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Synthèse

Les véhicules autonomes et les aides à la conduite automobile représentent le futur

du transport routier. Hypothétiquement, ils sont supposés augmenter globalement la

sécurité routière. Cependant, ce sont des systèmes assez complexes, de la coordination de

multiples capteurs à leur fusion, jusqu’à la loi de commande qui décide des actions que

le véhicule exécutera. Une défaillance peut se produire durant n’importe quel stade de

ce processus, ce qui va enclencher une fausse action sur la route. C’est pourquoi chaque

composant de ce système devra être rigoureusement testé pour anticiper des défaillances

potentielles et les éliminer.

Les essais de conduite réelle sont utilisés pour tester le véhicule sous diverses condi-

tions et identifier des défaillances spécifiques. Cependant, cette approche ne peut pas être

utilisée seule pour compléter le processus de validation, en sachant que plusieurs études

ont montré qu’il faudrait des siècles de conduite continue pour démontrer que le taux

de défaillance du véhicule autonome est inférieur à celui du conducteur humain. C’est

pourquoi, grâce à l’essor des puissances de calcul, des méthodes de test par simulation

sont utilisées pour complémenter les essais réels, et sont nettement moins chères. Une de

ces méthodes est la simulation numérique, qui génère des données virtuelles paramétrées

et recherche de nouvelles situations à travers un simulateur de conduite.

Le contexte de cette thèse s’inscrit dans la simulation numérique. Son objectif est de

faciliter la validation de la loi de commande par des tests en MIL (Model-In-the-Loop) où

l’environnement de la loi de commande est simulé sans composants physiques. Nous pou-

vons donc vérifier que les actions choisies par le véhicule demeurent en sécurité selon les

règles de conduite, et valider numériquement les exigences de la loi de commande. Pour

cela, nous explorons une multitude de scénarios, qui sont des combinaisons de paramètres

d’entrée qui définissent la situation de conduite appelée aussi ”use case”, à travers le

simulateur SCANeR Studio.

Cette thèse CIFRE fait partie d’un projet industriel à Renault appelé ADValue. Son

objectif est de combiner plusieurs algorithmes mis en compétition pour explorer efficace-

ment l’espace des paramètres d’entrée d’un ”use case” afin d’identifier toutes les zones

défaillantes. Pour cela, divers modèles et algorithmes sont développés pour exploiter les

ressources disponibles d’une manière efficace afin d’éviter de simuler toutes les conditions

imaginables pour tous les ”use cases”, ce qui est intraitable en puissances de calcul. Le

but de cette thèse est de contribuer de nouveaux algorithmes et méthodes au projet afin

d’arriver à son objectif.

Les principales contributions de cette thèse sont organisées selon trois objectifs:

Détection de défaillance Un algorithme est développé pour identifier un nom-

bre maximal de défaillances de la loi de commande en explorant l’espace des paramètres

d’entrée pour un ”use case” donné. Pour satisfaire la contrainte industrielle de réduire la

puissance de calcul globale nécessaire, c’est-à-dire d’utiliser le simulateur le moins possi-

ble, un modèle de forêt aléatoire est utilisé intensivement en tant que modèle ”surrogate”
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du simulateur dans une boucle d’optimisation avec l’algorithme d’optimisation CMA-ES.

De plus, en raison de manque de flexibilité de l’utilisation du simulateur en mode parallèle

au moment de ces travaux, un modèle de réseau de neurones est utilisé en tant que modèle

de substitution du simulateur actuel, sachant que le terme ”simulation” sera néanmoins

utilisé.

Détection de frontière Trois algorithmes sont développés pour identifier des

scénarios au plus près de la frontière localisée entre zones défaillantes et non défaillantes.

En effet, les ”use cases” sont généralement définis par des entrées continues, comme les

accélérations et les vitesses des véhicules entourant le véhicule autonome. L’espace des

paramètres d’entrée peut donc être assimilé à une partition de zones défaillantes et non

défaillantes séparées par une frontière à détecter. Chaque algorithme répond à l’objectif

d’une manière différente tout en utilisant la même stratégie de réduction de coût de calcul

adoptée par l’algorithme de détection de défaillance.

Modèles de frontière Trois approches sont considérées pour identifier analy-

tiquement la frontière aussi précisément que possible dans le but de construire des modèles

à la fois performants et explicables par l’intermédiaire d’équations et paramètres: réseau

de neurones, programmation mathématique linéaire avec extensions, et programmation

génétique appliquée à la régression symbolique. Ils sont tous construits à l’aide de

scénarios défaillants et frontaliers tels que ceux identifiés par les algorithmes précédents.

Les algorithmes développés pour les deux premiers objectifs sont testés sur un cas de

suivi de véhicule, et leurs résultats sont comparés à la ”vérité terrain” calculée sur une

grille complète de l’espace des paramètres d’entrée, avec plusieurs métriques utilisées afin

de bien évaluer la qualité des résultats obtenus. Les modèles issus du troisième objectif

sont testés sur un cas plus sophistiqué avec mise à jour du simulateur, et sont comparés

en calculant les erreurs de classification totales sur toute la grille. Tous ces algorithmes et

modèles sont injectés au projet ADValue pour aider à la validation du véhicule autonome

basée sur la simulation de scénarios.
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Chapter 1

Introduction

1.1 Automation in automotive: a brief history

Before the debut of the electric starter in the 1912 Cadillac Touring Edition, a hand crank

and a lot of muscle were needed to start driving a vehicle: Electric starter is considered as one

of the most significant innovations in the automobile history. The incorporation of this device

into vehicles has set the course for automation in the automotive industry in incremental steps.

In 1940, Cadillac and Oldsmobile, both General Motors divisions, followed with the first mass-

production of a fully automatic transmission intended for passenger use. They dubbed it the

”Hydra-Matic Drive”, and was considered the greatest advance since the self-starter. Then,

in 1958, Chrysler introduced cruise control in motor vehicles. Commonly known as speed

control or auto-cruise, it is a system that automatically maintains a selected steady velocity

without the use of the accelerator pedal. This system was first available on the Imperial, and

was called ”Auto-Pilot”. Another novel system, the Chrysler ”Sure-Brake”, was later unveiled

in the Imperial in 1971, and introduced a new dimension to brake engineering. It marked

the first production of four-wheel slip control system for passenger cars, after thousands

of successful stops were tested on various surfaces at maximum deceleration (Douglas and

Schafer, 1971).

Nonetheless, the first step toward ”autonomous” driving really took place in the 1990s,

when innovation really moved up a gear after some trial and error. First, Mitsubishi released

the Debonair in 1991, the first worldwide production car to provide a lidar-based distance

warning system. Lidar is a distance measuring method that illuminates its target with laser

light and measures the reflected light with a sensor. However, this system only warned

the driver about vehicles ahead and did not regulate speed, i.e., no influence over throttle,

gear shifting or brakes. Four years later, Mitsubishi unveiled yet another breakthrough after

equipping its 1995 Diamante with the first laser ”Preview Distance Control”. This improved

system would sense when the closing distance to the vehicle ahead was narrowing, and would

automatically regulate speed through throttle control, by easing off the accelerator, and down-

shifting to slow down the car. Its key limitation, however, was that it could not operate the
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brakes. When the speed difference with the vehicle in front was too great, the only option it

had left was to alert the driver with visual and audible warnings. Thus, along with no break-

ing intervention, other limitations, e.g., poor performance in the rain, velocity operational

limit, propelled Mitsubishi to restrict the system solely for the Japanese market, where the

road conditions and generally clement weather were more suitable. European markets had

to wait until 1999 for a similar system that befits their roads and weather. That year, the

Mercedes-Benz S-Class introduced ”Distronic”, the first radar-assisted Adaptive Cruise Con-

trol (ACC). It corrected the biggest limitation of the Japanese system by providing automatic

breaking when it detects the car is approaching another vehicle ahead. Its implementation

was possible thanks to the development of the computerized Electronic Stability Control

(ESC) system by Mercedes that improves vehicle stability by detecting and reducing traction

loss. Hence, provisions for automatic braking were already in place. Moreover, Mercedes

chose to feature high-quality radar rather than lidar, because it was not affected by rainy,

foggy or dusty weather in the way lidar is, and at the same time, was available at a far less

expensive cost. Since then, ACC entered multiple iterative improvements to become one of

the main foundations of an autonomous vehicle. In the following years, many major automo-

tive manufacturers, also known as Original Equipment Manufacturers (OEMs), introduced

their own versions of ACC into their cars, including Jaguar, Nissan, Subaru, BMW, Toyota,

Renault, Volkswagen, Audi and Cadillac.

After the successful industrialization of the ACC, other features began to be explored and

tested. For instance, the Toyota Prius unveiled its Intelligent Parking Assist System option in

2003. This system combined an on-board computer with a rear-mounted camera and power

steering in order to automatically accomplish reverse parallel parking with little input from

the driver. Another developed feature is the Automatic Emergency Braking (AEB), which is

a system that intervenes independently of the driver, and only in critical situations, to avoid

or mitigate a potential accident by applying the brakes. These electronic systems, and many

others, are called Advanced Driver-Assistance Systems (ADAS), and are designed to aid the

vehicle driver while driving or during parking in order to increase car and road safeties. With

the successful production of multiple ADAS in just a few short years, the dream of building

a fully autonomous vehicle began gradually to materialize. The race toward achieving this

dream, and finishing first, had officially begun. Soon enough, many major OEMs started to

develop their own autonomous vehicles without revealing their industrial secrets to the pub-

lic. Even technology development companies joined the competition later on. For example,

Waymo, formerly Google’s Self-Driving Car Project, kicked off the development of their own

autonomous driving system in 2009 in secret. They tested their software on Toyota Prius

vehicles to try to drive fully and autonomously uninterrupted routes. New electric vehicle

companies also decided to participate in the race, notably Tesla with its ”Autopilot” system.

Its first version was introduced in 2015 for Model S cars, and it offered multiple ADAS such

as lane control with autonomous steering, self-parking and ACC. The system is also able

to receive software updates to improve skills over time, until achieving the delivery of full
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self-driving at a future time.

In a nutshell, various companies are currently working on their own versions of au-

tonomous driving software. The reasons behind this competition are numerous, as various

inspiring factors encourage the development of a fully autonomous vehicle.

1.2 The benefits of an autonomous vehicle

First, the main reason for developing a fully autonomous vehicle is to increase road safety.

Cars equipped with high levels of autonomy have the potential to mitigate risky human driver

behaviors, since they are not subject to distraction, fatigue, excessive speeding or impaired

driving. Thus, they can help reduce the number of crashes due to human driver errors, which

in turn can save money in the process. Fewer crashes can help avoid their costs, e.g., vehicle

repair, medical bills and insurance costs.

Next, full automation can offer greater independence for a lot of people. For instance,

highly automated vehicles can help people with disabilities to become self-sufficient in their

transportation, and can also enhance independence for seniors. They can increase the pro-

ductivity of drivers to recapture time by doing other activities while the car does all the

driving. Plus, better transportation services could see the rise in the form of ride-sharing

shuttles that provide more affordable mobility by decreasing personal transportation costs.

Self-driving car-sharing systems could transform vehicles from personal propriety to a less

costly service called on demand.

Moreover, due to the constant population growth and demographic pressure, increasing

traffic density is in the foreseeable future. Autonomous vehicles can help in reducing the

number of stop-and-go waves that generate road congestion. Because they also mitigate the

number of car crashes on the roads, the resulting traffic jams will decrease as well. This

could ultimately lead to a better physical and mental health for passengers of self-driving

cars. Another factor is the environmental gains that can result from autonomous driving

deployment. Besides playing a role in reducing congestion, car-sharing and automation may

spur more demand for electrical vehicles. Hence, greenhouse gas emissions can be greatly

diluted from needless idling toward a more environmental-friendly future.

Therefore, autonomous vehicles produce many benefits for the safety, independence, pro-

ductivity and overall health of passengers on board, as well as the preservation of the envi-

ronment. Although they can also have certain negative consequences, like causing job losses

on a massive scale, namely taxi drivers and lorry drivers, they could also create new positive

outcomes like an increased demand for new jobs, such as software developers and high-tech

machine experts. However, all these inspiring factors remain theoretical for the moment.

When companies decided to put theory into practice and turn fully autonomous driving into

reality, they quickly realized that it was impossible to equip vehicles with highly complex sys-

tems all at once unless they address the problem in incremental steps by gradually increasing

the autonomy of the car.
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1.3 Levels of autonomous driving

For the sake of conceiving fully autonomous vehicles, they have been categorized by the

Society of Automotive Engineers (SAE, 2018), following levels of driving automation. Each

level corresponds to some system complexity that meets the autonomy requirements needed

for that level. An Operational Design Domain (ODD) is the set of specific conditions under

which a given driving automation system is designed to function, which are different for every

level. These conditions include for instance roadway type, traffic conditions and speed range,

geographic location, weather and lighting conditions, availability of necessary physical and/or

digital supporting infrastructure features, condition of pavement markings and signage...

Six levels of driving automation are defined, from SAE Level 0 (no automation) to SAE

Level 5 (full vehicle autonomy) as seen in Figure 1.1.

Figure 1.1: SAE J3016 ”Levels of driving automation.”

Levels 0, 1 and 2 are autonomy systems that can be currently found on vehicles on the

roads, whereas levels 3, 4 and 5 are still under research with little to no information about

their progress due to the great competition between all companies. We will briefly explain
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the driver and vehicle roles for each level.

• Level 0: No Automation

The driver is in charge of all the driving. The vehicle responds only to inputs from

the driver. It can, however, provide warnings about the environment. We find here the

well-known systems of past car generations e.g., safety belt, warning lights, ESC, and

any other system that leaves us completely in control of our vehicle.

• Level 1: Driver Assistance

The driver must still constantly monitor the drive, but gets basic help in some situa-

tions. The system can take over either steering (lane centering feature) or acceleration

and deceleration, e.g., ACC and Anti-lock Brake System (ABS). The driver must con-

tinuously carry out the other.

• Level 2: Partial Automation

The system can now take over both steering and acceleration and deceleration in some

driving situations. The ACC and lane centering features can then be used simultane-

ously. The driver must still constantly monitor the drive even when the vehicle assumes

these basic driving tasks.

• Level 3: Conditional Automation

The system still takes over both steering, and acceleration and braking in some driving

situations. The difference here is that the driver is not needed to constantly monitor

the drive anymore. He can partially be distracted from the road like reading a book or

texting, but should be ready to resume control of the vehicle within a given time frame

if the system so requests. Therefore, the system should be capable of recognizing its

limits and notifying the driver appropriately.

• Level 4: High Automation

The driver can hand over the entire driving task to the system. He can take over the

system if it is unable to continue, but he is not required to do so, neither for monitoring,

nor as backup. The system can assume all driving tasks under nearly all conditions

without any driver attention, and will not operate unless the required conditions are

met. Although the features can be the same as those found in Level 3, this level

gives greater independence for the driver who can freely pursue other activities than

concentrating on the road, like sleeping for example.

• Level 5: Full Automation

The system can take over the entire dynamic driving task in all environments under

all possible conditions. The features are the same as those found in Level 4. No

human driver is required, i.e., the steering wheel is now optional, and everyone can be

a passenger in a Level 5 vehicle.
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In that way, the problem is divided into incremental steps of driving automation. When a

company successfully completes the technical hurdles of a level, it can continue into the next

level and update its systems accordingly. The vehicle is equipped with multiple sensors and

algorithms that operate coordinately in order to meet the requirements needed for each level.

And because the features requested are more and more numerous and challenging, the sensors

and algorithms are also more and more numerous and complex. The system must then be

robust enough to handle well all situations. Otherwise, system failures could occur, which in

turn could lead to car malfunctions that should not be happening. Besides, the trust of future

customers is gained once the new system presented is proved to be fully reliable and surely

not prone to cause unexpected crashes. Thus, the testing and validation of the autonomous

driving systems is mandatory before industrialization. Testing every component should be

assessed intensively in order to mitigate potential failures and avoid unwanted problems on

the road.

After all, the autonomous vehicle will be one of the first systems to impact user safety

without human supervision. Currently, self-piloted systems in aeronautics continue to be

constantly supported for any security action. As for the autonomous railway systems, such

as the complete automation systems of the metro lines 1 and 14 in Paris, they operate in a

closed and well-controlled environment. The level of responsibility can then be shared between

the controlled infrastructure and the autonomous systems, unlike for the autonomous vehicle

whose environment is open and shared with the rest of the population. Thus, the validation

process of the autonomous vehicle is much more complicated than the testing procedures

currently found in aeronautics and railway systems.

The next section details how an autonomous vehicle system is designed and how failures

could occur during the process, as well as how companies are currently dealing with all the

challenges of building a fully autonomous vehicle.

1.4 The challenges of an autonomous vehicle

1.4.1 Autonomous system description

To become autonomous, the vehicle is equipped with a perception system that maps its

environment, a fusion system that synchronizes and combines all sensors for a better object

detection, and a decision system that controls the actuators following the fusion objects

received to indicate the safest trajectory, as illustrated in Figure 1.2. All systems are briefly

explained next.

1. Perception system

This system consists of a set of sensors from various technologies, e.g., radar, lidar, cam-

era, ultrasound, GPS, high definition map or any other existing form of communication

technology between vehicles and/or with infrastructure. The sensors are positioned all

around the vehicle to give a 360◦ view of its environment. They can be accompanied
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Figure 1.2: Autonomous driving systems flow description.

by an artificial intelligence algorithm which detects elements of infrastructure, side and

horizontal road signs, and mobile or motionless road traffic. Each detected object is

then tracked, and has a unique identifier per sensor throughout the period during which

it is visible to the sensor. If the sensor has seen the object several times, it transmits

the information to the fusion system.

However, sensors can give incorrect or imprecise information. They are very sensitive

to the real environmental factors, in particular climatic conditions and infrastructure.

Therefore, they are usually redundant. The information they transmit is then sup-

plemented or repeated by each other, so as to avoid possible objects omission or false

objects detection.

2. Fusion system

This system receives the objects detected and transmitted by all sensors. Because of the

redundancy of the sensors, the fusion system can reduce the perception errors. First,

it synchronizes the data transmitted by the sensors. Then, it merges the redundant

information by taking into account the performance of each sensor. Similar to the

sensor algorithms, the fusion algorithm also tracks each identified object. The mea-

surements performed on this object are then mixed with the predictions from previous

measurements. A unique and more precise mapping of the vehicle environment is finally

obtained, and is transmitted to the decision system.

3. Decision system

This system takes as inputs all final objects, as identified and transmitted by the fusion

system. It takes into account any road sign detected, and predicts the trajectories or the



1.4. THE CHALLENGES OF AN AUTONOMOUS VEHICLE 23

intentions of other traffic vehicles. It computes what the vehicle should do on the road

given all the information provided from the vehicle environment following a predefined

command law. Then, it commands the vehicle of the decisions taken and the desired

path in the form of instructions transcribed to the vehicle steering wheel, accelerator,

and brakes.

4. Actuators

The actuators are the mechanical parts of the vehicle that perform all requested ma-

neuvers by the decision system.

The autonomous vehicle represents a highly complex system, from the coordination of its

various sensors to their fusion, leading to the decision system which ultimately decides the

action to be executed by the vehicle. A failure can occur during any stage of this process,

which will result in a wrong behavior on the road.

1.4.2 Types of failures

We list a set of different types of errors that can cause the autonomous vehicle to fail,

from all different blocks of the vehicle system anatomy to the requirements needed depending

on the levels of autonomy.

• Perception system errors: As previously mentioned, the perception system is greatly

impacted or disturbed by environmental factors, which can cause multiple errors: false

detections, non-detections or late detections, measurement errors in objects positions

and trajectories, sensor loss resulting in a dangerous stop of the autonomous mode...

False detections are commonly named false positives, i.e., an object that does not exist

is detected, while non-detections are called false negatives, i.e., an object that should

be identified is not detected. All of these errors can cause unexpected damages to the

vehicle and its passengers.

• Fusion system errors: Since the performances of the sensors vary depending on the

environment, a sensor that is generally considered unreliable may be more accurate

than others for specific road conditions. The fusion system, whose role is to merge all

information transmitted by the perception system to obtain a unique mapping of the

vehicle environment, may overlook this sensor and provide an unreliable final mapping

to the decision system.

• Misinterpretation of the decision system: Beside the bugs that can be found in

the development of the decision algorithm, the decision system may misinterpret the

inputs provided by the fusion system, such as the intentions of other traffic vehicles,

and transmit erroneous commands to the actuators. This typically happens when the

decision system faces a new driving situation with a vehicle environment mapping not
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encountered before. Its command law does not cover the exact procedures to transmit

to the actuators, despite a perfect functioning of the perception and fusion systems.

• Actuator latency: The reaction speed of the actuators fluctuates with its environ-

ment. For example, the ground can be slippery. The braking speed is then impacted,

and the decision system may not be able to anticipate the outcome of the present

situation.

• Conditional and high automations (Levels 3 and 4) emergency situations: As

we have seen in Section 1.3, the system should be capable of recognizing its operating

range limits. In the case of level 3 autonomy, the system should notify the driver to

take over control of the vehicle, but the driver may not be ready to do so. For level

4 autonomy, the vehicle should handle the situations where the required conditions for

its functioning are not met. In both cases, the system must stop the vehicle safely and

park it in a safe place. However, this exit may be linked to an end of the authorized use

for the autonomous mode, which can result in perturbations in the vehicle behavior.

Besides, level 3 is currently described as being the most dangerous autonomy level,

because of its conditional status and passing of command between the driver and the

vehicle.

These errors are examples that may occur at any time during driving and have then

serious consequences on the safety of passengers aboard as well as those involved in road

traffic. They are called failures of the autonomous system. It can be impossible to trace

which component is responsible for the failure, due to the complexity of the system as a

whole. This is why extensive testing and validation are required for each component and at

industrialization step.

1.4.3 Validation techniques

As we have noticed so far, the validation of ADAS and autonomous driving systems

will occur in highly complex traffic situations. Naturally, software testing is realized on

the million lines of codes included in all algorithms of the autonomous driving perception,

fusion and decision systems. Possible unwanted software bugs are then eliminated by this

source code testing. However, this is not enough to ensure quality testing, as the testing of

the autonomous vehicles faces numerous challenges (Koopman and Wagner, 2016; Koopman

and Wagner, 2017; Koopman and Wagner, 2018). The vehicle should be assessed in real

driving situations to know whether or not it is making the right decisions on the road, and

what possible failure implications could follow. However, due to the increase in computing

power nowadays, numerical models, simulations and virtual simulators can also be used to

test autonomous vehicle functions (Belbachir et al., 2012). These are the main categories

of validation used nowadays for the validation of the autonomous vehicle, and are more

detailed next. Due to the fast evolution of this field, some publications tried to provide a
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comprehensive literature review of the different new safety validation methods within these

categories (Huang et al., 2016; Junietz et al., 2018; Riedmaier et al., 2020).

1. Real test-driving

The engineering team at Renault, and every other major car company, rely on real test-

driving under various conditions in order to validate the autonomous vehicle. Their

main objective is to detect specific system failures during these tests. Then, these

failures can be eliminated by updating the system accordingly. This complete test

database is conducted at different milestones identified in the design process.

Two main sub-categories constitute real test-driving methods.

• Public road testing: Autonomous driving cars can be tested in real open en-

vironments. For instance, Google mostly carries out real traffic testing for its

self-driving cars. Although it is considered useful in going through realistic and

probable driving situations easily, it is also very dangerous in case of a failure

resulting in a serious accident. Such was the case for the infamous pedestrian

fatality involving an Uber test-vehicle in March 2018. The vehicle was operating

in autonomous mode in a neighborhood in Arizona with a human backup sitting

in the driver seat. Plus, on-road driving of autonomous vehicles requires new

regulations and road traffic rules. Some countries, such as Australia, Germany,

France, and the United States, began developing such regulations which can allow

on-road testing of autonomous vehicles. Nonetheless, a globally harmonized ap-

proach has not yet been developed, as there are differences regarding liability and

safety provisions (Lee and Hess, 2020).

• Closed course testing: Another way of testing candidate autonomous vehicles

in real situations is within closed tracks. There even exists entire testing centers

that are dedicated to this method of validation. For example, Mcity is a mock

city built for the testing of self-driving cars that is located in the University of

Michigan North campus. This technique is safer, obviously, since everything can

be controlled on the course. However, it is not scalable, i.e., it can only test driving

conditions that humans have thought of and can physically pursue.

Moreover, real test-driving faces a primordial issue for the long run. In fact, the space

of possible driving situations is broken down into use cases. Each use case corresponds

to a certain driving situation of the autonomous vehicle, such as an insertion of the

autonomous vehicle in a lane, or a cut-in of another vehicle in front of the autonomous

vehicle. And for every use case, there are multiple possible scenarios that depend on

the traffic situation, road description, environment description, vehicle description...

Thus, real test-driving is long and expensive, as it is necessary to reproduce accurately

all the imaginable conditions, e.g. weather and traffic, that an autonomous vehicle can

encounter. Besides, autonomous vehicles should have a lower accident probability than



26 1.4. THE CHALLENGES OF AN AUTONOMOUS VEHICLE

human drivers for their launch on the market to be socially accepted (Junietz et al.,

2019). Studies have shown that at least 8.8 billion miles (14 billion of kilometers) of test

driving are needed to demonstrate with 95% confidence that the autonomous vehicle

failure rate is lower than the human driver failure rate (Kalra and Paddock, 2016).

Even with a fleet of 100 autonomous vehicles, test-driven 24 hours a day, 365 days a

year, this would take about 400 to 500 years.

Hence, it is almost impossible to validate the self-driving cars using real test-driving

alone, paving the path for the development of scenario-based validation techniques using

models and simulations.

2. Simulation testing

As discussed previously, real test-driving will not be able to cover all imaginable sce-

narios for the autonomous vehicle in a reasonable amount of time. Simulation testing

methods must hence be used for that goal. They are also way cheaper. We differentiate

three main methods of validation techniques by simulation.

• Resimulation: Real test-driving data are injected into a numerical model of

the command law to try to replicate them in an open loop. It is mostly useful

to carry out non regression tests. This will ensure that the algorithm of the

decision system still performs well after some upgrade. Nonetheless, closing this

loop remains challenging. For instance, we have in our hands a cut-in scenario of

a vehicle in front of the autonomous vehicle driving at constant speed. If a new

updated algorithm decides the vehicle should accelerate instead, the vehicle could

decide not to realize the cut-in eventually. Thus, it would be useful to change the

parameters of the real test-driving data in order to predict more realistic scenarios.

Nonetheless, the technical hurdles in modifying raw data visuals or sensors objects

and trajectories, while trying to stay realistic, remains quite a challenge nowadays.

Therefore, closed-loop resimulation remains a research and development subject.

• Numerical simulation: In contrast, this approach is entirely virtual. It gener-

ates virtual parameterized data, so it can create new tests which were unavailable

in the original test database. The key advantage of this method is that it is a

closed loop. The tests are directly launched into a simulation loop, meaning that

certain input parameters can easily be changed in order to cover all possible con-

ditions for a certain use case. All past and future events are known at each time

step, and can be reproduced and modified. Plus, it is easy to merge multiple

simulation models and take advantage of reusing existing results. However, the

main drawback of this method is that all results are only valid with respect to the

models of the vehicle employed, e.g. all autonomous and dynamic systems, and

their degree of realism (Stellet et al., 2015). Further research should determine

how to quantify and assess the level of realism of a simulation environment. Until
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then, these models are being developed to try to replicate as much as possible the

realism of the real systems on the road. Reference by simulation is used, which

involves generating synthetically virtual ground truth data that can be compared

with real ground truth data to ensure that we have correlation between physical

testing and numerical simulation.

• Virtual simulator: A person is driving a real vehicle which is connected to

its environment through a simulator software using virtual reality glasses or 180◦

high-resolution screens. This technique is useful in studying the ergonomics and

behavior of the driver using autonomous driving mode, while realism of the scenes

remains the number one challenge.

Therefore, new and efficient testing methods have been thought through in order to use

real test-driving together with simulation to help covering various conditions of the miles

needed (Vishnukumar et al., 2017). They are also used to validate each system at a time due

to the high complexity of the self-driving vehicle. These available methods are used at each

step of the industrial V-model dedicated to the validation of the autonomous driving system

(Lakomicki, 2018).

1.4.4 V-model and associated validation strategy

Figure 1.3 shows the V-model that can be applied to the validation of the autonomous

vehicle and ADAS features. We will detail each step of the diagram next.

1. Requirements on the decision system

All driving rules, which the autonomous vehicle must respect, are elaborated to satisfy

high level functional requirements translated into safety specifications. Then, require-

ments on decision rules are set, and the behavior of the autonomous vehicle in a given

use case is modeled, e.g., its insertion in a lane. This is called Model-In-the-Loop (MIL)

testing, which means the model and its environment are simulated with the absence of

physical hardware components. The use case is defined by key simulator inputs that

characterize the autonomous vehicle environment, and can be modified within a loop

to test many possible scenarios generated automatically for a single use case. In that

way, we can verify that the actions chosen by the vehicle remain safe according to the

driving rules. Hence, these simulations make it possible to test the decision system

and numerically validate its requirements while exploring a multitude of scenarios for

a defined use case. This is the context of this PhD thesis, and we will get right back to

it just after getting through remaining key diagram steps.

2. Requirements on fusion and perception systems

A finer modeling of the data obtained by the fusion system can be added in the MIL to

address the requirements on the fusion system. The detection time should be respected,
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Figure 1.3: V-model of the design and validation flows of the ADAS and autonomous driving

perception, fusion and decision systems.

as well as the obstructions of possible objects that could disturb the sensors. It can even

integrate perception errors after fusion. For instance, objects measurements could be

noisy, and false positives and false negatives could occur. Thus, failure criteria for the

fusion system can be deducted, such as a maximum measurement error, or a maximum

detection period, not to be exceeded. In order to include latency or other electronic

errors, the real electronic components are integrated. This is called Hardware-In-the-

Loop (HIL) simulations.

Then, MIL and HIL simulations are completed with sensors objects data by includ-

ing the sensors algorithms. We are now at the perception system output level. The

synchronization and fusion stages are thus evaluated. To verify the vehicle robustness,

the sensors errors are also modeled like the fusion outputs. A first validation of the

fusion system can be realized so that sensors requirements are defined, such as sensors

perception reliability.

3. Debugging and validation start

Software-In-the-Loop (SIL) simulations qualify the reliability of the software imple-

mented in the embedded system by checking for potential bugs and correcting them.

At this stage, the design flow concludes and the validation flow begins where the sen-
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sors performance is tested by evaluating their electronic hardware reliability and sensors

perception accuracy. Although these can be realized by their respective suppliers, the

sensors algorithms performance, e.g., objects detection and classification, rely heavily

on their integration in the vehicle and on the environment conditions. Tests should

thus be conducted on each sensor already integrated in the vehicle to assess their errors

and impacts on the proper functioning of the vehicle. This is important because any

error of a sensor can have repercussions on the fusion system too. HIL validation is

also conducted to better validate the requirements on fusion system.

4. Decision system validation and final tests

The validation of the decision system is not limited to robustness issues linked to a

lack of precision in the perception and fusion outputs, but must also integrate the real

actions of the vehicle. It must also be able to emit a clear request to the driver to take

control of the driving in the case of Level 3 autonomy for example, and guarantee that

this intermediate phase takes place normally and safely. Hence, Vehicle-In-the-Loop

(VIL) simulations are used to integrate the real behavior of the vehicle actuators by

merging on-road testing and simulated elements. The vehicle is tested on a physical

track, but the scenario remains numerical through augmented reality while real tra-

jectories are taken into account. Thus, VIL validation is used to further validate the

requirements on fusion and decision system simultaneously. Finally, Driver-In-the-Loop

(DIL) simulations test the interactions between the driver and the autonomous vehicle.

The driver is in a realistic traffic simulator where all his reactions are analyzed during

driving, therefore allowing to validate the ergonomics of the human-machine interface

while verifying the requirements on decision rules, to verify the security of requests

emitted, and to ensure the comfort of the passengers aboard the autonomous vehicle

by analyzing their sense of security. Complete system validation and acceptance test

are lastly conducted to globally assess the high level safety specifications and functional

requirements after completing all past validation steps.

1.5 Industrial context

People at Renault are highly interested in investing in autonomous driving simulation to

aid real test-driving in the validation of the autonomous driving mode. A complete validation

chain has been defined to address growing technology complexity and use cases diversity.

First, use cases are defined through field tests, accident databases, expert knowledge, and

global research projects such as Pegasus (Pütz et al., 2017) to form a use case catalog.

This catalog defines each use case, as well as the inputs that characterize the parameters

influencing the autonomous vehicle environment. Scenarios can then be generated for a

single use case by choosing certain values for all inputs, and can be launched into an in-house

simulation software called SCANeR Studio (AVSimulation, 2017). It is a software dedicated
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to simulation and testing for ADAS and autonomous driving. It provides various tools to

run realistic simulations. Numerical vehicle models and sensor models are also built and

integrated into the software.

In addition, in order to be able to launch multiple scenarios at the same time, a massive

simulation platform is being built. For that aim, thousands of High-Performance Computing

(HPC) cores and tens of petabytes of storage capacity will be available by 2025. The SCANeR

software as well as all models built are integrated into this platform. We can also integrate the

decision system algorithm to the software. Hence, we will have all what it takes to perform a

MIL simulation to validate the decision system for a particular use case by 2025 as detailed

in previous Section. We set the required software inputs of the use case at the start of the

scenario. These inputs are variables that are exterior to the autonomous vehicle, and define

its environment. Then, we verify if the autonomous vehicle performs correct and safe actions

during the simulation by checking that the output of the simulator satisfies some safety

criteria. If not, we have uncovered a failure for this scenario, i.e., this particular combination

of inputs for this use case. The decision system should then be corrected in order to take

this scenario into account, and avoid obtaining a failure if we run the same simulation of that

same scenario with the updated decision system.

Launching a massive simulation plan has become more and more accessible, which is

useful to complement real test-driving. As discussed in Section 1.4.3, physical tests can

easily validate scenarios that are the most encountered on the road. Simulation should thus

be used to cover remaining combinations of input variables that were not tested on the road

and detect unlikely edge scenarios, which would otherwise be too costly to validate entirely

with real test-driving. However, the dimension of a use case, i.e., the number of input variables

that characterize the use case, varies depending on the use case complexity. For some use

cases, their dimension can be very high with a wide range of possible values for all inputs.

Although possible, simulating all imaginable conditions (up to an acceptable precision for

continuous variables) of all use cases can be highly expensive in terms of computing power

needed, which is where this thesis comes in.

The goal of this PhD thesis is to facilitate the validation of the decision system by aiding its

MIL simulations in exploring the use case input space. In other words, instead of launching

a huge number of scenarios and consuming a too large amount of computing power, we

want to directly detect combinations of inputs for a particular use case, that will result

in a failure of the behavior of the vehicle due to wrong decisions from the decision system

during the simulation. These scenarios should include edge cases which represent rare driving

circumstances that the actual decision system version has not yet encountered, and can then

be eliminated by updating the decision system command law accordingly. Therefore, the

complete process of the decision system validation would be to gradually update the command

law to decrease the number of failures identified. It is expected that less and less failures

would exist as the process goes on – even though the data for only one single step of this

overall process (i.e., one single instance of command law) was available at the time of this
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work.

This thesis is part of an industrial project at Renault called ADValue (Tourbier, 2017).

The project aims at combining multiple algorithms that compete in efficiently exploring the

use case input space so as to cover all failure zones in a clever way. In short, our goal is

to take a demonstrably smart approach of validating all possible driving conditions while

efficiently using time and available resources. In the end, the aim of the thesis is to feed the

industrial project with novel algorithms and methods to achieve its objective.

1.6 Objectives of the thesis

All algorithms and models developed during this thesis will be added to the ADValue

project in a cooperative way, with the goal of providing a complete tool of numerical validation

of the decision system using MIL simulations. They can be divided into three main categories

depending on their specific objectives. They will be detailed and addressed in turn in the

remaining of this document.

1. Failure detection

This algorithm is developed to explore the input search space for a given use case, and

detect as many failures of the autonomous vehicle command law as possible during the

simulations. A crucial industrial restriction is added, which is to run as few numer-

ical simulations as possible in order to minimize the computational cost. Thus, the

final algorithm should be fast and inexpensive, while being efficient in finding a high

number of command law failures caused by scattered input conditions. To achieve this

objective, an optimization algorithm and a machine learning model are used through

an optimization loop (Nabhan et al., 2019).

2. Border detection

Since the inputs that characterize a use case can be of continuous nature, e.g., velocity

and acceleration of the traffic vehicles surrounding the autonomous vehicle, the use

case input space can then be seen as a partition of the input space into zones where

some combinations of inputs ranges lead to a failure, and others where all scenarios are

error-free. A more ambitious objective of the domain experts is then to try to detect

the border between such faulty and non-faulty areas, i.e., scenarios that are located

near such borders. The rationale behind this is to be able to understand the failures

of the command law in depth, and correct it once for whole failure areas, rather than

making corrections for one failure after another. Three algorithms are developed for

that sake. Each of them addresses the objective in a different way. The models and

approach used for the failure detection to reduce computing power are also used here.

