^{CL/SL}$ modelling and melt structures

Based on an analyse of the correlation coefficients and considering the molecular configuration of REE in silicate melts, i.e. their ability to compete with other elements in the silicate melt structure (Ponader and Brown, 1989a; Mysen, 2004), the $D_{Ca}^{CL/SL}$ dependence on the silicate melt composition has been parameterised using three compositional terms: the silica content (SiO₂), the alumina saturation index noted ASI (Al₂O₃/(CaO+Na₂O+K₂O)) and the alkali/alkaline-earth cation ratio ((Na₂O+K₂O)/(CaO+MgO)) of the silicate melts. Each three parameters increase while the $D_{Ca}^{CL/SL}$

increases (Fig. IV.5a-c). These chemical parameters also changes as crystal fractionation proceeds (Fig. IV.2b-d): the liquid becomes silica-richer, evolves toward near-metaluminous composition $(Al_2O_3/(CaO+Na_2O+K_2O)\approx 1)$ and Na rather than Ca increasingly dominate as charge compensator. At phonolitic stage, the three above-mentioned compositional terms show a maximum value (Fig. IV.2).

Figure IV.5. Ca partitioning dependence on melt compositions. We represent the measured Ca partition coefficient (D_{Ca}^{CLSL}) between carbonate and silicate melts, against three terms relative to the silicate melts composition used for the D_{Ca}^{CLSL} calibration: the silica content (a), the ASI (alumina saturation index) (b) and alkali/alkaline-earth cation ratio (c) for this study (red dots) and the experimental database used for the modelling (grey dots; Freestone and Hamilton, 1980; Hamilton et al., 1989; Kjarsgaard et al., 1995; Jones et al., 1995; Brooker, 1998; Kjarsgaard, 1998; Veksler et al., 1998; Veksler et al., 2012; Martin et al., 2013; Massuyeau et al., 2015). CL: carbonate liquid; SL: silicate liquid.

Noteworthy, introducing any pressure or temperature dependences did not yield better results. This chemical/structural formulation, however, account well for studies on the chemical environment of REE in silicate melts (Ellison and Hess, 1989; Ponader and Brown, 1989b), identifying the silica content, the degree of polymerisation and the role of Na as charge compensator as major parameters affecting the REE structural accommodation in silicate melts. Such changes in the molecular structure of coeval carbonate melts do not exist since these liquids remain a fully ionic and fully depolymerised structures (McLennan and Taylor, 2012). Accordingly, in this parameterisation, the Ca and REE partitioning between silicate and carbonate melts are only ruled by the changes in the silicate melt compositions/structures. In the (primitive) peralkaline silicate liquid, Ca and REE contents can be relatively high, while these elements are not well accommodated in the silicate liquid close to metaluminous compositions; REE therefore tend to partition into the carbonate melt at equilibrium with composition close to the metaluminous join. Noteworthy, the CO_2 content in the silicate melt is not considered here but admittedly, it may play a role in REE behaviour.

The $D_{Ca}^{CL/SL}$ is formulated as a function of the three chemical/structural parameters as follows:

$$\ln\left(D_{Ca}^{CL/SL}\right) = a_0 + a_1 * SiO_2 + a_2 * \frac{Al_2O_3}{(CaO + Na_2O + K_2O)} + a_3 * \frac{(Na_2O + K_2O)}{(CaO + MgO)}.$$
(9)

Variables of equation (9) are defined on a molar basis (SiO₂, ASI and (Na₂O+K₂O)/(CaO+MgO), in molar fractions).

The D_{Ca}^{CLSL} model is calibrated on a large experimental database (Freestone and Hamilton, 1980; Hamilton *et al.*, 1989; Jones *et al.*, 1995b; Kjarsgaard *et al.*, 1995; Brooker, 1998; Kjarsgaard, 1998; Veksler *et al.*, 1998, 2012; Martin *et al.*, 2012, 2013; Massuyeau *et al.*, 2015), which regroups 120 experimental data of immiscible carbonate and silicate liquids in natural-like systems, at pressure and temperature respectively ranging from 0.04 to 3.2 GPa and 700 to 1400 °C (Table IV.6). Synthetic systems (Kjarsgaard and Hamilton, 1988; Brooker and Hamilton, 1990; Lee and Wyllie, 1996; Brooker and Kjarsgaard, 2011; Keshav and Gudfinnsson, 2013; Novella *et al.*, 2014) are excluded from this calibration because of their compositions being at odds with the alkaline magma systems. All the silicate melts from this experimental database (including data from this study) have composition evolving from strongly peralkaline to slightly metaluminous melts (ASI varies from 0.06 to 0.84; AI varies from -0.35 to 0.03; see Fig. IV.5b and Table IV.6). The calibration can thus be used for silicate melts of this range of composition, with the AI index between -0.35 and 0.05 and an ASI < 1. Moreover, as the lowest CaO contents in silicate melts used for the calibration is at 0.61 ± 0.03 wt% (this study, Table 3), the calculation can only be used for CaO higher than 0.50 wt%, in order to avoid extrapolation outside of the experimental database.

 $D_{Ca}^{CL/SL}$ values from the experimental database are measured in volatile-bearing compositions. However, for practical reasons, the compositional variables are calculated on a volatile-free basis (i.e., composition casts oxides: SiO₂, TiO₂, Al₂O₃, FeO, MgO, CaO, Na₂O, K₂O): the reason being that the model will be used on natural alkaline silicate rocks, which have been degassed and whose volatile content is unknown. A weighted least square regression has been used to parameterise this correlation (Mandel, 1964). This method is more accurate than a classical linear regression since it takes into account the uncertainty of the measured $D_{Ca}^{CL/SL}$ (weight of 1/ σ ln ($D_{Ca}^{CL/SL}$)²). This uncertainty has been calculated following the equation (8). The mean value of the measured relative uncertainty on both melts CaO contents is around 10 % (this study; Kjarsgaard, 1998; Martin et al., 2013; Massuyeau et al., 2015). To ensure that the regression method better takes into account the data with measured uncertainties, the uncertainty on the measured CaO contents of both the carbonate and silicate experimental liquids is defined as 20 % of the reported value when unspecified in the reference papers (i.e. Freestone and Hamilton, 1980; Hamilton et al., 1989; Kjarsgaard et al., 1995; Jones et al., 1995; Brooker, 1998; Veksler et al., 1998; Veksler et al., 2012). The regressed parameters a_0 to a_3 (eq. 10) are given in Table IV.7a.

The result of this regression is reported in the Fig. IV.6a. The measured $D_{Ca}^{CL/SL}$ are well reproduced, from the lowest values (close to 1) to the highest ones (around 40). The uncertainty on calculated $D_{Ca}^{CL/SL}$ is estimated by propagating errors (Meyer, 1975) obtained for the parameters a_0 - a_3 with the following formulations:

$$\sigma_{ln(D_{Ca}^{CL/SL})}^{2} = \sigma_{a_{0}}^{2} + \sigma_{a_{1}}^{2} * (SiO_{2})^{2} + \sigma_{a_{2}}^{2} * \left(\frac{Al_{2}O_{3}}{CaO + Na_{2}O + K_{2}O}\right)^{2} + \sigma_{a_{3}}^{2} * \left(\frac{Na_{2}O + K_{2}O}{CaO + MgO}\right)^{2},$$
(10)

and

$$\sigma_{D_{Ca}}^{2} = D_{Ca}^{CL/SL^2} * \sigma_{ln(D_{Ca}^{CL/SL})}^{2}.$$
(11)

Equation (9) reproduces the experimental database within uncertainty, including the fluorine-rich ones (Fig. IV.6a) and enables the estimation of the $D_{Ca}^{CL/SL}$ solely from the silicate liquid composition. This allows us to predict the change in $D_{Ca}^{CL/SL}$ along the crystal fractionation occurring during alkaline melt differentiation.

IV.5.2.2.
$$D_{REE}^{CL/SL} - D_{Ca}^{CL/SL}$$
 model.

La, Sm and Lu partition coefficients (respectively representing Light REE, intermediate REE and Heavy REE) are well correlated to the Ca partition coefficient (Fig. IV.S14). Martin et al. (2013) have noticed this correlation in their experimental results, and we validate this relationship in a much broader range of melt compositions and experimental conditions. A set of equation (Fig. IV.S14) linking $D_{REE}^{CL/SL}$ and $D_{Ca}^{CL/SL}$ has been calibrated against our data and the available literature data (Hamilton *et al.*, 1989; Veksler *et al.*, 2012; Martin *et al.*, 2013). 53 experiments at pressure and temperature respectively ranging from 0.04 to 3.2 GPa and 725 to 1260°C have been used (Table IV.6). The $D_{REE}^{CL/SL} - D_{Ca}^{CL/SL}$ regression (eq. 13) have also been parameterised by a weighted least square regression method (Mandel, 1964). The regressed parameters *a* to *b* are given in Table IV.7b for each REE.

From the calculated D_{Ca}^{CLSL} , the D_{REE}^{CLSL} can be computed by applying the correlations identified for each REE (Fig. IV.4c and Fig. IV.S14; Table IV.7b), following the equation:

$$D_{REE}^{CL/SL} = a * \left(D_{Ca}^{CL/SL} \right)^b.$$
(12)

108

Figure IV.6. Modelling for calcium and lanthanum partition coefficients between carbonate and silicate liquids. a. Modeled Ca partition coefficients between carbonate and silicate immiscible liquids (D_{Ca}^{CLSL} calculated) represented versus the experimentally measured Ca partition coefficients (D_{Ca}^{CLSL} measured), from this study (red dots) and the immiscibility database (grey dots; Tables IV.6 and IV.7a) used for the model (Freestone and Hamilton, 1980; Hamilton et al., 1989; Jones et al., 1995b; Kjarsgaard et al., 1995; Brooker, 1998; Kjarsgaard, 1998; Veksler et al., 1998, 2012; Martin et al., 2012, 109

2013; Massuyeau et al., 2015). b. Modeled La partition coefficients (D_{La}^{CLSL} calculated) as representative of other REE partitioning, against measured La partitioning (D_{La}^{CLSL} measured) parameterised from this study and other experimental studies (Hamilton et al., 1989; Veksler et al., 2012; Martin et al., 2013) on REE partitioning (Tables IV.6 and IV.7b). CL: carbonate liquid; SL: silicate liquid.

				Silicate melt							
				wt %		wt % - Volat	ile-free basis	Molar fractions			
Study	Ν	Р	Т	SiO ₂	CaO	SiO ₂	CaO	AI	ASI	Measured D _{Ca} ^{CL/SL}	Calculated D _{Ca} ^{CL/SL}
		(GPa)	(° C)					$[Al_2O_3\text{-}(Na_2O\text{+}K_2O)]$	$[Al_2O_3/(CaO+Na_2O+K_2O)]$		
This study *	23	0.4 - 1.5	725 - 975	38.9 - 52.1	0.6 - 11.5	44.8 - 55.7	0.7 - 13.2	-0.07 to -0.01	0.33 - 0.82	3.1 - 35.8	2.6 - 42.1
Brooker 1998	16	2.5	1250 - 1300	23.8 - 52.7	0.8 - 22.8	28.8 - 56.4	0.8 - 29.0	-0.35 to -0.03	0.07 - 0.84	1.0 - 8.5	0.9 - 7.5
Freestone and Hamilton 1980	8	0.07 - 0.76	995 - 1100	33.8 - 51.9	2.3 - 24.5	37.1 - 53.2	2.4 - 26.9	-0.15 to -0.07	0.15 - 0.52	1.0 - 7.6	1.3 - 10.6
Hamilton et al. 1989 *	15	0.08 - 0.6	1050 - 1250	31.9 - 50.5	3.0 - 24.6	35.6 - 52.6	3.2 - 27.5	-0.17 to -0.05	0.15 - 0.49	1.0 - 8.4	1.2 - 8.8
Jones et al. 1995	2	1	1250	28.5 - 33.6	19.8 - 24.2	33.4 - 38.2	22.5 - 28.4	-0.09 to -0.08	0.15 - 0.19	1.3 - 1.5	1.0 - 1.4
Kjarsgaard et al. 1995	7	0.106 - 0.38	700 - 850	40.1 - 50.1	1.0 - 5.5	46.3 - 54.2	1.1 - 6.4	-0.11 to -0.07	0.40 - 0.63	4.9 - 23.8	3.9 - 25.3
Kjarsgaard 1998	9	0.19 - 0.515	900 - 1025	37.8 - 52.1	1.8 - 15.2	42.6 - 54.4	1.9 - 17.1	-0.05 to -0.03	0.27 - 0.73	2.5 - 18.4	2.0 - 17.4
Martin et al. 2012	7	1.7	1220	32.8 - 47.8	7.6 - 18.0	38.2 - 50.6	8.0 - 21.0	-0.01 to 0.03	0.25 - 0.60	1.8 - 4.9	1.5 - 5.7
Martin et al. 2013 *	19	1 - 3.2	1150 - 1260	26.3 - 64.1	1.0 - 25.6	31.4 - 69.0	1.1 - 30.6	-0.08 to -0.01	0.06 - 0.84	1.2 - 24.2	0.8 - 30.1
Massuyeau et al. 2015	8	3	1300 - 1400	40.6 - 56.3	1.5 - 18.0	45.8 - 60.8	1.5 - 20.2	-0.06 to -0.01	0.32 - 0.69	1.9 - 13.2	2.3 - 11.0
Veksler et al. 1998	3	0.04 - 0.09	965 - 1015	53.3 - 57.6	3.9 - 8.0	53.6 - 58.8	4.0 - 8.2	-0.22 to -0.18	0.14 - 0.18	1.7 - 2.6	3.3 - 4.3
Veksler et al. 2012 *	4	0.1	850 - 950	38.8 - 57.3	3.0 - 7.0	45.3 - 60.6	3.2 - 8.2	-0.16 to -0.12	0.23 - 0.33	1.4 - 3.6	3.0 - 5.4

Table IV.5. Experimental database of immiscible carbonate and silicate melts used for the modelling of carbonatite REE compositions. All studies were used for the D_{Ca}^{CLSL} calculation. Only the studies with * were used for the D_{REE}^{CLSL} - D_{Ca}^{CLSL} modelling and carbonatite REE composition calculation. N: number of experiments; P: pressure; T: temperature; SL: silicate liquid; CL: carbonate liquid; SiO₂ and CaO contents of the silicate melts or in wt %. AI (alkalinity index) and ASI (alumina saturation index) of the silicate melts are in molar fractions.

The accuracy of the $D_{REE}^{CLSL} - D_{Ca}^{CLSL}$ parameterisation can be appreciated in Fig. IV.6b. The mean uncertainty on the measured D_{Ca}^{CLSL} characterised in this study and Martin et al. (2013) is around 10%. For the studies where the uncertainty is not reported (Hamilton *et al.*, 1989; Veksler *et al.*, 2012), an error of 20% of the measured D_{Ca}^{CLSL} mean value has been applied. Given the average uncertainties reported on D_{Ca}^{CLSL} , this procedure allows us to account for by the work of (Hamilton *et al.*, 1989; Veksler *et al.*, 2012), but this study and Martin et al. (2013) have then more weight and are more reliable in the parameterisation $D_{REE}^{CLSL} - D_{Ca}^{CLSL}$ (Fig. IV.6b).

The uncertainty (Meyer, 1975) on the calculated $D_{REE}^{CL/SL}$ is calculated as follows:

$$\sigma_{D_{REE}}^{2} = a^{2} * \left(\left(D_{Ca}^{CL/SL} \right)^{b} \right)^{2} * \left[\left(\frac{b}{D_{Ca}^{CL/SL}} \right)^{2} * \sigma_{D_{Ca}}^{2} + \left(\ln \left(D_{Ca}^{CL/SL} \right) \right)^{2} * \sigma_{b}^{2} \right] + \left[\left(D_{Ca}^{CL/SL} \right)^{b} \right]^{2} * \sigma_{a}^{2}.$$

$$(13)$$

with σ ($D_{Ca}^{CL/SL}$) the standard deviation on Ca partition coefficient and σ_a and σ_b the calculated uncertainty on the regressed parameter a and b.

For HREE, the correlations are less clear than for LREE and intermediate REE, as shown by D_{Lu}^{CLSL} (Fig. IV.S14). This may be due to the difference of ionic radii, since the radii of light and intermediate REE radii are similar to that of Ca, whereas HREE are smaller (Shannon, 1976; Watson, 1976). Likewise, the associated uncertainties are higher than for the other REE (Fig. IV.6b): this is probably due to the same reason and to the fact that the database (Hamilton *et al.*, 1989; Veksler *et al.*, 2012; Martin *et al.*, 2013) is less complete for HREE than for LREE.

IV.5.2.3. Calculation of carbonatite REE composition.

Equations (9) and (12) can be used to calculate the REE concentrations of the coexistent carbonate melt from the major elements and REE compositions of the silicate melt using the following equation:

$$m_{REE}^{CL} = m_{REE}^{SL} * D_{REE}^{CL/SL}.$$
(14)

with:

 m_{REE}^{SL} the natural mean concentration of REE in the silicate rocks,

 $D_{REE}^{CL/SL}$ the partition coefficient of REE calculated from the equation (12).

The uncertainty on the calculated carbonate liquid REE concentrations is estimated by the following formulation:

$$\sigma_{m_{REE-Y}}^{2} = \left(m_{REE-Y}^{SL}\right)^{2} * \sigma_{D_{REE-Y}}^{2} + \left(D_{REE-Y}^{CL/SL}\right)^{2} * \sigma_{m_{REE-Y}}^{2}.$$
(15)

Using this methodology, we can predict the REE concentrations of any carbonatites in equilibrium with an alkaline silicate melt of known REE contents. Noteworthy, the two relationships (eq. 09 and

12) indicate, in agreement with literature data (Watson, 1976; Ponader and Brown, 1989b), that the depolymerised melts tend to better accommodate REE.

Table IV.6. Calculated coefficients and associated errors used for the modelling. a. Coefficients calculated for the D_{Ca}^{CLSL} parameterisation from the silicate liquid composition. b. Coefficients calculated from the D_{REE}^{CLSL} calculation (weighted least square regression for both calculations); SL: silicate liquid; CL: carbonate liquid.

a.	D _{Ca} ^{CL/SL} modellin	ng				
	$Ln (D_{Ca}^{CL/SL}) = a_0$	$a_{1} + a_{1} * SiO_{2}$	$_{2} + a_{2} * Al_{2}O_{3}$	(CaO+N	$a_2O+K_2O) + a_3$	* (Na ₂ O+K ₂ O)/(CaO+MgO)
		a_0	-1.645		σ error (a ₀)	0.103
		a1	4.157		$\sigma \text{ error } (a_l)$	0.276
		a ₂	1.482		$\sigma \ error \ (a_2)$	0.144
		a ₃	0.116		σ error (a ₃)	0.007
b.	$\mathbf{D}_{\text{REE}}^{\text{CL/SL}} - \mathbf{D}_{\text{Ca}}^{\text{CL}}$	^{L/SL} modelli	ng			
	$D_{REE}^{CL/SL} = a * [(l = a)]$	D _{Ca} ^{CL/SL}) ^ ł)]			
		а	σ error (a)	b	σ error (b)	
	La	0.536	0.039	1.325	0.037	
	Ce	0.496	0.037	1.300	0.043	
	Pr	0.507	0.047	1.265	0.005	
	Nd	0.509	0.049	1.241	0.057	
	Sm	0.471	0.049	1.225	0.056	
	Eu	0.446	0.044	1.233	0.054	
	Gd	0.508	0.068	1.171	0.073	
	Tb	0.498	0.055	1.088	0.060	
	Dy	0.418	0.067	1.175	0.082	
	Y	0.425	0.057	1.192	0.069	
	Но	0.210	0.072	1.431	0.162	
	Er	0.420	0.058	1.097	0.073	
	Yb	0.339	0.052	1.127	0.078	
	Lu	0.356	0.050	1.074	0.075	

IV.5.3. Predicting carbonatite REE magmatic enrichments

We propose two applications using these equations. The first one validates the method on a carbonatite and silica-undersaturated alkaline intrusive suite currently being explored for its REE content (Lofdal magmatic suite; Bodeving et al., 2017). The second one employs a large dataset of alkaline silicate rocks, in order to estimate the degree of enrichment of the carbonatites that could potentially be produced by immiscibility processes in the differentiation course of alkaline magmas.

IV.5.3.1. Identifying coeval immiscible carbonate-silicate liquids

The first application concerns the Lofdal intrusive suite in Namibia that constitutes a textbook case where coeval carbonatites and silica-undersaturated magmas have been described (Bodeving *et al.*, 2017). In fact, the carbonatite supposedly represents an immiscible liquid equilibrated with either phono-tephritic or phonolitic melts compositions that have been observed as volcanic dykes (Bodeving *et al.*, 2017). The REE compositions of the carbonatite melt were calculated in equilibrium with the phono-tephritic and the phonolite melts of known REE content using eq. (09), (12) and (14). The calculated carbonatite magma formed at equilibrium with the phono-tephritic magma perfectly matches the REE composition of the Lofdal carbonatite (Fig.IV.7). In contrast, carbonatites

equilibrated with the phonolitic melt leads to calculated REE concentrations significantly higher than the Lofdal one: 1589 ppm of calculated La in the carbonatite, instead of 317 ppm in the natural carbonatite. This is due to the more fractionated nature of the phonolite, inducing a high calculated $D_{Ca}^{CL/SL}$ and high carbonatite REE contents. Thus, we conclude that the Lofdal carbonatite derives from the phono-tephrite rather than phonolite magmas; noteworthy, this methodology indicates that we can identify not only the composition of the coeval carbonate-silicate liquids but also at which magmatic stage the carbonate-silicate separation occurred in the crystallisation course of the alkaline magma. This validates our modelling and constitutes a promising tool for capturing the processes of formation of carbonatite melts.

Figure IV.7. Modelled carbonatite REE compositions compared to the natural carbonatite and silicate rock compositions of Lofdal in Namibia. Carbonatite REE contents are calculated here from phonolite (grey triangles) and phono-tephrite (red triangles) mean compositions of the Lofdal magmatic suite in Namibia (Bodeving et al., 2017) and normalised to chondrites (McDonough and Sun, 1995). The calculated carbonatite REE concentrations (filled circles) are compared to those of the natural carbonatite from this district (open blue circles; Bodeving et al., 2017). The error bars of the two compositions are estimated from the error propagation formalism detailed in the main text. Ca partition coefficients calculated from the first step of the modelling are indicate for both calculated carbonatite REE compositions in brackets.

IV.5.3.2. Carbonatite REE enrichments across the differentiation course of alkaline magmas.

In the second application, we calculated the $D_{Ca}^{CL/SL}$ for natural alkaline silica-undersaturated magmatic rocks originating from two distinct geological settings (Fig. IV.8): the East-African Rift representing intracontinental rifting compositions, and the Canary and Cape Verde Islands representing hotspot settings on an oceanic lithosphere (data from GEOROC database and De Moor et al., 2013, Mattsson et al., 2013 and Mana et al., 2015). In total 540 samples from GEOROC database (*http://georoc.mpch-mainz.gwdg.de/georoc/*) and 75 samples from additional publication (De Moor *et al.*, 2013; Mattsson *et al.*, 2013; Mana *et al.*, 2015) were used for the East African Rift, including data from the Ol Doinyo Lengai volcano in Tanzania (De Moor *et al.*, 2013), the most alkali-rich silicate rocks in Fig. IV.8a with Na₂O+K₂O > 15 wt% and 40-45 wt% of SiO₂ (arrow in Fig. IV.8a).

Canary and the Cape Verde Islands, 686 and 312 samples were also selected (GEOROC database exclusively), respectively. For all settings, representative analyses of volcanic rocks belonging to the alkaline and hyper alkaline magmatic series were selected (melilite, basanite, foïdite, leucitite, nephelinite, tephrite, phono-tephrite, phonolite, and phono-trachyte), with respect to the limit of the modelling (i.e. AI, ASI and CaO contents of the silicate melts in the range of composition exposed in IV.5.2.1). We assume that immiscible carbonate melts can be produced at any stage along the differentiation course, though, it is unclear whether such immiscible processes can occur for primitive magma (Weidendorfer et al., 2016). The grey line in Fig. IV.8a separates the domain where immiscibility has been experimentally constrained from the domain where immiscibility may occur (Schmidt and Weidendorfer, 2018); in the latter domain, the current experimental dataset do not allow a firm statement yet (Fig. IV.S15). For both the East-African Rift and Island hotspot silicate compositions, the modelled $D_{Ca}^{CL/SL}$ are relatively low for melilitic to nephelinitic magmas and increase as both silica and total alkali contents increase across the alkaline magmatic series. The highest calculated Ca partition coefficients correspond to phonolitic and phono-trachytic compositions (Fig. IV.8a). Therefore, any carbonatites being immiscible with those silicate compositions must present a high REE-partition coefficients. Noteworthy, though the alkaline compositions shown in Fig. IV.8a may not all be subject to immiscibility, this study and many other experimental works leave no doubt on the fact that the phonolitic and phono-trachytic compositions, defining the REE enrichments optimum, can coexist with immiscible carbonate melts (Fig. IV.S15).

The REE compositions of alkaline silica-undersaturated rocks from the East African Rift and Island hotspots normalised to chondrite (McDonough and Sun, 1995) are shown in Fig. IV.9a and IV.10a respectively. From those alkaline magma REE compositions and the calculated $D_{Ca}^{CL/SL}$ (Fig. IV.8a), REE concentrations of the hypothetic immiscible carbonatites have been calculated. For the sake of simplicity, only calculated La and Lu abundances in carbonatites, respectively representing LREE and HREE, are plotted as a function of the CaO concentration in alkaline rocks (Fig. IV.8b). For all settings, the calculated REE concentrations in carbonatites increase as the CaO concentration decreases in the alkaline silicate magmatic rocks; the $D_{Ca}^{CL/SL}$ increases as indicated with the colour gradient in Fig. IV.8b. The carbonatites in equilibrium with fractionated alkaline magmas (lowest CaO concentrations) have then the highest REE concentrations and it can be noticed that the increase in REE content is asymptotic (Fig. IV.8b).

Finally, the chondrite-normalised REE profiles for carbonatites are shown in Fig. 9b for the East African Rift and in Fig.IV.10b for Canary and Cape Verde Islands. In all cases, the REE-richest carbonatites corresponding to the highest $D_{Ca}^{CL/SL}$ (in red, Fig.IV.9b and IV.10b) are calculated in equilibrium with phonolitic/phono-trachytic magmas (Fig.IV.8a). Their REE contents depend, in principle, on both the REE contents of the coeval silicate melts and the variations in the calculated $D_{Ca}^{CL/SL}$. However, the REE contents of the alkaline silicate rocks vary only by a factor of 10 (Fig. IV.9a and IV.10b), while the calculated REE concentration ranges for the equilibrium carbonatite melts vary by three order of magnitude (Fig. IV.9b and IV.10b), indicating a prime control by the immiscibility process. This process is, in turn, affected by the changes in the residual silicate liquid compositions upon differentiation.

Figure IV.8. Natural alkaline magmatic rocks from the East-African Rift and the Canary and Cape Verde Islands, and calculated composition of potential associated carbonatites. **a**) TAS diagram showing the composition of alkaline magmatic rocks (on a volatile-free basis) from the East-African Rift, the Canary Islands and the Cape Verde Islands: data from the GEOROC database and additional studies (De Moor et al., 2013; Mattsson et al., 2013; Mana et al., 2015). The colour gradient from blue to red indicates increasing values of D_{Ca}^{CLSL} , calculated from the major element composition of each silicate rock, for the East-African Rift (circles), Canary Islands (triangles) and Cape Verde Islands (squares) settings. Data from the Ol Doinyo Lengai volcano in Tanzania (black arrow) follow a different trend of differentiation characterised by hyper-alkaline compositions (De Moor et al., 2013). The grey line correspond to the maximum extent of miscibility gap proposed by Schmidt and Weidendorfer (2018) which separate the field where immiscibility has been observed from the domain not investigated so far (Fig. IV.S15). **b**) Calculated La and Lu concentrations of potential carbonatites coexisting

with alkaline magma compositions in (a), against the CaO contents (wt%) of the alkaline magmatic rocks from the three geological settings.

Figure IV.9. Alkaline magmatic rocks from the East African Rift and calculated carbonatite compositions normalised to chondrite. (a) Changes in the REE contents of alkaline magmatic rocks from the East African Rift across differentiation. The East-African Rift silicate magmatic rocks used to calculate carbonatite REE contents of Fig. IV.8 are normalised to chondrites (McDonough and Sun, 1995). The calculated Ca partition coefficient (D_{Ca}^{CLSL} calculated) is represented for each magmatic composition by a colour gradient (data from GEOROC; De Moor et al., 2013; Mattsson et al., 2013; Mana et al., 2015). (b) Calculated carbonatite REE compositions normalised to chondrites. REE contents of carbonatites are calculated from the alkaline silicate magma compositions and are normalised to chondrite (McDonough and Sun, 1995). The anomalies in some chondrite-normalised REE profiles reflect anomalies of natural silicate rocks compositions. The profiles are 117

characterized by a strong enrichment in LREE and a relatively slight flat distribution of HREE. The grey field represents the compositions of carbonatite REE deposits currently mined: Bayan Obo, Mianing deposits and Mountain Pass (from Verplanck et al., 2016).

Alkaline silicate rocks from the famous Ol Doinyo Lengai in Tanzania (grey arrow in Fig. IV.8a; data from De Moor et al., 2013), are not in the optimum of carbonatite REE enrichment, and are rather characterised by residual liquids evolving toward hyper-alkaline, silica depleted and Ca-rich compositions. Moreover, in Fig.IV.11 which presents the AI index against the ASI of the alkaline silicate rocks used in this application from the three geological context, the optimum of REE enrichment correspond to composition slightly peralkaline to slightly metaluminous for the three locations ($D_{Ca}^{CLSL} > 20$; AI around -0.04 to 0.03; ASI around 0.70 to 1.0). The magmatic rocks from the Ol Doinyo Lengai volcano evolving toward strongly peralkaline compositions (AI from -0.26 to -0.05, Fig.IV.11), are thus moving away from the optimum of carbonatite REE enrichments. This is consistent with the composition of natural natrocarbonatite from the Ol Doinyo Lengai volcano, which, at some magmatic stage, must coexist with these strongly peralkaline rocks, and are in fact less REE-rich compared to other carbonatites. The optimum of carbonatite REE enrichment is then rigorously restricted to phonolite / phono-trachyte with composition at the peralkaline-metaluminous boundary, as shown in Fig.IV.11.

Calculated REE concentrations of carbonatites are compared to those of carbonatite REE deposits (grey field in Fig. IV.10). Only the most primary carbonatite compositions - the one which present the most primary characteristic (magmatic composition, texture and mineralogy) - have been chosen for the comparison (compositions selected in Verplanck et al., 2016). For the two geological settings, REE enrichments calculated for carbonatite melts in equilibrium with phonolitic magmas are similar to those observed in the REE-richest carbonatites: e.g., $\sum REE > 30\ 000\ ppm$ (Verplanck *et al.*, 2016). Carbonatites formed by immiscibility processes with phonolitic magmas have concentrations comparable to those of carbonatite REE deposits, and are therefore candidates for the parental melts of some of these carbonatite-REE deposits. Such an assumption thus implies that in the course of the magmatic fractionation processes of alkaline melts where less fractionated silicate rocks dominated (e.g., tephrite, phono-tephrite), some pulses may occasionally yield REE-rich carbonatite sheets formed by immiscibility with a more evolved phonolitic melts. This may explain why in carbonatite REE deposits only a few dykes among hundreds are REE-enriched and thus highly enriched (Wall and Mariano, 1996; Castor, 2008; Yang *et al.*, 2011; Néron *et al.*, 2018).

Noteworthy, the crystallisation and fractionation of the carbonatite melt, and late- to post-magmatic fluid-mineral interactions constitute late stage processes affecting REE-distribution, as evidenced in many carbonatites (Verplanck et al., 2016). The evolution of carbonatite composition in nature is often described as starting from a Ca-carbonatites, than Mg-carbonatites and finally Fe-carbonatites (Wall and Mariano, 1996), with decreasing temperature and increasing REE-contents. Fe-carbonatites are "late carbonatites" as described in Wall and Mariano (1996), and rather enriched in REE (Woolley and Kempe, 1989; Wall and Mariano, 1996; Verplanck et al., 2016). Ca-carbonatites may also present remarkable concentrations in REE (Yang et al., 2011; Verplanck et al., 2016). Nevertheless, late- to post- magmatic processes may obliterate the primary magmatic REE enrichments. Thus, fluids that are derived from magmatic exsolutions may remobilise the REE and transport them to form ore concentrations in the various carbonatite types (Ca-, Mg- and Fe- carbonatite). Those processes hence do not contradict this carbonatite REE enrichments modelling, as the parameterisation is based on the REE behaviour between carbonate and silicate melts at the magmatic stage, along the alkaline magma differentiation course. In the case of clearly identified late- to post- magmatic processes responsible of REE mineralisations in a natural carbonatite, as for the Lofdal Magmatic Suite in Namibia (IV.5.3.1), this modelling can be apply to highlight the origin of the primary carbonate melt and to predict the

timing of immiscibility between carbonatite and an associated alkaline rock, if a common origin is supposed.

Figure IV.10. Alkaline magmatic rocks from the Canary and Cape Verde Islands, and calculated carbonatite compositions normalised to chondrite. (a) Changes in the REE contents of alkaline magmatic rocks from the Canary (triangles) and Cape Verde Islands (squares) across differentiation (data from GEOROC database). The silicate magmatic rocks used to calculate carbonatite REE contents of Fig. IV.8 are normalised to chondrites (McDonough and Sun, 1995) for boths settings. The colour gradient represent the calculated Ca partition coefficient (D_{Ca}^{CLSL} calculated) for each magmatic rocks by a. (b)

Calculated carbonatite REE compositions normalised to chondrites, for the Canary and Cape Verde Islands. Carbonatite REE compositions are calculated from the alkaline silicate magmas shown in Fig.IV.8 and normalised to chondrite (McDonough and Sun, 1995). The chondrite-normalised REE profiles are also characterised by a strong enrichment in LREE and a relatively slight flat distribution of HREE. The grey field represents the compositions of carbonatite REE deposits currently mined: Bayan Obo, Mianing deposits and Mountain Pass (from Verplanck et al., 2016).

Conversely to some carbonatites identified in the East African Rift (Wall and Mariano, 1996), the carbonatites occurring in the Canary and Cape Verde Islands are not particularly enriched in REE (Wallace, 1998; Hoernle et al., 2002; Mourão et al., 2010). However, the alkaline silicate melts of all settings broadly have the same REE concentration ranges (Fig. IV.9). This suggests that immiscibility did not occur in these oceanic settings at the phonolite/phono-trachytic stage, but at a rather more primitive stage (Wallace, 1998). One possible explanation for this is that at phonolitic stages, CO_2 degassing in the shallow plumbing system of these volcanoes may prevent immiscibility processes. Melt inclusions indeed show that CO₂ is a major constituent of primitive Canary Islands magmas (Wallace, 1998; Longpré et al., 2017), exceeding the weight percent level (Wiesmaier et al., 2011), whereas differentiated magmatic rocks do not present high CO₂ concentrations (Staudigel *et al.*, 1986; Wiesmaier et al., 2011). For some reason, alkaline magmas from these oceanic settings must have lost their CO₂ content at early stage of differentiation preventing the formation of immiscible carbonatites at a phonolitic stage (Brooker, 1998). In the East-African rift, differentiated magma must still contain enough CO_2 to permit saturation in carbonatite melts from a silicate magma, which may be related to the dynamics of CO_2 flushing through the plumbing system (e.g., Fischer et al., 2009; De Moor et al., 2013). The fate of REE upon differentiation of alkaline magma must then not be only considered as controlled by fractionation processes since the (CO_2) degassing dynamics must also be taken into account.

Figure IV.11. Optimum of carbonatite REE enrichment along the alkaline magma differentiation course, for the East African Rift and Canary and Cape Verde Islands. The alkalinity index ($AI = AL_2O_3$ -(Na_2O+K_2O)) for all the alkaline magmatic rocks

of the three settings from Fig.IV.8-9-10 is represented against their alumina saturation index (ASI = Al_2O_3 / (CaO+Na₂O+K₂O)). Both index are calculated in molar fractions. The calculated Ca partition coefficient (D_{Ca}^{CLSL} calculated) is represented for each magmatic compositions by a colour gradient. The optimum of carbonatite REE enrichment correspond to phonolitic / phono-trachytic compositions ($D_{Ca}^{CLSL} > 20$), at the boundary between peralkaline and metaluminous domains (grey field). The hyper-alkaline rocks from the Ol Doinyo Lengai volcano (black arrow) which present a strong peralkalinity, are far from this optimum.

IV.6. Conclusion

This study provides a quantitative analyse of the fate of REE during the genesis of carbonatite melts by immiscibility with alkaline silicate magma. We show that the degree of fractionation of the alkaline magma when the carbonatite melt segregates plays a key role on REE-partitioning: primitive alkaline magma tends to retain REE while in fractionated phonolitic melts, carbonatites can efficiently concentrate the REE at levels of several wt-percent. This implies that the REE-content of carbonatite melts can be used to track the timing of their segregation from alkaline melts and to define both melt compositions at equilibrium. This also implies that magmatic processes producing highly REE-rich carbonatites are identified and that carbonatite produced at immiscibility with phonolitic melts present sufficient REE amounts to reach REE-deposits concentrations. Yet, carbonatite REE-deposits and most carbonatites worldwide are intrusive and do certainly not directly mirror the composition of carbonatite melts of interest in this study. Crystallization and late magmatic hydrothermal processes must be considered in order to fully address the range of REE contents of carbonatites.

IV.7. Supplementary material

This Supplementary Material contains four supplementary figures (Fig.IV.S12 to IV.S15) and three supplementary tables (Table IV.S8 to IV.S10).

Figure IV.12. Lanthanum partition coefficients against the temperature. The La partition coefficients (D_{La}^{CLSL}) are represented against the temperature for this study and literature data (Hamilton et al., 1989; Veksler et al., 1998; Veksler et al., 2012; Martin et al., 2013). For all experiments, no clear temperature effect is observed, as the highest D_{La}^{CLSL} correspond to both high temperature and low temperature experiments. CL: carbonate liquid; SL: silicate liquid.

Figure IV.13. Lanthanum partition coefficients against the carbonate melt fluorine contents. We represent the measured La partition coefficients (D_{La}^{CLSL}) versus the F content (wt%) in carbonate melts: data from this study and from Veksler et al. (2012). The highest D_{La}^{CLSL} correspond in this study to both F-poor and F-rich carbonate melts. CL: carbonate liquid; SL: silicate liquid.

Figure IV.14. Correlation of REE and Ca partitioning measured between carbonate and silicate melts. The REE partition coefficients (D_{REE}^{CLSL}) are represented for three REE, from this study and previous experimental studies (Hamilton et al., 1989; Veksler et al., 1998; Veksler et al., 2012; Martin et al., 2013). Here we show only La, Sm and Lu partition coefficients 123

wich are respectively representive of the LREE, the intermediate REE and the HREE. Each REE-Ca correlation is detailed in Table IV.7b. CL: carbonate liquid; SL: silicate liquid.

Figure IV.15. Composition field of experimental silicate melts immiscible with carbonate melts. We report here the total alkali contents and the SiO₂ (wt%) composition of immiscible silicate melts (on a volatile-free basis), for natural systems (red dots from this study and brown dots from Freestone and Hamilton. 1980; Hamilton et al.. 1989; Kjarsgaard et al.. 1995; Jones et al.. 1995; Brooker. 1998; Kjarsgaard. 1998; Veksler et al.. 1998; Dasgupta et al.. 2006; Veksler et al.. 2012; Martin et al.. 2013; Massuyeau et al.. 2015) and synthetic systems (grey dots; Brooker and Hamilton. 1990; Lee and Wyllie. 1996; Brooker and Kjarsgaard. 2011; Keshav and Gudfinnsson. 2013; Novella et al.. 2014) in a Total Alkali Silica diagram (TAS diagram; Le Bas et al., 1986). The grey line corresponds to the "maximum extent of misicibility gap" proposed by Schmidt and Weidendorfer (2018) and which supposed that no silicate melts bellow this line can be immiscible with carbonate melts. The dark line is drawn from all previous works and corresponds to the lower limit of the compositional fields. For now, no immiscibility experiments have been made bellow this compositional fields. CL: carbonate liquid; SL: silicate liquid.

Experiment	T16_03		T16_04		T17_03		AK02_03		AK01_01		AK01_02		AK01_03		AK01_04	
P (GPa)	0.8		0.8		0.8		0.4		0.2		0.2		0.2		0.2	
T (°C)	950		950		925		925		925		925		925		925	
Analysis	5		5		18		4		6		6		15		14	
		s.d.		s.d.		s.d.		s.d.		s.d.		s.d.		s.d.		s.d.
SiO ₂	34.48	0.38	34.76	0.72	34.06	0.31	34.99	0.18	38.29	0.24	42.96	1.03	37.98	0.65	34.92	1.87
TiO ₂	1.65	0.05	1.79	0.09	1.67	0.13	1.75	0.09	1.52	0.10	1.86	0.06	1.40	0.11	1.35	0.13
Al ₂ O ₃	11.31	0.25	11.39	0.15	10.91	0.11	11.81	0.28	11.56	0.19	10.90	0.45	13.11	0.51	12.55	0.58
FeO	7.72	0.31	7.93	0.45	7.68	0.36	6.95	0.14	8.41	0.44	7.89	0.29	8.37	0.39	8.64	0.48
MnO	0.30	0.05	0.29	0.02	0.28	0.03	bdl	-								
MgO	2.16	0.05	2.07	0.07	2.08	0.03	1.46	0.04	1.22	0.05	1.23	0.07	1.32	0.07	1.45	0.09
CaO	15.34	0.14	15.07	0.27	15.14	0.15	15.32	0.25	12.73	0.19	9.13	0.17	12.41	0.41	12.74	0.15
Na ₂ O	6.31	0.85	7.11	0.88	7.53	0.13	7.65	0.14	9.36	0.21	10.29	0.71	9.00	0.23	8.40	0.42
K ₂ O	3.04	0.07	2.83	0.10	2.89	0.16	3.35	0.15	4.47	0.13	5.93	0.09	4.32	0.16	3.85	0.16
P ₂ O5	bdl	-	bdl	-	0.33	0.06	bdl	-	0.57	0.07	0.41	0.05	0.44	0.08	0.43	0.07
BaO	bdl	-	bdl	-	bdl	-	bdl	-	bdl	-	bdl	-	bdl	-	bdl	-
SrO	bdl	-	bdl	-	bdl	-	bdl	-	bdl	-	bdl	-	bdl	-	bdl	-
F	bdl	-	bdl	-	bdl	-	bdl	-	bdl	0.26	1.13	0.25	bdl	-	0.73	0.11
Cl	0.16	0.02	0.17	0.03	0.15	0.03	0.22	0.02	0.32	0.02	0.54	0.05	0.30	0.03	0.27	0.04
Total	82.46	-	83.42	-	82.72	-	83.50	-	88.45	-	92.26	-	88.65	-	85.32	-
Na ₂ O+K ₂ O	9.35	0.92	9.94	0.98	10.42	0.29	11.00	0.29	13.83	0.34	16.21	0.81	13.32	0.39	12.25	0.58
AI [Al ₂ O-(Na ₂ O+K ₂ O)]	-0.02		-0.03		-0.04		-0.03		-0.06		-0.08		-0.05		-0.04	
$ASI \left[Al_2O_3 / (CaO + Na_2O + K_2O)\right]$	0.27		0.27		0.25		0.27		0.27		0.27		0.31		0.31	
Fe # [FeO/(FeO+MgO)]	0.67		0.68		0.67		0.73		0.79		0.78		0.78		0.77	

Table IV.7. Major element concentrations of experimental silicate liquids (wt %) not immiscible with carbonate liquids, analysed by EMPA. Bdl: below detection limit; s.d. standard deviation, statistical uncertainty calculated on the mean value. The AI, ASI and Fe# are in molar fractions.

Table IV.8. Trace element concentrations of experimental silicate liquids (ppm) not immiscible with carbonate liquid. Concentrations have been measured by LA-ICP-MS. Bdl: below detect	ion
limit; s.d.: standard deviation, statistical uncertainty calculated on the mean value; σ error: mean analytical uncertainty given by GLITTER software; *: sample analysed by the Thermo Elem	ent
XR ICP-MS; #: sample analysed by the Agilent 7500 CS quadrupole ICP-MS.	

Experiment	T17_03 [#]			AK02_03*			AK01_01 [#]			AK01_02#			AK01_03#			AK01_04#		
P (GPa)	0.8			0.4			0.2			0.2			0.2			0.2		
T (°C)	925			925			925			925			925			925		
Analysis	4			6			5			3			3			1		
		s.d.	σ error		s.d.	σ error		s.d.	σ error		s.d.	σ error		s.d.	σ error		s.d.	σ error
La	71.4	0.2	2.8	72.2	1.6	7.2	64.1	0.8	2.2	41.0	2.0	1.7	55.1	1.4	2.3	59.4	-	2.8
Ce	80.2	0.3	3.0	82.3	2.3	8.4	59.5	0.5	2.2	33.6	2.7	1.6	50.5	1.9	2.5	56.3	-	3.2
Pr	47.4	0.2	1.7	46.7	1.1	3.7	33.1	0.2	1.3	19.5	1.1	1.0	28.1	1.3	1.5	31.5	-	1.9
Nd	53.7	0.4	2.0	51.9	1.3	3.3	35.3	0.3	1.2	20.3	2.9	1.1	30.0	1.8	1.6	34.3	-	2.0
Sm	47.7	0.4	2.0	45.9	1.0	2.7	38.0	0.7	1.3	28.2	2.7	1.5	34.9	2.2	1.8	37.2	-	2.2
Eu	49.3	0.1	2.0	52.1	1.3	3.3	49.3	2.3	1.7	34.1	1.9	1.5	41.3	2.4	1.8	42.8	-	2.1
Tb	43.9	0.3	1.9	39.8	1.1	2.5	52.3	0.9	2.0	53.7	2.5	3.0	43.7	2.5	2.7	46.0	-	3.3
Dy	50.8	0.3	2.1	46.4	1.3	2.5	70.9	0.4	2.4	84.2	2.4	4.4	56.4	3.9	3.2	59.2	-	3.8
Y	57.6	0.1	2.0	53.5	0.9	3.0	93.9	0.5	3.2	133.2	10.9	4.5	74.7	0.6	2.4	75.3	-	2.5
Но	50.5	0.2	2.2	45.2	1.3	2.6	73.4	0.5	2.5	95.6	3.4	4.9	58.6	3.7	3.2	60.5	-	3.8
Er	47.4	0.2	2.1	43.2	1.5	2.2	79.3	0.7	3.0	107.9	6.4	5.1	62.5	3.5	3.1	62.4	-	3.5
Yb	49.3	0.6	2.1	47.6	1.4	2.3	83.7	1.0	3.2	127.7	7.1	6.2	66.2	5.1	3.4	67.3	-	3.9
Lu	44.2	0.2	2.0	39.8	0.9	2.2	76.7	0.6	2.6	120.2	6.9	6.1	59.7	3.8	3.2	60.4	-	3.7
Nb	245.1	0.5	8.4	263.3	2.6	18.1	275.0	5.5	10.6	217.1	23.9	8.0	206.2	2.1	7.4	207.3	-	8.0
Mn	1773.6	4.4	56.8	1700.8	38.6	82.2	2665.1	35.7	106.0	3520.1	145.8	124.0	2513.2	37.1	85.4	2709.2	-	95.5
Sr	4112.2	30.6	131.9	3196.1	63.3	174.5	4226.8	34.8	153.8	2706.4	54.0	99.5	3581.6	42.3	130.2	3830.7	-	149.3
Ba	2022.7	2.5	70.0	1992.8	38.7	114.8	3853.7	22.2	139.7	5597.9	141.0	254.6	3094.7	113.0	148.2	3113.8	-	170.8

Experiment	T14_01	T14_02	T16_01	T16_02	T18_01	T18_03	T18_04	T17_01	T17_02	T17_04	AK02_01	AK02_02	AK02_04
P (GPa) T (°C)	0.8	0.8	0.8	0.8	1.5	1.5	1.5	0.8	0.8	0.8	0.4	0.4	0.4
<u>s</u>	913	913	930	930	943	943	943	943	943	943	943	943	943
Analysis	4	3	5	5	7	6	5	6	6	5	6	6	6
La	2.1	15	3.0	4.6	0.6	0.7	0.5	1.6	13	2.8	4.0	1.2	53
Ce	2.1	1.6	33	49	0.8	0.9	0.6	1.8	1.6	3.0	4.6	1.2	63
Pr	1.1	0.9	2.0	3.0	0.5	0.6	0.4	1.0	0.9	1.7	2.1	0.8	2.8
Nd	1.2	1.0	2.4	3.8	0.7	0.7	0.5	1.1	1.1	2.1	2.6	1.2	2.6
Sm	0.8	0.7	2.3	3.6	0.8	0.8	0.5	1.0	1.1	2.1	2.5	1.1	2.2
Eu	0.7	0.5	2.4	3.6	0.6	0.7	0.5	1.0	1.1	2.1	2.3	1.0	2.6
Tb	0.4	0.4	2.1	3.0	0.6	0.6	0.5	0.7	1.1	1.9	2.0	0.9	2.0
Dv	0.5	0.4	2.4	3.7	0.8	0.8	0.6	0.8	1.4	2.2	2.5	1.4	2.3
Ŷ	0.5	0.4	2.3	3.2	0.9	0.9	0.7	0.9	1.6	2.2	2.4	1.4	2.7
Но	0.4	0.3	2.5	3.7	0.8	0.8	0.6	0.8	1.5	2.4	2.4	1.2	2.4
Er	0.4	0.3	2.3	3.4	0.9	0.9	0.7	0.7	1.5	2.2	2.5	1.3	2.2
Yb	0.4	0.4	2.5	3.6	1.3	1.1	0.9	0.8	1.7	2.3	3.1	1.7	2.5
Lu	0.4	0.3	2.3	3.1	1.1	0.9	0.7	0.8	1.6	2.2	2.4	1.4	2.3
Nb	8.0	9.6	10.4	16.7	27.6	11.7	11.5	8.5	10.5	8.6	11.5	5.4	14.2
Mn	54.3	51.3	77.7	81.9	61.8	49.5	43.8	34.8	44.8	52.2	97.8	41.0	75.0
Sr	89.5	63.9	113.1	128.8	46.9	49.2	37.5	60.7	40.9	105.9	109.8	46.0	123.8
Ba	60.3	59.1	80.7	97.8	62.0	58.2	52.3	52.3	38.4	70.7	90.5	52.7	92.9
CL													
Analysis	5	3	5	5	5	6	5	4	5	5	10	7	10
La	9.0	9.5	7.2	7.7	10.0	5.8	7.4	9.2	7.2	6.6	9.8	6.9	6.8
Ce	7.4	7.9	6.8	7.0	10.3	6.4	8.5	8.7	6.9	6.4	8.9	6.0	6.0
Pr	3.8	4.6	3.8	3.9	5.7	4.2	5.0	4.5	3.9	3.6	3.9	3.3	2.8
Nd	3.8	4.3	4.7	4.9	6.5	4.1	5.2	4.9	4.2	4.1	4.8	4.2	3.4
Sm	2.0	2.2	3.9	3.9	6.8	4.5	4.4	3.4	3.5	3.8	4.6	3.4	3.5
Eu	1.7	1.9	3.9	3.8	5.3	4.1	5.1	3.2	3.6	3.7	4.2	3.1	3.1
Tb	0.9	1.1	3.0	2.6	5.0	3.1	4.1	1.8	2.9	3.1	3.0	2.3	2.2
Dy	0.8	1.0	3.2	2.9	5.7	3.8	4.7	1.7	3.1	3.4	3.9	3.1	3.1
Y	1.0	1.1	3.1	2.5	6.7	4.2	5.4	1.8	3.3	3.3	3.2	3.2	2.9
Но	0.6	0.8	3.1	2.7	5.8	3.6	4.6	1.5	3.1	3.5	3.2	2.5	2.8
Er	0.5	0.6	2.7	2.3	5.3	3.6	4.7	1.2	2.7	3.0	3.3	2.4	2.7
Yb	0.5	0.6	2.4	1.9	5.9	3.4	4.6	1.0	2.2	2.8	3.5	2.6	3.1
Lu	0.4	0.5	2.0	1.6	4.9	3.0	3.8	0.9	1.9	2.5	2.4	1.8	2.2
Nb	6.0	5.5	7.5	8.3	13.1	9.5	8.4	6.2	6.7	7.1	7.5	4.1	7.1
Mn	97.0	106.2	97.7	69.0	241.9	140.4	176.5	70.1	83.5	70.1	130.9	82.5	91.5
Sr	470.6	481.5	381.1	478.6	389.9	259.9	321.9	395.1	355.4	309.7	366.3	348.9	294.8
Ba	222.1	274.2	214.1	279.1	248.9	238.0	286.8	215.0	208.9	157.0	218.3	227.1	172.0

Table IV.9. Analytical uncertainty " σ error" for silicate and carbonate liquids. Mean analytical uncertainty given by GLITTER software.

Table IV.10. Continued.

Experiment P (GPa)	T19_01 0.8	T19_03 0.8	T19_04 0.8	AK05_01 0.4	AK05_02 0.4	AK05_03 0.4	AK05_05 0.4	AK06_01 0.4	AK06_02 0.4	AK08_03 0.4
T (°C)	850	850	850	825	825	825	825	725	725	725
SL					-	_				_
Analysis	10	8	10	14	9	7	9	11	11	7
La	0.3	0.7	0.3	0.9	0.5	1.0	1.2	0.5	0.2	0.52
Ce	0.3	0.8	0.3	1.1	0.6	1.2	1.3	0.6	0.3	0.61
Pr	0.2	0.4	0.2	0.6	0.3	0.6	0.6	0.3	0.2	0.37
Nd	0.4	0.6	0.3	1.3	0.5	0.7	0.5	0.4	0.2	0.79
Sm	0.4	0.6	0.3	1.4	0.5	0.7	0.3	0.4	0.3	0.85
Eu	0.3	0.6	0.2	0.9	0.4	0.6	0.1	0.3	0.2	0.52
Tb	0.2	0.5	0.2	0.8	0.4	0.6	0.1	0.4	0.2	0.40
Dy	0.4	0.7	0.3	1.5	0.6	0.8	0.1	0.6	0.3	0.81
Y	0.4	0.9	0.4	1.4	0.8	1.1	0.1	0.8	0.4	0.80
Но	0.3	0.7	0.3	1.1	0.6	0.8	0.1	0.6	0.3	0.59
Er	0.5	0.8	0.4	1.6	0.7	0.9	0.1	0.7	0.3	0.86
Yb	0.7	1.1	0.5	2.1	1.1	1.2	0.1	1.0	0.5	1.36
Lu	0.5	1.0	0.4	1.3	0.9	1.0	0.1	0.9	0.4	0.91
Nb	4.1	4.7	4.9	8.4	4.4	5.8	2.1	2.3	2.8	3.10
Mn	20.8	36.3	21.5	29.0	31.0	45.1	34.7	25.0	20.8	20.61
Sr	13.1	35.8	14.6	19.4	21.1	40.2	59.8	8.3	5.4	14.11
Ba	22.3	55.6	28.3	32.9	44.5	56.0	55.8	39.7	16.2	32.06
CL										
Analysis	7	5	9	11	8	6	9	2	11	5
La	5.5	10.5	6.4	6.6	10.4	12.1	14.2	15.4	9.9	12.24
Ce	5.2	10.7	6.0	6.3	10.1	11.5	12.6	13.1	8.9	11.10
Pr	2.9	5.3	3.3	3.3	5.1	5.8	5.3	6.3	4.9	5.70
Nd	3.1	6.1	3.5	3.9	5.5	5.9	4.0	7.8	5.3	6.53
Sm	2.7	5.0	3.0	3.5	4.5	4.5	1.4	6.8	4.3	5.38
Eu	2.4	5.8	2.8	3.0	4.2	4.3	0.8	5.7	3.7	4.65
Tb	2.4	4.1	2.6	2.4	3.7	3.5	0.4	5.2	2.9	3.56
Dy	2.6	5.3	2.9	3.0	4.4	4.0	0.3	6.5	3.4	4.75
Y	3.1	6.3	3.8	3.5	5.7	5.1	0.3	10.3	4.3	6.61
Но	2.3	5.3	2.8	2.7	4.4	4.0	0.2	6.1	3.1	4.41
Er	2.5	5.1	2.7	2.7	4.3	3.6	0.2	6.4	2.8	4.51
Yb	2.7	5.5	2.8	2.5	4.4	3.5	0.3	6.3	2.7	5.00
Lu	2.2	5.1	2.4	1.7	3.4	2.8	0.2	5.0	2.2	3.77
Nb	1.7	3.8	3.6	2.8	4.1	6.8	2.1	2.6	1.4	1.71
Mn	92.8	160.6	130.4	70.0	158.0	167.8	107.2	191.1	104.8	63.35
Sr	272.9	377.4	292.1	319.3	354.8	391.5	576.6	197.7	213.0	334.00
Ba	173.3	434.2	271.5	240.3	477.1	434.2	343.9	668.9	321.0	285.05

IV.8. Comportement des REE entre liquides carbonatés et silicatés au cours de la différenciation des magmas alcalins: Bilan

Les expériences d'immiscibilité réalisées dans ce chapitre ont permis de mettre en évidence la même grande variation d'enrichissement en REE des liquides carbonatés immiscibles (Fig.IV.4a) avec des liquides silicatés, observés dans les autres travaux de la littérature (Fig.II.11). Martin *et al.* (2013) ont montré dans leurs données expérimentales la corrélation entre le coefficient de partage du Ca et ceux des REE. Nous observons également cette corrélation dans notre étude (Fig.IV.4c), ainsi que pour toutes les études de la bibliographie (points gris, Fig.IV.4c). Cette validation constitue la clé qui a permis de définir un lien entre l'enrichissement en REE des liquides carbonatés et la composition des liquides silicatés.

La paramétrisation élaborée dans cet article défini le partage des REE à partir de la composition des liquides silicatés (Fig.IV.2). Elle permet de relier le comportement des REE au stade auquel s'effectue l'immiscibilité au cours de la différenciation des magmas silicatés.

L'optimum d'enrichissement en REE des carbonatites formées par immiscibilité avec des magmas silicatés alcalins est mis en évidence : les liquides carbonatés en coexistence avec des liquides silicatés de type phonolite/phono-trachyte (Fig.IV.8a) et évoluant vers un pôle métalumineux (Fig.IV.11) sont les plus enrichis en REE et peuvent présenter des concentrations relativement similaires aux gisements de carbonatites (champ gris, Fig.IV.9b et IV.10b). Ces liquides carbonatés enrichis en REE représentent ainsi de bons candidats aux liquides parents des carbonatites associées aux gisements à REE. A l'inverse, les liquides carbonatés immiscibles avec des liquides silicatés alcalins plus primaires, tels que les mélilites ou les néphélinites, ne peuvent pas présenter un tel enrichissement. De même, les magmas carbonatés pouvant être immiscibles avec les magmas très péralcalins tels que ceux retrouvés au volcan Ol Doinyo Lengai (Klaudius and Keller, 2006; De Moor *et al.*, 2013) ne sont pas particulièrement enrichis en REE (Fig.IV.11). Ceci est cohérent avec les concentrations en REE des natrocarbonatites naturelles qui sont globalement les carbonatites les moins enrichies en REE (partie I.1.4, Tableau I.2).

Cet effet de composition dû au fractionnement des liquides silicatés, traduit un effet de leur structure comme déjà supposé précédemment : les liquides carbonatés les plus enrichis coexistent avec des liquides silicatés très polymérisés, alors que ceux moins enrichis coexistent avec des liquides silicatés dépolymérisés. Le modèle réalisé est ainsi basé sur la structure du liquide silicaté : la paramétrisation du coefficient de partage du Ca (voir équation (10)) prend en compte à la fois des cations formateurs de réseaux (Si et Al), et les cations modificateurs de réseaux en concentrations relativement importantes dans ces compositions (Ca, Na et K principalement).

Deux principales applications de ce modèle sont possibles :

- Il peut permettre d'identifier les processus de formation des magmas carbonatés à partir de leurs teneurs en REE. C'est le cas de la carbonatite de Lofdal en Namibie (Fig.IV.7): le modèle a permis d'identifier la composition du magma silicaté avec lequel le magma carbonaté a pu coexister, en se basant sur les compositions en REE des deux roches magmatiques. Il a également permis de cibler le stade de différenciation du magma silicaté pendant lequel l'immiscibilité a pu se produire (à savoir phono-tephrite, Fig.IV.7).
- Ce modèle peut également être utilisé comme outil de prédiction afin de définir l'enrichissement en REE de carbonatites supposés être à l'équilibre avec des roches silicatées alcalines, ou alors de prospecter quelles roches sont les plus adéquates sur le terrain pour présenter de tels enrichissements.

L'effet des volatils (halogène, P, CO_2 et H_2O) sur l'immiscibilité et le partage des éléments traces est effleuré dans ce chapitre. L'échantillon dopé en F (AK08_03, voir Table IV.2) présente la même tendance observées pour les autre (Fig. IV.2, IV.3 et IV.4) et est également bien estimé par la paramétrisation présentée dans cette partie. Cependant, cet échantillon seul ne permet pas d'évaluer l'effet du F ainsi que du Cl et du P sur l'enrichissement en REE des liquides carbonatés. Le chapitre VI traitera de ce sujet de manière plus approfondie.

La paramétrisation élaborée dans cette étude prend en compte l'effet de la cristallisation fractionnée des liquides silicatés car elle se base sur leurs compositions au cours de la différenciation. Dans les expériences réalisées, différents cristaux ont été formés dans les charges expérimentales en coexistence avec les deux liquides (clinopyroxènes, calcite, grenat, titanite, apatite, etc...; voir Fig.IV.1, Table IV.2). Le partage des REE entre ces cristaux formés ainsi que les deux liquides doit également être étudié afin d'évaluer le fractionnement des REE au cours de la différenciation des deux magmas carbonatés et silicatés. Le chapitre VI présente ces données de partage entre cristaux et liquides carbonatés et silicatés, au cours de la différenciation des magmas néphélinitiques à phonolitiques.
V. Effets des éléments volatils sur l'enrichissement en métaux rares des liquides carbonatés et silicatés

Dans ce chapitre est traité l'effet des éléments volatils à la fois sur la composition des liquides alcalins sous-saturés en silice et des liquides carbonatés, ainsi que sur leur enrichissement en métaux rares. Ce chapitre a pour but de tester le modèle de partage des REE entre liquide carbonaté et liquide silicaté présenté dans le chapitre IV.

La première partie constitue l'essentiel de ce chapitre et présente des expériences d'immiscibilité réalisées entre des liquides alcalins de type NaK-néphélinites/phonolites et des liquides carbonatés enrichis en halogènes (F et Cl), en phosphore (P), et plus ou moins hydratés. Les textures de ces liquides, leur composition en éléments majeurs et traces ainsi que les coefficients de partage des métaux rares (REE, Hf, Zr, Ta et Nb) sont caractérisés.

L'effet du F, Cl ou P_2O_5 sur ces coefficients de partage ainsi que le lien avec la composition du liquide silicaté est étudié. Le modèle de partage des REE proposé dans le chapitre IV et basé sur la composition du liquide silicaté est appliqué sur ces données de liquides dopés en F, Cl et P_2O_5 ainsi que sur des données d'inclusions vitreuses naturelles riches en ces éléments. Ce modèle est validé pour ce type de composition. Le rôle de la phase fluide coexistant avec les liquides carbonatés et silicatés est également abordé.

La deuxième partie plus succincte présente les premières données de concentrations en H_2O et CO_2 dans les liquides silicatés alcalins (néphélinite à phonolites) à saturation en carbonates liquides présentés dans le chapitre IV ainsi que dans la première partie de ce chapitre. Une étude préliminaire de l'effet du CO_2 et de H_2O sur la composition des liquides silicatés ainsi que sur le partage des REE est présentée.

V.1. Effet du F, Cl et P sur l'enrichissement en métaux rares des liquides carbonatés

V.1.1. Textures des liquides silicatés et carbonatés enrichis en F, Cl et P

Des expériences d'immiscibilité entre liquides silicatés de type néphélinites-phonolitiques et liquides carbonatés plus ou moins enrichis en F, Cl et P ont été réalisées. Quatre produits de départ \pm dopés en F, Cl ou P (voir partie III.1.2; compositions notées « PhCbn 1 à 4 » dans le Tableau III.1) ont été utilisés pour ces expériences (détails dans l'Annexe A, partie A.1.2). Les échantillons expérimentaux ont tous été synthétisés à une pression de 0,8 GPa, pour des températures de 850 ou de 1050 °C (Tableau V.1). Les 4 systèmes de composition différents ont été à chaque fois testés, aux deux températures:

- sans éléments volatils rajoutés (échantillons « PCPC1_...»)
- avec du P, (échantillons « PCPC3_... »)
- avec du F, (échantillons « PCPC4_... »)
- avec du Cl (échantillons « PCPC5_... »)

A 850 °C, 4 échantillons ont été à chaque fois synthétisés avec la composition de départ seule (échantillons notés « ..._01 »), avec 3 et 6 % poids de H₂O rajouté (respectivement notés « ..._02 » et « ..._03 »), ainsi qu'avec 1% poids de graphite rajouté (échantillons notés « ..._04 » ; voir Tableau V.1). Au total, 20 échantillons expérimentaux ont été synthétisés. Les expériences à 850 °C ont été réalisées entre 50 et 88h (Tableau V.1), avec une première étape de surfusion à 975 °C pendant 2h afin d'assurer une bonne homogénéisation du produit de départ (voir partie III.2.1). Les expériences à 1050 °C ont été effectuées pendant 23 à 28h (Tableau V.1).

Tous les échantillons contiennent deux phases liquides silicatées et carbonatées, à l'exception des échantillons synthétisés à 850 °C notés « ..._04 » (avec ajout de graphite) qui sont entièrement cristallisés et qui ne présentent que du liquide carbonaté coexistant avec des cristaux. Les autres échantillons peuvent aussi contenir des cristaux (voir Tableau V.1) qui sont présentés dans le chapitre VI.

Les textures des liquides observés à 850 et à 1050 °C sont respectivement présentées dans les Figures V.1 et Figure.V.2. A 850 °C 0,8 GPa, les liquides carbonatés des échantillons non dopés en éléments volatils présentent les textures typiques de trempe, c'est-à-dire des textures dendritiques caractérisées par une alternance de bandes plus riches en Na et de bandes plus riches en Ca (Fig.V.1a et V.1b). Les zones de liquides carbonatés sont nombreuses et de tailles importantes (jusqu'à 600 µm de largeur ; Fig.V.1a). Ces liquides coexistent avec le liquide silicaté parfaitement vitrifié (Fig.V.1b) ainsi que de nombreux petits cristaux de clinopyroxène, grenat, néphéline et ferro-spinelle. A 1050°C, l'échantillon synthétisé est très peu cristallisé (Tableau V.1) et contient également de larges zones de liquide carbonaté coexistant avec le verre silicaté (Fig.V.2a).

• Echantillons dopés en P :

Dans les échantillons dopés en P à 850 °C (Fig.V.1c et V.1d), les liquides carbonatés présentent relativement les mêmes textures, mais contiennent de très nombreux petits cristaux automorphes d'apatites. Certains rares cristaux d'apatite ont également été identifiés dans le liquide silicaté. Dans le système hydraté, les zones de liquide carbonaté contiennent également de l'apatite (Fig.V.1d), et sont également très étendues dans l'échantillon. A 1050 °C, les zones de liquides carbonatés sont également très riches en cristaux d'apatite de taille plus grande qu'à 850 °C (Fig.V.2b).

Tableau V.1. Conditions expérimentales des expériences d'immiscibilité entre liquides silicatés de type néphélinite-phonolite et liquides carbonatés, enrichis en F-Cl-P. P: pression totale; T: température; LS: liquides silicaté; LC: liquide carbonaté; CPx: clinopyroxène Fe-Spl: ferro-spinelle (solution solide magnétite-titanomagnétite); Al-Spl: alumino-spinelle; Nph: néphéline; Afs: feldspath alcalins; Ap: apatite; Gnt: grenat; V: phase vapeur.

Expériences	Produit de départ	+ Element volatil	P (Gpa)	T surfusion (°C)	T (°C)	Durée (h)	Capsule	+ H ₂ O (% poids)	+ G (% poids)	Phases observées
PCPC1_01	PhCbn1	-	0,8	975	850	50	Au	-	-	LS + LC + CPx + Nph + Gnt + Al-Spl + Fe-Spl + V (+LC2)
PCPC1_02	PhCbn1	-	0,8	975	850	50	Au	3	-	LS + LC + CPx + Nph + Gnt + Fe-Spl + V (+LC2)
PCPC1_03	PhCbn1	-	0,8	975	850	50	Au	6	-	LS + LC + Fe-Spl + V (+LC2)
PCPC1_04	PhCbn1	-	0,8	975	850	50	Au	-	1	LC + Cpx + Nph + Gnt + Afs
PCPC2_01	PhCbn1	-	0,8	-	1050	28	$Au_{80}Pd_{20}$	-	-	LS + LC + Nph
PCPC3_01	PhCbn2	Р	0,8	975	850	67,5	Au	-	-	LS + LC + Nph + Ap + Al-Spl + Fe-Spl (+ LC2)
PCPC3_02	PhCbn2	Р	0,8	975	850	67,5	Au	3	-	LS + LC + Ap + Al-Spl + Fe-Spl (+ LC2)
PCPC3_03	PhCbn2	Р	0,8	975	850	67,5	Au	6	-	LS + LC + Ap + Fe-Spl (+ LC2)
PCPC3_04	PhCbn2	Р	0,8	975	850	67,5	Au	-	1	LC + Cpx + Nph + Gnt + Ap + Fe-Spl + Afs
PCPC4_01	PhCbn3	F	0,8	975	850	88,5	Au	-	-	LS + LC + Fl + Cc + Fe-Spl + Ox Fe-Cr (+ LC2)
PCPC4_02	PhCbn3	F	0,8	975	850	88,5	Au	3	-	LS + LC + Fl + Cc + Fe-Spl (+ LC2)
PCPC4_03	PhCbn3	F	0,8	975	850	88,5	Au	6	-	LS + LC + Fl + Cc + Fe-Spl (+ LC2)
PCPC4_04	PhCbn3	F	0,8	975	850	88,5	Au	-	1	LC + Fl + Cpx + Nph + Gnt + Fl + Al - Spl + Fe - Spl + Afs + Fst
PCPC5_01	PhCbn4	Cl	0,8	975	850	88,5	Au	-	-	LS + LC + CPx + Nph + Gnt + Ap + Cc + Fe-Spl + V (+LC2)
PCPC5_02	PhCbn4	Cl	0,8	975	850	88,5	Au	3	-	LS + LC + CPx + Gnt + Ap + Cc + V (+LC2)
PCPC5_03	PhCbn4	Cl	0,8	975	850	88,5	Au	6	-	LS + LC + CPx + Gnt + Ap + V (+LC2)
PCPC5_04	PhCbn4	Cl	0,8	975	850	88,5	Au	-	1	LC + Cpx + Nph + Gnt + Ap + Cc + Afs + Fst
PCPC6_01	PhCbn3	F	0,8	-	1050	23,5	$Au_{80}Pd_{20}$	-	-	LS + LC
PCPC6_02	PhCbn4	Cl	0,8	-	1050	23,5	$Au_{80}Pd_{20}$	-	-	LS + LC
PCPC6_03	PhCbn2	Р	0,8	-	1050	23,5	$Au_{80}Pd_{20}$	-	-	LS + LC + Ap

Figure V.1. Textures des liquides carbonatés et silicatés immiscibles observés à 850 °C et 0,8 GPa, dans le système non dopé en éléments volatils (a et b ; vert), dopé en P (c et d ; marron), en F (e et f ; gris foncé) et en Cl (g et h ; gris clair). LS : liquide silicaté ; LC : liquide carbonaté ; LC2 : deuxième phase carbonatée ; CPx : clinopyroxène ; Gnt : grenat ; Nph : néphéline ; Fe-Spl : ferro-spinelle ; Ap : apatite ; V : phase vapeur.

Figure V.2. Textures des liquides carbonatés et silicatés immiscibles observés à 1050 °C et 0,8 GPa, dans le système non dopé en éléments volatils (a ; vert), dopé en P (b ; marron), en F (c ; gris foncé) et en Cl (d ; gris clair). LS : liquide silicaté ; LC : liquide carbonaté ; Ap : apatite ; V : phase vapeur.

• Echantillons dopés en F :

En présence de F, la texture des liquides carbonatés à 850°C (Fig.V.1e et V.1f) et 1050 °C (Fig.V.2c) est très différente: on peut effectivement observer une texture beaucoup plus nette et lisse quasivitrifiée. Cette texture indique que ces liquides plus riches en F ont presque vitrifié au cours de la trempe, pour l'échantillon synthétisé à haute température (Fig.V.2c), et également à basse température pour les échantillons anhydres (Fig.V.1e) et hydratés (Fig.V.1f). On peut remarquer à 850 °C que la texture vitrifiée caractéristique du liquide silicaté (Fig.V.1e et V.1f) est parfois perturbée par la présence de petites billes de liquide carbonaté de très petite taille (< 7 µm ; Fig.V.1e).

• Echantillons dopés en Cl :

Les zones de liquide carbonaté dans le système enrichi en Cl à 850 °C (Fig.V.1g et V.1h) et à 1050 °C (Fig.V.2d) présentent une texture similaire à celle observée dans l'échantillon non dopé (Fig.V.1a et V.1b) caractérisée par l'alternance de dendrites riches en Na-Ca. Cependant cette texture est beaucoup plus poreuse dans les échantillons enrichis en Cl (Fig.V.1g ; Fig.V.2d). Le liquide carbonaté coexiste avec du liquide silicaté vitrifié contenant également des cristaux à 850 °C (clinopyroxène, grenat, néphéline, apatite, ferro-spinelle ; Fig. V.1g). Les zones de liquide carbonaté présentent également de nombreux cristaux, et notamment des cristaux d'apatite (Fig.V.1h).

Dans tous ces échantillons synthétisés à 850 °C, l'immiscibilité entre les deux liquides est caractérisée par un contact très net et linéaire entre les deux liquides (Fig.V.1). La présence d'une phase vapeur est également attestée par la trace de bulle de vapeur, souvent en contact avec le liquide carbonaté (Fig.V.1a; Fig.V.2d).

Une phase particulière a également été observée dans certains échantillons à 850°C: il s'agit de globule de taille relativement petite (< 15 μ m) mais pouvant atteindre jusqu'à 50 μ m de largeur (Fig.V.1b et V.1g) et présentant les même caractéristiques que le liquides carbonaté (riches en Ca, Na et K, pauvres en Si, Al). Le contact entre ces globules et le liquide silicaté vitrifié est également très net. Cette phase appelée « LC2 » est présente dans les quatre systèmes (non dopé, avec du F, Cl ou P ; voir Tableau V.1).

V.1.2. Composition chimique des liquides silicatés et carbonatés enrichis en F, Cl et P

La composition en éléments majeurs des liquides silicatés et carbonatés immiscibles est respectivement présentée dans les Tableaux V.2 et V.3. La composition en éléments alcalins (Na_2O+K_2O) et en SiO₂ des couples de liquides silicatés et carbonatés coexistant à chaque condition P-T est représentée dans un diagramme TAS (Total alkali silica, Le Bas et al., 1986), à 1050 °C (Fig.V.3a) et à 850 °C (Fig.V.3b).

• 1050 °C et 0,8 GPa :

Dans le système non dopé en volatils (en vert, Fig.V.3a), le liquide silicaté contient 43,78 \pm 0,65 % poids de SiO₂ et 16,25 \pm 0,82 % poids de Na₂O+K₂O (échantillon PCPC2_01, Tableaux V.1 et V.2), et présente ainsi une composition de type néphélinite alcaline - phonolite. Dans le système dopé en Cl (gris clair), on observe une très légère diminution des concentrations en SiO₂ et en alcalins (respectivement 42,92 \pm 0,22 % poids et 15,15 \pm 0,28 % poids ; échantillon PCPC6_02, Tableau V.2). Ce liquide silicaté contient également 1,29 \pm 0,02 % poids de Cl. Les liquides dans le système riche en F (gris foncé ; PCPC6_01) et en P (marron ; PCPC6_03) présentent des compositions relativement similaires, légèrement plus riches en silice (45,98 \pm 0,47 et 46,32 \pm 0,60% poids respectivement; Tableau V.2) ainsi qu'en alcalins (17,78 \pm 0,58 et 17,40 \pm 0,49 % poids de Na₂O+K₂O). Dans ces deux systèmes, ces liquides contiennent respectivement 3,85 \pm 0,83 % poids de F (PCPC6_01) et 0,95 \pm 0,11 % poids de P₂O₅ (PCPC6_03). Ainsi, la composition du liquide silicaté varie légèrement en fonction des quatre systèmes (Fig.V.3a).

En ce qui concerne les liquides carbonatés, ceux des systèmes enrichis en F et en P présente également une composition similaire, avec des concentrations de 2,87 \pm 0,82 et 1,97 \pm 0,46 % poids de SiO₂ respectivement, et de 19,67 \pm 0,52 et 19,63 \pm 0,80 % poids de Na₂O+K₂O (PCPC6_01 et PCPC6_03 ; Tableau V.3). Ces liquides carbonatés sont également respectivement très enrichis en F et en P dans ces systèmes, avec 11,79 \pm 0,67 % poids de F et en P₂O₅ 9,47 \pm 0,95 % poids respectivement. Le liquide carbonaté du système non dopé en éléments volatils contient presque autant de SiO₂ (2,16 \pm 0,46 % poids) et est légèrement moins alcalin (18,56 \pm 0,75 % de Na₂O+K₂O). Enfin celui du système enrichi en Cl indique une grande variation de composition : il contient en effet seulement 13,01 \pm 1,75 % poids de Na₂O+K₂O et 4,51 \pm 0,54 % poids de SiO₂ (Tableau V.3 et Fig.V.3a). De plus, on peut remarquer que ce liquide carbonaté contient peu de Cl, avec une concentration de 0,91 \pm 0,33 % poids.

• 850 °C et 0,8 GPa :

A 850 °C (Fig.V.3b), 16 échantillons ont été synthétisés dans les 4 systèmes de composition avec \pm de H₂O ajoutée (Fig.V.3b). De manière générale, les liquides silicatés (avec \pm de H₂O) sont de composition phonolitique et évoluent de :

- 48,81 \pm 0,48 à 53,08 \pm 0,91 % poids pour le SiO₂ et ne variant presque pas en Na₂O+K₂O (17,26 \pm 0,58 à 17,76 \pm 0,32 % poids ; Tableau V.2) pour le système non dopé (vert);

- $49,80 \pm 0,36$ à $51,18 \pm 0,53$ % poids de SiO₂ et de $17,83 \pm 0,38$ à $18,03 \pm 0,49$ % poids le Na₂O+K₂O pour le système enrichi en P (marron); ces liquides présentent également des concentrations faibles en P, autour de $0,20 \pm 0,04$ % poids.
- $47,83 \pm 0,68$ à $53,67 \pm 0,81$ % poids de SiO₂ et de $17,07 \pm 0,18$ à $17,24 \pm 0,32$ % poids le Na₂O+K₂O pour le système enrichi en F (gris foncé); ces liquides contiennent également entre $1,38 \pm 0,12$ et $1,84 \pm 0,11$ % poids de F.
- $45,79 \pm 0,86$ à $50,67 \pm 0,84$ % poids de SiO₂ et de $16,21 \pm 0,59$ à $16,94 \pm 0,34$ % poids le Na₂O+K₂O pour le système enrichi en Cl (gris clair).

Ces liquides silicatés présentent donc des concentrations en SiO₂ et en alcalins plus élevées qu'à 1050 °C, variant légèrement avec ajout du F, Cl et P. En revanche, ces concentrations semblent varier de manière plus importante en fonction des systèmes pour le liquide carbonaté. Dans le système sans F, Cl et P rajouté, les concentrations en SiO₂ (% poids) et en Na₂O+K₂O (% poids) varient de 0,51 ± 0,13 à 1,75 ± 0,35, et de 16,86 ± 0,96 à 21,07 ± 1,91 (Tableau V.3). Dans le système riche en P, elles n'évoluent presque pas pour le SiO₂ (de 0,33 ± 0,17 à 0,87 ± 0,50 % poids) et sont plus élevées en alcalins (de 22,64 ± 1,00 à 23,28 ± 1,41% poids). Ces liquides contiennent également entre 1,69 ± 0,09 et 2,99 ± 1,34 % poids de P₂O₅. Pour le système enrichi en F, les concentrations en SiO₂ et en Na₂O+K₂O sont intermédiaires et varient respectivement de 0,47 ± 0,09 à 1,54 ± 0,25, et de 18,20 ± 0,45 à 19,42 ± 0,40 % poids ; les liquides peuvent également contenir des concentrations très importantes en F, variant de 10,70 ± 0,24 à 11,46 ± 0,24 % poids.

Enfin, de même qu'à plus haute température, la composition des liquides carbonatés dopés en Cl évolue beaucoup plus, avec des concentrations légèrement plus élevées en SiO₂ variant de 1,02 \pm 0,36 à 1,49 \pm 0,48 % poids, et des concentrations beaucoup plus faibles en Na₂O+K₂O variant de 5,66 \pm 2,55 à 13,89 \pm 0,94 % poids (Tableau V.3). Ces liquides présentent aussi des concentrations très faibles en Cl, variant entre 0,51 \pm 0,20 et 0,73 \pm 0,25 % poids.

La composition des liquides silicatés et carbonatés immiscibles est également représentée dans un diagramme ternaire (Na₂O+K₂O) – (CaO+MgO+FeO) – (SiO₂+TiO₂+Al₂O₃), pour le système non dopé (Fig.V.4a), le système dopé en P (Fig.V.4b), celui dopé en F (Fig.V.4c) et enfin dans le système dopé en Cl (Fig.V.4d). On peut observer dans les quatre systèmes que les liquides silicatés à 1050 °C (triangle) sont moins enrichis en SiO₂ et Al₂O₃, ainsi qu'en éléments alcalins en comparaison à ceux synthétisés à 850 °C (rond ; compositions moins proches du pôle SiO₂+TiO₂+Al₂O₃), à l'exception du système enrichi en F où les concentrations en alcalins ne varient pas à 850 et 1050 °C (gris foncé, Fig.V.4c). De même, les liquides carbonatés sont globalement moins riches en alcalins et légèrement plus riches en SiO₂ à 1050 °C (éloignement de la droite Na₂O+K₂O – CaO+MgO+FeO). Le champ de composition des liquides silicatés et carbonatés respectivement vers les pôles (SiO₂+TiO₂+Al₂O₃) et (Na₂O+K₂O) – (CaO+MgO+FeO).

A 850 °C et dans les quatre systèmes, on peut remarquer que les liquides silicatés ne change presque pas de position, avec \pm H₂O rajoutée (Fig.V.4). En revanche on peut observer une variation de la composition des liquides carbonatés plus importante avec \pm H₂O rajoutée, déjà observée dans les diagrammes TAS (Fig.V.3). On remarque en effet une évolution de la composition des liquides carbonatés vers le pôle CaO+MgO+FeO avec ajout de H₂O dans le produit de départ initial (ajout de 3 et de 6 % poids de H₂O, respectivement grands tirets et petits tirets ; Fig.V.4a et V.4d). Cette variation est légèrement observée dans le système non dopé en éléments volatils (vert; Fig.V.4a), et est surtout très marquée dans le système dopé en Cl (gris, Fig.V.4d), avec une diminution en alcalin et une augmentation en CaO très importante, de 0 à 6% poids de H₂O rajoutée. En d'autres termes, plus on ajoute de H_2O dans le système enrichi en Cl, plus le liquide carbonaté s'appauvri en éléments alcalins et plus il s'enrichi en CaO (MgO et FeO).

	PCPC1_01		PCPC1_02		PCPC1_03		PCPC2_01		PCPC3_01		PCPC3_02		PCPC3_03		PCPC4_01	i.
P (Gpa)	0,8		0,8		0,8		0,8		0,8		0,8		0,8		0,8	
T (°C)	850		850		850		1050		850		850		850		850	
Composition	PhCbn1		PhCbn1		PhCbn1		PhCbn1		PhCbn2		PhCbn2		PhCbn2		PhCbn3	
Liquide silicaté																
Ν	8	σ	7	σ	5	σ	11	σ	8	σ	8	σ	8	σ	6	σ
SiO ₂	53,08	0,91	52,55	1,40	48,81	0,48	43,78	0,65	51,18	0,53	49,80	0,36	50,15	0,57	53,67	0,81
TiO ₂	0,38	0,10	<ld< td=""><td>-</td><td>0,40</td><td>0,08</td><td>0,52</td><td>0,09</td><td>0,44</td><td>0,08</td><td>0,51</td><td>0,05</td><td>0,41</td><td>0,09</td><td>0,40</td><td>0,05</td></ld<>	-	0,40	0,08	0,52	0,09	0,44	0,08	0,51	0,05	0,41	0,09	0,40	0,05
Al ₂ O ₃	19,35	0,59	19,83	0,34	18,46	0,25	16,74	1,02	19,14	0,50	19,07	0,14	19,33	0,35	19,10	0,46
FeO	4,03	0,34	3,65	0,16	4,09	0,17	6,02	0,46	4,08	0,19	4,07	0,26	4,08	0,35	4,32	0,31
MnO	<ld< td=""><td>-</td><td><ld< td=""><td>-</td><td><ld< td=""><td>-</td><td>0,40</td><td>0,07</td><td><ld< td=""><td>-</td><td><ld< td=""><td>-</td><td><ld< td=""><td>-</td><td><ld< td=""><td>-</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	-	<ld< td=""><td>-</td><td><ld< td=""><td>-</td><td>0,40</td><td>0,07</td><td><ld< td=""><td>-</td><td><ld< td=""><td>-</td><td><ld< td=""><td>-</td><td><ld< td=""><td>-</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	-	<ld< td=""><td>-</td><td>0,40</td><td>0,07</td><td><ld< td=""><td>-</td><td><ld< td=""><td>-</td><td><ld< td=""><td>-</td><td><ld< td=""><td>-</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	-	0,40	0,07	<ld< td=""><td>-</td><td><ld< td=""><td>-</td><td><ld< td=""><td>-</td><td><ld< td=""><td>-</td></ld<></td></ld<></td></ld<></td></ld<>	-	<ld< td=""><td>-</td><td><ld< td=""><td>-</td><td><ld< td=""><td>-</td></ld<></td></ld<></td></ld<>	-	<ld< td=""><td>-</td><td><ld< td=""><td>-</td></ld<></td></ld<>	-	<ld< td=""><td>-</td></ld<>	-
MgO	0,20	0,03	0,26	0,02	0,48	0,05	1,15	0,08	0,34	0,03	0,38	0,03	0,33	0,03	0,26	0,05
CaO	0,93	0,15	1,06	0,05	1,72	0,03	8,78	0,60	0,83	0,05	0,83	0,02	0,81	0,04	0,81	0,08
Na ₂ O	11,16	0,12	11,07	0,48	11,56	0,31	11,87	0,53	11,68	0,23	11,57	0,22	11,88	0,13	10,99	0,10
K ₂ O	6,60	0,20	6,47	0,39	5,69	0,27	4,38	0,29	6,15	0,16	6,39	0,15	6,15	0,35	6,08	0,08
P_2O_5	<ld< td=""><td>-</td><td><ld< td=""><td>-</td><td><ld< td=""><td>-</td><td>0,30</td><td>0,06</td><td>0,20</td><td>0,03</td><td><ld< td=""><td>-</td><td>0,21</td><td>0,04</td><td><ld< td=""><td>-</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	-	<ld< td=""><td>-</td><td><ld< td=""><td>-</td><td>0,30</td><td>0,06</td><td>0,20</td><td>0,03</td><td><ld< td=""><td>-</td><td>0,21</td><td>0,04</td><td><ld< td=""><td>-</td></ld<></td></ld<></td></ld<></td></ld<>	-	<ld< td=""><td>-</td><td>0,30</td><td>0,06</td><td>0,20</td><td>0,03</td><td><ld< td=""><td>-</td><td>0,21</td><td>0,04</td><td><ld< td=""><td>-</td></ld<></td></ld<></td></ld<>	-	0,30	0,06	0,20	0,03	<ld< td=""><td>-</td><td>0,21</td><td>0,04</td><td><ld< td=""><td>-</td></ld<></td></ld<>	-	0,21	0,04	<ld< td=""><td>-</td></ld<>	-
BaO	<ld< td=""><td>-</td><td>0,15</td><td>0,01</td><td>0,20</td><td>0,01</td><td>0,37</td><td>0,03</td><td>0,14</td><td>0,01</td><td>0,15</td><td>0,02</td><td>0,16</td><td>0,03</td><td>0,14</td><td>0,01</td></ld<>	-	0,15	0,01	0,20	0,01	0,37	0,03	0,14	0,01	0,15	0,02	0,16	0,03	0,14	0,01
SrO	<ld< td=""><td>-</td><td><ld< td=""><td>-</td><td><ld< td=""><td>-</td><td>0,44</td><td>0,05</td><td><ld< td=""><td>-</td><td><ld< td=""><td>-</td><td><ld< td=""><td>-</td><td><ld< td=""><td>-</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	-	<ld< td=""><td>-</td><td><ld< td=""><td>-</td><td>0,44</td><td>0,05</td><td><ld< td=""><td>-</td><td><ld< td=""><td>-</td><td><ld< td=""><td>-</td><td><ld< td=""><td>-</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	-	<ld< td=""><td>-</td><td>0,44</td><td>0,05</td><td><ld< td=""><td>-</td><td><ld< td=""><td>-</td><td><ld< td=""><td>-</td><td><ld< td=""><td>-</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	-	0,44	0,05	<ld< td=""><td>-</td><td><ld< td=""><td>-</td><td><ld< td=""><td>-</td><td><ld< td=""><td>-</td></ld<></td></ld<></td></ld<></td></ld<>	-	<ld< td=""><td>-</td><td><ld< td=""><td>-</td><td><ld< td=""><td>-</td></ld<></td></ld<></td></ld<>	-	<ld< td=""><td>-</td><td><ld< td=""><td>-</td></ld<></td></ld<>	-	<ld< td=""><td>-</td></ld<>	-
SO ₂	<ld< td=""><td>-</td><td><ld< td=""><td>-</td><td><ld< td=""><td>-</td><td><ld< td=""><td>-</td><td><ld< td=""><td>-</td><td><ld< td=""><td>-</td><td><ld< td=""><td>-</td><td><ld< td=""><td>-</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	-	<ld< td=""><td>-</td><td><ld< td=""><td>-</td><td><ld< td=""><td>-</td><td><ld< td=""><td>-</td><td><ld< td=""><td>-</td><td><ld< td=""><td>-</td><td><ld< td=""><td>-</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	-	<ld< td=""><td>-</td><td><ld< td=""><td>-</td><td><ld< td=""><td>-</td><td><ld< td=""><td>-</td><td><ld< td=""><td>-</td><td><ld< td=""><td>-</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	-	<ld< td=""><td>-</td><td><ld< td=""><td>-</td><td><ld< td=""><td>-</td><td><ld< td=""><td>-</td><td><ld< td=""><td>-</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	-	<ld< td=""><td>-</td><td><ld< td=""><td>-</td><td><ld< td=""><td>-</td><td><ld< td=""><td>-</td></ld<></td></ld<></td></ld<></td></ld<>	-	<ld< td=""><td>-</td><td><ld< td=""><td>-</td><td><ld< td=""><td>-</td></ld<></td></ld<></td></ld<>	-	<ld< td=""><td>-</td><td><ld< td=""><td>-</td></ld<></td></ld<>	-	<ld< td=""><td>-</td></ld<>	-
F	0,41	0,09	0,39	0,07	0,32	0,06	0,55	0,11	0,41	0,07	0,37	0,08	0,37	0,06	1,38	0,12
Cl	0,07	0,01	0,07	0,01	0,07	0,01	0,06	0,01	0,08	0,01	0,08	0,01	0,08	0,02	0,07	0,01
Total	96,21	-	95,51	-	91,80	-	95,37	-	94,68	-	93,23	-	93,96	-	97,21	-
Na ₂ O+K ₂ O	17,76	0,32	17,54	0,87	17,26	0,58	16,25	0,82	17,83	0,38	17,96	0,37	18,03	0,49	17,07	0,18
ASI [Al ₂ O ₃ /(CaO+Na ₂ O+K ₂ O)]	0,71	-	0,73	-	0,65	-	0,42	-	0,70	-	0,69	-	0,70	-	0,73	-
NBO / T	0,25	-	0,24	-	0,32	-	0,75	-	0,27	-	0,28	-	0,28	-	0,24	-
(Na ₂ O+K ₂ O)/(CaO+MgO)	11,54	-	9,79	-	5,80	-	1,29	-	10,91	-	10,44	-	11,45	-	11,65	-
AI [Al ₂ O-(Na ₂ O+K ₂ O)]	-0,04	-	-0,04	-	-0,05	-	-0,05	-	-0,05	-	-0,05	-	-0,05	-	-0,04	-
Ν	4				3		6		6		6		6		6	
CO ₂ *	0,35	0,06	-	-	0,33	0,02	2,54	0,14	0,60	0,08	0,60	0,08	0,60	0,19	0,30	0,03
H ₂ O*	3,12	0,06	-	-	2,52	0,03	0,95	0,04	3,76	0,13	4,09	0,13	4,09	0,20	1,83	0,03
F*	0,44	0,03	-	-	0,40	0,01	0,63	0,03	0,55	0,03	0,48	0,03	0,51	0,08	1,97	0,10
Cl*	0,12	0,00	-	-	0,11	0,00	0,09	0,01	0,15	0,01	0,15	0,01	0,15	0,01	0,12	0,00

Tableau V.2. Composition en éléments majeurs des liquides silicatés \pm enrichis en F, Cl et P. Tous les éléments majeurs et les volatils sont en % poids. σ : écart-type sur la moyenne; *: analysés à la nano-SIMS (% poids); < LD : inférieur à la limite de détection. L'ASI, NBO/T, le rapport (Na₂O+K₂O)/(CaO+MgO) et l'AI sont en fractions molaires.

Tableau	<i>V.2</i> .	Suite.	
Tableau	<i>V.2</i> .	Suite.	

	PCPC4_02		PCPC4_03		PCPC5_01		PCPC5_02		PCPC5_03		PCPC6_01		PCPC6_02		PCPC6_03	,
P (Gpa)	0,8		0,8		0,8		0,8		0,8		0,8		0,8		0,8	
T (°C)	850		850		850		850		850		1050		1050		850	
Composition	PhCbn3		PhCbn3		PhCbn4		PhCbn5		PhCbn6		PhCbn3		PhCbn4		PhCbn2	
Liquide silicaté																
Ν	11	σ	8	σ	12	σ	7	σ	18	σ	17	σ	3	σ	6	σ
SiO ₂	47,83	0,68	50,36	0,26	50,67	0,84	50,07	0,45	45,79	0,86	45,98	0,47	42,92	0,22	46,32	0,60
TiO ₂	0,41	0,06	0,37	0,10	0,25	-	0,30	-	<ld< th=""><th>-</th><th>0,52</th><th>0,10</th><th>0,42</th><th>0,03</th><th>0,48</th><th>0,10</th></ld<>	-	0,52	0,10	0,42	0,03	0,48	0,10
Al_2O_3	18,03	0,34	19,16	0,37	20,82	0,21	20,54	0,32	19,54	0,28	17,00	0,28	16,34	0,34	18,50	0,25
FeO	4,36	0,21	4,04	0,27	2,64	0,16	2,40	0,25	2,48	0,19	6,12	0,34	5,34	0,24	5,69	0,19
MnO	<ld< th=""><th>-</th><th>0,28</th><th>0,04</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th><th>0,32</th><th>0,05</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th></ld<></th></ld<></th></ld<></th></ld<></th></ld<></th></ld<>	-	0,28	0,04	<ld< th=""><th>-</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th><th>0,32</th><th>0,05</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th></ld<></th></ld<></th></ld<></th></ld<></th></ld<>	-	<ld< th=""><th>-</th><th><ld< th=""><th>-</th><th>0,32</th><th>0,05</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th></ld<></th></ld<></th></ld<></th></ld<>	-	<ld< th=""><th>-</th><th>0,32</th><th>0,05</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th></ld<></th></ld<></th></ld<>	-	0,32	0,05	<ld< th=""><th>-</th><th><ld< th=""><th>-</th></ld<></th></ld<>	-	<ld< th=""><th>-</th></ld<>	-
MgO	0,34	0,02	0,26	0,02	0,20	0,01	0,34	0,02	0,45	0,04	0,66	0,04	1,02	0,03	0,77	0,03
CaO	1,56	0,06	1,12	0,05	1,36	0,05	2,08	0,05	2,64	0,04	4,99	0,30	9,00	0,19	4,64	0,17
Na ₂ O	11,63	0,11	11,42	0,21	10,94	0,95	11,65	0,20	11,18	0,41	12,51	0,39	11,40	0,23	12,78	0,26
K ₂ O	5,61	0,21	5,81	0,13	5,98	0,16	5,28	0,14	5,02	0,19	5,26	0,19	3,75	0,06	4,62	0,23
P_2O_5	<ld< th=""><th>-</th><th><ld< th=""><th>-</th><th><ld< th=""><th>0,02</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th><th>0,15</th><th>0,05</th><th>0,37</th><th>0,05</th><th>0,95</th><th>0,11</th></ld<></th></ld<></th></ld<></th></ld<></th></ld<>	-	<ld< th=""><th>-</th><th><ld< th=""><th>0,02</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th><th>0,15</th><th>0,05</th><th>0,37</th><th>0,05</th><th>0,95</th><th>0,11</th></ld<></th></ld<></th></ld<></th></ld<>	-	<ld< th=""><th>0,02</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th><th>0,15</th><th>0,05</th><th>0,37</th><th>0,05</th><th>0,95</th><th>0,11</th></ld<></th></ld<></th></ld<>	0,02	<ld< th=""><th>-</th><th><ld< th=""><th>-</th><th>0,15</th><th>0,05</th><th>0,37</th><th>0,05</th><th>0,95</th><th>0,11</th></ld<></th></ld<>	-	<ld< th=""><th>-</th><th>0,15</th><th>0,05</th><th>0,37</th><th>0,05</th><th>0,95</th><th>0,11</th></ld<>	-	0,15	0,05	0,37	0,05	0,95	0,11
BaO	0,17	0,04	0,14	0,01	0,18	0,02	0,17	0,02	0,25	0,04	0,30	0,05	0,34	0,05	0,29	0,05
SrO	<ld< th=""><th>-</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th><th>0,31</th><th>0,06</th><th>0,52</th><th>0,04</th><th><ld< th=""><th>-</th></ld<></th></ld<></th></ld<></th></ld<></th></ld<></th></ld<>	-	<ld< th=""><th>-</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th><th>0,31</th><th>0,06</th><th>0,52</th><th>0,04</th><th><ld< th=""><th>-</th></ld<></th></ld<></th></ld<></th></ld<></th></ld<>	-	<ld< th=""><th>-</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th><th>0,31</th><th>0,06</th><th>0,52</th><th>0,04</th><th><ld< th=""><th>-</th></ld<></th></ld<></th></ld<></th></ld<>	-	<ld< th=""><th>-</th><th><ld< th=""><th>-</th><th>0,31</th><th>0,06</th><th>0,52</th><th>0,04</th><th><ld< th=""><th>-</th></ld<></th></ld<></th></ld<>	-	<ld< th=""><th>-</th><th>0,31</th><th>0,06</th><th>0,52</th><th>0,04</th><th><ld< th=""><th>-</th></ld<></th></ld<>	-	0,31	0,06	0,52	0,04	<ld< th=""><th>-</th></ld<>	-
SO_2	<ld< th=""><th>-</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th></ld<></th></ld<></th></ld<></th></ld<></th></ld<></th></ld<></th></ld<></th></ld<>	-	<ld< th=""><th>-</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th></ld<></th></ld<></th></ld<></th></ld<></th></ld<></th></ld<></th></ld<>	-	<ld< th=""><th>-</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th></ld<></th></ld<></th></ld<></th></ld<></th></ld<></th></ld<>	-	<ld< th=""><th>-</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th></ld<></th></ld<></th></ld<></th></ld<></th></ld<>	-	<ld< th=""><th>-</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th></ld<></th></ld<></th></ld<></th></ld<>	-	<ld< th=""><th>-</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th></ld<></th></ld<></th></ld<>	-	<ld< th=""><th>-</th><th><ld< th=""><th>-</th></ld<></th></ld<>	-	<ld< th=""><th>-</th></ld<>	-
F	1,84	0,11	1,66	0,08	0,62	0,15	0,43	0,07	1,00	0,07	3,85	0,83	0,73	0,03	0,56	0,07
Cl	0,10	0,01	0,09	0,02	0,65	0,03	0,77	0,01	0,83	0,02	0,09	0,01	1,29	0,02	0,11	0,02
Total	91,88	-	94,71	-	94,29	-	94,03	-	89,18	-	98,07	-	93,44	-	95,69	-
Na ₂ O+K ₂ O	17,24	0,32	17,23	0,34	16,92	1,01	16,94	0,34	16,21	0,59	17,78	0,58	15,15	0,28	17,40	0,49
ASI [Al ₂ O ₃ /(CaO+Na ₂ O+K ₂ O)]	0,64	-	0,71	-	0,77	-	0,72	-	0,68	-	0,48	-	0,42	-	0,54	-
NBO / T	0,33	-	0,26	-	0,19	-	0,23	-	0,28	-	0,59	-	0,73	-	0,52	-
(Na ₂ O+K ₂ O)/(CaO+MgO)	6,82	-	9,36	-	8,24	-	5,37	-	4,01	-	2,45	-	1,20	-	2,51	-
$AI \left[Al_2O\text{-}(Na_2O\text{+}K_2O)\right]$	-0,05	-	-0,04	-	-0,03	-	-0,03	-	-0,03	-	-0,06	-	-0,04	-	-0,05	-
Ν	5		4				6		5		3		6			
CO ₂ *	0,61	0,23	0,25	0,04	-	-	0,30	0,10	0,55	0,13	1,17	0,14	1,93	0,67	-	-
H_2O^*	5,21	0,15	4,08	0,03	-	-	4,61	0,08	5,47	0,21	1,77	0,06	3,43	1,10	-	-
F *	2,40	0,68	1,83	0,05	-	-	0,57	0,08	0,82	0,09	0,00	0,00	0,85	0,39	-	-
Cl*	0,20	0,01	0,17	0,00	-	-	1,58	0,07	1,85	0,43	0,16	0,02	1,82	0,99	-	-

	PCPC1_01		PCPC1_02		PCPC1_03		PCPC1_04		PCPC2_01		PCPC3_01	
P (Gpa)	0,8		0,8		0,8		0,8		0,8		0,8	
T (°C)	850		850		850		850		1050		850	
Composition	PhCbn1		PhCbn1		PhCbn1		PhCbn1		PhCbn1		PhCbn2	
LC												
Ν	6	σ	8	σ	8	σ	8	σ	9	σ	6	σ
SiO ₂	0,51	0,13	0,79	0,21	1,75	0,35	0,22	0,07	2,16	0,46	0,33	0,17
TiO ₂	<ld< th=""><th>-</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th></ld<></th></ld<></th></ld<></th></ld<></th></ld<></th></ld<>	-	<ld< th=""><th>-</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th></ld<></th></ld<></th></ld<></th></ld<></th></ld<>	-	<ld< th=""><th>-</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th></ld<></th></ld<></th></ld<></th></ld<>	-	<ld< th=""><th>-</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th></ld<></th></ld<></th></ld<>	-	<ld< th=""><th>-</th><th><ld< th=""><th>-</th></ld<></th></ld<>	-	<ld< th=""><th>-</th></ld<>	-
Al ₂ O ₃	<ld< th=""><th>-</th><th><ld< th=""><th>-</th><th>0,28</th><th>0,12</th><th><ld< th=""><th>-</th><th>0,28</th><th>0,07</th><th><ld< th=""><th>-</th></ld<></th></ld<></th></ld<></th></ld<>	-	<ld< th=""><th>-</th><th>0,28</th><th>0,12</th><th><ld< th=""><th>-</th><th>0,28</th><th>0,07</th><th><ld< th=""><th>-</th></ld<></th></ld<></th></ld<>	-	0,28	0,12	<ld< th=""><th>-</th><th>0,28</th><th>0,07</th><th><ld< th=""><th>-</th></ld<></th></ld<>	-	0,28	0,07	<ld< th=""><th>-</th></ld<>	-
FeO	0,41	0,09	0,37	0,10	0,62	0,09	1,19	0,21	0,98	0,16	2,04	1,06
MnO	0,51	0,14	0,40	0,08	0,50	0,15	<ld< th=""><th>-</th><th>0,38</th><th>0,06</th><th>0,66</th><th>0,05</th></ld<>	-	0,38	0,06	0,66	0,05
MgO	1,61	0,22	1,70	0,17	1,96	0,18	1,07	0,07	1,57	0,09	3,00	0,84
CaO	30,94	1,59	31,25	2,33	30,99	1,42	31,58	0,51	34,34	1,18	24,43	1,82
Na ₂ O	18,52	1,70	16,51	1,65	14,72	0,72	18,62	0,79	15,67	0,52	20,49	1,25
K ₂ O	2,55	0,21	2,33	0,22	2,14	0,24	3,22	0,18	2,89	0,22	2,79	0,16
P_2O_5	1,92	0,24	1,82	0,16	1,86	0,17	1,94	0,12	2,75	0,26	1,69	0,06
BaO	1,16	0,14	1,24	0,07	1,30	0,10	1,01	0,07	0,99	0,07	2,01	0,85
SrO	1,66	0,15	1,69	0,20	1,65	0,09	1,76	0,13	1,56	0,14	1,96	0,30
SO ₂	0,28	0,05	0,33	0,12	0,28	0,04	0,10	0,01	0,13	0,03	0,36	0,10
F	2,91	0,13	2,95	0,32	2,28	0,25	3,15	0,23	2,07	0,22	2,99	1,34
Cl	0,15	0,04	0,12	0,02	0,05	0,01	0,56	0,06	0,31	0,01	0,41	0,26
Total	63,12	-	61,51	-	60,37	-	64,43	-	66,08	-	63,15	-
Na ₂ O+K ₂ O	21,07	1,91	18,84	1,86	16,86	0,96	21,84	0,97	18,56	0,75	23,28	1,41
	DODO3 03		DODOA AA		DODOD 04		DODOL 01					
	PCPC3_02		PCPC3_03		PCPC3_04		PCPC4_01		PCPC4_02		PCPC4_03	
P (Gpa)	0,8		PCPC3_03 0,8		PCPC3_04 0,8		PCPC4_01 0,8		PCPC4_02 0,8		PCPC4_03 0,8	
P (Gpa) T (°C)	0,8 850		PCPC3_03 0,8 850		PCPC3_04 0,8 850		PCPC4_01 0,8 850		PCPC4_02 0,8 850		PCPC4_03 0,8 850	
P (Gpa) T (°C) Composition	PCPC3_02 0,8 850 PhCbn2		PCPC3_03 0,8 850 PhCbn2		PCPC3_04 0,8 850 PhCbn2		PCPC4_01 0,8 850 PhCbn3		PCPC4_02 0,8 850 PhCbn3		PCPC4_03 0,8 850 PhCbn3	
P (Gpa) T (°C) Composition LC	PCPC3_02 0,8 850 PhCbn2		PCPC3_03 0,8 850 PhCbn2		PCPC3_04 0,8 850 PhCbn2		PCPC4_01 0,8 850 PhCbn3		PCPC4_02 0,8 850 PhCbn3		PCPC4_03 0,8 850 PhCbn3	
P (Gpa) T (°C) Composition LC N	PCPC3_02 0,8 850 PhCbn2 6	σ	PCPC3_03 0,8 850 PhCbn2 7	σ	PCPC3_04 0,8 850 PhCbn2 4	σ	PCPC4_01 0,8 850 PhCbn3	σ	PCPC4_02 0,8 850 PhCbn3	σ	PCPC4_03 0,8 850 PhCbn3	σ
P (Gpa) T (°C) Composition LC N SiO ₂	PCPC3_02 0,8 850 PhCbn2 6 0,87	σ 0,50	PCPC3_03 0,8 850 PhCbn2 7 0,51	σ 0,25	PCPC3_04 0,8 850 PhCbn2 4 0,33	σ 0,05	PCPC4_01 0,8 850 PhCbn3 9 0,47	σ 0,09	PCPC4_02 0,8 850 PhCbn3 11 1,54	σ 0,25	PCPC4_03 0,8 850 PhCbn3 10 0,98	σ 0,38
P (Gpa) T (°C) Composition LC N SiO ₂ TiO ₂	PCPC3_02 0,8 850 PhCbn2 6 0,87 <ld< th=""><th>σ 0,50 -</th><th>PCPC3_03 0,8 850 PhCbn2 7 0,51 <ld< th=""><th>σ 0,25 -</th><th>PCPC3_04 0,8 850 PhCbn2 4 0,33 0,29</th><th>σ 0,05 0,08</th><th>PCPC4_01 0,8 850 PhCbn3 9 0,47 <ld< th=""><th>σ 0,09 -</th><th>PCPC4_02 0,8 850 PhCbn3 11 1,54 <ld< th=""><th>σ 0,25</th><th>PCPC4_03 0,8 850 PhCbn3 10 0,98 <ld< th=""><th>σ 0,38</th></ld<></th></ld<></th></ld<></th></ld<></th></ld<>	σ 0,50 -	PCPC3_03 0,8 850 PhCbn2 7 0,51 <ld< th=""><th>σ 0,25 -</th><th>PCPC3_04 0,8 850 PhCbn2 4 0,33 0,29</th><th>σ 0,05 0,08</th><th>PCPC4_01 0,8 850 PhCbn3 9 0,47 <ld< th=""><th>σ 0,09 -</th><th>PCPC4_02 0,8 850 PhCbn3 11 1,54 <ld< th=""><th>σ 0,25</th><th>PCPC4_03 0,8 850 PhCbn3 10 0,98 <ld< th=""><th>σ 0,38</th></ld<></th></ld<></th></ld<></th></ld<>	σ 0,25 -	PCPC3_04 0,8 850 PhCbn2 4 0,33 0,29	σ 0,05 0,08	PCPC4_01 0,8 850 PhCbn3 9 0,47 <ld< th=""><th>σ 0,09 -</th><th>PCPC4_02 0,8 850 PhCbn3 11 1,54 <ld< th=""><th>σ 0,25</th><th>PCPC4_03 0,8 850 PhCbn3 10 0,98 <ld< th=""><th>σ 0,38</th></ld<></th></ld<></th></ld<>	σ 0,09 -	PCPC4_02 0,8 850 PhCbn3 11 1,54 <ld< th=""><th>σ 0,25</th><th>PCPC4_03 0,8 850 PhCbn3 10 0,98 <ld< th=""><th>σ 0,38</th></ld<></th></ld<>	σ 0,25	PCPC4_03 0,8 850 PhCbn3 10 0,98 <ld< th=""><th>σ 0,38</th></ld<>	σ 0,38
P (Gpa) T (°C) Composition LC N SiO ₂ TiO ₂ Al ₂ O ₃	6 0,87 <ld< td=""> <ld< td=""></ld<></ld<>	σ 0,50 -	PCPC3_03 0,8 850 PhCbn2 7 0,51 <ld <ld <ld< th=""><th>σ 0,25 -</th><th>PCPC3_04 0,8 850 PhCbn2 4 0,33 0,29 <ld< th=""><th>σ 0,05 0,08</th><th>9 0,47 0,15 0,15</th><th>σ 0,09 - 0,01</th><th>PCPC4_02 0,8 850 PhCbn3 11 1,54 <ld 0,31 0,31</ld </th><th>σ 0,25 - 0,07</th><th>PCPC4_03 0,8 850 PhCbn3 10 0,98 <ld 0,28 0,28</ld </th><th>σ 0,38 - 0,08</th></ld<></th></ld<></ld </ld 	σ 0,25 -	PCPC3_04 0,8 850 PhCbn2 4 0,33 0,29 <ld< th=""><th>σ 0,05 0,08</th><th>9 0,47 0,15 0,15</th><th>σ 0,09 - 0,01</th><th>PCPC4_02 0,8 850 PhCbn3 11 1,54 <ld 0,31 0,31</ld </th><th>σ 0,25 - 0,07</th><th>PCPC4_03 0,8 850 PhCbn3 10 0,98 <ld 0,28 0,28</ld </th><th>σ 0,38 - 0,08</th></ld<>	σ 0,05 0,08	9 0,47 0,15 0,15	σ 0,09 - 0,01	PCPC4_02 0,8 850 PhCbn3 11 1,54 <ld 0,31 0,31</ld 	σ 0,25 - 0,07	PCPC4_03 0,8 850 PhCbn3 10 0,98 <ld 0,28 0,28</ld 	σ 0,38 - 0,08
P (Gpa) T (°C) Composition LC N SiO ₂ TiO ₂ Al ₂ O ₃ FeO	6 0,87 <ld< td=""> 1,94</ld<>	σ 0,50 - 0,34	PCPC3_03 0,8 850 PhCbn2 7 0,51 <ld <ld 2,57 2,57</ld </ld 	σ 0,25 - 0,70	PCPC3_04 0,8 850 PhCbn2 4 0,33 0,29 <ld 3,34 3,34</ld 	σ 0,05 0,08 - 0,17	PCPC4_01 0,8 850 PhCbn3 9 0,47 <ld 0,15 0,36 0,50</ld 	σ 0,09 - 0,01 0,09	PCPC4_02 0,8 850 PhCbn3 11 1,54 <ld 0,31 0,40</ld 	σ 0,25 - 0,07 0,06	PCPC4_03 0,8 850 PhCbn3 10 0,98 <ld 0,28 0,40</ld 	σ 0,38 - 0,08 0,09
P (Gpa) T (°C) Composition LC N SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO	6 0,87 <ld< td=""> 1,94 0,60</ld<>	σ 0,50 - 0,34 0,14	7 0,51 <ld< td=""> 2,57 0,70 0,00</ld<>	σ 0,25 - 0,70 0,15	PCPC3_04 0,8 850 PhCbn2 4 0,33 0,29 <ld 3,34 0,70 0,70</ld 	σ 0,05 0,08 - 0,17 0,06	PCPC4_01 0,8 850 PhCbn3 9 0,47 <ld 0,15 0,36 0,58</ld 	σ 0,09 - 0,01 0,09 0,15	PCPC4_02 0,8 850 PhCbn3 11 1,54 <ld 0,31 0,40 0,52</ld 	σ 0,25 - 0,07 0,06 0,10	PCPC4_03 0,8 850 PhCbn3 10 0,98 <ld 0,28 0,40 0,48 0,48</ld 	σ 0,38 - 0,08 0,09 0,10
P (Gpa) T (°C) Composition LC N SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO MgO	PCPC3_02 0,8 850 PhCbn2 6 0,87 <ld <ld 1,94 0,60 2,58</ld </ld 	σ 0,50 - 0,34 0,14 0,71	7 0,51 <ld< td=""> 2,57 0,70 2,89</ld<>	σ 0,25 - 0,70 0,15 0,74	PCPC3_04 0,8 850 PhCbn2 4 0,33 0,29 <ld 3,34 0,70 2,18</ld 	σ 0,05 0,08 - 0,17 0,06 0,23	9 0,47 <ld 0,58 0,47 <ld 0,15 0,36 0,58 2,88</ld </ld 	σ 0,09 - 0,01 0,09 0,15 0,29	PCPC4_02 0,8 850 PhCbn3 11 1,54 <ld 0,31 0,40 0,52 2,39</ld 	σ 0,25 - 0,07 0,06 0,10 0,06	PCPC4_03 0,8 850 PhCbn3 10 0,98 <ld 0,28 0,40 0,48 2,53 2,53</ld 	σ 0,38 - 0,08 0,09 0,10 0,12
P (Gpa) T (°C) Composition LC N SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO MgO CaO	6 0,87 <ld< td=""> 1,94 0,60 2,58 24,95 1</ld<>	σ 0,50 - - 0,34 0,14 0,71 1,37	7 0,51 <ld< td=""> 2,57 0,70 2,89 25,43 25,43</ld<>	σ 0,25 - 0,70 0,15 0,74 2,82	PCPC3_04 0,8 850 PhCbn2 4 0,33 0,29 <ld 3,34 0,70 2,18 25,44</ld 	σ 0,05 0,08 - 0,17 0,06 0,23 0,83	9 0,47 <ld 0,15 0,36 0,58 2,88 34,27</ld 	σ 0,09 - 0,01 0,09 0,15 0,29 0,32	PCPC4_02 0,8 850 PhCbn3 11 1,54 <ld 0,31 0,40 0,52 2,39 34,65 34,65</ld 	σ 0,25 - 0,07 0,06 0,10 0,06 0,37	PCPC4_03 0,8 850 PhCbn3 10 0,98 <ld 0,28 0,40 0,48 2,53 33,92 33,92</ld 	σ 0,38 - 0,08 0,09 0,10 0,12 0,83
P (Gpa) T (°C) Composition LC N SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O	6 0,87 <ld< td=""> 1,94 0,60 2,58 24,95 19,51</ld<>	σ 0,50 - 0,34 0,14 0,71 1,37 0,89	7 0,51 <ld< td=""> 2,57 0,70 2,89 25,43 20,62</ld<>	σ 0,25 - 0,70 0,15 0,74 2,82 0,74	PCPC3_04 0,8 850 PhCbn2 4 0,33 0,29 <ld 3,34 0,70 2,18 25,44 20,95</ld 	σ 0,05 0,08 - 0,17 0,06 0,23 0,83 1,04 0,12	9 0,47 <ld 0,15 0,36 0,58 2,88 34,27 17,46</ld 	σ 0,09 - 0,01 0,09 0,15 0,29 0,32 0,29	PCPC4_02 0,8 850 PhCbn3 11 1,54 <ld 0,31 0,40 0,52 2,39 34,65 16,03 16,03</ld 	σ 0,25 - 0,07 0,06 0,10 0,06 0,37 0,35	PCPC4_03 0,8 850 PhCbn3 10 0,98 <ld 0,28 0,40 0,48 2,53 33,92 16,22 16,22</ld 	σ 0,38 - 0,08 0,09 0,10 0,12 0,83 1,16
P (Gpa) T (°C) Composition LC N SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O	6 0,87 <ld< td=""> 1,94 0,60 2,58 24,95 19,51 3,13 217</ld<>	σ 0,50 - - 0,34 0,14 0,71 1,37 0,89 0,12	7 0,51 <ld< td=""> 2,57 0,70 2,89 25,43 20,62 2,22 20</ld<>	σ 0,25 - 0,70 0,15 0,74 2,82 0,74 0,74	PCPC3_04 0,8 850 PhCbn2 4 0,33 0,29 <ld 3,34 0,70 2,18 25,44 20,95 3,45 3,45</ld 	σ 0,05 0,08 - 0,17 0,06 0,23 0,83 1,04 0,19	9 0,47 <ld 0,15 0,36 0,58 2,88 34,27 17,46 1,95</ld 	σ 0,09 - 0,01 0,09 0,15 0,29 0,32 0,29 0,11	PCPC4_02 0,8 850 PhCbn3 11 1,54 <ld 0,31 0,40 0,52 2,39 34,65 16,03 2,17 16,03</ld 	σ 0,25 - 0,07 0,06 0,10 0,06 0,37 0,35 0,10	PCPC4_03 0,8 850 PhCbn3 10 0,98 <ld 0,28 0,40 0,48 2,53 33,92 16,22 2,10 10,20</ld 	σ 0,38 - 0,08 0,09 0,10 0,12 0,83 1,16 0,11
P (Gpa) T (°C) Composition LC N SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅	6 0,87 <ld< td=""> 1,94 0,60 2,58 24,95 19,51 3,13 2,17</ld<>	σ 0,50 - - 0,34 0,14 0,71 1,37 0,89 0,12 0,41 0,41	7 0,51 <ld< td=""> 2,57 0,70 2,89 25,43 20,62 2,22 2,99</ld<>	σ 0,25 - 0,70 0,15 0,74 2,82 0,74 0,75 0,78	PCPC3_04 0,8 850 PhCbn2 4 0,33 0,29 <ld 3,34 0,70 2,18 25,44 20,95 3,45 2,76 1,15</ld 	σ 0,05 0,08 - 0,17 0,06 0,23 0,83 1,04 0,19 0,89	PCPC4_01 0,8 850 PhCbn3 9 0,47 <ld 0,15 0,36 0,58 2,88 34,27 17,46 1,95 1,81 1,81</ld 	σ 0,09 - 0,01 0,09 0,15 0,29 0,32 0,29 0,11 0,14	PCPC4_02 0,8 850 PhCbn3 11 1,54 <ld 0,31 0,40 0,52 2,39 34,65 16,03 2,17 1,96 16,11 1,96</ld 	σ 0,25 - 0,07 0,06 0,10 0,06 0,37 0,35 0,10 0,11 0,11	PCPC4_03 0,8 850 PhCbn3 10 0,98 <ld 0,28 0,40 0,48 2,53 33,92 16,22 2,10 1,92 2,00</ld 	σ 0,38 - 0,08 0,09 0,10 0,12 0,83 1,16 0,11 0,19
P (Gpa) T (°C) Composition LC N SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ BaO	6 0,87 <ld< td=""> 1,94 0,60 2,58 24,95 19,51 3,13 2,17 1,46 (60)</ld<>	σ 0,50 - - 0,34 0,14 0,71 1,37 0,89 0,12 0,41 0,56	7 0,51 <ld< td=""> <ld< td=""> 2,57 0,70 2,89 25,43 20,62 2,22 2,99 1,54</ld<></ld<>	σ 0,25 - 0,70 0,15 0,74 2,82 0,74 0,75 0,78 0,78 0,75	PCPC3_04 0,8 850 PhCbn2 4 0,33 0,29 <ld 3,34 0,70 2,18 25,44 20,95 3,45 2,76 1,46 1,46</ld 	σ 0,05 0,08 - 0,17 0,06 0,23 0,83 1,04 0,19 0,89 0,19	PCPC4_01 0,8 850 PhCbn3 9 0,47 <ld 0,15 0,36 0,58 2,88 34,27 17,46 1,95 1,81 1,13 1,13</ld 	σ 0,09 - 0,01 0,09 0,15 0,29 0,32 0,29 0,11 0,14 0,06	PCPC4_02 0,8 850 PhCbn3 11 1,54 <ld 0,31 0,40 0,52 2,39 34,65 16,03 2,17 1,96 1,01 1,05</ld 	σ 0,25 - 0,07 0,06 0,10 0,06 0,37 0,35 0,10 0,11 0,03 0,12	PCPC4_03 0,8 850 PhCbn3 10 0,98 <ld 0,28 0,40 0,48 2,53 33,92 16,22 2,10 1,92 0,98 2,10</ld 	σ 0,38 - 0,08 0,09 0,10 0,12 0,83 1,16 0,11 0,19 0,06
P (Gpa) T (°C) Composition LC N SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ BaO SrO	6 0,87 <ld< td=""> 1,94 0,60 2,58 24,95 19,51 3,13 2,17 1,46 1,68 0,24 24</ld<>	σ 0,50 - - 0,34 0,14 0,71 1,37 0,89 0,12 0,41 0,56 0,29	7 0,51 <ld< td=""> 2,57 0,70 2,89 25,43 20,62 2,22 2,99 1,54 1,65 0,21</ld<>	σ 0,25 - - 0,70 0,15 0,74 2,82 0,74 0,75 0,78 0,35 0,22	PCPC3_04 0,8 850 PhCbn2 4 0,33 0,29 <ld 3,34 0,70 2,18 25,44 20,95 3,45 2,76 1,46 1,75 0,21</ld 	σ 0,05 0,08 - 0,17 0,06 0,23 0,83 1,04 0,19 0,89 0,19 0,19	PCPC4_01 0,8 850 PhCbn3 9 0,47 <ld 0,15 0,36 0,58 2,88 34,27 17,46 1,95 1,81 1,13 1,93 0,25</ld 	σ 0,09 - 0,01 0,09 0,15 0,29 0,32 0,29 0,11 0,14 0,06 0,10	PCPC4_02 0,8 850 PhCbn3 11 1,54 <ld 0,31 0,40 0,52 2,39 34,65 16,03 2,17 1,96 1,01 1,85 0,20</ld 	σ 0,25 - 0,07 0,06 0,10 0,06 0,37 0,35 0,10 0,11 0,03 0,12	PCPC4_03 0,8 850 PhCbn3 10 0,98 <ld 0,28 0,40 0,48 2,53 33,92 16,22 2,10 1,92 0,98 2,19 0,28</ld 	σ 0,38 - 0,08 0,09 0,10 0,12 0,83 1,16 0,11 0,19 0,06 0,21
P (Gpa) T (°C) Composition LC N SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ BaO SrO SO ₂	6 0,87 <ld< td=""> 1,94 0,60 2,58 24,95 19,51 3,13 2,17 1,46 1,68 0,34 2,28</ld<>	σ 0,50 - - 0,34 0,14 0,71 1,37 0,89 0,12 0,41 0,56 0,29 0,07 0,42	7 0,51 <ld< td=""> <!--</th--><th>σ 0,25 - 0,70 0,15 0,74 2,82 0,74 0,75 0,78 0,22 0,04 2,022</th><th>PCPC3_04 0,8 850 PhCbn2 4 0,33 0,29 <ld 3,34 0,70 2,18 25,44 20,95 3,45 2,76 1,46 1,75 0,31 2,57</ld </th><th>σ 0,05 0,08 - 0,17 0,06 0,23 0,83 1,04 0,19 0,19 0,19 0,14 0,09</th><th>PCPC4_01 0,8 850 PhCbn3 9 0,47 <ld 0,15 0,36 0,58 2,88 34,27 17,46 1,95 1,81 1,13 1,93 0,25 10,02</ld </th><th>σ 0,09 0,01 0,09 0,15 0,29 0,32 0,29 0,11 0,14 0,06 0,10 0,032</th><th>PCPC4_02 0,8 850 PhCbn3 11 1,54 <ld 0,31 0,40 0,52 2,39 34,65 16,03 2,17 1,96 1,01 1,85 0,30 11.45</ld </th><th>σ 0,25 - 0,07 0,06 0,10 0,06 0,37 0,35 0,10 0,11 0,03 0,12 0,04</th><th>PCPC4_03 0,8 850 PhCbn3 10 0,98 <ld 0,28 0,40 0,48 2,53 33,92 16,22 2,10 1,92 0,98 2,19 0,38 10,70</ld </th><th>σ 0,38 - 0,08 0,09 0,10 0,12 0,83 1,16 0,11 0,19 0,06 0,21 0,24</th></ld<>	σ 0,25 - 0,70 0,15 0,74 2,82 0,74 0,75 0,78 0,22 0,04 2,022	PCPC3_04 0,8 850 PhCbn2 4 0,33 0,29 <ld 3,34 0,70 2,18 25,44 20,95 3,45 2,76 1,46 1,75 0,31 2,57</ld 	σ 0,05 0,08 - 0,17 0,06 0,23 0,83 1,04 0,19 0,19 0,19 0,14 0,09	PCPC4_01 0,8 850 PhCbn3 9 0,47 <ld 0,15 0,36 0,58 2,88 34,27 17,46 1,95 1,81 1,13 1,93 0,25 10,02</ld 	σ 0,09 0,01 0,09 0,15 0,29 0,32 0,29 0,11 0,14 0,06 0,10 0,032	PCPC4_02 0,8 850 PhCbn3 11 1,54 <ld 0,31 0,40 0,52 2,39 34,65 16,03 2,17 1,96 1,01 1,85 0,30 11.45</ld 	σ 0,25 - 0,07 0,06 0,10 0,06 0,37 0,35 0,10 0,11 0,03 0,12 0,04	PCPC4_03 0,8 850 PhCbn3 10 0,98 <ld 0,28 0,40 0,48 2,53 33,92 16,22 2,10 1,92 0,98 2,19 0,38 10,70</ld 	σ 0,38 - 0,08 0,09 0,10 0,12 0,83 1,16 0,11 0,19 0,06 0,21 0,24
P (Gpa) T (°C) Composition LC N SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O R ₂ O P ₂ O ₅ BaO SrO SO ₂ F	6 0,87 <ld< td=""> 1,94 0,60 2,58 24,95 19,51 3,13 2,17 1,46 1,68 0,34 2,38 0,20 20</ld<>	σ 0,50 - - 0,34 0,14 0,71 1,37 0,89 0,12 0,41 0,56 0,29 0,07 0,43 0,10	7 0,51 <ld< td=""> <t< th=""><th>σ 0,25 - 0,70 0,15 0,74 2,82 0,74 0,75 0,78 0,22 0,04 0,63</th><th>PCPC3_04 0,8 850 PhCbn2 4 0,33 0,29 <ld 3,34 0,70 2,18 25,44 20,95 3,45 2,76 1,46 1,75 0,31 3,57 0,74</ld </th><th>σ 0,05 0,08 - 0,17 0,06 0,23 0,83 1,04 0,19 0,19 0,19 0,14 0,09 0,40</th><th>PCPC4_01 0,8 850 PhCbn3 9 0,47 <ld 0,15 0,36 0,58 2,88 34,27 17,46 1,95 1,81 1,13 1,93 0,25 10,92 0,52</ld </th><th>σ 0,09 0,01 0,09 0,15 0,29 0,32 0,29 0,11 0,14 0,06 0,10 0,03 0,33</th><th>PCPC4_02 0,8 850 PhCbn3 11 1,54 <ld 0,31 0,40 0,52 2,39 34,65 16,03 2,17 1,96 1,01 1,85 0,30 11,46 0,46</ld </th><th>σ 0,25 - 0,07 0,06 0,10 0,06 0,37 0,35 0,10 0,11 0,03 0,12 0,04 0,02</th><th>PCPC4_03 0,8 850 PhCbn3 10 0,98 <ld 0,28 0,40 0,48 2,53 33,92 16,22 2,10 1,92 0,98 2,19 0,38 10,70 0,55</ld </th><th>σ 0,38 - 0,08 0,09 0,10 0,12 0,83 1,16 0,11 0,19 0,06 0,21 0,16 0,24</th></t<></ld<>	σ 0,25 - 0,70 0,15 0,74 2,82 0,74 0,75 0,78 0,22 0,04 0,63	PCPC3_04 0,8 850 PhCbn2 4 0,33 0,29 <ld 3,34 0,70 2,18 25,44 20,95 3,45 2,76 1,46 1,75 0,31 3,57 0,74</ld 	σ 0,05 0,08 - 0,17 0,06 0,23 0,83 1,04 0,19 0,19 0,19 0,14 0,09 0,40	PCPC4_01 0,8 850 PhCbn3 9 0,47 <ld 0,15 0,36 0,58 2,88 34,27 17,46 1,95 1,81 1,13 1,93 0,25 10,92 0,52</ld 	σ 0,09 0,01 0,09 0,15 0,29 0,32 0,29 0,11 0,14 0,06 0,10 0,03 0,33	PCPC4_02 0,8 850 PhCbn3 11 1,54 <ld 0,31 0,40 0,52 2,39 34,65 16,03 2,17 1,96 1,01 1,85 0,30 11,46 0,46</ld 	σ 0,25 - 0,07 0,06 0,10 0,06 0,37 0,35 0,10 0,11 0,03 0,12 0,04 0,02	PCPC4_03 0,8 850 PhCbn3 10 0,98 <ld 0,28 0,40 0,48 2,53 33,92 16,22 2,10 1,92 0,98 2,19 0,38 10,70 0,55</ld 	σ 0,38 - 0,08 0,09 0,10 0,12 0,83 1,16 0,11 0,19 0,06 0,21 0,16 0,24
P (Gpa) T (°C) Composition LC N SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O R ₂ O P ₂ O ₅ BaO SrO SO ₂ F Cl	6 0,87 <ld< td=""> 1,94 0,60 2,58 24,95 19,51 3,13 2,17 <</ld<>	σ 0,50 - - 0,34 0,14 0,71 1,37 0,89 0,12 0,41 0,56 0,29 0,07 0,43 0,10	7 0,51 <ld< td=""> 2,57 0,70 2,89 25,43 20,62 2,22 2,99 1,54 1,65 0,31 2,54 0,37</ld<>	σ 0,25 - 0,70 0,15 0,74 2,82 0,74 0,75 0,78 0,35 0,22 0,04 0,63 0,14	PCPC3_04 0,8 850 PhCbn2 4 0,33 0,29 <ld 3,34 0,70 2,18 25,44 20,95 3,45 2,76 1,46 1,75 0,31 3,57 0,74 67 2 6</ld 	σ 0,05 0,08 - 0,17 0,06 0,23 0,83 1,04 0,19 0,19 0,19 0,14 0,09 0,40 0,08	PCPC4_01 0,8 850 PhCbn3 9 0,47 <ld 0,15 0,36 0,58 2,88 34,27 17,46 1,95 1,81 1,13 1,93 0,25 10,92 0,53 74,67</ld 	σ 0,09 0,01 0,09 0,15 0,29 0,32 0,29 0,11 0,14 0,06 0,10 0,03 0,33 0,02	PCPC4_02 0,8 850 PhCbn3 11 1,54 <ld 0,31 0,40 0,52 2,39 34,65 16,03 2,17 1,96 1,01 1,85 0,30 11,46 0,46 75 02</ld 	σ 0,25 - 0,07 0,06 0,10 0,06 0,37 0,35 0,10 0,11 0,03 0,12 0,04 0,24 0,03	PCPC4_03 0,8 850 PhCbn3 10 0,98 <ld 0,28 0,40 0,48 2,53 33,92 16,22 2,10 1,92 0,98 2,19 0,38 10,70 0,55 72,62</ld 	σ 0,38 - 0,08 0,09 0,10 0,12 0,83 1,16 0,11 0,19 0,06 0,21 0,16 0,24 0,01
P (Gpa) T (°C) Composition LC N SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ BaO SrO SO ₂ F Cl Total	6 0.87 <ld< td=""> 1.94 0,60 2.58 24,95 19,51 3,13 2,17 <</ld<>	σ 0,50 - - 0,34 0,14 0,71 1,37 0,89 0,12 0,41 0,56 0,29 0,07 0,43 0,10	7 0,51 <ld< td=""> <ld< td=""> <2,57 0,70 2,89 25,43 20,62 2,99 1,54 2,54 0,31 2,54 2,54</ld<></ld<>	σ 0,25 - 0,70 0,15 0,74 2,82 0,74 0,75 0,78 0,22 0,04 0,63 0,14 -	4 0,33 0,29 <	σ 0,05 0,08 - 0,17 0,06 0,23 0,83 1,04 0,19 0,19 0,14 0,09 0,14 0,09	PCPC4_01 0,8 850 PhCbn3 9 0,47 <ld 0,15 0,36 0,58 2,88 34,27 17,46 1,95 1,81 1,13 1,93 0,25 10,92 0,53 74,67 10,42</ld 	σ 0,09 0,01 0,09 0,15 0,29 0,32 0,29 0,11 0,14 0,06 0,10 0,03 0,03 0,02	PCPC4_02 0,8 850 PhCbn3 11 1,54 <ld 0,31 0,40 0,52 2,39 34,65 16,03 2,17 1,96 1,01 1,85 0,30 11,46 0,46 75,03 18,20</ld 	σ 0,25 - 0,07 0,06 0,10 0,06 0,37 0,35 0,10 0,11 0,03 0,12 0,04 0,24 0,03	PCPC4_03 0,8 850 PhCbn3 10 0,98 <ld 0,28 0,40 0,48 2,53 33,92 16,22 2,10 1,92 0,98 2,19 0,38 10,70 0,55 73,63 18,22</ld 	σ 0,38 - 0,08 0,09 0,10 0,12 0,83 1,16 0,11 0,19 0,06 0,21 0,16 0,24 0,01

Tableau V.3. Composition en éléments majeurs des liquides carbonatés \pm enrichis en F, Cl et P. Tous les éléments majeurs sont en % poids. σ : écart-type sur la moyenne ; < LD : inférieur à la limite de détection.

Tableau V.3. Suite

	PCPC4_04		PCPC5_01		PCPC5_02		PCPC5_03	
P (Gpa)	0,8		0,8		0,8		0,8	
T (°C)	850		850		850		850	
Composition	PhCbn3		PhCbn4		PhCbn5		PhCbn6	
LC								
N	9	σ	16	σ	7	σ	16	σ
SiO ₂	0,25	0,06	1,23	0,45	1,02	0,36	1,49	0,68
TiO ₂	<ld< td=""><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td><ld< td=""><td>-</td></ld<></td></ld<>	-	-	-	-	-	<ld< td=""><td>-</td></ld<>	-
Al_2O_3	<ld< td=""><td>-</td><td>0,26</td><td>0,17</td><td><ld< td=""><td>-</td><td>0,30</td><td>0,19</td></ld<></td></ld<>	-	0,26	0,17	<ld< td=""><td>-</td><td>0,30</td><td>0,19</td></ld<>	-	0,30	0,19
FeO	2,79	0,51	0,43	0,15	0,32	0,07	0,43	0,17
MnO	0,44	0,12	0,66	0,13	0,51	0,13	0,58	0,16
MgO	2,14	0,19	1,63	0,25	1,70	0,30	1,86	0,48
CaO	30,59	1,68	31,26	1,45	35,10	5,62	36,82	5,11
Na ₂ O	20,49	0,77	10,96	1,67	8,18	3,53	4,84	2,34
K ₂ O	2,44	0,18	2,76	0,25	1,19	0,67	0,82	0,21
P_2O_5	1,83	0,28	1,70	0,57	1,53	0,40	1,48	0,44
BaO	0,50	0,10	1,45	0,14	1,53	0,25	1,60	0,12
SrO	1,21	0,12	1,91	0,18	2,22	0,22	2,17	0,27
SO ₂	0,17	0,04	0,38	0,08	0,25	0,08	0,38	0,25
F	11,35	0,97	5,39	0,69	3,52	0,80	5,63	0.75
Cl	0,35	0,15	0,51	0,20	0,73	0,25	0,59	0.30
Total	74,54	-	60,50	-	57,80	-	59,00	-
Na ₂ O+K ₂ O	22.93	0.95	13.71	1.91	9.37	4.20	5.66	2.55
	PCPC5 04	,	PCPC6 01		PCPC6 02		PCPC6 03	,
P (Gpa)	0,8		0,8		0,8		0,8	
$T(^{\circ}C)$	850		1050		1050		850	
Composition	PhCbn7		PhCbn3		PhCbn4		PhCbn2	
LC								
N	11	σ	16	σ	6	σ	7	σ
SiO ₂	0,18	0,04	2,87	0,68	4,51	0,54	1,97	0,43
TiO ₂	<ld< td=""><td>-</td><td>0,18</td><td>0,01</td><td><ld< td=""><td>-</td><td><ld< td=""><td>-</td></ld<></td></ld<></td></ld<>	-	0,18	0,01	<ld< td=""><td>-</td><td><ld< td=""><td>-</td></ld<></td></ld<>	-	<ld< td=""><td>-</td></ld<>	-
Al ₂ O ₃	<ld< td=""><td>-</td><td>0,60</td><td>0,19</td><td>0,87</td><td>0,22</td><td>0,38</td><td>0,11</td></ld<>	-	0,60	0,19	0,87	0,22	0,38	0,11
FeO	1.89	0.27	1.25	0.22	1.40	0.24	1,79	0,14
	1,07	0,27	1,25	0,23	1,49	- /		
MnO	0,42	0,09	0,41	0,23	0,50	0,07	0,44	0,07
MnO MgO	0,42 0,89	0,09 0,11	0,41 2,10	0,23 0,06 0,10	0,50 1,73	0,07 0,26	0,44 2,09	0,07 0,24
MnO MgO CaO	0,42 0,89 29,35	0,09 0,11 1,89	0,41 2,10 33,10	0,23 0,06 0,10 0,73	0,50 1,73 29,94	0,07 0,26 1,96	0,44 2,09 29,37	0,07 0,24 0,94
MnO MgO CaO Na ₂ O	0,42 0,89 29,35 15,94	0,09 0,11 1,89 1,46	0,41 2,10 33,10 16,66	0,23 0,06 0,10 0,73 0,33	0,50 1,73 29,94 10,09	0,07 0,26 1,96 1,56	0,44 2,09 29,37 17,14	0,07 0,24 0,94 0,68
MnO MgO CaO Na ₂ O K ₂ O	0,42 0,89 29,35 15,94 3,95	0,27 0,09 0,11 1,89 1,46 0,33	0,41 2,10 33,10 16,66 3,01	0,23 0,06 0,10 0,73 0,33 0,19	0,50 1,73 29,94 10,09 2,92	0,07 0,26 1,96 1,56 0,20	0,44 2,09 29,37 17,14 2,49	0,07 0,24 0,94 0,68 0,12
MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅	0,42 0,89 29,35 15,94 3,95 1,49	0,09 0,11 1,89 1,46 0,33 0,13	0,41 2,10 33,10 16,66 3,01 1,75	0,23 0,06 0,10 0,73 0,33 0,19 0,20	0,50 1,73 29,94 10,09 2,92 1,98	0,07 0,26 1,96 1,56 0,20 1,03	0,44 2,09 29,37 17,14 2,49 9,47	0,07 0,24 0,94 0,68 0,12 0,95
MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ BaO	0,42 0,89 29,35 15,94 3,95 1,49 0,82	0,09 0,11 1,89 1,46 0,33 0,13 0,10	0,41 2,10 33,10 16,66 3,01 1,75 1,04	0,23 0,06 0,10 0,73 0,33 0,19 0,20 0,03	0,50 1,73 29,94 10,09 2,92 1,98 0,96	0,07 0,26 1,96 1,56 0,20 1,03 0,10	0,44 2,09 29,37 17,14 2,49 9,47 1,23	0,07 0,24 0,94 0,68 0,12 0,95 0,19
MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ BaO SrO	0,42 0,89 29,35 15,94 3,95 1,49 0,82 1,43	0,09 0,11 1,89 1,46 0,33 0,13 0,10 0,14	0,41 2,10 33,10 16,66 3,01 1,75 1,04 1,59	0,23 0,06 0,10 0,73 0,33 0,19 0,20 0,03 0,13	0,50 1,73 29,94 10,09 2,92 1,98 0,96 1,54	0,07 0,26 1,96 1,56 0,20 1,03 0,10 0,16	0,44 2,09 29,37 17,14 2,49 9,47 1,23 1,60	0,07 0,24 0,94 0,68 0,12 0,95 0,19 0,19
MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ BaO SrO SO ₂	0,42 0,89 29,35 15,94 3,95 1,49 0,82 1,43 0,27	0,09 0,11 1,89 1,46 0,33 0,13 0,10 0,14 0,03	$\begin{array}{c} 1,23\\ 0,41\\ 2,10\\ 33,10\\ 16,66\\ 3,01\\ 1,75\\ 1,04\\ 1,59\\ 0,25\end{array}$	0,23 0,06 0,10 0,73 0,33 0,19 0,20 0,03 0,13 0,02	1,49 0,50 1,73 29,94 10,09 2,92 1,98 0,96 1,54 0,26	0,07 0,26 1,96 1,56 0,20 1,03 0,10 0,16 0,03	0,44 2,09 29,37 17,14 2,49 9,47 1,23 1,60 0,37	0,07 0,24 0,94 0,68 0,12 0,95 0,19 0,19 0,09
MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ BaO SrO SO ₂ F	0,42 0,89 29,35 15,94 3,95 1,49 0,82 1,43 0,27	0,27 0,09 0,11 1,89 1,46 0,33 0,13 0,10 0,14 0,03	$ \begin{array}{c} 1,23\\ 0,41\\ 2,10\\ 33,10\\ 16,66\\ 3,01\\ 1,75\\ 1,04\\ 1,59\\ 0,25\\ 11,79\\ \end{array} $	0,23 0,06 0,10 0,73 0,33 0,19 0,20 0,03 0,13 0,02 0,67	$ \begin{array}{c} 1,49\\ 0,50\\ 1,73\\ 29,94\\ 10,09\\ 2,92\\ 1,98\\ 0,96\\ 1,54\\ 0,26\\ 3,62\\ \end{array} $	0,07 0,26 1,96 1,56 0,20 1,03 0,10 0,16 0,03 0,76	0,44 2,09 29,37 17,14 2,49 9,47 1,23 1,60 0,37 2,34	0,07 0,24 0,94 0,68 0,12 0,95 0,19 0,19 0,09 0,27
MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ BaO SrO SO ₂ F Cl	0,42 0,89 29,35 15,94 3,95 1,49 0,82 1,43 0,27 - 3,23	0,09 0,11 1,89 1,46 0,33 0,13 0,10 0,14 0,03 - 2,59	$\begin{array}{c} 1,23\\ 0,41\\ 2,10\\ 33,10\\ 16,66\\ 3,01\\ 1,75\\ 1,04\\ 1,59\\ 0,25\\ 11,79\\ 0,51\end{array}$	0,23 0,06 0,10 0,73 0,33 0,19 0,20 0,03 0,13 0,02 0,67 0,03	$ \begin{array}{c} 1,49\\ 0,50\\ 1,73\\ 29,94\\ 10,09\\ 2,92\\ 1,98\\ 0,96\\ 1,54\\ 0,26\\ 3,62\\ 0,91\\ \end{array} $	0,07 0,26 1,96 1,56 0,20 1,03 0,10 0,16 0,03 0,76 0,33	0,44 2,09 29,37 17,14 2,49 9,47 1,23 1,60 0,37 2,34 0,49	0,07 0,24 0,94 0,68 0,12 0,95 0,19 0,09 0,09 0,27 0,14
MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ BaO SrO SO ₂ F Cl Total	0,42 0,89 29,35 15,94 3,95 1,49 0,82 1,43 0,27 - 3,23 59,85	0,09 0,11 1,89 1,46 0,33 0,13 0,10 0,14 0,03 - 2,59	$\begin{array}{c} 1,23\\ 0,41\\ 2,10\\ 33,10\\ 16,66\\ 3,01\\ 1,75\\ 1,04\\ 1,59\\ 0,25\\ 11,79\\ 0,51\\ 77,10\\ \end{array}$	0,23 0,06 0,10 0,73 0,33 0,19 0,20 0,03 0,13 0,02 0,67 0,03	$ \begin{array}{c} 1,49\\ 0,50\\ 1,73\\ 29,94\\ 10,09\\ 2,92\\ 1,98\\ 0,96\\ 1,54\\ 0,26\\ 3,62\\ 0,91\\ 61,33\\ \end{array} $	0,07 0,26 1,96 1,56 0,20 1,03 0,10 0,16 0,03 0,76 0,33	0,44 2,09 29,37 17,14 2,49 9,47 1,23 1,60 0,37 2,34 0,49 71,16	0,07 0,24 0,94 0,68 0,12 0,95 0,19 0,19 0,09 0,27 0,14

Figure V.3. Composition en alcalins et en silice des liquides silicatés et carbonatés coexistant, représentée dans un diagramme TAS (Total alkali silica, Le Bas et al., 1986), à 1050 °C (a) et à 850 °C (b). Chaque ligne relie un couple de liquides coexistant à l'équilibre à une condition expérimentale donnée, dans le système non dopé (« Ø vol. », en vert), enrichi en P (marron), en F (gris foncé) et en Cl (gris clair). Tous les échantillons sont représentés, y compris ceux contenant également 3% poids de H₂O (grands tirets) et ceux en contenant 6% poids (petite tirets).

