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1. GENERAL INTRODUCTION1 

1.1 Natural and anthropogenic hybridization 2 

Hybridization, the interbreeding of individuals from genetically distinct populations, regardless of 3 

their taxonomic status (Allendorf et al. 2001) is acknowledged to be a relatively common 4 

evolutionary process both in the plant and animal kingdoms (Hewitt, 1988; Olden et al. 2004; 5 

Grabenstein & Taylor 2018). Hybridization is mainly observed between otherwise allopatric taxa 6 

that come into contact due to natural (natural hybridization) or anthropogenic causes (anthropogenic 7 

hybridization, e.g., changes in the abundance and distribution of species, the removal of barriers 8 

that cause isolated or restricted species to expand, and/or the uncontrolled diffusion of domestic 9 

species). Todesco et al. (2016) performed a literature review of hybridization studies to identify the 10 

ecological, evolutionary, and genetic factors that critically affect extinction risk through 11 

hybridization. They found that 72% of studies regarding anthropogenic hybridization reported an 12 

extinction threat and among those the most common anthropogenic causes of hybridization were 13 

husbandry or agriculture (55% of the studies), invasive species (54%), and habitat disturbance 14 

(36%). Most of the studies dealt with hybridization in plants, followed by fishes, birds, and 15 

mammals. Extinction risk was more common in hybridizing vertebrates than plants and appeared to 16 

be driven by fish (85% of the studies) and birds species (79% of the studies). 17 

Anthropogenic hybridization is therefore considered as an increasing and significant threat to 18 

biodiversity (Rhymer & Simberloff 1996; Crispo et al. 2011) that has the potential of driving rare 19 

taxa to genomic extinction (the loss of combinations of genes and genotypes that have a unique 20 

evolutionary history) through two main mechanisms related to the fitness of the hybrids (Allendorf 21 

et al. 2001). If the fitness of hybrids is lower than that of parental individuals, hybridization can 22 

reinforce reproductive isolation between incompletely isolated species (Barton & Hewitt 1985), but 23 

it can also cause extinction through demographic swamping (where population growth rates are 24 

reduced due to the wasteful production of maladaptive hybrids  Allendorf et al. 2001; Wolf et al. 25 

2001). If the fitness of the hybrids is greater than or equal to that of parental individuals, 26 
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hybridization can cause extinction through genetic swamping (where the rare form is replaced by 27 

hybrids; Allendorf et al. 2001). Following genomic extinction, the result is frequently a ‘hybrid 28 

swarm’ in which all the individuals composing a population are hybrids. 29 

30 

1.2 When hybridization is a threat: importance of quantifying the prevalence of admixed individuals 31 

in and its dynamics  32 

As with any conservation threat, to evaluate potential management actions, it is fundamental to: 1) 33 

understand if hybridization poses a threat to the viability of a population that requires human 34 

intervention, 2) identify possible management actions and evaluate their effectiveness in an 35 

adaptive management loop (Williams et al. 2011). For the first point, Allendorf et al. (2001) 36 

proposed a classification framework to assess the severity of the hybridization threat. They divided 37 

anthropogenic hybridization cases in different types based mainly on two criteria: the fitness and 38 

relative abundance of admixed individuals (i.e., prevalence of admixed individuals). In the first 39 

anthropogenic hybridization type ("hybridization without introgression"), first-generation hybrids 40 

are sterile and the main threat for parental populations is the waste of reproductive effort 41 

(demographic swamping). In the second type ("widespread introgression"), hybrids are fertile but 42 

the parental populations are still prevalent and well distinguished. In the third type ("complete 43 

admixture"), widespread introgression can evolve into a situation in which only the admixed 44 

individuals remain (genetic swamping). Understanding the type of hybridization that is occuring is 45 

therefore fundamental to assess the threat posed by anthropogenic hybridization on the viability of 46 

the parental population and timely elaborate management strategies (Allendorf et al. 2001; Bohling 47 

2016). To understand the hybridization type we need to quantify the proportion of admixed 48 

individuals in a population at a given time (hereafter prevalence) and understand if such quantity is 49 

predicted to increase toward complete admixture.  50 

For the second point, depending on the hybridization type, a variety of management actions 51 

can be more effective or feasible to avoid genomic extinction: from  removal and/or sterilization of 52 
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hybrids to the management of the human disturbances that facilitat  hybridization in the first 53 

place (Allendorf et al. 2001; Bohling 2016). 54 

55 

1.2.1 Methodological challenges and solutions to estimate the prevalence of admixed 56 

individuals 57 

The relative abundance (prevalence) of different categories of individuals within a population is an 58 

essential piece of information to understand processes in ecology, evolution, and conservation. For 59 

example, the prevalence of infected individuals is critical to understand disease dynamics (Jennelle, 60 

et al. 2007) and the prevalence of key demographic categories (e.g., mature females) is needed to 61 

predict the viability of populations (Caswell 2000). Estimating the prevalence of different 62 

population segments in wildlife populations is not trivial, therefore naive prevalence (the proportion 63 

of individuals of a given class in the sample) is often used as a proxy (Jennelle et al. 2007). 64 

However, this approach overlooks two main sources of bias: first, imperfect and/or heterogeneous 65 

probability of detection leads to biased abundance and prevalence estimates when it is ignored 66 

(Jennelle et al. 2007; Cubaynes et al. 2010), second, uncertainty in the classification of individuals 67 

is common when individuals are assigned to a specific category based on clues (i.e., the assignment 68 

of individuals to the category admixed and parental based on a limited number of genetic markers; 69 

Vähä & Primmer 2006).  70 

Reliable estimates of prevalence can be obtained by correcting field counts by the proportion 71 

of undetected individuals (i.e., the ratio between the number of observed individuals and the 72 

probability of detection; Nichols 1992). The probability of detection is usually estimated by using 73 

capture–recapture models (CR) from a sample of individual encounter histories (Otis et al. 1978). In 74 

particular, multistate CR models estimate the probability of detection for different categories of 75 

individuals by assigning individuals to static or dynamic states. However, while classical CR 76 

models assume the correct assignment of all individuals to their state (Lebreton et al. 1992), 77 

multievent models relax this assumption by acknowledging the uncertainty in the classification 78 
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process in the model structure (Pradel 2005). Multievent models have been used to estimate a 79 

variety of population parameters in the presence of uncertainty in classification (e.g., rates of entry 80 

and exit from disease states: Conn & Cooch 2009; probability of skipping reproduction: Sanz-81 

Aguilar et al. 2011, and the probability of survival of different age classes: Gervasi et al. 2017). 82 

However, multievent models have never been used to estimate the abundance and prevalence of 83 

different classes of individuals in a population. 84 

85 

1.2.2 Methods for projecting hybridization dynamics 86 

Once hybridization has been estimated within a period of biological relevance (i.e., reproductive or 87 

generational), it is important to understand if such quantity is predicted to increase towards 88 

complete admixture. Moreover, if hybridization is recognized as a legitimate threat, the type and 89 

intensity of management action need to be chosen and their outcome need to be evaluated 90 

(Allendorf et al. 2001; Bohling 2016).  91 

Population projection models are widely used in other contexts (e.g., harvest modelling 92 

Sutherland 2001) to simulate population dynamics under different biological/evolutionary scenarios 93 

and provide management recommendations (Cross & Beissinger 2001; Hradsky et al. 2019) but 94 

their application to assess hybridization as a threat are few, though recently increasing (e.g., Nathan 95 

et al. 2016). The first attempts to model hybridization-extinction dynamics had a genetic focus and 96 

were based on changes in allelic frequencies at one or more loci (Huxel 1999; Ferdy & Austerlitz 97 

2002). On the other hand, ecological models explicitly examine the effects of life-history traits (e.g., 98 

survival and reproductive rates) on the hybridization outcome. Within this approach, two types of 99 

models have been used to model hybridization dynamics (Hall & Ayres 2008): 1) individual-based 100 

models that simulate the contribution of each individual to the hybridization dynamics of the entire 101 

population (e.g., Thompson et al. 2003; Hooftman et al. 2007), and 2) population-based models that 102 

can be used when only the mean fitness parameters of the main demographic stages are available 103 

(e.g., Wolf et al. 2001; Campbell et al. 2002). Both modelling approaches were applied to 104 
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hybridization in plant species (Hall & Ayres 2008; Todesco et al. 2016). However, few studies used 105 

individual-based models (Fredrickson & Hedrick 2006; Nathan et al. 2019) to simulate 106 

hybridization dynamics in animal species. 107 

108 

1.3 General scope of the Ph.D. project 109 

The general scope of my Ph.D. was to develop models for the assessment and management of 110 

extinction risk due to anthropogenic hybridization. To provide a practical demonstration of the use 111 

of the developed models we used them on an emblematic anthropogenic hybridization case study: 112 

the hybridization between wolves (Canis lupus) and dogs (Canis lupus familiaris) in human 113 

dominated landscapes. 114 

115 

1.3.1 Wolves x dog hybridization in Europe 116 

Wolves and dogs are interfertile and the first-generation hybrids can backcross with both parental 117 

sub-species, generating gene flow between the two gene pools (Vilà & Wayne 1999). Hybridization 118 

between wolves and dogs occurred repeatedly since dog domestication (15-10.000 years BP; Larson 119 

et al. 2012; Pilot et al. 2018), but more recent (i.e., up to 2 generations since admixture) 120 

introgressive hybridization has been detected in various wolf populations in Eurasia (Galaverni et 121 

al. 2017; Pacheco et al. 2017; Pilot et al. 2018; Dufresnes et al. 2019). In Europe, the expansion of 122 

recovering wolf populations through human-dominated landscapes (Chapron et al. 2014), where 123 

free-ranging dogs have since long become the most abundant carnivore (Ritchie et al. 2014) creates 124 

the conditions for increasing hybridization rates. Although few examples of positive selection of 125 

introgressed domesticated alleles have been hypothesized (Anderson et al. 2009), consistent gene 126 

flow (i.e., introgression) between domesticated forms and their wild ancestors is expected to have 127 

deleterious consequences for wild species genomic integrity (e.g., reduction in fitness and adaptive 128 

potential, loss of unique combinations of genes and genotypes that have a unique evolutionary 129 

history; Allendorf et al. 2001; Bohling 2016). For these reasons, the assessment of this threat for the 130 
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genomic integrity of European wolf population is one the conservation priorities for wolves in 131 

Europe (Hindrickson et al. 2017). 132 

Studies on wolf-dog hybridization in several European countries have been mostly based on 133 

non-invasive genetic sampling (reviewed in Dufresnses et al. 2019) and found revealed relatively 134 

low proportions 135 

Eastern Europe, respectively). However, these results may be flawed due to two main reasons. First 136 

many of these samples have been collected opportunistically and at a coarse spatial (i.e., national) 137 

and temporal (i.e., decades) scales (Dufresnes et al. 2019), whereas hybridization occurs at the local 138 

scale and within one generation time. In support to that we highlight that, although large scale 139 

assessments failed to detect high prevalence of admixture (Randi & Lucchini, 2002; Verardi et al. 140 

2006; Lorenzini et al. 2014) more recent studies, based on intensive sampling at the local scale 141 

(Caniglia et al. 2013; Bassi et al. 2017; Salvatori et al. 2019; this study), revealed higher admixture 142 

rates even if still based on na ve prevalence quantifications. 143 

Second, naive prevalence quantifications may suffer from both the heterogeneous 144 

detectability of parental and admixed individuals, and the uncertainty in their classification. The 145 

systematic monitoring of prevalence in wild populations relies on non-invasive samples (e.g., hairs 146 

or scats), therefore the relatively poor-quality DNA extracted from such samples only allows for the 147 

amplification of a relatively low number of diagnostic loci (Randi et al. 2014), limiting the power to 148 

discriminate between parental individuals and later (>2) generation backcrosses (Vähä & Primmer 149 

2006). This generates uncertainty over the classification of some 150 

3rd generation backcrosses; Vähä & Primmer 2006), that are generally arbitrarily assigned to wolves 151 

(e.g., Pacheco et al. 2017; Dufrenses et al. 2019), a practice that avoids Type 1 error (i.e., 152 

misclassifying wolves as admixed individuals) but not necessarily Type 2 error (i.e., misclassifying 153 

admixed individuals as wolves). 154 

Based on the low proportions of admixed individuals detected in Western European studies 155 

(Dufresnes et al. 2019) several authors concurred on two main hypotheses. The first is that wolf x 156 
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dog hybridization is currently rare and where it occurs, it most likely takes place in the peripheral 157 

portion of the wolf distribution (Lorenzini et al. 2014) and/or during phases of range expansion 158 

(Galaverni et al. 2017; Kusak et al. 2018). The second is that introgression of dog genes into wolf 159 

populations is expected to be buffered by behavioral and selective constraints (e.g., the unsuccessful 160 

integration of pregnant females in the natal packs, the reduced survival of first generation hybrid 161 

litters due to limited paternal care, the lower success of admixed individuals in territorial or 162 

predatory interactions; Vilà & Wayne 1999), and/or by the dilution of dog genes through 163 

backcrossing into the parental wolf populations (Verardi et al. 2006). Based on these assumptions 164 

and possibly due to the inherent biological and social complexity characterizing control of wolf-dog 165 

hybridization (Donfrancesco et al. 2019), active management has lagged behind in Europe, 166 

notwithstanding formal guidelines and recommendations provided by the European Union 167 

(Salvatori & Ciucci 2018; Salvatori et al. 2019). 168 

169 

1.3.2 Wolf x dog hybridization as a threat 170 

Although there was consensus among a panel of 42 wolf x dog hybridization experts across the 171 

world regarding the fact that anthropogenic hybridization should be mitigated (Donfrancesco et al. 172 

2019), clear evidence has not yet been found that the introgression of dog genes is a real 173 

conservation issue. 174 

Dogs diverged from the grey wolf Canis lupus between 11,000 and 35,000 years ago (Freedman & 175 

Wayne, 2017). However, Larson et al. (2012) suggested that the current gene pool of most dog 176 

breeds has been formed very recently, not more than 100–150 years ago e breeds were subjected 177 

to extensive selection and most likely passed through narrow bottlenecks. Domesticated mammals 178 

in general exhibit a suite of behavioral, physiological, and morphological traits not observed in their 179 

wild counterparts. These characteristics are known to include: increased tameness, coat color 180 

changes, changes in craniofacial morphology, reductions in tooth size, alterations in ear and tail 181 

form, more frequent and non-seasonal estrus cycles, alterations in adrenocorticotropic hormone 182 
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levels, changed concentrations of several neurotransmitters, prolongations in juvenile behavior, and 183 

reductions in both total brain size and of particular brain regions (Wilkins et al. 2014). For dogs 184 

several behavioural traits differentiated them from wild canids (Miklosi 2015) and the genetic basis 185 

of these traits is being unveiled (vonHoldt et al. 2017). The consequence of the 186 

such traits in a wild wolf population have not yet be  addressed. 187 

The only case where some of the long term consequences of the introgression of dog alleles 188 

in wild wolf population gene pool have been explored is the introgression (and following positive 189 

selection) of the melanistic mutation at the K-locus in the wolf gene pool in North American wolves 190 

(Anderson et al. 2009). This mutation determines the black color in dogs (Candille et al. 2007) 191 

and was likely introduced into North American wolves by ancient hybridization with dogs (12-192 

14,000 years ago; Anderson et al. 2009). Coulson et al. (2011) found that gray wolves had slightly 193 

lower survival, recruitment, generation length, and lifetime reproductive success than black 194 

heterozygotes for the melanistic mutation. Coulson et al. (2011) also observed that black 195 

homozygotes had lower survival, recruitment, generation length, and lifetime reproductive success 196 

than black heterozygotes and gray wolves. Stahler et al. (2013) carried a detailed analysis of the 197 

life-history traits of the population for both different colors and sexes and found that gray females 198 

had more surviving pups than black females, the latter of which were nearly all heterozygotes. It is 199 

therefore possible that the beta-defensin gene that determines black color in wolves might have 200 

pleiotropic effects on disease resistance or other immunologically related traits (Coulson et al. 201 

2011) and result in fitness tradeoffs. 202 

Although hybridization with dogs is not only a recent phenomenon and, in this particular case, it 203 

seems to have led to potential adaptive variation (together with possible pleiotropic effects), it is 204 

reasonable to hypothesize that the forces that shaped introgression of domesticated alleles in North 205 

American wild wolf populations 12,000 years ago are much different than the forces that would act 206 

on introgressed dog alleles in the Anthropocene. In addition to that, the relative abundance of 207 

wolves and dogs changed: following humans evolutionary success, dogs have now become the most 208 
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abundant carnivore in the world (Ritchie et al. 2014) while wolves faced almost eradication 209 

(Chapron et al. 2014). As a result of conservation efforts, gray wolves are currently re-colonising 210 

parts of their former range in Western Europe across human-dominated landscapes (Chapron et al. 211 

2014). Although gray wolves are able to survive and reproduce in anthropogenic habitats, the 212 

survival rates and the causes of mortality in these systems will likely differ from those in less 213 

human-dominated settings. These habitats are characterized, among other things, by high densities 214 

anthropogenic foods (e.g., livestock, human food waste) that has been  dietary 215 

habits of predators, which may  behavioural changes (Newsome et 216 

al. 2015). In this context the interaction  introgressed 217 

changes in ecological niche (and role) and evolutionary diversification. 218 

such process may lead to the evolution of a new dog-like wolf ecotype, or to the 219 

replacement of wolves by admixed individuals in human-dominated landscapes (genetic 220 

swamping).  221 

Given these considerations and following a precautionary approach  wolf x dog hybridization is 222 

largely perceived as a threat by experts of the field (Donfrancesco et al. 2019), a vision that is 223 

shared by the author of this manuscript. 224 

225 

1.3.3 Management of wolf x dog hybridization 226 

The management of anthropogenic hybridization involves three types of actions (Donfrancesco et 227 

al. 2019): preventive (e.g., community engagement and education to decrease the number of free-228 

ranging dogs), proactive (e.g., removal of free-ranging dogs, and reduction of factors facilitating 229 

hybridization such as poaching), and reactive interventions (e.g., the active management of admixed 230 

individuals as to reduce their prevalence in the parental wolf population with capture, captivity, 231 

sterilization and release, or with lethal removal; Donfrancesco et al. 2019). The three different types 232 

are characterized by differences in social acceptance (Donfrancesco et al. 2019) and applicability 233 

into the legal framework of European countries (Trouwborst 2014). Moreover preventive and 234 
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proactive measures are generally enforceable through the national and European legislation, agreed 235 

upon and supported by experts and socially more acceptable. On the other hand reactive measures 236 

are controversial due to the not-defined legal status of hybrids, the lack of consensus within both the 237 

scientific community and the general public (Lorenzini et al. 2014; Donfrancesco et al. 2019). The 238 

effectiveness of reactive management has also been questioned by several authors (Lorenzini et al. 239 

2014, Pacheco et al. 2017).  240 

It is difficult if not impossible to empirically assess the effectiveness of reactive 241 

hybridization management strategies due to the general lack of long-term time data series and the 242 

need to implement management timely. Demographic simulation models can help exploring 243 

complex ecological and evolutionary processes that are not easily empirically measured (Nathan et 244 

al. 2019) and can be instrumental to inform decision-making in a context of uncertainty (e.g., 245 

Gervasi & Ciucci 2018). To our knowledge, while population projections have been used to test the 246 

effectiveness of the sterilization of admixed breeders is in the intensively monitored red wolf (Canis 247 

rufus) x coyote (Canis latrans) system in North Carolina (Fredrickson & Hedrick 2006), they have 248 

never been used to compare management strategies in the context of wolf x dog hybridization and 249 

in general rarely for animal species (but see Nathan et al. 2019). 250 

251 

1.4 Structure and specific objectives of the Ph.D manuscript 252 

This manuscript consists in four chapters, three of which (Chapter 1, 3 and 4) aiming at developing 253 

methodological frameworks to quantify the prevalence of admixed individuals and its dynamics. 254 

The second chapter is entirely dedicated to the application of the estimation model developed in 255 

Chapter 1 to the case study on wolf x dog hybridization in the Northern Apennines, Italy. 256 

257 

1.4.1 Chapter 1. Development of a prevalence multievent capture–recapture model to 258 

estimate prevalence of admixed individuals in wildlife populations 259 
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This chapter has been published: Santostasi, N.L., Ciucci, P., Caniglia, R., Fabbri, E., Molinari, L., 260 

Reggioni, W., Gimenez, O. (2019). Use of hidden Markov capture–recapture models to estimate 261 

abundance in the presence of uncertainty: Application to the estimation of prevalence of hybrids in 262 

animal populations. Ecology and Evolution 9, 744-755. 263 

In this chapter we: 1) developed a multievent capture–recapture model to estimate 264 

prevalence in free-ranging populations accounting for imperfect detectability and uncertainty in 265 

individual's classification, 2) carried out a simulation study to i) evaluate model performance, ii) 266 

compare it to naive quantifications of prevalence and iii) assess the accuracy of model-based 267 

estimates of prevalence under different sampling scenarios. The main results from this chapter were 268 

that i) the prevalence of hybrids could be estimated while accounting for both detectability and 269 

classification uncertainty ii) model-based prevalence consistently had better performance than 270 

naive prevalence in the presence of differential detectability and assignment probability 271 

and was unbiased for sampling scenarios with high detectability. Our results underline the 272 

importance of a model-based approach to obtain unbiased estimates of prevalence of different 273 

population segments. 274 

275 

1.4.2 Chapter 2. Estimati  the prevalence of admixed wold x dog individuals in a study 276 

area in the northern Apennines, Italy 277 

This chapter is currently submitted: Santostasi, N.L., Gimenez, O., Caniglia, R., Fabbri, E., 278 

Molinari, L., Reggioni, W. (Submitted). When bad gets worse: unmanaged anthropogenic 279 

hybridization between dogs and wolves may lead to widespread introgression. Animal 280 

Conservation. 281 

In this chapter we adopted targeted non-invasive genetic sampling and the capture-recapture 282 

estimation model developed in Chapter 1 to estimate the prevalence of wolf-dog hybrids in a local, 283 

protected wolf population in the northern Apennines, Italy. We discuss the results in the light of 284 

previous assessment of prevalence of wolf x dog admixed individuals in Western Europe and we 285 
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illustrate the implications of the results for wolf conservation and for the management of wolf x dog 286 

hybridization in human-dominated landscapes. In particular, by taking into account imperfect 287 

detectability and the uncertainty associated with the assignment of backcrossed admixed 288 

individuals, we estimated 64-78% recent hybrids occurring in 6 out of the 7 surveyed packs. 289 

Ancestry analysis and genealogy reconstructions also confirmed multi-generational introgression 290 

and indicated that some admixed packs had one or both breeders of recent admixture. Our findings 291 

underline that in human-modified landscapes wolf-dog hybridization may raise to unexpected levels 292 

if left unmanaged, and that reproductive barriers or dilution of dog genes through backcrossing 293 

should not be expected, per se, to prevent occurrence and the spread of introgression. 294 

295 

1.4.3 Chapter 3. Development of a population-based modelling approach to project 296 

hybridization dynamics 297 

This chapter is currently accepted pending minor revisions: Santostasi, N.L., Ciucci, P., Bearzi, G., 298 

Bonizzoni, S., Gimenez, O.(In press). Assessing the dynamics of hybridization through a matrix 299 

modelling approach. Ecological Modelling. 300 

In this chapter we present a new matrix population model to project population dynamics of 301 

animal populations in presence of hybridization. We apply the model to two real-world case studies 302 

of terrestrial (wolf x dog) and marine mammal species (common dolphin Delphinus delphis x 303 

striped dolphin Stenella coeruleoalba). Specifically, we investigate 1) the possible outcomes of 304 

wolf x dog hybridization events for an expanding wolf population in Italy, under different 305 

reproductive isolation scenarios, 2) the genomic extinction probability of the two interbreeding 306 

dolphin species within a semi-enclosed gulf in Greece, under different hybrids’ fitness scenarios, 3) 307 

the sensitivity of the probability of genomic extinction to the main demographic parameters in the 308 

two case studies. In particular our projections highlighted that i) hybridization leads to genomic 309 

extinction in the absence of reproductive isolation, ii) rare or depleted species are particularly 310 

vulnerable to genomic extinction, iii) genomic extinction depends mainly on demographic 311 
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parameters of parental species, iiii) maintaining healthy and abundant populations prevents genomic 312 

extinction. 313 

314 

1.4.4 Chapter 4. Development of an individual-based model to evaluate the effect of 315 

different management strategies for wolf x dog hybridization 316 

In this chapter we built a detailed individual based model describing the life cycle of the 317 

gray wolf by contemplating social dynamics traits linked to hybridization rates. We applied this 318 

model to investigate the hybridization dynamics of wolves in a study population the Northern 319 

Apennines, Italy, to evaluate the effectiveness of different management scenarios aimed to reduce 320 

the abundance of admixed individuals during a ten-generation time. We showed that in presence of 321 

frequent immigration of admixed individuals any management action proved ineffective. In 322 

presence of immigration by pure wolves all management actions produced a decrease in prevalence, 323 

although their relative effectiveness changed depending on the mating choice scenario. In all the 324 

simulated scenarios, the impact of hybridization is predicted to extend at broad scales as large 325 

numbers of admixed dispersers are produced. Moreover, we identified demographic and social 326 

processes that need to be further investigated to more accurately project the outcomes of 327 

management alternatives. 328 

329 
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|

ments is a fundamental piece of information to understand pro

prevalence of infected individuals is critical to understand the mech

lenging and the raw percentage of individuals of a class in the sample 

imperfect and/or heterogeneous detection leads to biased abun

mon in wildlife population studies where individuals are assigned to 

CR models assume the correct assignment of all individuals to their 

the observation process is further split into two steps: detection 

been used to estimate the abundance of individuals in different states 

CR framework to estimate abundance of individuals in different states 

estimator combined with a bootstrapping procedure to produce stan

sampling strategies and generates different costs in terms of financial 

Despite the increasing attention that researchers are devoting to 

Canis lupus Canis lupus familiaris

|

|

individual. Individuals can be in one of three possible nonobservable 

23



| SANTOSTASI ET AL.

πp to be a parental and the 

πh πp

φp and φh. 

t

t + 

where parameter φp φh

t is still alive in 

t + 1 

the states at each occasion and describes the observation pro

cess. Individuals are detected at time t

tion pp for parental and ph

state based on genetic and/or morphologic diagnostic features 

δ that an individual is assigned to the 

δ. The 

pp

phδh is the 

pp δp

pp

δp

given that it has been detected:

modeled because an animal must be encountered at least once to 

first and third occasions but not at the second occasion. The state 

The likelihood of the entire dataset is obtained as the product 

of the probabilities of all individual encounter histories assum

πp 

and πh φp and φh pp and ph

δp and δh
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where nh np is the number 

p̂h

p̂p

|

simulated a cohort of 100 individuals that we split into 2 states 

proportion of wolves πp

πh πp

φp

φh

formation Table S1 for a complete list of parameters for the three 

pp > ph

δp > δh

based estimator of prevalence.

|

qwolf

as pure wolves those individuals whose qwolf was included in the 

range of qwolf

qwolf was 

included in the range in which the qwolf values of simulated pure 

whose qwolf overlapped with the range of qwolf values of simulated 

regardless of their qwolf values.

qwolf 

parameters and a combination of the two. The models were fitted 

els within Δ

Pmodel=

̂Nh

̂Np+
̂Nh
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|

|

bias in naive prevalence is due to the simulation settings for the true 

that pp > ph for scenario 1 and δp > δh for scenario 2. Switching the 

0.07 0.14 0.23 0.23 0.30

0.30 0.15 0.07 0.02

0.48 0.41 0.48

0.04 0.02 0.00 0.01 0.00

0.05 0.04 0.03 0.03 0.01

0.02 0.01 0.00 0.01 0.00

Note
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sion. This is because the low number of individuals present at the 

|

0.14 0.22 0.21 0.33 0.33 0.30 0.40 0.78

0.1 0.04 0.05 0.01 0.01 0.00 0.00 0.00 0.02 0.02

0.23 0.51 0.37 0.45 0.49 0.50 0.39

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.01 0.00 0.01 0.00 0.01 0.01 0.00 0.01 0.01 0.00

Note

Scenario 1 of simulation 

Estimates obtained with sampling 

strategies with 5 and 10 capture occasions 

are compared in each panel
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|

Δ

Scenario 1 of simulation 

Estimates obtained with sampling 

strategies with 5 and 10 capture occasions 

are compared in each panel

obtained with sampling strategies with 5 and 10 capture occasions 

are compared in each panel

0.94 0.97 0.94 0.89 0.94

1.00 0.98 0.95 0.95 0.99 0.97

Note. Confidence interval coverage for sampling strategies with 5 cap
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|

|

Scenario 1 of simulation 

row. Estimates obtained with sampling 

strategies with 5 and 10 capture occasions 

are compared in each panel

0.98 0.95 0.97 0.94 0.92 0.84 0.84

1.00 0.99 0.97 0.97 0.95 0.91 0.92 0.85 0.91 0.75 0.92

Note
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estimating abundance attention must be paid to unaccounted for 

|

might occur when there is a high proportion of uncertain individuals 

proportion of uncertain individuals is preferable to taking the risk of 

making assignment errors to reduce such proportion.

|

|

ate bias in naive prevalence and can originate from various 

qwolf

populations.

Model npar Δ

π i φ p i δ a1 + a 4 183.48 0

π i φ f p i δ a1 + a 5 181.41 192.44 0.28

π i φ i p f δ a1 + a 5 192.79

Note

eters. π φ p δ = assignment 

npar a1 + a

Initial proportion of individuals in 

πw

pw 0.42

ph 0.50

φw 0.72 0.39–0.91

φh 0.84

δ 0.79

0.27 0.33 0.20 0.27

0.32 0.42 0.23 0.53 0.43

0.07–0.55 0.12–0.72
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applications of the model

corresponding parameters depending on the available data 

small sample sizes.
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APPENDIX CHAPTER 1 1 

2 

SUPPLEMENTARY MATERIALS 3 

4 

1. MODEL DETAILS5 

1.1 Instruction to fit the model in E_SURGE: 6 

7 

INPUT DATA CODING: 8 

We coded the data in the following way (individuals were assigned upon first capture and never 9 

again): 10 

11 

Example of coding of encounter histories.12 

Capture history State assignment 

10330 Sure wolf (W) 

02330 Sure hybrid (H) 

03303 Uncertain (H) 

 13 

GEPAT: 14 

 15 

Initial States 16 

( 1 ) 

 17 

Transitions 18 

0 1

0 1

0 0 1

 

Events 19 

 20 

1 0

1 0

1 0 0

  

1 0 0 0

0 0 1

0 0 1

 

 21 

GEMACO:22 

IS: to (for constant), t (for time) 23 

0 1

 

 

1 0 0 01 0

  

( )
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2 

TRANSITIONS: i (for constant), f (for state depndendent) 24 

EVENTS: 25 

- Step 1: firste+nexte (for constant), firste+nexte.f (for state depndendent), firste+nexte.t (for26 

time)27 

- Step 2: a (age effect, where age is time since first capture, this allows for having assignment28 

for having29 

30 

effect)31 

IVFV: 32 

Events 33 

- Step 1: fixed first detection to 134 

- Step 2: fix assignment probability at age 2 (meaning all assignment probabilities after first35 

capture) to 036 

37 

2. TABLES38 

Table S1. Detectability (p) and assignment pro e main scenarios of 39 

simulation for wolves (w) and hybrids (h). Scenario 1 implies state-dependent detectability and 40 

homogeneous assignment probability, Scenario 2 implies homogeneous detectability and state-41 

dependent assignment probability, Scenario 3 implies homogeneous detectability and assignment 42 

probability. 43 

Scenario 1 Scenario 2 Scenario 3 

Detectability High Low High Low High Low 

pw 0.80 0.50 0.80 0.50 0.80 0.50 

ph 0.80 0.50 0.50 0.30 0.80 0.50 

w 0.80 0.80 0.80 0.80 0.80 0.80 

h 0.80 0.80 0.80 0.80 0.60 0.60 

44 

45 

35



3 
 

2.1 Simulation results for Scenarios 2 and 3 46 

2.1.1 Root Mean Squared Error and Relative Bias 47 

Table S2. Scenario 2 (homogeneous detectability and state-dependent assignment probability). 48 

Root mean squared error and relative bias of naive and model-based prevalence for sampling 49 

strategies with 5 capture occasions (Occ). 50 

Root mean squared error 

 Occ1 Occ2 Occ3 Occ4 Occ5 

 Low detectability 

Naive 0.21 0.25 0.21 0.41 0.29 

Model-based 0.03 0.02 0.01 0.02 0.01 

  High detectability 

Naive 0.31 0.26 0.26 0.23 0.15 

Model-based 0.04 0.02 0.00 0.00 0.00 

Percent relative bias 

  Low detectability 

 -0.05 -0.05 -0.05 -0.06 -0.05 

 0.01 0.01 0.01 0.02 0.01 

  High detectability 

Naive -0.06 -0.05 -0.05 -0.05 -0.04 

Model-based 0.02 0.01 0.00 0.00 0.00 

 51 

  52 
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4 
 

 53 

Table S3. Scenario 2 (homogeneous detectability and state-dependent assignment probability). 54 

Root mean squared error and relative bias of naive and model-based prevalence for sampling 55 

strategies with 10 capture occasions (Occ). 56 

Root Mean Squared Error 

 

Occ1 Occ2 Occ3 Occ4 Occ5 Occ6 Occ7 Occ8 Occ9 Occ10 

 Low detectability 

Naive 0.19 0.15 0.17 0.08 0.28 0.17 0.16 0.13 0.02 NaN 

Model-based 0.10 0.06 0.05 0.06 0.01 0.00 0.00 0.00 0.01 0.01 

  High detectability 

Naive 0.27 0.31 0.23 0.22 0.19 0.12 0.12 0.19 0.13 0.05 

Model-based 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Percent relative bias 

 Low detectability 

Naive -0.04 -0.04 -0.04 -0.03 -0.05 -0.04 -0.04 -0.04 -0.01 NaN 

Model-based 0.03 0.02 0.02 0.02 0.01 0.00 0.00 0.00 0.01 0.01 

  High detectability 

Naive -0.05 -0.06 -0.05 -0.05 -0.04 -0.03 -0.04 -0.04 -0.04 -0.02 

Model-based 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 

 57 

  58 

37



5 
 

 59 

Table S4. Scenario 3 (homogeneous detectability and assignment probability). Root mean squared 60 

error and relative bias of naive and model-based prevalence for sampling strategies with 5 capture 61 

occasions (Occ). 62 

Root mean squared error 

 Occ1 Occ2 Occ3 Occ4 Occ5 

 Low detectability 

Naive 0.00 0.01 0.00 0.00 0.00 

Model-based 0.05 0.00 0.01 0.00 0.00 

  High detectability 

Naive 0.00 0.00 0.00 0.00 0.01 

Model-based 0.03 0.01 0.00 0.00 0.00 

Percent relative bias 

  Low detectability 

Naive -0.00 -0.01 -0.00 -0.00 0.00 

Model-based 0.00 -0.00 -0.01 -0.00 -0.00 

  High detectability 

Naive 0.00 -0.00 0.00 0.00 0.01 

Model-based -0.02 -0.01 0.00 -0.00 0.00 

 63 
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 65 

Table S5. Scenario 3 (homogeneous detectability and assignment probability). Root mean squared 66 

error and relative bias of naive and model-based prevalence for sampling strategies with 10 capture 67 

occasions (Occ). 68 

Root Mean Squared Error 

 

Occ1 Occ2 Occ3 Occ4 Occ5 Occ6 Occ7 Occ8 Occ9 Occ10 

 Low detectability 

Naive 0.05 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.01 

Model-based 0.00 0.00 0.00 0.00 0.00 0.03 0.01 0.00 0.00 0.03 

  High detectability 

Naive 0.00 0.00 0.001 0.00 0.01 0.00 0.00 0.01 0.01 0.00 

Model-based 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Percent relative bias 

 Low detectability 

Naive 0.02 0.01 0.00 -0.00 -0.00 -0.01 -0.01 -0.00 0.00 0.03 

Model-based -0.00 -0.00 0.00 -0.01 -0.01 -0.02 -0.01 -0.01 -0.00 -0.02 

  High detectability 

Naive 0.00 0.00 0.01 -0.00 0.00 -0.00 -0.01 -0.01 -0.01 0.00 

Model-based -0.02 -0.01 -0.00 -0.00 0.00 -0.00 -0.00 -0.01 0.00 0.00 

 69 

  70 
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 71 

2.1.2 Confidence intervals coverage 72 

Table S6. Scenario 2 (homogeneous detectability and state-dependent assignment probability) for 73 

sampling strategies with 5 capture occasions (Occ). Confidence interval coverage. 74 

Confidence interval coverage 5 occasions 

  Occ1 Occ2 Occ3 Occ4 Occ5 Ave 

Low p 0.97 1.00 0.99 0.95 0.98 0.98 

High p 1.00 1.00 1.00 1.00 0.99 1.00 

 75 

Table S7. Scenario 2 (homogeneous detectability and state-dependent assignment probability) for 76 

sampling strategies with 5 capture occasions (Occ). Confidence interval coverage. 77 

Confidence interval coverage 10 occasions 

 Occ1 Occ2 Occ3 Occ4 Occ5 Occ6 Occ7 Occ8 Occ9 Occ10 Ave 

Low p 0.97 1.00 1.00 0.97 0.97 0.93 0.90 0.88 0.81 0.70 0.91 

High p 0.99 1.00 1.00 1.00 1.00 0.99 0.98 0.94 0.97 0.94 0.98 

 78 

Table S8. Scenario 3 (homogeneous detectability and assignment probability) for sampling 79 

strategies with 5 capture occasions (Occ). Confidence interval coverage. 80 

Confidence interval coverage 5 occasions 

  Occ1 Occ2 Occ3 Occ4 Occ5 Ave 

Low p 0.98 0.98 0.99 0.98 0.99 0.98 

High p 1 1 1 1 1 1 

 81 
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 83 

Table S9. Scenario 3 (homogeneous detectability and assignment probability) for sampling 84 

strategies with 10 capture occasions (Occ). Confidence interval coverage. 85 

Confidence interval coverage 10 occasions 

 Occ1 Occ2 Occ3 Occ4 Occ5 Occ6 Occ7 Occ8 Occ9 Occ10 Ave 

Low p 1.00 0.98 0.99 0.98 0.95 0.92 0.95 0.92 0.77 0.87 0.93 

High p 1.00 1.00 1.00 0.98 1.00 1.00 0.99 0.98 0.97 0.95 0.98 

 86 

2.2 Case study results  87 

Table S10. Model selection results for the wolf x dog case study. The notation (.) indicates constant 88 

parameters, (state) indicates state-dependent parameters, (time) indicates time-dependent 89 

parameters.  = initial state probability,  = survival probability, p = detection probability,  = 90 

assignment probability, N. Par. = number of parameters. The term (a1+a2_fix) indicates that we 91 

constrained the model to have fixed assignment probabilities after first capture. The term 92 

(a1+a2_fix).state indicates that the assignment probability is state-dependent. Models with state 93 

dependent assignment probability have been dropped from the model averaging because they had 94 

non-identifiabe parameters. 95 

Model N. Par. Deviance QAICc deltaAICc 

(i)phi(i)p(i)delta(a1+a2_fix).state    4 183.48 192.16 0.00 

(i)phi(i)p(i)delta(a1+a2_fix)          4 183.48 192.16 0.00 

(i)phi(state)p(i)delta(a1+a2_fix)          5 181.41 192.44 0.28 

(i)phi(i)p(state)delta(a1+a2_fix)          5 181.76 192.79 0.63 

(i)phi(state)p(i)delta(a1+a2).state  6 179.40 192.87 0.71 

(i)phi(i)p(state)delta(a1+a2).state  6 181.25 194.73 2.57 

(i)phi(state)p(state)delta(a1+a2_fix).state    6 181.25 194.73 2.57 
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(i)phi(state)p(state)delta(a1+a2_fix)          6 181.40 194.88 2.72 

(i)phi(i)p(t)delta(a1+a2_fix)    7 180.63 196.63 4.47 

(i)phi(state)p(t)delta(a1+a2_fix)          8 178.62 197.24 5.08 

(i)phi(state)p(t)delta(a1+a2).state 9 176.27 197.60 5.44 

(t)phi(i)p(i)delta(a1+a2_fix)          8 181.48 200.10 7.94 

(t)phi(state)p(i)delta(a1+a2)  9 179.11 200.45 8.29 

(t)phi(i)p(state)delta(a1+a2_fix)          9 179.17 200.50 8.34 

(t)phi(state)p(i)delta(a1+a2).state  10 176.89 201.04 8.88 

(i)phi(i)p(t)delta(a1+a2).state 9 180.63 201.96 9.80 

(t)phi(i)p(i)delta(a1+a2).state  9 180.98 202.31 10.15 

(t)phi(i)p(state)delta(a1+a2).state  10 178.41 202.56 10.40 

(t)phi(state)p(state)delta(a1+a2_fix)          10 179.04 203.19 11.03 

(t)phi(state)p(state)delta(a1+a2).state  11 176.88 203.95 11.79 

(t)phi(i)p(t)delta(a1+a2_fix)    11 178.63 205.71 13.55 

(t)phi(state)p(t)delta(a1+a2_fix)          12 176.36 206.48 14.32 

(t)phi(state)p(t)delta(a1+a2).state 13 173.76 207.04 14.88 

(t)phi(i)p(t)delta(a1+a2).state 12 178.12 208.24 16.08 

 96 

 97 

42



10 
 

3. FIGURES  

3.1 Simulated prevalence estimates for scenario 2: homogenous detectability and state-dependent assignment probability 

 

Figure S1. Scenario 2 (homogeneous detectability and state-dependent assignment probability). Sampling strategies with 5 (upper panels) vs 10 

(lower panels) capture occasions and low (left-column panels) vs high (right-column panel) detectability. True prevalence is represented as a dashed 

line while the 100 values of naive and model-based prevalence are displayed in the white and grey boxplots, respectively. 
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3.2 Simulated prevalence estimates for scenario 3: homogenous detectability and assignment probability 

 

Figure S2. Scenario 3 (homogeneous detectability and assignment probability). Sampling strategies with 5 (upper panels) vs 10 (lower panels) 

capture occasions and low (left-column panels) vs high (right-column panel) detectability. True prevalence is represented as a dashed line while the 

100 values of naive and model-based prevalence are displayed in the white and grey boxplots, respectively.  
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3.3 Simulated parameter estimates for simulations scenario 2:homogenous detectablity 

and state-dependent assignment probability 

 

 

Figure S3. Scenario 2 (homogeneous detectability and state-dependent assignment probability). 

