
HAL Id: tel-03143979
https://theses.hal.science/tel-03143979

Submitted on 17 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Timing analysis for time-predictable architectures
Amine Naji

To cite this version:
Amine Naji. Timing analysis for time-predictable architectures. Networking and Internet Architecture
[cs.NI]. Sorbonne Université, 2019. English. �NNT : 2019SORUS282�. �tel-03143979�

https://theses.hal.science/tel-03143979
https://hal.archives-ouvertes.fr

Sorbonne Université

Ecole doctorale Informatique, Télécommunication et Électronique de Paris

Timing Analysis for Time-Predictable Architectures

Par Amine Naji

Thèse de doctorat d’Informatique

Dirigée par Albert Cohen

Présentée et soutenue publiquement le 12 juin 2019

Devant un jury composé de :

Rapporteurs Mme. Isabelle Puaut Professor, University of Rennes I

M. Jens Knoop Professor, Vienna University of Technology

Examinateurs Mme. Karine Heydemann Associate Professor, UPMC (Paris 6)

M. Albert Cohen Senior Research Scientist, Google

M. Florian Brandner Associate Professor, Télécom ParisTech

M. Mathieu Jan Research Engineer, CEA List

Contents

1 Introduction 1
1 Toward High-Performance Safety-Critical Systems 1
2 Real-Time Systems . 4

2.1 Definition and Key Properties 4
2.2 Embedded Systems . 6
2.3 Real-Time Tasks . 6
2.4 System Failure . 7

3 Deriving Timing Guarantees . 7
3.1 Schedulability Analysis . 8
3.2 Timing Analysis . 8

4 Meaning of Performance . 10
4.1 Performance in Standard Computer Systems 10
4.2 Worst-Case Performance . 13

5 Issues with Standard Architectures 14
6 Predictable Architectures as an Alternative 16

6.1 Notable Efforts and Architectures 16
6.2 Comparing Architectures . 19

7 Contributions . 22

2 Patmos, a Time-Predictable Processor 26
1 Overview and Design Approach . 26
2 Patmos Computer Architecture . 28

2.1 Pipeline and Register File . 28
2.2 Instruction Set Architecture (ISA) 29
2.3 Predication . 32
2.4 Memory Hierarchy . 32
2.5 Multi-Core and Bus Arbitration Policy 37

3 Compiler Support . 38
3.1 Toolchain Overview . 39
3.2 Support for Patmos Features 39

3

3 Static WCET Analysis Framework 43
1 The Analysis Work Flow . 43
2 Basic Concepts for Program Static Analysis 46

2.1 Control-Flow Graph . 46
2.2 Loops . 49
2.3 Inter-procedural CFG and Call Graph 51

3 Data-Flow Analysis Frameworks . 52
3.1 Abstract Domain . 53
3.2 Transfer Functions . 55
3.3 Forming DFA equations . 56
3.4 Solving DFA equations . 58
3.5 Intra-procedural and Inter-procedural DFA 60

4 Standard Cache Analyses . 61
4.1 Goal and Challenges . 61
4.2 Cache Analysis Based On Access Classification 63
4.3 Improving Precision in Loops 66
4.4 Preemption Costs . 67

5 Stack Cache Analyses . 68
5.1 Inter-procedural DFA-based Analysis 69
5.2 Standard Stack Cache Analysis 70

6 Method Cache Analysis . 71
7 WCET Analysis with Predication . 73
8 Existing Static WCET Analysis Tools 73
9 Conclusion . 76

4 Analysis of Predicated Programs in Odyssey
– a Fully-Integrated WCET Analysis Tool 78
1 Outline . 78
2 Odyssey: a Fully-Integrated WCET Analysis Tool for Patmos 79
3 Handling Predication: Motivating Example 82
4 Control-Flow Unfolding . 83
5 Experiments . 87
6 Conclusion . 88

5 Comparing the Precision of Stack Cache Occupancy Analyses 89
1 Outline . 89
2 Cache Occupancy Analyses . 90

2.1 Standard Stack Cache Analysis 90
2.2 Inter-procedural Data-flow Analysis 92

3 Experiments . 95
3.1 Discussion . 96

4 Conclusion . 98

6 Analysis of Preemption Costs for the Stack Cache 99
1 Outline . 99
2 Analysis of Preemption Delays: Motivating Example 100
3 Context Saving Analysis . 102
4 Context Restoring Analysis . 105

4.1 Local Restore Analyses . 106

4

4.2 Global Ensure Analysis . 109
4.3 Global Reserve Analysis . 111
4.4 Context Restore Costs . 114

5 Computational Complexity . 115
6 Discussion . 117
7 Experiments . 117

7.1 Context Restoring Analysis 117
7.2 Context Saving Analysis . 119

8 Conclusion . 120

7 Preemption Mechanisms for the Stack Cache 121
1 Outline . 121
2 Preemption Mechanisms . 122
3 Handling Preemption Schemes . 124

3.1 Fixed Preemption Schemes . 124
3.2 Non-Fixed Preemption Schemes 125

4 Experiments . 127
4.1 Hardware Implementation . 131

5 Conclusion . 132

8 Eager Stack Cache Memory Transfers
– A Prefetching-Like Technique for the Stack Cache 133
1 Outline . 133
2 Eager Memory Transfers . 134

2.1 Eager Fill . 136
2.2 Eager Spill . 137

3 Spill/Fill Arbitration . 138
4 Experiments . 138
5 Conclusion . 141

9 Conclusion and Future Work 142
1 Contributions . 142
2 Extension and Future Work . 144

2.1 Virtual Stack Caches . 144
2.2 Unused TDM slots . 145
2.3 Method Cache . 146

5

List of Figures

1.1 Timing characteristics of task τi. Ti is the period of activation, Ci is
the computation time, and Di is the deadline relative to the activation
date. 6

1.2 Distribution of execution times. The actual WCET has to be upper-
bounded by the WCET estimate provided by the timing analysis. The
precision of the analysis determines the tightness of to the actual
WCET. 9

2.1 Simplified representation of Patmos pipeline. Taken from Patmos
Handbook [7]. 29

2.2 Portion of a program in Patmos assembly language and its correspond-
ing machine code. Each line in the machine code corresponds to a
line in the assembly code. 30

2.3 Example of a program and the stack cache state at particular points. 35
2.4 Patmos multi-core platform. 38
2.5 The compilation toolchain. 39

3.1 General WCET analysis work flow. 44
3.2 Portion of a program in Patmos assembly language and its correspond-

ing machine code. Each line in the machine code corresponds to a
line in the assembly code. 48

3.3 Example of a program in the Patmos assembly language and its
corresponding CFG demonstrating the use of a single loop. 50

3.4 Example of an ICFG of a program and its corresponding CG. 52
3.5 Examples of some domains . 55
3.6 The transfer function transforms the input information. 56
3.7 Direction of the information flow in forward and backward analyses.

Dashed arrows represent the flow of information, while the regular
arrows represent the flow of execution. 57

3.8 Example of liveness analysis. Taken from [3]. 59
3.9 The evolution of the (actual) cache state depending on memory ac-

cesses. Assuming 2-way set-associative cache with LRU replacement
policy. The memory blocks ’a’, ’b’ and ’d’ map to the cache set s1,
whereas ’c’ and ’e’ map to s2. 61

6

3.10 Example of an ACS content assuming a cache of associativity 4. . . . 63
3.11 Example of May and Must analyses. 65
3.12 x . 69
3.13 Example of a program and its corresponding scope graph. 71
3.14 Visual feedback generated by the OTAWA analysis tool. 74

4.1 Overview of the Odyssey WCET analysis tool. 79
4.2 Transforming an LLVM basic block with a call (left) into two ICFG

basic blocks (right). 81
4.3 Implementation of a simple switch statement using a jump table,

the corresponding control-flow graph, the predicated machine code of
basic block SWT, and the unfolded control flow. 83

4.4 Increase in the number of instructions due to unfolding for the de-
layed (), mixed (), and non-delayed () configurations with VLIW
instruction bundles, normalized to the size of LLVM’s original CFG
(lower is better). 87

5.1 A program consisting of 4 functions, reserving, freeing and ensuring
space on the stack cache (cache size: 4). The annotations in angle
brackets, e.g., 〈2〉, indicate the maximum filling/spilling behavior of
stack cache control instructions. 91

5.2 A weighted call graph representing the program from Figure 5.1. The
edge weights indicate the amount of stack space reserved in the respec-
tive functions, and can be used to compute the minimum/maximum
displacement. 92

5.3 Example of occupancy analysis using the IDFA approach. 94
5.4 Percentage of occupancy bounds (maximum/min) by SCA being (1)

greater, (2) equal, or (3) smaller than IDFA. 95
5.5 Imprecision propagated out of recursive functions when computing

maximum occupancy with IDFA. 97
5.6 Feedback loop enforcing imprecision of non-recursive functions for

IDFA computing maximum occupancy. 97

6.1 Program consisting of 4 functions, reserving, freeing and ensuring
space on the stack cache (cache size: 4). The annotations in angle
brackets, e.g., 〈2〉, indicate the maximum filling/spilling behavior of
stack cache control instructions. 100

6.2 Cache states after executing the indicated instructions (below) and
number of blocks transferred (above). 101

6.3 Partitioning of the stack cache . 103
6.4 Propagation of the DP (shown on the right in blue) within a function:

stack data becomes dead right before sfree and sts instructions,
while it becomes live before lds instructions. Other instructions do
not impact the DP. 104

6.5 Partitioning of the stack cache . 106
6.6 Propagation of the RP (shown on the right in blue) within a function:

only lds, sts, and sens instructions impact the RP, while other
instructions do not modify its value. 108

7

6.7 Weighted CG of the code in Figure 6.1 used to bound the additional
transfer costs at sens instructions of other functions. 110

6.8 Weighted CG of the code in Figure 6.1 used to bound the global gain
due to sres instructions of other functions. 114

6.9 Histogram of transfer sizes (in bytes) for context restoration at basic
blocks using max. occupancy (Full) and our approach (Optimized).
Lower is better. 118

6.10 Minimum vs Maximum cost reduction (in bytes) for context restoration
at functions. Smaller distance to the reference line is better. 119

6.11 Histogram of transfer sizes (in bytes) for context saving at basic blocks
using max. occupancy (Full) and our approach (Optimized) from
Section 3. Lower is better. 120

7.1 Partitioning of the stack cache . 122
7.2 Low-level functions to save/restore the stack cache content. 123
7.3 Histogram comparing the transfer sizes (in bytes) for context restora-

tion at basic blocks using the ISA-full, ISA-RP, and FP preemption
mechanisms to the optimized analysis. Lower is better. 128

7.4 Histogram comparing the transfer sizes (in bytes) for context sav-
ing at basic blocks using the ISA-full, ISA-RP, and FP preemption
mechanisms to the optimized analysis. Lower is better. 130

8.1 Example of eager memory transfers. 135
8.2 Pseudo code illustrating the operation of the eager filling and eager

spilling. 136
8.3 Normalized number of total cache blocks regularly spilled/filled with re-

spect to standard stack cache implementation supporting lazy pointer.
(Lower is better) . 139

8.4 Efficiency of the various eager spill/fill arbitration policies relative to
the Spill- and Fill-Only configurations on a dual-core platform (Lower
is better). 140

9.1 Visualization of the TDM slots utilization for the bitcount bench-
mark assuming 2 cores configuration. Top plot shows a general
overview of the TDM slots utilization during a complete execution.
Bottom plot shows the utilization of individual TDM slots within
a specific time frame. Colors represent the TDM slots utilization,
ranging from green (low utilization) to red (high utilization). 146

8

List of Tables

1.1 Comparison of time-predictable architectures. (I$: Instruction Cache.
D$: Data Cache. S$: Stack Cache. M$: Method Cache. SP: Scratch-
pad.) . 20

2.1 Example of control-flow instructions and their delay slots. 41

5.1 Summary of concepts used by the traditional Stack Cache Analysis
(SCA). 91

7.1 Increase of restoration cost for the FP preemption mechanism in
comparison to the optimized analysis, illustrating the movement of
basic blocks to the right side of the histogram in Figure 7.3. Smaller
numbers are better. 129

7.2 Increase of saving cost for the FP preemption mechanism in comparison
to the optimized analysis, illustrating the movement of basic blocks
to the right side of the histogram in Figure 7.4. Smaller numbers are
better. 131

9

Abstract

With the rising complexity of the underlying computer hardware, the analysis of
the timing behavior of real-time software is becoming more and more complex and
imprecise. Time-predictable computer architectures thus have been proposed to
provide hardware support for timing analysis. The goal is to deliver tighter worst-
case execution time (WCET) estimates while keeping the analysis overhead minimal.
These estimates are typically provided by standalone WCET analysis tools.

The emergence of time-predictable architectures is, however, quite recent. While sev-
eral designs have been introduced, efforts are still needed to assess their effectiveness
in actually enhancing the worst-case performance. For many time-predictable hard-
ware, timing analysis is either non-existing or lacking proper support. Consequently,
time-predictable architectures are barely supported in existing WCET analysis tools.

The general contribution of this thesis is to help filling this gap and turning some
opportunities into concrete advantages. For this, we take interest in the Patmos
processor. The already existing support around Patmos allows for an effective ex-
ploration of techniques to enhance the worst-case performance. This is delivered
through the interplay between the hardware, the compiler, and the timing analysis.
We thus not only provide some missing timing analysis support, but we also target
hardware/software optimizations to enhance performance.

Main contributions include: (1) Handling of predicated execution in timing analysis,
(2) Comparison of the precision of stack cache occupancy analyses, (3) Analysis of
preemption costs for the stack cache, (4) Preemption mechanisms for the stack cache,
and (5) Prefetching-like technique for the stack cache. In addition, we present our
WCET analysis tool Odyssey, which implements timing analyses for the Patmos
processor.

Résumé

En raison de la complexité croissante des architectures matérielles, l’analyse tem-
porelle du logiciel temps-réel devient de plus en plus complexe et imprécise. Les
architectures prédictibles des ordinateurs ont donc été proposées afin d’assurer un
support matériel dédié à analyse temporelle. The but est de fournir des estimations
plus précises de pire-temps d’exécution de programmes (WCET), tout en gardant le
coût et la compexité de l’analyse minimal. Ces estimations proviennent typiquement
d’outils dédiés à l’analyse WCET.

L’émergence de ces architectures spécialisées est, toutefois, assez récent. Bien que
plusieurs designs d’architectures ont été proposés, des efforts sont encore nécessaires
pour évaluer leurs capacités à améliorer les performances pire cas. Pour plusieurs com-
posants matériels prédictibles, l’analyse temporelle est manquante ou partiellement
supportée. En conséquence, les architectures prédictibles sont à peine supportées
dans les outils d’analyse WCET existants.

Cette thèse s’inscrit dans les efforts pour combler ce manque et transformer le poten-
tiel de ces architectures en avantages concrets. Pour cela, nous nous intéressons au
processeur prédictible Patmos. Le support existant autour de la plateforme permet
une exploration effective des techniques d’optimisation pour les performances pire
cas. Ceci se base sur trois composantes étroitement liées, à savoir : le matériel, le
compilateur, ainsi que l’analyse temporelle. Nous nous intéressons, donc, non seule-
ment au support d’analyse temporelle, mais aussi aux optimizations du compilateur
et du matériel en vue d’améliorer les performances pire cas.

Les principales contributions de cette thèse comprennent : (1) Une gestion des
prédicats dans le flux d’anayse WCET, (2) Une comparaison de la précision des
analyses d’occupancy pour le stack cache, (3) Une analyse des coûts de préemption
pour le stack cache, (4) Des mécanismes de préemption pour le stack cache, et (5)
Des techniques de prefetching pour le stack cache. En outre, nous présentons notre
outil d’analyse WCET Odyssey. Notre outil implémente plusieurs de ces analyses et
supporte le processeur Patmos.

Acknowledgements
I would like to express my deep gratitude to Florian Brandner for believing in me.
I was fortunate to work closely alongside him throughout my thesis, and learned a
great deal both technically and personally. Thank you for your positive energy. I
could not have completed my work without you.

I would also like to thank Mathieu Jan for introducing me to this thesis. Your helpful
nature and relevant advice contributed to the completion of this manuscript.

My gratitude goes to Albert Cohen for his guidance and encouragement throughout
my research.

I owe so much to my family, particularly my mom. Thank you for encouraging me
by any means.

Finally, my fiancée Jessica. I love you so much. Thank you for your patience, love,
and support.

A

CHAPTER 1

Introduction

This first chapter provides a gentle introduction and lists our contributions. The rich
information provided here makes it accessible for a wide range of readers. Specialists
may find the first and the last sections sufficient for this matter. The chapter is
organized as follows: We start off by presenting the general context and the motivation
for our work. We then provide in Sections 2 and 3 basic background concepts related
to real-time systems and timing analysis. Section 4 covers the meaning of performance
in conventional vs. real-time computing systems. Section 5 reports some issues related
to timing analysis for conventional computer architectures. Some time-predictable
architectures are presented and compared in Section 6. Finally, we present our
contributions in the last section.

1 Toward High-Performance Safety-Critical Systems
Computer technology has profoundly changed our society and shaped the way we
live over the last few decades. Ever since the invention of the first transistor and the
emergence of early digital computers, advances in electronics and computer science
have made it possible to build computers that run software capable of supporting
increasingly demanding features. Attainable levels of circuit miniaturization made it
possible to realize faster and sophisticated computer architectures that implement
multi-core technologies and other performance enhancing features. In parallel,
compiler technology provided tools to build optimized software for the underlying
computer architecture, enabling software engineers to develop large scale and complex
projects. This multi-disciplinary synergy allowed use cases of computers to grow
in vast and unpredictable ways. Remarkable achievements like social-networking,
electronic voting, or some major scientific discoveries were not possible to attain
without the deployment of high-performance computers in the heart of machines of
all possible sizes.
There are other applications where computers showed most beneficial uses. In
avionics, the automotive industry, or nuclear plants, there is a need in developing,
so called, safety-critical systems. These systems are subject to special kinds of
requirements, and are characterized by their highest degree of reliability and safety.

1

In contrast to other classes of systems, a safety-critical system failure may endanger
human lives, lead to economical loss, or cause disastrous harm to the environment.
They are often used as control systems that monitor the dynamics of a physical
environment in real-time and thus are subject to strict timing requirements. For
example, an automatic flight control system, like those used in most modern aircrafts,
needs to continuously check inputs, such as the air dynamics, and activate the right
controls in-time so that the desired flight conditions are maintained. These real-time
control tasks are merely software programs carried-out by embedded computers that
were specifically designed for that purpose. In that regard, one may think that these
computers must also inherit decades of progress and wisdom accumulated in terms
of high-performance computing.
Not quite, unfortunately. The problem is, because of their critical nature, these
systems need to pass the most rigorous and extensive tests and verification processes,
before being put in use. Particularly, timing analysis is crucial in order to check the
satisfaction of the system’s timing requirements and avoid failure. This typically
consists of statically1 analyzing the timing behavior of control tasks performed by the
embedded computer and making sure they meet their respective timing constraints
under all circumstances. The analysis identifies the worst-case timing behavior of
each task, and provides an upper-bound estimation of its worst-case executing time
(WCET). On the one hand, the WCET estimation has to be conservative in the sense
that it covers all contributing factors to execution time variation, as well as their
induced uncertainties. On the other hand, it is important that the estimated WCET
bound be tight and the closest to the actual WCET, so that hardware resources are
not wasted.
Modern computer architectures, however, are purposely designed to enhance the
average-case performance of programs. This is done by optimizing execution times of
frequent execution cases, which inevitably penalize those of infrequent cases. Unless
the program is of extreme simplicity or consisting of a single execution scenario,
the worst-case timing behavior is by definition extremely rare to occur and the
performance gap with respect to other cases may therefore be large. Moreover, many
of the built-in hardware components rely on complex and speculative behavior that
overly increases the complexity of the timing analysis and induces huge amounts of
uncertainties. The presence of uncertainties may seriously limit time-predictability,
that is, the ability to precisely predict the timing behavior of the system. As a
result, identifying the worst-case timing behavior becomes harder, and the computed
WCET estimation is overly pessimistic. Components like caches, dynamic branch
predictors, and deep out-of-order pipelines – often regarded as performance boosters
– are unfortunately problematic for tight and precise timing analysis2. From a global
standpoint, these architectures are often not timing-composable, meaning that a safe

1Before running the system.
2Depending on the memory hierarchy and performance, the timing behavior of a cache miss

compared to that of a cache hit can be measured in order of magnitudes. In case the timing analysis
is not able to predict, for instance due to complexity, the fact that some memory access is a cache
hit, then the analysis has to consider that access as a cache miss. The resulting WCET estimation
is indeed conservative. However, the system has to allocate more CPU time than what is actually
needed, leading to a hardware resource waste. This is not to mention timing anomalies that describe
non-intuitive situations where a local positive effect (say a cache hit) can lead to a global negative
effect (increased pipeline stalls). Timing anomalies are hard to spot as they require tracking a long
execution history which makes the timing analysis overly complex.

2

WCET estimation cannot be derived by separately studying the timing behavior of
each component. The lack of this particular property prohibits the timing analysis
problem to be addressed in a composable manner, adding further complexity to the
issue. Due to these reasons, designers of safety-critical systems might sometimes be
confronted with a paradoxical situation, where introducing high-performance features
eventually leads to devastating loss in performance itself.
A typical workaround used in many system designs would consist of merely disabling
these hardware components, sacrificing overall performance over tight and more
predictable worst-case timing behavior [20]. Any more need in computing resources
would be filled by introducing more embedded computers with, unfortunately, im-
peded performance. The result is often excessively complex electronic structures
consisting of several distributed computers that need to interact and share resources
with each others. One has just to take a look at the electronic architecture on modern
vehicles to realize how complex this may turn out to be. It is estimated that modern
cars contain around 50 embedded computers that communicate through networks
consisting of kilometers of wirings and kilograms of copper [1]. To mitigate this
issue, more attention was directed toward multi-core platforms, especially after the
success they showed in the general-purpose computer market during the beginning of
the millennium. Due to their hardware parallelism capabilities, these new computer
architectures promise more computing power with little to no overhead as to cost,
space, and power usage. This seems very convenient for many industrial applica-
tions. However, some issues may emerge when designing software for multi-core
architectures. In fact, software that used to run in uniprocessor systems may not
always scale well and perform better when ported to multi-core systems. Cache co-
herence, synchronization, and distribution of software functionality across computing
resources are examples of typical issues that a software designer has to deal with
in order to build a safe but yet efficient system. Due to hardware resource sharing,
dependencies between applications may show up making it almost impossible to get
timing guarantees without seriously impacting the performance advertised by these
architectures.
On the other side, societal expectations for increased technology performance is
constantly growing. The safety-critical systems are requested to carry more demand-
ing features in need of computing power. In the automotive industry, for instance,
autonomous vehicles must implement automated driving systems, responsible of
processing huge amounts of information provided by networks of sensors and cameras
in real-time, in order to make split-second driving decisions. Meanwhile, the driver
is invited to take the seat of a mere passenger, enjoying the ride, and maybe all
kinds of entertainment services provided by the vehicle’s computer system. The
direct implication of this growth in functional requirements is of course a dramatic
increase in size and complexity of software to implement them. This phenomenon is
observed across all sectors and has been well captured by a NASA study that covered
various projects in the space and avionic domain [36]. In fact, the apparent increase
in performance of modern computer architectures seems to encourage industries to
rely on software to perform demanding safety-critical tasks.
Many computer vendors start to propose new computers with unprecedented levels
of performance to keep pace with these high expectations. The brand new Nvidia
computer Drive PX [6] is an example of such hardware platforms providing original
computing capabilities aimed to support autonomous driving functionalities. It

3

embarks four high-performance artificial intelligence processors capable of performing
320 TOPS3 of deep learning operations. But what is the meaning of performance
anyway? Are such raw computational metrics a good way to realistically appreciate
the performance of computers in the context of safety-critical systems? The experience
accumulated in the matter seems to suggest otherwise, and the foreseen increase
of software complexity is only going to get the process even more complicated. In
fact, seeking more computing power without effectively addressing the problem of
timing analysis deems most of the performance to be stuck in the potential bucket
and never get a chance to be exploited in real life.
The work in this thesis is part of the efforts to reconcile performance with safety-
critical systems and unlock the potential modern computers have to offer. Prior work
already investigated computer architectures tailored for timing analysis [38, 120,
53, 91]. However, the T-CREST project [108] takes a comprehensive approach to
performance in the context of real-time systems. In fact, it is based on the observation
that performance depends not only on the architecture, but also on the timing analysis
tool as well as the compiler support. Patmos is a time-predictable processor resulting
from the T-CREST project. It implements special features and hardware components
intended to simplify the analysis process and derive tight WCET estimates. Moreover,
a port of the LLVM compiler infrastructure to Patmos is provided, which allows to
introduce and perform WCET-related analyses and optimizations. We participate
in this effort by providing several missing timing analyses for its time-predictability
features. In this process, we also introduce hardware extensions that aim not only
to derive more precise bounds, but also to reduce the actual WCET. Most of these
techniques are integrated in our WCET analysis tool Odyssey. The outcome of
this work may, ultimately, help defining computer architectures that are suitable
for high-performance safety-critical applications. A detailed list of contributions is
provided in Section 7.

2 Real-Time Systems
Safety-critical systems are often subject to timing requirements that should be
met in order to avoid failure. Such systems require their inputs to be regularly
controlled so that the adequate response is issued at the right moment, i.e., in real
time. Computer systems operating according to that scheme are known as real-time
systems. They retain special properties and functionalities necessary to handle
temporal and functional aspects of the containing safety-critical system. What do
we mean precisely by the term “real-time” and how do these systems manage these
aspects?

2.1 Definition and Key Properties

In the context of computing, the term “real-time” might be the subject of misinter-
pretations among people outside specialized communities. While many attribute
to it qualities such as speed or how fast some computer system may react to user
stimuli, this picture does not capture the true properties and characteristics this

3Trillion operations per second. Although this metric is straightforward, it only represents peak
execution rates of instructions performed by the CPU without considering other important elements
of the computer architecture and the program.

4

concept actually grants. More exactly, computer systems qualified as real-time refer
to those in which the logical correctness of the results they provide, and the time by
which these results are provided, are of equal importance. It is a simple concept for
which many analogies could easily be found in everyday life. For instance, in many
combat sports like boxing or fencing, marking points is usually decided by how the
player is successful in executing the right action within the right time frame. Surely
the reaction time frame is usually perceived as fast with respect to human standards,
however, depending on the situation this may not always be the case. What if we
consider now the example of a ratepayer requested to submit tax returns within the
next two months? The reactiveness in the earlier example is not more “real-time"
than that in the later one by any aspect. A failure to correctly file and deliver the
requested documents within the imposed time frame will probably lead to undesirable
consequences. Applying this concept on computer systems is extremely useful in
applications requiring the physical environment to be permanently controlled in order
to produce and maintain the desired behavior. In that regard, the reaction speed
to stimuli is merely dictated by timing requirements relative to the environment’s
dynamics. Such requirements are often characterized by deadlines by which the
correct response has to be produced. The timeliness of a real-time system expresses
how successful that system is in meeting its timing constraints.
Given the criticality of some applications, it is necessary to derive proofs as to the
timeliness of the system before actually running it. However, not everything can be
known during design time. Many factors can influence the behavior of the system,
especially the evolution of input data. These uncertainties introduce non-determinism
that has to be considered in the verification process. Achieving this goal requires
the system to be predictable. This means that it must be possible to predict, at
least to some extent, facts or properties about the system’s evolution. Timing
predictability expresses the degree of certainty regarding the timing behavior of the
system. Therefore, it is desirable that the system allows to derive precise predictions
with respect to the actual timing behavior. A system that lacks an adequate level of
predictability will not be certified for use in safety-critical systems.
That being said, not all real-time systems are intended for safety-critical applica-
tions. Many do not require highest levels of timeliness to operate in acceptable
conditions. Depending on the strictness of timing requirements, real-time systems
can be categorized into three kinds:

• Hard real-time systems: as the name suggests they are subject to hard
timing constraints, meaning that the system experiences a failure if any of
the deadlines is missed. Hard real-time systems are typically used in safety-
critical applications and have the highest levels of reliability and timeliness.
Application examples include nuclear plants, power-train systems, flight control
systems, and spacecrafts.

• Firm real-time systems: a result that comes after a deadline is useless.
Missing the deadlines does not cause serious damage. However, the performance
of the system might be severely degraded. Examples of firm real-time systems
include robotic assembly lines or sensory data transmission.

• Soft real-time systems: deadline misses may be tolerated. A late result is
still useful, although a degradation of performance may be noticeable. Soft real-

5

Figure 1.1 – Timing characteristics of task τi. Ti is the period of activation, Ci is the
computation time, and Di is the deadline relative to the activation date.

time systems are typically used in consumer applications such as audio-video
streaming or video games.

In this work, we focus on hard real-time systems.

2.2 Embedded Systems

Practically speaking, most real-time systems are realized using embedded computer
systems. In contrast to general-purpose computers, embedded computers are dedi-
cated for specific applications or products. They are designed to carry-out distinct
functionalities delivered by a larger system like those mentioned earlier. Like any
computer system, they are essentially composed of many hardware and software
parts. Performance and characteristics of embedded systems range widely, depending
on application domains. For consumer applications, they usually consist of System
on Chips (SoC) with multi-core processors, along with advanced peripherals such
as graphics processing unit (GPU), and connectivity modules. Examples include
Texas Instruments’ OMAP and Qualcomm’s Snapdragon Series. In real-time appli-
cations, embedded computers traditionally consist of simple micro-controllers with
basic elements of a computer architecture. These computers typically operate at
frequencies under 100MHz, and carry a memory system of several KBytes. How-
ever, as computing requirements increased lately, many industries get interested
in deploying computers delivering high-performance capabilities. Among them, we
can cite Renesas’ multi-core platform RCAR-H3, or Kalray’s many-core platform
Bostan. In any case, embedded computers are often subject to constraints regarding
hardware resources, price, space, or perhaps power consumption. For this reason,
the embedded software is usually optimized for the targeted embedded computer
architecture. In fact, software designers have to be mindful as to the strict needs of
the application being developed. In some cases, an operating system may even not
be required to properly implement and operate the desired functionalities.

2.3 Real-Time Tasks

Real-time systems typically control many aspects of system inputs at the same
time. To achieve reactiveness, a real-time system may consist of several tasks that
execute periodically, in a parallel fashion. A task is the basic unit of execution,
and merely consists of a software program that processes input data to provide
results. Depending on the adopted task model, each task is associated with different

6

parameters capturing their timing characteristics. Figure 1.1 illustrates some of these
parameters for some task: (1) the period of activation Ti, (2) the CPU time needed
to fully execute the task Ci, and (3) the deadline relative to each of its activations Di.
The real-time operating system (RTOS) manages the computer’s hardware resources
(such as CPU time) and allocates them to tasks according to their respective timing
requirements. This is done using task scheduling that consists of finding a correct
execution order of active tasks that guarantees the satisfaction of all their timing
constraints. Scheduling has been (and still is) the subject of an extensive amount
of research since the mid-20th century. Many scheduling algorithms exist in the
literature along with several studies detailing advantages and drawbacks of each class
of algorithms. However, static scheduling is often preferred in safety-critical systems
due to its predictability and implementation simplicity [73]. In static scheduling all
tasks’ parameters involved in scheduling decisions are known in advance and may not
change during the system’s execution. An example of a static scheduling algorithm,
is called Rate Monotonic (RM), where task priorities are assigned according to the
task’s period of activation, commonly denoted as Ti. Tasks with shorter periods have
higher priorities to execute.

2.4 System Failure

Like any computer system, real-time systems are not totally spared from design
flaws and bugs that may compromise one or many of their aspects. There are many
examples of incidents that occurred in the past due to complications resulting from
what may appear as mere software bugs [8]. While some of these flaws can today
be detected using advanced software checking and testing techniques, failures due
violation of timing requirements may have different causes that cannot be spotted
via such methods. Missing a deadline can be the result of circumstances that the
software designer did not anticipate. For instance, a task that took more time than
expected to complete its execution. Or, a high peak load that the system cannot
handle. Temporal aspects are particularly hard to verify in situations where the
environment to be controlled is not reproducible in the lab. This is unfortunately
often the case, and given the criticality of some applications, the blue screen of death
is usually not an option. In the next section we discuss how timing guarantees could
be derived in order to ensure the timeliness of real-time systems.

3 Deriving Timing Guarantees
One of the main concerns of building real-time systems, is to ensure the satisfaction
of all their timing requirements. Due to many uncertainties, it may not be possible to
predict with absolute precision the evolution of every aspect of the system. Therefore,
some precision sacrifices are usually necessary, leading the designer to rather consider
the worst-case scenario. Generally, the approach to derive timing guarantees consists
of showing that in the worst-case all tasks fully terminate their execution by their
respective deadlines. A good system design is thereby characterized by its ability to
make reliable predictions based on the results obtained for the worst-case. In any
case, the problem has to be addressed at all levels of the computer system.

7

3.1 Schedulability Analysis

Task scheduling offers means to find an execution order of tasks depending on their
timing characteristics. However, it does not necessarily guarantee, on its own, the
satisfaction of timing requirements4. Very often, a schedulability analysis is required
to verify that no deadline is missed. Schedulability analysis is usually expressed by
the mean of a schedulability test that answers the following question: Given a system
of tasks and a scheduling algorithm, will all tasks meet their individual deadlines?
In that regard, the test function takes as input the timing characteristics of tasks,
and attempts to provide a positive or a negative answer as to the schedulability of
the system. Equation 1.1 provides an example of a schedulability test for the Rate
Monotonic algorithm [79]. This simple test is based on the total CPU utilization of
the system, and a positive response is sufficient to declare all deadlines to be met.
There are many other approaches to schedulability analysis. For more details, a
comparative study of RM schedulability tests can be found in [35].

U =
n∑

i=1

Ci/Ti ≤ n(21/n − 1), (1.1)

where Ci is the computation time, Ti the activation period of the i-th task, and n
the total number of tasks.

From this standpoint, schedulability tests may determine if a system of tasks suc-
cessfully meets all its timing constraints. However, it is important to note that the
response provided by the test directly depends on the tasks’ parameters and how they
are chosen. To achieve this, the system designer has to combine timing characteristics
of both the environment to be controlled, and the computer performing the needed
computations. This is typically done by first formulating timing requirements given
the dynamics of the environment. Then, choosing the adequate computer system
allowing to carry-out tasks defined by the software architecture within the timing
requirements. In particular, the parameter Ci is tied to the computer architecture
and its determination is crucial to verify the timeliness of the system. Failing to
correctly fill this value may cause the schedulability analysis to provide a wrong
answer, potentially leading to a system failure. Assuming a scheduling algorithm
free of anomalies5, this falls into determining the worst-case execution time (WCET)
for each task program.

3.2 Timing Analysis

Intuitively, the determination of the WCET may look as a matter of execution
time measurement. Some approaches in fact consist of performing dynamic analysis
based on measurements. The principle consists of running the task, or parts of
it, under some circumstances and perform measurements of the execution times

4A very simple example would be to consider a system of periodic non-preemptive tasks where
some task never terminates its execution. Once started, the blocking task prevents all other tasks
from execution and subsequently to meet their individual deadlines.

5A scheduling algorithm suffers from anomalies when any positive effect on the system, such as
a relaxation of timing constraints or additional hardware resources, leads to an increase of task
response times.

8

Figure 1.2 – Distribution of execution times. The actual WCET has to be upper-
bounded by the WCET estimate provided by the timing analysis. The precision of
the analysis determines the tightness of to the actual WCET.

in order to derive maximum bounds. While this method is simple and provides
accurate execution times based on the actual hardware platform, it has some major
issues. What exact circumstances should be applied in order to produce the WCET?
This question is hard to answer as many factors influence the execution time. The
evolution of system inputs as well as the initial hardware state may have a direct or
indirect implication. Consequently, not choosing the right circumstances may lead to
optimistic estimations for the WCET, and invalidate the results of the schedulability
test. A typical distribution of execution times related to a real-time task is shown
in Figure 1.2. Measurement-based approaches relying on optimistic circumstances
will probably observe an execution time below the WCET. Conversely, the worst-
case behavior is usually extremely rare to encounter. This rarity though does not
constitute an argument to dismiss it, as given enough time, the occurrence of rare
events become more probable. Therefore, there is a need in deriving the WCET
using more reliable approaches to timing analysis.
To achieve this goal, it is first important to capture all factors involved in the
execution time variation. Let us recall that a real-time system consists of a set
of tasks running in a computer system. A task is basically a program performing
computations on input data and producing results. The program is stored in the
computer system that executes its instructions in a sequential order. Hence, the time
spent on executing the program depends on these factors:

Input Data: Many of the program decisions are data dependent. The evolution
of input data may thus cause the program to process data differently, leading to
different execution times.

Program: The program may consist of many ”paths“ each representing a possible
execution scenario. Depending on the chosen path, different operations may be
performed leading to a variety of possible execution times.

Computer Architecture: The time spent on executing each instruction of a
program path is a function of the computer architecture and the performance of
its hardware implementation.

Other Tasks: Scheduling organizes tasks execution on the same hardware platform.
When some task is executed, it changes hardware states, which may have an

9

influence on the execution time of subsequent tasks.

Therefore, determining the WCET requires the analysis to consider the combination of
circumstances, on all these factors, that lead to the worst-case timing behavior. Safety-
critical systems require maximum confidence about the derived timing guarantees.
Also, they have to be obtained statically, i.e., before running the system. This process
has therefore to be formally established using analytical methods. Static program
analysis offers means to satisfy these two requirements. Static program analysis is a
generic method [30, 48] that consists of determining facts or properties about the
dynamic behavior of a program without actually running it. The idea consists of
gathering information about possible execution scenarios of the program and then
to use that information to track and predict the processor’s timing behavior. The
WCET will then correspond to the worst-case timing behavior produced by running
the program on that specific processor.
That being said, uncertainties and precise predictions are two opposite things. Not
everything can be known in advance regarding the aforementioned factors. For
instance, some CPU vendor may decide not to provide every detail about the
computer architecture. Furthermore, the evolution of input data is by definition
non-deterministic in most systems. The implication on the timing analysis is that
the determination of the exact WCET becomes often intractable. Rather, the timing
analysis aims to provide an upper-bound estimate of the actual WCET. The good
news is that static program analysis can take these uncertainties into consideration in
order to conservatively derive those worst-case bounds. However, this is done at the
expense of precision. The gap between the actual WCET and the WCET estimate
is known as pessimism. Pessimism is the natural response of timing analysis that
needs to be conservative in the presence of uncertainties. Therefore, it is important
to keep them as low as possible for tight WCET estimates.
We cover more in detail the WCET analysis flow and its different steps in Chapter 3.

4 Meaning of Performance
Computers are built to process information and perform computing tasks. Evaluating
how good computers are in performing these tasks is regarded as computer perfor-
mance. Studying computer performance allows to spot performance bottlenecks
within the computer system in order to build computers that are a better fit for
the application. For this, the meaning of performance has to capture all important
criteria relevant for the application in question. In real-time systems, time is one of
the most primordial aspects that need to be considered for performance. However,
the fact that real-time systems are computer-based systems impels us to consider
performance in a more general manner. This section provides a clarification as to
the meaning of performance in our context and whether standard architectures are a
good fit for real-time applications.

4.1 Performance in Standard Computer Systems

During the past six decades, making the common case fast has been one of the
design philosophies that were prominent in computer architecture [31]. This idea
makes sense, because computing resources are limited, so they better be exploited

10

for what the user experiences most frequently. Making the common case fast is
usually addressed by improving either the throughput, i.e., the amount of work
done in a unit of time, or the observed execution time as previously depicted in
Figure 1.2. Comparing computer systems with respect to these two aspects requires
looking at the computer subsystem in a basic level and spot the involved factors.
In the single CPU model, there are basically three low-level factors contributing
to performance: (1) the operating frequency, i.e., the clock rate to run the CPU,
(2) the instruction count, that is, the total number of instructions executed to fully
complete the program, and (3) the average clock cycles per instruction (CPI) as
each instruction may take a different amount of time, depending on operations they
induce. Many of the software and hardware performance enhancing features that
were gradually introduced during the single CPU era aim at enhancing these factors.
In the micro-architectural level, making the common case fast has been achieved
through the introduction of extra hardware components to the basic computer
architecture. The general idea behind all these techniques is to make the CPU
execute multiple instructions in a single CPU cycle, thus reducing the average CPI
number. Here below we list some of these components, and how they improve
computer performance:

Pipeline: A technique that implements a form of parallelism known as instruction-
level parallelism (ILP). It works by dividing the execution of incoming instructions
into different stages, allowing multiple instructions to overlap part of their execution
(see [31] Section 4.10).

Branch Predictor: Attempts to predict the outcome of a branch. Instead of
waiting for the branch to be resolved in a late stage of the pipeline, a branch
predictor guesses its outcome so that the CPU can proceed with its execution (see
[31] Section 4.8).

Superscalar pipeline: This is a more advanced form of ILP. Multiple-issue
pipelines enable the CPU to execute more than one instruction per cycle by
dynamically scheduling instructions, while respecting data/control dependencies
(see [31] Section 4.10).

Cache: A fast and small memory structure holding frequently referenced data.
Caches are part of the memory hierarchy, and provide a fast access to cached data
preventing the CPU from stalling due to time consuming requests to main memory
(see [31] Section 5.3).

Prefetcher: Attempts to anticipate future memory accesses by fetching the needed
data from the main memory to the cache, before it is actually requested (see [31]
Section 5.16).

These hardware components are popular techniques to enhance performance and
thereby are found in almost every modern computer architecture. However, it is
important to note that some of them rely on assumptions, speculations or predictions
that may turn out to be true, but also may turn out to be wrong, depending on
the behavior of the program. Logically, their individual effectiveness has a direct
implication on the overall performance of the system. Therefore, specific metrics
for each component can be defined in order to study their behavior. For caches
usually the miss or hit rates are used, whereas the mis-prediction rate is often used

11

to compare branch predictors. Huge research efforts were conducted in order to
come up with strategies based on heuristics that attempt to maximize the profit in
different situations. For instance, the Least-Recently Used (LRU) cache replacement
policy is most effective when accesses to the same data are likely to happen again
soon. The same policy may however exhibit side effects if data are accessed in a
different pattern.
Despite the introduction of these innovative techniques in computer architectures,
increasing the frequency has been a more tempting approach to achieve performance.
However, due to power consumption issues that emerged at high frequencies, other
approaches to performance had to be found. This is when multi-core architectures
emerged. Multi-core architectures provide task-level parallelism (TLB), a technique
through which tasks or sequences of instructions can run simultaneously, taking
advantage of the potential parallelism offered by additional cores. There exist
different ways to exploit the parallelism in order to enhance different aspects of system
performance. One way consists of scheduling different programs in dedicated cores,
which favors the utilization of subsystem resources and improves global responsiveness.
Another way is by speeding-up the execution of a particular program by dispatching
parts that can be parallelized over different cores. Multi-core architectures provide
potential to considerably increase performance. However, this does not come for
free, nor without concerns. For instance, any speedup improvement depends on the
degree to which the program can be partitioned into parallel tasks that may run
cooperatively. This implies the use of communication protocols and synchronization
mechanisms that usually come with extra latencies and overheads. Contentions may
also show up due to resource sharing among cores. To many of these problems,
a good answer cannot be guessed by the computer architecture on its own. The
programmer is requested, more than ever, to consider computer architecture to
achieve performance, exposing many difficulties that were once abstracted. The
software is thereby another contributor to performance.
Software can intervene at various levels of the computer system. In a high level, the
organization of software architecture can have a considerable impact on performance.
Decomposing the problem into smaller tasks can not only simplify the software
development process, but also helps in allocating appropriate hardware resources for
specific tasks and achieve better utilization of the system. Parallel programming is
necessary to take advantage of underlying parallel hardware resources and achieve
higher throughput. The algorithm used to solve a particular problem directly affects
the system performance. Programmers use high-level programming languages such as
Java, Python, or C++ in order to implement algorithms, which require (optimizing)
compilers.
Compiler technology is used to transform the high-level language to a low-level
language runnable by the machine. The compiler therefore has a fine knowledge of
the program behavior, the underlying computer architecture, and its instruction-set
architecture (ISA). It is a crucial component of performance as it affects both the
instruction count and the average CPI count in various ways. This is typically done
through optimizations that attempt to maximize or minimize certain aspects of the
program such as the code size or its execution time. For instance, the compiler may
inject special instructions in particular locations of the program telling the prefetcher
to fetch data that will be used in the near future. In this case, the code size is
increased. However, it potentially saves valuable CPU cycles spent on cache misses.

12

More about high-performance computing, challenges, and trends in the future can
be found in this report [101].

4.2 Worst-Case Performance

Real-time systems are mostly concerned with respecting timing. Specifically, whether
the system meets all its deadlines in the worst-case as discussed previously. Schedu-
lability analysis combined with timing analysis can provide a positive or a negative
answer. However, is a binary response enough to evaluate performance in the worst-
case? Probably not. In fact, behind this response lays also the precision of the
WCET estimates provided by the timing analysis. Pessimism represents imprecisions,
that is the gap between the actual WCET and the estimated WCET bound. High
amounts of pessimism can lead to devastating loss of performance, increase the cost,
or deem the system infeasible when it perfectly is. For instance, a system for which
its WCETs are overly pessimistic may cause the schedulability analysis to emit a
negative response. Possible solutions may include reducing the workload through
the removal of some features initially provided by the system, or deploying faster
computers, probably more expensive, more energy consuming, and for which the
resources are actually under-utilized. Improving the worst-case performance thus
requires dealing with pessimism.
In addition to the precision of WCET bounds, reducing the actual WCET is also
desirable. The main function of a computer is still to process information and perform
computing tasks. In that regard, the actual WCET is still an interesting aspect to look
at. Indeed, systems requiring a maximum control on timing behavior, not necessarily
interested in performance, can rely on simple embedded processors. However, this
might not be an option in complex projects where portability, productivity, and short
time-to-market are required. We want to exploit performance enhancing features
offered by the platform just as in standard computer architectures.

Computer Architecture: In a basic level, achieving more precision along with
a reduced WCET relies on the computer architecture. On the one hand, the
timing behavior of the processor is a function of the micro-architecture and its
subsystems. On the other hand, the behavior of individual hardware components
or the architecture as a whole may introduce uncertainties. These uncertainties
are due, for instance, to a complex behavior that is hard to track by the timing
analysis. In general, the predictability can be seen as the degree of certainty that we
have regarding the future hardware states of the architecture. In order to increase
predictability, while keeping the timing analysis simple, the architecture has to
justify: (1) timing-composability, i.e., the timing behavior of a particular component
is independent from that of other components. (2) timing-predictability, i.e., the
ability to derive useful worst-case timing behavior of it hardware components, with
reasonable overhead. The random cache replacement policy found in Cortex-R4-core-
based processors [2] is not predictable as its behavior prevents a static prediction of
its future states.

Predictability is thus an essential component of performance. But is predictability
quantifiable? This question has been specifically investigated in [107]. It is argued
that predictability on its own does not allow a meaningful comparison between
computer architectures. We believe this is true because the process of deriving timing

13

guarantees involves more than the computer architecture itself. In fact, there are
other factors that are worth the attention on an equal footing:

Timing Analysis Tool: This is obvious, the quality of the analysis tool certainly
affects the results it provides. Timing analysis involves many successive steps during
which lots of information is gathered, but also lost due to abstraction. Abstractions
are often necessary to make the analysis practically feasible. Depending on the
discarded information, some pessimism may sneak in due to the conservative nature
of the analysis. Possible sources of uncertainties may include control-flow joins or
simply the absence of an appropriate analysis that takes fully advantage of capabilities
offered by a particular hardware component. In any case, there is always a trade-off
to be found between the precision of the analysis and the induced overhead, i.e., time
and memory footprint. Therefore, two timing analysis tools considering different sets
of information, and adopting different analysis approaches, will probably yield more
or less precise WCET estimates. Moreover, a timing analysis tool that takes overly
long to provide extremely tight results might not be useful. We review some existing
WCET analysis tools in Chapter 3.

Compiler Support: As in standard computer systems, compiler technology plays
an important role in influencing worst-case performance. Through program analysis,
the compiler gathers information regarding the program and its behavior. Therefore,
it is a natural candidate to automatically perform WCET-related optimizations.
This is done, for instance, through the reduction of execution time variations using
techniques such as predication. A radical way to this approach is the single-path
programming [97, 95]. This technique aims to produce a code with constant execution
time in all circumstances, avoiding the need of timing analysis. Alternatively, the
compiler can perform optimizations that help the timing analysis yield more precise
results. A first attempt to WCET-aware compilation was proposed by Falk et al.
using the WCC compiler [42]. WCC integrates the WCET analysis tool aiT [43] and
provides a mapping between the internal program representations of the compiler
and the analysis tool. In another work [24], Brandner et al. investigated means
to identify program paths that are critical with respect to the global WCET. The
criticality metric is obtained through a set of static analyses on the program. This
opens an opportunity for the compiler to target parts of the program that are more
relevant for optimizations.

The computer architecture, the timing analysis tool, and the compiler technology, all
combined, constitutes building blocks of performance in our context. Their individual
effectiveness and interplay will be reflected in the reduction of both the actual and
upper-bound WCET.