Figure V.4. Diagrammes ternaires de composition des liquides silicatés et carbonatés immiscibles dans l'espace $(Na_2O+K_2O) - (CaO+MgO+FeO) - (SiO_2+TiO_2+Al_2O_3)$ pour les échantillons non dopés en éléments volatils (a), enrichi en P (b), en F (c) et en Cl (d). Chaque ligne relie un couple de liquides coexistant à l'équilibre à une condition expérimentale donnée, dans le système non dopé (« Ø vol. », en vert), enrichi en P (marron), en F (gris foncé) et en Cl (gris clair). Les liquides silicatés sont plus situés vers le pôle SiO_2+TiO_2+Al_2O_3 des diagrammes, et les liquides carbonaté vers les pôles CaO+MgO+FeO ou Na_2O+K_2O . Tous les échantillons sont représentés, y compris ceux contenant également 3% poids de H_2O (grands tirets) et ceux en contenant 6% poids (petits tirets). 850 °C : rond ; 1050 °C : triangle ;

Les liquides carbonatés évoluent donc beaucoup plus de composition que les liquides silicatés en fonction des éléments volatils présents dans les échantillons, avec une plus forte variation de composition dans le système enrichi en Cl et avec ajout de H_2O .

Les concentrations en éléments traces ont également été analysées dans tous ces liquides et sont présentées dans le Tableau B.2 de l'Annexe B.3. Les concentrations en REE sont généralement faibles dans le liquide silicaté à 850 °C, variant de 1,80 \pm 0,05 à 10,92 \pm 2,21 ppm pour le La représentatif des LREE, et de variant de manière plus importante de 8,90 \pm 1,61 à 45,02 \pm 9,25 ppm pour le Lu représentatif des HREE. Ces concentrations sont plus élevées à 1050 °C, variant de 18,21 \pm 0,48 à 35,92 \pm 0,66 ppm de La et de 30,12 \pm 0,87 à 52,45 \pm 4,03 pour le Lu. De plus, les liquides carbonatés sont plus riches en REE, avec des concentrations évoluant de 77,67 \pm 5,41 à 140,48 \pm 9,79 ppm et de 50,58 \pm 5,59 à 116,18 \pm 5,21 ppm pour le La et le Lu. Ces concentrations sont moins élevées à plus

haute température (72,46 \pm 2,86 à 108,09 \pm 5,60 ppm de La ; 36,27 \pm 3,45 à 74,90 \pm 2,73 ppm de Lu ; Tableau B.2 de l'Annexe B.3).

Pour les autres métaux rares (Hf, Zr, Ta et Nb), les liquides silicatés contiennent des concentrations relativement importantes en Zr et en Nb, évoluant respectivement de $279,51 \pm 16,76$ à $755,17 \pm 128,74$ pour le Zr, et de $86,68 \pm 5,53$ à $295,54 \pm 58,84$ pour le Nb. En revanche ces liquides présentent des concentrations relativement faibles en Hf et Ta ($10,04 \pm 0,12$ à $42,35 \pm 18,44$ ppm de Hf ; $1,73 \pm 0,09$ à $22,92 \pm 6,98$ ppm de Ta). En ce qui concerne les liquides carbonatés, Les concentrations en Zr et en Nb sont moins élevées que pour le liquide silicaté, variant de $7,69 \pm 1,33$ à $57,89 \pm 6,78$ pour le Zr et de $44,97 \pm 4,73$ à $228,43 \pm 9,65$ pour le Nb. Enfin les concentrations en Hf et en Ta sont très faibles : $0,20 \pm 0,09$ à $4,48 \pm 0,20$ pour le Hf et $0,14 \pm 0,02$ à $4,56 \pm 0,54$ pour le Ta.

Un bilan de masse a été réalisé, afin d'estimer les proportions en liquide silicaté et carbonaté ainsi qu'en cristaux présents dans les échantillons. Ce bilan de masse a été réalisé à partir des compositions en éléments majeurs et en éléments traces (si analysés ; Tableau C.15, Annexe C.8). La proportion des liquides carbonatés varie entre 38 et 49%, et celle des liquides silicatés entre 42 et 57 %. Pour les échantillons enrichis en Cl (PCPC5 et PCPC6_02), les bilans de masse ne sont pas présentés car aucun résultat concluant n'a été obtenu. En effet dans ces échantillons, toutes les phases (liquides silicatés et carbonatés, cristaux...) ne contiennent pas ou très peu de Cl, alors que la composition de départ en contient presque 5% poids (Tableau II.1, partie III.1.2). Cet élément n'est pas bien estimé dans ce calcul, et fausse ainsi le résultat final. Cette difficulté à calculer le bilan de masse pour ces échantillons confirme bien une perte de cet élément au cours des expériences, ou alors au cours de la préparation des échantillons (sciage des capsules, ou polissage).

Cas particulier, phase « LC2 » :

La phase nommée « LC2 » a également été analysée. Les compositions sont présentées dans le Tableau B.3 de l'Annexe B.4, et sont caractéristiques de compositions de liquide carbonaté (présence de MgO, CaO, Na₂O, K₂O mais aussi de P₂O₅, BaO, SrO et F). En revanche, cette phase est plus riche en CaO que les liquides carbonatés présentés dans le Tableau V.3, et présente un total d'analyse inférieure de 10% en comparaison à celui des liquides carbonatés. En effet, le liquide carbonaté de l'échantillon PCPC1 01 contient 30,94 % poids de CaO et présente une différence à 100 de 48,88% poids, alors que les zones de « LC2 » contiennent 44,13 % poids de CaO et présente une différence à 100 de 22,24 % poids seulement. De plus, les concentrations en REE sont beaucoup plus importantes dans ces zones : les « LC2 » de l'échantillon PCPC1 01 contiennent 363,67 ppm de La alors que le liquide carbonaté de cet échantillon en contient 91,07 ppm. Ces concentrations sont relativement importantes, étant donné que dans certains échantillons on peut observer de nombreuses occurrences de ces « LC2 » (Fig.V.1b et V.1g). Cependant un test a été effectué en prenant en compte ces compositions de «LC2» dans les bilans de masse. Cette phase a, pour tous les échantillons, été calculée soit en trace, soit inexistante. Les éléments majeurs sont systématiquement calculés en excès dans la composition de départ si elle est prise en compte (Si, Ca et Na notamment). L'identité de cette phase n'est donc pas encore définie.

V.1.3. Partage des métaux rares entre liquides enrichis en F, Cl et P

Les coefficients de partage des éléments traces ont été caractérisés pour tous les échantillons non dopés et dopés en F, Cl et P (Tableau V.4) selon l'équation (5) (partie III.4); ils sont représentés dans la Figure V.5.

De manière générale, tous les coefficients de partage caractérisés pour les REE présentent la tendance caractéristique telle que décrite dans la littérature (Veksler et al., 1998 ; Veksler et al., 2012 ; Martin et

al., 2013) ainsi que dans le chapitre IV de cette étude, c'est-à-dire marqué par un enrichissement plus élevé des LREE dans le liquide carbonaté, par rapport aux HREE. Dans ces échantillons, les REE sont plutôt concentrées dans le liquide carbonaté ($D_{REE}^{LC/LS} > 1$), à l'exception des HREE de certains échantillons (Fig.V.5a et V.5d).

A 1050 °C (triangle), les coefficients de partage des REE entre liquides carbonatés et silicatés $(D_{REE}^{LC/LS})$ sont relativement bas. Les liquides carbonatés dopés en F et en P sont légèrement plus enrichis en REE, avec des coefficients de 5,67 ± 0,16 et 1,91 ± 0,06 pour le La et le Lu dans le système enrichi en F (gris foncé ; Fig.V.5c), et de 4,67 ± 0,36 et 1,63 ± 0,07 dans le système enrichi en P (marron ; Fig.V.5b). Ces $D_{REE}^{LC/LS}$ sont divisés par deux dans le système dopé en Cl (2,44 ± 0,09 pour le La ; 0,99 ± 0,05 pour le Lu ; gris clair, Fig. V.5d), et également dans le système non dopé en éléments volatils (2,16 ± 0,12 pour le La ; 0,69 ± 0,08 pour le Lu ; vert, Fig. V.5a).

Figure V.5. Coefficients de partage des métaux rares entre liquides carbonatés et liquides silicatés (D^{LCLS}) non enrichis en éléments volatils (a), enrichis en P (b), en F (c) et en Cl (d). Tous les échantillons sont représentés dans chaque système, y compris ceux contenant 3 et 6% poids de H₂O (grands et petits tirets respectivement), à 850 °C (rond) et 1050 °C° (triangle).

A 850 °C (rond), les $D_{REE}^{LC/LS}$ sont généralement plus élevés (Fig.V.5). Comme à plus haute température, l'enrichissement en REE des liquides carbonatés est plus important dans les systèmes enrichis en F et en P, avec les coefficients du La variant de $26,52 \pm 1,83$ à $43,03 \pm 5,71$ et de $37,14 \pm 4,09$ à $46,19 \pm 6,21$ respectivement pour les échantillons dopés en F et en P, et les coefficients du Lu évoluant de $5,62 \pm 0,39$ à $6,80 \pm 0,51$ et de $7,28 \pm 1,77$ à $8,74 \pm 2,00$ (Fig.V.5b et V.5c). Ces coefficients sont moins élevés dans le système non dopé ($14,76 \pm 1,97$ à $21,28 \pm 1,55$ et $3,34 \pm 0,50$ à $9,78 \pm 1,16$ pour le La et le Lu ; Fig. V.5a) et dans le système dopé en Cl ($10,69 \pm 2,24$ à $29,57 \pm 3,32$

et 1,72 ± 0,30 à 5,79 ± 1,11 pour le La et le Lu; Fig.V.5d). De plus, dans les échantillons non enrichis en éléments volatils et les échantillons enrichis en P ou en F aucun effet clair de l'eau ne semble impacter ces $D_{REE}^{LC/LS}$. En revanche dans les échantillons dopés en Cl, on peut observer un effet de l'eau principalement pour les MREE et les HREE : les échantillons contenant 3 et 6% de H₂O présentent des coefficients de partage plus bas pour ces REE (grands et petits tirets, Fig.V.5d).

	PCPC1_01		PCPC1_02		PCPC1_03		PCPC2_01		PCPC3_01	
P (Gpa)	0,8		0,8		0,8		0,8		0,8	
T (°C)	850		850		850		1050		850	
Composition	PhCbn1		PhCbn1		PhCbn1		PhCbn1		PhCbn2	
Sc	1,091	0,447	0,736	0,312	1,679	0,279	0,275	0,026	1,724	0,246
Ti	0,243	0,045	0,191	0,047	0,737	0,089	0,229	0,019	0,281	0,089
Cr	-	-	0,794	0,253	5,765	1,275	0,347	0,023	1,125	0,834
Mn	3,161	0,422	2,551	1,036	6,445	0,727	1,003	0,051	8,970	1,150
Sr	23,886	0,946	15,351	2,135	26,384	0,704	4,098	0,091	25,281	0,547
Zr	0,022	0,006	0,018	0,004	0,107	0,016	0,043	0,011	0,037	0,027
Nb	0,591	0,057	0,391	0,084	1,373	0,153	0,544	0,036	0,486	0,137
Ba	10,681	0,573	6,919	1,306	13,712	0,957	2,901	0,173	11,381	0,858
La	13,628	2,220	10,695	2,245	29,565	3,317	2,157	0,123	37,141	4,098
Ce	8,018	1,177	6,187	1,316	18,315	2,333	1,702	0,126	27,094	2,979
Pr	9,361	1,489	7,613	1,546	21,738	2,822	1,682	0,113	26,168	3,236
Nd	9,254	1,445	7,329	1,422	21,513	2,695	1,637	0,105	26,306	2,833
Sm	6,908	1,229	5,746	1,104	17,553	2,470	1,419	0,124	20,382	3,731
Eu	6,070	1,010	5,113	0,909	15,512	2,317	1,295	0,157	19,210	3,509
Gd	5,731	1,103	5,008	0,927	15,882	2,606	1,335	0,090	18,818	3,520
Tb	4,126	0,859	4,002	0,798	13,002	2,172	1,153	0,079	15,582	3,150
Dy	3,644	0,554	3,359	0,727	11,400	2,099	1,058	0,092	14,427	3,328
Y	3,255	0,515	3,164	0,694	10,880	1,956	1,100	0,097	13,125	2,966
Но	3,285	0,567	3,080	0,694	10,251	2,039	0,999	0,097	12,297	2,678
Er	2,698	0,488	2,552	0,593	8,966	1,798	0,912	0,084	11,413	2,347
Yb	1,841	0,290	1,856	0,476	6,456	1,291	0,724	0,086	7,969	1,916
Lu	1,723	0,305	1,751	0,475	5,790	1,112	0,692	0,084	7,281	1,769
Hf	0,012	0,007	0,011	0,004	0,070	0,010	0,027	0,006	0,030	0,025
Та	0,084	0,013	0,069	0,026	0,336	0,064	0,206	0,037	0,076	0,040
a	22.101	F 50 4	00.165	0 4 1 1	10.000	0.000	0.010	0.000	20 120	
Ca	33,104	5,694	29,467	2,647	18,003	0,890	3,912	0,300	29,429	2,867
Ca B (Cra)	33,104 PCPC3_02	5,694	29,467 PCPC3_03	2,647	18,003 PCPC4_01	0,890	3,912 PCPC4_02	0,300	29,429 PCPC4_03	2,867
Ca P (Gpa) T (°C)	33,104 PCPC3_02 0,8	5,694	29,467 PCPC3_03 0,8	2,647	18,003 PCPC4_01 0,8	0,890	3,912 PCPC4_02 0,8	0,300	29,429 PCPC4_03 0,8	2,867
Ca P (Gpa) T (°C)	33,104 PCPC3_02 0,8 850 PbCbr2	5,694	29,467 PCPC3_03 0,8 850 PbCbp2	2,647	18,003 PCPC4_01 0,8 850 PhChn3	0,890	3,912 PCPC4_02 0,8 850 PhChn3	0,300	29,429 PCPC4_03 0,8 850 PhChn3	2,867
Ca P (Gpa) T (°C) Composition	33,104 PCPC3_02 0,8 850 PhCbn2	5,694	29,467 PCPC3_03 0,8 850 PhCbn2	2,647	18,003 PCPC4_01 0,8 850 PhCbn3	0,890	3,912 PCPC4_02 0,8 850 PhCbn3	0,300	29,429 PCPC4_03 0,8 850 PhCbn3	2,867
Ca P (Gpa) T (°C) Composition Sc T;	33,104 PCPC3_02 0,8 850 PhCbn2 1,832 0,205	5,694 0,282	29,467 PCPC3_03 0,8 850 PhCbn2 2,277 0,520	2,647 0,290	18,003 PCPC4_01 0,8 850 PhCbn3 1,770 0.272	0,890	3,912 PCPC4_02 0,8 850 PhCbn3 1,814 0,208	0,300	29,429 PCPC4_03 0,8 850 PhCbn3 2,020 0,375	2,867 0,108
Ca P (Gpa) T (°C) Composition Sc Ti Cr	33,104 PCPC3_02 0,8 850 PhCbn2 1,832 0,295 2,541	5,694 0,282 0,094 0,839	29,467 PCPC3_03 0,8 850 PhCbn2 2,277 0,539 2,602	2,647 0,290 0,081 0,591	18,003 PCPC4_01 0,8 850 PhCbn3 1,770 0,272 0,416	0,890 0,223 0,031 0,324	3,912 PCPC4_02 0,8 850 PhCbn3 1,814 0,398 2,448	0,300 0,097 0,033 0,477	29,429 PCPC4_03 0,8 850 PhCbn3 2,020 0,375 2,254	2,867 0,108 0,010 0,727
Ca P (Gpa) T (°C) Composition Sc Ti Cr Mn	33,104 PCPC3_02 0,8 850 PhCbn2 1,832 0,295 2,541 9,154	5,694 0,282 0,094 0,839 0,880	29,467 PCPC3_03 0,8 850 PhCbn2 2,277 0,539 2,602 9 384	2,647 0,290 0,081 0,591 0,975	18,003 PCPC4_01 0,8 850 PhCbn3 1,770 0,272 0,416 5,079	0,890 0,223 0,031 0,324 0,706	3,912 PCPC4_02 0,8 850 PhCbn3 1,814 0,398 2,448 3,446	0,300 0,097 0,033 0,477 0,220	29,429 PCPC4_03 0,8 850 PhCbn3 2,020 0,375 2,254 4 398	2,867 0,108 0,010 0,727 0,134
Ca P (Gpa) T (°C) Composition Sc Ti Cr Mn Sr	33,104 PCPC3_02 0,8 850 PhCbn2 1,832 0,295 2,541 9,154 25,411	5,694 0,282 0,094 0,839 0,880 1,678	29,467 PCPC3_03 0,8 850 PhCbn2 2,277 0,539 2,602 9,384 28,361	2,647 0,290 0,081 0,591 0,975 1,431	18,003 PCPC4_01 0,8 850 PhCbn3 1,770 0,272 0,416 5,079 33,893	0,890 0,223 0,031 0,324 0,706 2,034	3,912 PCPC4_02 0,8 850 PhCbn3 1,814 0,398 2,448 3,446 19,396	0,300 0,097 0,033 0,477 0,220 1,038	29,429 PCPC4_03 0,8 850 PhCbn3 2,020 0,375 2,254 4,398 26,811	2,867 0,108 0,010 0,727 0,134 1,277
Ca P (Gpa) T (°C) Composition Sc Ti Cr Mn Sr Zr	33,104 PCPC3_02 0,8 850 PhCbn2 1,832 0,295 2,541 9,154 25,411 0,017	5,694 0,282 0,094 0,839 0,880 1,678 0,003	29,467 PCPC3_03 0,8 850 PhCbn2 2,277 0,539 2,602 9,384 28,361 0.063	2,647 0,290 0,081 0,591 0,975 1,431 0,019	18,003 PCPC4_01 0,8 850 PhCbn3 1,770 0,272 0,416 5,079 33,893 0,017	0,890 0,223 0,031 0,324 0,706 2,034 0,003	3,912 PCPC4_02 0,8 850 PhCbn3 1,814 0,398 2,448 3,446 19,396 0,056	0,300 0,097 0,033 0,477 0,220 1,038 0,014	29,429 PCPC4_03 0,8 850 PhCbn3 2,020 0,375 2,254 4,398 26,811 0,039	2,867 0,108 0,010 0,727 0,134 1,277 0,007
Ca P (Gpa) T (°C) Composition Sc Ti Cr Mn Sr Zr Nb	33,104 PCPC3_02 0,8 850 PhCbn2 1,832 0,295 2,541 9,154 25,411 0,017 0,556	5,694 0,282 0,094 0,839 0,880 1,678 0,003 0,136	29,467 PCPC3_03 0,8 850 PhCbn2 2,277 0,539 2,602 9,384 28,361 0,063 0,865	2,647 0,290 0,081 0,591 0,975 1,431 0,019 0,149	18,003 PCPC4_01 0,8 850 PhCbn3 1,770 0,272 0,416 5,079 33,893 0,017 0,277	0,890 0,223 0,031 0,324 0,706 2,034 0,003 0,0192	3,912 PCPC4_02 0,8 850 PhCbn3 1,814 0,398 2,448 3,446 19,396 0,056 0,825	0,300 0,097 0,033 0,477 0,220 1,038 0,014 0,206	29,429 PCPC4_03 0,8 850 PhCbn3 2,020 0,375 2,254 4,398 26,811 0,039 0,709	2,867 0,108 0,010 0,727 0,134 1,277 0,007 0,081
Ca P (Gpa) T (°C) Composition Sc Ti Cr Mn Sr Zr Nb Ba	33,104 PCPC3_02 0,8 850 PhCbn2 1,832 0,295 2,541 9,154 25,411 0,017 0,556 10,940	5,694 0,282 0,094 0,839 0,880 1,678 0,003 0,136 1,674	29,467 PCPC3_03 0,8 850 PhCbn2 2,277 0,539 2,602 9,384 28,361 0,063 0,865 13,907	2,647 0,290 0,081 0,591 0,975 1,431 0,019 0,149 0,954	18,003 PCPC4_01 0,8 850 PhCbn3 1,770 0,272 0,416 5,079 33,893 0,017 0,277 13,918	0,890 0,223 0,031 0,324 0,706 2,034 0,003 0,192 1,014	3,912 PCPC4_02 0,8 850 PhCbn3 1,814 0,398 2,448 3,446 19,396 0,056 0,825 9,040	0,300 0,097 0,033 0,477 0,220 1,038 0,014 0,206 0,473	29,429 PCPC4_03 0,8 850 PhCbn3 2,020 0,375 2,254 4,398 26,811 0,039 0,709 11 380	2,867 0,108 0,010 0,727 0,134 1,277 0,007 0,081 0,261
Ca P (Gpa) T (°C) Composition Sc Ti Cr Mn Sr Zr Nb Ba La	33,104 PCPC3_02 0,8 850 PhCbn2 1,832 0,295 2,541 9,154 25,411 0,017 0,556 10,940 39,217	5,694 0,282 0,094 0,839 0,880 1,678 0,003 0,136 1,674 2,758	29,467 PCPC3_03 0,8 850 PhCbn2 2,277 0,539 2,602 9,384 28,361 0,063 0,865 13,907 46,195	2,647 0,290 0,081 0,591 0,975 1,431 0,019 0,149 0,954 6 208	18,003 PCPC4_01 0,8 850 PhCbn3 1,770 0,272 0,416 5,079 33,893 0,017 0,277 13,918 43,034	0,890 0,223 0,031 0,324 0,706 2,034 0,003 0,192 1,014 5,710	3,912 PCPC4_02 0,8 850 PhCbn3 1,814 0,398 2,448 3,446 19,396 0,056 0,825 9,040 26,519	0,300 0,097 0,033 0,477 0,220 1,038 0,014 0,206 0,473 1,831	29,429 PCPC4_03 0,8 850 PhCbn3 2,020 0,375 2,254 4,398 26,811 0,039 0,709 11,380 38,475	2,867 0,108 0,010 0,727 0,134 1,277 0,007 0,081 0,261 1,709
Ca P (Gpa) T (°C) Composition Sc Ti Cr Mn Sr Zr Nb Ba La Ce	33,104 PCPC3_02 0,8 850 PhCbn2 1,832 0,295 2,541 9,154 25,411 0,017 0,556 10,940 39,217 29,346	5,694 0,282 0,094 0,839 0,880 1,678 0,003 0,136 1,674 2,758 1,819	29,467 PCPC3_03 0,8 850 PhCbn2 2,277 0,539 2,602 9,384 28,361 0,063 0,865 13,907 46,195 33,307	2,647 0,290 0,081 0,591 0,975 1,431 0,019 0,149 0,954 6,208 5,803	18,003 PCPC4_01 0,8 850 PhCbn3 1,770 0,272 0,416 5,079 33,893 0,017 0,277 13,918 43,034 28,026	0,890 0,223 0,031 0,324 0,706 2,034 0,003 0,192 1,014 5,710 3,260	3,912 PCPC4_02 0,8 850 PhCbn3 1,814 0,398 2,448 3,446 19,396 0,056 0,825 9,040 26,519 16,054	0,300 0,097 0,033 0,477 0,220 1,038 0,014 0,206 0,473 1,831 1,222	29,429 PCPC4_03 0,8 850 PhCbn3 2,020 0,375 2,254 4,398 26,811 0,039 0,709 11,380 38,475 23,416	2,867 0,108 0,010 0,727 0,134 1,277 0,007 0,081 0,261 1,709 1,509
Ca P (Gpa) T (°C) Composition Sc Ti Cr Mn Sr Zr Nb Ba La Ce Pr	33,104 PCPC3_02 0,8 850 PhCbn2 1,832 0,295 2,541 9,154 25,411 0,017 0,556 10,940 39,217 29,346 29,077	5,694 0,282 0,094 0,839 0,880 1,678 0,003 0,136 1,674 2,758 1,819 2,013	29,467 PCPC3_03 0,8 850 PhCbn2 2,277 0,539 2,602 9,384 28,361 0,063 0,865 13,907 46,195 33,307 32,250	2,647 0,290 0,081 0,591 0,975 1,431 0,019 0,149 0,954 6,208 5,803 5,257	18,003 PCPC4_01 0,8 850 PhCbn3 1,770 0,272 0,416 5,079 33,893 0,017 0,277 13,918 43,034 28,026 29,153	0,890 0,223 0,031 0,324 0,706 2,034 0,003 0,192 1,014 5,710 3,260 4,360	3,912 PCPC4_02 0,8 850 PhCbn3 1,814 0,398 2,448 3,446 19,396 0,056 0,825 9,040 26,519 16,054 19,135	0,300 0,097 0,033 0,477 0,220 1,038 0,014 0,206 0,473 1,831 1,222 1,254	29,429 PCPC4_03 0,8 850 PhCbn3 2,020 0,375 2,254 4,398 26,811 0,039 0,709 11,380 38,475 23,416 26,194	2,867 0,108 0,010 0,727 0,0134 1,277 0,007 0,081 0,261 1,709 1,509 1,478
Ca P (Gpa) T (°C) Composition Sc Ti Cr Mn Sr Zr Nb Ba La Ce Pr Nd	33,104 PCPC3_02 0,8 850 PhCbn2 1,832 0,295 2,541 9,154 25,411 0,017 0,556 10,940 39,217 29,346 29,077 28,744	5,694 0,282 0,094 0,839 0,880 1,678 0,003 0,136 1,674 2,758 1,819 2,013 1,196	29,467 PCPC3_03 0,8 850 PhCbn2 2,277 0,539 2,602 9,384 28,361 0,063 0,865 13,907 46,195 33,307 32,250 31,753	2,647 0,290 0,081 0,591 0,975 1,431 0,019 0,954 6,208 5,803 5,257 4,703	18,003 PCPC4_01 0,8 850 PhCbn3 1,770 0,272 0,416 5,079 33,893 0,017 0,277 13,918 43,034 28,026 29,153 26,577	0,890 0,223 0,031 0,324 0,706 2,034 0,003 0,192 1,014 5,710 3,260 4,360 3,440	3,912 PCPC4_02 0,8 850 PhCbn3 1,814 0,398 2,448 3,446 19,396 0,056 0,825 9,040 26,519 16,054 19,135 17,799	0,300 0,097 0,033 0,477 0,220 1,038 0,014 0,206 0,473 1,831 1,222 1,254 1,145	29,429 PCPC4_03 0,8 850 PhCbn3 2,020 0,375 2,254 4,398 26,811 0,039 0,709 11,380 38,475 23,416 26,194 23,924	2,867 0,108 0,010 0,727 0,134 1,277 0,007 0,081 0,261 1,709 1,509 1,478 1,551
Ca P (Gpa) T (°C) Composition Sc Ti Cr Mn Sr Zr Nb Ba La Ce Pr Nd Sm	33,104 PCPC3_02 0,8 850 PhCbn2 1,832 0,295 2,541 9,154 25,411 0,017 0,556 10,940 39,217 29,346 29,077 28,744 23,672	5,694 0,282 0,094 0,839 0,880 1,678 0,003 0,136 1,674 2,758 1,819 2,013 1,196 1,192	29,467 PCPC3_03 0,8 850 PhCbn2 2,277 0,539 2,602 9,384 28,361 0,063 0,865 13,907 46,195 33,307 32,250 31,753 25,788	2,647 0,290 0,081 0,591 0,975 1,431 0,019 0,149 0,954 6,208 5,803 5,257 4,703 4,574	18,003 PCPC4_01 0,8 850 PhCbn3 1,770 0,272 0,416 5,079 33,893 0,017 0,277 13,918 43,034 28,026 29,153 26,577 20,209	0,890 0,223 0,031 0,324 0,706 2,034 0,003 0,192 1,014 5,710 3,260 4,360 3,440 2,744	3,912 PCPC4_02 0,8 850 PhCbn3 1,814 0,398 2,448 3,446 19,396 0,056 0,825 9,040 26,519 16,054 19,135 17,799 14,348	0,300 0,097 0,033 0,477 0,220 1,038 0,014 0,206 0,473 1,831 1,222 1,254 1,145 1,093	29,429 PCPC4_03 0,8 850 PhCbn3 2,020 0,375 2,254 4,398 26,811 0,039 0,709 11,380 38,475 23,416 26,194 23,924 19,231	2,867 0,108 0,010 0,727 0,134 1,277 0,007 0,081 0,261 1,709 1,509 1,478 1,551 1,704
Ca P (Gpa) T (°C) Composition Sc Ti Cr Mn Sr Zr Nb Ba La Ce Pr Nd Sm Eu	33,104 PCPC3_02 0,8 850 PhCbn2 1,832 0,295 2,541 9,154 25,411 0,017 0,556 10,940 39,217 29,346 29,077 28,744 23,672 20,506	5,694 0,282 0,094 0,839 0,880 1,678 0,003 0,136 1,674 2,758 1,819 2,013 1,196 1,192 1,107	29,467 PCPC3_03 0,8 850 PhCbn2 2,277 0,539 2,602 9,384 28,361 0,063 0,865 13,907 46,195 33,307 32,250 31,753 25,788 23,052	2,647 0,290 0,081 0,591 0,975 1,431 0,019 0,149 0,954 6,208 5,803 5,257 4,703 4,574 4,146	18,003 PCPC4_01 0,8 850 PhCbn3 1,770 0,272 0,416 5,079 33,893 0,017 0,277 13,918 43,034 28,026 29,153 26,577 20,209 18,531	0,890 0,223 0,031 0,324 0,706 2,034 0,003 0,192 1,014 5,710 3,260 4,360 3,440 2,744 3,453	3,912 PCPC4_02 0,8 850 PhCbn3 1,814 0,398 2,448 3,446 19,396 0,056 0,825 9,040 26,519 16,054 19,135 17,799 14,348 13,685	0,300 0,097 0,033 0,477 0,220 1,038 0,014 0,206 0,473 1,831 1,222 1,254 1,145 1,093 0,657	29,429 PCPC4_03 0,8 850 PhCbn3 2,020 0,375 2,254 4,398 26,811 0,039 0,709 11,380 38,475 23,416 26,194 23,924 19,231 17,603	2,867 0,108 0,010 0,727 0,134 1,277 0,007 0,081 0,261 1,709 1,509 1,478 1,551 1,704 1,035
Ca P (Gpa) T (°C) Composition Sc Ti Cr Mn Sr Zr Nb Ba La Ce Pr Nd Sm Eu Gd	33,104 PCPC3_02 0,8 850 PhCbn2 1,832 0,295 2,541 9,154 25,411 0,017 0,556 10,940 39,217 29,346 29,077 28,744 23,672 20,506 22,038	5,694 0,282 0,094 0,839 0,880 1,678 0,003 0,136 1,674 2,758 1,819 2,013 1,196 1,192 1,107 2,800	29,467 PCPC3_03 0,8 850 PhCbn2 2,277 0,539 2,602 9,384 28,361 0,063 0,865 13,907 46,195 33,307 32,250 31,753 25,788 23,052 23,198	2,647 0,290 0,081 0,591 0,975 1,431 0,019 0,149 0,954 6,208 5,803 5,257 4,703 4,574 4,146 3,966	18,003 PCPC4_01 0,8 850 PhCbn3 1,770 0,272 0,416 5,079 33,893 0,017 0,277 13,918 43,034 28,026 29,153 26,577 20,209 18,531 21,308	0,890 0,223 0,031 0,324 0,706 2,034 0,003 0,192 1,014 5,710 3,260 4,360 3,440 2,744 3,453 3,644	3,912 PCPC4_02 0,8 850 PhCbn3 1,814 0,398 2,448 3,446 19,396 0,056 0,825 9,040 26,519 16,054 19,135 17,799 14,348 13,685 13,513	0,300 0,097 0,033 0,477 0,220 1,038 0,014 0,206 0,473 1,831 1,222 1,254 1,145 1,093 0,657 1,602	29,429 PCPC4_03 0,8 850 PhCbn3 2,020 0,375 2,254 4,398 26,811 0,039 0,709 11,380 38,475 23,416 26,194 23,924 19,231 17,603 17,062	2,867 0,108 0,010 0,727 0,134 1,277 0,007 0,081 0,261 1,709 1,509 1,478 1,551 1,704 1,035 1,686
Ca P (Gpa) T (°C) Composition Sc Ti Cr Mn Sr Zr Nb Ba La Ce Pr Nd Sm Eu Gd Tb	33,104 PCPC3_02 0,8 850 PhCbn2 1,832 0,295 2,541 9,154 25,411 0,017 0,556 10,940 39,217 29,346 29,077 28,744 23,672 20,506 22,038 17,171	5,694 0,282 0,094 0,839 0,880 1,678 0,003 0,136 1,674 2,758 1,819 2,013 1,196 1,192 1,107 2,800 1,227	29,467 PCPC3_03 0,8 850 PhCbn2 2,277 0,539 2,602 9,384 28,361 0,063 0,865 13,907 46,195 33,307 32,250 31,753 25,788 23,052 23,198 18,660	2,647 0,290 0,081 0,591 0,975 1,431 0,019 0,149 0,954 6,208 5,803 5,257 4,703 4,574 4,146 3,966 4,103	18,003 PCPC4_01 0,8 850 PhCbn3 1,770 0,272 0,416 5,079 33,893 0,017 0,277 13,918 43,034 28,026 29,153 26,577 20,209 18,531 21,308 15,360	0,890 0,223 0,031 0,324 0,706 2,034 0,003 0,192 1,014 5,710 3,260 4,360 3,440 2,744 3,453 3,644 2,780	3,912 PCPC4_02 0,8 850 PhCbn3 1,814 0,398 2,448 3,446 19,396 0,056 0,825 9,040 26,519 16,054 19,135 17,799 14,348 13,685 13,513 11,120	0,300 0,097 0,033 0,477 0,220 1,038 0,014 0,206 0,473 1,831 1,222 1,254 1,145 1,093 0,657 1,602 0,901	29,429 PCPC4_03 0,8 850 PhCbn3 2,020 0,375 2,254 4,398 26,811 0,039 0,709 11,380 38,475 23,416 26,194 23,924 19,231 17,603 17,062 14,841	2,867 0,108 0,010 0,727 0,134 1,277 0,007 0,081 0,261 1,709 1,509 1,478 1,551 1,704 1,035 1,686 1,238
Ca P (Gpa) T (°C) Composition Sc Ti Cr Mn Sr Zr Nb Ba La Ce Pr Nd Sm Eu Gd Tb Dy	33,104 PCPC3_02 0,8 850 PhCbn2 1,832 0,295 2,541 9,154 25,411 0,017 0,556 10,940 39,217 29,346 29,077 28,744 23,672 20,506 22,038 17,171 15,148	5,694 0,282 0,094 0,839 0,880 1,678 0,003 0,136 1,674 2,758 1,819 2,013 1,196 1,192 1,107 2,800 1,227 1,080	29,467 PCPC3_03 0,8 850 PhCbn2 2,277 0,539 2,602 9,384 28,361 0,063 0,865 13,907 46,195 33,307 32,250 31,753 25,788 23,052 23,198 18,660 16,656	2,647 0,290 0,081 0,591 0,975 1,431 0,019 0,954 6,208 5,803 5,257 4,703 4,574 4,146 3,966 4,103 3,508	18,003 PCPC4_01 0,8 850 PhCbn3 1,770 0,272 0,416 5,079 33,893 0,017 0,277 13,918 43,034 28,026 29,153 26,577 20,209 18,531 21,308 15,360 12,903	0,890 0,223 0,031 0,324 0,706 2,034 0,003 0,192 1,014 5,710 3,260 4,360 3,440 2,744 3,453 3,644 2,780 1,803	3,912 PCPC4_02 0,8 850 PhCbn3 1,814 0,398 2,448 3,446 19,396 0,056 0,825 9,040 26,519 16,054 19,135 17,799 14,348 13,685 13,513 11,120 9,706	0,300 0,097 0,033 0,477 0,220 1,038 0,014 0,206 0,473 1,831 1,222 1,254 1,145 1,093 0,657 1,602 0,901 0,647	29,429 PCPC4_03 0,8 850 PhCbn3 2,020 0,375 2,254 4,398 26,811 0,039 0,709 11,380 38,475 23,416 26,194 23,924 19,231 17,603 17,062 14,841 12,329	2,867 0,108 0,010 0,727 0,134 1,277 0,007 0,081 0,261 1,709 1,509 1,478 1,551 1,704 1,035 1,686 1,238 0,947
Ca P (Gpa) T (°C) Composition Sc Ti Cr Mn Sr Zr Nb Ba La Ce Pr Nd Sm Eu Gd Tb Dy Y	33,104 PCPC3_02 0,8 850 PhCbn2 1,832 0,295 2,541 9,154 25,411 0,017 0,556 10,940 39,217 29,346 29,077 28,744 23,672 20,506 22,038 17,171 15,148 14,208	5,694 0,282 0,094 0,839 0,880 1,678 0,003 0,136 1,674 2,758 1,819 2,013 1,196 1,192 1,107 2,800 1,227 1,080 1,173	29,467 PCPC3_03 0,8 850 PhCbn2 2,277 0,539 2,602 9,384 28,361 0,063 0,865 13,907 46,195 33,307 32,250 31,753 25,788 23,052 23,198 18,660 16,656 15,918	2,647 0,290 0,081 0,591 0,975 1,431 0,019 0,954 6,208 5,803 5,257 4,703 4,574 4,146 3,966 4,103 3,508 3,504	18,003 PCPC4_01 0,8 850 PhCbn3 1,770 0,272 0,416 5,079 33,893 0,017 0,277 13,918 43,034 28,026 29,153 26,577 20,209 18,531 21,308 15,360 12,903 14,671	0,890 0,223 0,031 0,324 0,706 2,034 0,003 0,192 1,014 5,710 3,260 4,360 3,440 2,744 3,453 3,644 2,780 1,803 2,109	3,912 PCPC4_02 0,8 850 PhCbn3 1,814 0,398 2,448 3,446 19,396 0,056 0,825 9,040 26,519 16,054 19,135 17,799 14,348 13,685 13,513 11,120 9,706 10,960	0,300 0,097 0,033 0,477 0,220 1,038 0,014 0,206 0,473 1,831 1,222 1,254 1,145 1,093 0,657 1,602 0,901 0,647 0,889	29,429 PCPC4_03 0,8 850 PhCbn3 2,020 0,375 2,254 4,398 26,811 0,039 0,709 11,380 38,475 23,416 26,194 23,924 19,231 17,603 17,062 14,841 12,329 14,687	2,867 0,108 0,010 0,727 0,134 1,277 0,007 0,081 0,261 1,709 1,509 1,478 1,551 1,704 1,035 1,686 1,238 0,947 0,987
Ca P (Gpa) T (°C) Composition Sc Ti Cr Mn Sr Zr Nb Ba La Ce Pr Nd Sm Eu Gd Tb Dy Y Ho	33,104 PCPC3_02 0,8 850 PhCbn2 1,832 0,295 2,541 9,154 25,411 0,017 0,556 10,940 39,217 29,346 29,077 28,744 23,672 20,506 22,038 17,171 15,148 14,208 13,240	5,694 0,282 0,094 0,839 0,880 1,678 0,003 0,136 1,674 2,758 1,819 2,013 1,196 1,192 1,107 2,800 1,227 1,080 1,173 1,025	29,467 PCPC3_03 0,8 850 PhCbn2 2,277 0,539 2,602 9,384 28,361 0,063 0,865 13,907 46,195 33,307 32,250 31,753 25,788 23,052 23,198 18,660 16,656 15,918 14,809	$\begin{array}{c} 2,647\\ 0,290\\ 0,081\\ 0,591\\ 0,975\\ 1,431\\ 0,019\\ 0,954\\ 6,208\\ 5,803\\ 5,257\\ 4,703\\ 4,574\\ 4,146\\ 3,966\\ 4,103\\ 3,508\\ 3,504\\ 3,517\end{array}$	18,003 PCPC4_01 0,8 850 PhCbn3 1,770 0,272 0,416 5,079 33,893 0,017 0,277 13,918 43,034 28,026 29,153 26,577 20,209 18,531 21,308 15,360 12,903 14,671 12,092	0,890 0,223 0,031 0,324 0,706 2,034 0,003 0,192 1,014 5,710 3,260 4,360 3,440 2,744 3,453 3,644 2,780 1,803 2,109 1,844	3,912 PCPC4_02 0,8 850 PhCbn3 1,814 0,398 2,448 3,446 19,396 0,056 0,825 9,040 26,519 16,054 19,135 17,799 14,348 13,685 13,513 11,120 9,706 10,960 9,234	0,300 0,097 0,033 0,477 0,220 1,038 0,014 0,206 0,473 1,831 1,222 1,254 1,145 1,093 0,657 1,602 0,901 0,647 0,889 0,763	29,429 PCPC4_03 0,8 850 PhCbn3 2,020 0,375 2,254 4,398 26,811 0,039 0,709 11,380 38,475 23,416 26,194 23,924 19,231 17,603 17,062 14,841 12,329 14,687 11,817	2,867 0,108 0,010 0,727 0,134 1,277 0,007 0,081 0,261 1,709 1,509 1,478 1,551 1,704 1,035 1,686 1,238 0,947 0,987 0,907
Ca P (Gpa) T (°C) Composition Sc Ti Cr Mn Sr Zr Nb Ba La Ce Pr Nd Sm Eu Gd Tb Dy Y Ho Er	33,104 PCPC3_02 0,8 850 PhCbn2 1,832 0,295 2,541 9,154 25,411 0,017 0,556 10,940 39,217 29,346 29,077 28,744 23,672 20,506 22,038 17,171 15,148 14,208 13,240 12,161	5,694 0,282 0,094 0,839 0,880 1,678 0,003 0,136 1,674 2,758 1,819 2,013 1,196 1,192 1,107 2,800 1,227 1,080 1,173 1,025 1,080	29,467 PCPC3_03 0,8 850 PhCbn2 2,277 0,539 2,602 9,384 28,361 0,063 0,865 13,907 46,195 33,307 32,250 31,753 25,788 23,052 23,198 18,660 16,656 15,918 14,809 13,194	2,647 0,290 0,081 0,591 0,975 1,431 0,019 0,954 6,208 5,803 5,257 4,703 4,574 4,146 3,966 4,103 3,508 3,504 3,517 2,877	18,003 PCPC4_01 0,8 850 PhCbn3 1,770 0,272 0,416 5,079 33,893 0,017 0,277 13,918 43,034 28,026 29,153 26,577 20,209 18,531 21,308 15,360 12,903 14,671 12,092 9,939	0,890 0,223 0,031 0,324 0,706 2,034 0,003 0,192 1,014 5,710 3,260 4,360 3,440 2,744 3,453 3,644 2,780 1,803 2,109 1,844 1,373	3,912 PCPC4_02 0,8 850 PhCbn3 1,814 0,398 2,448 3,446 19,396 0,056 0,825 9,040 26,519 16,054 19,135 17,799 14,348 13,685 13,513 11,120 9,706 10,960 9,234 7,843	0,300 0,097 0,033 0,477 0,220 1,038 0,014 0,206 0,473 1,831 1,222 1,254 1,145 1,093 0,657 1,602 0,901 0,647 0,889 0,763 0,527	29,429 PCPC4_03 0,8 850 PhCbn3 2,020 0,375 2,254 4,398 26,811 0,039 0,709 11,380 38,475 23,416 26,194 23,924 19,231 17,603 17,062 14,841 12,329 14,687 11,817 9,781	2,867 0,108 0,010 0,727 0,134 1,277 0,007 0,081 0,261 1,709 1,509 1,478 1,551 1,704 1,035 1,686 1,238 0,947 0,987 0,907 0,768
Ca P (Gpa) T (°C) Composition Sc Ti Cr Mn Sr Zr Nb Ba La Ce Pr Nd Sm Eu Gd Tb Dy Y Ho Er Yb	33,104 PCPC3_02 0,8 850 PhCbn2 1,832 0,295 2,541 9,154 25,411 0,017 0,556 10,940 39,217 29,346 29,077 28,744 23,672 20,506 22,038 17,171 15,148 14,208 13,240 12,161 8,459	5,694 0,282 0,094 0,839 0,880 1,678 0,003 0,136 1,674 2,758 1,819 2,013 1,196 1,192 1,107 2,800 1,227 1,080 1,173 1,025 1,080 0,851	29,467 PCPC3_03 0,8 850 PhCbn2 2,277 0,539 2,602 9,384 28,361 0,063 0,865 13,907 46,195 33,307 32,250 31,753 25,788 23,052 23,198 18,660 16,656 15,918 14,809 13,194 9,439	$\begin{array}{c} 2,647\\ \hline\\0,290\\0,081\\0,591\\0,975\\1,431\\0,019\\0,954\\6,208\\5,803\\5,257\\4,703\\4,574\\4,146\\3,966\\4,103\\3,508\\3,504\\3,517\\2,214\end{array}$	18,003 PCPC4_01 0,8 850 PhCbn3 1,770 0,272 0,416 5,079 33,893 0,017 0,277 13,918 43,034 28,026 29,153 26,577 20,209 18,531 21,308 15,360 12,903 14,671 12,092 9,939 7,298	0,890 0,223 0,031 0,324 0,706 2,034 0,003 0,192 1,014 5,710 3,260 4,360 3,440 2,744 3,453 3,644 2,780 1,803 2,109 1,844 1,373 0,980	3,912 PCPC4_02 0,8 850 PhCbn3 1,814 0,398 2,448 3,446 19,396 0,056 0,825 9,040 26,519 16,054 19,135 17,799 14,348 13,685 13,513 11,120 9,706 10,960 9,234 7,843 5,844	0,300 0,097 0,033 0,477 0,220 1,038 0,014 0,206 0,473 1,831 1,222 1,254 1,145 1,093 0,657 1,602 0,901 0,647 0,889 0,763 0,527 0,435	29,429 PCPC4_03 0,8 850 PhCbn3 2,020 0,375 2,254 4,398 26,811 0,039 0,709 11,380 38,475 23,416 26,194 23,924 19,231 17,603 17,062 14,841 12,329 14,687 11,817 9,781 7,084	2,867 0,108 0,010 0,727 0,134 1,277 0,007 0,081 0,261 1,709 1,509 1,478 1,551 1,704 1,035 1,686 1,238 0,947 0,987 0,907 0,768 0,577
Ca P (Gpa) T (°C) Composition Sc Ti Cr Mn Sr Zr Nb Ba La Ce Pr Nd Sm Eu Gd Tb Dy Y Ho Er Yb Lu	33,104 PCPC3_02 0,8 850 PhCbn2 1,832 0,295 2,541 9,154 25,411 0,017 0,556 10,940 39,217 29,346 29,077 28,744 23,672 20,506 22,038 17,171 15,148 14,208 13,240 12,161 8,459 7,657	5,694 0,282 0,094 0,839 0,880 1,678 0,003 0,136 1,674 2,758 1,819 2,013 1,196 1,192 1,107 2,800 1,227 1,080 0,173 1,025 1,080 0,851 0,698	29,467 PCPC3_03 0,8 850 PhCbn2 2,277 0,539 2,602 9,384 28,361 0,063 0,865 13,907 46,195 33,307 32,250 31,753 25,788 23,052 23,198 18,660 16,656 15,918 14,809 13,194 9,439 8,739	2,647 0,290 0,081 0,591 0,975 1,431 0,019 0,149 0,954 6,208 5,803 5,257 4,703 4,574 4,146 3,966 4,103 3,508 3,504 3,517 2,877 2,214 1,999	18,003 PCPC4_01 0,8 850 PhCbn3 1,770 0,272 0,416 5,079 33,893 0,017 0,277 13,918 43,034 28,026 29,153 26,577 20,209 18,531 21,308 15,360 12,903 14,671 12,092 9,939 7,298 6,501	0,890 0,223 0,031 0,324 0,706 2,034 0,003 0,192 1,014 5,710 3,260 4,360 3,440 2,780 1,803 2,109 1,844 1,373 0,980 1,155	3,912 PCPC4_02 0,8 850 PhCbn3 1,814 0,398 2,448 3,446 19,396 0,056 0,825 9,040 26,519 16,054 19,135 17,799 14,348 13,685 13,513 11,120 9,706 10,960 9,234 7,843 5,844 5,615	0,300 0,097 0,033 0,477 0,220 1,038 0,014 0,206 0,473 1,831 1,222 1,254 1,145 1,093 0,657 1,602 0,901 0,647 0,889 0,763 0,527 0,435 0,390	29,429 PCPC4_03 0,8 850 PhCbn3 2,020 0,375 2,254 4,398 26,811 0,039 0,709 11,380 38,475 23,416 26,194 23,924 19,231 17,603 17,062 14,841 12,329 14,687 11,817 9,781 7,084 6,797	2,867 0,108 0,010 0,727 0,134 1,277 0,007 0,081 0,261 1,709 1,509 1,478 1,551 1,704 1,035 1,686 1,238 0,947 0,987 0,907 0,768 0,577 0,513
Ca P (Gpa) T (°C) Composition Sc Ti Cr Mn Sr Zr Nb Ba La Ce Pr Nd Sm Eu Gd Tb Dy Y Ho Er Yb Lu Hf	33,104 PCPC3_02 0,8 850 PhCbn2 1,832 0,295 2,541 9,154 25,411 0,017 0,556 10,940 39,217 29,346 29,077 28,744 23,672 20,506 22,038 17,171 15,148 14,208 13,240 12,161 8,459 7,657 0,013	5,694 0,282 0,094 0,839 0,880 1,678 0,003 0,136 1,674 2,758 1,819 2,013 1,196 1,192 1,107 2,800 1,227 1,080 0,173 1,025 1,080 0,851 0,698 0,004	29,467 PCPC3_03 0,8 850 PhCbn2 2,277 0,539 2,602 9,384 28,361 0,063 0,865 13,907 46,195 33,307 32,250 31,753 25,788 23,052 23,198 18,660 16,656 15,918 14,809 13,194 9,439 8,739 0,037	$\begin{array}{c} 2,647\\ 0,290\\ 0,081\\ 0,591\\ 0,975\\ 1,431\\ 0,019\\ 0,954\\ 6,208\\ 5,803\\ 5,257\\ 4,703\\ 4,574\\ 4,146\\ 3,966\\ 4,103\\ 3,508\\ 3,504\\ 3,517\\ 2,877\\ 2,214\\ 1,999\\ 0,014 \end{array}$	18,003 PCPC4_01 0,8 850 PhCbn3 1,770 0,272 0,416 5,079 33,893 0,017 0,277 13,918 43,034 28,026 29,153 26,577 20,209 18,531 21,308 15,360 12,903 14,671 12,092 9,939 7,298 6,501 0,015	0,890 0,223 0,031 0,324 0,706 2,034 0,003 0,192 1,014 5,710 3,260 4,360 3,440 2,780 1,803 2,109 1,844 1,373 0,980 1,155 0,003	3,912 PCPC4_02 0,8 850 PhCbn3 1,814 0,398 2,448 3,446 19,396 0,056 0,825 9,040 26,519 16,054 19,135 17,799 14,348 13,685 13,513 11,120 9,706 10,960 9,234 7,843 5,844 5,615 0,033	0,300 0,097 0,033 0,477 0,220 1,038 0,014 0,206 0,473 1,831 1,222 1,254 1,145 1,093 0,657 1,602 0,901 0,647 0,889 0,763 0,527 0,435 0,390 0,010	29,429 PCPC4_03 0,8 850 PhCbn3 2,020 0,375 2,254 4,398 26,811 0,039 0,709 11,380 38,475 23,416 26,194 23,924 19,231 17,603 17,062 14,841 12,329 14,687 11,817 9,781 7,084 6,797 0,027	2,867 0,108 0,010 0,727 0,134 1,277 0,007 0,081 0,261 1,709 1,509 1,478 1,551 1,704 1,035 1,686 1,238 0,947 0,987 0,907 0,768 0,577 0,513 0,009

Tableau V.4. Coefficients de partage des éléments traces entre liquides carbonatés et liquides silicatés \pm enrichis en F, Cl et P. σ : écart-type sur la moyenne.

Ca 29,985 1,837 31,547	3,850 42,461	4,434 22,238	0,864	30,399	1,556
-------------------------------	--------------	--------------	-------	--------	-------

Tableau V.5. Suite.

	PCPC5_01		PCPC5_02		PCPC5_03		PCPC6_01		PCPC6_02		PCPC6_03	
P (Gpa)	0,8		0,8		0,8		0,8		0,8		0,8	
T (°C)	850		850		850		1050		1050		1050	
Composition	PhCbn4		PhCbn4		PhCbn4		PhCbn3		PhCbn4		PhCbn2	
Sc	1,091	0,162	1,082	0,169	0,843	0,179	0,798	0,048	0,497	0,028	0,728	0,084
Ti	0,375	0,072	0,536	0,105	0,502	0,100	0,350	0,024	0,437	0,043	0,416	0,045
Cr	7,731	1,146	-	-	7,956	2,357	0,711	0,042	1,417	0,187	0,935	0,159
Mn	7,296	0,665	5,774	0,903	5,186	0,505	1,550	0,059	1,531	0,078	2,008	0,155
Sr	20,678	0,538	17,439	1,375	13,077	0,772	6,228	0,132	3,413	0,098	5,478	0,230
Zr	0,033	0,008	0,033	0,008	0,029	0,009	0,091	0,008	0,111	0,017	0,087	0,011
Nb	0,867	0,123	1,141	0,248	1,122	0,248	0,753	0,037	0,842	0,074	0,870	0,057
Ba	10,667	0,660	9,900	1,580	6,929	0,880	3,789	0,117	2,850	0,188	4,046	0,407
La	15,602	3,192	21,285	1,549	14,759	1,973	5,675	0,161	2,439	0,091	4,672	0,360
Ce	9,305	1,484	7,234	0,419	6,159	0,959	4,477	0,089	1,999	0,092	3,797	0,288
Pr	13,802	2,461	16,133	0,818	11,682	1,380	4,411	0,089	2,025	0,062	3,749	0,349
Nd	14,271	2,025	14,557	0,634	10,659	1,351	4,099	0,102	1,919	0,051	3,558	0,279
Sm	16,081	1,585	12,459	1,296	8,671	1,189	3,565	0,071	1,723	0,065	3,092	0,186
Eu	17,573	0,909	11,621	0,832	7,980	1,178	3,410	0,068	1,621	0,056	2,922	0,230
Gd	19,441	1,256	11,634	0,678	7,869	1,147	3,369	0,089	1,616	0,050	2,864	0,174
Tb	19,727	1,631	9,761	0,789	6,782	0,897	3,069	0,060	1,495	0,053	2,544	0,185
Dy	18,674	2,434	8,621	0,610	6,010	0,859	2,729	0,062	1,374	0,044	2,347	0,098
Y	18,253	1,770	8,353	0,838	5,715	0,843	3,200	0,076	1,408	0,054	2,383	0,102
Но	19,458	2,886	8,093	0,764	5,597	0,893	2,678	0,072	1,324	0,049	2,197	0,090
Er	16,990	2,505	7,225	0,725	4,915	0,729	2,361	0,065	1,212	0,039	2,043	0,078
Yb	11,470	1,663	5,145	0,581	3,787	0,574	1,961	0,057	1,030	0,043	1,708	0,047
Lu	9,781	1,164	4,639	0,497	3,338	0,496	1,906	0,059	0,995	0,048	1,631	0,070
Hf	0,014	0,010	0,016	0,007	0,026	0,006	0,060	0,004	0,086	0,014	0,051	0,008
Та	0,101	0,047	0,197	0,034	0,206	0,055	0,281	0,017	0,324	0,038	0,291	0,072
Ca	23,049	1,412	16,889	2,739	13,927	1,949	6,638	0,422	3,325	0,228	6,335	0,312

Tous les autres métaux rares (Hf, Zr, Ta et Nb) présentent des $D^{LC/LS} < 1$ ce qui indique que ces éléments sont globalement plutôt concentrés dans le liquide silicaté ; à l'exception du Nb dans certains échantillons ($D_{Nb}^{LC/LS} > 1$; PCPC1_03, Fig.V.5a et PCPC5_02/03, Fig.V.5d). Dans tous les échantillons, les coefficients augmentent du Hf au Nb. A 1050 °C (triangle), les $D^{LC/LS}$ de Hf, Zr et Ta sont plus élevés dans les systèmes dopés en P (Fig.V.5b), F (Fig.V.5c) et Cl (Fig.V.5d) plutôt que ceux caractérisés à 850 °C (rond). Les échantillons enrichis en Cl (Fig.V.5d) présentent les coefficients de partage de Hf, Zr, Ta et Nb les plus élevés (respectivement de 0,09, 0,11, 0,32 et de 0,84; Tableau V.4). Dans les systèmes enrichis en F et en P (Fig.V.5b et V.5c), ces coefficients sont globalement équivalents (environ 0,05 pour Hf, 0,09 pour Zr, 0,28 pour Ta et 0,80 pour Nb ; voir Tableau V.4).

A 850 °C (rond), les coefficients de partage des HFSE sont moins élevés qu'à 1050°C, à l'exception de l'échantillon sans F-Cl-P pour lequel les D^{LC/LS} du Zr, Ta et Nb sont > 0,1. De plus, on n'observe pas de grande variation des coefficients pour le Hf, Zr et Ta en fonction de chaque système (respectivement 0,01, 0,02 et 0,05 pour le Hf, Zr et Ta ; voir Tableau V.4). Le Nb présente un enrichissement variable : il est plutôt concentré dans le liquide silicaté dans les systèmes dopés en F et P ($D_{Nb}^{LC/LS}$ de 0,28 à 0,87), mais peut également être plus concentré dans les liquides carbonatés des systèmes non dopés et dopé en Cl ($D_{Nb}^{LC/LS}$ respectivement de 0,39 ± 0,08 à 1,37 ± 0,15 et de 0,87 ± 0,12 à 1,14 ± 0,25 ; Tableau V.4).

Bilan des coefficients de partage des métaux rares entre liquides carbonatés et silicatés ± enrichis en F-Cl-P :

L'analyse des coefficients de partage des métaux rares entre liquides carbonatés et silicatés \pm dopés en F, Cl et P a permis de mettre en évidence que :

- L'enrichissement des REE est presque de deux fois plus élevé dans les systèmes enrichis en F et P (D_{La}^{LC/LS} de 43,03 et 46,20 respectivement, par rapport à 29,56 et 21,28 dans les systèmes non dopés et dopés en Cl).
- L'addition de H_2O dans les échantillons semble jouer un rôle sur la concentration des REE dans le liquide carbonaté en présence de Cl : plus l'échantillon est hydraté, plus l'enrichissement en MREE et HREE diminue dans le liquide carbonaté.
- L'ajout de H₂O dans les autres compositions ne semble pas influencer les coefficients de partage des métaux rares.
- Les HFSE (Hf, Zr, Ta et Nb) sont plutôt concentrés dans le liquide silicaté, à l'exception du Nb dont le comportement semble varier dans certains échantillons non dopés en volatils et également dopés en Cl.

V.1.4. Enrichissement en métaux rares : effets du F-Cl-P, ou effet de la composition chimique du liquide silicaté ?

Nous avons vu que l'enrichissement en REE est plus important dans les liquides carbonatés dopés en F et en P, en comparaison à ceux dopés en Cl ou non dopés en éléments volatils. Il semble que ces éléments jouent ainsi un rôle important sur l'enrichissement des liquides carbonatés. Nous avons également vu que la composition des liquides silicatés varie légèrement en fonction des systèmes ± riches en éléments volatils, de composition de type néphélinite différenciée à phonolites. Or le chapitre IV a permis de mettre en évidence que la composition du liquide silicaté joue un rôle essentiel dans l'enrichissement en REE des liquides carbonatés. Le but de cette partie est donc de vérifier si cet effet de composition du liquide silicaté est aussi valable en présence de F, Cl et P, ou au contraire si ces éléments jouent directement un rôle sur l'enrichissement en REE des liquides carbonatés.

V.1.4.1. Effet du F, Cl et P?

L'ajout du F, Cl et P dans des liquides silicatés alcalins différenciés et des liquides carbonatés semble jouer un rôle sur les coefficients de partage des REE principalement, et donc sur leur comportement entre les deux liquides. Il est donc nécessaire d'étudier si ces enrichissements sont directement liés aux concentrations de ces éléments volatils dans les deux liquides.

La Figure V.6 présente les coefficients de partage du La mesurés entre les deux liquides en fonction de la concentration en F (Fig.V.6a) et en Cl (Fig.V.6b) dans le liquide silicaté. Les concentrations en P₂O₅ ne sont pas représentées car cet élément n'a pas été détecté dans la plupart des liquides silicatés (voir Tableau V.2, analyses en-dessous de la limite de détection, <LD). Les concentrations en F du liquide silicaté sans éléments volatils ou dopés en F, Cl ou P, et avec \pm de H₂O, varient entre 0,2 et < 4% poids ; les D_{La}^{LC/LS} évoluent entre 2 et <50. Les échantillons les plus enrichis (D_{La}^{LC/LS} les plus élevés ; système avec du P en marron) ainsi que les moins enrichis en La (D_{La}^{LC/LS} les plus bas, sans éléments volatils en vert) correspondent à des concentrations de F < 1% poids (Fig.V.6a). Pour une même gamme de concentrations en F, les D_{La}^{LC/LS} évoluent fortement. De plus, le liquide silicaté le plus riche en F (3,85 ± 0,83, échantillon PCPC6_01 ; Tableau V.2) ne présente pas de D_{La}^{LC/LS} très élevé (5,67 ± 0,16, voir Tableau V.4). Il n'y a donc pas d'effet clair de la concentration en F du liquide silicaté sur

les coefficients de partage des REE. De plus, l'augmentation des concentrations F dans les liquides silicatés semble diminuer les $D_{La}^{LC/LS}$ (points noirs, Fig.V.6a).

La majorité des liquides silicatés présentent des concentrations < 0,2 % poids de Cl dans le liquide silicaté (Tableau V.2 et Fig.V.6b). Pour ces valeurs très faibles, les $D_{La}^{LC/LS}$ évoluent fortement entre 2 et 50. Les liquides silicatés les plus riches en Cl sont ceux synthétisés dans le système dopé en Cl (en gris clair, Fig.V.6b). Les $D_{La}^{LC/LS}$ correspondant ne varient qu'entre 2 et 22 (voir Tableau V.4). Il semblerait donc qu'il n'y a pas non plus d'effet clair de concentrations du Cl dans le liquide silicaté sur l'enrichissement en La.

Les coefficients de partage des autres REE ainsi que des HFSE indiquent également aucune dépendance claire aux concentrations en éléments volatils dans les liquides silicatés, et ne sont ainsi pas représentés pour plus de simplicité de lecture.

Figure V.6. Coefficients de partage du La entre liquide carbonaté et silicaté (D_{La}^{LCLS}) en fonction des concentrations en F (a) et en Cl (b) en % poids du liquide silicaté. Tous les échantillons sont représentés (± F, Cl, P et H₂O).

Ces coefficients de partage sont aussi représentés en fonction de la composition en P₂O₅ (Fig.V.7a), en F (Fig.V.7b) et en Cl (Fig.V.7c) des liquides carbonatés, afin d'identifier un potentiel effet de leurs concentrations sur l'enrichissement de ces liquides en REE. Les concentrations en P₂O₅ des liquides carbonatés varient principalement entre 1 et 4 % poids (voir Tableau V.3), pour des coefficients variant de 2 à 50 (Fig.V.7a) sans tendance particulière observée. Un échantillon se démarque des autres, avec une concentration de P₂O₅ de 9,87 ± 0,45 % poids dans le liquide carbonaté (PCPC6-03, Tableau V.3) mais présentant un D_{La}^{LC/LS} de 4,67 ± 0,36 (Tableau V.4, Fig.V.7a) plus bas que certains échantillons moins riches en P. Ceci implique que la concentration en P₂O₅ dans le liquide carbonaté n'exerce pas d'effet direct sur son enrichissement en La.

De même, on observe la même chose pour des liquides carbonatés très riches en F (Fig.V.7b) - jusqu'à 11,79 \pm 0,67 % poids (échantillon PCPC6_01, Tableau V.3)- qui présentent des coefficients de partage très variables (D_{La}^{LC/LS} entre 5 et 50 ; Tableau V.4). Des échantillons contenant < de 4% de F présentent également des D_{La}^{LC/LS} très élevés (Fig.V.7b).

Enfin, les liquides carbonatés contiennent de manière générale des concentrations relativement faibles en Cl (< 1 % poids dans tous les échantillons; Tableau V.3 et Fig.V.7c). Pour ces faibles concentrations, on n'observe aucune influence de la quantité en Cl dans le liquide carbonaté sur les $D_{La}^{LC/LS}$ (Fig.V.7c).

Le F, Cl et P dans le liquide carbonaté ne semblent ainsi pas jouer de rôle direct sur l'enrichissement en La des liquides carbonatés. Aucune dépendance des coefficients de partage des autres REE ainsi que des HFSE aux concentrations de ces éléments volatils dans les liquides carbonaté n'a été observé.

En conclusion, aucun effet direct des concentrations du P, F et Cl dans le liquide silicaté ou carbonaté sur le comportement des métaux rares entre liquides carbonatés et silicatés n'a donc été observé. Ces éléments ne semblent pas jouer de rôle direct sur l'enrichissement en REE des liquides carbonatés. En revanche nous avons vu que les liquides voient leur composition en éléments majeurs évoluer dans les différents systèmes \pm enrichis en F, Cl ou P (Fig. V.3 et V.4). Or nous avons vu dans le chapitre IV que la composition et la structure du liquide silicaté joue un rôle très important sur l'enrichissement en REE des liquides carbonatés. Il est ainsi nécessaire d'étudier si la composition chimique des liquides joue également un rôle sur la variation d'enrichissement des liquides carbonatés, pour des systèmes de compositions enrichies en F, Cl et P.

Figure V.7. Coefficients de partage du La entre liquide carbonaté et silicaté (D_{La}^{LCLS}) en fonction des concentrations en $P_2O_5(a)$, en F (b) et en Cl (c) en % poids du liquide carbonaté. Tous les échantillons sont représentés (± F, Cl, P et H₂O). 156

V.1.4.2. Effet de la composition chimique du liquide silicaté

Nous avons vu dans le chapitre IV que le partage des REE est lié à la composition du liquide silicaté (Fig.IV.4 et IV.5). Le coefficient de partage du La (représentatif des autres REE) pour les compositions \pm enrichies en F, Cl et P sont représentées en fonction de différents paramètres caractéristiques de la composition des liquides silicatés alcalins ainsi que de leur structure, à savoir la concentration en CaO en % poids (Fig.V.8a), l'indice de saturation de l'Al (ASI : Al₂O₃/(CaO+Na₂O+K₂O) ; Fig. V.8b), le rapport des cations alcalins/alcalino-terreux ((Na₂O+K₂O)/(CaO+MgO) ; Fig.V.8c), et enfin le NBO/T caractérisant la structure du liquide silicaté (Fig.V.8d).

Pour les 20 échantillons étudiés à 850-1050 °C et à 0,8 GPa et contenant des liquides carbonatés et silicatés \pm dopés en F, Cl ou P; et aussi \pm hydratés, les coefficients de partage $D_{La}^{LC/LS}$ augmentent avec la diminution de la concentration en CaO (% poids) dans le liquide silicaté (Fig.V.8a). Cet effet observé en premier lieu dans les échantillons présentés dans le chapitre IV (ronds blanc, Fig.V.8a) indique que les liquides silicatés très fractionnés (concentrations en CaO les plus basses) coexistent avec des liquides carbonatés qui peuvent être très enrichis en REE, y compris dans des systèmes riches en F, Cl et P.

De plus, ces coefficients de partage augmentent au fur et à mesure que le paramètre ASI des liquides silicatés augmente (Fig.V.8b) : en effet les liquides les plus péralcalins (ASI les plus bas, < 0,5) présentent les $D_{La}^{LC/LS}$ les plus faibles (rond vert, PCPC2_01 ; voir Tableau V.2), alors que ceux présentant les $D_{La}^{LC/LS}$ les plus élevés ont un ASI > 0,6 (Fig.V.8b). Cette tendance a également été observée pour les expériences d'immiscibilité décrite dans le chapitre IV (points blancs, Fig.V.8b) qui présentent des valeurs d'ASI similaires (valeurs disponibles dans le Tableau B.3 de l'Annexe B.2).

Les $D_{La}^{LC/LS}$ augmentent également avec le rapport des cations (Na₂O+K₂O)/ (CaO+MgO) (Fig.V.8c) : plus ce rapport augmente – c'est-à-dire plus le liquide silicaté est concentré en alcalins par rapport au Ca et Mg- et plus les liquides carbonatés des systèmes \pm dopés en F-Cl-P sont enrichis en REE ($D_{La}^{LC/LS}$ élevés). Cette observation a également pu être appréciée pour les liquides présentés dans le chapitre IV.

Enfin, les $D_{La}^{LC/LS}$ des systèmes dopés en éléments volatils augmentent avec la diminution du NBO/T des liquides silicatés (Fig.V.8d ; voir Tableau V.2 pour les valeurs de NBO/T). Les liquides silicatés des expériences présentées dans le chapitre IV montrent aussi cette tendance (points blancs, Fig.V.8d ; valeurs disponibles dans le Tableau B.3 de l'Annexe B.2). Autrement dit, plus le liquide silicaté est polymérisé (NBO/T faible), plus le liquide carbonaté coexistant est enrichi en REE, y compris en présence de ces éléments de F, Cl et P.

Aucun effet de composition du liquide silicaté sur les autres métaux rares, à savoir le Hf, Zr, Ta et Nb, n'a été observé dans ces échantillons

La composition du liquide silicaté joue donc un rôle important sur l'enrichissement en REE de ces liquides dopés en F, Cl et P. Les liquides silicatés dopés en F, Cl et P les plus polymérisés, les moins péralcalins et les plus fractionnés peuvent coexister avec des liquides carbonatés très enrichis en REE.

L'effet de composition du liquide silicaté sur le comportement des REE dans les liquides carbonatés coexistant avec des liquides silicatés alcalins différenciés, a été défini dans le chapitre IV et est donc également mis en avant dans des systèmes dopés en F, Cl et P. Le modèle d'enrichissement DCa-DREE proposé dans le chapitre IV doit maintenant être testé sur ces liquides afin de vérifier son application dans des systèmes enrichis en F, Cl et P.

Figure V.8. Effet de la composition chimique du liquide silicaté sur les coefficients de partage du La entre liquide carbonatés et silicatés. Les coefficients de partage du La entre les deux liquides (D_{La}^{LCLS}) sont représentés en fonction de la concentration en CaO (% poids) du liquide silicaté (a), de l'indice de saturation de l'Al ASI ((Al₂O₃/(CaO+Na₂O+K₂O); b), du rapport des cations alcalins et alcalino-terreux (Na₂O+K₂O)/ (CaO+MgO (c) et enfin du NBO/T (d). Les échantillons du système non dopé (« Ø vol. », en vert), enrichi en P (marron), en F (gris foncé) et en Cl (gris clair) sont représentés, y compris ceux contenant 3 et 6 % poids de H₂O, à 850-1050°C et 0,8 GPa. Les points blancs correspondent aux expériences présentées dans le chapitre IV, réalisées de 725 à 975 °C, et de 0,2 à 0,8 GPa.

V.1.4.3. Application du modèle D_{Ca} - D_{REE} dans des systèmes enrichis en F, Cl et P, et aux données naturelles d'inclusions vitreuses \pm enrichies en F, Cl et P

• Validation du modèle D_{Ca}-D_{REE} pour les liquides enrichis en F, Cl et P

Le modèle d'enrichissement en REE des liquides carbonatés présentés dans le chapitre IV permet d'évaluer les coefficients de partage en Ca et en REE entre liquide carbonaté et liquide silicaté, seulement à partir de la composition du liquide silicaté. Ce modèle est principalement basé sur la corrélation entre l'enrichissement en REE et en Ca dans les liquides carbonatés (voir partie IV.5.2), c'est-à-dire sur la corrélation entre coefficients de partage des REE et du Ca.

La Fig.V.9 indique que les coefficients de partage du La sont également parfaitement corrélés avec ceux du Ca pour les échantillons dopés en F, Cl et P (gris foncé, gris clair et marron) : plus les coefficients de partage du Ca augmentent, plus les $D_{La}^{LC/LS}$ augmentent également dans les échantillons 158

dopés en F, Cl et P (Fig.V.9). Cette bonne corrélation implique que les $D_{La}^{LC/LS}$ peuvent être calculés à partir des $D_{Ca}^{LC/LS}$. Le modèle D_{Ca} - D_{REE} présenté dans le chapitre IV peut ainsi être appliqué à ces compositions.

Figure V.9. Coefficient de partage du La entre liquides carbonaté et liquides silicaté (D_{La}^{LCLS}) représenté en fonction de coefficient de partage du Ca (D_{Ca}^{LCLS}) , pour tous les échantillons du système enrichi en P (marron), en F (gris foncé) et en Cl (gris clair), y compris ceux contenant 3 et 6 % poids de H₂O, à 850-1050°C et 0,8 GPa. Les ronds blancs correspondent aux expériences présentées dans le chapitre IV, réalisées de 725 à 975 °C, et de 0,2 à 0,8 GPa.

Le modèle d'enrichissement en REE a ainsi été appliqué à ces échantillons dopés en F, Cl et P de la manière suivant :

- Les D_{Ca}^{LC/LS} ont tout d'abord été recalculés à partir des trois paramètres de composition chimique du liquide silicaté utilisés dans l'équation (09) de la partie IV.5.2.1 : la concentration en SiO₂ (% poids), le paramètre ASI et le rapport des cations (Na₂O+K₂O)/(CaO+MgO) (voir Tableau V.2). Les erreurs associées sont calculées selon les équations (10) et (11) (partie IV.5.2.1).
- Puis les D_{La}^{LC/LS} ont été recalculés selon l'équation (12) avec les coefficients correspondant présentés dans le Tableau IV.7 de la partie IV.5.2.2. Les erreurs associées sont calculées à partir de l'équation (13) (partie IV.5.2.2).

Les $D_{Ca}^{LC/LS}$ et $D_{La}^{LC/LS}$ calculés à partir de ce modèle sont représentés en fonction des coefficients de partage mesurés (Tableau V.4) pour tous les échantillons enrichis en F, Cl et P (Fig.V.10). Dans les deux cas, les valeurs sont globalement bien recalculées (proches de la droite 1-1) et sont comprises dans le champ de composition des études expérimentales utilisées pour calibrer ce modèle (Fig. IV.6 de la partie IV.5.2.1). Le modèle du chapitre IV permet donc de bien reproduire les coefficients de partage mesurés dans ces échantillons, et ainsi de bien caractériser l'enrichissement en REE de ces liquides dopés en F, Cl et P.

Ce modèle d'enrichissement en REE peut donc être utilisé dans les systèmes enrichis en F, Cl et P.

Figure V.10. Application du modèle d'enrichissement en REE sur les compositions enrichis en F, Cl et P. a) Coefficients de partage du Ca calculés à partir du modèle $(D_{Ca}^{LCLS} calculé)$, en fonction de celui mesuré $(D_{Ca}^{LCLS} mesuré)$; b) Coefficients de partage du La calculés à partir du modèle $(D_{La}^{LCLS} calculé)$, en fonction de celui mesuré $(D_{La}^{LCLS} mesuré)$; pour tous les échantillons du système enrichi en P (marron), en F (gris foncé) et en Cl (gris clair), y compris ceux contenant 3 et 6 % poids de H_2O , à 850-1050°C et 0,8 GPa. Les champs gris clairs correspondent au domaine des D_{Ca}^{LCLS} et D_{La}^{LCLS} de la base de données expérimentale utilisée pour la calibration du modèle et présentés dans la Fig.IV.6 du chapitre IV.

Cas particulier : test d'équilibre entre liquides carbonatés et silicatés

Dans le système non dopé en éléments volatils (vert dans tous les graphiques, échantillons PCPC1), les coefficients de partage du La de trois échantillons (850°C et 0,8 GPa, PCPC1_01/02/03 ; voir Tableau V.4) sont relativement bas par rapport à ceux dopés en F, Cl et P (voir Fig.V.5) et ne montrent pas de corrélation très claire avec les $D_{Ca}^{LC/LS}$ (Fig.V.11a). En appliquant le modèle D_{Ca} - D_{REE} proposé dans le chapitre IV de la même manière que pour les échantillons dopés en F, Cl et P (Fig.V.10), on peut remarquer une bonne estimation des $D_{Ca}^{LC/LS}$ (Fig.V.11b) : les coefficients calculés sont cohérents avec ceux mesurés. En revanche, les $D_{La}^{LC/LS}$ calculés sont surestimés pour deux échantillons ($D_{La}^{LC/LS} < 15$; échantillons PCPC1_01/02 ; Tableau V.4), et les valeurs calculées ne sont pas comprises dans le champ de la base de données expérimentale (champ gris clair, Fig.V.11c).

Ces écarts entre les valeurs calculées et mesurées de $D_{La}^{LC/LS}$ peuvent s'expliquer par la mauvaise corrélation des coefficients de partage du La et du Ca (Fig.V.11a). Dans ce cas, les paramètres appliqués pour calculer les $D_{REE}^{LC/LS}$ à partir du $D_{Ca}^{LC/LS}$ (Tableau IV.7) ne sont pas valables pour ces échantillons. Ceci peut impliquer que les liquides carbonatés et silicatés de ces échantillons ne sont pas tout-à-fait à l'équilibre. En effet ces échantillons font partie de ceux contenant la phase « LC2 » décrite précédemment (Fig.V.1b; voir Tableau V.1) et très enrichie en REE (échantillons PCPC1_01 et PCPC1_02; voir Tableau B.3, Annexe B.4). La présence de cette phase ainsi que le fait que ces coefficients de partage ne soient pas bien recalculés par le modèle questionne sur l'état d'équilibre du liquide carbonaté, liquide silicaté et « LC2 ».

Les échantillons « PCPC1... » ont été synthétisés à 850 et 0,8 GPa pendant 50h. Cette durée d'expérience n'est peut-être pas suffisante pour assurer l'état d'équilibre entre ces phases. Cependant, les éléments majeurs ne semblent pas être affectés. En effet, aucune variation de composition chimique en élément majeur du liquide silicaté n'a été observée aux alentours de ces zones : des analyses par EDS au MEB ont été réalisées autour de ces zones et au travers du liquide silicaté environnant, et n'ont montré aucune variation de composition du liquide silicaté (voir Fig.B.2 et B.3 de l'Annexe B.4). De même, le bon calcul du Dca (Fig.V.11a) indique également que les éléments majeurs ne sont pas impactés. Ceci n'invalide donc pas les résultats liés à la composition chimique en éléments majeurs de ces liquides silicatés : ces échantillons suivent les tendances générales décrites précédemment (Fig. V.8). Ils peuvent ainsi être en état d'équilibre partiel.

De plus, cette phase « LC2 » a également été identifiée dans les échantillons PCPC5_01 à 03 dopés en Cl (Tableau V.1) et les $D_{Ca}^{LC/LS}$ et $D_{La}^{LC/LS}$ de ces échantillons sont bien estimés par le modèle (Fig.V.10, points gris clairs). Les liquides carbonatés et silicatés de ces échantillons PCPC5_01 à 03 sont ainsi probablement à l'équilibre avec les liquides silicatés. La différence de concentrations en REE des zones de « LC2 » par rapport aux liquides carbonatés est aussi moins importante dans ces échantillons en comparaison aux échantillons PCPC1_01 et 02 : en effet, le LC2 et le liquide carbonaté de l'échantillon PCPC5_01 contiennent respectivement 263 ± 79 et 119 ± 2 ppm de La, alors que ceux de l'échantillon PCPC1_01 en contiennent 363 ± 43 et 91 ± 2 respectivement (Tableaux B.2 et B.3, Annexe B.4).

Le modèle permet donc également de tester l'état d'équilibre des liquides formés à des conditions P-T expérimentales précises.

Figure V.11. Application du modèle d'enrichissement en REE sur les échantillons non dopés en élément s volatils (PCPC1_01:02:03, et PCPC2_01). a)Coefficients de partage mesurés b) Coefficients de partage du Ca calculés à partir du modèle (D_{Ca}^{LCLS} calculé), en fonction de celui mesuré (D_{Ca}^{LCLS} mesuré); c) Coefficients de partage du La calculés à partir du modèle (D_{La}^{LCLS} calculé), en fonction de celui mesuré (D_{La}^{LCLS} mesuré); c) Coefficients de partage du La calculés à partir du modèle (D_{La}^{LCLS} calculé), en fonction de celui mesuré (D_{La}^{LCLS} mesuré).

Comparaison aux systèmes fluorés et chlorés

Veksler et al. (2012) on définit les coefficients de partage des métaux rares entre liquides ioniques de type fluorés (> 38 % poids de F), chlorés (et phosphaté ($P_2O_5 > 45\%$ poids), et liquides silicatés (voir partie II.2.3.2 et Fig.II.12). Ces coefficients sont présentés dans la Figure V.12 et comparés aux coefficients de partage entre liquides carbonatés et liquides silicatés ± enrichis en F, Cl et P définis dans cette étude. Comme décris dans la partie II.2.3.2, les liquides phosphatés (Fig.V.12a) et les liquides fluorés (Fig.V.12b) sont jusqu'à plus de 100 fois plus enrichis en REE que les liquides silicatés, ce qui indique une forte préférence de ces éléments pour les liquides ioniques. Les HFSE sont également très concentrés dans les liquides phosphatés. Dans le système chlorés (Fig.V.12c), les coefficients de partage sont moins élevés.

Figure V.12. Coefficients de partage des métaux rares (HFSE et REE) entre les liquides carbonatés et liquides silicatés \pm enrichis en F, Cl et P de cette étude, ainsi qu'entre les liquides ioniques (fluorés ou phosphatés ; croix marron et gris foncé) et liquides silicatés de Veksler et al. (2012) (D^{Liquide ionisé/LS}).

Les liquides fluorés et chlorés présentent la même corrélation entre le partage du La et du Ca observé entre les liquides carbonatés et liquides silicatés non dopés et \pm dopés en F, Cl et P (Fig.V.9), ainsi que dans les données de la littérature (partie IV.4.3, Fig.IV.4c). En effet, plus les liquides fluorés ou phosphatés sont enrichi en Ca, et plus ils le sont en La (Fig.V.13, crois marron et gris foncé). Les liquides fluorés ou phosphatés coexistant avec des liquides silicatés très pauvres en Ca sont ainsi très enrichis en REE. Ceci implique que l'effet de la composition chimique du liquide silicaté joue également un rôle sur l'enrichissement en REE de ces liquides fluorés et phosphatés.

Cependant, le modèle d'enrichissement en REE des liquides carbonatés et silicatés ne peut pas être appliqué à ces liquides dont la structure est peu connue et probablement très différente de celle des liquides carbonatés. Un test à tout de même été effectué afin de recalculer les valeurs de $D_{Ca}^{Liquide}$ ionique/LS mesurées, mais les valeurs calculées sont beaucoup trop élevées ($D_{Ca}^{Liquide}$ ionique/LS calculé > 30000). La composition des liquides silicatés coexistant avec ces liquides ioniques est par ailleurs très différente des compositions étudiées ici ainsi que de celles de la base de données expérimentale utilisée pour la paramétrisation du modèle (SiO₂: 60 et 80% poids ; CaO : 0,05 et 7% poids ; Veksler et al., 2012). Le modèle devrait être recalibré pour calculer ce genre de compositions.

Figure V.13. Coefficient de partage du La entre liquides carbonaté et liquides silicaté (D_{La}^{LCLS}) et également entre liquides ioniques et liquides silicatés $(D_{La}^{Liquide ionique/LS})$ de Veksler et al. (2012), représenté en fonction du coefficient de partage du Ca $(D_{Ca}^{LC/LS})$, pour tous les échantillons du système enrichi en P (marron), en F (gris foncé) et en Cl (gris clair), y compris ceux contenant 3 et 6 % poids de H₂O, à 850-1050°C et 0,8 GPa. Les ronds blancs correspondent aux expériences présentées dans le chapitre IV, réalisées de 725 à 975 °C, et de 0,2 à 0,8 GPa ; les crois gris foncés et marrons foncées correspondent respectivement aux liquides fluorés et phosphatés de Veksler et al. (2012).

Application aux inclusions vitreuses naturelles, ± enrichies en F, Cl et P

Les études d'inclusions vitreuses effectuées sur des échantillons naturels de roches magmatiques alcalines ont permis de mettre en évidence des inclusions contenant des liquides silicatés alcalins soussaturés en silice de type mélilitite à phonolite et des liquides carbonatés (Mitchell, 2009; Guzmics *et al.*, 2012, 2019 ; voir les compositions dans le Tableau II.1, partie II.1.1). Ces liquides supposés être immiscibles à l'équilibre présentent en général des concentrations relativement élevées en F, Cl et P (Tableau II.1 ; Mitchell, 2009; Guzmics *et al.*, 2012, 2019). Certaines inclusions peuvent même présenter des liquides carbonatés pouvant contenir plus de 14% poids de F (Guzmics *et al.*, 2019). Les concentrations en F, Cl et P analysées dans ces inclusions sont dans la même gamme que les concentrations analysées dans les liquides silicatés et carbonatés expérimentaux \pm dopés en F, Cl et P, de cette étude (Tableau V.2 et V.3).

Le modèle D_{Ca} - D_{REE} pouvant être appliqué à des liquides silicatés et carbonatés présentant d'importantes concentrations en ces éléments volatils, il a été appliqué à ces inclusions vitreuses (Mitchell, 2009; Guzmics *et al.*, 2012, 2019). Les REE n'étant pas analysées dans ces inclusions, seuls les coefficients de partage du Ca entre liquide carbonaté et liquide silicaté ont été recalculés en appliquant les équations (09) et (12) de la partie IV.5.2 (erreurs calculées à partir des équations (10), (11) et (13) ; Fig.V.14). De manière générale, toutes les valeurs recalculées de $D_{Ca}^{LC/LS}$ calculés pour les couples d'inclusions silicatés-carbonatés ± riches en F-Cl-P tombent dans le champ de la base de données expérimentales utilisées pour calibrer le modèle (partie IV.5 ;2.2, Fig.IV.6a). Les $D_{Ca}^{LC/LS}$ calculés sont souvent légèrement sous-estimés (en-dessous de la droite 1-1) pour les inclusions contenant des concentrations relativement importantes en F, Cl et P ((Mitchell, 2009; Guzmics *et al.*, 2012)), ainsi que pour les inclusions très riches en ces éléments (Guzmics *et al.*, 2019), mais restent cohérents par rapport aux valeurs mesurées pour presque toutes les données (Fig.V.14).

Le modèle permet ainsi de relativement bien estimer le partage du Ca entre liquide silicaté et carbonaté contenu dans des inclusions vitreuses ± riches en F-Cl-P dans des roches magmatiques alcalines. En utilisant ce modèle pour ce genre d'inclusions vitreuses, il est alors possible d'estimer le partage des REE entre le liquide carbonaté et liquide silicaté piégé dans ces inclusions, et ainsi d'évaluer l'enrichissement de ces liquides au stade magmatique.

Figure V.14. Application du modèle d'enrichissement en REE sur des inclusions vitreuses de liquides silicatés et cabronatés \pm enrichies en F, Cl et P (Mitchell et al., 2009; Guzmics et al., 2012; Guzmics et al., 2019). Coefficients de partage du Ca calculés à partir du modèle (D_{Ca}^{LCLS} calculé), en fonction de celui mesuré entre les liquides carbonatés et les liquides silicatés des inclusions vitreuses (D_{Ca}^{LCLS} mesuré). Les inclusions vitreuses très riches en F (> 14% poids de F dans le liquide carbonaté) sont représentées en bleu (Guzmics et al., 2019).

V.1.5. Présence d'une phase fluide

Dans les échantillons synthétisés dans ces expériences, nous avons vu que les textures indiquent la présence d'une phase fluide en contact avec les liquides carbonatés et silicatés (voir Fig.V.1a; Fig.V.2d). Cette phase fluide n'a été ni mesurée ni analysée.

De plus, nous avons aussi vu que les liquides silicatés et carbonatés dans le système enrichi en Cl, sont pauvres en cet élément (Tableaux V.2 et V.3). Or une importante quantité de Cl est présente dans la composition de départ (4,78% poids ; voir Tableau III.1, protocole partie III.1.2). Les autres phases présentes dans ces échantillons (clinopyroxène, grenat, apatite, néphéline) ne peuvent pas concentrer cet élément, à l'exception de l'apatite; cependant, les quelques cristaux d'apatite observés ne peuvent pas expliquer une telle perte du Cl au cours de l'expérience. De même, nous avons pu observer une diminution importante des concentrations en Cl ainsi qu'en éléments alcalins dans les liquides carbonatés du système dopé en Cl avec ajout de 0 à 6% de H₂O (Fig.V.3 et V.4). Or les liquides carbonatés dans le système enrichi en Cl présentent une forte porosité (Fig.V.1g et V.1h). On peut supposer alors que le Cl peut avoir éventuellement complexé avec les éléments alcalins favorise alors cette complexation dans la phase fluide. Ceci pourrait expliquer la perte de ces éléments dans les liquides carbonatés dopés en Cl. Une perte au cours de la préparation des échantillons est exclue car une attention toute particulière a été apportée au cours de chaque étape (sciage, polissage, nettoyage etc...) en utilisant de l'éthanol et non de l'eau pour éviter toute dissolution des carbonates.

De plus, les coefficients de partage des MREE et HREE diminuent dans les échantillons du système dopé en Cl, de plus en plus enrichis en H₂O (Fig.V.5c). Cette diminution est due à la variation des concentrations de ces éléments dans les liquides carbonatés. En effet, on peut observer que les concentrations en Gd (représentatif des autres MREE) et en Lu (représentatif des HREE) diminuent respectivement de $66,99 \pm 1,91$ à $34,76 \pm 5,02$ ppm et de $33,96 \pm 1,30$ à $13,01 \pm 1,93$ ppm dans le liquide carbonaté, pour 0 à 6% de H₂O rajoutée (de PCPC5_01 à PCPC5_03 ; Tableau B.2, Annexe B.3) ; alors que les concentrations des liquides silicatés restent relativement constantes. Or les REE sont caractérisées comme étant très mobiles dans des fluides aqueux (Humphris, 1984; Williams-Jones *et al.*, 2012; Verplanck, 2017), et principalement dans les fluides chlorés (Williams-Jones *et al.*, 2012; Migdisov *et al.*, 2016).

On peut ainsi supposer que les REE peuvent également se concentrer dans la phase fluide, en se complexant ou non avec le Cl et les alcalins aussi échappés dans cette phase. La phase fluide semble donc jouer un rôle très important, à la fois sur la composition des liquides et également sur leur enrichissement en REE. L'analyse de cette phase se révèle alors essentielle afin d'une part de mieux comprendre le comportement de ces éléments en présence de cette phase, et également afin de mieux contraindre leurs enrichissements dans la phase fluide.

V.2. Bilan de l'effet du F, Cl et P sur l'enrichissement en métaux rares des liquides carbonatés et silicatés

Des expériences d'immiscibilité ont été réalisées entre liquides silicatés de type néphélinite-phonolite et liquides carbonatés, à partir de compostions \pm dopées en F, Cl et P, (0,8 GPa et 850-1050 °C), dans le but d'identifier le rôle de ces éléments sur l'enrichissement en métaux rares des liquides carbonatés coexistant avec des liquides silicatés alcalins de compositions évoluées.

Les résultats indiquent une légère variation de la composition en éléments majeurs des liquides silicatés, alors que les liquides carbonatés varient plus en composition, et notamment en présence de Cl avec une diminution importante des concentrations en éléments alcalins.

Les coefficients de partage sont plus élevés dans les systèmes dopés en F et en P. Cependant aucun lien direct avec les concentrations de ces éléments dans les liquides silicatés ou carbonatés n'a été identifié. En revanche, l'effet de composition et de structure du liquide silicaté mis en valeur dans le chapitre IV joue également le même rôle dans les systèmes \pm dopées en F, Cl et P : les liquides silicatés \pm enrichis en F, Cl et P les plus polymérisés et les plus différenciés coexistent avec des liquides carbonatés très riches en REE. Les données de partage des REE des échantillons dopés et non dopés en F, Cl, P, et H₂O, et leurs dépendances à la composition chimique du liquide silicaté, sont indiscernables.

Ainsi, le modèle d'enrichissement présenté dans le chapitre IV est appliqué à ces systèmes \pm dopés en F, Cl et P et est validé pour ce type de composition, avec une bonne reproductibilité des coefficients de partage mesurés. Ce modèle a également été appliqué à des inclusions vitreuses constituées à la fois de liquide silicaté et carbonaté et présentant d'importantes concentrations en ces éléments.

En conclusion, le F, Cl et P ne jouent donc pas un rôle direct sur l'enrichissement en REE des liquides. La composition du liquide silicaté influence le plus l'enrichissement en REE des liquides carbonatés coexistant, comme précisé dans le chapitre IV. L'optimum d'enrichissement en REE des liquides carbonatés ne change pas en présence de ces éléments volatils : les liquides carbonatés qui coexistent avec des liquides silicatés très différenciés et très polymérisés de type phonolitiques sont les plus enrichis en REE, en présence ou non de F, Cl et P.
L'effet du F, Cl et P a été étudié dans ces expériences. Ces éléments volatils ne sont cependant pas les plus importants dans les liquides silicatés alcalins et les liquides carbonatés : ces liquides peuvent en effet contenir des concentrations relativement importantes en H_2O et en CO_2 . L'effet de ces éléments sur la composition des liquides ainsi que sur leur enrichissement en métaux rares n'a pas encore été étudié dans des liquides silicatés en saturation en carbonates.

La partie suivante présente les premières données de concentrations en CO_2 et en H_2O des liquides silicatés alcalins sous-saturés en silice et en coexistence avec des liquides carbonatés, et propose une étude préliminaire de l'effet du CO_2 sur la composition en éléments majeurs des liquides silicatés, ainsi que sur l'effet du CO_2 et de H_2O sur les coefficients de partage des REE entre liquide carbonatés et liquides silicatés.

V.3. Etude préliminaire de l'effet du CO₂ sur la composition de liquide silicaté alcalin en saturation en carbonates.

Des analyses à la nano-SIMS ont été effectuées afin de caractériser les concentrations en CO_2 et H_2O des liquides silicatés alcalins immiscibles avec des liquides carbonatés (détails des analyses dans la partie III.3.4). Ces éléments ont été analysés pour les échantillons présentés dans ce chapitre (13 échantillons analysés, voir concentration dans le Tableau V.2) ainsi que pour les liquides silicatés des échantillons présentés dans le chapitre IV (23 échantillons analysés, voir Tableau B.1, Annexe B.2). Les droite de calibration des analyses ainsi que les erreurs analytiques associées sont présentées dans l'Annexe A.4 (Fig.A.2 et A.3 ; Tableau A.7).

Ces analyses ont donc été effectuées dans des liquides silicatés de type néphélinites à phonolites, \pm dopés en H₂O, F, Cl et P. Parmi les 36 échantillons analysés, trois échantillons ne contiennent que du liquide silicaté ; les 33 autres présentent des liquides carbonatés et silicatés immiscibles. De manière générale, les concentrations analysées en CO₂ varient de 0,25 \pm 0,04 % poids (échantillon PCPC4_01, Tableau V.2) à 5, 99 \pm 0,90 % (T17_04, Tableau B.1, Annexe B.2) dans les échantillons saturés en carbonates. Ces concentrations sont plus élevées dans les liquides silicatés non saturés en carbonates, et varient de 5,38 \pm 0,42 à 9,50 \pm 0,15 % poids (respectivement T17_03 et AK02_03, Tableau B.1, Annexe B.2).

La Figure V.15 présente l'évolution des concentrations en CO₂ en fonction de la composition des liquides silicatés. Pour tous les échantillons (sans ou avec \pm de H₂O, F, Cl et P.), les concentrations en CO₂ augmentent dans les liquides silicatés de plus en plus sous-saturés en SiO₂ (Fig.V.15a). Les liquides les plus pauvres en silice (34 à 36 % poids de SiO₂) correspondent à ceux non saturés en carbonates (ronds et triangles vide, Fig.V.15a). En revanche, les concentrations en CO₂ semblent corrélées de manière exponentielle avec la concentration en CaO des liquides silicatés : plus le liquide contient de CaO, plus il est enrichi en CO₂ (Fig.V.15b), pour les liquides silicatés saturés en carbonates, et ceux non saturés. Les liquides contenant > 12 % poids de CaO sont les plus riches en CO₂ (> 6% poids) et ne coexistent pas avec des liquides carbonatés (symboles vides).

De plus, les concentrations en CO_2 dans le liquide silicaté semblent évoluer en fonction de la péralcalinité des liquides (Fig.V.15c). En effet, plus les liquides silicatés sont péralcalins (ASI diminue), plus ils présentent des concentrations en CO_2 importantes. Les liquides les plus péralcalins (ASI < 0,3) ne coexistent également pas avec des liquides carbonatés. De même, l'évolution des concentrations en CO_2 en fonction du rapport des cations alcalins et alcalino-terreux (Na₂O+K₂O)/(CaO+MgO) indique que les liquides silicatés les plus riches en éléments alcalins par rapport au CaO et au MgO sont les plus enrichis en CO_2 (Fig.V.15d).

Figure V.15. Concentrations en CO_2 (% poids) mesurées à la nano-SIMS des liquides silicatés expérimentaux en fonction de leurs concentrations en % poids de SiO₂ (a), de CaO (b), de l'ASI ($Al_2O_3/(CaO+Na_2O+K_2O)$ (c), du rapport des cations alcalins/alcalino-terreux (Na_2O+K_2O)/(CaO+MgO) (d) et du NBO/T (e). Les données d'inclusions vitreuses non saturées en

carbonates (rond gris vie) et saturées en carbonatés (ronds gris pleins) de De Moor et al. (2013) sont également représentées.

Enfin, les concentrations mesurées en CO_2 dans le liquide silicaté sont représentées en fonction du NBO/T des liquides silicatés (Fig.V.15e). Ces concentrations augmentent nettement avec le NBO/T. Autrement dit, plus le liquide silicaté est dépolymérisé (NBO/T augmente) et plus il est enrichi en CO_2 . Cet effet déjà décris dans la littérature (Brooker *et al.*, 2001a; Iacono-Marziano *et al.*, 2012) est d'autant plus marqué pour les liquides silicatés non saturés en carbonates (symboles vides).

Les données expérimentales présentées dans cette étude sont comparées aux données d'inclusions vitreuses silicatés de type mélilite-néphélinite de (De Moor *et al.*, 2013) (points gris pleins), ainsi qu'aux données d'inclusions vitreuses contenant à la fois du liquide silicaté et du liquide carbonaté (rond gris vide, Fig.V.15). Les données d'inclusions vitreuses dans les échantillons saturés et non saturés en carbonates présentent les mêmes tendances que celles observées dans les échantillons expérimentaux, à l'exception de l'effet des concentrations en SiO₂ qui est moins clair (Fig.V.15a). Pour l'évolution en fonction du CaO (Fig.V.15b), ces inclusions présentent la même tendance (augmentation de la concentration en CO₂ avec la concentration en CaO), mais avec des concentrations en CO₂ plus élevées dans le liquide silicaté pour une même concentration en CaO. Ces inclusions sont très péralcalines (ASI < 0,3 ; Fig.V.15c) et présentent également une augmentation des concentrations en CO₂ au fur et à mesure que la péralcalinité augmente (ASI diminue). De même elles présentent un rapport (Na₂O+K₂O)/(CaO+MgO) relativement faible (< 4), avec des concentrations en CO₂ augmentant fortement pour un rapport de 2 (Fig.V.15d). Enfin, ces inclusions indiquent également une augmentation des concentrations en CO₂ pour des liquides dépolymérisés (NBO/T augmente ; Fig.V.5^e).

La transition entre les liquides silicatés saturés en carbonate et non saturés en carbonate n'est pas claire dans les données d'inclusions vitreuses en gris, (De Moor *et al.*, 2013). En revanche, cette transition est beaucoup plus claire dans les données expérimentales et peut être décrite qualitativement: pour les données de concentrations en CO₂ analysées, les liquides silicatés sont saturés en carbonates à partir de 36 % poids de SiO₂, en-dessous de 12% poids de CaO, pour un ASI > 0,3 et enfin un NBO/T > 1,2.

Les concentrations en eau ont également été quantifiées : elles varient de $0,47 \pm 0,07$ à $8,24 \pm 1,17$ % poids (T17_02 et AK05_05 ; Tableau B.1, Annexe B.2). A la différence des concentrations en CO₂, les concentrations en H₂O ne montrent pas de dépendance à la composition chimique du liquide silicaté (voir partie II.1.2 ;Moussallam *et al.*, 2016b).

Afin d'identifier un potentiel premier effet de concentration du CO_2 et de H₂O sur le comportement des REE entre les liquides carbonatés et silicatés, les coefficients de partage du La (représentatif des autres REE) entre liquides carbonatés et liquides silicatés (saturés en carbonates) sont représentés en fonction des concentrations en CO_2 (Fig.V.16a) ainsi que des concentrations en H₂O (Fig.V.16b) des liquides silicatés. Les $D_{La}^{LC/LS}$ semblent augmenter avec la diminution des concentrations en CO_2 : plus le liquide silicaté est appauvri en CO_2 , et plus les $D_{La}^{LC/LS}$ sont élevés. En d'autres termes, les liquides carbonatés coexistant avec des liquides silicatés pauvres en CO_2 sont très enrichis en La. Or ces liquides pauvres en CO_2 correspondent aux liquides silicatés saturés en carbonates présentés dans la Fig.V.15 et plus riches en SiO₂, plus pauvres en CaO, moins péralcalins et très polymérisés présentés dans la Fig.V.15. Cette observation va de pair avec l'effet de la composition chimique du liquide silicaté sur l'enrichissement en REE des liquides carbonatés mis en évidence dans le chapitre IV ainsi que dans la partie V.I de ce chapitre. La fenêtre optimale d'enrichissement en REE des liquides carbonatés correspond à des liquides silicatés alcalins très différenciés et polymérisés de composition de type phonolitiques, et qui sont également pauvres en CO_2 .

En ce qui concerne les concentrations en H_2O , aucune relation n'est observée avec les coefficients de partage du La entre liquide carbonaté et liquide silicaté (Fig.V.16b).

Figure V.16. Coefficients de partage du La entre liquides carbonatés et liquides silicatés, en fonction des concentrations en CO_2 (% poids; a) et en H_2O (b) du liquide silicaté, pour tous les échantillons expérimentaux étudiés dans cette étude (chapitre IV et partie V.i).

En conclusion, cette étude préliminaire des concentrations en CO_2 et en H_2O des liquides silicatés a permis de mettre en évidence que les liquides silicatés alcalins saturent en carbonates à partir d'une certaine composition (SiO₂ et CaO respectivement > 36 % et < 12% poids ; ASI > 0,3 et NBO/T < 1,2). En dessous de cette composition, les liquides silicatés ne coexistent pas avec des liquides carbonatés, et sont plus riches en CaO ainsi qu'en CO₂, très péralcalins et dépolymérisés. De plus, les coefficients de partage des REE semblent évoluer en fonction des concentrations en CO₂ du liquide silicaté. Cette observation est directement liée à l'effet de la composition du liquide silicaté sur l'enrichissement en REE des liquides carbonatés démontrées dans cette étude. Un travail plus approfondi doit être effectué afin de quantifier la transition entre liquide saturé en carbonate et liquide non saturé et également afin de déterminer le partage de H2O et de CO2 entre les liquides carbonatés et silicatés.

VI. Partage des métaux rares entre cristaux et liquides au cours de la différenciation

Ce chapitre est consacré aux cristaux formés au cours de la différenciation des liquides silicatés de type néphélinite à phonolite coexistant avec des liquides carbonatés présentés dans les chapitre IV et V. L'approche expérimentale a permis de simuler la différenciation magmatique dans ces systèmes alcalins par la croissance, à l'équilibre, de minéraux dans un bain de liquide silicaté et carbonaté. Le but de ce chapitre est de mettre en évidence les paramètres qui influencent l'enrichissement en métaux rares de ces minéraux au cours de la différenciation des magmas alcalins.

La première et la deuxième partie sont respectivement dédiées à la description des assemblages de phases identifiées et de leurs textures, ainsi qu'à la composition chimique des cristaux en éléments majeurs et en éléments traces.

Une troisième partie présente les coefficients de partage des métaux rares caractérisés entre ces cristaux et le liquide silicaté, ainsi que le liquide carbonaté. Cette partie permet d'identifier l'enrichissement en métaux rares des différentes phases cristallines pouvant les concentrer.

La quatrième partie aborde l'effet de la composition chimique des liquides et/ou de la structure des cristaux sur le partage de ces métaux rares, au cours de la différenciation des magmas alcalins. Cette partie est divisée en trois temps :

- Une section est dédiée aux clinopyroxènes qui sont les minéraux principaux formés en coexistence avec les deux liquides, et met en évidence les effets combinés de structure du minéral ainsi que de composition du liquide silicaté au cours de la différenciation, sur le comportement des REE.
- Une deuxième section propose une paramétrisation de l'enrichissement en REE et en Nb de la titanite au cours de la différenciation, basée exclusivement sur la composition chimique du liquide silicaté.
- Une troisième section présente l'évolution de l'enrichissement du grenat, de la calcite et de l'apatite. en fonction de la composition du liquide silicaté :

Cette partie permet de mettre en évidence le fait que les REE deviennent de plus en plus compatibles dans les minéraux (clinopyroxène, grenat, titanite, apatite, calcite) au cours de la différenciation des magmas alcalins et carbonatés.

VI.1. Caractérisation des minéraux

Différents minéraux ont été identifiés en coexistence avec les liquides silicatés alcalins et les liquides carbonatés immiscibles présentés. Les minéraux observés avec les liquides silicatés de type néphélinite- phonolite et les liquides carbonatés présentés dans le chapitre IV sont tout d'abord décrits. Puis ceux observés à l'équilibre avec les liquides plus ou moins dopés en F, Cl et P présentés dans le chapitre V sont caractérisés.

VI.1.1. Minéraux en coexistence avec des liquides de type néphélinite-phonolite et des liquides carbonatés

Cette section traite des phases cristallines qui coexistent avec les liquides silicatés et carbonatés présentés dans la chapitre IV. Les expériences d'immiscibilité entre liquides silicatés de type néphélinite-phonolite et liquides carbonatés ont été réalisées à 725-975 °C et 0,2-1,5 GPa. Au total 34 échantillons ont été synthétisés, dont la plupart présentent des cristaux coexistant avec les deux liquides (voir Tableau VI.1). A l'exception de certaines expériences (T14, AK05 et AK06), 4 échantillons expérimentaux contenant le même produit de départ ont été synthétisés à chaque condition P-T (Tableau VI.1): un échantillon avec le matériel de départ seul (noté ..._01), ainsi que trois échantillons avec du graphite rajouté (..._02), de l'eau (..._03), ou alors avec les deux constituants (..._04). Plusieurs systèmes sont ainsi testés dans ces expériences : le système néphélinite-carbonatite seul correspondant au protocole de Kjarsgaard (1998) (composition Mix8, contenant < 1% poids de H₂O), un système réduit (Mix 8 + graphite) et un système hydraté (Mix 8 + H₂O). Ceci permet de comparer pour chaque condition P-T les phases formées ainsi que leurs compositions. Seuls deux échantillons ont été synthétisés à partir du Mix 9 et Mix 10 (voir partie III.1.2), à 725 °C et 0,4 GPa (Tableau VI.1).

Au total, 12 minéraux différents ont été identifiés en coexistence avec les liquides silicatés et carbonatés, dans les échantillons synthétisés dans le système simple (Mix 8 uniquement), dans le système réduit (+ graphite) et dans le système plus hydraté (+ H_2O rajoutée dans les capsules ; Tableau VI.1):

- clinopyroxène (CPx) : ces minéraux (de formule (Na,Ca,Mg,Fe) (Mg,Fe,Al) (SiO₃)₂) sont observés dans tous les échantillons (à l'exception de l'échantillon AK01_02, synthétisé à 925 °C et 0,2 GPa dans le système réduit ; Tableau VI.1) et constituent les phases principales cristallisées dans ces expériences. Les cristaux font en général entre 5 et 30 μm (Fig.VI.1a, c, e, f et g ; Fig.VI.2a, b, e, f et h) et peuvent parfois mesurer jusqu'à plus de 200 μm de longueur (Fig.VI.1b, c d ; Fig.VI.2b et c). Ils présentent pour la plupart une forme automorphe. Ils sont parfois zonés (Fig.VI.1a et f) : on peut effectivement observer un cœur plus sombre dans certains cristaux. Les clinopyroxènes sont contenus dans le liquide silicaté, mais peuvent également être observés dans des zones de liquides carbonatés aussi bien à haute température et haute pression (925 °C et 1,5 GPa, Fig.VI.1e et f) qu'à des conditions P-T plus basses (825°C et 0,4 GPa, Fig.VI.2b).
- grenat (Gnt) : des cristaux de grenat ((Ca,Fe,Mg,Mn)₃ (Al,Fe,Cr)₂ (SiO₄)₃) sont observés dans les échantillons du système simple à haute température (> 925 °C), et également dans les échantillons hydratés à haute et basse température (Tableau VI.1). Les cristaux sont généralement de très petite taille à haute température (< 10-15 μm; Fig.VI.1a et c) et sont plus grands à plus basse température (15 à 50 μm; Fig.VI.2e et g). Un échantillon très hydraté (AK05_05, + 10% poids de H₂O) présente des cristaux de très grande taille (200 μm de

largeur ; Fig.VI.2d). Ces minéraux sont généralement automorphes et peuvent présenter des zonations, qui sont beaucoup moins prononcées que celles des clinopyroxènes.

Tableau VI.1. Conditions expérimentales des expériences d'immiscibilité entre liquides silicatés de type néphélinite-phonolite et liquides carbonatés. P: pression totale; T: température; H₂: pression partielle d'hydrogène; LS: liquides silicaté; LC: liquide carbonaté; CPx: clinopyroxène ; Cc: calcite; Ttn: titanite; Fe-Spl: ferro-spinelle (solution solide magnétite-titanomagnétite); Al-Spl: alumino-spinelle; Ilm: ilménite; Nph: néphéline; Afs: feldspath alcalins; Prv: pérovskite; Ap: apatite; Gnt: grenat; Mll: mélilite; Phl: phlogopite; V: phase vapeur; *: estimé à partir de calcul de bilan de masse ; G : graphite ;

E (Produit	Р	T surfusion	Т	H_2	Durée	Consula	$+ H_2O$	+ G	
Experiences	de départ	(GPa)	(°C)	(°C)	(MPa)	(h)	Capsule	(% poids)	(% poids)	Phases observees
T14_01	Mix 8	0.8	-	975	-	116	$Au_{80}Pd_{20}$	-	-	LS + LC + CPx + Fe-Spl + Gnt + V
T14_02	Mix 8	0.8	-	975	-	116	$Au_{80}Pd_{20} \\$	0.2	-	LS + LC + CPx + Fe-Spl + Gnt + V
T16_01	Mix 8	0.8	1100	950	-	118.5	$Au_{80}Pd_{20} \\$	-	-	$LS + LC + CPx + Ttn^* + Gnt^* + V$
T16_02	Mix 8	0.8	1100	950	-	118.5	$Au_{80}Pd_{20} \\$	-	1	LS + LC + CPx + Nph + Fe-Spl*
T16_03	Mix 8	0.8	1100	950	-	118.5	$Au_{80}Pd_{20} \\$	4.5	-	$LS + CPx^* + Fe-Spl + V$
T16_04	Mix 8	0.8	1000	950	-	118.5	$Au_{80}Pd_{20} \\$	5.4	1	V + LS
T18_01	Mix 8	1.5	1000	925	-	118.5	$Au_{80}Pd_{20} \\$	-	-	LS + LC + CPx + Cc + Fe-Spl + Afs + V
T18_02	Mix 8	1.5	1000	925	-	118.5	$Au_{80}Pd_{20}$	-	1	LC + CPx + Al-Spl + Ilm + Nph + Afs + V
T18_03	Mix 8	1.5	1000	925	-	118.5	$Au_{80}Pd_{20}$	2.1	-	LS + LC + CPx + Cc + Fe-Spl
T18_04	Mix 8	1.5	1000	925	-	118.5	$Au_{80}Pd_{20}$	1	1	LS + LC + CPx + Cc + Fe-Spl
T17_01	Mix 8	0.8	1000	925	-	119	$Au_{80}Pd_{20}$	-	-	LS + LC + CPx + Ttn + Fe-Spl + Gnt + V
T17_02	Mix 8	0.8	1000	925	-	119	$Au_{80}Pd_{20}$	-	1	$LS + LC + CPx + Ttn + Nph + Afs + Cc^* + Fe-Spl^* + Ap^* + V$
T17_03	Mix 8	0.8	1000	925	-	119	$Au_{80}Pd_{20}$	4	-	$LS + CPx^* + Fe-Spl + V$
T17_04	Mix 8	0.8	1000	925	-	119	$Au_{80}Pd_{20}$	3	1	LS + LC + CPx + Fe-Spl + V
AK02_01	Mix 8	0.4	985	925	0.5	118	Au	-	-	LS + LC + CPx + Cc + Ttn + Fe-Spl* + V
AK02_02	Mix 8	0.4	985	925	0.5	118	Au	-	1	LS + LC + CPx + Cc + Ttn + Al-Spl + Nph + Prv + V
AK02_03	Mix 8	0.4	985	925	0.5	118	Au	1.6	-	LS + Cpx + Fe-Spl* + V
AK02_04	Mix 8	0.4	985	925	0.5	118	Au	1	1	LS + LC + CPx + Ttn + Fe-Spl* + V
AK01_01	Mix 8	0.2	985	925	0.5	122	Au	-	-	LS + CPx + Al-Spl + Nph + Prv + Ap + Mll + V
AK01_02	Mix 8	0.2	985	925	0.5	122	Au	-	1	LS + Al-Spl + Nph + Prv + Ap + Mll + V
AK01_03	Mix 8	0.2	985	925	0.5	122	Au	1.3	-	LS + Cpx + Prv + Gnt + Mll + V
AK01_04	Mix 8	0.2	985	925	0.5	122	Au	2.7	1	LS + Cpx + Prv + Mll + V
T19_01	Mix 8	0.8	1000	850	-	120.5	$Au_{80}Pd_{20}$	-	-	LS + LC + CPx + Cc + Ttn + Fe-Spl + Nph + Afs + V
T19_02	Mix 8	0.8	1000	850	-	120.5	$Au_{80}Pd_{20}$	-	1	LC + CPx + Cc + Ttn + Fe-Spl + Ilm + Nph + Afs + V
T19_03	Mix 8	0.8	1000	850	-	120.5	$Au_{80}Pd_{20}$	3	-	LS + LC + CPx + Cc + Ttn + Fe-Spl + Ap + V
T19_04	Mix 8	0.8	1000	850	-	120.5	$Au_{80}Pd_{20}$	3	1	LS + LC + CPx + Cc + Ttn + Fe-Spl + Nph + V
AK05_01	Mix 8	0.4	1000	825	0.1	63	Au	-	-	LS + LC + CPx + Cc + Ttn + Fe-Spl + Nph + Ap + V
AK05_02	Mix 8	0.4	1000	825	0.1	63	Au	2	-	LS + LC + CPx + Cc + Ttn + Fe-Spl + Ap + V
AK05 03	Mix 8	0.4	1000	825	0.1	63	Au	4	-	LS + LC + CPx + Cc + Ttn + Fe-Spl + Ap + Gnt + V
AK05 04	Mix 8	0.4	1000	825	0.1	63	Au	2	1	LC + CPx + Cc + Ttn + Fe-Spl + Nph + Afs + V
AK05_05	Mix 8	0.4	1000	825	0.1	63	Au	10	-	LS + LC + CPx + Cc + Fe-Spl + Ap + Gnt + V
AK06_01	Mix 8	0.4	950	725	0.1	450	Au	5	-	LS + LC + CPx + Cc + Ttn + Fe-Spl + Ap + Gnt + Phl + V
AK06_02	Mix 9	0.4	950	725	0.1	450	Au	5	-	LS + LC + CPx + Cc + Ttn + Fe-Spl + Ap + Gnt + Phl + V
AK08_03	Mix 10	0.4	950	725	0.1	140.5	Au	5	-	LS + LC + CPx + Cc + Ttn + Fe-Spl + V

A relativement haute température (950 et 975 °C) les cristaux de grenat sont formés tout autour de cristaux d'oxydes (Fig.VI.1a). Aucun grenat n'a été observé en conditions de fO_2 réduites.

- calcite (Cc) : La calcite (CaCO₃) est présente dans les échantillons des trois systèmes (simple, réduit et hydraté). On peut trouver des cristaux en coexistence avec les liquides à partir de 925 °C, aussi bien à haute pression (1,5 GPa, échantillons T18 ; Fig.VI.1e et f) qu'à basse pression (0,4 GPa, de 725 à 825 °C ; Fig.VI.2). Tous les cristaux de calcite observés ont une forme globulaire et arrondie. Cette forme de globule a déjà été caractérisée dans la littérature, en coexistence avec des liquides carbonatés et silicatés (Brooker and Hamilton, 1990). Les cristaux peuvent être accolés à d'autres cristaux (Fig.VI.1e à h, Fig.VI.2), isolés (Fig.VI.1a, f et g) ou encore en contact net avec le liquide carbonaté (Fig.VI.1e ; Annexe B, Fig.B.1d et f).
- titanite (Ttn): Des cristaux de titanite (CaTiSiO₅) ont été observés à des températures < 925 °C et entre 0,4 et 0,8 GPa dans les trois systèmes, à l'exception du système hydraté où ils n'apparaissent qu'à des températures < 825 °C. Aucun cristal n'a été observé à basse et haute pression (respectivement 0,2 et 1,5 GPa; Tableau VI.1). Les cristaux sont automorphes, présentant parfois une section rhomboédrique bien marquée (Fig.VI.2a et g). Ils sont généralement de petite taille (< 20 µm); certains échantillons présentent des cristaux plus grand, jusqu'à 50µm (Fig.VI.1h; Fig.VI.2e).
- néphéline (Nph) : La néphéline (Na₃KAl₄Si₄O₁₆) est principalement présente en conditions de *fO*₂ réduites (avec du graphite), entre 850 et 950 °C. Des cristaux ont également été caractérisés dans trois échantillons du système simple (T19_01, AK05_01 et AK01_01; Tableau VI.1), mais aucun n'a été observé dans les échantillons hydratés. Les cristaux de néphéline sont très foncés (Fig.VI.1a et VI.1b, Fig.VI.2a), et présentent le plus souvent une section tétraédrique (Fig.VI.1b et g) ou hexagonale (Fig.VI.2a ; Annexe B, Fib.B.1b).
- spinelle (Spl) : Des spinelles ((Mg,Mn,Fe)(Fe,Cr,Al)O₄) ont été observés dans pratiquement tous les échantillons (Tableau VI.1). Des spinelles plus riches en Fe (notés Fe-Spl) ont été caractérisés dans les échantillons du système simple et hydraté. Dans le système à conditions de *fO*₂ réduites, les Fe-Spl sont remplacés par des alumino-spinelles (Al-Spl) à 925 °C à haute pression (1,5 GPa) et basse pression (0,2 et 0,4 GPa). Ces cristaux très clairs sont généralement de petite taille (Fig.VI.1a, e à g) et semi-automorphes (Fig.VI.1e et f).
- apatite (Ap): Des cristaux d'apatite (Ca₅(PO₄)₃(OH,Cl,F) ont été observés à basse pression (< 0,4 GPa) dans les échantillons du système simple, à des conditions P-T intermédiaires dans le système réduit (< 0.8 GPa et 925 °C) et à basse température dans les échantillons hydratés (< 850 °C). Ces cristaux sont en général rares, à l'exception des échantillons synthétisés à basse température (< 825 °C) où ils sont plus abondants. Les apatites sont semi-automorphes à xénomorphes, le plus souvent de taille très petite (< 10 μm) et présentent une texture très poreuse (Fig.VI.2c, e et f). Les cristaux des échantillons à basse pression et basse température sont plus grands (jusqu'à 20μm de largeur ; Fig.VI.2f).
- feldspaths alcalins (Afs) : Quelques cristaux de feldspaths alcalins ((Na,K)AlSi₃O₈) ont été identifiés dans certains échantillons ne contenant que le produit de départ ou contenant du graphite, à haute pression (> 0,8 GPa) et à 850 et 925 °C (Tableau VI.1). Ces cristaux sont en général en forme de baguettes (Fig.VI.1d) et assez foncés.
- pérovskite (Prv): De rares cristaux de pérovskite (CaTiO₃) ont été observés à basse pression et basse température (échantillons « AK01... », 925°C et 0,2 GPa). De très petits cristaux (< 10 μm) clairs ont également été observés dans un échantillon synthétisé à 925 °C et 0,4 GPa (échantillon AK02_02, avec du graphite), entourés d'alumino-spinelles et de néphéline.

Figure VI.1. Textures des minéraux observés dans les échantillons expérimentaux synthétisés à haute pression et haute température (850-975 °C et 0,8-1,5 GPa); LS : liquide silicaté; LC : liquide carbonaté; CPx : clinopyroxène; Gnt : grenat; Cc : calcite; Nph : néphéline; Ttn : titanite; Afs : feldspaths alcalins; Fe-Spl : ferro-spinelle; $Au_{80}Pd_{20}$: capsule en Or et en Pd.

Figure VI.2. Textures des minéraux observés dans les échantillons expérimentaux synthétisés à basse pression (0,2-0,4 GPa, et 725-925 °C); LS : liquide silicaté ; LC : liquide carbonaté ; CPx : clinopyroxène ; Gnt : grenat ; Cc : calcite ; Nph : néphéline ; Ttn : titanite ;Afs : feldspaths alcalins ; Fe-Spl : ferro-spinelle ; Al-Spl : alumino-spinelle ; Prv : pérovskite ; Ap : apatite ; Phl : phlogopite ;

autres minéraux : du phlogopite (Phl ; K(Mg,Fe)₃AlSi₃O₁₀) a été observé que dans les deux échantillons hydratés synthétisés à 725 °C et 0,4 GPa (Tableau VI.1). Ces cristaux sont plus abondants dans l'échantillon AK06_02 contenant le Mix 9 (Mix 8 + 5% poids de K₂CO₃ ; voir partie III.1.2). Les cristaux sont relativement de petite taille, avec une largeur < 25 µm et une longueur pouvant atteindre plus de 100 µm (Fig.VI.2g). De la mélilite (Mll ; (Ca,Na)₂(Mg,Fe,Al)(Al,Si)SiO₇) a également été observée dans les quatre échantillons synthétisés à 0,2 GPa et 925°C. De plus, de rares cristaux d'ilménite (Ilm ; FeTiO₃) ont été identifiés dans les échantillons réduits contenant du graphite, entièrement cristallisés et ne contenant pas de liquide silicaté (Tableau VI.1).

Tous les échantillons (sauf l'échantillon T16_04) présentent au moins une phase cristalline (Tableau VI.1). Ces cristaux sont en général contenus dans le verre silicaté et parfois dans le liquide carbonaté. Certains échantillons contenant du graphite ne présentent pas de verre silicaté et ne contiennent que du liquide carbonaté en coexistence avec des cristaux (Tableau VI.1 : T18_02, T19_02 et AK05_04).

De plus, dans la plupart des échantillons on peut observer la trace de bulles de vapeur (Fig.V.1.a et V.2.d dans le chapitre V ; Annexe B, Fig.B1b et d), indiquant la présence d'une phase fluide coexistant avec les deux liquides et les cristaux (notée « V » dans le Tableau VI.1).

Les diagrammes de phase P-T résumant les phases cristallines obtenues et décrites précédemment pour chaque type d'échantillon sont représentés (Fig.V.3): dans le système simple (Mix 8 uniquement ; Fig.VI.3a), dans le système réduit (+ graphite ; Fig.VI.3b) et dans le système plus hydraté (+ H₂O rajoutée dans les capsules ; Fig.VI.3c). Pour plus de simplicité, aucun diagramme de phase n'est présenté pour le système avec de l'eau et du graphite (échantillon ..._04) car il n'a pas été testé dans toutes les conditions P-T (voir Tableau VI.1) et les phases formées sont les mêmes que celles observées dans les autres systèmes. Ces diagrammes permettent d'observer les conditions P-T d'apparition des différents cristaux dans ces trois systèmes.

Figure VI.3. Diagrammes de phases pression-température pour le système simple (a), le système réduit avec ajout de graphite dans la capsule (b) et le système plus hydraté (c). Les points gris foncés correspondent aux expériences réalisées ; celles de Kjarsgaard (1998) sont également représentées dans la système simple (gris clair, a). Chaque ligne correspond à un minéral : le minéral est présent dans l'expérience pour tous les points situés en-dessous de cette ligne. Pour certains minéraux (mélilite, pérovskite et apatite) les lignes ont été ajustées par rapport aux phases caractérisées par Kjarsgaard (1998; points gris clairs). LS : liquide silicaté ; LC : liquide carbonaté ; CPx : clinopyroxène ; Gnt : grenat ; Cc : calcite ; Ttn : titanite ; Nph : néphéline ; Fe-Spl et Al-Spl : Fe- et Al-spinelle ; Afs : feldspaths alcalins ; Ap : apatite ; Prv ; perovskite ; Mll : mélilite ; Ilm : ilménite ; Phl : phlogopite.

VI.1.2. Minéraux coexistant avec des liquides enrichis en F, Cl et P.

Dans les expériences d'immiscibilité entre liquides de type néphélinite-phonolite et carbonatés plus ou moins enrichis en F, Cl ou P présentées dans le chapitre V, des minéraux ont également été synthétisés, en coexistence avec ces liquides. Les échantillons expérimentaux ont tous été synthétisés à une pression de 0,8 GPa, pour des températures de 850 ou de 1050 °C (voir Tableau VI.2). Pour les deux températures, 4 systèmes de composition différents ont été à chaque fois testés:

- sans éléments volatils rajoutés (échantillons « PCPC1_...»)
- avec du P, (échantillons « PCPC3_... »)
- avec du F, (échantillons « PCPC4_... »)
- avec du Cl (échantillons « PCPC5_... »)

A 850 °C, 4 échantillons ont été à chaque fois synthétisés avec la composition de départ seule (échantillons notés « ..._01 »), avec 3 et 6 % poids de H₂O rajouté (respectivement notés « ..._02 » et « ..._03 »), ainsi qu'avec 1% poids de graphite rajouté (échantillons notés « ..._04 » ; voir Tableau VI.2). 20 échantillons expérimentaux ont été synthétisés au total ; les textures des liquides coexistant avec ces minéraux sont présentées dans le chapitre V (partie V.1).

Les minéraux présents en coexistence avec les liquides sont à peu près les mêmes que ceux identifiés dans les expériences non dopées en F, Cl et P (partie VI.1.1) : clinopyroxène, grenat, néphéline, apatite, spinelle, calcite et feldspaths alcalins. En revanche, aucun cristal de titanite, mélilite, pérovskite ou phlogopite n'a été observé. Les Figures VI.4 et VI.5 présentent les différentes textures des minéraux observés dans tous les échantillons, à 0,8 GPa et 1050 °C - 850°C.

A 1050°C et 0,8 GPa, les liquides silicatés de types néphélinites et carbonatés coexistent seulement avec de la néphéline (PCPC2_01, Tableau VI.2). Les cristaux observés sont de très petite taille (< 10 μ m) et également de forme tétraédrique ou hexagonale (Fig. VI.4a). En présence de P (PCPC6_03, Tableau VI.2), de grands cristaux automorphe d'apatite (> 20 μ m) principalement situés dans le liquide carbonaté sont observés (Fig.IV.4b). Enfin dans les échantillons dopés en F et Cl (échantillons PCPC6_01 et PCPC6_02, Tableau VI.2), aucun minéral n'est observé et seuls les deux liquides coexistent à l'équilibre (voir Fig.V.2c et V.2d, partie V.1.1).

A 850 °C et 0,8 GPa, des cristaux ont été formés en coexistence avec les deux liquides dans les quatre systèmes. Des cristaux de **clinopyroxène** ont principalement été observés dans les échantillons non dopés en éléments volatils (PCPC1_01 et PCPC1_02; Fig.VI.4c et d) et ceux dopés en Cl (PCPC5_01/02/03; Tableau VI.2 et Fig.VI.5c et VI.5d). De même que les clinopyroxènes, de petits cristaux de **grenat** ont été observé dans les échantillons non dopés en éléments volatils (Fig.VI.4c et d) et ceux dopés en Cl (Fig.VI.5c). Ces cristaux sont généralement automorphes et de très petites tailles (< 15 µm).

L'**apatite** est très présente dans ces échantillons, et est observée sous la forme de cristaux automorphes également situés principalement dans les zones de liquide carbonaté des échantillons dopés en P (« PCPC3_... »; Fig.VI.4e) ainsi que ceux dopés en Cl (« PCPC5_... »; Fig.VI.5d). Aucun cristal d'apatite n'est observé dans les échantillons non dopés en volatils et ceux dopés en F.

Des cristaux de **fluorite** ont aussi été observés dans les échantillons dopés en F (« PCPC4_... » ; Tableau VI.2). Ces cristaux sont globalement xénomorphes de très petites tailles (< 5-7 μ m), et sont souvent associés à des petits cristaux de **calcite** (< 5-7 μ m) également xénomorphes, et situés dans des zones de liquides carbonatés (Fig.VI.5a). Enfin, des cristaux de spinelle riche en Fe ont été observés dans ces échantillons (Fe-Spl, Fig.VI.4a) ; l'un des échantillons dopé en F présente également des spinelles riches en Fe et en Cr (« Fe/Cr-spl », PCPC4_01; Tableau VI.2).

Expériences	Produit	+ Element volatil	Р	T surfusion	Т	Durée	Capsule	$+ H_2O$	+ G	Dhogog ohgowyóng
	de		(Gpa)	(°C)	(°C)	(h)		(% poids)	(% poids)	rilases observees
PCPC1_01	PhCbn1	-	0,8	975	850	50	Au	-	-	LS + LC + CPx + Nph + Gnt + Al-Spl + Fe-Spl + V (+LC2)
PCPC1_02	PhCbn1	-	0,8	975	850	50	Au	3	-	LS + LC + CPx + Nph + Gnt + Fe-Spl + V (+LC2)
PCPC1_03	PhCbn1	-	0,8	975	850	50	Au	6	-	LS + LC + Fe-Spl + V (+LC2)
PCPC1_04	PhCbn1	-	0,8	975	850	50	Au	-	1	LC + Cpx + Nph + Gnt + Afs
PCPC2_01	PhCbn1	-	0,8	-	1050	28	$Au_{80}Pd_{20}$	-	-	LS + LC + Nph
PCPC3_01	PhCbn2	Р	0,8	975	850	67,5	Au	-	-	LS + LC + Nph + Ap + Al-Spl + Fe-Spl (+ LC2)
PCPC3_02	PhCbn2	Р	0,8	975	850	67,5	Au	3	-	LS + LC + Ap + Al-Spl + Fe-Spl (+ LC2)
PCPC3_03	PhCbn2	Р	0,8	975	850	67,5	Au	6	-	LS + LC + Ap + Fe-Spl (+ LC2)
PCPC3_04	PhCbn2	Р	0,8	975	850	67,5	Au	-	1	LC + Cpx + Nph + Gnt + Ap + Fe-Spl + Afs
PCPC4_01	PhCbn3	F	0,8	975	850	88,5	Au	-	-	LS + LC + Fl + Cc + Fe-Spl + Fe/Cr-Spl (+ LC2)
PCPC4_02	PhCbn3	F	0,8	975	850	88,5	Au	3	-	LS + LC + Fl + Cc + Fe-Spl (+ LC2)
PCPC4_03	PhCbn3	F	0,8	975	850	88,5	Au	6	-	LS + LC + Fl + Cc + Fe-Spl (+ LC2)
PCPC4_04	PhCbn3	F	0,8	975	850	88,5	Au	-	1	LC + Fl + Cpx + Nph + Gnt + Fl + Al-Spl + Fe-Spl + Afs + Fst
PCPC5_01	PhCbn4	Cl	0,8	975	850	88,5	Au	-	-	LS + LC + CPx + Nph + Gnt + Ap + Cc + Fe-Spl + V (+LC2)
PCPC5_02	PhCbn4	Cl	0,8	975	850	88,5	Au	3	-	LS + LC + CPx + Gnt + Ap + Cc + V (+LC2)
PCPC5_03	PhCbn4	Cl	0,8	975	850	88,5	Au	6	-	LS + LC + CPx + Gnt + Ap + V (+LC2)
PCPC5_04	PhCbn4	Cl	0,8	975	850	88,5	Au	-	1	LC + Cpx + Nph + Gnt + Ap + Cc + Afs + Fst
PCPC6_01	PhCbn3	F	0,8	-	1050	23,5	$Au_{80}Pd_{20}$	-	-	LS + LC
PCPC6_02	PhCbn4	Cl	0,8	-	1050	23,5	$Au_{80}Pd_{20}$	-	-	LS + LC
PCPC6_03	PhCbn2	Р	0,8	-	1050	23,5	$Au_{80}Pd_{20} \\$	-	-	LS + LC + Ap

Tableau VI.2. Conditions expérimentales des expériences d'immiscibilité entre liquides silicatés de type néphélinite-phonolite et liquides carbonatés, enrichis en F-Cl-P. P: pression totale; T: température; LS: liquides silicaté; LC: liquide carbonaté; CPx: clinopyroxène Fe-Spl: ferro-spinelle (solution solide magnétite-titanomagnétite); Al-Spl: alumino-spinelle; Nph: néphéline; Afs: feldspath alcalins; Ap: apatite; Gnt: grenat; V: phase vapeur;

Figure VI.4. Textures des minéraux observés dans les échantillons expérimentaux non dopés en éléments volatils et ceux dopés en P (en marron), à 0,8 GPa et $1050^{\circ}C - 850^{\circ}C$. LS : liquide silicaté ; LC : liquide carbonaté ; CPx : clinopyroxène ; Gnt : grenat ; Nph : néphéline ; Afs : feldspaths alcalins ; Fe-Spl : ferro-spinelle ; Al-Spl : alumino-spinelle; Ap : apatite ; Au-Pd : capsule en Or et Pd.

En présence de graphite dans la capsule (échantillons notés « ..._04), tous les échantillons sont entièrement cristallisés et aucun liquide silicaté n'a été observé dans les quatre systèmes (Fig.VI.5b et Tableau VI.2). Ces échantillons ne contiennent que des cristaux et du liquide carbonaté (comme certains échantillons présentés dans la partie VI.1.1).

Aucun diagramme de phase n'est présenté pour ces expériences, étant donné qu'elles ont été réalisées à pression constante (0,8 GPa) et qu'à seulement deux températures différentes (1050 et 850 °C).

Figure VI.5. Textures des minéraux observés dans les échantillons expérimentaux dopés en F (noir) et ceux dopés en Cl (gris), à 0,8 GPa et 850 °C. LS : liquide silicaté ; LC : liquide carbonaté ; CPx : clinopyroxène ; Gnt : grenat ; Nph : néphéline ; Afs : feldspaths alcalins ; Fe-Spl : ferro-spinelle ; Fe/Cr-Spl : ferro-spinelle riche en Cr ; Al-Spl : alumino-spinelle; Ap : apatite ; Fl : fluorite ; Cc : calcite ; Au-Pd : capsule en Or et Pd.

VI.2. Composition chimique des minéraux

Les minéraux des échantillons expérimentaux présentés précédemment (> 50 échantillons au total) ont été analysés, d'une part pour caractériser les concentrations en éléments majeurs, et d'autre part afin de caractériser les concentrations en éléments traces. Dans cette section sont principalement présentées les compositions en éléments majeurs et en éléments traces des clinopyroxènes et des grenats, ainsi que de la titanite, calcite et apatite. La composition des autres minéraux est également abordée (néphéline, oxyde, feldspaths alcalins, mélilite, phlogopite) mais n'est pas détaillée car ces minéraux accessoires ne concentrent pas les métaux rares et jouent un rôle secondaire dans leur enrichissement au cours de la différenciation des magmas alcalins. Afin d'alléger le contenu de ce chapitre, les tableaux des concentrations en éléments majeurs et traces de tous les minéraux sont présentés dans les Annexes.

VI.2.1. Composition des clinopyroxènes

Comme nous l'avons vu précédemment, les clinopyroxènes sont les minéraux majoritairement présents dans toutes les charges expérimentales (Tableau VI.1 et VI.2). Les concentrations en éléments majeurs et en éléments traces de 36 échantillons sont présentées dans le Tableau C.1 de l'Annexe C.1.

Les clinopyroxènes observés dans cette étude présentent tous des concentrations en SiO₂ variant entre 39,03 ± 1,85 et 51,46 ± 0,37 % poids (Tableau C.1). Ces minéraux sont globalement riches en CaO, avec des concentrations variant entre 13,33 ± 0,61 et 23,26 ± 0,13 % poids, mais présentent aussi des concentrations relativement importantes en FeO (9,67 ± 0,81 à 18,38 ± 0,54 % poids), en MgO (de 4,01 ± 0,19 à 10,77 ± 0,51 % poids), ainsi qu'en Al₂O₃ (de 1.79 ± 0,16 à 8,55 ± 0,70; Tableau C.1 de 187

l'Annexe C.1). De plus les concentrations en Na₂O évoluent dans les échantillons, de 0,64 \pm 0,03 à 6,11 \pm 0,39 % poids.

Certains cristaux sont zonés (Fig.VI.1a). Les cœurs de ces cristaux généralement plus foncés ont été analysés (Tableau C.2, Annexe C.1.1): pour un même cristal, ils sont généralement pauvres en FeO (< 2,15 % poids) et plus riches en MgO (> 17 % poids) et en CaO (> 24 % poids) que la périphérie. Ces compositions plus mafiques indiquent que ces zones situées le plus souvent au centre des cristaux sont probablement héritées de la surfusion à plus haute température effectuée dans toutes les expériences (voir la partie III.2 ; Tableau VI.1 et VI.2). Les analyses de la périphérie des cristaux ont été comparées aux analyses des cristaux des mêmes échantillons ne présentant pas de telles zonations, et n'indiquent aucune différence de composition. La composition de la périphérie de ces cristaux zonés est cohérente avec la composition des autres cristaux d'un même échantillon, et a ainsi été utilisée dans le calcul des moyennes présentées dans le Tableau C.1 (Annexe C.1.1). Les concentrations homogènes ainsi que les valeurs d'écart-type relativement faibles indiquent ainsi que ces analyses sont représentatives de la composition de clinopyroxène à l'équilibre avec le liquide silicaté dans chaque échantillon.

Les formules structurales de tous les cristaux (± hydratés, ± graphite, ± F et Cl) ont été calculées et sont présentées dans le Tableau C.3 de l'Annexe C.1.2 (détails du calcul dans l'Annexe C.1.2). A partir de ces formules structurales, les pôles de composition des clinopyroxènes ont été calculés dans la solution solide wollastonite-ferrosilite-enstatite et sont présentés dans la Figure VI.6, dans des diagrammes ternaires wollastonite-ferrosilite-enstatite. Les clinopyroxènes des expériences réalisées ont principalement une composition de type diopside (pôle Ca-Mg), pouvant varier vers le pôle hédenbergite (pôle Ca-Fe ; Fig. VI.6). A pression constante, les minéraux formés à plus basse température (croix vertes à 850 °C-0,8 GPa, Fig.VI.6a ; triangle vide bleu foncé à 725 °C- 0,4 GPa, Fig.VI.6b) indiquent également une évolution de la composition dans le champ des augites. Enfin, à température constante (925 °C, Fig.VI.6c), la composition des cristaux évoluent avec l'augmentation de la pression : on observe une évolution de la composition du pôle diopside au pôle hédenbergite, de 0,2 (carré) à 1,5 GPa (losange).

Les pôles de composition ont également été calculés à partir des formules structurales dans la solution solide aégirine-hédenbergite-diopside (Tableau C.3, Annexe C.1.2) afin de représenter le pôle sodique (Na-Fe) des clinopyroxènes (aégirine). Ces pôles sont représentés dans les diagrammes ternaires de la Figure VI.7. A pression constante (0,8 et 0,4 GPa) et à température décroissante, les minéraux évoluent vers le pôle aégirine (Fig.VI.7a et 7b), et principalement à 725 °C (triangles bleus, Fig.VI.7b). De même, les cristaux évoluent vers le pôle sodique à température constante (925 °C) avec augmentation de la pression (Fig.VI.7c). Ainsi dans toutes les expériences les clinopyroxènes ont une composition majoritairement de type diopside-aegirine-hédenbergite (Di $_{29,67-48,34}$ – Ae $_{11,84-43,66}$ – He $_{38,47-42,57}$) et évoluant donc d'un pôle calcique (Ca-Mg, diopside) à un pôle plus alcalin (Na-Fe, aégirine).

En ce qui concerne les concentrations en REE des clinopyroxènes analysés, elles sont relativement faibles, variant de 0.91 ± 0.40 à 37.89 ± 0.31 ppm pour le La représentatif des LREE et de 10.29 ± 3.60 à 50.23 ± 4.47 ppm pour le Lu représentatif des HREE (Tableau C.1). Pour les HFSE (Hf, Zr, Nb et Ta), seul le Nb est contenu dans toutes les compositions de départ, et donc dans tous les échantillons ; les autres éléments (Hf, Zr et Ta) ne sont présents quand dans les produits de départ de type « PhCbn... », c'est-à-dire dans les échantillons notés « PCPC_... » (5 échantillons, Tableau C.1). Les concentrations en Nb varient sur une gamme plus importante que les REE, entre 1.54 ± 1.09 et 250,84 \pm 40,70 ppm (Tableau C.1). Les concentrations en Hf et Ta sont assez faibles, variant respectivement de 28,63 \pm 6,68 à 59,42 \pm 11,88 ppm pour le Hf, et de 15.03 ± 2.10 à 29,74 \pm 7,45 ppm

pour le Ta (Tableau C.1). Enfin le Zr et le Sc présentent des concentrations relativement importantes, variant de $632,53 \pm 45,19$ à $929,05 \pm 130,07$ ppm pour le Zr et de $445,57 \pm 15,96$ à $788,08 \pm 373,05$ ppm pour le Sc (Tableau C.1).

Figure VI.6. Diagrammes ternaires wollastonite (Wo)-hédenbergite (He)-enstatite (En) des clinopyroxènes (d'après la nomenclature de Morimoto, 1988). Les diagrammes ternaires présentent les proportions molaires de chaque pôle des clinopyroxènes à 0,8 GPa et température variable (a), 0,4 GPa et température variable(b) et à 925 °C et pression variable (c). Tous les échantillons sont représentés, y compris ceux enrichis dopés en H₂O et en graphite, ou ceux enrichis en F (en noir) et en Cl (gris).

Figure VI.7. Diagrammes ternaires aégirine (Ae)– hédenbergite (He) – diopside (Di) des clinopyroxènes (d'après la nomenclature de Morimoto, 1988). Les diagrammes ternaires présentent les proportions molaires de chaque pôle des clinopyroxènes à 0,8 GPa et température variable (a), 0,4 GPa et température variable(b) et à 925 °C et pression variable (c). Tous les échantillons sont représentés, y compris ceux enrichis dopés en H₂O et en graphite, ou ceux enrichis en F (en noir) et en Cl (gris).

VI.2.2. Composition des grenats

La composition des grenats identifiés dans 13 échantillons (Tableaux VI.1 et VI.2) est présentée dans le Tableau C.4 (Annexe C.2.1). Les concentrations en éléments traces sont également présentées, à l'exception de certains échantillons non analysés du fait de cristaux de trop petite taille (Fig.VI.2a) rendant l'analyse par ablation laser difficile (T14 0, T14 02 et AK05 03 ; Tableau C.3).

Les grenats observés dans les charges expérimentales présentent des concentrations en SiO₂ variant entre $26,26 \pm 0,40$ et $34,32 \pm 0,30$ % poids (Tableau C.4, Annexe, C.2.1) et sont relativement pauvres en Al₂O₃ (de $1,12 \pm 0,72$ à $4,85 \pm 0,32$ % poids). Ces cristaux sont en général riches en FeO avec des concentrations variant de $16,93 \pm 0,84$ à $23,29 \pm 2,09$ % poids ainsi qu'en CaO, entre $29,06 \pm 0,22$ et $33,46 \pm 0,55$ % poids. Les grenats formés à partir des compositions de départ Mix8 et Mix9 (voir Tableau VI.1) contiennent également des concentrations relativement élevées de TiO₂ variant de 7,95 $\pm 1,38$ à $17,86 \pm 0$,45 % poids (Tableau C.3, Annexe C.2.1).

Les formules structurales de ces minéraux ont été calculées et sont présentées dans le Tableau C.5 de l'Annexe C.2.2. Les différents pôles de composition des grenats ont ainsi pu être calculés : almandin (Fe₃Al₂Si₃O₁₂), andradite (Ca₃Fe₂Si₃O₁₂), grossulaire (Ca₃Al₂Si₃O₁₂), pyrope (Mg₃Al₂Si₃O₁₂), spessartine (Mn₃Al₂Si₃O₁₂), et uvarovite (Ca₃Cr₂Si₃O₁₂). Ces pôles de composition sont représentés dans le diagramme ternaire de la Figure VI.8, dans l'espace pyrope + spessartine (Mg/Mn-Al) – grossulaire (Ca-Al) – andradite (Ca-Fe). Les grenats des expériences réalisées ont globalement une composition de type andradite (de 72,34 ± 2,58 à 92,35 ± 4,69, Tableau C.5), avec toutefois une légère évolution vers le pôle grossulaire pour certains échantillons (ronds oranges, croix grises et vertes ; Fig.VI.8) de 1,17 ± 1,63 à 21,00 ± 1,21. Cette évolution vers le pôle grossulaire indique une légère augmentation des concentrations en Al₂O₃ pour ces échantillons (T17_01, PCPC1_01, PCPC5_01/02/03 ; Tableau VI.2 et Tableau C.4 de l'Annexe C.2.1). Les grenats relativement riches en TiO₂ ont des composition similaires à ceux caractérisés par Kjarsgaard (1998), qui les décris comme étant des mélanites, une variété d'andradite riche en Ti.