3. Border models
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The previous algorithms detect scenarios that are situated near the border between

faulty and non-faulty areas. One step further in the understanding of the failures of

the command law consists in identifying the borders between safe and failed zones by

simple models, that are both accurate and explainable, to ease further analysis of the

failures of the command law. Three approaches are considered to analytically identify

the border itself through direct or parameterized equations: neural networks, that are

accurate but considered as black-boxes and hence not explainable, and Mixed-Integer

Linear Programming (MILP) and Genetic Programming (GP), that both can provide

interpretable analytical functions, but might suffer from scaling issues. The three types

of models are built using scenarios that have been identified to be on, or very close from,

such borders, eventually detected by the algorithms designed for the border detection

objective. Their performances are then evaluated by examining their accuracies and

total misclassification errors on a full grid covering the input scenario space, and are

finally compared.

The remainder of the manuscript is as follows. Chapter 2 surveys the state of the art

for the scenario-based validation techniques, including simulation testing, to compare the

methodologies used in this thesis with the current approaches found in the literature. Chapter

3 offers a more technical state of the art for optimization and regression techniques, where the

methods and models used throughout this thesis are presented in detail. Chapter 4 describes

the problem and methods used for the first two objectives, as well as the methodology and

results of the algorithm for failure detection related to the first thesis objective. Chapter

5 details the algorithms developed for border detection, the second objective of this thesis.

Chapter 6 presents all the methodologies developed to address the third objective, building

border models. Finally, Chapter 7 concludes the manuscript and sketches further directions

of research.



Chapter 2

Scenario-based Validation

The state of the art review of each technical method used in this thesis is presented in next

Chapter. In contrast, this Chapter gives an overview of the current state of the art techniques

related to the scenario-based approach to assess the safety of autonomous vehicles. This

approach focuses on partitioning the driving space into individual traffic situations and testing

them by means of virtual simulation. Other validation approaches exist beyond the scope of

this thesis (e.g. real-world testing, function-based approach where the system functions are

tested based on fixed requirements), and will not be detailed in this chapter. We should also

note that, due to the high competitiveness in this field across car companies and tech giants, a

complete state of the art review of this subject cannot be achieved. Only the scenario-based

methods that are currently accessible are shown, and are compared to our methodologies

used in this manuscript.

All publications addressing the scenario-based approach define a scenario to be a sequence

of driving events which contain relevant and useful information for the validation process.

In fact, when driving on a highway for example, no important action occurs during most of

the driving time. Thus, the primary concern of this approach is to detect which scenarios

need to be tested, and figure out what is the best method that achieves this goal efficiently.

Therefore, two main categories are distinguished in the scenario-based approach.

1. On the one hand, the coverage-based methods focus on exploring the driving space,

trying to maximize its coverage. They generate new scenario samples, either within

input parameter ranges between minimum and maximum values, assuming all scenarios

have the same probability of occurrence, or from parameter distributions that add the

probability of occurrence of the scenarios in the testing process.

2. On the other hand, the falsification-based methods aim at detecting solely edge

case scenarios, which are the counterexamples that provoke failures to the autonomous

vehicle command law. They can use simulation-based falsification with an optimizer in

a feedback loop, or consider other non-simulation selection methods based on accident

databases or criticality-based and complexity-based selections.
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We will now delve deeper into each sub-category in turn, in order to be able to effectively

position the work in this thesis and compare our methodologies with the current methods

found in the literature.

2.1 Coverage-based methods

The aim of coverage-based methods is to sample a subset of scenarios that will broaden

the assessment on the whole space. They can generate samples using the parameter ranges

to cover the entire input space, or parameter distributions in order to focus more on the

exposure of the scenarios in the real world.

2.1.1 Parameters ranges

Standard techniques using parameter ranges are ones which consider all possible combina-

tions of the parameters. A coarse discretization is applied on all parameters, transforming all

continuous parameters of the use case inputs, e.g., velocity and acceleration values of traffic

vehicles, into discrete ones following a step size. Ponn. et al. (2019) use N-wise sampling

for simple SAE Level 1 functions such as Lane-Keeping Assistants. Nissan and Siemens use

Combinatorial Test Design (CTD), originally developed by IBM (Route, 2017), to cover

the whole search space. By turning the input parameters continuous space into a finite set

of scenarios, any scenario that does not belong to this discrete set will not be addressed. If

the step size is too low, one needs to simulate an enormous amount of scenarios, resulting in

an increasing computational power, which contradicts the industrial constraints defined by

Renault. Hence, the approach is to increase as much as possible the step size to minimize

the resulting number of simulations. This technique has the potential to quickly determine

different failed scenarios over the input space. However, if the step size is too high, a lot of

critical scenarios could be overlooked and failed to be detected. Tuning the step size for each

use case remains the key disadvantage of these methods, which caused other techniques to

spawn.

Rocklage et al. (2017) presented an automated framework for regression testing.

It automatically generates and combines variations of multiple parameters, e.g., road, static

objects, dynamic objects, environmental conditions, by ensuring they are physically reason-

able using a combination of a backtracking algorithm and a trajectory planner. They showed

that the algorithm is operational, but is not fully efficient yet. It needs further optimization,

and it can only generate scenarios according to predefined paths. Majzik et al. (2019) use

Signal Temporal Logic (STL) to assess the autonomous vehicle at the system level. They

start with an existing test set which is in compliance with the safety standards regulations,

and aim to increase coverage by creating new test cases using graph generation techniques.

Satisfiability Modulo Theories (SMTs) are used to sample a full road network from

multiple criteria (Kim et al., 2016, 2019). The SMT-solver can generate road segments based

on a definition of the curve coverage criteria and some constraints. Khastgir et al. (2017)
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simply use randomization techniques to create new scenarios by applying them to the

brake and accelerator pedal values of the autonomous vehicle.

Huang et al. (2018) create new scenarios for a SAE Level 2 autonomous vehicle by adding

surrounding vehicles, modifying their continuous parameters, e.g., starting position, velocity,

lateral and longitudinal behaviors, and combining them all into a large data set. Then, they

apply a Scenario Importance strategy in order to reduce this high number of scenarios

by eliminating ones below a threshold value. This method aims at studying the impact of

the surrounding vehicles on the behavior of the autonomous vehicle, as their influence is

proportional to the Scenario Importance factor, and is applied on a curve driving situation.

Similar approaches consider focusing on surrounding traffic as well. Xie et al. (2018) imple-

ment this method in three different driving situations: tracking, curve and lane-change, while

Zhou and del Re (2017) apply it for an Adaptive Cruise Control (ACC) assessment by taking

into account the number of participants and their abstract behavior in order to generate a

structured test catalogue.

Additionally, Beglerovic et al. (2017) use a Design of Experiments (DoE) as an initial

test design, which samples scenarios following a certain rule everywhere in the search space.

Then, it is used for optimization purposes depending on the desired goal as we will see in

Section 2.2. Our methodology chosen in this thesis stems from a similar approach by also

considering a DoE from which a small dataset is initially drawn. Subsection 4.4.2 will show

the use of low discrepancy sequences which can generate a DoE that is able to fill the space

of possibilities more evenly than other similar techniques (Santiago et al., 2012).

Finally, Rapidly exploring Random Trees (RRTs) are used by Althoff and Dolan

(2012) to generate trajectories which will help them assess the results of reachability analysis,

another validation technique, and are shown to achieve good coverage of the search space.

Tuncali and Fainekos (2019) also use RRTs to define a custom function based on various pa-

rameters, e.g., collision surface and velocity, in order to determine boundary scenarios which

witness the transition from safe driving to collision occurrences. They create trajectories

that lead to collisions and are able to avoid local minima while reaching the global minimum.

Chapter 5 also tackles the detection of border scenarios between faulty and non-faulty areas,

which represents the second objective of this thesis: We will consider different approaches and

define three algorithms relying on an optimization loop. These algorithms attempt to detect

border scenarios everywhere in the search space, without the need of generating trajectories.

They are also developed to detect the border of any evaluation criterion wanted, whereas

Tuncali and Fainekos (2019) can only apply their method on collision-related criteria.

2.1.2 Parameters distributions

In this thesis, we mainly focused on sampling with parameters ranges which define the

driving situation in the simulation software. We will then proceed by briefly describing

alternative methods found in the literature that use parameters distributions instead. These

approaches rely mainly on Accelerated Monte Carlo methods. In fact, Monte Carlo
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techniques can be used to generate new samples by estimating the expected probability of

an event happening, which is the failure probability in our case, but can take a long time to

execute if implemented in its basic random way, which makes it inefficient. Thus, accelerated

Monte Carlo techniques are introduced in the next papers presented to sample scenarios from

parameters distributions, and are compared to the standard Monte Carlo method sampling.

A first accelerated approach uses Extreme Value Theory (Åsljung et al., 2016, 2017).

The authors evaluate the system safety level based on real data and a criterion metric by

relying on near misses situations, i.e., narrowly avoided collisions. It is noted that the chosen

criterion metric can greatly impact the level prediction before considering the Brake Threat

Number as a promising criterion metric. They further elaborate that this method is more

efficient than a statistical approach which needs 45 times more measurement data.

Importance Sampling Theory is also used to quickly predict the failure probability

while maintaining statistical correctness and accuracy (Zhao, 2016; Zhao et al., 2016, 2017;

O’Kelly et al., 2018). In one publication, the authors chose to apply the technique on a lane

change use case, and select three variables which they consider are the only ones necessary

to mostly characterize a possible vehicle collision. The parameters distributions are derived

from data collected from vehicle driven under naturalistic conditions. While they were able to

reach the same accuracy faster than the naturalistic tests in simulation, the main downside

of this technique is that it is unsuitable for big use cases where more than a hundred of

parameters are required to describe the driving situation. A high amount of simulations is

then needed to cover the distributions identified for all parameters, which in turn increases

the computational power required for these simulations. Nonetheless, one advantage of this

method is observed when Importance Sampling is combined with another validation analysis

in order to sample scenarios that are physically feasible and realistic (Wang et al., 2020).

Furthermore, this method spawned other works and publications that are presented next.

Huang et al. (2017b) model the vehicles behavior using Piecewise Mixture Distribu-

tion and apply it on a cut-in driving situation (Huang et al., 2018). The results show that the

method is 7000 times faster than the standard Monte Carlo method. Plus, another technique

is based on Kriging Models and tackles the problem by proposing a sequential learning

approach (Huang et al., 2017; Huang et al., 2017a). It searches for the next best scenario

by relying on a heuristic simulation-based gradient descent procedure. It is able to decrease

experimental runs and save on-track experimentation, while being more efficient than ran-

dom scenario sampling despite a lack of quantitative statement. Similar work from the same

research group is available too (Arief et al., 2018; Zhang et al., 2018b; Huang et al., 2019).

ANSYS is also recently employing Kriging models to focus on corner cases while performing

closed-loop testing of the autonomous vehicle. However, the main drawback of Kriging mod-

els is their incapacity in handling use cases of high dimension, or ones with qualitative inputs,

e.g. vehicle type and road type. Nonetheless, some extensions of Kriging models exist in the

literature. They have been tried out in the aim of bringing a broader scope of applicability

for Kriging models (Echard et al., 2011; Chen et al., 2013).
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A last accelerated technique used is the Markov Chain Monte Carlo sampling, which

does not require a quantitative evaluation of the overall risk level (Akagi et al., 2019). The pa-

rameters distributions are provided by real data similar to the previous accelerated methods

presented, and a traffic risk index evaluates the scenarios with their corresponding param-

eters. However, unlike previous methods, the tested scenarios were not reversely calculated

to assess the overall safety evaluation. Furthermore, this method is also used to develop

a road generator (Olivares et al., 2016), and highlight the influence of the discretization of

the traffic participants states on the resulting criterion metric errors measurements (Åsljung

et al., 2019).

In conclusion, although parameter distributions can provide a deeper significance of the

scenarios in the real world, the accelerated Monte Carlo methods are limited by the required

computation power for complex driving situations. Plus, they are usually based on real world

data which are not easily accessible due to the high competitiveness of the field. Therefore,

Renault opted for the characterization of simulated driving situations using parameter ranges

for now, which in turn is naturally used in this thesis work.

2.2 Falsification-based methods

As mentioned previously, the falsification-based techniques aim at detecting edge cases,

which are failed scenarios that the autonomous vehicle system has yet to encounter. The main

technique is to rely on simulation while building an optimization loop, whereas other tech-

niques are also derived via non-simulation approaches. Since our work in this thesis belongs

to the simulation-based techniques, we shall begin by briefly reviewing the non-simulation

approaches before delving deeper into the simulation-based methods to set baselines for our

work, and position our methodologies more effectively.

2.2.1 Non-simulation detection

Accident databases

Accident data are primarily used to test driver-assistance systems. The scenarios,

where the human driver performance leads to an accident, are retrieved in order to update

the automated vehicle systems and increase their safety.

For instance, the GIDAS accident database is used to evaluate the requirements needed

by the driver-assistance systems to mitigate potential accidents in urban zones (Stark et al.,

2019; Stark et al., 2019), and in limited access highways (Feig et al., 2019). Others rely on

accident databases to form the basic starting point for a scenario-based approach validation

using simulations (Fahrenkrog et al., 2019), or Big Data techniques that rely on the words

most frequently mentioned in the crash descriptions (So et al., 2019). They derive new critical

scenarios from accident data to generalize the potential of the system to avoid accidents, and

validate its effectiveness.
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Nonetheless, data derived from accidents cannot be used extensively for the validation

of an autonomous vehicle of SAE Level 3 and higher. The system is able to rely on them

to be updated by mitigating accidents that already happened, but should turn to different

techniques to deal with accidents that have not yet taken place, to try to avoid that they

occur in the future.

Criticality and Complexity

Two other non-simulation approaches are defined in order to generate new edge cases

scenarios: criticality-based and complexity-based selections.

In the first approach, the criticality-based selection, the idea is to increase the criticality

of safe scenarios. Pierson et al. (2019) focus on calculating the risk that the autonomous

vehicle encounters by looking at the position and velocity of other traffic vehicles behaviors.

They select highly critical scenarios (i.e., for which they calculated high values of risk),

and evaluate them using the HighD (Krajewski et al., 2018) and NGSIM (FWHWA and

US Department of Transportation, 2017) real data sets. In a similar way, another method

calculates the risk by relying on the safe area that the autonomous vehicle can use based

on the behaviors of the surrounding vehicles. They resort to evolutionary optimization to

minimize this safe area, which also maximizes the scenarios criticality (Althoff and Lutz,

2018; Klischat and Althoff, 2019). However, the generated scenarios have not been reversely

calculated to check if they have indeed created scenarios where the autonomous vehicle system

would fail.

In the second approach, the complexity-based selection, the idea is to consider the

parameter ranges of a driving situation and detect critical scenarios by increasing the com-

plexity of the scenario. For instance, the Analytic Hierarchy Process is used to assign weights

to each scenario parameter, which in turn defines a complexity index later combined with

combinatorial testing (Xia et al., 2017, 2018; Gao et al., 2019). The procedure is evaluated

on a warning system designed for lane-departure, and the results show a correlation between

scenario complexity and number of system failures. Wang et al. (2018) define the complexity

by separating it into two subcategories; the first one defines the static environment complex-

ity, whereas the second one describes the dynamic environment complexity, i.e., taking into

account the behavior of the other vehicles. Nonetheless, this metric was not validated. Al-

ternatively, Zhang et al. (2018a) describe the complexity related to the cognitive capabilities

and tasks of the autonomous vehicle by taking into consideration challenging weather condi-

tions, e.g. fog, and road type and structure. Their results indicate that scenarios complexity

and performance are negatively correlated. Qi et al. (2019) define the complexity through a

Scenario Character Parameter (SCP) applied to trajectories resulting in system errors. These

trajectories are then grouped together into similar clusters in order to extract the most im-

portant and challenging cases. Other metrics which impact the scenarios complexity can be

found in the literature (Guo et al., 2019; Koopman and Fratrik, 2019).
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2.2.2 Simulation-based detection

The simulation-based approaches differ from the previous methods presented as they need

to have access to a simulator in order to propose new edge cases scenarios. For that matter,

they need an optimizer which selects the next scenarios, then forwards them to the simulator

to be executed. After evaluating the new scenarios, the optimizer takes the results into con-

sideration in order to determine the next scenarios for the iteration that follows. Depending

on the cost function considered, the optimizer detects more critical scenarios throughout the

iterations for the driving situation considered with the autonomous vehicle. Multiple methods

are shown next, which mainly differ in the choice of optimizer and methodology used.

Koren et al. (2018) are part of a research group which uses Reinforcement Learning

and calls the procedure Adaptive Stress Testing. They build upon the results of a publication

in the avionic domain (Lee et al., 2015), which inspired a learner to compare two simulators

by maximizing the deviation between them (Lee et al., 2018). They use Deep Reinforcement

Learning along with Monte Carlo Tree Search to generate trajectories of pedestrians and

sensor noise in a driving situation consisting of an autonomous vehicle getting close to pedes-

trians on a crosswalk. They are able to focus on both actions and sensor failures throughout

the time steps. From the same research group, Corso et al. (2019) deepen the technique by

introducing a reward-augmentation method. This procedure is promising according to the

publications. However, it has been tested so far on simple driving situations and has yet to

be assessed for more complicated and time-consuming cases.

Another technique used for simulation detection is the closest to our methodology in

tackling the first objective of this thesis, that is, developing an algorithm for failures explo-

ration. Beglerovic et al. (2017) present a loop involving surrogate modeling using Kriging

and stochastic optimization consisting of Differential Evolution (DE) genetic optimization

(Storn and Price, 1997a) and Particle Swarm Optimization (PSO) (Poli et al., 2007) algo-

rithms. Just as we will describe the problem statement in Subsection 4.1, a surrogate model

is introduced to handle the launch of simulations necessary for optimization iterations instead

of relying on the costly simulation engine. This model is then updated with the global min-

imums found to improve its accuracy. A so-called zooming-in algorithm manages the whole

interactions between the surrogate model and the simulation software. This method is based

on another procedure which uses neural networks instead of Kriging as surrogate models

(Ben Abdessalem et al., 2016), and was able to reduce the number of simulations needed to

discover faulty scenarios. However, Beglerovic et al. (2017) opted to choose Kriging instead of

neural networks as surrogate models because, on one hand, they lacked expert knowledge in

deep learning to build a satisfactory model, and on another hand, wanted a surrogate model

without lengthy training needed nor heavy data preparation beforehand.

Multiple other publications present similar work while developing alternative approaches.

For instance, Range Adversarial Planning Tool (RATP) is a methodology used to

generate new scenarios by the means of adaptive search-algorithms based on the previous

results obtained (Mullins et al., 2017; Mullins et al., 2018; Mullins, 2018). Other global
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optimum search techniques used involve Bayesian optimization (Gangopadhyay et al.,

2019) or simulated annealing to assess perception algorithms (Abbas et al., 2017).

Tuncali et al. (2016) developed S-TaLiRo, which is their own automatic test generation

engine based on formal system requirements. They first used simulated annealing as means

of optimization before switching to gradient descent with greater performance (Tuncali et al.,

2017). They define the cost function as the gap of a criticality metric quantified to falsify the

formal system requirements. They applied their technique on a velocity control system while

attempting to avoid a collision. Finally, Koschi et al. (2019) separate detecting failures in the

ACC system into performing forward and backward searches. The latter one involves

starting from a simulated accident and optimizing it backwards in time, which can detect a

fault more efficiently than the forward-search method.

2.3 Problem setting

In this thesis, we will present in Section 4.5 the methodology used for the first objective

of failures exploration, and in Sections 5.1 and 5.2 the methodologies used for the second

objective of border detection. In both objectives, a random forest model is used as substi-

tution model of the simulator in our optimization loop. Furthermore, the main difference

between previous studies and the work presented for the first objective, is that the detection

of edge cases is optimized to detect higher probability of failures, yet little research was found

that attempted to tackle coverage and falsification by the same algorithm. While some stud-

ies tried to combine combinatorial testing for coverage and simulated annealing for failure

detection (Tuncali et al., 2018; Tuncali et al., 2020; Tuncali, 2019), their ultimate goal was

different as they aimed at improving the optimizer convergence by enhancing its initialization

through the selected scenarios. In fact, Felbinger et al. (2019) perform a comparison between

combinatorial testing and failure detection, and show that both methods are able to detect

critical scenarios without efficiency-assessing.

In contrast, the first algorithm developed in this thesis aims at detecting failed scenarios

while simultaneously exploring the whole space of all driving situations. Thus, coverage and

falsification are tackled simultaneously. This algorithm corresponds to the first objective of

this thesis, and is applied on a tracking vehicle use case, where its efficiency is evaluated by

how much it succeeded in covering edge cases for the whole space. Then, the three algorithms

developed for border detection address the second objective of this thesis, and show different

approaches than the RTTs used by Tuncali and Fainekos (2019) which only tackle collision

events by generating trajectories. They are developed to detect border scenarios for any

evaluation criterion defined and without the need of creating trajectories. Additionally, the

computational budget of these four algorithms is limited in terms of number of simulations.

Such industrial constraint is imposed to limit the overall computational cost, forcing the

algorithms to reach their objectives in a cost-effective way.

Lastly, no noticeable publication was found that worked closely on the third thesis ob-
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jective, i.e., building representative models of the input space border based on scenarios close

to the border. The main goal associated to this objective is to better understand the failures

of the command law than with only single failure points, so as to hopefully be able to correct

it more globally. Explainability of Machine Learning models is a hot topic today (DARPA

launched the XAI program 4 years ago), and two approaches exist. The first one, whose flag-

ship is LIME (Local Interpretable Model-agnostic Explanation) (Ribeiro et al., 2016) builds,

at its name suggests, local model of any given learned model that can explain one decision,

or all decisions in a small part of the space. But this is not what is wanted here, and global

explanations are totally domain- and model-dependent. This is why specific work is needed

here too. The border models that will be built in this final part of the thesis should be as

explainable as possible, while representing as accurately as possible the border as per the

ADValue project specifications.

Now that we have positioned our work within the scenario-based validation methods found

in the literature, the next Chapter is devoted to give a comprehensive state of the art review

of all technical methods used throughout this thesis.



Chapter 3

Optimization and Regression

This Chapter is dedicated to brief surveys of the algorithms that will be intensively

used throughout this thesis: derivative-free optimization algorithms, that aim at optimizing

black-box real-valued functions defined on real-valued or mixed search spaces, and regression

algorithms, whose goal is to learn in a supervised way models of real-valued functions from

input/output examples.

3.1 Optimization Algorithms

This section briefly introduces some optimization algorithms that will be used in this

thesis, and gives some motivation for their choices. By no means this presentation pretends

to be exhaustive, and a few other algorithms could certainly have been chosen with similar

properties without modifying the main conclusions of this thesis.

The CMA-ES algorithm is used twice in this manuscript: the Find One Failure algo-

rithm in Section 4.5.4 uses CMA-ES as optimization engine to detect a failed scenario the

farthest possible from an archive of failed scenarios, and the Find One Border Point algo-

rithm in Section 5.2.1 uses CMA-ES to locally detect a scenario on the border between failed

and safe areas starting from an initial point. Then, Mixed-Integer Linear Programming is

considered as a possible approach for border models in Section 6.3. Several models have been

tested leading to a final industrialized version.

3.1.1 CMA-ES, a Derivative-Free Stochastic Optimization Algorithm

Derivative-free algorithms will be needed throughout this work. Several metaheuristics,

i.e., stochastic optimization algorithms, belong to this class of algorithms, though not all

metaheuristics deserve attention (Sörensen, 2013). Among them, Particle Swarm Optimiza-

tion (PSO) (Kennedy and Eberhart, 1995), Differential Evolution (DE) (Storn and Price,

1997b) and Covariance Matrix Adaptation Evolution Strategy (CMA-ES) (Hansen and Os-

termeier, 2001) have been demonstrated to be efficient. However, though slightly more com-
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plex, CMA-ES has also won many challenges against a load of competitors, beyond just PSO

and DE: see for instance (Auger et al., 2009), in which CMA-ES is experimentally compared

to PSO and DE but also to BFGS (with numerical differentiation) and NEWUOA (Powell,

2006), a recent deterministic algorithm for derivative-free optimization. Another family of

algorithms derived from Bayesian optimization could also have been used here, in particular

the EGO algorithm (Jones et al., 2006). However, Bayesian Optimization scales very poorly

with the dimension of the search space, whereas CMA-ES does scale up to around a few

hundred variables (and even more with specific large-scale variants). Thus, even if this work

does not address problems with large dimension, it should be used in the future for real-

world problems where Bayesian Optimization might suffer. Hence the choice for this thesis

of CMA-ES, that we are going to briefly introduce.

The algorithm CMA-ES (Hansen and Ostermeier, 2001) is a stochastic optimization al-

gorithm for continuous optimization problems. Originated from the Evolutionary Algorithm

domain, it is a derivative-free optimization algorithm, i.e., it doesn’t need any assumption on

the objective function to optimize.

CMA-ES evolves a multi-variate Gaussian distribution σN (m,C) defined by its mean m,

a strictly positive multiplicative factor σ, called the step-size, and its covariance matrix C

(by abuse of notation, as the actual covariance matrix is in fact σ2C). At each iteration,

a set of λ points of IRn is sampled according to this multi-variate Gaussian distribution.

Evaluation of the objective function, aka fitness, of the different points is performed and

the parameters of the Gaussian distribution are updated: the step-size is increased (resp.

decreased) if successive steps of the algorithm tend to go in the same direction (resp. have a

sum close to 0); the covariance matrix is modified so as to favor other step in the direction

of past successful steps.

More precisely, from this Gaussian distribution λ offspring are sampled independently:

xk = m+ yk, with yk = σNk (0,C) for k = 1, . . . , λ

The fitness of all offspring is computed, and the linear combination of the µ best offspring

becomes the new mean:

m←
µ∑
i=1

wixi:λ = m+ σyw with yw =

µ∑
i=1

wiyi:λ (3.1)

where the positive weights wi ∈ R sum to one. The index i :λ denotes the i-th best offspring

according to the fitness values.

The strategy parameters of the algorithm, the covariance matrix C and the step-size σ

are updated so as to increase the probability to reproduce good steps. The so-called rank-one

update for C takes place as follows. First, an evolution path is computed:

~pc ← (1− cc)~pc +

√
cc(2− cc)µeff

σ
yw
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where cc ∈]0, 1] is the cumulation coefficient and µeff is strictly positive. This evolution path

can be seen as the descent direction for the algorithm. Second, the covariance matrix C(g) is

“elongated“ in the direction of the evolution path, i.e., the rank-one matrix ~pc (~pc)
T is added

to C(g):

C ← (1− ccov)C + ccov~pc (~pc)
T

The complete update rule for the covariance matrix is a combination of the rank-one update

previously described and the rank-mu update presented in Hansen et al. (2003). It extends

the previous rank-one rule the following way:

C ← (1− ccov)C + ccov~pc (~pc)
T + cµ

µ∑
i=1

wiyi:λy
T
i:λ

The update rule for the step-size σ(g) is called the path length control. First, the following

vector is computed:

~pσ ← (1− cσ)~pσ +
√

1− (1− cσ)2µwσ ×C−
1
2 yw

where cσ ∈]0, 1]. The length of this vector is compared to the length that would have had

this vector under random selection, i.e., in a scenario where no information is gained from the

fitness function, and one is therefore willing to keep the step-size constant. Under random

selection, the vector ~pσ is distributed as N (0, Id). Therefore, the step-size is increased if the

length of ~pσ is larger than IE(‖ N (0, Id) ‖) and decreased if it is shorter. In practice, the

update rule reads:

σ ← σ exp

(
cσ
dσ

(
‖ ~pσ ‖

IE(‖ N (0, Id) ‖)
− 1

))
(3.2)

where dσ > 0 is a damping factor.

The default parameters for the strategy are given in Hansen and Kern (2004) Eqs. 6-

8. Only the initial values for the mean and the step-size have to be set depending on the

problem.

In the default setting, the population size λ is equal to b4 + 3 log(n)c, where n is the

dimension of the search space. Increasing the population size increases the probability to

converge towards the global optimum when minimizing multimodal fitness functions (Hansen

and Kern, 2004). This fact was exploited in Auger and Hansen (2005) with a CMA-ES restart

where population size is doubled after each restart is proposed. Different stopping criteria

are used to determine when to restart the algorithm, the main one, and only one used in

this thesis, is the tolerance on fitness: the algorithm stops if the range of the best objective

function values of the recent generation is below a given tolerance value.

CMA-ES not only does not need any gradient of the fitness function, but also it uses

a ranked-based selection, and is therefore invariant when optimizing a fitness function f :
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IRn → IR or h ◦ f , where h : IR→ IR is any ranked preserving transformation. This property

implies in particular that convexity does not play any role for the convergence of CMA-ES.

Finally, it is worth noting that CMA-ES is a completely Open Source software, and the

source files in several programming languages, including Python, Matlab, and C, are avail-

able on the main authors’s web page at http://www.cmap.polytechnique.fr/~nikolaus.

hansen/, together with a detailed tutorial and links to all related publications, including

hundreds of applications of the algorithm to different domains.

3.1.2 Mixed-Integer Linear Programming

In a nutshell, linear programming is a method used to solve a linear program, i.e., to

minimize a linear objective function subject to linear equality and inequality constraints as

well as positiveness constraints on the variables. Linear programming dates back in the

nineteenth century, but modern algorithms that are still used today were introduced in the

second half of the twentieth century (see (Orden, 1993; Gass, 2002) for more historical details).

Linear Programs The canonical form of a linear program is the following:
minxc

Tx

Ax ≤ b
x ≥ 0

where c ∈ IRn, b ∈ IRn are known n-dimensional vectors, A is a p × n matrix, and the

notation z ≤ 0 for any given vector z ∈ IRn means that all components of z are negative.

Equality constraints are transformed in 2 inequalities in A. Vector x ∈ IRn are the decision

variables.

The feasible region (set of points that satisfy the constraints) is the polytope defined by

the inequalities Ax−b ≤ 0, intersected with the positive quadrant. It is convex, and hence, if

it is not empty and bounded, there exist solutions to the LP. Moreover, because the objective

function is linear, these solutions lie on the boundary of the feasible region.

Several methods have been proposed to solve the general linear program. The earliest

generic and efficient algorithm is the so-called simplex algorithm that explores the vertices of

the polytope defined by the inequalities Ax− b ≤ 0, iteratively moving along its edges. The

main disadvantage of the simplex algorithm is that its worse case complexity is exponential

- tough in many practical instances, it is polynomial. The other popular methods today to

solve a linear program are the different interior-points algorithms: First proposed in 1984

(Karmarkar, 1984), these algorithms, as their name indicates, also explore the interior of

the polytope. They are probably polynomial, and perform well on most practical instances.

Currently, the majority of software solutions are built around the simplex algorithm and

interior-point algorithms.

http://www.cmap.polytechnique.fr/~nikolaus.hansen/
http://www.cmap.polytechnique.fr/~nikolaus.hansen/
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Integer Linear Programs and Mixed Integer Linear Programs An integer linear

programming (ILP) problem refers to a linear program where all decision variables are con-

strained to be discrete. If all variables are discrete, the model is called a pure integer program.

Otherwise, the model becomes a Mixed-Integer Linear Program (MILP). ILPs are known to

be NP-hard, hence no polynomial time algorithm exists to solve them. As a subset of ILPs,

MILPs share the same property.

In particular, the relaxation of a MILP, in which the integer variables are allowed to take

values in IRn is not a solution per se: it can be solved in polynomial time (as all LPs on

IRn), but there is no reason why the solution of the ILP could be the rounded solution of the

relaxed LP. However, using the relaxed LP together with a Branch-and-Bound strategy on

the integer variables is the basis for the most popular approaches for solving MILPs, used in

most available software today: the algorithms iteratively solve a relaxed problem, and add

two branches to the search tree by adding constraints on one variable on both side of its

(continuous) value at the solution of the relaxed problem. Additional pruning of the search

tree is provided by the solution already explored.

Two softwares will be used in this work to address MILPs in order to derive border models

(Section 6.3): the Open Source package lp solve (Berkelaar et al., 2004) and the commercial

software Gurobi (Gurobi Optimization, 2020).

3.2 Regression Algorithms

Given a set of iid labeled tabular data, i.e., a set of data points generated by the same

process and described by a vector of features (discrete or continuous values), with a label

attached to each example, supervised learning aims at building a predictive model of the

process at hand, that can predict the label of unseen (hence unlabeled) examples generated

by the same process. Regression is one name of supervised learning when the labels are real-

valued (and classification is used for discrete labels, aka classes). The learning phase (learning

of the model from the set of training examples) usually aims at minimizing the error made

by the model by comparing, for each training example, its output with the known labels, aka

the loss function. Most current losses amount to least squares error, though different criteria

can be targeted, leading to different loss functions.

But the ultimate goal of supervised learning is to be able to generalize the learned model

to unseen examples, i.e., to minimize the error on the whole example space: the standard

procedure to estimate this unreachable ideal error is to learn the model on some subset of

the initial sample set, aka the training set, and to keep part of the initial sample set hidden

from the learning phase: the error of the learned model on this test set, for which the true

labels are known, is a measure of the generalization error of the learned model.

Furthermore, all learning algorithms come with their own hyperparameters that need

to be tuned anew for each new problem. And there is generally no theoretical result that

could guide these choices. The standard experimental way is to split the original dataset
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into three subsets: the training set and the test set, already mentioned; and the validation

set, that is used to tune the hyperparameters, and should be distinct from the training

and the test sets. Learning is performed on the training set using different settings of the

hyperparameters, the set of hyperparameters that performs best on the validation set is

chosen, and the generalisation performance is then evaluated on the test set with these

’optimal’ hyperparameters. Of course, such procedure assumes a large enough initial dataset.

For each choice of a model space corresponds specific learning algorithms, that adjust

the model to minimize the chosen loss. Several choices are possible, starting with linear

regression, that only generalizes well if the data is linear, and polynomial regression, that has

very poor generalization performances. We will focus in this thesis on three families of models:

Decision trees and its variants, and the associated ensemble method, Random Forests, that

pertain to symbolic AI; Neural Networks, subsymbolic approaches that have encountered

incredible successes in the past 10 years, when handling huge amounts of examples; Genetic

Programming, another symbolic approach based on artificial Darwinian evolution.

Random Forests are used as reduced models for all four algorithms of the first and sec-

ond contributions of this thesis. Their implementation is defined in Section 4.4, then used

throughout Chapters 4 and 5, which respectively tackle the first and second objectives of

the thesis. Similarly, Neural Networks are used throughout Chapters 4 and 5 as substitution

models of the simulator to deal with technical limitations that prevent a massive simulation

plan, after being defined in Section 4.3. They are also considered as a baseline approach for

border models in Section 6.2. Finally, Genetic Programming constitutes the final possible

direction for building a border model as shown in Section 6.4.

3.2.1 Decision Trees and Random Forests

Decision Trees They are models for supervised learning (classification or regression), that

are sets of if-then-else decision rules that can be represented as a tree (see Figure 3.1). Each

terminal (aka leave) is associated with an output value (class for classification, real value for

regression). For instance, in Figure 3.1, the leaves correspond to class Good/No Good which

describes the failure state of the autonomous vehicle. Each node represents one rule that

looks at one feature (aka attribute) of the current example, and descends the tree based on

its value. For a real-valued attribute xi, the condition has the form ”xi < c” for some real

constant c while for categorical attributes, it has the form ”xi is c1 or c2 or ...”.

The evaluation of an example (inference phase) starts with the root node, which is a

decision node, and repeatedly checks the condition of the current decision node, and goes to

either the right child if the condition is satisfied, or to the left child otherwise, until a terminal

is reached. The tree then returns the output value associated with this terminal, a class for

classification trees, a real-value for regression trees. In particular, the function represented

by a regression tree is piecewise constant.

The learning phase recursively builds the tree, maintaining a subset of the training set at

each node. The process starts with the whole training set at the training subset of the root
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node. For each node, a decision has to be made whether to split the node or not, and if yes,

according to which attribute, and with which values for this attribute. If the node is not split,

it becomes a terminal node, and typically outputs the majority class of the current training

subset for classification, or the average of the labels of all examples of the current training

subset for regression. If the node is split, the attribute and the splitting value are decided

according to some metric on the current training subset, and two child nodes are created,

each inheriting the examples of the training subset of the parent node that satisfy the newly

created condition. The process is iterated until reaching terminal nodes on all branches.

Whatever the metric used to split the nodes, and because the goal is to minimize the errors

on the training set, it is clear that a perfect solution can always be obtained by going deep

enough, until all terminals only contain a single training example. However, the tree will only

have perfectly memorized the training set, and generalisation will be poor: this would be a

typical case of overfitting. The depth of the trees must hence be limited, though shallow trees

will have a very poor accuracy on the training set itself - not to mention the generalisation

accuracy. The maximum tree depth is thus a crucial hyperparameter of Decision Trees.

