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Chargé de recherche CNRS, ENSEEIHT (IRIT) Examinateur
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Un grand merci à mes chefs successifs, Nicolas Roche et Julien Berland pour leur accueil et l’aide
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Introduction

In France, electricity is mostly generated, around 70% of the total produced, by one of the 56 nuclear
reactors split among 18 nuclear power plants. EDF, the historical operator of these power plants,
ensures the good operation of the different facilities. Exploitation of the power plants is carefully
monitored by regulations in order to prevent any incident that could lead to radioactive leaks. To
meet these requirements, during regularly planned unit outages used to refuel the reactor, each power
plant is inspected in order to assess the wear of the infrastructure and ensure their safety to pursue
operation.

(a) Sketch of the interior of a steam generator
(b) Picture of the tube cluster

Figure 0.1: Steam Generator

This PhD focuses on the inspection of Steam Generators, that play the role of a heat exchanger.
Figure 1.3 summarizes the main features of the device: it consists of a cluster of more than a thousand
U-shaped tubes (from 3500 to 5600 tubes, depending on the power plant model), immobilized using
support plates evenly spaced alongside the tube axis. Inside the tubes flows water heated by the
nuclear reaction upstream, while the tubes are plunged inside colder water. By contact with the
heated tube walls, the outer water is vaporized: the resulting vapor is then used to produce electricity
through a turbine paired with an alternator.

Wear inside Steam Generators has different origins: the high temperature and pressure inside the
tubes, the water constantly flowing inside and outside the tube . . . This results in various defects:
cracks in the tube thickness [54], deposition of particles of conductive materials on the tube outer
wall [60] . . . We focus in this PhD on the detection of these metallic deposits, that can be split in
two families:

• plugging deposits, between the tube and the support plate (cf Figure 2.2),
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• clogging deposits, outside the plate area. These deposits are usually long in the tube axis
direction and thin in the transverse direction, mostly due to the water flowing alongside the
tube, preventing the formation of volumetric deposits.

Detection of these deposits is important to ensure the good operation of the power plant as they
reduce heat transfers on the tube wall [59], hence reducing the yield of the Steam Generator, and
they may plug the holes between the tube and the support plate, creating additional mechanical
constraints on the pipes, accelerating their wear. Removal of the deposits is based on a chemical
cleaning of the Steam Generator. As the cleaning process is costly, specifications require the mean
percentage of plugging deposits to exceed some fixed thresholds to engage the chemical removal of
the deposits. The issue is then to estimate this percentage of plugging deposits.

Figure 0.2: Sketch of a clogging deposit between the plate and the tube (cross section).

For various reasons (inaccessibility, radioactive components, economic costs . . . ) direct obser-
vation of the inside of a Steam Generator is not allowed. Non-Destructive Testing (NDT) are
methods widely used in science and industry to obtain information on a material without damaging
it. Here, NDT provides an indirect method to analyse the configuration inside the Steam Generator
for each tube without being physically present in the reactor building and endangering the device. A
wide variety of NDT methods have been developed to apply to different configurations. Among these
methods, Eddy Current Testing (ECT) is a suitable approach to deposit detection. An alternating
electromagnetic field creates small surface currents on conductive materials called eddy currents.
The formation of eddy currents is a consequence of Faraday’s law (time-variation of the magnetic
field induces an electric field): on conductive materials, the variation generates small surface currents
according to Ohm’s law. These currents in return induce another field that distords the incident
field: ECT makes use of that distortion to obtain information on the conductive parts of the do-
main. Probes containing coils are used to generate the electromagnetic field, when subjected to a
current I. To measure the distortion, the probe compares the flow through a coil (the receiver) of
the distorted electromagnetic field to that of the field generated by a given coil (the emitter): it is
called an impedance signal. Should there be a defect in the conductive materials, the impedance
signal would have a non-zero signature containing information on the defect. ECT can be applied to
different problematics, for instance crack detection inside Steam Generators [51, 40] or in a different
setting [31], or paired with thermography by using Joule effect [26].

The detection process used in our case is the following: after emptying the Steam Generator, the
probe is inserted from one end to the other end of a tube. It is then pulled off at constant speed: at
given positions in the tube direction, it takes a measurement, yielding an impedance signal. Analysis
of the resulting data provides information on the deposit shape and position. As of today, processing
of the signals is based on empiric models intuited with databases: the phase and amplitude of the
signal are used to obtain general information on the deposit thickness and length.

Such method provides a tool that can quickly analyze huge amounts of data, while yielding aver-
age information on the deposit, which is enough information for the operator to choose whether to
engage chemical cleaning. However in more complex configurations, for instance when the tube wall
has a slightly non constant thickness, or for pathological deposit shapes, such approach may lead to
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wrong interpretation of the data. This motivates to build a different processing algorithm that can
reconstruct precisely any deposit shape. We propose here to develop an approach based on modeling
the physics of the experiment and formulating it as an inverse problem. For inverse problems, the
aim is to estimate some parameters y from indirect measurements z, related to the physical state, and
a model A that transforms the parameters y to measurements z: Apyq “ z. Suppose A is known: A
needs to be ”inverted” to obtain y from z. Here, y is the deposit shape in the computational domain,
z is the impedance signal and A contains the Maxwell equations to obtain the electromagnetic field
and the impedance formula. Compared to the current model used by the power plant operator, an
inverse approach ensures a good reconstruction of the deposit, at the cost of a higher complexity and
a slower analysis due to the computation of A.

Since A is known, it is possible to generate for any shape y the corresponding impedance measure-
ment z. As such, the ”inversion” of A can be formulated as a shape optimization problem where the
cost function is the least squares misfit between the input measurement z̃ and the numerical model
Apyq. By finding the shape y that minimizes the objective function, we reconstruct the solution to
our problem.

Shape optimization is a branch of optimization encountered in mechanics (design of optimal shape
under volume and mechanical constraints) [24] or in fluid mechanics [10]. It is also widely used in
electromagnetic in the context of inverse scattering problems [48, 14, 38], or more specifically for
the inspection of conductive materials with ECT as discussed in this PhD. In the context of shape
reconstruction with ECT inside Steam Generators, preliminary work has been done by [67, 69, 68]
for 2D-axisymmetric geometries and by [29, 37] for generic 3D configurations. These papers use
a gradient descent method to solve the optimization problem, where the shape is modeled by its
boundary: at each iteration, the boundary is deformed by the gradient. In these approaches, the
shape is explicitly declared in the computational mesh: this allows to have a good precision on the
shape while at the same time a high computational cost as each iteration requires the generation of
a new mesh and problem. The subject of this work is the integration of a Level-Set framework to
these reconstruction algorithms. The use of Level-Set functions in shape optimization is widespread
in recent papers, for instance in the conception of optimal structures [66, 25], in electromagnetic
scattering [48], in optical tomography [45], or in fluid mechanics [56]. Implicitly declaring the shape
with a Level-Set function provides a tool that handles more easily topological changes in the shape
like merging or splitting in two connected components. At the same time, it allows to work on the
same computational mesh throughout the optimization algorithm, at the cost of a lower precision on
the shape that has to be interpolated.

Let us outline our contributions by giving a quick summary of the manuscript content. After an
introductive chapter that defines the main keywords of the PhD, the manuscript is divided in two
parts, tackling reconstruction of deposits, on one hand in a 2D-axisymmetric configuration and on
the other hand, in a generic 3D configuration.

In chapter 2, we derive the physical model for a 2D-axisymmetric domain. From a given domain
configuration, we would like to solve Maxwell equations to generate the resulting impedance signal.
In presence of eddy currents, it has been observed that the time-variation of the electric field is very
small in the conductor when the pulsation ω of the alternative signal is relatively low. This leads to
the eddy current approximation σ " ωε, where σ is the medium conductivity and ε, the permittivity.
From the approximation, we restrict geometries to surfaces of revolution, that is to say that the
domain can be generated by rotating a curve around an axis of rotation. This allows, following the
work of [19] to reduce the six unknowns of the Maxwell system to a three unknown system, defined on
a 2D-plane. From the 2D-axisymmetric model defined by [69], we add more complex configurations
in order to picture with better precision industrial settings. We propose in this chapter to consider
three features: the conductive support plate to investigate the detection of plugging deposits, thin
clogging deposits outside the plate area and thin tube thickness variation. Importance should be
given to the modeling of each feature in order to solve quickly the state equations. For instance, as
the support plate material is highly conductive, due to skin depth effect the electromagnetic fields
penetrate a thin layer of the material before vanishing. Properly rendering the variation in a thin
layer can be costly, which is why we prefer replace the plate by an impedance boundary condition
on its boundary. This boundary condition provides an appropriate scaling between the electric and
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magnetic fields on the surface, as well as a better approximation for taking into account reflection from
highly conductive materials. Impedance boundary conditions correspond to low order approximation
of so-called Generalized Impedance Boundary Conditions. The latter have been studied for two main
configurations in the context of electromagnetic scattering: highly conductive materials [44] and thin
conductive coatings on a perfectly conductive material [3]. Formal analysis of the scattered field
problem with GIBC was conducted in [13]. They can be used in inverse scattering problems [38] to
reconstruct the scattering surface. We adopt this asymptotic formalism to treat also thin layers of
material like a tube thickness variation or clogging deposits. Meshing the exact geometry of these
thin components to compute the solution of the direct model is costly due to their size. We choose
here to remove them from the computational domain, store the information in a thickness function
and add an Impedance Transmission Condition (ICT) at the adequate interface. Note that the study
of thin conductive layers in the context of eddy currents is not quite recent, papers like [39] developed
shell models for a formulation pH, V q of the equations. In recent years, ICTs provided an interesting
model that has been studied in 2D [57, 58] in both harmonic or magneto-quasistatics frameworks, or
in 3D [62]. The approach considered in these papers is similar to the support plate case: asymptotic
expansions with respect to the thickness of the layer are used to derive transmission condition on an
ideal interface, paired with a scaling of the conductivity with respect to the thickness in the layer.

The third chapter develops the reconstruction algorithm. In [69], the shape optimization prob-
lem is solved using a boundary variation method coupled with a gradient descent method: at each
iteration, the gradient is used to update the shape boundary. As explained above, since the shape is
explicitly declared in the computational domain, a modification of the shape requires a re-definition of
the domain and the state equations. We propose in this chapter to derive a reconstruction algorithm
based on the use of Level-Set functions. Formal differentiation of the cost function is based on pre-
liminary work by [24, 5]. Inverse problems are naturally ill-posed according to Hadamard’s definition
of well-posed problems: in our case, this means that several different optimal shapes may fit the same
data as the number of measurements is limited and that those minimizers are unstable with respect
to noise. To mitigate this issue, regularizations can be added to the optimization problem: addi-
tional constraints to discriminate some solutions, implementation of Tikhonov regularization . . . We
propose in this PhD to add a perimeter penalization to the cost function: due to the physics at stake
in the formation of deposit, we expect the shape to be smooth, with little oscillations. By enforcing
the solution of minimal perimeter, we expect to enforce uniqueness of the optimal shape. In addition
to reconstructing the deposit shape, we add to the optimization problem two variables corresponding
to thin clogging deposits and a thin tube thickness variation. We derive secondly the optimization
algorithms with respect to these two functions. Finally, in actual configurations, physical properties
of the deposit are not known exactly, due to the complex phenomenon behind their formation. As
such, we add the option of reconstructing these physical properties, assuming they are constant in
the material.

Chapter 4 displays the numerical results for the 2D-axisymmetric algorithm. After some impor-
tant remarks on different measures taken to improve the computational time of one iteration, by
solving for the scattered field, or re-arranging the assembly operations from one iteration to another,
we present some validating numerical results. We intend this chapter to be as thorough possible, by
discussing for instance the influence of the initialization on the convergence or that of the various
optimization parameters, to use the different observations we make for the 3D algorithm. We as well
evaluate the robustness of the method to noise at different steps in the ECT process: uncertainty in
the probe position, in the physical parameters, in the impedance signal and in the tube thickness.
Though the majority of the tests invert synthetic data, we conclude with the inversion of signals from
mock-up situations provided by the power plant operator.

In Chapter 5 we move onto the 3D model. Compared to the 2D-axisymmetric model, new diffi-
culties arise from the simulation of electromagnetic waves as they require edge elements, as explained
by [20] and [50], in order to ensure the continuity of tangential components. Under the eddy-current
approximation, the medium conductivity introduces a different behavior between the insulate and the
conductor, as well as differential constraints as explained in [1, Chapter2]. In addition, depending on
the topological nature of the insulate and conductor, should they not be simply connected, additional
harmonic fields may need to be computed on each connected component. Different approaches can be
considered to solve the 3D Eddy Current Maxwell equations, for instance with scalar potentials [7].
Though this formulation leads to cheaper memory requirements for numerical discretization for sim-
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ply connected insulate domains, in the context of shape reconstruction, the conductive and insulate
domains are bound to change over the course of the algorithm. Instead, we choose here the formula-
tion with potentials pA, V q defined by µH “ curl A and E “ iωA`gradV , with the Coulomb gauge
[1, Chapter 6]. Compared to a E-based or H-based formulation, the pA, V q formulation has a better
and simpler structure and requires only assumptions on the connectivity of the whole computation
domain (i.e. the union of conductive and insulator parts). Due to the assumed size of the problem
to solve, we tackle in this chapter the parallel resolution of the resulting equations. The specificity
of the reconstruction algorithm is that generation of impedance signals requires to solve the same
equations for different right-hand sides. This motivates a benchmark of four different iterative solvers:
GMRES [65], GCRODR [41], block GMRES [28] and block GCRODR [49]. While GMRES and to
a lesser extent GCRODR are widely used algorithms to solve linear systems, block iterative solvers
allows the user to solve blocks of right-hand sides at the same time, which is an interesting feature
for our problem. We also discuss in this chapter the numerical consequences of defining the deposit
geometry using a Level-Set function in the resolution of Maxwell equations: when interpolated to
the computational mesh, the deposit numerical surface becomes strongly non-regular, creating insta-
bilities. We look at different strategies to remove such numerical instabilities. We close the chapter
with the plate modeling, based on impedance boundary conditions derived in [44].