Boxplots of 100 simulated survival estimates for parentals (left two panels) and hybrids (right two 

panels) for each sampling strategy. Sampling strategies with low detectability are in the top row, 

sampling strategies with high detectability are in the bottom row. Estimates obtained with sampling 

strategies with 5 and 10 capture occasions are compared in each panel. 
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Figure S4. Scenario 2 (homogeneous detectability and state-dependent assignment probability). 

Boxplots of 100 simulated detectability estimates for parentals (left two panels) and hybrids (right 

two panels) for each sampling strategy. Sampling strategies with low detectability are in the top 

row, sampling strategies with high detectability are in the bottom row. Estimates obtained with 

sampling strategies with 5 and 10 capture occasions are compared in each panel. 
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Figure S5. Scenario 2 (homogeneous detectability and state-dependent assignment probability). 

Boxplots of 100 simulated assignment probability estimates for parentals (left two panels) and 

hybrids (right two panels) for each sampling strategy. Sampling strategies with low detectability are 

in the top row, sampling strategies with high detectability are in the bottom row. Estimates obtained 

with sampling strategies with 5 and 10 capture occasions are compared in each panel. 
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Figure S6. Scenario 2 (homogeneous detectability and state-dependent assignment probability). 

Boxplots of 100 simulated initial state (IS) probability estimates for parentals (left two panels) and 

hybrids (right two panels) for each sampling strategy. Sampling strategies with low detectability are 

in the top row, sampling strategies with high detectability are in the bottom row. Estimates obtained 

with sampling strategies with 5 and 10 capture occasions are compared in each panel. 
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3.4 Simulated parameter estimates for simulations scenario 3:homogenous detectablity 

and assignment probability 

 

 

Figure S7. Scenario 3 (homogeneous detectability and assignment probability). Boxplots of 100 

simulated survival estimates for parentals (left two panels) and hybrids (right two panels) for each 

sampling strategy. Sampling strategies with low detectability are in the top row, sampling strategies 

with high detectability are in the bottom row. Estimates obtained with sampling strategies with 5 

and 10 capture occasions are compared in each panel. 

 

49



17 
 

 

Figure S8. Scenario 3 (homogeneous detectability and assignment probability Boxplots of 100 

simulated detectability estimates for parentals (left two panels) and hybrids (right two panels) for 

each sampling strategy. Sampling strategies with low detectability are in the top row, sampling 

strategies with high detectability are in the bottom row. Estimates obtained with sampling strategies 

with 5 and 10 capture occasions are compared in each panel. 
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Figure S9. Scenario 3 (homogeneous detectability and assignment probability). Boxplots of 100 

simulated assignment probability estimates. Sampling strategies with low detectability are on the 

left panel, sampling strategies with high detectability are on the right panel. Estimates obtained with 

sampling strategies with 5 and 10 capture occasions are compared in each panel. 
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Figure S10. Scenario 3 (homogeneous detectability and assignment probability). Boxplots of 100 

simulated initial state probability estimates for parentals (left two panels) and hybrids (right two 

panels) for each sampling strategy. Sampling strategies with low detectability are in the top row, 

sampling strategies with high detectability are in the bottom row. Estimates obtained with sampling 

strategies with 5 and 10 capture occasions are compared in each panel. 
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APPENDIX 2: Viterbi algorithm example 

We observed the following capture histories of individuals that have been classified as Uncertains 

(coded as 3). Some are wolves, some are admixed individual. For example we will consider the 

following capture history: 

 

Occ1 Occ2 Occ3 Occ4 Occ5 

Individual 1 3 3 0 3 3 

From the estimates produced with the multievent model we know the following probabilities: 

Initial state: when capturing an individual for the first time there is a 0.60 ( ) probability
that it is a wolf and a 0.40 ( ) probability that it is an admixed individual,

Transition probability: wolves have a 0.72 ( ) probability of surviving and remaining in
the study area, while admixed individuals have a 0.84 ( )  probability of surviving and
remaining in the study area

Probabilty of detection (emission probabilities): wolves have a 0.42 ( ) probability of
being detected, while admixed individuals have a 0.50 ( )  probability of being detected.

The Viterbi algorithm establishes if the observed individual is more likely to be a wolf or an 

admixed individual by applying the estimated probabilities to the observed capture histories, for 

example: 

The capture history of individual 1 (assuming that it is a wolf) is the following, 

(1 ) , 

by applying the estimate probabilities we obtain: 

 (0.4)(0.72)(0.42)(0.72)(1-0.42)(0.72)(0.42)(0.72)(0.42) = 0.006. 

The capture history of individual 1 (assuming that it is an admixed individual) is the following, 

(1 ) , 

By applying the estimate probabilities we obtain: 

(0.6)(0.84)(0.5)(0.84)(1-0.5)(0.84)(0.5)(0.84)(0.5) = 0.01. 

Therefore Individual 1 is more likely to be an admixed individual 
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capture-recapture (CR) framework applied to individual multilocus 
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scored using a panel of 12 microsatellites and assigned to the reference 
wolf and dog populations through Bayesian clustering procedures. Based 
on 152 samples, our dataset comprised the capture histories of 39 
individuals sampled in seven wolf packs and was organized in bi-monthly 
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multi-event formulation to explicitly handle uncertainty in individual 
classification, and accordingly contemplated two model scenarios, one 
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the misclassification of wolves as hybrids; Type 1 error), and the other 
using a more stringent criterion aimed to balance between Type 1 and 2 
error (i.e., the misclassification of hybrids as wolves). Compared to the 
naïve proportion of admixed individuals in the sample (43.6%), formally 
estimated prevalence was 50% under the first and 70% under the 
second scenario, with 71.4% and 85.7% of admixed packs, respectively. 
The average dog introgression was 7.8% (95% CI: 4.411%). 
Balancing between Type 1 and 2 error rates in assignment tests, our 
second scenario produced an estimate of prevalence 40% higher 
compared to the alternative scenario, corresponding to a 65% decrease 
in Type 2 and no increase in Type 1 error rates. Providing a formal and 
innovative estimation approach to assess prevalence in admixed wild 
populations, our study confirms previous population modelling indicating 
that reproductive barriers between wolves and dogs, or dilution of dog 
genes through backcrossing, should not be expected per se to prevent 
the spread introgression. As anthropogenic hybridization is increasingly 
affecting animal species globally, our approach is of interest to a broader 
audience of wildlife conservationists and practitioners.
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26 ABSTRACT

27 Introgressive hybridization between dogs and wolves represents an emblematic case of 

28 anthropogenic hybridization, and is increasingly threatening the genomic integrity of wolf 

29 populations expanding into human-modified landscapes. However, there is a lack of studies 

30 formally estimating prevalence and accounting for imperfect detectability and uncertainty in 

31 individual classification. Our goal was to present an approach to formally estimate the proportion of 

32 admixture by using a capture-recapture (CR) framework applied to individual multilocus genotypes 

33 detected from non-invasive samples collected from a protected wolf population in Italy. Individual 

34 multilocus genotypes were scored using a panel of 12 microsatellites and assigned to the reference 

35 wolf and dog populations through Bayesian clustering procedures. Based on 152 samples, our 

36 dataset comprised the capture histories of 39 individuals sampled in seven wolf packs and was 

37 organized in bi-monthly sampling occasions (Aug 2015−May 2016). We fitted CR models using a 

38 multi-event formulation to explicitly handle uncertainty in individual classification, and accordingly 

39 contemplated two model scenarios, one reflecting a traditional approach to classify individuals (i.e., 

40 minimizing the misclassification of wolves as hybrids; Type 1 error), and the other using a more 

41 stringent criterion aimed to balance between Type 1 and 2 error (i.e., the misclassification of 

42 hybrids as wolves). Compared to the naïve proportion of admixed individuals in the sample 

43 (43.6%), formally estimated prevalence was 50% under the first and 70% under the second 

44 scenario, with 71.4% and 85.7% of admixed packs, respectively. The average dog introgression was 

45 7.8% (95% CI: 4.4−11%). Balancing between Type 1 and 2 error rates in assignment tests, our 

46 second scenario produced an estimate of prevalence 40% higher compared to the alternative 

47 scenario, corresponding to a 65% decrease in Type 2 and no increase in Type 1 error rates. 

48 Providing a formal and innovative estimation approach to assess prevalence in admixed wild 

49 populations, our study confirms previous population modelling indicating that reproductive barriers 

50 between wolves and dogs, or dilution of dog genes through backcrossing, should not be expected 

51 per se to prevent the spread introgression. As anthropogenic hybridization is increasingly affecting 
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52 animal species globally, our approach is of interest to a broader audience of wildlife 

53 conservationists and practitioners.

54

55 KEYWORDS: Anthropogenic introgression; Bayesian assignment; Canis lupus; capture-recapture; 

56 genetic swamping; multi-event modelling; prevalence; wolf-dog hybridization.

57

58 Hybridization between domesticated forms and their wild ancestors is considered an exemplary 

59 form of anthropogenic hybridization (Randi 2007). Although this phenomenon has repeatedly 

60 occurred since domestication (Frantz et al. 2016; Pilot et al. 2018), there is concern that, especially 

61 in human-dominated landscapes, the widespread occurrence of domesticated forms (Boivin et al. 

62 2016) and their potential interactions with their wild ancestors may lead to an increased risk of 

63 hybridization and gene flow (i.e., introgression; Randi 2007; Salvatori et al. 2020). This can 

64 evetually lead the rarer wild counterparts to massive introgression and eventually genomic 

65 extinction through swamping (Allendorf et al. 2001). Domesticated mammals in general exhibit a 

66 suite of morphological, physiological and behavioral traits (e.g., coat color, craniofacial 

67 morphology, dentition, ears and tail shape and length, more frequent and non-seasonal estrus cycles, 

68 alterations in adrenocorticotropic hormone, increased tameness and sociality) that are not observed 

69 in their wild counterparts (Wilkins et al. 2014). Although few examples of positive selection of 

70 introgressed domesticated traits in wild species have been hypothesized (Anderson et al. 2009; 

71 Coulson et al. 2011; Grossen et al. 2014), consistent gene flow beween domesticated forms and 

72 their wild ancestors is expected to have deleterious consequences for wild species genomic integrity 

73 and viability (e.g., reduction in fitness and adaptive potential, loss of unique combinations of genes 

74 and genotypes that have a unique evolutionary history; Allendorf et al. 2001; Bohling 2016; Wayne 

75 and Shaffer 2016). For these reasons hybridization between wild and domesticated forms is 

76 considered a relevant threat to biodiversity (Todesco et al. 2016).
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77 Admixture can be measured both in terms of degree of introgression (i.e., the proportion of 

78 alleles from a non-parental taxon averaged across individuals in the population; e.g., Miller et al. 

79 2003) or proportion of admixed individuals in a population (sensu Allendorf et al. 2001); here, we 

80 refer to the latter (hereafter proportion of admixture, or prevalence) as it is fundamental to define 

81 appropriate management responses and to assess the dynamics of hybridization in a given 

82 population (Allendorf et al. 2001). In practical terms, assessing the proportion of admixture may 

83 inform wildlife management according to a two-step process: first, at the population scale, where 

84 assessments are often conveniently based on the genotyping of non-invasive samples, it informs if 

85 and eventually where management measures are needed (e.g., Adams et al. 2003); second, if 

86 population-wide surveys reveal admixture to an extent that necessitates interventions, more in-depth 

87 genetic analyses are needed to identify hybrids and accordingly target management actions (e.g., 

88 vonHoldt et al. 2013). In turn, estimating the proportion of admixture at the population-wide scale 

89 requires reliably estimating the abundance of both parental and admixed individuals in the 

90 population. These estimates, to be reliable, shoud ideally account for three critical aspects. First, 

91 they should be based on population samples that reflect biologically meaningful temporal (i.e., 

92 generational) and spatial scales. Second, they should derive from estimation methods that formally 

93 account for imperfect detectabilty and other potential sources of bias (Anderson 2001; Yoccoz et al. 

94 2001); in particular, because prevalence is essentially a proportion measuring the relative 

95 abundance of admixed and parental individuals, the estimation process should account for a 

96 potentially different detectability of the two forms (i.e., admixed vs. parental). Third, the inherent 

97 uncertainty that generally afflicts the classification of individuals as parental or admixed, especially 

98 if based on poor quality DNA samples, should be formally accounted for within the estimation 

99 framework (Santostasi et al. 2019). Specifically, even though genetic markers are considered at 

100 large more reliable than phenotypic cues of hybridization (Allendorf et al. 2001), uncertainty in 

101 detecting admixed individuals still remains and depends on two interacting factors: the number and 

102 type of genetic markers used, and the statistical methods and options adopted to assign sampled 
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103 individuals to the parental or admixed reference populations (Bohling et al. 2013; Vähä and 

104 Primmer 2006). Because population-wise assessments are more efficiently conducted analyzing 

105 non-invasive samples, especially for elusive and treathened species, the relatively poor quality DNA 

106 extracted from such samples allows for the amplification of a low number of diagnostic loci, 

107 therefore limiting the power to discriminate between parental and admixed individuals and their 

108 backcrosses (Vähä and Primmer 2006). One of the most commonly used method to assign sampled 

109 individuals to the parental or the admixed category is the Bayesian clustering procedures 

110 implemented in programs such as NewHybrids, BAPS and STRUCTURE (Pritchard et al. 2000; 

111 Anderson and Thompson 2002; Falush et al ., 2003; Corander et al. 2008). In our study we carried 

112 out the assignment using STRUCTURE that probabilistically assigns individual genotypes to K 

113 populations (characterized by distinct allele frequencies) that are assumed to contribute to their gene 

114 pools. Specifically, each individual is assigned on the basis of the estimated membership proportion 

115 (qi), that is the fraction of its genome that is inherited from ancestors in one of the two populations 

116 (Pritchard et al. 2000). Admixed individuals are then inferred when their estimated qi value is 

117 intermediate between two clusters (e.g., a first-generation hybrid should theoretically have a qi = 

118 0.5). The choice of the threshold qi value that discriminates parental from admixed individuals is 

119 traditionally fixed according to some rule of thumb of arbitrarily defined standard (e.g., qi = 0.8 for 

120 Canids; Verardi et al. 2006; Rutledge et al. 2012; Wheeldon et al. 2010; Benson et al. 2012), or by 

121 making reference to qi values derived from simulated genotypes of known genealogy (e.g., Godinho 

122 et al. 2011; van Wyk et al. 2016; Caniglia et al. 2020). We argue that more formal ways could be 

123 adopted to integrate the uncertainty in defining threshold qi values, and therefore assign sampled 

124 individuals to the parental or the admixed categories, into the estimation process. Moreover, in wolf 

125 x dog hybridization studies the choice of the threshold qi value has been generally oriented at 

126 avoiding Type 1 error (i.e., misclassifying parental wolves as admixed individuals), with the 

127 consequence of underestimating Type 2 error (i.e., misclassifying backcrosses as wolves). 

128 Nevertheless, Type 2 error may bear relevant conservation implications, especially in small and 
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129 expanding wolf populations (Donfrancesco et al. 2019). Especially if hybrids are detected using a 

130 limited number of genetic markers, calibrating threshod qi values to obtain small Type 1 error rates 

131 means that a non trivial proportion of recent backcrosses (sensu Caniglia et al. 2020) could be 

132 erroneously classified as wolves. Nonetheless, backcrosses are an indication of ongoing 

133 introgression and they carry domesticated alleles that, even if in smaller proportions compared to 

134 F1s, pose a risk for the genomic integrity of the wolf parental population (Allendorf et al. 2001).

135 Here, we present a formal approach to estimate the proportion of admixed individuals by 

136 making reference to a local wolf population affected by dog introgression in Italy. Hybridization 

137 between gray wolves (Canis lupus) and dogs (Canis lupus familiaris) is an emblematic case of 

138 wild-domestic hybridization (Butler 1994). Dog domestication originated about 35,000 − 11,000 ya 

139 (Freedman and Wayne 2017). Due to intense artificial selection, dogs differentiated from wolves in 

140 several morphological, physiological, and behavioral traits, and many of these differences are 

141 genetically based (vonHoldt et al. 2017; Pendleton et al. 2018). Nonetheless, wolves and dogs are 

142 interfertile and first generation hybrids can backcross into the wolf parental population, generating 

143 gene flow between the two forms (Vilà and Wayne, 1999; Randi 2007). In Europe, several wolf 

144 populations are currently re-expanding their range across human-dominated landscapes (Chapron et 

145 al. 2014) where dogs have since long become the most abundant carnivore (Ritchie et al. 2014). 

146 Accordingly, recent introgressive hybridization (i.e., up to three generations in the past; Caniglia et 

147 al. 2020) has been lately detected in several wolf populations in Eurasia (Galaverni et al. 2017; 

148 Pacheco et al. 2017; Pilot et al. 2018; Salvatori et al. 2020), suggesting the phenomenon is more 

149 widespread than originally thought (Vilà and Wayne 1999; Randi et al. 2000). Detection and 

150 monitoring of wolf-dog hybridization within wolf populations is therefore considered a 

151 conservation prioritity at the European scale (Hindrickson et al. 2017; Donfrancesco et al. 2019; 

152 Salvatori et al. 2020). However, no systematic and coordinated management of wolf-dog hybrids is 

153 currently in place across Europe, also due to the inherent uncertainties in detecting hybrids and a 

154 lack of ad hoc planned monitoring programs to formally assess hybridization at the population scale 
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155 (Salvatori et al. 2020). Previous assessments of wolf-dog hybridization in Europe (see Dufresnes et 

156 al. [2019] for a review) estimated prevalence as the sample proportion of individuals identified as 

157 admixed in the population (hereafter, naïve prevalence); in addition, most of those estimates were 

158 based on convenience or opportunistic samples (e.g., incidentally found carcasses or 

159 opportunistically collected biological samples), pooled at the country scale and across time frames 

160 encompassing several wolf generations. Although these samples may be indicative of broad patterns 

161 of introgression, they overlook several sources of sampling and estimation bias and are hardly 

162 useful to inform management responses at the appropriate spatial and temporal resolution. More 

163 formal yet practical estimation approaches, based on appropriate sampling designs, are needed to 

164 assess and monitor wolf-dog hybridization, especially in the light of the likely increasing 

165 phenomenon throughout Europe (Salvatori et al. 2020).

166 Based on previous methodological work (Santostasi et al. 2019), the goal of our study was to 

167 apply a formal approach to estimate the proportion of admixture that accounts for the sampling and 

168 estimation problems that affects naïve estimates of prevalence. By focussing on a wolf population 

169 in the northern Apennines (Italy), we applied a multi-event formulation of the CR model to formally 

170 address both imperfect detectability and the inherent uncertainty in the probabilistic assignment of 

171 admixed individuals (Pradel 2005; Jennelle et al. 2007; Santostasi et al. 2019). In doing so, we also 

172 explored more or less stringent rationales to classify admixed individuals (i.e., the current practice 

173 to minimize Type 1 error vs. a more precautionary approach to balance between Type 1 and 2 error 

174 rates) and the effect they had on the estimates of prevalence. We also used ancestry analysis and 

175 genealogy reconstruction to determine the reproductive status of admixed individuals within the 

176 studied population. Our findings, and the analytical approach we adopted, have broad implications 

177 for the assessment of the proportion of admixture in populations and species threatened by 

178 anthropogenic hybridization.

179

180 STUDY AREA

Page 8 of 47Journal of Wildlife Management and Wildlife Monographs



For Review
 O

nly

8

181 Our 731 km2 study area is centered but extends beyond the Appennino Tosco-Emiliano national 

182 Park (PNATE), in the northern Apennines, Italy (Fig. 1). The area lays within the core of the wolf 

183 range in the northern Apennines and comprises the territories of seven wolf packs that we 

184 intensively surveyed using a combination of field techniques (i.e., wolf-howling during summer, 

185 snow-tracking in winter, GPS-telemetry, non-invasive genetic sampling, camera-trapping; Ciucci 

186 and Boitani, 1999; Caniglia et al. 2014; Ciucci et al. 2018). Although this wolf population can not 

187 be considered closed, the tight territorial arrangement of the local wolf packs, and a marked 

188 environmental and anthropogenic gradient beyond the study area’s borders, suggest our definition 

189 comprises a demographically and genetically cohesive wolf population. Rough topography with 

190 steep valleys and elevations characterize the area, and the vegetation is mainly composed by 

191 temperate and sub-Mediterranean deciduous forests, alternated with prairies, meadows, pastures and 

192 cultivated fields. Human presence (25 inhabitants/km2) is limited throughout the year to lower 

193 elevations (below 1000 m), although it increases during summer due to tourism and livestock 

194 grazing at higher altitudes (Ciucci et al. 2003). Wolves naturally recolonized the area in the early 

195 1980s from the central Apennines (Fabbri et al. 2007), and they are now locally established at high 

196 density (Caniglia et al. 2014) thriving on wild and occasionally domestic ungulates (Ciucci et al. 

197 1996). Although stray dogs are scarce in the area, uncontrolled working or hunting dogs may be 

198 temporarily present. Occasional reports of admixed individuals have been previously reported in the 

199 study area (Caniglia et al. 2014) and led to the establishment of a EU-funded project (LIFE13 

200 NAT/IT/000728) to further investigate the impact of recent hybridization on the local wolf 

201 population.

202

203 METHODS

204

205 Sampling methods
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206 During 2015−16, we applied a non-invasive genetic sampling by systematically collecting wolf 

207 scats every 2 weeks along fixed routes throughout each of 7 wolf pack territories, and used 

208 complementary collection methods (i.e., at scent posts, homesites, kill sites) to boost sample size 

209 and enhance sampling coverage. To ensure a demographically meaningful time frame over which to 

210 estimate prevalence of admixed individuals, we restricted sampling to a single breeding pulse (i.e., 

211 from pup rearing until the onset of the next breeding season) by analysing wolf scats collected from 

212 August 2015 to May 2016, excluding those from pups born in spring 2016. Upon collection, we 

213 individually stored faecal samples at -20°C in 10 volumes of 95% ethanol. We then extracted and 

214 amplified DNA from the scats using standard laboratory protocols. 

215

216 Detection and classifications of individuals

217 Based on a multiple-tube protocol (Taberlet et al. 1996) using procedures described in Fabbri et al. 

218 (2018), we genotyped faecal DNAs amplifying them at: a) 12 unlinked autosomal microsatellites 

219 (STRs) selected for their polymorphism and reliable scorability for wolves and dogs (Caniglia et al. 

220 2014) and routinely used for genotyping low-content DNA samples in non-invasive genetic 

221 monitoring projects (Caniglia et al. 2013, Caniglia et al. 2014, Fabbri et al. 2018), and b) a 

222 dominant 3-bp deletion (named KB or CBD103DG23) of the b-defensin CBD103 gene (the K-

223 locus; Anderson et al. 2009; Caniglia et al. 2013). Additionally, we sexed samples by PCR-RFLP of 

224 the ZFX/ZFY (zinc-finger protein) sequences (Lucchini et al. 2002) and identified paternal 

225 haplotypes typing 4 STRs located on the Y Chromosome (MS34A, MS34B, MSY41A and MS41B; 

226 Sundqvist et al. 2001) and maternal haplotypes analyzing 250 bp of the hypervariable domain of the 

227 mtDNA CR1 (Caniglia et al. 2013). We used the software Gimlet v.1.3.3 (Valière 2002) to 

228 reconstruct the consensus genotype from the results of the 4-8 replicated amplifications per locus, to 

229 estimate PCR success (the number of successful PCRs divided by the total number of PCR runs 

230 across samples), allelic drop-out (ADO) and false alleles (FA) rates and to match the detected 

231 genotypes to each other and to the ISPRA Canis database for the identification of possible 
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232 resemplings in he study area. We retained as reliable consensus genotypes those showing a 

233 Reliability score R ≥ 0.95 obtained by the software RELIOTYPE (Miller et al. 2002).

234 We performed Bayesian clustering procedures (Besnier and Glover, 2013) on the 12-loci 

235 multilocus reliable genotypes obtained from the 4−8 replicated amplifications per locus per sample 

236 using the R package Parallel Structure (Caniglia et al. 2020). For each individual genotype we 

237 estimated the individual proportions of membership (qi) and the 90% Bayesian Credible Intervals 

238 (BCI) to the two inferred clusters (details about the Bayesian assignment test models are reported in 

239 Caniglia et al. 2020). We used the “Admixture” and the “Indipendent Allele Frequencies” models, 

240 with 500,000 Markov Chain Monte Carlo iterations discarding the first 50,000 as burn-in. We used 

241 as reference populations a panel of 190 wolves and 89 dogs. Wolf samples were obtained from 

242 areas with no documented cases of admixture and: (i) showed the typical wild coat colour pattern 

243 and no apparent signal of other morphological or dog-like traits (e.g., black coats, white claws, spur 

244 on the hind legs), (ii) did not share dog derivated Y and mtDNA haplotypes, and (iii) had a qi lower 

245 than 0.990, obtained in previous Bayesian assignment procedures performed using 156K canine 

246 SNPs and 39 canine STRs commonly used in recent studies on wolf x dog hybridization in Europe 

247 (Galaverni et al. 2017; Fabbri et al. 2018; Caniglia et al. 2020). Dog samples comprised 61 free-

248 ranging dogs sampled in the same areas (Randi et al. 2014; Galaverni et al. 2017), plus one male 

249 and one female randomly chosen from 14 wolf-sized dog breeds available from LUPA project data 

250 set (Lequarre et al. 2011; Vaysse et al. 2011, Caniglia et al. 2020). The reference populations were 

251 used also in HybridLab (Nielsen et al. 2006) to simulate 100 genotypes for each of the following 

252 parental and admixed classes: wild (PW) and domestic (PD) parentals, first (F1) and second (F2) 

253 generation hybrids, and four backcross generations originated either from F1s (BCW1-BCW4) or 

254 F2 (SBCW1-SBCW4) crossing with wild parentals (Caniglia et al. 2020). 

255 We classified the sampled genotypes as wolves or admixed individuals by comparing their 

256 individual qi values with those of the reference populations and of simulated genotypes. In doing so, 

257 we contemplated two classification scenarios to gauge their effect on the final estimate of 
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258 prevalence. The first classification (scenario A) reflected the widely adopted procedures essentially 

259 meant to reduce Type 1 error rates (e.g., Randi 2007; Godinho et al. 2011; Pacheco et al. 2017; 

260 Dufresnes et al. 2019). We acccordingly used the threshold qw ≤ 0.975, as suggested by Caniglia et 

261 al. (2020) to identify recent admixed individuals in the Italian wolf population with a reduced 12-

262 STR marker panel. The second classification (scenario B) reflected a more precautionary approach 

263 meant to balance between Type 1 and 2 error rates, thus reducing the number of simulated first- and 

264 second-generation backcrosses erroneously assigned to parental wolves. To formally account for the 

265 uncertainty in classification due to the expectedly large overlap in qw values between wolves and 

266 backcrosses using a relatively limited number of loci (Vähä and Primmer 2006), we classified 

267 individuals according to three categories: (i) Wolves, including individuals whose qw was higher 

268 than the maximum qw of simulated first generation backcrosses (BCW1), as this prevented 

269 erroneously assigning first-generation backcrosses to the wolf category (i.e., Type 2 error); (ii) 

270 Admixed individuals, including those whose qw was lower than the minimum qw of reference 

271 wolves, as this prevented erroneously assigning wolves to the admixed category (i.e., Type 1 error); 

272 (iii) Uncertains, including individuals whose qw was comprised between the minimum qw of 

273 reference wolves and the maximum qw of simulated BCW1 (Fig. 2; Table S1 Supplementary 

274 Materials); this reflected what suggested by Caniglia et al. (2020) who considered also a second q-

275 threshold of 0.990 to identify admixed individuals of older backcross generations that share only a 

276 marginal dog ancestry. To this aim we used the minimum qw of reference instead of simulated 

277 wolves as the former more realistically represents the expected genetic variability in the wolf 

278 population (Dufresnes et al. 2019). Whereas the first two categories are by definition those 

279 traditionally recognized in Bayesian-based assignment tests (i.e., scenario A), we contemplated the 

280 category Uncertains only in the classification scenario B (see below).

281 For each of the two scenarios, we obtained a CR dataset containing the capture histories of 

282 the observed individuals organized in bi-monthly sampling occasions. We analyzed both datasets 

283 using capture-recapture models to estimate the abundance of wolves and admixed individuals. With 
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284 scenario B we accounted for the uncertainty in the probabilistic assignment of admixed individuals 

285 (Santostasi et al. 2019).

286

287 Capture-recapture modelling and prevalence estimation

288 The multi-event formulation of open population CR models explicitly handles uncertainty in 

289 individuals classification by modelling the observed capture histories as two time series: the state 

290 process (i.e., the population dynamics during the study) and the event process (what we are able to 

291 observe through sampling; Pradel 2005). We modeled the state process as a Markov chain of 3 

292 partially hidden states (Pradel 2005; Santostasi et al. 2019): alive in the study area as wolf, alive in 

293 the study area as admixed, and dead/permanently emigrated. The state process was described by the 

294 initial state probability (πw: the probability that an individual was in one or the other state when first 

295 encountered) and the apparent survival probability (φ: the probability that an individual survived 

296 and remained in the study area between sampling occasions). In our model, since individuals could 

297 not change their state between parental and admixed, the only possible transition was between “in 

298 the study area” and “permanently emigrated/dead”, therefore their state changed over time 

299 according to a first‐order Markov process governed by only the apparent survival probabilities 

300 (Santostasi et al. 2019). We modelled the event process as conditional on the underlying state (to be 

301 observed, individuals had to be alive and in the study area) and represented by two consecutive 

302 steps: detection (p is the probability of finding and successfully scoring an individual genotype) and 

303 state assignment (i.e., individual classification, δ is the probability of classifying an individual as 

304 Wolf or Admixed according to its qw value). In classification scenario A we did not consider 

305 uncertainty in the state assignment, reflecting the traditional adoption of a fixed threshold qw value 

306 to discriminate between wolves and admixed individuals, and accordingly modeled the probability 

307 to assign an individual to one of the two states (δ) as equal to 1, whereas the complementary 

308 probability (1-δ: the probability of not classifying an individual) was equal to 0. Therefore, under 

309 scenario A, our model considered only three possible events, corresponding to individuals that 
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310 could be: 1) detected and classified as Wolf, recorded as 1 in the capture history; 2) detected and 

311 classified as Admixed,recorded as 2; and 3) not detected, recorded as 0. Differently, in scenario B 

312 we accounted for uncertainty in the assignment procedure contemplating four possible events, 

313 corresponding to individuals that could be: 1) detected and classified as Wolf, recorded as 1 in the 

314 capture history; 2) detected and classified Admixed, recorded as 2; 3) detected but not classified 

315 (i.e., classified as Uncertain; recorded as 3); 4) not detected, recorded as 0. Under this classification 

316 scenario, δ was not assumed to be equal to 1 but became a parameter to be estimated, and the 

317 complementary probability (1-δ) was used to model the capture histories of the individuals 

318 classified as Uncertain (Santostasi et al. 2019). For example, to illustrate the calculation of an 

319 encounter history of an uncertain individual in a 3-session CR experiment, ‘303’ would denote an 

320 individual encountered at the first and third occasions but not at the second occasion. The state of 

321 this individual (i.e., Wolf or Admixed) is not assigned in this phase. Assuming parameters are 

322 constant, we have (Santostasi et al. 2019):

323 Pr(303) =  πℎ(1 ― δℎ)φℎ(1 ― &ℎ)φℎ&ℎ(1 ― δℎ) + π&(1 ― δ&)φ&(1 ― &&)φ&&&(1 ― δ&)

324 The likelihood of the entire dataset is obtained as the product of the probabilities of all individual 

325 encounter histories assuming independence, and the parameter estimates are obtained by maximum 

326 likelihood (Pradel 2005).

327 With scenario A, the population abundance at a given occasion ( ), given by the sum of '

328 parental wolves ( ) and admixed individuals ( ), was estimated with the Horvitz-Thompson '( 'ℎ

329 estimator (McDonald and Amstrup 2001) as:

330 ' =
)&

&&
+  

)ℎ

&ℎ
= '& +  'ℎ 

331 where np was the number of parental individuals and nh the number of hybrids detected, and  and &&

332  were the estimated detectabilities of parental and admixed individuals, respectively. Prevalence &ℎ

333 was then estimated as (Santostasi et al. 2019):
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334 .*+,-./,)0, =
'ℎ

'& + 'ℎ

335 With scenario B, the individuals classified as uncertain needed to be assigned to one of the 

336 two states (admixed or parental). To do so, we used the Viterbi algorithm which, given any 

337 observation sequence (i.e., the encounter histories in this case) and the parameters estimated by the 

338 multi-event model, finds the most probable underlying sequence of states that has generated the 

339 observed data (Rouan et al. 2009; Zucchini et al. 2016; Santostasi et al. 2019). In our case the 

340 algorithm used the capture histories formulae of the uncertain individuals if they were wolves or 

341 admixed and caculated which of the two alternatives was the most probable, using the parameter 

342 estimates obtained with the multi-event model. We ran the Viterbi algorithm and calculated the 

343 probability of the four most likely capture histories reconstructions for each uncertain individual. 

344 Then, once the uncertain individuals were assigned to their most likely state and the number of 

345 observed parental and admixed individuals was reconstructed, their respective abundance estimates 

346 were used to estimate prevalence. Standard deviation and confidence intervals of the abundance and 

347 prevalence estimates were estimated via a non-parametric bootstrap (Davison and Hinkley, 2002). 

348 For both scenarios A and B, to test for sources of variation in the probability of detection 

349 and apparent survival, we built a set of candidate models incorporating the effect of biologically 

350 relevant and time-dependent variables. We tested models with (i) state effect on detection and 

351 survival probability to test for possible differences that could arise from different behavior of 

352 parental and admixed individuals as reported in other species (Derégnaucourt et al. 2004; 

353 Battocchio et al. 2017), (ii) time (capture occasion) effect on detection probability to test for 

354 heterogeneity due to variation in sampling effort and/or environmental conditions, (iii) pack effect 

355 on detection probability and survival to test for heterogeneity due to uneven spatial distribution of 

356 the sampling effort. We did not test for time effect on apparent survival because our sampling was 

357 extended over a relatively short time frame. Since the classification of genotypes was performed 

358 only once for each genotype, we constrained the assignment probability to be estimated upon first 
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359 capture only (Santostasi et al. 2019). We fitted the CR models and ran the Viterbi algorithm using 

360 program E-SURGE (Choquet et al. 2009). We compared the models based on their AICc (Akaike 

361 information criterion corrected for small sample size). To account for uncertainty in the selection of 

362 a single best model, we obtained model-averaged estimates considering models whose ΔAICc was 

363 ≤ 2 from the best selected model (Burnham and Anderson, 2002). In the absence of a goodness of 

364 fit test for multievent CR models (Pradel 2009), we used the R package R2ucare (Gimenez et al. 

365 2018) to evaluate the fit of our data to the Cormack-Jolly-Seber model (Lebreton et al. 1992) that 

366 has the same structure but does not allow uncertainty in state assignment (Gimenez et al. 2012).

367

368 Ancestry analysis and geneology

369 To reconstruct the ancestry of the sampled individual genotypes and to estimate their 

370 individual posterior probability to belong to the assigned or the other parental population, or to have 

371 a recent ancestor in either (Hubisz et al. 2009), we used the option “Population Information to test 

372 for migrants” implemented in STRUCTURE 2.3.4 (Falush et al. 2003; see Supplementary Materials 

373 for further details). In addition, to estimate the genealogies of the pack members and the 

374 reproductive status of the admixed individuals, we used a maximum-likelihood approach 

375 implemented in COLONY 2.0 (Wang and Santure 2009; see Supplementary Materials for further 

376 details). 

377

378 RESULTS

379 Out of a total of 152 collected scats, 65% were reliably genotyped showing an average number of 

380 positive amplifications per locus of 0.77 (ranging from 0.39 to 0.92), and average error rates of 

381 ADO=0.18 (SD=0.11) and FA=0.05 (SD=0.03). Consensus genotypes were grouped and

382 assigned to 39 individuals (15 females, 21 males, 3 of unknown sex; Table S2 Supplementary 

383 Materials), sampled on average (±SD) in 1.6 ± 0.9 capture occasions (Table S3 Supplementary 

384 Materials). We sampled from 2−12 individuals in each of the 7 packs. All the 39 sampled 
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385 individuals shared the typical Italian wolf mtDNA and none had the Kb melanistic deletion; four 

386 individuals shared a dog-derived Y haplotype, all assigned to the wolf category under scenario A 

387 while, under scenario B, three of them were classified as admixed and one as a wolf (Table S2 

388 Supplementary Materials).

389 Based on scenario A, out of the 39 sampled individuals 22 were classified as Wolf (qw ≥ 

390 0.975) and 17 were classified as Admixed (qw < 0.975; Table S2 Supplementary Materials), 

391 corresponding to a naïve prevalence of 43.6% and an average degree of introgression of 7.8 (± 10.5 

392 SD)% (95% CI: 4.4−11%). Based on the simulated genotypes, this qw-threshold correctly identified 

393 100% of simulated parental wolves, 100% of the F1, 100% of the F2, 86% of the BCW1, 48% of 

394 the BCW2, 13% of the BCW3, 8% of the BCW4 (Table S4 Supplementary Materials). The most 

395 supported model contemplated different apparent survival between sampling occasions for wolves 

396 and admixed individuals and constant detection probability (Table 1). Upon first capture, 

397 individuals had a 0.56 probability (95% CI: 0.41−0.71) of being Wolf (πw) and a 0.44 (95% CI: 

398 0.59−0.29) probability of being Admixed. The probability of apparent survival between occasions 

399 was φW = 0.56 (95% CI: 0.31−0.79) for wolves and φH = 0.92 (95% CI: 0.38−0.99) for admixed 

400 individuals. Overall survival over the 10-months period (the product of the four bi-monthly 

401 estimates of apparent survival) was 0.10 (95% CI: 0.009−0.39) for wolves and 0.78 (95% CI: 0.02–

402 0.96) for admixed individuals. We estimated a probability of detection p = 0.48 (95% CI: 

403 0.29−0.68). Within each capture occasion, total population abundance ranged from 25 (95% CI: 

404 10−44) to 31 (95% CI: 17−50) individuals, comprising 10 (95% CI: 3−26)−17 (95% CI: 7−30) 

405 wolves and 13 (95% CI: 3−21)−19 (95% CI: 9−32) admixed individuals (Table 2). Estimated 

406 prevalence under scenario A therefore ranged 47 (95% CI: 22−73)−60 (95% CI: 22−80)% by 

407 sampling occasion and averaged 50% (95% CI: 22−80%) across the 10-month sampling period 

408 (Fig. 3; Table 2). Under scenario A, the proportion of admixed packs was 71.4%.
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409 Conversely, according to classification of scenario B, out of the 39 sampled individuals, 10 were 

410 classified as Wolf (qw > 0.997), 23 were classified as Admixed (qw < 0.990), and 6 were classified 

411 as uncertain (0.990 ≤ qw ≤ 0.997; Table S2 Supplementary Materials). Based on the simulated 

412 genotypes, but excluding those classified as uncertain (n = 186), all simulated wolves (n = 76), F1 

413 (n = 100), F2 (n = 100), and BCW1 (n = 94) were correctly classified. However, 23% of BCW2 (n 

414 = 79) were erroneously classified as wolves, a Type 2 error rate that increased to 43−83% for 

415 further generations of backcrosses (Table S5, Supplementary Materials). The most supported 

416 models contemplated constant detection and apparent survival probabilities, state dependent 

417 survival, or both constant apparent survival and state dependent detection probability (Table 1). 

418 Upon first capture, individuals had a 0.30 (95% CI: 0.17−0.48) probability of being Wolf (πw) and 

419 a 0.70 (95% CI: 0.32−0.93) probability of being Admixed. The probability of apparent survival 

420 between occasions was φW = 0.73 (95% CI: 0.40−0.91) and φH = 0.77 (95% CI: 0.50−0.93) for 

421 wolves and admixed individuals, respectively. Overall survival was 0.28 (95% CI: 0.03−0.75) for 

422 wolves and 0.35 (95% CI: 0.06–0.75) for admixed individuals. We estimated probability of 

423 detecting a wolf as pW = 0.43 (95% CI: 0.16−0.67) and probability of detecting an admixed 

424 individual as pH = 0.47 (95% CI: 0.26−0.69). Upon detection, the probability of being assigned 

425 either to the Wolf or Admixed categories was δ = 0.85 (95% CI: 0.70−0.93). Based on the Viterbi 

426 algorithm, uncertain individuals had a higher probability to be assigned to the category Admixed 

427 (range: 0.31−0.80) than to the category Wolf (0.09−0.31; Table S6 Supplementary Materials). 