Figure VI.8. Diagramme ternaire pyrope + spessartine – grossulaire – andradite des grenats. 192

En ce qui concerne les concentrations en métaux rares, les grenats sont relativement pauvres en LREE (de 14,19 \pm 1,04 à 44,09 \pm 13,51 ppm, pour le La ; Tableau C.3) et riches en HREE, avec des concentrations variant de 420,81 \pm 72,32 à 948,49 \pm 176,35 ppm pour l'Yb (Tableau C.4). De même, les concentrations en Nb et Zr sont relativement importantes, variant respectivement de 186,99 \pm 22,63 à 2572,76 \pm 533,31 ppm pour le Nb de tous les échantillons (Tableau C.4), et de 1517,83 \pm 324,48 à 2219,64 \pm 318,79 ppm de Zr pour les 5 échantillons en contenant (Tableau C.4).

VI.2.3. Autres minéraux

Les autres minéraux coexistant avec les deux liquides silicatés et carbonatés, les clinopyroxènes et les grenats dans les échantillons ont également été analysés : calcite, titanite, apatite, néphéline, feldspath alcalin, oxyde, mélilite et phlogopite. Pour la plupart de ces minéraux, à l'exception des oxydes, les compositions en éléments majeurs ne varient que très légèrement en fonction des différentes conditions P-T.

La composition en éléments majeurs et traces de la **calcite** observée dans 26 échantillons (Tableau VI.1 VI.2) est présentée dans le Tableau C.6 (Annexe C.3). Ces cristaux de calcite présentent de 48,25 \pm 1,91 à 57,25 \pm 1,03 % poids de CaO dans tous les échantillons. Les éléments traces n'ont pas été analysés pour les cristaux de calcite des échantillons notés « PCPCP_... » (\pm enrichis en F, Cl ou P, Tableau VI.2) car ces cristaux sont de très petite taille. Dans les autres échantillons, les cristaux analysés présentent des concentrations en Sr et en Ba de l'ordre du % poids, jusqu'à 3,76 % poids de SrO et 1,57 % poids de BaO (Tableau C.6). Pour les métaux rares, le Nb est en très faibles concentrations (< 0,4 ppm). En revanche les cristaux de calcite sont riches en REE et principalement en LREE, avec des concentrations en La variant de 98,23 \pm 19,08 à 465,45 \pm 19,29 ppm et des concentrations en Lu plus faibles variant de 4,78 \pm 1,27 à 196,57 \pm 25,38 ppm (Tableau C.6).

En ce qui concerne la **titanite**, des cristaux ont été analysés dans 14 échantillons et leurs compositions sont présentées dans le Tableau C.7 (Annexe C.4). Ces cristaux sont caractérisés par des concentrations de $28,92 \pm 0,46$ à $30,15 \pm 1,04$ % poids de SiO₂, $32,24 \pm 0,76$ à $36,77 \pm 0,40$ % poids de TiO₂ et $26,50 \pm 0,90$ à $28,16 \pm 0,27$ % poids de CaO (Tableau C.6). La titanite est en général riche en Nb, avec des concentrations de l'ordre du % poids ($0,44 \pm 0,15$ à $2,01 \pm 0,33$ % poids de Nb₂O₅, Tableau C.7). De plus, les cristaux présentent des concentrations élevées en REE (> 100 ppm) et principalement en MREE, avec des concentrations en Gd (représentatif des autres MREE) variant de $310,29 \pm 22,78$ à $1063,75 \pm 80,28$ ppm (Tableau C.7).

L'apatite est présente dans 15 échantillons dont les compositions sont disponibles dans le Tableau C.8 de l'Annexe C.5. Les cristaux de trois échantillons n'ont pas pu être analysés (AK01_01, T17_01 et T19_03 ; Tableau VI.1). Les cristaux analysés sont de type fluoro-apatite, avec des concentrations en F variant de $2,23 \pm 0,16$ à $3,27 \pm 0,10$ % poids. Ces cristaux pouvant être de très petites tailles ou de texture très poreuse (Fig.VI.2e et f ; Fig. VI.4e), certain échantillon ne présente qu'une seule analyse valable (Tableau C.8). Les cristaux sont en général pauvres en HFSE (Hf, Zr, Ta et Nb) avec des concentrations < 35 ppm de Nb, < 1 ppm pour le Ta et le Hf, et < 13 ppm pour le Zr. Cependant, ils présentent des concentrations importantes en LREE, variant de 165,54 à 3428,42 ppm de La (Tableau C.8).

Cinq échantillons contiennent de la **pérovskite**, dont quatre ne présentant pas de liquides carbonatés (925 °C et 0,2 GPa ; Tableau VI.1). Leur composition est présentée dans le Tableau C.9 de l'Annexe C.6. De même que pour l'apatite, seulement une analyse a pu être réalisée pour deux échantillons à cause de la très petite taille des cristaux de pérovskite (Fig.VI. 3a). Ces cristaux sont riches en Nb $(0,91 \pm 0,20 \text{ à } 1,81 \pm 1,50 \%$ poids de Nb₂O₅, Tableau C.9) ainsi qu'en REE, et principalement en

LREE. Les concentrations en La varient de 1442 à 2735 ppm, et les concentrations en Lu varient de 90 à 140 ppm.

Les compositions des autres minéraux observés dans ces échantillons sont également présentées en Annexe, tels que les feldspaths alcalins (Tableau C.10 dans l'Annexe C.7.1), la néphéline (Tableau C.11, Annexe C.7.2), les oxydes (Tableau C.12, Annexe C.7.3), la mélilite (Tableau C.13, Annexe C.7.4) et la phlogopite (Tableau C.14, Annexe C.7.5). Presque tous les échantillons contiennent des oxydes. Ce sont principalement des spinelles, variant d'un pôle très riche en Fe de la solution solide magnétite/titano-magnétite (FeO > 75 % poids ; notés « Fe-Spl ») et également un pôle plus riche en Al (Al₂O₃ > 20 % poids ; noté « Al-Spl »). Certains cristaux présentent également des concentrations en TiO₂ > 20 % poids (ulvöspinelle noté « Usp », Tableau C.11), ou alors en Cr₂O₃ (notés « Fe/Cr-spl »). Enfin, de l'ilménite a été identifiée dans deux échantillons contenant du graphite (voir Tableau VI.1 et Tableau C.12 dans l'Annexe C.7.3).Les cristaux de fluorite n'ont pas pu être analysés à cause de leur très petite taille (Fig.VI.5a).

Un calcul de bilan de masse a été réalisé pour tous les échantillons afin d'évaluer les proportions de chaque phase minérale en fonction des différentes conditions P-T. Le détail du calcul ainsi que les résultats sont présentés dans l'Annexe C.8 et dans le Tableau C.15. La phase cristalline la plus abondante dans tous les échantillons est le clinopyroxène, avec des proportions pouvant atteindre 30% (sans compter les échantillons entièrement cristallisés ; voir Tableau C.15). Le grenat et la calcite ont des proportions également importantes. Certains minéraux sont calculés comme étant en très petite proportions ou en trace, comme la titanite dans certains échantillons, l'apatite dans les échantillons non dopés en P, ou encore les oxydes. Dans les échantillons dopés en P (voir Tableau VI.2), l'apatite constitue la troisième phase la plus abondante (après les liquides silicatés et carbonatés), avec des proportions entre 8 et 11% (Tableau C.15, échantillons PCPC3 et PCPC6_03).

Pour chaque phase minérale pouvant contenir des concentrations relativement importante en métaux rares (clinopyroxènes, grenats, calcite, titanite, apatite, pérovskite), les coefficients de partage avec le liquide silicaté ou le liquide carbonaté ont été calculés afin d'évaluer les conditions optimales d'enrichissement en ces métaux par rapport aux liquides silicatés et carbonatés.

VI.3. Partage des métaux rares entre cristaux et liquides

Les coefficients de partage cristal/liquide ont été calculés à partir des concentrations en métaux rares (Hf, Zr, Ta, Nb et REE) des différents minéraux décrits précédemment, selon l'équation (5) (partie III.4 ; les erreurs associées sont calculées à partir de l'équation (6)). Seuls les coefficients de partage du clinopyroxène, grenat, apatite, titanite, calcite et pérovskite sont présentés, ces phases pouvant concentrer les métaux rares au cours de la différenciation des magmas. Les coefficients de partage sont présentés tout d'abord entre ces minéraux et le liquide silicaté, puis entre ces minéraux et le liquide carbonaté. Pour plus de clarté, les tableaux de ces coefficients calculés entre minéraux et liquides silicatés sont intégrés dans le corps du texte, car ces partages constituent le cœur de ce chapitre. Ceux calculés entre minéraux et liquides carbonatés sont présenté dans l'Annexe D.

VI.3.1. Métaux rares entre minéraux et liquide silicaté

Le partage des métaux rares entre minéraux et liquide silicaté caractérisés dans cette étude est présenté successivement pour le clinopyroxène, grenat, apatite, titanite, calcite et pérovskite, pour tous les échantillons (\pm hydratés, \pm graphite, \pm F, Cl ou P; voir Tableaux VI.1 et VI.2).

VI.3.1.1. Clinopyroxène

Les coefficients de partage des éléments traces entre clinopyroxènes et liquides silicatés ($D^{CPx/LS}$) sont contenus dans le Tableau VI.3. La Figure VI.9 présente les coefficients de partage des HFSE (Hf, Zr, Ta et Nb) et des REE pour tous les échantillons. Pour le Nb, ils évoluent sur deux ordres de grandeur (Fig.VI.9), variant de 0,014 ± 0,007 à 1,288 ± 0,134 (Tableau VI.3). Cet élément est incompatible dans les clinopyroxènes pour la majorité des échantillons ($D_{Nb}^{CPx/LS} < 1$), à l'exception de trois échantillons dont la valeur est > 1 (croix grises, Fig.VI.9b). A pression constante (0,4 ou 0,8 GPa ; Fig.VI.9a et VI.9b), ces coefficients augmentent à température décroissante (de 725 à 925 °C à 0,4 GPa, et de 975 à 850 °C à 0,8 GPa ; Fig.VI.9a et VI.9b). Pour les autres HFSE (Hf, Zr et Ta), seuls 5 échantillons synthétisés à 850 °C et 0,8 GPa contiennent ces éléments (échantillons PCPC1_01/02 et PCPC5_01/02/03 ; Tableau VI.2 et Tableau VI.3). Pour ces échantillons, ces éléments sont compatibles dans les clinopyroxènes ($D_{HcZr}^{CPx/LS} > 1$), avec des valeurs variant de 1,27 ± 0,99 à 5,04 ± 0,14 pour le Hf, de 1,23 ± 0,27 à 3,23 ± 0,19 pour le Zr et de 0,96 ± 0,30 à 3,36 ± 0,84 pour le Ta.

Le partage des REE qui sont présents dans tous échantillons, varie sur deux ordres de grandeur de 0,06 \pm 0,01 à 3,07 \pm 0,68 pour le La représentatif des autres LREE, et de 0,39 \pm à 17,73 \pm 3,37 pour le Lu représentatif des HREE. Les REE peuvent ainsi avoir un comportement incompatible ($D_{REE}^{CP_X/LS} < 1$) et compatible ($D_{REE}^{CP_X/LS} > 1$) dans les clinopyroxènes par rapport au liquide silicaté. Les HREE présentent des coefficients de partage plus élevés que les LREE (Fig.VI.9), ce qui indique un enrichissement préférentiel des HREE dans les clinopyroxènes. On peut également remarquer que les coefficients de partage de l'Yb et du Lu sont plus élevés que les autres HREE, changeant ainsi la pente de la courbe (Fig.VI.9). Cette tendance indiquant un enrichissement plus important en Yb et Lu des clinopyroxènes a également été observé dans la littérature (voir Fig.II.13a, partie II.3.1(Olin and Wolff, 2010; Baudouin and France, 2019; Beard *et al.*, 2019).

De même que pour le Nb, on peut observer une augmentation des coefficients de partage de toutes les REE à pression constante (0,4 ou 0,8GPa, Fig.VI.9a et VI.9b) et à température décroissante, accompagnée du changement de comportement des REE (d'incompatible à compatible). En effet, on peut remarquer à 0,8 GPa que les REE ont un comportement incompatible ($D_{REE}^{CP_XLS} < 1$) à 975 et 950 °C (en rouge, Fig. VI.9b), puis deviennent compatibles dans le clinopyroxène ($D_{REE}^{CP_XLS} > 1$) à 925 °C et 850 °C (respectivement en orange et vert, Fig.VI.9b). Cet effet de température est cependant moins évident à 0,4 GPa. Les REE sont toutes incompatibles à 925 °C (orange, Fig.VI.9a) et deviennent compatibles à 825 °C (en bleu clair); en revanche seules les MREE sont compatibles à 725 °C pour un seul échantillon (AK06_01, bleu foncé ; Fig.VI.9a). Un ou plusieurs autres paramètres doivent ainsi influencer cet effet.

On observe également qu'à 850 °C, les coefficients de partage des REE sont plus élevés dans les échantillons dopés en Cl (croix grises, Fig.VI.9b) en comparaison à ceux non dopés en volatils (croix vertes, Fig. VI.9b). Enfin, à 925 °C (Fig.VI.9c), on peut observer une augmentation de ces coefficients de partage avec l'augmentation de la pression, de 0,2 à 1,5 GPa. Les échantillons à 0,8 et 1,5 GPa (respectivement rond et losange oranges, échantillons T17_01 et T18_01; Fig.VI.9c) présentent les coefficients de partage les plus élevés. Les MREE et les HREE deviennent compatibles à 925 °C et à haute pression.

Hf Zr Ta Nb La Ce Pr Nd Sm Eu Gd Tb Dy Y Ho Er Tm Yb Lu

AK02_02

AK02_03

• 1,5 GPa

0 0,8 GPa

0,4 GPa 0,2 GPa

Δ

0,01

0,001

925 °C

	T14_01		T14_02		T16_01		T16_02		T17_01		T17_02		T17_04	
P (Gpa)	0,8		0,8		0,8		0,8		0,8		0,8		0,8	
T (°C)	975		975		950		950		925		925		925	
Composition	Mix8	σ	Mix8	σ	Mix8	σ	Mix8	σ	Mix8	σ	Mix8	σ	Mix8	σ
Sc T:	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	1,17	0,14	1,05	0,29	1,50	0,51	2,33	0,28	2,38	0,08	4,55	0,38	1,07	0,50
Cr Mn	-	- 0.21	-	-	40,52	25,55	-	-	-	- 0.24	-	- 0.25	-	-
NIII Sn	0.21	0,51	0.20	0,50	0,00	0,04	0,84	0,09	1,90	0,34	0.52	0,23	0,8	0,00
51 7r	0,21	0,02	0,29	0,05	0,10	0,01	0,19	0,01	0,35	-	0,52	0,07	0,15	0,01
Nh	0.01	0.01	0.02	0	0.06	0.05	0.2	0.04	0.13	0.12	0.33	0.07	0.03	0.01
Ba	-	-	0,02	0	0,00	0,05	0,2	0,04	0,15	0,12	0,55	0,07	0,05	0,01
La	0.09	0.02	013	0.05	013	0.06	0 19	0.04	0.28	0 11	071	0.26	0.08	0.01
Ce	0.1	0.03	0.15	0.07	0.2	0.08	0.27	0.05	0.4	0.15	0.91	0.28	0.13	0.02
Pr	0.24	0.05	0.28	0.11	0.28	0.11	0.36	0.06	0.55	0.2	1.17	0.31	0.2	0.03
Nd	0.27	0.04	0.29	0.08	0.35	0.14	0.44	0.07	0.66	0.22	1.44	0.34	0.26	0.04
Sm	0.4	0.15	0.4	0.14	0.45	0.16	0.53	0.08	0.81	0.3	1.57	0.31	0.35	0.05
Eu	0.44	0.06	0.39	0.21	0.47	0.14	0.51	0.07	0.84	0.3	1.52	0.29	0.37	0.05
Gd	-	-	-	-	-	-	-	-	-	-	-,	-	-	-
Tb	0.49	0.07	0.37	0.04	0.45	0.12	0.51	0.07	0.89	0.37	1.29	0.21	0.37	0.05
Dv	0,48	0,09	0,41	0,12	0,42	0,11	0,48	0,07	0,82	0,37	1,13	0,19	0,35	0,04
Ŷ	0,41	0,05	0,32	0,1	0,35	0,09	0,42	0,06	0,69	0,28	0.9	0,14	0,28	0,03
Но	0,47	0,08	0,35	0,09	0,4	0,1	0,46	0,06	0,84	0,38	1,02	0,16	0,32	0,04
Er	0,47	0,1	0,33	0,11	0,38	0,09	0,44	0,06	0,8	0,37	0,92	0,14	0,31	0,03
Yb	0,71	0,16	0,71	0,26	0,42	0,08	0,55	0,04	0,94	0,37	0,96	0,14	0,35	0,03
Lu	0,95	0,1	1	0,35	0,53	0,09	0,7	0,04	1,15	0,4	1,18	0,18	0,44	0,03
Hf	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Та	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	T18_01		T18_03		T18_04		AK01_01		AK01_03		AK01_04		AK02_01	
P (Gpa)	1,5		1,5		1,5		0,2		0,2		0,2		0,4	
T (°C)	925		925		925		925		925		925		925	
Composition	Mix8	σ	Mix8	σ	Mix8	σ	Mix8	σ	Mix8	σ	Mix8	σ	Mix8	σ
Sc	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ti	5,4	0,67	1,76	0,31	2,19	0,37	2.97	A 01	1 20	11 112	1 96			11 6 7
Cr	-						_,> ,	0,81	1,38	0,06	1,80	-	2,72	0,62
Mn		-	-	-	-	-	130,32	40,92	-	-	-	-	2,72	-
C	4,25	- 0,95	- 1,68	- 0,07	- 1,79	- 0,24	130,32 0,78	0,81 40,92 0,13	- 0,87	0,06 - 0,03	0,73	- -	2,72	- 0,11
Sr	4,25 0,49	- 0,95 0,1	- 1,68 0,21	- 0,07 0,01	- 1,79 0,27	- 0,24 0,01	130,32 0,78 0,15	0,81 40,92 0,13 0,03	- 0,87 0,15	- 0,03 0	- 0,73 0,13	- - -	2,72 - 1,21 0,2	0,02 - 0,11 0,01
Sr Zr	4,25 0,49 -	- 0,95 0,1 -	- 1,68 0,21 -	- 0,07 0,01 -	- 1,79 0,27 -	- 0,24 0,01	130,32 0,78 0,15	0,81 40,92 0,13 0,03	- 0,87 0,15 -	0,06 - 0,03 0 -	- 0,73 0,13 -	- - -	2,72 1,21 0,2	0,82 - 0,11 0,01 -
Sr Zr Nb	4,25 0,49 - 0,08 0.01	- 0,95 0,1 - 0,03	1,68 0,21 - 0,02	- 0,07 0,01 - 0,01	1,79 0,27 - 0,03	- 0,24 0,01 - 0,01	130,32 0,78 0,15 - 0,13	0,81 40,92 0,13 0,03 - 0,09	1,38 - 0,87 0,15 - 0,03	0,08 - 0,03 0 - 0,01	0,73 0,13 - 0,02	- - - -	2,72 - 1,21 0,2 - 0,03	0,82 - 0,11 0,01 - 0,02
Sr Zr Nb Ba	4,25 0,49 - 0,08 0,01 0,28	- 0,95 0,1 - 0,03 0	1,68 0,21 - 0,02 0	- 0,07 0,01 - 0,01 0	1,79 0,27 - 0,03 0	- 0,24 0,01 - 0,01 0	130,32 0,78 0,15 - 0,13 0	0,81 40,92 0,13 0,03 - 0,09 0 0	1,38 - 0,87 0,15 - 0,03 -	0,08 - 0,03 0 - 0,01 -	- 0,73 0,13 - 0,02 0,01	- - - -	2,72 - 1,21 0,2 - 0,03 -	0,02 - 0,11 0,01 - 0,02 -
Sr Zr Nb Ba La Ca	4,25 0,49 - 0,08 0,01 0,38 0,68	- 0,95 0,1 - 0,03 0 0,12 0,13	- 1,68 0,21 - 0,02 0 0,08 0,15	- 0,07 0,01 - 0,01 0 0,01 0,02	- 1,79 0,27 - 0,03 0 0,17 0,31	- 0,24 0,01 - 0,01 0 0,06 0.08	130,32 0,78 0,15 - 0,13 0 0,25 0,46	0,81 40,92 0,13 0,03 - 0,09 0 0,13 0,25	- 0,87 0,15 - 0,03 - 0,07 0,12	0,06 - 0,03 0 - 0,01 - 0,01 0,01	- 0,73 0,13 - 0,02 0,01 0,09 0,15		2,72 1,21 0,2 - 0,03 - 0,12 0,22	0,62 - 0,11 0,01 - 0,02 - 0,05 0,06
Sr Zr Nb Ba La Ce Pr	4,25 0,49 - 0,08 0,01 0,38 0,68	- 0,95 0,1 - 0,03 0 0,12 0,13 0,21	- 1,68 0,21 - 0,02 0 0,08 0,15 0,24	- 0,07 0,01 - 0,01 0,01 0,02 0,03	- 1,79 0,27 - 0,03 0 0,17 0,31 0,49	- 0,24 0,01 - 0,01 0,06 0,08 0,1	130,32 0,78 0,15 - 0,13 0 0,25 0,46	0,81 40,92 0,13 0,03 - 0,09 0 0,13 0,25 0,28	1,38 - 0,87 0,15 - 0,03 - 0,07 0,12 0,18	0,06 - 0,03 0 - 0,01 - 0,01 0,01 0,02	- 0,73 0,13 - 0,02 0,01 0,09 0,15		2,72 1,21 0,2 - 0,03 - 0,12 0,22 0,28	0,62 - 0,11 0,01 - 0,02 - 0,05 0,06 0.06
Sr Zr Nb Ba La Ce Pr Nd	4,25 0,49 - 0,08 0,01 0,38 0,68 1,1 1,7	- 0,95 0,1 - 0,03 0 0,12 0,13 0,21 0,45	- 1,68 0,21 - 0,02 0 0,08 0,15 0,24 0,35	- 0,07 0,01 - 0,01 0,01 0,02 0,03 0,05	- 1,79 0,27 - 0,03 0 0,17 0,31 0,49 0,62	- 0,24 0,01 - 0,01 0,06 0,08 0,1 0,23	130,32 0,78 0,15 - 0,13 0 0,25 0,46 0,61 0 8	0,81 40,92 0,13 0,03 - 0,09 0 0,13 0,25 0,28 0,37	1,38 - 0,87 0,15 - 0,03 - 0,07 0,12 0,18 0,24	0,06 - 0,03 0 - 0,01 - 0,01 0,01 0,02 0,02	0,73 0,13 - 0,02 0,01 0,09 0,15 0,22 0,31		2,72 1,21 0,2 - 0,03 - 0,12 0,22 0,29 0,38	0,62 - 0,11 0,01 - 0,02 - 0,05 0,06 0,06 0,08
Sr Zr Nb Ba La Ce Pr Nd Sm	4,25 0,49 - 0,08 0,01 0,38 0,68 1,1 1,7 2,5	- 0,95 0,1 - 0,03 0 0,12 0,13 0,21 0,45 0,54	- 1,68 0,21 - 0,02 0 0,08 0,15 0,24 0,35 0,5	- 0,07 0,01 - 0,01 0,01 0,02 0,03 0,05 0,06	- 1,79 0,27 - 0,03 0 0,17 0,31 0,49 0,62 0,97	- 0,24 0,01 - 0,01 0,06 0,06 0,08 0,1 0,23 0,28	130,32 0,78 0,15 - 0,13 0 0,25 0,46 0,61 0,8 0,73	0,81 40,92 0,13 0,03 - 0,09 0 0,13 0,25 0,28 0,37 0,26	1,38 - 0,87 0,15 - 0,03 - 0,07 0,12 0,18 0,24 0,25	0,06 - 0,03 0 - 0,01 - 0,01 0,01 0,02 0,02 0,02	1,30 0,73 0,13 - 0,02 0,01 0,09 0,15 0,22 0,31 0,34		2,72 1,21 0,2 - 0,03 - 0,12 0,22 0,29 0,38 0,51	0,02 - 0,11 0,01 - 0,02 - 0,05 0,06 0,06 0,08 0,13
Sr Zr Nb Ba La Ce Pr Nd Sm Fu	4,25 0,49 - 0,08 0,01 0,38 0,68 1,1 1,7 2,5 2,46	- 0,95 0,1 - 0,03 0 0,12 0,13 0,21 0,45 0,54 0,35	- 1,68 0,21 - 0,02 0 0,08 0,15 0,24 0,35 0,5 0,55	- 0,07 0,01 - 0,01 0,01 0,02 0,03 0,05 0,06 0,1	- 1,79 0,27 - 0,03 0 0,17 0,31 0,49 0,62 0,97 1,04	- 0,24 0,01 - 0,01 0,06 0,08 0,1 0,23 0,28 0,18	130,32 0,78 0,15 - 0,13 0 0,25 0,46 0,61 0,8 0,73 0,51	0,81 40,92 0,13 0,03 - 0,09 0 0,13 0,25 0,28 0,37 0,26 0,18	1,38 - 0,87 0,15 - 0,03 - 0,07 0,12 0,18 0,24 0,25 0,26	0,06 - 0,03 0 - 0,01 0,01 0,02 0,02 0,02 0,03 0,02	1,30 0,73 0,13 - 0,02 0,01 0,09 0,15 0,22 0,31 0,34 0,29		2,72 - 1,21 0,2 - 0,03 - 0,12 0,22 0,29 0,38 0,51 0,52	0,62 - 0,11 0,01 - 0,02 - 0,05 0,06 0,06 0,08 0,13 0,12
Sr Zr Nb Ba La Ce Pr Nd Sm Eu Gd	4,25 0,49 - 0,08 0,01 0,38 0,68 1,1 1,7 2,5 2,46	0,95 0,1 - 0,03 0 0,12 0,13 0,21 0,45 0,54 0,35	- 1,68 0,21 - 0,02 0 0,08 0,15 0,24 0,35 0,55 -	- 0,07 0,01 0 0,01 0,02 0,03 0,05 0,06 0,1	1,79 0,27 - 0,03 0 0,17 0,31 0,49 0,62 0,97 1,04	0,24 0,01 0 0,06 0,08 0,1 0,23 0,28 0,18	130,32 0,78 0,15 - 0,13 0 0,25 0,46 0,61 0,8 0,73 0,51	0,81 40,92 0,13 0,03 - 0,09 0 0,13 0,25 0,28 0,37 0,26 0,18	1,38 0,87 0,15 - 0,03 - 0,07 0,12 0,18 0,24 0,25 0,26	0,06 - 0,03 0 - 0,01 0,01 0,02 0,02 0,03 0,02 -	1,30 0,73 0,13 - 0,02 0,01 0,09 0,15 0,22 0,31 0,34 0,29		2,72 1,21 0,2 - 0,03 - 0,12 0,22 0,29 0,38 0,51 0,52 -	0,02 0,11 0,01 - 0,02 - 0,05 0,06 0,06 0,08 0,13 0,12
Sr Zr Nb Ba La Ce Pr Nd Sm Eu Gd Tb	4,25 0,49 - 0,08 0,01 0,38 0,68 1,1 1,7 2,5 2,46 - 2,67	- 0,95 0,1 - 0,03 0 0,12 0,13 0,21 0,45 0,54 0,35 - 0,38	- 1,68 0,21 - 0,02 0 0,08 0,15 0,24 0,35 0,5 0,55 - 0,6	- 0,07 0,01 - 0,01 0,02 0,03 0,05 0,06 0,1 - 0,07	- 1,79 0,27 - 0,03 0 0,17 0,31 0,49 0,62 0,97 1,04 -	- 0,24 0,01 - 0,06 0,08 0,1 0,23 0,28 0,18 - 0,19	130,32 0,78 0,15 - 0,13 0 0,25 0,46 0,61 0,8 0,73 0,51 - 0.5	0,81 40,92 0,13 0,03 - 0,09 0 0,13 0,25 0,28 0,37 0,26 0,18 - 0,15	1,38 - 0,87 0,15 - 0,03 - 0,07 0,12 0,18 0,24 0,25 0,26 - 0,22	0,06 - 0,03 0 - 0,01 0,01 0,01 0,02 0,02 0,03 0,02 - 0,01	1,30 0,73 0,13 - 0,02 0,01 0,09 0,15 0,22 0,31 0,34 0,29 - 0,26		2,72 1,21 0,2 - 0,03 - 0,12 0,22 0,29 0,38 0,51 0,52 - 0,51	0,02 0,11 0,01 - 0,02 - 0,05 0,06 0,06 0,08 0,13 0,12 - 0,08
Sr Zr Nb Ba La Ce Pr Nd Sm Eu Gd Tb Dv	4,25 0,49 - 0,08 0,01 0,38 0,68 1,1 1,7 2,5 2,46 - 2,67 2,71	- 0,95 0,1 - 0,03 0 0,12 0,13 0,21 0,45 0,54 0,35 - 0,38 0,41	- 1,68 0,21 - 0,02 0 0,08 0,15 0,24 0,35 0,55 - 0,6 0,58	- 0,07 0,01 - 0,01 0,02 0,03 0,05 0,06 0,1 - 0,07 0,08	- 1,79 0,27 - 0,03 0 0,17 0,31 0,49 0,62 0,97 1,04 - 1,04 0,97	- 0,24 0,01 - 0,00 0,06 0,08 0,1 0,23 0,28 0,18 - 0,19 0,21	130,32 0,78 0,15 - 0,13 0 0,25 0,46 0,61 0,8 0,73 0,51 - 0,5 0,4	0,81 40,92 0,13 0,03 - 0,09 0 0,13 0,25 0,28 0,37 0,26 0,18 - 0,15 0,08	1,38 - 0,87 0,15 - 0,03 - 0,07 0,12 0,18 0,24 0,25 0,26 - 0,22 0,21	0,06 - 0,03 0 - 0,01 0,01 0,02 0,02 0,03 0,02 - 0,01 0,02	1,30 0,73 0,13 - 0,02 0,01 0,09 0,15 0,22 0,31 0,34 0,29 - 0,26 0,21		2,72 1,21 0,2 - 0,03 - 0,12 0,22 0,29 0,38 0,51 0,52 - 0,51 0,47	0,02 0,11 0,01 - 0,02 - 0,05 0,06 0,06 0,08 0,13 0,12 - 0,08 0,13
Sr Zr Nb Ba La Ce Pr Nd Sm Eu Sm Eu Gd Tb Dy Y	4,25 0,49 - 0,08 0,01 0,38 0,68 1,1 1,7 2,5 2,46 - 2,67 2,71 2,07	- 0,95 0,1 - 0,03 0 0,12 0,13 0,21 0,45 0,54 0,35 - 0,38 0,41 0,28	- 1,68 0,21 - 0,02 0 0,08 0,15 0,24 0,35 0,55 0,55 - 0,6 0,58 0,48	- 0,07 0,01 - 0,01 0,02 0,03 0,05 0,06 0,1 - 0,07 0,08 0,05	- 1,79 0,27 - 0,03 0 0,17 0,31 0,49 0,62 0,97 1,04 - 1,04 0,97 0,77	- 0,24 0,01 - 0,00 0,06 0,08 0,1 0,23 0,28 0,18 - 0,19 0,21 0,14	130,32 0,78 0,15 - 0,13 0 0,25 0,46 0,61 0,8 0,73 0,51 - 0,5 0,4 0,31	0,81 40,92 0,13 0,03 - 0,09 0 0,13 0,25 0,28 0,37 0,26 0,18 - 0,15 0,08 0,05	1,38 0,87 0,15 - 0,03 - 0,07 0,12 0,18 0,24 0,25 0,26 - 0,22 0,21 0,16	0,06 - 0,03 0 - 0,01 0,01 0,02 0,02 0,03 0,02 - 0,01 0,02 0,03 0,02 - 0,01 0,02 0,03 0,01 - 0,01 0,01 - 0,01 0,02 0,02 0,03 0,02 0,03 0,02 0,03 0,02 0,03 0,02 0,03 0,02 0,03 0,02 0,03 0,02 0,03 0,02 0,03 0,02 0,03 0,02 0,03 0,02 0,03 0,02 0,03 0,02 0,03 0,02 0,03 0,02 0,03 0,02 0,01 0,02 0,03 0,02 0,001 0,02 0,03 0,02 0,01 0,02 0,03 0,02 0,01 0,02 0,03 0,02 0,01 0,02 0,03 0,02 0,01 0,02 0,03 0,02 0,01 0,02 0,01 0,02 0,03 0,02 0,01 0,02 0,01 0,02 0,01 0,02 0,03 0,02 0,01 0,02 0,01 0,02 0,01 0,02 0,01 0,02 0,01 0,02 0,01 0,02 0,02 0,01 0,02 0,01 0,02 0,01 0,02 0,01 0,02 0,01 0,02 0,01 0,02 0,01 0,02 0,	1,30 0,73 0,13 - 0,02 0,01 0,09 0,15 0,22 0,31 0,34 0,29 - 0,26 0,21 0,17		2,72 1,21 0,2 - 0,03 - 0,12 0,22 0,29 0,38 0,51 0,52 - 0,51 0,47 0,46	0,02 0,11 0,01 - 0,02 - 0,05 0,06 0,06 0,08 0,13 0,12 - 0,08 0,13 0,06
Sr Zr Nb Ba La Ce Pr Nd Sm Eu Sm Eu Gd Tb Dy Y Ho	4,25 0,49 - 0,08 0,01 0,38 0,68 1,1 1,7 2,5 2,46 - 2,67 2,71 2,07 2,58	- 0,95 0,1 - 0,03 0 0,12 0,13 0,21 0,45 0,54 0,35 - 0,38 0,41 0,28 0,31	- 1,68 0,21 - 0,02 0 0,08 0,15 0,24 0,35 0,55 0,55 - 0,6 0,58 0,48 0,54	- 0,07 0,01 0 0,01 0,02 0,03 0,05 0,06 0,1 - 0,07 0,08 0,05 0,06	- 1,79 0,27 - 0,03 0 0,17 0,31 0,49 0,62 0,97 1,04 - 1,04 0,97 0,77 0,9	- 0,24 0,01 - 0,06 0,08 0,1 0,23 0,28 0,18 - 0,19 0,21 0,14 0,15	130,32 0,78 0,15 - 0,13 0 0,25 0,46 0,61 0,8 0,73 0,51 - 0,5 0,4 0,31 0,36	0,81 40,92 0,13 0,03 - 0,09 0 0,13 0,25 0,28 0,37 0,26 0,18 - 0,15 0,08 0,05 0,07	1,38 - 0,87 0,15 - 0,03 - 0,07 0,12 0,18 0,24 0,25 0,26 - 0,22 0,21 0,16 0,19	0,06 - 0,03 0 - 0,01 0,01 0,02 0,03 0,02 - 0,01 0,02 0,01 0,01 0,02	1,30 0,73 0,13 - 0,02 0,01 0,09 0,15 0,22 0,31 0,34 0,29 - 0,26 0,21 0,17 0,2		2,72 1,21 0,2 - 0,03 - 0,12 0,22 0,29 0,38 0,51 0,52 - 0,51 0,47 0,46 0,47	0,02 0,11 0,01 - 0,02 - 0,05 0,06 0,06 0,08 0,13 0,12 - 0,08 0,13 0,06 0,05
Sr Zr Nb Ba La Ce Pr Nd Sm Eu Gd Tb Dy Y Ho Er	4,25 0,49 - 0,08 0,01 0,38 0,68 1,1 1,7 2,5 2,46 - 2,67 2,71 2,07 2,58 2,27	- 0,95 0,1 - 0,03 0 0,12 0,13 0,21 0,45 0,54 0,35 - 0,38 0,41 0,28 0,31 0,3	- 1,68 0,21 - 0,02 0 0,08 0,15 0,24 0,35 0,55 0,55 - 0,6 0,58 0,48 0,54 0,54 0,54 0,54 0,54 0,54 0,54 0,54 0,54 0,54 0,54 0,54 0,55 0	- 0,07 0,01 0 0,01 0,02 0,03 0,05 0,06 0,1 - 0,07 0,08 0,05 0,06 0,05	- 1,79 0,27 - 0,03 0 0,17 0,31 0,49 0,62 0,97 1,04 - 1,04 0,97 0,77 0,9 0,82	- 0,24 0,01 - 0,06 0,08 0,1 0,23 0,28 0,18 - 0,19 0,21 0,14 0,15 0,14	130,32 0,78 0,15 - 0,13 0 0,25 0,46 0,61 0,8 0,73 0,51 - 0,5 0,4 0,31 0,36 0,33	0,81 40,92 0,13 0,03 - 0,09 0 0,13 0,25 0,28 0,37 0,26 0,18 - 0,15 0,08 0,05 0,07 0,07	1,38 - 0,87 0,15 - 0,03 - 0,07 0,12 0,18 0,24 0,25 0,26 - 0,22 0,21 0,16 0,19 0,18	0,06 - 0,03 0 - 0,01 0,01 0,02 0,02 0,03 0,02 - 0,01 0,02 0,01 0,01 0,01 0,01 0,01	1,30 0,73 0,13 - 0,02 0,01 0,09 0,15 0,22 0,31 0,34 0,29 - 0,26 0,21 0,17 0,2 0,2		2,72 1,21 0,2 - 0,03 - 0,12 0,22 0,29 0,38 0,51 0,52 - 0,51 0,47 0,46 0,47 0,45	0,02 0,11 0,01 - 0,02 - 0,05 0,06 0,06 0,08 0,13 0,12 - 0,08 0,13 0,06 0,05 0,08 0,13 0,06 0,05 0,08
Sr Zr Nb Ba La Ce Pr Nd Sm Eu Gd Tb Dy Y Ho Er Yb	4,25 0,49 - 0,08 0,01 0,38 0,68 1,1 1,7 2,5 2,46 - 2,67 2,71 2,07 2,58 2,27 2,17	- 0,95 0,1 - 0,03 0 0,12 0,13 0,21 0,45 0,54 0,35 - 0,38 0,41 0,28 0,31 0,3 0,21	- 1,68 0,21 - 0,02 0 0,08 0,15 0,24 0,35 0,55 - 0,6 0,58 0,48 0,54 0,51 0,51	- 0,07 0,01 0 0,01 0,02 0,03 0,05 0,06 0,1 - 0,07 0,08 0,05 0,06 0,05 0,05	- 1,79 0,27 - 0,03 0 0,17 0,31 0,49 0,62 0,97 1,04 - 1,04 0,97 0,97 0,9 0,82 0,78	- 0,24 0,01 - 0,06 0,08 0,1 0,23 0,28 0,18 - 0,19 0,21 0,14 0,15 0,14 0,1	130,32 0,78 0,15 - 0,13 0 0,25 0,46 0,61 0,8 0,73 0,51 - 0,5 0,4 0,31 0,36 0,33 0,47	0,81 40,92 0,13 0,03 - 0,09 0 0,13 0,25 0,28 0,37 0,26 0,18 - 0,15 0,08 0,05 0,07 0,07	1,38 - 0,87 0,15 - 0,03 - 0,07 0,12 0,18 0,24 0,25 0,26 - 0,22 0,21 0,16 0,19 0,18 0,31	0,06 - 0,03 0 - 0,01 0,01 0,02 0,02 0,03 0,02 - 0,01 0,02 0,01 0,01 0,01 0,01 0,01 0,02 0,03 0,03 0,03 0,01 0,02 0,03 0,01 0,01 0,02 0,03 0,03 0,03 0,01 0,02 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,01 0,03 0,03 0,01 0,01 0,03 0,03 0,01 0,03 0,01 0,03 0,01 0,03 0,01 0,01 0,03 0,01 0,03 0,01 0,03 0,01 0,01 0,03 0,01 0,01 0,03 0,01 0,01 0,03 0,01 0,01 0,03 0,01 0,01 0,03 0,01 0,01 0,03 0,01 0,01 0,01 0,01 0,03 0,01	1,30 0,73 0,13 - 0,02 0,01 0,09 0,15 0,22 0,31 0,34 0,29 - 0,26 0,21 0,17 0,2 0,2 0,2 0,28		2,72 1,21 0,2 - 0,03 - 0,12 0,22 0,29 0,38 0,51 0,52 - 0,51 0,47 0,46 0,47 0,45 0,65	0,02 0,11 0,01 - 0,02 - 0,05 0,06 0,06 0,08 0,13 0,12 - 0,08 0,13 0,06 0,05 0,08 0,13 0,06 0,05 0,08 0,13 0,01
Sr Zr Nb Ba La Ce Pr Nd Sm Eu Gd Tb Dy Y Ho Er Yb Lu	4,25 0,49 - 0,08 0,01 0,38 0,68 1,1 1,7 2,5 2,46 - 2,67 2,71 2,07 2,58 2,27 2,17 2,27	- 0,95 0,1 - 0,03 0 0,12 0,13 0,21 0,45 0,54 0,35 - 0,38 0,41 0,28 0,31 0,21 0,2	- 1,68 0,21 - 0,02 0 0,08 0,15 0,24 0,35 0,55 - 0,6 0,58 0,48 0,54 0,54 0,51 0,62	- 0,07 0,01 0 0,01 0,02 0,03 0,05 0,06 0,1 - 0,07 0,08 0,05 0,06 0,05 0,05 0,05	$\begin{array}{c} -\\ 1,79\\ 0,27\\ -\\ 0,03\\ 0\\ 0,17\\ 0,31\\ 0,49\\ 0,62\\ 0,97\\ 1,04\\ -\\ 1,04\\ 0,97\\ 0,77\\ 0,9\\ 0,82\\ 0,78\\ 0,91\\ \end{array}$	- 0,24 0,01 - 0,06 0,08 0,1 0,23 0,28 0,18 - 0,19 0,21 0,14 0,15 0,14 0,1 0,08	$\begin{array}{c} 1,3,2\\ 130,32\\ 0,78\\ 0,15\\ -\\ 0,13\\ 0\\ 0,25\\ 0,46\\ 0,61\\ 0,8\\ 0,73\\ 0,51\\ -\\ 0,5\\ 0,4\\ 0,31\\ 0,36\\ 0,33\\ 0,47\\ 0,66\\ \end{array}$	0,81 40,92 0,13 0,03 - 0,09 0 0,13 0,25 0,28 0,37 0,26 0,18 - 0,15 0,08 0,05 0,07 0,07 0,07 0,07	1,38 - 0,87 0,15 - 0,03 - 0,07 0,12 0,18 0,24 0,25 0,26 - 0,22 0,21 0,16 0,19 0,18 0,31 0,43	0,06 - 0,03 0 - 0,01 0,01 0,02 0,02 0,03 0,02 - 0,01 0,02 0,01 0,02 0,01 0,02 0,03 0,01 0,03 0,03 0,03	1,30 0,73 0,13 - 0,02 0,01 0,09 0,15 0,22 0,31 0,34 0,29 - 0,26 0,21 0,17 0,2 0,2 0,28 0,39		2,72 1,21 0,2 - 0,03 - 0,12 0,22 0,29 0,38 0,51 0,52 - 0,51 0,47 0,46 0,47 0,45 0,65 1,07	0,02 0,11 0,01 - 0,02 - 0,05 0,06 0,06 0,08 0,13 0,12 - 0,08 0,13 0,06 0,05 0,08 0,13 0,06 0,05 0,08 0,13 0,01 - 0,05 0,06 0,01 - 0,05 0,06 0,06 0,06 0,06 0,07 0,0
Sr Zr Nb Ba La Ce Pr Nd Sm Eu Gd Tb Dy Y Ho Er Yb Lu Hf	4,25 0,49 - 0,08 0,01 0,38 0,68 1,1 1,7 2,5 2,46 - 2,67 2,71 2,07 2,58 2,27 2,17 2,27	- 0,95 0,1 - 0,03 0 0,12 0,13 0,21 0,45 0,54 0,35 - 0,38 0,41 0,28 0,31 0,2 0,2 -	- 1,68 0,21 - 0,02 0 0,08 0,15 0,24 0,35 0,55 - 0,6 0,58 0,48 0,54 0,54 0,51 0,62 - -	- 0,07 0,01 0 0,01 0,02 0,03 0,05 0,06 0,05 0,06 0,05 0,05 0,05 0,05	1,79 0,27 0,03 0 0,17 0,31 0,49 0,62 0,97 1,04 - 1,04 0,97 0,77 0,9 0,82 0,78 0,91	- 0,24 0,01 0 0,06 0,08 0,1 0,23 0,28 0,18 - 0,19 0,21 0,14 0,15 0,14 0,1 0,08 -	130,32 0,78 0,15 - 0,13 0 0,25 0,46 0,61 0,8 0,73 0,51 - 0,5 0,4 0,31 0,36 0,33 0,47 0,66	0,81 40,92 0,13 0,03 - 0,09 0 0,13 0,25 0,28 0,37 0,26 0,18 - 0,15 0,08 0,05 0,07 0,07 0,07	1,38 - 0,87 0,15 - 0,03 - 0,07 0,12 0,18 0,24 0,25 0,26 - 0,22 0,21 0,16 0,19 0,18 0,31 0,43 -	0,06 - 0,03 0 - 0,01 0,01 0,02 0,02 0,03 0,02 - 0,01 0,02 0,01 0,02 0,01 0,02 0,03 0,01 0,03 0,03 - -	1,30 0,73 0,13 - 0,02 0,01 0,09 0,15 0,22 0,31 0,34 0,29 - 0,26 0,21 0,17 0,2 0,2 0,28 0,39 -		2,72 1,21 0,2 - 0,03 - 0,12 0,22 0,29 0,38 0,51 0,52 - 0,51 0,47 0,46 0,47 0,45 0,65 1,07	0,02 0,11 0,01 - 0,02 - 0,05 0,06 0,06 0,08 0,13 0,12 - 0,08 0,13 0,06 0,05 0,08 0,13 0,01 - - - - - - - - - - - - -

Tableau VI.3. Coefficients de partage des éléments traces entre clinopyroxènes et liquides silicatés. σ : écart-type sur la moyenne des coefficients de partage, calculé à partir de l'équation (6) de la partie III.4.

T 11	1/1 3	a .,	
1 abieau	VI.3.	Suite	

	AK02_02		AK02_03		AK02_04		AK05_01		AK05_02		AK05_03	
P (Gpa)	0,4		0,4		0,4		0,4		0,4		0,4	
T (°C)	925		925		925		825		825		825	
Composition	Mix8	σ	Mix8	σ	Mix8	σ	Mix8	σ	Mix8	σ	Mix8	σ
Sc	-	-	-	-	-	-	-	-	-	-	-	-
Ti	3,63	1,12	2,87	0,37	3,59	1,02	9,66	3,15	9,31	0,68	8,33	0,45
Cr	-	-	-	-	-	-	-	-	-	-	-	-
Mn	2,27	0,41	0,92	0,04	1,17	0,15	2,41	0,53	1,97	0,25	1,22	0,05
Sr	0,35	0,04	0,14	0,01	0,21	0,02	1,03	0,13	0,93	0,05	0,49	0,01
Zr	-	-	-	-	-	-	-	-	-	-	-	-
Nb	0,04	0,03	0,16	0,09	0,18	0,16	0,27	0,12	0,65	0,13	0,73	0,06
Ba	0,01	0	-	-	0	0	0	0	-	-	-	-
La	0,17	0,04	0,14	0,03	0,18	0,11	1,05	0,31	1,72	0,45	1,19	0,06
Ce	0,27	0,05	0,21	0,04	0,27	0,14	1,38	0,33	2,33	0,55	1,57	0,08
Pr	0,41	0,08	0,32	0,05	0,37	0,18	1,92	0,44	3,11	0,7	2,16	0,15
Nd	0,56	0,09	0,37	0,06	0,49	0,22	2,35	0,7	3,88	0,86	2,53	0,25
Sm	0,69	0,13	0,52	0,08	0,59	0,22	2,57	0,57	4,16	0,81	2,95	0,38
Eu	0,72	0,13	0,5	0,06	0,56	0,21	2,47	0,49	4,04	0,7	2,93	0,31
Gd	-	-	-	-	-	-	-	-	-	-	-	-
Tb	0,62	0,11	0,5	0,06	0,54	0,2	1,81	0,31	2,78	0,5	2,17	0,21
Dy	0,57	0,07	0,47	0,04	0,49	0,17	1,51	0,29	2,21	0,36	1,73	0,21
Y	0,46	0,06	0,36	0,04	0,39	0,13	1,08	0,17	1,45	0,22	1,13	0,11
Ho	0,52	0,07	0,44	0,04	0,44	0,14	1,27	0,19	1,81	0,32	1,47	0,19
Er	0,5	0,07	0,42	0,04	0,42	0,13	1,09	0,16	1,41	0,17	1,14	0,13
Yb	0,82	0,09	0,52	0,05	0,54	0,11	1,11	0,19	1,22	0,11	1	0,09
	1,22	0,11	0,72	0,05	0,72	0,08	1,47	0,24	1,43	0,13	1,07	0,1
HI	-	-	-	-	-	-	-	-	-	-	-	-
18	-	-	-	-	-	-	-	-	-	-	-	-
	A 1705 05		T10_01		T10 02		T10 04		A 1707 01		A 1207 02	
P (Cna)	AK05_05		T19_01		T19_03		T19_04		AK06_01		AK06_02	
P (Gpa)	AK05_05 0,4 825		T19_01 0,4 850		T19_03 0,4 850		T19_04 0,4 850		AK06_01 0,4 725		AK06_02 0,4 725	
P (Gpa) T (°C) Composition	AK05_05 0,4 825 Mix8	σ	T19_01 0,4 850 Mix8	σ	T19_03 0,4 850 Mix8	a	T19_04 0,4 850 Mix8	6	AK06_01 0,4 725 Mix8	σ	AK06_02 0,4 725 Mix9	đ
P (Gpa) T (°C) Composition	AK05_05 0,4 825 Mix8	σ	T19_01 0,4 850 Mix8	σ	T19_03 0,4 850 Mix8	σ	T19_04 0,4 850 Mix8	σ	AK06_01 0,4 725 Mix8	σ	AK06_02 0,4 725 Mix9	σ
P (Gpa) T (°C) Composition Sc Ti	AK05_05 0,4 825 Mix8 - 11.26	σ - 0.91	T19_01 0,4 850 Mix8 - 5.8	σ - 1.08	T19_03 0,4 850 Mix8 - 2.07	σ - 0.37	T19_04 0,4 850 Mix8 - 8,54	σ - 2.48	AK06_01 0,4 725 Mix8 - 5,47	σ - 0.6	AK06_02 0,4 725 Mix9 - 3.09	σ - 1.28
P (Gpa) T (°C) Composition Sc Ti Cr	AK05_05 0,4 825 Mix8 - 11,26	σ - 0,91	T19_01 0,4 850 Mix8 - 5,8	σ - 1,08	T19_03 0,4 850 Mix8 - 2,07	σ - 0,37	T19_04 0,4 850 Mix8 - 8,54	σ - 2,48	AK06_01 0,4 725 Mix8 - 5,47	σ - 0,6	AK06_02 0,4 725 Mix9 - 3,09	σ 1,28
P (Gpa) T (°C) <u>Composition</u> Sc Ti Cr Mn	AK05_05 0,4 825 Mix8 - 11,26 - 1.74	σ - 0,91 - 0.28	T19_01 0,4 850 Mix8 - 5,8 - 4,75	σ - 1,08 - 0,78	T19_03 0,4 850 Mix8 - 2,07 - 2,28	σ 0,37 - 0,1	T19_04 0,4 850 Mix8 - 8,54 - 5,28	σ - 2,48 - 0,4	AK06_01 0,4 725 Mix8 - 5,47 - 4,17	σ - 0,6 - 1.06	AK06_02 0,4 725 Mix9 - 3,09 - 5,73	σ - 1,28 - 0,52
P (Gpa) T (°C) Composition Sc Ti Cr Mn Sr	AK05_05 0,4 825 Mix8 - 11,26 - 1,74 0,29	σ 0,91 - 0,28 0,01	T19_01 0,4 850 Mix8 - 5,8 - 4,75 1,35	σ - 1,08 - 0,78 0,17	T19_03 0,4 850 Mix8 - 2,07 - 2,28 0,3	σ - 0,37 - 0,1 0,01	T19_04 0,4 850 Mix8 - 8,54 - 5,28 1,02	σ 2,48 - 0,4 0,12	AK06_01 0,4 725 Mix8 - 5,47 - 4,17 2,25	σ 0,6 - 1,06 0,24	AK06_02 0,4 725 Mix9 - 3,09 - 5,73 0.96	σ - 1,28 - 0,52 0,04
P (Gpa) T (°C) Composition Sc Ti Cr Mn Sr Zr	AK05_05 0,4 825 Mix8 - 11,26 - 1,74 0,29	σ - 0,91 - 0,28 0,01 -	T19_01 0,4 850 Mix8 - 5,8 - 4,75 1,35 -	σ - 1,08 - 0,78 0,17 -	T19_03 0,4 850 Mix8 - 2,07 - 2,28 0,3 -	σ 0,37 - 0,1 0,01	T19_04 0,4 850 Mix8 - 5,28 1,02 -	σ - 2,48 - 0,4 0,12 -	AK06_01 0,4 725 Mix8 - 5,47 - 4,17 2,25 -	σ - 0,6 - 1,06 0,24 -	AK06_02 0,4 725 Mix9 - 3,09 - 5,73 0,96 -	σ 1,28 - 0,52 0,04
P (Gpa) T (°C) Composition Sc Ti Cr Mn Sr Zr Nb	AK05_05 0,4 825 Mix8 - 11,26 - 1,74 0,29 - 0,62	σ - 0,91 - 0,28 0,01 - 0,15	T19_01 0,4 850 Mix8 - 5,8 - 4,75 1,35 - 0,14	σ - 1,08 - 0,78 0,17 - 0,08	T19_03 0,4 850 Mix8 - 2,07 - 2,28 0,3 - 0,03	σ 0,37 - 0,1 0,01 - 0,02	T19_04 0,4 850 Mix8 - 8,54 - 5,28 1,02 - 0,22	σ - 2,48 - 0,4 0,12 - 0,14	AK06_01 0,4 725 Mix8 - 5,47 - 4,17 2,25 - 0,08	σ 0,6 - 1,06 0,24 - 0,02	AK06_02 0,4 725 Mix9 - 3,09 - 5,73 0,96 - 0,02	5 1,28 - 0,52 0,04 - 0,01
P (Gpa) T (°C) <u>Composition</u> Sc Ti Cr Mn Sr Zr Nb Ba	AK05_05 0,4 825 Mix8 - 11,26 - 1,74 0,29 - 0,62	σ 0,91 - 0,28 0,01 - 0,15 -	T19_01 0,4 850 Mix8 - 5,8 - 4,75 1,35 - 0,14 0,02	σ - 1,08 - 0,78 0,17 - 0,08 0,01	T19_03 0,4 850 Mix8 - 2,07 - 2,28 0,3 - 0,03 -	σ 0,37 - 0,1 0,01 - 0,02	T19_04 0,4 850 Mix8 - 5,28 1,02 - 0,22 0,01	σ - 2,48 - 0,4 0,12 - 0,14 0	AK06_01 0,4 725 Mix8 - 5,47 - 4,17 2,25 - 0,08 0	σ 0,6 - 1,06 0,24 - 0,02 0	AK06_02 0,4 725 Mix9 - 3,09 - 5,73 0,96 - 0,02 -	5 1,28 - 0,52 0,04 - 0,01
P (Gpa) T (°C) <u>Composition</u> Sc Ti Cr Mn Sr Zr Nb Ba La	AK05_05 0,4 825 Mix8 - 11,26 - 1,74 0,29 - 0,62 - 0,38	σ 0,91 - 0,28 0,01 - 0,15 - 0,12	T19_01 0,4 850 Mix8 - 5,8 - 4,75 1,35 - 0,14 0,02 1,54	σ - 1,08 - 0,78 0,17 - 0,08 0,01 0,43	T19_03 0,4 850 Mix8 - 2,07 - 2,28 0,3 - 0,03 - 0,17	σ - 0,37 - 0,1 0,01 - 0,02 - 0,02	T19_04 0,4 850 Mix8 - 5,28 1,02 - 0,22 0,01 1,14	σ - 2,48 - 0,4 0,12 - 0,14 0 0,49	AK06_01 0,4 725 Mix8 - 5,47 - 4,17 2,25 - 0,08 0 0,066	σ 0,6 - 1,06 0,24 - 0,02 0 0,09	AK06_02 0,4 725 Mix9 - 5,73 0,96 - 0,02 - 0,15	5 1,28 - 0,52 0,04 - 0,01 - 0,07
P (Gpa) T (°C) <u>Composition</u> Sc Ti Cr Mn Sr Zr Nb Ba La Ce	AK05_05 0,4 825 Mix8 - 11,26 - 1,74 0,29 - 0,62 - 0,38 0,65	σ - 0,91 - 0,28 0,01 - 0,15 - 0,12 0,2	T19_01 0,4 850 Mix8 - 5,8 - 4,75 1,35 - 0,14 0,02 1,54 2,28	σ - 1,08 - 0,78 0,17 - 0,08 0,01 0,43 0,62	T19_03 0,4 850 Mix8 - 2,07 - 2,28 0,3 - 0,03 - 0,17 0,28	5 0,37 - 0,1 0,01 - 0,02 - 0,02 0,05	T19_04 0,4 850 Mix8 - 5,28 1,02 - 0,22 0,01 1,14 1,92	σ - 2,48 - 0,4 0,12 - 0,14 0 0,49 0,64	AK06_01 0,4 725 Mix8 - 5,47 - 4,17 2,25 - 0,08 0 0,066 1,04	σ - 0,6 - 1,06 0,24 - 0,02 0 0,09 0,14	AK06_02 0,4 725 Mix9 - 5,73 0,96 - 0,02 - 0,15 0,26	σ 1,28 - 0,52 0,04 - 0,01 - 0,07 0,05
P (Gpa) T (°C) Composition Sc Ti Cr Mn Sr Zr Nb Ba La Ce Pr	AK05_05 0,4 825 Mix8 - 11,26 - 1,74 0,29 - 0,62 - 0,38 0,65 1,09	σ - 0,91 - 0,28 0,01 - 0,15 - 0,12 0,2 0,27	T19_01 0,4 850 Mix8 - 5,8 - 4,75 1,35 - 0,14 0,02 1,54 2,28 3,62	σ - - - - - - - - - - - - - - - - - - -	T19_03 0,4 850 Mix8 - 2,07 - 2,28 0,3 - 0,03 - 0,17 0,28 0,45	σ - - - - - - - - - - - - - - - - - - -	T19_04 0,4 850 Mix8 - 5,28 1,02 - 0,22 0,01 1,14 1,92 3,09	σ - 2,48 - 0,4 0,12 - 0,14 0 0,49 0,64 0,78	AK06_01 0,4 725 Mix8 - 5,47 - 4,17 2,25 - 0,08 0 0,066 1,04 1,66	σ 0,6 - 1,06 0,24 - 0,02 0 0,09 0,14 0,23	AK06_02 0,4 725 Mix9 - 5,73 0,96 - 0,02 - 0,15 0,26 0,42	σ 1,28 - 0,52 0,04 - 0,01 - 0,07 0,05 0,08
P (Gpa) T (°C) Composition Sc Ti Cr Mn Sr Zr Nb Ba La Ce Pr Nd	AK05_05 0,4 825 Mix8 - 11,26 - 1,74 0,29 - 0,62 - 0,38 0,65 1,09 1,97	σ - 0,91 - 0,28 0,01 - 0,15 - 0,12 0,2 0,27 0,54	T19_01 0,4 850 Mix8 - 5,8 - 4,75 1,35 - 0,14 0,02 1,54 2,28 3,62 4,83	σ - 1,08 - 0,78 0,17 - 0,08 0,01 0,43 0,62 0,88 0,92	T19_03 0,4 850 Mix8 - 2,07 - 2,28 0,3 - 0,03 - 0,17 0,28 0,45 0,61	σ 0,37 - 0,1 0,01 - 0,02 - 0,02 0,05 0,03 0,06	T19_04 0,4 850 Mix8 - 5,28 1,02 - 0,22 0,01 1,14 1,92 3,09 4,71	σ - 2,48 - 0,4 0,12 - 0,14 0 0,49 0,64 0,78 0,95	AK06_01 0,4 725 Mix8 - 5,47 - 4,17 2,25 - 0,08 0 0,066 1,04 1,66 2,2	σ 0,6 - 1,06 0,24 - 0,02 0 0,09 0,14 0,23 0,47	AK06_02 0,4 725 Mix9 - 5,73 0,96 - 0,02 - 0,15 0,26 0,42 0,58	σ 1,28 - 0,52 0,04 - 0,01 - 0,07 0,05 0,08 0,13
P (Gpa) T (°C) Composition Sc Ti Cr Mn Sr Zr Nb Ba La Ce Pr Nd Sm	AK05_05 0,4 825 Mix8 - 11,26 - 1,74 0,29 - 0,62 - 0,38 0,65 1,09 1,97 5,36	σ - 0,91 - 0,28 0,01 - 0,15 - 0,12 0,27 0,54 1,42	T19_01 0,4 850 Mix8 - 5,8 - 4,75 1,35 - 0,14 0,02 1,54 2,28 3,62 4,83 4,79	σ - 1,08 - 0,78 0,17 - 0,08 0,01 0,43 0,62 0,88 0,92 1,23	T19_03 0,4 850 Mix8 - 2,07 - 2,28 0,3 - 0,03 - 0,03 - 0,17 0,28 0,45 0,61 0,87	σ 0,37 - 0,1 0,01 - 0,02 0,02 0,05 0,03 0,06 0,07	T19_04 0,4 850 Mix8 - 5,28 1,02 - 0,22 0,01 1,14 1,92 3,09 4,71 5,45	σ - 2,48 - 0,4 0,12 - 0,14 0 0,49 0,64 0,78 0,95 1,13	AK06_01 0,4 725 Mix8 - 5,47 - 4,17 2,25 - 0,08 0 0,66 1,04 1,66 2,2 1,55	σ 0,6 - 1,06 0,24 - 0,02 0 0,09 0,14 0,23 0,47 0,21	AK06_02 0,4 725 Mix9 - 5,73 0,96 - 0,02 - 0,15 0,26 0,42 0,58 0,68	σ 1,28 - 0,52 0,04 - 0,01 - 0,07 0,05 0,08 0,13 0,18
P (Gpa) T (°C) Composition Sc Ti Cr Mn Sr Zr Nb Ba La Ce Pr Nd Sm Eu	AK05_05 0,4 825 Mix8 - 11,26 - 1,74 0,29 - 0,62 - 0,38 0,65 1,09 1,97 5,36 8,61	σ - 0,91 - 0,28 0,01 - 0,15 - 0,12 0,27 0,54 1,42 2,27	T19_01 0,4 850 Mix8 - 5,8 - 4,75 1,35 - 0,14 0,02 1,54 2,28 3,62 4,83 4,79 5,25	σ - 1,08 - 0,78 0,17 - 0,08 0,01 0,43 0,62 0,88 0,92 1,23 1,02	T19_03 0,4 850 Mix8 - 2,07 - 2,28 0,3 - 0,03 - 0,03 - 0,17 0,28 0,45 0,61 0,87 0,91	σ 0,37 - 0,1 0,01 - 0,02 0,02 0,05 0,03 0,06 0,07 0,09	T19_04 0,4 850 Mix8 - 5,28 1,02 - 0,22 0,01 1,14 1,92 3,09 4,71 5,45 5,31	σ - 2,48 - 0,4 0,12 - 0,14 0 0,49 0,64 0,78 0,95 1,13 0,66	AK06_01 0,4 725 Mix8 - 5,47 - 4,17 2,25 - 0,08 0 0,66 1,04 1,66 2,2 1,55 1,29	σ 0,6 - 1,06 0,24 - 0,02 0 0,09 0,14 0,23 0,47 0,21 0,25	AK06_02 0,4 725 Mix9 - 5,73 0,96 - 0,02 - 0,15 0,26 0,42 0,58 0,68 0,68	σ 1,28 - 0,52 0,04 - 0,01 - 0,07 0,05 0,08 0,13 0,18 0,12
P (Gpa) T (°C) Composition Sc Ti Cr Mn Sr Zr Nb Ba La Ce Pr Nd Sm Eu Gd	AK05_05 0,4 825 Mix8 - 11,26 - 1,74 0,29 - 0,62 - 0,38 0,65 1,09 1,97 5,36 8,61 -	σ 0,91 - 0,28 0,01 - 0,15 - 0,12 0,27 0,54 1,42 2,27 -	T19_01 0,4 850 Mix8 - 5,8 - 4,75 1,35 - 0,14 0,02 1,54 2,28 3,62 4,83 4,79 5,25 -	σ - 1,08 - 0,78 0,17 - 0,08 0,01 0,43 0,62 0,88 0,92 1,23 1,02 -	T19_03 0,4 850 Mix8 - 2,07 - 2,28 0,3 - 0,03 - 0,03 - 0,17 0,28 0,45 0,61 0,87 0,91 -	σ 0,37 - 0,1 0,01 - 0,02 0,02 0,05 0,03 0,06 0,07 0,09 -	T19_04 0,4 850 Mix8 - 5,28 1,02 - 0,22 0,01 1,14 1,92 3,09 4,71 5,45 5,31 -	σ 2,48 - 0,4 0,12 - 0,14 0 0,49 0,64 0,78 0,95 1,13 0,66	AK06_01 0,4 725 Mix8 - 5,47 - 4,17 2,25 - 0,08 0 0,66 1,04 1,66 2,2 1,55 1,29 -	σ 0,6 - 1,06 0,24 - 0,02 0 0,09 0,14 0,23 0,47 0,21 0,25 -	AK06_02 0,4 725 Mix9 - 5,73 0,96 - 0,02 - 0,15 0,26 0,42 0,58 0,68 0,68 -	σ 1,28 - 0,52 0,04 - 0,01 - 0,07 0,05 0,08 0,13 0,18 0,12 -
P (Gpa) T (°C) Composition Sc Ti Cr Mn Sr Zr Nb Ba La Ce Pr Nd Sm Eu Gd Tb	AK05_05 0,4 825 Mix8 - 11,26 - 1,74 0,29 - 0,62 - 0,38 0,65 1,09 1,97 5,36 8,61 - 13,69	σ 0,91 - 0,28 0,01 - 0,15 - 0,12 0,27 0,54 1,42 2,27 - 4,41	T19_01 0,4 850 Mix8 - 5,8 - 4,75 1,35 - 0,14 0,02 1,54 2,28 3,62 4,83 4,79 5,25 - 3,95	σ - 1,08 - 0,78 0,17 - 0,08 0,01 0,43 0,62 0,88 0,92 1,23 1,02 - 1,04	T19_03 0,4 850 Mix8 - 2,07 - 2,28 0,3 - 0,03 - 0,03 - 0,17 0,28 0,45 0,61 0,87 0,91 - 0,88	σ 0,37 - 0,1 0,01 - 0,02 0,05 0,03 0,06 0,07 0,09 - 0,05	T19_04 0,4 850 Mix8 - 5,28 1,02 - 0,22 0,01 1,14 1,92 3,09 4,71 5,45 5,31 - 4,9	σ - 2,48 - 0,4 0,12 - 0,14 0 0,49 0,64 0,78 0,95 1,13 0,66 - 0,79	AK06_01 0,4 725 Mix8 - 5,47 - 4,17 2,25 - 0,08 0 0,66 1,04 1,66 2,2 1,55 1,29 - 0,53	σ 0,6 - 1,06 0,24 - 0,02 0 0,09 0,14 0,23 0,47 0,21 0,25 - 0,17	AK06_02 0,4 725 Mix9 - 3,09 - 5,73 0,96 - 0,02 - 0,15 0,26 0,42 0,58 0,68 0,68 - 0,57	σ 1,28 - 0,52 0,04 - 0,01 - 0,07 0,05 0,08 0,13 0,18 0,12 - 0,12
P (Gpa) T (°C) Composition Sc Ti Cr Mn Sr Zr Nb Ba La Ce Pr Nd Sm Eu Gd Tb Dy	AK05_05 0,4 825 Mix8 - 11,26 - 1,74 0,29 - 0,62 - 0,38 0,65 1,09 1,97 5,36 8,61 - 13,69 15,86	σ - 0,91 - 0,28 0,01 - 0,15 - 0,12 0,27 0,54 1,42 2,27 - 4,41 6,02	T19_01 0,4 850 Mix8 - 5,8 - 4,75 1,35 - 0,14 0,02 1,54 2,28 3,62 4,83 4,79 5,25 - 3,95 3,04	σ - 1,08 - 0,78 0,17 - 0,08 0,01 0,43 0,62 0,88 0,92 1,23 1,02 - 1,04 0,61	T19_03 0,4 850 Mix8 - 2,07 - 2,28 0,3 - 0,03 - 0,03 - 0,17 0,28 0,45 0,61 0,87 0,91 - 0,88 0,8	σ - 0,37 - 0,1 0,01 - 0,02 0,05 0,03 0,06 0,07 0,09 - 0,05 0,11	T19_04 0,4 850 Mix8 - 5,28 1,02 - 0,22 0,01 1,14 1,92 3,09 4,71 5,45 5,31 - 4,9 3,91	σ - 2,48 - 0,4 0,12 - 0,14 0 0,49 0,64 0,78 0,95 1,13 0,66 - 0,79 0,71	AK06_01 0,4 725 Mix8 - 5,47 - 4,17 2,25 - 0,08 0 0,66 1,04 1,66 2,2 1,55 1,29 - 0,53 0,37	σ - 0,6 - 1,06 0,24 - 0,02 0 0,09 0,14 0,23 0,47 0,21 0,25 - 0,17 0,14	AK06_02 0,4 725 Mix9 - 3,09 - 5,73 0,96 - 0,02 - 0,15 0,26 0,42 0,58 0,68 0,68 - 0,57 0,52	σ 1,28 - 0,52 0,04 - 0,01 - 0,07 0,05 0,08 0,13 0,18 0,12 - 0,12 0,09
P (Gpa) T (°C) Composition Sc Ti Cr Mn Sr Zr Nb Ba La Ce Pr Nd Sm Eu Gd Tb Dy Y	AK05_05 0,4 825 Mix8 - 11,26 - 1,74 0,29 - 0,62 - 0,38 0,65 1,09 1,97 5,36 8,61 - 13,69 15,86 11,89	σ - 0,91 - 0,28 0,01 - 0,15 - 0,12 0,27 0,54 1,42 2,27 - 4,41 6,02 3,94	T19_01 0,4 850 Mix8 - 5,8 - 4,75 1,35 - 0,14 0,02 1,54 2,28 3,62 4,83 4,79 5,25 - 3,95 3,04 2,27	σ - 1,08 - 0,78 0,17 - 0,08 0,01 0,43 0,62 0,88 0,92 1,23 1,02 - 1,04 0,61 0,45	T19_03 0,4 850 Mix8 - 2,07 - 2,28 0,3 - 0,03 - 0,03 - 0,17 0,28 0,45 0,61 0,87 0,91 - 0,88 0,8 0,63	σ - 0,37 - 0,1 0,01 - 0,02 0,05 0,03 0,06 0,07 0,09 - 0,05 0,11 0,07	T19_04 0,4 850 Mix8 - 5,28 1,02 - 0,22 0,01 1,14 1,92 3,09 4,71 5,45 5,31 - 4,9 3,91 2,9	σ - 2,48 - 0,4 0,12 - 0,14 0 0,49 0,64 0,78 0,95 1,13 0,66 - 0,79 0,71 0,6	AK06_01 0,4 725 Mix8 - 5,47 - 4,17 2,25 - 0,08 0 0,66 1,04 1,66 2,2 1,55 1,29 - 0,53 0,37 0,24	σ - 0,6 - 1,06 0,24 - 0,02 0 0,09 0,14 0,23 0,47 0,21 0,25 - 0,17 0,14 0,09	AK06_02 0,4 725 Mix9 - 3,09 - 5,73 0,96 - 0,02 - 0,15 0,26 0,42 0,58 0,68 0,68 - 0,57 0,52 0,39	σ 1,28 - 0,52 0,04 - 0,01 - 0,07 0,05 0,08 0,13 0,12 - 0,12 0,09 0,1
P (Gpa) T (°C) Composition Sc Ti Cr Mn Sr Zr Nb Ba La Ce Pr Nd Sm Eu Gd Tb Dy Y Ho	AK05_05 0,4 825 Mix8 - 11,26 - 1,74 0,29 - 0,62 - 0,38 0,65 1,09 1,97 5,36 8,61 - 13,69 15,86 11,89 16,76	σ - 0,91 - 0,28 0,01 - 0,15 - 0,12 0,27 0,54 1,42 2,27 - 4,41 6,02 3,94 6,01	T19_01 0,4 850 Mix8 - 5,8 - 4,75 1,35 - 0,14 0,02 1,54 2,28 3,62 4,83 4,79 5,25 - 3,95 3,04 2,27 2,58	σ - 1,08 - 0,78 0,17 - 0,08 0,01 0,43 0,62 0,88 0,92 1,23 1,02 - 1,04 0,61 0,45 0,5	T19_03 0,4 850 Mix8 - 2,07 - 2,28 0,3 - 0,03 - 0,03 - 0,17 0,28 0,45 0,61 0,87 0,91 - 0,88 0,8 0,63 0,74	σ - 0,37 - 0,1 0,01 - 0,02 0,05 0,03 0,06 0,07 0,09 - 0,05 0,11 0,07 0,03	T19_04 0,4 850 Mix8 - 5,28 1,02 - 0,22 0,01 1,14 1,92 3,09 4,71 5,45 5,31 - 4,9 3,91 2,9 3,64	σ - 2,48 - 0,4 0,12 - 0,14 0 0,49 0,64 0,78 0,95 1,13 0,66 - 0,79 0,71 0,6 0,55	AK06_01 0,4 725 Mix8 - 5,47 - 4,17 2,25 - 0,08 0 0,66 1,04 1,66 2,2 1,55 1,29 - 0,53 0,37 0,24 0,27	σ - 0,6 - 1,06 0,24 - 0,02 0 0,09 0,14 0,23 0,47 0,21 0,25 - 0,17 0,14 0,09 0,1	AK06_02 0,4 725 Mix9 - 3,09 - 5,73 0,96 - 0,02 - 0,15 0,26 0,42 0,58 0,68 0,68 - 0,57 0,52 0,39 0,51	σ 1,28 - 0,52 0,04 - 0,01 - 0,07 0,05 0,08 0,13 0,12 - 0,12 0,09 0,1 0,13
P (Gpa) T (°C) Composition Sc Ti Cr Mn Sr Zr Nb Ba La Ce Pr Nd Sm Eu Gd Tb Dy Y Ho Er	AK05_05 0,4 825 Mix8 - 11,26 - 1,74 0,29 - 0,62 - 0,38 0,65 1,09 1,97 5,36 8,61 - 13,69 15,86 11,89 16,76 18,79	σ - 0,91 - 0,28 0,01 - 0,15 - 0,12 0,27 0,54 1,42 2,27 - 4,41 6,02 3,94 6,01 7,4	T19_01 0,4 850 Mix8 - 5,8 - 4,75 1,35 - 0,14 0,02 1,54 2,28 3,62 4,83 4,79 5,25 - 3,95 3,04 2,27 2,58 2,02	σ - 1,08 - 0,78 0,17 - 0,08 0,01 0,43 0,62 0,88 0,92 1,23 1,02 - 1,04 0,61 0,45 0,5 0,49	T19_03 0,4 850 Mix8 - 2,07 - 2,28 0,3 - 0,03 - 0,03 - 0,17 0,28 0,45 0,61 0,87 0,91 - 0,88 0,8 0,63 0,74 0,69	σ - 0,37 - 0,1 0,01 - 0,02 0,05 0,03 0,06 0,07 0,09 - 0,05 0,11 0,07 0,03 0,09	T19_04 0,4 850 Mix8 - 5,28 1,02 - 0,22 0,01 1,14 1,92 3,09 4,71 5,45 5,31 - 4,9 3,91 2,9 3,64 3,09	σ - 2,48 - 0,4 0,12 - 0,14 0 0,49 0,64 0,78 0,95 1,13 0,66 - 0,79 0,71 0,6 0,55 0,63	AK06_01 0,4 725 Mix8 - 5,47 - 4,17 2,25 - 0,08 0 0,66 1,04 1,66 2,2 1,55 1,29 - 0,53 0,37 0,24 0,27 0,22	σ - 0,6 - 1,06 0,24 - 0,02 0 0,09 0,14 0,23 0,47 0,21 0,25 - 0,17 0,14 0,09 0,1 0,09 0,14 0,09 0,14 0,25 -	AK06_02 0,4 725 Mix9 - 3,09 - 5,73 0,96 - 0,02 - 0,15 0,26 0,42 0,58 0,68 0,68 - 0,57 0,52 0,39 0,51 0,57	σ 1,28 - 0,52 0,04 - 0,01 - 0,07 0,05 0,08 0,13 0,12 - 0,12 0,09 0,1 0,13 0,19
P (Gpa) T (°C) Composition Sc Ti Cr Mn Sr Zr Nb Ba La Ce Pr Nd Sm Eu Gd Tb Dy Y Ho Er Yb	AK05_05 0,4 825 Mix8 - 11,26 - 1,74 0,29 - 0,62 - 0,38 0,65 1,09 1,97 5,36 8,61 - 13,69 15,86 11,89 16,76 18,79 17,45	σ 0,91 - 0,28 0,01 - 0,15 - 0,12 0,27 0,54 1,42 2,27 - 4,41 6,02 3,94 6,01 7,4 5,1	T19_01 0,4 850 Mix8 - 5,8 - 4,75 1,35 - 0,14 0,02 1,54 2,28 3,62 4,83 4,79 5,25 - 3,95 3,04 2,27 2,58 2,02 1,97	σ - 1,08 - 0,78 0,17 - 0,08 0,01 0,43 0,62 0,88 0,92 1,23 1,02 - 1,04 0,61 0,45 0,5 0,49 0,44	T19_03 0,4 850 Mix8 - 2,07 - 2,28 0,3 - 0,03 - 0,03 - 0,17 0,28 0,45 0,61 0,87 0,91 - 0,88 0,8 0,63 0,74 0,69 0,76	σ 0,37 - 0,1 0,01 - 0,02 0,05 0,03 0,06 0,07 0,09 - 0,05 0,11 0,07 0,03 0,09 0,06	T19_04 0,4 850 Mix8 - 5,28 1,02 - 0,22 0,01 1,14 1,92 3,09 4,71 5,45 5,31 - 4,9 3,91 2,9 3,64 3,09 2,98	σ - 2,48 - 0,4 0,12 - 0,14 0 0,49 0,64 0,78 0,95 1,13 0,66 - 0,79 0,71 0,6 0,55 0,63 0,46	AK06_01 0,4 725 Mix8 - 5,47 - 4,17 2,25 - 0,08 0 0,66 1,04 1,66 2,2 1,55 1,29 - 0,53 0,37 0,24 0,27 0,22 0,28	σ - 0,6 - 1,06 0,24 - 0,02 0 0,09 0,14 0,23 0,47 0,21 0,25 - 0,17 0,14 0,09 0,1 0,09 0,11	AK06_02 0,4 725 Mix9 - 3,09 - 5,73 0,96 - 0,02 - 0,15 0,26 0,42 0,58 0,68 0,68 - 0,57 0,52 0,39 0,51 0,57 1,46	σ 1,28 - 0,52 0,04 - 0,01 - 0,07 0,05 0,08 0,13 0,12 - 0,12 0,09 0,1 0,13 0,19 0,57
P (Gpa) T (°C) Composition Sc Ti Cr Mn Sr Zr Nb Ba La Ce Pr Nd Sm Eu Gd Tb Dy Y Ho Er Yb Lu	AK05_05 0,4 825 Mix8 - 11,26 - 1,74 0,29 - 0,62 - 0,38 0,65 1,09 1,97 5,36 8,61 - 13,69 15,86 11,89 16,76 18,79 17,45 17,52	σ - 0,91 - 0,28 0,01 - 0,15 - 0,12 0,27 0,54 1,42 2,27 - 4,41 6,02 3,94 6,01 7,4 5,1 4,12	T19_01 0,4 850 Mix8 - 5,8 - 4,75 1,35 - 0,14 0,02 1,54 2,28 3,62 4,83 4,79 5,25 - 3,95 3,04 2,27 2,58 2,02 1,97 2,61	σ - 1,08 - 0,78 0,17 - 0,08 0,01 0,43 0,62 0,88 0,92 1,23 1,02 - 1,04 0,61 0,45 0,5 0,49 0,44 0,66	T19_03 0,4 850 Mix8 - 2,07 - 2,28 0,3 - 0,03 - 0,03 - 0,17 0,28 0,45 0,61 0,87 0,91 - 0,88 0,8 0,63 0,74 0,69 0,76 1,01	σ 0,37 - 0,1 0,01 - 0,02 0,05 0,03 0,06 0,07 0,09 - 0,05 0,11 0,07 0,03 0,09 0,06 0,06 0,06	T19_04 0,4 850 Mix8 - 5,28 1,02 - 0,22 0,01 1,14 1,92 3,09 4,71 5,45 5,31 - 4,9 3,91 2,9 3,64 3,09 2,98 3,47	σ - 2,48 - 0,4 0,12 - 0,14 0,49 0,64 0,78 0,95 1,13 0,66 - 0,79 0,71 0,6 0,55 0,63 0,46 0,45	AK06_01 0,4 725 Mix8 - 5,47 - 4,17 2,25 - 0,08 0 0,66 1,04 1,66 2,2 1,55 1,29 - 0,53 0,37 0,24 0,27 0,22 0,28 0,41	σ - 0,6 - 1,06 0,24 - 0,02 0 0,09 0,14 0,23 0,47 0,21 0,25 - 0,17 0,14 0,09 0,1 0,09 0,11 0,09 0,11 0,09	AK06_02 0,4 725 Mix9 - 3,09 - 5,73 0,96 - 0,02 - 0,15 0,26 0,42 0,58 0,68 0,68 - 0,57 0,52 0,39 0,51 0,57 1,46 2,6	σ 1,28 - 0,52 0,04 - 0,01 - 0,07 0,05 0,08 0,13 0,18 0,12 - 0,12 0,09 0,1 0,13 0,19 0,57 1,04
P (Gpa) T (°C) Composition Sc Ti Cr Mn Sr Zr Nb Ba La Ce Pr Nd Sm Eu Gd Tb Dy Y Ho Er Yb Lu Hf	AK05_05 0,4 825 Mix8 - 11,26 - 1,74 0,29 - 0,62 - 0,38 0,65 1,09 1,97 5,36 8,61 - 13,69 15,86 11,89 16,76 18,79 17,45 17,52 -	σ 0,91 - 0,28 0,01 - 0,15 - 0,12 0,27 0,54 1,42 2,27 - 4,41 6,02 3,94 6,01 7,4 5,1 4,12 -	T19_01 0,4 850 Mix8 - 5,8 - 4,75 1,35 - 0,14 0,02 1,54 2,28 3,62 4,83 4,79 5,25 - 3,95 3,04 2,27 2,58 2,02 1,97 2,61 -	σ - 1,08 - 0,78 0,17 - 0,08 0,01 0,43 0,62 0,88 0,92 1,23 1,02 - 1,04 0,61 0,45 0,5 0,49 0,44 0,66 -	T19_03 0,4 850 Mix8 - 2,07 - 2,28 0,3 - 0,03 - 0,03 - 0,17 0,28 0,45 0,61 0,87 0,91 - 0,88 0,8 0,63 0,74 0,69 0,76 1,01 -	σ 0,37 - 0,1 0,01 - 0,02 0,05 0,03 0,06 0,07 0,09 - 0,05 0,11 0,07 0,03 0,09 0,06 0,06 0,06 - -	T19_04 0,4 850 Mix8 - 5,28 1,02 - 0,22 0,01 1,14 1,92 3,09 4,71 5,45 5,31 - 4,9 3,91 2,9 3,64 3,09 2,98 3,47 -	σ - 2,48 - 0,4 0,12 - 0,14 0 0,49 0,64 0,78 0,95 1,13 0,66 - 0,79 0,71 0,6 0,55 0,63 0,46 0,45 -	AK06_01 0,4 725 Mix8 - 5,47 - 4,17 2,25 - 0,08 0 0,66 1,04 1,66 2,2 1,55 1,29 - 0,53 0,37 0,24 0,27 0,22 0,28 0,41 -	σ 0,6 - 1,06 0,24 - 0,02 0 0,09 0,14 0,23 0,47 0,21 0,25 - 0,17 0,14 0,09 0,1 0,09 0,11 0,09 0,11 0,09 - - - - - - - - - - - - -	AK06_02 0,4 725 Mix9 - 3,09 - 5,73 0,96 - 0,02 - 0,15 0,26 0,42 0,58 0,68 0,68 0,68 - 0,57 0,52 0,39 0,51 0,57 1,46 2,6 -	σ 1,28 - 0,52 0,04 - 0,01 - 0,07 0,05 0,08 0,13 0,18 0,12 - 0,12 0,09 0,1 0,13 0,19 0,57 1,04 -

Tableau V	1.3 .	Suite
-----------	--------------	-------

	PCPC1_01		PCPC1_02		PCPC5_01		PCPC5_02		PCPC5_03	
P (Gpa)	0,8		0,8		0,8		0,8		0,8	
T (°C)	850		850		850		850		850	
Composition	PhCbn1	σ	PhCbn1	σ	PhCbn4	σ	PhCbn4	σ	PhCbn4	σ
Sc	37,86	18,25	17,7	6,16	157,43	74,86	84,55	6,31	77,29	3,38
Ti	5,77	1,22	4,58	1,01	15,92	5,78	13,76	1,85	15,36	1,82
Cr	-	-	51,63	21,09	511,35	347,17	-	-	116,99	25,67
Mn	4,33	0,64	2,18	0,8	5,32	1,72	4,91	0,65	2,77	0,13
Sr	1,5	0,25	0,8	0,13	1,1	0,15	0,61	0,04	0,58	0,01
Zr	1,44	0,43	1,23	0,27	1,86	0,24	2,04	0,16	3,23	0,19
Nb	0,79	0,12	0,7	0,16	1,17	0,22	1,29	0,13	1,22	0,21
Ba	0	0	-	-	0,03	0,01	-	-	-	-
La	2,43	1,32	1,29	0,4	3,08	0,68	2,03	0,58	1,71	0,41
Ce	2,33	1,14	1,28	0,36	2,99	0,63	1,29	0,32	1,39	0,27
Pr	3,8	1,66	2,31	0,68	6,22	1,79	3,96	0,92	3,61	0,32
Nd	4,66	1,84	2,82	0,67	8,85	2,28	5,24	1,01	4,88	0,71
Sm	4,15	1,58	3,11	0,75	14,38	3,67	7,13	1,87	6,99	0,72
Eu	4,1	1,38	2,92	0,61	18,58	4,1	7,5	1,78	7,86	0,96
Gd	3,82	1,3	2,72	0,61	19,19	6,41	8,54	1,94	7,05	1,06
Tb	2,74	0,94	2,22	0,47	20	6,45	7,92	1,52	8,58	0,71
Dy	2,54	0,79	1,9	0,42	21,38	5,17	7,72	2,01	8,21	0,43
Y	1,71	0,47	1,4	0,31	14,45	2,75	5,71	1,37	6,32	1,11
Но	2,13	0,58	1,68	0,4	20,51	6,24	7,53	1,33	8,44	0,14
Er	2,02	0,53	1,45	0,32	19,31	5,1	6,78	1,66	9,01	0,57
Yb	2,12	0,35	1,55	0,33	16	3,25	7,61	1,42	9	0,19
Lu	2,47	0,52	1,94	0,48	17,73	3,37	9,8	1,47	11,85	0,17
Hf	1,27	0,99	1,39	0,54	1,44	1,19	2,34	0,56	5,04	0,33
Та	1,03	0,29	0,96	0,3	2,11	0,92	2,5	0,62	3,36	0,84

VI.3.1.2. Grenat

Les coefficients de partage des éléments traces entre les grenats et le liquide silicaté ont été caractérisés pour 10 échantillons, et sont représentés dans le Tableau VI.4 ainsi que dans la Figure.VI.10. De manière générale, tous les métaux rares sont compatibles dans les grenats plutôt que dans le liquide silicaté ($D^{Gnt/LS} > 1$), à l'exception du La dont le coefficient de partage varie entre 0,31 ± 0,03 et 6,06 ± 1, 92 (Tableau VI.4 et Fig.VI.10a et VI.10b) et du Nb pour un échantillon (T17_01, 0,71 ± 0,10).

A basse pression (0,2 et 0,4 GPa, Fig.VI.10a) ainsi qu'à plus haute pression (0,8 GPa, Fig.VI.10b), on observe une différence de comportement entre les LREE et les MREE-HREE. Les MREE et HREE sont en effet beaucoup plus enrichies dans les grenats, avec des coefficients de partage variant entre $13,35 \pm 0,86$ et $72,97 \pm 5,54$ pour le Sm représentatif des autres MREE, et entre $10,00 \pm 0,63$ et $183,78 \pm 52,27$ pour le Lu représentant les autres HREE (Tableau VI.4). Aucun effet clair de pression ou de température n'est observé.

Pour les HFSE, les coefficients de partage du Hf et du Zr sont < 10, variant respectivement de 1,45 \pm 0,68 à 8,84 \pm 1,34 pour le Hf et de 2,53 \pm 0,37 à 7,80 \pm 1,12 pour le Zr. Ces coefficients sont plus élevés pour le Ta et le Nb (jusqu'à 20,53 \pm 4,80 pour le Ta et 22,22 \pm 4,61 pour le Nb ; Tableau VI.4).

Enfin, à 850 °C et 0,8 GPa (Fig.VI.10b), les coefficients de partage des HFSE ainsi que des MREE et HREE sont plus élevés pour les échantillons dopés en Cl (croix grises) en comparaison à ceux non dopés en volatils (croix vertes).

	T17_01	17_01 AK01_03 AK05_05					AK06_01 AK06_02						
P (Gpa)	0,8		0,2		0,4		0,4		0,4				
T (°C)	925		925		825		725		725				
Composition	Mix8	σ	Mix8	σ	Mix8	σ	Mix8	σ	Mix9	σ			
Sc	-	-	-	-	-	-	-	-	-	-			
Ti	11,42	1,01	13,65	0,36	21,02	4,42	41,77	1,76	48,48	2,25			
Cr	-	-	-	-	-	-	-	-	-	-			
Mn	3,16	0,13	0,95	0,01	2,69	0,71	2,69	0,25	2,65	0,07			
Sr	0.04	0	0,02	0	0.03	0,01	0,36	0,11	0,41	0,02			
Zr	-	-	-	-	-	-	-	-	-	-			
Nb	0.71	0.1	5.56	0.05	18.83	8.21	3.2	0.86	4.6	0.48			
Ba	-	-	-	-		-	0.02	0.02	0.01	0.01			
La	0.31	0.03	0.51	0.01	0.65	0.16	1.74	0.38	2.86	0.17			
Ce	1.18	0.07	2.01	0.07	2.39	0.44	6.37	0.81	8.89	0.52			
Pr	2.57	0.14	4.37	0.2	5.76	0.89	14.36	1.02	19.13	0.88			
Nd	5.07	0.18	7 72	0.46	13.6	1.98	26.64	3.5	35.27	1.95			
Sm	13.93	0,10	13 35	0,40	55 56	9.8	20,04 45 57	672	72.97	5 54			
Fu	19,95	1.64	12,55	0,00	91.87	10.32	67 19	15 31	92.05	5,54			
Eu	24.00	2.85	12,57	0,73	110.02	19,52	42.30	7.54	70.31	11.04			
Gu Th	24,99	2,85	14.27	0,74	200.00	60.26	42,39	12 22	106.52	5.91			
TU Du	20,47	3,/1	14,57	0,82	200,99	00,20	43,70	6.24	100,55	5,61			
Dy	39,47	0,00	14,03	0,98	204,05	94,79	41,21	0,24	107,2	0,55			
Y II-	35,02	/,05	10,78	0,09	240,90	81,05	27,07	4,35	/5,51	4,55			
Ho	45,04	11,48	13,59	0,80	319,85	110,51	35,08	0,33	101,51	0,84			
Er	40,70	12,98	12,55	0,7	340,25	141,90	28,77	0,1	87,48	0,00			
YD	41,96	11,97	10,91	0,84	248,45	82,87	21,54	3,07	60,03	4,75			
Lu	37,84	10,15	10	0,63	183,78	52,27	18,42	2,86	49,53	3,47			
Hf	-	-	-	-	-	-	-	-	-	-			
Ta	-	-	-	-	-	-	-	-	-	-			
	PCPCI 01		PCPCI 02		PCPC5_01		PCPC5 02		PCPC5_03				
D(C)													
P (Gpa)	0,8		0,8		0,8		0,8		0,8				
P (Gpa) T (°C)	0,8 850		0,8 850		0,8 850		0,8 850		0,8 850				
P (Gpa) T (°C) Composition	0,8 850 PhCbn1	σ	0,8 850 PhCbn1	σ	0,8 850 PhCbn4	σ	0,8 850 PhCbn4	σ	0,8 850 PhCbn4	σ			
P (Gpa) T (°C) Composition Sc	0,8 850 PhCbn1 55,95	σ 17,66	0,8 850 PhCbn1 26,22	σ 7,99	0,8 850 PhCbn4 117,42	<u>σ</u> 19,14	0,8 850 PhCbn4 100,85	σ 14,86	0,8 850 PhCbn4 148,92	<u>σ</u> 26,5			
P (Gpa) T (°C) Composition Sc Ti	0,8 850 PhCbn1 55,95 13,24	σ 17,66 2,48	0,8 850 PhCbn1 26,22 9,45	σ 7,99 2,29	0,8 850 PhCbn4 117,42 26,21	σ 19,14 2,93	0,8 850 PhCbn4 100,85 25,95	σ 14,86 2,5	0,8 850 PhCbn4 148,92 39,21	σ 26,5 4,26			
P (Gpa) T (°C) Composition Sc Ti Cr	0,8 850 PhCbn1 55,95 13,24	σ 17,66 2,48	0,8 850 PhCbn1 26,22 9,45 77,31	σ 7,99 2,29 28,37	0,8 850 PhCbn4 117,42 26,21 121,99	σ 19,14 2,93 40,47	0,8 850 PhCbn4 100,85 25,95	σ 14,86 2,5	0,8 850 PhCbn4 148,92 39,21 361,09	σ 26,5 4,26 123,32			
P (Gpa) T (°C) Composition Sc Ti Cr Mn	0,8 850 PhCbn1 55,95 13,24 - 5,35	σ 17,66 2,48 - 1,23	0,8 850 PhCbn1 26,22 9,45 77,31 3,31	σ 7,99 2,29 28,37 1,25	0,8 850 PhCbn4 117,42 26,21 121,99 9,43	5 19,14 2,93 40,47 0,81	0,8 850 PhCbn4 100,85 25,95 - 5,73	σ 14,86 2,5 - 1,26	0,8 850 PhCbn4 148,92 39,21 361,09 4,05	σ 26,5 4,26 123,32 0,71			
P (Gpa) T (°C) Composition Sc Ti Cr Mn Sr	0,8 850 PhCbn1 55,95 13,24 - 5,35 0,21	σ 17,66 2,48 - 1,23 0,05	0,8 850 PhCbn1 26,22 9,45 77,31 3,31 0,1	o 7,99 2,29 28,37 1,25 0,02	0,8 850 PhCbn4 117,42 26,21 121,99 9,43 0,13	σ 19,14 2,93 40,47 0,81 0,02	0,8 850 PhCbn4 100,85 25,95 - 5,73 0,06	σ 14,86 2,5 - 1,26 0,01	0,8 850 PhCbn4 148,92 39,21 361,09 4,05 0,07	σ 26,5 4,26 123,32 0,71 0,01			
P (Gpa) T (°C) Composition Sc Ti Cr Mn Sr Zr	0,8 850 PhCbn1 55,95 13,24 - 5,35 0,21 3,33	σ 17,66 2,48 - 1,23 0,05 0,67	0,8 850 PhCbn1 26,22 9,45 77,31 3,31 0,1 2,53	σ 7,99 2,29 28,37 1,25 0,02 0,67	0,8 850 PhCbn4 117,42 26,21 121,99 9,43 0,13 3,99	σ 19,14 2,93 40,47 0,81 0,02 0,89	0,8 850 PhCbn4 100,85 25,95 - 5,73 0,06 5,14	σ 14,86 2,5 - 1,26 0,01 0,52	0,8 850 PhCbn4 148,92 39,21 361,09 4,05 0,07 7,8	g 26,5 4,26 123,32 0,71 0,01 1,13			
P (Gpa) T (°C) Composition Sc Ti Cr Mn Sr Zr Nb	0,8 850 PhCbn1 55,95 13,24 - 5,35 0,21 3,33 7,39	σ 17,66 2,48 - 1,23 0,05 0,67 1,63	0,8 850 PhCbn1 26,22 9,45 77,31 3,31 0,1 2,53 4,9	g 7,99 2,29 28,37 1,25 0,02 0,67 2,01	0,8 850 PhCbn4 117,42 26,21 121,99 9,43 0,13 3,99 9,55	5 19,14 2,93 40,47 0,81 0,02 0,89 2,28	0,8 850 PhCbn4 100,85 25,95 - 5,73 0,06 5,14 10,18	σ 14,86 2,5 - 1,26 0,01 0,52 2,7	0,8 850 PhCbn4 148,92 39,21 361,09 4,05 0,07 7,8 22,22	σ 26,5 4,26 123,32 0,71 0,01 1,13 4,61			
P (Gpa) T (°C) Composition Sc Ti Cr Mn Sr Zr Nb Ba	0,8 850 PhCbn1 55,95 13,24 - 5,35 0,21 3,33 7,39 0,05	σ 17,66 2,48 - 1,23 0,05 0,67 1,63 0	0,8 850 PhCbn1 26,22 9,45 77,31 3,31 0,1 2,53 4,9 0,02	σ 7,99 2,29 28,37 1,25 0,02 0,67 2,01 0	0,8 850 PhCbn4 117,42 26,21 121,99 9,43 0,13 3,99 9,55	o 19,14 2,93 40,47 0,81 0,02 0,89 2,28	0,8 850 PhCbn4 100,85 25,95 - 5,73 0,06 5,14 10,18 -	σ 14,86 2,5 - 1,26 0,01 0,52 2,7 -	0,8 850 PhCbn4 148,92 39,21 361,09 4,05 0,07 7,8 22,22	σ 26,5 4,26 123,32 0,71 0,01 1,13 4,61			
P (Gpa) T (°C) Composition Sc Ti Cr Mn Sr Zr Nb Ba La	0,8 850 PhCbn1 55,95 13,24 - 5,35 0,21 3,33 7,39 0,05 6,06	σ 17,66 2,48 - 1,23 0,05 0,67 1,63 0 1,93	0,8 850 PhCbn1 26,22 9,45 77,31 3,31 0,1 2,53 4,9 0,02 2,73	σ 7,99 2,29 28,37 1,25 0,02 0,67 2,01 0 0,73	0,8 850 PhCbn4 117,42 26,21 121,99 9,43 0,13 3,99 9,55 - 5,76	σ 19,14 2,93 40,47 0,81 0,02 0,89 2,28 - 2,12	0,8 850 PhCbn4 100,85 25,95 - 5,73 0,06 5,14 10,18 - 2,66	σ 14,86 2,5 - 1,26 0,01 0,52 2,7 - 0,6	0,8 850 PhCbn4 148,92 39,21 361,09 4,05 0,07 7,8 22,22 - 3,6	σ 26,5 4,26 123,32 0,71 0,01 1,13 4,61 - 1,01			
P (Gpa) T (°C) Composition Sc Ti Cr Mn Sr Zr Nb Ba La Ce	0,8 850 PhCbn1 55,95 13,24 - 5,35 0,21 3,33 7,39 0,05 6,06 11,03	σ 17,66 2,48 - 1,23 0,05 0,67 1,63 0 1,93 3,24	0,8 850 PhCbn1 26,22 9,45 77,31 3,31 0,1 2,53 4,9 0,02 2,73 7,99	σ 7,99 2,29 28,37 1,25 0,02 0,67 2,01 0 0,73 2,45	0,8 850 PhCbn4 117,42 26,21 121,99 9,43 0,13 3,99 9,55 - 5,76 13,31	σ 19,14 2,93 40,47 0,81 0,02 0,89 2,28 - 2,12 2,81	0,8 850 PhCbn4 100,85 25,95 - 5,73 0,06 5,14 10,18 - 2,66 8,64	σ 14,86 2,5 - 1,26 0,01 0,52 2,7 - 0,6 1,06	0,8 850 PhCbn4 148,92 39,21 361,09 4,05 0,07 7,8 22,22 - 3,6 9,38	σ 26,5 4,26 123,32 0,71 0,01 1,13 4,61 - 1,01 1,7			
P (Gpa) T (°C) Composition Sc Ti Cr Mn Sr Zr Nb Ba La Ce Pr	0,8 850 PhCbn1 55,95 13,24 - 5,35 0,21 3,33 7,39 0,05 6,06 11,03 19,81	σ 17,66 2,48 - 1,23 0,05 0,67 1,63 0 1,93 3,24 5,29	0,8 850 PhCbn1 26,22 9,45 77,31 3,31 0,1 2,53 4,9 0,02 2,73 7,99 12,48	σ 7,99 2,29 28,37 1,25 0,02 0,67 2,01 0 0,73 2,45 3,39	0,8 850 PhCbn4 117,42 26,21 121,99 9,43 0,13 3,99 9,55 - 5,76 13,31 23,58	σ 19,14 2,93 40,47 0,81 0,02 0,89 2,28 - 2,12 2,81 5,69	0,8 850 PhCbn4 100,85 25,95 - 5,73 0,06 5,14 10,18 - 2,66 8,64 16,36	σ 14,86 2,5 - 1,26 0,01 0,52 2,7 - 0,6 1,06 1,38	0,8 850 PhCbn4 148,92 39,21 361,09 4,05 0,07 7,8 22,22 - 3,6 9,38 17,26	σ 26,5 4,26 123,32 0,71 0,01 1,13 4,61 - 1,01 1,7 3,67			
P (Gpa) T (°C) Composition Sc Ti Cr Mn Sr Zr Nb Ba La Ce Pr Nd	0,8 850 PhCbn1 55,95 13,24 - 5,35 0,21 3,33 7,39 0,05 6,06 11,03 19,81 29	σ 17,66 2,48 - 1,23 0,05 0,67 1,63 0 1,93 3,24 5,29 7,98	0,8 850 PhCbn1 26,22 9,45 77,31 3,31 0,1 2,53 4,9 0,02 2,73 7,99 12,48 18,28	σ 7,99 2,29 28,37 1,25 0,02 0,67 2,01 0 0,73 2,45 3,39 4,56	0,8 850 PhCbn4 117,42 26,21 121,99 9,43 0,13 3,99 9,55 - 5,76 13,31 23,58 38,28	σ 19,14 2,93 40,47 0,81 0,02 0,89 2,28 - 2,12 2,81 5,69 8,07	0,8 850 PhCbn4 100,85 25,95 - 5,73 0,06 5,14 10,18 - 2,66 8,64 16,36 25,08	σ 14,86 2,5 - 1,26 0,01 0,52 2,7 - 0,6 1,06 1,38 1,07	0,8 850 PhCbn4 148,92 39,21 361,09 4,05 0,07 7,8 22,22 - 3,6 9,38 17,26 28,52	σ 26,5 4,26 123,32 0,71 0,01 1,13 4,61 - 1,01 1,7 3,67 5,07			
P (Gpa) T (°C) Composition Sc Ti Cr Mn Sr Zr Nb Ba La Ce Pr Nd Sm	0,8 850 PhCbn1 55,95 13,24 - 5,35 0,21 3,33 7,39 0,05 6,06 11,03 19,81 29 31,86	σ 17,66 2,48 - 1,23 0,05 0,67 1,63 0 1,93 3,24 5,29 7,98 8,69	0,8 850 PhCbn1 26,22 9,45 77,31 3,31 0,1 2,53 4,9 0,02 2,73 7,99 12,48 18,28 25,89	σ 7,99 2,29 28,37 1,25 0,02 0,67 2,01 0 0,73 2,45 3,39 4,56 5,96	0,8 850 PhCbn4 117,42 26,21 121,99 9,43 0,13 3,99 9,55 - 5,76 13,31 23,58 38,28 68,99	σ 19,14 2,93 40,47 0,81 0,02 0,89 2,28 - 2,12 2,81 5,69 8,07 12,7	0,8 850 PhCbn4 100,85 25,95 - 5,73 0,06 5,14 10,18 - 2,66 8,64 16,36 25,08 49,62	σ 14.86 2.5 - 1,26 0,01 0,52 2,7 - 0,6 1,06 1,38 1,07 3,55	0,8 850 PhCbn4 148,92 39,21 361,09 4,05 0,07 7,8 22,22 - 3,6 9,38 17,26 28,52 56,98	σ 26,5 4,26 123,32 0,71 0,01 1,13 4,61 - 1,01 1,7 3,67 5,07 7,41			
P (Gpa) T (°C) Composition Sc Ti Cr Mn Sr Zr Nb Ba La Ce Pr Nd Sm Eu	0,8 850 PhCbn1 55,95 13,24 - 5,35 0,21 3,33 7,39 0,05 6,06 11,03 19,81 29 31,86 33,58	σ 17,66 2,48 - 1,23 0,05 0,67 1,63 0 1,93 3,24 5,29 7,98 8,69 8,73	0,8 850 PhCbn1 26,22 9,45 77,31 3,31 0,1 2,53 4,9 0,02 2,73 7,99 12,48 18,28 25,89 25,16	σ 7,99 2,29 28,37 1,25 0,02 0,67 2,01 0 0,73 2,45 3,39 4,56 5,96 5,83	0,8 850 PhCbn4 117,42 26,21 121,99 9,43 0,13 3,99 9,55 - 5,76 13,31 23,58 38,28 68,99 97,1	σ 19,14 2,93 40,47 0,81 0,02 0,89 2,28 - 2,12 2,81 5,69 8,07 12,7 14,71	0,8 850 PhCbn4 100,85 25,95 - 5,73 0,06 5,14 10,18 - 2,66 8,64 16,36 25,08 49,62 57,53	σ 14.86 2.5 - 1,26 0,01 0,52 2,7 - 0,6 1,06 1,38 1,07 3,55 7,18	0,8 850 PhCbn4 148,92 39,21 361,09 4,05 0,07 7,8 22,22 - 3,6 9,38 17,26 28,52 56,98 73,56	σ 26,5 4,26 123,32 0,71 0,01 1,13 4,61 - 1,01 1,7 3,67 5,07 7,41 11,72			
P (Gpa) T (°C) Composition Sc Ti Cr Mn Sr Zr Nb Ba La Ce Pr Nd Sm Eu Gd	0,8 850 PhCbn1 55,95 13,24 - 5,35 0,21 3,33 7,39 0,05 6,06 11,03 19,81 29 31,86 33,58 30,88	σ 17,66 2,48 - 1,23 0,05 0,67 1,63 0 1,93 3,24 5,29 7,98 8,69 8,73 7,48	0,8 850 PhCbn1 26,22 9,45 77,31 3,31 0,1 2,53 4,9 0,02 2,73 7,99 12,48 18,28 25,89 25,16 24,21	σ 7,99 2,29 28,37 1,25 0,02 0,67 2,01 0 0,73 2,45 3,39 4,56 5,96 5,83 5,81	0,8 850 PhCbn4 117,42 26,21 121,99 9,43 0,13 3,99 9,55 - 5,76 13,31 23,58 38,28 68,99 97,1 110,05	σ 19,14 2,93 40,47 0,81 0,02 0,89 2,28 - 2,12 2,81 5,69 8,07 12,7 14,71 22,83	0,8 850 PhCbn4 100,85 25,95 - 5,73 0,06 5,14 10,18 - 2,66 8,64 16,36 25,08 49,62 57,53 66,51	σ 14.86 2.5 - 1,26 0,01 0,52 2,7 - 0,6 1,06 1,38 1,07 3,55 7,18 7,22	0,8 850 PhCbn4 148,92 39,21 361,09 4,05 0,07 7,8 22,22 - 3,6 9,38 17,26 28,52 56,98 73,56 83,15	σ 26,5 4,26 123,32 0,71 0,01 1,13 4,61 - 1,01 1,7 3,67 5,07 7,41 11,72 14,79			
P (Gpa) T (°C) Composition Sc Ti Cr Mn Sr Zr Nb Ba La Ce Pr Nd Sm Eu Gd Tb	0,8 850 PhCbn1 55,95 13,24 - 5,35 0,21 3,33 7,39 0,05 6,06 11,03 19,81 29 31,86 33,58 30,88 24,72	σ 17,66 2,48 - 1,23 0,05 0,67 1,63 0 1,93 3,24 5,29 7,98 8,69 8,73 7,48 7,55	0,8 850 PhCbn1 26,22 9,45 77,31 3,31 0,1 2,53 4,9 0,02 2,73 7,99 12,48 18,28 25,89 25,16 24,21 24,02	σ 7,99 2,29 28,37 1,25 0,02 0,67 2,01 0 0,73 2,45 3,39 4,56 5,96 5,83 5,81 5,91	0,8 850 PhCbn4 117,42 26,21 121,99 9,43 0,13 3,99 9,55 - 5,76 13,31 23,58 38,28 68,99 97,1 110,05 129,2	σ 19,14 2,93 40,47 0,81 0,02 0,89 2,28 - 2,12 2,81 5,69 8,07 12,7 14,71 22,83 20,54	0,8 850 PhCbn4 100,85 25,95 - 5,73 0,06 5,14 10,18 - 2,66 8,64 16,36 25,08 49,62 57,53 66,51 78,47	σ 14.86 2.5 - 1,26 0,01 0,52 2,7 - 0,6 1,06 1,38 1,07 3,55 7,18 7,22 9,14	0,8 850 PhCbn4 148,92 39,21 361,09 4,05 0,07 7,8 22,22 - 3,6 9,38 17,26 28,52 56,98 73,56 83,15 103,15	σ 26,5 4,26 123,32 0,71 0,01 1,13 4,61 - 1,01 1,7 3,67 5,07 7,41 11,72 14,79 16,41			
P (Gpa) T (°C) Composition Sc Ti Cr Mn Sr Zr Nb Ba La Ce Pr Nd Sm Eu Gd Tb	0,8 850 PhCbn1 55,95 13,24 - 5,35 0,21 3,33 7,39 0,05 6,06 11,03 19,81 29 31,86 33,58 30,88 24,72 26,41	σ 17,66 2,48 - 1,23 0,05 0,67 1,63 0 1,93 3,24 5,29 7,98 8,69 8,73 7,48 7,55 8,15	0,8 850 PhCbn1 26,22 9,45 77,31 3,31 0,1 2,53 4,9 0,02 2,73 7,99 12,48 18,28 25,89 25,16 24,21 24,02 22,94	σ 7,99 2,29 28,37 1,25 0,02 0,67 2,01 0 0,73 2,45 3,39 4,56 5,96 5,83 5,81 5,91 5,7	0,8 850 PhCbn4 117,42 26,21 121,99 9,43 0,13 3,99 9,55 - 5,76 13,31 23,58 38,28 68,99 97,1 110,05 129,2 149,19	σ 19,14 2,93 40,47 0,81 0,02 0,89 2,28 - 2,12 2,81 5,69 8,07 12,7 14,71 22,83 20,54 31,26	0,8 850 PhCbn4 100,85 25,95 - 5,73 0,06 5,14 10,18 - 2,66 8,64 16,36 25,08 49,62 57,53 66,51 78,47 81,58	σ 14.86 2.5 - 1,26 0,01 0,52 2,7 - 0,6 1,06 1,38 1,07 3,55 7,18 7,22 9,14 10.04	0,8 850 PhCbn4 148,92 39,21 361,09 4,05 0,07 7,8 22,22 - 3,6 9,38 17,26 28,52 56,98 73,56 83,15 103,15 121,7	σ 26,5 4,26 123,32 0,71 0,01 1,13 4,61 - 1,01 1,7 3,67 5,07 7,41 11,72 14,79 16,41 20,92			
P (Gpa) T (°C) Composition Sc Ti Cr Mn Sr Zr Nb Ba La Ce Pr Nd Sm Eu Gd Tb Dy Y	0,8 850 PhCbn1 55,95 13,24 - 5,35 0,21 3,33 7,39 0,05 6,06 11,03 19,81 29 31,86 33,58 30,88 24,72 26,41 23,17	σ 17,66 2,48 - 1,23 0,05 0,67 1,63 0 1,93 3,24 5,29 7,98 8,69 8,73 7,48 7,55 8,15 7,43	0,8 850 PhCbn1 26,22 9,45 77,31 3,31 0,1 2,53 4,9 0,02 2,73 7,99 12,48 18,28 25,89 25,16 24,21 24,02 22,94 19,65	σ 7,99 2,29 28,37 1,25 0,02 0,67 2,01 0 0,73 2,45 3,39 4,56 5,96 5,83 5,81 5,91 5,7 4,95	0,8 850 PhCbn4 117,42 26,21 121,99 9,43 0,13 3,99 9,55 - 5,76 13,31 23,58 38,28 68,99 97,1 110,05 129,2 149,19 130,64	σ 19,14 2,93 40,47 0,81 0,02 0,89 2,28 - 2,12 2,81 5,69 8,07 12,7 14,71 22,83 20,54 31,26 26,6	0,8 850 PhCbn4 100,85 25,95 - 5,73 0,06 5,14 10,18 - 2,66 8,64 16,36 25,08 49,62 57,53 66,51 78,47 81,58 77,19	σ 14,86 2,5 - 1,26 0,01 0,52 2,7 - 0,6 1,06 1,38 1,07 3,55 7,18 7,22 9,14 10,04 9,92	0,8 850 PhCbn4 148,92 39,21 361,09 4,05 0,07 7,8 22,22 - 3,6 9,38 17,26 28,52 56,98 73,56 83,15 103,15 121,7 102,76	σ 26,5 4,26 123,32 0,71 0,01 1,13 4,61 - 1,01 1,7 3,67 5,07 7,41 11,72 14,79 16,41 20,92 13,32			
P (Gpa) T (°C) Composition Sc Ti Cr Mn Sr Zr Nb Ba La Ce Pr Nd Sm Eu Gd Tb Dy Y Ho	0,8 850 PhCbn1 55,95 13,24 - 5,35 0,21 3,33 7,39 0,05 6,06 11,03 19,81 29 31,86 33,58 30,88 24,72 26,41 23,17 23,56	σ 17,66 2,48 - 1,23 0,05 0,67 1,63 0 1,93 3,24 5,29 7,98 8,69 8,73 7,48 7,55 8,15 7,43 6,29	0,8 850 PhCbn1 26,22 9,45 77,31 3,31 0,1 2,53 4,9 0,02 2,73 7,99 12,48 18,28 25,89 25,16 24,21 24,02 22,94 19,65 21,54	σ 7,99 2,29 28,37 1,25 0,02 0,67 2,01 0 0,73 2,45 3,39 4,56 5,96 5,83 5,81 5,91 5,7 4,95 5,52	0,8 850 PhCbn4 117,42 26,21 121,99 9,43 0,13 3,99 9,55 - 5,76 13,31 23,58 38,28 68,99 97,1 110,05 129,2 149,19 130,64 155,77	σ 19,14 2,93 40,47 0,81 0,02 0,89 2,28 - 2,12 2,81 5,69 8,07 12,7 14,71 22,83 20,54 31,26 26,6 33,1	0,8 850 PhCbn4 100,85 25,95 - 5,73 0,06 5,14 10,18 - 2,66 8,64 16,36 25,08 49,62 57,53 66,51 78,47 81,58 77,19 92,09	σ 14,86 2,5 - 1,26 0,01 0,52 2,7 - 0,6 1,06 1,38 1,07 3,55 7,18 7,22 9,14 10,04 9,92 10,47	0,8 850 PhCbn4 148,92 39,21 361,09 4,05 0,07 7,8 22,22 - 3,6 9,38 17,26 28,52 56,98 73,56 83,15 103,15 121,7 102,76 133,22	σ 26,5 4,26 123,32 0,71 0,01 1,13 4,61 - 1,01 1,7 3,67 5,07 7,41 11,72 14,79 16,41 20,92 13,32 23,89			
P (Gpa) T (°C) Composition Sc Ti Cr Mn Sr Zr Nb Ba La Ce Pr Nd Sm Eu Gd Tb Dy Y Ho Er	0,8 850 PhCbn1 55,95 13,24 - 5,35 0,21 3,33 7,39 0,05 6,06 11,03 19,81 29 31,86 33,58 30,88 24,72 26,41 23,17 23,56 22,04	<i>σ</i> 17,66 2,48 - 1,23 0,05 0,67 1,63 0 1,93 3,24 5,29 7,98 8,69 8,73 7,48 7,55 8,15 7,43 6,29 7,24	0,8 850 PhCbn1 26,22 9,45 77,31 3,31 0,1 2,53 4,9 0,02 2,73 7,99 12,48 18,28 25,89 25,16 24,21 24,02 22,94 19,65 21,54 19,81	g 7,99 2,29 28,37 1,25 0,02 0,67 2,01 0 0,73 2,45 3,39 4,56 5,96 5,83 5,81 5,91 5,7 4,95 5,52 5,52 5,62	0,8 850 PhCbn4 117,42 26,21 121,99 9,43 0,13 3,99 9,55 - 5,76 13,31 23,58 38,28 68,99 97,1 110,05 129,2 149,19 130,64 155,77 160 37	σ 19,14 2,93 40,47 0,81 0,02 0,89 2,28 - 2,12 2,81 5,69 8,07 12,7 14,71 22,83 20,54 31,26 26,6 33,1 35,2	0,8 850 PhCbn4 100,85 25,95 - 5,73 0,06 5,14 10,18 - 2,66 8,64 16,36 25,08 49,62 57,53 66,51 78,47 81,58 77,19 92,09 92,7	σ 14,86 2,5 - 1,26 0,01 0,52 2,7 - 0,6 1,06 1,38 1,07 3,55 7,18 7,22 9,14 10,04 9,92 10,47 11,68	0,8 850 PhCbn4 148,92 39,21 361,09 4,05 0,07 7,8 22,22 - 3,6 9,38 17,26 28,52 56,98 73,56 83,15 103,15 121,7 102,76 133,22 145 14	g 26,5 4,26 123,32 0,71 0,01 1,13 4,61 - 1,01 1,7 3,67 5,07 7,41 11,72 14,79 16,41 20,92 13,32 23,89 23,94			
P (Gpa) T (°C) Composition Sc Ti Cr Mn Sr Zr Nb Ba La Ce Pr Nd Sm Eu Gd Sm Eu Gd Tb Dy Y Ho Er Yb	0,8 850 PhCbn1 55,95 13,24 - 5,35 0,21 3,33 7,39 0,05 6,06 11,03 19,81 29 31,86 33,58 30,88 24,72 26,41 23,17 23,56 22,04 17,45	b 17,66 2,48 - 1,23 0,05 0,67 1,63 0 1,93 3,24 5,29 7,98 8,69 8,73 7,48 7,55 8,15 7,43 6,29 7,24 4,9	0,8 850 PhCbn1 26,22 9,45 77,31 3,31 0,1 2,53 4,9 0,02 2,73 7,99 12,48 18,28 25,89 25,16 24,21 24,02 22,94 19,65 21,54 19,81 16,15	g 7,99 2,29 28,37 1,25 0,02 0,67 2,01 0 0,73 2,45 3,39 4,56 5,96 5,83 5,81 5,91 5,7 4,95 5,52 5,62 4,32	0,8 850 PhCbn4 117,42 26,21 121,99 9,43 0,13 3,99 9,55 - 5,76 13,31 23,58 38,28 68,99 97,1 110,05 129,2 149,19 130,64 155,77 160,37 129,52	σ 19,14 2,93 40,47 0,81 0,02 0,89 2,28 - 2,12 2,81 5,69 8,07 12,7 14,71 22,83 20,54 31,26 26,61 33,1 28,88	0,8 850 PhCbn4 100,85 25,95 - 5,73 0,06 5,14 10,18 - 2,66 8,64 16,36 25,08 49,62 57,53 66,51 78,47 81,58 77,19 92,09 92,7 85,58	g 14,86 2,5 - 1,26 0,01 0,52 2,7 - 0,6 1,06 1,38 1,07 3,55 7,18 7,22 9,14 10,04 9,92 10,47 11,68 8,29	0,8 850 PhCbn4 148,92 39,21 361,09 4,05 0,07 7,8 22,22 - 3,6 9,38 17,26 28,52 56,98 73,56 83,15 103,15 121,7 102,76 133,22 145,14 131,41	g 26,5 4,26 123,32 0,71 0,01 1,13 4,61 - 1,01 1,7 3,67 5,07 7,41 11,72 14,79 16,41 20,92 13,32 23,89 23,94 21,71			
P (Gpa) T (°C) Composition Sc Ti Cr Mn Sr Zr Nb Ba La Ce Pr Nd Sm Eu Gd Sm Eu Gd Tb Dy Y Ho Er Yb	0,8 850 PhCbn1 55,95 13,24 - 5,35 0,21 3,33 7,39 0,05 6,06 11,03 19,81 29 31,86 33,58 30,88 24,72 26,41 23,17 23,56 22,04 17,45 16,27	5 17,66 2,48 - 1,23 0,05 0,67 1,63 0 1,93 3,24 5,29 7,98 8,69 8,73 7,48 7,55 8,15 7,43 6,29 7,24 4,9 4,96	0,8 850 PhCbn1 26,22 9,45 77,31 3,31 0,1 2,53 4,9 0,02 2,73 7,99 12,48 18,28 25,89 25,16 24,21 24,02 22,94 19,65 21,54 19,81 16,15 14,67	g 7,99 2,29 28,37 1,25 0,02 0,67 2,01 0 0,73 2,45 3,39 4,56 5,96 5,83 5,81 5,91 5,7 4,95 5,52 5,62 4,32 3,75	0,8 850 PhCbn4 117,42 26,21 121,99 9,43 0,13 3,99 9,55 - 5,76 13,31 23,58 38,28 68,99 97,1 110,05 129,2 149,19 130,64 155,77 160,37 129,52 119,22	σ 19,14 2,93 40,47 0,81 0,02 0,89 2,28 - 2,12 2,81 5,69 8,07 12,7 14,71 22,83 20,54 31,26 26,66 33,1 35,2 28,88 26,38	0,8 850 PhCbn4 100,85 25,95 - 5,73 0,06 5,14 10,18 - 2,66 8,64 16,36 25,08 49,62 57,53 66,51 78,47 81,58 77,19 92,09 92,7 85,58 82,6	σ 14,86 2,5 - 1,26 0,01 0,52 2,7 - 0,6 1,06 1,38 1,07 3,55 7,18 7,22 9,14 9,92 10,04 9,92 10,47 11,68 8,29 7,29	0,8 850 PhCbn4 148,92 39,21 361,09 4,05 0,07 7,8 22,22 - 3,6 9,38 17,26 28,52 56,98 73,56 83,15 103,15 121,7 102,76 133,22 145,14 131,41 123,81	σ 26,5 4,26 123,32 0,71 0,01 1,13 4,61 - 1,01 1,7 3,67 5,07 7,41 11,72 14,79 16,41 20,92 13,32 23,89 23,94 21,71 21,07			
P (Gpa) T (°C) Composition Sc Ti Cr Mn Sr Zr Nb Ba La Ce Pr Nd Sm Eu Gd Tb Dy Y Ho Er Yb Lu Hf	0,8 850 PhCbn1 55,95 13,24 - 5,35 0,21 3,33 7,39 0,05 6,06 11,03 19,81 29 31,86 33,58 30,88 24,72 26,41 23,17 23,56 22,04 17,45 16,27 1,45	g 17,66 2,48 - 1,23 0,05 0,67 1,63 0 1,93 3,24 5,29 7,98 8,69 8,73 7,48 7,55 8,15 7,43 6,29 7,24 4,9 4,96 0,68	0,8 850 PhCbn1 26,22 9,45 77,31 3,31 0,1 2,53 4,9 0,02 2,73 7,99 12,48 18,28 25,89 25,16 24,21 24,02 22,94 19,65 21,54 19,81 16,15 14,67 1,85	σ 7,99 2,29 28,37 1,25 0,02 0,67 2,01 0 0,73 2,45 3,39 4,56 5,96 5,83 5,81 5,77 4,955 5,522 4,322 3,755 0,81	0,8 850 PhCbn4 117,42 26,21 121,99 9,43 0,13 3,99 9,55 - 5,76 13,31 23,58 38,28 68,99 97,1 110,05 129,2 149,19 130,64 155,77 160,37 129,52 119,22 4,87	σ 19,14 2,93 40,47 0,81 0,02 0,89 2,28 - 2,12 2,81 5,69 8,07 12,7 14,71 22,83 20,54 31,26 26,6 33,1 35,2 28,88 26,38 3,44	0,8 850 PhCbn4 100,85 25,95 - 5,73 0,06 5,14 10,18 - 2,66 8,64 16,36 25,08 49,62 57,53 66,51 78,47 81,58 77,19 92,09 92,7 85,58 82,6 6,28	g 14,86 2,5 - 1,26 0,01 0,52 2,7 - 0,6 1,06 1,38 1,07 3,55 7,18 7,22 9,14 10,04 9,92 10,47 11,68 8,29 7,29 1,24	0,8 850 PhCbn4 148,92 39,21 361,09 4,05 0,07 7,8 22,22 - 3,6 9,38 17,26 28,52 56,98 73,56 83,15 103,15 121,7 102,76 133,22 145,14 131,41 123,81 8,88	g 26,5 4,26 123,32 0,71 0,01 1,13 4,61 - 1,01 1,7 3,67 5,07 7,41 11,72 14,79 16,41 20,92 13,32 23,89 23,94 21,71 21,07 1,34			
P (Gpa) T (°C) Composition Sc Ti Cr Mn Sr Zr Nb Ba La Ce Pr Nd Sm Eu Gd Tb Dy Y Ho Er Yb Lu Hf	0,8 850 PhCbn1 55,95 13,24 - 5,35 0,21 3,33 7,39 0,05 6,06 11,03 19,81 29 31,86 33,58 30,88 24,72 26,41 23,17 23,56 22,04 17,45 16,27 1,45 2,11	g 17,66 2,48 - 1,23 0,05 0,67 1,63 0 1,93 3,24 5,29 7,98 8,69 8,73 7,48 7,55 8,15 7,43 6,29 7,24 4,9 4,96 0,68 1,26	0,8 850 PhCbn1 26,22 9,45 77,31 3,31 0,1 2,53 4,9 0,02 2,73 7,99 12,48 18,28 25,89 25,16 24,21 24,02 22,94 19,65 21,54 19,81 16,15 14,67 1,85 2,46	g 7,99 2,29 28,37 1,25 0,02 0,67 2,01 0 0,73 2,45 3,39 4,56 5,96 5,83 5,81 5,91 5,7 4,95 5,52 5,62 4,32 3,75 0,81	0,8 850 PhCbn4 117,42 26,21 121,99 9,43 0,13 3,99 9,55 - 5,76 13,31 23,58 38,28 68,99 97,1 110,05 129,2 149,19 130,64 155,77 160,37 129,52 119,22 4,87 6 4	g 19,14 2,93 40,47 0,81 0,02 0,89 2,28 - 2,12 2,81 5,69 8,07 12,7 14,71 22,83 20,54 31,26 26,6 33,1 35,2 28,88 26,38 3,44 2,04	0,8 850 PhCbn4 100,85 25,95 - 5,73 0,06 5,14 10,18 - 2,66 8,64 16,36 25,08 49,62 57,53 66,51 78,47 81,58 77,19 92,09 92,7 85,58 82,6 6,28 9,47	σ 14,86 2,5 - 1,26 0,01 0,52 2,7 - 0,6 1,06 1,38 1,07 3,55 7,18 7,22 9,14 10,04 9,92 10,47 11,68 8,29 7,29 1,24 1,24	0,8 850 PhCbn4 148,92 39,21 361,09 4,05 0,07 7,8 22,22 - 3,6 9,38 17,26 28,52 56,98 73,56 83,15 103,15 121,7 102,76 133,22 145,14 131,41 123,81 8,88 20,52	g 26,5 4,26 123,32 0,71 0,01 1,13 4,61 - 1,01 1,7 3,67 5,07 7,41 11,72 14,79 16,41 20,92 13,32 23,89 23,94 21,71 21,07 1,34 4,8 21,71 21,07 1,34 4,8 21,71 21,07 1,34 4,8 21,71 21,07 1,34 4,8 21,71 21,07 1,34 4,8 21,71 21,07 1,34 4,8 21,71 21,72 23,89 23,94 21,71 21,07 1,34 4,8 21,71 21,75			

Tableau VI.4. Coefficients de partage des éléments traces entre grenats et liquides silicatés. σ : écart-type sur la moyenne des coefficients de partage, calculé à partir de l'équation (6) de la partie III.4.

Figure VI.10. Coefficients de partage des métaux rares entre grenat et liquide silicaté (D^{GnvLS}) . Ces coefficients sont représentés à 0,2 et 0,4 GPa pour des températures variant de 725 à 925 °C (a) et à 0,8 GPa pour des températures de 850 à 925 °C (b).

VI.3.1.3. Apatite

Des cristaux d'apatite ont été observés dans 15 échantillons différents (Tableau VI.1 et VI.2). Les coefficients de partage des éléments traces n'ont pu être calculés que pour 12 échantillons et sont contenus dans le Tableau VI.5. Pour tous les échantillons, les REE sont toutes compatibles dans l'apatite par rapport au liquide silicaté ($D_{REE}^{Ap/LS} > 1$). Les coefficients de partage varient de 9,19 ± 0,77 à 100,74 ± 11,85 pour le La, et de 1,942 ± 0,616 à 35,298 ± 5,712 pour le Lu (Tableau VI.5). A 0,4 GPa (Fig.VI.11a), on peut observer une décroissance des coefficients de partage des LREE aux HREE, indiquant un enrichissement préférentiel des LREE dans les cristaux d'apatite. Cette tendance est encore plus marquée à 725 °C (bleu foncé), avec un fractionnement plus important entre les LREE et les MREE-HREE (Fig.VI.11a). A 0,8 GPa ce fractionnement entre les REE est beaucoup moins marqué et n'est observé que pour les échantillons dopés en P₂O₅ à 850 et 1050 °C (marron clair et foncé, Fig.VI.11b). De plus l'enrichissement de l'apatite à haute température (1050°C, marron foncé ; échantillon PCPC6_03, Tableau VI.2) est d'un ordre de grandeur moins important que pour les

apatites synthétisées à plus basses température (850 °C, marron clair ; PCPC3_01/02/03, voir Tableau VI.2). Les échantillons dopés en Cl (gris) ne présentent pas de fractionnement entre les LREE et les autres REE, mais montrent une légère augmentation des coefficients de partage pour les MREE et une diminution pour les HREE (Fig.VI.11b).

En ce qui concerne les HFSE, les coefficients de partage $D_{HFSE}^{Ap/LS} < 1$ indiquent que ces éléments sont plutôt concentrés dans le liquide silicaté et qu'ils ont un comportement incompatible dans l'apatite (Fig.VI.11).

Figure VI.11. Coefficients de partage des métaux rares entre apatite et liquide silicaté $(D^{Ap/LS})$, à 0,4 GPa (a) et à 0,8 GPa (b).

	AK05_01		AK05_02		AK05_03		AK05_05		AK06_01		AK06_02		PCPC3_01		PCPC3_02	
P (Gpa)	0,4		0,4		0,4		0,4		0,4		0,4		0,8		0,8	
T (°C)	825		825		825		825		725		725		850		850	
Composition	Mix8	σ	Mix8	σ	Mix8	σ	Mix8	σ	Mix8	σ	Mix9	σ	PhCbn2	σ	PhCbn2	σ
Sc	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ti	0,04	0,01	0,13	0,01	0,34	0,31	0,34	0,35	0,38	0,13	0,24	0,09	-	-	-	-
Cr	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Mn	0,81	0,03	1,16	0,02	0,42	0,01	0,46	0,09	0,9	0,39	0,87	0,56	2,42	0,47	2,33	0,58
Sr	19,15	1,23	14,06	0,16	6,27	0,09	5,29	0,49	33,29	1,16	44,78	5,29	30,11	1,75	28,13	3,37
Zr	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Nb	0,14	0,03	0,25	0,02	0,18	0,06	0,12	0,07	0,07	0,01	0,03	0,01	0,01	0	-	-
Ba	1,96	0,22	1,85	0,03	0,76	0,42	0,62	0,21	0,42	0,22	1,3	0,66	0,37	0,19	0,33	0,12
La	68,59	6,74	53,23	2,82	30,85	1,66	29,62	1,34	76,5	28,58	82,46	11,17	83,7	12,25	83,58	11,21
Ce	68,85	6,98	56,86	2,82	34,32	1,46	33,82	2,16	80,19	29,11	81,58	16,16	72,88	7,45	73,51	9,17
Pr	75,5	7,51	64,51	2,88	39,86	1,66	42,17	4,27	91,51	27,62	94,15	21,38	82,13	8,88	80,13	7,87
Nd	80,19	7,89	66,83	3,21	43,14	1,7	52,94	8,53	84,26	15,54	88,59	24,4	92,58	9,1	94,71	12,18
Sm	72,87	7,23	59,5	2,99	42,02	2,35	74,08	21,3	40,03	3,2	57,98	21,81	77,75	7,11	80,32	9,49
Eu	60,31	6,21	53,73	2,61	39,03	2,35	82,3	28,77	28,82	4,34	45,84	17,53	70,95	5,66	68,17	6,01
Gd	-	-	-	-	-	-	-	-	-	-	-	-	72,89	11,54	76,36	17,43
Tb	43,83	4,03	42,88	2,3	31,17	2,18	98,61	49,87	12,32	2,93	25,27	10,03	46,65	5,5	53,07	6,12
Dy	34,28	2,71	30,37	2	24,9	1,73	97,28	55,18	8,75	2,05	17,88	6,59	39,18	5,56	43,21	4,82
Y	24,05	1,46	20,61	1,49	17,82	1,16	65,84	30,52	5,25	1,23	11,56	3,25	29,04	3,12	31,54	3,38
Ho	27	2,18	25,12	1,53	20,57	1,47	88,89	48,83	6,39	1,87	13,32	4,63	29,4	3,8	32,51	2,73
Er	20,04	1,67	18,07	1,33	15,98	1,1	73,06	42,51	4,29	1,44	9,35	3,03	23,75	4,03	26,8	2,58
Yb	10,37	0,78	8,62	0,46	8,1	0,56	34,47	17,37	2,36	0,84	4,51	0,9	11,44	1,5	12,24	1,55
Lu	7,77	0,63	6,7	0,26	6,3	0,39	22,74	9,3	1,94	0,62	3,73	0,68	9,63	1,43	10,32	1,03
Hf	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0,18	0,03
Та	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0,1	0,02

Tableau VI.5. Coefficients de partage entre apatite et liquides silicatés. σ: écart-type sur la moyenne des coefficients de partage, calculé à partir de l'équation (6) de la partie III.4.
	PCPC3_03		PCPC5_01		PCPC5_02		PCPC6_03	
P (Gpa)	0,8		0,8		0,8		0,8	
T (°C)	850		850		850		1050	
Composition	PhCbn2	σ	PhCbn4	σ	PhCbn4	σ	PhCbn2	σ
Sc	-	-	0,39	0,13	-	-	0,08	0,01
Ti	-	-	0,02	0,01	-	-	<ld< th=""><th>-</th></ld<>	-
Cr	-	-	-	-	-	-	0,1	0,01
Mn	2,05	0,65	0,88	0,31	0,44	0,03	0,17	0,03
Sr	30,48	1,11	14,08	1,11	8,63	0,17	4,26	0,15
Zr	-	-	0,01	0,01	0,04	0	0,01	0
Nb	0,01	0	0,14	0,02	0,08	0	0	0
Ba	0,81	0,29	0,42	0,25	0,12	0	0,1	0,01
La	100,74	11,85	40,81	9,78	61,67	1,3	9,19	0,77
Ce	82,57	4,96	33,1	7,28	34,77	0,71	9,36	0,66
Pr	92,96	9,72	53,44	12,25	72,88	0,27	10,27	0,8
Nd	107,44	14,81	67,22	13,18	83,28	0,38	11,4	0,84
Sm	90,39	9,54	87,27	15,01	89,25	3,84	10,26	0,76
Eu	87,66	11,58	105,81	23,19	87,96	2,89	9,7	0,56
Gd	76,35	9,97	115,5	19,31	94,21	0,94	10,46	1
Tb	60,25	8,86	105,96	22,15	77,27	2,33	7,46	0,56
Dy	52,63	5,02	103,21	19,1	69,75	0,92	6,55	0,38
Y	34,09	3,58	77,4	14,5	54,36	1,75	5,26	0,22
Но	37,15	4,64	98,2	21,19	64,29	3,19	5,7	0,43
Er	27,81	3,41	84,48	19,38	53,92	2,94	4,65	0,37
Yb	14,82	1,8	43,57	10,84	30,88	0,69	2,84	0,15
Lu	12,36	1,97	35,3	5,71	25,5	0,83	2,4	0,14
Hf	-	-	-	-	-	-	0,01	0
Та	-	-	0,03	0,01	0,01	0	0,01	0

VI.3.1.1. Titanite

Les coefficients de partage des éléments traces entre la titanite et le liquide silicaté ont été caractérisés pour 12 échantillons (voir Tableau VI.6). Les coefficients du Nb et des REE sont représentés dans la Figure VI.12a et VI.12b, les autres métaux rares (Hf, Zr et Ta) n'étant pas représentés car ces échantillons n'en contiennent pas. Tous ces coefficients sont >1, ce qui indique que le Nb ainsi que les REE se concentrent préférentiellement dans la titanite plutôt que dans le liquide silicaté. Les coefficients de partage du Nb sont > 10 dans tous les échantillons, et varient de 14,62 ± 2,53 à 166,01 ± 19,28.

Pour les REE, on peut remarquer la tendance typique en forme de « cloche » des coefficients de partage des LREE aux HREE décrit dans la littérature (voir Fig.II.14 dans la partie II.3.1 ; (Tiepolo *et al.*, 2002; Prowatke and Klemme, 2005), avec un optimum d'enrichissement pour les MREE. En effet, les coefficients de partage des MREE sont plus élevés que ceux des LREE et des HREE : ils varient de $8,87 \pm 0,90$ jusqu'à $120,18 \pm 28,33$ pour le Sm, alors que ceux du La et du Lu varient seulement de $2,21 \pm 0,24$ à $35,76 \pm 7,12$ et de $2,12 \pm 0,13$ à $21,22 \pm 4,12$ respectivement (Tableau VI.6, Fig.VI.12a et VI.12b).

De plus, à 0,8 GPa on peut observer une augmentation des coefficients de partage du Nb et des REE à température décroissante, de 925 °C (en orange) à 850 °C (en vert ; Fig.VI.12a). Cet effet clair de la température est également observé à 0,4 GPa, avec une augmentation d'un ordre de grandeur des coefficients de partage pour des températures de 925 °C (orange) à 725 °C (bleu foncé, Fig.VI.12b). Cette évolution des coefficients de partage peut ainsi indiquer un potentiel effet de la température sur l'enrichissement en Nb et en REE de la titanite.

VI.3.1.2. Calcite

Les coefficients de partage des REE entre la calcite et le liquide silicaté sont représentés dans la Figure VI.12c et VI.12d. Les concentrations en Nb étant très faibles dans la calcite (< 0,40 ppm, Tableau C.6 de l'Annexe C.3), les coefficients de partage du Nb sont également très faibles et tous <0,01 et ne sont pas représentés dans les Figures VI.12c et VI.12d.

Les REE sont globalement compatibles dans la calcite, à l'exception des HREE pour certains échantillons (Fig.VI.12d). Les coefficients de partage varient sur deux ordres de grandeur, de $3,59 \pm 0,16$ à $70,82 \pm 7,31$ pour le La représentatif des autres LREE et de $0,39 \pm 0,11$ à $16,95 \pm 2,45$ pour le Lu représentatif des HREE (Tableau VI.7). Les coefficients de partage des LREE sont nettement plus élevés que ceux des HREE, indiquant ainsi un fractionnement entre les LREE et les HREE et une préférence des LREE pour la calcite.

Tableau VI.6. Coefficients de partage des éléments traces entre titanite et liquides silicatés. σ : écart-type sur la moyenne des coefficients de partage, calculé à partir de l'équation (6) de la partie III.4.

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Ti 60,21 4,64 78,16 5,32 43,86 3,98 74,48 10,13 164,57 16,84 143,27 11,8 Mn 0,24 0,07 1,12 0,29 0,35 0,02 0,93 0,1 0,73 0,08 0,51 0,04 Sr 0,73 0,08 3 0,41 0,63 0,05 1,98 0,12 3,39 0,28 4,35 0,34 Nb 38,95 6,24 57,34 17,66 30,51 3,57 51,07 9,86 166,01 19,28 83,59 10,06 Ba 0.01 0 0.07 0.1 0 0.01 0.02 0.02
Mn 0,24 0,07 1,12 0,29 0,35 0,02 0,93 0,1 0,73 0,08 0,51 0,04 Sr 0,73 0,08 3 0,41 0,63 0,05 1,98 0,12 3,39 0,28 4,35 0,34 Nb 38,95 6,24 57,34 17,66 30,51 3,57 51,07 9,86 166,01 19,28 83,59 10,06 Ba 0.01 0 0.07 0.1 0 0.01 0.02 0.02
Sr 0,73 0,08 3 0,41 0,63 0,05 1,98 0,12 3,39 0,28 4,35 0,34 Nb 38,95 6,24 57,34 17,66 30,51 3,57 51,07 9,86 166,01 19,28 83,59 10,06 Ba 0.01 0 0.07 0.1 0 0.01 0.02 0.02
Nb 38,95 6,24 57,34 17,66 30,51 3,57 51,07 9,86 166,01 19,28 83,59 10,06 B ₂ 0.01 0 0.07 0.1 0 0 0.01 0.01 0.02 0.02
Ba $(\Omega) = (\Omega) =$
$\mathbf{y}_{\mathbf{x}} = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,$
La 9,06 1,62 29,87 5,38 11,06 0,83 29,64 10,49 22,6 6,87 35,76 7,12
Ce 15,18 2,53 4/,56 9,03 19,01 1,22 48,89 15,76 38,6 9,36 56,34 10,37
PT 22,01 3,2 $0/,89$ 11,12 27,62 1,57 75,65 22,2 $0,73$ 13,88 84,29 14,00
No. 27,88 3,16 83,24 16,87 33,22 2,32 96,77 27,35 77,4 20,93 97,96 14,78 $-$
Sm 53,09 5,11 94,14 16,16 43,09 2,51 120,16 26,55 63,05 24,11 100,66 16,17 \mathbf{Fr}_{-} 25.00 2.25 0.2.25 104,91 17.4
EU 53,57 5,53 52,22 23,42 44,61 5,79 116,10 24,45 71,53 20,52 104,61 17,4 20,62 200 $94,02$ 200 $27,55$ 1,90 107,62 25,74 71,04 22,47 04,52 16,0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
10 $27,03$ $2,46$ $75,02$ $20,58$ $57,97$ $2,08$ $100,51$ $24,27$ $45,39$ $15,1$ $74,08$ $14,50$ D ₁₇ $25,02$ $2,20$ $58,15$ $14,21$ $33,1$ $2,01$ $00,81$ $21,12$ $23,06$ $10,70$ $60,21$ $11,26$
by 23,02 2,22 36,13 14,21 35,1 2,01 90,61 21,12 35,70 $10,79$ 00,51 11,22 \mathbf{V}
1 $13,47$ $1,57$ $30,05$ $0,5$ $21,21$ $1,42$ $30,22$ $13,51$ $17,59$ $0,17$ $51,59$ $0,21$ 16 20.32 1.04 46.13 11.57 26.8 1.64 73.12 17.17 23.67 7.52 45.00 10.07
110 $20,32$ 1,74 40,15 11,57 20,6 1,04 75,12 17,17 25,07 7,52 45,09 10,02 Fr 15.2 1.74 33.55 8.77 20.61 1.28 55.22 12.23 16.84 5.00 22.56 7.61
Vh $8.23 0.04 18.32 4.81 11.34 1.02 20.7 6.65 0.42 2.65 15.77 2.4$
Lu 5.65 0.66 13.56 3.57 7.92 0.55 21.22 4.12 6.5 1.57 10.38 2.41

De plus, à 0,4 GPa et à température décroissante (Fig.VI.12d), de 925 °C (orange) à 725 °C (bleu foncé), les coefficients de partage augmentent d'un ordre de grandeur. Ils semblent donc augmenter en faveur de la calcite à température décroissante. Deux échantillons montrent une tendance différente, avec un fractionnement beaucoup plus marqué entre les LREE et les HREE à 725 °C (AK06_02, triangles bleus foncés vides ; Fig.VI.12d) et également une augmentation des coefficients de partage des MREE et de certaines HREE (AK05_05, triangle bleu clair et tirets serrés).

Nb La Ce Pr Nd Sm Eu Gd Tb Dy Y Ho Er Tm Yb Lu

Figure VI.12. Coefficients de partage entre titanite (a et b), calcite (c et d), pérovskite (e) et liquide silicaté ($D^{Tm/LS}$, $D^{Cc/LS}$ et $D^{Prv/LS}$).