5 Issues with Standard Architectures
Standard computer architectures are designed to make the common case fast. Real-
time computing, on the other hand, requires worst-case performance. Historically,
real-time applications relied on standard architectures that were once simple and
very time-predictable. Today, however, these architectures evolved to include many
sophisticated hardware techniques whose behavior depends on a long execution history,
and dynamically tweak hardware states. As computing requirements increased in real-

14

time applications, it sometimes became obvious that these two visions of performance
cannot cohabit, or even be compatible. By making the common case fast, techniques
deployed in standard computer architectures tend to penalize infrequent cases by
excluding them from performance enhancements. The worst-case is usually among the
most infrequent ones. The induced time variation might therefore be spectacular and
not help the timing analysis deriving precise WCET bounds. Here below we identify
some important issues related to timing-analysis on conventional architectures.

Lack of timing-composability: One obvious problem observed in modern com-
puter architectures is that they lack timing-composability. The behavior of some
hardware components may have a major influence on others. The actions taken by
the prefetcher might change the data cache state and potentially its future timing
behavior. A guess from the branch predictor may cause the out-of-order pipeline to
continue speculating on the predicted branch, leading to a variety of complex behav-
iors each with different outcomes on the execution time. Enumerating and analyzing
these potential interactions introduces a considerable amount of complexity. To keep
the analysis practically feasible abstraction is often needed. However, this usually
comes at the expense of precision. Nevertheless, some efforts were conducted in order
to model such behaviors. A model of an out-of-order processor is provided in [76].
However, there is some skepticism regarding the applicability of the approach [106].

Timing-anomalies: An unfortunate consequence of aggressive hardware optimiza-
tions is the presence of timing anomalies. A timing anomaly is a counter-intuitive
situation where a local positive (negative) effect on timing behavior, induces a global
negative (positive) effect on the execution time of the whole program. For instance,
a cache miss that is a local negative effect may, in some circumstances, lead to a
shorter execution time. Timing anomalies prevent the analysis from relying only on
the worst-case timing behavior of individual instructions to compute a safe WCET
bound. This adds even more complexity due to state-explosion. The presence of
timing anomalies therefore impacts the applicability of timing analysis methods.
All modern computer architectures exhibit timing anomalies. Processors based on
out-of-order execution are found to cause timing anomalies [76]. The same holds
for modern two-level branch predictors, where it is observed that a decrease in the
number of loop iterations can actually increase the execution time [40]. Pseudo
Round-Robin Cache policy is also found to cause timing anomalies even in an in-order
execution scheme [116].

Unadapted compiler support: The compilers used for standard computer ar-
chitectures traditionally perform optimizations to speed-up the common case. This
introduces further variation on execution time as the worst-case is usually not opti-
mized. Furthermore, it is not always possible to extract raw information from the
already optimized machine code. This information has been discarded during the
compilation process, maybe due to its irrelevance with respect to the common case
performance. Also, it is sometimes difficult to tell what optimizations were exactly
applied and transformations they induced. This makes it hard to map the source code
to the machine code on which the timing analysis is actually performed. Therefore,
it might not be possible to highlight, for the programmer, the parts responsible for
performance problems.

Lack of documentation: Another recurrent concern when using standard com-

15

puter architectures is the absence of a detailed documentation that precisely describes
the micro-architecture and the timing behavior of instructions. This documentation
is necessary to build an accurate model of the processor, based on which precise and
safe WCET estimates could be derived. Unfortunately, processor vendors sometimes
do not provide such level of details, which may compromise the validity of the whole
timing analysis approach [104].

The NGMP case: An example of conventional architectures sensitive to some
of these issues is the Next Generation Microprocessor (NGMP). The NGMP is a
multi-core architecture that was designed by Cobham Gaisler and the European
Space Agency to enable future space missions. The platform is intended to carry-out
applications with hard real-time requirements. In its current implementation, the
GR740 [4] combines four LEON4 cores each implementing a single-issue in-order
pipeline with an always-taken branch predictor. The memory hierarchy provides two
levels of caches: two private L1 caches per core dedicated to instructions and data, as
well as an L2 cache shared between cores. Moreover, a bus arbiter running a round-
robin policy connects the L2 cache to the memory controller. In a quantitative study
that evaluated inter-core interferences in the NGMP platform [46], it was observed
that benchmarks exhibit slowdowns up to 20x when compared to an execution in a
single-core configuration. The main issue was related to heavy contentions in the bus
resulting from memory transfers issued by tasks being executed in different cores.
Due to the round-robin policy, the timing behavior of some task may depend on the
number of stores performed by other tasks and whether all their data fit into the
L1 cache. This lack of timing-composability as well as the existence of an L2 cache
makes the WCET analysis extremely complex as it needs to account for potential
interferences in order to provide safe bounds.

Analyzing the processor’s timing behavior in standard computer architectures is a
difficult matter. The induced complexity makes the timing analysis pessimistic, if
not infeasible. New alternatives were to be found.

6 Predictable Architectures as an Alternative
From the realization that conventional architectures, as of today, might not be the
best fit for hard real-time applications, efforts recently multiplied to investigate new
architecture philosophies. In particular, the so called time-predictable architectures
are designed with worst-case performance in mind. The promise is that by providing
hardware support for predictability, one can build a WCET analysis that is simpler
and more precise. We review in this section most notable efforts and compare the
architectures they resulted in.

6.1 Notable Efforts and Architectures

Many architectures have been proposed so far with a focus on different aspects and
applications. Among these we can most notably cite:

SPEAR: The Scalable Processor for Embedded Applications in Real-time Environ-
ment (SPEAR) [34] is one of the first architecture designs for time-predictability.
The architecture is rather simple: a RISC ISA with partial predication, a three-stage

16

single-issue pipeline, and a memory hierarchy consisting of on-chip ROM/RAM mem-
ories and no caches. The architecture, on the other hand, supports the single-path
programming paradigm. Using predication, one can produce a code with a unique
execution path whose execution time is independent of input data. As a result,
the determination of the program’s execution time can merely be done through
measurement. This eliminates the need of building a complex timing model for the
processor as the WCET analysis is no longer necessary. A downside of this technique
is the waste of CPU cycles executing long blocks of instructions whose predicates
evaluate to false.

PRET6: PREcision Timed is a project that aimed at providing a class of computer
architectures for repeatable-timing. Repeatable-timing is the ability to repeat the exact
timing behavior of the system if given the same inputs [37]. Edwards et al. argue
that timing should be a repeatable property of a program, not of the program-
processor couple. This concept is therefore different from time-predictability, which
is interested in providing safe and tight WCET bounds given a program and an
architecture. To support repeatable-timing, the PRET architecture equips the ISA
with timing semantics and control over timing instructions. An example is the
deadline instruction that stalls some thread until a lower bound deadline is reached.
Moreover, branch and data hazards are eliminated by relying on a thread-interleaved
pipeline (TIP). The TIP is a hardware multi-threading technique according to which
each thread occupies at least one stage of the pipeline. Every cycle, the pipeline
fetches an instruction from a different thread according to the round-robin policy. The
memory hierarchy avoids using caches to eliminate related timing variations. Instead,
instruction and data scratchpad memories (SP), which are statically managed by the
program/compiler. Also, a predictable DRAM controller [99, 80] is introduced to
ensure repeatable-timing behavior for the DRAM memory. The PRET architecture
may consist of a multi-core platform. In such case, accesses of cores to the main
memory is arbitrated according to the TDMA (Time-Division Multiple Access) policy.
According to this scheme, every core is granted the access to memory in a dedicated
time slot. The PRET principles were implemented in different machines targeting
different applications [78, 126]. In particular, the PTARM [80] is better suited for
hard real-time systems. The PTARM architecture is based on the ARMv4 ISA
that can be extended with control over timing instructions. PTARM implements a
five-stage in-order pipeline allowing to interleave up to four threads.

PREDATOR7: is a consortium that investigated computer architectures and
methodologies to develop safety-critical systems. The project did not result in a
new computer architecture, however, the contributors provided design principles to
build processors tailored for timing analysis [120]. Moreover, they covered topics
related to timing analyses for caches [51, 100, 27] and proposed compiler support for
WCET-driven optimizations [42].

CoMPSoC8: is a template platform allowing to generate multi-core SoC architec-
tures satisfying timing-composability and predictability [53]. The goal here is to be
able to develop and validate applications independently from the rest. An application

6https://ptolemy.berkeley.edu/projects/chess/pret/
7https://www.predator-project.eu/consortium.htm
8http://compsoc.eu

17

https://ptolemy.berkeley.edu/projects/chess/pret/
https://www.predator-project.eu/consortium.htm
http://compsoc.eu

consists of a set of tasks that may be mapped to different processor cores for parallel
processing. The template dedicates to each application a virtual platform consist-
ing of partitioned physical resources. Those resources could be either CPU cores,
interconnect, or memory. Depending on the resource type, different partitioning
techniques are proposed to guarantee time-composability between virtual platforms.
In particular, a preemptive TDMA schedule is statically generated allowing each
application to use a processor core on dedicated time frames. Moreover, resources
are restored or reset to a neutral state between scheduling intervals. The platform is
based on MicroBlaze cores implementing a conventional RISC ISA. Branch delay slots
are supported and can be exploited using the proprietary MicroBlaze tool-chain. The
characteristics of the pipeline are not explicitly mentioned, but according to MicroB-
laze manual reference [5], it consists of an in-order single issue pipeline with either 3
or 5 stages. No caches or SP memories are used, the branch predictor is turned off as
well. The NoC connecting the cores operates asynchronously, meaning that the NoC
and each resource run on their own frequencies. To ensure time-predictable behavior
of the DRAM, the CoMPSoC platform uses the Predator DRAM controller [15].

MERASA9: The Multi-Core Execution of Hard Real-Time Applications Supporting
Analysability is a project that focuses on time-predictable SoC designs and tools for
timing analysis. The MERASA architecture [91] targets mixed-criticality systems
with hard real-time (HRT) tasks and non-hard real-time (NHRT) tasks. In particular,
the SoC architecture combines CarCore cores [86], which are basically Infinion TriCore
cores customized to support simultaneous multi-threading (SMT). The SMT relies
on a super-scalar in-order pipeline capable of issuing up to two instructions at a cycle.
The processor is able to issue two instructions in parallel from the same thread if
an address instruction is followed by an integer instruction. Otherwise, the pipeline
fetches instructions from two different threads. To each core one HRT task and up
to three NHRT tasks are mapped. The isolation of the HRT task is ensured by
prioritizing its execution in all pipeline stages. Moreover, the HRT task does not
profit from caches. Instead, they rely on SP memories to perform fast and predictable
accesses to instructions and the stack data. In particular, the dynamically managed
instruction scratchpad (D-ISP) loads whole functions on calls and returns [84]. The
D-ISP behaves pretty much like the method cache [33] with a FIFO replacement
policy. In contrast to the method cache, the D-ISP has to make sure that the size of
each individual function fits inside its memory. In the multi-core level, a real-time
bus arbiter is deployed to handle memory requests from different cores. The bus
arbiter implements different policies to schedule core requests, i.e., Round-Robin
(RR), Fixed Priority (FR), and FIFO. Furthermore, the arbiter can be configured to
force a bounded memory latency for requests issued by HRT tasks [92]. MERASA
also introduces a DRAM controller providing a predictable memory access time [90].
A follow-up project called Multi-Core Execution of Parallelised Hard Real-Time
Applications Supporting Analysability (parMERASA10) has been initiated. The main
goal is to provide tools and software support for parallelization in NoC platforms
with up to 64 cores. The architecture combines commercial off-the-shelf PowerPC
cores.

9http://ginkgo.informatik.uni-augsburg.de/merasa-web/
10https://www.parmerasa.eu

18

 http://ginkgo.informatik.uni-augsburg.de/merasa-web/
https://www.parmerasa.eu

T-CREST11: The Time-Predictable Multi-Core Architecture for Embedded Systems
project aims at building a time-predictable and composable platform with a focus
on single-thread real-time performance [108]. The work is based on the observa-
tion that the architecture alone may not be sufficient to achieve best worst-case
performance [107]. On the one hand, a strong compiler support that is aware of the
hardware possibilities is needed to enable WCET-related optimizations. On the other
hand, the WCET tool has to implement timing analyses for the time-predictable
hardware to provide tight WCET estimates. The T-CREST project took interest
in each of these aspects attempting to treat them as a white box. Patmos [110] is
the time-predictable multi-core processor resulting from the T-CREST project. It
implements a Very Long Instruction Word architecture with a dual-issue in-order
pipeline. The ISA is designed to support different features for time-predictability.
This includes a full-predication of instructions, which provides a complete support for
efficient single-path programming. Another interesting feature is the support of typed
load/store instructions. This is particularly important as the memory hierarchy
relies on a separation of cache structures depending on the data access pattern. The
idea is to rely less on standard caches in favor of specialized caches that are more
predictable and easier to analyze. Patmos, thereby, implements two time-predictable
caches: (1) the Method Cache [33], which operates on functions and makes it simpler
to model the cache’s behavior in timing analyses, and (2) the Stack Cache [11], which
works on stack data and takes advantage of the stack structure simplifying timing
analysis. A memory NoC can also be built based on Patmos processor cores [109].
The TDMA arbitration is used to guarantee a predictable access to the shared main
memory. An SDRAM controller has been introduced [68] for Patmos. Many of the
ideas used in the T-CREST project were first explored within the JEOPARD 12

(Java Environment for Parallel Real-Time Development) project. The JOP 13 (Java
Optimized Processor) is somehow the precursor of Patmos and has very similar
architectural characteristics, e.g., typed loads/stores, time-predictable caches, TDMA
arbitration policy. One of the motivations for T-CREST is to overcome the intrinsic
limitations of the Java environment.

6.2 Comparing Architectures

We summarize in Table 1.1 some key features these architectures present. We,
furthermore, take a look at the corresponding compiler support as well as the
available WCET tools for these architectures. A comparison based on these aspects
is provided here below:

Memory hierarchy: A first observation is that most time-predictable architectures
avoid using caches. This is because caches introduce execution time variations that
need to be accounted for by a dedicated cache analysis in the WCET tool (see
Chapter 3.Section 4). Caches are usually replaced by SP memories which are
managed by the program. In contrast to the SP, it is hard to precisely determine
the cache content before runtime. The SP may therefore present a more attractive
option for predictability. However, the concern here is the increase in code size and

11http://www.t-crest.org
12https://www.hipeac.net/network/projects/4686/jeopard/
13https://www.jopdesign.com

19

http://www.t-crest.org
https://www.hipeac.net/network/projects/4686/jeopard/
https://www.jopdesign.com

Time-Predictable Architectures

HW Features SPEAR PTARM MERASA CoMPSoC Patmos

ISA

(all RISC-style)
SPEAR ARMv4 TriCore MicroBlaze

Patmos:

- VLIW

- typed ld/st

- delay slots

Pipeline

(all in-order)
3 stages,

single issue
5 stages,

single-issue,
TIP

5 stages,
dual issue,

SMT

3 or 5 stages,
single issue

5 stages,
dual issue

Predication Partial Partial Partial – Full

Branch Prediction – – – – –

Prefetching – – – – –

In-Core

Memory

I$ – – Not for HRT
tasks

– Yes

D$ – – Not for HRT
tasks

– Yes

M$ – – – – Yes

S$ – – – – Yes

SP – Yes (instr.,
data)

Yes (D-ISP,
stack data)

– Yes (instr.,
data)

Bus Arbiter – TDMA FP, RR,
FIFO

TDMA TDMA

DRAM controller – PRET RTCMC Predator Patmos

Compiler
Support

GCC:

- predication

- single-path

LLVM
(timing

semantics)

TriCore
toolchain

MicroBlaze
toolchain

LLVM:

- predication

- single-path

- S$, M$

- delay slots

WCET
Tools

– Otawa, aiT,
Heptane

Otawa, aiT – aiT, Otawa,
Platin,
LLVM

Table 1.1 – Comparison of time-predictable architectures. (I$: Instruction Cache.
D$: Data Cache. S$: Stack Cache. M$: Method Cache. SP: Scratchpad.)

the difficulty to implement complex SP behaviors within the compiler. To avoid this
issue, the D-ISP implemented in MERASA requires additional hardware compared
to a regular SP. The logic is used to automatically manage loaded functions within
the SP space, namely, to identify them and perform evictions when necessary. From
a functional point of view, the D-ISP and the method cache behave exactly the same.
The main difference is that the method cache relies on a tag memory for hit detection
whereas the D-ISP implements a lookup table. However, the existing compiler and
ISA supports for the method cache allows to split a function in case its size is too big

20

for the cache [57]. The D-ISP does not have such support. We believe that the use
of caches is necessary for high-performance real-time systems. The time-predictable
caches implemented in the Patmos processor present an interesting opportunity: The
automatic hardware behavior can be guided by the program/compiler to achieve
more predictability and analyzability. In fact, these caches can be seen as a midway
between the conventional caches and the SP memories (see Chapter 2.Section 2.4).

Pipeline: The PTARM and MERASA architectures make use of hardware ap-
proaches to support multi-threading. The SMT implemented in MERASA is designed
so that the HRT task is never delayed by NHRT tasks. To achieve this, however,
hardware resources need to be duplicated for each thread. This includes the register
file, the PC, and the instruction buffer. Moreover, the architecture restricts each
core to carry-out at most one HRT task and up to three NHRT tasks. We believe
this limits possible uses cases of the architecture. Similarly, the TIP pipeline of the
PTARM processor requires the duplication of hardware resources. PRET machines
are primarily designed for repeatable timing, this comes at a price. To achieve TIP,
the processor switches the threads every cycle according to round-robin fashion.
While this guarantees fairness among threads, it does not allow much flexibility
in scheduling the threads. Furthermore, the PTARM processor behaves as a non-
pipelined processor operating on a fourth of the clock frequency. Consequently, this
makes PRET architectures rigid, more expensive to implement, and less suitable for
high-performance real-time applications. On the other hand, the VLIW architecture
in Patmos implements a dual-issue pipeline which improves the ILP within the same
thread. The VLIW design reduces the pipeline complexity and puts the compiler
to play a key role in optimizing the processor performance. We believe this opens
the door to explore WCET-related optimizations and more flexibility to tweak the
performance/predictability trade-off.

Predication, Prefetching, and Branch Prediction: In contrast to other pre-
dictable architectures, the Patmos ISA supports full predication. This not only
allows to efficiently support the single-path programming, but also to perform branch
optimizations to reduce branch hazards in a predictable fashion (see Chapter 2.Sec-
tion 3.2). To the best of our knowledge, no time-predictable architecture supports
prefetching and branch prediction features.

Extensibility: The ability to change and adapt elements of the computer archi-
tecture is vital to investigate and enhance the worst-case performance. For most
architectures, it is hard to find source codes for simulators or models because either
they are not publicly available or the links are dead. This is the case for the PTARM,
CoMPSoC, MERASA and SPEAR architectures. Besides, some of these architectures
rely on proprietary ISA which might not be always possible to extend (e.g., ARM,
TriCore, MicroBlaze). In contrast, Patmos provides a publicly accessible repository 14

containing a cycle-accurate simulator written in C++, as well as an implementation
in Chisel to generate hardware description used for FPGA synthesis. This allows for
large possibilities in hardware configurations. The PRET machine FlexPRET that
is intended for safety-critical systems implements the open and extensible RISC V
ISA. A simulator and a Chisel implementation of the processor can still be found 15

14https://github.com/t-crest
15https://github.com/pretis/flexpret

21

https://github.com/t-crest
https://github.com/pretis/flexpret

as of today.

Compiler Support: Another important aspect in this comparison is the availabil-
ity and extensibility of the tool set to compile and optimize for worst-case performance.
The MERASA and CoMPSoC platforms rely on proprietary compiler toolchains that
might not be possible to extend. In [26] Broman et. al describe a vision of the software
infrastructure for PRET machines. In particular, an intermediate language called
PRETIL is to be used to hide low-level implementation details from the high-level
language containing timing constructs. Moreover, a compiler must guarantee the
compliance of the PRETIL timing semantics with the machine timing behavior. It is
not clear where these efforts have gone so far, in fact, we could not find publications
or source codes to evaluate the compiler. For Patmos, the compiler [96] consists of an
adaptation of the LLVM compiler framework [69]. All Patmos features/components
have a certain support in the compiler. Moreover, the source code is public and can
be found in the T-CREST repository.

WCET Tools: In order for a WCET tool to support a particular processor, it
has to have an abstract model for the processor timing behavior, supports its ISA,
and implement timing analyses for its hardware components. To the best of our
knowledge, there is no WCET tool that supports the MicroBlaze and SPEAR ISA.
Consequently, there exists no tool that can provide WCET estimates for programs
running on the CoMPSoC and SPEAR architectures. The PTARM processor relies on
the popular ARM ISA and implements a simple architecture. Therefore, many tools
like Otawa, aiT and Heptane could be used with potentially minimal adaptations.
A support of the MERASA architecture is provided in Otawa including a timing
analysis for the D-ISP [82]. Moreover, a dedicated WCET tool called ISPTAP [83]
has been introduced and is specialized in the analysis of instruction memories. For
Patmos, the support is barely existing and, at best, shredded into different tools such
as aiT, platin, Otawa, or even the compiler’s back-end. For instance, the platin tool
acts like an interface between the compiler and aiT providing it with WCET-related
information. It also implements some timing analyses that are not supported by aiT
due to its lack of extensibility.

Compared to other time-predictable architectures, we believe Patmos provides in-
teresting features and more flexibility to enhance the worst-case performance. The
compiler infrastructure is already existing along with an open cycle-accurate simulator
to extend the processor features. Moreover, Florian Brandner – who co-supervises the
work of this thesis – has contributed closely to the T-CREST project thus providing
his expertise in the matter.

In this work, we focus on the Patmos processor.

7 Contributions
Due to its comprehensive approach to worst-case performance, we propose to investi-
gate WCET analysis on time-predictable architectures through the Patmos processor.
The already existing support around Patmos allows for an effective exploration of
techniques to enhance the worst-case performance. Moreover, treating the architec-
ture/compiler/analyzer as a white box allows to address the problem while bypassing

22

some side issues that may interfere with our goal (e.g., the lack of documentation,
the difficulty to extend the hardware/ISA, the opacity of tools, etc.).
First studies on the Patmos processor and its hardware components showed promising
results [63, 12, 59], however they are rather incomplete. For instance, the standard
stack cache analysis does not consider preemptive execution of tasks, an important
feature, without which many systems may turn infeasible. Also, no prior work
addressed timing analysis for predicated execution and how to handle it in WCET
analysis work-flow. The support of time-predictable processors in WCET tools is
barely existing. The Otawa tool [18] provides only a partial support for the Patmos
processor. It does not support VLIW architectures nor predicated execution. Also,
it lacks analyses for time-predictable caches. The same holds for the well established
commercial tool aiT [43]. Only a stack cache analysis based on data-flow analysis is
provided [118], and which we find incorrect (see Chapter 5).

The work in this thesis is part of the efforts to fill this gap in order to fully understand
predictable architectures and investigate their potential in actually enhancing worst-
case performance of hard real-time systems. More than that, we aim to explore some
hardware extensions in the intent to increase the precision of WCET estimates, but
also reduce the actual WCET itself. For this, we provide compiler support, as well
as timing behavior analyses that take advantage of these hardware extensions. All
in all, we contribute to the elaboration of a WCET timing analysis for the Patmos
processor that supports some of its important time-predictability features.

We, thus, present here below our most important contributions:

Stack Cache: This specialized cache for stack data presents interesting properties
for time-predictability, e.g., simple structure and behavior, not relying on addresses,
cache accesses are guaranteed hits, and memory transfers only issued by few stack
control instructions under simple circumstances. It is, therefore, a natural candidate
for interest in the context of this work. We thus propose the following:

• Firstly, we compare the precision of occupancy analysis obtained from an abstract
interpretation-based technique with that of the standard stack cache analysis [88].
The cache occupancy determines whether memory transfers need to be performed
at stack cache control instructions. Therefore, the precision of occupancy analysis
influences the tightness of timing behavior estimates.

• Secondly, we propose means to optimize preemption costs for the stack cache and
extend the standard analysis to account for preemption-related delays [13, 87].
The simple structure of the cache does not allow it to be shared by multiple tasks.
As a result, stack data of the preempted task needs to be saved/restored as part of
the context switch operation. Instead of saving/restoring the whole cache content,
our approach tracks useful data at program points where the preemption might
occur.

• The analysis of preemption-related delays provides rich information at each
program point. However, this may be of little use if the scheduler is not able

23

to exploit them for efficient context switching. We, thus, provide preemption
mechanisms that realize the context switch operations taking advantage of the
analysis results [87]. These mechanisms are implemented through simple hardware
extensions and induce no overhead on memory footprint or execution time.

• Finally, we investigate a prefetching-like technique that allows to anticipate and
hide stack data transfers from/to the main memory [89]. The eagerly performed
memory transfers have no side effects with the stack cache itself, however, in-
terferences may occur with other hardware components. We explore a solution
to avoid these interferences in the Patmos multi-core platform by making use of
free TDM slots. In the absence of a TDM analysis that detects those free TDM
slots, our solution guarantees that the worst-case performance is nevertheless
preserved. On the other hand, the conducted experiments show an improvement
of the average-case performance.

Predication: Predicated execution is problematic for tight WCET analysis. The
mere fact that an instruction is executed (or not) may have a chain of effects on almost
all analysis steps. As these analyses have to be conservative, one may simply ignore
the predicates and consider the wost-case effect resulting from both possibilities.
Unfortunately, this may yield very conservative results due to information loss after
the branch elimination. Another approach consists of adapting each analysis so that
it is aware of the predicates. This may, however, require considerable and redundant
efforts. We provide a simple approach that consists of recovering control-flow edges
early in the WCET analysis process [25]. In addition to effectively treating the
predicates, this causes little to no effect on subsequent steps of the WCET analysis.

Odyssey: An open and fully-integrated WCET analysis tool for the Patmos
processor. Odyssey is integrated within the LLVM compiler framework and is
called right before code emission. The tool, therefore, has a complete and accurate
view of the program to be executed. This integration brings many advantages
and opportunities for the exploration of new techniques to enhance the worst-case
performance. For instance, Odyssey does not operate on the program binary16

in contrast to other WCET analysis tools. In fact, lots of information that may
help timing analysis are normally discarded by the compiler once the binary is
generated. Another opportunity is that a close relationship between the WCET tool
and the compiler promotes WCET-driven compilation. As for the supported features,
Odyssey implements: address analysis, classical analyses for conventional caches, and
specialized stack cache and method cache analyses. Odyssey, furthermore, supports
the Patmos VLIW architecture with predicated execution.

While the work in this thesis is conducted on the Patmos processor, the obtained
results can be extended to similar architectures. In fact, many of Patmos’ features and
components are already being (or can be) used in other architectures. By ensuring
time-composability, one can make use of most of the results of this work. This includes
the timing analyses, the hardware extensions, as well as the corresponding compiler
support. Patmos is merely an exploratory architecture that helps investigating new

16 We are aware that WCET analyzers are often considered as stand alone tools and thus usually
operate on the binary code. However, with respect to our goal of exploration, we consider the
issues related to this process (e.g., loss of WCET-related information during the compilation, the
front-end techniques to build the program model) out of our scope.

24

software/hardware techniques for worst-case performance.
The remainder of the manuscript is structured as follows: Chapter 2 describes the
Patmos processor architecture and the compiler support in the LLVM framework.
Chapter 3 provides the WCET analysis flow as well as the current state-of-the-art
related to WCET analysis. In Chapter 4 we present our WCET analysis tool Odyssey
and how the predication is handled in the analysis flow. We, then, take interest in
the stack cache and compare in Chapter 5 the precision of existing analyses. The
analysis of preemption delays for the stack cache is presented in Chapter 6. We
propose, in Chapter 7, preemption mechanisms making use of preemption analysis
results. In Chapter 8, we explore hardware extensions to realize a prefetching-like
optimization on the stack cache. Finally, conclusions and future work are provided
in the last Chapter.

25

CHAPTER 2

Patmos, a Time-Predictable Processor

The time-predictable design of computer architectures for the use in (hard) real-time
systems is becoming more and more important, due to the increasing complexity
of modern computer architectures. Many time-predictable architectures have been
introduced so far, however, Patmos stands as an attractive candidate to study their
effectiveness for enhancing worst-case performance. We provide here a detailed
presentation of the time-predictable processor Patmos and walk-though its key features.
The Chapter is structured as follows. We first provide a quick overview of the Patmos
processor through its design principles. Then, we describe in Section 2 its computer
architecture including the memory hierarchy. Finally, Section 3 presents the compiler
support that is provided so far.

1 Overview and Design Approach
The awareness as to the necessity of deploying computer architectures that are suitable
for timing analysis has risen since the beginning of the millennium. A number of
studies has been conducted and resulted in various architectures and design rules for
time-predictability [34, 80, 120, 53, 91]. With the emergence of different architecture
designs, a natural question arises: which of them offers better time-predictability?
Schoeberl investigated this [107], and argued that time-predictability alone does not
allow a meaningful comparison between architectures. Instead, one may consider
comparing the WCET of tasks obtained on different architectures. The resulting
WCET bounds are, in fact, the result of the interplay between three closely related
components: (1) the computer architecture, (2) the compiler support, and (3) the
WCET analysis tool. The T-CREST project [108] incarnates this vision of wost-
case performance and proposes a time-predictable multi-core architecture called
Patmos [110].
Compared to conventional architectures where the hardware takes a major part
in dynamically controlling/optimizing the average-case performance, the Patmos
approach relies on a combination of software/hardware techniques to enhance the
worst-case performance.

26

Hardware: The architecture design stands on three pillars: (1) reduce the actual
WCET, (2) simplify static WCET analysis, and (3) make the resulting WCET
estimates more precise. Here below, we respectively refer to these principles as
Performance, Simplicity, and Predictability and we present an overview of what
Patmos provides to support each of them.

• Performance: Reducing the actual WCET implies the deployment of hardware
components and techniques to speed-up the execution time and enhance through-
put. As such, the Patmos processor implements: a VLIW architecture that issues
up to two instructions of the same thread, a 5 stages pipeline with full-forwarding
to handle data hazards, and a memory hierarchy consisting of caches and SP
memories. Moreover, the architecture provides interconnect to build a multi-core
platform combining Patmos cores. The cores may also communicate in the form of
message passing through a core-to-core NoC. A synthesis of the processor core was
realized on the low cost Cyclone IV FPGA. The maximum operating frequency
reached 80MHz according to [110].

• Simplicity: The architecture is timing-composable, i.e., the timing behavior of any
hardware component is independent from the rest. This allows to decompose the
complex WCET analysis problem into smaller and simpler ones. Sound WCET
estimates can therefore be obtained by separately studying the timing behavior
of each hardware component and combining their individual contributions. In
Patmos, timing-composability is enforced through: a pipeline design with in-
order execution and a single stalling stage, the use of the TDMA policy to
arbitrate memory accesses between Patmos cores, and the non-deployment of any
component/feature known to cause timing-anomalies (see Chapter 1.Section 5).

• Predictability: The architecture attempts to reduce sources of uncertainties that
might contribute to timing variations. Examples of this include the dependency
on input data, or heavily relying on components with a timing behavior that is
hard to model and predict. To mitigate these issues, Patmos provides features
like full-predication which allows to eliminate branches that may be dependent
on input data. Moreover, the memory hierarchy implements specialized caches
for different data access types, i.e., stack cache, method cache. These caches are
qualified as time-predictable for their relatively simpler behavior and analyzability.
The argument here is that by relying on time-predictable caches, the pressure is
reduced on conventional caches for which a simple and precise timing-analysis can
be challenging (see Chapter 3.Section 4). This is supposed, a priori, to yield more
precise WCET estimates.

Software: To back many of the aforementioned hardware features, the architecture
is more exposed to the compiler. Compared to conventional architectures, this
means shifting some of the control from the hardware side to the software side. A
direct implication is that a considerable amount of the optimization/control effort
is now carried-out by the compiler. On the other hand, this opens opportunities
to perform more adapted optimizations as the compiler naturally gathers lots of
information about the program. To enable this level of control, the Patmos ISA is
equipped with instructions to manipulate some of the processor’s internal structures.
Notable examples of this include: a set of typed load/stores instructions targeting
different cache structures of the memory hierarchy, control instructions to manage

27

the time-predictable caches, as well as delayed and non-delayed branches/calls. On
top of the ISA, the compiler applies techniques to manage the hardware and optimize
the performance/predictability of the program. Examples include function splitting
for the method cache, predication, and branch optimizations by exploiting delay
slots.

In the following sections, we shall present these hardware features and the corre-
sponding compiler support in more depth.

2 Patmos Computer Architecture
The Patmos processor is designed to enhance the worst-case performance of single
threads. In this section, we present the computer architecture and describe its
internal subsystem. In particular, we will be covering: the pipeline design, the
register file, the ISA, the memory hierarchy, and the multi-core platform.

2.1 Pipeline and Register File

Patmos is a Very Long Instruction Word (VLIW) architecture that can issue and
execute a bundle of two instructions in parallel in a five-stage, in-order pipeline: fetch
(FE), decode (DEC), execute (EX), memory access (MEM), and register writeback (WB).
Within the same bundle, the first slot may hold any instruction of the ISA, including
those that might initiate memory transfers (e.g., load/store, branches, call, return).
The second slot may only hold instructions that do not access to memory. Figure 2.1
illustrates a simplified representation of the pipeline with some of its local memories,
i.e, the register file (RF), method cache (M$), the stack cache (S$), the data cache
(D$), and the scratchpad (SP). Instructions are fetched from a special instruction
cache, the method cache [33], which guarantees that an instruction fetch always hits
in the cache. Method cache misses may only occur in the MEM stage during the
execution of dedicated branch instructions (e.g., brcf) or function calls (e.g., call,
ret). Similarly, misses in the data cache and the stack cache may only occur in the
MEM stage. The fact that all misses are detected in the MEM stage has the benefit of
simplifying the pipeline design and particularly the stalling logic. More importantly,
since only the first instruction of the bundle is legally allowed to initiate memory
transfers, a miss in two different caches may never occur at the same cycle. This,
as a result, enforces timing-composability and simplifies the timing analysis. The
FE, EX, and DEC pipeline stages are thus free from undesirable side-effects (apart
from updating the PC), while the MEM and WB stages may cause side-effects on the
processor’s registers or caches. Predicate registers are read and written in the execute
stage (EX). The processor thus is able to detect whether a predicated instruction
needs to be nullified before any undesirable side-effects may become visible.
The register file (RF) consists of 32 general-purpose registers (r0 through r31), and
16 special-purpose registers (s0 through s15). All registers are 32 bits wide, except
for the predicates that consist of eight single-bit registers (p0 through p7) shadowed
but the lowest byte of the special register s0. General purpose registers are read in
the DEC stage and written in the WB stage. The pipeline supports full forwarding,
which makes those registers available at the EX stage. Special-purpose registers, on
the other hand, can be read and written in different stages depending on the type

28

Figure 2.1 – Simplified representation of Patmos pipeline. Taken from Patmos
Handbook [7].

of the register. Those special-purpose registers merely consist of various processor
registers dedicated to manage specific functions of the processor. Examples include,
the ST and MT pointers that manage the stack cache and are mapped to registers
s5 and s6 respectively.

2.2 Instruction Set Architecture (ISA)

The instruction set of the Patmos processor follows the VLIW paradigm and may thus
execute up to two instructions that are grouped into bundles at the same time. The
adopted RISC-style restricts data memory transfers to specific classes of instructions,
e.g., load, store and branches. This has the advantage of reducing the complexity
of the pipeline and simplifying the timing analysis process. All Patmos instructions
can execute in parallel, the only restriction is that only the first instruction of the
same bundle is allowed to initiate memory transfers. Patmos instructions are 32
bits wide, the bundle size can therefore either be 32 or 64 bits wide. The compiler
statically schedules the instructions and determines the size of the bundles. Moreover,
it has to be ensured that bundles are 32 bits aligned.
Access to different cache structures is distinguished through typed load and store
instructions, e.g, lwc to load one word1 from the data cache, lws to load one word
from the stack cache. Moreover, these load/store accesses come in different sizes,
i.e., word (lwc/swc), half-word (lhc/shc), and byte (lbc/sbc). Also, unsigned
load/store operations can be performed for half-word (lhuc/shuc) and byte-
sized (lbus/sbus) accesses. In Patmos, load and store operations are subject
to alignment restrictions. This means that the address of the access has always to
be a multiple of its size in bytes, e.g., lws:4, lhc:2.
The Patmos ISA supports full predication of instructions. This means that every in-
struction can be predicated, including control-flow instructions. Predicated execution
is used to decrease the number of branches. The ISA is, moreover, equipped with
special instructions that control cache structures if necessary, e.g., sres and sens
instructions for the stack cache and brcf to branch with method cache fill. Two
variants of branch and call instructions are supported in Patmos. The non-delayed

1In Patmos, a word size is 4 bytes

29

(B1) addi r1 = r0, 5 || addi r2 = r0, 7
(B2) cmplt p1 = r1, r2 || cmpeq p2 = r1, r2
(B3) (p2) add r4 = r1, r2 || (p1) add r3 = r1, r2
(B4) (p1) br 0x10 || mfs r1 = s1
(B5) lwc r2 = [r1 + 0]
(B6) (p2) brcfnd 0x40

(a) Patmos assembly code.

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

x0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
B Pred Rd Rs1Func Immediate B Pred Rd Rs1Func Immediate

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

x0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 00 0 0 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 00 0 0 1 0 0 1 1
B Pred Pd Rs1 FuncRs2 B Pred Pd Rs1 FuncRs2

0 0 1

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

x0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 00 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 00 0 0 1 0 0 0 0
B Pred Rd Rs1 FuncRs2 B Pred Rd Rs1 FuncRs2

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

x0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 1
B Pred B Pred Rd Ss

0 1 1
Op d Immediate

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 00 0 0 1 0 0 0 0 1 0
B Pred ImmediateType

0 0 0 0 1
Rd Ra

0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
B Pred

1 0 0
Op d Immediate

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

(b) Patmos machine code with the instruction format.

Figure 2.2 – Portion of a program in Patmos assembly language and its corresponding
machine code. Each line in the machine code corresponds to a line in the assembly
code.

variant simply inserts stalls into the pipeline preventing upcoming instructions to
be fetched before the control-flow instruction gets executed. The delayed variant
allows the compiler to statically insert instructions in the available delay slots. The
number of delay slots is influenced by the pipeline design and at which stage the
control-flow instruction is executed. In Patmos, there may be between 2 and 3 delay
slots depending on the instruction (see Section 3.2).
The format of each instruction depends of the instruction class it belongs to. However,
the most significant bit of the instruction bundle always determines the bundle size,
i.e., 32 or 64 bits. Then, for each instruction of the bundle, the next four significant
bits are reserved for the predicates. The opcode bits are located after the predicates
and are used to identify the instruction in the decode stage. Furthermore, each
instruction can take up to three register operands. The register addresses are located
at fixed position so that the register file can be read in parallel to instruction decoding.

Example 2.1 Consider the code portion written in Patmos assembly language shown
in Figure 2.2a. The corresponding machine code according to the Patmos ISA is
shown below. Each line of the machine code corresponds to a bundle in the assembly
code. A bundle may hold up to two instructions. The first instruction of the bundle

30

is the one on the left side.

B1: The first bundle consists of two instructions addi that perform binary addition.
The first instruction of the bundle adds the content of r0 to the immediate value 5,
and stores the result in register r1. The second instruction of the bundle performs
a similar operation. In the corresponding machine code, the bundle flag of the first
instruction is set to 1, which indicates a bundle size of 64 bits. The bundle flag in the
second instruction is not relevant. The operand Rd indicates the destination register,
i.e., r1 and r2 for the first and the second instruction respectively. Similarly, the
operand Rs1 refers to the source register which is r0 for both instructions. The
value located in the immediate operand is then added to the content of source register
identified by the Rs1 operand and stored in the destination register identified by the
Rs1 operand. All instructions in Patmos are predicated. The Pred operand allows
to conditionally execute the instruction based on the value of the predicate register it
points to. For both instructions, Pred points to the read-only predicate register p0,
which is always evaluated to true. This means that instruction is always executed.

B2: The first instruction of this bundle cmplt sets the predicate register p1 to 1
if the content of r1 is strictly less than that of r2. On the other hand, the second
instruction sets p2 to 1 if they are equal. The encoding of the bundle is done similarly
to the previous one. The operand Pd determines the predicate register to be set based
on the result of the comparison.

B3: Both instructions in the bundle are conditional, meaning they execute only if the
corresponding predicate is true. The add instruction is similar to addi, only it takes
a third register operand instead of an immediate value. As in previous instructions
where the default predicate was p0, here the Pred operand in the machine code needs
to indicate the corresponding predicate registers. Also notice that, when applied, the
operands Rd, Rs1, and Rs2 are always located in the same place in the instruction
format. This allows the operand registers to be read in parallel to instruction decoding.

B4: The bundle consists of a predicated br instruction which performs a delayed PC
relative branch. We assume that the branch target is located at the address PC+0x10.
Again, the Pred operand has to point to the corresponding predicate register, which
is p1. To indicate that the control-flow instruction is delayed, the bit d that is part
of the opcode is set to 1. The immediate operand is used to compute the target of
the branch based on the current value of PC. Branch instructions can be executed in
parallel with any instruction that does not access to main memory. The mts simply
copies the content of the special register s1 into the general-purpose register r1,
therefore, no memory transfers are involved. As a result, the corresponding machine
code sets the operand Ss to the source special register and Rd to the destination
general-purpose register.

B5: The bundle consists of the instruction lwc that loads the register r2 with
the content of the address stored into the register r1, displaced with an unsigned
immediate value. The displacement value (here set to 0) is always left-shifted by 2
positions to ensure a 32 bits alignment of addresses. The lwc instruction is tied to
the data cache and initiates a memory transfer if the accessed data is not cached. The
bundle consists of a single instruction as the compiler could not find any instruction
legally allowed to occupy the second slot. As a result, the bundle bit is set to 0
indicating a bundle size of 32 bits. The operand Ra refers to the register containing

31

the address and Rd is the destination register into which the data is going to be
loaded.

B6: The last bundle consists of a predicated br instruction which performs a non-
delayed PC relative branch with a potential method cache fill. Here the target of the
branch is located at the address PC+ 0x40. This branch is legally allowed to occupy
the second delay slot of the previous branch in the bundle B4. The reason is that
their respective predicates (p1 and p2) are disjoint, meaning that they cannot both
evaluate to true in any execution scenario. As a result, only one branch is known
to be taken, or none (in which case both instructions are nullified). Similarly to the
previous bundle, the compiler could not find any instruction to legally pair with the
memory accessing branch instruction. The conversion to the machine code is done
as in B4.

2.3 Predication

Among many other features, Patmos supports predicated execution. The technique
is used to decrease the number of branches and their associated penalties, especially
in VLIW architectures that need to keep their parallel pipelines busy. Predication
can also be beneficial for timing analysis as it allows to eliminate execution time
variations through single-path programming [97, 95]. In Patmos, an additional
predicate operand is attached to each instruction, which allows to refer to one out of
the 8 predicate registers (p0 through p7). The predicate operand, in addition, allows
to invert the predicate value (e.g., !p0). Consequently, 4 bits of the instruction
encoding are reserved for the predicate operand (3 bits for the predicate register, 1
bit for negation). Predicate register p0 always evaluates to true and cannot be
overwritten.
Predicate registers can be defined using dedicated comparison instructions (e.g.,
cmpeq), which allow to compare 32 bit integer values from general-purpose register
operands and immediate values. These instructions allow to specify a destination
predicate, which sets the predicate register accordingly. In addition, basic logical
operations can be performed on two predicate register operands using dedicated
logical-predicate instructions (e.g., por). The result of the operation is again written
into a predicate register. Note that these instructions can be predicated themselves,
which facilitates the handling of nested if statements.

2.4 Memory Hierarchy

One of the features Patmos offers is a specialization of cache structures depending
on data access types, e.g., instructions, stack data, and other data. Compared
to traditional architectures, the specialization of caches is intended to reduce the
interference on conventional caches, allowing more precise and simpler static cache
analysis. Patmos, thereby, supports a range of cache structures such as the stack
cache that is dedicated for stack data, the method cache for instructions, conventional
instruction and data caches, as well as a scratchpad memory, which is managed by
the compiler. This allows to define a variety of configurations for the underlying
hardware platform which is extremely useful for benchmarking purposes.

32

Standard Caches

Conventional caches may store either instructions, data, or both. Patmos dedicates
a specific cache to data, and to instructions if the method cache is not to be used.
The cache is located between the CPU and the main memory. When a memory
access instruction is being executed, the CPU first checks the availability of the
accessed element in the cache via its address in the main memory. Two outcomes
are possible. The data is present in the cache and can be used immediately, a cache
hit has then occurred. Otherwise, we say that a cache miss has occurred. Cache
misses are particularly time consuming as a request has to be made to main memory
in order to fetch the missing element. Once the main memory responds, the element
in question is added to the cache, which may potentially evict some other cached
elements. Both read and write memory accesses are concerned with the cache.
Cache write policies determine how memory stores are handled. There are basically
two options on a write hit. In the write-through policy, data elements are written both
into the cache and the main memory. On the other hand, the write-back policy writes
data elements only into the cache. This may, however, cause data to be incoherent
between the cache and the main memory. Consequently, once incoherent data is
evicted, the corresponding data in the main memory is updated. The write-back
policy results in fewer memory transfers and therefore often yields better performance.
However, it is harder to analyze as incoherent data need be tracked before eviction.
This is why the write-through policy is a better choice for predictability.
Concretely, the cache space holds a set of k entries. To each entry is associated a
Valid Flag, a Tag, and the data. The valid flag indicates whether the data is valid or
not, while the tag represents the address information of the data held by the entry.
The data consists of a sequence of bytes commonly called a cache block or cache line.
A cache block represents a contiguous space in the main memory that we refer to as
a memory block. Note that a memory block may contain multiple bytes or words.
Therefore, an access to a single data element results in fetching the whole memory
block, and placing it in the corresponding cache entry.
There are, furthermore, three main ways to structure the cache based on how memory
blocks are mapped to the cache. The direct-mapping scheme is fast and simple to
implement and merely consists of placing each memory block in exactly one dedicated
cache entry. The fully-associative structure reduces contention by allowing memory
blocks to be mapped to all available entries. This structure is relatively complex and
may be slow as it involves performing a search over all cached entries in order to find
a particular memory block. In the set-associative cache, each set of memory blocks
is mapped to a dedicated set of entries called a cache set. In that regard, it combines
features of both direct-mapped and fully-associative caches. The maximum number
of entries in a cache set is called the associativity of the cache and denoted as s.
Depending on the cache size and structure, it may not be possible to hold all data
elements of a program in the cache. The cache may need to evict some cache blocks.
Cache replacement policies define a way to manage cache content in the case of
conflicts, i.e., accesses to memory blocks that are mapped to the same cache set.
In case the corresponding cache set is full, the replacement policy decides which
cache block is to be evicted. Patmos supports two popular replacement policies. The
Least-Recently Used (LRU) is a scheme under which the oldest accessed cache line is
the one to be evicted. Whereas under the FIFO policy the first accessed cache lines
are evicted first.

33

Cache replacement policies aim to profit from the locality of memory references, i.e.,
cache reuse. Depending on the memory access pattern of a program, we distinguish
two basic kinds of localities. Temporal locality refers to a situation where the reuse
of a data element happens in short time duration. This is the case, for instance, for
loops where the same data is likely to be accessed in next iterations. The spacial
locality, on the other hand, designates a situation where data elements to be accessed
are stored in address locations close by. This is typically the case of array accesses.
Improving the locality leads generally to a more effective utilization of the cache,
which translates into higher cache hit rates.

Stack Cache

The stack cache is implemented as a ring buffer with two hardware registers holding
pointers [11]: stack top (ST) and memory top (MT). The top of the stack is rep-
resented by ST, which points to the address of all stack data either stored in the
cache or in main memory. MT points to the top element that is stored only in main
memory. The stack grows towards lower addresses. The difference MT− ST represents
the amount of occupied space in the stack cache. This notion of occupancy is crucial
for the effective analysis of the stack cache behavior. Clearly, the occupancy cannot
exceed the total size of the cache’s memory |SC|. The stack cache thus has to respect
the following invariants:

ST ≤ MT (2.1)
0 ≤ MT− ST ≤ |SC| (2.2)

Data that is present in the cache is accessed using a dedicated class of load and store
instructions (e.g, lws, sws). As mentioned earlier, these load/store accesses can
be performed in different sizes, i.e., word, (unsigned) half-word, or (unsigned) byte.
Moreover, accesses to the stack cache have to be aligned with the access size S. For
simplicity, we may use fictive lds and sts instructions to refer to load and store
accesses that occur in one cache block, regardless of the code block size.
The frame-relative address (FA) of such a memory access is added to ST and the sum
is used to index into the ring buffer, i.e., the address within the ring buffer is given
by (FA+ ST) mod |SC|. Recall that the stack load and store instructions are always
cache hits. The compiler (or programmer) thus has to ensure that accessed data
actually is available in the cache using dedicated stack cache control instructions.
More formally, it has to be ensured that (FA+ S) ≤ (MT− ST) ≤ |SC| before every
stack cache access. Cache block sizes are chosen such that no explicit check is required
in the hardware implementation. This can be achieved by ensuing that the cache
block size is a multiple of the alignment of the largest load/store instruction, i.e., 4
bytes for Patmos’ lws instructions.

