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Abstract 

Imaging Mueller polarimetry represents an emerging optical technique for a non-invasive 

diagnostics of tissue. This optical modality explores the extreme sensitivity of polarized light 

to the microstructure of a sample under study and provides the most complete information on 

sample polarimetric properties. 

First, the potential of the transmission Mueller microscope operating in the visible 

wavelength range for digital histology analysis was studied on the unstained histological 

sections of human skin equivalents. Logarithmic decomposition of the experimental Mueller 

matrices was combined with the statistical density-based clustering algorithm for the 

applications with noise (DBSCAN) for diagnostic segmentation of the microscope images of 

human skin models. The validity of the differential Mueller matrix formalism for fluctuating 

homogenous depolarizing media was confirmed experimentally for biological tissue. An 

original method was suggested to mitigate the impact of thickness variation that could affect 

the accuracy of polarimetric diagnostics of thin tissue sections. A new version of the 

DBSCAN algorithm was developed to reduce the calculation time and, thus, to allow 

clustering of large size datasets. When dataset outliers (noise) were effectively filtered out, 

the contrast between the dermal and epidermal zones of human skin equivalents was 

significantly increased. Polarized Monte Carlo modeling of the experimental Mueller 

matrices of thin sections of human skin equivalents confirmed that both linear dichroism and 

anisotropy of depolarization detected within the dermal zone are due to the presence of well-

aligned collagen fibers. 

The ex-vivo proof-of-principle studies of the sensitivity of backscattered polarized light to 

the highly ordered structure of healthy brain white matter are presented in the second part. 

The thick sections of the formalin-fixed human brain and fresh calf brain were imaged in 

reflection configuration using wide-field imaging Mueller polarimeter operating in the visible 

wavelength range. It is known that brain tumors break the highly ordered structure of brain 

white matter because tumor cells grow in a chaotic way. However, this difference in 

structural complexity is hardly detectable with a state-of-the-art operative microscope during 

neurosurgery because of low visual contrast between tumor and healthy brain tissue. We 

studied the capability of the wide-field imaging Mueller polarimetry to visualize the fiber 

tracts of healthy brain white matter by detecting the anisotropy of its refractive index (i.e., the 

birefringence of brain white matter that will be erased by the tumor). The experimental 

Mueller matrices of brain specimens were processed using the algorithm of Lu-Chipman 

polar decomposition. The maps of the azimuth of the optical axis of uniaxial linear 

birefringent medium demonstrated the compelling correlation with the microscopy images of 
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silver-stained histological sections of brain tissue, a gold standard technique for the 

visualization of brain white matter fiber tracts ex-vivo. These results show the potential of 

wide-field imaging Mueller polarimetry to provide information on the relative spatial 

orientation of brain fiber tracts, which can help to detect the exact border between the tumor 

and surrounding brain tissue, guide neurosurgeon during tumor resection, and improve 

patient outcomes. 
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General Introduction 

The global healthcare industry has been growing at an impressive rate in recent years (e.g., 

7.3% annual growth rate from 2014 to 2018). It is already one of the biggest overall and its 

growth is expected to continue [1], [2]. Looking at the trends in healthcare we may note that 

the estimated number of cancer occurrences (based on estimated population increase) also 

will grow from 18.1 million in 2018 to 29.5 million in 2040 [3]. As cancer becomes the 

second leading cause of death [3] (e.g., around 9.6 million deaths in 2018), the importance of 

cure for cancer patients has also increased. Early detection of cancer could significantly 

reduce cancer burden because of a higher patient survival rate, decrease in morbidity and cost 

of treatment.  

Therefore, in order to improve the healthcare, new medical imaging devices / 

technologies (e.g., computed tomography (CT) scanners, real-time ultrasonography, etc.) 

have been developed and implemented in clinical practice for accurate diagnostics. The 

histopathology, which is a clinical gold-standard technique for the diagnosis of tissue 

specimens [4], has also been exploring a variety of optical techniques (e.g. optical coherence 

tomography (OCT), second harmonic generation (SHG), two-photon excitation fluorescence 

(TPEF), fluorescence, and polarized light microscopy).  

In general, biological tissue is a strongly scattering medium. In addition, the presence of 

ordered microstructures withing tissue induces an optical anisotropy (i. e. anisotropy of tissue 

refractive index). Pathological alterations modify both scattering and anisotropic properties of 

healthy tissue. It is known that polarized light is very sensitive to these alterations, because 

they affect both depolarization and phase shift of the polarized light beam after its interaction 

with biological tissue. We used a complete Muller polarimetry approach for tissue imaging 

both in transmission (microscopic scale) and reflection (macroscopic scale) configurations. 

Applying the appropriate algorithms of non-linear compression (or decomposition) of 

Mueller matrices we obtained the depolarization and polarization (retardance, dichroism) 

parameters of measured biological tissues and explored their capabilities to serve as the 

optical markers of diseased zones in the polarimetric images of tissue. The results of the 

studies are summarized in this thesis consisting of five chapters.  

The Chapter 1 describes the fundamentals of optical polarization and introduces the 

framework of Stokes-Mueller formalism for the description of polarized light that we will use 

throughout this thesis. Two Mueller matrix decomposition algorithms (Lu-Chipman and 

logarithmic) used in our studies for the calculation of polarimetric properties of tissue 

samples are presented and discussed in details.  
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The concepts of optimal design and calibration of a complete Mueller polarimeter are 

presented and discussed in the Chapter 2. Two multi-spectral ferroelectric-liquid crystal-

based imaging Mueller matrix polarimeters, namely transmission Mueller microscope and 

wide-field Mueller imaging system operating in reflection configuration are also described 

therein. The former and latter instruments were used for the measurements of thin and thick 

tissue sections, respectively. 

The data processing and interpretation algorithms (image segmentation and Monte Carlo 

modeling) are introduced and discussed in the Chapter 3. A brief review of the data clustering 

techniques is presented with a special focus on the density-based spatial clustering for the 

applications with noise (DBSCAN) algorithm (both original and updated versions) that will 

be later used for the diagnostic segmentation of the polarimetric images of tissue. Monte 

Carlo algorithm for modeling of polarized light propagation in anisotropic scattering media is 

discussed. We briefly introduce the vector radiative transfer equation for description of the 

interaction of polarized light with multiple scattering media and describe the Monte Carlo 

algorithm for its solution. The updated version of the Monte Carlo algorithm that accounts for 

the anisotropy of scattering media was developed and validated by the simulations of both 

isotropic and anisotropic optical phantoms of biological tissue. 

In the following chapters we present and discuss the results of our studies of different 

types of biological tissue with imaging Mueller polarimeters in transmission and reflection 

configurations.  

The Chapter 4 is dedicated to the polarimetric studies anisotropic scattering medium, 

namely, dermal layer of thin sections of human skin tissue models. The validation of the 

differential Mueller matrix formalism for fluctuating anisotropic media is performed using 

the experimental Mueller matrices of dermal layer of human skin equivalents and their 

logarithmic decomposition. The segmentation of polarimetric images of thin sections of skin 

tissue is done by applying the DBSCAN algorithm and results are commented. The method to 

mitigate the impact of tissue thickness fluctuations on its measured polarimetric parameters is 

introduced. Different optical models of a dermal layer of skin were tested for the 

interpretation of measurement results for thin sections of human skin tissue models. Monte 

Carlo simulations demonstrate that the anisotropy of linear depolarization, linear retardance, 

and linear dichroism that were observed for dermal layer of skin in our experiments are 

related to the presence of well-aligned collagen fibers. 

The polarimetric studies of thick sections of fixed and fresh brain tissue specimens are 

presented in the Chapter 5. Both types of specimens were measured with the wide-field 

imaging Mueller polarimeter in backscattering configuration. The maps of polarimetric 

parameters, such as scalar linear retardance and depolarization, show clear border between 

the zones of grey and white matter of the brain. The directions of brain white matter fiber 

tracts are well represented by the azimuth of the optical axis calculated pixel-wise with Lu-

Chipman decomposition of experimental Mueller matrix images. This correlation was 

confirmed by the conventional histology analysis of corresponding silver-stained thin 

sections of fixed brain tissue. The simple image processing techniques (e.g. fusion and 
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cropping) were tested for a better visualization of white matter border and directions of the 

fiber tracts in the imaging plane. 

The conclusion contains brief summary of my PhD results and their possible applications 

for both digital histology and optical biopsy of tissue. The perspectives of further research 

studies are also discussed. 
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Polarization is one of the fundamental properties of light, along with the intensity, frequency, 

and coherency. The study of optical polarization can lead to a deeper understanding of the 

nature of light itself as well as can help in the revealing of the optical properties of an object 

(biological tissue in our study) interacting with a polarized incident beam. Thus, 

understanding the fundamentals of light polarization is a prerequisite for exploring this 

property of light for a biomedical diagnostics. In this chapter, we briefly review the 

theoretical frameworks for the description of polarized light. First, we introduce the concept 

of the polarization ellipse (e.g., orientation, ellipticity, phase shift) for completely polarized 

light. Then, we define the Stokes parameters to characterize the completely polarized, 

partially polarized, or unpolarized light, introduce the Poincaré sphere as the generalization of 
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the concept of polarization ellipse and define the transfer matrix (or Mueller matrix) that 

describes the modifications of the Stokes parameters of the incident light by the interaction 

with a sample. The examples of the Mueller matrices of the basic optical elements (polarizer, 

retarder, and depolarizer) are provided. Next, we discuss the different algorithms of Mueller 

matrix decompositions. The criterion of the physically realizable Mueller matrix is introduced 

based on eigenvalues of the corresponding coherence matrix. Cloude sum decomposition of 

Mueller matrices is described and its application for noise filtering is discussed [1]. Polar Lu-

Chipman decomposition [2] and logarithmic decomposition [3], [4] of Mueller matrices for 

the physical interpretation of Mueller matrix data in terms of polarimetric properties of the 

sample are also introduced and discussed. 

1.1. Polarization Ellipse  

Apart from the intensity of light that represents a scalar quantity, the vector nature of light is 

described by its polarization. Electromagnetic (EM) waves present synchronized oscillations 

of the electric and magnetic fields. When EM wave propagates in homogenous isotropic 

media both electric and magnetic field components oscillate within a plane orthogonal to the 

direction of EM wave propagation (so-called transverse wave). Being a solution of Maxwell 

equations [5], the electric field of a plane polarized monochromatic EM wave that propagates 

in z-direction in free space, can be described at time 𝑡 and any point (𝑥, 𝑦) as 

 

 

where 𝐸0𝑥  and 𝐸0𝑦  are constant maximum amplitudes, 𝛿𝑥  and 𝛿𝑦  are arbitrary constant 

phases, 𝜔 is the angular frequency, k is the wavenumber, and the subscripts x and y refer to 

the components in the x- and y-directions, respectively [6], [7]. 

The time duration for one cycle of the plane EM wave is only 10-15 seconds at optical 

frequencies. Thus, the EM wave can be considered as “instantaneous,” and the equations for 

the transverse components of electric field can be re-written as: 

 

 

where τ = ω𝑡 − k𝑧 denotes the propagator. The Eq. (1.2) can be modified as follows:  

 

 
𝐸𝑥(𝑧, 𝑡) = 𝐸0𝑥 cos(𝜔𝑡 − k𝑧 + 𝛿𝑥) 

 

𝐸𝑦(𝑧, 𝑡) = 𝐸0𝑦cos(𝜔𝑡 − k𝑧 + 𝛿𝑦) 
(1.1) 

 
𝐸𝑥 = 𝐸0𝑥 cos(𝜏 + 𝛿𝑥) 

 

𝐸𝑦 = 𝐸0𝑦 cos(τ + 𝛿𝑦) 
(1.2) 

 

𝐸𝑥

𝐸0𝑥
= cos𝜏 cos 𝛿𝑥 − sin𝜏 sin𝛿𝑥  

 

𝐸𝑦

𝐸0𝑦
= cos𝜏 cos 𝛿𝑦 − sin𝜏 sin𝛿𝑦  

(1.3) 
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Hence,  

 

Squaring and adding two equations in Eq. (1.4) gives  

 

 

where δ =  𝛿𝑦 − 𝛿𝑥 is the phase shift between the orthogonal transverse components of the 

electric field of the plane EM wave. Eq. (1.5) is the equation of an ellipse for 𝐸𝑥 and 𝐸𝑦 in the 

(𝑥, 𝑦) coordinate system. The center of ellipse is located at the point (0, 0), the presence of a 

product term 𝐸𝑥𝐸𝑦 indicates that this ellipse can be rotated, i.e., its axes are not necessarily 

parallel to 𝑥 and 𝑦 axes [6], [8], [9]. 

As we eliminated the propagator term (see Eq. (1.5)), the locus of points, describing the 

electric field vector of a propagating EM wave, forms an ellipse at any instant of time at any 

point 𝑧. This ellipse is called the polarization ellipse, and it can be parametrized in different 

ways. First, it can be inscribed within a rectangle with sides 2𝐸0𝑥 and 2𝐸0𝑦 (see Fig. 1.1). The 

polarization ellipse is generally rotated through the angle 𝜓 which means that the axes of the 

ellipse do not coincide with the 𝑥 and 𝑦 axes of the coordinate system (see Fig. 1.1).  

 

 

Figure 1.1 Description of a polarization ellipse in the x-y laboratory coordinate system. 𝝍 is the 

orientation angle, 𝝌 is the ellipticity angle, 𝜶 is the auxiliary angle.   

We shall denote by 𝑥 and 𝑦 the axes of the laboratory coordinate system, and by 𝑥′ and 𝑦′ the 

axes of the rotated coordinate system, then the values of the components of the electric field 

𝐸𝑥
′  and 𝐸𝑦

′  in the rotated coordinate system are given by 

 

𝐸𝑥

𝐸0𝑥
sin𝛿𝑦 −

𝐸𝑦

𝐸0𝑦
sin 𝛿𝑥 = cos𝜏 sin( 𝛿𝑦 − 𝛿𝑥) 

 

𝐸𝑥

𝐸0𝑥
cos𝛿𝑦 −

𝐸𝑦

𝐸0𝑦
cos 𝛿𝑥 = sin𝜏 sin( 𝛿𝑦 − 𝛿𝑥) 

(1.4) 

 
𝐸𝑥

2

𝐸0𝑥
2 +

𝐸𝑦
2

𝐸0𝑦
2 − 2

𝐸𝑥

𝐸0𝑥

𝐸𝑦

𝐸0𝑦
cos δ = sin2δ (1.5) 



 

  9 

 

where the orientation (or azimuth) angle 𝜓 (0≤ 𝜓 ≤ 𝜋) is the angle between the 𝑥 and 𝑥′ 

axes. If we denote by 2a and 2b (a ≥ 𝑏) the lengths of the major and minor axes of the 

polarization ellipse respectively, then 𝐸𝑥
′  and 𝐸𝑦

′  can be expressed as:  

 

 

where 𝛿′  is an arbitrary phase, and the ±  sign denotes the two possible directions of 

oscillation of the electric field vector (clockwise or counter-clockwise). Substituting Eqs (1.2) 

and (1.7) into (1.6), we find out that   

 

 

Furthermore,  

 

 

Eq. (1.8) and (1.9) represent the relation between the angle of rotation 𝜓 and the parameters 

𝐸0𝑥, 𝐸0𝑦, and δ. The auxiliary angle 𝛼 can be described as [6], [9]  

 

 

Then, Eq. (1.9) can be rewritten as: 

 

 

Introducing the angle of ellipticity 𝜒, defined as 

 

 

we can get the relation between 𝜒 and the parameters 𝐸0𝑥, 𝐸0𝑦, and δ as:  

 

 
𝐸𝑥

′ = 𝐸𝑥cos 𝜓 + 𝐸𝑦sin 𝜓 
 

𝐸𝑦
′ = −𝐸𝑥sin 𝜓 + 𝐸𝑦cos 𝜓 

(1.6) 

 
𝐸𝑥

′ =  𝑎cos (𝜏 + 𝛿′) 
 

𝐸𝑦
′ = ± 𝑏sin (𝜏 + 𝛿′) 

(1.7) 

 

𝑎2 = 𝐸0𝑥
2  cos2 𝜓 + 𝐸0𝑦

2  sin2 𝜓 + 2𝐸0𝑥𝐸0𝑦 cos 𝜓 sin 𝜓 cos δ 
 

𝑏2 = 𝐸0𝑥
2  sin2 𝜓 + 𝐸0𝑦

2  cos2 𝜓 − 2𝐸0𝑥𝐸0𝑦 cos 𝜓 sin 𝜓 cos δ 
 

𝑎2 + 𝑏2 = 𝐸0𝑥
2 + 𝐸0𝑦

2  
 

±𝑎𝑏 = 𝐸0𝑥𝐸0𝑦 sin δ 

(1.8) 

 tan 2𝜓 =
2𝐸0𝑥𝐸0𝑦

𝐸0𝑥
2 − 𝐸0𝑦

2 cos δ (1.9) 

 tan 𝛼 =
𝐸0𝑦

𝐸0𝑥

 (0 ≤ 𝛼 ≤
𝜋

2
) (1.10) 

 tan 2𝜓 = tan 2𝛼 cos δ (1.11) 

 tan 𝜒 =
±𝑏

𝑎
 (−

𝜋

4
≤ 𝜒 ≤

𝜋

4
) (1.12) 
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As shown in Eqs (1.8) - (1.13), the polarization ellipse can be described by angles of 

orientation 𝜓 and ellipticity 𝜒, as well as by its major, 𝐸0𝑥 , and minor, 𝐸0𝑦 , axes and the 

relative phase shift δ. In general, the completely polarized light that is described by the 

polarization ellipse is said to be elliptically polarized. However, the polarization ellipse can 

have particular degenerate forms (e.g., line or circle) depending on the values of the 

maximum amplitudes 𝐸0𝑥, 𝐸0𝑦, and the phase shift δ.  

For example, when either 𝐸0𝑥  = 0 or 𝐸0𝑦 = 0 the light is said to be linear horizontally 

polarized or vertically polarized, as the electric field vector oscillates along the 𝑥 and 𝑦 axes, 

respectively. If δ = 0 or 𝜋, the light is linear -45°- and +45°-polarized. Finally, the light is 

called right or left circularly polarized when 𝐸0𝑥 = 𝐸0𝑦 = 𝐸0  and δ = 𝜋/2  or 3 𝜋/2 , 

respectively.  

1.2. Stokes polarization parameters and Stokes vector 

The concept of the polarization ellipse that excludes the propagator from the description of 

the transverse components of the optical field, is very useful for the description of the various 

states of completely polarized light (e.g., linearly or circularly polarized light) by a single 

equation. However, this concept has several limitations. The first one comes from the fact 

that the direct observation of the polarization ellipse in the experiments is not possible 

because of too short oscillation time of the electric field vector (~10-15 s) at optical 

frequencies. Another serious limitation is the capability of the polarization ellipse to describe 

completely polarized light only. It means that this concept is applicable for the description of 

neither unpolarized light nor partially polarized light that represent the larger portion of 

natural light. Thus, the polarization ellipse represents an idealization of the behavior of light 

at any given moment of time.  

To overcome these limitations an alternative description of polarized light in terms of the 

directly observable intensity, that is derived by time averaging of the squared amplitude of 

electric field, has been considered. By measuring the intensity, we can obtain four parameters 

(so-called Stokes parameters) that describe completely or partially polarized, as well as 

totally depolarized (unpolarized) light. These four Stokes parameters can be arranged in a 4x1 

column matrix that is called the Stokes vector. The derivation of the Stokes parameters and 

some special forms of the Stokes vector for the particular states of the polarization, as well as 

the concept of the Poincaré sphere are discussed in the following subsections.  

1.2.1. Derivation of Stokes parameters 

We consider a pair of orthogonal plane waves with the electric field vector oscillating along 

the x- and y-axes, respectively, at a space point z = 0: 

 sin 2𝜒 =
±2𝑎𝑏

𝑎2 + 𝑏2
=

2𝐸0𝑥𝐸0𝑦

𝐸0𝑥
2 + 𝐸0𝑦

2 sin δ = (sin 2𝛼) sin δ (1.13) 
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where 𝐸0𝑥(𝑡)  and 𝐸0𝑦(𝑡)  are the instantaneous amplitudes, 𝛿𝑥(𝑡)  and 𝛿𝑦(𝑡)  are the 

instantaneous phases, and 𝜔 is the instantaneous angular frequency.  

By excluding the term 𝜔𝑡 from Eq. (1.14), we obtain the expression for the polarization 

ellipse at a given instant of time [6],  

 

 

where δ(𝑡) =  𝛿𝑦(𝑡) − 𝛿𝑥(𝑡) is the relative phase factor between the orthogonal transverse 

components.  

For monochromatic EM waves, the phase factors and amplitudes are constant (i.e., do 

not depend on time). Then, the Eq. (1.15) can be written as  

 

 

To remove the time dependence completely, one needs to average Eq. (1.16) only over a 

single period T of time oscillations because of the periodicity of 𝐸𝑥(𝑡)  and 𝐸𝑦(𝑡) . The 

symbol 〈… 〉 describes the time average, and Eq. (1.16) is modified as [6], [9]  

 

 

Multiplying Eq. (1.17) by 4𝐸0𝑥
2 𝐸0𝑦

2 , we find that  

 

 

From Eq. (1.14), we obtain that  

 

 

 
𝐸𝑥(𝑡) = 𝐸0𝑥(𝑡) cos(𝜔𝑡 + 𝛿𝑥(𝑡)) 

 

𝐸𝑦(𝑡) = 𝐸0𝑦(t) cos(𝜔𝑡 + 𝛿𝑦(t)) 
(1.14) 

 
𝐸𝑥

2(𝑡)

𝐸0𝑥
2 (𝑡)

+
𝐸𝑦

2(𝑡)

𝐸0𝑦
2 (𝑡)

− 2
𝐸𝑥(𝑡)

𝐸0𝑥(𝑡)

𝐸𝑦(𝑡)

𝐸0𝑦(𝑡)
cos δ(𝑡) = sin2δ(𝑡) (1.15) 

 
𝐸𝑥

2(𝑡)

𝐸0𝑥
2 +

𝐸𝑦
2(𝑡)

𝐸0𝑦
2 − 2

𝐸𝑥(𝑡)

𝐸0𝑥

𝐸𝑦(𝑡)

𝐸0𝑦

cos δ = sin2δ (1.16) 

 

〈𝐸𝑥
2(𝑡)〉

𝐸0𝑥
2 +

〈𝐸𝑦
2(𝑡)〉

𝐸0𝑦
2 − 2

〈𝐸𝑥(𝑡)𝐸𝑦(𝑡)〉

𝐸0𝑥𝐸0𝑦

cos δ = sin2δ 

 

〈𝐸𝑖(𝑡)𝐸𝑗(𝑡)〉 =  lim
𝑇→∞

1

𝑇
∫ 𝐸𝑖(𝑡)𝐸𝑗(𝑡)

𝑇

0

𝑑𝑡     𝑖, 𝑗 = 𝑥, 𝑦 

(1.17) 

 
4𝐸0𝑥

2 〈𝐸𝑥
2(𝑡)〉 + 4𝐸0𝑦

2 〈𝐸𝑦
2(𝑡)〉 − 8𝐸0𝑥𝐸0𝑦〈𝐸𝑥(𝑡)𝐸𝑦(𝑡)〉 cos δ 

 

= (2𝐸0𝑥𝐸0𝑦sin𝛿)2 
(1.18) 

 

〈𝐸𝑥
2(𝑡)〉 =

1

2
𝐸0𝑥

2  

 

〈𝐸𝑦
2(𝑡)〉 =

1

2
𝐸0𝑦

2  

 

〈𝐸𝑥(𝑡)𝐸𝑦(𝑡)〉 =
1

2
𝐸0𝑥𝐸0𝑦 cos δ 

(1.19) 
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Substituting Eqs (1.19) into Eq. (1.18), then adding and subtracting the sum 𝐸0𝑥
4 + 𝐸0𝑦

4  to the 

left-hand side, allows Eq. (1.18) to be rewritten as:  

 

 

We denote that the quantities inside the parentheses as [6], [9]  

 

 

They further obey the relation  

 

 

The four real quantities 𝑆0, 𝑆1, 𝑆2, and 𝑆3, are expressed in terms of the intensities. i.e., they 

are observables. They represent the Stokes polarization parameters of a plane EM wave. The 

parameter 𝑆0 is the total intensity of the light. The 𝑆1 parameter stands for the amount of 

linear horizontal or vertical polarization, the parameter 𝑆2  indicates the amount of linear 

±45°  polarization, and the 𝑆3  one shows the amount of right- or left-handed circular 

polarization of the light beam. The Stokes parameters for any polarization state (general 

form) obey the relation (1.22) [6], [9].  

Since the amplitudes and phases of partially polarized light fluctuate slowly, Eqs. (1.21) 

are valid for a short period of time only. It can be shown that the general relation between the 

four Stokes parameters for any state of light polarization is given by  

 

 

where the equality corresponds to the case of completely polarized light, whereas the 

inequality holds for partially polarized (or for unpolarized) light. The orientation angle 𝜓 of 

the polarization ellipse can be expressed in terms of the Stokes parameters as:  

 

 

The ellipticity angle 𝜒 can be expressed as:  

 

 

 (𝐸0𝑥
2 + 𝐸0𝑦

2 )2 − (𝐸0𝑥
2 − 𝐸0𝑦

2 )
2
− (2𝐸0𝑥𝐸0𝑦cos𝛿)

2
= (2𝐸0𝑥𝐸0𝑦sin𝛿)2 (1.20) 

 

𝑆0 = 𝐸0𝑥
2 + 𝐸0𝑦

2  = 𝐸𝑥𝐸𝑥
∗ + 𝐸𝑦𝐸𝑦

∗ 
 

𝑆1 = 𝐸0𝑥
2 − 𝐸0𝑦

2  = 𝐸𝑥𝐸𝑥
∗ − 𝐸𝑦𝐸𝑦

∗ 
 

𝑆2 = 2𝐸0𝑥𝐸0𝑦cos𝛿 = 𝐸𝑥𝐸𝑦
∗ + 𝐸𝑦𝐸𝑥

∗ 
 

𝑆3 = 2𝐸0𝑥𝐸0𝑦sin𝛿 = 𝑖(𝐸𝑥𝐸𝑦
∗ − 𝐸𝑦𝐸𝑥

∗) 

(1.21) 

 𝑆0
2 = 𝑆1

2 + 𝑆2
2 + 𝑆3

2 (1.22) 

 𝑆0
2 ≥ 𝑆1

2 + 𝑆2
2 + 𝑆3

2 (1.23) 

 tan 2𝜓 =
2𝐸0𝑥𝐸0𝑦 cos δ

𝐸0𝑥
2 − 𝐸0𝑦

2 =
𝑆2

𝑆1

 (1.24) 

 sin 2𝜒 =
2𝐸0𝑥𝐸0𝑦 sin δ

𝐸0𝑥
2 + 𝐸0𝑦

2 =
𝑆3

𝑆0

 (1.25) 
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The last three Stokes parameters describe the polarized part of the light beam, so we define 

the degree of polarization (DOP) parameter as  

 

 

where the 𝐼tot is the total intensity of the light beam and the 𝐼pol indicates the intensity of the 

sum of the polarization components. When 𝑃 = 1, the light beam is completely polarized; 𝑃 = 

0 represents unpolarized light, and the values within the range 0 < 𝑃 < 1 describe partially 

polarized light. [1], [6], [9], [10] Similarly, the degree of linear polarization (DOLP) and the 

degree of circular polarization (DOCP) are defined as  

 

 

where 𝑃𝐿 =  1 corresponds to complete linearly polarized light, and 𝑃𝐶 =  1 represents the 

complete circularly polarized light.  

1.2.2. The Stokes vector 

The four real-valued Stokes parameters 𝑆0, 𝑆1, 𝑆2, and 𝑆3 can be arranged in a 4x1 column 

matrix that we called the Stokes vector of a plane EM wave. [6], [7], [9]  

 

 

The amplitudes 𝐸0𝑥 and 𝐸0𝑦 can be expressed in terms of the auxiliary angle 𝛼 (0≤ 𝛼 ≤ 𝜋/2) 

and 𝐸0 = √𝐸𝑜𝑥
2 + 𝐸𝑜𝑦

2  as 

 

Substituting Eq. (1.30) into Eq. (1.29) leads to  

 

 

If the light is fully polarized, Eq. (1.31a) can be expressed as  

 𝐷𝑂𝑃 =
𝐼pol

𝐼tot

=
(𝑆1

2 + 𝑆2
2 + 𝑆3

2)1/2

𝑆0

    0 ≤ 𝑃 ≤ 1 (1.26) 

 𝐷𝑂𝐿𝑃 =
(𝑆1

2 + 𝑆2
2)1/2

𝑆0

    0 ≤ 𝑃𝐿 ≤ 1 

 

(1.27) 

 𝐷𝑂𝐶𝑃 =
𝑆3

𝑆0

    0 ≤ 𝑃𝐶 ≤ 1 (1.28) 

 𝑆 =  [

𝑆0

𝑆1

𝑆2

𝑆3

] =

[
 
 
 
 

𝐸0𝑥
2 + 𝐸0𝑦

2

𝐸0𝑥
2 − 𝐸0𝑦

2

2𝐸0𝑥𝐸0𝑦cos𝛿

2𝐸0𝑥𝐸0𝑦sin𝛿]
 
 
 
 

  (1.29) 

 
𝐸0𝑥 = 𝐸0cos𝛼 

 

𝐸0𝑦 = 𝐸0sin𝛼 

(1.30) 

 𝑆 =  𝑆0 [

1
cos2𝛼

 sin2𝛼 cos𝛿 
 sin2𝛼 sin𝛿 

] (1.31a) 
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As it was previously explained, the polarization ellipse degenerates to particular forms 

for particular values of 𝐸0𝑥 , 𝐸0𝑦 , and 𝛿 . The corresponding Stokes vectors describe these 

special forms of polarized light (e.g., linear - horizontal, vertical, and +45 o-, and -45 o- and 

circular - right and left); they are shown in Tab. 1.1. 

Table 1.1 Stokes vectors for linear horizontally, linear vertically, linear +45o, linear -45o, right 

circularly, and left circularly polarized light. 

Linear Horizontally Polarized 

Light (LHP) 

Linear Vertically Polarized 

Light (LVP) 

Linear +45o Polarized Light 

(L+45) 

𝑆 = 𝐼0 [

1
1
0
0

] 

𝐸0𝑦 = 0, 𝐼0 = 𝐸0𝑥
2  

𝑆 = 𝐼0 [

1
−1
0
0

] 

𝐸0𝑥 = 0, 𝐼0 = 𝐸0𝑦
2  

𝑆 = 𝐼0 [

1
0
1
0

] 

𝐸0𝑥 = 𝐸0𝑦 = 𝐸0, 𝛿 = 0 

𝐼0 = 2𝐸0
2 

Linear -45o Polarized Light (L-

45) 

Right Circularly Polarized 

Light (RCP) 

Left Circularly Polarized Light 

(LCP) 

𝑆 = 𝐼0 [

1
0

−1
0

] 

𝐸0𝑥 = 𝐸0𝑦 = 𝐸0, 𝛿 = 180° 

𝐼0 = 2𝐸0
2 

𝑆 = 𝐼0 [

1
0
0
1

] 

𝐸0𝑥 = 𝐸0𝑦 = 𝐸0, 𝛿 = 90° 

𝐼0 = 2𝐸0
2 

𝑆 = 𝐼0 [

1
0
0

−1

] 

𝐸0𝑥 = 𝐸0𝑦 = 𝐸0, 𝛿 = −90° 

𝐼0 = 2𝐸0
2 

 

1.2.3. Poincaré sphere 

The polarization ellipse can be represented on the complex plane. On the other hand, Eqs 

(1.31) represent the relation between Cartesian coordinates and spherical coordinates. Hence, 

the polarization ellipse can be projected onto a sphere, called the Poincaré sphere. [16], [9]. 

Using the Poincaré sphere concept, we can simplify many calculations as well as provide 

simple and compelling illustration on how the polarized light interacts with both the 

polarizing elements (polarizer, retarder, and rotator) and the depolarizers. We set 𝑆0 = 1 for 

the first Stokes parameter. Any point on the unit radius Poincaré sphere (see Fig. 1.2) 

corresponds to the three Stokes parameters 𝑆1, 𝑆2, and 𝑆3 of the elliptically polarized light. 

The properties of the Poincaré sphere are summarized below: 

 𝑆 = = 𝑆0 [

1
 cos2𝜒 cos2𝜓 
 cos2𝜒 sin2𝜓

 sin2𝜒

]  (1.31b) 
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1. The blue lined-spherical triangle can be described by the ellipticity angle 𝜒, orientation 

(or azimuth) angle 𝜓, and auxiliary angle 𝛼. 
 

2. The point 𝑃(2𝜒, 2𝜓) on the Poincaré sphere surface is specified in terms of its latitude 

(2𝜒) and its longitude (2𝜓), where −𝜋/2 ≤ 2𝜒 ≤ 𝜋/2 and −𝜋 ≤ 2𝜓 ≤ 𝜋, respectively. 
 

3. The equator on the Poincaré sphere (2𝜒 = 0°) corresponds to linearly polarized light. The 

longitude 2𝜓 = 0°, 90°, 180°, and 270° represent the linear horizontal, linear +45°, linear 

vertical, and linear -45° polarized light, respectively.  
 

4. The prime meridian (2𝜓 = 0°) relates to non-rotated elliptically polarized light. Moving 

up along the prime meridian (longitude 2𝜒 = 0° to 90° - the north pole) leads to linear 

horizontally, right elliptically, and right circularly polarized light, in this order. Similarly, 

moving down from the equator to the south pole (2𝜒 =  −90°) leads to changing left 

elliptically polarized light to left circularly polarized light.  

 

Figure 1.2 The Poincaré sphere. L0, L90, L+45, L-45, RC, and LC represents the linear horizontal, 

linear vertical, linear +45°, linear -45°, right circular, left circular polarized light, respectively.  

1.3. Mueller matrices of basic optical components  

As mentioned above, the Stokes parameters enable us to describe the fundamental properties 

of polarized light. Thus, when the incident light interacts with the sample, the incident and 

the emerging beams can be described by the Stokes parameters 𝑆𝑖  and 𝑆𝑖
′ (𝑖 = 0, 1, 2, 3) , 

respectively (see Fig. 1.3). 
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Figure 1.3 The incident beam interacts with a sample, and the emerging beam comes out. 

The relation between the incident and emerging beam can be expressed as a linear 

combination of the two sets of four Stokes parameters 𝑆𝑖 and 𝑆𝑖
′ (𝑖 = 0, 1, 2, and 3): 

 

 

Eq. (1.32) can be written as a matrix form:  

 

 

where 𝑆′  and 𝑆  are the Stokes vectors and 𝑀  is the 4×4 real matrix (called the Mueller 

matrix).  

The polarization state of the incident beam is practically always changed during the 

interaction with matter. These changes of the polarization state could be due to changes in 1) 

the amplitudes of the electric field components, 2) the phase shift between the electric field 

components, 3) the oscillation direction of the orthogonal field components, or 4) energy can 

be transferred from the totally polarized states to the unpolarized one. We call an optical 

element that attenuates the amplitudes of the orthogonal field components unequally a 

polarizer (or diattenuator). An optical element that introduces a phase shift between the 

orthogonal components is called a retarder (or compensator, phase shifter). When the 

orthogonal components of the optical beam are rotated through an angle θ, the polarizing 

element is called a rotator. All three polarizing elements (polarizer, retarder, and rotator) 

change the polarization state of the incident optical beam. Finally, if the energy in the 

y

x

yʹ

xʹ

Incident Beam

Sample

Emerging Beam

 

𝑆0
′ = 𝑚00𝑆0 + 𝑚01𝑆1 + 𝑚02𝑆2 + 𝑚03𝑆3 

 

𝑆1
′ = 𝑚10𝑆0 + 𝑚11𝑆1 + 𝑚12𝑆2 + 𝑚13𝑆3 

 

𝑆2
′ = 𝑚20𝑆0 + 𝑚21𝑆1 + 𝑚22𝑆2 + 𝑚23𝑆3 

 

𝑆3
′ = 𝑚30𝑆0 + 𝑚31𝑆1 + 𝑚32𝑆2 + 𝑚33𝑆3 

(1.32) 

 
[
 
 
 
𝑆0

′

𝑆1
′

𝑆2
′

𝑆3
′]
 
 
 

=  [

𝑚00 𝑚01

𝑚10 𝑚11

𝑚02 𝑚03

𝑚12 𝑚13
𝑚20 𝑚21

𝑚30 𝑚31

𝑚22 𝑚23

𝑚32 𝑚33

] [

𝑆0

𝑆1

𝑆2

𝑆3

] 

 

𝑆′ = 𝑀 ∙ 𝑆 

(1.33) 
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polarized state is transferred to the unpolarized state, the corresponding element is called a 

depolarizer. Now, we will introduce the Mueller matrices of each of the above mentioned 

basic optical elements. 

1.3.1. Mueller matrix of a polarizer 

The polarizer acts as an anisotropic attenuator. In an optical system, the polarizer can be 

considered either as a generator (i.e., the element that produces polarized light) or as an 

analyzer (i.e., the element that analyzes polarized light). When a polarized beam of light is 

incident on a polarizer, the components of the incident beam, denoted by 𝐸𝑥 and 𝐸𝑦, along 

with the components of the emerging beam, 𝐸𝑥
′  and 𝐸𝑦

′ , are parallel to the polarizer 

transmission axes (see Fig. 1.4). The amplitude attenuation coefficients along the two 

orthogonal transmission axes of polarizer are denoted as 𝑝𝑥 and 𝑝𝑦, respectively. The relation 

between the incident and emerging light field components can be written as [6] 

 

 

Depending on the factor 𝑝𝑥(𝑝𝑦), there can be either no attenuation (𝑝 = 1) or complete 

attenuation (𝑝 = 0) of the electric field component along the orthogonal transmission axes. 