428 Within each capture occasion, total population abundance ranged from 26 (95% CI: 13−78) to 35 

429 (95% CI: 17−109) individuals, comprising 6 (95% CI: 2−20)−10 (95% CI: 4−35) wolves and 17 

430 (95% CI: 8−48)−26 (95% CI: 13−78) admixed individuals (Table 2). Estimated prevalence under 

431 scenario B therefore ranged 64 (95% CI: 38−72)−78 (95% CI: 55−84)% by sampling occasion and 

432 averaged 70% (95% CI: 45−77%) across the 10-month sampling period (Fig. 3; Table 2). Under 

433 scenario B, the proportion of admixed packs was 85.7%.
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434 The goodness of fit test did not detect signs of lack of fit (i.e., transience or trap-dependence) to the 

435 Cormack Jolly Seber model (p > 0.05 for all the tests, Table S7 Supplementary Materials). 

436

437 Ancestry analysis and genealogy

438 Ancestry analysis revealed that none of the 17 admixed individuals detected by Bayesian clustering 

439 procedures according to scenario A was a first- or second-generation hybrid; however, 41% (n = 7) 

440 of the admixed individuals had non-negligible posterior probabilities (0.120 ≤ p ≤ 0.999) of having 

441 a grandparent in the dog population, hence of being first-generation backcrosses (Table S5, 

442 Appendix A). The remaining admixed individuals likely originated from backcrosses of further 

443 generations backwards (i.e., ≥ BCW2). Despite a relatively limited sample size, through the 

444 genealogy estimation we were able to identify (p > 0.90) likely admixed breeding pairs in two of 

445 the seven surveyed packs. Specifically, according to scenario A, the two admixed breeding pairs 

446 had one admixed breeder each, whereas, based on scenario B, one of the two pairs had two and the 

447 other one admixed breeders (Fig. 4). All of the admixed breeders were identified to be > first-

448 generation backcrosses in the ancestry analysis (Table S8 Supplementary Materials). In 2015, these 

449 two admixed breeding pairs produced a minimum of 3 and 5 offspring each. Under scenario A 7 of 

450 these offspring were classified as Wolf and one as Admixed, whereas according to scenario B only 

451 1 of them was classified as Wolf, 3 as Admixed, and 4 as Uncertain. Based on the Viterbi 

452 algorithm, the 4 individuals originally classified as Uncertain were classified as Admixed (Table S7 

453 in Supplementary Materials).

454

455 DISCUSSION

456 In this study, we presented an innovative approach to formally estimate population-wide prevalence 

457 of admixture in wild populations affected by anthropogenic hybridization. By recognizing that 

458 naïve estimates of the proportion of admixture generally suffer from various sources of bias, we 

459 applied a CR-based estimation approach to a local wolf population, accounting for imperfect 
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460 detectability and uncertainty in individuals classification, both typically associated to the 

461 genotyping of non-invasive samples. Differently, naïve estimates of prevalence do not take into 

462 account detectability, and previous simulations demonstrated they are biased when the probability 

463 of detection of parental and admixed individuals is heterogeneous (Santostasi et al. 2019). 

464 Heterogeneity in detectability may arise because of expected differences in ecology and behavior 

465 between parental and admixed individuals (e.g., social behavior, marking rate, spatial patterns, 

466 resource selection), or because of sampling bias (e.g., spatially heterogeneous effort, edge effect; 

467 Crespin et al. 2008). Although we did not find strong evidence of such heterogeneity in our 

468 application, under scenario B high-ranking models did contemplate the effect of heterogeneous 

469 detectability, suggesting that admixed individuals may have a higher probability of detection. 

470 A critical point, common to both naïve and formal approaches to estimate prevalence, 

471 concerns the reliability of the individual classification based on Bayesian clustering techniques. In 

472 fact, in addition to the number and type of molecular markers, the classification is strongly affected 

473 by the composition of the chosen reference samples and by the threshold qi values chosen to 

474 discriminate admixed from parental individuals (Vähä and Primmer 2006). To overcome these 

475 problems, we relied on an improved procedure (Caniglia et al. 2020), based on (i) carefully 

476 screened reference samples of pure Italian wolves, whose selection was aided by genomic tools 

477 (Galaverni et al. 2017), and (ii) a back-end executable of the software STRUCTURE (i.e., R package 

478 Parallel Structure) that produces more stable assignment coefficients which are not affected by 

479 samples with variable levels of admixture as these are analysed one by one (Besnier and Glover 

480 2013). Previous studies comparing the assignment and the detection power of admixed individuals 

481 of several Bayesian softwares showed that the results obtained by STRUCTURE are comparable to 

482 those obtained using other Bayesian approaches, such as those implemented in NewHybrids 

483 (Caniglia et al. 2020) or BAPS (Randi et al. 2014), and better than partially Bayesian approaches 

484 like those implemented in GeneClass (Piry et al. 2004, Sanz et al. 2009). We nevertheless used a 

485 relatively limited number of microsatellite loci, though this reflects what is routinely done in 
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486 population-wide surveys adopting non-invasive genetic sampling (Caniglia et al. 2014; Fabbri et al. 

487 2018). This implies a relatively reduced power to detect admixed individuals of second or further 

488 generations of backcross. In these circumstances, the traditional assignment approach is to define a 

489 threshold qi value that comprises all wolves of the reference poulation, with the aim to reduce Type 

490 1 error rate in the assignment tests. According to this approach, for example, Godinho et al. (2011) 

491 and Randi (2007), using simulated genotypes, estimated that the proportions of first-generation 

492 backcrosses erroneously classified as wolves were 16% and 20%, respectively. However, similarly 

493 to other conservation contexts (McGarvey 2007; Saltz, 2011), it is also relevant to consider Type 2 

494 error rates; specifically, an overlooked occurrence of admixed individuals, expecially in small and 

495 expanding populations, may increase the degree and spread of introgression compromising the 

496 genomic integrity of parental populations. To our knowledge, however, no approach has been 

497 currently developed to integrate the assessment of Type 2 errors within Bayesian-based clustering 

498 techniques and formal estimation of the proportion of admixture. We tackled this issue by (i) 

499 adopting a multi-event formulation in CR modelling that more formally accounts for the uncertainty 

500 in detecting hybrids while balancing Type 1 and 2 error rates, and (ii) comparing estimates of 

501 prevalence obtained with the traditional approach to classify admixed individuals with those 

502 obtained by our more precautionary approach (i.e., scenarios A and B, respectively). Scenario A 

503 reflected assignment criteria (i.e., definition of threshold qw values) indicated by Caniglia et al. 

504 (2020) to ensure the best performance in distinguishing between recent and older generations of 

505 admixture (sensu Caniglia et al. 2020). According to this scenario (qw ≥ 0.975), prevalence in our 

506 wolf population was 50% and no simulated wolf genotypes were erroneously assigned to the 

507 admixed category. However, 14% and 52% of simulated first- and second-generation backcrosses, 

508 respectively, were erroneously assigned to the wolf category, indicating that such an approach (i.e., 

509 using only the first qw-threshold suggested by these authors and not taking into account the 

510 assignment interval including older admixed individuals) may still overlook a non trivial proportion 

511 of recent admixed individuals in the population, therefore understimating prevalence. Notably, the 
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512 approach suggested by Caniglia et al. (2020) had different aims than the formal estimation of 

513 prevalence, and it was developed to provide a convenient and practical screening of samples while 

514 standardizing assignment procedures across different genetic laboratories. Based on scenario B, 

515 however, the consideration of individuals whose qw value was comprised between the minimum qi 

516 of reference wolves and the maximum qw of simulated first-generation backcrosses allowed us to 

517 formally integrate the uncertainty in hybrid classification into the estimation process while 

518 controlling for Type 2 error rates. In particular, the Viterbi algorithm offered a reproductible 

519 procedure to assign the individuals whose classification was uncertain. In our study, 6 individuals 

520 were classified as uncertain and, according to the algorithm, they all had a higher probability of 

521 being admixed than wolves. Notably, because this assignment is based on the estimates of the 

522 model parameters, it may be flawed if the estimates are biased. However, Santostasi et al. (2019) 

523 assessed the performance of the multi-event CR model in estimating parameters (π, φ, p, δ) and 

524 prevalence under different sample sizes and concluded that the model estimates are unbiased with 

525 the value of detectability reported in our study. To further support the Viterbi algorithm-based 

526 assignment, 4 of the 6 individuals originally classified as uncertain were confirmed to be the 

527 progeny of two admixed individuals by the genealogical reconstruction. This leads us to suggest 

528 that both the Viterbi algorithm and the genealogical reconstruction should be used as independent 

529 methods to classify individuals that, based on their qw value, are of uncertain assignment. 

530 Expectedly, based on scenario B, the average prevalence of admixture in the wolf population raised 

531 to 70%, no simulated wolf was erroneously assigned to the admixed category, no simulated first-

532 generation backcross, and only 23% of simulated second-generation backcrosses were erroneously 

533 assigned to the the wolf cluster. Cumulatively, and limited to recent backcrosses, this corresponds 

534 to a 65.2% decrease in Type 2 error rate, and no increase in Type 1 error rate, compared to scenario 

535 A. 

536 The above estimates of prevalence, ranging from 43.6% (naïve), to 50% (95% CI: 22−80%; 

537 scenario A) and 70% (45−77%; scenario B), consistently reveal widespread admixture at the level 
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538 of this wolf population, even though the difference in absolute terms reveals that alternative 

539 analytical approaches may strongly affect the estimates. Based on theoretical grounds, we maintain 

540 that scenario B corresponds to the most reliable estimate in our context. Support is also provided by 

541 the genealogy reconstruction as, out of the 8 pups produced by the two admixed breeding pairs, 7 

542 were identified as admixed under scenario B but only 1 under scenario A. Indeed, a 70% estimate of 

543 prevalence in a protected wolf population may cause some raised eyebrows, especially if this 

544 conclusion is based on a relatively small number of genetic markers. However, two considerations 

545 are in place here: first, being this assessment based on non-invasive samples genotypings, and hence 

546 a limited number of genetic markers, by no means our findings imply that 70% of the poulation has 

547 to be managed (e.g., captivated or sterilized) to contrast the spread of admixture. Ours is a 

548 population assessment and by definition (see Introduction) is not meant to provide practical 

549 management indications at the individual level. Second, our estimate of prevalence is based on the 

550 same genetic protocols and markers currently used to detect hybrids using non-invasive samples 

551 (Caniglia et al. 2020). Compared to previous works, it simply extends the estimation approach to 

552 correct for imperfect detectability and advances a more formal way to address the uncertainty in 

553 assignment of admixed individuals. It could be argued that, regardless the proportion of admixture, 

554 individuals with an average 7.8% of dog introgression (95% CI: 4.3−11%) might not differ from the 

555 parentals in their ecological role, and that they can be considered as ecological surrogates (Wayne 

556 and Shaffer 2016; vonHoldt et al. 2017). However, we believe this argument should not interfere 

557 with the analytical capability to reliably assess proportion of admixture at the population scale. In 

558 absence of clear evidence on the ecological signature of introgressed individuals, a formal and 

559 precautionary approach should still be used to assess the proportion of admixture in wild 

560 populations.

561 Compared to previous estimates of wolf-dog hybridization (e.g., Randi and Lucchini 2002; 

562 Lorenzini et al. 2013; Kusak et al. 2018; Dufresnes et al. 2019), our estimate is based on a 

563 biologically more meaningful sample, as it was limited to a local wolf population and temporally 
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564 restricted to one breeding period. Hybridization is a highly dynamic phenomenon because 

565 facilitating factors, such as lack of conspecifics, availability of heterospecific mates, anthropogenic 

566 disturbance (Bohling and Waits, 2015), as well as movements of admixed individuals, may vary 

567 considerably across time and space. Differently from ours, multi-generation samples pooled across 

568 large areas and time frames, may impair a clear understanding of admixture dynamics in space and 

569 time. On the other hand, our estimate has local significance and cannot be used to extrapolate 

570 general conclusions about wolf-dog introgression at wider scales. This underlines the importance of 

571 upscaling our sampling and estimation approach over larger areas and multiple timeframes, as 

572 obtaining reliable assessment of the number of admixed populations and their prevalence over time 

573 will inform the most adequate management strategies (Allendorf et al. 2001).

574 Regardless the scenario we adopted, the proportion of admixture we estimated is, to our 

575 knowledge, the highest so far reported for a wolf population (summarized in Table 1 in Dufresenes 

576 et al. [2019]; but see Salvatori et al. [2019]), and indicates that unmanaged wolf-dog hybridization 

577 may lead to widespread introgression at local scale. Based on relatively low, naïve quantifications 

578 of prevalence from previous hybridization studies (e.g., Verardi et al. 2006, Pacheco et al. 2017; 

579 Kusak et al. 2018), several authors concurred on two main hypotheses: first, wolf-dog hybridization 

580 is rare, and where it occurs most likely takes place in the peripheral portion of the wolf distribution 

581 (Lorenzini et al. 2014) and/or during early phases of range expansion (Galaverni et al. 2017; Kusak 

582 et al. 2018); second, introgression of dog alleles into wolf populations is expected to be buffered by 

583 behavioural and selective constraints (e.g., the unsuccessfull integration of pregnant admixed 

584 females in the natal packs, the reduced survival of F1 litters due to limited paternal care, the lower 

585 success of admixed individuals in territorial or predatory interactions; Vilà and Wayne 1999), or by 

586 dilution of dog genes through backcrossing into the parental wolf populations (Verardi et al. 2006). 

587 However, the high proportion of admixture we reported contradicts both predictions and contrasts 

588 with theoretical expectations on the functionality of reproductive barriers between wolves and dogs. 

589 Although we did not detect any F1, we estimated a high prevalence of backcrosses of several 
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590 generations backwards, 30% of which had non-negligible probabilities of being first- or second-

591 generation backcrosses, indicating a time of original admixture dating as recently as 2006−2009 

592 (i.e., 6−9 years before our sampling assuming a 3 years-wolf generation time; Skoglund et al. 2011). 

593 Reports of F1 hybrids are rare both in the northern Apennines (Caniglia et al. 2014) and elsewhere 

594 where wolf-dog hybridization has been detected (Godinho et al. 2011; Randi et al. 2014; Pilot et al. 

595 2018; Salvatori et al. 2019). However absence of detection cannot be considered true absence when 

596 detectability is not taken into account (MacKenzie 2005). Moreover, even if wolf x dog 

597 hybridization events are rare, the production of admixed individuals by backcrossing may increase 

598 exponentially when reproductive barriers are weak (one fertile F1 female can produce several 

599 backcrossed litters; Fredrickson and Hedrick 2006; Santostasi et al. 2020). However, it is 

600 noteworthy that in 2006 a male F1 hybrid, featuring a Y-haplotype typical of Czechoslovakian 

601 wolfdogs, was sampled in one of our study packs. This hybrid successively sired two admixed 

602 litters with a female wolf, as revealed by genealogical reconstruction of seven pups non invasively 

603 sampled in 2010 and 2011 (R. Caniglia, pers. comm.). Therefore, crossmating between wolves and 

604 dogs in the northern Apennines was not limited to the wolf re-colonization phase (i.e., late 1990s; 

605 Galaverni et al. 2017), and our findings reveal that factors faciltating hybridization are currently 

606 operating in a long-established wolf populations well after the re-colonization phase. 

607 Anthropogenic disturbances may facilitate the disruption of pre-mating (e.g., agonistic behavior) 

608 and post-mating (e.g., reduced fitness of F1) reproductive barriers in social canids (Rutledge et al. 

609 2012; Bohling and Waits, 2015). In particular, human-caused wolf mortality may disrupt breeding 

610 pairs, thereby increasing the chances of pack dissolution (Brainerd et al. 2008). Especially during 

611 the breeding season, pack dissolution may release the social inhibition to mate of subordinate 

612 wolves of both sexes, stimulating individuals to find mates and establish in vacant territories 

613 (Bohling and Waits 2015). In human-dominated countries where free-ranging dogs are widespread 

614 (Ritchie et al. 2014), or admixed individuals could be available as mates, the above mechanism may 

615 contribute to greatly increase the chances of hybridization and backcrossing (Bohling and Waits 
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616 2015). In the same region of our study area, Caniglia et al. (2014) reported a high pack turnover, 

617 possibly linked to the high mortality of wolf territory holders. The territories of the packs we 

618 surveyed extend well beyond the boundaries of the PNATE, where hunting is allowed throughout 

619 the year for wild boar population control, and instances of illegal wolf killings during drived hunts 

620 with dogs are routinely reported among residents (L. Molinari, pers. comm.). This is in line with our 

621 estimates of apparent survival that are considerably lower compared to other studies (e.g., Marucco 

622 et al. 2009; Cubaynes et al. 2010; Caniglia et al. 2012). In addition, according to both scenarios A 

623 and B apparent survival seems to be lower for wolves than for admixed individuals, a difference 

624 that, if confirmed, would be key in promoting the spread of introgression (Rutledge et al. 2012; 

625 Bohling and Waits 2015). We acknowledge that estimates of apparent survival can be also 

626 negatively biased by transience generated by dispersing yearlings and subordinate adults (Jimenez 

627 et al. 2017), but high disappearance rather than transience rates characterized the wolf population in 

628 this region at a wider scale (Caniglia et al. 2014). We are therefore inclined to believe that human-

629 caused mortality is likely among the ultimate causes of the high introgression rates we detected. 

630 Anthropogenic food sources (i.e., large livestock carcasses, butchery offals) are largely availabile in 

631 some portions of our study area (L. Molinari, pers. comm.), and these may promote affiliative 

632 interactions between solitary female wolves and dogs (Newsome et al. 2017) and also facilitate the 

633 survival of solitary pregnant females and their admixed litters. The occurrence of at least two 

634 admixed breeding pairs are further evidence of the reproductive success of admixed individuals. In 

635 these conditions, hybrid-hybrid pairs can maintain dog genes at high frequency in the population 

636 (see also Bassi et al. 2017; Salvatori et al. 2019), as also projected by simulation of hybridization 

637 dynamics in social canids (Fredrickson and Hedrick, 2006; Santostasi et al. 2020). 

638 We can not exclude that high admixture in our study area may have also originated through 

639 dispersal of admixed individuals from other areas. Wolves, and expectedly so introgressed 

640 individuals, can travel long dispersal distances from their natal territories also across human-

641 dominated countries (Ciucci et al. 2009). In an area located at the periphery of the wolf range in 
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642 central Italy, one admixed breeding pair produced 2−6 pups each year from 2005−2008, and some 

643 of the offsprings were successively sampled at about 40 km from their natal territory (Caniglia et al. 

644 2013). Given that the northern Apennines play an important role as a functional corridor for wolves 

645 dispersing to the Alps (Fabbri et al. 2007), a high proportion of admixture in local wolf populations 

646 in the northern Apennines may increase the risk of introgression of dog ancestry spreading into the 

647 Alpine wolf population, where limited introgression has been so far currently detected (Dufresnes et 

648 al. 2019). Notably, one of the admixed pups sampled in our study area during our survey was 

649 retrieved dead 2 years later in the Italian Prealps, at a linear distance of 237 km along the main 

650 dispersal route to the Western Alps (L. Molinari, pers. comm.).

651

652 MANAGEMENT IMPLICATIONS

653 In line with other wild-domesticated hybridization cases (e.g., Lecis et al. 2006; Stephens et al. 

654 2015), our findings indicate that reproductive isolation between wild and domestic forms, and 

655 possibly dilution by backcrossing, may be not sufficient per se to prevent widespread introgression 

656 of domestic genes. While futher research is needed to better gauge the spatial and temporal 

657 dynamics of introgression over time, effective management of anthropogenic hybridization is of 

658 paramount importance (Allendorf et al. 2001). Depending on the extent of admixture, this could be 

659 achieved through preventive (e.g., education, information, communication) and proactive measures 

660 (e.g., effective control of facilitating factors such as free ranging dogs, poaching, anthropogenic 

661 food provisioning). The latter should be aimed in our case to enhance survival of wolf breeders and 

662 preserve the cohesiveness of wolf packs, as these are the two most influential factors contrasting the 

663 spread of introgression in social canids (Fredrickson and Hedrick, 2006; Bohlings and Waits 2015, 

664 Santostasi et al. 2020). However, in presence of widespread introgression as the one we revealed, 

665 reactive interventions should also be contemplated (e.g., Gese and Terletzky, 2015; van Wyk et al. 

666 2016) to limit the spread domestic alleles by significantly reducing the reproductive contribution of 

667 the admixed individuals. In this perspective, population-based assessments such as ours ought to be 
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668 supported by a more in-depth assessment of introgression at the individual level in order to identify 

669 admixed individuals with greater confidence (i.e., a higher number of genetic markers).

670 Population-wide, reliable assessments of admixture should be more frequently conducted to monitor 

671 the genetic status of populations threatened by hybridization before it is too late (Allendorf et al. 

672 2001). They are useful to eventually indicate admixed propagules in due time and assess the 

673 effectiveness of preventive and proactive measures. In this perspective, new and sensitive 

674 techniques, such as microfluidic PCR, enable genotyping of reduced panels of ancestry-informative 

675 SNPs also on degradated DNA obtained from non-invasive samples, and this could be soon 

676 routinely applied for future assessment of admixture (Caniglia et al. 2020, von Thaden et al. 2017). 

677 In addition to this, we believe our modelling approach will serve for more frequent and reliable 

678 assessment and monitoring of anthropogenic hybridization where this is threatening the genomic 

679 integrity of wild parental populations.
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993 Figure captions

994

995 Figure 1. Location of the study area along the Northern Apennines in Italy (inlet: Italian wolf 

996 population range), and sampling locations (dots) of the collected scats within each approximate 

997 wolf pack territory (circles). Black dots refer to individuals genetically classified as wolves, while 

998 white dots to individuals classified as wolf x dog admixed individuals (under classification scenario 

999 B, aimed at balancing Type 1 and 2 classification errors, see text).

1000

1001 Figure 2. Left panel: boxplot of the qw values of the genotypes simulated from reference wolves 

1002 (n=190) and dogs (n=89) grouped per genealogical class (n=100 genotypes for each class). The grey 

1003 horizontal lines define the area of uncertainty that is zoomed in the right panel. Right panel: detail 

1004 of the area of uncertainty comprised between the minimum qw of reference wolves (dashed line) and 

1005 the maximum qw of simulated first generation backcrosses (solid line). We classified as Wolves 

1006 those sampled genotypes whose qw was above the solid line, as Admixed those whose qw was below 

1007 the dashed line, and as Uncertains those in between. W=wolves; F1 and F2=first and second 

1008 generation hybrids, respectively; BCW1-4=first to fourth generation backcrosses of F1 with wolves; 

1009 SBCW1-4=first to fourth generation of backcrosses of F2 with wolves.

1010

1011 Figure 3. Prevalence of admixed individuals in a protected wolf population composed of seven wolf 

1012 packs in the Northern Apennines, Italy (2015-2016), as assessed by non-invasive genetic sampling 

1013 and Bayesian assigment procedures based on multilocus genoypes (12 STRs). Estimates of 

1014 prevalence, obtained through an open population CR modelling approach, refer to an overall 10-

1015 month sampling period and are shown for each 2-month sampling occasion. The two scenarios refer 

1016 to two alternative rationales to cope with uncertainty in the classification of admixed individuals 

1017 (see text)

1018
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1019 Figure 4. Reconstructed genealogies for two of the seven wolf packs non-invasively sampled in the 

1020 Northern Apennines, Italy (2015-2016), to estimate admixture between wolves and dogs. For each 

1021 the two packs, the two likely breeding individuals are on top of the diagram and are connected to 

1022 their progeny through a vertical branch. For each symbol, the first line reports the individual ID, the 

1023 second line the individual qw, and the third line their classification based on their qw and a 

1024 classification rationale aimed at minimizing type 1 error (scenario A) and the fourth line a 

1025 classification rationale aimed at balancing between Type 1 and 2 error rates (scenario B). All 

1026 individuals originally classified as Uncertains (U) based on the qw were successively assigned to the 

1027 admixed category (H) by our probabilistic, a posteriori procedure based on the Viterbi algorithm 

1028 (see text).

1029

1030
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1031 Table 1. Most supported capture recapture models and model averaged estimates of prevalence of 

1032 admixed individuals in the PNATE for scenario A and B (p = detectability, π = initial state 

1033 probability, φ = apparent survival probability, δ = assignment probability). The term (.) indicates 

1034 constant parameters, the term (state) indicates state-dependent (i.e., Wolf vs. Admixed) parameters. 

1035 We considered for the model averaging only the model that had a ΔQAICc <2 from the best model.

Model selection scenario A

Model # Id. Par. Deviance QAIC QAICc ΔQAICc

π(.)p(.)φ(state)  4 152.37 160.37 161.03 0.00

π(.)p(state)φ(state)  5 152.34 162.34 163.35 2.32

π(.)p(state)φ(.)  4 155.10 163.10 163.76 2.73

π(.)p(time)φ(state)  7 148.41 162.41 164.38 3.35

π(.)p(.)φ(.)  3 158.03 164.03 164.43 3.40

π(.)p(time)φ(.)  6 154.15 166.15 167.60 6.57

π(.)p(.)φ(pack)  9 147.13 165.13 168.41 7.38

π(.)p(state)φ(pack)  10 146.57 166.57 170.65 9.62

π(.)p(pack)φ(state)  10 149.59 169.59 173.67 12.64

π(.)p(time)φ(pack)  12 144.11 168.11 174.11 13.08

π(.)p(pack)φ(.)  9 152.84 170.84 174.11 13.08

π(.)p(pack)φ(pack)  15 143.88 173.88 183.68 22.65

Model selection scenario B

Model # Id. Par. Deviance QAIC QAICc ΔQAICc

π(.)p(.)φ(.)δ(.)    4 176.49 184.49 185.17 0

π(.)p(.)φ(state)δ(.)    5 175.46 185.46 186.49 1.32

π(.)p(state)φ(.)δ(.)    5 175.62 185.62 186.65 1.48

π(.)p(state)φ(state)δ(.)    6 175.39 187.39 188.86 3.67
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π(.)p(.)φ(pack)δ(.)    10 165.46 185.46 189.61 4.44

π(.)p(t)φ(pack)δ(.)    7 173.64 187.64 189.64 4.47

π(.)p(t)φ(state)δ(.)    8 172.62 188.616 191.23 6.06

π(.)p(state)φ(pack)δ(.)    11 165.46 187.46 192.54 7.36

π(.)p(pack)φ(.)δ(.)    10 171.45 191.45 195.60 10.42

π(.)p(t)φ(pack)δ(.)    13 163.32 189.32 196.60 11.432

π(.)p(pack)φ(state)δ(.)    11 171.41 193.41 198.48 13.312

π(.)p(pack)φ(pack)δ(.)    16 162.74 194.74 206.31 21.14

1036

1037 Table 2. Model averaged estimates of prevalence of admixture in a protected wolf population in the 

1038 northern Apennines, Italy (2015-2016) estimated with multistate and multievent capture-recapture 

1039 models (p = detectability, π = initial state probability, φ = apparent survival probability). The term 

1040 (.) indicates constant parameters, the term (state) indicates state dependent (i.e., Wolf vs. Admixed) 

1041 parameters.

Estimates Scenario A

Sampling occasion Aug−Sept Oct−Nov Dec−Jan Feb−Mar Apr−May

Poulation abundance ( )' 25

(11-44)

25

(11-39)

31

(17-50)

31

(16-50)

23

(11-44)

Wolf abundance ( w)' 13

(3-26)

13

(4-25)

17

(7-30)

13

(4-24)

10

(3-26)

Admixed individuals 

abundance ( h)'

13

(3-26)

13

(3-21)

15

(5-28)

19

(8-31)

13

(3-26)

Prevalence (95% CIs) 0.50

(0.22-0-80)

0.50

(0.20-0.79)

0.47

(0.21-0.79)

0.60

(0.37-0.84))

0.55

(0.22-0.80)

Estimates Scenario B
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Poulation abundance ( )' 26

(13-78)

28

(14-85)

35

(17-109)

35

(17-109)

26

(13-80)

Wolf abundance ( w)' 7

(3-26)

10

(4-35)

7

(3-26)

7

(3-26)

6

(2-20)

Admixed individuals 

abundance ( h)'

17

(8-48)

17

(8-48)

26

(12-72)

26

(12-72)

19

(8-51)

Prevalence (95% CIs) 0.70

(0.45-0.77)

0.64

(0.38-0.72)

0.78

(0.55-0.82)

0.78

(0.55-0.84)

0.77

(0.52-0.85)

1042

1043 Summary for online Table of Contents. We applied a multi-event, capture-recapture model 

1044 formulation  to reliably estimating the proportion of admixed individuals in a wolf population 

1045 affected by dog introgression, which is an emblematic case of anthropogenic hybridization. By 

1046 accounting for generally neglected sources of bias and the uncertainty in classifying admixed 

1047 individuals based on their multilocus genotypes, we detected a high proportion of introgressed 

1048 individuals indicating that, under certain ecological conditions, reproductive barriers and dilution of 

1049 dog genes into parental wolf populations can not be expected, per se, to prevent widespread 

1050 introgression.

1051
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Location of the study area along the Northern Apennines in Italy (inlet: Italian wolf population range), and 

sampling locations (dots) of the collected scats within each approximate wolf pack territory (circles). Black 

dots refer to individuals genetically classified as wolves, while white dots to individuals classified as wolf x 

dog admixed individuals (under classification scenario B, aimed at balancing Type 1 and 2 classification 

errors, see text). 
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Left panel: boxplot of the qw values of the genotypes simulated from reference wolves (n=190) and dogs 

(n=89) grouped per genealogical class (n=100 genotypes for each class). The grey horizontal lines define 

the area of uncertainty that is zoomed in the right panel. Right panel: detail of the area of uncertainty 

comprised between the minimum qw of reference wolves (dashed line) and the maximum qw of simulated 

first generation backcrosses (solid line). We classified as Wolves those sampled genotypes whose qw was 

above the solid line, as Admixed those whose qw was below the dashed line, and as Uncertains those in 

between. W=wolves; F1 and F2=first and second generation hybrids, respectively; BCW1-4=first to fourth 

generation backcrosses of F1 with wolves; SBCW1-4=first to fourth generation of backcrosses of F2 with 

wolves. 
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Prevalence of admixed individuals in a protected wolf population composed of seven wolf packs in the 

Northern Apennines, Italy (2015-2016), as assessed by non-invasive genetic sampling and Bayesian 

assigment procedures based on multilocus genoypes (12 STRs). Estimates of prevalence, obtained through 

an open population CR modelling approach, refer to an overall 10-month sampling period and are shown for 

each 2-month sampling occasion. The two scenarios refer to two alternative rationales to cope with 

uncertainty in the classification of admixed individuals (see text). 
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Reconstructed genealogies for two of the seven wolf packs non-invasively sampled in the Northern 

Apennines, Italy (2015-2016), to estimate admixture between wolves and dogs. For each the two packs, the 

two likely breeding individuals are on top of the diagram and are connected to their progeny through a 

vertical branch. For each symbol, the first line reports the individual ID, the second line the individual qw, 

and the third line their classification based on their qw and a classification rationale aimed at minimizing 

type 1 error (scenario A) and the fourth line a classification rationale aimed at balancing between Type 1 

and 2 error rates (scenario B). All individuals originally classified as Uncertains (U) based on the qw were 

successively assigned to the admixed category (H) by our probabilistic, a posteriori procedure based on the 

Viterbi algorithm (see text). 
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The following document contains: 22 

- Details regarding ancestry and genealogy analyses; 23 

- Table S1: the qw range values of simulated and reference genotypes from Caniglia et al. 24 

(2020);  25 

- Table S2: the qw values, Bayesian Confidence Intervals, sex, y-haplotype pack and 26 

classification of the sampled individuals; 27 

- Table S3: sampling results 28 

- Table S4: the misclassification rates of the simulated genotypes according to Scenario A; 29 

- Table S5: the misclassification rates of the simulated genotypes according to Scenario B; 30 

- Table S6: Viterbi algorithm capture histories reconstruction for the 6 uncertain individuals 31 

(first row) according the three best models. 32 

- Table S7: goodness of fit test results for the Cormack Jolly Seber model; 33 

- Table S8: the probability of the admixed individuals of being first generation backcrosses 34 

estimated through ancestry analysis. 35 

 36 

Ancestry and geneology analyses 37 

We used the option “Population Information to test for migrants” implemented in software 38 

STRUCTURE 2.3.4 (Falush et al., 2003). We a priori assigned individuals to the wolf or dog 39 

parental populations (2 genetic clusters) using the independent allele frequencies model and the 40 

POPFLAG = 1 to activate the POPINFO option. In this way, we assumed that all reference wolves 41 

and dogs, as well as the collected genotypes, were a priori correctly identified and assigned to their 42 

own cluster. Due to a limited number of loci, we restricted ancestry analysis to two generations 43 

backwards (GENBACK = 2). 44 

To estimate the genealogies of the packs and the reproductive role of admixed individuals, 45 

we used a maximum-likelihood approach implemented in COLONY 2.0 (Wang and Santure, 2009). 46 

For each area, we ran COLONY considering as candidate parents all the detected wolf or admixed 47 



genotypes, allele frequencies estimated from the whole reference wolf population, amplification 48 

error rates estimated by GIMLET 1.3.3 (Valiére, 2003), and probability of including fathers and 49 

mothers in the candidate parental pair of 0.5 (Caniglia et al., 2014). We then verified the 50 

genealogies using the approach based on the Mendelian inheritance of the alleles implemented in 51 

GIMLET, accepting only parent-offspring combinations of individuals contemporarily sampled but 52 

with at most one allele of incompatibilities on the 12 loci applied, and father-son combinations with 53 

no incongruities at Y-STR haplotypes (Fabbri et al., 2018). 54 
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Table S1. Range of qw values of simulated genotypes (n=100 for each category) and reference 56 

populations (n=190 for wolves and 89 for dogs) by Bayesian clustering analysis with 12 57 

microsatellites loci (Caniglia et al., 2020). F1 and F2: first and second generation hybrids, 58 

respectively; BCW1 4: first to fourth generation backcrosses between F1 with wolves; 59 

SBCW1 SBCW4: first to fourth generation backcrosses between F2 with wolves. 60 

Sample  qw range 

Reference wolves 0.992-0.999 

Simulated wolves 0.995-0.999 

Simulated F1 0.333-0.726 

Simulated F2 0.143-0.770 

Simulated BCW1 0.515-0.997 

Simulated BCW2 0.628-0.999 

Simulated BCW3 0.781-0.999 

Simulated BCW4 0.870-0.999 

Simulated SBCW1 0.564-0.999 

Simulated SBCW2 0.631-0.999 

Simulated SBCW3 0.841-0.999 

Simulated SBCW4 0.883-0.999 

Simulated dogs 0.001-0.010 

Reference dogs 0.001-0.010 
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Table S2. Values of qw of the 39 individual genotypes sampled in this study obtained by Bayesian 62 

clustering analysis and their corresponding categories according to Scenario A and B.  63 

Individual 

code 

Sex Pack qw 95% BCI Y 

Haplotype 

Scenario 

A 

Scenario 

B 

HRE1 M Cerreto 0.624 0.387-0.846 Wolf Admixed Admixed 

HAC16 F Orecchiella 0.655 0.427-0.846 Wolf Admixed Admixed 

HAC17 M Orecchiella 0.703 0.424-0.960 Wolf Admixed Admixed 

HAC2 M Saccaggio 0.745 0.467-1 Wolf Admixed Admixed 

WAC33 F Orecchiella 0.769 0.546-1 Wolf Admixed Admixed 

HAC1 F Saccaggio 0.800 0.568-1 Wolf Admixed Admixed 

WAC46 M Orecchiella 0.826 0.598-1 Wolf Admixed Admixed 

HAC3 M Saccaggio 0.831 0.538-1 Wolf Admixed Admixed 

WAC17 F Montecagno 0.835 0.589-1 Wolf Admixed Admixed 

WAC25 F Cerreto 0.88 0.648-1 Wolf Admixed Admixed 

HAC12 M Saccaggio 0.886 0.524-1 Wolf Admixed Admixed 

HAC13 M Orecchiella 0.900 0.67-1 Dog Admixed Admixed 

HAC8 M Cerreto 0.903 0.684-1 Wolf Admixed Admixed 

WAC27 M Montecagno 0.921 0.676-1 Wolf Admixed Admixed 

WAC22 M Cerreto 0.93 0.693-1 Wolf Admixed Admixed 

WAC18 M Saccaggio 0.946 0.7-1 Wolf Admixed Admixed 

WAC29 NA Saccaggio 0.961 0.811-1 Wolf Admixed Admixed 

WAC30 NA Saccaggio 0.980 0.852-1 Wolf Wolf Admixed 

WAC3 M Saccaggio 0.984 0.876-1 Wolf Wolf Admixed 

HAC14 M Gazzano 0.986 0.900-1 Dog Wolf Admixed 

WAC10 M Montecagno 0.986 0.896-1 Wolf Wolf Admixed 



HAC10 M Cerreto 0.988 0.912-1 Dog Wolf Admixed 

WAC42 F Campastrino 0.988 0.911-1 Wolf Wolf Admixed 

WAC19 F Montecagno 0.992 0.945-1 Wolf Wolf Uncertain 

WAC23 M Campastrino 0.992 0.948-1 Wolf Wolf Uncertain 

WAC44 M Montecagno 0.993 0.968-1 Wolf Wolf Uncertain 

W1967 F Campastrino 0.994 0.965-1 Wolf Wolf Uncertain 

WAC2 F Saccaggio 0.997 0.985-1 Wolf Wolf Uncertain 

WAC4 M Saccaggio 0.997 0.988-1 Wolf Wolf Uncertain 

WAC12 F Campastrino 0.998 0.993-1 Wolf Wolf Wolf 

WAC13 M Cerreto 0.998 0.993-1 Wolf Wolf Wolf 

WAC16 F Gazzano 0.998 0.994-1 Wolf Wolf Wolf 

WAC1 F Saccaggio 0.998 0.991-1 Wolf Wolf Wolf 

WAC20 NA Villa Minozzo 0.998 0.993-1 Wolf Wolf Wolf 

WAC21 M Campastrino 0.998 0.993-1 Wolf Wolf Wolf 

WAC41 F Cerreto 0.998 0.993-1 Wolf Wolf Wolf 

WMA52 F Saccaggio 0.998 0.994-1 Wolf Wolf Wolf 

HAC9 M Villa Minozzo 0.999 0.995-1 Dog Wolf Wolf 

WAC43 F Montecagno 0.999 0.995-1 Wolf Wolf Wolf 
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Table S3. Number of scats collected, successfully amplified and genotyped, and individual captures 66 

in the PNATE, Northern Apennines, Italy, from Aug 2015 to May 2016. Results are presented by 2-67 

month capture occasions used in the capture-recapture analysis. 68 

 

Sampling occasions 

Wolf-like scats Individual genotypes 

Collected 

 

Genotyped 

 

Sampled New 

 

1 (Aug Sept) 25 18 11 11 

2 (Ott Nov) 29 19 12 6 

3 (Dec Jan)  33 22 15 10 

4 (Feb Mar)  34 21 15 9 

5 (Apr May) 31 18 11 3 

Total 152 98 64 39 

 69 
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Table S4. Classification of the simulated genotypes as Wolves or, Admixed according to Scenario 71 

A. W = wolves; F1 and F2 = first and second generation hybrids, respectively; BCW1 4 = first to 72 

fourth generation backcrosses of F1 with wolves; SBCW1 4 = first to fourth generation of 73 

backcrosses of F2 with wolves. 74 

Simulated genotypes  Classified as Wolves Classified as Admixed TOT simulated  

W 100 0 100 

F1 0 100 100 

F2 0 100 100 

BCW1 14 86 100 

SBCW1 14 94 100 

BCW2 52 48 100 

SBCW2 55 45 100 

BCW3 87 13 100 

SBCW3 86 14 100 

BCW4 92 8 100 

SBCW4 97 3 100 

TOT 597 503 1100 

 75 
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Table S5. Classification of the simulated genotypes as Wolves, Admixed or Uncertains according 77 

to Scenario B. W = wolves; F1 and F2 = first and second generation hybrids, respectively; 78 

BCW1 4 = first to fourth generation backcrosses of F1 with wolves; SBCW1 4 = first to fourth 79 

generation of backcrosses of F2 with wolves. 80 

Simulated 

genotypes  

Classified as 

Wolves 

Classified as 

Admixed 

Classified as 

Uncertain 

TOT 

simulated 

classified 

TOT 

simulated  

W 76 0 24 76 100 

F1 0 100 0 100 100 

F2 0 100 0 100 100 

BCW1 0 94 6 94 100 

SBCW1 1 94 5 95 100 

BCW2 18 61 21 79 100 

SBCW2 12 65 23 77 100 

BCW3 29 39 32 68 100 

SBCW3 43 30 27 73 100 

BCW4 58 23 19 81 100 

SBCW4 59 12 29 71 100 

TOT 296 618 186 914 1100 



Table S6. Viterbi algorithm capture histories reconstruction for the 6 uncertain individuals (first row) according the three best models. Assign =  81 

reconstructed capture history, Prob = corresponding calculated probability for that reconstruction. In the reconstructed capture histories 1 means that 82 

the individual was attributed to the state "alive in the study area as a Wolf", 2 means that the individual was attributed to the state "alive in the study 83 

area as an Admixed" and D means that the individual was attributed to the state "Dead/Permanently emigrated.” P parental is the cumulative 84 

probability across all the capture histories that the individual is a wolf and P admixed is the cumulative probability that an individual is an admixed. 85 

 Capture histories 

 

30000 33300 03000 00300 00330 00003 

  Assign. Prob. Assign. Prob. Assign. Prob. Assign. Prob. Assign. Prob. Assign. Prob. 

Best 2DDDD 0.40 222DD 0.34 02DDD 0.38 002DD 0.34 00222 0.43 00002 0.70 

model 1DDDD 0.17 22222 0.23 01DDD 0.17 00222 0.23 0022D 0.26 00001 0.30 

 
22DDD 0.16 111DD 0.15 022DD 0.15 001DD 0.15 00111 0.19   

 
11DDD 0.07 2222D 0.14 02222 0.10 0022D 0.14 0011D 0.11   

p admixed  0.56  0.70  0.63  0.70  0.70  0.70 

p parental  0.24  0.15  0.16  0.15  0.30  0.30 

 

Assign. Prob. Assign. Prob. Assign. Prob. Assign. Prob. Assign. Prob. Assign. Prob. 

