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Résumé

Les hospitalisations potentiellement évitables (HPE) sont les admissions à l’hôpital qui auraient
pu être évitées grâce à des traitements rapides et efficaces. Les taux élevés d’hospitalisations
potentiellement évitables sont associés à de nombreux facteurs. Ces facteurs comprennent des taux
de mortalité élevés, une faible densité de médecins de soins primaires, le manque de continuité
des soins et le manque d’accès aux soins primaires, le faible revenu médian ou le faible niveau
d’instruction ainsi que les caractéristiques organisationnelles des systèmes comme une mauvaise
coordination entre les professionnels de santé. La France compte environ 300 000 hospitalisations
potentiellement évitables chaque année. Ces hospitalisations évitables sont associées à un coût de
plusieurs centaines de millions d’euros pour l’assurance maladie. En d’autres termes, la réduction
des hospitalisations potentiellement évitables améliore non seulement la qualité de vie des patients,
mais pourrait également économiser des coûts substantiels grâce au traitement des patients. Par
conséquent, les autorités sanitaires sont intéressées par des solutions améliorant les services de
santé pour réduire les hospitalisations potentiellement évitables.

Certaines études récentes en France ont suggéré que l’augmentation du nombre d’infirmières dans
certaines zones géographiques pourraient entraîner une réduction des taux d’hospitalisations po-
tentiellement évitables dans ces secteurs. Les autorités sanitaires pourraient recommander les
zones géographiques d’installation des infirmiers et infirmières sur la base de statistiques de-
scriptives telles que des taux élevés d’hospitalisations potentiellement évitables. Ces approches
statistiques descriptives ont des limites car les autres les facteurs associés aux hospitalisations
potentiellement évitables mentionnés ci-dessus ont été ignorés. Par conséquent, nous abordons
l’apprentissage automatique qui a été largement appliqué dans le but d’améliorer les services des
prestataires de santé et donc d’améliorer la santé de la population. En particulier, comme les
taux d’hospitalisations potentiellement évitables sont des valeurs numériques, toute méthode de
régression pourrait être considérée. Afin de sélectionner la méthode la plus adaptée, nous avons
évalué le potentiel ainsi que la qualité des méthodes de régression courantes. Celles-ci compren-
nent (1) la régression multilinéaire; (2) K plus proches voisins pour la régression; (3) les réseaux
de régression; (4) les machines à vecteurs de support pour la régression. Les performances ont
été mesurées et validées en considérant l’erreur quadratique moyenne et les méthodes de leave-
one-out. Nous avons sélectionné la machine à vecteurs de support pour la régression pour notre
travail. De plus, dans cette approche, outre la prise en compte de tous les facteurs potentiels, nous
prenons également en compte les contraintes liées aux revenus et à l’égalité d’accès aux soins. En
particulier, nous avons étendu les machines à vecteur de support régression à l’information spatiale
en ajoutant ces contraintes. Cette approche nous permet de sélectionner non seulement les zones
géographiques mais aussi le nombre d’infirmiers et d’infirmières à ajouter dans ces zones pour
maximiser la réduction du nombre d’hospitalisations potentiellement évitables. Plus précisément,
notre approche est appliquée en Occitanie, en France et les zones géographiques mentionnées ci-
dessus sont les espaces de vie transfrontaliers (Bassins de vie - BVs). Cependant, notre approche
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peut être considérée à un niveau national ou vers d’autres régions ou pays. De plus, puisque nous
visons à construire un système d’aide à la décision, les résultats de nos travaux sont visualisés sur
des cartes spatiales.

D’un autre côté, il est clair qu’il y a de forts impacts de températures extrêmement froides et
chaudes (ou canicule) à la santé humaine. Cela signifie que la température extrême pourrait
être un facteur potentiellement associé à des taux élevés d’hospitalisations potentiellement évita-
bles. Par conséquent, une partie de notre travail consiste à mesurer l’impact des températures
extrêmes sur les hospitalisations potentiellement évitables. Nous avons de plus inclus ces données
environnementales dans notre approche ci-dessus. En particulier, nous avons utilisé les valeurs de
température mesurées toutes les heures par des capteurs dans les stations météorologiques. Cepen-
dant, ces les valeurs sont parfois discontinues et nous avons besoin d’une méthode d’imputation
pour ces valeurs manquantes. D’autre part, en particulier dans notre travail, lorsque nous définis-
sons les événements de canicule, 0,5 degré La différence en degrés Celsius peut changer les résultats.
Par conséquent, la méthode d’imputation doit être fiable. Dans la littérature, il existe de nom-
breuses approches pour traiter cette étape de traitement. Deux plus populaires sont celles qui
exploitent soit la composante spatiale, soit la composante temporelle du données de température.
Respectivement, ces approches sont des méthodes d’interpolation spatiale telles que les modèles
pondérés en fonction de la distance (IDW) et chronologiques tels que les modèles ARIMA. Pour
nous aider à choisir la méthode la plus fiable, nous comparons d’abord les performances des deux
approches en imputation de température manquante. De plus, comme chaque approche ci-dessus
exploite une dimension différente des données spatio-temporelles, nous proposons une nouvelle
approche qui combine les deux dimensions pour améliorer les performances en termes de qualité.
Plus précisément, au lieu d’appliquer directement la méthode IDW ou le modèle ARIMA, nous
calculons d’abord les valeurs estimées par ces méthodes, puis les utiliser comme variables d’entrée
d’un apprentissage automatique supplémentaire. Pour mener à bien notre travail, nous avons
collecté les données de température qui sont mesurées toutes les heures en mai 2019 à partir de
plus de 600 stations météo implantées en France métropolitaine. Pour évaluer les performances
de toutes les approches, nous utilisons l’erreur quadratique moyenne entre la température estimée
et la température observée aux stations météorologiques. Nos expériences sont validées avec la
méthode du leave-one-out. Les résultats montrent que (1) ARIMA fonctionne généralement mieux
que IDW et (2), par rapport aux méthodes IDW et ARIMA, notre approche fonctionne mieux à
respectivement 100% et 99,8% (604 sur 605) des stations météorologiques.

De plus, comme mentionné ci-dessus, les taux élevés d’hospitalisations potentiellement évitables
sont associés à des caractéristiques organisationnelles des systèmes de santé telles que la coordina-
tion entre les les fournisseurs de soins. En d’autres termes, l’amélioration de la coordination entre
les professionnels de santé pourrait conduire à la réduction des hospitalisations potentiellement
évitables. En outre, dans les cas où les patients changent d’hôpital pour des traitements, il est
clair que le traitement serait plus efficace et le risque pour la santé des patients serait éliminé
ou réduit si les hôpitaux ultérieurs pouvaient accéder à les dossiers médicaux des patients des
hôpitaux précédents. Par conséquent, il apparait opportun d’autoriser les systèmes d’information
à partager les dossiers médicaux entre les hôpitaux, sauf à ce que tous les hôpitaux de France
soient regroupés en un seul. Or cela serait coûteux alors que certains hôpitaux n’ont jamais
partagé aucun dossier patient. En attendant, les flux de patients l’évolution des hôpitaux pour
les traitements peuvent être présentés par un graphe non orienté dans lequel les nœuds sont les
hôpitaux tandis que les arcs représentent les flux de patients. Par conséquent, nous proposons des
approches utilisant des méthodes de regroupement des graphiques pour regrouper ces hôpitaux en
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communautés. En particulier, afin de sélectionner la méthode de regroupement des graphes pour
notre travail, nous comparons les performances de deux méthodes différentes de regroupement
des graphes. Ces méthodes sont le clustering spectral et les méthodes de Louvain. De plus, nous
devons considérer plusieurs options de regroupement des hôpitaux dans les communautés. Par ex-
emple, une option est que chaque cluster final doit contenir un hôpital universitaire public (Centre
Hospitalier Universitaire - CHU). Ces contraintes sont ajoutées à notre mise en œuvre par person-
nalisation de la méthode de regroupement de graphes sélectionnée qui est la méthode de Louvain.
En conséquence, notre travail consiste à segmenter les hôpitaux de France en 19 communautés
dont 17 communautés en France métropolitaine sont visualisés sur une carte spatiale.

En résumé, notre travail présente un outil pour sélectionner le nombre optimal d’infirmières à met-
tre en place dans les zones géographiques pour la plus forte réduction du nombre d’hospitalisations
potentiellement évitables en étendant les méthodes de machines à vecteurs de support pour la ré-
gression à l’information spatiale. Nous avons également travaillé sur l’extension de la méthode
pour inclure les données de température et nous avons proposé une nouvelle approche qui améliore
les performances d’imputation de température manquante. Enfin, pour améliorer la coordination
entre les professionnels de santé afin de réduire les hospitalisations potentiellement évitables, La
méthode de Louvain a été personnalisée pour proposer des regroupements d’hôpitaux français.
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Asbtract

Potentially avoidable hospitalizations (PAHs) are the hospital admissions that could have been
prevented with timely and effective treatments. The high rates of potentially avoidable hospital-
izations are associated with many factors. These factors include high mortality rates, low density
of primary care physicians, lack of continuity of care, and lack of access to primary care, low
median income or low education levels as well as organizational features of health systems such
as poor coordination between health care providers. On the other side, in France, there are about
300,000 potentially avoidable hospitalizations every year. These preventable hospitalizations are
associated with a cost of several hundred million Euros for the Health Insurance. In other words,
reducing potentially avoidable hospitalizations not only enhances patients’ quality of life but also
could save substantial costs due to patient treatments. Therefore, health authorities are highly
interested in solutions improving health care services to reduce the potentially avoidable hospital-
izations.

Some recent studies in France have suggested that increasing the number of nurses in selected
geographic areas could lead to the reduction of the rates of potentially avoidable hospitaliza-
tions in those areas. However, health authorities could select the geographic areas for new nurse
implementation only based on descriptive statistics such as high rates of potentially avoidable hos-
pitalizations. Clearly, these descriptive-statistics approaches have limitations because the other
factors associated with potentially avoidable hospitalizations mentioned above have been ignored.
Therefore, we approach machine learning that has been widely applied in the healthcare sector to
improve the services of health providers and therefore improve population health. In particular,
since the rates of potentially avoidable hospitalizations are numeric values, any regression method
could be the option for our approach. In order to select the most suitable method, we have eval-
uated the potential as well as the quality performance of the common regression methods. These
methods include (1) Multilinear regression; (2) K–nearest neighbors for regression; (3) Neural
networks for regression; (4) Support vector machine for regression. Based on the performances
which were measured and validated by root-mean-square error and leave-one-out methods, we have
selected the support vector machine for regression for our work. In addition, in this approach,
besides considering all the potential factors, we also take into account the constraints related to
the budget and the equality of healthcare access. In particular, we extended the support vector
machine for regression to spatial information by adding these constraints. This approach allows
us to select not only the geographic areas but also the number of to-be-added nurses in these areas
for the biggest reduction in the number of potentially avoidable hospitalizations. Specifically, our
approach is applied in the Occitanie region, France and geographic areas mentioned above are the
cross-border living areas (fr. Bassins de vie - BVs). However, our approach can be extended at the
national level or to other regions or countries. In addition, since we aim at building a user-friendly
decision support system, the results of our work are visualized on spatial maps.

On the other side, it is clear that there are strong impacts of extreme cold and hot temperature
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(or heatwave) to human health. That means that the extreme temperature could be one potential
factor associated with high rates of potentially avoidable hospitalizations. Therefore, a part of
our works is to measure the impact of the extreme temperature to potentially avoidable hospital-
izations as well as to include this environmental data in our approach above. In particular, we
used the temperature values measured hourly by sensors at the weather stations. However, these
values are sometimes discontinuous and we need an imputation method for these missing values.
On the other hand, particularly in our work, when we define the heatwave events, 0.5 degree
Celsius difference can change the results. Therefore, the imputation method must be reliable. In
the literature, there are many approaches to deal with this processing step. Two most popular
approaches are the ones that exploit either the spatial component or temporal component of the
temperature data. Respectively, these approaches are spatial interpolation methods such as In-
verse Distance Weighted (IDW) and time-series models such as Autoregressive Integrated Moving
Average (ARIMA). To help us select the more reliable method, we first compare the performances
of both approaches in missing temperature imputation. In addition, as each approach above only
exploits one different dimension of the spatio-temporal data, we propose a novel approach that
combines both dimensions to improve the performance in terms of quality. Specifically, instead of
applying directly the IDW method or the ARIMA model, we firstly compute the estimated values
by these methods and then use them as the input variables of an additional machine learning
method. To conduct our work, we collected the temperature data that is measured hourly in May
2019 from more than 600 weather stations implemented across Metropolitan France. To evaluate
the performances of all approaches, we use the root-mean-square-error between the estimated tem-
perature and the observed temperature at the weather stations and our experiments are validated
with the leave-one-out method. The results show that (1) ARIMA generally performs better than
IDW and (2), compared with IDW and ARIMA methods, our approach performs better at 100%
and 99.8% (604 over 605) weather stations respectively.

In addition, as mentioned at the beginning, the high rates of potentially avoidable hospitalizations
are associated with organizational features of health systems such as coordination between health
care providers. In other words, improving the coordination between the health care providers could
lead to the reduction of the potentially avoidable hospitalizations. Moreover, in the cases that the
patients change hospitals for treatments, it is clear that the treatment would be more efficient and
the risk on patients’ health would be eliminated or reduced if the later hospitals are able to access
the medical records of the patients at the previous hospitals. Therefore, allowing the information
technology systems to share medical records among the hospitals is needed. However, it is neither
necessary nor practical if all the hospitals in France are grouped as one because it would be costly
while some hospitals have never been sharing any patient. In the meantime, the flows of patients
changing hospitals for the treatments can be presented by an undirected graph in which the nodes
are the hospitals while the edges present the patient flows. Therefore, we propose the approaches
of using graph clustering methods to cluster these hospitals into communities. Particularly, in
order to select the graph clustering method for our work, we compare the performance of two
different graph clustering methods. These methods are spectral clustering and Louvain methods.
In addition, we need to consider several options of clustering hospitals into the communities.
For example, one option is that each final cluster must contain a public University Hospital (fr.
Centre Hospitalier Universitaire - CHU). These constraints are added into our implementation by
customizing the selected graph clustering method which is the Louvain method. As the result,
our work has partitioned hospitals in France into 19 communities among which 17 communities
in metropolitan France are visualized in a spatial map.
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In summary, this work presents a tool for selecting the optimal number of nurses to be implemented
in geographic areas for the biggest reduction in the number of potentially avoidable hospitalizations
by extending the support vector machine for regression to spatial information. We also worked on
extending the method to include temperature data and we have proposed a novel approach that
improves the performance in missing temperature imputation. Finally, to improve the coordination
between the health care providers as a way to reduce the potentially avoidable hospitalizations,
Louvain method has been customized for clustering French hospitals into communities.
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1.1 Context

1.1.1 Artificial intelligence in health sciences

Artificial intelligence has wide range of applications in this medicine and health care sector. These
applications include the ones that allow patients to understand and manage their own health and
symptoms. In the other side, artificial intelligence also assists clinician care teams in enhancing
the quality and safety of care with the applications in early disease detection and prediction as
well as in selection of optimal treatments so that we can enhance and optimize care delivery to
patients. For example, artificial intelligence can be applied to detect diseases such as cancer [45] or
diabetes [99] as well as to predict hospital readmission for patients with diabetes [38] or with heart
failure [32]. Another type of application of artificial intelligence is to reduce medication errors.
More specifically, artificial intelligence holds promise for improving medication error detection
and reducing costs associated with adverse events [71]. Similarity, artificial intelligence can be
applied to identify subgroups of patients for whom, for example, treatment A is more effective
than treatment B, and vice versa. The treatment group identification step is of key importance to
the development of personalized medicine [41]. The other side of artificial intelligence application
in health care sector is to optimize hospital processes such as resource allocation and patient flow.
More specifically, by early and accurate prediction of patients outcomes, we can better predict
demand and allocate scarce hospital resources such as beds and operating rooms. For example,
artificial intelligence is used to forecast hospital discharge volume [53] or is used in emergency
department capacity planning [58]. The purpose of these applications is generally to improve
quality of care and population health outcomes, while reducing healthcare costs. That is also the
purpose of our works that aim at helping the health authorities with a decision support
system to reduce the number of potentially avoidable hospitalizations in France.

1.1.2 Work context

The research projects that I have been involved are at the Economic Evaluation Unit, University
Hospital of Montpellier, France. This unit is in charge of health services research, focusing on
efficiency and equity (health care pathways and health access). In particular, its functions are to
develop suitable methods for these topics, such as geographic variation analysis, description and
classification of health care pathways. Moreover, this unit is also active in the assessment of health
technology including: pharmaceuticals, medical device and equipment, and organizational and e-
health innovations. The aims of the unit are to provide policy-makers with research information
about the effectiveness, costs and organizational impact of innovations. With that goal, the unit
designs studies aiming at assessing the cost-effectiveness, cost-utility, budget impact and out-of-
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pocket burden of innovations. On the other side, there are health economics experts in about 30
national and international research projects in this unit. One of the projects is a national research
project on potentially avoidable hospitalizations. This project was funded by the French Ministry
of Health. Specifically, I have been working on this project since March 2017 as a Master 2 intern
at first and then as a PhD candidate from December 2017. The specific purpose of the project is
to approach machine learning in reducing the number of potentially avoidable hospitalizations in
France.

1.1.3 Potentially avoidable hospitalizations (PAH)

As mentioned in the previous section, our work aims at recommending the health authorities
related actions to reduce potentially avoidable hospitalizations (PAH). By definition, PAHs (also
referred to as admissions for ambulatory care sensitive conditions) are the hospital admissions that
could have been prevented [74]. In particular, these hospitalizations are in fact the consequence
of the sudden aggravation of a chronic disease (diabetes, heart failure, respiratory failure). These
acute episodes could have been prevented with timely and effective treatments and therefore the
hospitalizations could have been avoided [12]. Technically, the PAHs can be identified based on
the principal and related diagnoses which are associated to the codes of the 10th revision of the
international statistical classification of diseases and related health problems (or ICD-10 codes).
More specifically, in our works, the datasets of PAHs are extracted from French national hospital
discharge database (section 1.3) by following the national guide (in French) [79]. In details, the
PAH stays are categorized into 6 following groups which are defined by Agency for Healthcare
Research and Quality (AHRQ) which is a U.S. federal agency.

• Asthma in adults (age >= 18)

• Congestive heart failure (age >= 40)

• Chronic obstructive pulmonary disease (COPD) (age >= 18)

• Dehydration in elderly people (age >= 65)

• Diabetes short-term complication (age >= 40)

• Angina without procedure (age >= 40, urgent admission)

In French context, there are about 300,000 cases of PAH per year with the rate of about 6 cases
per 1,000 inhabitants. In which, about 50% of the cases are related to congestive heart failure.
More specially, the details of PAHs in three years 2013, 2014 and 2015 are presented in the table
1.1.
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Table 1.1: Potentially avoidable hospitalizations by AHRQ in France [79]

2013 2014 2015

Nb Rate Nb Rate Nb Rate

Asthma in adults 16,629 0.33 16,475 0.32 16,291 0.32

Congestive heart failure 146,851 2.90 149,561 2.94 156,545 3.07

COPD 65,160 1.29 63,625 1.25 67,936 1.33

Dehydration in elderly people 26,049 0.52 24,949 0.49 30,719 0.60

Diabetes short-term complication 5,904 0.12 5,956 0.12 6,234 0.12

Angina without procedure 34,252 0.68 33,976 0.67 31,515 0.62

TOTAL 294,845 5.83 294,542 5.80 309,240 6.06

Nb: Number of potentially avoidable hospitalizations

Rate: Number of potentially avoidable hospitalizations per 1,000 inhabitants

1.2 Objectives

As mentioned in the PAH section (section 1.1.3), every year, in France, there are about 300,000
PAHs. These preventable hospitalizations are associated with a cost of several hundred million
Euros for the Health Insurance [14]. That means avoiding these hospital admissions not only
could enhance quality of live of the patients but also could decrease substantial costs caused by
patient treatments [54, 31]. Therefore, both the national- and regional-level health authorities in
France are highly interested in enhancing the health care services in order to reduce the number
of PAHs. Moreover, there are previous studies on PAHs and the potential factors that could be
associated with high rates of PAHs [54, 33]. Some of the recent studies in France have revealed
that the higher (age-and-sex-standardized) rates of PAHs are linked to higher mortality rates,
lower density of acute care beds and ambulatory care nurses, lower median income, and lower
education levels [54]. More specifically, these studies suggested that by increasing the number of
nurses at some geographic areas, the number of PAHs in these areas could be reduced [54].

On the other hand, in France context, the public health decision makers can have influence on the
factors related to health care such as the density of physicians, nurses, or the density of hospital
beds. However, there are strong constraints in the healthcare system that the health decision
makers need to take into account. In particular, the healthcare system must provide quality care
while controlling associated costs and ensuring equality of access to the health care services. The
latter states that all patient-citizens must be able to benefit from the care they need, regardless
of their geographical and socioeconomic situation. Hence, being able to select geographic areas in
order to maximize the impact of an intervention is of high importance.
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These reasons gave birth to our first project that aims at building a decision support system for
the biggest reduction of PAH numbers while integrating the socio-economic constraints such as the
limited budget for health care service improvement and the equality of health care access. More
specifically, our work is going to recommend not only geographic areas for improving health care
service but also the optimized actions at these areas. To achieve that goal, artificial intelligence
methods as mentioned in section 1.1.1 show the potential approach to us. In particular, since the
target of our project is the rate of PAHs which are numerical values, any regression method could
be a solution to our problem. More specifically, after analyzing the potential regression methods,
we integrate the constraints into the most suitable regression method in building up the decision
support system.

In addition, parts of our work are to collect data that could be the potential determinants of
PAHs. There data can be obtained from many sources including the French Ministry of Health,
the National Institute for Statistics and Economic Studies, the Regional Health Agency of Occi-
tanie, or French health insurance fund ambulatory care claims database as well as open data. In
particular, data of primary care supply and hospital supply, socioeconomic data such as education
or income, epidemiological data such as mortality rates are taken into account. In addition, it is
clear that temperature, especially temperature extremes, have negative impacts to human health.
For example, the extreme heat (or so called heatwave) that occurred in summer 2003 in France
caused about 15,000 more deaths than expected in France (an increase of 55%) [28]. Therefore,
we want to include the data of temperature in our work. To collect the temperature data, we rely
on the temperature values measured by sensors at weather stations. However, for many reasons
the values measured at these stations are sometimes discontinuous. In other words, there are
missing values for temperatures measured at the weather stations. To select the reliable method
in missing temperature imputation, we compare the quality performance of two different methods
representative for both the spatial interpolation methods and the time-series models. Then, we
search for a novel approach that combines these methods to improve the quality performance.

On the other side, the high rates of potentially avoidable hospitalizations are associated with
organizational features of health systems such as coordination between health care providers.
That is because patients frequently change hospitals, especially for the management of chronic
diseases. There any many reasons for that. For example, patients have changed their addresses,
they are not happy with the service of the previous hospital, or they need to seek specialized care
in a tertiary hospital. In such cases, it is clear that the treatment would be more efficient and
the risk to patients’ health could be eliminated or reduced if the later hospitals are able to access
the medical records of the patients at the previous hospitals. In other words, the information
technology systems that allow sharing medical records among the hospitals are needed. However,
it is neither necessary nor practical for all hospitals in France to be grouped as one because it
would be costly while some hospitals will never share any patient. Therefore, health authorities
are interested in building hospital communities so that medical records can be shared among the
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hospitals in those communities. This brought up us another project which aims at splitting French
hospital networks into communities for sharing patients’ medical records. Particularly, our work
is based on the flows of patients changing the hospitals for the treatments. These flows can be
presented by a undirected weighted graph in which the nodes present the hospitals while the edges
present the size of patient flows. Therefore, to cluster these hospitals into communities, we rely
on the graph clustering methods. Particularly, we evaluate different graph clustering methods in
order to select the most suitable method for our work. In addition, we need to consider several
options of clustering hospitals into the communities. For example, one option is that each final
cluster must contain a public University Hospital (fr. Centre Hospitalier Universitaire - CHU).
The selected graph clustering method will be customized to include these constraints in clustering
French hospitals into communities.