In the last chapter, we derive the 3D reconstruction algorithm. We start from the algorithm
defined in [29, 37] and add a Level-Set framework to it. Numerical experiments are then conducted.
Here we have two different probes available to deposit detection: an axisymmetric probe, SAX, and a
probe made of two rows of coils allocated around the probe axis, SMX (see [51] for more probes used
in ECT). We compare throughout different test configurations the performances of the reconstruction
algorithm with the two different probes: computational time, optimal solution, final data fit . . . We
also make use of the 2D-axisymmetric reconstruction algorithm on some simple cases to validate the
accuracy optimality of the 3D inversion on axisymmetric configurations.
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Introduction

L’électricité en France est en grande partie générée (autour de 70% de la production nationale) par l’un
des 56 réacteurs nucléaires répartis dans 18 centrales nucléaires. EDF, en tant qu’opérateur historique
de ces centrales, assure le bon fonctionnement des différentes infrastructures. Le fonctionnement de la
centrale est régie par différentes règlementations permettant d’éviter tout incident à l’origine de fuite
radioactive dans l’environnement. Pour respecter ces normes, chaque centrale est inspectée durant ce
que l’on appelle des ”arrêts de tranche” pendant lesquels la centrale est arrêtée pour pouvoir évaluer
la fatigue et l’usure des infrastructures et s’assurer de la sûreté de l’ensemble afin de pouvoir continuer
à fonctionner.

(a) Dessin de l’intérieur d’un générateur de vapeur
(b) Image du faisceau tubulaire

Figure 0.3: Générateur de vapeur

Cette thèse se concentre sur l’inspection des générateurs de vapeur (GV), les échangeurs
thermiques de la centrale. Figure 0.3 exhibe les principales composantes du GV, à savoir un ensemble
de plus d’un millier de tubes en U (entre 3500 et 5600 tubes selon le modèle de centrale pour être
plus précis) stabilisés à l’aide de plaques entretoises régulièrement espacées le long des tuyaux. A
l’intérieur de ceux-ci circule l’eau chauffée par la réaction nucléaire en amont, tandis qu’à l’extérieur
des tubes circule de l’eau plus froide. Par contact avec les tubes chauffés, l’eau froide est vaporisée
et la vapeur qui en résulte est ensuite utilisée pour produire de l’électricité à l’aide d’un couple
turbine/alternateur.

L’usure à l’intérieur des GV a plusieurs origines : les hautes conditions de température/pression à
l’intérieur des tubes, l’eau circulant constamment dans et à l’extérieur des tubes, . . . En conséquence,
différents types de défauts peuvent être observés : des fissures dans l’épaisseur du tube [54], la
formation de dépôts conducteurs sur la paroi extérieure du tube par agglutination de particules
métalliques [60], . . . Nous nous focalisons dans cette thèse sur la détection de ces dépôts métalliques,

7
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qu’on peut séparer en deux familles :

• dépôts colmatants, entre le tube et la plaque entretoise (cf Figure 0.4),

• dépôts d’encrassement, en-dehors de la zone de la plaque. Ces dépôts sont en général longs
selon la direction du tube et fins sur la direction transverse, du fait de la circulation de l’eau le
long du tube, empêchant la formation de dépôts volumiques.

La détection de ces dépôts est importante pour s’assurer du bon fonctionnement de la centrale
car ils réduisent les transferts thermiques sur la paroi du tube [59], réduisant ainsi le rendement
du GV et peuvent également colmater les trous laissant passer l’eau entre la plaque entretoise et le
tube, créant ainsi des contraintes mécaniques supplémentaires sur les conduites, accélérant de fait
leur usure. Pour se débarrasser des dépôts, un nettoyage chimique est utilisé par l’opérateur. Cette
opération étant coûteuse, il a été convenu qu’au-delà d’un pourcentage de colmatage du GV décidé
par des réglementations, le processus de nettoyage est enclenché. Il est donc important de pouvoir
estimer ce pourcentage de colmatage.

Figure 0.4: Dessin d’un dépôt colmatant entre la plaque entretoise et le tube (coupe transverse).

Pour différentes raisons (inaccessibilité, radioactivité des composants, coûts économiques, . . . ),
une observation directe de l’intérieur des GV n’est pas permise. Le Contrôle Non Destructif
(CND) est une approche utilisée en industrie pour obtenir de l’information sur l’état d’un objet sans
avoir à l’endommager. Dans le cas présent, le CND constitue une méthode indirecte permettant
d’analyser la configuration à l’intérieur des GV pour chaque tube sans avoir à être physiquement
présent dans le bâtiment réacteur et sans mettre en danger l’engin. Il existe une grande variété
de méthodes à base de CND pouvant s’appliquer à un grand nombre de configurations. Parmi ces
méthodes, le contrôle par courants de Foucault (ECT en anglais) constitue une approche adaptée
à la détection de dépôts métalliques. Un champ électromagnétique alternatif crée sur des surfaces
conductrices des courants de surface appelés courants de Foucault. La formation de ces courants
est directement liée à la loi de Faraday (à savoir qu’une variation temporelle du champ magnétique
induit en retour un champ électrique) : sur des matériaux conducteurs, la variation de champ va
créer des courants de surface proportionnels à la conductivité suivant la loi d’Ohm. Par conséquent,
ces courants vont à leur tour induire un nouveau champ électromagnétique qui va venir perturber le
champ incident : la méthode ECT utilise cette perturbation du champ pour obtenir de l’information
sur l’état des parties conductrices du domaine. Pour générer le champ électromagnétique est utilisée
une sonde contenant des bobines soumises à un courant I. Pour mesurer la perturbation, la sonde
compare le flux à travers une bobine (réceptrice) du champ perturbé avec celui du champ incident
à travers une autre bobine (émettrice), différente ou non : c’est ce que l’on appelle l’impédance.
En présence d’un défaut dans les parties conductrices l’impédance aura une signature non nulle con-
tenant ainsi des informations sur ledit défaut. La méthode d’ECT peut s’appliquer à différentes
problématiques, comme par exemple la détection de fissures à l’intérieur des GV [51, 40] ou dans
d’autres configurations [31], ou bien couplé avec de la thermographie au travers de l’effet Joule [26].

Dans le cas présent, le processus de détection choisi est le suivant : après avoir vidé le GV de
son eau, la sonde est insérée depuis une extrémité jusqu’à l’autre. Elle est ensuite tirée à vitesse



Contents 9

constante : à des positions données le long du tube, elle va prendre une mesure, générant ainsi à la
fin un signal d’impédance. L’analyse du signal ainsi obtenu permet d’obtenir de l’information sur la
forme et la position du dépôt. En l’état, le traitement des données se base sur des modèles empiriques
élaborés à partir de bases de données : la phase et l’amplitude du signal sont utilisées pour obtenir
de l’information générale sur l’épaisseur et la longueur du dépôt.

Une telle méthode constitue un outil puissant capable d’analyser une grande quantité de données
tout en donnant des informations générales sur le dépôt, ce qui est suffisant pour l’opérateur pour
décider du déclenchement ou non du nettoyage chimique. Cependant dans des configurations plus
complexes, par exemple lorsque le tube a une épaisseur légèrement non constante ou pour des formes
de dépôts pathologiques, une telle approche peut conduire à une mauvaise interprétation des données.
Ceci motive la construction d’un autre algorithme de traitement capable de reconstruire précisément
n’importe quelle forme de dépôt. Nous nous proposons ici de développer une approche se basant sur
la modélisation des phénomènes physiques liés au processus et de formuler le problème comme un
problème inverse. L’objectif de cette famille de problèmes est d’estimer des paramètres y à partir
de mesures indirectes z liées à la physique du système et un modèle A qui transforme les paramètres y
en mesures z : Apyq “ z. Supposons que A soit connu, il faut ”l’inverser” pour calculer y à partir de
z. Dans le cas présent, y est la forme du dépôt dans le domaine de calcul, z est le signal d’impédance
et A contient les équations de Maxwell qui permettent de calculer le champ électromagnétique et
donc l’impédance. Comparé à des méthodes empiriques, une telle approche inverse assure une bonne
reconstruction du dépôt, au prix d’une plus grande complexité et d’une analyse plus lente de part le
calcul de A.

Comme A est connu, il est possible de générer pour n’importe quelle forme y le signal d’impédance
z qui lui correspond. De fait, ”l’inversion” de A peut se formuler comme un problème d’optimisation
de forme où la fonctionnelle coût est l’écart aux moindres carrés entre le signal d’entrée z̃ et le modèle
numérique Apyq. En trouvant la forme y qui minimise la fonctionnelle coût, nous avons reconstruit
la solution de notre problème.

L’optimisation de forme est un type de problème d’optimisation qu’il est possible de rencontrer
en mécanique solide (par exemple la conception optimale de structures soumises à des contraintes
mécaniques et de volume données) [24] ou fluide [10]. Elle est également largement utilisée en
électromagnétique dans le contexte de problèmes de diffraction inverse [48, 14, 38], ou plus précisément
pour l’inspection de matériaux conducteurs à l’aide de méthodes d’ECT comme discuté dans cette
thèse. A propos de la reconstruction de forme à l’aide de courants de Foucault dans les GV, des
travaux préliminaires ont été conduits par [67, 69, 68] pour des géométries 2D-axisymétriques et par
[29, 37] pour des configurations 3D. Ces papiers utilisent une descente de gradient pour résoudre le
problème d’optimisation, en considérant que la frontière du dépôt est l’inconnue à optimiser : à chaque
itération, la frontière est déformée par le gradient. Dans cette approche, la forme est explicitement
définie dans le domaine de calcul : cela permet d’avoir une bonne précision sur la forme du dépôt
au prix d’un coût de calcul élevé car chaque itération nécessite la création d’un nouveau maillage et
d’une re-définition du problème. Le travail exposé dans cette thèse consiste en l’intégration de fonc-
tions Level-Set à l’algorithme de reconstruction. L’utilisation de telles fonctions en optimisation de
forme s’est répandue dans de récents travaux, notamment dans la conception optimale de structures
[66, 25], dans les problèmes de diffraction inverse [48], en tomographie optique [45], ou en mécanique
des fluides [56]. La déclaration implicite de la forme à l’aide d’une fonction Level-Set constitue un
outil permettant de mieux gérer des changements topologiques de la forme comme la fusion ou la
séparation en deux composantes connexes. Dans un second temps, cela permet de conserver le même
domaine de calcul à chaque itération, au prix d’une précision plus faible sur la forme qui doit être
interpolée.

Nous aimerions maintenant présenter nos contributions au problème de détection au travers d’un
rapide résumé du contenu du manuscrit. Après un chapitre introductif définissant les principaux
mots-clés de la thèse, le manuscrit se subdivise en deux parties traitant de la reconstruction de
dépôts, d’une part pour des configurations 2D-axisymétriques et d’autre part pour des configurations
3D génériques.

Dans le chapitre deux, nous élaborons un modèle physique pour le domaine 2D-axisymétrique :
à partir d’une configuration donnée, nous aimerions résoudre les équations de Maxwell pour générer
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le signal d’impédance qui en résulte. En présence de courants de Foucault, il a été observé que la
variation temporelle du champ électrique dans le conducteur est très petite lorsque la pulsation ω du
courant alternatif est relativement faible. Cela conduit à l’approximation des courants de Foucault
σ " ωε, où σ est la conductivité du milieu et ε, sa permittivité. A partir de cette approximation, nous
restreignons les géométries à des surfaces de révolution, autrement dit le domaine peut être généré
en faisant tourner une courbe autour d’un axe de rotation. Cela permet, d’après le travail de [19],
de réduire le système à six inconnues lié aux équations de Maxwell à un système à trois inconnues
défini sur un plan 2D. En s’appuyant sur le modèle 2D-axisymétrique défini par [69], nous ajoutons au
domaine des caractéristiques plus complexes pour pouvoir mieux rendre compte de l’intérieur des GV.
Nous proposons dans ce chapitre de considérer les trois composantes suivantes : la plaque entretoise
conductrice pour pouvoir étudier la détection de dépôts colmatants, les dépôts fins d’encrassement
en-dehors de la zone de la plaque et une variation fine de l’épaisseur de tube. Un souci particulier doit
être apporté à la modélisation de ces différentes caractéristiques pour assurer une résolution rapide
des équations. Par exemple, comme la plaque entretoise est hautement conductrice, du fait de l’effet
d’épaisseur de peau, le champ électromagnétique va pénétrer une très fine épaisseur du matériau avant
d’être totalement dissipée. La prise en compte de cette fine variation peut très vite s’avérer coûteuse,
c’est pourquoi nous préférons remplacer la plaque par une condition d’impédance sur sa frontière.
Cette condition de bord permet d’avoir une mise à l’échelle des champs électrique et magnétique
sur la surface, ainsi qu’une meilleure approximation pour prendre en compte des phénomènes de
réflexion par des matériaux hautement conducteurs. Ces conditions d’impédance constituent en
réalité une approximation aux premiers ordres de ce qu’on appelle Generalized Impedance Boundary
Conditions. Ces conditions de bord plus génériques ont été étudiées dans deux cas spécifiques, liés à la
diffraction d’ondes électromagnétiques : les matériaux hautement conducteurs [44] ou bien les couches
minces recouvrant des matériaux parfaitement conducteurs [3]. Une analyse formelle du problème
de diffraction avec GIBC a été conduite par [13]. Elles peuvent être utilisées pour des problèmes de
diffraction inverse [38] pour reconstruire la surface diffractante. Nous adoptons ce même formalisme
asymptotique pour traiter des couches fines comme la variation fine d’épaisseur de tube ou bien les
dépôts fins d’encrassement. Mailler la géométrie de ces défauts fins pour calculer les champs s’avère
très rapidement coûteux du fait de leur taille. Nous choisissons ici de les enlever du domaine de calcul
pour les remplacer par des fonctions d’épaisseur en munissant les interfaces appropriées de conditions
d’impédance de transmission (ICT en anglais). L’étude de couches fines de matériaux conducteurs
n’est pas récente, des papiers comme [39] ont développé des modèles pour une formulation pH, V q
des équations. Plus récemment, les ICT ont été étudiées en 2D [57, 58] dans un cadre harmonique ou
magneto-quasistatique, ou bien en 3D [62]. L’approche développée dans ces papiers ressemble à celle
utilisée pour les plaques entretoises : en mettant à l’échelle la conductivité par rapport à l’épaisseur
de la couche, des développements asymptotiques des champs dans la couche par rapport à l’épaisseur
permettent de construire les conditions de transmission à appliquer sur les interfaces.

