
HAL Id: tel-03143960
https://theses.hal.science/tel-03143960

Submitted on 17 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamic binary firmware analysis : challenges &
solutions

Marius Muench

To cite this version:
Marius Muench. Dynamic binary firmware analysis : challenges & solutions. Embedded Systems.
Sorbonne Université, 2019. English. �NNT : 2019SORUS265�. �tel-03143960�

https://theses.hal.science/tel-03143960
https://hal.archives-ouvertes.fr

THESE DE DOCTORAT DE
SORBONNE UNIVERSITE

Spécialité « Informatique »

(Ecole doctorale)

Présentée par

Marius Muench

Pour obtenir le grade de

DOCTEUR de SORBONNE UNIVERSITE

Sujet de la thèse :

Dynamic Binary Firmware Analysis: Challenges & Solutions

soutenue le 19.09.2019

devant le jury composé de:

M. Directeur de thèse Davide BALZAROTTI

M. Co-Directeur de thèse Aurélien FRANCILLON

M. Rapporteurs Jean-Pierre SEIFERT
Roberto DI PIETRO

M. Examinateurs Mathias PAYER
Sarah ZENNOU

Marc DACIER

Preface

I deeply want to thank my family, friends, colleagues, and companions I met along
the way. This thesis is the result of all the aid, support, and guidance I received
from you, as well as all the good hours and fun moments we spent together. But
instead of writing down a list, in which I either forget someone or have to exclude
people for space limitations, I rather want to use this opportunity to direct words
of sincere concern to another person: The reader of this document.

This world needs more positivity. We live in times of hate, fear, and uncertainty
and while we humans are busy fighting each other, our planet is slowly dying.
There is no magic bullet to solve all problems at once and we can certainly not
make every battle to our own.

What we can do, though, is being excellent to each other. Reach out to the ones
who are dear to you and tell them that you love them. Be forgiving to people who
were unjust in the past, for they may have changed. And, most importantly, engage
with persons you never met. Share some knowledge, provide help where needed,
or just be the cause for a smile. Overall, it is the sum of little actions which can
improve humanity; not only science is standing on the shoulder of giants.

I may not know you, but if you help making this world a better place, you shall
have my gratitude. The following words are worn out, but may have never been
more true: We only have one life. Let’s make it count.

Abstract

Embedded systems are a key component of modern life and their growing inter-
connectivity makes their security a concern of utmost importance. Hence, the
code running on those systems, called “firmware”, has to be carefully evaluated
and tested to minimize the risks accompanying the ever-growing deployment of
embedded systems.

One common way to evaluate the security of firmware, especially in the absence of
source code, is dynamic analysis, which requires the firmware code to be executed,
either on the physical device, or inside an emulator. Unfortunately, compared to
analysis and testing on desktop systems, dynamic analysis for firmware is lacking
behind. In this thesis, we identify five main challenges preventing dynamic analy-
sis and testing techniques from reaching their full potential on firmware: firmware
retrieval, platform variety, fault detection, scalability, and instrumentation.

Through this thesis, we point out that rehosting is a promising approach to tackle
these problems and develop avatar2, a multi-target orchestration framework
which is capable of running firmware in both fully, and partially emulated settings.

Using this framework, we adapt several dynamic analysis techniques to success-
fully operate on binary firmware. In detail we use its scriptability to easily replicate
a previous study, we demonstrate that it allows to record and replay the execu-
tion of an embedded system, and implement heuristics for better fault detection
as run-time monitors. Additionally, the framework serves as a building block for
an experimental evaluation of fuzz testing on embedded systems, and is used in a
scalable concolic execution engine for firmware.

Last but not least, we present Groundhogger, a novel approach for unpacking em-
bedded devices’ firmware which, unlike other unpacking tools, uses dynamic anal-
ysis to create unpackers and we evaluate it against three real world devices.

Contents

1 Introduction 1

1.1 Problem Statement . 2

1.2 Contributions . 3

1.3 Organization of this Thesis . 4

1.4 Publications & Open Source Releases 4

2 Background 7

2.1 Embedded Systems . 7

2.1.1 Firmware . 8

2.1.2 Peripherals . 8

2.2 Bugs, Faults, Corruptions & Crashes 9

2.3 Binary Analysis & Testing . 11

2.3.1 Static vs Dynamic Analysis 11

2.3.2 Instrumentation & Sanitizers 12

2.3.3 Record & Replay . 12

2.3.4 Fuzz Testing . 13

2.3.5 Symbolic & Concolic Execution 14

3 Understanding the Challenges of Dynamic Firmware Analysis 17

3.1 The Challenges . 17

3.1.1 Firmware Retrieval . 18

CONTENTS

3.1.2 Platform Variety . 18

3.1.3 Fault Detection . 19

3.1.4 Scalability . 19

3.1.5 Instrumentation . 20

3.2 Classification of Embedded Systems 21

3.2.1 Type-I: General Purpose OS-based Devices 21

3.2.2 Type-II: Embedded OS-based Devices 22

3.2.3 Type-III: Devices Without an OS-Abstraction 22

3.2.4 Devices in this Thesis 22

3.3 Investigating the Lack of Fault Detection 24

3.3.1 Experimental Setup . 24

3.3.2 Artificial Vulnerabilities 25

3.3.3 Observed Behavior . 26

3.4 The Paths to Binary Firmware Analysis 30

3.4.1 Physical Re-Hosting . 30

3.4.2 Full Emulation . 30

3.4.3 Partial Emulation . 31

3.4.4 Symbolic Execution . 31

3.4.5 Software-based Instrumentation 32

3.4.6 Hardware-Supported Instrumentation 32

3.4.7 Summary & Next Steps 33

4 Rehosting for Fun & Profit 35

4.1 Rehosting: State of the Art . 35

4.1.1 Full Emulation . 35

4.1.2 Partial Emulation . 38

4.1.3 Symbolic Abstractions 38

CONTENTS

4.1.4 Hybrid Approaches . 39

4.2 The Case for Multi-Target Orchestration 40

4.3 The Avatar2 Framework . 41

4.3.1 A Bit of History: Avatar One 41

4.3.2 General Overview & Terminology 42

4.3.3 Under the Hood . 43

4.3.4 Supported Targets . 45

4.3.5 Comparison to Other Tools 47

4.3.6 Pitfalls & Gains of Avatar2 48

5 Enhancing Dynamic Analysis & Testing for Embedded Systems 51

5.1 Facilitating Replication and Reproduction 51

5.2 Recording and Exchange of Firmware Execution 54

5.2.1 State Caching for Partial Emulation 56

5.3 Dynamic Binary Instrumentation for Fault Detection 56

5.4 Fuzzing Embedded Systems: An Experimental Evaluation 60

5.4.1 Past Experiments . 60

5.4.2 Core Challenges for Fuzzing Embedded Devices 61

5.4.3 Experiment Setup . 63

5.4.4 Results . 65

5.4.5 Outcome & Interpretation 69

5.5 Outlook: Concolic Testing on Firmware 72

5.5.1 Prior Art . 72

5.5.2 The Terrace Testing Platform 73

6 Firmware Unpacking Revised 79

6.1 A typical firmware update . 79

CONTENTS

6.2 Unpacking in Prior Research . 81

6.2.1 Unpacking Tools . 82

6.2.2 Challenges in Firmware Unpacking 83

6.3 Groundhogger: A Framework for Semi-Automated Unpacking . . 84

6.3.1 Overview . 85

6.3.2 Approach . 85

6.3.3 Limitations . 89

6.4 Groundhogger: Case Studies . 90

6.4.1 Case I: Firmware Unpacking 91

6.4.2 Case II: Firmware Modification 94

6.4.3 Case III: Unpacking and Modification 97

7 Outlook & Concluding Remarks 101

7.1 Future Work . 101

7.2 Conclusion . 103

List of Tables 105

List of Figures 107

List of Acronyms 109

Bibliography 111

Chapter 1

Introduction

Modern life is increasingly depending on computing systems of all sorts. These
systems range from low end embedded devices to personal computers and large
cloud-based system. They are deployed nearly everywhere from consumer elec-
tronics to safety-critical systems such as medical devices, Industrial Control Sys-
tems (ICS), autonomous vehicles, and home automation.

A particularly more and more important key component of this development is the
evergrowing deployment of embedded systems. On the one hand, these systems
are a fundamental building block for more powerful systems, like the network in-
terface controller inside a commodity PC or the baseboard management controller
inside a server. On the other hand, interconnected embedded devices and associ-
ated online services are the bread and butter of the so called “Internet of Things”
and the amount of deployed devices is increasing day-by-day. While it is im-
possible to accurately determine the precise number of active connected devices
worldwide, it is commonly agreed that this number is continuously growing and
likely to exceed 20 billion by 2020 [Nor16].

Although the interconnectivity, complexity, hardware, and field of application vary
highly among those devices, they all need to run software to some extent. The soft-
ware specifically tailored for embedded devices is commonly referred to as firm-
ware, and differs from traditional software by directly controlling the underlying
hardware, which interacts with the outside world in some way.

Unfortunately, like other software, firmware is seldom bug-free, especially as sig-
nificant parts of firmware are typically programmed in unsafe, low-level languages
to facilitate hardware control. Even worse, programming errors in these languages
frequently subvert the security of a device, opening the door for potential at-

1

2 Introduction

tackers. Indeed, instances of exploited vulnerabilities in firmware are plentiful
[Wei12, Gal17, Art17, CZF16, CWBE16, PGC18], which indicates that the rapid
growth of connected devices is accompanied by an increase of attack surface.

This is especially daunting as many devices’ applications not only span consumer
electronics but also aforementioned safety-critical systems. Although the secu-
rity of those systems is particularly vital, recent attacks are drawing a devastating
picture of reality: Malware like Mirai was attributed to puppeteer more than tens
of millions devices in 2016 [LN17], subsystems in vehicles of notable manufac-
tures [MV15, Kee16] as well as third party devices [FPKS15] have been proven
to be vulnerable to remote attacks, and more than 1200 attacks on ICS have been
observed in 2015 alone [McM15].

Summarizing these attacks it becomes evident that the insecurity of embedded
devices and their firmware pose a severe threat to our physical safety and the proper
functioning of current and future societies. Hence, it is inevitable that assessing,
evaluating, and improving the security of embedded devices is a task of utmost
necessity, not only for vendors, but also by third party companies and security
researchers.

While automated security testing for traditional software running on home and
server computing systems is common praxis nowadays, and even spawned a full
industry on its own, testing of firmware is still mostly carried out in a manual de-
vice to device ad hoc manner, if at all. Unsurprisingly, tools and techniques coping
with the unique challenges presented by embedded systems are still in their in-
fancy and lack behind their according counterparts for traditional software. Lack
of transparency and the sheer diversity given by the devices tremendously compli-
cates the adaptation of even simple software analysis techniques to firmware. To
make matters even worse, source code is most of the times only available for man-
ufacturers, while retrieving the firmware—even in binary format—from a given
device for analysis is often a challenge on its own for third party testers.

1.1 Problem Statement
Firmware for embedded devices frequently contains security critical bugs, which
can be uncovered using well established dynamic program analysis and testing
techniques. However, to apply according analysis and testing techniques it is first
necessary to identify, understand, and overcome the unique challenges posed by
embedded devices.

On closer examination, many vulnerabilities found today on embedded devices
can still be considered as “low-hanging fruits”, such as weak authentication, inse-
cure default configuration, hardcoded credentials, or unauthenticated management

1.2. Contributions 3

interfaces [ALAM19]. While these types of vulnerabilities could be easily miti-
gated by enhancing the awareness of both vendors and end-users, another class of
vulnerabilities are haunting the firmware of those devices and traditional software
alike: memory corruptions caused by programming errors.

Automated software testing techniques such as fuzzing or symbolic execution are
evermore popular and a key component for uncovering these programming errors.
Unfortunately, when comparing to desktop and server systems, the adaptation of
these techniques to embedded systems is significantly lacking behind. Given an ar-
bitrary device, what are the hindering factors for applying state-of-the-art dynamic
testing techniques, and how can they be overcome?

This thesis aims to answer this question, and revolves around testing the firmware
of embedded systems for potential security vulnerabilities, while restricting its
scope to binary firmware. We chose this approach because third party analysts
rarely have access to the source code of the firmware, and even if source code
is present, low-level hardware interaction is oftentimes implemented in assembly
which maps directly to the binary representation.

1.2 Contributions
In this thesis, we tackle the challenges of binary firmware analysis and testing
systematically. For doing so, we first pinpoint the core issues preventing effective
and generic analysis techniques to be deployed: (1) firmware retrieval, (2) platform
variety, (3) fault detection, (4) scalability, and (5) instrumentation. We provide
a security-centric classification scheme for embedded systems and measure the
effects of lacking fault detection mechanisms across different devices.

To overcome the issues themselves, we focus on rehosting based approaches and
present avatar2, a flexible multi-target orchestration framework suited to en-
able a variety of dynamic binary analysis techniques for firmware. The framework
allows for partial emulation and provides peripheral modeling capabilities to over-
come platform variety.

Using this framework, we replicate prior research and demonstrate the viability of
record and replay for firmware execution which allow for additional instrumenta-
tion. Furthermore, we implemented a basic set of fault detection heuristics on top
of the framework, and use those to evaluate different approaches to fuzz testing
firmware. Additionally, we present a prototype for scalable concolic execution of
firmware. Last but not least, we take on the challenge of firmware retrieval and
present a novel approach to firmware unpacking based on the record and replay
primitives provided by avatar2 before highlighting future research directions
and concluding the thesis.

4 Introduction

1.3 Organization of this Thesis
In summary, this thesis is organized in 7 chapters and the next chapter will provide
the necessary background for the rest of this work.

The following Chapter 3 will outline the challenges to dynamic firmware analysis
and testing and present our classification scheme for embedded devices. Further-
more, we will demonstrate the severity of memory corruptions for typical configu-
rations of embedded systems and discuss different approaches suited for improving
dynamic firmware analysis.

The result of this discussion indicates that rehosting based solutions are most
promising and Chapter 4 elaborates on rehosting as a strategy to tackle firm-
ware analysis. Previous work on the topic is highlighted first, together with the
drawbacks and advantages of the particular solutions. Furthermore, we present
avatar2, a multi-target orchestration system we developed and which allows for
flexible rehosting in different scenarios.

Chapter 5 showcases our contributions to dynamic binary firmware analysis en-
abled by the framework in detail. Additionally, a set of fuzzing experiments, and
a prototype for scalable concolic execution of firmware are presented.

Afterwards, Chapter 6 sheds not only additional light on the fundamental issue of
firmware retrieval but also presents Groundhogger, a tool implementing a novel
approach to firmware unpacking.

Eventually, we conclude the thesis with Chapter 7 and give an outlook on the
future of dynamic binary firmware analysis and a summary of how we tackled the
challenges of dynamic binary firmware analysis.

1.4 Publications & Open Source Releases
This thesis is based on two publications and two ongoing projects. The paper
"What You Corrupt Is Not What You Crash: Challenges in Fuzzing Embedded De-
vices" [MSK+18] and "Avatar2: A Multi-target Orchestration Platform" [MNFB18]
build the foundations of this thesis. While significant parts of these publications
are used throughout the thesis, the structure of the thesis does not map directly to
them. Specifically, the core parts of the first publication are reflected in Chapter 2
and 3, as well as Section 5.3 and 5.4. The essence of the second one can be found
in Chapter 4, as well as in Section 5.1 and 5.2.

The first ongoing project with the working title “Groundhogger” is under finaliza-
tion at the time of writing and Chapter 6 find its roots in this work. The second
ongoing project incorporated in this thesis can be considered to be rather work-in-

1.4. Publications & Open Source Releases 5

progress. It is provisionally named “Terrace“ and preliminary results are displayed
in Section 5.5.

The authors of this thesis sincerely believe in Open Source not only as cornerstone
of open science, but also as crucial artifact for replicable research. Naturally, var-
ious open source releases are coupled with this thesis. First and foremost, the full
avatar2-framework which builds the foundation to major parts of the presented
work is available at: https://github.com/avatartwo/avatar2.

Furthermore, both above mentioned publications are accompanied by additional
releases for automatically setting up environments ready to run the presented ex-
periments. These releases can be found at https://github.com/avatartwo/
ndss18_wycinwyc and https://github.com/avatartwo/bar18_avatar2.

Last but not least, we want to assure that we are committed to make the imple-
mentations for both “Groundhogger” and “Terrace” openly available in a timely
manner.

https://github.com/avatartwo/avatar2
https://github.com/avatartwo/ndss18_wycinwyc
https://github.com/avatartwo/ndss18_wycinwyc
https://github.com/avatartwo/bar18_avatar2

6 Introduction

Chapter 2

Background

In this chapter, we provide the necessary background knowledge for the remainder
of the thesis. Particularly, we give a more detailed definition of what an embed-
ded system is, establish a clear distinction between bugs, crashes, vulnerabilities,
and corruptions, and present important dynamic binary analysis techniques in the
context of this thesis.

2.1 Embedded Systems
Embedded systems have pervaded modern life to an unprecedented scale. For ex-
ample, they are the core of various commercial off-the-shelf (COTS) devices such
as printers, mobile phones, home appliances, and computer components and pe-
ripherals. They are also present in many devices that are less consumer oriented
such as video surveillance systems, medical implants, automotive elements, mili-
tary systems, supervisory control and data acquisition (SCADA) and Programmable
Logic Controller (PLC) devices, and basically anything the general public usually
calls “electronics”.

However, a precise and general definition of what is an embedded system is hard
to establish [Hea02] as they vary wildly in terms of hardware, computing power,
purpose, and costs. In this thesis, we adopt the widely accepted idea that embedded
devices are separated from modern general-purpose computers by two common
characteristics: a) embedded systems are designed to fulfill a special purpose, and
b) embedded systems often interact with the physical world through a number of
peripherals connected to sensors and actuators.

While we will develop a more elaborate classification scheme for embedded sys-
tems themselves in Section 3.2, it is important to note that they can either be self-

7

8 Background

contained or consist of several embedded devices. For the sake of simplicity, we
will use the term embedded systems analogously to embedded device, as our work
focuses on single devices, rather than on interconnected systems.

2.1.1 Firmware

Like traditional computing systems, embedded systems are driven by software to
execute specified tasks. The software for embedded systems is called firmware and
differs from traditional software in three points:

1. Firstly, firmware is typically directly interacting with the underlying hard-
ware of the system to carry out its task. Traditional software, in comparison,
frequently makes use of abstractions provided by the used language, system
libraries, or the target operating systems.

2. Secondly, firmware is most of the time deeply integrated onto the embed-
ded system and stored in read-only memory (ROM) or non-volatile memory
chips such as flash memory or electrically erasable programmable read-only
memory (EEPROM). Hence, firmware is installed onto the device by the
manufacturer, rather than the user.

3. Lastly, well-defined executable formats as seen on desktop systems are the
exception, and firmware commonly comes in a single “blob” or “image”,
which contains everything which is needed to ensure the operation of the
device. Hence, data, code, and metadata are interleaved and the entrypoint
for execution may be hardcoded inside the firmware to be directly used by
the system’s processor.

As we will show in Chapter 3, all three of this differences tremendously complicate
applying existing binary analysis techniques to firmware.

2.1.2 Peripherals

An embedded system consists of at least one Central Processing Unit (CPU) to
execute its firmware, and a set of peripherals. These peripherals are responsible
for all sorts of input/output and general interaction with the physical world.

Nowadays, manufacturers frequently combine the processing unit with a set of pre-
defined peripherals on a System-on-Chip (SoC); in those cases, one distinguishes
frequently between on-chip and off-chip peripherals. This differentiation is nec-
essary because the CPU can only interact with off-chip peripherals through spe-
cial on-chip peripherals, such as Universal Synchronous/Asynchronous Receiver/-
Transmitter (USART), bus, or network interfaces. The way interaction between

2.2. Bugs, Faults, Corruptions & Crashes 9

CPU and on-chip peripherals can be carried out is dependent on the CPU itself,
but usually falls in one of the following categories:

• Memory-Mapped Input/Output (MMIO) requires that the hardware reg-
isters of a peripheral are mapped into the memory space accessible by the
CPU. Hence, the peripheral’s status, its configuration, and incoming and
outgoing data, can be queried and set by reading from and writing to special
memory locations.

• Port-Mapped Input/Output (PMIO) is used by some Instruction Set Ar-
chitecture (ISA) families and introduces special instructions, such as in and
out to communicate with the peripherals. In this case, the peripheral’s reg-
isters are not mapped into main memory, but accessed via ports queried with
those instructions.

• Interrupt Requests (IRQs) are initiated by the peripheral and usually notify
the CPU about the occurrence of some sort of event to be processed, like the
availability of new data, the completion of a timer, or even that a button
was pressed. Upon arrival of an IRQ, the processor saves its current state at
the soonest possible point and transfers the execution to the corresponding
interrupt service routine (ISR) (also called “interrupt handler”). ISRs are
designed to be short and once completed, the processor state is restored and
execution continues from the previous point.

Modern CPUs oftentimes implement a complex interrupt controller, which
for instance allow nesting of interrupts, assigning priorities to them, and
selectively disabling and enabling them.

• Direct Memory Access (DMA) requires the presence of a dedicated DMA
controller, a specialized hardware component and peripheral on its own,
which is capable of transferring data between other peripherals and main
memory independent of the CPU. This allows for the exchange of large
amount of data while the processor can execute other tasks. In most cases,
the DMA controller notifies the CPU about a completed data transfer by
issuing an interrupt.

2.2 Bugs, Faults, Corruptions & Crashes
The main motivation for improving dynamic binary firmware analysis is to un-
cover bugs with potential impact on a device’s security. Therefore, it is vital to
understand the relationship between bugs, faults, corruptions, and crashes. Gener-
ally speaking, both firmware and software are built to solve specific tasks, and thus

10 Background

they follow a—not necessarily explicit—specification of what they are intended to
do. It is also well known that software and firmware code can contain bugs: errors
that can bring a program into an unintended state. When such an unintended state
can be exploited by an attacker, a bug is classified as a security vulnerability.

A common class of bugs that often leads to vulnerabilities are memory corrup-
tions or memory errors. More precise, spatial memory errors are out-of-bounds
accesses of a memory object, whereas temporal memory errors represent accesses
to a memory object that does not exist anymore [SPWS13].

A memory corruption itself can cause an observable crash of a program, whereby
the program is either terminated or some recovery procedures, such as exception
handlers, are executed. Today, many common security mechanisms – such as stack
canaries or heap consistency checks – trigger these crashes. However, under par-
ticular conditions, we can encounter memory corruptions which do not lead to any
observable and immediate crash of the system. We will refer to these cases as silent
memory corruptions. During a silent memory corruption the program continues its
execution and enters an unintended faulty state1.

The important consequence of silent memory corruptions is that the actual fault
might only become noticeable at a later point in time when a certain functionality
is requested or when a particular sequence of events is received. While this may
not be considered a problem as long as the device continues to execute, it poses
a significant threat for the safety and security of embedded systems. In fact, as
soon as the system enters a faulty state, the integrity of its operation cannot be
guaranteed anymore, and wrong data could be returned or processed at any time.

While desktop systems are also subject to silent corruptions, those are a lot less
frequent because these systems deploy several lines of defenses. Although those
lines of defenses are often designed for hardening programs against attacks, they
also make faults more likely to lead to a crash. Those mechanisms include memory
isolation, protection mechanisms, and integrity checks for memory structures.

Embedded systems, on the other hand, often lack similar mechanisms. This can
not only lead to devastating consequences as soon as a system interacts with the
exterior world, but it also complicates the security analysis of those systems as
many black box testing techniques, and fuzzing in particular, rely on observable
effects to infer the state of the device.

1Our definition for faulty states deliberately follows the definition of weird machine states pro-
posed by Bratus et al. [BLP+11]. However, while the focus of weird machines is to provide a concept
of exploitability in general, our definition only focuses on crashes caused by memory corruptions.

2.3. Binary Analysis & Testing 11

2.3 Binary Analysis & Testing
Binary-only testing is a very popular option even when source code is available
to the analyst or when the software is available as open source. This is the case
as some subtle bugs cannot be discovered by source code inspection only and
because binary analysis allows testing of software independently of the source
code language that was used to develop the system. Moreover, not relying on the
source code means the analysis does not depend on the compiler to be correct, i.e.,
“what you fuzz is what you ship” [BGM13]. As a result, over the past decade,
testing and analyzing software with binary-only approaches has become more and
more popular and a variety of different techniques have been published for binary
analysis [SWS+16].

Unfortunately, most of those techniques were designed and implemented for desk-
top systems, and can not be adapted easily to embedded devices. However, before
we describe the challenges of dynamic analysis for firmware, we want to answer
the question of why we focus on dynamic analysis and introduce key analysis and
testing techniques in the remainder of this chapter.

2.3.1 Static vs Dynamic Analysis

Program analysis is commonly divided in static and dynamic analysis. Static anal-
ysis reasons about the program just by examining its code, whereas dynamic anal-
ysis relies on the actual execution of the program. Therefore, static analysis can
provide sound results by analyzing all possible execution path of a program.

However, with static analysis the whole run-time state of the program is not avail-
able (e.g., heap structures, register contents or threading) and approximations are
often needed to decide otherwise undecidable problems. This is problematic due
to two reasons: (a) the approximations may easily lead to a high number of false
positives, and (b) in the context of firmware analysis, deciding where to deploy the
approximations becomes a challenge on its own, as commonly used abstractions
provided by an operating system or system library are often not available.

Dynamic analysis avoids those problems by analyzing the actual behavior of a pro-
gram while it executes on a given input (at the price of being able to observe only
a small portion of the program state and code). This approach shines especially
when applied for security testing and evaluation with the aim to discover new bugs
that impact the security of the program under analysis: every found bug is a bug.
Common examples of vulnerabilities arising from those bugs are authentication
bypasses, memory corruptions, or memory disclosures, which can all be beneficial
to a potential attacker.

12 Background

In this context, binary program analysis, which is based on machine code only, is
especially important for two reasons. First, binary code is the most accurate repre-
sentation of the program as it is the code that is executed directly on the processor.
Second, despite the existence of a steadily growing open source movement, a large
number of programs are distributed only in binary form. This applies especially
to programs written in memory-unsafe languages, such as C and C++, which are
especially dominant among firmware programmers as they allow low-level access
to the hardware.

2.3.2 Instrumentation & Sanitizers

Most dynamic analysis approaches make use of instrumentation in one way or
another to collect additional information about a program or alter its functional-
ity during runtime. Generally speaking, the process of instrumentation means to
modify the software under analysis or its execution environment to incorporate the
instrumentation code. More specifically, static instrumentation is the modification
of a program before it is executed, while dynamic approaches insert the instrumen-
tation code during run-time [Net04].

While instrumentation itself is versatile and can aid various tasks, such as pro-
filing, debugging, and logging, it showed to be particular useful for the creation
of dynamic bug finding tools, called sanitizers [SLR+19]. They typically use
compile-time instrumentation to add additional code for detecting triggered bugs
during program runtime. The most well-known sanitizers are probably Address-
Sanitizer [SBPV12], ThreadSanitizer [SI09], MemorySantizer [SS15b], and Un-
definedBehaviourSanitizer [DLRA15], which have proven to be very efficient in
uncovering vulnerabilities [Ser16].

However, access to the source code of the program under test is not necessarily
given, and despite recent advances in static binary rewriting and instrumentation
[WSB+17, KKC+17, DBXP20], dynamic binary instrumentation frameworks en-
joy similar popularity as sanitizers. The most notable frameworks in this category
are Pin [LCM+05], Valgrind [NS07], and DynamoRio [BA04].

2.3.3 Record & Replay

One often overlooked, but invaluable, recent advance for reverse engineering, de-
bugging, and dynamic analysis is record-and-replay. The basic idea is to record
every non-deterministic input to the program under analysis. These inputs are
then replayed during a later run of the program, allowing for a deterministic re-
execution.

2.3. Binary Analysis & Testing 13

This approach is beneficial for several reasons, as it allows to decouple dynamic
analysis from the actual execution of the program [CGC08]. This is a tremen-
dous advantage, as dynamic analysis techniques such as dynamic taint analysis or
program slicing come with a performance overhead, which can disturb the func-
tionality of the program under analysis. Having the replay available, the dynamic
analysis tasks can be easily carried out during a replayed run of the program. Nat-
urally, this allows also for scaling and applying different analysis techniques in
parallel. Likewise, having a record enables analysts to run analyses which were
neither foreseen nor anticipated during the recorded run of the program.

Additionally, manual debugging profits likewise from record-and-replay, as it can
enable reverse execution and, in turn, timeless debugging [Hot16]. By now, a vari-
ety of systems for record-and-replay have been proposed, and popular tools are for
instance Mozilla’s RR for recording the execution of Linux user space programs
[OJF+17], or PANDA for the execution of full, emulated systems [DGHH+15].