Stack Cache Operations: The stack cache control instructions manipulate the two
stack pointers and initiate memory transfers to/from the cache from/to main memory,
while preserving Equation 2.1 and 2.2. Memory transfers, and thus also the updates
of the various pointers, are performed at the granularity of cache blocks, which can be
parameterized in size. Depending on the configured block size, the memory transfers
might be misaligned with the transfer size of the underlying memory system (e.g.,
the burst size of DRAMs). For brevity we do not cover this issue here and refer

34

(A1) func A()
(A2) sres 2
(A3) sws 0 = r9
(A4) call B
(A5) sens 2
(A6) sfree 2

(B1) func B()
(B2) sres 2
(B3) call C
(B4) sens 2
(B5) sfree 2

(C1) func C()
(C2) sres 3
(C3) sfree 3

(a) Program consisting of 3 functions, reserving, freeing and ensuring space on the stack
cache.

〈0, 0〉
A1

0

)

A
A

〈2, 0〉
A2

0

)

A
A

〈2, 1〉
A3

0

)

A
A
B
B

〈4, 3〉
B2

0

)
B
C
C
C

〈4, 4〉
C2

� 2
)

B

〈1, 1〉
C3

0

)
B
B

〈2, 1〉
B4

� 1

)

〈0, 0〉
B5

0

)

A
A

〈2, 0〉
A5

� 2

)
〈0, 0〉
A6

0

)

(b) The evolution of the stack cache state through the program. Assumed cache size: 4. The
arrow → indicates the position of the LP pointer in the cache space. The number N above
the cache state indicates the number of cache blocks filled �, or spilled �. The pair 〈m,n〉
below the cache state indicates the current occupancy m and the effective occupancy n.

Figure 2.3 – Example of a program and the stack cache state at particular points.

to Abbaspour and Brandner [10], where techniques to handle alignment issues are
discussed.
A brief summary of the memory transfers associated with each control instruction is
given below, further details are available in [11]:
sres k: Subtract k from ST. If this violates Equation 2.2, i.e., the cache size is ex-

ceeded, a memory spill is initiated to decrement MT until
MT− ST ≤ |SC|. Cache blocks are then transferred to main memory.

sfree k: Add k to ST. If this violates Equation 2.1, MT is set to ST. Main memory
is not accessed.

sens k: Ensure that the occupancy is larger than k. If this is not the case, a
memory fill is initiated to increment MT until MT− ST ≥ k. Cache blocks
are then transferred from main memory.

The stack load and store instructions only access the stack cache’s ring buffer and
thus exhibit constant execution times. This is particularly true for stack store
instructions, which only modify the cached value. Modifications are not immediately
propagated to the backing main memory. The stack cache’s policy to handle stack
store instructions thus resembles traditional write back caches.

Lazy Pointer (LP): An extension of the original stack cache allows to track coherent
cache data [12]. Similar to MT and ST, LP is a pointer (realized as a hardware register)
that satisfies the following equation: ST ≤ LP ≤ MT. The additional pointer divides
the stack cache content into two parts: (1) cache data between ST and LP is
potentially incoherent with the corresponding addresses in main memory, while

35

(2) data between LP and MT is known to have the same value in the cache and in
main memory – the data is known to be coherent. Coherent data can simply be
excluded from memory spill operations, i.e., it can be treated as if the data were
not in the cache. We thus can refine the notion of occupancy: LP− ST denotes the
effective occupancy of a stack cache with a lazy pointer. Accounting for the effective
occupancy allows to improve the sres instruction, with only slight modifications.
The sfree instruction also requires minor modifications to correctly update the
LP, while the sens instruction remains unchanged. In addition, the stack store
instruction (sts) has to update LP whenever coherent data may be modified [12],
i.e., LP is pushed upwards to ensure FA+ ST ≤ LP.

Example 2.2 Consider functions A, B, and C shown in Figure 2.3a and a stack
cache whose size is 4 blocks, i.e., |SC| = 4. Figure 2.3b depicts the evolution of the
stack cache state in particular program points. In this representation, the ST pointer
is fixed at the bottom of the cache state. The MT pointer moves along the cache
blocks indicating the end of the cache content and the beginning of the main memory
address space. The actual operations on the pointers are performed according to the
description we mentioned above. The occupancy is easily determined by counting the
number of colored blocks. The arrow → represents the LP pointer. Cache blocks that
are above LP are coherent with the main memory. Those below LP are potentially
not coherent and their number determines the effective occupancy. We also assume
that the cache is initially empty in the program entry point A1. All pointers MT, ST,
and LP, therefore, point to the same address, i.e., MT = LP = ST.
First, the sres A2 reserves two cache blocks in the cache space. For this, ST is
decreased by k = 2 blocks which increases the occupancy by 2 blocks. The same holds
for LP pointer as the newly reserved cache content is not yet initialized, therefore,
it is treated as coherent with the main memory. In contrast to the occupancy, the
effective occupancy remains 0. When the cache block of index 0 (with respect to ST)
gets initialized by the sws A3, the LP pointer is increased so that it points to the next
sequence of data that is known to be coherent. LP now points to the cache block of
index 1, the effective occupancy LP− ST is therefore set to 1. The sres B2 reserves
two cache blocks. This time, LP points cannot decrease as before since the cache
block just below is not coherent with the main memory. This adds two more blocks to
the effective occupancy. Function C is called and the sres C2 attempts to reserve
3 cache blocks. However, the cache is already full (occupancy is 4) and a further
decrease of ST will violate the condition MT − ST ≤ |SC|. To resolve this, MT will
need to be decreased by the amount of k − [|SC| − (MT− ST)] = 3 cache blocks. In
the standard stack cache implementation, this will cause 3 cache blocks to be spilled.
The lazy pointer extension is beneficial here as we can use the fact that some data is
already coherent with the main memory and just remove it. So instead of spilling
the 3 cache blocks located immediately below MT, only k − [|SC| − (LP − ST)] = 2
cache blocks need to be transfered to the main memory. The sfree C3 frees 3 cache
blocks reserved by Function C, which increases ST by 3 cache blocks and reduces the
occupancy to 1. Since the occupancy is less than k = 2, the sens B4 fills the cache
with k − (MT − ST) = 1 cache blocks. This causes MT to be increased accordingly,
however LP is not affected as the newly filled blocks are naturally coherent with the
main memory. The sfree B5 causes a decrease of both LP and MT pointers such
that MT = LP = ST. The sens A5 fills back 2 cache blocks, however, the effective
occupancy still evaluates to 0 as data is coherent.

36

Method Cache

In contrast to the conventional instruction cache, the method cache operates on
whole functions. The first implementation of the method cache was realized in the
Java Optimized Processor (JOP) [105]. The design promises many advantages from
a timing analysis standpoint. As for the stack cache, memory transfers can only be
induced by few instructions whose locations are statically known by the compiler,
i.e., call, ret, and brcf. This drastically limits the memory access cases to
consider which makes the analysis simpler. Another advantage is that in contrast a
conventional instruction cache where misses occurs in the IF stage, method cache
misses may only occur in the MEM stage, similarly to other caches. As explained in
Section 2.1, the single-stalling stage prevents the caches from conflicting each others
on misses, which enforces timing-composability of the platform. Moreover, at misses
the method cache can profit from memory bursts to efficiently transfer chunks of
code from the memory in a shorter time. The relatively bigger size of code blocks
has, also, the advantage to require less tag memory compared to a regular instruction
cache, hence, reducing contentions.
The global structure of the method cache follows that of fully-associative organization.
The entries represent a contiguous block of instructions known as the code block. Code
blocks are statically formed by the compiler based on the Control-Flow Graph 2 (CFG)
of functions and considering cache size and tag limitations. Possible implementations
of the method cache depend on the desired replacement policy, and whether the
code block size is fixed or variable [33]. A variable code block size implementation
allows for a better utilization of the cache space. However, it only supports the
FIFO replacement policy. Whereas an implementation with fixed-size code blocks
can be associated either with the LRU or the FIFO replacement policies. The LRU
replacement policy being a better choice for predictability. The cache state can only
be altered by three instructions:
call: For absolute and indirect function calls.
ret: For function returns.
brcf: For PC-relative and indirect branches between different code blocks.

All other branch instructions are guaranteed hits and do not transfer control outside
of the current code block. This may induce less memory requests, however, without
proper compiler support large code blocks may be evicted before being fully-utilized.

2.5 Multi-Core and Bus Arbitration Policy

The Patmos multi-core platform can be built based on a set of Patmos cores connected
through Network-on-Chips (NoC). As illustrated in Figure 2.4, Patmos dedicates
a specific NoC for: (1) core-to-core communication that takes the form of message
passing between processor scratchpad memories [65] and (2) transfers from/to the
shared external main memory [109].
The memory NoC connects Patmos cores to the memory controller via a memory
tree and applies a TDM schedule to arbitrate accesses to the main memory. For
simplicity, we assume that each processor core may transfer a single memory burst

2A representation of all paths that might be traversed during the execution of the program / func-
tion. See Chapter 3 for a formal description.

37

Patmos Multi-Core Platform

Memory Controller

Main Memory

Patmos Core

M$ D$

S$ LM

ALU

Patmos Core

M$ D$

S$ LM

ALU

Memory NoC

Core-to-Core NoC

Patmos Core

M$ D$

S$ LM

ALU

Patmos Core

M$ D$

S$ LM

ALU

Figure 2.4 – Patmos multi-core platform.

from/to main memory in a dedicated TDM slot. Transfers may only be initiated at
the beginning of a TDM slot. The slots are periodically scheduled in a TDM period.
The duration of a period then depends on the number of cores n and the duration of
a TDM slot k and is given by n · k cycles. We assume that the memory controller
is able to process transfers with arbitrary start addresses and lengths. The actual
memory transfer is, however, performed at the granularity of bursts, i.e., the start
address and length are aligned accordingly to the burst size (excess data is either
masked or discarded).
The core-to-core NoC connects Patmos cores to each others and basically consists of
links, network interface, and routers. Each core is connected to a network interface
which ensures the logic connection between the core and the network. Each network
interface is connected to a router which itself is connected via links to its neighbors
forming a 2D bi-torus structure. The routers rely on a static TDM schedule to route
the stream of packets to the corresponding core.

3 Compiler Support
The compiler plays a central role in defining the performance and predictability of the
real-time application. To achieve its role fully, the T-CREST project advocates for a
complete support of Patmos’ predictability features, as well as a tight integration
into the WCET analysis process [96]. In this section, we briefly review the compiler
toolchain, and present the support it provides for Patmos’ features.

38

libsrc1.c

. . .

libsrcN.c

crt0.c

libsrc1.bc.o

. . .

libsrcN.bc.o

crt0.bc.o

lib.bc.a

srcN.bc.o

. . .

src1.bc.osrc1.c

. . .

srcN.c

app.bc app.opt.bc app.o appApplication

System Libraries

patmos-clang llvm-ar

llvm-link

llvm-opt gold

patmos-clang

patmos-llc

Figure 2.5 – The compilation toolchain.

3.1 Toolchain Overview

The Patmos toolchain is based on the LLVM compiler framework3. Figure 2.5
illustrates the compilation steps and the involved tools. The compilation flow
starts by translating each source file into an intermediate representation called
LLVM Intermediate Representation (LLVM-IR). This process is carried-out by the
patmos-clang front-end that generates a bitcode file for each source file. This also
applies to user and system libraries, which are also linked together at the bitcode-level
using llvm-link. Moreover, a control-flow graph representation of the program
can be obtained after the link stage. The main advantage of this is that a complete
view of the program is available to subsequent optimization stages including the
back-end [23]. A set of usually machine-independent analyses and optimizations are
then performed by the llvm-opt tool.
The back-end mainly consists of patmos-llc that translates LLVM bitcode into
Patmos machine code according to the ISA. A set of machine-dependent analyses and
optimizations are performed in this stage right before code emission (see Section 3.2).
The generated code is an ELF binary containing symbolic addresses that get translated
to physical addresses by the gold4 linker which defines the final data and memory
layout.

3.2 Support for Patmos Features

In order to fully take advantage of the predictability features offered by the Patmos
platform, a proper support needs to be provided by the compiler back-end infrastruc-
ture. We review here the compiler support to manage some of the hardware features
within the patmos-llc tool.

3http://www.llvm.org
4https://www.gnu.org/software/binutils/

39

http://www.llvm.org
https://www.gnu.org/software/binutils/

Stack Cache

Compiler support for the stack cache has been presented in the stack cache original
paper [11]. The compiler manages the stack frames of functions quite similar to
other architectures with the exception of the ensure instructions. Stack frames are
allocated upon entering a function (sres) and freed immediately before returning
(sfree). A function’s stack frame might be (partially) evicted from the cache during
calls. Ensure instructions (sens) are thus placed immediately after each call. The
evicted data is consequently reloaded into the cache if needed after each call. We
also restrict functions to only access their own stack frames. Data that is shared or
too large can be allocated on a shadow stack outside the stack cache.
A more relaxed (but is not supported yet) placement of stack cache control instructions
can be performed, which allows for varying frame sizes within functions in order
to pass function arguments or for optimizations. The placement merely needs to
be well-formed [63], which means that each sres has to be followed by matching
sfree instructions on all execution paths (similar to well-formed braces).

Method Cache

The compiler ensures the formation of code blocks based on code regions and according
to cache limitations, i.e., cache size, tag memory, and a user-specified maximum code
block size. A code region is a subgraph of the CFG of a function with a unique-entry.
This is necessary so that the access to the code block is performed based on its
entry address in the branch/call instructions. The compiler performs the splitting of
functions whose size is larger than the maximum code block size. The splitting is
crucial to cache performance. In fact, splitting functions into too small code blocks
may cause a code size overhead and many small memory transfers that may not fully
profit from the memory bursts.
The algorithm presented in [57] splits the function by creating code regions that grow
as the CFG is traversed. Maximizing the size of code blocks allows to reduce the
needed tag memory necessary for caching functions. The algorithm starts by creating
a region at the CFG root and traverses the CFG in a topological order. A basic block
is included in the region of its predecessors if (1) the resulting total size is less than
the maximum code block size and (2) all its predecessors are part of the same region.
A violation of those conditions induces the creation of a new region. Reducible
loops are handled during a preprocessing step by either adding the whole loop to the
growing regions, or by making the loop header a region header. Irreducible loops
are handled by creating an artificial loop header to which all edges reaching the
original loop headers are directed to. The resulting structure is a reducible loop and
is handled as such. There may also appear cases of computed branches induced,
for instance, by the switch statement in the C language. Those are handled by
creating artificial nodes so that an SCC 5 is formed with all the involved basic blocks.
The splitting is then performed as before. Note that these transformations are not
performed on the actual code and are only required for the computation of code
regions/blocks for the method cache.

5In graph theory, a Strongly Connected Component (SCC) is a directed graph where every node
is reachable from every other node.

40

Instruction Delay Slots Cache Fill
call 3 yes
br 2 no
brcf 3 yes
ret 3 yes

Table 2.1 – Example of control-flow instructions and their delay slots.

Predication

The LLVM code generator is able to produce predicated code at several stages.
Firstly, the instruction selector is able to recognize simple select statements that are
directly compiled to conditional moves. A generic if-conversion optimization is also
available, which allows to eliminate conditional branches of complex control flow and
produce predicated code. Finally, Patmos-specific code transformations are available
to generate single-path programs [50].
The Application Binary Interface (ABI) defined by Patmos states that all predicate
registers are callee saved. This means that, during a function call, the called function
needs to save and restore any predicate register that it modifies. Predicate registers
cannot be used to pass arguments to other functions. Predicates are, in terms of
the ABI, strictly function local. Consequently, predicates can be freely used across
function calls, while called functions are independent from predicates computed
before entering the function. It is still possible that call instructions themselves are
predicated, i.e., the function is called conditionally.

Branch Optimizations

Branch hazards are side-effects of pipelined architectures. Non-delayed branches cause
the pipeline to stall until the branch is resolved. While this behavior is predictable,
relying only on non-delayed branches may severely impact the performance. To
mitigate their negative effects, the compiler can deal with branches in different ways.
One consists of avoiding branch instructions in the first place by eliminating them.
This class of techniques includes predicated execution, which we have just covered.
Another one consists of performing code transformation techniques such as function
inlining and loop unrolling. In function inlining, the compiler replaces some call
instructions with the body of the function being called. Similarly, loop unrolling
replicates the code of a loop body many times to reduce or eliminate loop control
instructions. An obvious side effect of code replicating techniques is the increased
code size.
Another approach consists of statically filling branch delay slots with instructions.
Those instructions are ideally useful and must not depend on the outcome of the
branch. Moreover, it must be ensured that their execution does not interfere with
the branch being executed. The compiler performs this optimization by looking for
such instructions and moving them to fill the available delay slots. In Patmos, the
number of delay slots depends on the branch/call instruction (see Table 2.1). Each
delay slot represents a bundle that can fit up to two instructions. Moreover, since
Patmos supports predicated execution, the compiler is able to use predicates to place
other branches in delay slots. For this, the compiler makes sure that the predicates
are disjoint, i.e., only one branch is known to be taken at any moment at runtime.

41

Filling delay slots allows for better code utilization while minimizing branch hazards
in a predictable fashion.

42

CHAPTER 3

Static WCET Analysis Framework

As the complexity of computer architectures and real-time applications grows, deriving
tight and sound WCET bounds becomes a challenging task. The process, in fact,
requires a deep knowledge not only about the program structure and constraints, but
also the underlying computer architecture and its internal subsystems. A rigourous
methodology becomes necessary to handle the complexity and provide safe WCET esti-
mates. In this Chapter, we present some important results in static WCET analysis.
Section 1 describes the overall analysis flow and its involved phases. Section 2 gives
some basic background regarding static program analysis. In Section 3 we present the
standard data-flow analysis framework. Then, from Section 4 through Section 7 we
review relevant timing analysis results for some hardware components and features.
A description of some WCET analysis tools is provided in Section 8. Finally, the
conclusion is presented in the last section.

1 The Analysis Work Flow
We start this chapter by providing an overview of the static WCET analysis work
flow. The goal of static WCET analysis is to derive a sound and tight WCET
estimate of a program to be run on a particular computer. By sound we mean
that the WCET estimate is always an over-estimation of the actual WCET. A tight
estimate means that the WCET bound is precise and as close as possible to the
real one. To achieve this goal, the WCET analysis applies various techniques that
stem from static program analysis. In general, the analysis consists of several phases,
illustrated in Figure 3.1.

CFG Reconstruction: The typical starting point of a classical WCET analysis
is to reconstruct the program’s control-flow from the machine code, i.e., the binary
code. The control-flow graph (CFG) represents all possible paths the program can
take during its execution. This is necessary for the WCET analysis as it allows to
track the processor’s timing behavior along each of these possible paths. To achieve
this, the machine code has to be parsed and decoded in order to detect branch or
call instructions causing a split of the control-flow. The target address of branches

43

CFG
Extract.

High-Level
Analysis

CFG

CFG + flow
information +
addresses

Low-Level
Analysis

User Annotations
(e.g., loop bounds)

Processor Abstract
Model (e.g., Patmos,
ARM, etc.)

CFG + timing
annotation +
flow information

Path
Analysis

WCET
boundBinary

Instruction
Semantics

Figure 3.1 – General WCET analysis work flow.

and calls can often be determined by simply inspecting the memory layout and the
symbol table of the program. Moreover, this step requires a certain knowledge of the
processor’s instruction set architecture (ISA) and its semantics. Section 2 provides
formal description of the CFG and other concepts related to static analysis.

High-Level Analysis: The CFG serves as representation of the program, this
phase consists of extracting necessary and useful information from it. The information
is related to the behavior of the program and will subsequently be used to bound its
execution time and tighten the WCET estimates. This phase is often carried-out
using a set of data-flow analyses (DFA) for which the framework is described in
Section 3. The collected information usually consists of addresses and flow-facts:
• Addresses: The machine code might not explicitly show the target address of all

branches/calls or the address of data being referenced. In fact, some of them
might be dynamically computed at runtime and thus stored in local registers.
This situation is commonly encountered in calls by pointer where the value of
the pointer is computed depending on certain conditions. Another example is the
switch-case statement of the C language which is usually implemented using a
jump table to determine the target address depending on the case value. Similar
situations can also be found for addresses of referenced data. To determine
addresses, a popular approach is to apply a value range analysis (VRA). The
VRA analysis is a form of DFA which consists of tracking the interval of values
stored in registers at every point of the program. As we will see, both high-level
and low-level analysis are sensitive to the address information. Therefore, the
tightness of the provided results can directly affect the precision of the WCET
analysis as a whole.

• Flow-Facts: Without flow constraints, the CFG will represent an infinity of
possible paths for which the WCET cannot be bounded. Flow-facts represent
information about the control flow of the program that is necessary to compute the
WCET or to make it more precise. Examples of this include loop iteration bounds,
the depth of recursive calls, or the relative bounds which is often used for nested
loops. Some flow-facts can be determined statically through a set of dedicated
DFA analyses that might use the results of the VRA analysis. In the case they
cannot be determined automatically, the user has to provide the information
manually in the form of annotations. Flow-facts can also be used to eliminate
infeasible paths, i.e., those that will never be taken under any circumstances.
There can be different causes leading to infeasible paths, the main one is the
correlation of conditional instructions. An example of this is the existence of paths

44

with consecutive contradictory conditions. Studying the relationship between
conditions leading to different paths can help determining infeasible ones. The
immediate benefit is the simplification of the CFG due to the elimination of such
paths and the corresponding dead code which is never executed. The implication
on the WCET analysis is a reduction of the complexity and the increased precision
of the estimates.

Low-Level Analysis: The program itself does not disclose timing information on
it. The worst-case timing behavior of the program is function of both the program
and the processor. In particular, the processor spends a certain number of cycles to
execute each instruction of the program. If all instructions would always execute
in a constant time, then timing analysis would be a trivial problem to solve; one
would just perform a longest path search on the CFG to maximize the number of
instructions that might be part of a program execution. Computer architectures
usually implement several hardware components, each targeting a specific aspect of
performance in an interplay with other components. The execution time of some
instruction is then determined by the timing behavior of the components being
involved, which itself depends on their individual state right before the execution.
This creates timing variations as different states may potentially lead to different
timing behaviors.

These timing variations are essentially caused by timing accidents. Those are
situations leading to an increase of the execution time of some instruction, also
referred to as a timing penalty. An example of this is a cache miss on a load
instruction. The execution time of the load instruction dramatically varies depending
on whether the referenced data is present in the cache. In computer architectures
supporting different levels of caches, the execution time of the load instruction may
take a range of values. The concept also applies to branch miss-predictions, bus
delays, pipeline hazards, and delays related to a DRAM memory refresh.

The goal thus is to derive potential hardware states that may occur during program
execution. This is usually done through a set of data-flow analyses (or similar analyses)
that simulate the program execution and capture its impact on the hardware state.
For each of these hardware components, a dedicated analysis determines the set of
its potential states at each program point. The conservative analysis needs then to
investigate those potential states in order to determine whether there is a potential
timing accident and, if so, associate the corresponding timing penalty. Given this
information, the local worst-case timing of instructions can be derived and annotated
to the CFG.

As different processors may come with different characteristics, it is necessary to
provide an abstract model of the processor. This consists of a description of the
computer architecture on which the analyses can run to conservatively derive the
timing behavior for all instructions of the ISA. This typically includes information
regarding the CPU registers, pipeline stages, memory hierarchy, and how instructions
affect the processor state. The abstract model can be either provided as an input to
the tool, or being part of the tool itself.

The difficulty here resides in the complexity of the computer architecture and the
ability to build a valid and precise abstract model from a, usually, incomplete
documentation. In general, the more complex the computer architecture, the more
difficult it will be to derive a precise worst-case timing behavior for instructions.

45

Precisely tracking the complex hardware behavior may be expensive in terms of
computational and space complexity. Abstraction may be used to handle the
complexity, however, the precision loss results in a larger set of potential hardware
states with possible timing accidents. Also, the absence of information regarding
some hardware component may require considering all its possible states to ensure
the soundness. To add more difficulty to the matter, conventional architectures with
complex interactions between hardware components are subject to timing anomalies.
Identifying such situations requires tracking a long execution history, often deeming
the whole process infeasible. Time-predictable architectures address this issue by
imposing some design rules to simplify the behavior of hardware components and
thus eliminate timing anomalies. The absence of timing anomalies suppresses the
need to track the execution history in order to provide sound WCET estimates.
Moreover, the timing composability allows to separately study the timing behavior
of hardware components.

Path Analysis: Once the local WCET is determined for each basic block in the
CFG, this step consists of computing an estimation of the program’s WCET. This is
typically performed using the Implicit Path Enumeration Technique (IPET) [119].
The idea consists of combining flow information obtained from the high-level analysis
with the local WCETs of basic blocks, in order to formulate an integer linear program
(ILP). Each edge of the CFG is associated with (1) a time cost denoted as ĉi
representing the contribution of the basic block to the global WCET, as well as (2)
a count variable, xi, representing the number of times the basic block is executed.
A safe estimation of the program’s WCET is obtained by finding the worst-case
execution path (WCEP) through the annotated CFG. The WCEP is obtained by
performing a longest path search that maximizes the goal function

∑N
i=1 ĉixi, where

N is the total number of basic blocks. Solving the ILP requires expressing a set of flow
equations that take into consideration different constraints. In particular, structural
constraints are those stemming directly from the program’s control flow. For instance,
the equations must verify that the sum of in-flow execution reaching some basic
block is equal to the sum of out-flow execution. Also necessary to formulate and
solve ILP are the loop bounds which are either automatically computed during the
high-level analysis or manually provided by the user. Once the problem is formulated,
the actual solving is typically performed using standalone tools such as CPLEX 1 or
GLPK 2. The result is often provided in the form of CPU cycles.

2 Basic Concepts for Program Static Analysis
In order to formally study and analyze the timing behavior of programs, we first
need to set the theoretical foundations and terminology related to static program
analysis. This section provides formal definitions of most important concepts.

2.1 Control-Flow Graph

In a first step, we view a program as a collection of instructions that execute in some
order. The control-flow graph (CFG) is a fundamental representation of the program

1https://www.ibm.com/fr-fr/analytics/cplex-optimizer
2https://www.gnu.org/software/glpk/

46

 https://www.ibm.com/fr-fr/analytics/cplex-optimizer
https://www.gnu.org/software/glpk/

that determines the execution order of instructions. Very often, program instructions
are organized into straight-line code sequences called the basic blocks.

Definition 1 (Basic-Block) A basic-block (BB) is a maximum sequence of consecu-
tive instructions that has a unique entry point, and a single exit point.

The first instruction of the sequence corresponds to the entry point of the basic block.
This can be the first instruction of a function, the target of a branch instruction,
or a fall-through after a conditional branch. The exit point, on the other hand,
typically consists of a control-transfer instruction that directs the flow of execution
to another basic block. Examples include branch (br, brcf, brnd, brcfnd), call
(call, callnd), and return (ret, retnd) instructions. The call instruction may,
sometimes, not be considered as an exit point of the basic block. For simplicity, we
explicitly end the basic block at call instructions. Also, in some cases the exit point
may not always be a control transfer instruction, and that a basic block may just
fall through its successor.
Given the description above, one can formally model the execution order of basic
blocks by looking at execution flow relations. Using this, we can define a CFG for a
single function, also known as an intra-procedural CFG.

Definition 2 (Control-Flow Graph) The control-flow graph (CFG) of a single func-
tion is a directed graph G = (N,E, r, t). Nodes in N represent basic blocks and
edges in E ⊆ N × N the execution flow. Nodes r and t ∈ N denote unique entry
and exit points respectively. To each node u ∈ N corresponds a program point pu.
Additionally, we define Succs(v) = {u | (v, u) ∈ E}, the set of immediate successors
of v, and Preds(v) = {u | (u, v) ∈ E}, the set of immediate predecessors of v.

In a sense, the CFG represents all possible execution paths, i.e., all possible sequences
of CFG nodes starting from the entry point to the exit point. It is, thus, a convenient
way to represent not only functions but also any substructure such as loops or
conditional statements. Moreover, the information contained in the CFG allows to
perform flow-sensitive analyses intended for program optimization, we cover this
aspect in the next section. Note that the CFG nodes also represent individual
instructions. In this case, additional edges are needed to represent the execution flow
of instructions within the same basic block.

Definition 3 (Path) A path is an ordered sequence of nodes (v1, . . . , vn) such that,
for i < n, all edges (vi, vi+1) are in E. A path π is said to pass through a node u,
denoted by u ∈ π, if ∃ i, 0 < i ≤ n : vi = u. We assume that all nodes are reachable
from the root node r, i.e., there exists a path from r to every node in the CFG, and
that the sink node t is reachable from every node.

Example 2.1 Consider the function F() written in Patmos assembly language
shown in Figure 3.2a. In this example, we build its corresponding CFG illustrated
in Figure 3.2b. The function F() simply performs two function calls one of which
depends on the value of the general purpose register r9. Additionally, r1 and r2 are
used to count the number of branches and calls performed during the execution. The
compiler schedules the instructions and sets the order of basic blocks in the memory
layout. Moreover, the compiler uses branches to direct the flow of execution from

47

func F()
BB0:

sres 1
mov r1 = r0
mov r2 = r0
cmpneq p1 = r9, 0x0

(p1) br 0x6 //cond. branch to BB3
(p1) addi r1 = r0, 0x1

nop
BB1:

addi r2 = r0, 0x1
callnd G //non-delayed call

BB2:
sens 1

BB3:
addi r2 = r0, 0x1
callnd H

BB4:
sens 1
ret
sfree 1
nop
nop

(a) Definition of the F() function in the Patmos assem-
bly code assuming a single-issue execution. The labels
on the left represent basic blocks.

r

BB0

BB1

BB2

BB3

BB4

t

(b) The control-flow graph
of the F() function.

Figure 3.2 – Portion of a program in Patmos assembly language and its corresponding
machine code. Each line in the machine code corresponds to a line in the assembly
code.

a basic block to another. The function consists of five basic blocks each of which is
represented by a node in the CFG with identical names.
The basic block BB0 starts with the sres instruction which, also, represents the
function entry point. Consequently, the edge (r,BB0) connects the root node r to
the basic block BB0. The cmpneq instruction compares the content of r9 to the
immediate value 0 and sets the predicate register p1 if the comparison evaluates to
true. The br instruction is a delayed conditional branch with no cache fill that is
executed depending on the value of the predicate register p1. The br has 2 delay
slots, meaning that the CPU can execute up to two more instructions before the
branch actually takes effect. Moreover, the content of r1 is incremented using addi
if the branch is taken. If the branch is not taken, then BB0 falls into BB1. These
two possible executions are represented by two edges (BB0, BB3) and (BB0, BB1)
respectively.
In BB1, a call to the function G() is performed and the r2 is incremented. This call
is non-delayed meaning that the pipeline cannot fetch any more instructions until the
call instruction passes the MEM stage. Therefore, the non-delayed call marks the end
of the current basic block. When the function G() returns, the flow of execution is
directed to the next instruction located right after the call. This instruction is located
in BB2, which itself falls into BB3. We choose to represent the edge (BB1, BB2)
as dashed as the execution flow is transfered indirectly from BB1 to BB2 (due to the

48

call).
The edges (BB2, BB3) and (BB0, BB3) reach the basic block BB3 and form a join
point. In this basic block, a function call to H() is performed with an increase in the
r2 register. A dashed edge (BB3, BB4) is then used as explained before. The basic
block BB4, executes until reaching the instruction ret which is a delayed return with
3 delay slots. The compiler schedules instructions in the available delay slots before
the return takes effect. This marks the end of the basic block BB4 and the function
F(). The edge (BB4, t) is then used connects the last node to the tail node.
In this intra-procedural CFG, there are two possible execution paths depending on
whether the branch is taken or not. The path {r,BB0,BB1,BB2,BB3,BB4, t} corre-
sponds to the scenario where the branch is taken. Assuming the called functions do
not alter the contents of registers r1 and r2, these registers hold the values 1 and 2
respectively at the end of the execution. The other possible path {r,BB0,BB3,BB4, t}
represents the scenario with the branch not taken. The contents of r1 and r2
registers then evaluates to 0 and 1 respectively at the end of the execution.

2.2 Loops

Programs spend most of their execution time in loops. They are, therefore, natural
candidates for compiler optimizations and WCET analysis. Considering the CFG
definition, we can identify loops as a non-trivial strongly connected component (SCC)
or trivial SCC with a self-edge.

Definition 4 (Loop) A loop is a set of nodes L ⊆ N forming an SCC subgraph in
the CFG. An edge (u, v) is called an entry edge of a loop L, if u 6∈ L and v ∈ L. The
node v is then called an entry node. We call a loop with a single entry node reducible,
all other loops are irreducible. Similarly, we call a CFG reducible when all its loops
are reducible, the CFG is otherwise irreducible.

Most loop optimization techniques target reducible loops with a single entry node.
Several approaches can be used to identify loops within the CFG. A popular one
relies on dominance-based relationships between the nodes of the CFG.

Definition 5 (Dominance) Let u and v be nodes in the CFG. The node u dominates
the node v if every path from the root node r to v passes through u. The node u
strictly dominates v if u dominates v and u 6= v.

Definition 6 (Post-Dominance) Let u and v be nodes in the CFG. The node u
post-dominates the node v if every path from the node v to the sink node t passes
through u.

Once dominators are found in the CFG, loops can be identified by investigating their
corresponding loop headers (i.e., entry nodes). Loop headers are useful to identify
natural loops.

Definition 7 (Loop Header) A loop header is a node h within a loop such that no
other node in L strictly dominates h. Edges of the form (u, h), u ∈ L, leading to a
loop header are called back edges.

49

func H()
BB0:

sres 1
br 0x4 //branch to BB2
addi r1 = r0, 0x9
nop

BB1:
subi r1 = r1, 0x1

BB2:
cmpneq p1 = r1, 0x0

(p1) brnd -0x2 //cond. branch to BB1
BB3:

ret
sfree 1
nop
nop

(a) Definition of the H() function in the Patmos as-
sembly code assuming a single-issue execution.

r

BB0

BB1

BB2

BB3

t

(b) The control-flow graph
of the H() function.

Figure 3.3 – Example of a program in the Patmos assembly language and its
corresponding CFG demonstrating the use of a single loop.

Natural loops are reducible loops with a single loop header and one or potentially
several back edges. Each back edge has a corresponding natural loop.

Definition 8 (Natural Loop) A natural loop of the back edge (u, h) is a reducible
loop consisting of the smallest set of nodes L ∈ N that includes the back edge and for
which the only predecessors outside L are those of the header h.

Loops may also be nested. In such a case, their hierarchy in the SCC may be
represented using a loop nesting forest [98] that we do not cover in this section. A
loop that contains no other loop is called an inner loop.

Example 2.2 Consider the function H() written in Patmos assembly language
shown in Figure 3.3a and its corresponding CFG illustrated in Figure 3.3b.
The function simply sets and decrements the content of the register r1 until it reaches
0. The function consists of four basic blocks each of which is represented by a node
in the CFG with an identical name. The CFG is constructed just similarly as in
Example 2.1.
In BB0, the function initializes the content of r1 and performs a delayed branch to
BB2. In BB2, a conditional branch to BB1 is performed based on the result of the
comparison performed by the cmpneq instruction. Then, BB1 falls into BB2 right
after r1 is decremented. This cycle is repeated until r1 evaluates to 0, in which case
BB2 falls through BB3. The function then returns to the caller.
The nodes BB1 and BB2 form a loop body and the edge (BB0,BB2) is its entry edge.
The node BB2 is the loop header as no other node of the loop strictly dominates it (i.e.,
all paths from r to BB1 pass through BB2). Also, BB1 does not post-dominate BB2
as there is a path from BB2 to t that does not pass through BB1 (i.e., {BB2,BB3, t}).

50

The loop is also a natural one of the back edge (BB1,BB2). Finally, the node BB3
post-dominates all the nodes of the function as every path from any node to the sink
node t passes through BB3.

2.3 Inter-procedural CFG and Call Graph

In general, a program consists of several functions that call each others to realize
a higher-level computing task. In order to represent the whole program, an inter-
procedural CFG (ICFG) needs to be constructed. The ICFG is a super-graph that
combines intra-procedural CFGs of all program functions using call and return
relations between them. This is done by further introducing two types of edges
representing the call sites and returns. The node with call site is then connected
to the node representing the first basic block of the callee (i.e., the function to be
called). The return edge connects the last basic block of the callee to the successor
of the calling node in the intra-procedural CFG.

Definition 9 (Inter-Procedural CFG) The inter-procedural CFG (ICFG) of a pro-
gram is a directed graph G = (N,E, r, t). The set N is the union of all nodes of
all intra-procedural CFGs of functions of the program. Nodes r and t ∈ N denote
the program unique entry and exit points respectively. The set E is the union of all
edges in all intra-procedural CFGs, extended with the set of call and return edges.
We assume that each call site is associated with a corresponding call instruction. A
Call edge (u, v) connects the calling node u to the node v representing the first basic
block of the callee function. A return edge (g, h) connects the returning node g to the
node h such that h = Succ(u) in the caller’s CFG.

Depending on the analysis problem, it may be sufficient to represent only the call
relations between functions. For this, we use the call graph.

Definition 10 (Call Graph) The Call Graph (CG) of a program is a directed graph
C = (F,A, s). Nodes in F represent functions and edges in A call sites. Node s ∈ F
is the program’s entry point. We assume that each call site is associated with a
corresponding call instruction of the CFG of a function.

The CG can also be used in combination with intra-procedural CFGs to perform
inter-procedural analyses. In this case, analyses operate on individual CFGs to
model the effects of functions and assign summaries to the corresponding edges in
the CG. Moreover, path analysis often operates on the program’s ICFG. In order to
compute the WCET bound, time costs resulting from the execution of basic blocks
are typically assigned to ICFG edges. Assigning costs to a graph results in a weighted
graph.

Definition 11 (Weighted Graph) A weighted control-flow (or call graph) is associated
with a function W : N ∪ E → N (W : A ∪ F → N) to each node and/or edge in the
graph.

Example 2.3 Consider a program consisting of three functions F(), G(), and H().
The functions F() and H() are defined as in the previous examples, whereas G()
consists of a straight-line code with a single call site to H(). In this example, we

51

r

BB00

BB01

BB02

BB03

BB04

t

F()

BB10

BB11

G()

BB20

BB21

BB22

BB23

H()

(a) ICFG of a program consisting of functions F(), G()
and H(). Call edges are represented in red, whereas
return edges are in blue.

s

F

G

H

(b) The corresponding CG
of the program.

Figure 3.4 – Example of an ICFG of a program and its corresponding CG.

build the ICFG shown in Figure 3.4a and the corresponding call graph shown in
Figure 3.4b. For the ICFG, we first need to build the individual CFGs of its functions.
We use the already built CFG of F() and H() and make one for G() as shown in
Figure 3.4a. These CFGs are connected using call and return edges to represent call
relations between functions. In our example, F() calls G() in BB01, therefore, the
call edge (BB01,BB10) connects BB01 to BB10 which is the callee’s first basic block.
On the other hand, the return edge (BB11,BB02) connects the returning node BB11
to BB02, which is the immediate successor of the calling node BB01. The same is
observed for call relations G()/H() and F()/H(). In the call graph, each function
of the program (i.e., F(), G() and H()) is represented by a single node. The node
s represents the program entry point which is located in the function F(). Moreover,
each call site is represented using a directed edge from the caller to the callee. For
instance, the function F() calls both the G() and H() functions in two different call
sites. Therefore, each call site is represented by a unique edge.

3 Data-Flow Analysis Frameworks
Data-flow analysis (DFA) is a framework allowing to determine facts or information
about the program without executing it. It was developed by Gary Kildall in 1973 [66].
Later, Cousot and Cousot provided, in their seminal work [30], a semantic foundation
for building analyses in the framework, as well as means to reason about their
correctness. The applicability of abstract interpretation extends data-flow analysis.
Unless explicitly mentioned, we will follow the tradition of data-flow analysis as
presented in [14].
Data-flow analysis is a powerful technique and has been extensively used in compilers

52

for program optimization. The usefulness can be illustrated through popular opti-
mization techniques such as register allocation which exploits the results of liveness
analysis. This analysis allows to determine, for each program point, the set of
potentially live variables, i.e., those that might be read before they are written again.
Variables that are not live can be safely eliminated as they do not influence program
results. Other classic optimization techniques based on DFA include constant propa-
gation, and dead code elimination. From a WCET standpoint, DFA frameworks can
be defined to determine the timing behavior of hardware components and programs
using them. We will cover some of these techniques in the subsequent sections.
DFA is based on the observation that the manipulation of data during program
execution has a direct impact on the program state. This includes variables, stack
data, and even low-level components of the computer architecture such as internal
CPU registers, or cache memory. A program execution can thereby be seen as a
sequence of transformations of an abstract program state. In DFA, we statically
simulate and observe how the computer state is transformed along all possible
execution paths, so that assertions could be made regarding particular aspects of the
program at specific program points. Those assertions represent the safe and most
precise approximations that could be obtained for a program point, regardless of the
reaching path.
One of the virtues of DFA is being a framework whose components can be defined to
solve a variety of static analysis problems. A DFA is typically defined by a tuple
A = (D, T,t) where:
D is the abstract domain representing the set of values the informa-

tion can take at any program point.

T : D → D is the transfer function modeling the effect of instructions on the
information.

t : D ×D → D is a join operator applied on domain values to merge information
in program joins.

Together with an (I)CFG an instance of an (inter) intra-procedural DFA can be
formed, yielding a set of data-flow equations. The equations are typically solved
by iteratively applying these functions until a fixed-point is reached [14]. In the
following, we describe in detail the DFA framework and its properties.

3.1 Abstract Domain

The information that could be derived might be very complex to compute, and
tracking it may not be possible due to efficiency and practical considerations. For
instance, tracking the numerical values of variables during a liveness analysis is
irrelevant for the problem and just adds unnecessary complexity to the process. It
is thus important to find a suitable representation of the information that can be
processed efficiently and captures the relevant characteristics of the information that
is to be derived about the program states. This is achieved through abstraction. An
abstraction is merely a representation of the concrete program states with respect
to some particular aspect, potentially dropping, simplifying, or summarizing the
information of the concrete state. By concrete we mean the actual state resulting
from an actual execution on the computer.

53

Based on this abstraction, the DFA analysis associates with each program point a
data-flow value representing a particular fact. The set of all possible values that could
be taken is known as the abstract domain that we denote as D. Assuming programs
terminate, the domain in general consists of a finite set of values summarizing all
possible concrete states generated by the program. The nature of the information
depends on the analysis problem. However, since we are interested in formulating
a general framework to handle (large) classes of analyses, the domain values need
to be comparable. Again, the nature of the information and the meaning of the
comparison is problem-dependent. In any case, the domain needs to form a partial
order.

Definition 12 (Partial Order) A partial order on a set S is a binary relation v
over S × S such that:

1. v is reflexive: ∀x ∈ S, x v x.

2. v is transitive: ∀x, y, z ∈ S, x v y and y v z implies x v z.

3. v is anti-symmetric: ∀x, y ∈ S, x v y and y v x implies x = y.

Furthermore, the partial order allows to define the following upper and lower bound
relations. Assuming x ∈ S, and X ⊆ S:
upper bound (ub): x is a ub of X iff ∀x′ ∈ X , x′ v x.

lower bound (lb): x is a lb of X iff ∀x′ ∈ X , x v x′.

least upper bound (lub): x is the lub of X , denoted tX , iff ∀x′ ∈ X , x′ v x,
and ∀x′′ ∈ S such that ∀x′ ∈ X , x′ v x′′, we have
x v x′′.

greatest lower bound (glb): x is the glb of X , denoted uX , iff ∀x′ ∈ X , x v x′,
and ∀x′′ ∈ S such that ∀x′ ∈ X , x′′ v x′, we have
x′′ v x.

The lub is also called the join of the partial order S, whereas the glb is referred to as
the meet. The meet and the join can also operate on individual elements x and y of
the partial order S. These operators are useful for the DFA as they provide means
to merge any pair of information contained in D at join points. Depending on the
analysis problem, either the join, the meet, or both might be required to perform
the merge.
Given the discussion above, we can define the domain D as a lattice.

Definition 13 (Lattice) A lattice L is a partial order where every two elements have
a unique greatest lower bound and least upper bound.

However, in order to guarantee that the join operator exists for every possible subset
of values in L, we need to consider a complete lattice.

Definition 14 (Complete Lattice) A lattice L is complete iff for each subset S of L,
both tS and uS exist in L.

54

UNDEF (>)

0 1 2 . . .−1−2− . . .

NAC (⊥)

(a) Domain for constant propagation analysis

{∅} (⊥)

{b} {c}{a}

{a, c}{a, b} {b, c}

{a, b, c} (>)

(b) Domain for liveness analysis

Figure 3.5 – Examples of some domains

This means that even the empty and infinite subsets of L must have a lub and a glb
in L. By convention, a particular data-flow value denoted as > is used to represent
the largest greatest element. In that regard, the value > is the lub of all possible
subsets S of L. Conversely, the data-flow value ⊥ is the glb and could be used for
instance to initialize the analysis.

Example 3.1 In Figure 3.5a we illustrate the domain for constant propagation
analysis. The analysis simply consists of determining whether variables are constants,
and if so, track their unique values. The interpretation of the domain is as follows:
The value > represents the absence of knowledge regarding whether the variable is a
constant or not. The variable in this case is considered undefined. If the variable
is deemed constant at a program point, then the corresponding numerical value is
assigned to that point. The value ⊥ means that the variable is certainly not a constant,
which is a different information from the above. In liveness analysis, we determine
the set of potentially live variables at program points. Therefore, the domain in
Figure 3.5b has to represent all possible combinations of sets of variables. Again,
the value > represents the case where no information is known, that is, all variables
might be live. On the other hand, the value ⊥ is interpreted as no variable is live at
this point.

3.2 Transfer Functions

So far, we defined the general mathematical structure to represent information
held in the domain. Now, we need to capture transformations that are induced by
instructions. Transformations to the information depend primarily on the analysis
problem. For instance, liveness information may only be impacted by read and write
operations on variables. Other instructions are completely transparent from the
analysis point of view as they have no implication on the liveness.
Very often, the effect an instruction of the CFG has on the input information depends
on the instruction class it belongs to (e.g., read, write). It is, therefore, convenient
to define a transfer function for instruction classes and map the instructions in the

55

instr i

IN(i)

OUT (i) = T (IN(i))

Figure 3.6 – The transfer function transforms the input information.

CFG to their corresponding instruction class. For simplicity, we will use i to refer
directly to the instruction class of some instruction in the CFG. The impact of the
instruction i on the data-flow value d ∈ D can simply be captured by a transfer
function Ti : D → D in T that changes input value IN(i) = d reaching the instruction
i into output OUT(i) = d′, where d′ ∈ D. This process is illustrated in Figure 3.6.
Another important property of a transfer function is monotonicity, i.e., order preser-
vation. This is often necessary to guarantee the termination of the analysis.

Definition 15 (Monotonic Function) A transfer function T is monotonic iff:

∀x, y ∈ L : x v y ⇒ T (x) v T (y)

3.3 Forming DFA equations

Once a transfer function and a join operator is defined for the domain, one can now
form DFA equations to be solved. Forming DFA equations needs also to take into
consideration the direction of the analysis. In many cases, we want to collect and
propagate the information along the paths according to the execution flow. However,
we might also be interested in gathering information from the future. For instance,
determining whether some variable is live at some program point p depends on
whether the variable may be used in any path starting with p before a definition. We
call a DFA forward if the information flows in the same direction as the control flow,
otherwise, it is called backward. A forward DFA analysis starts at the CFG entry
point. The forward flow direction is modeled through data-flow equations formed
immediately before and after each instruction.

OUT(i) = T (IN(i)) (3.1)

IN(i) =
⊔

p∈Preds(i)

OUT(p) (3.2)

The output information OUT(i) is computed by applying the transfer function to the
input information IN(i). The input information is itself conservatively approximated
using the join operator t over all the predecessors p ∈ Preds(i) of instruction i, as
illustrated in Figure 3.7a. Conversely, a backward DFA analysis starts at the program
exit point and information is propagated in the opposite direction of the flow, i.e.,
from OUT(i) to IN(i). Moreover, the join operates on successors of instruction i
rather than predecessors, as shown in Figure 3.7b.

56

instr i

d1d2

T (d1 t d2)T (d1 t d2)

(a) Information merge in forward DFA.

instr i

T (d1 t d2)T (d1 t d2)

d1d2

(b) Information merge in backward DFA.

Figure 3.7 – Direction of the information flow in forward and backward analyses.
Dashed arrows represent the flow of information, while the regular arrows represent
the flow of execution.

IN(i) = T (OUT(i)) (3.3)

OUT(i) =
⊔

s∈Succs(i)

IN(s) (3.4)

Example 3.2 Considering again the example of liveness analysis, we can determine
that the flow of information is backward. A variable v is considered live at a program
point p if there is a use before a definition of v along some path starting at p. A use
implies a read operation (e.g., load) on the variable, whereas a definition is assimilated
to an assignment (e.g., store). We define the Use(i) and Def(i) functions to capture
the set of variables V that have been respectively read and assigned by the instruction
i. Note also that some instructions may perform at the same time a read and an
assignment.