We will now detail the metrics that can be used for the node splitting operation.

Distance < 20 m

Velocity < 10 m/s

No Good

Distance < 100 m

Velocity < 40 m/sGood

Good No Good

Good

Branch

Figure 3.1: Visualization of a standard decision tree starting from the root node through the

decision nodes leading to the terminal nodes.

ID3 The ID3 (Iterative Dichotomiser) algorithm (Quinlan, 1986) was originally designed

to perform classification tasks. The node splits rely on information gain (IG) from information

theory, measuring the change in entropy resulting from the split. The entropy at a given node
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is classically defined by:

H = −
k∑
1

pilog2(pi)

where pi is the proportion of examples in class i in the training subset of the node. It measures

the randomness of the current subset (0 if all examples belong to the same class, maximal if

they are uniformly spread across all classes). The Information Gain for a given split is then

defined by:

IG = H(before)−
K∑
j=1

H(j, after)

where H(before) is the entropy of the current subset before the split, K is the number of new

subsets generated by the split, and H(j, after) is the entropy of the subset j after the split.

The attribute that maximizes the IG is chosen for the split. Thus, an increase in information

gain means a decrease in entropy. Alternatively stated, if a branch has zero entropy, meaning

we are certain of the output, then it should be a leaf node, whereas another branch with

entropy more than zero will be further split by ID3 until reaching zero – or the maximum

depth allowed, or some minimal number of samples in the node subset.

For Regression trees, the Sum of Squared Error (SSE) is used in lieu of the entropy. For

a given node, it is defined as:

SSE =
n∑
1

(yi − ŷ)2

where yi is the label of example i and ŷ the average value of all labels of the training subset

of the current node. The attribute and threshold that minimize the sum of SSEs of the child

nodes after the split are chosen to actually perform the split. Here again, when a single

example is left in a node, the SSE is 0, and overfitting most probably happens. So some

maximal depth, or some minimal number of examples in the leaf nodes have to be enforced.

C4.5 Quinlan (1993) extended the ID3 algorithm and developed the C4.5 algorithm.

In fact, the information gain metric is biased towards picking the attributes with a higher

number of values (in the classification context). C4.5 works around this flaw by employing

gain ratio which takes into account the resulting number of branches before making the split.

In other words, the splitting metric used is a normalized information gain.

CART The CART (Classification And Regression Tree) algorithm builds a decision

tree based on the Gini impurity index as splitting criterion (Breiman et al., 1984). While

information gain is biased towards partitions with distinct values, the Gini index favors larger

partitions and is easier to implement. It can be calculated by summing the probability pi
of a picked item labelled i, then multiply this sum with the probability

∑
k 6=i pk = 1 − pi

of a mistake in categorizing that item. If it reaches its minimum, which is zero, it means

that all samples in the node fall into a single target category, turning the node into a leaf.
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As for regression applications, SSEs are again used to split points, and overfitting still most

probably happens.

Random forests In a nutshell, a random forest is an ensemble method that combines

multiple decision trees. In case of classification, it outputs the majority vote of its trees,

while in the case of regression, it outputs the mean prediction of the individual trees.

Random forests (Breiman, 2001) were originally conceived as an algorithm that combines

several CART decision trees using the generic technique of bagging (Breiman, 1996), which

creates an ensemble of classifiers from multiple training sets that are sampled with replace-

ment from the original one. More randomness was added by only considering a random

subset of the attributes when training each tree. It has been demonstrated (Biau, 2012)

that substantial gains in classification or regression accuracy can be achieved by using such

ensembles of trees. Random Forests are fast, both at training and inference time, accurate

when well trained, and indeed very robust to fight overfitting when a high number of trees is

used.

Discussion The main advantages of decision trees are their ease of use, as the if-else state-

ments give a clear visualization easily interpreted and understood, and their broad application

ranges for both classification and regression problems, as well as handling both continuous

and categorical variables. They also usually take a less training period than more sophisti-

cated algorithms such as the neural networks seen in the next section. However, the main

problem of the decision trees is the overfitting of the data which ultimately leads to false

predictions on the unseen data, as the tree loses its generalization capabilities while trying

to fit all the data into new nodes. This problem leads to instability of the decision trees as

they are highly affected by noisy data. Therefore, the random forests are seen as the best

version of decision trees (Ali et al., 2012) thanks to the bagging method that addresses the

overfitting problem and its underlying limitations, while maintaining all the main advantages

of the decision trees.

3.2.2 Deep Neural Networks

Though first proposed in the 50’s (Rosenblatt, 1958), neural networks became utterly

successful only about a decade ago, thanks to i) the availability of huge amounts of data; ii)

the amazing growth of the available computing power; and iii) new optimization algorithms,

efficient variants of classical gradient algorithms. This allowed to be able to train what is now

called Deep Neural Networks (DNNs), considered the main recent breakthrough in Machine

Learning with numerous impressive results (Krizhevsky et al., 2012; Goodfellow et al., 2014).

Their easy portability to Graphical Processing Units (GPUs) (Raina et al., 2009) thanks

to modern Open Source libraries like TensorFlow and PyTorch made it possible to handle

huge datasets and was the source of their breakthrough performance in many domains (from
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computer vision to Natural Language Processing, to name the most prominent), and hence

of their ever increasing popularity.

In a nutshell, a typical (feedforward) neural network1 consists of multiple layers of ele-

mentary computing units, aka artificial neurons, as they grossly resemble biological neurons.

Each unit computes a non-linear function (the activation function) of the weighted sums of its

inputs. The outputs of layer N are the inputs of layer N+1. The inputs of the first layer are

the features describing the training examples, and the outputs of the last layer are the output

of the model. The learning phase consists in tuning the weights in order to minimize a loss

function that measures the error of the network (see below). Stochastic gradient descent is

the optimization method of choice to reach a local minimum of the non-convex loss function,

even though other methods have been used in the early days of NN history. We will now

give more details on the important issues when using (deep) neural networks for regression,

starting with the historical Perceptron.

The Perceptron The simplest architecture of a NN is when it contains only one neuron.

This model is named the Perceptron (Rosenblatt, 1958). It is a linear classifier, from which

stem all recent artificial neural network architectures. If we consider an input x of dimension

d, the output ŷ of a Perceptron is:

ŷ = σ(w · x)

where w is the vector of weights (by convention, x is extended by a constant input x0 = 1,

and w0 is also called the bias), σ is the Heaviside function. In supervised machine learning,

the training data is made of examples of input-output pairs, and the aim is to learn the best

weights W that minimize the chosen loss function (see below), i.e., get ŷ to be as close as

possible to the real labels y for all x in the training data.

Artificial neural networks are biologically-inspired, and the first learning rules took inspi-

ration from the Hebbian theory, that claims that when a presynaptic cell stimulates repeatedly

and persistently a postsynaptic cell, the synaptic efficacy increases (Hebb, 1949). Therefore,

there should be proportionality between the weights updates wi and the correlation between

input xi and output y. One example of algorithm that implements this proportion is the

Widrow-Hoff algorithm, with update rule w′i = wi + α ∗ (y− ŷ)xi (despite not incorporating

an activation function). In short, the idea is to update the weights using sufficient data in

order to output a model that will figure out how to pass from input x to an output y.

Nonetheless, the key limitation of the linear Perceptron is its inability in dealing with

inputs that are not linearly separable, such as in the XOR problem. This led to the creation

of the multi-layer perceptrons in the end of the 80s, the first non-linear neural network

architectures.

Multi-layer perceptrons The idea is to stack several layers of neurons, where each one of

them is defined by its own learnable weights, and a non-linear activation function. A typical

1Many other more complex architectures exist, that will not be touched upon here.
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multi-layer architecture, called fully connected NN, is illustrated in Figure 3.2: All neurons of

layer i are connected to all neurons of layer i+ 1. But many other partial connection graphs

have been proposed and used, the only requirement is to avoid loops in the connectivity,

allowing to compute the activation values from the inputs to the outputs in a single pass:

this characterizes the class of feedforward NNs.

Input x

k hidden layers

Output ŷ

Figure 3.2: A multi-layer perceptron. The first layer is the input layer x, whereas the last

layer is the output layer ŷ. All the k layers in between are called hidden layers, and each

node and edge represent respectively a neuron with its activation function, and a learnable

weight.

If the NN consists of an input layer, an output layer, and only a few (typically one) hidden

layers, the NN is called today ”shallow”, whereas if it contains many hidden layers, the NN

qualifies as ”deep”. Formally, the output ŷ of a multi-layer perceptron with input x and k

layers are given by the following equation:{
fi(x) = (σi(wi · x))

ŷ = fk ◦ fk−1 ◦ . . . ◦ f1(x)
(3.3)

We notice that the NN architecture is versatile w.r.t. the dimensions of the inputs and

outputs, i.e., the dimensions of the weight vectors wi can be easily modified to adjust to the

available data, and to any feedforward architecture.

Activation functions As explained in the previous paragraph, σi is the non-linear

activation function that introduces the non-linearity in the NN architecture, as all other op-

erations between inputs and the weights are linear. The need for having non-linear activation

functions in the first place is because, if we use linear activation functions, the predicted

output is simply a linear approximation of the output, no matter how many layers in the

architecture – and non-linearly separable problems simply cannot be solved.

Examples of common activation functions are the Sigmoid function, the Hyperbolic Tan-

gent (tanh) and the Rectified Linear Unit (ReLU), Sigmoid and ReLu being the ones used
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throughout this thesis. All three functions are continuous increasing functions, as illustrated

in Figure 3.3.

Figure 3.3: Illustrations of non-linear activation functions examples used in the implementa-

tion of neural networks.

• Sigmoid is bounded between 0 and 1. It is essentially used for binary classification

problems, because it can convert any value to a 0 or 1 probability for two classifications

when implemented in the output layer. It converges to the Heaviside function when the

slope of the derivative at 0 goes to infinity.

sigmoid(x) =
1

1 + e−x

• Hyperbolic Tangent (tanh) is bounded between −1 and 1, centered at 0 which

makes it suitable for centered data sets and most other cases than binary classification.

However, it is considered to be computationally expensive compared to alternative

activation functions.

tanh(x) =
2

1 + e−2x
− 1 =

e2x − 1

e2x + 1

• Rectified Linear Unit (ReLU) is the most popular choice nowadays. It is not

bounded nor fully differentiable, but it is convex, and its (sub-)gradient is 0 if the

input is negative. However, it allows quick computation because of the simplicity of

the function and its derivative.

ReLu(x) = Max(0, x)

Losses In order to learn the weights of a feedforward neural network in the context of

supervised learning, a loss function must be defined, suitable to the problem at hand. This

function should denote how close the predictions provided by the neural network are to the

expected predictions, i.e., the actual labels. Two popular losses are used throughout this

thesis, and are detailed next.
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• Mean-Squared Error: This loss is typical for regression problems because of its

stability and robustness. The equation of such loss is:

MSE =
1

m

m∑
i=1

(yi − ŷi)2 (3.4)

where m accounts for the number of examples in the training set, yi the label of the ith

sample, and ŷi the network prediction of the ith sample.

• Cross-Entropy: This loss is standard for classification problems. While it is computed

using entropies, we do not have access to the probability distributions of the labels and

predictions in practical applications. Therefore, an approximate equation of the loss is

defined with the respective sets of samples y and ŷ. In the case of binary classification,

with only two classes, this gives the following loss:

CE = − 1

m

m∑
i=1

(
yilog(ŷi) + (1− yi)log(1− ŷi)

)
(3.5)

Stochastic Gradient Descent After choosing the loss function, the goal is to globally

minimize it. It turns out that the output is a (sub-)differentiable function of the weights and

the inputs. Hence if the loss function is also differentiable, it is possible to compute the deriva-

tives of the loss function w.r.t. the weights, and from there on, to use any gradient method to

minimize the loss. Considering the huge size of the training set, the preferred method is the

Stochastic Gradient Descent (SGD), that uses only a subset of the whole training set (aka

mini-batch) to compute a partial gradient and update the weights accordingly. Furthermore,

thanks to the chain rule of computation of derivatives, it is possible, for each example of the

training set, to first compute the outputs of the network (because of the absence of loops in

the topology of the network) starting from the input layer (feedforward propagation), and

then to compute the derivatives w.r.t. the different weights by back-propagating the error

from the last layer (for this reason, this algorithm is called ”gradient backpropagation”). The

weight update is then computed using the standard gradient update:

wi ← wi − η
1

m

m∑
j=1

∇Lj(wi) (3.6)

where Lj is the value of the loss L for the jth example of the mini-batch, and η is the learning

rate, an important and influencial hyper-parameter.

Training the neural network The basic training phase proceeds iteratively: First, the

training set is divided into several mini-batches, and for each mini-batch, the corresponding

examples are presented to the network one by one. For each example, forward propagation

predicts the corresponding outputs, the loss function is computed, and back-propagation is

run to compute the gradients for each weight of the network. At the end of the mini-batch,
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Algorithm 1: Neural network learning procedure (Stochastic Gradient Descent)

for number of epochs do

for number of mini-batches do

• Sample a batch xi out of the training data set

• Predict the output ŷi
• Calculate the loss w.r.t the real labels yi: Li = L(ŷi, yi)

• Compute the gradients for all the learnable parameters ∇Li(wk)

• Update the learnable weights according to Equation (3.6)

end

end

the weights are updated using Equation (3.6). An epoch refers to processing the whole set

of mini-batches (i.e., every example of the training set once). The training phase of a NN is

summarized in Algorithm 1.

Improving the basic training algorithm Numerous improvements of the basic al-

gorithm described above have been proposed, and describing them all is beyond the goal of

this work. However, some of the most efficient (and hence popular) are used throughout this

thesis, and we will now briefly introduce them.

• Learning rate and optimizer: The learning rate of the stochastic gradient descent,

as defined in Equation 3.6, is an important hyper-parameter to be effectively tuned. It

defines the speed of adaptation of the weights. If its value is too high, the optimization

might crash on some gradient barriers, and the gradient will diverge, or not be able

to reach any local minimum, overshooting it again and again without ever being able

to move with the correct precision. If it is too low, escaping local minima becomes

difficult, and in any case, even reaching a local minimum might take an enormous

number of iterations. Thus, the impact of the learning rate on the neural network is

quite significant.

One way of dealing with this caveat is to apply momentum-based optimization which

will enable faster learning using exponentially weighted averages. It allows the gradient

descent to gain more context on the optimization process and adapt its learning rate

accordingly. Another popular optimizer that works well in a lot of applications is called

Adam (Kingma and Ba, 2014). Instead of shifting the weights values with the gradient

mean value in a linear fashion, it takes into consideration gradient statistics of higher
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order, using gradients decaying averages m and squared gradients v as follows:
m(wi)← β1m(wi) + (1− β1)∇L(wi)

v(wi)← β2v(wi) + (1− β2)∇L(wi)
2

m̂(wi)← m(wi)/(1− β1)

v̂(wi)← v(wi)/(1− β2)

(3.7)

wi ← wi −
η√

v̂(wi) + ε
m̂(wi) (3.8)

where β1 and β2 are two hyperparameters that control the decay rate. But Adam seems

pretty robust w.r.t. these hyper-parameters, that are generally taken as recommended

by Kingma and Ba (2014) – with the exception of the initial learning rate η0 that still

needs to be manually tuned.

• Weights initialization: The initialization of the weights at the beginning of the

training process of the neural network also has a strong impact on the performance

of the training. For instance, it is not a good idea to initialize all weights with zeros,

or set them at a given constant value, because all gradients will be the same across

the network, resulting in identical weights all along. On the other hand, if the initial

weights are too high, all neurons will be saturated, and return a value close to the upper

or lower bound, with almost null gradient: the weights will not evolve.

Thus, many heuristic approaches have been proposed to aid the network in training

properly, such as random initialization using a Gaussian or uniform distribution. The

most popular heuristic to date is that of Xavier or He (Glorot and Bengio, 2010; He

et al., 2015), and was used throughout this thesis: the idea is to keep the variance fixed

from layer to layer in both the feedforward and back-propagation directions, so as to

not saturate the neurons and enable the network to learn optimally. These respective

variances are set as follows:

Xavier : V ar(wi) =
2

size[l−1] + size[l]

He : V ar(wi) =
2

size[l−1]

where size[l−1] and size[l] represent the number of incoming and outgoing connections

respectively.

• Regularization: A trained neural network should give accurate predictions on its

training set. If this is not the case, it means that it is underfitting training data. Some

solutions that could fix this problem are to: train the network longer; have a bigger

network; or change the NN architecture. On the other hand, overfitting occurs when

training the network longer leads to a decrease of the error on the training data, but
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ultimately increases that on unseen data (the test set): the network had been trained

to perfectly ”memorize” the training data, regardless of any generalization ability.

In order to handle this problem, regularization is used by adding constraints to the loss

which limits the ability of the model. Adding the L1 or/and L2 norm of the weights to

the loss is a standard way to regularize. However, more NN-specific approaches have

been proposed, such as the dropout (Srivastava et al., 2014). It consists in randomly

cutting off some neural connections with a given probability during each epoch of the

training phase. This method ensures that no co-adaptation occurs between all the

network weights, and this can efficiently prevent overfitting.

Hyper-parameters As described above, before running a deep neural network for some

supervised learning task, there are a lot of parameters that should be fixed by the user, after

the problem (inputs, outputs, loss function) has been defined. The first ones are those of the

architecture: number of hidden layers, type of each layer (e.g., fully connected, convolutional,

pooling, residual, . . . ), their sizes (number of neurons), and the type of activation function.

But there are also numerous other hyper-parameters, i.e., parameters that are chosen at the

conception of the model, and are usually not updated during the training phase: choice of

the optimizer, that comes with its own hyper-parameters, learning rate, and in particular

its initial value and how it decays during the iterations, dropout or not dropout (Srivastava

et al., 2014), stopping criterion (e.g., early stopping), to name the most prominent ones. Like

for all other Machine Learning approaches, these hyper-parameters are usually adjusted using

an independent validation dataset. This hyper-parameter search ranges from random search

(Bergstra and Bengio, 2012) to grid search to more sophisticated search methods that belong

to Automatic Machine Learning (AutoML) branch of research (Feurer et al., 2015; Golovin

et al., 2017; Gordon et al., 2018). The quest for the architecture alone is today called Neural

Architecture Search (NAS) (Elsken et al., 2019; Wistuba et al., 2019).

Discussion Though Deep Neural Networks led to incredible progresses in many appli-

cation domains, they (still) suffer from a number of drawbacks. First of all, they require a

large amount of training data, and not all domains have hundreds of thousands of examples

at hand. Techniques like transfer learning and domain adaptation somehow mitigate this,

but this remains a prerequisite in most applications. DNNs also suffer from a lack of ex-

plainability, a hot topic in today’s research: the millions of weights of a learned model can

hardly be interpreted, and though new approaches are proposed every day, none stands out

generic enough. Finally, DNNs lack robustness in front of adversarial attacks, or when facing

unseen noise (e.g., photos in different lightnings). And though many works start to address

the certification of DNNs using formal methods, it seems that the goal is still rather far away.
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3.2.3 Genetic Programming

Genetic Programming (GP) (Banzhaf et al., 1998) is a branch of Evolutionary Algorithms

that aims at synthetizing programs. The historical form of GP, and still the most prominent,

represents programs as trees: for instance, Koza (1992) used a subset of the LISP language,

and his goal was “to let the computer write the program that solves the problem” by simply

providing a loss function to minimize. The optimization is performed using an Evolutionary

Algorithm, i.e., a stochastic optimization algorithm mimicking Darwinian evolution. Note

however that many different representations of programs have been proposed: linear GP

(Brameier and Banzhaf, 2010) handles sequences of instructions; Cartesian GP (Miller, 2020)

sets the operators and terminals on a grid; stack-based GP (Perkis, 1994) uses operators of

a stack-based programming languages; Grammatical Evolution (Connor et al., 2019) uses a

Context-Free Grammar to decode sequences of codons into a program. Nonetheless, they will

not be mentioned any further.

In the context of this work, tree-based GP will be used as a symbolic regression tool: trees

represent real-valued functions of real-valued variables. In this respect, the semantics of the

language represented by GP trees is much richer than that of Decision Trees, which is limited

to if-then-else rules with a single condition on one attribute of the data.

Representation Given a problem defined on some space S, given a set of nodes N , or

operators acting on elements of S, and a set of terminals T , usually the variables of the

problem at hand defined on S, trees are defined recursively: starting from a root operator

node, all operator nodes are expanded into as many children as their arity requires: each

child is either another operator node, or a terminal. The tree is complete when all branches

end up with terminal nodes. The execution of the program represented by a given tree on an

instance of the problem (a vector of Sn) starts by instantiating all terminals, and recursively

computes the values returned by the operators up the tree. The program returns the value

computed at the root node.

In this framework, Boolean functions of logical variables x1, . . . xn can be represented

using the binary elementary logical functions (N = {AND, OR, NOT}) and the variables of

the problems as terminals (T = {x1, . . . xn}); Real-valued function of real-valued variables

x1, . . . xn can be represented by trees using binary elementary operations (N = {+,−, ∗, /})2

and variables and constants as terminals (T = {x1, . . . xn,R}) where R represents real-valued

constants, aka ephemeral constants, real values that are defined at initialization time and are

not modified any more.

For instance, the following small algebraic term relating two inputs x1 and x2:

x3
1 − (x2 − 2) (3.9)

2the division is in fact the protected division, that returns 1 if the denominator is 0
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can be represented in LISP-like language as:

(−(∗x1(∗x1x1))(−x22)) (3.10)

which, in turn, is represented by the tree in Figure 3.4.

-

* -

x1 *

x1 x1

x2 2

Figure 3.4: Tree representation of the LISP format of Equation 3.10.

Much more complex set of nodes can be used, in particular containing operators of dif-

ferent arities. For instance, in the context of real-valued functions of real-valued variables,

N might contain unary trigonometric functions (sine, cosine, tangent, . . . ), logarithms and

exponentials, and hyperbolic trigonometric functions, or any pre-defined real-valued function.

But N might also include the if-then-else ternary function that takes a condition as first child

(a full subtree, returning some real value), and executes the second child if the result of the

first child is positive, and the third child otherwise.

Evolutionary Algorithms Evolutionary Algorithms (EAs) are bio-inspired stochastic op-

timization algorithms. They are based on the basic principles of Darwinian evolution, cou-

pling Survival of the fittest and blind variations. As such, the field of EAs uses a specific

vocabulary inspired by its biological model.

Given a real-valued objective function defined on a search space Ω, to be maximized (aka
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Figure 3.5: Basic Evolutionary Algorithm.

fitness function), a basic EA evolves a set of points of Ω (aka a population of P individuals),

during a succession of iterations (aka generations). The population is initialized randomly,

the fitness of all individuals is computed. At each generation, the current population (aka

the parents) undergoes parental selection to select the genitors based on their fitness (first

implementation of the Darwinian selection). They undergo some random perturbations (aka

variation operators, grouped in two families, crossover and mutation) that generate new

points of Ω (aka offspring). These offspring are in turn evaluated (their fitness is computed),

and a final Darwinian survival selection reduces the set of parents plus offspring to size P.

Figure 3.5 gives a synthetic view of such basic EA.

The first historical EAs are Genetic Algorithms (Goldberg, 1989) that work on bitstring

(Ω = {0, 1}N ), but the strength of EAs comes from their ability to handle any “weird” search

space Ω, provided you can define blind variation operators. Note that the word “blind”

here means that these operators are not related to the fitness, that is taken care of by the

Darwinian selection part of the algorithm. It is clear, however, that the key to success for

EAs is that the semantic of these variation operators is somehow related to the objective of

the optimization problem at hand.

In particular, EAs apply to search spaces where no “classical” optimization algorithm can

be easily applied . . . like the space of programs defined by parse trees. Nevertheless, EAs have

obtained many successes in various application domains, as witnessed for instance by the list

of recipients of the Humies Awards (http://www.human-competitive.org/awards).

Let us briefly describe the representation-independent components of an EA, before de-

http://www.human-competitive.org/awards
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tailing the representation-dependent parts for tree-based Genetic Programming used in this

thesis.

Darwininan Selection Historically, the first selection method used in GAs (Goldberg,

1989) is the so-called roulette-wheel selection: each individual is selected with a probability

proportional to its fitness (the goal is to maximize the fitness). However, this selection

mechanism suffers many defects, starting with its sensitivity to the scaling of the fitness.

It is hence abandoned nowadays, and the preferred selection method of modern EAs is the

tournament selection. In tournament of size T , in order to select one individual, T individuals

are uniformly selected from the population, and the best individual out of these T is returned.

The tournament size T influences the selection strength: high values will mainly select the

best individuals from the population, while low values (e.g., 2) will also select some low-fitness

individuals, hence favoring a greater diversity in the population.

Representation-Dependent Components As described in Figure 3.5, variation opera-

tors as well as initialisation depend on the chosen representation. This Section will present

the ones mostly used for tree-based GP.

There are basically two types of variation operators: Mutation operators are unary opera-

tors that randomly modify an individual (i.e., transform it into another point of Ω); Crossover

operators are binary operators that generate children (new points of Ω) from the two parents.

The underlying idea behind crossover operators is that they should allow ”good parts”

of both parents (aka “building blocks”) to be recombined and possibly lead to children that

perform better than both parents. Mutation operators might have two roles: making large

moves to escape local optima, or allowing fine tuning when nearing the optimal solution.

Finally, initialization should allow to start with a good coverage of the search space –

ideally a uniform coverage. But such uniform distribution doesn’t exist on non-standard

search spaces like that of GP trees.

Tree crossover Probably the main source of power of GP is the crossover operator, that

exchanges two subtrees of the parent trees (see Figure 3.6 for an illustration). Thanks to the

tree representation, all trees are valid programs (or functions), hence the crossover operator is

closed in the space of tree-based programs. In order to try to control the disruption brought

by the crossover, it is possible to choose the crossover points (location of the subtrees to be

swapped) depending on their depth in the tree, deep crossover point being less prone to high

disruption than higher ones.

Also, in order to better match the semantic of the problem of symbolic regression (see

below), some variants of this basic crossover have been proposed, like the semantic crossover,

in which the actual values taken by the subtrees on the fitness cases are used.
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Figure 3.6: Example of tree crossover.

Tree Mutations Several mutation operators are available. Point mutation randomly

cuts a subtree and replaces it with a completely new tree (see Initialisation). Node mutation

randomly selects one node and switches for another operator. Similarly, terminal mutation

replaces one terminal with another terminal (including ephemeral constants). A specific

constant mutation modifies the value of ephemeral constants. More complex mutation can

also be used, like insertion and deletion of subtrees, semantic variants, etc

Tree Initialization A naive initialization procedure proceeds from the root node (uni-

formly chosen among the different operators), and recursively goes down the tree, choosing

uniformly among operators and terminals, stopping when only terminals remain on the stack

(this procedure is called Grow). It is clear, however, that such procedure could generate very

deep trees, as this process is unbounded. It is hence necessary to set a maximal depth. On

the other hand, the procedure described above can also generate very short trees. One way

to get trees of a desired depth d is to choose only nodes during the development of the tree

until reaching depth d and to choose only among terminals there - procedure termed Full.

The most popular initialization procedure to date uses both Grow and Full, and is called

Ramped Half and Half: given a maximum depth D and a population size P , the idea is to

generate, for each depth d ≤ D exactly P/2D trees of maximum depth d with procedure

Grow, and P/2D trees of depth d with procedure Full.

Fitness Cases and Fitness Functions In the context of symbolic regression, the training

set is made of examples (xi,yi) (see Section 3.2). In GP, each example is also named fitness



3.2. REGRESSION ALGORITHMS 63

case. And the fitness is, in most cases, the Mean Squared Error (MSE) loss function defined

in Equation (3.4). However, different terms can be added to the MSE, in order to favor

different characteristics of the solution.

One of the main issue with standard GP is the so-called bloat phenomenon, i.e., the

quick increase in size of the GP trees across the generations. Bloat not only increases the

computational consumption of the whole process, it also decreases the explainability of the

solution, despite the analytic form obtained. Multiple extensions have been proposed to fight

bloat, like limiting the tree depth or applying operators with depth-dependant crossover (Ito

et al., 1998), while others attempt to deal with the impact of endlessly changing operators by

using subroutines detached from the main body of a code (Koza, 1993; Angeline and Pollack,

1997). One popular approach is to add in the fitness a regularization penalty depending on

the size of the tree.

Discussion While tree-based GP can be used as a symbolic regression tool to represent

real-valued functions in a way that is richer than that of Decision Trees with their limited

if-then-else rules, the evolutionary algorithm employed requires multiple parameters to be

tuned, e.g., population size, number of generations, tournament size, crossover and mutation

probabilities... Plus, the bloat phenomenon remains the main issue of standard GP which

increases computational cost and decreases solution explainability. Nonetheless, the key

advantage of EAs is their broad application range as they are able to tackle any search space

if all necessary operators and conditions are correctly defined.



Chapter 4

Methodology and Experimental

Conditions

This Chapter introduces the general context of the optimization algorithms developed

in this thesis, and illustrates the methodology with results regarding the simulation-based

identification of failures in the decision system (first objective of the thesis).

4.1 Problem statement

The main goal of this work is to validate the command law of a decision system for an

autonomous vehicle for a given use case using a simulator, i.e., to identify the region of the

space of all possible scenarios for the use case at hand where the command law fails – or to

bound the size of this region. But let us first give more precise definitions of the different

concepts at play here.

4.1.1 Use cases and Scenarios

As explained in Section 1.4.3, all driving sequences of the autonomous vehicle can be

enumerated, as far as simulation is concerned, as hundreds of use cases. Each use case is a

description of several vehicles in a given physical environment: number of vehicles (in addition

of the car under study, also called EGO car) that will be circulating, description of the road

segments and trajectories of the different vehicles (including the EGO car), etc

Furthermore, each use case is characterized by the list of input variables of the simulator

that characterize the driving situation of the autonomous vehicle. These input variables are

exterior to the EGO vehicle, and can include road conditions, weather variables, etc. The

number of such input variables is called the dimension of the use case. Setting the values

of all input variables defines a scenario, which is an instanciation of a use case. Thus, the

space of possible scenarios for a use case has as dimension the use case dimension, and is

defined by the range or list of values of each input parameter. Therefore, the environment
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of the autonomous vehicle can be defined accurately in order to check the behavior of the

autonomous vehicle command law in different situations.

The simulator aims at reproducing as accurately as possible the evolution of all the cars

of a scenario: the EGO car is driven by the command law under test, the other vehicles

follow the trajectories of the use case using the parameters of the scenario. In particular, the

simulator computes different indicators of the driving conditions of the EGO car, and outputs

some statistics based on these indicators, called warnings. They are defined with the goal

of identifying the autonomous vehicle behavior under multiple aspects of interest following a

given simulated driving situation. For instance, these warnings are organized by theme, e.g.

safety, testing, and marketability.

For each of the warnings, a range of values is considered dangerous, and when falling into

these values, the criterion is then said to be No Good, abbreviated as NG in the following.

On the other hand, all other values, corresponding to safe behaviors, are qualified as Good,

written G. Note that one single NG criterion qualifies the whole scenario as No Good, but we

will nevertheless work criterion by criterion in the rest of this thesis.

4.1.2 The optimization algorithms

For a given use case, we would like to identify sets of input values of the simulator that

result in specific properties of the outputs: either scenarios raising a failure of the command

law, or pairs of scenarios to help identify the border of the failure zone. One way to detect

such scenarios could be to discretize all continuous parameters of the scenarios at hand, and

perform an exhaustive grid search on these input parameters. However, such approach is

clearly bound to combinatorial explosion: For the simple use case described in Section 4.5.1,

assuming we take into account all the values of the two discrete inputs of the tracking vehicle,

and discretize all five continuous inputs after normalization between 0 and 1 with step size of

0.1, a rather coarse discretization, the resulting number of scenarios to be tested is neverthe-

less 3,865,224, which is huge for a very simple use case. Furthermore, such validation process

needs to be executed for all use cases, and should be repeated every time the decision system

is updated and modified during that whole process. Therefore, developing an optimization

algorithm that performs only a handful of critical scenario simulations is mandatory for val-

idating the milestones of Renault’s industrial project ADValue while meeting the time and

cost tight constraints.

4.2 Simulator and Surrogate Models

The simulator that was available during this thesis is SCANeR Studio (AVSimulation,

2017). It is an in-house software dedicated to automotive simulation including both driving

and testing of ADAS and autonomous vehicle system. It combines numerous tools and models

to provide realism as much as possible to the virtual simulation, e.g., road environment, traffic,

vehicle dynamics, weather conditions... The desired scenario can be scripted to simulate a
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certain driving configuration with the autonomous vehicle. However, the main disadvantage

of the software is that we are obliged to wait for the whole simulation to conclude in order

to collect the wanted outputs. For the simple use case described in 4.5.1, the scenario can

take up to 5 minutes in simulation time. Plus, a software license should be bought for each

terminal to be able to launch a simulation on it. Thus, running simulations in a parallel

mode was impractical, at least at the beginning of the thesis, and all tests had to be run

sequentially for the whole duration of the simulations. Note that the primordial requirement

of the ADValue project is to minimize the number of simulations to be launched to reduce

computational costs.

In order to cope with such expensive simulator, two key models will be created and used

in the optimization loop of all developed algorithms for the failures identification and border

detection. The reduced model is crucial in reducing the number of expensive simulations used

in the optimization loop, while the substitution model is used because of the technical limita-

tions which limit the possibility of a massive simulation plan. Nonetheless, it is important to

not be confused between the two ”surrogate” models. The substitution model is built using

offline calculations from the current version of the simulation software. It is then considered

the ground truth and is never updated once built. It replaces the simulation software, hence

the name. On the other hand, the reduced model is used intensively in the optimization

loop, and is continuously updated online during the optimization. Because of these different

characteristics and usage, we have chosen two different types of models for these surrogate

models: Neural Networks for the substitution model, and Random Forests for the reduced

model (see Chapter 3).

4.3 The Substitution Models

During the course of the thesis, each simulation is very costly even for the simplest use

cases (see Section 4.5.1), because we have to wait for the whole scenario to be simulated

by the software, which takes minutes of simulation time. Furthermore, technical software

limitations occurred which made a massive simulation plan impossible to be run in parallel.

In fact, a license is required to be bought on each terminal to be able to use the simulation

software. Plus, a massive simulation platform with tens of computing cores embedded with

simulator licenses is currently being developed at Renault to provide the possibility of a

massive simulation plan in parallel. However, at the beginning of the thesis, this platform

was unavailable, and all tests had to be run sequentially.

Therefore, because of the high amount of simulations required to explore the scenario

search space, hundreds of hours would have been needed to run a complete single test for a

given use case, even if using a surrogate reduced model to approximate the true objective

function. This situation prevented any real-size experiment involving development and testing

of the algorithm. Hence, we decided to build, once and for all before all experiments of a

use case, a substitution model of the simulation software, which can almost instantly output
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the criteria of the scenario instead of running the costly simulations. After this substitution

model has been built, its outputs are considered to be the only ground truth, and it totally

replaces the actual simulation. In that way, the optimization algorithm can be designed and

tested in a reasonable amount of time for this thesis, as multiple ’simulations’ can then be

run in parallel. However, it should be clear that this substitution model is just a temporary

fix used for this thesis, and should be replaced by the real simulator as soon as possible, and

in the long run when the massive simulation platform is fully ready. On the other hand,

the reduced model is a center building block of the optimization loop, built anew in every

experiment described in this thesis.

4.3.1 Deep Neural Networks as Substitution Models

The goal of the substitution model is to replace the actual simulation for the technical

reasons given above during the different optimization algorithms. As such, it should be as

accurate as possible so the lessons learned using this substitution model can be transferred

to the real situation where the actual simulation is used. This requires using many examples

for training the substitution model. Furthermore, the training time of the substitution model

is not an issue here: gathering the examples is anyway very long, and a few more hours

will not change the overall cost. On the other hand, the test of different scenarios with the

substitution model should be quick enough to be included in some optimization loop without

hampering the optimization itself. This is why Deep Neural Networks have been chosen as

the base model for the substitution models of all use cases in this thesis.

Because the data has no particular structure, fully connected models have been chosen,

with ReLU activation functions on all layers except for the output layer where we keep it linear

for this regression problem. Tensorflow (Abadi et al., 2015) was used via its Python front-end

to build and train these neural networks. Adam optimizer (Kingma and Ba, 2014) has been

used in all experiments, and the two popular initialization procedures of the weights (Xavier

and He) described in Section 3.2.2 have been tried. Mini-batch gradient descent optimization

has also been used while testing batch sizes of 64, 128 and 256.