It is important to distinguish record-and-replay and traditional execution and mem-
ory traces. While traces enable like records scalable post-mortem analysis of pro-
grams, the collection of traces comes with a significant cost: hardware-supported
tracing requires specialized hardware, while software-based tracing solutions often
introduce performance overhead and require huge amounts of disk space as liter-
ally everything must be logged. Additionally, unlike for record-and-replay, the full
program state is not available during trace analysis, and the important bits for the
analysis have to be reconstructed.

2.3.4 Fuzz Testing

The term fuzzing, or fuzz testing, was coined by Miller et al. [MFS90] and de-
scribes an automated program testing techniques, whereby originally random in-
put data is sent to the program under test. Nowadays, more sophisticated, “smart”
fuzzing techniques than the original random fuzzing exists, and current fuzzing
techniques can be classified based on the available information of the internal state
of the program under test, the fundamental way new inputs are generated, and
whether feedback from previous test runs are in this process [CCM+18].

One typically distinguishes between black-box fuzzing, in which the internal state
of the program remains unknown to the fuzzer, white-box fuzzing, where all infor-
mation are available, and grey-box fuzzing, where only limited program runtime
information, such as code coverage, are exposed to the fuzzer.

Input generation can be roughly divided in mutation-based and generation-based
generation. Mutation-based fuzzing starts from a given input and alters this input
without information about any input specification, e.g., by flipping single bits.

14 Background

In contrast, in generation-based fuzzing the input is generated according to prior
known specification, which obviously yields higher coverage.

Feedback based, or guided-fuzzing, makes use of runtime information collected
during the execution of the program, and is hence only used in combination with
white-box or grey-box fuzzing. The gathered information is then used to improve
the input generation for the next run, effectively guiding the fuzzer toward interest-
ing points of the program. One especially often used information is the achieved
code coverage: so called coverage-guided fuzzers evaluate generated inputs based
on how much coverage they achieved and optimize for generating inputs uncover-
ing new paths.

While fuzzing as testing technique is popular and is the active focus of many stud-
ies [MHH+18], a couple of fuzzers are particularly widely deployed in practice.
Three of the most notorious examples are probably American Fuzzy Lop (AFL)
[Zal14], libFuzzer [Ser15], and Peach [Pea17]. While the first two fuzzers are open
source and allow for grey-box, coverage-guided, mutation-based fuzzing, the latter
one represents a commercial solution for generation-based black-box fuzzing.

2.3.5 Symbolic & Concolic Execution

Symbolic execution, first proposed by King [Kin76], aims to identify what kind
of inputs are required to reach a certain point in a program. The core idea is to
execute a program with symbolic inputs which represent arbitrary values, rather
than concrete ones. This requires special symbolic execution engines, which ex-
plore program paths while gathering constraints over the symbolic inputs. These
constraints can then be solved to generate an input which would follow the path of
interest in a concrete run of the program.

While it is unclear whether symbolic execution falls in the realm of static or dy-
namic analysis [Kel11], its worth as program testing technique is indisputable. The
symbolic execution engine KLEE found 56 bugs in a corpus of 452 programs on
its initial release [CDE+08] and is continuously used in both academia and indus-
try up to this day [CN19], and Microsoft’s SAGE [GLM+08] uncovered one-third
of the bugs found during the development of Windows 7 [GLM12].

Considering these results, it is not surprising that the development of symbolic
execution engines and techniques for binary software has experienced a renais-
sance in the last decade and an analyst has to choose between several frameworks,
such as angr [SWS+16], BAP [BJAS11], Manticore [MMH+19], Miasm [Des12],
Triton [SS15a], or S2E [CKC11].2

2This list is by no means exhaustive and merely highlights a small selection of popular open
source frameworks.

2.3. Binary Analysis & Testing 15

Nowadays, symbolic execution is not only impactful on its own, but also became
a powerful tool for enhancing dynamic testing techniques. A prominent example
is concolic execution [GKS05, SMA05], in which a program is executed natively
with a concrete input while an execution trace is collected. This trace is then
re-executed inside a symbolic execution engine with symbolized inputs instead
concrete ones. Now, new concrete inputs can be generated by analyzing the path
constraints after every branch, and solving towards the untaken path by flipping the
corresponding constraint. This process is usually executed in an automated loop,
so that newly generated inputs are then again executed concretely and the newly
collected traces are once more symbolically analyzed to generate more inputs,
always aiming to cover additional paths in the program.

Furthermore, even fuzz testing, introduced in the last section, can benefit from
symbolic execution. Tools like Driller [SGS+16] or QSYM [YLX+18] build
upon the idea of interleaving symbolic execution with fuzz testing [MS07, Pak12]:
whenever the fuzzer is “stuck”, i.e., it does not reach new paths in the program, an
input is analyzed concolically to generate a new input usable for the fuzzer.

All in all, promising testing approaches are enabled by symbolic execution, which
is an interesting field of research with unsolved challenges on its own. However,
so far symbolic execution has been mostly used to analyse desktop software, and
first studies reported encouraging results when applying it to firmware analysis
[DMRJ13, ZBFB14, SWH+15, HFT+17, CCF18].

16 Background

Chapter 3

Understanding the Challenges of
Dynamic Firmware Analysis

Adapting dynamic binary analysis and testing techniques to embedded devices is
generally attributed to be challenging. In this chapter, we will first point out the
specific challenges which have to be overcome to enable tractable dynamic firm-
ware analysis. Then, we develop a security-focused classification for embedded
systems which we will use through the remainder of this thesis. Furthermore,
we demonstrate the effects of missing fault detection mechanisms on embedded
devices. Finally, we will highlight and discuss different strategies to facilitate dy-
namic binary analysis for firmware.

3.1 The Challenges
Studies frequently point out domain specific challenges for dynamic binary firm-
ware analysis in an ad hoc fashion. Examples for this include, for instance, stud-
ies on automated large-scale firmware analysis [CZF16, CWBE16], fuzz testing
firmware [ZDY+19, MSK+18], or symbolic execution of firmware [DMRJ13,
CCF18]. In this section, we structure the challenges encountered for dynamic
firmware analysis in a set of five main challenges, which we will introduce one by
one.

More precisely, these five challenges are: (1) firmware retrieval, (2) platform vari-
ety, (3) fault detection, (4) scalability, and (5) instrumentation.

17

18 Understanding the Challenges of Dynamic Firmware Analysis

3.1.1 Firmware Retrieval

Retrieving a device’s firmware poses quite often a significant challenge. Some-
times, the firmware can be extracted directly from the device, but this requires
access to the actual hardware. Even if the hardware is available, there is no guar-
antee that debug access allowing for easy firmware extraction is provided. In those
cases a significant amount of time is often spent to obtain a foothold on the embed-
ded system and more sophisticated, and invasive methods, such as flash dumping
or bus snooping may be required [VOC18].

Another way to retrieve a device’s firmware is via software update packages pro-
vided by the vendor. However, those are often packed in proprietary formats, some
vendors even apply encryption on the update files [CZFB14]. Likewise, quite of-
ten firmware updates only update parts of the device’s software, and, thus, ob-
taining a full image of the firmware remains challenging [CWBE16]. In fact, most
large-scale studies on firmware analysis retrieve firmware via update packages, but
fail to unpack a substantial amount of the collected dataset [CZFB14, CWBE16,
FZX+16, TGC17, LFW+18, DPY18].

All in all, it is apparent that methods easing the process of extracting a firmware
from the device or improving the efficacy of unpacking are needed for laying the
way for the future of firmware analysis.

3.1.2 Platform Variety

As already discussed in Section 2.1, the definition of embedded systems spans a
huge variety of devices. Not surprisingly, this leads to a very diverse landscape of
hard- and software platforms with different processors, peripherals and operating
systems.

In comparison to desktop systems, where the x86 family is indisputably the most
adopted ISA, the embedded market is characterized by its diversity. While it is dif-
ficult to establish precise statistics about the deployment of different ISAs, a recent
market study implies that chips based on the ARM, MIPS, PIC, MSP430, or AVR
families are popular choices when designing new embedded systems [Max17]. Ev-
ery single one of this ISAs comes with its own quirks, specificities, and variants,
and even among the popular ones, comprehensive tooling, as present for desktop
systems, is not necessarily available.

Besides the profoundly different architectures themselves, the hardware configura-
tion they are shipped with is likewise diverse. While off-chip peripherals are added
by manufacturers of embedded devices on demand, chip manufacturers combine
CPU cores with the respective on-chip peripherals, and the variety of combina-

3.1. The Challenges 19

tions incredibly wide. For instance, there are more than 2500 different ARM-based
chips registered by Keil, a company providing additional tooling for embedded de-
velopers [Kei19]. While all these chips belong to the same ISA family, the used
peripherals and their implementations vary widely among those chips, leading to
a massive heterogenity of hardware platforms.

Furthermore, depending on the type of the device, its processing power, and avail-
able peripherals, the granularity in which hardware abstractions are made is differ-
ing widely. E.g., powerful devices, can afford to run a full Linux-based operating
system, which provides clean abstractions for the applications and programs. On
the other end of the spectrum, low-power devices rarely run any operating system
at all, and accesses to the hardware are directly inlined in application logic.

Hence, dynamic analysis tools and techniques for firmware need to be able to cope
with the huge variety of different architectures, hardware platforms, and hardware
abstraction levels.

3.1.3 Fault Detection

The majority of dynamic analysis techniques for finding vulnerabilities, such as
fuzzing or concolic execution, rely on observable crashes as immediate conse-
quences of faults occurring during a program’s execution [TDMK18]. Desktop
systems offer a variety of protection measures which are triggering a crash upon
a fault, and while some of them are designed with security in mind (e.g., stack
canaries), others are inherent architecture artifacts, such as segmentation faults
caused by a Memory Management Unit. Unfortunately, these techniques are rarely
present (or are very limited) on embedded devices.

Moreover, even when mechanisms leading to observable crashes are in place,
monitoring those crashes can be complicated. In fact, while for desktop systems
crashes are often accompanied by error messages, embedded systems may lack
equivalent I/O functionalities.

As a result, dynamic firmware analysis and testing techniques cannot rely on the
occurrence of observable crashes, and therefore need to deploy additional means
to catch silent corruptions.

3.1.4 Scalability

Dynamic security testing for software is usually slow, as the speed of testing is
often bounded by the execution speed of the program under test itself. Hence,
testing is often parallelized for software targeting desktop systems, as multiple in-
stances of the same software can easily be started and analyzed in parallel, e.g., via
multi-processing or virtualization. This parallelization poses a substantial chal-

20 Understanding the Challenges of Dynamic Firmware Analysis

lenge when dealing with embedded devices. Obtaining numerous copies of the
same physical device is often infeasible due to limited resources (e.g., financial),
and to infrastructure requirements such as space and power supply.

Additionally, most testing and analysis techniques require a clean state of the pro-
gram for the next run. This is easy to achieve for desktop systems, for instance
via virtual machine snapshots or simple restarts of the program under analysis.
Unfortunately, re-establishing a clean state on an embedded system can take a
considerable amount of time (up to few minutes), as it often requires a full reboot
of the device.

3.1.5 Instrumentation

As discussed in Section 2.3.2, being able to instrument code is an important asset
for dynamic binary analysis.

Unfortunately, most binary rewriting tools which would allow static instrumen-
tation are directly targeting the x86 ISA, which is rarely used in embedded sys-
tems. Although some specialized rewriting frameworks exist for ARM [KKC+17,
HJO18], their application for enabling dynamic firmware analysis is somewhat
limited. First, the firmware needs to be fully disassembled which can be diffi-
cult when it is provided as a raw binary [BBLD13]. Second, memory semantics,
boundaries and data structures are lost in the compilation process and need to be
recovered to add instrumentation. This requires a very challenging partial decom-
pilation phase which goes far beyond binary rewriting. Third, as firmware resides
most frequently in flash and ROM chips, injecting the instrumented code back to
the embedded device can be a challenge on its own. Finally, the memory usage of
embedded devices is often optimized to reduce costs, leaving little room for adding
complex instrumentation.

Likewise, the tooling landscape for dynamic binary instrumentation is focused
primarily on desktop systems. Although popular tools support by now more than
just the x86 ISA [DCN+19], their operation is closely tied to to the abstractions
provided by commodity operating systems. For instance, PIN [LCM+05] provides
only instrumentation capabilities for Windows, Linux, and macOS software, while
Valgrind [NS07] is actively only maintained for Linux, Solaris, Android, Darwin
and illumos.

Hence, even if binary instrumentation is getting more and more adopted beyond
configurations like x86/Linux, significant work is required before solutions be-
come tractable for embedded systems.

3.2. Classification of Embedded Systems 21

3.2 Classification of Embedded Systems
As pointed out in Section 3.1.2, the diversity of used processors, peripherals, and
hardware abstractions in embedded systems is enormous. Hence, we believe that a
security-focused classification of embedded systems is needed, which we provide
in this chapter.

For this purpose, let us first recap the generic definition of embedded devices we
introduced in Chapter 2:

Embedded devices are separated from modern general-purpose com-
puters by two common characteristics: a) embedded systems are de-
signed to fulfill a special purpose, and b) embedded systems often
interact with the physical world through a number of peripherals con-
nected to sensors and actuators.

These two criteria cover a wide variety of devices, ranging from hard disk con-
trollers to smart thermostats, from digital cameras to PLCs. These families can
be further classified according to several aspects, such as their actual computing
power, their unit cost, the field of usage, the extent to which they interact with the
environment, or the timing constraints imposed on the device.

Yet, these classifications tell very little about the type of security mechanisms that
are available on a given device. Therefore, we propose in this thesis to classify
embedded systems according to the type of operating system they use. While the
operating system is certainly not the only source of security features, it is respon-
sible for handling the recovery from faulty states, and it often serves as building
block for additional, more complex, security primitives.

By using the operating system as basis for a classification scheme, we can divide
embedded devices in three classes, which we present in the following. For better
readability, we will use Type-I, Type-II, and Type-III indifferently with the corre-
sponding class name in the remainder of this thesis when referring to embedded
devices.

3.2.1 Type-I: General Purpose OS-based Devices

General purpose Operating Systems are often retrofitted to embedded systems,
especially when complex logic is needed such as for routers, IP cameras, or access
points.

However, in comparison to the traditional desktop or server counterparts, embed-
ded systems typically follow more minimalistic approaches. For example, the

22 Understanding the Challenges of Dynamic Firmware Analysis

Linux OS kernel is widely used in the embedded world, where it is typically cou-
pled with lightweight user space environments (e.g., busybox and uClibc). In
those settings, interaction to custom hardware is most of the times carried out via
special device drivers and the abstractions provided by well-known operating sys-
tems make this class a popular target for dynamic analysis.

3.2.2 Type-II: Embedded OS-based Devices

In recent years, custom operating systems for embedded devices have gained pop-
ularity. These systems are particularly suitable for devices with low computational
power, and while advanced processor features such as a Memory Management
Unit (MMU) may not be present, a logical separation between kernel and appli-
cation code is still present. Operating systems such as uClinux, ZephyrOS or
VxWorks are examples for these systems and they are usually adopted on single-
purpose user electronics, such as LTE modems or DVD players.

3.2.3 Type-III: Devices Without an OS-Abstraction

These devices adopt a so called “monolithic firmware”, whose operation is typi-
cally based on a single control loop and interrupts triggered from the peripherals in
order to handle events from the outer world. Monolithic approaches can be found
in a large variety of controllers of hardware components, like CD reader, WiFi
cards or GPS dongles. The code running on these devices can be completely cus-
tom, or it can be based on operating system libraries such as Contiki, TinyOS
or mbed OS 21. While those libraries are providing abstractions to program-
mers, the resulting firmware will contain both system and application code com-
piled and linked together, and, thus, forms a monolithic software.

3.2.4 Devices in this Thesis

Throughout this thesis, we analyze and use several devices, ranging from a home
router to the I/O controller on a PLC. Naturally, the devices can be categorized
according to the classification presented in this chapter, as shown in Table 3.1.

As Type-I device, we chose the Linksys EA6300v1. This router uses an ARM
Cortex-A9 CPU core and runs an embedded Linux operating system together with
uclibc and busybox, which represents a very common configuration. Additionally,
the router exposes an USART interface on its PCB which provides a root shell to
the Linux OS.

1Interestingly, and despite the name, mbed OS 2 (also referenced as "mbed OS classic") is an
operating system library. Later versions, on the other hand, are actual embedded OS and would serve
as building block for Type-II devices.

3.2. Classification of Embedded Systems 23

Furthermore, we use very diverse Type-II devices: An IP Camera, a digital single-
lens reflex (DSLR) camera, and a solid state disk. The IP camera, a Foscam
FI8918W, hosts a uClinux-based firmware on a Winbond W90N745 SoC based
on an ARM7TDMI core. The PCB of the camera exposes a pinout for a USART
interface and JTAG for the core is enabled, which eases analysis and debugging.

The Canon EOS 60D DSLR camera, on the other hand, uses a DIGIC 4 chip, a SoC
specifically developed by Canon for digital cameras. This SoC is built around an
ARM core and runs DRYOS, a proprietary real-time operating system for digital
cameras and camcorders. We chose this camera because a good emulator for its
firmware is readily available as part of the Magic Lantern project2.

Our third Type-II device is the Crucial MX 100 SSD by Micron Technology. This
SSD is based on a dual-core ARM SoC (Marvell 88SS9189) and an MSP430
MCU. This disk is particularly interesting as it has been analysed in previous stud-
ies and has JTAG and USART interfaces exposed on its PCB [CRB17, MvG19].

As real world Type-III device we use the I/O controller embedded on the Allen
Bradley CompactLogix 5370 PLC. The controller is based on a Texas Instrument
Stellaris LM3S2793 microcontroller which revolves around an ARM Cortex-M3
core. Like the SSD, this particular controller exposes its JTAG interface on the
PCB and has been subject to prior research [GBC+17].

Additionally, we use a STMicroelectronics Nucleo L152RE development board as
Type-III test platform at various occasions throughout this thesis. This board is
built around a Cortex M3 core and integrates a ST-LINK debugger, providing easy
access to the core’s JTAG interface via USB. Using a development board has the
benefit of a readily available toolchain and a well-known hardware platform. This
allows us to concentrate our focus on the development of dynamic binary analysis
techniques for firmware and removes the otherwise required reverse engineering
of hardware and firmware.

Platform Vendor Model Device Type Occurrences
Router Linksys EA6300v1 I Section 3.3
IP Camera Foscam FI8918W II Section 3.3, 6.4
Digital Camera Canon EOS 60D II Section 6.4
Solid State Disk Micron Crucial MX100 II Section 6.4
Development Board STMicroelectronics Nucleo L152RE III Section 3.3, 5.2, 5.4
PLC I/O Controller Allen Bradley CompactLogix 5370 III Section 5.1

Table 3.1: Devices used and analyzed in this thesis.

2https://magiclantern.fm/. The project aims to add additional features to Canon
EOS cameras and uses QEMU for testing.

https://magiclantern.fm/

24 Understanding the Challenges of Dynamic Firmware Analysis

3.3 Investigating the Lack of Fault Detection
Challenge-3 states that embedded devices often lack even simple fault detection
mechanisms which are commonly found on desktop systems. This is especially
daunting for dynamic security testing, as most tools and techniques implicitly as-
sume that triggered bugs would lead to observable crashes. Unfortunately, many
bugs which would lead to crashes on desktop systems result into silent corruptions
on embedded systems due to the lack of fault detection mechanisms.

However, in comparison to the other challenges presented earlier in this chapter,
which have either been the subject of previous studies (e.g., firmware retrieval
[VOC18]), or are well understood (e.g., scalability), the implications of lacking
fault protection require further investigation. In this section, we will showcase
our experiments which demonstrate the severity of missing fault protection on the
example of memory corruptions across different classes of devices.

3.3.1 Experimental Setup

In order to study how memory corruptions behave across different computing sys-
tems with different levels of fault detection mechanisms, we conducted a number
of experiments. The goal of these experiments is to trigger the same memory cor-
ruption conditions on different systems to analyze whether they yield to observable
crashes or result in silent corruptions.

We selected one device for each device class presented in Section 3.2, and compare
the results with a baseline system consisting of full-fledged GNU-Linux desktop
OS. All systems are ARM-based and we recompiled each firmware image to obtain
comparable results. We introduced artificial vulnerabilities in two popular and
widely used libraries: mbed TLS, an SSL library designed for both embedded and
desktop system, and expat, a popular XML parser. The two are good candidates
for our experiments because memory corruptions vulnerabilities were previously
found in both of them, and because they are popular, open source, and present in
many modern embedded devices.

To analyze their behavior in a realistic context, we chose existing Commercial
Off-The-Shelf (COTS) products: a router to represent Type-I systems, and an IP
camera for Type-II devices. We compiled our vulnerable application for those tar-
gets and then loaded it on the device. For the monolithic class, however, obtaining
a COTS device with customizable firmware is difficult, as their firmware usually
consists of only one custom binary blob responsible for the entire operation of the
device. Therefore, we used a development board with publicly available software
for peripheral interaction. For this device we included our test code in the firm-
ware, compiled it and then loaded the firmware on the device. Table 3.2 shows a

3.3. Investigating the Lack of Fault Detection 25

summary of our three test platforms, including information about which C library
is used and whether a MMU is present. Besides the operating system, these prop-
erties mainly determine the behavior of a system in case of a memory corruption.

Platform
Manufacturer &

Model
Operating

System LIBC MMU

Desktop Single Board Computer Beaglebone Black GNU/Linux glibc 3
Type-I Router Linksys EA6300v1 Embedded Linux uclibc 3
Type-II IP camera Foscam FI8918W uCLinux uclibc 7

Type-III Development Board STM Nucleo-L152RE None libmbed 73

Table 3.2: Devices selected for the experiments.

3.3.2 Artificial Vulnerabilities

Since our focus is not the discovery of new bugs but rather the analysis of the
effects of memory corruptions on embedded systems, we inserted several vulner-
abilities leading to memory corruptions in our test samples. Specifically, we used
stack-based buffer overflows and heap-based buffer overflows as examples of spa-
tial memory corruptions, and null pointer dereferences and double free vulnerabil-
ities as examples of temporal memory corruptions. Additionally, we also inserted
a format string vulnerability that can either be used for information leakage or for
arbitrary memory corruptions.

Our approach of bug insertion was inspired by the one used in LAVA [DGHK+16],
i.e., we ensured that each vulnerability had its own independent trigger condition.
However, as we only had to inject a limited number of vulnerabilities, we manu-
ally selected the vulnerable paths and the position of each bug. Likewise, for the
purpose of our experiments we did not need “realistic” checks or path conditions
particularly difficult to explore. Therefore, we simply added custom branches in
the code that triggered the various vulnerabilities based on the length of the user-
provided payload. Listing 3.1 shows four of the inserted vulnerabilities inside the
expat library.

3Note that the microcontroller used by this device can be equipped with an optional Memory
Protection Unit (MPU), which provides basic memory protections. While present on this specific
Type-III device, we do not utilize its features, as this is a very common scenario and the most
problematic case.

26 Understanding the Challenges of Dynamic Firmware Analysis

Listing 3.1: Examples of artificial vulnerabilities.
1 XML_Parse(XML_Parser parser, const char *s, int len, int isFinal)
2 {
3 char overflowable[128];
4 [...]
5 //this returns a heap object
6 void *buff = XML_GetBuffer(parser, len);
7 [...]
8 //trigger immediate stack-based buffer overflow
9 if (len == 1222){

10 memcpy(overflowable, s, len);
11 return;
12 }
13 //this will cause a null pointer dereference
14 else if (len == 1223){
15 buff = NULL;
16 }
17 //causing a heap-based buffer overflow
18 if (len == 1225){
19 memcpy(buff, s, len);
20 memcpy(buff + 1225, s, len);
21 }
22 else{
23 memcpy(buff, s, len);
24 }
25 //cause an uncontrolled format-string vulnerability
26 if (len == 1224){
27 printf(buff);
28 }
29

30 [...]
31 }

3.3.3 Observed Behavior

The goal of this experiment was to observe the behavior of each device after send-
ing malicious inputs that trigger one of the inserted vulnerabilities. As expected,
the software running on GNU/Linux desktop crashed each time it was provided
with a malicious input that triggered the vulnerability.

However, the embedded devices were not always able to detect the fault and, in
some cases, they even continued the execution with no visible effects – despite the
fact that the underlying memory of the system was corrupted. To better differenti-
ate between the different behaviors we observed in our experiments, we categorize
our observations in six possible results:

[R1] Observable Crash (3) – The execution of the device under test stops and
a message or other visible effect is easily observable. In less optimal cases,
no detailed information about the causes of the crash is produced (we mark
these cases as opaque in Table 3.3).

3.3. Investigating the Lack of Fault Detection 27

[R2] Reboot (3) – The device immediately reboots. For Type-III devices there
is no difference between a crash and a reboot because they are monolithic
applications. However, for Type-I and Type-II devices a given service (e.g.,
a web server) can crash while the rest of the embedded system may still
continue to work properly.

[R3] Hang (!) – The target hangs and stops responding to new requests, possibly
stuck in an infinite loop.

[R4] Late Crash (!) – The target system continues its execution for a non-
negligible amount of time and crashes afterwards (e.g., when the connection
is terminated).

[R5] Malfunctioning (7) – The process continues, but reports wrong data and
incorrect results.

[R6] No Effect (7) – Despite the corrupted memory, the target continues with no
observable side-effects while being in a faulty state.

Immediately observable crashes and reboots (R1 and R2) are the preferred out-
comes of an experiment as during a fuzzing session they allow to immediately
identify the responsible input.

Hangs and late crashes (R3 and R4) can be more difficult to deal with, in particular
when the crash is delayed long enough that a fuzzer may have already sent multiple
other inputs to the target system and the input responsible for the corruption will
therefore be difficult to identify. However, the presence of a fault is still observable
in these cases. Things get even more complex when a device starts malfunctioning
(R5). In this case, there are no crashes at all, but the results provided to certain
requests may be incorrect. To detect this case, a fuzzer would need to know what
is the correct output for each input it sends to the system – something which is very
seldom the case in security testing. A possible workaround can consist in inserting
between two consecutive inputs a number of functional test requests for which
the output is known. However, even when this solution is sufficient to detect the
malfunction, it introduces a considerable delay in the fuzzing experiment. Finally,
the worst case is when the device continues its operation with no observable side
effect (R6). In fact, since part of the device memory has been corrupted, there may
be side effects or unexpected behaviors in the future.

Table 3.3 shows the result of our experiments. It is clear that the fewer features are
provided by an embedded platform, the less likely the system is to detect memory
corruptions. An interesting observation is already the difference between a full

28 Understanding the Challenges of Dynamic Firmware Analysis

scale GNU/Linux and an embedded Linux for heap-based buffer overflows and
double free corruptions. While on the desktop system the inlined heap consistency
checks provided by the standard C library are triggering a verbose crash quickly
after the corruption, the embedded Linux continues and crashes at a later point in
time, often just during the exit() handler.

The table also shows that corrupting inputs for Type-II and Type-III devices are
very rarely triggering a crash. This provides a perfect example of how common
are silent memory corruptions in real-world embedded systems.

Another important observation can be made when looking at the devices’ be-
havior for the format string vulnerability. Both the embedded and the full scale
GNU/Linux are reporting segmentation faults, due to the attempt to access un-
mapped memory. However, uClinux and the monolithic device are continuing
execution, which is a result of the lack of an MMU. This shows that the MMU
plays a very important role when it comes to detecting memory corruptions.

A similar behavior can be observed on the results of the null pointer dereference
test. The processes running on both the GNU/Linux desktop and on the embedded
Linux are correctly crashing once the program tries to write memory to the NULL-
address range. With the same vulnerability, the monolithic device will continue
execution although data has been written to the exact same address. In fact, as the
execution of the firmware is not dependent on the content of the memory at this
location, this memory corruption does not influence the behavior of the system.

The result of the same test on the uClinux system is particularly interesting:
after the NULL write, the device hangs for few seconds and then reboots. This
is not surprising as in uClinux the kernel is mapped in the lower part of the
memory (so writing at address 0x0 corrupts kernel memory). The reboot, on the
other hand, is possibly caused due to an hardware watchdog that detects the hang
and automatically restarts the device as a recovery mechanism.

To summarize, while in certain conditions silent memory corruptions can occur
also in traditional desktop environments, our experiments show that they are often
the rule and not the exception in the embedded world. As popular dynamic testing
techniques such as fuzzing rely on observable crashes to detect bugs, the limited
support for fault detection can have very severe consequences for the effectiveness
of security testing for embedded devices.

3.3. Investigating the Lack of Fault Detection 29

Platform Desktop Type-I Type-II Type-III

Format String 3 3 7 7

Stack-based buffer overflow 3 3
3

(opaque)
!

(hang)

Heap-based buffer overflow 3 !
(late crash)

7 7

Double Free 3 3 7
7

(malfunc.)

Null Pointer Dereference 3 3
3

(reboot)
7

(malfunc.)