Le troisième chapitre développe l’algorithme de reconstruction. Dans [69], le problème d’optimisation
de forme est résolu en utilisant une méthode de variation de frontière couplée à une descente de gra-
dient : à chaque itération le gradient est utilisé pour mettre à jour la frontière de la forme. Comme
nous l’avons expliqué plus haut, comme la forme est explicitement définie dans le domaine de cal-
cul, une modification de la forme nécessite de redéfinir le domaine ainsi que les équations d’état.
Nous proposons dans ce chapitre de développer un algorithme de reconstruction se basant sur l’usage
des fonctions Level-Set. La différenciation formelle de la fonctionnelle coût repose sur les travaux
préliminaires de [24, 5]. Les problèmes inverses sont naturellement mal posés au sens de Hadamard :
dans notre cas cela signifie que différentes formes optimales peuvent donner les mêmes signaux du
fait du nombre limité de mesures et ces minimums sont instables par rapport à une variation fine
des données. Pour résoudre cette contrainte, des régularisations peuvent être ajoutées au problème
d’optimisation, comme par exemple des contraintes supplémentaires pour discriminer certaines solu-
tions, l’utilisation de régularisation de Tikhonov, . . . Nous proposons dans cette thèse d’ajouter une
pénalisation du périmètre à la fonction coût : l’étude dans les GV montre que les dépôts qui se forment
sur les tubes ont une forme lisse avec peu d’oscillations. En forçant la solution à avoir un périmètre
minimal, nous espérons forcer l’unicité de la forme optimale. En plus de la reconstruction de la forme
du dépôt, nous ajoutons au problème d’optimisation deux variables supplémentaires correspondant à
l’épaisseur des dépôts fins d’encrassement ainsi que la variation d’épaisseur de tube. Dans un second
temps nous présentons l’algorithme d’optimisation par rapport à ces deux inconnues. Enfin, dans les
configurations réelles, les propriétés physiques du dépôt ne sont pas connues exactement, du fait du
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phénomène complexe à l’origine de leur formation. Par conséquent nous ajoutons l’option de pouvoir
reconstruire ces propriétés physiques, en les supposant constantes dans le matériau.

Le chapitre quatre présente les résultats numériques pour l’algorithme 2D. Après d’importantes
remarques sur les différentes mesures que nous avons prises pour améliorer le temps de calcul
d’une itération d’inversion, en calculant le champ diffracté ou bien en réarrangeant les opérations
d’assemblage d’une itération à l’autre, nous présentons différents tests permettant de valider l’algorithme.
Ce chapitre se veut aussi exhaustif que possible, par exemple au travers de discussions sur le choix
de l’initialisation, ou bien des différents paramètres de régularisation dans le but d’utiliser ces ob-
servations pour l’algorithme 3D. Nous étudions également la robustesse de la méthode à différents
degrés d’imprécision dans le processus de détection : incertitude dans la position de sonde, dans les
paramètres physiques, dans le signal d’impédance ou dans l’épaisseur de tube. Bien que la plupart
des tests soient construits sur des données artificielles, nous concluons avec l’inversion de signaux
provenant de maquettes générés par l’opérateur des centrales nucléaires.

Dans le chapitre 5 nous étudions le modèle 3D. Comparé au modèle 2D-axisymétrique, de nou-
velles difficultés dans la modélisation apparaissent du fait de la simulation d’ondes électromagnétiques
qui requièrent l’utilisation d’éléments d’arrête comme expliqué par [20] et [50], pour assurer la conti-
nuité des composantes tangentielles. Sous l’approximation des courants de Foucault, la conductivité
du milieu introduit différents comportements entre le milieu isolant et le milieu conducteur, de même
que des contraintes différentielles comme expliqué dans [1, Chapitre 2]. De plus, selon la nature
topologique des deux milieux, à savoir selon qu’ils soient simplement connexes ou pas, il faudrait
ajouter le calcul de champs harmoniques sur les différentes composantes connexes. Différentes ap-
proches peuvent être considérées pour résoudre les équations de Maxwell, par exemple avec des
potentiels scalaires [7]. Bien que cette formulation permette de réduire le coût mémoire pour la
discrétisation numérique du problème pour des domaines simplement connexes, dans le contexte de la
reconstruction de forme, les domaines conducteur et isolant sont amenés à changer selon les itérations.
De fait nous proposons ici de formuler les équations de Maxwell à partir des potentiels pA, V q définis
par µH “ curl A et E “ iωA ` gradV , munis de la jauge de Coulomb [1, Chapter 6]. Comparé à
une formulation en le champ électrique E ou magnétique H, la formulation en potentiels pA, V q a une
meilleure structure, plus simple et ne requiert que des présupposés sur la connectivité du domaine
global. De part la taille attendue du domaine à résoudre, nous traitons également dans ce chapitre la
parallélisation des équations. La spécificité de l’algorithme de reconstruction est que la génération des
signaux d’impédance nécessite de résoudre les même équations pour différents seconds membres. Cela
motive une comparaison de quatre solveurs itératifs : GMRES [65], GCRODR [41], block GMRES
[28] et block GCRODR [49]. Tandis que GMRES et dans une moindre mesure GCRODR sont des
algorithmes très répandus pour la résolution de systèmes linéaires, des solveurs par blocs permettent
de résoudre des blocs de seconds membres en même temps, caractéristique intéressante pour notre
problème. Nous discutons également dans ce chapitre des conséquences numériques de la définition
implicite de la géométrie du dépôt à l’aide de fonctions Level-Set dans la résolution des équations
de Maxwell : une fois interpolée sur le maillage de calcul, la frontière numérique du dépôt devient
très irrégulière, créant des instabilités. Nous regardons différentes stratégies permettant d’enlever
ces instabilités numériques. Nous terminons ce chapitre par l’élaboration du modèle pour la plaque
entretoise, basé sur les conditions d’impédance définies dans [44].

Dans le dernier chapitre, nous développons l’algorithme de reconstruction 3D. Nous nous appuyons
dans un premier temps sur l’algorithme défini par [29, 37] pour ajouter ensuite la modélisation
du dépôt par fonction Level-Set. Des expérimentations numériques sont ensuite conduites. Dans
ce chapitre, nous pouvons utiliser deux sondes différentes pour détecter le dépôt : une sonde ax-
isymétrique, SAX, et une sonde faite de deux rangées de bobines autour de l’axe de la sonde, SMX
(voir [51] pour plus d’exemples de sondes utilisées pour le CND dans les GV). Nous comparons ainsi
au travers de différents cas tests les performances de l’algorithme de reconstruction avec les deux
sondes : le temps de calcul, la solution optimale, l’attache aux données finale, . . . Nous nous ser-
vons également de l’algorithme 2D-axisymétrique sur des cas simples axisymétriques pour valider la
précision de la reconstruction 3D.
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Non-Destructive Testing, or NDT, is a powerful tool used in science and in industries to assess
the properties of a material without altering or damaging it. Depending on the nature of the system
tested, a wide variety of methods can be used, ranging from acoustic emission to detect cracks or
leaks to radiographic testing for airport security for instance.

Figure 1.1: Formation of eddy currents on conductive material.
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In this thesis, we consider one type of NDT called Eddy Current Testing, or ECT. This method
exploits a well-known electromagnetic phenomenon: in presence of an alternating magnetic induction
B, small surface currents appear on a conductive material. These currents are called eddy current.
They are a consequence of Faraday’s law of induction, as illustrated by Figure 1.1: a variation of
the magnetic flux, manifested by a tilde, creates a circular electric field E that induces in return a
current I.

In presence of a conductive defect, the circulation of the eddy currents is disturbed, yielding a
perturbation of the magnetic induction. ECT makes use of this distortion to obtain information on
the state of the system, that is to say, presence of cracks, defects, ... The perturbation is measured
using the flow of the magnetic induction through a coil, called impedance.

In this thesis, we consider the use of ECT for the inspection of nuclear power plants, specifically
inside steam generators, noted SG, to detect conductive deposits on tubes. As they may alter the
yield of the power plant, the operator wants to assess the proportion of deposits inside the machine,
in order to activate chemical cleaning that will remove the impurities.

In this introductive chapter, we first present the industrial context underlying this work. In
a second part, after introducing Maxwell equations, we specify the equations in presence of eddy
currents for which the approximation σ " ωε is verified, where σ is the conductivity and ε, the
permittivity of the medium, and ω, the pulsation. The last part focuses on the application of the
eddy current equations to ECT in Steam Generators.

1.1 Industrial Overview

Nuclear power plants are thermal power plants using nuclear fuel to produce electricity. Their oper-
ation is the following: water is used to transfer heat generated by a heating source, here the nuclear
reaction. It then vaporizes water which eventually transforms the thermal energy to a mechanic
energy, converted at the end to an electric energy. Figure 1.2 displays here the main features of a
Pressurized Water Reactor, noted PWR.

Figure 1.2: Schematic operation of a nuclear power plant. Source : IRSN.

At the heart of the power plant is the nuclear reactor: radioactive fuel assemblies are plunged
inside a nuclear vessel. When the fuel unstable nuclei are hit by neutrons, they split into more stable
nuclei and two/three neutrons, that will then hit other unstable nuclei. By chain reaction, the nuclear
reaction continues. Different levers exist to control its intensity: for instance, adjusting how deep
the modules are plunged in the nuclear vessel, or using bore atoms in the water to absorb a portion
of the neutrons. This helps the operator control the power produced to meet the fluctuations in the
demand in electricity. The energy produced by the fission is used to heat water, maintained in liquid
phase using a pressuriser, flowing inside the primary loop. The heat transported by the water is then
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used to vaporize colder water inside the steam generator. All these structures are enclosed inside
the reactor building, whose main purpose is to stop potential radioactivity leak from pouring in the
environnement.

The vapor water coming from the steam generator is taken to a turbine, coupled with an alternator
to produce electricity. The vapor is then condensed using a condenser: the resulting liquid water
flows back to the steam generator. The liquid/vapor water form the secondary loop.

The condenser that cools the vapor uses cold water from different sources: the sea, the ocean, the
river coupled or not with cooling towers. That forms the cooling loop.

Figure 1.3: Sketch of the interior of a steam generator

The focus of this work is the inspection of the steam generator, where water is vaporized. Fig-
ure 1.3 shows the characteristics of the device: it is composed of a cluster of more than a thousand
U-shaped tubes where hot water from the primary loop flows. These tubes are plunged inside cooler
water from the secondary loop. By contact with the tubes, colder water vaporizes and flows upwards,
towards the turbine.

Due to their geometry (diameter ! height), the tubes are maintained still using support plates
evenly spaced in the tube direction, to limit the tube oscillation induced by the water flowing inside.
In the Steam Generators considered, these plates, made out of a highly conductive material, are drilled
with quatrofoil holes to let both the tube and the water come through it, as shown on Figure 2.2.

Figure 1.4: Sketch of a plugging deposit between the plate and the tube (cross section).

Over the course of the power plant operation, different deteriorations can be observed inside the
steam generator, like formation of cracks for instance. We consider here corrosion phenomena occuring
in the secondary loop: soluble matter or particles like iron oxyde or magnetite Fe3O4 form inside the
liquid water. As these impurities can not be transported by the vapor, they accumulate inside the
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steam generator, forming eventually deposits on the tube exterior. These conductive deposits may
be of two types:

• plugging, between the tube and the support plate (cf Figure 2.2),

• clogging, outside the plate area. These deposits are usually long in the tube axis direction and
thin in the transverse direction.

For more details on the formation of plugging and clogging deposit, we advise the reader to read
the theses [60] and [59].