 
Figure 1.4 The propagation of polarized light through a polarizer. px and py are the attenuation 

coefficients. 

The Stokes vector of the incident beam that interacts with a polarizer can be related to the 

Stokes vector of the emerging beam as 

 

Ey

Ex

Exʹ

Py

Px Eyʹ

Incident Beam

Polarizer

Emerging Beam

 
𝐸𝑥

′ = 𝑝𝑥𝐸𝑥   (0 ≤ 𝑝𝑥 ≤ 1) 
 

𝐸𝑦
′ = 𝑝𝑦𝐸𝑦   (0 ≤ 𝑝𝑦 ≤ 1) 

(1.34) 

 

[
 
 
 
𝑆0

′

𝑆1
′

𝑆2
′

𝑆3
′]
 
 
 

=  
1

2

[
 
 
 
 
𝑝𝑥

2 + 𝑝𝑦
2 𝑝𝑥

2 − 𝑝𝑦
2 0 0

𝑝𝑥
2 − 𝑝𝑦

2 𝑝𝑥
2 + 𝑝𝑦

2 0 0

0 0 2𝑝𝑥𝑝𝑦 0

0 0 0 2𝑝𝑥𝑝𝑦]
 
 
 
 

[

𝑆0

𝑆1

𝑆2

𝑆3

] (1.35) 
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Thus, the Mueller matrix of a polarizer is written as   

 

 

This matrix can be written in the general form:  

 

 

where 𝑝𝑥
2 + 𝑝𝑦

2 = 𝑝2, 𝑝𝑥 = 𝑝𝑐os2𝛾 and 𝑝𝑦 = 𝑝sin2𝛾, 𝛾 is the dichroism angle.  

Using Eq. (1.36), the Mueller matrix of the neutral density filter (𝑝𝑥 = 𝑝𝑦 = 𝑝′) 

becomes 

 

 

The neutral density filter does not affect the polarization state of an optical beam whereas it 

changes its intensity. The Mueller matrix of the ideal linear polarizer (transmission along one 

axis only) is given by [6], [9]  
 

1)  𝑝𝑥 = 0,  𝑝𝑦 = 1 (linear vertical polarizer) 

 

 

2)  𝑝𝑥 = 1,  𝑝𝑦 = 0 (linear horizontal polarizer) 

 

 

Notice that if the incident beam is completely unpolarized then the maximum intensity of the 

emerging linear polarized beam cannot exceed 50% of the intensity of the incident beam.  

 𝑀 = 
1

2

[
 
 
 
 
𝑝𝑥

2 + 𝑝𝑦
2 𝑝𝑥

2 − 𝑝𝑦
2 0 0

𝑝𝑥
2 − 𝑝𝑦

2 𝑝𝑥
2 + 𝑝𝑦

2 0 0

0 0 2𝑝𝑥𝑝𝑦 0

0 0 0 2𝑝𝑥𝑝𝑦]
 
 
 
 

     (0 ≤ 𝑝𝑥,𝑦 ≤ 1) (1.36) 

 𝑀 = 
𝑝2

2
[

1 cos2𝛾 0 0
cos2𝛾 1 0 0

0 0 sin2𝛾 0
0 0 0 sin2𝛾

]     (0° ≤ 𝛾 ≤ 90°) (1.37) 

 𝑀 = 𝑝′2 [

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

]      (1.38) 

 𝑀 = 
1

2
[

1 −1 0 0
−1 1 0 0
0 0 0 0
0 0 0 0

]      (1.39) 

 𝑀 = 
1

2
[

1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

]      (1.40) 
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1.3.2. Mueller matrix of a retarder 

A retarder is a polarizing element that introduces a phase shift 𝜙 between the orthogonal 

components of the field of the incident beam. For example, the phase shift 𝜙  can be 

accomplished by a retarder producing a phase shifts of +𝜙/2 along the x-axis and a phase 

shift of −𝜙/2 along the y-axis (see Fig. 1.5). We refer the axes x and y as the fast and the 

slow axes of a retarder, respectively. 

 

 
 

Figure 1.5 The propagation of polarized light through a retarder. The two-phase shifts (+𝝓/𝟐 and 

−𝝓/𝟐) are along the x- and y-axis, respectively. 

The Stokes vectors of the incident beam and the emerging beams are related as  

 

 

Therefore, the Mueller matrix of a retarder with a phase shift 𝜙 is given by  

 

 

It is worth noting that the emerging beam preserves the intensity of the incident beam (i.e., 

there is no loss in intensity) after interaction with an ideal retarder. In the special case of 

phase shift of 𝜙 = 90°, the phase of one component of the electric field is delayed with 

respect to the orthogonal field component by a quarter of a wave. We called this retarder a 

quarter-wave retarder; its Mueller matrix is given by 

 

 

[
 
 
 
𝑆0

′

𝑆1
′

𝑆2
′

𝑆3
′]
 
 
 

= [

1 0 0 0
0 1 0 0
0 0 cos 𝜙 sin 𝜙
0 0 −sin 𝜙 cos 𝜙

] [

𝑆0

𝑆1

𝑆2

𝑆3

]  (1.41) 

 𝑀 = [

1 0 0 0
0 1 0 0
0 0 cos 𝜙 sin 𝜙
0 0 −sin 𝜙 cos 𝜙

] (1.42) 

 𝑀 = [

1 0 0 0
0 1 0 0
0 0 0 1
0 0 −1 0

] (1.43) 
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When linearly polarized light beam is incident on a quarter-wave retarder (and the 

polarization plane of linearly polarized light is oriented at +45° or -45° with respect to the 

fast axis of a retarder), it is transformed into a right- or left-circularly polarized light, 

respectively. Conversely, a quarter-wave plate can transform the incident circularly polarized 

light into the linear polarized light.  

When the phase shift is 𝜙 = 180°, the phase of one component of the electric field of the 

beam is delayed with respect to the orthogonal component by half a wave. We called this 

retarder as a half-wave retarder. Its Mueller matrix is given by 

 

 

The negative signs of the elements 𝑚22 and 𝑚33 indicate that a half-wave retarder reverses 

the ellipticity and orientation of the polarization state of the incident beam:  

 

1.3.3. Mueller matrix of a rotator 

A rotator is a polarizing element that rotates orthogonal components of the electric field of 

the incident beam through an angle 𝜃 (see Fig. 1.6). The point 𝑃 can be described in both the 

𝐸𝑥, 𝐸𝑦 coordinate system (Eq. 1.45) and the 𝐸𝑥
′ , 𝐸𝑦

′  coordinate system by Eq. (1.45) and Eq. 

(1.46), respectively. 

 

 

 
Figure 1.6 The rotation of the optical field components by a rotator. 

 𝑀 = [

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

] (1.44) 

 
𝜓′ = 90𝑜 − 𝜓 

 

𝜒′ = 90𝑜 + 𝜒 
(1.44a) 

 
𝐸𝑥 = 𝐸cos 𝛽 

 

𝐸𝑦 = 𝐸sin 𝛽  

(1.45) 

   

 
𝐸𝑥

′ = 𝐸cos(𝛽 − 𝜃) 
 

𝐸𝑦
′ = 𝐸sin(𝛽 − 𝜃) 

(1.46) 
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Expanding the trigonometric functions in Eqs (1.46) and substituting Eqs (1.45) into Eqs 

(1.46) leads to  

 

 

The Mueller matrix of a rotator can be derived by formulating the relation between the Stokes 

parameters for the amplitudes of the electric field 𝐸 and 𝐸′ 

 

 

It is worth noting that the physical rotation through the angle 𝜃 results in the appearance of 

the angle 2𝜃 in Eq. (1.48) because the Mueller matrix describes the transfer of the intensities 

that represent the squared amplitude of the electric field.  

1.3.4. Mueller matrix of rotated optical element 

We derived the Mueller matrix of basic polarizing elements (polarizer, retarder, and rotator) 

assuming that the axes of these elements are aligned along the 𝑥 - and 𝑦 -axes of the 

coordinate system. However, in reality, the polarizing elements are very often rotated. Then, 

we need to consider the derivation of the Mueller matrix of rotated polarizing elements [6], 

[9].  

 

Figure 1.7 Derivation of the Mueller matrix of rotated polarizing element. 

1. The axes (𝑥, 𝑦) of the polarizing component are rotated through the angle 𝜃 to the 

(𝑥′, 𝑦′) axes. We have to consider the Stokes vector of the incident beam in the (𝑥′, 

𝑦′) coordinate system. It is defined by the following relation: 

 
𝐸𝑥

′ = 𝐸𝑥cos 𝜃 + 𝐸𝑦sin 𝜃 
 

𝐸𝑦
′ = −𝐸𝑥sin 𝜃 + 𝐸𝑦cos 𝜃  

(1.47) 

 𝑀(2𝜃) =  [

1 0 0 0
0 cos 2𝜃 sin 2𝜃 0
0 sin 2𝜃 cos 2𝜃 0
0 0 0 1

] (1.48) 
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where 𝑀𝑅(2𝜃) is the Mueller matrix of a rotator. 

2. The Stokes vector 𝑆′ interacts with the optical components described by the Mueller 

matrix 𝑀. Then, the beam emerging from the rotated polarizing element is  

 

 

3. Finally, the components of the emerging beam should be expressed in the original 

(𝑥 ,  𝑦) coordinate system. It is done by a rotation by the same angle but in the 

opposite direction (-𝜃): 

 

 

The Mueller matrix of the rotated polarizing component can be described as the product of 

the matrices 𝑀𝑅(−2𝜃)𝑀𝑀𝑅(2𝜃). In particular, the Mueller matrices of the rotated polarizer 

and the rotated retarder are described by Eq. (1.51). The Mueller matrix of the rotated rotator 

does not change - 𝑀𝑅(2𝜃). 

Substituting Eq. (1.37) and Eq. (1.48) into Eq. (1.51) gives the Mueller matrix of a 

rotated polarizer as: [6], [9], [11] 

 

 

We have set 𝑝2 = 1for simplicity. The angle 𝛾 = 0°, 45°, and 90°  correspond to a linear 

horizontal polarizer, a neutral density filter, and a linear vertical polarizer, respectively. The 

Mueller matrix of an ideal linear horizontal polarizer reduces to  

 

 

The Mueller matrix of a rotated retarder can be expressed by substituting Eqs (1.42) and 

(1.48) into Eq. (1.51), and it is written as [6], [9], [11] 

 

 

Using Eq. (1.54), the Mueller matrix of a quarter-wave retarder (𝜙 = 90°) reduces to   

 

 𝑆′ = 𝑀𝑅(2𝜃)𝑆 (1.49) 

 𝑆′′ =  𝑀𝑆′ = 𝑀𝑀𝑅(2𝜃)𝑆 (1.50) 

 𝑆′′′ = 𝑀𝑅(−2𝜃)𝑀𝑆′ = 𝑀𝑅(−2𝜃)𝑀𝑀𝑅(2𝜃)𝑆 (1.51) 

𝑀 = 
1

2
[

1 cos2𝛾cos2𝜃 cos2𝛾sin2𝜃 0

cos2𝛾cos2𝜃 cos22𝜃 + sin2𝛾sin22𝜃 (1 − sin2𝛾)sin2𝜃cos2𝜃 0

cos2𝛾sin2𝜃 (1 − sin2𝛾)sin2𝜃cos2𝜃 sin22𝜃 + sin2𝛾cos22𝜃 0
0 0 0 1

] (1.52) 

 𝑀 = 
1

2
[

1 cos2𝜃 sin2𝜃 0
cos2𝜃 cos22𝜃 sin2𝜃cos2𝜃 0
sin2𝜃 sin2𝜃cos2𝜃 sin22𝜃 0

0 0 0 1

] (1.53) 

𝑀 = [

1 0 0 0
0 cos22𝜃 + cos𝜙sin22𝜃 (1 − cos𝜙)sin2𝜃cos2𝜃 −sin𝜙sin2𝜃

0 (1 − cos𝜙)sin2𝜃cos2𝜃 sin22𝜃 + cos𝜙cos22𝜃 sin𝜙𝑐𝑜s2𝜃
0 sin𝜙sin2𝜃 −sin𝜙𝑐𝑜s2𝜃 cos𝜙

] (1.54) 
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where 𝜃 is the rotation angle. If the incident beam is circularly polarized (see Tab. 1.1), the 

emerging beam will be then linear polarized: 

 

 

The Mueller matrix of a half-wave retarder (𝜙 = 180°) can be expressed as 

 

 

where 𝜃 is the rotation angle.  

The Mueller matrix described by Eq. (1.57) is similar to the Mueller matrix of a rotator 

(see Eq. (1.48)). However, there are some essential differences. We note that the ellipticity 

angle 𝜒  is changed to 𝜒 + 90° after the interaction of the incident polarized light with a 

rotated half-wave retarder, whereas it is not affected by the interaction with a true rotator. 

The orientation angle 𝜓 changes to 𝜓 − 𝜃 by a rotator. In case of polarized light incident to a 

rotated half-wave retarder the orientation angle 𝜓 changes to 2𝜃 − 𝜓. Half-wave plates are 

known as polarizing components that reverse the polarization state of the incident light. For 

example, if the incident light is a linear +45° polarized light, the emerging beam shows linear 

-45° polarized light after being transmitted through a half-wave retarder aligned with (𝑥, 𝑦) 

axes (𝜃 = 0°).  

1.3.5. Mueller matrix of a depolarizer 

Contrary to the basic polarizing elements (polarizer, retarder, and rotator), the depolarizer is 

an optical element that converts the polarized state of the incident beam into unpolarized (or 

partially polarized) state of the emerging beam, as illustrated in Fig. 1.8 [6], [9]. 

 𝑀 = [

1 0 0 0
0 cos22𝜃 sin2𝜃cos2𝜃 −sin2𝜃
0 sin2𝜃cos2𝜃 sin22𝜃 cos2𝜃
0 sin2𝜃 −cos2𝜃 0

] (1.55) 

 𝑆 =  [

1
∓sin 2𝜃
±𝑐𝑜s 2𝜃

0

] (1.56) 

 𝑀 = [

1 0 0 0
0 𝑐𝑜s4𝜃 sin4𝜃 0
0 sin4𝜃 −𝑐𝑜s4𝜃 0
0 0 0 −1

] (1.57) 
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Figure 1.8 Propagation of polarized light through a depolarizer. 

The impact of a depolarizer on an incident totally polarized light beam can be illustrated 

using the Poincaré sphere by the migration of the point from the surface towards the center of 

the sphere along a radius. The Mueller matrix of an intrinsic depolarizer [8] can be 

diagonalized by the unitary transformation, and it can be written as [6], [9], [10] 

 

 

The depolarizer reduces the degree of polarization. The partial polarization of the emerging 

beam, results from the incoherent superposition of the totally polarized states. Hence, in 

practice, the depolarization may arise when we measure a sample that has spatial or temporal 

inhomogeneity. For example, the multiple scattering of incident beam will generate various 

output polarization states and introduce the depolarization when these states are summed 

incoherently. 

1.4. Decompositions of the Mueller matrix 

For a real-valued 4× 4 matrix to be a physically realizable Mueller matrix, it should map a 

physical Stokes vector of the incident light beam into a physical Stokes vector of the 

emerging light beam, i.e., the degree of polarization must obey Eq. (1.26). The measured 

Mueller matrix (or transfer matrix of a sample) represents a mixture of pure (or non-

depolarizing) contributions, depolarization, and noise. Therefore, before attributing the 

magnitude of a particular element of Mueller matrix to retardance, diattenuation or 

depolarization of a sample under study we have to check the physical realizability of the 

Mueller matrix, and, in case the above-mentioned check failed, find the closest possible 

physically realizable Mueller matrix by performing noise filtering of experimental data. Then, 

y

x

Incident Beam

Depolarizer

Emerging Beam

 𝑀 = [

1 0 0 0
0 𝑎 0 0
0 0 b 0
0 0 0 c

]   (|𝑎|, |𝑏|, |𝑐|  ≤ 1) (1.58) 
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we decompose Mueller matrix to obtain the optical properties of the sample. For example, 

birefringence, dichroism, and depolarization of the sample can be extracted from Mueller 

matrix by applying the particular decomposition algorithms (e.g., Lu-Chipman polar 

decomposition, logarithmic decomposition, Cloude sum decomposition, etc.). [6], [8], [9]  

1.4.1. Noise in the experimental Mueller matrix data 

Within the framework of the Stokes-Mueller formalism, the Stokes vector of light having 

interacted with a linear optical system is represented by the linear combination of the Stokes 

vector elements of the incident beam. As a reminder, the degree of polarization of the 

emerging Stokes vector has to be less than or equal to one.  

 

 

Further, it has been shown that the Mueller matrix has to obey the constraint [6], [9], [12] 

 

 

where the sign of equality represents a non-depolarizing system.  

S. Cloude [1] demonstrated that the necessary and sufficient condition for a Mueller 

matrix to be physically realizable is the non-negativity of the eigenvalues of the 

corresponding coherency matrix, namely, the 4× 4 Hermitian positive semi-definite matrix 

𝑇𝑐, (i.e., 𝑧∗𝑇𝑐𝑧 ≥ 0 for any non-zero 4× 1 complex vector 𝑧, where 𝑧∗ denotes the conjugate 

transpose of 𝑧) with the elements defined as follows:  

 

 𝐷𝑂𝑃 =
𝐼pol

𝐼tot

=
(𝑆1

2 + 𝑆2
2 + 𝑆3

2)1/2

𝑆0

    0 ≤ 𝑝 ≤ 1 (1.26) 

 𝑇𝑟(𝑀𝑀𝑇) = ∑ 𝑚𝑖𝑗
2

3

𝑖,𝑗=0

≤ 4𝑚00
2  (1.59) 

𝑡00 =
𝑚00 + 𝑚11 + 𝑚22 + 𝑚33

2
 

 

𝑡02 =
𝑚02 + 𝑚20 + 𝑖(𝑚13 − 𝑚31)

2
 

 

𝑡10 =
𝑚01 + 𝑚10 + 𝑖(𝑚23 − 𝑚32)

2
 

 

𝑡12 =
𝑚12 + 𝑚21 + 𝑖(𝑚03 − 𝑚30)

2
 

 

𝑡20 =
𝑚02 + 𝑚20 − 𝑖(𝑚13 − 𝑚31)

2
 

 

𝑡22 =
𝑚00 − 𝑚11 + 𝑚22 − 𝑚33

2
 

 

𝑡30 =
𝑚03 + 𝑚30 + 𝑖(𝑚12 − 𝑚21)

2
 

 

𝑡32 =
𝑚23 + 𝑚32 − 𝑖(𝑚01 − 𝑚10)

2
 

𝑡01 =
𝑚01 + 𝑚10 − 𝑖(𝑚23 − 𝑚32)

2
 

 

𝑡02 =
𝑚03 + 𝑚30 − 𝑖(𝑚12 − 𝑚21)

2
 

 

𝑡11 =
𝑚00 + 𝑚11 − 𝑚22 − 𝑚33

2
 

 

𝑡13 =
𝑚13 + 𝑚31 − 𝑖(𝑚02 − 𝑚20)

2
 

 

𝑡21 =
𝑚12 + 𝑚21 − 𝑖(𝑚03 − 𝑚30)

2
 

 

𝑡23 =
𝑚23 + 𝑚32 + 𝑖(𝑚01 − 𝑚10)

2
 

 

𝑡31 =
𝑚13 + 𝑚31 + 𝑖(𝑚02 − 𝑚20)

2
 

 

𝑡33 =
𝑚00 − 𝑚11 − 𝑚22 + 𝑚33

2
 

(1.60a) 
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Then, the eigenvalues and eigenvectors of the coherency matrix 𝑇𝑐 can be used to decompose 

matrix 𝑇𝑐 into the sum: 

 

 

where the 𝜆𝑖  ( 𝑖  = 0, 1, 2, 3) are the eigenvalues of 𝑇𝑐 , and 𝑇𝑐𝑖  are projector matrices 

constructed from the eigenvectors of 𝑇𝑐 [1], [13], [14]. The eigenvalues are real because the 

coherency matrix is Hermitian positive semi-definite, and the eigenvectors are complex-

valued [15], [16]. The eigenvalues 𝜆𝑖  (𝑖 = 0, 1, 2, 3) verify 𝜆0 ≫ 𝜆1 ≫ 𝜆2 ≫ 𝜆3. A small 

negative eigenvalue of the coherence matrix can be the result of system noise or measurement 

errors. Therefore, it is a prerequisite to check the eigenvalues of the coherency matrix before 

applying the decomposition algorithm for extracting the polarimetric properties. The 

eigenvalue ratio, which represents the ratio of the largest negative eigenvalue to the dominant 

eigenvalue in decibels, is used as a criterion of the closeness to realizability [6]. The 

experimental noise on the Mueller matrix can be filtered by subtraction of the eigenvector 

contribution corresponding to the negative eigenvalue. We construct a diagonal matrix Λ =

𝑑𝑖𝑎𝑔(𝜆0, 𝜆1, 𝜆2, 𝜆3) and set all negative eigenvalues to zero. Then, we define a matrix V 

composed of the eigenvectors of the coherency matrix T and perform similarity transform 

𝑁 = 𝑉Λ𝑉−1 , where N is the coherence matrix corresponding to the closest physically 

realizable Mueller matrix [17] that we reconstruct by using the following set of the equations: 

 

 

1.4.2. Lu-Chipman decomposition of the Mueller matrix 

If the measured Mueller matrix is physically realizable, usually its elements do not allow the 

direct interpretation in terms of the polarization (diattenuation, retardance) and depolarization 

parameters of the sample. To extract this information from the experimental Mueller matrix 

we use a phenomenological approach and decompose Mueller matrix into a set of Mueller 

matrices of basic optical elements (diattenuator, retarder, depolarizer). The Mueller algebra is 

well developed and provides a toolkit of different decomposition algorithms [8]. We describe 

below two algorithms of Mueller matrix decomposition that we used in our studies. 

 𝑇𝑐 = 𝜆0𝑇𝑐0 + 𝜆1𝑇𝑐1 + 𝜆2𝑇𝑐2 + 𝜆3𝑇𝑐3 (1.61) 

𝑀00 = 2𝑁00 − 𝑀11 − 𝑀01 − 𝑀10 
 

𝑀01 = 𝑀10 + 𝑁22 − 𝑁11 
 

𝑀02 = 𝑅𝑒(𝑁10 + 𝑁32) 

 

𝑀20 = 𝑅𝑒(𝑁20 + 𝑁31) 

 

𝑀22 = 𝑅𝑒(𝑁30 + 𝑁21) 
 

𝑀03 = −𝐼𝑚(𝑁10 + 𝑁32) 
 

𝑀30 = 𝐼𝑚(𝑁20 + 𝑁31) 
 

𝑀10 = (𝑁00 + 𝑁11 − 𝑁22 − 𝑁33) 2⁄  
 

𝑀11 = 𝑁00 − 𝑁11 − 𝑀01 
 

𝑀12 = 𝑅𝑒(2𝑁10) − 𝑀02 
 

𝑀21 = 𝑅𝑒(2𝑁20) − 𝑀20  

 

𝑀33 = 𝑅𝑒(2𝑁30) − 𝑀22 
 

𝑀13 = 𝐼𝑚(2𝑁32) +  𝑀03 
 

𝑀31 = 𝐼𝑚(2𝑁20) − 𝑀30 
 

(1.60b) 

𝑀32 = 𝐼𝑚(𝑁30 + 𝑁21) 𝑀23 = 𝐼𝑚(2𝑁21) − 𝑀32  
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Lu-Chipman polar decomposition [2] is one of the non-linear polarimetric data 

compression algorithms that allows a depolarizing Mueller matrix to be decomposed into the 

product of three matrices, namely, the Mueller matrices of a diattenuator 𝑀𝐷, a retarder  𝑀𝑅, 

and a depolarizer 𝑀∆.  

 

 

As the matrix product does not commute, the sequential order of the optical elements is fixed 

for this decomposition algorithm. As discussed, a diattenuator (polarizer) affects the intensity 

transmittance T of the incident polarization states without introducing a phase shift. Then, the 

diattenuation is defined in transmission (reflection) configuration as:  

 

 

The intensity transmittance can be written in terms of the ratio of the first elements of the 

emerging and incident Stokes vectors:  

 

 

It can be shown that the maximum and minimum transmittances are given by 

 

 

Substituting Eq. (1.65) into Eq. (1.63) gives the scalar diattenuation of Mueller matrix:  

 

 

The components of the diattenuation vector 𝐃 = (𝐷𝐻, 𝐷45, 𝐷𝑐)
𝑇are given by 

 

 

where 𝑇𝐻, 𝑇𝑉, 𝑇45, 𝑇135, 𝑇𝑅, and 𝑇𝐿 are the transmittances for horizontally, vertically, linearly 

45°, linearly 135°, right circularly, and left circularly polarized light, respectively.  

 𝑀 = 𝑀∆ 𝑀𝑅  𝑀𝐷 (1.62) 

 𝐷 ≡
𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛

𝑇𝑚𝑎𝑥 + 𝑇𝑚𝑖𝑛

   (0 ≤ 𝐷 ≤ 1) (1.63) 

 𝑇 =
𝑠0

′

𝑠0

=
𝑚00𝑠0 + 𝑚01𝑠1 + 𝑚02𝑠2 + 𝑚03𝑠3

𝑠0

 (1.64) 

 

𝑇𝑚𝑎𝑥 = 𝑚00 + √𝑚01
2 + 𝑚02

2 + 𝑚03
2  

𝑇𝑚𝑖𝑛 = 𝑚00 − √𝑚01
2 + 𝑚02

2 + 𝑚03
2  

(1.65) 

 𝐷 =
𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛

𝑇𝑚𝑎𝑥 + 𝑇𝑚𝑖𝑛

=
1

𝑚00

√𝑚01
2 + 𝑚02

2 + 𝑚03
2  (1.66) 

 

𝐷𝐻 =
𝑇𝐻 − 𝑇𝑉

𝑇𝐻 + 𝑇𝑉

=
𝑚01

𝑚00

 

 

𝐷45 =
𝑇45 − 𝑇135

𝑇45 + 𝑇135

=
𝑚02

𝑚00

 

 

𝐷𝐶 =
𝑇𝑅 − 𝑇𝐿

𝑇𝑅 + 𝑇𝐿

=
𝑚01

𝑚00

 

(1.67) 
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The scalar value of the polarizance 𝑃  represents the polarization of the incident, 

unpolarized light due to the interaction with the sample characterized by its Mueller matrix M:  

 

 

The components of the polarizance vector are given by  

 

 

Thus, the nondepolarizing Mueller matrix can be described as the product of the Mueller 

matrix of retarder, 𝑀𝑅  and diattenuator, 𝑀𝐷.  

 

 

Using the diattenuation and polarizance vectors, the normalized Mueller matrix is written as 

 

 

The diattenuator matrix is given by [6], [18], [19]  

 

 

where 𝑇𝑢  is the transmittance of diattenuator for unpolarized light. The retarder matrix 

𝑀𝑅 can be calculated by multiplying the Mueller matrix 𝑀  and the inverse diattenuator 

matrix 𝑀𝐷
−1 [6], [18], [19].  

 

 

The total retardance R and the retardance vector 𝐑 are given by 

 𝑃 =
1

𝑚00

√𝑚10
2 + 𝑚20

2 + 𝑚30
2    (0 ≤ 𝑃 ≤ 1) (1.68) 

 𝐏 = (

𝑃𝐻

𝑃45

𝑃𝐶

)  =  
1

𝑚00

(

𝑚10

𝑚20

𝑚30

) (1.69) 

 𝑀 = 𝑀𝑅  𝑀𝐷 (1.70) 

 𝑀 = 𝑚00 [

1 𝑚01 𝑚02 𝑚03

𝑚10 𝑚11 𝑚12 𝑚13

𝑚20 𝑚21 𝑚22 𝑚23

𝑚30 𝑚31 𝑚32 𝑚33

] = 𝑚00 [1 𝐃𝑇

𝐏 𝑚
],  𝑚 =  [

𝑚11 𝑚12 𝑚13

𝑚21 𝑚22 𝑚23

𝑚31 𝑚32 𝑚33

] (1.71) 

 

𝑀𝐷 = 𝑇𝑢

[
 
 
 

1 𝑚01 𝑚02 𝑚03

𝑚01 𝑎 + 𝑏𝑚01
2 𝑏𝑚01𝑚02 𝑏𝑚01𝑚03

𝑚02 𝑏𝑚02𝑚01 𝑎 + 𝑏𝑚02
2 𝑏𝑚02𝑚03

𝑚03 𝑏𝑚03𝑚01 𝑏𝑚03𝑚02 𝑎 + 𝑏𝑚03
2 ]

 
 
 

= 𝑇𝑢 [
1 𝐃𝑇

𝐃 𝑚𝐷
], 

 

𝐷 =  √𝑚01
2 + 𝑚02

2 + 𝑚03
2 , 𝑎 = √1 − 𝐷2 , 𝑏 =

1 − √1 − 𝐷2

𝐷2
 

(1.72) 

𝑀𝑅  =  
1

𝑎
[

𝑎 0 0 0
0 𝑚11 − 𝑏(𝑚10𝑚01) 𝑚12 − 𝑏(𝑚10𝑚02) 𝑚13 − 𝑏(𝑚10𝑚03)

0 𝑚21 − 𝑏(𝑚20𝑚01) 𝑚22 − 𝑏(𝑚20𝑚02) 𝑚23 − 𝑏(𝑚20𝑚03)

0 𝑚31 − 𝑏(𝑚30𝑚01) 𝑚32 − 𝑏(𝑚30𝑚02) 𝑚33 − 𝑏(𝑚30𝑚03)

] 

 

             = [
1 𝟎𝑇

𝟎 𝑚𝑅
] , 𝐷 =  √𝑚01

2 + 𝑚02
2 + 𝑚03

2 , 𝑎 = √1 − 𝐷2, 𝑏 =
1 − √1 − 𝐷2

𝐷2
 

(1.73) 
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Thus, a retarder Mueller matrix has 3 degrees of freedom given by its retardance vector. In 

terms of the retarder Mueller matrix elements, the scalar linear retardance 𝑅𝐿  and optical 

rotation 𝜓 can be written as [20] 

 

 

 

Finally, the Mueller matrix of the pure depolarizer with the principal axes along 𝑠1, 𝑠2 and 𝑠3 

axes (𝐒 = (1, (𝐬⃗)T)T, 𝐬⃗ = (𝑠1, 𝑠2, 𝑠3)) can be expressed by  

 

 

In general, the principal axes of a depolarizer can be along any three orthogonal axes. Thus, a 

more general expression for a depolarizer is given by  

 

𝑀∆ = [
1 𝟎𝑇

𝟎 𝑚∆
]   𝑚∆

𝑇 = 𝑚∆    (1.79b) 

The Mueller matrix, shown in Eq. (1.79b), has only six degrees of freedom because it does 

not include the polarizance that a depolarizer may display. Then, the most general expression 

for depolarizer with polarizance is:  

 

 

where 𝐏∆  denotes the polarizance vector of a depolarizer. The general form for the 

depolarizing Mueller matrix (Eq. (1.80)) has nine degrees of freedom, and it has zero 

diattenuation or retardance. It can characterize the polarizing capability of depolarizer, as 

well its depolarization properties, described by the eigenvalues and eigenvectors of 𝑚∆.  

 𝑅 = |𝐑| =  cos−1 (
|𝑡𝑟(𝑚𝑅) − 1|

2
) (0 ≤ 𝑅 ≤ 𝜋) (1.74) 

 𝑅 = |𝐑| =  2 𝜋 − cos−1 (
|𝑡𝑟(𝑚𝑅) − 1|

2
) (𝜋 ≤ 𝑅 ≤ 2𝜋) (1.75) 

   

 𝐑 = (

𝑅𝐻

𝑅45

𝑅𝐶

)  =  
𝑅

2sin (𝑅)
(

𝑀𝑅(2,3) − 𝑀𝑅(3,2)

𝑀𝑅(3,1) − 𝑀𝑅(1,3)

𝑀𝑅(1,2) − 𝑀𝑅(2,1)
) (1.76) 

 
 𝑅𝐿 = √𝑅𝐻

2 + 𝑅45
2 = 

 

= 𝑐𝑜𝑠−1(√(𝑀𝑅(2,2) + 𝑀𝑅(3,3))2 + (𝑀𝑅(3,2) − 𝑀𝑅(2,3))2 − 1) 

(1.77) 

 𝜓 = 𝑡𝑎𝑛−1 [
𝑀𝑅(3,2) − 𝑀𝑅(2,3)

𝑀𝑅(2,2) + 𝑀𝑅(3,3)
] (1.78) 

 𝑀∆ = [

1 0 0 0
0 𝑎 0 0
0 0 b 0
0 0 0 c

]  (|𝑎|, |𝑏|, |𝑐|  ≤ 1) (1.79a) 

 

 𝑀∆ = [
1 𝟎𝑇

𝐏∆ 𝑚∆
] ,   𝑚∆

𝑇 = 𝑚∆ (1.80) 
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The depolarization coefficient ∆ is given by 

 

1.4.3. Logarithmic decomposition of the Mueller matrix  

Different algorithms of decomposition of Mueller matrix have been extensively studied, and 

several methods (e.g., Lu–Chipman, reverse, symmetrical, and differential) [2], [21]-[23] 

were proposed for the interpretation of Mueller matrix data. Among them, a logarithmic 

Mueller matrix decomposition method (LMMD) developed for transmission geometry is the 

one that considers all optical properties as continuously distributed within the volume of the 

medium. [24] It makes LMMD particularly suitable for the studies of biological tissues in a 

transmission configuration. The key steps of LMMD are summarized below. Within the 

framework of the differential matrix formalism of a fluctuating anisotropic medium [3], [4], 

the transmission Mueller matrix is described by the following equation: 

 

 

The Mueller matrix M(z), which is dependent on an optical path length z, is associated 

with a unique differential matrix m. This matrix is constant for both non-depolarizing and 

depolarizing media that are homogeneous along the light beam propagation direction. For a 

depolarizing medium, the differential matrix m can be decomposed into G-antisymmetric mm 

and G-symmetric mu [where G = diag(1,-1,-1,-1) is the Minkowski metric and T denotes 

matrix transposition] [25]: 

 

 

 

The elements of matrix mm (p1 through p6) represent the elementary polarization 

properties; linear (x-y) dichroism, linear (−45o- +45o) dichroism, and circular dichroism, 

linear (x-y) retardance, linear (−45o - +45o) retardance, and circular retardance. The dichroic 

and retardance elementary properties are proportional to the imaginary and real parts of the 

linear and circular anisotropies, respectively [3], [25]. The elements of mu (d0 through d9) 

describe the depolarization properties of the medium. Diagonal terms (d7, d8, and d9) 

represent the anisotropic depolarization coefficients, and the off-diagonal elements (d1 

through d6) show the uncertainties of polarization properties.  

 ∆ =  1 − 
|𝑡𝑟(𝑚∆) − 1|

3
 (0 ≤ ∆ ≤ 1) (1.81) 

 
𝑑𝑀(𝑧)

𝑑𝑧
= m𝑀(𝑧) (1.82) 

 mm = 
1

2
 (m − GmTG),    mu = 

1

2
 (m + GmTG) (1.83) 

 

m = mm + mu 

 

= (

0 𝑝1 𝑝2 𝑝3

𝑝1 0 𝑝6 −𝑝5

𝑝2 −𝑝6 0 𝑝4

𝑝3 𝑝5 −𝑝4 0

) + (

𝑑0 𝑑1 𝑑2 𝑑3

−𝑑1 𝑑0 − 𝑑7 𝑑6 𝑑5

−𝑑2 𝑑6 𝑑0 − 𝑑8 𝑑4

−𝑑3 𝑑5 𝑑4 𝑑0 − 𝑑9

) 

(1.84) 
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The statistical interpretation of the Mueller matrix M of a continuous depolarizing 

medium implies that the depolarization is a result of a spatial or temporal averaging process 

over M when the polarization properties of medium (contained in differential matrix m) 

fluctuate and matrix M varies. In such a case, it has been shown [25] that the matrix mm 

represents the mean values 〈m〉 of the polarization properties. The matrix mu contains mean 

square values of the fluctuations of the polarization properties, i.e., their variances (or 

uncertainties) 〈∆m2〉 linearly depends on the slab’s thickness z (brackets <…> in Eq. (1.85) 

refer to the spatial averaging in the transverse plane to the direction of light propagation). If 

the medium is assumed to be homogeneous in the longitudinal direction of the propagation of 

light, then [25]  

 

 

Substituting the statistical representation of differential matrix m from Eq. (1.85) into Eq. 