Table 3.3.A Expat.

Platform Desktop Type-I Type-II Type-III

Format String 3 3
7

(malfunc.)
!

(hang)

Stack-based buffer overflow 3 3
3

(opaque)
!

(hang)

Heap-based buffer overflow 3 !
(late crash)

7 7

Double Free 3 !
(late crash)

7 7

Null Pointer Dereference 3 3
3

(reboot)

7

Table 3.3.B mbed TLS.

Table 3.3: Observed system behaviour for triggered memory corruptions.

30 Understanding the Challenges of Dynamic Firmware Analysis

3.4 The Paths to Binary Firmware Analysis
In the previous sections, we have shown that embedded systems come in all forms
and with very different characteristics. While testing a Type-I device may be very
similar to testing a desktop system, Type-III devices are more difficult to ana-
lyze, especially due to missing fault detection mechanisms: memory corruptions
on Type-III systems rarely result in an immediate crash, imposing a significant
challenge to automatically identify when a vulnerability has been triggered.

So how can we develop efficient dynamic binary analysis techniques to firmware
when no reliable feedback is available? Again, the vast diversity of existing de-
vices makes it difficult to find a general answer to this question. Therefore, in this
section we present six different options that may be available to the tester, and we
discuss both advantages and limitations of each solution.

3.4.1 Physical Re-Hosting

In certain cases, the analyst may be able to move the binary code to a different
target device, for example to relocate a process from a Type-II device to a more
test-friendly Type-I device or rehost a full program from a Type-I device on a
regular Linux desktop system. This may also improve scalability, if the new device
is cheaper and more readily available than the original one or if the new target is a
regular computer.

However, on top of the difficulties of transferring the program to a different system,
methods relying on this approach have another major drawback. In fact, it may be
difficult to reproduce bugs found on the new target system in the original device
(where they may even not be present at all due to the different architecture or due
to changes introduced by moving the binary) and conversely, bugs that are present
on the original target may not be present on the new target.

3.4.2 Full Emulation

Especially for Type-I devices, images of the device firmware are often available to
the analyst, either because they are extracted directly from the device or because
they are obtained from a firmware update package available from the manufacturer.
Costin et al. [CZF16] and Chen et al. [CWBE16] have shown that, under certain
conditions, applications extracted from Type-I firmwares can be virtually rehosted,
i.e., they can be executed inside a generic operating system running on a default
emulator. Likewise, the Qemu STM32 [Bec13] project, which extends Qemu to
emulate the STM32 chip, shows that when complete hardware documentation is
available, with a considerable effort to implement the hardware emulation it is also
possible to fully emulate Type-III firmware images.

3.4. The Paths to Binary Firmware Analysis 31

This solution can greatly improve dynamic testing. First of all, tests can be con-
ducted without the presence of the physical device, thus allowing for a much
greater parallelization. Second, dynamic instrumentation techniques can be eas-
ily applied and the emulator can be used to collect a large amount of information
about the running firmware. The disadvantage of this solution is that it is only
applicable when all peripherals being accessed by the target are known and can be
successfully emulated, which is unfortunately rarely the case.

3.4.3 Partial Emulation

If full emulation remains impractical in most circumstances, partial emulation, also
called hardware-in-the-loop emulation, can still provide benefit while conducting
dynamic testing.

This approach was first proposed by Avatar [ZBFB14] and Surrogates [KKM15]
for Type-III devices and then extended to Type-I systems in PROSPECT [KBK16,
KPK14] and Charm [TTZ+18]. The general idea behind these solutions is to use
an emulator (in which the firmware code is executed) modified to forward periph-
eral interactions to the actual physical device. The result provides the advantages
of a full emulation solution without the burden of knowing and emulating I/O oper-
ations. However, what this solution gains in flexibility is sacrificed in performance
(due to the additional interaction with the real device) and scalability (due to the
current need of pairing each emulated instance with a physical device).

3.4.4 Symbolic Execution

Another approach to deal with platform variety in general, and the difficulty of
implementing peripherals in particular, is to leverage symbolic execution. The
idea is to execute the firmware inside a symbolic execution engine and consider
the results of hardware interactions as symbolic data.

This approach has been shown for instance by Firmalice [SWH+15] and FirmUSB
[HFT+17]. While this approach easily allows for scalability and additional in-
strumentation inside the symbolic execution engine, it inherits all the limitations
of symbolic execution. Even worse, some of the limitations are amplified when
applying symbolic execution to embedded systems. Consider for instance the
widely acknowledged problem of path explosion [BCD+]. Due to the highly asyn-
chronous environment presented by some systems, interrupts can potentially intro-
duce a new state at any time and symbolic execution engines need to be modified to
integrate specialized interrupt scheduling mechanisms [DMRJ13, HFT+17]. Like-
wise, symbolic execution typically benefits from environment modeling, which
uses common abstractions provided by system libraries and operating systems
which may not be present on Type-II and Type-III devices.

32 Understanding the Challenges of Dynamic Firmware Analysis

3.4.5 Software-based Instrumentation

Injection of code, both statically and dynamically, has been successfully carried
out on powerful embedded systems such as routers [CS11], PLCs [GBC+17], and
printers [CCS13] in the past. While these are promising results and show the
feasibility of instrumentation for enabling dynamic binary firmware analysis, it
does not come without problems.

As pointed out in Section 3.1.5, embedded systems, especially on the low-cost
end, are frequently size-constrained, and may not have enough space for statically
instrumented binaries. Likewise, the deployment of binary instrumentation tools
can easily be hindered by those very same space constraints, to less computing
power, or missing abstractions provided by an operating system.

Hence, the adaption of popular instrumentation techniques and tools may be fea-
sible for Type-I and Type-II, but remains challenging for Type-III systems.

3.4.6 Hardware-Supported Instrumentation

If the tester has access to a physical device with advanced hardware instrumenta-
tion mechanisms (such as real time tracing), it may be possible to collect enough
information during the execution of the device for retrofitting dynamic analysis
techniques. For instance, chip manufacturers often embed hardware tracing fea-
tures such as ARM’s Embedded Trace Macrocell (ETM) and Coresight Debug
and Trace, or Intel’s Processor Trace (PT) technologies [Jam13] 4. ARM tracing
mechanisms are optional components of processors (“IPs”), which may be option-
ally included in the processor. Multiple variants tracing exist, such as tracing only
branches, all instructions, or also all memory accesses – and different techniques
rely on different debug ports (e.g., dedicated trace ports, Single Wire Debug (SWD)
or Single Wire Output (SWO) ports).

Unfortunately, the availability of such tracing hardware is variable. In lower-end
devices (typically Type-III devices), manufacturers tend not to include any trac-
ing capabilities, because of the relatively large impact on the chip surface, and
therefore on the cost, that such mechanisms would incur. Development devices
may have such facilities (sometimes when the micro-controller design is tested on
FPGA before manufacturing) but this is less frequent in commercial production
devices. Finally, in some cases debug access may be present but not available to
prevent third-party analysis.

For example, while looking for test devices to conduct our experiments we en-
countered devices where the tracing support was either deactivated for security

4However, only available on recent high performance processors.

3.4. The Paths to Binary Firmware Analysis 33

reasons, or where the tracing pins where not routed on the circuit board (PCB), or
multiplexed on pins which are used for another purpose.

In summary, when testing real world devices, the chances of finding an available
and usable hardware tracing support are quite low.

3.4.7 Summary & Next Steps

To summarize, the six presented approaches for improving dynamic firmware anal-
ysis can be divided into two fundamental distinct paradigms: instrumentation and
rehosting.

Instrumentation-based approaches either require special hardware features, or mod-
ification of the firmware running on the device. Unfortunately, as we already ex-
plained above, this can be challenging, especially when testing Type-III devices.

On the other hand, rehosting-based approaches, in which the firmware is trans-
ferred to, and executed in, a different execution environment than the original em-
bedded system has been shown to be applicable across all three classes of devices.
Additionally, execution of the firmware inside an emulator or symbolic execution
engine allows for dynamic instrumentation, and hence, rehosting experiences the
benefits of instrumentation-based approaches as well. Therefore, we will focus on
rehosting-based approaches in the remainder of this thesis.

34 Understanding the Challenges of Dynamic Firmware Analysis

Chapter 4

Rehosting for Fun & Profit

As concluded in the last chapter, rehosting appears to be a viable approach for
tackling the challenges of dynamic firmware analysis. In this chapter, we will
first survey existing rehosting solutions and then make the case for multi-target or-
chestration. Afterwards, we will present avatar2, our multi-target orchestration
framework which provides flexible dynamic analysis primitives and is capable of
rehosting embedded systems’ firmware.

4.1 Rehosting: State of the Art
In this section, we will review the literature on the topic of virtual rehosting, which
comprises all approaches for rehosting firmware, or parts of it, into a virtual exe-
cution environment. Hence, we will present various emulation, partial-emulation,
and symbolic execution based rehosting systems, their contributions to dynamic
firmware analysis, and their limiting factors. Additionally, we visualize and con-
textualize existing work in Figure 4.1 and provide insights about key aspects, such
as the target device types, or whether source code is required.1

4.1.1 Full Emulation

Embedded device and OS vendors sometimes develop proprietary emulators for
sale, in-house testing, or 3rd party development [Fit18]. However, even if readily
available, device-specific emulators are typically ill-suited for security research, as
they are typically closed-source and lack integration with popular dynamic anal-
ysis tools. Hence, most prior work focuses on rehosting the target system into a
general-purpose, extendable emulator.

1Note that we merge Type-I and Type-II systems into a single category in this contextualization,
as most rehosting solutions who support Type-I systems support Type-II systems and vice versa.

35

36 Rehosting for Fun & Profit

Type-I / Type-II

Inception

Avatar

Firmalice

FIE

FirmUSB LuaQemu

Type-III

PROSPECT

Surrogates

KBK16 Firmadyne

Charm

FirmAFL

CZF16

QEMU

Desktop

KLEE

S2E

<2010

2010

2011
2012

2013

2014

2015

2016

2017

2018

2019

Not a Rehosting Tool

HybridFull Emulation Partial Emulation Symbolic Execution

Source Code Based Binary Based

Figure 4.1: Timeline of rehosting.

4.1. Rehosting: State of the Art 37

QEMU [Bel05] is the most popular emulator for rehosting various hardware plat-
forms. It supports a large variety of ISAs, and is free and open-source. Various
forks exist to enable the emulation of specific hardware platforms (e.g., STM32
microcontrollers [Bec13], or ESP32 SoCs [Ebi16]), and the emulator serves fre-
quently as base platform for more generic rehosting solutions.

For instance, Firmadyne [CWBE16] uses QEMU for dynamic large-scale emulation-
only analysis of firmware images. Firmadyne executes Linux-based firmware by
executing an instrumented Linux kernel alongside the original user space file sys-
tem and binaries which have been extracted from the firmware image. This en-
ables analysis of 23035 firmware images, scraped from vendor websites. While
the majority of non-standard peripheral interactions are ignored, a custom user-
space stub is used to replace a common key/value store in non-volatile memory
(NVRAM). Of the 8617 firmware images selected for testing, 1971 booted suc-
cessfully and connect to a network in Firmadyne. The authors then performed
automated dynamic analysis of the rehosted firmwares by accessing web pages,
collecting Simple Network Management Protocol (SNMP) information and test-
ing whether the firmware is vulnerable to a specific set of known and hand-crafted
exploits. Additionally, the framework implements features to aid manual analysis,
such as dynamic tracing of executed code, and the injection of a special application
for modifying the firmware image on-the-fly during emulation.

A similar approach to the one demonstrated by Firmadyne was described in [CZF16]
with a focus on analyzing web interfaces. QEMU is used to run a generic Linux
kernel for executing web servers embedded on the unpacked file systems of the
target firmwares. The results of a preliminary static analysis phase are then used
to drive a variety of diverse dynamic testing tools to uncover previously unknown
vulnerabilities.

Another recent approach is presented by FirmAFL [ZDY+19]. In this approach,
the authors combine a mix of full-system and user-mode only emulation provided
by QEMU to enable high-throughput fuzz-testing of embedded Linux applications
with AFL.

While all three of these systems purely focus on Linux-based firmware and are not
able to perform analysis on firmware for Type-II or Type-III systems, a different
approach is presented by LuaQemu [Ral17]. In this approach, QEMU is adjusted
to emulate a on-the-fly configurable hardware platform to embed a Lua interpreter,
which allows for providing custom hooks for accesses to not implemented hard-
ware peripherals. LuaQemu has been used to allow manual dynamic analysis of a
Broadcom WiFi SoC embedded on a Samsung Galaxy S6.

38 Rehosting for Fun & Profit

4.1.2 Partial Emulation

Challenge-2, platform variety, and the resulting diversity of peripherals is a core
challenge for providing emulators. Hence, various partial emulation approaches
forward hardware accesses to the physical embedded system to avoid tedious case-
by-case implementation of peripherals.

Prospect [KPK14] for instance uses the fact that peripheral interaction on Linux
is frequently carried out via device drivers exposing character devices. The system
uses QEMU to rehost Linux firmware with a customized kernel and forwards ac-
cesses to the character devices to the physical hardware via user-space stubs. The
authors evaluated PROSPECT by performing a security audit for a proprietary
fire alarm system, which included fuzz testing and manual dynamic analysis of the
firmware. In a follow-on effort to Prospect, Kammerstetter et al. [KBK16] improve
the system’s scalability by caching expected peripheral behavior and resetting the
cache whenever a peripheral’s behavior diverges from what was expected.

A similar approach is taken by Surrogates [KKM15], which uses the JTAG de-
bug interface of an embedded device to forward the raw memory accesses to—and
interrupts from—peripherals without implementation in QEMU. To achieve near-
realtime access speeds, the system uses an FPGA on a PCIe card to drive the JTAG
interface. Due to the forwarding of raw interaction in near-realtime, Surrogates is
capable of rehosting arbitrary firmware and is not restricted to Linux-based de-
vices. While the system is not directly used for dynamic analysis purposes, the
near-realtime execution speed allows for powerful analysis and testing techniques,
such as fuzzing, concolic execution, or taint tracking.

A more recent system, Charm [TTZ+18], forwards peripheral interactions to a
real phone for fuzz testing Android device drivers. It uses hardware-based virtual-
ization, the hardware’s device tree and manual modified device drivers to forward
raw interaction via USB 3.0. While this allows low-latency forwarding suitable
for a fuzzing campaign, Charm’s rehosting and analysis capabilities are limited to
peripherals with open source drivers for android.

4.1.3 Symbolic Abstractions

Another solution to deal with the variety of hardware platforms with unknown
peripheral behavior is symbolic abstraction. This strategy may result in lower
fidelity than partial emulation due to the introduction of unrealistic behavior, but
can help exercising additional code paths for bug-finding purposes.

One example of this approach is FIE [DMRJ13], which executes MSP430 firm-
ware inside the KLEE symbolic execution engine. Additionally, the analyst has to

4.1. Rehosting: State of the Art 39

specify a Memory Spec and an Interrupt Spec to deal with memory locations used
by peripherals and interrupts generated by them. As a result, reads and writes to
peripherals with unknown behaviour can be treated symbolically, and the locations
where the execution flow can be changed by interrupts are marked for spawning
new states in the symbolic execution engine. FIE was used to enable symbolic
exploration and white-box fuzzing. Due to fundamental limitations with symbolic
execution (specifically, state explosion), FIE could only work on simple programs
running without a complex operating system. Additionally, as the system is based
on KLEE, it requires access to the firmware’s source, further constraining its us-
ability. Nevertheless, on these simple programs, the authors were able to use FIE
for symbolic exploration and white-box fuzzing.

Firmalice [SWH+15] uses symbolic execution to identify authentication bypasses
(e.g., backdoors) in binary firmware. It uses static analysis to identify the portions
of a firmware’s logic related to authentication, which are then sliced and symbol-
ically executed with angr [SWS+16]. To avoid direct interaction with hardware,
the tool uses symbolic function summaries and treats memory accessed in interrupt
handlers as symbolic.

Another approach to leverage symbolic execution for binary firmware analysis is
presented by FirmUSB [HFT+17], which uses domain-specific knowledge of the
USB protocol to create symbolic abstractions for analyzing firmware of USB de-
vices. As backend for symbolic execution, FirmUSB supports both FIE and angr,
while lifting the firmware code to the Immediate Representations (IRs) used by
those engines. Although the tool can only analyse USB firmware based on the
8051 architecture, the mix-in of domain-specific knowledge to ease analysis is
comparable to using operating system abstractions like Firmadyne or Prospect.

4.1.4 Hybrid Approaches

Some rehosting systems combine partial emulation with symbolic abstractions to
bound the complexity of the symbolic analysis. Avatar [ZBFB14], for instance,
uses S2E [CKC11] for emulation, selective symbolic execution, and dynamic anal-
ysis, while forwarding accesses to hardware via JTAG or a custom GDB stub.
Additionally, the framework allows to transfer the state between hardware and
emulator for natively executing hard to emulate portions of the firmware. While
Avatar’s approach to rehosting requires no modifications to the running software,
it requires non-negligible effort per-device to set up introspection and cannot be
used at scale. Additionally, the latency introduced by peripheral forwarding is sig-
nificant, and regular interrupts can easily exhaust the bandwidth for forwarding
hardware interactions. Avatar was initially evaluated by dynamically analyzing a
hard disk bootloader, a wireless sensor node, and a GSM feature phone. Although

40 Rehosting for Fun & Profit

the partial emulation strategy is similar to Surrogates, the lack of specialized hard-
ware to achieve near-realtime execution speeds limits the analysis capabilities of
Avatar to Type-II and Type-III firmware without timing constraints.

Another approach for hybrid full-system rehosting is provided by the Inception
framework [CCF18]. The framework consists of a custom JTAG debugger for
near real-time forwarding, a symbolic execution engine based on KLEE, and a
translator for merging lifted and compiled LLVM bitcode to cope with inline as-
sembly within the firmware’s source code. Although Inception enables full-system
testing, its implementation is tied to ARM Cortex-M3 chips and requires the source
code of the firmware, constraining its usability.

4.2 The Case for Multi-Target Orchestration
In the last section, we briefly surveyed the landscape of rehosting systems for dy-
namic security testing of embedded systems. A key insight of this analysis is that
most of those systems are based on either KLEE [CDE+08], QEMU [Bel05], or
S2E [CKC11]. However, the majority of binary analysis techniques are not imple-
mented in these frameworks, but rather in independent tools to demonstrate their
effectiveness. While some tools are simple prototypes, others are more mature and
have earned significant popularity over the years.

Unfortunately, most of these techniques’ implementations are deeply coupled with
their dynamic analysis frameworks and are not easy to integrate into other tools.
As every framework aims to obtain the best analysis possible, re-implementations
of techniques which are part of other tools are quite common [BJAS11, SWS+16].

While each framework has its own strengths and weaknesses, they all share a prop-
erty: the analysis state is tightly coupled to the specific framework. This is due to
a variety of reasons, including incompatible design choices (such as the use of an
intermediate representation specific to a certain tool or the abstract representation
of the program state in a custom format) or the fact that developers often imple-
ment tools as standalone systems that are implemented to be flexible to use but are
nevertheless difficult to integrate with other solutions. Besides leading to duplica-
tion of work, as different tools are often implementing the same dynamic binary
analysis techniques independently of each other, this prevents the full potential of
binary analysis from being unleashed.

So far, little effort has been invested towards a better interaction between different
frameworks, and not only in terms of re-using analysis results, but also by sharing
the internal analysis state to external components. This prevents analysts from
being able to combine different tools to exploit their strengths and tackle complex
problems which requires a combination of sophisticated techniques.

4.3. The Avatar2 Framework 41

We believe that a framework which is able to facilitate the interoperability among
multiple binary analysis tools would ease the development of rehosting platforms,
as it would let the analyst choose multiple execution environments, which are later
used to perform their tasks on the same execution state.

4.3 The Avatar2 Framework
In this section, we will present avatar2, the framework we developed to flexibly
interconnect multiple binary analysis tools, such as debuggers, symbolic execution
engines, and emulators.

We first highlight important concepts adopted from avatar one, a hybrid rehosting
tool. Then we provide an overview of avatar2, discuss important details, and
compare it to other frameworks which combine two or more tools for improving
binary analysis.

4.3.1 A Bit of History: Avatar One

Avatar2 is the successor of Avatar [ZBFB14], a system originally designed to
rehost embedded devices for dynamic analysis, which we completely re-designed
and extended to allow an easy orchestration of arbitrary components that can be
combined to perform sophisticated binary analysis tasks. In essence, Avatar al-
lowed partial emulation of firmware inside S2E, a symbolic execution engine based
on QEMU. To achieve this goal, I/O requests which cannot be emulated are for-
warded to the actual embedded device, either via dedicated debugging ports or by
using a debugging stub manually injected into the device.

Although the purpose of the original tool was solely to enable dynamic binary
analysis for embedded devices by connecting S2E [CKC11] to a physical device,
it introduced a number of important concepts for building an orchestration frame-
work suitable for coordinating multiple dynamic binary analysis tools. More pre-
cisely, it provided the following building blocks for a more general dynamic binary
analysis orchestration framework:

• Target Orchestration. Avatar introduced the concept of orchestration, not
simply as a way to control its two targets (S2E and the physical system),
but also as mean to automatically transfer the execution from one tool to the
other, based on certain events specified by the analyst.

• Separation of Execution and Memory. While the execution of a software
and its memory space are tightly linked together in traditional analysis ap-
proaches, Avatar decouples them. This, among others, allows the framework
to use a so called remote memory, whereby the execution proceeds on one

42 Rehosting for Fun & Profit

target, while memory reads and writes are forwarded to another target. This
allowed Avatar to achieve partial emulation, whereas the main firmware is
executed in an emulator, while accesses to memory-mapped peripherals are
forwarded to the actual device.

• State transfer and synchronization Next to the orchestration of execution,
Avatar provided the possibility to selectively transfer the state from one of
its targets to another, where the state is defined by the combination of the
content of the memory as well as the CPU registers. This allowed Avatar to
execute initialization functions on the physical device under analysis, before
transferring the state to S2E to perform symbolic execution.

4.3.2 General Overview & Terminology

Combining and connecting a variety of distinct tools requires a careful planned de-
sign to cope with the inherent challenges arising from the large diversity of tools.
For example, such tools often use both asynchronous and synchronous communi-
cations.

On an abstract level, the avatar2 framework consists of four distinct elements,
as visualized in Figure 4.2. The avatar2 core, targets and protocols are python
libraries while endpoints are third-party software (such as other analysis frame-
works, emulators, or solutions to talk to physical devices) controlled and intercon-
nected by avatar2.

The avatar2 core has three purposes: i) to serve as the main interface for the
analyst using the framework, ii) to carry out the actual orchestration and serve
as interface to all the underlying elements, and iii) to catch, dispatch, and react to
events generated by the various protocols while communicating with the respective
endpoints.

Targets play the role of abstracting each endpoint and providing high-level in-
terfaces to the avatar2 core. However, these python abstractions do not directly
communicate with their associated endpoints. In fact, since the actual communica-
tion often requires similar patterns that would otherwise be duplicated in multiple
targets, it is mediated by a layer of specific protocol objects. This architecture
makes individual protocols easy to reuse when prototyping new targets. This is
for instance the case for a variety of debuggers and emulators that, while typi-
cally equipped with their own communication interface, often incorporate also a
gdbserver, which can be controlled by gdb’s remote serial protocol.

The protocols themselves are divided according to their purpose. In most of the
cases, a target needs at least a memory protocol, an execution protocol, and a

4.3. The Avatar2 Framework 43

. . .

. . .

. . .

Figure 4.2: Overview of avatar2.

register protocol. These protocols are responsible, respectively, for dispatching
memory reads and writes, controlling the execution of the target, and accessing its
CPU registers. Additionally, avatar2 provides the possibility to define additional
protocols, such as monitor protocols specifically dedicated to monitor the status of
an endpoint or specialized remote memory protocols that can provide a custom
high bandwidth channel for memory accesses from one endpoint to another.

Finally, endpoints can be anything worth orchestrating for an analysis, and the
initial implementation of avatar2 provides target abstractions for six different
types of endpoints, which we will present in more details in Section 4.3.4.

The strict separation and abstraction of the different components allow a flexible
configuration of a variety of different targets. Thus, in comparison to the first
version of Avatar, the scope of the framework is extended far beyond the initial
target of dynamically analyzing embedded devices firmware. This is due to the
drastic shift of paradigm in avatar2: instead of orchestrating specific tools with
a specific goal, the core goal of avatar2 is to enable a general interoperability
among an arbitrary number of different tools frequently used for dynamic binary
analysis.

4.3.3 Under the Hood

So far we introduced the general design of the framework. We now highlight
and discuss in more details five specific features provided by avatar2. These
features are intended to provide additional flexibility in order to cope with different
dynamic binary analysis tools.

44 Rehosting for Fun & Profit

Architecture Independence

With the emerging interconnectivity of software not only on commodity comput-
ers, but also on embedded systems, the variety of architectures and instruction
sets of interest for program analysis systems is broader than ever. Intuitively, as
several dynamic binary analysis frameworks already come with support for mul-
tiple architectures, an orchestration framework should also be able to cope with
those. Avatar2 handles this problem by relying on a flexible description of the
architectures in a modular manner, with the additional possibility to provide anno-
tations for specific targets (i.e., special variables defined in the architecture that are
fetched and consumed by targets). While the current implementation is shipped
with descriptions for x86, x86_64 and ARM, the modular approach allows to eas-
ily extend the framework to support additional architectures or even intermediate
representations used by specific tools.

Internal Memory Representation

Avatar2 is designed to interconnect a variety of targets, which internally rarely
use the same representation of memory. However, to synchronize the analysis
across different frameworks and platforms, a consistent view of a program’s mem-
ory is required. Hence, avatar2 provides interfaces to the analyst for defining
and updating the memory layout, which is then pushed to the targets. For instance,
unlike other tools, avatar2 does not represent memory on page granularity. This
is because its goal to be able to cope with embedded devices which often consist of
memory mapped peripherals and CPU registers that use only a fraction of a com-
mon page. Instead, avatar2 works by combining memory ranges of arbitrary
and non-uniform sizes.

Legacy Python Support

The initial prototype of avatar2’s core was written in Python 3.x. While we
believe that a future migration to Python 3 is inevitable, several popular dynamic
analysis frameworks, such as angr, manticore, and triton were either based com-
pletely on – or export bindings only to – python 2.7 at the time of avatar2’s
development. Therefore, we decided to work with Python 3 but still maintain-
ing legacy python support to enable a flawless and performant integration to the
aforementioned tools.

Peripheral Modeling

Embedded devices often consist of custom peripherals which are not implemented
inside other endpoints or – even worse – that cannot be represented equivalently
in other endpoints at all. Like the first Avatar, avatar2 is able to solve this issue

4.3. The Avatar2 Framework 45

by memory forwarding. However, as memory forwarding can quickly become a
performance bottleneck, avatar2 provides an additional way to face this issue by
adding prototypes of simple peripherals models. These models can be easily de-
veloped in python by the analyst and are, in essence, simple objects that respond to
memory reads and writes at specified offsets. Facilitating these modeling mecha-
nism, avatar2 provides for instance an implementation for a universal serial port
interface (USART) which models an interface present in a particular ARM based
microcontroller by STMicroelectronics. Hereby, the model receives and transmits
input and output over a Transmission Control Protocol (TCP) connection, instead
of a physical peripheral.

Plugin System

Avatar2 is designed to have a minimalistic and easy-to-maintain core, whereas
the more complex logic is provided by the specific targets and protocols. However,
a variety of tasks required by most dynamic analysis procedures are repetitive and
therefore would be very inefficient if the analysts would need to re-implement
them for each experiment. Therefore, to provide a common code base for these
repetitive tasks and to execute them automatically, avatar2 adopts a rich event-
driven plugin-system. Within a plugin, various events can be hooked by custom
callbacks, or completely new features can be added to the avatar2 core. Exam-
ples for already existing plugins are an assembler and a disassembler, a forwarding
plugin for single instructions, which is for instance useful to dispatch co-processor
accesses, or a plugin for an automated orchestration of the analysis.

4.3.4 Supported Targets

Avatar2 is designed to integrate new targets with low effort. Currently, it sup-
ports six targets, which already provide a large number of analyses combinations.

The Gnu Debugger (GDB).
The ability to communicate with GDB is probably one of the most essential
features of avatar2. The stand-alone target allows to debug GNU/Linux
software. Moreover, a variety of endpoints are offering a gdbserver for de-
bugging purposes. Due to the separation of targets and protocols, avatar2

is able to communicate to all of these endpoints.

OpenOCD.
Modern CPUs and MCUs, and in particular those used in embedded de-
vices, expose standardized debugging ports, such as Joint Action Test Group
(JTAG) or Serial Wire Debug (SWD) ports. OpenOCD is an open source
tool able to control debug dongles which can be attached to these ports.