4.3.2 Building the Substitution Models

For the aim of building a reliable substitution model for a given use case, a design of

experiments with a maximin decision rule (Johnson et al., 1990) is first run in the scenario

space. Its goal is to create a quasi-random sequence of scenarios, so that the experimental

design is composed of scenarios as far apart from one another as possible in the input param-

eter space. The size of this DoE depends on the dimension of the use case, i.e., the dimension

of the scenario space. Typically, for the use cases in this work, it will be around 20,000.

The inputs and outputs of the substitution DNN model are those of the simulator. The

continuous inputs are first normalized in [0, 1] and directly fed into the DNN; The discrete

inputs are one-hot encoded, i.e. transformed into one Boolean variable per possible value
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of the discrete variable. The loss function is the Mean Squared Error (MSE) between the

outputs of the DNN and the actual outputs of the simulator for the scenario at hand. Another

quantity of interest is the accuracy of the substitution model, i.e., the proportion of scenarios

correctly classified as G/NG. However, learning a Boolean classifier wouldn’t have allowed to

run an optimization algorithm to identify failures (see Section 4.5.3), giving little information

to compare two different scenarios with same G/NG quality.

The architecture of the fully connected DNN is defined here by the number of layers,

and the number of neurons per layer. It is tweaked based on the results on a validation set,

mixing random search (Bergstra and Bengio, 2012) and grid search around the best randomly

identified settings. The performance on the test set allows to monitor the goodness of the

approximation, and as discussed, the accuracy in the G/NG classification is also reported.

4.4 The Reduced Models

As discussed, the tasks at hand can be set as optimization problems, that require to

run the simulator within the optimization loop: the optimization algorithms need access to

the outputs of the simulator for the candidate scenarios in order to compute the objective

function being optimized. However, in the long run at least, this computation will require

launching the simulator (SCANeR), which is computationally very costly: The simulation

runtime of one scenario for the very simple use case described in Section 4.5.1 takes about

5 minutes. Hence, even if in the context of this work, we have replaced SCANeR with a

substitution model that is very fast to compute (see next Section), we will act here as if we

had to run the real SCANeR in the optimization loop.

We are hence facing a typical case of expensive optimization: we have to run an opti-

mization loop while using the real simulator with parsimony. Classically, in the realm of

Evolutionary Computation (Jin, 2011), we will build and use a surrogate model during the

course of the algorithm, thus avoiding a systematic use of the actual simulation software.

This model will output an approximation of the optimization criteria, and be updated during

the iterations of the algorithm with the results of few actual simulations: only the scenar-

ios that have been selected using the surrogate approximation will be checked with the real

simulator. This surrogate model, built on the fly during the optimization, will be called, by

analogy with current practice in numerical simulations, the reduced model.

4.4.1 Random Forests as Reduced Models

Because the reduced model will need to be re-built over and over again in the optimization,

we need to choose a model that is fast to learn: while all possible choices of regression models

are fast at inference time, Random Forests are amongst the fastest at training time, while

being robust and reasonably accurate. Furthermore, they scale well enough with respect to

the number of attributes (even though in this work only use cases with few attributes are

addressed). We hence chose to use Random Forests for the reduced model.
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After a few initial experiments, we decided to stick to the default values for the hyperpa-

rameters as follows: 100 trees of maximal depth 30. Because we had few attributes, it was

not useful to select only some of them for the different trees. Throughout this work, we used

Scikit-Learn (Pedregosa et al., 2011), the most popular Python Machine Learning library.

4.4.2 Initialization of the Reduced Models

First, Sobol sequences, which are low discrepancy sequences, are generated within the

input ranges of the scenario parameters, being able to fill the space of scenarios more evenly

than pseudo-random choice (Santiago et al., 2012). Then, some scenarios drawn uniformly

from this set, are simulated to collect their criteria, and are included in the initial training

set for the reduced model building, until a certain number of NG scenarios are retrieved:

indeed, as we progress in the validation of the command law, most scenarios will be G, and

we need examples of both classes in order to build the initial reduced model.

Most algorithms in the remaining of this thesis need some initial NG scenarios in order

to bootstrap their search. In all cases, the required number of NG scenarios is set by the

user, and the smallest possible initial set is built that satisfies this constraint.

Once such an initial set has been retrieved, the first instance of a reduced model can be

learned. The reduced model is then used intensively by the algorithm in lieu of the actual

simulator. At every iteration, some scenarios are selected depending on the task at hand

(see Section 4.5 and 5.2). The real simulator (or the substitution model, see next Section)

is then used on those selected examples, and their status (G or NG) is updated. They are

then added to the training set with their real status, and, before starting next iteration, the

reduced model is built again from this augmented training set.

4.5 Simulation-based Failure Detection

In order to illustrate the framework described in previous Sections, we will now present

our first optimization algorithm Find All Failures dedicated to the direct discovery, in a

very simple use case, of failures of the command law , i.e., input scenario parameters that lead

to unsafe behavior of the autonomous vehicle. This is the first objective of this thesis, but

the main objective remains to identify the borders of the failure region rather than isolated

failure cases (see Chapters 5 and 6).

We will first introduce the use case, then instantiate the substitution model, before intro-

ducing the full optimization loop and presenting our results.

4.5.1 The Tracking Vehicle Use Case

Our first example of a use case is the simple tracking vehicle use case. The EGO car

is following another vehicle in front of it, both are staying on the same lane, as illustrated

in Figure 4.1. The preceding vehicle is scheduled to perform acceleration and deceleration
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cycles during the simulation. The tracking vehicle use case has a dimension of 7, and all

seven input variables of this use case are described in Table 4.1.

Figure 4.1: Tracking vehicle use case where EGO is tracking a preceding vehicle that is

performing acceleration and deceleration cycles on the same lane.

Table 4.1: Description of the input parameters of the tracking vehicle use case.

Input parameters specifications

Name Unit Range/List

Initial velocity of PV* km/h [60, 110]

Acceleration cycle value of PV* m/s2 [1, 3]

Deceleration cycle value of PV* m/s2 [−3, 0]

Acceleration/deceleration cycles time s [0, 5]

Initial inter-vehicle distance m [3.5, 200]

Type of PV* - Car, motorcycle, bus

Type of ground network - 8 types of roads

*PV refers to the Preceding Vehicle in the use case.

During the simulation, the preceding vehicle performs acceleration and deceleration cycles

as described, and the autonomous vehicle response is monitored throughout the scenario using

the simulator outputs. For this tracking vehicle use case, three output variables are taken

into consideration as detailed below. Each of them fits respectively into one of three test

categories linked to the EGO vehicle: EGO position with respect to its environment, EGO

dynamics, and EGO position with respect to other vehicles.

1. Lateral lane decentering distance: it aims at qualifying the lateral position of EGO

in its lane, and calculates how far EGO is from the center of its lane. If the maximum

decentering distance value reached throughout the simulation is higher (respectively

lower) than a fixed threshold (e.g., 0.4015 meters for a road measuring 3.5 meters),

then the criterion is labeled NG, (resp. G).

2. Longitudinal deceleration: this warning qualifies the stress suffered by a passenger

due to a longitudinal deceleration in a straight line, and is defined as the worst percep-

tion among deceleration and jerk effects computed from lookup tables. It ultimately

outputs an integer value that references the amount of passenger stress; 1, 2, 3 and 4

indicate comfort, dynamic, sport and emergency respectively. Because the goal is that
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the passenger always feels comfortable while driving EGO, this criterion returns NG if

the output value is higher or equal than 2, and G otherwise (i.e., equal to 1).

3. Safety time gap: this criterion monitors the distance between EGO and the preceding

vehicle. In France, the threshold of the safety time gap is set by the Highway Code to 2

seconds (Breyer, 2010), below which the behavior of the car is considered to be unsafe.

Therefore, this criterion detects a failure and returns NG if the time gap between EGO

and the preceding vehicle is lower or equal than 2 seconds, and G otherwise.

As discussed, regardless of all other criteria, a single NG criterion qualifies the whole

scenario as NG, but we will always look at the different criteria separately.

4.5.2 Building the Substitution Model

The Design of Experiment (see Section 4.3.2) consists of a total of 19,992 scenarios scat-

tered in the input space parameters, and represents as effectively as possible various areas of

input combinations that can be injected at the start of the simulations. These scenarios are

input to the simulation software and their corresponding outputs are retrieved, building the

training set for the substitution model.

After tweaking the DNN architecture as described in Section 4.3.2, we ended up with a

NN architecture composed of 4 layers of 300, 200, 100 and 3 neurons respectively. The 3 neu-

rons in the output layer correspond to the 3 warnings in the use case defined in Section 4.5.1.

The loss chosen is the mean-squared error suitable for a regression problem. As for the other

hyperparameters, the batch size chosen is 128, the learning rate is set to 0.005, and a Xavier

initialization is chosen. Random search was used at first to detect optimal combinations of

hyperparameters with good accuracies and a stable loss, then a finer grid search is conducted

to identify the hyperparameters that maximize the accuracies obtained. Table 4.2 shows the

accuracies obtained for the respective data sets for some neural network architectures and hy-

perparameters tested. For example, for a Xavier initialization, the global accuracies obtained

are 98.61%, 96.13% and 96.01% for the training set, the validation set (used to choose the

hyper-parameters, namely here the architecture of the network) and the test set respectively,

whereas for a He initialization, we obtain 98.34%, 96.43% and 95.76% respectively. Since the

global accuracies obtained with Xavier and He initializations are approximately similar, we

choose the Xavier initialization where the accuracies are slightly better. Note that we were

able to obtain acceptable test results without the need for regularization.

Furthermore, Figure 4.2 shows the evolution of the mean-squared error (chosen as cost

function for this neural network) during the epochs for different architectures of neural net-

works. We can see that the cost function is quickly stabilized in all cases, with some minor

fluctuations occurring for the bigger networks. Due to this stability, the number of epochs is

fixed to 1000. Thus, since the biggest network achieved the best test accuracy with a good

loss convergence, it is chosen as the surrogate model for this thesis.
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Table 4.2: Accuracies of different neural network architectures and hyperparameters (the first

line being the one chosen for this thesis).

Neural Network Batch Learning Initialization Accuracies (in %)

Architecture Size Rate Method Training Validation Test

300/200/100 128 0.005 Xavier 98.61 96.13 96.01

200/100/50 128 0.005 Xavier 97.26 95.15 95.41

100/50/25 128 0.005 Xavier 97.33 95.77 95.85

50/25/10 128 0.005 Xavier 96.78 95.61 95.24

300/200/100 64 0.005 Xavier 95.93 94.75 94

300/200/100 256 0.005 Xavier 98.52 96.06 95.61

300/200/100 128 0.001 Xavier 96.75 95.66 95.43

300/200/100 128 0.01 Xavier 99.16 95.29 95.06

300/200/100 128 0.005 He 98.34 96.43 95.76

Figure 4.2: Evolution of the mean-squared error cost during the epochs for different neural

network architectures tested.
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Finally, we notice that 18 million parameters were needed in order to reach such acceptable

accuracies, which reflects the difficulty of this problem. As discussed in the following of this

work, this neural network will be used in lieu of the simulation software whenever a simulation

is needed or mentioned, thus overcoming the current software limitations.

4.5.3 The Find All Failures Algorithm

The Find All Failures algorithm proceeds by repeatedly running an instance of a Find

One Failure optimization algorithm, whose goal is to to identify one NG scenario that lies

as far as possible from the known NG scenarios stored in the dynamic archive.

Simulation
Train reduced 

model: Random 
Forest (RF)

Find One Failure

Archive

Failures in 
criteria

« No Good » 
scenario

Final set to 
be analyzed

« No Good » 
scenario by RF

Start

Stop?End

Returns

Evaluated by

Yes
« Good » 
scenario

No

Yes

Stored into

No

Added to

Figure 4.3: Flowchart of Find All Failures, which repeatedly detects new faulty scenarios

lying as far as possible from the ones from the archive using the embedded Find One Failure

optimization algorithm.

The flowchart in Figure 4.3 illustrates the structure of Find All Failures. First, the
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initial set is built (Section 4.4.2) so as to it contains 30 NG scenarios and around 50 scenarios

in total depending on the seed chosen, and a first Random Forest reduced model is trained

(Section 4.4.1). The optimization algorithm Find One Failure is then launched, using

intensively the Reduced Model to identify one NG scenario (according to the current reduced

model). This scenario is then checked with the actual simulation (here, the substitution

model, see Section 4.3), and is stored into the archive with its true criteria. If it is actually

NG, it is also stored into another archive that will be the result of the algorithm after its

stopping condition is met, and will be thoroughly analyzed (Section 4.5.5).

Obviously, during the first iterations, the accuracy of the reduced model will be limited,

as it is built on very few examples. It is therefore important to check its decision G/NG

with the ground truth. As iterations proceed, the reduced model will become more and more

precise. This is further illustrated in Figure 4.4 which shows the number of prediction errors

realized by the Random Forest model during the simulations, i.e., the number of scenarios

that were predicted as NG by the Random Forest but turn out to be G when checked by

simulation.

Figure 4.4: Evolution of the number of prediction errors related to the Random Forest model

during the simulations. The stopping condition is reaching the minimal value of 0.15 a

hundred times.

To understand this graph, we can compare it to the identity function y = x. In fact,

each time the Random Forest model makes a wrong prediction, we count it as one occurrence

of prediction error. Thus, the line y = x represents the case where all Random Forest

predictions were wrong when checked by simulation. At the first few iterations, we can

see that the error trend is very similar to that of the identity function, meaning that the

number of wrong predictions is significant during the first simulations launched. Then, as

the iterations go by, the overall curve trend evolves in a sub-linear form and distances itself
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from the identity function. Therefore, the Random Forest model is able to correctly predict

NG scenarios throughout the iterations, gaining in accuracy each time scenarios are being

verified by simulation.

Stopping condition The stopping condition of Find All Failures algorithm is based on

the distance of the scenario returned by Find One Failure algorithm with the NG scenarios

in the archive (i.e., the objective function of Find One Failure dobj , see below): as the

scenario space gets populated with NG scenarios, and even though Find One Failure tries

to maximize it, the minimum distance of new NG candidates with archived NG scenarios

globally decreases along the iterations. When it goes below some prescribed value for some

prescribed number of time (in order to account for the numerical oscillations, see Section

4.5.5), the stopping condition is triggered. Several stopping conditions have been tried during

this study and are presented, along with post-analysis and evaluation of the solution, in the

next subsection.

A detailed description of Find All Failures can now be given in Algorithm 2.

4.5.4 The Find One Failure Algorithm

The goal of the Find One Failure algorithm is to detect one NG scenario as far as

possible from the known NG scenarios in the archive, using the reduced model to assess the

status G/NG of the scenarios it will consider.

Objective function In order to detect scenarios that lie as far as possible from the already

known NG scenarios from the archive, we need to include in the objective function of the Find

One Failure algorithm some cumulated measure of the distances between the considered

scenario and all those in the archive, and to try maximizing this distance while making sure

that the scenario is NG. Hence, a function that calculates this distance constrained by the NG

condition is developed. It takes a scenario as input, and starts by predicting its criteria using

the reduced model. The biased distance is calculated for each criterion using the following

equations, where n is the dimension of the use case (and of the scenario space).

dNG(x, y) =


√√√√ n∑

i=1

(xi − yi)2, if criterion is NG (4.1)

0, if criterion is G (4.2)

If a criterion returns NG, this biased distance dNG is simply the Euclidean distance

between the normalized input scenario x and some scenario y of the archive that is NG for

that same criterion (Equation (4.1)). Otherwise, this distance equals zero (Equation (4.2)).

Hence, G scenarios are penalized and NG scenarios are favored, since the algorithm will

be pushing to maximize distance dNG. The objective function dobj(x), to be maximized, is

the minimum value of dNG(x, y), for all NG scenarios y in the archive.
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Optimization engine The optimization algorithm used here is CMA-ES, which stands

for Covariance Matrix Adaptation Evolution Strategy, the state-of-the-art of derivative-free

continuous global optimization algorithms (Hansen and Ostermeier, 2001). Beside an ob-

jective function (the dobj function described above), it requires an initial guess, and various

parameters to be tuned e.g., the input bounds, the initial step size and some tolerance (its

stopping criterion). The initial guess is drawn uniformly outside the archive, and its criteria

are predicted by the reduced model. If a starting scenario is G through all its criteria, the

distance computed will be zero, and the algorithm will choose another starting point. That

is why NG scenarios are needed in the archive as mentioned in Section 4.4.2. Subsequently,

the CMA-ES algorithm will perform multiple iterations maximizing dobj , and returns the

best candidate scenario with the value. More precisely, it goes through a cycle of proposing

a scenario, predicting its criteria using the reduced model, and calculating its distance dobj .

Because the distance of the best scenario is not zero, at least one of its criteria reported a

failure and the scenario is NG according to the reduced model.

Algorithm 2: Find All Failures Algorithm

• Initialize the archive (Section 4.4.2)

while NOT stopping condition do

• Pick a random initial scenario x outside of the archive

• Compute the minimum non-zero distance dobj between the inputs of x and the

inputs of the NG archive scenarios y across all 3 criteria using (4.1) and (4.2)

• Launch CMA-ES from this starting point to maximise dobj while having access

to scenarios criteria using the reduced model

• Evaluate the ground truth criteria of the new scenario obtained xnew by

simulation and add it to the archive

• Learn a new Random Forest reduced model using the updated archive as

training set

• Compare the maximum distance dnew obtained to the stopping condition value

end

4.5.5 Results

In this study, the preceding vehicle type is fixed as “car”, and the road type as “normal”

road whose track width measures 3.5 meters. The values of all five remaining inputs range

between their corresponding intervals listed in Table 4.1. Hence, the dimension of the op-

timization problem is reduced from 7 to 5. Furthermore, the initialization of the Random

Forest reduced model (Section 4.4.2) required 30 NG scenarios in the initial training set.

Figure 4.5 shows the evolution of the objective function dobj throughout the algorithm

iterations that successfully returned a NG scenario later evaluated by simulation. The stop-

ping condition was set to 0.15 with count number 100, i.e., the algorithm stopped when the
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best dobj was below 0.15 at least 100 times.

Figure 4.5: Evolution of the distance dobj during the iterations of Find All Failures algo-

rithm that actually resulted in a faulty scenario after evaluation by simulation. The stopping

condition is reaching the minimal value of 0.15 a hundred times.

Numerical oscillation We notice in Figure 4.5 that the decrease of the objective function

is not monotonous, and presents several oscillations. These are high at the beginning of

the evolution, and start to decrease along the iterations. This can be explained due to the

fact that the Random Forest reduced model is trained from only a few tens of scenarios

during the first iterations, which means that its accuracy is initially poor. Plus, for each

NG criterion, the distance function only considers the scenarios from the archive that have

the same NG evaluation for that same criterion, which makes it highly dependent of the

initial scenarios considered and their respective predictions as approximated by the Random

Forest reduced model. Nonetheless, as the iterations go by, the reduced model is fitted into

an ever-expanding set of scenarios with correct predictions by simulation. Therefore, it is

updated continuously and its accuracy hopefully increases along the iterations. That is why

the numerical oscillations tend to decrease throughout the process.

Several values of the stopping condition have been tried out, corresponding to precision

values of 0.3, 0.25, 0.2 and 0.15. Furthermore, in order to account for the numerical oscilla-

tions, the stopping condition was triggered only after the threshold value has been overpassed

several times, e.g. 10, 50, 100, 250 or 500, to make sure that the stopping condition was stably

reached.

Evaluating the failure discovery rate In order to evaluate the quality of the resulting

set of scenarios, it is compared to the NG scenarios of a full grid over the search space. Each
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normalized input is discretized into 10 values, resulting in a total of 100,000 scenarios. These

scenarios are actually simulated wth SCANeR, and their criteria are retrieved. The total

number of NG scenarios found in the grid is 46,722 scenarios. Next, the idea is to take each

NG scenario from the grid, and to calculate its distance with all the NG scenarios of the

final set. If at least one of these distances is less than some fixed precision, it means that

the algorithm was able to predict a NG scenario that is close to that grid scenario at this

precision. The number of such instances can be viewed as a discovery rate up to the given

precision. If the algorithm manages to predict scenarios close to all the grid scenarios within

the precision distance, it has succeeded in exploring the whole search space and detecting all

the failures (at the given precision).

To visualize the evolution of the discovery rates according to the number of simulations

performed during a test, checkpoints were implemented throughout the iterations of Find

All Failures. Each checkpoint takes place after a fixed number of simulations, and reports

the corresponding proportion of the final set obtained. When the algorithm ends, discovery

rates are calculated for each checkpoint according to the final set. These rates are then

plotted against the number of simulations at each checkpoint. Furthermore, in order to

effectively validate this stochastic algorithm, 11 independent runs are conducted for each

stopping condition (varying the random seed, and hence the initial training set of the reduced

model).

The failure discovery rates of the 11 final sets are computed, as well as their mean and

standard deviations. The evolution of the mean discovery rate w.r.t the number of simulations

is plotted on Figure 4.6 together with error bars (twice the standard deviation).

To compare the various stopping conditions, each test example stems from a different

precision value of 0.3, 0.25, 0.2, and 0.15. Plus, we consider that the threshold distance

required to calculate the discovery rate when compared to the grid should be equal to the

corresponding precision of the stopping condition for each test example in this study. As a

matter of fact, the distance value returned by the function represents how far away from the

scenarios archive the new scenario proposed by the algorithm stands. However, since this

distance is decreasing along the iterations until reaching a given precision, then the algorithm

is managing to explore the search space only with respect to this prescribed precision value.

So if we are assimilating the search space as a full grid, then we should calculate the distance

between the NG scenarios introduced by the algorithm and the NG grid scenarios, and

evaluate whether it is less than that same precision distance used by the algorithm as

stopping condition. It is in that way that the discovery rate of the algorithm towards the

grid is assessed.

Hence, we can see in Figure 4.6 that the mean discovery rate is increasing quickly during

the first iterations, and continues to increase more slowly but steadily as the iterations go by,

until reaching values almost equal to 90% and higher for all stopping criteria; it means that

the algorithm succeeds in exploring the input search space. We also notice that the standard

deviation values are the highest during the quick increase, corresponding to maximum values
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Figure 4.6: Mean discovery rates with std. dev. error bars w.r.t. the number of simulations.

Each curve is the result of 11 independent runs. Four stopping conditions are represented:

0.3 (top left), 0.25 (top right), 0.2 (bottom left) and 0.15 (bottom right).

of less than 4% for all test cases, then begin to decrease throughout the iterations due to the

reduced model that is gaining in accuracy.

The main idea to reflect upon, however, is that, because of the slower increase at high

discovery rates, the highest the target discovery rates, the more we need simulations. Plus,

if we compare the number of simulations between all test cases, we notice that the lower the

precision of the stopping condition, the more simulations are needed in order to reach the

same mean discovery rate. For instance, if we look at the algorithm performances in Table

4.3, 721 simulations are required in average for a precision of 0.3 to reach discovery rates

almost equal to 90% and higher, against 1,161, 2,180 and 6,186 for precisions of 0.25, 0.2

and 0.15 respectively. Thus, because the key restriction of our study is to minimize the use

of software simulations, a compromise should be made between attaining the best discovery

rates, refining the search of failures, and calling the simulation software as little as possible

for the aim of finding the maximum amount of failures.

Partial conclusion This section has introduced the first algorithm developed during this

thesis. It improves the coverage of the simulated faulty scenarios and takes part in a series

of algorithms intended to validate the command law of an autonomous vehicle. Its aim is

to detect the maximum number of failures of its system during realistic virtual simulations.

It has been experimentally validated on a tracking vehicle use case. Three criteria have

been taken into consideration to determine whether there is a failure or not: the lateral lane
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Table 4.3: Average algorithm performances on 11 runs for each example of stopping condition.

Stopping Average algorithm performances

condition Number Number Mean Maximum

minimal of of Time discovery standard

distance iterations simulations rate deviation

0.3 1,968 721 2h49 94.99% 3.58%

0.25 3,113 1,161 5h37 93.62% 3.67%

0.2 5,835 2,180 8h41 91.48% 3.43%

0.15 16,621 6,186 33h23 89.22% 3.89%

decentering distance, the longitudinal deceleration and the safety time gap. The proposed

algorithm has been designed to explore the input search space of the use case scenarios

in order to detect the faulty ones. It iterates until reaching its stopping condition, which

corresponds to a given precision for the distance. Because the search space is bounded and

continuous, the success of the algorithm is measured by how well it managed to scan the

search space effectively: this is achieved by comparing it to scenarios scattered on a full grid.

The results show that the algorithm manages to attain high discovery rates. For instance,

6,186 simulations are required in average to reach a discovery rate of almost 90% with a

precision of 0.15. The scenarios obtained are evaluated whether they are close within a

maximal distance of 0.15 from each scenario of a full grid of 100,000 scenarios. Thus, the

Find All Failures algorithm is able to reduce the number of simulations needed to explore

the input search space and detect directly faulty scenarios by comparison to the full grid

which requires 100,000 simulations. Nonetheless, a compromise arises between reaching very

high rates, which translates into detecting most failures accurately, and the constraint to

launch as few software simulations as possible. It is worth noticing that, at the time this

work was achieved, SCANeR calculations were very limited. As a consequence, this study

(and the ADValue project) could only be based on this first use case. In particular, we were

unable to test our approach on use cases of higher complexity. Nevertheless, all algorithms

and models presented in this thesis are sent to the ADValue project, where they will be

intensively used on future and more sophisticated use cases.

In the next Chapter, we will introduce three other algorithms that have been developed

to tackle the second objective of this thesis: detect the border of the failure region. Since

the inputs characterizing a use case can be continuous, we can visualize the input space as

being divided into faulty and non-faulty zones rather than just being composed of scattered

punctual scenarios. The aim of these algorithms will then be to detect scenarios that are

situated near this border in order to locate it more easily. In fact, as the validation project

advances, it is reasonable to assume that the number of NG scenarios, i.e. the number of

failures generated by the autonomous system, should decrease until there is none at the

project conclusion, marking the end of the validation for a given use case. Therefore, this

first algorithm could not be enough to cover all these stages effectively, especially near the
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project end, as it only operates on NG scenarios all the time, which then will become rarer

to identify. This is where the idea of the ADValue project comes to light, which is to develop

multiple algorithms that aid one another in the validation process through all the different

project stages. If one algorithm fails to deliver efficiently at the next stage for example, other

algorithms will try to overcome its limitations to guarantee a complete validation process.

After all, the Find One Failure can also become an initialization process to the remaining

algorithms, meaning it can detect certain NG scenarios initially for the other algorithms to

function well.

Plus, a crucial goal of this thesis is to minimize the number of actual simulations needed,

which is more efficient for industrial project monitoring purposes. Thus, a reduced model

based on a Random Forest is fitted into a small initial set and used by Find All Failures

as a proxy to detect faulty scenarios during the optimization. The simulation software (here

represented by the substitution model), only evaluates a posteriori the optimal scenarios for

the distance objective that have been predicted faulty by the reduced model. Both models

will also be used within the optimization loop of the next three algorithms designed for border

detection, which constitutes the second objective of this thesis.



Chapter 5

Border Detection

In this chapter, we will describe three algorithms that have been developed to help detect-

ing the border between faulty and non-faulty zones in the use case input space, the second

objective of this thesis. The rationale for this objective is the fact that some physical use case

inputs, such as velocities and accelerations, are of continuous nature rather than a discrete

list of possible value entries. The input space that characterizes the use case can then be

seen as a partition into faulty and non-faulty areas, rather than just isolated scenarios in the

input search space. Furthermore, in order to move from a faulty area to another non-faulty

one, we will naturally have to cross the border that exists between both areas. Thus, if we

can detect this border, then we can use it to directly identify new scenarios as G or NG

by merely comparing their inputs to the border, after describing it more directly, the third

objective of this thesis, to be addressed in next Chapter 6.

The first two algorithms, named respectively “Find Border Max” and “Find Border

Min”, approach the problem by seeking to identify pairs of G/NG scenarios which are close

to one another in the input space: the border between a faulty and a non-faulty area should

lie in between such pairs of close scenarios. The slight difference between both algorithms lies

in the way they approach the border from an archive containing both G and NG points. The

third algorithm, named “Find Border Points”, is very similar to the Find All Failures

algorithm presented in Section 4.5.3: It seeks to directly identify scenarios that lie “on” the

border, or at least as close as possible to it, using an embedded optimization algorithm based

on CMA-ES, Find One Border Point.

In any case, all three algorithms also have to follow the same industrial constraints than

the algorithm for failures exploration of the previous chapter: using as little as possible the

simulation software, replacing it with some reduced model updated on the fly. We will show

their respective methodologies in detail before presenting the results obtained with each one

of them, as well as the metrics used in order to evaluate and compare their performances.

Precision All three algorithms are required to respect a common minimal precision distance

value in the search space. The distances between the new scenarios proposed, as well as
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between these scenarios and all the archive of evaluated scenarios, should not exceed this

precision value. This condition is defined in order to reduce as much as possible running

simulations of scenarios that are too close, or even almost coincide, in the input parameters

space.

One criterion at a time Because we have a multi-criteria use case, each criterion will

define its own border depending on the G and NG areas for this particular criterion. Thus,

the algorithms tackle each criterion one at a time, allowing us to evaluate the difference in

detecting the border depending on the criterion considered. However, in order not to use pre-

cious actual computations in the real operational context, and because a single computation

computes all three criteria anyway, the three criteria are processed in parallel, sharing one

single archive used as training set for the reduced model. The results are of course stored

separately.

Stopping Conditions Choosing a stopping condition for this study turned out to be more

challenging than for the NG detection algorithm. In fact, the aim is to define a stopping

condition that is shared between all three border detection algorithms in order to be able

to effectively compare their performances. However, their objectives in detecting border

scenarios are very different (detecting on-the-border scenarios vs identifying G/NG pairs),

which complicates the task of setting one shared stopping condition. Therefore, we finally

decided that the number of simulations (the number of neural network calls in this work)

should be used to define the stopping condition: this is compatible with the industrial project

constraints that aim at limiting the number of simulations in order to minimize the computing

power used. This will allow a fair comparison of all results. In section 5.3 for instance, two

series of experiments will be compared, using respectively 1,000 and 3,000 simulations.

We will now introduce two types of algorithms for border detection. The first type handles

pairs of scenarios, trying to identify G/NG pairs that are close enough to ensure that only one

simple border between faulty and non-faulty regions is located between them. The second

type directly targets scenarios that lie on the boundary, up to a given threshold on the criteria.

5.1 Find Border Pairs

This Section introduces two algorithms, named Find Border Max and Find Border

Min, that both try to identify pairs of scenarios such as one is G and the other one is NG,

and the distance between them is small enough so that we can assume that a simple border

(variety of dimension n − 1 if n is the dimension of the scenario space) between faulty and

non-faulty regions lies between them. Both algorithms share the same global methodology,

that resembles that of Find All Failures, with some differences due to the presence of pairs

of scenarios as solutions.
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5.1.1 Methodology

This flowchart of both algorithms is illustrated in Figure 5.1. First, the archive is initial-

ized with an initial set similarly to the process described in Section 4.4.2. A fixed number

of NG is defined, and we randomly draw scenarios and add them to the initial set until that

number is achieved. In this chapter, we considered initialisation sets that follow this method-

ology with 50, 100 and 500 NG scenarios. With the current command law, the whole initial

sets would amount to approximately twice the number of NG scenarios. As the command

law improves, it will be gradually more and more difficult to find NG scenarios through ran-

dom search. An alternative will be to use an optimization tool, like CMA-ES, to identify

the prescribed number of NG scenarios - though at a cost of several additional evaluations.

Furthermore, it will be necessary to discard some G scenarios to keep the initial set balanced.

A first Random Forest reduced model is then trained (Section 4.4.1) from this initial

training set. Within this archive, G and NG scenarios are separated. They are then used to

discover new G/NG pairs with a specific procedure for each algorithm, as will be described

below. Both procedures make an intensive use of the Random Forest reduced model. This

pair of G/NG scenarios (according to the reduced model) is first checked to see if it is further

away than the precision distance dmin from existing solutions in the solution archive, in which

case it is evaluated with the actual simulation (here, the substitution model, see Section 4.3),

and is stored into the archive with its true criteria. If it is confirmed by simulation that it

is actually a G/NG pair, it is also stored into another archive, the result archive, that will

be the result of the algorithm after its stopping condition is met, and will be thoroughly

analyzed (Section 5.3). Such iteration is done for all three criteria, sharing the same archive

used to train the reduced model, as explained at the beginning of this Chapter.

We will now detail for both algorithms the way they identify new G/NG pairs from the

archive. First of all, we partition the archive in two sets, one of G scenarios and one of NG

scenarios, and we compute all distances between G/NG pairs.

5.1.2 The Find Border Max Algorithm

We first identify the G/NG pair of scenarios (XG,XNG) that are the farthest apart

from each other in the scenario space (hence the name Find Border Max). These two

scenarios are the initial starting points of the procedure. We then consider Nsce linearly

spread scenarios on the [XG,XNG] segment, i.e., defined by Nsce = ||XG−XNG||
dmin

, where dmin
refers to the minimal precision distance value, using the following equation:

Xp = XG +
p+ 1

Nsce + 1
(XNG −XG), p ∈ [0, Nsce − 1] (5.1)

Because (XG,XNG) is a G/NG pair, at least one of the (Xp,Xp+1) pairs is also a G/NG

pair. We now consider all such pairs on the [XG,XNG] segment as candidate pairs for the

Find Border Max algorithm. However, remember that these scenarios have been qualified

as G or NG using the reduced model. Because we know that the reduced model might be
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Figure 5.1: Flowchart describing the framework of the G/NG pairs detection algorithms

Find Border Max and Find Border Min while using the simulation software as little as

possible.

poorly accurate, especially during the first iterations of Find Border Max, when it was

built using very small training sets, we need to check their ground truth status with the

simulator (substitution model here). But first, the distance of all these G/NG pairs with all

pairs from the result archive is computed, and the pairs that are closer than dmin from one

saved pair are discarded. The remaining pairs are fed to the simulation (substitution model).

All these new pairs are then added to the archive, and if they are confirmed as G/NG by the

simulation, are added to the result archive for later analysis.

The importance of the initial set (first archive) is crucial here: the exploration of the

scenario space by Find Border Max will only take place in the convex hull of this initial

set. Several initial conditions have been tried during this study, and are presented in the
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Section 5.3, where the results of all border detection algorithms will be compared.

Algorithm 3 summarizes the Find Border Max Algorithm.

Algorithm 3: Find Border Max

• Initialize the archive (Section 4.4.2)

while NOT stopping condition do

• Retrieve the maximally separated G/NG pair of scenarios from the archive

• Generate the scenarios on this G/NG segment according to Equation (5.1)

• Identify all G/NG pairs on the segment according to reduced model

• Discard those that are closer than dmin from a pair in the result archive

• Compute the real criteria of the other G/NG pairs, add them to the archive

• Store in the result archive all confirmed G/NG pairs, criterion per criterion

• Train the Random Forest model anew using the archive as training data

end

5.1.3 The Find Border Min Algorithm

From the same starting point than Find Border Max, the Find Border Min Algorithm

proceeds differently to identify new G/NG candidate pairs from the archive.

We now retrieve from the archive the G/NG pair with the smallest distance between them

(hence the name). We proceed by dichotomy from this initial pair, evaluating the status of

the middle point (using the reduced model), and keeping the half-interval that has G/NG

endpoints, until reaching the precision dmin: The dichotomy stops when the length of the

interval is less than 2 ∗ dmin (but still larger than dmin). When the dichotomy ends, the

distance of the current G/NG pair with all pairs from the result archive is computed, and

the pair is discarded if closer than dmin from one saved pair. Otherwise, it is input to the

simulation (substitution model). The new pair is then added to the archive in that case, and

added to the result archive for later analysis if it is confirmed as G/NG.

Like Find Border Max, Find Border Min only explores the convex hull of the initial

set, and care must be taken when building it, as already suggested, and as will be demon-

strated in Section 5.3.

Algorithm 4 summarizes the Find Border Min Algorithm.

5.2 Find Border Scenarios

5.2.1 The Find Border Points Algorithm

The general methodology of this third border detection algorithm is very similar to that

of the Find All Failures algorithm introduced in Section 4.5.3: it proceeds by repeatedly
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Algorithm 4: Find Border Min

• Initialize the archive (Section 4.4.2)

while NOT stopping condition do

• Retrieve the G/NG pair of scenarios with minimum distance between them

• Launch the dichotomy procedure until finding a G/NG pair with distance close

to dmin
• Evaluate the real status of this last pair, and add it to the archive

• If confirmed G/NG pair, add it to the result archive, criterion per criterion

• Train anew a Random Forest model using the archive as training data

end

running an instance of a Find One Border Point optimization algorithm, whose goal is to

identify one scenario that exactly lies on the boundary.