For the power plant operator, these deposits are unwanted as they deteriorate heat transfer on the
tube exterior and alter the flow of the water from the secondary loop. They also harm security of the
device, for instance the integrity of the tubes or the equipment of the Steam Generator, should the
proportion of clogging deposits be high enough. To remove them, a cleaning process using chemicals
can be done. However, the cleaning process is highly costly for the company, for various reasons.
Detection of such structures then is more than important for the operator as it gives information
of the proportion of deposits: should it excess a chosen value, the cleaning is activated. A natural
solution for the detection would be to physically check inside the steam generator, which is only
partially possible using a robot equipped with a camera. The device can only access the top (and
sometimes the middle) tube support plate and can reach only one of the quadrofoil holes with limited
precision. Figure 1.5 displays the type of picture that can be taken from the top: as evidenced by
the pictures, processing the image leads to incomplete information about the whole device state.
Direct observation of the tubes to obtain precise information on the presence of deposits is therefore
prohibited: this calls for Non Destructive Testing.

Figure 1.5: Example of picture taken from the top of the tubes. Left: no plugging deposit, right:
partial plug.

Non Destructive Testing (NDT) provides tools that does not rely on direct observation and at
the same time does not harm the inspected structure. It covers a wide variety of methods such as
eddy current, magnetic particle, liquid penetrant, radiographic, ultrasonic, visual testing, ... As the
support plate, deposit and tube inside the Steam Generator are conductive, Eddy Current Testing
(ECT) constitutes a suitable approach. The detection process using ECT is the following. After
emptying the device from the water, probes are inserted from one end of each tube, to the other
end. By pulling them out at a constant speed, the operator is able to make measurements at regular
positions alongside the tube.

The probes are composed of a given set of coils: when a coil, called the emitter, is subjected to
a current I, it produces an incident electromagnetic field. On the surface of conductive materials,
eddy currents generate an other electromagnetic field, disturbing the former. An other coil, called
the receiver, then measures the flow of the distorted field and compares it to that of the incident field:
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the difference of flows is called impedance. It constitutes the data to invert as it contains information
on the deposit.

Different probes can be used in the ECT process, to obtain different information on the configu-
ration. In this work, we consider two of them : the SAX probe and the SMX probe. The SAX probe
is made out of two axial coils placed in the tube direction, whereas the SMX probe is composed of
two rows of coils, placed at different azimuthal coordinates, as displayed on Figure 1.6.

Figure 1.6: Picture of a SMX probe.

As the tube and SAX probe coils share the same axis, this device provides information on the
deposit that is averaged on the azimuthal direction whereas the SMX probe gives different information
on this direction.

1.2 Eddy Current Approximation

Before getting into the specifics of the formation of eddy currents, let us first present the generic
Maxwell equations, then focus on the time-harmonic formulation of these equations.

1.2.1 Maxwell Equations

Maxwell’s four equations describe the electric and magnetic inductions arising from distributions of
electric charges and currents, and how those fields change in time. Even though they are now known
as Maxwell equations, they originally were four different laws observed and formulated by different
scientists that Maxwell had the idea to combine in order to describe electromagnetic phenomena. It
can be formulated either locally or integrally, the former being easy to use for calculations and the
latter to understand the physical justifications of the formulae.

Let us introduce the fields Epx, tq and Bpx, tq, respectively the electric field and magnetic induction
depending on the spatial variable x and the time t. We consider their propagation inside vacuum,
of constant permittivity and permeability εv and µv, with a current density J px, tq and a charge
density ρpx, tq. The first law links the flux of E through an enclosed surface S to the total charge Q
inside the volume V delimited by S:

£

S

E ¨ dS “
Q
ε0
“

1

ε0

¡

V

ρ dx : Gauss’s law (1.1)

The second law is analogous to the previous as it gives information on the flow of B through an
enclosed surface S and is a consequence of the experimental fact that magnetic charges do not exist:

£

S

B ¨ dS “ 0 : Gauss’s law for magnetism (1.2)

The two remaining laws link time-variation of the flow of the fields through an open surface Σ to
their circulation on C, the closed curve enclosing Σ:
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¿

C

E ¨ dl “ ´
d

dt

ĳ

Σ

B ¨ dS : Faraday’s law of induction (1.3)

¿

C

B ¨ dl “ µ0pI ` IDq “µ0

¨

˝

ĳ

Σ

J ¨ dS` ε0
d

dt

ĳ

Σ

E ¨ dS

˛

‚ : Maxwell-Ampère’s law (1.4)

where I “
ť

Σ
J ¨ dS the current and ID “ ε0

d
dt

ť

Σ
E ¨ dS, the displacement currents.

Originally, Faraday’s law was formulated to model the creation of an electromotive force on a
conductive material by the time variation of the magnetic flux. It was rewritten in the present form
by Maxwell to link to the electric field.

Ampère’s law explains that the magnetic circulation on a closed curve is equal to the enclosed
currents. In its first form, only the currents from the density where taken into account, unable to
model some physical phenomena. Maxwell added the displacement currents which symbolizes the
current created by the displacement of charged particles.

Using Gauss-divergence and Stokes theorems, these laws are re-written in a local form to become
the Maxwell equations:

∇ ¨ E “ ρ

ε0
: Maxwell-Gauss equation (1.5a)

∇ ¨ B “ 0 : Maxwell-Thomson equation (1.5b)

∇ˆ E “ ´BB
Bt

: Maxwell-Faraday equation (1.5c)

∇ˆ B “ µ0

ˆ

J ` ε0
BE
Bt

˙

: Maxwell-Ampère equation (1.5d)

Note that by taking the divergence of (1.5d), using (1.5a) and the fact that ∇ˆ p∇ ¨ q “ 0, we
derive the equation for charge conservation:

Bρ

Bt
`∇ ¨ J “ 0 : Charge conservation (1.6)

The equation guarantees that the total electric charge of an isolated system never changes, or
rather, that a change in the charge inside a volume V is equal to the difference between the current
flow going in and out of the volume.

To extend the model to more complex medium, where µpx, tq and εpx, tq are non constant, the
equations need to be slightly modified. Introducing the electric induction Dpx, tq and the magnetic
field Hpx, tq, the Maxwell equations become:

∇ ¨D “ ρ : Maxwell-Gauss equation (1.7a)

∇ ¨ B “ 0 : Maxwell-Thomson equation (1.7b)

∇ˆ E “ ´BB
Bt

: Maxwell-Faraday equation (1.7c)

∇ˆH “
ˆ

J ` BD
Bt

˙

: Maxwell-Ampère equation (1.7d)

In most scientific problems, µ and ε are time independent symmetric positive definite matrices
and D and B depend linearly on respectively on E and H :

D “ εE , B “ µH

In the present case, we consider isotropic non-homogeneous media, where µ and ε are piecewise
constant. In the following, we focus on the study of a sub-problem that are time-harmonic Maxwell
equations: probes used by the operator use an alternating current to induce alternating fields where
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time-dependance is of the form e´iωt, ω being the pulsation of the signal. Note that the definition
time-harmonic fields might be the conjugate in some papers, slightly changing the equations. The
alternating current density J is then denoted:

J px, tq “ Re
“

Jpxqe´iωt
‰

where J is a complex-valued vector containing the amplitude and phase of the signal. After a
transient state, it is proven that the different field have the same alternating behaviour, with the
same pulsation ω:

Dpx, tq “ Re
“

Dpxqe´iωt
‰

, Epx, tq “ Re
“

Epxqe´iωt
‰

Bpx, tq “ Re
“

Bpxqe´iωt
‰

, Hpx, tq “ Re
“

Hpxqe´iωt
‰

where D, E, B and H are complex-valued vectors. From that we derive the time-harmonic Maxwell
equations:

∇ˆE´ iωµH “ 0 (1.8a)

∇ˆH` iωεE “ J (1.8b)

Maxwell-Thomson equation is dropped as it can be obtained by taking the divergence of (1.8a). The
charge distribution ρ is obtained using Maxwell-Gauss equation ρpx, tq “ ∇ ¨ pRerεpxqEpxqe´iωtsq.
These three equations constitute the starting point of this work.

1.2.2 Eddy Currents

This subsection is based on [1, Chapter 1].
Consider here a generic domain Ω decomposed between a conductive, ΩC , and non-conductive

subdomain, ΩI :“ ΩzΩC . We assume ΩC is strictly included in Ω, that is to say ΩC Ă Ω. Note that
for the configuration inside Steam Generators, BΩC X BΩ ‰ H. Nonetheless, the results displayed
hereafter can be extended for such domains. Let Γ :“ BΩI X BΩC be the boundary between the two
subdomains. We suppose the conductor is not simply connected and write the connected components
ΩCi , i P 1 . . . pΓ: ΩC “

ŤpΓ

i“0 ΩCi . Let σpxq be the medium conductivity, by definition null inside ΩI .
Faraday’s law explains that time-variation of the magnetic field induces an electric field: on

conductive materials, that generates small surface currents Je defined by:

Je “ σE : Ohm’s law

In consequence, time-harmonic Maxwell-Ampère becomes:

∇ˆH` piωε´ σqE “ J (1.9)

Due to the σE term, (1.8a) and (1.9) requires to impose div J “ 0 in the insulator, for compatibility
purposes. Remark it is equivalent to say that there are no charges in the insulator. In the conductor,
the charge distribution is defined by:

ρpx, tq “∇ ¨ pRerεpxqEpxqe´iωtsq, in ΩC

Eddy currents have different industrial applications: as they induce a perturbation in the elec-
tromagnetic field which can be used to detect abnormalities in materials, through Eddy Current
Testing. A other well-known consequence of Ohm’s law is power loss due to electric heating: the
passage of electric current inside a conductor produces heat according to Joule’s law. Let P be the
heat generated by the conductor, then:

P “ σ´1Je ¨ Je : Joule’s law

The energy loss created by Joule’s law poses many issues, for instance in power stations as the
current flowing inside conductive wires loses its energy, decreasing the performances. However it has
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also benefits, for instance in smelting plants where the heat gave off by the conductors is used to
melt metal.

Due to the movement of charged particles inside the conductor, eddy currents also generates
Lorentz forces:

f “ Je ˆB

These forces can be used as a braking device. Consider a conductive disk moving at a given
angular speed. Arrange a electromagnet on both sides of the disk: when activated it creates a mag-
netic field that generates eddy currents, and a Lorentz force opposing the movement. As the force is
proportional to the material speed, Lorentz force plays the role of a viscous friction.

In each phenomenon using eddy current, it has been observed that the time-variation of the
electromagnetic waves is very small compared to the pulsation ω of the alternating signal. Differ-
ent approaches can be considered to take that observation into account, by neglecting in Maxwell
equations either BD

Bt or BB
Bt . Neglecting both derivatives leads to an electro-magneto-static model

where eddy currents are not modeled. Disregarding the magnetic time derivative provides an electro-
quasistatic model for fairly low frequencies and high voltages. We consider here the last option in
which the electric time derivative is neglected, while time-variation of the magnetic induction is still
important, called magneto-quasistatic approximation. Considering the span of values taken by the
different parameters, this approximation leads to the following approximation:

σ " ωε

The resulting Maxwell equations, where the displacement currents are neglected, are called eddy
current approximation. For the time-harmonic set-up, it writes:

∇ˆE´ iωµH “ 0 in Ω (1.10a)

∇ˆH´ σE “ J in Ω (1.10b)

∇ ¨ pεEq “ 0 in ΩI (1.10c)

The third equation (1.10c) is added as Maxwell-Ampère does not ensure εE is divergence-free in
the insulator any more. Note Maxwell-Thompson is still contained in (1.10a).

To close the problem, boundary conditions are to be imposed. There exists a wide variety of con-
ditions depending on the problem: if BΩ is supposed to be a perfect conductor, where the conductivity
is infinite, the resulting conditions are called electric conditions and write

Eˆ n “ 0 on BΩ

µH ¨ n “ 0 on BΩ

The second condition derives from the first using Faraday equation. Another approach is to consider
BΩ as an infinite permeable medium, leading to the following magnetic conditions:

Hˆ n “ 0 on BΩ

J ¨ n “ 0 on BΩ

εE ¨ n “ 0 on BΩ

The second condition is added for compatibility purposes, the third one is required to determine
the electric field in the insulator. In this work, we choose to apply the magnetic conditions. In
summation, the eddy current approximation equations for time-harmonic Maxwell are the following,
where EI denotes E|ΩI :
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∇ˆE´ iωµH “ 0 in Ω (1.11a)

∇ˆH´ σE “ J in Ω (1.11b)

∇ ¨ pεIEIq “ 0 in ΩI (1.11c)

Hˆ n “ 0 on BΩ (1.11d)

εIEI ¨ n “ 0 on BΩ (1.11e)

with the source term J verifying the compatibility equations:

∇ ¨ JI “ 0 in ΩI (1.12a)

JI ¨ n “ 0 on BΩ (1.12b)

The eddy current problem raises difficulties, as it introduces a different behavior in the insu-
lator ΩI and the conductor ΩC , manifested by the two differential constraints ∇ ˆ HI “ JI and
∇ ¨ pεIEIq “ 0.

To cope with such difficulty, different approaches have been proposed in the literature [1]. Natural
approaches are based on reformulating the equations in terms of the electric or the magnetic fields.
Introduce a suitable field He, such that ∇ˆHe,I “ JI . The field Z “ H´He becomes curl-free in the
insulator, leading to the introduction of a potential ψI such that ZI “∇ψI . It can then be proven
that the equations (1.11e) can be rewritten in terms of HC and ψI . However this formulation holds
true when ΩI is simply connected. If not, then cutting surfaces should be introduced to transform
the domain into the union of simply connected domains and harmonic functions associated with
these cuts should be considered as additional unknowns. Similar considerations hold for electric field
formulations or for combined formulations. The main advantage of these formulations is that they
lead to cheaper memory requirements for numerical discretization. However, in our case we elaborate
an algorithm to reconstruct conductive deposit shapes: inside the algorithm, the domains ΩI and
ΩC are bound to change, sometimes topologically. Not only the computation of harmonic fields is
non trivial, but in our case, it would be required to compute them multiple times and eventually
introduce/remove new cuts, which is complex to handle for 3D mesh. We choose here the second
family of formulations, based on the introduction of vector potentials and that we shall present in
the following section.