46 Rehosting for Fun & Profit

Those dongles, together with OpenOCD, can be used for fine-grained de-
bugging of the executed software. Naturally, avatar2 supports OpenOCD
to perform analysis of embedded devices.

Quick Emulator (QEMU).
As seen before, QEMU is a very popular emulator and forms the basis for
many rehosting systems. At its core, the emulator uses dynamic binary trans-
lation to enable emulation of software written for different architectures.
Although it allows to emulate single GNU/Linux programs in its user mode
via dynamic system call translation, avatar2 uses its full system emulation
mode to handle hardware peripherals, too. We add two noteworthy compo-
nents to QEMU which we maintain as part of the avatar2 project. First,
we introduced a new emulation machine, the configurable machine, which
is able to configure the memory layout in a flexible way. This facilitates the
integration with the memory representation of avatar2 but also to support
variety of embedded devices. Second, we added a set of dedicated avatar pe-
ripherals, which are responsible for the interaction with other targets during
an analysis.

PANDA.
The Platform for Architecture-Neutral Dynamic Analysis (PANDA)
[DGHH+15] is a dynamic analysis engine with focus on enabling repeat-
able reverse engineering. PANDA is based on QEMU, and hence, reuses
the same components incorporated in the avatar2’s QEMU target. The
strength of PANDA lies on its additional capabilities to record, replay, and
analyze a previously-recorded concrete execution.

angr.
The symbolic execution and program analysis framework angr [SWS+16]
provides a number of powerful dynamic analysis capabilities. Several small
additions to angr have been performed for a better integration with avatar2.
Those modifications are mainly on angr’s state and memory management.
More precisely, a special representation for memory pages to provide access
to the memory of other targets has been added, together with several auto-
matic procedures to set up an analysis state that can be used for avatar2.
Furthermore, as the angr target in avatar2 inherits angr objects, no direct
modifications of angr are required.

Unicorn.
Unicorn [QV15] is a lightweight, multi-architecture CPU emulator frame-
work, which focuses solely on raw emulation of CPU code. The framework
is based on QEMU, whereas all code which is not directly related to CPU

4.3. The Avatar2 Framework 47

emulation is removed. As a result, Unicorn is distributed in the form of
a single library, which exports bindings to various languages. Avatar2’s
Unicorn target does not require any modification of this library and uses its
python bindings.

4.3.5 Comparison to Other Tools

Even though avatar2 is - up to our knowledge - the first attempt to flexibly com-
bine debuggers, emulators and dynamic binary analysis frameworks in a generic
manner, a few tools have been directed to solve specific subproblems also tackled
in avatar2.

First and foremost, several existing tools embed or integrate other, third-party
tools. Driller [SGS+16] for instance combines angr [SWS+16] with AFL [Zal14]
to benefit from both the advantages of symbolic execution and fuzzing. Similarly,
FrankenPSE [Tra16a], allows sharing of snapshots between PySymEmu [Man13],
a symbolic execution tool and the GRR Fuzzer [Tra16b]. Unfortunately, as of time
of writing, no open source version of FrankenPSE has been made available, which
makes a direct comparison to other approaches difficult.

Independently, angr recently deployed a modular design-philosophy, allowing for
exchanging different parts within the symbolic execution framework. As a result,
different execution engines, IR or constraint solvers can be plugged into the frame-
work.

Another example for a tool benefiting from external projects is radare2 [Alv]. Al-
though being a reverse engineering framework as its core it facilitates code emula-
tion thanks to a custom IR. Nevertheless, it is designed to be enabled to control a
variety of debuggers, and provide implementations for GDB and WinDBG. On top
of this, community based plugins are integrating frameworks like Miasm [Des12]
or emulators like Unicorn [QV15] into the radare2-ecosystem. Although this, just
like angr, already enables powerful analysis, the specific tool is, together with its
initial purpose, in the foreground.

Next to interconnecting independent targets, approaches for decoupling execution
and memory have been frequently incorporated by partial emulation systems, for
instance by Surrogates [KKM15] and Prospect [KPK14], which both use memory
forwarding to enable the analysis of embedded devices (c.f. Chapter 4.1.2).

Additionally, a lot of modern dynamic binary analysis frameworks with different
purposes are based on QEMU. DECAF [HPY+14] for instance focuses on just-in-
time virtual machine introspection and tainting, while PANDA [DGHH+15] pro-
vides primitives for recording and replaying executions, whereas advanced analy-

48 Rehosting for Fun & Profit

sis plugins are used during the repeatable replay of an execution. Rev.ng [DFPA17],
on the other hand, is most notably known for recovering control flow graphs and
function boundaries as basic block for subsequent analyses and S2E [CKC11] ex-
pands full-system emulation with the capability of symbolic and concolic execu-
tion. Furthermore, even tools for analyzing embedded devices firmware without
having the actual device are based on QEMU, such as Firmadyne [CWBE16],
which emulates a generic kernel for Linux-based firmware, and LuaQEMU [Ral17]
which provides prototyping of hardware boards in Lua.

While all of those tools have their strength and are already quite powerful, they
are rarely designed with interoperability in mind. As a result, the majority of
those tools heavily modify QEMU for their purposes, effectively denying an easy
integration with other tools. The patches for QEMU done by avatar2, on the
other hand, are minimalistic and centralized in the code base, which leads to an
easy integrability of those tools as future targets for avatar2.

4.3.6 Pitfalls & Gains of Avatar2

In order to effectively combine and orchestrate different frameworks, avatar2

needs to be generic enough to support a variety of frameworks with different design
philosophies, execution primitives and scopes. Even though we think that it is
infeasible to be generic enough to allow support for every dynamic binary analysis
frameworks, we believe that our abstraction and distinction of targets, protocols
and endpoints enable a variety of frameworks to be potential targets for avatar2.

In fact, we designed avatar2 to keep the implementation overhead for adding
a new target as simple as possible. To add a new target, an analyst needs first to
decide over which protocol instances it communicates to the associated endpoints.
In case the endpoint cannot be controlled over already existing protocols, the im-
plementation of the additional protocols will require the majority of the effort.
However, we believe that by providing protocol implementations for both GDB
and QEMU-based targets, already a decent amount of potential endpoints can be
integrated into avatar2 without the need to add new protocols. Once the right
protocols are chosen, the actual target class can be written, which needs to provide
interfaces for functionalities specific to the target, and an initialization function,
which sets up the endpoint and connects the different protocols to it.

One of the main goals of the framework is to enable popular dynamic binary anal-
ysis frameworks to interoperate with embedded devices firmware. While two out
of the three examples were targeting embedded devices, both were relying on the
presence of a JTAG interface. Unfortunately, when analyzing real world hardware,
such an interface is not always available. However, even in those cases avatar2

4.3. The Avatar2 Framework 49

can be used together with these hardware instances if, for example, a gdbserver
can be launched directly on the device or a GDB stub can be injected at runtime,
for instance using a bootloader. Unfortunately, those stubs are highly dependent
on the architecture of the analysed target and are hard to abstract in a generic
way. Although such stubs already exist for some targets2 they are not integrated in
avatar2 yet.

An additional challenge for embedded devices is given when embedded devices
do not communicate over MMIO, but trigger interrupts, e.g., upon arrival of new
data. Avatar2 provides an experimental support for forwarding interrupts on
some hardware. However, the lack of genericity of interrupt handling is a limita-
tion of the framework. Indeed, the way interrupts are triggered and served is tightly
coupled to the hardware they are occurring on. As a result, interrupts need to be
implemented in a per-target manner by using dedicated protocols for dispatching
interrupts.

2https://github.com/avatarone/avatar-gdbstub or qcdebug [Del11]

https://github.com/avatarone/avatar-gdbstub

50 Rehosting for Fun & Profit

Chapter 5

Enhancing Dynamic Analysis &
Testing for Embedded Systems

In this chapter, we use the primitives provided by avatar2’s multi-target orches-
tration to develop important additions to dynamic binary firmware analysis and
testing. In more detail, we show how avatar2 can be used to reproduce a previ-
ous study, we demonstrate the feasibility of record & replay for embedded devices,
and adapt dynamic fault detection heuristics to embedded systems using the instru-
mentation capabilities provided by avatar2’s PANDA target.

We then provide an experimental evaluation of fuzz testing embedded systems
whereby we also demonstrate the effectiveness of our fault detection heuristics.
Finally, we provide an outlook on concolic testing framework for firmware and
discuss a prototype design and implementation.

5.1 Facilitating Replication and Reproduction
Recent initiatives are pushing more and more towards developing processes for
facilitating reproduction1 of scientific studies in the system security field [CP16].
However, when embedded devices are involved, reproduction of previous work is
often complicated.

We choose HARVEY [GBC+17], a recently presented PLC rootkit as an example
for reproduction. Using this example we show that avatar2 can be used as a
lightweight mechanism to prototype scripts for reproduction of previous studies

1Following the terminology from https://www.acm.org/publications/
policies/artifact-review-badging

51

https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging

52 Enhancing Dynamic Analysis & Testing for Embedded Systems

Listing 5.1: Re-implementation of HARVEY, using avatar2.
1 from avatar2 import Avatar, ARMV7M, OpenOCDTarget
2

3 input_hook = ’’’mov r5,0xfffffffc
4 b 0x20001E30’’’
5

6 output_hook = ’’’mov r5,0xfffffffd
7 mov r4, r5
8 mov r5, 0
9 b 0x2000233E’’’

10

11 avatar = Avatar(arch=ARMV7M)
12 avatar.load_plugin(’assembler’)
13

14 t = avatar.add_target(OpenOCDTarget,
15 openocd_script=’harvey.cfg’,
16 gdb_executable=’arm-none-eabi-gdb’)
17

18 t.init()
19

20 t.set_breakpoint(0xd270)
21 t.cont()
22 t.wait()
23

24 t.inject_asm(’b 0x2000250E’,addr=0x20001E2E)
25 t.inject_asm(’b 0x20002514’,addr=0x20002338)
26

27 t.inject_asm(input_hook, addr=0x2000250E)
28 t.inject_asm(output_hook,addr=0x20002514)
29

30 t.cont()

(or share scripts to facilitate reliable replication). This is a good example for a re-
production study, as this publication contains all the necessary details to reproduce
it while no source code or scripts are publicly available.

The HARVEY rootkit is designed to be inserted in the firmware of an Allen Bradley
PLC. It modifies the functions responsible for forwarding updates of physical in-
puts and outputs to other parts of the hardware, such as the LEDs and the Human
Machine Interface (HMI). As a result, the rootkit is able to tamper with the PLC’s
I/O in a stealthy manner without reporting suspicious behavior on the LEDs or
HMI. For deploying the required modifications, the authors of HARVEY describe
two ways of deploying the compromised firmware on the PLC:

1. Using JTAG debug access to patch the firmware in memory. This is
possible in this scenario, as parts of the firmware are loaded into and exe-
cuted from the on-chip SRAM of the main MCU, which—by design—can
be modified during run time.

5.1. Facilitating Replication and Reproduction 53

Figure 5.1: PLC Infected with HARVEY using avatar2 as instrumentation framework.
The communication with avatar2 is performed with a JTAG debugger.

2. Abusing the firmware update functionality to persistently upload the
malicious firmware. This requires to exploit the firmware update process.
However, the authors did not follow this path as the firmware for this PLC is
cryptographically signed and the installation of a modified firmware would
either require the ability to create a new firmware with colliding SHA-1
hash, the knowledge of the PLC’s manufacturers private key, or the presence
of a flaw in this signature verification mechanism.

Although we use a slightly different version of the PLC than in the original2, we
were able to reproduce the base proof of concept implementation of HARVEY
using avatar2 and with about 30 lines of python (Listing 5.1). Figure 5.1 shows
the PLC after infection by HARVEY: the two orange LEDs indicate the presence
of input signals on Port 1 and 2, albeit no inputs are connected to the PLC.

This example provides several interesting insights into the avatar2 framework.
Line 12 loads the assembler plugin, which adds the capability to assemble and
inject code into memory, as done in Line 24-28. Then a target is configured (Line
14-17), and it is initialized as a standalone target (Line 18). However, the hooks for
HARVEY can not be inserted right away, as the secondary firmware code has first
to be loaded into the SRAM. Hence, we insert a breakpoint after those initialization
functions (Line 20), before starting the execution (Line21) and waiting for the

2We used an Allen Bradley 1769-L16ER-BB1B CompactLogix 5370 PLC, while HARVEY
was initially implemented on an Allen Bradley 1769-L18ER-BB1B CompactLogix 5370

54 Enhancing Dynamic Analysis & Testing for Embedded Systems

breakpoint to be hit (Line 22). The hooks are then inserted (Line 24-28) and the
execution is resumed (Line 30).

While the full rootkit can be injected into the firmware without the presence of
avatar2, we want to stress that the usage of the framework provides a centralized
and unified interface for dynamic instrumentation, which greatly eases replicability
and, in turn, reproducibility.

5.2 Recording and Exchange of Firmware Execution
Traditionally, dynamic analysis of firmware for embedded devices requires either
the presence of the physical device or the ability to emulate the firmware. In this
section, we show that avatar2 is capable of recording parts of the execution of
a firmware by partially emulating it. This recording can then be replayed and an-
alyzed without the presence of the physical device. To achieve this, we instruct
avatar2 to use the PandaTarget to emulate and record the core parts of the
firmware, while memory accesses to hardware peripherals are forwarded to a phys-
ical device, controlled by avatar2’s OpenOCDTarget.

In this example, we use a Nucleo STM32L152RE development board as physical
target, which comes with an ARM Cortex-M3 MCU whose JTAG connection is
available over the on-board USB interface. We use an example firmware form
ARM mbed3. As often with embedded code, it performs many low-level memory
accesses to the hardware’s peripherals. PANDA alone would not be able to emulate
the execution of this firmware, because the firmware would not execute properly
without proper emulation of the device’s specific peripherals.

The corresponding avatar2 script is shown in Listing 5.2 and exhibits a couple of
notable points. Line 3-12 are responsible for the usual general setup of avatar2

and targets. Note that this time the orchestration plugin is loaded, which allows a
different way to control the execution of targets as seen in the previous example.
Line 14-18 define an explicit memory layout, including the ROM memory, backed
by the firmware, and MMIO, which will be forwarded to the physical device, using
the remote memory functionalities of avatar2.

After the definition of memory, the targets are initialized (Line 20) and the actual
orchestration is set up: Line 22 defines which target shall be used for execution
first. Line 23 adds transition, in which avatar2 will switch the execution from
one target to another, while synchronizing the registers and memory ranges speci-
fied by the synced_ranges argument. In this case, only the RAM range needs
to be synchronized, as this is the only dynamic memory local to more than one tar-

3https://www.mbed.com

https://www.mbed.com

5.2. Recording and Exchange of Firmware Execution 55

Listing 5.2: Recording an embedded device’s firmware execution.
1 from avatar2 import ARMV7M, Avatar, OpenOCDTarget, PandaTarget
2

3 avatar = Avatar(arch=ARMV7M)
4 avatar.load_plugin(’orchestrator’)
5

6 nucleo = avatar.add_target(OpenOCDTarget,
7 openocd_script=’nucleo-l152re.cfg’,
8 gdb_executable=’arm-none-eabi-gdb’)
9

10 panda = avatar.add_target(PandaTarget,
11 executable=’panda/qemu-system-arm’,
12 gdb_executable=’arm-none-eabi-gdb’)
13

14 rom = avatar.add_memory_range(0x08000000, 0x1000000,
15 file=firmware)
16 ram = avatar.add_memory_range(0x20000000, 0x14000)
17 mmio= avatar.add_memory_range(0x40000000, 0x1000000,
18 forwarded=True, forwarded_to=nucleo)
19

20 avatar.init_targets()
21

22 avatar.start_target = nucleo
23 avatar.add_transition(0x8005104, nucleo, panda,
24 synced_ranges=[ram], stop=True)
25 avatar.start_orchestration()
26

27 panda.begin_record(’panda_record’)
28 avatar.resume_orchestration(blocking=False)
29

30 [...]
31

32 avatar.stop_orchestration()
33 panda.end_record()

get within this analysis. The last argument, stop, instructs avatar2 to stop the
orchestration after this transition. The reason for this state transfer lies in the de-
sire to execute the initialization functionalities of the physical device on the device
itself, as they are not of interest for the analysis of the main firmware.

The following line (Line 24) starts the automatic orchestration. Avatar2 will run
until a transition with the stop flag is hit, which is trivial in this case, as only one
transition is defined. As a result, Line 27, which enables the recording of execution
inside PANDA, is executed after the transition finished and the automatic orches-
tration has to be resumed (Line 28). Once the interesting parts of the firmware’s
execution have been recorded, both the orchestration and the recording can be
stopped (Line 32-33). Afterwards, the execution recording is available and can be
reused in PANDA (e.g., to perform further analysis) without using the embedded
device.

56 Enhancing Dynamic Analysis & Testing for Embedded Systems

This demonstrates the importance of separation between execution and memory
for multi-target orchestration, as it allows the forwarding of MMIO in the first
place. Without this, the initial recording, even with the presence of the physical
device, would not be possible as long the underlying hardware platform cannot be
fully emulated.

5.2.1 State Caching for Partial Emulation

Another interesting primitive for dynamic analysis is state caching for partial em-
ulation setups. In essence, avatar2 state transfer capabilities allow to save the
device state after it is initialized, which then can be used to initialize an emulator.

In fact, since the initialization procedures of embedded systems usually set up all
peripherals, this phase is rarely of interest for dynamic analysis, as user interaction
is rather uncommon in this stage. Moreover, initialization procedures involve a
large amount of I/O operations that have a negative impact on the performance of
a partial emulator (that needs to forward every access to the physical device).

However, as long as later peripheral interaction only concerns stateless peripherals,
this overhead can be removed by taking advantage of the ability of emulators to
execute from an initial snapshot. Therefore, dynamic testing can benefit from the
ability of avatar2 to save a snapshot of the device state after its initialization and
reuse it later to initialize the emulator.

5.3 Dynamic Binary Instrumentation for Fault Detection
Unfortunately, while common desktop systems have a variety of mechanisms to
detect faulty states (e.g., segmentation faults, heap hardening and sanitizers) and to
analyze them (e.g., command-line return values or core dumps), embedded devices
often lack such mechanisms because of their limited I/O capabilities, constrained
cost, and limited computing power. As a result, silent memory corruptions occur
more frequently on embedded devices than on traditional computer systems, cre-
ating a significant challenge for conducting dynamic testing on embedded systems
software, as demonstrated in Section 3.3.

Hence, we use the primitives provided by multi-target orchestration to dynamically
instrument firmware and implemented six fault detection heuristics mimicking ex-
isting compile-time, and run-time techniques. While the underlying algorithms
of the heuristics are based on known principles, we implemented them as external
run-time monitors for embedded systems. We use PANDA to emulate the firmware
and rely on its plugin system to obtain feedback over the execution of a partial or
fully emulated firmware. All this while avatar2 orchestrates the execution and
selectively redirects execution and memory accesses to the physical device.

5.3. Dynamic Binary Instrumentation for Fault Detection 57

More specifically, we implemented the heuristics as PANDA analysis plugins, as
the emulator allows to hook various events, such as physical accesses to memory,
translation, and execution of translated blocks. During those hooks, the state of
the emulator is available to the analysis plugin, allowing it to access concrete reg-
isters or memory access values. Additionally, the base implementation of PANDA
provides already several analysis plugins4, making the emulator a perfect building
block for run-time instrumentation.

During run time, we then use avatar2 to orchestrate the execution of the firm-
ware on a target embedded device and on PANDA. This orchestration setup allows
the possibility to automatically transfer state between device and emulator and for-
ward I/O accesses while our instrumentation checks for the occurrences of memory
corruptions. Additionally, the setup enables not only to perform analysis during
the execution, but also to create lightweight records of the execution which can be
used for later analysis with more heavy-weight instrumentation.

The heuristics themselves are inspired by techniques that have already been in use
for detecting or mitigating memory corruptions in other settings, such as shadow
stacks, compiler warnings for unsafe function calls, and run-time verification as
implemented by instrumentation tools like Address Sanitizer [SBPV12] or Val-
grind [NS07].

However, it is also important to mention that we selected heuristics to be imple-
mentation independent, in order to not only work in a live analysis setting (as it
is the case if the firmware is run in an emulator) but also to be applicable “post-
mortem” on previously recorded runs of the firmware, or even collected execution
traces (in case that hardware-based tracing mechanism are available). As a result,
they only rely on information extracted from the execution of the binary code and
additional annotations provided by the analyst. In particular, our six heuristics are:

Segment Tracking:
Segment tracking is possibly the simplest technique that aims to detect ille-
gitimate memory accesses. The core idea is to observe all memory reads and
writes and verify if they occur in valid locations, thus somehow imitating an
MMU at detecting segmentation faults. This technique only requires knowl-
edge about the memory accesses and the memory mappings of the target,

4In fact, we build our instrumentation heavily on the callstack_instr plugin. This plugin
allows registering further callbacks on function calls and returns, and provides information about the
current call stack, which simplifies the implementation of several of our heuristics. However, as this
plugin would return wrong information when the state of the application is corrupted, we only use
its on_call event to detect the beginning of a function, while information of function returns are
retrieved by analyzing the executed blocks.

58 Enhancing Dynamic Analysis & Testing for Embedded Systems

which is easily accessible in an emulator. Additionally, the memory map
can be obtained by reverse engineering when only traces from the execution
are available.

Format Specifier Tracking:
Tracking format string specifiers is a naïve technique to discover insecure
calls to printf()-style functions and is inspired by the printf protection
outlined in [She17]. In essence, this protection validates that the format
string specifier points to a valid location upon entry in a function of the
printf() family. In the simplest case, without presence of dynamic gen-
erated format string specifier, those valid locations would have to lie within
read-only segments. All in all, this technique requires not only knowledge
about the location of format handling functions, but also the register state
while entering one of those functions and the argument order. Both the loca-
tion of the according function and their argument order can be obtained by
reverse engineering or automated static analysis of the firmware.

Heap Object Tracking:
This technique is designed to detect both temporal and spatial heap related
bugs and is influenced by the instrumentation and run-time verification ap-
proaches presented in [SBPV12]. It achieves its goal by evaluating the argu-
ments and return values of allocation and deallocation functions and book-
keeping the location and sizes of heap objects. This allows to easily detect
out-of-bounds memory accesses or access to a freed object. However, this
heuristic depends on a variety of information: executed instructions, the
state of the registers, memory accesses, and knowledge about allocation and
deallocation functions. The latter could be retrieved by reverse engineering,
or by using advanced methods for discovering custom allocators as demon-
strated by MemBrush [CSB13].

Call Stack Tracking:
This heuristic is replicating traditional shadow stack protections [BZP19],
therefore aiming at detecting functions that do not return to the callee. This
can help to identify stack-based memory corruptions that overwrite the re-
turn address of a function. It does so by monitoring all direct and indirect
function calls and return instructions. However, as embedded devices are of-
ten interrupt-driven, this heuristic can lead to false positives.5 Nevertheless,
it is especially appealing as it requires the least amount of information: only
the knowledge of the executed instructions.

5We want to note that corresponding false positives did not occur in our later experiments, as
we tested interrupt-free parts of the firmware. In any case, these false positives can be ruled out by
refining the heuristic to detect the presence of interrupt contexts.

5.3. Dynamic Binary Instrumentation for Fault Detection 59

Call Frame Tracking:
Call frame tracking is a more advanced version of the call stack tracking
technique which detects coarse grained stack-based buffer overflows, with-
out false positives, right when they occur. In essence, stack frames are
located by tracking function calls, then contiguous memory accesses are
checked not to cross stack frames. Hereby, this requires to identify the exe-
cuted instructions as well as register values to extract the stack pointer values
upon function entries. Then, memory accesses have to be observed to detect
the actual corruptions.

Stack Object Tracking:
Stack objects tracking consists in a fine-grained detection of out-of-bound
accesses to stack variables, which is inspired by the heap object tracking ap-
proach proposed by Serebryany et al. [SBPV12]. Hereby, memory reads and
writes observed during execution are checked against the individual variable
size and position in the stack. Obviously, this requires to track executed in-
structions and memory accesses, as well as elaborate information about the
stack variables. For the sake of simplicity, we use variables information
which is present in debug symbols. However, in the general case, it is possi-
ble to retrieve such information in an automated manner from binary code,
as proposed by several previous studies [SSB11, JCG+14].

Table 5.1 lists the six presented heuristics and details what type information is re-
quired for the analysis. We want to stress that those heuristics are just one example
of dynamic binary firmware instrumentation enabled by multi-target orchestration.
We choose to implement them as an example to tackle the Challenge-3, fault de-
tection, by turning silent memory corruptions into observable ones.

Exe
cu

tio
n

Reg
ist

er
sta

te

M
em

ory
Acc

ess
es

M
em

ory
M

ap

Ann
ota

ted
Prog

ram

Segment Tracking 7 7 3 3 7

Format Specifier Tracking 3 3 7 3 3

Heap Object Tracking 3 3 3 7 3

Call Stack Tracking 3 7 7 7 7

Call Frame Tracking 3 3 3 7 7

Stack Object Tracking 3 3 3 7 3

Table 5.1: Implemented fault detection heuristics and their requirements.

60 Enhancing Dynamic Analysis & Testing for Embedded Systems

5.4 Fuzzing Embedded Systems: An Experimental Eval-
uation

In recent years, fuzz-testing has become more and more popular as a way to test
the security of embedded systems, but is still not as widely adopted as for software
targeting desktop computers.

In this section, we aim to understand the difficulties for fuzz testing embedded
systems and perform an experimental study to analyze how fuzz testing firmware
can benefit from the runtime analysis techniques integrated in our multi-target or-
chestration framework.

5.4.1 Past Experiments

For understanding the challenges of fuzz testing embedded devices, we first anal-
yse recent literature. Table 5.2 provides a short overview of recent efforts in the
area of fuzz testing embedded systems’ firmware. These works covered different
sectors, different input generation strategies, and different classes of embedded
devices.

For instance, Alimi et al. [AVR14] fuzzed parts of the MasterCard M/Chip specifi-
cations by generating test-inputs using a genetic algorithm. The authors observed
that real cards would become unusable during comprehensive fuzz-testing, and
therefore moved the parts under test into a simulator where they could trigger the
approval of illegitimate transactions.

Some modern smart cards also contain a web server implementation. Kamel et
Lanet [KL13] designed a generation-based fuzzer for the HTTP implementations
of those web servers and were able to trigger several flaws, including errors in
the smart cards. Koscher et al. [KCR+10] conducted a security test of automotive
systems using fuzzing in addition to reverse engineering and packet sniffing. More

Study Sector Fuzzing Approach Type of Device
Type-I Type-II Type-III

[KCR+10] Automotive Mutation-based, Blackbox - - 3
[MGS11] GSM feature phones Generation-based, Blackbox - 3 -

[KL13] SmartCards Generation-based, Blackbox - - 3
[ABSZ14] PLCs & SmartMeters Mut.- & gen.-based, Blackbox - 3 -

[AVR14] SmartCards Generation-based, Blackbox - - 3
[VDBHT14] Smartphones Generation-based, Blackbox 3 3 -

[KPK14] – Mutation-based, Dynamic Inst. 3 - -
[LCC+15] Automotive Random-based, Blackbox - - 3
[TTZ+18] Smartphones Mutation-based, Greybox 3 - -
[ZDY+19] Routers Mutation-based, Greybox 3 - -

Table 5.2: Fuzzing experiments of embedded systems in the literature.

5.4. Fuzzing Embedded Systems: An Experimental Evaluation 61

specifically, the authors fuzzed packets for the CAN bus, discovering packets to
unlock all doors, disable the car’s light, and permanently enable the horn. Similar
results were reported in a later study by Lee et al. [LCC+15]. Hereby, random
fuzzing of the data field in CAN packets led at least to observable changes in the
car’s instrumentation panel.

In [ABSZ14], Almgren et al. developed several mutation-based and generational-
based fuzzers which were used to test various PLCs and smart meters. The fuzzing
experiments lead to the discovery of several known and unknown denial of service
vulnerabilities, some leading to a completely unresponsive PLC which could only
be recovered after a power cycle and a cold restart.

Mulliner et al. [MGS11] and Van den Broek et al. [VDBHT14] developed a gen-
eration-based fuzzer in accordance to the GSM-specification to test GSM imple-
mentations in both feature- and smart-phones. While both studies were able to
trigger a large number of errors – including memory exhaustions, reboots, and
denial-of-service conditions – the authors concluded that correctly monitoring the
devices under test in an automated manner is still a very challenging task.

To avoid this problem, systems are sometimes fuzzed under partial emulation. The
authors of PROSPECT [KPK14], for instance, could discover a previous unknown
0-day vulnerability in a fire alarm system by fuzz testing different network protocol
implementations and monitoring the state of the partially emulated system.