To sum up, our works include three parts:

• Extending the most suitable regression method to spatial information after analyzing the
potentials of different regression methods in building the decision support system related
to PAHs. More specifically, the system is to recommend health decision makers not only
geographic areas for improving health care service but also the optimized actions at these
areas for the biggest reduction of PAH numbers. Furthermore, since we aim at building a
user-friendly decision support system, the results of our work are visualized on spatial maps.

• Proposing a novel and reliable approach in missing temperature imputation after compar-
ing the quality performance of two different methods representative for both the spatial
interpolation methods and the time-series models.

• Customizing the suitable graph clustering method after evaluating two different methods to
include constraints in partitioning all public and private French hospitals into communities.
The results are also presented on spatial maps.

1.3 Overview of data sources

In our work, the datasets are collected from many sources including the French Ministry of Health,
the National Institute for Statistics and Economic Studies, the Regional Health Agency of Oc-
citanie, French Health Insurance Fund ambulatory care claims database as well as open data.
However, the main datasets are the patient datasets which are exported from the French National
Hospital Discharge Database (fr. Programme de Médicalisation des Systèmes d’Information -
PMSI). This PMSI database stores hospitalisation data from all French public and private hospi-
tals. The database contains a record for each acute inpatient stay and represents about 25 million
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records per year [13]. The records describe the stays in a standardized data set. In particular,
the records include information about the discharge diagnoses (principal, related, associated in
ICD-10 codes), the medical procedures with specific coding performed during hospital stay, as well
as diagnosis-related groups (fr. Groupe Homogène de Malades) to classify patients in subgroups
according to medical procedures and discharge diagnoses. In addition, the lengths of the stays as
well as specific aspects of the stays (for instance, a stay in an intensive care unit) are included. In
term of security and privacy reasons, no plain patient identity information are available. Instead,
pseudonyms are used for record linkage. In addition, a specific geographic codes which are roughly
equivalent to postal codes are used instead of patients’ details addresses. This database is avail-
able upon registration with and payment to a habilitated provider, or through collaboration with
a French university hospital health information management department. For example, since our
work is at the Economic Evaluation Unit that is actual a part of the department of medical infor-
mation (fr. Département de l’Information Médicale - DIM) of University Hospital of Montpellier,
our project team is able to access the PMSI system.

1.4 Thesis organization

The thesis includes six following chapters:

• Chapter 1: Introduction. In this chapter, the objectives of our works are presented.

• Chapter 2: Related Works. In this chapter, the literature reviews of machine learning in
health sciences as well as the previous studies on PAHs are presented. Moreover, methods
for health data standardization as well as a brief introduction about spatial analysis are also
provided in this chapter.

• Chapter 3: Regression methods for enhancing health care service to reduce PAHs. In this
chapters, four regression methods are introduced. The potential applications of these meth-
ods to build the decision support system mentioned the objective section are evaluated and
compared. After selecting the most suitable method, the constraints of the health system
are taken into account while building the system that recommend not only geographic areas
for adding nurses but also the number of to-be-added nurses at these areas for the biggest
reduction of PAH numbers. The results are visualized on spatial maps.

• Chapter 4: Spatial interpolations and time-series models and the combination to improve
temperature missing imputation. In this chapter, two methods representative for spatial
interpolations and time-series models are introduced. The performance of these two methods
are presented before a novel approach that combines the results of the two methods are
proposed to improve temperature missing imputation.
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• Chapter 5: Graph clustering approaches for hospital communities. In this chapter, two
different graph clustering methods are introduced. The results of the two methods on PMSI
dataset are compared and evaluated in order to select the more suitable one for our work.
The results of clustering French public and private hospitals into communities are visualized
on spatial maps.

• Chapter 6: Conclusion. In this chapter, the summary of the work and discussion are pro-
vided.
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2.1 Machine learning

Machine learning is an sub-domain of artificial intelligence (AI) that provides systems the ability
to automatically learn and improve from experience without being explicitly programmed. It relies
on underlying hypothesis of creating the model and tries to improve it by fitting more data into
the model over time [56, 96]. There are different approaches to getting machines to learn, from
using basic decision trees to clustering to layers of artificial neural networks (the latter of which
has given way to deep learning), depending on what task we are trying to accomplish and the type
and amount of data that you have available. One way to represent machine learning algorithms
is to sub-categorize them by how they learn inference from the data (as shown in figure 2.1). The
subcategories are unsupervised learning, supervised learning, and reinforcement learning.

Figure 2.1: Sub-categorize machine learning [21]

Machine learning has wide range of applications in many domains. For example, in automo-
tive, self-driving car could be the best example of machine learning application. In concept, a
self-driving car is capable of sensing its environment and navigating without human input. To
accomplish this task, each self-driving car is usually equipped with GPS, an navigation system,
and a range of sensors including laser rangefinders, radar, and video cameras. Data collected
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from the sensors are analyzed to understand the environments from then make right decision. For
example, objects filmed by the cameras are recognized by sophisticated image recognition called
computer vision using deep learning. Another example of application is spam email detection.
There are actually many machine learning techniques that can be applied for this classification
work. These techniques such as Naïve Bayesian, Support Vector Machine or K Nearest Neighbor
analyses words, the occurrence, and distributions of words and phrases in the content of emails
and used then use generated rules to filter the incoming email spams [19]. Like other sectors,
health science sector has been also taking the advantage of machine learning for decades. In the
next section, we present in more details the application of machine learning in health care sector.

2.2 Machine learning in health sciences

To present machine learning in health sciences, we categorize the users (or stakeholders) of the
applications in health care sector into:

• Patients

• Clinician care teams

• Back office teams

• Health authorities

2.2.1 Patients as users

The first application of this category could be virtual agents such as Ada application [2] which play
roles like virtual doctors or nurses. Like the application in customer service sector, these virtual
agents could help patients monitor health and symptoms at home. For example, the patients can
search for medical advice by providing symptoms to the agents. The way agents communicate
with the user via speech recognition or natural language processing (NLP) [48].

Another way the patients can monitor their health status is through wearable and smart devices.
These devices such as accelerometers, gyroscopes, microphones, cameras, and other sensors gener-
ate the raw data of the person who caries the devices. Machine learning algorithms can be trained
to recognize patterns from the raw data inputs and then categorize these patterns as indicators of
an individual’s behavior and health status. These systems can allow patients to understand and
manage their own health and symptoms as well as share data with medical providers.

11



Figure 2.2: Ada application [80]

2.2.2 Clinician care teams as users

Clinician care teams or in other words are those who deliver health care to patients. These
type of users include specialists, nurses, physician assistants, pharmacists, and other health care
professionals. Applications of machine learning would enhance the quality and safety of care.
In particular, machine learning is applied in early disease detection and prediction as well as in
selection of optimal treatments so that we can enhance and optimize care delivery to patients.

In disease detection and prediction, the main sub category of machine learning is classification.
For instance, machine learning classifiers have already demonstrated strong performance in image-
based diagnoses. As an example, deep convolutional neural networks (CNNs) (figure 2.3) is used
to diagnose skin cancer [26]. Another example, multiple machine learning algorithms including
long short-term memory (LSTM), CNN and support vector machine (SVM) for classification are
deployed for early detection of diabetes [86]. Prediction such as hospital readmission is also
benefited from machine learning classification. For example, multi-layer perceptron (MLP)-based
approach is used to predict heart failure patients to be readmitted or death in 30 days after
hospital discharge [7]. Although some believe that could replace physicians in diagnostic, but it
would be better to use approaches of machine learning as assistance in diagnostic prediction to
decrease human errors by physicians.

In surgery, machine learning is becoming more important for surgical decision making as it
can use diverse sources of information such as patient risk factors, anatomic information, disease
history to help physicians and patients make better predictions regarding the consequences of
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Figure 2.3: A deep convolutional neural networks models to diagnose skin cancer [26]

surgical decisions. For example, a deep learning model is applied to determine seizure control
after epilepsy surgery [34]. The other main application of machine learning in surgery is in
surgical robots which are able to control the trajectory, depth, and speed of their movements
with great precision. With the integration of artificial intelligence, surgical robotics would be
able to perceive and understand complicated surroundings, conduct real-time decision making
and perform surgical tasks with increased precision, safety, automation, and efficiency [100]

Machine learning can be applied to provide personalized treatment to patients. Precision
medicine allows clinicians to tailor medical treatment to the individual patients through the iden-
tification of common features, including their genetics, environments, and medical histories. For
example, in the treatment of cardiovascular disease, there are different available drugs. To provide
effective treatments to patients, responses of drugs on the other patients from should be studied.
On the other sides, grouping these patients based on their similarity in order to generate reliable
predictions of drug response. To sum up, the learning process of personalized medicine is presented
in figure 2.4

Figure 2.4: Learning process of personalized medicine [98]
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2.2.3 Back office teams as users

The back-office works such as management of information system or schedule arrangement are
important parts of health care sector. These types of works are also benefited from machine
learning. An example is the application of machine learning in management of electrical health
records (EHR) which may include a range of data, including demographics, medical history, med-
ication and allergies, immunization status, laboratory test results, radiology images, vital signs,
personal statistics like age and weight, and billing information. Clearly, EHR helps increase the
quality care not only by helping clinicians identify and stratify chronically ill patients but also
by using the data and analytics to prevent hospitalizations among high-risk patients. Therefore,
EHR system must be reliable in term of quality and consistent of the data that is not always
the case because the inputs of the system come from different sources as well as different users.
One example of application of machine learning to improve EHR quality as well as reduce the
labor working time is an automated International Classification of Diseases (ICD) cod-
ing. More specifically, a hierarchical deep learning model with attention mechanism which can
automatically assign ICD diagnostic codes given written diagnosis was proposed [76]. Another
example of application of machine learning in this sub-category is in patient scheduling. In this
application, the authors applied classification machine learning algorithms to optimize scheduling
after identifying no-shows based on the many sources of the data such as EHR, weather condition
as well as driving time [82].

2.2.4 Health authorities as users

Health authorities or managements are the bodies who are responsible for identifying popula-
tion health needs; planning appropriate programs and services; ensuring programs and services
are properly funded and managed; and meeting performance objectives. Machine learning has
been approached in building decision support systems that support health authorities in issuing
new policies or in making right decisions. For example, machine learning is applied in optimiz-
ing hospital processes such as resource allocation and patient flow. More specifically, by early
and accurate prediction of patients outcomes, we can better predict demand and allocate scarce
hospital resources such as beds and operating rooms. For example, time-series machine learning
methods are used to forecast hospital discharge volume [53] or recurrent neural network and
simulation approach is applied in emergency department capacity planning [58]. Another
example is that network clustering methods are applied to detect hospital communities [20]
for more effectively sharing medical records between the hospitals so that providing the effective
treatments to the patients (figure 2.6).
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Figure 2.5: Model architecture for automated International Classification of Diseases (ICD)
coding[76]

Figure 2.6: Spatial representation of data-sharing communities of hospitals which are presented
as round points [20]
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2.2.5 Conclusions

In this section, we have presented some current applications of machine learning in health care
sector. Although we cannot cover all the applications in this report, it has been proved that
machine learning has been applying widely in health care sector. The purpose of these applications
are to improve the services of health providers and therefore improve of population health. That
is also the purpose of our works which focuses on potentially avoidable hospitalizations. In the
next section, we present about the previous studies on potentially avoidable hospitalizations.

2.3 Studies on potentially avoidable hospitalizations

As mentioned in the introduction section, our main works focus on the solutions related to poten-
tially avoidable hospitalizations (PAHs). In particular, like other studies which are not to justify
these hospitalizations at the time they are involved, the studies are rather than how to avoid so
that reduce the number of these hospitalizations. Before doing our research works, we review the
recent studies on PAHs that are presented in this section.

2.3.1 Technical definitions of potentially avoidable hospitalizations

Before starting our review, we need to understand which medical conditions to include as PAHs.
Actually, there are many definitions of PAHs that have been proposed. In this report, we present
two definitions that are used the studies in French context [79]. The first one is based on Weissman
and colleagues [95] method that defines a list of the 12 categories of PAHs (age ≥ 20 years) which
are associated with the ICD-10 codes as shown in table 2.1.

On the other hand, the AHRQ organization proposed to distinguish the hospital admissions for
pathologies sensitive to the first treatment into two lists [79]:

• A list of management of acute pathologies

• A list of management of chronic pathologies

Among the two lists above, the list of management of chronic pathologies shows that more effective
management of patients reduces the risk of hospitalization and therefore are chosen to define the
medical conditions to include as PAHs [79]. In particular, this list consists of 6 categories can be
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Table 2.1: List of the 12 categories of PAHs (age ≥ 20 years) by Weissman and colleagues [79, 95]

Pathology ICD-10 codes

Bacterial lung diseases J13 J14 J15 J16818

Congestive heart failure I50

Skin / soft tissue infection J340 K122 L02 L03 L88

Asthma J45

Hypokalemia E876

Pathologies to vaccination A35 A36 A37 A80 B05 B26

Gangrene I702 I730 R02

Complicated gastroduodenal ulcer K250 K251 K252 K254 K255 K256 K260 K261
K262 K264 K265 K266 K270 K271 K272 K274
K275 K276 K280 K281 K282 K284 K285 K286

Pyelonephritis and other kidney problems N10 N11 N12 N136 N158 N159 N172

Acute complications of diabetes E100 E101 E110 E111 E130 E131 E140 E141

Complicated appendicitis K352 K353

Hypertension I10 I11 I12 I13 I15 I674

extracted from the hospital discharge database based on the ICD-10 codes of the principal and
related diagnoses (Table 2.2).

In French context, two definitions are highly correlated. In particular, the Pearson correlation
values for the datasets exported for the year of 2014 are 0,864 and 0,877 at the levels of departments
(Figure 2.7) and geographic PMSI respectively [79].

2.3.2 Studies on potentially avoidable hospitalizations in France

In France, the works related to PAHs are still limited although under development. The first main
study carried out at the national level were initiated in the 2000s. This study was included in
the 2007 report for the Ministry of Health [70] as the basis of a pilot study on the prevention of
hospitalization using PMSI data. This report concluded that high levels of PAHs were positively
correlated with age, males, and negatively with the number of medicine, surgery and acute beds,
at the density of general practitioners and sector specialists. In addition, the work was about a
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Table 2.2: List of chronic pathologies by AHRQ [79]

Pathology Inclusion criteria
on the principal
diagnoses (PD)

Exclusion criteria on associated diag-
noses (AD)

Asthma in adults
(Age ≥ 18)

PD = J45 J46
OR
PD = J96.0 if AD =
J45

Pregnancy, childbirth and post-childbirth
(O00-O99)
Heart failure (I09.9 I11.0 I13.0 I13.2 I50)
Cystic fibrosis (E84.0-E84.9 Q25.1-Q25.4
Q30 Q31 Q32 Q33 Q34 Q39 Q89.3 P26)
Mental disorders (F10-F19 F20 F21 F22 F23
F24 F25 F29 F30 F31 F32 F33 F34 F38 F39
F40-F45 F44 F48 F50-F52 F54 F60 F63 F68
F28 F53 F55 F59 F61 F62 F69)
Respiratory diseases (J47 J84.10 J98 J99)
COPD (J42 J43 J44 J47 J41.1 J41.8)

Congestive heart fail-
ure (Age ≥ 40)

PD = I09.9 I11.0 I13.0
I13.2 I50

Pregnancy, childbirth and post-childbirth
(O00-O99)
COPD (J42 J43 J44 J47 J41.1 J41.8)
Ischemic heart disease (I20 I21 I22 I24.0 I24.)
Kidney failure (I12 I13.1 N17 N18 N19)

Chronic obstructive
pulmonary disease
(COPD) (Age ≥ 18)

PD = J42 J43 J44 J47
J41.1 J41.8
OR
PD = J20 if AD =
J42 J43 J44 J47 J41.1
J41.8
OR
PD = J40 if AD =
J42 J43 J44 J47 J41.1
J41.8
OR
PD = J96.0 if AD =
J42 J44.9 J47
OR
PD = J96.9 if AD =
J42 J44.9 J47

Pregnancy, childbirth and post-childbirth
(O00-O99)
Heart failure (I09.9 I11.0 I13.0 I13.2 I50)
Cystic Fibrosis (E84.0-E84.9 Q25.1-Q25.4
Q30 Q31 Q32 Q33 Q34 Q39 Q89.3 P26)
Mental disorders (F10-F19 F20 F21 F22 F23
F24 F25 F29 F30 F31 F32 F33 F34 F38 F39
F40-F45 F44 F48 F50-F52 F54 F60 F63 F68
F28 F53 F55 F59 F61 F62 F69)

Dehydration in elderly
people (Age ≥ 65)

PD = E86 E87.0
E87.1

Diabetes short-term
complication
(Age ≥ 40)

PD = E10.0 E10.1
E11.0 E11.1 E13.0
E13.1

Pregnancy, childbirth and post-childbirth
(O00-O99)
Mental disorders (F10-F19 F20 F21 F22 F23
F24 F25 F29 F30 F31 F32 F33 F34 F38 F39
F40-F45 F44 F48 F50-F52 F54 F60 F63 F68
F28 F53 F55 F59 F61 F62 F69)

Angina without pro-
cedure, urgent admis-
sion) (Age ≥ 40)

PD = I20.0 I24.0 I24.8
I20.8 I20.1 I20.9

Pregnancy, childbirth and post-childbirth
(O00-O99)
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Figure 2.7: Correlation at department level between PAH rates defined by Weissman and AHRQ
in France in 2014[79]

methodology for locating PAHs. In particular, they proposed the method that defines a PAH as
a hospitalization presenting, in principal diagnosis, a code ICD-10 corresponding to a pathology
from the list developed by Weissman and colleagues. (Table 2.1). The main limit of the analysis
was the geographic high level (department). This limit did not allow identification significant
variations from one territory to another. This work therefore notably underlined the need for an
analysis to be carried out with a finer geographic level.

Another nationwide study that was conducted by our colleagues at the economic evaluation unit
in 2015 [54]. This study was based on the 2012 PMSI data and the PAHs were identified by a
modified Weissman approach. Regarding to geographic level, in the study, department and ZIP
code levels were included in a multilevel mixed model. On the other hand, in this study, the
data of wide ranges of potential determinants for the variation in PAH rates were included. The
data of potential determinants consists of (1) data of health care supply such as density of acute
care hospital beds, density of general practitioners, ambulatory care specialist physicians, and
ambulatory care nurses; (2) socio-economic data such as median household income, the education
level, the proportion of recipients of Couverture Maladie Universelle Complémentaire (CMU-C);
(3) as well as epidemiological data such as mortality rate which was used as a proxy for health
status. In this study, the multilevel mixed model showed that age-sex standardization rate of
PAHs positively associated with the standard mortality ratio but negatively associated with the
density of acute care beds and ambulatory care nurses, median pretax income, and education
levels. In other words, the PAH rate is higher in areas with high mortality, low income, and low
levels of education. The PAH rate is also associated with a shortage of ambulatory care nurses
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and a low density of acute care beds.

Our continue study on PAHs was conducted at the time I worked at the economic evaluation unit
as an intern for my Master 2 degree from March to August 2017. The result of this work was
published in an international conference of Computer Science (SOFSEM 2018) [63]. In this work,
we extended a method called gradual patterns that aim at automatically extracting co-variations
between variables of data sets in the form of “the more/the less" such as “the more experience,
the higher salary". In particular, the gradual patterns was extended on spatial data to extract
co-variations between PAH rates and its potential determinants. With this new approach, we are
not only able to find the associations between the increase of PAH rates with its determinants,
but also are able to identify how the geographical areas follow or not the tendencies. Particularly,
our work is twofold. Firstly, we propose a methodology for extracting gradual patterns at several
hierarchical levels. In addition, we introduce a methodology for visualizing this knowledge. For
this purpose, we rely on spatial maps for allowing decision makers to easily notice how the areas
follow or not the gradual patterns. As an example result, the spatial maps were used to visualize
how each geographic PMSI code follows the pattern of smaller nurse density, higher PAH rates
(Figure 2.8). Moreover, at higher geographic level (department in this case), we were also able to
show aggregation values. For example, figure 2.9 shows the percentages of geographic PMSI codes
inside departments following the pattern of smaller nurse density, higher PAH rates or figure 2.10
shows the most influence pattern at each department.

2.3.3 Conclusions

In this section, we have briefly introduced about the previous studies as well as the technical
definitions of PAHs used in the studies in French context. In the next section, we introduce about
the data standardization methods that are applied in measurement of health status as the way to
avoid bias.

2.4 Age-sex standardization in health status measurement

Unlike the standardization (or normalization) like min-max or z-score, in measurement of health
status of geographic areas such as mortality or morbidity rates, to avoid bias, the structure of the
population should be taken into account. This structure are the age and the sex of the population.
For example, in our work, as mentioned in the previous section, we use age-sex standardization of
rates for PAHs. There are two methods for calculating standardization rates, namely direct and
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Figure 2.8: Graduated map for item support values of pattern of smaller nurse density, higher
PAH rates at geographic PMIS code level [63]

Figure 2.9: Percentage of geographic PMSI
codes inside departments following the pattern
of smaller nurse density, higher PAH rates [63]

Figure 2.10: Best gradual patterns at each de-
partment level [63]. EDU: pattern of education
and PAH; INC: pattern of income and PAH;
NUR: pattern of nurse and PAH;

indirect standardization. In this section, we introduce how to apply these methods.
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Table 2.3: Example reference data for direct age-sex standardization

Age Sex Population Reference rate

0-64 F 2,262,714 0.4021

0-64 M 2,237,209 0.3976

65-74 F 281,155 0.0500

65-74 M 249,725 0.0444

75-79 F 124,524 0.0221

75-79 M 98,292 0.0175

80-84 F 112,044 0.0199

80-84 M 75,156 0.0134

85-89 F 81,769 0.0145

85-89 M 42,861 0.0076

>=90 F 44,775 0.0080

>=90 M 16,563 0.0029

TOTAL 5,626,787 1

2.4.1 Direct age-sex standardization

To demonstrate how direct age-sex standardization is computed, we use the example data of two
geographic areas (Areas A and B) in which we have the data of number of PAH (column No)
as well as the number of inhabitant (column Pop) at each specific range of age and sex (Table
2.4). The age and sex of the populations are taken into account in direct age-sex standardization
by referring to the structure of the whole regions or country where we conduct the analysis. For
example, in our work at Occitanie France region, the age and sex structure data of the region is
presented at table 2.3 in which the values at column Reference rate (column Ref. rate in table
2.4) are computed by:

Reference rate =
Population

TOTAL

Also, in table 2.4, at each area, the raw rate of PAH per 1,000 inhabitants corresponding to the
range of age and sex is computed by:

Raw rate =
No ∗ 1, 000

Pop

Where No and Pop are the number of PAHs and the size of population corresponding to the
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Table 2.4: Example data for direct age-sex standardization

Area A Area B

Age Sex Ref.
rate

No Pop Raw
rate

St.
rate

No Pop Raw
rate

St.
rate

0-64 F 0.4021 9 14,515 0.62 0.25 11 10,452 1.05 0.42

0-64 M 0.3976 16 14,278 1.12 0.45 12 10,245 1.17 0.47

65-74 F 0.0500 11 1,221 9.01 0.45 2 1,163 1.72 0.09

65-74 M 0.0444 11 1,005 10.95 0.49 10 883 11.33 0.50

75-79 F 0.0221 3 469 6.40 0.14 4 612 6.54 0.14

75-79 M 0.0175 9 391 23.02 0.40 8 391 20.46 0.36

80-84 F 0.0199 9 351 25.64 0.51 15 596 25.17 0.50

80-84 M 0.0134 7 229 30.57 0.41 14 326 42.94 0.57

85-89 F 0.0145 5 235 21.28 0.31 12 539 22.26 0.32

85-89 M 0.0076 7 124 56.45 0.43 5 237 21.10 0.16

>=90 F 0.0080 15 145 103.45 0.82 7 299 23.41 0.19

>=90 M 0.0029 5 44 113.64 0.33 9 105 85.71 0.25

Total 1 107 33,007 4.99 109 25,848 3.98

range of age and sex.