Second 2DDDD 0.31 22222 0.30 02DDD 0.29 00222 0.26 00222 0.50 00001 0.31 

best 1DDDD 0.27 222DD 0.30 01DDD 0.25 002DD 0.26 0022D 0.22 00002 0.69 



model 22DDD 0.14 111DD 0.16 02222 0.13 001DD 0.22 0011D 0.15   

  11DDD 0.09 2222D 0.13 022DD 0.19 0022D 0.11 00111 0.14   

p admixed  0.44  0.74  0.55  0.63  0.72  0.69 

p parental  0.36  0.13  0.25  0.11  0.28  0.31 

 
Assign. Prob. Assign. Prob. Assign. Prob. Assign. Prob. Assign. Prob. Assign. Prob. 

Third 2DDDD 0.37 222DD 0.39 02DDD 0.35 002DD 0.31 00222 0.47 00002 0.70 

best 1DDDD 0.16 22222 0.26 01DDD 0.15 00222 0.21 0022D 0.27 00001 0.30 

model 22DDD 0.14 2222D 0.15 022DD 0.14 00111 0.16 00111 0.18   

 
11DDD 0.08 11111 0.09 01111 0.1 001DD 0.13 0011D 0.08   

p admixed  0.51  0.80  0.49  0.51  0.74  0.70 

p parental  0.25  0.09  0.25  0.30  0.26  0.30 

 86 



Table S7. Overall goodness of fit for Cormack-Jolly-Seber model. TEST 2 evaluates the 87 

assumption of homogeneous detection probabilities and a A p-value < 0.05 indicates the presence of 88 

trap-dependence. TEST 3 evaluates the assumption of homogeneous survival probabilities and a p-89 

value < 0.05 indicates the presence of transience.  90 

Test Statistic p-value Degrees of freedom 

TEST 2 Ct 0.5 0.7 2 

TEST 3 Sr 3.3 0.3 3 

Overall test  6.5 0.4 7 

 91 
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Table S8. Inferred ancestry of the 29 admixed and uncertain individuals observed in this study 93 

using the population information model implemented in STRUCTURE. We show estimates of 94 

posterior probabilities (q) for each individual to have ancestry in its a priori assigned population (q 95 

prior pop), or in the other population in the present generation (dog or wolf), in the first (parent) 96 

past generation or the second (grandparent) past generation. 97 

Individual Prior. pop q prior pop Dog Dog parent Dog grandparent 

HAC10 Wolf 0.995 0.000 0.000 0.005 

HAC12 Wolf 0.951 0.000 0.000 0.049 

HAC13 Wolf 0.983 0.000 0.000 0.017 

HAC14 Wolf 0.993 0.000 0.000 0.007 

HAC16 Wolf 0.663 0.000 0.000 0.337 

HAC17 Wolf 0.801 0.000 0.000 0.199 

HAC1 Wolf 0.819 0.000 0.000 0.181 

HAC2 Wolf 0.858 0.000 0.000 0.142 

HAC3 Wolf 0.936 0.000 0.000 0.064 

HAC8 Wolf 0.985 0.000 0.000 0.015 

HRE1 Wolf 0.429 0.000 0.008 0.563 

W1967 Wolf 0.998 0.000 0.000 0.002 

WAC10 Wolf 0.973 0.000 0.000 0.027 

WAC17 Wolf 0.965 0.000 0.000 0.035 

WAC18 Wolf 0.964 0.000 0.000 0.036 

WAC19 Wolf 0.999 0.000 0.000 0.001 

WAC22 Wolf 0.955 0.000 0.000 0.045 

WAC23 Wolf 0.998 0.000 0.000 0.002 

WAC25 Wolf 0.955 0.000 0.000 0.045 



WAC27 Wolf 0.922 0.000 0.000 0.078 

WAC29 Wolf 0.995 0.000 0.000 0.005 

WAC2 Wolf 1.000 0.000 0.000 0.000 

WAC30 Wolf 0.998 0.000 0.000 0.002 

WAC33 Wolf 0.735 0.000 0.000 0.265 

WAC3 Wolf 0.993 0.000 0.000 0.007 

WAC42 Wolf 0.996 0.000 0.000 0.004 

WAC44 Wolf 0.994 0.000 0.000 0.006 

WAC46 Wolf 0.880 0.000 0.000 0.120 

WAC4 Wolf 1.000 0.000 0.000 0.000 

 98 
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A B S T R A C T

Hybridization affects the evolution and conservation status of species and populations. Because the dynamics of
hybridization is driven by reproduction and survival of parental and admixed individuals, demographic mod-
elling is a valuable tool to assess the effects of hybridization on population viability, e.g., under different
management scenarios. While matrix models have been used to assess the long-term consequences of hy-
bridization between crops and wild plants, to our knowledge they have not been developed for animal species.
Here, we present a new matrix population model to project population dynamics in a system with two parental
species or populations that interbreed. We consider the dynamics of males and females of the two parental
groups as separate components, each described by species-specific vectors of initial abundance and projection
matrices. Then we model hybridization as the production of hybrid fertile offspring due to the interaction of
reproductive individuals of different parental species. Finally, we apply the model to two real-world case studies
regarding a terrestrial and a marine mammal species in the presence of hybridization. Specifically, we in-
vestigate 1) the genomic extinction probability of two interbreeding dolphin species within a semi-enclosed gulf
in Greece, under different hybrids’ fitness scenarios, 2) the possible outcomes of wolf x dog hybridization events
for an expanding wolf population in Italy, under different reproductive isolation scenarios, 3) the sensitivity of
the probability of genomic extinction to the main demographic parameters in the two case studies.

1. Introduction

Hybridization, defined as the interbreeding of individuals from ge-
netically distinct populations, regardless of their taxonomic status
(Allendorf et al., 2001) is recognized as a relatively common phe-
nomenon both in plants and animals (Hewitt, 1988; Olden et al., 2004;
Grabenstein and Taylor, 2018). Hybridization is most commonly ob-
served between otherwise allopatric taxa that come into contact due to
natural (natural hybridization) or anthoropogenic causes (anthro-
pogenic hybridization, e.g., human encroachment or the release of non-
native taxa). The widespread occurrence of natural hybridization is
raising attention due to its implications in evolutionary biology
(Abbott et al., 2016). Additionally, the increasing occurrence of an-
thropogenic hybridization is considered a significant threat to biodi-
versity (Rhymer and Simberloff, 1996; Seehausen et al., 2008;
Crispo et al., 2011).

Hybridization can have different consequences for the evolution and
conservation of species. If the fitness of the admixed individuals is
lower than that of parentals, hybridization can reinforce reproductive
isolation between incompletely isolated species (Barton and Hewitt,
1989), but it can also cause extinction through demographic swamping
(Allendorf et al., 2001; Wolf et al., 2001). If the fitness of the admixed
individuals is greater than or equal to that of parental individuals,
hybridization can cause fusion of species (Seehousen et al., 1997;
Allendorf et al., 2001), genetic swamping (Allendorf et al., 2001),
transfer of genetic material between species (potentially facilitating
their adaptive evolution; Grant and Grant, 1992; Verhoeven et al.,
2011), and the origin of new species (DeMarais et al., 1992). Under-
standing the potential consequences of hybrization is important to
unveil evolutionary mechanisms such as how species integrity is
maintained in the face of interspecific (and often intergeneric) gene
flow (Crossman et al., 2016) and how new species can arise from the
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introduction of new allelic combinations generated by hybridization.
Furthermore, understanding anthropogenic hybridization dynamics can
help identify effective and timely management actions for threatened
species. To this end there has been an effort to calibrate management
actions to the severity of the threat by classifiying hybridization in
different types (Allendorf et al., 2001; Bohling, 2016) based inter alia on
admixed individuals fitness and relative abundance (i.e., prevalence,
Santostasi et al., 2019). Depending on the hybridization type, a variety
of management actions can be more effective or feasible to avoid
genomic extinction: from admixed individuals removal and/or ster-
ilization to the management of the human disturbances that cause hy-
bridization in the first place (Allendorf et al., 2001; Bohling, 2016).

It is often difficult to define hybridization types, inter alia because of
lack of information about admixed individuals prevalence and fitness.
Projection models can tackle this uncertainty by simulating hybridiza-
tion dynamics under different biological/evolutionary scenarios
(Wolf et al., 2001; Fredrickson and Hedrick, 2006). Sensitivity analysis
and/or the simulation of different possible management actions can
also be used to provide management recommmendatios (Crouse et al.,
1987; Cross and Beissinger, 2001).

The first attempts to model hybridization-extinction dynamics had a
genetic focus and were based on changes in allelic frequencies at one or
more loci (Huxel, 1999; Ferdy and Austerlitz, 2002). Compared to ge-
netic models, ecological models place a greater emphasis on life-history
traits, by explicitly examining the effects of fitness parameters (e.g.,
survival and reproductive rates) on the hybridization outcome. Within
the ecological approach, two types of model have been used to model
hybridization dynamics (Hall and Ayres, 2008): 1) individual-based
models that simulate the contribution of each individual to the hy-
bridization dynamics of the entire population (e.g., Thompson et al.,
2003; Hooftman et al., 2007), and 2) population-based models that can
be used when only the mean fitness parameters of the main demo-
graphic stages are available (e.g., Wolf et al., 2001; Campbell et al.,
2002). Both modelling approaches were applied to hybridization in
plant species (Hall and Ayres, 2008; Todesco et al., 2016). However, to
our knowledge, few studies used individual-based models
(Fredrickson and Hedrick, 2006; Nathan et al., 2019) and none used
population-based models to simulate hybridization dynamics in animal
species.

Here, we develop a population-based approach to project the dy-
namics of animal hybridization. By using a stage-based matrix model,
and grouping individuals into genealogical categories, each described
by their mean fitness parameters (i.e., age-specific survival, per capita
fertility rate), our approach overcomes the need of realistic and accu-
rate data at the individual level. To provide a practical example of this
modeling approach, we illustrate its application to two case studies. The
first refers to two delphinid species belonging to different genera, that
interbreed in the Gulf of Corinth, Greece (Bearzi et al., 2016;
Antoniou et al., 2019): the striped dolphin Stenella coeruleoalba and the
common dolphin Delphinus delphis. The Mediterranean subpopulations
of both species are classified as Vulnerable and as Endangered respec-
tively in the IUCN Red List (Bearzi et al., 2003; Aguilar and
Gaspari, 2012). Within the Gulf of Corinth, however, the subpopulation
of common dolphin qualifies as Critically Endangered due to its small
size (point estimate 22 individuals; Santostasi et al., 2016) and high
(≥50%) probability of extinction in three generations (Santostasi et al.,
2018). Recently confirmed hybridization with the much more abundant
striped dolphin population (point estimate 1331 individuals; Santostasi
et al., 2016) threatens the persistence of common dolphins in the Gulf
of Corinth (Santostasi et al., 2018; Antoniou et al., 2019). We regard
this as a case of anthropogenic hybridization, considering that the steep
decline of common dolphins due to anthropogenic impacts
(Bearzi et al., 2003) locally leads to a lack of available mates and to
mating with more abundant species (Frantzis and Herzing, 2002;
Antoniou et al., 2019). The possible hybridization outcomes for the two
isolated dolphin subpopulations in the Gulf of Corinth have not been

previously explored (Antoniou et al., 2019).
In the second case study we evaluate the possible outcomes of hy-

bridization between the wolf (Canis lupus) and its domestic counterpart,
the dog (Canis lupus familiaris). Hybridization between wolves and dogs
has been documented in several European countries and represents a
well-known threat to wolf conservation (Boitani, 2000; 2003). Still,
little is known about the possible outcomes of hybridization between
wolves and dogs. Hybridization with dogs may represent a problem for
recovering wolf populations expanding into human-dominated land-
scapes, where few potential wolf mates compete with free-ranging dogs
that are abundant and widespread (Randi, 2008; Galaverni et al.,
2017). Although reproductive isolation due to behavioral or physiolo-
gical barriers has been often assumed to contrast introgressive hy-
bridization (Vilà and Wayne, 1999; Randi and Lucchini, 2002;
Galaverni et al., 2017), admixed wolf populations are increasingly
being reported where wolves live in close contact with free-ranging
dogs population (e.g., Italy: Caniglia et al., 2013; Galaverni et al., 2017;
Salvatori et al., 2019).

The matrix model presented here allows to quantitatively assess the
possibles outcomes of hybridization (i.e., genomic extinction vs. per-
sistence) under different fitness scenarios. Providing management re-
commendations is beyond the scope of this study, but our model re-
presents a valuable tool to inform management once appropriately
customized and parametrized. While our focus is on mammalian spe-
cies, the analytical approach described here is valid for other taxa, and
it could be adopted to project the dynamics of admixed populations for
situations entailing both natural and anthropogenic hybridization.

2. Methods

2.1. General model

We consider a system in which there are two parental groups (T1
and T2) that interbreed and produce an admixed progeny (H). We re-
gard the admixed progeny as an absorbing state encompassing all off-
spring produced by pairs of different parental groups, where at least
one of the parents is an admixed individual (Wolf et al., 2001). The
possible crosses considered and the produced progeny are listed in
Table 1. Based on the assumed dynamics of interbreeding and pro-
duction of offspring, we project the future abundance of the three
mixing groups over time. We present the projections step by step with
linear equations and we introduce the equivalent matrix formulation to
calculate the asymptotic growth rate and perform sensitivity analyses.
Finally, we discuss the behavior of the model by applying it to our case
studies.

2.1.1. Model equations
We assume that parental and admixed groups have similar life cy-

cles, with three age classes: offspring (C individuals up to 1 year old),
juveniles (J non-reproductive individuals up to 3 years old) and adults
(A reproductive individuals ≥ 3 years old). The transitions among age

Table 1
Possible crosses in the system formed by two parental taxa (T1 and T2) and
admixed individuals (H).

Female parent Male parent Offspring

T1 T1 T1
T2 T2 T2
T1 T2 H
T2 T1 H
H T1 H
H T2 H
T1 H H
T2 H H
H H H

N.L. Santostasi, et al.



classes are described by survival parameters (S) and the reproductive
parameters are described by per capita fertility rates (f). At time t, the
total number of individuals of the different groups (the parentals and
the admixed) is:

= + +N N N N ,hTOT 1 2

where N1 is the total number of individuals in group 1, N2 is the total
number of individuals in group 2 and Nh is the total number of admixed
individuals.

We model the dynamics of females and males separately. Below, we
show the equations for females. Each group at time t is composed by
females (f) and males (m) belonging to the three different age classes:

= + +

= + +

= + +

N t C t J t A t

N t C t J t A t

N t C t J t A t

( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ).

1f 1f 1f 1f

2f 2f 2f 2f

hf hf hf hf

We assume that the rate of reproduction between adult females
belonging to one group and adult males belonging to one of the three
other groups, is proportional to the relative abundances of adult males
α(t), β(t) and γ(t) which are given by the ratio between adult males
(Am) of one group divided by the total number of adult males TOTm(t):

=

=

=

t A t TOT t

t A t TOT t

t A t TOT t

( ) ( )/ ( ),

( ) ( )/ ( ),

( ) ( )/ ( ).

1m m

2m m
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Therefore, the number of offspring belonging to the parental group
1 produced at time t+1 is given by the number of females surviving to
time t+1, A1f(t)Sa1, multiplied by their per capita fertility rate (f1)
multiplied by the relative abundance of adult males of group 1 α(t). The
number of offspring belonging to the parental group 2 produced at time
t+1 is therefore:

+ =C t 1 t t( ) A ( )f Sa ( ).2 2f 2 2

The number of admixed offspring produced by e.g., the crossing
between females of the group 1 and males of the group 2 is calculated as
A1f(t)f1Sa1β(t) and the total number of admixed offspring at time t +1
is given by the sum of the contribution of all the possible crosses
(Table 1):

+ = + +

+

+ + +

C t A t t A t t A t t

A t t

A t t A t t A t t

( 1) ( )f Sa ( ) ( )f Sa ( ) ( )f Sa ( )
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h

h h h

1 1 1 2 2 2 1 1 1
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h h h h h h

where A2f(t) is the number of adult females of group 2 at time t, Sa1 and
Sa2 are group-specific adult survival values, f1 and f2 are the group-
specific per capita fertility rates. Because we model separately males
and females, the number of offspring of each sex produced every year
by each group is obtained by multiplying the total number of offspring
by 0.5, assuming a 50:50 sex ratio at birth:

+ = + = +

+ = + = +

+ = + = +

C t 1 C t 1 C t 1

C t 1 C t 1 C t 1

C t 1 C t 1 C t 1

( ) ( ) ( )0.5,
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hf hm h

1 1 1

2 2 2

Depending on the species mating system, hybridization can be
modelled in different ways. For example, for species in which only the
dominant individuals reproduce, it can be convenient to model hy-
bridization at the level of the formation of the reproductive pairs. We
consider this situation when dealing with the wolf x dog case study
(section 3.2).

The number of female adults and juveniles at time t + 1 for the
three groups are obtained as follows (the equations are showed only for
group 1):

+ =

+ = +

J t 1 C t

A t 1 J t A t

( ) ( )Sc

( ) ( )Sj ( )Sa

1f 1f 1

1f 1f 1 1f 1

where Sc, Sj and Sa are respectively survival rates for offspring, juve-
niles and adults. The total number of females at time t + 1 is therefore:
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The number of male individuals in the three groups is obtained with
the following equations:
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2.1.2. Matrix formulation
The model above can be conveniently formulated as N(t+1) = AN

(t) where:
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In the following section, we consider two real-world scenarios il-
lustrating the relevance of the model described above. All the analyses
are performed with the software R (R core team, 2018).

2.2. Applications

2.2.1. Dolphin model
We built stage-based matrices (Fig. 1; Taylor et al., 2007) for the

two parental species and the admixed individuals with the following
stages: calf (individuals up to 1 year old), juveniles (non-reproductive
individuals up to species-specific age of first reproduction reported by
Taylor et al., 2007) and adults (individuals that reached the age of first
reproduction). We used the available stage-specific demographic
parameters for the target populations in the Gulf of Corinth, Greece
(Santostasi et al., 2016) and we used parameters estimated for other
populations of the same species for the non available stage-specific
demographic parameters (see Table 2 and Appendix A for details about
model parametrization). We built three fitness scenarios for admixed
individuals (Table 2): i) in the Null Model we assumed that admixed
individuals had intermediate demographic traits between the two spe-
cies, ii) in the Hybrid Vigour scenario we assumed that hybrids have
higher survival (the upper 95% confidence limit estimated for the po-
pulation by Santostasi et al., 2016) and annual per capita fertility rate
(the highest annual pregnancy rate reported for Atlantic common dol-
phin subpopulations reported in Murphy et al., 2009) and that they
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become reproductively mature earlier (having the youngest age of first
reproduction between the two parental species), iii) in the Outbreeding
Depression scenario we assumed that admixed individuals have lower
survival (the lower 95% confidence limit estimated for this population
by Santostasi et al., 2016) and annual per capita fertility rate (the
lowest annual pregnancy rate reported for Atlantic common dolphin
subpopulations reported in Murphy et al., 2009), and that they become
reproductivley mature later (having the oldest age of first reproduction
between the two parental species).

The mating systems of odontocete cetaceans (toothed whales) have
been reported as either polygynous (some males with multiple partners)
or polygynandrous (both males and females with multiple partners;

Murphy et al., 2005). We assumed that mature females belonging to one
species would reproduce with mature males belonging to the same
species, the other species or the admixed individuals, proportionally to
their relative abundance. We used deterministic projections (i.e., with
constant parameters) to compare the predicted time of extinction for
the two species with and without the hybridization effect. The matrix
formulation corresponding to the dolphin model is presented below.
The subscript Sc refers to striped dolphin, the subscript Dd refers to
common dolphins the subscript h refers to admixed individuals. In the
Appendix A we show the corresponding R code, the linear equations,
and we describe how to incorporate demographic stochasticity.

Figure 1. Life cycle used for the dolphin
case study. Parameters are: Sc = survival of
calves, Tja = transition rate from the ju-
venile to the adult stage modelled as the
survival of juveniles (Sj) raised to the power
of age of first reproduction - 1,
Sa = survival of adults, f = per capita
fertility rate, approximated as the annual
pregnancy rate.

Table 2
Demographic parameters used for projecting the abundance of striped and common dolphins in the presence of hybridization using alternative parental and admixed
individual fitness scenarios.

Scenario All scenarios Null Outbreeding Hybrid Vigour

Striped dolphin Common dolphin Admixed dolphin Admixed dolphin Admixed dolphin

Initial abundance 1331a 22a 55a 55a 55a

Per capita fertility rate (f) 0.25b 0.26c 0.26 0.19d 0.33e

Age of first reproduction 11b 9c,f 10 11 9
Calf survival (Sc) 0.80g 0.80g 0.80 0.80g 0.80g

Juvenile survival (Sj) 0.94a 0.94a 0.94 0.92a 0.96a

Transition rate from the juvenile to the adult stage (Tja) 0.94(10) 0.94(8) 0.94(9) 0.92(10) 0.96(8)

Adult survival (Sa) 0.941 0.941 0.94 0.921 0.961

a Gulf of Corinth, Greece (Santostasi et al., 2016).
b Western Mediterranean (Calzada et al., 1997).
c Atlantic (Murphy et al., 2009)
d Iberian (Murphy et al., 2009).
e control group (Murphy et al., 2009).
f Eastern North Atlantic (Mannocci et al., 2012).
g Theoretical calculation by Taylor et al., (2007).
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2.2.2. Wolf x dog model
To model wolf life cycle we used the pre-breeding stage-structured

model described in Marescot et al., (2012), that simplifies the complex
wolf social structure in four age- and social-stages: yearlings, in-
dividuals in dispersal, subordinates, and breeders (Fig. 2). Only the
dominant pair breeds, producing a single litter of pups every year. The
pups that survived their first year (yearlings), may survive their second
year (with survival rate Sj) and disperse (with dispersal rate Pdi), or
they may remain in the natal pack (with non-dispersal rate 1 - Pdi) as
subordinates (sexually mature individuals 1 to 2 years old, inhibited
from breeding by the presence of breeders; Zimen, 1975). The model
makes the following assumptions (Marescot et al., 2012): 1) if sub-
ordinates survive (with survival rate Ss) one year in the natal pack they
will then leave and become individuals in dispersal by their third year
of age; 2) the subordinates never directly transition to being breeders;
3) individuals in dispersal can either die or survive (with survival rate
Sd), and gain access to reproduction by establishing a new pack (with
transition rate to the breeder stage Pes) or remain dispersers (1-Pes); 4)
breeders never lose their status remaining in the breeder stage and
surviving with survival rate Sa. To run the projections we used the
demographic parameters that were estimated for the expanding wolf
population in the Italian Alps (Marucco et al., 2009; Marucco and

McIntire, 2010 in which hybridization has not been detected yet
(Fabbri et al., 2007). The details about model parametrization are
shown in Appendix B.

We modeled hybridization at the level of the formation of the re-
productive pairs. Hybridization was documented in the almost totality of
cases to occur between female wolves and male dogs (Randi et al., 2008;
Godinho et al., 2011, Pacheco et al., 2017), while the opposite case of hy-
bridization between male wolves and female dogs appears to be rare
(Hindrickson et al., 2012). Therefore, in the model we did not consider
reproductive pairs formed by male wolves and female dogs. For simplicity,
we did not model the occurrence of backcrossing to dogs (the reproduction
of admixed individuals and dogs; Table 3). We assumed that a constant
number of reproductive events happens every year between female wolves
and male dogs (parameter frd). The rate of the formation of reproductive
pairs between a female wolf and male wolf at time t +1 is therefore ex-
pressed as the product between the abundance of wolf females in dispersal
(Dfw) by their survival (Sdw) by the probability that a female reaches the
breeder stage by establishing a new pack (Pesw) by the relative abundance
of wolf males in dispersal α(t). The rates of formation of wolf-dog re-
productive pairs, and of reproductive pairs in which at least one individual
is admixed are formulated in Table 3.

For wolves, we used the probability of establishing a pack calculated
by Marescot et al., (2012) as the transition rate to the breeder stage
(Pes). Such annual rate varies uniformly between 0.3 to 0.7. For the
Null Model, we assigned the the same average value (Pes=0.5) to
wolves and admixed individuals. We produced two alternative sce-
narios of reproductive isolation by simulating a reduced probability of
establishing a pack for admixed females. In one scenario (Reproductive
Isolation 1), we attributed the average value (0.5) to wolves and the
minimum value (0.3) to the admixed individuals. In the second scenario
(Reproductive Isolation 2) we assigned the maximum probability of
establishing a pack to wolves (0.7) and the minimum probability (0.3)
to the admixed individuals (Table 4). We used the prevalence of hybrids
as a measure to define the type of hybridization reached at the end of
the projection time-frame. The matrix formulation corresponding to the
wolf x dog model is presented below:

Figure 2. Life cycle for the wolf case study. Parameters are: Sj = survival rate of yearlings, Ss = survival rate of subordinates (yearlings and adults), Sd = survival
rate of dispersers (yearlings and adults), Sa = survival rate of breeders, f = annual per capita fertility rate approximated as the litter size, Pdi = dispersal rate,
Pes = transition rate to the breeder stage.

Table 3
Rates of formation of the reproductive pairs considered in the model.

Female parent Male parent Rate

W W DfwsdwPeswα(t)
W D DfwsdwPeshfrd(t)
W H DfwsdwPeshγ(t)
H W DfwSdhPeshγ(t)
H H DfwSdhPeshγ(t)

Dfw = abundance of wolf females in dispersal, Pesw = transition rate to the
breeder stage for wolf females, Pesh = transition rate to the breeder stage for
admixed females, frd = constant annual frequency of reproductive events be-
tween female wolves and male dogs, α(t) = relative abundance of male wolves
in dispersal, γ(t) = relative abundance of admixed males in dispersal.

+ +
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In the Appendix B we show the corresponding R code and the linear
equations.

2.3. Sensitivity analysis

We performed a sensitiviy analysis to explore the relationship be-
tween the hybridization outcome (genomic extinction vs. persistence of
parental and admixed populations after 50 years) and the demographic
parameters of parental species and admixed individuals (Mc Carthy
et al., 1995; Cross and Beissinger, 2001). Here, we use “genomic ex-
tinction” to refer to the disappearence of parental individuals from the
population (Allendorf et al., 2001). We generated 15,000 parameter
sets by drawing them from uniform distributions (Table 5) to emphasize
the effects of variability in vital rates on model sensitivity (Cross and
Beissinger, 2001). We projected population abundance with each
parameter set and checked if the population went extinct or not using a
quasi-extinction threshold of 5 parental mature females. We conducted
logistic regressions to explore the relationship between the probability
of genomic extinction of the two parental species as response variables
and demographic parameters used in the projections as independent
explanatory variables. For each regression we built full models in-
cluding all the parameters and used a backward stepwise selection
procedures to identify the sets of parameters of potential importance
(Fredrickson and Hedrick, 2006). From those sets of parameters we
ranked their relative importance in affecting the probability of genomic
extinction of the parental species based on their standardized regression
coefficients which are the regression coefficient divided by their stan-
dard error (Cross and Beissinger, 2001). In the Appendix A and B we
show the code to perform the logistic regression sensitivity analysis and
how to perform a sensitivity analysis of the asymptotic growth rate
using the matrix formulation for the two case studies (R codes are also
reported there).

3. Results

3.1. Striped x common dolphin model

Comparing the projections with and without hybridization, we see
that when hybridization is ignored, the model predicts an exponential
population growth (Fig. 3). When the impact of hybridization is taken
into account, the least abundant species (the common dolphin) reaches
the quasi-extinction threshold after 16 years, no matter the hybrid fit-
ness scenario. In the Null Model and in the Hybrid Vigour scenario, the
growth rate of the most abundant species (the striped dolphin) is also
affected, becoming negative after about 40 years in the first scenario
and after about 30 years in the second. In the absence of mechanisms
that counter hybridization (e.g., assortative mating), the population

will eventually be composed of a continuum of admixed classes (the
“complete admixture” hybridization type described by Allendorf et al.,
2001; Fig. 4). Conversely, under the Outbreeding Depression scenario,
striped dolphin population abundance is expected to increase in the
next 100 years, predicting a “widespread introgression” hybridization
type (i.e., the coexistence of admixed and parental individuals; Fig. 4).

3.2. Wolf x dog model

Depending on the scenario, hybridization had different final out-
comes. In the Null Model all the scenarios reached complete admixture
(prevalence of admixed individuals = 1) after 50 years and prevalence
increased more rapidly at the increasing of the recurrent gene flow from
dogs (Fig. 5, upper-left panel). The reproductive isolation scenarios
showed different outcomes. In the scenario with the weakest re-
productive isolation (Reproductive Isolation 1) the prevalence in-
creased less rapidly compared to the Null Model (Fig. 5, upper-right
panel) but did not reach an asymptote, heading towards a final outcome
of complete admixture (Allendorf et al., 2001). In the scenario of
strongest reproductive isolation (Reproductive Isolation 2), prevalence
reached an asymptote whose final value increased at the increasing of
the intensity of the recurrent gene flow from dogs (Fig. 5, lower-left
panel). In this last case the final outcome is the co-existence of admixed
and parental individuals with a constant prevalence (assuming that all
the demographic parameters remain constant over time). This last
scenario falls into the definition of “widespread introgression”
(Allendorf et al., 2001).

3.3. Sensitivity analysis

For the dolphin case study the probability of genomic extinction of
both striped and common dolphins was most affected by the survival of
mature individuals followed by juvenile survival with almost the same
relative importance (Table 6). However, for common dolphins, the in-
itial abundance was also important (Table 6).

For the wolf x dog case study, our sensitivity analysis showed that
wolf genomic extinction probability was mostly affected by wolf
breeder survival (Saw), followed by annual frequency of mating with
dogs (frd), wolf access to reproduction (i.e., transition rate to the
breeder stage, Pesw) and annual wolf per capita fertility rate fw, with
the same relative importance (Table 7).

4. Discussion

Identifying the demographic factors affecting the outcome of hy-
bridization helps both understanding evolutionary mechanisms and
developing meaningful management and conservation measures when

Table 4
Demographic parameters used for projecting the abundance of wolves and admixed individuals in the presence of hybridization.

Scenario Null Model Repro. Isolation 1 Repro. Isolation 2

Individual Wolf Admixed Wolf Admixed Wolf Admixed

Initial abundance (reproductive pairs) 6a 0 6a 0 6a 0
Average litter size (f) 3.387a 3.387a 3.387a 3.387a 3.387a 3.387a

Juvenile survival (Sj) 0.551a 0.551a 0.551a 0.551 0.551a 0.551
Subordinate survival (Ss) 0.82a 0.82a 0.82a 0.82a 0.82a 0.82a

Disperser Survival (Sd) 0.69b 0.69b 0.69b 0.69b 0.69b 0.69b

Breeder survival (Sa) 0.82c 0.82c 0.82c 0.82c 0.82c 0.82c

Dispersal rate (Pdi) 0.25d 0.25d 0.25d 0.25d 0.25d 0.25d

Transition rate to the breeder stage (Pes) 0.5d,e 0.5d,e 0.5d,e 0.3d,e 0.7d,e 0.3d,e

a Marucco and McIntire, 2010.
b Blanco and Cortés 2007.
c Marucco et al., 2009.
d Mech and Boitani, 2003.
e Marescot et al., 2012.
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hybridization is a threat (Bohling, 2016). Compared to the genetic
approach (Huxel, 1999; Ferdy and Austerlitz, 2002), our model has the
advantage of making the link between hybridization and both demo-
graphic (e.g., demographic stochasticity) and ecological factors (e.g.,
environmental stochasticity). Moreover, our approach allows to relate
the viability of the population to the contribution of different fitness
components (such as survival and reproductive rates), ultimately pro-
viding the basis for sensitivity analyses.

On the other hand, ignoring genetic processes can be an important
limitation (Hall and Ayres, 2008). In its present formulation, our model
does not make a distinction between ancient (later generations back-
crosses) and recent hybrids (first and second generation hybrids), which
raises two issues. First, because later generations backcrosses have a
limited mixed genomic content, in several cases they are indistiguish-
able from parentals with the current diagnostic techniques (Vähä and

Primmer, 2006). Second, later generations backcrosses are often con-
sidered as parentals from a management perspective. For example, in
the management of the anthropogenic hybridization between bontebok
Damaliscus pygargus pygargus and blesbok D. p. phillipsi in South Africa,
van Wyck et al., (2016) considered that backrosses to parental bonte-
boks with ≥ 90% of bontebok genes are not to be removed from the
population. In the management of the red wolf and coyote, canids with
> 87.5 % of red wolf genes are classified as red wolves and not ster-
ilized or culled (Gese et al., 2015). To overcome this limitation, it may
be desirable to split the “admixed” group into recent and ancient hy-
brids, and pool the ancient hybrids together with the parental popula-
tions. The threshold between the two groups could be set according to
the defined acceptable threshold of admixture in the parentals, while
also considering the power of the diagnostic system (Vähä and
Primmer, 2006; van Wyck et al., 2016). Despite these limitations, our
modelling framework provides a clear way to make explicit the as-
sumptions underlying the definition of hybrids (Thompson et al., 2003).

Even though population-based approaches like the one described
here require less-detailed information compared to individual-based
approaches (Hall and Ayres, 2008), one still needs to know the survival
and reproductive rates for all the population stages, and these may be
unavailable for the target population. In this study, we overcame such
limitation by resorting to parameters estimated for other populations,
which may introduce an unknown level of uncertainty. Moreover, es-
timates of demographic rates of admixed individuals were not available
and are likely to be unavailable in many studies. In such cases, one
would need to make assumptions regarding admixed individuals sur-
vival and fertility rates. However, sensitivity analysis showed that
genomic extinction probability was largely affected by the demographic
parameters of parentals, whereas the parameters of admixed in-
dividuals had a lower relative importance. Nonetheless, the sensitivity
of model predictions to unknown parameters should be tested through
sensitivity analyses, and should be taken into account by considering
different scenarios. Moreover, the comparison of alternative simulated
scenarios with empirical data (i.e., the observed prevalence trends) can
provide insight into the evolutionary mechanism shaping the observed
patterns.

Another important limitation is that, for simplicity and for the ab-
sence of species-specific information, we assumed random mating and
did not model more complex mating choice scenarios that could lead to
assortative mating. If information about assortative mate choice is
available, it can be modelled by changing the reproduction coefficients
(α, β and γ in paragraph 2.1.1) from being proportional to the relative
abundance of mature males to reflecting the observed percentage of
conspecific and heterospecific matings.

At the moment, our projections cannot be validated due to the ab-
sence of long-term data on the quantitative evaluation of hybridization
for the two case-studies. However, the predicted outcomes are con-
sistent with previous studies showing that hybridization can lead to
rapid genomic extinction in the absence of reproductive isolation
(Huxel, 1999) or other forms of segregation (Wolf et al., 2001;
Fredrickson and Hedrick, 2006). Two studies on wolf x dog hy-
bridization (Salvatori et al., 2019; Santostasi et al., 2019) showed that
the prevalence of hybrids can locally reach high levels (around 50%)
where reproductive isolation between wolves and dogs is disrupted by
anthropogenic disturbance (e.g., presence of free ranging dogs, food
provisioning, high wolf anthropogenic mortality), supporting the re-
sults of our projections. We suggest that, given the importance of re-
productive isolation mechanisms in determining the wolf x dog hy-
bridization outcome, more research should be addressed to understand
to what extent and in which circumstances those mehcanisms are ef-
fective in contrasting hybridization. In absence of such information, the
lack of strong reproductive isolation should be assumed as a precau-
tionary measure.

Studies on hybridization dynamics in cetaceans that could be used
to validate our projections are not available. However, our finding that

Table 5
Demographic parameters range used for drawing the demographic parameters
from uniform distributions to project the abundance of parental and admixed
individuals in the sensitivity analyses.

Striped x common dolphin

Taxon Parameter Range

Common dolphin Initial abundance 16-32a

Age of first reproduction 9-11b,c,d

Calf survival 0.2-1
Juvenile survival 0.2-1
Adult survival 0.2-1
Annual per capita fertility rate 0-0.33b,c

Admixed dolphins Initial abundance 36-84a

Age of first reproduction 9-11b,c,d

Calf survival 0.2-1
Juvenile survival 0.2-1
Adult survival 0.2-1
Annual per capita fertility rate 0-0.33b,c

Striped dolphin Initial abundance 1331-1578a

Age of first reproduction 9-11b,c,d

Calf 0.2-1
Juvenile survival 0.2-1
Adult survival 0.2-1
Annual per capita fertility rate 0-0.33b,c

Wolf x dog

Taxon Parameter Range

Wolf Annual per capita fertility rate 0-4.5e

Juvenile survival 0.2-1
Subordinate survival 0.2-1
Disperser Survival 0.2-1
Breeder survival 0.2-1
Dispersal rate 0-0.4e

Transition rate to the breeder stage 0-0.7f

Admixed Annual per capita fertility rate 0-4.5e

Juvenile survival 0.2-1
Subordinate survival 0.2-1
Disperser Survival 0.2-1
Breeder survival 0.2-1
Dispersal rate 0-0.4e

Transition rate to the breeder stage 0-0-7f

Dog Frequency of mating with dogs 0-1

These parameters are also used as explanatory variables in the logistic regres-
sion sensitivity analysis.
a Gulf of Corinth, Greece (Santostasi et al., 2016).
b Western Mediterranean (Calzada et al., 1997).
c Control group (Murphy et al., 2009).
d Eastern North Atlantic (Mannocci et al., 2012).
e Mech and Boitani, 2003.
f Marescot et al., 2012.
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the genomic extinction risk for the parental population increases as
their initial frequency decreases, making the least abundant species
particularly vulnerable, is consistent with previous studies
(Allendorf et al., 2001; Epifanio and Philipp, 2001).

We stress that the interest of our model is not the production of

absolute predictions of population fate. Being long term hybridization
dynamics otherwise difficult to test empirically, the practical value of
our model is to illustrate the expected relative outcomes of alternative
biological and managament scenarios. The comparison of those out-
comes can be useful to highlight future research priorities and to inform

Figure 3. Population trajectories of striped,
common and admixed dolphins under different
parental and admixed individuals fitness sce-
narios (the continuos line represents the Null
Model while the different types of dashed lines
represent the model in absence of hybridiza-
tion, the Outbreeding Depression Scenario and
the Hybrid Vigour Scenario).

Figure 4. Projected prevalence of striped x common dolphin admixed individuals in the mixed dolphin population of the Gulf of Corinth, Greece under different
parental and admixed individuals fitness scenarios (the continuos line represents the Null Model while the different types of dashed lines represent the Outbreeding
Depression Scenario and the Hybrid Vigour Scenario).
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decision-making in a context of uncertainty (Gervasi and Ciucci, 2018).
In alternative, not acknowledging hybridization in the projections

may lead to underestimating the risk of genomic extinction. The
common dolphin (the least abundant species) had a 100% probability of
going extinct after a relatively short time (16 years) regardless the fit-
ness scenario. A previous count-based projection (Santostasi et al.,
2018) did not include the effect of hybridization (although it included
the effect of demographic stochasticity) and estimated a considerably
lower (50%) probability of demographic extinction after 15 years.

Although the two predictions are not entirely comparable due to the
different methodologies, our results suggest that hybridization may
pose an additional and important threat that must be considered when
evaluating the conservation status of common dolphins. This is parti-
cularly relevant at larger scales, considering that, in the Mediterranean
Sea common dolphins occurr in simpatry with the more abundant
striped dolphins and mixed-species groups are not rare (Frantzis and
Herzing, 2002; Giménez et al., 2017; Espada et al., 2019).

Interestingly, the population growth rate of the most abundant
species, the striped dolphin, was also affected and hybridization could
eventually lead this population to genomic extinction, under scenarios
in which the fitness of admixed individuals is equal to or greater than
that of parentals (i.e., the Null Model and the Hybrid Vigour scenario).
However, striped dolphins are predicted to persist and even increase in

Figure 5. Projected prevalence of wolf x dog admixed individuals under increasing levels of recurrent gene flow from dogs (parameter frd) and under different
reproductive isolation scenarios: the Null Model (upper-left panel), the Reproductive Isolation 1 scenario (upper-right panel) and the Reproductive Isolation 2
scenario (lower-left panel).

Table 6
Logistic regression sensitivity analysis results for striped and common dolphin
population projections in the presence of hybridization.

Parameter Coefficient Standard Error Standardized Coefficient p value

Striped dolphin genomic extinction

SaSc -92.90 3.65 -25.44 0.00
SjSc -10.28 0.49 -20.87 0.00
ScSc -2.99 0.33 -9.21 0.00
fSc -7.52 1.76 -4.26 0.00
afrSc 0.24 0.10 2.40 0.02
fDd -3.49 1.75 -1.99 0.05
SjDd -0.59 0.31 -1.92 0.05
iah -0.01 0.01 -1.91 0.06
SaDd 0.51 0.31 1.64 0.10

Common dolphin genomic extinction

SaDd -91.40 6.30 -14.50 0.00
SjDd -9.13 0.69 -13.24 0.00
iaDd -0.30 0.03 -10.78 0.00
ScDd -1.61 0.47 -3.43 0.00
SaSc 1.46 0.43 3.38 0.00
Sah 1.17 0.44 2.63 0.01
afrSc -0.23 0.15 -1.58 0.11

The parameters are sorted in descending order of relative importance, eval-
uated by looking at the standardized regression coefficients. Sa = adult sur-
vival, Sj = juvenile survival, Sc = calf survival, f = annual per capita fertility
rate, ia = initial abundance. The subscript Sc refers to striped dolphin para-
meters, the subscript Dd refers to common dolphin parameters, the subscript h
refers to admixed individuals parameters.

Table 7
Logistic regression sensitivity analysis results for the wolf population projec-
tions in the presence of hybridization with dogs.