Similarly, Charm [TTZ+18] fuzzes partially emulated android device drivers us-
ing Syzkaller [Vyu15], a coverage-guided, greybox fuzzer. The authors ported the
source code for android device drives to x86 and run the fuzzing campaign against
a virtualized environment, whereas I/O operations are forwarded to a physical
phone. While the idea of cross-architecture fuzzing is interesting, this approach
relies on the presence of source code for the fuzzed components.

Yet another approach utilizing coverage-guided greybox fuzzing for binary firm-
ware is presented by FirmAFL, which adapts the popular fuzzer American Fuzzing
Lop (AFL) to fuzz applications on Type-III devices by smartly switching between
user-mode and full-system emulation. Unfortunately, the presented approach is
deeply tied to the abstraction provided by the operating system and can not easily
be applied to Type-II or Type-I systems.

5.4.2 Core Challenges for Fuzzing Embedded Devices

Fuzzing can be performed with or without the availability of the source code.
Source code availability makes testing more efficient as memory semantics can
be used to detect anomalies, for example, by using compile time corruption de-

62 Enhancing Dynamic Analysis & Testing for Embedded Systems

tection techniques. However, fuzzing embedded devices—which lack memory
protections, exploit countermeasures, and for which source code is very rarely
available—becomes quite difficult.

Based on our experience and on problems reported by other authors while conduct-
ing fuzzing experiments in previous works, we believe that three specific chal-
lenges, out of the ones we identified in Chapter 3, are the limiting factors for
fuzzing embedded systems:

1. Fault Detection. Most fuzzing techniques are relying on observable crashes,
and while desktop systems offer protection measurements which are trig-
gering a crash upon a fault, embedded devices are often lacking according
mechanisms.

2. Scalability. Fuzzing greatly benefits from multiple instances of the soft-
ware under test. While this is easy achievable for desktop systems, it would
require the availability of multiple devices for embedded systems.

3. Instrumentation. In recent years, a variety of instrumentation techniques
for aiding fuzzing have been developed. Unfortunately, they often rely on
primitives not available when fuzzing embedded systems, such as advanced
operating system features or recompilation of source code.

On top of these specific problems, which make fuzzing for embedded systems
much more complex and less efficient compared to desktop systems, fuzz testing
firmware also inherits other challenges which are common to fuzzing in general
(e.g., test case generation) but we consider them out of the scope of this work.

Furthermore, the combination of lacking fault detection mechanisms and miss-
ing instrumentation capabilities complicates the detection of memory corruptions
triggered by the fuzzer. Indeed, testing parties often aim to identify a successful
memory corruption by monitoring the device to detect signs of an incorrect behav-
ior. As a result, sophisticated liveness checks (or probing) are commonly deployed
to check the effects of single test cases on the device. In general, it is possible to
adopt two types of probing. Active probing inserts special requests into the com-
munication to the device or to its environment. This influences the state of the
software under test – as the state of the software is periodically checked by pro-
viding valid input and evaluating the corresponding response. In contrary, passive
probing aims at retrieving information about the device’s state without altering it.
This could be achieved by looking at the answers provided by the device to the test
inputs or by observing visible crashes.

5.4. Fuzzing Embedded Systems: An Experimental Evaluation 63

Avatar2

PANDA

boofuzz

Embedded Device

Analysis
Plugis

Emulation MMIO Peripherals

Fuzz
Inputs

Figure 5.2: Setup of our fuzzing experiments.

However, as we showed in Section 3.3 relying on visible crashes can be misleading
as many corruptions will remain silent in the context of embedded systems. Hence,
“liveness” checks are insufficient to detect many classes of vulnerabilities as we
will show in the remainder of this section.

5.4.3 Experiment Setup

We conducted a number of experiments to test the benefits of multi-target orches-
tration for fuzz testing. More specifically, we want to assess how the fault detection
heuristics presented in Section 5.3 perform when fuzz testing a partially or a fully
emulated device while comparing it to a traditional device-only fuzz test. The ba-
sic setup of our experiments is visualized in Figure 5.2 and will be described more
in the following.

Our goal is to show that it is possible to integrate our heuristics in a live fuzzing
experiment, thus providing fault detection to mitigate the lack of equivalent mech-
anisms in the embedded system’s platform and operating system. However, our ap-
proach may introduce a non negligible overhead on the performance of the system,
effectively increasing the time required to perform the testing session. Therefore,
we also decided to measure the effects of our solution on the fuzzing throughput
under different setup configurations.

Target Setup

For our tests, we compiled the very same vulnerable expat application used in
Section 3.3 to demonstrate the severity of lacking fault detection mechanisms for
a Type-III device6.

6Note that we chose a Type-III device because this is the most challenging case. The intuition is
that if we can detect the silent memory corruptions on a Type-III device, the heuristics are likewise
suitable for Type-II and Type-I devices.

64 Enhancing Dynamic Analysis & Testing for Embedded Systems

We then conducted a number of fuzzing sessions against the target using four dif-
ferent configurations, covering both optimal and worst case scenarios:

• NAT: Native. Fuzzing is performed directly against the actual device –
therefore without using any fault detection heuristic. We use this case as the
baseline to compare the results of other experiments.

• PE/MF: Partial Emulation with Memory Forwarding. The firmware is
emulated and access to the peripherals is implemented by forwarding I/O
memory accesses to the actual device.

• PE/PM: Partial Emulation with Peripheral Modeling. The firmware is
emulated and peripheral interaction is handled by leveraging the peripheral
modeling capabilities of avatar2, which allows to conduct experiments
without having a physical device present.

• FE: Full Emulation. Both the firmware and its peripherals are fully emu-
lated inside PANDA.

For configurations PE/MF, PE/PM, and FE we use a snapshot of the device’s state
taken after initialization as starting point for the emulation, as described in Sec-
tion 5.2.1. The execution then continues inside the emulator where we imple-
mented the different heuristics presented in Section 5.3. To estimate the perfor-
mance impact imposed by each scenario, we conducted experiments in which we
selectively enable one heuristic at a time.

In all our tests, the inputs to the vulnerable software are provided on a simple tex-
tual protocol which is communicated over a serial connection. On configurations
NAT and PE/MF we used the real device serial port, while in PE/PM and FE the
serial port of the device is either modeled or emulated, and the input is provided
to the emulator with a TCP connection and written directly in the corresponding
(emulated hardware) buffer.

Fuzzer Setup

We built our experiments on top of boofuzz [Per16], an open source fuzzer and
successor to Sulley [AP07], which is a popular Python-based fuzzing framework.
Boofuzz does not only generate and send malformed inputs, but it also allows tar-
get monitoring and defining reset hooks. In comparison to its predecessor, it allows
to fuzz over user-defined communication channels and provides readily available
implementations for both serial and TCP-connections, making it an ideal match
for our evaluation purposes.

5.4. Fuzzing Embedded Systems: An Experimental Evaluation 65

To make sure that the results of different experiments are comparable, we instru-
mented the fuzzer to forcefully generate inputs which would trigger one of the
inserted vulnerabilities with a given probability. We denote this probability as Pc

and conducted experiments with Pc = 0, Pc = 0.01, Pc = 0.05 and Pc = 0.1.

Furthermore, to better simulate a realistic fuzzing session, we added a simple live-
ness check for monitoring purposes: after every fuzz input, the fuzzer receives the
response of the device and evaluates whether it matches the expected behavior.
When the received response differs from the expected one, or when the connec-
tion times out, the fuzzer reports a crash and restarts the target. The fuzzer uses
boofuzz to power cycle the physical device (NAT) or instructs the emulator to
restart from the snapshot (PE/MF, PE/PM, and FE).

Note that we use the liveness checks during all experiments, even when all heuris-
tics are enabled as there might be crashes not detected by our heuristics. However,
in our experiments, with all heuristics enabled, the liveness check never detected
any corruption because the heuristics of our PANDA plugins were able to detect
faulty states at a earlier stage, which in turn triggered an immediate restart of the
target.

5.4.4 Results

In total, we conducted 100 fuzzing sessions lasting one hour each. We monitored
the number of inputs that were processed by the target (Itot), the number of times
a corrupting input was sent to a target (IC), the amount of faults detected by the
liveness check (DL), and the number of faults detected by the heuristics (DH).
Additionally, we denote the number of undetected faults as (DU). As a result:

IC = DL +DH +DU ≈ Itot ∗ PC (5.1)

False Positives and False Negatives

Intuitively, the presented heuristics are not perfect and are likely to yield false
positives or negatives. Interestingly, we observed only one case of false positives
in the stack object tracking when, due to over-approximation, two consecutive
memory writes to set two distinct but adjacent stack variables were falsely tagged
as a memory corruption.

In general, we want to stress that false positives and negative rates are highly target-
and implementation-dependent and a comprehensive analysis of those are out of
scope of this work. Our goal is to show the limitations of fault-detection on em-
bedded devices and the feasibility of using heuristics to overcome this problem,
rather than evaluating the effectiveness of a specific implementation.

66 Enhancing Dynamic Analysis & Testing for Embedded Systems

Fault Detection

Table 5.3 shows which type of corruptions could be detected by the liveness check
or by the individual heuristics. As we expected, fuzzing without any fault detection
mechanism is largely ineffective. The liveness check alone was only able to detect
the stack-based buffer overflow and format string vulnerability because, as we
already described in Section 3.3, these bugs result in the device hanging. All the
other vulnerabilities, although they were triggered correctly by the fuzzer and they
resulted in a successful memory corruption, were not detected by the fuzzer.

The impact of this is shown in Figure 5.3, which visualizes the amount of corrupt-
ing inputs detected by the liveness check, by the heuristics (all7 or in isolation),
or that remained undetected. A closer look at the graphs shows that the combined
heuristics (rightmost bar in each group) always successfully detected all corrup-
tions, while relying on liveness checks (leftmost bar) always left a large fraction
of faults undetected. Furthermore, segment tracking, as it can both detect format
string and stack based buffer overflow vulnerabilities, is superseding all detections
formerly done by the liveness check. This makes sense: when the device is in
a strongly corrupted state, even detectable by the liveness check, it is likely that
memory accesses to unusual memory locations occurred.

Form
at

Stri
ng

Stac
k-b

ase
d bu

ffe
r ov

erfl
ow

Hea
p-b

ase
d bu

ffe
r ov

erfl
ow

Dou
ble

Free

Null
Poin

ter
Dere

fer
en

ce

Liveness Check 3 3 7 7 7

Individual Heuristics:
a) Call Stack Tracking 7 3 7 7 7

b) Call Frame Tracking 7 3 7 7 7

c) Stack Object Tracking 7 3 7 7 7

d) Segment Tracking 3 3 7 3 3

e) Format Specifier Tracking 3 7 7 7 7

f) Heap Object Tracking 7 7 3 3 3

All 3 3 3 3 3

Table 5.3: Artificial vulnerabilities discovered by the different heuristics.

5.4. Fuzzing Embedded Systems: An Experimental Evaluation 67

No
 H

eu
ris

tic
Ca

ll
St

ac
k

Tr
ac

ki
ng

Ca
ll

Fr
am

e
Tr

ac
ki

ng
St

ac
k

Ob
je

ct
 T

ra
ck

in
g

Se
gm

en
t T

ra
ck

in
g

Fo
rm

at
 S

pe
cif

ie
r T

ra
ck

in
g

He
ap

 O
bj

ec
t T

ra
ck

in
g

Co
m

bi
ne

d
He

ur
ist

ics

No
 H

eu
ris

tic
Ca

ll
St

ac
k

Tr
ac

ki
ng

Ca
ll

Fr
am

e
Tr

ac
ki

ng
St

ac
k

Ob
je

ct
 T

ra
ck

in
g

Se
gm

en
t T

ra
ck

in
g

Fo
rm

at
 S

pe
cif

ie
r T

ra
ck

in
g

He
ap

 O
bj

ec
t T

ra
ck

in
g

Co
m

bi
ne

d
He

ur
ist

ics

No
 H

eu
ris

tic
Ca

ll
St

ac
k

Tr
ac

ki
ng

Ca
ll

Fr
am

e
Tr

ac
ki

ng
St

ac
k

Ob
je

ct
 T

ra
ck

in
g

Se
gm

en
t T

ra
ck

in
g

Fo
rm

at
 S

pe
cif

ie
r T

ra
ck

in
g

He
ap

 O
bj

ec
t T

ra
ck

in
g

Co
m

bi
ne

d
He

ur
ist

ics

0

1

2

3

#I
np

ut
s [

%
]

PE/MF PE/PM FE

PC = 0.01

No
 H

eu
ris

tic
Ca

ll
St

ac
k

Tr
ac

ki
ng

Ca
ll

Fr
am

e
Tr

ac
ki

ng
St

ac
k

Ob
je

ct
 T

ra
ck

in
g

Se
gm

en
t T

ra
ck

in
g

Fo
rm

at
 S

pe
cif

ie
r T

ra
ck

in
g

He
ap

 O
bj

ec
t T

ra
ck

in
g

Co
m

bi
ne

d
He

ur
ist

ics

No
 H

eu
ris

tic
Ca

ll
St

ac
k

Tr
ac

ki
ng

Ca
ll

Fr
am

e
Tr

ac
ki

ng
St

ac
k

Ob
je

ct
 T

ra
ck

in
g

Se
gm

en
t T

ra
ck

in
g

Fo
rm

at
 S

pe
cif

ie
r T

ra
ck

in
g

He
ap

 O
bj

ec
t T

ra
ck

in
g

Co
m

bi
ne

d
He

ur
ist

ics

No
 H

eu
ris

tic
Ca

ll
St

ac
k

Tr
ac

ki
ng

Ca
ll

Fr
am

e
Tr

ac
ki

ng
St

ac
k

Ob
je

ct
 T

ra
ck

in
g

Se
gm

en
t T

ra
ck

in
g

Fo
rm

at
 S

pe
cif

ie
r T

ra
ck

in
g

He
ap

 O
bj

ec
t T

ra
ck

in
g

Co
m

bi
ne

d
He

ur
ist

ics

0
1
2
3
4
5
6
7
8
9

10

#I
np

ut
s [

%
]

PE/MF PE/PM FE

PC = 0.05

No
 H

eu
ris

tic
Ca

ll
St

ac
k

Tr
ac

ki
ng

Ca
ll

Fr
am

e
Tr

ac
ki

ng
St

ac
k

Ob
je

ct
 T

ra
ck

in
g

Se
gm

en
t T

ra
ck

in
g

Fo
rm

at
 S

pe
cif

ie
r T

ra
ck

in
g

He
ap

 O
bj

ec
t T

ra
ck

in
g

Co
m

bi
ne

d
He

ur
ist

ics

No
 H

eu
ris

tic
Ca

ll
St

ac
k

Tr
ac

ki
ng

Ca
ll

Fr
am

e
Tr

ac
ki

ng
St

ac
k

Ob
je

ct
 T

ra
ck

in
g

Se
gm

en
t T

ra
ck

in
g

Fo
rm

at
 S

pe
cif

ie
r T

ra
ck

in
g

He
ap

 O
bj

ec
t T

ra
ck

in
g

Co
m

bi
ne

d
He

ur
ist

ics

No
 H

eu
ris

tic
Ca

ll
St

ac
k

Tr
ac

ki
ng

Ca
ll

Fr
am

e
Tr

ac
ki

ng
St

ac
k

Ob
je

ct
 T

ra
ck

in
g

Se
gm

en
t T

ra
ck

in
g

Fo
rm

at
 S

pe
cif

ie
r T

ra
ck

in
g

He
ap

 O
bj

ec
t T

ra
ck

in
g

Co
m

bi
ne

d
He

ur
ist

ics

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

#I
np

ut
s [

%
]

PE/MF PE/PM FE

PC = 0.1

Figure 5.3: Corruption detection in emulation based scenarios with distinct probabilities
for the occurence of corrupting inputs PC .

Corruptions detected by liveness checks
Corruptions detected by heuristics

Undetected corruptions

68 Enhancing Dynamic Analysis & Testing for Embedded Systems

0 0.05 0.10
PC

102

103

104
#I

np
ut

s

NAT
PE/MF
PE/PM
FE
PE/MF'
PE/PM'
FE'

Figure 5.4: Processed inputs during one hour long fuzzing sessions with no heuristics
(NAT, PE/MF, PE/PM, FE) and combined heuristics (PE/MF’, PE/PM’, FE’) enabled.

Performance

Figure 5.4 shows the number of input values the fuzzed target was able to pro-
cess during one hour fuzz sessions with different values for PC . As expected,
partial emulation with memory forwarding (PE/MF) is slowing down fuzz test-
ing by more than one order of magnitude. This overhead is introduced by the
communication between the firmware and the device peripherals, which results
into frequent invocations of the orchestration features of Avatar. The major part
of this overhead is due to the low bandwidth connection between Avatar and the
physical device, which relies on a standard JTAG debugger connected via USB.
Surrogates [KKM15] has shown that this issue can be solved by using dedicated
hardware, which would enable partial emulation at near-realtime speed.

Looking at the individual heuristics, we can observe that their overhead is negligi-
ble in the PE/MF scenario, where the bottleneck of forwarding of MMIO requests
fully determines the speed of the fuzzing experiment. However, in scenario PE/PM
and FE, we can can observe a considerable slowdown (between x1.5 and x6) in-
troduced by the heuristic analysis code for PC = 0.

7Note that the "Combined Heuristics" consist of heuristic c-f. Heuristic a and b have been
disabled as they are redundant with heuristic c.

5.4. Fuzzing Embedded Systems: An Experimental Evaluation 69

Another important observation is that fuzzing against a fully emulated target is
significantly faster than against the physical device, as long the amount of detected
corruptions is low. This is due to three main factors. First, the fact that the com-
munication over TCP allows a higher throughput than the one over a serial port.
Second, by the fact that even if the firmware is emulated, the emulator often has a
much higher clock speed than (low resource) embedded devices. Third, a detected
corruption is tied to a forceful reboot of the target, which means that high PCs are
resulting into significant time spent rebooting, rather than sending new inputs to
the target.

However, the most important result of our experiments is the fact that a firmware
that is executed in PANDA (full emulation) with combined heuristics enabled can
be fuzzed faster than the original embedded device under realistic values for PC .
While the first can detect all classes of vulnerabilities we inserted in its code, the
second needs to rely on a liveness check that can only identify two of them.

5.4.5 Outcome & Interpretation

The results of our experiments show that silent memory corruptions pose a pre-
dominant challenge for fuzzing embedded systems, as the majority of fuzzing so-
lutions are relying on observable crashes. In particular, our tests emphasize three
different aspects:

1. Relying only on liveness tests is a poor strategy. Fuzzing embedded sys-
tems by relying solely on liveness tests for fault detection is a poor strategy
that is very likely to miss many vulnerabilities. Likewise, using only a single
heuristic at a time does not guarantee the detection of more vulnerabilities.
Intuitively, the highest potential for corruption detection is reached by com-
bining several heuristics.

2. While full emulation is the best strategy, emulators are rarely available.
Our experiments shows that, if it is possible to fully emulate the firmware
of the device under test, then few selected heuristics can mitigate the lack
of fault detection mechanisms. This increases the accuracy of vulnerabil-
ity discovery to what we now expect when fuzzing desktop applications.
While this may seem to solve the problem, full emulation is still very dif-
ficult to achieve. In particular, third party testers often lack sufficiently de-
tailed knowledge of the hardware to implement a good emulator. Moreover,
even with sufficient documentation, implementing a full emulator requires a
considerable amount of manual effort.

70 Enhancing Dynamic Analysis & Testing for Embedded Systems

3. Partial emulation can lead to accurate vulnerability detection, with a
significant performance impact.
When full emulation is not possible, partial emulation can lead to the same
benefits in term of accuracy, at the cost of a significant slowdown of roughly
one order of magnitude. In particular, partial emulation with peripheral
modeling provides an interesting trade-off between vulnerability detection
and fuzz speed throughput and does neither require a sound emulator nor
a physical device to be present. Moreover, this setup allows parallelizing
fuzzing sessions, thus making fuzz-testing embedded devices more scalable.

A further advantage of our emulation-based approach is that PANDA could also
be used to record and replay the execution, which largely simplifies the followup
analysis to identify the root cause and possible impact when a vulnerability is
detected.

Another interesting observation is that liveness checks often detect crashes due
to a timeout, which significantly slows down the fuzzing experiment. In an opti-
mal setup, where live heuristics are able to detect the majority of corruptions, the
liveness check could be omitted, which could result in a significant performance
improvement. This is conceptually demonstrated in Figure 5.5 for a simplified sce-
nario where processing the liveness check and processing the fuzz-input is taking
the same computation time.

Finally, while our results directly impact the performance of fuzzing embedded
systems, this work also applies to binary symbolic execution on embedded devices
firmware (e.g., as described in [ZBFB14]). An important problem of symbolic ex-
ecution is the state explosion problem: with a sufficiently complex program and
symbolic input the symbolic execution can rapidly reach a very large number of
states which exhaust resources or takes indefinitely long time to complete. Typi-
cally, state exploration will continue until a terminating condition is found. There-
fore, if the corruptions are not promptly detected, the symbolic execution could
spend a significant amount of time computing useless states.

5.4. Fuzzing Embedded Systems: An Experimental Evaluation 71

Fuzz
ing Star

t

Dev
ice

 Star
t

corruptionreboot time

liveness check

1st fuzz input

nth fuzz input
Reb

oot

corruption
detected

Fuzz
ing C

ont.

n+1h fuzz input

(a)

Fuzz
ing Star

t

Dev
ice

 Star
t

reboot time

1st fuzz input

2*nth fuzz input
Reb

oot

corruption
detected

Fuzz
ing

 C

ont.

2*n+1th fuzz input

(b)

Figure 5.5: Example timelines of a fuzzing session with (a) liveness checks, and (b) live
detection without liveness checks.

72 Enhancing Dynamic Analysis & Testing for Embedded Systems

5.5 Outlook: Concolic Testing on Firmware
Offline symbolic execution confines common problems of symbolic execution by
only analysing one execution path at a time, trading efficiency with operationality
[BCD+]. One particular interesting kind of offline symbolic execution is concolic
execution, a mixture of concrete and symbolic execution, in which a symbolic
execution engine follows traces from concrete runs of the program under test. Al-
though concolic execution have been shown to be valuable for testing desktop
software [BGM13], it has not been widely adopted as testing method for binary
firmware.

In this section, we will analyse the state of the art of symbolic and concolic execu-
tion for firmware and propose a novel, concolic execution based approach.

5.5.1 Prior Art

Similar to fuzz testing, both symbolic and concolic execution gained traction as
testing technique for firmware recently. Besides the targeted firmware type and the
used execution engine, previous studies mainly differ in two key aspects: whether
they require the presence of source code, and whether they embed the actual device
in the analysis. Table 5.4 shows a selection of previous studies and the correspond-
ing key aspects.

While approaches requiring source code are not applicable for binary firmware
analysis, they help to understand the intrinsic challenges for symbolic execution
on firmware. For instance, Kim et al. [KKJ12] used CREST [BS08], an open
source concolic test generation tool for C code, to concolically execute various
applications for Type-III embedded systems. They point out that it is easier to use
source code in this context, as a binary-based approach would require symbolic
execution engines to implement the specific hardware platform for the software
under test, which requires a considerable amount of effort. This is in line with the
challenge of platform variety, as pointed out in Section 3.1.2.

Study Engine Binary Based Uses Device? Type of Firmware
Type-I Type-II Type-III

[KKJ12] CREST - - 3 - -
[DMRJ13] KLEE - - - 3 3
[ZBFB14] KLEE (S2E) 3 3 - 3 3

[SWH+15] angr 3 - 3 3 -
[CZJ+15] SMAFE 3 3 - 3 -
[HFT+17] KLEE, angr 3 - - 3 3

[CCF18] KLEE - 3 - 3 3

Table 5.4: Symbolic and concolic execution on firmware: exemplary studies.

5.5. Outlook: Concolic Testing on Firmware 73

FIE [DMRJ13] demonstrates that this challenge is even exacerbated when symbol-
ically analysing Type-II and Type-III systems, where interaction with the hardware
is frequently directly integrated in the program under analysis, as chips and periph-
erals now need to be modeled. Additionally, for those systems, interrupts can po-
tentially occur at any time, which requires symbolic execution engines for source
and binary based analysis alike to implement special means for interrupts to avoid
state explosions. FIE for instance requires the analyst to provide an InterruptSpec,
while FirmUSB [HFT+17] uses a dedicated interrupt scheduling mechanism.

Another way to deal with this problem is presented by Inception [CCF18], where
a physical device is used and occurring interrupts are forwarded to the symbolic
execution engine in a tightly synchronized manner. Besides overcoming the issue
of interrupts, invoking the device has another additional advantage for symbolic
and concolic analysis on binary firmware: concrete state is present and can be used
to populate the symbolic execution engine, as done in avatar one [ZBFB14]. This is
directly opposed to binary-based, no-device approaches as Firmalice [SWH+15],
in which the state is over approximated and requires additional optimizations such
as lazy initialization.

Summing up this analysis, we believe that a flexible concolic execution engine for
binary firmware should use the physical device because it (a) prevents the need of
implementing new emulators for every tested device, and (b) offers concrete state
for bounding symbolic exploration to a single path. (c) limits the problem of state
explosion through hardware interactions.

However, up to our knowledge, only one study performs concolic execution on
embedded systems following this approach. Chen et al. [CZJ+15] use run time in-
formation collected by dedicated remote debugging features provided by VxWorks
to guide SMAFE, a symbolic execution engine originally developed for windows
executables [CZZ+13]. Unfortunately, besides being coupled to VxWorks, the
tool makes a 1-to-1 relationship between symbolic execution engine and analyzed
device, which is severely limiting the scalability of this approach.

5.5.2 The Terrace Testing Platform

In this chapter, we will present a novel approach for Testing Embedded systems
using Record & Replay and Concolic Execution (Terrace). The core focus for this
approach is to enable scalable, binary-only testing analysis which is achieved by a
carefully crafted architecture.

74 Enhancing Dynamic Analysis & Testing for Embedded Systems

Overview

The basic idea of Terrace is seemingly simple: Decoupling the symbolic analysis
and concrete execution on the device allows for sequentially running test cases
on the device while parallelizing the slow, symbolic execution. Additionally, the
record and replay functionality provided by avatar2 further enables to generate
traces for a symbolic execution engine during replay. As pointed out in Section
2.3.3, this is better than live trace generation, as a smaller run-time performance
overhead is imposed on the embedded system.

Figure 5.6 illustrates the architecture of Terrace. As its core, Terrace consists of
three different types of virtualized containers, which communicate with each other
and use a Data Share holding important information for all three of them, such as
configuration scripts or the binary firmware. The three container types are:

1. Record Container. Every container of this type is directly associated with
a physical device and creates recordings of the execution of the partially
emulated firmware under test.

2. Analysis Container. Containers of this type are replaying the records while
generating traces compatible with the used symbolic execution engine.

3. Backend Container. Containers of this type perform the actual symbolic
analysis and generate new test cases.

Concolic testing with Terrace is designed to be automated. As a first step, an
initial test case is provided to a record container. Once the record is finished, it
is added to the record queue. From there, it is passed on to an analysis container,
which generates a trace, which in turn is passed to a backend container via another
queue. This backend container then follows the trace symbolically while solving
constraints and generating new test cases.

From here, the loop is repeated. However, as symbolic execution is slower than
concrete execution, and as multiple test cases are generated at once, testing can
now be parallelized: The record container sequentially executes all new test cases,
while analysis and backend container asynchronously process generated records
and traces. Additionally, thanks to the containerization, parallelized processing
of records and traces is facilitated, as additional containers can be spawned on
demand.

5.5. Outlook: Concolic Testing on Firmware 75

gg

g

Data Share

Record
Queue

Record
Container

Analysis
Container

Backend
Container

Trace
Queue

Test
Cases

Initial
Test Case

Figure 5.6: Overview of Terrace.

76 Enhancing Dynamic Analysis & Testing for Embedded Systems

Implementation

We built Terrace on top of Docker for providing containers and provide a single
python script as interface for the analyst. The Data Share is realized via a shared
volume exposed to all containers, whereas records and traces are exchanged via
volumes only exposed to the corresponding container types.

The generation of records is performed using avatar2, and an analyst has to pro-
vide an avatar2-script capable of generating a record. It is noteworthy, that we
implemented Terrace in a way that it can handle multiple record containers at the
same time, effectively allowing concolic execution with a device pool. Obviously,
this requires multiple physical devices, and each record container is associated
with one of them.

The trace generation is performed with the help of PANDA plugins which log
executed basic blocks and accessed memory. However, memory accesses can fall
into different categories and are treated differently:

1. Normal Memory. As the name suggests, these accesses are plain, nor-
mal accesses. Whatever is written into a normal memory location will not
change, and reads will always return the last-written value. Hence, Terrace
only needs to log the values on those locations when they are first read.