(1.82) and integrating the latter equation along z, we obtain 

 

 

It follows from Eq. (1.86) that the mean values of the polarimetric properties scale up 

linearly with the slab thickness while the depolarization properties evolve quadratically with 

it. The differential matrix m of a homogeneous medium can be obtained from a simulated or 

experimentally measured Mueller matrix M of a sample by computing the matrix logarithm, 

which can be represented as a sum of two matrices Lm and Lu of opposite G-symmetry:  

 

 

 

Calculating the logarithm of Eq. (1.86) at z = 1 (i.e., taking the thickness of the slab as 

unit one), we observe that the antisymmetric component Lm and the symmetric component Lu, 

respectively, equal the mean values and (half) the variances of the polarization properties, 

accumulated over the slab thickness:  

 

 

It is worth to recall that the elements of Lm and Lu matrices have a straightforward physical 

interpretation in terms of polarimetric properties of a sample as follows [3], [20], [25]: 

 

 

 

 

 𝑀 = 〈m〉 =  〈∆m2〉𝑧;   mm = 〈m〉 ;   mu =  〈∆m2〉𝑧 (1.85) 

 M (z) = exp [m0𝑧 + 
1

2
〈∆m2〉𝑧2] (1.86) 

 L = ln M,  L = Lm + Lu, (1.87) 

 Lm = 
1

2
 (L − GLTG),    Lu = 

1

2
 (L + GLTG) (1.88) 

 Lm = mm = 〈m〉,    Lu = 
1

2
 mu = 

1

2
 〈∆m2〉 (1.89) 



 

  32 

 
 

1.5. Conclusions  

In this chapter, we introduced the basic concepts of polarization. We defined the polarization 

ellipse as the locus of points representing the tip of electric field vector oscillating in the 

(𝑥, 𝑦) plane orthogonal to the direction of the propagation of EM wave. We demonstrated 

that the polarization ellipse can describe any state of completely polarized light (linear, 

elliptical, circular). However, the polarization ellipse cannot be observed directly at optical 

frequencies because of its short oscillation time (10-15 s), and it cannot describe neither 

partially polarized, nor unpolarized light. Next, we introduced the Stokes parameters, based 

on measured light intensity, and the associated Stokes vectors in order to characterize 

completely polarized light, as well as partially or fully depolarized light. The Stokes 

parameters are observable because they are based on the intensity (the time average of the 

squared electric field amplitude) and can therefore be detected experimentally. In the 

polarimetric experiment, the incident polarized beam interacts with the sample, and the 

emerging beam is detected. The polarization states of both incident and emerging beams are 

characterized by the corresponding Stokes vectors. The transfer matrix describing the 

interaction of the sample with polarized light and the transformation of the polarization state 

of the incident light beam is called the Mueller matrix. The latter contains the most complete 

information on the polarimetric properties of a sample. The Mueller matrices of the basic 

optical elements (polarizer, retarder, depolarizer, and rotator) are introduced and discussed.  

Mueller matrix data compression algorithms of polarimetric data processing are 

introduced; the concepts of physically realizable Mueller matrix and experimental Mueller 

matrix noise filtering are discussed. The special focus is placed on two particular types of 

Mueller matrix decomposition algorithms, namely, the Lu-Chipman polar sequential 

decomposition and the logarithmic (or differential) decomposition that we used for the 

analysis of the optical properties (diattenuation, retardance, and depolarization) of the 

biological specimens in our studies.  

 

Linear dichroism  √(𝐿𝑚(1,2))2 + (𝐿𝑚(1,3))2 (1.90) 

Circular dichroism  𝐿𝑚(1,4) (1.91) 

Net dichroism  √(𝐿𝑚(1,2))2 + (𝐿𝑚(1,3))2 + (𝐿𝑚(1,4))2 (1.92) 

Linear retardance  √(𝐿𝑚(2,4))2 + (𝐿𝑚(3,4))2 (1.93) 

Circular retardance   𝐿𝑚(2,3) (1.94) 

Total retardance  √(𝐿𝑚(2,4))2 + (𝐿𝑚(3,4))2 + (𝐿𝑚(2,3))2 (1.95) 

Total depolarization   
1

3
|𝐿𝑢(2,2) + 𝐿𝑢(3,3) + 𝐿𝑢(4,4)| (1.96) 

Orientation angle  

(fast axis)   

1

2
 𝑡𝑎𝑛−1 [ 

𝐿𝑚(2,4)

𝐿𝑚(3,4)
 ] (1.97) 
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In the Chapter 1 we briefly reviewed the fundamentals of the Mueller polarimetry (e.g., 

polarization ellipse, Stokes parameters, Mueller matrices of basic optical elements, etc.) and 

the non-linear Mueller matrix compression algorithms used for the check of physical 

realizability of experimental Mueller matrices, for noise filtering, and for physical 

interpretation of Mueller matrix data in terms of the polarimetric properties of studied 

samples. Now, we provide the general description of any polarimetric setup within the 

framework of Stokes-Mueller, then we discuss the procedure of the optimization of a 

complete Mueller matrix polarimeter by choosing an appropriate arrangement of the optical 

components of the polarization state generator (PSG) and the polarization state analyzer (PSA) 

that minimizes the condition numbers of the corresponding matrices and, consequently, 

minimizes the error propagation. The principles of the eigenvalue calibration method (ECM) 

of the complete Mueller polarimeter that was first developed in LPICM (École polytechnique, 

France) [1] are briefly recalled. We also present two custom-built multi-spectral ferroelectric 

liquid crystal-based imaging Mueller polarimeters (the microscope operating in transmission 

and the wide-field imaging system operating in reflection) that were used in our study for 

imaging of both thin and thick sections of biological tissue, respectively. 
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2.1. General principles of Mueller polarimetry  

Hereafter, the description of the polarimetric instruments, namely, the complete imaging 

Mueller polarimeters used in our studies, will be done within the framework of the Stokes-

Mueller formalism. The schematic operation of a polarimetric system operating in 

transmission configuration is shown in Fig. 2.1, but the same description holds for the 

reflection configuration. 

 

 

 
Figure 2.1 Stokes-Mueller description of the operation of any polarimetric setup. 

The polarimetric setup comprises a light source, a polarization state generator (PSG) and a 

polarization state analyzer (PSA), and a detector (CCD camera for imaging polarimeter). Our 

custom-built polarimeters are based on a sequential modulation and analysis of light beam 

polarization by using the discrete polarization basis states. In general, the PSG sequentially 

generates N1 different polarizations, represented by N1 different Stokes vectors 𝐒𝑖 of the light 

beam incident on a sample. 𝐌 is the Mueller matrix (4×4 real-valued matrix) that describes 

the polarimetric properties of a sample, and the product 𝐌 · 𝐒𝑖  is the Stokes vector that 

describes the polarization state of the emerging light beam after its interaction with a sample. 

The light beam passes through the PSA that is characterized by the Stokes vector 𝑺𝑗
′  (j 

=1,…,N2). It means that if we will send the unpolarized light beam through the PSA in the 

reverse direction, the polarization state of the transmitted light beam will be described by the 

Stokes vector 𝑺𝑗
′. Finally, the light beam intensity is registered on a detector and is described 

by the scalar product of two Stokes vectors 𝑺𝑗
′ ·and 𝐌 · 𝐒𝑖 . 

We construct the modulation matrix 𝐖 (4 × N1) by using the Stokes vectors 𝐒𝑖  as its 

columns. Depending on the value of N1 the PSG is called incomplete (N1 < 4), complete (N1 

= 4 and the Stokes vectors are linearly independent, hence, they form a complete basis of the 

polarization space and matrix 𝐖 is invertible), and redundant (N1 > 4 and the 𝐒𝑖 vectors form 

an overcomplete basis of the polarization space, and, consequently, the modulation matrix 𝐖 

(4 × N1) has a pseudo-inverse).  

The PSA operates as a polarization filter for the light beam emerging from a sample. 

Similarly to the construction of the modulation matrix 𝐖 (4 × N1), we can build the analysis 

matrix 𝐀 (N2 ×4) of the PSA. We use the Stokes vectors 𝑺𝑗
′ of the polarization filter PSA to 

define the rows of the analysis matrix 𝐀. The PSA may also be incomplete, complete, or 

redundant depending on the dimension N2 of the polarization space spanned by the row 

vectors of the analysis matrix 𝐀. 
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Generating N1 polarization states of the incident light by PSG and projecting them on the 

N2 states of the polarization filter PSA we obtain the raw intensity signals matrix that can be 

written as 

 

 

To obtain the Mueller matrix 𝐌 of a sample from the raw intensity matrix 𝐁, one needs 

to know the matrices 𝐀 and 𝐖, i. e. the instrument has to be calibrated. Assuming that the 

instrument is a complete Mueller polarimeter (i. e. elements PSG and the PSA are complete 

or redundant), the Mueller matrix 𝐌 of a sample can be calculated by inverting (or pseudo 

inverting in case of redundant PSG / PSA) the matrices 𝐀 and 𝐖 

 

 

The polarization modulation and analysis can be implemented by using different optical 

components. e.g., rotating retardation plates (e.g., wave plates [2]), photoelastic modulators 

(PEMs) [3], liquid-crystal variable retarders (LCVR) [4], [5], or ferroelectric liquid crystals 

(FLCs) [6]-[10]. All approaches have some pros and cons: 1) mechanical rotation of a wave 

plate requires more time comparing to electrically-driven switching of LCVR or FLC state; 2) 

PEM-based polarimeter is challenging to miniaturize due to the large size of piezoelectric 

motors; 3) LCVR-based polarimeters are well suited for the imaging applications but the 

operation performance of LCVRs is affected by the variations of ambient temperature, and 

their response time (few milliseconds) may be a limiting factor for the biomedical 

applications. FLCs-based polarimeters do not require any mechanical moving parts and allow 

the fast polarization modulation (few microseconds) that can be beneficial for the analysis of 

biological samples. Furthermore, the liquid crystals are suitable for polarimetric imaging 

because of broad angular acceptance, wide clear apertures, low aberrations, and no image 

wander [6], [11].  

2.1.1. Design optimization of the complete Mueller polarimeter 

The main goal of the design optimization of a complete Mueller polarimeter consists in the 

minimization of noise in the elements of Mueller matrix 𝐌 in the presence of additive noise 

in the elements of raw measurement matrix 𝐁 (see Eq. (2.1)).  We address this question by 

exploring the degrees of freedom on the selection of the appropriate PSG and PSA 

polarization states basis. The Stokes vectors that represent these polarization states should 

form the matrices A and W that will not increase an error propagation from B to M. In other 

words, the optimization of the A and W matrices has to reduce the numerical errors produced 

by their inversion and minimize the errors in the M matrix. We restrict ourselves to the case 

N1 = N2 =4, but the following considerations can be easily generalized for a redundant PSA / 

PSG.  

 𝐁 = 𝐀𝐌𝐖 (2.1) 

 𝐌 = 𝐀−1𝐁𝐖−1 (2.2) 
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The condition number of any square matrix 𝐗 is defined as  

 

where symbol ‖∙ ‖ denotes the norm of a matrix (or vector). The norm of matrix 𝐗 is chosen 

as 

 

 

where 𝜆𝑖 are the singular values of matrix 𝐗. It is worth to mention that for the real-valued 

but non-symmetric matrix its singular values are not equal to its eigenvalues and have to be 

calculated using general singular value decomposition algorithm [12]. According to Eqs (2.3) 

and (2.4), the condition number of a matrix is defined as the ratio of the largest (𝜆𝑚𝑎𝑥) and 

the smallest (𝜆𝑚𝑖𝑛) of the singular values 𝜆𝑖: 

 

 

If we define the vector 𝐘 = 𝐗𝐙 and use the Euclidian norm for both vectors 𝐘 and 𝐙, the 

following relation holds 

 

 

Let us consider the optimization of the design of the PSA first. The Stokes vector S of 

the light incident on the PSA and the vector I that is composed of four intensities measured at 

the detector are related by 

 

 

 

The rows of the matrix A represent the transposed Stokes vectors of the completely 

polarized light. Varying the configuration of the PSA by changing the relative orientations of 

its optical components, the matrix A will be varied as well, but its norm ‖𝐀‖ (see Eq. (2.4)) 

will hardly change. However, if A becomes close to a singular matrix (e.g. two matrix rows 

are almost the same, that corresponds to the same polarization state being measured twice) 

the norm ‖𝐀−1‖ can take an arbitrary large value. 

Assuming that any intensity measurement vector 𝐈 is affected by an additive noise 𝛿𝐈 

(white Gaussian noise that has a zero-mean value in a normal distribution) the corresponding 

error in the Stokes vector 𝐒 and the estimation of its norm (see Eqs (2.6) and (2.7)) are given 

by 

 

 

 𝐂𝐨𝐧𝐝(𝐗) = ‖𝐗‖‖𝐗−1‖    (2.3) 

 ‖𝐗‖ = 𝑠𝑢𝑝[𝜆𝑖(𝐗)]  (2.4) 

 𝐂𝐨𝐧𝐝(𝐗) = |
𝜆𝑚𝑎𝑥

𝜆𝑚𝑖𝑛
| (2.5) 

 ‖𝐘‖ ≤ ‖𝐗‖‖𝐙‖  (2.6) 

 𝐈 = 𝐀𝐒, (2.7a) 

 𝐒 = 𝐀−𝟏𝐈 (2.7b) 

 δ𝐒 = 𝐀−𝟏δ𝐈 (2.8) 
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Whereas the amplitude of the intensity signal 𝐈 may vary significantly, the amplitude 

‖δ𝐈 ‖ of the additive noise is assumed to remain constant when the PSA configuration is 

changed. Hence, the norm of the error ‖𝛿𝑺‖ is limited by the norm ‖𝐀−1‖. The latter can be 

minimized by the optimal design of the PSA. The minimization of the norm ‖𝐀−1‖  is 

equivalent to the minimization of the condition number 𝐂𝐨𝐧𝐝(𝐀) because the variation of the 

norm ‖𝐀‖ is small for the different configurations of the PSA.  

The condition number of an arbitrary matrix ranges from one for a unitary (well-

conditioned) matrix to positive infinite for a singular (ill-conditioned) matrix. The rows of the 

matrix 𝐀 for the sequential PSA represent the Stokes vectors with the degree of polarization 𝜌 

(0 ≤ 𝜌 ≤ 1), For matrix A to be unitary, the row vectors should form an orthogonal basis. 

This condition is not satisfied for any set of four Stokes vectors, as they can never be 

orthogonal to each other. It was demonstrated [13] that 

 

 

Minimizing the condition number of the matrix 𝐀, we make it maximally close to a 

unitary matrix. Intuitively it is clear that to achieve this optimization the polarization basis 

states of the PSA have to be as different as possible from each other. It was shown that for a 

complete PSA such optimal design corresponds to four polarization basis states being the 

regular tetrahedron vertices on the Poincaré sphere [14]. This criterion of the optimization of 

noise propagation was generalized for a redundant PSA by choosing the polarization basis 

states as the vertices of simple symmetric polyhedrons (e. g. N2 = 6 - vertices of an 

octahedron, N2 = 8 - vertices of a cube, etc.) at the Poincaré sphere [15]. It was shown that 

the optimization of the matrix 𝐀 not only minimizes the noise on the Stokes vector 𝐒 but also 

distributes noise equally among the components of 𝐒 [16]. 

These results are easily generalized to the design optimization of the PSG and the 

complete Mueller polarimeter. The Eq. (2.1) can be written as follows.  

 

 

where 𝐌⃗⃗⃗⃗ and 𝐁⃗⃗⃗  are 16×1 real vectors, and (𝐖−1)T ⊗ 𝐀−1  is a 16×16 real matrix. The 

symbol ⊗  denotes the Kronecker product, (·)T  stands for the transpose matrix. Since a 

Kronecker product of the inverse matrices is equal to the inverse of a Kronecker product, the 

Eq. (2.11) can be written as:  

 

 

where (𝐖T ⊗ 𝐀)−1 is also a 16×16 real matrix.  

 ‖𝛿𝑺‖ ≤ ‖𝐀−1‖‖δ𝐈‖ (2.9) 

 𝐂𝐨𝐧𝐝(𝐀) ≥ √3  (2.10) 

 𝐌⃗⃗⃗⃗ = ((𝐖−1)T ⊗ 𝐀−1)𝐁⃗⃗⃗  (2.11) 

 𝐌⃗⃗⃗⃗ = (𝐖T ⊗ 𝐀)−1𝐁⃗⃗⃗ = 𝐐−1𝐁⃗⃗⃗  (2.12) 
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In the presence of noise on elements of the vector 𝐁⃗⃗⃗ (that are the measured intensities), it 

follows from Eqs (2.6) and (2.12):  

 

 

where Δ𝐁⃗⃗⃗ is the error matrix associated with the vector 𝐁⃗⃗⃗, and Δ𝐌⃗⃗⃗⃗ represents the error matrix 

associated with the vector 𝐌⃗⃗⃗⃗, 𝐂𝐨𝐧𝐝(𝐐) = ‖𝑸−1‖‖𝐐‖ is the condition number of the matrix 

𝐐. 

Eq. (2.13) shows that the value of relative error of the vector 𝐌⃗⃗⃗⃗ can be as large as the 

value of relative error of the vector 𝐁⃗⃗⃗  multiplied by the condition number of matrix 𝐐 . 

Obviously, the minimization of 𝐂𝐨𝐧𝐝(𝐐) and ‖Δ𝐁⃗⃗⃗‖/‖𝐁⃗⃗⃗‖ will minimize the relative error 

‖Δ𝐌⃗⃗⃗⃗‖/‖𝐌⃗⃗⃗⃗‖. However, even for the small values of relative error of the vector 𝐁⃗⃗⃗ the value of 

relative error of the vector 𝐌⃗⃗⃗⃗ can become non-negligible if the value of  𝐂𝐨𝐧𝐝(𝐐) is large. 

Thus, as previously mentioned, it is necessary to minimize the condition number 𝐂𝐨𝐧𝐝(𝐐) to 

limit noise propagation. The matrix 𝐐 is the Kronecker product of the transpose of matrix 𝐖 

and the matrix 𝐀. Then, 𝐂𝐨𝐧𝐝(𝐐) can be written as [17], [18] 

 

 

where 𝐂𝐨𝐧𝐝(𝐖)  and 𝐂𝐨𝐧𝐝(𝐀)  are the condition numbers of the matrices W and A, 

respectively.  

It is worth to mention that noise in all components of the Mueller matrix 𝐌 is minimized 

and equally distributed if the condition numbers of both matrix 𝐀  and matrix 𝐖  are 

minimized. If one is interested in measuring the specific elements of Mueller matrix only, 

other design optimization criteria may be applied. Whereas the minimization of both 

𝐂𝐨𝐧𝐝(𝐀) and 𝐂𝐨𝐧𝐝(𝐖) minimizes the effect of statistical noise on intensity matrix 𝐁, in 

practice it also helps to minimize the impact of the systematic errors. 

The condition number of each matrix 𝐀  or 𝐖  ranges from √3  to positive infinite 

(singular matrix), hence the inverse of the condition number ranges from zero (singular 

matrix) to 1/√3 . The optimization of the custom-built complete imaging polarimeters used in 

our studies was performed using the criteria of the maximization of the inverse of the 

condition numbers 𝐂𝐨𝐧𝐝(𝐀) and 𝐂𝐨𝐧𝐝(𝐖) (with 1/√3  ≈ 0.5773 being the best theoretical 

maximal value) [19], [20]. 

2.1.2. Calibration of the complete Mueller polarimeter 

As explained above, the experimental Mueller matrix M can be extracted from the raw 

intensity matrix B provided the matrices W and A are known. The determination of both 

 
‖Δ𝐌⃗⃗⃗⃗‖

‖𝐌⃗⃗⃗⃗‖
≤ ‖𝑸−1‖‖𝐐‖

‖Δ𝐁⃗⃗⃗‖

‖𝐁⃗⃗⃗‖
= 𝐂𝐨𝐧𝐝(𝐐)

‖Δ𝐁⃗⃗⃗‖

‖𝐁⃗⃗⃗‖
 (2.13) 

 𝐂𝐨𝐧𝐝(𝐐) = 𝐂𝐨𝐧𝐝(𝐖) 𝐂𝐨𝐧𝐝(𝐀) (2.14) 
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matrices (W and A) is called the calibration. In practice, it is quite difficult to make the 

accurate models of these two matrices because of existing inaccuracies in the characteristics 

of optical components of PSG / PSA (polarizer and two ferro-electric liquid crystal retarders 

in our case), their relative alignment, interference effects, beam divergence, or Gaussian 

white noise. To overcome these problems the Eigenvalue Calibration Method (ECM) 

developed in the LPICM by E. Compain [1] was used for the calibration of the complete 

Mueller polarimeter. This method does not require an accurate optical modeling of the PSG 

and PSA components and can be applied in both transmission and reflection configurations. 

The ECM determines the actual W and A matrices from a set of measurements with the 

reference samples, namely, the linear dichroic retarders that do not need to be perfectly 

characterized in advance, because their optical parameters (transmission, diattenuation, 

retardation) are provided by the calibration procedure itself. The Mueller matrix of a linear 

dichroic retarder has the following form: 

 

 

where 𝜏 is transmission coefficient, Ψ and Δ are the ellipsometric angles [20], and 𝜃  is the 

azimuth of the element eigenaxis with respect to the reference axis 𝑥. R(𝜃) is the rotator 

matrix describing within the framework of Stokes-Mueller formalism a rotation by an angle 

𝜃  around the normal to the plane defined by the eigenaxes of the optical element. 

The eigenvalues of the matrix defined in (2.15) are independent of  𝜃 and given by:  

 

 

where 𝜆1and 𝜆2  are the real numbers, and 𝜆3  and 𝜆4  are the complex numbers [20]. The 

elements of the matrix 𝐌(𝜏,Ψ, Δ, 𝜃) can be calculated using Eq. (2.16).  

 

 

𝐌(𝜏,Ψ, Δ, 𝜃) = 𝜏𝐑(𝜃) [

1 − cos 2Ψ 0 0
− cos 2Ψ 1 0 0

0 0 sin 2Ψ cos Δ sin 2Ψ sin Δ
0 0 − sin 2Ψ sin Δ sin 2Ψ cos Δ

]𝐑(-𝜃) (2.15) 

 

𝜆1 = 2τ sin2 Ψ 
 

λ2 = 2τ cos2 Ψ 
 

λ3 = τ sin(2Ψ) exp(𝑖Δ) 
 

λ4 = τ sin(2Ψ) exp (−𝑖Δ) 

(2.16) 

 

τ = 0.5(𝜆1 + 𝜆2) 
 

cos 2Ψ = (𝜆2 − 𝜆1) (𝜆1 + 𝜆2)⁄  
 

sin 2Ψ cosΔ = (𝜆3 + 𝜆4) (𝜆1 + 𝜆2)⁄  
 

sin 2Ψ sin Δ = −𝑖 (𝜆3 − 𝜆4) (𝜆1 + 𝜆2)⁄  

(2.17) 
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It means that the matrix 𝐌(𝜏,Ψ, Δ, 𝜃) can be reconstructed from the eigenvalues except of the 

azimuth angle 𝜃  and corresponding matrix 𝐑(𝜃) . The calculation of this angle will be 

addressed later. 

Hereafter we describe the consequent steps of the calibration procedure. The first 

measurement is made without any reference sample.  

 

 

where the experimental matrix 𝐁𝟎  (4×4 real matrix) is a product of the matrices A and W. In 

other words, the elements of 𝐁𝟎  are the 16 intensities values corresponding to all 

permutations of the polarized states of the PSG and the PSA. For simplicity, we suppose that 

the non-systematic errors are small enough (e.g., we can always do repetitive data 

acquisitions and average them).  

Then, a set of reference samples is measured. If we denote by 𝐌𝐢 the Mueller matrix of 

the reference sample 𝑖 the experimental matrix 𝐁𝐢 can be expressed as [20] 

 

 

Substituting the expression for the matrix 𝐁𝟎 from Eq. (2.18) into Eq. (2.19), the matrix 𝐁𝐢 

can be written as [11] 

 

 

Then, we calculate the matrix  

 

 

The matrix 𝐂𝐢, that combines the inverse of 𝐁𝟎 and 𝐁𝐢 matrices, has the same eigenvalues as 

the matrix 𝐌𝐢 . Hence, the latter can be reconstructed from the eigenvalues of the 

experimental matrix 𝐂𝐢 except of the rotation matrix 𝐑(𝜃)..  

Eq. (2.21) can be written as  

 

 

Hence,  

 

 

where 𝐇i = ((𝐈 ⊗ 𝐌i) − (𝐂i
𝐓 ⊗ 𝐈)) is a 16×16 matrix, I is a 4×4 identity matrix, and the 

symbol ⊗ denotes the Kronecker product. Multiplied by the transpose of the matrix 𝐇𝐢
𝐓, the 

Eq. (2.16) can be written as:   

 𝐁𝟎 = 𝐀𝐖 (2.18) 

 𝐁𝐢 = 𝐀𝐌𝐢𝐖 (2.19) 

 𝐁𝐢 = 𝐀(𝐖𝐖−𝟏)𝐌𝐢𝐖 = 𝐁𝟎(𝐖
−𝟏𝐌𝐢𝐖) (2.20) 

 𝐂𝐢 = (𝐁𝟎)
−𝟏𝐁𝐢 = 𝐖−𝟏𝐌𝐢𝐖 (2.21) 

 𝐌i𝐖 − 𝐖𝐂i = 𝐌i𝐖𝐈 − 𝐈𝐖𝐂i = 𝟎 (2.22) 

 (𝐈 ⊗ 𝐌i)𝐖 − (𝐂i
𝐓 ⊗ 𝐈)𝐖 = 𝐇i𝐖 = 𝟎. (2.23) 
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where 𝐊𝐢 = 𝐇𝐢
𝐓𝐇i is a 16×16 symmetric real matrix and positive semidefinite, which means 

that all its eigenvalues are always zero or positive. Then, the matrix W, written as a 16×1 

vector W16, has to be an eigenvector corresponding to a zero eigenvalue of 𝐊𝐢 matrix.  

In our study, we used three different optical elements as the reference samples for the 

calibration, namely, a polarizer P0°  (Ψ = 0°), a polarizer P90° (Ψ = 90°), and a phase 

retarder L30° with the fast axis rotated by 30° with the respect to the transmission axis of a 

polarizer P0 within the plane orthogonal to the direction of light propagation. The Eq. (2.24) 

has to be verified for all three reference sample measurements 

 

 

where K is also a positive semidefinite symmetric real matrix, so it can be diagonalized. In 

theory, matrix K should have only one null eigenvalue, and the others are non-zero 

eigenvalue because Eq. (2.25) should have only one non-trivial solution W16. Then, Eq. (2.25) 

can be written as  

 

 

where 𝜆𝑖 (𝑖 = 1, 2…16) are 16 eigenvalues of the matrix K that obey the relationship 𝜆1 >

𝜆2 > ⋯ > 𝜆15 ≫ 𝜆16 = 0 and 𝐎 is the orthonormal matrix whose rows are the eigenvectors 

of K. [20], [21]. Because of the limited experimental precision that affects the values of the 

measured matrices 𝐂i , the null space of the corresponding matrix K is empty. i.e. its 

eigenvalues are all different from zero. However, the smallest eigenvalue 𝜆16 (that should be 

null in theory) is close to zero in reality. 

We can now address the problem of the determination of still unknown azimuth angles 𝜃𝑖. 

The matrix 𝐊𝐢 can be calculated as a function of the azimuth angle 𝜃𝑖, then the matrix K and 

its eigenvalues can also be considered as a function of the azimuth angles 𝜃𝑖. However, if the 

azimuth angles 𝜃𝑖 are not set to their real values, Eq. (2.24) will have no non-trivial solution 

because all the eigenvalues of the matrix K will be non-null. Hence, the correct values of the 

azimuth angles can be determined by minimizing the smallest eigenvalue 𝜆16  of K. This 

minimization method is well suited for experimental data, which are affected by the noise, 

which prevents the smallest eigenvalue of the matrix K from being an exact zero. 

The solution W16 is the eigenvector of the matrix K associated with the smallest 

eigenvalue, and it is used to get the matrix W. Using Eq. (2.18), we can also calculate the 

matrix A. Finally, there are two criteria to choose a good set of reference samples [20]. 

 𝐇𝐢
𝐓𝐇i𝐖 = 𝐊𝐢𝐖 = 𝟎. (2.24) 

 𝐊𝐖 = ∑𝐊𝐢𝐖

𝐢

= (𝐇𝐏𝟎
𝐓𝐇𝐏𝟎 + 𝐇𝑷𝟗𝟎

𝐓𝐇𝐏𝟗𝟎 + 𝐇𝐋𝟑𝟎
𝐓𝐇𝐋𝟑𝟎)𝐖 = 𝟎 (2.25) 

 𝐊 = 𝐎𝐭 [

𝜆1 0 ⋯ 0
0 𝜆2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝜆16

]𝐎 (2.26) 
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1. Without noise the matrix K has to have only one null eigenvalue 𝜆16, and in practice, 

the ratio 𝜆16/𝜆15, should be as close as possible to zero.  

2. The other 15 eigenvalues should be as far as possible from zero, and the ratio 𝜆15/𝜆1, 

that is much higher than error level and always less than one, should be as large as 

possible.  

2.2. Imaging Mueller polarimeter based on ferroelectric liquid 

crystals 

The custom-built imaging Mueller polarimeters operating in both transmission and reflection 

configurations with ferroelectric liquid crystals for light modulation and analysis were used in 

our studies. The PSG is composed of a linear horizontal polarizer (HP), first ferroelectric 

liquid crystal (FLC1), a wave plate (WP), and second ferroelectric liquid crystal (FLC2) as 

shown in Fig. 2.2. [6], [22] 

 

 

Figure 2.2 Optical elements (a horizontal polarizer (HP), two ferroelectric liquid crystals (FLC1, 

FLC2), and a wave plate (WP) for the PSG and PSA. The arrows show the direction of light 

propagation for PSG and PSA and corresponding arrangement of the optical elements. 

The orientation of the fast optical axis of the FLCi (i = 1, 2) in the plane orthogonal to the 

direction of light propagation is electrically switched by applying the voltage V (positive or 

negative). The angle between two extreme positions of the fast axis at ±V applied voltage 

values is called the switching angle θSW (see Fig. 2.2). The orientation (or azimuth) angle of 

the fast axis of FLCs with respect to the transmission axis of a polarizer is denoted as 𝜃𝐹𝐿𝐶  

for a negative voltage value -V and θSW +  θFLC  for a positive voltage value -V. The 

orientation angle of fast axis of the WP is denoted by 𝜃𝑊𝑃. The phase retardance induced by 

the FLCs and WP is denoted as δFLC and δWP, respectively. Both values of retardance depend 

on the wavelength. Then, the Mueller matrix of the PSG can be described as [22]. 
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Four different polarization states that can be characterized by the corresponding Stokes 

vectors are generated by controlling the azimuth angles (θFLC1, θFLC2) and switching the 

angles ( θSW1, θSW2) as follows [22].  

 

 

where 𝑺in ( = [𝟏 𝟎 𝟎 𝟎]T) represents Stokes vector of the unpolarized incident light. The PSA 

is identical to the PSG, but its elements are placed in a reverse order. The Mueller matrix of 

the PSA is given as:  

  

 

The wave plate compensates partially for the spectral dependence of the retardance on 

the FLCs, and it makes the condition number constant or slightly varying within the visible 

wavelength spectral range [6], [22]. The orientation angles of all three retarders with respect 

to the laboratory reference frame (transmission axis of HP) and the corresponding calibration 

matrices W and A were determined by applying the ECM, as was previously explained.  

2.2.1. Mueller microscope in transmission configuration  

The custom-built Mueller polarimetric FLC-based microscope operating in a visible 

wavelength range (450 nm – 700 nm) was used to measure the Mueller matrix of thin tissue 

sections in a transmission configuration. The optical layout and photo of the instrument are 

shown in Fig. 2.3. The illumination arm of the setup consists of a white-light LED source and 

a set of lenses which combined with a condenser lens, illuminate the sample with uniform 

intensity and polarization according to the widely used Kohler configuration. Two 

diaphragms are used in between the lenses for independent control of beam divergence and 

size followed by a polarization state generator (PSG). The PSG is mounted just before the 

condenser lens, and it is composed of a linear polarizer, two ferroelectric liquid crystal 

retarders (Meadowlark FPR-200-1550), and a quarter wave retarder placed between the two 

ferroelectric liquid crystal retarders according to Fig. 2.2.. The light transmitted/scattered by 

the sample is captured by an imaging lens and directed to the PSA. The optical elements, 

 

𝐌𝐏𝐒𝐆(δFLC2, θSW2, θFLC2, δWP, θWP, δFLC1, θSW1, θFLC1) 

= 𝐌FLC2𝐌WP𝐌FLC1𝐌HP 

(2.27) 

 

𝑺𝐖𝟏 = 𝐌𝐏𝐒𝐆(θFLC1, θFLC2)𝑺in 
 

𝑺𝐖𝟏 = 𝐌𝐏𝐒𝐆(θFLC1 + θSW1, θFLC2)𝑺in 
 

𝑺𝐖𝟏 = 𝐌𝐏𝐒𝐆(θFLC1, θFLC2 + θSW2)𝑺in 
 

𝑺𝐖𝟏 = 𝐌𝐏𝐒𝐆(θFLC1 + θSW1, θFLC2 + θSW2)𝑺in 

(2.28) 

 

𝐌𝐏𝐒𝐀(θFLC1, θSW1, δFLC1, θWP, δWP, θFLC2, θSW2, δFLC2) 

= 𝐌HP𝐌FLC1𝐌WP𝐌FLC2 
(2.29) 
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used in this work to illuminate and to image the sample, have been either a cemented 

achromatic doublet lens (Thorlabs AC254-030-A-ML), a low magnification microscope 

objective (Nikon CFI LU Plan Fluor, 5x, NA 0.15), or even a medium magnification 

microscope objective (Nikon CFI LU Plan Fluor, 20x, NA 0.45). The condenser and the 

imaging optics have always been kept identical to each other in order to match their 

respective numerical apertures. After the PSA, the light passes through an afocal relay pair 

(.75x) to adjust magnification, and finally it reaches a CCD camera (AV Stingray F-080B) 

coupled to a telephoto lens fussed to the infinite. The sample is placed on the principal object 

plane of the imaging optics; thus, a real space image of a sample is formed on the CCD 

detector. The wavelength of 533 nm was selected for our measurements by placing an 

interferential filter (spectral bandwidth of 20 nm) before PSG. The measurements of 

histological cuts of skin models were performed with a 20× objective with a field of view 

(FoV) of about 600 μm [23]. 

During standard operation of the microscope, the fact of switching from sample-to-

sample, caused important variations in the overall signal registered by CCD. The transmitted 

intensity for thinner samples was higher compared to thicker ones, in accordance with the 

Beer-Lambert law. To avoid the saturation problem, we used the measurement protocol 

described below. Due to the technical characteristics of the CCD detector, the polarimetric 

measurements were performed within a given intensity range to ensure the linearity of CCD 

response. Therefore, the integration time of a CCD was adjusted for every sample to get a 

well-balanced signal level for all 16 images needed to measure the corresponding Mueller 

matrix. This procedure helped us avoid both over- and under-exposure. It is worth noting that 

while all histological cuts were relatively thin and transmitted a significant fraction of the 

direct light, the scattering of light produced noticeable effects in depolarization parameters 

due to the incoherent summation of direct and scattered light signal on CCD. 

 

 

Figure 2.3 Mueller matrix microscope in transmission configuration: (a) optical layout, (b) photo. 
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2.2.2. Wide-field imaging Mueller polarimeter in reflection 

configuration 

We studied thick sections of the fixed and fresh biological specimens with the multi-spectral 

wide-field imaging Mueller polarimeter operating in backscattering configuration, which is 

the most relevant for clinical applications of optical techniques using visible light. The optical 

layout and photo of the instrument are shown in Fig. 2.4 [19], [24]-[26].We outline the main 

characteristics and operational principles of the instrument.  

 

 
 

Figure 2.4 Wide-field imaging Mueller polarimeter (a) schematic optical layout; (b) photo. 

 

A linear polarizer, a first ferroelectric liquid crystal, a quarter wave plate and a second 

ferroelectric liquid crystal were assembled sequentially for the polarization state generator 

(PSG) according to the schema shown in Fig (2.2). Another set of the same optical elements 

assembled in reverse order for the polarization state analyzer (PSA). They were introduced 

into the illumination and detection arms of a conventional imaging system, respectively. A 

xenon lamp was used as the incoherent white light source for the sample illumination. Each 

ferroelectric liquid crystal works as a wave plate with the fixed retardation and fast optical 

axis orientation switching between 0° and 45°. The PSG modulates the polarization of the 

incident light beam illuminating the sample at an incidence angle of about 15° and spot size 

~10 cm along the main ellipse axis. The light backscattered by a sample passes through the 

PSA before being detected by a CCD camera (Stingray F080B, Allied Vision, Germany, 512 

× 386 pixels) with its optical axis placed normal to the sample imaging plane (see Fig. 2.4a). 
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configurations by the PSA. A rotating wheel, placed in front of the PSA, contains reference 

samples for calibration of the instrument, namely, two polarizers with eigenaxes oriented at 0° 

and 90° and a wave plate with the optical axis oriented at 30°. The optimal PSG and PSA 

polarization states are defined by the automated ECM procedure described previously [4]. 

A rotating wheel, placed behind the PSA, holds the 40 nm bandpass interference filters 

for performing multi-wavelength measurements from 450 to 700 nm in steps of 50 nm. There 

are two main reasons for using the broadband filter. First, the intensity of monochromatic 

normally backscattered light decreases significantly, because light propagation through 

optically thick biological tissue is dominated by multiple scattering. Using a broadband 

dichroic filter helps to increase the signal-to-noise ratio of the backscattered signal. Second, 

the intensities at different wavelengths are summed incoherently, thus erasing the speckle 

patterns seen when using a coherent light source. 