Now, we take into account the population structure of the whole regions (column Ref. rate) in
computing the standardization rate (column St. rate) of PAHs per 1,000 inhabitants corresponding
to the range of age and sex.

St. rate = (Raw rate) ∗ (Ref. rate)

By summarizing the standardization rates of the whole area, we obtain the direct age-sex stan-
dardization of that area. In table 2.4, these values are 4.99 and 3.98 for area A and area B
respectively. Therefore, if we compare the area A and area B, then the rate at area A is higher
than the rate at area B

On the other side, in case we do not take into account the age and sex of the PAH patients, the
raw PAH rates per 1,000 inhabitant for area A and B will be:

raw_rate_A =
107 ∗ 1, 000

33, 007
= 3.24

raw_rate_B =
109 ∗ 1, 000

25, 848
= 4.22
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The rates above indicate that if we do not take into account the structure of the populations, the
rate of area B which is 4.22 is higher than the rate of area A which is 3.24. This conclusion is the
opposite of the previous conclusion when we compared the standardization rates.

In conclusion, the example above demonstrates the way the structure of population data are used
in computing the direct age-sex standardization. It also shows that when we measure of health
status between geographic areas, it is often bias if we just use the raw rates instead of age-sex
standardization.

2.4.2 Indirect age-sex standardization

In the previous, we have presented the use of the direct age-sex standardization in order to avoid
bias in measure health status between geographic areas. However, medical information is strictly
confidential. On the other words, to avoid people can predict who the patients are, normally,
the information of age and sex are not provided on the data exported for small geographic areas.
Therefore, sometimes we cannot apply age-sex standardization directly. In those cases, indirect
age-sex standardization are used instead. In definition, the indirect age-sex standardization val-
ues are computed by the ration between the observed numbers over the expected numbers. To
demonstrate how to compute indirect age-sex standardization, given that at the entire region (or
country), we know the number of PAHs (column No PAHs) corresponding to each range of age
and sex (Table 2.5) in which the values at column Reference rate (column Ref. rate in table 2.6)
are computed by:

Reference rate =
(No PAHs) ∗ 1, 000

Population

Back to the example of area A and area B above. We know the structure of the populations of
these areas (Column Pop in table 2.6), but we do not know the number of PAHs corresponding
to each range of age ans sex. Based on the reference rate at the region level, we can compute the
expected number of PAHs corresponding to each range of age ans sex at each area:

Expeced No =
(Ref. rate) ∗ Pop

1, 000

By summarizing the expected numbers, we have the expected numbers of PAHs for each geographic
area. In the example above, the expected number of PAHs of area A and area B are 113.60 and
145.16 respectively. On the other side, we also know the total number of PAHs (known as the
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Table 2.5: Example reference data for indirect age-sex standardization

Age Sex No PAHs Population Reference rate

0-64 F 1,852 2,052,788 0.90

0-64 M 3,060 2,133,039 1.43

65-74 F 1,666 246,605 6.76

65-74 M 2,915 234,976 12.41

75-79 F 1,452 104,882 13.84

75-79 M 2,020 89,397 22.60

80-84 F 2,347 103,721 22.63

80-84 M 2,454 70,176 34.97

85-89 F 2,765 77,369 35.74

85-89 M 2,106 39,806 52.91

>=90 F 2,630 41,786 62.94

>=90 M 1,245 13,898 89.58

Total 26,512 5,208,443

Table 2.6: Example data for direct age-sex standardization

Area A Area B

Age Sex Ref. rate Pop Expected No Pop Expected No

0-64 F 0.90 14,515 13.10 10,452 9.43

0-64 M 1.43 14,278 20.48 10,245 14.70

65-74 F 6.76 1,221 8.25 1,163 7.86

65-74 M 12.41 1,005 12.47 883 10.95

75-79 F 13.84 469 6.49 612 8.47

75-79 M 22.60 391 8.83 391 8.83

80-84 F 22.63 351 7.94 596 13.49

80-84 M 34.97 229 8.01 326 11.40

85-89 F 35.74 235 8.40 539 19.26

85-89 M 52.91 124 6.56 237 12.54

>=90 F 62.94 145 9.13 299 18.82

>=90 M 89.58 44 3.94 105 9.41

Total 113.60 145.16
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observed numbers) in these areas which are 107 in area A and 109 in area B. The indirect age-
sex standardization is computed by the ratio between the observed numbers and the expected
numbers.

indirect_rate_A =
observed number

expected number
=

107

113.60
= 0.94

indirect_rate_B =
observed number

expected number
=

109

145.16
= 0.75

Comparing with the direct age-sex standardization method above, the indirect age-sex standard-
ization method also returns the result that the rate of area A is higher than the rate of area
B.

2.4.3 Conclusions

In this section, we have introduced the direct and undirect age-sex standardization methods that
are used in measurement of health status of geographic areas as the way to avoid bias. In the next
section, we introduce about basic spatial analysis that helped us explore our spatial datasets.

2.5 Basic spatial analysis

It is often estimated that over 80% of data integrates spatial information [30]. Such spatial
information are currently taking more and more importance with the emergence of Internet of
Things (IoT) and popular applications integrating spatial information (e.g., Google maps). On
the other hand, as the first Law of Geography, “everything is related to everything else, but near
things are more related than distant things.” [87]. As an example, the temperatures across the
globe is visualized in the map below (figure 2.11) in which blue color shows colder temperatures
in blue and red color shows warmer temperatures.

It is clear that the temperatures at two close locations are quite the same. Generally, the tem-
peratures in example are called feature values and the close locations are called neighbors. The
feature values at a location and at its neighbors can be systematically high-high, low-low, low-high,
and high-low or randomly appear at those locations. How these feature values are geographically
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Figure 2.11: Example of first Law of Geography: global temperature [85]

related is interpreted by spatial autocorrelation. As shown in figure 2.12, positive spatial autocor-
relation tells that the feature values at a neighborhood tend to be similar (high-high or low-low)
while negative spatial autocorrelation indicates that the feature values tend to be different (low-
high or high-low). On the other hand, no spatial autocorrelation tends to indicate that feature
values are associated with the locations randomly. In this section, we will present about how
to measure the spatial autocorrelation as well as a method to detect spatial clusters and spatial
outliers. These methods are mainly based on the lectures conducted by Professor Luc Anselin [4].
We also briefly introduce the ways that the spatial data is included in linear regression models.

Figure 2.12: Example of spatial autocorrelation [85]

2.5.1 Measure of spatial autocorrelation

In the previous section, we mentioned that we can use spatial autocorrelation to interpret how
the feature values are geographically related. In the literature there are two most popular indexes
to measure spatial autocorrelation. These indexes are Moran’s I and Geary’s C. While Moran’s I
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index measures how the feature value at a location is similar to the feature values of its neighbors,
Geary’s C index focuses on the dissimilarity between the neighborhood. Mathematically, Moran’s
I index (denoted by I) is computed with formula 2.1 and Geary’s C index (denoted by C) is
computed with formula 2.2

I =
N

W

∑
i

∑
j wij(xi − x̄)(xj − x̄)∑

i(xi − x̄)2
(2.1)

C =
(N − 1)

∑
i

∑
j wij(xi − xj)2

2W
∑

i(xi − x̄)2
(2.2)

In both formulas 2.1 and 2.2 above:

- N is the number of spatial units indexed by i and j
- x is the variable of feature such as temperature in the example above.
- x̄ is the mean value of x.
- wij is spatial weight between spatial unit i and spatial unit j.
- W is the sum all wij

Both formulas above are straight forward as long as we can define the spatial weights matrices (or
wij) between the spatial units.

2.5.2 Spatial weight matrices

In the previous section, we mentioned about using spatial weight between spatial unit i and
spatial unit j to reflect the “spatial influence” between unit i and unit j. There are actually
several approaches to define this weight matrix.

2.5.2.1 Spatial weight matrices based on boundaries

A simplest way to define spatial weight matrices is based on boundaries. More specifically, if unit i
and unit j have common boundaries then wij (also wji) has value 1. Mathematically, if we denote
the set of boundary points of unit i by bnd(i) then,
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wij =

1 if bnd(i) ∩ bnd(j) 6= ∅

0 if bnd(i) ∩ bnd(j) = ∅

Now, if we denote lij as the number of points in bnd(i) ∩ bnd(j), then the formula becomes:

wij =

1 if lij > 0

0 if lij = 0

The matrix defined by formula above is called queen contiguity weight matrix. In this matrix, lij
= 1 also give 1 for wij. Another approach called rook contiguity weights requires lij > 1 instead
of lij > 0 for wij having value of 1. In practice, depending how the spatial units are defined such
as using grid networks, the two corresponding matrices might be significantly different as shown
in figure 2.13.

Figure 2.13: Rook contiguity weights vs queen contiguity weights

2.5.2.2 Spatial weight matrices based on distances

Another approach for spatial weight matrices is based on the distances between the spatial units.
For example, the wij has value of 1 if the distance between unit i and unit j is less than 30 km
(like figure 2.14). Generallly, if we denote dij is the distance between unit i and unit j, and τ is
the threshold, then we can formula for wij:

wij =

1 if dij <= τ

0 if dij > τ
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Figure 2.14: Example of spatial weight matrices based on distances

On the other side, in some applications in practice, the size of the spatial units are different.
For example, if we use communes as the spatial units, the communes in the big cities are small
in term of spatial size while the communes in remote areas are big. Therefore, the approach of
using thresholds as we just mentioned could lead to a problem that some spatial units have many
neighbors while some others have very few or even no neighbors. A solution to that problem is
to apply K-nearest neighbors. More specifically, for each spatial unit i, we select K spatial units
whose distances to unit i are smallest. Mathematically, if we denote NK(i) is the set of these K
nearest units of unit i, then:

wij =

1 if j ∈ NK(i)

0 if j /∈ NK(i)

However, what does the distance dij mean? The first option is the space distance. For example,
if the space units are the points, the space distance between two points is the length of the
straight line connecting the two points. In the case that the spatial units are the polygons, we
can consider to use the space distances between the corresponding centroids. The other option, in
some applications, instead of the distance of the straight line connecting point i and point j, the
distances can be the lengths of the road to go from point i to point j is used. Similarity, the travel
time between i and j might be the one to be used. As a conclusion, depending on the application,
we need to define the relevant way to measure the distance to be used in spatial weight matrices.

2.5.2.3 wij values

In the previous sections, the spatial weight wij receives the values that are either 1 or 0. Those
values do not reflect well the distance between the spatial units. On the other words, spatial
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weights wij should link to the distance values dij. There are several things we need to consider
while including dij in wij. The first thing is the unit measuring the distance. For example,
kilometre and metre should return the different results. The second thing is how the distance
should be presented in wij. In any presentation of wij, there is a rule that the smaller distance
returns the bigger wij than the larger distance. As examples, also in practice, there are several
ways computing wij such as the followings:

wij =
1

dαij

Or

wij = exp(−αdij)

Where α is any positive scalar, but typically α = 1 or α = 2 [9].

Moreover, to remove dependence on extraneous scale factors, it is necessary to normalize of these
spatial weights. For example, row normalized weights can be applied that the new spatial weights
uij is computed from wij as below:

uij =
wij∑
k wik

2.5.3 Global spatial autocorrelation

Once we define the spatial weight matrices, we can compute the Moran’s I or Geary’s C indexes
by following the formula 2.1 or formula 2.2 respectively. To simplify our report, we now focus on
Moran’s I index which is more popular. It can be mathematically proved that Moran’s I index has
values ranging from -1 to 1. However, how do these indexes imply? Actually, these indexes do not
directly tell whether or not there is a global spatial autocorrelation. However, if there is a global
spatial autocorrelation, these indexes can tell it is a positive or negative spatial autocorrelation.
In particular, for Moran’s I index, the negative values indicate negative spatial autocorrelation
while the positive values indicate positive spatial autocorrelation. However, still, is there a global
spatial autocorrelation? We can answer this question through statistical hypothesis tests using
p-value. More particular, we compute the p-value by generating the samples for Moran’s I indexes.
A sample Moran’s I index is generated by randomly re-placing all the feature values on all the
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spatial units. After K times we randomly re-place the all the feature values on all the spatial
units, we have a data set of K samples of the Moran’s I index.

If the generation of the dataset of K samples of the Moran’s I index is considered as step 1 (also
called permutation step), then step 2 is to standardize this dataset with z-score standardization:

zk =
Ik − µ
σ

in which, Ik is value of item k, µ is the mean value and σ is the standard deviation of the dataset.

As the final step, we convert the Moran’s I index to the corresponding z value, and from that
we can compute p-value for this Moran’s I index. If the p-value is sufficiently small, for example
smaller than 0.05, then there is technically a spatial autocorrelation.

2.5.4 Spatial clusters/outliers detection

One most applications of spatial analysis is to detect clusters or outliers. We often use spatial
maps such as choropleth maps to visualize the data of feature values. By looking at these maps,
we can somewhat detect spatial clusters or outliers through the colors presenting feature values.
For example, on the example map (figure 2.15), it seems that there is a cluster around MS and AL
states. However, the feature values are associated with these states systematically or randomly?
On the other words, we need technical ways to measure and then detect the spatial clusters or
outliers.

One approach is based on statistical significance. More specifically, we measure the statistical
significance that a feature value is associated with the corresponding spatial unit as the way to
confirm that this association is not by random. One approach is based on local Moran’s I index
which is formulated in the same way as global Moran’s I index:

Ii =
(N − 1)(xi − x̄)

∑
j 6=iwij(xj − x̄)∑

j 6=i(xj − x̄)2
(2.3)

In which,

- Ii is local Moran’s I index corresponds to spatial unit i
- N is the number of spatial units indexed by i and j
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Figure 2.15: Example of choropleth map to visualize feature values [69]

- x is the variable of feature such as temperature in the example above.
- x̄ is the mean value of x.
- wij is spatial weight between spatial unit i and spatial unit j.

Like the way to compute the statistical significance of global spatial autocorrelation above, we
run the permutations step to randomly generate a data set of the local Moran’s I index for each
spatial unit i. However, different to the permutations step in global spatial autocorrelation, to
generate a local Moran’s I index sample, the spatial unit i is excluded when randomly re-placing
the feature values (N-1 values) on the other spatial units (N-1 units as unit i is excluded). After
this permutations step, for each each spatial unit i, we have a dataset of local Moran’s I index
samples.

Once we have the dataset of local Moran’s I index samples, we take the same steps as we do
while measuring the statistical significance of global spatial autocorrelation. As the results, we
can point out the statistical significance of any spatial unit through the p-value. For example, the
spatial units whose p-values are smaller than 0.05 technically indicate that they are either clusters
(the values are high-high or low-low compared with the neighborhood) or outliers (high-low or
low-high compared with the neighborhood). The next question is to find out the clusters are the
type of high-high or low-low as well as the outliers are high-low or low-high. The answers lie on
the Moran scatter plot.
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Moran scatter plot and its application to classify clusters/outliers

Once we can indicate a spatial unit has statistical significance of a cluster or outlier, the the next
step is to use Moran scatter plot to identify the spatial unit is:

- A cluster high - higt compared with its neighbors
- A cluster low - low compared with its neighbors
- A outlier high - low compared with its neighbors
- A outlier low - higt compared with its neighbors

Moran scatter plot is a scatter plot that the values of x-axis and y-axis are defined as below:

- x-axis: zi = (xi − x̄)

- y-axis:
∑

j wijzj

In which, the notations are the same as we have been using.

- x is the variable of feature such as temperature.
- x̄ is the mean value of x.
- wij is spatial weight between spatial unit i and spatial unit j.

By the definition for the x-axis and y-axis above, all spatial units can be presented on the cor-
responding Moran scatter plot. As demonstrated in figure 2.16, the two relative mean lines
corresponding to x-axis and y-axis, which are close to 0, divide the spatial units into four parts
corresponding high-high clusters, low-low clusters, high-low outliers, and low-high outliers.

To sum up, in this section, the method of detecting clusters or outliers based on statistical signifi-
cance has been introduced. In the next section, we introduce the approaches that spatial data are
taken into account while measuring the relationship between response variables and explanatory
variables. These approaches are spatial regression models.

2.5.5 Spatial regression models

We often use linear regression approaches to modeling the relationship between a scalar response
(or dependent variable) and one or more explanatory variables (or independent variables). Suppose
that we have data consisting of set of observations {yi, x1i, x2i, ..., xKi} in which,

- yi is the value of item i of dependent variable
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Figure 2.16: Example of Moran scatter plot [18]

- xki is the value of item i of independent variable k.

In a linear regression model, the response variable, yi, is a linear function of the independent
variables:

yi = β0 + β1x1i + β2x2i + · · ·+ βKxKi + εi (2.4)

In which, εi presents the corresponding error.

To shorten the formula above, the vector of {1, x1i, x2i, ..., xKi} is denoted as Xi, the vector of
{β0, β1, β1, ..., βK} is denoted as β then formula 2.4 becomes

yi = βXi + εi (2.5)

Or in general,
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y = βX + ε (2.6)

However, in the formula 2.6, the spatial data are not taken into account. As mentioned in the
previous section, once there is a global spatial autocorrelation (section 2.5.3), we should not
ignore spatial information. In other words, if the dependent variable y has the global spatial
autocorrelation, the spatial information should be included into formula 2.6.

y = ρWy + βX + ε (2.7)

In formula 2.7, W is the spatial weight matrix that we mentioned in section 2.5.2. Formula 2.7 is
called spatial autoregressive (SAR) model [49].

Similarly, if the independent variables X have the global spatial autocorrelation, the spatial lag of
independent variables X or WXθ can be added in formula 2.6. The new model is called spatial
lag X (SLX) model.

y = WXθ + βX + ε (2.8)

In addition, there could be global spatial autocorrelation with the errors ε because there could
be some explanatory variables that we do not have the corresponding data to be included in the
above models. In those cases, it is possible to add the spatial lag for the errors and then so-called
spatial error model. Mathematically, 2.6 becomes:

y = βX + u, u = λWu+ ε (2.9)

Moreover, since the spatial lags of dependent variable, independent variables, as well as the errors
are independent so that they can be combined into one spatial regression model [16]. In particular,
we have:

Spatial Durbin model [49] is a combination of the SAR model and the SLX model:

y = ρWy +WXθ + βX + ε (2.10)
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Kelejian-Prucha model or SAC model is a combination of the SAR model and the spatial error
model:

y = ρWy + βX + u, u = λWu+ ε (2.11)

In the cases that all spatial lags are included, we have Manski model:

y = ρWy +WXθ + βX + u, u = λWu+ ε (2.12)

In summary, together with the previous section that introduced the method of detecting clus-
ters/outliers, in this section, we have introduced a basic spatial analysis, which are a spatial
regression models as the way to measure the relationship between variables. However, there are
also some notes that we should pay attentions to. One of them is the modifiable areal unit problem
that is presented in the next section.

2.5.6 Modifiable areal unit problem in spatial data analysis

In the section 2.4, we introduced about direct and indirect age-sex standardization as the ways
to avoid bias when we work with health data. In this section, we introduce another issue that we
should pay attention when we collect geographic data. Specifically, the problems come when we
use the data aggregated from a set of geographic area units. To demonstrate the issue, we use
an example that there are two teams (team 1 and team 2) conducting geographical analysis of
the same region in which there are sick and normal people who are presented by black and white
points respectively (figure 2.17). Now, imaging that team 1 divides the region into 4 geographic
units (Analysis 1) and team 2 also divides the region into four geographic units but in different way
(Analysis 2). As it can be seen at figure 2.17, from the data they collected at the four geographic
units, the two teams would have different conclusions. Specifically, team 1 can concludes that the
sick rates of all the four geographic units are 50% while with team 2, the sick rates are 100% in
two geographic units whereas in the other two units, the rates are 0%. As a conclusion, the way
the whole region are divided into geographic units while we collect data have the impacts to the
data analysis. As this problem is because of the way the geographic areas are defined, it is called
modifiable area unit problem (MAUP).

There are actually two issues related to the MAUP. The example above shows the first issue which
is called “zoning effect”. This issue is about the different ways we divide the entire region into
geographic units, but these units are somewhat equivalent in term of the size of the units. The
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Figure 2.17: Example of modifiable areal unit problem

other issue of MAUP is “scale effect”. This second issue is about the impacts of the size of the
geographic units in geographic analysis. One example for the “scale effect” issue is that when
we conduct the analysis at different levels of administrative borders such as zipcode level and
department level, the results from different levels could be different and that is because of “scale
effect” issue.

There are several solutions that have been made to deal with MAUP. The first method to counter-
act this effect is simply make analysis as fine scale as possible. For example, points are measured
against other points help to remove or diminish MAUP. The other approach is to check the ro-
bustness of results by changing geographic scale levels and compare the results between different
levels. If these results are significantly different, then that likely means that the scale needs to be
reevaluated or reapplied so that more consistent results are achieved [59]. For example, analysis
are conducted at both zipcode and department levels then the results are compared to evaluate
the robustness of the analysis. Similarly, Bayesian spatial models and sampling procedures are
used to estimate appropriate scales of aggregation by varying the scale and boundaries in which
aggregation occurs [11]. This helps to determine where values for autocorrelation among tested
variables are most robust or provide the most stable outputs.

In summary, in this section, the MAUP problem in spatial analysis has been introduced. Some
solutions to it is also briefly presented. Since we work on spatial data, our approach to deal with
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this famous problem is presented in the next chapter.

2.6 Conclusion

In this chapter, we have presented a brief literature review on the applications of machine learn-
ing in heath care sector as well as the recent studies on PAHs in France. In addition, we also
presented some notes to avoid bias in health care analysis such as direct and in-direct age and sex
standardization as well as a brief introduction about basic spatial analysis. In the next chapter,
we will present our works of extending one of regression methods for enhancing heath care services
to reduce the PAHs.
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Chapter 3

Regression methods for enhancing health
care service to reduce PAHs
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3.1 Introduction

In section 1.1.3, we briefly introduce about potentially avoidable hospitalizations (PAHs). To re-
mind, PAHs are defined as hospital admissions that could have been prevented [74]. In particular,
these hospitalizations are in fact the consequence of the sudden aggravation of a chronic disease
(diabetes, heart failure, respiratory failure). These acute episodes could have been prevented with
timely and effective treatments and therefore the hospitalizations could have been avoided [12].
As mentioned in section 1.2, every year, in France, there are about 300,000 preventable hospi-
talizations [79], associated with a cost of several hundred million Euros for the Health Insurance
[14]. That means avoiding these hospital admissions not only could enhance quality of live of the
patients but also could decrease substantial costs caused by patient treatments [54, 31].

In addition, in section 2.3, we also briefly introduce some previous studies on PAHs and the
potential factors that could be associated with high rates of PAHs [63, 54, 33]. Particularly, these
recent studies in France have revealed that the higher (age-and-sex-standardized) rates of PAHs
are linked to higher mortality rates, lower density of acute care beds and ambulatory care nurses,
lower median income, and lower education levels [63, 54]. More specifically, these studies suggested
that by increasing the number of nurses at some geographic areas, the number of PAHs in these
areas could be reduced [54]. On the other hand, typically in France, the public health decision
makers can have influence on the factors related to health care such as the density of physicians,
nurses, or the density of hospital beds while socioeconomic determinants such as income and
education are not actionable inside the health system sector. Specifically, both the national- and
regional-level health authorities are highly interested in enhancing the health care services in order
to reduce the number of PAHs.