	T17_02		T18_01		T18_03		T18_04		AK02_01		AK02_02		AK05_01		AK05_02	
Р	0,8		1,5		1,5		1,5		0,4		0,4		0,4		0,4	
Т	925	σ	925	σ	925	σ	925	σ	925	σ	925	σ	825	σ	825	σ
Mn	0,37	0,07	2,13	0,52	0,77	0,03	0,87	0,22	0,17	0,01	0,23	0,02	0,58	0,06	0,52	0,11
Sr	11,87	2,37	27,08	2,32	9	0,36	12,22	0,64	5,7	0,24	10,02	0,21	32,05	3,7	21,72	1,21
Ba	1,85	0,47	3,38	0,48	1,16	0,1	1,31	0,11	0,75	0,04	1,26	0,1	2,5	0,57	1,28	0,12
La	12,28	1,1	70,82	7,31	12,97	0,69	22,47	1,56	3,59	0,16	6,15	0,44	13,28	3,53	14,19	1,02
Ce	9,77	0,77	59,37	8,06	11,33	0,59	19,17	1,53	2,86	0,1	4,72	0,31	10,04	2,41	11,29	0,92
Pr	9,04	0,61	53,59	5,75	11,38	0,54	18,83	2	2,73	0,16	4,64	0,28	9,92	2,16	11,4	1,02
Nd	8,62	0,48	57,98	9,29	11,74	0,58	19,2	1,97	2,65	0,16	4,72	0,36	9,67	2,07	11,39	1,13
Sm	6,68	0,39	47,24	10,12	9,92	0,7	15,92	1,96	2,14	0,19	3,75	0,23	7,52	1,73	8,8	1,13
Eu	6,15	0,4	35,62	7,83	9,1	0,47	14,32	2,23	2,11	0,18	3,86	0,17	6,67	1,46	8,38	1,12
Tb	4,59	0,3	32,48	6,19	8,14	0,26	12,42	2,09	1,63	0,13	2,48	0,15	4,92	1,09	6,25	1,12
Dy	4,04	0,34	32,62	3,49	7,36	0,32	10,58	2,13	1,38	0,08	2,1	0,13	4,06	0,92	5,02	1,04
Y	3,89	0,39	31,61	4,7	7,18	0,34	10,12	1,98	1,41	0,09	1,91	0,14	3,71	0,92	4,42	1,03
Но	3,62	0,35	29,5	3,49	6,84	0,32	9,74	2,09	1,28	0,08	1,82	0,13	3,49	0,82	4,46	0,99
Er	3,09	0,36	25,14	4,57	5,99	0,23	8,4	1,88	1,06	0,08	1,52	0,13	2,86	0,66	3,41	0,83
Yb	2,08	0,3	17,94	2,81	4,41	0,28	5,91	1,71	0,71	0,05	0,93	0,1	1,79	0,36	2	0,57
Lu	1,87	0,3	16,95	2,45	4,24	0,27	5,4	1,62	0,7	0,05	0,87	0,1	1,61	0,34	1,84	0,55
	AK05_03		AK05_05		T19_01		T19_03		T19_04		AK06_01		AK06_02		AK08_03	
Р	AK05_03 0,4		AK05_05 0,4		T19_01 0,8		T19_03 0,8		T19_04 0,8		AK06_01 0,4		AK06_02 0,4		AK08_03 0,4	
P T	AK05_03 0,4 825	σ	AK05_05 0,4 825	σ	T19_01 0,8 850	σ	T19_03 0,8 850	σ	T19_04 0,8 850	σ	AK06_01 0,4 725	σ	AK06_02 0,4 725	σ	AK08_03 0,4 725	σ
P T Mn	AK05_03 0,4 825 0,25	σ 0,06	AK05_05 0,4 825 0,21	σ 0,05	T19_01 0,8 850 1,49	σ 0,22	T19_03 0,8 850 0,46	σ 0,09	T19_04 0,8 850 1,03	σ 0,28	AK06_01 0,4 725 1,83	σ 0,17	AK06_02 0,4 725 0,77	σ 0,15	AK08_03 0,4 725 1,75	σ 0,48
P T Mn Sr	AK05_03 0,4 825 0,25 11,63	σ 0,06 0,49	AK05_05 0,4 825 0,21 8,87	σ 0,05 0,72	T19_01 0,8 850 1,49 38,59	σ 0,22 4,85	T19_03 0,8 850 0,46 10,95	σ 0,09 0,82	T19_04 0,8 850 1,03 35,28	σ 0,28 3,11	AK06_01 0,4 725 1,83 64,38	σ 0,17 8,61	AK06_02 0,4 725 0,77 92,82	σ 0,15 3,66	AK08_03 0,4 725 1,75 28,51	σ 0,48 1,32
P T Mn Sr Ba	AK05_03 0,4 825 0,25 11,63 0,89	σ 0,06 0,49 0,12	AK05_05 0,4 825 0,21 8,87 1,02	σ 0,05 0,72 0,09	T19_01 0,8 850 1,49 38,59 3,52	σ 0,22 4,85 0,46	T19_03 0,8 850 0,46 10,95 1,06	σ 0,09 0,82 0,11	T19_04 0,8 850 1,03 35,28 2,46	o 0,28 3,11 0,35	AK06_01 0,4 725 1,83 64,38 1,94	σ 0,17 8,61 0,18	AK06_02 0,4 725 0,77 92,82 3,41	o 0,15 3,66 0,27	AK08_03 0,4 725 1,75 28,51 1,11	o 0,48 1,32 0,3
P T Mn Sr Ba La	AK05_03 0,4 825 0,25 11,63 0,89 5,43	σ 0,06 0,49 0,12 0,82	AK05_05 0,4 825 0,21 8,87 1,02 4,69	σ 0,05 0,72 0,09 0,89	T19_01 0,8 850 1,49 38,59 3,52 51,8	σ 0,22 4,85 0,46 5,2	T19_03 0,8 850 0,46 10,95 1,06 11,55	σ 0,09 0,82 0,11 1,28	T19_04 0,8 850 1,03 35,28 2,46 38,73	σ 0,28 3,11 0,35 11,48	AK06_01 0,4 725 1,83 64,38 1,94 24,25	σ 0,17 8,61 0,18 12,6	AK06_02 0,4 725 0,77 92,82 3,41 33,23	σ 0,15 3,66 0,27 3,39	AK08_03 0,4 725 1,75 28,51 1,11 11,44	σ 0,48 1,32 0,3 2,34
P T Mn Sr Ba La Ce	AK05_03 0,4 825 0,25 11,63 0,89 5,43 4,27	σ 0,06 0,49 0,12 0,82 0,64	AK05_05 0,4 825 0,21 8,87 1,02 4,69 3,89	σ 0,05 0,72 0,09 0,89 0,75	T19_01 0,8 850 1,49 38,59 3,52 51,8 41,46	o 0,22 4,85 0,46 5,2 5,52	T19_03 0,8 850 0,46 10,95 1,06 11,55 9,39	σ 0,09 0,82 0,11 1,28 1,27	T19_04 0,8 850 1,03 35,28 2,46 38,73 29,62	σ 0,28 3,11 0,35 11,48 8,17	AK06_01 0,4 725 1,83 64,38 1,94 24,25 20	σ 0,17 8,61 0,18 12,6 8,09	AK06_02 0,4 725 0,77 92,82 3,41 33,23 22,86	σ 0,15 3,66 0,27 3,39 2,24	AK08_03 0,4 725 1,75 28,51 1,11 11,44 9,78	σ 0,48 1,32 0,3 2,34 1,75
P T Mn Sr Ba La Ce Pr	AK05_03 0,4 825 0,25 11,63 0,89 5,43 4,27 4,37	σ 0,06 0,49 0,12 0,82 0,64 0,66	AK05_05 0,4 825 0,21 8,87 1,02 4,69 3,89 4,04	o 0,05 0,72 0,09 0,89 0,75 0,45	T19_01 0,8 850 1,49 38,59 3,52 51,8 41,46 42,6	g 0,22 4,85 0,46 5,2 5,52 4,34	T19_03 0,8 850 0,46 10,95 1,06 11,55 9,39 9,26	σ 0,09 0,82 0,11 1,28 1,27 1,32	T19_04 0,8 850 1,03 35,28 2,46 38,73 29,62 31,12	g 0,28 3,11 0,35 11,48 8,17 7,99	AK06_01 0,4 725 1,83 64,38 1,94 24,25 20 21,02	g 0,17 8,61 0,18 12,6 8,09 7,43	AK06_02 0,4 725 0,77 92,82 3,41 33,23 22,86 21,29	g 0,15 3,66 0,27 3,39 2,24 1,86	AK08_03 0,4 725 1,75 28,51 1,11 11,44 9,78 10,07	g 0,48 1,32 0,3 2,34 1,75 2,19
P T Sr Ba La Ce Pr Nd	AK05_03 0,4 825 0,25 11,63 0,89 5,43 4,27 4,37 4,48	σ 0,06 0,49 0,12 0,82 0,64 0,66 0,72	AK05_05 0,4 825 0,21 8,87 1,02 4,69 3,89 4,04 4,86 1,02 <t< th=""><th>σ 0,05 0,72 0,09 0,89 0,75 0,45 0,34</th><th>T19_01 0,8 850 1,49 38,59 3,52 51,8 41,46 42,6 43,24</th><th>g 0,22 4,85 0,46 5,2 5,52 4,34 6,11</th><th>T19_03 0,8 850 0,46 10,95 1,06 11,55 9,39 9,26 9,49</th><th>σ 0,09 0,82 0,11 1,28 1,27 1,32 1,3</th><th>T19_04 0,8 850 1,03 35,28 2,46 38,73 29,62 31,12 31,34</th><th>σ 0,28 3,11 0,35 11,48 8,17 7,99 7,64</th><th>AK06_01 0,4 725 1,83 64,38 1,94 24,25 20 21,02 19,28</th><th>σ 0,17 8,61 0,18 12,6 8,09 7,43 5,72</th><th>AK06_02 0,4 725 0,77 92,82 3,41 33,23 22,86 21,29 17,04</th><th>σ 0,15 3,66 0,27 3,39 2,24 1,86 1,7</th><th>AK08_03 0,4 725 1,75 28,51 1,11 11,44 9,78 10,07 9,9</th><th>σ 0,48 1,32 0,3 2,34 1,75 2,19 2,61</th></t<>	σ 0,05 0,72 0,09 0,89 0,75 0,45 0,34	T19_01 0,8 850 1,49 38,59 3,52 51,8 41,46 42,6 43,24	g 0,22 4,85 0,46 5,2 5,52 4,34 6,11	T19_03 0,8 850 0,46 10,95 1,06 11,55 9,39 9,26 9,49	σ 0,09 0,82 0,11 1,28 1,27 1,32 1,3	T19_04 0,8 850 1,03 35,28 2,46 38,73 29,62 31,12 31,34	σ 0,28 3,11 0,35 11,48 8,17 7,99 7,64	AK06_01 0,4 725 1,83 64,38 1,94 24,25 20 21,02 19,28	σ 0,17 8,61 0,18 12,6 8,09 7,43 5,72	AK06_02 0,4 725 0,77 92,82 3,41 33,23 22,86 21,29 17,04	σ 0,15 3,66 0,27 3,39 2,24 1,86 1,7	AK08_03 0,4 725 1,75 28,51 1,11 11,44 9,78 10,07 9,9	σ 0,48 1,32 0,3 2,34 1,75 2,19 2,61
P T Sr Ba La Ce Pr Nd Sm	AK05_03 0,4 825 0,25 11,63 0,89 5,43 4,27 4,37 4,48 3,74	g 0,06 0,49 0,12 0,82 0,64 0,66 0,72 0,63	AK05_05 0,4 825 0,21 8,87 1,02 4,69 3,89 4,04 4,86 7,28	g 0,05 0,72 0,09 0,89 0,75 0,45 0,34 1,57	T19_01 0,8 850 1,49 38,59 3,52 51,8 41,46 42,6 43,24 31,95	σ 0,22 4,85 0,46 5,2 5,52 4,34 6,11 5,16	T19_03 0,8 850 0,46 10,95 1,06 11,55 9,39 9,26 9,49 7,83	σ 0,09 0,82 0,11 1,28 1,27 1,32 1,3 1,17	T19_04 0,8 850 1,03 35,28 2,46 38,73 29,62 31,12 31,34 24,41	g 0,28 3,11 0,35 11,48 8,17 7,99 7,64 5,73	AK06_01 0,4 725 1,83 64,38 1,94 24,25 20 21,02 19,28 10,65	σ 0,17 8,61 0,18 12,6 8,09 7,43 5,72 2,07	AK06_02 0,4 725 0,77 92,82 3,41 33,23 22,86 21,29 17,04 6,76	σ 0,15 3,66 0,27 3,39 2,24 1,86 1,7 0,92	AK08_03 0,4 725 1,75 28,51 1,11 11,44 9,78 10,07 9,9 8,96	g 0,48 1,32 0,3 2,34 1,75 2,19 2,61 2,15
P T Sr Ba La Ce Pr Nd Sm Eu	AK05_03 0,4 825 0,25 11,63 0,89 5,43 4,27 4,37 4,48 3,74 3,52	σ 0,06 0,49 0,12 0,82 0,64 0,66 0,72 0,63 0,55	AK05_05 0,4 825 0,21 8,87 1,02 4,69 3,89 4,04 4,86 7,28 9,2 9,2 100	o 0,05 0,72 0,09 0,89 0,75 0,45 0,34 1,57 3,26	T19_01 0,8 850 1,49 38,59 3,52 51,8 41,46 42,6 43,24 31,95 29,85	σ 0,22 4,85 0,46 5,2 5,52 4,34 6,11 5,16 5,95	T19_03 0,8 850 0,46 10,95 1,06 11,55 9,39 9,26 9,49 7,83 7,12	σ 0,09 0,82 0,11 1,28 1,27 1,32 1,3 1,17 1,13	T19_04 0,8 850 1,03 35,28 2,46 38,73 29,62 31,12 31,34 24,41 22,46	g 0,28 3,11 0,35 11,48 8,17 7,99 7,64 5,73 4,91	AK06_01 0,4 725 1,83 64,38 1,94 24,25 20 21,02 19,28 10,65 8,09	g 0,17 8,61 0,18 12,6 8,09 7,43 5,72 2,07 1,9	AK06_02 0,4 725 0,77 92,82 3,41 33,23 22,86 21,29 17,04 6,76 4,6	σ 0,15 3,66 0,27 3,39 2,24 1,86 1,7 0,92 0,63	AK08_03 0,4 725 1,75 28,51 1,11 11,44 9,78 10,07 9,9 8,96 8,37	g 0,48 1,32 0,3 2,34 1,75 2,19 2,61 2,15 1,92
P T Sr Ba La Ce Pr Nd Sm Eu Tb	AK05_03 0,4 825 0,25 11,63 0,89 5,43 4,27 4,37 4,48 3,74 3,52 2,7 2,7	σ 0,06 0,49 0,12 0,82 0,64 0,66 0,72 0,63 0,55 0,5	AK05_05 0,4 825 0,21 8,87 1,02 4,69 3,89 4,04 4,86 7,28 9,2 11,85 11,85	σ 0,05 0,72 0,09 0,89 0,75 0,45 0,34 1,57 3,26 5,48	T19_01 0,8 850 1,49 38,59 3,52 51,8 41,46 42,6 43,24 31,95 29,85 23,49	g 0,22 4,85 0,46 5,2 5,52 4,34 6,11 5,16 5,95 3,78	T19_03 0,8 850 0,46 10,95 1,06 11,55 9,39 9,26 9,49 7,83 7,12 5,58	σ 0,09 0,82 0,11 1,28 1,27 1,32 1,3 1,17 1,13 0,88	T19_04 0,8 850 1,03 35,28 2,46 38,73 29,62 31,12 31,34 24,41 22,46 18,02	g 0,28 3,11 0,35 11,48 8,17 7,99 7,64 5,73 4,91 4,52	AK06_01 0,4 725 1,83 64,38 1,94 24,25 20 21,02 19,28 10,65 8,09 4,58	o 0,17 8,61 0,18 12,6 8,09 7,43 5,72 2,07 1,9 1,56	AK06_02 0,4 725 0,77 92,82 3,41 33,23 22,86 21,29 17,04 6,76 4,6 1,75	g 0,15 3,66 0,27 3,39 2,24 1,86 1,7 0,92 0,63 0,37	AK08_03 0,4 725 1,75 28,51 1,11 11,44 9,78 10,07 9,9 8,96 8,37 6,74	σ 0,48 1,32 0,3 2,34 1,75 2,19 2,61 2,15 1,92 1,74
P T Sr Ba La Ce Pr Nd Sm Eu Tb Dy	AK05_03 0,4 825 0,25 11,63 0,89 5,43 4,27 4,37 4,48 3,74 3,52 2,7 2,35	σ 0,06 0,49 0,12 0,82 0,64 0,66 0,72 0,63 0,55 0,5 0,46	AK05_05 0,4 825 0,21 8,87 1,02 4,69 3,89 4,04 4,86 7,28 9,2 11,85 13,21 14,21 14,21 14,21 14,21 14,21 14,21 14,21 14,21 14,21 14,21 <th14,21< th=""> 14,21 14,21</th14,21<>	σ 0,05 0,72 0,09 0,89 0,75 0,45 0,34 1,57 3,26 5,48 7,17	T19_01 0,8 850 1,49 38,59 3,52 51,8 41,46 42,6 43,24 31,95 29,85 23,49 19,1	g 0,22 4,85 0,46 5,2 5,52 4,34 6,11 5,16 5,95 3,78 4,05	T19_03 0,8 850 0,46 10,95 1,06 11,55 9,39 9,26 9,49 7,83 7,12 5,58 4,81	σ 0,09 0,82 0,11 1,28 1,27 1,32 1,31 0,88 0,76	T19_04 0,8 850 1,03 35,28 2,46 38,73 29,62 31,12 31,34 24,41 22,46 18,02 15,19	σ 0,28 3,11 0,35 11,48 8,17 7,99 7,64 5,73 4,91 4,52 4,24	AK06_01 0,4 725 1,83 64,38 1,94 24,25 20 21,02 19,28 10,65 8,09 4,58 3,44	o 0,17 8,61 0,18 12,6 8,09 7,43 5,72 2,07 1,9 1,56 1,37	AK06_02 0,4 725 0,77 92,82 3,41 33,23 22,86 21,29 17,04 6,76 4,6 1,75 1,1	o 0,15 3,66 0,27 3,39 2,24 1,86 1,7 0,92 0,63 0,37 0,28	AK08_03 0,4 725 1,75 28,51 1,11 11,44 9,78 10,07 9,9 8,96 8,37 6,74 5,52	σ 0,48 1,32 0,3 2,34 1,75 2,19 2,61 2,15 1,92 1,74 1,38
P T Sr Ba La Ce Pr Nd Sm Eu Tb Dy Y	AK05_03 0,4 825 0,25 11,63 0,89 5,43 4,27 4,37 4,48 3,74 3,52 2,7 2,35 2,1	g 0,06 0,49 0,12 0,64 0,66 0,72 0,63 0,55 0,5 0,46 0,46	AK05_05 0,4 825 0,21 8,87 1,02 4,69 3,89 4,04 4,86 7,28 9,2 11,85 13,21 12,2 12,2 12,2 12,2 12,2 13,21 12,2 12,2 13,21 12,2 13,21 12,2 13,21 12,2 13,21 12,2 13,21 12,2 13,21 12,2 14,25 13,21 12,2 14,25 13,21 12,2 14,25 13,21 12,2 14,25 <th14,25< th=""> <th14,25< th=""> <th14,25< <="" th=""><th>g 0,05 0,72 0,09 0,89 0,75 0,45 0,34 1,57 3,26 5,48 7,17 5,95</th><th>T19_01 0,8 850 1,49 38,59 3,52 51,8 41,46 42,6 43,24 31,95 29,85 23,49 19,1 17,8</th><th>σ 0,22 4,85 0,46 5,2 4,34 6,11 5,16 5,95 3,78 4,05 4,1</th><th>T19_03 0,8 0,8 850 0,46 10,95 1,06 11,55 9,39 9,26 9,49 7,83 7,12 5,58 4,81 4,37</th><th>σ 0,09 0,82 0,11 1,28 1,27 1,32 1,3 1,17 1,13 0,88 0,76 0,72</th><th>T19_04 0,8 850 1,03 35,28 2,46 38,73 29,62 31,12 31,34 24,41 22,46 18,02 15,19 13,76</th><th>σ 0,28 3,11 0,35 11,48 8,17 7,99 7,64 5,73 4,91 4,52 4,24 4,27</th><th>AK06_01 0,4 725 1,83 64,38 1,94 24,25 20 21,02 19,28 10,65 8,09 4,58 3,44 2,75</th><th>σ 0,17 8,61 0,18 12,6 8,09 7,43 5,72 2,07 1,9 1,56 1,37 1,12</th><th>AK06_02 0,4 725 0,77 92,82 3,41 33,23 22,86 21,29 17,04 6,76 4,6 1,75 1,1 1,08</th><th>σ 0,15 3,66 0,27 3,39 2,24 1,86 1,7 0,92 0,63 0,37 0,28 0,25</th><th>AK08_03 0,4 725 1,75 28,51 1,11 11,44 9,78 10,07 9,9 8,96 8,37 6,74 5,52 4,3</th><th>g 0,48 1,32 0,3 2,34 1,75 2,19 2,61 2,15 1,92 1,74 1,38 1,11</th></th14,25<></th14,25<></th14,25<>	g 0,05 0,72 0,09 0,89 0,75 0,45 0,34 1,57 3,26 5,48 7,17 5,95	T19_01 0,8 850 1,49 38,59 3,52 51,8 41,46 42,6 43,24 31,95 29,85 23,49 19,1 17,8	σ 0,22 4,85 0,46 5,2 4,34 6,11 5,16 5,95 3,78 4,05 4,1	T19_03 0,8 0,8 850 0,46 10,95 1,06 11,55 9,39 9,26 9,49 7,83 7,12 5,58 4,81 4,37	σ 0,09 0,82 0,11 1,28 1,27 1,32 1,3 1,17 1,13 0,88 0,76 0,72	T19_04 0,8 850 1,03 35,28 2,46 38,73 29,62 31,12 31,34 24,41 22,46 18,02 15,19 13,76	σ 0,28 3,11 0,35 11,48 8,17 7,99 7,64 5,73 4,91 4,52 4,24 4,27	AK06_01 0,4 725 1,83 64,38 1,94 24,25 20 21,02 19,28 10,65 8,09 4,58 3,44 2,75	σ 0,17 8,61 0,18 12,6 8,09 7,43 5,72 2,07 1,9 1,56 1,37 1,12	AK06_02 0,4 725 0,77 92,82 3,41 33,23 22,86 21,29 17,04 6,76 4,6 1,75 1,1 1,08	σ 0,15 3,66 0,27 3,39 2,24 1,86 1,7 0,92 0,63 0,37 0,28 0,25	AK08_03 0,4 725 1,75 28,51 1,11 11,44 9,78 10,07 9,9 8,96 8,37 6,74 5,52 4,3	g 0,48 1,32 0,3 2,34 1,75 2,19 2,61 2,15 1,92 1,74 1,38 1,11
P T Sr Ba La Ce Pr Nd Sm Eu Tb Dy Y Ho	AK05_03 0,4 825 0,25 11,63 0,89 5,43 4,27 4,37 4,48 3,74 3,52 2,7 2,35 2,1 2,02	g 0,06 0,49 0,12 0,64 0,66 0,72 0,63 0,55 0,5 0,46 0,46 0,43	AK05_05 0,4 825 0,21 8,87 1,02 4,69 3,89 4,04 4,86 7,28 9,2 11,85 13,21 12,2 13,87	g 0,05 0,72 0,09 0,89 0,75 0,45 0,34 1,57 3,26 5,48 7,17 5,95 7,25	T19_01 0,8 850 1,49 38,59 3,52 51,8 41,46 42,6 43,24 31,95 29,85 23,49 19,1 17,8 17,15	o 0,22 4,85 0,46 5,2 5,52 4,34 6,11 5,16 5,95 3,78 4,05 4,1 4,01	T19_03 0,8 850 0,46 10,95 1,06 11,55 9,39 9,26 9,49 7,83 7,12 5,58 4,81 4,37 4,3	σ 0,09 0,82 0,11 1,28 1,27 1,32 1,3 1,17 1,13 0,88 0,76 0,72	T19_04 0,8 850 1,03 35,28 2,46 38,73 29,62 31,12 31,34 24,41 22,46 18,02 15,19 13,76 13,4	5 0,28 3,11 0,35 11,48 8,17 7,99 7,64 5,73 4,91 4,52 4,24 4,27 4,03	AK06_01 0,4 725 1,83 64,38 1,94 24,25 20 21,02 19,28 10,65 8,09 4,58 3,44 2,75 2,76	g 0,17 8,61 0,18 12,6 8,09 7,43 5,72 2,07 1,9 1,56 1,37 1,12 1,26	AK06_02 0,4 725 0,77 92,82 3,41 33,23 22,86 21,29 17,04 6,76 4,6 1,75 1,1 1,08 0,77	σ 0,15 3,66 0,27 3,39 2,24 1,86 1,7 0,92 0,63 0,37 0,28 0,25 0,22	AK08_03 0,4 725 1,75 28,51 1,11 11,44 9,78 10,07 9,9 8,96 8,37 6,74 5,52 4,3 4,97	g 0,48 1,32 0,3 2,34 1,75 2,19 2,61 2,15 1,92 1,74 1,38 1,11 1,16
P T Sr Ba La Ce Pr Nd Sm Eu Tb Dy Y Ho Er	AK05_03 0,4 825 0,25 11,63 0,89 5,43 4,27 4,37 4,48 3,74 3,52 2,7 2,35 2,1 2,02 1,64	g 0,06 0,49 0,12 0,64 0,66 0,72 0,63 0,55 0,5 0,46 0,46 0,43 0,38	AK05_05 0,4 825 0,21 8,87 1,02 4,69 3,89 4,04 4,86 7,28 9,2 11,85 13,21 12,2 13,87 12,57 12,57 12,57 13,21 13,21 12,57 13,21 13,21 12,57 13,21 13,21 13,21 13,21 13,21 13,21 13,21 13,21 13,21 14,25 13,21 14,25 14,25 14,25 14,25 14,25 14,25 14,25 14,25 14,25 14,25 14,25	g 0,05 0,72 0,09 0,89 0,75 0,45 0,34 1,57 3,26 5,48 7,17 5,95 7,25 7,04	T19_01 0,8 850 1,49 38,59 3,52 51,8 41,46 42,6 43,24 31,95 29,85 23,49 19,1 17,8 17,15 14,3	g 0,22 4,85 0,46 5,2 5,52 4,34 6,11 5,16 5,95 3,78 4,05 4,1 4,01 3,44	T19_03 0,8 0,8 850 0,46 10,95 1,06 11,55 9,39 9,26 9,49 7,83 7,12 5,58 4,81 4,37 4,3 3,68	σ 0,09 0,82 0,11 1,28 1,27 1,32 1,3 1,17 1,13 0,88 0,76 0,72 0,68	T19_04 0,8 850 1,03 35,28 2,46 38,73 29,62 31,12 31,34 24,41 22,46 18,02 15,19 13,76 13,4 10,6	5 0,28 3,11 0,35 11,48 8,17 7,99 7,64 5,73 4,91 4,52 4,24 4,27 4,03 3,39	AK06_01 0,4 725 1,83 64,38 1,94 24,25 20 21,02 19,28 10,65 8,09 4,58 3,44 2,75 2,76 2,22	g 0,17 8,61 0,18 12,6 8,09 7,43 5,72 2,07 1,9 1,56 1,37 1,12 1,26 1	AK06_02 0,4 725 0,77 92,82 3,41 33,23 22,86 21,29 17,04 6,76 4,6 1,75 1,1 1,08 0,77 0,66	g 0,15 3,66 0,27 3,39 2,24 1,86 1,7 0,92 0,63 0,37 0,28 0,25 0,22 0,21	AK08_03 0,4 725 1,75 28,51 1,11 11,44 9,78 10,07 9,9 8,96 8,37 6,74 5,52 4,3 4,97 4,04	g 0,48 1,32 0,3 2,34 1,75 2,19 2,61 2,15 1,92 1,74 1,38 1,11 1,16 0,78
P T Sr Ba La Ce Pr Nd Sm Eu Tb Dy Y Ho Er Yb	AK05_03 0,4 825 0,25 11,63 0,89 5,43 4,27 4,37 4,48 3,74 3,52 2,7 2,35 2,1 2,02 1,64 1,01	g 0,06 0,49 0,12 0,82 0,64 0,66 0,72 0,63 0,55 0,5 0,46 0,46 0,43 0,38 0,25	AK05_05 0,4 825 0,21 8,87 1,02 4,69 3,89 4,04 4,86 7,28 9,2 11,85 13,21 12,2 13,87 12,57 6,61	g 0,05 0,72 0,09 0,89 0,75 0,45 0,34 1,57 3,26 5,48 7,17 5,95 7,25 7,04 2,99	T19_01 0,8 850 1,49 38,59 3,52 51,8 41,46 42,6 43,24 31,95 29,85 23,49 19,1 17,8 17,15 14,3 9,49	g 0,22 4,85 0,46 5,2 5,52 4,34 6,11 5,16 5,95 3,78 4,05 4,1 4,01 3,44 2,48	T19_03 0,8 0,8 850 0,46 10,95 1,06 11,55 9,39 9,26 9,49 7,83 7,12 5,58 4,81 4,37 4,3 3,68 2,3 2,3	σ 0,09 0,82 0,11 1,28 1,27 1,32 1,3 1,17 1,13 0,88 0,76 0,72 0,68 0,52	T19_04 0,8 850 1,03 35,28 2,46 38,73 29,62 31,12 31,34 24,41 22,46 18,02 15,19 13,76 13,4 10,6 6,36	5 0,28 3,11 0,35 11,48 8,17 7,99 7,64 5,73 4,91 4,52 4,24 4,27 4,03 3,39 2,47	AK06_01 0,4 725 1,83 64,38 1,94 24,25 20 21,02 19,28 10,65 8,09 4,58 3,44 2,75 2,76 2,22 1,45	σ 0,17 8,61 0,18 12,6 8,09 7,43 5,72 2,07 1,9 1,56 1,37 1,12 1,26 1 0,69	AK06_02 0,4 725 0,77 92,82 3,41 33,23 22,86 21,29 17,04 6,76 4,6 1,75 1,1 1,08 0,77 0,66 0,39	g 0,15 3,66 0,27 3,39 2,24 1,86 1,7 0,92 0,63 0,37 0,28 0,25 0,22 0,21 0,11	AK08_03 0,4 725 1,75 28,51 1,11 11,44 9,78 10,07 9,9 8,96 8,37 6,74 5,52 4,3 4,97 4,04 2,53	σ 0,48 1,32 0,3 2,34 1,75 2,19 2,61 2,15 1,92 1,74 1,38 1,11 1,16 0,78 0,62

Tableau VI.7. Coefficients de partage entre calcite et liquides silicatés. σ: écart-type sur la moyenne des coefficients de partage, calculé à partir de l'équation (6) de la partie III.4.

VI.3.1.3. Pérovskite

Les coefficients de partage du Nb et des REE entre la pérovskite et le liquide silicaté ont été caractérisés pour les quatre échantillons qui en contiennent, synthétisés à 925 °C et à 0,2 et 0,4 GPa (Fig.VI.12^e; Tableau VI.1). Le Nb est compatible $(D_{Nb}^{Prv/LS} > 1)$ dans la pérovskite, avec des coefficients de partage variant entre 17,18 ± 2,00 et 42,78 ± 33,82. Pour les REE, on peut observer un comportement différent des LREE, MREE et HREE : les coefficients de partage augmentent des LREE aux MREE, puis diminuent fortement pour les HREE. Ce fractionnement entre les MREE et les HREE est observé dans les quatre échantillons (Fig.VI.12e). Ainsi la pérovskite est plus enrichie en LREE et surtout en MREE, avec des coefficients de partage variant respectivement de 34,67 ± 4,15 à 53,18 ± 5,01 pour le La, et de 37,64 ± 3,68 à 62,46 ± 4,50 pour le Sm; les coefficients de partage du Lu sont relativement faibles et varient de 1,16 ± 0,30 à 2,42 ± 0,25.

Tableau VI.8. Coefficients de partage entre pérovskite et liquides silicatés. σ : écart-type sur la moyenne des coefficients de partage, calculé à partir de l'équation (6) de la partie III.4.

	AK01_01		AK01_02		AK01_03		AK01_04		AK02_02	
Р	0,2		0,2		0,2		0,2		0,4	
Т	925	σ	925	σ	925	σ	925	σ	925	σ
Ti	35,26	0,75	24,81	1,92	41,95	1,17	37,15	-	-	-
Cr	196,06	64,91	102,38	19,39	-	-	-	-	-	-
Mn	0,12	0,01	0,35	0,2	0,11	0,01	0,09	-	-	-
Sr	1,11	0,06	1,98	0,2	1,2	0,04	1,09	-	4,8	0,23
Nb	38,23	1	42,78	33,82	42,21	3,87	37,14	-	17,19	2,01
Ba	0,01	0,01	0,31	0,23	0	0	0,01	-	1,92	0,12
La	34,67	4,15	53,18	5,01	49,68	2,6	40,55	-	41,39	7,82
Ce	57,72	4,85	91,63	8,66	86,08	3,88	68,71	-	45,44	7,39
Pr	67,59	5,32	103,62	9,22	98,24	5,54	75,81	-	47,26	6,72
Nd	63,38	5,41	105,72	16,48	94,53	6,31	70,91	-	47,96	5,94
Sm	43,18	3,72	55,14	7,96	62,47	4,5	47,53	-	37,64	3,68
Eu	31,78	4,83	39,39	3,75	44,13	3,51	34,82	-	43,16	2,97
Gd	23,31	3,33	30,53	12,01	30,81	2,76	25,29	-	26,17	4,49
Tb	14,81	2,29	15,19	1,57	22,81	2,09	17,72	-	16,76	1,35
Dy	11,12	1,42	9,93	1,2	15,47	1,85	12,33	-	13,66	1,35
Y	4,4	0,63	3,66	0,72	5,75	0,61	4,82	-	7,07	0,75
Ho	7,54	1,11	6,27	0,87	10,5	1,2	8,48	-	9,81	0,94
Er	5,11	0,72	3,99	0,62	6,93	0,91	5,63	-	7,34	0,74
Yb	2,14	0,34	1,72	0,38	2,94	0,47	2,32	-	3,42	0,3
Lu	1,39	0,21	1,17	0,3	1,86	0,29	1,48	-	2,42	0,25

Bilan du partage des métaux rares entre minéraux et liquide silicaté :

L'analyse des coefficients de partage des métaux rares entre chaque minéral et les liquides silicatés alcalins de type néphélinite-phonolite, dopés ou non en F, Cl ou P, a permis de mettre en évidence que :

- Les REE ont un comportement variable dans les clinopyroxènes sur deux ordres de grandeur, d'incompatible à compatible par rapport au liquide.
- les REE sont en majorité compatibles dans le grenat, la titanite, la pérovskite, la calcite et l'apatite, par rapport au liquide silicaté.
- Le Nb est compatible dans le grenat, la titanite et la pérovskite. Les autres HFSE (Hf, Zr et Ta) sont également compatibles dans le grenat.
- Tous les HFSE sont incompatibles dans l'apatite.

De plus, nous avons vu qu'une diminution de la température semble avoir un effet positif sur l'enrichissement en REE des clinopyroxènes, de la titanite ainsi que de la calcite (les $D_{REE}^{CPx-Ttn-Cc/LS}$ augmentent à température décroissante et pression constante). De même, ces coefficients de partage

sont également importants à plus haute pression (1,5 GPa) notamment pour le clinopyroxène et la calcite. Or nous avons vu dans le chapitre IV que les liquides silicatés formés à ces conditions sont de type phonolitiques et sont les plus différenciés (voir Fig.IV.2, partie IV.4.2). Ces minéraux semblent ainsi être plus enrichis en REE (et Nb pour la titanite) en coexistence avec des liquides plus différenciés.

VI.3.2. Métaux rares entre minéraux et liquide carbonaté

L'enrichissement en métaux rares des minéraux par rapport au liquide carbonaté avec lequel ils coexistent à l'équilibre a également été évalué. Tous les tableaux contenant les coefficients de partage entre ces minéraux et le liquide carbonaté sont présentés en Annexe D.

• Clinopyroxène :

Les coefficients de partage des métaux rares (HFSE et REE) entre clinopyroxènes et liquide carbonaté sont présentés dans la Figure VI.13. Les REE sont généralement fortement incompatibles dans les clinopyroxènes par rapport au liquide carbonaté ($D_{REE}^{CP_X/LC} < 1$) - à l'exception des MREE et HREE de certains échantillons (Fig.VI.13a et VI.13b)- avec des coefficients variant de 0,003 ± 0,001 à 0,130 ± 0,046 pour le La, de 0,026 ± 0,007 à 0,894 ± 0,214 pour le Sm et de 0,066 ± 0,027 à 5,576 ± 1,299 pour le Lu (voir Tableau D.1, Annexe D.1). Ces $D_{REE}^{CP_X/LC}$ sont plus faibles que les $D_{REE}^{CP_X/LS}$ (Fig. VI.9) d'un ordre de grandeur.

A pression constante (0,4 et 0,8 GPa, Fig.VI.13a et VI.13e), aucun effet clair de température n'est observé. Il en est de même à température constante (925 °C, Fig.VI.13c) et à pression variable : aucun effet de pression n'est mis en évidence.

Le Nb est principalement incompatible pour la majorité des échantillons, à l'exception de cinq échantillons, et les coefficients de partage varient de 0,019 \pm 0,010 à 1,778 \pm 0,261 (Tableau D.1). Pour les autres HFSE contenus dans cinq échantillons (croix vertes et grises, 850 °C et 0,8 GPa ; Fig.VI.13b), les coefficients de partage indiquent une forte compatibilité de ces éléments pour le clinopyroxènes par rapport au liquide carbonaté ($D_{HFSE}^{CPx/LC} > 10$) et plus particulièrement pour le Hf, avec des coefficients de partage variant de 102,30 \pm 79,11 à 196,57 \pm 49,398.

• Grenat :

Les coefficients de partage calculés entre grenat et liquide carbonaté sont présentés dans le Tableau D.2 (Annexe D.2) et dans la Figure VI.14. Le La est systématiquement plutôt concentré dans le liquide carbonaté, avec des $D_{La}^{Gnt/LC}$ variant de 0,04 ± 0,01 à 0,45 ± 0,12. Les autres LREE (Ce, Pr, Nd) peuvent être incompatibles ou compatibles en fonction des échantillons (Fig.VI.14). Toutes les MREE et HREE sont compatibles dans le grenat ($D_{MREE-HREE}^{Gnt/LC} > 1$), et par conséquent moins concentrées dans le liquide carbonaté, avec des coefficients variant de 1,73 ± 0,42 à 7,13 ± 1,17 pour le Sm, et de 2,97 ± 1,00 à 58,49 ± 14,14 pour le Lu (Tableau D.2, Annexe D.2 ; Fig.VI.14).

En ce qui concerne les HFSE, ces éléments sont tous concentrés dans le grenat ($D_{HFSE}^{Gnt/LC} > 1$), et plus particulièrement le Zr et le Hf avec des coefficients de partage variant entre 100 et 400 (Fig.VI.14), d'un ordre de grandeur plus élevé que ceux calculés entre grenat et liquide silicaté ($D_{HFSE}^{Gnt/LS} < 30$, Tableau VI.4 et Fig.VI.10b).

a. DCPALC

Hf Zr Ta Nb La Ce Pr Nd Sm Eu Gd Tb Dy Y Ho Er Tm Yb Lu C. DCPNLC

Figure VI.13. Coefficients de partage entre clinopyroxènes et liquide carbonaté ($D^{CP_{x/LC}}$), à 0,4 GPa (a), 0,8 GPa (b) et 925 °C (c).

Figure VI.14. Coefficients de partage entre grenat et liquide carbonaté $(D^{Gnt/LC})$.

• Apatite :

La Figure VI.15 présente les coefficients de partage des métaux rares calculés entre apatite et liquide carbonaté (voir Tableau D.3, Annexe D.3). De manière générale, ces coefficients sont d'un ordre de grandeur moins élevés que ceux calculés entre apatite et liquide silicaté (Tableau VI.5 et Fig.VI.11). Les LREE et les MREE sont compatibles dans l'apatite, avec des coefficients variant de 1,68 \pm 0,26 à 5,80 \pm 0,99 pour le La et de 1,52 \pm 0,31 à 11,52 \pm 1,09 pour le Sm. Pour les HREE, les coefficients sont également > 1, à l'exception de deux échantillons (725 °C et 0,4 GPa, bleu foncé, Fig. VI.15a).

A pression constante (0,4 GPa, Fig.VI.15a), les coefficients de partage des MREE et HREE diminuent à température décroissante, de 850 °C (bleu clair) à 725 °C (bleu foncé). Cet effet de température n'est pas observé à 0,8 GPa pour les échantillons de 1050 et 850 °C (respectivement marron foncé et marron clair, Fig.VI.15b). En revanche, les échantillons dopés en Cl (gris) présentent des coefficients légèrement plus élevés que ceux dopés en P (marron).

De même que pour le partage entre apatite et liquide silicaté, les HFSE sont incompatibles dans l'apatite par rapport au liquide carbonaté, à l'exception du Hf, Zr et Ta de certains échantillons (Fig.VI.15b).

• Titanite :

Les coefficients de partage du Nb et des REE sont exposés dans le Tableau D.4 de l'Annexe D.4. Pour les REE, on peut observer des coefficients plus faibles d'un ordre de grandeur (Fig. VI.16a et VI.16b) par rapport à ceux calculés entre la titanite et le liquide silicaté (Fig.VI.12a et VI.12b). Toutes les REE sont compatibles dans la titanite par apport au liquide carbonaté ($D_{REE}^{Tin/LC} > 1$), à l'exception du La pour certains échantillons dont les coefficients de partage varient entre 0,55 ± 0,18 et 1,75 ± 0,36 (Tableau D.4, Annexe D.4). Le Sm et le Lu varient respectivement entre 3,14 ± 1,11 et 9,28 ± 1,34 et de 1,05 ± 0,40 et 4,68 ± 0,56. La titanite concentre ainsi plus les MREE et les HREE que le liquide carbonaté. De même, le Nb est compatible dans la titanite par rapport au liquide carbonaté, avec des coefficients de partage variant de 33,33 ± 12,01 à 166,31 ± 131,31 (Tableau D.4), du même ordre de grandeur que ceux calculés avec le liquide silicaté (Fig.VI.12a et VI.12b).

A 0,8 GPa (Fig.VI.16a) et à 0,4 GPa (Fig.VI.16b) aucun effet de température n'est observé sur les coefficients de partage des REE. En revanche on peut observer une augmentation des coefficients de partage du Nb à pression constante, de 925 °C (orange) à 725 °C (bleu foncé ; Fig.VI.16b).

Figure VI.15. Coefficients de partage entre apatite et liquide carbonaté $(D^{Ap/LC})$, à 0,4 GPa (a) et à 0,8 GPa (b).

• Calcite :

Le Tableau D.5 de l'Annexe D.5 présente les coefficients de partage calculés entre la calcite et le liquide carbonaté. A haute pression (0,8 et 1,5 GPa, Fig.VI.16c), les $D_{REE}^{Cc/LC}$ sont >1, à l'exception d'un échantillon (T19_03, Fig.VI.16c), ce qui indique une préférence des REE pour la calcite par rapport au liquide carbonaté. De plus, les spectres plats de chaque échantillon indiquent en enrichissement de la calcite à la fois en LREE et en HREE, avec des coefficients variant de 0,73 ± 0,12 à 2,24 ± 0,13 pour le La, et de 0,42 ± 0,17 à 1,87 ± 0,25 pour le Lu. Les calcites formées à haute pression sont donc autant enrichies en LREE qu'en HREE, et peuvent contenir jusqu'à deux fois plus de REE que le liquide carbonaté.

A plus basse pression (0,4 GPa, Fig.VI.16d), les coefficients de partage des REE sont beaucoup plus variables en fonction des échantillons. Certains échantillons présentent des spectres presque plats (AK05_01/02/03, AK02_01/02 ; Fig.VI.16d) similaires à ceux observés à plus hautes pressions mais

dont les coefficients de partage sont moins élevés, variant de 0,44 \pm 0,07 à 1,13 \pm 0,09 pour le La et de 0,33 \pm 0,09 à 0,91 \pm 0,24 pour le Lu (Tableau D.5, Annexe D.5). A 725 °C (bleu foncé, Fig.VI.16d) deux échantillons (AK06_01 et AK06_02) présentent des D_{REE}^{Cc/LC} < 1, avec un fractionnement entre les LREE et les autres REE. Enfin, les échantillons AK05_05 et AK08_03 (Fig.VI.16d) indiquent une augmentation des coefficients de partage pour les MREE par rapport aux LREE. Cette tendance est beaucoup plus marquée pour l'échantillon AK05 05, dont les HREE sont compatibles dans la calcite.

Figure VI.16. Coefficients de partage entre titanite (a et b), calcite (c et d), pérovskite (e) et liquide carbonaté $(D^{Ttn/LC}, D^{Cc/LC})$ et $D^{Prv/LC}$).

• Pérovskite :

Un seul échantillon contient de la pérovskite en coexistence avec du liquide carbonaté, à 925 °C et 0,4 GPa. Les coefficients de partage des REE pour cet échantillon sont représentés dans la Figure VI.16e

ainsi que dans le Tableau D.6 de l'Annexe D.6. Ces coefficients sont moins élevés que ceux calculés entre la pérovskite et le liquide silicaté, presque d'un ordre de grandeur (Fig.VI.12e). Toutes les REE sont compatibles dans la pérovskite par rapport au liquide carbonaté, avec des coefficients de 7,62 \pm 0,96 pour le La, 11,79 \pm 1,01 pour le Sm et 1,90 \pm 0,30 pour le Lu (Tableau D.6).

Bilan du partage des métaux rares entre minéraux et liquide carbonaté:

L'analyse du partage des métaux rares entre les minéraux et les liquides carbonatés indiquent que :

- les LREE peuvent être plus concentrées dans l'apatite et la calcite, par rapport au liquide carbonaté. La pérovskite en concentre également.
- les HREE se concentrent plutôt dans le grenat, mais aussi dans l'apatite ou la titanite.
- La calcite synthétisée à haute pression et à haute température peut concentrer autant de LREE que de HREE, et jusqu'à deux fois plus que le liquide carbonaté.
- Les HFSE sont compatibles dans la titanite, le grenat, ainsi que le clinopyroxène.

L'effet de température ou de pression sur le partage des REE entre certains minéraux et le liquide silicaté mis en évidence précédemment n'est pas observé entre les minéraux et le liquide carbonaté. Les coefficients de partage des REE entre minéraux et liquide carbonaté ne peuvent ainsi pas être reliés au degré de différenciation des liquides.

Nous avons donc vu que certains minéraux peuvent fortement concentrer les métaux rares pour toutes les conditions P-T (MREE-HREE dans le grenat, toutes les REE dans l'apatite et la titanite), alors que d'autres minéraux indiquent des variations importantes du comportement des métaux rares (incompatible à compatible) en fonction des différentes conditions P-T (principalement le clinopyroxène, calcite, LREE dans le grenat). Nous avons également vu que certains de ces minéraux n'évoluent pas beaucoup de composition en éléments majeurs pour des conditions P-T très variables (calcite, apatite, titanite), alors que la composition d'autres minéraux (clinopyroxène et grenat) semble plus varier au cours de la différenciation.

Ces minéraux coexistent avec des liquides silicatés dont la composition évolue au cours de la différenciation (Fig.IV.2, chapitre IV; Fig.V.3 et V.4, chapitre V). Il est alors important d'identifier les paramètres qui influencent l'enrichissement en métaux rares de ces minéraux au cours de la différenciation des magmas alcalins et carbonatés. La composition chimique du liquide silicaté joue-t'-elle un rôle sur l'enrichissement en métaux rares de ces minéraux au cours de la différenciation des magmas alcalins? Ou est-ce seulement lié à la composition des minéraux? La partie suivante aborde ces effets de composition sur l'enrichissement en métaux rares des minéraux au cours de la différenciation des magmas alcalins et carbonatés.

VI.4. Enrichissement en métaux rares des minéraux au cours de la différenciation des magmas alcalins: effet de la composition chimique du liquide silicaté ou du minéral ?

L'enrichissement en métaux rares des minéraux coexistant avec des liquides silicatés plus ou moins différenciés de type néphélinite à phonolite et carbonatés varient, parfois sur plusieurs ordres de grandeur. Dans la littérature, des études ont montré que cet enrichissement peut varier en fonction de la structure cristalline des minéraux et de leur composition (Blundy and Wood, 1994; Wood and Blundy, 1997; Green *et al.*, 2000; Hill *et al.*, 2000; Klein *et al.*, 2000; Barth *et al.*, 2002; Keshav *et al.*, 2005; Adam and Green, 2006; Prowatke and Klemme, 2006b; Beard *et al.*, 2019; Di Stefano *et al.*, 2019) mais également que la structure du liquide silicaté peut jouer un rôle important sur cet enrichissement (Kohn and Schofield, 1994; Linnen and Keppler, 2002; Gaetani, 2004; Mysen, 2004; Schmidt *et al.*, 2004; Prowatke and Klemme, 2005) (voir partie II.3.3).

Cette partie a pour but de faire la lumière sur ces effets de composition des minéraux ou du liquide silicaté, afin de mieux comprendre les variations d'enrichissement en métaux rares des minéraux observés dans la partie VI.3.

VI.4.1. Clinopyroxène dans les systèmes alcalins: compétition entre la structure du liquide silicaté et la structure du minéral ?

L'effet de la composition du liquide silicaté ainsi que de la composition des cristaux sur le partage des REE entre clinopyroxène et liquide silicaté est étudié dans cette partie. Les HFSE ne sont pas présentés, car le Nb est incompatible dans les clinopyroxènes pour la plupart des échantillons, et les autres HFSE n'ont été étudiés que dans une petite partie des échantillons.

VI.4.1.1. Effet de la composition chimique du liquide silicaté

L'étude des coefficients de partage des métaux rares entre clinopyroxènes et liquide silicaté présentés dans la Figure VI.9 a permis de mettre en évidence pour certains échantillons un potentiel effet de la température ou de la pression sur l'enrichissement en REE des clinopyroxènes, avec le comportement des REE variant d'incompatible à compatible à plus basse température ou à plus haute pression (voir partie VI.3.1.1, Fig.VI.9b et VI.9a). Nous avons également vu que le degré de différenciation du liquide silicaté varie à des conditions P-T différentes (Fig.IV.2 du chapitre IV ; Fig.V.3 et V.4, chapitre V), avec des compositions plus différenciées pour les échantillons à basse température et à haute pression (respectivement AK06 et T18 ; voir Fig.IV.2a). Il est ainsi nécessaire d'évaluer si la composition du liquide silicaté au cours de la différenciaiton joue un rôle sur le comportement des REE dans le clinopyroxène.

La Figure VI.17 présente les coefficients de partage du La et de l'Yb représentatifs des LREE et des HREE, en fonction de la composition du liquide silicaté de tous les échantillons observés (\pm hydratés, \pm graphite, \pm F-Cl-P). Ces coefficients de partage entre clinopyroxène et liquide silicaté sont présentée dans le Tableau VI.3, et la composition des liquides silicatés de tous les échantillons est présentée dans le Tableau B.1 de l'Annexe B.2 pour ceux du chapitre IV, ainsi que dans le Tableau V.2 (partie V.1.2) pour ceux \pm dopés en F, Cl ou P. Ces données de partage sont comparées à d'autres données expérimentales provenant de la littérature expérimentale des magmas alcalins (Fig.VI.17), dans les systèmes chimiques de type basalte alcalin (Shimizu, 1980 ; rond vide), basanite (Green et al., 2000 ; Adam & Green, 2006 ; respectivement carré et losange vide) et phonolite (Beard et al., 2019 ; triangle vide).

Pour le La et l'Yb (rond plein respectivement rouge et noir, Fig.VI.17), on peut observer de manière générale une légère augmentation des coefficients de partage avec la concentration en SiO₂ (% poids) du liquide silicaté (Fig.VI.17a) : les $D_{REE}^{CPx/LS}$ varient de 0,06 ± 0,01 à 3,07 ± 0,68 pour le La, et de 0,28 ± à 17,45 ± 7,10 pour l'Yb, pour des concentrations en SiO₂ variant de 34,99 ± 0,18 à 53,08 ± 0,91 % poids (Tableau B.1, Annexe B.2). Certains points pour l'Yb ne suivent pas tout-à-fait cette tendance (Fig.VI.17a). Cette variation générale est également très marquée dans les données des autres études expérimentales, avec une augmentation des coefficients de 0,02 à 95,42 pour le La et de 0,2 à 74,42 pour l'Yb, pour 36 à 59 % poids de SiO₂ dans le liquide silicaté (triangle, Beard et al., 2019).

Figure VI.17. Coefficients de partage des REE entre clinopyroxène et liquide silicaté (D^{CPxLS}) en fonction de paramètres relatifs à la composition chimique du liquide silicaté (LS): les concentrations en SiO₂ (a) et en CaO (b) en % poids, le NBO/T (c) et l'indice de saturation en Al $(Al_2O_3/(CaO+Na_2O+K_2O))$ (d) calculés sur la base de fractions molaires, pour cette étude (rond plein), et de littérature (rond vide : Shimizu, 1980) ; carré vide : Green et al., 2000 ; losange vide : Adam and Green, 2006 ; triangle vide : Beard et al., 2019). Rouge : La; noir: Lu.

Les coefficients de partage évoluent également en fonction des concentrations en CaO (% poids) dans le liquide silicaté (Fig.VI.17b). Pour des valeurs variant de 0,61 \pm 0,03 à 15, 34 \pm 0,14 % poids de CaO des données de cette étude (Tableau B.1, Annexe B.2), les $D_{REE}^{CPx/LS}$ augmentent légèrement jusqu'à 1 pour CaO < 3 % poids, puis augmentent de manière plus importante (particulièrement pour l'Yb) dans certains échantillons pour des valeurs de CaO < 3 % poids (Fig.VI.17b). On peut également observer cette tendance dans les données de la littérature, avec les $D_{REE}^{CPx/LS}$ les plus élevés pour des

concentrations de CaO < 1 % poids (triangle, Beard et al., 2019). Les clinopyroxènes sont ainsi plus enrichis en REE ($D_{REE}^{CP_X/LS} > 1$) en coexistence avec des liquides silicatés plus différenciés, riches en SiO₂ et pauvres en CaO.

De plus, on peut observer une légère augmentation des coefficients de partage pour le La et l'Yb en fonction du NBO/T (Fig.VI.17c): en effet, les valeurs sont relativement constantes pour des NBO/T > 0,45 puis augmentent fortement à partir de cette valeur. Les REE peuvent ainsi être fortement compatibles ($D_{REE}^{CPx/LS} > 1$) dans les clinopyroxènes en coexistence avec des liquides silicatés très polymérisés présentant un NBO/T < 0,45. Enfin, pour toutes les données, les $D_{REE}^{CPx/LS}$ augmentent légèrement avec l'ASI (indice de saturation de l'Al, Al₂O₃ / (CaO+Na₂O+K₂O) ; Fig.VI.17d) : les $D_{REE}^{CPx/LS}$ sont <1 pour un ASI< 0,6 ; à partir de cette valeur, les REE peuvent être compatibles dans les clinopyroxènes ($D_{REE}^{CPx/LS} > 1$), y compris pour les liquides silicatés proches du pôle métaluminuex (ASI>1).

Les $D_{REE}^{CPx/LS}$ sont également représentés en fonction des concentrations en CO₂ (% poids) du liquide silicaté (Fig.VI.18), mesurées à la nano-SIMS dans cette étude (Tableau V.2 du chapitre V, et Tableau B.1 de l'Annexe B.2). Les valeurs de $D_{REE}^{CPx/LS}$ les plus élevées (> 1) correspondent à des liquides silicatés contenant moins de 2% poids de CO₂. Les clinopyroxènes coexistant avec des liquides silicatés dont les contrations en CO₂ sont > 2% poids ne sont pas enrichis en REE ($D_{REE}^{CPx/LS} < 1$). Nous avons vu dans la partie V.3 (chapitre V) que les concentrations en CO₂ des liquides silicatés sont corrélées au NBO/T de ces liquides silicatés et donc à leur degré de polymérisation. Les clinopyroxènes coexistant avec les liquides silicatés les plus différenciés et les plus polymérisés contenant des concentrations faibles en CO₂ sont les plus enrichis en REE.

Figure VI.18. Coefficients de partage des REE entre clinopyroxène et liquide silicaté ($D^{CPx/LS}$) en fonction des concentrations en CO₂ (% poids) du liquide silicaté des échantillons de cette étude, mesuré à la nano-SIMS. Rouge : La; noir: Lu.

De manière générale, les coefficients de partage des REE entre clinopyroxènes et liquide silicaté semblent donc évoluer en fonction de la composition du liquide silicaté, dans cette étude ainsi que d'autres études expérimentales réalisées dans les systèmes de composition de magmas alcalins

(Shimizu, 1980 ; Green et al., 2000 ; Adam & Green, 2006 ; Beard et al., 2019). Les clinopyroxènes les plus enrichis en REE peuvent coexister avec des liquides silicatés riches en SiO₂, pauvres en CaO, très polymérisés (et pauvres en CO₂) et dont la composition est proche du pôle métalumineux. Cependant on peut remarquer que ces effets de la composition chimique du liquide silicaté sur les $D_{REE}^{CPx/LS}$ ne sont pas clairs pour tous les échantillons. Certains échantillons ne suivent pas toutes ces tendances. D'autres paramètres doivent également influencer le partage des REE entre clinopyroxènes et liquide silicaté.

VI.4.1.2. « Lattice Strain Modelling » et effet de la structure du minéral

Le « Lattice strain modelling » basé sur la structure du minéral est souvent utilisé pour caractériser le partage des éléments entre une phase cristalline et le liquide silicaté (voir partie II.3.3 ; (Blundy and Wood, 1994; Wood and Blundy, 1997). Il est ainsi possible de calculer le coefficient de partage D_i de l'éléments *i* en se basant sur le rayon ionique de cet élément ainsi que sur trois paramètres propres à la structure du minéral : le D_0 correspondant au coefficient de partage de l'élément 0 dont le rayon ionique est de la même taille que le site cristallographique M du minéral où il peut se substituer (coefficient de partage « strain free »), le rayon ionique r_0 de cet élément ainsi que le module d'Young E_M du site M (voir l'équation (3), partir II.3.3).

Les clinopyroxènes de formule XYT₂O₆ présentent trois sites cristallographiques : le site tétraédrique (T) rempli essentiellement par le cation Si⁴⁺ mais également Al³⁺, le site M2 à rayon ionique élevé pouvant contenir des cations X à forts rayons ioniques (Ca²⁺, Na⁺; coordination-8) et le site M1 plus petit contenant des cations Y de petite taille (Mg²⁺, Fe²⁺, Al³⁺; coordination-6). Les REE³⁺ se substituent principalement au Ca²⁺ dans le site M2 (Blundy and Wood, 1994; Wood and Blundy, 1997; Hill *et al.*, 2000). Cependant certaines études ont montré que des HREE (Yb et Lu) de rayons ioniques plus petits peuvent également se substituer au cations Mg²⁺ ou Fe²⁺ dans le site M1, ce qui se traduit par une augmentation de leurs coefficients de partage par rapport aux autres HREE (Olin and Wolff, 2010; Mollo et al., 2016; Dalou et al., 2018; Baudouin and France, 2019 ; voir partie II.3.3). Or nous avons vu dans la partie VI.3.1.1 et dans la Figure VI.9 que les coefficients de partage de l'Yb et du Lu augmentent et sont plus élevés que les autres HREE pour tous les échantillons (Tableau VI.3). On peut ainsi supposer que ces deux éléments se substituent également au Mg²⁺ et Fe²⁺ (dont les concentrations peuvent être relativement élevées dans ces échantillons ; partie VI.2.1) dans le site M1 des clinopyroxènes, en cooridination-6.

Afin d'estimer les paramètres du « Lattice strain modelling » pour les coefficients de partage des REE entre clinopyroxènes et liquide silicaté de chaque échantillon, l'équation suivante peut être utilisée pour calculer les D_i à partir d'une composante D^{M1} relative au site M1 et caractérisée par les paramètres D_0^{M1} , r_0^{M1} et E^{M1} , ainsi que d'une composante D^{M2} propre au site M2 et caractérisée par les paramètres D_0^{M2} , r_0^{M2} et E^{M2} :

$$D_{i} = D_{0}^{M1} * \exp\left(\frac{-4\pi E_{M1}N_{A}\left[\frac{r_{0}^{M1}}{2}(r_{i} - r_{0}^{M1})^{2} + \frac{1}{3}\left(r^{i} - r_{0}^{M1}\right)^{3}\right]}{RT}\right) + D_{0}^{M2} \\ * \exp\left(\frac{-4\pi E_{M2}N_{A}\left[\frac{r_{0}^{M2}}{2}(r_{i} - r_{0}^{M2})^{2} + \frac{1}{3}\left(r^{i} - r_{0}^{M2}\right)^{3}\right]}{RT}\right)$$
(16)

Pour les échantillons de cette étude, seuls l'Yb³⁺ et le Lu³⁺ parmi les REE sont considérées comme pouvant intégrer le site M1. Les autres REE³⁺ se subsituent au Ca²⁺ dans le site M2. Tous les cations 3+ pouvant se concentrer dans le site M1 sont donc l'Yb³⁺et le Lu³⁺ ainsi que le Cr³⁺, le Sc³⁺ et l'Al³⁺. Le Cr³⁺ et le Sc³⁺ n'étant présents que dans quelques échantillons, ces éléments n'ont pas été pris en compte afin d'uniformiser le calcul des paramètres du « Lattice strain modelling » pour tous les échantillons. Les D^{M1} sont donc calculés en considérant l'Yb³⁺, le Lu³⁺ et l'Al³⁺ dans le site M1, avec les rayons ioniques correspondant en coordination-6 (de 0,535 Å pour l'Al à 0,868 Å pour le Lu, voir Tableau VI.9 ; Shannon 1976). Les rayons ioniques des REE dans le site M2 sont en coordination-8 (de 1,004 Å pour l'Er à 1,160 Å pour le La, Tableau VI.9 ; Shannon 1976).

Tableau VI.9. Rayons ioniques (r.i.) des REE et de l'Al utilisés pour le calcul du « Lattice strain modelling ». Les REE en site M2 (du La à l'Er) sont en coordination 8 (rayons ioniques provenant de Shannon, 1976) ; les autres REE en site M1 (Yb et Lu) ainsi que l'Al sont en coordination 6.

	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Y	Ho	Er	Yb	Lu	Al
Site	M2	M2	M2	M2	M2	M2	M2	M2	M2	M2	M2	M2	M 1	M 1	M1
r.i (Å)	1,16	1,143	1,126	1,109	1,079	1,066	1,053	1,04	1,027	1,019	1,015	1,004	0,868	0,861	0,535

L'outil « Double Fit » proposé par Dalou et al. (2018) a été utilisé afin de calculer les paramètres D_0^{M1} , r_0^{M1} , E_0^{M1} , D_0^{M2} , r_0^{M2} et E^{M2} . Cet outil permet de calculer ces 6 paramètres afin de reproduire au mieux les coefficients de partage mesurés en effectuant deux régressions correspondant à chaque site cristallin, et une régression globale correspondant à la somme des deux régressions M1 et M2. Le calcul du $D^{(M2)3+}$ est bien contraint étant donné qu'il prend en compte 12 éléments (12 REE, du La à l'Er). En revanche seuls 3 éléments sont utilisés pour contraindre le calcul du $D^{M1 3+}$ (Yb, Lu et Al); deux contraintes ont ainsi dû être imposées afin d'éviter de surestimer les calculs : une valeur maximale pour le D_0^{M1} a été fixée (D_0^{M1} max = 10) ainsi qu'une valeur minimale pour le r_0^{M1} ($r_0^{M1} > 0,70$ Å).

Tous les paramètres du « Lattice strain modelling » pour le partage des cations 3+ entre clinopyroxène et liquide silicaté, calculés pour 30 échantillons sont présentés dans le Tableau VI.10. Les résultats de ces calculs sont également présentés dans la Figure VI.19 pour des échantillons représentatifs. Les courbes rouges correspondent aux courbes de régression du site M2 pour chaque échantillon ; les courbes bleues correspondent aux courbes de régression du site M1. La courbe noire représente la somme des deux courbes de régression, pour chaque échantillon (Fig.VI.19). De plus, les D_0^{M1} et les D_0^{M2} correspondent respectivement au maximum des courbes bleues et rouges. Les D_0^{M1} de tous les échantillons varient de 2,94 ± 1,70 à 9,98 ±0,14, avec des r_0^{M1} correspondant variant de 0,70 ± 0,02 à 0,80 ± 0,00 Å, et des E^{M1} variant de 172 ± 101 à 369 ± 107 GPa (Tableau VI.10). Pour les D_0^{M2} , ils évoluent de 0,39 ± 0,02 à 9,99 ±0,01, avec des r_0^{M2} correspondant variant de 1,01 ± 0,02 à 1,10 ± 0,01

Å, et des E^{M2} variant de 181 ± 55 à 548 ± 101 GPa (Tableau VI.10). Les paramètres r_0^{M1} et r_0^{M2} évoluent sur une gamme très petite pour tous les échantillons, et les E^{M2} varient sur une gamme plus large que les E^{M1} . Les D_0^{M1} calculées sont globalement plus élevés que les D_0^{M2} (Tableau VI.10), mais reste < 10 (valeur fixée pour le calcul), et varie sur une gamme plus petite que les D_0^{M2} .

Pour tous les échantillons, à 0,8 GPa (Fig.VI.19a), 0,4 GPa (Fig.VI.19b) et à 925 °C (Fig.VI.19c), les paramètres calculés $(D_0^{M1}, r_0^{M1}, E^{M1}, D_0^{M2}, r_0^{M2}$ et E^{M2}) permettent de bien calibrer les $D_{REE}^{CPx/LS}$ mesurés. On peut observer les mêmes tendances des coefficients de partage à pression constante et à température constante évoquées précédemment (Fig.VI.9; partie VI.3.1.1). Les 6 paramètres du « Lattice strain modelling » varient ainsi pour une large gamme de $D_{REE}^{CPx/LS}$ mesurés dans ces échantillons.

Figure VI.19. Coefficient de partage entre clinopyroxène et liquides silicaté $(D^{CPx/LS})$ pour les cations à valence 3+ (Al et REE), en fonction de leurs rayons ioniques (r.i., en Å), à 0,8 GPa (a), 0,4 GPa (b) et 925 °C (c). Les courbes pointillées noires correspondent aux meilleurs fit du lattice strain model réalisés à partir du Double Fit de Dalou et al. (2018), qui correspond à l'addition des fit du site M1 (courbes pointillées bleus) et du site M2 (courbes pointillées rouges) du

clinopyroxène. Toutes les REE sont concentrées dans le site M2, à l'exception de l'Yb³⁺ et du Lu³⁺ qui sont plutôt dans le site M1 avec l'Al³⁺.

Tableau VI.10. Paramètres du « Lattice strain modelling », calculés avec le modèle Double Fit de Dalou et al. (2018). Les erreurs (σ) de chaque paramètre sont calculées par le modèle.

	T14_01	T14_02	T16_01	T16_02	T17_01	T17_02	T17_04	AK01_01	AK01_03	T18_01
P (GPa)	0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,2	0,2	1,5
T (°C)	975	975	950	950	925	925	925	925	925	925
Composition	Mix 8	Mix 8	Mix 8	Mix 8	Mix 8	Mix 8	Mix 8	Mix 8	Mix 8	Mix 8
$\mathbf{D_0^{M1}}$	5,04	4,49	5	5,6	5,25	6,19	5,09	5,25	6,09	5,09
$\sigma (\mathbf{D}_0^{M1})$	3,03	2,82	2,75	2,66	2,96	2,95	2,03	3,26	2,91	2,16
E ^{M1} (Gpa)	299	279	293	292	273	290	312	333	370	197
σ (E ^{M1})	106	124	94	77	114	92	55	132	107	65
$\mathbf{r_0}^{M1}$ (Å)	0,73	0,74	0,7	0,71	0,73	0,73	0,7	0,73	0,71	0,76
$\sigma (r_0^{M1})$	0,01	0,02	0	0	0,02	0,01	0	0,02	0	0,02
$\mathbf{D_0}^{M2}$	0,48	0,4	0,49	0,54	0,95	1,51	0,39	0,69	0,27	2,73
$\sigma (\mathbf{D}_0^{M2})$	0,05	0,05	0,08	0,04	0,18	0,19	0,02	0,15	0,02	0,24
E ^{M2} (Gpa)	291	330	297	229	275	274	341	378	365	369
σ (E ^{M2})	81	185	128	59	165	108	50	169	50	87
$\mathbf{r_0}^{M2}$ (Å)	1,04	1,06	1,05	1,06	1,05	1,08	1,05	1,09	1,07	1,05
$\sigma (r_0^{M2})$	0,02	0,02	0,02	0,01	0,03	0,01	0,01	0,01	0	0,01
	T18_03	T18_04	AK02_01	AK02_02	AK02_03	AK02_04	AK05_01	AK05_02	AK05_03	AK05_05
P (GPa)	1,5	1,5	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4
T (°C)	925	925	925	925	925	925	825	825	825	825
Composition	Mix 8	Mix 8	Mix 8	Mix 8	Mix 8	Mix 8	Mix 8	Mix 8	Mix 8	Mix 8
$\mathbf{D}_{0}^{\mathbf{M}1}$	4,41	4,4	6,96	6,64	5,85	5,48	6,56	5,01	4,09	9,93
$\sigma (D_0^{M1})$	2,29	2,67	2,67	2,57	3,05	2,91	2,95	2,58	2,33	0,24
E ^{M1} (Gpa)	284	247	349	370	290	300	260	223	206	172
σ (E ^{M1})	75	90	91	75	94	104	82	118	69	11
$\mathbf{r}_{0}^{MI}(\mathbf{\check{A}})$	0,72	0,73	0,73	0,74	0,71	0,72	0,74	0,74	0,73	0,8
$\sigma(\mathbf{r_0}^{M1})$	0	0,01	0,01	0,01	0	0,01	0,01	0,02	0,01	0
$\mathbf{D}_{0}^{\mathbf{M2}}$	0,6	1,1	0,55	0,72	0,54	0,61	2,41	4,07	2,87	9,99
$\sigma (D_0^{M2})$	0,04	0,12	0,06	0,08	0,05	0,12	0,31	0,51	0,17	0,21
E ^{M2} (Gpa)	379	400	314	364	315	332	309	365	352	376
σ (E ^{M2})	60	107	138	89	79	180	94	79	34	99
$\mathbf{r_0}^{M2}$ (Å)	1,05	1,05	1,05	1,06	1,06	1,07	1,09	1,09	1,08	1,01
$\sigma (r_0^{M2})$	0,01	0,01	0,02	0,02	0,01	0,02	0,01	0,01	0	0,03
	T19_01	T19_03	T19_04	AK06_01	AK06_02	PCPC1_01	PCPC1_02	PCPC5_01	PCPC5_02	PCPC5_03
P (GPa)	0,8	0,8	0,8	0,4	0,4	0,8	0,8	0,8	0,8	0,8
T (°C)	850	850	850	950	950	850	850	850	850	850
Composition	Mix 8	Mix 8	Mix 8	Mix 8	Mix 9	PhCbn1	PhCbn1	PhCbn4	PhCbn4	PhCbn4
\mathbf{D}_{0}^{M1}	6,39	6,39	6,97	2,95	5,39	5,53	5,51	9,98	9,67	9,86
$\sigma(\mathbf{D}_0^{\mathrm{MI}})$	2,98	2,28	2,17	1,7	2,95	2,67	2,6	0,14	0,62	0,22
E ^{MI} (Gpa)	230	321	229	238	253	233	248	183	206	191
σ (E ^{mi})	82	59	54	99	215	74	83	11	23	14
$\mathbf{r}_{0}^{MI}(\mathbf{A})$	0,76	0,73	0,77	0,72	0,77	0,77	0,77	0,8	0,79	0,8
$\sigma(\mathbf{r}_0^{\text{MI}})$	0,02	0,01	0,02	0,01	0,04	0,02	0,02	0	0,01	0,01
\mathbf{D}_{0}^{M2}	5,38	0,92	5,46	1,83	0,71	4,34	4,42	10	7,96	8,52
$\sigma \left(D_0^{M2} \right)$	0,84	0,04	0,56	0,26	0,26	1,01	0,86	0	0,97	0,36
E^{m2} (Gpa)	433	361	408	548	344	293	314	105	255	181
σ (Ε ^{Μ2})	100	37	104	101	132	151	152	10	123	56
r_0^{M2} (Å)	1,08	1,06	1,07	1,1	1,07	1,09	1,09	1,01	1,03	1,01
$\sigma (r_0^{M2})$	0,01	0	0,01	0	0,04	0,01	0,01	0,01	0,03	0,01

Les paramètres D_0^{M1} , r_0^{M1} , E^{M1} , D_0^{M2} , r_0^{M2} et E^{M2} ont également été calculés à partir du « Double Fit » (Dalou et al., 2018) pour les données expérimentales de la littérature dans les systèmes chimiques alcalins présentés dans la Figure VI.17, de type basalte alcalin (Shimizu, 1980), basanite (Green et al., 2000 ; Adam & Green, 2006) et phonolite (Beard et al., 2019). Afin d'homogénéiser le calcul, ces paramètres ont été calculés pour trois études (Shimizu, 1980 ; Green et al., 2000 ; Adam & Green, 2006) en considérant également l'Yb³⁺, Lu³⁺ et l'Al³⁺ dans le site M1 (coordination-6), et les autres REE³⁺ dans le site M2. Les paramètres de Beard et al., (2019) proviennent directement de cette étude. Tous ces paramètres sont représentés dans le Tableau E.1 de l'Annexe E.1. Pour les quatre études, les

 D_0^{M1} évoluent de 2,08 ± 1,50 à 842,29, avec des r_0^{M1} variant de 0,70 ± 0,02 à 0,80 Å, et des E^{M1} variant de 292,40 ± 122,40 à 702,81 GPa.

Pour les D_0^{M2} , ils évoluent de 0,30 ± 0,03 à 51,32, avec des r_0^{M2} correspondant variant de 0,99 ± 0,03 à 1,12 Å, et des E^{M2} variant de 123,10 ± 32,30 à 807,28 GPa (Tableau E.1). A l'exception des r_0^{M1} et r_0^{M2} , tous les paramètres évoluent sur une gamme beaucoup plus large, avec des valeurs très extrêmes correspondant aux phonolites (Beard et al., 2019).

Les $D_{REE}^{CPx/LS}$ calculés à partir du « Lattice strain modelling » sont représentés en fonction des $D_{REE}^{CPx/LS}$ mesurés expérimentalement, pour les échantillons de cette étude ainsi que les données de la littérature (Fig.VI.20a). La très bonne corrélation entre les $D_{REE}^{CPx/LS}$ calculés et les $D_{REE}^{CPx/LS}$ mesurés indique que les paramètres D_0^{M1} , r_0^{M1} , E^{M1} , D_0^{M2} , r_0^{M2} et E^{M2} régressés sont bien représentatifs et permettent de bien estimer les $D_{REE}^{CPx/LS}$ mesurés, pour cette étude ainsi que pour les données de la bibliographie utilisées. On peut remarquer que pour deux échantillons de cette étude (rond noirs, Fig.VI.20a), les valeurs de coefficients les plus élevées correspondant aux coefficients de partage de l'Yb sont légèrement sous-estimés (valeurs décalées par rapport à la droite 1-1). Ceci peut-être dû au fait que le calcul du DM1 n'est seulement contraint que par trois valeurs, et sous-estime ainsi la valeur du DYb-Lu^{CPx/LS} calculé.

Beard et al. (2019) ont proposé une série de paramétrisations empiriques des 6 paramètres du « Lattice strain modelling » $(D_0^{M1}, r_0^{M1}, E^{M1}, D_0^{M2}, r_0^{M2} \text{ et } E^{M2})$ basées exclusivement sur la composition du minéral, sur la pression et sur la température. Ces paramétrisations ont essentiellement été effectuées par méthode statistique, à partir d'une large gamme de données bibliographiques (voir Beard et al., 2019) et en utilisant que la pression, la température et les proportions atomiques de chaque cation (Ca²⁺, Na+, Mg²⁺, Fe²⁺, Fe³⁺, Al³⁺, Ti⁴⁺) dans les différents site des clinopyroxènes (T, M1 et M2). En utilisant cette paramétrisation, il est alors possible d'estimer les D_{REE}^{CPx/LS} qu'à partir de la composition du cristal et des conditions de pression et de température.

Les 6 paramétrisations de Beard et al. (2019) sont réalisées à partir des 6 équations suivantes, en fonction de la température (T), de la pression (P), et des proportions atomiques des cations (Ca²⁺, Na+, Mg²⁺, Fe²⁺, Fe³⁺, Al³⁺, Ti⁴⁺) dans chaque site du clinopyroxène (T, M1 et M2) notées X_{cation}^{site} :

$$r_0^{M2} = a_{15} + a_{16} * T + a_{17} * X_{Al-Fe^{3+}}^{M1} + a_{18} * X_{Ti}^{M1} + a_{19} * X_{Ca}^{M2} + a_{20} * X_{Na}^{M2}$$
(17)

$$ln(D_0^{M2}) = a_1 + a_2 * T + a_3 * X_{Al+Fe^{3+}}^T + a_4 * X_{Ti}^{M1} + a_5 * X_{Al-Fe^{3+}}^{M1} + a_6 * X_{Fe^{2+}}^{M2}$$
(18)

$$E^{M2} = a_7 + a_8 * P + a_9 * X^T_{Al+Fe^{3+}} + a_{10} * X^{M1}_{Al} + a_{11} * X^{M1}_{Mg} + a_{12} * X^{M1}_{Ti} + a_{13} * X^{M2}_{Mg}$$
(19)
+ $a_{14} * X_{Mg}$

$$r_0^{M1} = b_{10} + b_{11} * P + b_{12} * X_{Mg}^{M2} + b_{13} * X_{Fe^{3+}}^{M1} + b_{14} * X_{Ca}^{M2}$$
(20)

$$ln(D_0^{M1}) = b_1 + b_2 * X_{Al}^T + b_3 * X_{Fe^{3+}}^{M1} + b_4 * X_{Ca}^{M2} + b_5 * X_{Na}^{M2}$$
(21)

$$E^{M2} = b_6 + b_7 * T + b_8 * P + b_9 * X_{Mg}^{M1}$$
(22)

Le modèle de calcul des coefficients de partage de Beard et al. (2019) a été testé avec les données de cette étude, ainsi que les autres données de la littérature. Les 6 paramètres du « Lattice strain modelling » (D_0^{M1} , r_0^{M1} , E^{M1} , D_0^{M2} , r_0^{M2} et E^{M2}) ont ainsi été recalculés pour toutes les données selon les équations (17) à (22), à partir de la pression de la température et des fractions de cations (disponibles dans le Tableau C.3 de l'Annexe C.1.2 pour les données de cette étude). Les $D_{REE}^{CPx/LS}$ ainsi calculés sont représentés en fonction des $D_{REE}^{CPx/LS}$ mesurés dans la Figure VI.20b. De manière générale, les $D_{REE}^{CPx/LS}$ calculés sont très variables et ne reproduisent pas tout-à-fait les valeurs mesurées. Les valeurs les plus extrêmes pour cette étude sont relativement bien reproduites ($D_{La}^{CPx/LS}$ les plus bas et $D_{Yb}^{CPx/LS}$ les plus élevés) ; pour les autres études, les valeurs les plus basses sont également bien recalculées (losange ; Adam & Green, 2006), mais pas les valeurs les plus élevées qui sont sous-estimées d'un ordre de grandeur ($D_{La}^{CPx/LS} = 95,42$; triangle, Beard et al., 2019).

La majorité des valeurs calculées à partir de cette paramétrisation sont ainsi dispersées (Fig.VI.20b) et parfois très différentes des valeurs mesurées. Cette paramétrisation statistique (Beard et al., 2019) basée exclusivement sur la structure et la composition du clinopyroxène ainsi que sur les conditions P-T ne semble donc pas permettre de bien évaluer le partage des REE entre clinopyroxène et liquide silicaté alcalin, pour toutes ces données.

Figure VI.20. Coefficients de partage des REE entre clinopyroxène et liquide silicaté calculés ($D_{REE}^{CPx/LS}$ calculé) à partir du lattice strain model (a) ainsi que du modèle de Beard et al. (2019) (b), en fonction des coefficients de partage mesurés ($D_{REE}^{CPx/LS}$ mesuré) de cette étude (rond plein), et de littérature (rond vide : Shimizu, 1980) ; carré vide : Green et al., 2000 ; losange vide : Adam and Green, 2006 ; triangle vide : Beard et al., 2019). Rouge : La; noir: Lu.

En bilan, nous avons vu que les coefficients de partage des REE varient en fonction de la composition chimique du liquide silicaté, et évoluent ainsi au cours de la différenciation des liquides silicatés (Fig.VI.17 et VI.18). Nous avons également vu que ces coefficients peuvent dépendre de la structure du réseau cristallin du clinopyroxènes (Fig.VI.19 et Fig.VI.20a). Cependant, une paramétrisation basée que sur la structure cristalline ne permet pas de bien évaluer l'enrichissement en REE des

clinopyroxènes par rapport au liquide silicaté. Il semble donc que les effets de la composition et de la structure du clinopyroxène et du liquide silicaté doivent se superposer et jouer un rôle sur le partage des REE.

Est-il possible de relier les paramètres caractérisant la structure du minéral (paramètres du « Lattice strain modelling », composition, fractions atomiques dans les différents sites cristallins...), à l'effet de la composition du liquide mis en évidence, afin de caractériser le partage des REE entre clinopyroxène et liquide silicaté au cours de leur différenciation ? En d'autres termes, est-il possible d'estimer ces coefficients de partage en combinant l'effet de la structure du minéral à celui de la structure du liquide silicaté ? La partie suivante traite de la combinaison des effets de structure du clinopyroxène et de composition du liquide silicaté, et de son impact sur la variation d'enrichissement en REE des clinopyroxènes.

VI.4.1.3. Relation entre les paramètres de structure des clinopyroxènes et du liquide silicaté, et test de paramétrisation

Nous avons vu que la composition et la structure du clinopyroxène ne permettent pas de bien estimer les coefficients de partage des REE entre clinopyroxène et liquide silicaté, et ainsi de bien calibrer l'enrichissement en REE des clinopyroxènes au cours de la différenciation des magmas alcalins. Nous avons également vu un effet de la composition du liquide silicaté sur les $D_{REE}^{CP_XLS}$. L'application du « Lattice strain modelling » aux $D_{REE}^{CP_XLS}$ de cette étude a permis de mettre en évidence que les 6 paramètres relatifs à la structure du clinopyroxène pour les cations $3+ (D_0^{M1}, r_0^{M1}, E^{M1}, D_0^{M2}, r_0^{M2})$ et E^{M2}) évoluent en fonction des différents $D_{REE}^{CP_XLS}$. Ceci implique que ces paramètres évoluent pour des clinopyroxènes en coexistence avec des liquides silicatés de compositions différentes. Tous ces paramètres ont ainsi été représentés en fonction des $D_{REE}^{CP_XLS}$. Les paramètres D_0 (coefficient de partage « strain free ») sont représentés en fonction de paramètres représentatifs de la composition du liquides silicaté (déjà présentés dans la Figure VI.17) pour cette étude et les données de la littérature (Shimizu, 1980 ; Green et al., 2000 ; Adam & Green , 2006 ; Beard et al., 2019) : la concentration en CaO (% poids ; Fig.VI.21a), le NBO/T (Fig.VI.21b) ainsi que l'ASI (Fig.VI.21c).

Pour le site M1 (D_0^{M1} , en vert), on remarque que les valeurs calculées pour cette étude sont relativement constantes (autour de 5 et 6 ; voir Tableau VI.10) pour des valeurs de 4 à 16 % poids de CaO ; avec toutefois une légère variation des D_0^{M1} entre 2 et 9, pour des concentrations de CaO < 3% poids. Deux valeurs très élevées (> 800) correspondent aussi à des concentrations en CaO très faibles dans les données de la littérature (CaO à 0,5 % poids, triangle vert; Beard et al., 2019), mais aucune tendance claire ne semble se dégager pour tous les points. En revanche pour le site M2, les D_0^{M2} augmentent fortement sur presque un ordre de grandeur pour des concentrations < 4% poids de CaO dans le liquide silicaté (en bleu, Fig.VI.21a). Cette forte augmentation des D_0^{M2} pour des valeurs relativement faibles de CaO est également observée pour les données de la littérature, avec une augmentation sur deux ordres de grandeurs (flèche grise, Fig.VI.21a).

De plus, on peut également observer cette forte augmentation des D_0^{M2} en fonction du NBO/T (Fig.VI.21b) : en effet les valeurs sont relativement constantes pour des NBO/T > 0,45, puis augmentent fortement pour des NBO/T plus faibles, pour cette étude ainsi que les données de la littérature. Les D_0^{M2} des clinopyroxènes évoluent donc de manière très claire en fonction du degré de polymérisation des liquides silicatés : les D_0^{M2} augmentent pour des liquides silicatés très polymérisés, dont le NBO/T est < 0,45. Cette variation très claire des D_0^{M2} n'est pas observée pour les D_0^{M1} , à l'exception des valeurs extrêmes de Beard et al. (2019) pour des NBO/T < 0,1.

Figure VI.21. Coefficients de partage idéal (« strain free ») D_0 du site M1 (D_0^{M1} , vert) et du site M2 (D_0^{M2} , bleu foncé) pour les cations à valence 3+ entre clinopyroxène et liquide silicaté ($D_0^{3+}CP_XLS$) en fonction de paramètres relatifs à la composition chimique du liquide silicaté : la concentration en CaO (a) en % poids, le NBO/T (b) et l'indice de saturation en Al ($Al_2O_3/(CaO+Na_2O+K_2O)$) (c) calculés sur la base de fractions molaires, pour cette étude (rond plein), et de littérature (rond vide : Shimizu, 1980) ; carré vide : Green et al., 2000 ; losange vide : Adam and Green, 2006 ; triangle vide : Beard et al., 2019).

Enfin, ces paramètres sont représentés en fonction de l'ASI des liquides silicatés (Al₂O₃ / (CaO+Na₂O+K₂O) ; voir Tableau V.2 et Tableau B.1, Annexe B.2). Pour les échantillons de cette étude, les valeurs des D_0^{M2} sont relativement constantes pour un ASI < 0,5 (Fig.VI.21c), puis augmentent fortement jusqu'à ASI <0,8. Les données de Beard et al. (2019; triangle) présentent également cette augmentation pour des valeurs de ASI élevées, jusqu'au pôle métalumineux (ASI > 1). En revanche, les données de la littérature dans les systèmes chimiques de basalte alcalin (Shimizu, 1980 ; rond vide) et de basanite (Green et al., 2000 ; Adam & Green, 2006 ; carré et losange) ne varient pas et restent constantes, pour des valeurs de ASI variant de 0,6 à 1,2. Les D_0^{M2} semblent donc augmenter pour des liquides silicatés péralcalins (ASI > 0,5), jusqu'à des liquides métalumineux (ASI > 1), pour des compositions sous-saturées en silice (néphélinite à phonolite ; cette étude et Beard et al., 2019). Comme pour les concentrations en CaO du liquide silicaté (% poids) et le NBO/T, les D_0^{M1} ne montrent pas une telle augmentation et restent sur le même ordre de grandeur pour toutes les données, à l'exception de certaines valeurs extrêmes (Beard et al., 2019 ; Fig.VI.21c).

Le paramètre D_0^{M2} du « Lattice strain modelling » caractéristique de la structure du clinopyroxène, évolue donc en fonction de la composition du liquide silicaté pour cette étude et pour celles de la bibliographie : le D_0^{M2} augmente au cours de la différenciation du liquide silicaté, pour des valeurs de CaO < 3% poids, de NBO/T < 0,45 et de ASI > 0,5 dans le liquide silicaté. Les clinopyroxènes en coexistence avec des liquides silicatés alcalins très polymérisés, pauvres en CaO et de composition proche du pôle métalumineux voir métalumineuse (ASI>1), présentent donc des D_0^{M2} plus élevés que ceux coexistant avec des liquides moins différenciés.

L'effet de la structure du minéral sur le D_0^{M2} a également été étudié, via certains paramètres relatifs à la composition et à la structure du clinopyroxène : fractions des pôles Ae-He-Di et Wo-Fs-En ; ^{IV}Al³⁺, Si⁴⁺ et Fe³⁺ dans le site T; Mg²⁺, Al³⁺ et Fe³⁺ dans le site M1; Ca²⁺, Mg²⁺, Na⁺ et Fe²⁺ dans le site M2. Cependant, aucun de ces paramètres n'a montré de corrélation claire avec le D_0^{M2} , pour cette étude ainsi que les autres études expérimentales.

Nous avons vu précédemment que ces variations en fonction de la composition du liquide silicaté sont observées pour les $D_{REE}^{CPx/LS}$ mesurés (Fig.VI.17b à VI.17d)). Les effets de composition du liquide silicaté sur l'enrichissement en REE des clinopyroxènes en coexistence avec des liquides silicatés alcalins peuvent ainsi refléter un effet de la composition du liquide sur le paramètre D_0^{M2} relatif à la structure du clinopyroxène. Il existe donc une relation entre l'évolution des $D_{REE}^{CPx/LS}$ ainsi que des D_0^{M2} , et de la composition chimique du liquide silicaté. Il est ainsi possible de prendre en compte cette composition pour caractériser l'évolution du partage des REE entre clinopyroxène et liquide silicaté.

Des tests de paramétrisation ont été effectués dans le but final de recalculer les $D_{REE}^{CPx/LS}$ mesurés, directement à partir de la composition de liquide silicaté. Deux types de paramétrisation ont été effectués:

- i) une paramétrisation des $D_{REE}^{CPx/LS}$ directement à partir de la composition du liquide silicaté (sans prendre en compte, les paramètres du « Lattice strain modelling »);
- ii) une paramétrisation des D_0^{M2} à partir de la composition du liquide silicaté ;

Au total une trentaine de tests ont été effectués, à partir des relations observées entre ces coefficients et la composition du liquide silicaté dans les Figures VI.17 et VI.21, en prenant en compte différents paramètres caractéristiques de la composition du liquide silicaté tels que : l'index de saturation de l'aluminium noté ASI (Al₂O₃/(CaO+Na₂O+K₂O)), le rapport entre les alcalins et les alcalino-terreux ((Na₂O+K₂O)/(CaO+MgO)), CaO, SiO₂, Na₂O+K₂O et le NBO/T.

Ces paramètres ont été combinés de différentes manières (calibrations effectuées en utilisant de 2 à 6 paramètres) afin d'optimiser ces paramétrisations. Elles ont été réalisées par régression au moindre 231

carré sur 57 échantillons, avec les données de cette étude (30) et des autres études expérimentales présentées précédemment (27 données ; Shimizu, 1980 ; Green et al., 2000 ; Adam & Green, 2006 ; Beard et al., 2019).

Les tests de paramétrisation (i) ont été rapidement écartés car les valeurs de $D_{REE}^{CPx/LS}$ calculées étaient aberrantes. La composition du liquide silicaté à elle seule ne permet ainsi pas de calculer directement les $D_{REE}^{CPx/LS}$. Pour les tests de paramétrisation ii) (D_0^{M2} en fonction de la composition du liquide silicaté), une solution parmi tous les tests effectués a été retenue et permet de recalculer au mieux les D_0^{M2} du « Lattice strain modelling ». Les D_0^{M2} sont paramétrés en fonction de 4 paramètres - le CaO, l'ASI, la somme des alcalins (Na_2O+K_2O) et le SiO₂ – selon l'équation suivante :

$$\ln(D_0^{M_2}) = a_0 + a_1 * CaO + a_2 * \frac{Al_2O_3}{(CaO + Na_2O + K_2O)} + a_3 * SiO_2 + a_4 * (Na_2O + K_2O)$$
(23)

Tous les paramètres sont exprimés sur la base de fractions molaires. Le Tableau VI.11 présente les coefficients a_0 à a_4 utilisés, ainsi que leurs erreurs calculées également par la régression. Le résultat de cette régression est présenté dans la Figure.VI.22. Les D_0^{M2} calculés à partir de l'équation (23) pour les cations 3+ sont représentés en fonction des D_0^{M2} calculés par le « Double Fit » de Dalou et al., (2018). Pour cette étude ainsi que celles de la bibliographie, les valeurs de D_0^{M2} les plus basses sont bien représentées (Fig.VI.22). En revanche les valeurs les plus élevées sont légèrement sous-estimées. Ces valeurs correspondent aux NBO/T < 0,45 (voir Fig.VI.21a). De même, les valeurs de Beard et al. (2019) qui sont également caractérisées par un NBO/T très faibles (Fig.VI.21a) sont également sous-estimées. Cette variation de tendance des D_0^{M2} calculés semble refléter le changement de comportement des D_0^{M2} en fonction de la composition du liquide silicaté observé dans la Figure VI.21 (constant, puis forte augmentation à partir de NBO/T).

L'équation (23) présente ainsi les prémices d'une paramétrisation du D_0^{M2} en fonction de la composition du liquide silicaté qui reste encore à améliorer, étant donné que les valeurs les plus élevées ne sont pas bien reproduites.

D'autres tests de paramétrisation ont été effectués :

- à partir de la composition du liquide silicaté ainsi que de certains paramètres relatifs à la structure et à la composition du clinopyroxène tels que la fraction des pôles Ae et Di, la composition du clinopyroxène évoluant du pôle diopside au pôle aégirine dans cette étude (partie IV.2.1; Figure VI.7).
- en combinant l'équation (23) au modèle de Beard et al. (2019) : les paramètres r₀^{M1}, r₀^{M2}, D₀^{M1}, E^{M1} et E^{M2} sont calculés à partir des équations (17) et (19) à (22), et le D₀^{M2} à partir de l'équation (23). Seul le D₀^{M2} est calculé à partir de la composition chimique du liquide silicaté, les autres paramètres sont calibrés à partir de la composition du clinopyroxènes.

Cependant ces autres tests de paramétrisation n'ont pas apportés de meilleurs résultats.

Tableau VI.11. Coefficients (a_0 à a_4) calculés par régression aux moindres carrés dans la paramétrisation du $D_0^{M2 des}$ clinopyroxènes et des liquides silicatés. Les erreurs σ ont également été calculées par la régression.

	\mathbf{a}_0	\mathbf{a}_1	\mathbf{a}_2	a ₃	a 4
a	-7,25	-5,98	6,47	0,39	22,00
σ	3,35	7,07	1,83	5,58	3,79

Figure VI.22. Paramétrisation du coefficient de partage idéal (« strain free ») D_0 du site M2 (D_0^{M2} , bleu foncé) pour les cations à valence 3+, à partir de la composition du liquide silicaté. Coefficient de partage D_0 du site M2 pour les cations 3+ entre clinopyroxènes et liquide silicaté calculé (D_0^{3+M2} CPx/LS calculé) à partir de la composition du liquide silicaté en fonction du D0 du site M2 calculé à partir du lattice strain model (LSM ; D_0^{3+M2} CPx/LS LSM), pour cette étude (rond plein), et de littérature (rond vide : Shimizu, 1980) ; carré vide : Green et al., 2000 ; losange vide : Adam and Green, 2006 ; triangle vide : Beard et al., 2019).

Cette paramétrisation ne permet pas de recalculer les $D_{REE}^{CPx/LS}$, car un seul paramètre du « Lattice strain modelling » est calibré (D_0^{M2}). De la même manière que le modèle de Beard et al. (2019), il est nécessaire de paramétrer judicieusement les 6 paramètres du « Lattice strain modelling » afin de pouvoir calibrer les $D_{REE}^{CPx/LS}$.

A la différence du D_0^{M2} , les autres paramètres (D_0^{M1} , r_0^{M1} , E^{M1} , r_0^{M2} et E^{M2}) ne montrent pas de variation claire en fonction de la composition du liquide silicaté. Leur évolution en fonction des conditions P-T et de la composition des clinopyroxènes (pôles Ae-He-Di et Wo-Fs-En ; ^{IV}Al³⁺, Si⁴⁺ et Fe³⁺ dans le site T; Mg²⁺, Al³⁺ et Fe³⁺ dans le site M1; Ca²⁺, Mg²⁺, Na⁺ et Fe²⁺ dans le site M2) a été étudiée. La Figure VI.23 présente les tendances générales les plus claires pour ces paramètres, observées pour les données de cette étude et celles de la bibliographie. Les D_0^{M1} semblent évoluer de manière constante en fonction de la fraction de Fe³⁺ dans le site M1 du clinopyroxène, à l'exception de quelques valeurs extrêmes pour des valeurs plus élevées de Fe³⁺ dans le site M1 (Fig.VI.23a). De plus, pour toutes les études, les r_0^{M1} et r_0^{M2} évoluent clairement en fonction de la température (Fig.VI.23b): plus la température augmente (1/T diminue), plus ces paramètres augmentent. En ce qui concerne les modules d'Young propres au site M1 et au site M2, ils semblent évoluer en fonction de la composition du clinopyroxène : le E^{M1} diminue avec l'augmentation de la fraction de Fe³⁺ dans le site M1, et le E^{M2} augmente avec la fraction de Ca²⁺ dans le site M2.

Ainsi les modules d'Young des 2 sites (E^{M1} et E^{M2}) semblent plus être influencés par la composition du clinopyroxènes et les rayons ioniques r_0 par la température (r_0^{M1} et r_0^{M2}). Le D_0^{M1} semble ne va évoluer de manière très importante (constante), à la différence du D_0^{M2} qui dépend principalement de la

composition chimique du liquide silicaté. Une étude plus approfondie de tous ces effets de structure du clinopyroxène/température sur ces paramètres doit être effectuée afin de bien pouvoir les calibrer.

Figure VI.23. Effet de la composition des clinopyroxènes sur les paramètres du « Lattice strain modelling ». a) D_0^{M1} (vert) en fonction de la fraction de Fe³⁺ dans le site M1 ; b) paramètres r_0^{M1} (rose) et r_0^{M2} (violet) en fonction de 1/T (°C-1) ; c) E^{M1} (marron foncé)en fonction de la fraction de Fe³⁺ dans le site M1 ; d) E^{M2} (marron clair) en fonction de la fraction de Ca²⁺ dans le site M2 du clinopyroxène ; pour cette étude (rond plein), et de littérature (rond vide : Shimizu, 1980) ; carré vide : Green et al., 2000 ; losange vide : Adam and Green, 2006 ; triangle vide : Beard et al., 2019).

En conclusion, le comportement des REE entre les clinopyroxènes et le liquide silicaté au cours de la différenciation des magmas alcalins dépend de la composition du liquide silicaté : les REE deviennent compatibles dans les clinopyroxènes ($D_{REE}^{CPx/LS} > 1$) s'ils coexistent avec des liquides silicatés différenciés, très polymérisés et proches du pôle métalumineux. Leur comportement dépend également de la structure du minéral, et notamment des paramètres du « Lattice strain modelling » propres à la structure cristalline du clinopyroxène. Ces deux effets isolés ne permettent pas de bien paramétrer le comportement des REE dans les clinopyroxènes.

L'enrichissement en REE des clinopyroxène ne peut être contraint qu'en prenant en compte à la fois l'effet de la composition du liquide silicaté, et l'effet de la structure cristallographique du clinopyroxène. Une nouvelle paramétrisation doit être effectuée en se basant sur les effets de la

composition chimique du liquide silicaté mis en évidence dans cette partie, et sur les paramètres relatifs à la composition et à la structure du clinopyroxène.

VI.4.2. Enrichissement en REE et Nb de la titanite au cours de la différenciation des magmas alcalins et carbonatés

Les REE et le Nb sont tous compatibles dans les cristaux de titanite en coexistence avec les liquides silicatés de type néphélinite à phonolite et les liquides carbonatés (Fig.VI.12a et VI.12b), et leur enrichissement varie sur un ordre de grandeur. Les travaux expérimentaux portant sur l'étude du partage de ces métaux entre la titanite les liquides silicatés (Tiepolo *et al.*, 2002; Prowatke and Klemme, 2005) indiquent que l'enrichissement de la titanite en ces métaux peut fortement varier sur deux ordres de grandeur (Fig.II.14 ; partie II.3.1), et que la composition chimique du liquide silicaté joue un rôle important sur le partage des REE et du Nb entre titanite et liquide silicaté (Prowatke and Klemme, 2005). Dans les échantillons présentés dans cette étude la titanite est très peu abondante (Tableau C.15, Annexe C.8) et change très peu de composition en éléments majeurs (Tableau C.7, Annexe C.4) ; en revanche, ce minéral présente un enrichissement assez variable en ces métaux pour différentes conditions P-T. Cette variation d'enrichissement peut également être due à la composition des liquides avec lesquels les cristaux de titanite coexistent.

VI.4.2.1. Effet de la composition du liquide silicaté

La titanite est observée en coexistence avec des liquides silicatés de type phonolitique principalement (voir Tableau VI.1 et Tableau B.2 de l'Annexe B.1). Les coefficients de partage du Nb et des REE pour tous les 12 échantillons analysés (\pm hydratés et \pm graphite) indiquent une variation relativement importante de leur enrichissement dans la titanite. Ces coefficients de partage sont représentés en fonction de la concentration en CaO (% poids) du liquide silicaté (Fig.VI.24a), du NBO/T (Fig.VI.24b), de l'ASI (Fig.VI.24c) ainsi que du CO₂ (% poids ; Fig.VI.24d), afin d'identifier un éventuel effet de la composition du liquide silicaté.

On peut observer une augmentation très claire des coefficients de partage du La (rouge) représentatif des LREE, du Sm (jaune) représentatif des MREE, de l'Yb (noir) représentatif des HREE ainsi que du Nb (vert), avec une diminution de la concentration en CaO du liquide silicaté (diminution de 10 à 0,6 % poids). Les cristaux de titanite en coexistence avec des liquides silicatés pauvres en CaO sont très enrichis, jusqu'à <40 fois plus pour le La, <150 fois plus pour le Sm, <25 fois plus pour l'Yb et presque 200 fois plus pour le Nb. Cette tendance est également observée pour les données de la littérature expérimentale dans le système synthétique CNKAS (losange; Prowatke and Klemme, 2005; Fig.VI.24a). Cet effet est moins clair pour des compositions de type lamproite (triangle ; Tiepolo et al., 2002). Des valeurs de coefficients de partage mesurés dans des phonolites naturelles sont également représentées (carré; Olin and Wolff, 2012), et suivent la tendance générale.

Les coefficients de partage du La, Sm, Yb et Nb évoluent également nettement en fonction du NBO/T (Fig.VI.24b): plus le NBO/T diminue, plus ces coefficients augmentent pour cette étude ainsi que les autres données de la bibliographie. Les cristaux de titanite en coexistence avec des liquides silicatés polymérisés (NBO/T diminue) peuvent ainsi être très enrichis en REE et en Nb. De plus, les coefficients de ces éléments augmentent également très clairement avec le paramètre ASI : plus l'ASI du liquide silicaté augmente, plus la titanite coexistant avec ce liquide s'enrichie fortement (Fig.VI.24c). Autrement dit, les titanites en coexistence avec des liquides silicatés péralcalins (ASI < 1) évoluant vers un pôle métalumineux (ASI près de 1) sont très enrichies. Cet effet de la péralcalinité a déjà été montré par Prowatke and Klemme (2005). L'effet n'est cependant pas très clair pour les données du système de type lamproite (Tiepolo et al., 2002).

Figure VI.24. Coefficients de partage des REE et du Nb entre titanite et liquide silicaté $(D^{Tm/LS})$ en fonction de la composition chimique du liquide silicaté (LS): la concentration en CaO (a) en % poids, le NBO/T (b) et l'indice de saturation en Al $(Al_2O_3 / (CaO+Na_2O+K_2O))$ (c) calculés sur la base de fractions molaires, pour cette étude (rond plein), et la littérature (triangle vide : Tiepolo et al., 2002 ; losange vide :Prowatke and Klemme, 2005; carré vide :Olin and Wolff, 2012). Les $D^{Tm/LS}$ sont également représentés en fonction de la concentration en CO_2 (% poids) du liquide silicaté pour cette 236

étude (d) ainsi qu'en fonction des coefficients de partage du Ca entre le liquide carbonaté et le liquide silicaté (D_{Ca}^{LCLS}) à l'équilibre avec la titanite (e). Les flèches grises indiquent les tendances générales suivies par les $D^{Tm/LS}$. Rouge : La; Jaune : Sm ; noir: Yb; vert: Nb.

Enfin, les données de cette étude sont représentées en fonction de la concentration en CO_2 (% poids) dans le liquide silicaté (Fig.VI.24d) ; les autres études ne sont pas représentées, les concentrations en CO_2 dans ces liquides n'ayant pas été analysées. Les coefficients de partage des REE et du Nb augmentent de façon exponentielle avec la diminution de la concentration de CO_2 dans le liquide silicaté. Les valeurs les plus faibles correspondent à un liquide silicaté contenant 2,8 % poids de CO_2 , et les valeurs les plus élevée correspondent à des concentrations < 0,9 % poids de CO_2 dans le liquide silicaté (Fig.VI.24d).

Les coefficients de partage des REE (La, Sm et Yb) ainsi que du Nb évoluent donc clairement en fonction de la composition chimique du liquide silicaté : plus le liquide silicaté est différencié (faible concentration en % poids de CaO), très polymérisé (NBO/T faible) et proche de composition de type métalumineuse (ASI augmente mais toujours < 0,8), plus les cristaux de titanite vont être très enrichis en REE et Nb. Cet effet très net de la composition du liquide silicaté est également clair pour des compositions dans le système synthétique (Prowatke and Klemme, 2005), mais moins évidente pour des compositions de type lamproite (Tiepolo et al., 2002).

Les cristaux de titanite coexistant avec ces liquides silicatés sont également à l'équilibre avec des liquides carbonatés. Nous avons vu précédemment que les REE et le Nb sont tous compatibles dans la titanite par rapport au liquide carbonaté, à l'exception du La qui peut pour certains échantillons être plutôt concentré dans ce liquide (partie VI.3.2; Fig. VI.16a et VI.16b). Nous avons vu également vu dans le chapitre IV que les coefficients de partage des REE entre liquides carbonatés et liquides silicatés sont corrélés avec le coefficient de partage du Ca, qui lui-même dépend de la composition chimique du liquide silicaté. La Figure VI.24e présente les coefficients de partage des REE et du Nb entre titanite et liquide silicaté (D_{REE-Nb}^{Ttn/LS}), en fonction du coefficient de partage du Ca entre les deux liquides (D_{Ca}^{LC/LS}) de cette étude. Les autres études ne sont pas représentées car les cristaux de titanite ne coexistent pas avec des liquides carbonatés, mais qu'avec des liquides silicatés. Le partage du La entre la titanite et le liquide silicaté (rouge) est parfaitement corrélé au D_{Ca}^{LC/LS} (Fig.VI.24e ; droite 1-1). Or le $D_{Ca}^{LC/LS}$ dépend lui-même de la composition du liquide silicaté selon l'équation (09) de la partie IV.5.2.1. Ceci implique que l'évolution du D_{La}^{Ttn/LS} peut également être calibrée à partir de la composition du liquide silicaté, de la même manière que le D_{Ca}^{LC/LS}. Pour le Sm et le Nb, les coefficients de partage sont également corrélés au D_{Ca}^{LC/LS} mais avec des valeurs de D_{Sm-Lu}^{Tm/LS} toujours plus élevés. Enfin, cette corrélation est également valable pour l'Yb (noir), mais moins claire pour les valeurs les plus élevées.

La composition chimique du liquide silicaté a donc un effet très clair sur les coefficients de partage des REE et du Nb entre la titanite et le liquide silicaté: plus le liquide silicaté est différencié et polymérisé, plus la titanite coexistant avec est très enrichie en REE et Nb. De plus, la corrélation parfaite de ces coefficients de partage avec le $D_{Ca}^{LC/LS}$ renforce cet effet de la composition chimique du liquide : les $D_{REE-Nb}^{Tun/LS}$ peuvent ainsi être reliés et paramétrés en fonction de la composition du liquide silicaté.

VI.4.2.2. Modèle d'enrichissement en REE et Nb de la titanite

Une paramétrisation des coefficients de partage des REE et du Nb entre la titanite et le liquide silicaté a été réalisée à partir de la composition du liquide silicaté. Etant donné la corrélation très claire des $D_{REE-Nb}^{Ttn/LS}$ avec le $D_{Ca}^{LC/LS}$, la paramétrisation a tout d'abord été testée à partir des mêmes paramètres de composition chimique du liquide silicaté utilisé pour le modèle du $D_{Ca}^{LC/LS}$ (partie IV.5.2, équation (9)) : la concentration en SiO₂ (% poids), l'ASI (Al₂O₃/(CaO+Na₂O+K₂O)), ainsi que le rapport des

cations alcalins/alcalino-terreux ((Na₂O+K₂O)/(CaO+MgO)). Cependant les résultats de cet essai ne permettent pas de bien calibrer les coefficients de partage mesurés. D'autres paramètres de composition ont alors été testés : la concentration en CaO (% poids) du liquide silicaté qui a un effet sur les $D_{REE-Nb}^{Tur/LS}$ (Fig.VI.24a), le NBO/T qui joue également un rôle (Fig.VI.24b) ainsi que la somme des alcalins (Na₂O+K₂O).

Pour toutes les REE, la meilleure solution de paramétrisation identifiée fait intervenir au total trois paramètres de composition : la concentration en CaO (% poids), l'ASI (Al₂O₃ / (CaO+Na₂O+K₂O)), ainsi que le rapport des cations alcalins/alcalino-terreux ((Na₂O+K₂O)/(CaO+MgO)). Les $D_{REE}^{Tin/LS}$ sont ainsi fonction de ces trois paramètres selon l'équation :

$$\ln\left(D_{REE}^{Ttn/LS}\right) = a_0 + a_1 * CaO + a_2 * \frac{Al_2O_3}{(CaO + Na_2O + K_2O)} + a_3 * \frac{(Na_2O + K_2O)}{(CaO + MgO)}.$$
(24)

Les trois paramètres sont exprimés sur la base de fractions molaires calculées par normalisation sans volatils. Pour chaque REE, les coefficients régressés a_0 , a_1 , a_2 et a_3 sont présentés dans le Tableau.VI.12.

Au total, 14 paramétrisations par moindre carré pour chaque REE (du La au Lu, à l'exception du Tm qui n'a pas été analysé dans cette étude ; Tableau.VI.12) ont été réalisées, à partir des données de cette étude (n = 12) et des données de la bibliographie expérimentale (Prowatke and Klemme, 2005 ; n = 6 ; Tiepolo et al., 2002 ; n = 4). Seulement cinq REE ont été paramétrées à partir de toutes les données (n = 22 ; voir Tableau.VI.12) ; les autres REE n'ont pas été analysées dans toutes les études. Le Tb et le Ho étant analysés seulement dans les échantillons de cette étude, les paramétrisations correspondant à ces éléments n'ont été réalisées qu'à partir de ces échantillons (n = 12).

Tableau VI.12. Coefficients calculés $(a_0 a_4) a$ partir de la régression aux moindres carrés utilisés pour les deux modèles d'enrichissement en REE et Nb de la titanite, et erreurs associées (σ) .*: paramétrisations réalisées à partir des seules données de cette étude ; ASI : $Al_2O_3/(CaO+Na_2O+K_2O)$; NKCM : $(Na_2O+K_2O)/(CaO+MgO)$; Cste : constante ;

		Cste		CaO		ASI		NKCM		SiO ₂	
	Ν	a0	σ (a0)	a1	σ (a1)	a2	σ (a2)	a3	σ (a3)	a4	σ (a4)
La	22	-0,13	0,58	-9,82	4,41	4,02	0,41	0,07	0,07	-	-
Ce	22	0,66	0,68	-13,59	4,92	3,87	0,63	0,06	0,06	-	-
Pr	18	-2,19	0,64	8,46	4,43	6,78	0,54	0,15	0,04	-	-
Nd	16	2,35	0,27	-9,48	2,09	1,79	0,41	0,08	0,03	-	-
Sm	22	2,41	0,61	-19,77	4,53	3,83	0,57	-0,02	0,08	-	-
Eu	16	2,3	0,33	-8,61	2,68	1,84	0,44	0,09	0,03	-	-
Gd	22	1,6	0,68	-15,02	5,02	4,71	0,69	-0,04	0,08	-	-
Tb*	12	-1,28	1,42	4,41	5,29	6,82	1,91	0,06	0,03	-	-
Dy	16	0,64	0,24	-2,86	1,97	3,96	0,31	0,06	0,03	-	-
Y	22	0,75	0,66	-12,03	4,68	4,4	0,63	-0,05	0,08	-	-
Ho*	12	-0,22	2,98	0,76	11,02	4,4	3,9	0,09	0,04	-	-
Er	16	1,15	0,31	-6,07	2,52	2,68	0,44	0,03	0,04	-	-
Yb	16	0,51	0,22	-4,07	2,22	2,31	0,27	0,06	0,03	-	-
Lu	18	-4,21	0,66	15,06	4,3	7,44	0,63	0,12	0,05	-	-
Nb	22	11,54	1,19	-11,07	2,62	2,89	0,27	0,12	0,02	-16,64	1,62

Les résultats des paramétrisations réalisées pour les coefficients de partage du La, du Sm et de l'Yb sont présentés dans la FigureVI.25a. Les trois paramétrisations réalisées pour le La, le Sm ainsi que l'Yb indiquent une bonne reproductibilité des valeurs de $D_{REE}^{Tur/LS}$ mesurés, pour cette étude ainsi que pour les études de la bibliographie. Seules deux valeurs de partage du Sm ne sont pas bien recalculées (Prowatke and Klemme, 2005).

Figure VI.25. Modélisation des coefficients de partage des REE (a) et du Nb (b) entre la titanite et le liquide silicaté (notés $D_{REE-Nb}^{Tm/LS}$ calculé) en fonction des coefficients de partage mesurés expérimentalement ($D_{REE-Nb}^{Tm/LS}$ mesuré) pour cette étude (rond plein), et les données de la littérature utilisées pour la paramétrisation (triangle vide : Tiepolo et al., 2002 ; losange vide :Prowatke and Klemme, 2005; carré vide :Olin and Wolff, 2012). Les calibrations ont été effectuées en fonction de la composition du liquide silicaté.
Pour le Nb, les trois paramètres utilisés pour paramétrer les $D_{REE}^{Ttn/LS}$ (CaO (% poids), ASI (Al₂O₃ / (CaO+Na₂O+K₂O)), et (Na₂O+K₂O)/(CaO+MgO)) ne permettent pas de bien recalculer les valeurs de $D_{Nb}^{Ttn/LS}$ mesurées, et notamment pour les données de cette étude dont certaines sont sous-estimées d'un ordre de grandeur par rapport à la valeur mesurée. Un quatrième paramètre a été ajouté aux trois précédents, afin de bien calibrer toutes les données : il s'agit de la concentration en SiO₂ (% poids) du liquide silicaté. La paramétrisation du Nb suit alors l'équation suivante :

$$\ln\left(D_{Nb}^{Ttn/LS}\right) = a_0 + a_1 * CaO + a_2 * \frac{Al_2O_3}{(CaO + Na_2O + K_2O)} + a_3 * \frac{(Na_2O + K_2O)}{(CaO + MgO)} + a_4 * SiO_2 .$$
(25)

Les quatre paramètres de l'équation (25) sont également exprimés sur la base de fractions molaires (normalisation sans volatils). Les coefficients régressés a_0 , a_1 , a_2 , a_3 et a_4 pour cette paramétrisation du Nb sont présentés dans le Tableau.VI.12. Toutes les données de cette étude et de la bibliographie expérimentale ont été utilisées pour réaliser cette paramétrisation (n = 22 ; cette étude, Prowatke and Klemme, 2005 ; Tiepolo et al., 2002). Les résultats de cette régression aux moindres carrés sont présentés dans la Figure VI.25b. Les $D_{Nb}^{Tin/LS}$ calculés sont bien cohérents avec les valeurs de $D_{Nb}^{Tin/LS}$ mesurés, pour toutes les études (n=22).

Pour ces deux paramétrisations, l'estimation des erreurs des paramètres calculés ($D_{REE}^{Ttn/LS}$ calculé et $D_{Nb}^{Ttn/LS}$ calculé) doit encore être effectuée, par propagation des erreurs.

Les coefficients de partage des REE et du Nb entre la titanite et le liquide silicaté sont donc paramétrés seulement à partir de la composition du liquide silicaté. La bonne reproductibilité des deux modèles (équation (24) et (25), Fig.VI.25a et VI.25b ; respectivement pour les $D_{REE}^{Ttn/LS}$ et $D_{Nb}^{Ttn/LS}$) indique que ces deux paramétrisations peuvent être utilisées afin de calculer ces coefficients de partage.

Il est alors possible d'estimer l'enrichissement en REE et en Nb de cristaux de titanite, qu'à partir de la composition du liquide silicaté. Dans les roches magmatiques silicatées alcalines, la titanite est souvent caractérisée comme minéral accessoire (Marks and Markl, 2003; Mariano and Mariano, 2012), pouvant concentrer les REE et le Nb. Les modèles d'enrichissement en REE et Nb de la titanite proposés ci-dessus peuvent être appliqués à ces roches volcaniques alcalines afin d'évaluer l'enrichissement en REE en en Nb de la titanite au cours de la différenciation, ou encore pour vérifier l'état d'équilibre entre des cristaux de titanite et ces compositions de roches volcaniques alcalines.

VI.4.3. Enrichissement en métaux rares du grenat, de la calcite et de l'apatite au cours de la différenciation

Dans les expériences d'immiscibilité réalisées entre liquides silicatés de type néphélinite à phonolite, et liquides carbonatés, les métaux rares se concentrent également dans le grenat, la calcite et l'apatite (partie VI.3). Ces minéraux plus ou moins abondants dans les échantillons, ont une composition en éléments majeurs qui varie légèrement (grenat, Fig.VI.8) voire très peu (calcite et apatite ; Tableaux C.5 et C.8, Annexes C.3 et C.5) selon les échantillons. La forte variation du comportement des métaux rares entre ces minéraux et les liquides observée dans ces échantillons suggèrent qu'un autre paramètre que la composition des minéraux exerce un rôle important sur leur enrichissement en métaux rares. Ces minéraux coexistent avec des liquides silicatés dont la composition varie pour les différentes conditions P-T étudiées. L'effet de la variation de composition est également étudié pour ces minéraux, afin de mieux contraindre leur enrichissement en métaux rares (REE et HFSE) au cours de la différenciation des magmas de type néphélinitique-phonolitique en coexistence avec des magmas carbonatés.

VI.4.3.1. Grenats

Les grenats, présents à des proportions relativement importantes dans ces expériences (voir Tableau C.15, Annexe C.8), sont très enrichis en MREE et HREE par rapport au liquide silicaté - jusqu'à > 100 fois plus pour les HREE (Fig.VI.10) – mais également par rapport au liquide carbonaté (Fig.VI.14). De même les HFSE etudiés dans cette étude (Hf, Zr, T et Nb) indiquent une forte préférence pour ces minéraux (Fig.VI.10 et VI.14). La variation du comportement de ces métaux rares observées dans ces expériences sur un ordre de grandeur (Fig.VI.10 et VI.14) n'est pas clairement reliée aux conditions P-T (voir partie VI.3.1). Les coefficients de partage des REE et des HFSE sont étudiés en fonction de la composition chimique du liquide silicaté (Fig.VI.26), dans 10 échantillons pour les REE et le Nb, et 5 échantillons pour les autres HFSE pour cette étude.

Les coefficients de partage des REE (La, Sm et Yb respectivement représentatifs des LREE, MREE et HREE) augmentent sur un ordre de grandeur au fûr et à mesure que la concentration en CaO (% poids) décroit dans le liquide silicaté (Fig.VI.26a) : les valeurs de $D_{REE}^{Gnt/LS}$ les plus faibles correspondent à un liquide silicaté contenant environ 12,5 % poids de CaO, alors que les valeurs les plus élevées correspondent à des liquide silicatés dont la concentration en CaO est < 4% poids. Cette observation est également légèrement constatée pour les données de la littérature dans des systèmes de type basalte alcalin (rond vide ; Shimizu, 1980) et basanite (carré et losange vide ; Green et al., 2000 ; Adam and Green, 2006). Pour les HFSE (Fig.VI.26b), cette tendance est beaucoup moins claire que pour les REE, mais est également observée, avec des valeurs $D_{HFSE}^{Gnt/LS} > 1$ pour des concentrations < 4% poids de CaO dans le liquide silicaté. Les données des $D_{HFSE}^{Gnt/LS}$ de cette étude indiquent un comportement compatible de ces éléments dans le grenat, alors que pour des compositions de type basalte alcalin (rond vide ; Shimizu, 1980) et basanite (carré et losange vide ; Green et al., 2000 ; Adam and Green, 2006), ils sont tous incompatibles ($D_{HFSE}^{Gnt/LS} < 1$).

Ces coefficients de partage sont également représentés en fonction de l'ASI (Fig.VI.26c et VI.26d). Dans cette étude, on observe une légère corrélation entre les $D_{REE}^{Gnt/LS}$ et l'ASI (Fig.VI.26c): plus ce paramètre augmente (de 0,3 à < 0,8), plus les $D_{REE}^{Gnt/LS}$ augmentent de façon exponentielle. Cette tendance est aussi observée pour les autres données de la bibliographie expérimentale. Ainsi, les REE semblent être plus enrichies dans les grenats en coexistence avec des liquides silicatés de moins en moins péralcalins (ASI augmente, <1). En ce qui concerne les HFSE (Fig.VI.26c), cette tendance est plus marquée pour toute les études avec une claire augmentation des $D_{HFSE}^{Gnt/LS}$, d'un comportement incompatible à compatible, pour des liquides silicatés très péralcalins (ASI à 0,1) puis plus proche de compositions métalumineuses (ASI < 0,8, cett étude).

Enfin, les $D_{REE}^{Gnt/LS}$ et les $D_{HFSE}^{Gnt/LS}$ semblent évoluer en fonction du degré de polymérisation du liquide silicaté caractérisé par le NBO/T (Fig.VI.26e et VI.26f). On peut effectivement observer une augmentation très claire des $D_{REE}^{Gnt/LS}$ de cette étude pour des liquide silicatés présentant un NBO/T < 0,5 (Fig.VI.26e). Pour les NBO/T > 0,5 les valeurs des $D_{REE}^{Gnt/LS}$ sont relativement constantes, pour cette étude et les données de la bibliographie. Les REE sont donc très concentrées dans les cristaux de grenats coexistant avec des liquides silicatés très polymérisés (NBO/T < 0,5). De même, les $D_{HFSE}^{Gnt/LS}$ augmentent avec la diminution du NBO/T pour toutes les études (Fig.VI.26f). Les HFSE deviennent compatibles dans les grenats ($D_{HFSE}^{Gnt/LS}$ >1) coexistant avec des liquide silicatés très polymérisés (NBO/T < 0,4).

De manière générale, les $D_{REE}^{Gnt/LS}$ et les $D_{HFSE}^{Gnt/LS}$ de cette étude, correspondant à des compositions de magmas alcalins plus différenciés (néphélinite à phonolite), sont beaucoup plus élevés que ceux observés dans la littérature. La composition chimique du liquide silicaté semble effectivement jouer un rôle sur l'enrichissement en REE et en HFSE des grenats : plus les liquides silicatés sont fractionnés

(CaO diminue dans le liquide silicaté), évoluent d'un pôle péralcalin vers un pôle métalumineux (ASI augmente de 0,1 à < 0,8) et ont une structure très polymérisés (NBO/T faible), et plus ces métaux rares s'enrichissent dans les grenats.

Figure VI.26. Coefficients de partage des REE et des HFSE entre grenat et liquide silicaté $(D_{REE-HFSE}^{Gnt/LS})$ en fonction de la composition chimique du liquide silicaté (LS): la concentration en CaO (a et b) en % poids, l'indice de saturation en Al 242

 $(Al_2O_3/(CaO+Na_2O+K_2O)$ (c et d) et le NBO/T (e et f), pour cette étude (ronds pleins) ainsi que la littérature (rond vide : Shimizu, 1980; carré vide : Green et al., 2000; losange vide : Adam & Green 2006). Les flèches grises indiquent les tendances générales suivies par les $D^{Gnt/LS}$. Rouge : La; Jaune : Sm; noir: Yb; marron : Hf; gris : Zr; bleu : Ta; vert: Nb.

Cependant, nous avons vu que les effets de composition du liquide silicaté observés sont parfois beaucoup moins clairs pour certaines données (Fig.VI.26, données à l'écart les tendance générales). D'autres paramètres doivent peut-être jouer un rôle supplémentaire sur l'évolution de ces coefficients de partage.

Le partage des éléments traces entre grenats et liquide silicaté est souvent relié à la structure du minéral via le « Lattice strain modelling » dans les travaux expérimentaux (Green *et al.*, 2000; Adam and Green, 2006; Hammouda *et al.*, 2009). Cependant aucun modèle permettant de prédire les coefficients de partage des métaux rares à partir de la structure des grenats et des paramètres du « Lattice strain modelling » n'existe pour l'instant.

Une étude plus approfondie de l'effet de la structure du cristal et des paramètres du « Lattice strain modelling » doit être effectuée sur ces données, afin éventuellement de les relier aux effets de la composition chimique du liquide silicaté mis en valeur dans cette étude.

VI.4.3.2. Calcite : effet de la composition du liquide silicaté sur l'enrichissement en REE

Nous avons vu que les REE - particulièrement les LREE - sont très compatibles dans la calcite par rapport au liquide silicaté (Fig.VI.12c et VI.12d) avec des $D_{REE}^{Cc/LS}$ variant sur deux ordres de grandeur, à l'exception des HREE de certains échantillons (Fig.VI.12d). Nous avons également vu que les cristaux de calcite peuvent être autant enrichis en HREE qu'en LREE, jusqu'à deux fois plus que le liquide carbonaté (Fig.VI.16c).

Afin d'identifier les paramètres jouant un rôle sur la forte variation de l'enrichissement en REE de la calcite ainsi que sur la différence de comportement des LREE et HREE, les $D_{REE}^{Cc/LS}$ sont représentés en fonction de la composition du liquide silicaté (Fig.VI.27). Aucunes données de partage des REE entre calcite et liquides silicatés alcalins sous-saturés en silice n'existent dans la littérature expérimentale ; seuls les résultats des $D_{REE}^{Cc/LS}$ exposés dans la partie VI.3.1.5 sont représentés.

Les cristaux de calcite observés dans ces expériences indiquent que pour les LREE (La, rouge) ainsi que les MREE (Sm, jaune), les $D_{REE}^{Cc/LS}$ augmentent fortement avec la diminution des concentrations en CaO (% poids) dans le liquide silicaté (Fig.VI.27a). Les $D_{LREE-MREE}^{Cc/LS}$ les plus élevés (> 25) correspondent en effet à des concentrations de CaO < 2% poids dans le liquide silicaté. En revanche, cette tendance est beaucoup moins claire pour l'Yb (noir), les $D_{Yb}^{Cc/LS}$ variant sur deux ordres de grandeur entre 0,3 et 20 pour des concentrations en CaO < 2 % poids. Ceci implique que les cristaux de calcite en coexistence avec des liquides silicatés fractionnés (faible CaO % poids) peuvent être très enrichis en LREE et MREE, mais pas forcément en HREE.

De plus, ces coefficients de partage montrent également une forte corrélation avec les concentrations en SiO₂ (% poids) dans le liquide silicaté (Fig.VI.27b). On remarque en effet une forte augmentation de ces coefficients avec l'augmentation des concentrations en SiO₂ dans les liquide silicatés (de 40 à 54 % poids), pour le La et le Sm principalement, mais également pour l'Yb. La calcite en coexistence avec des liquides silicatés plus évolués est ainsi plus enrichie en REE. L'effet de l'ASI sur les $D_{REE}^{Cc/LS}$ a également été étudié (Fig.VI.27c). Pour des valeurs d'ASI variant entre 0,40 et 0,82, les $D_{REE}^{Cc/LS}$ de toutes les REE augmentent; cependant l'effet est moins clair que les paramètres précédents, notamment pour les HREE, avec des valeurs de presque un ordre de grandeur inférieures pour des ASI plus élevées (Fig.VI.27c). De manière générale, la calcite coexistant avec des liquides moins péralcalins peut être très enrichies en REE. L'enrichissement en REE de la calcite est donc

influencé par la composition du liquide silicaté : plus le liquide silicaté est différencié (CaO diminue, SiO₂ et ASI augmentent), et plus la calcite est très enrichie en REE.

Figure VI.27. Coefficients de partage des REE entre calcite et liquide silicaté $(D_{REE}^{Cc/LS})$ en fonction de la concentration en CaO en % poids (a), la concentration en SiO₂ en % poids (b) et l'indice de saturation en Al $(Al_2O_3/(CaO+Na_2O+K_2O) (c) du liquide silicaté (LS) de cette étude. Ces coefficients sont également représentés en fonction des coefficients de partage des REE entre liquide carbonatés et silicatés <math>(D_{REE}^{LC/LS})$ coexistant avec la calcite (d). Rouge : La; Jaune : Sm ; noir: Yb.

Les $D_{REE}^{Cc/LS}$ sont également représentés dans la Fig.VI.27d en fonction des coefficients de partage des REE entre liquides carbonatés et silicatés ($D_{REE}^{LC/LS}$) caractérisés dans cette étude (chapitre IV). Pour le LREE et MREE, on peut observer une bonne corrélation de ces deux coefficients de partage. L'enrichissement en REE des cristaux de calcite en coexistence avec des liquides carbonatés et silicatés dépend globalement du partage des REE entre ces deux liquides : la calcite coexistant avec des liquides carbonatés très enrichis en REE par rapport au liquide silicaté est également très enrichie en REE. Or nous avons vu dans le chapitre IV que le partage des REE entre liquide carbonaté et liquide silicaté dépend fortement de la composition du liquide silicaté. Cette corrélation entre les $D_{REE}^{Cc/LS}$ et les $D_{REE}^{LC/LS}$ semble donc refléter cet effet de la composition chimique du liquide silicaté.

Cependant certaines valeurs de $D_{Yb}^{Cc/LS}$ ne sont pas tout-à-fait corrélées avec les $D_{Yb}^{LC/LS}$ (Fig.VI.27d). Nous avons également pu remarquer que les HREE ne suivent pas toujours les tendances générales observées dans la Figure VI.27 en fonction de la composition du liquide silicaté. De plus, les

HREE peuvent être autant concentrées que les LREE dans la calcite par rapport au liquide carbonaté dans certains échantillons (Fig.VI.16c).

Ce changement de comportement des HREE indique probablement l'influence d'un autre paramètre : la structure du réseau cristallin de la calcite. Une étude a en effet mis en évidence que l'incorporation des REE³⁺ dans la structure de la calcite en substitution au Ca²⁺ peut provoquer une perturbation de la structure du réseau cristallin ainsi qu'une différence du comportement entre les LREE³⁺ et les HREE³⁺ au rayon ionique plus petit (Elzinga *et al.*, 2002). Les variations des D_{REE}^{Cc/LS} observées dans ces échantillons peuvent être dues à une telle modification du réseau cristallin de la calcite.

L'enrichissement en REE de la calcite coexistant avec des liquides silicaté de type néphélinite à phonolite ainsi qu'avec des liquides carbonatés dépend fortement de la composition du liquide silicaté. Toutefois, la différence de comportement entre les LREE et les HREE observée implique probablement un effet de la structure de la calcite qu'il est nécessaire d'étudier pour bien contraindre ces enrichissements.

VI.4.3.3. Apatite

De même que pour les autres minéraux, les cristaux d'apatite identifiés dans cette étude (accessoires dans certains échantillons et beaucoup plus abondants dans ceux dopés en P; voir Tableau C.15, Annexe C.8), présentent des enrichissements importants en REE variant sur un ordre de grandeur.

Prowatke and Klemme (2006b) ont étudiés le partage des éléments traces entre apatite et liquides silicatés de compositions synthétiques de type basalte à andésite. Ces auteurs ont mis en évidence que le partage des REE entre apatite et liquide silicaté varie en fonction de la composition du liquide silicaté, pour les gammes de compositions analysées dans leur étude.

Les coefficients de partage des REE ($D_{REE}^{Ap/LS}$) caractérisés dans cette étude (Fig.VI.11) sont présentés en fonction de la composition du liquide silicaté dans la Figure VI.28. Pour les HFSE, seul le Nb a été analysés dans tous les échantillons. Cependant aucun effet particulier du Nb n'a été observé ; les $D_{Nb}^{Ap/LS}$ ne sont donc pas représentés. Dans cette étude, tous les cristaux d'apatite coexistent avec des liquides silicatés dont la concentration en CaO est < 5% poids, le NBO/T est < 0,4 et l'ASI est compris entre 0,5 et 0,8 (rond plein, Fig.VI.28). Les $D_{REE}^{Ap/LS}$ augmentent principalement pour les LREE et les MREE avec la diminution des concentrations du CaO dans les liquides silicatés (de 5 à 0,6 % poids ; Fig.VI.28a). Cet effet est moins clair pour l'Yb. Les apatites les plus concentrées en LREE et MREE coexistent donc avec des liquides silicatés pauvres en CaO. Cet effet est également observé pour les données de Prowatke and Klemme (2006b; losange) : les $D_{REE}^{Ap/LS}$ augmentent pour des liquides silicatés dont la concentration en CaO diminue de 19 à > 5 % poids (Fig.VI.28a). Il semble donc que les cristaux d'apatite coexistant avec des liquides silicatés de plus en plus fractionnés (diminution du CaO) sont très enrichis en REE.

De plus, on observe également une augmentation de ces coefficients en fonction de la diminution du NBO/T des liquides silicatés pour les deux études (Fig.VI.28b) : les valeurs des $D_{REE}^{Ap/LS}$ augmentent pour des NBO/T diminuant de 1,4 à 0,1, pour toutes les données. Les apatites les plus riches en REE coexistent donc avec des liquides silicatés très polymérisé (NBO/T faible). Enfin, les $D_{REE}^{Ap/LS}$ indiquent des valeurs plus basses pour des liquides silicatés très péralcalins, caractérisés par un ASI variant de 0,1 à 0,5 (Fig.VI.28c). Puis l'enrichissement en REE des apatites augmente pour un ASI plus élevé, c'est-à-dire des liquides silicatés évoluant près du pôle métalumineux.

Comme pour les minéraux précédents, la composition chimique du liquide silicaté semble donc exercer un rôle important sur l'enrichissement en REE des cristaux d'apatite : plus le liquide silicaté est différencié et polymérisé, plus l'apatite est enrichie en REE. Les liquides silicatés de type 245

néphélinite-phonolite de cette étude ont une composition très différente de ceux caractérisés par Prowatke and Klemme (2006b) : les effets de compositions sur l'enrichissement en REE de l'apatite sont ainsi valables pour des compositions très variables. Les $D_{REE}^{Ap/LS}$ sont également représentés en fonction des coefficients de partage des REE entre liquides carbonatés et liquides silicatés ($D_{REE}^{LC/LS}$; Fig.VI.28d). Pour le La, le $D_{La}^{Ap/LS}$ est parfaitement corrélé au $D_{La}^{LC/LS}$ (pente de droite équivalente), mais pour des valeurs plus élevées. Ainsi, les apatites en coexistence avec des liquides carbonatés et silicatés sont systématiquement plus enrichies en La que le liquide carbonaté. Cette tendance est beaucoup moins claire pour le Sm et n'est pas observée pour l'Yb.

Les effets de composition du liquide silicaté mis en évidence sont beaucoup moins clairs pour les HREE. Or l'évolution des $D_{REE}^{Ap/LS}$ des LREE aux HREE indique une différence de comportement, avec un fractionnement plus prononcé de ces REE pour certains échantillons (Fig.VI.11). De même que pour la calcite, cette variation de fractionnement des REE peut traduire l'effet d'un paramètre supplémentaire non associé à la composition du liquide silicaté, mais plutôt associé au réseau cristallin de l'apatite. Il est donc important d'étudier l'effet de la structure de l'apatite sur leur enrichissement en REE. Ceci peut permettre d'identifier une possible combinaison entre les paramètres de structure de l'apatite, ainsi que les effets de composition du liquide silicaté mis en évidence, dans le but de bien caractériser l'enrichissement en REE de l'apatite coexistant avec des liquides alcalins sous-saturés en silice.

Figure VI.28. Coefficients de partage des REE entre apatite et liquide silicaté $(D_{REE}^{Ap/LS})$ en fonction de la concentration en CaO en % poids (a), du NBO/T (b) et de l'indice de saturation en Al $(Al_2O_3/(CaO+Na_2O+K_2O)(c))$ du liquide silicaté (LS), de cette étude (rond plein) ainsi que l'étude de Prowatke and Klemme (2006b). Ces coefficients sont également représentés en fonction des coefficients de partage des REE entre liquide carbonatés et silicatés (D_{REE}^{LCLS}) coexistant avec les cristaux d'apatite (d). Rouge : La; Jaune : Sm ; noir: Yb.

VI.5. Bilan de l'enrichissement en métaux rares des cristaux

Dans ce chapitre ont été présentés les minéraux formés au cours de la différenciation des liquides silicatés et carbonatés immiscibles, ainsi que leur potentiel d'enrichissement en métaux rares.

L'étude de la composition des minéraux ainsi que du partage des métaux rares entre ces minéraux et les deux liquides a permis de mettre en évidence :

- Les phases minérales concentrant les métaux rares au cours de la différenciation des deux liquides : la titanite concentre toutes les REE et le Nb, le grenat concentre les MREE-HREE ainsi que les HFSE (Hf, Zr, Ta et Nb), l'apatite concentre toutes les REE et la calcite concentre principalement les LREE.
- Le rôle particulier du clinopyroxène : le comportement des REE varie d'incompatible à compatible dans les clinopyroxènes, au cours de la différenciation des liquides.
- une forte variation des enrichissements en métaux rares de ces minéraux en fonction du degré de différenciation

En effet, la composition chimique du liquide silicaté joue un rôle très important sur l'enrichissement en métaux rares de tous ces cristaux (clinopyroxène, grenat, titanite, calcite, apatite). Les minéraux sont les plus enrichis en métaux rares lorsqu'ils coexistent avec des liquides silicatés très différenciés et polymérisés. Cet effet de la composition du liquide silicaté est très clair pour la titanite. Deux modèles d'enrichissement en REE et en Nb de la titanite seulement basés sur la composition du liquide silicaté ont été réalisés. Ces deux modèles peuvent être appliqués sur des compositions de roches volcaniques alcalines afin d'évaluer l'enrichissement de cristaux de titanite en Nb et en REE, ou alors également pour tester l'état d'équilibre chimique de ce minéral avec une composition considérée comme étant représentative du magma.

Pour le clinopyroxène, un test de paramétrisation a été effectué et a mis en évidence le lien entre des paramètres structuraux du minéral (paramètre du « Lattice strain modelling ») et des paramètres de composition du liquide silicaté (% poids de CaO dans le liquide silicaté, NBO/T, péralcalinité...). Ceci implique que l'enrichissement en REE des clinopyroxènes au cours de la différenciation des magmas alcalins dépend à la fois de la structure du minéral, et de l'évolution de la composition du liquide silicaté au cours de la différenciation.

De même, l'effet de la composition du liquide silicaté sur le comportement des métaux rares dans le grenat, la calcite et l'apatite mis en évidence dans cette étude ne semble pas permettre d'expliquer seul les variations observées : la structure de ces minéraux doit également être étudiée et combinée à cet effet de composition du liquide afin de bien calibrer ces enrichissements.

VII. Synthèse générale et perspectives

L'objectif de ce travail de thèse est de caractériser l'enrichissement en métaux rares des carbonatites et des magmas alcalins au cours de leur différenciation par une approche expérimentale.

Des expériences de cristallisation et d'immiscibilité entre liquides carbonatés et liquides silicatés alcalins \pm enrichis en éléments volatils ont été réalisées afin de caractériser cet enrichissement au stade magmatique. Les résultats de ces expériences ont permis d'identifier l'optimum d'enrichissement en REE des liquides carbonatés à un stade très avancé de différenciation des liquides silicatés alcalins. Ces résultats ont également permis de mettre en évidence l'effet majeur de ce degré de différenciation sur l'enrichissement en métaux rares des cristaux formés par fractionnement.

Cette synthèse générale reprend les résultats principaux présentés dans les chapitres IV, V et VI, et qui ont permis de montrer que les liquides carbonatés ainsi que les cristaux coexistant avec des liquides alcalins très polymérisés peuvent être très enrichis en REE. Cet effet de la polymérisation des liquides silicatés alcalins sur l'enrichissement en REE des carbonatites est relié aux processus de formation des magmas alcalins.

VII.1. Devenir des métaux rares au cours de la différenciation des magmas alcalins et des carbonatites

VII.1.1. Différenciation des magmas alcalins : clé de l'enrichissement en REE des carbonatites

Les résultats expérimentaux présentés dans les chapitre IV et V ont permis de mettre en évidence un enrichissement optimal en REE des carbonatites à un stade avancé de différenciation des magmas alcalins (stade phonolitique / phono-trachytique). De plus, l'étude du comportement des métaux rares dans les cristaux (chapitre VI) a également mis en avant un effet de la composition des liquides silicatés alcalins sur l'enrichissement des cristaux en métaux rares, au cours de la différenciation.

Le schéma présenté dans la Figure VII.1 résume les effets de composition des liquides silicatés alcalins sur l'enrichissement en REE des liquides carbonatés et des cristaux observés dans ces résultats expérimentaux. Les autres métaux rares (Hf, Zr, Ta et Nb) ne sont pas présentés car l'effet de composition des liquides silicatés n'a pas été observé pour tous ces métaux et pour toutes les phases étudiées (liquides carbonatés, clinopyroxènes, grenats, titanite, apatite, calcite).

Au cours de la différenciation des magmas alcalins, les liquides silicatés de plus en plus polymérisés (« LS », de rouge à jaune; Fig.VII.1) s'appauvrissent en REE. Ces métaux vont alors se concentrer dans les liquides carbonatés (en bleu, Fig.VII.1) coexistant par immiscibilité avec ces liquides très polymérisés, ou encore dans les cristaux formés au cours du fractionnement des liquides alcalins (gris, Fig.VII.1). Les REE peuvent également se concentrer dans la phase fluide coexistant à l'équilibre avec ces liquides polymérisés (voir partie V.1.5).

La polymérisation des liquides silicatés alcalins au cours de leur différenciation jouent donc un rôle très essentiel sur l'enrichissement des liquides carbonatés. Cependant nous avons vu que certains liquides silicatés différenciés ne montrent pas cette tendance et ne sont pas polymérisés, comme c'est le cas des magmas péralcalins observés dans le Rift Est Africain (Fig.IV .5.3.2, Fig.IV.8 et IV.11).

Figure VII.1. Schéma de l'effet de la différenciation et de la polymérisation des liquides silicatés alcalins (LS) sur l'enrichissement en REE des liquides carbonatés (LC) et des cristaux (Cx). La phase fluide est également représentée en pointillés. Plus les liquides silicatés sont polymérisés au cours de leur différenciation (de bas en haut), et plus ils sont appauvris en REE (diminution de la concentration en REE). Les REE se concentrent dans les liquides carbonatés et les cristaux au cours de la différenciation des magmas alcalins.

Il est donc nécessaire d'identifier les conditions permettant la formation de ce type de liquides silicatés polymérisés avec lesquels peuvent coexister des liquides carbonatés enrichis en REE. Les processus de différenciation doivent ainsi être reliés aux processus et aux contextes géologiques de formation des magmas alcalins afin de mieux contraindre les conditions de formation de ces liquides.

VII.1.2. Formation des magmas alcalins et des carbonatites, et optimum d'enrichissement des liquides carbonatés

Comme présenté dans la partie I.1.1, les carbonatites et les magmas silicatés alcalins sont formés à partir de la fusion du manteau en présence de CO_2 et de H_2O , dans le domaine de faible taux de fusion $(0,1 \ a \ 5\%)$ dit « incipient melting » (Fig.I.1 ; Green et Falloon 1998; Foley et al. 2012; Green 2015). La nature de ces magmas dépend du taux de fusion : les magmas primaires sous-saturés en silice de type mélilitiques sont formés à un taux de fusion plus faible et à plus forte pression par rapport aux basanites ou aux basaltes alcalins (< 5% ; Green, 1970; Edgar, 1987)). Le modèle d'enrichissement en REE des liquides carbonatés proposé dans cette étude (chapitre IV) a été effectué en se basant sur deux chemins de différenciation faisant intervenir ces magmas de nature différente:

- la lignée de différenciation alcaline « classique », avec des magmas de type basanite, basalte alcalin, phono-tephrite, tephri-phonolite et phonolite ; ces roches magmatiques alcalines sont identifiées dans tous les contextes d'occurrence du magmatisme alcalin, à savoir le contexte intraplaque (Rift Est Africain, provinces magmatiques alcalines d'Ilimaussaq au Groenland, Khibiny et Lovozero en Russie ...) et le contexte de point chauds (Iles Canaries, Iles du Cap vert ... ; voir Fig.I.5).
- la lignée de différenciation des magmas hyper-alcalins de compositions similaires à ceux identifiés au volcan Ol Doinyo Lengai (De Moor *et al.*, 2013; Mattsson *et al.*, 2013), des mélilitites et néphélinites aux phonolites (voir Fig. I.5). Ces roches magmatiques sont très péralcalines (indice de saturation en Al, ASI < 1 ; indice d'alcalinité, AI < 0 ; voir Fig.IV.11, chapitre IV). Il est important de préciser que toutes les compositions de roches magmatiques alcalines du volcan Ol Doinyo Lengai ne présentent pas une telle péralcalinité (Klaudius and Keller, 2006). De plus, ce volcan est le seul volcan à produire des natrocarbonatites. Les mélilitites et néphélinites sont en général plus riche en CO₂, et certains auteurs ont proposé que ces magmas sont formés grâce au stockage du CO₂ sous une lithosphère cratonique épaisse (Foley and Fischer, 2017; Tappe *et al.*, 2018).

Nous avons vu que les expériences réalisées ont permis de mettre en évidence une différence du comportement des REE entre les carbonatites et les magmas alcalins en fonction de leur degré de différenciation, mais aussi en fonction de leur type de composition (c'est-à-dire alcalins sous-saturés en silice, ou hyper-alcalins très sous-saturés en silice). La composition du liquide silicaté, sa structure ainsi que le degré de différenciation jouent un rôle primordial sur l'enrichissement en REE des liquides carbonatés.