2. Special Memory. Following the terminology of FIE [DMRJ13], MMIO has
to be considered as special memory, as the content of this memory is driven
by the peripheral, rather than the CPU. Hence, reads can return different
values every time and are not necessarily returning data of preceding writes.
Terrace logs every read to special memory in the trace so that the values can
be replayed to the symbolic execution engine.

3. Symbolic Memory. This memory is simply the source for the symbolic data
used later on in the symbolic execution engine. However, in comparison to
traditional symbolic execution, two reads from the same location may return
different symbolic values in the case of special memory. As a result, Terrace
logs every byte read from symbolic memory, but flags it as symbolic. It
additionally stores the concrete value, which allows for later concretization
in case the symbolic execution needs to be bounded later on.

The information about which memory locations fall into which category is pro-
vided by the analyst in the global configuration. We designed this configuration to
be compatible with avatar2, so that the recording scripts can use this information
for automatically setting up a partial emulation environment.

5.5. Outlook: Concolic Testing on Firmware 77

The last part of the implementation consists of the backend container. We de-
signed Terrace to be flexible and, hence, allow for different symbolic execution
engines as backend. At the time of writing, we implemented angr and KLEE as
backends, because those engines are the most popular choices for symbolic anal-
ysis on firmware, as shown in Table 5.4. We adjusted both engines to operate on
traces generated by Terrace, and in case of the KLEE backend, we additionally use
PANDA during the analysis phase to generate the LLVM bitcode for execution in-
side KLEE. Additionally, before registering a new test case to the test case queue,
Terrace ensures that it has not been enqueued, or tested, in a previous run of the
loop.

Discussion

So far, our implementation for Terrace is solely experimental and a thorough eval-
uation for performance and efficacy is remaining for future work. Nevertheless, we
believe that the approach presented by Terrace is promising, especially as it over-
comes a set of common problems experienced for symbolic execution on firmware.

First of all, following concrete traces greatly simplifies symbolic exploration on
embedded systems. Common problems like interrupt handling, or circumventing
the creation of an non-manageable amount of states due to other hardware interac-
tions are not necessary thanks to the benefits of offline symbolic execution.

Additionally, we allow for a huge amount of parallelization and even provide the
possibility to distribute test cases among multiple embedded systems. Up to our
knowledge, we are the first to propose the usage of a device pool combined with
decoupled concolic execution, leading to a scalable testing method only bounded
by the number of available devices.

Furthermore, by decoupling symbolic execution and trace generation, we allow for
running additional analysis passes on the traces before passing them to the sym-
bolic execution engine. For instance, embedded devices often spent considerable
time in loops waiting for the arrival of new data or interrupts. Those loops can be
easily detected, either manually by the analyst or by static analysis, and removed
from the trace, which allows speed-ups for the symbolic execution.

Another benefit resulting from the modular design of Terrace is the possibility
to easily exchange components. Instead of generating records, for instance, live
traces could be collected using hardware-debug features, if present. Subsequently,
the analysis container would not replay a record for trace generation, but format
the collected traces to a Terrace compatible format.

78 Enhancing Dynamic Analysis & Testing for Embedded Systems

Chapter 6

Firmware Unpacking Revised

For dynamically analyzing and testing firmware, one must first obtain a copy of the
devices’ firmware. However, as pointed out with Challenge-1, firmware retrieval,
extracting firmware directly from a device is often a challenge on its own and may
require sophisticated methods and dedicated equipment.

Another way for firmware retrieval are firmware update packages either directly
obtained from the vendor, or intercepted during the update process [VOC18].
However, even when an update package is found, understanding its structure is
often complicated, as data, binary code, and even full file systems are interleaved,
frequently only organized by a vendor specific format. The process of understand-
ing those formats and splitting the firmware image into its constituent parts is
known as firmware unpacking and is a widely acknowledged challenge [CZFB14,
SWH+15, LZL+16, SCA+18, SMB+18].

This chapter aims to provide more background on the topic of firmware unpack-
ing and proposes Groundhogger, a novel system for firmware unpacking based on
dynamic analysis. Furthermore, we present three case studies to exemplify the
typical applications and use cases of Groundhogger.

6.1 A typical firmware update
As introductory example, we provide pseudo-code for a typical firmware updater
in Listing 6.1. In most scenarios, the main firmware update routine combines the
tasks of retrieving the update file, checking its validity, unpacking it, and trans-
ferring it to non-volatile storage. Errors could occur at any stage and the update
routine normally returns early to avoid deploying a corrupted firmware update.

79

80 Firmware Unpacking Revised

Listing 6.1: Typical Firmware Update Routine.
1 int update_firmware {
2 void *update_file, *update_unpacked;
3

4 update_file = get_firmware_update();
5 if (update_file == -1)
6 return -1;
7

8 if (!verify_metadata(update_file))
9 return -2;

10

11 if (!verify_integrity(update_file))
12 return -3;
13

14 update_unpacked = unpack_firmware(update_file);
15 if (update_unpacked == -1)
16 return -4;
17

18 if (!flash_firmware(update_unpacked))
19 return -5;
20

21 reboot();
22 }

The way the update file is retrieved depends heavily on the type of device. For in-
stance, it could be delivered as a file on an external storage media, directly down-
loaded from the vendor’s website, or simply manually transferred by the user over
the network.

After the update is loaded into RAM, the update routine first ensures that it is a
valid firmware update file by verifying that the file itself is in the right format and
checking fields in the header, such as target device and version number. Should
all those fast checks succeed, the integrity of the update file’s content is validated.
Most of the times, this is simply done by computing a checksum over the con-
tent and comparing it against a value given in the update file header. The check-
sum algorithms used vary and are often custom-tailored by the vendor. Recently,
many vendors have begun using standardized signature schemes which addition-
ally prove the authenticity of the update file. This also requires the public key of
the vendor to be deployed on the device.

Next, the firmware update is unpacked. In simple cases (e.g., when the firmware
is neither encrypted nor compressed), unpacking can be as simple as splitting the
data into the different segments. However, many vendors rely on compression
mechanisms to reduce the size of the update file and some choose to encrypt their
firmware updates. Quite often, the used compression and encryption schemes are
vendor-specific.

6.2. Unpacking in Prior Research 81

Once the firmware file is unpacked, the update routine flashes the new version to
the non-volatile storage of the device, for instance NVRAM or flash memory. In
most cases, the device is rebooted afterwards to finalize the deployment of the
firmware update.

6.2 Unpacking in Prior Research
There is a vast amount of motivations for unpacking firmware next to dynamic
testing, such as deploying patches to end-of-life systems, understanding the inner
workings of the hardware platform, finding or inserting backdoors, or statically
analyzing the firmware for vulnerabilities. To better understand how unpacking has
been addressed in prior work, we reviewed recent work on firmware and embedded
device analysis. Table 6.1 summarizes our review and provides several interesting
insights.

In the academic literature, we find that no existing work has focused solely on
the problem of unpacking; in fact, most of the time unpacking just forms the ini-
tial step for vulnerability discovery on firmware images. On the other hand, in
cases where the goal was modification of the firmware, understanding of the up-
date file format was obtained by manual reverse engineering. Additionally, the
main corpus of work for large scale analysis is conducted on Linux-based firm-
ware, most often running on routers or IP cameras. These kinds of devices appear
to be “low hanging fruit,” as firmware images can be easily unpacked with ex-
isting tools, in particular because they are often simple archives or standard file
systems [LZL+16].

However, the scope of embedded devices goes far beyond Linux-based firmware.
For example, Costin et al. [CZFB14] reported that 86% of their unpacked firmware
is Linux-based. Yet only around 20% of their collection of firmware images were
unpacked: Linux-based firmware is easier to unpack. The vast majority of large-
scale unpacking efforts fails to unpack more than half of the firmware updates in
the data set and focuses the subsequent analysis on successfully unpacked Linux-
based firmware. It is possible that a large part of not unpacked firmware images
are composed of monolithic firmware, encrypted or obfuscated images, which can-
not be generically unpacked without significant reverse engineering effort, as for
instance shown in [Cap16].

We conclude that the state of the art of automated unpacking focuses mostly on
Linux-based firmware, leading to an over-representation of devices with easily-
unpacked firmware. Unpacking for other types of firmware as common on Type-II
and Type-III devices, however, has not been automated and is hence based on
manual reverse engineering.

82 Firmware Unpacking Revised

Study Motivation Method Unpacked Targeted devices(success/attempts)

[ZKB+13] Firmware Modification Reversing 1 / 1 Harddrive
[CCS13] Firmware Modification Reversing 373 / ? Printers

[MEMS14] Firmware Modification Reversing 1 / 2 Mouse
[CZFB14] Vulnerability Discovery BAT (mod.) 33,356 / 172,751 Various

[CWBE16] Vulnerability Discovery Binwalk (mod.) 9,486 / 23,035 Various/Linux
[FZX+16] Vulnerability Discovery Unspecified 8,126 / 33,045 Routers, IP Cams, APs

[Cap16] Vulnerability Discovery Reversing 1 / 1 Undisclosed
[TGC17] Backdoor Detection Binwalk, FMK, BAT 7,590 / 15,438 Various/Linux

[LFW+18] Device Fingerprinting Binwalk 5,296 / 9,716 Routers, Gateways
[DPY18] Vulnerability Discovery Binwalk ~2,000 / ~5,000 Routers, IP Cams

[CLW+18] Vulnerability Discovery Binwalk 6 / ? Routers, IP Cams

Table 6.1: Previous studies which use firmware unpacking.

6.2.1 Unpacking Tools

In terms of software for firmware unpacking, we found that most previous work
relies either on the Binary Analysis Tool (BAT) [HKVD11], or Binwalk [Hef13].

BAT was originally designed to detect GPL violation via string matching and com-
puting similarities between binaries and compressed data. As intermediate step,
the tool recursively unpacks and decompresses data in common archive and com-
pression formats identified by their magic numbers. Recently, the successor of
the tool, Binary Analysis Next Generation (BANG) [Hem18], added support for a
wider variety of unpackable file formats and included new features to add contex-
tual information to unpacked files [Hem19].

Binwalk’s main feature is its ability to perform signature scanning inside firm-
ware images. Additionally, recent versions also support recursive unpacking and
entropy analysis. The tool also exposes a Python API for scripting and can be en-
hanced with custom plugins, making it a common choice for firmware unpacking.

Finally, a third tool, FRAK [Cui12], is sometimes mentioned in the literature.
However, neither the source nor the binary code of the tool has been publicly
released, and therefore its adoption and use is very limited.

Besides these generic frameworks, custom unpackers and repackers for firmware
of a specific device are quite common and are often developed after successful
reversing of a specific firmware update format, such as in Cui et al. [CCS13] and
Zaddach et al. [ZKB+13]. The Firmware Mod Kit (FMK) [HC13] is a collection
of a variety of such tools combined with Binwalk in order to allow convenient
unpacking and repacking of firmware in common image formats.

6.2. Unpacking in Prior Research 83

6.2.2 Challenges in Firmware Unpacking

Generic firmware unpacking is an open and widely acknowledged problem, and
the difficulties are attributed to a variety of different reasons [CZFB14, SWH+15,
CDZ+18, SCA+18, CLW+18]. In general, we identify the following four core
challenges in unpacking:

1. Obtaining Firmware Updates.

A logical requirement for unpacking firmware is acquiring the firmware it-
self. Although some vendors release update files on their website, this is by
far not the norm, and even in those cases, the updates may only be accessed
by authorized users. Additionally, some vendors only ship generic update
software, which downloads the specific firmware update for the target de-
vice on demand—in a process that is completely opaque to the user.

Another recent trend, especially for embedded devices serving in the so
called “Internet of Things (IoT)” is Firmware over-the-air (FOTA). Here,
the user does not initiate a firmware update at all—instead, a central server,
most of the time vendor controlled, pushes the firmware update to the device
automatically.

2. Custom File Formats.

Firmware updates are normally shipped as a single file to enable easy de-
ployment. Unfortunately there is no standard format for a firmware update.
Instead, each vendor typically creates their own format, which may include
custom headers and data sections, manifests, checksums, and embedded dig-
ital signatures. For a given vendor, different products can have different file
formats, but in many cases a vendor will use the same file format across
multiple products. Groundhogger can take advantage of this and use a sin-
gle extracted unpacker to extract multiple firmware versions across multiple
products.

3. Compression & Encryption.

To save disk space and bandwidth, firmware updates are usually compressed
using standard compression algorithms such as gzip and lzma. However, in
many cases these algorithms have been modified slightly in ways that render
them incompatible with standard tools.

Encryption and digital signatures are also widely used by vendors in an ef-
fort to keep the code and data of the firmware hidden and prevent unautho-
rized firmware modifications. Here, again, there is a great diversity in the
algorithms used: for instance, a standard algorithm such as AES may be

84 Firmware Unpacking Revised

used with a fixed key that is embedded elsewhere on the device [Sch16],
while other vendors may opt to implement a custom, usually weak encryp-
tion scheme of their own devising [Cap16].

In some cases, these modified algorithms have been reverse engineered and
incorporated into open-source tools such as Firmware Mod Kit [HC13], but
the large number of variants that exist means that there are many firmware
images that have no easy means of decompression and decryption.

4. Diversity of target platforms.

Challenge-2 for firmware analysis in general, the diversity of hardware plat-
forms, also applies to unpacking. Naturally, embedded devices give few to
no interfaces for introspection, and the variety of different instruction set
architectures, peripherals, and operating systems makes it infeasible to em-
ulate firmware code without further preparation. As a result, all kinds of
dynamic analysis approaches are more difficult to exercise in comparison to
traditional desktop systems.

6.3 Groundhogger: A Framework for Semi-Automated
Unpacking

As seen in the last section, the majority of previous work attempts unpacking on a
large scale. To cope with a huge variety of firmware, tools rarely attempt to parse
the packaging format but rather rely on static analysis techniques, such as file carv-
ing, entropy analysis and magic number matching. As a result, parts of the content
in a firmware update file can easily be missed. This imprecise unpacking does
not suffice for all kinds of firmware updates. In particular, targeted analyses for
specific devices often need to fall back to manual reverse engineering for creating
precise unpackers.

We believe that the tedious manual effort for creating precise unpackers is an over-
looked problem and could benefit from an automated or semi-automated solution,
which we propose in this section. Our work aims to bridge the gap between large-
scale firmware unpacking with static tools and case studies with single firmware
images. More specifically, we exploit the partial emulation and instrumentation
capabilities provided by avatar2 to improve the state of firmware unpacking
through dynamic analysis. The key insight is that a device’s firmware must know
how to unpack and process its own updates. By recording the firmware update
procedure and extracting the relevant unpacking code, the unpacking capabilities
can be re-hosted on an analysis system. Because vendors reuse their firmware im-
age format across different products, this re-hosted unpacker can then be used to

6.3. Groundhogger: A Framework for Semi-Automated Unpacking 85

unpack firmware for other devices. Additionally, we will show that the extracted
unpacker can be automatically analyzed for checksum or signature verification
functions, allowing for firmware modification.

6.3.1 Overview

In the following, we will present Groundhogger, a novel system for identifying
and re-hosting firmware unpacking and validation methods.

The core idea of Groundhogger is based on two independent observations: (1)
the firmware deployed on an embedded device must know how to process its own
update files, and (2) multi-target orchestration allow for sophisticated dynamic
analysis during run time of the unpacking routines.

In particular, Groundhogger takes advantage of the partial emulation and analysis
capabilities of avatar2 to automatically identify and extract the crucial parts of
firmware update mechanisms, i.e., the functions responsible for unpacking and
validating a new firmware image. Once extracted and re-hosted, these functions
can be executed as standalone tools without the physical device. For instance, this
allows an analyst to easily create unpackers for custom firmware formats. As we
will show, this approach is especially valuable because vendors tend to re-use the
same firmware file format and packing mechanisms across different products.

Groundhogger also eases the development of firmware modification attacks, by
drastically minimizing the amount of manual reverse engineering involved in prepar-
ing a well-formed modified firmware.

All this is possible because in our work we only need to emulate a small snippet
of code which typically has no or limited hardware interactions. In other words,
the amount of I/O requests to the actual hardware is small and typically, neither
unpacking nor validation routines are interrupt-driven, thus preventing bandwidth
or latency issues, which are some of the biggest challenges that affect partial emu-
lation systems.

6.3.2 Approach

While the core idea is simple, the actual challenge lies in its automation. In fact,
to improve the state of the art, we want our system to be able to go from a device
that can be partially emulated to re-hosted routines with a minimal amount of man-
ual interaction. In the following, we describe the main steps of Groundhogger’s
analysis, which are also visualized in Figure 6.1:

1. Device Preparation. The first step, which needs to be performed manually,
consists of setting up the target device for partial emulation. A common so-

86 Firmware Unpacking Revised

Function
Rehosting

Emulator Snapshot

Groundhogger
Analysis

!
Partial

Emulation

ɠ

!
Record

Firmware Update

ɡ

Vendor

FW

RR Log

f1f2f3f4f5f6

1

f1f2f3f4f5f6

1

f1f2f3f4f5f6

1

f1f2f3f4f5f6

1

f1f2f3f4f5f6

1

ɢ

f5

1

f5

1

Packed FW

Unpacked
Firmware

()

ɣ ɤ ɥ

Figure 6.1: Overview of Groundhogger. The numbers below each stage refer to the steps
in Section 6.3.2.

lution is to use debug interfaces such as JTAG [KKM15, CCF18, MNFB18],
but other approaches exist that rely on injected stubs accessible via net-
work [KPK14], USB [TTZ+18], or UART [ZBFB14].

2. Trace Recording. Once the device is ready, the firmware update has to be
initiated. During the firmware update, the host emulator records the execu-
tion. Note that only the firmware update routine has to be executed inside
the emulator, which largely simplifies the partial emulation process. This is
the only phase in which partial emulation is required, as all following steps
can be performed on the recorded information.

3. Input Buffer Isolation. This is the first step of Groundhogger’s automated
analysis. Its task is to locate the firmware update file in memory, denoted
as update_file in Listing 6.1. Given that the firmware needs not be in
memory at the beginning—or end—of the update routine, a simple linear
search over the memory is often insufficient. Instead, Groundhogger dy-
namically locates the firmware update file by observing memory accesses
during the replay of the recorded update. The location of the update file will
serve as input buffer for the majority of functions during the update.

4. Identification of Functions of Interest. Groundhogger continues its analy-
sis by identifying those functions that access the input buffer. In the example
given in Listing 6.1, this would include the functions verify_metadata,
verify_integrity, and unpack_firmware.

The general intuition is that any function that processes the firmware update
file can be of interest to the analyst. For instance, in most cases tagging
functions which take a pointer to the input buffer as argument is sufficient

6.3. Groundhogger: A Framework for Semi-Automated Unpacking 87

to find the unpacking routine. However, when this default behavior fails to
locate the actual unpack routine, Groundhogger can also be instructed to tag
all functions which perform at least one memory read access on the input
buffer.

5. Routine Selection. Given the set of tagged functions, the analyst needs to
select which ones she wants to rehost. In order to provide additional in-
formation to guide this selection, Groundhogger provides a flexible plugin
system. For instance, at the time of writing we provide a plugin for automat-
ically identifying decompression and decryption routines. It does so by first
locating the output buffer for the unpacked firmware (update_unpacked
in Listing 6.1) by tracking memory write accesses performed by the tagged
functions. Locations which receive a large amount of continuous writes are
very likely candidates for the output buffer. In a subsequent run of the re-
play, functions which modify the output buffer are identified and reported as
targets for re-hosting, as they are very likely to perform the decompression
or decryption routines.

6. Function Rehosting. The last step consists in re-hosting the desired routine
together with the associated input, and, if applicable, output buffer. For
this, Groundhogger creates first a snapshot of the emulator upon entry of the
target function. Afterwards, it starts execution from there, while exchanging
the input buffer with a firmware update file specified by the user.

Once the function finished executing, Groundhogger can automatically ex-
tract and store contents of registers or memory to disk, which allows for
instance retrieval of the unpacked firmware in case unpacking routines are
rehosted.

While this methodology may also extract routines which are not easily rehostable
due to hardware interaction (false positives), the user can reiterate over steps 4-
6 until the correct functions are identified. Moreover, this iterative process can
be easily automated by telling Groundhogger to simply attempt to rehost all the
identified functions.

Additionally, Groundhogger provides valuable information for further reverse en-
gineering, if required. In fact, the location of input and output buffers, as well as
the set of functions of interest identified in step 4 are useful assets for understand-
ing the details of a firmware update routine.

88 Firmware Unpacking Revised

Entry Point for Recording

A major challenge in our approach is how to determine where, in the firmware
execution, the recording should start. This is important to identify which part of
the code needs to be executed in the emulator, rather than on the physical device.
In an ideal setting, the record should only contain the target routine, but if we knew
it beforehand we would not need Groundhogger in the first place. Hence, as a good
approximation, we try to identify the firmware update routine or one of its callees,
and select it as starting point. This has two benefits: On the one hand, the update
routine must necessarily unpack and validate the firmware update file, and on the
other hand, the hardware interactions during the update routine are likely to be less
frequent than during normal execution.

For identifying the update routine, one can always fall back to manual reverse en-
gineering. Most of the times, the update routine is easy to identify by analyzing
string references, as most firmwares print or log at least some kind of status infor-
mation about the update. At the other end of the spectrum, if one has access to
a perfect partial emulation system or a complete emulator for the hardware of the
target device, one could simply record the complete execution starting from boot
to the end of the firmware update, without the need to first locate a suitable entry
point.

One heuristic to semi-automatically locate the entry point is to manually start the
firmware update on the device and interrupt the execution shortly after. As un-
packing, check-summing, and writing the updated firmware from volatile to non-
volatile memory takes a considerable amount of time, it is likely that the execution
would stop during the update process. From here, a full snapshot of memory and
register state can be performed, and the firmware update routine can be found by
analyzing the stack frames, which can be performed in an automated manner.

Implementation Details

We implemented a proof-of-concept version of Groundhogger using avatar2 for
orchestrating embedded devices and PANDA [DGHH+15]. We use the emulator
for recording and analyzing the firmware update procedures. As pointed out in
Section 2.3.3, the advantage of relying on recordings is that they only store non-
deterministic inputs and a snapshot of the initial state, which leads to a smaller
memory footprint than conventional execution traces.

We developed a PANDA plugin that can automatically perform steps 3 to 5 in
our approach, and use avatar2 not only for partial emulation in the first step,
but also to orchestrate the full process. Note that, even though our tool is based on
PANDA, identification of the routine to rehost can also be performed on traditional

6.3. Groundhogger: A Framework for Semi-Automated Unpacking 89

execution and memory traces gathered from the actual hardware, in case those
features are available for the device under analysis.

6.3.3 Limitations

At a first glance, the solution presented by Groundhogger may appear unnecessar-
ily complicated: why should we bother to setup a partial emulation system to un-
pack and repack firmware for a device we already have access to? The answer lies
in the fact that Groundhogger aims to facilitate rehosting of functions of interest.
This allows, among others, for the creation of re-usable and flexible unpackers: On
the one hand, those unpackers can now be run without the physical device present
which results into additional scalability. On the other hand, as we will show in the
next chapter, unpacking routines are often re-used across different products of the
same vendor, broadening the applicability and reusability of unpackers generated
by Groundhogger.

Because Groundhogger is based on partial emulation [ZBFB14, MNFB18], it in-
herits the limitations of that technology. Specifically, partial emulation cannot cur-
rently handle devices that make use of Direct Memory Access (DMA), or devices
that have no debug access. As partial emulation technology improves and starts
supporting a wider range of devices, Groundhogger will also increase its ability to
extract a wider range of update routines.

Groundhogger is also currently still a prototype, and requires manual intervention
at some stages. Specifically, finding the entry point for the recording and starting
the individual steps described in the last section has to be carried out manually.
However, we believe that many of these steps can be automated in future work. We
also want to stress that once a firmware unpacking routine has been successfully
extracted by Groundhogger, it can usually be applied to other firmware versions
for the same target device (or even to other devices from the same manufacturer),
without manual intervention and without the need of acquiring any new hardware,
as long the unpacking code does not rely on dedicated hardware features.

Another limitation for Groundhogger is firmware using strong cryptographic prim-
itives in their update routine. In particular, devices using per-device keys and, sub-
sequently, per-device updates are protected against the re-hosting approach pre-
sented in this work. In fact, while Groundhogger can still analyze and rehost the
firmware unpacking and validation routines, these are not helpful for unpacking
or modifying the firmware of other devices of the same type. However, Costin
et al. [CZFB14] showed that reuse of cryptographic keys in embedded devices is–
unfortunately–a widespread problem and our intuition is that firmware update keys
are no exception to this rule.

90 Firmware Unpacking Revised

For some targets it may be feasible to obtain an unpacked firmware image, but
difficult to actually run the device under partial emulation (for example, one may
not actually have the physical hardware at all). In this case it may be desirable
to develop static equivalents of the heuristics used by Groundhogger to locate and
extract firmware update functions. We leave this to future work.

An important advantage of Groundhogger is that the tool is, conceptually, not lim-
ited to firmware unpacking and validation routines. In fact, every function with
limited hardware interaction could be identified and re-hosted when heuristics for
tagging the function can be established. One promising example for this are, for
instance, cryptographic primitives. Gröbert et al. have shown that they can be
identified using dynamic analysis [GWH11] and Groundhogger can be easily ex-
tended accordingly. Another additional use-case could be the identification and
re-hosting of parsing routines similar to what discussed in PIE [CZV+15], which
in turn would allow for additional dynamic analysis techniques.

Overall, we see great potential for the approach presented by Groundhogger not
only for firmware unpacking, but also for enabling different aspects of dynamic
firmware analysis in the future.

6.4 Groundhogger: Case Studies
Now, we present three case studies carefully chosen to emphasize both the ad-
vantages offered by Groundhogger, and the challenges encountered in real world
scenarios. These three case studies reflect different goals, as well as three very
different challenges as summarized in Table 6.2.

The first example shows how to use Groundhogger to unpack a firmware packed
with a very complex routine. The second shows how to use Groundhogger to
prepare a modified version of a firmware, and how to cope with an embedded
device running a Linux operating system. Finally, the third example shows how to
unpack a firmware of a solid state disk drive, and how to carry out a modification
attack when the code is cryptographically signed.

Case Device Type Vendor Model(s) Motivation Core Challenge

(I) Digital Camera Canon EOS 60D/450D Unpacking Complex Update Procedure
(II) IP Camera Foscam FI8918W Modification Complex Operating System

(III) Solide State Disk Micron Crucial MX100 Unpacking Complex Hardware Platform
Modification Signed Firmware Update

Table 6.2: Summary of Groundhogger’s case studies and their challenges.

6.4. Groundhogger: Case Studies 91

6.4.1 Case I: Firmware Unpacking

Hardware Platform and Device Information

The first case study is purposefully selected to demonstrate the capabilities of
Groundhogger under perfect conditions, i.e., when a device’s firmware can be en-
tirely rehosted in an emulator. We selected firmware updates for Canon EOS Dig-
ital Single-Lens Reflex (DSLR) cameras as our target, as an independent QEMU
fork for emulating the firmware exists as part of the Magic Lantern project. To
perform the recording on the firmware from a real device, we acquired a Canon
EOS 60D camera.

Challenges

The main challenge of this first scenario is the fact that the update mechanism is
unusually complex and involves multiple stages, which are summarized in Fig-
ure 6.2. We now provide the low-level description to showcase the intricacies of
a firmware update routine and to establish a basis for understanding the results of
Groundhogger. However, we want to stress that this information is not necessary
for setting up and running Groundhogger.

In the first step, the firmware update file needs to be copied to an SD card which
is then inserted into the camera. The user then has to start the camera and request
a firmware update in the main menu. Internally, the camera verifies the presence
of an update file on the SD card, sets a flag in non-volatile memory and issues a
system reboot.

Upon reboot, the stage-0 bootloader, executed from ROM, loads the stage-1 boot-
loader into RAM and transfers execution to it. The stage-1 bootloader then checks
whether the update_requested flag is set and, if so, loads the update file
from the SD card into RAM. Afterwards, the bootloader checks a field of the up-
date file’s header to ensure that the update targets the right camera model. If this
is the case, a checksum is computed over the firmware file and compared with the
corresponding field in the header.

If the checksum matches, the stage-1 bootloader copies another chunk of functions
from ROM to RAM. These functions are responsible for decrypting the first part
of the update file. After successful decryption, control is handed back to the stage-
1 bootloader, which then in turn transfers execution to the freshly decrypted part
of the firmware update file. This part, called the flasher by the Magic Lantern
community1, performs a variety of operations and eventually decrypts the rest of
the firmware update.

1http://magiclantern.wikia.com/wiki/Packing_FIR_Files.

http://magiclantern.wikia.com/wiki/Packing_FIR_Files

92 Firmware Unpacking Revised

Figure 6.2: Canon EOS 60D update process.
Encrypted Data Decrypted Data Executed Code

Groundhogger in Action

To carry out this case study, we first merged PANDA and the Groundhogger analy-
sis passes into the Magic Lantern QEMU fork, which allows a complete emulation
of the firmware code. To dump the firmware image running on our 60D, we in-
stalled the Magic Lantern add-ons, which saves the vanilla firmware of the camera
to its SD card.