Par-
am-
eter

Coefficient Standard Error Standardized Coefficient p value

Saw -47.40 2.03 -23.32 0.00
fw -1.17 0.07 -16.89 0.00
Pesw -7.14 0.44 -16.05 0.00
frd 5.09 0.32 16.03 0.00
Sjw -4.54 0.35 -13.05 0.00
Sdw -3.83 0.34 -11.29 0.00
Ssw -2.62 0.32 -8.24 0.00
Sjh 0.97 0.30 3.21 0.00
Pdiw -1.38 0.59 -2.34 0.02
Sah 0.52 0.31 1.70 0.09

The parameters are sorted in descending order of relative importance, eval-
uated by looking at the standardized regression coefficients. Sa = annual
breeder survival, f = fertility rate (approximated as litter size), Pes (transition
rate to the breeder stage), frd = annual frequency of mating with dogs,
Sj = annual juvenile survival, Sd = annual disperser survival, Ss = annual
subordinate survival, Pdi = annual dispersal rate. The subscript w indicates
wolf demographic parameters and the subscript h indicates admixed in-
dividuals' demographic parameters.
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the next 100 years, if the fitness of admixed individuals is lower than
that of parentals (i.e., the Outbreeding Depression scenario). More re-
search on the fitness of admixed individuals would help understand
which scenario represents the most likely alternative. Research on the
genetic composition and ecology of admixed individuals would help
understand if the predicted “hybrid swarm” may: 1) lead to a new
species (Larsen et al., 2010; Lamichhaney et al., 2018); 2) preserve the
integrity of the striped dolphin species by backcrossing and dilution of
the common dolphin genetic contribution; or 3) allow for the persis-
tence of adaptive common dolphin alleles in the striped dolphin, as
suggested by other cases of adaptive introgression (Figueiró et al.,
2017).

For the wolf x dog case study, our results confirm that hybridization
with dogs should be expected to be a serious threat to the wolf genomic
integrity, at least under weak reproductive isolation and/or frequent
breeding with dogs. The sensitivity analysis pointed out that the most
influential parameters decreasing the chances of genomic extinction are
linked to social and reproductive integrity (i.e., survival of wolf bree-
ders and the per capita fertility rate) and the annual frequency of
mating with dogs. These results are in agreement with observations of
hybridization in eastern wolves (Canis lycaon) and coyotes in Canada
(Rutledge et al., 2012), and of red wolves and coyotes in North Carolina
(Bohling and Waits, 2015). In both cases, high levels of mortality
coupled with a large availability of coyotes have been identified as the
main causes of hybridization. Our results offer further evidence that
human-related factors contributing to hybridization (i.e., increased
wolf mortality and dog presence) must be managed to avoid the risk of
genomic extinction of wild wolves (Rutledge et al., 2012; Bohling and
Waits, 2015).

In conclusion, our model provides estimates of genomic extinction
risk in presence of hybridization by using data obtained during demo-
graphic monitoring programs of threatened populations. This model
allows to link demographic parameters and environmental variables,
therefore predicting hybridization dynamics under changing environ-
ments. Population projection models clearly represent a valuable tool to
predict the outcome of hybridization, therefore contributing to man-
agement decisions (Kelly et al., 2010).
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APPENDIX 1: Striped and common dolphins hybridization in the Gulf of Corinth, Greece 

 

1. Initial values and calculations 

1.1 Annual pregnancy rate calculation for common dolphins 

We used an annual pregnancy rate value derived from Table 5 in Murphy et al., (2009). We calculated 

the average fertility from different populations in United Kingdom, France, Ireland, Iberian Peninsula, 

NE Atlantic. 

 uk=0.28  United Kingdom 

 fr=0.29  France 

 ir=0.20  Ireland 

 ib=0.19  Iberian Peninsula 

 ne=0.26  North-East Atlantic 

 Control group=0.33  Control group, healthy common dolphins according to Murphy et al., 

(2009) 

The average annual pregnancy rate is 0.26. 

 

1.2 Calculation of percentage of adults, juveniles and calves and initial abundance for 

striped and common dolphins 

We used the species-specific percentage of mature individuals calculated by Taylor et al., (2007). We 

divided it by two to obtain the percentage of mature males and females. We assumed an equal number 

of calves and juveniles among the non-mature individuals (1 - percent mature). To obtain the 

percentage of calves and juveniles we divided by two the percentage of non-mature individuals. Lastly, 

to obtain the number of female and male calves we divided by two the total percentages of calves and 

juveniles. We then multiplied the initial total abundance for the calculated percentages to obtain the 

initial abundance of adults juvenile and calves. The calculations are shown below. 

 

Striped dolphins 

 Percent mature (Taylor et al., 2007) = 0.53 

- Percent mature females = 0.53 / 2 = 0.265 

- Percent mature males = 0.53 / 2 = 0.265 

 Percent non-mature individuals = 1 - 0.53=0.47 

- Percent calves = 0.47 / 2 = 0.235 



o Percent female calves = 0.235 / 2 = 0.118 

o Percent male calves = 0.235 / 2 = 0.118 

- Percent juveniles = 0.47 / 2 = 0.235 

o Percent female juveniles = 0.235 / 2 = 0.118 

o Percent male juveniles = 0.235 / 2 = 0.118 

- Initial total abundance (Santostasi et al., 2016) = 1,331 individuals 

o C1f(1)= 1331 * 0.118 = 158  initial abundance of female calves 

o J1f(1) = 1331 * 0.118 = 158  initial abundance of female juveniles  

o A1f(1) = 1331 * 0.265 = 353  initial abundance of female adults  

o C1m(1) = 1331 * 0.118 = C1f(1)  initial abundance of male calves 

o J1m(1) = 1331 * 0.118 = J1f(1)  initial abundance of male juveniles 

o A1fm(1) = 1331 * 0.265 = A1f(1)  initial abundance of male adults  

 

Common dolphins 

- Percent mature (Taylor et al., 2007) = 0.480 

o Percent mature females = 0.480 / 2 = 0.240 

o Percent mature males = 0.480 / 2 = 0.240 

- Percent non-mature individuals =1 - 0.48 = 0.52 

- Percent calves = 0.52 / 2 = 0.260 

o Percent female calves = 0.260 / 2 = 0.130 

o Percent male calves = 0.260 / 2 = 0.130 

o Percent juveniles = 0.52 / 2 = 0.260 

o Percent female juveniles = 0.260 / 2 = 0.130 

o Percent male juveniles = 0.260 / 2 = 0.130 

- Initial total abundance (Santostasi et al., 2016) = 22 individuals 

o C2f(1) = 22 * 0.130 = 3  initial abundance of female calves  

o J2f(1) = 22 * 0.130 = 3  initial abundance of female juveniles  

o A2f(1) = 22 * 0.240 = 5  initial abundance of female adults  

o C2m(1) = 22 * 0.130 = C2f(1)  initial abundance of male calves 

o J2m(1) = 22 * 0.130 = J2f(1)  initial abundance of male juveniles  

o A2m(1) = 22 * 0.240 = A2f(1)  initial abundance of male adults 

 



Admixed dolphins (striped x common) 

- Percent mature (Taylor et al., 2007) = (0.480 + 0.530) / 2= 0.505 = average between striped and 

common dolphins 

o Percent mature females = 0.505 / 2 = 0.253 

o Percent mature males = 0.505 / 2 = 0.253 

- Percent non-mature individuals = 1 - 0.505 = 0.495 

- Percent calves = 0.495 / 2 = 0.248 

o Percent female calves = 0.248 / 2 = 0.124 

o Percent male calves = = 0.260 / 2 = 0.124 

- Percent juveniles = 0.495 / 2 = 0.248 

o Percent female juveniles = 0.248 / 2 = 0.124 

o Percent male juveniles = 0.248 / 2 = 0.124 

- Initial total abundance (Santostasi et al., 2016) = 55 individuals 

o Chf(1) = 55 * 0.124 = 6  initial abundance of female calves  

o Jhf(1) = 55 * 0.124 = 6  initial abundance of female juveniles 

o Ahf(1) = 55 * 0.253 = 14  initial abundance of female adults  

o Chm(1) = 55 * 0.124 = Chf(1)  initial abundance of male calves  

o Jhm(1) = 55 * 0.124 = Jhf(1)  initial abundance of male juveniles 

o Ahm(1) = 55 * 0.253 = Ahf(1)  initial abundance of male adults 

 

Initial proportions of males 

- TOT(1) = A1m(1) + A2m(1) + Ahm(1) = 371  number of total mature males 

o 1m(1) / TOTm(1) = 0.95  frequency of male striped dolphins 

o 2m(1) / TOTm(1) = 0.01  frequency of male common dolphins 

o (1) = Ahm(1) / TOTm(1) = 0.04  frequency of male admixed dolphins 

 

2. Model equations 

Female striped dolphins projections  

C1f(t+1) = A1f(t)Sa1f1 (t)0.5  female calves at time t+1 

J1f(t+1) = C1f(t)Sj1+ J1f Sj1(1-Sja1)  female juveniles at time t+1 

A1f(t+1) = J1f(t)Sja1 + A1f(t)Sa1  female adults at time t+1 

 



Male striped dolphins projections  

C1m(t+1) = A1f(t)Sa1f1 (t)0.5  male calves at time t+1 

J1m(t+1) = C1m(t)Sj1 + J1mSj1(1-Sja1)  male juveniles at time t+1 

A1m(t+1) = J1m(t)Sja1 + A1m(t)Sa1  male adults at time t+1 

 

Female common dolphins projections 

C2f(t+1) = A2f (t)Sa2f2 (t)0.5  female calves at time t+1 

J2f(t+1) = C2f (t)Sj2 + J2fSj2(1-Sja2)  female juveniles at time t+1 

A2f(t+1) = J2f (t)Sja2 + A2f(t)Sa2  female adults at time t+1 

 

Male common dolphins projections 

C2m(t+1) = A2f(t)Sa2f2 (t)0.5  female calves at time t+1 

J2m(t+1) = C2m(t)Sj2+ J2mSj2(1-Sja2)  female juveniles at time t+1 

A2m(t+1) = J2m(t)Sja2+ A2m(t)Sa2  female adults at time t+1 

 

Admixed females 

C2f(t+1) =  

[A1f(t)Sa1f1 (t) +     (female striped x male common) 

A2f (t)Sa2f2 (t) +      (female common x male striped) 

Ahf(t)Sahfh (t) +       (female admixed x male admixed) 

A1f(t)Sa1f1 (t) +       (female striped x male admixed) 

A2f(t)Sa2f2 (t) +       (female common x male admixed) 

Ahf(t)Sahfh  +       (female admixed x male striped) 

Ahf(t)Sahfh ]0.5    (female admixed x male common) 

 

Jhf(t+1) = Chf(t)Sjh + JhfSjh(1-Sjah)  female juveniles at time t+1 

Ahf(t+1) = Jhf(t)Sjah+ Ahf(t)Sah  female adults at time t+1 

 

Admixed males 

C2(t+1) =  

[A1f(t)Sa1f1  +    (female striped x male common) 

A2f(t)Sa2f2  +      (female common x male striped) 



Ahf(t)Sahfh (t) +        (female admixed x male admixed) 

A1f(t)Sa1f1 (t) +        (female striped x male admixed) 

A2f(t)Sa2f2 (t) +        (female common x male admixed) 

Ahf(t)Sahfh  +        (female admixed x male striped) 

Ahf(t)Sahfh ]0.5     (female admixed x male common) 

 

Jhm(t+1) = Chm(t)Sjh + JhmSjh(1-Sjah)  male juveniles at time t+1 

Ahm(t+1) = Jhm(t)Sjah + Ahm(t)Sah  male adults at time t+1 

 

Proportion of males of each taxon at time t: 

Tot(t) = A1m(t)+ A2m(t) + Ahm(t)  number of total mature males  

1m(t) / TOTm(t)  frequence of male striped dolphins 

2m(t) / TOTm(t) frequence of male common dolphins 

(t) = Ahm(t) / TOTm(t) frequence of male admixed individuals 

 

The code to implement this model in a matrix formulation is available below: 

############################################## 

#     DOLPHIN CASE: MATRIX FORMULATION       # 

############################################## 

 

tspan=200 

threshold1=5 

threshold2=5 

 

# Build some matrices for storing output 

nf  <-  matrix(0,9,tspan)      # storage of age-specific female abundance 

nm  <-  matrix(0,9,tspan)    # storage of age-specific male abundance 

Nf  <-  matrix(0,tspan,1)    # storage of total female abundance 

Nm  <-  matrix(0,tspan,1)   # storage of total male abundance 

tot <-  matrix(0,tspan,1)    # storage of total abundance 

fr1 <-  matrix(0,tspan,1)    # storage of relative abundance male species1 

fr2 <-  matrix(0,tspan,1)    # storage of relative abundance male species2 



frh <-  matrix(0,tspan,1)    # storage of relative abundance admixed 

prevalence <- matrix(0,tspan,1)  

gr  <-  matrix(0,tspan-1,1)  # storage of time-specific population growth rates 

 

# Initial abundances and prevalence 

nf[,1]  <- c(1331*0.118,1331*0.118,1331*0.265,22*0.130,22*0.130,22 

*0.240,55*0.124,55*0.124,55*0.253)     # initial population abundance females in each age class 

 

nm[,1]  <- c(1331*0.118,1331*0.118,1331*0.265,22*0.130,22*0.130,22 

*0.240,55*0.124,55*0.124,55*0.253)     # initial population abundance males in each age class 

 

tot[1,1] <- nm[3,1]+nm[6,1]+nm[9,1] 

fr1[1,1] <- nm[3,1]/tot[1,1]  

fr2[1,1] <- nm[6,1]/tot[1,1] 

frh[1,1] <- nm[9,1]/tot[1,1] 

prevalence[1,1]=sum(nf[7:9,1])/(sum(nf[1:3,1])+sum(nf[4:6,1])) 

 

##ONE PROJECTION## 

 

# Define parameters 

 

# Species 1 

Sc1  <- 0.80 # Calf survival (Taylor et al., 2007) 

Sj1  <- 0.94 # Juvenile survival (Santostasi et al., 2016) 

Sja1 <- 0.94^10 # Transition from juvenile to adult = Annual juvenile survival̂ number  

of years to maturity 

Sa1<- 0.94 # Adult survival (Santostasi et al., 2016) 

f1 <- 0.26 # Fertility (Taylor et al., 2007) 

 

# Species 2 

Sc2<- 0.80 # Calf survival (Taylor et al., 2007) 

Sj2<- 0.94 # Juvenile survival (Santostasi et al., 2016) 



Sja2 <- 0.94^8 # Transition from juvenile to adult = Annual juvenile survival̂ number  

of years to maturity 

Sa2<- 0.94 # Adult survival (Santostasi et al., 2016) 

f2 <- 0.26 # Fertility (average from Table 5 of Murphy et al., 2007) 

 

# Species h 

Sch<- 0.80        # Calf survival (same as parentals) 

Sjh<- 0.94        # Juvenile survival  (same as parentals) 

Sjah<- 0.94^9 # Transition from juvenile to adult = Annual juvenile survival̂ number  

of years to maturity 

Sah<- 0.94        # Adult survival  (same as parental) 

fh <- 0.26        # Fertility  (average between parentals) 

 

# Create the matrix population model 

 

for (t in 1:(tspan-1)) { 

   

  tot[t,] <- nm[3,t]+nm[6,t]+nm[9,t]  #number of total mature males  

   

  fr1[t,] <- (nm[3,t]/tot[t,])             #Frequency of male S1 

  fr2[t,] <- (nm [6,t]/tot[t,])            #Frequency of male S2 

  frh[t,] <- (nm [9,t]/tot[t,])            #Frequency of male H  

   

  A <- matrix(c( 0 , 0 , f1*Sa1*fr1[t,]*(0.5) , 0 , 0 , 0 , 0 , 0 , 0, 

                 Sc1 , (1-Sja1)*Sj1 , 0 , 0 , 0 , 0 , 0 , 0 , 0, 

                 0 , Sja1 , Sa1 , 0 , 0 , 0 , 0 , 0 , 0, 

                 0 , 0 , 0 , 0 , 0 , f2*Sa2*fr2[t,]*0.5 , 0 , 0 , 0, 

                 0 , 0 , 0 , Sc2 , (1-Sja2)*Sj2 , 0 , 0 , 0 , 0, 

                 0 , 0 , 0 , 0 , Sja2 , Sa2 , 0 , 0 , 0, 

                 0 , 0 , Sah*f1*(fr2[t,]+frh[t,])*0.5 , 0 , 0 , Sah*f2*(fr1[t,]+frh[t,])*0.5 , 0 , 0 , 

Sah*fh*(fr1[t,]+fr2[t,]+frh[t,])*0.5, 

                 0 , 0 , 0 , 0 , 0 , 0 , Sch , (1-Sjah)*Sjh , 0, 



                 0 , 0 , 0 , 0 , 0 , 0 , 0 , Sjah , Sah),nrow = 9, byrow = TRUE) 

   

  nf[,t+1] <- A%*%nf[,t]      # %*% = matrix multiplication in R 

  nm[,t+1] <- A%*%nm[,t]   

  Nf[t+1] <- sum(nf[,t+1]) 

  Nm[t+1] <- sum(nm[,t+1]) 

  gr[t] <- sum(nf[,t+1])/sum(nf[,t])  # per time step population growth rate  

  prevalence[t+1,]=(sum(nf[7:9,t+1]))/(sum(nf[1:9,t+1])) 

   

} 

 

 

## Plots  

 

### Striped dolphins trajectory 

plot_freq=plot(1:(tspan), nf[3,], main="Striped dolphins \nMature female abundance",  

               xlab = list("Time",cex=1.5),ylab = list("N",cex=1.5),  

               type = "l",lwd = 2,cex.axis = 1.1, xlim=c(0,tspan),ylim=c(0,2000))  

 

### Common dolphins trajectory 

plot_freq=plot(1:(tspan), nf[6,], main="Common dolphins \nMature female abundance",  

               xlab = list("Time",cex=1.5),ylab = list("N",cex=1.5),  

               type = "l",lwd = 2,cex.axis = 1.1, xlim=c(0,tspan),ylim=c(0,50))  

 

### Intermediate dolphins trajectory 

plot_freq=plot(1:(tspan), nf[9,], main="Admixed dolphins \nMature female abundance",  

               xlab = list("Time",cex=1.5),ylab = list("N",cex=1.5),  

               type = "l",lwd = 2,cex.axis = 1.1, xlim=c(0,tspan),ylim=c(0,max(nf[9,])))  

 

### Prevalence trajectory 

plot_freq=plot(1:(tspan), prevalence, main="Prevalence \nTotal population",  

               xlab = list("Time",cex=1.5),ylab = list("Nh/Ntot",cex=1.5),  



               type = "l",lwd = 2,cex.axis = 1.1, xlim=c(0,tspan)) 

 

3. Adding demographic stochasticity 

Given the reduced size of the common dolphin population we incorporated the effect of demographic 

stochasticity in the projections. For each time step the number of calves at time t+1 for each group is 

therefore extracted from a Poisson distribution (Gosselin and Lebreton, 2000) with mean rate = Af

or Af Af (t). The number of individuals in the other age classes at time t+1 are extracted from N(t) 

trials in a binomial distribution with probability of success equal to survival probability of that age 

class (Gosselin and Lebreton, 2000). The projections are repeated for 5000 runs and then the average 

probability of hitting the extinction threshold and the average time of extinction are calculated. 

 

3.1 Results 

 

Figure 1. Stochastic projections for mature female striped dolphins. Each grey line represents the result 

of one simulation run. The red line is one random projection chosen to visualize one trajectory. 

 



 

Figure 2. Stochastic projections for mature female common dolphins. Each grey line represents the 

result of one simulation run. The blue line is one random projection chosen to visualize one trajectory. 

 

 

Figure 3. Stochastic projections for admixed mature female dolphins. Each grey line represents the 

result of one simulation run. The green line is one random projection chosen to visualize one trajectory. 

Mean time of extinction is 130 years for striped dolphins and 15 years for common dolphins.  



The code implement demographic stochasticity is available below.  

 

############################################## 

#          DEMOGRAPHIC STOCHASTICITY         # 

############################################## 

tspan=200 # time span for projections 

S=5000 # number of simulations 

threshold1=5 

threshold2=5 

 

#Arrays 

 

# Striped dolphins 

N1f  <- array(0,c(3,tspan,S)) # matrix for female projected abundances over time 

N1m  <- array(0,c(3,tspan,S)) # matrix for male projected abundances over time 

ini1_striped=1331             # initial abundance (Santostasi et al., 2016) 

SE_Ninit1=113 

 

## Parameters  

sc1  <- 0.80    # Calf survival (Taylor et al., 2007) 

sj1  <- 0.94    # Juvenile survival (Santostasi et al., 2016) 

sja1 <- 0.94^10 # Transition from juvenile to adult = Annual juvenile survival  ̂number  

of years to maturity 

sa1<- 0.94      # Adult survival (Santostasi et al., 2016) 

f1 <- 0.25      # Fecundity (Taylor et al., 2007) 

 

# Common 

N2f  <- array(0,c(3,tspan,S)) # matrix for female projected abundances over time 

N2m  <- array(0,c(3,tspan,S)) # matrix for male projected abundances over time 

ini2_common=22                # initial abundance (Santostasi et al., 2016) 

SE_Ninit2=4 

 



## Parameters  

sc2<- 0.80     # Calf survival (Taylor et al., 2007) 

sj2<- 0.94     # Juvenile survival (Santostasi et al., 2016) 

sja2 <- 0.94^7 # Transition from juvenile to adult = Annual juvenile survival  ̂number  

of years to maturity 

sa2<- 0.94     # Adult survival (Santostasi et al., 2016) 

f2 <- 0.26     # Fertility average from Table 5 of Murphy et al., (2007) 

 

# Hybrid 

Nhf  <- array(0,c(3,tspan,S)) # matrix for female projected abundances over time 

Nhm  <- array(0,c(3,tspan,S)) # matrix for male projected abundances over time 

inih_hybrid=55                # initial abundance (Santostasi et al., 2016) 

SE_Ninith=12 

 

## Parameters  

sch<- 0.80         # Calf survival (same as parentals) 

sjh<- 0.94         # Juvenile survival (same as parentals) 

sjah<- 0.94 (̂8.5)  # Transition from juvenile to adult = Annual juvenile survival  ̂  

number of years to maturity 

sah<- 0.94         # Adult survival (same as parentals) 

fh <- 0.28         # Fecundity (average between parentals) 

 

tot <- matrix(0,S,tspan)  # tot mature male abundance assuming a 1:1 sex ratio  

fr1 <- matrix(0,S,tspan)  # storage of time-specific male S1 frequency 

fr2 <- matrix(0,S,tspan)  # storage of time-specific male S2 frequency 

frh <- matrix(0,S,tspan)  # storage of time-specific male H frequency 

 

time1=rep(0,S) # time of extinction striped 

time2=rep(0,S) # time of extinction commons 

min1=rep(0,S)  # how many sims hit the extinction threshold for striped dolphins 

min2=rep(0,S)  # how many sims hit the extinction threshold for common dolphins   

 



for (s in 1:S){ 

   

  ### Matrices and Initial abundances for species 1 = striped dolphins 

   

  ini1=round(rnorm(1,mean=ini1_striped,sd= SE_Ninit1)) 

  N1f[1,1,s] <- round(ini1*0.118) # abundance of female calves at t = 1 

  N1f[2,1,s] <- round(ini1*0.118) # abundance of female juveniles individuals at t = 1 

  N1f[3,1,s] <- round(ini1*0.265) # abundance of female adult individuals at t = 1 

   

  N1m[1,1,s] <- round(ini1*0.118) # abundance of male calves individuals at t = 1 

  N1m[2,1,s] <- round(ini1*0.118) # abundance of male juveniles individuals at t = 1 

  N1m[3,1,s] <- round(ini1*0.265) # abundance of male adult individuals at t = 1 

 

  ### Matrices and Initial abundances for species 2 = common dolphins 

   

  ini2=round(rnorm(1,mean=ini2_common,sd= SE_Ninit2)) 

  ini2 

   

  N2f[1,1,s] <- round(ini2*0.130) # abundance of female calves at t = 1 

  N2f[2,1,s] <- round(ini2*0.130) # abundance of female juveniles individuals at t = 1 

  N2f[3,1,s] <- round(ini2*0.240) # abundance of female adult individuals at t = 1 

   

  N2m[1,1,s] <- round(ini2*0.130) # abundance of male calves individuals at t = 1 

  N2m[2,1,s] <- round(ini2*0.130) # abundance of male juveniles individuals at t = 1 

  N2m[3,1,s] <- round(ini2*0.240) # abundance of male adult individuals at t = 1 

   

  ### Matrices and Initial abundances for hybrids = common x striped dolphins 

   

  inih=round(rnorm(1,mean=inih_hybrid,sd= SE_Ninith)) 

  inih 

   

  Nhf[1,1,s] <- round(inih*0.124) # abundance of female calves at t = 1 



  Nhf[2,1,s] <- round(inih*0.124) # abundance of female juveniles individuals at t = 1 

  Nhf[3,1,s] <- round(inih*0.253) # abundance of female adult individuals at t = 1 

   

  Nhm[1,1,s] <- round(inih*0.124) # abundance of male calves individuals at t = 1 

  Nhm[2,1,s] <- round(inih*0.124) # abundance of male juveniles individuals at t = 1 

  Nhm[3,1,s] <- round(inih*0.253) # abundance of male adult individuals at t = 1 

 

  ### Initial total abundances of males and frequencies   

   

  tot[s,1]=N1m[3,1,s]+N2m[3,1,s]+Nhm[3,1,s] 

  fr1[s,1]=N1m[3,1,s]/tot[s,1] 

  fr2[s,1]=N2m[3,1,s]/tot[s,1] 

  frh[s,1]=Nhm[3,1,s]/tot[s,1] 

     

  for(t in 2:tspan){ 

     

    N1f[1,t,s] <- rpois(1,round(N1f[3,t-1,s]*f1*sa1*fr1[s,t-1]*0.5)) #calves              

    N1f[2,t,s] <- rbinom(1,round(N1f[1,t-1,s]*sj1+ 

                        (N1f[2,t-1,s]*(1-sja1))),sj1) #juveniles  

    N1f[3,t,s] <- rbinom(1,round(N1f[2,t-1,s]),sja1)+ 

                  rbinom(1,round(N1f[3,t-1,s]),sa1) #adults  

     

    N1m[1,t,s] <-  rpois(1,round(N1f[3,t-1,s]*f1*sa1*fr1[s,t-1]*0.5)) #calves  

    N1m[2,t,s] <-  rbinom(1,round(N1m[1,t-1,s]*sj1+ 

                         (N1m[2,t-1,s]-N1m[2,t-1,s]*sja1)),sj1) #juveniles  

    N1m[3,t,s] <-  rbinom(1,round(N1m[2,t-1,s]*(1-sja1)),sja1)+ 

                   rbinom(1,round(N1m[3,t-1,s]),sa1) #adults  

     

    N2f[1,t,s] <- rpois(1,round(N2f[3,t-1,s]*f2*sa2*fr2[s,t-1]*0.5)) #calves 

    N2f[2,t,s] <- rbinom(1,round(N2f[1,t-1,s]*sj2+ 

                  (N2f[2,t-1,s]*(1-sja2))),sj2) #juveniles  

    N2f[3,t,s] <- rbinom(1,round(N2f[2,t-1,s]),sja2)+ 



                  rbinom(1,round(N2f[3,t-1,s]),sa2) #adults  

     

    N2m[1,t,s] <- rpois(1,round(N2f[3,t-1,s]*f2*sa2*fr2[s,t-1]*0.5)) #calves 

    N2m[2,t,s] <- rbinom(1,round(N2m[1,t-1,s]*sj2+ 

                  (N2m[2,t-1,s]*(1-sja2))),sj2) #juveniles  

    N2m[3,t,s] <- rbinom(1,round(N2m[2,t-1,s]),sja2)+ 

                  rbinom(1,round(N2m[3,t-1,s]),sa2) #adults  

     

    Nhf[1,t,s] <- round((rpois(1,round(N1f[3,t-1,s]*sa1*f1*fr2[s,t-1]))+                                                          

rpois(1,round(N2f[3,t-1,s]*sa2*f2*fr1[s,t-1]))+  

                   rpois(1,round(Nhf[3,t-1,s]*sah*fh*frh[s,t-1]))+ 

                   rpois(1,round(N1f[3,t-1,s]*sa1*f1*frh[s,t-1]))+ 

                   rpois(1,round(N2f[3,t-1,s]*sa2*f2*frh[s,t-1]))+ 

                   rpois(1,round(Nhf[3,t-1,s]*sah*fh*fr1[s,t-1]))+ 

                   rpois(1,round(Nhf[3,t-1,s]*sah*fh*fr2[s,t-1])))*0.5) #calves               

    Nhf[2,t,s] <- rbinom(1,round(Nhf[1,t-1,s]*sjh+ 

                  (Nhf[2,t-1,s]*(1-sjah))),sjh) #juveniles  

    Nhf[3,t,s] <- rbinom(1,round(Nhf[2,t-1,s]),sjah)+ 

                  rbinom(1,round(Nhf[3,t-1,s]),sah) #adults  

     

    Nhm[1,t,s] <-  round((rpois(1,round(N1f[3,t-1,s]*sch*f1*fr2[s,t-1]))+                            

                   rpois(1,round(N2f[3,t-1,s]*sa1*f2*fr1[s,t-1]))+  

                   rpois(1,round(Nhf[3,t-1,s]*sah*fh*frh[s,t-1]))+ 

                   rpois(1,round(N1f[3,t-1,s]*sa1*f1*frh[s,t-1]))+ 

                   rpois(1,round(N2f[3,t-1,s]*sa2*f2*frh[s,t-1]))+ 

                   rpois(1,round(Nhf[3,t-1,s]*sah*fh*fr1[s,t-1]))+ 

                   rpois(1,round(Nhf[3,t-1,s]*sah*fh*fr2[s,t-1])))*0.5) #calves 

    Nhm[2,t,s] <- rbinom(1,round(Nhm[1,t-1,s]*sjh+ 

                  (Nhm[2,t-1,s]*(1-sjah))),sjh) #juveniles  

    Nhm[3,t,s] <- rbinom(1,round(Nhm[2,t-1,s]),sjah)+ 

                  rbinom(1,round(Nhm[3,t-1,s]),sah) #adults 

     



    tot[s,t] <- round((N1m[3,t,s]+N2m[3,t,s]+Nhm[3,t,s]))  #number of total mature males at time t 

     

    fr1[s,t] <- (N1m[3,t,s]/tot[s,t])             #frequency of male S1 at time t 

    fr2[s,t] <- (N2m [3,t,s]/tot[s,t])            #frequency of male S2 at time t 

    frh[s,t] <- (Nhm [3,t,s]/tot[s,t])            #frequency of male H at time t 

     

    

    #Extinction probability and time of extinction for striped dolphins 

     

    min1[s]= min(N1f[3,,s]) #vector with minimum value for each projection 

    time_temp1=N1f[3,,s]<threshold1 #vector saying if, in the current sim, mature females are below the 

threshold 

    time1[s]=min(which(time_temp1 == TRUE)) #vector saying when mature females first hit the 

threshold 

     

    #Extinction probability and time of extinction for common dolphins 

     

    min2[s]= min(N2f[3,,s]) #vector with minimum value for projection 

     

    time_temp2=N2f[3,,s]<threshold2 #vector saying if, in the current sim, mature females are below the 

threshold 

     

    time2[s]=min(which(time_temp2 == TRUE)) #vector saying when mature females first hit the 

threshold  

  } 

} 

time_ext1=time1[time1<Inf]  #exclude Inf values 

Mean_text1=mean(time_ext1) #average time of extinction 

 

 

3. Logistic regression sensitivity analysis script 



The code to reproduce the logistic regression sensitivity analysis presented in the main text is 

provided below. 

###################################################################### 

#       DOLPHIN CASE: LOGISTIC REGRESSION SENSITIVITY ANALYSIS       # 

##################################################################### 

npar<-21 

sets<-15000 #parameters set for sensitivity analysis 

tspan<-50 #projections time 

threshold1<-5 #extinction threshold for striped  

threshold2<-5 #extinction threshold for common 

 

# Build some matrices for storing output 

nf  <-  array(NA,dim=c(9,tspan,sets))     # storage of age-specific female abundance 

nm  <-  array(NA,dim=c(9,tspan,sets))     # storage of age-specific male abundance 

 

Nf  <-  matrix(0,tspan,sets)      # storage of total female abundance 

Nm  <-  matrix(0,tspan,sets)      # storage of total male abundance 

tot <-  matrix(0,tspan,sets)      # storage of total abundance 

fr1 <-  matrix(0,tspan,sets)      # storage of realtive abundance male species1 

fr2 <-  matrix(0,tspan,sets)      # storage of realtive abundance male species2 

frh <-  matrix(0,tspan,sets)      # storage of realtive abundance admixed 

prevalence <- matrix(0,tspan,sets)  

gr  <-  matrix(0,tspan-1,sets)     # storage of time-specific population growth rates 

regr_data=matrix(0,sets,npar+3) 

colnames(regr_data)=c("ia1","Sc1","Sj1","Sja1","Sa1","f1","afr1","ia2","Sc2","Sj2","Sja2","Sa

2","f2","afr2", 

                      "iah","Sch","Sjh","Sjah","Sah","fh","afrh","Ext_Sc","Ext_Dd","Ext_H") 

 

##PERFORM N=SETS MODEL# RUNS AND STORE THE RESULTS# 

 

for (s in 1:(sets)) { 

 



  # Define parameters 

 

# Species 1 

ia1 =round(runif(1,min=1331, max=1578)) 

afr1=round(runif(1,min=8, max=10)) 

Sc1  <- runif(1,min = 0.2, max = 1) # Calf survival (Taylor et al., 2007) 

Sj1  <- runif(1,min = 0.2, max = 1)# Juvenile survival (Santostasi et et al., 2016) 

Sja1 <- Sj1 âfr1# Transition from juvenile to adult = Annual juvenile survival̂ number of years 

to maturity 

Sa1  <-runif(1,min = 0.2, max = 1)# Adult survival (Santostasi et al., 2016) 

f1   <- runif(1,min = 0.19, max = 0.33) # Fertility (Taylor et al., 2007) 

 

# Species 2 

 

ia2=round(runif(1,min=16, max=32)) 

afr2=round(runif(1,min=8, max=10)) 

Sc2<- runif(1,min = 0.2, max = 1) # Calf survival (Taylor et al., 2007) 

Sj2<- runif(1,min = 0.2, max = 1)# Juvenile survival (Santostasi et a.,l 2016) 

Sja2 <- Sj2 âfr2 # Transition from juvenile to adult = Annual juvenile survival̂ number of 

years to maturity 

Sa2<- runif(1,min = 0.2, max = 1) # Adult survival (Santostasi et al., 2016) 

f2 <- runif(1,min = 0.19, max = 0.33) # Fertility (average from Table 5 of Murphy et al., 2007) 

 

# Species h 

iah =round(runif(1,min=36, max=84)) 

afrh=round(runif(1,min=8, max=10)) 

Sch <- runif(1,min = 0.2, max = 1)      # Calf survival (same as parentals) 

Sjh <- runif(1,min = 0.2, max = 1)      # Juvenile survival  (same as parentals) 

Sjah <- Sjh âfrh                        #Transition from juvenile to adult = Annual juvenile 

survival̂ number of years to maturity 

Sah <- runif(1,min = 0.2, max = 1)      # Adult survival  (same as parental) 

fh <- runif(1,min = 0.19, max = 0.33)   # Fertility  (average between parentals) 



 

Ext_Sc <- 0 

Ext_Dd <- 0 

Ext_H  <- 0 

 

 

# Initial abundances and prevalence 

nf[,1,s]  <- 

c(ia1*0.118,ia1*0.118,ia1*0.265,ia2*0.130,ia2*0.130,ia2*0.240,iah*0.124,iah*0.124,iah*0.253

)     # initial population abundance females in each age class 

nm[,1,s]  <- 

c(ia1*0.118,ia1*0.118,ia1*0.265,ia2*0.130,ia2*0.130,ia2*0.240,iah*0.124,iah*0.124,iah*0.253

)     # initial population abundance males in each age class 

tot[1,s]  <- nm[3,1,s]+nm[6,1,s]+nm[9,1,s] 

fr1[1,s]  <- nm[3,1,s]/tot[1,s]  

fr2[1,s]  <- nm[6,1,s]/tot[1,s] 

frh[1,s]  <- nm[9,1,s]/tot[1,s] 

prevalence[1,s]=sum(nf[7:9,1,s])/(sum(nf[1:3,1,s])+sum(nf[4:6,1,s])) 

 

# Create the matrix population model 

 

for (t in 1:(tspan-1)) { 

   

  tot[t,s] <- nm[3,t,s]+nm[6,t,s]+nm[9,t,s]  #number of total mature males  

   

  fr1[t,s] <- (nm[3,t,s]/tot[t,s])             #Frequency of male S1 

  fr2[t,s] <- (nm [6,t,s]/tot[t,s])            #Frequency of male S2 

  frh[t,s] <- (nm [9,t,s]/tot[t,s])            #Frequency of male H  

   

  A <- matrix(c( 0 , 0 , f1*Sa1*fr1[t,s]*(0.5) , 0 , 0 , 0 , 0 , 0 , 0, 

                 Sc1 , (1-Sja1)*Sj1 , 0 , 0 , 0 , 0 , 0 , 0 , 0, 

                 0 , Sja1 , Sa1 , 0 , 0 , 0 , 0 , 0 , 0, 



                 0 , 0 , 0 , 0 , 0 , f2*Sa2*fr2[t,s]*0.5 , 0 , 0 , 0, 

                 0 , 0 , 0 , Sc2 , (1-Sja2)*Sj2 , 0 , 0 , 0 , 0, 

                 0 , 0 , 0 , 0 , Sja2 , Sa2 , 0 , 0 , 0, 

                 0 , 0 , Sah*f1*(fr2[t,s]+frh[t,s])*0.5 , 0 , 0 , Sah*f2*(fr1[t,s]+frh[t,s])*0.5 , 0 , 0 , 

Sah*fh*(fr1[t,s]+fr2[t,s]+frh[t,s])*0.5, 

                 0 , 0 , 0 , 0 , 0 , 0 , Sch , (1-Sjah)*Sjh , 0, 

                 0 , 0 , 0 , 0 , 0 , 0 , 0 , Sjah , Sah),nrow = 9, byrow = TRUE) 

   

  nf[,t+1,s] <- A%*%nf[,t,s]      # %*% = matrix multiplication in R 

  nm[,t+1,s] <- A%*%nm[,t,s]   

  Nf[t+1,s] <- sum(nf[,t+1,s]) 

  Nm[t+1,s] <- sum(nm[,t+1,s]) 

  gr[t,s] <- sum(nf[,t+1,s])/sum(nf[,t,s])  # per time step population growth rate  

  prevalence[t+1,s]=(sum(nf[7:9,t+1,s]))/(sum(nf[1:9,t+1,s])) 

} 

 

if(any(nf[3,,s] < threshold1)) Ext_Sc=1  

if(any(nf[6,,s] < threshold1)) Ext_Dd=1  

if(any(nf[9,,s] < threshold1)) Ext_H=1  

regr_data[s,]=c(ia1,Sc1,Sj1,Sja1,Sa1,f1,afr1,ia2,Sc2,Sj2,Sja2,Sa2,f2,afr2,iah,Sch,Sjh,Sjah,Sah,f

h,afrh,Ext_Sc,Ext_Dd,Ext_H) 

 

} 

 

#### logistic regression #### 

 

  ###Influence of demographic parameters on striped dolphins genomic extinction 

  

  mylogit1 <- glm(Ext_Sc ~ ia1+Sc1+Sj1+Sa1+f1+ia2+Sc2+Sj2+Sa2+ 

           f2+Sch+Sjh+iah+Sah+fh+afr1+afr2+afrh, data = as.data.frame(regr_data), family = 

"binomial") 

  #Removed the sja1,sja2 and sjah bc correlated with sj 



  modsel1=stepAIC(mylogit1,trace=F) #backward stepwise selection function 

  summary(modsel1) 

  summary(modsel1)$coefficients #Coefficients table 

  Ext_Sc_coeff <- summary(modsel1)$coefficients #Standardized coefficients table 

  Ext_Sc_coeff_ord= Ext_Sc_coeff[order(abs(Ext_Sc_coeff[,3]),decreasing=T),] #Sort the 

standardized coeff by abs. value 

  Ext_Sc_coeff_ord 

 

      

 ###INFLUENCE OF DEMOGRAPHIC PARAMETERS ON Dd EXTINCTION 

      

     mylogit3 <- glm(Ext_Dd ~ ia1+Sc1+Sj1+Sa1+f1+ia2+Sc2+Sj2+Sa2+ 

                      f2+iah+Sch+Sjh+Sah+fh+afr1+afr2+afrh, data = as.data.frame(regr_data), family 

= "binomial") 

     modsel3=stepAIC(mylogit3,trace=F) #backward stepwise selection function 

     summary(modsel3) 

     summary(modsel3)$coefficients #Coefficients table 

     Ext_Dd_coeff <- summary(modsel3)$coefficients#Standardized coefficients table 

     Ext_Dd_coeff_ord= Ext_Dd_coeff[order(abs(Ext_Dd_coeff[,3]),decreasing=T),] #sort 

absolute values standardized coeff 

     Ext_Dd_coeff_ord 

 

     ###Influence of demographic parameters on common dolphins genomic extinction 

      

     mylogit5 <- glm(Ext_H ~ ia1+Sc1+Sj1+Sa1+f1+Sc2+Sj2+ia2+Sa2+ 

                       f2+iah+Sch+Sjh+Sah+fh+afr1+afr2+afrh, data = as.data.frame(regr_data), family 

= "binomial") 

     modsel5=stepAIC(mylogit5,trace=F) #backward stepwise selection function 

     summary(modsel5) 

     summary(modsel5)$coefficients #Coefficients table 

     Ext_H_coeff <- summary(modsel5)$coefficients #Standardized coefficients table 



     Ext_H_coeff_ord= Ext_H_coeff[order(abs(Ext_H_coeff[,3]),decreasing=T),] #sort absolute 

values standardized coeff 

     Ext_H_coeff_ord 

 

4. Analytical sensitivity analysis ( 

The finite annual rate of increase can be calculated as the dominant eigenvalue of the transition matrix 

A. The sensitivity of the growth rate to a proportionate change in each parameter (elasticity) can be 

obtained using calculus (based on Caswell 1978). The parameters with the higher elasticity and 

sensitivity was the survival of admixed individuals (Table S1). 