Afin de relier cet effet de la composition aux processus de formation des magmas alcalins et des carbonatites, on peut distinguer deux cas de comportement des REE dans les carbonatites formées par immiscibilité avec des magmas alcalins. Ces deux cas présentés sur une coupe d'échelle lithosphérique (Fig.VII.2), correspondent à :

 la formation des carbonatites au cours de la différenciation des magmas alcalins silicatés « classiques » (basanite à phonolite). Trois étapes d'immiscibilité avec un liquide carbonaté sont représentées à des stades successifs de différenciation des magmas alcalins : le stade basanitique, le stade intermédiaire phono-tephritique et enfin le stade le plus différencié des phonolites (Fig.VII.2a). Le stade initial de différenciation du magma est supposé se produire à la base de la lithosphère, > 75 km de profondeur.

2. La formation des carbonatites au cours de la différenciation des mélilitites et néphélinites peralcalines du type Ol Doinyo Lengai, jusqu'au stade des phonolites peralcalines (points bleus les plus haut dans la Fig.I.5). Les carbonatites sont formées par immiscibilité au cours de ces trois stades de différenciation. Tous ces magmas sont supposés être formés à la base d'une lithosphère plus épaisse (> 100 km de profondeur ; Fig.VII.2b).

A chaque stade de différenciation et d'immiscibilité est présenté un graphique de normalisation roche/chondrite des concentrations de REE afin d'y associer l'enrichissement des carbonatites et des magmas alcalins. Les coefficients de partage du calcium entre les liquides carbonatés et les liquides silicatés ($D_{Ca}^{LC/LS}$) estimés pour ces types de compositions sont également représentés ; ces coefficients ont été calculés en appliquant le modèle d'enrichissement en REE des carbonatites proposé dans le chapitre IV, à partir de la base de données GEOROC ainsi que des données de la bibliographie utilisés (voir Fig.IV.8 ; De Moor *et al.*, 2013; Mattsson *et al.*, 2013; Mana *et al.*, 2015). Ils constituent un proxy important de l'enrichissement en REE des carbonatites : plus ces $D_{Ca}^{LC/LS}$, et plus les REE s'enrichissent dans les liquides carbonatés.

• Cas A : Immiscibilité de la basanite à la phonolite, et formation de carbonatites enrichies en REE

Ce premier scénario concerne la lignée « classique » de magmas alcalins sous-saturés en silice (Fig.VII.2a) formés en contexte intraplaque. La carbonatite formée par immiscibilité avec un magma de type basanitique (stade 1A, bleu et rouge foncé), ne présente pas d'enrichissement particulier en REE ($D_{Ca}^{LC/LS}$ relativement bas). Au stade de différenciation intermédiaire de type phono-tephrite (stade 2A, orange et bleu ; Fig.VII.2a), la carbonatite immiscible est légèrement plus enrichie en REE par rapport au liquide de type phono-tephritique ($D_{Ca}^{LC/LS}$ plus élevé). Enfin, à un stade beaucoup plus avancé de cristallisation fractionnée c'est-à-dire au stade phonolitique (stade 3A, jaune et bleu clair), la carbonatite est beaucoup plus enrichie en REE (et en Ca) que la phonolite ($D_{Ca}^{LC/LS}$ entre 5 et 40). Les liquides carbonatés immiscibles avec des liquides alcalins très différenciés du type phonolite (voire phono-trachytique, Fig.IV.8a du chapitre IV) peuvent donc être très enrichis en REE.

Au cours de toutes ces étapes de cristallisation fractionnée, on peut ainsi constater un appauvrissement des liquides silicatés, les liquides les plus appauvris correspondant aux liquides phonolitiques les plus différenciés et les plus polymérisés.

Les liquides carbonatés formés à ce stade de différenciation des magmas alcalins peuvent ainsi constituer de bons candidats pour les liquides parents des gisements de carbonatites. On peut en effet supposer que le liquide carbonaté formé par immiscibilité avec un liquide de type phonolitique et très enrichi en REE peut également évoluer et se différencier. Le fractionnement de ce liquide carbonaté très enrichi pourrait alors permettre la formation de cumulas de minéraux à REE d'intérêt économique.

De même, le liquide carbonaté au stade phono-tephritique présente un enrichissement beaucoup moins important qu'au stade phonolitique, mais supérieur à celui du liquide silicaté (Fig.VII.2a, orange et bleu). Si la carbonatite se sépare du liquide silicaté et évolue par différenciation, à ce stade, elle peut également s'enrichir en REE par fractionnement. Cela pourrait être le cas de la carbonatite du complexe magmatique de Lofdal en Namibie qui constitue un important gisement de REE, probablement formée par immiscibilité avec un liquide de type phono-tephrite (stade 2A, bleu, Fig.VII.1a; voir Fig.IV.7 du chapitre IV).

Figure VII.2. Schéma d'enrichissement des carbonatites formées par immiscibilité, au cours de la série magmatique alcaline classique (A) et dans le cas des magmas hyper-alcalins formés en contexte de lithosphère épaisse (B). A : Enrichissement en REE des carbonatites se formant par immiscibilité avec des magmas alcalins de plus en plus différenciés et polymérisés; B : Formation de carbonatites non enrichies en REE par différenciation de magmas hyper-alcalins de type mélilitites, néphélinites et phonolites. Les volumes magmatiques ne sont pas à l'échelle.

• Cas B : Immiscibilité avec des roches hyper-alcalines sous-saturées en silice, et formation de carbonatites non enrichies en REE

Le deuxième scénario propose la formation de liquide carbonaté par immiscibilité avec des liquides de types mélilititiques, très alcalins, sous-saturés en SiO₂ et riches en CO₂ et présentant une importante péralcalinité (ASI<0,1, AI<0) formés à plus grande profondeur à la base d'une lithosphère épaisse (stade 1B, en rouge et bleu foncé, Fig.VII.2b). Une autre immiscibilité peut se produire au stade plus différencié de composition néphélinitique (stade 2B, rouge et bleu). Dans les deux cas, la carbonatite formée n'est pas particulièrement enrichie en REE (ni en Ca) par rapport aux deux liquides silicatés ($D_{Ca}^{LC/LS} < 5$). Enfin, la cristallisation fractionnée de ces liquides aboutie à une composition de phonolite très peralcaline (stade 3B, jaune dans le diagramme TAS). La carbonatite se formant par immiscibilité avec ce liquide (bleu clair) n'est cependant pas enrichie en REE ($D_{Ca}^{LC/LS} < 5$). Il semble donc que pour les liquides hyperalcalins, suivant un chemin de différenciation différent et évoluant vers des compositions très riches en éléments alcalins et sous-saturés en silice, les liquides carbonatés ne présentent pas de fort enrichissement en REE.

Nous avons vu que l'origine des natrocarbonatites est encore débattue (partie I.1.5). Kjarsgaard *et al.* (1995) ont proposé que les natrocarbonatites sont formées à partir du fractionnement d'un liquide carbonaté riche en alcalins et formé par immiscibilité à partir d'un liquide silicaté peralcalin de type néphélinite. En revanche, Weidendorfer *et al.* (2017) ont suggéré que les natrocarbonatites sont formées à partir de la différenciation de magmas carbonatés riches en Ca et également suffisamment riches en éléments alcalins pour permette la saturation de carbonates sodiques. Dans ce cas, on peut éventuellement supposer que la natrocarbonatite se forme par la différenciation de la Ca-Na-carbonatite, elle-même formée par immiscibilité avec une phonolite peralcaline au stade 3B (Fig.VII.2b). On peut aussi supposer que les natrocarbonatites peuvent se former par immiscibilité à partir des phonolites hyper-alcalines (4B dans le diagramme TAS, Fig.VII.2b) : en effet, ces magmas contiennent également suffisamment d'éléments alcalins pour permettre la saturation en carbonates de Na. Les natrocarbonatites formées ainsi pas immiscibilité à partir d'une phonolite peralcaline seraient alors également peu enrichies en REE (4B, diagramme Roche/chondrite), ce qui est cohérent avec la composition en REE des natrocarbonatites naturelles (Keller and Zaitsev, 2012).

L'enrichissement en REE des carbonatites formées par immiscibilité à partir de magmas hyperalcalins et très sous-saturés en silice n'est donc pas significatif. En revanche, les carbonatites formées par immiscibilité avec des magmas alcalins de la lignée classique peuvent présenter un enrichissement important propice à la formation de gisement.

VII.1.3. Rôle des volatils et phase fluide

Dans les deux cas présentés dans la Figure VII.2, il est également possible qu'aucune immiscibilité ne se produise aux différents stades de différenciation. Ceci pourrait être dû à la perte de CO_2 par dégazage au cours de la remontée des magmas qui empêcherait la saturation en liquide carbonaté. Dans le cas des magmas alcalins des Îles Canaries, les roches à la surface indiquent de faibles concentrations en éléments volatils (Staudigel *et al.*, 1986; Wiesmaier *et al.*, 2011), en comparaison aux données d'inclusions vitreuses qui suggèrent la présence d'une importante quantité dans le magma primaire (Longpré *et al.*, 2017). Au cours de la différenciation, ces magmas perdent une quantité importante de CO_2 alors que les liquides fractionnés au volcan Ol Doinyo Lengai sont encore très riches en CO_2 (De Moor *et al.*, 2013; Mattsson *et al.*, 2013). Les carbonatites présentes aux Îles Canaries ne sont pas particulièrement riche en REE (Wallace, 1998; Hoernle *et al.*, 2002; Mourão *et al.*, 2010). Il se peut donc que soit ces carbonatites sont formées à un stade précoce de la

différenciation (basanite par exemple), soit que la perte de CO_2 par dégazage des phonolites ne permettent pas la formation de carbonatite par immiscibilité à ce stade.

L'inconnue dans ce cas est la concentration en CO_2 du liquide silicaté à tous ces stades de différenciation magmatique (différentes conditions P-T) nécessaire pour saturer en carbonate liquide. Nous avons vu dans la partie V.3 que les liquides silicatés de type néphélinite-phonolite des expériences réalisées saturent en carbonates liquides à partir d'une certaine composition, structure et degré de différenciation (< 6% poids de CO_2 , >36 % poids de SiO_2 , < 12% poids de CO, un ASI > 0,3 et enfin un NBO/T > 1,2). La quantité de CO_2 dissout dans le liquide silicaté ne constitue ainsi pas le seul critère le plus important pour favoriser la saturation en ces liquides carbonatés, et est liée à la composition et à la structure (degré de polymérisation) du liquide silicaté. Les liquides alcalins dépolymérisés saturent en liquide carbonaté pour des teneurs en CO_2 élevés (> 3% poids ; voir points gris Fig.V.15; De Moor *et al.*, 2013), alors que les liquides polymérisés présentent une saturation en carbonate liquide à des teneurs en CO_2 beaucoup plus faibles (à partir de 0,7 % poids, cette étude ; Fig.V.15). Il y a donc un lien important entre les concentrations en CO_2 , la structure des liquides, la saturation en liquide carbonaté et le partage des REE entre les deux liquides au cours de la différenciation des magmas alcalins.

Les magmas alcalins et carbonatés naturels sont également riches en F, Cl et P (partie I.1.2.2). Les résultats des expériences d'immiscibilité entre des liquides carbonatés et des liquides silicatés alcalins dopés en F, Cl et P ne montrent pas d'effet particulier des concentrations respectives de ces éléments dans les deux liquides sur l'enrichissement en métaux rares des liquides carbonatés (partie V.1). Les liquides carbonatés présentent un enrichissement plus important en REE en présence de F et de P (Fig.V.5), mais cet effet est principalement dû au changement de composition des liquides silicatés comme mis en évidence dans la partie V.1.4 (Fig.V.8). Ces éléments jouent donc un rôle sur la composition des liquides silicatés (Fig.V.3 et V.4), plutôt que sur l'enrichissement des liquides directement. Cet effet du F sur la structure des liquides a été mis en évidence par Ponader and Brown (1989b), et est effleuré dans cette étude.

Au cours de la différenciation, une phase fluide peut également coexister avec les deux liquides et les cristaux formés. En effet, dans les expériences réalisées, les liquides étudiés coexistent systématiquement avec une phase fluide (partie V.1.5) dont la composition est inconnue. En présence de Cl et H_2O , cette phase fluide semble jouer un rôle important sur l'alcalinité des liquides carbonatés ainsi que sur leur richesse en REE dans les expériences. Or les REE sont considérées comme pouvant être solubles dans une phase fluide riche en Cl (Williams-Jones *et al.*, 2012; Migdisov *et al.*, 2016), et également dans une moindre mesure, riche en F. On peut supposer alors que les REE se partagent entre les deux liquides, mais également entre la phase fluide et ces liquides. Dans la littérature, les fluides hydrothermaux sont décrits comme responsables de la minéralisation économique en métaux rares des gisements associés aux carbonatites (voir partie I.2). Ces fluides permettent probablement de remobiliser et de reconcentrer les REE donnant alors lieu à des minéralisations. Les conditions de saturation en cette phase fluide peuvent donc jouer donc un rôle important, depuis le stade magmatique jusqu'au stade hydrothermal.

VII.1.4. Cristallisation : devenir des métaux rares dans les cristaux

Au cours des différents stades de cristallisation présentés dans la Figure VII.1, des cristaux sont formés par fractionnement (cristaux gris, Fig.VII.1a et VII.1b). Ces cristaux formés sont généralement les mêmes pour les deux types de magmas alcalins (feldspathoïdes, feldspaths alcalins, clinopyroxènes, amphiboles etc...); seule leurs proportions varient. Les liquides hyper-alcalins vont permettre la saturation de minéraux alcalins en proportions plus importantes que les liquides alcalins 257

classiques. Les phonolites péralcalines qui en résultent contiennent ainsi des proportions plus importantes en feldspaths alcalins et en feldspathoïdes que les phonolites plus classiques (Klaudius and Keller, 2006). Cette différence de cristallisation est ainsi probablement à l'origine des deux chemins de différenciation présentés précédemment.

Dans les expériences d'immiscibilité entre liquide carbonaté et silicaté réalisées pour cette étude, les liquides silicatés sont alcalins de type néphélinite-phonolite et résultent de la cristallisation de différents minéraux (en fonction des conditions P-T). Nous avons vu que le degré de différenciation de ces liquides alcalins joue un rôle important sur le comportement des REE et des HFSE (Hf, Zr, Ta et Nb) dans les clinopyroxènes, les grenats, la titanite, l'apatite et la calcite. L'enrichissement en métaux rares de ces minéraux évolue effectivement en fonction de la composition des liquides silicatés au cours de la différenciation, avec un enrichissement optimal au stade phonolitique des clinopyroxènes, grenats, titanite, apatite et calcite (REE compatibles dans tous ces minéraux, HFSE compatibles dans les grenats, la titanite et les clinopyroxènes). Pour la titanite, deux modèles d'enrichissement en REE et en Nb basés sur la composition des liquides silicaté est valable dans les systèmes à deux liquides ou à un seul liquide silicaté (voir partie VI.4). Au stade phonolitique (stade n°3, Fig.VII.1), les minéraux formés sont ainsi les plus riches en métaux rares. Les liquides silicatés à ce stade sont les plus polymérisés et les plus différenciés ; en contexte d'immiscibilité, ceci implique également que les liquides silicatés formés.

Toutefois l'enrichissement de ces cristaux ne dépend pas seulement que de la composition des liquides silicatés : dans le cas des clinopyroxènes nous avons effectivement vu que leur structure peut également influencer leur enrichissement en métaux rares (partie VI.4.1 ; Lattice strain modelling, Blundy and Wood, 1994). Les métaux rares se substituent aux cations constituants ces minéraux (les REE à la place du Ca par exemple), ce qui peut modifier la structure de leur réseau cristallin. Nous avons également vu que certains paramètres structuraux de ces minéraux évoluent aussi en fonction de la composition des liquides silicatés au cours de leur différenciation (partie VI.4.1.3 ; Fig.VI.21). Leur mode d'enrichissement est donc plus complexe et nécessite de prendre en compte à la fois la composition des liquides silicatés (le stade de différenciation des liquides) et l'évolution des paramètres structuraux de ces train modelling).

Deux aspects n'ont cependant pas été étudiés ici : la formation des cumulas de cristaux à REE des complexes magmatiques alcalins, ainsi que la cristallisation fractionnée des carbonatites. Dans les complexes alcalins, les cumulas de minéraux à REE (eudialyte et steenstrupine) généralement associés aux intrusions les plus tardives, se forment par cristallisation fractionnée extensive (voir partie I.2.3). Ceci implique que les liquides silicatés alcalins à partir desquels ces cristaux se forment, sont suffisamment enrichis pour saturer en minéraux à REE. Ces liquides sont donc très différents de ceux formés par immiscibilité avec des liquides carbonatés (notamment au stade phonolitique), car même au stade les plus primaires de la différenciation (basanite ou mélilitite, Fig.VII.1a et VII.1b) les liquides carbonatés sont autant ou plus enrichis que les liquides silicatés.

Pour les liquides carbonatés les plus enrichies en REE supposés être formés par immiscibilité avec des phonolites (Fig.VII.1a), leur cristallisation fractionnée peut également impliquer la formation de minéraux à REE.

VII.2. Perspectives

VII.2.1. Volatils

L'enrichissement en REE des carbonatites formées par immiscibilité au cours de la différenciation des magmas alcalins dépend donc principalement de la composition chimique et de la structure des liquides silicatés. Nous avons vu que les éléments volatils jouent un rôle important sur la composition des liquides silicatés et ainsi indirectement sur l'enrichissement en REE des liquides carbonatés. Afin de mieux contraindre l'effet de ces volatils sur la composition des liquides ainsi que leur implication dans l'enrichissement en REE des liquides carbonatés, il est nécessaire de :

• Caractériser la solubilité du CO₂ et de H₂O dans des liquides silicatés alcalins sous-saturés en silice en saturation en carbonate

Cette étude apporte les premières données de concentration en CO_2 et en H_2O des liquides silicatés coexistant avec des liquides carbonatés. Un premier traitement de ces données a été présenté (partie V.3) et a permis de mettre en valeur la relation entre la concentration du CO_2 dans les liquides silicatés saturés en carbonates liquides, leur structure/composition et le partage des REE entre les deux liquides. Cependant, l'effet de la pression et de la température n'a pas été étudié en détails ; il est par ailleurs connu que la solubilité du CO_2 dans les liquides silicatés augmente avec la pression (Iacono-Marziano *et al.*, 2012). Au final, les paramètres contrôlant l'immiscibilité entre les liquides carbonatés et les liquides silicatés n'ont pas encore été reliés aux modèles de solubilité du CO_2 (ie. fluide-liquides) dans ces systèmes alcalins.

• Caractériser l'effet du F, Cl et P sur la structure et la composition des liquides silicatés

Nous avons vu que les concentrations de ces éléments dans les liquides silicatés ou carbonatés n'influent pas sur l'enrichissement en REE des liquides carbonatés. En revanche, ces éléments ont un impact sur la composition en éléments majeurs des liquides silicatés et carbonatés. Ces effets doivent être étudiés de manière plus approfondie et comparés aux données de solubilité de ces éléments dans les magmas alcalins.

VII.2.2. Modèles de partage des métaux rares dans les cristaux

En ce qui concerne les minéraux coexistant avec les deux liquides, cette étude a permis de mettre en valeur l'effet général de la composition en éléments majeurs des liquides silicatés. Cependant nous avons pu constater que cet effet est plus ou moins dominant selon les minéraux, et que d'autres paramètres doivent être pris en compte pour caractériser l'enrichissement de ces minéraux en métaux rares. Des modèles de partage de ces métaux dans les différentes phases minérales identifiées expérimentalement dans les systèmes alcalins doivent être effectués, pour :

- Les clinopyroxènes : il est nécessaire de proposer un modèle de partage couplant l'effet de la composition du liquide mis en valeur dans cette étude avec l'effet de la structure du minéral.
- Le grenat, apatite et calcite : l'effet de la composition chimique du liquide silicaté sur le partage en REE et/ou HFSE entre ces minéraux et le liquide silicaté a été mis en valeur. Cependant cet effet n'est pas clair pour ces minéraux ; il est donc nécessaire d'évaluer également l'effet de la structure du réseau cristallin sur leur enrichissement, afin d'aller vers un modèle du comportement des métaux rares dans ces minéraux au cours de la différenciation de magmas alcalins.

En ce qui concerne la titanite, deux modèles d'enrichissement en REE et en Nb de ce minéral ont été proposés dans cette étude. Ces modèles doivent être appliqués et validés sur les données naturelles des 259

cristaux de titanite contenus dans les roches magmatiques alcalines afin d'évaluer l'enrichissement en REE et Nb de ces minéraux au cours de la différenciation des magmas alcalins silicatés.

VII.2.3. Minéralisation en métaux rares dans les carbonatites et dans les complexes alcalins

Les minéraux étudiés expérimentalement ne contiennent pas la minéralisation en métaux rares dans ces systèmes alcalins et carbonatés (clinopyroxènes par exemple). Afin de bien contraindre le comportement des métaux rares dans les cristaux au cours de la différenciation de ces magmas, il est nécessaire de prendre en compte les compositions de liquides carbonatés mises en valeur dans cette étude et présentant un enrichissement en REE important (carbonatite au stade phonolitique). En effet, les liquides carbonatés plus ou moins enrichis en REE peuvent se séparer des liquides silicatés et continuer d'évoluer par différenciation.

Des expériences de crisatllisation de carbonatites riches en Ca-Na ont été réalisées dans le cadre d'un stage de Master 2 (Mollé, 2019) afin d'étudier la cristallisation et les conditions de saturation des minéraux à REE tels que la bastnaesite ou la monazite. Cependant les conditions expérimentales étudiées n'ont pas permis d'atteindre les conditions de saturation en ces phases minérales à REE (Mollé, 2019). Ce travail innovant reste à compléter (conditions P-T, compositions de départ etc...) afin de faire la lumière sur la cristallisation des minéraux à REE dans les carbonatites au stade magmatique.

De même, dans les systèmes alcalins la formation des minéraux à REE tels que l'eudyalite ou la steenstrupine, est encore mal contraint. Des expériences simulant la cristallisation de ces minéraux à partir de compositions alcalines sous-saturées en silice peuvent être réalisées afin de mieux comprendre leurs conditions de formation dans ces magmas.

Références bibliographiques

- Ablay, G. J., Carroll, M. R., Palmer, M. R., Martí, J. & Sparks, R. S. J. (1998). Basanite–Phonolite Lineages of the Teide–Pico Viejo Volcanic Complex, Tenerife, Canary Islands. *Journal of Petrology* 39, 905–936.
- Acosta-Vigil, A., Barich, A., Bartoli, O., Garrido, C. J., Cesare, B., Remusat, L., Poli, S. & Raepsaet, C. (2016). The composition of nanogranitoids in migmatites overlying the Ronda peridotites (Betic Cordillera, S Spain): the anatectic history of a polymetamorphic basement. *Contributions to Mineralogy and Petrology* 171, 24.
- Adam, J. & Green, T. (2001). Experimentally determined partition coefficients for minor and trace elements in peridotite minerals and carbonatitic melt, and their relevance to natural carbonatites. European Journal of Mineralogy, 13 (5), 815-827.
- Adam, J. & Green, T. (2006). Trace element partitioning between mica- and amphibole-bearing garnet lherzolite and hydrous basanitic melt: 1. Experimental results and the investigation of controls on partitioning behaviour. *Contributions to Mineralogy and Petrology* 152, 1–17.
- Aiuppa, A., Baker, D. R. & Webster, J. D. (2009). Halogens in volcanic systems. *Chemical Geology* **263**, 1–18.
- Andújar, J., Costa, F. & Scaillet, B. (2013). Storage conditions and eruptive dynamics of central versus flank eruptions in volcanic islands: The case of Tenerife (Canary Islands, Spain). *Journal of Volcanology and Geothermal Research* 260, 62–79.
- Arzamastsev, A., V.N, Arzamastseva, L., F, B. & P, M. (2001). Kola alkaline Province in the Paleozoic: evaluation of primary mantle magma composition and magma generation conditions. *Russian Journal of Earth Sciences* 3.
- Arzamastsev, A., Yakovenchuk, V., Pakhomovsky, Y. & Ivanyuk, G. (2008). The Khibina and Lovozero alkaline massifs: Geology and unique mineralization. 33rd International Geological Congress Excursion.
- Aseri, A. A., Linnen, R. L., Che, X. D., Thibault, Y. & Holtz, F. (2015). Effects of fluorine on the solubilities of Nb, Ta, Zr and Hf minerals in highly fluxed water-saturated haplogranitic melts. *Ore Geology Reviews* 64, 736–746.
- Bailey, D. K. (1982). Mantle metasomatism—continuing chemical change within the Earth. *Nature* **296**, 525–530.
- Bailey, D. K. (1993). Carbonate magmas. Journal of the Geological Society 150, 637–651.
- Bailey, J. C., Gwozdz, R., Rose-Hansen, J. & Sørensen, H. (2001). Geochemical overview of the Ilímaussaq alkaline complex, South Greenland. Geology of Greenland Survey Bulletin 190, 35–53.
- Barnes, J. D., Manning, C. E., Scambelluri, M. & Selverstone, J. (2018). The Behavior of Halogens During Subduction-Zone Processes. In: Harlov, D. E. & Aranovich, L. (eds) *The Role of*

Halogens in Terrestrial and Extraterrestrial Geochemical Processes: Surface, Crust, and Mantle. Cham: Springer International Publishing, 545–590.

- Barth, M. G., Foley, S. F. & Horn, I. (2002). Partial melting in Archean subduction zones: constraints from experimentally determined trace element partition coefficients between eclogitic minerals and tonalitic melts under upper mantle conditions. *Precambrian Research* 113, 323– 340.
- Baudouin, C., Parat, F., Denis, C. M. M. & Mangasini, F. (2016). Nephelinite lavas at early stage of rift initiation (Hanang volcano, North Tanzanian Divergence). *Contributions to Mineralogy* and Petrology 171, 64.
- Baudouin, C., Parat, F. & Michel, T. (2018). CO₂-rich phonolitic melt and carbonatite immiscibility in early stage of rifting: Melt inclusions from Hanang volcano (Tanzania). *Journal of Volcanology and Geothermal Research* **358**, 261–272.
- Baudouin, C. & France, L. (2019). Trace element partitioning between wollastonite and alkaline silicate magmas. *Chemical Geology* **523**, 88–94.
- Beard, C. D., van Hinsberg, V. J., Stix, J. & Wilke, M. (2019). Clinopyroxene/melt trace element partitioning in sodic alkaline magmas. *Journal of Petrology*.
- Behrens, H., Misiti, V., Freda, C., Vetere, F., Botcharnikov, R. E. & Scarlato, P. (2009). Solubility of H₂O and CO₂ in ultrapotassic melts at 1200 and 1250 °C and pressure from 50 to 500 MPa. *American Mineralogist* **94**, 105–120.
- Bell, K. & Simonetti, A. (1996). Carbonatite Magmatism and Plume Activity: Implications from the Nd, Pb and Sr Isotope Systematics of Oldoinyo Lengai. *Journal of Petrology* **37**, 1321–1339.
- Bell, K. & Simonetti, A. (2010). Source of parental melts to carbonatites–critical isotopic constraints. *Mineralogy and Petrology* **98**, 77–89.
- Blundy, J. & Wood, B. (1994). Prediction of crystal-melt partition coefficients from elastic moduli. *Nature* **372**, 452–454.
- Blundy, J. & Dalton, J. (2000). Experimental comparison of trace element partitioning between clinopyroxene and melt in carbonate and silicate systems, and implications for mantle metasomatism. *Contributions to Mineralogy and Petrology* **139**, 356–371.
- Blundy, J. & Wood, B. (2003). Partitioning of trace elements between crystals and melts. *Earth and Planetary Science Letters* **210**, 383–397.
- Bodeving, S., Williams-Jones, A. E. & Swinden, S. (2017). Carbonate–silicate melt immiscibility, REE mineralising fluids, and the evolution of the Lofdal Intrusive Suite, Namibia. *Lithos* 268– 271, 383–398.
- Botcharnikov, R. E., Linnen, R. L., Wilke, M., Holtz, F., Jugo, P. J. & Berndt, J. (2011). High gold concentrations in sulphide-bearing magma under oxidizing conditions. *Nature Geoscience* **4**, 112–115.
- Brenan, J. M. & Watson, E. B. (1991). Partitioning of trace elements between carbonate melt and clinopyroxene and olivine at mantle P-T conditions. *Geochimica et Cosmochimica Acta* **55**, 2203–2214.

- Brey, G. P. & Green, D. H. (1976). Solubility of CO₂ in olivine melilitite at high pressures and role of CO₂ in the earth's upper mantle. *Contributions to Mineralogy and Petrology* **55**, 217–230.
- Brey, G. P., Bulatov, V. K. & Girnis, A. V. (2009). Influence of water and fluorine on melting of carbonated peridotite at 6 and 10 GPa. *Lithos* **112**, 249–259.
- Brice, J. C. (1975). Some thermodynamic aspects of the growth of strained crystals. *Journal of Crystal Growth* 28, 249–253.
- Brooker, R. A. (1998). The effect of CO₂ saturation on immiscibility between silicate and carbonate liquids: an experimental study. *Journal of Petrology* **39**, 1905–1915.
- Brooker, R. A. & Hamilton, D. L. (1990). Three-liquid immiscibility and the origin of carbonatites. *Nature* **346**, 459–462.
- Brooker, R. A. & Kjarsgaard, B. A. (2011). Silicate–carbonate liquid immiscibility and phase relations in the system SiO₂–Na₂O–Al₂O₃–CaO–CO₂ at 0.1–2.5 GPa with applications to carbonatite genesis. *Journal of Petrology* **52**, 1281–1305.
- Brooker, R. A., Kohn, S. C., Holloway, J. R. & McMillan, P. F. (2001a). Structural controls on the solubility of CO₂ in silicate melts: Part I: bulk solubility data. *Chemical Geology* 174, 225– 239.
- Brooker, R. A., Kohn, S. C., Holloway, J. R. & McMillan, P. F. (2001b). Structural controls on the solubility of CO₂ in silicate melts: Part II: IR characteristics of carbonate groups in silicate glasses. *Chemical Geology* 174, 241–254.
- Brooker, R. A., Sparks, R. S. J., Kavanagh, J. L. & Field, M. (2011b). The volatile content of hypabyssal kimberlite magmas: some constraints from experiments on natural rock compositions. *Bulletin of Volcanology* 73, 959–981.
- Broom-Fendley, S., Styles, M. T., Appleton, J. D., Gunn, G. & Wall, F. (2016). Evidence for dissolution-reprecipitation of apatite and preferential LREE mobility in carbonatite-derived late-stage hydrothermal processes. *American Mineralogist* **101**, 596–611.
- Bureau, H., Trocellier, P., Shaw, C., Khodja, H., Bolfan-Casanova, N. & Demouchy, S. (2003). Determination of the concentration of water dissolved in glasses and minerals using nuclear microprobe. *Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms* 210, 449–454.
- Canil, D. (1990). Experimental study bearing on the absence of carbonate in mantle-derived xenoliths. *Geology* **18**, 1011–1013.
- Carroll, M. R. & Blank, J. G. (1997). The solubility of H₂O in phonolitic melts. *American Mineralogist* 82, 549–556.
- Castor, S. B. (2008). The Mountain Pass rare-earth carbonatite and associated ultrapotassic rocks, California. *The Canadian Mineralogist* **46**, 779–806.
- Cerny, P., Blevin, P. L., Cuney, M. & London, D. (2005). Granite-related ore deposits. *Society of Economic Geologists* **100th Anniversary**, 337–370.
- Chakhmouradian, A. R. & Wall, F. (2012). Rare earth elements: minerals, mines, magnets (and more). *Elements* **8**, 333–340.

- Chakhmouradian, A. R. & Zaitsev, A. N. (2012). Rare earth mineralization in igneous rocks: sources and processes. *Elements* **8**, 347–353.
- Champallier, R. (2005). Déformation expérimentale à Haute Température et Haute Pression de magmas partiellement cristallisés.
- Charalampides, G., Vatalis, K. I., Apostoplos, B. & Ploutarch-Nikolas, B. (2015). Rare Earth Elements: Industrial Applications and Economic Dependency of Europe. *Procedia Economics and Finance* 24, 126–135.
- Chebotarev, D. A., Veksler, I. V., Wohlgemuth-Ueberwasser, C., Doroshkevich, A. G. & Koch-Müller, M. (2019). Experimental study of trace element distribution between calcite, fluorite and carbonatitic melt in the system $CaCO_3 + CaF_2 + Na_2CO_3 \pm Ca_3(PO_4)_2$ at 100 MPa. *Contributions to Mineralogy and Petrology* **174**, 4.
- Colson, R. O., McKay, G. A. & Taylor, L. A. (1988). Temperature and composition dependencies of trace element partitioning: Olivine/melt and low-Ca pyroxene/melt. *Geochimica et Cosmochimica Acta* **52**, 539–553.
- Dalou, C., Boulon, J., T. Koga, K., Dalou, R. & Dennen, R. L. (2018). DOUBLE FIT: Optimization procedure applied to lattice strain model. *Computers & Geosciences* **117**, 49–56.
- Dasgupta, R., Hirschmann, M. M. & Withers, A. C. (2004). Deep global cycling of carbon constrained by the solidus of anhydrous, carbonated eclogite under upper mantle conditions. *Earth and Planetary Science Letters* **227**, 73–85.
- Dasgupta, R., Hirschmann, M. M. & Stalker, K. (2006). Immiscible transition from carbonate-rich to silicate-rich melts in the 3 GPa melting interval of eclogite + CO₂ and genesis of silicaundersaturated ocean island lavas. *Journal of Petrology* **47**, 647–671.
- Dasgupta, R., Hirschmann, M. M. & Smith, N. D. (2007). Partial Melting Experiments of Peridotite + CO₂ at 3 GPa and Genesis of Alkalic Ocean Island Basalts. *Journal of Petrology* **48**, 2093–2124.
- Dasgupta, R. & Hirschmann, M. M. (2010). The deep carbon cycle and melting in Earth's interior. *Earth and Planetary Science Letters* **298**, 1–13.
- Dasgupta, R., Mallik, A., Tsuno, K., Withers, A. C., Hirth, G. & Hirschmann, M. M. (2013). Carbondioxide-rich silicate melt in the Earth's upper mantle. *Nature* **493**, 211–215.
- Davidson, J., Turner, S. & Plank, T. (2013). Dy/Dy*: Variations arising from mantle sources and petrogenetic processes. *Journal of Petrology* **54**, 525–537.
- Dawson, J. B. (1962a). Sodium Carbonate Lavas from Oldoinyo Lengai, Tanganyika. *Nature* **195**, 1075–1076.
- Dawson, J. B., Smith, J. V. & Steele, I. M. (1994). Trace-element distribution between coexisting perovskite, apatite and titanite from Oldoinyo Lengai, Tanzania. *Chemical Geology* 117, 285– 290.
- De Moor, J. M., Fischer, T. P., King, P. L., Botcharnikov, R. E., Hervig, R. L., Hilton, D. R., Barry, P. H., Mangasini, F. & Ramirez, C. (2013). Volatile-rich silicate melts from Oldoinyo Lengai volcano (Tanzania): implications for carbonatite genesis and eruptive behavior. *Earth and Planetary Science Letters* 361, 379–390.

- Di Carlo, I., Pichavant, M., Rotolo, S. G. & Scaillet, B. (2006). Experimental crystallization of a high-K arc basalt: the Golden Pumice, Stromboli volcano (Italy). *Journal of Petrology* **47**, 1317– 1343.
- Di Stefano, F., Mollo, S., Blundy, J., Scarlato, P., Nazzari, M. & Bachmann, O. (2019). The effect of CaO on the partitioning behavior of REE, Y and Sc between olivine and melt: Implications for basalt-carbonate interaction processes. *Lithos* **326–327**, 327–340.
- Dingwell, D. B. (1986). Volatile solubilities in silicate melts. *Silicate melts: their properties and structure applied to problems in geochemistry, petrology, economic geology, and planetary geology*. Mineralogical Association of Canada, 93–129.
- Dixon, J. E. (1997). Degassing of alkalic basalts. American Mineralogist 82, 368–378.
- Dobson, D. P. *et al.* (1996). In-situ measurement of viscosity and density of carbonate melts at high pressure. *Earth and Planetary Science Letters* **143**, 207–215.
- Dostal, J. (2016). Rare metal deposits associated with alkaline/peralkaline igneous rocks. *Rev. Econ. Geol* **18**, 33–54.
- Doucelance, R., Hammouda, T., Moreira, M. & Martins, J. C. (2010). Geochemical constraints on depth of origin of oceanic carbonatites: The Cape Verde case. *Geochimica et Cosmochimica Acta* **74**, 7261–7282.
- Duc-Tin, Q. & Keppler, H. (2015). Monazite and xenotime solubility in granitic melts and the origin of the lanthanide tetrad effect. *Contributions to Mineralogy and Petrology* **169**, 8.
- Edgar, A. D. (1987). The genesis of alkaline magmas with emphasis on their source regions: inferences from experimental studies. *Geological Society, London, Special Publications* **30**, 29–52.
- Eggler, D. H. & Rosenhauer, M. (1978). Carbon dioxide in silicate melts; II, Solubilities of CO₂ and H₂O in CaMgSi₂O₆ (diopside) liquids and vapors at pressures to 40 kb. *American Journal of Science* **278**, 64–94.
- Eggler, D. H. (1987a). Discussion of recent papers on carbonated peridotite, bearing on mantle metasomatism and magmatism: final comment. *Earth and Planetary Science Letters* **82**, 403.
- Eggler, D. H. (1987b). Discussion of recent papers on carbonated peridotite, bearing on mantle metasomatism and magmatism: an alternative. *Earth and Planetary Science Letters* **82**, 398–400.
- Ellison, A. J. G. & Hess, P. C. (1989). Solution properties of rare earth elements in silicate melts: Inferences from immiscible liquids. *Geochimica et Cosmochimica Acta* **53**, 1965–1974.
- Elzinga, E. J., Reeder, R. J., Withers, S. H., Peale, R. E., Mason, R. A., Beck, K. M. & Hess, W. P. (2002). EXAFS study of rare-earth element coordination in calcite. *Geochimica et Cosmochimica Acta* 66, 2875–2885.
- Ferraina, C. (2018). Partage des métaux entre liquide sulfuré et liquide silicaté : Expérimentation, modélisation et applications aux gisements de sulfures magmatiques. Thèse, Orléans.
- Fischer, T. P., Burnard, P., Marty, B., Hilton, D. R., Füri, E., Palhol, F., Sharp, Z. D. & Mangasini, F. (2009). Upper-mantle volatile chemistry at Oldoinyo Lengai volcano and the origin of carbonatites. *Nature* 459, 77–80.

- Foley, S. F. (1988). The Genesis of Continental Basic Alkaline Magmas— An Interpretation in Terms of Redox Melting. *Journal of Petrology* **Special Volume**, 139–161.
- Foley, S. F., Link, K., Tiberindwa, J. V. & Barifaijo, E. (2012). Patterns and origin of igneous activity around the Tanzanian craton. *Journal of African Earth Sciences* **62**, 1–18.
- Foley, S. F. & Fischer, T. P. (2017). An essential role for continental rifts and lithosphere in the deep carbon cycle. *Nature Geoscience* **10**, 897–902.
- Freestone, I. C. & Hamilton, D. L. (1980). The role of liquid immiscibility in the genesis of carbonatites — an experimental study. *Contributions to Mineralogy and Petrology* 73, 105– 117.
- Frezzotti, M.-L. (2001). Silicate-melt inclusions in magmatic rocks: applications to petrology. *Lithos* **55**, 273–299.
- Frezzotti, M. L. & Ferrando, S. (2018). The Role of Halogens in the Lithospheric Mantle. In: Harlov, D. E. & Aranovich, L. (eds) *The Role of Halogens in Terrestrial and Extraterrestrial Geochemical Processes: Surface, Crust, and Mantle.* Cham: Springer International Publishing, 805–845.
- Frost, B. R. (1991). Introduction to oxygen fugacity and its petrologic importance. *Reviews in Mineralogy*, 7 October, pages 1–9.
- Gaetani, G. A. (2004). The influence of melt structure on trace element partitioning near the peridotite solidus. *Contributions to Mineralogy and Petrology* **147**, 511–527.
- Gaillard, F., Scaillet, B., Pichavant, M. & Bény, J.-M. (2001). The effect of water and *fO*₂ on the ferric–ferrous ratio of silicic melts. *Chemical Geology* **174**, 255–273.
- Genge, M. J., Jones, A. P. & Price, G. D. (1995). An infrared and Raman study of carbonate glasses: implications for the structure of carbonatite magmas. *Geochimica et Cosmochimica Acta* **59**, 927–937.
- Giebel, R. J., Gauert, C. D. K., Marks, M. A. W., Costin, G. & Markl, G. (2017). Multi-stage formation of REE minerals in the Palabora Carbonatite Complex, South Africa. *American Mineralogist* **102**, 1218–1233.
- Girnis, A. V., Bulatov, V. K., Lahaye, Y. & Brey, G. P. (2006). Partitioning of trace elements between carbonate-silicate melts and mantle minerals: Experiment and petrological consequences. *Petrology* **14**, 492–514.
- Goodenough, K. M. *et al.* (2016). Europe's rare earth element resource potential: an overview of REE metallogenetic provinces and their geodynamic setting. *Ore Geology Reviews* **72**, 838–856.
- Goodenough, K. M., Wall, F. & Merriman, D. (2017). The Rare Earth Elements: Demand, Global Resources, and Challenges for Resourcing Future Generations. *Natural Resources Research* 27, 201–216.
- Green, D. H. (1970). A review of experimental evidence on the origin of basaltic and nephelinitic magmas. *Physics of the Earth and Planetary Interiors* **3**, 221–235.
- Green, D. H. & Wallace, M. E. (1988). Mantle metasomatism by ephemeral carbonatite melts. *Nature* **336**, 459.

- Green, T. H., Adam, J. & Siel, S. H. (1992). Trace element partitioning between silicate minerals and carbonatite at 25 kbar and application to mantle metasomatism. *Mineralogy and Petrology* **46**, 179–184.
- Green, D. H. & Falloon, T. J. (1998). Pyrolite: A Ringwood concept and its current expression. *The Earth's Mantle: Composition, Structure, and Evolution*. Cambridge University Press, 311–378.
- Green, T. H., Blundy, J. D., Adam, J. & Yaxley, G. M. (2000). SIMS determination of trace element partition coefficients between garnet, clinopyroxene and hydrous basaltic liquids at 2–7.5 GPa and 1080–1200°C. *Lithos* **53**, 165–187.
- Green, D. H., Hibberson, W. O., Kovács, I. & Rosenthal, A. (2010). Water and its influence on the lithosphere–asthenosphere boundary. *Nature* **467**, 448–451.
- Green, D. H. (2015). Experimental petrology of peridotites, including effects of water and carbon on melting in the Earth's upper mantle. *Physics and Chemistry of Minerals* **42**, 95–122.
- Greig, J. W. (1927). Immiscibility in silicate melts; Part I. American Journal of Science Series 5 Vol. 13, 1–44.
- Guyonnet, D., Planchon, M., Rollat, A., Escalon, V., Tuduri, J., Charles, N., Vaxelaire, S., Dubois, D. & Fargier, H. (2015). Material flow analysis applied to rare earth elements in Europe. *Journal of Cleaner Production* **107**, 215–228.
- Guzmics, T., Mitchell, R. H., Szabó, C., Berkesi, M., Milke, R. & Ratter, K. (2012). Liquid immiscibility between silicate, carbonate and sulfide melts in melt inclusions hosted in coprecipitated minerals from Kerimasi volcano (Tanzania): evolution of carbonated nephelinitic magma. *Contributions to Mineralogy and Petrology* 164, 101–122.
- Guzmics, T., Zajacz, Z., Mitchell, R. H., Szabó, C. & Wälle, M. (2015). The role of liquid–liquid immiscibility and crystal fractionation in the genesis of carbonatite magmas: insights from Kerimasi melt inclusions. *Contributions to Mineralogy and Petrology* **169**, 17.
- Guzmics, T., Berkesi, M., Bodnar, R. J., Fall, A., Bali, E., Milke, R., Vetlényi, E. & Szabó, C. (2019). Natrocarbonatites: A hidden product of three-phase immiscibility. *Geology* **47**, 527–530.
- Gysi, A. P. & Williams-Jones, A. E. (2015). The thermodynamic properties of bastnäsite-(Ce) and parisite-(Ce). *Chemical Geology* **392**, 87–101.
- Hall, A. (1987). Igneous petrology. Longman Scientific & Technical Harlow.
- Halliday, A. N., Lee, D.-C., Tommasini, S., Davies, G. R., Paslick, C. R., Godfrey Fitton, J. & James, D. E. (1995). Incompatible trace elements in OIB and MORB and source enrichment in the sub-oceanic mantle. *Earth and Planetary Science Letters* 133, 379–395.
- Hamilton, D. L., Bedson, P. & Esson, J. (1989). The behaviour of trace elements in the evolution of carbonatites. *Carbonatites, Genesis and Evolution*. London, UK: Bell K, 405–427.
- Hammouda, T. (1995). Mécanismes et cinétique de fusion partielle d'assemblages à fluor-phlogopite: modélisation, expérimentation et implications géochimiques. Orléans.
- Hammouda, T. & Laporte, D. (2000). Ultrafast mantle impregnation by carbonatite melts. *Geology* **28**, 283–285.

- Hammouda, T., Moine, B. N., Devidal, J. L. & Vincent, C. (2009). Trace element partitioning during partial melting of carbonated eclogites. *Physics of the Earth and Planetary Interiors* **174**, 60–69.
- Hammouda, T., Chantel, J. & Devidal, J.-L. (2010). Apatite solubility in carbonatitic liquids and trace element partitioning between apatite and carbonatite at high pressure. *Geochimica et Cosmochimica Acta* **74**, 7220–7235.
- Hammouda, T., Chantel, J., Manthilake, G., Guignard, J. & Crichton, W. (2014). Hot mantle geotherms stabilize calcic carbonatite magmas up to the surface. *Geology* **42**, 911–914.
- Hammouda, T. & Keshav, S. (2015). Melting in the mantle in the presence of carbon: Review of experiments and discussion on the origin of carbonatites. *Chemical Geology* **418**, 171–188.
- Hatch, G. P. (2012). Dynamics in the Global Market for Rare Earths. *Elements* 8, 341–346.
- Hauri, E., Wang, J., Dixon, J. E., King, P. L., Mandeville, C. & Newman, S. (2002). SIMS analysis of volatiles in silicate glasses: 1. Calibration, matrix effects and comparisons with FTIR. *Chemical Geology* 183, 99–114.
- Hazen, R. M. & Schiffries, C. M. (2013). Why Deep Carbon? *Reviews in Mineralogy and Geochemistry* **75**, 1–6.
- Henderson, P. (1984). Rare Earth Element Geochemistry. Amsterdam, NL: Elsevier.
- Hill, E., Wood, B. J. & Blundy, J. D. (2000). The effect of Ca-Tschermaks component on trace element partitioning between clinopyroxene and silicate melt. *Lithos* **53**, 203–215.
- Hill, E., Blundy, J. D. & Wood, B. J. (2011). Clinopyroxene-melt trace element partitioning and the development of a predictive model for HFSE and Sc. *Contributions to Mineralogy and Petrology* 161, 423–438.
- Hirose, K. (1997). Partial melt compositions of carbonated peridotite at 3 GPa and role of CO₂ in alkali-basalt magma generation. *Geophysical Research Letters* **24**, 2837–2840.
- Hirschmann, M. M. (2000). Mantle solidus: Experimental constraints and the effects of peridotite composition. *Geochemistry, Geophysics, Geosystems* **1**.
- Hirschmann, M. M. (2006). Water, Melting, and the Deep Earth H₂O Cycle. *Annual Review of Earth and Planetary Sciences* **34**, 629–653.
- Hoernle, K., Tilton, G., Le Bas, M. J., Duggen, S. & Garbe-Schönberg, D. (2002). Geochemistry of oceanic carbonatites compared with continental carbonatites: mantle recycling of oceanic crustal carbonate. *Contributions to Mineralogy and Petrology* 142, 520–542.
- Hofmann, A. W. (1997). Mantle geochemistry: the message from oceanic volcanism. *Nature* **385**, 219–229.
- Hou, Z., Tian, S., Yuan, Z., Xie, Y., Yin, S., Yi, L., Fei, H. & Yang, Z. (2006). The Himalayan collision zone carbonatites in western Sichuan, SW China: Petrogenesis, mantle source and tectonic implication. *Earth and Planetary Science Letters* 244, 234–250.
- Hou, Z. *et al.* (2009). The Himalayan Mianning–Dechang REE belt associated with carbonatite– alkaline complexes, eastern Indo-Asian collision zone, SW China. *Ore Geology Reviews* **36**, 65–89.

- Humphris, S. E. & Henderson, P. (1984). The mobility of the rare earth elements in the crust. *Rare earth element geochemistry* **2**, 317–342.
- Iacono-Marziano, G., Morizet, Y., Le Trong, E. & Gaillard, F. (2012). New experimental data and semi-empirical parameterization of H₂O–CO₂ solubility in mafic melts. *Geochimica et Cosmochimica Acta* **97**, 1–23.
- Iacovino, K., Moore, G., Roggensack, K., Oppenheimer, C. & Kyle, P. (2013). H₂O–CO₂ solubility in mafic alkaline magma: applications to volatile sources and degassing behavior at Erebus volcano, Antarctica. *Contributions to Mineralogy and Petrology* **166**, 845–860.
- Irving, A. J. & Wyllie, P. J. (1975). Subsolidus and melting relationships for calcite, magnesite and the join CaCO₃-MgCO₃ 36 kb. *Geochimica et Cosmochimica Acta* **39**, 35–53.
- Jago, B. C. & Gittins, J. (1991). The role of fluorine in carbonatite magma evolution. *Nature* **349**, 56–58.
- Jambon, A. (1994). Earth degassing and large-scale geochemical cycling of volatile elements. *Reviews in Mineralogy and Geochemistry* **30**, 479–517.
- Jochum, K. P., Weis, U., Schwager, B., Stoll, B., Wilson, S. A., Haug, G. H., Andreae, M. O. & Enzweiler, J. (2016). Reference values following ISO guidelines for frequently requested rock reference materials. *Geostandards and Geoanalytical Research* 40, 333–350.
- Johnson, K. T. M. (1998). Experimental determination of partition coefficients for rare earth and highfield-strength elements between clinopyroxene, garnet, and basaltic melt at high pressures. *Contributions to Mineralogy and Petrology* **133**, 60–68.
- Jones, A. P., Wall, F. & Williams, C. T. (1995a). Rare earth minerals: chemistry, origin and ore deposits. Springer Science & Business Media, 7.
- Jones, J. H., Walker, D., Pickett, D. A., Murrell, M. T. & Beattie, P. (1995b). Experimental investigations of the partitioning of Nb, Mo, Ba, Ce, Pb, Ra, Th, Pa, and U between immiscible carbonate and silicate liquids. *Geochimica et Cosmochimica Acta* **59**, 1307–1320.
- Jones, A. P., Genge, M. & Carmody, L. (2013). Carbonate melts and carbonatites. *Reviews in Mineralogy and Geochemistry* 75, 289–322.
- Kanazawa, Y. & Kamitani, M. (2006). Rare earth minerals and resources in the world. *Journal of Alloys and Compounds* **408–412**, 1339–1343.
- Keller, J. & Zaitsev, A. N. (2012). Geochemistry and petrogenetic significance of natrocarbonatites at Oldoinyo Lengai, Tanzania: Composition of lavas from 1988 to 2007. *Lithos* **148**, 45–53.
- Keppler, H. (1993). Influence of fluorine on the enrichment of high field strength trace elements in granitic rocks. *Contributions to Mineralogy and Petrology* **114**, 479–488.
- Keppler, H. (2003). Water solubility in carbonatite melts. American Mineralogist 88, 1822–1824.
- Keshav, S., Corgne, A., Gudfinnsson, G. H., Bizimis, M., McDonough, W. F. & Fei, Y. (2005). Kimberlite petrogenesis: Insights from clinopyroxene-melt partitioning experiments at 6 GPa in the CaO-MgO-Al₂O₃-SiO₂-CO₂ system. *Geochimica et Cosmochimica Acta* 69, 2829–2845.
- Keshav, S. & Gudfinnsson, G. H. (2010). Experimentally dictated stability of carbonated oceanic crust to moderately great depths in the Earth: Results from the solidus determination in the system CaO-MgO-Al₂O₃-SiO₂-CO₂. *Journal of Geophysical Research: Solid Earth* **115**.

- Keshav, S., Gudfinnsson, G. H. & Presnall, D. C. (2011). Melting Phase Relations of Simplified Carbonated Peridotite at 12–26 GPa in the Systems CaO–MgO–SiO₂–CO₂ and CaO–MgO– Al₂O₃–SiO₂–CO₂: Highly Calcic Magmas in the Transition Zone of the Earth. *Journal of Petrology* 52, 2265–2291.
- Keshav, S. & Gudfinnsson, G. H. (2013). Silicate liquid-carbonatite liquid transition along the melting curve of model, vapor-saturated peridotite in the system CaO-MgO-Al₂O₃-SiO₂-CO₂ from 1.1 to 2 GPa. *Journal of Geophysical Research: Solid Earth* **118**, 3341–3353.
- Kjarsgaard, B. A. (1998). Phase relations of a carbonated high-CaO nephelinite at 0.2 and 0.5 GPa. *Journal of Petrology* **39**, 2061–2075.
- Kjarsgaard, B. A. & Hamilton, D. L. (1988). Liquid immiscibility and the origin of alkali-poor carbonatites. *Mineralogical Magazine* **52**, 43–55.
- Kjarsgaard, B. A. & Hamilton, D. L. (1989). The genesis of carbonatites by immiscibility. *Carbonatites, Genesis and Evolution*. London, UK: Bell K, 388–404.
- Kjarsgaard, B. & Peterson, T. (1991). Nephelinite-carbonatite liquid immiscibility at Shombole volcano, East Africa: Petrographic and experimental evidence. *Mineralogy and Petrology* 43, 293–314.
- Kjarsgaard, B. A., Hamilton, D. L. & Peterson, T. D. (1995). Peralkaline nephelinite/carbonatite liquid immiscibility: comparison of phase compositions in experiments and natural lavas from Oldoinyo Lengai. Carbonatite Volcanism Ol Doinyo Lengai and the Petrogenesis of Natrocarbonatite. Springer, Berlin, Heidelberg, 163–190.
- Klaudius, J. & Keller, J. (2006). Peralkaline silicate lavas at Oldoinyo Lengai, Tanzania. *Lithos* **91**, 173–190.
- Klein, M., Stosch, H.-G., Seck, H. A. & Shimizu, N. (2000). Experimental partitioning of high field strength and rare earth elements between clinopyroxene and garnet in andesitic to tonalitic systems. *Geochimica et Cosmochimica Acta* **64**, 99–115.
- Klemme, S., van der Laan, S. R., Foley, S. F. & Günther, D. (1995). Experimentally determined trace and minor element partitioning between clinopyroxene and carbonatite melt under upper mantle conditions. *Earth and Planetary Science Letters* **133**, 439–448.
- Klemme, S. & Dalpé, C. (2003). Trace-element partitioning between apatite and carbonatite melt. *American Mineralogist* **88**, 639–646.
- Klemme, S. & Stalder, R. (2018). Halogens in the Earth's Mantle: What We Know and What We Don't. In: Harlov, D. E. & Aranovich, L. (eds) *The Role of Halogens in Terrestrial and Extraterrestrial Geochemical Processes: Surface, Crust, and Mantle*. Cham: Springer International Publishing, 847–869.
- Kogarko, L. N. (1990). Ore-forming potential of alkaline magmas. Lithos 26, 167–175.
- Kogarko, L. N., Lahaye, Y. & Brey, G. P. (2010). Plume-related mantle source of super-large rare metal deposits from the Lovozero and Khibina massifs on the Kola Peninsula, Eastern part of Baltic Shield: Sr, Nd and Hf isotope systematics. *Mineralogy and Petrology* 98, 197–208.
- Kohlstedt, D. L., Keppler, H. & Rubie, D. C. (1996). Solubility of water in the α , β and γ phases of (Mg,Fe)2SiO4. *Contributions to Mineralogy and Petrology* **123**, 345–357.

- Kohn, S. C. & Schofield, P. F. (1994). The importance of melt composition in controlling traceelement behaviour: an experimental study of Mn and Zn partitioning between forsterite and silicate melts. *Chemical Geology* **117**, 73–87.
- Koster Van Groos, A. F. & Wyllie, P. J. (1966). Liquid immiscibility in the system Na₂O-Al₂O₃-SiO₂-CO₂ at pressures to 1 kilobar. *American Journal of Science* **264**, 234–255.
- Koster Van Groos, A. F. & Wyllie, P. J. (1968). Liquid immiscibility in the join NaAlSi₃O₈ -Na₂CO₃-H₂O and its bearing on the genesis of carbonatites. *American Journal of Science* **266**, 932–967.
- Koster Van Groos, A. F. & Wyllie, P. J. (1973). Liquid immiscibility in the join NaAlSi₃O₈ CaAl₂Si₂O₈ -Na₂CO₃-H₂O. *American Journal of Science* **273**, 465.
- Kynicky, J., Smith, M. P. & Xu, C. (2012). Diversity of rare earth deposits: the key example of China. *Elements* **8**, 361–367.
- Kynicky, J., Smith, M. P., Song, W., Chakhmouradian, A. R., Xu, C., Kopriva, A., Galiova, M. V. & Brtnicky, M. (2019). The role of carbonate-fluoride melt immiscibility in shallow REE deposit evolution. *Geoscience Frontiers* 10, 527–537.
- Lai, X., Yang, X. & Sun, W. (2012). Geochemical constraints on genesis of dolomite marble in the Bayan Obo REE–Nb–Fe deposit, inner Mongolia: implications for REE mineralization. *Journal of Asian Earth Sciences* 57, 90–102.
- Larsen, L. M. (1979). Distribution of REE and other trace elements between phenocrysts and peralkaline undersaturated magmas, exemplified by rocks from the Gardar igneous province, south Greenland. *Lithos* **12**, 303–315.
- Larsen, L. M. & Sørensen, H. (1987). The Ilímaussaq intrusion—progressive crystallization and formation of layering in an agpaitic magma. *Geological Society, London, Special Publications* 30, 473–488.
- Le Bas, M. J. (1981). Carbonatite magmas. *Mineralogical Magazine* 44, 133–140.
- Le Bas, M. J. L., Maitre, R. W. L., Streckeisen, A. & Zanettin, B. (1986). A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silica Diagram. *Journal of Petrology* **27**, 745–750.
- Le Maitre, R. W., Streckeisen, A., Zanettin, B., Bas, M. J. L., Bonin, B. & Bateman, P. (2005). *Igneous rocks: a classification and glossary of terms: recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks*. Cambridge University Press.
- Lee, W. & Wyllie, P. J. (1994). Experimental data bearing on liquid immiscibility, crystal fractionation, and the origin of calciocarbonatites and natrocarbonatites. *International Geology Review* **36**, 797–819.
- Lee, W.-J. & Wyllie, P. J. (1996). Liquid immiscibility in the join NaAlSi₃O₈–CaCO₃ to 2.5 GPa and the origin of calciocarbonatite magmas. *Journal of Petrology* **37**, 1125–1152.
- Lesne, P., Scaillet, B., Pichavant, M. & Beny, J.-M. (2011a). The carbon dioxide solubility in alkali basalts: an experimental study. *Contributions to Mineralogy and Petrology* **162**, 153–168.

- Lesne, P., Scaillet, B., Pichavant, M., Iacono-Marziano, G. & Beny, J.-M. (2011b). The H₂O solubility of alkali basaltic melts: an experimental study. *Contributions to Mineralogy and Petrology* **162**, 133–151.
- Linnen, R. L. & Keppler, H. (2002). Melt composition control of Zr/Hf fractionation in magmatic processes. *Geochimica et Cosmochimica Acta* **66**, 3293–3301.
- Linnen, R. L., Samson, I. M., Williams-Jones, A. E. & Chakhmouradian, A. R. (2014). Geochemistry of the rare-earth elements, Nb, Ta, Hf, and Zr deposits. *Treatise on Geochemistry (Second Edition)*. Elsevier, Oxford: Holland HD, Turekian KK, 543–568.
- Litasov, K. & Ohtani, E. (2010). The solidus of carbonated eclogite in the system CaO–Al₂O₃–MgO–SiO₂–Na₂O–CO₂ to 32GPa and carbonatite liquid in the deep mantle. *Earth and Planetary Science Letters* **295**, 115–126.
- Longpré, M.-A., Stix, J., Klügel, A. & Shimizu, N. (2017). Mantle to surface degassing of carbon- and sulphur-rich alkaline magma at El Hierro, Canary Islands. *Earth and Planetary Science Letters* **460**, 268–280.
- Lottermoser, B. G. (1990). Rare-earth element mineralisation within the Mt. Weld carbonatite laterite, Western Australia. *Lithos* 24, 151–167.
- Lottermoser, B. G. (1992). Rare earth elements and hydrothermal ore formation processes. *Ore Geology Reviews* 7, 25–41.
- Loubet, M., Bernat, M., Javoy, M. & Allegre, C. J. (1972). Rare earth contents in carbonatites. *Earth and Planetary Science Letters* **14**, 226–232.
- Maimaiti, M., Fabbrizio, A., Carroll, M. R., Ertel-Ingrisch, W., Abudureheman, A., Paris, E. & Dingwell, D. B. (2019). Experimental study of monazite solubility in haplogranitic melts: a new model for peraluminous and peralkaline melts. *European Journal of Mineralogy* **31**, 49–59.
- Mana, S., Furman, T., Turrin, B. D., Feigenson, M. D. & Swisher, C. C. (2015). Magmatic activity across the East African North Tanzanian Divergence Zone. *Journal of the Geological Society* **172**, 368–389.
- Mandel, J. (1964). The statistical analysis of experimental data. New York: John Wiley & Sons, Inc.
- Mangler, M. F., Marks, M. A. W., Zaitzev, A. N., Eby, G. N. & Markl, G. (2014). Halogens (F, Cl and Br) at Oldoinyo Lengai volcano (Tanzania): Effects of magmatic differentiation, silicate– natrocarbonatite melt separation and surface alteration of natrocarbonatite. *Chemical Geology* 365, 43–53.
- Mariano, A. N. & Mariano, A. (2012). Rare earth mining and exploration in North America. *Elements* **8**, 369–376.
- Marks, M. A. W. & Markl, G. (2015). The Ilímaussaq Alkaline Complex, South Greenland. In: Charlier, B., Namur, O., Latypov, R. & Tegner, C. (eds) *Layered Intrusions*. Dordrecht: Springer Netherlands, 649–691.
- Marks, M. & Markl, G. (2003). Ilímaussaq 'en miniature': closed-system fractionation in an agpaitic dyke rock from the Gardar Province, South Greenland (contribution to the mineralogy of Ilímaussaq no. 117). *Mineralogical Magazine* **67**, 893–919.

- Martin, L. H. J., Schmidt, M. W., Mattsson, H. B., Ulmer, P., Hametner, K. & Günther, D. (2012). Element partitioning between immiscible carbonatite–kamafugite melts with application to the Italian ultrapotassic suite. *Chemical Geology* **320–321**, 96–112.
- Martin, L. H. J., Schmidt, M. W., Mattsson, H. B. & Guenther, D. (2013). Element partitioning between immiscible carbonatite and silicate melts for dry and H₂O-bearing systems at 1–3 GPa. *Journal of Petrology* **54**, 2301–2338.
- Massuyeau, M., Gardés, E., Morizet, Y. & Gaillard, F. (2015). A model for the activity of silica along the carbonatite–kimberlite–mellilitite–basanite melt compositional joint. *Chemical Geology* **418**, 206–216.
- Mattsson, H. B., Nandedkar, R. H. & Ulmer, P. (2013). Petrogenesis of the melilititic and nephelinitic rock suites in the Lake Natron–Engaruka monogenetic volcanic field, northern Tanzania. *Lithos* **179**, 175–192.
- McDonough, W. F. & Sun, S. -s. (1995). The composition of the Earth. *Chemical Geology* **120**, 223–253.
- McLennan, S. M. & Taylor, S. R. (2012). Geology, geochemistry, and natural abundances of the rare earth elements: *fundamentals and applications*. New York, NY, US: Atwood DA, 1–19.
- Metrich, N. & Rutherford, M. J. (1992). Experimental study of chlorine behavior in hydrous silicic melts. *Geochimica et Cosmochimica Acta* **56**, 607–616.
- Meyer, S. L. (1975). *Data analysis for scientists and engineers*. New York, NY: John Wiley & Sons, Inc.
- Migdisov, A., Williams-Jones, A. E., Brugger, J. & Caporuscio, F. A. (2016). Hydrothermal transport, deposition, and fractionation of the REE: Experimental data and thermodynamic calculations. *Chemical Geology* **439**, 13–42.
- Mitchell, R. H. (2005). Carbonatites and carbonatites and carbonatites. *The Canadian Mineralogist* **43**, 2049–2068.
- Mitchell, R. H. (2009). Peralkaline nephelinite–natrocarbonatite immiscibility and carbonatite assimilation at Oldoinyo Lengai, Tanzania. *Contributions to Mineralogy and Petrology* **158**, 589.
- Mitchell, R. H. (2015). Primary and secondary niobium mineral deposits associated with carbonatites. *Ore Geology Reviews* 64, 626–641.
- Mollé, V. (2019). Comportement des terres rares au cours de la cristallisation des carbonatites. Mémoire de master, Orléans.
- Mollo, S., Forni, F., Bachmann, O., Blundy, J. D., De Astis, G. & Scarlato, P. (2016). Trace element partitioning between clinopyroxene and trachy-phonolitic melts: A case study from the Campanian Ignimbrite (Campi Flegrei, Italy). *Lithos* 252–253, 160–172.
- Moore, M., Chakhmouradian, A. R., Mariano, A. N. & Sidhu, R. (2015). Evolution of rare-earth mineralization in the Bear Lodge carbonatite, Wyoming: mineralogical and isotopic evidence. *Ore Geology Reviews* 64, 499–521.
- Morgan, G. B. & London, D. (2005). Effect of current density on the electron microprobe analysis of alkali aluminosilicate glasses. *American Mineralogist* **90**, 1131–1138.

Morimoto, N. (1988). Nomenclature of Pyroxenes. Mineralogy and Petrology 39, 55-76.

- Morizet, Y., Paris, M., Gaillard, F. & Scaillet, B. (2014). Carbon dioxide in silica-undersaturated melt. Part I: The effect of mixed alkalis (K and Na) on CO₂ solubility and speciation. *Geochimica et Cosmochimica Acta* **141**, 45–61.
- Mourão, C., Mata, J., Doucelance, R., Madeira, J., Silveira, A. B. da, Silva, L. C. & Moreira, M. (2010). Quaternary extrusive calciocarbonatite volcanism on Brava Island (Cape Verde): a nephelinite-carbonatite immiscibility product. *Journal of African Earth Sciences* **56**, 59–74.
- Moussallam, Y., Morizet, Y., Massuyeau, M., Laumonier, M. & Gaillard, F. (2015). CO₂ solubility in kimberlite melts. *Chemical Geology* **418**, 198–205.
- Moussallam, Y. *et al.* (2016a). The molecular structure of melts along the carbonatite–kimberlite– basalt compositional joint: CO₂ and polymerisation. *Earth and Planetary Science Letters* **434**, 129–140.
- Moussallam, Y., Morizet, Y. & Gaillard, F. (2016b). H₂O–CO₂ solubility in low SiO₂-melts and the unique mode of kimberlite degassing and emplacement. *Earth and Planetary Science Letters* **447**, 151–160.
- Mysen, B. O., Arculus, R. J. & Eggler, D. H. (1975). Solubility of carbon dioxide in melts of andesite, tholeiite, and olivine nephelinite composition to 30 kbar pressure. *Contributions to Mineralogy and Petrology* **53**, 227–239.
- Mysen, B. O., Virgo, D. & Seifert, F. A. (1982). The structure of silicate melts: Implications for chemical and physical properties of natural magma. *Reviews of Geophysics* **20**, 353–383.
- Mysen, B. O. (1983). The Structure of Silicate Melts. *Annual Review of Earth and Planetary Sciences* **11**, 75–97.
- Mysen, B. O. (1990). Relationships between silicate melt structure and petrologic processes. *Earth-Science Reviews* 27, 281–365.
- Mysen, B. O. (2004). Element partitioning between minerals and melt, melt composition, and melt structure. *Chemical Geology* **213**, 1–16.
- Naldrett, A. J. (2010). Secular variation of magmatic sulfide deposits and their source magmas. *Economic Geology* **105**, 669–688.
- Nelson, D. R., Chivas, A. R., Chappell, B. W. & McCulloch, M. T. (1988). Geochemical and isotopic systematics in carbonatites and implications for the evolution of ocean-island sources. *Geochimica et Cosmochimica Acta* **52**, 1–17.
- Néron, A., Bédard, L. P. & Gaboury, D. (2018). The Saint-Honoré Carbonatite REE Zone, Québec, Canada: combined magmatic and hydrothermal processes. *Minerals* **8**, 397.
- Ni, H. & Keppler, H. (2013). Carbon in Silicate Melts. *Reviews in Mineralogy and Geochemistry* **75**, 251–287.
- Niu, Y. (2008). The Origin of Alkaline Lavas. Science 320, 883-884.
- Novella, D., Keshav, S., Gudfinnsson, G. H. & Ghosh, S. (2014). Melting phase relations of model carbonated peridotite from 2 to 3 GPa in the system CaO-MgO-Al₂O₃-SiO₂-CO₂ and further indication of possible unmixing between carbonatite and silicate liquids. *Journal of Geophysical Research: Solid Earth* **119**, 2780–2800.

- Olin, P. H. & Wolff, J. A. (2010). Rare earth and high field strength element partitioning between iron-rich clinopyroxenes and felsic liquids. *Contributions to Mineralogy and Petrology* **160**, 761–775.
- Olin, P. H. & Wolff, J. A. (2012). Partitioning of rare earth and high field strength elements between titanite and phonolitic liquid. *Lithos* **128–131**, 46–54.
- Panina, L. I. (2005). Multiphase carbonate-salt immiscibility in carbonatite melts: data on melt inclusions from the Krestovskiy massif minerals (Polar Siberia). *Contributions to Mineralogy* and Petrology 150, 19–36.
- Panina, L. I. & Motorina, I. V. (2008). Liquid immiscibility in deep-seated magmas and the generation of carbonatite melts. *Geochemistry International* **46**, 448–464.
- Papale, P. (1997). Modeling of the solubility of a two-component $H_2O + CO_2$ fluid in silicate liquids. *American Mineralogist* 84, 477–492.
- Papale, P., Moretti, R. & Barbato, D. (2006). The compositional dependence of the saturation surface of H₂O+CO₂ fluids in silicate melts. *Chemical Geology* **229**, 78–95.
- Pearce, M. L. (1964). Solubility of Carbon Dioxide and Variation of Oxygen Ion Activity in Soda-Silica Melts. *Journal of the American Ceramic Society* **47**, 342–347.
- Pearce, N. J. G., Perkins William T., Westgate John A., Gorton Michael P., Jackson Simon E., Neal Clive R. & Chenery Simon P. (1997). A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. *Geostandards Newsletter* 21, 115–144.
- Peterson, T. D. (1989). Peralkaline nephelinites. I. Comparative petrology of Shombole and Oldoinyo L'engai, East Africa. *Contributions to Mineralogy and Petrology* **101**, 458–478.
- Philippot, P., Agrinier, P. & Scambelluri, M. (1998). Chlorine cycling during subduction of altered oceanic crust. *Earth and Planetary Science Letters* **161**, 33–44.
- Pilet, S., Baker, M. B. & Stolper, E. M. (2008). Metasomatized Lithosphere and the Origin of Alkaline Lavas. *Science* **320**, 916–919.
- Ponader, C. W. & Brown, G. E. (1989a). Rare earth elements in silicate glassmelt systems: II. Interactions of La, Gd, and Yb with halogens. *Geochimica et Cosmochimica Acta* 53, 2905– 2914.
- Ponader, C. W. & Brown, G. E. (1989b). Rare earth elements in silicate glassmelt systems: I. Effects of composition on the coordination environments of La, Gd, and Yb. *Geochimica et Cosmochimica Acta* 53, 2893–2903.
- Prowatke, S. & Klemme, S. (2005). Effect of melt composition on the partitioning of trace elements between titanite and silicate melt. *Geochimica et Cosmochimica Acta* **69**, 695–709.
- Prowatke, S. & Klemme, S. (2006a). Rare earth element partitioning between titanite and silicate melts: Henry's law revisited. *Geochimica et Cosmochimica Acta* **70**, 4997–5012.
- Prowatke, S. & Klemme, S. (2006b). Trace element partitioning between apatite and silicate melts. *Geochimica et Cosmochimica Acta* **70**, 4513–4527.
- Rocholl, A. (1998). Major and trace element composition and homogeneity of microbeam reference material: basalt glass USGS BCR-2G. *Geostandards Newsletter* **22**, 33–45.
- Roedder, E. (1978). Silicate liquid immiscibility in magmas and in the system K₂O-FeO-Al₂O₃-SiO₂: an example of serendipity. *Geochimica et Cosmochimica Acta* **42**, 1597–1617.
- Rohrbach, A. & Schmidt, M. W. (2011). Redox freezing and melting in the Earth's deep mantle resulting from carbon–iron redox coupling. *Nature* **472**, 209–212.
- Rudnick, R. L., McDonough, W. F. & Chappell, B. W. (1993). Carbonatite metasomatism in the northern Tanzanian mantle: petrographic and geochemical characteristics. *Earth and Planetary Science Letters* 114, 463–475.
- Scarfe, C. M. (1973). Water Solubility in Basic and Ultrabasic Magmas. *Nature Physical Science* **246**, 9–10.
- Schaller, T., Dingwell, D. B., Keppler, H., Knöller, W., Merwin, L. & Sebald, A. (1992). Fluorine in silicate glasses: A multinuclear nuclear magnetic resonance study. *Geochimica et Cosmochimica Acta* 56, 701–707.
- Schanofski, M., Fanara, S. & Schmidt, B. C. (2019). CO₂–H₂O solubility in K-rich phonolitic and leucititic melts. *Contributions to Mineralogy and Petrology* **174**, 52.
- Schilling, J.-G. & Winchester, J. W. (1967). Rare-earth fractionation and magmatic processes. *Mantles of the earth and terrestrial planets*. London, UK: Rundkorn SK, 267–283.
- Schmidt, B. C. & Behrens, H. (2008). Water solubility in phonolite melts: Influence of melt composition and temperature. *Chemical Geology* **256**, 259–268.
- Schmidt, M. W., Dardon, A., Chazot, G. & Vannucci, R. (2004). The dependence of Nb and Ta rutilemelt partitioning on melt composition and Nb/Ta fractionation during subduction processes. *Earth and Planetary Science Letters* **226**, 415–432.
- Schmidt, M. W., Connolly, J. a. D., Günther, D. & Bogaerts, M. (2006). Element Partitioning: The Role of Melt Structure and Composition. *Science* **312**, 1646–1650.
- Schmidt, M. W. & Weidendorfer, D. (2018). Carbonatites in oceanic hotspots. Geology 46, 435-438.
- Shannon, R. D. (1976). Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography 32, 751–767.
- Sheard, E. R. (2010). Behaviour of zirconium, niobium, yttrium and the rare earth elements in the Thor Lake rare-metal deposit, Northwest Territories, Canada. McGill University.
- Sheard, E. R., Williams-Jones, A. E., Heiligmann, M., Pederson, C. & Trueman, D. L. (2012). Controls on the Concentration of Zirconium, Niobium, and the Rare Earth Elements in the Thor Lake Rare Metal Deposit, Northwest Territories, Canada. *Economic Geology* **107**, 81–104.
- Shimizu, H. (1980). Experimental study on rare-earth element partitioning in minerals formed at 20 and 30kb for basaltic systems. *Geochemical Journal* 14, 185–202.
- Shishkina, T. A., Botcharnikov, R. E., Holtz, F., Almeev, R. R. & Portnyagin, M. V. (2010). Solubility of H₂O- and CO₂-bearing fluids in tholeiitic basalts at pressures up to 500MPa. *Chemical Geology* **277**, 115–125.

- Shishkina, T. A., Botcharnikov, R. E., Holtz, F., Almeev, R. R., Jazwa, A. M. & Jakubiak, A. A. (2014). Compositional and pressure effects on the solubility of H₂O and CO₂ in mafic melts. *Chemical Geology* **388**, 112–129.
- Sifré, D., Gardés, E., Massuyeau, M., Hashim, L., Hier-Majumder, S. & Gaillard, F. (2014). Electrical conductivity during incipient melting in the oceanic low-velocity zone. *Nature* **509**, 81–85.
- Sifré, D., Hashim, L. & Gaillard, F. (2015). Effects of temperature, pressure and chemical compositions on the electrical conductivity of carbonated melts and its relationship with viscosity. *Chemical Geology* **418**, 189–197.
- Smith, M. P., Moore, K., Kavecsánszki, D., Finch, A. A., Kynicky, J. & Wall, F. (2016). From mantle to critical zone: a review of large and giant sized deposits of the rare earth elements. *Geoscience Frontiers* 7, 315–334.
- Song, W., Xu, C., Veksler, I. V. & Kynicky, J. (2016). Experimental study of REE, Ba, Sr, Mo and W partitioning between carbonatitic melt and aqueous fluid with implications for rare metal mineralization. *Contributions to Mineralogy and Petrology* **171**, 1.
- Sørensen, H., Bohse, H. & Bailey, J. C. (2006). The origin and mode of emplacement of lujavrites in the Ilímaussaq alkaline complex, South Greenland. *Lithos* **91**, 286–300.
- Stagno, V., Ojwang, D. O., McCammon, C. A. & Frost, D. J. (2013). The oxidation state of the mantle and the extraction of carbon from Earth's interior. *Nature* **493**, 84–88.
- Staudigel, H., Feraud, G. & Giannerini, G. (1986). The history of intrusive activity on the island of La Palma (Canary Islands). *Journal of Volcanology and Geothermal Research* 27, 299–322.
- Straub, S. M. & Layne, G. D. (2003). The systematics of chlorine, fluorine, and water in Izu arc front volcanic rocks: Implications for volatile recycling in subduction zones. *Geochimica et Cosmochimica Acta* 67, 4179–4203.
- Sweeney, R. J., Prozesky, V. & Przybylowicz, W. (1995). Selected trace and minor element partitioning between peridotite minerals and carbonatite melts at 18–46 kb pressure. *Geochimica et Cosmochimica Acta* **59**, 3671–3683.
- Symonds, R. B. (1994). Volcanic-gas studies: Methods, results, and applications, in Volatiles in magma. *Reviews in Mineralogy and Geochemistry* **30**, 1–66.
- Tappe, S., Romer, R. L., Stracke, A., Steenfelt, A., Smart, K. A., Muehlenbachs, K. & Torsvik, T. H. (2017). Sources and mobility of carbonate melts beneath cratons, with implications for deep carbon cycling, metasomatism and rift initiation. *Earth and Planetary Science Letters* 466, 152–167.
- Tappe, S., Smart, K., Torsvik, T., Massuyeau, M. & de Wit, M. (2018). Geodynamics of kimberlites on a cooling Earth: Clues to plate tectonic evolution and deep volatile cycles. *Earth and Planetary Science Letters* **484**, 1–14.
- Thibault, Y. & Holloway, J. R. (1994). Solubility of CO₂ in a Ca-rich leucitite: effects of pressure, temperature, and oxygen fugacity. *Contributions to Mineralogy and Petrology* **116**, 216–224.
- Thomsen, T. B. & Schmidt, M. W. (2008). Melting of carbonated pelites at 2.5–5.0 GPa, silicate– carbonatite liquid immiscibility, and potassium–carbon metasomatism of the mantle. *Earth and Planetary Science Letters* **267**, 17–31.

- Tiepolo, M., Oberti, R. & Vannucci, R. (2002). Trace-element incorporation in titanite: constraints from experimentally determined solid/liquid partition coefficients. *Chemical Geology* **191**, 105–119.
- Traversa, G., Gomes, C. B., Brotzu, P., Buraglini, N., Morbidelli, L., Principato, M. S., Ronca, S. & Ruberti, E. (2001). Petrography and mineral chemistry of carbonatites and mica-rich rocks from the Araxá complex (Alto Paranaíba Province, Brazil). *Anais da Academia Brasileira de Ciências* 73, 71–98.
- Treiman, A. H. & Schedl, A. (1983). Properties of Carbonatite Magma and Processes in Carbonatite Magma Chambers. *The Journal of Geology* **91**, 437–447.
- Van Achterbergh, E., Ryan, C. & Griffin, W. (2001). GLITTER user's manual: on-line interactive data reduction for the LA-ICP-MS microprobe. Version 4. Macquarie Research Limited, North Ryde.
- Vasyukova, O. V. & Williams-Jones, A. E. (2019a). Closed system fluid-mineral-mediated trace element behaviour in peralkaline rare metal pegmatites: Evidence from Strange Lake. *Chemical Geology* 505, 86–99.
- Vasyukova, O. V. & Williams-Jones, A. E. (2019b). Tracing the evolution of a fertile REE granite by modelling amphibole-melt partitioning, the Strange Lake story. *Chemical Geology* 514, 79– 89.
- Veksler, I. V., Dorfman, A. M., Kamenetsky, M., Dulski, P. & Dingwell, D. B. (2005). Partitioning of lanthanides and Y between immiscible silicate and fluoride melts, fluorite and cryolite and the origin of the lanthanide tetrad effect in igneous rocks. *Geochimica et Cosmochimica Acta* 69, 2847–2860.
- Veksler, I. V., Petibon, C., Jenner, G. A., Dorfman, A. M. & Dingwell, D. B. (1998). Trace element partitioning in immiscible silicate–carbonate liquid systems: an initial experimental study using a centrifuge autoclave. *Journal of Petrology* **39**, 2095–2104.
- Veksler, I. V., Dorfman, A. M., Dulski, P., Kamenetsky, V. S., Danyushevsky, L. V., Jeffries, T. & Dingwell, D. B. (2012). Partitioning of elements between silicate melt and immiscible fluoride, chloride, carbonate, phosphate and sulfate melts, with implications to the origin of natrocarbonatite. *Geochimica et Cosmochimica Acta* 79, 20–40.
- Verplanck, P. L., Mariano, A. N. & Jr, A. M. (2016). Rare earth element ore geology of carbonatites. *Rev. Econ. Geol* 18, 5–32.
- Verplanck, P. L. (2017). The role of fluids in the formation of rare earth element deposits. *Procedia Earth and Planetary Science* **17**, 758–761.
- Vetere, F., Botcharnikov, R. E., Holtz, F., Behrens, H. & De Rosa, R. (2011). Solubility of H₂O and CO₂ in shoshonitic melts at 1250°C and pressures from 50 to 400MPa: Implications for Campi Flegrei magmatic systems. *Journal of Volcanology and Geothermal Research* **202**, 251–261.
- Wall, F. & Mariano, A. (1996). Rare earth minerals in carbonatites: a discussion centred on the Kangankunde Carbonatite, Malawi. *Rare Earth Minerals, Chemistry, Origin and Ore Deposits, Mineralogical Society Series*. London, UK: Jones AP, Wall F, & Williams CT, 193– 226.
- Wall, F. (2014). Rare earth elements. Critical Metals Handbook. John Wiley & Sons, Ltd, 312–339.

- Wallace, M. E. & Green, D. H. (1988). An experimental determination of primary carbonatite magma composition. *Nature* 335, 343–346.
- Wallace, P. (1998). Pre-eruptive H₂O and CO₂ contents of mafic magmas from the submarine to emergent shield stages of Gran Canaria. *Proceedings of the Ocean Drilling Program. Scientific Results, Gran Canaria and Madeira Abyssal Plain, Sites 950-956.* College station, TX: Weaver PPE, Schmincke H-U, Firth JV, & Duffield W, 411–420.
- Watson, E. B. (1976). Two-liquid partition coefficients: experimental data and geochemical implications. *Contributions to Mineralogy and Petrology* **56**, 119–134.
- Watson, E. B. (1979). Zircon saturation in felsic liquids: experimental results and applications to trace element geochemistry. *Contributions to Mineralogy and Petrology* **70**, 407–419.
- Webster, J. D., Baker, D. R. & Aiuppa, A. (2018). Halogens in Mafic and Intermediate-Silica Content Magmas. In: Harlov, D. E. & Aranovich, L. (eds) *The Role of Halogens in Terrestrial and Extraterrestrial Geochemical Processes: Surface, Crust, and Mantle*. Cham: Springer International Publishing, 307–430.
- Weidendorfer, D., Schmidt, M. W. & Mattsson, H. B. (2016). Fractional crystallization of Siundersaturated alkaline magmas leading to unmixing of carbonatites on Brava Island (Cape Verde) and a general model of carbonatite genesis in alkaline magma suites. *Contributions to Mineralogy and Petrology* 171, 43.
- Weidendorfer, D., Schmidt, M. W. & Mattsson, H. B. (2017). A common origin of carbonatite magmas. *Geology* **45**, 507–510.
- Weidendorfer, D., Schmidt, M. W. & Mattsson, H. B. (2019). Mineral resorption triggers explosive mixed silicate–carbonatite eruptions. *Earth and Planetary Science Letters* 510, 219–230.
- Wendlandt, R. F. & Harrison, W. J. (1979). Rare earth partitioning between immiscible carbonate and silicate liquids and CO₂ vapor: Results and implications for the formation of light rare earthenriched rocks. *Contributions to Mineralogy and Petrology* **69**, 409–419.
- Wiesmaier, S., Deegan, F. M., Troll, V. R., Carracedo, J. C., Chadwick, J. P. & Chew, D. M. (2011). Magma mixing in the 1100 AD Montaña Reventada composite lava flow, Tenerife, Canary Islands: interaction between rift zone and central volcano plumbing systems. *Contributions to Mineralogy and Petrology* 162, 651–669.
- Wilkinson, J. J. (2013). Triggers for the formation of porphyry ore deposits in magmatic arcs. *Nature Geoscience* **6**, 917–925.
- Williams-Jones, A. E., Migdisov, A. A. & Samson, I. M. (2012). Hydrothermal mobilisation of the rare earth elements a tale of "Ceria" and "Yttria." *Elements* **8**, 355–360.
- Winter, J. D. (2001). An introduction to igneous and metamorphic petrology. Prentice hall New Jersey.
- Wood, B. J. & Blundy, J. D. (1997). A predictive model for rare earth element partitioning between clinopyroxene and anhydrous silicate melt. *Contributions to Mineralogy and Petrology* 129, 166–181.
- Woolley, A. R. & Kempe, D. R. C. (1989). Carbonatites: nomenclature, average chemical compositions, and element distribution. *Carbonatites, genesis and evolution*. London, UK: Bell K, 1–14.

- Woolley, A. R. & Kjarsgaard, B. A. (2008). Paragenetic types of carbonatite as indicated by the diversity and relative abundances of associated silicate rocks: evidence from a global database. *The Canadian Mineralogist* 46, 741–752.
- Woolley, A. R. & Bailey, D. K. (2012). The crucial role of lithospheric structure in the generation and release of carbonatites: geological evidence. *Mineralogical Magazine* **76**, 259–270.
- Wyllie, P. J. (1977). Mantle Fluid Compositions Buffered by Carbonates in Peridotite-CO₂-H₂O. *The Journal of Geology* **85**, 187–207.
- Yang, K.-F., Fan, H.-R., Santosh, M., Hu, F.-F. & Wang, K.-Y. (2011). Mesoproterozoic carbonatitic magmatism in the Bayan Obo deposit, Inner Mongolia, North China: constraints for the mechanism of super accumulation of rare earth elements. Ore Geology Reviews 40, 122–131.
- Yang, L. & Van Hinsberg, V. J. (2019). Liquid immiscibility in the CaF2-granite system and trace element partitioning between the immiscible liquids. *Chemical Geology* **511**, 28–41.
- Yaxley, G. M., Ghosh, S., Kiseeva, E. S., Mallik, A., Spandler, C., Thomson, A. R. & Walter, M. J. (2019). CO2-rich melts in Earth. Cambridge University Press, 129–162.
- Zaitsev, A. N., Wall, F. & Bas, M. J. L. (1998). REE -Sr-Ba minerals from the Khibina carbonatites, Kola Peninsula, Russia: their mineralogy, paragenesis and evolution. *Mineralogical Magazine* 62, 225–250.

ANNEXES

Table des matières des Annexes

А.	ANNE	XE 1 : Méthodologie	285
	A.1. P	rotocole expérimental, choix des compositions de départ	
	A.1.1.	Compositions de type néphélinite-carbonatite (Mix 8, Mix 9 et Mix 10)	285
	A.1.2.	Compositions de type phonolite-carbonatite dopée en F, Cl et P (PhCbn1 à 4)	285
	A.1.3.	Constituants utilisés dans les produits de départ	286
	A.2. C	artographie chimique des liquides carbonatés (microsonde électronique)	
	A.2.1.	Conditions analytiques des cartographies	288
	A.2.2.	Exemple de cartographie	
	A.3. L/	A-ICP-MS	290
	A.4. N	ano-SIMS, calibration des analyses	291
В.	ANNE	XE 2 : Liquides immiscibles	294
	B.1. T	extures d'immiscibilité (expériences du chapitre IV)	294
	B.2 Com	positions en éléments majeurs et en volatils des liquides de type néphélinite-p	phonolite
	et carboi	natite	294
	B.3 Com	position en éléments traces des liquides enrichis en F-Cl-P	298
	B.4 Phas	e «LC2 »	
С.	ANNE	XE 3 : Compositions des minéraux	307
	C.1. C	inopyroxènes	
	C.1.1.	Composition des clinopyroxènes	307
	C.1.2.	Formules structurales des clinopyroxènes	
	C.2. G	renat	
	C.2.1.	Composition des grenats	
	C.2.2.	Formule structurale des grenats	319
	C.3. C	omposition de la calcite	319
	C.4. C	omposition de la titanite	323
	C.5. C	omposition de l'apatite	325
	С.6. Р	érovskite	328
	С.7. С	omposition des autres cristaux	329
	C.7.1.	Feldspaths alcalins	329
	C.7.2.	Néphéline	
	C.7.3.	Oxydes	
	C.7.4.	Mélilite	
	C.7.5.	Phlogopite	
	С.8. В	ilan de masse	
D.	ANNE	XE 4 : Coefficients de partage entre minéraux et liquide carbonaté	338

D.1.	Clinopyroxènes et liquides carbonatés	.338
D.2.	Grenat et liquide carbonaté	.341
D.3.	Apatite et liquide carbonaté	.343
D.4.	Titanite et liquide carbonaté	.344
D.5.	Calcite et liquide carbonaté	.344
D.6.	Pérovskite et liquide carbonaté	.346
E. AN	NEXE 5 : Paramètres du « lattice strain modelling» des données de la littérature	347
E.1. clinop	Paramètres du lattice strain model de la littérature des coefficients de partage entre yroxène et liquide silicaté, pour les cations 3+	.347

A.1. Protocole expérimental, choix des compositions de départ

A.1.1. Compositions de type néphélinite-carbonatite (Mix 8, Mix 9 et Mix 10)

Les Mix 8 à 10 utilisés pour les expériences d'immiscibilité entre néphélinite et carbonatites (chapitres IV et VI) correspondent à la composition d'une néphélinite naturelle provenant du volcan Shombole au Kénya (SH49; Peterson, 1989) à laquelle a été rajouté 10% poids de calcite (protocole de Kjarsgaard, 1998).

Tableau 0.1. Compositions provenant de la littérature qui ont inspiré le protocole expérimental des expériences d'immiscibilité entre néphélinites et carbonatites présentées dans le chapitre IV et VI.

	SH 49 (Peterson, 1989) Néphélinite	Kjarsgaard, 1998 SH49 + 10% calcite
	Shombole (Kénya)	
SiO ₂	39,60	36,15
TiO ₂	2,03	1,85
Al_2O_3	12,60	11,50
Fe ₂ O ₃	8,00	7,30
FeO	2,00	1,83
MnO	0,28	0,26
MgO	1,89	1,73
CaO	12,60	16,62
Na ₂ O	8,40	7,67
K ₂ O	3,23	2,95
P_2O_5	0,33	0,30
SrO	0,50	0,46
BaO	0,29	0,26
F	0,15	0,14
Cl	0,15	0,14
H_2O	1,70	1,70
CO_2	5,80	9,55
Total	99,55	100,41

A.1.2. Compositions de type phonolite-carbonatite dopée en F, Cl et P (PhCbn1 à 4)

Les compositions PhCbn 1 à 4 (expériences présentées dans les chapitres V et VI) correspondent à un mélange de liquides de type phonolitique et carbonaté inspiré de la composition des liquides l'échantillon T19_01 (voir le Tableau VI.1, chapitre VI), avec un ratio de 50 : 50, pour les éléments majeurs (Si, Ti Al, Fe, Mn, Mg, Ca, Na, K, P, Ba, Sr, F et Cl). Les REE-Y-Sc ont été ajouté pour une proportion totale de 0,1% poids. Les concentrations en Zr et Nb ont été choisies en fonction de leur moyenne (respectivement 200 et 400 ppm) ainsi que des rapports Zr/Hf (49) et Nb/Ta (20) des roches naturelles alcalines utilisées et décris dans la partie IV.4.3.2., et provenant du Rift Est Africain et des Îles Canaries (base de données GEOROC). Les concentrations en Hf et Ta ont été calculées à partir de ces rapports. Les concentrations en Cr et S ont également été ajoutées en fonction des concentrations des roches naturelles (100 ppm en moyenne pour le Cr, et 600 ppm pour le S.

(wt%)	T19_01 - Liquide phonolitique	T19_01 - Liquide carbonaté
SiO	51.45	0.84
TiO	0.68	-
	19.28	0.08
FeO	3.24	3.96
MnO	-	0.63
MgO	0.27	1.86
CaO	1.24	28.48
Na ₂ O	10.24	14.33
K20	6.01	1.81
P ₂ O ₅	-	1.62
BaO	-	1.14
SrO	-	1.49
F	0.57	1.87
Ċ	0.11	0.45
Total	93,10	58,57

Tableau 0.2. Composition des liquides carbonatés et silicatés coexistant dans l'échantillon T19_01 (vois chapitre IV) à partir desquelles ont été confectionnées les matériaux de départ PhCbn (1 à 4).

A.1.3. Constituants utilisés dans les produits de départ

Les Tableaux A.3 et A.4 présentent les constituants chimiques (oxydes, carbonates, fluorures, chlorures, minéraux naturels, silicates, éléments purs) utilisés dans cette étude pour la préparation des différents produits de départ.

Tableau 0.3. Composition en constituants utilisés dans la préparation des produits de départ, pour toutes les mixtures fabriquées dans cette étude.

	Mix 8	Mix 9	Mix 10	PhCbn 1	PhCbn 2	PhCbn 3	PhCbn 4
SiO ₂	26,483	25,222	25,222	26,290	25,030	25,546	25,300
Wollastonite (CaSiO ₃)	25,124	23,928	23,928	-	-	-	-
TiO ₂	2,024	1,927	1,927	0,343	0,326	0,333	0,330
Al ₂ O ₃	12,561	11,963	11,966	7,920	4,097	3,318	5,300
AlPO ₄	-	-	-	1,403	9,572	1,363	1,350
AlF ₃	-	-	-	1,805	1,719	8,965	1,737
AlCl ₃	-	-	-	0,350	0,333	0,340	6,412
Fe ₂ O ₃	7,975	7,595	7,595	-	-	-	-
FeO	1,994	1,899	1,899	3,484	3,317	3,386	3,354
FeS	-	-	-	0,165	0,158	0,161	0,159
MnO ₂	0,342	0,326	0,326	-	-	-	-
MnCO ₃	-	-	-	0,517	0,492	0,502	0,498
Mg(OH) ₂	2,727	2,597	2,597	-	-	-	-
Dolomite (CaMg(CO ₃) ₂)	-	-	-	4,902	4,667	4,763	4,718
CaCO ₃	-	-	-	24,005	22,855	23,325	23,104
CaF ₂	-	-	4,762	-	-	-	-
Apatite (Ca ₅ (PO ₄) ₃)	0,750	0,714	0,714	-	-	-	-
Na ₂ CO ₃	13,808	13,151	13,151	21,132	20,119	20,533	20,339
NaF	0,230	0,219	0,219	-	-	-	-
NaCl	0,244	0,232	0,232	-	-	-	-
K ₂ CO ₃	4,724	9,261	4,499	5,768	5,492	5,605	5,552
BaCO ₃	0,371	0,354	0,354	0,735	0,700	0,714	0,707
SrCO ₃	-	-	-	1,071	1,019	1,040	1,030
SrF ₂	0,602	0,573	0,573	-	-	-	-
Cr ₂ O ₃	-	-	-	0,015	0,014	0,014	0,014
Nb ₂ O ₅	0,041	0,039	0,039	0,029	0,027	0,028	0,028
Ta_2O_5	-	-	-	0,001	0,001	0,001	0,001
ZrO ₂	-	-	-	0,054	0,052	0,053	0,052
HfO ₂	-	-	-	0,001	0,001	0,001	0,001
Sc_2O_3	-	-	-	0,011	0,010	0,011	0,011
Total	100	100	100	100	100	100	100

 Tableau 0.4. Composition du mélange de REE utilisé pour doper de 0,1% poids tous les produits de départ.

	% poids
La ₂ O ₃	7,13
CeO ₂	7,47
Pr_6O_{11}	6,91
Nd ₂ O ₃	7,10
Sm ₂ O ₃	7,05
Eu ₂ O ₃	7,04
GdF ₃	8,29
Tb	6,08
Dy_2O_3	7,07
Y_2O_3	7,72
HoF ₃	8,18
Er ₂ O ₃	6,95
Yb ₂ O ₃	6,92
Lu	6,08
Total	100

A.2. Cartographie chimique des liquides carbonatés (microsonde électronique)

Des cartographies ont été réalisées sur certains échantillons, et particulièrement sur des zones de liquides carbonatés, au MEB pour une première identification de la répartition des éléments puis à la microsonde électronique pour plus de précision. Les cartographies réalisées à la microsonde électronique sont semi-quantitatives et permettent de cibler les zones d'enrichissement en certains éléments.

A.2.1. Conditions analytiques des cartographies

Le Tableau A.5 présente les raies spectrales ainsi que les types de cristaux diffracteurs utilisés pour les cartographies de liquide carbonaté réalisées (15 kV, 100 nA, pas de 1µm et temps de comptage par élément de 0,05 à 0,1 s).

Tableau 0.5. Conditions de calibration de la microsonde électronique pour réaliser des cartographies X sur les échantillons de liquide carbonaté.

Elément	Raie spectrale analysée	Cristaux diffracteurs
K	Κα	PET
Na	Κα	TAP
Fe	Κα	LIF
La	La	LPET
Ba	Lα	LPET
Ca	Κα	PET
Mg	Κα	TAP
Mn	Κα	LIF
Ce	La	LPET
Р	Κα	LPET
Ti	Κα	PET
Si	Κα	TAP
Nb	Lα	LPET
Sr	Lα	LPET

A.2.2. Exemple de cartographie

Les cartographies ont principalement été réalisées sur les zones de liquides carbonatés afin d'observer la répartition des éléments. Ces cartographies ont été effectuées pour le Ca, Si, Fe, Mg, Na, K, Ba, Sr, Nb, P et Ti. Le La et le Ce ont également été cartographiés. Le signal (nombre de coups) n'est en général pas assez élevé pour le La ; en revanche certaines zones du liquides carbonatés présentent un nombre de coups plus important en Ce (Fig.A.1).

Les cartographies réalisées ont permis de mettre en évidence l'alternance entre les bandes claires plutôt enrichies en Ca, et les bandes foncées plutôt enrichies en Na et K. Les zones de concentrations relativement importante pour le Ba et le Ce semblent être les mêmes, à l'interstice des zones enrichies en Ca et Na.

Figure 0.1. Exemple de cartographie chimique réalisée à la microsonde électronique sur une zone de liquide carbonaté (échantillon T17_02, voir chapitre IV et VI). Les nuances de couleurs représentent l'intensité de concentration des éléments (Ca, Na, K, Ba et Ce) : les couleurs froides (bleu) indiquent que les éléments sont en concentration relativement faible (nombre de coups faible) alors que les couleurs chaudes (rouge) correspondent à des concentrations plus élevées.

A.3. LA-ICP-MS

Les analyses effectuées au LA-ICP-MS ont été réalisées sur trois appareils différents. Le Tableau A.6 présente la liste des isotopes analysés en fonction des trois appareils.

Thermo Fisher Element	Agilent 7500 CS	Agilent 7900
-	Li6	Li6
-	Li7	Li7
-	A127	A127
Si29	Si29	Si29
-	-	S 34
Ca44	Ca43	Ca43
-	Ca44	Ca44
-	Sc45	Sc45
Ti47	Ti49	Ti49
V51		
Cr53	Cr53	Cr53
Mn55	Mn55	Mn55
Ni60	-	-
Zn66	-	-
Rb85	-	-
Sr88	Sr88	Sr88
Y89	Y89	Y89
Zr90	Zr90	Zr90
Nb93	Nb93	Nb93
-	-	Pd104
Pd105	Pd105	Pd105
-	-	Pd106
Ba137	Ba137	Ba137
La139	La139	La139
Ce140	Ce140	Ce140
Pr141	Pr141	Pr141
Nd146	Nd146	Nd146
Sm147	Sm147	Sm147
Eu153	Eu153	Eu153
Gd157	Gd157	Gd157
Tb159	Tb159	Tb159
Dy163	Dy163	Dy163
Ho165	Ho165	Ho165
Er166	Er166	Er166
Tm169	Tm169	Tm169
Yb172	Yb172	Yb172
Lu175	Lu175	Lu175
-	Hf178	Hf178
-	Ta181	Ta181
Au197	Au197	Au197

Tableau 0.6. Description des isotopes analysés avec les trois LA-ICP-MS utilisés dans le cadre de cette étude.

A.4. Nano-SIMS, calibration des analyses

Les analyses effectuées à la nano-SIMS ont permis d'obtenir les concentrations en éléments volatils $(CO_2, H_2O, F \text{ et } Cl)$. Des droites de calibration ont été réalisées à partir des standards analysés, afin de quantifier les concentrations des échantillons. Au total, deux types de calibrations ont été réalisés au cours de deux séances d'analyses distinctes (calcul sur R).

Un premier lot de données est ainsi calculé à partir d'une première calibration (Cal1) pour les quatre éléments volatils (Fig.A.2). Un deuxième lot de données est également calculé à partir des standards présentés dans la deuxième calibration (Cal2 ; Fig.A.3).

Pour ces deux calibrations et pour les 4 éléments volatils, des intervalles de prédiction ont été calculés afin d'estimer l'erreur analytique pour chaque analyse. Ces erreurs analytiques sont présentées dans le pour chaque échantillon Tableau A.7. Les erreurs statistiques de chaque échantillon (écart-type sur la moyenne) sont représentées dans le Tableau V.2 ainsi que dans le Tableau B.1 (Annexe B.2).

Figure 0.2. Première calibration (appelée Cal1) effectuée à la nano-SIMS à partir des différents standards, pour H_2O (B, Kim 12 et Kim15), CO_2 (B, STR9-10-11-13, Kim 12 et 15), F et Cl (B, NIST 610 et 612). Les droites en pointillés délimitent l'intervalle de prédiction calculé (R) pour chaque droite de régression, afin de quantifier l'incertitude analytique relative à chaque calibration.

Figure 0.3. Deuxième calibration réalisée à la nano-SIMS, pour H2O (B, Kim 3 et Kim 5), CO2 (B, STR 9-10-11-13, Kim 3 et Kim 5), et F et Cl (B, Nist 610 et 612). Les droites en pointillés délimitent l'intervalle de prédiction calculé (R) pour chaque droite de régression, afin de quantifier l'incertitude analytique relative à chaque calibration.

Tableat	ı 0.7.	Composition	en (CO ₂ ,	H_2O, H	et et	Cl d	es l	liquides	silicaté	s et	erreurs	analytique	s associées	(notées	σ)	Ces
erreurs	sont c	alculées à pa	rtir d	les int	tervalle	s de	préd	ictie	on de ch	naque dr	oite	de régre	ssion prése	ntées dans l	es Figur	es A.	2 et
A.3. Ca	l1 et C	Cal2 : calibrai	tion 1	l (Fig	.A.2) et	cali	brati	on2	c (Fig.A.	3).							

	T14_01		T14_02		T16_04		T17_01		T17_02		T17_03		T17_04	
P (Gpa)	0,8		0,8		0,8		0,8		0,8		0,8		0,8	
T (°C)	975		975		950		925		925		925		925	
Composition	Mix 8		Mix 8		Mix 8		Mix 8		Mix 8		Mix 8		Mix 8	
Calibration	Cal2		Cal2		Cal2		Cal1		Cal1		Cal1		Cal1	
Ν	6	σ	6	σ	6	σ	10	σ	10	σ	13	σ	5	σ
H ₂ O	3,919	0,027	2,123	0,024	7,956	0,089	1,520	0,034	0,466	0,044	4,465	0,077	3,484	0,055
CO ₂	1,903	0,018	0,854	0,014	5,861	0,061	1,507	0,009	1,145	0,009	5,379	0,011	5,997	0,012
F	0,356	0,003	0,250	0,002	0,415	0,004	0,489	0,014	0,570	0,017	0,849	0,025	0,723	0,021
Cl	0,264	0,002	0,203	0,002	0,267	0,002	0,195	0,002	0,277	0,002	0,327	0,002	0,429	0,003
	T18_01		T18_03		T18_04		AK02_01		AK02_02		AK02_03		AK05_01	
P (Gpa)	1,5		1,5		1,5		0,4		0,4		0,4		0,4	
T (°C)	925		925		925		925		925		925		825	
Composition	Mix 8		Mix 8		Mix 8		Mix 8		Mix 8		Mix 8		Mix 8	
Calibration	Cal2		Cal2		Cal2		Cal2		Cal2		Cal2		Cal1	
Ν	6	σ	5	σ	6	σ	6	σ	6	σ	6	σ	8	σ
H ₂ O	3,412	0,024	7,071	0,067	5,600	0,045	4,657	0,036	2,914	0,022	7,944	0,088	1,817	0,036
CO ₂	1,432	0,016	1,126	0,019	2,195	0,021	2,826	0,026	1,381	0,014	9,500	0,102	0,465	0,010
F	0,344	0,003	0,354	0,003	0,404	0,004	0,294	0,003	0,258	0,002	0,416	0,004	0,491	0,014
Cl	0,242	0,002	0,313	0,003	0,309	0,003	0,348	0,003	0,256	0,002	0,411	0,004	0,230	0,002

Tableau A.7. Suite

-	AK05_02		AK05_03		AK05_05		T19_01		T19_03		T19_04		AK06_01			
P (Gpa)	0,4		0,4		0,4		0,8		0,8		0,8		0,4			
T (°C)	825		825		825		850		850		850		725			
Composition	Mix 8		Mix 8		Mix 8		Mix 8		Mix 8		Mix 8		Mix 8			
Calibration	Cal1		Cal1		Cal2		Cal1		Cal1		Cal1		Cal1			
Ν	10	σ	10	σ	4	σ	6	σ	4	σ	5	σ	6	σ		
H ₂ O	2,614	0,040	3,040	0,046	8,239	0,088	1,882	0,037	3,480	0,053	2,115	0,037	4,208	0,066		
CO ₂	0,505	0,009	0,954	0,009	1,208	0,013	0,642	0,010	1,121	0,008	0,577	0,010	0,634	0,009		
F	0,744	0,022	0,752	0,022	0,471	0,005	0,578	0,017	0,786	0,023	0,697	0,020	1,178	0,035		
Cl	0,378	0,003	0,351	0,003	0,333	0,003	0,295	0,002	0,464	0,004	0,358	0,003	0,479	0,004		
	AK06_02		AK08_03		PCPC1_01		PCPC1_03		PCPC2_01		PCPC3_01		PCPC3_02			
P (Gpa)	0,4		0,4		0,8		0,8				0,8		0,8			
T (°C)	725		725		850		850		1050		850		850			
Composition	Mix 9		Mix 10		PhCbn1		PhCbn1		PhCbn1		PhCbn2		PhCbn2			
Calibration	Cal2		Cal2		Cal2		Cal2		Cal2		Cal2		Cal2			
Ν	5	σ	6	σ	4	σ	3	σ	6	σ	6	σ	6	σ		
H_2O	6,820	0,063	6,774	0,061	3,119	0,024	2,524	0,023	0,945	0,032	3,758	0,025	4,091	0,028		
CO ₂	0,714	0,014	0,406	0,015	0,349	0,017	0,331	0,015	2,541	0,023	0,602	0,015	0,599	0,015		
F	0,352	0.003	1.510	0.015	0.445	0.004	0.404	0.004	0 (22	0.000	0 5 4 0	0.005				
CI		-)	-,	0,015	0,445	0,004	0,404	0,004	0,633	0,006	0,548	0,005	0,483	0,005		
CI	0,257	0,002	0,382	0,013	0,119	0,004	0,404 0,108	0,004 0,001	0,633 0,090	0,006 0,001	0,548 0,152	0,003	0,483 0,147	0,005 0,001		
	0,257 PCPC3_03	0,002	0,382 PCPC4_01	0,013	0,119 PCPC4_02	0,004	0,404 0,108 PCPC4_03	0,004	0,633 0,090 PCPC5_02	0,006	0,548 0,152 PCPC5_03	0,003	0,483 0,147 PCPC6_01	0,005 0,001	PCPC6_02	
P (Gpa)	0,257 PCPC3_03 0,8	0,002	0,382 PCPC4_01 0,8	0,015	0,119 PCPC4_02 0,8	0,001	0,108 PCPC4_03 0,8	0,004	0,633 0,090 PCPC5_02 0,8	0,006 0,001	0,548 0,152 PCPC5_03 0,8	0,003	0,483 0,147 PCPC6_01 0,8	0,005 0,001	PCPC6_02	
P (Gpa) T (°C)	0,257 PCPC3_03 0,8 850	0,002	0,382 PCPC4_01 0,8 850	0,013	0,119 PCPC4_02 0,8 850	0,001	0,108 PCPC4_03 0,8 850	0,004	0,633 0,090 PCPC5_02 0,8 850	0,006	0,548 0,152 PCPC5_03 0,8 850	0,003	0,483 0,147 PCPC6_01 0,8 1050	0,005 0,001	PCPC6_02 1050	
P (Gpa) T (°C) Composition	0,257 PCPC3_03 0,8 850 PhCbn2	0,002	0,382 PCPC4_01 0,8 850 PhCbn3	0,013	0,119 PCPC4_02 0,8 850 PhCbn3	0,001	0,404 0,108 PCPC4_03 0,8 850 PhCbn3	0,004	0,633 0,090 PCPC5_02 0,8 850 PhCbn4	0,008	0,548 0,152 PCPC5_03 0,8 850 PhCbn4	0,003	0,483 0,147 PCPC6_01 0,8 1050 PhCbn3	0,005 0,001	PCPC6_02 1050 PhCbn4	
P (Gpa) T (°C) Composition Calibration	0,257 PCPC3_03 0,8 850 PhCbn2 Cal2	0,002	0,382 PCPC4_01 0,8 850 PhCbn3 Cal2	0,004	0,119 PCPC4_02 0,8 850 PhCbn3 Cal2	0,001	0,108 PCPC4_03 0,8 850 PhCbn3 Cal2	0,004	0,633 0,090 PCPC5_02 0,8 850 PhCbn4 Cal2	0,006	0,548 0,152 PCPC5_03 0,8 850 PhCbn4 Cal2	0,003	0,483 0,147 PCPC6_01 0,8 1050 PhCbn3 Cal2	0,005 0,001	PCPC6_02 1050 PhCbn4 Cal2	
P (Gpa) T (°C) Composition Calibration N	0,257 PCPC3_03 0,8 850 PhCbn2 Cal2 6	<u>0,002</u> σ	0,382 PCPC4_01 0,8 850 PhCbn3 Cal2 6	<u>σ</u>	0,119 PCPC4_02 0,8 850 PhCbn3 Cal2 5	σ	0,404 0,108 PCPC4_03 0,8 850 PhCbn3 Cal2 4	0,004	0,633 0,090 PCPC5_02 0,8 850 PhCbn4 Cal2 6	0,006 0,001 σ	0,548 0,152 PCPC5_03 0,8 850 PhCbn4 Cal2 5	0,003 0,001 σ	0,483 0,147 PCPC6_01 0,8 1050 PhCbn3 Cal2 3	0,005 0,001 σ	PCPC6_02 1050 PhCbn4 Cal2 6	σ
P (Gpa) T (°C) Composition Calibration N H ₂ O	0,257 PCPC3_03 0,8 850 PhCbn2 Cal2 6 4,089	<u>σ</u> 0,002	0,382 PCPC4_01 0,8 850 PhCbn3 Cal2 6 1,827	σ 0,004 σ 0,032	0,119 PCPC4_02 0,8 850 PhCbn3 Cal2 5 5,212	σ 0,001 σ 0,041	0,404 0,108 PCPC4_03 0,8 850 PhCbn3 Cal2 4 4	0,004 0,001 0,027	0,633 0,090 PCPC5_02 0,8 850 PhCbn4 Cal2 6 4,615	0,006 0,001 σ 0,033	0,548 0,152 PCPC5_03 0,8 850 PhCbn4 Cal2 5 5,472	σ 0,003 0,001	0,483 0,147 PCPC6_01 0,8 1050 PhCbn3 Cal2 3 1,775	0,005 0,001 σ 0,025	PCPC6_02 1050 PhCbn4 Cal2 6 3,433	<u>σ</u> 0,031
P (Gpa) T (°C) Composition Calibration N H ₂ O CO ₂	0,257 PCPC3_03 0,8 850 PhCbn2 Cal2 6 4,089 0,605	0,002 σ 0,028 0,015	0,382 PCPC4_01 0,8 850 PhCbn3 Cal2 6 1,827 0,298	σ 0,004 σ 0,032 0,017	0,119 PCPC4_02 0,8 850 PhCbn3 Cal2 5 5,212 0,607	σ 0,001 σ 0,041 0,014	0,404 0,108 PCPC4_03 0,8 850 PhCbn3 Cal2 4 4,080 0,249	0,004 0,001 0,027 0,017	0,633 0,090 PCPC5_02 0,8 850 PhCbn4 Cal2 6 4,615 0,304	0,006 0,001 σ 0,033 0,016	0,548 0,152 PCPC5_03 0,8 850 PhCbn4 Cal2 5 5,472 0,547	σ 0,046 0,014	0,483 0,147 PCPC6_01 0,8 1050 PhCbn3 Cal2 3 1,775 1,173	0,005 0,001 σ 0,025 0,014	PCPC6_02 1050 PhCbn4 Cal2 6 3,433 1,934	σ 0,031 0,032
P (Gpa) T (°C) Composition Calibration N H ₂ O CO ₂ F	0,257 PCPC3_03 0,8 850 PhCbn2 Cal2 6 4,089 0,605 0,510	0,002 σ 0,028 0,015 0,005	0,382 PCPC4_01 0,8 850 PhCbn3 Cal2 6 1,827 0,298 1,967	σ 0,004 0,032 0,017 0,019	0,119 PCPC4_02 0,8 850 PhCbn3 Cal2 5 5,212 0,607 2,401	σ 0,001 σ 0,041 0,014 0,024	0,404 0,108 PCPC4_03 0,8 850 PhCbn3 Cal2 4 4,080 0,249 1,832	0,004 0,001 0,027 0,017 0,018	0,633 0,090 PCPC5_02 0,8 850 PhCbn4 Cal2 6 4,615 0,304 0,572	σ 0,005 0,001 0,003 0,016 0,006	0,548 0,152 PCPC5_03 0,8 850 PhCbn4 Cal2 5 5,472 0,547 0,817	σ 0,001 σ 0,046 0,014 0,008	0,483 0,147 PCPC6_01 0,8 1050 PhCbn3 Cal2 3 1,775 1,173 0,000	0,005 0,001 σ 0,025 0,014 0,000	PCPC6_02 1050 PhCbn4 Cal2 6 3,433 1,934 0,852	σ 0,031 0,032 0,009

B.1. Textures d'immiscibilité (expériences du chapitre IV)

Figure 0.4. Textures d'immiscibilité observées dans les échantillons expérimentaux présentés dans les Chapitres IV et VI, à des conditions de pression et de température différentes (725 à 950 °C, et 0,4 à 1,5 GPa). Les liquides carbonatés (LC) présentent une texture typique de trempe, dendritique, caractérisée par des alternances de bandes claires et sombres ((a) à (e)), qui peuvent être parfois grossières (c), où beaucoup moins marquées dans des zones de plus petites tailles (f).Ils coexistent avec les liquides silicatés (LS) totalement vitrifiés, ainsi que des cristaux (CPx : clinopyroxènes ; Gnt : grenat ; Cc : calcite ; Fe-Spl : Fe-spinelle ; Phl : phlogopite) ; Au : capsule en Or.

B.2 Compositions en éléments majeurs et en volatils des liquides de type néphélinitephonolite et carbonatite

	T14_01		T14_02		T16_01		T16_02		T16_03		T16_04		T17_01		T17_02		T17_03		T17_04	
P (GPa)	0.8		0.8		0.8		0.8		0.8		0.8		0.8		0.8		0.8		0.8	
T (°C)	975		975		950		950		950		950		925		925		925		925	
Composition	Mix 8		Mix 8		Mix 8		Mix 8		Mix 8		Mix 8		Mix 8		Mix 8		Mix 8		Mix 8	
Ν	11	σ	10	σ	5	σ	5	σ	5	σ	5	σ	5	σ	9	σ			17	σ
SiO ₂	47,24	0,71	48,14	0,59	39,90	0,59	44,31	1,82	34,48	0,38	34,76	0,72	46,82	1,15	48,20	1,58	34,06	0,31	38,87	0,60
TiO ₂	0,95	0,12	0,94	0,12	1,84	0,16	2,01	0,11	1,65	0,05	1,79	0,09	1,30	0,19	1,34	0,26	1,67	0,13	1,70	0,16
Al_2O_3	17,04	0,37	19,26	0,40	13,45	0,14	14,55	1,32	11,31	0,25	11,39	0,15	17,46	0,19	18,33	0,52	10,91	0,11	13,18	0,19
FeO	4,55	0,23	3,94	0,39	8,07	0,24	5,33	0,59	7,72	0,31	7,93	0,45	5,74	0,28	5,04	0,70	7,68	0,36	7,43	0,33
MnO	< LD	-	< LD	-	0,33	0,04	0,33	0,00	0,30	0,05	0,29	0,02	< LD	-	< LD	-	0,28	0,03	< LD	-
MgO	0,93	0,08	0,57	0,03	1,28	0,05	0,80	0,09	2,16	0,05	2,07	0,07	0,56	0,09	0,44	0,05	2,08	0,03	1,25	0,04
CaO	7,05	0,35	4,96	0,41	10,76	0,26	11,31	1,99	15,34	0,14	15,07	0,27	5,23	0,59	4,09	0,57	15,14	0,15	11,49	0,33
Na ₂ O	8,95	0,40	9,51	0,45	9,86	0,12	10,05	0,53	6,31	0,85	7,11	0,88	10,16	0,80	11,40	0,39	7,53	0,13	9,20	0,21
K ₂ O	4,56	0,22	5,15	0,14	3,63	0,13	4,10	0,40	3,04	0,07	2,83	0,10	5,10	0,23	5,57	0,20	2,89	0,16	3,74	0,16
P_2O_5	< LD	-	< LD	-	< LD	-	< LD	-	< LD	-	< LD	-	< LD	-	< LD	-	0,33	0,06	< LD	-
BaO	< LD	-	< LD	-	< LD	-	< LD	-	< LD	-	< LD	-	< LD	-	< LD	-	< LD	-	< LD	-
SrO	< LD	-	< LD	-	< LD	-	< LD	-	< LD	-	< LD	-	< LD	-	< LD	-	< LD	-	< LD	-
F	0,62	0,14	< LD	-	< LD	-	< LD	-	< LD	-	< LD	-	0,55	0,20	< LD	-	< LD	-	0,73	0,24
Cl	0,14	0,03	0,12	0,02	0,16	0,02	0,16	0,02	0,16	0,02	0,17	0,03	0,11	0,04	0,12	0,02	0,15	0,03	0,16	0,02
Total	92,03	-	92,59	-	89,27	-	92,95	-	82,46	-	83,42	-	93,03	-	94,53	-	82,72	-	87,74	-
Na ₂ O+K ₂ O	13,51	0,62	14,66	0,59	13,49	0,24	14,15	0,93	9,35	0,92	9,94	0,98	15,26	1,03	16,97	0,59	10,42	0,29	12,94	0,37
ASL[Al ₂ O ₂ /(CaO+Na ₂ O+K ₂ O)]	0.52	-	0.64	-	0.34	-	0.35	_	0.27	-	0.27	-	0.55	-	0.57	_	0.25	-	0.33	-
NBO / T	0.47	-	0.33	-	0.95	-	0.76	-	1.28	-	1.28	-	0.46	-	0.41	-	1.34	-	0.97	-
$(Na_{2}O+K_{2}O)/(CaO+MgO)$	1.30	-	2.03	-	0.88	-	0.93	-	0.41	-	0.45	-	2.04	-	2.90	-	0.47	-	0.80	-
AI [Al2O-(Na ₂ O+K ₂ O)]	-0,02	-	-0,01	-	-0,05	-	-0,04	-	-0,02	-	-0,03	-	-0,03	-	-0,05	-	-0,04	-	-0,04	-
N	6		C								C		10		10		12		F	
IN CO *	0	0.276	0 954	0.000							0	0.650	10	0.120	10	0.160	13	0.422	5	0.000
U02**	1,903	0,276	0,854	0,060	-	-	-	-	-	-	5,801	0,659	1,50/	0,129	1,145	0,169	5,379	0,422	5,997	0,898
H ₂ U*	3,919	0,199	2,123	0,044	-	-	-	-	-	-	1,956	0,373	1,520	0,066	0,466	0,065	4,465	0,114	5,484	0,238
F.*	0,356	0,035	0,250	0,009	-	-	-	-	-	-	0,415	0,043	0,489	0,030	0,570	0,050	0,849	0,067	0,723	0,081
CI*	0,264	0,016	0,203	0,010	-	-	-	-	-	-	0,267	0,076	0,195	0,012	0,277	0,038	0,327	0,130	0,429	0,027

Tableau 0.8. Composition en éléments et en volatils des liquides silicatés de type néphélinite-phonolite et carbonatés. Tous les éléments majeurs et les volatils sont en % poids. σ : écart-type sur la moyenne ; * : analysés à la nano-SIMS (% poids) ; < LD : inférieur à la limite de détection. L'ASI, NBO/T, le rapport (Na₂O+K₂O)/(CaO+MgO) et l'AI sont en fractions molaires.

	T18_01		T18_03		T18_04		AK01_01		AK01_02		AK01_03		AK01_04		AK02_01		AK02_02		AK02_03	
P (GPa)	1.5		1.5		1.5		0.2		0.2		0.2		0.2		0.4		0.4		0.4	
Τ (° C)	925		925		925		925		925		925		925		925		925		925	
Composition	Mix 8		Mix 8		Mix 8		Mix 8		Mix 8		Mix 8		Mix 8		Mix 8		Mix 8		Mix 8	
N	5	σ	6	σ	9	σ	6	σ	6	σ	15	σ	14	σ	14	σ	5	σ	4	σ
SiO ₂	52,13	1,24	47,01	0,81	49,99	0,87	38,29	0,24	42,96	1,03	37,98	0,65	34,92	1,87	43,16	0,80	48,21	1,07	34,99	0,18
TiO ₂	0,87	0,08	1,07	0,14	0,94	0,12	1,52	0,10	1,86	0,06	1,40	0,11	1,35	0,13	1,14	0,09	0,86	0,10	1,75	0,09
Al ₂ O ₃	20,40	0,41	16,37	0,48	17,74	0,33	11,56	0,19	10,90	0,45	13,11	0,51	12,55	0,58	16,05	0,32	18,19	0,54	11,81	0,28
FeO	3,42	0,16	4,71	0,46	4,40	0,24	8,41	0,44	7,89	0,29	8,37	0,39	8,64	0,48	6,33	0,42	4,13	0,39	6,95	0,14
MnO	< LD	-	< LD	-	< LD	-	< LD	-	< LD	-	< LD	-	< LD	-	< LD	-	< LD	-	< LD	-
MgO	0,30	0,02	0,70	0,02	0,61	0,03	1,22	0,05	1,23	0,07	1,32	0,07	1,45	0,09	0,83	0,04	0,52	0,02	1,46	0,04
CaO	1,67	0,03	4,28	0,11	2,85	0,11	12,73	0,19	9,13	0,17	12,41	0,41	12,74	0,15	8,82	0,17	4,94	0,32	15,32	0,25
Na ₂ O	9,54	0,60	8,53	1,12	9,23	0,63	9,36	0,21	10,29	0,71	9,00	0,23	8,40	0,42	8,90	0,40	10,28	0,50	7,65	0,14
K ₂ O	6,25	0,54	4,64	0,12	4,87	0,10	4,47	0,13	5,93	0,09	4,32	0,16	3,85	0,16	4,39	0,22	4,91	0,10	3,35	0,15
P ₂ O ₅	< LD	-	< LD	-	< LD	-	0,57	0,07	0,41	0,05	0,44	0,08	0,43	0,07	< LD	-	< LD	-	< LD	-
BaO	< LD	-	< LD	-	< LD	-	< LD	-	< LD	-	< LD	-	< LD	-	< LD	-	< LD	-	< LD	-
SrO	< LD	-	< LD	-	< LD	-	< LD	-	< LD	-	< LD	-	< LD	-	< LD	-	< LD	-	< LD	-
F	< LD	-	0,59	0,07	< LD	-	< LD	-	1,13	0,25	< LD	-	0,73	0,11	< LD	-	1,03	0,12	< LD	-
Cl	0,12	0,02	0,14	0,02	0,15	0,01	0,32	0,02	0,54	0,05	0,30	0,03	0,27	0,04	0,19	0,03	0,14	0,02	0,22	0,02
Total	94,72	-	88,04	-	90,78	-	88,45	-	92,26	-	88,65	-	85,32	-	89,81	-	93,20	-	83,50	-
Na ₂ O+K ₂ O	15,79	1,14	13,17	1,24	14,10	0,73	13,83	0,34	16,21	0,81	13,32	0,39	12,25	0,58	13,29	0,63	15,19	0,60	11,00	0,29
ASL[Al_O_/(CaO+Na_O+K_O)]	0.80	_	0.61	_	0.69	_	0.27	_	0.27	_	0.31	_	0.31	_	0.45	_	0.58	_	0.27	_
NBO / T	0.18	_	0.36	_	0.28	-	1 17	_	0.98	_	1.09	_	1 19	_	0,15	-	0.38	_	1 22	_
$(Na_2O+K_2O)/(CaO+M_2O)$	5 90	_	2 00	_	3.04	-	0.77	_	1 18	_	0.75	_	0.67	_	1.07	-	2 16	_	0.51	_
$AI [Al2O-(Na_2O+K_2O)]$	-0.01	-	-0.02	-	-0.02	-	-0.06	_	-0.08	-	-0.05	-	-0.04	-	-0.02	-	-0.03	-	-0.03	-
	0,01		0,02		0,02		0,00		0,00		0,00		0,01		0,02		0,02		0,02	
Ν	6		5		6										6		6		6	
CO ₂ *	1,432	0,222	1,126	0,508	2,195	0,831	-	-	-	-	-	-	-	-	2,826	0,118	1,381	0,024	9,500	0,145
H_2O^*	3,412	0,118	7,071	0,409	5,600	0,211	-	-	-	-	-	-	-	-	4,657	0,111	2,914	0,008	7,944	0,021
F *	0,344	0,015	0,354	0,037	0,404	0,102	-	-	-	-	-	-	-	-	0,294	0,006	0,258	0,002	0,416	0,004
Cl*	0,242	0,016	0,313	0,019	0,309	0,032	-	-	-	-	-	-	-	-	0,348	0,009	0,256	0,003	0,411	0,002

	AK02_04		T19_01		T19_03		T19_04		AK05_01		AK05_02		AK05_03		AK05_05		AK06_01		AK06_02		AK08_03	
P (GPa)	0.4		0.8		0.8		0.8		0.4		0.4		0.4		0.4		0.4		0.4		0.4	
T (°C)	925		850		850		850		825		825		825		825		725		725		725	
Composition	Mix 8		Mix 8		Mix 8		Mix 8		Mix 8		Mix 8		Mix 8		Mix 8		Mix 8		Mix 9		Mix 10	
Ν	14	σ	7	σ	7	σ	7	σ	9	σ	10	σ	8	σ	8	σ	12	σ	16	σ	11	σ
SiO ₂	42,29	0,62	51,45	0,63	44,92	0,47	49,30	1,03	49,93	0,38	47,64	0,99	44,23	0,90	41,31	0,75	47,42	0,66	47,64	0,44	49,25	0,69
TiO ₂	1,42	0,11	0,68	0,06	0,81	0,06	0,59	0,06	< LD	-	0,52	0,06	0,61	0,04	< LD	-						
Al ₂ O ₃	14,91	0,37	19,28	0,36	17,08	0,26	19,08	0,46	18,44	0,45	18,44	0,20	17,16	0,28	18,05	0,22	18,10	0,17	15,97	0,21	18,48	0,32
FeO	6,32	0,29	3,24	0,20	3,70	0,23	2,84	0,25	3,87	0,16	3,18	0,16	3,77	0,18	3,19	0,20	2,41	0,11	3,35	0,17	2,41	0,19
MnO	< LD	-	< LD	-	< LD	-	< LD	-	< LD	-	< LD		< LD	-	0,06	0,11						
MgO	0,88	0,04	0,27	0,01	0,57	0,04	0,30	0,04	0,13	0,04	0,31	0,02	0,42	0,04	0,50	0,03	0,19	0,02	0,18	0,02	0,12	0,02
CaO	10,11	0,12	1,24	0,04	3,02	0,10	1,34	0,19	1,75	0,30	1,41	0,05	2,76	0,08	2,89	0,10	0,74	0,06	0,61	0,03	1,10	0,05
Na ₂ O	9,14	0,18	10,24	0,36	9,78	0,35	10,21	0,19	10,54	0,25	10,62	0,54	10,57	0,26	10,33	0,52	12,55	0,28	9,60	0,18	9,49	0,83
K ₂ O	4,05	0,15	6,01	0,18	4,85	0,15	5,76	0,24	6,37	0,17	5,43	0,21	5,03	0,11	5,16	0,11	4,49	0,14	8,35	0,25	4,65	0,12
P ₂ O ₅	< LD	-	< LD	-	< LD	-	< LD	-	-	-	< LD		< LD	-	< LD	-						
BaO	< LD	-	< LD	-	< LD	-	< LD	-	< LD	-	< LD	-	< LD	-	< LD	-	< LD	-	< LD	-	0,14	0,02
SrO	< LD	-	< LD	-	< LD	-	< LD	-	< LD	-	< LD	-	< LD	-	< LD	-	< LD	-	< LD	-	0,02	0,06
F	< LD	0,22	< LD	-	0,60	0,11	< LD	-	< LD	-	< LD	-	0,64	0,19	0,66	0,12	0,78	0,13	< LD	-	1,85	0,18
Cl	0,30	0,02	0,12	0,02	0,20	0,01	0,15	0,05	0,13	0,06	0,19	0,03	0,20	0,02	0,17	0,02	0,15	0,03	0,10	0,02	0,19	0,02
Total	89,42	-	92,54		85,53	-	89,58		91,15	-	87,74	-	85,39	-	82,27	-	86,84	-	85,80	-	87,76	-
Na ₂ O+K ₂ O	13,19	0,33	16,25	0,54	14,63	-	15,97	-	16,90	0,43	16,05	0,75	15,61	0,37	15,50	-	17,04	-	17,95	-	14,14	-
ASI [Al ₂ O ₃ /(CaO+Na ₂ O+K ₂ O)]	0,39	-	0,75	-	0,64	-	0,75	-	0,67	-	0,71	-	0,62	-	0,65	-	0,67	-	0,62	-	0,82	-
NBO / T	0,74	-	0,20	-	0,33	-	0,20	-	0,29	-	0,24	-	0,35	-	0,35	-	0,26	-	0,31	-	0,15	-
(Na ₂ O+K ₂ O)/(CaO+MgO)	0,94	-	7,93	-	3,08	-	7,18	-	6,90	-	6,97	-	3,77	-	3,47	-	13,93	-	15,96	-	8,94	-
AI [Al2O-(Na ₂ O+K ₂ O)]	-0,03	-	-0,03	-	-0,03	-	-0,03	-	-0,04	-	-0,04	-	-0,04	-	-0,04	-	-0,06	-	-0,07	-	-0,02	-
N			6		4		5		8		10		10		4		6		5		6	
CO ₂ *	-	-	0,642	0,081	1,121	0,173	0,577	0,157	0,465	0,013	0,505	0,059	0,954	0,157	1,208	0,099	0,634	0,168	0,714	0,249	0,406	0,036
H ₂ O*	-	-	1,882	0,045	3,480	0,045	2,115	0,036	1,817	0,071	2,614	0,049	3,040	0,094	8,239	0,175	4,208	0,344	6,820	0,309	6,774	0,432
F *	-	-	0,578	0,036	0,786	0,154	0,697	0,058	0,491	0,121	0,744	0,043	0,752	0,079	0,471	0,033	1,178	0,147	0,352	0,084	1,510	0,087
Cl*	-	-	0,295	0,026	0,464	0,006	0,358	0,036	0,230	0,114	0,378	0,011	0,351	0,009	0,333	0,010	0,479	0,057	0,257	0,043	0,382	0,023

B.3 Composition en éléments traces des liquides enrichis en F-Cl-P

Tableau 0.9. Composition en éléments traces (ppm) des liquides silicatés et carbonatés \pm enrichis en F, Cl et P. σ : écart-type sur la moyenne.