The general structure of Find Border Points is hence that of Figure 4.3 where Find

One Failure is replaced by Find One Border Point as the embedded optimization algo-

rithm (bottom left box). Find One Border Point returns a ”border scenario” as evaluated

by the reduced Random Forest model, while respecting the minimal precision distance dmin
with the archive scenarios, and the generated scenario is evaluated by the simulator (i.e., the

substitution model for the time being). If the real criteria confirm that this scenario actually

lies on the border, it is stored in the final set to be analyzed, and in any case, it is added to

the archive, that is the training set to update the reduced model at next iteration. The main

difference with Find All Failures lies of course in the objective function of the embedded

Find One Border Point, that we will detail now.

Identifying the Border As said, the goal is to detect scenarios which are on the border,

and the border is defined by threshold values of all output criteria. The objective function

should hence take into account the distance to these thresholds in the output space. The

simplest possible objective function is hence, for a given criterion i:

gapi(x) =| yi − ti | (5.2)

where yi is the i-th warning criterion of x (be it evaluated by the Random Forest reduced

model of the substitution model), and ti is the corresponding threshold for that criterion.

Therefore, the goal of Find One Border Point should be to minimize the gap between

the criterion evaluation and its defined threshold, which should ultimately result, if the

optimization is performing well, in scenarios whose criterion is very close to its threshold, i.e.

scenarios that are on the border related to that specific criterion.

However, because we cannot wait until hitting exactly the boundary, especially due to

the use of the reduced model, we need to extend the concept of boundary to a region of

the scenario space with non-zero measure. We hence define a range around every threshold,
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that we call border boundary, and consider that a scenario lies ”on” the boundary for a

given criterion if the gap with the corresponding threshold (Equation 5.2) falls within this

range. The border boundaries have been fixed to a value of 10% around the threshold for

the continuous output criteria. As for the discrete longitudinal deceleration variable, it is

more challenging to define a border boundary, since this output criterion outputs G iff it is

equal to 1, and NG in all other cases ([2,4]). Taking the whole interval [1, 2] as the border

boundary would result in all the G scenarios being considered as on the border. We hence

decided to take into consideration the interval [1.5, 2.5] as the border boundary instead, so

as to only take the neural network predictions close to the threshold value equal to 2. The

values of these border boundaries are resumed in Table 5.1.

Denoting the border boundaries of criterion i as [lbi, ubi], the objective function, to be

minimized (with minimum 0 if within the bounds of the border boundaries), becomes for

criterion i:

obji = min{(lbi − yi)+, (yi − ubi)+} (5.3)

It is worth noticing that, contrary to the Find All Failures algorithm, the objective

function of the Find One Border Point optimization algorithm is computed w.r.t. the

outputs of the simulation, and not its inputs (the scenario parameters). Hence the only

coupling between successive runs of Find One Border Point within the main Find Border

Points loop is achieved through the archive and, consequently, through the reduced model,

that takes into account all identified points in its training set.

The Find One Border Point Algorithm Like Find One Failure (Section 4.5.4), Find

One Border Point uses CMA-ES to optimize its objective function, i.e., for the chosen

criterion, Equation (5.3) where criterion yi is evaluated by the reduced model. As for Find

One Failure, all parameters of CMA-ES should be carefully tuned. However, the most

crucial one here is its starting point, i.e., an initial scenario randomly drawn outside the

archive of evaluated scenarios.

Indeed, we want to use CMA-ES here to find multiple scenarios on the border, spread on

the whole use case input space. In particular, we want to avoid always detecting the same

scenarios which represent global optimums for the objective function, or at least those local

optima with large basin of attraction. A possible approach could have been to penalize the

objective function with the distance to the already discovered scenarios on the boundary, as

was done when designing the objective function of Find One Failure (see Section 4.5.4).

However, the optima of such penalized fitness function would have been trade-offs between

both goals: minimize the gap with the border (Equation 5.2) and maximize the distance to

previously discovered scenarios on the border. Another approach was chosen: use CMA-ES

as a local optimization algorithm by setting its initial step size to a very small value = 0.01,

and thus identify the scenario on the border which is the closest to the starting scenario,

and spread these starting scenarios uniformly over the scenario space. This value was fixed

after considering many values and evaluating the optimization process if it performs well
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in detecting close border scenarios. Furthermore, if the optimal scenario returned by Find

One Failure is too close to existing scenarios in the archive (less than dmin), it is simply

discarded, and no simulation occurs during this iteration.

Another of CMA-ES parameters is the tolerance, that is used as a stopping criterion,

and decides on the required precision of the objective function. However, every criterion

has its own unique type and range, which should be taken into consideration if we want to

improve the precision for the borders of all criteria. For instance, in the simple use case

under study here (Section 4.5.1), the longitudinal deceleration is a discrete state defined by

an integer between 1 and 4, whereas the safety time gap is a variable in seconds defined by a

positive real number. Therefore, the tolerance is tuned w.r.t the corresponding criterion on

which the objective function is defined for the optimization algorithm. For each criterion, we

decided that the tolerance should allow a precision of approximately 10% of the gap between

the threshold and the upper or lower bounds, to make sure that detecting a scenario within

border boundaries resists to small changes in the optimization. For instance, for the safety

time gap with border boundary of 0.2, it is equal to 0.02. However, we should also take into

consideration that this value has to be also normalized according to the normalization process

across the different outputs to obtain a fair model across criteria. Thus, the final tolerance

values injected to CMA-ES for each criterion in this work are found in Table 5.1.

Furthermore, an optional parameter in CMA-ES triggers a number of restarts of the

optimization process with the same initial scenario as starting point. After completing the

requested number of restarts, CMA-ES outputs the scenario with the best results out of all

restarts. This parameter increases the probability of the optimization to perform well and

reach a border close to the initial scenario. It has been set to 2 in this work.

We can now give a more detailed overview of Find Border Points, in Algorithm 5.

Table 5.1: Output criteria border boundaries and tolerances for Find Border Points.

Output criterion Type Threshold Border Boundaries Tolerance

Lateral lane decentering distance Continuous 0.4015 [0.36, 0.44] 0.0025

Longitudinal deceleration Discrete 2 [1.5, 2.5] 0.01

Safety time gap Continuous 2 [1.8, 2.2] 0.0025

5.3 Experimental Results

Goal of Experiments The goal here is to compare the three algorithms defined in previous

Sections 5.1 and 5.2 along two main directions: the computational cost induced by using one

or the other to identify scenarios on the border of the failure region, insofar that this is an

imposed restriction from the project specifications, and, more importantly, the global quality

of the scenarios that are identified by each algorithm, keeping in mind that our ultimate goal

will be to precisely identify the border (see Chapter 6).
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Algorithm 5: Find Border Points

• Initialize the archive (Section 4.4.2)

while NOT stopping condition do

• Pick a random initial scenario outside of the archive

• Run Find One Border Point algorithm starting from this initial scenario to

minimize the gap using the Random Forest reduced model

• If the returned solution is at more than dmin from all points of the archive

• Evaluate its true criteria using the simulation, and add it to the archive

• If this new scenario really is on the border, add it to the result archive,

criterion per criterion

• Learn a new Random Forest reduced model using the updated archive as

training set

end

The main hyperparameter to be varied to tune the three algorithms is the initial set used

to seed both border pair detection algorithms Find Border Max and Find Border Min,

as its influence is expected to be crucial, defining the region where pairs can be identified

(note that this initial set is not expected to have much influence on the results of the Find

Border Points algorithm).

5.3.1 Experimental Conditions

The Use Case The same “Tracking vehicle” use case than in Section 4.5.1 was used here,

and as in Section 4.1, the dimension of the optimization problem is reduced from 7 to 5: both

input variables “preceding vehicle type” and “road type” are fixed to “car” and “normal road”

respectively. The values of the five remaining inputs range between their corresponding

intervals listed in Table 4.1. There are the same three output criteria linked to the EGO

vehicle: the lateral lane decentering distance, the longitudinal deceleration state, and the

safety time gap

The Stopping Condition Choosing a stopping condition for this study turned out to

be more challenging than for the Find All Failures algorithm. In fact, the aim is to

define a stopping condition that is shared between all three border detection algorithms,

in order to be able to effectively compare their performances. However, their objectives

for detecting border scenarios (identifying G/NG couples or on-the-border scenarios) differ,

which complicates the task of setting one shared stopping condition. Therefore, we finally

decided that the number of simulations (i.e., the number of calls to the substitution model

in this manuscript) should be the only stopping condition: it also matches the industrial

project objectives and constraints on the number of simulations allowed in order to minimize

computing consumption. A first stopping condition of 1,000 simulations was imposed, which
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is in par with the number of simulations that can be restricted by the industrial project,

and a series of comparative experiments of the three algorithms was launched in this context

and its results are detailed in Sections 5.3.2 and 5.3.3. Another series of experiments with a

stopping condition of 3,000 simulations was investigated too, in order to study if the previous

findings still hold for a much longer computing budget, and its results are briefly presented

in Sections 5.3.4 and 5.3.5.

The initial sets First of all, it is clear that the results of Find Border Points in its current

version depend only marginally on the initial set when it comes to evaluate the quality of the

results, and this algorithm will be studied for a single initial set for the quantitative results

(i.e. time needed and number of scenarios obtained).

Because both Find Border Max and Find Border Min algorithms look for pairs of

G/NG scenarios, even if using different ways of exploring the scenario space from the initial

set, this initial set should contain approximately the same number of G and NG scenarios.

Furthermore, the complete process of the command law validation iterates over the steps

described in this thesis while gradually modifying the command law to decrease its failure

zone in the scenario space. It is hence hoped that less and less NG scenarios will exist as

the process goes on – even though only the data for one single step of this overall process

(i.e., one single instance of command law) was available at the time these experiments were

made. It was hence decided to use the number of NG scenarios it contains as a kind of

measure of complexity of the initial sets used in the experiments, knowing that enough G

scenarios will always be easier to gather. Three such complexities have hence been launched,

with initial distribution sets containing 50, 100 and 500 NG scenarios for each algorithm,

with approximately the same number of G scenarios drawn according to the current version

of the command law. Furthermore, because we know that both Find Border Max and

Find Border Min algorithms only search in the convex hull of the initial set, and because

the dimension of the use case allowed it here, a fourth initial set containing all corners of

the scenario space was added to the experiments – while being impractical with realistic

dimensions of the scenario space.

Finally, as all three algorithms are stochastic (and in particular for Find Border Max

and Find Border Min, the choice of the initial set), for each condition on the initial set

(i.e., number of NG scenarios, of corners), in order to test the statistical validity of our

findings, all results report means and standard deviations (vertical bars around the means)

over 11 independent runs, i.e., in which different random seeds of the pseudo-random number

generator were used, including for the choice of the initial sets when it matters.

Performances Measures All experiments are made on the Titanic cluster maintained by

INRIA, by using the SLURM batch scheduler, which is lightweight and efficient in dispatching

jobs on the various tens of nodes of the cluster, with around 48 CPU threads and 12 GB of

RAM each.
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The performances measures include quantitative results, such as the time needed by each

algorithm to accomplish 1,000 and 3,000 simulations, and the number of pairs or border

scenarios generated, as well as qualitative results to assess if the scenarios obtained are able

to effectively detect the border in the search space. Besides, the accuracy of the Random

Forest reduced model has also been monitored, as in Section 4.5.3, witnessing the progress

of the process.

5.3.2 Quantitative Results – 1 000 simulations

Computational Cost
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Figure 5.2: Average time (hours) and standard deviations (vertical bars) spent by Find

Border Max to reach 1,000 simulations. From left to right, initial sets containing 50, 100

and 500 NG scenarios.

Figure 5.2 shows the time evolution (in hours) for the initial distributions sets containing

50, 100 and 500 NG scenarios. Find Border Max needs less than one hour to complete

1,000 simulations for all initial circumstances, despite demonstrating a super-linear behavior.

We can also notice that the increase of number of scenarios from 50 to 100 in the initial set

speeds up the completion of the algorithm, while no significant difference is observed when

going from 100 to 500. Indeed, it introduces as many scenarios as possible between the widest

G/NG pairs, all at once while respecting the minimal precision distance dmin: Find Border

Max algorithm introduces new scenarios proportionally to the maximum G/NG distance

encountered in the current archive. Therefore, the larger the initial G/NG distance at each

iteration, the more chances of detecting a border by the reduced model, increasing in turn

the number of scenarios to be simulated. Hence, this number of simulations per iterations

increases with the size of the initial set, as this will provide G/NG pairs with higher distances,

hence opening more opportunities for the algorithm to propose new scenarios.

This is confirmed by Figure 5.3, that similarly presents the time spent by Find Border

Max to reach the 1000 simulations when starting from the initial set containing all 32 corners

of the scenario space. This experiment is the fastest among all initial sets experienced with
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to complete 1,000 simulations, as could be expected.
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Figure 5.3: Average time (hours) and standard deviations (vertical bars) spent by Find

Border Max to reach 1,000 simulations for the initial set made of all 32 corners of the

scenario space.
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Figure 5.4: Average time (hours) and standard deviations (vertical bars) spent by Find

Border Min to reach 1,000 simulations. From left to right, initial sets containing 50, 100

and 500 NG scenarios.

The behavior of Find Border Min algorithm is clearly different, as can be seen on Fig-

ure 5.4: While Find Border Max needs less than one hour in all cases, Find Border Min

needs 14 hours in average with an initial set containing 50 initial NG scenarios, with rather

large standard deviations, increasing a lot with the number of simulations. Furthermore, the

time to 1000 simulations decreases the more we expand the initial set: an average of 6 and 2

hours respectively for initial sets containing 100 and 500 initial NG scenarios. All curves are

also super-linear w.r.t. the number of simulations.

This difference in running time can be explained by the intrinsic difference between both

algorithms: As opposed to Find Border Max that introduces many scenarios at each itera-
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tion, Find Border Min proposes a single scenario for each output criterion at each iteration.

Hence, it will need more iterations (and time) to achieve a fixed number of simulations than

Find Border Max. Furthermore, if the single scenario proposed at each iteration does not

respect the minimal precision distance dmin, the algorithm will re-iterate and find a new pair

of scenarios, which will increase even more the number of iterations needed.

This is confirmed more clearly by looking at the overall number of iterations needed for

both algorithms, as visualized in Figures 5.5 and 5.6.
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Figure 5.5: Average number of iterations (and standard deviations) needed by Find Border

Max to reach 1,000 simulations. From left to right, 50, 100 and 500 NG scenarios.
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Figure 5.6: Average number of iterations (and standard deviations) needed by Find Border

Min to reach 1,000 simulations. From left to right, 50, 100 and 500 NG scenarios.

These two figures also exhibit super-linear behavior, demonstrating the direct link between

the number of iterations and the average computing time. Additionally, the number of

iterations needed by the Find Border Min is almost ten times higher than the one for

Find Border Max for all initial sets, which further reflects the disparity in choosing the

maximum or the minimum distance between the G/NG scenarios and the consequences of

this choice.

Moreover, we also ran Find Border Min with the corners initial set to see if it also
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Figure 5.7: Average amount of time in hours (left) and number of iterations (right) spent

by Find Border Min to reach 1,000 simulations with vertical error bars equal to twice the

standard deviation values. Each curve is the result of 11 runs with the corners of the use

case input space as initial set.

impacts its performance. Figure 5.7 shows both the average amount of time and number

of iterations which were needed to accomplish a thousand simulations. Here, the algorithm

performed nearly 100,000 iterations in more than 70 hours before reaching 1,000 simulations,

while Find Border Max achieved that same goal in approximately 10 minutes! Therefore,

the initial sets greatly impact the time performance of both algorithms, whether it contains

uniform samples of G/NG scenarios or the corners of the input search space. Later on, we will

analyse the quality of the results to better assess their value while taking into consideration

the time they each had to consume to reach their common goal.

Finally, the third algorithm Find Border Points uses CMA-ES to directly propose

scenarios “on” the border using the border boundaries defined for each output criterion as

detailed in Table 5.1. Since it depends only marginally on the initial set, the quantitative

results are only shown for the initial set containing 100 NG scenarios. Figure 5.8 shows the

time consumed by the algorithm to attain 1,000 simulations.

We can see in Figure 5.8 that the time evolution curve is rather linear this time instead of

being super-linear like the curves illustrated by the Find Border Max and Find Border

Min algorithms, taking approximately 12 hours to complete 1,000 simulations. This linear

aspect of this curve is directly linked to the time consumed by the CMA-ES algorithm itself,

with the same precision tolerance and number of results set for all iterations. CMA-ES should

then take approximately the same amount of time across the number of simulations. This

explanation becomes clearer when we observe the variation of the number of iterations w.r.t.

the number of simulations in Figure 5.9.

Here, the algorithm Find Border Points needs around 400 iterations to successfully

complete 1,000 simulations (knowing that each iteration grants the algorithm the possibility

to look for a scenario “on” the border for each output criterion of all three separately). We

can also observe the same linear aspect as seen in Figure 5.8, as the optimization process
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Figure 5.8: Average time (hours) and standard deviations (vertical bars) spent by Find

Border Points to reach 1,000 simulations for the initial set containing 100 NG scenarios.
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Figure 5.9: Average number of iterations and standard deviations (vertical bars) spent by

Find Border Points to reach 1,000 simulations for the initial set containing 100 NG sce-

narios.

takes the same amount of time in average. The other initial sets also display this linear curve

obtained, and are not presented here.

Up to now, we compared the time needed for each algorithm to reach the same amount

of simulations. On one hand, both Find Border Max and Find Border Min algorithms

have a super-linear complexity with respect to the number of simulations, but Find Border

Max is by far the fastest to complete a thousand simulations, whatever the complexity of

the initial set while Find Border Min can take up to ten times longer. But in any case,
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the complexity of the initial set greatly impacts both algorithms. On the other hand, Find

Border Points functions differently as its runtime shows instead a linear increase with

respect to the number of simulations.

Reduced model accuracy

Before evaluating the number of solutions generated by the three border algorithms, let

us take a look at the way the reduced Random Forest model should gradually improve its

accuracy along the process.

Figure 5.10 shows the prediction error rate throughout 1,000 simulations for the three

border detection algorithms based on a single run on the initial set containing 100 NG sce-

narios. It is the ratio of the number of times the Random Forest model gave wrong predictions

resulting in false G/NG pairs or off -the-border scenarios, to the total number of simulations

consumed (which is 1,000 here).

Figure 5.10: Evolution of the prediction error rate related to the Random Forest model based

on the initial set containing 100 NG scenarios during 1,000 simulations for the three border

detection algorithms.

Similar to Figure 4.4, we compare the curves to the identity function, which corresponds

to the worst case of having all Random Forest predictions wrong. We can see that all three

border detection curves have a rather sub-linear form throughout the simulations. Find

Border Min has the best evolution with the least prediction error rates obtained (18.6%

at 1,000 simulations), followed by Find Border Points (26.3% at 1,000 simulations), and

finally Find Border Max (39% at 1,000 simulations).

Number of Identified Scenarios

Let us now take a look at the number of solutions found by the three border algorithms,

i.e., the number of G/NG pairs detected by Find Border Max and Find Border Min,
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and the number of scenarios “on” the border identified by Find Border Points.

Let us begin with Find Border Max. Figure 5.11 shows the variation of the number

of G/NG couples of scenarios detected with respect to the number of simulations. Each

graph represents the run of the algorithm for a given initial distribution between the initial

sets already seen so far: sets containing 50, 100 and 500 NG scenarios and the input space

corners set. Plus, we can visualize the variation of the couples depending on the border for

each of the three output criteria of this use case.
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Figure 5.11: Variation of the number of G/NG scenario couples detected by Find Border

Max for each output criterion throughout the simulations. Each curve is the result of 11

runs with different initial sets containing 50 (top left), 100 (top right) and 500 (bottom left)

initial NG scenarios, as well as consisting of the input space corners (bottom right).

We notice that the algorithm manages to detect a different number of couples depending

on the output criterion border. It identifies between 200 and 300 couples for the safety time

gap warning, between 100 and 150 couples for the longitudinal deceleration warning, and

less than 50 couples for the lateral lane decentering distance warning. This can indicate a

different border shape for each output warning as the algorithm is conceived to detect couples
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in a equal manner among criteria. Plus, if we look at the input space corners case, we can see

that the algorithm caught the least number of G/NG couples when compared to the other

initial set, despite being the fastest one to achieve 1,000 simulations as seen in Figure 5.3.

This can be explained due to the fact that the algorithm proposes multiple new scenarios

at once at each iteration because of the biggest maximum distance calculated between the

corners. However, the reduced model is still gaining in accuracy during the first iterations as

seen in Figure 5.10; a lot of these scenarios proposed initially turned out to be wrong couples

when launched by the simulator.

Next, we visualize in Figure 5.12 the variation of the number of G/NG couples of scenarios

detected throughout the 1,000 simulations by Find Border Min for each output criterion

and for the same initial distribution sets as seen before.
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Figure 5.12: Variation of the number of G/NG scenario couples detected by Find Border

Min for each output criterion throughout the simulations. Each curve is the result of 11

runs with different initial sets containing 50 (top left), 100 (top right) and 500 (bottom left)

initial NG scenarios, as well as consisting of the input space corners (bottom right).

Here, the numbers of pairs detected by the Find Border Min algorithm is much higher
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than the numbers achieved by Find Border Max. It managed to detect thousands of couples

as opposed to a few hundreds identified by the Find Border Max algorithm. For example,

the safety time gap criterion spawned between 3,500 and 5,500 couples, while the longitudinal

deceleration and lateral lane decentering distance criteria generated between nearly 3,000 and

4,000, and between 2,000 and 3,000 couples respectively. These numbers add up to more than

ten times the amounts gathered by the Find Border Max algorithm. They also reflect the

reasons why Find Border Min needs ten times more time to complete the same number of

simulations. In fact, these numbers demonstrate that Find Border Min detects new pairs

among existing scenarios in the archive, i.e., without the need to add new scenarios. Because

it is focused on identifying the minimum distance between all existing G/NG scenarios in the

archive, it manages to use the existing resources found in the archive to detect more couples.

Furthermore, in the case where the initial set is made of the input space corners, the number

of discovered pairs is approximately the same than for the other initial sets, while taking

much more time to reach the stopping condition: The dichotomy process takes much more

time to reach the dmin threshold when the distances available between G/NG scenarios are

at their maximum values. The evaluation of the results quality will reveal more of the gains

produced during the time spent by Find Border Min when starting from all these different

initial conditions.

Last of all, Figure 5.13 shows the variation of the number of scenarios detected “on” the

border throughout the 1,000 simulations by Find Border Points for each output criterion

and for the same initial distribution set of 100 NG scenarios as seen before.
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Figure 5.13: Number of scenarios (and standard deviations) detected “on” the border by

Find Border Points for each output criterion throughout the simulations, for the initial

set containing 100 NG scenarios.

We can observe that the algorithm was able to detect scenarios “on” the border in hun-

dreds, approximately 400, 350 and 110 scenarios were identified for the lateral lane decen-
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tering distance, safety time gap and longitudinal deceleration criteria respectively. However,

the most noticeable aspect is the predominant numbers found for both continuous criteria

when compared to the discrete longitudinal deceleration criterion, and is mainly due to the

way we set the border boundaries which define whether a newly simulated scenario can be

assimilated “on” the border. Plus, these performances are obtained identically for all initial

distribution sets, and are therefore not displayed here.

To summarize, all three algorithms managed to detect certain numbers of scenarios as

indicated in their respective goals, whether to identify G/NG pairs for the Find Border

Max and Find Border Min algorithms or to propose scenarios located directly “on” the

border for the Find Border Points algorithm. These numbers fluctuate with the initial

conditions for the Find Pairs algorithms, and are independent of the initial conditions for

the Find Border Points algorithm. Plus, Find Border Min is able to find the highest

numbers of pairs among all three algorithms, ranging in the thousands as opposed to hundreds

for the other two algorithms. Nonetheless, these numbers are only quantitative assessments,

and a more qualitative approach is needed to complement these, and better understand their

respective benefits. Next Section is devoted to such qualitative assessment.

5.3.3 Qualitative Results – 1 000 simulations

To better evaluate the quality of the results of the three border detection algorithms, the

basic idea was to compare their results to the actual criteria of the same full grid over the

search space described in Section 4.5.5: Each normalized input is discretized into 10 values,

resulting in a total of 100,000 scenarios for this five-dimensional use case. These scenarios

are then simulated to retrieve their real criteria. Next, a metric should be defined in order

to assess the quality of the results when compared to the points of the grid. However, the

conception of that metric was not as straightforward as for the Find All Failures algorithm,

and we will now detail the path we followed to come up with some meaningful metric. The

initial sets of 50, 100 and 500 NG scenarios are used for quality assessment for all three

algorithms. Plus, in addition to the corners initial set for the Pairs algorithms, we decided

to run the Find Border Points algorithm with a fourth initial set containing one single NG

scenario to further examine its qualitative performance depending on the initial set.

Precision rate First, we chose to compare the results to the grid by calculating a precision

rate. A visual explanation is shown in Figure 5.14, as we will describe more thoroughly the

different steps in computing the metric while referring to the figure for better understanding.

Basically, the left grid in the figure shows a simplified 2-D shape of the border, which

separates the G scenarios in green circles on the left side of the border from the NG scenarios

in red circles on its right side. The middle grid shows the introduction of the G/NG couples

illustrated as green and red triangles respectively. The idea is then to take each grid scenario,

i.e. each circle, and to look for its nearest neighbor between the algorithm scenarios, i.e. the

triangles. Their criteria evaluations are then compared to check if they have both the same
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Figure 5.14: Visual explanation of the precision rate: first metric when comparing to the

grid.

evaluations, which should indicate that the scenarios proposed by the algorithm succeeded

in replacing a grid of 100,000 scenarios of the same search space with a few thousands that

delimit the G/NG border. Thus, the precision rate metric is computed as the ratio of all

the occurrences of equal criteria evaluations between the grid scenarios and their nearest

algorithm-produced neighbors to the total number of grid scenarios. A first attempt of

computing this metric is shown in Figure 5.15 where it is applied on Find Border Max for

all the initial distribution sets.

We can observe from these curves that the precision rates reach systematically high values

from the very start, as all curves mark rates higher than 75% from their initial sets before any

algorithm interference. Then, the curves tend to increase very slowly across the simulations

to a few gain percentages for the initial sets containing 50 and 100 NG scenarios, whereas

the 500 NG initial set has near constant curve shapes. Additionally, the input space corners

set shows the biggest boost in rates across the simulations where the rates increase by a 10%

add value.

However, these curves shapes illustrate clearly that a good precision rate is already at-

tained before any optimization, pointing out to fairly acceptable distributions of the initial

sets. This would also explain the small increases along the iterations while adding new scenar-

ios to the archive, especially when we are comparing 100,000 grid scenarios to mere hundreds

of scenarios algorithms.

Therefore, we decided to take into account not only the nearest algorithm scenario neigh-

bor to each grid scenario, but the 3 or 5 nearest neighbors instead. The average of their

evaluations is then computed before comparing it to the grid scenario evaluations. In that

way, we try to give more robustness to the precision rate metric and decrease its instability

in being very dependent of the nearest neighbors only. Figure 5.16 shows the different curves

resulting in taking into consideration 3 and 5 nearest neighbors for the computing of the

precision rate on the Find Border Max algorithm results.

We can observe that the resulting curves bear small differences when compared to the
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Figure 5.15: Variation of the precision rate metric applied on the Find Border Max

algorithm throughout the simulations. Each curve is the result of 11 runs with different initial

sets containing 50 (top left), 100 (top right) and 500 (bottom left) initial NG scenarios, as

well as consisting of the input space corners (bottom right).

nearest neighbor curves in Figure 5.15. The only noticeable difference is the precision rate

values at the beginning of the algorithms which gives more approval to the impact of the

initial distribution set on the computing of this metric. Plus, we can observe some decreases

that occurred when introducing multiple neighbors and adding new scenarios. This could be

explained by cases where the nearest neighbors are more or less distant before other closer

points of different evaluation are added. The same visualizations are noticed for the Find

Border Min and Find Border Points algorithms and will not be presented. Thus, taking

into account 3 or 5 nearest neighbors turned out to be ineffective in resolving the main

problem with this metric in efficiently assessing the quality of the results obtained. This is

why we decided to elaborate an other metric: the border rate.
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Figure 5.16: Variation of the precision rate metric applied on the Find Border Max

algorithm throughout the simulations by taking into account the 3 and 5 nearest neighbors

between the algorithm scenarios. Each curve is the result of 11 runs with different initial sets

containing, from left to right, 50, 100, and 500 initial NG scenarios, as well the input space

corners.

Border rate Similarly to the precision rate, we will explain the process of computing the

border rate metric while referring to grid visuals, which are shown in Figure 5.17.

The first visual (top left) resumes the standard green and red circle scenarios separated

by the border line to the left and right sides respectively. The idea is to detect the nearest

G/NG couples of scenarios in the grid as shown in the second visual (bottom left). These

grid scenario couples can be seen as a discrete and simplified way of perceiving the border,

since it should naturally be located between all these close G/NG grid couples. Then, we

introduce the algorithm scenarios shown as green and red triangles to differentiate the G

and NG evaluations in the third visual (bottom right). Next, each grid scenario has its

evaluation criteria modified according to its nearest neighbor among the algorithm scenarios.

We also take into account the impact of considering multiple nearest neighbors too. Finally,

the G/NG couples of grid scenarios obtained previously are re-evaluated to check if they

persisted to be scenarios of different evaluations, as seen in the fourth visual (top right).

Thus, the border rate is the ratio of the grid couples that remained with different criteria

evaluations after the introduction of the algorithm scenarios, to all the grid couples detected

before the criteria evaluation update due to the algorithm scenarios. This metric has been
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Figure 5.17: Visual explanation of the border rate: second metric when comparing to the

grid.

computed for the three algorithms for all the initial distribution sets considered thus far. In

particular, Figure 5.18 displays the variation of the border rates implemented for the Find

Border Points algorithm when taking into consideration the nearest scenario algorithm

neighbors, as well as the nearest 3 and 5 neighbors, for initial sets containing 1, 50, 100 and

500 NG scenarios respectively.

We notice that the curves obtained show mediocre results overall. For example, all rates

attain a maximum of 30% to 35% across all considered cases for all criteria. The computation

at zero simulation checkpoint shows the impact of the initial set on the results, where it is

at its lowest value for the initial set of 1 NG scenario hitting nearly 0% for all criteria, and

steadily increases when enlarging the initial set, e.g. between 5% to 15%, 5% to 20%, and

15% to 30% for the initial sets containing 50, 100 and 500 NG scenarios respectively. Plus,

the rates increase across the simulations remains little, the only possible exception being the

single scenario initial set since it begins with 0% and manages to grow to around 20% for
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Figure 5.18: Variation of the border rate metric applied on the Find Border Points

algorithm throughout the simulations by taking into account the nearest 1, 3 and 5 neighbors

between the algorithm scenarios. Each curve is the result of 11 runs with different initial sets

containing, from left to right, 1, 50, 100, and 500 initial NG scenarios.

all criteria. These results are highly similar to the ones obtained with the other two Find

Border Max and Find Border Min algorithms, and are therefore not presented.

While achieving mediocre border rates can be seen as a contradiction to the relatively

high accuracy rates noted previously, the core problem could stem from the fact that we

have not taken into account in these calculations the case where the detected border by the

algorithm is simply slightly offset: this could give a border rate of 0% here. For instance, if

we look back at the last visual of Figure 5.17, we can see how a slightly offset border detected

by the algorithm could very well go unnoticed by the border rates calculations. The resulting

visual is shown in Figure 5.19, where the right grid shows the offset of the detected border
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after having updated the criteria evaluations of the grid scenarios. The original grid border

is the orange dashed line, whereas the resulting border, which passes between all the G/NG

grid couples with newly updated criteria evaluations, is represented as the blue dash-dotted

line. Hence, the border rates are limited in taking into account a possible offset in the border

detection by the algorithms.

Figure 5.19: Slight offset of the border detected by the algorithm unnoticeable by computing

border rates when comparing to the grid.

Thus, because of this limitation in the border rates results, it would be more interesting in

this case to determine whether we can manage to find the same NG areas with the algorithms

compared to the NG areas without any algorithm action, and to calculate the distance error

between the areas which quantifies the border detection offset. This is why we finally adopted

this third and final metric: connected components.

Connected components Figure 5.20 illustrates the procedure of computing the connected

components metric when compared to the grid to better evaluate the performances quality

of these algorithms.

First of all, we retrieve the same grid of scenarios across the input search space, represented

as green and red circles referencing their respective evaluated output criteria G/NG separated

by the dashed border at the left and right side respectively (top left). Then, we calculate

the connected components for all NG scenarios by iterating over them all as visualized by

the right-angled orange triangle (bottom left). The idea is to determine areas of nearest

neighbors among the NG scenarios. For instance, when coming across a NG scenario, we

look for its nearest neighbors if they characterize as NG scenarios too. If that turned out to

be the case, we take the NG scenarios detected into account into the connected component

area, and we move to these newly detected scenarios and check for their nearest neighbors for

NG scenarios, and so on until iterating over all the NG grid scenarios. If all nearest neighbors
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Figure 5.20: Visual explanation of the connected components: third and final metric when

comparing to the grid.

of a particular NG scenario are G scenarios, then the connected component area is stopped

at that scenario, and a new connected component is created when we resume iterating over

the grid scenarios and stumble upon another NG scenario.

Next, we introduce the scenarios generated by the algorithm and represented by green

and red triangles following their criteria evaluations, and we modify the grid scenarios eval-

uations by taking into consideration their nearest neighbors among all algorithm-produced

scenarios as done previously (bottom right). We can also see the supposedly dash-dotted

blue border detected by the algorithm with the slight offset. Finally, we re-calculate the

connected components of the grid scenarios with the newly updated criteria evaluations (top

right). We should obtain different NG areas as visualized by the new right-angled blue tri-

angle. Here, we detect, on one hand, which NG grid scenarios were identified by the new

connected components and were effectively part of the original connected components before

changing the evaluations criteria, and on the other hand, which of these NG scenarios in the

new connected components were originally G scenarios in the original connected components.
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These last scenarios are therefore classified incorrectly by the algorithm and represent the

offset made by the algorithm. We then compute, on one hand, the NG classification rate,

which is the ratio of the NG grid scenarios found in the new connected components that are

indeed NG, to the total number of NG scenarios found in the original connected components

before algorithm action. On the other hand, we calculate the offset distances, which are

the distances between all the scenarios incorrectly classified as NG by the algorithm and the

original connected components to check whether this offset error is acceptable or not. Ad-

ditionally, we are interested in calculating the coverage distances, which are the distances

between the NG scenarios of the original connected components that remained undetected

by the algorithm, and the NG scenarios of the updated connected components that were

rightfully classified as NG by the algorithm, to see if the algorithm is able to reach out to

NG scenarios everywhere in the search space.

NG classification rate In this paragraph, we will begin tackling all algorithm results

to finally be able to evaluate and compare their qualitative performances. First, Figure 5.21

shows the evolution of the NG classification rate for the Find Border Max algorithm for

all criteria evaluations across the simulations for the four initial sets considered thus far, as

well as taking into account the nearest 1, 3 and 5 neighbors among the algorithm scenarios

when updating the grid evaluations.

We begin by noticing the impact of the initial set on the end results, as the rates tend

to increase with the size of the initial set when comparing the distributions containing 50,

100 and 500 NG scenarios. Plus, the trends seem to differ depending on the criterion, as

the longitudinal deceleration and safety time gap rates slowly increase with the simulations

overall, whereas the lateral lane decentering distance rates stay constant or even show a

slight decrease. This can be explained due to the fact that Find Border Max was unable

to introduce as many scenarios for the lateral lane criterion than for the other two criteria

as seen in Figure 5.11. This decrease is notably observed in the second half of simulations

launched for the input space corners. Besides, taking into consideration more neighbors also

slightly decrease the overall trends at the beginning of the optimization, but its effects tend to

mitigate along the iterations as the reduced model gains in accuracy. Finally, the final rates

obtained are acceptable for the longitudinal deceleration and safety time gap rates (around

60% to 70% and 70% to 80% respectively), but fell short for the lateral lane decentering

distance criterion with rates between 10% to 50%.

Next, Figure 5.22 illustrates the variation of the NG classification rate for the Find

Border Min algorithm for all criteria evaluations across the simulations with the same

experiments conducted for the Find Border Max algorithm.

Some observations in the previous figure are also seen here, e.g. the rates increase with

the size of the initial set, and their decrease with the number of nearest neighbors. However,

although the trends remain to be dependent on the criterion evaluated, the rates either show

a decrease for the lateral lane criterion, or a constant rate throughout the simulations for the
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Figure 5.21: Variation of the NG classification rate related to the connected components

metric applied on the Find Border Max algorithm throughout the simulations by taking

into account the nearest 1, 3 and 5 neighbors between the algorithm scenarios. Each curve

is the result of 11 runs with different initial sets containing, from left to right, 50, 100, and

500 initial NG scenarios as well as the input space corners.

remaining two criteria. Nevertheless, the input space corners boasts high rates increase for

the longitudinal deceleration making it the notable exception, which gives more worth to its

longest running time between all experiments. The final rates obtained remain acceptable

for the longitudinal deceleration and safety time gap rates (around 60% to 80% and 70% to

90% respectively), and mediocre for the lateral lane decentering distance criterion with rates

between 10% to 50%. However, both Find Border Max and Find Border Min algorithms

unveil small variation rates throughout the simulations, which can be explained due to their

incapacity in exploring outside their initial sets.
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Figure 5.22: Variation of the NG classification rate related to the connected components

metric applied on the Find Border Min algorithm throughout the simulations by taking

into account the nearest 1, 3 and 5 neighbors between the algorithm scenarios. Each curve

is the result of 11 runs with different initial sets containing, from left to right, 50, 100, and

500 initial NG scenarios as well as the input space corners.