Use(i) =

{
V , if i = read
∅ , otherwise Def(i) =

{
V , if i = assignment
∅ , otherwise

Given the use and def information, we can compute the set of live variables at
program points. Recall that the domain is defined as a lattice representing all possible
combinations of sets of variables existing in the program (see Figure 3.5b). The
transfer function captures the effect of an instruction i on the liveness information
such that: (1) If a variable v is used in i then v is live at IN(i), and (2) if v is live
at OUT(i) and is not included in Def(i) then v is also live at IN(i).

IN(i) = Use(i)
⋃

(OUT(i) \ Def(i)) (3.5)

OUT(i) =
⋃

s∈Succs(i)

IN(s) (3.6)

(3.7)

57

Algorithm 1 Example of a work-list algorithm to solve a forward data-flow problem.
1: procedure AnalyzeCFG(G)
2: Let N be the set of nodes in G
3: Let n0 be the entry node in N

4: Let d0 be some data-flow value in D
5: WL := ∅
6:
7: for each node n in N do . Initialize data-flow variables
8: if n = n0 then
9: IN(n) = d0

10: OUT(n) = >
11: WL := WL ∪ n . insert instruction into the work-list
12:
13: while WL 6= ∅ do . process the work-list
14: Get n from WL . get some instruction from the work-list
15: WL := WL \ n . remove the instruction from the work-list
16: if n 6= n0 then . check if OUT information has changed
17: IN(n) =up∈Preds(n)OUT(p) . perform a join operation

18: d = Fi(IN(n)) . apply transfer function on IN information
19: if d 6= OUT(n) then . check if OUT information has changed
20: OUT(n) = d . if so, update OUT information
21: WL := WL ∪ Succs(n) . and insert i successors into the work-list

Moreover, the analysis provides the set of variables that may be live at any path
starting from i. Therefore, the liveness information at OUT(i) is determined as the
union of the information at IN(s) for each successor s ∈ Succs(i). The join operator
t is thus defined as a union ∪ involving domain values at join points.

3.4 Solving DFA equations

Once DFA equations are formed at program points, the next step consists of actually
solving them. By ensuring that the domain is a complete lattice, and that the
transfer functions are monotonic, the existence of a fixed point solution is guaranteed
for the analysis problem. The result expressed by the fixed point represents the fact
that holds for the particular program point, regardless of the chosen execution path.

Definition 16 (Fixed Point) A fixed point of a function T : L → L is value v ∈ L
such that:

T (v) = v

Data-flow analyses can easily be implemented using a work-list algorithm that
iteratively computes data-flow values until a fixed-point is reached. We present in
Algorithm 1, an example of such an implementation strategy for a forward data-flow
analysis.
The algorithm operates on the function’s CFG denoted as G, where N is the set of
nodes in the CFG. Usually, nodes in the CFG represent basic blocks. For simplicity,
we assume that each node represents a single instruction in the function. This has

58

1st 2nd 3rd

Point Use Def OUT IN OUT IN OUT IN

6 {c} {} {} {c} {} {c} {} {c}

5 {a} {} {c} {a,c} {a,c} {a,c} {a,c} {a,c}

4 {b} {a} {a,c} {b,c} {a,c} {b,c} {a,c} {b,c}

3 {b,c} {c} {b,c} {b,c} {b,c} {b,c} {b,c} {b,c}

2 {a} {b} {b,c} {a,c} {b,c} {a,c} {b,c} {a,c}

1 {} {a} {a,c} {c} {a,c} {c} {a,c} {c}

(a) Liveness information at program points.

r

a := 01

b := a + 12

c := c + b3

a := b * 24

a < 95

return c6

t

(b) Program CFG.

Figure 3.8 – Example of liveness analysis. Taken from [3].

no implication on the correctness of the results, but it may require more space and
computation time due to the increased number of edges and nodes. In case the
nodes represent basic blocks, transfer functions can also be defined by composing
the sequence of their instructions.
The algorithm consists of two main phases. First, data-flow variables are initialized
for every instruction of the function (l. 7). Depending on the analysis problem, a
particular value d0 ∈ D is assigned to initialize the input information IN(n0) at the
entry node n0. This could be, for instance, > if no information is known at the
function’s entry point. Output information is also assigned a data-flow value that we
denote as >. Every node n for which the OUT(n) information has been initialized is
then put into the work-list WL for processing.
The second phase consists of actually computing the fixed-point solution. The
analysis processes nodes present in the WL, and terminates when the work-list WL
becomes empty (l. 13). The processing order may be different depending on whether
the analysis is forward or backward. In a forward analysis, it is more convenient to
process the nodes of the work-list in a post order as a particular node is visited only
when all its predecessors have been visited. In our case, the entry node n0 will be
picked-up first. Every node that is visited needs to be removed from the work-list.
As the input information for n0 has been initialized (l. 9), there is no need to compute
a data-flow value for it. However, the IN(n) information of other nodes needs to be
computed before applying the transfer function. For this, a join operation needs to
be applied in order to safely merge information potentially reaching a join point. A
temporary data-flow value d is computed by the transfer function, and then compared
to the current OUT(n) information for node n. If the information has changed then
the value d is assigned to OUT(n), and its successors are added to the work-list.
Otherwise, the next node is picked-up from the work-list.

Example 3.3 Consider the CFG shown in Figure 3.8a. In this example, we compute
liveness information at program points as shown in Table 3.8b. For simplicity, we
will refer to statements with their corresponding node number (showen in the left of

59

each node). Since the analysis is backward, it is convenient to iterate the CFG from
bottom-up so that the fixed-point is reached faster. Moreover, the analysis is initialized
by assigning OUT(i) and IN(i) of each program point to ∅. The statement in node 6
performs a read operation on the variable {c}. Therefore, the Use(6) function returns
the variable {c} whereas Def(6) returns ∅ as no assignment is performed. As a result,
by applying the equations from Example 3.2 we get OUT(6) = ∅ and IN(6) = {c}.
Similarly, the statement in node 5 performs only a read, this yields Use(5) = {a}
and Def(5) = ∅. The OUT(i) information is computed using the union of the IN(s)
information of each successor s. The node 5 has two successors (i.e., nodes 6 and
2). Given IN(5) = c and IN(2) = ∅ (as not visited yet) we obtain OUT(5) = {c}.
Consequently, the information IN(5) holds the value {a, c}. As node 4 has only one
successor, OUT(4) = IN(5) = {a, c}. However, the corresponding statement performs
both a read on b and an assignment on a. This gives Def(4) = {b} and Use(4) = {a}.
Using these values we obtain IN(4) = {b, c}. Note that the variable a is not live
anymore in IN(4) as it is assigned and not used in the node 4. By following the same
reasoning, we determine that OUT(3) = {b, c} and IN(3) = {b, c}. For node 2, we
determine that IN(2) = {a, c}, which is different than the previous value (i.e., ∅)
used to compute the OUT(5) information. This causes a new iteration of the analysis
which now has to recompute the value IN(5) using the newly obtained OUT(2) value.
The value at IN(5) still evaluates to {a, c}. A third iteration establishes that the
results are stable and that a fixed-point has been reached.

3.5 Intra-procedural and Inter-procedural DFA

A DFA can be either intra-procedural or inter-procedural. In intra-procedural
analysis, only the CFG of individual procedures or functions is considered. Call
relations are ignored and, therefore, no information is propagated along call and
return edges. Depending on the analysis problem, the data-flow values obtained at
program points might not always be precise, sometimes even wrong. To capture the
effects of function calls, the intra-procedural analysis has either to be combined with
an inter-procedural analysis or use approximations that correspond to the side effects
of calls.
Inter-procedural data-flow analysis (IDFA) additionally considers the call relations
between functions. The analysis can run either by considering an ICFG as previously
defined in 2 or by combining the call graph information with functions’ CFGs. In
this case, additional data-flow equations are constructed modeling function calls and
returns [14]. Often these analyses are context-sensitive, i.e., the analyses distinguish
between (bounded) chains of functions calls. Such a chain of nested function calls
is then called a call string (or context string), which defines a calling context that
can be distinguished from other parts of the program calling the same function. Call
strings typically have a length limit. The longer the call strings, the higher the ability
to distinguish different contexts. Consequently, the analysis results are more precise.
Increasing the call string length may also increase the computational complexity
and the required memory footprint, since additional data-flow equations are created
for each context. A call string length of zero corresponds to a context-insensitive
data-flow analysis.

60

s1

s2

a b
c ?

c1

a b
c ?

c2

d a

c ?

c3

d a

e c

c4

? ?

? ?

c5

hit miss unclear unclear

a d e ?

Figure 3.9 – The evolution of the (actual) cache state depending on memory accesses.
Assuming 2-way set-associative cache with LRU replacement policy. The memory
blocks ’a’, ’b’ and ’d’ map to the cache set s1, whereas ’c’ and ’e’ map to s2.

4 Standard Cache Analyses
One of the most fundamental operations CPUs do is to transfer data from/to the
main memory. However, the gap in terms of speed between the CPU and the memory
circuits dramatically impacts the execution time of programs. Caches are relatively
small and fast memories that attempt to hide long memory latencies. Unfortunately,
the small size and the organization of the cache does not allow to completely eliminate
data transfers to/from the slow main memory. As a result, variations in the execution
time may be introduced due to cache behavior, which need to be accounted for during
WCET analysis. In this section, we review some analysis techniques for traditional
caches. A brief presentation of caches and their organization has been provided in
Chapter 2.Section 2.4.

4.1 Goal and Challenges

In architectures that are free from timing anomalies, it is perfectly safe to ignore
the cache and assume every memory access in the program as a cache miss. While
this would greatly simplify the WCET analysis, it would also ignore any benefits
of caching, causing overly pessimistic WCET estimates. We want to profit from
the performance improvement provided by the cache, while having guarantees with
respect to the worst-case timing behavior of the program. To achieve this, we
need to build a cache analysis that predicts the cache behavior when executing a
particular program. The analysis has to determine cases of cache misses/hits that
may potentially occur during the execution of each basic block. The information
of cache misses/hits can then be used to annotate a program’s CFG so that the
corresponding costs in CPU cycles can be accounted for during the path analysis
phase presented in Section 1.
The outcome of each memory access depends on the cache state, i.e., information
on the cache content prior to the access. Therefore, the cache analysis tracks the
cache states through execution paths and captures the effects of potentially accessed
data elements on the cache state itself. This information is used by the analysis to
determine how often hits and misses occur during the execution of the program.

Example 4.1 Figure 3.9 illustrates an example of a cache state and its evolution
assuming a 2-way set-associative cache with LRU replacement policy. This repre-
sentation of the cache state is concrete as it shows the actual content of the cache.
The initial cache state c1 holds the cache blocks ’a’ and ’b’ in the cache set s1, in
addition to ’c’ and an undetermined cache block denoted as ’?’ both in the cache

61

set s2. The memory access to ’a’ is a hit since the information on the cache state
c1 shows the presence of the memory block in the cache. On the other hand, the
access to ’d’ is determined as a miss since the memory block is not in the cache as
shown by the cache state c2. That being said, precisely predicting the behavior of the
cache can be challenging in many cases. In order to determine whether a particular
access is a hit or miss, the information regarding both the access address and the
cache state need to be precise. The access to the memory block ’e’ can either be a hit
or miss because the cache state c3 is not precise regarding the content of the cache
set s2. The cache block ’?’ may hold either ’e’ or any other memory block mapped
to the same cache set. However, the cache state c4 can still be determined precisely.
When the accessed memory block is not known, a set of possible cache states have to
be considered as a result. For instance, if the accessed memory block is mapped to
s1 this causes that memory block to be put in the first position and ’a’ to be evicted.
However, if the accessed address is mapped to s2 then ’c’ is to be evicted. Therefore,
not knowing the address can lead to pessimistic results.

Cache hit/miss classification: We cover in Section 4.2 a DFA-based analysis for
LRU cache that attempts to classify memory accesses into two categories: Always
Miss or Always Hit. Cache states are tracked using an abstract cache state (ACS)
representation as a domain. The ACS allows to summarize and efficiently track
the cache states resulting from possible execution paths. The transfer functions are
sensitive to load and store instructions.

Possible issues: A precise cache analysis has to address further issues that may
cause the determination of hits and misses unclear. These issues are often related to:

• Control-flow joins: Combining two cache states with different contents at join
points can lead to less precision. A simple example is when a memory block
is cached in one cache state but not in the other. The resulting cache state is
not known whether it holds the memory block anymore. This means that if the
memory block is accessed again later it won’t be clear if it will be a hit or a miss.
Unfeasible path elimination can reduce the number of paths that can never be
taken which may enhance the precision of the cache states.

• Access addresses: When the access address is not known, it is not only hard to
determine its outcome (hit/miss), it may also not be possible to precisely compute
its implication of the cache state (see the transition from c4 to c5 in Example 4.1).
Practically, instruction cache analyses are less concerned with this issue since
addresses are statically known. Data cache analyses, on the other hand, are
particularly sensitive to this [123] as load and store instructions may access to
multiple locations of the memory. We do not cover the techniques to enhance the
precision of address information in this section.

• Execution context: Instructions involving memory accesses may, in some situations,
exhibit a different timing behavior depending on the calling context. This is
typically the case for loops and functions called from different locations of the
program. Ignoring the execution context can provide very pessimistic information
to the analysis. While function calls can be traditionally dealt with using context
sensitivity on the ICFG, loop structures are very common and need approaches
with a good complexity/precision trade-off. We mention some techniques that
help with such situations in Section 4.3.

62

Age 0 1 2 A− 1 = 3
Content {a} {b, d} {} {f}

Figure 3.10 – Example of an ACS content assuming a cache of associativity 4.

• Task preemptions: In preemptive task models, a preempting task may alter the
cache state left by the preempted task. The cache analysis has to determine how
preemptions impact the cache behavior when the preempted task is resumed. This
aspect is further discussed in Section 4.4.

Most of the work on cache analysis addresses those issues assuming the LRU replace-
ment policy. We review in the following some seminal results.

4.2 Cache Analysis Based On Access Classification

Ferdinand et al. proposed a DFA-based cache analysis [44, 45] which attempts to
classify each memory access into one of the two categories: always hit (AH) to
indicate that an access is a guaranteed hit, or always miss (AM) for a guaranteed
miss. Intuitively, classifying accesses as such may be done through the investigation
of the actual cache content, also known as the concrete cache state, on every possible
path leading to a program point. However, since the number of paths may grow
exponentially depending on the program’s CFG, this may cause the analysis to not
scale well. Instead, the classifying analysis defines an abstract cache state (ACS)
that represents a set of CCSs resulting from possible executions.

Abstract Domain: The ACS associates each potentially accessed memory
block with an age that corresponds to its position in the cache. Let MBl

be the set of memory blocks that are mapped to some cache set l. The age
some memory block b ∈ MBl can take is a natural number within the range
[0, . . . , A − 1], where A is the associativity of the cache. The memory block
b is assigned the youngest age 0 when b is accessed, whereas the age A − 1
represents the last position in the cache set l before possible eviction. When b
is evicted, it is simply removed from the ACS. The ACS of the cache set l can
be expressed as follows:

ACS =MBl × [0, . . . , A− 1] (3.8)

A representation of the ACS is illustrated in Figure 3.10. Memory blocks in
MBl that are visible in the ACS are cached, others are not cached. For a
complete representation, the ACS combines the abstract state related to its
individual cache sets. This constitutes the domain for the data-flow analyses.
The value > represents the set of all possible CCS. The value ⊥, on the other
hand, represents the empty set of CSS indicating that the program point has
not yet been visited by the analysis.

The idea then will consist of tracking, at each program point, the minimum and
maximum age for all potentially accessed memory blocks. The minimum age results
from an optimistic execution scenario, that is, no other path leading to the program
point can result in a younger age. Given this information, it is possible to detect
memory accesses where a cache miss will always occur. It suffices to check the

63

minimum age at the program point prior to a memory access. If the minimum age is
larger than A− 1, then all executions of the memory access are guaranteed misses
and can be classified as AM. Conversely, the maximum age represents a pessimistic
scenario where a greater age cannot be obtained for any concrete execution. Therefore,
if the maximum age is smaller or equal to A− 1 the access is a hit, and shall thus be
classified as AH. The memory access is classified as NC, for not classified, if it can
neither be classified as AH or AM (i.e., maximum age is > A− 1 and the minimum
age is < A− 1).
The above classification gives rise to two data-flow analysis problems commonly
known as the may analysis and the must analysis. They are both forward and
typically operate on the program’s ICFG with context sensitivity.

Must Analysis: The must analysis computes the maximum ages and detects
AH accesses. The join operator performs an intersection between the ACSs
reaching the join point and simply selects the maximum ages of memory blocks.
Assuming c1 and c2 ∈ ACS the join operator tMUST is given as follows:

c1 tMUST c2 = {(u, a)|∃(u, a1) ∈ c1, (u, a2) ∈ c2 : a = max(a1, a2)}

The transfer function is only sensitive to memory accessing instructions. More-
over, accesses to non-conflicting memory blocks do not alter the state c ∈ ACS
related to the cache set l. When a memory block u is being accessed, the
age of each conflicting block needs to be computed using the update function
updateMUST . A simplified version of the transfer function Tmust is given as
follows:

Tmust(c, i) =

{
c , if MBl(i) = ∅⊔
u∈MBl(i)

updateMUST (c, u) , otherwise

The update is performed using the ageMUST function which computes the ages
of u and the conflicting memory blocks ∀v ∈MBl based on their relative ages
prior to the access (contained in c ∈ ACS). There can only be three different
cases: (1) the accessed memory block u is v itself in which case v gets the
youngest age 0, (2) u is younger than v which has no implication on the age of
v, and (3) u is older than v which requires the age of v to be incremented as a
result of moving u to the first position. Moreover, the memory blocks with an
age > s are evicted from c.

updateMUST (c, u) = {(v, a)|v ∈MBl : a = ageMUST (c, u, v)}

ageMUST (c, u, v) =

0 , if u = v
age(c, v) , if age(c, v) ≥ age(c, u)
age(c, v) + 1 , if age(c, v) < age(c, u)

The analysis is initialized by assigning > to the program entry point (if the
initial cache state is not known), and ⊥ to all others.

64

May
Point IN OUT

1 {} {(a, 0)}
2 {(a, 0)} {(b, 0), (a, 1)}
3 {(b, 0), (a, 1)} {(c, 0), (b, 1), (a, 2)}
4 {(b, 0), (a, 1)} {(b, 0), (a, 1)}
5 {(b, 0), (c, 0), (a, 1)} {(a, 0), (b, 1), (c, 1)}

(a) May analysis results at program points.

Must
Point IN OUT

1 {} {(a, 0)}
2 {(a, 0)} {(b, 0), (a, 1)}
3 {(b, 0), (a, 1)} {(c, 0), (b, 1), (a, 2)}
4 {(b, 0), (a, 1)} {(b, 0), (a, 1)}
5 {(b, 1), (a, 2)} {(a, 0), (b, 2)}

(b) Must analysis results at program points.

r

lwc a1

lwc b2

lwc c3subi4

lwc a5

t

(c) Program CFG with
memory accesses.

Figure 3.11 – Example of May and Must analyses.

May Analysis: The may analysis defines a similar transfer function and join
operator to compute the minimum ages of memory blocks. The join operator
selects the minimum ages of memory blocks at join points.

c1 tMAY c2 = {(u, a)|∃(u, a1) ∈ c1, (u, a2) ∈ c2 : a = min(a1, a2)}

Additionally, the may update function updateMAY relies on the ageMAY function,
defined here below, to compute the ages of conflicting memory blocks (i.e.,
those mapped to the same cache set) due to a memory access. Also, memory
block with ages > A− 1 are evicted from the cache state.

ageMAY (c, u, v) =

0 , if u = v
age(c, v) , if age(c, v) > age(c, u)
age(c, v) + 1 , if age(c, v) ≤ age(c, u)

Example 4.2 Consider the CFG in Figure 3.11c. In this example, we perform May
and Must cache analyses as shown in Table 3.11a and Table 3.11b respectively. Both
analyses start with an empty abstract cache state. In the node 1, the memory block
’a’ is referenced. By applying the Tmay transfer function to the IN(1) information, we
obtain OUT(1) = {(a, 0)} which associates the age 0 to the memory block ’a’. The
information OUT(1) is passed to IN(2) on which we apply the Tmay transfer function.
The memory block ’b’ is referenced in node 2, this yields the value OUT(2) =
{(b, 0), (a, 1)} as ’b’ was not present in the cache state. Accessing ’b’ increases the
age of ’a’ by 1. The value OUT(2) is then propagated to its two successors (i.e., nodes

65

3 and 4). By applying the same reasoning, we obtain the information OUT(3) =
{(c, 0), (b, 1), (a, 2)} as ’c’ is referenced in node 3. The OUT(4) information remains
the same as no memory access is performed at node 4. At control-flow joins, the
analysis performs the tMAY operator which selects the minimum ages of both cache
states. This yields the information IN(5) = {(a, 0), (b, 1), (c, 1)}. The memory block
’a’ is again referenced at node 5. However, this does not change the cache state as the
age of ’a’ was 0 at IN(5). The must analysis results in similar information except
for the IN(5) information where the join occurs and OUT(5). This is because the
tMUST selects the maximum ages of the referenced caches blocks in the cache state.
This, therefore, yields IN(5) = {(b, 1), (a, 2)}. The value OUT(5) = {(a, 0), (b, 1)} is
obtained by updating the age of ’a’ to 0 as it is referenced in node 5.

Note that the must analysis is crucial for WCET analysis as it allows to detect
accesses with AH classification. In the absence of timing anomalies, the may analysis
is not mandatory for the WCET analysis process. However, it is used to obtain precise
BCET bounds, and perform related optimizations. Memory access classifications
can be easily translated into timing costs. The AH classification usually requires
no costs, whereas accesses classified as AM has to account for CPU cycles spent
on the interaction with the main memory. Since the WCET analysis has to be
conservative, an NC classification counts as an AM (always assuming the absence of
timing anomalies). In that regard, the cost of uncertainties is considered as high as
a miss.

4.3 Improving Precision in Loops

Many memory accesses can still be classified as NC. Often, the may and must analyses
do not provide conclusive results in situations where executions of the same memory
access may exhibit different timing behaviors. A typical case of this includes loop
structures. Intuitively, the first iteration in a loop allows to load accessed memory
blocks into the cache, while the next ones profit from the hits. The problem with
the loop structure is the must join operator tMUST that conservatively merges ACS
information of edges reaching the loop header, i.e., join point between the loop’s
back edge and the edge reaching the loop from outside. When the merge occurs,
the intersection removes any cache block that were not accessed before the loop.
This makes any potential access to memory blocks from within the loop forgotten.
Another possible side effect is the eviction of the cache block prior to the loop. There
exist essentially two approaches to handle this situation:

Virtual Inlining and Virtual Unrolling (VIVU): This technique [81] simply
consists of peeling the first iterations off the loop and applying analyses just as
before. Assuming the ACS is empty when entering the loop, the first access to the
memory blocks during the first iterations will result in AM classification. However,
the resulting ACS reaching the loop header contains updated age information that
accounts for the performed accesses with, potentially, a reduced maximum age.
When propagated to the loop with the remaining iterations, the updated cache state
might help classifying those accesses as AH. The unrolling could be applied as many
times to classify as much accesses as possible. In this case, each unrolled iteration
represents a context.

66

Persistence Analysis: The idea of this approach is to bound the number of cache
misses to occur within some scope, i.e., a region of the program such as a loop or a
function. A block is said to be persistent within that scope if it remains in the cache
once loaded. Therefore, as long as the execution stays in the scope, at most one
cache miss needs to be considered for each referenced memory block. There exist two
main variants of persistence analysis. The first one is based on DFA and was first
introduced by Ferdinand et al. [45], and later corrected by Huynh et al. [61]. This
variant is very similar to the classifying analysis except with a slight modification of
the ACS; The range of considered ages is extended to [0, . . . , A] such that evicted
memory blocks take the maximum age A. This is vital in order to distinguish misses
due to eviction from those due to the first access. Using the transfer function and
the join operator of the access classification analysis, the determination of persistent
memory blocks is simple. At the end of a scope, the memory blocks with the age A
are considered non-persistent. For loops, the persistent ACS will prevent the join
operator from forgetting any potential access to memory blocks from within. Another
approach, commonly called scope-based analysis, has been proposed by Huynh et
al. [61]. Instead of tracking ages, the analysis collects, for each referenced memory
block, the conflicting referenced blocks in the loop. The memory block is considered
persistent if the number of conflicting memory blocks fits into the cache set.
Note that the two approaches are not comparable. This means that there exist some
situations where the VIVU approach will be able to classify memory accesses that
the persistence analysis variants will not be able to, and vise-versa. Intuitively, the
advantage of persistence analysis is that it may yield a better precision/complexity
trade-off compared to VIVU. In complex loop structures involving nested loops,
applying VIVU is likely to create many execution contexts leading to an accelerating
increase of complexity.

4.4 Preemption Costs

So far, the analyses we mentioned assume a straight execution of programs. In
preemptive scheduling, a running task can be preempted by a higher priority task.
While preemptions allow, in general, a better system schedulability, they may induce
some time penalties that need to be accounted for. The majority of those penalties
are caused by additional cache misses experienced by the preempted task, due to
memory accesses in the preempting task. The additional execution time related
to those cache misses is commonly known as the cache-related preemption delay
(CRPD).
The computation of the CRPD in conventional caches is based on the notion of
Useful Cache Blocks (UCBs). Some memory block b is called a UCB at program
point p if, (1) b may be cached at p, and (2) b may be reused in another program
point q that may be reached from p without being evicted. Liu et al. [70] use UCBs
to tighten the WCET estimation. First, the number of UCBs at all execution points
are calculated using data-flow analysis. Then for all tasks, a preemption cost table is
constructed that defines the preemption cost at each point, which depends on the
number of UCBs and on the worst-case visit count of each point. Based on this table
and using integer linear programming, the worst-case preemption delay of a task is
calculated. the notion of definitely-cached UCB (DC-UCB) was later introduced in
[16] to detect cache misses that are included in the CRPD bound as well as in the

67

WCET bound. It was shown that this approach gives safe CRPDs, when combined
with an upper bound of the WCET. The results show significant improvements over
the original approach based on UCBs [70].
Also part of the preemption cost is the time spent on context switch operations, i.e.,
saving/restoring internal CPU registers. Prior work investigated the use of hardware
support to optimize context switching. Tune et al. [122] and Mische et al. [85]
introduce hardware support to optimize the context switching in real-time systems,
but at the register file level. For instance, Tune et al. [122] use dedicated hardware
for scheduling threads in an SMT-based processor. The hardware scheduler is also
able to save/restore the registers of a thread to a special on-chip memory, the Thread
Control Block (TCB). The TCB requires two separate ports, in order to eliminate
any interference from parallel accesses to the TCB from the running program and
the hardware scheduler. Other work, such as [114], optimize the average cost of
context switching, but due to lacking predictability these methods are unsuited for
real-time systems.

5 Stack Cache Analyses
Now we review existing approaches to analyze the timing behavior of the stack cache.
The stack cache is dedicated to stack data, and is implemented as a simple ring
buffer (a detailed description of its behavior and structure is provided in Chapter 2).
From a timing analysis standpoint, the stack cache is intended to reduce execution
time variations induced by the conventional data cache, while still being simpler to
analyze. A considerable advantage for the stack cache is that it does not rely on
addresses. Additionally, all its accesses are guaranteed hits and data transfers are
performed only at specific program locations controlled by the compiler. Only two
stack control instructions that may initiate memory transfers depending on the cache
occupancy (i.e., Occ = MT− ST):

sres k: Issues a spilling of cache blocks if the resulting occupancy due to the
reserve exceeds the stack cache size (i.e., Occ+ k > |SC|).

sens k: Fills the stack cache with cache blocks if the occupancy at the ensure
instruction is strictly less that the function frame size (i.e., Occ < k).

The worst-case (timing) behavior of these instructions only depends on the worst-
case spilling and filling of sres and sens respectively, which can be bounded by
computing the maximum and minimum cache occupancy [63].

Example 5.1 Figure 3.12 shows the worst-case spilling or filling to occur given
a sequence of stack cache control instructions. We assume that the minimum and
maximum occupancy at cache state c1 is equal to 1 and 3 respectively. The sres 2
reserves 2 cache blocks, which may cause a spilling if Occ+k > |SC|. The (concrete)
occupancy level is comprised in the range defined by the occupancy bounds at c1.
Therefore, by considering the maximum occupancy we predict that the worst-case
case spilling to occur is equal to 1 cache block. The sfree 2 reduces by 2 both the
minimum and maximum occupancy but does not induce any memory transfers. The
resulting minimum and maximum occupancy at c3 is respectively 1 and 2. The sens
1 ensures that the occupancy level is at least equal to 1. No transfers are issued

68

〈1, 3〉
c1

0

〈3, 4〉
c2

� 1

〈1, 2〉
c3

0

〈1, 2〉
c4

0

〈0, 1〉
c5

0

〈3, 3〉
c6

� 2

sres 2 sfree 2 sens 1 sfree 1 sens 3

Figure 3.12 – Worst-case spilling/filling depending on max/min occupancy. The
number N above the cache state indicates the number of cache blocks filled �,
or spilled �. The pair 〈m,n〉 below the cache state indicates the current min.
occupancy m and the max. occupancy n. () blocks represent max. occupancy and
() blocks represent min. occupancy.

since the minimum occupancy is equal to 1. The sfree 1 yields a minimum and
maximum occupancy at c5 of 0 and 1 respectively. The sens 3 issues a filling of 3
cache blocks as the minimum occupancy was equal to 0.

The stack cache is also concerned with some of the issues described in Section 4.1 (i.e.,
control-flow joins, execution context, and task preemption). However, in comparison
to analyses on conventional caches, the information to track for the stack cache
analysis is much simpler. In conventional caches, the analysis needs to track the
minimum and maximum ages for all memory blocks referenced in the program. The
stack cache analysis merely tracks minimum and maximum occupancy bounds.
Two stack cache timing analyses have been proposed so far, both rely on different
approaches to track the occupancy bounds.

Inter-procedural DFA-based Analysis (IDFA): Tracks occupancy bounds ex-
clusively based on an inter-procedural DFA performed on the program’s ICFG [118].

Standard Stack Cache Analysis (SCA): Breaks down the problem into smaller
steps and combines information from both intra-procedural DFA-based analyses
and analyses on the call graph [63].

This section briefly presents these two approaches, more details with examples are
provided in Chapter 5.

5.1 Inter-procedural DFA-based Analysis

The domain of the IDFA-based approach are positive integer values inD = {0, . . . , |SC|},
where |SC| represents the stack cache’s size. Since both, the minimum and the
maximum occupancy are needed, two analysis problems have to be defined. We
mention here only the maximum occupancy analysis (for full description refer to
Chapter 5). The analysis starts at the program entry, where the occupancy is
assumed to be 0. It then propagates occupancy values along all execution paths of
the program, while considering the effect of the instructions along the path. Only
the stack control instructions (see Section 2.4 of Chapter 2) can have an impact: (1)
sres instructions increase occupancy by their argument k, (2) sens instructions
make sure that the occupancy is larger than k, and (3) sfree instructions reduce

69

the occupancy by k. The resulting data-flow equations for an instruction i are given
below:

OUTOcc(i) =

min(INOcc(i) + k, |SC|) if i = sres k
max(INOcc(i), k) if i = sens k
max(0, INOcc(i)− k) if i = sfree k
INOcc(i) otherwise

The occupancy right before an instruction (due to control-flow joins) is derived by
taking the maximum occupancy from any of its predecessors (Preds), except for the
program’s entry. In the case of inter-procedurual analysis, predecessors can also be
calls or returns from other functions:

INOcc(i) =

{
0 if i = entry

maxs∈Preds(i)(OUTOcc(s)) otherwise

The analysis is initialized by assigning the value 0 to the program entry point (i.e.,
INOcc(entry)) and also to all the OUTOcc(i) values in the ICFG. Context sensitivity
can easily be ensured by adding context information to the data-flow equations of
the respective instructions.
This model is also implemented in Absint’s aiT timing analyzer tool [118], however,
we find the minimum occupancy analysis to be incorrect (see Chapter 5).

5.2 Standard Stack Cache Analysis

The stack cache analysis (SCA) [63] relies on similar DFA analyses. However, instead
of a single, large inter-procedural DFA, several smaller function-local analyses are
used. The impact of other functions at function calls in these DFAs are modeled
through minimum and maximum displacement values, which represent the mini-
mum/maximum amount of data potentially evicted from the the stack cache during
a function call. Displacement values are computed by performing shortest/longest
path search on a program’s call graph whose weights represent the reserved stack
space k. Complex context-sensitive analysis can thus be avoided.
The analysis is based on the observation that the occupancy at any instruction within
a function can be computed from the occupancy at the function’s entry and the
displacement of all the potential function calls on any path leading to the particular
instruction. The minimum occupancy thus can be computed by considering the
initial minimum occupancy and the maximum displacement. Likewise, the minimum
displacement allows to derive the maximum occupancy.
The program is thus analyzed in several steps. First, the minimum and maximum
displacement of each function is computed using longest/shortest path searches on a
weighted call graph. Next, local DFAs are performed to compute local lower and
local upper bounds on the minimum and maximum occupancy within each function
assuming a stack cache that is full at function entry. Finally, the concrete occupancy
bounds are computed for each function considering the occupancy bounds at its
respective callers and the previously computed local occupancy bounds. The final
phase can deliver fully context-sensitive information, if so desired.
This analysis was implemented and validated against run-time measurements in [12].

70

r

BB00

BB01

BB02

BB03

BB04

t

F()

BB10

BB11

G()

BB20

BB21

BB22

BB23

l1

H()

cs1
cs3

cs2

(a) ICFG of a program consisting of functions F(), G()
and H().

r

F

cs2 cs1

cs3 GH

l1

(b) Scope graph of the pro-
gram.

Figure 3.13 – Example of a program and its corresponding scope graph.

6 Method Cache Analysis
Huber et al. presented a scope-based method cache analysis [59], which is based
on persistence analysis from standard caches [61]. The goal of the analysis is to
determine, for each code block b, a set of conflict-free scopes (program portions) S(b)
such that: (1) every access to b is performed in at least one scope S ∈ S(b) and
(2) all accesses to b within a scope S exhibit at most one cache miss. The number
of cache misses of a memory block b can be bounded by the sum of the execution
frequencies of all the scopes in S(b). The process of finding the conflict-free scopes
leaves out some essential details (e.g., formal definitions, how recursions are handled,
examples). We try, nevertheless, to summarize our understanding of the approach
and the steps involved.
The analysis starts by building a scope graph. The scope graph G is an acyclic and
hierarchical flow-graph of the program, whose nodes can be either a function, a call
site, or a loop. Intuitively, each node represents a set of instruction sequences, each
of which, represents one possible execution of the program fragment covered by the
corresponding scope. Moreover, the set of instruction sequences represented by a
child node is included in one of instruction sequences represented by its parent. In
that regard, the root node represents all the possible executions of the program.
A leaf node represents the set of the instruction sequences resulting from possible
executions of the corresponding program portion (i.e., function or loop).
Then, for each scope node N of G, an access graph is constructed and associated
with memory accesses that occur within the scope. The access graph is used to
model memory accesses that are performed within the scope node N . Additionally,
this representation later is used to detect potential conflicts inside a scope.

Example 6.1 Consider the ICFG of a program shown in Figure 3.13a. Figure 3.13b

71

shows the resulting scope graph of the program. The nodes represent (1) the three
functions of the program (i.e., F(), G() and H()), (2) call sites (cs1, cs2, and cs3)
as well as (3) a loop located in the function H() (i.e., l1). The function F() is the
program entry function, therefore, it is a child of the root node r that represents all
possible executions of the program. The function F() calls G() and H() at dedicated
call sites. Consequently, the scope A has two children cs1 and cs2 each of which has
a child that corresponds to the callee (G and H respectively). Similarly, the function
G() calls H() in the call site cs3. The node H is thus a child of both cs2 and cs3
nodes. Finally, the loop l1 is located in function H(). The corresponding scope node
of l1 is then a child of node H.

The first scopes directly provided by the scope nodes might be conflicting. The
conflict detection is performed by traversing the scope graph G from the leaf-nodes
upwards. For each scope node N check whether N is conflict-free with respect to all
code blocks accessed within the scope. For the method cache, a conflict-free scope is
defined as follows:

Definition 17 (Conflict-Free Scope) A scope node N is conflict-free with respect
to all the code blocks accessed within the scope if (1) the number of code blocks fit
into the cache’s associativity and (2) the total size of code blocks does not exceed the
method cache size.

In the case a scope is conflicting, it is decomposed into a set of conflict-free single-entry
regions. Each of the regions becomes a scope satisfying the conflict-free conditions.
For any code block b in a scope S, the scope is stored in S(b). To achieve this, the
access graph is traversed in topological order while collecting visited code blocks
in a region of the access graph of function or loop representing a seed scope. If
including accessed code blocks in the seed scope is conflicting with respect to the
aforementioned conditions, then the seed scope is split and a new seed scope is
explored. The seed scopes continue to grow according to the conditions above until
all nodes of the access graph are visited. Note that function calls imply that all code
blocks of a function are added to a seed scope, i.e., the function’s scope is merged
into the seed scope.
Once the set of conflict-free scopes is determined, they can easily be integrated in
IPET to bound the maximum number of cache misses. Accounting for cache miss
costs is done similarly to the classical persistence analysis. Each conflict-free scope of
a code block b is associated with a variable representing the number of cache misses,
which is bounded by the scope execution count and the code block’s execution count.
With respect to the description above, we notice the following remarks. First, it is
not clear how the analysis handles recursive functions. In its current version, the
analysis does not allow to merge scopes of a called function into multiple seed scopes.
Therefore, each call of the same function may cause unnecessary cache misses to be
accounted for. Moreover, the evaluation performed in the paper does not allow to
draw a conclusive picture regarding the effectiveness of the approach. If the cache
analysis itself was run on programs’ CFGs, the path analysis through IPET was fed
by the execution path observed during an execution of the programs. This, in fact,
does not allow to account for the effects the analysis may have on the determination
of the WCEP.

72

7 WCET Analysis with Predication
Predication is a challenge for tight WCET analysis. A predicated instruction is
executed only if the predicate evaluates to true. This has an implication on the
hardware state of almost all the CPU internal components. WCET analysis tools
such as aiT or Otawa ignore the predicates. They are not considered in cache analysis,
pipeline analysis, nor VRA for address analysis. This may lead to overly pessimistic
results as each analysis needs to consider the worst-case of both possibilities. How
this is then handled in other applications?
Predicated computer architectures received considerable attention in the 1990s with
the development of VLIW and EPIC architectures that tried to exploit instruction-
level parallelism through static compilation techniques rather than hardware [47].
Various compiler optimizations have been developed targeting the transformation
of regular code into predicated code [93, 117] and the optimization of predicated
code [39, 113]. A common problem for these optimizations is the need to understand
the relations between predicates [62, 112], i.e., which predicates can be live at the
same time. The underlying machine code may evolve through optimizations in the
compiler, which might require these analyses to be performed multiple times. The
analyses thus need to be fast and only reason about predicate relations that can be
deduced from the structural relations between predicates. Information on the actual
conditions, e.g., the tested values, are not captured. The work might help to reduce
some of the overhead induced by useless code duplications. The techniques are, in
addition, concerned with the analysis of the predicates themselves and do not allow
to obtain other analysis results.
Hu [58] addressed this issue by refining the semantics of predicated code and redefining
several typical concepts used in compilers/static analyzers (e.g., dominance and data
dependencies). She also showed how predicate-aware data-flow analysis can be
realized using the example of reaching definitions. Similar techniques could be
applied to many other analysis techniques, including those used in typical WCET
analyzers. However, this would require a considerable engineering effort in order to
adapt all existing analyses accordingly.

8 Existing Static WCET Analysis Tools
Many commercial and research tools for WCET analysis have been proposed during
the last couple of decades. In the context of this work we only focus on static program
analysis tools, which provide safe WCET bounds. In this section, we present some
of them.

AbsInt’s aiT: is a well-established commercial tool [43], which, for instance, has
been used during the certification of the latest Airbus airplanes [115]. AbsInt’s
tool provides all ingredients of a typical WCET analysis: CFG reconstruction,
value-range analysis, low-level analysis (pipeline, caches), as well as a path analysis
through IPET. For caches, aiT implements standard cache analysis for LRU but also
for non-LRU replacement policies such as Pseudo-LRU and Pseudo-Round Robin.
Analysis of an LRU cache is based on both a classifying and a persistence analysis.
The tool also supports a CRPD analysis based on the notion of UCBs in order
to bound the number of cache misses due to preemption. For the stack cache, an

73

Figure 3.14 – Visual feedback generated by the OTAWA analysis tool.

occupancy analysis has been proposed in [118] (see Section 5). We find this analysis
to be incorrect and propose a fix in Chapter 5. Cache analysis results are then used
in combination with the pipeline analysis that assigns an execution time bound to
each basic block of the CFG depending on the context. aiT also uses the prediction
file for ILP analysis. The technique consists of building a global state graph for the
possible hardware states and solve the ILP by finding the worst-case path through
the graph. This allows to exclude paths that are architecturally-infeasible yielding
more precise WCET bounds. However, the graph to analyze can be extremely
large depending on the architecture. The Absint tool provides visual feedback to
engineers showing the WCET bound and the WCEP. For each function of the
program it is indicated whether the function is on the WCEP or not. Additionally,
the local and cumulative contribution of the function (and its basic blocks) to the
WCET bound can be visualized in the form of a graph similar to that of Figure 3.14.
The WCEP can also be exported holding the disclosed information regarding the
timing contribution.

Otawa: is a research tool [18] for WCET analysis that is developed and maintained
by the TRACES team of the University of Toulouse, France. Otawa is essentially a
generic framework consisting of a set of C++ classes allowing the implementation
of static analyses related to WCET analysis. The tool is made in the intention of
making the analyses independent from the hardware and its ISA. Besides this aspect,
Otawa employs mainly the same analysis flow and comes with similar features than
those of AbsInt’s tool. Control-flow information can be obtained either through
different flow analyses or by manually providing them in a flow facts file. Moreover,
the oRange tool [22] can be used complementarily with Otawa for high-level analysis
in order to determine flow facts and loop bounds. For the low-level analysis, Otawa
provides the classical LRU cache analysis (both for data and instructions), a pipeline
analysis, as well as a dynamic branch predictor analysis. Otawa can provide a visual
feedback regarding the contribution of functions to the WCET (see Figure 3.14).
Both tools additionally may provide cycle counts and execution frequencies of code
fragments (basic blocks) along the WCEP. Otawa supports a range of computer
architectures based, for instance, on ARM and Power PC cores. To the best of our
knowledge, no support of a time-predictable processor is yet proposed, therefore no
predictable cache analyses have been implemented yet in Otawa.

Chronos: is an open source tool [74] for WCET analysis from the National
University of Singapore. Again, the general analysis flow is very similar to that

74

of Otawa and aiT. The analyzer operates on the program binary and first tries to
extract its CFG. Then, a control-flow analysis is performed in order to collect flow
information and compute loop bounds. In case the analysis is unable to find such
information, the user can manually provide loop bounds through annotations, or
designate infeasible paths. The tool then performs the processor behavior analysis
using an abstract configurable model. Chronos implements the classical instruction
cache analysis, an out-of-order pipeline analysis, and a dynamic branch prediction
analysis. Due to the potential presence of timing anomalies, the tool provides means
to handle the complexity through a technique that avoids enumerating all possible
schedule cases [75]. Once execution time bounds are determined for each basic
block, an ILP problem is formulated using the flow information provided earlier.
A solver then is invoked in order to determine the WCEP corresponding to the
WCET.

Heptane: is a WCET tool [102] developed and maintained by the ALF research
team from the IRISA/INRIA institutes in Rennes. Heptane consists of two main
parts. First, the Extract part constructs the program CFG from the binary generated
from the compilation process. The provided CFG holds basic information such
as loop bounds that are provided by the user as well as instruction addresses.
The Analysis part is where the WCET analysis actually takes place to provide
the WCET bound. This consists of both high-level and low-level analyses. The
high-level analysis mainly consists of the IPET-based technique to formulate the
WCET calculation problem. Heptane does not implement any automatic loop
bound analysis which requires the user to provide all the bounds manually. The
loop bounds are provided in the source code using predefined macros. The low-level
analysis implements address analysis based on VRA, instruction and data cache
analyses, as well as a pipeline analysis. In particular, the cache analysis is based on
must/may analyses and persistence analysis. Moreover, multi-level cache analysis is
also supported based on the approach described in [54, 72]. The analysis results
are gradually annotated into a CFG and later used in the pipeline analysis to take
into account possible timing accidents. The pipeline analysis assumes an in-order
single-issue pipeline free of timing anomalies. A graphical representation of the
CFG can be exported highlighting the WCEP along with some statistics. Heptane
supports a limited number of targets (only ARM and MIPS-based).

SWEET: is a Swedish research tool [9] developed and maintained by the Malardalen
University. The tool mainly focuses on deriving flow-fact information such as
loop bounds and unfeasible paths. As such, Sweet implements various analysis
techniques to compute flow information. In particular, the tool implements the
abstract execution (AE) approach which is a form of symbolic execution based on
abstract interpretation. The technique first computes a range of values for variables
using abstract interpretation, then executes the program using the derived ranges.
AE can be used to compute loop bounds and unfeasible paths generally providing
more precise results than traditional approaches. Other analysis approaches include
program slicing and conventional value analysis. SWEET performs analyses on
programs represented in the ALF language which can be generated from C and
other programming languages.

Platin: is a toolkit [96] for compiler and WCET analysis integration introduced
as part of the T-CREST project. Platin plays different roles in the process of

75

deriving WCET estimates. The tool interacts with the LLVM compiler to extract
both platform dependent and independent information that is relevant for the
WCET analysis. The information is exported in the PML (Program Metainfo
Language) format and includes, for instance, program structural information (e.g.,
function, basic blocks, instructions), flow-facts, memory addresses, and the results
of some timing analyses implemented in the back-end (e.g., stack cache). Moreover,
platin ensures that the obtained platform independent information corresponds to
the machine code [60]. Platin can optionally invoke the SWEET tool to perform
automatic high-level analysis and extract more precise flow-facts information. Flow-
facts can, furthermore, be extracted from simulation traces produced by pasim
(Patmos simulator). The collected information can then be exported to either aiT
or Otawa tools to perform low-level analysis and formulate an IPET-based WCET
problem. Platin implements also a built-in WCET analysis tool supporting an
IPET-based WCET analysis as well as some timing analyses that are not supported
by other WCET analysis tools (e.g., method cache).

9 Conclusion
Throughout this chapter, we first presented the static WCET analysis work flow as
well as basic concepts for static timing analysis. Then, we covered seminal results
with a focus on timing analyses for time-predictable components/features. We notice
the following limitations and provide our answers:

• Existing WCET tools do not handle predicated execution. In order to be conserva-
tive, both high-level and low-level analyses take into account execution possibilities
and consider the worst-case. This introduces pessimism that may impact the
precision of the calculated WCET bound. We introduce in Chapter 4 an approach
that allows to recover the hidden control-flow in the CFG and show how it inte-
grates into our WCET tool for Patmos called Odyssey. This occurs early in the
WCET analysis work flow, particularly, in the CFG reconstruction phase.

• So far two analyses have been proposed, however, no prior work has compared the
precision of occupancy bounds. Moreover, the IDFA-based analysis is found to
be incorrect. We provide in Chapter 5 a correction for the IDFA-based analysis
and compare the precision of occupancy bounds provided by both analyses. We
furthermore investigate situations where one analysis outperforms the other in
terms of precision.

• Stack cache analyses assume a straight execution of the program and thus do not
support preemptive task systems. We extend in Chapter 6 the standard stack
cache analysis to account for and optimize timing penalties due to preemption.
Our analysis provides a bound of preemption costs that would be induced at
each program point. The information provided by our analysis of preemption
costs is rich. A natural question raises as to the usability of the information by
the scheduler to optimize the preemption costs. As a response, we introduce in
Chapter 7 preemption mechanisms that support different preemption approaches
while being cheap and simple to implement.

• Timing analysis in conventional caches might be challenging typically due to
the hit/miss detection that relies on addresses. Hardware optimizations for

76

conventional caches (such as prefetching) introduce further timing variations and
hardware states that might be overly complex to track. The stack cache on the
other hand does not rely on addresses and all its accesses are guaranteed hits.
We thus explore in Chapter 8 prefetching mechanisms for the stack cache and
investigate their impact on the WCET in multicore configurations.

77

CHAPTER 4

Analysis of Predicated Programs in Odyssey
– a Fully-Integrated WCET Analysis Tool

Predication is a combination of software and hardware techniques that aim to reduce
branches and their potentially high penalties. However, a downside of predicated
instructions is the precise worst-case execution time (WCET) analysis of programs
making use of them. Predicated memory accesses, for instance, may or may not
have an impact on the processor’s cache and thus need to be considered by the cache
analysis. Predication potentially has an impact on all analysis phases of a WCET
analysis tool. We thus explore a preprocessing step that explicitly unfolds the control-
flow graph, which allows us to apply standard analyses that are themselves not aware
of predication. The approach is implemented and integrated into Odyssey, our WCET
analysis tool for Patmos. Odyssey is open and fully integrated into the LLVM compiler
framework and thus has a complete view of the program. In this chapter we cover
predicated execution and how it can be handled in a WCET analysis flow. The first
section explains how predication works and why it is important for predictability.
Section 2 presents our WCET tool Odyssey and supported features/analyses. A
motivating example of our approach is presented in Section 3. Section 4 describes our
approach consisting of recovering the hidden control-flow of predicated code. Then we
present the results from experiments in Section 5 and the conclusion in Section 6.