As this use-case reflects the perfect scenario by having access to full emulation,
it is not necessary to use any heuristic to locate the entry point for the recording.
Instead, we were able to record the entire execution of the firmware obtained by
booting the device in “firmware update mode”. The execution eventually hangs,
probably due to the fact that not all peripherals are fully implemented by the Magic
Lantern project.

Once the entire trace was collected, we fed it to Groundhogger, which automat-
ically detected the input firmware location (i.e., the input buffer). It also tagged
a total of 16 routines as functions of interest (i.e., those that operate on the input
buffer). Interestingly, 11 of those routines were located inside the input buffer it-
self, hinting towards a multi-stage, nested update mechanism. This hypothesis was
later confirmed by Groundhogger during its fifth analysis step, when it attempted
to locate the output buffer and found that it was actually at the same position as the
input buffer: the unpacking was performed in place by overwriting the data.

With the position of the two buffers and the list of functions of interest in hand,
we had to identify the correct routines to extract the unpacker. Although in prin-
ciple we could have simply tried all 16 candidates, Groundhogger was able to
automatically pinpoint the two relevant functions by additionally marking those

6.4. Groundhogger: Case Studies 93

which, according to the recorded trace, modified the content of the output buffer
in addition to reading the input buffer.

This led to the successful identification of the unpacking routine that retrieved the
flasher (which accounts for roughly 15% of the update file) as well as the second-
stage routine inside the flasher itself. Note that while we successfully identified
both decryption routines with Groundhogger, we did not need to analyze which
kind of encryption was actually used to encrypt the firmware images.

Finally, since in this case Groundhogger extracted two independent unpacking rou-
tines, we decided to re-host them sequentially and independently of each other.
Additionally, to prevent errors due to in-place modification of the firmware update
file, we load the firmware to be unpacked into a new update_file buffer in
an empty space in RAM. We then set the register holding the pointer to the buffer
accordingly; both of these additional steps have been automated using avatar2.

Testing the Extracted Routines

To test the extracted unpacking routines, we manually downloaded firmware up-
dates for cameras of the EOS D product line available on Canon’s website. Only
32 cameras in the EOS D product line (out of 56 models) had firmware updates
available. Furthermore, for each model with an update, only the last update was
available. The first unpacking routine was able to successfully unpack the flasher
for 20 out of 32 firmware images. Then, by running the second extracted routine
identified by Groundhogger, we could correctly unpack the full firmware image in
all 20 cases.

Interestingly, firmware updates for Canon cameras with dual DIGIC cores contain
two distinct flashers embedded in the firmware update file, one for each core. Al-
though the 60D used as baseline for our unpacking efforts only comes with a single
DIGIC core, Groundhogger was able to unpack both flashers for the other models
without any problem.

In comparison, fir_tool2, a dedicated unpacking tool maintained by the Magic
Lantern community, could only unpack the flasher for 9 images and was never able
to unpack and retrieve the core firmware. The nine firmware images for which it
was able to extract the flasher used a XOR-based decryption routine, while the
images we unpacked with Groundhogger are for cameras released later than 2010
where the flasher is encrypted with AES.

In order to also unpack those 9 images, we obtained an additional firmware dump
for a Canon 450D, one of the cameras whose update are supported by fir_tool2.
We applied the Groundhogger analysis to it and could indeed unpack 9 flashers and

94 Firmware Unpacking Revised

9 core images. The only drawback in these cases is that we were not able to retrieve
the second flasher for dual DIGIC cores. We manually verified that the obtained
unpacked firmware images were correctly unpacked using disassembly, inspecting
strings and file entropy.

The remaining 3 firmware images which were neither unpacked by fir_tool2
nor Groundhogger are for older devices (before 2007) and come with a different
firmware update file format. We did not have a device to perform a record and to
confirm if Groundhoggoer would be able to unpack those.

In summary, Groundhogger was able to unpack 29 out of 32 firmware images
for the EOS D product line, without any complicated manual reverse engineer-
ing, while fir_tool2, which was based on manual reverse engineering by the
Magic Lantern community was only able to partially unpack 9 out of 32. Note that
our success at unpacking relies fully on the fact that Groundhogger successfully
identified and extracted the two unpacking methods. This case study also demon-
strates that Groundhogger can help minimize the amount of hardware needed in
order to unpack as much firmware as possible: an analyst can obtain one device,
determine which updates it can successfully unpack, obtain a second device among
the remaining unpacked firmware images, and so on until all available firmware is
unpacked.

6.4.2 Case II: Firmware Modification

Hardware Platform and Device Information

Our second case study demonstrates how Groundhogger can benefit the analyst
even if unpacking is already possible with existing tools. We choose the FOSCAM
FI8918W IP camera as target, which runs uCLinux and exposes both an UART and
a JTAG interface on its PCB.

Firmware updates are available on the vendor’s website for two different subsys-
tems of the camera: the web UI and the base system. The update itself is initiated
by uploading the firmware update file via the web interface of the camera.

Challenges

In this case, the firmware updates are neither signed nor encrypted, and they are
completely unpackable by using binwalk. However, when we try to upload a modi-
fied firmware update to the web UI, it reports a checksum error. Hence, the motiva-
tion for this case-study is to identify the location of the checksum in the firmware
update file and to re-host the checksum routine so that it can be used offline to
prepare a modified firmware image (in our example we aim to modify the web UI
update to steal the login credentials entered by the user).

6.4. Groundhogger: Case Studies 95

Figure 6.3: FOSCAM FI8918W prepared for Groundhogger.

The main challenge of this scenario is the fact that the device is running a complex
operating system (uClinux). While emulation of a Linux-based firmware is gener-
ally easier, it presents an additional challenge to our analysis because the firmware
update file is rarely present as a whole in a single input buffer in memory. Instead,
it is accessed via the Linux syscall API and different parts are accessed and verified
via sys_open, sys_read and sys_llseek.

Groundhogger

For preparation, we have to attach to the JTAG interface of the camera’s chip. Un-
fortunately, the interface is not exported to any header on the PCB. Nevertheless,
it can be accessed via soldering directly on the chip packaging or attaching to the
corresponding vias. We also soldered a connection to the UART pinout in order to
obtain additional debug output. Our setup can be seen in Figure 6.3.

Finding a possible entry-point for the recording is relatively straightforward in this
example. As the firmware update file is unpackable with binwalk, we have access
to the full filesystem of the device, which includes a main control binary named
camera. This binary is in ELF format and also provides a web server. As a result,
identifying the update_firmware routine by manual reverse engineering is
trivial. However, the functionality for retrieving the firmware over the network is
not confined to a single method, but instead interleaved with other functions in
the update procedure. As network traffic cannot easily be partially emulated, we
followed a trial and error approach for finding a suitable entry point for the record.

96 Firmware Unpacking Revised

In this scenario, the trace analysis required some changes to cope with the syscall-
based nature of the Linux kernel. To deal with this, we adjusted the way Ground-
hogger identifies the input buffer and, instead of searching for the whole firmware
update file, we instructed our tool to search for its filename.

During the initial replay, Groundhogger found the update filename in two distinct
locations, one in the kernel and the other in user space. Using both of these as
the input buffer, Groundhogger could identify a total of 11 functions of interest, of
which 7 operate on the input buffer in kernel space.

We assumed that the update validation routine resides in user space and manually
analyzed the remaining 4 functions of interest. By simply looking at the strings
used in those functions, we could identify the function we want to rehost: one
which combines verify_metadata and verify_integrity.

Rehosting the Firmware Validation Procedure

As the target function combines several tasks and opens, reads, and seeks the
firmware update file on the filesystem, the sheer amount of resulting hardware ac-
cesses would challenge Groundhogger’s rehosting capabilities under normal cir-
cumstances.

However, as the system is Linux-based, the hardware accesses are likely to be
performed from kernel space. As a result, we can simply provide hooks for the
necessary syscalls to rehost the routine2. To additionally simplify rehosting, we
restrain execution of the function from its entry to the point of checksum valida-
tion.

In this period, the syscalls sys_open, sys_read, sys_llseek, sys_ioctl,
and sys_old_mmap are executed. Interestingly, we only needed to provide
hooks for the first three for successful rehosting.

Having the function rehosted, we can now use the hooks to operate on an input
file of our choice, including a modified firmware update file. By introspecting the
register contents during the checksum verification, we can automatically obtain the
valid checksum value for an arbitrary update file and apply it. Note that, while this
could also be done directly on the device, the advantage of Groundhogger is that
we can now export the routine and execute it without the presence of a physical
device.

This allows for easy firmware modification and can be used both offensively and
defensively, e.g., for deploying patches or backdoors.

2Note that, while we provided our own hooks, reusable implementations of syscalls do exist,
e.g., the simprocedures of the angr framework [SWS+16].

6.4. Groundhogger: Case Studies 97

6.4.3 Case III: Unpacking and Modification

Hardware Platform and Device Information

Our third case study with Groundhogger targets the Crucial MX 100 SSD by Mi-
cron Technology. Previous studies reported that firmware updates are available on
the vendor’s website and that both UART and JTAG interfaces are present on the
SSDs PCB, making it a perfect target for Groundhogger [CRB17, MvG19].

The vendor provides the firmware update in the form of a bootable ISO image,
which installs the update automatically. To obtain the actual update file for the
device, we extracted the content of the ISO image, which includes a live Linux
system, the firmware update file, and an ELF executable responsible to upload the
file to the SSD.

Challenges

The firmware update file itself appears to be neither compressed nor encrypted.
Nevertheless, Binwalk is unable to extract any meaningful data from this image.
When running the full update on the device, we can infer from debug information
received over UART that the update is split into multiple segments which include,
among others, a bootloader-code and an additional image for the MSP430 MCU.
Additionally, four segments seem to be signed using RSA, which is in line with
the findings of Meijer et al. [MvG19], who reported that the firmware is signed
using RSA-2048 over SHA-256. The presence of cryptographic signatures make
a firmware modification attack much more difficult. In fact, it is not possible to
compute offline the required information as we did in the previous scenario. In-
stead, an attacker would need to tamper with the firmware already running in the
disk to “trick it” into accepting the unsigned update.

Moreover, the type of device itself further complicates this scenario as the hard
disk makes use of asynchronous I/O and DMA to transfer data. Partial emulation
under these conditions is very difficult, requiring particular care to select a suitable
entry point for the tracing procedure.

Groundhogger

This time, the initial step is to setup the physical device for its use with Ground-
hogger. We populated the JTAG and UART header reported by Cojocar et al.
[CRB17] and connected the disk to a SATA to USB 3.0 adapter as shown in Fig-
ure 6.4. Once connected via JTAG, we stopped the execution during an ongoing
update and dumped the RAM and Flash contents to obtain an initial snapshot of
the firmware.

98 Firmware Unpacking Revised

Figure 6.4: Crucial MX100 connected to Groundhogger.

We then located the entry point of the update procedure by disassembling the firm-
ware image and cross-referencing the debug strings we observed during the update.
However, in this case we needed several attempts to obtain an entry point suitable
for partial emulation. In fact, the beginning of the update procedure heavily re-
lies on hardware I/O accesses exceeding the capabilities of our partial emulation
system. Therefore, we resorted to initiating the recording after the data was trans-
ferred and just before the firmware starts to verify the metadata.

Once the trace was collected, Groundhogger was able to easily identify the input
buffer and tagged a total of 13 routines as functions of interest. These correspond to
the routines responsible for verifying the headers, computing the CRCs, verifying
the cryptographic signature of the firmware, and checking for magic numbers.
While they all were good candidates for re-hosting, a single function unifying all
these operations could not directly be found. Instead, we manually examined the
functions calling the functions of interest in our record, and could easily identify
a good target for re-hosting: a function which iterates over the segments in the
firmware update file and verifies the checksum for each of those.

As this function combines a variety of different tasks and prints debug output, it
contains hardware interactions which would normally not be re-hostable without
additional analysis. However, thanks to avatar2, we can easily provide hooks for
critical functions. The efforts for doing so were minimal, as only two hooks needed
to be provided to re-host the function. In more detail, we hooked printf to print

6.4. Groundhogger: Case Studies 99

Model Version #Segments
BX100 MU02 -
BX200 MU02 -
M550 MU02 5
MX100 MU03 4
MX100-128 MU03 5
MX200 MU05 3
MX300 M0CR070 3
MX300-2T M0CR070 3
MX500 MU05 -

Table 6.3: Unpacking results for crucial SSDs.

the output on the analysis host, and skipped the execution of another function
which checks the currently deployed firmware on the MSP430 MCU.

Testing the extracted routine

Once the function can be executed without the hardware, we used it to split the
firmware image automatically into its different segments.

Afterwards, we downloaded the firmware updaters for other Crucial SSDs and
retrieved nine other update files from the corresponding ISO images.

The re-hosted routine worked out of the box for other versions of the MX100
SSD firmware, but we had to slightly modify it to process updates for different
models. The required change, not related to Groundhogger, was simply to prevent
the validation routine (rehosted from an MX100 firmware) from discarding other
firmware as not correct for the given device.

In total, we could extract the segments for 6 of the 9 update files, as shown in
Table 6.3. The firmware updates which could not be unpacked were for SSDs of
the BX series and for the MX500. Manual investigation showed that in all three of
these cases the firmware packing format diverges from the one for the other disks.

Enabling Firmware Modification Attacks

Although the firmware is cryptographically signed, we can launch a modification
attack against the connected SSD by using the JTAG debug port.

Groundhogger reported both check-summing and signature verification routines
inside the set of the functions of interest. As a result, we know exactly, and with
relatively low effort, which functions’ return values have to be modified to deploy
a rogue firmware update. In fact, we implemented a proof-of-concept attack in
which we modified the contents in the segment for the main firmware. While we

100 Firmware Unpacking Revised

only modified strings in the firmware, we want to point out that a more advanced
version of the same attack could install a backdoor as reported in [ZBFB14]. To
pass the firmware validation routines, we only needed to modify the return value
of two functions, which we could identify easily due to Groundhogger.

Chapter 7

Outlook & Concluding Remarks

This chapter concludes this thesis. We discuss potential directions for follow-up
and future work and wrap up with a brief conclusion.

7.1 Future Work
This thesis provides fundamental improvements to the art of dynamic binary firm-
ware analysis. However, based on the insights won and challenges faced through-
out this work, we want to give a perspective on unsolved problems and an outlook
on future research directions.

First and foremost, omitting real vulnerabilities from our tests may raise the ques-
tion whether the results of this work are applicable in a real world scenario. We
believe this to be the case, as our work tackles binary firmware analysis on a con-
ceptual level. Nonetheless, integrating the dynamic analysis techniques developed
in this work in real world security tests will be highly interesting.

Furthermore, our contributions to dynamic binary firmware analysis are mainly
based on rehosting the firmware under test. While rehosting as method to facilitate
firmware analysis, it leaves space for exploration of other approaches, such as
making use of hardware tracing capabilities—if available—or on-device firmware
instrumentation.

In any case, rehosting itself provides a huge potential as research topic. Good
emulators are the prerequisite for enabling powerful dynamic analysis in this case,
and currently, they are manually hand-crafted for different hardware platforms.
Hence, an important future research direction will be the automated generation of
emulators, as it will allow for scalable dynamic binary firmware analysis. While

101

102 Outlook & Concluding Remarks

first steps in this direction are carried out in [GMS+19], more research in this
direction is required.

Although fully automated rehosting remains the goal, partial emulation can be
used as fallback strategy as long as good emulators are not available. Unfortu-
nately, this requires the embedded device under analysis to expose debugging fea-
tures by some means. While we mostly used hardware debugging features in this
thesis, their availability on COTS devices can not be seen as granted. As a result,
methods to gain easily a foothold on a device and versatile debugging stubs have
to be developed. Furthermore, some hardware features, such as DMA, are difficult
to partially emulate, and additional work is required to integrate them in partial
emulation schemes.

Despite this additional research in the approach, the dynamic analysis techniques
presented in this thesis leave room for future work. For instance, we purpose-
fully omitted challenges in the realm of fuzzing which are not directly coupled to
embedded systems. Other aspects of fuzzing, such as the generation of inputs to
discover vulnerable paths, are likewise important for efficient testing and have to
be subject of further studies.

Similarly, most symbolic execution engines are not ready for being used on firm-
ware, and are hence often modified in a case-by-case manner. Having support
for the particularities of embedded systems mainlined in popular engines would
greatly benefit the future of dynamic binary firmware analysis.

Another question is how the availability of source code can aid the dynamic anal-
ysis of embedded systems. Sometimes, an analyst may have access to either the
complete, or just parts, of the firmware source code. While this information can
for sure improve the efficacy of dynamic firmware analysis, it is rarely used as
supportive mean for binary analysis. Instead, tools and approaches making use of
source code frequently assume the presence of the complete code, a build environ-
ment and toolchain.

Yet another potentially useful, but overlooked piece of information to aid dynamic
firmware analysis are the abstractions given by the embedded operating systems
of Type-II devices. While the majority of research on embedded systems which
makes use of operating system abstractions solely focuses on Linux based devices,
we believe that abstractions provided by other widespread operating systems, such
as VxWorks, can be likewise useful.

Outside the realm of dynamic binary firmware analysis, we see one concept devel-
oped in this thesis especially promising: multi-target orchestration. With avatar2,
we created a potent tool for dynamic binary analysis in general, and its concepts

7.2. Conclusion 103

are adapted in the community, for instance to enable symbolic analysis of complex
software [GGF18]. We see huge potential in using multi-target orchestration as
building block for further research, as the possibility to interconnect and dynami-
cally orchestrate different tools, debuggers and emulators is a powerful primitive.

7.2 Conclusion
In this thesis, we outlined and tackled the main problems for dynamic binary firm-
ware analysis. In particular we identified five hindering factors limiting dynamic
firmware analysis for security testing: (1) firmware retrieval, (2) platform variety,
(3) fault detection, (4) scalability, and (5) instrumentation.

Through this work, we tackled each of these problems in an independent man-
ner: We developed avatar2, a multi-target orchestration framework designed to
dynamically orchestrate a wide range of frameworks, debuggers, and emulators.
This framework does not only allow emulation and instrumentation of embedded
devices’ firmware, but enables also partial emulation, which eases the challenge of
platform variety.

Using the given instrumentation capabilities, we implemented a diverse set of run
time fault detection heuristics which are mimicking existing techniques for fault
detection commonly deployed on desktop systems.

Furthermore, we outlined the architecture for a scalable concolic execution testing
framework, and showcased, Groundhogger, a novel approach for automating the
difficult task of creating unpackers for embedded device firmware.

All in all, we believe that the work conducted in the thesis is a significant step
toward better dynamic firmware analysis. Nevertheless, further research is still
required to fully automate dynamic analysis of embedded system and to span a
wider variety of devices.

104 Outlook & Concluding Remarks

List of Tables

3.1 Devices used and analyzed in this thesis. 23

3.2 Devices selected for the experiments. 25

3.3 Observed system behaviour for triggered memory corruptions. . . 29

5.1 Implemented fault detection heuristics and their requirements. . . 59

5.2 Fuzzing experiments of embedded systems in the literature. 60

5.3 Artificial vulnerabilities discovered by the different heuristics. . . 66

5.4 Symbolic and concolic execution on firmware: exemplary studies. 72

6.1 Previous studies which use firmware unpacking. 82

6.2 Summary of Groundhogger’s case studies and their challenges. . . 90

6.3 Unpacking results for crucial SSDs. 99

105

106 LIST OF TABLES

List of Figures

4.1 Timeline of Rehosting . 36

4.2 Overview of avatar2. 43

5.1 PLC infected with HARVEY using avatar2. 53

5.2 Setup of our fuzzing experiments. 63

5.3 Corruption detection in emulation based scenarios. 67

5.4 Processed inputs during one hour long fuzzing sessions. 68

5.5 Example timelines of a fuzzing session. 71

5.6 Overview of Terrace. 75

6.1 Overview of Groundhogger. 86

6.2 Canon EOS 60D update process. 92

6.3 FOSCAM FI8918W prepared for Groundhogger. 95

6.4 Crucial MX100 connected to Groundhogger. 98

107

108 LIST OF FIGURES

List of Acronyms

JTAG Joint Action Test Group

AFL American Fuzzing Lop

COTS commercial off-the-shelf

CPU Central Processing Unit

DMA Direct Memory Access

EEPROM electrically erasable programmable read-only memory

ICS Industrial Control Systems

IRQ Interrupt Request

IR Immediate Representation

ISA Instruction Set Architecture

ISR interrupt service routine

MMIO Memory-Mapped Input/Output

MMU Memory Management Unit

MPU Memory Protection Unit

PLC Programmable Logic Controller

PMIO Port-Mapped Input/Output

109

110 LIST OF FIGURES

ROM read-only memory

RTOS Real-Time Operating System

SCADA supervisory control and data acquisition

SNMP Simple Network Management Protocol

SoC System-on-Chip

SWD Serial Wire Debug

TCP Transmission Control Protocol

DSLR digital single-lens reflex

USART Universal Synchronous/Asynchronous Receiver/Transmitter

UART Universal Asynchronous Receiver/Transmitter

Bibliography

[ABSZ14] Magnus Almgren, Davide Balzarotti, Jan Stijohann, and Em-
manuele Zambon. D5.3 report on automated vulnerability discovery
techniques. CRISALIS EU Project, 2014.

[ALAM19] Omar Alrawi, Chaz Lever, Manos Antonakakis, and Fabian Mon-
rose. SoK: Security Evaluation of Home-Based IoT Deployments.
In IEEE Symposium on Security and Privacy (S&P), 2019.

[Alv] Sergi “pancake” Alvarez. Radare2: unix-like reverse engineering
framework and commandline tools. http://radare.org. [On-
line; accessed 01-Aug-2019].

[AP07] Pedram Amini and Aaron Portnoy. Fuzzing Sucks! Introducing
Sulley Fuzzing Framework. Black Hat USA, 2007.

[Art17] Nitay Artenstein. Broadpwn: Remotely Compromising Android and
iOS via a Bug in Broadcom’s Wi-Fi Chipsets. Black Hat USA, 2017.

[AVR14] Vincent Alimi, Sylvain Vernois, and Christophe Rosenberger. Anal-
ysis of Embedded Applications By Evolutionary Fuzzing. In Inter-
national Conference on High Performance Computing & Simulation
(HPCS). IEEE, 2014.

[BA04] Derek L Bruening and Saman Amarasinghe. Efficient, Transpar-
ent, and Comprehensive Runtime Code Manipulation. PhD thesis,
Massachusetts Institute of Technology, 2004.

[BBLD13] Zachry Basnight, Jonathan Butts, Juan Lopez, and Thomas Dube.
Firmware modification attacks on programmable logic controllers.
International Journal of Critical Infrastructure Protection, 2013.

111

http://radare.org

112 BIBLIOGRAPHY

[BCD+] Roberto Baldoni, Emilio Coppa, Daniele Cono D’Elia, Camil
Demetrescu, and Irene Finocchi. A Survey of Symbolic Execution
Techniques.

[Bec13] Andre Beckus. QEMU with an STM32 microcontroller implemen-
tation. http://beckus.github.io/qemu_stm32/, 2013. [On-
line; accessed 02-Aug-2019].

[Bel05] Fabrice Bellard. QEMU, a Fast and Portable Dynamic Translator.
In USENIX Annual Technical Conference (ATC), FREENIX Track,
2005.

[BGM13] Ella Bounimova, Patrice Godefroid, and David Molnar. Billions
and Billions of Constraints: Whitebox Fuzz Testing in Production.
In International Conference on Software Engineering (ICSE). IEEE,
2013.

[BJAS11] David Brumley, Ivan Jager, Thanassis Avgerinos, and Edward J
Schwartz. BAP: A Binary Analysis Platform. In International Con-
ference on Computer Aided Verification. Springer, 2011.

[BLP+11] Sergey Bratus, Michael E Locasto, Meredith L Patterson, Len
Sassaman, and Anna Shubina. Exploit Programming: From
Buffer Overflows to “Weird Machines” and Theory of Computation.
USENIX; login, 2011.

[BS08] Jacob Burnim and Koushik Sen. Heuristics for scalable dynamic
test generation. In 23rd IEEE/ACM International Conference on
Automated Software Engineering (ASE), 2008.

[BZP19] Nathan Burow, Xinping Zhang, and Mathias Payer. Sok: Shining
light on shadow stacks. In IEEE Symposium on Security and Privacy
(S&P), 2019.

[Cap16] Pierre Capillon. Black-box cryptanalysis of home-made encryption
algorithms: a practical case study. In Symposium sur la sécurité
des technologies de l’information et des communications (SSTIC),
2016.

[CCF18] Nassim Corteggiani, Giovanni Camurati, and Aurélien Francillon.
Inception: System-Wide Security Testing of Real-World Embedded
Systems Software. In USENIX Security Symposium, 2018.

http://beckus.github.io/qemu_stm32/

BIBLIOGRAPHY 113

[CCM+18] Chen Chen, Baojiang Cui, Jinxin Ma, Runpu Wu, Jianchao Guo,
and Wenqian Liu. A systematic review of fuzzing techniques. Com-
puters & Security, 2018.

[CCS13] Ang Cui, Michael Costello, and Salvatore Stolfo. When Firmware
Modifications Attack: A Case Study of Embedded Exploitation. In
Network and Distributed System Security Symposium (NDSS), 2013.

[CDE+08] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. KLEE:
Unassisted and Automatic Generation of High-Coverage Tests for
Complex Systems Programs. In USENIX conference on Operating
Systems Design and Implementation (OSDI), 2008.

[CDZ+18] Jiongyi Chen, Wenrui Diao, Qingchuan Zhao, Chaoshun Zuo,
Zhiqiang Lin, XiaoFeng Wang, Wing Cheong Lau, Menghan Sun,
Ronghai Yang, and Kehuan Zhang. IoTFuzzer: Discovering Mem-
ory Corruptions in IoT Through App-based Fuzzing. In Network
and Distributed System Security Symposium (NDSS). IEEE, 2018.

[CGC08] Jim Chow, Tal Garfinkel, and Peter M Chen. Decoupling dy-
namic program analysis from execution in virtual environments. In
USENIX Annual Technical Conference (ATC), 2008.

[CKC11] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. S2E:
A Platform for In-Vivo Multi-Path Analysis of Software Systems.
In 16th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS). ACM,
2011.

[CLW+18] Kai Cheng, Qiang Li, Lei Wang, Qian Chen, Yaowen Zheng, Limin
Sun, and Zhenkai Liang. DTaint: Detecting the Taint-Style Vulner-
ability in Embedded Device Firmware. In IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN). IEEE,
2018.

[CN19] Christian Cadar and Martin Nowack. KLEE Symbolic Execution
Tool Test-Comp 2019 Entry. https://test-comp.sosy-lab.

org/2019/talks/19_KLEE.pdf, 2019. [Online; accessed 20-
Jun-2019].

[CP16] Christian Collberg and Todd A. Proebsting. Repeatability in Com-
puter Systems Research. Communications of the ACM, 2016.

https://test-comp.sosy-lab.org/2019/talks/19_KLEE.pdf
https://test-comp.sosy-lab.org/2019/talks/19_KLEE.pdf

114 BIBLIOGRAPHY

[CRB17] Lucian Cojocar, Kaveh Razavi, and Herbert Bos. Off-the-shelf Em-
bedded Devices as Platforms for Security Research. In European
Workshop on Systems Security (EuroSec). ACM, 2017.

[CS11] Ang Cui and Salvatore Stolfo. Defending Embedded Systems with
Software Symbiotes. In International Workshop on Recent Ad-
vances in Intrusion Detection (RAID). Springer, 2011.

[CSB13] Xi Chen, Asia Slowinska, and Herbert Bos. Who Allocated My
Memory? Detecting Custom Memory Allocators in C Binaries. In
Working Conference on Reverse Engineering (WCRE), 2013.

[Cui12] Ang Cui. Embedded Device Firmware Vulnerability Hunting Using
FRAK. Black Hat USA, 2012.

[CWBE16] Daming D Chen, Maverick Woo, David Brumley, and Manuel
Egele. Towards Automated Dynamic Analysis for Linux-based Em-
bedded Firmware. In Network and Distributed System Security Sym-
posium (NDSS), 2016.

[CZF16] Andrei Costin, Apostolis Zarras, and Aurélien Francillon. Auto-
mated Dynamic Firmware Analysis at Scale: A Case Study on Em-
bedded Web Interfaces. In ACM Asia Conference on Computer and
Communications Security (ASIACCS), 2016.

[CZFB14] Andrei Costin, Jonas Zaddach, Aurélien Francillon, and Davide
Balzarotti. A Large-Scale Analysis of the Security of Embedded
Firmwares. In USENIX Security Symposium, 2014.