Finally, Figure 5.23 shows the variation of the NG classification rate for the Find Border

Points algorithm for all criteria evaluations throughout the simulations.

The main difference observed in this figure is that all curves show rates increase for all

initial distribution sets and for all criteria, especially the lateral lane decentering distance

criterion. For instance, even though increasing the nearest neighbors number still impacts

the rates at the beginning of the iterations, the rates for the lateral lane criterion boast high

increases going from around 20% to more than 80% as seen in particular for the initial sets of

50 and 100 NG scenarios. Plus, we can notice that there is some stability in the results when
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Figure 5.23: Variation of the NG classification rate related to the connected components

metric applied on the Find Border Points algorithm throughout the simulations by taking

into account the nearest 1, 3 and 5 neighbors between the algorithm scenarios. Each curve is

the result of 11 runs with different initial sets containing, from left to right, 1, 50, 100, and

500 initial NG scenarios.

changing the initial set, as the algorithm always manages to increase these rates. Besides, the

final rates obtained are deemed acceptable for all three criteria, as the lateral lane decentering

distance, the longitudinal deceleration and safety time gap rates attain between 80% and

90%, 60% and 70%, and 80% to 90% respectively. The lower final rates achieved for the

longitudinal deceleration criterion can be caused by the complexity in detecting “on”-the-

border scenarios for a discrete criterion, but still remain acceptable overall when compared

with the other two algorithms. Next, we are going to delve deeper in the quality evaluation

by analyzing the relevant distances between the original grid connected components and the
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new ones generated by the algorithms.

Distances statistics We will begin by looking at the offset distances, i.e., the dis-

tances that separate the original grid connected components and the NG scenarios found in

the updated connected components but that turned out to be incorrectly evaluated as NG.

Since we have observed thus far that the number of nearest neighbors between the algorithm

scenarios that update the grid evaluations had a small impact on the results, we decided to

look only at the one nearest neighbor case, and combine the results of all the algorithms

directly in one single figure: Figure 5.24 shows the evolution of the mean offset distances

computed between the original connected components and the incorrect NG scenarios of the

updated connected components for all criteria, for all three algorithms and for all the initial

distribution sets.

The curves tend to decrease along the iterations, with values attaining less than 0.2 for

all algorithms and all initial conditions. This can be explained due to the fact that, with

each new simulated scenario added, the reduced model is gaining in accuracy. Therefore, the

offset in the border detection will decrease along the iterations. The only notable exception

is the input space corners for Find Border Min, which suggests that it would need even

more iterations for the offset to begin to shrink, knowing that this experiment was the most

costly in running time. As for the other experiments, all algorithms tend to reduce this offset

throughout the simulations. We also notice that all these curves seem to approach the value

equal to 0.11. This value corresponds to the minimal precision distance dmin fixed for the

three algorithms, knowing that all three of them were restricted to propose new scenarios

that only respected this distance with the remaining scenarios of the archive. It also is equal

to the minimal distance value found between nearest neighbors of the grid, as we have a

grid of 100,000 scenarios with 5 continuous inputs broken into 10 values each (along with the

intervals limits). Hence, if the results of these mean distances approach this particular value,

this means that all algorithms manage to shrink the offset in their border detection as much

as possible while following this same minimum precision distance, deeming the offset error as

acceptable.

However, in order to better understand the results obtained with the NG classification

rate, we should consider looking at other relevant distances too. Figure 5.25 shows the

evolution of the mean coverage distances, i.e. the distances computed between real NG

scenarios of the updated connected components, and the undetected NG scenarios of the

original connected components. Similar to the previous figure, the results are shown for all

three algorithms and for all the initial distributions set while considering the nearest neighbor

when updating the grid evaluations.

While the previous mean distances seen in Figure 5.24 represent the offset in the border

detection, these mean distances shown correspond to the capacity of the algorithm in explor-

ing all the NG scenarios of the original grid connected components. If these distances decrease

with the iterations, it means that the algorithm is gradually detecting the original connected
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Figure 5.24: Mean offset distances (and standard deviations) between the original NG con-

nected components and the NG scenarios of the updated connected components that were

incorrectly classified as NG by Find Border Max, Find Border Min and Find Border

Points for the different initial sets.

components. We can observe differences in the results between the algorithms and between

the initial distributions sets. For instance, if the initial set is big enough, e.g. the 500 NG

initial set, these distances have always low values which are already close to the minimal pre-

cision distance set even without any algorithm action. As we reduce the initial set size, e.g.,

the 50 and 100 NG initial sets, we notice that the curves for Find Border Min and Find

Border Max have a constant shape and do not illustrate a notable decrease throughout all

the simulations. Plus, the results related to the lateral lane decentering distance criterion

correspond to the highest average distances values ranging between 0.2 and 0.25. Diversely,

the Find Border Points algorithm manages to keep on decreasing these distances across
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Figure 5.25: Mean coverage distances (and standard deviations) between the undetected NG

scenarios of the original connected components and the NG scenarios of the updated

connected components that were correctly classified as NG by Find Border Max, Find

Border Min and Find Border Points throughout the simulations. Same initial distribu-

tion sets are considered for each algorithm.

the simulations for these same initial sets and for all criteria while approaching the minimal

precision distance value. It is even able to reach this value with only a single initial NG

scenario in its initial set. As for the input space corners set, Find Border Max is able to

explore the connected components because of the accessibility of the whole input space and

its ability in suggesting multiple scenarios at each iteration. On the contrary, Find Border

Min is far from achieving these same results with just a thousand simulations, knowing that

it took around 80 hours to reach these results.

All these results regarding distances give some insights regarding the differences seen in
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the NG classification rates results in the previous figures. Find Border Points achieved

the highest percentages, whereas the Find Border Max and Find Border Min algorithms

results were much more modest, especially for the lateral lane decentering distance criterion.

Additionally, the larger the initial set, the higher the NG classification rates of Find Border

Max and Find Border Min, and the lower their mean distances related to the exploration

of the original connected components. This information could be expected, since these two

algorithms can only suggest scenarios within the boundaries of their initial set. On the con-

trary, Find Border Points is able to perform well with good qualitative results whatever

the initial set, as it looks everywhere in the initial space and is not restricted by the initial

conditions.

This Section will end with results conducted with a different stopping criterion, pushing

the algorithms up to 3,000 simulations, in order to check whether this changes the global

trends of the proposed algorithms.

5.3.4 Quantitative Results – 3 000 simulations

We present here the results of a limited series of experiments for a stopping condition

of 3,000 simulations. Only initial sets of 500 NG scenarios will be used for all three algo-

rithms, since we have seen so far that the Find Border Max and Find Border Min

algorithms perform best with a large initial set, and the Find Border Points delivers good

results whatever the initial set size. Plus, we have seen that all three algorithms are able

to minimize the border offset in all cases, but differ in the way they explore all the original

connected components. Furthermore, we will only compare, on the one hand, the time each

algorithm took to complete 3,000 simulations, and on the other hand, the evolution of the

NG classification rate, as well as the coverage distances between the undetected NG scenarios

in the original connected components and the real NG scenarios in the updated connected

components. We will then be able to enforce our conclusions from the previous sections by

checking whether the results of the algorithms improve if we allow a larger simulation budget,

and if the Find Border Points algorithm remains the best algorithm in qualitative results.

Computational Cost

Figure 5.26 shows the time consumed by each algorithm in order to complete 3,000 sim-

ulations starting from an initial set containing 500 NG scenarios.

These results confirm that both Find Border Max and Find Border Min show a

super-linear time complexity, respectively 15 hours for Find Border Max and 70 hours for

Find Border Min, whereas Find Border Points displays a seemingly-linear complexity,

requiring 30 hours. Hence, even though Find Border Max remains the fastest algorithm

here, it is likely to become slower than Find Border Points if we increase even more

the simulation budget. Taking into account the results for 1,000 simulations in Figures 5.2
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Figure 5.26: Average (and standard deviations) of computing times (hours) needed by Find

Border Max, Find Border Min and Find Border Points to perform 3,000 simulations

for initial sets containing 500 NG scenarios.

and 5.8, the number of simulations tripled, and hence the time needed by Find Border

Points also tripled, whereas it increased by a factor of more than 40 for Find Border

Max. Therefore, Find Border Points seems to be the most consistent from a computational

complexity point of view. On the other hand, Find Border Min will clearly always be the

slowest algorithm.

Next, we will evaluate the quality of the results of these experiments in a similar way

than what has been done in Section 5.3.2.

5.3.5 Qualitative Results – 3 000 simulations

We will only look at the two qualitative indicators for which clear differences could be ob-

served between the different algorithms in the 1000-simulations context: the NG classification

rate, and the coverage distances.

Figure 5.27 illustrates the NG classification rate related to the connected components

when comparing the results obtained by each algorithm to the grid. The nearest neighbor

was considered when updating the grid evaluations. All algorithms run until 3,000 simulations

have been performed, starting from an initial set containing 500 NG scenarios.

We notice that Find Border Max shows a slight improvement past the 1,000 simulations

mark, as the mediocre rates for the lateral lane decentering distance criterion go up from 45%

to 50%. This suggests that this algorithm would need even more simulations to be able to

improve its rates considerably. On the contrary, Find Border Min is still unable to improve

the lateral lane decentering distance criterion rates, which witnessed a dive in its values past

the 1,000 simulations mark from 45% to 40%. However, Find Border Points manages to

continue to boost its rates across all criteria, and especially for the lateral lane decentering

distance criterion, hitting a final average value higher than 90%.

Besides, we recall that there seems to be a correlation between the NG classification

rates and the coverage distances between the undetected NG original components scenarios

and the real NG updated components scenarios. Therefore, Figure 5.28 displays the average
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Figure 5.27: Means (and standard deviations) of the NG classification rate related to the

connected components for Find Border Max, Find Border Min and Find Border

Points running for 3,000 simulations.

values of these distances obtained by each one of all three algorithms during the completion

of 3,000 simulations, starting from the initial set containing 500 NG scenarios.
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Figure 5.28: Mean coverage distances (and standard deviations) between the undetected

NG scenarios of the original grid connected components and the real NG scenarios of the

updated grid connected components after applying Find Border Max, Find Border Min

and Find Border Points within a budget of 3,000 simulations, initial sets containing 500

NG scenarios.

First, we can see in this figure that Find Border Max shows slight improvements

for all criteria beyond the first 1,000 simulations. The lateral lane decentering distance, in

particular, begins to decrease from 0.135 to attain a final value of 0.13 at 3,000 simulations.

Then, we can also observe that Find Border Min was unable to improve these distances

results when extending the stopping condition limit, as all criteria display constant curves

at best. Finally, Find Border Points continues at improving these distances to approach
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the minimal precision distance dmin = 0.11 as much as possible. Notably, the longitudinal

deceleration criterion, which is a challenge for this algorithm because of its discrete nature,

displays a clear decrease in its distances results going down from 0.145 initially to a final

value of 0.125.

Thus, there is indeed a correlation between these two qualitative factors. Although all

algorithms manage to reduce the offset error in the border detection, not all of them are able

to explore all the NG areas effectively throughout the simulations. Find Border Points

is the most efficient algorithm qualitatively, Find Border Max arrives logically next since

we saw a possible improvement debut at 3,000 simulations, and Find Border Min is the

least efficient one when taking into account the time consumption and the qualitative results

obtained. Nevertheless, the number of G/NG couples generated by Find Border Min is

the highest amongst all three scenarios. Hence, each algorithm seems to operate in a different

fashion, as they target the input search space differently.

Plus, these results are related to a single use case. Further tests should be conducted in

order to see the efficiency of these algorithms in handling other autonomous vehicle situations.

In particular, these algorithms will all be combined into the ADValue project at Renault in

order to aid one another in the assimilation of the input search space for other use cases,

while competing for the resources to generate scenarios. Besides, we combined the scenarios

generated by all three algorithms starting from the initial set of 500 NG scenarios, and

computed the resulting qualitative results shown in Figure 5.29.
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Figure 5.29: Variation of the NG classification rates and mean coverage distances after com-

bining the scenarios generated by all three algorithms when attempting to reach 3,000 sim-

ulations with vertical error bars equal to twice the standard deviation values. Each curve is

the result of 11 runs stemming from different initial sets containing 500 NG scenarios.

As expected, the combination of the algorithms shows acceptable qualitative results for
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the NG classification rates and the coverage distances metrics. We also notice that the curves

follow the trends displayed by Find Border Points which was the most efficient algorithm

between all three. Thus, the idea of combining the algorithms will not affect negatively the

overall results, but will, at best, follow the tracks of the most efficient algorithm. This further

validates the notion of combining the algorithms to mix their efforts in exploring the input

space instead of relying on a single algorithm to detect scenarios around the G/NG border.

5.3.6 Partial conclusion

This chapter has introduced and experimentally compared three algorithms designed to

detect scenarios around the border between the G and NG areas of the use case input space.

Starting with an archive containing a prescribed number of NG scenarios, all three algorithms

repeat the following loop until their simulation budget comes to an end.

1. Find Border Max retrieves the G/NG pairs that are farthest apart in the scenario

space, and proposes new scenarios between them, at distance dmin, the prescribed

precision. Every G/NG pair (according to the reduced model) of scenarios very close

to each other is a candidate border pair, that is checked with the simulator (substitution

model in this work).

2. Find Border Min calculates the minimum distance between G/NG scenarios, then

launches a dichotomy to retrieve the closest G/NG pair according to minimal precision

distance dmin. Once more, this pair is expected to show a part of the border by passing

between the scenarios of this G/NG couple.

3. Find Border Points operates on an optimization on the criteria directly, by identifying

scenarios very close to the border, while respecting the minimal precision distance

dmin. It launches CMA-ES with a small initial step size = 0.01, and tries to minimize

the objective function which calculates the gap between the output criterion and its

corresponding threshold.

Similar to the NG detection algorithm shown in Section 4.5, the three algorithms use the

reduced model to comply to the industrial restriction of minimizing simulation costs, and

the neural network to overcome software limitations by substituting temporarily the actual

simulator. We assessed the performances of the algorithms by imposing a shared stopping

condition of reaching a fixed amount of simulations, which is also in concordance with the

industrial requirements. The comparison evaluation was conducted at three different factors:

the time each algorithm consumed to achieve this stopping condition, the number of scenarios

that were able to meet the given objective, and the quality of the results when compared to

a grid of the same search space.

The Find Border Max and Find Border Min algorithms are characterized by super-

linear running time and number of couples generated across the simulations, while the Find

Border Points algorithm evolves in a more linear fashion. Although Find Border Max is
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the fastest algorithm for 1,000 and 3,000 simulations, Find Border Points is deemed the

most reliable one for a large number of simulations. Additionally, evaluating the qualitative

results turned out to be a conceptual challenge. Precision rate and border rate metrics

were considered, before finally settling on the connected components to assess the qualitative

performances when comparing to a full grid over the input search space. This metric is flexible

in detecting a possible offset in the border detection by each algorithm. The results show that

all three algorithms are able to minimize this offset while approaching the maximum value,

which is the minimal precision distance dmin that each algorithms respected while operating.

Nevertheless, two other qualitative indicators show the capacity of the algorithms in

exploring effectively all the NG areas in the search space. Find Border Points is the best

algorithm in managing to consistently improve throughout the simulations and effectively

explore the NG areas related to all three criteria. The other two algorithms display slightly

more mediocre results depending on the criterion evaluated, although Find Border Min

manages to generate the biggest number of G/NG couples amongst all three algorithms,

which indicates its ability to precisely detect the pairs in a particular zone. Plus, the intrinsic

conception of the Find Border Max and Find Border Min algorithms limits their capacity

in suggesting new couples outside their initial set, which explains the improvement of their

qualitative results when enlarging the initial set. On the contrary, Find Border Points is

able to propose new scenarios independently of its initial set and explore effectively the input

space. And even when the algorithms results are combined, which will be the case in the

ADValue project, the overall quality follows the tracks of the most efficient algorithm, and

validates the idea of mixing multiple algorithms instead of relying solely on a single algorithm.

Equipped with these three algorithms, we are able to generate scenarios that are close to

the G/NG borders of the input search space, whether as G/NG pairs, or “on”-the-border

scenarios. These scenarios thus give an idea of an approximate localization of the border.

Nevertheless, the three stochastic algorithms offer no guarantee as to the exact location of

the border across the space of the input parameters. Although it effectively passes between

the G/NG pairs or close to the “on”-the-border scenarios, the border can have various forms,

and the number of scenarios to simulate to define it with more precision can increase very

quickly. Therefore, alternative approaches are considered in the next chapter to direct our

research towards a more in-depth study on border detection, based on border and failed

scenarios which can be generated from all algorithms presented thus far.



Chapter 6

Border Models

This chapter addresses the third and final objective of the thesis: obtain an analytical

or parameterized model of the border between the faulty and the non-faulty regions that

is explainable. The rationale is that designing algorithms dedicated to either the direct

identification of scenarios that result in a failure of the command law, or the identification of

scenarios that are very close to this G/NG border, as done in the previous chapters, is not yet

what the industrial experts want: they wish to be able to understand the root causes of the

identified failures, the ranges of input parameters that result in failures, and not simply to

correct their command law in a blind manner. Explainable AI has become a very important

issue in current research (see e.g., the XAI research program launched by DARPA in 2017).

Explainability is one component of trustworthiness, crucial for the societal adoption of AI

in the society. But here another side of explainability is concerned, which is to allow the

humans (here, the domain experts) to extract knowledge from the learned models, about the

car command law, and allow faster further progress than by simply correcting the points of

failure one by one. In particular, from the analytical formulation of the border, it should

be possible to do some informed active learning, and propose the simulation of the most

informative scenarios w.r.t. improving the global predictive accuracy of the model, while still

complying to the industrial constraint of minimizing the number of simulations.

Building on the results of the border algorithms, and after having identified points on the

border (or almost on the border), we are thus facing another learning problem that amounts

here to symbolic learning (build a symbolic model of the border) more than to statistical

learning. Two approaches have been tried, namely the exact solutions given by Mixed-

Integer Linear Programming (MILP) (Section 6.3), and some approximate solutions

found by Genetic Programming for Symbolic Regression (Section 6.4). However, and

though not fulfilling the industrial specifications of explainability, Neural Networks, that

have already been used in this work to derive the substitution model in the previous Chapters

(Section 4.3.1), will also be used as some baseline (Section 6.2) that will set an upper bound on

accuracy, as it is unlikely that the other methods can reach similar accuracies while preserving

explainability: there is no free lunch in explainability.
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Final preliminary words: all the experiments presented in the previous Chapters have

been done on the tracking vehicle use case (Section 4.5.1), and many SCANeR simulations

had been done for that use case. However, SCANeR itself had made considerable progresses

during the course of this thesis, and its robustness had improved a lot: All the results used

in Chapters 4 and 5 were considered suspect at the time of the experiments to find border

models. Furthermore, the use case itself was considered far too simple to be convincing.

Hence the results obtained up to now will not be used in this Chapter, and a new use case

will replace the previous one, that we will describe in next Section.

6.1 The NHTSA 13 Use Case

The chosen use case consists of the autonomous vehicle (EGO) following another vehicle

while approaching a lead vehicle moving at lower constant speed as seen in Figure 6.1.

Figure 6.1: Use case NHTSA 13: Following Vehicle approaching lead vehicle moving at lower

constant speed.

At the beginning of the simulation, EGO, Vehicle 1 and Vehicle 2 are on the same lane.

Vehicle 2 is far ahead of the other two vehicles and stops moving, while EGO and Vehicle

1 are advancing with a velocity between 60 and 130 km/h. Then, when the Time To Col-

lision (TTC) parameter between Vehicle 1 and Vehicle 2 passes below the TTC threshold

fixed parameter, Vehicle 1 performs a lane change that lasts for a fixed duration of seconds.

Meanwhile, EGO sees Vehicle 2 and should be able to brake to avoid collision. If the TTC

between EGO and Vehicle 2 is lower (respectively higher) than 0.8 second anytime during

the simulation, the scenario is labeled NG, (resp. G). The use case is of dimension 6, and all

six input variables of this use case are described in Table 6.1.

This use case will be used to test the three algorithms that will be used to find border

models, and compare their performances. Thanks to the evolution of the simulation software

platform SCANeR along with the progress of the thesis, a complete run of a grid of 470,587

scenarios was pre-run for this use case, and will serve as basis for the evaluation process (as

in Section 4.5 for the previous use case). The step sizes used for each input parameter are

shown in Table 6.1. Note that when multiplying all possible levels, we obtain 534,600 possible

scenarios. Then, a constraint of having the lateral shift duration of Vehicle 1 less than or

equal to the TTC threshold parameter is applied to eliminate the scenarios where Vehicle 1

crashes into Vehicle 2 while performing the lane change. Out of the 475,200 scenarios left,
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Table 6.1: Description of the input parameters of the use case NHTSA 13.

Input parameters specifications

Name Unit Range/List Step size Levels

Initial velocity of EGO km/h [60, 130] 5 15

Initial velocity of V1 km/h [60, 130] 5 15

Initial time between EGO and V1* s [1.5, 2.5] 0.1 11

Lateral shift duration of V1* s [0.7, 1.2] 0.25 3

TTC threshold between V1 and V2* s [0.7, 3] 0.1 24

Type of V2* - Car, motorcycle, bus - 3

*V1 and V2 refer to Vehicle 1 and Vehicle 2 respectively in the use case.

470,587 scenarios were successfully simulated with SCANeR Studio.

Although this simple use case has a small dimension, it is nonetheless considered to be

realistic as far as the simulation allows it. For instance, adding these last constraints on the

use case eliminates irrelevant scenarios that cannot occur physically, and by that enhances

its degree of realism. Obviously, more options could be added to the simulation to represent

more accurately the scenarios as compared to the real world (e.g. weather, slippery road,

other traffic vehicles...). The use case definition is realized by a specialized simulation team

at Renault while staying in concordance with the real capacity of the SCANeR simulator

itself in being the most realistic possible. Knowing that the SCANeR software is in constant

evolution, the realism of the simulated use cases should gradually improve.

Additionally, for each scenario, the status (G or NG) of all its neighbors (Cartesian

coordinates plus diagonal neighbors) is recorded, and if a scenario has both G and NG

neighbors, it is considered to be “on” the border. Thus, we now have a complete set of

G/NG scenarios with additional information of whether they are “on” the border (140,789

are considered on the border, out of the 470,587 scenarios) or not (the remaining 329,798

scenarios). This will be considered as the ground truth when building and developing the

different border model algorithms. An alternative would have been to run the three algorithms

from Chapter 5, Find Border Max, Find Border Min, and Find Border Points.

However, this is left for further work, as we wanted to see how efficient and useful the border

models could be in the best possible setting (known ground truth for the border scenarios).

6.2 Neural Network Border Models

Neural Networks have been introduced in Section 4.3, and used to build the substitution

model (Section 4.3.1) that was used in lieu of the simulator in Chapters 4 and 5. Their

predictive accuracy is well known, and has been demonstrated in many domains, as discussed

previously. However, such performances can only be obtained when they are trained on

huge datasets, and the industrial specifications of this work include minimizing the number

of simulations. But more importantly, and this is the main motivation of deriving border
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models, the explainability of the results is crucial for domain experts. And this is where

Neural Network fail. Indirect explainability (i.e., by setting up specific mechanisms together

with the Neural Networks to explain them) could be a solution, but this is not the path that

was chosen in this work, and it would somehow contradict the idea of deriving border models.

Hence the motivations to try Neural Networks as a border model are twofold: First,

obtain some bound for the accuracy of possible border models, assuming Neural Networks

are the best approach to learn an accurate model here, provided enough training examples

are available; Second, see how the performance of Neural Networks degrades as the size of the

training set decreases, and how other models could fill this gap. As a consequence, however,

only few trials have been performed with Neural Networks, and no systematic experimental

campaign including several runs per setting and statistical analysis of the result has been

run, leaving the results as mere indications about the behavior of NN models, and saving

time for the a priori more promising MILP and Genetic Programming models that will be

developed in Sections 6.3 and 6.4 respectively.

6.2.1 Methodology

The goal of these experiments is to build a Neural Network that identifies the border of

both G and NG areas. Because the ground truth is available (see above), we will directly

learn if a scenario lies on the boundary or not: this is a classification problem, and standard

setting is chosen after a few initial experiments to tune the hyper-parameters. The only

parameter that we will experiment with is the size of the training set, varying from 10,000,

5,000, 2,500 to 1,000. The accuracy of the resulting models will be measured on the whole

set of 470,587 scenarios, for which the ground truth is known. Furthermore, in an attempt

to improve the global performance of the method, an active learning iterative procedure will

be proposed and experimented with. These different components will now be detailed.

The Neural Network The Neural Network has one input layer with 5 continuous input

variables and one hot-encoded 3-values variable, three hidden layers with 150, 100 and 50

neurons and ReLU activation functions, and one output layer with sigmoid activation function

for this Boolean classification task. The cost function is the cross-entropy (Equation 3.5).

The learning rate has been set to 0.001 while using the Adam optimization algorithm. The

Neural Network is trained for 1,000 epochs with a batch size of 64 scenarios.

The Datasets Different dataset sizes have been used. In all cases, the original dataset

is made of equal numbers of “on”-the-border and “off”-the-border scenarios, independently

from their actual G/NG status. This sample set is then split into training and test sets

according to a 67%-33% ratio. No validation set is used here, all hyper-parameters having

been decided once and for all from some preliminary experiments.
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The Iterative Active Learning Procedure We have implemented the following iterative

procedure. Given a learned NN model, we compute its output on the whole grid of 470,587

scenarios, and order them by proximity of the NN output with 0.5 (whereas 0 means ”off”-

the-border and 1 ”on-”the-border). The scenarios with output close to 0.5 are the ones for

which the NN is the most uncertain of their class. A number of these uncertain scenarios

(unless otherwise specified, we will randomly choose 50 scenarios whose predicted outputs

are in [0.45,0.55]) is then added to the training set, and a new model is learned from scratch.

The process can be repeated several times.

6.2.2 Results

First Results and Robustness Issue First experiments dealt with 10,000 scenarios

(5,000 “on”-the-border and 5,000 “off”-the-border, as discussed). Note that in the frame-

work of Deep Learning, this is a rather small dataset, while in the industrial context we are

working in, this is already very large. Figure 6.2 shows the evolution of the cross-entropy loss

along the learning epochs. In this case, the training and test accuracies are equal to 98.85%

and 97.52% respectively.
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Figure 6.2: Cost function of the Neural Network border model during training phase for an

initial set of 10,000 scenarios.

Using this model to predict the output values of all 470,587 scenarios of the full grid, we

obtain a total error of 2.81%, where 1.87% correspond to the 140,789 border scenarios and

3.22% to the remaining “off”-the-border scenarios. The total error is very acceptable, and it

looks that Neural Networks are reliable border models as far as accuracy of the prediction is

concerned, though totally lacking explainability, as discussed.
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Unfortunately, it seems that the NN model, in this situation, also suffers from a clear

lack of robustness. When performing different independent runs on the same training set,

even though the majority of the runs produced similar plots than the one of Figure 6.2, we

commonly obtained results like the one displayed on Figure 6.3, with some abnormal peaks in

the loss, and an asymptotic value of around 0.57 (compared to the approx. 0.51 of most runs),

and corresponding final accuracy values of 90.21% (train) and 89.18% (test) for Figure 6.3

compared to the 98.85% and 97.52% for Figure 6.2.
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Figure 6.3: Evolution of the cost function of the Neural Network border model during training

phase, while attaining local minima, for an initial set of 10,000 scenarios: 5,000 border

scenarios and 5,000 other scenarios.

In order to tackle this issue, several options were explored: Increasing the number of

epochs; Changing the optimizer from Adam to Stochastic Gradient Descent or RMSProp;

Implementing some learning rate decay; Modifying the topology of the network (number of

layers, number of neurons); Using regularisation techniques, e.g., dropout and L2 regulariza-

tion. But neither one of these trials was successful in removing these instabilities. In the end,

and because Neural Networks are anyway not the model of choice because of explainability

reasons, we stopped trying to robustify their results, and will simply report a few results

addressing the iterative active learning procedure, and the influence of the dataset size when

training the network on small datasets.

Results of the Iterative Active Learning Procedure Figure 6.4 illustrates the evolu-

tion of the training and test accuracies along 50 iterations of the active learning procedure.

A first positive result is that all models achieve more than 95% in test accuracy. Unfortu-
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nately, no improvement is to be seen as iterations proceed, even with a slight decrease of both

training and test accuracies, and even though the dataset is augmented by 50 new scenarios

at every iteration (hence 2,500 in total).
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Figure 6.4: Variation of the training and test accuracy of the Neural Network throughout the

methodology iterations, trained on an initial set of 10,000 scenarios: 5,000 border scenarios

and 5,000 other scenarios.

And this tendency is confirmed by Figure 6.5, that shows the variations of the errors

computed between the Neural Network predictions and the real labels of the 470,587 scenarios

(the 140,789 border scenarios and the 329,798 non-border scenarios): the total error is globally

unchanged along the iterations, with slight oscillations around the initial values, and again

an instability at iteration 44 with a 4% error (almost 6% on the non-border scenarios).

Influence of Dataset Size The previous results were obtained using datasets of size

10,000. As discussed, though rather small in the Deep Learning context, this size is already

rather large in the industrial context of this work. We will consider in this Section datasets

of sizes 5,000, 2,500 and 1,000, containing half on-the-border and off-the-border scenarios.

The same iterative active learning procedure was applied, and the results can be seen in

Figure 6.6: for each dataset size, we display the train and test accuracies along the active

learning iterations, and the global errors on the whole grid of 470,587 scenarios. The general

trend is that both performances decrease when the dataset size decreases, something that

could be expected. For a size of 1,000 (the smallest we tried), the test accuracy even fell below

the 5% threshold deemed acceptable in the industrial context we are working in. Furthermore,

the lack of robustness of the whole process clearly appears, with unexpected peaks (both

positive and negative) appearing in all figures.
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Figure 6.5: Variation of the error predicted on the border and non-border scenarios of the

470,587 scenarios of the full grid throughout the methodology iterations, adding up to the

total error, using a Neural Network trained on an initial set of 10,000 scenarios: 5,000 border

scenarios and 5,000 other scenarios.

6.2.3 Conclusions regarding Neural Network as Border Models

The conclusions drawn from these limited experiments should be considered cautiously,

as they are not backed up with statistically significant results. But, as explained in the

introduction of this Section 6.2, Neural Networks were a priori not a good candidate for

border models, for their lack of explainability. Considering the wide application areas of NNs

and their overall outstanding performances in many domains, these results can nevertheless

set a lower bound on the accuracy one can expect when the ground truth regarding the border

between G/NG is available, and we shouldn’t expect getting much better error rates than the

2.81% obtained here with a dataset of 10,000 scenarios, whatever the method we try next.

Further than that, these results confirm the importance of the dataset size for Neural

Networks models. And if Neural Networks are to be considered as an efficient border model,

a trade-off must be made between the dataset size and the error between the Neural Networks

border predictions and the real labels. Still, it might be considered to be an acceptable border

model across the 10,000, 5,000 and 2,500 experiments, reaching the 95% accuracy threshold,

and if this acceptable threshold is increased to 10%, the 1,000 experiment also leads to an

acceptable model. In any case, they offer a baseline for comparison with other scientific

approaches.

But it should be remembered that, up to here, an important drawback of Neural Networks

used as border model is this lack of robustness we were unable to understand and fight. But
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Figure 6.6: Training and test accuracy of the Neural Network (left column), and error pre-

dicted on the border and non-border scenarios of the 470,587 scenarios of the full grid (right

column) throughout the methodology iterations, trained on initial sets of 5,000, 2,500 and

1,000 containing equally border and other scenarios.

the main drawback in the context of this thesis is that no easily interpretable equation can be

derived from NN border models, resulting in a total absence of explainability of the resulting

model, something the domain experts think is critical. The approach presented next, based



6.3. MILP BASED BORDER MODELS 131

on mathematical programming, is considered for that goal.

6.3 MILP based Border Models

6.3.1 Introduction

Linear Programming (LP) is a mathematical optimization program which attempts to

maximize or minimize a linear objective function, on which are imposed one or more linear

constraints. An Integer Program (IP) is an optimization model in which variables are re-

stricted to be integers, and a Mixed-Integer Linear Programming (MILP) is a linear program

in which some variables are restricted to be integers, whereas others are continuous.

The rationale for using the MILP formalism is that there exist several solvers to provably

exactly solve MILP problems – though sometimes at very high (or even too high) compu-

tational costs. As exact solvers, MILP solvers lack the flexibility of stochastic solvers like

Neural Networks or Genetic Programming. However, when the combinatorial complexity

becomes too high, MILP problems can be relaxed by introducing ad hoc slack variables that

allow the user to tune the amount of error s.he is willing to accept.

In this Chapter, we assume that we have a dataset of N scenarios for a given use case,

that have been labeled G or NG according to a given command law under validation, and we

want to create a MILP model that can separate the G scenarios from the NG scenarios. The

result of the MILP solution will be mathematical equations that represent the border located

between the G and the NG regions of the input space, as defined by the available samples.

By choosing a MILP model, we aim to generate border models that are explainable (the

equations) and separate the G/NG scenarios with a controlable error rate (in particular being

able to derive exact models, computational cost permitting) - two features that stochastic

approaches like Neural Networks lack.

We will proceed in several steps and derive more and more complex MILP problems, and

the associated optimization procedure, to be able to handle a real-world use case such as

the use case NHTSA 13 (see Figure 6.1). For the first step, we will consider the simple case

where the NG zone is made of one single connected area (Figure 6.7-left), and derive one

single MILP model that will be solved directly.

6.3.2 Global MILP Model

Our first approach to derive mathematical equations for an exact representation of the

border according to a set of G/NG scenarios formulates this problem into a single MILP.

Problem setting An example of the desired model output is shown in Figure 6.7. The

left plot shows a two-dimensional input space (e.g., consisting of the acceleration and decel-

eration of the EGO vehicle), with G and NG scenarios represented as green and red circles

respectively, as well as the target border, the straight lines that, together, effectively separate
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both categories. Because we assume that the NG zone is one single connected area, we can

represent such border in a tree-like structure, fixed beforehand, in which in particular the

number of lines (branches of the tree) is set in advance. The tree corresponding to the left

hand side example of Figure 6.7 is represented on the right-hand side. Each line, or axis,

delimits solely G scenarios on its left side, and on its right side, the rest of the scenarios,

that can be G or NG. The ultimate goal is to keep on creating as much axes as needed to

ultimately capture all the NG scenarios only at the right side of the final axis. In other words,

a scenario will be considered G if it had been classified as G by one axis, whereas a scenario

is evaluated as NG if no axis classifies it as G.
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Figure 6.7: 2-D representation (left) of the desired MILP model which finds the axes that

separate NG red scenarios from G green scenarios in a tree-like structure (right).

This representation can be cast into the following equations:

∀i ∈ [1, NG], ∃k ∈ [1,K],
n∑
j=0

αkj .Xij ≤ 0 (6.1)

∀i ∈ [NG + 1, N ], ∀k ∈ [1,K],

n∑
j=0

αkj .Xij ≥ 0 (6.2)

where N is the number of examples, assuming the first NG examples are G and the others

NG, n is the dimension of the scenario space, K is the number of axes. Xij is the j-th input

value for the i-th scenario, with the convention that Xi0 = 1, allowing a constant term in

the equation of axis k, and αkj are the unknowns, (αkj)j∈[0,n] being the coefficients of the

linear equation defining the k-th axis (in fact, a hyperplane, but referred to as “axis” in

the following) in the input space. These equations simply represent the projections of the
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scenarios on the axes, with a sign convention chosen as negative for the G scenarios and

positive for the NG scenarios.

Even without being yet a MILP formulation, Equations (6.1) and (6.2) involve N × K
constraints, and N will typically range from a few hundreds to several thousands. Further-

more, as such, on the one hand there exists probably an infinite number of solutions to these

two equations, and on the other hand, all unknowns α set to zero is a trivial solution. Hence

additional conditions are needed to make the problem well-posed.

The MILP problem The problem set up by Equations (6.1) and (6.2) can classically be

posed as a MILP by first introducing Boolean variables to handle the ”∃” condition, and by

duplicating the unknowns αkj to take care of the sign conditions, the latter in turn leading

to some objective function to minimize in order to avoid an infinite number of solutions.