Moreover, the health system is subject to strong constraints. In particular, they must provide
quality care while controlling associated costs and ensuring equality of access to the health care
services. The latter states that all patient-citizens must be able to benefit from the care they
need, regardless of their geographical and socioeconomic situation. Hence, being able to select
geographic areas in order to maximize the impact of an intervention is of high importance. That
gives birth to our work which aims at building a decision support system that recommends the
optimal actions targeting on the geographic areas while considering the constraints.

In particular, the purpose of our work is to find the geographic areas to increase the nurses for
the biggest reduction of PAHs while not only integrating socioeconomic constraints such as the
available budgets as well as ensuring the equal access to health care but also considering other
potential determinants of PAHs. The geographic areas we mention here are the cross-border living
areas (fr. Bassins de vie - BVs) which define the geographic areas in which the inhabitants have
access to the most common equipment and services including trade, education, health, etc.
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In our approach, for every BV, we compare the predicted rates of PAHs before and after trying
to add new nurses. Our idea is that the BVs that return the biggest reduction of these predicted
values after trying to increase the number of nurses could be the best ones for the actual nurse
implementation. Since the rates of PAHs are the numeric values, so any regression method could
be the option for our approach. Therefore, after evaluating all common regression methods, we
extended the support vector machine for regression to spatial information so that we can take into
account the constraints mentioned above in building the decision support system.

3.1.1 Dataset and pre-processing works

As a way to deal with the modifiable areal unit problem (MAUP), which is introduced in the section
2.5.6, we select “Bassins de vie” or BVs as spatial units. BVs are the geographic areas that are
defined by French National Institute for Statistics and Economic Studies (INSEE). In particular,
communes (denoted as INSEE codes) are grouped into the same BVs if the inhabitants in these
communes accessing to the most common equipment and services including trade, education,
health, etc. [43].

On the other side, the data of PAHs are extracted from French national hospital discharge database
(PMSI, section 1.3) in which for the privacy reason, the patients are geographically coded by PMSI
codes. These PMSI codes are roughly equivalent to French postal codes [6] which mostly (not all)
have 1-n relationship with communes or INSEE codes [23].

Therefore, the first pre-processing our dataset is to convert the data set from the spatial units
of PMSI codes to spatial units of BVs. This task is based on the relationships between BVs,
PMSI codes, Postal codes, and INSEE codes which are presented in figure 3.1. In particular, our
approach includes two main steps:

1. Geographically adjust PMSI codes (denoted as adjusted PMSI codes) so that the rela-
tionship between the adjusted PMSI codes and INSEE codes is 1-n

2. Geographically adjust BVs (denoted as adjusted BVs) so that the relationship between
the adjusted BVs and the adjusted PMSI codes is 1-n

3.1.1.1 Geographically adjust PMSI codes

As shown in figure 3.1, both the PMSI codes and the INSEE codes have relationships with Postal
codes, therefore we join the two tabular datasets through Postal codes. This joining step creates
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Figure 3.1: Relationships between BVs, PMSI codes, Postal codes, and INSEE codes

a new dataset in which the relationships between the PMSI codes and the INSEE codes are n-n
as described in table 3.1.

Table 3.1: Example of n-n relationship between PMSI codes and the INSEE codes

INSEE code - PMSI code relationship Example

INSEE 1 - PMSI 1 12176 - 12850

INSEE 1 - PMSI 2 12176 - 12000

INSEE 2 - PMSI 2 12090 - 12000

INSEE 2 - PMSI 3 12090 - 12510

However, there are very few INSEE codes that are linked to more than one PMSI codes. Partic-
ularly, in Occitanie region, France, this number is 14 over 4,565 INSEE codes 1. Therefore, our
approach to transform n-n relationship above to 1-n relationship by merging all the PMSI codes
that are linked to same INSEE codes into one new adjusted PMSI code. For the example above,
the three PMSI codes (12850, 12000, and 12510 ) are merged to create a new adjusted PMSI code
which is, for example, N0001. Then we have 1-n relationships between adjusted PMSI code and
INSEE codes as shown in table 3.2

Table 3.2: Example of geographically adjusting PMSI codes

INSEE code - PMSI code INSEE code - adjusted PMSI code

12176 - 12850 12176 - N0001

12176 - 12000

12090 - 12000 12090 - N0001

12090 - 12510

1Dataset in 2015
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To perform the process of geographically adjusting PMSI codes, we just mentioned, the following
algorithm 1 is implemented.

Data: fullDF is the PMSI-INSEE dataset
Result: Update fullDF with adjusted PMSI codes
DF = subset of fullDF such that INSEE codes linked to more than 1 PMSI code
i = 1 // Just a variable to control adjusted PMSI codes
while not at end of DF do

toMerge = ∅
INSEE = first INSEE code in DF
findPMSI2Merge(INSEE) // Both DF and toMerge will be updated
adjPMSI = “N ′′ + i // adjusted PMSI codes have simple format like N1, N2
i = i+ 1

for P ∈ toMerge do
update fullDF the PMSI code from P to adjPMSI

end
end

Algorithm 1: Algorithm to geographically adjust PMSI codes

In algorithm 1, we are based on a recursive function findPMSI2Merge that finds PMSI codes to
be merged starting from a “shared” INSEE code.

Parameter: INSEE code to find PMSI codes to merge
Data: DF and toMerge are global variables declared in Algorithm 1
Result: Update both DF and toMerge

lstPMSIs = list of PMSI codes in DF linking to the INSEE code
DF = subset of DF that the records containing the INSEE code are removed
for P ∈ lstPMSIs do

Append P to toMerge

lstINSEEs = list of INSEE codes in DF linking to PMSI code P
for newINSEE ∈ lstINSEEs do

findPMSI2Merge(newINSEE) // Recursive call
end

end
Algorithm 2: Recursive function findPMSI2Merge that finds PMSI codes to be merged start-
ing from a “shared” INSEE code

3.1.1.2 Geographically adjust BVs

As the same as the step of geographically adjusting PMSI codes, we firstly join the dataset of BVs
and the dataset of adjusted PMSI codes through INSEE codes with which both BVs and adjusted
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PMSI codes have the relationship 1-n, we will have a new dataset in which the relationship
between BVs and adjusted PMSI codes are n-n. However, with this new dataset of BVs and
adjusted PMSI codes, if we merge all the BVs that share the same adjusted PMSI codes as we do
while geographically adjusting PMSI codes above, it tends to merge all the BVs together. To deal
with this problem, depending on the percentages in term of the population sizes of the shared
adjusted PMSI code in a BV, the BV can be (1) adjusted its border to cover all parts of the
adjusted PMSI code; (2) adjusted to not cover the part of adjusted PMSI code; (3) merged with
other BVs to cover all parts of the adjusted PMSI code.

Figure 3.2: Spatial problem of transforming dataset from PMSI codes to BVs

To demonstrate the problem more clearly, an example of the problem is visualized using map
(figure 3.2). As the map shows, three BVs (1, 2 and 3) share the the adjusted PMSI code A
that has the border highlighted in red. In other words, the adjusted PMSI code A is divided into
3 parts. One part is in BV1, another part is in BV2, and the other part is in BV3. Because
both the BVs and the adjusted PMSI codes have the relationship 1-n with the INSEE codes that
contain the population information, the new dataset of BVs and adjusted PMSI codes can have
the information of percentages of adjusted PMSI code A in each BV in term of the population
sizes.

Now back to how the BVs are adjusted as mentioned above, we set two thresholds, the first one
is for the percentages above, and second one is the maximum number of BVs to be merged at one
time. The values of these thresholds in our work are 50% and 2 respectively.

To demonstrate how the process works, we are back to the example dataset (table 3.3). For the
adjusted PMSI code A, because the percentage of it in BV1 is 55% (> 50%), the border of BV1 is
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Table 3.3: Example of percentage of adjusted PMSI code in each BV in term of population sizes.

# Adjusted PMSI code BV % of Population

1 adjusted PMSI code A BV1 55 %

2 adjusted PMSI code A BV2 35 %

3 adjusted PMSI code A BV3 10 %

4 adjusted PMSI code B BV4 45 %

5 adjusted PMSI code B BV5 30 %

6 adjusted PMSI code B BV6 25 %

adjusted to cover entirely the adjusted PMSI code A. In other words, BV2 and BV3 are ignored in
this case. Similarly, for the adjusted PMSI code B, because the percentage of it in BV4 is 45% (<
50%), BV4 and BV5 are merged into a new adjusted NBV1 and then the border of this adjusted
NBV1 is also adjusted to cover entirely the adjusted PMSI code B. In this case, BV6 is ignored.

To perform the process of geographically adjusting BVs, we just explained, our algorithm has two
steps.

Step 1: Removing (ignoring) the BVs in which the population percentage of the shared adjusted
PMSI codes are small.

Data: fullDF is the adjustedPMSI-BV dataset
Result: Update fullDF with adjusted BV codes
DF = copy of fullDF
lstPMSIs = unique adjusted PMSI codes in DF
Order descending DF by PMSI codes and the percentage // as shown in table 3.3
for P ∈ lstPMSIs do

if First record of P having the percentage >= 0.5 then
Delete other records of P , but keep the first record of P , from DF

else
Delete other records of P , but keep the two first records of P , from DF

end
end
fullDF = DF // Update final dataset

Algorithm 3: Step 1 of geographically adjusting BVs

Step 2: From adjustedPMSI-BV dataset obtained from step 1, the BVs share same adjusted
PMSI codes are merged to a new adjusted BV.
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Data: fullDF is the adjustedPMSI-BV dataset obtained from step 1
Result: Update fullDF with adjusted BV codes
DF = subset of fullDF such that adjusted PMSI codes linked to more than 1 BVs
i = 1 // Just a variable to control adjusted BV codes
while not at end of DF do

toMerge = ∅
PMSI = first PMSI code in DF
findBV 2Merge(PMSI) // Same ideas as findPMSI2Merge at Algorithm 2
adjBV = “NBV ′′ + i // adjusted BV codes have simple format like NBV1
i = i+ 1

for BV ∈ toMerge do
update fullDF the BV code from BV to adjBV

end
end

Algorithm 4: Algorithm to geographically adjust BVs

3.1.1.3 Dataset summary

After the pre-processing mentioned above, we finally have the dataset of 201 adjusted BVs con-
taining the aggregated values of PAHs. These PAHs are particularly computed using AHRQ
definition (section 2.3.1). These aggregated values are then standardized using the direct age-sex
standardization (section 2.4.1). On the other side, the datasets of the potential determinants
of PAHs are collected from many sources including the French Ministry of Health, the National
Institute for Statistics and Economic Studies, the Regional Health Agency of Occitanie, French
Health Insurance Fund ambulatory care claims database as well as open data. In particular, the
datasets include:

• The primary care supply and hospital supply data including the densities of general practi-
tioners, nurses, specialists, the densities of acute beds, travel time to the closest emergency
department, and acute care hospital and medical group practice

• The socioeconomic data such as the median income, the unemployment rates, the proportion
of population having an education level equal or above the baccalaureate, the proportion of
population living in isolated rural areas, the proportion of workers in the active population.

• The epidemiological data such as the age-sex standardized rates of all-cause and premature
mortality.
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3.1.2 Evaluation and validation methods

As mentioned in the introduction, our approach are based on regression methods. To select most
suitable method, we evaluate the potentials of the regression methods. In particular, we use
both root-mean-square error (RMSE) and mean-absolute error (MAE) values for the performance
evaluations [17]

RMSE =

√√√√ 1

N

N∑
i=1

e2
i

MAE =
1

N

N∑
i=1

|ei|

In both formulas above, ei (i = 1, 2, 3...N) are the errors (differences) between the predicted values
from the regression methods and actual (observed) values.

On the other side, to validate the regression methods, we use leave-one-out validation method.
Particularly, the predicted value of a BV is computed by using all the BVs except that BV as
the training dataset. This approach requires us to repeat the training for any BV. Clearly, this
approach does not work for big datasets, but it is not our case.

3.2 Regression methods and our evaluations related to our
work

3.2.1 Multilinear regression

3.2.1.1 Introduction to linear regression

Linear regression is a method that predicts dependent variables through independent variables by
fitting a linear equation to observed data. It could be said that whenever we need a regression
method, the first choice is often multilinear regression because of its simplicity. To demonstrate
how the linear regression method works, we consider a simple example with a dataset of heights
and weights of some people (table 3.4).

The question is that we need to predict the weight of a person that we know his height is 170
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Table 3.4: Example dataset to demonstrate linear regression.

# Height (cm) Weight (kg)

1 147 49

2 150 50

3 153 51

4 155 52

5 158 54

6 160 56

7 163 58

8 165 59

9 170 ?

cm. In this case, the variables presents the weights and the heights are called dependent variable
(labeled y) and independent variable (labeled x) respectively. In linear regression approach, we
search for the straight line that best fits the given dataset (table 3.4).

ŷ = w0 + w1x (3.1)

If we call εi is the error or the different between the predicted value ŷi and the observed value yi,
w0 and w1 in formula 3.1 can be found by minimizing:

R2 =
N∑
i=1

(εi)
2 =

N∑
i=1

(yi − ŷi)2 =
N∑
i=1

[yi − (w0 + w1xi)]
2 (3.2)

The condition for R2 to be a minimum is that its derivative equals 0 or in formula:

∂R2

∂w
= 0

That means
∂R2

∂w0

= −2
N∑
i=1

[yi − (w0 + w1xi)] = 0 (3.3)

and
∂R2

∂w1

= −2
N∑
i=1

[yi − (w0 + w1xi)]xi = 0 (3.4)

With some mathematical works, 3.3 and 3.4 become:

w0N + w1

N∑
i=1

xi =
N∑
i=1

yi
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w0

N∑
i=1

xi + w1

N∑
i=1

(xi)
2 =

N∑
i=1

xiyi

or in the format of matrix, we have:[
N

∑N
i=1 xi∑N

i=1 xi
∑N

i=1(xi)
2

][
w0

w1

]
=

[ ∑N
i=1 yi∑N
i=1 xiyi

]

So that [
w0

w1

]
=

[
N

∑N
i=1 xi∑N

i=1 xi
∑N

i=1(xi)
2

]−1 [ ∑N
i=1 yi∑N
i=1 xiyi

]
(3.5)

Back to the example dataset above (table 3.4), we have

N = 8∑N
i=1 xi = 1, 251∑N
i=1 yi = 429∑N
i=1(xi)

2 = 195, 901∑N
i=1 xiyi = 67, 247

Placing these values into formula 3.5, we have:[
w0

w1

]
=

[
8 1, 251

1, 251 195, 901

]−1 [
429

67, 247

]
(3.6)

Or w0 = -38.27 and w1 = 0.59. That means we have:

ŷ = −38.27 + 0.59x (3.7)

This result is visualized by the scatter plot (figure 3.3) in which the formula 3.7 is the blue line.

Now, back to the question that the weight of a person whose height is 170 cm is predicted by
replacing 170 for x in formula 3.7:

weight = −38.27 + 0.59 ∗ 170 = 62.03 kg

The example above is for the cases of one independent variable. For the cases of multi variables
(x1, x2, ..., xN) or so-called multilinear regression, the formula to compute the predicted value ŷ is:

ŷ = w0 + w1x1 + w2x2 + ...+ wNxN (3.8)
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Figure 3.3: Linear regression of the example dataset

3.2.1.2 Evaluation related to our work

In our work, these predicted values are the rates of PAHs, so that if we apply the multilinear
regression method, the formula will be:

ˆPAH = w0 + w1x1 + w2x2 + ...+ wNxN (3.9)

in which xi is variable of dimension i. For example, x1 stands for the density of the nurses.

As we have introduced above, in our work, we compare the predicted PAH values before ( ˆPAHb)
and after ( ˆPAHa) trying to add new nurses for the biggest reduction of these predicted PAH
values. The reduction rate at each BV can be mathematically presented by:

ˆPAHb − ˆPAHa = (w0 +w1x1 +w2x2 + ...+wNxN)b − (w0 +w1x1 +w2x2 + ...+wNxN)a (3.10)

As we only make changes on the density of nurses (represented by x1), equation (3.10) becomes:

ˆPAHb − ˆPAHa = (w1x1)b − (w1x1)a = w1(x1b − x1a) (3.11)

in which the density of nurses or the number of nurses per 10,000 people is computed as:

x1b =
Number of nurses

Size of Population
∗ 10, 000 (3.12)
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When we increase some nurses, for example A nurses, we have:

x1a =
(Number of nurses+ A)

Size of Population
∗ 10, 000 (3.13)

Apply (3.12) and (3.13) into (3.11), we have:

ˆPAHb − ˆPAHa = −w1 ∗
A

Size of Population
∗ 10, 000 (3.14)

In addition, ( ˆPAHb− ˆPAHa) presents the difference between rates of PAHs per 1,000 inhabitants.
Therefore, the expected number of PAHs to be reduced (ExpectedPAHReduction) is:

ExpectedPAHReduction = ( ˆPAHb − ˆPAHa) ∗
Size of Population

1, 000
(3.15)

Finally, applying (3.14) to (3.15), we have the result:

ExpectedPAHReduction = −w1 ∗ 10 ∗ A (3.16)

Since Equation (3.16) will be applied for every BV, it indicates that the expected numbers of
PAHs to be reduced are the same for every BV when we increase the same number of the nurses.
That is definitely not the answer we are looking for.

On the other side, it should be noted that we do not compute the ExpectedPAHReduction as the
differences between the actual numbers of PAHs before adding nurses and the predicted numbers
of PAHs after adding nurses because by with this approach the BVs to be selected for adding
nurses are actually the ones at which the differences (or the errors) between the actual values and
the predicted values of PAHs before adding nurses are the biggest. That does not give us the right
answer to our problem either.

3.2.2 K-nearest neighbors for regression

3.2.2.1 Introduction to K-nearest neighbors for regression

Another approach for regression method is K-nearest neighbors. The idea is that the similar
objects tend to return the similar responses to same events. To demonstrate how the K-nearest
neighbors for regression works, we consider another simple example predicting the people’s weights,
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Table 3.5: Example dataset to demonstrate K-nearest neighbors for regression

ID Height (cm) Age (years) Weight (kg)

1 172 30 55

2 180 34 59

3 177 36 62

4 176 26 60

5 168 23 45

6 171 32 58

7 175 28 ?

but this time besides their heights, we also have the information of their ages. The new example
dataset is provided as table 3.5 that we need to predict the weight of the person whose ID is 7.

To find the answer, we use a scatter plot to visualize the people by their heights and their ages.
These people are labeled by their IDs. As shown in the figure 3.4, person whose ID is 7 (called P7)
is nearest to the person whose ID is 4 (called P4) in term of distance so that we believe that the
weight of P7 is somewhat equal to the weight of P4. On the other words, we predict the weight
of P7 = 60 kg.

Figure 3.4: K-nearest neighbors regression of the example dataset

The method we use in the example above is called K-nearest neighbors for regression. The pa-
rameter K in this example has the value of 1, but it can be any small integer number such as 2,
3. In the cases that K > 1, the predicted values could be the mean values of the K neighbors.
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Back to the example above, with K = 2, the two nearest neighbors are P4 and P1. Therefore, the
predicted weight of P7 is:

Weight of P7 =
Weight of P4 +Weight of P1

2
=

60 + 55

2
= 57.5 kg

Generally, we have the formula for the mean value:

ŷ =
1

K

K∑
i=1

yi (3.17)

Moreover, instead of using the mean value as above, we can also take into accounts the distances.
By denoting wi as the way the distance between each neighbor (P1 and P4) to the target object
(P7) are taken into accounts, with i = 1, 2, ... K, then we can have:

ŷ =

∑K
i=1 wiyi∑K
i=1wi

(3.18)

There are many options computing wi. However, there is a rule that smaller distances (di) return
the bigger wi than the larger distances. One common method to compute wi is:

wi =
1

dαi

In which α is any positive scalar, but typically α = 1 or α = 2 [9].

Lastly, we have been mentioning about distances between of objects. However, we have not
mentioned how they are calculated. There are actually several methods to calculate distance d
between object A and object B. The common methods include euclidean distance (deuclidean),
Mahatan distance (dmahatan). Cosine distance (dcosine) which is computed from cosine similarity
(scosine) is another common method :

deuclidean =

√√√√ N∑
i=1

(xiA − xiB)2

dmahatan =
N∑
i=1

|xiA − xiB|

scosine = cos(α) =

∑N
i=1 xiAxiB√∑N

i=1(xiA)2

√∑N
i=1(xiB)2

dcosine = 1− scosine
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In the formulas computing the distances above, N is the number of dimensions/features. For the
two point A and B example above, N = 2 and we have the corresponding values:

deuclidean =
√

(x1A − x1B)2(x2A − x2B)2 =
√

(2− 4)2(5− 2)2 = 6

dmahatan = |x1A − x1B|+ |x2A − x2B| = |2− 4|+ |5− 2| = 5

scosine =
x1Ax1B + x2Ax2B√
x2

1A + x2
2A

√
x2

1B + x2
2B

=
2 ∗ 4 + 5 ∗ 2√

22 + 52
√

42 + 22
= 0.75

dcosine = 1− scosine = 1− 0.75 = 0.25

Finally, there is one note that we should normalize the dataset before applying k-nearest neighbors
so that there is no feature dimension that makes the other feature dimensions useless. For example,
we have a dataset that has two feature dimensions, one has the values ranging from 0 to 1,
while the other dimention has the values ranging from 1,000 to 2,000. If we apply the k-nearest
neighbors method without normalizing the dataset, then the first feature dimension has almost
no contribution to the algorithm.

3.2.2.1 Evaluation related to our work

In our work, the feature dimensions of the BVs such as such as the densities of nurses or the
levels of education are used to measure the distances between the BVs. To implement, we use
language R with distances library [72] that has two functions: (1) distances function to calculate
the distances between data points and (2) nearest_neighbor_search function to find the K nearest
neighbors from a matrix of distances. After evaluating all methods based on the evaluation and
validation approaches mentioned in section 3.1.2, we select euclidean distance and K = 5 for our
work. In particular, the predicted rates of PAHs ( ˆPAH) of a BV can be computed by the mean
(average) values of its 5 nearest BVs.

Back to our project that is to compare the predicted rates of PAHs before and after adding
nurses. At first, we compute the predicted rates of PAHs for all BVs before adding nurses. These
values are ˆPAHb. Then for each BV, we try to add new nurses, if at least one of its neighbors
is changed, then we can have the new predicted rate of PAHs for that BV, ˆPAHa. Finally, we
select the BVs for adding more nurses by the biggest reduction of the expected number of PAHs
(ExpectedPAHReduction).

ExpectedPAHReduction = ( ˆPAHb − ˆPAHa) ∗
Size of Population

1, 000
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At the beginning, this approach looked promising to us, but it actually does not work in our case
because of the following limitations:

• When the dimension of the variables (the number of the attributes) is high, then the neigh-
bors will not be able to be changed if we just make small change on one dimension (density
of nurses in our case)

• Also regarding to the dimension of the variables, changing the size of dimension means
changing the opportunities for the BVs to change the new predicted rates of PAHs. That
leads to the unstable results in our work.

3.2.3 Neural networks for regression

3.2.3.1 Introduction to neural networks

Neural networks could be very promising to any problem regardless of classification or regression.
To introduce about Neural networks we start with Gradient descent algorithm.