$ \begin{array}{c cccc} 0.850 & 0.850 & 0.850 & 0.850 & 0.850 \\ \hline CC_{0} mposition & PhCbn1 & PhCbn1 & PhCbn1 & PhCbn1 & PhCbn1 & PhCbn1 \\ \hline Liquide Silicate' N & 7 & 3 & 7 & 3 & 6 & 3 & 9 & 3 \\ \hline N & 7 & 3 & 7 & 3 & 6 & 3 & 9 & 3 \\ \hline Sc & 15,17 & 3.54 & 34,96 & 9,76 & 21,84 & 2,90 & - & - & 82,89 & 4,24 \\ \hline T & 1722,11 & 126,26 & 2225,9 & 42,64 & 862,60 & 5.274 & - & - & 2259,38 & 98,18 \\ \hline Cr & $		PCPC1_01		PCPC1_02		PCPC1_03		PCPC1_04		PCPC2_01	
T (C) Composition PBCbn1 PBCbn1 PBCbn1 PBCbn1 Liquidé Silicaté 7 σ 7 σ 6 σ 9 σ Sc 15,17 3,54 3,46 9,76 6 0 - 82,89 4,24 Ti 1722,11 12,62 228,29 42,648 802,00 52,74 - - 229,38 98,18 Kr 16,06 70,114 95,67 397,74 2,44 - 257,24 52,319 31,47 Sk 450,22 155,17 128,74 279,51 16,76 - - 254,481 100,89 Ba 777,66 22,57 171,189 201,80 62,228 8,40 - - 36,01 1.38 Ce 11,66 1.08 19,87 4,01 490 0,60 - - 41,67 220 Pr 8,18 12,88 13,96 2,75 3,54 0,44	P (Gna)	0.8		0.8		0.8		10101_04		0.8	
Price Price Price Price Liquide Silicaté 7 σ 6 σ - 82,89 4,24 Ti 1722,11 126,26 225,829 426,48 862,60 52,74 - - 82,89 4,24 Cr <ld< td=""> - 6,07 1,61 1,66 0,32 - - 105,21 528 Mn 903,55 56,98 124,945 445,68 472,90 29,53 - 2159,03 70,74 Str 480,72 16,06 730,14 9,567 397,74 2,44 - - 257,64 43,20 Str 580,22 14,51 255,54 58,84 86,68 5,53 - - 254,48 109 La 6,68 1,08 19,87 4,01 4,90 0,60 - - 41,67 2,20 La 6,68 1,03 14,35 2,69 3,60 0,44 - <t< th=""><th>T (°C)</th><th>850</th><th></th><th>850</th><th></th><th>850</th><th></th><th></th><th></th><th>1050</th><th></th></t<></ld<>	T (°C)	850		850		850				1050	
Liquide Silicaté P. 0.000 P. 0.000 P. 0.000 P. 0.000 N 7 0 7 0 6 0 9.9 0 Sc 15,17 3.54 34,96 9,76 21,84 2,90 - - 82,89 9,8 9,8 9,8 Cr LD - 6,07 1,61 16,66 0,32 - 105,21 5,28 Mn 90,356 56,98 124,954 445,68 472,09 29,53 - - 2159,03 70,74 St 450,02 43,30 755,17 128,74 279,51 16,76 - - 254,481 100,89 La 6,68 1.08 10,92 2,21 2,97 0,31 - - 33,60 1,38 Ce 11,66 1.69 19,87 4,01 4,90 0,60 - - 4,67 2,00 2,00 2,00 2,00 2,00 2,00	Composition	PhChn1		PhChn1		PhChn1				PhChn1	
N 7 6 7 6 6 9 6 Sc 15,17 3,54 3496 9,76 21,84 2,90 - - 82,89 4,24 Cr <1.D - 6.07 1.61 1.66 0.32 - - 2139,38 98,18 Cr <1.D - 6.07 1.61 1.66 0.32 - - 2159,03 70,74 Sr 450,72 160,66 730,14 95,67 397,74 2,44 - - 2572,65 43,23 Zr 580,6 43.20 755,17 128,74 279,51 13,47 279,51 3,54 0,40 - - 24,481 10,08 Ce 1.166 1.69 19,87 4.01 4,90 0,60 - 44,67 2,20 1,30 Ce 1.16,18 1.23 3,54 4,00 0,56 - 42,00 2,30 Sm	Liquide Silicaté	Theom		Theoni		Theom				Theoni	
Sc 15,17 3,54 34,96 97.6 21,84 2.90 - - 82,89 4.24 TI 1722,11 120,26 2282,59 426,48 862,60 52,74 - - 105,21 52,28 Mn 903,56 56,98 1249,54 445,68 472,90 29,53 - - 2159,03 70,74 Sr 450,72 16.06 730,14 95,67 397,74 2,44 - - 257,15 31,47 Nb 208,22 14,51 295,54 58,84 86,68 5,33 - - 17,464 6,98 Ra 6,68 1,08 10,92 2,21 2,97 0,31 - - 33,40 1,60 1,67 2,20 Pr 8,18 1,28 1,396 2,75 3,54 0,44 - - 36,74 1,61 Sm 10,90 1,812 3,35 4,10 0,56 - <	N	7	σ	7	σ	6	σ			9	σ
	Sc	15.17	3 54	34.96	976	21.84	2 90	-	-	82 89	4 24
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Ti	1722 11	126.26	2282 59	426.48	862.60	52 74	-	-	2239 38	98.18
	Cr	< LD	-	6.07	1 61	1.66	0.32	-	-	105 21	5 28
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Mn	903 56	56 98	1249 54	445 68	472.90	29.53	-	-	2159.03	70 74
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Sr	450.72	16.06	730.14	95.67	397.74	2.44	-	-	2572.65	43.23
Nb 208,32 14,51 295,54 58,84 86,68 5,53 - - 176,48 6,98 Ba 777,66 22,37 1171,89 201,80 622,28 8,40 - - 254,41 100,89 La 6.66 1,08 10,92 2,21 2,97 0,31 - - 33,60 1,38 Ce 11,66 1,69 19,87 4,01 4,90 0,60 - - 41,67 2,20 Pr 8,18 1,28 13,36 2,69 3,60 0,44 - - 36,38 1,61 Sm 10,90 18,12 3,35 4,10 0,56 - - 42,00 2,30 Gu 13,41 2,50 19,50 3,55 4,44 0,71 - - 36,74 1,61 Dy 19,24 2,62 30,65 5,85 6,64 1,08 - 2,200 4,21 1,18 </th <th>Zr</th> <th>580.26</th> <th>43.20</th> <th>755,17</th> <th>128.74</th> <th>279.51</th> <th>16.76</th> <th>-</th> <th>-</th> <th>523.19</th> <th>31.47</th>	Zr	580.26	43.20	755,17	128.74	279.51	16.76	-	-	523.19	31.47
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Nh	208.32	14 51	295 54	58 84	86.68	5 53	-	-	176.48	6.98
La 6.68 1.08 10.92 2.21 2.97 0.31 - - 33.60 1.38 Ce 11.66 1.69 19.87 4.01 4.90 0.60 - - 41.67 2.20 Nd 8.50 1.30 14.35 2.69 3.60 0.44 - - 34.81 1.66 Sm 10.90 1.90 18.12 3.35 4.10 0.56 - - 42.00 2.30 Eu 13.11 2.00 2.11 3.77 4.85 0.70 - - 36.74 1.61 Dy 19.24 2.62 30.66 5.85 6.04 1.08 - - 47.94 2.80 Y 23.46 3.38 3.59 7.17 6.88 1.16 - - 52.38 2.22 Bo 21.16 3.61 3.507 6.85 5.99 1.27 - - 47.54 2.70	Ra	777.66	22.57	1171.89	201.80	622.28	8.40	-	-	2544.81	100.89
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	La	6 68	1.08	10.92	2 21	2 97	0.31	-	-	33.60	1 38
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ce	11.66	1,60	19,92	4 01	4 90	0,60	-	-	41.67	2 20
Nd 8.50 1.20 1.20 2.69 3.60 0.44 - - 3.638 1.65 Sm 10.90 19.00 18.12 3.35 4.10 0.56 - - 42.00 2.30 Gd 13.41 2.50 19.50 3.55 4.44 0.71 - - 36.74 1.61 Tb 16.47 3.23 23.05 4.18 5.47 0.87 - - 39.11 1.82 Dy 19.24 2.62 30.66 5.85 6.04 1.08 - - 47.94 2.80 Y 23.46 3.38 35.93 7.17 6.88 1.16 - - 52.38 2.92 Ho 21.41 3.29 3.341 6.63 6.65 1.27 - - 47.45 4.20 Yb 32.06 3.89 48.50 9.54 9.11 1.72 - - 51.45 4.12 Lu 29.42 4.06 45.02 9.25 8.90 1.61 - <th>Pr</th> <th>8 18</th> <th>1,05</th> <th>13.96</th> <th>275</th> <th>3 54</th> <th>0.44</th> <th>-</th> <th>-</th> <th>34.81</th> <th>1.66</th>	Pr	8 18	1,05	13.96	275	3 54	0.44	-	-	34.81	1.66
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Nd	8 50	1,20	14 35	2,75	3,60	0.44	-	-	36.38	1,00
Date 17,00 12,02 14,03 17,00 0,00 1 1 12,00 12,01 Gd 13,11 2,00 22,11 3,77 4,85 0,70 - - 52,00 4,21 Gd 13,41 2,00 22,31 23,05 4,18 5,47 0,87 - - 36,74 1,61 Tb 16,47 3,22 23,05 4,18 5,47 0,87 - - 37,14 1,82 Dy 19,24 2,62 30,66 5,85 6,04 1,08 - - 47,94 2,80 Y 23,46 3,38 35,93 7,17 6,88 6,65 1,27 - - 52,38 2,92 Bit 22,16 3,61 35,07 6,85 6,59 1,27 - - 58,23 4,42 1,10 - - 23,17 2,78 Lu 29,42 4,40 45,59 9,54 9,11 1,72 - - 31,42 1,17 1,21 1,3,73 <th< th=""><th>Sm</th><th>10.90</th><th>1,90</th><th>18.12</th><th>3 35</th><th>4 10</th><th>0,44</th><th>-</th><th>_</th><th>42.00</th><th>2 30</th></th<>	Sm	10.90	1,90	18.12	3 35	4 10	0,44	-	_	42.00	2 30
Lu 15,11 2,50 19,50 3,55 4,44 0,71 - - 36,74 1,61 Tb 16,47 3,23 23,05 4,18 5,47 0,87 - - 39,11 1,82 Dy 19,24 2,62 30,66 5,85 6,04 1,08 - - 47,94 2,80 Y 23,46 3,38 35,93 7,17 6,88 1,16 - - 51,99 3,21 Er 22,16 3,61 35,07 6,85 6,59 1,27 - - 58,23 4,26 Lu 29,42 4,06 45,02 9,25 8,90 1,61 - - 52,45 4,03 Hf 42,35 18,44 42,85 14,25 15,37 1,18 - - 13,42 1,17 Liquide Carbonaté 7 8 8 8 9 9 55 5,58 25,72 8,22 36,68 3,68 5,91 0,22 2,282 1,82 Ti 41	5m Fu	13,11	2.00	22.11	3,35	4,10	0,50	_	_	52 00	4 21
Out 13.41 2.03 4.14 0.11 1 1 30.74 10.11 Tb 16.47 3.23 23.05 4.18 5.47 0.87 - - 39.11 1.82 Dy 19.24 2.62 30.66 5.85 6.04 1.08 - - 47.94 2.80 Y 23.46 3.38 35.93 7.17 6.88 1.16 - - 52.38 2.92 Ho 21.41 3.29 33.41 6.63 6.65 1.27 - - 47.54 2.70 Yb 32.06 3.89 48.50 9.54 9.11 1.72 - - 58.23 4.23 Lu 29.42 4.06 45.02 9.25 8.90 1.61 - - 52.45 4.03 Hf 42.35 18.44 42.85 14.25 1.537 1.18 - - 23.17 2.78 Ta 15.29 1.89 15.59 4.41 5.16 0.72 - - 13.42<	Cd	13,11	2,09	19.50	3 5 5	4,05	0,70	-	_	36.74	1.61
ID 10.47 5.2.3 2.5.05 7.13 5.77 5.03 7.1 1.42 IV 12,42 2.62 30.66 5.85 6.04 1.08 - - 47.94 2.80 IV 23,46 3.38 35.93 7.17 6.88 1.16 - - 51.99 3.21 Er 22,16 3.61 35.07 6.85 6.59 1.27 - - 47.54 2.70 Yb 32.06 3.89 48.50 9.54 9.11 1.72 - - 52.45 4.03 Hf 42.35 18.44 42.85 14.25 15.37 1.18 - - 23.17 2.78 Ta 15.29 1.89 15.59 4.41 5.16 0.72 - - 13.42 1.17 Liquide Carbonaté 7 8 8 8 9 9 Sc 16.55 5.58 25.72 8.22 36.68 36.68 5.91 0.022 22.82 1.82 1.65	Th	15,41	2,50	23.05	1 18	+,++ 5 47	0,71	_	_	30,14	1.82
	Dv	19.24	2,25	20,65	5 85	5,47 6.04	1.08	_	_	17 94	2.80
I 22,90 33,24 6,63 6,65 1,27 - - 51,29 32,14 Er 22,16 3,61 35,07 6,85 6,59 1,27 - - 51,99 3,21 Er 22,16 3,61 35,07 6,85 6,59 1,27 - - 58,23 4,26 Lu 29,42 4,06 45,02 9,25 8,90 1,61 - - 58,23 4,26 Hf 42,35 18,44 42,85 14,25 15,37 1,18 - - 23,17 2,78 Ta 15,29 1,89 15,59 4,41 5,16 0,72 - - 13,42 1,17 Liquide Carbonaté 7 8 8 8 9 9 2 2,2,33 1,33 1,34 6,64 3,44 1,37 3,31 Cr 3,56 0,60 4,82 0,85 9,57 1,03 3,46 0,34 36,49 1,65 Mn 2856,29 36,60 120,84	Dy V	23.46	3 38	35,00	7 17	6.88	1,00	-	-	52 38	2,00
Int 21,41 32,29 33,41 0,03 0,03 1,27 1 </th <th>Но</th> <th>21,40</th> <th>3 20</th> <th>33,15</th> <th>6.63</th> <th>6,65</th> <th>1,10</th> <th>_</th> <th>_</th> <th>51.99</th> <th>3 21</th>	Но	21,40	3 20	33,15	6.63	6,65	1,10	_	_	51.99	3 21
Dr 22,10 5,01 3,05 0,05 0,05 1,17 1 1,17 1 1,17 1 1,18 1 1,18 1 1,17 1 1,18 1 1,18 1 1,18 1 1,18 1 1,18 1 1,18 1 1,18 1 1,18 1 1,18 1 1,18 1 1,18 1 1,18 1 1,18 1 1,18 1 1,17 1 1,17 1 1,17 1 1,17 1 1,17 1 1,17 1 1,18 1 1 1 1 1,17 1 1,17 1 1,17 1 1,17 1 1,17 1 1,17 1 1,17 1 1,17 1 1,17 1 1,17 1 1,17 1 1,17 1 1,17 1 1,17 1 1,17 1 1,17 1 1,17 1 1,17 1 1,17 1,17 1,17 1,17 1,17 1,17 1,17 1,17 1,17 <th< th=""><th>Fr.</th><th>21,41</th><th>3,29</th><th>35.07</th><th>6.85</th><th>6.59</th><th>1,27</th><th>-</th><th>_</th><th>17.54</th><th>2 70</th></th<>	Fr.	21,41	3,29	35.07	6.85	6.59	1,27	-	_	17.54	2 70
Ib 52.00 5.05 40.00 52.47 5.11 1.12 1.72 1.73 1.13 1.15 1.13 1.15 1.13 1.15 1.17 1.13 1.15 1.15 1.15 1.15 1.103 3.46 0.34 3.64.9 1.65 1.55 Min 2.25.9 3.64 1.15 1.103 1.103 1.05.4	El Vh	32.06	3,01	48 50	0,85	0,59	1,27		-	47,34 58 23	4.26
Idu 23,42 4,00 43,02 3,23 6,50 1,01 1 <th>10</th> <th>20,42</th> <th>1.06</th> <th>45,50</th> <th>9,54</th> <th>9,11</th> <th>1,72</th> <th>_</th> <th>-</th> <th>52.45</th> <th>4,20</th>	10	20,42	1.06	45,50	9,54	9,11	1,72	_	-	52.45	4,20
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Lu Uf	42 35	18 44	43,02	9,25	0,90 15 37	1,01	-	-	32,43 23.17	4,03
Idage 13,59 13,59 14,41 5,160 6,72 1 13,42 11,17 Liquide Carbonaté 7 8 8 8 9 13,42 11,17 Sc 16,55 5,58 25,72 8,22 36,68 3,68 5,91 0,22 22,82 1,82 Ti 417,75 71,91 435,16 69,26 635,91 66,01 409,73 19,12 512,03 37,31 Cr 3,56 0,60 4,82 0,85 9,57 1,03 3,46 0,34 36,49 1,55 Mn 2856,29 336,42 3187,73 618,01 3047,76 286,54 1976,40 64,70 2164,52 82,90 Sr 10765,74 186,60 11208,43 521,58 10494,11 272,33 10980,47 308,52 10543,97 151,78 Zr 12,66 3,19 13,89 2,12 29,88 4,17 29,38 1,71 22,59 5,48 </th <th>ПІ</th> <th>42,33</th> <th>1 80</th> <th>42,65</th> <th>14,25</th> <th>5 16</th> <th>1,10</th> <th>-</th> <th>-</th> <th>23,17</th> <th>2,78</th>	ПІ	42,33	1 80	42,65	14,25	5 16	1,10	-	-	23,17	2,78
Viruate Carbonate 7 8 8 8 9 Sc 16,55 5,58 25,72 8,22 36,68 3,68 5,91 0,22 22,82 1,82 Ti 417,75 71,91 435,16 69,26 635,91 66,01 409,73 19,12 512,03 37,31 Cr 3,56 0,60 4,82 0,85 9,57 1,03 3,46 0,34 36,49 1,65 Mn 2856,29 336,42 3187,73 618,01 3047,76 286,54 1976,40 64,70 2164,52 82,90 Sr 10765,74 186,60 11208,43 521,58 10494,11 272,33 10980,47 308,52 10543,97 151,78 Zr 12,66 3,19 13,89 2,12 29,88 4,17 29,38 1,71 22,59 5,48 Nb 123,19 8,08 115,54 9,70 119,03 10,82 145,17 8,26 96,08 5,11	I i avida Carbonatá	13,29	1,09	15,59	4,41	5,10	0,72	-	-	13,42	1,17
Sc 16,55 5,58 25,72 8,22 36,68 3,68 5,91 0,22 22,82 1,82 Ti 417,75 71,91 435,16 69,26 635,91 66,01 409,73 19,12 512,03 37,31 Cr 3,56 0,60 4,82 0,85 9,57 1,03 3,46 0,34 36,49 1,65 Mn 2856,29 336,42 3187,73 618,01 3047,76 286,54 1976,40 64,70 2164,52 82,90 Sr 10765,74 186,60 11208,43 521,58 10494,11 272,33 10980,47 308,52 1054,397 151,78 Zr 12,66 3,19 13,89 2,12 29,88 4,17 29,38 1,71 22,59 5,48 Nb 123,19 8,08 155,4 9,70 119,03 10,082 145,17 8,26 96,08 5,11 Ba 8306,41 374,70 8108,73 627,56 8532	Liquide Carbonate	7		8		8		8		Q	
Ti 417,75 71,91 435,16 69,22 63,03 63,04 69,73 61,22 22,03 13,31 Cr 3,56 0,60 4,82 0,85 9,57 1,03 3,46 0,34 36,49 1,65 Mn 2856,29 336,42 3187,73 618,01 3047,76 286,54 1976,40 64,70 2164,52 82,90 Sr 10765,74 186,60 11208,43 521,58 10494,11 272,33 10980,47 308,52 1054,397 151,78 Zr 12,66 3,19 13,89 2,12 29,88 4,17 29,38 1,71 22,59 5,48 Nb 123,19 8,08 115,54 9,70 119,03 10,82 145,17 8,26 96,08 5,11 Ba 8306,41 374,70 8108,73 627,56 8532,66 584,38 6905,15 377,24 7382,78 327,68 La 91,07 1,98 116,82 6,49 87,67 3,65 90,47 4,53 72,46 2,86 Ce	Sc	16.55	5 58	25 72	8 22	36.68	3 68	5.91	0.22	22.82	1.82
Image: Arrow and a stress of the stress o	St Ti	10,55	71.91	135.16	69.22	635.01	66.01	409.73	19.12	512.03	37 31
Mn 2856,29 336,42 3187,73 618,01 3047,76 286,54 1976,40 64,70 2164,52 82,90 Sr 10765,74 186,60 11208,43 521,58 10494,11 272,33 10980,47 308,52 10543,97 151,78 Zr 12,66 3,19 13,89 2,12 29,88 4,17 29,38 1,71 22,59 5,48 Nb 123,19 8,08 115,54 9,70 119,03 10,82 145,17 8,26 96,08 5,11 Ba 8306,41 374,70 8108,73 627,56 8532,66 584,38 6905,15 377,24 7382,78 327,68 La 91,07 1,98 116,82 6,49 87,67 3,65 90,47 4,53 72,46 2,86 Ce 93,48 2,08 122,93 8,30 89,68 3,12 96,01 4,06 70,92 3,68 Pr 76,58 2,16 106,25 5,08 76,86 2,96 74,04 2,62 58,55 2,79 Nd	Cr	3 56	0.60	4.82	0.85	9 57	1.03	3 /6	0.34	36.49	1 65
Min 2000,27 500,42 610,175 610,01 200,47 100,00 61,06 610,175 6	Mn	2856.29	336.42	3187 73	618.01	3047.76	286 54	1976.40	64 70	2164 52	82.90
Dr 100,0,0 1120,0,0 1120,0,0 1120,0,0 1120,0,0 100,0,0 1120,0,0 100,0,0	Sr	10765 74	186.60	11208.43	521 58	10494 11	200,34	10980.47	308 52	10543.97	151 78
Indext 12,00 13,07 11,07 12,00 11,17 12,05 11,17 12,07 113,03 105,17 10,26 85,32,66 584,38 6905,15 377,24 7382,78 327,68 12,07 13,08 12,07 12,05 14,10 10,06 70,92 3,68 10,01 10,05 10,01 <th>7r</th> <th>12 66</th> <th>3 10</th> <th>13.89</th> <th>2 12</th> <th>20.88</th> <th>A 17</th> <th>29.38</th> <th>1 71</th> <th>22 59</th> <th>5 / 8</th>	7r	12 66	3 10	13.89	2 12	20.88	A 17	29.38	1 71	22 59	5 / 8
Ho 12,17 6,00 11,94 1,100 11,05 16,02 145,17 6,00 5,17 Ba 8306,41 374,70 8108,73 627,56 8532,66 584,38 6905,15 377,24 7382,78 327,68 La 91,07 1,98 116,82 6,49 87,67 3,65 90,47 4,53 72,46 2,86 Ce 93,48 2,08 122,93 8,30 89,68 3,12 96,01 4,06 70,92 3,68 Pr 76,58 2,16 106,25 5,08 76,86 2,96 74,04 2,62 58,55 2,79 Nd 78,65 2,30 105,17 5,24 77,34 2,47 75,45 2,26 59,56 2,77 Sm 75,31 2,60 104,14 5,49 71,88 2,43 75,98 2,65 59,58 4,04 Eu 79,58 3,70 113,03 5,70 75,24 2,78 76,19 1,88 67,33 6,10 Gd 76,86 3,68 97,65	Nh	12,00	8.08	115 54	9.70	119.03	10.82	145 17	8.26	96.08	5,40
La 91,07 1,98 116,82 6,49 87,67 3,65 90,47 4,53 72,46 2,86 Ce 93,48 2,08 122,93 8,30 89,68 3,12 96,01 4,06 70,92 3,68 Pr 76,58 2,16 106,25 5,08 76,86 2,96 74,04 2,62 58,55 2,79 Nd 78,65 2,30 105,17 5,24 77,34 2,47 75,45 2,26 59,56 2,77 Sm 75,31 2,60 104,14 5,49 71,88 2,43 75,98 2,65 59,58 4,04 Eu 79,58 3,70 113,03 5,70 75,24 2,78 76,19 1,88 67,33 6,10 Gd 76,86 3,68 97,65 3,41 70,44 2,80 69,95 1,78 49,04 2,51 Dy 70,10 4,78 103,01 10,52 68,82 2,97 63,68 1,63 50,73 3,25 Y 76,37 4,96 113,69	Ra	8306.41	374 70	8108 73	627 56	8532.66	584 38	6905.15	377 24	7382 78	327.68
La1,011,020,020,030,030,030,031,031,041,051,042,06Ce93,482,08122,938,3089,683,1296,014,0670,923,68Pr76,582,16106,255,0876,862,9674,042,6258,552,79Nd78,652,30105,175,2477,342,4775,452,2659,562,77Sm75,312,60104,145,4971,882,4375,982,6559,584,04Eu79,583,70113,035,7075,242,7876,191,8867,336,10Gd76,863,6897,653,4170,442,8069,951,7849,042,51Tb67,964,7392,257,7071,143,4561,831,4145,092,29Dy70,104,78103,0110,5268,822,9763,681,6350,733,25Y76,374,96113,6910,3274,804,5172,332,3257,643,96Ho70,325,51102,8910,9668,123,7462,391,7051,943,89Er59,784,7289,4911,2559,123,4453,151,5343,343,14Yb59,025,9090,0314,8058,813,9346,641,1842,163,9	La	91.07	1 98	116.82	649	87.67	3 65	90.47	4 53	72 46	2.86
Pr76,582,16106,255,0876,862,9674,042,6258,552,79Nd78,652,30105,175,2477,342,4775,452,2659,562,77Sm75,312,60104,145,4971,882,4375,982,6559,584,04Eu79,583,70113,035,7075,242,7876,191,8867,336,10Gd76,863,6897,653,4170,442,8069,951,7849,042,51Tb67,964,7392,257,7071,143,4561,831,4145,092,29Dy70,104,78103,0110,5268,822,9763,681,6350,733,25Y76,374,96113,6910,3274,804,5172,332,3257,643,96Ho70,325,51102,8910,9668,123,7462,391,7051,943,89Er59,784,7289,4911,2559,123,4453,151,5343,343,14Yb59,025,9090,0314,8058,813,9346,641,1842,163,92Lu50,685,5978,8313,9251,553,3337,471,0636,273,45Hf0,520,200,480,091,080,140,610,060,640,11Ta	Ce	93.48	2.08	122.93	8 30	89.68	3.12	96.01	4.06	70,92	3.68
Nd $78,65$ $2,30$ $100,25$ $5,24$ $77,34$ $2,47$ $75,04$ $2,02$ $50,55$ $2,77$ Sm $75,31$ $2,60$ $104,14$ $5,49$ $71,88$ $2,43$ $75,98$ $2,65$ $59,56$ $2,77$ Sm $75,31$ $2,60$ $104,14$ $5,49$ $71,88$ $2,43$ $75,98$ $2,65$ $59,58$ $4,04$ Eu $79,58$ $3,70$ $113,03$ $5,70$ $75,24$ $2,78$ $76,19$ $1,88$ $67,33$ $6,10$ Gd $76,86$ $3,68$ $97,65$ $3,41$ $70,44$ $2,80$ $69,95$ $1,78$ $49,04$ $2,51$ Tb $67,96$ $4,73$ $92,25$ $7,70$ $71,14$ $3,45$ $61,83$ $1,41$ $45,09$ $2,29$ Dy $70,10$ $4,78$ $103,01$ $10,52$ $68,82$ $2,97$ $63,68$ $1,63$ $50,73$ $3,25$ Y $76,37$ $4,96$ $113,69$ $10,32$ $74,80$ $4,51$ $72,33$ $2,32$ $57,64$ $3,96$ Ho $70,32$ $5,51$ $102,89$ $10,96$ $68,12$ $3,74$ $62,39$ $1,70$ $51,94$ $3,89$ Er $59,78$ $4,72$ $89,49$ $11,25$ $59,12$ $3,44$ $53,15$ $1,53$ $43,34$ $3,14$ Yb $59,02$ $5,90$ $90,03$ $14,80$ $58,81$ $3,93$ $46,64$ $1,18$ $42,16$ $3,92$ Lu $50,68$ $5,59$ $78,83$ $13,92$ $51,55$ $3,$	Pr	76 58	2,00	106.25	5.08	76.86	2.96	74.04	2 62	58 55	2 79
Nu $76,05$ $2,60$ $103,11$ $5,14$ $71,94$ $2,47$ $15,45$ $2,265$ $59,58$ $2,07$ Sm $75,31$ $2,60$ $104,14$ $5,49$ $71,88$ $2,43$ $75,98$ $2,65$ $59,58$ $4,04$ Eu $79,58$ $3,70$ $113,03$ $5,70$ $75,24$ $2,78$ $76,19$ $1,88$ $67,33$ $6,10$ Gd $76,86$ $3,68$ $97,65$ $3,41$ $70,44$ $2,80$ $69,95$ $1,78$ $49,04$ $2,51$ Tb $67,96$ $4,73$ $92,25$ $7,70$ $71,14$ $3,45$ $61,83$ $1,41$ $45,09$ $2,29$ Dy $70,10$ $4,78$ $103,01$ $10,52$ $68,82$ $2,97$ $63,68$ $1,63$ $50,73$ $3,25$ Y $76,37$ $4,96$ $113,69$ $10,32$ $74,80$ $4,51$ $72,33$ $2,32$ $57,64$ $3,96$ Ho $70,32$ $5,51$ $102,89$ $10,96$ $68,12$ $3,74$ $62,39$ $1,70$ $51,94$ $3,89$ Er $59,78$ $4,72$ $89,49$ $11,25$ $59,12$ $3,44$ $53,15$ $1,53$ $43,34$ $3,14$ Yb $59,02$ $5,90$ $90,03$ $14,80$ $58,81$ $3,93$ $46,64$ $1,18$ $42,16$ $3,92$ Lu $50,68$ $5,59$ $78,83$ $13,92$ $51,55$ $3,33$ $37,47$ $1,06$ $36,27$ $3,45$ Hf $0,52$ $0,20$ $0,48$ $0,09$ $1,08$ $0,14$	Nd	78,50	2,10	105,23	5 24	70,00	2,70	75.45	2,02	59,55	2,77
Sim15,512,60164,145,7511,002,4315,562,655,564,64Eu79,583,70113,035,7075,242,7876,191,8867,336,10Gd76,863,6897,653,4170,442,8069,951,7849,042,51Tb67,964,7392,257,7071,143,4561,831,4145,092,29Dy70,104,78103,0110,5268,822,9763,681,6350,733,25Y76,374,96113,6910,3274,804,5172,332,3257,643,96Ho70,325,51102,8910,9668,123,7462,391,7051,943,89Er59,784,7289,4911,2559,123,4453,151,5343,343,14Yb59,025,9090,0314,8058,813,9346,641,1842,163,92Lu50,685,5978,8313,9251,553,3337,471,0636,273,45Hf0,520,200,480,091,080,140,610,060,640,11Ta1290,131.080.261.730.232.570.422.770.44	Sm	75,31	2,50 2,60	103,17	5 49	71.88	$2, \pm 7$ 2.43	75.98	2,20	59.58	4 04
Ind17,505,70113,555,7017,642,7010,171,65 $0,53$ $0,15$ Gd76,863,6897,653,4170,442,80 $69,95$ 1,7849,042,51Tb $67,96$ 4,7392,257,7071,143,45 $61,83$ 1,4145,092,29Dy70,104,78103,0110,52 $68,82$ 2,97 $63,68$ 1,63 $50,73$ 3,25Y76,374,96113,6910,3274,804,5172,332,3257,643,96Ho70,325,51102,8910,96 $68,12$ 3,74 $62,39$ 1,7051,943,89Er59,784,7289,4911,2559,123,4453,151,5343,343,14Yb59,025,9090,0314,8058,813,9346,641,1842,163,92Lu50,685,5978,8313,9251,553,3337,471,0636,273,45Hf0,520,200,480,091,080,140,610,060,640,130,232,570,422,770,44	5m Fu	79,51	2,00	113.03	5,49	75.24	2,43 2 78	76,19	1.88	67.33	6 10
Sub $1,00$ $3,00$ $9,03$ $9,04$ $10,04$ $2,00$ $0,7,5$ $1,10$ $4,64$ $2,51$ Tb $67,96$ $4,73$ $92,25$ $7,70$ $71,14$ $3,45$ $61,83$ $1,41$ $45,09$ $2,29$ Dy $70,10$ $4,78$ $103,01$ $10,52$ $68,82$ $2,97$ $63,68$ $1,63$ $50,73$ $3,25$ Y $76,37$ $4,96$ $113,69$ $10,32$ $74,80$ $4,51$ $72,33$ $2,32$ $57,64$ $3,96$ Ho $70,32$ $5,51$ $102,89$ $10,96$ $68,12$ $3,74$ $62,39$ $1,70$ $51,94$ $3,89$ Er $59,78$ $4,72$ $89,49$ $11,25$ $59,12$ $3,44$ $53,15$ $1,53$ $43,34$ $3,14$ Yb $59,02$ $5,90$ $90,03$ $14,80$ $58,81$ $3,93$ $46,64$ $1,18$ $42,16$ $3,92$ Lu $50,68$ $5,59$ $78,83$ $13,92$ $51,55$ $3,33$ $37,47$ $1,06$ $36,27$ $3,45$ Hf $0,52$ $0,20$ $0,48$ $0,09$ $1,08$ $0,14$ $0,61$ $0,06$ $0,64$ $0,11$	Gd	76.86	3.68	97.65	3 41	70.44	2,70	69.95	1 78	49.04	2 51
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Th	67.96	4 73	92.25	7 70	70,44	3 4 5	61.83	1,70	45.09	2,51
by $10,10$ $4,76$ $103,01$ $10,32$ $00,02$ $2,77$ $05,06$ $1,05$ $50,73$ $3,25$ Y $76,37$ $4,96$ $113,69$ $10,32$ $74,80$ $4,51$ $72,33$ $2,32$ $57,64$ $3,96$ Ho $70,32$ $5,51$ $102,89$ $10,96$ $68,12$ $3,74$ $62,39$ $1,70$ $51,94$ $3,89$ Er $59,78$ $4,72$ $89,49$ $11,25$ $59,12$ $3,44$ $53,15$ $1,53$ $43,34$ $3,14$ Yb $59,02$ $5,90$ $90,03$ $14,80$ $58,81$ $3,93$ $46,64$ $1,18$ $42,16$ $3,92$ Lu $50,68$ $5,59$ $78,83$ $13,92$ $51,55$ $3,33$ $37,47$ $1,06$ $36,27$ $3,45$ Hf $0,52$ $0,20$ $0,48$ $0,09$ $1,08$ $0,14$ $0,61$ $0,06$ $0,64$ $0,11$	Dv	70.10	4,75	103.01	10.52	68.82	2 97	63.68	1,41	50.73	3 25
Ho 70,32 5,51 10,09 10,09 10,09 10,09 10,09 10,10 12,00 12,	V V	76 37	4 96	113.69	10,32	74.80	2,97 4 51	72 33	2 32	57 64	3.96
Er 59,78 4,72 89,49 11,25 59,12 3,44 53,15 1,53 43,34 3,14 Yb 59,02 5,90 90,03 14,80 58,81 3,93 46,64 1,18 42,16 3,92 Lu 50,68 5,59 78,83 13,92 51,55 3,33 37,47 1,06 36,27 3,45 Hf 0,52 0,20 0,48 0,09 1,08 0,14 0,61 0,06 0,64 0,11 Ta 129 0.13 1.08 0.26 1.73 0.23 2.57 0.42 2.77 0.44	Ho	70,37	5 51	102.89	10,52	68 12	3 74	62 39	1.70	51.94	3,20
Yb 59,02 5,90 90,03 14,80 58,81 3,93 46,64 1,18 42,16 3,92 Lu 50,68 5,59 78,83 13,92 51,55 3,33 37,47 1,06 36,27 3,45 Hf 0,52 0,20 0,48 0,09 1,08 0,14 0,61 0,06 0,64 0,11 Ta 129 0.13 1.08 0.26 1.73 0.23 2.57 0.42 2.77 0.44	Fr	59.78	1 72	89.40	11 25	59.12	3 11	53 15	1,70	43 34	3,07
Lu 50,62 5,59 78,83 13,92 51,55 3,33 37,47 1,06 36,27 3,45 Hf 0,52 0,20 0,48 0,09 1,08 0,14 0,61 0,06 0,64 0,11 Ta 1,29 0,13 1,08 0,26 1,73 0,23 2,57 0,42 2,77 0,44	Vh	59.02	5 90	90.03	14.80	58.81	3 03	46.64	1 1 8	42 16	3 97
Hf 0,52 0,20 0,48 0,09 1,08 0,14 0,61 0,06 0,64 0,11 Ta 1,29 0,13 1,08 0,26 1,73 0,23 2,57 0,42 2,77 0,44	Lu	50.68	5,50	78.83	13.92	51 55	3,25	37 47	1.10	36.27	3.45
Ta 129 0.13 1.08 0.26 1.73 0.23 2.57 0.42 2.77 0.44	Hf	0.52	0.20	0.48	0.00	1.08	0.14	0.61	0.06	0.64	0.11
	Та	1.29	0.13	1.08	0.26	1,00	0.23	2.57	0.42	2.77	0.44

Tableau	B.2 .	Suite.
---------	--------------	--------

	PCPC3_01		PCPC3 02		PCPC3_03		PCPC4_01		PCPC4 02	
P (Gna)	0.8		0.8		0.8		0.8		0.8	
$T(^{\circ}C)$	850		850		850		850		850	
Composition	PhChn2		PhChn2		PhChn2		PhChn3		PhChn3	
L iquido Silicotó	Theonz		T IIC0II2		11100112		Theons		Theons	
N	7	σ	7		6	~	10	~	7	
Se	30.25	1.05	30.01	1 22	34.05	0.65	50.18	5.04	/1.81	1 33
Ti	1867.08	11/ 38	1760 76	70.24	1757 33	62 / 19	1748.28	167 15	1833 56	25 31
II Cr	3 56	1 88	3.40	0.51	2.24	02,49	5 87	107,15	2 01	0.21
Mn	537 31	17.23	558 63	15 70	513.00	7.26	808 71	98.81	057.86	21.00
Sr.	378.68	17,25	374.00	15,77	362.00	2.65	402.67	23.67	659.56	21,00
51 7n	164.28	12.00	153 15	13.88	302,90 452 70	2,05	402,07 540,17	42 31	486.15	11 30
Nh	180.16	10.04	167.10	6.54	208.07	3 42	162.48	111 38	185 76	36.18
Ro	709.05	15.87	714 74	14 37	681.30	134	501.25	111,50	867.69	25.01
Da Lo	2 10	0.10	1 08	0.02	1 80	4,54	2 00	42,20	4 16	25,01
La	2,10	0,10	1,90	0,02	1,00	0,05	2,99	0,56	4,10	0,11
Ce Dr	2,83	0,15	2,09	0,03	2,41	0,09	J,12 4 42	0,50	7,30	0,21
r i Nd	2,37	0,15	2,10	0,02	1,97	0,07	4,45	0,03	5,22	0,16
INU Sm	2,38	0,15	2,10	0,05	1,99	0,05	4,80	0,00	5,70	0,10
SIII En	2,07	0,10	2,01	0,08	2,45	0,00	0,50	0,64	7,42	0,28
Eu	3,37	0,25	3,15	0,08	3,01	0,14	7,51	1,54	0,97	0,15
Gu Th	2,99	0,09	2,90	0,09	2,19	0,14	7,50	0,99	8,04 8,16	0,54
10 D	5,92	0,55	3,43	0,11	5,55	0,19	8,05 11.54	1,50	0,10 10,55	0,44
Dy V	5,20	0,49	4,80	0,18	4,40	0,22	11,34	1,55	10,33	0,35
Y U.	0,78	0,64	0,12 5,62	0,24	5,05	0,34	11,18	1,50	10,71	0,37
П0 Ет	6.78	0,01	5,05	0,23	5,17	0,55	12,20	1,//	10,79	0,48
Er	10.00	1.09	0,52	0,27	0.25	0,42	10.66	1,79	16.42	0,51
10	11,90	1,00	10,10	0,52	9,25	0,70	19,00	2,54	12.04	0,00
Lu Uf	11,02	1,12	20.77	2,60	9,15	0,09	17,87	1.50	13,94	1.94
III Ta	8 95	2.80	20,77	2.03	10,09	0,00	14,49	3.60	27,54	4,04 6.08
I i guida Carbonatá	8,95	2,80	10,89	2,05	11,00	0,02	4,09	3,09	22,92	0,98
Liquide Cai bollate	6		6		7		5		11	
Sc	67.67	9.06	73 11	11.04	79.57	10.03	88.83	3.83	75.85	3 24
Ti	524 79	162 22	520.20	164 35	947.61	137 79	475 87	30.90	729.92	60 19
Cr	4 00	2 08	8 65	2 55	5.82	0.06	2 44	0.69	7 12	1 29
Mn	4819 84	598.04	5113.86	470.08	4822.68	496 32	4107 32	273.08	3301.18	196.25
Sr	9573 38	166 70	9528.76	617 79	10292.20	513 75	13647.83	164 16	12793.00	533.91
Zr	17.15	12.49	7.69	1.33	28.71	8.40	9.08	1.73	26.99	7.01
Nb	87.58	24.27	92.84	22.37	180.84	31.09	44.97	4.73	153.34	23.82
Ba	8069.63	581.14	7819.33	1186.38	9474.97	646.82	8228.87	120.45	7843.84	342.81
La	78.08	7.79	77.67	5.41	83.11	10.93	128.67	4.97	110.32	7.00
Ce	77.12	7.43	78.80	4.66	80.27	13.66	143.52	5.61	118.43	8.38
Pr	62.00	6.58	62.89	4.31	63.51	10.11	129.00	6.05	99.80	5.61
Nd	62.59	5.46	62.80	2.42	63.22	9.21	129.24	4.66	102.55	5.95
Sm	58,47	10,20	61,74	2,41	62,71	11,02	131,42	5,42	106,40	7,04
Eu	68,66	11,71	64,14	3,02	69,32	12,07	139,11	7,44	95,41	4,07
Gd	56,22	10,39	65,22	8,07	64,83	10,61	156,76	16,55	116,71	11,75
Тb	61,10	11,06	58,92	3,79	62,08	13,19	132,83	11,91	90,71	5,50
Dy	75,93	16,02	73,55	4,50	74,34	15,22	148,93	6,75	102,40	5,93
Ŷ	88,99	18,30	86,94	6,30	89,67	18,97	164,07	8,28	117,38	8,64
Но	75,80	14,71	74,60	4,72	76,56	17,44	148,44	7,26	99,67	6,93
Er	77,41	13,70	76,80	5,96	74,88	15,38	134,91	5,56	91,03	4,64
Yb	86,84	19,02	85,98	7,47	87,28	19,17	143,49	5,25	96,00	6,00
Lu	80,26	17,71	77,40	6,02	79,99	17,27	116,18	5,21	78,27	4,53
Hf	0,48	0,39	0,27	0,07	0,70	0,26	0,21	0,04	0,90	0,23
Та	0,68	0,29	0,55	0,25	1,72	0,34	0,14	0,02	3,44	1,12

	PCPC4 03		PCPC4 04		PCPC5 01		PCPC5 02		PCPC5 03	
P (Gpa)	0,8		1 01 001		0,8		0,8		0,8	
T (°C)	850				850		850		850	
Composition	PhCbn3				PhCbn4		PhCbn4		PhCbn4	
Liquide Silicaté										
Ν	7	σ			5	σ	3	σ	6	σ
Sc	35,83	1,34	-	-	5,01	0,23	6,05	0,20	5,77	0,14
Ti	1797,32	24,89	-	-	664,23	14,55	612,58	13,30	527,99	5,43
Cr	2,66	0,60	-	-	1,20	0,11	< LD	-	1,83	0,26
Mn	770,69	14,67	-	-	504,07	22,04	639,17	38,43	910,95	7,22
Sr	514,72	17,37	-	-	670,79	11,38	974,34	19,03	1211,86	14,66
Zr	483,61	5,61	-	-	380,04	19,67	310,69	8,11	284,47	3,79
Nb	119,17	7,10	-	-	214,85	20,86	116,31	1,80	115,81	1,13
Ba	638,31	9,81	-	-	921,72	12,30	1095,46	8,07	1696,68	25,25
La	2,84	0,10	-	-	7,66	1,56	6,60	0,14	8,37	0,11
Ce	4,89	0,29	-	-	12,17	1,93	15,09	0,31	15,99	0,21
Pr	3,73	0,19	-	-	6,88	1,22	6,33	0,02	7,77	0,08
Nd	3,99	0,22	-	-	6,09	0,85	6,41	0,03	7,08	0,08
Sm	5,10	0,35	-	-	4,54	0,43	5,98	0,26	6,32	0,18
Eu	5,43	0,28	-	-	4,22	0,19	5,80	0,19	5,10	0,05
Gd	5,88	0,47	-	-	3,45	0,20	5,01	0,05	4,42	0,09
Tb D	5,58	0,39	-	-	2,95	0,23	3,99	0,12	4,01	0,04
Dy X	7,89	0,50	-	-	3,02	0,38	4,74	0,06	4,01	0,05
Y	7,83	0,42	-	-	3,59	0,33	5,49	0,18	5,02	0,07
H0 E-	8,35	0,55	-	-	2,74	0,39	4,37	0,22	3,80	0,03
Er	9,01	0,59	-	-	2,57	0,57	4,07	0,22	5,49	0,05
	15,11	0,92	-	-	3,07	0,31	3,10	0,12	4,21	0,05
Lu Uf	11,07	1 77	-	-	25.07	16 77	4,79	0,10	3,90	0,05
111 Ta	9.06	4 48	-	-	13.08	5 35	7 64	0,05	8.86	0.12
Liquide Carbonaté	2,00	1,10			15,00	5,55	7,01	0,25	0,00	0,10
Liquide carbonate	6		5		11		7		8	
Sc	72,39	2,74	82,41	2,03	5,46	0,77	6,54	1,00	4,86	1,03
Ti	674,37	16,28	1002,95	40,94	249,39	47,72	328,34	63,91	265,10	52,93
Cr	5,99	1,37	5,83	1,13	9,28	1,06	15,18	2,80	14,53	3,77
Mn	3389,16	80,25	3615,10	25,16	3677,47	294,40	3690,77	532,50	4723,97	458,62
Sr	13799,87	463,88	9027,72	125,16	13870,85	273,86	16991,89	1297,96	15848,10	915,96
Zr	18,93	3,35	173,69	33,16	12,49	3,14	10,28	2,59	8,24	2,64
Nb	84,49	8,25	228,43	9,65	186,31	19,37	132,66	28,73	129,93	28,67
Ba	7263,80	123,90	4263,01	81,33	9832,34	594,00	10845,25	1728,56	11756,56	1482,52
La	109,17	3,15	103,41	2,06	119,45	2,41	140,48	9,79	123,54	16,44
Ce	114,60	3,09	111,10	2,37	113,26	1,76	109,18	5,91	98,47	15,28
Pr	97,82	2,30	91,90	1,30	94,98	2,31	102,18	5,17	90,71	10,68
Nd	95,36	3,17	94,32	1,63	86,88	2,28	93,26	4,04	75,43	9,52
Sm	98,00	5,48	91,60	1,68	72,97	2,05	74,46	7,05	54,76	7,35
Eu	95,56	2,75	106,80	1,87	74,12	1,88	67,40	4,29	40,70	5,99
Gd	100,35	5,81	105,18	1,88	66,99	1,91	58,29	3,35	34,76	5,02
Tb	82,88	3,88	84,93	1,79	58,26	1,79	38,98	2,92	27,20	3,59
Dy	97,33	4,23	96,41	2,05	56,36	1,53	40,86	2,84	24,11	3,43
Y	115,00	4,72	106,62	3,30	65,60	2,25	45,83	4,36	28,71	4,21
Ho	98,73	3,94	93,68	1,71	53,29	1,95	35,37	2,84	21,24	3,39
Er	88,10	3,78	86,27	1,54	43,60	1,23	29,38	2,47	17,15	2,54
YD	92,84	3,86	92,06	1,71	42,05	1,59	26,53	2,94	15,95	2,41
	15,25	2,97	/4,34	1,52	<i>33,96</i>	1,30	22,24	2,27	13,01	1,93
	0,76	0,24	4,56	1,00	0,37	0,07	0,20	0,09	0,26	0,06
1a	1,35	0,56	1,69	0,16	1,33	0,29	1,50	0,25	1,82	0,48

Tableau B.2. Suite.

	PCPC5 M		PCPC6_01		PCPC6 M		PCPC6 03	
P (Cna)	rcrc5_04				0.8			
T (Gpa)			1050		1050		1050	
I (C) Composition			DhChn2		DhChn2		DhChn2	
Liquida Siligatá			r iiColio		r iiColi5		FIICDII2	
Liquide Silicate			6	-	6	-	6	~
N So	_	_	66 50	2.04	74.22	1.07	00 02	1 42
эс т:	-	-	2402.61	3,94	74,22	25.60	00,0J 2868 10	1,42
II Cr	_	_	98.02	104,04	2501,75	1.03	107.96	7 04
CI Mn	-	-	1770.07	4,99	1862 55	24.06	2022.21	7,34
Sn Sn	-	-	1925.29	27.00	2206.04	24,90 19 12	2023,31	10.47
31 7	-	-	517.10	22.40	3290,04	40,15	2404,00	19,47
Zľ	-	-	222.27	10.07	408,10	1.97	207.20	6 47
ND Do	-	-	233,27	61 21	239,08	1,07	207,30	21.99
	-	-	2055,64	01,51	2442,04	42,44	2025,17	1 22
	-	-	16,21	0,48	35,92	0,00	25,15	1,52
Ce Dr	-	-	25,70	0,57	40,02	0,77	20,01	1,44
Pr NJ	-	-	20,08	0,35	30,34	0,72	23,44	1,50
Na Sm	-	-	20,94	0,42	37,34	0,55	23,94	1,14
Sm	-	-	22,80	0,37	40,86	0,87	28,88	0,98
Eu	-	-	25,18	0,40	42,14	0,93	31,18	1,32
Ga	-	-	31,75	0,74	45,63	0,95	31,76	1,//
10 D	-	-	25,62	0,36	43,41	0,67	29,91	1,28
Dy	-	-	29,94	0,01	46,50	0,89	37,06	1,02
Y	-	-	31,02	0,71	51,43	0,76	42,40	1,30
H0 E-	-	-	31,57	0,71	49,84	0,70	39,05	1,39
Er	-	-	29,65	0,75	45,02	0,00	59,50	1,23
YD L.	-	-	20,48	0,94	50.21	1,12	30,30	1.04
LU Uf	-	-	32,12	1.40	15 00	0,08	45,94	1,04
111 Ta		-	1 73	0.09	13,90	0,27	637	1,12
Liquide carbonaté			1,75	0,07	14,07	0,23	0,57	1,10
Elquide cui bollute	8		7		11		6	
Sc	9.98	0.42	53.15	0.62	36.92	1.98	64.64	7.37
Ti	448.59	26.27	841.60	21.28	1033.07	100.60	1193.03	124.36
Cr	7.88	0.54	69.66	2.12	94.58	12.42	100.91	15.54
Mn	2943,49	77,26	2743,15	10,07	2853,87	140,87	4062,84	308,27
Sr	10373,42	135,30	11368,69	66,30	11250,34	278,61	13607,86	562,29
Zr	29,31	1,62	46,92	2,45	51,76	7,86	57,89	6,78
Nb	188,87	6,85	175,58	2,36	201,28	17,62	180,34	10,51
Ba	6453,81	136,46	7706,21	52,41	6960,76	441,99	10612,55	1058,95
La	86,77	1,75	103,32	1,14	87,61	2,83	108,09	5,60
Ce	87,22	1,52	106,09	1,30	93,18	3,99	109,41	6,24
Pr	68,96	0,89	88,55	0,92	74,01	1,74	87,87	6,57
Nd	68,67	1,16	85,81	1,25	71,65	1,60	85,18	5,29
Sm	63,84	0,94	81,48	0,96	70,41	2,21	89,29	4,43
Eu	66,39	0,85	85,87	1,03	68,30	1,83	91,13	6,05
Gd	61,28	0,77	106,95	1,29	73,71	1,66	90,98	2,21
Tb	52,04	0,66	78,63	1,08	64,90	2,08	76,11	4,48
Dy	61,00	0,61	81,70	0,86	63,89	1,67	86,96	2,73
Y	70,66	1,35	99,27	0,63	72,43	2,56	101,05	2,86
Но	59,44	0,72	84,56	1,24	66,00	2,24	85,78	1,70
Er	52,29	0,82	70,44	0,80	52,85	1,48	80,40	1,70
Yb	50,14	0,91	71,53	0,95	54,14	1,95	86,00	1,71
Lu	37,57	0,95	61,22	0,90	50,05	2,31	74,90	2,73
Hf _	4,48	0,20	2,19	0,11	1,37	0,22	1,58	0,24
Та	0,71	0,03	0,49	0,01	4,56	0,54	1,85	0,33

B.4 Phase «LC2 »

La composition en éléments majeurs et en éléments traces des zones de « LC2 » identifiées dans certains échantillons est présentée dans le Tableau B.3.

Tableau 0.10. Composition en éléments majeurs (% poids) et en éléments traces (ppm) des zones de LC2 identifiées dans les échantillons. σ : écart-type sur la moyenne.

Nom P (Gpa)	PCPC1_01 0,8		PCPC1_02 0,8		PCPC1_03 0,8		PCPC2_01 0,8		PCPC3_01 0,8	
T (°C) Composition	850 PhChn1		850 PhChn1		850 PhChn1		1050 PhChn1		850 PhChn2	
N	7	σ	8		5	σ	4	σ	6	σ
SiO ₂	0,267	0,074	0,941	0,636	1,092	0,300	1,530	0,117	0,488	0,356
TiO ₂	< LD	-	< LD	-	< LD	-	< LD	-	< LD	-
Al ₂ O ₃	< LD	-	0,576	0,328	0,183	0,071	< LD	-	0,515	0,247
FeO	0,451	0,061	0,378	0,026	0,508	0,148	0,775	0,145	2,509	0,225
MnO	0,774	0,172	0,553	0,129	0,498	0,090	0,380	0,026	0,701	0,029
MgO	2,255	0,131	2,724	0,251	3,090	0,448	2,210	0,107	4,131	0,292
CaO	44,134	2,552	44,781	3,287	41,222	4,976	47,580	2,646	36,902	2,733
Na ₂ O	17,681	0,769	17,396	0,773	16,670	1,813	15,320	1,759	20,232	1,747
K ₂ O	1,461	0,201	1,333	0,054	1,248	0,280	1,730	0,189	1,706	0,616
P_2O_5	2,455	0,358	2,117	0,241	1,604	0,355	3,043	0,448	4,118	0,306
BaO	2,079	0,230	1,843	0,121	1,858	0,229	1,378	0,159	1,946	0,326
SrO	2,456	0,348	2,201	0,260	1,954	0,248	1,970	0,143	2,068	0,215
SO_2	0,279	0,074	0,307	0,125	0,296	0,051	0,198	0,075	0,297	0,077
r Cl	5,055	0,238	3,020	0,012	2,710	0,905	2,403	0,714	2,749	0,447
UI Total	77 758	0,030	0,377 78 548	0,010	73 129	0,144	0,203 78 783	0,033	0,438 78 798	0,107
Na ₂ O+K ₂ O	19 142	0.970	18 729	0.827	17 918	2 093	17.050	1 948	21.938	2 363
N	8	σ	6	σ.	3	σ	5	π	3	2,303 n
Sc	24,790	4,014	41,442	10,216	90,153	7,302	24,156	3,107	105,263	1,290
Ti	572,618	123,903	587,542	281,542	801,700	42,008	519,338	82,322	757,773	43,790
Cr	-	-	-	-	-	-	38,598	17,503	< LD	-
Mn	8550,706	671,892	8316,653	368,705	6710,480	63,490	3428,962	303,736	7470,360	230,001
Sr	17627,466	1101,288	15695,880	655,006	16068,843	154,293	14529,058	678,683	14295,897	92,298
Zr	4,280	2,089	47,523	98,505	7,507	5,027	14,982	8,307	4,367	1,019
Nb	143,451	23,800	149,420	45,097	137,583	5,240	121,020	13,656	131,660	6,613
Ba	13229,350	745,791	11003,125	890,239	12900,193	172,570	10093,552	272,858	11840,393	204,321
La	363,674	43,362	243,363	91,714	156,260	8,471	98,108	6,682	116,000	1,755
Ce	359,954	36,579	242,170	72,407	164,687	9,347	93,406	4,592	113,617	3,245
Pr NJ	311,343	36,100	234,188	73,579	139,443	8,592	76,994	5,734	91,273	2,802
Na Sm	307,738	30,201	232,205	70,428	142,070	7,424	77,320	5,205	90,873	3,417
SIII Fu	299,343	57,572 45 520	240,033	70,218 66 701	145,415	7,440 6.051	75,880	0,981	05,310	6 209
Eu Cd	314,623	45,559	200,203	56 601	135,015	7.246	72 590	0,233	95,725 85 783	0,396
Th	295 479	71 145	215 422	51,076	145 523	5 717	59 284	4 715	85 653	4 190
Dv	296,871	50.322	247,208	53,522	149,150	4.852	65.012	5.323	108,513	5.310
Ŷ	336.978	60,163	275.020	66,002	165.140	6,731	71,378	4,966	129.290	4,661
Но	286,151	54,823	242,923	52,839	145,650	4,357	59,964	3,660	107,900	5,238
Er	253,178	49,492	216,645	45,659	127,670	3,241	54,160	5,181	105,697	7,625
Yb	246,490	45,248	213,363	41,763	139,973	2,171	47,850	4,026	121,833	7,791
Lu	204,630	37,596	174,852	33,701	124,280	2,462	40,284	3,930	114,480	4,819
Hf	0,255	0,075	4,108	9,046	0,428	0,248	0,637	0,399	0,186	0,041
Та	0,918	0,418	1,597	2,115	0,943	0,226	1,854	0,842	0,538	0,095

Tableau B.3. Suite.

Nom	PCPC3_02		PCPC3_03		PCPC4_01		PCPC4_02		PCPC4_03	
P (Gpa)	0,8		0,8		0,8		0,8		0,8	
T (°C)	850		850		850		850		850	
Composition	PhCbn2		PhCbn2		PhCbn3		PhCbn3		PhCbn3	
Ν	6	σ	7	σ	9	σ	4	σ	3	σ
SiO ₂	1,623	0,867	0,397	0,056	0,439	0,403	0,720	0,147	0,560	0,079
TiO ₂	< LD	-	< LD	-	< LD	-	< LD	-	< LD	-
Al ₂ O ₃	0,775	0,607	< LD	-	< LD	-	< LD	-	< LD	-
FeO	2,551	0,487	2,557	0,568	< LD	-	< LD	-	0,485	0,021
MnO	0,633	0,163	0,649	0,194	0,609	0,145	0,515	0,115	0,637	0,055
MgO	4,078	0,352	2,954	0,375	3,746	0,461	2,753	0,155	2,860	0,201
CaO	34,966	3,195	24,683	0,470	35,920	4,037	34,820	0,301	34,153	0,139
Na ₂ O	19,910	0,687	20,540	0,687	16,448	0,550	15,928	0,210	16,973	0,656
K ₂ O	1,678	0,217	1,569	0,218	1,042	0,186	1,223	0,241	1,093	0,282
P_2O_5	3,841	0,152	3,276	0,252	1,274	0,290	1,588	0,185	1,550	0,125
BaO	2,022	0,217	1,743	0,325	1,493	0,122	1,275	0,117	1,393	0,129
SrO	2,166	0,365	1,719	0,122	2,389	0,260	1,955	0,192	2,490	0,357
SO_2	0,283	0,040	0,311	0,022	0,167	0,059	0,268	0,019	0,207	0,031
F	2,580	0,333	2,831	0,865	11,370	1,574	15,093	1,787	14,040	2,321
Cl	0,433	0,048	0,480	0,074	0,446	0,045	0,400	0,023	0,467	0,045
Total	77,538	-	63,709	-	75,342	-	76,535	-	76,908	-
Na ₂ O+K ₂ O	21,588	0,904	22,109	0,905	17,490	0,736	17,150	0,451	18,067	0,938
Ν	5	σ	4	σ	6	σ	5	σ	6	σ
Sc	138,482	2,913	75,075	2,276	100,268	9,317	76,598	4,235	82,635	9,222
Ti	774,962	91,558	673,930	144,569	367,898	57,876	580,272	105,267	726,642	226,577
Cr	8,058	1,814	7,270	3,422	< LD	-	< LD	-	< LD	-
Mn	6547,352	117,949	4826,185	82,290	3356,157	597,614	2703,568	312,294	3028,202	686,512
Sr	17628,230	261,019	9681,033	74,717	15128,143	1952,568	12225,562	#####	14916,390	#####
Zr	11,774	7,977	9,008	2,318	14,934	16,535	7,280	6,952	77,744	59,254
Nb	135,026	9,873	140,763	20,490	52,598	15,402	145,914	12,810	80,512	17,651
Ba	15841,290	338,094	8417,085	48,268	8108,417	791,843	7565,434	718,836	7460,308	518,486
La	147,106	2,214	81,200	1,390	160,165	16,785	111,388	13,287	118,748	12,881
Ce	148,926	2,816	78,430	2,092	175,988	24,214	121,904	17,060	136,923	46,135
Pr	115,788	2,916	62,615	0,765	165,133	21,418	95,140	8,669	106,902	12,022
Nd	116,076	5,727	63,155	0,930	158,300	17,927	97,032	8,805	106,470	11,014
Sm	109,330	2,936	63,025	1,029	163,458	19,703	105,336	14,982	107,862	14,953
Eu	119,574	3,672	69,965	2,043	178,847	15,534	93,936	9,651	112,270	15,416
Gd	110,392	3,963	65,983	2,202	178,855	32,166	118,726	15,031	119,112	8,302
Tb	101,866	2,876	63,710	1,833	178,968	10,608	90,520	11,735	93,420	12,750
Dy	129,900	3,619	76,358	3,249	183,752	28,363	103,458	8,532	113,292	19,891
Y	148,632	6,139	92,185	3,425	212,098	30,071	121,092	12,075	119,257	20,976
Но	132,330	5,121	79,113	3,628	174,277	13,876	98,882	13,264	107,238	13,784
Er	131,140	5,723	78,118	4,145	170,497	25,684	90,640	7,592	95,200	15,959
Yb	150,652	2,158	92,388	3,631	174,938	22,948	94,952	8,630	101,638	16,786
Lu	133,822	4,984	83,455	4,188	137,627	16,388	81,944	9,608	87,743	13,940
Hf	0,474	0,502	0,238	0,026	0,747	0,938	< LD	-	4,386	3,472
Та	1,000	0,578	0,816	0,172	0,644	0,682	1,700	0,219	1,038	0,721

Tableau B.3. Suite.

Nom	PCPC5 01		PCPC5 02		PCPC5 03	
P (Gpa)	0,8		0,8		0,8	
T (°C)	850		850		850	
Composition	PhCbn4		PhCbn5		PhCbn6	
Ν	10	σ	6	σ	6	σ
SiO ₂	0,262	0,070	0,674	0,087	0,842	0,047
TiO ₂	-	-	< LD	-	-	-
Al ₂ O ₃	< LD	-	< LD	-	< LD	-
FeO	< LD	-	< LD	-	< LD	0,071
MnO	0,534	0,069	0,579	0,103	0,570	0,090
MgO	1,728	0,100	2,272	0,126	2,122	0,138
CaO	35,406	3,164	38,573	2,733	33,793	0,315
Na ₂ O	14,924	0,771	15,289	0,471	15,047	0,620
K ₂ O	1,330	0,142	1,102	0,121	0,957	0,080
P_2O_5	2,125	0,246	1,941	0,263	1,400	0,057
BaO	1,852	0,159	1,785	0,167	2,210	0,160
SrO	2,669	0,221	2,518	0,221	2,592	0,230
SO_2	0,101	0,023	0,163	0,044	0,163	0,050
F	4,339	0,433	2,939	0,252	4,777	0,433
Cl	1,919	0,199	1,945	0,089	1,058	0,086
Total	67,188	-	69,777	-	65,530	-
Na ₂ O+K ₂ O	16,254	0,913	16,390	0,592	16,003	0,700
N	8	σ	5	σ	6	σ
SC T.	4,821	1,924	3,024	0,799	3,903	0,805
	100,028	57,040 1.521	97,258	38,902 0.204	157,380	43,909
Ur Mn	2016 204	1,321	4153 560	9,304	2044 862	2,974
NIII Sr	2910,204	606.048	4155,500	356 604	15848 803	345.054
51 7r	51 843	22 503	0 502	0 385	1 686	0.821
Nh	116 135	22,505	0,302 57 708	16 528	89 245	18 840
Ra	10907 578	855 222	12627 142	89 966	13817 860	411 118
La	262.901	79,576	163.532	4.097	133 475	3,369
Ce	193,949	43.082	122.312	1.758	100.260	2.905
Pr	172.375	42.840	120.388	3.029	93.555	1.896
Nd	146.278	27,490	109.628	3.959	80.760	1.575
Sm	85,703	7,874	80,456	2,873	58,740	1,699
Eu	72,078	4,614	71,092	1,397	43,718	1,670
Gd	56,164	6,329	60,128	2,982	35,575	1,367
Tb	39,200	5,821	38,226	1,932	26,612	1,481
Dy	34,353	6,614	36,850	1,920	24,342	1,276
Y	41,634	6,812	41,656	2,005	29,852	1,738
Но	29,180	6,998	29,820	1,510	20,152	1,269
Er	22,684	5,358	24,246	2,062	17,028	1,134
Yb	22,914	4,710	22,206	1,175	15,388	1,395
Lu	21,169	4,189	18,444	0,801	13,203	1,097
Hf	3,957	1,733	0,022	0,003	0,177	0,049
Та	2,065	1,057	0,162	0,138	0,866	0,354

Des profils d'analyse de la composition du liquide silicaté (en CaO et Na₂O) à proximité de ces zones de « LC2 » ont été effectués au MEB, par analyses EDS. Ces profils ont été réalisés dans l'échantillon PCPC1_01 non dopé en F, Cl et P (Fig.B.2) et dans l'échantillon PCPC5_01 dopé en Cl (Fig.B.3), afin de vérifier si la composition du liquide silicaté varie à proximité des zones de « LC2 ». Pour les deux échantillons, la composition du liquide silicaté en CaO et en Na₂O ne semble pas évoluer à proximité de ces zones et reste constante (spectres EDS de CaO et Na₂O plats).

Figure 0.5. Profil d'analyse par spectres EDS du CaO (bleu) et du Na_2O (rouge) dans le liquide silicaté (LS) de l'échantillon PCPC1_01, à proximité d'une zone de « LC2 ». Nombre de coups (nbrcps/ eV) du CaO et du Na_2O en fonction du temps (en secondes, s).

Figure 0.6 Profil d'analyse par spectres EDS du CaO (bleu) et du Na₂O (rouge) dans le liquide silicaté (LS) de l'échantillon PCPC5_01 (dopé en Cl), entre une zone de « LC2 » et un cristal de grenat (Gnt). Nombre de coups (nbrcps/ eV) du CaO et du Na₂O en fonction du temps (en secondes, s).

C. ANNEXE 3 : Compositions des minéraux

Dans cette section sont présentés tous les tableaux de composition en éléments majeurs et en éléments traces des minéraux en coexistence avec les liquides silicatés alcalins de type néphélinite-phonolite et les liquides carbonatés \pm enrichis en F-Cl-P, et caractérisés dans le chapitre VI (clinopyroxène, grenat, titanite, calcite, apatite, néphéline, feldspaths alcalins, mélilite, phlogopite, oxydes et pérovskite). Pour chaque minéral, un seul tableau de composition présente les concentrations en éléments majeurs (analyses à la microsonde électronique) et en éléments traces (LA-ICP-MS) pour chaque échantillon, ainsi que les erreurs statistiques associées (écart-type sur la moyenne).

C.1. Clinopyroxènes

C.1.1. Composition des clinopyroxènes

	T14_01		T14_02		T16_01		T16_02		T17_01		T17_02		T17_04		T18_01		T18_02	
P (Gpa)	0,8		0,8		0,8		0,8		0,8		0,8		0,8		1,5		1,5	
T (° C)	975		975		950		950		925		925		925		925		925	
Composition	Mix8		Mix8		Mix8		Mix8		Mix8		Mix8		Mix8		Mix8		Mix8	
H2O (%)	-		1,5		-		-		-		-		3		-		-	
G (%)	-		-		-		1		-		1		1		-		1	
Ν	6	σ	9	σ	5	σ	6	σ	5	σ	6	σ	5	σ	5	σ	4	σ
SiO ₂	44,08	1,26	44,18	2,10	39,31	1,30	42,01	1,14	39,03	1,85	40,37	0,67	39,60	1,04	44,89	0,68	42,64	2,07
TiO ₂	1,11	0,10	1,09	0,33	2,38	0,29	3,82	0,62	2,99	0,57	4,88	0,35	3,09	0,24	2,80	0,22	3,22	0,13
Al_2O_3	5,99	0,42	6,74	1,27	8,93	0,60	10,04	1,30	8,05	0,51	7,88	1,16	8,52	0,28	10,62	0,66	11,32	0,74
FeO	11,92	0,65	12,11	1,43	17,05	1,22	10,88	0,79	17,09	1,98	14,80	0,34	15,14	1,70	14,52	0,88	16,27	1,10
MnO	0,38	0,16	0,38	0,16	0,24	0,03	0,19	0,10	0,22	0,09	0,30	0,10	0,19	0,05	0,31	0,13	0,53	0,10
MgO	10,77	0,51	10,32	1,09	7,21	0,61	7,86	0,52	7,41	0,84	7,21	0,75	7,54	0,45	5,26	0,27	4,01	0,19
CaO	21,25	0,36	21,32	0,75	20,03	0,36	21,03	0,40	19,70	0,51	20,66	0,43	21,17	0,40	15,95	0,27	16,01	0,70
Na ₂ O	1,54	0,23	1,69	0,31	1,78	0,18	1,45	0,13	2,15	0,31	1,62	0,32	1,48	0,10	4,98	0,28	4,53	0,48
SrO	0,07	0,05	0,09	0,04	0,03	0,03	0,05	0,05	0,16	0,09	0,08	0,07	0,15	0,06	<ld< th=""><th></th><th><ld< th=""><th></th></ld<></th></ld<>		<ld< th=""><th></th></ld<>	
Total	97,11		97,93		96,95		97,31		96,80		97,81		96,87		99,33		98,52	
Ν	4	σ	2	σ	6	σ	4	σ	5	σ	6	σ	6	σ	5	σ		
Sc	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ti	5635,16	651,92	4683,72	1280,90	14082,43	2714,52	23359,06	1751,79	13647,44	3866,13	26053,83	2478,15	14821,42	3138,79	18026,98	1918,46	-	-
Cr	26,66	3,03	<ld< th=""><th></th><th>201,60</th><th>84,22</th><th>345,42</th><th>121,54</th><th>82,39</th><th>12,06</th><th>182,19</th><th>76,53</th><th>345,87</th><th>375,41</th><th>88,29</th><th>38,67</th><th>-</th><th>-</th></ld<>		201,60	84,22	345,42	121,54	82,39	12,06	182,19	76,53	345,87	375,41	88,29	38,67	-	-
Mn	2897,81	437,18	4091,57	743,21	1705,62	76,44	1527,59	154,58	2172,15	371,34	2317,52	343,48	1303,38	98,77	2897,34	623,30	-	-
Sr	582,80	48,53	579,69	54,60	514,15	44,49	611,12	29,43	677,36	70,98	673,37	83,17	441,75	35,68	255,64	50,83	-	-
Zr	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Nb	3,55	1,72	5,55	1,04	14,83	12,79	74,60	13,89	32,65	31,29	105,73	19,93	7,13	3,06	25,46	9,23	-	-
Ba	<ld< th=""><th>-</th><th><ld< th=""><th>-</th><th>2,40</th><th>1,09</th><th>1,66</th><th>0,79</th><th>4,15</th><th>2,45</th><th>5,28</th><th>4,61</th><th>5,91</th><th>6,51</th><th>8,38</th><th>0,06</th><th>-</th><th>-</th></ld<></th></ld<>	-	<ld< th=""><th>-</th><th>2,40</th><th>1,09</th><th>1,66</th><th>0,79</th><th>4,15</th><th>2,45</th><th>5,28</th><th>4,61</th><th>5,91</th><th>6,51</th><th>8,38</th><th>0,06</th><th>-</th><th>-</th></ld<>	-	2,40	1,09	1,66	0,79	4,15	2,45	5,28	4,61	5,91	6,51	8,38	0,06	-	-
La	5,95	1,11	5,88	2,43	9,55	4,64	19,21	3,99	12,84	4,88	26,91	9,59	5,86	1,06	2,39	0,71	-	-
Ce	6,74	1,71	7,32	3,22	17,33	7,16	31,45	5,86	21,62	8,28	42,29	12,65	11,40	1,99	5,91	0,88	-	-
Pr	8,51	1,77	8,00	3,20	14,34	5,69	25,11	4,28	16,71	5,95	32,77	8,52	9,94	1,55	5,82	0,98	-	-
Nd	9,74	1,30	7,77	2,07	19,61	7,87	34,06	5,67	21,72	7,30	43,75	10,12	15,08	2,16	9,42	1,98	-	-
Sm	8,94	3,37	6,99	2,23	23,96	8,33	38,19	5,60	21,64	7,91	45,74	8,76	18,52	2,74	15,19	2,77	-	-
Eu	9,00	1,28	5,93	3,15	26,92	7,69	39,14	5,42	24,50	8,64	48,89	8,99	20,84	2,85	16,00	1,99	-	-
Gd	9,17	4,95	6,28	3,63	23,08	6,97	54,54	7,22	25,84	9,41	50,57	10,82	24,61	3,24	24,55	13,38	-	-
ТЬ	6,05	0,70	4,00	0,37	23,09	6,29	32,84	4,47	17,69	7,15	40,54	6,41	17,88	2,18	16,41	1,70	-	-
Dy	6,36	1,04	4,63	1,32	24,62	6,18	37,65	5,10	18,39	7,75	44,67	6,98	20,19	2,12	22,28	3,23	-	-
Y	6,38	0,60	4,15	1,27	23,07	5,55	35,75	4,45	18,89	7,12	42,87	6,03	18,81	1,88	20,74	2,51	-	-
Но	5,38	0,74	3,59	0,93	23,29	5,86	35,66	4,36	17,88	7,44	42,28	6,35	18,73	2,01	22,92	2,06	-	-
Er	4,80	0,87	3,13	1,06	21,47	4,74	32,62	4,00	15,97	6,72	38,06	5,03	16,57	1,51	22,63	2,41	-	-
Yb	8,33	1,58	7,64	2,81	25,47	4,67	41,80	2,72	21,33	6,90	45,39	5,15	20,41	1,58	28,05	1,14	-	-
Lu	10,74	0,71	10,29	3,60	28,36	4,44	45,58	1,82	24,32	6,78	49,46	5,20	22,69	1,56	26,35	1,57	-	-
Hf	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Та	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Tableau 0.11. Composition en éléments majeurs (% poids) et en éléments traces (ppm) des clinopyroxènes. σ: écart-type sur la moyenne.

	T18_03		T18_04		AK01_01		AK01_03		AK01_04		AK02_01		AK02_02		AK02_03		AK02_04	
P (Gpa)	1,5		1,5		0,2		0,2		0,2		0,4		0,4		0,4		0,4	
T (°C)	925		925		925		925		925		925		925		925		925	
Composition	Mix8		Mix8		Mix8		Mix8		Mix8		Mix8		Mix8		Mix8		Mix8	
H2O (%)	2,07		1		-		1,3		2,7		-		-		1,5		1	
G (%)	-		1		-		-		1		-		1		-		1	
N	7	σ	7	σ	3	σ	4	σ	4	σ	5	σ	8	σ	4	σ	4	σ
SiO ₂	45,37	1,89	44,21	1,44	49,30	0,37	46,78	0,65	45,99	0,97	46,36	1,60	47,69	1,83	43,52	1,12	43,77	1,26
TiO ₂	1,98	0,87	2,03	0,51	1,36	0,19	1,87	0,18	1,80	0,35	2,59	0,65	1,97	0,80	3,96	1,23	4,35	1,00
Al_2O_3	7,75	1,07	8,67	0,73	2,65	0,27	4,54	0,48	4,94	0,62	5,54	1,34	3,73	1,03	7,45	0,49	7,45	1,14
FeO	14,43	0,66	14,90	0,59	12,12	0,97	11,29	0,19	10,77	0,37	10,22	0,50	13,32	1,79	9,67	0,81	10,93	0,51
MnO	0,29	0,10	0,23	0,07	0,23	0,14	0,27	0,05	0,28	0,09	0,32	0,20	0,37	0,10	0,19	0,12	0,11	0,09
MgO	7,52	0,35	7,12	0,72	10,21	0,30	10,30	0,61	10,56	0,47	10,17	0,91	8,65	0,99	9,44	0,23	8,78	0,45
CaO	17,97	0,46	18,34	0,80	23,26	0,13	23,17	0,33	22,97	0,04	23,05	0,32	22,66	0,29	22,35	1,03	22,32	0,29
Na ₂ O	3,59	0,32	3,42	0,49	0,68	0,01	0,64	0,03	0,65	0,06	0,76	0,12	0,87	0,11	0,89	0,03	1,01	0,04
SrO	<ld< th=""><th>0,04</th><th>0,06</th><th>0,06</th><th>0,01</th><th>0,02</th><th>0,07</th><th>0,06</th><th>0,08</th><th>0,04</th><th>0,03</th><th>0,04</th><th>0,11</th><th>0,07</th><th>0,08</th><th>0,02</th><th><ld< th=""><th></th></ld<></th></ld<>	0,04	0,06	0,06	0,01	0,02	0,07	0,06	0,08	0,04	0,03	0,04	0,11	0,07	0,08	0,02	<ld< th=""><th></th></ld<>	
Total	98,90		98,98		99,84		98,92		98,04		99,03		99,36		97,56		98,71	
N	5	σ	7	σ	4	σ	2	σ	1		4	σ	5	σ	6	σ	6	σ
Sc	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-
Ti	9560,80	1662,76	11793,34	1266,73	25767,32	6968,55	10558,71	343,41	15104,08	-	13536,46	3066,66	12260,84	3770,71	23774,88	2998,24	21620,79	6083,53
Cr	81,30	13,86	74,25	56,09	574,71	123,83	494,75	111,96	558,11	-	261,48	212,62	99,91	81,56	430,14	400,47	257,52	278,75
Mn	2394,70	72,74	2248,67	286,41	2076,60	340,76	2176,06	69,47	1962,88	-	2322,18	195,49	2855,74	512,18	1569,54	48,45	1771,41	225,30
Sr	296,97	15,75	300,64	7,61	623,79	109,04	529,07	3,03	508,65	-	465,00	22,50	480,22	53,03	455,93	28,60	499,16	49,70
Zr	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Nb	6,05	1,59	8,51	4,06	36,92	24,03	6,93	1,36	4,52	-	6,33	4,11	5,97	4,15	42,96	23,82	41,99	37,23
Ba	2,29	0,04	3,92	1,83	10,83	/,54	<ld< th=""><th>-</th><th>16,80</th><th>-</th><th><ld< th=""><th>-</th><th>8,66</th><th>0,77</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th></ld<></th></ld<></th></ld<></th></ld<>	-	16,80	-	<ld< th=""><th>-</th><th>8,66</th><th>0,77</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th></ld<></th></ld<></th></ld<>	-	8,66	0,77	<ld< th=""><th>-</th><th><ld< th=""><th>-</th></ld<></th></ld<>	-	<ld< th=""><th>-</th></ld<>	-
La	1,//	0,26	2,35	0,82	15,73	8,32	3,59	0,35	5,21	-	5,76	2,39	6,00	1,28	9,81	2,41	10,31	6,65
Ce	4,31	0,59	5,74	1,53	27,14	14,54	6,29	0,57	8,19	-	12,33	3,24	11,40	1,91	17,09	3,40	18,49	9,59
Pr	4,10	0,50	5,58	1,14	20,13	9,38	4,98	0,39	6,92	-	9,93	1,98	10,02	1,84	14,82	2,49	14,59	0,96
Nd	0,45	0,81	/,04	2,87	28,19	12,88	7,30	0,59	10,71	-	14,93	3,09	14,67	2,45	19,42	3,07	21,30	9,46
Sm	9,59	1,15	11,98	3,47	27,81	9,75	8,70	0,94	12,40	-	19,09	4,51	17,39	5,18	25,96	3,51	23,05	8,70
Eu	11,69	2,11	15,99	2,70	25,11	8,76	10,59	0,00	12,30	-	20,12	4,30	18,86	3,41	25,87	3,26	23,69	9,07
Ga	9,96	1,/0	12,80	1,50	27,58	9,00	8,23	0,54	21,04	-	22,45	3,//	14,85	2,60	19,53	2,39	19,94	8,24
	11,10	1,18	15,75	2,55	20,35	7,75	9,48	0,04	11,78	-	17,41	2,48	10,14	2,90	19,87	2,18	18,31	0,08
Dy	13,96	1,88	17,30	3,81	28,09	5,31	11,62	0,33	12,62	-	19,52	5,14	18,76	2,22	21,87	1,8/	20,88	7,50
Y	13,30	1,23	16,05	2,92	28,78	4,92	11,88	0,42	12,52	-	21,14	2,61	18,97	2,40	19,24	1,84	19,91	6,41
H0 E-	13,10	1,47	10,40	2,11	26,21	5,05	10,92	0,15	12,25	-	19,70	2,11	17,98	2,39	20,05	1,85	18,78	5,87
Er	12,82	1,24	10,15	2,66	26,53	5,46	10,95	0,48	12,69	-	18,67	3,38	17,41	2,49	18,23	1,53	17,67	5,24
1D Lu	15,50	1,41	19,00	2,31	39,39 50.22	5,55 4 47	20,31	0,68	18,09	-	33,20	5,00	35,74	3,80	24,95	2,41	25,80	5,12
	16,87	1,10	20,54	1,/5	50,23	4,47	25,55	1,05	23,33	-	43,67	5,95	46,11	4,21	28,64	1,90	29,29	3,40
HI	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ta	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

	AK05_01		AK05_02		AK05_03		AK05_04		AK05_05		T19_01		T19_02		T19_03		T19_04	
P (Gpa)	0,4		0,4		0,4		0,4		0,4		0,8		0,8		0,8		0,8	
T (°C)	1000		1000		1000		1000		1000		1000		1000		1000		1000	
Composition	Mix8		Mix8		Mix8		Mix8		Mix8		Mix8		Mix8		Mix8		Mix8	
H2O (%)	0,7		2,7		4,7		2,7		10,7		0,7		0,7		3,7		3,7	
G (%)	-		-		-		1		-		-		1		-		1	
Ν	6	σ	6	σ	8	σ	4	σ	4	σ	6	σ	3	σ	6	σ	4	σ
SiO ₂	41,62	1,72	40,02	0,52	39,64	0,59	41,37	1,26	40,12	0,64	41,05	2,34	46,67	1,83	46,69	0,41	46,27	0,67
TiO ₂	3,22	0,87	4,53	0,59	4,30	0,46	5,74	0,40	3,52	0,67	2,01	0,59	3,43	1,05	1,76	0,29	2,64	0,43
Al ₂ O ₃	8,33	1,59	8,49	0,61	8,55	0,70	8,31	1,85	8,36	0,53	7,73	2,06	7,07	1,27	5,08	0,34	6,23	0,40
FeO	12,50	0,80	15,40	0,79	15,69	0,95	10,99	0,49	16,83	0,97	15,81	1,14	9,80	0,67	13,35	0,38	14,50	0,24
MnO	0,20	0,05	0,25	0,08	0,19	0,09	<ld< th=""><th>-</th><th>0,29</th><th>0,10</th><th>0,41</th><th>0,09</th><th><ld< th=""><th>-</th><th>0,30</th><th>0,08</th><th><ld< th=""><th>-</th></ld<></th></ld<></th></ld<>	-	0,29	0,10	0,41	0,09	<ld< th=""><th>-</th><th>0,30</th><th>0,08</th><th><ld< th=""><th>-</th></ld<></th></ld<>	-	0,30	0,08	<ld< th=""><th>-</th></ld<>	-
MgO	8,34	0,74	6,63	0,43	6,87	0,23	8,30	0,20	6,84	0,43	7,84	1,09	9,15	0,57	9,24	0,41	7,42	0,26
CaO	22,50	0,14	21,44	0,17	21,82	0,33	22,08	0,12	22,21	0,05	20,98	0,38	22,27	0,34	19,74	0,30	17,95	0,16
Na ₂ O	1,00	0,12	1,31	0,15	1,23	0,19	1,03	0,07	1,24	0,14	1,73	0,20	1,11	0,18	2,67	0,14	3,63	0,07
SrO	0,07	0,04	0,06	0,04	0,09	0,05	<ld< th=""><th>-</th><th>0,05</th><th>0,03</th><th>0,12</th><th>0,06</th><th><ld< th=""><th>-</th><th>0,02</th><th>0,02</th><th><ld< th=""><th>-</th></ld<></th></ld<></th></ld<>	-	0,05	0,03	0,12	0,06	<ld< th=""><th>-</th><th>0,02</th><th>0,02</th><th><ld< th=""><th>-</th></ld<></th></ld<>	-	0,02	0,02	<ld< th=""><th>-</th></ld<>	-
Total	97,78		98,12		98,38				99,46		97,67	-	99,50		98,85		98,64	
Ν	10	σ	7	σ	3	σ			5	σ	6	σ			5	σ	4	σ
Sc	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ti	24159,87	3224,76	24632,11	1451,77	25611,63	1091,02	-	-	21009,19	867,14	15308,43	2752,35	-	-	8912,14	1590,48	20756,45	5416,29
Cr	127,16	94,22	167,12	81,80	107,95	34,08	-	-	59,58	49,35	53,37	15,42	-	-	39,08	19,60	249,50	125,37
Mn	1942,30	425,83	1901,37	240,84	1725,68	45,92	-	-	1902,75	303,82	2960,01	457,22	-	-	2608,78	106,53	3535,39	225,84
Sr	574,70	59,31	625,81	29,26	629,79	16,51	-	-	564,59	21,22	552,24	66,44	-	-	343,13	8,06	475,10	55,80
Zr	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Nb	61,57	22,54	89,73	17,00	135,94	8,51	-	-	40,83	9,00	16,89	8,99	-	-	5,04	3,08	32,15	20,38
Ba	<ld< th=""><th>-</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th><th>-</th><th>-</th><th><ld< th=""><th>-</th><th>11,11</th><th>5,45</th><th>-</th><th>-</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th></ld<></th></ld<></th></ld<></th></ld<></th></ld<></th></ld<>	-	<ld< th=""><th>-</th><th><ld< th=""><th>-</th><th>-</th><th>-</th><th><ld< th=""><th>-</th><th>11,11</th><th>5,45</th><th>-</th><th>-</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th></ld<></th></ld<></th></ld<></th></ld<></th></ld<>	-	<ld< th=""><th>-</th><th>-</th><th>-</th><th><ld< th=""><th>-</th><th>11,11</th><th>5,45</th><th>-</th><th>-</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th></ld<></th></ld<></th></ld<></th></ld<>	-	-	-	<ld< th=""><th>-</th><th>11,11</th><th>5,45</th><th>-</th><th>-</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th></ld<></th></ld<></th></ld<>	-	11,11	5,45	-	-	<ld< th=""><th>-</th><th><ld< th=""><th>-</th></ld<></th></ld<>	-	<ld< th=""><th>-</th></ld<>	-
La	17,56	4,91	25,16	6,49	37,89	0,31	-	-	14,71	4,65	8,97	2,39	-	-	3,60	0,40	8,26	2,85
Ce	30,53	6,54	40,55	9,45	58,19	1,90	-	-	26,34	8,11	17,12	4,23	-	-	7,37	1,24	17,86	4,31
Pr	23,70	4,87	30,78	6,76	43,25	2,49	-	-	20,71	5,12	15,55	3,59	-	-	6,28	0,41	15,35	2,38
Nd	31,66	8,95	41,71	9,01	52,85	4,74	-	-	28,05	7,35	20,94	3,12	-	-	9,45	0,91	24,80	1,83
Sm	36,84	7,26	45,18	8,53	54,91	6,35	-	-	28,92	6,54	22,06	4,92	-	-	12,58	0,94	29,04	4,22
Eu	40,62	6,96	46,67	7,81	59,09	5,63	-	-	30,53	6,37	26,76	3,77	-	-	17,39	1,67	30,57	1,32
Gd	52,19	9,08	38,39	7,14	48,13	4,00	-	-	27,34	7,20	20,97	5,59	-	-	13,37	2,20	21,01	4,59
Tb	29,80	4,36	35,40	6,06	40,96	3,05	-	-	24,20	4,73	20,58	5,03	-	-	13,44	0,79	30,12	3,40
Dy	34,01	5,87	38,56	5,75	42,26	4,17	-	-	24,22	5,10	21,63	2,98	-	-	16,75	2,28	29,97	3,39
Y	32,31	4,81	35,92	4,87	37,72	2,65	-	-	21,51	3,73	21,74	2,73	-	-	17,19	1,76	30,31	4,11
Но	32,08	3,91	35,09	5,89	39,11	4,13	-	-	21,73	3,77	20,67	2,18	-	-	17,27	0,77	31,22	1,49
Er	28,69	3,37	31,15	3,08	32,00	2,74	-	-	21,63	2,71	18,16	3,07	-	-	17,54	2,34	30,06	4,42
Yb	37,16	5,81	39,05	2,62	36,46	2,17	-	-	29,56	1,77	26,84	3,23	-	-	26,87	2,21	42,70	2,56
Lu	41,10	5,94	39,32	3,30	34,90	2,28	-	-	32,80	1,11	32,52	5,75	-	-	33,07	2,03	45,19	2,99
Hf	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Та	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

	AK06_01		AK06_02		PCPC1_01		PCPC1_02		PCPC5_01		PCPC5_02		PCPC5_03	
P (Gpa)	0,4		0,4		0,8		0,8		0,8		0,8		0,8	
T (°C)	950		950		850		850		850		850		850	
Composition	Mix8		Mix9		PhCbn1		PhCbn1		PhCbn4		PhCbn4		PhCbn4	
H2O (%)	5,7		5,7		-	3			-		3		6	
G (%)	-		-		-		-		-		-		-	
Ν	6	σ	6	σ	5	σ	5	σ	6	σ	6	σ	4	σ
SiO ₂	45,26	1,25	51,46	0,37	45,060	1,877	43,941	2,420	40,404	3,014	42,912	2,957	42,603	0,871
TiO ₂	1,23	0,14	0,92	0,18	1,734	0,496	1,576	0,552	1,979	0,221	1,548	0,715	0,859	0,119
Al_2O_3	5,54	0,39	1,79	0,16	4,490	1,525	5,777	1,704	8,035	1,445	7,601	1,103	7,616	0,658
FeO	12,78	1,09	18,38	0,54	18,331	1,180	18,170	1,227	17,601	2,492	15,664	2,266	15,247	1,038
MnO	0,29	0,14	0,45	0,15	0,600	0,090	0,675	0,124	0,524	0,126	0,524	0,178	0,484	0,095
MgO	10,07	0,53	6,51	0,22	7,304	0,674	6,922	0,945	7,543	1,633	8,546	0,859	8,607	0,762
CaO	22,71	0,28	13,33	0,61	16,599	0,435	17,440	1,796	20,348	0,287	21,239	0,497	20,644	0,576
Na ₂ O	1,00	0,09	6,11	0,39	4,231	0,321	3,654	0,944	2,183	0,266	2,190	0,219	2,187	0,206
SrO	0,08	0,04	<ld< th=""><th>-</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th></ld<></th></ld<></th></ld<></th></ld<></th></ld<></th></ld<>	-	<ld< th=""><th>-</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th></ld<></th></ld<></th></ld<></th></ld<></th></ld<>	-	<ld< th=""><th>-</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th></ld<></th></ld<></th></ld<></th></ld<>	-	<ld< th=""><th>-</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th></ld<></th></ld<></th></ld<>	-	<ld< th=""><th>-</th><th><ld< th=""><th>-</th></ld<></th></ld<>	-	<ld< th=""><th>-</th></ld<>	-
Total	98,95		98,95		98,351		98,154		98,617		100,224		98,246	
Ν	7	σ	8	σ	6	σ	7	σ	4	σ	4	σ	2	σ
Sc	-	-	-		574,35	242,18	618,69	128,90	788,08	373,05	511,22	34,18	445,57	15,96
Ti	6305,40	671,77	4088,70	1692,04	9933,34	1967,50	10461,22	1205,24	10574,43	3832,17	8428,53	1116,21	8108,29	958,45
Cr	21,54	1,70	25,78	7,08	218,34	69,04	313,24	97,42	613,62	412,56	453,49	105,47	213,62	35,57
Mn	3002,33	750,68	3644,28	322,31	3911,34	517,95	2722,93	237,31	2681,39	857,48	3137,18	369,56	2520,35	114,86
Sr	543,52	56,10	162,01	6,04	675,24	111,19	582,45	51,85	737,23	98,18	595,21	35,30	700,95	12,89
Zr	-	-	-		835,20	242,09	929,05	130,07	708,58	83,68	632,53	45,19	918,52	52,90
Nb	4,63	0,84	1,54	1,09	164,72	21,38	205,45	24,67	250,84	40,70	149,83	15,47	140,72	24,35
Ba	<ld< th=""><th>-</th><th><ld< th=""><th>-</th><th>2,66</th><th>1,99</th><th><ld< th=""><th>-</th><th>24,08</th><th>11,38</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th></ld<></th></ld<></th></ld<></th></ld<></th></ld<>	-	<ld< th=""><th>-</th><th>2,66</th><th>1,99</th><th><ld< th=""><th>-</th><th>24,08</th><th>11,38</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th></ld<></th></ld<></th></ld<></th></ld<>	-	2,66	1,99	<ld< th=""><th>-</th><th>24,08</th><th>11,38</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th></ld<></th></ld<></th></ld<>	-	24,08	11,38	<ld< th=""><th>-</th><th><ld< th=""><th>-</th></ld<></th></ld<>	-	<ld< th=""><th>-</th></ld<>	-
La	7,24	0,82	0,91	0,40	16,22	8,40	14,13	3,24	23,55	2,08	13,40	3,79	14,28	3,39
Ce	13,47	1,73	2,09	0,37	27,16	12,67	25,42	5,01	36,40	4,94	19,52	4,80	22,30	4,35
Pr	10,16	1,36	1,82	0,35	31,05	12,69	32,30	7,11	42,77	9,69	25,09	5,79	28,00	2,47
Nd	13,92	2,64	2,75	0,62	39,57	14,36	40,45	5,81	53,90	11,68	33,55	6,49	34,56	5,01
Sm	10,01	1,10	3,34	0,82	45,26	15,31	56,36	8,78	65,26	15,49	42,60	11,01	44,17	4,36
Eu	10,09	1,91	3,45	0,58	53,68	15,89	64,58	/,8/	/8,35	16,92	43,51	10,24	40,10	4,89
Gđ	7,52	0,98	3,22	0,72	51,20	14,59	53,00	6,91	66,12	21,70	42,78	9,72	31,15	4,64
Tb	5,03	1,54	3,04	0,62	45,08	12,70	51,20	5,70	59,05	18,50	31,64	5,99	34,40	2,83
Dy	4,67	1,/8	3,62	0,60	48,87	13,58	58,35	6,33	64,52	13,25	36,58	9,49	32,93	1,65
Y	5,06	1,/8	4,01	0,99	40,07	9,48	50,38	4,68	51,93	8,68	31,32	7,44	31,74	5,56
Но	4,10	1,49	4,04	0,96	45,63	10,24	56,18	7,28	56,17	15,05	32,90	5,56	32,03	0,47
Er	3,90	1,49	4,80	1,55	44,66	9,09	50,82	4,80	49,56	10,95	27,56	6,59	31,43	1,97
YD	6,85	2,72	18,42	7,00	67,97	7,64	/4,99	6,68	58,65	8,61	39,24	7,28	37,91	0,62
Lu	10,19	2,76	31,94	12,58	72,60	11,39	87,35	12,06	61,56	9,43	46,98	6,85	46,20	0,15
Hf	-	-	-	-	53,66	34,92	59,42	11,88	37,45	19,40	28,63	6,68	50,63	3,22
Ta	-	-	-	-	15,77	4,01	15,03	2,10	27,61	4,27	19,09	4,66	29,74	7,45
Tableau 0.12. Composition en éléments majeurs du cœur de certains clinopyroxènes (% poids). σ: écart-type sur la moyenne.

P (Gpa) T (°C)	T14_01 0,8 975		T14_02 0,8 975		T18_01 1,5 925		AK02_01 0,4 925		AK02_02 0,4 925	
Composition	Mix 8		Mix 8		Mix 8		Mix 8		Mix 8	
N	3	σ	5	σ	3	σ	2	σ	4	σ
SiO ₂	53,631	0,411	53,952	1,265	54,997	0,503	54,259	1,015	55,250	1,016
TiO ₂	0,057	0,069	0,015	0,029	0,082	0,072	0,029	0,013	0,043	0,075
Al ₂ O ₃	0,174	0,019	0,219	0,076	0,396	0,229	0,273	0,042	0,241	0,248
FeO	1,901	0,638	2,001	1,285	2,146	1,047	1,457	1,210	0,613	0,360
MnO	0,016	0,028	0,054	0,086	0,037	0,064	0,154	0,045	0,012	0,024
MgO	17,676	0,133	17,330	0,775	17,579	0,800	17,974	1,196	18,159	0,515
CaO	24,734	0,305	25,444	0,332	25,664	0,175	25,993	0,298	26,108	0,201
Na ₂ O	0,130	0,037	0,144	0,077	0,126	0,056	0,068	0,057	0,058	0,067
SrO	0,032	0,055	0,021	0,047	0,067	0,033	0,029	0,040	0,007	0,015
Total	98,350		99,180		101,093		100,233		100,492	

C.1.2. Formules structurales des clinopyroxènes

Pour calculer la formule structurale des clinopyroxènes, les cations ont été normalisés sur la base de 6 oxygènes. Les fractions des cations ont ensuite été recalculées en fonction du site T, du site M1 et du site M2 des clinopyroxènes.

P (Gna)	T14_01 0.8		T14_02 0.8		T16_01 0.8		T16_02 0.8		T17_01 0.8		T17_02 0.8		T17_04 0.8		T18_01 1.5		T18_02		T18_03		T18_04	
T (°C)	975		975		950		950		925		925		925		925		925		925		925	
Composition	Mix 8		Mix 8		Mix 8		Mix 8		Mix 8		Mix 8		Mix 8		Mix 8		Mix 8		Mix 8		Mix 8	
<u>N</u>	6	σ	9	σ	5	σ	6	σ	6	σ	6	σ	5	σ	5	σ	4	σ	7	σ	7	σ
Si T:	1,693	0,033	1,683	0,063	1,545	0,045	1,630	0,047	1,535	0,055	1,583	0,022	1,560	0,037	1,685	0,021	1,635	0,073	1,715	0,062	1,675	0,042
11	0,032	0,003	0,031	0,010	0,070	0,009	0,112	0,018	0,095	0,018	0,144	0,010	0,091	0,007	0,079	0,000	0,093	0,004	0,050	0,025	0,058	0,015
AI Fo ²⁺	0,271	0,020	0,304	0,000	0,414	0,029	0,439	0,038	0,574	0,022	0,304	0,032	0,390	0,014	0,470	0,030	0,512	0,030	0,345	0,049	0,388	0,030
Mn	0.012	0,025	0.012	0,045	0,008	0,042	0,006	0,027	0,006	0,003	0,405	0.003	0,499	0,004	0,450	0,027	0,013	0,009	0,009	0,023	0,472	0,022
Mg	0.617	0.029	0.586	0.056	0.422	0.033	0.455	0.030	0.421	0.054	0.422	0.045	0.443	0.026	0.295	0.016	0.229	0.009	0.424	0.017	0.402	0.039
Ca	0,875	0,014	0,871	0,027	0,843	0,012	0,874	0,014	0,838	0,027	0,868	0,017	0,893	0,014	0,642	0,012	0,658	0,031	0,728	0,024	0,745	0,033
Na	0,115	0,017	0,125	0,024	0,136	0,013	0,109	0,010	0,158	0,027	0,123	0,024	0,113	0,008	0,363	0,020	0,337	0,034	0,263	0,022	0,251	0,036
K	0,001	0,001	0,001	0,001	0,001	0,001	0,002	0,001	0,001	0,001	0,001	0,001	0,000	0,001	0,002	0,002	0,001	0,001	0,003	0,002	0,002	0,001
Cr	-	-	-	-	-	-	-	-	-	-	0,001	0,001	-	-	-	-	-	-	0,001	0,001	-	-
Total	4		4		4		4		4		4		4		4		4		4		4	
Site T S:4+	1 602	σ	1 602	σ 0.062	1 5 4 5	σ 0.045	1 620	σ	1 5 2 5	σ	1 502	σ	1 5 6 0	σ 0.027	1 6 9 5	σ	1 625	σ 0.072	1 715	σ	1 675	σ
51 IV A 1 ³⁺	0.271	0,033	0.300	0,003	0.414	0,043	0.370	0,047	0.374	0,033	0.360	0,022	0.396	0,037	0.315	0,021	0.365	0,073	0.285	0,002	0.325	0,042
Fe ³⁺	0.036	0.019	0.017	0.022	0.041	0.029	0,370	0.000	0.091	0.050	0.057	0.035	0.044	0.028	0,515	0,021	0,505	0,075	0,205	0,002	0,525	0,042
Total	2	0,017	2	0,022	2	0,020	2	0,000	2	0,020	2	0,000	2	0,020	2		2		2		2	
Site M1		σ		σ		σ		σ		σ		σ		σ		σ		σ		σ		σ
^{v1} Al ³⁺	0,001	0,001	0,004	0,006	-	-	0,089	0,018	0,000	-	0,004	0,010	0,000	-	0,156	0,023	0,147	0,043	0,060	0,027	0,063	0,030
Fe ³⁺	0,339	0,023	0,354	4,321	0,450	0,040	0,168	0,023	0,433	0,063	0,249	0,023	0,373	0,058	0,371	0,045	0,371	0,088	0,378	0,042	0,399	0,038
T_1^{-3+}	0,032	0,003	0,031	0,001	0,070	0,009	0,112	0,018	0,093	0,018	0,144	0,011	0,092	0,007	0,080	0,006	0,093	0,004	0,056	0,025	0,058	0,015
Cr Ti ³⁺	0,000	0,000	0,000	0,000	0,001	0,001	0,000	0,000	0,001	0,002	0,001	0,001	0,001	0,002	0,000	0,000	0,000	0,001	0,001	0,001	0,000	0,000
Mn ³⁺	0.020	0.015	0.024	-	-	-	-	-	0.005	0.008	-	-	-	-	-	-	-	-	0.001	0.003	-	-
Mg ²⁺	0.600	0.029	0.573	-	0.422	0.033	0.455	0.030	0.422	0.054	0.422	0.045	0.446	0.026	0.298	0.016	0.229	0.009	0.425	0.017	0.403	0.039
Fe ²⁺	0,009	0,021	0,015	0,001	0,057	0,037	0,175	0,022	0,046	0,067	0,176	0,035	0,085	0,034	0,088	0,042	0,149	0,055	0,074	0,040	0,073	0,025
Mn ²⁺	-	-	-	-	-	-	0,001	0,002	-	-	0,004	0,005	0,003	0,003	0,007	0,007	0,011	0,007	0,004	0,005	0,004	0,003
Total	1		1		1		1		1		1		1		1		1		1		1	
<i>Site M2</i>	0.017	σ	0.014	σ	0.000	σ		σ	0.000	σ		σ		σ		σ		σ		σ		σ
Nig Fo ²⁺	0,017	0,018	0,014	0,023	0,000	0,000	-	-	0,000	-	-	-	-	-	- 000	-	-	-	-	-	-	- 0.002
re Mn ²⁺	0.003	0.005	0,002	0,004	0,012	0,003	0,010	0,010	0,003	0,007	0,005	0,005	0.001	0.002	0,000	0,001	0,003	0,007	0,003	0,007	0,001	0,002
Ca^{2+}	0,865	0.014	0,855	0.026	0.843	0.012	0.874	0.014	0.835	0.027	0.867	0.017	0.887	0.014	0.635	0.012	0.657	0.031	0,726	0.024	0.744	0.033
Na ⁺	0.114	0.017	0.123	0.023	0.136	0.013	0.109	0.010	0.157	0.027	0.123	0.024	0.112	0.008	0.359	0.020	0.336	0.034	0.263	0.022	0.251	0.036
\mathbf{K}^+	0,001	0,001	0,001	0,001	0,001	0,001	0,002	0,001	0,001	0,001	0,001	0,001	0,000	0,001	0,002	0,002	0,001	0,001	0,003	0,002	0,002	0,001
Total	1		1		1		1		1		1		1		1		1		1		1	
Wo	47,76	0,66	47,99	1,60	47,04	0,36	51,79	1,13	48,08	1,43	50,24	0,66	49,79	0,80	45,78	0,87	46,28	0,54	45,04	0,84	45,81	0,58
En	33,69	1,37	32,28	2,89	23,54	1,76	26,93	1,58	24,14	3,05	24,40	2,36	24,66	1,46	21,02	1,18	16,13	0,93	26,24	1,28	24,72	1,71
Fs	18,55	1,89	19,73	3,28	29,42	1,72	21,28	1,44	27,78	2,54	25,36	2,06	25,55	2,07	33,21	2,04	37,59	0,92	28,72	0,92	29,47	1,38
10	14 55	1 22	15.40	1.60	100	0.80	15 30	0.95	100	1 47	17.56	1 35	17.45	1 1 4	28.60	1 1 2	20.38	0.90	23 55	0.54	23.46	1.46
He	38.47	0.28	38.85	1.04	41.50	0.60	40.66	0.48	41.01	1,47	41.31	0.74	41.46	0.39	38.48	0.29	40.31	0.91	23,33	0.74	39.41	0.67
Di	46,98	1,48	45,66	2,42	38,55	1,35	44,04	1,21	39,12	2,11	41,13	1,77	41,09	1,49	32,84	1,26	30,31	0,19	37,70	0,51	37,13	1,35
	100	, -	100	7	100	y	100	7	100	,	100		100	, -	100	,	100	- , -	100	- ,-	100	y

Tableau 0.13. Formule structurale des clinopyroxènes. Les cations ont été normalisés sur la base de 6 oxygènes. Les fractions des cations ont ensuite été recalculées en fonction du site T, du site M1 et du site M2 des clinopyroxènes. Wo : wollastonite ; En : enstatite ; Fs : ferrosilite ; Ae : aegirine ; He : hédenbergite ; Di : diopside.

Tableau 0.3. Suite.

	AK01_01		AK01_03		AK01_04		AK02_01		AK02_02		AK02_03		AK02_04		AK05_01		AK05_02	
P (Gpa)	0,2		0,2		0,2		0,4		0,4		0,4		0,4		0,4		0,4	
$T(^{\circ}C)$	925		925		925		925		925		925		925		825		825	
Composition	Mix 8		Mix 8		Mix 8		Mix 8		Mix 8		Mix 8		Mix 8		Mix 8		Mix 8	
N C:	1 972	<u>σ</u>	4	<u>σ</u>	4	<u>σ</u>	1 766	<u>σ</u>	1 925	<u>σ</u>	1 696	<u>σ</u>	1 720	σ	1 500	<u>σ</u>	1 570	<u>σ</u>
51 Ti	0.039	0,020	0.054	0,012	0.052	0,035	0.074	0,050	0.057	0.024	0.115	0,020	0.108	0,092	0 104	0,002	0.133	0,031
Al	0,119	0.011	0.205	0.023	0.224	0.028	0.249	0.062	0,169	0.048	0.340	0.015	0.299	0.097	0.408	0.065	0.393	0.026
Fe ²⁺	0.385	0.030	0.361	0.007	0.346	0.010	0.326	0.018	0.429	0.058	0.313	0.016	0.348	0.015	0.403	0.023	0.505	0.027
Mn	0,008	0,004	0,009	0,002	0,009	0,003	0,010	0,007	0,012	0,003	0,005	0,004	0,004	0,003	0,007	0,002	0,008	0,002
Mg	0,579	0,016	0,586	0,029	0,605	0,024	0,577	0,048	0,496	0,055	0,546	0,029	0,522	0,049	0,472	0,043	0,388	0,022
Ca	0,947	0,005	0,948	0,012	0,945	0,007	0,941	0,009	0,934	0,010	0,927	0,012	0,925	0,013	0,937	0,004	0,902	0,012
Na	0,050	0,001	0,047	0,002	0,048	0,004	0,056	0,009	0,065	0,009	0,067	0,003	0,071	0,009	0,077	0,011	0,099	0,011
K	0,001	0,001	0,001	0,000	0,001	0,001	0,000	0,000	0,002	0,001	0,001	0,001	0,002	0,001	0,001	0,001	0,001	0,001
Cr	0,000	0,000	0,002	0,002	0,003	0,001	-	-	0,000	0,000	0,004	0,002	-	-	0,002	0,002	0,001	0,001
lotal	4		4		4		4		4		4		4		4		4	
Site T		σ		σ		σ		σ		σ		σ		σ		σ		σ
Si ⁴⁺	1,873	0,020	1,787	-	1,767	0,035	1,766	0,050	1,835	0,061	1,686	0,026	1,720	0,092	1,616	0,069	1,570	0,031
T-3+	0,117	0,012	0,201	0,012	0,219	0,028	0,233	0,050	0,153	0,050	0,314	0,026	0,280	0,092	0,378	0,071	0,393	0,026
re Total	0,010	0,009	0,012	0,020	0,015	0,011	0,002	0,003	0,012	0,018	- 2	-	-	-	0,005	0,005	0,037	0,019
	2	_	2		2	_	2	_	2		2		2	_	2		2	
Site MI		σ		σ		σ		σ		σ		σ		σ		σ		σ
$^{V1}Al^{3+}$	0,002	0,004	0,004	-	0,005	0,010	0,017	0,015	0,017	0,028	0,026	0,017	0,019	0,013	0,003	0,006	-	-
Fe ³	0,098	0,013	0,148	0,004	0,171	0,030	0,125	0,023	0,108	0,052	0,124	0,045	0,117	0,028	0,271	0,029	0,264	0,022
Cr^{3+}	0,039	0,005	0,054	0,021	0,052	0,010	0,075	0,019	0,051	0,026	0,115	0,034	0,109	0,047	0,095	0,026	0,134	0,017
CI Ti ³⁺	0,000	0,000	0,002	0,000	0,003	0,001	0,001	0,001	0,000	0,000	0,002	0,003	0,000	0,001	0,001	0,002	0,000	0,001
Mn ³⁺	-	-	-	0,002	-	-	-	-	•	-	-	-	-	-	-	-	-	-
Mg ²⁺	0,579	0,016	0,588	-	0,605	0,024	0.579	0,048	0,498	0,055	0,547	0,029	0,523	0,049	0,489	0,044	0,389	0,022
Fe ²⁺	0,277	0,019	0,201	0,029	0,159	0,031	0,200	0,025	0,311	0,071	0,183	0,038	0,229	0,019	0,135	0,021	0,206	0,025
Mn ²⁺	0,006	0,006	0,004	0,037	0,005	0,006	0,004	0,004	0,009	0,006	0,003	0,004	0,003	0,003	0,007	0,001	0,006	0,004
Total	1		1		1		1		1		1		1		1		1	
Site M2		σ		σ		σ		σ		σ		σ		σ		σ		σ
Mg^{2+}	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Fe ²⁺	0,001	0,002	0,002	-	0,002	0,003	0,001	0,001	0,000	0,000	0,007	0,008	0,002	0,003	-	-	0,000	0,000
Mn ²⁺	0,002	0,002	0,005	0,003	0,004	0,003	0,006	0,006	0,003	0,005	0,002	0,002	0,001	0,002	0,000	0,000	0,003	0,002
	0,946	0,005	0,946	0,006	0,945	0,007	0,937	0,009	0,930	0,010	0,925	0,012	0,924	0,013	0,925	0,007	0,897	0,012
	0,050	0,001	0,047	0,012	0,048	0,004	0,056	0,009	0,065	0,009	0,066	0,003	0,071	0,009	0,074	0,009	0,099	0,011
N Total	0,001	0,001	0,001	0,002	0,001	0,001	0,000	0,000	0,002	0,001	0,001	0,001	0,002	0,001	0,001	0,001	0,001	0,001
10tai	1	0.17	50.11	0.72	50.00	0.50	50.90	1.02	50.29	1.00	51.70	0.62	51.42	1.05	51.00	0.02	51.00	0.41
vvo En	49,03 30,32	0.17	30.98	0,72	31.98	0,59	31.13	1,02	50,28 26.67	2.86	30.48	1 48	51,43 28.98	1,25	26.03	0,92	21.00	1 37
Fs	20.05	0.96	18.91	1.04	18.02	0.46	18.07	1,72	23.04	3.22	17.73	1.04	19.59	0.92	22,28	1.45	26.98	1.38
10	100	0,20	100	1,0 /	100	0,10	100	1,17	100	3,22	100	1,0 1	100	0,72	100	1,10	100	1,50
Ae	12,99	0,56	12,27	0,49	11,84	0,24	12,02	0,84	14,73	1,70	12,27	0,38	13,36	0,70	14,72	0,95	17,58	0,82
He	40,39	0,32	40,19	0,52	39,82	0,35	39,99	0,58	41,39	0,90	40,10	0,52	40,56	0,50	41,37	0,55	42,45	0,43
Di	46,62	0,87	47,54	0,96	48,34	0,50	47,99	1,41	43,88	2,52	47,63	0,85	46,08	1,12	43,91	1,48	39,97	1,11
	100		100		100		100		100		100		100		100		100	

Tableau 0.3. Suite.

	AK05_03		AK05_04		AK05_05		T19_01		T19_02		T19_03		T19_04		AK06_01	
P (Gpa)	0,4		0,4		0,4		0,8		0,8		0,8		0,8		0,4	
$T(^{\circ}C)$	825 Min 9		825 Min 9		825 Min 9		850 M: 9		850 Mi 9		850 Mi 9		850 Mi 9		725	
Composition	MIX 8	-		~		~	MIX 8	-		~	MIX 8	~		-	MIX 8	~
Si	1 551	0.020	1 605	0.046	1 5/3	0.013	1 616	0.072	1 771	0.062	1 769	0.016	1 762	0.021	1 725	0.036
Ti	0.126	0.014	0.154	0.034	0.105	0.024	0.054	0.012	0.098	0.030	0.050	0.008	0.076	0.013	0.035	0.004
Al	0,394	0,033	0,376	0,074	0,389	0,023	0,341	0,101	0,316	0,058	0,227	0,016	0,280	0,018	0,249	0,018
Fe ²⁺	0,513	0,029	0,393	0,081	0,547	0,038	0,504	0,034	0,311	0,021	0,423	0,012	0,462	0,009	0,407	0,036
Mn	0,006	0,003	0,001	0,002	0,011	0,000	0,013	0,003	0,000	0,000	0,010	0,003	0,000	0,000	0,009	0,005
Mg	0,401	0,015	0,466	0,037	0,392	0,030	0,469	0,052	0,517	0,030	0,522	0,022	0,421	0,014	0,572	0,029
Ca	0,915	0,017	0,920	0,009	0,922	0,003	0,874	0,021	0,905	0,012	0,801	0,009	0,732	0,005	0,927	0,006
Na	0,093	0,014	0,083	0,012	0,090	0,010	0,127	0,015	0,082	0,014	0,196	0,010	0,268	0,005	0,074	0,007
K	0,000	0,001	0,002	0,003	0,001	0,001	0,002	0,002	0,000	0,000	0,001	0,001	0,000	0,000	0,001	0,001
Cr	0,000	0,000	0,000	0,000	0,000	0,000	-	-	-	-	0,001	0,001	-	-	0,000	0,000
Total	4		4		4		4		4		4		4		4	
Site T	1.551	σ	1 (11	σ	1.550	σ	1 (1)	σ	1 771	σ	1.7(0)	σ	1 7 (2)	σ	1 701	σ
51 IV A 13+	1,551	0,020	1,611	0,050	1,552	0,022	1,010	0,072	1,//1	0,062	1,769	0,010	1,/62	0,021	1,/91	0,090
AI Eo ³⁺	0,394	0,035	0,370	0,078	0,581	0,024	0,541	0,101	0,229	0,062	0,225	0,015	0,238	0,021	0,189	0,079
re Total	0,033	0,021	0,019	0,050	0,007	0,009	0,044	0,055	-	-	0,008	0,015	- 2	-	0,021	0,018
Site M1	2	~	2	~	2		4	~	2	~	2	-	2	-	2	~
	-		0.011	0.017	_	-	_	0,000	0.087	0.007	0.004	0.005	0.041	0 004	0.004	0 009
Fe ³⁺	0.292	0.028	0.122	0.042	0.343	0.053	0.407	0.029	0.029	0.025	0.326	0.028	0.314	0.019	0.344	0.092
Ti ⁴⁺	0.128	0.014	0.169	0.012	0.104	0.020	0.054	0.014	0.098	0.030	0.050	0.008	0.076	0.013	0.033	0.007
Cr ³⁺	0,000	0,000	-	-	0,000	0,000	0,000	0,001	-	-	0,000	0,001	-	-	0,000	0,000
Ti ³⁺	-	-	-	-	-	-	-	-	0,000	-	-	-	-	-	-	-
Mn ³⁺	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0,002	0,006
Mg^{2+}	0,404	0,015	0,484	0,014	0,401	0,025	0,472	0,053	0,517	0,030	0,524	0,022	0,422	0,014	0,522	0,078
Fe ²⁺	0,170	0,028	0,214	0,032	0,142	0,019	0,056	0,015	0,269	0,016	0,091	0,046	0,147	0,021	0,086	0,054
Mn ²⁺	0,006	0,002	-	-	0,010	0,003	0,011	0,004	-	-	0,006	0,005	-	-	0,009	0,007
Total	1		1		1		1		1		1		1		1	
Site M2		σ		σ		σ		σ		σ		σ		σ		σ
Nig Fo ²⁺	-	-	0.003	- 0.005	-	-	-	-	- 0.013	0.007	- 000	- 0.001	- 0.001	0.002	-	-
re Mn ²⁺	0.000	0.001	0,005	0,005	-	-	0.002	0.002	0,015	0,007	0,000	0,001	0,001	0,002	0.002	0.003
Ca^{2+}	0,000	0,001	0.918	0.011	0.906	0.003	0,002	0.021	0 905	0.012	0,004	0,004	0 732	0.005	0,002	0,003
Na ⁺	0.092	0.014	0.077	0.005	0,092	0.010	0.127	0.015	0.082	0.012	0,196	0.010	0,752	0,005	0,199	0.163
K ⁺	0.000	0.001	0.001	0.003	0.002	0.001	0.002	0.002	-	-	0.001	0.001	-	-	0.001	0.001
Total	1	.,	1	-,	1	0,002	1	-,	1		1	.,	1		1	.,
Wo	51,39	0,68	52,51	0,87	51,11	0,35	48,09	1,13	52,23	0,83	45,83	0,41	45,34	0,16	49,08	0,26
En	22,51	0,68	26,62	2,43	21,72	1,79	25,84	2,89	29,84	1,36	29,86	1,03	26,09	0,73	30,30	1,47
Fs	26,10	1,25	20,87	3,26	27,17	2,13	26,06	2,02	17,93	0,98	24,31	1,23	28,58	0,63	20,61	1,53
	100		100		100		100		100		100		100		100	
Ae	17,02	0,89	13,53	0,39	17,37	1,01	18,00	0,65	12,96	0,50	19,41	0,65	23,70	0,31	19,95	7,86
He	42,38	0,19	40,91	0,31	42,57	0,40	40,85	1,13	40,11	0,45	38,60	0,34	38,80	0,25	38,64	1,92
Di	40,60	0,92	45,56	0,65	40,06	1,37	41,15	1,66	46,93	0,90	41,99	0,93	37,50	0,48	41,40	6,11
	100		100		100		100		100		100		100		100	

Tableau 0.3. Suite.

	AK06_02		PCPC1_01		PCPC1_02		PCPC5_01		PCPC5_02		PCPC5_03	
P (Gpa)	0,4		0,8		0,8		0,8		0,8		0,8	
T (°C)	725		850		850		850		850		850	
Composition	Mix 9		PhCbn1		PhCbn1		PhCbn4		PhCbn4		PhCbn4	
N	6	σ	5	σ	5	σ	6	σ	6	σ	6	σ
Si	1,943	0,012	1,727	0,072	1,692	0,076	1,556	0,085	1,610	0,093	1,630	0,034
Ti	0,026	0,005	0,050	0,015	0,046	0,016	0,057	0,007	0,044	0,020	0,025	0,004
Al	0,080	0,007	0,203	0,068	0,263	0,080	0,366	0,071	0,337	0,051	0,343	0,029
Fe ²⁺	0,580	0,017	0,587	0,038	0,585	0,039	0,568	0,089	0,493	0,076	0,488	0,030
Mn	0,014	0,005	0,019	0,003	0,022	0,004	0,017	0,004	0,017	0,006	0,016	0,003
Mg	0,366	0,012	0,417	0,039	0,397	0,052	0,432	0,085	0,478	0,044	0,491	0,037
Ca	0,539	0,026	0,682	0,024	0,720	0,079	0,840	0,020	0,854	0,014	0,846	0,010
Na	0,447	0,027	0,314	0,021	0,272	0,068	0,163	0,017	0,160	0,017	0,162	0,013
K	0,003	0,002	-	-	-	-	-	-	-	-	-	-
Cr	0,000	0,000	0,001	0,001	0,002	0,004	0,000	0,000	0,008	0,003	-	-
Total	4		4		4		4		4		4	
Site T		σ		σ		σ		σ		σ		σ
Si ⁺⁺	1,943	0,012	1,727	0,072	1,692	0,076	1,555	0,085	1,612	0,093	1,630	0,034
	0,057	0,012	0,203	0,068	0,263	0,080	0,366	0,071	0,327	0,059	0,343	0,029
Fe ³⁺		0,000	0,071	0,035	0,045	0,032	0,079	0,021	0,061	0,042	0,027	0,024
Total	2		2		2		2		2		2	
<u></u>												
Site MI	0.022	σ		σ		σ		σ	0.010	σ	0.001	σ
	0,023	0,013	-	-	-	-	-	-	0,010	0,024	0,001	0,001
re T:4+	0,451	0,042	0,470	0,070	0,489	0,039	0,465	0,071	0,420	0,001	0,430	0,039
Γ_{r}^{3+}	0,020	0,005	0,030	0,015	0,040	0,010	0,038	0,007	0,043	0,021	0,025	0,004
Cr T: ³⁺	0,000	0,000	0,001	0,001	0,002	0,004	0,000	0,000	0,004	0,005	-	-
11 Mn ³⁺	-	-	0.013	- 0.019	-	-	0.016	0.026	0.024	- 0.047	0.022	- 0.049
Ma^{2+}	0.366	0.012	0,013	0,018	0 308	0.053	0,010	0,020	0,054	0,047	0,032	0,048
Fo ²⁺	0,300	0,012	0,413	0,041	0,598	0,033	0,431	0,085	0,408	0,005	0,477	0,023
Mn ²⁺	0,140	0,029	0,043	0,049	0,032	0,022	0,012	0,015	0,020	0,031	0,010	0,022
Total	1	0,000	1	0,015	1	0,009	-	-	-	-	1	-
Site M2	1		1		1		1		1	~	1	
Mg^{2+}	-	-	0.007	0.010	-	-	0.006	0.010	0.018	0.029	0.018	0.033
Fe ²⁺	0.003	0.004	0.000	-	0.001	0.003	-	-	-	-	-	-
Mn ²⁺	0,008	0,005	0,003	0,004	0,009	0,008	0,002	0,005	0,000	-	-	-
Ca ²⁺	0.539	0.026	0.678	0.024	0.718	0.079	0.830	0.020	0.827	0.014	0.824	0.010
Na ⁺	0.447	0.027	0.312	0.021	0.272	0.068	0.161	0.017	0.154	0.016	0.158	0.013
\mathbf{K}^+	0.003	0.002	-	-	-	-	0.001	0.002	0.000	-	0.000	-
Total	1	<i>.</i>	1		1		1	<i>.</i>	1		1	
Wo	35,93	1,13	42,02	1,15	42,78	3,33	47,67	1,41	48,90	1,13	47,52	1,31
En	24,42	0,70	25,73	2,40	23,65	2,99	24,55	5,07	27,34	2,14	27,60	2,92
Fs	39,65	1,45	32,25	3,10	33,57	5,01	27,77	4,95	23,76	2,26	24,88	4,06
	100		100		100		100		100		100	
Ae	33,66	1,38	26,54	1,85	25,48	3,89	20,01	1,57	18,41	1,40	19,06	0,56
He	36,67	0,41	38,30	0,71	39,49	1,28	40,82	1,76	40,06	0,74	40,00	0,88
Di	29,67	1,11	35,17	2,33	35,04	3,63	39,17	3,27	41,52	1,97	40,94	1,40
	100		100		100		100		100		100	

C.2. Grenat

C.2.1. Composition des grenats

Tableau 0.14. Composition en éléments majeurs (% poids) et en éléments traces (ppm) des grenats. σ : écart-type sur la moyenne.

	T14_0		T14_0		T17_01		AK01_0		AK05_0	AK05_0		AK06_0	
P (Gpa)	0,8		0,8		0,8		0,2		0,4	0,4		0,4	
T (°C)	975		975		925		925		825	825		725	
Compositio	Mix8		Mix8		Mix8		Mix8		Mix8	Mix8		Mix8	
Ν	5	σ	5	σ	5	σ	3	σ	1	3	σ	6	σ
SiO ₂	29,37	1,4	28,52	1,10	27,41	0,60	26,62	0,40	29,16 -	31,66	0,71	29,64	0,67
TiO ₂	8,34	1,4	10,94	1,92	11,66	1,29	17,86	0,45	11,23 -	7,95	1,38	9,35	0,55
Al_2O_3	1,65	0,8	1,12	0,72	3,35	0,14	2,76	0,05	2,02 -	3,41	0,50	2,89	0,23
Cr_2O_3	0,16	0,1	0,034	0,00	< LD	-	0,059	0,04	< LD ·	< LD	-	< LD	-
FeO	23,09	1,1	23,29	2,09	22,08	0,42	16,93	0,84	20,39 -	19,54	1,08	21,34	0,49
MnO	0,29	0,2	0,98	1,43	0,30	0,15	0,26	0,07	0,49 -	0,23	0,11	0,24	0,08
MgO	0,90	0,0	0,84	0,14	0,75	0,07	1,46	0,22	0,66 ·	1,23	0,47	0,96	0,12
CaO	30,16	0,4	30,27	1,21	29,06	0,22	30,87	0,09	31,06 -	32,09	0,73	31,24	0,41
Na ₂ O	0,19	0,1	0,34	0,17	0,30	0,07	0,13	0,05	0,35 -	0,14	0,02	0,17	0,06
K ₂ O	0,08	0,0	0,06	0,04	0,04	0,03	< LD	-	< LD ·	< LD	-	0,06	0,02
Cr_2O_3	0,16	0,1	0,03	0,01	< LD	-	0,06	0,05	< LD ·	< LD	-	< LD	-
Nb_2O_5	< LD	-	0,10	0,13	0,09	0,05	0,17	0,16	0,33 -	0,17	0,11	< LD	-
BaO	< LD	-	0,18	0,09	0,42	0,21	0,31	0,04	0,15 -	0,13	0,12	0,19	0,02
SrO	0,07	0,0	< LD	-	0,03	0,02	< LD	-	0,06 ·	0,05	0,06	< LD	-
F	0,23	0,0	0,17	0,12	< LD	-	< LD	-	0,13 ·	< LD	-	< LD	-
Cl	0,04	0,0	< LD		0,031	0,024	< LD	-	< LD ·	< LD	-	0,012	0,006
Total	94,55		97,02		95,59		97,47		96,11	96,59		96,09	
Ν					5	σ	1		6	5	σ	4	σ
Sc	-	-	-	-	-	-	-	-			-	-	-
Ti	-	-	-	-	65433,4	5572,4	104128,6	-		39236,1	7788,2	48186,6	1583,0
Cr	-	-	-	-	107,26	69,32	676,42	-		75,31	96,78	224,68	124,26
Mn	-	-	-	-	3469,63	109,06	2391,88	-		2938,71	764,81	1934,19	159,24
Sr	-	-	-	-	75,97	1,21	80,02	-		65,20	15,63	86,30	25,70
Zr	-	-	-	-	-	-	-	-		-	-	-	-
ND	-	-	-	-	186,99	22,63	114/,10	-		1243,44	531,52	193,26	50,73
Ba	-	-	-	-	<ld< th=""><th>-</th><th><ld< th=""><th>-</th><th></th><th><ld< th=""><th>-</th><th>26,39</th><th>17,60</th></ld<></th></ld<></th></ld<>	-	<ld< th=""><th>-</th><th></th><th><ld< th=""><th>-</th><th>26,39</th><th>17,60</th></ld<></th></ld<>	-		<ld< th=""><th>-</th><th>26,39</th><th>17,60</th></ld<>	-	26,39	17,60
La	-	-	-	-	14,19	1,04	27,85	-		25,08	6,26	19,05	3,79
Ce	-	-	-	-	63,47	3,64	101,58	-		97,55	17,54	82,83	9,54
PT NJ	-	-	-	-	16,12	3,82 5 5 9	122,58	-		109,48	10,19	87,90	4,80
Na Sm	-	-	-	-	107,79	5,58 19.12	251,52	-		195,04	24,00	108,89	15,00
Sm E	-	-	-	-	5/5,55	18,15	400,54	-		299,75	32,40	294,23	37,20
Eu	-	-	-	-	202,72 744 54	41,38	542.65	-		259.96	45,01	214,00	26.60
Gu	-	-	-	-	672.21	07,01 86.22	542,05 627.02	-		255 27	40,70	422.49	121.01
10	-	-	-	-	072,21 991.01	00,33 147 10	701.80	-		402.27	55,42 69.76	432,40 532.93	65 10
Dy V	-	-	-	-	065 12	147,19	791,69 805 25	-		405,27	74.00	562.66	74 25
I Ua	-	-	-	-	905,12	150,00	705.09	-		440,60	76,50	551.40	74,23 99.46
по Fr	-	-	-	-	930,47	100,28	781 72	-		301 50	73.01	506.44	00,40
Eľ Vh	-	-	-	-	930,39	176 35	704,75	-		420.81	73,01	536 10	63 77
10 1 u	-	-	-	-	708 12	132.25	722,23 507 30			3// 06	72,32 56 16	15/ 86	61.05
Lu Hf	-	-	-	-		155,25		-		54,00	50,10		01,05
ni Ta	-	-	-	-	-	-	-			-	-	-	-
18	-	-	-	-	-	-	-	-		-	-	-	-

Tableau 0.4. Suite.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	_
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 202
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,302
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0,479
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0,370
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 570
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,378
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,038
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,277
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,340
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-
r < LD	-
Total 96,57 <ld< th=""> - <ld< th=""> -</ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<>	-
N 5 σ 6 σ 7 σ 5 σ 6 σ 5 Sc - - 848,89 180,18 916,82 112,10 587,81 92,02 609,81 87,53 858,51 Ti 64079,16 2451,32 22793,64 3929,87 21562,87 3343,53 17410,87 1906,23 15895,52 1492,90 20703,62 Cr 620,23 298,23 286,05 159,67 469,06 119,07 146,39 46,56 143,58 71,96 659,35 Mn 1684,78 26,67 4831,75 1066,02 4139,58 520,76 4754,60 349,17 3659,83 775,65 3685,37	-
Sc - 848,89 180,18 916,82 112,10 587,81 92,02 609,81 87,53 858,51 Ti 64079,16 2451,32 22793,64 3929,87 21562,87 3343,53 17410,87 1906,23 15895,52 1492,90 20703,62 Cr 620,23 298,23 286,05 159,67 469,06 119,07 146,39 46,56 143,58 71,96 659,35 Mn 1684,78 26,67 4831,75 1066,02 4139,58 520,76 4754,60 349,17 3659,83 775,65 3685,37	
Ti 64079,16 2451,32 22793,64 3929,87 21562,87 3343,53 17410,87 1906,23 15895,52 1492,90 20703,62 Cr 620,23 298,23 286,05 159,67 469,06 119,07 146,39 46,56 143,58 71,96 659,35 Mn 1684,78 26,67 4831,75 1066,02 4139,58 520,76 4754,60 349,17 3659,83 775,65 3685,37	151.25
Cr 620,23 298,23 286,05 159,67 469,06 119,07 146,39 46,56 143,58 71,96 659,35 Mn 1684,78 26,67 4831,75 1066,02 4139,58 520,76 4754,60 349,17 3659,83 775,65 3685,37	2238.85
Mn 1684.78 26.67 4831.75 1066.02 4139.58 520.76 4754.60 349.17 3659.83 775.65 3685.37	204 54
1004,10 20,01 4001,10 1000,02 4107,00 020,10 4004,00 047,11 0007,00 11,1,0,0 000,00 11,1,0,0	647 15
Sr 6878 2.45 9256 22.04 74.03 12.25 83.95 16.11 57.30 4.79 88.09	15 38
7r	318 79
Nb 371.62 38.13 1538.84 321.57 1446.69 519.94 2051.13 447.50 1183.63 313.11 22572.76	533 31
Ba 527 545 $<$ 1D - 24.99 3.05 $<$ 1D - $<$ 1D - $<$ 1D	-
La 1742 0.91 4050 1108 2978 515 44.09 1351 1753 3.91 30.09	8 4 1
Ce 70.56 3.53 128.61 32.84 158.82 36.61 161.97 22.50 130.35 15.73 149.89	27.14
Pr 82 48 3 40 162 06 35 10 174 10 32 47 162 25 26 70 103 64 8 73 134 04	28.43
Nd 16816 6.86 24642 5626 26236 4323 23302 3681 16065 681 20181	35.82
Sm 35640 1280 347 38 7284 46930 6446 31308 4944 29656 1693 35985	45.72
Eu 467.80 20.41 440.28 90.25 556.28 87.20 409.56 59.22 333.67 40.17 375.17	59.65
Gd 345.28 51.81 414.13 64.20 472.11 73.94 379.22 75.54 333.19 35.99 367.26	64.88
Tb 568.26 19.64 407.21 95.25 553.66 92.19 381.54 53.11 313.34 35.24 413.62	65.69
Dy 742.51 35.22 508.18 140.85 703.26 111.99 450.31 74.91 386.70 47.32 488.21	83.71
Y 775.57 25.83 543.67 155.55 705.97 108.42 469.54 85.59 423.51 52.67 516.17	66.52
Ho 797.87 28.38 504.31 110.04 719.44 116.50 426.59 66.77 402.41 41.16 505.55	90.57
Er 741.47 26.12 488.32 139.22 694.61 142.89 411.58 67.93 376.96 42.85 506.30	83.38
Yb 755.08 23.87 559.52 141.62 783.27 141.93 474.81 82.41 441.32 41.56 553.44	91.15
Lu 609.13 15.58 478.60 130.05 660.62 100.20 413.92 78.81 395.93 32.53 482.67	81.89
Hf 61.22 11.01 79.30 22.48 126.49 36.09 77.00 14.70 89.20	13.40
Ta 47.52 19.95 53.97 15.64 83.71 17.40 72.32 10.05 181.86	42.37

C.2.2. Formule structurale des grenats

Tableau 0.15. Formule structurale des grenats. Normalisation des cations sur la base de 12 O. Alm : almandin ; And : andradite ; Gro : grossulaire ; Pyr : pyrope ; Spe : spessartine ; Uva : uvarovite.

	T14_01		T14_02		T17_01		AK05_03	AK05_05		AK06_01		AK06_02	
P (Gpa)	0,8		0,8		0,8		0,4	0,4		0,4		0,4	
T (°Ĉ)	975		975		925		825	825		725		725	
Composition	Mix 8		Mix 8		Mix 8		Mix 8	Mix 8		Mix 8		Mix 9	
Ν	5	σ	5	σ	6	σ	1	3	σ	6	σ	11	σ
Si	2,61	0,10	2,50	0,07	2,43	0,07	2,54	2,69	0,07	2,56	0,06	2,48	0,05
Ti	0,56	0,10	0,72	0,13	0,77	0,08	0,74	0,51	0,09	0,61	0,04	0,73	0,06
Al	0,17	0,09	0,12	0,07	0,35	0,02	0,21	0,34	0,05	0,30	0,02	0,23	0,01
Cr	0,00	0,00	-	-	-	-	-	-	-	-	-	-	-
Fe ³⁺	1,38	0,06	1,38	0,07	1,20	0,04	1,25	1,21	0,05	1,27	0,01	1,29	0,04
Fe ²⁺	0,34	0,04	0,33	0,10	0,41	0,02	0,23	0,18	0,04	0,28	0,03	0,26	0,05
Mn	0,02	0,02	0,04	0,08	0,02	0,01	0,04	0,02	0,01	0,02	0,01	0,01	0,01
Mg	0,12	0,01	0,11	0,02	0,10	0,01	0,09	0,16	0,06	0,12	0,02	0,15	0,02
Ca	2,87	0,03	2,84	0,08	2,75	0,02	2,90	2,92	0,07	2,90	0,04	2,88	0,03
Total	8,06	0,46	8,03	0,62	8,02	0,26	7,99	8,03	0,43	8,05	0,22	8,03	0,27
Alm	-	-	-	-	-	-	-	-	-	-	-	-	-
And	88,89	5,43	92,35	4,69	77,63	0,97	85,79	77,96	3,17	81,17	1,22	84,76	1,04
Gro	5,01	5,08	1,17	1,63	17,34	1,43	8,67	14,62	1,25	12,83	0,98	8,04	0,46
Pvr	5,13	0,50	4,60	1,00	4,25	0.38	3,90	6,71	2,56	5,28	0,58	6,65	0,78
Spe	0.89	0.64	1.88	3.66	0.78	0.57	1.64	0.71	0.33	0.73	0.25	0.55	0.26
Uva	0.07	0.16	-	-	-	-	-	-	-	-	-	-	-
Total	100	- , -	100		100		100	100		100		100	
	AK01 03		PCPC1_01		PCPC1 02		PCPC5_01		PCPC5 02		PCPC5 03		
P (Cna)	AK01_03		PCPC1_01		PCPC1_02		PCPC5_01		PCPC5_02		PCPC5_03		
P (Gpa) T (°C)	AK01_03 0,2 925		PCPC1_01 0,8 850		PCPC1_02 0,8 850		PCPC5_01 0,8 850		PCPC5_02 0,8 850		PCPC5_03 0,8 850		
P (Gpa) T (°C) Composition	AK01_03 0,2 925 Mix 8		PCPC1_01 0,8 850 PhChn1		PCPC1_02 0,8 850 PhCbn1		PCPC5_01 0,8 850 PhChn4		PCPC5_02 0,8 850 PhCbn4		PCPC5_03 0,8 850 PhCbp4		
P (Gpa) T (°C) Composition N	AK01_03 0,2 925 Mix 8 3	đ	PCPC1_01 0,8 850 PhCbn1 4	đ	PCPC1_02 0,8 850 PhCbn1 4	đ	PCPC5_01 0,8 850 PhCbn4 4	đ	PCPC5_02 0,8 850 PhCbn4 6	đ	PCPC5_03 0,8 850 PhCbn4 3	G	
P (Gpa) T (°C) Composition N	AK01_03 0,2 925 Mix 8 3	σ	PCPC1_01 0,8 850 PhCbn1 4 2.84	σ	PCPC1_02 0,8 850 PhCbn1 4 2 87	<u>σ</u>	PCPC5_01 0,8 850 PhCbn4 4 2 82	<u>σ</u>	PCPC5_02 0,8 850 PhCbn4 6 2 79	<u>σ</u> 0.07	PCPC5_03 0,8 850 PhCbn4 3 2.86	<u>σ</u> 0.01	
P (Gpa) T (°C) Composition N Si Ti	AK01_03 0,2 925 Mix 8 3 2,27 1 14	σ 0,04 0.03	PCPC1_01 0,8 850 PhCbn1 4 2,84 0 29	σ 0,13 0,11	PCPC1_02 0,8 850 PhCbn1 4 2,87 0 23	σ 0,02 0.03	PCPC5_01 0,8 850 PhCbn4 4 2,82 0 24	σ 0,09 0.11	PCPC5_02 0,8 850 PhCbn4 6 2,79 0 30	σ 0,07 0.08	PCPC5_03 0,8 850 PhCbn4 3 2,86 0,19	σ 0,01 0.03	
P (Gpa) T (°C) Composition N Si Ti Al	AK01_03 0,2 925 Mix 8 3 2,27 1,14 0 28	σ 0,04 0,03 0.01	PCPC1_01 0,8 850 PhCbn1 4 2,84 0,29 0,39	σ 0,13 0,11 0,09	PCPC1_02 0,8 850 PhCbn1 4 2,87 0,23 0,30	σ 0,02 0,03 0,07	PCPC5_01 0,8 850 PhCbn4 4 2,82 0,24 0,45	σ 0,09 0,11 0,10	PCPC5_02 0,8 850 PhCbn4 6 2,79 0,30 0,41	σ 0,07 0,08 0.06	PCPC5_03 0,8 850 PhCbn4 3 2,86 0,19 0,47	σ 0,01 0,03 0,04	
P (Gpa) T (°C) Composition N Si Ti Al Cr	AK01_03 0,2 925 Mix 8 3 2,27 1,14 0,28	o 0,04 0,03 0,01	PCPC1_01 0,8 850 PhCbn1 4 2,84 0,29 0,39	σ 0,13 0,11 0,09	PCPC1_02 0,8 850 PhCbn1 4 2,87 0,23 0,23 0,30	o 0,02 0,03 0,07	PCPC5_01 0,8 850 PhCbn4 4 2,82 0,24 0,45	σ 0,09 0,11 0,10	PCPC5_02 0,8 850 PhCbn4 6 2,79 0,30 0,41	σ 0,07 0,08 0,06	PCPC5_03 0,8 850 PhCbn4 3 2,86 0,19 0,47	σ 0,01 0,03 0,04	
P (Gpa) T (°C) Composition N Si Ti Al Cr Fo ³⁺	AK01_03 0,2 925 Mix 8 3 2,27 1,14 0,28 - 1,09	σ 0,04 0,03 0,01 -	PCPC1_01 0,8 850 PhCbn1 4 2,84 0,29 0,39 - 1 23	σ 0,13 0,11 0,09 - 0,10	PCPC1_02 0,8 850 PhCbn1 4 2,87 0,23 0,23 0,30 - 1 33	σ 0,02 0,03 0,07	PCPC5_01 0,8 850 PhCbn4 4 2,82 0,24 0,24 0,45 - 1 23	σ 0,09 0,11 0,10 -	PCPC5_02 0,8 850 PhCbn4 6 2,79 0,30 0,41 - 1 24	σ 0,07 0,08 0,06 - 0.04	PCPC5_03 0,8 850 PhCbn4 3 2,86 0,19 0,47 - 1 22	σ 0,01 0,03 0,04 - 0.06	
P (Gpa) T (°C) Composition N Si Ti Al Cr Fe ³⁺ Fe ²⁺	AK01_03 0,2 925 Mix 8 3 2,27 1,14 0,28 - 1,09 0,12	σ 0,04 0,03 0,01 - 0,01 0,05	PCPC1_01 0,8 850 PhCbn1 4 2,84 0,29 0,39 - 1,23 0,24	σ 0,13 0,11 0,09 - 0,10 0,09	PCPC1_02 0,8 850 PhCbn1 4 2,87 0,23 0,30 - 1,33 0,28	σ 0,02 0,03 0,07 - 0,06 0,04	PCPC5_01 0,8 850 PhCbn4 4 2,82 0,24 0,45 - 1,23 0,19	σ 0,09 0,11 0,10 - 0,06 0,01	PCPC5_02 0,8 850 PhCbn4 6 2,79 0,30 0,41 - 1,24 0,15	σ 0,07 0,08 0,06 - 0,04 0.03	PCPC5_03 0,8 850 PhCbn4 3 2,86 0,19 0,47 - 1,22 0,19	σ 0,01 0,03 0,04 - 0,06 0.05	
P (Gpa) T (°C) Composition N Si Ti Al Cr Fe ³⁺ Fe ²⁺ Mn	AK01_03 0,2 925 Mix 8 3 2,27 1,14 0,28 - 1,09 0,12 0,02	σ 0,04 0,03 0,01 - 0,01 0,05 0,01	PCPC1_01 0,8 850 PhCbn1 4 2,84 0,29 0,39 - 1,23 0,24 0,06	σ 0,13 0,11 0,09 - 0,10 0,09 0,01	PCPC1_02 0,8 850 PhCbn1 4 2,87 0,23 0,30 - 1,33 0,28 0,06	σ 0,02 0,03 0,07 - 0,06 0,04 0,02	PCPC5_01 0,8 850 PhCbn4 4 2,82 0,24 0,45 - 1,23 0,19 0,05	σ 0,09 0,11 0,10 - 0,06 0,01 0,01	PCPC5_02 0,8 850 PhCbn4 6 2,79 0,30 0,41 - 1,24 0,15 0,04	σ 0,07 0,08 0,06 - 0,04 0,03 0,01	PCPC5_03 0,8 850 PhCbn4 3 2,86 0,19 0,47 - 1,22 0,19 0,03	σ 0,01 0,03 0,04 - 0,06 0,05 0,00	
P (Gpa) T (°C) Composition N Si Ti Al Cr Fe ³⁺ Fe ²⁺ Mn	AK01_03 0,2 925 Mix 8 3 2,27 1,14 0,28 - 1,09 0,12 0,02 0,19	σ 0,04 0,03 0,01 - 0,01 0,05 0,01 0,03	PCPC1_01 0,8 850 PhCbn1 4 2,84 0,29 0,39 - 1,23 0,24 0,06 0,19	σ 0,13 0,11 0,09 - 0,10 0,09 0,01 0,03	PCPC1_02 0,8 850 PhCbn1 4 2,87 0,23 0,30 - 1,33 0,28 0,06 0,10	g 0,02 0,03 0,07 - 0,06 0,04 0,02 0,01	PCPC5_01 0,8 850 PhCbn4 4 2,82 0,24 0,45 - 1,23 0,19 0,05 0,17	σ 0,09 0,11 0,10 - 0,06 0,01 0,01 0,02	PCPC5_02 0,8 850 PhCbn4 6 2,79 0,30 0,41 - 1,24 0,15 0,04 0,16	σ 0,07 0,08 0,06 - 0,04 0,03 0,01 0.02	PCPC5_03 0,8 850 PhCbn4 3 2,86 0,19 0,47 - 1,22 0,19 0,03 0,13	σ 0,01 0,03 0,04 - 0,06 0,05 0,00 0,04	
P (Gpa) T (°C) Composition N Si Ti Al Cr Fe ³⁺ Fe ²⁺ Mn Mg Ca	AK01_03 0,2 925 Mix 8 3 2,27 1,14 0,28 - 1,09 0,12 0,02 0,19 2,82	σ 0,04 0,03 0,01 - 0,01 0,05 0,01 0,03 0,01	PCPC1_01 0,8 850 PhCbn1 4 2,84 0,29 0,39 - 1,23 0,24 0,06 0,19 2,82	σ 0,13 0,11 0,09 - 0,10 0,09 0,01 0,03 0,10	PCPC1_02 0,8 850 PhCbn1 4 2,87 0,23 0,30 - 1,33 0,28 0,06 0,10 2,93	σ 0,02 0,03 0,07 - 0,06 0,04 0,02 0,01 0,04	PCPC5_01 0,8 850 PhCbn4 4 2,82 0,24 0,45 - 1,23 0,19 0,05 0,17 2,93	σ 0,09 0,11 0,10 - 0,06 0,01 0,01 0,02 0,02	PCPC5_02 0,8 850 PhCbn4 6 2,79 0,30 0,41 - 1,24 0,15 0,04 0,16 2,99	σ 0,07 0,08 0,06 - 0,04 0,03 0,01 0,02 0,02	PCPC5_03 0,8 850 PhCbn4 3 2,86 0,19 0,47 - 1,22 0,19 0,03 0,13 2,99	σ 0,01 0,03 0,04 - 0,06 0,05 0,00 0,04 0,02	
P (Gpa) T (°C) Composition N Si Ti Al Cr Fe ³⁺ Fe ²⁺ Mn Mg Ca Total	AK01_03 0,2 925 Mix 8 3 2,27 1,14 0,28 - 1,09 0,12 0,02 0,19 2,82 7,91	b 0,04 0,03 0,01 - 0,01 0,05 0,01 0,03 0,01 0,17	PCPC1_01 0,8 850 PhCbn1 4 2,84 0,29 0,39 - 1,23 0,24 0,06 0,19 2,82 8,06	σ 0,13 0,11 0,09 - 0,10 0,09 0,01 0,03 0,10 0,66	PCPC1_02 0,8 850 PhCbn1 4 2,87 0,23 0,30 - 1,33 0,28 0,06 0,10 2,93 8,09	g 0,02 0,03 0,07 - 0,06 0,04 0,02 0,01 0,04 0,29	PCPC5_01 0,8 850 PhCbn4 4 2,82 0,24 0,45 - 1,23 0,19 0,05 0,17 2,93 8,10	σ 0,09 0,11 0,10 - 0,06 0,01 0,01 0,02 0,02 0,42	PCPC5_02 0,8 850 PhCbn4 6 2,79 0,30 0,41 - 1,24 0,15 0,04 0,16 2,99 8,09	σ 0,07 0,08 0,06 - 0,04 0,03 0,01 0,02 0,02 0,33	PCPC5_03 0,8 850 PhCbn4 3 2,86 0,19 0,47 - 1,22 0,19 0,03 0,13 2,99 8,10	σ 0,01 0,03 0,04 - 0,06 0,05 0,00 0,04 0,02 0,25	
P (Gpa) T (°C) Composition N Si Ti Al Cr Fe ³⁺ Fe ²⁺ Mn Mg Ca Total	AK01_03 0,2 925 Mix 8 3 2,27 1,14 0,28 - 1,09 0,12 0,02 0,19 2,82 7,91	g 0,04 0,03 0,01 - 0,01 0,05 0,01 0,03 0,01 0,17	PCPC1_01 0,8 850 PhCbn1 4 2,84 0,29 0,39 - 1,23 0,24 0,06 0,19 2,82 8,06	σ 0,13 0,11 0,09 - 0,10 0,09 0,01 0,03 0,10 0,66	PCPC1_02 0,8 850 PhCbn1 4 2,87 0,23 0,30 - 1,33 0,28 0,06 0,10 2,93 8,09	5 0,02 0,03 0,07 - 0,06 0,04 0,02 0,01 0,04 0,29	PCPC5_01 0,8 850 PhCbn4 4 2,82 0,24 0,45 - 1,23 0,19 0,05 0,17 2,93 8,10	σ 0,09 0,11 0,10 - 0,06 0,01 0,01 0,02 0,02 0,02 0,42	PCPC5_02 0,8 850 PhCbn4 6 2,79 0,30 0,41 - 1,24 0,15 0,04 0,16 2,99 8,09	g 0,07 0,08 0,06 - 0,04 0,03 0,01 0,02 0,02 0,02 0,33	PCPC5_03 0,8 850 PhCbn4 3 2,86 0,19 0,47 - 1,22 0,19 0,03 0,13 2,99 8,10	o 0,01 0,03 0,04 - 0,06 0,05 0,00 0,04 0,02 0,25	
P (Gpa) T (°C) Composition N Si Ti Al Cr Fe ³⁺ Fe ²⁺ Mn Mg Ca Total Alm	AK01_03 0,2 925 Mix 8 3 2,27 1,14 0,28 - 1,09 0,12 0,02 0,19 2,82 7,91	g 0,04 0,03 0,01 - 0,01 0,05 0,01 0,03 0,01 0,17	PCPC1_01 0,8 850 PhCbn1 4 2,84 0,29 0,39 - 1,23 0,24 0,06 0,19 2,82 8,06 - 75.02	σ 0,13 0,11 0,09 - 0,10 0,09 0,01 0,03 0,10 0,66	PCPC1_02 0,8 850 PhCbn1 4 2,87 0,23 0,30 - 1,33 0,28 0,06 0,10 2,93 8,09	g 0,02 0,03 0,07 - 0,06 0,04 0,02 0,01 0,04 0,29	PCPC5_01 0,8 850 PhCbn4 4 2,82 0,24 0,45 - 1,23 0,19 0,05 0,17 2,93 8,10 - 72,45	σ 0,09 0,11 0,10 - 0,06 0,01 0,01 0,02 0,02 0,02 0,42	PCPC5_02 0,8 850 PhCbn4 6 2,79 0,30 0,41 - 1,24 0,15 0,04 0,16 2,99 8,09	g 0,07 0,08 0,06 - 0,04 0,03 0,01 0,02 0,02 0,33	PCPC5_03 0,8 850 PhCbn4 3 2,86 0,19 0,47 - 1,22 0,19 0,03 0,13 2,99 8,10	o 0,01 0,03 0,04 - 0,06 0,05 0,00 0,04 0,02 0,25	
P (Gpa) T (°C) Composition N Si Ti Al Cr Fe ³⁺ Fe ²⁺ Mn Mg Ca Total Alm And Cr	AK01_03 0,2 925 Mix 8 3 2,27 1,14 0,28 - 1,09 0,12 0,02 0,19 2,82 7,91	g 0,04 0,03 0,01 - 0,01 0,05 0,01 0,03 0,01 0,17	PCPC1_01 0,8 850 PhCbn1 4 2,84 0,29 0,39 - 1,23 0,24 0,06 0,19 2,82 8,06 - 75,92 13,59	g 0,13 0,11 0,09 - 0,10 0,09 0,01 0,03 0,10 0,66	PCPC1_02 0,8 850 PhCbn1 4 2,87 0,23 0,30 - 1,33 0,28 0,06 0,10 2,93 8,09 - - 81,70	g 0,02 0,03 0,07 - 0,06 0,04 0,02 0,01 0,04 0,29	PCPC5_01 0,8 850 PhCbn4 4 2,82 0,24 0,45 - 1,23 0,19 0,05 0,17 2,93 8,10 - 73,45 17 (0)	σ 0,09 0,11 0,10 - 0,06 0,01 0,01 0,02 0,02 0,02 0,42	PCPC5_02 0,8 850 PhCbn4 6 2,79 0,30 0,41 - 1,24 0,15 0,04 0,16 2,99 8,09	g 0,07 0,08 0,06 - 0,04 0,03 0,01 0,02 0,02 0,02 0,33	PCPC5_03 0,8 850 PhCbn4 3 2,86 0,19 0,47 - 1,22 0,19 0,03 0,13 2,99 8,10	o 0,01 0,03 0,04 - 0,06 0,05 0,00 0,04 0,02 0,25	
P (Gpa) T (°C) Composition N Si Ti Al Cr Fe ³⁺ Fe ²⁺ Mn Mg Ca Total Alm And Gro	AK01_03 0,2 925 Mix 8 3 2,27 1,14 0,28 - 1,09 0,12 0,02 0,19 2,82 7,91	g 0,04 0,03 0,01 - 0,01 0,05 0,01 0,03 0,01 0,17	PCPC1_01 0,8 850 PhCbn1 4 2,84 0,29 0,39 - 1,23 0,24 0,06 0,19 2,82 8,06 - 75,92 13,58 7.97	g 0,13 0,11 0,09 - 0,10 0,09 0,01 0,03 0,10 0,66	PCPC1_02 0,8 850 PhCbn1 4 2,87 0,23 0,30 - 1,33 0,28 0,06 0,10 2,93 8,09 - - 81,70 11,86 2,20	g 0,02 0,03 0,07 - 0,06 0,04 0,02 0,01 0,04 0,29	PCPC5_01 0,8 850 PhCbn4 4 2,82 0,24 0,45 - 1,23 0,19 0,05 0,17 2,93 8,10 - 73,45 17,60 (2)	σ 0,09 0,11 0,10 - 0,06 0,01 0,02 0,02 0,02 0,02 0,42 - 5,34 5,39 0,77	PCPC5_02 0,8 850 PhCbn4 6 2,79 0,30 0,41 - 1,24 0,15 0,04 0,16 2,99 8,09 - 75,07 16,74	g 0,07 0,08 0,06 - 0,04 0,03 0,01 0,02 0,02 0,02 0,33	PCPC5_03 0,8 850 PhCbn4 3 2,86 0,19 0,47 - 1,22 0,19 0,03 0,13 2,99 8,10	o 0,01 0,03 0,04 - 0,06 0,05 0,00 0,04 0,02 0,25	
P (Gpa) T (°C) Composition N Si Ti Al Cr Fe ³⁺ Fe ²⁺ Mn Mg Ca Total Alm And Gro Pyr	AK01_03 0,2 925 Mix 8 3 2,27 1,14 0,28 - 1,09 0,12 0,02 0,19 2,82 7,91 - 79,74 10,28 9,07 0,02	g 0,04 0,03 0,01 - 0,01 0,05 0,01 0,03 0,01 0,17	PCPC1_01 0,8 850 PhCbn1 4 2,84 0,29 0,39 - 1,23 0,24 0,06 0,19 2,82 8,06 - 75,92 13,58 7,87 2,62	σ 0,13 0,11 0,09 - 0,10 0,09 0,01 0,03 0,10 0,66	PCPC1_02 0,8 850 PhCbn1 4 2,87 0,23 0,30 - 1,33 0,28 0,06 0,10 2,93 8,09 - 81,70 11,86 3,90 2,52	g 0,02 0,03 0,07 - 0,06 0,04 0,02 0,01 0,04 0,29	PCPC5_01 0,8 850 PhCbn4 4 2,82 0,24 0,45 - 1,23 0,19 0,05 0,17 2,93 8,10 - 73,45 17,60 6,91 2,24	σ 0,09 0,11 0,10 - 0,06 0,01 0,02 0,02 0,02 0,42 - 5,34 5,39 0,77 0,54	PCPC5_02 0,8 850 PhCbn4 6 2,79 0,30 0,41 - 1,24 0,15 0,04 0,16 2,99 8,09 - 75,07 16,74 6,43 1,75	g 0,07 0,08 0,06 - 0,04 0,03 0,01 0,02 0,02 0,33 - 3,34 3,75 0,90	PCPC5_03 0,8 850 PhCbn4 3 2,86 0,19 0,47 - 1,22 0,19 0,03 0,13 2,99 8,10	o 0,01 0,03 0,04 - 0,06 0,05 0,00 0,04 0,02 0,25	
P (Gpa) T (°C) Composition N Si Ti Al Cr Fe ³⁺ Fe ²⁺ Mn Mg Ca Total Alm And Gro Pyr Spe Spe	AK01_03 0,2 925 Mix 8 3 2,27 1,14 0,28 - 1,09 0,12 0,02 0,19 2,82 7,91 - 79,74 10,28 9,07 0,90	g 0,04 0,03 0,01 - 0,01 0,05 0,01 0,03 0,01 0,17 - 0,37 1,41 1,42 0,26	PCPC1_01 0,8 850 PhCbn1 4 2,84 0,29 0,39 - 1,23 0,24 0,06 0,19 2,82 8,06 - 75,92 13,58 7,87 2,63	σ 0,13 0,11 0,09 - 0,10 0,09 0,01 0,03 0,10 0,66 - 5,77 7,06 1,04 0,35	PCPC1_02 0,8 850 PhCbn1 4 2,87 0,23 0,30 - 1,33 0,28 0,06 0,10 2,93 8,09 - 81,70 11,86 3,90 2,53	g 0,02 0,03 0,07 - 0,06 0,04 0,02 0,01 0,04 0,29 - 4,13 4,06 0,59 0,69	PCPC5_01 0,8 850 PhCbn4 4 2,82 0,24 0,45 - 1,23 0,19 0,05 0,17 2,93 8,10 - 73,45 17,60 6,91 2,04	σ 0,09 0,11 0,10 - 0,06 0,01 0,02 0,02 0,02 0,42 - 5,34 5,39 0,77 0,54	PCPC5_02 0,8 850 PhCbn4 6 2,79 0,30 0,41 - 1,24 0,15 0,04 0,16 2,99 8,09 - 75,07 16,74 6,43 1,75	g 0,07 0,08 0,06 - 0,04 0,03 0,01 0,02 0,02 0,02 0,33 - 3,34 3,75 0,90 0,36	PCPC5_03 0,8 850 PhCbn4 3 2,86 0,19 0,47 - 1,22 0,19 0,03 0,13 2,99 8,10 - 72,34 21,00 5,32 1,34	o 0,01 0,03 0,04 - 0,06 0,05 0,00 0,04 - 2,58 1,21 1,45 0,18	
P (Gpa) T (°C) Composition N Si Ti Al Cr Fe ³⁺ Fe ²⁺ Mn Mg Ca Total Alm And Gro Pyr Spe Uva Total	AK01_03 0,2 925 Mix 8 3 2,27 1,14 0,28 - 1,09 0,12 0,02 0,19 2,82 7,91 - 79,74 10,28 9,07 0,90 -	g 0,04 0,03 0,01 - 0,01 0,05 0,01 0,03 0,01 0,17 - 0,37 1,41 1,42 0,26 -	PCPC1_01 0,8 850 PhCbn1 4 2,84 0,29 0,39 - 1,23 0,24 0,06 0,19 2,82 8,06 - 75,92 13,58 7,87 2,63 - 100	g 0,13 0,11 0,09 - 0,10 0,09 0,01 0,03 0,10 0,66 - 5,77 7,06 1,04 0,35 -	PCPC1_02 0,8 850 PhCbn1 4 2,87 0,23 0,30 - 1,33 0,28 0,06 0,10 2,93 8,09 - 81,70 11,86 3,90 2,53 - 100	g 0,02 0,03 0,07 - 0,06 0,04 0,02 0,01 0,04 0,29 - 4,13 4,06 0,59 0,69 -	PCPC5_01 0,8 850 PhCbn4 4 2,82 0,24 0,45 - 1,23 0,19 0,05 0,17 2,93 8,10 - 73,45 17,60 6,91 2,04 - 100	σ 0,09 0,11 0,10 - 0,06 0,01 0,02 0,02 0,02 0,02 0,42 - 5,34 5,39 0,77 0,54 -	PCPC5_02 0,8 850 PhCbn4 6 2,79 0,30 0,41 - 1,24 0,15 0,04 0,16 2,99 8,09 - 75,07 16,74 6,43 1,75 -	g 0,07 0,08 0,06 - 0,04 0,03 0,01 0,02 0,02 0,02 0,33 - 3,34 3,75 0,90 0,36 -	PCPC5_03 0,8 850 PhCbn4 3 2,86 0,19 0,47 - 1,22 0,19 0,03 0,13 2,99 8,10 - 72,34 21,00 5,32 1,34 -	o 0,01 0,03 0,04 - 0,06 0,05 0,00 0,04 0,02 0,25	

C.3. Composition de la calcite

	T17_02		T18_01		T18_0 2		T18_03		T18_04		AK02_0 1		AK02_0 2		AK05_0 1		AK05_0 2		AK05_0 3	
P (Gpa) T (°C) Composition N	0,8 925 Mix8 8	a	1,5 925 Mix8 5	a	1,5 925 Mix8 2	a	1,5 925 Mix8 7	a	1,5 925 Mix8 8	a	0,4 925 Mix8 5	a	0,4 925 Mix8	đ	0,4 825 Mix8 7	a	0,4 825 Mix8	σ	0,4 825 Mix8 7	c.
SiO ₂	0,03	0,01	0,02	0,02	< LD	-	0,04	0,02	0,03	0,03	0,02	0,02	0,03	0,02	0,06	0,04	< LD	-	0,15	0,21
Al_2O_3	0,04	0,03	0,02	0,01	< LD	-	< LD	-	< LD	-	0,02	0,01	< LD	-	< LD	-	0,10	0,17	< LD	
FeO	0,35	0,18	0,80	0,27	1,64	0,3 1	0,36	0,06	0,68	0,22	0,25	0,16	0,24	0,09	0,31	0,11	0,25	0,07	0,20	0,14
MnO	0,08	0,06	0,19	0,12	0,48	0,0 2	0,17	0,10	0,16	0,13	0,08	0,08	< LD	-	0,10	0,04	0,14	0,05	0,10	0,07
MgO	0,07	0,05	0,41	0,10	1,17	0,3 5	0,41	0,04	0,48	0,11	0,09	0,02	0,07	0,02	0,03	0,02	0,11	0,06	0,09	0,03
CaO	53,39	1,43	54,08	0,88	50,43	0,3 3	54,85	1,80	55,16	0,77	54,87	2,75	56,25	0,62	55,66	0,90	53,40	0,70	54,61	1,58
Na ₂ O	0,21	0,10	0,14	0,05	1,32	0,1 6	0,10	0,04	0,09	0,03	0,05	0,01	0,05	0,02	0,05	0,03	0,27	0,27	0,20	0,25
K ₂ O	0,10	0,05	0,05	0,04	< LD	-	0,01	0,00	0,06	0,03	0,03	0,04	0,05	0,05	0,01	0,01	0,08	0,05	0,04	0,03
P ₂ O ₅	0,10	0,09	< LD	-	0,33	0,0 9	< LD	-	0,03	0,02	0,02	0,03	0,04	0,01	< LD	-	< LD	-	0,03	0,03
Nb ₂ O ₅ BaO	< LD 0,35	- 0,18	< LD 0,24	- 0,04	< LD < LD	-	- 0,21	- 0,05	< LD 0,25	- 0,03	< LD 0,17	- 0,07	< LD 0,19	- 0,05	< LD 0,32	0,12	< LD 0,27	- 0,07	< LD 0,26	- 0,08
SrO	1,86	0,48	1,47	0,16	0,97	0,2	1,50	0,15	1,53	0,22	1,77	0,31	1,79	0,20	2,29	0,30	1,85	0,13	2,13	0,12
F Total	0,14 56,74	0,08	< LD 57,41	-	< LD 56,34	-	0,22 57,85	0,15	< LD 58,51	-	0,06 57,46	0,12	0,34 59,06	0,26	0,12 59,03	0,05	< LD 56,48	-	0,15 57,99	0,10
N	4	σ	3	σ			4	σ	5	σ	4	σ	3	σ	7	σ	7	σ	6	σ
Ti	-	-	< LD	-	-	-	< LD	-	- - I D	-	39,93	7,920	< LD	-	- - 1 D	-	- - 1 D	-	- - 1 D	-
Cr Mn	-	-	-	- 344,3	-	-	-	-	< LD	- 272,5	- 216.99	-	-	-	< LD	-	< LD	- 110,0	< LD	-
Sr	15412,9	90,03 2877,5	1448,39	5 776,2	-	-	13066,7	371,6	13738,2	5 696,9	13320.93	362,2	13781.54	190,2	17952.36	43,30 1722,2	14605.24	7 798,8	15057.31	621,1
Nb	0.36	0.08	0 33	9	_	_	1 0 20	0.03	0.32	4	_	2	_	4	0.15	4	0.35	8 0.28	_	3
Ba	2165,94	535,70	2401,77	287,2	-	-	1908,03	151,9	2031,35	159,6	1269,21	49,02	1694,70	132,5	2252,77	441,74	1817,99	171,2	1602,91	209,0
La	465.45	19.29	441.09	5 27.08	-	-	279.74	o 11.40	316.41	о 19.72	172.01	6.72	214.31	3 14.50	223.14	55.07	207.40	5 10.03	172.60	0 24.50
Ce	451,86	20,97	519,14	38,98	-	-	317,05	12,49	357,49	27,51	161,49	3,53	197,76	12,44	222,62	48,37	196,95	12,81	158,46	22,97
Pr	252,55	9,87	283,27	20,89	-	-	195,52	6,00	215,76	22,47	93,01	3,16	114,20	6,61	122,29	23,64	112,77	8,78	87,50	12,71
Nd	261,38	9,11	321,63	1,20	-	-	214,51	6,91	237,64	23,45	102,84	3,19	124,61	8,49	130,24	24,81	122,58	10,59	93,54	14,62
Sm	195,05	7,16	287,03	51,99	-	-	190,83	10,17	197,24	24,03	80,03	4,48	94,66	3,35	107,59	22,28	95,53	11,27	69,62	11,05
Eu	197,74	9,18	231,49	48,58 137 7	-	-	193,33	8,12	219,93	34,07	81,80	4,23	101,00	4,10	109,70	21,10	90,91	12,10	/0,99	10,58
Gd	226,59	9,85	434,54	9	-	-	176,84	17,76	171,05	32,90	87,77	7,14	85,80	4,15	136,75	41,72	98,27	13,86	70,75	11,42

Tableau 0.16. Composition en éléments majeurs (% poids) et en éléments traces (ppm) de la calcite. σ : écart-type sur la moyenne.