The constraints of Equations (6.1) and (6.2) are hence rewritten as:

∀i ∈ [1, NG],∀k ∈ [1,K],
∑
j

(α+
kj − α

−
kj).Xij − (1−Bki).BIG ≤ 0 (6.3)

∀i ∈ [NG + 1, N ], ∀k ∈ [1,K],
∑
j

(α+
kj − α

−
kj).Xij +((((((((

(1−Bki).BIG ≥ δ (6.4)

Boolean variables Bki are defined for each scenario i and axis k-th axis, by Bki = 1

if scenario i is classified as G by axis k, and BIG is a large positive real constant that

ensures that Equation (6.3) is true whenever Bki is 0, and in particular for NG scenarios.

Therefore, we will be able to deduce from the Bki which axis actually classified scenario i

as G. Furthermore, an additional constraint must be set to force the model into considering

that one axis classifying each scenario as G is sufficient:

∀i
∑
k

Bki = 1 (6.5)

Hence, for a given scenario i, only one Boolean variable corresponding to one axis can be

set to 1 whereas all others related to the other axes have to be equal to 0. The same reasoning

could be applied to the NG scenarios. However, since we have currently started by considering

that there is only one NG zone, as represented for instance in the tree representation of

Figure 6.7, then there is no need to create similar Boolean variables for the NG scenarios.

Indeed, all axes should classify the NG scenarios as NG.

Another important change of variables was made between Equations (6.1) and (6.2) and

Equations (6.3) and (6.4): the unknowns αkj have been duplicated into α+
kj − α−kj , with

α+
kj > 0 and α−kj > 0. There was no constraint on the sign of the αkj , but for optimization

purposes, it is more beneficial to deal with strictly positive variables. Hence each αkj is now

expressed as the difference of two strictly positive real variables. However, this introduced

the possibility of infinitely many solutions, with identical values for α+
kj−α

−
kj though different
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values for both. Hence an additional objective function, to be minimized, is added, avoiding

such trap:

min

K∑
k=1

N∑
j=0

(α+
kj + α−kj) (6.6)

Finally, in order to forbid the trivial solution where all α’s are set to zero, a small positive

constant δ has been added to the right hand side of Equation (6.4). However, and we will

see examples of such situations below, this opens the door to possible errors, and the value

of δ should be carefully adjusted in a problem-dependent way. Unless otherwise specified, a

default value of 0.01 was first used in all experiments in this thesis.

Results After defining the problem, the next step is its implementation in an existing MILP

solver. Our experiments used lp solve, an open-source MILP solver in Python (Berkelaar

et al., 2004). Furthermore, before trying this model on the use case NHTSA 13, we have built

several two-dimensional test cases of increasing difficulty for easier testing and validation of

the proposed approach.

The simplest test case, test case #1, is described in Figure 6.8 : The dataset is made of

50 points, including a NG corner area that can be delimited by a single straight line. The

right plot on Figure 6.8 shows that lp solve managed to find quickly an accurate axis that

separates the NG scenarios from the G scenarios. The key advantage of this method is that it

finds the exact mathematical equation of the G/NG separation, i.e., we obtain the following

equation for this first test case: X2 = 1.01− 0.178.X1.

Figure 6.8: Test case #1: The 50 scenarios (left) including G scenarios (green) and a single

NG corner zone (red), and the MILP model (right).

Test case #2.1 is slightly more complex: the NG area is moved in the middle of the input

space. The NG zone consists of a disk of center (50,50) and a radius of 10. The results

generated by the MILP solver can be seen in Figure 6.9.
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δ = 0.01

Figure 6.9: Test case #2.1: The 50 scenarios (left) including G scenarios (green) and a single

NG disk zone (red), and the MILP model (right) with δ = 0.01. Notice the third axis at the

very bottom right.

Since this NG zone cannot be delimited by a single straight axis to separate it from the

remaining G scenarios, the program crashes if we set the number of allowed axes to 1 like for

test case number 1. Thus, the solver is only able to provide successful results for a number

of axes set to 3. However, we notice that the axes are inaccurate in drawing exact G/NG

scenarios, as we can easily notice G scenarios mixed with the NG scenarios on the wrong

sides of the axes.

After effective testing, it turns out that the problem is an additional offset brought to the

axes by the solver. This offset is directly linked to the δ parameter value found on the right

side of the NG constraints equations. A small change in its value can greatly affect the solver

output. We can compare this parameter to the hyper-parameters of the Neural Network,

which should be carefully tuned to guarantee successful results. For instance, when setting

δ to a value equal to 0.05 instead of 0.01, the solver is able to generate effective results just

as shown in Figure 6.10. The three axes produced capture well the NG scenarios apart from

the G scenarios.

Nonetheless, it is clear that if using straight axes, their required number can easily increase

to encompass all NG scenarios, especially if the NG area has a sharp curvature. In such

situations, the number of coefficient and Boolean variables will also increase accordingly,

leading to a possibly huge complexity of the resulting MILP problem. In order to overcome

this difficulty, and because we also want to be able to produce results that are accurate w.r.t.

the real border, we decided to further enrich our model by allowing it to use conic surfaces

instead of straight hyperplanes. In order to do so, we added as input variables to the MILP

all second-degree monomials of the base input variables of the scenarios, i.e., the products of

any two initial variables. This of course lead to adding new α coefficients. We applied this

“quadratic” option to the test case #2.1. The results can be seen on Figure 6.11.
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δ = 0.05

Figure 6.10: Test case #2.1: The 50 scenarios (left) including G scenarios (green) and a

single NG disk zone (red), and the MILP model (right) with δ = 0.05.

Figure 6.11: Test case #2.1: The 50 scenarios (left) including G scenarios (green) and a

single NG disk zone (red), and the MILP model (right) using the quadratic option.

This quadratic option allowed lp solve to find an axis that is a part of an ellipse, its

equation including X1.X2, X12 and X22 terms. Thus, we have successfully reduced the

number of axes by replacing three straight axes with a single elliptic curve that exactly

delineates the NG scenarios for the same problem. Nonetheless, it is still far from the original

circle shape of the NG border that we are trying to exactly identify. This is mainly due to

the absence of points below the NG scenarios, making it impossible for the solver to figure

out that the desired output is a circle.

In order to check this hypothesis, we sampled 200 scenarios of the same use case, instead

of the 50 scenarios of test case #2.1. The updated test case #2.2 and the corresponding

results are shown in Figure 6.12.

The solver clearly managed to find a much better approximation of the circular border

when enough points were available in the input space. This newly discovered notion sheds
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Figure 6.12: Test case #2.2: The 200 scenarios (left) including G scenarios (green) and a

single NG disk zone (red), and the MILP model (right) using the quadratic option.

some light on the next step that should be implemented with this model; after the solver

produces the outputs to the problem, the next interesting idea would be to find where to add

new points, close to the axes generated, in areas that are not too populated by the current

training set. After simulating them to get their true status (G or NG), we would launch the

solver once again to check whether the newly added points modified the identified border.

The process could be iterated until no significant change is detected.

A preliminary investigation of this approach was tested on a another slightly more difficult

test case. Test case #3 features 200 points that contain a NG area located between two

concentric circles. Outside the outer circle and inside the inner circle are the G areas. We

want to evaluate whether the solver will be able to detect the two circular borders if we add

some points close to the axes generated by the MILP model resulting from a first run of

lp solve. In order to find which points to add, we used here CMA-ES, with the objective

function to be minimized being the axis equation itself: CMA-ES will try to find new points

that minimize the axis equation, thus getting as close as possible to the part of the border

represented by this axis. In a way, this is similar to the Find Border Points algorithm

described in Section 5.2.1. To illustrate this approach, Figure 6.13 shows an example of its

application on test case #3: the original test case, the axes found by a first application of

lp solve, and those found by a second application of lp solve after the addition of 100

scenarios using CMA-ES.

First, the middle graph confirms the benefit of adding the quadratic option to this prob-

lems, which simply could not be resolved with only straight axes. The solver successfully

managed to find two curves that delimit the NG area from the G scenarios in the search

space. Although the solver managed to draw the outer circle border, it was unable to capture

the inner circle border well and detected instead a rather elongated ellipse. This is mainly

due to the absence of points in this particular area. CMA-ES is then launched 100 times, with

objective function the equation of this inner axis (to be minimized). The right plot shows
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Iteration 0 Iteration 1

Figure 6.13: Test case #3: The 200 scenarios (left) including a single NG area (red) located

between two concentric circles separating them from the remaining G (green); the first MILP

model (center) with the quadratic option; the second MILP model after introducing 100 new

points close to the axes of the first model found (right).

these additional points, and the new axes found by the MILP solver, that approximate the

inner circle in a much more satisfactory manner. The thorough investigation of this active

learning process is left for further work, in particular with the introduction of additional

criteria to choose the new points to be simulated (e.g., using some of the ”Find Border”

algorithms of Chapter 5).

Results on NHTSA 13 The proposed approach showed promising results on the sim-

ple two-dimensional test cases with varying difficulty: it was time to test it on the use case

NHTSA 13 (Section 6.1). It is a six-dimensional use case, there are hence 27 input variables

with the quadratic option.

The first test used a small training set of 100 scenarios, containing equally 50 border and

50 off-border scenarios. Using the linear option, the solver is unable to find an appropriate

solution in a reasonable amount of time even though the number of axes allowed had to be

increased consecutively to 5, 10, 20 and up to 50. When using the quadratic option, the solver

was able to instantly find a corresponding axis that did minimize the objective function. This

can reflect the shape of a real use case border to be more curved than straight. We then

calculated the error on the whole full grid of 470,587 scenarios of this MILP model, and

obtained a global misclassification error of 7.7%, which shows that this methodology can be

really effective.

The size of the training set was then increased to 200 scenarios, including equally 100

border and 100 off-border scenarios. The solver took around 5 minutes to end, and was still

able to detect two axes with the quadratic option. The total error of that model was equal to

5.3%, logically better than with a smaller training set, and industrially acceptable. However,

when trying to go for an even bigger training set with 500 scenarios, the solver was unable to

solve the problem in a reasonable amount of time, due to the increased complexity reflected

by the big number of variables. Industrial restrictions impose having a model that is able
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to produce results in a matter of minutes, especially if it is to be used intensively for the

validation of the autonomous vehicle through the simulation platform. Hence, two possible

directions were considered: either test a more powerful commercial solver, able to deal with

such higher complexity, or adapt the mathematical model and try to decrease its intrinsic

complexity.

We began by testing a commercial solver, namely the Gurobi Optimizer, a fast commer-

cial optimization solver for MILP problems (Gurobi Optimization, 2020), for which we were

offered a free academic license for testing purposes. Furthermore, it was easy to redefine the

problem within the Gurobi framework. After some preliminary test on the different 2-D

toy problems introduced above, double-checked against lp solve, it was run on NHTSA 13.

Table 6.2 shows the successful tests applied on this real use case by considering different sizes

for the training set, and showing the number of axes used, the overall time consumed by the

solver, and the corresponding misclassification errors computed on the full grid of 470,587

scenarios. For each training set size, 11 independent runs were performed with 11 different

training sets, and the Table 6.2 reports the mean and standard deviations of the results.

Table 6.2: Global MILP results using Gurobi solver on the NHTSA 13 use case.

Set Linear / Number of Time Misclassification

size Quadratic axes (sec) error (%)

Mean SD Mean SD Mean SD

100 Linear 4.0 0.0 0.39 0.11 10.64 2.63

100 Quadratic 1.0 0.0 0.15 0.02 7.38 1.73

200 Quadratic 2.0 0.0 2.54 1.33 7.31 1.54

500 Quadratic 2.0 0.0 63.63 79.76 4.2 0.76

1000 Quadratic 2.0 0.0 908.04 838.9 2.67 0.42

In contrast with lp solve, the Gurobi optimizer is able to successfully solve the problem

with the linear option based on the set containing 100 scenarios with equal distribution be-

tween G and NG scenarios. Four axes were needed by the model to complete the optimization,

with an average computing time of 0.39 second, with a corresponding mean misclassification

error of 10.64%. The linear option could not go beyond that complexity, and we switched

to the quadratic option. For the same set size, the solver managed to give instantly better

results, with a total mean misclassification error of 7.38% while using one axis only. Then, as

we increased the size of the training set, two axes were needed by the solver to complete the

optimization process for the equally-distributed set sizes of 200, 500 and 1,000. Impressive

results were delivered, as the mean misclassification error kept on significantly decreasing

with the growing set size; from 7.31% for a size of 200, to 4.2% and 2.67% for sizes of 500 and

1,000 respectively. However, the solver needed significantly more time to reach its objective

as the initial set grew. Specifically, the set size of 1,000 scenarios required an average time of

around 15 minutes, with a standard deviation of 14 minutes, whereas the smaller training sets

required mere seconds. This contrast in time consumption shows the growing complexity of
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this methodology when slightly increasing the set size of scenarios the model is based upon.

Furthermore, when we tried this model on bigger initial sets, no successful results could be

obtained in a reasonable amount of time, at least not meeting the industrial specifications.

As a conclusion, the Global MILP approach for a border model was demonstrated to

be effective on small training sets, especially when tested with a commercial solver which

is more robust in dealing with the complexity of the approach. Nonetheless, the industrial

requirements lead us to try to adapt the mathematical model in order to reduce its intrinsic

complexity, with the aim of delivering a border model that would not be dependent on a

commercial solver while nevertheless meeting the industrial specifications. It should also be

considered that this new border model should be able to support much larger set sizes, in

order to be able to tackle other real use cases of higher dimension. This is why we propose the

following approach that focuses on detecting one axis at a time, as detailed in next Section.

6.3.3 Iterative MILP Approach

This second approach is made of two building blocks. Similarly to the Global approach

presented above, the One Axis method, first component of the Iterative approach applies to

cases where the NG area is made of a single connected component, but discovers the axes in

an iterative manner, one after the other. The second component uses clustering to handle

the general case of multiple connected components, using the One Axis method to handle

each cluster in turn. When the One Axis fails, a new step of clustering is recursively called.

The One Axis step focuses on decomposing the problem of finding all border separa-

tions simultaneously into smaller problems that detect each axis one at time via successive

iterations. Technically, the axes are detected by minimizing the error produced by the wrong

classification of G scenarios. After the first axis has been identified, some scenarios are

correctly classified as G by this axis, and other scenarios are classified as NG. The latter

scenarios can be a mixture of G/NG scenarios awaiting to be separated as illustrated once

more on Figure 6.7. Before moving on to detect the next axis, the idea is to eliminate the G

scenarios that have been correctly classified by the first axis. In fact, as explained previously,

these scenarios are the ones that have the main influence on the axis equation, and since

they have been correctly classified now, they can be eliminated, thus reducing the number of

constraints in the model, i.e. the model complexity. Throughout the iterations, the model

continues to add consecutive border separations until no more G scenario is left in the input

space. This One Axis step has been tested with both solvers, lp solve and Gurobi.

The Clustering step of the Iterative Model approach focuses on the cases where there

are multiple distinct NG zones in the input space. So far, we have only considered a single

NG area, that can be represented by a fixed model tree and the corresponding rigid structure

of equations. This structure needs to be set before launching the optimization, which gives no

flexibility to the approach. The idea now is to perform clustering on the NG zones when the

One Axis method is unable to add another axis that correctly separates some G scenarios.

After clustering, the One Axis solver is launched on each cluster separately.
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We will begin by detailing the One Axis approach, presenting results on test cases with a

single NG zone before moving to the clustering step.

Iterative One Axis Algorithm Because one axis is sought at a given iteration, and with

similar notation than for Equations (6.3) and (6.4) (though N and NG now relate to the

current training set, that will be different at each iteration of the One Axis algorithm), the

constraints now are:

∀i ∈ [1, NG],
∑
j

(α+
j − α

−
j ).Xij + εi ≥ δ (6.7)

∀i ∈ [NG + 1, N ],
∑
j

(α+
j − α

−
j ).Xij ≤ −δ (6.8)

where εi represent the error for each G scenario, which is required to be strictly positive

(and lead to reverse the signs of both equations for simplicity of notations): While the NG

constraints are still required to be exactly met (with tolerance δ), errors are allowed for the

G scenarios.

These equations (6.7) and (6.8) are much simpler than Equations (6.3) and (6.4) related

to the Global MILP model. Indeed, we are now looking for one single axis, hence the variable

k has disappeared and there is a single constraint per scenario. Also, there is no need any

more for the Boolean variables to indicate which axis separated which scenarios. On the

other hand, the small δ constant is still relevant to avoid getting trivial solutions that do

not respond to the problem objective, and has been also added to the G constraints after

thorough testing.

Finally, errors on the G scenarios are admissible, but should nevertheless remain as small

as possible: they also have been added to the objective function, to be minimized:

min
∑
j

(α+
j + α−j ) + λ

∑
i

εi (6.9)

Because in fact we now have two objectives, a new hyper-parameter had to be added, the

positive constant λ, that will need to be set by the user and will tune the balance between

the classification error on the G scenarios and the coefficients of the axis under scrutiny.

However, its value is problem-dependent, and maybe even iteration-dependent. For instance,

if we apply the One Axis algorithm to the test case #2 of the first model with the linear

option, we obtain the results shown in Figure 6.14 with a weight value of 10.

We can clearly observe here the way the iterative One Axis algorithm proceeds. After

the first axis is found, the G scenarios which are on the upper side of the axis, i.e., which are

correctly classified, are removed before continuing with the next iteration. Then, the solver

will be asked to find the next axis to separate the remaining G scenarios, and will continue

doing so until there is no G scenario left. We can also see that the problem was solved here
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Figure 6.14: One axis edition of MILP realized on test case #2 consisting of 50 scenarios

including G scenarios (green) and a single NG disk zone (red). First axis (left) and second

axis (right) are found consecutively by the solver with δ = 0.05 and λ = 10.

with two linear axes instead of three as done previously with the Global model (Figure 6.10).

This is explained by the fact that we have written the constraints equations in a way that

prohibits projection errors for the NG scenarios (by adding the classification errors εi to the

G constraints equations). Thus, the axes will pass by the NG scenarios, and this is why

the solver could solve the problem using two axes only. The other test cases where one axis

is enough to complete the separation process were also successfully solved, and the results

are similar to the ones obtained with the Global approach. However, bigger values of the

constant λ could be needed for obtaining good results. For instance, for the test case number

#3, we tried several values of λ. Figure 6.15 shows the results obtained for λ = 0.1, 1, 10, 100.

For the values of λ equal to 0.1, 1, and 10, the solver is unable to detect the second axis.

The weight is not high enough to effectively impact the objective function. As for the value

of 100, the solver is again able to solve the problem correctly, especially that is was able to

detect the first circular axis (in contrast with the previous values of λ tested). However, it

still outputs a very elongated ellipse as the second axis. We decided to settle for this problem

on a value set to 1000 for λ, whose results are illustrated in Figure 6.16. Here, the second axis

is less elongated than the case with λ = 100, while the first circular axis remains correctly

identified. Therefore, the λ parameter becomes a new hyper-parameter to effectively tune for

this approach to deliver successful results.

The solver managed to detect the two axes that delimit the NG scenarios apart from the

G scenarios, although it was unable to find the inner circle due to lack of points, as discussed

in Section 6.3.2. Nevertheless, it is clear that the iterative One Axis approach is much more

flexible than the Global approach because there is no need any more to set the number of

axes a priori, at the beginning of the optimization process, and adjust it by trial and error.

The One Axis approach iteratively identifies the need for an additional axis, until a complete

solution is delivered. The price for that, however, is the additional hyperparameter λ added
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Figure 6.15: One axis edition of MILP realized on test case #3 consisting of 200 scenarios

including a single NG zone (red) located between two concentric circles separating them apart

from the remaining G (green), while changing the value of the λ hyperparameter (δ = 0.05).
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Figure 6.16: One axis edition of MILP realized on test case #3 consisting of 200 scenarios

including a single NG zone (red) located between two concentric circles separating them apart

from the remaining G (green). First axis (left) and second axis (right) are found consecutively

by the solver with δ = 0.05 and λ = 1000.

to the model.

Iterative Clustering Now that we have shown that the methodology is effective for a

single connected NG area, let us move to the second step of this approach, the clustering,

in the case where the NG area has more than one connected component, that cannot be

solved directly with the approaches proposed so far. As said, the idea is to use a clustering

technique on the remaining scenarios as soon as the solver is unable to find another axis that

correctly separates at least one G scenario from the other ones. The goal of using clustering

is to distribute the NG zones into different subproblems and to tackle them independently:

The One Axis approach is applied to each cluster, and the process is repeated until all G

scenarios are correctly classified. Hence, not only the tree representation is built step by step,

without specifying it in advance, but also much more complex trees can be built (see e.g.,

Figure 6.19) thanks to the intertwining of clustering and solving.

The Process In order to implement this hybrid approach, several classes have been

created in Python, as shown in Figure 6.17.

A parent class named Node is first created. It contains two attributes, left leaf and

right leaf, and a method called predict() to evaluate whether the scenario is G or NG. Then,

two other classes called Axis and Cluster are created as inherited classes from the Node

class. On one hand, the Axis class defines its right leaf as a new Node object instance and

its left leaf as 0. This means that, when an axis has been used, the node splits to only G

scenarios correctly classified to the left, and the rest of the optimization continues to the

right. On the other hand, the Cluster class defines its right and left leaves as new Node
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NodeNode

- left leaf: ll
- right leaf: rl

predict()

Axis
<Node>

Axis
<Node>

- left leaf = 0
- right leaf = Node()

predict():
if y_axis > 0:
    return 0
else:
    return self.rl.predict()

Cluster
<Node>
Cluster
<Node>

- left leaf = Node()
- right leaf = Node()

predict():
if y_cluster == 0:
    return self.ll.predict()
if y_cluster == 1:
    return self.rl.predict()

Figure 6.17: Classes created for the tree representation of the Iterative approach of MILP:

the Node class is parent to the Axis and Cluster classes.

object instances since no G/NG separation has occurred. The optimization then resumes in

both leaves separately.

As to the predict() function, it should ultimately output a value of 0 if the scenario is

classified as G and 1 if it is NG. Each derived class applies it to the scenario to be predicted.

For the Axis class, the following value is first calculated: yi,axis =
∑

j αj .Xij . If it is strictly

positive, then the outcome is set to 0 to indicate a correctly classified G scenario. Otherwise,

the outcome is redirected into applying the prediction on the right leaf of the axis in a recursive

fashion. As for the Cluster class, we first determine to which subgroup, left or right, the

scenario belongs to after applying the cluster on it. Then, depending on the outcome, we

redirect the recursive predict() function to the left or to the right leaf. In that way, we are

building the tree representation step by step to ultimately output the correct prediction when

the method has terminated and the tree has been completed.

As for the clustering technique, we have chosen the k-means clustering which partitions

the observations into clusters depending on the nearest means, also called cluster centers or

centroids. Plus, we fit the clustering only on the NG scenarios to ensure that we partition the

corresponding areas into different clusters. In this work, we set k = 2 to test this approach

with 2 clusters created each time. The main function of this whole methodology milp one
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is briefly summarized in Algorithm 6.

Algorithm 6: MILP One Axis Main Function: milp one(training set)

if all scenarios in training set are NG then

return 1

else

• Build MILP model based on Equations (6.7, 6.8, 6.9) and launch solver

• Retrieve errors εi of Equation (6.7)

if there is at least one G scenario correctly classified with εi = 0 then

• Create new Axis instance: New axis

• Create subset by eliminating the scenarios that have been correctly

classified is G

• Launch recursively the function on the right leaf of the Axis instance:

New axis.rl = milp one(subset)

• return New axis

else

• Fit k-means clustering on the NG scenarios

• Create new Cluster object instance: New cluster

• Create two subsets corresponding to each cluster obtained: left cluster and

right cluster

• Launch recursively the function on the left and right leaves of the Cluster

instance: New cluster.ll = milp one(left cluster) and New cluster.rl =

milp one(right cluster)

• return New cluster

end

end

This function is developed to be used recursively in order to build the tree representation

as the optimization proceeds. When it is called on a set of scenarios, it checks first if all

the scenarios are NG. This means that the problem has been resolved completely, and the

function returns the value 1. If this is not the case, the MILP model is built based on the

constraints and objective functions of Equations (6.7, 6.8, 6.9). We then examine the values of

the errors found in the constraint equations of the G scenarios. If at least one of these values

is equal to 0, this means that the model was able to find an axis that correctly classifies at

least one scenario as G by separating it from the rest of the scenarios. A new Axis instance

is thus created, and the scenarios with zero errors are eliminated to create a new subset.

Since the left leaf of the Axis object represents these G scenarios and has a prediction value
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of 0, the main function milp one is then called on the new subset through the right leaf of

the object to pursue the border model process. The function returns the Axis object in an

effort to build the tree representation step by step.

However, if none of the error values is equal to 0, this indicates that no axis has been found

by the solver that could correctly classify at least one scenario as G, meaning that multiple

NG distinct areas are present in the input space. We then perform k-means clustering by

fitting it into only the NG scenarios to capture the NG areas centroids more effectively. A

new Cluster object is hence created, and the two clusters that emerge help in defining the

two subsets derived from this clustering. Finally, the main function milp one is called on

both clusters through the left and right leaves of the Cluster object, and the function returns

the Cluster object to pursue the tree construction.

To better visualize this methodology, we tested it on two new test cases #4 and #5

containing 500 scenarios with 2 and 3 distinct disk NG areas respectively. Let us begin with

test case #4, with 2 NG zones. The final tree representation can be seen in Figure 6.18,

whereas Figure 6.19 shows the visual step-by-step unfolding of the algorithm.

500 scenarios

248 G 252 scenarios

179 scenarios 73 scenarios

101 G 56 G 17 NG78 NG

Axis 1

Axis 2 Axis 3

Cluster 1

Figure 6.18: Final tree representation of the results of the Iterative MILP approach applied

on test case #4.

Test case #4 consists of two NG disk areas as seen in graph 1 of Figure 6.19 for a total of

500 scenarios. The solver first finds a quadratic axis that classifies correctly 248 G scenarios

out of the 500 (graph 2). The remaining 252 scenarios are then evaluated by the model for

a possible axis (graph 3). However, the solver was unable to find such an axis, which leads

the algorithm to do one k-means clustering step. The scenarios are divided into 2 clusters of

179 and 73 scenarios respectively (graph 4). Notice that the resulting centroids are indeed

the centers of the NG areas. The algorithm begins by examining the first cluster (graph 5).
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1

2 3

4

5 6

7 8

Figure 6.19: Step-by-step results of the Iterative MILP approach applied on test case #4

containing two distinct NG areas.
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The solver succeeds in separating all the 101 remaining G scenarios by a single axis from the

78 NG scenarios (graph 6). Finally, the algorithm handles the second cluster of 73 scenarios

(graph 7), where the solver succeeds in correctly classifying all 56 G scenarios apart from the

17 NG scenarios (graph 8). Problem solved.

We now turn to the more complex problem of test case #5 where three NG failed disk

areas are present in the search space. Figure 6.20 illustrates the final tree representation,

as the border model succeeds in resolving the problem while showing the different axes and

clusters added on its way in Figure 6.21.

500 scenarios

93 G 407 scenarios

88 scenarios 319 scenarios

71 G 89 G 230 scenarios17 NG

Axis 1

Axis 2 Axis 3

Cluster 1

169 scenarios 61 scenarios

Cluster 2

91 G 78 NG

Axis 4

55 G 6 NG

Axis 5

Figure 6.20: Final tree representation of the results of the Iterative MILP approach applied

on test case #5.

Graph 1 of Figure 6.21 shows the three distinct NG areas in the search space, and the

500 scenarios of the initial training set. The solver succeeds in identifying a first axis that

separates 93 G scenarios from the remaining 407 scenarios (graph 2). Because it was unable

to continue due to the presence of the three NG areas, a first clustering is realized (graph 3)

that divides the 407 scenarios into two clusters of 88 and 319 scenarios. In the first cluster,

there is only one NG area of 17 scenarios which is successfully encircled by a second axis

identified by the solver (graph 4). As for the second cluster, a third axis is identified, that

delimits 89 correctly classified G scenarios from the remaining 230 scenarios (see graph 5).

Then, another clustering needs to be launched to create two clusters of 169 and 61 scenarios,

each containing one NG area (graph 6). Ultimately, the solver completes the problem by

adding the fourth and fifth axes which encircle the 78 and 6 NG scenarios of each cluster



150 6.3. MILP BASED BORDER MODELS
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7 8

Figure 6.21: Step-by-step results of the Iterative MILP approach applied on test case #5

containing three distinct NG areas.
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(graphs 7 and 8).

The proposed methodology demonstrated its effectiveness on these two test cases. It

is worth noting that the algorithm had to create two clusters for the test case number 5

with three distinct NG areas in order to divide them and solve the problem. A possible

enhancement would be to increase the number of clusters, though this raises the issue of how

to determine which number of clusters is optimal, which would require the remodeling of the

Cluster class.

Finally, the method is applied on the real use case NHTSA 13 to evaluate its performance,

after all inputs have been normalized in order to improve the numerical stability. It is applied

to different training set sizes, while showing the number of axes used, the number of clustering

steps used, the overall time consumed by the solver, and the corresponding misclassification

errors computed on the full grid of 470,587 scenarios. Similar to the Global MILP approach,

11 independent runs were performed with 11 different training sets for each training set size

considered, and Table 6.3 reports the mean and standard deviations of the results.

Table 6.3: Results of the Iterative MILP algorithm on the NHTSA 13 use case.

Set Linear / Number of Number of Time Misclassification

size Quadratic axes clustering steps (sec) error (%)

Mean SD Mean SD Mean SD Mean SD

100 Linear 5.0 1.48 2.0 1.13 0.35 0.11 10.61 2.43

200 Linear 8.91 2.84 3.36 1.67 0.68 0.17 7.69 1.76

500 Linear 17.36 2.9 8.55 2.23 1.73 0.29 6.19 1.03

1000 Linear 33.18 3.71 17.36 3.05 3.51 0.31 5.15 0.48

5000 Linear 114.45 9.22 76.55 5.02 17.88 0.67 2.82 0.14

10000 Linear 193.45 11.16 137.27 7.39 34.94 0.56 2.19 0.08

100 Quadratic 1.0 0.0 0.0 0.0 0.13 0.01 8.96 1.59

200 Quadratic 1.18 0.57 0.0 0.0 0.24 0.1 7.08 1.94

500 Quadratic 3.09 1.0 0.27 0.45 1.23 0.37 5.56 0.85

1000 Quadratic 5.09 1.5 1.45 0.66 3.38 0.59 4.08 0.65

5000 Quadratic 19.09 1.88 6.18 1.11 29.42 1.71 2.2 0.25

10000 Quadratic 37.82 3.04 13.36 1.23 68.92 2.43 1.78 0.09

The main advantage of this approach, compared to the Global MILP modeling, is that

is was able to successfully complete all experiments in a reasonable amount of time (under

the one minute time frame). The experiments were made for training sets of 100, 200, 500,

1,000, 5,000 and 10,000 scenarios, each containing an equal number of on-border and off-

border scenarios. Plus, they were tested with the linear and quadratic options to evaluate

the difference in numbers of axes and 2-means clusterings used along the optimization process.

Lastly, the misclassification error is calculated for all 470,587 scenarios of the use case full

grid. For each scenario, we evaluate where it fits in the tree representation, and compare the

predicted output to its real label.

As expected, the numbers of axes and 2-means clustering steps are much larger for the



152 6.3. MILP BASED BORDER MODELS

linear option than for the quadratic option, and, for both options, these numbers increase with

the size of the training set:. For instance, the set sizes of 100, 1,000 and 10,000 need in average

5, 33 and 193 linear axes with 2, 17 and 137 clustering steps respectively, whereas they only

require in average 1, 5 and 38 quadratic axes along with 0, 1 and 13 clustering steps to reach

the same objective. At the same time, for both options, the total mean misclassification error

tends to decrease when increasing the set size. Nonetheless, the quadratic option achieves a

better accuracy than the linear option for all experiments. For example, the solver reached

linearly 10.61%, 5.15% and 2.19% of total mean misclassification error for the sets of size 100,

1,000 and 10,000 respectively, whereas it computed 8.96%, 4.08% and 1.78% of total error

for these same sets using the quadratic option.

Comparing now Tables 6.3 and 6.2, the Iterative approach seems to be clearly more effec-

tive that the Global approach, mainly because it was able to reduce its intrinsic complexity

by offering a solution that breaks down the problem into step-by-step tree building. Plus, it

can handle the presence of multiple NG distinct areas thanks to the clustering steps without

the need of manually adjusting the tree or choosing the number of axes in advance. This

adaptive construction of the tree representation gives more flexibility and results in a broader

application range thanks to the reduction of the mathematical model complexity. However,

the performance of the Global approach is better than that of the Iterative approach in terms

of accuracy for the case of 1,000 scenarios in the training set (2.67 ± 0.42 vs 4.08 ± 0.65) -

though it should be kept in mind that the Global approach needed between 10 and 30 times

more computing time (with a very large standard deviation). However, only 2 axes were

needed without clustering, against 5 for the Iterative solution, making the Global approach

much more explainable than the Iterative one.

This observation could be a hint that clustering steps should be delayed after more useful

axes have been found in a given One axis step, based on some well-defined criterion. Another

hint is given by taking a closer look at graphs 2 and 5 of Figure 6.21: while the axes built by

the algorithm correctly classify a large number of G scenarios, there are other G scenarios

that could still have been also classified before performing the next clustering step. This

is due to the fact that the algorithm finds it more beneficial to perform clustering than to

generate more axes and separate more G scenarios from the NG ones. This also goes against

the industrial specifications for explainability: The separation of scenarios into clusters is less

explainable, and hence clustering should be used only if there are no G scenarios left to be

classified. Therefore, in the example shown, a handful of axes could still have been detected,

leading to a better close-up of the NG areas, before performing clustering. A possible solution

could be to add more variables and Booleans to force the model to go in this direction, but

it would increase the model complexity. Instead, we decided to develop a further model: the

Greedy model is presented in next Section.
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6.3.4 Greedy MILP Algorithm

The Greedy Model approach draws heavy inspiration from the Iterative Model. Its main

objective is to force the algorithm to find all possible axes that delimit the NG area and only

switch to clustering when there is absolutely no G scenario that could be further correctly

classified. The only other difference with the Iterative Model is the method used to find a

certain axis, but the general idea of detecting axes step-by-step with clustering remains the

same. The general picture of the Greedy approach is described in Algorithm 7, and will be

detailed in the following paragraphs.

Algorithm 7: MILP Greedy approach for finding a single axis

Init: randomly pick p scenarios s.t. an axis that passes through these points exists

• Compute the ~α coefficients of an axis passing though the current p scenarios

• Compute the projections of the current p scenarios on this axis

• Compute the value of the objective function used to evaluate the axis (Equation

(6.10))

• Change the p current scenarios and loop

Return the axis that minimizes the objective function while keeping all NG

scenarios on the same side of that axis

First, we begin by picking p NG scenarios (p being typically equal to n, the dimension

of the use case), in such a way that an axis that passes through them exists. For the two-

dimensional test cases, we chose to draw the first scenario randomly, whereas the second one

is picked following a probability distribution in which the probability to choose one point is

proportional to its distance with the first scenario, in an effort to chase farther points.

The next step is to make sure that the axis exists and compute its coefficients ~α, which

amounts to solving a homogeneous linear system A~α = 0, where A is the matrix containing the

coordinates of the chosen scenarios of dimension p× (n+1) as the coordinates are augmented

with X0 = 1 to account for the constant coefficient of the axis equation; And ~α is the vector

of the unknown axis coefficients. If p = n, the system is underdetermined. Furthermore,

we need to avoid the trivial solution x = 0. Hence we solve this system by Singular Value

Decomposition (SVD) on the matrix A.

Next, the projection of all the scenarios on the axis:
∑

j αjXij are calculated to lay the

ground for the computation of the objective function to be minimized for the choice of the

best axis, which is defined as follows:

∑
i∈NG

N2
G

∣∣∣∣∣∣
∑
j

αj .Xij

∣∣∣∣∣∣
+

−
∑
i∈G

∣∣∣∣∣∣
∑
j

αj .Xij

∣∣∣∣∣∣
+

(6.10)

The first part of this objective function corresponds to the sum of the projections of the

NG scenarios that had a positive projection on the axis, meaning that they were incorrectly
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classified. The second term is the sum of the positive projections of the G scenarios that

were correctly classified. The axis with the minimum criterion is chosen, which means that we

are looking for an axis that can simultaneously minimize the NG scenarios misclassification

and maximize the G scenarios classification. A weight, equal to the square number of G

scenarios, has been added to the first term of this equation to give more importance to the

NG misclassification when scoring the axes.