The measurement protocol includes the sequential acquisition of 16 intensity images for 

four different input and four different output polarization basis states of the PSG and PSA, 

respectively, at each measurement wavelength. Rapid polarization modulation supported by 

electrically switchable ferroelectric liquid crystals results in the acquisition of 16 images in a 

few seconds. Mueller matrix images of a sample are then calculated from the raw intensity 

measurements at each measurement wavelength [20].  

2.3 Conclusions 

The instrumental principles of Mueller polarimetry were introduced. The optimal design of a 

complete Mueller polarimetric system was discussed in terms of the minimization of error 

propagation from the raw intensity data to the elements of the reconstructed Muller matrix of 

a sample. This can be achieved by selecting an appropriate basis of polarization states for 

both polarization generation and analysis that should minimize the condition number for both 

matrices of PSG and PSA. For a complete PSG/PSA, such optimal design corresponds to the 

basis of four polarization states being the regular tetrahedron vertices on the Poincaré sphere. 

The theoretical limit on the minimum condition number of a complete Mueller polarimeter is 

equal to √3. 

The calibration of a complete Mueller polarimeter is also a crucial step for calculating 

the experimental Mueller matrices from the raw intensity measurements. The eigenvalue 

calibration method (ECM) that allows obtaining the calibration data without the exact 

modeling of optical components of both PSG and PSA is presented and discussed.  

Two experimental setups that were used for the polarimetric measurements of biological 

tissue specimens, namely, custom-built multi-wavelength imaging Mueller polarimeters 

based on the FLCs have been described. Both PSG and PSA consist of two FLCs, one wave 

plate, and one polarizer. The transmission Mueller microscope was used for the 

measurements of the thin sections of biological tissue, whereas wide-field imaging Mueller 

polarimeter operating in reflection configuration was used to measure thick tissue samples. 
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In this chapter, we present and discuss a) the algorithm of the post-processing of 

experimental polarimetric data that was used for a segmentation of polarimetric images and b) 

the algorithm of polarized Monte Carlo modeling that was used for the interpretation of the 

polarimetric parameters of biological tissue.  

The algorithm of statistical analysis of the large size datasets for the diagnostic 

segmentation of polarimetric images will be presented first. When the distribution of 

polarimetric properties of biological tissue in microscopic polarimetric image demonstrates a 
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significant standard deviation, it can be related to 1) real tissue inhomogeneity caused by the 

presence of different microstructures (e. g. the diseased zones of tissue or 2) fluctuations of 

tissue thickness and/or measurement noise. Whereas the former carries important diagnostic 

information, the latter may affect the accuracy of polarimetric diagnostics and needs to be 

filtered out. We use the statistical Density-Based Spatial Clustering of Applications with 

Noise (DBSCAN) method [1] for dataset noise filtering and clustering to reconstruct further 

the segmented image of tissue. By clustering we denote the unsupervised learning task of an 

assignment of the “classification labels” to unlabeled data that we will use for the automated 

analysis of polarimetric images for tissue diagnostics. However, the DBSCAN method is not 

quite suitable for a dataset of large size (𝑛 ) because its time complexity is 𝒪(𝑛2) .To 

overcome this problem we develop and test a new version of DBSCAN algorithm that runs 

faster and requires less memory resources. 

Light propagating through complex media, such as biological tissues, can be scattered 

by the material inhomogeneity. The random fluctuations of local refractive index in 

biological tissue are due to presence of variety of structures and components, like cell 

organelles, collagen fibers, macromolecules, etc. Tissue scatterers vary in size and shape as 

well. The scattering process affects both the propagation direction and the polarization of the 

light beam. Multiple scattering leads to the depolarization of incident polarized light that 

interacts with biological tissue. The depolarization can be weak for transparent tissues (e.g., 

cornea, crystalline lens) or strong for a highly scattering tissues (e.g., skin, brain, uterine 

cervix).  

The presence of tissue microstructures (e.g. extracellular matrix of collagen, nerve 

fibers tracts, etc.) may induce the phase shift between the components of electric field of the 

polarized light beam (so-called form birefringence), the anisotropy of absorption may be the 

reason for tissue diattenuation. Thus, measuring and modeling the transformations of 

polarization state and/or depolarization of probing polarized light beam enables us to link 

these properties to the anisotropy and microstructure of biological tissue and use them for 

tissue diagnostics. We introduce vector radiative transfer equation (VRTE) for the description 

of polarized light propagation through scattering media and describe Monte Carlo (MC) 

algorithm used for its solution. We also implement and validate the upgraded version of the 

MC algorithm that accounts for both scattering and optical anisotropy of medium to mimic 

biological tissue 

3.1. Image segmentation with statistical DBSCAN algorithm 

The polarimetric images of biological tissue samples, obtained by applying the chosen 

decomposition method of the measured Mueller matrix, demonstrate image contrast between 

the zones of tissue with a different local microstructure that is not visible in unpolarized 

intensity images. From this point of view, the Mueller microscopy can assist the histology 

analysis of tissue by detecting and delineating the zones of interest (e. g. healthy versus 

pathological) in polarimetric microscopy images. To achieve this goal, a process for 
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discovering specific patterns in a large number of data sets (so-called data mining or 

knowledge discovery in databases (KDD)) should be used. It enables us to extract from a 

dataset the diagnostically relevant information and to transform it into a segmented image 

with the highlighted spatial structures.  

Clustering is one of the main tasks in data mining. As a task of class identification in a 

multi-dimensional dataset, the clustering organizes a set of objects into groups (called the 

cluster). The objects in the same group are more similar (according to the chosen criteria) to 

each other than to those in other clusters. In our studies, we used the algorithm of the density-

based spatial clustering of applications with noise (DBSCAN) [1] for the polarimetric dataset 

clustering and consequent segmentation of the polarimetric images. Our choice was dictated 

by the capability of the DBSCAN algorithm to eliminate noise from a dataset efficiently, thus, 

remove “pixels-outliers” from the diagnostic analysis of polarimetric images of tissue.  

3.2. Classification of clustering algorithms  

The clustering algorithms can be classified according to the approach they are using [2]. 

Hereafter, we briefly recall the partitional, hierarchical, and locality-based groups of 

clustering approaches used for data processing (see Fig. 3.1) [3].  

The partitional clustering performs partitions of a dataset based on cluster centroids, 

which are pre-defined parameters and represent the center points of each cluster. The 

hierarchical clustering groups objects sequentially, and the results are presented in a 

dendrogram. The locality-based clustering is based on the data local relationship and scanned 

the entire datasets in one pass. 

 

 
Figure 3.1 A flowchart represents three groups of clustering approaches (partitional, hierarchical, 

and locality-based) and corresponding algorithms. 
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The main principles of clustering algorithms based on these approaches are explained below. 

The partitional clustering constructs clusters as a single partition of the dataset for a given 

parameter. The clustering starts with an initial partition of a dataset based on a cluster 

centroid, pre-defined randomly or manually. The cluster is created by minimizing the sum of 

the distances between the cluster centroid and each cluster point in a chosen parametric space. 

Then, clustering will be optimized toward increasing similarity and minimizing cost function 

(square of the distance between each centroid and objects in a corresponding cluster). The k-

means clustering and k-medoid clustering are both partitional clustering algorithms. The 

former one uses its “gravity center” as a cluster centroid, whereas the latter uses one of the 

input datasets points as a cluster centroid (see Fig. 3.2).  

 

 
Figure 3.2 An example of centroid-based clustering of a 2D dataset. 

 

However, this clustering approach has several disadvantages. As the number of clusters has 

to be defined in advance (an input parameter of the algorithm), this clustering approach may 

produce an erroneous data partition if pre-defined number of clusters k does not match the 

real number of clusters in a dataset. Being an algorithm based on the variance minimization 

in the multi-variable space, the algorithm may reach a local optimum depending on the initial 

partition. To find a global optimum, the partitional clustering is usually run multiple times 

with different random initializations. This algorithm is very sensitive to the outliers, namely, 

the data points located relatively far from the majority of dataset points. Moreover, this 

clustering algorithm cannot correctly detect the clusters of arbitrary shapes. 

The hierarchical clustering (or connectivity-based clustering) performs a sequence of 

partitions connecting objects based on the distance and represents the results by using a 

dendrogram. There are two types of hierarchical clustering algorithms - agglomerative and 

divisive. The agglomerative algorithm uses a bottom-up approach by repeating 

amalgamations of the clusters until the pre-defined threshold is reached (see Fig. 3.3). 

Contrary to the agglomerative algorithm, the divisive algorithm explores a top-down 

approach by recursively dividing the clusters at each step. 
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Figure 3.3 An example of hierarchical agglomerative clustering of a 2D dataset using the Euclidian 

distance metric: (a) raw data; (b) hierarchical clustering dendrogram. 

 

The hierarchical clustering algorithms are easy to understand. However, the time complexity 

(parameter that provides an estimation of the execution time in terms of the size of a dataset n) 

of hierarchical clustering O(n3) prevents it from using for large dataset clustering, as 

execution time becomes prohibitively long. The hierarchical clustering is sequential, i. e. at 

each step the partition of a dataset is based on clustering results of the previous step. If some 

dataset points were mistakenly allocated to a cluster at early steps, it is impossible to 

reallocate them during further clustering steps. Since the hierarchical clustering does not have 

a notion of noise, it is also not robust to the outliers. 

Locality-based clustering constructs the clusters based on the local relationships. There 

are two types of locality-based clustering algorithms - distribution-based and density-based 

ones. The former approach assumes that dataset is composed of the distributions (e. g. 

Gaussian distributions). Clusters are defined as dataset points that belong to the same 

distribution. As distance from distribution center increases, the probability that a data point 

belongs to this distribution decreases (see Fig. 3.4). When the type of data distribution is not 

known, one should use a different clustering algorithm. 

 

  
Figure 3.4 An example of distribution-based clustering of a 2D dataset. 
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The density-based clustering connects areas of high density into clusters. This allows for 

arbitrary-shaped clusters as far as dense areas of data can be connected. Density-based 

clustering algorithm does not require defining the number of clusters as an input parameter. 

Moreover, by algorithm design the outliers are not assigned to any cluster (see Fig. 3.5) 

Because of the above mentioned benefits, we chose the density-based clustering algorithm for 

processing our polarimetric image data. 

 

 
Figure 3.5 An example of density-based clustering of a 2D dataset. There are two clusters, grey 

symbols represent data outliers (noise) 

3.3. DBSCAN clustering algorithm 

DBSCAN (Density-Based Spatial Clustering of Applications with Noise), proposed by Ester 

et al., is one of the popular density-based clustering methods [1], [2]. We will briefly 

introduce the basics of the DBSCAN algorithm by defining its input parameters, namely, 

radius ε (real number) and threshold MinPts (integer number) as well as the concepts of 

(directly) density-reachable and density-connected points of a dataset. The procedure of 

cluster expansion will be explained using the notion of both core and border points. 

3.3.1. Definitions of DBSCAN algorithm 

Definition 1. The 𝛆-neighborhood of an object 𝒑 ∈ 𝑫 is defined as a subset of objects from 𝑫: 

 

 

where 𝒅𝒊𝒔𝒕(𝒑, 𝒒) is the distance between two objects 𝒑 ∈ 𝑫 and 𝒒 ∈ 𝑫. 

 

Definition 2. An object 𝒑 ∈ 𝑫 is called a core object if 𝑵𝜺(𝒑) ≥ MinPts 

 

Definition 3. An object 𝒒 ∈ 𝑫 is directly-density-reachable from an object 𝒑 ∈ 𝑫, if 𝒒 ∈

𝑵𝜺(𝒑) and 𝒑 is a core object. 

 𝑵𝜺(𝒑) =  {𝐪 ∈ 𝑫 | 𝒅𝒊𝒔𝒕(𝒑, 𝒒)  ≤ 𝜺}, (3.1) 
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Definition 4. An object 𝒒 ∈ 𝑫  is density-reachable from an object 𝒑 ∈ 𝑫  if there is a 

sequence of the objects {𝒑𝟏, 𝒑𝟐, ⋯ , 𝒑𝒏}  , 𝒑𝟏 = 𝒑  and 𝒑𝒏 = 𝒒 , such that 𝒑𝒊+𝟏  is directly 

density-reachable from 𝒑𝒊 (𝒊 ∈ {𝟏, 𝟐,⋯ , 𝒏 − 𝟏}. 

 

Definition 5. An object 𝒑 is density-connected to an object 𝒒, if there is an object 𝒕 ∈ 𝑫, such 

that both 𝒑 and 𝒒 are density-reachable from an object 𝒕. 

 

Definition 6. A density-based cluster 𝑪 is a non-empty subset of 𝑫 that obeys following 

conditions:  

1. ∀ 𝒑, 𝒒: if 𝒑 ∈ 𝑪 and 𝒒 is density-reachable from 𝒑, then 𝒒 ∈ 𝑪 (maximality).  

2. ∀ 𝒑, 𝒒: 𝒑 is density-connected to 𝒒 (connectivity). 

 

Definition 7. An object 𝒑 is noise if it does not belong to any clusters.  
 

 
Figure 3.6 The illustration of cluster generation and expansion in a 2D space (MinPts=4) (a) 𝑝 is a 

core point (𝑁𝜀(𝑝)>MinPts), 𝑞 is a border point (0<𝑁𝜀(𝑞)<MinPts), and they are directly density-

reachable, (b) 𝑝 is density-reachable to 𝑞, and (c) 𝑝 is density-connected to 𝑞.  

3.3.2. Original version of DBSCAN algorithm 

The DBSCAN algorithm makes use of two input parameters (radius ε and threshold MinPts) 

to determine the density of a cluster. First, it is necessary to define the values of these two 

parameters and to create a multi-dimensional dataset that will be used for clustering. After 

then, the DBSCAN algorithm starts to run at an arbitrary dataset point 𝑝, and searches the 

points in its ε-neighborhood. If the number of points in ε-neighborhood of point 𝑝 is larger or 

equal than MinPts value, a new cluster will be initiated, and the point 𝑝 would be a core point. 

This cluster will be expanded until all the points that are density-reachable from the core 

point 𝑝 will be assigned to this cluster. The points, located on the edge of a cluster, are called 

border points. When a cluster cannot be expanded anymore, a new arbitrary point that does 

not belong to any cluster is selected from a dataset, and the procedure of a new cluster 

initiation and expansion will be repeated sequentially. If some points were not classified as 

the core or border points, they are labelled as noise. Finally, the clustering stops when there is 

no new point that can be added to any cluster [1], [4] . 
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3.3.3. Upgraded version of DBSCAN algorithm  

Despite the obvious advantages of using the DBSCAN algorithm for data clustering (arbitrary 

number and shape of clusters, no dependence on data point processing order, detection of 

noise), this algorithm has difficulty dealing with high-dimensional data. The worst-case 

running time complexity of each step of the clustering process for a dataset 𝐷(𝑛) (𝑛 is the 

size of a dataset) is 𝒪(𝑛) and it can be reduced to 𝒪(log𝑚 𝑛) when using a spatial index (𝑚 is 

the number of entries in 𝑅∗-tree [5]). Then, the time complexity of the DBSCAN algorithm is 

𝒪(𝑛2)  or 𝒪(𝑛log𝑚 𝑛) , respectively. Such time complexity and required memory budget 

become prohibitive for using the DBSCAN algorithm on large size datasets. For example, the 

segmentation of an image taken with a camera with spatial resolution of 800×600 pixels 

requires clustering of a dataset of 480000 pixels and over 128Gb of RAM. In this respect, the 

original version of the DBSCAN algorithm is not adapted for the clustering of high-

dimensional datasets. Hence, we modified the original DBSCAN algorithm to reduce its 

execution time and memory budget. 

The main computational burden of the DBSCAN algorithm is related to the distance 

calculations between all dataset points. For a dataset 𝐷(𝑛) of 𝑛 objects the size of a dataset of 

all distances is 𝑛 ×  𝑛. For the image segmentation problem that was discussed above, the 

size of dataset of all distances for all image pixels becomes very massive (480000 x 480000), 

and this distance dataset has to be recall in every steps of clustering (480000 times).  

So, at first, we suggest reducing the size of dataset of distance from 𝑛 ×  𝑛  to 𝑛 ×  1, 

which is used in each step of clustering. 𝑛 is the size of the datasets. This simple modification 

can significantly reduce the number of distance calculations, and the impact of this reduction 

on the execution time increases with the increase of a dataset size. Since the usage of the 

memory is related to the number of calculations, this method also enables us to calculate the 

large size of datasets with a relatively less memory budget.   

Secondly, we adopted a different strategy for assigning the ε-neighborhood points of a 

given core point to the corresponding cluster depending on whether the ε-neighborhood point 

is a border point or not. The procedure of cluster expansion terminates as one encounters the 

border points. It can be interpreted in a such way that finding a border point is crucial to 

delineate the limits of a cluster, whereas all other ε-neighborhood points will form a cluster. 

It is logical to expect that most of the border points are located close to the surface of the 

sphere of radius ε with the center at given core point, as shown in Fig. 3.7 (a). Hence, we 

make an assumption that all points within an inner sphere defined by a radius ε/r (1 ≤ r ≤ ∞) 

(1) will be automatically assigned to the same cluster as a core point. i.e., when the cluster is 

formed, the only points where in outside of the inner sphere (red circle in Fig. 3.7 (a)) are 

considered to classify the cluster. It means that only these points need the computations of the 

distance, then this method can reduce the total number of the calculations. Furthermore, 

applying the second modification to the first modification, the size of distance calculation (𝑛 

×  1) in each step also can be reduced (it depends on the number of points in inner sphere.  
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Figure 3.7 The illustration of the updated version of the DBSCAN clustering algorithm (a) generation 

of a cluster; if both MinPts and 𝜀  criteria are matched, red region (radius ε/r) is automatically 

attributed to the same cluster as the core point, (b) expansion of the cluster; if both MinPts and 

criteria are matched, the points, located in the yellow region, would also be attributed to the same 

cluster. This expansion process will be repeated until there will be no point to assign to a cluster. 

3.3.4. Optimization of the DBSCAN algorithm 

3.3.4.1. Determination of the optimal epsilon value  

Before running the DBSCAN algorithm one needs to create a multi-dimensional dataset and 

define the values of input parameters, namely, radius ε (plus scaling factor r for the updated 

version of the DBSCAN) and threshold value MinPts. Hereafter, we will focus on how to 

choose the optimal values of the radius ε and the scaling factor r. The choice of optimal 

multi-dimensional space for the segmentation of experimental polarimetric images will be 

discussed in the Chapter 4. 

In the original version of the DBSCAN algorithm, the k-dist graph was proposed to 

determine the optimal values of the parameters ε and MinPts [1]. For a given value of the 

integer parameter k, we calculate the distance (called k-dist) from each dataset point to its k-

th nearest neighbor. In other words, we define the function that maps our dataset 𝐷 to a set of 

real values. When the value of ε is set to be equal to k-dist value for a selected dataset point, 

the number of points within the sphere of radius ε and with center at this selected dataset 

point will be more or equal to k+1. If we plot the values of the k-dist parameter in the 

descending order for all dataset points (so called sorted k-dist graph), the optimal value of ε 

will correspond to the kink in the k-dist graph (see Fig. 3.8). 
 

 

Figure 3.8 (a) Example of sorted 4-dist plot for a 2D dataset shown in panel (b). Adapted from [1]. 
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In the original DBSCAN algorithm, the value of k was fixed at 4 for any clustering process of 

a 2D dataset, because the experiments did not show significant difference in clustering results 

for k>4. Hence, the value of MinPts was set to 4 for clustering of any 2D dataset. However, 

this method is not adapted for the datasets of large size, as the calculation for the sorted 4-th 

dist plot will take too much time. Moreover, the value of 4 is too small for clustering of our 

experimental large size datasets as there are many similar data represented by the points 

located at the same distance from a core point. Using a threshold value of MinPts=4 all 

dataset points will be assigned either to noise or to one cluster only depending on the value of 

ε. To solve these problems, we modified the original method to determine the optimal values 

of input parameters much faster. 

To illustrate the main steps of the modified algorithm we created a dataset by selecting 

the values of all pixels in the experimental polarimetric images of a thin section of human 

skin model to generate a dataset of 480000 points (see Chapter 4 for the details). The 

procedure of the determination of the optimal values of DBSCAN input parameters is 

described below. 

1. Random and uniform sampling of the original large size dataset to generate a dataset 

of a smaller size (e.g., 10000, 20000, 30000, and 40000 points).  

2. Calculation of all distances between each pair of points for a small size dataset.  

3. Finding the maximum value of distance 𝒅𝑚𝑎𝑥 for a small size dataset. 

4. Calculation of the total number of ε-neighborhood points for all dataset points for 

varying values of radius ε ∈ [0, 𝒅𝑚𝑎𝑥]. The radius increased with a step of 0.1. 

5. Plotting the total number of ε-neighborhood points versus radius ε. 

6. Determination of the optimal value of ε as the value of x-intercept of the linear 

regression curve fit of the total number of ε-neighborhood points corresponding to 

the fast growing part of a plot (see Fig. 3.9).  

 

  

Figure 3.9 Blue, green, orange, and red lines show the results for the datasets of different size - 

10000, 20000, 30000, and 40000 points, respectively. These datasets were created by random and 

uniform sampling of the complete dataset of 480000 points. The linear regression curves have very 

close x-intercept values for all datasets (see inset). 



 

  62 

Rapid increase in total number of ε-neighborhood points with radius ε reflects the increase in 

number of the (directly) density-reachable and density-connected points (see Fig. 3.9). For 

the values of radius ε smaller than x-intercept value the total number of ε-neighborhood 

points is mainly defined by the contribution of the directly density-reachable points, whereas 

the contribution of the density-connected points becomes dominant for the values of radius ε 

larger than x-intercept value, i.e. the x-intercept value for radius ε  corresponds to the 

transition from the directly density-reachable clustering regime to the density-connected one. 

For this reason, we consider the x-intercept value as the optimal value of radius ε. In practice, 

this value can be slightly affected by the presence of density-reachable points. However, the 

values of x-intercept for different plots corresponding to 4 datasets of different size (10000, 

20000, 30000, and 40000 points) are very close to 0.55 (see the inset of Fig. 3.9). Therefore, 

with high degree of certainty an optimal value of radius ε can be defined from a small size 

sampling dataset (e.g. 10000 or 20000). Consequently, it will significantly reduce the 

computational time.  

3.3.4.2. Comparison between the original and updated versions of the 

DBSCAN algorithm 

As was previously mentioned, the original version DBSCAN is not applicable for large size 

datasets because of prohibitive execution time and computer memory budget. We developed 

an updated version of the DBSCAN algorithm to reduce the time complexity of clustering. 

To check the efficiency of the updated version of the DBSCAN algorithm we used a 

large size experimental dataset described in the previous section and performed a random 

uniform sampling to create the datasets of different smaller size (10000, 20000, 30000, 40000, 

50000, 60000, 70000, 80000, 90000, 100000, 150000, and 200000 points). The values of 

radius ε and threshold MinPts were fixed at 0.3 and 250, respectively. For an updated version 

of the DBSCAN algorithm, the scaling value r was equal to 2. The execution time for both 

original and updated versions of the DBSCAN clustering algorithm is shown in Fig 3.10 and 

Tab. 3.1. 

 

Figure 3.10 The execution time versus the size of a dataset. Blue dots - original version of the 

DBSCAN algorithm, red dots - updated version of the DBSCAN algorithm. The disconnection between 

the values of 80 and 1960 are shown by the break of vertical axis. 
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Table 3.1 The execution time (s) for different sizes of a dataset (Original vs Updated DBSCAN). 

# of data  10000 20000 30000 40000 50000 60000 

Original 0.6  2.9 8.5  16.7 40.4  1995.7  

Updated 0.9  2.2 3.3 4.6 7.2 7.7 
 

# of data  70000 80000 90000 100000 150000 200000 

Original X X X X X X 

Updated 10.9 13.4  18.7  25.6  45.5  79.9  

For a relatively small size of a database (e.g., 10000 points), the original version of the 

DBSCAN algorithm performs clustering faster than the updated version of the DBSCAN. 

However, the execution time for both versions of the algorithm is less than 1 second. With 

the increase of a dataset size the execution time for the updated version of the DBSCAN 

algorithm becomes significantly shorter compared to that of the original version of the 

DBSCAN. For example, the execution time for the original version of the DBSCAN for a 

dataset containing 60000 points is about half an hour (1995.7 seconds) compared to 7.7 

seconds for the updated version of DBSCAN algorithm. Moreover, the memory budget for 

the original version of the DBSCAN used for clustering of a dataset containing 60000 points 

almost reached the maximum limit of 32Gb RAM available on our computer, meaning that 

we cannot perform clustering of the larger size datasets with the original version of the 

DBSCAN. Contrary to that the updated version of the DBSCAN algorithm effectively 

performs clustering of all datasets. For example, the execution time for clustering of a dataset 

containing 150000 points takes 45 seconds only with the updated version of the DBSCAN 

algorithm, which is close to the execution time for the original DBSCAN algorithm used for 

clustering of a smaller dataset containing 50000 points.  

To check the dependence of the execution time on radius ε, we varied the values of ε 

from 0.05 to 7 and performed clustering of a dataset containing 40000 points with both 

original and updated versions of the DBSCAN algorithms. The value of parameter MinPts 

was equal to 250 for both versions of the DBSCAN algorithm, the scaling parameter r was 

equal to 2 for the updated version of the DBSCAN. The results are shown in Fig. 3.11 and 

Tab. 3.2. 

 

Figure 3.11 The execution time versus radius 𝜀 for a dataset containing 40000 points. Blue dots - the 

results for the original version of the DBSCAN algorithm, red dots - the results of the updated version 

of the DBSCAN algorithm. The disconnection between the values of 1 and 2 on the horizontal axis is 

shown with the axis-break. 
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Table 3.2 The execution time (s) for different values of radius 𝜀 (Original vs Updated DBSCAN). 

Epsilon (ε) 0.05 0.1 0.15 0.2 0.25 0.3 0.35 

Original 10.2 10.5 11.5 12.5 15.3 16.7 17.0 

New 9.4 9.4 8.8 8.1 6.3 4.6 3.8 
 

Epsilon (ε) 0.4 0.45 0.5 0.55 0.6 0.65 0.7 

Original 17.5 18.0 18.3 19.3 20.0 20.3 20.7 

New 3.5 2.7 2.4 2.2 2.0 1.8 1.8 
 

Epsilon (ε) 0.75 0.8 0.85 0.9 0.95 1 2 

Original 21.0 21.8 22.6 22.9 22.9 23.6 38.7 

New 1.6 1.5 1.5 1.4 1.4 1.3 1.0 
 

Epsilon (ε) 3 4 5 6 7 

Original 56.5 75.3 76.2 76.4 89.1 

New 0.9 0.9 0.8 0.8 0.8 

 

In the original version of the DBSCAN algorithm, the increase of radius ε leads to the 

increase of time for 𝛆-neighborhood calculations. As expected, the execution time for the 

original DBSCAN algorithm increases from 10 to 90 seconds as the value of radius ε changes 

from 0.05 to 7 (see Fig. 3.11 and Tab. 3.2). On the contrary, the execution time for the 

updated version of the DBSCAN algorithm decreases with the increase of radius ε. The 

amount of automatically assigned points increases with the radius ε/r  increase of inner 

sphere. Consequently, the total number of distance calculations is reduced, and it also leads to 

the reduction of the execution time.  

The dependence of the execution time on threshold parameter MinPts is shown in Fig. 

3.12 and Tab. 3.3. The values of radius ε and size of a dataset were fixed at 0.3 and 40000, 

respectively. For the updated version of the DBSCAN algorithm, the scaling parameter r was 

equal to 2. 

  

Figure 3.12 The execution time versus threshold parameter MinPts, Blue dots – the results of the 

original version, red dots - the results of the updated version of the DBSCAN algorithm. 

 

Table 3.3 The execution time (s) for different values of the threshold parameter MinPts (Original vs 

Updated DBSCAN). 

MinPts  50 100 150 200 250 300 

Original 18.6 18.1 17.8 17.5 16.7 16.5 

New 4.4 4.5 4.6 4.5 4.6 4.8 
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MinPts  350 400 450 500 

Original 16.2 15.6 15.2 14.5 

New 5.2 5.2 5.4 5.7 

 

The execution time of the original version of the DBSCAN algorithm decreases with MinPts 

increase (see Fig. 3.12). It reflects the fact that the number of core points decreases with 

MinPts increase. i.e., most of the points are classified as noise, and the process of cluster 

expansion does not work properly despite a short execution time. The execution time of the 

updated version of the DBSCAN algorithm increases slightly with MinPts increase. Similar 

to the original version of the DBSCAN algorithm, the number of points, classified as noise, 

increases with MinPts increase for the updated version of the DBSCAN. However, the 

execution time of the latter also depends on the number of points within inner sphere. These 

points are automatically assigned to a cluster and it reduces the execution time. 

Finally, we studied the dependence of the execution time on the scaling factor r. The 

parameter 1/r was varied from 0 to 0.9 with a step of 0.1. The radius ε and threshold MinPts 

values were fixed at 0.3 and 250, respectively. The size of a dataset was 40000. The results 

are shown in Fig. 3.13 and Tab. 3.4.  

 

  

Figure 3.13 The execution time versus the inverse of scaling factor 𝑟. The results are shown for the 

updated version of the DBSCAN algorithm. 

 

Table 3.4 The execution time (s) for the different values of 1/𝑟 (Original vs Updated DBSCAN 

1/r 0.00 0.10 0.20 0.30 0.40 0.50 

New 42.3 29.1 14.6 8.0 6.1 4.6 
 

1/r 0.60 0.70 0.80 0.90 

New 3.7 3.4 3.1 3.0 

By choosing the scaling factor r we divided the volume of a sphere 𝑆𝜀(𝑝) of radius ε and 

center at a core point  𝑝 into two regions: an inner sphere 𝑆𝜀/𝑟(𝑝) of radius ε/r with the same 

center and the outer shell 𝑆𝜀(𝑝)- 𝑆𝜀/𝑟(𝑝). All dataset points that belong to an inner sphere 

𝑆𝜀/𝑟(𝑝) are automatically assigned to the cluster formed by a core point 𝑝 by the updated 
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version of DBSCAN algorithm. The inverse of the scaling factor r defines the border between 

two regions. When the value of r → ∞ the corresponding value of 1/r → 0, and the updated 

version of DBSCAN performs clustering the same way as the original version of the 

DBSCAN algorithm with no reduction of the execution time. When the value of 1/r ≈ 1, 

almost all points within a sphere 𝑆𝜀(𝑝) are located within an inner sphere 𝑆𝜀/𝑟(𝑝) as well. 

Hence, they are automatically assigned to the cluster of a core point 𝑝  thus, reducing 

significantly the execution time of the updated version of the DBSCAN algorithm (see Fig. 

3.13).  

3.4. Modeling of polarized light propagation through 

biological tissue 

3.4.1. Multiple scattering by spherical particles 

It was demonstrated that an analytical solution to the problem of scattering of plane 

electromagnetic (EM) wave by single dielectric spherical scatterer exists [6] and many 

asymptotic approximations of this solution are well studied [7]. Contrary to that EM wave 

scattering by a very large random group of particles occupying a volume in space is a 

problem of enormous complexity. The individual scattering field created by a single particle 

in response to the scattered field of other particles can be comparable with the field created in 

response to the incident field. This means that single scattering approach is no longer valid. 

To solve the problem of multiple scattering numerically we assume [8]. 
 

1. Each particle and a detector are located in the far field zones of all other scattering 

particles. Thus, a spherical wave created by a single scatterer in response to the 

incident plane wave can also be considered as a plane wave when it reaches the next 

particle. At least, the mean distance between the scatterers has to be much larger than 

their radius and wavelength.  

2. At any space point the total electric field can be represented as sum of contributions 

from light-scattering paths going through all possible particles sequences. All paths 

going through the same particle more than once can be neglected (Twersky 

approximation, see Fig. 3.14(b)) [9]. This assumption is justified when the total 

number of scattering particles in a volume is very large. 

3. Full ergodicity of the system, i.e. the time-averaging of random object can be 

replaced by ensemble averaging (over position and state of the object). 

4. Position and state of each particle are independent of each other and of positions and 

states of all other particles. Spatial distribution of particles in a host medium is 

random. 
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Figure 3.14 (a) Triple scattering, self-avoiding path, (b) triple scattering, a path goes through 

particle S1 twice. 

Any interference effects among scattered waves emerging at the same point of the sample 

surface but with different paths are neglected for real space imaging. Only intensities of 

individual emerging waves are summed and not their fields. It means that speckles, which are 

normally seen in the light scattered by a static sample illuminated with spatially and 

temporally coherent light, are not considered. 

3.4.1.1 Parameters of scattering media 

Mean free path. We consider a homogeneous host medium with a refractive index 𝑛𝑚 that 

contains identical spherical scatterers distributed randomly and uniformly within host 

medium. Light beam passes through a scattering non-absorbing medium in 𝑧 direction. We 

indicate by 𝑁𝑠 the number of scatterers per unit volume (i.e. scatterer number density). An 

average number of scatterers N found in a slice of thickness 𝑑𝑧 and unit area illuminated by a 

light beam:  

 

 

Using the definition of particle scattering cross-section 𝐶𝑠  [6] and denoting by 𝐼(𝑧), the 

intensity of the light at the depth 𝑧, we obtain the following relations: 

 

 

 

where µ
𝑠
= 𝑁𝑠𝐶𝑠 is the scattering coefficient of medium. It is measured in inverse length 

(cm-1) units. Hence, we can define the scattering mean free path 𝑙𝑠 as 

 

 

 𝑁 = 𝑁𝑠𝑑𝑧 (3.2) 

 𝐼(𝑧 + 𝛥𝑧) = 𝐼(𝑧) − 𝐼 𝑁𝑠𝐶𝑠𝑑𝑧 (3.3) 

 
𝑑𝐼

𝑑𝑧
= −µ

𝑠
𝐼    ⇒    𝐼(𝑧) = 𝐼0 𝑒𝑥𝑝( − µ

𝑠
𝑧) (3.4) 

 𝑙𝑠 =
1

µ
𝑠

 (3.5) 
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Parameter 𝑙𝑠 provides the mean distance between two successive scattering events. From Eq. 

(3.4), it follows that µ𝑠 characterizes the extinction of incident beam because of the scattering. 

For a polydisperse scattering media (populations of scatterers of different size), Eqs (3.4) and 

(3.5) can be generalized as 

 

 

When both scatterings by particles and absorption by a homogenous medium are combined, 

the extinction of the incident beam will still have an exponential dependence on distance 𝑧, 

whereas the extinction parameter is defined as 

 

 

where µ
𝑎
 is the absorption coefficient of a host medium. 

Scattering matrix. The perpendicular and parallel components of the incident and scattered 

wave obey the following relation [6]: 

 

 

where the complex amplitude functions 𝑆1 and 𝑆2 are defined as:  

 

 

 

 

𝑃𝑛
𝑚(𝑐𝑜𝑠 𝜃) are Legendre functions of the first kind of degree n and order m (n = m, m+1,…). 

Coefficients 𝑎𝑛 and 𝑏𝑛: are calculated as  

 

 

 

 

 µ
𝑠
= ∑ µ

𝑠
𝑖 =

𝑖

∑𝑁𝑠
𝑖

𝑖

𝐶𝑠
𝑖 (3.6) 

 µ
𝑒

= µ
𝑎

+ µ
𝑠
 (3.7) 

 [
𝐸II

𝑠

𝐸⊥
𝑠] =

𝑒𝑥𝑝( 𝑗𝑘𝑛𝑚(𝑧 − 𝑟))

𝑗𝑘𝑛𝑚𝑟
[
𝑆2(𝜃) 0

0 𝑆1(𝜃)
] [

𝐸II
0

𝐸⊥
0] (3.8) 

 𝑆1(𝜃) = ∑
2𝑛 + 1

𝑛(𝑛 + 1)
(𝑎𝑛𝜋𝑛(𝑐𝑜𝑠 𝜃) + 𝑏𝑛𝜏𝑛(𝑐𝑜𝑠 𝜃))

𝑛

 (3.9a) 

 𝑆2(𝜃) = ∑
2𝑛 + 1

𝑛(𝑛 + 1)
(𝑎𝑛𝜏𝑛(𝑐𝑜𝑠 𝜃) + 𝑏𝑛𝜋𝑛(𝑐𝑜𝑠 𝜃))

𝑛

 (3.9b) 

 𝜋𝑛(𝑐𝑜𝑠 𝜃) =
𝑃𝑛

1(𝑐𝑜𝑠 𝜃)

𝑠𝑖𝑛 𝜃
,  𝜏𝑛(𝑐𝑜𝑠 𝜃) =

𝑃𝑛
1(𝑐𝑜𝑠 𝜃)

𝑑𝜃
,  𝑃𝑛

1 = −
𝑑𝑃𝑛

𝑑𝜃
 (3.9c) 

 𝑎𝑛 =
𝜓 '𝑛(𝑚𝑥)𝜓𝑛(𝑥) − 𝑚𝜓 '𝑛(𝑥)𝜓𝑛(𝑚𝑥)

𝜓 '𝑛(𝑚𝑥)𝜉𝑛(𝑥) − 𝑚𝜉 '𝑛(𝑥)𝜓𝑛(𝑚𝑥)
 (3.10a) 

 𝑏𝑛 =
𝑚𝜓 '𝑛(𝑚𝑥)𝜓𝑛(𝑥) − 𝜓 '𝑛(𝑥)𝜓𝑛(𝑚𝑥)

𝑚𝜓 '𝑛(𝑚𝑥)𝜉𝑛(𝑥) − 𝜉 '𝑛(𝑥)𝜓𝑛(𝑚𝑥)
 (3.10b) 

 𝜓𝑛(𝜌) = 𝜌𝑗𝑛(𝜌), 𝜉𝑛(𝜌) = 𝜌ℎ𝑛
(2)(𝜌)  (3.10c) 
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where 𝑗𝑛(𝜌) is a spherical Bessel function, ℎ𝑛
(2)(𝜌) is a spherical Hankel function, 𝑥 = k𝑛𝑚𝑎 

is a size parameter, 𝑘 = 𝜔√𝜇0𝜀0 = 𝜔/𝑐 = 2𝜋/𝜆 is a wavenumber in a vacuum, a – radius 

of spherical particle, 𝑛𝑝 is a refractive index of a particle, m is the relative index contrast 

(𝑚 = 𝑛𝑝/𝑛𝑚). 