A. Gradient descent algorithm

In machine learning, we often have to solve the optimization problem of cost functions. For
example, for the linear regression above, the coefficient (w1) and intercept (w0) were found by
solving the minimum problem of the total square of the errors (formula 3.2). Moreover, the
optimization problem are solved by solving the formulas of the corresponding derivative functions
equal 0 (ex. formulas 3.3 and 3.4). However, solving the derivative problems are sometimes
difficult or even impossible. Therefore, gradient descent algorithm was introduced as approximate
solutions. To demonstrate how the gradient descent algorithm works, we consider a simple example
that is to solve the minimum of the function below.

f(x) =
1

2
(x− 1)2 − 2 (3.19)

Finding the solution to the optimization of f(x) by solving its derivative equals 0

f ′(x) = x− 1 = 0 or x = 1 (3.20)

Therefore, the minimum value of f(x) above is f(1) and it is -2. The solution can be presented
by graph (figure 3.5).
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Figure 3.5: Example of gradient descent algorithm

However, imaging that we were not able to solve f ′(x) = 0, we would apply the gradient descent
approach which is to find x∗ so that f ′(x∗) ≈ 0. In particular, gradient descent algorithm will run
a loop and at every step of the loop, it updates the x so that the new x gets closer and closer to
x∗. To formula how the algorithm works, we denote that at a point of time t, x has the value of
xt and the corresponding derivative f ′(xt). Now at the point of time (t+ 1), the new x has value
of xt+1 and corresponding f ′(xt+1). If xt+1 can be updated from xt:

xt+1 = xt + ∆ (3.21)

In order to f ′(xt+1) get closer to zero than f ′(xt),

∆ = −ηf ′(xt) (3.22)

In which η is a positive number and it is called learning rate.

To demonstrate how algorithm works, we are back to the example above (figure 3.5). Given that
xt = 0 and then f ′(0) = −1. If we select η = 0.5, we have

xt+1 = xt − ηf ′(xt) = 0− 0.5 ∗ (−1) = 0.5

Then f ′(xt+1) = f ′(0.5) = 0.5− 1 = −0.5. The new f ′(xt+1) is closer to zero than f ′(xt).

On the other side, with xt = 2, then f ′(2) = 1
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xt+1 = xt − ηf ′(xt) = 2− 0.5 ∗ 1 = 1.5

Then f ′(xt+1) = f ′(1.5) = 1.5− 1 = 0.5. The new f ′(xt+1) is also closer to zero than f ′(xt).

In summary, given that our approach for the loop is that the loop will stop after K steps, then
the gradient descent algorithm for the example above can be implemented as below:

Parameter: x0, eta, K
Result: x after K steps
x = x0

i = 0

while i < K do
derivative = x− 1

x = x− eta ∗ derivative
i = i+ 1

end
return x

Algorithm 5: Example of gradient descent algorithm after K steps

Figure 3.6: Local optimal problem of simple gradient descent algorithm [93]

In the example above, we introduce the most simple gradient descent algorithm which is for only
one variable. The same principle is applied for the cases of multi variables. However, in practice,
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this simple algorithm has many limitations, for example, the solutions found can be at the local
optimal rather than the global optimal (as shown in figure 3.6). To improve the learning speed as
well as to deal with the limitations, many optimization algorithms are introduced:

• Momentum [66]

• Nesterov accelerated gradient (NAG) [60]

• Adagrad [25]

• Adadelta [97]

• RMSprop [40]

• Adam [44]

• Nadam [24]

On the other hand, when we work with training data that has, for example, N data points. The
gradient descent algorithms are also categorized into three groups. The first group is called batch
gradient descent when all the N data points are used when the variables are updated - one step of
the loop mentioned. The second group is called stochastic gradient descent when only one data
point is used instead of N. The last group is called mini-batch gradient descent when the number
of data points is ranging from 2 to N-1. In addition, each time all the N data points are used to
train is called one epoch. In the cases that we use batch gradient descent, the number of epoch
equals the number of steps of the loop.

In this section, we have briefly introduced about the Gradient descent algorithm, in the next
section, we will introduce about Perception learning algorithm, another foundation component of
neural networks.

B. Perception learning algorithm

Together with the gradient descent algorithm, perception learning algorithm (PLA) could be
considered as another foundation of neural networks. To demonstrate how the PLA works, we
use a simple example of binary classification problem (figure 3.7). In particular, the work is to
classify the triangle point, with the question mark, to either the group of the small blue squares
or the group of the small red circles.

The approach of PLA is that from the training data which are already known as either blue
squares or red circles, we need to find a straight line that separates the blue squares from red
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Figure 3.7: An example of classification problem
[93]

Figure 3.8: A solution to classification problem
[93]

circles (figure 3.8). In this example, because the triangle point is in the part of red circles, it is
predicted as a red circle.

Mathematically, we denote fw(x) for the straight line above:

fw(x) = w1x1 + w2x2 + w0

Or in general,

fw(x) = wTx

in which, x0 = 1 is included in data point x

Moreover, if we assign 1 for the blue squares and -1 for the red circles then the class of a point x,
called label(x), will be

label(x) =

1 if fw(x) ≥ 0

−1 if fw(x) < 0

This equation can be shortened as

label(x) = sign(fw(x))

In which, sign is the function determines the sign of expressions, given that sign(0) = 1.

Now, given that we have a training dataset with N data points {xi, yi} where i = 1, 2, .., N. As
the label of a data point, yi will have a value of either 1 or -1. With any function fw(x) mentioned
above, consider the expression below

Ji = −yi ∗ sign(fw(xi))
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It can be easily proved that Ji receives value of 1 if xi is assigned to the wrong class and value of -1
if it is assigned to the right class. For example, if xi belongs to class 1, then yi = 1 or −yi = −1 .
However, it is assigned to the wrong class or we have sign(fw(xi)) = −1. Placing all these values
to Ji = −1 ∗ (−1) = 1

Extending the expression Ji, given thatM is the set of the data points which are assigned to wrong
classes, we can compute the total number of data points which are assigned to wrong classes.

Jw =
∑
xi∈M

Ji =
∑
xi∈M

(−yi ∗ sign(fw(xi))) =
∑
xi∈M

(−yi ∗ sign(wTxi)) (3.23)

Since Jw measures the total number of data points which are assigned to wrong classes, it becomes
the cost function of the binary classification problem. On the other words, the job becomes solving
the optimization problem. As the function sign makes it impossible to compute the derivative of
Jw, we change the cost function by removing sign, the new cost function becomes

Jw =
∑
xi∈M

(−yi ∗ wTxi) (3.24)

To solve this optimization problem or in other words to find values for w so that Jw gets the
minimum (or approximate) value, we can apply stochastic gradient descent introduced above. In
particular, with a data point (xi, yi) that is assigned to wrong class, we have the corresponding
cost function

Jw(xi, yi) = −yi ∗ wTxi

and its derivative by w
J ′w(xi, yi) = −yixi

Since we are applying gradient descent, the new wt+1 will be updated by

wt+1 = wt − ηJ ′w(xi, yi) = wt + ηyixi

In summary, the above algorithm of finding the appropriate w can be summarized as below.

In this section, we have briefly just introduced about the perception learning algorithm that is
the basic component of neural networks that is presented in the next section.

C. Feed forward neural networks

The perception learning algorithm above can be visualized as figure 3.9. This could be the simplest
neural networks model that have one layer besides the inputs and the output. In addition, this
layer has only one neural network unit.
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Data: Training dataset with N data points {xi, yi}
Result: The appropriate w
Randomly select w
while not reach the number of epoch do

nWrongClasses = 0

for each {xi, yi} ∈ dataset do
if yi <> sign(wTxi) then

w = w + ηyixi

nWrongClasses = nWrongClasses+ 1

end
end
if nWrongClasses == 0 then

Finish
end

end

Algorithm 6: Algorithm to find w

Figure 3.9: A simple neural networks model

The simple neural networks model is only to solve the simple problem. For the complicated cases,
we would need more layers (so called hidden layers) and at each layer we need more neural network
units. A neural network model where all the units of the previous layer are connected to all the
units of the next layer is called fully connected feed forward neural networks model (figure 3.10).
Moreover, the way the gradient descent works, the first vector W (W1 in figure 3.10) is updated
from the errors of the outputs, is done by the back-propagation algorithm [50].

On the other side, inside each network unit, there is a function (labeled f) such as the function
sign in the previous example. This function is called activation function. The common activation
functions include
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Figure 3.10: A sample fully connected feed forward neural networks model

- Binary step
- Linear
- ReLU
- LeakyReLU
- Sigmoid
- Tanh
- Softmax

Figure 3.11: A sample of overfitting

In addition, when we apply machine learning in general and neural networks in particular in our
project, we often face with a problem called overfitting. As it is visualized in figure 3.11, overfitting
happens when the model responds too closely or exactly to the training data, but fails to fit with
other data. There are several common solutions to the overfitting problem.
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• Simplifying training model or decrease the complexity of the model. There is no general rule
on how much to remove or how large your network should be. But, if your neural network
is overfitting, try making it smaller.

• Early stopping. Early stopping rules provide guidance as to how many iterations can be run
before the model begins to overfit (figure 3.11).

• Data augmentation or increase size of the training data if it is possible.

• Regularization. Regularization is a technique that adds a penalty term to the loss function.
The most common techniques are known as L1 and L2 regularization

• Dropouts. Dropouts modify the network itself by randomly dropping neurons from the
neural network during training in each iteration.

3.2.3.2 Evaluation related to our work

Figure 3.12: Neural network two hidden layers for regression

In the previous section, we have introduced neural networks, but they are for the classification
problem. For the regression problems like the one in our work, there are no activation functions
(no f in the network units) at the corresponding output layer.

Suppose that if we deploy the neural network with only one layer for regression, the predicted
values will be in a linear formula:

ˆPAH = w0 + w1x1 + w2x2 + ...+ wNxN

Compared this formula with the multilinear regression formula, they are the same. As explained
in the multilinear regression case above, we cannot use the neural network one layer regression
to solve our problem. That means we need at least one more hidden layer for our work (Figure
3.12). Moreover, since the output is regression, the loss function (or cost function) to be used is
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mean square error. In particular, since we use R language with keras library [27], our function to
build the model has the following template.

build_model<-function(var_dim, unit_n, layer_n,act_func,dropout_rate, reg_l2_rate,opt)

{

model <- keras_model_sequential() %>%

layer_dense(units = unit_n, activation = act_func, input_shape = c(var_dim)) %>%

for(i in 1: layer_n)

{

layer_dense(units = unit_n, activation = act_func) %>%

if(dropout_rate > 0)

{

layer_dropout(rate = dropout_rate) %>%

}

}

if(reg_l2_rate)

{

layer_dense(units = unit_n, kernel_regularizer=regularizer_l2(reg_l2_rate))%>%

}

layer_dense(units = 1)

model %>% compile(optimizer = opt,

loss = "mean_squared_error")

}

In the function above, there are some parameters:

• var_dim: number (dimension) of the variables;

• unit_n: number of units in the hidden layers.

• layer_n: number of the hidden layers.

• act_func: The activation function such as relu to be used at the hidden layers.

• dropout_rate: the dropout rate if dropout technique is used to avoid overfitting. It should
have the value between 0 and 1.

• reg_l2_rate: the rate of regularization l2 if regularization l2 technique is used to avoid
overfitting.

• opt : The optimization technique such as adam to be used
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Unfortunately, after trying with different models (or different parameters): more hidden layers,
different activation functions at the hidden layers as well as applying different techniques such as
L1, L2 regularization or dropout to avoid overfitting, we have failed to get the better results for the
predicted rates of PAHs compared with the support vector machine for regression (SVR) method
(Table 3.6). Another negative point of neural networks is that they work like “black boxes” on how
a certain output is produced and therefore it is very difficult to explain their outputs to others.
Hence, we think that the neural networks method is not the right method for our work.

3.2.4 Support vector machine for regression

3.2.4.1 Introduction to support vector machine for regression

In practice, support vector machine (SVM) has been applied widely in classification problem,
but it can also be used as a regression method. The method was introduced by Vapnik and his
colleagues [90] and has been applied in many fields such as financial forecasting [88]. In this paper,
we present the ideas of this method.

A. Linear cases:

Given a dataset {(x1, y1), (x2, y2), ..., (xn, yn)}, in which xi ∈ Rd and yi ∈ R. At first, the idea of
the support vector machine for regression (SVR) is to find the straight predicted line ŷ = wx+ b

that has two conditions:

• The straight predicted line is parallel as possible to the line y = 0;

• All the errors (differences) between the actual values yi and the predicted values ŷi are not
greater than a given ε (Figure 3.13)

Mathematically, the conditions can be formulated as a convex optimization problem (3.25) below:

minimize
1

2
w2

subject to

{
yi − wxi − b ≤ ε

wxi + b− yi ≤ ε

(3.25)

As it can be imagined, when the given ε is big enough, solving this optimization problem is
feasible. However, in most cases, this method does not return good predicted lines. Hence, a
“soft margin” loss function was introduced [22] to allow the cases that some errors are bigger than
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Figure 3.13: SVR - The first idea[73] Figure 3.14: SVR with slack variables[73]

the given ε. In particular, in the modified approach, slack variables ξi, ξ∗i are used to present
the differences between the errors and the given ε (Figure 3.14). Correspondingly, the original
optimization problem (Formula 3.25) above turns to the new one (Formula 3.26) below:

minimize
1

2
w2 + C

N∑
i=1

(ξi + ξ∗i )

subject to

{ yi − wxi − b ≤ ε+ ξi

wxi + b− yi ≤ ε+ ξ∗i
ξi ≥ 0

ξ∗i ≥ 0

(3.26)

In which, C is a constant that determines the trade-off between the flatness of the line and amount
up to which ε the errors are accepted.

The optimization problem (Formula 3.26) above can be solved by using dual formulation that
constructs a Lagrange function from both the objective function and the corresponding constraints.
In particular, the Lagrange function of formula 3.26 above is presented as below:

L =
1

2
w2 + C

N∑
i=1

(ξi + ξ∗i )

+
N∑
i=1

αi(yi − wxi − b− ε− ξi) +
N∑
i=1

α∗i (wxi + b− yi − ε− ξ∗i )

−
N∑
i=1

(ηiξi)−
N∑
i=1

(η∗i ξ
∗
i ) (3.27)
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By solving this mathematics optimization problem (Formula 3.27) [78], we have the result below:

w =
N∑
i=1

(αi − α∗i )xi (3.28)

and therefore, we have

ŷ = f(x) =
N∑
i=1

(αi − α∗i )xix+ b (3.29)

B. Non-linear cases:

Figure 3.15: SVR for non-linear cases [73]

As explained in the multilinear regression section, the linear case (Formula 3.29) does not work
in our case. However, we also can apply SVR for the non-linear cases in which the predicted
lines are not straight lines. In particular, for the non-linear problems, the way the method works
is to transfer the original independent variables x into a new coordinate system ϕ(x) so that in
the new coordinate system the non-linear problems turn to the linear problems (Figure 3.15).
Consequently, in the new coordinate system, the formula 3.29 to compute the predicted values ŷ
becomes formula 3.30 [88, 78, 73]

ŷ =
N∑
i=1

(αi − α∗i )ϕ(xi)ϕ(x) + b (3.30)

In practice, the number of the new dimensions of ϕ(x) is often very high or even infinite. Hence,
computing ϕ(x) from x becomes difficult or even unfeasible. Therefore, a technique called kernel
trick, K(xi, xj) = ϕ(xi)ϕ(xj), is applied to directly compute ϕ(xi)ϕ(x) rather than computing
all ϕ(x). Particularly, the following kernel functions are often used:
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Polynomial:

K(xi, xj) = (xi, xj)
d

Gaussian Radial Basic Function - RBF:

K(xi, xj) = exp

(
− (xi − xj)2

2σ2

)

3.2.4.2 Evaluation related to our work

Related to our work, to implement SVR, we rely on language R and the e1071 library [55]. In
particular, this library has a corresponding function svm that we need to provides the values for
the parameters corresponding to the kernel functions, C, σ, and ε. After testing all the kernel
functions, we have found that RBF returns the predicted values that are closest to the actual rates
of PAHs. In addition, comparing with the results from the other regression methods presented
previously, the predicted values by SVR using RBF are closest to the actual rates of PAHs (Table
3.6). More specifically, Table 3.6 presents the performance of the regression methods on our
dataset in which we use both root-mean-square error (RMSE) and mean-absolute error (MAE)
values for the performance evaluations:

Table 3.6: Performance evaluations of regression methods on our dataset

Method RMSE MAE

SVR using RBF 0.98 0.76

Multi-linear regression 1.04 0.82

K-nearest neighbors 1.03 0.80

Neural networks 1.13 0.87

Based on this result and the analysis for the possible application of the regression methods in our
work mentioned above, we have agreed that the SVR method is the best choice for our work.
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3.3 Extending support vector machine regression in recom-
mending the optimal actions targeting on the geographic
areas

As we mentioned in the introduction, the purpose of our work is to select the cross-border living
areas (fr. Bassins de vie - BVs) in Occitanie region, France for adding nurses for the most effective
PAHs reduction. In particular, we select these BVs by comparing the predicted rates of PAHs
before and after trying to add new nurses in every BV. The BVs to be selected are the ones that
return the biggest reduction of these predicted values. Hereafter we present the ideas in details.

3.3.1 Possible constraints

The first thing we need to consider is that there are some constraints on the number of nurses
to be added. The first constraint should be the budget that the health authorities can spend
for the health service improvement. This constraint indicates that the total number of nurses to
be added in the whole region is limited. Another constraint we must consider is to ensure equal
access to health care for the inhabitant living in the region. The later constraint can be defined
by (1) the maximum number of to-be-added nurses in each BV; and (2) making sure that in the
to-be-selected BVs, the densities of the nurses must not be greater than a given threshold. The
latter to make sure that we do not add nurses in the BVs whose densities of nurses are already
high. To sum up, we have three possible constraints in our work as below:

• The maximum number of nurses in total that can be added into the whole region. We denote
this constrain as maxGlobal

• The maximum number of nurses that can be added in each BV. We denote this constrain
as maxLocal

• The maximum density of nurses that can be reached in each BV. We denote this constrain
as maxLocalDensity
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Figure 3.16: Process flow to find the biggest reduction rate of PAH per to-be-added nurse and
best number of to-be-added nurses in each BV
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3.3.2 Best numbers of to-be-added nurses and the biggest PAH reduc-
tion rates

After defining the constraints, the second step is to find the best number of nurses to be added in
each BV. In particular, in this step, at each BV, we try to add nurses one by one until we reach
either the defined maxLocal or the maximum density of nurses maxLocalDensity. Each time
adding a nurse, we compute the reduction rate of PAHs per added nurse to identify at each BV
(1) the biggest reduction rate (denoted bestReductionRate); and (2) the best number of to-
be-added nurses (denoted bestNumber) corresponding to the bestReductionRate. The whole
process is described in the Figure 3.16.

In the process flow described in Figure 3.16, it should be noted that in our work, the PAHs are
the standardized rates per 1,000 people so that we need to compute the number of PAHs to be
reduced (variable PAH_No_changed in Figure 3.16) after increasing nurses in order to get the
reduction rate of PAHs per to-be-added nurse (rate). One important thing to note here is the
SVM function (SVM(densityNurse)) that actually the SVR method we mentioned in the previous
section. We firstly train SVR model using the dataset of PAHs and its potential determinants,
then we can get the predicted rates of PAHs before and after trying to add nurses to the BVs.

The final result of this step will return the list of all the BVs with their information of bestRe-
ductionRate and bestNumber of to-be-added nurses.

3.3.3 BVs to be selected

After having the values of bestReductionRate for all the BVs, the task to find BVs for adding
new nurses becomes easy. More specifically, the BVs to be selected are the ones whose bestRe-
ductionRate are the biggest. However, to avoid the cases that in the BVs to selected, the actual
rates of PAHs are already small, we add one more condition to the BVs to be selected that we
only select a BV if its actual rate of PAHs is higher than its predicted rate of PAHs (actualPAH
≥ predictPAH in Figure 3.17). The process of finding BVs for adding nurses is described in Figure
3.17. In this process, we firstly order the list of the BVs descendingly by their bestReduction-
Rate (function orderBVsByBestDeduectionRate in Figure 3.17). After that we select the top first
BVs until either we reach the maximum number of to-be-added nurses (maxGlobal) in the whole
region or we reach the last BVs in the list (reach the total number of BVs, nbBVs in Figure 3.17).
There is a note in Figure 3.17 that BV(Attr, index) function returns the value of the attribute
(Attr) of the BV associated with its index.

The output of this step is a list of the to-be-selected BVs (selectedBVs in Figure 3.17) for adding
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Figure 3.17: Process flow to select the BVs for adding more nurses

more nurses and the best number of to-be-added nurses in each BV. There is a point that this
algorithm might return the total number of to-be-added nurses little more than the constraint
on the maximum number of can-be-added nurses in the whole region (maxGlobal). But this
does not cause any problem as we also know how many to-be-added nurses in every BV and the
decision makers can decide to either increase budget or adjust the number of to-be-added nurses
in the last BV in the selected list.

73



3.4 Result and discussions

As mentioned in the previous section, the output of the algorithm is the list of BVs where nurses
should be added and the number of nurses to be added in order to obtain the highest decrease
in the number of PAH. For better visualization for the decision makers, we rely on spatial maps.
For example, the map below (Figure 3.18) recommends the BVs to increase nurses (the darker
colors indicate stronger recommendation) and the optimal number of nurses to be added (the
labels in red) should be added in those BVs for the biggest reduction of PAH according to the
corresponding constraints.

Figure 3.18: BVs to increase nurses and the best number of nurses to add for the biggest reduction
of PAH recommended by SVR

Now let us compare our approach with two approaches using simple descriptive statistic methods.
The first map (Figure 3.19) indicates top 15 BVs recommended by the actual rates of PAHs with
the condition on the densities of nurses. Specifically, the BVs recommended are the ones whose
the actual rates of PAHs are the biggest with the condition that the densities of nurses are smaller
than 25 nurses per 10,000 inhabitants. Similarity, the other map (Figure 3.20) indicates top 15
BVs recommended by the lowest densities of nurses with the condition that the actual rates of
PAHs are higher than 4.5 PAHs per 1,000 inhabitants. As it can be seen through the maps, the
BVs selected by approach using SVR are different to the ones selected by the descriptive statistic
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Figure 3.19: BVs to increase nurses recommended
by the high rates of PAH

Figure 3.20: BVs to increase nurses recommended
by the low densities of nurses

methods.

In addition, as our algorithm also returns the rates of PAH reduction per to-be-added nurse, we
can assess the effectiveness of the approach using SVR by comparing it with the two descriptive
statistic methods. For example, in the Table 3.7, if we increase 9 nurses (number of nurses - No
Nurses in Table 3.7), we expect the number of PAHs to be reduced is 6.3 (No PAHs in Table 3.7),
and therefore the rate of PAH reduction per to-be-added nurse is 6.3/9 = 0.7 (Reduction Rate in
Table 3.7)

Table 3.7: PAH reduction per to-be-added nurse by SVR

No Nurses No PAHs Reduction
Rate

9 6.3 0.70

15 9.7 0.65

20 12.4 0.62

24 14.4 0.60

30 17.0 0.57

It should be noted that the descriptive statistic methods do not support to compute the rates of
PAH reduction per to-be-added nurse. Therefore, for the purpose of comparison the effectiveness
of different approaches, we use the reduction numbers of PAHs from the approach using SVR, we
can obtain the rates of PAH reduction per to-be-added nurse for the selected BVs as shown in
Tables 3.8 and 3.9.

By comparing the results in the Table 3.7 with the results in the other Tables (3.8 and 3.9), we
can somehow confirm the effectiveness of the approach using SVR for selecting the BVs to increase
nurses.
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Table 3.8: PAH reduction per to-be-added nurse
recommended by high rates of PAHs

No
Nurses

No
PAHs

Reduction
Rate

9 2.47 0.27

14 5.30 0.38

19 6.09 0.32

24 7.80 0.32

30 9.54 0.32

Table 3.9: PAH reduction per to-be-added nurse
recommended by low densities of nurses

No
Nurses

No
PAHs

Reduction
Rate

10 0.42 0.04

16 2.84 0.18

19 3.19 0.17

25 5.29 0.21

30 5.73 0.19

3.5 Conclusions

In this chapter, we have presented our approach of machine learning in improving health care
services. In particular, we firstly evaluated the potentials as well as the performances of some
common regression methods including multilinear regression, k-nearest neighbors, neural networks,
support vector machine for regression (SVR). Secondly, as the most suitable method, SVR has
bee extended in our work by integrating the constraints, which are related to the budget (or the
maximum number of nurses to be added) and the equality of health care access for the inhabitants
in the region regardless of their geographical and socioeconomic situation. Our goal of our work is
a decision support system that recommends to the local health authorities for health care service
improvement in general and nurse incremental in particular. As the result, our works are not
only to select the living areas (fr. Bassins de vie, BVs), but also to recommend the number of
to-be-added nurses in each BV for the biggest reduction of the number of potentially avoidable
hospitalizations (PAHs).