1 Outline
Predicated instructions can be problematic during WCET analysis. Side-effects of
predicated instructions need to be analyzed, which depend on the runtime value
of the instruction’s predicate. This may have an impact on many analysis steps,
including value range analysis, loop bounds analysis, infeasible path analysis, but
also the cache and pipeline analyses. Predicated memory accesses, for instance, may
or may not have an impact on the processor’s cache, depending on the predicate. The
simplest solution for the analysis would be to ignore predicates and conservatively
consider the effect of both cases. This may result in very conservative results, since
the implicit information available in the program’s original control-flow before the

78

elimination of branches is entirely lost. The analysis could also be extended to be
aware of predicates. Note, however, that this may require changes to virtually all
analysis steps in a WCET analyzer and may thus require a considerable engineering
effort.
We, thus, explore a much simpler solution that consists in recovering the (hidden)
control-flow. Instructions that define (set) a predicate are handled similar to branch
instructions and lead to a control-flow split. The succeeding instructions are then
duplicated, once assuming that the predicate evaluates to true and once assuming
that the predicate value is false. Subsequent instructions that are predicated with
that predicate are now trivial to handle: an instruction either always corresponds to
a nop or always corresponds to the regular unpredicated instruction. We implement
this approach in our WCET analysis tool Odyssey. Based on our evaluations, we
show that the unfolding does not result in excessive code duplication and yields a
moderate code size increase.

2 Odyssey: a Fully-Integrated WCET Analysis Tool
for Patmos

A fundamental aspect of this thesis consists of treating the contributing components
to performance/predictability as a white box. The WCET analysis tool, in particular,
has to be open and flexible to integrate timing analyses for time-predictability
features. Moreover, it has to be close to the compiler so that critical information
regarding the program and its control-flow is directly accessible. Prior work [96] in
the T-CREST project proposed a method for the integration of aiT – the commercial
analysis tool of AbsInt – and the LLVM compiler for Patmos. The process relies on a

Front-End

ICFG
Constr.

Predic.
Analysis

High-Level
Analysis

Address
Analysis
(VRA)

Low-Level
Analysis

S$ M$ I$

Path
Analysis
(IPET)

Local CFGs + CG
Unfolded
ICFG

Flow information

Unfolded ICFG + Addresses + Flow Information

Annotated ICFG +
Flow Information

WCET
Formulation

Hardware
Configuration

Odyssey

patmos-llc

ICFG

Figure 4.1 – Overview of the Odyssey WCET analysis tool.

79

set of intermediate tools and description languages that play the role of an interface
between the compiler and the commercial WCET tool. We advocate for an even
closer and simpler integration of the WCET tool and the compiler.
Our WCET analysis tool, Odyssey, is open and fully integrated into the LLVM
compiler framework (a description of the compilation flow is provided in Chap-
ter 2.Section 3). More precisely, the tool is located in the patmos-llc back-end
and consists of an LLVM ModulePass performed right before code emission. The
pass uses the entire program as a unit, providing a Control-Flow Graph (CFG) for
each function, as well as machine code inside basic blocks. Odyssey has, therefore, a
complete and accurate representation of the program to be executed in the Patmos
platform. Figure 4.1 illustrates different analyses that we have implemented so far.

Front-End: Although LLVM provides lots of structural information about the
program, it is convenient to represent that information in the form of an ICFG on
which subsequent analyses will operate. The process of building the ICFG supports
context sensitivity and takes into consideration predicated execution:

ICFG
Construction

Odyssey starts off by first building a complete inter-procedural CFG
of the program. This is done by identifying the program’s entry point
using the call graph and LLVM’s function local CFGs. Instruction
bundles of the input basic block are successively processed until a
control-flow instruction is reached. This leads to the creation of an
ICFG node for the already visited instructions and triggers the process-
ing of those reachable by the control-flow. ICFG nodes are connected
using ICFG edges representing the control-flow. Since calls are not
necessarily found at the end of LLVM’s basic blocks, they are handled
slightly differently. ICFG nodes are terminated by the call and con-
nected to target function by call edges. In addition, we link an ICFG
node to its immediate local successor, through a special edge called
BBLink as illustrated in Figure 4.2. Call contexts are supported by
creating, for each context, the corresponding nodes and edges until
the maximum call string length is reached. During the ICFG creation,
a considerable amount of information is collected and serves as an-
notations for the CFG and subsequent analyses. This, for instance,
includes loop bounds, the identification of method cache block headers,
as well as their corresponding sizes. Moreover, a loop nesting forest is
constructed representing hierarchical relations for nested loops.

Predication Predicated execution is handled during the ICFG construction. We
cover this in this chapter and show how hidden control-flow can be
recovered from predicated instructions in LLVM’s CFG. Handling
predication in the ICFG step makes all subsequent timing analyses
unaffected by this feature.

High-Level Analysis: In this step we basically collect information that is necessary
to compute the WCET bound and also useful to make it more precise. This
particularly consists of flow information and addresses of memory accesses:

Flow
Information

One of the advantages of Odyssey is that LLVM already provides
control-flow-related information. Loop bounds that cannot be com-
puted by LLVM can be provided by the user at the source-code level,

80

...
call F
sens k
...

...
call F

sens k
...

BBLink

Figure 4.2 – Transforming an LLVM basic block with a call (left) into two ICFG
basic blocks (right).

and can later be retrieved at the machine-code level in the form of
pseudo instructions. This can be done using transformation techniques
that map flow information from source code to machine code [67].
Furthermore, since we do not operate on the program’s binary code, we
are not required to recover branch targets, in contrast to other WCET
tools. This information is already provided by LLVM.

Address
Analysis

This step consists of two independent parts. First, we compute actual
addresses of global variables and function symbols. The analysis is
able to produce the complete symbol table of programs. Then, we use
a modified value range analysis to determine address ranges.

Low-Level Analysis: Odyssey implements dedicated analyses for the stack cache,
method cache, and the instruction cache. Those analyses typically operate on the
ICFG and determine potential timing penalties to be accounted for:
Stack
Cache

We currently support the standard stack cache analysis [63] (SCA) as
well as the IDFA-based analysis for occupancy bounds [118, 88] (both
presented and compared in Chapter 5). We also support a fix that
reduces side-effects on the occupancy (at sens instructions) due to
function recursion. This is simply done by propagating the occupancy
at the call through BBLink edges. The result of the analysis consists
of timing penalties due to spilling and filling issued by sres and sens
instructions respectively. They are are associated to the ICFG in the
form of annotations to be considered by the IPET phase.

Method
Cache

A method cache analysis based on access classification is currently
implemented. The analysis also takes into consideration a hardware
optimization that implicitly evicts code blocks marked as disposable.
Work in progress explores heuristics for disposable marking in order to
reduce cache misses in large loops (see Chapter 9).

Instruction
Cache

Odyssey supports conventional classifying cache analysis. The analysis
relies on the address analysis to determine potentially accessed memory
blocks.

Path Analysis: An ILP problem is formed based on control-flow constraints and

81

the results of previous analyses (see Chapter 3.Section 1). The problem can then be
solved using usual standalone ILP solver tools.

To perform many of the aforementioned program static analyses, Odyssey implements
an inter-procedural DFA engine. This allows to define and perform analyses on the
ICFG representation where analysis information is attached to ICFG edges.
The implementation work we conducted constitutes a basis for further support of
other predictability features of Patmos. This also favors tighter interactions between
the compiler and the WCET analysis tool and enables more possibilities to explore
WCET-related optimizations. This will also allow us to compare the outcome of
predictable architectures against more standard hardware settings. In the remainder
of this chapter, we present how predicated execution is handled in Odyssey.

3 Handling Predication: Motivating Example
Before giving a formal description of our proposed approach, we will give a simple
motivating example. Figure 4.3 illustrates the implementation of a switch statement
using a jump table and predication. The original C code is shown in Subfigure 4.3a
and the resulting Control-Flow Graph (CFG) from LLVM in Subfigure 4.3b. Basic
blocks C1 through C3 represent the three case statements, while basic block DFT
corresponds to the default statement. The code of the switch statement itself
can be found in the SWT block, whose machine code is shown in Subfigure 4.3c.
The machine code uses a jump table (jt) that is implemented as an array holding
the addresses of basic blocks C1 through C3. After verifying that the value of
variable x is within the array bounds (cmplt), the address of the destination block
is loaded (lwc) and control is transferred (after a 1 cycle load delay slot) via an
indirect branch (brcfnd). If x’s value exceeds the array bounds, a conditional
branch (brcf) immediately transfers control to basic block DFT. Note that this
branch instruction has 3 branch delay slots and that one of these slots even contains
another branch instruction.
The predicated code may pose several challenges in a WCET analyzer. One particular
challenge is the reconstruction of the program’s CFG from the binary machine code,
which usually represents the input to most WCET analysis tools (see Chapter 3).
The compiler placed a branch instruction in one of the branch delay slots of another
branch. In this example it is trivial to detect that the predicates of the respective
branches are disjoint. However, different predicates might be used, which makes it
difficult to reconstruct the actual control-flow from such code. In our case this is not
necessary, since the analysis is part of the compiler and thus has direct access to its
intermediate representation.1
Another challenge, as noted before, are potential side-effects on caches or registers
caused by predicated instructions. This issue is resolved by unfolding the hidden
control-flow from the predicated code – as depicted by Subfigure 4.3d. Each time
when a predicate register is defined (cmplt) a control-flow split is performed at
the level of the control-flow graph. The instruction defining the predicate is then
treated in a similar way as conditional branches and subsequent code is duplicated
considering both of the potential predicate values (true or false). The basic block

1Note that this also solves many unrelated issues during the control-flow reconstruction from
binary code such as computed branch targets, function pointers, et cetera.

82

switch(x) {
case 1: ... break;
case 2: ... break;
case 3: ... break;
default: ... break;

}

(a) Initial C code

C1 C2 C3 DFT

SWT

(b) Original control-flow graph

cmplt p1=x, 3
(p1) shl r1=x, 2
(!p1) brcf DFT
(p1) lwc r1=[r1+jt]

nop
(p1) brcfnd r1

(c) Code of basic block SWT
(d) Unfolded control-flow graph

Figure 4.3 – Implementation of a simple switch statement using a jump table, the
corresponding control-flow graph, the predicated machine code of basic block SWT,
and the unfolded control flow.

on the left side of the subfigure here corresponds to an execution where predicate
register p1 evaluates to false, while the basic block on the right is executed only
when p1 evaluates to true. In fact, each basic block is associated with a set of
predicates that are known to be true when entering the basic block (indicated
in the top corner of each block). Inversely, predicates that do not appear in this
set are known to be false.2 Note that the predicates in the code are no longer
needed. Predicated instructions are either duplicated unconditionally or are otherwise
replaced by an explicit nop.
In the unfolded control-flow graph it is now much easier to analyze the instructions’
side-effects. The load (lwc) from the jump table, for instance, is only executed when
the variable x is known to be less than 3 (cmplt). This means that any side-effects
of this instruction on the data cache are only visible in basic blocks C1 through C3,
but not in basic block DFT. Another implicit side-effect concerns the value of variable
x after the comparison. Due to the control-flow split at the cmplt instruction, it
is very easy for a value range analysis to show that the value of x has to be larger
then 3 when reaching basic block DFT. Delayed branches and potential redefinitions
of register operands make this much more challenging in the original CFG. The
algorithm to construct such an unfolded CFG, while considering predication and
delayed branches, is discussed in the next section.

4 Control-Flow Unfolding
Algorithm 2 shows a simplified version of our approach. The presented algorithm
assumes a single issue architecture, which avoids the need to handle several parallel
uses and (re-)definitions of predicates, parallel branches and predicate operations,
et cetera. The algorithm also assumes that the predicates of branches that appear

2This is safe, since LLVM inserts pseudo definitions on all program paths where a register is not
defined.

83

in branch delay slots are disjoint, i.e., only a single branch is known to be taken
at any moment at runtime. Lastly, the presented approach only operates on the
CFG of a single function. Extensions to the algorithm, included in the actual
implementation, which allow us to handle these cases are briefly highlighted later.
Finally, the algorithm invokes several helper functions whose code is not shown. We
will briefly define these functions in an informal way before discussing the algorithm
in detail.

Helper Functions

Several helper functions are needed in order to operate on individual instructions
in LLVM’s intermediate representation. The function Next allows to obtain the
instruction immediately following an instruction i in its parent basic block, PKill
returns the set of predicate registers whose live ranges end after instruction i, while
the functions PDef and IsPredDef allow to obtain/test whether an instruction
defines a predicate register. The function IsNop is used to test whether an instruction
i is nullified given the current set of predicates P .
Several helper functions are related to branches, allowing to test for branch instruc-
tions (IsBranch), obtain the number of the branch’s delay slots (BranchDelay),
and obtain the successor basic blocks to which control may be transferred by a branch
(BranchTargets). FallThroughTarget is used to obtain the fall-through
target basic block of the last instruction of a basic block, i.e., control is transferred
to another basic block without an explicit jump or branch instruction.
Finally, three functions are related to the construction of the enriched intermediate
representation of our analysis tool. GetCFNode allows to obtain the control-flow
node associated with a start instruction f , the remaining number of delay slots d,
and a set of predicates P – if such a control-flow node was created before. Nodes are
created using the function MakeCFNode, which duplicates all instructions between
the instruction f and e provided as arguments. The new node is also associated with
d, the number of branch delay slots remaining, and P , the set of predicates. Finally,
MakeCFEdge creates control-flow edges between two control-flow nodes provided
as arguments.

Discussion of the Algorithm

Algorithm 2 consists of two functions: the algorithm’s main function UnFoldCFG
and the recursive function UnFold, which actually constructs the unfolded CFG.
The latter function’s parameters f (first) and l (last) represent machine instructions
that need to be unfolded next. The integer argument d (delay) is needed to track
branch delay slots across control-flow node boundaries. The argument T (targets),
likewise, is used to track the set of potential branch targets during the handling of
branch delay slots. The function’s last argument P (predicates) represents the set of
active predicates known to be true.
The algorithm starts off by processing the CFG of a function provided by LLVM
(l. 31), considering the instructions at the function’s entry point, which are not in a
branch delay slot (d =∞) and not executed under any specific predicate condition
(P = {p0}). This triggers the recursive processing of all instructions in the CFG
provided by LLVM and the construction of the unfolded CFG. The actual unfolding
then proceeds in two steps.

84

Algorithm 2 Simplified algorithm to recover the hidden control-flow from predicated
code by code duplication on a single-issue architecture.
1: function UnFold(MachInstr f , MachInstr l, Pred d, BasicBlockSet T , PredSet
P)

2: if n =GetCFNode(f, d, P) then return n . Check if control-flow node
exists

3: PredSet L = P ; Pred pd = p0; MachInstr e = f . Initialize variables
4: for each instruction i between l and f do
5: L = L \ PKill(i) . Remove dead predicates
6: e = i . Track end of control-flow node
7: if ¬IsNop(i, P) then . Skip nop instructions
8: if IsPredDef(i) then . Predicate definition
9: pd = PDef(i) . Track defined predicate
10: break . Immediately split control-flow
11: else if IsBranch(i) then . Branch instruction
12: d = BranchDelay(i) . Track branch delay slots
13: T = BranchTargets(i) . Track branch target(s)
14: if d = 0 then break . Split control-flow after branch delay
15: d = d− 1 . Update remaining branch delay slots

16: CFNode n = MakeCFNode(f, e, d, P) . Create a new control-flow node
17: if e = l ∧ T = ∅ then . Handle fall-through
18: T = FallThroughTarget(l)
19: else if d 6= 0 ∧ pd 6= p0 then . Handle split due to predicate definition
20: for each P ′ ∈ {L ∪ pd, (L \ pd) ∪ {p0}} do . Compute successor

predicates
21: CFNode n′ = UnFold(Next(e), l, d, T, P ′)
22: MakeCFEdge(n, n′)

23: return n

24: for each s ∈ T do . Create successor control-flow nodes
25: for each P ′ ∈ {L ∪ pd, (L \ pd) ∪ {p0}} do . Compute successor

predicates
26: Let f ′, l′ be the first/last instruction of s in
27: CFNode n′ = UnFold(f ′, l′,∞, ∅, P ′)
28: MakeCFEdge(n, n′)

29: return n

30: procedure UnFoldCFG(G)
31: Let f , l be the first/last instruction of the entry block of G in Un-

Fold(l, f,∞, ∅, {p0})

First, all the instructions between the arguments l and f of function UnFold are
analyzed (l. 4 – 15) in order to find locations where the control-flow needs to be
split. A split may be necessary due to one of the following reasons: (a) the end of
the original basic block of LLVM is reached (fall-through), (b) a branch effectively
transfers control to another basic block after its branch delay slots, or (c) a predicate
definition is encountered.
Each instruction is analyzed in turn. Instructions that are nullified under the

85

current predicate set P (IsNop, l. 7) are ignored. Two instruction classes need
special attention, since they may cause a control-flow split: instructions that define
a predicate (IsPredDef) and branches (IsBranch). Predicate definitions are
handled similar to branches in traditional CFGs and immediately lead to a control-
flow split (break), remembering the current end location (e), and the newly defined
predicate (pd). Branches, on the other hand, may cause a delayed control-flow split
(BranchDelay). The variable d tracks the number of remaining branch delay slots
(the variable is initialized to ∞ if the analyzed code is not in a branch delay slot).
Once this counter reaches 0 the actual control-flow split occurs (l .14). Note that
predicate definitions may also appear in branch delay slots. In this case the variable
d is passed as an argument to subsequent recursive calls to the function UnFold.
Since a branch was encountered, the branch targets also need to be remembered and
potentially passed on the recursive calls using variable T . If no control-flow split is
encountered by the analysis, i.e., no instruction defines a predicate or branches, the
for loop terminates normally. This only happens for basic blocks with a fall-through.
The set of live predicates (L) is tracked additionally, while instructions are processed.
This set is initialized with the incoming argument P (l. 3) and updated whenever
the live range of a predicate ends (l. 5). Note that a location, where the live range of
a predicate ends, could be exploited to rejoin the control flow. The algorithm does
not take advantage of this and essentially extends the live ranges of predicates up to
a control-flow split.
The second step of the algorithm (l. 17 – 29) is concerned with the actual construction
of the unfolded CFG. After leaving the for loop, a new control-flow node is created
representing the instructions between f and e that are executed under the predicate
set P (l. 16). It remains then to discover and unfold the successor control-flow nodes,
depending on the nature of the control-flow split determined during the first step.
Fall-throughs (case a from above) and completed branches (case b) always transfer
control to another basic block in LLVM’s CFG. The main difference is that no branch
target is known for fall-throughs (case a), which can simply be obtained using the
function FallThroughTarget (l. 18). The remainder of the processing is identical
(l. 24 – 29). Each branch target is analyzed through a recursive call to UnFold,
considering the new set of active predicates P ′ as well as the branch target’s first/last
instruction. Note that a predicate definition (case c) may coincide with cases (a)
and (b). The active predicates are thus computed from the live predicates L and
the newly defined predicate pd (l. 25). The targets are then visited by the algorithm
with the predicate true (L∪ pd) and false (L \ pd). Note that p0 always remains
true and consequently needs to be readded.
The remaining control-flow splits, that are not covered by the previous paragraph,
are due to predicate definitions (case c), which may either occur in the middle of
basic blocks or in a branch delay slot. Both situations require a slightly different
handling (l. 19 – 23), since control is not (yet) transferred to another basic block
of LLVM’s CFG. The set of active predicates P ′ is computed as in the regular
case. However, the remaining instructions (Next, l. 21) of LLVM’s current basic
block need to be analyzed after the control-flow split, while remembering potentially
ongoing branches. This is accomplished by passing the values of d and T to the
recursive invocation of UnFold. This allows the recursive invocation to correctly
track the branch targets and the number of branch delay slots, i.e., if the split
actually occurred in a branch delay slot.

86

ba
si

cm
at

h-
sm

al
l

bi
tc

ou
nt

di
jk

st
ra

rij
nd

ae
l-d

ec
od

er

rij
nd

ae
l-e

nc
od

er

sh
a

su
sa

n

G
eo

.M
ea

n.

1

1.1

1.2

1.3

1.4

1.5

1.
16

1.
15

N
or

m
al

iz
ed

In
st

ru
ct

io
n

C
ou

nt

Figure 4.4 – Increase in the number of instructions due to unfolding for the delayed
(), mixed (), and non-delayed () configurations with VLIW instruction bundles,
normalized to the size of LLVM’s original CFG (lower is better).

Extensions The presented algorithm is a somewhat simplified version of the actual
implementation. Most notably, the Patmos processor can fetch and issue multiple
operations in parallel using instruction bundles. This means that corner cases may
arise that need to be considered. For instance, predicate definitions and branches can
be combined into the same bundle. The implemented algorithm considers function
calls and returns, whose branch delay slots also need to be accounted for. The
handling of function calls was omitted for simplicity. These extensions slightly
complicate the algorithm, but do not impact its overall structure.
Another, more involved extension, is the handling of branches nested within other
branch delay slots. The presented algorithm is only correct as long as the predicates
of the nested branches are disjoint. This can be handled by replacing the arguments
d and T of the function UnFold by a stack data structure. This allows to track all
executing branches at the same time, detect the completion of a branch, and split
the control-flow accordingly.

Complexity The UnFold function essentially performs a depth first search on
the CFG provided by LLVM. Each instruction is processed once for every set of
potentially active predicates, whose number can be bounded by 128 (27). Note that
p0 is always true and thus cannot impact this bound. The algorithm thus is linear
in the number of instructions and control-flow edges.

5 Experiments
The following section presents the results of experiments measuring the overhead
induced by unfolding. The implementation is part of the Odyssey analysis framework,
which is based on LLVM 3.5. The unfolded CFG is merely used for analysis purposes
and essentially represents an additional annotation layer on top of the data structures
of LLVM. The binary code of the analyzed programs is thus not modified. The
extended version of the previously described algorithm was applied to a subset

87

of the TACLe benchmarks [41], i.e., those adopted from the MiBench suite. The
programs were compiled with optimizations enabled (-O2), while varying the issue-
width (single-issue vs. VLIW) and the compiler’s handling of branch delay slots
(non-delayed only, delayed only, mixed). This results in 6 configurations overall. The
size of the unfolded CFGs for each of these configurations is compared against the
original instruction count in LLVM’s CFG.
Figure 4.4 shows the normalized increase in the number of instructions for the three
configurations with VLIW instruction bundles. As can be seen, the overhead induced
by unfolding is usually low, ranging between 10% and 20%. The susan benchmark
is the only exception, showing an increase between 43% and 45%. The if-conversion
optimization is particularly effective for this benchmark, covering larger regions and
producing more complex predicates. Note that the observed overhead does not come
as a surprise. It is well known that the share of conditional branches in typical
programs roughly falls into a similar range as the observed overhead. This indicates
that, overall, only a few instructions are duplicated by the unfolding algorithm for
each computed condition – despite the fact that the algorithm artificially extends
the live ranges of predicates.
The runtime overhead of the proposed algorithm is negligible and amounts to 0.1s
on average, which represents 0.9% of the code generation time (excluding other
WCET analysis steps). Also note that the unfolded CFG allowed us to improve
other analyses. The value range analysis, for instance, is able to take advantage of
control-flow splits at predicate definitions as explained in Section 3.

6 Conclusion
In this work a lightweight approach to the handling of predicated code in WCET
analyzers was presented. Predicate definitions are treated similar to conventional
branches and immediately lead to a control-flow split. Subsequent instructions are
then analyzed twice, once assuming that the predicate evaluates to true and once
assuming it evaluates to false. The hidden control-flow in predicated code is
recovered and explicitly represented in an unfolded CFG. The presented algorithm is
able to perform the desired control-flow unfolding and keep track of branch delay
slots for a simplified single-issue architecture. The actual implementation in Odyssey
is able to handle parallel instruction bundles, function calls, and nested delayed
branches. Our preliminary evaluation shows that the unfolding does not result in
excessive code duplication and yields a moderate code size increase of about 16% on
average.

88

CHAPTER 5

Comparing the Precision of Stack Cache Occupancy Analyses

The previous chapter introduced our tool Odyssey, and showed how predication can
be handled in a way that does not affect subsequent analyses. In this chapter, we
take interest in the stack cache, Patmos’ simplest cache structure that is dedicated
for stack data. In order to propose effective optimizations, one first needs to inspect
existing timing analysis approaches, and compare them. So far, two analyses have
been proposed, each relying on a different approach to analyze the cache occupancy.
Occupancy analysis is used to bound the spilling and filling cost induced by sres and
sens control instructions respectively. Therefore, its precision directly impacts the
stack cache timing analysis. We, thus, compare the precision of stack cache occupancy
analyses, and discuss situations where one outperforms the other. This chapter is
structured as follows: Section 1 provides a short introduction and reminds of some
of the stack cache properties (full description is provided in Chapter2.Section 2.4, for
static program analysis see Chapter 3.Section 3). We then present the two approaches
to analyze the occupancy bounds for the stack cache. The analyses are evaluated in
Section 3 before concluding.

1 Outline
The stack cache is a predictable cache design that was shown to be analyzable, while
efficiently handling memory accesses to stack data at low (hardware) cost. Data
accesses are, by definition, guaranteed cache hits, the content of the cache thus has to
be managed explicitly using three stack cache control instructions: (1) sres k allows
to reserve k words on the stack, (2) sfree k can be used to free previously reserved
stack space, and (3) sens k, finally, can be used to make sure that at least k words
are available in the cache. Only the reserve (sres) and ensure (sens) operations
may initiate time-consuming memory transfers and thus need to be considered during
timing analysis. The worst-case timing behavior of these instructions only depends
on the worst-case spilling and filling of sres and sens respectively, which can be
bounded by computing the cache occupancy bounds (i.e., maximum and minimum
occupancy).
Stack cache occupancy bounds, and the associated spill/fill costs can be computed

89

using the proposed standard Stack Cache Analysis (SCA) [63]. The approach splits
the analysis problem into several smaller steps, using context-insensitive data-flow
analyses to capture function-local properties and longest/shortest path searches on
the call graph to model calling contexts. An alternative solution would be to simply
model the problem as a traditional inter-procedural DFA (IDFA) [14]. This appears
simpler to implement, as the various steps of SCA are modeled in a single concise
analysis. However, the impact on analysis precision has not been investigated so far.
Indeed, overestimating the occupancy can increase the spill costs associated with
sres instructions, while underestimating the occupancy can increase the fill costs
of sens instructions. This chapter thus compares the precision of the two analysis
approaches with respect to the attained maximum/minimum occupancy bounds.
The chapter consists of two main sections. The first section presents each approach
in detail with examples. The second one evaluates their precision using a series of
benchmarks and discusses the obtained results.

2 Cache Occupancy Analyses
We present how to compute the cache’s occupancy, which can be used to bound
timing, using a tailored stack cache analysis (SCA) and an inter-procedural DFA-
based approach (IDFA).

2.1 Standard Stack Cache Analysis

As all memory accesses (lds/sts) through the stack cache are guaranteed hits, the
timing behavior of the stack cache only depends on the amount of data spilled or
filled by sres and sens instructions, respectively (see Section 2.4 of Chapter 2).
In the case of the standard stack cache this amount can be bounded by analyzing
the cache’s maximum/minimum occupancy, i.e., MT− ST. The standard stack cache
analysis (SCA) proceeds in three phases:
First, the maximum/minimum displacement is computed for each function. These
values indicate the largest/smallest number of cache blocks reserved during the
execution of a function (including nested calls). The displacement can be used to
efficiently compute the occupancy across function calls, since it allows to bound
the number of blocks evicted from the stack cache. Due to the placement of stack
cache control instructions,1 the additional amount of stack space reserved at a given
program point in a function, with respect to the function entry, is constant. In our
case, it simply corresponds to the value of the parameter k of the sres instruction
of the enclosing function. The problem thus can be modeled as a longest/shortest
path search on a weighted call graph, where the edge weight of each call site is
given by the amount of stack space allocated by the calling function. The minimum
displacement is then given by the shortest path from a node to an artificial sink node.
Likewise, the maximum displacement is given by the longest path.
Next, the maximum filling at sens instructions is bounded using a function-local
data-flow analysis that propagates the maximum displacement from call sites to the
succeeding ensure instructions. In our case every call is immediately followed by an
sens, rendering this analysis trivial. The maximum filling at sens instruction can

1This applies to the restricted placement from above as well as well-formed programs.

90

Concept Description Analysis
Occupancy Number of cache blocks occupied in the stack cache –
min.Displacement Min. number of blocks evicted during function call shortest CG path
max.Displacement Max. number of blocks evicted during function call longest CG path
worst-case Occ. Local bound of max.Occ. assuming full stack cache DFA+min.Disp.
max. Filling Min. occupancy before sens instructions DFA+max.Disp.
max. Spilling Max. occupancy before sres instructions CG+w.-c. Occ.

Table 5.1 – Summary of concepts used by the traditional Stack Cache Analysis
(SCA).

be bounded by computing the minimum number of cache blocks in the cache after
the corresponding call instruction, i.e., the minimum occupancy. The minimum
occupancy after the call has to be smaller than the occupancy before that call,
since the called functions may only evict blocks from the cache. It cannot exceed
max(0, |SC|−D(f)), where D(f) is the maximum displacement of the called function
f and |SC| the stack cache size. If this bound is smaller than k, the argument of
the sens instruction, filling may occur. The maximum amount of filling can then
be computed by subtracting the computed bound from k.
Finally, the worst-case occupancy is computed for each call site within a function
using a function-local data-flow analysis. This is done by assuming a full stack cache
at function entry. Subsequently, an upper bound of the occupancy is propagated
to all call sites in the function, while considering the effect of other function calls
and sens instructions. Function calls may evict stack data and thus lower the
occupancy bound, depending on the minimum displacement of the called function
(since the maximum occupancy after the call needs to be computed). The worst-case
occupancy after a call cannot exceed max(0, |SC| − d(f)), where d(f) indicates the
minimum displacement of the called function f and |SC| the stack cache size. Ensure
instructions on the other hand may increase the bound through filling, i.e., the worst-
case occupancy after an sres has to be larger or equal to k, the ensure’s argument.
The maximum spilling at sres instructions is finally computed by propagating
occupancy values through the CG, such that the maximum occupancy at the entry of
a function is derived from the minimum of either (1) the maximum occupancy of its
callers plus the size of the caller’s stack frame (k of the corresponding sres) or (2)
the worst-case occupancy bound computed by the local data-flow analysis. Note, that
the latter case allows to consider spilling of other sres instructions that may reduce

(A1) func A()
(A2) sres 2 〈0〉
(A3) call B
(A4) sens 2 〈2〉
(A5) sfree 2

(B1) func B()
(B2) sres 1 〈0〉
(B3) call C
(B4) sens 1 〈0〉
(B5) call D
(B6) sens 1 〈1〉
(B7) sfree 1

(C1) func C()
(C2) sres 1 〈0〉
(C3) sfree 1

(D1) func D()
(D2) sres 4 〈3〉
(D3) sfree 4

Figure 5.1 – A program consisting of 4 functions, reserving, freeing and ensuring
space on the stack cache (cache size: 4). The annotations in angle brackets, e.g., 〈2〉,
indicate the maximum filling/spilling behavior of stack cache control instructions.

91

A() B() C()

D()

0 2 1

1

1

4

Figure 5.2 – A weighted call graph representing the program from Figure 5.1. The
edge weights indicate the amount of stack space reserved in the respective functions,
and can be used to compute the minimum/maximum displacement.

the occupancy before reaching the call site. Since the maximum spilling is computed
on the call graph, fully context-sensitive bounds can be computed efficiently for all
functions in a program.
Table 5.1 summarizes the various concepts used by the traditional SCA in order to
efficiently bound the maximum filling/spilling at sens and sres, respectively.

Example 2.1 Consider functions A, B, C, and D shown in Figure 5.1 and a stack
cache whose size is 4 blocks. First, the displacement computation is performed on
the weighted call graph shown in Figure 5.2. Function B, for instance, may call C or
D. The maximum displacement thus has to account for the stack space reserved by
B and by these two functions, which evaluates to either 2 = 1 + 1 (C) or 5 = 1 + 4
(D). For functions A, B, C, and D, respectively, the minimum/maximum displacement
values evaluate to: 4/7, 2/5, 1/1, and 4/4. Then, the maximum filling of sens
instructions is computed. Consider, for instance, the call from A to B (A3). Since
the maximum displacement of B is 5, the minimum occupancy after the call evaluates
to 0 = max(0, 4 − 5). The corresponding sens instruction (A4) consequently has
to fill both of A’s cache blocks (2 − 0), which is indicated by the bound in angle
brackets 〈2〉. The displacement of C is only 1, which yields a minimum occupancy
of 3 = max(0, 4 − 1) after instruction B3. The stack cache is thus large enough
to hold both stack frames of B and C and no filling is needed as indicated by the
bound 〈0〉 at instruction B4. Next, the worst-case occupancy before call instructions
is computed using a function-local data-flow analysis. The DFA determines that the
worst-case occupancy before the call from B to D (B5) is 3 = 4− 1, due to the call
from B to C. Before all other call instructions the worst-case occupancy is 4, since
no other call may lower the maximum occupancy before reaching them. Finally, the
maximum occupancy is propagated through the call graph, starting at the program’s
entry function A. The maximum occupancy at the entry of A consequently is 0. For
the call from A to B (A3) a maximum occupancy of 2 is computed as the minimum
of the call’s worst-case occupancy (4) and the maximum occupancy at the entry of A
plus the size of A’s stack frame (0+ 2). The maximum occupancy at the entry of D is
similarly computed from the call’s (B5) worst-case occupancy (3) and the maximum
occupancy at the entry of B plus the size of B’s stack frame (2 + 1). Since the size of
D’s stack frame is equal to the stack cache size, all content of the stack cache has to
be evicted by its reserve instruction. This results in a worst-case spilling of 3 blocks,
as indicated by the bound 〈3〉 at instruction D2. The bounds derived for the other
sres and sens instructions are also indicated in angle brackets in Figure 5.1.

2.2 Inter-procedural Data-flow Analysis

Another approach that is much simpler consists of computing and tracking the
occupancy bounds exclusively using the DFA framework. For this, a set of data-flow

92

equations has to be formed and solved using for instance an ICFG representation
of the program. (see Section 3 of Chapter 3). The analysis needs to define: (1) an
abstract domain D, (2) transfer functions Ti ∈ T to model the effect of instructions,
and (3) the join operator t to conservatively merge information at join points.

Abstract Domain: The domain of the IDFA approach are positive integer values
in D = {0, . . . , |SC|}, where |SC| represents the stack cache’s size. Since both,
the minimum and the maximum occupancy are needed, two analysis problems
have to be defined. We will start with the maximum occupancy.

Maximum Occupancy: The analysis starts at the program entry, where the
occupancy is assumed to be 0. It then propagates occupancy values along all
execution paths, while considering the effect of the instructions along the path.
Only the stack control instructions (see Section 2.4 of Chapter 2) can have an
impact: (1) sres instructions increase occupancy by their argument k, (2) sens
instructions make sure that the occupancy is larger than k, and (3) sfree
instructions reduce the occupancy by k. The resulting transfer function Ti for an
instruction class i are given by the data-flow equation below:

OUTmaxOcc(i) =

min(INmaxOcc(i) + k, |SC|) if i = sres k
max(INmaxOcc(i), k) if i = sens k
max(0, INmaxOcc(i)− k) if i = sfree k
INmaxOcc(i) otherwise

The join operator t is defined by simply taking the maximum occupancy for all
operands. Therefore, the occupancy right before an instruction (due to control-flow
joins) is derived by taking the maximum occupancy from any of its predecessors
(Preds), except for the program’s entry. In the case of inter-procedural analysis,
predecessors can also be calls or returns from other functions:

INmaxOcc(i) =

{
0 if i = entry,
maxs∈Preds(i)(OUTmaxOcc(s)) otherwise

Minimum Occupancy: The data-flow equations to compute the minimum
occupancy are identical. Only the max operator of the INminOcc(i) equation needs
to be replaced by the min operator.

OUTminOcc(i) =

min(INminOcc(i) + k, |SC|) if i = sres k
max(INminOcc(i), k) if i = sens k
max(0, INminOcc(i)− k) if i = sfree k
INminOcc(i) otherwise

INminOcc(i) =

{
0 if i = entry,
mins∈Preds(i)(OUTminOcc(s)) otherwise

Context sensitivity can easily be ensured either through the ICFG itself (duplication
of functions) or by adding context information to the data-flow equations of the
respective instructions.

93

r

BB00

BB01

t

A()

BB10

BB11

BB12

B()

BB20

C()

BB30

D()

(a) An ICFG representing the program from Figure 5.1. The red/blue edges represent
call/return edges.

Min. Occ Max. Occ Cost
Func BB Instr IN OUT IN OUT Spill Fill

00 {A1, A2, A3} 0 2 0 2 0 0A 01 {A4, A5} 0 0 0 0 0 2
10 {B1, B2, B3} 2 3 2 3 0 0
11 {B4, B5} 3 3 3 3 0 0B
12 {B6, B7} 0 0 0 0 0 1

C 20 {C1, C2, C3} 3 4 3 4 0 0
D 30 {D1, D2, D3} 3 0 3 0 3 0

(b) Occupancy bounds as computed by the IDFA approach considering the ICFG of
Figure 5.3a.

Figure 5.3 – Example of occupancy analysis using the IDFA approach.

This approach is also implemented in Absint’s aiT timing analyzer tool [118]. We
spot, however, a mistake in the data-flow equation related to computing the minimum
occupancy at sens instructions. The equation states that the resulting minimum
occupancy is evaluated to min(INminOcc(i), k). This is incorrect as the sens in-
struction can never result in a decrease of the occupancy. The occupancy is always
increased to k if the occupancy right before sens (INminOcc(i)) is less than k.

Example 2.2 Consider again the program in Figure 5.1. We illustrate in Figure 5.3a
the corresponding ICFG built similarly as in Section 3 of Chapter 3. We track the
occupancy bounds according to the IDFA approach assuming a stack cache whose
size is 4 blocks. We start with minimum occupancy analysis. The domain consists
of a positive integer number representing the occupancy level (i.e., {0, . . . , 4}). The
analysis starts off by assigning the occupancy value 0 at the program entry point (i.e.,
INminOcc(BB00) = 0). The basic block BB00 consists of instructions A1, A2, and A3.
Only the reserve sres at A2 has an impact on the minimum occupancy which increases
by 2 cache blocks, therefore, OUTminOcc(BB00) = 2. Similarly, the sres increases
the minimum occupancy by 1 cache block which results in OUTminOcc(BB10) = 3. In
BB20, the minimum occupancy is further increased by 1 cache block but immediately
decreased due to the sfree instruction at C3. This yields OUTminOcc(BB20) = 3.
The INminOcc information at BB11 is computed by applying the join operator over

94

the OUTminOcc information provided by its immediate predecessors (i.e., BB10 and
BB20). This translates into selecting the minimum of both OUTminOcc information,
which yields INminOcc(BB11) = 3. The sens at B4 does not initiate any memory
transfer as the minimum occupancy is greater than B’s stack frame size (i.e., 1 cache
block). The sres instruction at D2 reserves 4 cache blocks which adds to the 3 cache
blocks already existing when entering the basic block BB30. However, the minimum
occupancy is capped by the stack cache size that is |SC| = 4. Those cache blocks
are then freed by the sfree at D3 which results in OUTminOcc(BB30) = 0. The
join operator applied at BB12 yields IN(BB12) = 0, as a result the sens at B6

initiates a fill of 1 memory block in the worst-case. The same applies to the sens at
A4 which initiates a fill of 2 cache blocks as INminOcc(BB01) = 0. In this example,
the maximum occupancy provides the same results for INmaxOcc and OUTmaxOcc

information. However, the maximum occupancy information allows to safely estimate
the worst-case spilling potentially performed by sres instructions. Only the sres
at D2 is determined to cause such memory transfers. This is due to the fact that the
sres reserves the whole stack cache size which causes the stack cache content (i.e.,
INmaxOcc(BB30) = 3) to be spilled to main memory.

3 Experiments
We evaluated both approaches using the LLVM-based compiler framework of the
Patmos processor [111], which comes with a stack cache and its associated control
instructions. Benchmarks of the MiBench benchmark suite [52] were compiled using
optimizations (-O2) and subsequently analyzed using both techniques, assuming a
stack cache size of 256 byte, 4 byte cache blocks, and a context string length of 0.
Figure 5.4 shows the percentage of functions where the occupancy bound at function
entry of SCA was either greater, equal, or smaller than that computed by IDFA.

ba
sic

math

bit
cn

ts
cjp

eg

crc
32

cs
us

an

dij
ks

tra
sm

all

djp
eg

dr
ijn

da
el eb

f fft
lam

e

pa
tric

ia
qs

or
t

raw
da

ud
io sa

y

se
ar

ch
sm

all sh
a

0

25

50

75

100

m
ax

.O
cc

.
m

in
.O

cc
.

Pe
rc

en
t

greater equal smaller

Figure 5.4 – Percentage of occupancy bounds (maximum/min) by SCA being (1)
greater, (2) equal, or (3) smaller than IDFA.

95

Considering the maximum occupancy, SCA is less precise when the delivered bound
is greater, i.e., the lower portion of the first bar of each benchmark should be as
small as possible. Indeed, these cases are rare (< 3% over all benchmarks), while
SCA is often more precise (34% on average).
Considering the minimum occupancy. SCA is less precise when the delivered bounds
is smaller. This is represented by the upper portion of the second bar. However, this
only appears for a simple function of the three benchmarks tiff2bw, tiffdither,
and tiffmedian respectively. SCA is typically more precise (52% on average).
We repeated these experiments for IDFA with other call string lengths (1, 2, 3, 10 and
20). However, we only observed minor improvements for maximum occupancy and
almost no change for minimum occupancy. The bitcnts benchmark, for instance,
has a maximum call depth of 20, ignoring recursive functions, and still does not show
relevant improvements with call strings of length 20 due to the impact of recursion
elsewhere as explained later.
Overall, SCA is almost always as precise or even more precise than IDFA. The results
are similar, albeit less pronounced, with longer context string lengths.

3.1 Discussion

A closer look reveals that the imprecision of IDFA is mostly due to chains of function
calls, whose lengths exceed the analysis’ context string length (e.g., due to recursion).
Let us first examine such situations for maximum occupancy.
The problem of IDFA with long call chains is that calling contexts are no longer
distinguished, i.e., all information is merged in a single calling context. The occupancy
information computed for these regions is, as expected, rather pessimistic, leading
to considerable overestimation of the maximum occupancy. Even worse, the overly
conservative occupancy level is propagated out of these merged calling contexts along
control-flow edges of function returns. Recall that the meet operator for this analysis
is the max operator. This means that the conservative maximum occupancy bounds
are even further propagated, way beyond the merged calling contexts that initially
caused the imprecision. This particularly applies to recursive functions.

Example 3.1 Figure 5.5 shows an example illustrating this situation. Assume that
function A consists of one basic block and that function B is called before function
D. Since B and C recursively call each other, their respective maximum occupancy
grows until they reach the stack cache size during the fixed-point computation of
IDFA (unless unbounded call strings are used). The transfer functions for the return
instructions then propagate the maximum to their respective callers, which leads to a
maximum occupancy that is close to the stack cache size right after the function call
to C within B (and vice verse). A similarly high occupancy is propagated out of the
recursion to the instruction succeeding the call from A to B. The high occupancy might
actually occur within the recursion. However, the actual occupancy at this point is
much lower. The overestimation is further propagated to function D. Resulting in
overly conservative analysis results there, even when the context string length is not
exceeded.

Patmos’ newlib C library contains (potentially) recursive functions in the start-up
code of each program. IDFA thus assumes that the stack cache is filled up entirely
before even reaching the program’s main function. Since the computed maximum

96

A B C

D
Imprecision

Figure 5.5 – Imprecision propagated out of recursive functions when computing
maximum occupancy with IDFA.

occupancy at main is considerably overestimated, imprecision is propagated through-
out large portions of the considered benchmarks. An important observation here is
that increasing the call string length will not help fixing this problem, as the precision
limit will be reached before the end of the recursion (unless infinite call strings are
used). The SCA approach does not face this problem. Instead of relying on the
occupancy propagated outwards by the recursive functions, it simply relies on their
displacement values. A possible fix for this problem for IDFA would be to memorize
the occupancy level before each call. The occupancy propagated backwards from
a return then always has to be smaller than the memorized value. However, the
potentially large displacement of the called function is ignored, which may still lead
to considerable overestimation.
A similar problem arises for non-recursive programs with deep call chains containing
two subsequent function calls that eventually invoke the same function. IDFA then
behaves similar to recursive programs as shown in Figure 5.6.

Example 3.2 Assume that, in this example, the function call from B to C appears
before the call from B to D. Then, IDFA initially propagates an accurate occupancy
level through the calls from A to B and finally to C. At first, even the occupancy at
D is computed correctly. However, due to the deep call chains leading up to C, both
calling contexts for D (originating from B or D) are merged. Due to the intermittent
execution of D the occupancy is higher for this call chain. This increases the maximum
occupancy of C. The increase is subsequently propagated out of C to both of its callers.
This incidentally increases the occupancy after the call to C within B. Which then
again increases the occupancy at the following call to D. This leads to a feedback loop
similar to that seen for recursive functions in the previous example.

A B D

C

Figure 5.6 – Feedback loop enforcing imprecision of non-recursive functions for IDFA
computing maximum occupancy.

Still, IDFA can be more precise than SCA (as shown by or results). This is explained
by an underestimation of the minimum displacement. As mentioned before, the
minimum displacement is obtained by performing a shortest path search on the
program’s call graph. The path here represents nested function calls and its length
the minimal amount of stack space required in the stack cache by the functions

97

stack frames, respectively. Now, consider a case where two leaf functions2 are called
within a single basic block, i.e., when one function is called the other function is
called too. In this case, the minimal path search will choose the function with
the smaller stack frame to compute the minimum displacement. However, since
both functions are called, the actual minimum displacement is determined by the
larger stack frame. This situation can, of course, also appear in more general forms.
The imprecise minimum displacement ultimately leads to an underestimation of the
maximum occupancy observed in our experiments. However, this appears to be of
minor importance in practice.
For minimum occupancy IDFA appears to be even more imprecise. Firstly, this is
explained by the fact that the maximum displacement (in contrast to the minimum
displacement) can be computed precisely. SCA’s minimum occupancy thus does
not suffer from inherent imprecision. In addition, IDFA spreads imprecision as
before in the presence of deep call chains. This may even lead to feedback loops
in non-recursive programs as described before. Two observations are particularly
interesting at this point. While the IDFA approach is amenable to improvements by
memorizing the maximum occupancy before calls, such a fix appears to be impossible
here. The problem is that a lower bound cannot be established as easily for function
calls when the minimum occupancy is computed. Secondly, it appears that the
precision could be improved using very long call strings (ignoring cases incurring
recursion). This, however, leads to a paradox situation: the precise computation
of the minimum occupancy would then require high levels of context sensitivity in
order to compute the worst-case filling at sens instructions. The filling, however,
only depends on the nesting of functions called right before the ensure and thus is
by its nature context-insensitive. The SCA approach exploits precisely this property
and evidently achieves excellent results.

4 Conclusion
In this chapter, we compared the precision of stack cache occupancy bounds computed
by two different approaches. On the one hand, the IDFA approach, which models
the problem as a traditional inter-procedural data-flow analysis. On the other hand,
the SCA approach that splits the analysis problem into several smaller ones, using
context-insensitive data-flow analyses along with longest/shortest path searches on
the call graph. Our experiments revealed that IDFA suffers from imprecision in
nearly all benchmarks of the MiBench benchmark suite. The lack of precision is due
to chains of function calls, whose lengths exceed the analysis’ context string length
(e.g., due to recursion). The obtained results suggest to base future analysis work
(such as preemption costs that we explore in Chapter 6) on the SCA approach.

2Leaf functions do not call any other function.

98

CHAPTER 6

Analysis of Preemption Costs for the Stack Cache

In the previous chapter, we compared two analysis approaches to bound the minimum
and maximal occupancy of the stack cache. We concluded that the approach used in
the standard stack cache analysis (SCA) provides tighter estimates in most situations.
However, the analysis was limited to individual tasks, ignoring aspects related to
multitasking. A major drawback of the original stack cache design is that, due to its
simplicity, it cannot hold the data of multiple tasks at the same time. Consequently,
the entire cache content needs to be saved and restored when a task is preempted.
To complement the standard SCA, we propose, in this chapter, an analysis exploiting
the simplicity of the stack cache to bound the overhead induced by task preemption.
This chapter is structured as follows. We start with a short outline. Through a
motivating example, we present in Section 2 our approach to analyze the cache-related
preemption delays induced by the stack cache. A formal description of the analysis
is provided in Sections 3 and 4. Then a discussion is provided in Sections 5 and 6.
The analysis is evaluated in Section 7 and followed by a conclusion.