In general, even for linearly polarized incident light, the scattered light is elliptically 

polarized because both 𝑆1(𝜃) and 𝑆2(𝜃) are complex numbers with different phases. The 

relation between the Stokes parameters of the incident and scattered wave follows from Eq. 

(3.8). 

 

 

 

 

Not all coefficients are linearly independent: 

 

 

Scattering anisotropy. The parameters 𝜇𝑎 and 𝜇𝑠 describe the attenuation of incident beam 

propagating through media. However, the scattering by particle may also change the angular 

distribution of the light intensity. To quantify this scattering anisotropy, we first consider the 

scattering of unpolarized light by a single spherical particle. Let us introduce the phase 

function 𝑝(𝜃), which is the probability of incident wave to be scattered in the solid angle 

𝑑𝛺 = 2𝜋 𝑠𝑖𝑛 𝜃 d𝜃. This solid angle contains all directions with polar angle varying within the 

interval [𝜃, 𝜃 + 𝛥𝜃]. The phase function is the probability distribution function, hence, for a 

non-absorbing medium: 

 

 

The total intensity 𝐼𝑠 scattered in 𝜃 direction and distance 𝑟 from the light source can be 

expressed via the complex amplitude functions 𝑆1  and 𝑆2  of the transverse electric field 

components, and the intensity 𝐼𝑜 of unpolarized incident beam can be expressed as  

 

 

 [

𝐼𝑠

𝑄𝑠

𝑈𝑠

𝑉𝑠

] =
1

𝑘2𝑛𝑚
2 𝑟2

[

𝑚00 𝑚01 0 0
𝑚01 𝑚11 0 0
0 0 𝑚22 𝑚23

0 0 −𝑚23 𝑚33

] [

𝐼𝑖

𝑄𝑖

𝑈𝑖

𝑉𝑖

] (3.11a) 

 𝑚00 =
1

2
( |𝑆2|

2 + |𝑆1|
2),  𝑚01 =

1

2
( |𝑆2|

2 − |𝑆1|
2) (3.11b) 

 𝑚22 =
1

2
( 𝑆2

∗𝑆1 + 𝑆2𝑆1
∗),  𝑚23 =

1

2
( 𝑆2

∗𝑆1 − 𝑆2𝑆1
∗) (3.11c) 

 𝑚00
2 = 𝑚11

2 + 𝑚22
2 + 𝑚33

2  (3.11d) 

 ∫ 𝑝(𝜃)𝑑𝛺 = ∫ 𝑝(𝜃)
𝜋

04𝜋

2𝜋 𝑠𝑖𝑛 𝜃  d𝜃 = 1 (3.12) 

 𝐼𝑠(𝜃) =
1

2
(𝐼II

𝑠 + 𝐼⊥
𝑠) =

|𝑆1(𝜃)|2 + |𝑆2(𝜃)|2

2𝑘2𝑛𝑚
2 𝑟2

𝐼𝑜 (3.13) 
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The energy flux 𝐹(𝜃) in solid angle 𝑑𝛺 can be written as 

 

 

Combining Eqs (3.13) and (3.14) we obtain the expression for the phase function 

 

 

The average cosine of the scattering angle, called asymmetry parameter 𝑔, is given by 

 

 

The relation −1 ≤ 𝑔 ≤ 1 always holds. The values of anisotropy parameter 𝑔 for some 

special scattering regimes are listed below: 

- isotropic scattering (Rayleigh scattering),  𝑔 = 0; 

- forward scattering (θ = 0°),  𝑔 = 1; 

- backward scattering (θ = 180°)  𝑔 = -1. 

 

For the majority of biological tissues the value of 𝑔 varies from 0.6 to 0.99 [10]. Several 

analytical approximations for phase functions 𝑝(𝜃) have been proposed. The most widely 

used is the Henyey-Greenstein function defined as: 

 

 

Henyey-Greenstein function ranges from backscattering through isotropic scattering to 

forward scattering by the variation of anisotropy parameter (−1 ≤ 𝑔 ≤ 1).  

 

Transport mean free path 𝑙′𝑠  is defined for the media composed of anisotropically 

scattering particles with 𝑔 > 0: 

 

 

Parameter 𝑙′𝑠 is the mean distance required for scattered light to deviate significantly from 

the direction of the incident beam. When 𝑔 ≈ 1  (𝜃 ≈ 0° ⇒  forward scattering regime), 

scattered wave slightly deviated from the direction of incident wave. Many scattering events, 

and consequently, longer distance 𝑙′𝑠>>𝑙𝑠, traveled through the medium will be needed to 

 𝐹(𝜃) = 𝐼𝑠(𝜃) 𝑟2𝑑𝛺 = 𝐶𝑠𝐼
𝑜𝑝(𝜃)𝑑𝛺 (3.14) 

 𝑝(𝜃) =
|𝑆1(𝜃)|2 + |𝑆2(𝜃)|2

4𝜋 𝑘2𝑛𝑚
2

 (3.15) 

 𝑔 = ⟨𝑐𝑜𝑠 𝜃⟩ = ∫ 𝑐𝑜𝑠 𝜃 [𝑝(𝜃)2𝜋 𝑠𝑖𝑛 𝜃] d𝜃
𝜋

0

 (3.16) 

 𝑝(𝜃) =
1

4𝜋

1 − 𝑔2

[1 + 𝑔2 − 2𝑔 𝑐𝑜𝑠( 𝜃)] 3 2⁄
 (3.17) 

 𝑙′𝑠 =
𝑙𝑠

(1 − 𝑔)
 (3.18) 
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reach a significant deviation. When 𝑔 ≈ 0 (scattering is close to isotropic), the transport 

mean free path become comparable with the mean free path 𝑙′𝑠 ≈ 𝑙𝑠. 

Optical albedo 𝜛  of both scattering and absorbing medium is defined as a ratio of 

scattering and total extinction coefficients: 

 

 

In an absorbing medium the norm of the phase function (see Eq. (3.12)) is modified as 

 

3.4.1.2. Vector radiative transfer equation 

The radiative transfer theory (RTT) is a phenomenological approach describing the transport 

of energy in the medium composed of a variety of discrete and randomly distributed 

particles. In the framework of vector RTT, the interaction of a polarized light beam with a 

scattering medium can be described by the solution of an integro-differential vector radiative 

transfer equation (VRTE), that describes the energy conservation law:  

 

 

where 𝒓 describes the position within the scattering medium, 𝑡 - time, 𝐋 - vectorial radiance 

that is composed of the components of Stokes vector, 𝛀̂ is the unit vector of direction, 𝑣 =

𝑐/𝑛𝑚 is the speed of light propagation within the medium. The phase function 𝐏(𝛀̂′ → 𝛀̂) is 

an angular dependent 4 × 4  real matrix that also depends on input vectorial radiance 𝐋 

because of normalization conditions. Both scattering and absorption coefficients are 

considered as constant in terms of time. 

The propagation of light directed into the solid angle 𝑑Ω leads to the variation of 𝐋. The 

attenuation of light due to the absorption and scattering is characterized by the extinction 

coefficient 𝜇𝑒. The light beams can be deflected from their initial directions 𝜴̂′ and scattered 

into solid angle 𝑑Ω , thus changing 𝐋 . The presence of the internal sources (if any) 

continuously distributed within the volume and characterized by their radiance 𝛴(𝒓, 𝜴̂, 𝑡) 

will also change the vectorial radiance 𝐋. Eq. (3.21) is a linear first order partial integro-

differential equation. It can be converted into an integral equation by the method of 

characteristics [11]. If there is only an external source of photons, the VRTE can be 

reformulated as 

 𝜛 =
𝜇𝑠

𝜇𝑠 + 𝜇𝑎
,    0 ≤ 𝜛 ≤ 1 (3.19) 

 ∫ 𝑝(𝜃)𝑑𝛺
4𝜋

= 𝜛 (3.20) 

 

1

𝑣

𝜕𝐋(𝒓, 𝛀̂, 𝑡)

𝜕𝑡
+ 𝛀̂∇𝐋(𝒓, 𝛀̂, 𝑡) 

= ∫ 𝜇𝑠𝐏(𝛀̂′ → 𝛀̂)𝐋(𝒓, 𝛀̂, 𝑡)
Ω′

𝑑Ω′ + ∑(𝒓, 𝛀̂, 𝑡) − 𝜇𝑒𝐋(𝒓, 𝛀̂, 𝑡) 

(3.21) 
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where K is integral operator. We consider the solution of Eq. (3.22a) obtained by iterations: 

 

 

 

 

It can be shown that at certain conditions on K and Q’, this iterative process converges to the 

solution of Eq. (3.21). The estimation of the integral of collision K will be performed by the 

Monte Carlo technique, presented in the next section. 

3.4.2. Monte Carlo algorithm for solution of VRTE in scattering 

media  

For any application the Monte Carlo method requires a stochastic model where the mean 

values of certain random variables are the values of the physical properties (in our case, the 

Mueller matrix coefficients of the scattering medium) to be determined by means of the 

numerical calculation [12]. These mean values are calculated by averaging over the multiple 

series of independent samples.  

To solve the vector RTE in turbid media with Monte Carlo technique one needs to 

simulate the random walk of incident “photon packages” within the scattering and absorbing 

media before being detected. This approach is particularly appropriate for the modeling of 

real optical experiments with complex geometry (optical interfaces of arbitrary shape, 

various configurations for signal detection), and samples combined of different optical 

materials (scattering, absorbing, having different optical refractive indices, etc.). 

The drawback of using Monte Carlo method for the solution of radiative transport 

problem is its high computational cost. As the technique is not deterministic, we have to 

estimate the variance of the quantities of interest – Mueller matrix coefficients of the sample. 

When the calculated standard deviation is below the defined threshold (obviously, its value 

influences the accuracy of the final results) the calculations are stopped. As it follows from 

the central limit theorem, the Mueller matrix coefficients are within 3% of the mean values 

with 95% confidence when the variance threshold is set at 1.5%. The decreases of standard 

variance and standard deviation are proportional to 1 𝑛⁄  and 1 √𝑛⁄ , respectively, where n is 

the number of simulated photon trajectories. However, the time complexity of Monte Carlo 

method for the solution of radiative transport problem can be addressed by the algorithm 

parallelization. Each photon’s trajectory is calculated independently, so the algorithm can be 

accelerated significantly by using its GPU-based implementation. 

The propagation of polarized wave through scattering media has been studied by many 

groups, particularly from atmospheric optics, astronomy, and oceanography communities. 

 𝐋 = KL+𝑸′ (3.22a) 

 𝐋𝟎 = 𝑸′ (3.22b) 

 𝐋𝟏 = K𝐋𝟎 (3.22c) 

 𝐋𝒏+𝟏 = K𝐋𝒏 (3.22d) 
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Kattawar and Plass solved VRTE for the multiple-scattered light in haze and clouds by the 

Monte Carlo method [13].  

In biomedical optics, Monte Carlo based software has been used for the modeling of 

polarized light interaction with tissue. By measuring the intensities and polarization 

properties of the reflected/transmitted light one can extract the unknown optical properties 

of the biological sample (𝜇𝑠, 𝜇𝑎, 𝑔) by solving an inverse scattering problem. It is expected 

that the optical properties of pathological tissues differ from that of a healthy one. These 

markers could be used for the optical diagnostics and pave the way for the new non-invasive 

diagnostic tools.  

Monte Carlo code for the solution of RTE in multilayered tissues was developed by 

Wang et al. [14]. Three free versions of Monte Carlo code for the calculations of 

backscattering Mueller matrix, including the effect of skewed illumination, were developed 

by Ramella-Roman et al. [15], [16]. Another free Monte Carlo code has been proposed by D. 

Côté and A. Vitkin [17]. The generalized Monte Carlo model for simulation of coherent 

effects of multiple scattering, including Coherent Back-Scattering (CBS) and temporal 

intensity fluctuation of polarized laser radiation scattered within the random inhomogeneous 

turbid medium was developed by I. Meglinski [18], [19]. The online GPU-accelerated 

multipurpose Monte Carlo simulation tool for the needs of biophotonics and biomedical 

optics was developed by I. Meglinski and A. Doronin [20]. 

The first version of our polarized Monte Carlo code was developed for the metrological 

applications [21] and later generalized for the modeling of polarized light propagation in 

biological tissue [22]. The photons, emitted by source, are characterized by their position, 

direction of propagation and given polarization (Stokes vector). They are propagating like 

ballistic ones till the next scattering site. The elastic scattering change the direction and 

polarization of photon. The absorption by the medium gradually reduces the statistical 

weight of a photon. The photon can be reflected or refracted crossing the interfaces 

according to Fresnel’s law. Photons will follow a random walk trajectory within a defined 

computational domain comprising regions with different optical properties. This process is 

repeated for the “photon packages” with different initial states of polarization. The photon 

intensities of the photons that reach the detector are averaged incoherently. No speckle 

effect is taken into account, because spatially incoherent light was used in our experiments. 

The average values of photon intensities provide the quantities of interest, namely, Mueller 

matrix coefficients of a sample. The main steps of the algorithm are detailed below. 

3.4.2.1. Generation of random numbers with given probability 

distributions. 

Let us define as 𝑃(𝑧) the probability distribution function of a random variable 𝑧 (𝑧0 ≤ 𝑧 ≤

𝑧𝑖). It means that probability  

 

 𝑑𝑃(𝑧 ∈ 𝑑𝑧) = 𝑃(𝑧)𝑑𝑧 (3.23) 
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Then, the cumulative probability function 𝑓𝑃(𝑧) is given by 

 

 

It is clear that if 𝑧0 ≤ 𝑧 ≤ 𝑧𝑖 with the probability distribution function 𝑃(𝑧), the cumulative 

probability function 𝑓𝑃(𝑧)  varies between 0 and 1 with its own probability distribution 

function 𝑄(𝑓𝑃), which is related to 𝑃(𝑧) as 

 

 

It follows from Eq. (3.25) that the cumulative probability function 𝑓𝑃(𝑧)  is uniformly 

distributed between 0 and 1. 

 

 

Hence, if we generate a random uniformly distributed variables 𝑓𝑃 ∈ [0,1], the solutions to 

Eq. (3.24) will obey a defined probability distribution function 𝑃(𝑧) and 𝑧0 ≤ 𝑧 ≤ 𝑧𝑖. When 

photon propagates through homogeneous absorbing and scattering medium, characterized by 

its extinction coefficient 𝜇𝑒, the probability of photon not being scattered or absorbed over 

the distance 𝑧 is given by 

 

 

Putting Eq. (3.27) into Eq. (3.24), we obtain 

 

or 

 

where 𝑓′𝑃  is random variable that is uniformly distributed on [0,1] . When probability 

distribution function 𝑃(𝑧) cannot be integrated analytically, one can implement so-called 

acceptance-rejection method. The random equidistributed draws of both 𝑧 ∈ [𝑧0, 𝑧1] and 𝑥 ∈

[0,1] are performed independently by a standard numerical random number generator. Then, 

𝑃(𝑧) is calculated and compared with 𝑥. If  

 

 𝑓𝑃(𝑧) = ∫ 𝑃(𝑣)𝑑𝑣
𝑧

𝑧0

 (3.24) 

 𝑄(𝑓𝑃)𝑑𝑓𝑃 = 𝑃(𝑧)𝑑𝑧  (3.25) 

 𝑄(𝑓𝑃) =
𝑃(𝑧)

𝑑𝑓𝑃/d𝑧
= 1 (3.26) 

 𝑃(𝑧)𝑑𝑧 = µ
𝑒
𝑒𝑥𝑝( − µ

𝑒
𝑧)𝑑𝑧 (3.27) 

 𝑓𝑃(𝑧) = ∫ µ
𝑒
𝑒𝑥𝑝( − µ

𝑒
𝑣)𝑑𝑣 = (1 − 𝑒𝑥𝑝(

𝑧

𝑧0

− µ
𝑒
𝑧)) (3.28) 

 𝑧 = −
𝑙𝑛( 1 − 𝑓𝑃)

µ
𝑒

=
𝑙𝑛( 𝑓′𝑃)

µ
𝑒

 (3.29) 

 𝑥 ≤ 𝑃(𝑧) (3.30) 
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the value of 𝑧 is accepted, otherwise it is rejected. When the dimensionality of the problem 

increases the acceptance-rejection method can lead to a lot of unwanted samples being taken 

before the accepted sample is generated. Let us consider the case, when the probability 

density function depends on two variables (not necessarily independent) and can be 

decomposed into the sum of two positive terms, 

 

 

the functions 𝑓1  and 𝑓2  are not the probability density functions because they are not 

normalized. Introducing the norms 𝐹1 and 𝐹2 (the integrals of 𝑓1 and 𝑓2 over the full finite 

range of variations of variables 𝜃 and 𝜙), we can present the probability density function 

𝑃(𝜃, 𝜙) as a linear combination of two probability density functions 𝑃1(𝜃, 𝜙) and 𝑃2(𝜃, 𝜙): 

 

 

We can interpret Eq. (3.32) as a splitting of all possible events generating the pair of (𝜃, 𝜙) 

variables into two mutually excluding groups. The numerical procedure for generating the 

(𝜃, 𝜙) pairs can be described as: 
 

- Draw a number u, which is uniformly distributed in the interval [0, 1]; 

- If 𝑢 < 𝐹1/(𝐹1 + 𝐹2), the pair (𝜃, 𝜙) has to be drawn following the probability density 

function P1,  

- Otherwise, the probability density function 𝑃2 has to be used. 
 

This method is of particular interest if the variables θ and 𝜙  can be considered as 

independent ones for both probability density functions 𝑃1 and 𝑃2, as it will be shown below. 

3.4.2.2. Photon coordinates and trajectories.  

Since Monte Carlo algorithm simulates the random trajectory of a polarized photon within 

scattering and absorbing medium, one have to define the photon path. It is constructed as the 

recursive sequence of the following steps: 
 

1. Creation of source photon with a chosen position, direction, and initial polarization. 

2. Definition of the site and type of next event (scattering on particle, transmission or 

reflection on the interfaces). If the photon has reached the boundaries of the domain of 

simulations, go to step 5. 

3. Change the direction of photon propagation and its polarization according to the type 

of event. 

4. Scoring, check if photon stays within the domain of simulations. If so, back to step 2. 

5. The photon path terminates whenever it reaches the boundaries of the domain of 

simulations, which means that it has no return possibility. 

 𝑃(𝜃, 𝜙) = 𝑓1(𝜃, 𝜙) + 𝑓2(𝜃, 𝜙) (3.31) 

 𝑃(𝜃, 𝜙) = 𝐹1𝑃1(𝜃, 𝜙) + 𝐹2𝑃2(𝜃, 𝜙)  (3.32) 
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The sequence of N photons (package) with the same input Stokes vector 𝐒in  (i.e. same 

polarization state) is emitted from the source. Due to the statistical nature of Monte Carlo 

technique each individual photon follows its own trajectory in the scattering and absorbing 

medium and, finally, contributes to the detector (if being detected) independently, carrying 

its unique output Stokes vector. Hence, for the fixed 𝐒in an output Stokes vector is found by 

averaging over the simulated output polarization states of the photon. This step is repeated 

with the same 𝐒in until the variance threshold is reached. 

For the accurate estimation of the Mueller matrix of the sample the initial polarization 

state of photon package has to be varied over the surface of the Poincaré sphere widely 

enough. The initial polarization states can be defined as four fixed polarization states with 

linearly independent Stokes vectors. The optimal choice corresponds to vortices of regular 

tetrahedron inscribed into Poincaré sphere. When using this sampling approach the 

following matrix equation is obtained 

 

 

where four different input Stokes vectors form the columns of matrix 𝑾  and four 

corresponding output Stokes vectors form the columns of matrix  𝑭 . When four 𝐒in  are 

linearly independent, 𝑾 can be inverted and Mueller matrix is defined as 

 

 

Let us now consider in details the phenomena treated within step 2 of the Monte Carlo 

algorithm, namely, scattering on spherical scatterers and reflection/transmission on 

interfaces. 

 

Scattering by spheres embedded in a homogeneous medium. It was already shown that 

for photon propagating in scattering and absorbing medium with extinction coefficient 𝜇𝑒  

the distance 𝑑 between two scattering events is a random variable defined as 

 

 

where 𝑧 is a random number uniformly distributed between 0 and 1 (see Eqs (3.27)-(29)). 

The probability 𝑃(𝜃, 𝜙) that the photon will be scattered at angle θ and its initial local 

reference frame (𝒆𝒙
𝒐, 𝒆𝑦

𝒐 , 𝒆𝑧
𝒐) will be rotated by angle 𝜙 (see Fig. 3.15) is calculated as a 

function of the photon energy, radius of spherical scatterer and relative optical index 

contrast using analytical Mie solution [6]. 

First, we need to rotate vector 𝐒o and reference frame(𝒆𝒙
𝒐,  𝒆𝑦

𝒐 ,  𝒆𝑧
𝒐) in Stokes parametric 

space and real space, respectively, by angle 𝜙 about the direction of propagation 𝒆𝑧
𝒐.  

 

 𝑭 = 𝑴 ⋅ 𝑾  (3.33) 

 𝑴 = 𝑭 ⋅ 𝑾−𝟏 (3.34) 

 𝑑 =
𝑙𝑛( 𝑧)

µ
𝑒

 (3.35) 



 

  77 

 

Figure 3.15 (adapted from [23]). Scattering angles θ and φ are not independent parameters. The 

initial local reference frame (𝒆𝒙
𝒐, 𝒆𝑦

𝒐 , 𝒆𝑧
𝒐) is rotated by angle φ to obtain the incident frame (𝒆𝒙

𝒊 , 𝒆𝑦
𝒊 , 𝒆𝑧

𝒊 )  

with unit vectors 𝒆𝒙
𝒊 and 𝒆𝑦

𝒊  parallel and perpendicular to the scattering plane defined by the incident 

direction and direction of scattering (which is defined by angle θ). After scattering of photon by 

sphere its new polarization state is given by Mie solution defined in the scattering reference frame 

(𝒆𝒙
𝑠 , 𝒆𝑦

𝑠 , 𝒆𝑧
𝑠), which becomes a new local reference frame. 

 

The scattering of photon by the angle θ is described by Mueller matrix M(θ) defined by 

Eq.(3.11a) in a scattering reference frame. This reference frame is obtained by rotating the 

incident reference frame by (𝒆𝒙
𝒊 , 𝒆𝑦

𝒊 , 𝒆𝑧
𝒊 )  about the direction 𝒆𝒚

𝒊  (perpendicular to the 

scattering reference plane) by the angle θ. 

 

 

The intensity 𝑑𝐼𝑠 of the light scattered in a solid angle 𝑑𝛺 about the direction 𝜴̂ is given by 

the first component of the Stokes vector of scattered light 𝐒s: 

 

where  

 

=
1

2
[|𝑆1(𝜃)| 2(𝐼 − 𝑄 𝑐𝑜𝑠(2𝜙) + 𝑈 𝑠𝑖𝑛(2𝜙)) + |𝑆2(𝜃)| 2(𝐼 + 𝑄 𝑐𝑜𝑠(2𝜙) − 𝑈 𝑠𝑖𝑛(2𝜙))] 

 

where |𝑆𝑖(𝜃)| 2 are the squared values of complex amplitude functions (see Eqs 3.9(a), (b)). 

The total intensity of scattered light is obtained by integrating the intensity of the scattered 

light over all directions of propagation included in the sphere of unit volume: 

 

𝐼𝑠 = ∫ 𝑆𝑜
𝑠𝑑𝛺 = ∫ ∫ 𝑆𝑜

𝑠(𝜃, 𝜙) 𝑠𝑖𝑛 𝜃 d𝜃d𝜙
𝜙=2𝜋

𝜙=0

𝜃=𝜋

𝜃=0

= 𝜋𝐼 ∫ (|𝑆1(𝜃)| 2 + |𝑆2(𝜃)| 2)
𝜃=𝜋

𝜃=0

𝑠𝑖𝑛 𝜃 𝑑𝜃 = 

 𝑺𝒊 = 𝑹𝑴(𝜙) ⋅ 𝑺𝒐, {

𝒆𝒙
𝒊 = 𝑐𝑜𝑠 𝜙 𝒆𝒙

𝒐 + 𝑠𝑖𝑛 𝜙 𝒆𝑦
𝑜

𝒆𝑦
𝒊 = −𝑠𝑖𝑛 𝜙 𝒆𝒙

𝒐 + 𝑐𝑜𝑠 𝜙 𝒆𝑦
𝒐

𝒆𝒛
𝒊 = 𝒆𝒛

𝑜

   (3.36) 

 𝑺𝑠 = 𝑴(𝜃)𝑹𝑴(𝜙) ⋅ 𝑺𝟎, {

𝒆𝒙
𝒔 = 𝑐𝑜𝑠 𝜃  𝒆𝒙

𝒊 − 𝑠𝑖𝑛 𝜃 𝒆𝒛
𝒊

𝒆𝒚
𝒔 = 𝒆𝒚

𝒊

𝒆𝒛
𝒔 = 𝑠𝑖𝑛 𝜃  𝒆𝒙

𝒊 + 𝑐𝑜𝑠 𝜃  𝒆𝒛
𝒊

   (3.37) 

 𝑑𝐼𝑠 = 𝑆0
𝑠(𝜃, 𝜙)𝑑𝛺    (3.38) 

𝑆𝑜
𝑠(𝜃, 𝜙) = 𝑚00(𝜃)𝐼 + 𝑚01(𝜃) 𝑐𝑜𝑠(2𝜙)𝑄 − 𝑚01(𝜃) 𝑠𝑖𝑛(2𝜙)𝑈 =  (3.39) 

e 

 

e 

e e 

e 

 

 e e 
e 
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The intensity of the scattered light in any direction of propagation, characterized by the 

angles 𝜃 and 𝜙, is proportional to the number of the photons scattered along that direction. 

The combined angular probability density function 𝑃(𝜃, 𝜙) can be written as 

 

 

This function is a joint probability density function of the random variables 𝜃 and 𝜙. Hence, 

we can apply the acceptance–rejection method described above to generate the values of 

angles 𝜃  and 𝜙 . Three random numbers 𝜃𝑜 , 𝜙𝑜 , and 𝜉, uniformly distributed over the 

intervals [0, 𝜋], [0, 2𝜋], and [0, 𝑚𝑎𝑥𝜃,𝜙𝑆𝑜
𝑠(𝜃, 𝜙)], respectively, are generated first. If 𝜉 ≤ 

𝑆𝑜
𝑠(𝜃𝑜, 𝜙𝑜), the pair 𝜃𝑜  and 𝜙𝑜  is accepted, otherwise random draw of 𝜃𝑜 , 𝜙𝑜 , and 𝜉 is 

repeated. This probability of acceptance is always smaller than 0.5 (limit case for very small 

scattering particles) and decreases with the increase of size of scatterers, leading to the 

unproductive increase of computational time. 

In order to avoid this problem, we decompose the angular probability density function 

𝑃(𝜃, 𝜙) in a sum of two positive terms (see Eq. (3.32)). First, we define 𝜙0 and 𝑊 from the 

following expressions using the first three components of incident Stokes vector:  

 

 

 

𝑊 ∈ [0, 1] because 𝐼2 ≥ 𝑄2 + 𝑈2 + 𝑉2. It follows from Eq. (3.42) that 

 

 

 

It can be easily shown that multiplying (3.43a) by 𝑐𝑜𝑠 2𝜙  and (3.43b) by 𝑠𝑖𝑛 2𝜙, then 

subtracting them, we get 

 

 

Consequently, substituting Eq. (3.44) in (3.39) we obtain 

 

𝑆0
𝑠(𝜃, 𝜙) =

1

2
[|𝑆1(𝜃)| 2(𝐼 − 𝐼𝑊 𝑐𝑜𝑠 2 (𝜙 − 𝜙0)) + |𝑆2(𝜃)| 2(𝐼 + 𝐼𝑊 𝑐𝑜𝑠 2 (𝜙 − 𝜙0))] = 

 

= 𝜋𝐼 ∫ (|𝑆1(𝜃)| 2)
𝜃=𝜋

𝜃=0

𝑠𝑖𝑛 𝜃 𝑑𝜃 + 𝜋𝐼 ∫ (|𝑆2(𝜃)| 2)
𝜃=𝜋

𝜃=0

𝑠𝑖𝑛 𝜃 𝑑𝜃 = 𝜋𝐼(𝑇1 + 𝑇2) (3.40) 

 𝑃(𝜃, 𝜙)𝑑𝜃𝑑𝜙 =
𝑆𝑜

𝑠(𝜃, 𝜙)

𝐼𝑠
𝑠𝑖𝑛 𝜃 𝑑𝜃 d𝜙   (3.41) 

 𝐼2𝑊2 = 𝑄2 + 𝑈2  (3.42a) 

 𝑡𝑎𝑛 2𝜙0 = 𝑈/𝑄 (3.42b) 

 𝑄 = 𝐼𝑊 𝑐𝑜𝑠( 2𝜙0)  (3.43a) 

 𝑈 = 𝐼𝑊 𝑠𝑖𝑛( 2𝜙0) (3.43b) 

 𝑄 𝑐𝑜𝑠 2𝜙 − 𝑈 𝑠𝑖𝑛 2𝜙 = 𝐼𝑊 𝑐𝑜𝑠 2 (𝜙 − 𝜙0) (3.44) 

=
𝐼

2
[|𝑆1(𝜃)| 2(1 − 𝑊 + 2𝑊 𝑠𝑖𝑛2( 𝜙 − 𝜙0)) + |𝑆2(𝜃)| 2(1 − 𝑊 + 𝑊 𝑐𝑜𝑠2( 𝜙 − 𝜙0))] 
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Using Eqs (3.40) and (3.45), the combined angular probability density function 𝑃(𝜃, 𝜙) 

from Eq. (3.41) can be written as 

 

 

where 

 

Functions 𝑃1(𝜃, 𝜙) =
𝑡1(𝜃,𝜙)

𝑇1
 and 𝑃2(𝜃, 𝜙) =

𝑡2(𝜃,𝜙)

𝑇2
 are the probability density functions. 

Moreover, each of the functions 𝑃1  and 𝑃2  is the product of 𝑃𝑖(𝜃)  and 𝑃𝑖(𝜙) (𝑖 = 1, 2), 

meaning that random variables 𝜃  and 𝜙  are statistically independent. The procedure of 

generating the angles 𝜃 and 𝜙 can be summarized as 

 

1. The technique of decomposition in the sum of two positive terms applied first to choose 

either probability density function 𝑃1(𝜃, 𝜙) or 𝑃2(𝜃, 𝜙). 

2. Angle θ is obtained by applying the acceptance-rejection method for the probability 

density function.  

 

 

3. Then, again the technique of decomposition is applied to the probability density 

functions 

 

 

 

because these probability density functions are the sum of constant (1 − 𝑊)/2𝜋 and 

function 𝑔𝑖(𝜙) =
𝑊

𝜋
𝑠𝑖𝑛2( 𝜙 − 𝜙0 + (𝑖 − 1)

𝜋

2
), 𝑖 = 1,2. 

4. For the choice of constant the angle 𝜙  is drawn uniformly over the interval [0, 2𝜋]. 

Otherwise, the angle 𝜙 is determined by the inversion of the probability density function 

𝐺𝑖(𝜙) =
𝜋

𝑊
𝑔𝑖(𝜙) obtained by normalization of 𝑔𝑖. 

(3.45) 

𝑃(𝜃, 𝜙) =
1

2𝜋(𝑇1 + 𝑇2)
[𝑡1(𝜃, 𝜙) + 𝑡2(𝜃, 𝜙)]

=
1

2𝜋
[

𝑇1

(𝑇1 + 𝑇2)

𝑡1(𝜃, 𝜙)

𝑇1
+

𝑇2

(𝑇1 + 𝑇2)

𝑡2(𝜃, 𝜙)

𝑇2
]   

(3.46) 

𝑡𝑖(𝜃, 𝜙) =
1

2
|𝑆𝑖(𝜃)| 2 𝑠𝑖𝑛 𝜃 [1 − 𝑊 + 2𝑊 𝑠𝑖𝑛2( 𝜙 − 𝜙0 + (𝑖 − 1)

𝜋

2
)] , 𝑖 = 1, 2 (3.47) 

 𝑃𝑖(𝜃) =
|𝑆𝑖(𝜃)| 2 𝑠𝑖𝑛 𝜃

∫ |𝑆𝑖(𝜃)| 2 𝑠𝑖𝑛 𝜃  𝑑𝜃
𝜋

0

 (3.48) 

 𝑃1(𝜙) =
1

2𝜋
(1 − 𝑊) +

1

𝜋
𝑊 𝑠𝑖𝑛2( 𝜙 − 𝜙0) (3.49a) 

 𝑃2(𝜙) =
1

2𝜋
(1 − 𝑊) +

1

𝜋
𝑊 𝑐𝑜𝑠2( 𝜙 − 𝜙0) (3.49b) 
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Interaction with the interfaces. When photon with current position 𝐫𝒏  and direction of 

propagation 𝛀𝒏  continues his travel within the scattering medium, we first calculate the 

scattering distance 𝑑 from Eq. (3.35) and compare it with the geometrical distance 𝑑0 to the 

closest interface defined as 𝐫𝒏+𝟏 − 𝐫𝒏 = 𝑑0𝛀̂𝒏. If 𝑑0 < 𝑑, the next location of photon will be 

considered at the interface, where it can be reflected or transmitted. Making choice between 

reflection and transmission, we use the Fresnel law for the interface between two semi-

infinite media. First we rotate the frame of reference (𝒆𝑥, 𝒆𝑦, 𝒆𝑧)  by the corresponding 

angles until the axes x and y become perpendicular and parallel, respectively, to the plane of 

incidence. Then the reflectivity for an incoming Stokes vector 𝑺 = [𝐼, 𝑄, 𝑈, 𝑉] 𝑇is defined as 

 

 

where 𝑟II and 𝑟⊥ are the complex reflectance coefficients from the reflection Jones matrix. 

The random number 𝑝𝑅, uniformly distributed over [0, 1], is generated and compared with R. 

If 𝑝𝑅 < 𝑅, the photon is reflected at the interface, otherwise it is transmitted. The state of 

polarization of reflected/transmitted photon is the product of its Stokes vector and interface 

reflection/transmission Mueller matrix obtained from the Fresnel law. The new direction of 

propagation is obtained by means of the Snell law.  

3.4.3. Monte Carlo algorithm for anisotropic scattering media 

3.4.3.1. Optical anisotropy of tissue 

Many biological tissues (e.g., cornea, tendon, sclera, muscle, retina) are not only scattering, 

but also optically anisotropic. The latter is often due to the presence of ordered 

microstructures in tissue. For example, tissue extracellular matrix that contains aligned 

fibers of collagen produces so-called form birefringence. The arrangement of collagen fibers 

is directly related to the orientation of the optical axis. The density of collagen fibers affects 

the magnitude of the polarimetric properties (e.g., scalar linear birefringence and linear 

diattenuation). Some chiral aggregates can create an optical activity which is related to the 

circular birefringence and the circular diattenuation. The chiral molecules (e.g., glucose) 

also can generate both circular birefringence and circular diattenuation (see Fig. 3.16) [10].  
 

 𝑅 =
1

2
[(𝑟II

2 + 𝑟⊥
2) + 𝑄(𝑟II

2 − 𝑟⊥
2)] (3.50) 
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Figure 3.16 Structurally anisotropic models of biological tissue and tissue components: (a) long 

dielectric cylinders, (b) dielectric plates, and (c) chiral aggregates of particles. 

In case of form anisotropy (or form birefringence) the phase velocity of light propagating 

along the axis of the aligned fibers (fast optical axis) is not the same as for light propagating 

in the direction perpendicular to the axis of the aligned fibers (slow optical axis). It results in 

a non-zero value of the relative optical phase between two orthogonal polarization 

components of polarized light propagating through such media. The phase retardation Δ is 

defined as  

 

 

where d is the path length of light propagation through the uniaxial birefringent medium, and 

𝜆 is the wavelength of the probing light beam, ∆𝑛 is defined as 

 

 

𝑛(𝜃) is the effective refractive index seen by light propagating at angle 𝜃 with respect to the 

extraordinary axis of birefringent material (see Fig. 3.17), and it is given by [24] 

 

 

Figure 3.17 Vector of optical axis e (𝑐𝑜𝑠 𝜂, 𝑠𝑖𝑛 𝜂) and direction of light propagation z’ (𝑢𝑥  , 𝑢𝑦, 𝑢𝑧) 

in the laboratory coordinate system. 