In addition, our approach is applied to the Occitanie region, but it can be applied to other regions
or extended at the national level or even to other countries. Moreover, this approach could be
applied to other health care policy issues, such as the reduction of hospital re-admissions or access
to innovation. In particular, our approach has led to a start-up project in France.

Although our works are promising, we still have limitations. One of the limitations is that in our
opinion, some potential factors of PHAs have not been taken into account. In particular, living
conditions related to environment such as pollution and temperature have not been included while
it is clear that there are strong impacts of extreme cold and hot temperature (or heatwave) to
human health. In other words, extreme temperature could be one potential factor associated with
high rates of PAHs. Therefore, our future work is to measure the impact of the extreme temper-
ature to PAHs as well as to include this environmental data in our approach above. However,
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while we collected the temperature data measured hourly by sensors at the weather stations, the
temperature values are discontinuous (or missing). Therefore we firstly need a reliable missing
temperature imputation that is presented in the next chapter.
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Chapter 4

Missing temperature imputation:
improvement by combining spatial
interpolations and time-series models
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4.1 Introduction

In previous chapter, we mentioned that we would like test new determinants of PAHs related to
the environment and weather conditions. That is because it is clear that temperature, especially
temperature extremes, have negative impacts to human health. For example, the extreme heat
(or so called heatwave) that occurred in summer 2003 in France caused about 15,000 more deaths
than expected in France (an increase of 55%) [29]. Because of these impacts and also because
global warming makes these heatwaves more frequent, there are more and more studies that have
been conducted to assess the impacts as well as to search for effective solutions to reduce them.
In these researches, the temperature values measured by sensors at weather stations are used
as the main data source. However, for many reasons including running out of batteries or losing
connections to the stations, the values measured at these stations are sometimes discontinuous. In
other words, there are missing values for temperatures measured at the weather stations. On the
other hand, the way we treat these missing temperature values can have an impact on the accuracy
of the studies. For example, in our work, to measure the impact of extreme hot temperature (or
heat waves) to human health in the French context, we need to define the heatwave events at
which a difference of 0.5◦ C can lead to the definition of a heatwave or not [89]. Therefore, a
reliable missing data imputation is often needed as one preprocessing step for the temperature
data collected at the weather stations.

In the literature, there are many approaches to deal with missing weather temperature data.
The approaches can be as simple as ignore the missing values or fill in the missing values with
statistical values like the mean, median or mode values or with the values standing just before
or after the missing values. Approaches using machine learning methods can also be applied to
fill in these missing temperature values. These methods are linear regression [61] or k-nearest
neighbors [10] or more complicated approaches like support vector machines [67] or different types
of artificial neural networks [1]. However, the temperature data measured at weather stations
is spatio-temporal data which has both a spatial component and a temporal component. These
components can be exploited in the missing data imputation. More specifically, the spatial com-
ponent can be exploited in the missing data imputation because there is a correlation between
data measured at the same time at nearby stations (so-called spatial autocorrelations). In general,
the methods that exploit spatial autocorrelations are called spatial interpolation methods which
include Inverse Distance Weighted (IDW), Spline, Kriging, and others. On the other side, the
temporal autocorrelation of the spatio-temporal data can be also exploited to fill in the missing
values. This temporal autocorrelation exists due to internal structure of the time-series data. This
internal structure consists of both seasonality and trend. The seasonality indicates that there is a
repetitive, predictable pattern in the value series while the trend tells us the tendency of the value
series to increase or decrease over time. The most common method to work with time-series data
is the Autoregressive Integrated Moving Average (ARIMA) model. In literature, both the spatial
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interpolations and time-series models are used, but separately.

To select the more reliable method in missing temperature imputation, we first compare the
quality performance of two different methods representative for both spatial interpolation methods
and time-series models. These methods are IDW and ARIMA model respectively. In addition,
as both approaches exploit only one different dimension of the spatio-temporal data, we also
propose a novel approach that combines these methods to improve the quality performance. The
performances of all the methods above are evaluated using the root mean square error (RMSE)
between the estimated temperature and the observed temperature at the weather stations. The
chapter is organized as follows. Section 2 briefly introduces the IDW method and ARIMA model
as well as the dataset and the evaluation method we use for the experiments. Section 3 presents
the experimental results the two methods above as well as the method we proposed. Section 4
will be the conclusion.

4.1.1 Dataset

Figure 4.1: Locations of 605 weather stations in Metropolitan France

To conduct the experiment, we collect the temperature data which is measured in Celsius from the
website French infoclimat [42], on which, besides the hourly-measured temperature, other weather
data such as wind speed or precipitation are also available. More specifically, the temperature
data we used were the values hourly-recorded in May 2019 at the weather stations located in
Metropolitan France. Moreover, we also conducted data cleaning by following steps:
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1. Removing error-recorded values which are higher than 50.

2. Using the absolute z-score of 3 and higher at values measured at the same time (same day,
same hour) to mark potential outliers.

3. Manually verifying the potential outliers as error-recorded values by looking at the other
values measured at the same station.

In addition, 32 stations on which the number of recorded data over time is small (less than 300
hours over the 744 hours) are also excluded. After the cleaning step, the final number of stations
is 605 and their locations are visualized in the map below (Figure 4.1). In addition, with these
605 stations, the percentages of missing values at the stations range from 0% to 51.6% with the
median and the mean values are 2.8% and 5.2% respectively.

4.1.2 Evaluation and validation methods

To evaluate the performance of the methods above, we use root mean square error (RMSE)
between the estimated temperature and the observed temperature at every weather station of all
605 stations. On the other side, our experiments were validated with the leave-one-out method.
More specifically, when we compute the estimated temperature at a time slot at a station (specific
hour h, day d, station s), for any approach, we build the training data by removing the observed
temperature value at that time slot of that station.

4.2 IDW method and ARIMA model

4.2.1 IDW method

As mentioned in the introduction, the values of temperature measured at nearby stations are
correlated to each other. The Inverse Distance Weighted (IDW) method exploits this spatial
component of the data. More specifically, the spatial interpolation method estimates an unknown
value at a location using the known values at nearby locations. In this method, the distances
between the location of the unknown value and the locations of known values are also taken into
accounts. In particular, this method is based on the principle that the greater the distance, the
less influence the known values have on the estimated value. This principle forms the following
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formula to estimate the unknown value, represented by v:

v =

∑n
i=1( vi

dpi
)∑n

i=1( 1
dpi

)
(4.1)

In formula (4.1), vi are the known values, di are the distances from the unknown values to the
known value i. Distances are usually taken into accounts with a power p of 1 or 2 for square
distances.

For example, we need to estimate the unknown value representative, marked with a question mark,
with n=4, denoting the neighboring known values as shown in figure below. These known values
are v1=31, v2=34, v3=30, and v4=29. We also know the geographic distances from the unknown
location to the known locations which are d1=4, d2=5, d3=7, and d4=8 respectively. If we select
p=2 then the unknown value v will be:

v =

∑4
i=1( vi

d2i
)∑4

i=1( 1
d2i

)
=

31
42

+ 34
52

+ 30
72

+ 29
82

1
42

+ 1
52

+ 1
72

+ 1
82

As IDW is simple and straightforward, it and its variants have been applied in a wide range of
applications, especially related to environmental data such as estimation of spatial variability of
rainfall [46] or in spatial mapping of coastal water quality patterns [83]. Related to our missing
temperature imputation work, we fill the missing temperature values of a station by using the
known values measured at the same time at the nearby stations.

4.2.2 ARIMA model

The method in the previous section is exploiting the spatial component of the hourly measured
temperature data. This section is about a method exploiting the temporal component of the
spatio-temporal data. Since the temperature is measured (observed) hourly at the stations, this
data is a univariate time series. This specific univariate time series data has a seasonality, since
the temperature is lower at night and higher when it gets close to mid-day. There might be also
a trend at the beginning and ending of a season. For instance, the temperature gets hotter day
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after day at the beginning of summer. One common method to deal with time series data could
be Box-Jenkins ARMA model [15]. This ARMA model is a combination of the Autoregressive
(AR) model and Moving Average (MA) model.

4.2.2.1 Autoregressive (AR) model

The first part of the Box-Jenkins ARMA model is Autoregressive (AR) model. In this model,
the time-series value at t denoted as Xt can be estimated using previous values through a linear
regression model:

Xt = b+

p∑
i=1

ΦiXt−i (4.2)

In which:
- Xi are the time series values
- b is the intercept
- Φi are the parameters of the model
- p is called the order of the model

For example, the following AR(1) model, here the number 1 indicates the order of the model, fits
with a given training dataset.

Xt = 2 + 4Xt−1 (4.3)

Then, to predict the value at t = 10, we use the value at t = 9. For example, if X9 = 5, then, by
placing these numbers to formula 4.3, we have:

X10 = 2 + 4X9 = 2 + 4 ∗ 5 = 22

4.2.2.2 Moving Average (MA) model

The other part of Box-Jenkins ARMA model is Moving Average (MA) model. In MA model, the
time-series value Xt is predicted using the mean value and the previous errors through the formula
(4.5) below.

Xt = µ+

q∑
i=1

θiξt−i (4.4)

In which:
- Xt is the predicted time-series value
- µ is the mean value of the series
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- θi are the parameters of the model
- ξi are the errors of previous predictions
- q is the order of the model.

For example, from a given dataset, a the following MA(1) model, the number 1 here also indicates
the order of the model, is found a the best fit.

Xt = 10 + 0.5ξt−i (4.5)

As mentioned, 10 in formula 4.5 is the mean (average) value of the time-series. Also, given that
at t = 9, the observed value X9 = 5 and the predicted value X̂9 = 4. That means the error at
t = 9, ξ9 = 5− 4 = 1. By placing these numbers into formula 4.5, we have the predicted value at
t = 10

X10 = 10 + 0.5ξ9 = 10 + 0.5 ∗ 1 = 10.5

4.2.2.3 ARMA model

When combining AR model and MA model, we have ARMA model and the new formula to
estimate Xt is:

Xt = b+

p∑
i=1

ΦiXt−i +

q∑
i=1

θiξt−i (4.6)

4.2.2.4 ARIMA model

Moreover, the ARMA models above are supposed to run on stationary time series or more specif-
ically, the time series should have properties that are the mean, variance and autocorrelation
structure do not change over time. That is not always the case. Therefore, to achieve stationary
series before applying the ARMA models, it is recommended to transform from the non-stationary
series Xt to the new one Zt by following:

Zt = Xt −Xt−1 (4.7)

This step is also called differencing. For example, given that we have a time-series dataset X =
{1, 2, 3, 4, 5, 6}, after a differencing step, we achieve a new time-series dataset Z = {2-1, 3-2, 4-3,
5-4, 6-5} = {1, 1, 1, 1, 1}.

This differencing can be repeated for several times until achieving stationary series. This additional
step adds letter I standing for Integrated to ARMA model so that it becomes ARIMA model.
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Furthermore, ARIMA models are mathematically written as ARIMA(p, d, q) in which p, and q

are the orders of AR models and MA models respectively, and d is the number of times we need
to take the differencing step to achieve stationary series.

In application, the ARIMA model can be applied in many fields such as energy [75], real-estate [68],
or in health science [51]. In our work, we apply ARIMA model to fill in the missing temperature
values at each weather station using the time-series temperature data measured at that station
overtime.

4.3 Experimental results and an improvement approach

4.3.1 Experiment implementations

Our experiments are conducted using R language and available libraries to apply IDW method
and ARIMA models.

For the IDW method, we use the “idw” function of the “gstat” package [64, 35] using 2 as the
power p. In particular, to estimate the temperature at hour h of day d at station s, we apply
gstat :: idw function with the training data is the observed data hourly-recorded at hour h of day
d at all the other stations except station s. The details of the process is described in the flowchart
provided (Figure 4.2). Note that, as mentioned in the dataset section, the observed data we used
are recorded in May 2019, so that the number of days (variable d) of the month is 31, while the
hour (variable h) is from 0 to 23 and the number of stations (variable s) is 605.

On the other side, to measure the performance of the ARIMA model on the time series data
that was hourly-recorded at all 605 weather stations, we use method “na.kalman” function of the
“imputeTS” package [57]. Particularly, for any station s, we apply the imputeTS :: na.kalman on
the time-series data recorded at that station to estimate the temperatures. More specifically, to
estimate the temperature at hour h of day d at station s, we build the training data by removing
the observed temperature recorded at hour h of day d from the observed temperatures of the
station s before applying the ARIMA model. The details are presented in the flowchart provided
in figure 4.3. Note that, In this flowchart, when we apply “na.kalman” function, to simplify the
work, we choose "auto.arima" model or in other words we let the package itself select the values
for parameter set (p, d, q).
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Figure 4.2: Programming flowchart of experiment using IDW. observed_data: temperatures
hourly-recorded at 605 weather stations in May 2019. observed_hour_data: temperatures
recorded at hour h of day d at 605 weather stations. training_data: temperatures recorded
at hour h of day d at all the stations except station s. estimated: temperature estimated by
gstat :: idw method using the training_data. estimated_data: estimated temperatures of all
605 weather stations in May 2019

4.3.2 Experimental results

For both the approaches above, after having all the estimated values, we compute RMSEs between
them and the observed values of all 605 weather stations. Particularly, for the IDW method, the
RMSEs have a median value of 1.26 and vary between 0.3 and 11.56 while for the ARIMA model,
the corresponding values are 0.75, 0.38, and 1.51 respectively. In addition to these numbers, the
boxplots [Figure 4.4] clearly show that the RMSEs of the ARIMA model (labeled ARIMA in
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Figure 4.3: Programming flowchart of experiment using ARIMA model. observed_data: tem-
peratures hourly-recorded at 605 weather stations in May 2019. observed_station_data: tem-
peratures hourly-recorded at station s in May 2019. training_data: temperatures recorded at
station s in May 2019 except the one recorded at hour h of day d. estimated: temperature esti-
mated by imputeTS :: na.kalmanmethod using the training_data. estimated_data: estimated
temperatures of all 605 weather stations in May 2019

figure 4.4) are smaller than the RMSEs of the IDW method (labeled IDW in figure 4.4). More
particularly, at 92,1% (557 out of 605) stations, the RMSEs of ARIMA model are smaller than the
RMSEs of IDW method. Furthermore, with the ARIMA model, 98.3% (595 out of 605) stations
have RMSEs smaller than 1 while with the IDW method, the corresponding number is only 30%
(181 over 605). In conclusion, we can say that in missing temperature imputation, the approach
using the ARIMA model generally performs better than the approach using the IDW method.
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Figure 4.4: Quality performance comparison between different approaches for missing temperature
imputation. RMSE: Root mean square error between estimated temperatures and observed
temperatures at 605 weather stations. IDW: Results from IDW method. IDW.LM: Results
from the linear regression model using the results from IDW method as independent variables.
ARIMA: Results from ARIMA model. ARIMA.IDW.LM: Results from the linear regression
model using the results from both IDW method and ARIMA model as independent variables.
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4.3.3 Possible improvement approach

As mentioned in the introduction, both approaches have limitations as each of them exploits only
one dimension of the spatio-temporal data, which is either the spatial component or temporal
component. Therefore, to improve the performance further, we developed an integrated approach
that combines the strengths of both approaches to tackle the spatio temporal dimensions together.
Specifically, in our approach, we firstly consider the estimated values by the IDW method as an
input of an additional machine learning method. As it can be seen at the boxplots of RMSEs
using the IDW method (Figure 4.4), we have high values for RMSEs. One reason is that when we
apply IDW method directly, the other conditions such as the elevations of stations are not taken
into accounts. Moreover, after examining the results, we have found that the estimated values and
the observed values are highly correlated. In particular, the pearson correlation values between
the estimated values and the observed values at 605 weather stations have the min and the mean
values of 0.69 and 0.97 respectively. Therefore, we choose linear regression model as an additional
machine learning method to improve the performance in missing temperature imputation. More
specifically, to estimate the temperatures, the estimated values resulting from the IDW method are
used as the independent variables in this linear model. In addition, the observed times of the day
should be added into the linear model because there are patterns between the temperature and the
time of the day (temperatures are colder at night and warmer at noon). However, instead of using
directly these hourly values (from 0 to 23), we use the absolute values of hours after subtracting
the value 12 (thus the new values are all between 0 and 12) as the additional independent variables.
Mathematically, at each weather station, the new estimated values is predicted by the formula
(4.8).

estimate = b0 + b1 ∗X1 + b2 ∗X2 (4.8)

In formula 4.8,
- X1 are the absolute values of hours after subtracting the value 12
- X2 are the estimated values resulting from the IDW method

As shown by the boxplots of RMSEs (Figure 4.4), the performance of the new approach (labeled
IDW.LM) is much better than the original IDW result (labeled IDW). More specifically, with
the new approach, the new RMSEs have a median value of 0.94 and vary between 0.26 and 3.05
compared with the ones of original IDW result which are 1.26, 0.3 and 11.56 respectively.

Continually, we also add the estimated values of the ARIMA model as a new additional indepen-
dent variables to the linear regression model above. Or in other words, the formula (4.8) becomes
formula (4.9) below.

estimate = b0 + b1 ∗X1 + b2 ∗X2 + b3 ∗X3 (4.9)

In which,
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- X1 are the absolute values of hours after subtracting the value 12
- X2 are the estimated values resulting from the IDW method
- X3 are the estimated values resulting from the ARIMA model

Figure 4.5: The root mean square errors (RMSE) of all the stations applying our approach.

The results of this approach, as shown in figure 4.4 (labeled ARIMA.IDW.LM), have been im-
proved. Particularly, compared with the orginal IDW method, the new approach performs better
at all 605 stations. On the other hand, compared with the ARIMA model, the new approach
performs better at 604 over 605 stations. For the only one station left, both the new approach
and the ARIMA model return the same RMSE which is 1.03. More specifically, with the new
approach, the first quartile, the median and the third quartile of the RMSE values are 0.58, 0.66
and 0.73 respectively while the corresponding values resulting from the ARIMA model are 0.68,
0.75 and 0.82 respectively. Furthermore, the map (Figure 4.5) shows the RMSE values of this new
approach of all the weather stations. Lastly, to verify whether or not there are patterns of the
performance of our approach related to the locations of the weather stations, we use GeoDa tool
[5] to measure the global spatial autocorrelation of the RMSE values. With the spatial weight
matrix that is built with the 5 nearest neighbors and the weights are the inverse distances with the
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power of 2, the tool returns the pseudo p-value of 0.345. This high pseudo p-value statically means
that we are failed to reject the randomness of the quality performance on the weather stations in
term of their spatial locations.

4.4 Conclusion

In this chapter, we have presented two different approaches using spatial interpolation methods
and time series models for missing temperature imputation. In particular, we measured the
quality performance of the IDW method and the ARIMA model respectively. To conduct the
experiments, we collected the temperature data that was hourly-recorded in May 2019 from more
than 600 weather stations in Metropolitan France. The results show that the ARIMA model
performs much better in this type of application. We also bring a new idea to improve the
performance. Specifically, instead of applying directly the IDW method or the ARIMA model, we
firstly compute the estimated values by these methods and then use them as the input variables of
an additional machine learning method. With a simple linear regression model, the performance
has been improved. Part of future work includes evaluating other machine learning methods for
regression such as neural networks for regression, and evaluate their potential added value in
missing temperature data imputation. In addition, it is possible to apply our approach to other
environmental spatio-temporal missing data such as air pollutants.

Now, we are back to our main work related to PAHs. Although our proposed approach for
missing temperature imputation is more reliable, the goal of measuring the impact of the extreme
temperature to PAHs has not been obtained because of the limitation of the PAH dataset we
have. Particularly, in the PAH dataset, the hospital admission dates of PAH patients are monthly
instead of daily. On the other side, the lag of the extreme temperature impacts to human health
could be for only several days. Therefore, we keep the work of measuring the impacts of the
extreme temperature to PAHs for the future when we can obtain the more detail PAH data.

On the other side, as mentioned in chapter 1, improving the coordination between the health
care providers could lead to the reduction of PAHs. Therefore, we approach of grouping hospitals
into communities so that the hospitals within the communities could share medical records and
therefore provide efficient and high-quality treatments to the patients. This work is presented in
the next chaper.
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Chapter 5

Graph clustering approaches for hospital
communities
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5.1 Introduction

In chapter 3, we have presented an approach of machine learning in building a decision support
system for the reduction of PAHs. In particular, we extended support vector machine for regression
to select the geographic areas and the number of nurses to be added for the highest reduction in
term of number of PAHs. In this chapter, we present another approach of machine learning that
could lead to the reduction of PAHs.

Particularly, it is a noticeable fact that patients do not visit the same hospitals every time. There
are many reasons for that. For example, patients have changed addresses, they are not happy with
the service of the previous hospital, or they need to seek specialized care in a tertiary hospital. In
such cases, it is clear that the treatment would be more efficient and the risk to patients’ health
could be eliminated or reduced if the later hospitals were able to access the medical records of the
patients at the previous hospitals. In other words, there is a need to allow information technology
systems to share medical records among hospitals. However, it is neither necessary nor practical
for all hospitals in France to be grouped as one because it would be costly while some hospitals
will never share any patient. Therefore, health authorities are interested in building hospital
communities so that medical records can be shared among the hospitals in those communities.

In the meantime, in the French context, public hospitals are already grouped into regional hospital
groups (fr. Groupements hospitaliers de territoire - GHT). As these GHTs are proposed by the
regional health agencies (Agences régionales de santé - ARS), these GHTs have limitations due
to the administrative boundaries. In addition, in these GHT, private hospitals are not included.
Therefore, a scientific approach at the national level for all hospitals types is of high interest to
hospitals, health authorities as well as health scientific communities.

On the other side, in France, a national hospital discharge database (fr. Programme de Médical-
isation des Systèmes d’Information - PMSI) is available1. This PMSI database stores discharge
data from all French public and private hospitals. In particular, this database contains a record
for each acute inpatient stay2 [13]. In other words, the patients’ pathway can be described. For
example, a patient P has the pathway such as h1→ h2→ h2→ h1→ h2 in which h1 and h2 are
the hospitals the patient has gone to.

To group hospitals into communities we could use graph clustering methods. Particularly, in
our approach, patients’ flows between hospitals are represented by an undirected graph in which
the nodes represent hospitals and the edges represent the size of patient flows (Figure 5.1). For

1Upon registration with and payment to a habilitated provider, or through collaboration with a French university
hospital health information management department

2There are about 25 million records per year
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example, the pathway of patient P above would be plus 3 (2 for h1 - h2 and 1 for h2 - h1) for the
edge between h1 and h2 on the undirected graph.

Figure 5.1: Approach using graph clustering approaches for hospital communities

Based on the undirected graph, the goal of our work is to group hospitals into communities, for
example, presented in different colors in figure 5.1. To achieve this goal, two different graph
clustering methods, spectral clustering and Louvain in particular, are implemented and their
performances in terms of quality on our dataset are compared. Particularly, multi criteria are
used to evaluate the performances. In addition, in our works, we need to try several options of
grouping hospitals into the communities. One option is that each final clusters must contain a
public University Hospital (fr. Centre Hospitalier Universitaire - CHU). These constraints are
added into our work by customizing the graph clustering method. Our work is presented in this
chapter which is organized as follows. The introduction section is to deliver the information about
the dataset as well as the evaluation method to be used. Section 2 briefly introduces two graph
clustering methods to be applied. Section 3 presents the experimental results together with the
discussions.