 

Table S1. 

Parameter Sensitivity Elasticitiy 

Sc1 0.00E+00 0.00E+00 

Sj1 0.00E+00 0.00E+00 

Sja1 4.12E-12 2.14E-12 

Sa1 0.00E+00 0.00E+00 

f1 -8.88E-12 -2.14E-12 

Sc2 0.00E+00 0.00E+00 

Sj2 0.00E+00 0.00E+00 

Sja2 0.00E+00 0.00E+00 

Sa2 0.00E+00 0.00E+00 

f2 0.00E+00 0.00E+00 

Sch 0.00E+00 0.00E+00 

Sjh 1.38E-01 1.24E-01 

Sjah 2.16E-02 1.19E-02 

Sah 8.84E-01 7.99E-01 



fh 3.05E-01 7.64E-02 

 

The code to implement the sensitivity analysis is available below: 

 

############################################## 

#                      SENSITIVITY ANALYSIS                     # 

############################################## 

 

# Create the dolphin population model function with generic parameters 

 

source('build_matrix_dolphin.r') 

 

# assign values to model param 

 

source('input_param_dolphin.r') 

 

# vector of parameters 

theta <- c(Sc1,Sj1,Sja1,Sa1,f1,Sc2,Sj2,Sja2,Sa2,f2,Sch,Sjh,Sjah,Sah,fh) 

theta 

 

# Apply function build_matrix to obtain the dolphin matrix 

A <- build_matrix_dolphin(theta) 

A 

 

# compute asymptotic growth rate 

max(Re(eigen(A)$values)) 

 

# Create function to calculate sensitivity wrt parameter in position pos 

# in vector of parameters that follows and matches the input parameters 

# of function build_matrix  

# delta is the perturbation parameter (set to 1e-4 by default) 

 



sens_elas_num <- function(pos,Sc1,Sj1,Sja1,Sa1,f1,Sc2,Sj2,Sja2,Sa2,f2,Sch,Sjh,Sjah,Sah,fh,delta=1e-

4){ 

     

    # param character format 

    param_char <- c('Sc1','Sj1','Sja1','Sa1','f1','Sc2','Sj2','Sja2','Sa2' ,'f2','Sch' ,'Sjh','Sjah' ,'Sah' ,'fh') 

     

    # get parameters 

    theta <- c(Sc1,Sj1,Sja1,Sa1,f1,Sc2,Sj2,Sja2,Sa2,f2,Sch,Sjh,Sjah,Sah,fh) 

     

    # build matrix 

    A <- build_matrix_dolphin(theta) 

     

    # calculate growth rate 

    lambda <- max(Re(eigen(A)$values)) 

         

    # get focal parameter 

    c <- theta[pos] 

     

    # modify the focal parameter c by a very small amount 

    c_new <- c * (1 + delta) 

    theta_new <- theta 

    theta_new[pos] <- c_new 

     

    # build A_new with perturbed focal parameter 

    A_new <- build_matrix_dolphin(theta_new) 

     

    # calculate growth rate 

    lambda_new <- max(Re(eigen(A_new)$values)) 

     

    # calculate sensitivity [sens = df(x)/dx = (lam.new-lam)/(c*delta)] 

    sens <- (lambda_new-lambda) / ( c * delta) 

     



    # calculate elasticity [elas = sens*c/lam = (lam.new-lam)/(lam*delta)] 

    elas <- (lambda_new - lambda)/(lambda*delta) 

     

    res <- list(param = param_char[pos], sens = sens, elas = elas) 

    return(res) 

} 

 

# compute elasticity growth rate wrt Sc1 (pos=1 dans theta) for param in input_param_dolphin.r 

sens_elas_num(1,Sc1,Sj1,Sja1,Sa1,f1,Sc2,Sj2,Sja2,Sa2,f2,Sch,Sjh,Sjah,Sah,fh) # Sc1 

 

# compute elasticity growth rate wrt Sc2 (pos=6 dans theta) for param in input_param_dolphin.r 

sens_elas_num(6,Sc1,Sj1,Sja1,Sa1,f1,Sc2,Sj2,Sja2,Sa2,f2,Sch,Sjh,Sjah,Sah,fh) # Sc2 

 

# compute them all 

par_char = NULL 

par_sens = NULL  

par_elas  = NULL 

 

for (i in 1:length(theta)){ 

    res = sens_elas_num(i,Sc1,Sj1,Sja1,Sa1,f1,Sc2,Sj2,Sja2,Sa2,f2,Sch,Sjh,Sjah,Sah,fh) 

    par_char = c(par_char,res$param) 

    par_sens = c(par_sens,res$sens) 

    par_elas = c(par_elas,res$elas) 

} 

 

# display results  

data.frame(param = par_char, sensitivity = par_sens, elasticitiy = par_elas) 

 

The script containing the build_matrix_dolphin function (build matrix dolphins.R) is: 

############################################## 

#                        BUILD MATRIX DOLPHINS              # 

############################################## 



 

build_matrix_dolphin <- function(theta){ 

     

Sc1 <- theta[1] # Calf survival (Taylor et al., 2007) 

Sj1 <- theta[2] # Juvenile survival (Santostasi et al., 2016) 

Sja1 <- theta[3] # Transition from juvenile to adult = Annual juvenile survival̂ number  

of years to maturity 

Sa1 <- theta[4] # Adult survival (Santostasi et al., 2016) 

f1 <- theta[5] # Fertility (Taylor et al., 2007) 

 

Sc2 <- theta[6] # Calf survival (Taylor et al., 2007) 

Sj2 <- theta[7] # Juvenile survival (Santostasi et al., 2016) 

Sja2 <- theta[8] # Transition from juvenile to adult = Annual juvenile survival̂ number of years to 

maturity 

Sa2 <- theta[9] # Adult survival (Santostasi et al., 2016) 

f2 <- theta[10] # Fertility (average from Table 5 of Murphy et al., 2007) 

 

Sch <- theta[11] # Calf survival (same as parentals) 

Sjh <- theta[12] # Juvenile survival  (same as parentals) 

Sjah <- theta[13] # Transition from juvenile to adult = Annual juvenile survival̂ number of years to 

maturity 

Sah <- theta[14] # Adult survival  (same as parental) 

fh <- theta[15] # Fertility  (average between parentals) 

 

# init abundance 

nf <- 

c(1331*0.118,1331*0.118,1331*0.265,22*0.130,22*0.130,22*0.240,55*0.124,55*0.124,55*0.253) # 

females 

nm <- 

c(1331*0.118,1331*0.118,1331*0.265,22*0.130,22*0.130,22*0.240,55*0.124,55*0.124,55*0.253) # 

males  

 



tot <- nm[3] + nm[6] + nm[9] # number of total mature males 

fr1 <- nm[3]/tot # Frequency of male S1 

fr2 <- nm[6]/tot # frequency of male S2 

frh <- nm[9]/tot # frequency of male H 

 

A <- matrix(c(0,0,f1*Sa1*fr1*0.5,0,0,0,0,0,0, 

Sj1 , (1-Sja1)*Sj1 , 0 , 0 , 0 , 0 , 0 , 0 , 0, 

0 , Sja1 , Sa1 , 0 , 0 , 0 , 0 , 0 , 0, 

0 , 0 , 0 , 0 , 0 , f2*Sa2*fr2*0.5 , 0 , 0 , 0, 

0 , 0 , 0 , Sj2 , (1-Sja2)*Sj2 , 0 , 0 , 0 , 0, 

0 , 0 , 0 , 0 , Sja2 , Sa2 , 0 , 0 , 0, 

0 , 0 , Sah*f1*(fr2+frh)*0.5 , 0 , 0 , Sah*f2*(fr1+frh)*0.5 , 0 , 0 , Sah*fh*(fr1+fr2+frh)*0.5, 

0 , 0 , 0 , 0 , 0 , 0 , Sjh , (1-Sjah)*Sjh , 0, 

0 , 0 , 0 , 0 , 0 , 0 , 0 , Sjah , Sah),nrow = 9, byrow = TRUE) 

 

    return(A) 

     

} 

 

The script containing the parameters (input_param_dolphin.r) is: 

############################################## 

#                   INPUT PARAM DOLPHINS                      # 

############################################## 

 

Sc1  <- 0.80 # Calf survival (Taylor et al., 2007) 

Sj1  <- 0.94 # Juvenile survival (Santostasi et al., 2016) 

Sja1 <- 0.94^10 # Transition from juvenile to adult = Annual juvenile survival̂ number of years to 

maturity 

Sa1<- 0.94 # Adult survival (Santostasi et al., 2016) 

f1 <- 0.25 # Fertility (Taylor et al., 2007) 

 

Sc2<- 0.80 # Calf survival (Taylor et al., 2007) 



Sj2<- 0.94 # Juvenile survival (Santostasi et al., 2016) 

Sja2 <- 0.94^8 # Transition from juvenile to adult = Annual juvenile survival̂ number of years to 

maturity 

Sa2<- 0.94 # Adult survival (Santostasi et al., 2016) 

f2 <- 0.26 # Fertility (average from Table 5 of Murphy et al., 2007) 

 

uk <- 0.28 #United kingdom 

fr <- 0.29 #France 

ir <- 0.20 #Ireland 

ib <- 0.19 #Iberian peninsula 

ne <- 0.26 #Noth-East Atlantic 

cont <- 0.33 #Control group, healthy common dolphins according to Murphy et al., 2007) 

 

fert <- c(uk,fr,ir,ib,ne,cont) 

 

Sch <- 0.80 # Calf survival (same as parentals) 

Sjh <- 0.94 # Juvenile survival  (same as parentals) 

Sjah <- 0.94^9  # Transition from juvenile to adult = Annual juvenile survival̂ number of years to 

maturity 

Sah <- 0.94 # Adult survival  (same as parental) 

fh <- 0.26 # Fertility  (average between parentals) 
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APPENDIX 2. Wolves and dog hybridization  

1. Initial values and calculations 

Wolves 

Females 

 Initial number of female breeders = Awf(1) = 6 = number of packs in the Italian Alps in year 

1999 (Marucco and McIntire 2010)  

 Initial number of female subordinates = Swf(1) = 6  

 Initial number of females in dispersal = Dwf(1) = 6 

 Initial number of female juveniles = Jwf(1) = [average litter size (3.389, Marucco and McIntire 

2010) * number of packs * 0.5] = 10 

Males 

 Initial number of male breeders = Awm (1) = Awf(1) 

 Initial number of male subordinates = Swm(1) = Swf(1) 

 Initial number of male dispersers = Dwf(1)  

 Initial number of male dispersers = Dwm(1) = Dwf(1) 

 Initial number of male juveniles = Jwm(1) = Jwm(1) 

 

Admixed individuals 

Females 

 Initial number of female breeders = Ahf(1) = 0  

 Initial number of female subordinates = Shf(1) =0  

 Initial number of females in dispersal = Dhf(1) = 0  

 Initial number of female juveniles = Jhf(1) = 0 

Males 

 Initial number of male breeders = Ahm(1) = 0  

 Initial number of male subordinates = Shm(1) =0 

 Initial number of males in dispersal = Dhm(1) = 0  

 Initial number of male juveniles = Jhfm(1) = 0 

 

Dogs 



 Hybridization with dogs is simulated as a constant annual frequency of reproductive events 

between female wolves and male dogs (parameter frd). The increasing values of frd tested are 

0.1, 0.2, 0.3, 0.4, 0.5.  

 

Initial proportion of males 

- Totm(1) = Dwm(1) + Dhm(1) = 6 = initial total number of male wolves and admixed individuals 

in dispersal 

o hm(1) / Totm(1) - frd(1) = 0 = initial proportion of admixed individuals in 

dispersal 

o (1) = (1-frd(1) - , depends on the frd(1) 

parameter 

 

2. Model equations 

Female wolves 

Jwf(t+1) = Awf(t)Sawfw0.5  juvenile wolf females 

Swf(t+1) = Jwf(t)Sjw(1 - Pdiw)  subordinates wolf females 

Dwf(t+1) = Jwf(t)SjwPdiw+ Swf(t)Ssw  dispersers wolf females 

Awf(t+1) = Dwf(t)SdwPesw (t) + Ahf(t)Saw  female wolf breeders 

 

Male wolves 

Jwm(t+1) = Awf(t)Sawfw0.5  juvenile wolf males 

Swm(t+1) = Jwm(t)Sjw(1 - Pdiw)  subordinates wolf males 

Dwm(t+1) = Jwm(t)SjwPdiw + Swm(t)Ssw  dispersers wolf males 

Awm(t+1) = Dwm(t)SdwPesw (t) + Ahm(t)Saw  male wolf breeders 

 

Female admixed 

Jhf(t+1) = Ahf(t)Sahfh0.5  juvenile admixed females 

Shf(t+1) = Jhf(t)Sjh(1-Pdih)  subordinate admixed females 

Dhf(t+1) = Jhf(t)SjhfPdih + Shf(t+1)Ssh  dispersers admixed females 

Ahf(t+1) = Dwf(t)SdwPeshfrd(t) +  female wolf x male dog 

                 Dwf(t)SdwPesh female wolf x male admixed 

                 Dhf(t)SdhPesh (t) +  female admixed x male wolf 



                 Dhf(t)SdhPesh  +  female admixed x male admixed 

                 Ahf(t)Sah) 

 

Male admixed 

Jhm(t+1) = Ahf(t)Sahfh0.5  juvenile admixed males 

Shm(t+1) = Jhm(t)Sjh(1-pdh)  subordinate admixed males 

Dhm(t+1) = J1hm(t)SjhPdih + Shm(t+1)Ssh  dispersers admixed males 

Ahf(t+1) = Dwm(t)SdwPeshfrd(t)+  female wolf x male dog 

                 Dwm(t)SdwPesh female wolf x male admixed 

                 Dhm(t)SdhPesh (t) +  female admixed x male wolf 

                 Dhm(t)SdhPesh female admixed x male admixed 

                 Ahm(t)Sah) 

 

Proportion of males of each taxon at time t: 

Totm (t) = Dwm(t) + Dhm(t)  total of males in dispersal 

hm (t) / Totm (t) - frd(t)  proportion of admixed individuals in dispersal 

(t) = 1-frd(t) - proportion of wolves in dispersal 

 

The code to run the model in a matrix formulation is available below: 

############################################## 

#          WOLF CASE: MATRIX FORMULATION        # 

############################################## 

 

### Parameters 

#Wolves 

tspan=50 

Sjw=0.55  # Marucco and McIntire 2010 

Ssw=0.82  # Marucco & McIntire  2010 

Sdw=0.65  # Marucco & McIntire  2010 

Saw=0.82  # Marucco & McIntire  2010 

fw=3.39   #average litter size Marucco and McIntire 2010  

pdiw=0.25 # average dispersal rate 0.10 and 0.40 (Mech and Boitani, 2003) 



pesw=0.50 # average annual p establish pack (0.3-0.7) Marescot et al., 2012. 

 

#Admixed 

Sjh=Sjw  # same as wolf 

Ssh=Ssw # same as wolf 

Sdh=Sdw  # same as wolf 

Sah=Saw  # same as wolf 

fh=fw # same as wolf   

pdih=pdiw # same as wolf 

pesh=pesw # same as wolf 

 

# Build some matrices for storing output 

nf  <-  matrix(0,8,tspan) # storage of age-specific female abundance 

nm  <-  matrix(0,8,tspan) # storage of age-specific male abundance 

Nf  <-  matrix(0,tspan,1) # storage of total female abundance 

Nm  <-  matrix(0,tspan,1) # storage of total male abundance 

 

tot <- matrix(0, tspan,1) 

frd <- matrix(0.1, tspan,1) # Constant annual rate of formation of wolf-dog mixed pairs 

frw <- matrix(0,tspan,1) 

frh <- matrix(0, tspan,1) 

prevalence <- matrix(0, tspan,1) 

grw  <-  matrix(0,tspan-1,1) # storage of time-specific population growth rates 

grh  <-  matrix(0,tspan-1,1) # storage of time-specific population growth rates 

 

# Initial abundances and relative abundances of males 

 

nf[,1]  <- c(10,6,6,6,0,0,0,0) # initial population abundance females in each age class 

nm[,1]  <- c(10,6,6,6,0,0,0,0) # initial population abundance females in each age class 

 

tot[1,] <- nm[2,1]+nm[6,1] 

frh[1,] <- ((nm[6,1]/tot[1,]-frd[1,])) #Frequency of hybrid males in dispersal 



if (nm[6,1]/tot[1,]-frd[1,]<0) { 

  frh[1,]=0 

} 

 

frw[1] <- (1-frd[1,]-frh[1,]) #Frequency of male wolves in disperal   

if (1-frd[1,]-frh[1,]<0) { 

  frw[1,]=0 

} 

 

prevalence[1]=sum(nf[5:8,1])/(sum(nf[5:8,1])+sum(nf[1:4,1])) 

 

# Create the pre matrix population model 

 

for (t in 1:(tspan-1)) { 

  tot[t,] <- nm[2,t]+nm[6,t] 

  frh[t,] <- ((nm[6,t]/tot[t,]-frd[t,])) #Frequency of hybrid males in dispersal 

  if (nm[6,t]/tot[t,]-frd[t,]<0) { 

    frh[t,]=0 

  } 

   

  frw[t] <- (1-frd[t,]-frh[t,]) #Frequency of male wolves in disperal   

  if (1-frd[t,]-frh[t,]<0) { 

    frw[t,]=0 

  } 

   

    B =  matrix(c( 0 , 0 , 0 , fw*Saw*0.5 , 0 , 0 , 0 , 0 ,  

                Sjw*pdiw , 0 , Ssw , 0 , 0 , 0 , 0 , 0  , 

                Sjw*(1-pdiw) , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,  

                0 , Sdw*pesw*frw[t,] , 0 , Saw , 0 , 0 , 0 , 0 ,  

                0 , 0 , 0 , 0 , 0 , 0 , 0 , fh*Sah*0.5 , 

                0 , 0 , 0 , 0 , Sjh*pdih , 0 , Ssh , 0  , 

                0 , 0 , 0 , 0 , Sjh*(1-pdih) , 0 , 0 , 0 , 



                0 , Sdw*pesh*(frd[t,]+frh[t,]) , 0 , 0 , 0 , Sdh*pesh*(frw[t,]+frh[t,]) , 0 , Sah  ),nrow = 8, 

byrow = TRUE) 

 

    nf[,t+1] <- B%*%nf[,t]      # %*% = matrix multiplication in R 

    nm[,t+1] <- B%*%nm[,t]   

    prevalence[t+1,]=sum(nf[5:8,t+1])/(sum(nf[5:8,t+1])+sum(nf[1:4,t+1])) 

    Nf[t+1] <- sum(nf[,t+1]) 

    Nm[t+1] <- sum(nm[,t+1]) 

    grw[t] <- sum(nf[1:4,t+1])/sum(nf[1:4,t])  # per time step population growth rate wolves 

    grh[t] <- sum(nf[5:8,t+1])/sum(nf[5:8,t])  # per time step population growth rate admixed 

} 

### Prevalence 

plot_freq=plot(1:(tspan), prevalence, main="Reproductive isolation 2",  

               ylab="",xlab="",type = "l",lty=1,lwd = 2,xlim=c(0,tspan)) 

 

3. Logistic regression sensitivity analysis 

The code to reproduce the logistic regression sensitivity analysis presented in the main text is provided 

below. 

 

###################################################################### 

     #       WOLF CASE CASE: LOGISTIC REGRESSION SENSITIVITY ANALYSIS   # 

     ###################################################################### 

 

library(MASS) 

library(tidyverse) 

library(broom) 

 

### Parameters 

 

#Wolves 

   npar<-15 

   sets<-15000 #parameters set for sensitivity analysis 



   tspan=50 

   threshold1<-3 #extinction threshold 

 

# Build some arrays (nsets matrices(ageclasses x tspan))  

# and matrices (tspan x nsets) for storing output for each parm. set  

 

   nf<-array(NA,dim=c(8,tspan,sets))     # storage of projected age-specific female abundance  

   nm<-array(NA,dim=c(8,tspan,sets))     # storage of projected age-specific male abundance  

    

   Nf<-matrix(0,tspan,sets)              # storage of projected total female abundance  

   Nm<-matrix(0,tspan,sets)              # storage of projected total male abundance  

   tot <- matrix(0,tspan,sets)           # storage of projected total abundance  

   frw <- matrix(0,tspan,sets)           # storage of projected frequency male wolves  

   frh <- matrix(0, tspan,sets)          # storage of projected frequency admixed  

   prevalence <- matrix(0, tspan,sets)   # storage of projected prevalence  

   grw  <-  matrix(0,tspan-1,sets)       # storage of time-specific population growth rates  

   grh  <-  matrix(0,tspan-1,sets)       # storage of time-specific population growth rates  

   frd<-matrix(NA,tspan,sets) 

    

# Build matrix to store demographic parameters and extinction  

# outcome for logistic regression 

 

   regr_data <- matrix(0,sets,npar+2) 

   colnames(regr_data)=c("Sjw","Ssw","Sdw","Saw","fw","pdiw", 

                      "pesw","Sjh","Ssh","Sdh","Sah","fh","pdih","pesh","frdog","Ext_W","Ext_H")  

 

##Loop over 15000 parameter sets drawn from uniform distributions 

   ### Draw parameters -> Run projection over tspan years -> save parameters and extinction 

outcome 

 

  for (s in 1:(sets)) { 

   



  # Define parameters 

    #Wolves 

    Sjw=runif(1,min = 0.2, max = 1)    # min-max Juvenile survival (from Marescot et al., 2012) 

    Ssw=runif(1,min = 0.2, max = 1)    # min-max Subordinate survival (from Marescot et al., 2012) 

    Sdw=runif(1,min = 0.2, max = 1)    # min-max Dispersers survival (from Marescot et al., 2012) 

    Saw=runif(1,min = 0.2, max = 1)    # min-max Alpha survival from (from Marescot et al., 2012) 

    fw=runif(1,min = 0, max = 4.5)     # min-max litter size (from Mech and Boitani 2003)  

    pdiw= runif(1,min = 0, max = 0.40) # min-max dispersal rate 0.10 and 0.40 (from Mech and 

Boitani, 2003) 

    pesw= runif(1,min = 0, max = 0.70) # min-max p. establish pack (0.3-0.7) (from Marescot et al., 

2012) 

       

    #Admixed (same parameters ranges as wolves) 

    Sjh=runif(1,min = 0.2, max = 1)   

    Ssh=runif(1,min = 0.2, max = 1)   

    Sdh=runif(1,min = 0.2, max = 1)   

    Sah=runif(1,min = 0.2, max = 1)   

    fh=runif(1,min = 0, max = 4.5)    

    pdih=runif(1,min = 0, max = 0.40)  

    pesh=runif(1,min = 0, max = 0.70) 

       

    #Dogs (modelled as a constant annual rate of formation of wolf-dog mixed pairs) 

    frdog=runif(1,min = 0, max = 1) # Constant annual rate of formation of wolf-dog mixed pairs 

    frd[,s] <- (round(frdog,1))     # Vectorized to be used in the following projection 

   

    # Initialize Ext_W and Ext_H objects (extinction outcomes of W and H)  

    Ext_W <- 0 

    Ext_H <- 0 

   

    # Initial values (t=1) 

    nf[,1,s]  <- c(10,6,6,6,0,0,0,0)     # initial population abundance females in each age class 

    nm[,1,s]  <- c(10,6,6,6,0,0,0,0)     # initial population abundance females in each age class 



    tot[1,s] <- nm[2,1,s]+nm[6,1,s]      # Total males in dispersal (h+w) 

    frh[1,s] <- ((nm[6,1,s]/tot[1,s]-frd[1,s])) #Frequency of hybrid males in dispersal 

    if (nm[6,1,s]/tot[1,s]-frd[1,s]<0) {        #Avoid negative numbers 

      frh[1,s]=0 

    } 

    frw[1,s] <- (1-frd[1,s]-frh[1,s])    #Frequency of male wolves in disperal   

    if (1-frd[1,s]-frh[1,s]<0) {         #Avoid negative numbers 

    frw[1,s]=0 

    } 

    prevalence[1,s]=sum(nf[5:8,1,s])/(sum(nf[5:8,1,s])+sum(nf[1:4,1,s]))  #Prevalence at t=1  

   

    # Create the matrix population model and loop over time 

   

    for (t in 1:(tspan-1)) { 

     

      tot[t,s] <- nm[2,t,s]+nm[6,t,s] 

      frh[t,s] <- ((nm[6,t,s]/tot[t,s]-frd[t,s])) #Frequency of hybrid males in dispersal 

      if (nm[6,t,s]/tot[t,s]-frd[t,s]<0) { 

        frh[t,s]=0 

      } 

       

      frw[t,s] <- (1-frd[t,s]-frh[t,s])    #Frequency of male wolves in disperal   

      if (1-frd[t,s]-frh[t,s]<0) { 

        frw[t,s]=0 

      } 

       

      B =  matrix(c( 0 , 0 , 0 , fw*Saw*0.5 , 0 , 0 , 0 , 0 ,  

                     Sjw*pdiw , 0 , Ssw , 0 , 0 , 0 , 0 , 0  , 

                     Sjw*(1-pdiw) , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,  

                     0 , Sdw*pesw*frw[t,s] , 0 , Saw , 0 , 0 , 0 , 0 ,  

                     0 , 0 , 0 , 0 , 0 , 0 , 0 , fh*Sah*0.5 , 

                     0 , 0 , 0 , 0 , Sjh*pdih , 0 , Ssh , 0  , 



                     0 , 0 , 0 , 0 , Sjh*(1-pdih) , 0 , 0 , 0 , 

                     0 , Sdw*pesh*(frd[t,s]+frh[t,s]) , 0 , 0 , 0 , Sdh*pesh*(frw[t,s]+frh[t,s]) , 0 , Sah  

),nrow = 8, byrow = TRUE) 

       

      nf[,t+1,s] <- B%*%nf[,t,s]      # %*% = matrix multiplication in R 

      nm[,t+1,s] <- B%*%nm[,t,s]   

      prevalence[t+1,s]=sum(nf[5:8,t+1,s])/(sum(nf[5:8,t+1,s])+sum(nf[1:4,t+1,s])) 

      Nf[t+1,s] <- sum(nf[,t+1,s]) 

      Nm[t+1,s] <- sum(nm[,t+1,s]) 

      grw[t,s] <- sum(nf[1:4,t+1,s])/sum(nf[1:4,t,s])  # per time step population growth rate wolves 

      grh[t,s] <- sum(nf[5:8,t+1,s])/sum(nf[5:8,t,s])  # per time step population growth rate admixed 

      } 

 

    if(any(sum(nf[3:4,t+1,s]) < threshold1)) Ext_W=1  

    if(any(sum(nf[7:8,t+1,s]) < threshold1)) Ext_H=1  

    

regr_data[s,]=c(Sjw,Ssw,Sdw,Saw,fw,pdiw,pesw,Sjh,Ssh,Sdh,Sah,fh,pdih,pesh,frdog,Ext_W,Ext_

H) 

    } 

########################################################### 

#         Logistic regression sensitivity analysis        # 

########################################################### 

    

###INFLUENCE OF DEMOGRAPHIC PARAMETERS ON WOLF EXTINCTION 

  mylogit1 <- glm(Ext_W ~ Sjw+Ssw+Sdw+Saw+fw+pdiw+ 

                 pesw+Sjh+Ssh+Sdh+Sah+fh+ 

                 pdih+pesh+frdog, data = as.data.frame(regr_data), family = "binomial") 

 

  modsel1=stepAIC(mylogit1) #backward stepwise selection function 

  summary(modsel1) 

  summary(modsel1)$coefficients #Coefficients table of selected model 

  Ext_W_coeff <- summary(modsel1)$coefficients #Standardized coefficients 



  Ext_W_coeff_ord= Ext_W_coeff[order(abs(Ext_W_coeff[,3]),decreasing=T),] #Sort the 

standardized coeff by abs. value 

  Ext_W_coeff_ord 

 

4. Analytical sensitivity analysis 

The finite annual rate of increase can be calculated as the dominant eigenvalue of the transition matrix 

A. The sensitivity of the growth rate to a proportionate change in each parameter (elasticity) can be 

obtained using calculus (based on Caswell,1978). The parameters with the higher elasticity and 

sensitivity were the survival of both wolves and admixed individuals (Table S2). 

 

Table S2.  

Parameter Sensitivity Elasticitiy 

sjw 0.228 0.124 

ssw 0.108 0.088 

sdw 0.193 0.124 

saw 0.816 0.664 

fw 0.037 0.124 

pdiw 0.027 0.007 

pesw 0.251 0.124 

sjh 0.228 0.124 

ssh 0.108 0.088 

sdh 0.193 0.124 

sah 0.816 0.664 

fh 0.037 0.124 

pdih 0.027 0.007 

pesh 0.251 0.124 

frd -0.139 -0.014 

 

 

 

 

 



The code to reproduce the sensitivity analysis is available below: 

############################################## 

#                      SENSITIVITY ANALYSIS                     # 

############################################## 

 

# Create the wolf population model function 

# with generic parameters 

source('build_matrix_wolf.r') 

   

# assign values to model param 

source('input_param_wolf.r') 

 

# vector of parameters  

theta <- c(sjw,ssw,sdw,saw,fw,pdiw,pesw,sjh,ssh,sdh,sah,fh,pdih,pesh,frd) 

theta 

 

# Apply function build_matrix to obtain the dolphin matrix 

A <- build_matrix_wolf(theta) 

A 

# compute asymptotic growth rate 

max(Re(eigen(A)$values)) 

# Create function to calculate sensitivity wrt parameter in position pos 

# in vector of parameters that follows and matches the input parameters 

# of function build_matrix  

# delta is the perturbation parameter (set to 1e-4 by default) 

sens_elas_num <- 

function(pos,sjw,ssw,sdw,saw,fw,pdiw,pesw,sjh,ssh,sdh,sah,fh,pdih,pesh,frd,delta=1e-4){ 

  

 # param char format 

 param_char <- c('sjw','ssw','sdw','saw','fw','pdiw','pesw','sjh','ssh','sdh','sah','fh' ,'pdih' ,'pesh','frd') 

  

 # get parameters 



 theta <- c(sjw,ssw,sdw,saw,fw,pdiw,pesw,sjh,ssh,sdh,sah,fh,pdih,pesh,frd) 

  

 # build matrix 

 A <- build_matrix_wolf(theta) 

  

 # calculate growth rate 

 lambda <- max(Re(eigen(A)$values)) 

   

 # get focal parameter 

 c <- theta[pos] 

  

 # modify the focal parameter c by a very small amount 

 c_new <- c * (1 + delta) 

 theta_new <- theta 

 theta_new[pos] <- c_new 

  

 # build A_new with perturbed focal parameter 

 A_new <- build_matrix_wolf(theta_new) 

  

 # calculate growth rate 

 lambda_new <- max(Re(eigen(A_new)$values)) 

  

 # calculate sensitivity [sens = df(x)/dx = (lam.new-lam)/(c*delta)] 

 sens <- (lambda_new-lambda) / ( c * delta) 

  

 # calculate elasticity [elas = sens*c/lam = (lam.new-lam)/(lam*delta)] 

 elas <- (lambda_new - lambda)/(lambda*delta) 

  

 res <- list(param = param_char[pos], sens = sens, elas = elas) 

 return(res) 

} 

 



# compute elasticity growth rate wrt sjw (pos=1 dans theta) for param in input_param_wolf.r 

sens_elas_num(1,sjw,ssw,sdw,saw,fw,pdiw,pesw,sjh,ssh,sdh,sah,fh,pdih,pesh,frd) 

 

# compute elasticity growth rate wrt pdiw (pos=6 dans theta) for param in input_param_wolf.r 

sens_elas_num(6,sjw,ssw,sdw,saw,fw,pdiw,pesw,sjh,ssh,sdh,sah,fh,pdih,pesh,frd) 

 

# compute them all 

par_char = NULL 

par_sens = NULL  

par_elas  = NULL 

for (i in 1:length(theta)){ 

 res = sens_elas_num(i,sjw,ssw,sdw,saw,fw,pdiw,pesw,sjh,ssh,sdh,sah,fh,pdih,pesh,frd) 

 par_char = c(par_char,res$param) 

 par_sens = c(par_sens,res$sens) 

 par_elas = c(par_elas,res$elas) 

} 

# display results  

data.frame(param = par_char, sensitivity = par_sens, elasticitiy = par_elas) 

 

The script containing the build_matrix_wolf function (build matrix wolf.r) is: 

 

############################################## 

#                        BUILD MATRIX  WOLF                      # 

############################################## 

 

build_matrix_wolf <- function(theta){  

 

sjw <- theta[1] # Marucco & McIntire  2010 

ssw <- theta[2] # Marucco & McIntire  2010 assuming that alpha and subordinates have same survival 

sdw <- theta[3] # Marucco & McIntire  2010 

saw <- theta[4] # Marucco & McIntire  2010 

fw <- theta[5] #average litter size 4 to 9 pups (Mech and Boitani, 2003)  



pdiw <- theta[6] # average dispersal rate 0.10 and 0.40 (Mech and Boitani, 2003) 

pesw <- theta[7] # average p annual p establish pack (0.3-0.7) Marescot et al., 2012. 

sjh <- theta[8] # Marucco & McIntire  2010 

ssh <- theta[9] # Marucco & McIntire  2010 

sdh <- theta[10] # Marucco & McIntire  2010 

sah <- theta[11] # Marucco & McIntire  2010 

fh <- theta[12] #average litter size 4 to 9 pups (Mech and Boitani, 2003)  

pdih <- theta[13] # average dispersal rate 0.10 and 0.40 (Mech and Boitani, 2003) 

pesh <- theta[14] # average p annual p establish pack (0.3-0.7) Marescot et al., 2012. 

frd <- theta[15] 

 

# init abundance 

nf <- c(10,6,6,6,0,0,0,0) # females 

nm <- c(10,6,6,6,0,0,0,0) # males  

 

tot <- nm[2] + nm[6] # number of total mature males 

frh <- ifelse((nm[6]/tot - frd) > 0, nm[6]/tot - frd, 0) 

frw <- ifelse((1 - frd - frh) > 0, 1 - frd - frh, 0) 

 

A <- matrix(c( 0 , 0 , 0 , fw*saw*0.5 , 0 , 0 , 0 , 0 ,  

sjw*pdiw , 0 , ssw , 0 , 0 , 0 , 0 , 0  , 

sjw*(1-pdiw) , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,  

0 , sdw*pesw*frw, 0 , saw , 0 , 0 , 0 , 0 ,  

0 , 0 , 0 , 0 , 0 , 0 , 0 , fh*sah*0.5 , 

0 , 0 , 0 , 0 , sjh*pdih , 0 , ssh , 0  , 

0 , 0 , 0 , 0 , sjh*(1-pdih) , 0 , 0 , 0 , 

0 , sdw*pesh*(frd+frh) , 0 , 0 , 0 , sdh*pesh*(frw+frh), 0 ,sah),nrow = 8, byrow = TRUE) 

return(A) 

    } 

 

 

 



The script containing the parameters (input_param_wolf.r) is: 

############################################## 

#                   PUT PARAMETERS WOLF                       # 

############################################## 

sjw <- 0.55 # Marucco & McIntire  2010 

ssw <- 0.82 # Marucco & McIntire  2010 assuming that alpha and subordinates have same survival 

sdw <- 0.65 # Marucco & McIntire  2010 

saw <- 0.82 # Marucco & McIntire  2010 

fw  <- 3.39 #average litter size Marucco & McIntire  2010 

pdiw <- 0.25 # average dispersal rate 0.10 and 0.40 (Mech and Boitani, 2003) 

pesw <- 0.5 # average p annual p establish pack (0.3-0.7) Marescot et al., 2012. 

sjh <- 0.55 # Marucco & McIntire  2010 

ssh <- 0.82 # Marucco & McIntire  2010 

sdh <- 0.65 # Marucco & McIntire  2010 

sah <- 0.82 # Marucco & McIntire  2010 

fh <-  3.39 #average litter size Marucco & McIntire  2010 

pdih <- 0.25 # average dispersal rate 0.10 and 0.40 (Mech and Boitani, 2003) 

pesh <- 0.5 # average annual p establish pack (0.3-0.7) Marescot et al., 2012. 

frd <- 0.1 
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ABSTRACT 22 

Hybridization between domesticated forms and their wild ancestors is a particular case of 23 

anthropogenic hybridization caused by the widespread occurrence of domesticated species in 24 

conjunction with increasing anthropogenic pressures (e.g., overexploitation, habitat destruction, 25 

impact from invasive species). Although hybridization between wolves and dogs occurred 26 

repeatedly during the course of dog domestication, there is concern that this phenomenon is 27 

increasing, particularly where wolves are expanding their range through human-dominated 28 

landscapes (e.g., Europe) where free-ranging dogs have become the most abundant carnivore. To 29 

contain this threat, European conservation legislation (i.e., the EU Council Directive 92/43/EEC, 30 

and Recommendation nr 173, 2014 of the Bern Convention) requires that wolf x dog hybridization 31 

be mitigated through effective management. In this context, the use of demographic simulation 32 

models can be instrumental to inform decision-making. We built a detailed individual based model 33 

(IBM) simulating the life cycle of  gray wolves that incorporates aspects of wolf sociality 34 
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influencing hybridization. We applied this model to investigate hybridization dynamics of wolves in 35 

the Northern Apennines, Italy, to evaluate the effectiveness of different management scenarios 36 

aimed to reduce the abundance of admixed individuals during a ten-generation timeframe. We 37 

showed that in the presence of continual immigration of admixed individuals, any management 38 

action proved ineffective. In the presence of immigration by pure wolves, all management actions 39 

produced a decrease in the prevalence of admixture, although their relative efficacy varied relative 40 

to different  mate choice scenarios. In all simulations, the impact of hybridization was predicted to 41 

extend across broad spatial scales, driven by the dispersal of large numbers of admixed animals. 42 

Moreover, we identified demographic and social processes that need to be investigated further to 43 

more accurately predict the outcomes of alternative management strategies. 44 

45 

1. INTRODUCTION46 

Hybridization is defined as the intermixing of two distinct related taxa (Gompert & Buerkle 2016). 47 

Although natural hybridization is acknowledged to be a positive force capable of introducing 48 

beneficial adaptive genetic variation (Abbott et al. 2013), anthropogenic hybridization is considered 49 

to be potential threat to the persistence of populations and species (Rhymer & Simberloff, 50 

Todesco et al. 2016).  51 

Hybridization between domesticated forms and their wild ancestors is a specific case of 52 

anthropogenic hybridization that can be exacerbated by human pressures (e.g., overexploitation, 53 

habitat destruction) and, in particular, the widespread occurrence of domesticated species (Boivin et 54 

al. 2016). Multiple cases of hybridization between wild and domestic species have been identified 55 

as threats for wildlife populations around the world. These include hybridization between wildcat 56 

(Felis silvestris) and domestic cat (Felis catus) in Europe (Beaumont et al. 2001), American bison 57 

(Bison bison) and cattle (Bos taurus) in North America (Ward et al. 1999), dingo (Canis lupus 58 

dingo) and domestic dog (Canis lupus familiaris) in Australia (Stephens et al. 2015), and Ethiopian 59 

wolf (Canis simiensis) and domestic dog in Africa (Gottelli et al. 1994). A notable example of 60 

anthropogenic hybridization occurs between gray wolves (Canis lupus) and dogs in human-61 

dominated landscapes. As in several other cases of wild-domestic hybridization, the two Canis 62 

subspecies are interfertile and their progeny can backcross with both parental populations, leading 63 

to introgression of domesticated genes into the gene pool of wild wolf populations (Vilà & Wayne 64 

1999). Although hybridization between wolves and dogs occurred repeatedly during the course of 65 

dog domestication, there is concern that this phenomenon is increasing, particularly where wolves 66 

are recolonizing human-dominated landscapes (e.g., Europe) and free-ranging dogs have become 67 

the most abundant carnivore (Ritchie et al. 2014). Indeed, largescale studies have detected recent 68 
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hybridization events in several wolf populations in Eurasia (Dufresnes et al. 2019; Salvatori et al. 69 

Submitted) and intensive studies at finer-scales have found that that the proportion of admixed 70 

individuals can represent more than half of the total population of hybridizing canids (Salvatori et 71 

al. 2019; Santostasi et al. Submitted). These results raise concern for the potentially deleterious 72 

consequences of introgression of domesticated genes in the wild wolf gene pool. To contain this 73 

threat, European conservation legislation (i.e., the EU Council Directive 92/43/EEC, and 74 

Recommendation nr 173, 2014 of the Bern Convention) mandates that wolf × dog hybridization 75 

should be mitigated through effective management. However, there is little evidence that 76 

management has been effective, especially in the countries where hybridization is becoming 77 

increasingly prevalent, such as Italy (Salvatori and Ciucci, 2018; Salvatori et al. Submitted). 78 

 The management of anthropogenic hybridization involves three types of actions 79 

(Donfrancesco et al. 2019): preventive (e.g., community engagement and education to decrease the 80 

number of free-ranging dogs or to prevent the illegal killing of wolves), proactive (removal of free-81 

ranging dogs, and reduction of factors facilitating hybridization such as poaching), and reactive 82 