1.2.3 pA, VCq-formulation

Let us first introduce some classical function spaces for scalar fields:

L2pΩq :“

"

f : Ω ÞÑ R2{

ż

Ω

|f |2 dx ă `8

*

, H1pΩq :“

"

f P L2pΩq{
Bf

Bxi
P L2pΩq, @i P t1, 2, 3u

*

Maxwell equations require to add regularity on the curl and the divergence of vector fields, hence the
following additional function spaces:

Hpcurl; Ωq :“
 

v P rL2pΩqs3{∇ˆ v P rL2pΩqs3
(

, Hpdiv; Ωq :“
 

v P rL2pΩqs3{∇ ¨ v P L2pΩq
(

H0pcurl; Ωq :“
 

v P Hpcurl; Ωq{v ˆ n|BΩ “ 0
(

, H0pdiv; Ωq :“
 

v P Hpdiv; Ωq{v ¨ n|BΩ “ 0
(

Consider the magnetic induction µH. (1.11a) proves the field is divergence-free: classically, a
vector potential can be extracted from the field as the domain Ω is simply connected. Let A be such
a function: µH “∇ˆA in Ω. Injecting this definition to (1.11b) leads to pE´ iωAq being curl-free:
similarly, a scalar potential V can be extracted from the field under the condition that Ω is simply
connected, yielding E “ iωA `∇V . We can then change from a pE,Hq to a pA, V q-formulation,
which leads to a variational formulation much simpler to compute numerically. We derive here the
model.
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From (1.11), using the definitions of A and V , equations (1.11) become:

∇ˆ pµ´1∇ˆAq ´ σpiωAC `∇VCq “ J in Ω

∇ ¨ pεIpiωAI `∇VIqq “ 0 in ΩI

pµ´1∇ˆAq ˆ n “ 0 on BΩ

εIpiωAI `∇VIq ¨ n “ 0 on BΩ

(1.13)

To close the problem, additional conditions called gauges need to be imposed on the vector
potential A. As the rotational of A is fixed, the idea is to impose the value of its divergence to fully
determine the vector. The two main approaches were defined by Coulomb and Lorentz. We choose
here the former:

∇ ¨A “ 0 in Ω,

A ¨ n “ 0 on BΩ.
: Coulomb gauge (1.14)

From (1.13) and (1.14), it follows that the formulation can be split between pA, VCq and VI , with
the adequate transmission condition on Γ for V that is to say VI “ VC , on Γ. We focus here on the
former problem:

∇ˆ pµ´1∇ˆAq ´ σpiωAC `∇VCq “ J in Ω

∇ ¨A “ 0 in Ω

A ¨ n “ 0 on BΩ

pµ´1∇ˆAq ˆ n “ 0 on BΩ

(1.15)

Note that VC is defined up to an additive constant in each connected component of ΩC .
In a Finite Element framework to compute numerically (1.15), the gauge condition is difficult to

implement as it requires to build a discrete function space of divergence-free functions. To remove
the condition from the function space, a classical way to implicitly incorporate it into the equation
is as follows:

∇ˆ pµ´1∇ˆAq ´ µ´1
˚ ∇p∇ ¨Aq ´ σpiωAC `∇VCq “ J in Ω

where µ˚ is a suitable average for µ. By adding the penalization term, we lose the relation that links
E and J: ∇ ¨ pσEq “ ´∇ ¨ J. Hence the following additional equation to ensure the relation still
holds true:

∇ ¨ pσpiωAC `∇VCqq “ ´∇ ¨ J in ΩC

σpiωAC `∇VCq ¨ nC “ ´pJC ¨ nC ` JI ¨ nIq on Γ

In conclusion, the pA, VCq-formulation is the following:

∇ˆ pµ´1∇ˆAq ´ µ´1
˚ ∇p∇ ¨Aq ´ σpiωAC `∇VCq “ J in Ω (1.16a)

∇ ¨ pσpiωAC `∇VCqq “ ´∇ ¨ J in ΩC (1.16b)

σpiωAC `∇VCq ¨ nC “ ´pJC ¨ nC ` JI ¨ nIq on Γ (1.16c)

A ¨ n “ 0 on BΩ (1.16d)

pµ´1∇ˆAq ˆ n “ 0 on BΩ (1.16e)

[1, Lemma 6.1] proved that a solution pA, VCq of (1.16) satisfies ∇ ¨ A “ 0 in Ω and therefore is
solution of (1.15).

By solving (1.15), we are able to reconstruct H “∇ˆA on the whole domain Ω and the electric
field on the conductor EC “ iωAC ` ∇VC . In order to compute EI , let us introduce the scalar
potential VI in ΩI satisfying the following problem:

∇ ¨ pεIVIq “ ´iω∇ ¨ pεIAIq in ΩI

VI “ VC on Γ

εI∇VI ¨ n “ ´iωεIAI ¨ n on BΩ
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Note that for a simply connected conductor domain ΩC , we have EI “ iωAI `∇VI . However,
should the conductor have different connected components, the above expression does not hold true
and requires to add harmonic functions in the insulator corresponding to each different connected
component of the interface Γ. As computing EI is not required for the shape reconstruction algo-
rithm, we focus on the problem (1.16).

Let us now build the variational formulation from (1.16). Let XpΩq be the function space
Hpcurl; Ωq X H0pdiv; Ωq. By multiplying (1.16a) by a test function B P XpΩq and integrating
by parts over Ω, we obtain:

ż

Ω

“

µ´1p∇ˆAq ¨ p∇ˆBq ` µ´1
˚ p∇ ¨Aqp∇ ¨Bq

‰

dx ´

ż

ΩC

σpiωAC `∇VCq ¨BC dx “

ż

Ω

J ¨B dx

We multiply (1.16b) by a test function qC P H
1pΩCq{C and integrate by parts over ΩC :

ż

ΩC

σpiωAC `∇VCq ¨∇qC dx “ ´

ż

ΩC

JC ¨∇qC dx´

ż

Γ

pJI ¨ nIqqC dS

Combining the two previous relations leads to the following variational formulation:

AppA, VCq, pB, qCqq “ LppB, qCqq, @pB, qCq P XpΩq ˆH1pΩCq{C (1.17)

with AppA, VCq, pB, qCqq :“

ż

Ω

“

µ´1p∇ˆAq ¨ p∇ˆBq ` µ´1
˚ p∇ ¨Aqp∇ ¨Bq

‰

dx

`
1

iω

ż

ΩC

σpiωAC `∇VCq ¨ piωBC `∇qCqdx

LppB, qCqq :“

ż

Ω

J¨B dx´
1

iω

ż

ΩC

JC ¨∇qC dx´
1

iω

ż

Γ

pJI ¨ nIqqC dS

The equivalence between (1.17) and (1.16) as well as the existence and uniqueness of the solution
pA, VCq P XpΩq ˆH1pΩCq{C is proven by [1, Chapter 6].

As VC remains defined up to an additive constant on each connected component of ΩC , we propose
to fix the constant by adding the constraint

ş

ΩCi
VC dx “ 0. We implement it in the bilinear form

by adding a penalization of the form
ş

ΩCi
δ0VCqC dx where δ0 is chosen empirically, which can be

condensed as
ş

ΩC
δ0σVCqC dx, since σ is piecewise constant in each connected component.

1.2.4 Numerical computation

The numerical simulation of time-harmonic Maxwell equations is classically based on Galerkin meth-
ods. The principle is the following: consider a variational formulation

Find u P V such that:

apu, vq “ lpvq, @v P V

where a is a bilinear form and l a linear form. V is usually a space of infinite dimension. The idea
is to substitute it by a finite dimension space Vn Ă V , with n ą 0 the space dimension and solve the
resulting problem:

Find un P Vn such that:

apun, vnq “ lpvnq, @vn P Vn

Using a basis of Vn noted pwiqi“1..n, the above variational formulation can be transformed into a
linear system AU “ L where Aij “ apwi, wjq, Li “ lpwiq and Ui “ ui, with u “

ř

i uiwi. Analysis
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of the method provides the error estimate between the actual solution u and its approximate un:
should the approximation be good, computing u amounts to solving a linear system, which can easily
be done at a low cost.

Depending on the nature of the equations considered, different discrete spaces Vn are chosen, yield-
ing different methods. The most common application of Galerkin framework is the Finite Element
Method.

Consider a small parameter h ą 0 and a triangulation Th of the computational domain Ω. Th is
a mesh of the space using volumetric elements K (triangles in 2D, tetrahedra in 3D for instance):
h represents the maximum size of the elements. Note that the smaller h gets, the better the space
approximation is. The discrete space, written here Vh, is composed of piecewise polynomial functions
of degree on each element K of Th. The degree k of the polynoms is directly linked to the regularity
of the function discretized: the greater k is, the smoother the function is.

(a) 2D triangulation (b) 3D triangulation

Figure 1.7: Example of Finite Elements

In the case of Maxwell equations, we consider a tetrahedral discretization of Ω. For the electric
potential VC , we chose the discrete space V 1

h pΩCq defined by:

V 1
h pΩCq :“ tvC,h P C0pΩCq { @K Ă Th, vC,h|K P P

1pKqu

where PkpKq is the set of polynoms of degree d ď k supported on an element K.
For an element K, let pM i

Kqi“1... 4 be the vertices. Let pϕiKqi“1... 4 the functions supported on the

element K such that ϕiKpM
j
Kq “ δij , @i, j “ 1 . . . 4: they constitute a basis for V 1

h . As the degrees
of freedom are on the vertices, the elements are commonly known as nodal.

For curl-conforming or divergence-conforming vector fields, new discrete spaces need to be intro-
duced, in order to ensure the operators are defined at a discrete level. For the the divergence, it
requires the continuity of the normal component on the faces of an element whereas for the curl, the
tangential component is continuous on the edges. Those are known as edge elements.

However the magnetic potential A is in Hpcurl; ΩqXH0pdiv; Ωq which is equivalent to pH1pΩqq3X
H0pdiv; Ωq since we assume that Ω is a regular domain (convex polygon in our numerical experiments).
Nodal elements can then be used as an approximation for A. Let W1

hpΩq be:

W1
hpΩq :“ twh P pC0pΩqq3{wh|K P pP1pKqq3 @K P Th, wh ¨ n “ 0 on BΩu

The numerical approximation of pA, VCq is made using nodal Finite Elements on the discrete
space W1

hpΩq ˆ V
1
h pΩCq.
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In this work, we use the C++ software provided by FreeFEM, see ref in [22], to solve Finite
Element problems.

1.3 Deposit detection in Steam Generators

In this section we start from the pA, VCq-formulation of the eddy current equations (1.16) to specify
the model for the detection process inside the steam generator.

1.3.1 Model definition

Consider a U-shaped tube inside a steam generator as defined in Section 1.1. The focus is placed
here on the straight part of the tube. Note Ωv the vacuum inside and outside the tube, Ωt the
tube thickness made out of conductive material of physical parameters pσt, µtq, Ωd, a deposit on
the tube exterior, of physical parameters pσd, µdq and Ωs, the probe placed inside the tube. The
current density J is considered to be compactly supported inside the probe Ωs and divergence-free,
for compatibility purposes. For readability purposes, we consider a single support plate, denoted
Ωp, of physical parameters pσp, µpq. It is drilled with a quatrofoil hole, to let both the tube and
water flow upwards/downwards, as displayed on Figure 2.2. We consequently assume the functions
σ and µ to be piecewise constant. Figure 1.8 displays the main features of the domain. We assume
here that the probes conductivity can be neglected compared to the remaining conductive materials.
Hence ΩC “ Ωt Y Ωd Y Ωp and ΩI “ Ωs Y Ωv. A bounding cylinder is chosen to delimit the domain
boundary, on which are applied the boundary conditions defined in (1.16).

Figure 1.8: Configuration of the domain Ω

As the plate has a high conductivity, the electromagnetic field only penetrates a thin layer of the
material, of order:

δp “

d

2

ωµpσp

δ is called the skin depth of the material: it represents the average distance the electromagnetic
wave penetrates the material before decreasing in amplitude by 1{e. It is usually considered that
the wave vanishes for distances greater than δp. For the support plate, δp « 10´5m whereas its size
is of order 10´2m. Numerically speaking, in order to simulate the variation of the fields inside the
plate with Finite Elements, the size of the mesh required would be of order δp{10, leading to a high
number of degrees of freedom.

Using the high conductivity of the material, it is possible to replace the volumetric plate by a
impedance boundary condition. [44] derived the approximation through asymptotical developments
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with respect to the skin depth δp. We build the model in the next chapter.