5.1.1 Dataset

As mentioned in the introduction section, our work is based on the PMSI database system which
keeps record of every hospitalization of any patient at both public and private hospitals. This
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database system allows us to extract the flows of patients between hospitals. In particular, the
patient flows of hospitalizations in three continuous years, 2016 to 2018, are extracted. This
dataset contains a total of 1,777 hospitals, either public or private, in France. Among these
hospitals, the total number of times patients changed hospitals is 13,094,068. Other descriptive
information of the dataset is provided below (Table 5.1).

Table 5.1: Descriptive information of the graph presenting patient flow dataset

Number of nodes 1,777

Number of edges 290,707

Max value of weights 34,248

Min value of weights 1

Mode value of weights 1

Median value of weights 2

Total weight 13,094,068

5.1.2 Evaluation for hospital communities

The modularity value is one criterion that is used to evaluate the graph clustering methods. The
modularity has values ranging from -1 to 1 and the higher values indicate the better results in
graph clustering. In section 5.2.3, we explain in details how the modularity values are computed.
On the other side, since we are grouping the hospitals into the communities for the purpose of
effectively sharing medical records, we also use the of percentage that the previous hospitals located
outside the communities to evaluate the efficient of the methods. This percentage value indicates
the rate the hospitals cannot access to the patients’ medical record from previous hospitalization
after obtaining the communities. Therefore, the methods return smaller values for this percentage
are the better methods. There is also the fact that the number of hospitals in each community has
the impact to these two values above. For example, a community structure that has one very big
community containing almost all the hospitals while other communities contain only one hospital
naturally gives the highest values for the percentage value above. Therefore, the balance in term
of number of hospitals in each communities should be taken into account when we conduct the
evaluation.
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5.2 Graph clustering methods

Graph clustering is also known as graph partitioning or community detection has been studied and
applied in many domains including social network [81], chemical informatics [47], computer vision
[77], Many graph clustering methods have been proposed, including random walk based methods
[39], spectral clustering [92, 37], modularity based methods [91]. In our work, we consider two
approaches which are the spectral clustering method and a modularity-based or Louvain method
in paricular. In this section, we briefly present the details of these two method.

5.2.1 Graph notation

A graph can be presented as G = (V, E) where V = {v1, v2, ..., vn}, is a set of nodes or vertices
and E is a set of edges which are two-element subsets of V like {vi, vj}, with vi, vj ∈ V. In the case
of weighted graph, each edge carries a non-negative weight wij > 0. A matrix W = (wij) where i,
j = 1, ...,n is called weight matrix. Furthermore, if the graph is an undirect graph then wij = wji.

On the other side, a node vi ∈ V has a degree di which is defined by:

di =
n∑
j=1

wij

A diagonal matrix D with the degrees d1, ..., dn on the diagonal is degree matrix

For example, the undirected weighted graph below (Figure 5.2) has the weight matrix W and the
degree matrix D as follows:

Figure 5.2: An example undirected weighted graph
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W =



0 10 12 0 0 0

10 0 13 0 0 0

12 13 0 3 2 0

0 0 3 0 15 9

0 0 2 15 0 17

0 0 0 9 17 0



D =



22 0 0 0 0 0

0 23 0 0 0 0

0 0 30 0 0 0

0 0 0 27 0 0

0 0 0 0 34 0

0 0 0 0 0 26


Moreover, graph clustering is a process of partitioning a graph into sub graphs. Mathematically,
if we split the graph G above into K sub graphs whose sets of the nodes are A1, ..., Ak, then we
have A1 ∪ A2 ∪ ...Ak = V and Ai ∩ Aj = ∅ with any i 6= j and i, j = 1, ..., K. To measure the
qualities of the graph clustering, we define:

• The total weights to be lost by a pair of the sub graphs, denoted as cut(Ai, Aj)

cut(Ai, Aj) =
∑

vi∈Ai,vj∈Aj

wij

• The size of each sub graph. The size of a graph A can be measured by the number of the
nodes denoted as |A| or by the weights of its edges denoted as vol(A).

|A| = the number of nodes in A.

vol(A) =
∑
di where di is the degree of node i in A.

As an example, if we cut the example graph above into two sub graphs presented by A1 = {v1, v2}
and A2 = {v3, v4, v5, v6} (Figure 5.2), then we have:

|A1| = 2 and |A2| = 4

cut(A1, A2) = (12 + 13) = 25

Furthermore, in the cases that the number of the sub graphs, K = 2 as the example above, A1,
A2 can be presented as A and Ā where Ā = V − A denotes the complement of A in V. Then
cut(A, Ā) = cut(Ā, A) is used to measure total weights of the edges escaping from A.
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5.2.2 Spectral clustering

5.2.2.1 Graph cut

Given a weighted graph like the example one above (Figure 5.2), the goal of clustering is to cut
the graph into different sub graphs so that the edges between the sub graphs have the low weights
and the edges within these sub graphs have high weights. Therefore, we can formalize the graph
clustering problem as an optimization problem. More specifically, if we want to cut G into K sub
graphs, our work is to minimize the quantity.

cut(A1, A2, ..., Ak) =
∑K

i=1 cut(Ai, Āi)

This problem is therefore called mincut problem which can be solved efficiently [84]. As an
example, with K=2, the mincut problem of the example graph above is solved with the following
solution (Figure 5.3).

Figure 5.3: An example mincut solution (K = 2)

The mincut solution to the example above (Figure 5.3) is ideal since the minimun value of
cut(A1, A2), which is (2+3) = 5, splits the graph into two sub graphs that each of them has
3 nodes. However, in many real cases, the mincut solution separates just one node from the rest
of the graph. Therefore, we need a solution to keep the number of nodes of each sub graph "rea-
sonably large". The possible approaches are to take into account the size of the sub graphs in the
cost function above. Correspondingly to two ways to consider the size of a graph, there are two
approaches, RatioCut [36] and normalized cut (Ncut) [77]. In RatioCut, the size of a subset A of
a graph is measured by its number of the nodes or |A| above while in Ncut the size is measured
by the weights of its edges or vol(A) above.
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RatioCut(A1, A2, ..., Ak) =
∑K

i=1
cut(Ai,Āi)
|Ai|

Ncut(A1, A2, ..., Ak) =
∑K

i=1
cut(Ai,Āi)
vol(Ai)

Unfortunately, solving these problems are NP-hard problems [94]. However, spectral clustering is
a way to solve relaxed versions of these problems [92, 52].

5.2.2.2 Graph Laplacian matrices and spectral clustering method

As mentioned in the previous section, spectral clustering can be used to solve the relaxed versions
of the optimization of the cut-based graph clustering. More specifically, a matrix form can be
used to express the optimization measures and the spectrum (eigenvectors) of this matrix can be
used to obtain the final clusters (sub graphs) [52]. The matrix are Laplacian matrices L that the
unnormalized version is formed by the following equation 5.1.

L = D −W (5.1)

In equation 5.1, D and W are the degree matrix and weight matrix mentioned in the section 5.2.1.
Computing the unnormalized Laplacian L by the equation 5.1 is the first step of the spectral
clustering method to solve the relax version of the mincut problem. The next step is to compute
eigenvectors V and eigenvalues λ of that matrix by solving the equation 5.2

LV = λV (5.2)

Solving equation 5.2 normally returns several eigenvalues λ. If we order these values, then the first
eigenvalue will be 0 and the second eigenvalue which is called the Fiedler value. The eigenvector
corresponds to Fiedler value is also called Fiedler vector. In the cases that we separate the graph
into two sub graphs (K = 2), this Fiedler vector will be used directly. More specifically, since the
Fiedler vector will have the positive values and negative values, the original graph can be cut into
two sub graphs by putting the nodes corresponding to positive values to one sub graph and the
nodes corresponding to negative values to the other sub graph.

To demonstrate the steps, we use the example graph above (Figure 5.2). At first, we compute
unnormalized Laplacian matrix
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L = D - W =



22 0 0 0 0 0

0 23 0 0 0 0

0 0 30 0 0 0

0 0 0 27 0 0

0 0 0 0 34 0

0 0 0 0 0 26


-



0 10 12 0 0 0

10 0 13 0 0 0

12 13 0 3 2 0

0 0 3 0 15 9

0 0 2 15 0 17

0 0 0 9 17 0



L =



22 −10 −12 0 0 0

−10 23 −13 0 0 0

−12 −13 30 −3 −2 0

0 0 −3 27 −15 −9

0 0 −2 −15 34 −17

0 0 0 −9 −17 26



The second step, solving equation LV = λV returns pairs of eigenvalue and eigenvector as follows
(Table 5.2).

Table 5.2: Eigenvalues and eigenvectors of the example Laplacian matrix

Eigenvalues Eigenvectors

0.00 (0.408, 0.408, 0.408, 0.408, 0.408, 0.408)

2.96 ( 0.443, 0.439, 0.337, -0.374, -0.402, -0.443)

32.40 (-0.743, 0.659, 0.095, 0.045, -0.004, -0.051)

34.99 ( 0.054, 0.191, -0.218, -0.704, 0.032, 0.645)

41.73 (-0.286, -0.412, 0.813, -0.266, 0.021, 0.130)

49.91 ( 0.015, 0.0189, -0.050, -0.353, 0.819, -0.449)

The Fiedler value and Fiedler vector corresponding to the reults (Table 5.2) are 2.96 and (0.443,
0.439, 0.337, -0.374, -0.402, -0.443) respectively. By putting the nodes corresponding to positive
values to one graph A1 and the nodes corresponding to negative values to the other graphs A2,
A1 will contains {v1, v2, v3} and A2 will have {v4, v5, v6} as its nodes. This is the mincut solution
we mentioned above (Figure 5.3).

On the other hand, since the solution above can be applied in the case that number of sub graphs
or K = 2, for the general cases including both K = 2 and K > 2, there are several more steps after
computing eigenvectors. Particularly, the next step is to build a matrix M that has K columns
which are the first K eigenvectors. For the example above, in the case K = 3, the matrix M will
be:
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M =



0.408 0.443 −0.743

0.408 0.439 0.659

0.408 0.337 0.095

0.408 −0.374 0.045

0.408 −0.402 −0.004

0.408 −0.443 −0.051



In the matrix M above, the orders of the graph nodes are presented by the order of the rows of the
matrix. Therefore, the final step is to perform k-means algorithm to cluster the rows of the matrix
into K clusters. Returning to the example matrix M (K = 3) above, k-means algorithm returns
the solution that A1 contains {v1}, A2 contains {v2, v3}, and A3 contains {v4, v5, v6} (Figure 5.4)

Figure 5.4: An example of using spectral clustering to cluster a graph (K = 3)

To sum up, the spectral clustering can be used to cluster a graph into K sub graphs by following
the steps below.

Data: W and D are the weight matrix and degree matrix of graph G
Result: Cluster graph G to K sub graphs

L = D −W
Compute eigenvectors V and eigenvalues λ of L
Order eigenvectors V by eigenvalues λ
Building matrix M that has K columns which are the first K eigenvectors V
Perform k-means algorithm on M to K clusters

Algorithm 7: Spectral clustering algorithm

However, algorithm 7 does not take into account the sizes of the sub graphs (or mincut solution).
Therefore, normalized Laplacian matrices, which can be Lrw or Lsym, are used to replace the
unnormalized Laplacian matrix [77, 37, 62]
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Lrw = D−1L [77, 37]

Lsym = D−1/2LD−1/2 [37, 62]

In addition, as the last step of the spectral clustering method is to apply k-means algorithm which
uses the distance to cluster the matrix M, it can also be helpful if we normalize matrix M before
performing k-means [62].

On the other side, like k-means algorithm, the main issue to consider before applying the spectral
clustering method is to estimating the number of clusters. One technique can be applied that we
examine the gaps between the Eigenvalues of the Laplacian matrices. For example, the Eigenvalues
(0.00, 2.96, 32.40, 34.99, 41.73, 49.91) (Table 5.2) tells us that the number of the clusters should
be 2 since there is a big gap between the second Eigenvalue and the third Eigenvalue.

5.2.3 Modularity and Louvain method

Another approach for density-based graph clustering is based on modularity. This modularity was
actually designed to measure the strength of division of a graph into clusters (or communities).
However, modularity is often used as the objective functions in graph clustering. A popular
method of this approach is the Louvain method [91].

5.2.3.1 Modularity

In definition, modularity is the fraction of the edges that fall within the given groups minus
the expected fraction if edges were distributed at random. To mathematically formulate the
modularity by this definition, we firstly compute the expected number of edges. To do so, each
edge of the graph is broken into two halves which are called stubs (Figure 5.5)

If the total number of the stubs is called l and m is the total weights of the edges then we have:

l = 2m

For the unweighted example above (Figure 5.5), m = 7 and l = 14.

We now consider two nodes labeled vi and vj of a graph. These nodes have the degrees di and
dj. The probability of selecting one stub from node vi and node vj is di

2m
and dj

2m
respectively.
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Figure 5.5: Modularity computation: breaking a graph to stubs

Therefore, the probability (or the expected value, called eij) of having an edge (weight = 1)
connecting node vi with node vj is:

eij =
di

2m
∗ dj

2m

Given that a graph is clustered into sub graphs. A sub graph (called A) has the total degrees of
all the nodes in it (called dA):

dA =
∑
vi∈A

di

Then the expected fraction of the edges in the sub graph A (called EA) will be:

EA =
dA
2m
∗ dA

2m

On the other side, with wij is the weight of the edge connecting node vi with node vj, the fraction
of the edge (called rij) and of all the edges in the sub graph A (called RA) are:

rij =
wij
m

RA =
∑

vi,vj∈A

rij =
∑

vi,vj∈A

(
wij
m

)

The modularity of the sub graph A (called QA) is calculated by the following equation:

QA = RA − EA (5.3)

In general, given that the graph is clustered into K sub graphs presented by A1, A2, ..., AK , the
modularity of this clustering (called Q) is the sum of the modularity of all the sub graphs, Qi:

Q = Q1 +Q2 + ...+QK (5.4)

To illustrate how to compute the modularity value of a graph clustering, we return to the example
of 2 clusters which are A1 contains {v1, v2, v3} and A2 contains {v4, v5, v6} (Figure 5.3).
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Firstly, we compute the total weight of the whole graph.

m = (10 + 12 + 13 + 3 + 2 + 15 + 9 + 17) = 81

as well as the degrees of the nodes:

d1 = (10 + 12) = 22

d2 = (10 + 13) = 23

d3 = (12 + 13 + 3 + 2) = 30

d4 = (3 + 15 + 9) = 27

d5 = (2 + 15 + 17) = 34

d6 = (9 + 17) = 26

and the total degrees of all the nodes in each sub graph, A1, A2.

dA1 = (d1 + d2 + d3) = 22 + 23 + 30 = 75

dA2 = (d4 + d5 + d6) = 27 + 34 + 26 = 87

Secondly, we compute the modularity Q1 of the sub graph A1 by equation 5.3.

Q1 = R1 − E1

In which,

E1 =
dA1

2m
∗ dA1

2m
=

75

2 ∗ 81
∗ 75

2 ∗ 81
= 0.214

R1 =
∑

vi,vj∈A1

(
wij
m

) =
(10 + 12 + 13)

81
= 0.432

So that, we have:
Q1 = R1 − E1 = 0.432− 0.214 = 0.218

Similarity, we compute the modularity Q2 of the sub graph A2.

E2 =
dA2

2m
∗ dA2

2m
=

87

2 ∗ 81
∗ 87

2 ∗ 81
= 0.288

R2 =
∑

vi,vj∈A2

(
wij
m

) =
(15 + 9 + 17)

81
= 0.506

Q2 = R2 − E2 = 0.506− 0.288 = 0.218
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The last step is to compute the modularity of the graph clustering by summing up the modularities
of the sub graphs as equation 5.4.

Q = Q1 +Q2 = 0.218 + 0.218 = 0.436

This section has introduced the modularity of graph clustering. This scalar value which ranges
from -1 to 1 is used to evaluate the strength of graph clustering. More specifically, the higher
modularity the better graph clustering we have [91]. Therefore, the modularity can also be used as
the objective function in clustering graphs. One of the most popular method is Louvain method
that will be presented in the next section.

5.2.3.2 Louvain method

The Louvain method is a graph clustering that is based on the modularity value. The idea of
the approach is that the nodes will be moved around to the their neighbor clusters so that the
modularity of the clustering increases. More specifically, the Louvain method has several phases
that are presented below.

At the first phase, the method firstly considers each node of the graph as an individual cluster.
That means at the beginning, the number of clusters equals the number of nodes of the weighted
graph. Each node vi has number of neighbors vj that there is an edge {vi, vj}. The Louvain
method works by moving every node vi from its cluster to the clusters of vj (called neighbor
clusters) for maximum gain of modularity. To illustrate how this step works, let call Qib and
Qia are the modularities of the cluster containing node vi respectively before and after removing
node vi from it. Similarity, Qjb and Qja are the modularities of the neighbor cluster containing
neighbor node vj respectively before and after adding node vi into that neighbor cluster. The gain
of modularity (called ∆Q) by moving node vi from its cluster to the neighbor cluster of node vj
is calculated by the following formula:

∆Q = (Qia +Qja)− (Qib +Qjb)

By calculating ∆Q with all the neighbor clusters, node vi will be placed in the cluster that brings
the maximum of ∆Q that must also be a positive number. In the case that all the ∆Q are the
negative numbers, node vi will stay in its cluster. This first phrase terminates when no movement
of nodes can help increase the modularity. In the other words, the output of this first phrase is
the clusters of the graph that has the modulariry of maximum (Figure 5.6 is an example result
after the first phrase)
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Figure 5.6: Example phrase 1 of Louvain method

Figure 5.7: Example of aggregation process in Louvain method

The second phrase of the method starts by building a new graph from the result of the first phrase.
In particular, in the new graph, each cluster now is considered as a node (called cluster node).
The weight of the edge connecting two cluster nodes is the total weights of all the edges connecting
two nodes in the two clusters. In addition, the nodes in the same clusters will create a self-loop
edge whose weight is the total weights of all the edges connecting two nodes inside that cluster.
Returning to the example result of the first phrase, the aggregation process is illustrated by Figure
5.7.

After building the new graph, the steps taken in the first phrase are repeated to cluster the new
graph. The question is how many phrases we should take to cluster a graph? The answer is that
it depends on the needs. More specifically, if we want more clusters, we can stop after the first
phrase. We also can run the algorithm until the new graph cannot be clustered. For example,
when we applied on our dataset (section 5.1.1), the algorithm stopped after 3 phrases.

One main issue we need to consider in the case we apply the algorithm on the large graph is the
computation time. To improve the computation time, the Louvain method also presented some
simple heuristics such as stopping the first phase when the gain of modularity is below a given
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threshold or by removing the nodes of degree 1 (leaves) [91]. Another approach for the heuristics
is that instead of moving a node to all of its neighbor clusters, we move it to the neighbor clusters
of certain number of neighbor nodes after order them by weights of the connecting edges. For
example, in our dataset (section 5.1.1), the number of the neighbor nodes we tried is 10 and it
returns the same result as the one that no heuristics is applied.

5.2.3.3 Customization of Louvain method

In our work, we need to add several constraints to this method. One constraint is that each final
hospital cluster must contain a public University Hospital (fr. Centre Hospitalier Universitaire -
CHU). This constraint is taken into account in our implementation by customizing the Louvain
method. In particular, these CHUs are considered as “seed” nodes of the graph. Our customization
method is that these “seed” nodes will not be moved. Instead, the other nodes will be moved to
neighbor clusters which contain the “seed” nodes.

5.3 Hospital community experiments, results, and discus-
sions

As mentioned in the introduction section, the purpose of our works is to effectively split French
hospital networks into communities for sharing medical records. In our approach, we are based
on the dataset of flows that patients change the hospitals for the treatments (section 5.1.1). This
dataset can be presented by an undirected graph on which the nodes are the hospital IDs and
the weight of an edge indicates the number of patient exchange flows between the two hospitals.
In this section, we firstly delivery our implementation approach for both the spectral clustering
method the Louvain method. Secondly, we present the experiment results of thes methods on our
dataset. Finally, to visualize the hospital communities, we use spatial maps.

5.3.1 Implementation approaches

In literature, there are already the libraries that implementing both the graph clustering methods
introduced in the previous section (section 5.2). For example, sklearn library [65] and python-
louvain library [8] have already implemented SpectralClustering and Louvain method respectively.
However, as we have mentioned in the introduction section, we are going to not only compare
the performance of the two methods, but also to customize the method so that we can add the
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constraints to meet our needs. On the other words, implementing these methods are needed. Our
approaches for the implementation are based on the programming language of Python 3 and the
environments of Anaconda 3 and Ubuntu 18. In particular, we programmed a class in Python
called HospitalCluster. This class has some main methods as follows:

• modularity_q_i : This method returns the modularity Qi such as Q1, Q2 mentioned in the
section 5.2.3.

• modularity_move_hospital : This method is to find the neighbor cluster to place node i for
the maximum of modularity.

• modularity_optimization: This method performs the movement of all the nodes until no
node movement help improve the modularity.

• aggregation_process : This method is corresponding to the aggregation process to build the
new graph from the result of the previous phrase.

• spectral_clustering : This method performs graph clustering based on the method of spectral
clustering mentioned in the section 5.2.2.

The details of these methods will be presented in the next sections.

5.3.1.1 Method modularity_q_i

To compute the modularity Qi, this method needs two parameters. The first parametter is a kind
of dictionary (named dict_clusters) telling the cluster number of each nodes while the second
one is number of the cluster i (named c_i) corresponding to Qi. In addition, while we search
for the optimization solution of modularity, the nodes will be moved back and forth many times.
Therefore, to reduce the computation time, the modularity of a cluster containing the same nodes
should be memorized instead of re-computing. In particular, we use a global variable (called
memorized) that is a directory with the keys are vectors of node IDs to record the modularity
corresponding to a cluster containing these nodes. Moreover, this method also calls the following
functions: (1) extract_member to obtain the list of the nodes that are the members of the cluster
c_i ; (2) extract_degree to return the total degrees of all the nodes that are passes as the param-
eters; (3) extract_weight for the total weights of edges between two nodes among all the nodes
that are passes as the parameters. Besides that the method also use a pre-computed variable
named total_w_all which holds the total weight value of the entire graph. The details of the
implementation of this method is presented below.