Tb	144,47	8,26	199,50	32,98	-	-	149,67	1,90	164,88	27,51	55,48	3,35	64,32	3,56	81,02	16,37	79,49	13,59	51,05	8,89
Dy	159,30	11,07	268,31	26,94	-	-	177,60	2,29	188,93	38,00	57,21	2,75	68,70	3,83	91,61	19,46	87,41	17,11	57,20	10,52
Y	185,56	13,67	316,80	42,50	-	-	200,80	6,65	210,77	41,11	65,54	3,47	78,77	4,88	110,88	26,59	109,26	24,18	70,35	14,65
Но	150,02	11,88	262,08	22,51	-	-	167,10	3,69	177,71	38,00	53,22	2,22	63,27	4,15	88,07	19,38	86,34	18,42	53,83	10,79
Er	127,85	11,57	250,56	41,38	-	-	153,77	2,65	164,46	36,65	44,44	1,94	53,01	4,24	75,32	16,25	75,59	17,47	45,85	10,23
Yb	98,17	10,67	231,60	29,90	-	-	133,90	7,00	144,85	41,83	35,90	1,77	40,86	4,25	60,03	11,24	63,96	0,05	37,06	8,82
Lu	78,11	9,25	196,57	25,38	-	-	115,72	6,33	122,35	36,70	28,53	1,51	32,79	3,77	45,17	8,93	50,82	14,98	29,49	7,52

Tableau 0.6. Suite.

	AK05_04		AK05_05		T19_01		T19_02		T19_03		T19_04		AK06_01		AK06_02		AK08_03	
P (Gpa)	0,4		0,4		0,8		0,8		0,8		0,8		0,4		0,4		0,4	
T (°C)	825		825		850		850		850		850		725		725		725	
Composition	Mix8		Mix8		Mix8		Mix8		Mix8		Mix8		Mix8		Mix9		Mix10	
Ν	6	σ	5	σ	6	σ	4	σ	6	σ	6	σ	8	σ	6	σ	6	σ
SiO ₂	< LD	-	< LD	-	0,03	0,01	0,01	4	0,05	0,03	0,04	0,03	0,03	0,03	0,04	0,04	0,02	0,03
Al_2O_3	< LD	-	< LD	-	< LD	0,02	< LD	0,01	< LD	-	< LD	-	0,03	0,02	< LD	-	< LD	-
FeO	0,45	0,05	0,10	0,06	0,33	0,08	0,80	-	0,25	0,12	0,42	0,08	0,22	0,08	0,12	0,08	0,35	0,08
MnO	< LD	-	< LD	-	0,13	0,06	< LD	0,04	0,12	0,09	0,17	0,05	0,30	0,15	0,17	0,04	< LD	-
MgO	0,08	0,03	0,06	0,02	0,22	0,05	< LD	-	0,21	0,04	0,18	0,10	0,12	0,02	0,10	0,03	0,06	0,02
CaO	54,82	1,50	52,89	0,97	55,90	1,06	56,73	0,04	54,07	1,21	55,15	1,20	52,98	0,87	53,88	0,61	57,25	1,03
Na ₂ O	0,08	0,02	0,05	0,02	0,05	0,03	0,08	0,59	0,05	0,03	0,10	0,05	0,07	0,04	0,11	0,12	< LD	-
K_2O	< LD	-	< LD	-	< LD	-	< LD	0,01	0,04	0,04	0,06	0,03	0,05	0,03	0,10	0,11	< LD	-
P_2O_5	< LD	-	< LD	-	0,02	0,02	< LD	-	< LD	-	0,03	0,02	< LD	-	< LD	-	-	-
Nb ₂ O ₅	< LD	-	< LD	-	< LD	-	< LD	-	< LD	-	< LD	-	< LD	-	< LD	-	< LD	-
BaO	< LD	-	0,31	0,02	0,26	0,10	0,81	-	0,24	0,05	0,34	0,05	0,32	0,08	0,27	0,04	0,16	0,04
SrO	1,22	0,37	2,72	0,31	2,06	0,27	-	-	1,51	0,26	2,11	0,47	2,35	0,97	1,56	0,48	1,32	0,15
F	< LD		< LD	-	-	-	< LD	-	< LD	-	< LD	-	< LD	-	< LD	-	< LD	-
Total	56,65		56,11		59,00		58,44		56,54		58,58		56,47		56,40		59,16	
Ν	6		2	σ	8	σ			6	σ	7	σ	5	σ	7	σ	2	σ
Ti	-	-	< LD	-	4,60	0,13	-	-	-	-	-	-	-	-	< LD	-	< LD	-
Cr	-	-	-	-	4,03	1,27	-	-	-	-	< LD	-	< LD	-	< LD	-	-	-
Mn	-	-	225,32	58,19	928,61	124,07	-	-	527,10	101,35	689,27	182,66	1314,80	109,23	487,82	97,70	939,80	
Sr	-	-	17128,96	1329,71	15762,43	1939,70	-	-	12639,69	928,47	16429,89	1397,16	15573,45	2037,56	15718,40	558,21	10738,75	41,66
Nb	-	-	< LD	-	0,15	0,10	-	-	< LD	-	0,23	0,10	< LD	-	0,07	0,02	< LD	-
Ba	-	-	1839,01	149,14	2414,69	302,65	-	-	1907,79	187,88	2240,68	284,42	2253,44	199,43	1731,31	130,18	912,78	244,98
La	-	-	182,64	34,34	302,42	16,49	-	-	246,92	26,18	280,97	42,16	266,00	136,37	202,59	20,04	98,23	19,08
Ce	-	-	158,48	30,21	311,38	20,56	-	-	244,88	32,33	274,90	43,59	260,05	104,34	181,45	16,88	105,48	18,07
Pr	-	-	76,57	7,98	183,21	11,55	-	-	128,40	18,02	154,41	25,02	128,78	45,16	91,82	7,79	60,69	11,75
Nd	-	-	69,16	0,13	187,65	13,78	-	-	147,34	19,43	165,24	25,82	122,28	34,29	81,25	7,51	62,76	14,52
Sm	-	-	39,29	6,50	147,30	14,49	-	-	113,72	16,48	130,01	23,74	68,76	12,28	33,02	3,92	56,82	10,14
Eu	-	-	32,61	10,28	152,15	22,38	-	-	135,43	21,24	129,35	23,94	63,16	14,51	23,40	3,08	56,48	11,55
Gd	-	-	39,43	6,14	139,05	12,60	-	-	116,68	16,10	125,69	22,78	75,25	22,89	52,53	5,96	64,16	11,03
Tb	-	-	20,94	8,06	122,34	15,62	-	-	85,66	13,44	110,79	24,66	43,30	14,48	9,35	1,95	49,68	12,43
Dy	-	-	20,18	8,90	135,86	21,09	-	-	100,48	15,81	116,47	27,97	43,71	16,96	7,62	1,90	57,99	13,58
Ŷ	-	-	22,07	8,79	170,67	29,18	-	-	118,61	19,51	143,73	38,70	57,35	22,60	11,06	2,55	68,71	16,37
Но	-	-	17,99	7,52	137,60	22,99	-	-	101,10	16,91	115,05	30,41	42,59	19,21	6,09	1,68	60,43	13,23
Er	-	-	14,47	6,04	128,49	21,36	-	-	93,00	17,02	103,19	29,54	39,07	17,28	5,61	1,71	55,63	10,03
Yb	-	-	11,19	3,93	129,12	23,78	-	-	81,20	18,29	91,31	32,85	36,18	16,97	4,90	1,33	54,16	12,77
Lu	_		8,84	2,72	112,97	20,78	_		69,42	16,40	73,73	28,61	34,64	15,60	4,78	1,27	47,37	10,54

Tableau 0.6. Suite.

P (Gpa) T (°C) Composition	PCPC3_01 0,8 850 PhCbn2		PCPC3_03 0,8 850 PhCbn2		PCPC4_01 0,8 850 PhCbn3		PCPC4_02 0,8 850 PhCbn3		PCPC4_03 0,8 850 PhCbn3		PCPC5_01 0,8 850 PhCbn4	
N	3	σ	1	σ	5	σ	4	σ	5	σ	3	σ
SiO ₂	<ld< th=""><th>-</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th><th>-</th><th>-</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th></ld<></th></ld<></th></ld<></th></ld<></th></ld<>	-	<ld< th=""><th>-</th><th><ld< th=""><th>-</th><th>-</th><th>-</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th></ld<></th></ld<></th></ld<></th></ld<>	-	<ld< th=""><th>-</th><th>-</th><th>-</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th></ld<></th></ld<></th></ld<>	-	-	-	<ld< th=""><th>-</th><th><ld< th=""><th>-</th></ld<></th></ld<>	-	<ld< th=""><th>-</th></ld<>	-
Al ₂ O ₃	<ld< th=""><th>-</th><th>-</th><th>-</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th></ld<></th></ld<></th></ld<></th></ld<></th></ld<>	-	-	-	<ld< th=""><th>-</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th></ld<></th></ld<></th></ld<></th></ld<>	-	<ld< th=""><th>-</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th></ld<></th></ld<></th></ld<>	-	<ld< th=""><th>-</th><th><ld< th=""><th>-</th></ld<></th></ld<>	-	<ld< th=""><th>-</th></ld<>	-
FeO	<ld< th=""><th>-</th><th>0,45</th><th>-</th><th>0,54</th><th>0,32</th><th>0,28</th><th>0,01</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th></ld<></th></ld<></th></ld<>	-	0,45	-	0,54	0,32	0,28	0,01	<ld< th=""><th>-</th><th><ld< th=""><th>-</th></ld<></th></ld<>	-	<ld< th=""><th>-</th></ld<>	-
MnO	<ld< th=""><th>-</th><th>0,40</th><th>-</th><th>0,58</th><th>0,11</th><th>0,96</th><th>0,78</th><th>0,54</th><th>0,15</th><th><ld< th=""><th>-</th></ld<></th></ld<>	-	0,40	-	0,58	0,11	0,96	0,78	0,54	0,15	<ld< th=""><th>-</th></ld<>	-
MgO	0,66	0,17	0,61	-	0,30	0,03	0,57	0,51	0,48	0,17	0,21	0,05
CaO	52,00	1,44	57,19	-	51,18	0,68	51,69	3,91	48,45	1,91	52,10	1,35
Na ₂ O	0,44	0,27	1,67	-	0,28	0,26	0,38	0,45	0,27	0,06	<ld< th=""><th>-</th></ld<>	-
K ₂ O	0,19	0,04	0,19	-	0,24	0,01	0,63	0,65	<ld< th=""><th>-</th><th><ld< th=""><th>-</th></ld<></th></ld<>	-	<ld< th=""><th>-</th></ld<>	-
P_2O_5	0,49	0,17	0,36	-	0,24	0,14	0,79	0,48	0,63	0,23	0,35	0,09
Nb ₂ O ₅	-	-	-	-	<ld< th=""><th>-</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th><th>-</th><th>-</th></ld<></th></ld<></th></ld<>	-	<ld< th=""><th>-</th><th><ld< th=""><th>-</th><th>-</th><th>-</th></ld<></th></ld<>	-	<ld< th=""><th>-</th><th>-</th><th>-</th></ld<>	-	-	-
BaO	1,57	0,33	1,50	-	1,35	0,16	1,23	0,42	1,45	0,30	0,98	0,17
SrO	3,74	0,27	3,76	-	3,07	0,71	2,48	0,35	3,64	0,28	3,18	0,26
F	<ld< th=""><th>-</th><th><ld< th=""><th>-</th><th>0,63</th><th>0,11</th><th>0,94</th><th>0,12</th><th>1,58</th><th>1,00</th><th><ld< th=""><th>-</th></ld<></th></ld<></th></ld<>	-	<ld< th=""><th>-</th><th>0,63</th><th>0,11</th><th>0,94</th><th>0,12</th><th>1,58</th><th>1,00</th><th><ld< th=""><th>-</th></ld<></th></ld<>	-	0,63	0,11	0,94	0,12	1,58	1,00	<ld< th=""><th>-</th></ld<>	-
Total	59,09		66,11		58,41		59,95		57,04		56,82	

C.4. Composition de la titanite

	T17_01		T17_02		AK02_01		AK02_02		AK02_04		AK05_01		AK05_02		AK05_03		AK05_04	
P (Gpa)	0,8		0,8		0,4		0,4		0,4		0,4		0,4		0,4		0,4	
T (°C)	925		925		925		925		925		825		825		825		825	
Composition	Mix8		Mix8		Mix8		Mix8		Mix8		Mix8		Mix8		Mix8		Mix8	
Ν	4	σ	5	σ	5	σ	6	σ	5	σ	7	σ	6	σ	6	σ	4	σ
SiO ₂	29,66	0,38	28,92	0,58	29,45	0,40	29,43	0,49	29,42	0,45	28,92	0,46	29,65	0,26	29,36	0,39	29,12	0,62
TiO ₂	35,42	0,54	34,45	0,89	36,77	0,40	35,72	0,50	36,63	0,74	32,24	0,76	32,69	0,30	32,45	0,50	34,60	1,54
Al_2O_3	1,23	0,12	2,20	0,68	1,62	0,22	2,07	0,17	1,84	0,08	1,24	0,14	1,19	0,17	1,25	0,17	1,05	0,33
FeO	2,34	0,38	1,24	0,51	1,00	0,07	1,22	0,11	1,13	0,17	3,88	0,62	3,48	0,14	3,77	0,38	2,78	0,67
MnO	-	-	0,09	0,08	<ld< th=""><th>-</th><th><ld< th=""><th>-</th><th>0,07</th><th>0,04</th><th><ld< th=""><th>-</th><th>0,06</th><th>0,03</th><th>0,08</th><th>0,09</th><th><ld< th=""><th>-</th></ld<></th></ld<></th></ld<></th></ld<>	-	<ld< th=""><th>-</th><th>0,07</th><th>0,04</th><th><ld< th=""><th>-</th><th>0,06</th><th>0,03</th><th>0,08</th><th>0,09</th><th><ld< th=""><th>-</th></ld<></th></ld<></th></ld<>	-	0,07	0,04	<ld< th=""><th>-</th><th>0,06</th><th>0,03</th><th>0,08</th><th>0,09</th><th><ld< th=""><th>-</th></ld<></th></ld<>	-	0,06	0,03	0,08	0,09	<ld< th=""><th>-</th></ld<>	-
MgO	<ld< th=""><th>-</th><th>0,05</th><th>0,03</th><th>0,01</th><th>0,01</th><th>0,03</th><th>0,02</th><th>0,03</th><th>0,01</th><th><ld< th=""><th>-</th><th>0,04</th><th>0,01</th><th>0,03</th><th>0,02</th><th><ld< th=""><th>-</th></ld<></th></ld<></th></ld<>	-	0,05	0,03	0,01	0,01	0,03	0,02	0,03	0,01	<ld< th=""><th>-</th><th>0,04</th><th>0,01</th><th>0,03</th><th>0,02</th><th><ld< th=""><th>-</th></ld<></th></ld<>	-	0,04	0,01	0,03	0,02	<ld< th=""><th>-</th></ld<>	-
CaO	27,42	0,32	26,84	0,33	27,76	0,27	27,65	0,34	28,16	0,27	27,38	0,23	27,01	0,32	27,06	0,38	26,87	0,51
Na ₂ O	<ld< th=""><th>-</th><th>0,09</th><th>0,04</th><th>0,07</th><th>0,02</th><th>0,14</th><th>0,09</th><th>0,03</th><th>0,01</th><th>0,15</th><th>0,04</th><th>0,31</th><th>0,29</th><th>0,33</th><th>0,30</th><th>0,26</th><th>0,04</th></ld<>	-	0,09	0,04	0,07	0,02	0,14	0,09	0,03	0,01	0,15	0,04	0,31	0,29	0,33	0,30	0,26	0,04
K ₂ O	<ld< th=""><th>-</th><th>0,04</th><th>0,02</th><th>0,02</th><th>0,02</th><th>0,08</th><th>0,06</th><th>0,02</th><th>0,02</th><th>0,05</th><th>0,03</th><th>0,10</th><th>0,11</th><th>0,11</th><th>0,04</th><th><ld< th=""><th>-</th></ld<></th></ld<>	-	0,04	0,02	0,02	0,02	0,08	0,06	0,02	0,02	0,05	0,03	0,10	0,11	0,11	0,04	<ld< th=""><th>-</th></ld<>	-
P_2O_5	<ld< th=""><th>-</th><th>0,05</th><th>0,03</th><th>0,03</th><th>0,04</th><th><ld< th=""><th>-</th><th>0,14</th><th>0,04</th><th>0,07</th><th>0,06</th><th>0,07</th><th>0,06</th><th>0,05</th><th>0,05</th><th><ld< th=""><th>-</th></ld<></th></ld<></th></ld<>	-	0,05	0,03	0,03	0,04	<ld< th=""><th>-</th><th>0,14</th><th>0,04</th><th>0,07</th><th>0,06</th><th>0,07</th><th>0,06</th><th>0,05</th><th>0,05</th><th><ld< th=""><th>-</th></ld<></th></ld<>	-	0,14	0,04	0,07	0,06	0,07	0,06	0,05	0,05	<ld< th=""><th>-</th></ld<>	-
Nb ₂ O ₅	<ld< th=""><th>-</th><th>1,65</th><th>0,39</th><th>0,59</th><th>0,29</th><th>0,70</th><th>0,15</th><th>0,44</th><th>0,15</th><th>2,01</th><th>0,33</th><th>1,51</th><th>0,40</th><th>1,05</th><th>0,34</th><th>1,79</th><th>0,29</th></ld<>	-	1,65	0,39	0,59	0,29	0,70	0,15	0,44	0,15	2,01	0,33	1,51	0,40	1,05	0,34	1,79	0,29
BaO	<ld< th=""><th>-</th><th>1,01</th><th>0,71</th><th>0,77</th><th>0,05</th><th>0,83</th><th>0,12</th><th>0,90</th><th>0,10</th><th>0,58</th><th>0,16</th><th>0,64</th><th>0,06</th><th>0,69</th><th>0,09</th><th><ld< th=""><th>-</th></ld<></th></ld<>	-	1,01	0,71	0,77	0,05	0,83	0,12	0,90	0,10	0,58	0,16	0,64	0,06	0,69	0,09	<ld< th=""><th>-</th></ld<>	-
SrO	<ld< th=""><th>-</th><th>0,06</th><th>0,04</th><th>0,07</th><th>0,04</th><th>0,16</th><th>0,01</th><th>0,10</th><th>0,05</th><th>0,11</th><th>0,10</th><th>0,09</th><th>0,04</th><th>0,05</th><th>0,02</th><th><ld< th=""><th>-</th></ld<></th></ld<>	-	0,06	0,04	0,07	0,04	0,16	0,01	0,10	0,05	0,11	0,10	0,09	0,04	0,05	0,02	<ld< th=""><th>-</th></ld<>	-
F	<ld< th=""><th>-</th><th>0,66</th><th>0,27</th><th>0,52</th><th>0,17</th><th>0,54</th><th>0,60</th><th>0,28</th><th>0,09</th><th>0,28</th><th>0,22</th><th>0,34</th><th>0,39</th><th>0,49</th><th>0,19</th><th><ld< th=""><th>-</th></ld<></th></ld<>	-	0,66	0,27	0,52	0,17	0,54	0,60	0,28	0,09	0,28	0,22	0,34	0,39	0,49	0,19	<ld< th=""><th>-</th></ld<>	-
Total	96,06		97,35		98,76		98,59		99,26		96,93		97,21		96,78		96,46	
Ν			3	σ	6	σ	2	σ	7	σ	7	σ	5	σ	4	σ		
Cr	-	-	70,95	14,24	38,81	10,98			36,00	18,43	33,51	9,80	51,64	19,18	26,21		-	-
Mn	-	-	526,32	61,76	257,42	20,22	268,70	24,56	180,20	11,05	444,37	239,20	541,00	284,11	338,00	92,6	-	-
Sr	-	-	846,79	206,26	730,91	44,46	777,06	61,59	722,16	47,81	1053,48	139,01	999,49	55,94	941,89	96,6	-	-
Nb	-	-	8272,16	1530,66	3335,44	402,54	4241,63	1318,83	3342,50	573,07	11425,78	1228,35	9345,76	1808,91	7258,98	1114,7	-	-
Ba	-	-	-	-	10,43	4,85	14,28	2,45	2,49	1,11	93,72	129,35	-	-	<ld< th=""><th>-</th><th>-</th><th>-</th></ld<>	-	-	-
La	-	-	267,98	6,46	175,11	21,99	193,80	13,31	130,17	13,70	346,94	38,83	291,00	23,14	288,13	49,3	-	-
Ce	-	-	514,89	19,22	347,19	45,72	368,64	10,38	260,32	23,33	717,22	60,43	584,57	25,69	563,48	91,0	-	-
Pr	-	-	429,13	17,65	288,22	36,87	314,51	8,73	215,81	18,04	553,83	51,91	479,28	16,28	440,85	61,5	-	-
Nd	-	-	573,01	4,99	399,43	50,17	428,54	31,35	304,14	21,63	709,02	63,91	651,78	25,79	581,85	61,7	-	-
Sm	-	-	644,29	25,30	467,98	52,58	531,19	0,71	347,21	22,36	839,99	90,86	773,83	30,18	652,77	45,8	-	-
Eu	-	-	701,10	34,57	470,98	64,65	516,46	2,72	350,43	23,02	907,55	82,21	816,85	39,61	726,31	58,7	-	-
Gd	-	-	812,51	26,35	506,75	84,23	406,39	9,93	310,29	22,78	1063,75	80,28	660,00	23,70	570,84	37,2	-	-
Tb	-	-	608,44	21,95	379,14	41,02	439,57	35,43	273,67	17,34	696,60	51,33	708,19	27,40	559,68	31,0	-	-
Dy	-	-	673,35	32,12	414,21	53,54	469,09	16,50	299,08	16,54	732,74	64,22	785,65	19,77	610,06	38,0	-	-
Y	-	-	587,32	32,81	332,73	38,76	385,99	3,62	251,22	14,31	638,45	63,77	648,27	19,61	519,27	31,3	-	-
Ho	-	-	611,30	40,45	349,73	37,84	403,81	7,18	257,86	13,94	659,87	50,06	694,76	24,49	542,18	35,5	-	-
Er	-	-	500,62	51,46	271,99	33,93	325,58	0,17	199,41	12,72	512,68	37,72	559,59	22,41	425,41	39,4	-	-
Tm	-	-	0,91	0,01	0,33	0,08	0,52	0,00	0,25	0,06	0,81	0,34	0,83	0,16	0,53	0,0	-	-
Yb	-	-	348,22	40,80	189,06	15,37	232,11	3,84	136,75	8,74	352,93	26,45	401,37	18,29	300,78	27,3	-	-
Lu	-	-	226,42	25,27	117,13	12,25	142,82	0,16	86,36	5,04	196,66	14,81	239,79	13,60	183,79	18,3	-	-

Tableau 0.17. Composition en éléments majeurs (% poids) et en éléments traces (ppm) de la titanite. σ: écart-type sur la moyenne.

	T19_01		T19_03		T19_04		AK06_01		AK06_02	
P (Gpa)	0,8		0,8		0,8		0,4		0,4	
T (°C)	850		850		850		725		725	
Composition	Mix8		Mix8		Mix8		Mix8		Mix9	
Ν	7	σ	6	σ	4	σ	6	σ	4	σ
SiO ₂	29,36	0,58	29,72	0,64	30,15	1,04	29,51	0,35	29,72	0,25
TiO ₂	35,14	1,09	34,18	1,13	34,26	0,81	33,87	1,18	34,48	0,29
Al ₂ O ₃	1,10	0,19	1,29	0,07	1,58	0,70	0,81	0,10	0,52	0,07
FeO	2,51	0,26	2,92	0,60	2,37	0,46	3,34	0,36	3,46	0,54
MnO	0,10	0,04	0,11	0,06	<ld< th=""><th>-</th><th>0,06</th><th>0,07</th><th>0,05</th><th>0,07</th></ld<>	-	0,06	0,07	0,05	0,07
MgO	0,03	0,01	0,03	0,02	<ld< th=""><th>-</th><th>0,03</th><th>0,02</th><th>0,01</th><th>0,01</th></ld<>	-	0,03	0,02	0,01	0,01
CaO	27,73	0,34	27,16	0,35	26,50	0,90	26,97	0,25	27,07	0,03
Na ₂ O	0,18	0,02	0,14	0,03	0,24	0,10	0,30	0,05	0,28	0,11
K ₂ O	0,06	0,02	<ld< th=""><th>-</th><th>0,17</th><th>0,19</th><th>0,07</th><th>0,03</th><th>0,12</th><th>0,03</th></ld<>	-	0,17	0,19	0,07	0,03	0,12	0,03
P_2O_5	0,11	0,08	0,10	0,06	<ld< th=""><th>-</th><th><ld< th=""><th>-</th><th>-</th><th>-</th></ld<></th></ld<>	-	<ld< th=""><th>-</th><th>-</th><th>-</th></ld<>	-	-	-
Nb ₂ O ₅	0,97	0,28	0,66	0,08	1,13	0,14	1,09	0,54	1,00	0,36
BaO	0,72	0,13	0,67	0,11	<ld< th=""><th>-</th><th>0,69</th><th>0,05</th><th>0,75</th><th>0,16</th></ld<>	-	0,69	0,05	0,75	0,16
SrO	0,16	0,03	0,11	0,06	<ld< th=""><th>-</th><th>0,13</th><th>0,07</th><th>0,09</th><th>0,07</th></ld<>	-	0,13	0,07	0,09	0,07
F	0,47	0,29	<ld< th=""><th>-</th><th><ld< th=""><th>-</th><th>0,44</th><th>0,32</th><th>0,38</th><th>0,18</th></ld<></th></ld<>	-	<ld< th=""><th>-</th><th>0,44</th><th>0,32</th><th>0,38</th><th>0,18</th></ld<>	-	0,44	0,32	0,38	0,18
Total	98,61		97,10		96,39		97,31		97,99	
Ν	7	σ	8	σ	7	σ	9	σ	6	σ
Cr	51,46	15,01	15,63	4,75	28,80	6,19	64,96	53,44	119,18	86,45
Mn	699,95	177,52	399,65	20,72	624,32	60,04	527,95	53,27	324,70	22,78
Sr	1226,81	165,32	722,42	51,08	920,90	50,60	820,84	64,92	736,89	56,22
Nb	6914,38	1912,32	4583,00	533,77	7417,29	1312,53	10035,90	1011,46	6756,68	802,14
Ba	50,46	68,22	4,82	3,05	6,57	6,10	18,71	17,80	-	-
La	174,39	27,73	236,54	15,85	215,06	52,60	247,82	72,45	218,01	43,10
Ce	355,64	53,90	495,87	27,98	453,70	104,45	501,82	118,74	447,25	81,21
Pr	292,00	41,76	382,89	19,38	375,18	80,97	378,22	83,32	363,51	60,12
Nd	369,92	58,04	546,77	32,95	510,15	108,08	490,81	123,92	467,07	68,29
Sm	436,76	62,40	655,13	29,29	640,21	117,84	536,06	154,28	522,06	84,67
Eu	470,11	113,09	852,57	68,46	680,49	116,60	558,85	157,77	532,62	86,53
Gd	399,40	125,43	624,18	29,52	531,15	100,54	364,78	109,53	464,16	74,35
Tb	393,85	98,84	582,87	31,37	654,94	128,67	410,04	121,12	398,41	75,82
Dy	413,69	81,43	691,31	41,50	696,31	127,92	431,68	132,03	417,75	76,71
Y	345,42	58,93	575,69	38,08	607,94	129,76	362,05	124,02	324,45	61,72
Но	370,15	70,49	629,64	37,70	628,06	116,57	365,73	112,87	355,12	76,21
Er	301,55	58,95	521,65	31,12	537,46	91,59	296,51	86,45	276,00	61,78
Tm	0,53	0,17	0,86	0,16	0,68	0,15	0,40	0,12	0,34	0,11
Yb	249,22	46,29	399,92	35,66	426,20	72,95	234,67	63,12	198,32	40,21
Lu	169,21	31,95	259,37	17,75	276,61	44,01	160,45	36,72	127,59	28,39

C.5. Composition de l'apatite

P (Gpa) T (°C) Composition	AK05_01 0,4 825 Mix8		AK05_02 0,4 825 Mix8		AK05_03 0,4 825 Mix8		AK05_05 0,4 825 Mix8		AK06_01 0,4 725 Mix8		AK06_02 0,4 725 Mix8		PCPC3_01 0,8 850 PhCbn2		PCPC3_02 0,8 850 PhCbn2	
N	3	σ	3	σ	8	σ	2	σ	9	σ	3	σ	9	σ	7	σ
SiO ₂	1,28	0,24	1,20	0,32	1,37	0,22	1,29	0,47	0,43	0,10	0,49	0,13	0,309	0,116	0,330	0,116
CaŌ	55,24	0,34	55,50	0,07	55,65	0,57	55,97	1,17	55,58	0,74	55,98	0,40	54,057	0,400	54,346	0,472
Na ₂ O	0,39	0,05	0,37	0,11	0,19	0,05	0,20	0,08	0,45	0,13	0,30	0,04	0,427	0,052	0,361	0,094
K ₂ O	0,12	0,08	<ld< th=""><th>-</th><th>0,07</th><th>0,02</th><th>0,11</th><th>0,09</th><th>0,05</th><th>0,03</th><th>0,12</th><th>0,04</th><th>0,060</th><th>0,016</th><th>0,076</th><th>0,019</th></ld<>	-	0,07	0,02	0,11	0,09	0,05	0,03	0,12	0,04	0,060	0,016	0,076	0,019
P2O5	39,90	0,97	40,41	1,26	40,55	0,77	40,79	1,85	41,62	0,73	42,03	0,25	40,471	0,846	40,770	1,242
BaO	<ld< th=""><th>-</th><th>0,02</th><th>0,00</th><th>0,04</th><th>0,03</th><th>0,05</th><th>0,00</th><th>0,02</th><th>0,01</th><th>0,02</th><th>0,01</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th></ld<></th></ld<></th></ld<>	-	0,02	0,00	0,04	0,03	0,05	0,00	0,02	0,01	0,02	0,01	<ld< th=""><th>-</th><th><ld< th=""><th>-</th></ld<></th></ld<>	-	<ld< th=""><th>-</th></ld<>	-
SrO	1,08	0,16	1,08	0,04	0,97	0,06	1,41	0,20	1,23	0,13	1,01	0,19	1,478	0,053	1,472	0,066
La_2O_3	0,15	0,02	0,10	0,01	0,13	0,02	0,17	0,02	0,14	0,09	0,08	0,02	<ld< th=""><th>-</th><th><ld< th=""><th>-</th></ld<></th></ld<>	-	<ld< th=""><th>-</th></ld<>	-
Ce ₂ O ₃	0,24	0,04	0,16	0,02	0,18	0,02	0,21	0,02	0,22	0,27	0,13	0,00	<ld< th=""><th>-</th><th><ld< th=""><th>-</th></ld<></th></ld<>	-	<ld< th=""><th>-</th></ld<>	-
F	2,81	0,41	2,73	0,19	2,23	0,16	2,30	0,56	3,06	0,41	2,97	0,03	2,877	0,099	2,763	0,175
Cl	<ld< th=""><th>-</th><th><ld< th=""><th>-</th><th>0,07</th><th>0,06</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th><th>0,018</th><th>0,003</th><th>0,020</th><th>0,006</th></ld<></th></ld<></th></ld<></th></ld<></th></ld<>	-	<ld< th=""><th>-</th><th>0,07</th><th>0,06</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th><th>0,018</th><th>0,003</th><th>0,020</th><th>0,006</th></ld<></th></ld<></th></ld<></th></ld<>	-	0,07	0,06	<ld< th=""><th>-</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th><th>0,018</th><th>0,003</th><th>0,020</th><th>0,006</th></ld<></th></ld<></th></ld<>	-	<ld< th=""><th>-</th><th><ld< th=""><th>-</th><th>0,018</th><th>0,003</th><th>0,020</th><th>0,006</th></ld<></th></ld<>	-	<ld< th=""><th>-</th><th>0,018</th><th>0,003</th><th>0,020</th><th>0,006</th></ld<>	-	0,018	0,003	0,020	0,006
H_2O	0,38	0,21	0,43	0,06	0,68	0,10	0,67	0,22	0,35	0,09	0,34	0,01	0,325	0,049	0,392	0,101
Total	101,83		102,38		102,30		103,19		103,17		103,69		100,021		100,531	
O=F, CI	1,19		1,15		0,95		0,97		1,31		1,26		1,214		1,166	
Total	100,64		101,22		101,35		102,22		101,86		102,43		98,807		99,364	
N	1		1		2	σ	3	σ	2	σ	2	σ	5	σ	6	σ
Sc	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-
	97,75	-	337,97	-	1046,33	937,47	627,91	651,41	442,78	145,64	319,43	114,50	-	-	-	-
Cr M-	-	-	<ld< th=""><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th></th><th>-</th><th>250 64</th><th>-</th><th>-</th></ld<>	-	-	-	-	-	-	-	-		-	250 64	-	-
NIN S-	000,01	-	1119,77	-	594,50	5,25	499,25	91,45	040,05	270,44	550,00	338,43	1300,47	250,64	1505,24	321,03
51	10/23,77	-	9450,57	-	8121,97	94,09	10219,88	906,64	8052,58	170,29	7585,92	885,79	11400,18	646,09	10547,07	1250,00
Zr	22.46	-	24.02	-	24.28	10.55	-	4 20	1 24	0.42	-	1.02	1 20	- 0.77	- - I D	-
Po	1766 12	-	2625 35	-	1378.68	761.67	1125 74	4,39	4,34	240.50	660 52	334.70	265.20	130.74	230.08	82.02
Da La	1152.22	-	778 28	-	980.62	15 72	1123,74	12 36	432,40 830.01	249,39	502.70	66.08	175.07	24 37	259,08	22,02
Ce	1527.05	-	991.68	-	1273 56	12.93	1379.80	78 10	1042 58	374 47	647.63	126.80	207.44	18 13	197.40	24,15
Pr	931 17	-	638 41	_	798 54	6.84	799 39	74 24	560 71	167 30	406.04	91.80	194 60	17.02	173 31	16.93
Nd	1079.61	-	719.08	-	900.31	2.54	753.74	109.19	534.28	83.89	422.42	115.27	220.26	16.60	206.92	26.41
Sm	1043.16	-	646.02	-	781.66	11.50	399.67	100.59	258.42	6.79	283.23	104.81	223.02	16.27	209.48	23.85
Eu	991.24	-	621.33	-	787.56	30.66	291.74	90.36	225.08	31.93	232,94	88.71	253.60	11.56	213.23	17.93
Gd	1244,44	-	669,39	-	782,35	34,87	365,97	86,92	282,11	45,30	281,60	67,40	217,78	33,90	225,96	51,16
Tb	722,53	-	545,55	-	588,36	18,23	174,30	76,02	116,47	26,73	134,82	53,18	182,95	13,89	182,11	20,21
Dv	774,11	-	529,07	-	607,19	10,06	148,56	69,99	111,25	24,27	123,84	45,41	206,22	22,09	209,83	22,08
Ý	719,36	-	509,84	-	597,45	2,52	119,13	43,80	109,27	23,50	118,76	32,81	196,89	10,31	192,97	19,22
Но	680,61	-	486,71	-	548,81	9,84	115,23	51,93	98,77	27,85	104,90	35,96	181,23	15,07	183,19	13,05
Er	527,67	-	400,26	-	447,40	4,70	84,08	37,54	75,46	24,59	79,27	25,08	161,07	21,52	169,24	14,55
Yb	347,82	-	276,11	-	296,13	2,06	58,39	24,22	58,84	20,46	56,75	10,58	124,63	10,65	124,36	14,43
Lu	217,73	-	184,97	-	204,85	3,66	42,57	14,30	47,94	14,76	45,82	7,80	106,19	11,54	104,28	9,19
Hf	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<ld< th=""><th>-</th></ld<>	-
Та	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<ld< th=""><th>-</th></ld<>	-

Tableau 0.18. Composition en éléments majeurs (% poids) et en éléments traces (ppm) des apatites. σ : écart-type sur la moyenne.

Tableau	0.8.	Suite.
---------	------	--------

	PCPC3 0		PCPC3 0		PCPC5 0		PCPC5 0		PCPC5 0		PCPC6 0	
P (Gpa)	0,8		0,8		0,8		0,8		0,8		0,8	
T (° C)	850		850		850		850		850		1050	
Compositio	PhCbn2		PhCbn2		PhCbn4		PhCbn4		PhCbn4		PhCbn2	
Ν	7	σ	5	σ	7	σ	5	σ	2	σ	9	σ
SiO ₂	0,385	0,127	0,292	0,15	1,032	0,289	1,015	0,10	1,260	0,08	0,501	0,037
CaO	54,334	0,197	54,301	1,41	54,450	0,726	54,786	0,19	54,954	0,37	53,710	0,277
Na ₂ O	0,378	0,122	0,472	0,10	0,396	0,124	0,190	0,03	0,119	0,01	0,477	0,066
K_2O	0,078	0,015	0,087	0,03	<ld< th=""><th>-</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th></ld<></th></ld<></th></ld<></th></ld<>	-	<ld< th=""><th>-</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th></ld<></th></ld<></th></ld<>	-	<ld< th=""><th>-</th><th><ld< th=""><th>-</th></ld<></th></ld<>	-	<ld< th=""><th>-</th></ld<>	-
P_2O_5	40,422	0,522	40,397	0,79	39,221	0,559	39,755	0,50	39,345	0,15	40,306	0,474
BaO	<ld< th=""><th>-</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th><th>-</th><th>-</th><th><ld< th=""><th>-</th></ld<></th></ld<></th></ld<></th></ld<></th></ld<>	-	<ld< th=""><th>-</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th><th>-</th><th>-</th><th><ld< th=""><th>-</th></ld<></th></ld<></th></ld<></th></ld<>	-	<ld< th=""><th>-</th><th><ld< th=""><th>-</th><th>-</th><th>-</th><th><ld< th=""><th>-</th></ld<></th></ld<></th></ld<>	-	<ld< th=""><th>-</th><th>-</th><th>-</th><th><ld< th=""><th>-</th></ld<></th></ld<>	-	-	-	<ld< th=""><th>-</th></ld<>	-
SrO	1,489	0,088	1,542	0,06	1,170	0,077	1,105	0,04	0,930	0,05	1,437	0,056
La_2O_3	<ld< th=""><th>-</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th></ld<></th></ld<></th></ld<></th></ld<></th></ld<></th></ld<>	-	<ld< th=""><th>-</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th></ld<></th></ld<></th></ld<></th></ld<></th></ld<>	-	<ld< th=""><th>-</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th></ld<></th></ld<></th></ld<></th></ld<>	-	<ld< th=""><th>-</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th></ld<></th></ld<></th></ld<>	-	<ld< th=""><th>-</th><th><ld< th=""><th>-</th></ld<></th></ld<>	-	<ld< th=""><th>-</th></ld<>	-
Ce_2O_3	<ld< th=""><th>-</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th></ld<></th></ld<></th></ld<></th></ld<></th></ld<></th></ld<>	-	<ld< th=""><th>-</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th></ld<></th></ld<></th></ld<></th></ld<></th></ld<>	-	<ld< th=""><th>-</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th></ld<></th></ld<></th></ld<></th></ld<>	-	<ld< th=""><th>-</th><th><ld< th=""><th>-</th><th><ld< th=""><th>-</th></ld<></th></ld<></th></ld<>	-	<ld< th=""><th>-</th><th><ld< th=""><th>-</th></ld<></th></ld<>	-	<ld< th=""><th>-</th></ld<>	-
F	2,636	0,182	3,242	0,33	2,780	0,157	2,834	0,09	3,269	0,09	2,846	0,099
Cl	0,017	0,006	0,020	0,00	0,114	0,018	0,089	0,01	0,051	0,00	0,035	0,003
H_2O	0,448	0,098	0,196	0,14	0,334	0,065	0,327	0,03	0,120	0,06	0,330	0,048
Total	100,352		100,665		99,496		100,100		100,271		99,642	
O=F, Cl	1,113		1,368		1,196		1,214		1,388		1,206	
Total	99,239		99,296		98,299		98,886		98,883		98,436	
N	4	σ			3	σ	1				6	σ
Sc	-	-	-	-	1,93	0,62	<ld< th=""><th>-</th><th>-</th><th>-</th><th>6,70</th><th>0,86</th></ld<>	-	-	-	6,70	0,86
Ti	-	-	-	-	15,96	6,45	<ld< th=""><th>-</th><th>-</th><th>-</th><th>2,89</th><th>0,93</th></ld<>	-	-	-	2,89	0,93
Cr	-	-	-	-	-	-	<ld< th=""><th>-</th><th>-</th><th>-</th><th><ld< th=""><th>-</th></ld<></th></ld<>	-	-	-	<ld< th=""><th>-</th></ld<>	-
Mn	1052,96	334,2	-	-	441,60	152,3	280,29	-	-	-	352,48	55,61
Sr	11060,58	395,1	-	-	9446,68	124,0	8409,45	-	-	-	10588,60	3/0,1
Zr	-	-	-	-	5,07	1,84	12,00	-	-	-	9,25	0,89
ND Bo	0,99 540.40	1067	-	-	200,05	2,39	9,04	-	-	-	0,38	0,25
Ба	191.25	190,7	-	-	212.46	223,3	151,64	-	-	-	273,42	12.16
La	101,23	20,71	-	-	512,40 402.84	59,50	407,05	-	-	-	212,00	12,10
Dn	199,00	9,39	-	-	402,04	52 77	J24,04 461 54	-	-	-	209,72	12.04
Nd	213.80	28.05	-	-	409.24	56.40	533 52	-	-	-	240,01	15 32
Sm	219,89	20,95	-	-	396.04	56.90	533,52	-	-	-	272,85	19,32
Fu	219,00	32 72	_	_	446 32	95 74	510.16	_	_		302.39	11 01
Gd	213 37	25 77	_	_	398.01	62 42	471 97	_	_	_	332 37	25.87
Th	213,37	27,73	_	_	312.93	60.83	308 57	_	_	_	223.06	13.81
Dv	234 90	19.20	_	_	311.52	41 79	330.62	_	_	_	242 87	12 43
V V	192.01	16.42	_	_	278.17	45.60	298.27	_	_	_	272.91	5.93
Ho	192.04	20.22	-	-	268.94	43.27	280.94	-	_	-	222,53	14.99
Er	157.82	15.53	-	-	216.80	38.60	219.26	-	-	-	182.87	13.23
Yb	137.02	12.28	-	-	159.74	32.86	159.26	-	-	-	143.04	7.23
Lu	113.11	15.85	-	-	122.55	14.23	122.25	-	-	-	110.20	5.81
Hf	<ld< th=""><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th><ld< th=""><th>-</th><th>-</th><th>-</th><th>0,16</th><th>0,05</th></ld<></th></ld<>	-	-	-	-	-	<ld< th=""><th>-</th><th>-</th><th>-</th><th>0,16</th><th>0,05</th></ld<>	-	-	-	0,16	0,05
Ta	<ld< th=""><th>-</th><th>-</th><th>-</th><th>0,38</th><th>0,01</th><th>0,099</th><th>-</th><th>-</th><th>-</th><th><ld< th=""><th>-</th></ld<></th></ld<>	-	-	-	0,38	0,01	0,099	-	-	-	<ld< th=""><th>-</th></ld<>	-

C.6. Pérovskite

Tableau 0.19. Composition en éléments majeurs (% poids) et en éléments traces (ppm) de la pérovskite. σ : écart-type sur la moyenne.

	AK01_01		AK01_02		AK01_03		AK01_04		AK02_02	
P (Gpa)	0,2		0,2		0,2		0,2		0,4	
T (°C)	925		925		925		925		925	
Composition										
Ň	5	σ	5	σ	5	σ	5	σ	6	σ
SiO ₂	0,16	0,16	0,15	0,05	0,05	0,05	0,11	0,23	0,12	0,10
TiO ₂	54,26	0,74	52,60	1,30	54,56	0,66	54,12	0,74	54,78	1,47
Al ₂ O ₃	0,18	0,07	0,21	0,06	0,15	0,06	0,20	0,03	1,54	1,49
FeO	1,42	0,39	1,26	0,20	1,18	0,11	1,24	0,20	1,31	0,81
MgO	0,02	0,03	< LD	-	0,02	0,02	0,01	0,02	0,24	0,23
CaO	37,48	0,38	36,24	0,36	37,47	0,11	36,16	1,10	36,59	0,86
Na ₂ O	0,74	0,10	0,91	0,13	0,56	0,08	0,39	0,06	0,61	0,07
K ₂ O	0,07	0,02	0,11	0,06	0,02	0,02	0,03	0,03	0,14	0,05
Cr ₂ O ₃	0,14	0,05	0,19	0,02	0,10	0,08	0,07	0,03	-	-
Nb ₂ O ₅	1,29	0,29	1,81	1,50	1,17	0,15	1,03	0,06	0,91	0,20
BaO	1,01	0,09	0,94	0,24	0,95	0,21	0,58	0,35	1,23	0,13
SrO	0,45	0,07	0,65	0,09	0,52	0,13	0,50	0,13	0,46	0,04
F	0,39	0,18	0,39	0,38	0,39	0,30	0,27	0,26	0,49	0,29
Total	97,60		95,46		97,12		94,74		98,42	
Ν	4	σ	4	σ	3	σ	1		1	
Cr	864,63	207,21	1056,53	161,05	764,10	151,72	550,38	-	857,68	-
Mn	322,04	37,79	1241,97	701,14	280,79	19,83	249,50	-	<42,21	-
Sr	4678,29	232,67	5355,21	528,40	4288,38	146,92	4180,57	-	291,36	-
Nb	10512,49	174,34	16229,76	15103,32	8705,22	791,77	7700,00	-	<0,75	-
Ba	52,15	52,29	1740,37	1310,78	8,27	0,94	33,11	-	2588,37	-
La	2221,56	264,80	2182,89	176,40	2734,94	125,19	2409,16	-	1442,21	-
Ce	3432,63	286,85	3074,42	148,92	4349,68	109,21	3870,91	-	1905,91	-
Pr	2234,13	175,14	2015,36	134,02	2755,98	92,65	2387,91	-	1162,61	-
Nd	2239,62	190,39	2151,11	141,86	2836,24	88,57	2429,43	-	1266,92	-
Sm	1641,18	138,06	1556,28	167,79	2182,52	70,74	1769,55	-	949,16	-
Eu	1567,70	227,06	1342,25	102,39	1821,02	99,18	1490,75	-	1136,97	-
Gd	1192,51	166,18	1529,32	573,61	1218,53	86,91	1514,92	-	607,48	-
Tb	774,95	119,09	815,21	75,41	996,66	71,58	814,17	-	434,30	-
Dy	788,10	100,90	836,14	98,12	871,99	84,55	729,79	-	446,36	-
Y	413,30	59,19	487,28	87,65	429,57	45,44	362,40	-	291,36	-
Но	553,70	81,76	599,59	80,33	615,31	58,74	512,85	-	340,71	-
Er	405,16	57,18	430,58	62,09	432,93	51,27	351,15	-	255,82	-
Yb	179,33	28,54	219,08	47,45	194,67	27,01	156,11	-	149,93	-
Lu	106,60	16,40	139,99	35,56	111,14	15,62	89,08	-	91,28	-

C.7. Composition des autres cristaux

C.7.1. Feldspaths alcalins

Tableau 0.20.	Composition	en éléments	majeurs (%	6 poids) et e	n éléments	traces (pp	m) des	feldspaths.	σ:	écart-type	sur la
moyenne.											

	T17_02		T18_01		T18_02		AK05_04		T19_01		T19_02	
P (Gpa)	0,8		1,5		1,5		0,4		0,8		0,8	
T (°C)	925		925		925		825		850		850	
Composition	Mix 8		Mix 8		Mix 8		Mix 8		Mix 8		Mix 8	
Ν	6	σ	3	σ	4	σ	6	σ	6	σ	3	σ
SiO ₂	59,49	0,65	63,98	0,19	63,62	0,89	62,17	1,82	63,20	0,75	66,18	-
TiO ₂	0,05	0,02	0,06	0,01	0,07	0,07	< LD	-	< LD	-	< LD	1,06
Al ₂ O ₃	23,09	0,71	20,05	0,26	20,09	0,62	18,10	0,60	18,78	0,37	17,91	-
FeO	0,35	0,12	0,43	0,18	0,58	0,19	< LD	-	0,57	0,33	< LD	0,51
MnO	0,05	0,05	< LD	-	0,11	0,01	< LD	-	< LD	0,00	< LD	-
MgO	0,01	0,00	0,01	0,02	0,02	0,01	< LD	-	0,01	0,01	< LD	-
CaO	4,27	0,67	1,08	0,41	1,16	0,21	0,60	0,33	0,60	0,12	0,51	-
Na ₂ O	6,60	0,54	6,25	0,31	5,81	0,11	4,49	0,37	5,22	0,07	5,38	0,30
K ₂ O	3,29	0,59	6,80	0,83	7,37	0,80	7,57	0,60	7,36	0,44	7,03	0,40
Nb ₂ O ₅	0,04	0,04	0,12	0,06	< LD	-	< LD	-	0,04	0,05	< LD	0,81
BaO	0,82	0,40	1,15	0,16	1,25	0,48	1,45	0,62	2,10	0,22	< LD	-
SrO	1,10	0,27	0,62	0,04	0,60	0,22	< LD	-	0,68	0,06	< LD	-
F	0,12	0,08	< LD	-	-	-	< LD	-	< LD	-	< LD	-
Total	99,30		100,56		100,69		94,39		98,56		97,01	

C.7.2. Néphéline

	T16_02		T17_02		AK01_01		AK01_02		T18_02		AK02_02		AK05_01		AK05_04	
P (Gpa)	0,8		0,8		0,2		0,2		1,5		0,4		0,4		0,4	
T (°C)	950		925		925		925		925		925		1000		1000	
Composition	Mix8		Mix8		Mix8		Mix8		Mix8		Mix8		Mix8		Mix8	
Ν	6	σ	5	σ	5	σ	5	σ	8	σ	5	σ	7	σ	4	σ
SiO2	43,422	0,546	45,278	1,160	42,598	0,302	42,173	0,595	45,067	0,908	44,184	0,937	46,914	0,840	42,705	1,063
TiO2	0,057	0,061	< LD	-	0,023	0,032	0,048	0,049	< LD	-	< LD	-	< LD	-	< LD	-
Al2O3	32,203	0,296	30,953	0,468	32,718	0,347	31,824	0,549	30,992	1,463	32,954	0,571	29,186	0,367	30,760	1,028
FeO	0,576	0,386	0,892	0,182	0,597	0,178	1,023	0,107	< LD	-	0,449	0,064	1,626	0,089	1,118	0,359
MnO	0,013	0,017	< LD	-	0,028	0,064	0,026	0,036	< LD	-	< LD	-	< LD	-	< LD	-
MgO	0,067	0,017	0,035	0,030	0,047	0,035	0,075	0,018	< LD	-	0,033	0,020	< LD	-	< LD	-
CaO	0,805	0,549	0,620	0,060	0,728	0,057	0,305	0,062	0,400	0,036	1,077	0,024	0,262	0,040	0,507	0,109
Na2O	17,334	0,289	16,542	1,451	15,491	0,347	15,177	0,333	16,486	0,598	15,729	0,493	14,073	1,483	17,069	0,283
K2O	4,910	0,240	4,367	0,170	6,004	0,206	7,059	0,106	4,265	0,686	4,421	0,126	4,066	0,356	3,728	0,212
Nb2O5	< LD	-	< LD	-	0,014	0,025	0,013	0,025	< LD	-	< LD	-	-	-	< LD	-
BaO	< LD	-	< LD	-	< LD	0,002	0,052	0,027	< LD	-	0,022	0,015	0,018	0,019	< LD	-
SrO	0,038	0,036	0,054	0,036	0,026	0,030	0,034	0,036	< LD	-	< LD	-	0,043	0,039	< LD	-
F	0,047	0,065	< LD	-	0,058	0,045	0,053	0,047	< LD	-	< LD	-	-	-	< LD	-
Total	99,471		98,741		98,333		97,862		97,210		98,868		96,187		95,887	
	T19_01		T19_02		PCPC1_01		PCPC1_02		PCPC2_01		PCPC3_01		PCPC5_01			
P (Gpa)	T19_01 0,8		T19_02 0,8		PCPC1_01 0,8		PCPC1_02 0,8		PCPC2_01 0,8		PCPC3_01 0,8		PCPC5_01 0,8			
P (Gpa) T (°C)	T19_01 0,8 1000		T19_02 0,8 1000		PCPC1_01 0,8 850		PCPC1_02 0,8 850		PCPC2_01 0,8 1050		PCPC3_01 0,8 850		PCPC5_01 0,8 850			
P (Gpa) T (°C) Composition	T19_01 0,8 1000 Mix8		T19_02 0,8 1000 Mix8		PCPC1_01 0,8 850 PhCbn1		PCPC1_02 0,8 850 PhCbn1		PCPC2_01 0,8 1050 PhCbn1		PCPC3_01 0,8 850 PhCbn2		PCPC5_01 0,8 850 PhCbn4			
P (Gpa) T (°C) Composition N	T19_01 0,8 1000 Mix8 6	σ	T19_02 0,8 1000 Mix8 3	σ	PCPC1_01 0,8 850 PhCbn1 4	σ	PCPC1_02 0,8 850 PhCbn1 4	σ	PCPC2_01 0,8 1050 PhCbn1 4	σ	PCPC3_01 0,8 850 PhCbn2 4	σ	PCPC5_01 0,8 850 PhCbn4 3	σ		
P (Gpa) T (°C) Composition N SiO2	T19_01 0,8 1000 Mix8 6 47,152	σ 1,273	T19_02 0,8 1000 Mix8 3 46,27	σ 1,23	PCPC1_01 0,8 850 PhCbn1 4 47,331	б 0,649	PCPC1_02 0,8 850 PhCbn1 4 46,001	σ 0,468	PCPC2_01 0,8 1050 PhCbn1 4 43,589	σ 0,259	PCPC3_01 0,8 850 PhCbn2 4 40,427	σ 1,071	PCPC5_01 0,8 850 PhCbn4 3 46,999	σ 0,531		
P (Gpa) T (°C) Composition N SiO2 TiO2	T19_01 0,8 1000 Mix8 6 47,152 < LD	σ 1,273	T19_02 0,8 1000 Mix8 3 46,27 < LD	σ 1,23	PCPC1_01 0,8 850 PhCbn1 4 47,331	σ 0,649 -	PCPC1_02 0,8 850 PhCbn1 4 46,001	σ 0,468 -	PCPC2_01 0,8 1050 PhCbn1 4 43,589	σ 0,259 -	PCPC3_01 0,8 850 PhCbn2 4 40,427 < LD	σ 1,071 -	PCPC5_01 0,8 850 PhCbn4 3 46,999 < LD	σ 0,531		
P (Gpa) T (°C) Composition N SiO2 TiO2 Al2O3	T19_01 0,8 1000 Mix8 6 47,152 < LD 29,376	σ 1,273 - 0,762	T19_02 0,8 1000 Mix8 3 46,27 < LD 29,12	σ 1,23 - 1,14	PCPC1_01 0,8 850 PhCbn1 4 47,331 - 29,222	σ 0,649 - 0,546	PCPC1_02 0,8 850 PhCbn1 4 46,001 - 30,377	σ 0,468 - 0,229	PCPC2_01 0,8 1050 PhCbn1 4 43,589 - 32,554	σ 0,259 - 0,376	PCPC3_01 0,8 850 PhCbn2 4 40,427 < LD 34,406	σ 1,071 - 0,750	PCPC5_01 0,8 850 PhCbn4 3 46,999 < LD 30,519	g 0,531 - 0,121		
P (Gpa) T (°C) Composition N SiO2 TiO2 Al2O3 FeO	T19_01 0,8 1000 Mix8 6 47,152 < LD 29,376 1,231	σ 1,273 - 0,762 0,148	T19_02 0,8 1000 Mix8 3 46,27 < LD 29,12 < LD	σ 1,23 - 1,14	PCPC1_01 0,8 850 PhCbn1 4 47,331 - 29,222 3,168	σ 0,649 - 0,546 0,616	PCPC1_02 0,8 850 PhCbn1 4 46,001 - 30,377 2,788	σ 0,468 - 0,229 0,576	PCPC2_01 0,8 1050 PhCbn1 4 43,589 - 32,554 2,006	g 0,259 - 0,376 0,209	PCPC3_01 0,8 850 PhCbn2 4 40,427 < LD 34,406 0,375	σ 1,071 - 0,750 0,066	PCPC5_01 0,8 850 PhCbn4 3 46,999 < LD 30,519 1,543	o 0,531 - 0,121 0,133		
P (Gpa) T (°C) Composition N SiO2 TiO2 Al2O3 FeO MnO	T19_01 0,8 1000 Mix8 6 47,152 < LD 29,376 1,231 < LD	σ 1,273 - 0,762 0,148 -	T19_02 0,8 1000 Mix8 3 46,27 < LD 29,12 < LD < LD < LD	σ 1,23 - 1,14	PCPC1_01 0,8 850 PhCbn1 4 47,331 - 29,222 3,168 -	σ 0,649 - 0,546 0,616 -	PCPC1_02 0,8 850 PhCbn1 4 46,001 - 30,377 2,788 < LD	σ 0,468 - 0,229 0,576 -	PCPC2_01 0,8 1050 PhCbn1 4 43,589 - 32,554 2,006 < LD	σ 0,259 - 0,376 0,209 -	PCPC3_01 0,8 850 PhCbn2 4 40,427 < LD 34,406 0,375 < LD	σ 1,071 - 0,750 0,066 -	PCPC5_01 0,8 850 PhCbn4 3 46,999 < LD 30,519 1,543 < LD	σ 0,531 - 0,121 0,133		
P (Gpa) T (°C) Composition N SiO2 TiO2 Al2O3 FeO MnO MgO	T19_01 0,8 1000 Mix8 6 47,152 < LD 29,376 1,231 < LD 0,016	σ 1,273 - 0,762 0,148 - 0,009	T19_02 0,8 1000 Mix8 3 46,27 < LD 29,12 < LD < LD < LD < LD	σ 1,23 - 1,14 -	PCPC1_01 0,8 850 PhCbn1 4 47,331 - 29,222 3,168 - 0,080	σ 0,649 - 0,546 0,616 - 0,030	PCPC1_02 0,8 850 PhCbn1 4 46,001 - 30,377 2,788 < LD < LD	σ 0,468 - 0,229 0,576 -	PCPC2_01 0,8 1050 PhCbn1 4 43,589 - 32,554 2,006 < LD 0,081	σ 0,259 - 0,376 0,209 - 0,006	PCPC3_01 0,8 850 PhCbn2 4 40,427 < LD 34,406 0,375 < LD < LD	σ 1,071 - 0,750 0,066 - -	PCPC5_01 0,8 850 PhCbn4 3 46,999 < LD 30,519 1,543 < LD < LD	σ 0,531 0,121 0,133 -		
P (Gpa) T (°C) Composition N SiO2 TiO2 Al2O3 FeO MnO MgO CaO	T19_01 0,8 1000 Mix8 6 47,152 < LD 29,376 1,231 < LD 0,016 0,333	σ 1,273 - 0,762 0,148 - 0,009 0,033	T19_02 0,8 1000 Mix8 3 46,27 < LD 29,12 < LD 1,30	σ 1,23 - 1,14 - 1,46	PCPC1_01 0,8 850 PhCbn1 4 47,331 - 29,222 3,168 - 0,080 0,210	σ 0,649 - 0,546 0,616 - 0,030 0,058	PCPC1_02 0,8 850 PhCbn1 4 46,001 - 30,377 2,788 < LD < LD 0,306	σ 0,468 - 0,229 0,576 - - 0,063	PCPC2_01 0,8 1050 PhCbn1 4 43,589 - 32,554 2,006 < LD 0,081 0,875	σ 0,259 - 0,376 0,209 - 0,006 0,074	PCPC3_01 0,8 850 PhCbn2 4 40,427 < LD 34,406 0,375 < LD < LD < LD 0,535	σ 1,071 - 0,750 0,066 - - 0,086	PCPC5_01 0,8 850 PhCbn4 3 46,999 < LD 30,519 1,543 < LD < LD < LD 0,510	σ 0,531 - 0,121 0,133 - 0,042		
P (Gpa) T (°C) Composition N SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O	T19_01 0,8 1000 Mix8 6 47,152 < LD 29,376 1,231 < LD 0,016 0,333 14,837	σ 1,273 - 0,762 0,148 - 0,009 0,033 1,208	T19_02 0,8 1000 Mix8 3 46,27 < LD 29,12 < LD < LD 1,30 1,5,68	σ 1,23 - 1,14 - 1,46 0,77	PCPC1_01 0,8 850 PhCbn1 4 47,331 - 29,222 3,168 - 0,080 0,210 14,371	σ 0,649 - 0,546 0,616 - 0,030 0,058 0,738	PCPC1_02 0,8 850 PhCbn1 4 46,001 - 30,377 2,788 < LD < LD 0,306 16,673	σ 0,468 - 0,229 0,576 - - 0,063 0,253	PCPC2_01 0,8 1050 PhCbn1 4 43,589 - 32,554 2,006 < LD 0,081 0,875 15,124	σ 0,259 - 0,376 0,209 - 0,006 0,074 0,201	PCPC3_01 0,8 850 PhCbn2 4 40,427 < LD 34,406 0,375 < LD < LD < LD 0,535 17,312	σ 1,071 - 0,750 0,066 - 0,086 0,238	PCPC5_01 0,8 850 PhCbn4 3 46,999 < LD 30,519 1,543 < LD < LD < LD 0,510 14,637	σ 0,531 - 0,121 0,133 - 0,042 1,265		
P (Gpa) T (°C) Composition N SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O	T19_01 0,8 1000 Mix8 6 47,152 < LD 29,376 1,231 < LD 0,016 0,333 14,837 3,948	σ 1,273 - 0,762 0,148 - 0,009 0,033 1,208 0,392	T19_02 0,8 1000 Mix8 3 46,27 < LD 29,12 < LD < LD 1,30 15,68 3,27	σ 1,23 - 1,14 - 1,46 0,77 0,31	PCPC1_01 0,8 850 PhCbn1 4 47,331 - 29,222 3,168 - 0,080 0,210 14,371 3,786	σ 0,649 - 0,546 0,616 - 0,030 0,058 0,738 0,210	PCPC1_02 0,8 850 PhCbn1 4 46,001 - 30,377 2,788 < LD < LD 0,306 16,673 4,346	σ 0,468 - 0,229 0,576 - - 0,063 0,253 0,073	PCPC2_01 0,8 1050 PhCbn1 4 43,589 - 32,554 2,006 < LD 0,081 0,875 15,124 5,124 5,149	σ 0,259 - 0,376 0,209 - 0,006 0,074 0,201 0,206	PCPC3_01 0,8 850 PhCbn2 4 40,427 < LD 34,406 0,375 < LD < LD 0,535 17,312 5,754	σ 1,071 - 0,750 0,066 - 0,086 0,238 0,288	PCPC5_01 0,8 850 PhCbn4 3 46,999 < LD 30,519 1,543 < LD < LD 0,510 14,637 3,521	σ 0,531 - 0,121 0,133 - 0,042 1,265 0,122		
P (Gpa) T (°C) Composition N SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Nb2O5	T19_01 0,8 1000 Mix8 6 47,152 < LD 29,376 1,231 < LD 0,016 0,333 14,837 3,948 0,035	σ 1,273 - 0,762 0,148 - 0,009 0,033 1,208 0,392 0,020	T19_02 0,8 1000 Mix8 3 46,27 < LD 29,12 < LD < LD 1,30 15,68 3,27 < LD	σ 1,23 - 1,14 - 1,46 0,77 0,31 -	PCPC1_01 0,8 850 PhCbn1 4 47,331 - 29,222 3,168 - 0,080 0,210 14,371 3,786 < LD	σ 0,649 - 0,546 0,616 - 0,030 0,058 0,738 0,210 -	PCPC1_02 0,8 850 PhCbn1 4 46,001 - 30,377 2,788 < LD < LD 0,306 16,673 4,346	σ 0,468 - 0,229 0,576 - - 0,063 0,253 0,073 -	PCPC2_01 0,8 1050 PhCbn1 4 43,589 - 32,554 2,006 < LD 0,081 0,875 15,124 5,124 5,149	σ 0,259 - 0,376 0,209 - 0,006 0,074 0,201 0,206 -	PCPC3_01 0,8 850 PhCbn2 4 40,427 < LD 34,406 0,375 < LD < LD 0,535 17,312 5,754	σ 1,071 - 0,750 0,066 - 0,086 0,238 0,288 -	PCPC5_01 0,8 850 PhCbn4 3 46,999 < LD 30,519 1,543 < LD < LD 0,510 14,637 3,521	σ 0,531 - 0,121 0,133 - 0,042 1,265 0,122 -		
P (Gpa) T (°C) Composition N SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Nb2O5 BaO	T19_01 0,8 1000 Mix8 6 47,152 < LD 29,376 1,231 < LD 0,016 0,333 14,837 3,948 0,035 0,026	σ 1,273 - 0,762 0,148 - 0,009 0,033 1,208 0,392 0,020 0,018	T19_02 0,8 1000 Mix8 3 46,27 < LD 29,12 < LD < LD 1,30 15,68 3,27 < LD	σ 1,23 - 1,14 - 1,46 0,77 0,31 - -	PCPC1_01 0,8 850 PhCbn1 4 47,331 - 29,222 3,168 - 0,080 0,210 14,371 3,786 < LD < LD	σ 0,649 - 0,546 0,616 - 0,030 0,058 0,738 0,210 -	PCPC1_02 0,8 850 PhCbn1 4 46,001 - 30,377 2,788 < LD < LD 0,306 16,673 4,346 - < LD	σ 0,468 - 0,229 0,576 - - 0,063 0,253 0,073 -	PCPC2_01 0,8 1050 PhCbn1 4 43,589 - 32,554 2,006 < LD 0,081 0,875 15,124 5,124 5,124 5,149 - < LD	σ 0,259 - 0,376 0,209 - 0,006 0,074 0,201 0,206 - -	PCPC3_01 0,8 850 PhCbn2 4 40,427 < LD 34,406 0,375 < LD < LD 0,535 17,312 5,754 - < LD	σ 1,071 - 0,750 0,066 - - 0,086 0,238 0,288 - -	PCPC5_01 0,8 850 PhCbn4 3 46,999 < LD 30,519 1,543 < LD < LD 0,510 14,637 3,521 - -	σ 0,531 - 0,121 0,133 - 0,042 1,265 0,122 -		
P (Gpa) T (°C) Composition N SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Nb2O5 BaO SrO	T19_01 0,8 1000 Mix8 6 47,152 < LD 29,376 1,231 < LD 0,016 0,333 14,837 3,948 0,035 0,026 < LD	σ 1,273 - 0,762 0,148 - 0,009 0,033 1,208 0,392 0,020 0,018 -	T19_02 0,8 1000 Mix8 3 46,27 < LD 29,12 < LD < LD 1,30 15,68 3,27 < LD - < LD	σ 1,23 - 1,14 - 1,46 0,77 0,31 - - -	PCPC1_01 0,8 850 PhCbn1 4 47,331 - 29,222 3,168 - 0,080 0,210 14,371 3,786 < LD < LD < LD -	σ 0,649 - 0,546 0,616 - 0,030 0,058 0,738 0,210 - -	PCPC1_02 0,8 850 PhCbn1 4 46,001 - 30,377 2,788 < LD < LD 0,306 16,673 4,346 - < LD < LD < LD	σ 0,468 - 0,229 0,576 - - 0,063 0,253 0,073 - -	PCPC2_01 0,8 1050 PhCbn1 4 43,589 - 32,554 2,006 < LD 0,081 0,875 15,124 5,149 - < LD < LD < LD < LD	σ 0,259 - 0,376 0,209 - 0,006 0,074 0,201 0,206 - - -	PCPC3_01 0,8 850 PhCbn2 4 40,427 < LD 34,406 0,375 < LD < LD 0,535 17,312 5,754 - < LD < LD < LD	σ 1,071 - 0,750 0,066 - - 0,086 0,238 0,288 - - -	PCPC5_01 0,8 850 PhCbn4 3 46,999 < LD 30,519 1,543 < LD < LD 0,510 14,637 3,521 - - < LD	σ 0,531 - 0,121 0,133 - 0,042 1,265 0,122 - -		
P (Gpa) T (°C) Composition N SiO2 TiO2 A12O3 FeO MnO MgO CaO Na2O K2O Nb2O5 BaO SrO F	T19_01 0,8 1000 Mix8 6 47,152 < LD 29,376 1,231 < LD 0,016 0,333 14,837 3,948 0,035 0,026 < LD < LD	o 1,273 0,762 0,148 - 0,009 0,033 1,208 0,392 0,020 0,018 -	T19_02 0,8 1000 Mix8 3 46,27 < LD 29,12 < LD < LD 1,30 15,68 3,27 < LD - < LD -	σ 1,23 - 1,14 - 1,46 0,77 0,31 - -	PCPC1_01 0,8 850 PhCbn1 47,331 - 29,222 3,168 - 0,080 0,210 14,371 3,786 < LD < LD - < LD	σ 0,649 - 0,546 0,616 - 0,030 0,058 0,738 0,210 - - -	PCPC1_02 0,8 850 PhCbn1 4 46,001 - 30,377 2,788 < LD < LD 0,306 16,673 4,346 - < LD < LD < LD < LD	σ 0,468 - 0,229 0,576 - - - 0,063 0,253 0,073 - - -	PCPC2_01 0,8 1050 PhCbn1 4 43,589 - 32,554 2,006 < LD 0,081 0,875 15,124 5,129 - < LD < LD < LD < LD	g 0,259 - 0,376 0,209 - 0,006 0,074 0,201 0,206 - - - -	PCPC3_01 0,8 850 PhCbn2 4 40,427 < LD 34,406 0,375 < LD < LD 0,535 17,312 5,754 - < LD < LD < LD < LD	σ 1,071 - 0,750 0,066 - - 0,086 0,238 0,288 - - - - - - - - - - - - -	PCPC5_01 0,8 850 PhCbn4 3 46,999 < LD 30,519 1,543 < LD < LD 0,510 14,637 3,521 - - - < LD -	g 0,531 0,121 0,133 - 0,042 1,265 0,122 - -		

Tableau 0.21. Composition en éléments majeurs (% poids) et en éléments traces (ppm) de la néphéline. σ: écart-type sur la moyenne.

C.7.3. Oxydes

Tableau 0.22. Composition en éléments majeurs (% poids) et en éléments traces (ppm) des oxydes. σ: écart-type sur la moyenne. Fe-Spl : ferro-spinelle ; Al-Spl : alumino-spinelle ; Usp : ulvöspinelle ; Ilm : ilménite.

	T14_01		T14_02		T16_03		T17_01		T17_03		T17_04		AK01_01		AK01_02		T18_01		T18_02		T18_02		T18_03	
	Fe-Spl		Fe-Spl		Fe-Spl		Fe-Spl		Fe-Spl		Fe-Spl		Al-Spl		Al-Spl		Usp		Ilm		Al-Spl		Usp	
P (Gpa)	0,8		0,8		0,8		0,8		0,8		0,8		0,2		0,2		1,5		1,5		1,5		1,5	
T (°C)	975		975		950		925		925		925		925		925		925		925		925		925	
Composition	Mix8		Mix8		Mix8		Mix8		Mix8		Mix8		Mix8		Mix8		Mix8		Mix8		Mix8		Mix8	
Ν	5	σ	5	σ	1		4	σ	2	σ	3	σ	5	σ	5	σ	5	σ	5	σ	5	σ	5	σ
SiO ₂	< LD	-	0,05	-	0,04	-	0,08	0,04	0,05	0,00	< LD	-	0,39	0,49	0,04	0,03	< LD	-	< LD	-	< LD	-	< LD	-
TiO ₂	0,31	0,14	0,46	0,02	1,10	-	3,61	0,10	1,27	0,04	2,01	0,15	0,30	0,07	0,21	0,13	30,19	0,47	48,11	1,81	0,95	0,09	21,59	0,32
Al_2O_3	0,42	0,19	1,20	0,12	2,02	-	2,09	0,05	1,72	0,10	1,78	0,09	56,41	1,12	56,50	0,88	0,91	0,09	0,45	0,08	49,78	2,57	0,71	0,05
Cr_2O_3	< LD	-	0,11	0,01	0,14	-	< LD	-	0,35	0,25	< LD	-	< LD	-	0,01	0,01	0,05	0,06	< LD	-	< LD	-	< LD	-
FeO	89,55	0,93	86,68	0,90	86,19	-	86,11	0,41	88,59	1,89	87,77	1,44	29,88	1,18	34,62	2,72	62,04	1,21	46,62	0,53	39,07	1,50	70,37	1,59
MnO	0,12	0,12	1,36	1,93	0,82	-	0,90	0,14	0,80	0,10	0,89	0,17	0,66	0,13	0,81	0,26	0,53	0,07	1,34	0,25	0,88	0,10	0,42	
MgO	0,03	0,02	2,85	0,54	3,57	-	1,26	0,02	3,40	0,01	2,06	0,01	11,04	0,83	6,30	1,98	0,80	0,07	1,90	0,09	4,60	0,53	0,83	0,05
CaO	0,32	0,11	0,31	0,11	0,14	-	< LD	-	0,10	0,04	< LD	-	0,14	0,04	0,10	0,05	0,18	0,23	0,24	0,09	0,23	0,08	0,28	0,11
Na ₂ O	0,06	0,05	0,04	0,09	0,05	-	< LD	-	0,03	0,03	< LD	-	0,14	0,09	0,06	0,05	0,07	0,05	0,13	0,06	0,87	0,71	< LD	-
K ₂ O	0,02	0,02	0,03	0,02	0,09	-	< LD	-	-	-	< LD	-	0,09	0,08	0,06	0,04	0,05	0,03	< LD	-	< LD	-	< LD	-
Nb ₂ O ₅	< LD	-	< LD	-	0,05	-	-	-	-	-	< LD	-	0,05	0,03	0,01	0,01	0,14	0,10	< LD	-	< LD	-	< LD	-
Total	90,83		93,07		94,20		94,05		96,31		94,51		99,10		98,72		94,96		98,78		96,37		94,19	
	T10 04		1 7200 00		TT 10 01		TT10 03		T 10.00		T10 03		T10 04											
	T18_04		AK02_02		T19_01		T19_02		T19_02		T19_03		T19_04		AK05_01		AK05_02		AK05_03		AK05_04		AK05_05	;
	T18_04 Usp		AK02_02 Al-Spl		T19_01 Fe-Spl		T19_02 Ilm		T19_02 Fe-Spl		T19_03 Fe-Spl		T19_04 Fe-Spl		AK05_01 Fe-Spl		AK05_02 Fe-Spl		AK05_03 Fe-Spl		AK05_04 Fe-Spl		AK05_05 Fe-Spl	;
P (Gpa)	T18_04 Usp 1,5		AK02_02 Al-Spl 0,4		T19_01 Fe-Spl 0,8		T19_02 Ilm 0,8		T19_02 Fe-Spl 0,8		T19_03 Fe-Spl 0,8		T19_04 Fe-Spl 0,8		AK05_01 Fe-Spl 0,4		AK05_02 Fe-Spl 0,4		AK05_03 Fe-Spl 0,4		AK05_04 Fe-Spl 0,4		AK05_05 Fe-Spl 0,4	;
P (Gpa) T (°C)	T18_04 Usp 1,5 925		AK02_02 Al-Spl 0,4 925		T19_01 Fe-Spl 0,8 850		T19_02 Ilm 0,8 850		T19_02 Fe-Spl 0,8 850		T19_03 Fe-Spl 0,8 850		T19_04 Fe-Spl 0,8 850		AK05_01 Fe-Spl 0,4 825 Mi=8		AK05_02 Fe-Spl 0,4 825		AK05_03 Fe-Spl 0,4 825 Mi=9		AK05_04 Fe-Spl 0,4 825 Mi=8		AK05_05 Fe-Spl 0,4 825 Mi8	;
P (Gpa) T (°C) Composition N	T18_04 Usp 1,5 925 Mix8 5	a	AK02_02 Al-Spl 0,4 925 Mix8 6	a	T19_01 Fe-Spl 0,8 850 Mix8 5	a	T19_02 Ilm 0,8 850 Mix8 8	a	T19_02 Fe-Spl 0,8 850 Mix8 2	ā	T19_03 Fe-Spl 0,8 850 Mix8 5	a	T19_04 Fe-Spl 0,8 850 Mix8 6	ā	AK05_01 Fe-Spl 0,4 825 Mix8 5	đ	AK05_02 Fe-Spl 0,4 825 Mix8 5	a	AK05_03 Fe-Spl 0,4 825 Mix8 7	a	AK05_04 Fe-Spl 0,4 825 Mix8 5	đ	AK05_05 Fe-Spl 0,4 825 Mix8 7	5
P (Gpa) T (°C) Composition N	T18_04 Usp 1,5 925 Mix8 5	σ	AK02_02 Al-Spl 0,4 925 Mix8 6	<u>σ</u>	T19_01 Fe-Spl 0,8 850 Mix8 5	<u>σ</u>	T19_02 Ilm 0,8 850 Mix8 8	σ	T19_02 Fe-Spl 0,8 850 Mix8 2	σ	T19_03 Fe-Spl 0,8 850 Mix8 5	<u>σ</u>	T19_04 Fe-Spl 0,8 850 Mix8 6	<u>σ</u>	AK05_01 Fe-Spl 0,4 825 Mix8 5	<u>σ</u>	AK05_02 Fe-Spl 0,4 825 Mix8 5	<u>σ</u>	AK05_03 Fe-Spl 0,4 825 Mix8 7	<u>σ</u>	AK05_04 Fe-Spl 0,4 825 Mix8 5	σ	AK05_05 Fe-Spl 0,4 825 Mix8 7	σ 0.07
P (Gpa) T (°C) Composition N SiO ₂ TiO	T18_04 Usp 1,5 925 Mix8 5 < LD 22 34	σ - 1 79	AK02_02 Al-Spl 0,4 925 Mix8 6 0,34 0,44	σ 0,53 0.12	T19_01 Fe-Spl 0,8 850 Mix8 5 0,06 4 70	σ 0,01 0.13	T19_02 Ilm 0,8 850 Mix8 8 < LD 48.69	σ - 0.86	T19_02 Fe-Spl 0,8 850 Mix8 2	<u>σ</u> -	T19_03 Fe-Spl 0,8 850 Mix8 5 0,09 2,17	σ 0,03 0.14	T19_04 Fe-Spl 0,8 850 Mix8 6 0,07 3,76	σ 0,06 0.37	AK05_01 Fe-Spl 0,4 825 Mix8 5 0,11 5.67	σ 0,06 0,57	AK05_02 Fe-Spl 0,4 825 Mix8 5 0,03 4 00	σ 0,03 0,79	AK05_03 Fe-Spl 0,4 825 Mix8 7 0,07 2,86	σ 0,05	AK05_04 Fe-Spl 0,4 825 Mix8 5 < LD 11 58	σ - 1.22	AK05_05 Fe-Spl 0,4 825 Mix8 7 0,09 2,03	σ 0,07 0,60
P (Gpa) T (°C) Composition N SiO ₂ TiO ₂ Al ₂ O ₂	T18_04 Usp 1,5 925 Mix8 5 < LD 22,34 0.78	σ - 1,79 0.06	AK02_02 Al-Spl 0,4 925 Mix8 6 0,34 0,44 58 24	σ 0,53 0,12 0.32	T19_01 Fe-Spl 0,8 850 Mix8 5 0,06 4,70 1,46	σ 0,01 0,13 0.08	T19_02 Ilm 0,8 850 Mix8 8 < LD 48,69 0,12	σ - 0,86 0.01	T19_02 Fe-Spl 0,8 850 Mix8 2 < LD 1 35	σ - - 0.47	T19_03 Fe-Spl 0,8 850 Mix8 5 0,09 2,17 1 37	σ 0,03 0,14 0.04	T19_04 Fe-Spl 0,8 850 Mix8 6 0,07 3,76 1,57	σ 0,06 0,37 0.18	AK05_01 Fe-Spl 0,4 825 Mix8 5 0,11 5,67 0,63	σ 0,06 0,57 0.09	AK05_02 Fe-Spl 0,4 825 Mix8 5 0,03 4,00 0,67	σ 0,03 0,79 0.09	AK05_03 Fe-Spl 0,4 825 Mix8 7 0,07 2,86 0.95	σ 0,05 1,10 0,34	AK05_04 Fe-Spl 0,4 825 Mix8 5 < LD 11,58 0.62	σ - 1,22 0.06	AK05_05 Fe-Spl 0,4 825 Mix8 7 0,09 2,03 1 38	σ 0,07 0,60 0.15
P (Gpa) T (°C) Composition N SiO ₂ TiO ₂ Al ₂ O ₃ Cr-O ₂	T18_04 Usp 1,5 925 Mix8 5 < LD 22,34 0,78 < LD	σ - 1,79 0,06	AK02_02 Al-Spl 0,4 925 Mix8 6 0,34 0,44 58,24 ≤ LD	σ 0,53 0,12 0,32	T19_01 Fe-Spl 0,8 850 Mix8 5 0,06 4,70 1,46 < ↓ D	σ 0,01 0,13 0,08	T19_02 Ilm 0,8 850 Mix8 8 < LD 48,69 0,12 < LD	σ - 0,86 0,01	T19_02 Fe-Spl 0,8 850 Mix8 2 - < LD 1,35	σ - - 0,47	T19_03 Fe-Spl 0,8 850 Mix8 5 0,09 2,17 1,37 0,11	σ 0,03 0,14 0,04 0,05	T19_04 Fe-Spl 0,8 850 Mix8 6 0,07 3,76 1,57 < LD	σ 0,06 0,37 0,18	AK05_01 Fe-Spl 0,4 825 Mix8 5 0,11 5,67 0,63 0,03	σ 0,06 0,57 0,09 0,02	AK05_02 Fe-Spl 0,4 825 Mix8 5 0,03 4,00 0,67 < I D	σ 0,03 0,79 0,09	AK05_03 Fe-Spl 0,4 825 Mix8 7 0,07 2,86 0,95 0,06	σ 0,05 1,10 0,34 0,03	AK05_04 Fe-Spl 0,4 825 Mix8 5 < LD 11,58 0,62 < LD	σ 1,22 0,06	AK05_05 Fe-Spl 0,4 825 Mix8 7 0,09 2,03 1,38 0,15	o 0,07 0,60 0,15 0,11
P (Gpa) T (°C) Composition N SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO	T18_04 Usp 1,5 925 Mix8 5 < LD 22,34 0,78 < LD 69 67	σ - 1,79 0,06 - 1,00	AK02_02 Al-Spl 0,4 925 Mix8 6 0,34 0,44 58,24 < LD 28,96	σ 0,53 0,12 0,32 - 0,42	T19_01 Fe-Spl 0,8 850 Mix8 5 0,06 4,70 1,46 < LD 84 19	σ 0,01 0,13 0,08 -	T19_02 Ilm 0,8 850 Mix8 8 < LD 48,69 0,12 < LD < LD 46,90	σ - 0,86 0,01 - 0,45	T19_02 Fe-Spl 0,8 850 Mix8 2 < LD 1,35 - 71 23	σ - - 0,47 - 0.01	T19_03 Fe-Spl 0,8 850 Mix8 5 0,09 2,17 1,37 0,11 86 15	σ 0,03 0,14 0,04 0,05 1,01	T19_04 Fe-Spl 0,8 850 Mix8 6 0,07 3,76 1,57 < LD 84 64	σ 0,06 0,37 0,18 -	AK05_01 Fe-Spl 0,4 825 Mix8 5 0,11 5,67 0,63 0,03 84 86	σ 0,06 0,57 0,09 0,02 0,30	AK05_02 Fe-Spl 0,4 825 Mix8 5 0,03 4,00 0,67 < LD 87.26	σ 0,03 0,79 0,09 - 0.87	AK05_03 Fe-Spl 0,4 825 Mix8 7 0,07 2,86 0,95 0,06 87 23	σ 0,05 1,10 0,34 0,03 1,92	AK05_04 Fe-Spl 0,4 825 Mix8 5 < LD 11,58 0,62 < LD 81 30	σ - 1,22 0,06 -	AK05_05 Fe-Spl 0,4 825 Mix8 7 0,09 2,03 1,38 0,15 85 54	σ 0,07 0,60 0,15 0,11 1,59
P (Gpa) T (°C) Composition N SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO	T18_04 Usp 1,5 925 Mix8 5 < LD 22,34 0,78 < LD 69,67 < LD	σ - 1,79 0,06 - 1,00	AK02_02 Al-Spl 0,4 925 Mix8 6 0,34 0,44 58,24 < LD 28,96 0,66	σ 0,53 0,12 0,32 - 0,42 0,12	T19_01 Fe-Spl 0,8 850 Mix8 5 0,06 4,70 1,46 < LD 84,19 1,04	σ 0,01 0,13 0,08 - 0,90 0,09	T19_02 Ilm 0,8 850 Mix8 8 < LD 48,69 0,12 < LD 46,90 1,51	σ 0,86 0,01 - 0,45 0,09	T19_02 Fe-Spl 0,8 850 Mix8 2 < LD 1,35 - 71,23 0.98	σ - - 0,47 - 0,01 0,29	T19_03 Fe-Spl 0,8 850 Mix8 5 0,09 2,17 1,37 0,11 86,15 1,05	σ 0,03 0,14 0,04 0,05 1,01 0,14	T19_04 Fe-Spl 0,8 850 Mix8 6 0,07 3,76 1,57 < LD 84,64 1,21	σ 0,06 0,37 0,18 - 1,20 0,13	AK05_01 Fe-Spl 0,4 825 Mix8 5 0,11 5,67 0,63 0,03 84,86 1,09	σ 0,06 0,57 0,09 0,02 0,30 0,31	AK05_02 Fe-Spl 0,4 825 Mix8 5 0,03 4,00 0,67 < LD 87,26 1 28	σ 0,03 0,79 0,09 - 0,87 0,15	AK05_03 Fe-Spl 0,4 825 Mix8 7 0,07 2,86 0,95 0,06 87,23 1 39	σ 0,05 1,10 0,34 0,03 1,92 0,22	AK05_04 Fe-Spl 0,4 825 Mix8 5 < LD 11,58 0,62 < LD 81,30 1 09	σ 1,22 0,06 - 1,18 0,29	AK05_05 Fe-Spl 0,4 825 Mix8 7 0,09 2,03 1,38 0,15 85,54 1,19	o 0,07 0,60 0,15 0,11 1,59 0,12
P (Gpa) T (°C) Composition N SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO	T18_04 Usp 1,5 925 Mix8 5 < LD 22,34 0,78 < LD 69,67 < LD 0,79	σ - 1,79 0,06 - 1,00	AK02_02 Al-Spl 0,4 925 Mix8 6 0,34 0,44 58,24 < LD 28,96 0,66 10,11	σ 0,53 0,12 0,32 - 0,42 0,12 0,45	T19_01 Fe-Spl 0,8 850 Mix8 5 0,06 4,70 1,46 < LD 84,19 1,04 0,98	σ 0,01 0,13 0,08 - 0,90 0,09 0,03	T19_02 Ilm 0,8 850 Mix8 8 < LD 48,69 0,12 < LD 46,09 1,51 1,31	σ - 0,86 0,01 - 0,45 0,09 0.05	T19_02 Fe-Spl 0,8 850 Mix8 2 < LD 1,35 - 71,23 0,98 0,93	σ - - 0,47 - 0,01 0,29 0,15	T19_03 Fe-Spl 0,8 850 Mix8 5 0,09 2,17 1,37 0,11 86,15 1,05 1,79	σ 0,03 0,14 0,04 0,05 1,01 0,14 0,08	T19_04 Fe-Spl 0,8 850 Mix8 6 0,07 3,76 1,57 < LD 84,64 1,21 0,58	σ 0,06 0,37 0,18 - 1,20 0,13 0,57	AK05_01 Fe-Spl 0,4 825 Mix8 5 0,11 5,67 0,63 0,03 84,86 1,09 0,47	σ 0,06 0,57 0,09 0,02 0,30 0,31 0,13	AK05_02 Fe-Spl 0,4 825 Mix8 5 0,03 4,00 0,67 < LD 87,26 1,28 0 94	σ 0,03 0,79 0,09 - 0,87 0,15 0,11	AK05_03 Fe-Spl 0,4 825 Mix8 7 0,07 2,86 0,95 0,06 87,23 1,39 1,12	5 0,05 1,10 0,34 0,03 1,92 0,22 0,20	AK05_04 Fe-Spl 0,4 825 Mix8 5 < LD 11,58 0,62 < LD 81,30 1,09 0 44	σ 1,22 0,06 - 1,18 0,29 0,03	AK05_05 Fe-Spl 0,4 825 Mix8 7 0,09 2,03 1,38 0,15 85,54 1,19 1,28	o 0,07 0,60 0,15 0,11 1,59 0,12 0,18
P (Gpa) T (°C) Composition N SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO	T18_04 Usp 1,5 925 Mix8 5 < LD 22,34 0,78 < LD 69,67 < LD 0,79 0,18	σ - 1,79 0,06 - 1,00 0,07 0,07	AK02_02 Al-Spl 0,4 925 Mix8 6 0,34 0,44 58,24 < LD 28,96 0,66 10,11 0,26	σ 0,53 0,12 0,32 - 0,42 0,12 0,45 0,06	T19_01 Fe-Spl 0,8 850 Mix8 5 0,06 4,70 1,46 < LD 84,19 1,04 0,98 0,16	σ 0,01 0,13 0,08 - 0,90 0,09 0,03 0,07	T19_02 Ilm 0,8 850 Mix8 8 < LD 48,69 0,12 < LD 46,69 1,51 1,31 < LD	σ - 0,86 0,01 - 0,45 0,09 0,05	T19_02 Fe-Spl 0,8 850 Mix8 2 - <ld 1,35 - 71,23 0,98 0,93 0,42</ld 	σ - - 0,47 - 0,01 0,29 0,15 0,03	T19_03 Fe-Spl 0,8 850 Mix8 5 0,09 2,17 1,37 0,11 86,15 1,05 1,79 0,18	σ 0,03 0,14 0,04 0,05 1,01 0,14 0,08 0,08	T19_04 Fe-Spl 0,8 850 Mix8 6 0,07 3,76 1,57 < LD 84,64 1,21 0,58 0,40	σ 0,06 0,37 0,18 - 1,20 0,13 0,57 0,52	AK05_01 Fe-Spl 0,4 825 Mix8 5 0,11 5,67 0,63 0,03 84,86 1,09 0,47 0,18	σ 0,06 0,57 0,09 0,02 0,30 0,31 0,13 0,13	AK05_02 Fe-Spl 0,4 825 Mix8 5 0,03 4,00 0,67 < LD 87,26 1,28 0,94 0,10	σ 0,03 0,79 0,09 - 0,87 0,15 0,11 0,04	AK05_03 Fe-Spl 0,4 825 Mix8 7 0,07 2,86 0,95 0,06 87,23 1,39 1,12 0,15	σ 0,05 1,10 0,34 0,03 1,92 0,22 0,20 0,16	AK05_04 Fe-Spl 0,4 825 Mix8 5 < LD 11,58 0,62 < LD 81,30 1,09 0,44 0,42	σ 1,22 0,06 - 1,18 0,29 0,03 0,17	AK05_05 Fe-Spl 0,4 825 Mix8 7 0,09 2,03 1,38 0,15 85,54 1,19 1,28 0,13	o 0,07 0,60 0,15 0,11 1,59 0,12 0,18 0,12
P (Gpa) T (°C) Composition N SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na-O	T18_04 Usp 1,5 925 Mix8 5 < LD 22,34 0,78 < LD 69,67 < LD 0,79 0,18 < LD	σ 1,79 0,06 - 1,00 0,07 0,07	AK02_02 Al-Spl 0,4 925 Mix8 6 0,34 0,44 58,24 < LD 28,96 0,66 10,11 0,26 0,09	σ 0,53 0,12 0,32 - 0,42 0,12 0,45 0,06 0,14	T19_01 Fe-Spl 0,8 850 Mix8 5 0,06 4,70 1,46 < LD 84,19 1,04 0,98 0,16 0,25	σ 0,01 0,13 0,08 - 0,90 0,09 0,03 0,07 0,14	T19_02 Ilm 0,8 850 Mix8 8 < LD 48,69 0,12 < LD 46,69 1,51 1,31 < LD < LD < LD	σ 0,86 0,01 - 0,45 0,09 0,05 -	T19_02 Fe-Spl 0,8 850 Mix8 2 - <ld 1,35 - 71,23 0,98 0,93 0,42</ld 	σ - - - - - - - - - - - - - - - - - - -	T19_03 Fe-Spl 0,8 850 Mix8 5 0,09 2,17 1,37 0,11 86,15 1,05 1,79 0,18 0,05	σ 0,03 0,14 0,04 0,05 1,01 0,14 0,08 0,08 0,02	T19_04 Fe-Spl 0,8 850 Mix8 6 0,07 3,76 1,57 < LD 84,64 1,21 0,58 0,40 < LD	5 0,06 0,37 0,18 - 1,20 0,13 0,57 0,52	AK05_01 Fe-Spl 0,4 825 Mix8 5 0,11 5,67 0,63 0,03 84,86 1,09 0,47 0,18 0,43	σ 0,06 0,57 0,09 0,02 0,30 0,31 0,13 0,13 0,34	AK05_02 Fe-Spl 0,4 825 Mix8 5 0,03 4,00 0,67 < LD 87,26 1,28 0,94 0,10 0,12	σ 0,03 0,79 0,09 - 0,87 0,15 0,11 0,04 0,06	AK05_03 Fe-Spl 0,4 825 Mix8 7 0,07 2,86 0,95 0,06 87,23 1,39 1,12 0,15 0,04	σ 0,05 1,10 0,34 0,03 1,92 0,22 0,20 0,16 0,03	AK05_04 Fe-Spl 0,4 825 Mix8 5 < LD 11,58 0,62 < LD 81,30 1,09 0,44 0,42 < LD	σ 1,22 0,06 - 1,18 0,29 0,03 0,17	AK05_05 Fe-Spl 0,4 825 Mix8 7 0,09 2,03 1,38 0,15 85,54 1,19 1,28 0,13 0,08	σ 0,07 0,60 0,15 0,11 1,59 0,12 0,12 0,12 0,12 0,02
P (Gpa) T (°C) Composition N SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O KaO	T18_04 Usp 1,5 925 Mix8 5 < LD 22,34 0,78 < LD 0,79 0,18 < LD < LD	σ - 1,79 0,06 - 1,00 0,07 0,07 - -	AK02_02 Al-Spl 0,4 925 Mix8 6 0,34 0,44 58,24 < LD 28,96 0,66 10,11 0,26 0,09 0,06	g 0,53 0,12 0,32 - 0,42 0,12 0,45 0,06 0,14 0,06	T19_01 Fe-Spl 0,8 850 Mix8 5 0,06 4,70 1,46 < LD 84,19 1,04 0,98 0,16 0,25 0,16	σ 0,01 0,13 0,08 - 0,90 0,09 0,03 0,07 0,14 0,16	T19_02 Ilm 0,8 850 Mix8 8 < LD 48,69 0,12 < LD 46,09 1,51 1,31 < LD < LD < LD < LD < LD < LD 4,50 1,51 1,31 < LD < LD	σ 0,86 0,01 - 0,45 0,09 0,05 - -	T19_02 Fe-Spl 0,8 850 Mix8 2 	σ 	T19_03 Fe-Spl 0,8 850 Mix8 5 0,09 2,17 1,37 0,11 86,15 1,05 1,79 0,18 0,05 0,05 0,05	σ 0,03 0,14 0,04 1,01 0,14 0,08 0,08 0,02 0,05	T19_04 Fe-Spl 0,8 850 Mix8 6 0,07 3,76 1,57 < LD 84,64 1,21 0,58 0,40 < LD 0,06	σ 0,06 0,37 0,18 - 1,20 0,13 0,57 0,52 - 0,03	AK05_01 Fe-Spl 0,4 825 Mix8 5 0,11 5,67 0,63 0,03 84,86 1,09 0,47 0,18 0,43 0,06	σ 0,06 0,57 0,09 0,02 0,30 0,31 0,13 0,13 0,34 0,03	AK05_02 Fe-Spl 0,4 825 Mix8 5 0,03 4,00 0,67 < LD 87,26 1,28 0,94 0,10 0,12 0,05	g 0,03 0,79 0,09 - 0,87 0,15 0,11 0,04 0,06 0,05	AK05_03 Fe-Spl 0,4 825 Mix8 7 0,07 2,86 0,95 0,06 87,23 1,39 1,12 0,15 0,04 0,03	σ 0,05 1,10 0,34 0,03 1,92 0,22 0,20 0,16 0,03 0,03	AK05_04 Fe-Spl 0,4 825 Mix8 5 < LD 11,58 0,62 < LD 81,30 1,09 0,44 0,42 < LD < LD	σ 1,22 0,06 - 1,18 0,29 0,03 0,17 -	AK05_05 Fe-Spl 0,4 825 Mix8 7 0,09 2,03 1,38 0,15 85,54 1,19 1,28 0,13 0,08 0,05	σ 0,07 0,60 0,15 0,11 1,59 0,12 0,12 0,12 0,12 0,02 0,03
P (Gpa) T (°C) Composition N SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O Nb ₂ O	T18_04 Usp 1,5 925 Mix8 5 < LD 22,34 0,78 < LD 0,79 0,18 < LD < LD < LD	σ - 1,79 0,06 - 1,00 0,07 0,07 - - - - - - - - - - - - -	AK02_02 Al-Spl 0,4 925 Mix8 6 0,34 0,44 58,24 < LD 28,96 0,66 10,11 0,26 0,09 0,06 < LD	g 0,53 0,12 0,32 - 0,42 0,12 0,45 0,06 0,14 0,06	T19_01 Fe-Spl 0,8 850 Mix8 5 0,06 4,70 1,46 < LD 84,19 1,04 0,98 0,16 0,25 0,16 < LD	σ 0,01 0,13 0,08 - 0,90 0,09 0,03 0,07 0,14 0,16	T19_02 Ilm 0,8 850 Mix8 8 < LD 48,69 0,12 < LD 46,09 1,51 1,31 < LD < LD < LD < LD < LD < LD < LD	σ 0,86 0,01 - 0,45 0,09 0,05 - - -	T19_02 Fe-Spl 0,8 850 Mix8 2 - - 71,23 0,98 0,93 0,42 -	σ 	T19_03 Fe-Spl 0,8 850 Mix8 5 0,09 2,17 1,37 0,11 86,15 1,05 1,79 0,18 0,05 0,05 0,05 0,10	σ 0,03 0,14 0,04 0,05 1,01 0,14 0,08 0,08 0,02 0,05 0,04	T19_04 Fe-Spl 0,8 850 Mix8 6 0,07 3,76 1,57 < LD 84,64 1,21 0,58 0,40 < LD 0,06 < LD	σ 0,06 0,37 0,18 - 1,20 0,13 0,57 0,57 0,03	AK05_01 Fe-Spl 0,4 825 Mix8 5 0,11 5,67 0,63 0,03 84,86 1,09 0,47 0,18 0,43 0,06 0,10	σ 0,06 0,57 0,09 0,02 0,30 0,31 0,13 0,34 0,03 0,03	AK05_02 Fe-Spl 0,4 825 Mix8 5 0,03 4,00 0,67 < LD 87,26 1,28 0,94 0,10 0,12 0,05 < LD	g 0,03 0,79 0,09 - 0,87 0,15 0,11 0,04 0,06 0,05	AK05_03 Fe-Spl 0,4 825 Mix8 7 0,07 2,86 0,95 0,06 87,23 1,39 1,12 0,15 0,04 0,03 0,03	σ 0,05 1,10 0,34 0,03 1,92 0,22 0,20 0,16 0,03 0,03 0,03 0,01	AK05_04 Fe-Spl 0,4 825 Mix8 5 < LD 11,58 0,62 < LD 81,30 1,09 0,44 0,42 < LD < LD < LD	σ 1,22 0,06 - 1,18 0,29 0,03 0,17 - -	AK05_05 Fe-Spl 0,4 825 Mix8 7 0,09 2,03 1,38 0,15 85,54 1,19 1,28 0,13 0,08 0,05 ≤ LD	σ 0,07 0,60 0,15 0,11 1,59 0,12 0,12 0,12 0,12 0,02 0,03

Tableau 0.12. Suite.

P (Gpa) T (°C) Composition	AK06_01 Fe-Spl 0,4 725 Mix8		AK06_02 Fe-Spl 0,4 725 Mix9		PCPC1_01 Fe-Spn 0,8 850 PhCbn1		PCPC1_01 Al-Spl 0,8 850 PhCbn1		PCPC1_02 Fe-Spl 0,8 850 PhCbn1		PCPC1_03 Fe-Spl 0,8 850 PhChn1		PCPC3_01 Fe-Spl 0,8 850 PhCbn2	
N	6	σ	5	σ	3	σ	2	σ	4	σ	4	σ	6	σ
SiO ₂	0,47	0,31	0,14	0,14	< LD	-	< LD	-	< LD	-	< LD	-	< LD	-
TiO ₂	2,25	0,40	1,62	0,14	5,80	2,06	0,34		2,83	0,08	3,03	0,41	0,80	0,12
Al ₂ O ₃	0,48	0,07	0,78	0,38	1,27	1,72	19,84	4,38	0,42	2,49	0,40	0,08	0,85	0,14
Cr ₂ O ₃	-	-	0,05	0,07	0,25	0,14	< LD		1,81	2,07	0,94	0,73	1,59	0,89
FeO	87,00	2,29	87,88	0,97	82,81	3,07	65,14	4,47	82,17	0,06	82,85	1,02	86,69	1,21
MnO	1,72	0,16	1,30	0,14	0,65	0,07	2,95	0,46	0,97	0,08	0,48	0,09	1,45	0,13
MgO	0,85	0,09	0,72	0,22	0,94	0,34	7,46	3,21	0,86	-	0,88	0,07	1,72	0,27
CaO	0,25	0,12	0,19	0,12	0,42	0,33	0,40	0,08	< LD	-	< LD	-	0,16	0,08
Na ₂ O	0,08	0,06	0,08	0,03	< LD	-	< LD	-	< LD	-	< LD	-	< LD	-
K ₂ O	0,06	0,06	0,11	0,05	< LD	-	< LD	-	< LD	-	< LD	-	< LD	-
Nb ₂ O ₅	< LD	-	< LD	-	-	-	< LD	-	-	-	< LD	-	< LD	-
Total	93,16		92,86		92,15		96,14		89,07		88,58		93,25	-
	PCPC3_01		PCPC3_02		PCPC3_03		PCPC4_01		PCPC4_01		PCPC4_02		PCPC4_03	
	Al-Spl		Fe-Spl		Fe-Spl		Fe-Spl		Fe/Cr-Spl		Fe-Spl		Fe-Spl	
P (Gpa)	0,8		0,8		0,8		0,8		0,8		0,8		0,8	
T (°C)	850		850		850		850		850		850		850	
Composition	PhCbn2		PhCbn2		PhCbn2		PhCbn3		PhCbn3		PhCbn3		PhCbn3	
Ν	2	σ	5	σ	6	σ	7	σ	5	σ	6	σ	5	σ
SiO ₂	< LD	-	< LD	-	< LD	-	< LD	-	0,50	0,23	-	-	< LD	-
TiO ₂	0,84	0,01	2,42	2,39	2,19	2,25	4,86	0,99	1,57	1,24	2,75	0,30	2,89	0,44
Al ₂ O ₃	18,71	2,04	0,66	0,28	0,69	0,30	0,36	0,15	0,55	0,26	0,32	0,03	0,31	0,04
Cr_2O_3	< LD	-	0,93	0,69	0,95	0,60	0,52	0,51	39,92	23,66	0,55	0,37	2,65	0,88
FeO	68,68	3,02	84,86	0,89	84,48	1,82	84,05	1,73	42,05	28,65	85,41	0,67	82,62	2,23
MnO	2,14	0,09	1,18	0,50	0,97	0,49	0,81	0,24	6,70	6,13	0,69	0,05	0,94	0,20
MgO	4,26	0,16	1,36	0,49	1,30	0,49	0,52	0,05	2,66	2,15	0,53	0,06	0,59	0,06
CaO	0,17	0,06	< LD	-	< LD	-	0,32	0,33	0,11	0,02	0,25	0,07	0,35	0,19
Na ₂ O	< LD	-	< LD	-	< LD	-	0,17	-	< LD		< LD	-	-	-
K ₂ O	< LD	-	< LD	-	< LD	-	< LD	-	< LD		< LD	-	-	-
Nb ₂ O ₅	< LD	-	< LD	-	-	-	-	-	0,06	0,04	-	-	-	-
Total	94 80		91.40		90.59		91.60		94.12		90.49		90.35	

C.7.4. Mélilite

Tableau 0.23. Composition en éléments majeurs (% poids) et en éléments traces (ppm) de la mélilite, à 925 °C et 0,2 GPa. σ : écart-type sur la moyenne.

	AK01_01		AK01_02		AK01_03		AK01_04	
P (Gpa)	0,2		0,2		0,2		0,2	
T (°C)	925		925		925		925	
Composition	Mix 8		Mix 8		Mix 8		Mix 8	
N	5	σ	4	σ	5	σ	5	σ
SiO ₂	42,61	0,33	41,75	0,35	42,02	0,17	41,80	0,19
TiO ₂	0,07	0,05	0,04	0,03	0,09	0,07	0,04	0,05
Al ₂ O ₃	8,73	0,42	8,62	0,25	9,15	0,24	8,62	0,09
FeO	5,55	0,67	6,17	0,73	5,51	0,46	5,52	0,23
MnO	0,13	0,09	0,18	0,11	0,12	0,05	0,10	0,08
MgO	4,91	0,45	4,12	0,50	4,55	0,18	4,88	0,19
CaO	31,16	0,53	29,79	0,62	30,87	0,14	30,33	0,30
Na ₂ O	5,04	0,30	5,10	0,22	5,12	0,15	4,95	0,16
K ₂ O	0,10	0,04	0,17	0,04	0,11	0,05	0,10	0,02
BaO	0,03	0,04	0,02	0,01	0,01	0,02	0,02	0,02
SrO	0,59	0,08	0,78	0,09	0,58	0,05	0,59	0,06
F	< LD	-	0,01	0,03	0,05	0,08	0,10	0,11
Total	98,93		96,76		98,18		97,06	
Ν	n = 5	σ	n = 4	σ	n = 3	σ	n = 1	σ
Ti	270,51	61,03	266,89	137,18	409,26	154,20	131,91	
Mn	955,97	85,52	1570,80	788,90	980,58	77,75	1214,94	
Sr	5321,48	665,00	6509,23	806,24	4891,30	106,24	5186,23	
Y	5,46	1,30	8,82	0,82	6,66	1,46	4,11	
Nb	-	-	0,37	0,13	0,20	-	< LD	
Ba	67,03	12,00	166,56	35,36	61,53	7,59	55,91	
La	15,31	1,80	18,80	4,76	20,86	2,42	9,86	
Ce	18,88	1,57	20,51	7,16	27,94	3,41	10,86	
Pr	12,34	1,21	14,19	6,42	18,42	2,49	6,53	
Nd	13,52	1,76	14,69	5,37	21,25	2,92	7,32	
Sm	12,09	1,21	13,78	4,91	17,96	3,58	6,53	
Eu	12,83	1,40	18,44	8,38	17,70	1,59	8,69	
Gd	9,11	1,99	13,35	1,80	12,49	2,85	9,19	
Tb	7,04	1,16	9,31	0,99	9,57	1,91	4,82	
Dy	6,49	1,11	9,69	1,07	8,70	1,95	4,88	
Ho	5,15	1,08	8,17	1,40	6,77	1,43	3,85	
Er	3,81	0,88	6,22	1,14	4,86	1,18	2,67	
Yb	1,86	0,23	2,90	0,75	2,30	0,70	1,41	
Lu	1,36	0,17	2,09	0,56	1,57	0,34	0,981	

C.7.5. Phlogopite

Tableau 0.24. Composition en éléments majeurs (% poids) de la phlogopite à 725 °C et 0,4 GPa. σ : écart-type sur la moyenne

	AK06_01		AK06_02	
P (Gpa)	0,4		0,4	
T (°C)	950		950	
Composition	Mix 8		Mix 9	
Ν	6	σ	9	σ
SiO ₂	35,27	0,86	36,13	0,78
TiO ₂	2,75	0,54	2,29	0,78
Al ₂ O ₃	12,35	0,48	11,44	0,93
FeO	17,94	2,01	18,41	3,04
MnO	0,89	0,27	0,47	0,13
MgO	14,44	1,58	14,78	2,03
CaO	0,13	0,11	0,04	0,03
Na ₂ O	0,61	0,06	0,48	0,09
K2O	8,78	0,18	9,44	0,25
Nb ₂ O ₅	0,09	0,03	< LD	-
BaO	1,35	0,24	0,43	0,11
F	0,57	0,22	0,75	0,40
Total	95,17		94,65	

C.8. Bilan de masse

Afin de connaître les proportions des phases formées (liquides silicatés, liquides carbonatés et cristaux) aux différentes conditions P-T expérimentées, des bilans de masse ont été réalisés pour les échantillons présentés dans les chapitre IV et V.

Les bilans de masse s'effectuent en générale en fonction des concentrations en éléments majeurs, le but étant de calculer les proportions de chaque phase formée à l'équilibre, en fonction de leurs compositions ainsi que de la composition du matériel de départ utilisé. Les bilans de masse ont ainsi été réalisés à partir de la concentration en éléments majeurs (Si, Ti, Al, Fe, Mn, Mg, Ca, Na, K, P, Cr, Nb, Ba, Sr, F et Cl) des produits de départs utilisés (Tableaux III.1, partie III.1.2) et des phases analysées, mais également en REE, certains cristaux pouvant en concentrer des quantités relativement importantes (de l'ordre de 0,1 % poids). Ces bilans de masse ont été réalisés au total pour 31 éléments, et par calcul à l'aide du module d'excel « solveur ». Le nombre de phase total varie de 1 et 10 (phase vapeur inclue) en fonction des échantillons. Ce calcul permet ainsi d'effectuer une régression linéaire pour chaque élément, afin que la concentration de cet élément dans le produit initial soit bien recalculée. Ces bilans suivent l'équation suivante :

$$E_{MD} = \sum E_i * x_i \tag{6}$$

Avec E_{MD} la concentration de l'élément « e » dans le matériel de départ « MD », E_i la concentration de cet élément dans la phase i et x_i la proportion de cette phase.

La composition de départ de l'élément E est alors recalculée et est notée E_{Calculé}.

Cette méthode de bilan de masse par solveur permet de calculer un résidu noté « r », qui correspond à la somme des écarts des concentrations de l'élément « e » dans le matériel de départ initial (E_{MD}) et dans le matériel de départ calculé ($E_{Calculé}$), au carré, selon l'équation suivante :

$$r = \sum (E_{MD} - E_{calculé})^2$$
⁽⁷⁾

Plus le résidu « r » est petit, et plus le calcul reproduit bien la composition initiale du matériel de départ. Autrement dit, un bilan de masse présentant un résidu très faible permet de calculer des proportions de phases fiables et représentatives des échantillons. Le calcul via le module « solveur » permet ainsi d'obtenir la meilleure solution possible, celle pour laquelle le résidu « r » est le plus petit.

Les compositions étudiées sont assez riches en éléments volatils (Tableau III.1). Les volatils peuvent être dissous dans les liquides silicatés et carbonatés à des concentrations relativement importantes, mais également dans une phase fluide coexistant avec ces liquides. Afin de bien prendre en compte tous les éléments ainsi que toutes les phases, un test a été effectué en prenant en compte la phase vapeur dans le calcul, et en estimant que cette phase vapeur peut contenir du CO_2 , H_2O , F et Cl. Dans ce cas, ces éléments volatils sont considérés comme pouvant se répartir entre seulement trois phases les liquides silicatés, les liquides carbonatés et la phase fluide – alors que tous les autres éléments peuvent se répartir entre les phases cristallines et liquides. Cependant, le problème de ce calcul est que les concentrations en H_2O et CO_2 sont inconnues à la fois dans les liquides carbonatés et dans la phase fluide. En forçant le calcul malgré ces inconnues, les résidus « r » de calcul des bilans de masses obtenus sont dans ce cas beaucoup trop élevés pour considérer que les proportions calculées sont représentatives. Cette solution a donc été écartée. Le bilan de masse a ainsi été réalisé pour tous les échantillons en ne prenant en compte que les éléments majeurs et traces (si analysés), et que les phases liquides et cristallines.

Le bilan de masse n'a pas été effectué pour un échantillon ne contenant que du liquide silicaté (échantillon T16-04, voir Tableau VI.1) et pour un échantillon dont les cristaux n'ont pas été analysés (AK08_03, Tableau VI.1).

Le résidu « r » calculé est parfois très élevé. Le calcul de bilan de masse n'est alors pas correct, soit parce qu'il manque une phase qui n'est pas prise en compte dans le calcul (phase vapeur, minéral non observé/analysé etc...), où soit parce que l'un des éléments n'est pas bien recalculé. C'est parfois le cas du F, du Na₂O ou du FeO.

Pour les échantillons dopés en Cl (échantillons « PCPC5 » et PCPC6-02; Tableau VI.2), les résidus calculés sont très élevés (>30) car la concentration initiale de Cl dans le produit de départ relativement importante (4,72 % poids, Tableau III.1) est sous-estimée par le calcul : toutes les phases présentent des concentrations en Cl très faibles, ne permettant pas de bien recalculer les concentrations en Cl initiales. Ces résidus élevés indiquent ainsi une perte du Cl, probablement dans la phase fluide. Ces bilans de masse ne sont pas représentés dans le Tableau C.14 car les proportions de phases calculées avec des résidus aussi élevés ne sont pas représentatives.

Tableau 0.25. Bilans de masse des échantillons expérimentaux. Tous les bilans de masse ont été calculés à partir des éléments majeurs et traces, à l'exception de certains échantillons dont les traces n'ont pas été analysés (*). Les phases notées « <0,001 » sont calculées comment étant en traces. Certaines phases n'ont pas été analysées, mais recalculées par le bilan de masse (#); R : résidu de bilan de masse calculé ; LS : liquide silicaté ; LC : liquide carbonaté ; CPx : clinopyroxène ; Gnt : grenat ; Cc : calcite ; Ttn : titanite ; Nph : néphéline ; Fe-Spl et Al-Spl : Fe- et Al-spinelle ; Afs : feldspaths alcalins ; Ap : apatite ; Prv ; perovskite ; Mll : mélilite ; Ilm : ilménite ; Phl : phlogopite ; Fl : fluorite.

	T14_01	T14_02	T16_01	T16_02	T16_03*	T17_01	T17_02	T17_03	T17_04	T18_01	T18_02*	T18_03	T18_04	AK01_01	AK01_02	AK01_03	AK01_04	AK02_01
P (Gpa)	0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,8	1,5	1,5	1,5	1,5	0,2	0,2	0,2	0,2	0,4
T (°C)	975	975	950	950	950	925	925	925	925	925	925	925	925	925	925	925	925	925
LS	0,606	0,544	0,694	0,580	0,969	0,525	0,354	0,923	0,731	0,315		0,578	0,538	0,776	0,605	0,812	0,819	0,651
LC	0,197	0,193	0,124	0,157		0,194	0,159		0,111	0,163	0,234	0,071	0,113	-	-	-	-	0,169
CPx	0,082	0,143	0,173	0,190	0,031	0,233	0,235	0,077	0,156	0,297	0,347	0,175	0,186	0,039	-	< 0,001	0,042	0,125
Gnt	0,088	0,093	<0,001#	-	-	0,048	-	-	-	-	-	-	-	-	-	-	-	-
Cc	-	-	-	-	-	-	0,071	-	-	0,108	0,065	0,142	0,131	-	-	-	-	0,018
Ttn	-	-	0,008	-	-	< 0,001	0,004	-	-	-	-	-	-	-	-	-	-	0,013
Nph	-	-	-	0,036	-	-	< 0,001	-	-	-	0,030	-	-	< 0,001	< 0,001	0,007	-	-
Fe-Spl	0,027	0,026	< 0,001	0,037	0,001	< 0,001	0,031	< 0,001	0,002	0,028	-	0,034	0,033	-	-	-	-	0,025
Al-Spl	-	-	-	-	-	-	-	-	-	-	0,009	-	-	0,037	0,069	-	-	-
Fe/Cr-Spl	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Afs	-	-	-	-	-	-	0,144	-	-	0,088	0,301	-	-	-	-	-	-	-
Ар	-	-	-	-	-	-	0,001	-	-		-	-	-	0,02	0,035	-	-	-
Prv	-	-	-	-	-	-	-	-	-	-	-	-	-	0,023	0,035	0,093	0,015	-
Mll	-	-	-	-	-	-	-	-	-	-	-	-	-	0,105	0,256	-	0,124	-
Ilm	-	-	-	-	-	-	-	-	-	-	0,013	-	-	-	-	-	-	-
Phl	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Fl	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	0,912	1	1,000
R	0,656	0,504	1,952	2,484	2,328	2,169	1,031	2,055	0,679	0,298	0,342	1,403	0,441	4,094	8,882	6,617	0,822	0,336

	AK02_02	AK02_03	AK02_04	AK05_01	AK05_02	AK05_03	AK05_04*	AK05_05	T19_01	T19_02*	T19_03	T19_04	AK06_01
P (Gpa)	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,8	0,8	0,8	0,8	0,4
T (°C)	925	925	925	825	825	825	825	825	850	850	850	850	725
LS	0,479	0,907	0,668	0,454	0,483	0,526	-	0,509	0,405	-	0,579	0,506	0,530
LC	0,219	-	0,182	0,108	0,080	0,062	0,175	0,096	0,127	0,200	0,022	0,066	0,010
CPx	0,247	0,080	0,127	0,255	0,302	0,266	0,480	0,236	0,237	0,183	0,184	0,213	0,106
Gnt	-	-	-	-	-	0,039	-	0,133	-	-	-	-	0,136
Cc	< 0,001	-	-	0,094	0,111	0,091	0,001	0,022	0,105	0,091	0,152	0,158	0,150
Ttn	< 0,001	-	0,002	0,017	< 0,001	< 0,001	< 0,001	-	0,023	< 0,001	0,019	0,017	0,000
Nph	< 0,001	-		0,031	-	-	0,256	-	0,035	0,163	-	-	-
Fe-Spl		0,013	0,022	0,036	0,021	0,012	0,026	< 0,001	0,031	0,073	0,039	0,040	0,023
Al-Spl	0,042	-	-	-	-	-	-	-	-	-	-	-	-
Fe/Cr-Spl	-	-	-	-	-	-	-	-	-	-	-	-	-
Afs	-	-	-	-	-	-	0,062	-	0,036	0,290	-	-	-
Ар	-	-	-	0,004	0,003	0,004	-	0,005	-	-	0,005	< 0,001	0,006
Prv	0,013	-	-	-	-	-	-	-	-	-	-	-	-
Mll	-	-	-	-	-	-	-	-	-		-	-	-
Ilm	-	-	-	-	-	-	-	-	-	< 0,001	-	-	-
Phl	-	-	-	-	-	-	-	-	-		-	-	0,040
Fl	-	-	-	-	-	-	-	-	-	-	-	-	-
Total	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
R	3,696	0,613	0,252	0,369	0,570	0,608	11,740	1,100	0,262	0,391	1,361	0.487	0.516
	,	,	,	,	,	,	,	,	,	,	,	- ,	-)
	AK06_02	PCPC1_01	PCPC1_02	PCPC1_03	PCPC2_01	PCPC3_01	PCPC3_02	PCPC3_03	PCPC4_01	PCPC4_02	PCPC4_03	PCPC6_01	PCPC6_03
P (Gpa)	AK06_02 0,4	PCPC1_01 0,8	PCPC1_02 0,8	PCPC1_03 0,8	PCPC2_01 0,8	PCPC3_01 0,8	PCPC3_02 0,8	PCPC3_03 0,8	PCPC4_01 0,8	PCPC4_02 0,8	PCPC4_03 0,8	PCPC6_01 0,8	PCPC6_03 0,8
P (Gpa) T (°C)	AK06_02 0,4 725	PCPC1_01 0,8 850	PCPC1_02 0,8 850	PCPC1_03 0,8 850	PCPC2_01 0,8 1050	PCPC3_01 0,8 850	PCPC3_02 0,8 850	PCPC3_03 0,8 850	PCPC4_01 0,8 850	PCPC4_02 0,8 850	PCPC4_03 0,8 850	PCPC6_01 0,8 1050	PCPC6_03 0,8 1050
P (Gpa) T (°C) LS	AK06_02 0,4 725 0,501	PCPC1_01 0,8 850 0,376	PCPC1_02 0,8 850 0,42	PCPC1_03 0,8 850 0,513	PCPC2_01 0,8 1050 0,542	PCPC3_01 0,8 850 0,488	PCPC3_02 0,8 850 0,498	PCPC3_03 0,8 850 0,5	PCPC4_01 0,8 850 0,479	PCPC4_02 0,8 850 0,525	PCPC4_03 0,8 850 0,501	PCPC6_01 0,8 1050 0,554	PCPC6_03 0,8 1050 0,533
P (Gpa) T (°C) LS LC	AK06_02 0,4 725 0,501 0,016	PCPC1_01 0,8 850 0,376 0,478	PCPC1_02 0,8 850 0,42 0,485	PCPC1_03 0,8 850 0,513 0,470	PCPC2_01 0,8 1050 0,542 0,398	PCPC3_01 0,8 850 0,488 0,379	PCPC3_02 0,8 850 0,498 0,383	PCPC3_03 0,8 850 0,5 0,382	PCPC4_01 0,8 850 0,479 0,474	PCPC4_02 0,8 850 0,525 0,45	PCPC4_03 0,8 850 0,501 0,47	PCPC6_01 0,8 1050 0,554 0,446	PCPC6_03 0,8 1050 0,533 0,459
P (Gpa) <u>T (°C)</u> LS LC CPx	AK06_02 0,4 725 0,501 0,016 0,010	PCPC1_01 0,8 850 0,376 0,478 0,06	PCPC1_02 0,8 850 0,42 0,485 0,062	PCPC1_03 0,8 850 0,513 0,470	PCPC2_01 0,8 1050 0,542 0,398	PCPC3_01 0,8 850 0,488 0,379	PCPC3_02 0,8 850 0,498 0,383	PCPC3_03 0,8 850 0,5 0,382	PCPC4_01 0,8 850 0,479 0,474	PCPC4_02 0,8 850 0,525 0,45	PCPC4_03 0,8 850 0,501 0,47	PCPC6_01 0,8 1050 0,554 0,446	PCPC6_03 0,8 1050 0,533 0,459
P (Gpa) T (°C) LS LC CPx Gnt	AK06_02 0,4 725 0,501 0,016 0,010 0,107	PCPC1_01 0,8 850 0,376 0,478 0,06 0,016	PCPC1_02 0,8 850 0,42 0,485 0,062 < 0,001	PCPC1_03 0,8 850 0,513 0,470	PCPC2_01 0,8 1050 0,542 0,398	PCPC3_01 0,8 850 0,488 0,379 -	PCPC3_02 0,8 850 0,498 0,383	PCPC3_03 0,8 850 0,5 0,382	PCPC4_01 0,8 850 0,479 0,474	PCPC4_02 0,8 850 0,525 0,45	PCPC4_03 0,8 850 0,501 0,47	PCPC6_01 0,8 1050 0,554 0,446	PCPC6_03 0,8 1050 0,533 0,459
P (Gpa) T (°C) LS LC CPx Gnt Cc	AK06_02 0,4 725 0,501 0,016 0,010 0,107 0,186	PCPC1_01 0,8 850 0,376 0,478 0,06 0,016	PCPC1_02 0,8 850 0,42 0,485 0,062 < 0,001	PCPC1_03 0,8 850 0,513 0,470 - -	PCPC2_01 0,8 1050 0,542 0,398 - -	PCPC3_01 0,8 850 0,488 0,379 - -	PCPC3_02 0,8 850 0,498 0,383 - -	PCPC3_03 0,8 850 0,5 0,382 - -	PCPC4_01 0,8 850 0,479 0,474 - - < 0,001	PCPC4_02 0,8 850 0,525 0,45 - < 0,001	PCPC4_03 0,8 850 0,501 0,47 - - < 0,001	PCPC6_01 0,8 1050 0,554 0,446 - -	PCPC6_03 0,8 1050 0,533 0,459 - - -
P (Gpa) T (°C) LS LC CPx Gnt Cc Ttn	AK06_02 0,4 725 0,501 0,016 0,010 0,107 0,186 < 0,001	PCPC1_01 0,8 850 0,376 0,478 0,06 0,016 - -	PCPC1_02 0,8 850 0,42 0,485 0,062 < 0,001	PCPC1_03 0,8 850 0,513 0,470 - - -	PCPC2_01 0,8 1050 0,542 0,398 - - - -	PCPC3_01 0,8 850 0,488 0,379 - - -	PCPC3_02 0,8 850 0,498 0,383 - - - -	PCPC3_03 0,8 850 0,5 0,382 - - - -	PCPC4_01 0,8 850 0,479 0,474 - - < 0,001	PCPC4_02 0,8 850 0,525 0,45 - - < 0,001	PCPC4_03 0,8 850 0,501 0,47 - - < 0,001	PCPC6_01 0,8 1050 0,554 0,446 - - - -	PCPC6_03 0,8 1050 0,533 0,459 - - - -
P (Gpa) T (°C) LS LC CPx Gnt Cc Ttn Nph	AK06_02 0,4 725 0,501 0,016 0,010 0,107 0,186 < 0,001	PCPC1_01 0,8 850 0,376 0,478 0,06 0,016 - - 0,07	PCPC1_02 0,8 850 0,42 0,485 0,062 < 0,001 - - 0,033	PCPC1_03 0,8 850 0,513 0,470 - - - -	PCPC2_01 0,8 1050 0,542 0,398 - - - - 0,059	PCPC3_01 0,8 850 0,488 0,379 - - - - - - - - - - - - - - - - -	PCPC3_02 0,8 850 0,498 0,383 - - - - -	PCPC3_03 0,8 850 0,5 0,382 - - - - -	PCPC4_01 0,8 850 0,479 0,474 - - < 0,001 - -	PCPC4_02 0,8 850 0,525 0,45 - - < 0,001 -	PCPC4_03 0,8 850 0,501 0,47 - - < 0,001 -	PCPC6_01 0,8 1050 0,554 0,446 - - - - -	PCPC6_03 0,8 1050 0,533 0,459 - - - - -
P (Gpa) T (°C) LS LC CPx Gnt Cc Ttn Nph Fe-Spl	AK06_02 0,4 725 0,501 0,016 0,010 0,107 0,186 < 0,001	PCPC1_01 0,8 850 0,376 0,478 0,06 0,016 - - 0,07 < 0,001	PCPC1_02 0,8 850 0,42 0,485 0,062 < 0,001 - - 0,033 < 0,001	PCPC1_03 0,8 850 0,513 0,470 - - - - 0,017	PCPC2_01 0,8 1050 0,542 0,398 - - - - 0,059 -	PCPC3_01 0,8 850 0,488 0,379 - - - - - - - - - - - - - - - - - - -	PCPC3_02 0,8 850 0,498 0,383 - - - - - - - - - - - - - - - - - -	PCPC3_03 0,8 850 0,5 0,382 - - - - 0,016	PCPC4_01 0,8 850 0,479 0,474 - - < 0,001 - 0,012	PCPC4_02 0,8 850 0,525 0,45 - - < 0,001 - 0,025	PCPC4_03 0,8 850 0,501 0,47 - - < 0,001 - - 0,029	PCPC6_01 0,8 1050 0,554 0,446 - - - - - -	PCPC6_03 0,8 1050 0,533 0,459 - - - - - - -
P (Gpa) T (°C) LS LC CPx Gnt Cc Ttn Nph Fe-Spl Al-Spl	AK06_02 0,4 725 0,501 0,016 0,010 0,107 0,186 < 0,001 - 0,013 -	PCPC1_01 0,8 850 0,376 0,478 0,06 0,016 - - 0,07 < 0,001 < 0,001	PCPC1_02 0,8 850 0,42 0,485 0,062 < 0,001 - 0,033 < 0,001 < 0,001	PCPC1_03 0,8 850 0,513 0,470 - - - - - - - - - - - - - - - - - - -	PCPC2_01 0,8 1050 0,542 0,398 - - - - 0,059 - -	PCPC3_01 0,8 850 0,488 0,379 - - - - - - - - - - - - - - - - - - -	PCPC3_02 0,8 850 0,498 0,383 - - - - - - - - - - - - - - - - - -	PCPC3_03 0,8 850 0,5 0,382 - - - - - - - - - - - - - - - - - - -	PCPC4_01 0,8 850 0,479 0,474 - - < 0,001 - 0,012 -	PCPC4_02 0,8 850 0,525 0,45 - - < 0,001 - 0,025 -	PCPC4_03 0,8 850 0,501 0,47 - - < 0,001 - - 0,029 -	PCPC6_01 0,8 1050 0,554 0,446 - - - - - - - - - - -	PCPC6_03 0,8 1050 0,533 0,459 - - - - - - - - - - -
P (Gpa) T (°C) LS LC CPx Gnt Cc Ttn Nph Fe-Spl Al-Spl Fe/Cr-Spl	AK06_02 0,4 725 0,501 0,016 0,010 0,107 0,186 < 0,001 - 0,013 -	PCPC1_01 0,8 850 0,376 0,478 0,06 0,016 - - 0,07 < 0,001 < 0,001 -	PCPC1_02 0,8 850 0,42 0,485 0,062 < 0,001 - 0,033 < 0,001 < 0,001	PCPC1_03 0,8 850 0,513 0,470 - - - - - 0,017 - -	PCPC2_01 0,8 1050 0,542 0,398 - - - - 0,059 - - -	PCPC3_01 0,8 850 0,488 0,379 - - - - - - - - - - - - - - - - - - -	PCPC3_02 0,8 850 0,498 0,383 - - - - - - - - - - - - - - - - - -	PCPC3_03 0,8 850 0,5 0,382 - - - - - - - - - - - - - - - - - - -	PCPC4_01 0,8 850 0,479 0,474 - - < 0,001 - 0,012 - 0,036	PCPC4_02 0,8 850 0,525 0,45 - - < 0,001 - 0,025 - -	PCPC4_03 0,8 850 0,501 0,47 - - < 0,001 - - 0,029 - -	PCPC6_01 0,8 1050 0,554 0,446 - - - - - - - - - - - - -	PCPC6_03 0,8 1050 0,533 0,459 - - - - - - - - - - - - -
P (Gpa) T (°C) LS LC CPx Gnt Cc Ttn Nph Fe-Spl Al-Spl Fe/Cr-Spl Afs	AK06_02 0,4 725 0,501 0,016 0,010 0,107 0,186 < 0,001 - 0,013 - -	PCPC1_01 0,8 850 0,376 0,478 0,06 0,016 - - 0,07 < 0,001 < 0,001 - -	PCPC1_02 0,8 850 0,42 0,485 0,062 < 0,001 - 0,033 < 0,001 < 0,001 -	PCPC1_03 0,8 850 0,513 0,470 - - - - 0,017 - - -	PCPC2_01 0,8 1050 0,542 0,398 - - - 0,059 - - - - -	PCPC3_01 0,8 850 0,488 0,379 - - - - - - - - - - - - - - - - - - -	PCPC3_02 0,8 850 0,498 0,383 - - - - - - - - - - - - - - - - - -	PCPC3_03 0,8 850 0,5 0,382 - - - - - - - - 0,016 - - - - - - - - - - - - - - - - - - -	PCPC4_01 0,8 850 0,479 0,474 - - < 0,001 - 0,012 - 0,036 -	PCPC4_02 0,8 850 0,525 0,45 - - < 0,001 - - 0,025 - - -	PCPC4_03 0,8 850 0,501 0,47 - - < 0,001 - - 0,029 - - -	PCPC6_01 0,8 1050 0,554 0,446 - - - - - - - - - - - - - - - - - -	PCPC6_03 0,8 1050 0,533 0,459 - - - - - - - - - - - - - - - - - - -
P (Gpa) T (°C) LS LC CPx Gnt Cc Ttn Nph Fe-Spl Al-Spl Fe/Cr-Spl Afs Ap	AK06_02 0,4 725 0,501 0,016 0,010 0,107 0,186 < 0,001 - 0,013 - - 0,006	PCPC1_01 0,8 850 0,376 0,478 0,06 0,016 - - 0,07 < 0,001 < 0,001 - - - -	PCPC1_02 0,8 850 0,42 0,485 0,062 < 0,001 - 0,033 < 0,001 < 0,001 - -	PCPC1_03 0,8 850 0,513 0,470 - - - - 0,017 - - - - -	PCPC2_01 0,8 1050 0,542 0,398 - - - 0,059 - - - - - - - - - - - - - - - - - - -	PCPC3_01 0,8 850 0,488 0,379 - - - - - - - - - - - - - - - - - - -	PCPC3_02 0,8 850 0,498 0,383 - - - - - - - - - - - - - - - - - -	PCPC3_03 0,8 850 0,5 0,382 - - - - 0,016 - - 0,102	PCPC4_01 0,8 850 0,479 0,474 - - < 0,001 - 0,012 - 0,036 - -	PCPC4_02 0,8 850 0,525 0,45 - - < 0,001 - - 0,025 - - - -	PCPC4_03 0,8 850 0,501 0,47 - - < 0,001 - - 0,029 - - - -	PCPC6_01 0,8 1050 0,554 0,446 - - - - - - - - - - - - - - - - - -	PCPC6_03 0,8 1050 0,533 0,459 - - - - - - - - - - - - - - - - - - -
P (Gpa) T (°C) LS LC CPx Gnt Cc Ttn Nph Fe-Spl Al-Spl Fe/Cr-Spl Afs Ap Prv	AK06_02 0,4 725 0,501 0,016 0,010 0,107 0,186 < 0,001 - 0,013 - - 0,006 -	PCPC1_01 0,8 850 0,376 0,478 0,06 0,016 - - 0,07 < 0,001 < 0,001 - - - - - -	PCPC1_02 0,8 850 0,42 0,485 0,062 < 0,001 - 0,033 < 0,001 < 0,001 - - - -	PCPC1_03 0,8 850 0,513 0,470 - - - - 0,017 - - - - - - - - - - - - - - - - - - -	PCPC2_01 0,8 1050 0,542 0,398 - - - 0,059 - - - - - - - - - - - - - - - - - - -	PCPC3_01 0,8 850 0,488 0,379 - - - - - - - - - - - - - - - - - - -	PCPC3_02 0,8 850 0,498 0,383 - - - - - - - - - - - - - - - - - -	PCPC3_03 0,8 850 0,5 0,382 - - - - - 0,016 - - 0,102 -	PCPC4_01 0,8 850 0,479 0,474 - - < 0,001 - 0,012 - 0,036 - -	PCPC4_02 0,8 850 0,525 0,45 - - < 0,001 - - 0,025 - - - - - -	PCPC4_03 0,8 850 0,501 0,47 - - < 0,001 - - - - - - - - - - - - -	PCPC6_01 0,8 1050 0,554 0,446 - - - - - - - - - - - - - - - - - -	PCPC6_03 0,8 1050 0,533 0,459 - - - - - - - - - - - - - - - - - - -
P (Gpa) T (°C) LS LC CPx Gnt Cc Ttn Nph Fe-Spl Al-Spl Fe/Cr-Spl Afs Ap Prv Mll	AK06_02 0,4 725 0,501 0,016 0,010 0,107 0,186 < 0,001 - 0,013 - - 0,006 -	PCPC1_01 0,8 850 0,376 0,478 0,06 0,016 - - - 0,07 < 0,001 < 0,001 - - - - - - - -	PCPC1_02 0,8 850 0,42 0,485 0,062 < 0,001 - - - - - - - - - - - - - - -	PCPC1_03 0,8 850 0,513 0,470 - - - - 0,017 - - - - - - - - - - - - - - - - - - -	PCPC2_01 0,8 1050 0,542 0,398 - - - 0,059 - - - - - - - - - - - - -	PCPC3_01 0,8 850 0,488 0,379 - - - - - - - - - - - - -	PCPC3_02 0,8 850 0,498 0,383 - - - - < 0,001 0,017 - - 0,103 - -	PCPC3_03 0,8 850 0,5 0,382 - - - - 0,016 - - 0,102 - -	PCPC4_01 0,8 850 0,479 0,474 - - - 0,001 - 0,012 - 0,036 - - - - - - - - - - - - -	PCPC4_02 0,8 850 0,525 0,45 - - < 0,001 - - 0,025 - - - - - - - - -	PCPC4_03 0,8 850 0,501 0,47 - - < 0,001 - - - - - - - - - - - - - - -	PCPC6_01 0,8 1050 0,554 0,446 - - - - - - - - - - - - - - - - - -	PCPC6_03 0,8 1050 0,533 0,459 - - - - - - - - - - - - - - - - - - -
P (Gpa) T (°C) LS LC CPx Gnt Cc Ttn Nph Fe-Spl Al-Spl Fe/Cr-Spl Afs Ap Prv Mll Ilm	AK06_02 0,4 725 0,501 0,016 0,010 0,107 0,186 < 0,001 - 0,013 - - 0,006 - -	PCPC1_01 0,8 850 0,376 0,478 0,06 0,016 - - 0,07 < 0,001 < 0,001 - - - - - - - -	PCPC1_02 0,8 850 0,42 0,485 0,062 < 0,001 - - - - - - - - - - - - - - - -	PCPC1_03 0,8 850 0,513 0,470 - - - - 0,017 - - - - - - - - - - - - - - - - - - -	PCPC2_01 0,8 1050 0,542 0,398 - - - 0,059 - - - - - - - - - - - - -	PCPC3_01 0,8 850 0,488 0,379 - - - - - - - - - - - - -	PCPC3_02 0,8 850 0,498 0,383 - - - - - - - - - - - - - - - - - -	PCPC3_03 0,8 850 0,5 0,382 - - - - - 0,016 - - - 0,102 - - - - - - - - - - - - - - - - - - -	PCPC4_01 0,8 850 0,479 0,474 - - < 0,001 - 0,012 - 0,036 - - - - - - - - - - - - -	PCPC4_02 0,8 850 0,525 0,45 - - - 0,001 - - - - - - - - - - - - - - - - - -	PCPC4_03 0,8 850 0,501 0,47 - - < 0,001 - - - - - - - - - - - - - - - - - -	PCPC6_01 0,8 1050 0,554 0,446 - - - - - - - - - - - - - - - - - -	PCPC6_03 0,8 1050 0,533 0,459 - - - - - - - - - - - - - - - - - - -
P (Gpa) T (°C) LS LC CPx Gnt Cc Ttn Nph Fe-Spl Al-Spl Fe/Cr-Spl Afs Ap Prv Mll Ilm Phl	AK06_02 0,4 725 0,501 0,016 0,010 0,107 0,186 < 0,001 - 0,013 - - 0,006 - - 0,006 - - 0,159	PCPC1_01 0,8 850 0,376 0,478 0,06 0,016 - - 0,07 < 0,001 < 0,001 - - - - - - - - - - -	PCPC1_02 0,8 850 0,42 0,485 0,062 < 0,001 - - - - - - - - - - - - - - - - - -	PCPC1_03 0,8 850 0,513 0,470 - - - - 0,017 - - - - - - - - - - - - - - - - - - -	PCPC2_01 0,8 1050 0,542 0,398 - - - 0,059 - - - - - - - - - - - - -	PCPC3_01 0,8 850 0,488 0,379 - - - - - - - - - - - - -	PCPC3_02 0,8 850 0,498 0,383 - - - - - - - - - - - - - - - - - -	PCPC3_03 0,8 850 0,5 0,382 - - - - - 0,016 - - 0,102 - - - - - - - - - - - - - - - - - - -	PCPC4_01 0,8 850 0,479 0,474 - - - 0,001 - 0,012 - 0,036 - - - - - - - - - - - - -	PCPC4_02 0,8 850 0,525 0,45 - - < 0,001 - - - - - - - - - - - - - - - - - -	PCPC4_03 0,8 850 0,501 0,47 - - < 0,001 - - - - - - - - - - - - - - - - - -	PCPC6_01 0,8 1050 0,554 0,446 - - - - - - - - - - - - - - - - - -	PCPC6_03 0,8 1050 0,533 0,459 - - - - - - - - - - - - - - - - - - -
P (Gpa) T (°C) LS LC CPx Gnt Cc Ttn Nph Fe-Spl Al-Spl Fe/Cr-Spl Afs Ap Prv Mll Ilm Phl Fl	AK06_02 0,4 725 0,501 0,016 0,010 0,107 0,186 < 0,001 - 0,013 - - 0,006 - - 0,006 - - - 0,159 -	PCPC1_01 0,8 850 0,376 0,478 0,06 0,016 - - - - - - - - - - - - - - - - - - -	PCPC1_02 0,8 850 0,42 0,485 0,062 < 0,001 - - - - - - - - - - - - - - - - - -	PCPC1_03 0,8 850 0,513 0,470 - - - - - - - - - - - - - - - - - - -	PCPC2_01 0,8 1050 0,542 0,398 - - - 0,059 - - - - - - - - - - - - -	PCPC3_01 0,8 850 0,488 0,379 - - - - - - - - - - - - -	PCPC3_02 0,8 850 0,498 0,383 - - - - - - - - - - - - 0,001 0,017 - - 0,103 - - - - - - - - - - - - - - - - - - -	PCPC3_03 0,8 850 0,5 0,382 - - - - - 0,016 - - - 0,102 - - - - - - - - - - - - - - - - - - -	PCPC4_01 0,8 850 0,479 0,474 - - < 0,001 - 0,012 - 0,036 - - - - < 0,001 - - - - - - - - - - - - -	PCPC4_02 0,8 850 0,525 0,45 - - < 0,001 - - - - - - - - - - - - - - - - - -	PCPC4_03 0,8 850 0,501 0,47 - - - - - - - - - - - - - - - - - - -	PCPC6_01 0,8 1050 0,554 0,446 - - - - - - - - - - - - -	PCPC6_03 0,8 1050 0,533 0,459 - - - - - - - - - - - - - - - - - - -
P (Gpa) T (°C) LS LC CPx Gnt Cc Ttn Nph Fe-Spl Al-Spl Fe/Cr-Spl Afs Ap Prv Mll Ilm Phl Fl Total	AK06_02 0,4 725 0,501 0,016 0,010 0,107 0,186 < 0,001 - 0,013 - - 0,006 - - - 0,159 - 1,000	PCPC1_01 0,8 850 0,376 0,478 0,06 0,016 - - 0,07 < 0,001 < 0,001 - - - - - - - - - - - - - - - - - -	PCPC1_02 0,8 850 0,42 0,485 0,062 < 0,001 - - - - - - - - - - - - - - - - - -	PCPC1_03 0,8 850 0,513 0,470 - - - - 0,017 - - - - - - - - - - - - - - - - - - -	PCPC2_01 0,8 1050 0,542 0,398 - - - 0,059 - - - - - - - - - - - - -	PCPC3_01 0,8 850 0,488 0,379 - - - - - - - - - - - - -	PCPC3_02 0,8 850 0,498 0,383 - - - - - - - - - - 0,001 0,017 - - 0,103 - - - - - 1,001	PCPC3_03 0,8 850 0,5 0,382 - - - - - 0,016 - - - 0,102 - - - - - - 1,000	PCPC4_01 0,8 850 0,479 0,474 - - < 0,001 - 0,036 - - - - - < 0,001 - - - - - - - - - - - - -	PCPC4_02 0,8 850 0,525 0,45 - - < 0,001 - - - - - - - - - - - - - - - - - -	PCPC4_03 0,8 850 0,501 0,47 - - < 0,001 - - - - - - - - - - - - - - - - - -	PCPC6_01 0,8 1050 0,554 0,446 - - - - - - - - - - - - -	PCPC6_03 0,8 1050 0,533 0,459 - - - - - - - - - - - - - - - - - - -

D. ANNEXE 4 : Coefficients de partage entre minéraux et liquide carbonaté

Cette partie contient les tableaux des coefficients de partage en éléments traces entre les minéraux et les liquides carbonatés caractérisés dans le chapitre VI (clinopyroxène, grenat, titanite, calcite, apatite et pérovskite). Pour chaque minéral, chaque tableau présente les coefficients de partage calculés selon l'équation (5) (partie III.4, Chapitre III), ainsi que l'erreur statistique associée (écart-type ; équation (6)).