1 Outline
The stack cache of the Patmos processor exploits the regular structure of the access
patterns to stack data. Functions often operate exclusively on their local variables,
resulting in spatial and temporal locality of stack accesses following the nesting of
function calls. As already presented in Section 2.4 of Chapter 2, the cache can be
implemented using a circular buffer using two pointers: the memory top pointer MT
and the stack top pointer ST. In contrast to traditional caches, memory accesses
are guaranteed hits. The time to access stack data thus is constant, simplifying the
WCET analysis. The cache is managed by stack cache control instructions whose
worst-case (timing) behavior only depends on the worst-case spilling and filling
of sres and sens, respectively (see Chapter 5). The cache’s simple design thus
reduces the analysis complexity considerably.
However, the simple structure of the stack cache also has drawbacks. One problem
arises when multiple tasks are executed using preemptive scheduling. The two
pointers only capture the cache state of the currently running task, the state of other

99

(preempted) tasks is lost once ST and MT are overwritten. The data of preempted
tasks might still be in the cache. However, the hardware cannot ensure that this
data remains unmodified. Even worse, it cannot ensure that modified cache data,
not yet written back to main memory, remains coherent. As a consequence the entire
stack cache content has to be saved to main memory when a task is preempted. In
addition, the stack cache content has to be restored before that task is resumed. This
may induce considerable overhead that has to be accounted for during the analysis
of a real-time system equipped with a stack cache.
The main contribution of this chapter is a stack cache analysis technique to bound the
overhead induced by the stack cache during preemption, i.e., cache-related preemption
delays [70].

2 Analysis of Preemption Delays: Motivating Ex-
ample

Preemptive multitasking provides better schedulability for real-time systems by
allowing a running task to be preempted by another task having more critical timing
requirements. Task preemption involves a context switch, which, with regard to
the preempted task, consists of three steps: (1) saving the original task’s execution
context (registers, address space, device configurations, . . .), (2) running another
task, and finally (3) restoring the original task’s context. Since the traditional stack
cache hardware cannot be shared by several tasks, the content of the stack cache
has to be considered a part of the execution context and thus needs to be saved
and restored as well. This may induce some overhead that has to be accounted for
during schedulability analysis. For traditional caches [70] this overhead is known as
Cache-Related Preemption Delays (CRPD). We will later formally define a static
program analysis that allows us to bound this overhead for the stack cache for every
program point where a preemption might occur. However, we start first with a
motivating example, illustrating the underlying problem:

Example 2.1 Assume that a preemption occurs right before the sfree instruction
C3 (E) of the code in Figure 6.1. The stack cache content then has to be saved and
restored to/from main memory. A simple bound of the number of blocks that have
to be transferred back and forth is given by the maximum occupancy provided by the
SCA. In this example four blocks (of A, B, and C) need to be transferred, both, during
context saving and restoration, as illustrated by Figure 6.2a. This overhead can be

(A1) func A()
(A2) sres 2 〈0〉
(A3) call B
(A4) sens 2 〈2〉
(A5) sfree 2

(B1) func B()
(B2) sres 1 〈0〉
(B3) call C
(B4) sens 1 〈0〉
(B5) call D
(B6) sens 1 〈1〉
(B7) sfree 1

(C1) func C()
(C2) sres 1 〈0〉
(C3) nop E
(C4) sfree 1

(D1) func D()
(D2) sres 4 〈3〉
(D3) sfree 4

Figure 6.1 – Program consisting of 4 functions, reserving, freeing and ensuring space
on the stack cache (cache size: 4). The annotations in angle brackets, e.g., 〈2〉,
indicate the maximum filling/spilling behavior of stack cache control instructions.

100

A
A
A2

0

A
A
B
B2

0

A
A
B
C
C2

0

E

�4
A
A
B
C
C3

�4

A
A
B
B4

�0
D
D
D
D
D2

�3

B
B6

�1

A
A
A4

�2

(a) Simple approach.

A
A
A2

0

A
A
B
B2

0

A
A
B
C
C2

0

E

�3

C
C3

0

B
B4

�1
D
D
D
D
D2

�1

B
B6

�1

A
A
A4

�2

(b) Improved approach.

Figure 6.2 – Cache states after executing the indicated instructions (below) and
number of blocks transferred (above).

reduced as illustrated by Figure 6.2b. The stack data of C will be freed immediately
after the preemption and thus is dead, i.e., the data can never be accessed after
the preemption. This reduces the cost of context saving to a transfer of 3 cache
blocks (of A and B) instead of 4. Also the context restoration costs are reduced.
Actually, no cache block needs to be restored here. It thus suffices to re-reserve a
single block on the stack cache for C’s dead stack data. The blocks of B are only
accessed after returning from C. The sens B4 will automatically restore the necessary
data. According to our initial SCA this instruction does not fill any block in the
worst-case without preemption, i.e., an additional overhead to transfer B’s cache block
needs to be accounted for as preemption cost. The cache blocks of A are similarly
restored by the corresponding sens A4. This time, the restoration will not cause
any additional cost, since the standard SCA already accounts for the filling of two
cache blocks. At the same time, the occupancy before the next function call to D is
reduced from 3 to 1, since only B’s stack frame was actually restored. Consequently,
the spilling of D’s reserve instruction D2 is reduced. With preemption, actually
fewer cache blocks are spilled than computed by the standard SCA – thus reducing
the preemption costs. In comparison to the simple approach, transferring 14 cache
blocks, the transfer costs only amount to 8 blocks.

This example illustrates that the number of cache blocks to save/restore can be
reduced depending on the future use of the cached data. Our analysis, explained in
the following subsections thus, is based on the notion of liveness – very similar to
the concept of Useful Cache-Blocks [70].

Context Saving Analysis (CSA): Clearly, data that is present in the cache,
but known to be coherent with the main memory (captured by the lazy pointer LP,
see [12]), can be excluded from context saving and thus reduce the preemption cost.
Furthermore, some data might be excluded from saving depending on liveness, i.e.,
dead data that is not used in the future can be excluded. We will show how the
analysis of dead and coherent data can be combined to reduce the number of blocks
that need to be saved on a context switch.

Context Restoring Analysis (CRA): As for CSA, dead data can be excluded
from context restoration. However, in many cases also live data can be excluded, e.g.,
when the data is spilled by an sres instruction before it is actually used or when
an sens instruction would refill the data anyway. We will show that the underlying
analysis problem is very similar to the liveness analysis required for CSA and, in

101

particular, that the placement of sens instructions after calls simplifies the analysis
problem.

3 Context Saving Analysis
The worst-case timing of saving the stack cache’s context depends on the number
of cache blocks that have to be transferred to the main memory. In the simplest
case, all blocks potentially holding data need to be transferred, i.e., the maximum
occupancy provided by SCA is a safe bound. However, not all data in the stack
cache actually needs to be considered, as illustrated by the motivating example.
The lazy pointer [12] readily allows to track coherent data that can be ignored during
context saving, i.e., data known to have the same value in the cache and in main
memory. Since the LP is implemented as a hardware register it can immediately
be exploited by any context switching mechanism. Also the proposed analysis is
immediately applicable and can be reused for the Context Saving Analysis. We thus
do not provide details regarding the analysis here and simply assume that its results
are available for the final cost computation of the CSA (see below).
Another class of data, that can be ignored during context saving, is dead data, i.e.,
data that will never be accessed by the program. Data in the stack cache may become
dead starting from a given program point due to two reasons: (1) data that will be
overwritten by an sts instruction (without an intermittent lds) in all executions or
(2) data that is freed by an sfree (without an intermittent lds) in all executions.
Inversely, data that is potentially used by a subsequent lds instruction has to be
considered live.
Note that individual bytes on the stack cache might be live or dead depending on
the actual usage of each individual byte, which would necessitate an analysis that is
able to track individual bytes. However, due to the structure of typical stack frames
generated by the compiler, we observe that dead data usually resides at the bottom
of the stack, i.e., right above ST. The following analysis takes advantage of this fact
in order to simplify the analysis complexity.
Inspired by the LP, we define a virtual pointer that allows us to track blocks of dead
data residing right above ST. This virtual marker is only used by the analysis and
is not realized as a hardware register. We call this virtual marker the dead pointer
(DP):

Definition 18 The dead pointer (DP) is a virtual marker tracking dead data, such
that ST ≤ DP ≤ MT. Data below DP is considered dead, while data above DP is
potentially live.

The lazy pointer (LP) and the dead pointer (DP) define a partitioning of the stack
cache’s content into three distinct regions shown in Figure 6.3. Data above LP is
coherent and thus can be ignored during context saving. Similarly, data below DP is
known to be dead and can safely be ignored. Only the remaining data, between DP
and LP, actually needs to be transferred to main memory. Note that this model only
allows to detect dead data at the bottom of the stack cache – which we observed to be
the usual case in the code generated by the compiler. The obtained results are thus
a conservative approximation, i.e., more dead data might actually be present in the
cache, which is not detected by the analysis and thus cannot be exploited. Likewise,
more coherent data might be present below the position of the LP determined by

102

ST

MT

LP

DP
(3) Dead data

(2) Data to save

(1) Coherent data

Figure 6.3 – Partitioning of the stack: (1) coherent data above LP (), (2) data that
actually needs to be saved (), and (3) dead data below DP ().

the analysis. Both of these cases may lead to an over-estimation of the worst-case
cost determined by the CSA, but do not compromise the analysis’ correctness. Also
note that this approach simplifies the actual context saving, since only a contiguous
block of data needs to be transferred.
The analysis of the DP is based on a typical backward liveness analysis, i.e., a value
is said to be live when it is used by a subsequent load (lds) and is considered dead
immediately before a store (sts), or, in the case of the stack cache, an sfree. As
for the traditional SCA, only the relative position of the DP with regard to ST needs
to be known, which further simplifies the CSA. Our analysis is a function-local,
backward data-flow analysis, conservatively tracking the lowest possible position of
the DP relative to ST, i.e., for each program point the minimum value min(DP− ST)
is computed over all possible executions of the analyzed program. This ensures that
the analysis is conservative and only considers the least amount of dead data actually
in the cache for the cost computation.
As indicated above, only three kinds of instructions may modify the position of
the DP. Whenever an lds is encountered, it must be ensured that DP is below its
frame-relative address FA starting from ST, i.e., DP ≤ FA, since the value loaded by
the instruction is known to be live. Recall that the analysis proceeds in a backward
fashion, so the loaded value is live at all program points before the lds, up to a
preceding sts instruction potentially overwriting the same FA. An sts, on the
other hand, might push the DP upward as the overwritten data is dead immediately
before the store. This is only possible when the analysis is able to show that the
newly discovered dead data is right above the contiguous block of dead data, such
that a new contiguous block can be formed. The sts overwrites data at a given
FA in the cache, the overwritten value thus can no longer be accessed and is dead
at all program points before the store instruction, up to a join (conditional branch)
and/or an lds instruction potentially rendering the data live. Finally, with regard
to a function, all its data is dead immediately before its sfree, since none of the
data in the stack frame can be accessed from this point on. The DP then is at its
highest possible position, i.e., the stack frame’s size k. In addition to these three
instructions that may directly have an impact on the DP, the analysis also needs to
consider conditional branches, i.e., instructions that may have multiple successors
in the CFG. Since the analysis proceeds backward, the successor’s DP values might
be different. The analysis thus needs to apply a join operator (see Section 2.4 of
Chapter 2), which selects a conservative approximation. In the case of CSA, the
minimum, i.e., the least amount of dead data, is considered.
The following data-flow equations specify how individual instructions (Equation 6.1)
and joins (Equation 6.2) may modify the relative position of the DP with regard to

103

sres 2

sts [1] = $ra

sts [0] = $a1

...

mov $a1 = 5

call foo

sens 2

lds $a1 = [0]

lds $ra = [1]

sfree 2

ret $ra
DP=0

DP=2

DP=1

DP=0
DP=min(1)=1

DP=0

DP=min(1,0)=0

DP=1

DP=2

DP=2

Figure 6.4 – Propagation of the DP (shown on the right in blue) within a function:
stack data becomes dead right before sfree and sts instructions, while it becomes
live before lds instructions. Other instructions do not impact the DP.

the stack frame of a function:

OUT(i) =

k if i = sfree k

min(IN(i), FA) if i = lds FA

IN(i) + 1 if i = sts FA ∧ FA = IN(i)
IN(i) otherwise

(6.1)

IN(i) =

{
0 if i = t
mins∈Succs(i)(OUT(s)) otherwise (6.2)

The position of the DP before (and after) each instruction in the function can then
be computed by applying these equations iteratively until a fixed-point is reached.
The initial values assigned to IN(i) and OUT(i) for each instruction i have to be
chosen such that the iterative processing actually converges and delivers a safe
approximation. The above data-flow equations compute the lowest position of the
DP, it thus suffices to initialize the equations with the size of the stack cache |SC|
or the size of the current stack frame k – both are upper bounds on the maximum
value of DP. The initialization of IN(t) to 0, where t represents the function’s exit
point, along with the use of the minimum as the join operator ensures that the
analysis converges towards the minimum value of the DP and consequently gives a
safe approximation.
Assuming a unit cost ĉs to transfer a cache block to main memory, the overhead
induced by context saving before an instruction i depends on the size of the coherent
area CA(i) (derived from the LP [12]), the size of the dead area DA(i) (given by
Equation 6.1), and the maximum occupancy Occ(i):

savingCost(i) = ĉsmax(0,Occ(i)− CA(i)−DA(i)) (6.3)

Note that the size of the coherent data as well as the maximum occupancy are poten-
tially calling-context dependent, i.e., might change with the nesting of surrounding
function calls. This is readily supported by the respective analyses and can easily
be considered in the above equations. The costs would then, of course, also be
context-dependent.

104

It would, in addition, be possible to consider the calling-context when analyzing the
dead area (DA(i)). Whenever all data in a function’s stack frame is dead, the size
of its caller’s dead area can be added to DA(i). However, this is rarely beneficial
in practice, since all functions, except leaf functions not calling other functions,
store the return address on the stack. Details on inter-procedural analysis are thus
omitted.

Example 3.1 Consider the CFG of the function shown in Figure 6.4, which consists
of three blocks of straight-line code. The sequence of the top most block is assumed to
end with a conditional branch having the two other blocks as successors (indicated
by the edges on the left). The goal of the analysis is to track the area DP − ST of
data that is known to be dead by computing the lowest possible position of DP at each
program point. The analysis processes the CFG backwards, starting at the return
instruction ret at the bottom. The computation of the analysis and its results are
indicated in blue to the right of the code. Since the return is the last instruction in
the function, the DP is initialized to 0. All stack data is potentially live here. The DP
value is then propagated to its predecessor the sfree instruction. All stack data is
known to be dead right before this instruction, the DP is thus set to 2, the instruction’s
argument (k). Next, the lds instruction is processed. The top most stack element of
the function’s stack frame is accessed (using the frame-relative address [1]) and thus
becomes live, which is indicated by the new DP value of 1. The second load ([0]) in
the block above is processed similarly. Here the DP drops to 0, indicating that both
stack elements are live. The remaining instructions (mov, call, sens) in the same
block have no effect on liveness. The last instruction of the top-most block has 2
successors with different DP values (1 and 0). The join operator conservatively takes
the minimum to safely over-approximate the actually live stack data. The algorithm
eventually processes the store instructions at the top. The first sts ([0]) overwrites
the first stack element, whose value becomes dead. The DP thus is incremented to its
new value 1. The subsequent sts ([1]) then overwrites the top element, rendering
all stack data dead (DP = 2). Note, that instructions before the sres/after the
sfree conceptually belong to the caller.

4 Context Restoring Analysis
Similar to context saving, the time required to restore a task’s stack cache context
depends on the number of cache blocks that need to be transferred from main memory
to the cache. A simple solution would again be to transfer all the blocks potentially
holding data, which is again bounded by the maximum occupancy.
However, as shown in Example 2.1, not all cache blocks have to be restored. We
can distinguish the following cases, as illustrated by Figure 6.5: (1) cache blocks
containing dead data only (given by Equations 6.1 and 6.2), (2) blocks potentially
containing live data that have to be restored, and (3) blocks that are restored by a
subsequent sens. Since only a subset of the cache blocks are restored the occupancy
after a preemption is usually reduced. This may reduce the spill costs of subsequent
sres instructions. The analysis thus has to consider another case: (4) potential
gains due to reduced spilling. Case (1) and (2) can be handled by function-local
analyses explained in Section 4.1, while case (3) and (4) require inter-procedural
analyses covered in Section 4.2 and 4.3.

105

4.1 Local Restore Analyses

Dead data can simply be excluded from the memory transfer as explained in the
previous subsection. However, in contrast to context saving where dead data is
simply discarded, space has to be allocated on the stack cache in order to guarantee
that subsequent memory accesses (stores in particular) succeed. The allocation is
only needed when dead data exists, i.e., DA(i) is non-zero. Even then, the operation
only requires an update of MT, which can be performed in constant time (ĉa):

allocationCost(i) =

{
ĉa if DA(i) 6= 0
0 otherwise

(6.4)

Blocks containing live data have to be restored and thus transferred back from main
memory. This can be done explicitly during the context restoration or implicitly
by an sens instruction executed later by the program. While the explicit transfer
always induces additional overhead that needs to be accounted for, the implicit
restoration might be for free. This happens when the maximum filling computed by
the traditional SCA for the sens instruction is non-zero. The overhead associated
with the explicit restoration is then, at least partially, accounted for in the program’s
WCET.
In order to account for the overhead of implicit and explicit transfers two quantities
have to be determined: (1) the amount of data that needs to be restored explicitly
and (2) the cost of implicit memory transfers performed by sens instructions.
We introduce another virtual marker to model the former quantity. This pointer
represents an over-approximation of the amount of live data in the stack cache that is
not implicitly restored by an sens instruction before a subsequent access rendering
the data live:

Definition 19 The restore pointer (RP) is a virtual marker tracking potentially live
data in the stack cache, i.e., ST ≤ RP ≤ MT. Data below the RP is potentially live and
not guaranteed to be restored by a subsequent sens instruction.

An interesting observation is that sens instructions are placed after every function
call and that functions are assumed to only access their own stack frames. This
simplifies context restoration, since only stack data of the function where the preemp-
tion occurred has to be restored. The stack frames of the calling functions are then
automatically restored by their respective sens. The computation of the associated
overhead is explained in Section 4.2.
The analysis of the RP is a function-local, backward analysis that tracks the highest
possible position of the pointer relative to ST (i.e., RP− ST), which means that an

ST

MT

RP

DP
(3) Dead data

(2) Data to restore explicitly

(1) Data restored implicitly (sens)

Figure 6.5 – Partitioning of the stack: (1) data restored by sens of the current as
well as other functions (), (2) data to restore (), and (3) dead data ().

106

over-approximation needs to be computed. The position of the RP depends on the
amount of data restored implicitly as well as the amount of live data. The analysis
thus needs to consider the impact of sens instructions, which lower the position
of the RP, as well as memory accesses, which may increment the RP. Whenever an
sens instruction is encountered by the analysis the position of the RP is set to 0,
which simply means that no data needs to be restored in case of a preemption that
occurs immediately before that ensure (recall that the analysis proceeds backward).
The sens simply reloads the entire stack frame when the task gets resumed. Data
becomes live whenever it is accessed by an lds instruction, the position of the RP
thus has to be larger or equal to the FA of any load instruction encountered. In order
to simplify the handling of dead data, lds and sts instructions are both considered
to increment the RP – despite the fact that stores do not actually render the data
live. Dead data is excluded from explicit and implicit transfers anyway using the DP
(as indicated above). Also note that there is no strict ordering between the DP and
the RP, i.e., it might happen that DP > RP. This usually happens when dead data is
present at an sens instruction, which sets the RP to 0, but has no impact on the
DP. In addition to the instructions that have an immediate impact on the RP the
analysis also needs to account for control-flow joins at conditional branches, which
may have multiple successors with diverging RP values. The analysis always selects
the maximum value and propagates this information upwards in order to ensure that
the position of the RP is safely over-approximated. The following equations capture
the evolution of the RP relative to ST:

OUTRP (i) =

0 if i = sens k

max(INRP (i), FA) if i = lds FA ∨ i = sts FA

INRP (i) otherwise
(6.5)

INRP (i) =

{
0 if i = t
maxs∈Succs(i)(OUTRP (s)) otherwise (6.6)

Assuming unit costs ĉr to transfer a cache block from main memory, the cost of
restoring the live data of the stack cache depends on the size of the dead area (DA(i),
Equation 6.1) and the size of the restore area (RA(i), Equation 6.5):

transferCost(i) = ĉr max(0,RA(i)−DA(i)) (6.7)

Example 4.1 Figure 6.6 illustrates the propagation of the RP through the CFG
from the previous example. The processing again starts at the bottom of the CFG
at the return instruction. At this point all data is dead (RP = 0) and thus does not
need to be restored explicitly. This changes when the first lds instruction ([1]) is
encountered, which renders the top-most element of the stack frame and all elements
below it live. This is indicated by the new RP value of 2. The RP does not change
until the sens instruction is processed. At this point all the stack frame’s data is
known to be live. However, the sens instruction ensures that all stack data is filled
into the cache. Thus no explicit restoration is required and the new value of RP
becomes 0. The other instructions in the block above the sens do not have an impact
on the RP. As before, the last instruction of the top-most block is assumed to be a
conditional branch with two successors having different RP values. This time, the
maximum value 2 is propagated upwards in order to conservatively over-approximate
the amount of potentially live data. The subsequently processed instructions do not

107

sres 2

sts [1] = $ra

sts [0] = $a1

...

mov $a1 = 5

call foo

sens 2

lds $a1 = [0]

lds $ra = [1]

sfree 2

ret $ra
RP=0

RP=2

RP=max(2)=2

RP=0

RP=0

RP=max(2,0)=2

RP=2

RP=2

RP=2

Figure 6.6 – Propagation of the RP (shown on the right in blue) within a function:
only lds, sts, and sens instructions impact the RP, while other instructions do
not modify its value.

have an impact on the RP since it is already at the maximum position (2), which
would indicate that the entire stack frame needs to be restored explicitly. However,
since the DP was shown to be non-zero (see Example 3.1), the stack frame only needs
to be restored partially.

It remains to account for the implicit transfer costs at sens instructions in the current
function that are not already included in the program’s WCET. This situation arises
whenever the RP pointer is not at its maximum position (the size of the function’s
stack frame k). The function’s stack frame is thus only partially restored by the
explicit transfer after a preemption and some additional cache blocks need to be
filled from main memory implicitly by the next sens instruction. The additional
cost of this transfer depends on the size of the function’s stack frame, the size of
the restore area (RA (i) from above), and the number of cache blocks that need to
be transferred by the sens instruction for a regular execution without preemption,
which is provided by the standard SCA in the form of an annotation to the instruction
(〈b〉). The overhead is trivially upper-bounded by the function’s stack frame size k.
A more precise bound would be k− RA(i), which reflects the reduction of the cost
of the implicit transfer cost by deducting the explicitly transferred blocks. Another
bound can be derived from the maximum filling bound b associated with an sens
instruction. The additional costs due to the implicit restoration cannot exceed k− b,
which represents the maximum number of cache blocks whose transfer costs are not
accounted for in the program’s WCET.
The following cost function combines both of the above approaches. However, before
the cost function can be defined, an intermediate step has to be performed, which
propagates the maximum filling bounds associated with individual sens instructions
to all program points throughout the function. This allows to determine for each
instruction, also those that are not an sens, the number of cache blocks that are
potentially filled by any subsequent sens instruction. This intermediate step can
be implemented using a function-local, backward DFA, propagating the difference
between the sens’s argument k and its filling bound 〈b〉 (obtained from the standard

108

SCA) upwards through the CFG:

OUTFL(i) =

{
k− b if i = sens k 〈b〉
INFL(i) otherwise (6.8)

INFL(i) =

{
0 if i = t
maxs∈Succs(i)(OUTFL(s)) otherwise (6.9)

The overhead caused by implicit memory transfers of sens instructions can then
be computed from the number of cache blocks that are filled implicitly (FL(i),
Equation 6.8) and the number of blocks that were explicitly restored, i.e., the size of
the restore area (RA(i), Equation 6.5):

ensureCostLocal(i) = ĉr max(0,FL(i)− RA(i)) (6.10)

As for the analysis of the DP before, the above data-flow equations for the RP and
the local filling need to be initialized properly in order to ensure that the fixed-point
computation converges. Since both analyses define the join operator as the maximum
over all successors, the equations have to be initialized to 0 before the resolution
process starts. In the case of the RP analysis this indicates that no data needs
to be restored explicitly after the function’s sfree. The fist access to stack data
encountered by the analysis will then increment the RP value accordingly. The
iterative processing then ensures that the analysis converges towards a safe upper
bound. A similar argument applies to the propagation of the local filling bounds.
The equations also contain an explicit initialization to 0 for the function’s exit point
t. This initialization is, in fact, redundant, given the fact that t cannot have any
successors and that all data-flow equations are initialized to 0 anyway.

4.2 Global Ensure Analysis

The analyses in the previous subsections exclusively focus on the state of the stack
frame of a single function and account for additional costs related to the restoration
of the stack frame of the function whose execution was interrupted by a preemption.
The stack frames of other functions that are currently on the call stack are not
explicitly restored. This is done via implicit memory transfers, which are performed
by the sens instructions that are placed after every function call. The underlying
idea is very similar to the local reserve analysis discussed before, with the main
difference that no explicit memory transfer is performed whatsoever.
To analyze the costs associated with these implicit memory transfers, an over-
approximation needs to be computed that considers all possible states of the call
stack, i.e., all possible chains of nested function calls leading up to a call to the function
under analysis. This is sufficient, since the additional overhead is only induced by
the sens instructions that are executed upon returning from functions along the call
stack. The program’s call graph (CG) is a well-known representation capturing all
chains of nested function calls that may occur during the execution of the program
(see Section 2.4 of Chapter 2). Each such chain observed during the execution of
the program corresponds to a path in the call graph starting at the program’s entry
point (typically the main function) and leading to the graph node representing the
current function. In order to compute the desired over-approximation, the analysis
thus needs to consider all paths leading to the currently considered function and
associate a cost with each path.

109

A() B() C()

D()

0 02〈2〉 11〈0〉

0
1〈1〉

Figure 6.7 – Weighted CG of the code in Figure 6.1 used to bound the additional
transfer costs at sens instructions of other functions.

We model this problem as a longest path search on a weighted CG, considering all
paths from the program’s entry node to the current function. The edge weights
in the graph are the number of blocks that are not filled by the sens associated
with the corresponding call site, which is given by FL(i) (Equation 6.9) of the site’s
call instruction. Note that this problem is very similar to the computation of the
maximum displacement of the original SCA [11]. However, the length of the path is
bounded: (1) by the maximum occupancy at the call site (which is itself bounded by
the stack cache size) and (2) by the minimum amount of stack data remaining in
the stack cache after returning from the function, i.e., max(0, |SC| −D(f)), where
|SC| denotes the stack cache size and D(f) the function’s maximum displacement.
The latter case is particularly interesting, since no computation is required when the
function’s displacement is larger than or equal to the stack cache size. The length of
the path and the restoration costs then simply become 0. Also note that the global
ensure costs are always the same, independent of where the program is interrupted
in the function. It is thus sufficient to pre-compute the costs only once for each
function.
Our algorithm thus pre-computes the global ensure costs as follows. A weighted
call graph is constructed beforehand, where the edge weights are provided by the
local ensure analysis (Equation 6.9). The algorithm then processes each function
f separately. First, it is verified whether the maximum displacement D(f) of f
exceeds the stack cache size. If this is the case, the global ensure costs are bounded
by 0, and the algorithm simply proceeds with the next function. Otherwise, an
integer linear program (ILP) is constructed, which is similarly structured as the
traditional IPET approach [77]. The ILP encodes all paths originating at the root
node of the CG leading to the current function, such that the objective function
represents the length of the path. An ILP solver then computes the longest such
path, by maximizing the objective function. Note that this approach allows to handle
any kind of program, including those with recursion. The original work on the
SCA includes a detailed description on the handling of recursion [11]. Note that for
programs without recursion the longest path for all functions can be computed in
linear time using dynamic programming [29]. Given the length FLG(f) of such a
path for function f , the costs induced at other functions is:

ensureCost(f) = ĉrFLG(f) (6.11)

Example 4.2 Consider the code from the initial example in Figure 6.1. The algo-
rithm begins by constructing a weighted call graph as shown in Figure 6.7. Apart from
the edge weight that is shown in the middle of each edge, the figure also indicates
the information provided by the local ensure analysis at the respective call site. The
numbers at the origin of each edge represent the argument k of the next ensure

110

instruction following the call site as well as its filling bound in angle brackets. The
edge weight simply correspond to the difference between these two values.
The edge weight for the call from B to C, for instance, evaluates to 1, since the
corresponding ensure instruction may transfer an additional block, which is not
accounted for by its original bound 〈0〉 (1− 0 = 1). Similarly, the edge weight of the
call from A to B evaluates to 0. The corresponding sens transfers up to 2 blocks, of
which both are already accounted for by the bound 〈2〉 (2− 2 = 0).
For C the longest path has a length of 1, since an additional block needs to be
transferred if a preemption were to happen during the execution of C. The longest
path from the program’s entry to function D has length 0, i.e., all cache blocks of
calling functions are restored for free as they are accounted for by the original bounds.
The same result could have been computed from D’s maximum displacement (4), which
is equal to the cache size (4).

4.3 Global Reserve Analysis

Lazily restoring the stack cache content not only allows us to avoid explicit memory
transfers during context switches, but it may also turn out to be profitable. Even in
the worst-case only the stack frame of the current function is restored, which leaves
the remaining space in the stack cache free and thus effectively reduces the stack
cache’s occupancy. This may be beneficial for subsequent sres instructions, since
the reduced occupancy may also reduce the maximum spilling. This, consequently,
may reduce the running time of the program under analysis. There are two scenarios
where such a gain might be observed: (1) at an sres of another function that is
called from the current function and (2) at an sres of another function that is called
after returning from the current function. It is important to note here, that multiple
sres instructions may profit from the reduced occupancy, i.e., when several calls
are nested or are performed in sequence with increasing displacement values. The
analysis thus needs to be able to accumulate gains of multiple function calls, while
providing a conservative under-estimation of the actual gains. We will initially focus
on the first scenario and limit our attention to a single function call, and later extend
this solution in order to handle the accumulation of gains as well as gains from the
second scenario.
Recall that the WCET of the program under analysis already includes an estimate
of the maximum spilling at sres instructions, which is computed for each function
individually from the maximum occupancy before entering the function and the
amount of stack space (k) reserved by the function’s sres. This can be generalized
to several nested function calls by considering the displacement at the outer-most
function call. The maximum spilling performed by all called functions can then
be bounded by considering the maximum occupancy along with the maximum
displacement of the nested function calls. While the minimum spilling can be bounded
by considering the minimum occupancy along with the minimum displacement.
Consequently, a conservative estimation of the minimum gain can be computed by
comparing the minimum spilling of a normal execution with the minimum spilling
after a preemption. More formally, given a call instruction i with a minimum
occupancy mOcc(i) and a minimum displacement d(i) the minimum spilling during
a normal execution is given by:

minSpill(i) = max(0,mOcc(i) + d(i)− |SC|) (6.12)

111

The minimum spilling with preemption is computed in a very similar way. However,
the minimum occupancy is lower due to the lazy restoration of the stack cache’s
content. A simple bound of the minimum occupancy, that is sufficiently precise in
practice, is the size of the current function’s stack frame, i.e., the argument of the
current function’s stack cache control instructions k:

minSpillPr(i) = max(0, k+ d(i)− |SC|) (6.13)

The minimum gain from the reduced spilling at a call site i is then given by:

siteGain(i) = max(0,minSpill(i)−minSpillPr(i)) (6.14)

A simple solution to account for the impact of the next function call is to propagate
the gain at call sites backward through the CFG. The following equations determine
the minimal gain that is guaranteed to occur for only one of the subsequent function
calls. At joins, the equations select the minimum, while the maximum is selected on
straight line code:

OUTGN(i) =

{
max(INGN(i), siteGain(i)) if i = call

INGN(i) otherwise (6.15)

INGN(i) =

{
0 if i = t,
mins∈Succs(i)(OUTGN(s)) otherwise (6.16)

As before, the data-flow equations have to be initialized in order to ensure that the
analysis converges. The equations have to be initialized to the maximum possible
gain, i.e., |SC|, the size of the stack cache, except for the function’s exit node t.
Since, at this moment, the analysis only considers local gains due to calls from
within the current function, the gain at the end of the function evaluates to 0 for
t (Equation 6.16). The analysis converges towards a minimum gain, despite the
fact that on straight-line code the maximum value is propagated (which initially
indeed is |SC|). This is ensured by the initialization of t (0) and the fact that the
minimum value is selected at joins (Equation 6.16). The analysis thus will eventually
reevaluate the data-flow equations of all program points reachable in the reversed
CFG from the function’s exit node t and converge towards a minimum.
Since we initially did not expect considerable returns from this analysis, our initial
publication [13] adopted this simple approach only without developing it further.
Though simple to compute, this solution is conservative. The gain of subsequent
calls can, in fact, be accumulated since the occupancy remains lower than in a
regular execution even after returning from the called functions. Unfortunately, this
accumulation of costs cannot directly be encoded using data-flow equations. The
accumulated costs in cyclic regions of the CFG would grow infinitely and thus yield
wrong results.
Since then, we noticed that the underlying problem can, in fact, be seen as a shortest
path problem on a weighted CFG. The edge weights in the graph represent the gain
associated with individual call sites (Equation 6.14), while the length of the shortest
path from an instruction i to the CFG’s sink node t represents the accumulation of
gains for all of the visited call sites. This is possible since every call site is uniquely
identified even if some function is called many times in some execution path. However,
the analysis has to make sure that the gain of visited call sites is not accumulated
more than once. Fortunately, this cannot occur since the only way to revisit the

112

same call site again would be in a loop. Such a scenario is naturally avoided by the
shortest path search algorithm, since revisiting the same call site would increase the
path length. Given the length LSG (i) of the shortest path for instruction i, it is
now possible to account for the actual gain associated with all function calls possibly
executed within the current function after a preemption at i:

reserveGainLocal(i) = ĉsLSG(i) (6.17)

Note that the length of the path, and thus the local gain, is bounded. The gain can
never exceed |SC|−k, since the lazy restoration may in the worst-case only reload the
local stack frame, whose size is given by k. This can also be seen by assuming that
the minimum occupancy (mOcc(i) in Equation 6.12) evaluates to |SC|. Simplifying
the formulas (cf. Equation 6.13 and 6.14) yields the same result. This bound holds for
nested function calls and sequences of function calls. The nesting of function calls is
conservatively modeled using the minimum displacement (d(i)) in the formulas. The
effects of function calls that are performed in sequence are conservatively modeled by
considering the minimum occupancy, provided by the standard SCA. Recall that the
minimum occupancy can be bounded locally by considering the impact of function
calls through their maximum displacement (see Chapter 2.Section 2.4). The gain
of each function call in a sequence thus is reduced by preceding calls due to the
reduced minimum occupancy, which immediately depends on the calls’ maximum
displacements. The accumulated local gain thus cannot exceed the aforementioned
bound since the gain gradually approaches 0 due to the interplay between minimum
occupancy and maximum displacement of intermittent calls.

Example 4.3 The gain due to the reduced spilling at the function entry of B needs
to be analyzed, right after its reserve instruction B2. The function first calls C,
whose minimum occupancy, provided by the standard SCA, evaluates to 3, while its
displacement evaluates to 1. Spilling will never occur while executing C, since the
stack frames of A, B, and C fit into the stack cache (2 + 1 + 1 = 3 + 1 <= 4). The
local reserve gain associated with the respective call site thus is 0. Likewise, the
minimum occupancy before the call to D is 3, its displacement, however, is 4. The
sres instruction D1 consequently spills 3 blocks (3+4−4) during a regular execution
(Equation 6.12), while only a single block (1 + 4− 4) is spilled after a preemption
(Equation 6.13). The call site is thus associated with a weight of 2 (3− 1). Since both
calls are executed in any case, the length of the shortest path from the preemption
point to the end of B evaluates to 2 (cf. Equation 6.17).

The previous analysis only accounts for the gain due to function calls within the
current function. In addition, it is also possible to account for potential gains after
returning from the current function. Recall that the stack frames of all functions
currently on the call stack are lazily restored. The occupancy after a preemption
may thus also be lower for these functions compared to a regular execution without
preemption. Similar to the computation of the global ensure costs, we can account
for this gain through a path search on a weighted CG. The edge weights for this
graph are given by the local reserve gain (Equation 6.17) at the respective call sites.
The minimal gain that is guaranteed to occur for all executions has to be computed.
The algorithm thus has to search for the shortest path in the CG instead of the
longest. Given the length GSG(f) of the path for function f , the global gain due to
sres instructions is given by:

113

A() B() C()

D()

0 0 2

0

Figure 6.8 – Weighted CG of the code in Figure 6.1 used to bound the global gain
due to sres instructions of other functions.

reserveGain(f) = ĉsGSG(f) (6.18)

An interesting observation at this point is that the global reserve gain is bounded just
as the local reserve gain before. As the analysis climbs upwards through the call graph
(towards the program’s entry function), the displacement of the functions increases.
With this increase the potential gain of subsequent function calls diminishes (as
before), limiting the global reserve gain to the minimum of either the minimum
occupancy at the function’s entry or |SC| − k, where k represents the current
function’s stack frame size.

Example 4.4 Consider the code from the initial example in Figure 6.1. The al-
gorithm begins by constructing a weighted call graph as shown in Figure 6.8. The
edge weights correspond to the local gain associated with each call site, given by
Equation 6.17. For the call from B to C, for instance, the edge weight evaluates to 2.
This is because a preemption that occurs in C will eventually return to its caller B
with a reduced occupancy. This will lead to reduced spilling during the subsequent
call to D, as explained in more detail in Example 4.3. The local reserve gain after
the call to C at instruction B4 thus gives the above edge weight. The same applies
for the call from B to D. Here, the local reserve gain at instruction B6 yields the edge
weight 0, since no additional function calls appear after that instruction. The global
reserve gain at C thus evaluates to 2 (0+0+2), which correspond to the length of the
path from the call graph’s root to the node representing the function. For all other
functions the global gain simply evaluates to 0.

4.4 Context Restore Costs

The total context restoration costs are then bounded by accumulating the individual
costs for space allocation, the explicit and implicit transfer of cache blocks at sens
instructions (locally and globally). In addition, the preemption costs are partially
amortized by the reduced spilling at sres instructions (locally and globally). Note
that f(i) denotes the function containing instruction i:

restoreCost(i) = allocationCost(i) (Eq.6.4)
+transferCost(i) (Eq.6.7)
+ ensureCostLocal(i) (Eq.6.10)
+ ensureCost(f(i)) (Eq.6.11)
− reserveGainLocal(i) (Eq.6.17)
− reserveGain(f(i)) (Eq.6.18)

(6.19)

Example 4.5 Consider again the preemption point at instruction C3 in the code
shown in Figure 6.1. The context restoring analysis first determines the minimal/max-
imal offset of the DP and RP with regard to ST respectively (Equations 6.1 and 6.5).

114

The RP offset is 0, due to the absence of lds and sts instructions in the code, which
are omitted for brevity. DP on the other hand, is equal to 1, since all data is dead
right before the sfree instruction C4. Therefore a single block has to be allocated
to properly rebuild C’s stack frame, i.e., allocationCost(C3) = 1. Since all data of
the current stack frame is dead, neither an explicit memory transfer nor an implicit
restoration by an sens instruction is necessary, i.e., transferCost(C3) = 0 and
ensureCostLocal(C3) = 0.
After returning to its caller, the ensure instruction B5 has to restore the entire stack
frame of B. The additional cost has not been considered by the bound provided by
the standard SCA (〈0〉). The instruction thus fills an additional cache block. The
sens instruction A4, on the other hand, restores all of A’s cache blocks for free (〈2〉).
Therefore, the global ensure cost accounts for the transfer of an additional cache block
(ensureCost(C) = 1), as illustrated before by Example 4.2.
As C does not call any other function, it cannot profit from a local reserve gain
(reserveGainLocal(C3) = 0). However, the analysis determines the potential gain
for function calls after returning from C. The occupancy before the call to D is reduced
by 2 blocks compared to a regular execution. The local gain associated with the
corresponding call site is thus 2. Since there is no other subsequent call in B nor
in A, no further gain can be considered. The global reserve gain for function C thus
amounts to 2 cache blocks (reserveGain(C) = 2), as shown in Example 4.4.
The total cost, associated with context restoration after a preemption at the indicated
program point C3, is thus given by 1 + 0 + 0 + 1− 0− 2 = 0, assuming unit costs of
ĉa = ĉs = ĉr = 1.

5 Computational Complexity
The overall complexity of the CSA and CRA depends on the various analysis steps,
which consist of four classes of analysis problems: (1) function-local data-flow analyses,
(2) longest path searches on the CG, (3) shortest path searches on the CG, and
finally (4) shortest path searches on the CFG of individual functions.
We assume that the data-flow equations of the various DFAs are solved using a
traditional worklist algorithm, which iterates until a fixed point is reached. Various
complexity bounds can be considered for different classes of DFAs, depending on the
size of the CFG as well as on characteristics of the analysis domain.
In our case, the domains are essentially natural numbers in the range [0, k] (cf. the
analyses of the DP, RP, and local filling) or [0, |SC|] (local gain), where k in turn
is also bounded by |SC|. The considered analyses are monotone, i.e., the analyzed
values steadily increase or decrease until either the minimum or maximum value
of the domain is reached. This is called the height of the domain, which can be
bounded by |SC| for all considered DFAs.
The iterative worklist algorithm then propagates the domain values along the control-
flow edges in the CFG. This leads to a first, conservative, complexity bound for the
previously described analyses, which is in O(|E||SC|) considering the height of the
domain |SC| and a CFG with |E| edges. Another bound can be derived using the
loop connectedness of the reversed CFG (since all considered problems are backward
problems). This parameter characterizes the nesting of loops in a CFG G with
respect to a spanning tree T of G [56, 64] and usually is denoted as d(G, T). The
number of iterations performed by the worklist algorithm can be bounded by this

115

parameter when the order in which the CFG edges are processed is well chosen. The
iterative processing may then process each CFG edge at most d(G, T) + 3 times,
resulting in a complexity bound of O(|E|(d(G, T) + 3)), where |E| again denotes the
number of CFG edges in the CFG G. The loop connectedness can be considered
constant in practice (since loops tend to have a simple structure). Similarly, the
size of the stack cache |SC| can be considered constant with regard to the analysis
problems. The overall complexity of all the previously described DFAs is thus linear
in the size of the CFGs of the individual functions in the program under analysis.
The global ensure analysis relies on longest path searches on the CG in order to
bound the cost induced by implicit memory transfers of sens instructions. For
programs with recursion (which are often forbidden in the context of real-time
systems) this requires the construction of an ILP (similar to the well-known IPET
approach by [77]) for each node of the CG. The ILPs are subsequently solved by
an external solver (such as CPLEX or LPSolve). While it is possible to bound
the complexity of constructing an ILP in linear time with respect to the size of
the CG, it is difficult to bound the solving times. Integer linear programming in
general is NP-hard. However, it appears that today’s solvers are able to handle the
problem instances we encountered in our experiments quite well. The solvers almost
instantly provide an optimal solution – even open-source solvers that do not apply
sophisticated heuristics. For programs without recursion, the longest path search for
all functions can be performed in O(|F |+ |A|) [29], where |F | represents the number
of functions in the CG and |A| the number of call sites. Note, furthermore, that the
two approaches can be combined, i.e., dynamic programming is applied to a reduced
CG where cyclic regions are collapsed. The potentially expensive ILP solving can
then be limited to the recursive functions only [63].
The shortest path searches on the CG (global reserve gain) and the CFGs of individual
functions (local reserve gain) can be performed in quadratic time in the size of the
respective graphs using simple algorithms. More advanced algorithms allow to reduce
the complexity to almost linear time, e.g., the algorithm of [121] yields a complexity
in O(|E|+ |V | log log |V |). The local reserve gain can thus be computed in almost
linear time with regard to the size of the CFGs of individual functions. The same
applies to the global reserve gain, which can be computed in almost linear time with
regard to the number of functions and call sites in the program. These bounds are
independent from the graphs’ shape, which may well contain cycles, i.e., loops in the
case of CFGs or recursion in the CG.
The complexity of the proposed CSA and CRA analyses thus is dominated by the
longest/shortest path searches, whose complexity depends on the size of the program
under analysis (both in terms of function size as well as the size of the CG). Lastly,
the complexity of the standard SCA needs to be taken into consideration, since
intermediate results of this analysis are reused in various analysis steps of the CSA
and CRA. The SCA is similarly based on longest/shortest path searches that are
combined with function-local DFAs. The complexity analysis for the SCA is almost
identical to the discussion from above [63]. The overall complexity to compute the
preemption costs is thus not impacted and is also dominated by the longest/shortest
path searches.

116

6 Discussion
The analysis proposed here mostly operates locally on individual functions. This
reduces the computational complexity (context-sensitivity is avoided) and simplifies
the efficient analysis of large programs (e.g., through parallel analysis). Inter-
procedural information is modeled through longest path problems on the CG, which
is much smaller than a corresponding inter-procedural CFG. As real-time software
usually avoids recursion, these computations are very efficient (linear in the size of
the CG). Also note that the function-local data-flow analyses usually ignore sres
and sfree instructions. Consequently, the computed results do not apply for code
before an sres as well as after an sfree. This is not an issue, since the correct
information can be derived from the calling functions, i.e., code before/after the
first/last stack cache control instruction in a function is logically considered to be
part of the immediate caller.

7 Experiments
This section presents an evaluation of the preemption costs associated with the stack
cache. We cover full results from the static analysis described in Sections 3 and 4.
The benchmarks are taken from the MiBench benchmark suite [52], which covers
a large variety of small- and medium-sized programs typically found in embedded
systems. The programs were compiled with optimizations enabled (-O2) using the
LLVM1 compiler for the Patmos processor [111]. The instruction set of the processor
follows the Very Long Instruction Word (VLIW) paradigm and may execute up to two
instructions that are grouped into parallel bundles at the same time. All instructions
explicitly take a predicate operand, which allows to conditionally nullify instructions
depending on the predicate value that is evaluated at runtime. The hardware of
the platform is configured with a 64KB, 4-way set-associative data cache using
LRU replacement, and a write-through policy (recommended for real-time systems,
see [125]). Code is cached by a 64KB method cache [111] with LRU replacement
and 32 code block entries. The stack cache is 256b small and uses a lazy pointer [12].
Note that varying the stack cache size between 256b and 1KB showed little impact on
the results obtained. The global memory is assumed to have a moderate latency of
21 cycles. Memory transfers are performed in bursts of 32b. The cache line size of all
caches matches the memory’s burst size. Note, the stack cache control instructions
still operate in words, while memory transfers are performed in bursts.
The analysis is implemented in the Patmos backend of the LLVM compiler, and
operates on the final machine-level code, right before code emission. The reported
numbers represent a simplified cost model, consisting of the number of bytes that
have to be saved or restored during context switching at the beginning of basic blocks,
i.e., sequences of straight-line code that are typically terminated by a (conditional)
branch instruction.

7.1 Context Restoring Analysis

The context restoring analysis shows remarkable results over all benchmark programs
considered. The main benefit stems from the fact that the sens instructions are

1http://www.llvm.org/

117

http://www.llvm.org/

<0 ≤25 ≤50 ≤75 ≤100≤125≤150≤175≤200≤225≤256
0

2

4

6

·104

Transfer Costs (bytes)

#
B

as
ic

B
lo

ck
s

Full Optimized

Figure 6.9 – Histogram of transfer sizes (in bytes) for context restoration at basic
blocks using max. occupancy (Full) and our approach (Optimized). Lower is better.

placed after each function call. Many of these instructions restore a part of the
stack cache context for free, leading to considerable reductions in comparison to a
full restoration based on maximum occupancy. In total, the benchmarks consist of
114257 basic blocks of which, 113596 (99.4%) show an improvement. In the mean,
over all benchmarks, the improvement is 4.1 fold (min. 3x, max. 7x per benchmark).
Figure 6.9 nicely illustrates these improvements. An unoptimized, full restoration
typically reloads 250b or more (50281 basic blocks or 44%), while our optimized
approach typically only reloads up to 50b (71658 or 67%) with another peak between
126b and 150b.
In many cases no explicit memory transfer is needed at all (49494 or 43.4%), i.e.,
Equation 6.7 evaluates to 0, while for virtually all other cases the entire local stack
frame is explicitly restored (62934 or 56%). Out of the 49494 cases, where no explicit
memory transfer is required, 39558 will eventually have their entire stack frame
reloaded by a subsequent sens. Consequently, in 93.9% of the cases the preemption
costs will have to account for the restoration of the current function’s entire stack
frame (either by a subsequent sens or by an explicit memory transfer).
Furthermore, a close look at the minimum and maximum restore costs reveals that
there often is no variation with regard to the restoration costs within individual
functions. Out of the 8588 functions, 6575 (77%) show no variation at all. The
variation for the remaining 2013 functions is illustrated by Figure 6.10, which relates
the maximum restoration costs against the minimum. In addition, we show the
identity function f(x) = x as a reference. Values close to the shown line indicate low
variation. In our measurements, 1287 functions (64%) show an absolute variation
below 32b and only 218 functions (10%) have a large variation above 64b. Due to
the fact that the minimum restoration costs often evaluates to 0 (1436 functions or
71%), a relative comparison is difficult.
As can be seen in Figure 6.9 and 6.10, even a few cases can be observed where the
total restoration cost becomes negative (609 basic blocks or 0.5%), i.e., the program
runs faster since the total transfer size to restore the cache content is smaller than
the gain due to reduced spilling (cf. Equation 6.15). For 3488 basic blocks a non-zero

118

0 50 100 150 200 250

−100

0

100

200

maximum restore cost

m
in

im
um

re
st

or
e

co
st

f(x) = x

Figure 6.10 – Minimum vs Maximum cost reduction (in bytes) for context restoration
at functions. Smaller distance to the reference line is better.

gain due to reduced spilling was found (3%). Our new analysis algorithm improves
upon the previous version [13] by 77% with regard to the average local reserve gain
and by a factor of 3.72 when considering the local and global gain combined.
Due to the fact that the analysis operates on a very simple domain (integers) and
usually only considers individual functions, the analysis time itself is negligible. Also
the inter-procedural aspects of the analysis appear to scale well. This particularly
applies to the longest path search on the CG required to determine the worst-case
restoration cost of sens instructions of other functions (Section 4.2 and 4.3). Over
all benchmarks only 7 functions out of 1428 require a potentially time-consuming
longest path search in a strongly connected component of the CG. For 771 the length
of the path is known to be 0 due to the maximum displacement provided by the
standard SCA. All other functions are in non-cyclic regions of the CG, which allows
us to apply dynamic programming to compute the longest path.