 𝛥 =
2𝜋∆𝑛𝑑

𝜆
 (3.51) 

 ∆𝑛 = 𝑛(𝜃) − 𝑛𝑜 (3.52) 
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𝑛𝑜 and 𝑛𝑒 are the ordinary and extraordinary refractive indices of the uniaxial birefringent 

medium, respectively. The angle 𝜃 is defined from the scalar product of the vector of light 

propagation direction and the vector defining the orientation of the extraordinary axis as 

[24] 

 

3.4.3.2. Validation of the updated Monte Carlo algorithm 

When the optical axis of linear uniaxial birefringent medium is parallel to x-axis, the Mueller 

matrix of retarder is given by 

 

 

To account for the phase shift of light propagating at the angle θ with respect to the direction 

of the optical axis, we need to calculate the matrix product 𝑀𝛥(𝛽) = 𝑅(𝛽)𝑀𝛥𝑅(−𝛽), where 

M(β) is the matrix of rotation in Stokes space (see Eq. (1.51), the rotation angle 𝛽 is defined 

as the angle between the local fast axis 𝒇 = 𝒌 × 𝒆 (cross product between the vector of 

photon propagation direction 𝒛′ = 𝒌 and the vector of the optical axis 𝒆) and unit vector of 

y’-axis of the local coordinate system (see Fig. 3.18). 
 

 

Figure 3.18 Vector of optical axis e in the local coordinate system (x’, y’, z’) 

 

We assume that tissue linear birefringence is small enough (typical values of 𝛥𝑛  for 

biological tissue are about 10−5 [10]), so it does not affect the calculations of the single 

 𝑛(𝜃) =
𝑛𝑜𝑛𝑒

(𝑛𝑒
2𝑐𝑜𝑠2𝜃 + 𝑛𝑜

2𝑠𝑖𝑛2𝜃)0.5
 (3.53) 

 𝜃 = 𝑐𝑜𝑠−1 (
𝑢𝑥𝑐𝑜𝑠 𝜂 + 𝑢𝑦𝑠𝑖𝑛 𝜂

(𝑢𝑥
2 + 𝑢𝑦

2 + 𝑢𝑧
2)0.5

) (3.54) 

 𝑀𝛥 = [

1 0 0 0
0 1 0 0
0 0 cos 𝛥 sin 𝛥
0 0 −sin 𝛥 cos 𝛥

] (1.42) 
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scattering matrix (see Eqs. (3.11)). The updated polarized Monte Carlo algorithm for the 

solution of VRTE in scattering anisotropic medium has one extra step during the calculations 

of the trajectory of photon random walk, namely, the Stokes vector of a scattered photon is 

multiplied by the retarder matrix 𝑀𝛥(𝛽), where the retardation 𝛥 is calculated from Eq. (3.51) 

for the distance 𝑑 travelled by a photon to the next scattering event site or to the boundary of 

birefringent medium. 

To validate the updated version of the algorithm we simulated the backscattered Mueller 

matrix images of two optical scattering phantoms with isotropic and linear birefringent host 

medium. The optical axis of the latter was aligned with x-axis of the laboratory coordinate 

system. Point source emits a given number (107 ~ 108) of mono-energetic polarized photons 

(λ = 633nm) that impinge top flat surface of each phantom at normal incidence. The thickness 

of each phantom is 1 cm, scattering coefficient 𝜇𝑠  = 10 cm-1, there is no absorption (𝜇𝑎 = 0). 

The radius of spherical scatterers 𝑅𝑠  = 200 nm, the refractive index of spherical particles is 𝑛𝑝 

= 1.59, the refractive index of the isotropic host medium 𝑛𝑚  = 1.33, Δnmax =10-5 for the 

birefringent host medium. All those parameters can be adjusted to mimic the optical 

properties of a real biological sample. The results of the simulation are presented in Fig. 3.19. 

All elements of the Muller matrix images mij
∗ (x, y) are normalized by m00(x, y) pixel-wise: 

mij
∗ (x, y) =  mij(x, y)/m00(x, y). 

 

 

Figure 3.19 Simulated backscattered Mueller matrix images of isotropic medium with embedded 

spherical scatterers (left) and linear birefringent scattering medium with randomly and uniformly 

distributed spherical scatterers (right). White circles highlight the difference in MM coefficients. The 

area of each image is 1cm2. 

The top left 3 × 3 blocks of the Mueller matrix images are identical for both isotropic and 

anisotropic phantoms. Different spatial patterns in m03  and m30  images of both phantoms 

demonstrate the presence of non-zero circular dichroism for the anosotropic phantom. The 

impact of optical anisotropy of host medium is clearly seen in m13, m31, m23, and m32 images 

of birefringent scattering medium. It is worth to mention that these spatial patterns will not be 

observed at diffuse uniform illumination of a sample because of spatial averaging. 
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3.5. Conclusions  

We reviewed a number of image processing methods with a special focus on the DBSCAN 

density-based clustering algorithm that has been used in our studies for the image 

segmentation to extract the regions of interest (ROI) effectively. This method is well adapted 

for finding the clusters of arbitrary shape and handling noise data effectively. However, the 

time complexity of the DBSCAN algorithm prevents it from using on the large size datasets. 

To address this problem, we developed the updated version of the DBSCAN algorithm that 

allows efficient clustering of the large size datasets. We explored the idea of cluster 

expanding by assigning all points of the 𝜀/r-neighborhood of an arbitrary core point to the 

corresponding cluster. Then, the procedure of a point-by-point cluster expansion applies only 

to the dataset points that belong to the 𝜀-neighborhood of a core point but do not belong to 

the 𝜀/r -neighborhood of the same core point. This approach reduces considerably the 

execution time and memory budget for the updated version of the DBSCAN algorithm for 

large size datasets. We developed a heuristic method for finding the optimal value of the 

input parameter𝜀. The results of parametric studies on the performance of both original and 

updated versions of the DBSCAN algorithm are reported. 

In this Chapter, we also discussed the Monte Carlo statistical algorithm for the solution 

of a vector radiative transfer equation (VRTE) that was used to calculate the Mueller matrix 

of optical phantoms of biological tissue.  

Biological tissues are extremely complex objects containing a large number of randomly 

distributed multi-disperse microscopic scatterers and anisotropic microstructures. We 

introduced the parameters for the description of scattering media. A transfer matrix for 

scattering was determined by analytical Mie solution for a single spherical scatterer. This 

matrix describes the changes of photon’s polarization state and direction of propagation after 

each scattering event. The angles of deflection and rotation of the polarization plane were 

calculated using the rejection method. The multi-layered structure of tissue was modeled by 

the reflection or transmission of polarized photons on the interfaces according to Fresnel laws. 

The host medium may also be absorbing. The random walk of a photon continued within a 

scattering medium until it was either absorbed within the sample or moved outside the sample 

volume, where it can be lost or be registered by a detector.  

The polarization states of the incident light can also be changed by the interactions with 

microstructures of the biological tissue sample that cause tissue birefringence. We updated 

the Monte Carlo algorithm for a solution of the vector radiative transfer equation to account 

for the anisotropy of tissue refractive index. The comparative simulations of both isotropic 

and anisotropic scattering phantoms demonstrate the impact of host medium birefringence on 

certain coefficients of the Mueller matrix. 

Both DBSCAN clustering algorithm and polarized Monte Carlo simulations were used 

for the post-processing and interpretation of the experimental polarimetric data for biological 

tissue. These results will be presented and discussed in the next Chapters. 
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The preliminary studies of isotropic and anisotropic scattering phantoms in our laboratory 

(LPICM, École Polytechnique) demonstrated the validity of the logarithmic Mueller matrix 

decomposition (LMMD) in transmission configuration [1], [2]. This approach was 

subsequently extended to the biological tissue models. In this chapter, we will report on the 

results of our studies of the full-thickness skin equivalents with transmission Mueller 

microscopy and LMMD, discussing their potential diagnostics value [3], [4].  

Skin tissue models are widely employed as an alternative to animal models or human 

donor tissue. The skin equivalents are grown in vitro from human cells, and they accurately 

reproduce the anatomy of human skin. Since human skin equivalents (HSE) can be produced 

with less variability compared to real human skin, these tissue models were chosen for our 
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studies. We verified the validity of the LMMD for the HSE by measuring five skin model 

tissue sections of different nominal thicknesses (5 µm, 10 µm, 16 µm, 20 µm, and 30 𝜇𝑚) 

and applied the statistical density-based spatial clustering algorithm for the applications with 

noise (DBSCAN) to define the outliers in the studied dataset and remove the corresponding 

image pixels from the subsequent analysis. Finally, we suggested the algorithm of mitigation 

of the impact of tissue thickness fluctuations on the polarimetric images of both scalar 

retardance and depolarization obtained from LMMD for the thin tissue sections measured in 

transmission. We derived the thickness-invariant parameters by using Beer-Lambert law as 

well as the linear dependence of retardance and dichroism and the quadratic dependence of 

depolarization on thickness as predicted by the differential Mueller matrix formalism for 

depolarizing anisotropic media [5], [6].  

The Monte Carlo model was used to interpret the experimental results obtained for the 

thin sections of skin tissue equivalents. The logarithmic decomposition of both measured and 

simulated Mueller matrices of the samples was used to analyze the microstructure of full-

thickness human skin equivalents. A set of rotation invariants for the logarithmic Mueller 

matrix decomposition (LMMD) were derived to rule out the impact of sample orientation. 

These invariants were calculated and used for both simulated and measured Mueller matrices 

to analyze the optical properties of the dermal layer of skin equivalents. To fit the 

experimental data, several optical models, namely, spherical scatterers within birefringent 

host medium, and a combination of spherical and cylindrical scatterers within either isotropic 

or birefringent host medium, were tested. We demonstrated that only the simulations with a 

model combining spherical and cylindrical scatterers within the birefringent host medium 

could reproduce the experimental trends seen in the changes of optical properties of the 

dermal layer (e.g., linear retardance, linear dichroism, and anisotropic linear depolarization) 

with layer thickness. It proves that Mueller polarimetry may provide relevant information not 

only on the size of dominant scatterers (e.g., cell nuclei versus subwavelength organelles) but 

also on its shape (e.g., cells versus collagen fibers). 

4.1. Human skin equivalents (HSE) 

The human skin equivalents were prepared by the biologists from the Translational Center for 

Regenerative Therapies, Fraunhofer Institute for Silicate Research (Wurzburg, Germany). 

The structure of a natural skin can be roughly described by three layers: the superficial 

epidermis, the adjacent dermis, and the underlying subcutis (mostly fatty tissue) (see Fig. 

4.1).  

The skin equivalents were produced in vitro from human cells and reflected the anatomy 

of real human skin (apart from the subcutis that was not included in the skin equivalent 

model). The skin models were generated from primary human skin cells (keratinocytes and 

fibroblasts) [7], [8]. The former cells differentiate in vitro and form an epidermis with the 

same anatomical layers as in vivo: stratum basale, stratum spinosum, stratum granulosum, 

and stratum corneum. The dermal part of the skin model consists of a collagen type 1 
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hydrogel with human primary fibroblasts. The real dermis can be divided into an upper part 

(stratum papillare) and a lower part (stratum reticulare). The stratum papillare of the dermis 

was not recreated in the skin model because it serves only as the mechanical interlocking of 

the epidermis and dermis. However, the sizes and shapes of the typical cell in the skin 

equivalent model are the same as the ones in real human skin in vivo. 

 

 
Figure 4.1 Three layers of human skin tissue: epidermis, dermis, and subcutaneous. ©  Skin Cancer 

Screening (PDQ®), https://www.cancer.gov/types/skin/patient/skin-screening-pdq  

 

These similarities and other functional properties, such as transporter expression and 

barrier function, led to the use of such skin models as alternatives to animal models or human 

donor tissue. This is one of the reasons why these models achieved regulatory acceptance by 

validation and adoption in the Organization for Economic Cooperation and Development 

guidelines for regulatory toxicological tests, e.g., skin irritation/corrosion (OECD TG 439 

[9]). It means that these models are employed in Europe and other OECD countries to 

categorize substances for their potential to cause skin irritation and corrosion.  

 

 

Figure 4.2 (a) Photo of the Snapwell cell culture inserts used for the growth of the 3D in-vitro skin 

tissue models ©  K. Dobberke, Fraunhofer ISC, Germany. (b) schematic representation (top) and the 

microscopy image of the hematoxylin-eosin stained thin section of the reconstructed human epidermis; 

(c) schematic representation (top) and the microscopy image of the hematoxylin-eosin stained thin 

section of the full-thickness skin model, scale bar 100 µm ©  Florian Groeber-Becker, Fraunhofer ISC, 

Germany.  

(a) (b) (c)

https://www.cancer.gov/types/skin/patient/skin-screening-pdq
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The detailed procedure of the preparation of thin unstained sections of skin tissue models is 

described below. 

1. The skin tissue models were grown in the cell culture inserts (SnapwellTM from Corni

ng Inc.) with a diameter of 12 mm. The obtained disks of skin tissue equivalents were

 about 12 mm in diameter and about 600 μm thick. The thicknesses of the epidermal 

and dermal layers were about 100 μm and 500 μm, respectively. 

2. The grown tissue models were rinsed with the phosphate-buffered salt solution and fi

xed with Roti® -Histofix 4% for 4 hours at room temperature. 

3. Fixed samples were embedded in paraffin in an embedding machine. 
 

 

Figure 4.3 Schematic of the preparation of the skin model tissue thin sections; (a) block of paraffin-

embedded skin tissue equivalent; (b) cutting the block of the paraffin-embedded skin tissue sample in 

two pieces and slicing 5 µm thick stripes from both pieces with a microtome blade; (c) removing 

paraffin and placing two thin stripes of unstained skin equivalent on the microscope glass without a 

coverslip; repeating the same procedure for four adjacent sections of the different nominal 

thicknesses (10 µm, 16 µm, 20 µm, and 30 μm): (d) photo of five samples of different thicknesses. 

During the next step a disk of the paraffin-embedded skin tissue model was cut along the 

diameter (see Fig. 4.3 (a)). Then, a set of the adjacent histological sections of different 

thickness (5 µm, 10 µm, 16 µm, 20 µm, and 30 μm) was cut from both parts of a disk using a 

microtome (see Figs. 4.3 (b)). Thereafter, the thin sections of tissue were deparaffinized for 

20 minutes in the Roticlear® solvent. Then the stripes of unstained skin model tissue were 

placed on a microscope glass slide (Figs. 4.3 (c) and (d), tissue stripe lateral dimensions were 

about 10 mm x 0.5 mm). There was no glass coverslip used in our studies. 

4.2. Dependence of polarization and depolarization 

parameters on sample thickness 

In homogeneous anisotropic scattering media, the differential Mueller matrix formalism 

predicts linear and quadratic thickness dependence for the polarization (retardance and 

dichroism) and the depolarization properties, respectively, as shown by Eq. 1.86. We 

measured the prepared samples of thin sections of skin tissue model with a custom-built 

Mueller microscope, described in Chapter II. Then, we applied pixel-wise the LMMD of the 

experimental Mueller matrix images of the samples. We have delineated the zone of dermal 

layer on the images of scalar retardance, linear and circular depolarization for all measured 

5µm

(a) (b)

(c) (d)
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samples. Then, we calculated the mean values and the standard deviations of the optical 

properties (polarization and depolarization parameters) of the dermal layer for all samples, to 

verify the predicted dependence of the above mentioned parameters on sample thickness in 

case of biological tissue. In transmission measurement configuration, the length of the path of 

the detected light beam through a thin tissue section is equivalent to the thickness of a sample, 

which, in turn, has an impact on the polarization state of the detected light. Therefore, the 

exact thickness of a tissue section should be known for a correct assessment of the 

dependence of polarimetric properties (retardance, dichroism, and depolarization) on tissue 

thickness. 

4.2.1. Measurements of skin sample thickness 

We have used a stylus profilometer (Bruker's DektakXT® , USA) to measure the thickness of 

thin tissue sections and checked whether it matches the nominal thickness (NT) values (5 - 30 

µm).  

 

Figure 4.4 (a) Photo of stylus profilometer; (b) scanning patterns (10 times), red arrows show the 

direction of the stylus passes and (c) 2D depth profile of the sample. 

The number of depth scans for a generation of a 3D image was set to 10, and the width of the 

scanning area was fixed at 500 µm (see Fig. 4.4), close to the field-of-view (FoV) of the 

transmission Mueller microscope. We scanned the same regions of tissue sections that were 

measured with the Mueller microscope in transmission. The resulting 3D depth profiles 

provided information on homogeneity and uniformity of sample thickness. It is worth noting 

that the thickness uniformity of thin tissue sections depends strongly on a positioning of a 

paraffin block with embedded tissue with respect to the microtome blade during the 

preparation of the sample.  

The first batch of the thin sections of artificial skin tissue was prepared (Fraunhofer ISC, 

Germany) by placing the paraffin-embedded tissue disk for cut with microtome as shown in 

Fig. 4.5 (a). Then, the obtained thin sections of skin tissue model of different NT (5 µm – 30 

µm) were measured with the stylus profilometer as described above. The values of tissue 

thickness were averaged over ten profilometer scans for each measured thin tissue section. 

The mean values of sample thickness and corresponding values of standard deviation are 

given in Tab. 4.1. 

Tissue

(a) (b)

(c)
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Table 4.1 Thickness of thin sections of HSE tissue (batch I), measured and nominal values. 

Nominal thickness 

(µm) 

Mean measured 

thickness (µm) 

Standard deviation 

(µm) 

5 2.38 0.97 

10 5.40 2.26 

16 X X 

20 X X 

30 13.61 6.29 

As shown in Fig. 4.5 (b), the samples were already deformed before measuring depth profile 

by profilometer. For example, the 3D depth profile of a sample (NT 5 µm) (see Fig. 4.5 (c)) 

shows an inhomogeneous morphology.  

 

 

Figure 4.5 (a) Explanation of tissue sectioning along with the vertical to the orientation of collagens; 

red arrow shows section direction, yellow circle represents the zone where is scanned with 

profilometer, (b) 20X microscopic image of the thin tissue section (NT - 5 µm), yellow circle indicates 

the location of a spot measured with Mueller microscope; (c) corresponding 3D thickness profile 

measured with profilometer. 

  

The central part of a sample is significantly thinner compared to the edge parts. These 

variations of sample thickness make the mean values of measured thickness differ 

significantly from the nominal ones. The difference becomes larger for thicker samples. 

Furthermore, two tissue sections (NTs 16 μm  and 20  μm ) were not measured with 

profilometer because the tissue stripes were detached from the glass during the scanning with 

profilometer. To sum up the results, we figured out that the tissue sections from the first batch 

are non-homogenous in thickness and cannot be used in our studies.  

(a) (b)

(c)

200 ! "
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Figure 4.6 (a) Explanation of tissue sectioning along with the parallel to the orientation of collagens; 

red arrow shows section direction, yellow circle represents the zone where is scanned with 

profilometer, (b) 20X microscopic image of the thin tissue section (NT - 10 µm) yellow circle 

indicates the location of a spot measured with Mueller microscope; (c) corresponding 3D thickness 

profile measured with profilometer. 

The sectioning of a paraffin block with embedded tissue with a microtome can generate 

intractable problems for a correct evaluation of tissue section thickness. To address these 

problems (e.g., high non-uniformity of tissue section thickness, non-reproducible scans, torn 

tissue), the second batch of thin skin tissue model sections was prepared (Fraunhofer ISC, 

Germany) by changing the positioning of a paraffin block with embedded tissue with respect 

to the microtome blade as shown in Fig. 4.6 (a).  

The second batch of the thin sections of HSE was also measured with the stylus 

profilometer, and mean values of thickness and corresponding values of standard deviation 

were calculated for each thin tissue section. Changing the cutting direction of the paraffin-

embedded tissue, we reduced tissue damage and scraping by the microtome blade and 

improved significantly the uniformity of the thickness of thin tissue sections (Fig. 4.6(b), (c)).  

However, the mean values of thickness, presented in Tab. 4.2, still differ from the 

nominal ones, and this difference becomes larger for thicker samples. The thin sections of 

tissue-containing paraffin blocks were cut by the microtome with a micrometer-controlled 

precision. The analysis of data from Tab. 4.2 suggests that the deparaffinization step of 

sample preparation procedure induces significant variations in the thickness of tissue sections, 

most probably because of the different local intake of paraffin by tissue. 

Table 4.2 Thickness of thin sections of HSE tissue (batch II), measured and nominal values 

Nominal thickness 

(µm) 

Mean measured 

thickness (µm) 

Standard deviation 

(µm) 

5 3.0 0.8 

10 6.2 1.1 

16 7.6 2.3 

20 10.1 4.2 

30 10.5 2.9 

(a) (b)

(c)
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4.2.2. Thickness dependence of polarization and depolarization 

parameters 

A set of five HSE thin histological sections (batch II) with the varying nominal thickness (5, 

10, 16, 20, and 30 μm) was measured with the Mueller microscope in transmission 

configuration. All experimental Mueller matrix images of histological sections were 

processed by applying the LMMD pixel-wise. 

Then, we calculated the parameters that are invariant under rotation of a sample in the 

imaging plane, namely,  total linear retardance 𝑅𝑇 = √𝑝4
2 + 𝑝5

2 (p4 and p5 are sample linear 

retardance in the 0-90o and the ±45° frames, respectively, see Eq. (1.84)) and total linear 

dichroism 𝐷𝑇 = √𝑝1
2 + 𝑝2

2 (p1 and p2 are sample linear dichroism in the 0-90o and the ±45° 

frames, respectively, see Eq. (1.79)). The dimensionless diagonal coefficients Lu(2,2) and 

Lu(3,3)  that are also labeled as 𝛼22  and  𝛼33   (see Eq. (1.88)) represent the linear 

depolarization properties in the 0-90o and the ±45°  frames, respectively. The coefficient 

Lu(4,4), labeled as 𝛼44, stands for the circular depolarization property. 

The corresponding maps of the total linear retardance, total linear dichroism, and 

depolarization parameters (coefficients 𝛼22, 𝛼33 , and 𝛼44) of five HSE tissue sections are 

shown in Fig. 4.7. Three different zones are clearly distinguishable in the maps of the total 

linear retardance 𝑅𝑇 , total linear dichroism 𝐷𝑇 , and depolarization coefficients 𝛼22  𝛼33 , 

and 𝛼44: 1) bare glass with no tissue, 2) dermis, and 3) epidermis of the HSE.  
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Figure 4.7 Maps of (a) total intensity, (b) total linear retardance 𝑅𝑇 (in radians), (c) dimensionless 

total linear dichroism 𝐷𝑇, and dimensionless diagonal coefficients (d) α22, (e) α33, (f) α44 of the matrix 

𝐿𝑢 , calculated from the experimental Mueller matrix data by applying pixel-wise LMMD. Labels 

represent the mean thickness of thin histological sections measured with a stylus profilometer. FoV is 

about 600 µm. 

The zone of bare microscope glass in polarimetric images does not possess any measurable 

total linear retardance (𝑅𝑇 = 0) , total linear dichroism (𝐷𝑇 = 0 ), as well as does not 

depolarize transmitted light (𝛼22, 𝛼33, and 𝛼44  = 0). The dermal part of a skin model 

histological section demonstrates strong retardance. This effect is related to the anisotropy of 

the refractive index of HSE tissue due to the presence of the aligned collagen fibers in dermal 

zone. In all images (see Fig. 4.7), there is a thin layer of epidermis on top of dermis. The 

former layer does not show any significant retardance for any tissue section thickness. This is 

an expected result because the epidermal layer does not contain any aligned collagen fibers.  

To quantify the optical parameters of the HSE tissue sections, at first, we manually 

selected the region of interest (ROI), namely, dermis layer and analyzed the pixels within this 

region. We calculated the average values of the optical parameters 𝑅𝑇, 𝐷𝑇, 𝛼22, 𝛼33, and 𝛼44 

for dermal layer (see Tab. 4.3). The absolute values of the ROI-averaged circular 

depolarization parameter |𝛼44|  are larger compared to the absolute values of linear 

depolarization parameters |𝛼22|   and |𝛼33|. It shows that the linear polarization of incident 

light is preserved better compared to the circular polarization, thus, underlining the 

dominance of the Rayleigh scattering regime over the Mie scattering regime in our samples 

[10]. The total ROI-averaged linear dichroism for dermis zone has non-zero values for all 

HSE tissue thicknesses. The origin of this phenomenon will be discussed later in this Chapter. 

Table 4.3 The values of optical parameters 𝑹𝑻 , 𝑫𝑻 , 𝜶𝟐𝟐 , 𝜶𝟑𝟑 , and 𝜶𝟒𝟒  averaged over manually 

delineated zone of dermis in the images of the five HSE tissue sections of different thicknesses 

Real thickness (µm) 𝑹𝑻 𝑫𝑻 𝜶𝟐𝟐 𝜶𝟑𝟑 𝜶𝟒𝟒 

3.0 0.34  0.13  -0.05  -0.10  -0.14  

6.2 0.63  0.18  -0.10  -0.20  -0.28  

7.6 0.75  0.19  -0.16  -0.39  -0.53  

10.1 0.94  0.21  -0.22  -0.66  -0.91  

10.5 0.93  0.20  -0.25  -0.76  -1.03  
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The absolute values of the depolarization parameters spatially averaged over the dermal zone 

continuously increase with the thickness. As expected, there was no circular retardance and 

no circular dichroism observed for all tissue sections (coefficients 𝑝3 = 𝑝6 = 0, Eq. (1.84)). 

It can be explained by the fact that the optical activity in biological tissues is related to the 

presence of chiral molecules (e.g., glucose), which were absent in the studied fixed HSE 

tissue sections.  

We have focused on the analysis of the dermal zone of skin model sections because this 

part of tissue possesses both polarization and depolarization properties contrary to the 

epidermis layer, which only depolarizes light. Thus, to verify the predictions of the 

differential Mueller matrix formalism regarding thickness dependence of the polarization and 

depolarization parameters of fluctuating anisotropic media, first we need to estimate the mean 

values of polarization and depolarization parameters in the dermal zone of HSE tissue. 

As was previously mentioned, the real thickness of tissue section should be identified for 

a correct assessment of the dependence of polarimetric parameters on thickness. The mean 

values and the standard deviations of the polarization and depolarization parameters 

calculated from the pixel-wise LMMD for the dermal layer zone in the polarimetric images of 

each tissue section were plotted versus the corresponding values of the sample thickness 

measured with a stylus profilometer (see Fig. 4.8). 
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Figure 4.8 Thickness dependence plots of (a) total linear retardance (radians), (b) dimensionless 

total linear dichroism, (c-e) dimensionless depolarization parameters 𝛼22 , 𝛼33 , and 𝛼44  averaged 

over a zone of dermal layer of HSE tissue sections. Experimental data are shown by blue symbols, 

solid red lines represent the results of (a) linear and (b-d) quadratic fit. 

As mentioned above, the presence of non-zero linear dichroism can be explained by 

scattering on the non-spherical scatterers, like elongated collagen fibers [11]. While the 

intercept of the linear regression curve with the Y-axis for the total linear retardance 𝑅𝑇 is 

equal to zero, it is not the case for the linear regression curve for the linear dichroism 𝐷𝑇. We 

attribute this effect to the scattering of transmitted light on a rough surface of the tissue. (see 

Fig. 4.9). Surface scattering of an anisotropic medium does not affect the retardance values 

but contributes to the increase of values of linear dichroism [12]. As shown in the Figs. 4.8, 

the value of total linear retardance 𝑅𝑇 and total linear dichroism 𝐷𝑇 depends on the thickness 

linearly. The values of linear depolarization coefficients α22 , α33  are not equal, thus 

indicating the dependence of linear depolarization on the orientation of a sample in the 

imaging plane (or anisotropy of linear depolarization). All depolarization coefficients α22, 

α33, and α44 vary quadratically with thickness. 

 

  

Figure 4.9 Bulk and surface scattering of light transmitted through a thin section of HSE tissue. 
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4.3. Image segmentation (DBSCAN) for advanced analysis of 

tissue polarimetric properties 

First, we selected the region of interest (ROI) manually, extracted information (e.g., scalar 

retardance, dichroism, and depolarization) for the pixels within the region, and then 

calculated the mean values of the optical parameters and its standard deviation over the ROI. 

This approach was adopted to analyze the polarization and depolarization parameters of the 

dermal layer of the HSE tissue sections. However, manual selection of the pixels does not 

account for the inhomogeneous thickness or uneven surface of the sample that, in turn, leads 

to quite wide distributions of the values of tissue’s optical parameters and high values of the 

standard deviation (see Tab. 4.4).  

Table 4.4 The values of standard deviation of the optical parameters 𝑹𝑻, 𝑫𝑻, 𝜶𝟐𝟐, 𝜶𝟑𝟑, and 𝜶𝟒𝟒 of 

dermis zone for the five thin tissue sections of different thicknesses 

Real thickness (µm) 𝑹𝑻 𝑫𝑻 𝜶𝟐𝟐 𝜶𝟑𝟑 𝜶𝟒𝟒 

3.0 0.14  0.07  0.03  0.06  0.08  

6.2 0.30  0.11  0.09  0.18  0.26  

7.6 0.32  0.10  0.07  0.18  0.23  

10.1 0.60  0.12  0.14  0.50  0.70  

10.5 0.53  0.10  0.09  0.37  0.53  

 

Therefore, to delineate more precisely both epidermal and dermal zones of HSE tissue 

sections in microscopic images, we have applied the statistical algorithm of density-based 

spatial clustering for the applications with noise (MATLAB subroutine DBSCAN) [13] for 

the image segmentation. 

An appropriate choice of the parametric space for the implementation of the DBSCAN 

algorithm is one of the critical factors to obtain meaningful clustering results. To illustrate 

our methodology on choosing the optimal input dataset of optical parameters for the 

statistical analysis and image segmentation, we plotted the 2D histograms of different 

combinations of the measured optical parameters (transmitted intensity, total linear 

retardance, total linear dichroism, linear depolarization 𝛼22, 𝛼33, and circular depolarization 

𝛼44) for the 10 m thick histological section of HSE tissue (see Fig. 4.10).  
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Figure 4.10 The 6x6 matrix of 2D histograms of the total transmitted intensity, linear retardance, 

linear dichroism, and the absolute values of the linear and circular depolarization (|𝛼22|, |𝛼33|, and 

|𝛼44|) for dermal layer of HSE section of 10 m NT. 

The 2D histogram shows the probability distribution within [0-100] range. Both x- and y-axes 

represent the values of each optical parameter in its [min max] range. The x- and y-axes of 2D 

histograms, located on the diagonal of 6 × 6 matrix shown in Fig. 4.10, represent the values 

of the same optical parameter. Obviously, these values are perfectly correlated (i.e., 

correlation coefficient is equal to 1) and all non-zero values of the probability distribution 

function are located along the 45° diagonal line of the 2D histogram. 

Since the DBSCAN algorithm is based on the estimation of data density in a chosen 

parametric space, a well-spread distribution of a dataset is beneficial for data clustering. In 

this regard, the selection of the optical parameters that are less correlated (i.e., the probability 

distribution cannot be fitted by a linear function in 2D histogram), is necessary to form an 

optimal parametric space. The 6 × 6 matrix of the 2D histograms in Fig. 4.10 demonstrates 

that the correlation between the total linear retardance and other optical parameters (second 

column) is similar to that of the total linear dichroism and other optical parameters (third 

column). All depolarization parameters 𝛼22, 𝛼33, and 𝛼44 also show similar correlation with 
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other properties. Therefore, the values of 𝑀00 (sample total transmittance), 𝑅𝑇  (total linear 

retardance), and 𝛼44 (circular depolarization) at each pixel of an image were used as input 

information for the DBSCAN algorithm. The latter parameter was chosen because it has 

higher values compared to the depolarization parameters 𝛼22 , 𝛼33 . Furthermore, each 

parameter value range was standardized using z-score in order to prevent any parameter from 

being dominant in data clustering: 
 

 

where the angle brackets 〈⋯ 〉 denote the mean value, whereas 𝜎 stands for the parameter 

standard deviation. 

In our work, the maximal size of the dataset is defined by the resolution of the CCD 

camera (600 pixels × 800 pixels, i.e. 480000 pixels) that was used for the image registration 

in the transmission Mueller microscope. As was already explained in Chapter 3, the 

DBSCAN algorithm requires the calculation of distances between each pair of points from 

the dataset representing the image pixels in a multi-parametric space. Direct implementation 

of the DBSCAN algorithm for the microscopic image segmentation takes very long time and 

requires a prohibitive Random Access Memory (RAM) budget to calculate all distances. For 

example, 2.304 × 108  distance calculations between each pair of dataset points are 

necessary for the dataset of 480000 points representing the image of 600 pixels × 800 pixels, 

and our current computational resources (RAM 32GB) do not allow us to calculate each 

distance. Elimination of the empty (i.e., out of FoV) pixels considerably reduces the total 

number of pixels that we need to analyze. The size of the dataset is reduced by almost factor 

of 2 (from 480000 to 250491). However, even the reduced dataset is still too large to 

calculate all distances for each pair of dataset points using a 32GB RAM.  

 

Figure 4.11 (a) Illustration of the calculation of weighted average of pixel values in the nearest 2 by 

2 neighborhood; (b) clustering results in a z-score space (see text), RT – linear retardance, 𝛼44– 

circular depolarization parameter, M11 – total transmitted intensity. Black markers show noise, blue 

ones – bare glass, red ones – dermis, green ones - epidermis; (c) corresponding image segmentation: 

noise, bare glass, dermis, and epidermis zones are rendered in black, blue, red, and green, 

respectively.  

 

X = (𝑅𝑇 − 〈𝑅𝑇〉) 𝜎𝑅𝑇
⁄  , 

 

Y = (𝛼44 − 〈𝛼44〉) 𝜎𝛼44
⁄ , 

 

Z =  (𝑀00 − 〈𝑀00〉) 𝜎𝑀11
⁄  

(4.1) 
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Next, for the dataset size reduction we re-arranged the neighboring pixels into 2 × 2 blocks 

(we called it "superpixel") and defined its value by a bilinear interpolation: an output pixel 

value is a weighted average of pixel values in the nearest 2 by 2 neighborhood (see Fig. 4.11 

(a)). Thus, the reduced number (one quarter, or 63479) of pixels was used for the image 

segmentation with the DBSCAN algorithm. We ran the DBSCAN subroutine with the input 

parameters MinPts = 300, radius 𝜀 = 0.2 , and obtained three well-defined clusters 

corresponding to the zones of 1) bare glass, 2) dermal layer, 3) epidermal layer, and random 

outliers (or noise). The results of the segmentation for a histological HSE section of 10 µm 

NT are presented in Figs 4.11 (b), (c). The reconstructed images of HSE sections of five 

different nominal thicknesses are shown in Fig. 4.12.  

 

Figure 4.12 Reconstructed images of the HSE sections of different NT: 5, 10, 16, 20, 30 m. 

The segmented images make it easy to distinguish between the different sample zones 

(epidermis, dermis) and bare glass. As was mentioned above, all depolarization parameters 

𝛼22 , 𝛼33 , and 𝛼44  demonstrate similar correlation with other optical parameters (see Fig. 

4.10). Consequently, the clustering results are almost the same, if we chose the values of 

parameter 𝛼22 or 𝛼33 instead of parameter 𝛼44 as input information.  

The thin green layer located above the dermis region is also present in the segmented 

images of the skin tissue section of the nominal thickness of 16 µm, 20 µm, and 30 µm. 

Despite being classified as the epidermis, this layer makes part of the dermis. Most probably, 

the edge part of the dermal layer has a different thickness because of cutting artifacts that, in 

turn, alters all optical parameters used for image segmentation. After noise filtering and 

selecting the group of pixels rendered in red color that corresponds to the dermal layer of 

HSE thin section, the mean values and standard deviation of polarization and depolarization 

parameters were calculated for the dermal layer in the images of all tissue sections (see Tab. 

4.5).   
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Table 4.5 The values of the optical parameters 𝑹𝑻, 𝑫𝑻, 𝜶𝟐𝟐, 𝜶𝟑𝟑, and 𝜶𝟒𝟒 averaged over the dermis 

zone selected with the DBSCAN algorithm in the images of the five HSE sections of different thickness 

Real thickness (µm) 𝑹𝑻 𝑫𝑻 𝜶𝟐𝟐 𝜶𝟑𝟑 𝜶𝟒𝟒 

3.0 0.35 ± 0.08 0.14 ± 0.05 -0.05 ± 0.02 -0.10 ± 0.03 -0.14 ± 0.04 

6.2 0.62 ± 0.16 0.18 ± 0.05 -0.08 ± 0.03 -0.15 ± 0.07 -0.21 ± 0.09 

7.6 0.86 ± 0.19 0.21 ± 0.06 -0.16 ± 0.04 -0.37 ± 0.07 -0.51 ± 0.09 

10.1 0.86 ± 0.35 0.20 ± 0.06 -0.18 ± 0.09 -0.47 ± 0.19 -0.63 ± 0.25 

10.5 1.19 ± 0.19 0.23 ± 0.05 -0.21 ± 0.05 -0.67 ± 0.14 -0.91 ± 0.16 

We also plotted the averaged values of polarization and depolarization parameters of the 

dermis regions (red color in Fig. 4.12) versus the thickness of HSE sections measured with 

stylus profilometer (see Fig. 4.13). 