The final aim of this work is to be able to invert 3D signals from complex industrial configurations
in a reasonable time. An important step to achieve that goal is to optimize FE resolutions as the
algorithm requires to solve multiple FE problems. A first approach to decreasing the computational
time is to consider the problem satisfied by the scattered field pEs,Hsq : the total field pE,Hq is
seen as the superposition of the incident field pE0,H0q and the scattered field. Similarly to the total
field, potentials pAs, V sC q can be extracted from pEs,Hsq. It verifies the equation:

∇ˆ

ˆ

1

µ
∇ˆAs

˙

´
1

µ˚
∇p∇ ¨Asq ´ σpiωAs

C `∇V sC q

“ ´∇ˆ

„ˆ

µ0

µ
´ 1

˙

p∇ˆH0q



` pσ ´ σ0qE0 in Ω (1.18a)

∇ ¨ rσpiωAs
C `∇V sC qs “ ´∇ ¨

“

pσ ´ σ0qE0
‰

in ΩC (1.18b)

σpiωAC `∇VCq ¨ nC “ ´pσ ´ σ
0qE0

C ¨ nC on Γ (1.18c)

As ¨ n “ 0 on BΩ (1.18d)

pµ´1∇ˆAsq ˆ n “ 0 on BΩ (1.18e)

Note that the right-hand side depends on the incident field pE0,H0q. It can be re-formulated in
terms of potentials pA0, V 0q. However under this model, the interface conductor/insulator contains
the deposit boundary: in a deposit reconstruction algorithm, the deposit moves from one iteration
to another. As such, the conductor and insulator domains change at each iteration, which requires
in return a re-definition of the problem satisfied by pAs, V sC q. To prevent this costly step, we choose
here to introduce a small conductivity σε in the vacuum outside the tube so that ΩC “ Ω0

C .

Multiplying (1.18a) by a test function B P XpΩq and (1.18b) by iωqC P H
1pΩCq{C, integrating

respectively over Ω and ΩC and adding the two resulting integral equations yields the following
scattering variational formulation:

AppAs, V sC q, pB, qCqq “ LsppB, qCqq, @pB, qCq P XpΩq ˆH1pΩCq{C (1.19)

with LsppB, qCqq :“´

ż

Ω

pµ´1 ´ µ0´1
qp∇ˆA0q ¨ p∇ˆBqdx

´
1

iω

ż

ΩC

pσ ´ σ0qpiωA0
C `∇V 0

C q ¨ piωBC `∇qCqdx

The right-hand side in (1.19) depends on the incident field pA0, V 0
C q. In comparison, for the total

field in (1.17), it depends on the source term, here the current density J. In order to compute the
impedance signal for a given configuration, we need to compute the total field pA, VCq for each coil
position. Considering J is compactly supported by the coils Ωs, each position requires a distinct
mesh, which slows down computations.

Conversely for the scattered field, we need a single mesh with no coils and the incident fields for
each coil position to generate the solution of (1.19) for each coil position. The computation of the
incident fields can be done offline at a low cost and stored for later needs.

These observations led us to solve the scattered formulation and then derive the total field by
adding the incident field to the solution in order to limit the cost of the field calculations.

1.3.2 2D axisymmetric approximation

A first step to the making of the reconstruction algorithm is to implement it on a simpler model,
where convergence of the algorithm is faster so that experimentation is easier. To that extent, we
derive the generic 3D model to a 2D axisymmetric model.

Consider polar coordinates system pr, θ, zq: in a axisymmetric configuration, the functions do not
depend on the azimuthal coordinate θ. Consequently, the geometries, notably of the support plate,
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Figure 1.9: Potentials pA, VCq calculated in Ω0

deposit and probe, are axisymmetric. Note that this does not model a real configuration, as the
deposit does not have in general such a geometry.

Under this assumption, Maxwell equations can be split, according to [19], in two uncorrelated
systems, for pEm, Hθq and pEθ,Hmq, where for any vector field a, am “ arer ` azez is called the
meridian component. For a purely azimuthal current density J “ Jθeθ, the first system vanishes,
leaving the following set of equations:

´
BEθ
Bz

´ iωµHr “ 0 in R2
`

1

r

BprEθq

Br
´ iωµHz “ 0 in R2

`

BHr

Bz
´
BHz

Br
´ σEθ “ Jθ in R2

`

where R2
` is the semi-plane tpr, zq P R2{r ě 0u.

Combining the three equations lead to the following scalar equation:

´∇ ¨

ˆ

1

µ

1

r
∇prEθq

˙

´ iωσEθ “ iωJθ in R2
` (1.20)

where the operator ∇ is defined as the operator pBr, Bzq
t. To close the problem, a decay condition is

imposed on Eθ: Eθ Ñ 0 for r2 ` z2 Ñ `8. The scalar PDE is solved using P2 Finite Elements on a
triangular mesh.
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Figure 1.10: Thin structures in the domain

As the number of degrees of freedom in this case is low, we are able broaden the reconstruction
problem with the addition of the thin structures displayed on Figure 1.10.

As explained in Section 1.1, deposits form in two different areas: plugging deposits between the
tube and the support plate and clogging deposits outside the plate area. While the former are
considered volumetric, the latter have on average a thin thickness, of order 10´4 m. Reconstruction
of such deposits is prohibitive as it requires a mesh fine enough to materialize the thickness inside the
computational domain. An approach to reduce the cost is to reconstruct the thickness instead of the
volumetric deposit: by introducing a thickness function fd, provided its amplitude is small enough,
the shape can be asymptotically approximated by a transfer condition on the tube wall.

Thorough investigations of the tube have proved it does not have a constant thickness. Due to the
manufacturing process, small oscillations can appear on the interior tube wall. As it is a conductive
material, these imperfections can lead to non negligible perturbations in the signals. Though it can
be seen as noise, we propose here to reconstruct the unknown tube thickness modeled by a function
ft. Using the small amplitude of the variations, a similar asymptotical model can be computed in
order to replace the variation by a straight tube and a transfer condition.

Both asymptotical models are built for a axisymmetric configuration in the next chapters. On
the topic of the extension of those models in 3D, we advise the reader to look at [62] that uses a
normal coordinate system to expand the fields in the thin layer to build an asymptotical transmission
condition.

1.3.3 Impedance Signal

Consider here a probe, whose support is denoted Ωs, used for Eddy Current Testing, made of a given
set of coils. Let Is “ 0 . . . Nc ´ 1 be the coil numbering with Nc, the coil number. In this work, two
probes are studied, the SAX and the SMX probes, displayed on Figure 5.5. Since we consider here
a straight portion of the tube, the probes scan is alongside the tube axis. Let rz´, z`s be the scan
interval for the impedance signals.

Consider a coil Ωsk , with k P Is. subjected to a current Ik and a voltage Vk. The impedance,
noted Zk, is the ratio Vk{Ik: it can be seen as a generalization of Ohm’s law, that is to say the
resistance of a circuit to an alternating current. We denote by pE0

k,H
0
kq, the incident field induced by
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(a) SAX probe (b) SMX probe

Figure 1.11: Meshes of the two probes used for ECT

the current in an ideal configuration where Ω0
C “ Ωt, with physical parameters pσ0, µ0q and pEk,Hkq,

the total field induced in the configuration defined by Figure 1.8, for physical parameters pσ, µq.
Using the electric power and the Poynting vector, the impedance can be rewritten as:

Zk “
1

I2
k

¿

BΩsk

pEk ˆHkq ¨ n dS

where n is the outer-pointing normal of the surface BΩsk . The impedance is then seen as proportional
to the flux of the Poynting vector through the coil. In practice, ECT probes measures differences in
the impedance between two coils Ωsk called the receiver and Ωsl called the emitter, with k, l P Is.
By convention we introduce the notation ∆Zkl by:

∆Zkl :“ Zk ´ Z
0
l “

1

I2

¿

BΩsk

pEk ˆHkq ¨ n dS ´
1

I2

¿

BΩsl

pE0
l ˆH0

l q ¨ n dS

where I “ Ik “ Il, @k, l P Is. ∆Zkl compares the impedance of coil k in presence of deposit to the
impedance of coil l without deposit. By definition, it is null in absence of a deposit. According to
[2], ∆Zkl can be rewritten as:

∆Zkl “
1

I2

¿

BΩskYBΩsl

pEk ˆH0
l ´E0

l ˆHkq ¨ n dS

This expression is then transformed using Lorentz reciprocity theorem: consider two current
densities J1 and J2. They induce two different electromagnetic fields, respectively pE1,H1q and
pE2,H2q. The theorem states for a given volume V enclosed by a surface S:

ż

V
pJ1 ¨E2 ´ J2 ¨E1qdx “

¿

S

pE1 ˆH2 ´E2 ˆH1q ¨ n dS

In particular, for localized sources, that is to say J1 and J2 have a compact support, if V contains
both sources, the right-side becomes null. Therefore:

¿

BΩskYBΩsl

pEk ˆH0
l ´E0

l ˆHkq ¨ n dS `

¿

BΩC

pEk ˆH0
l ´E0

l ˆHkq ¨ n dS “ 0

The last equation combined to Stokes theorem and Maxwell equations for the direct and incident
fields yields the expression for the impedance used in this work:
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∆Zkl “
1

I2

¿

BΩC

pE0
l ˆHk ´Ek ˆH0

l q ¨ n dS

“
1

I2

ż

ΩC

∇ ¨ pE0
l ˆHk ´Ek ˆH0

l qdx

“
1

I2

ż

ΩC

pp∇ˆE0
l q ¨Hk ´E0

l ¨ p∇ˆHkq ´ p∇ˆEkq ¨H
0
l `Ek ¨ p∇ˆH0

l qqdx

“
1

iωI2

ż

ΩC

ˆˆ

1

µ
´

1

µ0

˙

p∇ˆEkq ¨ p∇ˆE0
l q ´ iωpσ ´ σ

0qEk ¨E
0
l

˙

dx (1.21)

As explained above, we add in the vacuum outside the tube a small conductivity σε so that ΩC “ Ω0
C .

In consequence we can write E0 “ iωA0 ` ∇V 0
C in Ωd. The impedance expression can then be

rewritten as:

∆Zkl “
iω

I2

ż

Ωd

ˆˆ

1

µ
´

1

µ0

˙

p∇ˆAkq ¨ p∇ˆA0
l q

´
1

iω
pσ ´ σ0qpiωAk `∇VC,kq ¨ piωA0

l `∇V 0
C,lq

˙

dx

(1.22)

In practice, the probes can not measure ∆Zkl, rather linear combinations of these quantities called
modes. Consider two coils k (receiver) and l (emitter), there are two main modes for these coils:

#

ZF “ 0.5ip∆Zll ´∆Zkkq : differential mode

ZFA “ 0.5ip∆Zll `∆Zklq : absolute mode
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Figure 1.12: Example of impedance signals

Both mode gives different information on the deposit shape. For instance, ZF tends to detect sharp
variations in the shape geometry while ZFA is sensitive to smooth variations. To give illustration
to these observations, Figure 1.12 displays examples of impedance signals for an annular deposit
between z´ “ ´0.005 and z` “ 0.005. We do not elaborate here on the specifics of the acquisitions.

The SAX probe uses three different pulsations ω1 ą ω2 ą ω3, each seeing futher and further in
the domain due to skin depth effect. It is commonly admitted that ω1 provides information inside the
tube, ω2 on the tube wall and ω3 outside the tube. Hence we expect ω3 contains major information
on the deposit shape. For each pulsation a differential mode is provided. In addition, there is an
absolute mode for ω3: the SAX probe provides four signals to analyse.

The SMX probe uses a fourth pulsation ω4 ă ω3 and computes solely absolute modes. The
acquisition is the following : the emitting coils are on the lower row, for each emitter, there are four
receivers as displayed on Figure 1.13.
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Figure 1.13: Receivers for a given emitter on the SMX probe

Even though the SMX probe provides more precise information on the deposit shape on the
azimuthal direction, it raises numerical difficulties we have to address in the next chapters. The
computation of an impedance signal requires to solve a Finite Element problem for each coil position,
for all the coils involved in the signal. For the SMX probe considered in this work, the number of
signals computed is 76, for 38 coils: the resulting number of Finite Element problems to solve in
order to compute all the impedance signals exceeds 1000. For instance, for the detection of deposits
between the plate and the tube, a typical scan would have on average 121 probe positions, leading
to 4598 problems to solve. Adding to that a 3D mesh with potentially a great number of degrees
of freedom leads to a huge computational cost. To face this problem, we have to switch to parallel
computing with domain decomposition, and use a solver that can handle such a great number of
Finite Element problems.

1.4 Inverse problems

Inverse problems are a set of theoretical principles and methods for the analysis of an object state in a
given configuration using indirect observations. Direct observation of the object is always prohibited,
as it would be impossible to observe it or that it would be too complex to do so. Various examples
exist in the everyday life, for instance inside mercury thermometers, the height of a mercury column
is used to infer the temperature of a room. In hospitals, through magnetic resonance, the MRI create
a 2D-3D image of the inside of a human body.

Consider an object y to estimate, using indirect measurements z where the operator A links the
object to its measurement : Apyq “ z. The aim is to invert the operator A to reconstruct y from
z. A contains the physical model behind the measurement acquisition: due to the complexity of said
model, the operator is usually non linear, therefore hard to invert.

From these problems arise different issues: the non-linearity of A imposes to use implicit methods
to numerically compute the inverse, which can be not only computationally difficult, but can also lead
to numerical errors and instabilities. Moreover, inverse problems are naturally ill-conditioned, mean-
ing that a same measure can lead to different acceptable objects. With noise in the measurements
due to the acquisition method, these issues make it hard to reconstruct precisely the exact solution y.
However regularizations can be added to the problem in order to discriminate some unwanted local
solutions.