7.2 Context Saving Analysis

Despite the fact that the context saving analysis does not account for inter-procedural
effects, it shows consistent improvements over all benchmark programs considered.
From 114257 basic blocks in the benchmarks 11618 (10.1%) show a reduction in the
context saving overhead. However, the reductions are moderate, as can be seen in the
histogram of Figure 6.11. For the basic blocks with lower transfer size, the reduction
amounts to 8.9% on average over all benchmarks (minimum 5.9%, maximum 20.7%
on average, per benchmark), resulting in a moderate shift in the histogram (from the
right to the left). These results are hardly surprising, since the data of all functions
currently holding data in the stack cache has to be saved. The reductions are thus
much smaller than for the context restoring analysis. It is evidently much harder to

119

≤25 ≤50 ≤75 ≤100≤125≤150≤175≤200≤225≤256

2

4

6

·104

Transfer Costs (bytes)

#
B

as
ic

B
lo

ck
s

Full Optimized

Figure 6.11 – Histogram of transfer sizes (in bytes) for context saving at basic blocks
using max. occupancy (Full) and our approach (Optimized) from Section 3. Lower
is better.

eliminate the context saving overhead, which unfortunately can have an immediate
impact on the Worst-Case Response Time (WCRT) of other tasks.

8 Conclusion
The stack cache exploits the access patterns to stack data, which results in simpler
hardware and analysis. Due to its simplicity, the stack cache cannot hold the stack
data of different tasks at the same time. The stack cache content thus becomes part
of the task’s execution context, which has to be saved/restored explicitly during
context switching.
We presented a static program analysis to determine the worst-case preemption costs
associated with the stack cache during context switching. The analysis is composed
of several smaller, function-local data-flow analyses. Inter-procedural effects are
handled through variants of the longest path problem. Experiments showed that
the analysis complexity is low and that the restoration costs can be reduced heavily,
since ensure instructions (sens), placed after function calls, often restore the cache
context for free. On the other hand, context saving costs appear difficult to eliminate.
To mitigate this issue, we present in Chapter 9 an idea to virtualize the stack cache.
Via the use of the scratchpad memory and TDM bus arbitration, the goal is to
ultimately hide the cost of context switch operations while dynamically managing
multiple stack caches.

120

CHAPTER 7

Preemption Mechanisms for the Stack Cache

In the previous chapter, we provided analyses to bound the preemption cost for every
instruction in the program. The information generated by the analyses is rich and
includes various parameters involved in the preemption cost depending on the precise
location of the preemption. However, the potentially large quantity of information,
although precise, is of little use if the scheduler cannot use it without inducing
considerable overhead. We thus propose in this chapter preemption mechanisms. This
chapter is organized as follows. We start with a short introduction, then we present
our approach in Section 2. Section 3 provides solutions as to how the mechanisms can
be integrated to support different preemption schemes. The experiments are presented
in Section 5 before concluding.

1 Outline
The preemption mechanism describes a set of operations that the real-time scheduler
has to perform in order to execute a context switch. This includes saving and
restoring the processor’s register values, resetting the memory management unit (if
one exists), as well as re-configuring other shared hardware resources. If a stack
cache is present its content needs to be saved and restored explicitly.
Under Patmos, a simple solution has been chosen and implemented in RTEMS 1 2 –
a popular RTOS in avionics. For the context saving, the approach consists first of
computing the occupancy of the preempted task Occ = MT - ST. Then, the entire
content of the stack cache is saved by performing an sres |SC|, which temporarily
allocates a stack frame of the total size of the stack cache. This causes the entire
content of the stack cache (i.e., occupancy) to be spilled to main memory and thus
be saved. Finally, the occupancy and special registers are saved including the MT
pointer which now holds the stack top address of the preempted task. On the other
hand, the context restoration consists first of restoring the special registers which
include the MT pointer. The stack cache content is restored using sens Occ, which

1https://www.rtems.org
2https://github.com/t-crest/rtems

121

https://www.rtems.org
 https://github.com/t-crest/rtems

ST

MT

LP

DP
(3) Dead data

(2) Data to save

(1) Coherent data

(a) Context saving.
ST

MT

RP

DP
(3) Dead data

(2) Data to restore explicitly

(1) Data restored implicitly (sens)

(b) Context restoring.

Figure 7.1 – Partitioning of the stack cache for context switch operations.

fills the cache starting from the address in the MT pointer.
This approach, although simple, does not benefit from the context switch optimiza-
tions introduced in the previous chapter. In fact, this is equivalent to the simple
approach against which we compared our optimized approach which showed a signifi-
cant improvement of preemption costs (see Section 7 of Chapter 6). The question
therefore is how to make preemption mechanisms benefit from these improvements
without inducing unreasonable overhead? Moreover, how can these mechanisms
profit from different preemption schemes (i.e., fixed and non-fixed preemptions)?
This chapter provides our answer to these questions.

2 Preemption Mechanisms
Before introducing the preemption mechanisms, let us first recall how our approach
optimizes the context switch operation. The stack cache occupancy is split into
different regions depending on the context switch operation. The idea is to save/re-
store only the useful data at program locations. We thus define two partitionings
depending on the operation:

Context Saving: Two pointers are used for the partitioning. The LP pointer,
(see [12]), keeps track of data that is coherent with the main memory, and the DP
pointer tracks data that is known to be dead. The LP and DP define a partitioning
of the stack cache’s content into three distinct regions shown in Figure 7.1a. Data
above LP is coherent and thus can be ignored during context saving. Similarly, data
below DP is known to be dead and can safely be ignored. Only the remaining data,
between DP and LP, actually needs to be transferred to main memory.

Context Restoring: Two pointers are involved as well. The DP pointer tracks
certainly dead data, while the RP pointer tracks potentially live data in the stack
cache. Three regions can thus be defined as illustrated in Figure 7.1. Data below
RP is potentially live and not guaranteed to be restored by a subsequent sens
instruction. Similarly, data below DP contains data that is certainly dead. The
remaining data to be transfered from main memory is then located between DP and
RP pointers.

From this, we notice that the context saving operation relies on the LP and DP
pointers while the context restoring depends on RP and DP pointers. We now
introduce in Figure 7.2 assembly code allowing to explicitly save and restore the
content of the stack cache:

122

func SCSave(DP)
sub rx = |SC| - DP
sresr rx
stw MT

(a) SCSave.

func SCRestore(RP,DP)
ldw MT
mov ST = MT
mov LP = MT
sub rx = RP - DP
sensr rx
mov ry = DP
sresr ry

(b) SCRestore.

Figure 7.2 – Low-level functions to save/restore the stack cache content.

SCSave: The function saves the content of the stack cache to main memory,
depending on the size of the stack cache and the amount of dead data. We assume
that the stack cache size is known statically (|SC|), while the amount of dead data
is assumed to be a parameter of the function (DP). The entire content of the stack
cache can be saved by performing an sres |SC|. This automatically avoids the
spilling of coherent data (LP). However, dead data would be saved as well. The
SCSave function thus subtracts the size of the dead data from the stack cache size
(sub) and stores the difference in a register (rx). The value of this register is then
used by an sresr instruction, which is equivalent to a regular reserve with the
only difference that the instruction’s argument is a register. Finally, we save the MT
pointer (stw), which points to an address in main memory where all of the current
task’s stack data is now saved (excluding dead data at the bottom). This address is
later needed during context restoration.

SCRestore: The function restores the stack cache content after a preemption and,
for this, requires the RP and DP pointers as arguments. Before any stack data can
be transferred to the cache, the previously saved MT pointer needs to be reloaded
first (ldw). The ST and LP pointers are set to the same address, which represents
an empty stack cache. Then we proceed to the restoration by explicitly filling cache
blocks between RP and DP using an sensr instruction. As before, an sensr takes
its argument from a register (rx). The value of the register is computed from the
difference between the two arguments RP and DP (sub). Note that we assume here
that RP ≥ DP in order to simplify the assembly code. The ensure transfers live
data from main memory and updates the MT pointer. Neither the LP nor the ST is
modified since the reloaded data is known to be coherent. Finally, we take care of
dead data, which was excluded from context saving before. It suffices to allocate a
matching amount of cache blocks on the stack cache using an sresr instruction.
This ensures that subsequent accesses to the stack cache succeed, while avoiding a
useless memory transfer.

With the help of the SCSave and SCRestore functions any desired context saving
mechanism can be implemented. One only has to ensure that the functions are
called at the right moment and do not cause any side-effects, e.g., on registers of
the involved tasks. However, it remains to resolve one issue: how do the functions
obtain the parameter values for DP and RP?
One possible, but impractical solution, would be to store these parameter values
in a look-up table. It would then be possible to retrieve the precise values of both
pointers, as determined by the analysis, during context switching. The memory

123

footprint of the table as well as the costs associated with the table look-up disqualify
this solution. Therefore, we need means to exploit the rich analysis information
without impacting the predictability or inducing excessive overhead. This, however,
highly depends on the underlying preemption policy.

3 Handling Preemption Schemes
In combination with a scheduling algorithm, the preemption policy determines the
circumstances under which a running task is allowed to be preempted. For instance,
the fully-preemptive policy allows preemptions to occur freely at any time and at any
position in a task’s program. Whereas the non-preemptive policy does not allow any
preemption to occur, and a task is started only after a running task is terminated.
Although fully-preemptive approaches may offer better schedulability, they make it
difficult to provide tight WCET estimates using cache analyses, since the preemption
point is not known in advance. Hybrid approaches have been introduced to tackle
this problem, either by statically fixing preemption points or limiting the number
of preemptions that tasks may suffer. Examples of such approaches include the
deferred preemption model [28], the floating non-preemptive region model [19], or
the preemption threshold [124]. So, in order to provide a preemption mechanism
that best matches a preemption policy, it is of major importance to consider whether
the policy relies on statically fixed or non-fixed preemption points.

3.1 Fixed Preemption Schemes

The main advantage of fixed preemption points is that it gives precise control over the
execution of real-time programs. It is a powerful approach allowing the preemption
mechanism to take full advantage of all the capabilities of a cache analysis. This
allows to choose interesting preemption points within a single task depending on the
overhead determined by a cost analysis (considering, among others, cache analyses
such as the CSA and CRA). These candidate preemption points are then considered
globally by schedulability tests to ensure that the constraints of the entire system
are respected. This may help to reduce the overhead due to preemption with regard
to the global system utilization.
Once preemption points are chosen the full results of the previously described analyses
(CSA and CRA) can be exploited easily, since dedicated code triggering a context
switch can be inserted. This code may simply invoke the SCSave function before
yielding the processor to the operating system kernel. Once the task is reactivated it
suffices to call SCRestore. In both cases the function’s parameters are immediately
available and can be considered by the inserted code. This, furthermore, allows
the WCET analysis to include the respective code and its overhead. A downside
of this approach is, however, that the stack cache content is potentially transferred
to/from main memory even when the operating system decides not to preempt the
running task. Alternatively, the two functions could be implemented in the operating
system, which then invokes them as needed. The interface between the task and
the operating system then needs to be revised such that the task can communicate
the DP and RP parameters when yielding the processor, e.g., by explicitly setting
predefined registers.

124

3.2 Non-Fixed Preemption Schemes

In contrast to the previous strategy, handling non-fixed preemption approaches is
quite challenging as preemption locations are not known in advance. This means that
the preemption mechanism cannot pass, as described above, predetermined parameter
values for DP and RP to the SCSave and SCRestore functions respectively. One
solution, already mentioned before, is to store the parameter values in a look-up table.
The operating system would then simply retrieve the parameter values considering
the precise location of the preemption, e.g., by using the task’s program counter as
an index. The size of the look-up table inevitably disqualifies this solution. However,
it might be possible to compress the table or reduce its size. For example, the table
size could be reduced by storing only a single value for each of the two pointers
for each function in the program, instead of storing the pointers for all possible
program points. This would drastically decrease the table size at the expense of
a slight increase of look-up costs. The values stored for each function have to be
safe approximations. For the RP the maximum value over all program points in the
function has to be chosen, while for the DP the minimum value has to be selected.
This solution still appears impractical. However, the idea to attach approximations
to limited regions within a program can be generalized.
In the following, we will present two solutions to this problem, based on lightweight
extensions to the hardware and/or instruction set. The first solution relies on
conservative approximations at the granularity of whole functions using an additional
stack cache control register. The second solution requires a modification of the
instruction set, which allows to embed analysis information in the standard stack
cache control instructions.

Stack Cache Control Register

This solution is motivated by our experiments, which are explained in detail in
Section 7 of Chapter 6. Our measurements indicate, not too surprisingly, that
in most of the cases the stack frame of the current function needs to be restored
entirely, either by an explicit memory transfer (RP − DP) or an implicit memory
transfer (through a subsequent sens). The preemption mechanism may thus simply
restore the entire stack frame of the function where the preemption occurred, since
the overhead for this operation already has been accounted for in any case. The
parameters DP and RP for the SCSave and SCRestore functions are then simply
approximated by 0 and k, respectively, where k is the size of the function’s stack
frame.
The problem is that the standard stack cache does not track the size of the current
stack frame. It only knows the ST and MT pointers representing the occupancy. The
occupancy may reflect three different situations. Firstly, the stack cache only holds
a subset of the frame. The occupancy thus is smaller than k. Secondly, the stack
cache contains only the frame. The occupancy here matches k. Finally, the stack
cache may hold data of other functions in addition to the frame. The occupancy
then is larger than k. It is obviously not possible to derive the size of the current
frame from the state of a standard stack cache.
We thus propose to introduce an additional stack cache control register FP that keeps
track of the size of the current stack frame. The stack cache control instructions
are then required to keep this register up-to-date. The sres and sens instructions

125

simply copy the value of their respective arguments into this register. On the other
hand, sfree instructions merely reset the register to 0, since they destroy the stack
frame and no stack cache access may occur until the next ensure.
The preemption mechanism may then retrieve the value of the FP register and
pass it as the parameter RP to the SCRestore function. The DP parameter is
conservatively set to 0 for both, the SCSave and the SCRestore functions.
This solution only requires minimal modifications to the stack cache hardware. The
additional FP register and the logic needed to update it is negligible and thus has
virtually no impact on the hardware cost and clock frequency. The timing behavior
of instructions is not modified as the register update can be performed in parallel
with other operations in a single cycle. The time-predictable behavior of the stack
cache is thus preserved. Finally, the solution does not incur any overhead whatsoever
with respect to the program’s memory footprint or execution time. A shortcoming
of this approach is that the value of the RP parameter is frequently overestimated,
while the DP parameter is not exploited at all. The approach thus effectively discards
all information regarding function-local analyses.

Instruction Set Extension

An alternative approach is to modify the stack cache control instructions, such that
they can be used to piggy-back the analysis information. The basic idea is to add
two additional operands to the sres and sens instructions that explicitly specify
the values of the DP and RP parameters. The values of these operands are copied
into two dedicated stack cache control registers, which then can be consulted by
the preemption mechanism to invoke the SCSave and SCRestore functions. The
sfree instruction does not receive additional operands and instead simply resets the
two control registers to 0. This allows to express changing values of the parameters at
a much finer level of granularity, independently from the size of the stack frame. More
specifically, the operand values apply to all program points between two successive
stack cache control instructions. The operand values can easily be computed by
considering the maximum value for the RP and the minimum value for the DP in
the corresponding region of the program. Function calls can be ignored in this
computation, as will be explained below.
In order to illustrate the approach we consider two scenarios of successive instructions:
an sres followed by an sres of another function (callee) and an sfree followed
by an sens instruction of another function (caller).
In the first case, the operand values of the first sres instruction apply to all program
points up to the execution of the second sres instruction, which automatically
overrides the corresponding control registers. Note, in particular, that this includes
all program points in the called function before its sres (see Section 6 of Chapter 6).
This is safe since these instructions cannot have any impact on the stack cache.
Consequently, the operand values of the first sres can be computed by considering
local program points belonging to the same function as the reserve, i.e., calls can
be ignored. Furthermore, all instructions between a function call and its sens
instruction cannot have an impact on the stack cache either. It is thus safe to
consider all function-local program points between any two subsequent stack cache
control instructions in order to compute the operands. Note that this reasoning also
applies to other pairs of instructions, i.e., sens-sens, et cetera.

126

In the latter case, the sfree instruction destroys the stack frame of the current
function. Implicitly, the stack frame of the caller now becomes active. However,
at the moment when the sfree instruction is executed, the characteristics of the
caller’s stack frame are not known and thus cannot be embedded as operands in the
free instruction. We solve this issue by simply resetting both control registers for
the DP and the RP to 0. This means that, from the perspective of the preemption
mechanism, the instructions between an sfree and the subsequent sens belong to
the callee, which slightly differs from the model explained in Section 6 of Chapter 6.
The preemption cost bound remains safe under this interpretation, since the implicit
filling at the sens instruction is correctly accounted for by the global ensure costs.
The hardware overhead of this solution, again, is marginal, since only two additional
registers as well as logic to update them are needed. The impact on the hardware
cost and clock frequency remains negligible. Also, the timing behavior of the stack
cache control instructions does not change, preserving the time-predictability of
the stack cache. However, the additional operands require space in the instruction
encoding, which may either increase the instruction size or otherwise impose limits on
the maximum stack frame size – depending on the characteristics of the instruction
set architectures and the number of free bits in the original instruction encoding of
the stack cache control instructions. Assuming that the operands can be encoded
using otherwise unused bits, this solution does not impose any overhead w.r.t. the
program’s memory footprint or execution time.

4 Experiments
Now we evaluate the impact of the preemption mechanisms, as described in Section 2,
on the analysis of preemption costs we covered in Chapter 6. Recall that the
preemption mechanism invokes the SCSave and SCRestore functions, which
require two input parameters: the amount of dead data and the amount of data
that needs to be restored explicitly, which are denoted as DP and RP respectively.
For the following experiments we consider three different implementation variants:
(1) ISA-full, which is based on an instruction set extension that allows to specify
two additional operands for both, the DP and the RP parameters, (2) ISA-RP, an
instruction set extension covering only the RP parameter, and (3) FP, which represents
a solution based on a single stack cache control register (FP) holding the current stack
frame size. These configurations are compared against the optimized configuration
from the previous experiments, representing the most precise preemption costs
provided by an optimized analysis. Note that the results of the optimized analysis
can be used in the setting of fixed preemption points.
An obvious difference between these preemption mechanisms is the level of granularity.
The optimized analysis is able to compute precise results for each instruction in the
program. In the previous experiments the analysis results were, however, limited to
the beginning of basic blocks. Over all benchmark programs the number of basic
blocks amounts to 114257 (each potentially consisting of multiple instructions). As a
reference, the ISA-full and ISA-RP variants operate at a coarser level of granularity,
only considering stack cache control instructions. The number of these instructions
depends on the number of defined functions and call sites in the program. In the
considered benchmarks 8588 functions are defined, which are referenced by 10475 call
sites. In total 27651 stack cache control instructions can be found in all benchmark

127

programs combined (two for each function and one for each call site). The number
of locations that may reflect changes in the underlying analysis information is thus
reduced to about a quarter (24%). The FP variant essentially operates at the level
of whole functions. This reduces the level of granularity even further to 8588 (8%)
different locations.
In order to evaluate the transfer costs induced by the various mechanisms, a common
level of granularity has to be chosen. The basic block level seems to be a reasonable
choice, as it allows to demonstrate the performance of the underlying preemption
mechanisms at a tight granularity and allows us to easily compare them against
the optimized approach. However, it is important to note that all three preemption
mechanisms have a diverging interpretation of the transfer costs when returning from
a function. More precisely, the costs associated with the program points between
an sfree of the callee and the corresponding sens of the caller differ from the
optimized analysis. These program points rarely coincide with the beginning of
basic blocks, since call instructions are not considered terminators for basic blocks
in LLVM. The impact of this design choice is thus not explicitly captured by the
presented numbers. At the same time, the concerned regions at most contain two
program points, one before and one after the corresponding return instruction. The
compiler also often manages to put the sfree instruction in the return’s delay slot,
which only leaves a single program point between the sfree and the sens executed
immediately afterward.
Starting with the context restoration, we first observe that the proposed preemption
mechanisms overall follow a similar pattern as the optimized approach, as illustrated
by Figure 7.3. The ISA-full and ISA-RP variants perform slightly better, showing
only a moderate degradation in terms of precision. The difference between these
two variants is insignificant, which indicates that the RP pointer is more profitable
than the DP. This is not surprising, as the RP is regularly reset to 0 at every sens
instruction, which limits the propagation of high RP values throughout large parts
of a function. This is different from the DP, whose value evolves depending on
stack cache accesses only and thus might be propagated throughout large parts of a
function. A closer look reveals that, for these two approaches, the context restoration

<0 ≤25 ≤50 ≤75 ≤100 ≤125 ≤150 ≤175 ≤200 ≤225 ≤256

1

2

3

·104

Transfer Costs (bytes)

#
B

as
ic

B
lo

ck
s

Optimized ISA-full ISA-RP FP

Figure 7.3 – Histogram comparing the transfer sizes (in bytes) for context restoration
at basic blocks using the ISA-full, ISA-RP, and FP preemption mechanisms to the
optimized analysis. Lower is better.

128

<0 ≤ 25 ≤ 50 ≤ 75 ≤ 100 ≤ 125 ≤ 150 ≤ 175 ≤ 200 ≤ 225 ≤ 256
<0 -318 5 53 103 56 75 25 0 1 0 0
≤ 25 – -9211 4566 1251 1177 188 2027 1 1 0 0
≤ 50 – – -2773 706 1618 45 404 0 0 0 0
≤ 75 – – – -1342 461 111 759 0 11 0 0
≤ 100 – – – – -1301 772 529 0 0 0 0
≤ 125 – – – – – -726 698 28 0 0 0
≤ 150 – – – – – – -9 3 6 0 0
≤ 175 – – – – – – – -185 182 0 3
≤ 200 – – – – – – – – -7 0 7
≤ 225 – – – – – – – – – -6 6
≤ 256 – – – – – – – – – – 0

Table 7.1 – Increase of restoration cost for the FP preemption mechanism in compar-
ison to the optimized analysis, illustrating the movement of basic blocks to the right
side of the histogram in Figure 7.3. Smaller numbers are better.

cost remains below 50b in the majority of the cases (57%). In only 0.8% of the basic
blocks the context restoration exceeds 150b – this almost matches the optimized
analysis. A noticeable drop is, however, observed for cases with very low transfer
costs between 0b and 25b. The drop amounts to 6600 basic blocks, which represents
about 21% of the 30894 basic blocks in that cost range for the optimized analysis.
The transfer costs of the respective basic blocks slightly increase, which corresponds
to a slight shift to the right and explains the increased bar heights nearby. For
instance, the restoration costs for 53% of these 6600 basic blocks now fall into the
next higher cost range (26b to 50b) and another 24% of the blocks fall into the
cost ranges after that (51b to 125b). The costs of the remaining cases then fall into
the range from 126b to 150b. This indicates a moderate loss of precision, which is
mainly due to the coarser granularity of these two approaches. The two approaches
also succeed to conserve nearly 50% of the cases with negative restoration costs, i.e.,
reflecting potential runtime gains.
The FP approach generally follows the same trends. The shift in the diagram from
the left side to the right is albeit more pronounced. The drop for the cost range from
0b to 25b amounts to 9211 basic blocks (30%). About half of the basic blocks appear
in the next higher cost range (26b to 50b), while 28% of the cases can be found in the
cost range from 51b to 125b. The remaining basic blocks (22%) move into the cost
range above 125b, with two cases falling into the range from 151b to 200b. Despite
the fact that the relative numbers appear to be close to the instruction-set-based
preemption mechanisms, the absolute numbers are considerably more pronounced.
This explains, for instance, the noticeable peak for the cost range from 126b to 150b
for this preemption mechanism. A detailed overview of the movements between
the different cost ranges is illustrated by Table 7.1. The negative numbers on the
diagonal indicate the number of basic blocks whose restoration costs were increased,
while the positive numbers indicate to which cost range these basic blocks moved.
As for context saving, we can observe a very slight shift to the right for the ISA-full
approach, as can be seen in Figure 7.4. This mainly concerns 1141 basic blocks, whose
transfer costs already were high (between 176b and 200b) even for the optimized
analysis. The precision loss here mostly stems from the DP pointer, which suffers

129

≤25 ≤50 ≤75 ≤100 ≤125 ≤150 ≤175 ≤200 ≤225 ≤256

2

4

6

·104

Transfer Costs (bytes)

#
B

as
ic

B
lo

ck
s

Optimized ISA-FULL ISA-RP FP

Figure 7.4 – Histogram comparing the transfer sizes (in bytes) for context saving
at basic blocks using the ISA-full, ISA-RP, and FP preemption mechanisms to the
optimized analysis. Lower is better.

from the previously mentioned propagation of unfavorable values throughout the
coarser regions. This shift is more pronounced for the ISA-RP and FP variants, since
both do not exploit the DP parameter (which is conservatively set to 0). The number
of basic blocks impacted almost doubles (2180). This also applies to other cost ranges
and here in particular the range from 201b to 225b. A detailed breakdown of the
movements in the histogram is given by Table 7.2.
From the results above, one can conclude that ISA-full provides some advantage
over the other two mechanisms as it allows to exploit (at least to some degree) the
analysis information concerning dead data. On the downside, the instruction-set-
based approaches require additional changes to the hardware, the instruction set, as
well as the compiler. In particular, the changes to the encoding of the stack cache
control instructions might be problematic in practice. We will explore this issue using
the Patmos processor and its instruction set as an example. Patmos instructions are
encoded either using 64 bits or 32 bits depending on the corresponding instruction
formats. The 64-bit format is dedicated to simple arithmetic instructions with a full
32-bit long immediate. All stack cache control instructions are encoded according
to the 32-bit-wide Stack Control format (STC), which reserves 1 bit to indicate
bundled (VLIW) instructions, 4 bits for the predicate operand, 5 bits to indicate the
instruction format, and additional 4 bits for the instruction opcode. Consequently,
18 of the 32 bits are used to encode the instruction’s operand (either an immediate
or register index for the standard stack cache). Assuming a cache block size of 4b,
this allows the stack cache to manage stack frame sizes of up to 1MB, which appears
generous for most embedded applications. In order to implement the proposed
instruction set extensions for the ISA-full and ISA-RP preemption mechanisms
these 18 bits need to be split between either 3 (RP, DP, k) or 2 (RP, k) operands,
respectively. An even distribution would then either leave 6 or 9 bits for each operand.
This would reduce the maximum stack frame size, but not the total stack cache size,
to 256b or 2KB. The limit of 256b is sufficient for the experiments conducted here.
Even when the stack cache size is essentially unbounded, most of the considered
benchmarks exhibit a maximum stack frame size on the stack cache of 140b, while

130

≤ 25 ≤ 50 ≤ 75 ≤ 100 ≤ 125 ≤ 150 ≤ 175 ≤ 200 ≤ 225 ≤ 256
≤ 25 -318 145 156 17 0 0 0 0 0 0
≤ 50 – -34 4 8 19 3 0 0 0 0
≤ 75 – – -122 113 4 0 0 1 0 4
≤ 100 – – – -77 51 11 3 0 10 2
≤ 125 – – – – -41 38 2 1 0 0
≤ 150 – – – – – -307 296 1 2 8
≤ 175 – – – – – – -332 51 281 0
≤ 200 – – – – – – – -2180 2082 98
≤ 225 – – – – – – – – -1668 1668
≤ 256 – – – – – – – – – 0

Table 7.2 – Increase of saving cost for the FP preemption mechanism in comparison
to the optimized analysis, illustrating the movement of basic blocks to the right side
of the histogram in Figure 7.4. Smaller numbers are better.

the largest stack frame encountered is merely 240b large. In a general setting, this
restriction might, however, become limiting. Increasing the cache block size might
remedy this problem. The limit of 2KB, on the other hand, appears to be practical
even for large embedded systems. The FP variant, based only on an additional
internal stack cache control register, does not face such restrictions and might thus
be easier to use in such larger systems. Overall, all of the three proposed preemption
mechanisms appear to be practical.

4.1 Hardware Implementation

We implemented all of the aforementioned hardware extensions in a Patmos hardware
model. From the original model, specified in Scala, hardware is synthesized using
the Altera Quartus II 13.1 tool suite for an an Altera DE2-115 board.
The implementation of the FP preemption mechanism requires an additional special
register as well as some logic circuits that are needed to keep track of the current
stack frame size. In particular, sres and sens instructions have to copy their
argument to this special register, while sfree reset the register to zero. Only a
dozen of code lines were needed to extend the stack cache model (originally about 500
code lines). Ignoring other components of the processor core, the hardware overhead
in comparison to the original stack cache design is very minimal and is evaluated to
2, 2% and 3, 5% in logic cells and logic registers, respectively. We also looked at the
resulting overhead at the core level, which includes, among others, the computational
units, a stack cache, a data cache, an instruction cache, and a local scratchpad
memory. Once again, the hardware overhead is negligible and costs around 0, 6%
and 0, 1% in logic cells and logic registers, respectively. The impact on the maximum
clock frequency, on the other hand, is surprisingly positive. We observed a slight
improvement from 82 MHz to 83 MHz. Note that this improvement may be caused
by some slight change in the complex heuristics employed by the synthesis software.
The overhead of the ISA-full and ISA-RP approaches is comparable to that of the FP
approach and only require some additional logic registers. The required changes are
in fact virtually identical, since the number of instruction operands has no relevant
impact on the hardware level.

131

In conclusion, the implementation of the proposed hardware extensions is very simple
and only incurs insignificant additional hardware costs.

5 Conclusion
We proposed three different preemption mechanisms that allow the task scheduler to
exploit the analysis information during context switching. Two of these mechanisms
are based on an instruction set extension that attaches analysis information as
operands to the stack cache control instructions. In comparison to the full static
analysis these mechanisms may reflect changes in the analysis information at a much
coarser level. Our experiments nevertheless showed that only a moderate loss in
precision is incurred. A downside of these approaches is, however, that, in addition
to support from the operating system, modifications to the compiler are required.
An alternative solution relies solely on an additional stack cache control register that
is updated by the stack cache control instructions in a transparent manner. Apart
from the modifications to the task scheduler no additional tool support is required.
This, however, comes at a cost: the granularity at which changes in the underlying
analysis information can be reflected is limited to whole functions. This incurs an
additional loss in precision.

132

CHAPTER 8

Eager Stack Cache Memory Transfers
– A Prefetching-Like Technique for the Stack Cache

In Chapter 6, we observed a non-intuitive situation, where a preemption can poten-
tially reduce spilling costs associated with subsequent sres instructions. The benefit
comes essentially from an early spilling due to context saving. This observation has
set us on the following direction: What if we could anticipate and eagerly perform
the spilling/filling before they are actually needed? This idea reassembles prefetching
in conventional caches. Except that, by contrast, the stack cache does not operate on
addresses and all its accesses are hits. Clearly, the stack cache structure has some
opportunities to offer, but one needs also to determine possible side effects. What’s
more, how do eager memory transfers affect the stack cache analysis? We, thus,
explore means to perform prefetching-like operations for the stack cache, and study
their outcome from the perspective of WCET analysis. After a short introduction, the
chapter is structured as follows: The general idea as well as a detailed description of
the technique are provided in Section 2. In Section 3, we present some arbitration
strategies to which we can associate the eager transfers to. Experiments are presented
in Section 4 followed by conclusions.

1 Outline
In order to improve predictability and ensure composability, the original stack cache
design [11] stalls the processor while performing spilling or filling, even when the
stack cache would not be used by any of the subsequent instructions. This allows to
analyze the stack cache’s timing behavior in isolation from other components of the
Patmos computer architecture [111] at the expense of average-case performance. In
this work, we explore the use of eager – or anticipatory – memory transfers in order
to alleviate this shortcoming. The goal is to improve average-case performance by
performing memory transfers in the background alongside with other instructions
that are executed by the processor. The eager transfers are, however, not allowed
to interfere with the worst-case behavior of the stack cache (or any other hardware
component in the system). Most notably, the timing bounds computed for a regular

133

stack cache without our optimizations, should not be invalidated in the presence
of our optimizations. This is ensured by exploiting features of a recently proposed
stack cache extension [12] to track data that are coherent between the cache and
main memory.

2 Eager Memory Transfers
Prefetching is a well-known technique used in conventional caches, which aims to
hide memory access latencies caused by cache misses. Instead of waiting for a cache
miss to initiate a memory transfer, prefetching anticipates such misses and fetches
data from memory in advance of the actual memory reference. The idea, though
simple, raises two important problems: (1) the addresses of future memory references
need to be predicted and (2) side effects may arise due to the eviction of data from
the cache in order to make space. Both of these issues are difficult to solve in general
settings and pose even more problems in the context of real-time systems requiring
predictability.
We explore the use of eager memory transfers – combining prefetching and eager
eviction [71] – in order to reduce the latency of the stack cache control instructions.
We introduce two kinds of eager memory transfers: (1) eager spilling transfers data
from the stack cache to main memory, while (2) eager filling transfers data from
main memory to the stack cache. The stack cache, in contrast to conventional caches,
tracks its content using simple pointers and thus can only cache a contiguous memory
region between the ST and MT pointers. In the following we will exploit this feature
in order to realize “prefetching-like” functionality for the stack cache and address the
two aforementioned problems faced in standard caches.

Address Prediction: Due to the use of pointers to track the stack cache content,
it is trivial to predict the address of any future memory transfers that might be
initiated by any stack cache control instruction. Data is either read from memory at
the address starting at MT or written to memory at the address up to LP, depending
on whether the (effective) occupancy will grow too large (sres spilling up to LP) or
will become too small (sens filling from MT). It thus suffices to predict whether data
needs to be spilled or filled with regard to the future stack cache control instructions.

Side effects: We rely on a recently proposed stack cache extension [12] that allows
to track coherent data between the stack cache and main memory in order to avoid
side effects when performing eager memory transfers. A first observation is that
eager spilling only needs to consider incoherent data (just like regular spilling). The
eagerly spilled data is, however, not evicted from the stack cache. Instead, it simply
becomes coherent. Since no data was evicted from the cache, side effects on future
sens instructions are excluded. Similarly, since the amount of incoherent data was
reduced, the spilling at future sres instructions is potentially reduced. A second
observation is that eagerly filled data is known to be coherent. Side effects on future
sres instructions are consequently excluded after eager filling since the amount of
incoherent data did not change. The filling at future sens instructions, on the other
hand, is reduced due to the newly loaded data.

Example 2.1 Consider functions A, B, and C shown in Figure 8.1a and a stack
cache whose size is 4 blocks, i.e., |SC| = 4. Figure 8.1b depicts the evolution of the

134

(A1) func A()
(A2) sres 2 〈0〉
(A3) sws 1 = r9
(A4) call B
(A5) sens 2 〈2〉
(A6) sfree 2

(B1) func B()
(B2) sres 2 〈0〉
(B3) ...
(B4) call C
(B5) sens 2 〈1〉
(B6) ...
(B7) sfree 2

(C1) func C()
(C2) sres 3 〈3〉
(C3) sfree 3

(a) Program consisting of 3 functions, reserving, freeing and ensuring space on the stack
cache. The annotations in angle brackets, e.g., 〈2〉, indicate the maximum filling/spilling
behavior of stack cache control instructions.

A
A

〈2, 2〉
A3

0

)

A
A
B
B

〈4, 4〉
B2

0
) A

A
B
B

〈4, 3〉
B3

� 1

)
A
A
B
B

〈4, 2〉
B4

� 1

)

B
C
C
C

〈4, 4〉
C2

� 1
)

B

〈1, 1〉
C3

0

)
B
B

〈2, 1〉
B5

� 1

)

A
B
B

〈3, 1〉
B6

� 1

)
A

〈1, 0〉
B7

0

)

A
A

〈2, 0〉
A5

� 1

)

(b) The evolution of the stack cache state through the program. Assumed cache size:
4. ST is fixed at the bottom of the cache state. MT points to the top stack elements in
main memory (not shown). The arrow → indicates the position of LP in the cache space.
Memory transfers in cache blocks are represented at the top of the cache state: Fill (�), Spill
(�). Eager memory transfers are blue colored. Transfers initiated by stack cache control
instructions are red colored.

Figure 8.1 – Example of eager memory transfers.

stack cache state at particular program points. For this example, we assume that
an eager memory transfer can be performed in 1 cycle and that no other hardware
component interferes with the stack cache (e.g., data cache, method cache). We also
assume an empty stack cache at the program entry point (i.e., MT = ST = LP). The
sws at A3 stores some value in the stack cache such that the cache content is not
coherent with main memory. At this point the effective occupancy is equal to the
cache occupancy. An eager spill operation is initiated at program point B3. This
causes LP to decrement, which reduces the effective occupancy to 3, but not the cache
occupancy (i.e., 4). Then, another eager spill operation is performed at program point
B4, which further drops the effective occupancy to 2. Without the eager spilling, the
sres instruction at C2 would have spilled 3 cache blocks. However, as the effective
occupancy was reduced only 1 cache block needs to be spilled. Note that the eager
spilling has no side effect on the sens instruction as it does not alter the cache
occupancy. The sens fills 1 cache block just as predicted by the stack cache analysis.
In contrast to eager spilling, the eager filling increases the cache occupancy but not
the effective occupancy. The eagerly filled cache block in B6 only increases the MT
pointer which results in increasing the cache occupancy to 3. As a result, instead of
filling A’s the whole stack frame (2 cache blocks), only 1 cache block is needed to be
filled. Similarly to eager spilling, the eager filling does not cause any side effects for
subsequent sres instructions as the effective occupancy remains unchanged.

The eager memory transfers are guaranteed to have no side effects on the stack cache
itself. However, side effects on other hardware components, and here in particular

135

if (MT - ST < |SC|) {
start = MT;
end =

⌊
MT+BS
BS

⌋
× BS;

fill(start, end);
MT = end;

}

(a) The eager fill operation.

if (LP− ST < k) {
end = LP;
start =

⌈
LP−BS
BS

⌉
× BS;

spill(start, end);
LP = start;

}

(b) The eager spill operation.

Figure 8.2 – Pseudo code illustrating the operation of the eager filling and eager
spilling.

the bus and main memory, may arise. For instance, a cache for regular data might be
blocked by an eager memory transfer upon a cache miss. Such interferences may, of
course, impact the program’s worst-case performance and compromise predictability
as well as composability.
An elegant solution is to exploit the arbitration scheme that mitigates between
competing memory accesses [49, 13]. In the context of this work, we use the Patmos
multi-core architecture, which relies on time-division multiplexing (TDM) to arbitrate
main memory accesses. In the following we assume that each processor core may
transfer a single memory burst from/to main memory in a dedicated TDM slot.
Transfers may only be initiated at the beginning of a TDM slot, which are periodically
scheduled in a TDM period. The duration of a period then depends on the number
of cores n and the duration of a TDM slot k and is given by n · k cycles. We assume
that the memory controller is able to process transfers with arbitrary start addresses
and lengths. The actual memory transfer is, however, performed at the granularity
of bursts, i.e., the start address and length are aligned accordingly to the burst size
(excess data is either masked or discarded). In such a setting it is easy to detect
TDM slots that are not used by any other hardware component. It suffices to check
that no other memory request is pending at the beginning of the processor core’s
TDM slot. The free TDM slots of a processor can then be used to perform the eager
memory transfers and avoid any side effects on either the stack cache itself nor any
other hardware component.

2.1 Eager Fill

The eager fill operation aims to reduce the latency of a future ensure instruction
sens k. Recall that filling is required only when the occupancy is too small, i.e.,
MT − ST < k. The occupancy has to be increased in order to reduce the latency.
This can be achieved by loading, i.e., filling, data from main memory such that
MT can be pushed upwards until the occupancy reaches the stack cache size. The
corresponding memory transfer, however, has to be limited to a single burst transfer
in order to guarantee that only a single TDM slot is occupied. Assuming a burst size
BS, an eager fill operation thus proceeds as depicted by the algorithm in Figure 8.2a.
The eager fill operation can be initiated whenever a TDM slot is free and is then
guaranteed to be free of any interference with other hardware components that might
wish to access main memory. It remains to be shown that the worst-case timing of
subsequent stack cache operations is not affected. Three cases have to be considered,
depending on the kind of the next stack cache control instruction:

136

sres k May only initiate a memory transfer when incoherent data has to be
evicted from the cache. The address range of the transfer ([ST+ |SC|, LP])
only depends on the position of ST and LP. Eager filling does not modify
either of those pointers (effective occupancy) and thus cannot impact spill
costs.

sfree k Free instructions do not access memory and exhibit constant latency.

sens k May only initiate a memory transfer when the occupancy is too low. The
address range of the transfer ([MT, ST+ k]) only depends on ST and MT.
The former is not impacted by eager filling, while the address of MT is
incremented, i.e., the occupancy was previously increased. Fill costs thus
may only be reduced.

Eager fill operations, consequently, may only improve the latency of future sens
instructions. Note, however, that some side effects may still arise. This may
appear when all filling of an sens instruction is eliminated. In this case, the
sens instruction no longer synchronizes with the TDM period and may change
the alignment of subsequent memory accesses. This may incidentally increase the
number of stall cycles of these memory accesses. The number of additional stall
cycles can, however, never exceed the gain induced by eager filling. WCET estimates
computed without considering eager filling thus remain valid.

2.2 Eager Spill

The aim of the eager spill operation is to anticipate and reduce future spill costs
associated with subsequent sres instructions. A spill is initiated by an sres if the
effective occupancy would exceed the size of the stack cache, i.e., LP− ST > |SC|.
The effective occupancy thus has to be lowered in order to reduce the spill latency.
One possible solution is to copy incoherent stack data to main memory without
evicting them from the cache. This allows to decrement LP and thus reduce the
effective occupancy.
As for eager filling, the corresponding memory transfer size must not exceed the
burst size so that at most one TDM slot is used. Assuming a burst size BS, an eager
spill operation then proceeds as depicted by Figure 8.2b. The eager spill operation
can be performed during free TDM slots as soon as the effective occupancy is non
null. We will, nonetheless, prevent the spilling of data from the stack frame of the
current function. This is because it may happen that data about to be eagerly spilled
is modified by a stack store instruction. This would require additional checks to
ensure that incoherent data is correctly tracked and increase hardware costs as well
as complexity. As before, only free TDM slots are used, which guarantees that eager
spill operations cannot interfere with other memory accesses. The worst-case timing
of subsequent stack cache control operations is also not affected:

sres k: May only initiate a memory transfer when the effective occupancy becomes
too large. The covered address range ([ST+ |SC|, LP]) only involves the
ST and LP pointers. The latter is lowered by eager spilling, while the
former is not modified, i.e., effective occupancy was previously decreased.
The spill costs experienced by an sres instruction thus may only be
reduced.

sfree k: Free instructions do not access memory and exhibit constant latency.

137

sens k: May only initiate a memory transfer when the occupancy is too low.
The address range of the transfer ([MT, ST+ k]) only depends on ST and
MT. Both are not impacted by eager spilling. Fill costs thus cannot be
impacted by eager spilling.

Eager spill operations, consequently, may only improve the latency of future sres
instructions. Similarly to eager filling, the alignment of memory accesses with regard
to the TDM period may change. The worst-case timing behavior of the program is
not impacted.

3 Spill/Fill Arbitration
The eager fill and spill operations can be executed asynchronously alongside other
instructions that are executed by the processor whenever a free TDM slot is encoun-
tered and the respective conditions necessary to perform a transfer are met. The
two operations naturally compete for the available TDM slots, we thus define several
simple arbitration policies.

Spill/Fill-Only: As the names indicate, in these two configuration schemes only
one of the two eager operations is performed throughout program execution, subject
to the respective conditions as described above. This allows us to quantify the
attainable profit of either operation, ignoring the potential overhead induced by
unprofitable eager transfers.

Alternate: Eager spill and fill are performed alternatingly in order to attain the
maximum profit by applying both operations whenever this is possible on a fair
arbitration policy.

Threshold: This approach aims to reduce the amount of unprofitable eager opera-
tions, e.g., eagerly spilling data that is never evicted. Eager operations are performed
alternatingly until a preset (effective) occupancy level (threshold) is reached. In the
experiments, eager spilling stops when the effective occupancy is half of the stack
cache size. Likewise, eager filling stops when the occupancy reaches half of the stack
cache size.

Saturation Counter: In this approach, the kind of the next stack control in-
struction is predicted and eager operations are chosen such that their transfer costs
are reduced. The hypothesis is that sres and sens instructions are performed in
sequences when descending/ascending the call chain. The prediction uses a saturation
counter, similar to branch prediction [94], that is in-/decremented up to prespecified
maximum levels whenever an sres/sens instruction is encountered. The eager
spill/fill operations are then only permitted when the counter value lies within
predefined ranges. We use a simple 1-bit saturation counter in the experiments.

4 Experiments
We evaluated eager memory transfers using the cycle-accurate simulator of the
Patmos processor [111], which implements a stack cache and its associated control
instructions. It also allows to simulate several processor cores in parallel that access

138

ra
w

da
ud

io

er
ijn

da
el eb
f

cs
us

an
-s

m
al

l

pa
tr

ic
ia

cj
pe

g-
sm

al
l

se
ar

ch
-s

m
al

l

sh
a

ss
us

an
-s

m
al

l

sa
y-

tin
y

iff
t-t

in
y

ra
w

ca
ud

io

qs
or

t-s
m

al
l

ba
si

cm
at

h-
tin

y

di
jk

st
ra

-s
m

al
l

fft
-ti

ny db
f

bi
tc

nt
s

es
us

an
-s

m
al

l

dr
ijn

da
el

se
ar

ch
-la

rg
e

dj
pe

g-
sm

al
l

cr
c-

32

0

0.2

0.4

0.6

0.8

1
N

or
m

al
iz

ed
N

um
be

ro
fB

lo
ck

s

Spill/Fill Only Threshold Alternate Saturation Counter
2 Cores 4 Cores 9 Cores

(a) Spill. The black bar represents the Spill-Only configuration.

ra
w

da
ud

io

er
ijn

da
el eb
f

cs
us

an
-s

m
al

l

pa
tr

ic
ia

cj
pe

g-
sm

al
l

se
ar

ch
-s

m
al

l

sh
a

ss
us

an
-s

m
al

l

sa
y-

tin
y

iff
t-t

in
y

ra
w

ca
ud

io

qs
or

t-s
m

al
l

ba
si

cm
at

h-
tin

y

di
jk

st
ra

-s
m

al
l

fft
-ti

ny db
f

bi
tc

nt
s

es
us

an
-s

m
al

l

dr
ijn

da
el

se
ar

ch
-la

rg
e

dj
pe

g-
sm

al
l

cr
c-

32

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

N
um

be
ro

fB
lo

ck
s

(b) Fill. The black bar represents the Fill-Only configuration.