108



function modularity_q_i(dict_clusters, c_i)

begin

lst_members = extract_member(dict_clusters, c_i) # member nodes of cluster c_i

if (memorized[lst_members] exists) then

q_i = memorized[lst_members]

else

# Total degrees of nodes inside c_i

total_d_i = extract_degree(dict_clusters, lst_members)

expected_fraction = (total_d_i*total_d_i)/((2*total_w_all)*(2*total_w_all))

# Total weights connecting nodes in lst_members

total_w_i = extract_weight(dict_clusters, lst_members)

actual_fraction = total_w_i/total_w_all

q_i = actual_fraction - expected_fraction

memorized[lst_members] = q_i

end if

return q_i

end function

5.3.1.2 Method modularity_move_hospital

To find the neighbor cluster to place node vi for the highest modularity that can be gained,
besides the parameter of vi, this method also needs dict_clusters (the same definition as the one
in method modularity_q_i ) as the second parameter. The method works by comparing for the
highest modularity while moving vi around to its neighbor clusters. As it can be seen in the
code below, this method also use some other functions: (1) which_cluster that returns the list
of clusters of the corresponding nodes; (2) extract_neighbor that returns the list of neightbors of
node vi. The function extract_neighbor has two optional parameters. The first one (called n) to
indicate the number of neighbor nodes to consider to place node vi to the corresponding neighbor
clusters. This parameter n can be used to reduce the computation time because we do not need
to try moving vi to all neighbor clusters. Instead, for example with our dataset, it returns the
same result by the first 10 neighbors whose weights of edges with vi are biggest. On the other
side, in our works, we need to try several options such as there is a constraint that each final
clusters must contain a public University Hospital (fr. Centre Hospitalier Universitaire - CHU).
To consider this constrain, we add to the function extract_neighbor a new parameter that are a
list of the nodes (called seeds). The function extract_neighbor will return neighbor nodes that are
also the seeds. Moreover, as it can be also seen in the code below, there are two values this method
returns. While the first returned value tells that whether or not the dict_clusters is updated (or
in other words, the node vi either stays in its original cluster or is moved to a new cluster), the
second value is the new dict_clusters after the node vi is moved to a new cluster.
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function modularity_move_hospital(dict_clusters, v_i, n, seeds)

begin

c_i = which_cluster(dict_clusters, v_i) # cluster of node v_i

q_i_b = modularity_q_i(dict_clusters, c_i) # Q_i before removing v_i from c_i

# find first n neighbor nodes if n > 0

# if seeds is not empty, a neighbor node is also a seed node

neighbor_nodes = extract_neighbor(v_i, n, seeds)

# find neighbor_clusters but exclude c_i

neighbor_clusters = which_cluster(dict_clusters, neighbor_nodes) - {c_i}

best_cluster = c_i

best_delta = 0

foreach (c_j in neighbor_clusters) do

# Q_j before moving v_i to c_j

q_j_b = modularity_q_i(dict_clusters, c_j)

dict_clusters[v_i] = c_j # assign new cluster for v_i

# Q_i after removing v_i from c_i

q_i_a = modularity_q_i(dict_clusters, c_i)

# Q_j after moving v_i to c_j

q_j_a = modularity_q_i(dict_clusters, c_j)

delta = (q_i_a + q_j_a) - (q_i_b + q_j_b)

if(delta > best_delta) then

best_delta = delta

best_cluster = c_j

end if

end foreach

dict_clusters[v_i] = best_cluster # assign v_i to the best cluster.

if(best_cluster == c_i) then

b_update = false # no update occurs

else

b_update = true # update occurs

end if

return b_update, dict_clusters

end function

5.3.1.3 Method modularity_optimization

This is the method that conducts graph clustering by trying to maximize the modularity for
each phrase mentioned in section 5.2.3. At the beginning, this method assigns an one-node
cluster for every node by init_cluster function. That means the number of the initial clusters
equals the number of the nodes. After that, the method works by trying to move every node
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vi (except the seeds if any)to its neighbor clusters until no node movement can help improve
the modularity. In this method, the optional parameters, n and seeds mentioned in section of the
method modularity_move_hospital are included as its parameters. The value this method returns
is the dictionary dict_clusters that indicates the cluster of each node.

function modularity_optimization(n, seeds)

begin

b_continue = true

dict_clusters = init_cluster()

movable_nodes = all_nodes - seeds # seed nodes are not to move

while (b_continue == true) do

b_stop = true

foreach (v_i in movable_nodes) do

b_update, dict_clusters = modularity_move_hospital(dict_clusters, v_i, n, seeds)

if(b_update) then

b_stop = false

end if

if(b_stop) then

b_continue = false

end if

end foreach

end while

return dict_clusters

end function

5.3.1.4 Method aggregation_process

This method is to build the aggregation graph from the result of the previous phrase. This method
also calls the following functions: (1) create_graph to create a blank graph; (2) get_unique_clusters
to get the list of clusters; (3) add_node to add a node to a graph; (4) extract_member to extract
the list of member of a cluster; (5) extract_weight to extract total weights of the edges connecting
nodes in two separated lists of nodes; (6) add_edge to add edge with its weights to graph.

function aggregation_process(dict_clusters)

begin

agg_graph = create_graph() # Create a blank graph

lst_clusters = get_unique_clusters(dict_clusters) # Get unique clusters

foreach (c_i in lst_clusters) do
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add_node(agg_graph, c_i) # Add a node to graph

end for

foreach (c_i in lst_clusters) do

c_i_members = extract_member(dict_clusters, c_i)

foreach (c_j in lst_clusters) do

c_j_members = extract_member(dict_clusters, c_j)

# Extract total weights connecting nodes in c_i vs nodes in c_j

edge_weight = extract_weight(dict_clusters, c_i_members, c_j_members)

# Add edge with its weights to graph

add_edge(agg_graph, c_i, c_j, edge_weight)

end for

end for

return agg_graph

end function

5.3.1.5 Method spectral_clustering

To implement graph clustering method which is based on matrix operations, we rely on the libraries
of numpy and scipy written in Python. Moreover, we also use K-means method from the library
of sklearn.cluster. In addition, the way we normalize the matrix of the K first eigenvectors (matrix
M in section 5.2.2) by normalizing the row sums to have norm 1 (equation 5.5)

uij =
vij∑

k(v
2
ik)

1/2
(5.5)

Particularly, the codes of the method spectral_clustering in Python to cut graph presenting by
weight matrix W into K clusters is presented below. As mentioned in section 5.2.2, in spectral
clustering method, the Laplacian can be unnormalized or normalized, we use Laplacian_type as
the parameter to indicate what type of Laplacian matrix to be used. In particular, the parameter
Laplacian_type has three options. The first option which is also the default option is empty string
(“ ”) that indicates that Laplacian matrix is unnormalized. The two other options which are “rw”
and “sym” correspond to two normalized Laplacian matrice, Lrw and Lsym respectively. Moreover,
in this method, there is another parameter is_norm that is to indicate whether or not matrix M
will be normalized. In particular, the function normalize_matrix conducts the normalization by
equation 5.5

function spectral_clustering(W, K, Laplacian_type = "", is_norm= False)

begin

D = numpy.diag(W.sum(axis=1)) # Degree matrix

L = D - W # unnormalized Laplacian matrix
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if(Laplacian_type == "rw") then # Lrw matrix

Drw = scipy.linalg.fractional_matrix_power(D, -1)

L = numpy.dot(Drw, L)

end if

if(Laplacian_type == "sym") then # Lsym matrix

Dsym = scipy.linalg.fractional_matrix_power(D, -0.5)

L = reduce(numpy.dot, [Dsym, L, Dsym])

end if

vals, vecs = numpy.linalg.eig(L) # eigenvalues and eigenvectors

vecs = vecs[:,numpy.argsort(vals)] # sort eigenvectors based on the eigenvalues

M = vecs[:,:K] # Matris of K first eigenvectors

if(is_norm == True):

M = normalize_matrix(M)

kmeans = sklearn.cluster.KMeans(n_clusters=K)

kmeans.fit(M)

dict_clusters = kmeans.labels_

return dict_clusters

end function

5.3.2 Results and discussions

5.3.2.1 Method comparison

After having all necessary implementations, we conducted the experiments on our dataset men-
tioned in the introduction section. To compare the performance, we focus on the quality rather
than the effectiveness in term of time computation. In particular, as mentioned in the introduction
section, to measure the performance, we use three criteria: (1) modularity value; (2) percentage
of the hospitals cannot access to the patients’ medical record from previous hospitalization after
building the communities; (3) the balance in term of number of the hospitals in each community.
In particular, the table 5.3 below contains the values for the three criteria of the methods men-
tioned below. However, before looking for the details, it should be noted that on the table 5.3,
the number of the clusters is 19. This number of 19 is generated by the Louvain method after
running three phrases. For the purpose of comparison between the approaches, we use the same
number of 19 for all the spectral clustering methods mentioned below.

• Spectral clustering with unnormalized Laplacian matrix L (SC).

• Normalized spectral clustering with normalized Laplacian matrix Lsym and the matrix of
the first eigenvectors is not normalized (SCsym).
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• Normalized spectral clustering with normalized Laplacian matrix Lrw (SCrw).

• Normalized spectral clustering with normalized Laplacian matrix Lrw and the matrix of the
first eigenvectors is normalized by the equation 5.5 (SCrw+norm).

• Louvain method.

Table 5.3: Performance of spectral clustering (SC) and Louvain methods

Evaluation criteria SC SCsym SCrw SCrw+norm Louvain

Modularity value 0.000 0.701 0.804 0.816 0.822

% previous hospitals outside community 0.006 20.44 9.33 10.32 9.84

# hospitals in biggest community 1,758 838 379 269 260

# hospitals in smallest community 1 2 2 22 22

As it can be seen on the table 5.3, the SC method (or mincut solution) does not work on our
dataset. In particular, it returns a very big community covering almost all hospitals (1,758 over
1,777) while in the other communities, the numbers of hospitals are just 1 or 2. This result is
an example of the problem caused by the mincut solution we mentioned in section 5.2.2. The
solutions to the mincut problem are to take into account the size of the sub clusters. More
specifically, instead of using unnormalized Laplacian matrix, the normalized Laplacian matrices
have been used. These matrices are Lrw and Lsym which are mentioned in section 5.2.2. The
methods corresponding to these matrice are SCrw and SCsym respectively. Between SCrw and
SCsym methods, as it is shown in the table 5.3, the SCrw method returns better results in all the
criteria. As we use Python, we also compare our spectral clustering methods with the available
spectral clustering method of the sklearn library (named SpectralClustering). The result shows
that the default SpectralClustering gives the same result as the SCrw method does. Moreover,
by normalizing the matrix of the first K eigenvertors (matrix M that the k-means algorithm is
applied on, section 5.2.2), the corresponding method labeled SCrw+norm returns the higher value
for the modularity as well as more-balance communities. Particularly, the modularity increases
from 0.804 to 0.816 while the numbers of hospitals in the biggest community reduces from 379 to
269 and the number of hospitals in the smallest community increases from 2 to 22. The only one
criteria that SCrw+norm method is not better than SCrw is the percentage (%) previous hospitals
outside community. In other words, SCrw+norm method returns the communities of hospitals that
the rate the hospitals cannot access to the patients’ medical record from previous hospitalization is
higher than SCrw method. These values are 10.32 and 9.33 for SCrw+norm and SCrw respectively.
This result can be explained by the numbers of patient flows inside the biggest community by
each method. The SCrw+norm method returns the biggest community that has 269 hospitals and
the numbers of patient flows inside this community is 2,248,178 (17.17%). On the other hand,
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the numbers that SCrw method returns are 379 and 2,892,368 (22.09%) respectively. It is clear
that when the biggest community gets bigger then the flows of patients outside the communities
(connecting communities) will be smaller. These flows of patients outside has the same meaning as
the number of patients that hospitals cannot access to the patients’ medical record from previous
hospitalization. Therefore, although compared with SCrw method, SCrw+norm method returns
the higher rate that the hospitals cannot access to the patients’ medical record from previous
hospitalization, we can still conclude that SCrw+norm method is better in this case. Finally, to
help us select the better method, we compare SCrw+norm method with Louvain method. As it can
been seen on the table 5.3, Louvain method returns better results in all the criteria. Therefore, we
have selected Louvain method to cluster the hospitals into the communites for sharing patients’
medical records.

5.3.2.2 Final result

As mentioned in the introduction, our work aims at clustering the hospitals into the hospital com-
munities for sharing medical records in order for the hospitals to deliver more effective treatments
to the patients. After comparing the spectral clustering methods and the Louvain method, we
have selected Louvain method for our work. In this section, we present the results of our work.
In particular, the table 5.4 shows the summary of the Louvain method running for three phrases.

In addition to the summary in table 5.4, table 5.5 brings in the details inside each community
after phrase 3. The communities listed in this table are ordered by the number of hospitals, not
by the numbers of the patient flows inside them. Moreover, the locations of these communities
can be visualized with a spatial map of metropolitan France (Figure 5.8). More in details, the
figure 5.8 only maps the locations of the first 17 communities listed in the table 5.5, the 2 last
communities which are in France overseas are not included.

Table 5.4: Results of Louvain method

Phrase 1 Phrase 2 Phrase 3

Number of communities 103 27 19
Modularity value 0.728 0.815 0.822
% previous hospitals outside community 22.89% 11.42% 9.84%
# hospitals in biggest community 216 260 260
# hospitals in smallest community 2 14 22
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Table 5.5: Details of communities by Louvain method

Community Number of
hospitals

Previous provider
located within
community

Previous provider
located outside
community

% Within commu-
nity

1 260 2,186,805 230,950 90.45

2 171 1,171,110 91,188 92.78

3 138 967,312 94,914 91.06

4 133 637,415 84,148 88.34

5 125 529,591 59,327 89.93

6 102 638,005 82,341 88.57

7 95 751,129 81,940 90.16

8 94 892,364 41,113 95.60

9 85 422,831 70,399 85.73

10 83 455,684 82,867 84.61

11 78 580,529 62,943 90.22

12 77 529,977 60,202 89.80

13 66 463,606 43,567 91.41

14 60 426,626 33,373 92.74

15 59 321,093 54,159 85.57

16 48 289,226 59,739 82.88

17 47 313,069 36,590 89.54

18 34 119,008 12,970 90.17

19 22 110,166 5,792 95.01

As the map (Figure 5.8) shows, the two biggest communities (community 1 and 2) in term of both
the number of hospitals and the number of patient flows inside are located in Paris and Lyon, which
are the biggest cities of France, and their nearby regions. In addition, 19 over 96 departments in
metropolitan France are split into at least two different communities. The "split" departments are
shown in the map with lighter colors compared to the color presenting the communities. Moreover,
15 over 132 GHTs 3 are split into different communities. This knowledge can be used to advise
health authorities that they should not use administrative region borders as constraints when
creating hospital communities.

3There are no patient flows inside 5 GHTs
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Figure 5.8: Locations of hospital communities in France

5.4 Conclusions

Lacking medical information from the previous hospitalizations about a patient can prevent hos-
pitals from providing effective and high-quality treatments to those patients. Therefore, building
hospital communities among which medical records are shared is needed. Since grouping all the
hospitals in French hospital networks into one community is costly and impractical, our works
aim at effectively clustering the French hospital networks into hospital communities. In particu-
lar, based on the dataset of patient flows between hospitals, we approach graph clustering methods
to effectively group the hospitals into communities. After comparing the performance with spec-
tral clustering methods, we have selected Louvain method for our work. In addition, since we
need to consider several options of clustering hospitals into the communities, we have customized
Louvain method so that we can take into account the related constraints while partitioning the
hospitals into the communities. As a result, after running three phases of the Louvain method, we
obtained 19 hospital communities. Among them, the 17 biggest communities are in metropolitan
France. More importantly, some departments in metropolitan France as well as some GHTs are
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split into at least two different communities. This knowledge confirms the limitations of building
hospital communities based on administrative boundaries. In addition, such methods could be
used to effectively design groups of hospitals that should share common electronic medical records.

118



Chapter 6

Conclusions and future works

Contents
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.2 Future works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.2.1 Extending the work to national level . . . . . . . . . . . . . . . . . . . . 123

6.2.2 Extending the work to include environmental data . . . . . . . . . . . . 123

6.2.3 Considering other constraints in hospital clustering . . . . . . . . . . . . 124

6.2.4 Prediction on PAH readmission . . . . . . . . . . . . . . . . . . . . . . . 124

119



6.1 Conclusions

As mentioned in the introduction section (Chapter 1), reducing the number of potentially avoidable
hospitalization (PAHs) not only helps enhance quality of lives of the patients but also decrease
substantial costs caused by patient treatments. Therefore, both the national- and regional-level
health authorities in France are highly interested in enhancing the health care services in order to
reduce the number of PAHs. The previous studies in France suggested that the number of PAHs
in some geographic areas could be reduced by increasing the number of nurses at those geographic
areas. Moreover, in France context, the public health decision makers can have influence on
the densities of nurses at the geographic areas. However, there are also strong constraints that
the healthcare system must provide quality care while controlling associated costs and ensuring
equality of access to the health care services. In other words, all patient-citizens must be able
to benefit from the care they need, regardless of their geographical and socioeconomic situation.
These reasons gave birth to our project that aims at building a decision support system for the
biggest reduction of PAH numbers while integrating the socio-economic constraints such as the
limited budget for health care service improvement and the equality of health care access. More
specifically, our work is going to recommend not only the geographic areas for improving health
care service but also the optimized actions at those areas. Particularly, the geographic areas we
worked on are the cross-border living areas (fr. Bassins de vie - BVs) that are defined as the
geographic areas in which the inhabitants have access to the common equipment and services
including trade, education, health, etc. In our approach, for every BV, we compare the predicted
rates of PAHs before and after trying to add new nurses. Our idea is that the BVs that return
the biggest reduction of these predicted values after trying to increase the number of nurses could
be the best ones for the actual nurse implementation. Since the rates of PAHs are the numeric
values, we have evaluated the potential of all the common regression methods. In particular, we
have evaluated the potential as well as the quality performance of the following methods:

- Multilinear regression
- K–nearest neighbors for regression
- Neural networks for regression
- Support vector machine for regression

Based the performance which were measured and validated by root-mean square error and leave-
one-out methods, support vector machine for regression (SVR) has been extended to spatial
information by integrating the socio-economic constraints. Particularly, as mentioned above, we
need to consider some constraints related to the number of nurses to be added. The first constraint
should be the budget that the health authorities can spend for the health service improvement.
This constraint indicates that the total number of nurses to be added in the whole region is limited.
Another constraint we must consider is to ensure equal access to health care for the inhabitant
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living in the region. The later constraint can be defined by the maximum number of to-be-added
nurses in each BV and the densities of the nurses must not be greater than a given threshold.
Taking account these constraints by extending support vector machine for regression method,
we have been able to not only identify the BVs but also the number of to-be-added nurses for
the biggest reductions in number of PAHs. For example, with the constraints that (1) the total
amount of nurses can be added into the entire region is 30, (2) the maximum number of nurses
can added into a BV is 3, and (3) the density of nurses must not be more than 25 nurses per
10,000 habitants, we are able to identify 16 BVs and the number of to-be-added nurses at each of
16 BVs for the biggest reduction of PAHs in number which is 17. The results are visualized using
spatial maps as a user-friendly decision support system. Moreover, our approach is applied to the
Occitanie region France, but it can be applied to other regions or extended at the national level
or even to other countries. In addition, this approach could be applied to other health care policy
issues, such as the reduction of hospital re-admissions or access to innovation.

On the other side, parts of our work are to collect data that could be the potential determinants
of PAHs. Since it is clear that temperature, especially temperature extremes, have negative im-
pacts to human health. For example, the extreme heat (or so called heatwave) that occurred in
summer 2003 in France caused about 15,000 more deaths than expected in France (an increase of
55%). Therefore, we would like to conduct the analysis of the impacts of extremes temperature
to PAHs as well as to include this environmental data in our decision support system mentioned
above. To collect the temperature data, we rely on the temperature values measured by sensors at
weather stations. However, for many reasons the values measured at these stations are sometimes
discontinuous. In other words, there are missing values for temperatures measured at the weather
stations. To select the reliable method in missing temperature imputation, we have compared
the quality performance of two different methods representative of both the spatial interpolation
methods and the time-series models. These methods are Inverse Distance Weighted (IDW) and
Autoregressive Integrated Moving Average (ARIMA) respectively. Moreover, we have proposed a
novel approach that combines these methods to improve the quality performance. Our method
performs better at 100% and 99.8% the weather stations compared with IDW and ARIMA re-
spectively. The performances of these methods were measured and validated by root-mean square
error and leave-one-out methods using the temperature data that are hourly recorded by sensors
at more than 600 weather stations implemented across Metropolitan France.

In addition, as mentioned at the introduction section, the high rates of potentially avoidable
hospitalizations are associated with organizational features of health systems such as coordination
between health care providers. In other words, improving the coordination between the health care
providers could lead to the reduction of the potentially avoidable hospitalizations. That is because
noticeable fact that patients do not visit the same hospitals every time. There are many reasons
for that. For example, patients have changed addresses, they are not happy with the service of
the previous hospital, or they need to seek specialized care in a tertiary hospital. In such cases,
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it is clear that the treatment would be more efficient and the risk to patients’ health could be
eliminated or reduced if the later hospitals were able to access the medical records of the patients
at the previous hospitals. In other words, there is a need to allow information technology systems
to share medical records among hospitals. However, it is neither necessary nor practical for all
hospitals in France to be grouped as one because it would be costly while some hospitals will never
share any patient. Therefore, health authorities are interested in building hospital communities
so that medical records can be shared among the hospitals in those communities. This brought up
us another project which aims at dividing French hospital networks into communities for sharing
patients’ medical records. Particularly, our work is based on the flows of patients changing the
hospitals for the treatments. These flows can be presented by a undirected weight graph in which
the nodes present the hospitals while the edges present the size of patient flows. Therefore,
to cluster these hospitals into communities, we rely on the approaches of the graph clustering.
In particular, we have compared two different approaches. The first approach is the spectral
clustering method and the second one is Louvain method, which is based on modularity values.
To evaluate the performance of these methods, we are based on many criteria that include:

- Modularity value of graph clustering
- Percentage that the previous hospitals located outside the communities
- The balance in term of number of hospitals in each communities

Moreover, in our work, we need to consider several constraints. For example, one constraint is
that each final hospital cluster must contain a public University Hospital (fr. Centre Hospitalier
Universitaire - CHU). Therefore, besides comparing the performances of the two graph cluster-
ing methods, we need tocustomize them so that we can add the constraints to meet our needs.
Therefore, we have im-plemented these method ourselves. As a result, the hospital network in
France has been clustered 19 hospital communities. Among them, the 17 biggest communities
are in metropolitan France. More importantly, some departments in metropolitan France as well
as some GHTs are split into at least two different communities. This knowledge confirms the
limitations of building hospital communities based on administrative boundaries. In addition,
such methods could be used to effectively design groups of hospitals that should share common
electronic medical records.
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6.2 Future works

6.2.1 Extending the work to national level

As mentioned in chapter 3, our approach is applied to the Occitanie region France. However, it
can be applied to other regions or extended at the national level or even to other countries. That
could be the parts of our work in the future. More specifically, in the near future, we plan to
extend our work at the national level because of the availability as well as the similarity of the
related datasets.

6.2.2 Extending the work to include environmental data

As mentioned before, although there are many studies confirming the negative impacts of extreme
temperatures to human health, the impacts of extreme temperatures to specific PAHs are still
unclear to us because of the limitation of the PAH dataset we have. Particularly, at the time of
this report we only have the data of PAHs that does not contain the information of exact dates
the patients were admitted to the hospitals. On the other side, the lag of the extreme temperature
impacts to human health could be for only several days. Therefore, we have neither been able
to measure the impact of the extreme temperature to PAHs nor include the temperature in the
decision support system. In the mean time, as introduced in chapter 4, we have already proposed
a more reliable methods for temperature missing imputation. This work can be useful in the
future when we are able to extract the more detail dataset of PAHs that include the exact dates
the patients are admitted by the hospitals.

Furthermore, another type of environmental data, that is air pollution, should be considered.
Like the extreme temperature, there is strong evidence to suggest high levels of air pollution
negatively affect human health. However, there is no previous study on these effect on specific
PAHs. That could be our interesting work in the future. Moreover, our proposal method for
reliable temperature missing imputation introduced in chapter 4 could be applied for other spatio-
temporal data like air pollutants. In particular, we would like to measure the performance of our
proposal method on some air pollutants as parts of our future works.

123



6.2.3 Considering other constraints in hospital clustering

In chapter 5, we have introduced the approach of graph clustering for partitioning French hospital
network into communities for sharing patient medical records. In addition, we have also taken
into account the constraint while clustering the hospitals into communities. However, this work
still has limitations because the characteristics of the hospitals such as the capacities of hosting
patients (number of beds, number of doctors, etc) as well as the speciality in patient treatments
like cancer centers have not been taken into account in the current approach. Therefore, in the
near future, we would like to extend our work to integrate hospitals’ characteristics in hospital
clustering.

6.2.4 Prediction on PAH readmission

A hospital readmission is when a patient who is discharged from the hospital, gets re-admitted
again within a certain period of time. Hospital readmission rates for certain conditions are now
considered an indicator of hospital quality, and also affect the cost of care adversely. For example,
American hospitals spent over $41 billion on diabetic patients who got readmitted within 30 days
of discharge [3]. Hence, being able to determine factors that lead to higher readmission in such
patients, and correspondingly being able to predict which patients will get readmitted can help
hospitals save millions of dollars while improving quality of care. Therefore, one of our future
work is to answer the following question: What factors are the strongest predictors of hospital
readmission in PAHs patients?
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