After calculating the criterion for the initial p scenarios, we are set to explore the input

space to detect the best axis candidate. In the case p = n = 2, the idea is to keep one

scenario of the current pair and to do an exhaustive search among all other possible NG

scenarios which were wrongfully classified by the axis formed by the initial p points. For

each combination of scenarios, the corresponding axis coefficients are computed, as well as its

objective function. The axis that minimizes the objective function is retained, and is returned

if it classifies all NG scenarios on the same side. Otherwise, it repeats the whole procedure

while considering the p scenarios of the best axis obtained as initial scenarios. Note that in

particular cases where the algorithm is unable to find an axis with better criterion than its

initial axis, other initial scenarios are drawn and the procedure repeats.

Finally, after finding the best axis that meets all requirements set, the G scenarios cor-

rectly classified by this axis are discarded, and the algorithm proceeds to the next axis detec-

tion, in a iterative way similar to the One axis MILP algorithm (Section 6.3.3). Nonetheless,

if the chosen axis was unable to classify a single G scenario, then, and only then, the model

performs a 2-means clustering step on the NG scenarios.

Furthermore, a few minor algorithmic improvements were added to ensure that the al-

gorithm always manages to detect a meaningful axis: i) axes that already exist in the tree

representation become taboo, and cannot be used again; ii) to avoid that the axis search is

only performed in a single direction starting from the initial scenarios, the coefficients of any

chosen axis are multiplied by −1 and the search is repeated for the same axis in the other

direction.

In order to illustrate the proposed Greedy approach at work, it was applied to test case

#5, containing the three NG distinct zones, using the linear option. The main steps are

presented in several Figures below.

Figure 6.22 shows the steps taken by the Greedy MILP approach until it reaches its first

clustering step.

In this figure, we can see the main difference between the Greedy approach and the

previous Iterative approach. For instance, the graph 2 in Figure 6.21 shows an axis found

by the algorithm that was able to classify some G scenarios around the NG areas. However,

the model performed a clustering step immediately after that in graph 3. In contrast, for

the Greedy approach, graphs 2 to 7 in Figure 6.22 illustrate the different steps to clean all G

scenarios around the NG areas, even if the axis is introduced to classify a single G scenario

as seen in graph 5. When all these scenarios are eliminated and no possible axis could classify

any more G scenarios while simultaneously having all NG scenarios on the same side of the
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Figure 6.22: Step-by-step results (Part 1) of the Greedy edition of MILP applied on test case

#5 containing three distinct NG areas until reaching its first clustering used.
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axis, the algorithm turns to clustering (graph 8). This behavior seems to meet the industrial

requirements for explainability, implying that clustering should be used as little as possible,

in contrast with the Iterative approach.

Nonetheless, as the algorithm has to deal with less and less scenarios, it will ultimately

trigger a clustering step even though an axis should be detected instead. This aspect can be

seen in the visual continuation of the previous graphs, presented in Figure 6.23.

9 10

11 12

Figure 6.23: Step-by-step results (Part 2) of the Greedy edition of MILP applied on test case

#5 containing three distinct NG areas after performing its first clustering.

In graph 9, an axis was successfully introduced by the algorithm to the first cluster,

and the corresponding G scenarios on its right side were discarded. However, in graph 10,

the algorithm performed another clustering step before introducing two more axes in graphs

11 and 12 to complete the classification of the G scenarios in this cluster. In fact, while

the algorithm managed to successfully ”encircle” the NG scenarios, it used an unnecessary

clustering, especially when it could have detected Axis 9 of graph 12 directly after identifying

Axis 7 of graph 9, without any additional clustering. This phenomenon happened a second

time while completing the problem as seen in Figure 6.24.

When turning to the second cluster, the algorithm found two axes that successfully de-

limited the two NG areas (graphs 13 and 14). Another clustering is unavoidable here to
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Figure 6.24: Step-by-step results (Part 3) of the Greedy edition of MILP applied on test case

#5 containing three distinct NG areas until completing the problem.

separate the NG areas (graph 15). While the model directly finds an axis to finish the clas-

sification in the first cluster, it had to perform yet another clustering in order to find the

final axis number 13 that ends the whole process. However, this axis could have been found

without the use of this fourth clustering step: Whereas the Greedy border model meets the

industrial requirements when sufficient scenarios are available in the input space, it still per-

forms unnecessary clustering steps when less scenarios are present. Nonetheless, since the

industrial requirements are met for a big amount of scenarios, which represents most real use
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cases, the Greedy MILP approach was chosen at this development stage to be enhanced and

industrialized for greater performance and broader application range, namely for use cases

of larger dimension, more representative of actual use case, and all further developments of

the Greedy approach were outsourced to EURODECISION, one of the top French companies

specialized in mathematics and resource optimization.

In addition to enhancing the model, another objective set to EURODECISION is to be

able to launch the model symmetrically for the G scenarios. In fact, the model developed so

far produces axes that pass between NG scenarios. The idea is then to repeat the procedure

for the G scenarios. In that way, we will obtain two tree representations which will create a

sort of unknown zone between them. This unknown zone represents the border uncertainty

between the G and the NG scenarios. Then, by introducing new points in this uncertain

zone, one can hopefully improve the localization of the border, reaching out the long term

goal of an active learning procedure.

After some months of development, EURODECISION sent a first industrialized Greedy

border algorithm. In order to take into account the two tree representations, they updated

the way the model can predict the scenarios G/NG evaluations by adding a third state

called Undefined. The model now returns two trees: the first one predicts G areas while

setting the rest as Undefined, whereas the second predicts NG areas while leaving the rest

as Undefined. Then, to evaluate the final prediction of the scenarios, the model applies the

following Table 6.4.

Table 6.4: Final prediction of Greedy model using the G and NG trees.

Prediction by NG tree
Prediction by G tree

Good Undefined

Undefined Good Undefined

No Good Undefined No Good

If the G tree returns Good and the NG tree returns Undefined, then the final output is

Good. Similarly, if the NG tree return No Good and the G tree return Undefined, then the

final evaluation is No Good. Finally, if both trees return Undefined, or output contradictory

G/NG outputs, then the final prediction is Undefined.

Conclusion on MILP Border Models The delivery of this algorithm by EURODECI-

SION occurred during the final couple of months of this thesis. Upon delivery, EURODE-

CISION presented the application of the border model on some test cases, while noting that

the addition of new points between the two trees was not yet realized. Unfortunately, the

testing and application of the model were not able to be conducted during the thesis due to

the lack of remaining time, and some API issues.

However, the Iterative “One axis at a time” MILP approach introduced and experimented

with in Section 6.3.3 remains a very effective approach, that is able to represent the border in

a reasonable duration of time and achieves acceptable accuracy on the whole grid of scenarios.
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It even scored error values very close to, if not even slightly lower than, the Neural Network

approach for the same sizes of training sets, and without using the iterative active learning

process described in Section 6.2.1. For instance, the sets of 1,000, 5,000 and 10,000 scored

initial misclassification errors of 6.23%, 2.78% and 2.81% by the Neural Network, as compared

to 4.08%, 2.2% and 1.78% for the Iterative MILP model respectively.

In the mean time, and even though the MILP approaches fulfill many of the industrial

requirements, as argued above, another completely different possible path to explainable

and efficient solutions was also tried, in order to explore several possible complementary

approaches. It will be introduced and discussed in next Section.

6.4 Genetic Programming Border Models

Genetic Programming (Section 3.2.3) applied to Symbolic Regression evolves analytical

models represented by trees. As such, GP models are not black boxes, and can be said to be

explainable, provided the bloat phenomenon is controlled, i.e., the size of the tree is not too

large.

6.4.1 Methodology

Symbolic Regression starts with a number of fitness cases (examples from the training

set, in the ML vocabulary), and aims to minimize the fitness, most likely the RMSE, sum of

squares of the differences between the fitness case output and the tree output. The user must

first define the operators (nodes of the trees): for Symbolic Regression, the minimal set is

made of the standard binary operators +,−, ∗, \, where \ is the so-called protected division,

that returns 1 when the denominator is 0 (or very small) to avoid exceptions; However, any

other mathematical unary operators can be added, e.g., sine, cosine, exp, . . . to the ternary

conditional operator (if, condition, branch1, branch2) that returns branch1 if condition is

true, branch2 otherwise. The terminals (leaves of the trees) are generally made of the

variables of the problem and the real-valued constants that are set at initialization time and

usually stay fixed ever after.

The user must also define the variation operators: crossover, very likely to be the standard

sub-tree exchange (see Section 3.2.3), and mutation, where point mutation (replacement of

a subtree with a randomly generated subtree) is the most frequently used mutation; The

initialization procedure (the most popular today is the ramped half-and-half); And the

selection operators (usually this amounts to choose the size of the tournament selection).

Last but not least, the population size and the maximal number of generations complete the

set of hyper-parameters.
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6.4.2 First Results using DEAP

A first attempt to build a border model with Genetic Programming was conducted using

the DEAP library (Distributed Evolutionary Algorithms in Python (Fortin et al., 2012)),

a free open-source evolutionary computation framework that includes multiple features for

quick prototyping and testing. The operators and terminals (two variables X1 and X2 in

the two-dimensional case) were set as described above.

A first trial with DEAP was run on the two-dimensional test case #1 where the NG

area is located in the lower right corner (see Figure 6.8). After a few trial-and-errors, for

the 50 fitness cases of this use case, the best results were obtained with a population size

of 1,000, a number of generations of 100 and a tournament size of 50. Although the best

errors achieved were less than 10%, with very complicated analytical equations to represent

the border, we decided to reach out to professionals with expert knowledge in the field to

guarantee a correct implementation of Genetic Programming, and give us an idea on its

potential as possible border model.

We contacted MyDataModels, a startup company specialized in self-service machine

learning for small data, whose technology is based on a proprietary Genetic Programming

engine called TADA. They offer a whole online platform on which GP models can easily be

built from tabular data even by non-expert users. And the models generated by TADA are

generally rather small.

6.4.3 Results using TADA

First, we tried the TADA model on test case #1 (see Figure 6.8) where a single NG area

is present in the right lower corner. It was tested on initial sets of 50, 200 and 500 initial

scenarios respectively. The numbers of generations and population size were kept to their

default values (100 and 500 respectively). The test accuracies obtained are: 80%, 93.33% and

99.33% for the 50, 200 and 500 scenarios initial sets respectively. Furthermore, the platform

provides a Python 3 script of two output functions, which are then compared to compute a

prediction function that is able to compute if a given scenario is labelled G or NG. We thus

used this function to predict the G/NG evaluations of a full grid of this test case. The results

are shown in Figure 6.25.

We can observe that the resulting test accuracies reflect the capacity of the algorithm

to precisely detect the border depending on the initial sets provided. Obviously, as could

be expected, the bigger the initial set, the more information the algorithm has to precisely

detect a finer border, the better the results.

Then, we tried the TADA model on the 10,000 set size extracted of the six-dimensional

NHTSA 13 use case. We chose what variable corresponds to our goal in the study. Because

we want a border model, we picked the output in our data set that gives us the information

about whether the scenarios are “on” the border or not. Since it is a Boolean variable, the

model directly considers the problem to be a classification task. Then, the input variables
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Figure 6.25: Visual representation of the TADA approach on a grid of test case #1 with a

single NG corner area applied to 50, 200 and 500 initial scenarios.

which are allowed to be used by the model are defined. Next, the number of generations

and the population size are defined. We chose the default parameters already picked: 100

generations and 500 population individuals. Finally, the model is launched by splitting the

data set automatically into three data sets: a training set of 4,000 scenarios, a validation set

of 3,000 scenarios and a testing set of 3,000 scenarios, and takes approximately 5 minutes to

complete its operation which is deemed acceptable according to industrial restrictions. After

it has finished computing, an overview of the model performance and results is accessible.

For instance, it shows which variables it used in its tree representation, as well as test metric

scores such as the accuracy. This border model achieved a test accuracy of 86.17% while only

using three input variables out of the six: Initial velocity of EGO, Initial velocity of V1, and

TTC threshold between V1 and V2 (see Table 6.1).

Next, we applied this model on the full grid of 470,587 scenarios. We obtained a total

error of 14.2%: 13.4% for the border scenarios and 14.5% for the remaining scenarios. We

decided then to try to perform some iterations while adding undecided scenarios, similarly

as we have previously done with the Neural Network model in Section 6.2.2. Fortunately,
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although the learned border model is here a classifier, with Boolean outputs, it also outputs

a “confidence” in [0, 1] that represents how much the model is certain about predicting the

class for each scenario: in fact, the output of the tree is a real value, that gets rounded to 0 or

1, and the confidence is proportional to the proximity to 0 or 1. To have a better idea about

this value, Figure 6.26 shows a histogram representing the cumulative density probability of

that value.
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Figure 6.26: Histogram showing the cumulative density probability of the value “confidence”

generated by the TADA model on the set of size 10,000 stemming from the use case NHTSA

13.

We can see in this histogram that approx. 70% of the scenarios have a confidence be-

tween 0.9 and 1, while the others output confidence values scattered between 0 and 0.9. The

scenarios that have the lowest confidence value (between 0 and 0.1) are definitely the most

undecided scenarios. Thus, we picked some of these and added them to the initial training

set, then learnt a new TADA model, possibly iterating this process several times. Note that

because TADA is an online platform, such iterations cannot be automatically performed, and

all the steps have to be iterated manually. Furthermore, some limitations on the numbers of

models and predictions allowed are imposed daily, which limited the scope of this experimen-

tation overall. Nevertheless, we tested this model across 10 iterations to try to evaluate the

model performance and the error values across the iterations. After completing these itera-

tions, Figures 6.27 and 6.28 show the variation of the accuracy and the total error computed

along the iterations.

We can see in Figure 6.27 that, similarly to the Neural Network context, the addition

of undecided scenarios to the learning set does not imply an improved accuracy, at least
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Figure 6.27: Variation of the accuracy of the TADA model on an initial set of 10,000 scenarios

(5,000 border scenarios and 5,000 other scenarios) across the iterations of adding lowest

confidence scenarios to the initial set.
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Figure 6.28: Variation of the total error computed on all 470,587 scenarios of the NHTSA

13 use case after applying the TADA model based an initial set of 10,000 scenarios (5,000

border scenarios and 5,000 other scenarios) across the iterations of adding lowest confidence

scenarios to the initial set.
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for the 10 first iterations. The initial accuracy was 86.17%, and during the iterations, it

fluctuates between 81% and 88%. As for the errors computed on the full grid (see Figure

6.28), their values and trends mirror those obtained with the accuracy: The error increases

when the accuracy decreases, and the total error takes values between 12% and 18%. While

these graphs draw a lot of similarities seen in the results of the Neural Network border

model applications, the values obtained by the Neural Network in accuracy and error are

significantly better. However, the advantage of the evolutionary approach is the analytical

form of the learned model, that gives us the clear equation of the border that was intended,

similarly to the MILP approach in this respect.

In order to check the sensitivity of the results w.r.t. the hyper-parameters “number of

generation” and “population size”, we ran a series of single run experiments on different

training sets while performing a grid search. The results (test accuracies) are presented in

Table 6.5.

Table 6.5: Test accuracies (in %) of different models using TADA while changing the popu-

lation size, number of generations and the initial set size.

Initial set Population Number of generations

size size 100 500 1000

500

500 75.33 79.33 80.67

1000 81.33 85.33 81.33

5000 87.33 86 85.33

10000 82 84.67 86

1000

500 81 85.33 85.67

1000 85.67 83.33 83

5000 83 89 90.33

10000 88.67 88.33 88

2500

500 85.47 87.6 86.8

1000 84.4 85.33 82

5000 85.2 85.6 91.33

10000 90 89.47 86.13

5000

500 83.2 87.07 89.4

1000 81.53 88 85.53

5000 84.8 87.27 86.07

10000 89.2 91.6 88.53

10000

500 86.17 90.07 85.93

1000 86.2 85.2 89.07

5000 86.17 88.23 88.17

10000 85.6 88.97 92.1

Table 6.5 shows no clear link between the variation of the accuracy and the increase of

the number of generations and population size parameters. All accuracy values are found

between 75.33% (Initial set: 500, Population size: 500, Number of generations: 100) and
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92.1% (Initial set: 10000, Population size: 10000, Number of generations: 1000), which are

inferior to the values obtained with the previous border models.

6.5 Discussion

In short, all three approaches have proven their value in addressing the problem and

embodying an acceptable border model.

1. The Neural Network represents the problem well after being applied on several test

cases. It achieves accuracy values higher than 95% on the test sets with acceptable

error classification values around 5%. The disadvantages of the Neural Network is the

possibility of being stuck in local minima, and its inability in expressing a clear equation

that represents the border as it is required for this final thesis objective.

2. The MILP approach went into different editions leading to a successful industrializa-

tion. This low-cost model gives a clear tree representation and is mainly oriented into

mathematical programming. Its gives clear final equations of the border and delivers

classifications errors lower than the Neural Network. Since the Greedy edition got re-

cently industrialized, it should be tested on a lot of different test cases and be enhanced

and updated continuously to make sure that it broadens its application range on all

possible use cases.

3. Lastly, the evolutionary approach proved to be a promising direction to pursue the

research in the border model area. It can be seen as middle ground between the two

previous approaches, as it can give a clear tree representation at the end while being

easily applied to any type of test case. Nonetheless, the only current hiccup of the

evolutionary approach is the performance of the model as seen in the accuracy and

error values obtained. While the approach was tested on a small set of experiments

only, more research should be conducted to try to improve these values and evaluate

more thoroughly the potential of the evolutionary border model.
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Conclusions

Building a fully autonomous vehicle seems like the natural evolution of automation in

automotive. After perfecting mechanical and electrical systems within the vehicle, the interest

is shifted toward electronic systems dubbed Advanced Driver-Assistance Systems (ADAS)

that aim to assist the vehicle driver while driving and parking. The combination of all

these sophisticated ADAS will lead to the creation of the fully autonomous vehicle. The

ultimate goal is, obviously, to reduce car accidents and increase the overall safety on the

roads. Multiple other benefits underpin the phenomenon of building such vehicle by all

major Original Equipment Manufacturers (OEMs) such as Renault, as well as joined by

recent technology development companies. These advantages include environmental benefits,

more independence and access to driving to all types of people, and overall a better health

for all passengers on board.

However, when conceiving such vehicle, all companies quickly discovered the growing

complexity of a fully autonomous vehicle. Categorizing the vehicle autonomy into levels,

from no automation (level 0) to full automation (level 5) by SAE (2018), seemed the most

reasonable solution to tackle this challenge one step at a time. Each level is defined by a set

of specific conditions under which a given driving automation system is designed to function,

otherwise called Operational Design Domain (ODD), such as traffic conditions, geographic

location, speed range etc. Then, the idea is to complete the technical hurdles of each level

before going to the next while updating all systems accordingly. Naturally, a higher level is

defined by more autonomy features, which in turn requires more different sensors and more

complex algorithms. And in order to validate a level, one must make sure that no system

failures could occur, which could lead to some undesirable car malfunctions. Therefore, the

main challenge of an autonomous vehicle is to test and validate thoroughly every system and

component before industrialization, in order to mitigate potential failures and avoid unwanted

problems on the road.

In an autonomous vehicle, four main systems are present. First, the perception system

is composed of all the sensors needed to detect outside elements from the car environment.

Then, the fusion system receives the objects detected and synchronizes them, before merging
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the information into a unique and more precise mapping of the vehicle environment. Next,

the decision system is fed with all final objects, and computes what the vehicle should be

doing on the road, based on the information transmitted by the fusion system, following a

predefined command law. Finally, the actuators perform all requested instructions prescribed

by the decision system. Hence, the autonomous vehicle represents a highly complex system,

and a failure can occur during any stage of this process. These failures include perception and

fusion system errors, misinterpretation by the decision system, and actuator latency. Plus,

it can sometimes be impossible to trace which component is responsible for a given failure,

due to the complexity of the system as a whole. This is why multiple validation techniques

are explored to form an extensive testing and validation required for each component.

Naturally, software testing is conducted on the million lines of codes included in the

algorithms of all the different components. Nonetheless, this remains insufficient in ensuring

quality testing, as the validation of autonomous vehicles faces numerous challenges (Koopman

and Wagner, 2018). Two main categories of testing are present nowadays. First, real test-

driving is used by major car companies to test the vehicle under various conditions and detect

specific system failures. They can rely on public road testing, though country regulations do

not allow such tests everywhere, and closed course testing, which is safer and less costly, but

not scalable to all possible driving situations on public roads. However, this approach cannot

be solely used to complete the validation process, as studies have shown that hundreds of

years of continuous real test-driving would be needed to demonstrate with 95% confidence

that the autonomous vehicle failure rate is lower than that of the human driver (Kalra and

Paddock, 2016).

That is why, thanks to the increase in computing power nowadays, simulation testing

methods are used to complement real test-driving; And they are also way cheaper. Three

main subcategories can be distinguished here: resimulation injects real driving data into

a numerical model of the command law to try to replicate them in an open loop (while

closed-loop resimulation remains a research and development subject), numerical simulation

generates virtual parameterized data and creates new tests by relying on models of all the

vehicle systems, and the virtual reality simulator allows the person to drive a real vehicle

while connected to its environment through a simulator software. All these techniques are

used in the V-model applied to the validation of the autonomous vehicle, which is designed

to test and validate step by step all requirements until the final acceptance test.

The context of this PhD thesis is that of the numerical simulation testing approach.

People at Renault have designed a complete simulation-based validation chain in order to

address all possible driving situations, also called use cases, which are defined by inputs that

characterize the parameters influencing the autonomous vehicle environment. A combination

of these inputs defines a scenario, which can be launched into an in-house simulation software

called SCANeR Studio (AVSimulation, 2017). Plus, within this validation chain, a massive

simulation platform is being built to accommodate the needs of launching multiple scenarios

at the same time, which is useful in validating the decision system requirements by performing
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Model-In-the-Loop (MIL) testing. MIL testing refers to a simulated environment of the model

to be tested in the absence of physical hardware components. That way, we can verify that

the actions chosen by the vehicle remain safe according to the driving rules, and numerically

validate the decision system requirements while exploring a multitude of scenarios for a

defined use case.

Therefore, the idea of this PhD thesis is to facilitate the validation of the decision system

by aiding the MIL simulations in exploring the use case input space. It takes part in an

industrial project at Renault called ADValue (Tourbier, 2017), which aims at combining

multiple algorithms that compete in exploring the use case input space efficiently to cover all

failure zones in an intelligent manner. In order to do that, the ultimate goal is to conceive

models and develop algorithms that use time and available resources efficiently, in order to

avoid simulating all imaginable conditions of all use cases, which would be highly expensive

in terms of computing power. The aim of this thesis is then to feed the industrial project

with novel algorithms and methods to achieve its objective.

The main contributions of this PhD thesis are threefold:

1. Failure detection

One algorithm is developed to detect a maximum number of failures of the autonomous

vehicle command law while exploring the input search space for a given use case. In

order to abide with the industrial requirement of reducing the overall computing power

needed, which translates into using the simulator as little as possible, a Random Forest

model is built as a surrogate model of the simulator, and is used intensively through

the optimization loop (Nabhan et al., 2019).

When compared with the current state of the art review around this objective, the

novelty brought by this algorithm is that it tackles coverage and falsification simultane-

ously to identify a maximum number of failures everywhere in the search space. Most of

the publications focus on coverage or falsification alone (Ben Abdessalem et al., 2016;

Beglerovic et al., 2017) by using Neural Networks and Kriging models as surrogate

models, while some others try to combine the two objectives but to a different aim than

of this thesis, e.g., to improve the optimizer convergence by enhancing its initialization

through the selected scenarios (Tuncali et al., 2020).

2. Border detection

Three other algorithms are developed to detect scenarios as near as possible from the

border between faulty and non-faulty areas. In fact, use cases are usually defined by

inputs of continuous nature, such as velocities, accelerations and decelerations of traffic

vehicles surrounding the autonomous vehicle, and the use case input space can then be

seen as a partition in different zones of failure-prone and failure-free scenarios. Each of

the three proposed algorithms tackles the objective in a different way, while employing

the same general strategy used by the failure detection algorithm to reduce computing

power.
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One single publication was found in the literature review that determines boundary sce-

narios witnessing the transition from safe driving to collision occurrences (Tuncali and

Fainekos, 2019). They use Rapidly exploring Random Trees (RTTs) to define a custom

function based on collision-related parameters, e.g., collision surface and velocity. The

main difference with the work in this thesis is that the three algorithms are developed to

detect the border of any evaluation criterion wanted, and not just for collision-related

criteria, without the need of generating trajectories for all traffic vehicles.

3. Border models

For the third part of this work, three approaches are considered to analytically identify

the border itself as accurately as possible through direct or parameterized equations:

Neural Networks, Mixed-Integer Linear Programming (MILP) with extensions, and

Genetic Programming (GP) for symbolic regression. They are each built using scenarios

that are known to be on, or very close to, the border, and could have been the results

of the Border Detection algorithms – though this was not the case here. No relevant

research was found in the literature review that addresses this objective.

The algorithms related to the first two objectives (that all identify scenarios, based on

diverse criteria) are tested on a tracking vehicle use case, and their results are compared to

a full grid of the input search space, with various metrics used to evaluate the quality of the

results obtained for the border detection objective. The models related to the third objective

are tested on a more complex use case and benefited from an updated simulator. They are

compared by examining their total misclassification errors. All results obtained with the

proposed algorithms are discussed in the next section.

7.1 Discussions

Failure detection For this first objective, we began by developing an algorithm that aims

at identifying a maximum number of failures of the autonomous vehicle command law for a

given use case. The algorithm then goes through an optimization loop to meet this objective.

Surrogate models In order to cope with the industrial project restrictions, we use a

reduced model of the simulator intensively in the optimization loop. This Random Forest

model is continuously updated throughout the iterations by checking the generated scenarios

by actual simulations. Furthermore, technical limitations of the simulator did not enable the

launch of a massive simulation plan in parallel mode, which could otherwise be helpful in

developing and testing the algorithm. Therefore, a Neural Network serves as a substitution

model of the simulator in this work. It is fed offline with calculations of the simulation

software, and is never updated once built (considered as the simulation ground truth). The

choices for the ’surrogate’ models are justified by their characteristics and usage for this

optimization task, as the reduced model, for instance, is needed to be fast to train, accurate
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and robust against overfitting, because it is being updated at each iteration: this lead to

the choice of Random Forest. Plus, we noticed that the reduced model is more prone to

wrongly classify the scenarios generated during the first iterations, since it is only based on a

handful number of scenarios, but quickly gains in accuracy thanks to the continuous update

throughout the iterations (see Figure 4.4). As for the Neural Network, it is important to note

that it should be replaced by the actual simulator as soon as the massive simulation platform

is ready to be used. Until then, we made sure to choose the most convenient architecture

and tune carefully all hyper-parameters to have a substitution model as accurate as possible,

while being aware that a modeling error is being introduced to the results, especially if the

simulator is being updated continuously. We can then consider that the Neural Network

represents a lesser version of the simulator, until linking the simulator directly becomes a

feasible option.

Optimization loop The algorithm Find All Failures aims to detect a maximum

number of failures anywhere in the scenario space. For this objective, it repeatedly runs an

instance of another algorithm dubbed Find One Failure whose role is to detect one failed

scenario (labelled as NG) as far as possible from the known NG scenarios, already available

in an archive of already simulated scenarios. Find One Failure uses CMA-ES (Hansen and

Ostermeier, 2001) as optimization engine, optimizing an objective function that purposefully

penalizes G scenarios in order to push the algorithm into detecting NG scenarios as far as

possible from the dynamic archive. The Random Forest model is then intensively used by the

optimization engine to get access to the scenarios warnings without the need of running the

actual simulation. Note that there were other candidate algorithms for such a derivative-free

optimization, such as Particle Swarm Optimization (PSO) or Differential Evolution (DE).

However, on the one hand, it is known that CMA-ES outperforms PSO and DE on the whole

set of BBOB benchmark functions (Hansen et al., 2011), and comparing these algorithms

with one another was not an objective of this thesis. On the other hand, this first objective

of this thesis has been already tackled recently in the literature, and several works use PSO

and DE, for instance in falsification-based models (Beglerovic et al., 2017). This is why we

decided to choose CMA-ES for its known global optimization performances, and devote our

time to the more ambitious border-related objectives, which are rather yet unrepresented in

the field.

Minimal precision distance The Find All Failures algorithm has been tested on

a tracking vehicle use case, while fixing a minimal precision distance to be respected in the

input search space. In that way, the algorithm is forced to explore the whole search space

for failed scenarios. Then, its performance is assessed by comparing the results obtained to

a full discretized grid of the search space. Discovery rates are computed, which represent

the number of times the algorithm managed to predict a NG scenario close enough to each

NG grid scenario, according to the minimal precision distance fixed. While results show
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that the algorithm manages to attain high discovery rates, it is crucial to note that the

minimal precision distance value greatly influences the number of failures obtained, which

in turn impacts the number of simulations needed to cover the whole search space. Hence,

a trade-off has to be made between detecting a maximum number of failures accurately,

and launching as few software simulations as possible. However, due to time constraints

and technical limitations of the simulator during most of the duration of this thesis, playing

around with this minimal precision distance was not possible, and is left for future work.

Border detection Border detection is a more ambitious objective: it considers the input

search space as a partition of areas of G/NG scenarios, and tries to detect scenarios near the

border between these areas. In fact, the first failure detection algorithm could be inefficient

for all the stages of the industrial project ADValue, especially towards the end where the NG

scenarios become rarer to identify since the autonomous vehicle command law is theoretically

being updated and enhanced throughout the project stages. Therefore, developing other

algorithms that aim at detecting directly the border, would be beneficial for the ADValue

project to anticipate the possible coming stages, by proposing multiple algorithms that work

together in the validation process whatever the stage at hand. Furthermore, an important

criterion for the domain expert lies in understanding the scenario space, in order to be able

to propose corrections of the command law that apply to whole areas and not only to single

points of failure as they are identified. For this purpose, three algorithms with different

approaches have been developed: Find Border Points identifies on-the-border scenarios,

while Find Border Max and Find Border Min generate close G/NG pairs between which

the border should precisely be located.

Stopping condition While the stopping condition elaborated for the failure detection

algorithm is related to the minimal precision distance in the search space, choosing a stopping

condition for the border detection algorithms turned out to be more challenging. Because

each algorithm functions differently (by identifying G/NG pairs or on-the-border scenarios),

setting a common stopping condition for the sake of comparison could only be achieved by

fixing the number of simulations (or number of Neural Network calls in this work) as stopping

condition, which is compatible with the industrial project restrictions of reducing computing

power needed. Note that in the ADValue project, all algorithms would be given the same

stopping condition, but to a much lesser number of simulations. In this work, we conducted

experiments for 1,000 and 3,000 simulations, whereas the algorithms in the ADValue project

are expected each to propose a handful of scenarios, and the results are either compared

or merged depending on the overall efficiency score obtained. By choosing 1,000 and 3,000

simulations, we are testing the full potential of each algorithm separately, in order to obtain

a clear evidence of what one can expect from these algorithms when tackling this challenging

border-related goal.
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Qualitative results At first, we tried evaluating the results quality with precision and

border rates while comparing to a full grid over the search space. On one hand, the precision

rate metric is computed as the ratio of all the occurrences of equal criteria evaluations be-

tween the grid scenarios and their nearest algorithm-generated neighbors, to the total number

of grid scenarios. On the other hand, the border rate metric is the ratio of the G/NG grid

couples whose warning evaluations remained unchanged after modifying their evaluations

according to their nearest algorithm neighbors warnings, to all the G/NG grid couples iden-

tified before any algorithm action. Then, connected components were eventually considered

because they overcome the limitations of the first two metrics: precision rates were unable

to give a clear representation of the performances, and border rates are limited in taking

into account a possible offset in the border detection. Besides, connected components give

access to interesting evaluation parameters, namely the “offset” distances between the sce-

narios incorrectly classified as NG by the algorithms and the original connected components

(to evaluate the offset prediction error), and the “coverage” distances between the scenarios

correctly classified as NG by the algorithms and the NG scenarios of the original connected

components that remained undetected by the algorithms (to assess the coverage of the algo-

rithms). While the results show that all three algorithms are able to minimize the possible

offset in the border detection throughout the iterations, Find Border Points manages to

consistently improve throughout the simulations and effectively explore the NG areas for all

warnings, whereas both other algorithms generate acceptable or mediocre results depending

on the border criterion under evaluation. This is explained due to the fact that Find Border

Points is conceived in a way that allows the algorithm to explore everywhere in the search

space, whereas the Max and Min algorithms are both limited by their initial set and cannot

explore outside of their convex hulls. Nevertheless, they can be useful when injecting them

to the ADValue project by focusing on some areas of interest and targeting the border in

specific locations, while Find Border Points explores the search space for new unidentified

border locations.

Border models After having developed algorithms capable of identifying border scenarios

for a given use case, the last objective of this thesis aims at building analytical and hence

hopefully explainable border models, which can identify the border itself as accurately as

possible through direct or parameterized equations while providing insights on the shape of

the accuracy in its neighborhood. In fact, the border detection algorithms of Chapter 5 give

a general, but rather sparse, insight into the possible location of the border in the search

space. The border models, on the opposite, while possibly based on border scenarios pro-

vided by these algorithms, try to define globally the border more precisely. Three different

approaches have been tested and compared: Neural Networks, Mixed-Integer Linear Pro-

gramming (MILP) with extensions, and Genetic Programming (GP) for symbolic regression.
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Models comparison First, the Neural Network approach is considered, and is tested

on several test cases, including a more sophisticated use case called NHTSA 13 (see Fig-

ure 6.1). After managing to achieve accuracy values higher than 95% for small data sets,

classification errors are computed based on predictions of a full discretization of the search

space. The results show acceptable errors around 5% depending on the data set size, but

present disadvantages of this approach, which are the possibility of being stuck in local min-

ima. The lack of explainability of the trained model is another drawback of this approach.

Nonetheless, the Neural Network is considered as a reference for the other approaches in

terms of accuracy. Next, since we are interested in clear equations that describe the border,

we considered different approaches based on MILP, namely the Global algorithm (finding

all border axes simultaneously), the Iterative algorithm (detecting one border axis at a time

and calling upon a clustering algorithm when blocked) and the Greedy algorithm (same as

One Axis but limits the use of clustering within the generation process). The goal is to

produce a low-cost mathematical programming model, that gives a clear tree representation

for the given use case border, as well as the equations that delineate the G and NG areas.

The One Axis model obtained classification errors even lower than that of the Neural Net-

work, and the final Greedy edition was successfully industrialized by EURODECISION, and

should be tested intensively and updated continuously within the ADValue project to ensure

a broad application range on all possible use cases. Finally, we explored the evolutionary

approach by applying Genetic Programming to this symbolic regression task. Evolutionary

Algorithms are known for their wide application range, and Genetic Programming also evolve

tree representations of the solution; this approach can be seen as intermediate between both

previous methods. However, although the tests realized on the commercial MyDataModels

online platform show acceptable accuracies above 80%, their performances were repeatedly

less better than the ones obtained with both previous methods. Nonetheless, this approach

could be considered by Renault as a potential future direction of research.

7.2 Perspectives

Since the ADValue project consists of mixing multiple algorithms working in competi-

tion to find the best scenarios within the validation process, every novel algorithm developed

can be integrated into the project. For instance, a promising extension of the Find Bor-

der Points algorithm could be explored: Since the algorithm uses CMA-ES as optimization

engine for the detection of border scenarios, inspiration can be drawn from the failures de-

tection algorithm in the way it was conceived. In fact, the Find All Failures algorithm

searches for the NG scenarios the farthest possible from existing NG scenarios in the archive,

using intensively CMA-ES to propose such scenarios. The result is an effective exploration

of the whole search space for failed scenarios. The same methodology could be incorporated

into Find Border Points to create a new algorithm that searches for border scenarios the

farthest possible from existing border scenarios. Since we now have three algorithms that
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generate such scenarios, this new algorithm could arrive in a later phase of the project, when

border scenarios are already available in the search space, and can also attempt at a complete

and effective coverage of border scenarios, which will undoubtedly also aid the border models

generated afterwards.

Furthermore, since the Greedy MILP edition was successfully industrialized, testing should

be conducted on various use cases to evaluate its overall performance, its scalability, and de-

lineate its application ranges. It is being considered to be used as stopping condition for the

ADValue project; after sufficient iterations and generation of NG and border scenarios by all

algorithms, the border model is built and computes the total misclassification error. If given

a certain error goal, the project resumes until the error value is reached for the given use

case, which indicates a successful assimilation of the border for that use case. Naturally, a

lot of research remains to be conducted. In particular, we merely tackled small use cases of

dimensions 5 and 6 in this work, which are considered simple use cases compared to bigger

and much more complicated use cases with tens of input variables. Thus, operational appli-

cation of these models and algorithms can only become a reality after demonstrating that

they actually can scale up to much larger use case dimension, eventually through incremental

progress and validating each use case one at a time, in order to guarantee a good conclu-

sion for the ADValue project, and a successful scenario-based validation for the autonomous

vehicle command law at large.
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