Figure 8.3 – Normalized number of total cache blocks regularly spilled/filled with
respect to standard stack cache implementation supporting lazy pointer. (Lower is
better)

a shared main memory using bursts of 32 B. Memory arbitration is then performed
using a TDM policy. We furthermore extended the stack cache implementation to
support eager memory transfers using the arbitration strategies described above.
Benchmarks of the MiBench benchmark suite [52] were compiled using optimizations
(-O2) and subsequently executed on multi-core configurations with 2, 4 (2×2), and
9 (3×3) cores. Each core is equipped with a 256 byte stack cache, a 64 KB, 4-way
set-associative data cache using a least-recently used replacement and write-through
policy, as well as a 64 KB, 64-entry method cache using first in, first out replacement.
The stack cache operates on 4 byte blocks, while the block size of the other caches
matches the burst size of the main memory. Memory accesses take 21 cycles.
Figure 8.3 shows the normalized reduction in the number of blocks spilled and filled
by sres and sens instructions in comparison to regular program execution without
eager memory transfers. For eager spilling, results show a considerable reduction
of spill costs by 62% over all benchmarks for the dual-core platform. For several
benchmarks all spilling is performed by the eager operation (erijndael, ebf, dbf,
bitcnts, drijndael). The total stack size of rawcaudio and rawdaudio fits
into the stack cache. So, no spilling is ever performed for these benchmarks. The
results for 4 and 9 cores are very close and give reductions of 6% and 1% respectively.
Notable differences can be observed for say-tiny, bitcnts, and djpeg-small.
This can be explained by the increased TDM period, which reduces the number of
free TDM slots and the potential to perform eager memory transfers. All arbitration
strategies were able to reduce the number of blocks spilled by sres instructions. The

139

ra
w

da
ud

io

er
ijn

da
el eb
f

cs
us

an
-s

m
al

l

pa
tr

ic
ia

cj
pe

g-
sm

al
l

se
ar

ch
-s

m
al

l

sh
a

ss
us

an
-s

m
al

l

sa
y-

tin
y

iff
t-t

in
y

ra
w

ca
ud

io

qs
or

t-s
m

al
l

ba
si

cm
at

h-
tin

y

di
jk

st
ra

-s
m

al
l

fft
-ti

ny db
f

bi
tc

nt
s

es
us

an
-s

m
al

l

dr
ijn

da
el

se
ar

ch
-la

rg
e

dj
pe

g-
sm

al
l

cr
c-

32

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

N
um

be
ro

fB
lo

ck
s

Threshold Alternate Saturation Counter

(a) Spill.

ra
w

da
ud

io

er
ijn

da
el eb
f

cs
us

an
-s

m
al

l

pa
tr

ic
ia

cj
pe

g-
sm

al
l

se
ar

ch
-s

m
al

l

sh
a

ss
us

an
-s

m
al

l

sa
y-

tin
y

iff
t-t

in
y

ra
w

ca
ud

io

qs
or

t-s
m

al
l

ba
si

cm
at

h-
tin

y

di
jk

st
ra

-s
m

al
l

fft
-ti

ny db
f

bi
tc

nt
s

es
us

an
-s

m
al

l

dr
ijn

da
el

se
ar

ch
-la

rg
e

dj
pe

g-
sm

al
l

cr
c-

32

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

N
um

be
ro

fB
lo

ck
s

(b) Fill.

Figure 8.4 – Efficiency of the various eager spill/fill arbitration policies relative to
the Spill- and Fill-Only configurations on a dual-core platform (Lower is better).

Alternate and Threshold configurations performed best and almost always reached
the best possible result represented by the Spill-Only strategy.
The results for eager filling are less pronounced, resulting in reductions of only 7.4%,
1.7%, and 0.1% for the platforms with 2, 4, and 9 cores respectively. The large
difference with eager spilling is surprising. Investigations showed that our hypothesis
that sres/sens instructions often appear in sequences appears to hold. However,
the average distance between sres instructions is typically much larger than the
distance between sens instructions. The probability to encounter free TDM slots
thus is much smaller between consecutive sens instructions, thus reducing the
amount of eager filling that can be performed. Again, all strategies are able to
achieve reductions. However, the Threshold configuration clearly performs best. This
is once more surprising, since the theoretical bandwidth available for filling in the
Alternate approach should at least reach 50% of the bandwidth of the Threshold
configuration. It appears that the limited number of TDM slots available in between
sens instructions aggravates the competition with eager spilling, explaining this
bias. Further investigations are, however, needed to confirm this hypothesis.
We also performed measurements on a single-core configuration, where the processor
performs memory accesses using a private bus (without TDM). Eager operations
were initiated following the Alternate arbitration scheme immediately when no other

140

bus requests were pending. Note that in this case interferences with other memory
accesses frequently occur. We observed that spilling and filling of the stack control
instructions was completely eliminated for almost all benchmarks, i.e., all cache
transfers were carried out by eager operations. This indicates that eager transfers are
effectively limited by the number of free TDM slots. An interesting idea would thus
be to investigate means to explicitly allocate non-free TDM slots to eager operations.
This could allow to entirely eliminate stalls at the stack control instructions in an
analyzable and predictable manner.
In addition to the effective reduction by the various configurations in the number of
memory transfers suffered by sres and sens instructions, we also compared the
relative efficiency of the approaches. Figure 8.4 shows the normalized number of
blocks eagerly spilled/filled with respect to the aggressive Spill-Only and Fill-Only
configurations respectively. The Threshold configuration appears to provide the best
trade-off between efficiency and the actual reduction of memory transfers by the
stack control instructions. On the dual-core platform and over all benchmarks, it
eagerly spills 60% and eagerly fills 30% fewer cache blocks than the Spill-/Fill-Only
configurations respectively. Still the amount of excess spilling (and to a lesser degree
filling) is considerable. On average, over all benchmarks 75 times the number of cache
blocks are spilled compared to the number of cache blocks spilled by the program
when eager memory transfers are deactivated.
However, excess spilling is not necessarily a waste. The reduced effective occupancy
may reduce the cost of context switching [13]. The Threshold configuration on a
dual-core platform decreases the average effective occupancy over the benchmarks’
entire execution time by about 25%. For ssusan_small, for instance, the reduction
amounts to 68%, thus considerably reducing the context switch cost related to the
stack cache.

5 Conclusion
We presented an elegant and simple extension of the stack cache that allows to
perform memory transfers eagerly in order to reduce the latency of future stack cache
control instructions. We exploit the capability to track coherent data in the stack
cache using the lazy pointer (LP), which allows us to distinguish between the effective
occupancy and the total cache occupancy. Eager filling increases the occupancy and
thus may benefit future sens instructions, while eager spilling decreases the effective
occupancy and thus may profit sres instructions. The interplay between effective
occupancy and occupancy guarantees that the worst-case timing is not impacted. In
addition, we propose to perform these eager operations in free TDM slots to avoid
any interference with concurrent memory accesses.

141

CHAPTER 9

Conclusion and Future Work

1 Contributions
Throughout this thesis we investigated timing analysis for time-predictable archi-
tectures. We based our work on the Patmos processor proposed by the T-CREST
project. The Patmos approach relies on the interplay between the hardware, the
compiler, and the timing analysis to achieve better worst-case performance. Patmos
is a VLIW architecture that combines well-known hardware techniques with newly
designed hardware components (e.g., stack cache and method cache). The compiler
support for many of its hardware components is already provided. The limitation,
however, is the lack of proper timing analysis support. Without this, it is difficult to
assess the effectiveness of the time-predictable hardware in enhancing the worst-case
performance. We thus proposed:

• A lightweight approach to the handling of predicated execution in WCET
analysis. Predicated code is problematic for precise WCET analysis and has
an impact on virtually all analysis steps. Existing WCET analysis tools simply
ignore predicates and conservatively consider the effect of both predicate values.
Our solution consists of recovering the hidden control-flow early in the WCET
analysis process. Subsequent instructions are then duplicated once assuming
the predicate is true, once assuming it is false. The resulting unfolded
CFG can then be analyzed by subsequent high-level and low-level analyses
in the WCET analysis process as if predicated code did not exist. The CFG
unfolding keeps track of branch delay slots, nested delayed branches, function
calls, and parallel instruction bundles. The induced overhead in terms of code
duplication is moderate according to our experiments.

• A comparison of occupancy analyses for the stack cache. So far, two timing
analyses for the stack cache have been proposed, each relying on different
approaches to compute the cache occupancy. On the one hand, an analysis based
exclusively on the traditional inter-procedural data-flow analysis framework
(IDFA). On the other hand, a tailored analysis (SCA) that decomposes the
problem into smaller function-local data-flow analyses along with analyses on

142

the call graph to capture inter-procedural effects. Experiments showed the
limitations of the IDFA approach, which suffers imprecisions as soon as context
strings become too long, due to recursions for instance.

• An analysis of preemption costs for the stack cache. Preemptions are often
used as means to increase reactiveness and schedulability of real-time task
systems. However, the simple structure of the stack cache does not allow
it to be shared among multiple tasks. The context of preempted tasks thus
needs to be saved and restored. We optimized the context switch operation
based on a simple partitioning of the stack cache. Instead of saving/restoring
the stack cache content, the idea is to save/restore only useful stack data
at program points. We, furthermore, extended the tailored SCA analysis to
determine the worst-case costs associated with context switch operations. The
analysis consists of a combination of function-local data-flow analyses and
inter-procedural analyses to capture call/return effects. Experiments showed a
significant reduction of costs related to the context restoration. This is due to
the implicit restoration carried-out for free by subsequent sens instructions.
The context saving, on the other hand, showed limited reductions. Possible
solutions would be the use of virtual stack caches as highlighted in the next
section.

• Preemption mechanisms for the stack cache. The rich information provided
by our analysis of preemption costs may be difficult to exploit without proper
preemption mechanisms. These mechanisms define the set of operations the
scheduler needs to perform in order to realize the context switch operations.
They must thus induce minimal overhead. We proposed possible implementa-
tions of these mechanisms, which do not require the full analysis information
as input. Two of these implementations are based on an extension of the ISA.
The idea is to attach analysis information as parameters to the stack cache
control instructions. The side effect of this is potentially reduced precision
due to increased granularity. The other possible implementation is merely
based on a register that tracks the stack frame size of the current function.
The granularity is thus even higher. However, the required implementation
effort is minimal. Experiments show that the precision loss for the approaches
based on the ISA extension is not significant. Precision loss is more noticeable
on the latter approach. However, the overall trend in cost reduction remains
unchanged. Both approaches induce insignificant hardware overhead.

• A prefetching-like technique for the stack cache. In conventional caches,
prefetching allows to anticipate and hide memory transfers before they are
actually referenced. A downside of this is the induced complexity in timing
analysis due to (1) imprecise addresses and (2) side effects on either the cache
itself or any other component accessing main memory. The stack cache’s simple
design exploits the access patterns to stack data and thus does not rely on ad-
dresses. We explored a technique that allows to eagerly perform spilling/filling
operations ahead of stack cache control instructions. The proposed approach is
guaranteed to have no side effects on the stack cache itself. To avoid possible
interferences on the memory bus, we propose to perform these eager operations
only during unused TDM slots. This ensures both timing-composability and

143

the soundness of results provided by the stack cache timing analysis. A possible
extension to this work is an analysis that determines unused TDM slots in
order to provide tighter timing guarantees.

We implemented most of the aforementioned timing analyses in Odyssey – our
WCET analysis tool for Patmos. Odyssey is fully integrated into the LLVM compiler
toolchain. The tool is located right before code emission, i.e., after all code transfor-
mations have been already performed. It has, therefore, an accurate representation of
the program being analyzed. In contrast to existing WCET tools, Odyssey supports
the dual-issue execution as well as predicated execution. It, moreover, implements
analyses for the method cache and the conventional instruction cache. Odyssey could
be used as a platform for to further explore timing analysis techniques as well as
hardware and compiler optimizations.
Indeed, the results of this work alone do not allow to conclusively determine whether
time-predictable architectures are a better fit for high-performance safety-critical sys-
tems. More efforts are needed to ultimately compare (1) the achievable performance
and (2) the relative performance with respect to conventional architectures. However,
this work takes us one step forward towards understanding tailored architectures
and exploring their potential in enhancing worst-case performance.

2 Extension and Future Work
Important efforts were spent on the exploration of new ideas to improve worst-case
performance in time-predictable hardware. Some of these ideas need to be refined,
while others already led to some interesting results. We summarize here below some
topics that we already started investigating as well as perspectives for future work.

2.1 Virtual Stack Caches

The Chapters 6 and 7 presented the timing analysis of preemption costs and mecha-
nisms for context switching assuming a single stack cache. However, an important
question arises regarding the integration of this timing analysis into a schedulability
test. We evoke here below some of the issues that may emerge during this process
and propose virtual stack caches as a possible solution.
When a preemption occurs, the content of classical data caches will be updated
as the preempting task performs memory accesses, i.e., when misses occur. When
the preempted task is resumed, an additional CRPD must be accounted for in its
WCET due to data blocks that were evicted by the preempting task. A response time
analysis integrating CRPDs can then be performed, as shown in [17] for instance.
When considering a stack cache, the stack data of the preempted task must be saved
before the preempting task can set up its own stack space. The preempting task is
thus delayed. While the cost for saving the stack cache content of the preempted task
can be bounded using the CSA, this delay may come with undesirable side-effects.
Apart from an increased WCRT of high-priority tasks, this delay can also vary heavily
and cause undesirable jitter, depending on the preempted tasks and their respective
CSA results. A similar issue exists in caches with a write-back policy only, which are
still under research [32, 21]. While the stack cache simplifies the WCET analysis of a

144

single task, this additional CRPD, that depends on the preempted tasks, complicates
the WCRT analysis when using preemptive schedulers.
The virtual stack cache (VSC) design described in Abbaspour’s thesis [103] represents
an interesting approach to mitigate this issue. The idea consists of dedicating to each
task its own VSC. These caches are then mapped to a fast local scratchpad memory,
shared among all these tasks (i.e., running on the same physical core). Assuming
that all the VSCs of a system fit into the underlying memory, the context saving and
restoration costs are then completely eliminated. It suffices to retrieve the location
where the VSC of the preempting task is mapped, which, in the simplest case, means
fetching two pointers. The scheduling issue pointed out above, simply disappears
along with the preemption overhead.
Scratchpad memories are typically small and expensive, which limits the number of
VSCs that can be stored simultaneously under a static partitioning. It also appears
to be a waste of resources to keep inactive stack data in the scratchpad. This
suggests a dynamic handling by the system’s task scheduler to save and restore
the VSCs of inactive tasks to/from main memory. The dynamic restoration of the
VSCs under the control of the task scheduler, opens new research perspectives that
may be explored. The task scheduler clearly requires a task model that allows to
express constraints related to the VSCs (size, preemption costs, . . .). The task
scheduler, in addition, has to reason about the bandwidth requirements of the
necessary memory transfers associated with preemptions and needs a means to
ensure that sufficient bandwidth ultimately is available to perform the transfers in
time. Alternatively, the schedulability test may account for additional stall time that
may occur when memory transfers cannot be guaranteed to be completed. This also
requires associated analyses that allow to determine a lower bound on the bandwidth
that can be guaranteed by the memory in parallel with the execution of a given task.
These problems consequently touch several research domains, including operating
system design, schedulability tests, computer architecture, as well as WCET analyses.

2.2 Unused TDM slots

In multi-core platforms with shared memory, TDM arbitration is often used to avoid
inter-core interferences in a predictable fashion. Under Patmos, the arbiter dedicates
one TDM slot to each core, which are scheduled in a TDM period. Memory transfers
requested by some core may only be initiated at the beginning of its dedicated TDM
slot. This greatly simplifies the WCET analysis and enforces timing-composability.
A downside of TDM arbitration, however, is the under-utilized memory bandwidth.
This is often due to situations where there is no memory requests to be served at the
beginning of the core’s TDM slot. Requests that come later are delayed to the next
TDM period and the core’s TDM slot remains unused. During this time, the CPU
stalls for at most 2 TDM periods depending on when the request is issued. This
may have a severe impact on both worst-case and average-case performance. We
thus explored means to enhance the utilization of memory bandwidth under TDM
arbitration.
A first step was to get quantitative insights as to the availability of these unused or
free TDM slots. Using the cycle-accurate Patmos simulator we collected statistics
on the number of unused TDM (or bus) slots during the execution of a benchmark
(results are published in [13]). Statistics are collected depending on the number of

145

Figure 9.1 – Visualization of the TDM slots utilization for the bitcount benchmark
assuming 2 cores configuration. Top plot shows a general overview of the TDM
slots utilization during a complete execution. Bottom plot shows the utilization of
individual TDM slots within a specific time frame. Colors represent the TDM slots
utilization, ranging from green (low utilization) to red (high utilization).

cores in different multi-core configurations. The measurements are interesting, in
particular when the number of cores is small. The average percentage of free TDM
slots is found to be above 36% in a dual-core configuration. The percentage drops as
the number of cores increases. However, if we consider their number a large amount
of slots are available, as the total execution time increases.
An interesting question then is: where and how these free TDM slots occur in the
program? The Patmos simulator tracing infrastructure allows to track free TDM
slots during the execution of a program, which then can be visualized graphically.
Depending on the benchmark, the collected results revealed different regions where
TDM slots are likely (or less likely) to be found. For instance, free TDM slots are
less likely to be found at the beginning of the program due to cold cache misses
(caches are still empty). However, even in such regions we were able to notice some
regular pattern in the occurrence of free TDM slots (see Figure 9.1). Other regions
showed more pronounced repetitive patterns, mostly due to large loops as the whole
data cannot fit into different cache structures. On the other hand, regions with high
percentage of free TDM slots are often found in small loops.
The obtained results are promising and suggest means to enhance the memory
bandwidth utilization under TDM arbitration. One possible direction would be
to propose a static analysis for free TDM slots. Ongoing work investigates data-
flow analysis to conservatively determine at which program points free TDM slots
might occur. If free TDM slots could be guaranteed, one could combine them with
optimizations such as prefetching. In such a case, the results found in Chapter 8
could be transformed into timing guarantees to reduce the WCET estimates. Another
direction that already led to interesting results is to dynamically reschedule free TDM
slots in mixed-critical systems [55]. The goal consists of improving resource utilization
by executing non-critical tasks as long as critical tasks meet their deadlines.

2.3 Method Cache

The method cache is an important time-predictable component of the Patmos
processor. Although this thesis did not cover the method cache as part of its main
contributions, efforts were still spent to optimize its behavior and the corresponding
timing analysis.
The scope-based method cache analysis proposed by Huber et. al. is pessimistic (see
Section 6 of Chapter 3). We thus tried to explore the traditional age-based analysis

146

of Ferdinand [44, 45] to support the method cache. The method cache can be seen
as a fully-associative cache that holds variable cache block sizes (see Section 2.4 of
Chapter 2). A cache block can be evicted upon an access either when (1) the cache
size is exceeded, or (2) the number of cache blocks exceeds the cache’s associativity.
Our analysis therefore tracks the minimum and maximum ages of code blocks based
on their sizes as well as cardinalities, i.e., the analysis keeps track of the number of
code blocks present in the cache.
A weakness of this approach appears at loops. Typically, in loops the first iterations
load code blocks into the cache, while subsequent ones profit from their presence in
the cache. The access classification analysis encounters a problem when merging
abstract cache states at back edges reaching the loop header. The join operator
of the must analysis only keeps the maximum ages at that program point, which
results in resetting the ages of the loop’s code blocks (i.e, accessed within the loop).
This has the side-effect that the age of other code blocks keeps growing during the
data-flow analysis until it gets higher than the initial age of the loop’s code blocks.
This means that if the loop’s code blocks were initially not present in the cache, all
other code blocks will be evicted, leading to pessimistic results.
For loops that fit into the cache, a simple fix consists of considering all conflicting
code blocks in the loop and adding their contribution to the age of other code blocks.
For large loops, we started exploring means to provide hardware support by marking
code blocks as disposable. This hardware optimization allows to implicitly evict code
blocks that are marked as disposable once they are left. The marking is done at
compile-time and could be based on different criteria. Examples include dominance
relations inside the loop, the size of code blocks, or execution frequency. Code blocks
that appear to be profitable candidates for the disposable marking include those with
a small size or that are not frequently reused. It would be interesting to formalize
these heuristics in order to guide the disposable marking and evaluate its impact on
the worst-case performance.
We started this work as part of a collaboration with Stefan Hepp, a PhD student
from Vienna University. Some of the heuristics have been explored, but not yet
published. The work is, however, ongoing in other forms such as master projects at
Telecom ParisTech.

147

Bibliography

[1] Copper Development Association transportation. http : / /
copperalliance.org.uk/applications/transportation. Ac-
cessed: 2018-01-14.

[2] Cortex-R4 and Cortex-R4F Technical Reference Manual.

[3] Data-flow analysis. http://www.cs.colostate.edu/~mstrout/
CS553/slides/lecture03.pdf. Accessed: 2019-02-18.

[4] GR740 Preliminary Data Sheet and User’s Manual.

[5] MicroBlaze Processor Reference Guide.

[6] NVIDIA Announces World’s First AI Computer to Make Robotaxis a Real-
ity. https://nvidianews.nvidia.com/news/nvidia-announces-
world-s-first-ai-computer-to-make-robotaxis-a-reality.
Accessed: 2018-04-17.

[7] Patmos Reference Handbook.

[8] Software Bugs. https://www5.in.tum.de/~huckle/bugse.html.
Accessed: 2018-04-17.

[9] Sweet (swedish execution time tool). http://www.mrtc.mdh.se/
projects/wcet/. Accessed: 2019-02-18.

[10] S. Abbaspour and F. Brandner. Alignment of memory transfers of a time-
predictable stack cache. In Proceedings of the Junior Researcher Workshop on
Real-Time Computing. 2014.

[11] S. Abbaspour, F. Brandner, and M. Schoeberl. A time-predictable stack cache.
In Proceedings of the Workshop on Software Technologies for Embedded and
Ubiquitous Systems. 2013.

[12] S. Abbaspour, A. Jordan, and F. Brandner. Lazy spilling for a time-predictable
stack cache: Implementation and analysis. In Proceedings of the Workshop
on Worst-Case Execution Time Analysis, volume 39 of OASICS, pages 83–92,
2014.

148

http://copperalliance.org.uk/applications/transportation
http://copperalliance.org.uk/applications/transportation
http://www.cs.colostate.edu/~mstrout/CS553/slides/lecture03.pdf
http://www.cs.colostate.edu/~mstrout/CS553/slides/lecture03.pdf
https://nvidianews.nvidia.com/news/nvidia-announces-world-s-first-ai-computer-to-make-robotaxis-a-reality
https://nvidianews.nvidia.com/news/nvidia-announces-world-s-first-ai-computer-to-make-robotaxis-a-reality
https://www5.in.tum.de/~huckle/bugse.html
http://www.mrtc.mdh.se/projects/wcet/
http://www.mrtc.mdh.se/projects/wcet/

[13] Sahar Abbaspour, Florian Brandner, Amine Naji, and Mathieu Jan. Efficient
context switching for the stack cache: Implementation and analysis. In Pro-
ceedings of the International Conference on Real Time and Networks Systems,
RTNS ’15, pages 119–128. ACM, 2015.

[14] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers:
Principles, Techniques, and Tools. Addison-Wesley, 2nd edition, 2006.

[15] B. Akesson, K. Goossens, and M. Ringhofer. Predator: A predictable sdram
memory controller. In 2007 5th IEEE/ACM/IFIP International Conference
on Hardware/Software Codesign and System Synthesis (CODES+ISSS), pages
251–256, Sept 2007.

[16] S. Altmeyer and C. Burguiere. A new notion of useful cache block to improve
the bounds of cache-related preemption delay. In Euromicro Conference on
Real-Time Systems, ECRTS ’09, pages 109–118, 2009.

[17] Sebastian Altmeyer, RobertI. Davis, and Claire Maiza. Improved cache related
pre-emption delay aware response time analysis for fixed priority pre emptive
systems. Real-Time Systems, 48(5):499–526, 2012.

[18] Clément Ballabriga, Hugues Cassé, Christine Rochange, and Pascal Sainrat.
Otawa: An open toolbox for adaptive wcet analysis. In Sang Lyul Min, Robert
Pettit, Peter Puschner, and Theo Ungerer, editors, Software Technologies
for Embedded and Ubiquitous Systems, pages 35–46, Berlin, Heidelberg, 2010.
Springer Berlin Heidelberg.

[19] Sanjoy Baruah. The limited-preemption uniprocessor scheduling of spo-
radic task systems. In 17th Euromicro Conference on Real-Time Systems
(ECRTS’05), pages 137–144, July 2005.

[20] I. Bate, P. Conmy, T. Kelly, and J. McDermid. Use of modern processors in
safety-critical applications. The Computer Journal, 44(6):531–543, Jan 2001.

[21] Tobias Blaß, Sebastian Hahn, and Jan Reineke. Write-back caches in WCET
analysis. In 29th Euromicro Conference on Real-Time Systems, ECRTS 2017,
June 27-30, 2017, Dubrovnik, Croatia, pages 26:1–26:22, 2017.

[22] Armelle Bonenfant, Marianne De Michiel, and Pascal Sainrat. orange : A tool
for static loop bound analysis. 2008.

[23] F. Brandner, S. Hepp, and D. Prokesch. D5.2 - Initial compiler version, 2012.
Report of T-CREST Deliverable D5.2, http://www.t-crest.org/page/
results.

[24] Florian Brandner, Stefan Hepp, and Alexander Jordan. Criticality: static
profiling for real-time programs. Real-Time Systems, 50(3):377–410, May 2014.

[25] Florian Brandner and Amine Naji. Worst-Case Execution Time Analysis of
Predicated Architectures. In Jan Reineke, editor, 17th International Workshop
on Worst-Case Execution Time Analysis (WCET 2017), volume 57 of OpenAc-
cess Series in Informatics (OASIcs), pages 6:1–6:13, Dagstuhl, Germany, 2017.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

149

http://www.t-crest.org/page/results
http://www.t-crest.org/page/results

[26] D. Broman, M. Zimmer, Y. Kim, H. Kim, J. Cai, A. Shrivastava, S. A. Edwards,
and E. A. Lee. Precision timed infrastructure: Design challenges. In Proceedings
of the 2013 Electronic System Level Synthesis Conference (ESLsyn), pages 1–6,
May 2013.

[27] Claire Burguière, Jan Reineke, and Sebastian Altmeyer. Cache-Related Pre-
emption Delay Computation for Set-Associative Caches - Pitfalls and Solutions.
In Niklas Holsti, editor, 9th International Workshop on Worst-Case Execution
Time Analysis (WCET’09), volume 10 of OpenAccess Series in Informatics
(OASIcs), pages 1–11, Dagstuhl, Germany, 2009. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik. also published in print by Austrian Computer Society
(OCG) with ISBN 978-3-85403-252-6.

[28] Alan Burns. Advances in real-time systems. chapter Preemptive Priority-
based Scheduling: An Appropriate Engineering Approach, pages 225–248.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1995.

[29] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms. MIT Press, 3rd edition, 2009.

[30] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approximation of
fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages, POPL ’77, pages 238–252, New York,
NY, USA, 1977. ACM.

[31] Patterson David and Hennessy John. Computer Organization and Design.
Elsevier, 2013.

[32] Robert I. Davis, Sebastian Altmeyer, and Jan Reineke. Response-time analysis
for fixed-priority systems with a write-back cache. Real-Time Syst., 54(4):912–
963, October 2018.

[33] P. Degasperi, S. Hepp, W. Puffitsch, and M. Schoeberl. A method cache for
Patmos. In Proc. of the Symposium on Object/Component/Service-oriented
Real-time Distributed Computing. IEEE, 2014.

[34] M. Delvai, W. Huber, P. Puschner, and A. Steininger. Processor support for
temporal predictability - the SPEAR design example. In Proc. of the Euromicro
Conference on Real-Time Systems, pages 169–176. IEEE, 2003.

[35] Arnoldo Díaz-Ramírez, Pedro Mejía-Alvarez, and Luis E. Leyva del Foyo. Com-
prehensive comparison of schedulability tests for uniprocessor rate-monotonic
scheduling. Journal of Applied Research and Technology, 11(3):408 – 436, 2013.

[36] Daniel L. Dvorak (editor). Nasa study on flight software complexity. Technical
report, NASA Office of Chief Engineer, 2009.

[37] S. A. Edwards, S. Kim, E. A. Lee, I. Liu, H. D. Patel, and M. Schoeberl. A
disruptive computer design idea: Architectures with repeatable timing. In
2009 IEEE International Conference on Computer Design, pages 54–59, Oct
2009.

150

[38] Stephen A. Edwards and Edward A. Lee. The case for the precision timed (pret)
machine. In Proceedings of the 44th Annual Design Automation Conference,
DAC ’07, pages 264–265, New York, NY, USA, 2007. ACM.

[39] A. E. Eichenberger and E. S. Davidson. Register allocation for predicated code.
In Proc. of the Int. Symposium on Microarchitecture, pages 180–191. IEEE,
1995.

[40] J. Engblom. Analysis of the execution time unpredictability caused by dynamic
branch prediction. In The 9th IEEE Real-Time and Embedded Technology and
Applications Symposium, 2003. Proceedings., pages 152–159, May 2003.

[41] H. Falk, S. Altmeyer, P. Hellinckx, B. Lisper, W. Puffitsch, C. Rochange,
M. Schoeberl, R. B. Sørensen, P. Wägemann, and S. Wegener. TACLeBench:
A Benchmark Collection to Support Worst-Case Execution Time Research. In
Proc. of the Int. Workshop on Worst-Case Execution Time Analysis, volume 55
of OASIcs, pages 1–10. Schloss Dagstuhl, 2016.

[42] Heiko Falk and Paul Lokuciejewski. A compiler framework for the reduction of
worst-case execution times. Real-Time Systems, 46(2):251–300, Oct 2010.

[43] Christian Ferdinand and Reinhold Heckmann. ait: Worst-case execution time
prediction by static program analysis. In Renè Jacquart, editor, Building the
Information Society, pages 377–383, Boston, MA, 2004. Springer US.

[44] Christian Ferdinand, Florian Martin, Reinhard Wilhelm, and Martin Alt.
Cache behavior prediction by abstract interpretation. Science of Computer
Programming, 35(2):163 – 189, 1999.

[45] Christian Ferdinand and Reinhard Wilhelm. Efficient and precise cache behavior
prediction for real-time systems. Real-Time Systems, 17(2):131–181, Nov 1999.

[46] Mikel Fernández, Roberto Gioiosa, Eduardo Quiñones, Luca Fossati, Marco
Zulianello, and Francisco J. Cazorla. Assessing the suitability of the ngmp
multi-core processor in the space domain. In Proceedings of the Tenth ACM
International Conference on Embedded Software, EMSOFT ’12, pages 175–184,
New York, NY, USA, 2012. ACM.

[47] J. A. Fisher, P. Faraboschi, and Y. Cliff. Embedded Computing: A VLIW
Approach to Architecture, Compilers and Tools. Morgan Kaufmann (Elsevier),
2005.

[48] Nielson Flemming, Hankin Hanne, R, and Hankin Chris. Principles of Program
Analysis. Springer, 1999.

[49] J. Garside and N. C. Audsley. WCET preserving hardware prefetch for many-
core real-time systems. In Proc. of the Int. Conf. on Real-Time Networks and
Systems, RTNS ’14. ACM, 2014.

[50] C. B. Geyer, B. Huber, D. Prokesch, and P. Puschner. Time-predictable code
execution – instruction-set support for the single-path approach. In Proc. of the
Int. Symposium on Object/component/service-oriented Real-time distributed
Computing, pages 1–8, 2013.

151

[51] Daniel Grund and Jan Reineke. Abstract interpretation of fifo replacement.
In Jens Palsberg and Zhendong Su, editors, Static Analysis, pages 120–136,
Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[52] Matthew R. Guthaus, Jeffrey S. Ringenberg, Dan Ernst, Todd M. Austin,
Trevor Mudge, and Richard B. Brown. MiBench: A free, commercially rep-
resentative embedded benchmark suite. In Proceedings of the Workshop on
Workload Characterization, WWC ’01, 2001.

[53] Andreas Hansson, Kees Goossens, Marco Bekooij, and Jos Huisken. Compsoc:
A template for composable and predictable multi-processor system on chips.
ACM Trans. Des. Autom. Electron. Syst., 14(1):2:1–2:24, January 2009.

[54] D. Hardy and I. Puaut. Wcet analysis of multi-level non-inclusive set-associative
instruction caches. In 2008 Real-Time Systems Symposium, pages 456–466,
Nov 2008.

[55] F. Hebbache, M. Jan, F. Brandner, and L. Pautet. Shedding the shackles
of time-division multiplexing. In 2018 IEEE Real-Time Systems Symposium
(RTSS), pages 456–468, Dec 2018.

[56] Matthew S. Hecht and Jeffrey D. Ullman. Analysis of a simple algorithm
for global data flow problems. In Symposium on Principles of Programming
Languages (POPL’73), pages 207–217. ACM, 1973.

[57] Stefan Hepp and Florian Brandner. Splitting functions into single-entry regions.
In Proceedings of the 2014 International Conference on Compilers, Architecture
and Synthesis for Embedded Systems, CASES ’14, pages 17:1–17:10, New York,
NY, USA, 2014. ACM.

[58] P. Hu. Static analysis for guarded code. In Proc. of the Int. Workshop on
Languages, Compilers, and Run-Time Systems for Scalable Computers, pages
44–56. Springer, 2000.

[59] Benedikt Huber, Stefan Hepp, and Martin Schoeberl. Scope-Based Method
Cache Analysis. In Heiko Falk, editor, 14th International Workshop on Worst-
Case Execution Time Analysis, volume 39 of OpenAccess Series in Informatics
(OASIcs), pages 73–82, Dagstuhl, Germany, 2014. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik.

[60] Benedikt Huber, Daniel Prokesch, and Peter Puschner. Combined wcet analysis
of bitcode and machine code using control-flow relation graphs. volume 48,
pages 163–172, 06 2013.

[61] B. K. Huynh, L. Ju, and A. Roychoudhury. Scope-aware data cache analysis
for wcet estimation. In 2011 17th IEEE Real-Time and Embedded Technology
and Applications Symposium, pages 203–212, April 2011.

[62] R. Johnson and M. Schlansker. Analysis techniques for predicated code. In
Proc. of the Int. Symposium on Microarchitecture, pages 100–113. IEEE, 1996.

152

[63] Alexander Jordan, Florian Brandner, and Martin Schoeberl. Static analysis of
worst-case stack cache behavior. In Proceedings of the Conference on Real-Time
Networks and Systems, RTNS’13, pages 55–64, 2013.

[64] John B. Kam and Jeffrey D. Ullman. Global data flow analysis and iterative
algorithms. Journal of the ACM, 23(1):158–171, 1976.

[65] E. Kasapaki, M. Schoeberl, R. B. Sørensen, C. Müller, K. Goossens, and
J. Sparsø. Argo: A real-time network-on-chip architecture with an efficient
GALS implementation. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 24(2):479–492, Feb 2016.

[66] Gary A. Kildall. A unified approach to global program optimization. In Pro-
ceedings of the 1st Annual ACM SIGACT-SIGPLAN Symposium on Principles
of Programming Languages, POPL ’73, pages 194–206, New York, NY, USA,
1973. ACM.

[67] Raimund Kirner, Peter Puschner, and Adrian Prantl. Transforming flow
information during code optimization for timing analysis. Real-Time Systems,
45(1):72–105, Jun 2010.

[68] E. Lakis and M. Schoeberl. An sdram controller for real-time systems. In
16th IEEE International Symposium on Object/component/service-oriented
Real-time distributed Computing (ISORC 2013), pages 1–8, June 2013.

[69] C. Lattner and V. Adve. Llvm: a compilation framework for lifelong program
analysis amp; transformation. In International Symposium on Code Generation
and Optimization, 2004. CGO 2004., pages 75–86, March 2004.

[70] Chang-Gun Lee, Joosun Hahn, Yang-Min Seo, Sang Lyul Min, Rhan Ha,
Seongsoo Hong, Chang Yun Park, Minsuk Lee, and Chong Sang Kim. Analysis
of cache-related preemption delay in fixed-priority preemptive scheduling. IEEE
Trans. Comput., 47(6):700–713, 1998.

[71] H.-H. S. Lee, G. S. Tyson, and M. K. Farrens. Eager writeback - a tech-
nique for improving bandwidth utilization. In Proc. of the Int. Symp. on
Microarchitecture, MICRO 33, pages 11–21. ACM, 2000.

[72] Benjamin Lesage, Damien Hardy, and Isabelle Puaut. Wcet analysis of multi-
level set-associative data caches. 9th Intl. Workshop on Worst-Case Execution
Time WCET Analysis, 10, 06 2009.

[73] Joseph Leung and Hairong Zhao. Real-time scheduling analysis. Technical
report, Office of Aviation Research and Development, 2005.

[74] Xianfeng Li, Yun Liang, Tulika Mitra, and Abhik Roychoudhury. Chronos: A
timing analyzer for embedded software. Science of Computer Programming,
69(1):56 – 67, 2007. Special issue on Experimental Software and Toolkits.

[75] Xianfeng Li, Tulika Mitra, and Abhik Roychoudhury. Modeling control specu-
lation for timing analysis. Real-Time Systems, 29(1):27–58, Jan 2005.

153

[76] Xianfeng Li, Abhik Roychoudhury, and Tulika Mitra. Modeling out-of-order
processors for wcet analysis. Real-Time Syst., 34(3):195–227, November 2006.

[77] Yau-Tsun Steven Li and Sharad Malik. Performance analysis of embedded soft-
ware using implicit path enumeration. In Proceedings of the Design Automation
Conference, DAC ’95, pages 456–461. ACM, 1995.

[78] Ben Lickly, Isaac Liu, Sungjun Kim, Hiren D. Patel, Stephen A. Edwards, and
Edward A. Lee. Predictable programming on a precision timed architecture. In
Proceedings of the 2008 International Conference on Compilers, Architectures
and Synthesis for Embedded Systems, CASES ’08, pages 137–146, New York,
NY, USA, 2008. ACM.

[79] C. L. Liu and James W. Layland. Scheduling algorithms for multiprogramming
in a hard-real-time environment. J. ACM, 20(1):46–61, January 1973.

[80] I. Liu, J. Reineke, D. Broman, M. Zimmer, and E. A. Lee. A pret microarchi-
tecture implementation with repeatable timing and competitive performance.
In 2012 IEEE 30th International Conference on Computer Design (ICCD),
pages 87–93, Sept 2012.

[81] Florian Martin, Martin Alt, Reinhard Wilhelm, and Christian Ferdinand.
Analysis of loops. In Proceedings of the 7th International Conference on
Compiler Construction, CC ’98, pages 80–94, London, UK, UK, 1998. Springer-
Verlag.

[82] Stefan Metzlaff. Analysable instruction memories for hard real-time systems,
2012.

[83] Stefan Metzlaff. Isptap – instruction scratchpad timing analysis program:
Features and usage. Technical report, University of Augsburg, 2013.

[84] Stefan Metzlaff, Irakli Guliashvili, Sascha Uhrig, and Theo Ungerer. A dynamic
instruction scratchpad memory for embedded processors managed by hardware.
In Mladen Berekovic, William Fornaciari, Uwe Brinkschulte, and Cristina
Silvano, editors, Architecture of Computing Systems - ARCS 2011, pages
122–134, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[85] J. Mische, S. Uhrig, F. Kluge, and T. Ungerer. Using smt to hide context switch
times of large real-time tasksets. In Proceedings of Conference on Embedded and
Real-Time Computing Systems and Applications, RTCSA’10, pages 255–264,
2010.

[86] Jörg Mische, Irakli Guliashvili, Sascha Uhrig, and Theo Ungerer. How to
enhance a superscalar processor to provide hard real-time capable in-order smt.
In Christian Müller-Schloer, Wolfgang Karl, and Sami Yehia, editors, Architec-
ture of Computing Systems - ARCS 2010, pages 2–14, Berlin, Heidelberg, 2010.
Springer Berlin Heidelberg.

[87] Amine Naji, Sahar Abbaspour, Florian Brandner, and Mathieu Jan. Analysis
of preemption costs for the stack cache. Real-Time Syst., 54(3):700–744, July
2018.

154

[88] Amine Naji and Florian Brandner. A Comparative Study of the Precision of
Stack Cache Occupancy Analyses. In Benjamin Lesage, editor, 9th Junior
Researcher Workshop on Real-Time Computing, page 4, Lille, France, November
2015. Julien Forget.

[89] Amine Naji and Florian Brandner. Eager stack cache memory transfers. In
16th International Workshop on Worst-Case Execution Time Analysis, WCET
2016, July 5, 2016, Toulouse, France, pages 5:1–5:11, 2016.

[90] M. Paolieri, E. Quinones, F. J. Cazorla, and M. Valero. An analyzable memory
controller for hard real-time cmps. IEEE Embedded Systems Letters, 1(4):86–90,
Dec 2009.

[91] Marco Paolieri, Jörg Mische, Stefan Metzlaff, Mike Gerdes, Eduardo Quiñones,
Sascha Uhrig, Theo Ungerer, and Francisco J. Cazorla. A hard real-time capable
multi-core smt processor. ACM Trans. Embed. Comput. Syst., 12(3):79:1–79:26,
April 2013.

[92] Marco Paolieri, Eduardo Quiñones, Francisco J. Cazorla, Guillem Bernat, and
Mateo Valero. Hardware support for wcet analysis of hard real-time multicore
systems. SIGARCH Comput. Archit. News, 37(3):57–68, June 2009.

[93] J. C. H. Park and M. Schlansker. On predicated execution. Technical report
HPL-91-58, HP Laboratories, 1991.

[94] D. A. Patterson and J. L. Hennessy. Computer Organization & Design: The
Hardware/Software Interface. Morgan Kaufmann, 4rd edition, 2012.

[95] P. Puschner. Experiments with wcet-oriented programming and the single-
path architecture. In 10th IEEE International Workshop on Object-Oriented
Real-Time Dependable Systems, pages 205–210, Feb 2005.

[96] P. Puschner, D. Prokesch, B. Huber, J. Knoop, S. Hepp, and G. Gebhard.
The t-crest approach of compiler and wcet-analysis integration. In 16th IEEE
International Symposium on Object/component/service-oriented Real-time dis-
tributed Computing (ISORC 2013), pages 1–8, June 2013.

[97] Peter Puschner. Transforming Execution-Time Boundable Code into Temporally
Predictable Code, pages 163–172. Springer US, Boston, MA, 2002.

[98] G. Ramalingam. On loops, dominators, and dominance frontier. SIGPLAN
Not., 35(5):233–241, May 2000.

[99] J. Reineke, I. Liu, H. D. Patel, S. Kim, and E. A. Lee. Pret dram controller:
Bank privatization for predictability and temporal isolation. In 2011 Proceedings
of the Ninth IEEE/ACM/IFIP International Conference on Hardware/Software
Codesign and System Synthesis (CODES+ISSS), pages 99–108, Oct 2011.

[100] Jan Reineke and Daniel Grund. Relative competitive analysis of cache replace-
ment policies. SIGPLAN Not., 43(7):51–60, June 2008.

155

[101] National Research Council, on Engineering, Division Physical Sciences, Science,
Computer Telecommunications Board, Committee on Sustaining Growth in
Computing Performance, S.H. Fuller, and L.I. Millett. The future of computing
performance: Game over or next level? 04 2011.

[102] Benjamin Rouxel, Damien Hardy, and Isabelle Puaut. The heptane static
worst-case execution time estimation tool. 06 2017.

[103] Abbaspour Sahar. Time-predictable stack caching, 2016.

[104] Jörn Schneider and Christian Ferdinand. Pipeline behavior prediction for
superscalar processors by abstract interpretation. In Proceedings of the ACM
SIGPLAN 1999 Workshop on Languages, Compilers, and Tools for Embedded
Systems, LCTES ’99, pages 35–44, New York, NY, USA, 1999. ACM.

[105] Martin Schoeberl. Jop: A java optimized processor. In Robert Meersman
and Zahir Tari, editors, On The Move to Meaningful Internet Systems 2003:
OTM 2003 Workshops, pages 346–359, Berlin, Heidelberg, 2003. Springer Berlin
Heidelberg.

[106] Martin Schoeberl. Time-predictable computer architecture. EURASIP J.
Embedded Syst., 2009:2:1–2:17, January 2009.

[107] Martin Schoeberl. Is time predictability quantifiable? In 2012 International
Conference on Embedded Computer Systems (SAMOS), pages 333–338, July
2012.

[108] Martin Schoeberl, Sahar Abbaspour, Benny Akesson, Neil Audsley, Raffaele
Capasso, Jamie Garside, Kees Goossens, Sven Goossens, Scott Hansen, Rein-
hold Heckmann, Stefan Hepp, Benedikt Huber, Alexander Jordan, Evangelia
Kasapaki, Jens Knoop, Yonghui Li, Daniel Prokesch, Wolfgang Puffitsch, Peter
Puschner, André Rocha, Cláudio Silva, Jens Sparsø, and Alessandro Tocchi. T-
crest: Time-predictable multi-core architecture for embedded systems. Journal
of Systems Architecture, 61(9):449 – 471, 2015.

[109] Martin Schoeberl, David Vh Chong, Wolfgang Puffitsch, and Jens Sparsø.
A Time-Predictable Memory Network-on-Chip. In Heiko Falk, editor, 14th
International Workshop on Worst-Case Execution Time Analysis, volume 39 of
OpenAccess Series in Informatics (OASIcs), pages 53–62, Dagstuhl, Germany,
2014. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[110] Martin Schoeberl, Wolfgang Puffitsch, Stefan Hepp, Benedikt Huber, and
Daniel Prokesch. Patmos: a time-predictable microprocessor. Real-Time
Systems, 54(2):389–423, Apr 2018.

[111] Martin Schoeberl, Pascal Schleuniger, Wolfgang Puffitsch, Florian Brandner,
Christian W. Probst, Sven Karlsson, and Tommy Thorn. Towards a time-
predictable dual-issue microprocessor: The patmos approach. In Proceedings
of Bringing Theory to Practice: Predictability and Performance in Embedded
Systems, volume 18, pages 11–21. OASICS, 2011.

156

[112] J. W. Sias, W.-M. W. Hwu, and D. I. August. Accurate and efficient predicate
analysis with binary decision diagrams. In Proc. of the Int. Symposium on
Microarchitecture, pages 112–123. ACM, 2000.

[113] M. Smelyanskiy, S. A. Mahlke, E. S. Davidson, and H.-H. S. Lee. Predicate-
aware scheduling: A technique for reducing resource constraints. In Proc. of the
Int. Symposium on Code Generation and Optimization, pages 169–178. IEEE,
2003.

[114] Vijayaraghavan Soundararajan and Anant Agarwal. Dribbling registers: A
mechanism for reducing context switch latency in large-scale multiprocessors.
Technical report, 1992.

[115] Jean Souyris, Erwan Le Pavec, Guillaume Himbert, Guillaume Borios, Victor
Jégu, and Reinhold Heckmann. Computing the worst case execution time of
an avionics program by abstract interpretation. 01 2005.

[116] Thesing Stephan. Safe and precise wcet determination by abstract interpretation
of pipeline models, 2004.

[117] A. Stoutchinin and G. Gao. If-conversion in SSA form. In Proc. of the Int.
Euro-Par Conference, pages 336–345. Springer, 2004.

[118] T-CREST. Report on architecture evaluation and WCET analysis. Technical
report, 2013.

[119] Henrik Theiling. Ilp-based interprocedural path analysis. In Alberto
Sangiovanni-Vincentelli and Joseph Sifakis, editors, Embedded Software, pages
349–363, Berlin, Heidelberg, 2002. Springer Berlin Heidelberg.

[120] Lothar Thiele and Reinhard Wilhelm. 03471 abstracts collection – design of
systems with predictable behaviour. In Lothar Thiele and Reinhard Wilhelm,
editors, Perspectives Workshop: Design of Systems with Predictable Behaviour,
number 03471 in Dagstuhl Seminar Proceedings, Dagstuhl, Germany, 2004.
Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI),
Schloss Dagstuhl, Germany.

[121] Mikkel Thorup. Integer priority queues with decrease key in constant time and
the single source shortest paths problem. Journal of Computer and System
Sciences, 69(3):330–353, November 2004.

[122] Eric Tune, Rakesh Kumar, Dean M. Tullsen, and Brad Calder. Balanced
multithreading: Increasing throughput via a low cost multithreading hierarchy.
In Proceedings of the Symp. on Microarchitecture, MICRO’04, pages 183–194,
2004.

[123] X. Vera, B. Lisper, and Jingling Xue. Data caches in multitasking hard real-
time systems. In RTSS 2003. 24th IEEE Real-Time Systems Symposium, 2003,
pages 154–165, Dec 2003.

[124] Yun Wang and M. Saksena. Scheduling fixed-priority tasks with preemption
threshold. In Real-Time Computing Systems and Applications, 1999. RTCSA
’99. Sixth International Conference on, pages 328–335, 1999.

157

[125] Reinhard Wilhelm, Daniel Grund, Jan Reineke, Marc Schlickling, Markus
Pister, and Christian Ferdinand. Memory hierarchies, pipelines, and buses
for future architectures in time-critical embedded systems. Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 28(7):966–978,
2009.

[126] M. Zimmer, D. Broman, C. Shaver, and E. A. Lee. Flexpret: A processor
platform for mixed-criticality systems. In 2014 IEEE 19th Real-Time and
Embedded Technology and Applications Symposium (RTAS), pages 101–110,
April 2014.

158

Personal Publications
Here below is a list of publications on which I contributed during my thesis.

• Sahar Abbaspour, Florian Brandner, Amine Naji, and Mathieu Jan. Efficient
context switching for the stack cache: Implementation and analysis. In Pro-
ceedings of the International Conference on Real Time and Networks Systems,
RTNS ’15, pages 119–128. ACM, 2015.

• Amine Naji and Florian Brandner. A Comparative Study of the Precision
of Stack Cache Occupancy Analyses. In Benjamin Lesage, editor, 9th Junior
Researcher Workshop on Real-Time Computing, page 4, Lille, France, November
2015. Julien Forget.

• Amine Naji and Florian Brandner. Eager stack cache memory transfers. In
16th International Workshop on Worst-Case Execution Time Analysis, WCET
2016, July 5, 2016, Toulouse, France, pages 5:1–5:11, 2016.

• Amine Naji, Sahar Abbaspour, Florian Brandner, and Mathieu Jan. Analysis
of preemption costs for the stack cache. Real-Time Systems, 54(3):700–744,
July 2018.

• Florian Brandner and Amine Naji. Worst-Case Execution Time Analysis of
Predicated Architectures. In Jan Reineke, editor, 17th International Workshop
on Worst-Case Execution Time Analysis (WCET 2017), volume 57 of OpenAc-
cess Series in Informatics (OASIcs), pages 6:1–6:13, Dagstuhl, Germany, 2017.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

159