D.1. Clinopyroxènes et liquides carbonatés.

T14 01 T14 02 T16 01 T16 02 T17 01 T17 02 P (Gpa) 0,8 0,8 0,8 0,8 0,8 0,8 T (°C) 975 975 950 950 925 925 Composition Mix8 Mix8 Mix8 Mix8 Mix8 Mix8 σ σ σ σ σ σ Sc ------Ti 3,60 1,14 4,99 2,58 4,37 1,03 11,94 2,12 8,58 4,28 16,66 1,75 Cr Mn 1,06 0,20 1,49 0,27 0,71 0,08 1,07 0,98 0,19 0,88 0.13 0.15 0,04 0,00 0,05 0,05 0,05 0,01 0,01 Sr 0,04 0,00 0,00 0,00 0,06 Zr 0,02 Nb 0,01 0,03 0,01 0,08 0,07 0,42 0,09 0,17 0,17 0,51 0,10 La 0,02 0,01 0,02 0,01 0,06 0,03 0,12 0,03 0,05 0,02 0,13 0,05 0.03 0.01 0.03 0.01 0.10 0.04 0.20 0.040.08 0.03 0.21 0.06 Ce 0,07 0,02 0,29 0,05 0,12 0,04 0,28 0,07 Pr 0,02 0,06 0,15 0,06 0,08 0,02 0,18 0,07 Nd 0,01 0,06 0,36 0,05 0,35 0,08 0,07 0,15 Sm 0,15 0,06 0,10 0,03 0,27 0,10 0,52 0,09 0,23 0,08 0,47 0,09 Eu 0,18 0,03 0,11 0,06 0,30 0,09 0,51 0,08 0,26 0,10 0,47 0,09 0,08 0,29 0,49 0,11 0.07 0,13 0.30 0.09 0.57 0.09 0.11 0.11 Gd Tb 0,23 0,04 0,13 0,01 0,32 0,09 0,62 0,10 0,36 0,16 0,51 0,08 Dy 0,26 0.06 0.17 0,05 0,33 0.08 0,64 0.10 0.39 0.18 0.51 0.08 Y 0,22 0,04 0,13 0,04 0,27 0,07 0,56 0,08 0,33 0,14 0,42 0,06 Но 0,27 0,06 0,15 0,04 0,32 0,08 0,65 0,10 0,45 0,21 0,51 0,08 Er 0,30 0,09 0,17 0,06 0,34 0.08 0,70 0.10 0,48 0,23 0,53 0,07 Yb 0,57 0,17 0,47 0,17 0,46 0,09 1,08 0,11 0,75 0,30 0,76 0,09 1,02 0,36 0,12 0,83 0,20 0,73 0,26 0,62 0,10 1,47 0,12 0,98 Lu Hf --------Та ---_ --T17 04 T18 01 T18 03 T18 04 AK02 02 AK02 01 P (Gpa) 0,8 1,5 0,2 1,5 1,5 0,2 925 925 925 T (°C) 925 925 925 Composition Mix8 Mix8 Mix8 Mix8 Mix8 Mix8 σ σ σ σ σ σ Sc 1,43 Ti 3,22 0,72 12,32 4,09 4,45 2,78 7,05 5,65 6,02 10,79 3,35 26,68 20,73 Cr 0,07 0.10 0,59 0,05 0,57 0,13 0,57 0.94 1,31 0.25 0.45 Mn 0.060,05 0,00 0,03 0,01 0,04 0,00 0,03 0,00 0,05 0,00 0,05 0,01 Sr Zr 0,03 0,04 0,02 0,02 0,09 0,01 0,04 0,03 0,04 0,03 0,05 0,04 Nb 0,03 0,01 0,01 0,00 0,01 0,00 0,01 0,00 0,04 0,02 0,03 0,01 La Ce 0,00 0.06 0.01 0,02 0.02 0.00 0.02 0.01 0,08 0.02 0.06 0.01 Pr 0,10 0,02 0,04 0,01 0,03 0,01 0,04 0,01 0,12 0,02 0,10 0,02 Nd 0,13 0,02 0,06 0,01 0,05 0,01 0,05 0,02 0,16 0,03 0,14 0,02 0,20 0,03 0,02 0,08 0,09 0,03 0,25 0,06 0,22 0,04 Sm 0.11 0.01 0,22 0,03 0,12 0,02 0,10 0,02 0,10 0,02 0,26 0,06 0,22 0,04 Eu 0,22 0,01 Gd 0,03 0,14 0,07 0,09 0.02 0.10 0,27 0.06 0.15 0.03 Tb 0,23 0,03 0,15 0,02 0,12 0,02 0,11 0,02 0,30 0,05 0,25 0,04 Dy 0,24 0,03 0,17 0,03 0,12 0,02 0,12 0,03 0,30 0,08 0,25 0,03 0,19 0,02 0,28 0,04 0,21 Y 0.02 0.14 0.10 0.01 0.10 0.02 0.03 Но 0,23 0,18 0,02 0,12 0,12 0,02 0,32 0,04 0,25 0,04 0,03 0,02 0,23 0,27 Er 0.03 0,18 0,02 0,12 0,02 0,12 0,02 0,34 0.07 0,04 Yb 0,30 0,03 0,23 0,01 0,15 0,02 0,14 0,02 0,62 0,10 0,60 0,07 Lu 0,39 0,05 0,25 0,02 0,19 0,02 0,18 0,02 1,02 0,16 0,96 0,09 Hf ------------Та --_

Tableau 0.26. Coefficients de partage entre clinopyroxènes et liquides carbonatés. σ : écart-type sur la moyenne des coefficients de partage, calculé à partir de l'équation (5) de la partie III.4.

	AK02_04		AK05_01		AK05_02		AK05_03		AK05_05	
P (Gpa)	0,2		0,4		0,4		0,4		0,4	
T (°C)	925		925		925		925		925	
Composition	Mix8	σ	Mix8	σ	Mix8	σ	Mix8	σ	Mix8	σ
Sc	-	-	-	-	-	-	-	-	-	-
Ti	7,70	2,36	61,72	19,23	19,98	7,10	16,17	6,59	23,57	10,97
Cr	-	-	-	-	52,06	33,06	35,79	15,17		-
Mn	0,94	0,16	0,89	0,24	0,38	0,13	0,33	0,08	0,56	
Sr	0,06	0,01	0,06	0,01	0,05	0,00	0,05	0,00	0,03	
Zr	-	-	-	-	-	-	-	-	-	-
Nb	0,21	0,19	0,76	0,34	0,69	0,28	0,62	0,21	0,61	
La	0,07	0,04	0,09	0,03	0,08	0,02	0,10	0,01	0,03	0,01
Ce	0,12	0,06	0,16	0,04	0,12	0,03	0,16	0,01	0,06	0,01
Pr	0,17	0,08	0,23	0,06	0,18	0,04	0,23	0,02	0,12	0,03
Nd	0,23	0,10	0,29	0,09	0,23	0,06	0,28	0,03	0,22	0,07
Sm	0,31	0,12	0,41	0,09	0,31	0,07	0,38	0,06	0,69	0,17
Eu	0,31	0,12	0,44	0,09	0,34	0,07	0,42	0,05	1,20	0,38
Gd	0,26	0,13	0,32	0,13	0,28	0,07	0,37	0,05	1,25	0,37
Tb	0,34	0,13	0,42	0,08	0,29	0,07	0,36	0,05	2,20	0,85
Dy	0,33	0,12	0,41	0,09	0,27	0,06	0,33	0,05	2,78	1,11
Y	0,27	0,09	0,31	0,06	0,20	0,05	0,23	0,04	2,13	0,93
Но	0,31	0,10	0,39	0,07	0,25	0,06	0,30	0,04	3,23	1,02
Er	0,33	0,10	0,39	0,07	0,22	0,05	0,27	0,04	4,03	-
Yb	0,50	0,10	0,57	0,12	0,28	0,06	0,32	0,04	5,18	1,95
Lu	0,70	0,09	0,83	0,19	0,36	0,08	0,39	0,05	5,58	1,30
Hf	-	-	-	-	-	-	-	-	-	-
Та	-	-	-	-	-	-	-	-	-	-
	T19_01		T19_03		T19_04		AK06_01		AK06_02	
P (Gpa)	0,8		0,8		0,8		0,4		0,4	
T (°C)	850		850		850		725		725	
Composition	Mix8	σ	Mix8	σ	Mix8	σ	Mix8	σ	Mix9	σ
Sc	-	-	-	-	-	-	-	-	-	-
Ti	25,39	5,71	5,96	3,06	20,95	7,96	7,72	6,25	7,67	7,37
Cr	-	-	5,84	3,32	190,28	103,44	0,53	0,27	4,38	3,75
Mn	1,04	0,19	0,51	0,13	0,86	0,16	0,50	0,13	1,10	0,22
Sr	0,06	0,01	0,03	0,00	0,05	0,01	0,09	0,01	0,02	0,00
Zr	-	-	-	-	-	-	-	-	-	-
Nb	0,34	0,19	0,04	0,03	0,30	0,20	0,07	0,07	0,04	0,04
La	0,05	0,02	0,01	0,00	0,04	0,02	0,02	0,00	0,00	0,00
Ce	0,11	0,03	0,02	0,00	0,09	0,02	0,03	0,01	0,01	0,00
Pr	0,17	0,04	0,04	0,01	0,15	0,02	0,05	0,01	0,01	0,00
Nd	0,23	0,04	0,05	0,01	0,22	0,02	0,07	0,02	0,02	0,00
Sm	11/20	$\alpha \alpha \prime$	1110	$\alpha \alpha$	0.21	11/14	0.06	0.01	0.03	0,01
Eu	0,29	0,07	0,08	0,01	0,31	0,05	0,00	0,01	0,00	0.01
C 1	0,29	0,07	0,08	0,01	0,31	0,03	0,06	0,02	0,03	0,01
Gd	0,29 0,35 0,16	0,07 0,06 0,06	0,08 0,09 0,08	0,01 0,02 0,02	0,31 0,34 0,22	0,03 0,02 0,05	0,00 0,06 0,05	0,02 0,02	0,03 0,02	0,01 0,01
Gd Tb	0,29 0,35 0,16 0,32	0,06 0,06 0,08	0,08 0,09 0,08 0,10	0,01 0,02 0,02 0,02	0,31 0,34 0,22 0,37	0,03 0,02 0,05 0,05	0,00 0,06 0,05 0,03	0,02 0,02 0,01	0,03 0,02 0,03	0,01 0,01 0,01
Gd Tb Dy	0,29 0,35 0,16 0,32 0,30	0,06 0,06 0,08 0,05	0,08 0,09 0,08 0,10 0,10	0,01 0,02 0,02 0,02 0,02	0,31 0,34 0,22 0,37 0,33	0,03 0,02 0,05 0,05 0,04	0,00 0,06 0,05 0,03 0,03	0,02 0,02 0,01 0,01	0,03 0,02 0,03 0,04	0,01 0,01 0,01 0,01
Gd Tb Dy Y	0,29 0,35 0,16 0,32 0,30 0,23	0,07 0,06 0,06 0,08 0,05 0,04	0,08 0,09 0,08 0,10 0,10 0,09	0,01 0,02 0,02 0,02 0,02 0,01	0,31 0,34 0,22 0,37 0,33 0,26	0,03 0,02 0,05 0,05 0,04 0,04	0,00 0,06 0,05 0,03 0,03 0,02	0,02 0,02 0,01 0,01 0,01	0,03 0,02 0,03 0,04 0,03	0,01 0,01 0,01 0,01 0,01
Gd Tb Dy Y Ho	0,29 0,35 0,16 0,32 0,30 0,23 0,29	0,07 0,06 0,08 0,05 0,04 0,04	0,08 0,09 0,08 0,10 0,10 0,09 0,10	0,01 0,02 0,02 0,02 0,02 0,02 0,01 0,01	0,31 0,34 0,22 0,37 0,33 0,26 0,35	0,03 0,02 0,05 0,05 0,04 0,04 0,03	0,00 0,06 0,05 0,03 0,02 0,02	0,02 0,02 0,01 0,01 0,01 0,01	0,03 0,02 0,03 0,04 0,03 0,04	0,01 0,01 0,01 0,01 0,01 0,01
Gd Tb Dy Y Ho Er	0,29 0,35 0,16 0,32 0,30 0,23 0,29 0,27	0,07 0,06 0,06 0,08 0,05 0,04 0,04 0,05	0,08 0,09 0,08 0,10 0,10 0,09 0,10 0,11	0,01 0,02 0,02 0,02 0,02 0,01 0,01 0,02	0,31 0,34 0,22 0,37 0,33 0,26 0,35 0,35	0,03 0,02 0,05 0,05 0,04 0,04 0,03 0,06	0,00 0,06 0,05 0,03 0,03 0,02 0,02 0,02	0,02 0,02 0,01 0,01 0,01 0,01 0,01	0,03 0,02 0,03 0,04 0,03 0,04 0,06	0,01 0,01 0,01 0,01 0,01 0,01 0,02
Gd Tb Dy Y Ho Er Yb	0,29 0,35 0,16 0,32 0,30 0,23 0,29 0,27 0,38	0,07 0,06 0,08 0,05 0,04 0,04 0,05 0,05	0,08 0,09 0,08 0,10 0,10 0,09 0,10 0,11 0,15	0,01 0,02 0,02 0,02 0,02 0,01 0,01 0,02 0,02	0,31 0,34 0,22 0,37 0,33 0,26 0,35 0,35 0,47	0,03 0,02 0,05 0,05 0,04 0,04 0,03 0,06 0,04	0,00 0,05 0,03 0,03 0,02 0,02 0,02 0,02	0,02 0,02 0,01 0,01 0,01 0,01 0,01 0,02	0,03 0,02 0,03 0,04 0,03 0,04 0,06 0,23	0,01 0,01 0,01 0,01 0,01 0,01 0,02 0,10
Gd Tb Dy Y Ho Er Yb Lu	$\begin{array}{c} 0,29\\ 0,35\\ 0,16\\ 0,32\\ 0,30\\ 0,23\\ 0,29\\ 0,27\\ 0,38\\ 0,52\\ \end{array}$	0,07 0,06 0,08 0,05 0,04 0,04 0,05 0,05 0,10	0,08 0,09 0,08 0,10 0,10 0,10 0,10 0,11 0,15 0,20	0,01 0,02 0,02 0,02 0,02 0,01 0,01 0,02 0,02	0,31 0,34 0,22 0,37 0,33 0,26 0,35 0,35 0,35 0,47 0,59	$\begin{array}{c} 0,03\\ 0,02\\ 0,05\\ 0,05\\ 0,04\\ 0,04\\ 0,03\\ 0,06\\ 0,04\\ 0,06\\ \end{array}$	0,00 0,06 0,05 0,03 0,03 0,02 0,02 0,02 0,02 0,04 0,07	0,02 0,02 0,01 0,01 0,01 0,01 0,01 0,02 0,03	0,03 0,02 0,03 0,04 0,03 0,04 0,06 0,23 0,47	$\begin{array}{c} 0,01\\ 0,01\\ 0,01\\ 0,01\\ 0,01\\ 0,01\\ 0,02\\ 0,10\\ 0,21\\ \end{array}$
Gd Tb Dy Y Ho Er Yb Lu Hf	0,29 0,35 0,16 0,32 0,30 0,23 0,29 0,27 0,38 0,52	0,07 0,06 0,06 0,08 0,05 0,04 0,04 0,05 0,05 0,10	0,08 0,09 0,08 0,10 0,10 0,10 0,10 0,11 0,15 0,20	0,01 0,02 0,02 0,02 0,02 0,01 0,01 0,02 0,02	0,31 0,34 0,22 0,37 0,33 0,26 0,35 0,35 0,35 0,47 0,59	0,03 0,02 0,05 0,05 0,04 0,04 0,03 0,06 0,04 0,06	0,00 0,06 0,05 0,03 0,03 0,02 0,02 0,02 0,02 0,04 0,07	0,02 0,02 0,01 0,01 0,01 0,01 0,01 0,02 0,03	0,03 0,02 0,03 0,04 0,03 0,04 0,06 0,23 0,47	0,01 0,01 0,01 0,01 0,01 0,02 0,10 0,21

Tableau ().1. Suite.
-----------	--------------------

	PCPC1_01		PCPC1_02		PCPC5_01		PCPC5_02		PCPC5_03	
P (Gpa)	0,8		0,8		0,8		0,8		0,8	
T (° C)	850		850		850		850		850	
Composition	PhCbn1	σ	PhCbn1	σ	PhCbn4	σ	PhCbn4	σ	PhCbn4	σ
Sc	34,70	18,74	24,06	9,18	144,26	71,27	78,15	13,02	91,70	19,66
Ti	23,78	6,24	24,04	4,72	42,40	17,38	25,67	6,04	30,59	7,10
Cr	61,33	21,97	65,01	23,25	66,14	45,11	29,88	8,87	14,70	4,53
Mn	1,37	0,24	0,85	0,18	0,73	0,24	0,85	0,16	0,53	0,06
Sr	0,06	0,01	0,05	0,01	0,05	0,01	0,04	0,00	0,04	0,00
Zr	65,96	25,32	66,88	13,85	56,74	15,75	61,52	16,12	111,42	36,20
Nb	1,34	0,19	1,78	0,26	1,35	0,26	1,13	0,27	1,08	0,30
La	0,18	0,09	0,12	0,03	0,20	0,02	0,10	0,03	0,12	0,03
Ce	0,29	0,14	0,21	0,04	0,32	0,04	0,18	0,05	0,23	0,06
Pr	0,41	0,17	0,30	0,07	0,45	0,10	0,25	0,06	0,31	0,05
Nd	0,50	0,18	0,39	0,06	0,62	0,14	0,36	0,07	0,46	0,09
Sm	0,60	0,20	0,54	0,09	0,89	0,21	0,57	0,16	0,81	0,13
Eu	0,68	0,20	0,57	0,08	1,06	0,23	0,65	0,16	0,99	0,19
Gd	0,67	0,19	0,54	0,07	0,99	0,33	0,73	0,17	0,90	0,19
Tb	0,66	0,19	0,56	0,08	1,01	0,32	0,81	0,17	1,27	0,20
Dy	0,70	0,20	0,57	0,08	1,15	0,24	0,90	0,24	1,37	0,21
Y	0,53	0,13	0,44	0,06	0,79	0,14	0,68	0,18	1,11	0,25
Но	0,65	0,15	0,55	0,09	1,05	0,29	0,93	0,17	1,51	0,24
Er	0,75	0,16	0,57	0,09	1,14	0,25	0,94	0,24	1,83	0,30
Yb	1,15	0,17	0,83	0,16	1,40	0,21	1,48	0,32	2,38	0,36
Lu	1,43	0,28	1,11	0,25	1,81	0,29	2,11	0,38	3,55	0,53
Hf	104,18	79,11	122,87	33,81	102,30	56,71	144,81	72,59	196,57	49,40
Та	12,27	3,35	13,91	3,82	20,81	5,63	12,69	3,76	16,32	5,95

D.2. Grenat et liquide carbonaté

	T17_01		AK05_05		AK06_01		AK06_02		PCPC1_01		PCPC1_02		PCPC5_01		PCPC5_02		PCPC5_03	
P (Gpa)	0,8		0,4		0,4		0,4		0,8		0,8		0,8		0,8		0,8	
T (°C)	925		825		725		725		850		850		850		850		850	
Composition	Mix8	σ	Mix8	σ	Mix8	σ	Mix9	σ	PhCbn1	σ	PhCbn1	σ	PhCbn4	σ	PhCbn4	σ	PhCbn4	σ
Sc	-	-	-	-	-	-	-	-	51,29	20,43	35,65	12,21	107,60	22,70	93,22	19,53	176,69	48,63
Ti	41,12	17,24	44,01	21,66	59,00	47,35	120,25	104,38	54,56	13,29	49,55	11,01	69,81	15,39	48,41	10,46	78,10	17,73
Cr	-	-	-	-	5,48	4,11	105,26	99,35	80,35	46,85	97,34	30,11	15,78	5,33	9,46	5,05	45,39	18,36
Mn	1,57	0,13	0,87	0,24	0,32	0,03	0,51	0,09	1,69	0,42	1,30	0,30	1,29	0,14	0,99	0,25	0,78	0,16
Sr	0,01	0,00	0,00	0,00	0,01	0,00	0,01	0,00	0,01	0,00	0,01	0,00	0,01	0,00	0,00	0,00	0,01	0,00
Zr	-	-	-	-	-	-	-	-	152,61	47,84	137,33	34,85	121,55	40,36	155,21	41,95	269,25	94,37
Nb	0,97	0,21	18,54	10,76	2,95	2,80	9,15	7,20	12,49	2,74	12,52	4,62	11,01	2,66	8,92	3,05	19,80	6,00
Ba	-	-	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,00	0,00	0,00	-	-	-	-	-	-
La	0,05	0,01	0,06	0,01	0,04	0,01	0,06	0,01	0,45	0,12	0,26	0,05	0,37	0,11	0,13	0,03	0,24	0,08
Ce	0,24	0,02	0,24	0,04	0,21	0,05	0,25	0,02	1,38	0,35	1,29	0,31	1,43	0,20	1,19	0,16	1,52	0,36
Pr	0,56	0,04	0,63	0,10	0,45	0,10	0,53	0,04	2,12	0,46	1,64	0,32	1,71	0,28	1,01	0,10	1,48	0,36
Nd	1,15	0,06	1,53	0,21	0,82	0,18	1,05	0,06	3,13	0,72	2,50	0,43	2,68	0,43	1,72	0,10	2,68	0,58
Sm	3,93	0,23	7,13	1,17	1,73	0,42	2,77	0,17	4,61	0,98	4,51	0,66	4,29	0,69	3,98	0,44	6,57	1,22
Eu	6,07	0,63	12,85	2,77	3,06	1,12	3,97	0,33	5,53	1,16	4,92	0,81	5,53	0,81	4,95	0,67	9,22	2,00
Gd	8,22	1,13	16,46	3,77	1,43	0,51	2,45	0,41	5,39	0,87	4,84	0,78	5,66	1,14	5,72	0,70	10,57	2,41
Тb	13,74	2,66	32,32	9,19	2,70	1,07	6,07	0,48	5,99	1,46	6,00	1,12	6,55	0,93	8,04	1,09	15,21	3,14
Dy	18,68	4,68	46,28	15,55	2,89	0,86	7,29	0,71	7,25	2,07	6,83	1,29	7,99	1,35	9,46	1,33	20,25	4,51
Y	16,92	3,85	44,32	14,25	1,85	0,30	5,93	0,71	7,12	2,09	6,21	1,11	7,16	1,33	9,24	1,45	17,98	3,51
Но	24,02	6,57	61,71	20,47	2,93	1,02	8,16	0,84	7,17	1,66	6,99	1,36	8,01	1,29	11,38	1,48	23,80	5,71
Er	28,32	8,88	73,03	25,36	2,74	0,95	8,59	1,01	8,17	2,42	7,76	1,87	9,44	1,58	12,83	1,82	29,53	6,54
Yb	33,42	10,17	73,66	19,47	3,09	1,15	9,41	1,66	9,48	2,58	8,70	2,13	11,29	2,01	16,63	2,42	34,70	7,76
Lu	32,16	9,40	58,49	14,14	2,97	1,00	8,99	1,91	9,44	2,77	8,38	1,95	12,19	2,37	17,80	2,33	37,10	8,35
Hf	-	-	-	-	-	-	-	-	118,87	51,19	163,96	55,87	345,52	119,82	389,45	188,10	346,34	98,98
Та	-	-	-	-	-	-	-	-	36,98	15,96	49,95	18,67	63,10	19,19	48,06	10,46	99,84	35,23

Tableau 0.27. Coefficients de partage entre grenats et liquides carbonatés. σ: écart-type sur la moyenne des coefficients de partage, calculé à partir de l'équation (5) de la partie III.4.

D.3. Apatite et liquide carbonaté

Tableau 0.28. Coefficients	de partage des	éléments trace.	s entre apatites	et liquides	carbonatés.	<i>σ</i> : écart-ty	pe sur	la moyenne
des coefficients de partage	, calculé à part	ir de l'équation	(5) de la partie	e 111.4.				

$\mathbf{D}(\mathbf{C}_{mn})$	AK05_01		AK05_02		AK05_03		AK05_05		AK06_01		AK06_02	
P (Gpa)	0,4		0,4		0,4		0,4		0,4		0,4	
$\Gamma(C)$	825 M: 9		825 M: 9		825 M: 9		825 M: 9		725		725	
Composition	MIX8	σ	MIX8	σ	MIX8	σ	MIX8	σ	MIX8	σ	MIX9	σ
5C	-	-	-	-	-	-	-	-	-	-	-	-
	0,23	0,07	0,27	0,10	0,00	0,05	0,70	0,80	0,34	0,47	0,00	0,50
Cr Mn	- 0.20	-	-	-	- 0.11	-	-	-	-	-	-	-
NIII Sm	1.04	0,05	0,22	0,07	0,11	0,03	0,15	0,05	1.27	0,05	0,17	0,11
51 7r	1,04	0,07	0,82	0,05	0,04	0,04	0,55	0,05	1,27	0,15	1,11	0,15
Nh	0.40	0.10	0.26	0.10	0.16	-	0.11	-	-	0.06	-	0.06
Ra	0,40	0,10	0,20	0,10	0,10	0.06	0.10	0,00	0.07	0,00	0.06	0,00
La	5.80	1.00	2 31	0,04	2 51	0,00	2 51	0,05	1.87	0,01	1.69	0,03
La Ce	7.86	1,00	3.00	0.25	3 39	0.25	3 36	0.24	2 65	1.09	2 33	0.48
Pr	8.97	1,10	3,80	0,25	4 22	0.38	4 58	0,24	2,05	1,05	2,55	0,40
Nd	9.82	1,12	4 04	0.44	4,22	0,36	-,90 5 94	0,93	2,69	0.66	2,63	0.73
Sm	11 52	1,20	4,04	0,44	5 47	0,50	9 51	2 67	1.52	0.32	2,05	0.82
En	10.82	1.03	4 50	0.62	5.61	0.46	11 51	4.06	1 31	0.42	1.98	0.77
Gd	7.63	2 80	4 87	0.68	5 99	0.60	16.78	5.09	1,81	0.69	2 00	0.50
Th	10.13	1 20	4 49	0.72	5,22	0,60	15,85	7 87	0.73	0.26	1 44	0.58
Dv	9.30	1,20	3.72	0.65	4.73	0.47	17.05	9.43	0.61	0.21	1.22	0.46
Y Y	6.85	0.99	2.79	0.55	3.67	0.50	11.82	5.42	0.36	0.08	0.91	0.27
Ho	8.25	1.04	3.40	0.62	4.16	0.32	17.15	9.06	0.52	0.22	1.07	0.38
Er	7.20	0.97	2.87	0.54	3.82	0.44	15.68	8.37	0.41	0.18	0.92	0.31
Yh	5.32	0.73	1.96	0.38	2.61	0.24	10.22	4.71	0.34	0.17	0.71	0.18
Lu	4.39	0.77	1.68	0.33	2.28	0.24	7.24	2.75	0.31	0.14	0.68	0.18
Hf	-	-	-	-	-	-	-	-	-	-	-	-
Ta	-	-	-	-	-	-	-	-	-	-	-	-
	PCPC3_01		PCPC3_02		PCPC3_03		PCPC5_01		PCPC5_02		PCPC6_03	
P (Gpa)	PCPC3_01 0,8		PCPC3_02 0,8		PCPC3_03 0,8		PCPC5_01 0,8		PCPC5_02 0,8		PCPC6_03 0,8	
P (Gpa) T (°C)	PCPC3_01 0,8 850		PCPC3_02 0,8 850		PCPC3_03 0,8 850		PCPC5_01 0,8 850		PCPC5_02 0,8 850		PCPC6_03 0,8 1050	
P (Gpa) T (°C) Composition	PCPC3_01 0,8 850 PhCbn2	σ	PCPC3_02 0,8 850 PhCbn2	σ	PCPC3_03 0,8 850 PhCbn2	σ	PCPC5_01 0,8 850 PhCbn4	σ	PCPC5_02 0,8 850 PhCbn4	σ	PCPC6_03 0,8 1050 PhCbn2	σ
P (Gpa) T (°C) Composition Sc	PCPC3_01 0,8 850 PhCbn2	σ -	PCPC3_02 0,8 850 PhCbn2	σ -	PCPC3_03 0,8 850 PhCbn2 -	σ -	PCPC5_01 0,8 850 PhCbn4 0,35	σ 0,12	PCPC5_02 0,8 850 PhCbn4	σ	PCPC6_03 0,8 1050 PhCbn2 0,10	σ 0,02
P (Gpa) T (°C) Composition Sc Ti	PCPC3_01 0,8 850 PhCbn2 -	σ - -	PCPC3_02 0,8 850 PhCbn2 -	σ - -	PCPC3_03 0,8 850 PhCbn2	σ - -	PCPC5_01 0,8 850 PhCbn4 0,35 0,06	σ 0,12 0,03	PCPC5_02 0,8 850 PhCbn4	σ - -	PCPC6_03 0,8 1050 PhCbn2 0,10 0,00	σ 0,02 0,00
P (Gpa) T (°C) Composition Sc Ti Cr	PCPC3_01 0,8 850 PhCbn2 -	σ - - -	PCPC3_02 0,8 850 PhCbn2 -	σ - -	PCPC3_03 0,8 850 PhCbn2 - -	σ - -	PCPC5_01 0,8 850 PhCbn4 0,35 0,06	σ 0,12 0,03	PCPC5_02 0,8 850 PhCbn4 - -	σ - -	PCPC6_03 0,8 1050 PhCbn2 0,10 0,00 0,10	σ 0,02 0,00 0,02
P (Gpa) T (°C) Composition Sc Ti Cr Mn	PCPC3_01 0,8 850 PhCbn2 - - 0,27	σ - - 0,06	PCPC3_02 0,8 850 PhCbn2 - 0,26	σ - - 0,07	PCPC3_03 0,8 850 PhCbn2 - 0,22	σ - - 0,07	PCPC5_01 0,8 850 PhCbn4 0,35 0,06 - 0,12	σ 0,12 0,03 - 0,04	PCPC5_02 0,8 850 PhCbn4 - - 0,08	σ - - 0,01	PCPC6_03 0,8 1050 PhCbn2 0,10 0,00 0,10 0,09	σ 0,02 0,00 0,02 0,02
P (Gpa) T (°C) Composition Sc Ti Cr Mn Sr	PCPC3_01 0,8 850 PhCbn2 - - 0,27 1,19	σ - - 0,06 0,07	PCPC3_02 0,8 850 PhCbn2 - 0,26 1,11	σ - - 0,07 0,15	PCPC3_03 0,8 850 PhCbn2 - - 0,22 1,08	σ - - 0,07 0,07	PCPC5_01 0,8 850 PhCbn4 0,35 0,06 - 0,12 0,68	σ 0,12 0,03 - 0,04 0,05	PCPC5_02 0,8 850 PhCbn4 - - 0,08 0,50	σ - - 0,01 0,04	PCPC6_03 0,8 1050 PhCbn2 0,10 0,00 0,10 0,09 0,78	σ 0,02 0,00 0,02 0,02 0,02 0,04
P (Gpa) T (°C) Composition Sc Ti Cr Mn Sr Zr	PCPC3_01 0,8 850 PhCbn2 - - 0,27 1,19 -	σ - - 0,06 0,07 -	PCPC3_02 0,8 850 PhCbn2 - 0,26 1,11 -	σ - - 0,07 0,15 -	PCPC3_03 0,8 850 PhCbn2 - - 0,22 1,08 -	σ - - 0,07 0,07 -	PCPC5_01 0,8 850 PhCbn4 0,35 0,06 - 0,12 0,68 0,41	σ 0,12 0,03 - 0,04 0,05 0,18	PCPC5_02 0,8 850 PhCbn4 - - 0,08 0,50 1,23	σ - - 0,01 0,04 0,31	PCPC6_03 0,8 1050 PhCbn2 0,10 0,00 0,10 0,09 0,78 0,16	g 0,02 0,00 0,02 0,02 0,02 0,04 0,02
P (Gpa) T (°C) Composition Sc Ti Cr Mn Sr Zr Nb	PCPC3_01 0,8 850 PhCbn2 - - 0,27 1,19 - 0,02	σ - - 0,06 0,07 - 0,01	PCPC3_02 0,8 850 PhCbn2 - - 0,26 1,11 - -	σ - - 0,07 0,15 -	PCPC3_03 0,8 850 PhCbn2 - - 0,22 1,08 - 0,01	σ - - - 0,07 0,07 - 0,00	PCPC5_01 0,8 850 PhCbn4 0,35 0,06 - 0,12 0,68 0,41 0,16	σ 0,12 0,03 - 0,04 0,05 0,18 0,02	PCPC5_02 0,8 850 PhCbn4 - - 0,08 0,50 1,23 0,07	σ - - - 0,01 0,04 0,31 0,02	PCPC6_03 0,8 1050 PhCbn2 0,10 0,00 0,10 0,09 0,78 0,16 0,00	σ 0,02 0,00 0,02 0,02 0,02 0,04 0,02 0,00
P (Gpa) T (°C) Composition Sc Ti Cr Mn Sr Zr Nb Ba	PCPC3_01 0,8 850 PhCbn2 - - 0,27 1,19 - 0,02 0,03 0,03	σ - - - 0,06 0,07 - 0,01 0,02	PCPC3_02 0,8 850 PhCbn2 - - 0,26 1,11 - - 0,03 0,03	σ - - - 0,07 0,15 - - 0,01	PCPC3_03 0,8 850 PhCbn2 - - 0,22 1,08 - 0,01 0,06 0,01	σ - - - 0,07 0,07 - 0,00 0,02	PCPC5_01 0,8 850 PhCbn4 0,35 0,06 - 0,12 0,68 0,41 0,16 0,04	σ 0,12 0,03 - 0,04 0,05 0,18 0,02 0,02	PCPC5_02 0,8 850 PhCbn4 - - 0,08 0,50 1,23 0,07 0,01	σ - - - - - - - - - - - - - - - - - - -	PCPC6_03 0,8 1050 PhCbn2 0,10 0,00 0,10 0,09 0,78 0,16 0,00 0,03	σ 0,02 0,00 0,02 0,02 0,04 0,02 0,00 0,00
P (Gpa) T (°C) Composition Sc Ti Cr Mn Sr Zr Nb Ba La	PCPC3_01 0,8 850 PhCbn2 - - 0,27 1,19 - 0,02 0,03 2,25 (2)	σ - - - 0,06 0,07 - - 0,01 0,02 0,39	PCPC3_02 0,8 850 PhCbn2 - - 0,26 1,11 - 0,03 2,13 2,13	σ - - - - - - - - - - - - - - - - - - -	PCPC3_03 0,8 850 PhCbn2 - - 0,22 1,08 - 0,01 0,06 2,18	σ - - - 0,07 0,07 - 0,00 0,02 0,02 0,02	PCPC5_01 0,8 850 PhCbn4 0,35 0,06 - 0,12 0,68 0,41 0,16 0,04 2,62	g 0,12 0,03 - 0,04 0,05 0,18 0,02 0,02 0,02	PCPC5_02 0,8 850 PhCbn4 - - 0,08 0,50 1,23 0,07 0,01 2,90	σ - - - - - - - - - - - - - - - - - - -	PCPC6_03 0,8 1050 PhCbn2 0,10 0,00 0,10 0,09 0,78 0,16 0,00 0,03 1,97	σ 0,02 0,00 0,02 0,02 0,02 0,04 0,02 0,00 0,00
P (Gpa) T (°C) Composition Sc Ti Cr Mn Sr Zr Nb Ba La Ce P	PCPC3_01 0,8 850 PhCbn2 - - 0,27 1,19 - 0,02 0,03 2,25 2,69 2,69	σ - - - - - - - - - - - - - - - - - - -	PCPC3_02 0,8 850 PhCbn2 - - 0,26 1,11 - 0,03 2,13 2,51 2,51	σ - - - - - - - - - - - - - - - - - - -	PCPC3_03 0,8 850 PhCbn2 - - 0,22 1,08 - 0,01 0,06 2,18 2,48 2,48	σ - - - - - - - - - - - - - - - - - - -	PCPC5_01 0,8 850 PhCbn4 0,35 0,06 - 0,12 0,68 0,41 0,16 0,04 2,62 3,56 3,56	σ 0,12 0,03 - 0,04 0,05 0,18 0,02 0,02 0,34 0,55	PCPC5_02 0,8 850 PhCbn4 - - 0,08 0,50 1,23 0,07 0,01 2,90 4,81	σ - - - - - - - - - - - - - - - - - - -	PCPC6_03 0,8 1050 PhCbn2 0,10 0,00 0,10 0,09 0,78 0,16 0,00 0,03 1,97 2,47	g 0,02 0,00 0,02 0,02 0,04 0,02 0,00 0,00
P (Gpa) T (°C) Composition Sc Ti Cr Mn Sr Zr Nb Ba La Ce Pr	PCPC3_01 0,8 850 PhCbn2 - - 0,27 1,19 - 0,02 0,03 2,25 2,69 3,14 2,52	σ - - - - - - - - - - - - - - - - - - -	PCPC3_02 0,8 850 PhCbn2 - - 0,26 1,11 - 0,03 2,13 2,51 2,76 2,20	σ - - - - - - - - - - - - - - - - - - -	PCPC3_03 0,8 850 PhCbn2 - - 0,22 1,08 - 0,01 0,06 2,18 2,48 2,88 2,29	σ - - - - - - - - - - - - - - - - - - -	PCPC5_01 0,8 850 PhCbn4 0,35 0,06 - 0,12 0,68 0,41 0,16 0,04 2,62 3,56 3,87 4,71	σ 0,12 0,03 - 0,04 0,05 0,02 0,02 0,02 0,34 0,55 0,55	PCPC5_02 0,8 850 PhCbn4 - - 0,08 0,50 1,23 0,07 0,01 2,90 4,81 4,52 5,72	σ - - - - - - - - - - - - - - - - - - -	PCPC6_03 0,8 1050 PhCbn2 0,10 0,00 0,10 0,09 0,78 0,16 0,00 0,03 1,97 2,47 2,74 2,74	5 0,02 0,00 0,02 0,04 0,02 0,00 0,00 0,00
P (Gpa) T (°C) Composition Sc Ti Cr Mn Sr Zr Nb Ba La Ce Pr Nd	PCPC3_01 0,8 850 PhCbn2 - - 0,27 1,19 - 0,02 0,03 2,25 2,69 3,14 3,52 2,52	σ - - - - - - - - - - - - - - - - - - -	PCPC3_02 0,8 850 PhCbn2 - - 0,26 1,11 - 0,03 2,13 2,51 2,76 3,30 2,20	σ - - - - - - - - - - - - - - - - - - -	PCPC3_03 0,8 850 PhCbn2 - - 0,22 1,08 - 0,01 0,06 2,18 2,48 2,88 3,38 3,38	σ - - - 0,07 0,07 - 0,00 0,02 0,38 0,44 0,54 0,54	PCPC5_01 0,8 850 PhCbn4 0,35 0,06 - 0,12 0,68 0,41 0,16 0,04 2,62 3,56 3,87 4,71 5,12 1,22 1,22 1,23	g 0,12 0,03 - 0,04 0,05 0,18 0,02 0,02 0,34 0,55 0,57 0,66	PCPC5_02 0,8 850 PhCbn4 - - 0,08 0,50 1,23 0,07 0,01 2,90 4,81 4,52 5,72 7,16	σ - - - - - - - - - - - - - - - - - - -	PCPC6_03 0,8 1050 PhCbn2 0,10 0,00 0,10 0,09 0,78 0,16 0,00 0,03 1,97 2,47 2,74 3,20 2,22	5 0,02 0,00 0,02 0,04 0,02 0,00 0,00 0,00
P (Gpa) T (°C) Composition Sc Ti Cr Mn Sr Zr Nb Ba La Ce Pr Nd Sm	PCPC3_01 0,8 850 PhCbn2 - - 0,27 1,19 - 0,02 0,03 2,25 2,69 3,14 3,52 3,81 3,52	σ - - - - - - - - - - - - - - - - - - -	PCPC3_02 0,8 850 PhCbn2 - - 0,26 1,11 - 0,03 2,13 2,51 2,76 3,30 3,39 2,22	σ - - - - - - - - - - - - - - - - - - -	PCPC3_03 0,8 850 PhCbn2 - - 0,22 1,08 - 0,01 0,06 2,18 2,48 2,48 2,88 3,38 3,51 2,80	σ - - - 0,07 0,07 - 0,00 0,02 0,38 0,44 0,54 0,54 0,67 0,71	PCPC5_01 0,8 850 PhCbn4 0,35 0,06 - 0,12 0,68 0,41 0,16 0,04 2,62 3,56 3,87 4,71 5,43 6 02	g 0,12 0,03 - 0,04 0,05 0,18 0,02 0,02 0,34 0,55 0,57 0,66 0,79	PCPC5_02 0,8 850 PhCbn4 - - 0,08 0,50 1,23 0,07 0,01 2,90 4,81 4,52 5,72 7,16 7,57	σ - - - - - - - - - - - - - - - - - - -	PCPC6_03 0,8 1050 PhCbn2 0,10 0,00 0,10 0,09 0,78 0,16 0,00 0,03 1,97 2,47 2,74 3,20 3,32 2,32	g 0,02 0,00 0,02 0,04 0,00 0,00 0,00 0,16 0,19 0,25 0,27 0,27
P (Gpa) T (°C) Composition Sc Ti Cr Mn Sr Zr Nb Ba La Ce Pr Nd Sm Eu	PCPC3_01 0,8 850 PhCbn2 - 0,27 1,19 - 0,02 0,03 2,25 2,69 3,14 3,52 3,81 3,69 3,69	σ - - - - - - - - - - - - - - - - - - -	PCPC3_02 0,8 850 PhCbn2 - - 0,26 1,11 - 0,03 2,13 2,51 2,76 3,30 3,39 3,32 2,47	σ - - - - - - - - - - - - - - - - - - -	PCPC3_03 0,8 850 PhCbn2 - - 0,22 1,08 - 0,01 0,06 2,18 2,48 2,48 2,88 3,38 3,51 3,80 2,20	σ - - - - - 0,07 0,07 - 0,00 0,02 0,38 0,44 0,54 0,54 0,67 0,71 0,87	PCPC5_01 0,8 850 PhCbn4 0,35 0,06 - 0,12 0,68 0,41 0,16 0,04 2,62 3,56 3,87 4,71 5,43 6,02 5,04	g 0,12 0,03 - 0,04 0,05 0,18 0,02 0,02 0,34 0,55 0,57 0,66 0,79 1,30	PCPC5_02 0,8 850 PhCbn4 - - 0,08 0,50 1,23 0,07 0,01 2,90 4,81 4,52 5,72 7,16 7,57 8,10	σ - - - - - - - - - - - - - - - - - - -	PCPC6_03 0,8 1050 PhCbn2 0,10 0,00 0,10 0,09 0,78 0,16 0,00 0,03 1,97 2,47 2,74 3,20 3,32 3,32 3,32 2,65	g 0,02 0,00 0,02 0,04 0,00 0,00 0,16 0,19 0,25 0,27 0,27 0,27
P (Gpa) T (°C) Composition Sc Ti Cr Mn Sr Zr Nb Ba La Ce Pr Nd Sm Eu Gd	PCPC3_01 0,8 850 PhCbn2 - 0,27 1,19 - 0,02 0,03 2,25 2,69 3,14 3,52 3,81 3,69 3,87 2,90	σ - - - - - - - - - - - 0,01 0,02 0,39 0,35 0,43 0,41 0,72 0,65 0,94	PCPC3_02 0,8 850 PhCbn2 - - 0,26 1,11 - 0,03 2,13 2,51 2,76 3,30 3,39 3,32 3,47 2,00	σ - - - - - - - - - - - - - - - - - - -	PCPC3_03 0,8 850 PhCbn2 - - 0,22 1,08 - 0,01 0,06 2,18 2,48 2,48 2,88 3,38 3,51 3,80 3,29 2,23	σ - - - - - - - 0,07 0,07 - - 0,00 0,02 0,38 0,44 0,54 0,54 0,54 0,67 0,71 0,81	PCPC5_01 0,8 850 PhCbn4 0,35 0,06 - 0,12 0,68 0,41 0,16 0,04 2,62 3,56 3,87 4,71 5,43 6,02 5,94 5,27	g 0,12 0,03 - 0,04 0,05 0,18 0,02 0,02 0,02 0,34 0,55 0,57 0,66 0,79 1,30 0,95	PCPC5_02 0,8 850 PhCbn4 - - 0,08 0,50 1,23 0,07 0,01 2,90 4,81 4,52 5,72 7,16 7,57 8,10 7,92	σ - - - - - - - - - - - - - - - - - - -	PCPC6_03 0,8 1050 PhCbn2 0,10 0,00 0,10 0,09 0,78 0,16 0,00 0,03 1,97 2,47 2,74 3,20 3,32 3,32 3,32 3,65 2,93	g 0,02 0,00 0,02 0,04 0,00 0,00 0,16 0,19 0,25 0,27 0,27 0,26 0,30
P (Gpa) T (°C) Composition Sc Ti Cr Mn Sr Zr Nb Ba La Ce Pr Nd Sm Eu Gd Tb	PCPC3_01 0,8 850 PhCbn2 - 0,27 1,19 - 0,02 0,03 2,25 2,69 3,14 3,52 3,81 3,69 3,87 2,99 2,72	σ - - - - - - - - - - - - - - - - - - -	PCPC3_02 0,8 850 PhCbn2 - - 0,26 1,11 - 0,03 2,13 2,51 2,76 3,30 3,39 3,32 3,47 3,09 2,85	σ - - - - - - - - - - - - - - - - - - -	PCPC3_03 0,8 850 PhCbn2 - - 0,22 1,08 - 0,01 0,06 2,18 2,48 2,48 2,48 2,48 3,38 3,51 3,80 3,29 3,23 2,16	σ - - - - - - 0,07 0,07 - - 0,00 0,02 0,38 0,44 0,54 0,54 0,67 0,81 0,67	PCPC5_01 0,8 850 PhCbn4 0,35 0,06 - 0,12 0,68 0,41 0,16 0,04 2,62 3,56 3,87 4,71 5,43 6,02 5,94 5,37 5,52	g 0,12 0,03 - 0,04 0,05 0,18 0,02 0,02 0,34 0,55 0,57 0,66 0,79 1,30 0,95 1,06	PCPC5_02 0,8 850 PhCbn4 - - 0,08 0,50 1,23 0,07 0,01 2,90 4,81 4,52 5,72 7,16 7,57 8,10 7,92 8,00	σ - - - - - - - - - - - - - - - - - - -	PCPC6_03 0,8 1050 PhCbn2 0,10 0,00 0,10 0,09 0,78 0,16 0,00 0,03 1,97 2,47 2,74 3,20 3,32 3,32 3,32 3,65 2,93 2,70	g 0,02 0,00 0,02 0,04 0,00 0,00 0,16 0,19 0,25 0,27 0,26 0,30 0,25 0,17
P (Gpa) T (°C) Composition Sc Ti Cr Mn Sr Zr Nb Ba La Ce Pr Nd Sm Eu Gd Tb Dy	PCPC3_01 0,8 850 PhCbn2 - 0,27 1,19 - 0,02 0,03 2,25 2,69 3,14 3,52 3,81 3,69 3,87 2,99 2,72 2,21	σ - - - - - - - - - - - - - - - - - - -	PCPC3_02 0,8 850 PhCbn2 - - 0,26 1,11 - 0,03 2,13 2,51 2,76 3,30 3,39 3,32 3,47 3,09 2,85 2,22	σ - - - - - - - - - - - - - - - - - - -	PCPC3_03 0,8 850 PhCbn2 - - 0,22 1,08 - 0,01 0,06 2,18 2,48 2,48 2,48 2,48 3,38 3,51 3,80 3,29 3,23 3,16 2,14	σ - - - - - - 0,07 0,07 - - 0,00 0,02 0,38 0,44 0,54 0,54 0,67 0,81 0,67 0,81 0,67	PCPC5_01 0,8 850 PhCbn4 0,35 0,06 - 0,12 0,68 0,41 0,16 0,04 2,62 3,56 3,87 4,71 5,43 6,02 5,94 5,37 5,53 4,24	g 0,12 0,03 - 0,04 0,05 0,18 0,02 0,02 0,34 0,55 0,57 0,66 0,79 1,30 0,95 1,06 0,76 0,71	PCPC5_02 0,8 850 PhCbn4 - - 0,08 0,50 1,23 0,07 0,01 2,90 4,81 4,52 5,72 7,16 7,57 8,10 7,92 8,09 6,51	σ - - - - - - - - - - - - - - - - - - -	PCPC6_03 0,8 1050 PhCbn2 0,10 0,00 0,10 0,09 0,78 0,16 0,00 0,03 1,97 2,47 2,74 3,20 3,32 3,32 3,32 3,65 2,93 2,79 2,21	g 0,02 0,00 0,02 0,04 0,00 0,00 0,16 0,19 0,25 0,27 0,26 0,30 0,25 0,17
P (Gpa) T (°C) Composition Sc Ti Cr Mn Sr Zr Nb Ba La Ce Pr Nd Sm Eu Gd Tb Dy Y	PCPC3_01 0,8 850 PhCbn2 - 0,27 1,19 - 0,02 0,03 2,25 2,69 3,14 3,52 3,81 3,69 3,87 2,99 2,72 2,21 2,20	σ - - - - - - - - - - - - - - - - - - -	PCPC3_02 0,8 850 PhCbn2 - - 0,26 1,11 - 0,03 2,13 2,51 2,76 3,30 3,39 3,32 3,47 3,09 2,85 2,22 2,46	σ - - - - - - - - - - - - - - - - - - -	PCPC3_03 0,8 850 PhCbn2 - - 0,22 1,08 - 0,01 0,06 2,18 2,48 2,48 2,48 2,48 3,38 3,51 3,80 3,29 3,23 3,16 2,14 2,51	σ - - - - - - 0,00 0,02 0,38 0,44 0,54 0,54 0,54 0,67 0,81 0,67 0,81 0,67 0,81 0,67	PCPC5_01 0,8 850 PhCbn4 0,35 0,06 - 0,12 0,68 0,41 0,16 0,04 2,62 3,56 3,87 4,71 5,43 6,02 5,94 5,37 5,53 4,24 5,05	g 0,12 0,03 - 0,04 0,05 0,18 0,02 0,02 0,34 0,55 0,57 0,66 0,79 1,30 0,95 1,06 0,76 0,76 0,76	PCPC5_02 0,8 850 PhCbn4 - - - 0,08 0,50 1,23 0,07 0,01 2,90 4,81 4,52 5,72 7,16 7,57 8,10 7,92 8,09 6,51 7,94	σ - - - - - - - - - - - - - - - - - - -	PCPC6_03 0,8 1050 PhCbn2 0,10 0,00 0,10 0,09 0,78 0,16 0,00 0,03 1,97 2,47 2,74 3,20 3,32 3,65 2,93 2,79 2,21 2,50	g 0,02 0,00 0,02 0,04 0,00 0,00 0,16 0,19 0,25 0,27 0,26 0,30 0,25 0,17 0,09
P (Gpa) T (°C) Composition Sc Ti Cr Mn Sr Zr Nb Ba La Ce Pr Nd Sm Eu Gd Tb Dy Y Ho Er	PCPC3_01 0,8 850 PhCbn2 - 0,27 1,19 - 0,02 0,03 2,25 2,69 3,14 3,52 3,81 3,69 3,87 2,99 2,72 2,21 2,39 2,08	σ - - - - - - - - - - - - - - - - - - -	PCPC3_02 0,8 850 PhCbn2 - - 0,26 1,11 - 0,03 2,13 2,51 2,76 3,30 3,39 3,32 3,47 3,09 2,85 2,22 2,46 2,20	σ - - - - - - - - - - - - - - - - - - -	PCPC3_03 0,8 850 PhCbn2 - - 0,22 1,08 - 0,01 0,06 2,18 2,48 2,48 2,48 2,48 3,38 3,51 3,80 3,29 3,23 3,16 2,14 2,51 2,11	σ - - - 0,07 0,07 - 0,00 0,02 0,38 0,44 0,54 0,54 0,54 0,54 0,67 0,81 0,67 0,81 0,67 0,81 0,67 0,49 0,63 0,48	PCPC5_01 0,8 850 PhCbn4 0,35 0,06 - 0,12 0,68 0,41 0,16 0,04 2,62 3,56 3,87 4,71 5,43 6,02 5,94 5,37 5,53 4,24 5,05 4,97	g 0,12 0,03 - 0,04 0,05 0,18 0,02 0,02 0,34 0,55 0,57 0,66 0,79 1,30 0,95 1,06 0,76 0,71 0,80	PCPC5_02 0,8 850 PhCbn4 - - 0,08 0,50 1,23 0,07 0,01 2,90 4,81 4,52 5,72 7,16 7,57 8,10 7,92 8,09 6,51 7,94 7,46	σ - - - - - - - - - - - - - - - - - - -	PCPC6_03 0,8 1050 PhCbn2 0,10 0,00 0,10 0,09 0,78 0,16 0,00 0,03 1,97 2,47 2,74 3,20 3,32 3,32 3,32 3,65 2,93 2,79 2,21 2,59 2,27	g 0,02 0,00 0,02 0,04 0,00 0,00 0,16 0,19 0,25 0,27 0,26 0,30 0,25 0,17 0,09 0,18 0,17
P (Gpa) T (°C) Composition Sc Ti Cr Mn Sr Zr Nb Ba La Ce Pr Nd Sm Eu Gd Tb Dy Y Ho Er Vb	PCPC3_01 0,8 850 PhCbn2 - 0,27 1,19 - 0,02 0,03 2,25 2,69 3,14 3,52 3,81 3,69 3,87 2,99 2,72 2,21 2,39 2,08 1,44	σ - - - - - - - - - - - - - - - - - - -	PCPC3_02 0,8 850 PhCbn2 - - 0,26 1,11 - 0,03 2,13 2,51 2,76 3,30 3,39 3,32 3,47 3,09 2,85 2,22 2,46 2,20 1,45	σ - - - - - - - - - - - - - - - - - - -	PCPC3_03 0,8 850 PhCbn2 - - 0,22 1,08 - 0,01 0,06 2,18 2,48 2,48 2,48 2,48 3,38 3,51 3,80 3,29 3,23 3,16 2,14 2,51 2,11 1,57	σ - - - - - - 0,07 0,07 - 0,00 0,02 0,38 0,44 0,54 0,54 0,54 0,67 0,71 0,81 0,67 0,81 0,70 0,49 0,63 0,43 0,27	PCPC5_01 0,8 850 PhCbn4 0,35 0,06 - 0,12 0,68 0,41 0,16 0,04 2,62 3,56 3,87 4,71 5,43 6,02 5,94 5,37 5,53 4,24 5,05 4,97 3,80	g 0,12 0,03 - 0,04 0,05 0,18 0,02 0,02 0,34 0,55 0,57 0,66 0,79 1,30 0,95 1,06 0,76 0,71 0,83 0,90	PCPC5_02 0,8 850 PhCbn4 - - 0,08 0,50 1,23 0,07 0,01 2,90 4,81 4,52 5,72 7,16 7,57 8,10 7,92 8,09 6,51 7,94 7,46 6,00	σ - - - - - - - - - - - - - - - - - - -	PCPC6_03 0,8 1050 PhCbn2 0,10 0,00 0,00 0,03 0,03 1,97 2,47 2,74 3,20 3,32 3,65 2,93 2,79 2,21 2,59 2,27 1,66	g 0,02 0,00 0,02 0,04 0,00 0,00 0,16 0,19 0,25 0,27 0,26 0,27 0,26 0,30 0,25 0,17 0,09 0,18 0,19
P (Gpa) T (°C) Composition Sc Ti Cr Mn Sr Zr Nb Ba La Ce Pr Nd Sm Eu Gd Tb Dy Y Ho Er Yb L v	PCPC3_01 0,8 850 PhCbn2 - 0,27 1,19 - 0,02 0,03 2,25 2,69 3,14 3,52 3,81 3,69 3,87 2,99 2,72 2,21 2,39 2,08 1,44 1,22	σ - - - - - - - - - - - - - - - - - - -	PCPC3_02 0,8 850 PhCbn2 - - 0,26 1,11 - 0,03 2,13 2,51 2,76 3,30 3,39 3,32 3,47 3,09 2,85 2,22 2,46 2,20 1,45 1,25	σ - - - - - - - - - - - - - - - - - - -	PCPC3_03 0,8 850 PhCbn2 - - 0,22 1,08 - 0,01 0,06 2,18 2,48 2,48 2,48 2,48 2,48 3,38 3,51 3,80 3,29 3,23 3,16 2,14 2,51 2,11 1,57 1,41	σ - - - - - - - 0,00 0,02 0,38 0,44 0,54 0,54 0,54 0,67 0,71 0,81 0,67 0,81 0,70 0,49 0,63 0,48 0,37 0,26	PCPC5_01 0,8 850 PhCbn4 0,35 0,06 - 0,12 0,68 0,41 0,16 0,04 2,62 3,56 3,87 4,71 5,43 6,02 5,94 5,37 5,53 4,24 5,05 4,97 3,80 3,61	g 0,12 0,03 - 0,04 0,05 0,18 0,02 0,02 0,34 0,55 0,57 0,66 0,79 1,30 0,95 1,06 0,76 0,71 0,83 0,90 0,80 0,80	PCPC5_02 0,8 850 PhCbn4 - - 0,08 0,50 1,23 0,07 0,01 2,90 4,81 4,52 5,72 7,16 7,57 8,10 7,92 8,09 6,51 7,94 7,46 6,00 5,50	σ - - - - - - - - - - - - - - - - - - -	PCPC6_03 0,8 1050 PhCbn2 0,10 0,00 0,10 0,09 0,78 0,16 0,00 0,03 1,97 2,47 2,74 3,20 3,32 3,65 2,93 2,79 2,21 2,59 2,27 1,66 1,47	g 0,02 0,00 0,02 0,04 0,00 0,00 0,16 0,19 0,25 0,27 0,26 0,27 0,26 0,30 0,25 0,17 0,09 0,18 0,17 0,09
P (Gpa) T (°C) Composition Sc Ti Cr Mn Sr Zr Nb Ba La Ce Pr Nd Sm Eu Gd Tb Dy Y Ho Er Yb Lu Hf	PCPC3_01 0,8 850 PhCbn2 - 0,27 1,19 - 0,02 0,03 2,25 2,69 3,14 3,52 3,81 3,69 3,87 2,99 2,72 2,21 2,39 2,08 1,44 1,32	5 	PCPC3_02 0,8 850 PhCbn2 - - 0,26 1,11 - 0,03 2,13 2,51 2,76 3,30 3,39 3,32 3,47 3,09 2,85 2,22 2,46 2,20 1,45 1,35 13,54	σ - - - - - - - - - - - - - - - - - - -	PCPC3_03 0,8 850 PhCbn2 - - 0,22 1,08 - 0,01 0,06 2,18 2,48 2,48 2,48 2,48 3,38 3,51 3,80 3,29 3,23 3,16 2,14 2,51 2,11 1,57 1,41	σ - - - - - - - 0,00 0,02 0,38 0,44 0,54 0,54 0,54 0,54 0,67 0,71 0,81 0,67 0,81 0,70 0,49 0,63 0,48 0,37 0,36	PCPC5_01 0,8 850 PhCbn4 0,35 0,06 - 0,12 0,68 0,41 0,16 0,04 2,62 3,56 3,87 4,71 5,43 6,02 5,94 5,37 5,53 4,24 5,05 4,97 3,80 3,61	g 0,12 0,03 - 0,04 0,05 0,18 0,02 0,02 0,34 0,55 0,57 0,66 0,79 1,30 0,95 1,06 0,76 0,71 0,83 0,90 0,80 0,80	PCPC5_02 0,8 850 PhCbn4 - - 0,08 0,50 1,23 0,07 0,01 2,90 4,81 4,52 5,72 7,16 7,57 8,10 7,92 8,09 6,51 7,94 7,46 6,00 5,50	σ - - - - - - - - - - - - - - - - - - -	PCPC6_03 0,8 1050 PhCbn2 0,10 0,00 0,10 0,09 0,78 0,16 0,00 0,03 1,97 2,47 2,74 3,20 3,32 3,65 2,93 2,79 2,21 2,59 2,27 1,66 1,47 0,10	g 0,02 0,00 0,02 0,04 0,00 0,00 0,16 0,19 0,25 0,27 0,26 0,27 0,26 0,30 0,25 0,17 0,09 0,18 0,17 0,09 0,18
P (Gpa) T (°C) Composition Sc Ti Cr Mn Sr Zr Nb Ba La Ce Pr Nd Sm Eu Gd Tb Dy Y Ho Er Yb Lu Hf Ta	PCPC3_01 0,8 850 PhCbn2 - - 0,27 1,19 - 0,02 0,03 2,25 2,69 3,14 3,52 3,81 3,69 3,87 2,99 2,72 2,21 2,39 2,08 1,44 1,32 -	σ - - - - - - - - - - - - - - - - - - -	PCPC3_02 0,8 850 PhCbn2 - - 0,26 1,11 - 0,03 2,13 2,51 2,76 3,30 3,39 3,32 3,47 3,09 2,85 2,22 2,46 2,20 1,45 1,35 1,354 1,94	σ - - - - - - - - - - - - - - - - - - -	PCPC3_03 0,8 850 PhCbn2 - - 0,22 1,08 - 0,01 0,06 2,18 2,48 2,48 2,88 3,38 3,51 3,80 3,29 3,23 3,16 2,14 2,51 2,11 1,57 1,41 -	σ - - - - - - - - - - - - - - - - - - -	PCPC5_01 0,8 850 PhCbn4 0,35 0,06 - 0,12 0,68 0,41 0,16 0,04 2,62 3,56 3,87 4,71 5,43 6,02 5,94 5,37 5,53 4,24 5,05 4,97 3,80 3,61 - 0,29	g 0,12 0,03 - 0,04 0,05 0,18 0,02 0,02 0,34 0,55 0,57 0,66 0,79 1,30 0,95 1,06 0,76 0,71 0,83 0,90 0,80 0,44 - 0,06	PCPC5_02 0,8 850 PhCbn4 - - 0,08 0,50 1,23 0,07 0,01 2,90 4,81 4,52 5,72 7,16 7,57 8,10 7,92 8,09 6,51 7,94 7,46 6,00 5,50 - 0,07	σ - - - - - - - - - - - - - - - - - - -	PCPC6_03 0,8 1050 PhCbn2 0,10 0,00 0,10 0,09 0,78 0,16 0,00 0,03 1,97 2,47 2,74 3,20 3,32 3,65 2,93 2,79 2,21 2,59 2,27 1,66 1,47 0,10 0,02	ø 0,02 0,00 0,02 0,02 0,02 0,04 0,02 0,04 0,02 0,04 0,02 0,00 0,16 0,19 0,25 0,27 0,26 0,30 0,25 0,17 0,09 0,03 0,00

D.4. Titanite et liquide carbonaté

Tableau 0.29. Coefficients de partage entre titanite et liquides carbonatés. σ : écart-type sur la moyenne des coefficients de partage, calculé à partir de l'équation (5) de la partie III.4.

	T17 02		AK02 01		AK02 02		AK02 04		AK05 01		AK05 02	
Р	0.8		0.4		0.4		0.4		0.4		0.4	
Т	925	σ	925	σ	925	σ	925	σ	825	σ	825	σ
Cr	-	-	-	-	-	-	-	-	-	-	16,09	8,83
Mn	0,20	0,03	0,11	0,01	0,12	0,01	0,10	0,01	0,21	0,12	0,11	0,07
Sr	0,08	0,02	0,08	0,01	0,08	0,01	0,09	0,01	0,10	0,02	0,09	0,01
Nb	40,19	7,52	20,13	3,11	36,15	11,39	16,83	3,15	140,69	39,20	71,91	29,65
Ba	-	-	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,02	-	-
La	1,29	0,06	1,15	0,15	1,02	0,08	0,87	0,11	1,75	0,36	0,87	0,10
Ce	2,51	0,13	2,31	0,32	2,07	0,09	1,71	0,20	3,69	0,61	1,77	0,17
Pr	3,68	0,20	3,36	0,44	3,16	0,14	2,53	0,27	5,34	0,83	2,86	0,31
Nd	4,62	0,15	4,28	0,56	4,10	0,31	3,32	0,30	6,45	0,98	3,66	0,43
Sm	6,65	0,34	6,10	0,73	6,60	0,10	4,73	0,39	9,28	1,34	5,35	0,74
Eu	6,77	0,38	6,04	0,88	6,05	0,16	4,59	0,39	9,90	1,30	5,91	0,86
Gd	7,90	0,58	6,01	1,23	4,16	0,34	4,06	1,13	6,52	2,45	4,81	0,69
Tb	7,63	0,36	6,54	0,78	6,69	0,56	5,05	0,41	9,77	1,36	5,83	0,96
Dy	7,74	0,44	6,31	0,88	6,34	0,25	4,73	0,38	8,81	1,30	5,53	0,98
Y	5,80	0,38	4,43	0,57	4,30	0,27	3,36	0,27	6,08	1,07	3,55	0,70
Но	7,37	0,54	5,65	0,70	5,60	0,26	4,27	0,31	8,00	1,18	4,85	0,90
Er	6,98	0,75	4,93	0,69	5,11	0,19	3,68	0,27	7,00	1,08	4,01	0,78
Yb	5,79	0,72	3,53	0,38	3,92	0,15	2,67	0,22	5,40	0,84	2,85	0,57
Lu	4,68	0,56	2,73	0,34	2,97	0,10	2,06	0,15	3,96	0,76	2,18	0,44
	AK05_03		T19_01		T19_03		T19_04		AK06_01		AK06_02	
Р	0.40		0.00		0.00		0.00		0.40		0.40	
	0,40		0,80		0,80		0,80		0,40		0,40	
Т	825,00	σ	0,80 850,00	σ	0,80 850,00	σ	0,80 850,00	σ	0,40 725,00	σ	0,40 725,00	σ
T Cr	825,00 8,69	σ 2,46	0,80 850,00 -	σ -	850,00 2,33	σ 0,95	850,00 21,96	σ 6,56	0,40 725,00 1,58	σ 1,53	0,40 725,00 20,23	σ 22,03
T Cr Mn	825,00 8,69 0,06	σ 2,46 0,02	0,80 850,00 - 0,25	σ - 0,07	850,00 2,33 0,08	σ 0,95 0,02	850,00 21,96 0,15	σ 6,56 0,03	0,40 725,00 1,58 0,09	σ 1,53 0,01	0,40 725,00 20,23 0,10	σ 22,03 0,02
T Cr Mn Sr	825,00 8,69 0,06 0,07	σ 2,46 0,02 0,01	0,80 850,00 - 0,25 0,14	σ - 0,07 0,02	0,80 850,00 2,33 0,08 0,06	σ 0,95 0,02 0,01	850,00 21,96 0,15 0,10	σ 6,56 0,03 0,01	0,40 725,00 1,58 0,09 0,13	σ 1,53 0,01 0,02	0,40 725,00 20,23 0,10 0,11	σ 22,03 0,02 0,01
T Cr Mn Sr Nb	8,69 0,06 0,07 33,33	σ 2,46 0,02 0,01 12,01	0,80 850,00 - 0,25 0,14 138,67	σ 0,07 0,02 48,41	0,80 850,00 2,33 0,08 0,06 38,24 2,33	σ 0,95 0,02 0,01 16,83	850,00 21,96 0,15 0,10 68,14	σ 6,56 0,03 0,01 21,64	0,40 725,00 1,58 0,09 0,13 153,12	σ 1,53 0,01 0,02 140,51	0,40 725,00 20,23 0,10 0,11 166,31	σ 22,03 0,02 0,01 131,31
T Cr Mn Sr Nb Ba	825,00 8,69 0,06 0,07 33,33 0,00	σ 2,46 0,02 0,01 12,01 0,00	0,80 850,00 - 0,25 0,14 138,67 0,01 -	σ - 0,07 0,02 48,41 0,01 -	850,00 2,33 0,08 0,06 38,24 0,00	σ 0,95 0,02 0,01 16,83 0,00	850,00 21,96 0,15 0,10 68,14 0,00	o 6,56 0,03 0,01 21,64 0,00	0,40 725,00 1,58 0,09 0,13 153,12 0,00	σ 1,53 0,01 0,02 140,51 0,00	0,40 725,00 20,23 0,10 0,11 166,31	σ 22,03 0,02 0,01 131,31
T Cr Mn Sr Nb Ba La	825,00 8,69 0,06 0,07 33,33 0,00 0,74	σ 2,46 0,02 0,01 12,01 0,00 0,14	0,80 850,00 - 0,25 0,14 138,67 0,01 1,04 - 2,21	5 0,07 0,02 48,41 0,01 0,20	850,00 2,33 0,08 0,06 38,24 0,00 0,70	σ 0,95 0,02 0,01 16,83 0,00 0,10	850,00 21,96 0,15 0,10 68,14 0,00 1,10	σ 6,56 0,03 0,01 21,64 0,00 0,28	0,40 725,00 1,58 0,09 0,13 153,12 0,00 0,55	σ 1,53 0,01 0,02 140,51 0,00 0,18	0,40 725,00 20,23 0,10 0,11 166,31 - 0,73	σ 22,03 0,02 0,01 131,31 - 0,16 0.21
T Cr Mn Sr Nb Ba La Ce	825,00 8,69 0,06 0,07 33,33 0,00 0,74 1,50	g 2,46 0,02 0,01 12,01 0,00 0,14 0,27	0,80 850,00 - 0,25 0,14 138,67 0,01 1,04 2,21 - 2,15 -	σ 0,07 0,02 48,41 0,01 0,20 0,44	850,00 2,33 0,08 0,06 38,24 0,00 0,70 1,42	σ 0,95 0,02 0,01 16,83 0,00 0,10 0,20	850,00 21,96 0,15 0,10 68,14 0,00 1,10 2,39	σ 6,56 0,03 0,01 21,64 0,00 0,28 0,57	0,40 725,00 1,58 0,09 0,13 153,12 0,00 0,55 1,27 1,27	σ 1,53 0,01 0,02 140,51 0,00 0,18 0,40 0,50	0,40 725,00 20,23 0,10 0,11 166,31 - 0,73 1,61	σ 22,03 0,02 0,01 131,31 - 0,16 0,31 0,42
T Cr Mn Sr Nb Ba La Ce Pr	825,00 8,69 0,06 0,07 33,33 0,00 0,74 1,50 2,33 2,33	σ 2,46 0,02 0,01 12,01 0,00 0,14 0,27 0,39	0,80 850,00 - 0,25 0,14 138,67 0,01 1,04 2,21 3,17 2,20	σ 0,07 0,02 48,41 0,01 0,20 0,44 0,51	850,00 2,33 0,08 0,06 38,24 0,00 0,70 1,42 2,21 2,21	o 0,95 0,02 0,01 16,83 0,00 0,10 0,20 0,31	850,00 21,96 0,15 0,10 68,14 0,00 1,10 2,39 3,56	σ 6,56 0,03 0,01 21,64 0,00 0,28 0,57 0,79	0,40 725,00 1,58 0,09 0,13 153,12 0,00 0,55 1,27 1,95	σ 1,53 0,01 0,02 140,51 0,00 0,18 0,40 0,59 0,77	0,40 725,00 20,23 0,10 0,11 166,31 - 0,73 1,61 2,35 2,35	σ 22,03 0,02 0,01 131,31 - 0,16 0,31 0,42 0,45
T Cr Mn Sr Nb Ba La Ce Pr Nd	825,00 8,69 0,06 0,07 33,33 0,00 0,74 1,50 2,33 3,08	g 2,46 0,02 0,01 12,01 0,00 0,14 0,27 0,39 0,40	0,80 850,00 - 0,25 0,14 138,67 0,01 1,04 2,21 3,17 3,98 5,75	σ - 0,07 0,02 48,41 0,01 0,20 0,44 0,51 0,71	850,00 2,33 0,08 0,06 38,24 0,00 0,70 1,42 2,21 2,84	σ 0,95 0,02 0,01 16,83 0,00 0,10 0,20 0,31 0,46 0,70	850,00 21,96 0,15 0,10 68,14 0,00 1,10 2,39 3,56 4,55 4,55	σ 6,56 0,03 0,01 21,64 0,00 0,28 0,57 0,79 0,99	0,40 725,00 1,58 0,09 0,13 153,12 0,00 0,55 1,27 1,95 2,39 2,15	σ 1,53 0,01 0,02 140,51 0,00 0,18 0,40 0,59 0,77 1,11	0,40 725,00 20,23 0,10 0,11 166,31 - 0,73 1,61 2,35 2,91 4,95	g 22,03 0,02 0,01 131,31 - 0,16 0,31 0,42 0,45 2,60
T Cr Mn Sr Nb Ba La Ce Pr Nd Sm	825,00 8,69 0,06 0,07 33,33 0,00 0,74 1,50 2,33 3,08 4,57 5,17	g 2,46 0,02 0,01 12,01 0,00 0,14 0,27 0,39 0,40 0,54	0,80 850,00 - 0,25 0,14 138,67 0,01 1,04 2,21 3,17 3,98 5,75 - -	σ 0,07 0,02 48,41 0,01 0,20 0,44 0,51 0,71 0,87 1,52	0,80 850,00 2,33 0,08 0,06 38,24 0,00 0,70 1,42 2,21 2,84 4,18	σ 0,95 0,02 0,01 16,83 0,00 0,10 0,20 0,31 0,46 0,70	850,00 21,96 0,15 0,10 68,14 0,00 1,10 2,39 3,56 4,55 6,89 7,50	σ 6,56 0,03 0,01 21,64 0,00 0,28 0,57 0,79 0,99 1,33 1,27	0,40 725,00 1,58 0,09 0,13 153,12 0,00 0,55 1,27 1,95 2,39 3,15	σ 1,53 0,01 0,02 140,51 0,00 0,18 0,40 0,59 0,77 1,11 1,22	0,40 725,00 20,23 0,10 0,11 166,31 - 0,73 1,61 2,35 2,91 4,05 4,05	σ 22,03 0,02 0,01 131,31 - 0,16 0,31 0,42 0,45 0,69 0,09
T Cr Mn Sr Nb Ba La Ce Pr Nd Sm Eu	825,00 8,69 0,06 0,07 33,33 0,00 0,74 1,50 2,33 3,08 4,57 5,17 4,27	σ 2,46 0,02 0,01 12,01 0,00 0,14 0,27 0,39 0,40 0,54 0,54	0,80 850,00 - 0,25 0,14 138,67 0,01 1,04 2,21 3,17 3,98 5,75 6,14 2,20	σ 0,07 0,02 48,41 0,01 0,20 0,44 0,51 0,71 0,87 1,59 1,29	0,80 850,00 2,33 0,08 0,06 38,24 0,00 0,70 1,42 2,21 2,84 4,18 4,54	σ 0,95 0,02 0,01 16,83 0,00 0,10 0,20 0,31 0,46 0,70 0,70 0,79	850,00 21,96 0,15 0,10 68,14 0,00 1,10 2,39 3,56 4,55 6,89 7,58 5,50	σ 6,56 0,03 0,01 21,64 0,00 0,28 0,57 0,79 0,99 1,33 1,37	0,40 725,00 1,58 0,09 0,13 153,12 0,00 0,55 1,27 1,95 2,39 3,15 3,25 3,25	σ 1,53 0,01 0,02 140,51 0,00 0,18 0,40 0,59 0,77 1,11 1,32 1,22	0,40 725,00 20,23 0,10 0,11 166,31 - 0,73 1,61 2,35 2,91 4,05 4,52 2,22	σ 22,03 0,02 0,01 131,31 - 0,16 0,31 0,42 0,45 0,69 0,80 0,50
T Cr Mn Sr Nb Ba La Ce Pr Nd Sm Eu Gd	825,00 8,69 0,06 0,07 33,33 0,00 0,74 1,50 2,33 3,08 4,57 5,17 4,37 4,37	σ 2,46 0,02 0,01 12,01 0,00 0,14 0,27 0,39 0,40 0,54 0,56 0,48 0,56	0,80 850,00 - 0,25 0,14 138,67 0,01 1,04 2,21 3,17 3,98 5,75 6,14 3,08 (02)	σ 0,07 0,02 48,41 0,01 0,20 0,44 0,51 0,71 0,87 1,59 1,27 1,61	0,80 850,00 2,33 0,08 0,06 38,24 0,00 0,70 1,42 2,21 2,84 4,18 4,54 3,76	σ 0,95 0,02 0,01 16,83 0,00 0,10 0,20 0,31 0,46 0,70 0,79 0,59	850,00 21,96 0,15 0,10 68,14 0,00 1,10 2,39 3,56 4,55 6,89 7,58 5,43 5,43	σ 6,56 0,03 0,01 21,64 0,00 0,28 0,57 0,79 0,99 1,33 1,37 1,17	0,40 725,00 1,58 0,09 0,13 153,12 0,00 0,55 1,27 1,95 2,39 3,15 3,25 2,42	σ 1,53 0,01 0,02 140,51 0,00 0,18 0,40 0,59 0,77 1,11 1,32 1,09	0,40 725,00 20,23 0,10 0,11 166,31 - 0,73 1,61 2,35 2,91 4,05 4,52 3,30 4,26	σ 22,03 0,02 0,01 131,31 - 0,16 0,31 0,42 0,45 0,69 0,80 0,58 0,57
T Cr Mn Sr Nb Ba La Ce Pr Nd Sm Eu Gd Tb	825,00 8,69 0,06 0,07 33,33 0,00 0,74 1,50 2,33 3,08 4,57 5,17 4,37 4,97 4,75	σ 2,46 0,02 0,01 12,01 0,00 0,14 0,27 0,39 0,40 0,54 0,56 0,48 0,62 0,55	0,80 850,00 - 0,25 0,14 138,67 0,01 1,04 2,21 3,17 3,98 5,75 6,14 3,08 6,03 5,74	σ 0,07 0,02 48,41 0,01 0,20 0,44 0,51 0,71 0,87 1,59 1,27 1,61 1,12	0,80 850,00 2,33 0,08 0,06 38,24 0,00 0,70 1,42 2,21 2,84 4,18 4,54 3,76 4,38 4,10	σ 0,95 0,02 0,01 16,83 0,00 0,10 0,20 0,31 0,46 0,70 0,79 0,59 0,659 0,70	850,00 21,96 0,15 0,10 68,14 0,00 1,10 2,39 3,56 4,55 6,89 7,58 5,43 7,96 7,60	σ 6,56 0,03 0,01 21,64 0,00 0,28 0,57 0,79 0,99 1,33 1,37 1,17 1,66	0,40 725,00 1,58 0,09 0,13 153,12 0,00 0,55 1,27 1,95 2,39 3,15 3,25 2,42 2,56	σ 1,53 0,01 0,02 140,51 0,00 0,18 0,40 0,59 0,77 1,11 1,32 1,09 1,04	0,40 725,00 20,23 0,10 0,11 166,31 - 0,73 1,61 2,35 2,91 4,05 4,52 3,30 4,26 4,10	σ 22,03 0,02 0,01 131,31 - 0,16 0,31 0,42 0,45 0,69 0,80 0,58 0,87 0,22
T Cr Mn Sr Nb Ba La Ce Pr Nd Sm Eu Gd Tb Dy	825,00 8,69 0,06 0,07 33,33 0,00 0,74 1,50 2,33 3,08 4,57 5,17 4,37 4,97 4,75 2,10	σ 2,46 0,02 0,01 12,01 0,00 0,14 0,27 0,39 0,40 0,54 0,56 0,48 0,62 0,55 0,40	0,80 850,00 - 0,25 0,14 138,67 0,01 1,04 2,21 3,17 3,98 5,75 6,14 3,08 6,03 5,74	σ 0,07 0,02 48,41 0,01 0,20 0,44 0,51 0,71 0,87 1,59 1,27 1,61 1,18 0,71	0,80 850,00 2,33 0,08 0,06 38,24 0,00 0,70 1,42 2,21 2,84 4,18 4,54 3,76 4,38 4,10	σ 0,95 0,02 0,01 16,83 0,00 0,10 0,20 0,31 0,46 0,70 0,59 0,66 0,70 0,27	0,80 850,00 21,96 0,15 0,10 68,14 0,00 1,10 2,39 3,56 4,55 6,89 7,58 5,43 7,96 7,68	g 6,56 0,03 0,01 21,64 0,00 0,28 0,57 0,79 0,99 1,33 1,37 1,17 1,66 1,49	0,40 725,00 1,58 0,09 0,13 153,12 0,00 0,55 1,27 1,95 2,39 3,15 3,25 2,42 2,56 2,38	σ 1,53 0,01 0,02 140,51 0,00 0,18 0,40 0,59 0,77 1,11 1,32 1,09 1,04 0,97	0,40 725,00 20,23 0,10 0,11 166,31 - 0,73 1,61 2,35 2,91 4,05 4,52 3,30 4,26 4,10 2,49	σ 22,03 0,02 0,01 131,31 - 0,16 0,31 0,42 0,45 0,69 0,80 0,58 0,87 0,87 0,55
T Cr Mn Sr Nb Ba La Ce Pr Nd Sm Eu Gd Tb Dy Y	825,00 8,69 0,06 0,07 33,33 0,00 0,74 1,50 2,33 3,08 4,57 5,17 4,37 4,97 4,75 3,19 4,11	σ 2,46 0,02 0,01 12,01 0,00 0,14 0,27 0,39 0,40 0,54 0,56 0,48 0,62 0,55 0,44	0,80 850,00 - 0,25 0,14 138,67 0,01 1,04 2,21 3,17 3,98 5,75 6,14 3,08 6,03 5,74 3,71	σ 0,07 0,02 48,41 0,01 0,20 0,44 0,51 0,71 0,87 1,59 1,27 1,61 1,18 0,71 1,02	0,80 850,00 2,33 0,08 0,06 38,24 0,00 0,70 1,42 2,21 2,84 4,18 4,54 3,76 4,38 4,10 2,85 2,67	σ 0,95 0,02 0,01 16,83 0,00 0,10 0,20 0,31 0,46 0,70 0,59 0,66 0,70 0,59 0,66 0,70 0,51 0,51	0,80 850,00 21,96 0,15 0,10 68,14 0,00 1,10 2,39 3,56 4,55 6,89 7,58 5,43 7,96 7,68 5,26	σ 6,56 0,03 0,01 21,64 0,00 0,28 0,57 0,79 0,99 1,33 1,37 1,66 1,49 1,27	0,40 725,00 1,58 0,09 0,13 153,12 0,00 0,55 1,27 1,95 2,39 3,15 3,25 2,42 2,56 2,38 1,19	σ 1,53 0,01 0,02 140,51 0,00 0,18 0,40 0,59 0,77 1,11 1,32 1,09 1,04 0,97 0,40	0,40 725,00 20,23 0,10 0,11 166,31 - 0,73 1,61 2,35 2,91 4,05 4,52 3,30 4,26 4,10 2,48 2,62	σ 22,03 0,02 0,01 131,31 - 0,16 0,31 0,42 0,45 0,69 0,80 0,58 0,87 0,83 0,55 0,85
T Cr Mn Sr Nb Ba La Ce Pr Nd Sm Eu Gd Tb Dy Y Ho E	825,00 8,69 0,06 0,07 33,33 0,00 0,74 1,50 2,33 3,08 4,57 5,17 4,37 4,97 4,75 3,19 4,11 2,62	σ 2,46 0,02 0,01 12,01 0,00 0,14 0,27 0,39 0,40 0,54 0,56 0,48 0,62 0,55 0,48 0,40	0,80 850,00 - 0,25 0,14 138,67 0,01 1,04 2,21 3,17 3,98 5,75 6,14 3,08 6,03 5,74 3,71 5,10	σ 0,07 0,02 48,41 0,01 0,20 0,44 0,51 0,71 0,87 1,59 1,27 1,61 1,18 0,71 1,03 0,95	0,80 850,00 2,33 0,08 0,06 38,24 0,00 0,70 1,42 2,21 2,84 4,18 4,54 3,76 4,38 4,10 2,85 3,67 2,17	σ 0,95 0,02 0,01 16,83 0,00 0,10 0,20 0,31 0,46 0,70 0,59 0,66 0,70 0,37 0,66 0,70 0,37 0,42	850,00 21,96 0,15 0,10 68,14 0,00 1,10 2,39 3,56 4,55 6,89 7,58 5,43 7,96 7,68 5,26 6,94 6,17	σ 6,56 0,03 0,01 21,64 0,00 0,28 0,57 0,79 0,99 1,33 1,37 1,66 1,49 1,18 1,37	0,40 725,00 1,58 0,09 0,13 153,12 0,00 0,55 1,27 1,95 2,39 3,15 3,25 2,42 2,56 2,38 1,19 1,94 1,60	σ 1,53 0,01 0,02 140,51 0,00 0,18 0,40 0,59 0,77 1,11 1,32 1,09 1,04 0,97 0,42 0,85	0,40 725,00 20,23 0,10 0,11 166,31 - 0,73 1,61 2,35 2,91 4,05 4,52 3,30 4,26 4,10 2,48 3,63 2,20	σ 22,03 0,02 0,01 131,31 - 0,16 0,31 0,42 0,45 0,69 0,80 0,58 0,87 0,83 0,55 0,85 0,80
T Cr Mn Sr Nb Ba La Ce Pr Nd Sm Eu Gd Tb Dy Y Ho Er vy	825,00 8,69 0,06 0,07 33,33 0,00 0,74 1,50 2,33 3,08 4,57 5,17 4,37 4,97 4,75 3,19 4,11 3,63 2,66	σ 2,46 0,02 0,01 12,01 0,00 0,14 0,27 0,39 0,40 0,54 0,56 0,48 0,62 0,441 0,55 0,48 0,54	0,80 850,00 - 0,25 0,14 138,67 0,01 1,04 2,21 3,17 3,98 5,75 6,14 3,08 6,03 5,74 3,71 5,10 4,47 2,50	σ 0,07 0,02 48,41 0,01 0,20 0,44 0,51 0,71 0,87 1,59 1,27 1,61 1,18 0,71 1,03 0,95 0,71	0,80 850,00 2,33 0,08 0,06 38,24 0,00 0,70 1,42 2,21 2,84 4,18 4,54 3,76 4,38 4,10 2,85 3,67 3,17 2,20	σ 0,95 0,02 0,01 16,83 0,00 0,10 0,20 0,31 0,46 0,70 0,59 0,66 0,70 0,371 0,459 0,662 0,70 0,371 0,42 0,22	0,80 850,00 21,96 0,15 0,10 68,14 0,00 1,10 2,39 3,56 4,55 6,89 7,58 5,43 7,96 7,68 5,26 6,94 6,17 4,60	σ 6,56 0,03 0,01 21,64 0,00 0,28 0,57 0,79 0,99 1,33 1,37 1,66 1,49 1,18 1,37 1,18 1,37	0,40 725,00 1,58 0,09 0,13 153,12 0,00 0,55 1,27 1,95 2,39 3,15 3,25 2,42 2,56 2,38 1,19 1,94 1,60	σ 1,53 0,01 0,02 140,51 0,00 0,18 0,40 0,59 0,77 1,11 1,32 1,09 1,04 0,97 0,42 0,85 0,66 0,67	0,40 725,00 20,23 0,10 0,11 166,31 - 0,73 1,61 2,35 2,91 4,05 4,52 3,30 4,26 4,10 2,48 3,63 3,20 2,47	σ 22,03 0,02 0,01 131,31 - 0,16 0,31 0,42 0,45 0,69 0,80 0,58 0,87 0,83 0,55 0,85 0,80 0,65
T Cr Mn Sr Nb Ba La Ce Pr Nd Sm Eu Gd Tb Dy Y Ho Er Yb	825,00 8,69 0,06 0,07 33,33 0,00 0,74 1,50 2,33 3,08 4,57 5,17 4,37 4,97 4,75 3,19 4,11 3,63 2,66 2,04	σ 2,46 0,02 0,01 12,01 0,00 0,14 0,27 0,39 0,40 0,54 0,56 0,48 0,62 0,55 0,48 0,41 0,54	0,80 850,00 - 0,25 0,14 138,67 0,01 1,04 2,21 3,17 3,98 5,75 6,14 3,08 6,03 5,74 3,71 5,10 4,47 3,50	σ 0,07 0,02 48,41 0,01 0,20 0,44 0,51 0,71 0,87 1,59 1,27 1,61 1,18 0,71 1,03 0,95 0,71 0,55	0,80 850,00 2,33 0,08 0,06 38,24 0,00 0,70 1,42 2,21 2,84 4,18 4,54 3,76 4,38 4,10 2,85 3,67 3,17 2,29	σ 0,95 0,02 0,01 16,83 0,00 0,10 0,20 0,31 0,46 0,70 0,59 0,66 0,70 0,51 0,42 0,33 0,42 0,35	0,80 850,00 21,96 0,15 0,10 68,14 0,00 1,10 2,39 3,56 4,55 6,89 7,58 5,43 7,96 7,68 5,26 6,94 6,17 4,69 2,1	σ 6,56 0,03 0,01 21,64 0,00 0,28 0,57 0,79 0,99 1,33 1,37 1,66 1,49 1,18 1,37 1,14 0,87 0,62	0,40 725,00 1,58 0,09 0,13 153,12 0,00 0,55 1,27 1,95 2,39 3,15 3,25 2,42 2,56 2,38 1,19 1,94 1,60 1,35	σ 1,53 0,01 0,02 140,51 0,00 0,18 0,40 0,59 0,77 1,11 1,32 1,09 1,04 0,97 0,42 0,85 0,66 0,600	0,40 725,00 20,23 0,10 0,11 166,31 - 0,73 1,61 2,35 2,91 4,05 4,52 3,30 4,26 4,10 2,48 3,63 3,20 2,47 1,88	σ 22,03 0,02 0,01 131,31 - 0,16 0,31 0,42 0,45 0,69 0,80 0,58 0,87 0,83 0,55 0,85 0,80 0,66

D.5. Calcite et liquide carbonaté

Tableau 0.30. Coefficients de partage des éléments traces entre calcite et liquides carbonatés. σ: écart-type sur la moyenne des coefficients de partage, calculé à partir de l'équation (5) de la partie III.4.

P (Gpa)	T17_02 0,8		T18_01 1,5		T18_03 1,5		T18_04 1,5		AK02_01 0,4		AK02_02 0,4		AK05_01 0,4		AK05_02 0,4	
<u>T(C)</u>	925	σ	925	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	925	<u></u>	925	σ	925	<u> </u>	925	<u> </u>	025	σ	025	σ
11 Mn	- 0.20	0.04	0,03	0,02	0,00	0,00	0.22	0.06	0,02	0,00	0.13	0,00	0.22	0.04	0 10	- 0.04
Sr.	1.37	0,04	1.63	0,07	1.63	0,05	1.43	0,00	1.47	0.07	1 34	0,01	1.75	0,04	1 27	0,04
Nh	0.00	0,20	0.01	0,02	0.00	0,00	0.00	0,00	1,47	0,07	0.00	0,02	0.00	0,20	0.00	0,00
Ro Ro	0,00	0,00	0,01	0,02	0,00	0,00	0,00	0,00	0.30	0.03	0,00	0,00	0,00	0,00	0,00	0,00
La	2.24	0,09	2.04	0,05	1.54	0,04	1.40	0,02	1.13	0,05	1 13	0,05	1.12	0,08	0,12	0,05
	2,24	0,13	2,04	0,15	1,54	0,13	1,40	0,10	1,13	0,00	1,15	0,09	1,12	0,34	0,02	0,00
Dn	2,21	0,15	2,13	0,16	1,55	0,14	1,41	0,12	1,07	0,05	1,11	0,08	1,15	0,30	0,00	0,00
Nd	2,10	0,11	2,01	0,10	1,02	0,14	1,40	0,10	1,08	0,05	1,15	0,08	1,10	0,27	0,07	0,09
Sm	2,11	0,10	2,11	0,00	1,05	0,15	1,49	0,15	1,10	0,05	1,19	0,09	1,19	0,27	0,09	0,10
5m En	2,02	0,10	2,09	0,39	1,00	0,17	1,45	0,10	1,04	0,07	1,10	0,05	1,19	0,27	0,00	0,12
Eu Th	1,91	0,10	1,/0	0,38	1,37	0,10	1,41	0,22	1,05	0,07	1,19	0,00	1,20	0,20	0,70	0,15
10	1,01	0,12	1,02	0,51	1,55	0,14	1,50	0,25	0,90	0,08	0,98	0,00	1,14	0,27	0,05	0,15
Dy V	1,05	0,14	1,98	0,21	1,51	0,15	1,20	0,20	0,87	0,00	0,95	0,05	1,10	0,27	0,62	0,10
1	1,05	0,15	2,00	0,29	1,52	0,14	1,20	0,23	0,87	0,07	0,88	0,08	1,00	0,30	0,00	0,18
HO	1,01	0,15	2,00	0,10	1,30	0,14	1,20	0,27	0,80	0,00	0,88	0,07	1,07	0,27	0,00	0,17
	1,78	0,17	1,95	0,33	1,42	0,13	1,21	0,27	0,81	0,06	0,83	0,07	1,03	0,26	0,54	0,16
YD	1,63	0,19	1,87	0,25	1,29	0,14	1,08	0,31	0,67	0,06	0,69	0,08	0,92	0,21	0,45	0,15
Lu	1,61	0,20	1,8/	0,25	1,29	0,14	1,05	0,32	0,67	0,06	0,68	0,08	0,91	0,24	0,46	0,16
	AK05_03		AK05_05		119_01		119_03		T19_04		AK06_01		AK06_02		AK08_03	
$\mathbf{D}(\mathbf{C} = \mathbf{z})$	0.40		0.40		0.00		0.00		0.00		0.40		0.40		0.40	
P (Gpa)	0,40		0,40 825.00		0,80		0,80		0,80		0,40 725.00		0,40 725.00		0,40 725.00	
P (Gpa) <u>T (°C)</u>	0,40 825,00	σ	0,40 825,00	<u>σ</u>	0,80 <u>850,00</u>	σ	0,80 850,00	σ	0,80 850,00	σ	0,40 725,00	σ	0,40 725,00	<u>σ</u>	0,40 725,00	<u>σ</u>
P (Gpa) T (°C) Ti Mn	0,40 825,00	<u>σ</u>	0,40 825,00 0,02 0.07	σ 0,01 0.02	0,80 850,00 0,01 0,22	σ 0,00	0,80 850,00	σ - 0.02	0,80 850,00	σ -	0,40 725,00	σ -	0,40 725,00 0,02 0,15	σ 0,01	0,40 725,00 0,31 0,48	σ 0,12 0,12
P (Gpa) T (°C) Ti Mn	0,40 825,00 - 0,07 1,10	σ 0,02	0,40 825,00 0,02 0,07 0.02	σ 0,01 0,02 0.08	0,80 850,00 0,01 0,33	σ 0,00 0,05 0,22	0,80 850,00 - 0,10 1.02	σ - 0,03	0,80 850,00 - 0,17 1,75	σ 0,05	0,40 725,00 0,22 2,46	σ - 0,02 0,42	0,40 725,00 0,02 0,15 2,20	σ 0,01 0,04 0,11	0,40 725,00 0,31 0,48	σ 0,12 0,13 0,01
P (Gpa) T (°C) Ti Mn Sr Nb	0,40 <u>825,00</u> - 0,07 1,19	σ - 0,02 0,09	0,40 825,00 0,02 0,07 0,92 0,00	σ 0,01 0,02 0,08	0,80 850,00 0,01 0,33 1,80 0,00	σ 0,00 0,05 0,23	0,80 850,00 - 0,10 1,03 0,00	σ 0,03 0,08	0,80 850,00 - 0,17 1,75 0,00	σ - 0,05 0,15	0,40 725,00 - 0,22 2,46 0,00	σ 0,02 0,43	0,40 725,00 0,02 0,15 2,29 0,00	σ 0,01 0,04 0,11	0,40 725,00 0,31 0,48 1,00 0.05	σ 0,12 0,13 0,01
P (Gpa) T (°C) Ti Mn Sr Nb Po	0,40 825,00 - 0,07 1,19 -	σ 0,02 0,09	0,40 825,00 0,02 0,07 0,92 0,00 0,16	σ 0,01 0,02 0,08 0,00	0,80 850,00 0,01 0,33 1,80 0,00 0,44	σ 0,00 0,05 0,23 0,00	0,80 850,00 - 0,10 1,03 0,00 0,14	σ - 0,03 0,08 0,00 0,04	0,80 850,00 - 0,17 1,75 0,00 0,25	σ 0,05 0,15 0,00	0,40 725,00 - 0,22 2,46 0,00 0,10	σ 0,02 0,43 0,00	0,40 725,00 0,02 0,15 2,29 0,00 0,17	σ 0,01 0,04 0,11 0,00 0.02	0,40 725,00 0,31 0,48 1,00 0,05 0,10	σ 0,12 0,13 0,01 0,01
P (Gpa) T (°C) Ti Mn Sr Nb Ba	0,40 825,00 - 0,07 1,19 - 0,11 0,44	σ 0,02 0,09 - 0,03 0.07	0,40 825,00 0,02 0,07 0,92 0,00 0,16 0,40	g 0,01 0,02 0,08 0,00 0,02 0,08	0,80 850,00 0,01 0,33 1,80 0,00 0,44 1,80	σ 0,00 0,05 0,23 0,00 0,07	0,80 850,00 - 0,10 1,03 0,00 0,14 0,72	σ 0,03 0,08 0,00 0,04 0,04	0,80 850,00 - 0,17 1,75 0,00 0,25 1,44	σ 0,05 0,15 0,00 0,05 0,22	0,40 725,00 - 0,22 2,46 0,00 0,10 0,50	σ 0,02 0,43 0,00 0,02 0,22	0,40 725,00 0,02 0,15 2,29 0,00 0,17 0,68	σ 0,01 0,04 0,11 0,00 0,03 0,00	0,40 725,00 0,31 0,48 1,00 0,05 0,10 0,26	6 0,12 0,13 0,01 0,01 0,03 0,05
P (Gpa) T (°C) Ti Mn Sr Nb Ba La Ca	0,40 825,00 - 0,07 1,19 - 0,11 0,44 0,44	σ 0,02 0,09 - 0,03 0,07	0,40 825,00 0,02 0,07 0,92 0,00 0,16 0,40 0,20	o 0,01 0,02 0,08 0,00 0,02 0,08 0,08	0,80 850,00 0,01 0,33 1,80 0,00 0,44 1,80	o 0,00 0,05 0,23 0,00 0,07 0,23 0,28	0,80 850,00 - 0,10 1,03 0,00 0,14 0,73 0,70	σ 0,03 0,08 0,00 0,04 0,12 0,12	0,80 850,00 - 0,17 1,75 0,00 0,25 1,44 1,45	σ 0,05 0,15 0,00 0,05 0,23 0,24	0,40 725,00 - 0,22 2,46 0,00 0,10 0,59 0,66	σ 0,02 0,43 0,00 0,02 0,32 0,30	0,40 725,00 0,02 0,15 2,29 0,00 0,17 0,68 0,65	o 0,01 0,04 0,11 0,00 0,03 0,09 0.07	0,40 725,00 0,31 0,48 1,00 0,05 0,10 0,26 0,21	5 0,12 0,13 0,01 0,01 0,03 0,05 0.05
P (Gpa) T (°C) Ti Mn Sr Nb Ba La Ce Pr	0,40 825,00 - 0,07 1,19 - 0,11 0,44 0,42 0,42	σ 0,02 0,09 - 0,03 0,07 0,07	0,40 825,00 0,02 0,07 0,92 0,00 0,16 0,40 0,39 0,44	o 0,01 0,02 0,08 0,00 0,02 0,08 0,08 0,08	0,80 850,00 0,01 0,33 1,80 0,00 0,44 1,80 1,94	o 0,00 0,05 0,23 0,00 0,07 0,23 0,28 0,10	0,80 850,00 - 0,10 1,03 0,00 0,14 0,73 0,70 0,74	σ 0,03 0,08 0,00 0,04 0,12 0,13 0,14	0,80 850,00 - 0,17 1,75 0,00 0,25 1,44 1,45	a 0,05 0,15 0,00 0,05 0,23 0,24 0,25	0,40 725,00 - 0,22 2,46 0,00 0,10 0,59 0,66 0,66	o 0,02 0,43 0,00 0,02 0,32 0,30 0,27	0,40 725,00 0,02 0,15 2,29 0,00 0,17 0,68 0,65 0,55	5 0,01 0,04 0,11 0,00 0,03 0,09 0,07	0,40 725,00 0,31 0,48 1,00 0,05 0,10 0,26 0,31 0,24	g 0,12 0,13 0,01 0,01 0,03 0,05 0,05 0,07
P (Gpa) T (°C) Ti Mn Sr Nb Ba La Ce Pr	0,40 825,00 - 0,07 1,19 - 0,11 0,44 0,42 0,46 0,50	σ 0,02 0,09 - 0,03 0,07 0,07 0,07 0,08	0,40 825,00 0,02 0,07 0,92 0,00 0,16 0,40 0,39 0,44 0,55	5 0,01 0,02 0,08 0,00 0,02 0,08 0,08 0,05 0,02	0,80 850,00 0,01 0,33 1,80 0,00 0,44 1,80 1,94 1,99 2,92	g 0,00 0,05 0,23 0,00 0,07 0,23 0,28 0,19 0,22	0,80 850,00 - 0,10 1,03 0,00 0,14 0,73 0,70 0,74 0,77	σ 0,03 0,08 0,00 0,04 0,12 0,13 0,14 0,15	0,80 850,00 - 0,17 1,75 0,00 0,25 1,44 1,45 1,47 1,47	a 0,05 0,15 0,00 0,05 0,23 0,24 0,25 0,24	0,40 725,00 - 0,22 2,46 0,00 0,10 0,59 0,66 0,67 0,67	o 0,02 0,43 0,00 0,02 0,32 0,30 0,27 0,20	0,40 725,00 0,02 0,15 2,29 0,00 0,17 0,68 0,65 0,59 0,51	g 0,01 0,04 0,11 0,00 0,03 0,09 0,07 0,06 0.05	0,40 725,00 0,31 0,48 1,00 0,05 0,10 0,26 0,31 0,34 0,34	g 0,12 0,13 0,01 0,03 0,05 0,05 0,05 0,07
P (Gpa) T (°C) Ti Mn Sr Nb Ba La Ce Pr Nd Scr	0,40 825,00 - 0,07 1,19 - 0,11 0,44 0,42 0,46 0,50 0,40	σ 0,02 0,09 - 0,03 0,07 0,07 0,08 0,09 0,09	0,40 825,00 0,02 0,07 0,92 0,00 0,16 0,40 0,39 0,44 0,55 0,92	g 0,01 0,02 0,08 0,00 0,02 0,08 0,08 0,08 0,05 0,03 0,10	0,80 850,00 0,01 0,33 1,80 0,00 0,44 1,80 1,94 1,99 2,02 2,02	g 0,00 0,05 0,23 0,00 0,07 0,23 0,28 0,19 0,23	0,80 850,00 - 0,10 1,03 0,00 0,14 0,73 0,70 0,74 0,77 0,72	a 0,03 0,08 0,00 0,04 0,12 0,13 0,14 0,15 0,16	0,80 850,00 - 0,17 1,75 0,00 0,25 1,44 1,45 1,47 1,48 1,40	σ 0,05 0,15 0,00 0,05 0,23 0,24 0,25 0,24 0,27	0,40 725,00 - 0,22 2,46 0,00 0,10 0,59 0,66 0,67 0,60 0,60	σ 0,02 0,43 0,00 0,02 0,32 0,30 0,27 0,20 0,11	0,40 725,00 0,02 0,15 2,29 0,00 0,17 0,68 0,65 0,59 0,51	g 0,01 0,04 0,11 0,00 0,03 0,09 0,07 0,06 0,05 0,02	0,40 725,00 0,31 0,48 1,00 0,05 0,10 0,26 0,31 0,34 0,36 0,42	g 0,12 0,13 0,01 0,01 0,03 0,05 0,05 0,05 0,07 0,09
P (Gpa) T (°C) Ti Mn Sr Nb Ba La Ce Pr Nd Sm Er	0,40 825,00 - 0,07 1,19 - 0,11 0,44 0,42 0,46 0,50 0,49 0,51	σ 0,02 0,09 - 0,03 0,07 0,07 0,07 0,08 0,09 0,09 0,09 0,09	0,40 825,00 0,02 0,07 0,92 0,00 0,16 0,40 0,39 0,44 0,55 0,93 1,20	g 0,01 0,02 0,08 0,00 0,02 0,08 0,08 0,08 0,05 0,03 0,19	0,80 850,00 0,01 0,33 1,80 0,00 0,44 1,80 1,94 1,99 2,02 1,94 1,99 2,02 1,94	g 0,00 0,05 0,23 0,00 0,07 0,23 0,28 0,19 0,23 0,21 0,25	0,80 850,00 - 0,10 1,03 0,00 0,14 0,73 0,70 0,74 0,77 0,73 0,72	σ 0,03 0,08 0,00 0,04 0,12 0,13 0,14 0,15 0,16	0,80 850,00 - 0,17 1,75 0,00 0,25 1,44 1,45 1,47 1,48 1,40 1,40	σ 0,05 0,15 0,00 0,05 0,23 0,24 0,25 0,24 0,27 0,28	0,40 725,00 - 0,22 2,46 0,00 0,10 0,59 0,66 0,67 0,60 0,40 0,40	σ 0,02 0,43 0,00 0,02 0,32 0,30 0,27 0,20 0,11 0,14	0,40 725,00 0,02 0,15 2,29 0,00 0,17 0,68 0,65 0,59 0,51 0,26 0,20	g 0,01 0,04 0,11 0,00 0,03 0,09 0,07 0,06 0,05 0,03 0,02	0,40 725,00 0,31 0,48 1,00 0,05 0,10 0,26 0,31 0,34 0,36 0,43 0,43	σ 0,12 0,13 0,01 0,01 0,03 0,05 0,05 0,07 0,09 0,08 0,08
P (Gpa) T (°C) Ti Mn Sr Nb Ba La Ce Pr Nd Sm Eu	0,40 825,00 0,07 1,19 0,11 0,44 0,42 0,46 0,50 0,49 0,51 0,51	σ 0,02 0,09 - 0,03 0,07 0,07 0,07 0,08 0,09 0,09 0,09 0,08	0,40 825,00 0,02 0,07 0,92 0,00 0,16 0,40 0,39 0,44 0,55 0,93 1,29	g 0,01 0,02 0,08 0,00 0,02 0,08 0,08 0,05 0,03 0,19 0,46	0,80 850,00 0,01 0,33 1,80 0,00 0,44 1,80 1,94 1,99 2,02 1,94 1,99 1,99 1,99 1,99	o 0,00 0,05 0,23 0,00 0,07 0,23 0,28 0,19 0,23 0,21 0,25 0,25	0,80 850,00 - 0,10 1,03 0,00 0,14 0,73 0,70 0,74 0,77 0,73 0,77 0,73 0,72	σ 0,03 0,08 0,00 0,04 0,12 0,13 0,14 0,15 0,16 0,16 0,16	0,80 850,00 - 0,17 1,75 0,00 0,25 1,44 1,45 1,47 1,48 1,47 1,48 1,40 1,44 1,44	5 0,05 0,15 0,00 0,05 0,23 0,24 0,25 0,24 0,25 0,24 0,27 0,28	0,40 725,00 - 0,22 2,46 0,00 0,10 0,59 0,66 0,67 0,60 0,40 0,37 0,37	5 0,02 0,43 0,00 0,02 0,32 0,30 0,27 0,20 0,11 0,14	0,40 725,00 0,02 0,15 2,29 0,00 0,17 0,68 0,65 0,59 0,51 0,26 0,20 0,20	σ 0,01 0,04 0,11 0,00 0,03 0,09 0,07 0,06 0,05 0,03 0,03 0,03	0,40 725,00 0,31 0,48 1,00 0,05 0,10 0,26 0,31 0,34 0,36 0,43 0,42 0,45	σ 0,12 0,13 0,01 0,03 0,05 0,05 0,07 0,09 0,08 0,09 0,01
P (Gpa) T (°C) Ti Mn Sr Sr Nb Ba La Ce Pr Nd Sm Eu Tb	0,40 825,00 - 0,07 1,19 - 0,11 0,44 0,42 0,44 0,42 0,46 0,50 0,49 0,51 0,45 0,45	σ 0,02 0,09 - 0,03 0,07 0,07 0,08 0,09 0,09 0,09 0,08 0,09 0,09 0,09 0,09 0,09 0,09 0,09 0,02 0,09 0,07 0,08 0,09 0,09 0,07 0,08 0,09 0,09 0,07 0,09 0,07 0,07 0,07 0,07 0,07 0,09 0,09 0,07 0,09 0,07 0,07 0,09 0,09 0,07 0,09	0,40 825,00 0,02 0,07 0,92 0,00 0,16 0,40 0,39 0,44 0,55 0,93 1,29 1,91 0,21 0,22 0,00 0,07 0,92 0,00 0,16 0,40 0,22 0,00 0,16 0,40 0,22 0,22 0,00 0,16 0,40 0,55 0,93 1,29 1,29 1,29 1,29 1,29 1,29 1,29 1,29 1,29 1,29 1,29 1,29 1,29 1,29 1,20	o 0,01 0,02 0,08 0,00 0,02 0,08 0,08 0,05 0,03 0,19 0,46 0,86	0,80 850,00 0,01 0,33 1,80 0,00 0,44 1,80 1,94 1,99 2,02 1,94 1,99 1,87 1,80	σ 0,00 0,23 0,00 0,23 0,07 0,23 0,21 0,35 0,29	0,80 850,00 - 0,10 1,03 0,00 0,14 0,73 0,70 0,74 0,77 0,73 0,72 0,64 0,62	σ - 0,03 0,08 0,00 0,04 0,12 0,13 0,14 0,15 0,16 0,16 0,14	0,80 850,00 - 0,17 1,75 0,00 0,25 1,44 1,45 1,47 1,48 1,47 1,48 1,40 1,44 1,35 1,28	g 0,05 0,15 0,00 0,05 0,23 0,24 0,25 0,24 0,27 0,28 0,32	0,40 725,00 - 0,22 2,46 0,00 0,10 0,59 0,66 0,67 0,66 0,67 0,60 0,40 0,37 0,27	σ 0,02 0,43 0,00 0,02 0,32 0,30 0,27 0,20 0,11 0,14 0,12	0,40 725,00 0,02 0,15 2,29 0,00 0,17 0,68 0,65 0,59 0,51 0,26 0,20 0,10 0,20	σ 0,01 0,04 0,11 0,00 0,03 0,09 0,07 0,06 0,05 0,03 0,03 0,02	0,40 725,00 0,31 0,48 1,00 0,05 0,10 0,26 0,31 0,34 0,34 0,36 0,43 0,42 0,45 0,45	g 0,12 0,13 0,01 0,03 0,05 0,05 0,05 0,07 0,09 0,08 0,09 0,08
P (Gpa) T (°C) Ti Mn Sr Nb Ba La Ce Pr Nd Sm Eu Tb Dy Y	0,40 825,00 - 0,07 1,19 - 0,11 0,44 0,42 0,44 0,42 0,46 0,50 0,49 0,51 0,45 0,45 0,45	σ 0,02 0,09 - 0,03 0,07 0,07 0,08 0,09 0,09 0,08 0,09 0,09 0,09 0,09 0,01	0,40 825,00 0,02 0,07 0,92 0,00 0,16 0,40 0,39 0,44 0,55 0,93 1,29 1,91 2,32 10	6 0,01 0,02 0,08 0,00 0,02 0,08 0,08 0,03 0,19 0,46 0,86 1,22	0,80 850,00 0,01 0,33 1,80 0,00 0,44 1,80 1,94 1,99 2,02 1,94 1,99 1,99 1,87 1,89 1,82	σ 0,00 0,23 0,00 0,07 0,23 0,35 0,29 0,31	0,80 850,00 - 0,10 1,03 0,00 0,14 0,73 0,70 0,74 0,73 0,72 0,64 0,60 0,50	σ 0,03 0,08 0,00 0,04 0,12 0,13 0,14 0,15 0,16 0,16 0,16 0,14 0,13	0,80 850,00 - 0,17 1,75 0,00 0,25 1,44 1,45 1,47 1,48 1,40 1,44 1,35 1,28 1,24	σ 0,05 0,15 0,00 0,23 0,24 0,25 0,24 0,27 0,28 0,32 0,32 0,32	0,40 725,00 - 0,22 2,46 0,00 0,10 0,59 0,66 0,67 0,66 0,40 0,37 0,27 0,24	σ 0,02 0,43 0,00 0,02 0,32 0,30 0,27 0,20 0,11 0,14 0,12 0,11	0,40 725,00 0,02 0,15 2,29 0,00 0,17 0,68 0,65 0,59 0,51 0,26 0,20 0,10 0,08 0,00	σ 0,01 0,04 0,11 0,00 0,03 0,09 0,07 0,06 0,05 0,03 0,03 0,02 0,02	0,40 725,00 0,31 0,48 1,00 0,05 0,10 0,26 0,31 0,34 0,36 0,43 0,42 0,45 0,44 0,24	g 0,12 0,13 0,01 0,03 0,05 0,05 0,07 0,09 0,08 0,09 0,11 0,10
P (Gpa) T (°C) Ti Mn Sr Nb Ba La Ce Pr Nd Sm Eu Tb Dy Y	0,40 825,00 - 0,07 1,19 - 0,11 0,44 0,42 0,44 0,42 0,44 0,50 0,49 0,51 0,45 0,45 0,45 0,43	σ 0,02 0,09 - 0,03 0,07 0,07 0,08 0,09 0,09 0,09 0,09 0,09 0,09 0,09 0,09 0,09 0,09 0,09 0,09 0,09 0,09 0,01	0,40 825,00 0,02 0,07 0,92 0,00 0,16 0,40 0,39 0,44 0,55 0,93 1,29 1,91 2,32 2,19 2,26	6 0,01 0,02 0,08 0,02 0,08 0,05 0,03 0,19 0,46 0,86 1,22 1,06	0,80 850,00 0,01 0,33 1,80 0,00 0,44 1,80 1,94 1,99 2,02 1,94 1,99 1,87 1,89 1,83 1,80 1,94 1,99 1,87 1,89 1,80 1,90 1,80 1,90 1,90 1,80 1,90 1,90 1,80 1,90 1,90 1,80 1,90 1,90 1,80 1,90 1,90 1,80 1,90 1,90 1,80 1,90 1,90 1,80 1,90 1,80 1,90 1,90 1,80 1,80 1,90 1,90 1,80 1,90 1,80 1,90 1,80 1,90 1,80 1,80 1,80 1,80 1,90 1,80 1,80 1,90 1,80	σ 0,00 0,23 0,00 0,23 0,00 0,23 0,23 0,23 0,23 0,23 0,23 0,23 0,23 0,23 0,23 0,23 0,23 0,23 0,23 0,23 0,23 0,23 0,35 0,29 0,31 0,35 0,24	0,80 850,00 - 0,10 1,03 0,00 0,14 0,73 0,70 0,74 0,77 0,72 0,64 0,60 0,59 0,50	σ 0,03 0,08 0,00 0,04 0,12 0,13 0,14 0,15 0,16 0,16 0,16 0,14 0,13 0,12	0,80 850,00 - 0,17 1,75 0,00 0,25 1,44 1,45 1,47 1,48 1,47 1,48 1,40 1,44 1,35 1,28 1,24 1,27	σ 0,05 0,15 0,00 0,23 0,24 0,25 0,24 0,25 0,24 0,27 0,28 0,32 0,32 0,32 0,35	0,40 725,00 - 0,22 2,46 0,00 0,10 0,59 0,66 0,67 0,66 0,67 0,60 0,40 0,37 0,27 0,24 0,19 0,22	σ 0,02 0,43 0,00 0,02 0,32 0,30 0,27 0,20 0,11 0,14 0,12 0,11 0,14 0,12 0,12	0,40 725,00 0,02 0,15 2,29 0,00 0,17 0,68 0,65 0,59 0,51 0,26 0,20 0,10 0,08 0,09 0,00	σ 0,01 0,04 0,11 0,00 0,03 0,09 0,07 0,06 0,03 0,03 0,03 0,02 0,02 0,02	0,40 725,00 0,31 0,48 1,00 0,05 0,10 0,26 0,31 0,34 0,36 0,43 0,42 0,45 0,44 0,34	g 0,12 0,13 0,01 0,03 0,05 0,05 0,07 0,09 0,08 0,09 0,11 0,10 0,08
P (Gpa) T (°C) Ti Mn Sr Nb Ba La Ce Pr Nd Sm Eu Tb Dy Y Ho Er	0,40 825,00 - 0,07 1,19 - 0,11 0,44 0,42 0,44 0,42 0,46 0,50 0,49 0,51 0,45 0,45 0,45 0,43 0,41 0,20	σ 0,02 0,09 - 0,03 0,07 0,07 0,08 0,09 0,09 0,09 0,09 0,09 0,09 0,09 0,09 0,09 0,09 0,01 0,09 0,09 0,01 0,02 0,03 0,07 0,07 0,07 0,07 0,07 0,07 0,09 0,07 0,09 0,07 0,09 0,07 0,07 0,09 0,07 0,09 0,07 0,09 0,09 0,07 0,09 0,09 0,07 0,09 0,011 0,09 0,110 0,09 0,110 0,09 0,110 0,09 0,110 0,09 0,110 0,09 0,110 0,09	$\begin{array}{r} \textbf{0,40} \\ \textbf{825,00} \\ 0,02 \\ 0,07 \\ 0,92 \\ 0,00 \\ 0,16 \\ 0,40 \\ 0,39 \\ 0,44 \\ 0,55 \\ 0,93 \\ 1,29 \\ 1,91 \\ 2,32 \\ 2,19 \\ 2,68 \\ 2,68 \\ 2,70 \end{array}$	σ 0,01 0,02 0,00 0,02 0,08 0,05 0,03 0,19 0,46 0,86 1,22 1,06 1,34 28	0,80 850,00 0,01 0,33 1,80 0,00 0,44 1,80 1,94 1,99 2,02 1,94 1,99 1,87 1,89 1,87 1,89 1,83 1,90	6 0,00 0,05 0,23 0,00 0,07 0,23 0,28 0,19 0,23 0,21 0,35 0,29 0,31 0,35 0,35 0,35	0,80 850,00 - 0,10 1,03 0,00 0,14 0,73 0,70 0,74 0,77 0,73 0,72 0,64 0,60 0,59 0,59 0,57	σ 0,03 0,08 0,00 0,04 0,12 0,13 0,14 0,15 0,16 0,16 0,14 0,13 0,12 0,12	0,80 850,00 - 0,17 1,75 0,00 0,25 1,44 1,45 1,47 1,48 1,40 1,44 1,35 1,28 1,24 1,27 1,27 1,28	σ 0,05 0,15 0,00 0,23 0,24 0,25 0,24 0,27 0,24 0,27 0,28 0,32 0,32 0,32 0,35 0,35	0,40 725,00 - 0,22 2,46 0,00 0,10 0,59 0,66 0,67 0,60 0,40 0,37 0,27 0,24 0,19 0,23 0,21	σ 0,02 0,43 0,00 0,02 0,32 0,30 0,27 0,20 0,11 0,14 0,12 0,11 0,08 0,12	0,40 725,00 0,02 0,15 2,29 0,00 0,17 0,68 0,65 0,59 0,51 0,26 0,20 0,10 0,08 0,09 0,06 0,07	σ 0,01 0,04 0,10 0,00 0,03 0,09 0,07 0,06 0,03 0,03 0,03 0,03 0,03 0,03 0,02 0,02 0,02 0,02	$\begin{array}{r} 0,40\\ \hline 725,00\\ \hline 0,31\\ 0,48\\ 1,00\\ 0,05\\ 0,10\\ 0,26\\ 0,31\\ 0,34\\ 0,36\\ 0,43\\ 0,42\\ 0,45\\ 0,44\\ 0,34\\ 0,44\\ 0,44\\ 0,44\\ 0,42\\ \end{array}$	g 0,12 0,13 0,01 0,03 0,05 0,05 0,05 0,07 0,09 0,08 0,09 0,11 0,10 0,08 0,10
P (Gpa) T (°C) Ti Mn Sr Nb Ba La Ce Pr Nd Sm Eu Tb Dy Y Ho Er	0,40 825,00 - 0,07 1,19 - 0,11 0,44 0,42 0,46 0,50 0,49 0,51 0,45 0,45 0,45 0,43 0,41 0,39 0,32	σ 0,02 0,09 - 0,03 0,07 0,07 0,08 0,09 0,09 0,09 0,09 0,09 0,09 0,09 0,09 0,01 0,09 0,01 0,09 0,09 0,02 0,03 0,07 0,07 0,07 0,07 0,07 0,07 0,09 0,07 0,07 0,09 0,07 0,07 0,09 0,07 0,09 0,07 0,09 0,07 0,09 0,09 0,07 0,09 0,07 0,09 0,09 0,07 0,09 0,09 0,09 0,07 0,09	0,40 825,00 0,02 0,07 0,92 0,00 0,16 0,40 0,39 0,44 0,55 0,93 1,29 1,91 2,32 2,19 2,68 2,70 0,02	σ 0,01 0,02 0,08 0,00 0,08 0,05 0,03 0,19 0,46 1,86 1,34 1,38	0,80 850,00 0,01 0,33 1,80 0,00 0,44 1,80 1,94 1,99 2,02 1,94 1,99 1,87 1,89 1,87 1,89 1,83 1,90 1,90 1,90	o 0,00 0,05 0,23 0,07 0,23 0,23 0,23 0,23 0,23 0,23 0,23 0,23 0,23 0,23 0,23 0,23 0,23 0,21 0,35 0,31 0,35 0,34 0,35	0,80 850,00 - 0,10 1,03 0,00 0,14 0,73 0,70 0,74 0,77 0,73 0,77 0,73 0,72 0,64 0,60 0,59 0,59 0,57 0	σ 0,03 0,08 0,00 0,04 0,12 0,13 0,14 0,15 0,16 0,16 0,14 0,13 0,12 0,12 0,12 0,12 0,12 0,12 0,12 0,13 0,14 0,15 0,16 0,16 0,16 0,16 0,17 0,17 0,18 0,18 0,19 0,112 0,113 0,14 0,15 0,16 0,12	0,80 850,00 - 0,17 1,75 0,00 0,25 1,44 1,45 1,47 1,48 1,40 1,44 1,35 1,28 1,24 1,27 1,18 1,20	σ 0,05 0,15 0,00 0,23 0,24 0,25 0,24 0,27 0,28 0,32 0,32 0,35 0,35 0,35 0,35	0,40 725,00 - 0,22 2,46 0,00 0,10 0,59 0,66 0,67 0,60 0,40 0,37 0,27 0,24 0,19 0,23 0,21	σ 0,02 0,43 0,00 0,02 0,32 0,30 0,27 0,20 0,11 0,14 0,12 0,11 0,08 0,12 0,11 0,01	0,40 725,00 0,02 0,15 2,29 0,00 0,17 0,68 0,65 0,59 0,51 0,26 0,20 0,10 0,08 0,09 0,06 0,07 0,07	σ 0,01 0,04 0,11 0,00 0,03 0,09 0,07 0,06 0,03 0,09 0,05 0,03 0,02 0,02 0,02 0,02 0,02 0,02 0,02 0,02	$\begin{array}{r} 0,40\\ \hline 725,00\\ \hline 0,31\\ 0,48\\ 1,00\\ 0,05\\ 0,10\\ 0,26\\ 0,31\\ 0,34\\ 0,36\\ 0,43\\ 0,42\\ 0,45\\ 0,44\\ 0,34\\ 0,44\\ 0,34\\ 0,44\\ 0,43\\ 0,43\\ 0,43\\ 0,43\\ 0,43\\ 0,44\\ 0,43\\ 0,44\\ 0,43\\ 0,43\\ 0,43\\ 0,43\\ 0,43\\ 0,44\\ 0,43\\ 0,43\\ 0,43\\ 0,43\\ 0,44\\ 0,43\\ 0,43\\ 0,43\\ 0,43\\ 0,43\\ 0,43\\ 0,44\\ 0,43\\ 0,43\\ 0,43\\ 0,43\\ 0,43\\ 0,43\\ 0,44\\ 0,43\\ 0,43\\ 0,43\\ 0,43\\ 0,43\\ 0,43\\ 0,43\\ 0,43\\ 0,43\\ 0,43\\ 0,44\\ 0,43\\$	g 0,12 0,13 0,01 0,03 0,05 0,05 0,07 0,09 0,08 0,09 0,11 0,10 0,08 0,10 0,08 0,10
P (Gpa) T (°C) Ti Mn Sr Nb Ba La Ce Pr Nd Sm Eu Tb Dy Y Ho Er Yb	0,40 825,00 - 0,07 1,19 - 0,11 0,44 0,42 0,44 0,42 0,46 0,50 0,49 0,51 0,45 0,45 0,45 0,43 0,41 0,39 0,33 0,33	σ 0,02 0,09 - 0,03 0,07 0,07 0,08 0,09 0,09 0,09 0,09 0,09 0,09 0,09 0,09 0,09 0,09 0,09 0,09 0,09 0,03 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,09 0,09 0,07 0,07 0,07 0,09 0,09 0,07 0,07 0,07 0,09 0,09 0,07 0,09 0,009 0,000 0,000 0,000 0,000 0,00	$\begin{array}{r} 0,40\\ \underline{825,00}\\ 0,02\\ 0,07\\ 0,92\\ 0,00\\ 0,16\\ 0,40\\ 0,39\\ 0,44\\ 0,55\\ 0,93\\ 1,29\\ 1,91\\ 2,32\\ 2,19\\ 2,68\\ 2,70\\ 1,96\\ 1,96\end{array}$	o 0,01 0,02 0,08 0,00 0,02 0,08 0,05 0,03 0,19 0,46 1,26 1,34 1,38 0,79	0,80 850,00 0,01 0,33 1,80 0,00 0,44 1,80 1,94 1,99 2,02 1,94 1,99 1,87 1,89 1,83 1,90 1,90 1,81 1,90	g 0,00 0,23 0,00 0,23 0,23 0,23 0,23 0,23 0,23 0,23 0,23 0,23 0,23 0,21 0,35 0,29 0,31 0,35 0,34 0,35 0,36	0,80 850,00 - 0,10 1,03 0,00 0,14 0,73 0,70 0,74 0,77 0,73 0,72 0,64 0,60 0,59 0,59 0,57 0,47 0,47 0,47	σ 0,03 0,08 0,00 0,04 0,12 0,13 0,14 0,15 0,16 0,16 0,16 0,16 0,16 0,12 0,12 0,12 0,12	0,80 850,00 - 0,17 1,75 0,00 0,25 1,44 1,45 1,47 1,48 1,47 1,48 1,40 1,44 1,35 1,28 1,24 1,27 1,18 1,00	σ 0,05 0,15 0,00 0,23 0,24 0,27 0,28 0,32 0,32 0,35 0,35 0,35 0,37 0,37	0,40 725,00 - 0,22 2,46 0,00 0,10 0,59 0,66 0,67 0,60 0,40 0,37 0,27 0,24 0,19 0,23 0,21 0,21 0,21	σ 0,02 0,43 0,00 0,02 0,32 0,30 0,27 0,20 0,11 0,14 0,12 0,11 0,08 0,12 0,11 0,12 0,11 0,12	0,40 725,00 0,02 0,15 2,29 0,00 0,17 0,68 0,65 0,59 0,51 0,26 0,20 0,10 0,08 0,09 0,06 0,07 0,06	σ 0,01 0,04 0,11 0,00 0,03 0,09 0,07 0,06 0,05 0,03 0,03 0,05 0,03 0,02 0,02 0,02 0,02 0,02 0,02 0,02 0,02	$\begin{array}{r} 0,40\\ \hline 725,00\\ \hline 0,31\\ 0,48\\ 1,00\\ 0,05\\ 0,10\\ 0,26\\ 0,31\\ 0,34\\ 0,36\\ 0,43\\ 0,42\\ 0,45\\ 0,44\\ 0,43\\ 0,44\\ 0,43\\ 0,40\\ 0,41\\$	g 0,12 0,13 0,01 0,03 0,05 0,05 0,07 0,09 0,11 0,10 0,08 0,09 0,11 0,10 0,08 0,10 0,08 0,10

D.6. Pérovskite et liquide carbonaté

Tableau 0.31. Coefficients de partage des éléments traces entre pérovskite et liquide carbonaté d'un échantillon synthétisé à 925 °C et 0,2 GPa (échantillon AK02_02); σ : écart-type sur la moyenne des coefficients de partage, calculé à partir de l'équation (5) de la partie III.4.

	AK02_02	
P (Gpa)	0,4	
T (°C)	925	σ
Ti	142,82	5,70
Mn	0,39	0,05
Sr	0,64	0,03
Nb	23,21	1,26
Ba	0,44	0,44
La	7,62	0,96
Ce	10,69	0,96
Pr	11,68	1,01
Nd	12,11	1,06
Sm	11,79	1,01
Eu	13,32	1,96
Gd	6,23	0,99
Tb	6,61	1,03
Dy	6,03	0,78
Y	3,24	0,51
Но	4,72	0,73
Er	4,02	0,59
Yb	2,53	0,41
Lu	1,90	0,30

E. ANNEXE 5 : Paramètres du « lattice strain modelling» des données de la littérature

E.1. Paramètres du lattice strain model de la littérature des coefficients de partage entre clinopyroxène et liquide silicaté, pour les cations 3+

	Shimizu (1980)									
	Basalte alcalin	D 4 20 52	F 4 20 54	D 4 00 (0	D 4 30 55	F 4 33 60	F 4 00 F(
	D-A-30-56	D-A-30-73	E-A-30-54	D-A-20-62	D-A-20-77	E-A-22-60	E-A-22-76			
P (GPa)	3 1250	3 1220	3	2 1220	2	2	2 1220			
<u>I (°C)</u>	1350	1320	1400	1230	1210	1260	1230			
D_0^{max}	5,08	5,54	6,30	4,88	4,67	4,90	4,96			
σ(D ₀) π ^{M1}	2,95	2,78	2,88	2,95	2,73	3,14	2,95			
E (TML)	389,6	379,1	453,0	359,5	351,5	355,0	365,5			
σ(E) M1(Ϊ)	163,1	142,3	121,3	162,8	139,7	1/1,5	161,4			
$\mathbf{r}_{0}^{\text{MI}}(\mathbf{A})$	0,71	0,71	0,70	0,71	0,71	0,71	0,71			
$\sigma(\mathbf{r}_0^{\text{max}})$	0,01	0,01	0,00	0,01	0,01	0,02	0,01			
D_0^{m}	0,62	0,91	1,01	0,86	0,90	0,81	0,82			
$\sigma (D_0^{M2})$	0,11	0,13	0,12	0,17	0,12	0,16	0,12			
E	123,1	144,0	284,2	140,4	148,2	145,3	149,4			
σ(E ^{m2})	32,3	58,0	94,0	53,1	49,7	53,5	61,6			
$r_0^{M2}(A)$	1,00	0,99	1,09	0,99	1,00	1,00	1,00			
$\sigma(\mathbf{r}_0^{M2})$	0,03	0,03	0,01	0,03	0,02	0,03	0,03			
	Green et al. (2000))	Adam & G	reen et al. (20	06)					
	Basanite		Basanite	-	10.10					
	1798	1807	1956	R80	1949	1948	R78	R77	1950	R79
P (GPa)	3	4	3,5	3	2,7	2,5	2,5	2	2	1
$T(^{\circ}C)$	1100	1160	1180	1170	1160	1160	1100	1100	1050	1075
D_0^{M1}	7,48	7,26	6,26	4,69	5,10	3,48	2,69	5,19	3,24	2,08
$\sigma (D_0^{M1})$	2,56	2,87	3,30	2,66	2,59	2,25	1,88	2,54	2,57	1,50
E ^m	492,3	471,5	436,6	355,6	385,4	323,7	292,4	404,8	327,8	245,7
σ (E ^{MI})	166,6	188,4	133,8	129,6	123,2	118,4	122,4	103	145,9	107,3
$\mathbf{r}_{0}^{MI}(\mathbf{A})$	0,70	0,71	0,70	0,71	0,70	0,71	0,71	0,72	0,72	0,73
$\sigma(\mathbf{r}_0^{M1})$	0,00	0,01	0,01	0,00	0,00	0,00	0,01	0,00	0,01	0,01
\mathbf{D}_{0}^{M2}	0,34	0,30	0,35	0,45	0,44	0,45	0,37	0,56	0,45	0,54
$\sigma \left(\mathbf{D}_{0}^{M2} \right)$	0,05	0,03	0,02	0,06	0,05	0,02	0,01	0,01	0,03	0,03
E ^{M2}	395,7	437,7	383,6	390,9	357,4	339,7	365,7	349,6	195	367,1
σ (E ^{M2})	73	96,4	29,3	121,2	114,7	21,1	34,4	18,8	29	63,9
$\mathbf{r_0}^{M2}(\hat{\mathbf{A}})$	1,03	1,04	1,02	1,01	1,01	1,01	1,02	1,02	1,01	1,03
$\sigma \left(r_{0}^{M2} \right)$	0,02	0,01	0,01	0,02	0,02	0,01	0,01	0,00	0,01	0,01
	Beard et al., 2019									
	Phonolite									
	L4,3	M3,2	M4,4	M5	M5,2	H4,2	Н5,2	Н5,3	NLS-9	NLS-9, 2, HM
P (GPa)	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2
T (°C)	825	795	795	800	700	800	700	650	650	650
$\mathbf{D}_{0}^{\mathrm{M1}}$	18,14	51,32	27,06	7,71	7,47	7,77	4,46	4,96	35,71	842,29
$\sigma (\mathbf{D}_0^{\mathbf{M}\mathbf{I}})$	-	-	-	-	-	-	-	-	-	-
E ^{MI}	464,99	549,34	534,87	415,40	354,39	416,85	310,02	276,89	441,09	702,81
σ (E ^{M1})	-	-	-	-	-	-	-	-	-	-
$\mathbf{r_0}^{\mathrm{M1}}(\ddot{\mathrm{A}})$	0,78	0,78	0,78	0,78	0,80	0,78	0,79	0,78	0,75	0,74
$\sigma (r_0^{M1})$	-	-	-	-	-	-	-	-	-	-
\mathbf{D}_{0}^{M2}	18,14	51,32	27,06	7,71	6,19	7,77	4,15	3,69	0,46	0,86
$\sigma (D_0^{M2})$	-	-	-	-	-	-	-	-	-	-
E ^{M2}	546,90	807,28	682,75	469,77	249,67	508,75	244,72	209,70	123,16	294,76
σ (E ^{M2})	-	-	-	-	-	-	-	-	-	-
$\mathbf{r_0}^{M2}$ (Ä)	1,09	1,07	1,08	1,08	1,11	1,08	1,12	1,12	1,12	1,10
$\sigma (r_0^{M2})$	-	-	-	-	-	-	-	-	-	-
Zineb NABYL

Caractérisation expérimentale du comportement des métaux rares au cours de la différenciation des carbonatites et des magmas alcalins

Les carbonatites et les roches magmatiques alcalines constituent une faible fraction du magmatisme terrestre et sont essentiellement produits en contexte intraplaque. Ces magmas sont particulièrement riches en éléments volatils (dioxyde de carbone, halogènes et eau) et présentent aussi des fortes concentrations en métaux rares (REE, Hf, Zr, Nb, Ta). Les gisements associés à ces roches magmatiques sont souvent affectés par des stades hydrothermaux tardifs brouillant les relations entre les processus magmatiques à l'origine de la formation de ces magmas (immiscibilité, différenciation, cristallisation fractionnée) et cet enrichissement en métaux et en constituants volatils.

Des expériences haute pression et haute température ont été réalisées afin d'évaluer le comportement des métaux rares pendant la différenciation de ces magmas. Ces expériences adressent le comportement des métaux rares pendant les processus d'immiscibilité entre liquides silicatés et liquides carbonatés et pendant la cristallisation de ces magmas. Les conditions optimales d'enrichissement en REE des liquides carbonatés au cours de la différenciation des magmas alcalins sont identifiées : les liquides carbonatés les plus enrichis sont formés par immiscibilité avec des liquides silicatés très différenciés et polymérisés de type phonolite/phono-trachyte. Un modèle d'enrichissement en REE des liquides carbonatés basé sur la composition des liquides silicatés est proposé et permet d'identifier i) le potentiel en REE des carbonatites pouvant être formées par immiscibilité avec des magmas alcalins, et ii) le stade de genèse par immiscibilité des carbonatites tout au long de la différenciation alcaline. De plus, le degré de différenciation et de polymérisation des liquides silicatés joue également un rôle sur l'enrichissement en métaux rares des cristaux (clinopyroxène, grenat, titanite, calcite et apatite) : les métaux rares sont plus concentrés dans les minéraux coexistant avec des liquides silicatés plus différenciés et polymérisés. Ceci implique que les liquides silicatés alcalins tendent à s'appauvrir en REE au cours de la différenciation, en comparaison aux liquides carbonatés et aux cristaux.

Mots clés : carbonatites, métaux rares, magmas alcalins, différenciation magmatique

Experimental characterization of rare metals behavior during the differentiation of carbonatites and alkaline magmas

Carbonatites and alkaline magmatic rocks occur in intraplate context and constitute a small fraction of the earth magmatism. Those magmas are particularly enriched in volatiles (carbon dioxide, halogens, water) and also in rare metals (REE, Hf, Zr, Ta, Nb). The associated deposits are often affected by hydrothermal and supergen processes which erase any relation to the magmatic processes at the origin of these magmas (immiscibility, differentiation, fractional crystallization) and responsible of the rare metal and volatile enrichments.

High pressure and high temperature experiments have been performed to characterize the behavior of rare metals during both magma differentiation. These experiments simulate the immiscibility between carbonate and alkaline silica-undersaturated melts, during the crystallization of the magma.The optimum of carbonate melt REE enrichments across alkaline magma differentiation course is identified: carbonate melts immiscible with highly differentiated and polymerised silicate melts of phonolitic/phono-trachytic compositions are the REE richest. A modelling of carbonate melts REE enrichment based on the silicate melt composition is suggested, to identify the REE potential of carbonatites which may be immiscible with an alkaline magmatic rock, or to identify at which differentiation stage the immiscibility has occurred. Moreover, the silicate melt degree of differentiation and polymerized silicate melts are highly enriched in rare metals. This implies that silicate melts become depleted in REE across the differentiation compare to crystals and carbonate melts.

Keywords : carbonatites, rare metals, alkaline magma, magmatic differentiation

ISTO 1A rue de la Férollerie 45071 Orléans Cedex 2

France