[CZJ+15] Ting Chen, Xiao-Song Zhang, Xiao-Li Ji, Cong Zhu, Yang Bai, and
Yue Wu. Test Generation for Embedded Executables via Concolic
Execution in a Real Environment. IEEE Transactions on Reliability,
2015.

[CZV+15] Lucian Cojocar, Jonas Zaddach, Roel Verdult, Herbert Bos, Au-
rélien Francillon, and Davide Balzarotti. PIE: Parser Identification
in Embedded Systems. In Annual Computer Security Applications
Conference (ACSAC). ACM, 2015.

[CZZ+13] Ting Chen, Xiao-song Zhang, Cong Zhu, Xiao-li Ji, Shi-ze Guo, and
Yue Wu. Design and implementation of a dynamic symbolic execu-
tion tool for windows executables. Journal of Software: Evolution
and Process, 2013.

BIBLIOGRAPHY 115

[DBXP20] Sushant Dinesh, Nathan Burow, Dongyan Xu, and Mathias Payer.
RetroWrite: Statically Instrumenting COTS Binaries for Fuzzing
and Sanitization. To appear at IEEE Symposium on Security and
Privacy (S&P), 2020.

[DCN+19] Daniele Cono D’Elia, Emilio Coppa, Simone Nicchi, Federico Pal-
maro, and Lorenzo Cavallaro. SoK: Using Dynamic Binary In-
strumentation for Security (And How You May Get Caught Red
Handed). In ACM Asia Conference on Computer and Communi-
cations Security (ASIACCS), 2019.

[Del11] Guillaume DelugrÃl’. Reverse engineering a Qualcomm baseband.
28th Chaos Communication Congress (28C3), 2011.

[Des12] Fabrice Desclaux. Miasm : Framework de reverse engineering. In
Symposium sur la sécurité des technologies de l’information et des
communications (SSTIC), 2012.

[DFPA17] Alessandro Di Federico, Mathias Payer, and Giovanni Agosta.
rev.ng: A Unified Binary Analysis Framework to Recover CFGs
and Function Boundaries. In International Conference on Compiler
Construction. ACM, 2017.

[DGHH+15] Brendan Dolan-Gavitt, Josh Hodosh, Patrick Hulin, Tim Leek, and
Ryan Whelan. Repeatable reverse engineering with PANDA. In
Program Protection and Reverse Engineering Workshop (PPREW).
ACM, 2015.

[DGHK+16] Brendan Dolan-Gavitt, Patrick Hulin, Engin Kirda, Tim Leek, An-
drea Mambretti, Wil Robertson, Frederick Ulrich, and Ryan Whe-
lan. LAVA: Large-scale Automated Vulnerability Addition. In IEEE
Symposium on Security and Privacy (S&P), 2016.

[DLRA15] Will Dietz, Peng Li, John Regehr, and Vikram Adve. Understanding
Integer Overflow in C/C++. ACM Transactions on Software Engi-
neering and Methodology (TOSEM), 2015.

[DMRJ13] Drew Davidson, Benjamin Moench, Thomas Ristenpart, and
Somesh Jha. FIE on Firmware: Finding Vulnerabilities in Embed-
ded Systems Using Symbolic Execution. In USENIX Security Sym-
posium, 2013.

116 BIBLIOGRAPHY

[DPY18] Yaniv David, Nimrod Partush, and Eran Yahav. FirmUp: Precise
Static Detection of Common Vulnerabilities in Firmware. In In-
ternational Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS). ACM, 2018.

[Ebi16] Ebiroll. ESP32 in QEMU. https://github.com/ebiroll/

qemu_esp32, 2016. [Online; accessed 02-Aug-2019].

[Fit18] Fitbit, Inc. Announcing Fitbit OS 2.0 and Our Brand New
Simulator. https://dev.fitbit.com/blog/2018-03-13-

announcing-fitbit-os-2.0-and-simulator/, 2018. [On-
line; accessed 15-Apr-2019].

[FPKS15] Ian D Foster, Andrew Prudhomme, Karl Koscher, and Stefan Sav-
age. Fast and Vulnerable: A Story of Telematic Failures. In USENIX
Workshop on Offensive Technologies (WOOT), 2015.

[FZX+16] Qian Feng, Rundong Zhou, Chengcheng Xu, Yao Cheng, Brian
Testa, and Heng Yin. Scalable Graph-based Bug Search for Firm-
ware Images. In ACM Conference on Computer and Communica-
tions Security (CCS), 2016.

[Gal17] Gal Beniamini. Over The Air: Exploiting Broadcom’s Wi-Fi Stack,
2017. https://googleprojectzero.blogspot.com/2017/

04/over-air-exploiting-broadcoms-wi-fi_4.html.

[GBC+17] Luis Garcia, Ferdinand Brasser, Mehmet H Cintuglu, Ahmad-Reza
Sadeghi, Osama Mohammed, and Saman A Zonouz. Hey, My Mal-
ware Knows Physics Attacking PLCs with Physical Model Aware
Rootkit. In Network and Distributed System Security Symposium
(NDSS), 2017.

[GGF18] Fabio Gritti, Eric Gustafson, and Lorenzo Fontana. symbion: fus-
ing concrete and symbolic execution. http://angr.io/blog/

angr_symbion/, 2018. [Online; accessed 19-Jun-2019].

[GKS05] Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART: Directed
Automated Random Testing. In ACM Conference on Programming
Language Design and Implementation (PLDI), 2005.

[GLM+08] Patrice Godefroid, Michael Y Levin, David A Molnar, et al. Auto-
mated Whitebox Fuzz Testing. In Network and Distributed System
Security Symposium (NDSS), 2008.

https://github.com/ebiroll/qemu_esp32
https://github.com/ebiroll/qemu_esp32
https://dev.fitbit.com/blog/2018-03-13-announcing-fitbit-os-2.0-and-simulator/
https://dev.fitbit.com/blog/2018-03-13-announcing-fitbit-os-2.0-and-simulator/
https://googleprojectzero.blogspot.com/2017/04/over-air-exploiting-broadcoms-wi-fi_4.html
https://googleprojectzero.blogspot.com/2017/04/over-air-exploiting-broadcoms-wi-fi_4.html
http://angr.io/blog/angr_symbion/
http://angr.io/blog/angr_symbion/

BIBLIOGRAPHY 117

[GLM12] Patrice Godefroid, Michael Y Levin, and David Molnar. SAGE:
Whitebox Fuzzing for Security Testing. Communications of the
ACM, 2012.

[GMS+19] Eric Gustafson, Marius Muench, Chad Spensky, Nilo Redini, Ar-
avind Machiry, Yanick Fratantonio, Aurelien Francillon, Davide
Balzarotti, Ryn Yung Choe, Christopher Kruegel, and Giovanni Vi-
gna. Toward the Analysis of Embedded Firmware through Auto-
mated Re-hosting. In International Workshop on Recent Advances
in Intrusion Detection (RAID), 2019.

[GWH11] Felix Gröbert, Carsten Willems, and Thorsten Holz. Automated
identification of cryptographic primitives in binary programs. In
International Workshop on Recent Advances in Intrusion Detection
(RAID), pages 41–60. Springer, 2011.

[HC13] Craig Heffner and Jeremy Collake. Firmware Modification
Kit. https://code.google.com/archive/p/firmware-

mod-kit/, 2013. [Online; accessed 20-Jun-2019].

[Hea02] Steve Heath. Embedded systems design. Elsevier, 2002.

[Hef13] Craig Heffner. Binwalk: Firmware Analysis Tool. https://

github.com/ReFirmLabs/binwalk, 2013. [Online; accessed
01-Aug-2019].

[Hem18] Armijn Hemel. Binary Analysis Next Generation (BANG).
https://github.com/armijnhemel/binaryanalysis-ng,
2018. [Online; accessed 02-Aug-2019].

[Hem19] Armijn Hemel. Better unpacking binary files using contextual infor-
mation. Technical Disclosure Commons, 2019.

[HFT+17] Grant Hernandez, Farhaan Fowze, Dave Jing Tian, Tuba Yavuz, and
Kevin RB Butler. Firmusb: Vetting USB Device Firmware using
Domain Informed Symbolic Execution. In ACM Conference on
Computer and Communications Security (CCS), 2017.

[HJO18] Dongsoo Ha, Wenhui Jin, and Heekuck Oh. REPICA: Rewriting
Position Independent Code of ARM. IEEE Access, 2018.

[HKVD11] Armijn Hemel, Karl Trygve Kalleberg, Rob Vermaas, and Eelco
Dolstra. Finding Software License Violations Through Binary Code
Clone Detection. In Working Conference on Mining Software Repos-
itories (MSR). ACM, 2011.

https://code.google.com/archive/p/firmware-mod-kit/
https://code.google.com/archive/p/firmware-mod-kit/
https://github.com/ReFirmLabs/binwalk
https://github.com/ReFirmLabs/binwalk
https://github.com/armijnhemel/binaryanalysis-ng

118 BIBLIOGRAPHY

[Hot16] George Hotz. Timeless debugging. San Francisco, CA, 2016.
USENIX Association.

[HPY+14] Andrew Henderson, Aravind Prakash, Lok Kwong Yan, Xunchao
Hu, Xujiewen Wang, Rundong Zhou, and Heng Yin. Make It Work,
Make It Right, Make It Fast: Building a Platform-neutral Whole-
System Dynamic Binary Analysis Platform. In International Sym-
posium on Software Testing and Analysis. ACM, 2014.

[Jam13] Reinders James. Processor tracing. https://software.intel.
com/en-us/blogs/2013/09/18/processor-tracing, 2013.
[Online; accessed 02-Aug-2019].

[JCG+14] Wesley Jin, Cory Cohen, Jeffrey Gennari, Charles Hines, Sagar
Chaki, Arie Gurfinkel, Jeffrey Havrilla, and Priya Narasimhan. Re-
covering C++ Objects From Binaries Using Inter-Procedural Data-
Flow Analysis. In Program Protection and Reverse Engineering
Workshop (PPREW). ACM, 2014.

[KBK16] Markus Kammerstetter, Daniel Burian, and Wolfgang Kastner. Em-
bedded Security Testing with Peripheral Device Caching and Run-
time Program State Approximation. In International Conference
on Emerging Security Information, Systems and Technologies (SE-
CUWARE), 2016.

[KCR+10] Karl Koscher, Alexei Czeskis, Franziska Roesner, Shwetak Patel,
Tadayoshi Kohno, Stephen Checkoway, Damon McCoy, Brian Kan-
tor, Danny Anderson, Hovav Shacham, et al. Experimental security
analysis of a modern automobile. In IEEE Symposium on Security
and Privacy (S&P), 2010.

[Kee16] Keen Security Lab. Car Hacking Research: Remote Attack
Tesla Motors. http://keenlab.tencent.com/en/2016/

09/19/Keen-Security-Lab-of-Tencent-Car-Hacking-

Research-Remote-Attack-to-Tesla-Cars/, 2016. [Online;
accessed 02-Aug-2019].

[Kei19] Keil. List of ARM-based Devices Available. http://www.keil.
com/dd/chips/all/arm.htm, 2019. [Online; accessed 20-Jul-
2019].

[Kel11] Stephen Kell. Static versus dynamic analysis—an illusory distinc-
tion? https://www.cs.kent.ac.uk/people/staff/srk21/

https://software.intel.com/en-us/blogs/2013/09/18/processor-tracing
https://software.intel.com/en-us/blogs/2013/09/18/processor-tracing
http://keenlab.tencent.com/en/2016/09/19/Keen-Security-Lab-of-Tencent-Car-Hacking-Research-Remote-Attack-to-Tesla-Cars/
http://keenlab.tencent.com/en/2016/09/19/Keen-Security-Lab-of-Tencent-Car-Hacking-Research-Remote-Attack-to-Tesla-Cars/
http://keenlab.tencent.com/en/2016/09/19/Keen-Security-Lab-of-Tencent-Car-Hacking-Research-Remote-Attack-to-Tesla-Cars/
http://www.keil.com/dd/chips/all/arm.htm
http://www.keil.com/dd/chips/all/arm.htm
https://www.cs.kent.ac.uk/people/staff/srk21/blog/research/static-and-dynamic-analyses.html
https://www.cs.kent.ac.uk/people/staff/srk21/blog/research/static-and-dynamic-analyses.html
https://www.cs.kent.ac.uk/people/staff/srk21/blog/research/static-and-dynamic-analyses.html

BIBLIOGRAPHY 119

blog/research/static-and-dynamic-analyses.html,
2011. [Online; accessed 01-Aug-2019].

[Kin76] James C King. Symbolic Execution and Program Testing. Commu-
nications of the ACM, 1976.

[KKC+17] Taegyu Kim, Chung Hwan Kim, Hongjun Choi, Yonghwi Kwon,
Brendan Saltaformaggio, Xiangyu Zhang, and Dongyan Xu. Re-
vARM: A Platform-Agnostic ARM Binary Rewriter for Security
Applications. In Annual Computer Security Applications Confer-
ence (ACSAC). ACM, 2017.

[KKJ12] Moonzoo Kim, Yunho Kim, and Yoonkyu Jang. Industrial Appli-
cation of Concolic Testing on Embedded Software: Case Studies.
In International Conference on Software Testing, Verification and
Validation. IEEE, 2012.

[KKM15] Karl Koscher, Tadayoshi Kohno, and David Molnar. SURRO-
GATES: Enabling Near-Real-Time Dynamic Analyses of Embed-
ded Systems. In USENIX Workshop on Offensive Technologies
(WOOT), 2015.

[KL13] Nassima Kamel and Jean-Louis Lanet. Analysis of HTTP Protocol
Implementation in Smart Card Embedded Web Server. International
Journal of Information and Network Security, 2013.

[KPK14] Markus Kammerstetter, Christian Platzer, and Wolfgang Kastner.
PROSPECT: Peripheral Proxying Supported Embedded Code Test-
ing. In ACM Asia Conference on Computer and Communications
Security (ASIACCS), 2014.

[LCC+15] Hyeryun Lee, Kyunghee Choi, Kihyun Chung, Jaein Kim, and
Kangbin Yim. Fuzzing CAN Packets into Automobiles. In Inter-
national Conference on Advanced Information Networking and Ap-
plications (AINA). IEEE, 2015.

[LCM+05] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur
Klauser, Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and
Kim Hazelwood. Pin: Building Customized Program Analysis
Tools with Dynamic Instrumentation. In ACM Conference on Pro-
gramming Language Design and Implementation (PLDI), 2005.

https://www.cs.kent.ac.uk/people/staff/srk21/blog/research/static-and-dynamic-analyses.html
https://www.cs.kent.ac.uk/people/staff/srk21/blog/research/static-and-dynamic-analyses.html
https://www.cs.kent.ac.uk/people/staff/srk21/blog/research/static-and-dynamic-analyses.html

120 BIBLIOGRAPHY

[LFW+18] Qiang Li, Xuan Feng, Raining Wang, Zhi Li, and Limin Sun. To-
wards Fine-grained Fingerprinting of Firmware in Online Embed-
ded Devices. In IEEE Conference on Computer Communications
(INFOCOM), 2018.

[LN17] Ulf Lindqvist and Peter G Neumann. The Future of the Internet of
Things. Communications of the ACM, 2017.

[LZL+16] Muqing Liu, Yuanyuan Zhang, Juanru Li, Junliang Shu, and Dawu
Gu. Security Analysis of Vendor Customized Code in Firmware
of Embedded Device. In International Conference on Security and
Privacy in Communication Systems (SecureComm). Springer, 2016.

[Man13] Felipe A Manzano. PySymEmu: An intel 64 symbolic emulator.
https://github.com/feliam/pysymemu, 2013. [Online; ac-
cessed 02-Aug-2019].

[Max17] Clive Maxfield. Embedded Markets Study - Integrating IoT and
Advanced Technology Designs, Application Development & Pro-
cessing Environments. Technical report, AspenCore, 2017.

[McM15] David McMillen. Security attacks on industrial control systems.
how technology advances create risks for industrial organizations.
Technical report, IBM Security, 2015.

[MEMS14] Jacob Maskiewicz, Benjamin Ellis, James Mouradian, and Hovav
Shacham. Mouse Trap: Exploiting Firmware Updates in USB Pe-
ripherals. In Workshop on Offensive Technologies (WOOT), 2014.

[MFS90] Barton P Miller, Louis Fredriksen, and Bryan So. An Empirical
Study of the Reliability of UNIX Utilities. Communications of the
ACM, 1990.

[MGS11] Collin Mulliner, Nico Golde, and Jean-Pierre Seifert. SMS of Death:
From Analyzing to Attacking Mobile Phones on a Large Scale. In
USENIX Security Symposium, 2011.

[MHH+18] Valentin JM Manes, HyungSeok Han, Choongwoo Han, Sang Kil
Cha, Manuel Egele, Edward J Schwartz, and Maverick Woo. The
Art, Science, and Engineering of Fuzzing: A Survey. arXiv preprint
arXiv:1812.00140, 2018.

[MMH+19] Mark Mossberg, Felipe Manzano, Eric Hennenfent, Alex Groce,
Gustavo Grieco, Josselin Feist, Trent Brunson, and Artem Dinaburg.

https://github.com/feliam/pysymemu

BIBLIOGRAPHY 121

Manticore: A User-Friendly Symbolic Execution Framework for Bi-
naries and Smart Contracts. arXiv preprint arXiv:1907.03890, 2019.

[MNFB18] Marius Muench, Dario Nisi, Aurélien Francillon, and Davide
Balzarotti. Avatar2: A Multi-target Orchestration Platform. In
Workshop on Binary Analysis Research (BAR), 2018.

[MS07] Rupak Majumdar and Koushik Sen. Hybrid Concolic Testing. In
International Conference on Software Engineering (ICSE). IEEE,
2007.

[MSK+18] Marius Muench, Jan Stijohann, Frank Kargl, Aurélien Francillon,
and Davide Balzarotti. What You Corrupt Is Not What You Crash:
Challenges in Fuzzing Embedded Devices. In Network and Dis-
tributed System Security Symposium (NDSS), 2018.

[MV15] Charlie Miller and Chris Valasek. Remote Exploitation of an Unal-
tered Passenger Vehicle. Black Hat USA, 2015.

[MvG19] Carlo Meijer and Bernard van Gastel. Self-encrypting deception:
weaknesses in the encryption of solid state drives. In IEEE Sympo-
sium on Security and Privacy (S&P), 2019.

[Net04] Nicholas Nethercote. Dynamic binary analysis and instrumentation.
Technical report, University of Cambridge, Computer Laboratory,
2004.

[Nor16] Amy Nordrum. The Internet of Fewer Things. IEEE Spectrum,
2016.

[NS07] Nicholas Nethercote and Julian Seward. Valgrind: A Framework for
Heavyweight Dynamic Binary Instrumentation. In ACM Conference
on Programming Language Design and Implementation (PLDI),
2007.

[OJF+17] Robert O’Callahan, Chris Jones, Nathan Froyd, Kyle Huey, Albert
Noll, and Nimrod Partush. Engineering Record And Replay For De-
ployability. In USENIX Annual Technical Conference (ATC), 2017.

[Pak12] Brian S Pak. Hybrid Fuzz Testing: Discovering Software Bugs via
Fuzzing and Symbolic Execution. Master’s thesis, Carnegie Mellon
University, 2012.

[Pea17] Peachtech. Peach Fuzzer Platform Whitepaper, 2017.

122 BIBLIOGRAPHY

[Per16] Joshua Pereyda. boofuzz: A fork and successor of the Sul-
ley Fuzzing Framework. https://github.com/jtpereyda/

boofuzz, 2016. [Online; accessed 01-Aug-2019].

[PGC18] Fabien Périgaud, Alexandre Gazet, and Joffrey Czarny. Subverting
your server through its BMC: the HPE iLO4 case. In Symposium
sur la sécurité des technologies de lâĂŹinformation et des commu-
nications (SSTIC), 2018.

[QV15] Nguyen Anh Quynh and Dang Hoang Vu. Unicorn - The ultimate
CPU emulator. https://www.unicorn-engine.org/, 2015.
[Online; accessed 02-Aug-2019].

[Ral17] Ralf, Nico. Emulation and exploration of bcm wifi frame pars-
ing using luaqemu. https://comsecuris.com/blog/posts/

luaqemu_bcm_wifi/, 2017. [Online; accessed 15-Jul-2019].

[SBPV12] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and
Dmitriy Vyukov. AddressSanitizer: A Fast Address Sanity Checker.
In USENIX Annual Technical Conference (ATC), 2012.

[SCA+18] Paria Shirani, Leo Collard, Basile L Agba, Bernard Lebel, Mourad
Debbabi, Lingyu Wang, and Aiman Hanna. BINARM: Scalable and
Efficient Detection of Vulnerabilities in Firmware Images of Intelli-
gent Electronic Devices. In International Conference on Detection
of Intrusions and Malware, and Vulnerability Assessment (DIMVA).
Springer, 2018.

[Sch16] Maarten Schellevis. Getting access to your own Fitbit data. Bache-
lor’s thesis, Radboud University, 2016.

[Ser15] Kostya Serebryany. Simple guided fuzzing for libraries using
llvmâĂŹs new lib-fuzzer. http://blog.llvm.org/2015/04/

fuzz-all-clangs.html, 2015. [Online; accessed 02-Sep-2019].

[Ser16] Kostya Serebryany. Sanitize, Fuzz, and Harden Your C++ Code.
San Francisco, CA, 2016. USENIX Association.

[SGS+16] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher,
Ruoyu Wang, Jacopo Corbetta, Yan Shoshitaishvili, Christopher
Kruegel, and Giovanni Vigna. Driller: Augmenting Fuzzing
Through Selective Symbolic Execution. In Network and Distributed
System Security Symposium (NDSS), 2016.

https://github.com/jtpereyda/boofuzz
https://github.com/jtpereyda/boofuzz
https://www.unicorn-engine.org/
https://comsecuris.com/blog/posts/luaqemu_bcm_wifi/
https://comsecuris.com/blog/posts/luaqemu_bcm_wifi/
http://blog.llvm.org/2015/04/fuzz-all-clangs.html
http://blog.llvm.org/2015/04/fuzz-all-clangs.html

BIBLIOGRAPHY 123

[She17] Team Shellphish. Cyber Grand Shellphish. Phrack Papers, 2017.

[SI09] Konstantin Serebryany and Timur Iskhodzhanov. ThreadSanitizer:
data race detection in practice. In Workshop on Binary Instrumenta-
tion and Applications (WBIA). ACM, 2009.

[SLR+19] Dokyung Song, Julian Lettner, Prabhu Rajasekaran, Yeoul Na, Stijn
Volckaert, Per Larsen, and Michael Franz. SoK: Sanitizing for Se-
curity. In IEEE Symposium on Security and Privacy (S&P), Los
Alamitos, CA, USA, may 2019. IEEE Computer Society.

[SMA05] Koushik Sen, Darko Marinov, and Gul Agha. CUTE: A Concolic
Unit Testing Engine for C. In European Software Engineering Con-
ference Held Jointly with ACM SIGSOFT International Symposium
on Foundations of Software Engineering (ESEC/FSE). ACM, 2005.

[SMB+18] Omer Shwartz, Yael Mathov, Michael Bohadana, Yossi Oren, and
Yuval Elovici. Reverse Engineering IoT Devices: Effective Tech-
niques and Methods. IEEE Internet of Things Journal, 2018.

[SPWS13] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. Sok:
Eternal war in memory. In IEEE Symposium on Security and Pri-
vacy (S&P), 2013.

[SS15a] Florent Saudel and Jonatahn Salwan. Triton: Concolic execu-
tion framework. In Symposium sur la sécurité des technologies de
lâĂŹinformation et des communications (SSTIC), 2015.

[SS15b] Evgeniy Stepanov and Konstantin Serebryany. MemorySanitizer:
fast detector of uninitialized memory use in C++. In International
Symposium on Code Generation and Optimization (CGO). IEEE,
2015.

[SSB11] Asia Slowinska, Traian Stancescu, and Herbert Bos. Howard: A
Dynamic Excavator for Reverse Engineering Data Structures. In
Network and Distributed System Security Symposium (NDSS), 2011.

[SWH+15] Yan Shoshitaishvili, Ruoyu Wang, Christophe Hauser, Christopher
Kruegel, and Giovanni Vigna. Firmalice - Automatic Detection of
Authentication Bypass Vulnerabilities in Binary Firmware. In Net-
work and Distributed System Security Symposium (NDSS), 2015.

[SWS+16] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick
Stephens, Mario Polino, Andrew Dutcher, John Grosen, Siji Feng,

124 BIBLIOGRAPHY

Christophe Hauser, Christopher Kruegel, and Giovanni Vigna. SoK:
(State of) The Art of War: Offensive Techniques in Binary Analysis.
In IEEE Symposium on Security and Privacy (S&P), 2016.

[TDMK18] Ari Takanen, Jared D Demott, Charles Miller, and Atte Ket-
tunen. Fuzzing for Software Security Testing and Quality Assurance.
Artech House, 2018.

[TGC17] Sam L Thomas, Flavio D Garcia, and Tom Chothia. HumIDIFy:
A Tool for Hidden Functionality Detection in Firmware. In Inter-
national Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment (DIMVA). Springer, 2017.

[Tra16a] Trail of Bits. A fuzzer and a symbolic executor walk into a
cloud. https://blog.trailofbits.com/2016/08/02/

engineering-solutions-to-hard-program-analysis-

problems/, 2016. [Online; accessed 02-Aug-2019].

[Tra16b] Trail of Bits. GRR: High-throughput fuzzer and emulator of
DECREE binaries. https://github.com/trailofbits/grr,
2016. [Online; accessed 02-Aug-2019].

[TTZ+18] Seyed Mohammadjavad Seyed Talebi, Hamid Tavakoli, Hang
Zhang, Zheng Zhang, Ardalan Amiri Sani, and Zhiyun Qian.
Charm: Facilitating Dynamic Analysis of Device Drivers of Mobile
Systems. In USENIX Security Symposium, 2018.

[VDBHT14] Fabian Van Den Broek, Brinio Hond, and Arturo Cedillo Torres.
Security Testing of GSM Implementations. In International Sympo-
sium on Engineering Secure Software and Systems. Springer, 2014.

[VOC18] Sebastian Vasile, David Oswald, and Tom Chothia. Breaking all the
Things — A Systematic Survey of Firmware Extraction Techniques
for IoT devices. In Smart Card Research and Advanced Application
Conference (CARDIS). Springer, 2018.

[Vyu15] Dmitry Vyukov. Syzkaller. https://github.com/google/

syzkaller.git, 2015. [Online; accessed 02-Aug-2019].

[Wei12] Ralf-Philipp Weinmann. Baseband Attacks: Remote Exploitation of
Memory Corruptions in Cellular Protocol Stacks. In Workshop on
Offensive Technologies (WOOT), 2012.

https://blog.trailofbits.com/2016/08/02/engineering-solutions-to-hard-program-analysis-problems/
https://blog.trailofbits.com/2016/08/02/engineering-solutions-to-hard-program-analysis-problems/
https://blog.trailofbits.com/2016/08/02/engineering-solutions-to-hard-program-analysis-problems/
https://github.com/trailofbits/grr
https://github.com/google/syzkaller.git
https://github.com/google/syzkaller.git

BIBLIOGRAPHY 125

[WSB+17] Ruoyu Wang, Yan Shoshitaishvili, Antonio Bianchi, Aravind
Machiry, John Grosen, Paul Grosen, Christopher Kruegel, and Gio-
vanni Vigna. Ramblr: Making Reassembly Great Again. In Network
and Distributed System Security Symposium (NDSS), 2017.

[YLX+18] Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and Taesoo Kim.
QSYM: A Practical Concolic Execution Engine Tailored for Hybrid
Fuzzing. In USENIX Security Symposium, 2018.

[Zal14] Michal Zalewski. American fuzzy lop. http://lcamtuf.

coredump.cx/afl/, 2014. [Online; accessed 02-Aug-2019].

[ZBFB14] Jonas Zaddach, Luca Bruno, Aurélien Francillon, and Davide
Balzarotti. AVATAR: A Framework to Support Dynamic Security
Analysis of Embedded Systems’ Firmwares. In Network and Dis-
tributed System Security Symposium (NDSS), 2014.

[ZDY+19] Yaowen Zheng, Ali Davanian, Heng Yin, Chengyu Song, Hong-
song Zhu, and Limin Sun. FIRM-AFL: High-Throughput Greybox
Fuzzing of IoT Firmware via Augmented Process Emulation. In
USENIX Security Symposium, 2019.

[ZKB+13] Jonas Zaddach, Anil Kurmus, Davide Balzarotti, Erik Olivier Blass,
Aurélien Francillon, Travis Goodspeed, Moitrayee Gupta, and Ioan-
nis Koltsidas. Implementation and Implications of a Stealth Hard-
Drive Backdoor. In Annual Computer Security Applications Con-
ference (ACSAC), 2013.

http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/