In the context of shape reconstruction in Steam Generators, the object to estimate is the deposit
shape Ωd, the measurements are the different impedance signals Zmeaspzq, computed on an interval
rz´, z`s and the operator A contains the pA, VCq-formulation of the eddy current time harmonic
Maxwell equations (1.16) and the impedance formula (1.22). For a given deposit shape Ωd, note
ZpΩd; zq the impedance signal associated. To invert the non-linear operator A, we propose first to
rewrite the inversion problem as a minimization problem :

min
Ωd

˜

J pΩdq :“

ż z`

z´

|ZpΩd; ζq ´ Zmeaspζq|
2 dζ

¸



32 Chapter 1. Eddy-Current Testing in Steam Generators

We want to find the optimal shape Ω˚d for which the resulting impedance signal matches the mea-
surements, in other words, that minimizes the objective function J . Unlike ”classical” optimization
problems, here the unknown is a shape and not a function or a parameter.

Optimization with respect to a shape, or shape optimization, has a lot of applications, mostly in
the conception of optimal structures. A classical test case defined in [25] is the cantilever where the
aim is to build the optimal elastic material, fixed on some sides and submitted on different sides to
surface loads with a minimal volume for instance.

There exists three different approaches to find a solution to the optimization problem:

• Parametric optimization, where the shape evolution is reduced to some general features, for
instance, the curvature or the height. Though it is quite simple to implement an algorithm
based on this characterization, the scope of achievable shapes is quite narrow. It can not
reconstruct complex shapes.

• Geometric optimization, in which the shape boundary evolves without changing the shape
topology (creation of holes or shape splitting): the unknown here is the boundary BΩ. Such
approach introduces new challenges like the definition of differentiation with respect to a shape,
as well as the update in an optimization algorithm.

• Topological optimization, where topological changes are allowed. The unknown here is the
shape Ω itself, which raises the issue of properly modeling it, in order to take topological
changes into account. Figure 1.14 displays the difference between topological and geometrical
optimization.

(a) Geometric optimization (b) Topological optimization

Figure 1.14: Difference between geometric and topological optimization

Shape optimization is a difficult problem to solve, for different reasons: due to the presence of
numerous local optima, a global optimal shape is hard to find, though additional constraints may help
discriminate some local solutions. Moreover, as the unknown here is a shape, there needs to introduce
new theoretical tools for shape differentiation. In a numerical viewpoint, the parametrization and
update of the shape throughout the optimization algorithm may prove to be difficult.

On the matter of deposit reconstruction in Steam Generators, [69],[29] and [37] developed an
algorithm using a geometrical approach, based on a boundary variation method. Meshing the shape
provides numerically a good precision, however each iteration requires a re-meshing step which is
costly. Such method provides good convergence results, but can not handle topological changes in
the shape, like the apparition of a hole, or the merge of two shapes.

To remain as generic as possible, we could use the topological approach, however the notion of
topological differentiation is quite difficult to implement, theoretically and numerically. We consider
here geometrical optimization. However, instead of a boundary variation method, we focus here on
a different model using level-set functions. Consider a deposit shape Ωd and ϕ : Ω ÞÑ R, a level-set
function associated to the shape. ϕ verifies:
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ϕpxq

$

’

&

’

%

ă 0 if x P Ωd

“ 0 if x P BΩd

ą 0 if x P Ω{Ωd

The shape is therefore implicitly defined by the function, allowing to deal with topological changes
more easily. Numerically, the shape update in the optimization algorithm is simple, it is equivalent to
solving a convection equation for a carefully chosen time. Compared to geometric optimization where
the shape is updated by moving the vertices of the computational mesh, the update step is easier
and less costly. The main issue of level-set functions is that the shape is not in the computational
domain and is necessarily approximated, leading to numerical imprecision on the solution.
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Part I

Shape Reconstruction in a 2D
Axisymmetric Domain

35





Introduction

Consider a domain Ω in a cylindrical coordinate system pr, θ, zq. Configurations are called axisym-
metric when the geometry is created by rotating a curve around the z-axis and functions defined on
the domain do not depend on the azimuthal coordinate θ. Under such assumptions, it is possible
to reduce the complexity of the problem and restrict it to the pr, zq-plane, allowing simpler com-
putations, hence a faster convergence of the reconstruction algorithm than a generic 3D problem.
Such representation describes an ideal configuration inside the Steam Generator where both the sup-
port plate and the deposit are axisymmetric: though the application considered here may not fit
many actual configurations, it provides a fast method we can use to evaluate the robustness of the
reconstruction. The SAX probe is considered in this part, as it is compatible with the symmetry
assumption: it consists of two annular coils of axis the z-axis. Preliminary considerations on the
2D-axisymmetric algorithm are done in the PhD thesis [69], where the equations are derived and a
boundary variation method is used for the inversion algorithm.

In the first chapter, we start from 3D Maxwell time-harmonic equations for eddy currents. Af-
ter applying the axisymmetry assumptions, the system of partial equations is reduced to a scalar
PDE using work from [19]. The difficulty here is to impose on the 2D domain appropriate boundary
conditions. The use of DtN operators on the radial direction and the error committed for different
orders is discussed in [67, Chapter 1]. We focus here on the incorporation of the new elements in the
domain that are the support plate and thin structures such that thin deposits or thin tube thickness
variations, making use of the low computational cost of the resolution in an axisymmetric configura-
tion. Due to skin depth effect on one hand, and the thin thickness on the other hand, each of these
structures are numerically costly to model as they require a fine mesh. For the support plate, to
reduce the computational cost we choose to replace it by an impedance boundary condition, using
work from [44] as basis: due to the plate high conductivity, the electromagnetic field penetrates a thin
layer of the material that we are able to asymptoticly replace by an impedance condition. General-
ized Impedance Boundary Conditions are a theoretical tool that has been used in many works in the
context of the scattering of an electromagnetic wave (see [13] for the formal analysis of the scattered
field problem) to model either highly conductive materials [44] or perfectly conducting metals coated
with a thin conductive sheet [3]. They can be used in scattering inverse problems [38] to reconstruct
the scattering surface. In [68], an asymptotic model is developed for thin highly conductive deposits
on the outer tube wall, we here extend that representation to model thin tube thickness variation.
In each case, the idea is to replace the variation by a transmission condition involving the thickness
of each structures. The modeling of thin conducting layers has been studied in the past by [39].
Recently, the introduction of Impedance Transmission Conditions (ITCs) in 2D [58, 57] or in 3D [62]
provides a good approximation of the thin layers.

In a second chapter, we tackle the inversion algorithm by taking a geometrical approach, where
the shape boundary is the unkown. As we want to tackle the optimization problem using a gradient
descent method, the main difficulty here is to properly model the shape and define differentiation
with respect to a shape (see for instance [24, Chapter 6] for more details on the matter). As for the
former, different approaches can be considered: [69] uses in his work a boundary variation method in
which the boundary is meshed inside the domain and each degree of freedom on the boundary evolves
inside the optimization algorithm. Here we choose a different approach using level-set functions, as

37
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it handles more easily complex evolutions of the shape. It also reduces the computational cost of
the algorithm as the shape is now implicitly defined and is no more explicitly meshed, removing
re-meshing steps at each inversion iteration. The use of Level-Set functions in shape optimization
problems is widespread, due to the benefits listed above: [56, 48, 45] develop the method for various
problems such as electromagnetic scattering, image processing, optical tomography or two-phases
flows. The method is also quite popular in the conception of optimal structures like cantilever un-
der given constraints [66]. As inverse problems are naturally ill-posed, additional constraints may
be added to the optimization problem in order to discriminate unwanted shapes: we consider here
penalization perimeter constraints to force the solution to have the smallest perimeter. On top of re-
constructing the shape, other unknowns may be added to the algorithm in order to take into account
more complex configurations, for instance thin deposits or thin tube thickness variation. Note that
due to the complexity of the system, it is hard for the operator to assess precisely the physical pa-
rameters pµ, σq of the deposits, prompting the need to reconstruct them from given impedance signals.

In the last chapter, we discuss the numerical implementation of the optimization algorithm, no-
tably the modifications to the model and the algorithm added to optimize the computations. The
simulations are ran with the C++-interfaced Finite Element software FreeFEM [22]. The idea here is
to be able to analyze signals in real time. To reach this target, we propose to formulate the problem
in terms of the scattered field, rearrange the FE matrix assembly and make use of domain decom-
position to alleviate as much as possible the computational cost of an inversion algorithm iteration.
From this optimized algorithm, we first discuss the choice of the initialization, as it can quite dra-
matically influence the convergence of the algorithm. Optimization with respect to the shape, the
physical parameters and the different thickness functions at the same time is difficult, depending on
the target we want to reconstruct. We discuss the issue at the end of this part.
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2.1 From 3D to 2D axisymmetric

Figure 2.1: 3D sketch of the axisymmetric domain and its projection into 2D

Consider the 3D time-harmonic Maxwell equations with eddy currents in R3:

∇ˆE´ iωµH “ 0 in R3

∇ˆH` piωε´ σqE “ J in R3
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where E is the electric field, H, the magnetic field, ω the pulsation, µ the medium magnetic perme-
ability, ε the medium electric permittivity, σ, the medium conductivity and J, the current density.
We call pE,Hq the direct field.

In this part, we make some necessary assumptions on the domain in order to derive a 2D ax-
isymmetric model. Consider a cylindrical tube Ω3D

t and plate Ω3D
p , and a deposit Ω3D

d made from
rotating a curve around the tube axis. We consider here the plate has a constant thickness and no
quatrofoil holes. For the source Ω3D

s , we consider here only the SAX probe. Ω3D
v denotes the vacuum

inside and outside the tube. We note by Ωt, Ωp, Ωd, Ωv and Ωs the projections of respectively Ω3D
t ,

Ω3D
p , Ω3D

d , Ω3D
v and Ω3D

s onto the pr, zq-plane. Figure 2.1 summarizes the domain configuration and
its projection in 2D.

Let pr, θ, zq be the cylindrical coordinates, with r P R`, θ P r´π, πs, z P R and per, eθ, ezq, its
basis vector. In this system of coordinates, due to symmetries in the domain geometry, the norm
n has a zero in the azimuthal component: pnr, 0, nzq. The differential operators can be explicitly
written as:

∇ˆU “

¨

˚

˚

˚

˚

˚

˚

˝

1

r

BUz
Bθ

´
BUθ
Bz

BUr
Bz

´
BUz
Br

1

r

ˆ

B

Br
prUθq ´

BUr
Bθ

˙

˛

‹

‹

‹

‹

‹

‹

‚

, ∇ ¨U “
1

r

B

Br
prUrq `

1

r

BUθ
Bθ

`
BUz
Bz

In an axisymmetric framework, the different fields at stake do not depend on the azimuthal
component θ. In consequence, derivation with respect to θ can be removed.

Let u be a vector field. Let um and ua be respectively the meridian and azimuthal component of
u, defined by: um “ urer ` uzez and ua “ uθeθ. Under the current assumptions equations (1.11) in
cylindrical coordinates can be split in two uncorrelated systems pEa,Hmq and pEm,Haq as explained
in [19].

As we use here coils of axis ez to generate the electromagnetic fields, the current density can be
written as J “ Jθeθ inside the coils and null outside. It can be proven that this leads to the system
pEm,Haq to have the trivial solution Em “ Ha “ 0. The remaining system writes:

´
BEθ
Bz

´ iωµHr “ 0 in R2
` (2.2a)

1

r

B

Br
prEθq ´ iωµHz “ 0 in R2

` (2.2b)

BHr

Bz
´
BHz

Br
` piωε´ σqEθ “ Jθ in R2

` (2.2c)

where R2
` “ tpr, zq P R2{r ě 0u. Multiplying (2.2a) by B

Bz and (2.2b) by ´ B
Br , combined with (2.2c)

leads to the following scalar PDE:

´
B

Br

ˆ

1

µ

1

r

B

Br
prEθq

˙

´
B

Bz

ˆ

1

µ

B

Bz
Eθ

˙

´ pω2ε` iωσqEθ “ iωJθ in R2
`

Under the eddy current approximation, ωε ! σ. Applying it to the above equation leads to the
2D axisymmetric Maxwell equations for eddy currents:

´∇ ¨

ˆ

1

µ

1

r
∇prEθq

˙

´ iωσEθ “ iωJθ in R2
`

where ∇ “ p B
Br ,

B
Bz q

t. A Dirichlet condition is added on r “ 0 due to symmetries. In an unbounded
domain a decay condition Eθ Ñr2`z2Ñ0 0 is imposed at infinity to close the problem. Hence the
problem verified by Eθ:
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$

’

’

’

’

&

’

’

’

’

%

´∇ ¨

ˆ

1

µ

1

r
∇prEθq

˙

´ iωσEθ “ iωJθ in R2
`

Eθ “ 0 on Γ0 :“ tpr, zq P R2
` { r “ 0u

Eθ ÝÝÝÝÝÝÑ
r2`z2Ñ0

0

(2.3)

We shall assume that µ and σ are in L8pR2
`q such that µ ě µ0 ą 0 on R2

` and that σ ě 0 and
σ “ 0 for r ě r0 sufficiently large. For λ ą 1 and Ω Ă R2

`, we define the weighted functions spaces
L2

1{2,λpΩq, H
1
1{2,λpΩq and the resulting norms :

L2
1{2,λpΩq :“

!

v { r1{2p1` r2q´λ{2v P L2pΩq
)

, H1
1{2,λpΩq :“

!

v P L2
1{2,λpΩq { r

´1{2∇prvq P pL2pΩqq2
)

,

||v||L2
1{2,λ

pΩq “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

c

r

p1` r2qλ
v

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

L2pΩq

, ||v||2H1
1{2,λ

pΩq “ ||v||
2
L2

1{2,λ
pΩq `

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
r´1{2∇prvq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

L2pΩq

The following Lemma was developed in [67, Chapter 1].