Compared to the previous results obtained by manual selection of the zone of dermal 

layer (see Tab. 4.4), there is a significant reduction of the standard deviation values. It proves 

that we have effectively removed the outliers from our dataset by applying the DBSCAN 

algorithm. The larger reduction of the standard deviation values was observed for thicker 

tissue sections (6.2 µm and 10.1 μm), thus, indicating the increase in tissue thickness non-

uniformity with tissue thickness.  We demonstrated that the DBSCAN algorithm is an 

efficient method to eliminate the noise from the dataset before the analysis of optical 

parameters in a selected ROI. Fig. 4.13 shows that the polarization parameters (total linear 

retardance 𝑅𝑇  and total linear dichroism 𝐷𝑇 ) depend linearly on thickness, whereas 

anisotropic depolarization coefficients, which means that 𝛼22 , 𝛼33  and 𝛼44  show different 

values, vary quadratically with the thickness. We attribute the non-zero values of standard 

deviation for the optical parameters within the dermal zone delineated with the DBSCAN 

algorithm (see Tab. 4.5) to the spatial fluctuations of the skin section optical properties (e.g., 

local variation in the density of fibroblast cells, spread in the collagen fiber orientation) 

within the imaging plane.  
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Figure 4.13 Thickness dependence plots of (a) total linear retardance (radians), (b) dimensionless 

total linear dichroism, (c-e) dimensionless depolarization coefficients 𝛼22 , 𝛼33  and 𝛼44  averaged 

over a dermal layer of the histological sections. Experimental data are shown by blue symbols, solid 

red lines represent the results of (a) linear and (b-d) quadratic fit. 

4.4. Mitigating the impact of the spatial fluctuations of tissue 

section thickness. 

The pathological changes in tissue (cancer, fibrosis, inflammation) will affect both its 

polarization and depolarization properties. The ultimate goal of digital histology analysis 

consists of delimiting the abnormal zones in a microscope image of thin histological section 

using the maps of optimal optical markers that provide the highest image contrast.  

In the transmission measurement configuration, the thickness of a thin tissue section 

would be equivalent to the optical path length that, together with the tissue’s optical 

properties (e. g. the anisotropy of the refractive index, scattering coefficient, absorption 

coefficient) will have impact on the polarization and depolarization parameters calculated 

from the experimental matrices measured with Mueller microscope. As we have shown in the 

previous section, both polarization and depolarization parameters of anisotropic scattering 

R²: 0.9911

0.35

0.62

0.86 0.86

1.19

L
in

e
a
r
 R

e
ta

r
d
a
n
c
e
 (

r
a
d
.)

0

0.4

0.8

1.2

1.6

Thickness (µm)
0 2 4 6 8 10 12

R²: 0.957

-0.05
-0.08

-0.16
-0.18

-0.21

D
e
p
o
la

r
iz

a
ti

o
n
 (
α
2
2
)

−0.4

−0.3

−0.2

−0.1

0

Thickness (µm)
0 2 4 6 8 10 12

R²: 0.939

-0.10
-0.15

-0.37

-0.47

-0.67

D
e
p
o
la

r
iz

a
to

n
 (
α
3
3
)

−1.2

−0.9

−0.6

−0.3

0

Thickness (µm)
0 2 4 6 8 10 12

R²: 0.931

-0.14
-0.21

-0.51
-0.63

-0.91

D
e
p
o
la

r
iz

a
ti

o
n
 (
α
4
4
)

−1.8

−1.5

−1.2

−0.9

−0.6

−0.3

0

Thickness (µm)
0 2 4 6 8 10 12

R²: 0.976

0.14

0.18
0.20 0.20

0.23

L
in

e
a
r
 D

ic
h
r
o
is

m

0.1

0.2

0.3

0.4

Thickness (µm)
2 4 6 8 10



 

  104 

media may also vary with the thickness of tissue because of the different path length of the 

probing light beam. Therefore, controlling the thickness of histological sections is one of the 

crucial issues for a precise tissue diagnostics with polarized Mueller microscopy. However, in 

clinical practice, it is impossible to measure a real depth profile of histological sections with a 

profilometer as we did in these studies because the standard tissue sections are mounted on a 

microscope glass slide and protected by a coverslip (i.e., the tissue is "sandwiched" between 

two glasses).  

We explore several approaches to eliminate the impact of variation of tissue’s thickness 

on its measured polarization and depolarization parameters. During the calibration of the 

transmission Mueller microscope, a bare glass was used as the reference sample. Since the 

Mueller matrix of a bare glass was included in the calibration data, 𝑀00  element of the 

Mueller matrix represents a transmittance 𝐼 𝐼0⁄  of the tissue sample (without the glass), where 

𝐼0  is the intensity of incident light beam, 𝐼  is the intensity of transmitted light beam. 

Transmittance verifies the Beer-Lambert law: 
 

 

where 𝐼0 and 𝐼 represent the intensities of input and output light beam, respectively, 𝜇𝑇 = 𝜇𝑎 

+ 𝜇𝑠 is a sum of the absorption coefficient 𝜇𝑎 and scattering coefficient 𝜇𝑠 of the medium, d 

is the physical thickness of a sample. The intensity 𝐼0 of the input light beam was controlled 

by the exposure time. However, during the measurements of tissue sections of different 

thicknesses, the exposure time was varied in order to prevent the saturation of the detected 

signal. That is why measured  𝑀00 values for different tissue sections were re-scaled to match 

an exposure time of 250 ms used in the calibration process. Finally, applying Eq. (4.2) pixel-

wise to 𝑀00 image, one can produce a microscopic image of the optical density of the studied 

tissue section.  

We assume that all skin model tissue sections are homogeneous along the incident light 

beam path (few microns scale), but tissue properties may vary in the imaged plane (FoV few 

hundreds of microns). Because of the linear dependence of retardance and quadratic 

dependence of depolarization on thickness, the following relations hold for each pixel (𝑘, 𝑙) 

of the microscopic image of histological sections: 
 

 

where 𝑑𝑘,𝑙 is tissue local thickness, 𝐴𝑘,𝑙 and 𝐵𝑘,𝑙 are linear and quadratic fit coefficients for a 

pixel (𝑘, 𝑙). Consequently, the following quantities should not directly depend on the local 

thickness of the tissue section: 
 

 ln(𝐼 𝐼0⁄ ) = −𝜇𝑇𝑑 = ln (𝑀00) (4.2) 

 𝑅𝑇
𝑘,𝑙 = 𝐴𝑘,𝑙𝑑𝑘,𝑙,   𝛼𝑖𝑖

𝑘,𝑙 = 𝐵𝑘,𝑙(𝑑𝑘,𝑙)2, (𝑖 = 2, 3, 4) (4.3) 

 𝑅𝑇
𝑘,𝑙/ln (𝑀11

𝑘,𝑙) = −𝐴𝑘,𝑙/𝜇𝑇
𝑘,𝑙 (4.4) 

 
  𝛼𝑖𝑖

𝑘,𝑙/ln2 (𝑀11
𝑘,𝑙) = −𝐵𝑘,𝑙/(𝜇𝑇

𝑘,𝑙)2 
(4.5) 

 
 (𝑅𝑇

𝑘,𝑙)2/𝛼𝑖𝑖
𝑘,𝑙 = (𝐴𝑘,𝑙)2/𝐵𝑘,𝑙 

(4.6) 

 
 𝛼𝑖𝑖

𝑘,𝑙/(𝑅𝑇
𝑘,𝑙)2 = (𝐵𝑘,𝑙)2/𝐴𝑘,𝑙 

(4.7) 
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The left- and right-hand sides of the Eqs (4.4) - (4.7) are invariant under tissue thickness 

fluctuations. Using these equations, we have calculated the microscopic maps of all HSE 

histological sections of different thicknesses (see Fig. 4.14). While the values of 𝜇𝑇
𝑘,𝑙

, 𝐴𝑘,𝑙, 

and 𝐵𝑘,𝑙  may still vary across the microscopic image, these variations are related to the 

variations in tissue's optical properties, not in tissue's physical thickness. 

 

 

 

Figure 4.14 Maps of 𝑅𝑇 |𝑙𝑛 (𝑀00)|⁄ , 𝛼44 𝑙𝑛 (𝑀00)
2⁄ , (𝑅𝑇)2/𝛼44 , and 𝛼44/(𝑅𝑇)2  parameters for 

HSE histological sections of (a) 5 µm, (b) 10 µm, (c) 16µm, (d) 20 µm, and (e) 30 μm of nominal 

thickness. Field of view is about 600 μm. All these ratios are invariant under tissue thickness 

fluctuations.  

We assume that the distributions of the ratios 𝑅𝑇 /𝛼44 , 𝑅𝑇 |ln (𝑀00)⁄ | , 𝛼44 ln (𝑀00)
2⁄ , 

(𝑅𝑇)2/𝛼44and 𝛼44/(𝑅𝑇)2 values that are thickness invariant, should become more peaked 
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compared to the distributions of both 𝑅𝑇 and 𝛼44 values, which depend on the fluctuations of 

both thickness and optical tissue properties within the dermal layer of HSE sections. To 

check this assumption, we performed a statistical analysis of these distributions. We used the 

value of entropy 𝐻(𝑝) = −∑ 𝑝𝑖 log(𝑝𝑖)
𝑁
𝑖=1  of a discrete probability distribution 𝑝  as an 

inverse metric of distribution peakedness [14]. Indeed, more peaked distributions are less 

undetermined. Hence, their entropy should be lower compared to broader distributions. The 

calculated values of entropy (in nats) are presented in Tab. 4.6.  

For the dermal layer of HSE sections, the entropy values of the distributions of the 

thickness-invariant parameters ( 𝑅𝑇 / 𝛼44 , 𝑅𝑇 |ln (𝑀00)⁄ | , 𝛼44 ln (𝑀00)
2⁄ , (𝑅𝑇)2/𝛼44 and 

𝛼44/(𝑅𝑇)2) are smaller than analogous values for the thickness-dependent parameters. Hence, 

the thickness-invariant parameters have more narrow distributions compared to those of the 

thickness-dependent parameters ( 𝑅𝑇 , 𝛼44 ). Among thickness-invariant parameters, 

𝛼44 ln (𝑀00)
2⁄  presents the smallest value of entropy of the distribution compared to other 

thickness-invariant parameters (see Tab. 4.6). 

Table 4.6 Entropy of the distributions of parameters defined by Eq (4.3)-(4.6) within the dermal layer. 

Real thickness 

(µm) 
𝑯(𝑹𝑻) 𝑯(𝜶𝟒𝟒) 𝑯 (

𝑹𝑻

|𝐥𝐧(𝑴𝟎𝟎)|
) 𝑯 (

𝜶𝟒𝟒

𝐥𝐧 (𝑴𝟎𝟎)
𝟐
) 𝑯(

𝑹𝑻
𝟐

𝜶𝟒𝟒

) 𝑯(
𝜶𝟒𝟒

𝑹𝑻
𝟐 ) 

3.0 3.99  3.99 3.96 3.12 3.94 3.76 

6.2 4.10  4.07  4.07  2.36  4.03  3.82  

7.6 3.98  3.98  3.97  3.84  3.96  3.91  

10.1 4.08  4.08  4.06  2.2.  4.01  3.19  

10.5 3.67  3.66  3.66  3.67  3.65  3.61  

Hence, for purely depolarizing samples, the maps of the parameter 𝛼44 ln (𝑀00)
2⁄  may 

provide the highest image contrast relevant for the histological diagnostic of thin tissue 

sections. The distributions of the ratio 𝛼44/(𝑅𝑇)2  have also the small values of entropy, 

indicating that the maps of this ratio may be used for the histological analysis of both 

birefringent and depolarizing samples. We demonstrated that using the dependence of 

polarization and depolarization parameters on thickness, predicted by the differential MM 

formalism, one can produce the microscopic images with less fluctuations and higher contrast. 

4.5. Monte Carlo modeling of experimental polarimetric data 

for dermal layer of HSE 

To interpret the experimentally observed anisotropy of linear depolarization and presence of 

linear dichroism measured with transmission Mueller microscope within dermal zone of HSE 

thin sections, we performed a numerical modeling of polarimetric response of dermal layer 

using the polarized Monte Carlo algorithm [15]. The simulated geometry and the parameters 

of dermal layer optical phantoms are described below. 
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A virtual light source illuminates uniformly the flat top surface of an optical phantom of 

a dermal layer at normal incidence. The light source emits a given number (107 to 108) of 

monoenergetic photons with the preset states of polarization. Every photon travels a certain 

distance within the sample before being scattered on a sphere or cylinder. For each collision 

event, this distance is determined statistically using a mean free path parameter calculated 

from the scattering cross-sections of scatterers and their number density. The sizes, refractive 

indices, and number densities of both sphere and cylinder scatterers as well as refractive 

index of isotropic host medium or ordinary and extraordinary refractive indices and spatial 

orientation of the optical axis of linear birefringent host medium are the input parameters of 

our optical model and can be adjusted to mimic the conditions of real biological tissue.  

The photon changes its polarization state and direction of propagation after each 

scattering event. The angles of deflection and rotation of polarization plane are calculated 

using the rejection method [16]. A transfer matrix for scattering is determined by Mie theory 

for spherical scatterers or scattering matrix theory for infinite-long cylinder [11]. The host 

medium is not absorbing. The random walk of a photon continues within a scattering medium 

until it is moved outside the sample volume, where it can be lost or hit a detector. The 

simulated transmitted Muller matrices of the optical phantoms of HSE dermal layer were 

spatially averaged to reproduce the diffused uniform illumination of the thin sections of HSE 

in Mueller microscopy experiments. The simulated Mueller matrices of the optical phantoms 

of varying thickness were decomposed using LMMD algorithm, and obtained values of 

polarization and depolarization parameters were compared with the corresponding 

experimental data. 

4.5.1. Optical models of HSE dermal layer 

To create an appropriate optical phantom (or optical model) of a skin dermis zone, one needs 

to account for both fibroblasts and well-aligned collagen fibers that form the dermal layer of 

HSE [7], [8]. Whereas light scattering on cells and fibers produces the depolarization, the 

optical anisotropy of a dermal layer results in retardance due to the form birefringence [17]. 

Thus, the monodisperse spherical scatterers in an optical model of the dermal layer were used 

to reproduce isotropic scatterings on cells. Infinitely long cylindrical scatterers were added to 

the optical model to simulate the effect of form birefringence due to the presence of aligned 

collagen fibers in the dermis. The refractive indices of spherical and cylindrical scatterers (𝑛𝑠, 

𝑛𝑐) and isotropic medium (𝑛𝑚) were set to be equal to 1.45 and 1.33, respectively.  

The validity of replacing a form birefringence by an intrinsic birefringence of uniaxial 

linear anisotropic host medium with an in-plane optical axis was also explored with the 

following set of parameters: ordinary index 𝑛𝑚
𝑜 =  1.33, and extraordinary index 𝑛𝑚

𝑒 = 

1.33+𝛥𝑛, (𝛥𝑛 = 10−5). The values of refractive indices are taken as for bulk fresh tissue, 

while noting that those values may be somewhat different for the studied fixed unstained 

tissue sections. Most probably, it is not so important for our consideration because the 

refractive index of a scatterer and its size are highly correlated parameters in Mie 

electromagnetic scattering problem. With our choice of refractive index values for both 
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scatterers and host medium, the optical contrast 𝑛𝑠/𝑛𝑚 (or 𝑛𝑐/𝑛𝑚) is more than one. Keeping 

constant the value of optical contrast, the size of scatterers was varied to reproduce the 

general trends in polarization and depolarization parameters in our simulations. This might be 

a reasonable assumption for performing the parametric numerical studies to reproduce the 

experimental trends. 

In our experiments a dermal layer of all HSE sections demonstrated higher circular 

depolarization compared to the linear one (|𝛼44| > |𝛼22|, |𝛼44| > |𝛼33|), thus, indicating the 

dominance of Rayleigh scattering regime over Mie scattering regime. Hence, it justifies the 

use of the sub-wavelength spherical and cylindrical scatterers in the optical model of dermal 

layer. The wavelength of probing light was fixed at 533 nm, so the spherical and cylindrical 

scatterers whose diameter ranged from 0.01 µm to 0.5 µm were tested. Their concentrations, 

described by the scattering coefficients 𝜇s and 𝜇c, respectively, were varied from 5 cm-1 to 

5000 cm-1. The parameter ∆𝑛 for the uniaxial birefringent host medium was adjusted to fit the 

experimental results [3] for the total linear retardance parameter 𝑅𝑇 . The optical axis of a 

linear uniaxial birefringent host medium was always oriented parallel to the sample surface, 

reflecting the arrangement of collagen fibers in the dermal layer of histological sections in the 

imaging plane of the Mueller microscope. The GPU acceleration allowed us to carry out the 

simulations in a wide range of parameters to find the best fit values. 

Histological sections of HSE of varying thickness (nominal values 3 µm ~ 30 µm) were 

mounted on 1 mm thick microscopy glass slides in our experiments [3]. During the Mueller 

polarimetric microscope calibration with Eigenvalue Calibration Method [18], the 

measurements of air (one of the reference samples) were performed through a bare 

microscopy glass slide. Hence, the contribution of glass was excluded from the Mueller 

matrices of all measured histological cuts. To model our experimental setup, the Monte Carlo 

simulations in transmission configuration were performed for the range of histological cut 

thicknesses defined from profilometer measurements [19] without adding a 1 mm thick glass 

layer to our optical model. A spatially uniform light beam was normally incident onto the flat 

front surface of a sample. No back-surface roughness of thin tissue section was taken into 

account in our optical model. The simulated images of forward scattering Mueller matrix 

elements were spatially averaged over a centered circle of 600 µm in diameter to reproduce 

the experimental conditions, and the resulting Mueller matrices were decomposed using 

LMMD algorithm  [5]. 

4.5.2. Rotation invariants of logarithmic decomposition 

The set of polarization and depolarization parameters obtained from the LMMD include the 

values of retardance (linear (𝑝4 = 𝐿𝐵, 𝑝5 =  𝐿𝐵′) and circular (𝑝6 = 𝐶𝐵)), dichroism (linear 

(𝑝1 = 𝐿𝐷, 𝑝2 = 𝐿𝐷′) and circular (𝑝3 = 𝐶𝐷)), and depolarization coefficients (linear (𝛼22 , 

𝛼33) and circular (𝛼44)) [5]. The parameters 𝐿𝐵, 𝐶𝐷 and 𝛼22 are defined with respect to the 

framework of 0°-90°, the parameters 𝐿𝐵′, 𝐿𝐷′  and 𝛼33  are defined with respect to the 

framework of ±45°.  
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Neither optical activity nor circular dichroism was detected in the polarimetric 

measurement data for skin model histological cuts (𝐶𝐵 = 0, 𝐶𝐷 = 0) . The well-aligned 

collagen fibers in a dermal layer of HSE sections define the direction of the optical axis of a 

uniaxial linear birefringent medium. In our experiments the orientation of histological cuts in 

the imaging plane was performed manually, thus, producing a small variation in the azimuth 

of the optical axis from sample to sample. That is why the measured values of polarization 

parameters 𝐿𝐵, 𝐿𝐵′ for different HSE sections depend not only on sample thickness, but also 

on the position of thin tissue sections in the imaging plane. To exclude the latter, we have 

introduced the parameter of a total linear retardance 𝑅𝑇 = √𝐿𝐵2 + 𝐿𝐵′2 , which does not 

depend on the azimuth of the optical axis.  

The polarimetric measurements of the histological sections of HSE have also 

demonstrated the effect of anisotropy of linear depolarization (𝛼22 ≠ 𝛼33) [3], [19]. Both 

parameter 𝛼22 and parameter 𝛼33 are not invariant under the in-plane rotation of a sample. 

Therefore, we also derived rotation invariants for linear depolarization to eliminate the effect 

of sample orientation with respect to the laboratory coordinate system. The logarithm of 

Mueller matrix 𝐌 is calculated as 

 

 

where 𝚲  is a diagonal matrix of eigenvalues of 𝐌  and 𝐔  is a matrix with the columns-

eigenvectors of matrix 𝐌. The rotational transformation of a Mueller matrix in transmission 

configuration is described by 𝐌′ = 𝐑(α)𝐌𝐑(−α), where 

 

 

Rotational transformation does not affect the eigenvalues of the matrix. Therefore, we have  

 

 

which means that the rotation transformation of matrix L is the same as for the Mueller 

matrix M. As a result, the rotation invariants of matrix L should take the same form as the 

invariants for the Mueller matrix M [20]. If we denote 𝑠𝑛 = sin (𝑛𝛼) and 𝑐𝑛 = cos (𝑛𝛼) and 

decompose the matrix 𝐑(𝛼)𝐋𝐑(−𝛼)  into the sum of the matrices 𝐋m  and 𝐋u  (G-

antisymmetric and G-symmetric components [5], we get the following expressions: 

 

 𝐋 = ln𝐌 = ln(𝐔𝚲𝐔−𝟏) = 𝐔 ln(𝚲)𝐔−𝟏 (4.8) 

 𝐑(𝛼) = [

1 0 0 0
0 cos(2𝛼) − sin(2𝛼) 0
0 sin(2𝛼) cos(2𝛼) 0
0 0 0 1

] (4.9) 

 

𝐋′ = ln𝐌′ = ln(𝐑(𝛼)𝐔𝚲𝐔−1𝐑(−𝛼)) 

 

                      = 𝐑(𝛼)𝐔 ln(𝚲)𝐔−1𝐑(−𝛼) = 𝐑(𝛼)𝐋𝐑(−𝛼) 

(4.10) 
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𝑚1 = 𝑚6 = 𝑚11 =  𝑚16 = 0, 𝑚2 = 𝑚5 = (𝐿12 + 𝐿21)𝑐2 − (𝐿13 + 𝐿31)𝑠2,  
 

𝑚3 = 𝑚9 = (𝐿13 + 𝐿31)𝑐2 + (𝐿12 + 𝐿21)𝑠2, 𝑚4 = 𝑚13 = 𝐿14 + 𝐿41,  
 

𝑚7 = −𝑚10 = 𝐿23 − 𝐿32, 𝑚8 = −𝑚14 = (𝐿24 − 𝐿42)𝑐2 + (𝐿43 − 𝐿34)𝑠2,  
 

𝑚12 = −𝑚15 = (𝐿34 − 𝐿43)𝑐2 + (𝐿24 − 𝐿42)𝑠2.  

 

 

𝑢1 = 2𝐿11, 𝑢6 = 𝐿22 + 𝐿33 + (𝐿22 − 𝐿33)𝑐4 − (𝐿23 + 𝐿32)𝑠4, 
 

𝑢11 = 𝐿22 + 𝐿33 + (𝐿33 − 𝐿22)𝑐4 + (𝐿23 + 𝐿32)𝑠4, 𝑢16 = 2𝐿44, 
 

𝑢2 =  −𝑢5 =  (𝐿12 − 𝐿21)𝑐2 + (𝐿31 − 𝐿13)𝑠2, 𝑢3 = −𝑢9 =  (𝐿13 − 𝐿31)𝑐2 + (𝐿12 − 𝐿21)𝑠2, 
 

𝑢4 = −𝑢13 = 𝐿14 − 𝐿41, 𝑢7 = 𝑢10 = (𝐿23 + 𝐿32)𝑐4 + (𝐿22 − 𝐿33)𝑠4, 
 

𝑢8 =  𝑢14 =  (𝐿24 + 𝐿42)𝑐2 − (𝐿43 + 𝐿34)𝑠2, 𝑢12 =  𝑢15 =  (𝐿34 + 𝐿43)𝑐2 + (𝐿24 + 𝐿42)𝑠2. 

 

The rotation invariants of the matrix 𝐋m are total linear birefringence 
 

 

total linear dichroism 
 

 

circular birefringence 
 

 

and circular dichroism. 
 

 

Using the notation 𝛼𝑖𝑖 = 𝐿𝑢𝑖𝑖 , (𝑖 = 2, 3, 4)  for the diagonal elements of matrix 𝐋u , the 

rotation invariants of the matrix 𝐋u can be written in terms of linear (isotropic) depolarization 
 

 𝐋′m =
1

2
[

𝑚1 𝑚2 𝑚3

𝑚5 𝑚6 𝑚7
𝑚9

𝑚13

𝑚10

𝑚14

𝑚11

𝑚15

    

𝑚4

𝑚8
𝑚12

𝑚16

] (4.11) 

 𝐋′𝑢 =
1

2
[

𝑢1 𝑢2 𝑢3

𝑢5 𝑢6 𝑢7
𝑢9

𝑢13

𝑢10

𝑢14

𝑢11

𝑢15

    

𝑢4

𝑢8
𝑢12

𝑢16

] (4.12) 

 
𝑅𝑇 = √𝐿𝑚42

2 + 𝐿𝑚43
2 = √𝐿𝑚24

2 + 𝐿𝑚34
2  

 

= [(𝐿24 − 𝐿42)
2 + (𝐿34 − 𝐿43)

2]/4 

(4.13) 

 
𝐷𝑇 = √𝐿𝑚12

2 + 𝐿𝑚13
2 = √𝐿𝑚21

2 + 𝐿𝑚31
2  

 

= [(𝐿12 + 𝐿21)
2 + (𝐿13 + 𝐿31)

2]/4 

(4.14) 

 𝑅𝐶 = 𝐿𝑚23 = −𝐿𝑚32 = (𝐿23 − 𝐿32)/2 (4.15) 

 𝐷𝐶 = 𝐿𝑚14 = 𝐿𝑚41 = (𝐿14 + 𝐿41)/2 (4.16) 

 𝛼𝐿 = (𝛼22 + 𝛼33)/2 = (𝐿𝑢22 + 𝐿𝑢33)/2 (4.17) 
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and circular depolarization. 
 

 

The four elements at the corners of the matrix 𝐋 are also invariant under rotation, as well as 

the squared sum of the matrix elements from the first and last columns and the first and last 

rows. To find the rotational invariant for linear anisotropic depolarization, we applied the 

Mueller matrix transformation [20] of 𝐋 and obtained: 
 

 

In the optical model of dermal layer of HSE the orientation of the optical axis of linear 

birefringent medium and the orientation of the axis of cylindrical scatterers was always set 

along x-axis. In the experiments, the orientation of the aligned collagen fibers with respect to 

the edge of a microscope glass slide (i.e., laboratory x-axis) depends on the sample 

preparation and may slightly vary from one histological slide to another. Therefore, we used 

the derived set of rotation invariants with non-zero values, namely, 𝑅𝑇, 𝐷𝑇 𝛼L, 𝛼44, and 𝛼LA 

for the comparison of the results of measurements and simulations. 

4.5.3. Choice of an appropriate optical model of the dermis 

Several optical models were tested to reproduce the optical effects observed in a dermal zone 

of samples. Some of them were ruled out for the reasons discussed in the next section. Finally, 

the optical model that includes both spherical and cylindrical scatterers randomly distributed 

in the linear birefringent host medium was selected for the polarized Monte Carlo simulations 

of HSE dermal layer. 

4.5.3.1. Ruled out optical models 

The goal of our modeling was to 1) reproduce the linear dependence of the polarization 

parameters and quadratic dependence of the depolarization parameters of HSE dermal layer 

on its thickness 2) understand the origin of anisotropy of the linear depolarization and non-

zero dichroism measured HSE dermal layer with Mueller microscope in transmission 

configuration.  

It was already demonstrated that an isotropic medium with spherical scatterers does not 

possess any retardance [21], [22]. A phase shift in the detected signal can be induced by 

scattering of polarized light by cylindrical scatterers as well as by polarized light passing 

through a birefringent medium. First, we tested the optical model of HSE dermal layer that 

consists of spherical and cylindrical scatterers that are randomly and uniformly distributed in 

the isotropic host medium (SC model). Our modeling results demonstrated that the SC model 

felt short of reproducing the experimental values of retardance for low values of the µ c 

parameter. The volume density of cylindrical scatterers had to increase significantly to fit the 

experimental trends in retardance values, but with an increase of the parameter µ c SC model 

 𝛼44 = 𝐿𝑢44  (4.18) 

 𝛼𝐿𝐴 =
1

2
√(𝛼22 − 𝛼33)2 + (𝐿𝑢23 + 𝐿𝑢32)2 (4.19) 
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produced very high values of dichroism and depolarization, which by far exceed the 

corresponding experimental values. Therefore, we have discarded the SC model from further 

consideration. We concluded that the uniaxial linear birefringent host medium has to be a 

necessary component of our optical model to reproduce the experimental trends. Linear 

birefringent host medium will increase the simulated retardance values without pushing up 

the dichroism and depolarization parameters of a simulated optical phantom.  

We also tested the optical model of HSE dermal layer that consists of spherical 

scatterers that are randomly and uniformly distributed in a uniaxial linear birefringent host 

medium (SB model). The values of parameter ∆𝑛, the radius of spherical scatterers 𝑅𝑠, and 

the scattering coefficient 𝜇s were varied to find the best fit to the experimental data. The SB 

optical model fits well the experimental values of retardance [19] with optimal values of 

∆𝑛 = 0.0057 and 𝑅𝑠 = 0.05 µ𝑚 (see Fig. 4.15 (a)).  

 

 

Figure 4.15 Results of Monte Carlo simulations with the SB optical model for different dermal layer 

thickness: (a) total linear retardance 𝑅𝑇 (radians) and dimensionless depolarization parameters (b) 

𝛼𝐿 , (c) 𝛼44 , and (d) 𝛼𝐿𝐴 . Simulated data are shown by open symbols corresponding to different 

concentrations of spherical scatterers. Open boxes with standard deviation represent the experimental 

data. Solid lines show the results of (a, d) linear and (b, c) parabolic fit of the simulated data. 

It is worth to mention that the optimal value of ∆𝑛 for the fixed tissue cuts was found about 

two orders of magnitude larger compared to the values reported for the fresh biological tissue 

[17]. The simulation results with the SB optical model confirmed the linear dependence of 

total linear retardance 𝑅𝑇 calculated from LMMD on layer thickness. The simulated values of 
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depolarization parameters 𝛼𝐿 , 𝛼44 have demonstrated a quadratic dependence on thickness 

(see Fig. 4.15 (b), (c)). No anisotropy of linear depolarization was observed with the SB 

model, as simulated values of αLA = 0  for all layer thickness (Fig. 4.16 (d)). 

The experimental values of depolarization coefficients 𝛼22, 𝛼33, and 𝛼44 for a dermal 

layer of skin model histological cuts obey the relation: |𝛼22| < |𝛼33| < |𝛼44| [3]. However, 

the simulations with the SB model could not reproduce the effect of anisotropy of linear 

depolarization (|𝛼𝐿𝐴| ≠ 0) observed experimentally (see Fig. 4.16 (d)). Moreover, no linear 

dichroism can be simulated with the SB model, while the non-zero values of the linear 

dichroism were measured in our experiments [3]. Therefore, we concluded that the optical SB 

model of the dermal layer of skin model histological cuts has to be modified in order to 

reproduce experimental trends. 

4.5.3.2. SCB optical model 

We then added to the SB optical model of HSE dermal layer the cylindrical scatterers that are 

also distributed randomly and uniformly in the linear birefringent host medium (SCB model) 

to reproduce the effects of anisotropy of linear depolarization and non-zero linear dichroism. 

We used the same set of parameter values as for the SB optical model but added a group of 

cylindrical scatterers of radius 𝑅𝑐 = 0.05 𝜇𝑚 =  𝑅𝑠, with cylinders’ axes aligned along the 

X-axis. The scattering coefficient for the spherical scatterers 𝜇𝑠 was fixed at 1500 cm-1 and 

the scattering coefficient for the cylindrical scatterers 𝜇𝑐 was varied from 500 to 1500 cm-1.  

The results obtained with the SCB optical model after applying LMMD to the simulated 

Mueller matrices for the layers of varying thickness are shown in Fig. 4.16. The presence of 

the cylindrical scatterers has minimal influence on the values of linear retardance, but it has a 

significant impact on the values of linear dichroism and anisotropic depolarization effect. The 

SCB optical model yields the values of total linear retardance that also match well the 

experimental data (see Fig. 4.16(a)). The linear increase of total linear retardance 𝑅𝑇  and 

linear dichroism values on thickness are shown in Figs 4.16 (a) and (b), respectively. The 

non-zero intercept of the linear regression curve for the experimental linear dichroism values 

with the y-axis (Fig. 4.16 (b)) was explained by the scattering of transmitted light on the 

rough back surface of tissue [3]. It was shown that for the anisotropic media, a surface 

scattering does not affect the retardance values but has an impact on linear dichroism values 

[23]. The quadratic dependence of 𝛼𝐿, 𝛼44, and 𝛼𝐿𝐴 on thickness is also confirmed. Moreover, 

an anisotropic depolarization effect (|𝛼𝐿𝐴|≠0) is well reproduced with the SCB optical model 

(see Fig. 4.16 (c-e)). 

The impact of a radius of cylindrical scatterers 𝑅𝑐 on anisotropic linear depolarization 

𝛼𝐿𝐴 was also studied (see Fig. 4.17). Our simulations show that the cylinders with a smaller 

radius produce stronger anisotropy in linear depolarization. Hence, the presence of 

anisotropic linear depolarization is an indication of the scattering on small-size fibroid 

scatterers in the studied medium (so-called from birefringence). The values of the parameter 

𝛼𝐿𝐴 can be used for the estimation of the characteristic size of the non-spherical scatterers. 
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Figure 4.16 Results of Monte Carlo simulations using the SCB optical model of HSE dermal layer. 

Dependence on the layer thickness of (a) total linear dichroism 𝐷𝑇 (dashed line is a linear regression 

curve for the experimental data), (b) total linear retardance 𝑅𝑇, (c-e) depolarization parameters 𝛼𝐿, 

𝛼44, and 𝛼𝐿𝐴, respectively. Simulated data are shown by open symbols corresponding to different 

scattering coefficients 𝜇𝑐  (i.e., different concentrations of cylindrical scatterers), 𝜇𝑠 =  1500 cm-1, 

𝑅𝑠 = 𝑅𝑐  0.05μm. Open boxes with error bars represent the experimental data. Solid lines show the 

results of (a), (b) linear, and (c)-(e) quadratic fit of the simulated data. 

 

 

Figure 4.17 Dependence of parameter αLA on layer’s thickness for the different radius of cylindrical 

scatterers. The parameters of the SBC optical model are: 𝜇𝑠 = 𝜇𝑐 = 1500 cm−1, 𝑅𝑠 = 0.05 μm. Open 

symbols correspond to the different radii of cylindrical scatterers:  𝑅𝑐 =  0.05, 0.5, and 2 μm, 

respectively. The concentration of cylindrical scatterers 𝑐𝑐 was adjusted to keep a constant value of 

the scattering coefficient 𝜇𝑐. Open boxes with error bars represent the experimental data. Solid lines 

show the results of a parabolic fit of the simulated data. 
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To summarize, an appropriate optical model for a dermal layer of unstained fixed histological 

cuts of skin model tissue should include the sub-wavelength spherical scatterers, and well-

aligned cylindrical scatterers both distributed in a uniaxial linear birefringent medium. This 

model can qualitatively reproduce the thickness dependence of polarization and 

depolarization properties obtained from LMMD of the experimental Mueller matrices of a 

dermal layer of skin model histological cuts [3]. 

4.6. Conclusions  

The experimental studies of histological sections of HSE with the transmission Mueller 

microscope have confirmed the predictions of the phenomenological differential formalism 

of fluctuating anisotropic media for biological tissues. The logarithmic decomposition of 

Mueller matrix (LMMD) was applied to study a dependence of total linear retardance, total 

dichroism, and depolarization parameters on thickness. We have demonstrated that the total 

linear retardance and the total linear dichroism of HSE dermal layer depend linearly on the 

thickness, whereas the depolarization parameters demonstrate quadratic dependence on 

thickness. The set of optical parameters, including the circular depolarization and total linear 

birefringence (both derived from the logarithmic decomposition of MM of HSE sections) 

and the intensity of transmitted light (element M00), was effectively used for the automated 

segmentation of microscopy images and delineation of the zones of bare glass, dermis, and 

epidermis using the upgraded version of the statistical algorithm of density-based spatial 

clustering of the applications with noise. 

A significant problem, overlooked by many researchers working in the field of polarized 

light histology, appears to be the control and characterization of the real thickness of studied 

tissue sections. The important point is that the nominal thickness of tissue sections used for 

histopathology analysis may vary significantly from the real one due to technical specifics of 

the preparation of tissue sections. The pathological changes of tissue (cancer, fibrosis, 

inflammation) will affect the measured polarization and depolarization parameters of tissue. 

However, changing the thickness of tissue section and, consequently, the path length of the 

probing light beam will also affect these parameters. Thus, for separating the contribution of 

both factors and reliable diagnostics of tissue with polarized light, the impact of the varying 

path length of light on polarization and optical depolarization markers of the specific disease 

has to be taken into account. In order to mitigate the impact of tissue thickness fluctuations 

and to increase the contrast of polarimetric images relevant for diagnostic purposes, we have 

proposed several approaches based on using the linear and quadratic dependence of 

retardance and depolarization on thickness, respectively, combined with the estimation of 

the intensity decay with thickness from the Beer-Lambert law. 

The polarization state of light incident on biological tissue is changed by its interaction 

with tissue microstructures. These modifications depend on both size (nm to 𝜇m) and shape 

of the scatterers. Polarized Monte Carlo algorithm was used for the solution of vector 

radiative transfer equation to model the propagation of polarized light within the birefringent 
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scattering media and understand the physical origins of the anisotropy of linear depolarization 

and the presence of linear dichroism that were experimentally observed for dermal layer of 

HSE with transmission Mueller microscope.  