(e.g., the active management of admixed individuals to reduce their prevalence and breeding in the 83 

parental wolf population through three alternative approaches: 1) sterilization and release, 2) 84 

removal to captivity, or 3) lethal removal).  Decisions about which approach is appropriate to 85 

manage wolf x dog hybridization are controversial, and differ both with regard to acceptance within 86 

the scientific community (Donfrancesco et al. 2019), and with respect to applicability to the legal 87 

mandate of different European countries (Trouwborst 2014). Preventive and proactive measures can 88 

generally be enforced through national and European legislation, are agreed upon and supported by 89 

experts, and are often socially acceptable. However, reactive measures are controversial due to the 90 

undefined legal status of hybrids and the lack of consensus within both the scientific community 91 

(Donfrancesco et al. 2019) and the general public. The practical and economic feasibility of reactive 92 

management strategies has also been questioned (Lorenzini et al. 2014, Pacheco et al. 2017). 93 

Nevertheless, when introgression is widespread, reactive interventions might be the only tool to 94 

reduce introgression (Salvatori et al. 2019, Santostasi et al. Submitted) and have been used to 95 

mitigate other instances of hybridization (e.g., red wolf, Canis rufus and coyote Canis latrans in 96 

North America, Stoskopf et al. 2005; bontebock Damaliscus pygargus pygargus and blesbok D. p. 97 

phillipsi in South Africa; vanWyk et al. 2016; wildcat and domestic cat in Scotland, Senn et al. 98 

2019). 99 

It is difficult to assess the effectiveness of reactive management strategies within an 100 

experimental framework, as long time series on hybridization dynamics and responses to 101 

management are generally unavailable. Therefore, management decisions about hybridization are 102 
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often difficult to evaluate rigorously, which can lead to confusion and debate within the scientific 103 

community regarding strategies for effective management (Donfrancesco et al. 2019). In this 104 

context, demographic models are useful to simulate complex ecological and evolutionary processes 105 

that are not easily empirically measured (Nathan et al. 2019) and such modeling results can be 106 

instrumental to inform decision-making amidst uncertainty (e.g., Gervasi & Ciucci 2018). One 107 

notable example is red wolf × coyote hybridization in North Carolina, USA, where the efficacy of 108 

sterilizing admixed breeders was first evaluated with a simulation model (Fredrickson & Hedrick 109 

2006) and later supported by a long-term observational study (Gese & Terletzky 2016). 110 

Two approaches have been used to model hybridization dynamics (Hall & Ayres 2008). 111 

Population-based models require only that the mean demographic parameters of the main 112 

demographic classes are available (e.g., Wolf et al. 2001), whereas individual-based models (IBMs) 113 

simulate the contribution of each individual to the hybridization dynamics of the entire population 114 

(e.g., Thompson et al. 2003; Hooftman et al. 2007). However these two approaches have only rarely 115 

been used to model  anthropogenic hybridization. Specifically, we recently applied stage-structured 116 

matrix models to project hybridization dynamics between wolf × dog hybridization dynamics under 117 

different reproductive isolation scenarios (Santostasi et al. in Press). Earlier, Fredrickson & Hedrick 118 

(2006) applied individual-based projections to predict red wolf×coyote hybridization under 119 

different mate choice and management scenarios. A population-based approach is sufficient to 120 

make predictions at the population level, but it does not  account for the inherent complexity of wolf 121 

social structure and social dynamics. IBMs are more suitable to include detailed social structure 122 

components because they are bottom-up models simulating the fate of individuals according to 123 

behavioral rules depending on the individuals’ characteristics. Results at the population scale 124 

emerge from the individual-level simulations. Due to their flexibility, IBMs have been increasingly 125 

used for the projection of population dynamics in complex systems such as social species (Hrasdky 126 

et al. 2019) or hybridization (Nathan et al. 2019). IBMs including some aspects of gray wolves’ 127 

social ecology (e.g., age dependent dispersal, reproduction limited to one breeding pair per social 128 

group) have been published (e.g., Marucco & McIntire 2010, Chapron et al. 2016). However, some 129 

components of wolf social ecology that are linked to hybridization rates in canids were omitted. 130 

All species in the Canidae family are cooperative breeders and the perturbation of social 131 

dynamics is hypothesized to affect hybridization rates (Bohling & Waits 2015). In detail, dynamics 132 

such as pack disruption after mortality of breeding wolves (Bohling & Waits 2015), asymmetric 133 

replacement of breeders (the fact that vacant female breeder position are prioritarily filled by 134 

subordinates while the vacant male breeder positions are prioritarily filled by dispersers; vonHoldt 135 

et al. 2008), mate choice (Hinton et al. 2018), or inbreeding avoidance (vonHoldt et al. 2008) have 136 
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been hypothesized to affect hybridization rates in canid species. For this reason, the impact of 137 

different management strategies on wolf behavior and social dynamics should be considered when 138 

evaluating hybridization dynamics and management options. 139 

We built an IBM for gray wolves that accounts for important aspects of wolf social dynamics that 140 

may influence hybridization. To present a flexible individual modelling framework to project 141 

hybridization dynamics and to explore how different management strategies interact with social 142 

dynamics, we applied this model to a 143 

Italy, in which we 144 

We chose this population 145 

years of wolf 146 

 147 

148 

149 

We tested 150 

 individuals (i.e., 151 

in admixed 152 

 153 

 154 

155 

156 
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2. METHODS157 

2.1 General description and sub-model structure 158 

The model was an individual-based model programmed in R using package NetLogoR (Bauduin et 159 

al. 2019), in which wolves were agents whose behavior was determined by their individual 160 

characteristics: age, sex, social status, wolf genomic content, pedigree, breeding experience (Table 161 

1). Specifically, wolf genomic content was an index reporting the percentage of wolf genome in 162 

each individual and it was calculated as the sum of half the wolf genomic content of the parents 163 

(Nathan et al. 2019; Table 1). The model was not spatially explicit and individuals were not 164 

assigned to a specific location. However, we introduced a carrying capacity parameter (the 165 

maximum estimated number of wolf packs that can be sustained in the population). The time step 166 

was one year. Each year, all individuals went through the same processes, organized in sub-models, 167 

each one affecting every individual differently depending on their characteristics. The first 6 sub-168 

models simulated the life cycle of wolves: 1) reproduction, 2) aging, 3) mortality, 4) change of 169 

social status, 5) immigration, 6) permanent emigration, and the last one (7) simulates management 170 

(Fig. 1). In turn, the change of status sub-model contained several additional sub-models: 4i) pack 171 

dissolution , 4ii) replacement of breeding females by subordinates, 4iii) dispersal, 4iiii) 172 

establishment of non.residents (by adoption, by replacing a missing breeder, or by occupying new 173 

territories, Fig. 1). The management sub-model includes the following sub-models (Fig. 1): 7i) 174 

removal and 7ii) sterilization. Below, we provide the detailed descriptions of the sub-models, and 175 

discuss how density dependence, inbreeding avoidance, and hybridization were included in the 176 

model. The rationale behind parameters choice has been described in Appendix 1. The chosen 177 

parameters are detailed in the Parametrization section. 178 

179 

2.2 Sub-models description 180 

2.2.1 Reproduction 181 

Each year, any wolf pack (in this model corresponding to at least one territorial breeder) with a 182 

breeding pair produced a litter. Only one breeding pair in a pack reproduced and no other adult 183 

members were allowed to reproduce (Packard 2003). We simulated the number of pups produced in 184 

each litter by randomly drawing it from a Poisson distribution with rate equal to the average litter 185 

size at one month after birth (Table 2). We did not model reproductive senescence. 186 

187 

2.2.2 Aging 188 

In this sub-model, the age of the individuals was updated. Therefore, pups born in the current time 189 

step were 1 year old (i.e., in their first year), yearlings born in the previous time step were 2 years 190 
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old (i.e., in their second year), and adults were 3+ years old and are considered reproductively 191 

mature. We did not model senescence or any increase of the probability of mortality with age. To 192 

represent realistic age distribution in the population, all wolves reaching 14 years old were forced to 193 

die (Marucco & McIntire, 2010). 194 

 195 

2.2.3 Mortality 196 

Mortality in wolves depends strongly on age (in particular pups have lower survival than adults) 197 

and social status (non-residents usually have lower survival than resident wolves, Blanco & Cortés 198 

2007; Smith et al. 2010). In this model, non-resident wolves were broadly defined as non-territorial 199 

individuals who left their established territory (e.g., dispersers and floaters; Smith et al. 2010). 200 

Accordingly, we assigned mortality rates depending on the age class (different values for pups vs. 201 

adults and yearlings in packs) and residency status (different values for non-residents vs. residents; 202 

Table 2). 203 

 2.2.3.1 Density dependence in adult mortality 204 

We modeled density dependence by considering adult survival as constant until all the available 205 

territories (i.e., a proxy of carrying capacity) were occupied and we modeled adult survival as 206 

density-dependent after carrying capacity is reached. We modeled density-dependence as a linear 207 

decline in the adult survival at the increase of pre-reproduction density (density of adults and 208 

yearlings; Cubaynes et al. 2014). 209 

 210 

2.2.4 Change of social status 211 

2.2.4.1 Pack dissolution 212 

By pooling data from multiple wolf populations across Europe and North America Brainerd et al. 213 

(2008) found that  mortality of breeding wolves may disrupt the pack cohesion and cause its 214 

dissolution and the consequent abandonment of territory, depending on the pack size and the 215 

number of missing breeders. We modeled this process by performing Bernoulli trials to determine 216 

the status dissolution vs. non-dissolution of packs following the death of 1 or bothbreeders. 217 

Specifically, large packs (> 4 members) did not dissolve (Brainerd et al. 2008), whereas packs 218 

comprising only pups  alway219 

breeder had a higher probability of dissolution (Table 2) than small packs with no missing breeders 220 

(Brainerd et al 2008). When a pack dissolved, all the former pack members became non-residents. 221 

 222 

2.2.4.2 Change of individual social status 223 

2.2.4.2.a Replacement of breeding females by subordinates 224 
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Previous studies have reported that females within gray wolf packs are more likely to replace 225 

nHoldt et al. 2008; Caniglia et al. 2014). Thus, in 226 

the model, breeding females who died were replaced by an eligible female in the pack if one was 227 

present (before the replacement by a disperser, Fig. 1). We modeled this process by randomly 228 

drawing a subor229 

within which a female breeder had died. To avoid inbreeding, (Caniglia et al. 2014; vonHoldt et al. 230 

2008) if the breeding male was present and was closely related with the chosen female, he will lose 231 

its status, and the pack will remain without a male breeder until the male breeder replacement sub-232 

model that occurs later during the same year (see below; See Appendix 3 for further explanation).  233 

 2.2.4.2.a.1 Implementation of inbreeding avoidance 234 

Given the choice, wolves avoid mating with close relatives (vonHoldt et al. 2008). In all the sub-235 

models including the formation of a breeding pair, we modeled inbreeding avoidance by imposing a 236 

relatedness threshold above which individuals would choose alternative mates. We set this 237 

238 

Caniglia et al. 2014). We allowed inbreeding to occur only under “extenuating circumstances” (i.e., 239 

absence of alternative mates in the breeding season; vonHoldt et al. 2008) as the last pairing option 240 

(see Male breeder replacement by subordinate sub-model). 241 

 242 

2.2.4.2.b Dispersal 243 

Wolves routinely disperse in response to competition and aggression related to food availability and 244 

breeding opportunities within their pack (Packard 2003). Wolves disperse at different ages because 245 

of limited food resources (Ballard et al. 1987, Gese & Mech 1991), and often postpone dispersal in 246 

areas of high prey availability (Ballard et al. 1987; Blanco and Cortés 2007; Jimenez et al. 2017). 247 

However, dispersal rates increase rapidly with the onset of sexual maturity (Gese & Mech 1991; 248 

Packard 2003) such that most wolves disperse from their natal pack by the age of 3 years (Gese & 249 

Mech 1991, Jimenez et al. 2017). We simulated the maximum number of individuals that could be 250 

sustained in a pack using a normal distribution with a mean corresponding to the mean annual pack 251 

size characterizing the study area (Table 2). If a pack was composed by more wolves than the 252 

maximum simulated pack size, subordinates will leave the pack until the number of wolves in the 253 

pack is equal to the maximum. We simulated the dispersal due to the onset of sexual maturity by 254 

giving the highest dispersal probability to adult subordinates, followed by yearlings and pups (Table 255 

2; Haight & Mech 1997). Individuals selected to leave the pack became non-residents. 256 

 257 

2.2.4.2.c Establishment of non-residents 258 

196



2.2.4.2.c.1 Establishment by adoption in an existing pack 259 

Non-residents sometimes join packs already containing a breeding pair and become adoptees 260 

(Ballard et al. 1987, Mech and Boitani 2003). Most adoptees are males and are 1-3 years old (Mech 261 

and Boitani 2003). We modeled this process by selecting the packs which were not at their 262 

maximum size (determined in the dispersal sub-model) and by randomly drawing from a pool of 263 

young non-residents as many potential adoptees as the number of individuals needed to reach the 264 

maximum pack size. The adoption of males was favored by giving them priority in the selection 265 

(first selecting randomly among young male non-residents and then selecting randomly among 266 

young female non-residents if needed). Then, as the interaction between a single individual and an 267 

unknown pack can be negative due to competition and territorial aggression, we applied a Bernoulli 268 

trial with probability 0.5 of success to each possible adoption. If the adoption is successful, the 269 

young individual will join the pack, otherwise it will remain in the non-residents pool. Individuals 270 

that leave a pack in the Dispersal sub-model could re-join their former pack with the adoption sub-271 

model. In this way we accounted for individuals that leave the pack temporarily. 272 

 273 

2.2.4.2.c.2 Establishment by replacing a missing breeder  274 

2.2.4.2.c.2.a Replacement of breeding females 275 

If the missing breeding female breeder has not been replaced by a subordinate mature female (due 276 

to the absence of available mature subordinates), it can be replaced by a disperser. We modeled this 277 

process by randomly drawing a female replacer from the mature non-residents pool by first 278 

excluding all the females which are closely related to the breeding male (if present). See Appendix 279 

3 for further explanation. 280 

2.2.4.2.c.2.b Replacement of breeding males 281 

Previous studies on gray and eastern wolves reported male-biased dispersal to packs where 282 

283 

Rutledge, et al. 2011). Accordingly, replacement of male breeders was simulated first with male 284 

dispersing wolves joining the pack(before the Male breeder replacement b a subordinate sub-285 

model). We randomly drew a mature male replacer from the non-residents pool by first excluding 286 

all the males which were closely related to the breeder female (if present). 287 

 288 

2.2.4.2.c.3 Establishment by occupying a new territory 289 

2.2.4.2.c.3.a Density dependence  290 

We imposed a maximum number of available territories that can be sustained by the environment 291 

(carrying capacity). To include density dependence in the occupation of new territories we: 292 
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1. Calculated the number of occupied territories 293 

2. Calculated a probability of establishment as: 294 

  =  
number of available territories

carrying capacity
 

This probability reaches its maximum (1) when the number of available territories is low and it 295 

reaches its minimum (0) when the number of occupied territories is equal to the carrying capacity 296 

3. Calculated the number of mature non-residents potentially available to establish in a 297 

vacant territory 298 

4. Selected the mature non-residents that were going to successfully establish by applying a 299 

Bernoulli trial to each mature disperser with the probability of success being the 300 

probability of establishment. 301 

Because there were several sub-models involving the occupation of available territories 302 

(establishment by pair bonding, by budding, and alone), the probability of establishment was 303 

updated after each one of them. 304 

 305 

2.2.4.2.c.4. Establishment by pair bonding 306 

One of the main mechanisms of pair formation is for dispersing wolves to find each other (Mech & 307 

Boitani 2003). If there were vacant territories available, two non-residents that were not closely 308 

related can form a breeding pair and establish a new pack. We modeled this process by randomly 309 

pairing non-closely related mature males and females in the pool of the non-residents that were 310 

selected to successfully establish.  311 

 312 

2.2.4.2.c.5. Establishment by budding 313 

Another breeding strategy for dispersing wolves is to pair with a subordinate from an existing pack 314 

and establish a new pack (Mech & Boitani 2003; Brainerd et al. 2008). In this situation, the mate for 315 

each disperser destined to establish was randomly drawn from the pool of mature subordinates from 316 

the existing packs (excluding the closely related ones). Once the subordinate is selected we applied 317 

a Bernoulli trial with a 0.5 probability of success to simulate the possibility that the interaction 318 

between a single disperser and a member of an unknown pack could not necessarily end up with a 319 

successful budding. If the budding is successful the disperser and the subordinate become breeders 320 

of a new pack and establish in an available territory. 321 

 322 

2.2.4.2.c.6. Establishment alone 323 
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Non-residents that were selected to successfully establish but do not find any available mate may 324 

establish alone in a vacant territory. Once they establish alone, wolves acquire resident status, 325 

obtain a new and unique pack identity, and become breeders of the future pack. 326 

327 

2.2.4.2.d Replacement of breeding males by subordinates 328 

When no mature male disperser could replace the missing breeding male in a pack, one of the 329 

subordinates could take over the breeding position. If there were several mature male subordinates 330 

in the pack, one is randomly selected among the least genetically related to the current breeding 331 

female, otherwise if there is not any breeding female, the choice among the potential breeders is 332 

random. In the particular case when among these subordinates there was the male previously 333 

dismissed from its breeding position (during the sub-model Replacement of breeding females by 334 

subordinates), because he was too related to the new female breeder, this individual gets his 335 

breeding position back. Once the new breeding male was chosen, and in the case it was not a 336 

dismissed individual, the current breeding female (if there is any) could be replaced if the newly 337 

formed breeding pair is too related. If the breeding female is too related to the breeding male and 338 

there is a mature female subordinate less related to the breeding male, she he breeding 339 

female and the current breeding female was dismissed. If there were several mature female 340 

subordinates least related to the breeding male, the choice among them is random. If the current 341 

breeding female is less or equally related to the breeding male than the mature female subordinates, 342 

she maintained her breeder status. Once new breeding individuals were chosen, they were be able to 343 

mate the next year. See Appendix 3 for further explanation. 344 

345 

346 

2.2.5 Immigration 347 

Wolves can disperse for long distances, therefore populations are rarely completely isolated (Ciucci 348 

et al. 2009). We simulated the arrival of a variable number of immigrants each year (1 to 5) into the 349 

population by first randomly selecting the number of immigrants from a uniform distribution 350 

between 1 and 5. Those individuals entered the population as non-residents and are considered to be 351 

unrelated to the individuals in the population. 352 

353 

2.2.6 Permanent emigration  354 

Individuals could exit the population by dispersing at long distance and we selected a variable 355 

number (1 to 5) of individuals that permanently emigrate from the population each year. Those 356 

individuals were removed from the population. 357 
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 358 

2.3. Hybridization 359 

Studies quantifying the factors influencing hybridization rates between gray wolves and dogs are 360 

missing. However, several studies investigated the factors affecting hybridization between two 361 

North American wolf species (red wolf Canis rufus and Eastern wolf Canis lycaon) and coyotes 362 

(Canis latrans). We relied on this literature to model wolf x dog hybridization mechanisms.  363 

Wolf density is the first common element among studies of Canis hybridization, with low 364 

density of wolves caused by anthropogenic mortality facilitating hybridization due to the lack of 365 

conspecific mates and the disruption of social structure (Hinton et al. 2018). This has been shown 366 

for eastern wolves interbreeding with coyotes (Rutledge et al. 2011; Benson et al. 2012; 2014) and 367 

red wolves interbreeding with coyotes (Bohling & Waits, 2015; Hinton et al. 2018); it has also been 368 

hypothesized for gray wolves and dogs in Europe (Godinho et al. 2011; Salvatori et al. 2019). More 369 

precisely, Bohling & Waits (2015) showed that red wolf-coyote admixed pairs were more likely to 370 

form after the death of one breeder in presence of high availability of heterospecific mates, and that 371 

young, first-time female breeders were responsible for a significant proportion of hybridization 372 

events. These authors hypothesized that the death of red wolf breeders during the breeding season 373 

forces reproductively active red wolves to quickly locate another mate (Bohling & Waits 2015). As 374 

stable red wolf pairs dissolved, the inhibition to breed is removed for young wolves, providing them 375 

with the opportunity to reproduce (Brainerd et al. 2008). The inexperience of these individuals, 376 

coupled with the high availability of heterospecific mates, may facilitate hybridization. 377 

 378 

2.3.1 Hybridization implementation in the IBM 379 

Hybridization with dogs in our model could occur in two sub-models, the “pack dissolution” and 380 

the “establishment alone” sub-models (Fig. 1). After pack dissolution, young (3-4 years old) first 381 

time breeders were attributed a probability of mating with dogs that is assumed to decline as the 382 

number of wolves and hybrids increases. Also, young first-time breeder females that were selected 383 

to establish alone in the establish alone sub-model will have the same probability of mating with 384 

dogs. Following Fredrickson & Hedrick (2006), we calculated this probability (PWD) as: 385 

 386 

=  

 387 

where N is the number of wolves and hybrids in the population,  is the maximum value for 388 

 (when N = 0, PWD = Pmax), rw = 
(    ) is a constant affecting the rate of change in PWD 389 

with  the threshold N for which Pmin is reached. 390 
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 391 

To calculate the probability of a hybrid pairing with a dog (PHD), we first calculated the probability 392 

of a dog pairing with a dog (PDD): 393 

= (1 )  

where rd = 
[( )/( )]

 394 

 395 

and then the probability of a hybrid pairing with a dog (PHD) was 396 

= + (1 ) × ( ) 

where AH was the proportion of red wolf ancestry of the hybrid (Fredrickson & Hedrick 2006). 397 

Therefore, the increased probability of a hybrid pairing with a dog relative to that of a wolf was 398 

proportional to the ancestry difference between a pure wolf and the hybrid.  399 

The females that will mate with dogs are selected based on Bernoulli trials with probability 400 

of mating with dog being PHD. Those females would: i) not be available for any following pairing 401 

option or for adopting individuals, ii) establish alone in a vacant territory, iii) produce a hybrid litter 402 

in the “reproduction” sub-model; the wolf genomic content of the litter will be calculated as ½ of 403 

the mother’s wolf genomic content. 404 

 405 

2.3.2 Random and assortative mate choice scenarios 406 

We simulated two mate choice scenarios: random and assortative. In the latter, in the sub-models 407 

involving the formation of breeding pairs, individuals chose the mate that is the most similar in wolf 408 

genomic content among the available mates.  409 

 410 

2.4. Management sub-models 411 

We simulated two main reactive management strategies: removal and sterilization. For the 412 

sterilization scenarios, we assumed that surgical sterilization (i.e., vasectomy and tubal ligation) did 413 

not affect social or territorial behavior. We also simulated two approaches for the selection of the 414 

individuals to be managed: non-targeted ( individuals selected randomly) and targeted selection 415 

(aimed at selecting breeders and mature non-breeders). We selected a wolf genomic content 416 

threshold below which the individuals were subject to management (Table 2), this threshold 417 

corresponds to the wolf genomic content of a first generation backcross (75%). We chose this 418 

threshold because first generation backcrosses can be unequivocally distinguished from wolves with 419 

few molecular markers (Vähä & Primmer 2006). This threshold represent a conservative choice to 420 

eliminate the possibility of erroneously sterilizing or removing a pure wolf (i.e., admixed 421 

individuals of further generations back are increasingly difficult to detect with certainty; Santostasi 422 
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et al. Submitted). We arbitrarily fixed the percentage of the admixed population to be managed 423 

(removed or sterilized) at 20% (Table 2). For the non-targeted selection, we selected the individuals 424 

to be managed in the following way: first we calculated the corresponding number of admixed 425 

individuals to be managed by applying the pre-determined percentage to the number of admixed 426 

individuals in the population, second we removed or sterilized the selected number of admixed 427 

individuals from the population in the Removal sub-model or in the Sterilization sub-model. The 428 

status of the sterilized breeders individuals did not change, but they would produce litters size equal 429 

to 0.  430 

 431 

For the targeted selection we aimed at selecting the breeders (60% of the total managed) and the 432 

mature non-breeders (40% of the total managed). Therefore, after calculating the number of 433 

admixed individuals to be removed/sterilized, we calculated the number of admixed breeders to be 434 

removed/sterilized and the number of admixed non-breeders to be removed/sterilized and drew 435 

them randomly from the admixed breeders and mature non-breeders in the population. 436 

 437 

2.5. Parametrization  438 

2.5.1 Case study and initial population  439 

As a case study, we applied our model to simulate population dynamics in presence of hybridization 440 

for a wolf population in the Northern Apennines, Italy. The prevalence of hybrids in a sub-area 441 

(delineated as the area occupied by seven wolf packs) in the Northern Apennines has been 442 

estimated to be 64 78% by Santostasi et al (Submitted). We simulated hybridization dynamics 443 

starting from an initial population based upon the abundance of wolves and admixed individuals 444 

estimated by Santostasi et al (Submitted). We then simulated the dynamics of this wolf population 445 

over 10 generations (30 years; Skoglund et al 2011) by setting a carrying capacity for the overall 446 

projection area corresponding to 50 packs (cf. Caniglia et al. 2014). 447 

 448 

2.5.1 Parameters 449 

We chose the parameters based on the following criteria: i) when population-specific parameters 450 

were available, we used parameters that were specific for the Northern Apennines wolf population 451 

(i.e., pack carrying capacity, territory size, relatedness threshold for breeding; see Table 2), ii) when 452 

population-specific parameters were not available, we used parameters from the near and connected 453 

population in the Italian Alps (i.e., adult and yearling mortality; see Table 2), iii) if parameters were 454 

non-available for the northern Apennines and non-available for near and connected populations we 455 

browsed the available literature on gray wolf (Canis lupus) demographic parameters. We explain 456 
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the rationale for choice for each parameter in Appendix 1. We simulated large availability of dogs 457 

by setting the maximum probability of mating with dogs as 0.9 and the maximum probability of 458 

mating with dogs as 0.5 and a threshold wolves and admixed individuals density for the probability 459 

of mating with dogs to be minimum equal to 100 individuals (wolves + admixed; Fig. 2). 460 

 461 

2.6 Simulation scenarios 462 

We projected hybridization dynamics using a set of hierarchical scenarios in which we first 463 

accounted for immigration options (i.e., pure wolves vs admixed), then for mate-choice (i.e., 464 

random vs. assortative mating), and lastly for management alternatives (i.e., no management vs. 465 

removal or sterilization, each considering  targeted vs. non-targeted removal), for a total of 20 466 

simulated scenarios (5 management scenarios for each of the 2 mate-choice options, for each of the 467 

2 immigration options). In particular, we began by simulating two immigration scenarios: one 468 

scenario in which all the immigrants are pure wolves (wolf genomic content = 100%), and one 469 

scenario in which all the immigrants are admixed individuals whose wolf genomic content ranges 470 

from that of a first generation hybrid (50%) to that of a third generation backcross (93.75%). Then 471 

for each immigration scenario, we simulated two mate-choice scenarios: random and assortative. 472 

Lastly, for each mate-choice scenario, we simulated 5 different management scenarios, comprising 473 

one scenario with no management and 2 management scenarios (i.e., sterilization vs. removal) 474 

considering both targeted and non-targeted selection of managed individuals. For each scenario, we 475 

performed 50 replicates (population trajectories) and analyzed the following outputs: 1) prevalence 476 

of admixed individuals, 2) wolf genomic content of the individuals in the population, 3) number of 477 

wolf and admixed residents, and 4) number of wolf and admixed non-residents. In the output, we 478 

considered all the individuals whose wolf genomic content was equal or greater to that of a third 479 

generation backcross (93.75%) to be wolves, a category that is difficult to distinguish from wolves 480 

when relying on molecular markers as currently used to detect hybridization through non-invasive 481 

genetic surveys (Caniglia et al. 2018).  482 

 483 

3. RESULTS 484 

3.1 Wolf immigration scenarios 485 

3.1.2 No management scenarios 486 

The results showed that, in scenarios simulating immigration of pure wolves, the prevalence of 487 

admixed individuals was projected to increase towards complete admixture in absence of 488 

management in the random mating scenario, while in the assortative mating scenario it was 489 

projected to decrease towards a plateau in which admixed individuals accounted for about 50% of 490 
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the population (for population here and thereafter we refer to all canids in the hybrid zone; Fig. 3). 491 

The random mating scenario led to a general decrease of wolf ancestry (Fig. 4). In 10 generations, 492 

50% of the individuals were second or third generation backcrosses (wolf ancestry 0.91 0.94), 15% 493 

were from first or second generation backcrosses (wolf ancestry 0.71 0.91), and only 15% were 494 

third generation backcrosses to pure wolves (wolf ancestry 0.94 1; Fig. 4). However, in the 495 

assortative mating scenario, the ancestry of the individuals was more polarized between individuals 496 

with high wolf content and individuals with low wolf genomic content (Fig. 4). In 10 generations, 497 

the population was composed by 50% of individuals being from third to fifth generation 498 

backcrosses (wolf genomic content ranging 0.93 0.98), 15% from first generation backcross to dog 499 

to third generation backcrosses to wolf (wolf genomic content ranging 0.30 0.90), and 15% from 500 

fifth generation backcrosses to pure wolves (wolf genomic content ranging 0.98 1; Fig. 4). 501 

Starting from the first year, the population produced an increasing number of non-residents 502 

that accounted for about 0.25 24% of the total population in both the random and assortative 503 

mating scenarios (Fig. 5). In the random mating scenario, an average of 61% of the total non-504 

residents were admixed (Fig. 6), while in the assortative mating scenario an average of 49% of the 505 

non-residents were admixed (Fig. 6). 506 

 507 

3.1.3 Alternative management approaches 508 

The two different management approaches we simulated affected prevalence of admixed 509 

individuals differently depending on whether mate choice was random or assortative. For the 510 

random mating scenario, removal through targeted selection of the individuals appeared to be the 511 

most effective approach, obtaining the highest decrease in prevalence of admixed individuals, 512 

followed by removal through non-targeted removal (Fig. 7). Non-targeted sterilization was the least 513 

effective strategy, while targeted sterilization led to a substantial improvement in the efficacy of this 514 

approach (Fig 7). For the assortative mating scenario, the most effective management approach was 515 

targeted sterilization followed by targeted removal, non-targeted removal, and non-targeted 516 

sterilization (Fig. 7). Compared to the random mating scenario, the outcome of the different 517 

management scenarios varied less markedly. For the random mating scenario, average wolf ancestry 518 

had the highest increase with targeted and non-targeted removal followed by targeted and non-519 

targeted sterilization (Fig. 8). The same pattern characterized the assortative mating scenario (Fig. 520 

8). 521 

 522 

3.2 Admixed individuals immigration scenarios 523 
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The results showed that, in the all the scenarios simulating the immigration of admixed individuals, 524 

the final outcome was complete admixture, regardless of the mate choice and the management 525 

scenario (Figures 4-8). In the scenarios with no management, the prevalence of admixed individuals 526 

increased regardless of the mating choice scenario. In the scenarios with management, the 527 

prevalence of admixed individuals increased to 100% within the random mating scenario. In the 528 

assortative mating scenario, the prevalence of admixed individuals initially decreased but began 529 

increasing once all the available territories were occupied. 530 

  531 
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4. DISCUSSION 532 

Our modelling framework provides a new tool to inform decision making in the management of a 533 

globally-significant threat: anthropogenic hybridization. We were able to 1) investigate the impact 534 

of mate choice in driving hybridization dynamics in the absence of management, and 2) compare 535 

the effectiveness of different management strategies. By comparing alternative scenarios informed 536 

by the available literature, we were able to produce results informative for management despite 537 

considerable uncertainty regarding the strength of the underlying reproductive barriers. Moreover, 538 

we identified key processes that need to be investigated to effectively plan the management of 539 

hybridization. The results reported in this study should not be considered as generic because they 540 

are calibrated on a specific population characterized by a high prevalence of admixed individuals, 541 

but our model has the necessary flexibility to be customized for other Canis populations. 542 

One main result is that in presence of frequent immigration of admixed individuals any 543 

management action seems ineffective. In particular, in the Assortative mating scenario, the 544 

effectiveness of management was contrasted by the fact that the majority of the territories were 545 

occupied by admixed pairs. Although the formation on wolf-wolf pairs is more likely than the 546 

formation of wolf-hybrid pairs in this scenario, the saturated landscape contrasts their establishment 547 

favoring the maintenance of high prevalence. This mechanism seems to reproduce what was 548 

observed for eastern wolves in Ontario, Canada where a landscape saturated with territories of 549 

coyote-eastern wolf hybrids reduced the success of wolves in expanding their range outside of the 550 

Algonquin Provincial Park (Benson & Patterson 2013). Understanding dispersal behavior of wolves 551 

and admixed individuals and source-sink dynamics of adjacent populations by integrating different 552 

data sources is fundamental to understand the mechanisms that structures hybridization patterns and 553 

accordingly allocate management efforts (Benson et al. 2012). The sensitivity of the results of the 554 

model to the different mate immigration scenarios highlights that this topic should represent a 555 

research priority. In the scenarios assuming immigration by pure wolves and in absence of 556 

management, the hybridization outcome after 10 generations diverged depending on the mate 557 

choice scenario. While in the random mating scenario the prevalence of admixed individuals was 558 

predicted to increase, in the assortative mating scenario it was predicted to decrease towards a 559 

plateau in which admixed individuals accounted for about half of the population. Moreover, in both 560 

scenarios without management, the impact of hybridization was predicted to extend across broader 561 

scales as large numbers of admixed non-residents were produced. Those admixed non-residents 562 

managing to establish a territory and reproduce would increase the spatial extent of hybridization 563 

geographically, potentially leading to introgression in other populations (Salvatori et al. 2019). 564 

Therefore, we recommend reactive management aimed at reducing prevalence of admixed 565 
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individuals under either scenarios, such management should be a joint effort among regional 566 

administrations responsible for wolf management across a wider scale (Salvatori et al. 2019). In the 567 

scenarios involving management, the simulated reactive management strategies reduced the 568 

prevalence of wolf x dog admixed individuals to different extents and the relative effectiveness of 569 

the strategies depended on the mate choice scenario. In the random mating scenario, removal of 570 

admixed individuals led to a greater decrease in prevalence compared to sterilization. In this case, 571 

pure wolves were injected each year in the non-residents pool increasing the probability that the 572 

removed breeders were replaced by wolves. Given that the mating was random, the mates of the 573 

removed admixed individuals were wolves or admixed individuals. Thus, if the breeders that 574 

remained in the population were wolves, the removal would in part contribute to the formation of 575 

wolf-wolf pairs. If the breeders that remain in the population were admixed, the removal would in 576 

part contribute to the formation of wolf-admixed pairs and to the dilution of the dog ancestry in the 577 

future litters. On the other hand, if mate choice is random and there is immigration of pure wolves, 578 

sterilization of admixed individuals may be counter-productive. Due to the long-term monogamy of 579 

wolves, the sterilization of admixed individuals interferes with the reproduction of those wolves that 580 

are paired with sterile admixed individuals, limiting wolf reproduction. Moreover, the presence of 581 

sterile mates would also prevent the potential replacement of the admixed individual by a wolf 582 

disperser. In the red wolf coyote-hybrid system admixed red wolf-coyote individuals in 583 

heterospecific pairs are likely to be displaced by pure red wolves in search for mates (Fredrickson & 584 

Hedrick 2006, Gese & Terletzky 2016). However, the same process has never been documented in 585 

wolf-wolf x dog admixed pairs and should be investigated.  586 

When the mate choice is assortative, on the other hand, targeted sterilization produces the 587 

highest decrease in the prevalence of admixed individuals. In this case, there is a high chance that 588 

the sterilization would affect admixed-admixed pairs while not affecting the reproductive rate of 589 

wolf-wolf pairs. Evidence in support of assortative mating have been found in the red wolf-coyote 590 

hybrid system (Bohling & Waits 2015) and in the eastern-wolf coyote system (Rutledge et al. 2010) 591 

but have not directly been investigated in the wolf-dog system. A recent study reconstructed the 592 

pedigree of admixed individuals in the Northern Apennines, Italy reporting the occurrence of wolf-593 

admixed pairs (Santostasi et al. Submitted) indicating that at least in some circumstances, the mate 594 

choice is not assortative. However, the anecdotal nature of such report does not allow to draw 595 

general conclusions. The sensitivity of the results of the model to the different mate choice 596 

scenarios highlights that this topic should represent a research priority to properly understand and 597 

manage wolf x dog hybridization.  598 
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Although the removal of admixed individuals is practiced in some countries (e.g., Spain; 599 

Pacheco et al. 2017), sterilization of admixed individuals may be the only applicable reactive 600 

management strategy that issocially acceptable, given concerns regarding animal welfare and the 601 

economic costs of management. One useful result emerging from our simulations is that the 602 

targeted approach dramatically improves the efficacy of the sterilization strategy. Such 603 

improvement was likely due to the fact that sterilized admixed breeders act as ‘placeholders’ 604 

preventing other admixed individuals from reaching a breeding position (Gese & Terletzky 2015). 605 

A random approach, leading to the sterilization of  non-breeding individuals, is not as effective in 606 

reducing admixturebecause many of those individuals would have not have produced litters.. 607 

Interestingly, the same difference did not hold for the comparison between targeted and non-608 

targeted removal. The effectiveness of targeted removal may be partially counteracted by the fact 609 

that the removal of breeders and mature individuals creates breeding opportunities that may be 610 

filled by other admixed individuals. Moreover, sterilization involves the capture and the 611 

manipulation of individuals, ensuring a higher selection of admixed individuals compared with 612 

removal by culling. Removal by culling, if not done selectively, should be highly discouraged as it 613 

has been demonstrated both by demographic projections (Fredrickson & Hedrick 2006: Santostasi 614 

et al. in Press) and by observation studies (Rutledge et al. 2011; Benson et al. 2014) that reducing 615 

the survival of mature wolves increases hybridization rates. To provide effective management 616 

recommendations, this model should be carefully calibrated with parameters estimated from the 617 

target population and the predicted decrease in prevalence should be one element to be considered 618 

in the framework of a cost-benefit analysis.  619 

Compared to other models (i.e., Fredrickson & Hedrick 2006, Santostasi et al. in Press) our 620 

individual-based approach allowed us to distinguish between different hybrid categories both for the 621 

estimation of the prevalence of admixed individuals and for the simulation of management. This 622 

improves the realism of the model and mitigates the limited power of distinguishing > 3 generation 623 

backcrosses with few loci. It also allowed us to explicitly set an acceptable threshold of dog 624 

ancestry and to consider the individuals below that threshold as parental individuals.  625 

Our model relies on a high number of parameters and assumptions, however, parameters 626 

such as litter size, survival and dispersal rates, territory size and pack size may greatly vary 627 

depending on population density and environmental conditions (Fuller et al. 2003) and will strongly 628 

influence hybridization dynamics. Our model provides the flexibility to set these parameters to fit 629 

any study population by customizing the demographic parameters. Where population-specific 630 

parameters are not available the model allows to draw parameter values from a range of plausible 631 
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values and to test the sensitivity of hybridization rates to different demographic and environmental 632 

factors (McCarthy et al. 1995; Cross & Beissinger 2001; Ovenden et al. 2019).  633 

In conclusion, our modeling approach showed that even with  widespread introgression, 634 

implementation of reactive strategies can be a solution to reduce introgression, provided that the 635 

target population is not subject to frequent immigration of admixed individuals. On the other hand, 636 

the absence of management leads to complete admixture locally and to the geographic expansion of 637 

anthropogenic hybridization. Although further research is needed to validate the models’ 638 

assumptions and predictions, all management scenarios we simulated produced a decrease in 639 

prevalence of admixed individuals. Thus, implementation of these management strategies should be 640 

considered for the mitigation of the introgression of domesticated genes into wild wolf populations..  641 
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FIGURES 874 

 875 

Figure 1. General model structure. The seven main sub-models representing the wolf life cycle are 876 

listed on the left. The further structure of the Change of social status and of the Management sub-877 

model are shown on the right. 878 

 879 
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 880 

Figure 2. Probability of mating with dogs (i.e., the original hybridization events producing F1s). 881 

The probability is maximum (0.9) when the abundance of wolves and admixed individuals is small 882 

and decreases exponentially reaching its smallest value (0.5) when the abundance of wolves and 883 

admixed individuals reaches a threshold of 100, after the threshold is hit the probability becomes 0. 884 

 885 
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 886 

 887 

Figure 3. Prevalence of admixed individuals projected for 30 years (10 generations) under the 888 

Random mating (left column) and the Assortative mating scenarios (right column) and under the 889 

Wolf immigration (top row) and Admixed immigration (bottom row) scenarios. Each boxplot 890 

summarizes the prevalence values obtained for each of the simulated year and for each simulation 891 

replicate (n=50). 892 
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 894 

 895 

Figure 4. Average wolf genomic content of the simulated individuals under the Random mating 896 

(left column) and the Assortative mating scenarios (right column) and under the Wolf immigration 897 

(top row) and Admixed immigration (bottom row) scenarios. Each boxplot summarizes the average 898 

wolf genomic content across the individuals in the population obtained for each of the simulated 899 

year and for each simulation replicate (n=50). 900 
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 902 

 903 

Figure 5.Percentage of disperser and resident individuals in the simulated population under the 904 

Random mating (left column) and the Assortative mating scenarios (right column) and under the 905 

Wolf immigration (top row) and Admixed immigration (bottom row) scenarios. Each point 906 

represents the average value for each year over the simulation replicates (n=50). The shaded area is 907 

the interquartile range of the values.  908 
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 910 

 911 

 912 

Figure 6. Projected number of resident and non-resident wolves and admixed individuals under the 913 

Random mating (left column) and the Assortative mating scenarios (right column) and under the 914 

Wolf immigration (top row) and Admixed immigration (bottom row) scenarios. Each point 915 

represents the average value for each year over the simulation replicates (n=50). The shaded area is 916 

the interquartile range of the values. Right panel: number of total non-resident and resident 917 

individuals per simulated year divided in the admixed and wolf categories. Each point represents 918 

the average value for each year over the simulation replicates (n=50). The shaded area is the range 919 

between the first and third quartiles of the values for each scenario.  920 

 921 

 922 
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 923 

 924 

Figure 7. Simulated prevalence dynamics under different management strategies (different point 925 

shapes) under the Random mating (left column) and the Assortative mating scenarios (right 926 

column) and under the Wolf immigration (top row) and Admixed immigration (bottom row) 927 

scenarios. Each point represents the average value for each year over the simulation replicates 928 

(n=50). The shaded area is the interquartile range of the values for each scenario. 929 
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 931 

Figure 8. Scenario simulating the immigration of pure wolves. Simulated average individual wolf 932 

genomic content dynamics under different management strategies (different point shapes) and under 933 

the Random mating (left column) and the Assortative mating scenarios (right column) and the Wolf 934 

immigration (top row) and Admixed immigration (bottom row) scenarios. Each point represents the 935 

average wolf genomic content value for the individuals in the population for each year over the 936 

simulation replicates (n=50). The shaded area is the interquartile range of the values for each 937 

scenario. 938 
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TABLES 940 

 941 

Table 1. Individual characteristics used in the Individual-Based Model. 942 

Age class 

- pup (0-12 months old; age =1)  

- yearling (12-24 months old; age =2) 

- adults (25+ months old; 3+) 

Mother ID and father ID Identity of the parents 

Residency status non-resident vs. resident in a pack 

If resident:  

 Pack ID 
pack ID number 

 Social status Breeder vs. subordinate 

Wolf genomic content 

Percentage of wolf genomic content calculated 

as ½ wolf genomic content of the mother + ½ 

wolf genomic content of the father 

Sex Female vs. male 

If female 

 Breeder experience 
has reproduced before vs. never reproduced  

Cohort  year of birth 

 943 

  944 
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Table 2. Parameters used for the projections. 945 

Submodel Parameter Value Reference 

Reproduction  Mean litter size 6.1 Sidorovich et al. 