The rotation invariant parameters of the logarithmic decomposition of Mueller matrix 

were derived, and the parameter 𝛼LA  was proposed as a maker for anisotropy of linear 

depolarization. Three different optical models modes were tested to explain the results of 

transmission Mueller microscopy measurements of the skin equivalents. We demonstrated 

that 1) linear birefringence of the host medium is a necessary parameter of the optical model 

of HSE dermal layer for reproducing the experimental trends in total linear retardance values, 

and 2) anisotropic scatterers are the essential component of the optical model of HSE dermal 

layer for reproducing both linear dichroism and anisotropic depolarization effects.  

Although the depolarization of transmitted light was reproduced with two optical models 

of HSE dermal layer (SB and SCB), the experimentally observed effect of anisotropy of 

linear depolarization (𝛼𝐿𝐴 ≠ 0) was found in simulations with the SCB optical model only. 

Both HSE section measurements and simulations with the SCB optical model confirmed the 

presence of the non-zero linear dichroism calculated with LMMD for both measured and 

simulated Mueller matrices. With polarized Monte Carlo simulations, we have shown that 

applying the logarithmic decomposition of the transmission Mueller matrix of tissue may 

provide the relevant information not only on the average size of dominant scatterers but also 

on their shape.  
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5.1. Introduction 

Surgery is the crucial treatment step for most patients with brain tumors, especially gliomas 

[1]-[4]. While some well-delineated brain tumors such as metastases can be removed en-bloc, 

most gliomas, which tend to grow infiltrative in the white matter within the brain, are 

removed piece by piece. During surgery, as the surgeon follows the tumor into the depth of 

the brain and removes it in a piecemeal fashion, it is essential that surgeon identifies and 

respects the border between the tumor and the surrounding brain tissue in order to perform a 

radical tumor resection, whereas preserving neurological function. However, although it is 

easy to identify the tumor in preoperative magnetic resonance imaging (MRI), solid tumor 

tissue is often difficult to differentiate from infiltrated white matter during surgery, even 

when using a state-of-the-art intra-operative microscope. 



 

  120 

Patients in whom a piece of the tumor is left behind due to poor visualization of the 

tumor border have a worse prognosis than those in whom the entire tumor was removed, as 

the tumor invariably grows back from the remnants [5]-[7]. Furthermore, information on the 

neurological function of a given area of exposed white matter seen during surgery is very 

limited. The white matter of the healthy brain is made up of fiber tracts that comprise 

bundles of axons. Each axon is surrounded by a myelin sheath, which acts as an electrical 

insulator to accelerate the propagation of action potential (see Fig. 5.1). Myelin is a lipid-

rich substance with a refractive index higher than that of the surrounding glia, in the visible 

wavelength range [8]. 

 

 

Figure 5.1 Scheme of the a) structure of simplified neuron and b) neuron’s axon and its myelin 

sheath. Adapted from [https://en.wikipedia.org/wiki/Myelin] 

 

To some degree, the differences in texture, roughness, color, and vascularization can help 

to identify tumor tissue, especially when using a neurosurgical microscope. In addition, 

several experimental methods have been investigated for their ability to discern brain tumor 

tissue. For instance, orally administered 5-aminolevulinic acid (5-ALA) is taken up by cells 

and metabolized to protoporphyrin IX, which accumulates in tumor cells of higher-grade 

gliomas and exhibits fluorescent properties [9]-[11]. By illuminating the exposed brain tissue 

with blue light through the surgical microscope, tumor cells fluoresce red, making tumor cell 

clusters visible. 5-ALA has entered clinical routine [9], [12], however, its benefit is limited to 

high-grade gliomas, as it is not suitable for visualizing low-grade gliomas or metastases due 

to insufficient protoporphyrin IX accumulation in tumor tissue. 

The installation of an MRI device in the operating room helps to identify tumor remnants 

during surgery and has been shown to increase the rate of gross total resection in patients 

with high-grade glioma [13], [14]. However, the significant financial costs and extra time 

needed for scanning prevent intra-operative MRI from becoming the gold standard of care. 

Other approaches, such as intra-operative ultrasound, have not proven reliable in estimating 

the extent of resection and the residual tumor volume [15]. In summary, the attempts to 

visualize tumor cells have so far failed to reliably identify the tumor–brain interface during 

surgery for many intrinsic brain tumors. 

The schematic of a brain section in a coronal plane is shown in Fig. 5.2. The cell bodies 

of neurons lie within the superficial layer of the brain, which is called the gray matter or 

cortex (Fig. 5.2, top left inset). The axons, constituting the white matter of the brain, conduct 

electrical impulses (action potential) between nerve cell bodies located in the gray matter of 

(a) (b)
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the brain or the spinal cord. Large numbers of axons are joined together in fiber tracts. For 

example, the corticospinal tract connects the neurons to the spinal cord and is responsible for 

voluntary movement of the limbs, whereas the anterior-posterior-running arcuate fasciculus 

fiber tract is responsible for speech (Fig. 5.2, top right inset). A brain tumor displaces these 

fiber tracts. 

 

 
 

Figure 5.2 Schematic of brain cross-section in a coronal plane. Left bottom inset – view of a brain 

from above, the dashed line shows the location of a coronal plane; left top inset: 1 - cell bodies of 

neurons lie within the brain gray matter; 2 - axons; the neurons connect to other areas of the brain or 

the spinal cord via their axons. Top right inset: 3 - corticospinal tract; 4 - anterior-posterior-running 

arcuate fasciculus fiber tract; 5 - tumor. See explanations in the text. 

The white matter of the healthy brain is made up of fiber tracts that comprise bundles of 

axons. Its white color is caused by the strong scattering of light, which results in 

depolarization of incident polarized light. In addition to light scattering, the densely packed 

and aligned rods of myelin produce strong optical anisotropy (so-called “form birefringence”) 

of brain white matter. Consequently, the brain fiber tracts must exhibit uniaxial linear 

birefringence with the optical axis oriented along the direction of the fiber bundle. The 

structure of healthy white matter is highly ordered, but the brain tumor tissue shows that the 

cells grow in a mostly chaotic way. This difference in structural complexity is currently not 

detectable during surgery with a white-light surgical microscope. These difficulties in 

identifying tumor, function, and fiber tracts are key contributors to the risk of both 

incomplete resection (too little resection) and neurological deficits (too much resection).  

We performed the proof-of-principle studies to explore the potential of wide-field 

imaging Mueller polarimetry for the visualization of fiber tracts of brain white matter that 

may help to detect the exact border between tumor and white matter of healthy surrounding 

brain tissue. 
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5.2. Materials and Methods 

5.2.1. Sample preparation 

Human brain tissue was obtained from the autopsy of an anonymous donor. The brain was 

formalin-fixed, and one half of a thick section of the fixed human brain in a coronal plane 

was used for polarimetric measurements (see Figs. 5.3 (a, b)). The dimensions of the brain 

section were approximately 9 cm × 6 cm × 1 cm. The remaining fixed brain tissue was 

paraffin-embedded according to standard procedure. Thin whole-mount sections were 

prepared from the part of the brain adjacent to the part that had been imaged. Whole-mount 

sections were stained with Bielschowsky silver impregnation (see Fig. 5.3 (c)), and 

subsequently digitized on an M8 robotic microscope (Precipoint, Fresing, Germany). A 

waiver for ethical approval was obtained from the Ethics Committee of the Canton of Bern 

(KEK 2017-1189). 

 

 
 

Figure 5.3 Photos of (a) two adjacent 1 cm thick sections of the fixed human brain (one half) in a 

coronal plane (Department of Pathology, University Hospital of Bern, Switzerland); (b) schematic of 

brain (top view), red lines show the location of coronal plane cuts of one half of a brain. (c) thin 

whole-mount section stained with Bielschowsky silver impregnation (Department of Pathology, 

University Hospital of Geneva, Switzerland).  

 

Figure 5.4 Photo of (a) 1 cm thick fresh calf brain section in a coronal plane; (a) fixed human brain 

(one half), (b) sectioning of fresh calf brain; (c) schematic of brain (top view), red lines show the 

location of coronal plane cuts. 
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The whole fresh (not fixed with formalin) calf brain was bought from a local French butcher. 

The brain tissue was cut in a coronal plane without formalin-fixation to prepare a thick 

section (see Fig. 5.4). The dimensions of the calf brain tissue section were approximately 9 

cm × 7 cm × 1 cm. This section was rinsed with cold water to remove visible blood clots that 

may affect polarimetric measurements. 

5.2.2. Measurement Protocol  

The unstained thick sections of both fixed human brain and fresh calf brain were measured 

with the wide-field imaging Mueller polarimeter [16], [17] in reflection configuration that is 

the most relevant configuration for clinical applications of optical techniques using visible 

light. The illuminated spot was about 10 cm in diameter.  

A thick section of human brain tissue was removed from the formalin and placed flat in a 

glass Petri dish 14.5 cm in diameter. The measurements of the Mueller matrix were 

performed first on the tissue in air, then a sufficient amount of distilled water was poured into 

the Petri dish to cover the surface of the tissue and optical measurements were repeated. 

Covering the tissue with water leads to significant partial index matching and flattening of the 

interface, which, in turn, mitigates most of the artifacts related to sample surface topography. 

In order to exclude potential artifacts of the fixation technique we repeated the 

polarimetric measurements on a non-formalin-fixed calf brain. A thick section of fresh 

cadaveric calf brain was put into the empty glass Petri dish and imaged with the Mueller 

polarimeter immediately after preparation. The measurements were also repeated after 

pouring the distilled water into the Petri dish for removing the impact of the surface 

scattering, as it was done for the measurements of the formalin-fixed thick section of human 

brain. 

To interpret Mueller matrices of brain tissue measured in backscattering configuration in 

terms of its basic polarimetric properties (depolarization, retardance, and dichroism) we 

applied the polar Lu-Chipman decomposition algorithm that allows decomposition of any 

physically realizable Mueller matrix into the product of three Mueller matrices of the basic 

optical elements, namely, diattenuator, retarder, and depolarizer. As was explained in the 

Chapter 1, polar Lu-Chipman decomposition provides the data on the sample depolarization, 

and both vectors of retardation and diattenuation. 

5.3. Results and discussion 

5.3.1. Fixed human brain tissue  

We explored the sensitivity of polarized light to the optical anisotropy of brain white matter. 

The measurements of the formalin-fixed non-tumorous human brain thick section were 

performed at the wavelength of 550 nm first. The wide-field imaging Mueller polarimeter 

provided 16 polarimetric images of the Mueller matrix. The maps of basic optical parameters 
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of the brain specimen (retardance, diattenuation, and depolarization) were obtained by 

applying pixel-wise Lu-Chipman polar decomposition of Mueller matrix.  

The grayscale total intensity image and the corresponding maps of the total 

depolarization, the linear retardance, and the azimuth of the fast optical axis of a thick section 

of the formalin-fixed human brain specimen are shown in Fig. 5.5. Neither circular 

birefringence nor linear or circular dichroism was detected experimentally in these samples. 

These results are quite typical polarimetric responses of thick specimens measured in 

reflection [18]-[20]. The polarimetric images were calculated from the Mueller matrix of the 

sample, measured in “air conditions” at the wavelength of 550 nm. Since the wavelength of 

the light is 550 nm, the light penetration depth in the tissue is only a few hundred microns.  

 

 

Figure 5.5 Images of a thick coronal section of the fixed human brain measured in air at 550 nm: (a) 

total intensity, (b) total depolarization, (b) linear retardance (degrees), and (d) azimuth of the fast 

optical axis. Note, that the polarimetric maps are not affected by a non-uniform illumination from the 

slightly divergent incident light beam. 

The bright zones of specular reflection in the gray-scale intensity image (see Fig. 5.5 (a)) 

demonstrate low depolarization values (yellow regions in the map of total depolarization (Fig. 

5.5 (b)). The traces of the cutting blade on the surface of the brain specimen show more 

contrast in depolarization map compared to the total intensity image. The depth of light 

penetration in the tissue is only a few hundred microns at the measurement wavelength of 
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550 nm. When measuring this specimen in air, the depolarization response of the bulk tissue 

is strongly affected by the surface contribution.  

The cortex of the formalin-fixed human brain specimen is less depolarizing than the 

white matter of the specimen. This contrast in depolarization is clearly seen in the bottom part 

of the depolarization map that is not contaminated by the contribution of specular reflection. 

The maps of the scalar linear retardance and the azimuth of the fast optical axis are 

shown in Figs. 5.5 (c) and (d). As expected, the white matter of healthy brain tissue 

demonstrates measurable linear retardance of about 5 degrees all the way up to 20 degrees. 

The zone of brain white matter shows both higher depolarization and higher retardance 

values compared to the zone of the brain cortex. The map of the azimuth of the fast optical 

axis shows the orientation of fiber bundles of brain white matter. 

 

 

 

Figure 5.6 Images of a 1 cm thick coronal section of a fixed human brain immersed in water and 

measured at 550 nm: (a) total intensity, (b) total depolarization, (b) linear retardance (degrees), and 

(d) azimuth of the fast optical axis. The dashed line delineates the area of specular reflection on the 

air-water interface.  

Fig. 5.6 shows the gray-scale intensity image, the maps of the total depolarization, the scalar 

linear retardance, and the azimuth of the fast optical axis of the same formalin-fixed human 

brain specimen immersed entirely in water. The polarimetric measurements were also 

performed at a wavelength of 550 nm.  
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The regions delineated with the dashed line in Fig. 5.6 represent the zone of specular 

reflection of the slightly divergent incident light beam (AOI ~15°) from the air-water 

interface as detected by a CCD camera. We excluded this zone from further analysis. The 

surface topography was flattened by the index matching (although incomplete). The traces of 

the cutting blade on the surface of the specimen are eliminated in the depolarization and 

scalar retardance maps. Hence the impact of surface scattering on depolarization and scalar 

retardance was largely mitigated. The contrast between the cortex and white matter of brain 

was enhanced in the maps of total depolarization and scalar linear retardance compared to the 

measurements in air (see Figs. 5.5 (b), (c) and Figs. 5.6 (b), (c)).  

The values of the depolarization and the scalar linear retardance within the zone of white 

matter of formalin-fixed human brain specimen measured in water were higher compared to 

the corresponding values for the same brain section measured in air. The maps of the azimuth 

of the optical axis (Fig. 5.5 (d) and Fig. 5.6 (d)) are very similar for both measurement 

conditions. It can be explained by the suppression of the surface scattering effect in the 

measurements of a specimen immersed in water. Consequently, it leads to a reduction of the 

contribution of photons with a short path length. As a consequence, we collect the photons 

that travel longer distances within brain tissue. Bulk scattering randomizes and erases the 

polarization for the majority of detected photons, but a tiny portion of the detected signal, 

which remains polarized, accumulates a larger phase shift (i.e. a larger value of the scalar 

retardance). For the brain sample measured in air, a fraction of the photons with a short path 

length had introduced only a small phase shift and, hence, did not affect the calculations of 

the azimuth of the fast optical axis.  

A fusion of polarimetric images is performed to highlight a 2D spatial structure of brain 

white matter in the imaging plane. The polarimetric maps of the scalar linear retardance, the 

total depolarization, and the azimuth of the fast optical axis of formalin-fixed human brain 

specimen were used for the data fusion. The process of fusion is illustrated in Fig. 5.7. 

The maps of the scalar linear retardance, the depolarization, and the ratio of total 

depolarization to the square of scalar total linear retardance are shown in Figs. 5.7 (a), (b), (d), 

respectively. Since this ratio combines both scalar retardance and depolarization, its map 

demonstrates a clear border between the white and grey matter of a brain. The map of the 

azimuth of the optical axis (Fig. 5.7 (c)) helps to trace the orientation of brain fiber tracts. 

However, the azimuth within the cortex zone looks random, indicating the absence of ordered 

tissue structures at the scale of spatial resolution of our Mueller polarimeter. Then, the map of 

the azimuth of the optical axis is cropped (see Fig. 5.7 (e)) using the borders of the dark red 

region (the depolarization values of 0.9 - 1) in the map of total depolarization for a 

delineation of the zone of brain white matter. Finally, a merged map (see Fig. 5.7. (f)) is 

obtained by adding two images from Figs. 5.5 (d), (e). It shows a well-delineated border 

between the gray and white matter zones in the image of thick section of brain tissue as well 

as identifies the directions of brain white matter fiber tracts (myelinated axons).  
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Figure 5.7 Illustration of the polarimetric image fusion, cropping and merging process: the maps of 

the polarimetric input parameters - (a) scalar linear retardance, (b) total depolarization, (c) azimuth 

of the fast optical axis; (d) data fusion map shows the ratio (total depolarization / (scalar linear 

retardance)2; (e) cropped map of the azimuth of the fast optical axis in the zone of brain white matter: 

(f) map of the merged data.  

The map of the azimuth of the fast optical axis of the white matter of fixed human brain 

tissue measured in reflection and the photo of a corresponding whole mount thin, silver-

stained histological section, are shown in Figs. 5.8 (a), (c). It is worth to note that silver-

staining of a thin histological section is a gold standard technique used for the ex-vivo 

visualization of brain fiber tracts.  
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To check the correlation of the azimuth values with the orientation of fiber tracts, we 

selected in the polarimetric map of the azimuth five zones: A1-A4 corresponding to the U-

fibers tract in the white matter region and one zone A5 in the cortex region. Each pixel in the 

azimuth map (see Fig. 5.8 (a)) is described by the unit vector with the angle corresponding to 

the azimuth of the optical axis. All selected zones A1-A5 in the azimuth map (see Fig. 5.8 

(b)), represent squares of 9 × 9 pixels. The corresponding zones B1-B5 of the same U-fibers 

tract and cortex were also selected in the image of the silver-stained thin histological section 

(Fig. 5.8 (d)). The azimuth angle of the optical axis changes from 90° (A1 zone) to +45° (A4 

zone), thus, reproducing the shape of the U-fibers tract in the histology image. 

 

 
 

Figure 5.8 Images of coronal section of a fixed human brain specimen: (a) azimuth of optical axis; (c) 

photo of the whole mount silver-stained thin section; the enlarged insets (b) 71 x 66 pixels, and (d) 

scale bar 2 mm show U-fibers that curve around the superior frontal sulcus, connecting the superior 

and medial frontal gyrus. A1-A5 consist of 9 x 9 pixels.  

 

(a) (b)

(c) (d)
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Then, we calculated the circular histograms for the selected zones A1-A5 (see Fig. 5.9 (a). 

The enlarged histological images of the corresponding zones B1-B5 are presented in Fig. 5.9 

(b). The circular histograms for the A1-A4 zones show high directionality and low spread. 

The circular histogram for the cortex zone A5 demonstrates the isotropic distribution of the 

azimuth, thus, confirming the absence of optical anisotropy in gray matter of a brain at the 

mesoscale of several hundred microns defined by the spatial resolution of our instrument. 

 

 

Figure 5.9 (a) Circular histograms of the azimuth of the optical axis for the zones A1-A5 in Fig. 5.8 

(b); (b) the corresponding enlarged zones B1-B5 of U-fibers tract in Fig. 5.5 (d), scale bar - 500 

microns. C - cortex zone, F - white matter fiber tract zone, white dashed line represents the border 

between the cortex and brain white matter. 

The circular histograms for the zones A1-A4 demonstrate a compelling correlation with the 

direction of the fibers in the enlarged images of the corresponding zones B1-B4 of the thin 

silver-stained tissue section. The random distribution of the azimuth of the optical axis in the 

cortex zone A5 is supported by the enlarged histological image of the corresponding zone B5 

that contains many cells and sparse, randomly distributed fibers. The mean values and 

standard deviations of the distributions of the azimuth angle for the zones A1-A5 are given in 

Tab. 5.1.  

 

Table 5.1 Mean value and standard deviation (StD) of the azimuth angle: zones A1 – A5 

Zone A1 A2 A3 A4 A5 

Mean (o) 91.1 136.3 179.5 49.1 13.2 

StD 10.4 5.9 11.1 11.8 50.5 

5.3.2. Fresh animal brain tissue  

To exclude the impact of tissue fixation with formalin on the polarimetric parameters, we 

also performed the wide-field polarimetric measurements on unfixed specimen of fresh 

cadaveric calf brain tissue in air with the same imaging Mueller polarimeter in backscattering 
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configuration. The results of measurements at 550 nm are shown in Fig. 5.10. The bright 

zones in the gray scale intensity image (Fig. 5.10(a)) are due to specular reflections because 

the surface of the sample is not flat. The values of the depolarization of fresh brain white 

matter measured in air vary between 0.75 and 1 and are comparable with the corresponding 

values of the depolarization measured for the formalin-fixed human brain tissue (Fig. 5.5 (b)). 

The contrast between gray matter and white matter of brain on the depolarization map of 

fresh brain tissue is less marked than that seen in fixed tissue. It is known that tissue fixation 

with formalin links soluble and structural proteins together and affects the optical properties 

of tissue, like the depolarization power and the scalar retardation [21].  

The values of the scalar linear retardance of the fresh brain tissue measured in air (Fig. 

5.10(c)) are comparable with the corresponding values measured for the formalin-fixed brain 

tissue immersed in water (Fig. 5.5(c)). The map of the azimuth of the optical axis (Fig. 5.10 

(d)) also clearly highlights the directions of fiber tracts similar to the azimuth maps of fixed 

brain tissue in the white matter zone (Fig. 5.5 (d), Fig. 5.6 (d)). We also observe the U-fibers 

tracts at the periphery of the fresh calf brain specimen and thick vertical and horizontal fiber 

tracts in the central part of the map of the azimuth map of the optical axis. 

 

  

Figure 5.10 Images of a thick section of fresh cadaveric calf brain measured in air in reflection with 

the wide-field imaging Muller polarimeter: (a) grayscale total intensity image, (b) depolarization, (c) 

scalar retardance (degrees), and (d) azimuth of the fast optical axis. 
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We repeated the measurements of fresh calf brain sample entirely immersed in distilled water 

in order to flatten the surface of the sample by index matching. The gray-scale intensity 

image, the total depolarization, the scalar linear retardance, and the azimuth of the fast optical 

axis are shown in Fig. 5.11.  

 

 

Figure 5.11 Images of a thick section of fresh cadaveric calf brain totally immersed in water and 

measured in reflection with the wide-field imaging Muller polarimeter: (a) grayscale total intensity 

image, (b) depolarization, (c) scalar retardance (degrees), and (d) azimuth of the fast optical axis. 

The bright spot in the intensity image (Fig. 5.11 (a)) is also due to specular reflection of the 

slightly divergent incident light beam at the air-water interface. The contrast between cortex 

and white matter of the fresh calf brain in the depolarization map (see Fig. 5.11 (b)) is similar 

to that seen in Fig. 5.10 (b). It means that the surface scattering does not affect significantly 

the depolarization of light backscattered from fresh calf brain tissue, i.e. the depolarization is 

caused by bulk backscattering mainly. Contrary to formalin-fixed brain tissue, the white 

matter of water immersed fresh brain tissue does not demonstrate high retardance value and 

the contrast between the grey and white matter zones is decreased (Fig. 5.11 (c)).  The map of 

the azimuth of the optical axis shows random orientation of the optical axis pixel-wise that 

means that water immersion erases the anisotropy of the refractive index of white matter of 

healthy brain. Most probably, this effect is due to the water intake by fresh brain tissue. 

The measurements of both fixed human and fresh cadaveric animal brain tissue were also 

performed with the wavelengths of 600 nm and 650 nm. The absolute values for the 
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depolarization and the scalar linear retardance, as well as the image contrast for the 

depolarization, the scalar linear retardance, and the azimuth of the optical axis, were very 

similar to those found at 550 nm. The lack of spectral sensitivity in our studies can be 

explained by the fact that all polarimetric measurements were made in brain tissue obtained 

post-mortem. There is almost no blood in a fixed tissue specimen (< 1% according to the 

analysis done by the pathologist for the fixed brain specimen). The amount of blood in fresh 

cadaveric animal tissue is also significantly less than in live brain tissue, and blood 

hemoglobin is known to be the main cause of the visible light absorption in tissue, with the 

peaks of absorption at 500 nm and 550 nm [ 22]. It is highly likely that the spectral 

dependence of polarimetric parameters in the visible wavelength range will also reveal 

contrast enhancement when imaging live brain tissue. The depth of light penetration in fresh 

tissue depends strongly on the wavelength used [23], [24]. Taking polarimetric images at 

different wavelengths in real-time during neurosurgery may help surgeons to estimate the 

remaining tumor thickness and guide tumor resection. 

 

5.4. Conclusions  

We demonstrated the feasibility of visualizing white matter fiber tracts with a wide-field 

imaging Mueller polarimeter operating in the visible wavelength range in backscattering 

configuration. The main finding of our study is the sensitivity of backscattered polarized light 

to optical anisotropy, induced by the densely packed neuron bundles constituting the fiber 

tracts of healthy brain white matter, which are not visible to the naked human eye. This result 

was confirmed by histological analysis of a silver-stained thin section of a brain specimen. 

The directions of fibers in the brain white matter, which are visible on the enlarged optical 

transmission microscopy images of a silver-stained thin section, are well represented by the 

azimuth of the optical axis calculated from the Mueller matrix images of a thick specimen 

measured in reflection. 

We showed that the wide-field Mueller polarimetry of thick sections of brain tissue in 

backscattering configuration clearly demonstrates the presence of fiber tracts on the images 

of total depolarization and linear retardance. Moreover, the orientation of the fiber tracts in 

the brain white matter is visualized on the map of the azimuth of the optical axis. This is the 

most robust indicator of fiber tract directions, and it works well for both fixed and fresh brain 

tissue. The azimuth of the optical axis is almost insensitive to surface roughness, which is 

essential for the envisaged clinical applications, where the surface morphology of the surgical 

site will differ significantly from the conditions of our proof-of-principle studies. 

Our findings open the field for the clinical implementation of Mueller polarimetry, an 

optical imaging technique with several key advantages. First, being a wide field polarimetric 

imaging modality, it does not require sample scanning or image stitching. This makes it faster 

and easier to use than polarization-sensitive optical coherence tomography [25] or 

polarization-sensitive optical coherence microscopy [26], two-photon excited fluorescence, 
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and second harmonic generation microscopy [27]. Second, our imaging Mueller polarimeter 

operates in the visible wavelength range, which precludes any potential harm to patients, and 

is based on reflection geometry, which is a significant step toward in vivo applications. 

Despite the shallow penetration depth of light within biological tissue in the visible 

wavelength range (e.g., compared to the ultrasound imaging modality), the wide-field 

Mueller imaging polarimetry is capable of providing additional information on the type of 

tissue and relative spatial orientation of brain tissue fiber tracts at sight at any given moment 

during neurosurgery. Further studies are envisaged to confirm the potential of the wide-field 

Mueller imaging polarimetry to visualize the border between the tumor and healthy brain 

tissue, first ex vivo, then in vivo.  
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General conclusions and Perspectives 

The main goal of the thesis was the demonstration of the feasibility of digital histology and 

optical biopsy of biological tissue with imaging Mueller polarimetry. Our comprehensive 

proof-of-principle studies of both thin and thick sections of biological tissue include the 

fundamental theory of Mueller polarimetry, experiments with the custom-built imaging 

Mueller polarimeters, Monte Carlo modeling, and image processing (DBSCAN) using the 

experimental polarimetric images of tissue. 

The interaction of incident polarized light with biological tissue can be used to probe the 

optical anisotropy and depolarization properties of tissue. We explored the potential of 

imaging Mueller polarimetry combined with the appropriate data post-processing algorithms 

as fast and non-contact imaging technique for digital histology and optical biopsy of tissue, 

because Mueller polarimetry is capable to detect the above mentioned optical parameters. We 

measured two different types of biological tissues (thin sections of human skin models and 

thick sections of brain tissue) using ferroelectric liquid crystal-based Mueller polarimeters in 

transmission (microscope) and in reflection (wide-field imaging polarimeter) configuration, 

respectively.  

To check the feasibility of the reduction in a number of steps in the conventional 

histological section preparation procedure (e.g., formalin-fixation, embedding in paraffin wax, 

sectioning, deparaffinization, and staining with dyes), the unstained skin model sections were 

measured with Mueller microscope. We have demonstrated that the polarimetric parameters, 

extracted from the measured Mueller matrix of unstained tissue section, can provide reliable 

tissue characterization and classification depending on tissue regions (e.g., dermis and 

epidermis in human skin equivalents). It might be helpful for rapid sample preparation, as 

well as for accurate analysis of biological tissue.  

The image segmentation was used for improved visualization of different zones in the 

polarimetric image of a sample. Two different approaches were tested – data fusion and data 

clustering. Imaging Mueller polarimetry provides us a full set of polarimetric images that can 

be used for data post-processing and image segmentation. For example, we showed that 

fusion of polarimetric images sharpens the border between white matter and gray matter of 

healthy brain tissue. Using the unsupervised DBSCAN algorithm for data clustering we 

demonstrated that it can automatically label the zones of interest in polarimetric images 

according to tissue optical properties.  

The validity of the differential Mueller matrix formalism for biological tissue was proven 

experimentally. The thickness invariant optical parameters were suggested for more accurate 

analysis of polarimetric images. The rotation invariants of the logarithmic decomposition of 
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Muller matrix were derived for the numerical simulation and interpretation of the 

experimental polarimetric results for the dermal layer of skin equivalents. 

The extension of polarized Monte Carlo algorithm to model the birefringent host medium 

was performed and validated by simulating backscattered Mueller matrix images of two 

scattering optical phantoms with isotropic and anisotropic host media, respectively. The 

polarized Monte Carlo modeling was used to understand the microstructure and optical 

properties of the biological tissue specimens. 

Summarizing the results of the thesis, we have shown that imaging Mueller polarimetry 

combined with the appropriate data post-processing algorithms can be an attractive option for 

digital histology as well as for optical biopsy of tissue. To do so we have used experiments 

with both tissue equivalents and real biological tissue specimens and supported our 

conclusions with polarimetric data clustering, fusion and Monte Carlo modeling 

The perspectives for future studies are listed below.  

1. Wide-field imaging brain polarimetry is ready for extensive experimental campaign in the 

clinical settings (near-in-situ). The goal is to test the capability of this imaging modality 

to visualize the border between brain tumor and surrounding tissue on freshly excised 

human brain tumoral specimens. This step in the development of the technique shall bring 

invaluable data for the design of polarimetric add-on for a commercial surgical 

microscope. 

 

2. Polarized Monte Carlo simulations of the backscattered Mueller matrices of optical 

anisotropic scattering phantoms with the uneven air-tissue interface will provide the 

insights on the impact of tissue surface morphology on the coefficients of Mueller matrix 

and extracted polarimetric parameters of tissue. Modeling of the backscattered Mueller 

matrices of multi-layered optical phantoms with the optical axes of each layer oriented at 

the different azimuth and varying top layer thickness will give information on the 

effective probing depth of light beam. It can be useful for the estimation of depth 

sensitivity of Mueller polarimetry in the visible wavelength range. 

 

3. Important remaining step towards automated digital histology implementation shall 

include the number of studies of different tissue types at various medical conditions (e. g. 

healthy, inflammation, pre-cancer). 

 

4. Further improvement of DBSCAN clustering algorithm for the automated selection of the 

optimal values of the input parameters will help to perform accurate diagnostic clustering 

of polarimetric data in a real time. Collaboration with group of Dr. Alex Doronin from 

University of Victoria on neural-network research in this direction looks logical and 

promising.
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Appendix C – Résumé de la thèse en français 

L’imagerie polarimétrique de Mueller est une technique optique émergente pour le diagnostic non 

invasif des tissus. Cette technique optique explore la très haute sensibilité de la lumière polarisée 

sur la microstructure d’un échantillon et fournit des informations les plus complètes sur les 

propriétés polarimétriques de cet échantillon. 

Premièrement, le potentiel du microscope Mueller à transmission fonctionnant dans la gamme du 

spectre visible pour l’analyse histologique automatisé a été étudié sur des coupes non colorées 

d’équivalents de peaux humaines. La décomposition logarithmique des matrices de Mueller 

expérimentales a été combinée à l’algorithme statistique du clustering basé sur la densité des points 

dans l’espace paramétrique pour les applications avec bruit (DBSCAN) pour la segmentation 

diagnostique des images microscopiques des modèles de peau humaine. La validité du formalisme 

de Mueller différentiel pour les milieux dépolarisants homogènes fluctuants a été confirmée 

expérimentalement pour les tissus biologiques. Une nouvelle méthode est suggérée pour modérer 

l’impact de la variation d’épaisseur qui pourrait affecter la précision des diagnostics polarimétriques 

des coupes histologiques. Une nouvelle version de l’algorithme DBSCAN a été développée pour 

réduire les temps de calculs et ainsi permettre d’analyser les ensembles de données de grande taille. 

Dans ces ensembles de données, les valeurs aberrantes (ou bruit) ont été filtrées efficacement, le 

contraste entre les zones dermiques et épidermiques de peau humaine a été considérablement 

augmenté. En utilisant la méthode Monte Carlo polarisée pour modéliser les matrices de Mueller 

expérimentales pour les coupes minces de modèles de peaux humaine, nous avons confirmé que le 

dichroïsme linéaire et l'anisotropie de la dépolarisation détectés dans la zone dermique sont dus à la 

présence de fibres de collagène bien alignées. 

Les études ex-vivo de la preuve de principe de la sensibilité de la lumière polarisée rétrodiffusée à 

une structure hautement ordonnée de substance blanche cérébrale saine sont présentées dans la 

deuxième partie. Des coupes épaisses de cerveau humain fixées au formol, et de la cervelle de veau 

fraiche ont été imagées en mode réflexion avec un polarimètre de Mueller à grand champ, opérant 

dans la gamme de longueurs d’onde visibles. 

Il est connu que les tumeurs cérébrales rompent la structure hautement ordonnée de la substance 

blanche du cerveau, car les cellules tumorales se développent de manière chaotique. Cependant, 

cette différence de complexité structurelle est difficilement détectable, même avec un microscope 

opératoire, pendant la neurochirurgie en raison du faible contraste visuel entre la tumeur et le tissu 

cérébral sain. Nous avons étudié la capacité de l’imagerie polarimétrique de Mueller à grand champ 

à visualiser les faisceaux de fibres de la substance blanche cérébrale saine en détectant l'anisotropie 

de son indice de réfraction (c'est-à-dire la biréfringence de la substance blanche du cerveau qui sera 

effacée par la tumeur). Les matrices de Mueller expérimentales d’échantillons de cerveau ont été 

traitées à l’aide de l’algorithme de décomposition Lu-Chipman. Les cartes des azimuts de l’axe 

optique du milieu biréfringent uniaxial corrèlent incontestablement avec les images microscopiques 
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des coupes histologiques des tissus cérébraux colorées à l’argent, qu’est la technique de référence 

pour la visualisation ex-vivo des faisceaux de fibres de substance blanche du cerveau. 

Ces résultats montrent le potentiel de l’imagerie polarimétrique de Mueller à grand champ pour 

fournir des informations sur l'orientation spatiale relative des faisceaux de fibres cérébrales, ce qui 

aiderait à détecter la frontière exacte entre la tumeur et le tissu cérébral saine, et guiderait le 

neurochirurgien lors de la résection de la tumeur et améliorerait les résultats pour des patients.
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91120 Palaiseau, France  
  

 

 

Titre : Etudes des milieux diffusants et anisotropes par la polarimétrie de Mueller: vers l’histologie 

numérique et la biopsie optique des tissus 

Mots clés : polarimétrie de Mueller, algèbre des matrices de Mueller, traitement d'image, 

modélisation Monte Carlo, et diagnostique biomédical 

Résumé : L’imagerie polarimétrique de Mueller 

est une technique optique émergente pour la 

diagnostique non invasive des tissus. Elle 

explore la sensibilité de la lumière polarisée aux 

microstructures de tissus. 

Les études de coupes de peau humaine ont été 

effectuées par un microscope de Mueller à 

transmission. La compression des données 

polarimétriques, combinée à un algorithme de 

clustering approprié ont démontré 

l’amélioration du contraste entre différentes 

couches de peau, prouvant la faisabilité de 

l’histologie automatisé. 

 

Des coupes épaisses de cerveau humain ont été 

étudiées par l’imagerie polarimètrique de 

Mueller à grand champ en réflexion. L’azimut 

de l’axe optique du milieu biréfringent uniaxial 

mesuré corrèle bien avec les directions des 

faisceaux de fibres de substance blanche du 

cerveau. La croissance chaotique des tumeurs 

cérébrales devrait effacer cette biréfringence. 

Donc, la polarimétrie de Mueller est 

prometteuse pour aider aux neurochirurgiens 

lors de l’ablation des tumeurs. 

 

 

 

Title: Studies of scattering and anisotropic media with Mueller polarimetry: towards digital histology 

and optical biopsy of tissue 

Keywords: Mueller polarimetry, algebra of Mueller matrices, image processing, Monte Carlo 

modeling, and biomedical diagnostics 

Abstract: Imaging Mueller polarimetry 

represents an emerging optical technique for a  

non-invasive diagnostics of tissue. It explores 

the extreme sensitivity of polarized light to 

tissue microstructure. 

The studies of unstained thin sections of human 

skin models were done using transmission 

Mueller microscope. Non-linear compression 

of polarimetric data combined with appropriate 

clustering algorithm demonstrated the contrast 

enhancement between different layers of skin, 

proving the feasibility of digital histology. 

 

Thick sections of formalin-fixed human brain 

were studied using wide-field imaging Mueller 

polarimeter in reflection. The measured 

azimuth of the optical axis of uniaxial 

birefringent medium correlates well with the 

directions of brain white matter fiber tracts. 

Chaotic growth of brain tumors should erase 

this birefringence. Thus, Mueller polarimetry 

holds promise to detect the exact border 

between the tumor and healthy brain tissue, and 

to guide neurosurgeon during tumor resection. 

 

 

 

 