2007 

pups sex ratio 50:50 

Mortality 0.398 (95% CI: 0.273, 

0.579) 

Smith et al 2010 

0.18 (+/- 0.04) Marucco and 

McIntire, 2010 

0.18 (+/- 0.04) Marucco and 

McIntire, 2010 

logit(survivaladult) = 

1.196-

0.505)(Densityadult&yearlings) 

Cubaynes et al 2014 

104 km2 Mancinelli et al 2019 

0 

Annual pup mortality 

Yearling true mortality 

Adult true mortality when 

vacant territories are 

available 

Adult mortality at carrying 

capacity 

Territory size for calculating 

density 

Dispersing pup survival 

Disperser survival 

(yearlings and adults) 

0.7 Blanco and Cortés, 

2007 

Pack 

dissolution 

Probability of dissolution 

for small packs with 1 

breeder 

0.258 Brainerd et al. 2008 

Probability of dissolution 

for packs with 0 breeder 

0.846 Brainerd et al. 2008 

Pack size threshold for 

potential dissolution 

4.055 Brainerd et al 2008 

Dispersal Mean pack size 5.6 (SD = 1.251, Min = 3, 

Max = 8) 

Caniglia et al 2014 

Pup dispersal probability 0.25 Haight and Mech, 

1997 

Yearling dispersal 

probability 

0.5 Haight and Mech, 

1997 

Adult dispersal probability 0.9 Haight and Mech, 
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1997 

Probability of successful 

adoption 

0.5 Arbitrary 

Establishment Carrying capacity 50 packs Caniglia et al 2014 

Relatedness threshold above 

which mating is avoided 

0.125 Caniglia et al 2014 

Probability of successful 

budding 

0.5 Arbitrary 

Hybridization Pmin 0.5 

Pmax 0.9 

Nthresh 100 

Migration Number of permanent 

emigrants 

1 to 5 Arbitrary 

Number of immigrants 1 to 5 Arbitrary 

Management Percentage to be managed 20% 

Wolf ancestry threshold to 

be managed 

0.75% first generation 

backcrosses 

Percentage of breeders for 

targeted management 

60% of the managed 

individuals 

Percentage of mature non-

breeders for targeted 

management 

40% of the managed 

individuals 

946 

947 
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APPENDIX 1: rationale behind parameters choice 948 

949 

We chose the parameters based on the following criteria: 950 

- when population- specific parameters were available, we used parameters that were specific951 

for the Northern Apennines wolf population (i.e., pack carrying capacity, territory size,952 

relatedness threshold for breeding; see Table 2)953 

- when population-specific parameters were not available, we used parameters from the near954 

and connected population in the Italian Alps (i.e., adult and yearling mortality; see Table 2)955 

- If parameters were non-available for the northern Apennines and non-available for near and956 

connected populations we browsed the available literature on gray wolf (Canis lupus)957 

demographic parameters. Below we explain the rationale for choice of those parameters.958 

959 

Litter size 960 

We relied on the litter size listed in Sidorvitch et al 2006. This study relies on data from 101 litters 961 

found by experienced hunters between 1985 and 2003 and refers to pups that are up to one month of 962 

age. Such number is not far from the average litter size calculated from 16 subpopulations in 963 

Europe: 4.4 - 7.7 (average 5.9) pups per year by Sidorvitch et al 2006. 964 

965 

Pup mortality 966 

To derive pup mortality we used the annual survival value estimated by Smith et al 2010 for gray 967 

wolf pups in the Northern Rocky Mountains. This mortality includes includes autumn and winter 968 

mortalities and is not far from pup survival estimated by Jedrzewksa et al. (1996) in Europe (i.e., 969 

Belarus and Poland) which is 0.35. 970 

971 

Dispersers mortality 972 

We used the value estimated by Blanco and Cortés (2007) for Iberian wolves (Canis lupus signatus) 973 

dispersing across human-dominated landscapes. 974 

975 

Adult mortality at carrying capacity 976 

We used the linear relationship estimated by Cubaynes et al. (2014) for gray wolves in Yellowstone 977 

in conditions of availability of food and saturated landscape, which resemble the ecological 978 

conditions of the Northern Apennines.  979 

980 

Probability of pack dissolution 981 
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We relied on the probabilities estimated by Brainerd et al. (2008) based on a meta-analysis from 982 

multiple wolf populations across Europe and North-America. 983 

984 

Dispersal probabilities 985 

Wolves routinely disperse in response to competition and aggression related to food availability and 986 

breeding opportunity within their pack (Mech and Boitani 2003). Wolves disperse at different ages 987 

because of limited food resources (Fritts and Mech 1981, Ballard et al. 1987, Mech 1987, Fuller 988 

1989, Gese and Mech 1991), and often postpone dispersal in areas of high prey availability (Ballard 989 

et al. 1987; Blanco and Cortes 2007; Jimenez et al 2017). The proportion of yearlings that disperse 990 

may increase when food is scarce (Peterson and Page 1983, Messier 1985). As an example in a 991 

Spanish agricultural area (with high human-population density, a dense network of roads and a 992 

shortage of wild ungulates), 5 of the 7 known-age wolves in the study dispersed when between 2 993 

and 3 years old (adult class in our model), and the other 2 as yearlings (subadult class in our model) 994 

(Blanco and Cortes, 2007). The dispersal of the 2 yearlings happened when the food surplus had 995 

disappeared. As another example in a 15 year study in the the Norther Rocky Mountains Jimenez et 996 

al. (2017) found an average age of dispersal of 32 months (about 3 years old, adult class in our 997 

model) and attributed this older age at dispersal to abundant wild prey in the area. However, 998 

dispersal rates increase rapidly with the onset of sexual maturity (Packard and Mech 1980; Messier 999 

1985b; Gese and Mech 1991) so that most wolves disperse from their natal pack by the age of 3 1000 

years (Gese and Mech 1991, Mech et al. 1998, Jimenez et al 2017). 1001 

1002 

Based on literature evidence we modelled the following biological mechanism: regardless of the 1003 

food availability (that affects the proportion of yearling dispersers), dispersal probability increases 1004 

with age due to mate competition. Individuals that did not disperse as yearlings would almost surely 1005 

leave as adults at the onset of sexual maturity. We used a 90% probability for adults’ dispersal to 1006 

account for the fact that, although rare, there are observation of adults that remain in their natal pack 1007 

for serveral years (e.g. Gese and Mech 1991). In this way we make sure that most wolves disperse 1008 

from their natal pack by the age of 3 years which is largely supported by the literature. We preferred 1009 

to simplify the model by directly coding the dispersal mechanism (chances of dispersing increasing 1010 

with sexual maturity) instead of using the proportion of dispersers observed in different age classes 1011 

in different studies because they can suffer from observed bias and they can be ecological-context 1012 

dependent (i.e., related to food availability). 1013 

1014 

Probability of successful establishment and probability of successfull budding 1015 
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These processes have been observed in free-ranging wolves, but their actual incidence at the 1016 

population level are unkown. In particular the presence of unrelated wolves (adoptees) has been 1017 

observed in the Northern Apennines by Caniglia et al. (2014) and also the fundation of new packs 1018 

by subordinates and dispersers (budding). Since we did not have available parameter to quantify 1019 

such processes at the population lelve we used arbitrary values (probability of success 0.5) and then 1020 

explored the sensitivity of model outputs to the variation in those parameters. 1021 

  1022 
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APPENDIX 2: Individual Based Model Sesitivity analysis  1023 

 1024 

from Bauduin, S., Grente, O., Santostasi, N.L., Ciucci, P., Duchamp, C., Gimenez, O. (In 1025 

preparation). From individual and pack dynamics to population responses: An individual-based 1026 

approach to model wolf life cycle. Target Journal: Ecological Modelling. 1027 

 1028 

METHODS:  1029 

We run the model modifying one parameter value (Table 1) at a time. We increase and decrease the 1030 

focused parameter value by 5% and run 200 replicates of 25 years simulations (Ovenden et al., 1031 

2019). The model is considered sensitive to a parameter if a model output (i.e., mean value over the 1032 

200 replicates) with the one modified parameter varies more than 20% from the original results 1033 

(Kramer-Schadt et al., 2005; Ovenden et al., 2019). We examine the following model outputs:  1034 

- Number of packs with both breeders 1035 

- Number of new packs founded each year 1036 

- Number of individuals 1037 

- Proportion of residents in the population 1038 

- Relatedness between breeding pairs 1039 

 1040 

Results 1041 

The parameter affecting the most model outputs is the carrying capacity: the number of new packs 1042 

created and the relatedness between breeders in packs are sensitive to this parameter. The number of 1043 

new packs created is more sensitive to the pack size threshold involved in the pack dissolvement 1044 

process and also to the probability of succesfull adoption. The relatedness between breeders in 1045 

packs is sensitive to the relatedness threshold. Among the 21 parameters tested, the increase or the 1046 

decrease of the used values for 17 of them did not modify the oucome. The complete table with the 1047 

value tested for the parameters and the results of the five outputs for each simulation run is 1048 

available Table S1.  1049 

 1050 

TABLE S1. Complete results of the sensitivity analysis. The first line of the table is the name of the 1051 

simulation runs: for the original complete version of the model and the runs S1 to S42 are the runs 1052 

where one parameter of the model was modified by decreasing or increasing its value by 5%. The 1053 

second line informs which parameter was modified in the run and the following line gives the value 1054 

used for this parameter. Then, the five following line are the five selected model outputs: the 1055 

number of packs with both breeders, the number of new packs created each year, the number of 1056 
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individuals, the proportion of resident individuals and the relatedness between the breeders. The 1057 

result values are the mean values over the 200 simulation replicates for each run. The column “[- 1058 

20% ; + 20%]” presents the results for the run with M0 with the range - 20% and + 20% of the 1059 

result values. Then, table cells are the mean values of the model outputs obtained with the runs S1 1060 

to S42. Grey cells are model results outside of the reference range of M0 results [- 20% ; + 20%]. 1061 
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Simulation run [- 20%; + 

20%] 

S1 S2 S3 S4 S5 S6 

Parameter modified  Mean 

litter size 

(-5%) 

Mean litter 

size (+5%) 

Pup 

mortality (-5%) 

Pup  

mortality  (+5%) 

Yearling  

mortality (-5%) 

Yearling  

mortality  

(+5%) 

Parameter value used  5.795 6.405 0.572 0.632 0.171 0.189 

Number of packs 

with both a male and 

a female alpha 

29.3 

[23.4;35.2] 

29.5 29.5 29.4 29.3 29.5 29.4 

Number of new packs 

created 

2.1 

[1.7;2.5] 

2.3 2.2 2.4 2.3 2.3 2.3 

Number of 

individuals 

186.7 

[149.4;224

] 

182.1 191.7 193.9 179.2 187.8 186.3 

Proportion of 

resident individuals 

0.71 

[0.57;0.85] 

0.72 0.69 0.68 0.72 0.7 0.7 

Relatedness between 

the male alpha and 

the female alpha in a 

pack 

0.06 

[0.05;0.07] 

0.06 0.06 0.06 0.06 0.06 0.06 

Simulation run  S7 S8 S9 S10 S11 S12 
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Parameter modified  Non 

density-

dependen

t adult 

mortality 

(-5%) 

Non 

density-

dependent 

adult 

mortality 

Slope of density 

dependent adult 

mortality  (-5%) 

Slope of density 

dependent adult 

mortality  (+5%) 

Dispersing pup 

mortality  (-5%) 

Dispersing pup 

mortality  

(+5%) 

Parameter value used  0.171 0.189 -0.48 -0.53 0.95 NA 

Number of packs 

with both a male and 

a female alpha 

29.3 

[23.4;35.2] 

29.4 29.4 29.5 29.5 29.5  

Number of new packs 

created 

2.1 

[1.7;2.5] 

2.3 2.5 2.2 2.3 2.3  

Number of 

individuals 

186.7 

[149.4;224

] 

187.4 186.1 187.5 186.4 189.2  

Proportion of 

resident individuals 

0.71 

[0.57;0.85] 

0.7 0.71 0.71 0.7 0.7  

Relatedness between 

the male alpha and 

the female alpha in a 

pack 

0.06 

[0.05;0.07] 

0.06 0.06 0.06 0.06 0.06  

Simulation run  S13 S14 S15 S16 S17 S18 

Parameter modified  Disperser Disperser Dissolvement Dissolvement Dissolvement Dissolvement 
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mortality 

(-5%) 

mortality probability for 

pack with 1 

breeder  (-5%) 

probability for 

pack with 1 

breeder  (+5%) 

probability for 

pack with 0 

breeder  (-5%) 

probability for 

pack with 0 

breeders  (+5%) 

Parameter value used  0.295 0.326 0.245 0.271 0.804 0.888 

Number of packs 

with both a male and 

a female alpha 

29.3 

[23.4;35.2] 

29.5 29.4 29.4 29.6 29.5 29.6 

Number of new packs 

created 

2.1 

[1.7;2.5] 

2.1 2.2 2.2 2.3 2.1 2.3 

Number of 

individuals 

186.7 

[149.4;224

] 

189 186.2 186 186.5 186.8 186.9 

Proportion of 

resident individuals 

0.71 

[0.57;0.85] 

0.7 0.71 0.71 0.7 0.71 0.7 

Relatedness between 

the male alpha and 

the female alpha in a 

pack 

0.06 

[0.05;0.07] 

0.06 0.06 0.06 0.06 0.06 0.06 

Simulation run  S19 S20 S21 S22 S23 S24 

Parameter modified  Pack size 

threshold 

for diss. (-

5%) 

Pack size 

threshold 

for diss. 

(+5%) 

Mean pack size  

(-5%) 

Mean pack size  

(+5%) 

Pup dispersal 

probability  (-5%) 

Pup dispersal 

probability  

(+5%) 
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Parameter value used  3.852 4.258 4.185 4.625 0.238 0.263 

Number of packs 

with both a male and 

a female alpha 

29.3 

[23.4;35.2] 

29.6 29.4 29.3 29.5 29.4 29.5 

Number of new packs 

created 

2.1 

[1.7;2.5] 

1.3 2.5 2.4 2.1 2.4 2.4 

Number of 

individuals 

186.7 

[149.4;224

] 

188.6 187.8 180.3 192.8 186.7 185.9 

Proportion of 

resident individuals 

0.71 

[0.57;0.85] 

0.72 0.7 0.69 0.72 0.7 0.71 

Relatedness between 

the male alpha and 

the female alpha in a 

pack 

0.06 

[0.05;0.07] 

0.06 0.06 0.06 0.06 0.06 0.06 

Simulation run  S25 S26 S27 S28 S29 S30 

Parameter modified  Yearling 

dispersal 

probabilit

y (-5%) 

Yearling 

dispersal 

probability 

(+5%) 

Adult dispersal 

probability  (-

5%) 

Adult dispersal 

probability  

(+5%) 

Probability of 

adopting  (-5%) 

Probability of 

adoption (+5%) 

Parameter value used  0.475 0.525 0.855 0.945 0.475 0.525 

Number of packs 

with both a male and 

29.3 

[23.4;35.2] 

29.4 29.5 29.5 29.5 29.6 29.5 
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a female alpha 

Number of new packs 

created 

2.1 

[1.7;2.5] 

2.4 2.4 2.2 2.4 2.7 2.4 

Number of 

individuals 

186.7 

[149.4;224

] 

187.5 188.5 186.7 188.1 188.4 187.8 

Proportion of 

resident individuals 

0.71 

[0.57;0.85] 

0.7 0.7 0.7 0.7 0.7 0.7 

Relatedness between 

the male alpha and 

the female alpha in a 

pack 

0.06 

[0.05;0.07] 

0.06 0.06 0.06 0.06 0.06 0.06 

Simulation run  S31 S32 S33 S34 S35 S36 

Parameter modified  Carrying 

capacity (-

5%) 

Carrying 

capacity 

(+5%) 

Territory size  (-

5%) 

Territory size 

(+5%) 

Relatedness 

threshold  (-5%) 

Relatedness 

threshold 

Parameter value used  28.5 31.5 98.8 109.2 0.119 0.131 

Number of packs 

with both a male and 

a female alpha 

29.3 

[23.4;35.2] 

27.9 30.9 29.4 29.5 29.5 29.5 

Number of new packs 

created 

2.1 

[1.7;2.5] 

1.4 1.6 2.3 1.9 2.2 2.2 
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Number of 

individuals 

186.7 

[149.4;224

] 

189.1 211.4 184.5 189.2 187.2 187.1 

Proportion of 

resident individuals 

0.71 

[0.57;0.85] 

0.66 0.66 0.72 0.69 0.7 0.71 

Relatedness between 

the male alpha and 

the female alpha in a 

pack 

0.06 

[0.05;0.07] 

0.05 0.05 0.06 0.06 0.05 0.06 

Simulation run  S37 S38 S39 S40 S41 S42 

Parameter modified  Probabilit

y of 

budding 

(-5%) 

Probability 

of budding 

(+5%) 

Number of 

immigrants  (-

5%) 

Number of 

immigrants 

(+5%) 

Proportion of 

emigrants  (-5%) 

Proportion of 

emigrants 

Parameter value used  0.475 0.525 c(0.317, 0.333, 

0.35) 

c(0.35, 0.333, 

0.317) 

0.095 0.105 

Number of packs 

with both a male and 

a female alpha 

29.3 

[23.4;35.2] 

29.5 29.5 29.5 29.4 29.4 29.4 

Number of new packs 

created 

2.1 

[1.7;2.5] 

2.2 2.3 2.4 2.3 2.1 2.4 

Number of 

individuals 

186.7 

[149.4;224

186.9 187.5 186 188.4 187.7 186.8 
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] 

Proportion of 

resident individuals 

0.71 

[0.57;0.85] 

0.7 0.7 0.71 0.7 0.7 0.7 

Relatedness between 

the male alpha and 

the female alpha in a 

pack 

0.06 

[0.05;0.07] 

0.06 0.06 0.06 0.06 0.06 0.06 
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FEMALE BREEDER REPLACEMENT BY SUBORDINATE:  

Is there a mature female subordinate? 

 

Female B (subordinate) becomes breeder.  

Is she related to the current male breeder (male A)? 

Temporarily dismiss male A go to 

MALE BREEDER  REPLACEMENT 

BY DISPERSER. 

Is there a mature male disperser 

unrelated to B? 

 

(a) UNRELATED PAIR:  

Female B becomes 

breeder. Female B 

breeds male A 

 

(b) UNRELATED 

PAIR: male C 

(disperse) 

becomes 

breeder. 

Female B 

breeds male C 

go to MALE BREEDER REPLACEMENT 

BY SUBORDINATE.  

Is there any mature male subordinate 

unrelated to B? 

(c) UNRELATED PAIR: 

Male D (subordinate) 

becomes breeder. 

Female B breeds male D. 

Is the dismissed male breeder (A)  

among the least related males to the 

chosen female? 

Go to FEMALE BREEDER REPLACEMENT BY DISPERSER. 

Is there an unrelated female disperser? 

The subordinate male least related 

to B (male E) becomes breeder.  

Is there any subordinate female that 

is less related than B to male E? 

 

(d) RELATED PAIR: female B 

breeds male A  

YES NO 

ismiss ma

YES 

UNRELATED

NO 

UNRELATED

YES NO 

YES 

NO 

YES NO 

Packs with no breeding female 

pack with no female breeder 

 
UNRELATED PAIR:  

Female G becomes 

breeder. Female G 

breeds male A. 

 

YES NO 

(e1) RELATED PAIR: female B  is dismissed, female 

F (the least related to E) becomes breeder.  

Female F breeds male E 

(e2) RELATED PAIR: female 

B breeds male E 

 

NO 

YES 

) become

(1) (2) 
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Figure S1. Decision tree for breeders replacement for packs that have only the breeding male (no breeding 

female). The black squares contain the steps and the criteria  that lead to the formation a pair. Green 

squares indicate the formation of an unrelated pair, red squares indicate the formation of a related pair. 

 

Description of the paths leading to the different ouctcomes for Fig. S1. 

 

If fhe female breeder is missing, the female breeding position is taken over by: 

- (1)  a subordinate: 

 (a) if the current male breeder is unrelated, the new breeding female and the 

current breeding male form a pair.  

 (b) if the current male breeder is related, the new breeding female pairs with an 

unrelated disperser that takes over the breeding position. The former breeding 

male becomes a subordinate (being an adult subordinate he will have high 

probabiliy of dispersing in the next year). 

 (c) if the current male breeder is related and mature male dispersers unrelated to 

the new breeding female are not available, the new breeding female pairs with an 

unrelated subordinate that takes over the breeding position. The former breeding 

male becomes a subordinate. 

 (d) If the current breeding male is related, there are not mature dispersers nor 

mature subordinates that are unrelated to the new breeding female and the 

current breeding male is among the least related pack members to the new 

breeding female, the new breeding female and the current breeding male form a 

related pair.  

 (e) If the current breeding male is related, there are not mature dispersers nor 

mature subordinates that are unrelated to the new breeding female and the 

current breeding male is not among the least related pack members to the new 

breeding female, the least related subordinate takes over the breeding position 

and:  

o e1. If the new breeding female is among the least related pack members to 

the new breeding male, the new breeding female and the new breeding 

male form a pair 

o e2. If the new breeding female is not among among the least related pack 

members to the new breeding male, the least related female to the new 

breeding male takes over the breeding position and forms a related pair 

with the new alpha male. 
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- (2) If no mature subordinate is available the female breeding position is taken over by 

 (f) an unrelated mature female disperser, the current breeding male and the new 

breeding female form an unrealted pair.   

 (g) If no unrelated mature disperser is available, the pack remains without a 

breeding female. 
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MALE BREEDER REPLACEMENT BY DISPERSER:  

Is there a mature male disperser non related to 

current breeding female ( A) ? 

(a) UNRELATED PAIR. Male B 

becomes breeder.  Female A breeds 

male B 

Go to MALE BREEDER 

 REPLACEMENT BY SUBORDINATE:  

is there a mature male subordinate 

unrelated to A? 

YES NO 

Packs with no breeding male 

Is there mature male subordinate 

related to A? 

 

(b) UNRELATED 

PAIR. Male C 

becomes breeder 

and breeds female 

A. 

 

YES NO 

Female A temporarily loses the 

breeding status. Male D 

(randomly drawn) becomes 

breeder. Is A among the least 

related females to D? 

YES NO 

c1. RELATED PAIR. Female A 

breeds male D 

 

c2. RELATED PAIR. The least 

related subordinate female 

becomes breeder (female 

E). Female A is dismissed. 

Female E breeds male D. 

Pack with no male breeder 

 

YES 

ED PAIR. The

ubordinate f

reeder (f

e A is dismi

NO 
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Figure S2. Decision tree for breeders replacement for packs that have only the breeding female (no 

breeding male). The black squares contain the steps and the criteria  that lead to the formation a pair. 

Green squares indicate the formation of an unrelated pair, red squares indicate the formation of a related 

pair. 

 

Description of the paths leading to the different ouctcomes for Fig. s2 

The male breeder dies. The male breeding position is taken by: 

- (1) (a) a disperser unrelated to the current breeding female.   

- (2)  If no unrelated male disperser is available, by a mature male subordinate  

 (b) unrelated to the breeding female. 

 (c) If no unrelated male subordinate is available The male breeding position is taken by a 

related subordinate male (randomly chosen) 

  (c1) if the current female breeder is among the least related females to the new 

breeding male the current breeding females breeds the new breeding male 

 (c2) if the current female breeder is not among the least related females to the 

new breeding male she looses the breeding status and the female least related to 

the new breesing male becomes breeder.   
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FEMALE BREEDER REPLACEMENT BY SUBORDINATE:  

Is there a mature female subordinate? 

 

Female A becomes breeder. Go to  

MALE BREEDER REPLACEMENT BY DISPERSERS.  

Is there a mature male disperser unrelated to A? 

 

(a) UNRELATED 

PAIR:  

Male B becomes 

breeder.  

Female A breeds 

male B  

 
(b) UNRELATED 

PAIR: 

Male C becomes 

breeder:  

Female A breeds 

male C 

 

go to MALE BREEDER  

REPLACEMENT BY SUBORDINATE. 

Is there any  

male subordinate unrelated to A? 

Go to FEMALE BREEDER 

 REPLACEMENT BY DISPERSER:  

Is there a mature female disperser? 

YES NO 

UNR

 

DER

NO 

UNRELATED

YES NO 

YES NO 

Packs with no breeders 

pack with no female breeder 

 

Female F becomes breeder. Go to MALE  

BREEDER REPLACEMENT BY DISPERSERS. 

Is there a mature male disperser unrelated to F? 

 

(d) UNRELATED 

PAIR: 

Male disperser G 

becomes breeder.  

Female F breeds 

male G 

 

(a) UNR(a) UNR

YES 

UNRELATED

YES NO 

go to MALE BREEDER REPLACEMENT BY SUBORDINATE  

 Is there a mature male subordinate unrelated to F? 

 

(e) UNRELATED 

PAIR:  

Male subordinate H 

becomes breeder. 

FemaleF breeds  

male H 

 

The male subordinate least 

related to F (male I) 

becomes breeder. 

Is there any female that is 

less relate than F to male I? 

 

(f1) RELATED PAIR:  
female F  is dismissed, 
female L (the least 
related to I) becomes 
breeder.  
Female L breeds male I 
 

(f2) RELATED PAIR: 
female F breeds male I 

UNRELATED

YES 

subordina

NO 

The male subordinate least 

related to A (male D) 

becomes breeder. 

Is there any female that is 

less related than A to D? 

 

(c1) RELATED PAIR: 
female A  is dismissed, 
female E (the least related 
to D) becomes breeder.  
Female E breeds male D 

(c2) RELATED PAIR: 
female A breeds male D  

YES NO 

YES NO 
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Figure S3. Decision tree for breeders replacement for packs that have no breeders. The black squares 1 

contain the steps and the criteria  that lead to the formation a pair. Green squares indicate the formation of 2 

an unrelated pair, red squares indicate the formation of a related pair. 3 

 4 

(1) If the female breeding position is taken over by a subordinate: 5 

  (a) the new breeding female pairs with an unrelated disperser that takes over the 6 

breeding position. The former breeding male becomes a subordinate (being an 7 

adult subordinate he will have high probabiliy of dispersing in the next year). 8 

 (b) If there are no unrelated dispersers available the new breeding female pairs 9 

with an unrelated subordinate that takes over the breeding position. The former 10 

breeding male becomes a subordinate. 11 

 (c) If there are no unrelated dispersers available not unrelated subordinates, the 12 

least related to the new breeding female will take over the breeding position and:  13 

o (d1) If the new breeding female is among the least related pack members 14 

to the new breeding male, the new breeding female and the new breeding 15 

male form a pair 16 

o (d2). If the new breeding female is not among among the least related pack 17 

members to the new breeding male, the least related female to the new 18 

breeding male takes over the breeding position and forms a related pair 19 

with the new alpha male. 20 

 21 

(2) If the female breeding position is taken over by anunrelated mature male disperser:  22 

 (d) the new breeding female and an unrelated male disperser form a pair 23 

 (e) if no male unrelated male disperser is available, the new breeding female and 24 

an unrelated male subordinate form a pair 25 

 if no male unrelated male disperser, nor subordinate male are available the male 26 

subordinate the least related to the new breeding female takes over the breeding 27 

posisions and 28 

o (f1) If the new breeding female is among the least related pack members to 29 

the new breeding male, the new breeding female and the new breeding 30 

male form a pair 31 

o (f2) If the new breeding female is not among among the least related pack 32 

members to the new breeding male, the least related female to the new 33 

breeding male takes over the breeding position and forms a related pair 34 

with the new alpha male. 35 
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6. GENERAL CONCLUSIONS1 

We developed three complementary modeling approaches that can be used to 1) estimate the 2 

abundance of admixed individuals in a population, 2) project hybridization dynamics and 3) 3 

evaluate the effectiveness of different management strategies. By applying these models on the case 4 

study on wolf x dog hybridization in Italy, we highlighted the important implications of 5 

underestimating anthropogenic hybridization in wildlife populations. Moreover, we provided 6 

indications and quantitative support for the implementation of proactive and reactive management 7 

strategies to mitigate wolf x dog hybridization. These models should be regarded as new tools that 8 

are now available for the evaluation and management planning of anthropogenic hybridization 9 

cases. 10 

11 

6.1 Improvement in prevalence estimation methods and application to the case study 12 

In the first chapter we demonstrated that the approach that is currently used to assess the extent of 13 

hybridization in many case studies (not limited to the wolf x dog case) relies on a biased estimator, 14 

naive prevalence, that leads to underestimating the hybridization-related risks for conservation. We 15 

provided an alternative and rigorous estimation framework that accounts for the main sources of 16 

bias (imperfect detectability and uncertainty in individuals’ classification). The comparison of 17 

simulated naive and model-based prevalence estimates showed that the first can be severely biased 18 

when the probability of detection is state-dependent (admixed vs. parental). In the wolf x dog 19 

hybridization case study (Chapter 2) we found support for the presence of state-dependent 20 

detectability, although also models with constant parameters ranked high in the model selection. 21 

Given the potential bias introduced by differential detectability we recommend that it should be 22 

tested for and considered when estimating prevalence in agreement with MacKenzie & Kendall 23 

(2002) and Jennelle et al. (2007). In addition, we identified another source of bias in naive 24 

prevalence which was related to the state-dependent probability of assignment. However, in our 25 

case study (Chapter 2), the models with state-dependent probability of assignment were not 26 
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identifiable due to the reduced sample size and we had to discard them, but the consequences of this 27 

issue deserve further investigation. 28 

By explicitly considering the uncertainty of classification of the individuals we propose a 29 

classification framework that overcomes the subjectivity of choosing between classifying all the 30 

uncertain individuals as admixed (i.e., overestimating prevalence) or classifying all the uncertain 31 

individuals as parentals (i.e., underestimating prevalence). The use of the Viterbi Algorithm allows 32 

to objectively re-classify the uncertain individuals due to the most likely category, given the 33 

observed data (Rouan et al. 2009). In our case study (Chapter 2) although our sample was limited, 34 

our independent reconstruction of pack genealogy largely supported the performance of the 35 

probabilistic attribution of the uncertain individuals. 36 

Lastly, we relied on dataset simulations to provide practical indications for improving the 37 

monitoring of prevalence in the case study with the objective of indicating the sample size needed 38 

to obtain precise and accurate estimates of prevalence. We concluded that the most accurate 39 

estimates are obtained by maximizing the detectability within a minimum of 5 sampling occasions 40 

(Chapter 1) and we provided a minimum number of scats to be collected at each occasion and for 41 

each wolf pack to obtain a substantial improvement in the precision of the estimates (Chapter 2). 42 

The same simulation framework can be adapted to produce sampling indications in other case 43 

studies. 44 

45 

6.1.1.Implications for wolf conservation 46 

In the second chapter we applied targeted small-scale sampling and the estimation framework 47 

developed in Chapter 1 to the wolf population occupying a study area in the Northern Apennines, 48 

Italy and estimated the highest estimate of admixture ever reported, to our knowledge, for a gray 49 

wolf population. Surprisingly such high prevalence occurred in what is considered as a core area of 50 

the Italian wolf distribution range (Corsi et al. 1999). By detecting first and second generation 51 

backcrosses we showed that hybridization between wolves and dogs in the northern Apennines was 52 
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not limited to the wolf re-colonization phase (i.e., late 1990s; Galaverni et al. 2017) but it may be 53 

recent and recurrent in this study area. Alternatively, high admixture in the study area may have 54 

originated also through dispersal of admixed individuals from other areas.  55 

In addition to that, our low estimate of apparent survival raises the concern, supported by 56 

previous studies in the Northern Apennines (Caniglia et al. 2014) that human-caused mortality may 57 

be impairing the stability of wolf packs, enhancing the reproductive turnover and, in this way, 58 

facilitating hybridization and introgression as documented for other hybridization cases involving 59 

social canids. Bohling & Waits (2015) investigated hybridization events between red wolves (Canis 60 

rufus) and coyotes (Canis latrans) in eastern North Carolina, USA from 2001 to 2013 and observed 61 

that more than half of the hybridization events followed the disruption of social units due to 62 

mortality of one or both breeders. Rutledge et al. (2011) analyzed genetic data from eastern wolves 63 

(Canis lycaon) sampled in Algonquin Provincial Park (APP), Ontario, Canada from 1964 to 2007 64 

showing that eastern wolf culling campaign were followed by a significant increase in coyote 65 

mitochondrial and nuclear DNA introgression into the eastern wolf population. Moreover, Benson 66 

et al. (2014) showed that higher admixed eastern wolf x coyote survival in non-protected areas 67 

adjacent to APP favored high prevalence of admixed individuals. The capture-recapture model with 68 

differential survival probability was the second best the model selection in Chapter 2 and although 69 

we cannot draw conclusions due to uncertainty in model selection, this aspect deserves further 70 

investigation. 71 

Lastly, the occurrence of at least two admixed breeding pairs in the studied wolf population 72 

in the Northern Apennines, Italy (Chapter 2), is further evidence of persistent lack of reproductive 73 

isolation highlighting that, in conditions of high admixture, hybrid-hybrid pairs can maintain dog 74 

genes at high frequency in the wolf population (Bassi et al. 2017; Salvatori et al. 2019) instead of 75 

diluting them with backcrossing.  76 

Contrarily to previous knowledge, our findings underline that wolf-dog hybridization is 77 

indeed a serious threat for wolf genomic integrity, affecting also core areas of the wolf range and 78 
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that, in absence of active management actions, no reproductive barriers nor dilution through 79 

backcrossing are sufficient to contrast the spread of the phenomenon. 80 

 81 

6.2 Improvement in hybridization projection methods and application to the case study 82 

In this work we produced two approaches for the projection of hybridization dynamics. The 83 

population-based approach has the advantage of requiring less parameters. However, the biggest 84 

disadvantage is that it cannot easily consider the fine-scale social dynamics that are known to affect 85 

hybridization rates in social canids. Moreover, it does not allow to easily distinguish between 86 

different hybrid categories (i.e., recent vs. ancient). The individual based model, on the other hand 87 

requires a large number of parameters and assumptions, but it allows to explicitly model the 88 

interaction between social dynamics and management. We are aware that these models cannot be 89 

validated due to the absence of long-term data series on the quantitative evaluation of wolf x dog 90 

hybridization. However, the comparison of predicted and observed dynamics in other more 91 

intensively monitored hybridization cases (e.g., red wolves-coyote and eastern wolves-coyote) 92 

could provide interesting insights. Moreover, rather than being useful for providing absolute 93 

predictions, projections are of practical value by illustrating the expected, relative outcome of 94 

alternative biological and management scenarios (e.g., Gervasi & Ciucci 2018) that would be 95 

otherwise difficult to test empirically on the wolf x dog hybridization case. 96 

 97 

6.2.1 Implications for the management of wolf x dog hybridization 98 

Both population-based and individual-based projections results showed that hybridization with dogs 99 

should be considered as a serious threat to the wolf genomic integrity, at least under the listed 100 

circumstances which are characteristics of human-dominated landscapes (disruption of reproductive 101 

isolation barriers and availability of dogs and/or admixed individuals as mates). Both population-102 

based and individual-based projections results confirmed that the outcome of wolf x dog 103 

251



hybridization in absence of reproductive isolation mechanisms (i.e., assortative mating, outbreeding 104 

depression) and in presence of recurrent mating with dogs is complete admixture.  105 

The sensitivity of the results produced by both models to the different reproductive isolation 106 

scenarios highlights that the further investigation of the mechanisms promoting wolf x dog should 107 

be addressed as research priority. However, the high prevalence of admixed individuals observed in 108 

local studies (i.e., the case study presented in Chapter 2, but also the case study of Salvatori et al. 109 

2019) show that at least in some areas characterized by high human pressure natural reproductive 110 

isolation and/or dilution through backcrossing are not operating. These populations will therefore 111 

head to a complete admixture scenario in the absence of management, as exemplified by the 112 

management status of wolf x dog hybrids in Italy. In addition to that, the sensitivity analysis in our 113 

population-based model pointed out that the most influential parameters decreasing the chances of 114 

complete admixture are linked to social and reproductive integrity (i.e., survival of wolf alpha 115 

individuals and the per capita fertility rate) and the annual frequency of mating with dogs. Our 116 

results offer further evidence that human-related factors contributing to hybridization (i.e., increased 117 

wolf mortality and dog presence) should be urgently managed through preventive and proactive 118 

management actions to avoid the risk of genomic extinction of wild wolves (Rutledge et al. 2011; 119 

Bohling & Waits 2015).  120 

In further support to the need of implementing management, we showed that also in 121 

scenarios in which hybridization is predicted to decrease thanks to the action of reproductive 122 

barriers (i.e., assortative mating) the impact of hybridization is going to extend at broader scales, as 123 

large numbers of admixed dispersers are produced. Those admixed dispersers that manage to breed 124 

and reproduce will spread the hybridization geographically and affect other populations at the 125 

landscape scale (Salvatori et al. 2019). Reactive management aimed at reducing prevalence of 126 

admixed individuals is therefore recommended and should be a joint effort among regional 127 

administrations responsible for wolf management across a wider scale (Salvatori et al. 2019). 128 
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 When introgression is widespread to the extent recorded in some areas (e.g., Chapter 2) we 129 

argue that reactive interventions should be considered (Allendorf et al. 2001). Although the removal 130 

of admixed individuals is practiced in some countries (e.g., Spain; Pacheco et al. 2017), the 131 

sterilization may be the only applicable reactive management strategy when the protection status of 132 

admixed individuals is not clear and when considering the social acceptance and animal welfare 133 

costs of management. Our modelling approach helped elucidating that a targeted sterilization 134 

approach dramatically improves the effectiveness of the sterilization strategy. Such improvement 135 

relates to the fact that sterilized admixed breeders act as ‘placeholders’ preventing other admixed 136 

individuals from reaching a breeding position (Gese & Terletzky 2015). 137 

 138 

6.3 Future perspectives 139 

Human activities involved in anthropogenic hybridization are predicted to increase (Bohling 2016) 140 

and management will be needed to conserve current biodiversity as well as the ecological 141 

circumstances and evolutionary processes that support it (Todesco et al. 2016). The analytical 142 

approaches developed in this project can be extended for the evaluation and management planning 143 

of anthropogenic hybridization involving other species. Non-invasive genetic monitoring is already 144 

used for the monitoring of several hybridizing species (e.g., cutthroat trout, Oncorhynchus clarki, 145 

European wildcats Felis sylvestris sylvestris, Greater Spotted Eagles Aquila clanga, Iberian wolves 146 

Canis lupus signatus, red wolves C. rufus; Bohling 2016) and it could provide the data for such 147 

assessments. 148 

One possible development for the individual based approach is to use it to investigate the 149 

relationship between prevalence indexes (e.g., naive prevalence, number of admixed pairs, number 150 

of admixed packs) and population prevalence with the approach used by Chapron et al. (2016) to 151 

estimate a conversion factor from the number of packs to the total population size. Such approach 152 

could help in elaborating less expensive and more feasible prevalence monitoring techniques.  153 
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One important development of the wolf x dog hybridization assessment would be to 154 

investigate the spatial genetic structure of the distribution of different Canis types (i.e., wolves, dogs 155 

and wolf x dog hybrids) and to model genetic ancestry in response to environmental variables (e.g.. 156 

prey availability or human disturbance). The combined use of using genetic, morphologic, 157 

demographic and behavioral data, would provide valuable information both for understanding 158 

biological and evolutionary mechanisms involved in hybridization and for producing sound 159 

management strategies (Benson et al. 2012). 160 

In this context, one important extension to the produced projection models would be to make 161 

them spatially explicit (Nathan et al. 2019). Such extension would also allow to investigate the 162 

consequences of hybridization for niche differentiation and space use (Ellington and Murray 2015; 163 

Otis et al 2017). Understanding such processes would help determining if admixed individuals can 164 

act as ecological surrogates for the parental individual and if they are therefore worthy of protection 165 

(Wayne & Shaffer 2016). Particularly interesting are the recent development in genomics that are 166 

increasing our power of investigating the genetic basis of behavioral traits (vonHoldt et al. 2017). 167 

Such information could soon produce interesting results regarding the differential behavior between 168 

parental and admixed individuals that could be included in individual-based projections to scale up 169 

the consequences of individuals’ differential behavior to population level processes such as 170 

hybridization dynamics.  171 

 172 
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