Lemma 2.1. Let λ ą 1. Any function v in H1
1{2,λpR

2
`q satisfies v “ 0 for r “ 0 and the decay

condition at infinity. Moreover, there exists a constant Cλ such that for all v in H1
1{2,λpR

2
`q,

||v||2H1
1{2,λ

pR2
`
q
ď Cλ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
r´1{2∇prvq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

L2pR2
`
q
. (2.4)

Proof : For λ “ 0, we define :

L2
1{2pΩq :“ L2

1{2,0pΩq “ tv : v
?
r P L2pΩqu

H1
1{2pΩq :“ H1

1{2,0pΩq “ tv P L
2
1{2pΩq : r´1{2∇prvq P pL2pΩqq2u

We also introduce the short notation

|v|2H1
1{2
pΩq “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
r´1{2∇prvq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

L2pΩq

For r˚ ą 0, and an interval I “ tr P R : 0 ă r ă r˚u, we define

L2
1{2pIq :“ tΦ : Φ

?
r P L2pIqu H1

1{2pIq :“ tΦ P L2
1{2pIq : r´1{2∇prΦq P pL2pIqq2u

Given 0 ă ε ă r˚, we set Bεr˚ :“ tpr, zq P Br˚ : r ě εu where Br˚ is the sphere of radius r˚, and

Iε :“ tr P R : ε ă r ă r˚u. Consider v P H1
1{2,λpB

ε
r˚q Ă H1pBεr˚q Ă L2pH1pIεq,Rq. Note that since

H1
1{2pI

εq Ă CpIεq, for 0 ă ε ă r ă r1 ă r˚ and for almost all z P R,

|r1vpr1, zq ´ rvpr, zq| “

ˇ

ˇ

ˇ

ˇ

ˇ

ż r1

r

B

Bs
psvps, zqqds

ˇ

ˇ

ˇ

ˇ

ˇ

ď |r1 ´ r|1{2

˜

ż r1

r

s

ˇ

ˇ

ˇ

ˇ

s´1{2 B

Bs
psvps, zqq

ˇ

ˇ

ˇ

ˇ

2

ds

¸1{2

ď |r1 ´ r|1{2
?
r˚ |vp¨, zq|H1

1{2
pIεq

ż

R
|r1vpr1, zq ´ rvpr, zq|2 dz ď |r1 ´ r|r˚

ż

R
|vp¨, zq|

2
H1

1{2
pIεq dz ď |r1 ´ r|r˚|v|

2
H1

1{2
pBεr˚ q

Thus, for rn Ñ 0 pn Ñ 8q, trnvprn, ¨qunPN is a Cauchy sequence in L2pRq. Since L2pRq is
complete, the sequence converges to a limit of L2pRq-norm l ě 0. We want to prove that the limit is
equal to 0, in other words that l “ 0. If it’s not, then

DC ą 0, @δ ą 0, p0 ă r ă δq and p||rvpr, ¨q||2L2pRq ě Cq

For 0 ă ε ă δ ă r˚, with Fubini’s theorem,
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||v||2L2
1{2,λ

pBεr˚ q
ě ||v||2L2

1{2,λ
pBεδ q

“

ż

R

˜

ż δ

ε

1

rp1` r2qλ
|rvpr, zq|2 dr

¸

dz “

ż δ

ε

1

rp1` r2qλ

ˆ
ż

R
|rvpr, zq|2 dz

˙

dr

ě C
1

p1` δ2qλ

ż δ

ε

1

r
dr ÝÝÝÑ

εÑ0
8

which is impossible since v P L2
1{2,λpB

ε
r˚q Ă L2

1{2,λpR
2
`q. Hence,

lim
rÑ0

||rvpr, ¨q||L2pRq “ l “ 0

Therefore, for almost all z P R and v P H1
1{2,λpB

ε
r˚q Ă L2pH1pIεq,Rq :

|vpr, zq|2 “
1

r2
|rv|2 “

1

r2

ˇ

ˇ

ˇ

ˇ

ż r

0

B

Bs
psvps, zqqds

ˇ

ˇ

ˇ

ˇ

2

ď
1

r

ˇ

ˇ

ˇ

ˇ

ż r

0

1
?
s

B

Bs
psvps, zqqds

ˇ

ˇ

ˇ

ˇ

2

ď
1

r
r

ż r

0

ˇ

ˇ

ˇ

ˇ

1
?
s

B

Bs
psvps, zqq

ˇ

ˇ

ˇ

ˇ

2

ds “

ż r

0

ˇ

ˇ

ˇ

ˇ

1
?
s

B

Bs
psvps, zqq

ˇ

ˇ

ˇ

ˇ

2

ds

ď

ż 8

0

ˇ

ˇ

ˇ

ˇ

1
?
s

B

Bs
psvps, zqq

ˇ

ˇ

ˇ

ˇ

2

ds

We have

||vpr, ¨q||2L2pRq “

ż

R
|vpr, zq|2 dz ď

ż

R

ż r

0

ˇ

ˇ

ˇ

ˇ

1
?
s

B

Bs
psvps, zqq

ˇ

ˇ

ˇ

ˇ

2

dsdz

By the dominated convergence theorem, for r Ñ 0, the above inequality leads to v|r“0 “ 0 almost
everywhere. The inequality ((2.4)) comes from :

ż

R2
`

r

p1` r2qλ
|v|2 dr dz “

ż `8

´8

ż `8

0

r

p1` r2qλ
|vpr, zq|2 dr dz

ď

ż `8

´8

˜

ż `8

0

r

p1` r2qλ
dr

ż 8

0

ˇ

ˇ

ˇ

ˇ

1
?
r

B

Br
prvpr, zqq

ˇ

ˇ

ˇ

ˇ

2

dr

¸

dz

“

ż `8

0

r

p1` r2qλ
dr

ż

R2
`

ˇ

ˇ

ˇ

ˇ

1
?
r

B

Br
prvpr, zqq

ˇ

ˇ

ˇ

ˇ

2

dr dz “

ˆ
ż `8

0

r

p1` r2qλ
dr

˙

|v|2H1
1{2
pR2
`
q

Therefore the inequality is proved by setting

Cλ “

d

1`

ż `8

0

r

p1` r2qλ
dr

The decay condition at infinity is a consequence of r´1{2∇prvq P L2pΩq.

Hence, using integration by parts, the solution Eθ of (2.3) is equivalent to the solution u P
H1

1{2,λpR
2
`q of following variational problem, called direct problem:

apu, vq :“

ż

R2
`

1

µr
∇pruq ¨∇prv̄qdrdz ´

ż

R2
`

iωσruv̄ drdz “

ż

R2
`

iωJθrv̄ drdz, @v P H1
1{2,λpR

2
`q (2.5)

Lax-Milgram ensures the variational problem (2.5) has a unique solution in H1
1{2,λpR

2
`q for λ ą 1

should the bilinear form a be continuous and coercive and the right-hand side continuous.
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Given the configuration, the current density Jθ P L
2
1{2,λpR

2
`q has a compact support located inside

the coils Ωs, which guarantees the continuity of the right-hand side :

@v P H1
1{2,λpR

2
`q,

|lpvq| :“

ˇ

ˇ

ˇ

ˇ

ˇ

ż

R2
`

iωJθrv̄ drdz

ˇ

ˇ

ˇ

ˇ

ˇ

ď ω

ˇ

ˇ

ˇ

ˇ

ˇ

ż

R2
`

p
?
rJθqp

?
rv̄qdrdz

ˇ

ˇ

ˇ

ˇ

ˇ

“ ω

ˇ

ˇ

ˇ

ˇ

ˇ

ż

supppJθq

p
?
rJθqp

?
rv̄qdrdz

ˇ

ˇ

ˇ

ˇ

ˇ

ď
ω

minsupppJθq

´

1
p1`r2qλ

¯

ˇ

ˇ

ˇ

ˇ

ˇ

ż

supppJθq

ˆ ?
r

p1` r2qλ{2
Jθ

˙ˆ ?
r

p1` r2qλ{2
v̄

˙

drdz

ˇ

ˇ

ˇ

ˇ

ˇ

ď C||Jθ||L2
1{2,λ

psupppJθqq||v||L2
1{2,λ

psupppJθqq ď C||Jθ||L2
1{2,λ

pR2
`
q||v||H1

1{2,λ
pR2
`
q

Similarly, it can be proven that the bilinear form is continuous, using that σ is null for r high
enough. The coercivity is a consequence of Lemma (2.1):

@v P H1
1{2,λpR

2
`q, |apv, vq| ě <apv, vq “

ż

R2
`

1

r

1

µ
|∇prvq|2 dr dz ě

1

||µ||8C2
λ

||v||2H1
1{2,λ

pR2
`
q

In order to solve the problem numerically, the computational domain is restricted to a bounded
domain Ω. Note Γ1 “ tpr, zq P R2

` { z “ ´z˚u and Γ3 “ tpr, zq P R2
` { z “ z˚u the longitudinal

cut-off. Γ2 “ tpr, zq P R2
` { r “ r˚u is the radial cut-off. We suppose r˚ and z˚ are large enough to

avoid side effects on the boundaries.
Following the developments in [67, Chapter 1], imposing a Robin condition on Γ2 and a Dirichlet-

to-Neumann (DtN) condition on Γ1 and Γ3 leads to a satisfying tradeoff. In this discussion, we use a
Robin condition on the longitudinal direction as well, which can be seen as a DtN condition at order
1. To summarize, the bounded problem is the following :

$

’

’

’

’

’

&

’

’

’

’

’

%

´∇ ¨

ˆ

1

µr
∇prEθq

˙

´ iωσEθ “ iωJθ in Ω

Eθ “ 0 on Γ0

1

µr

B

Bn
prEθq “ iωEθ on Γ1 Y Γ2 Y Γ3

(2.6)

Using the same assumptions as for the problem (2.3), the problem (2.6) has a unique solution
Eθ P HpΩq :“ H1

1{2,λpΩq and is equivalent to the following variational formulation:

ż

Ω

1

µr
∇pruq ¨∇prv̄qdrdz ´

ż

Ω

iωσruv̄ drdz ´

ż

Γ2YΓ3YΓ4

iωurv ds “

ż

Ω

iωJθrv̄ drdz

Consider the 3D time-harmonic Maxwell equations with eddy currents in R3 for the incident
field pE0,H0q:

∇ˆE0 ´ iωµ0H0 “ 0 in R3

∇ˆH0 ` piωε0 ´ σ0qE0 “ J in R3

where the physical parameters pσ0, ε0, µ0q correspond to a configuration where the plate and deposit
are replaced by vacuum of conductivity 0, permittivity εv and permeability µv.
In 3D, the impedance for a given probe position has the following expression:

∆Zkl “
1

iωI2

ż

Ω3D
C

ˆˆ

1

µ
´

1

µ0

˙

p∇ˆEkq ¨ p∇ˆE0
l q ´ iωpσ ´ σ

0qEk ¨E
0
l

˙

dx

where Ω3D
C “ Ω3D

d Y Ω3D
t Y Ω3D

p and k, l “ 1, 2 as we use solely the SAX probe.
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In an axisymmetric configuration, similarly to the direct field the system of equations is reduced
to a scalar PDE:
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&

’

’

’

’

’

%

´∇ ¨

ˆ

1

µ0r
∇prE0

θ q

˙

´ iωσ0E0
θ “ iωJθ in Ω

E0
θ “ 0 on Γ0

1

µ0r

B

Bn
prE0

θ q “ iωE0
θ on Γ1 Y Γ2 Y Γ3

(2.8)

Consequently, the impedance expression becomes:

∆Zkl “
2π

iωI2

ż

ΩC

ˆˆ

1

µ
´

1

µ0

˙

1

r
∇prEθ,kq ¨∇prE0

θ,lq ´ iωpσ ´ σ
0qEθ,kE

0
θ,lr

˙

dr dz (2.9)

2.2 Support plate model

Inside the Steam Generator, the tubes are maintained using support plates, evenly spaced alongside
the tube axis. These plates are drilled with quatrofoil holes to let the tube and vapor/liquid water
freely flow, as shown on Figure 2.2. The final aim of this work is the detection of deposits between
the plate and the tube, as it can lead to an unwanted plugging of the holes: it plays a vital role in
the detection process.

Figure 2.2: Picture of a support plate.

The plates are made out of a magnetic and conductive material of known physical parameters:
according to the operator, they have a conductivity σp “ 3 ¨ 106 S ¨m´1 and a magnetic permeability
µp “ 50µv. To remain in an axisymmetric configuration, we consider the holes in the plates are
cylindrical, starting from radius rp “ 16.83mm, the height being equal to 2zp “ 30mm.

Due to its high conductivity, the fields penetrate a thin layer of the material. Let δ “ 1{
?
σµω

be the skin depth: it represents the distance the electromagnetic field penetrates inside the material
before exponentially vanishing. Table 2.1 compares the skin depth and the thickness for the deposit
and support plate.

While the skin depth for the deposit is greater that the average thickness observed, for the
support plate it is 103 times smaller than the thickness considered in the computational domain.
This raises the question of approximating the plate by a boundary condition, as the electromagnetic
wave remains on the plate surface. An easy approximation would be to consider the plate as a
perfect conductor, that is to say, it has an infinite conductivity, in comparison to the other conductive
materials. For highly conductive materials, we propose the use of Generalized Impedance Boundary
Conditions (GIBC) as an approximation. More specifically, we focus on the low order approximation
of the GIBCs called Impedance Boundary Condition (IBC). Such boundary conditions provide an
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Deposit Support plate

Conductivity (in S ¨m´1) σd “ 1 ¨ 104 σp “ 3 ¨ 106

Skin depth (in mm) δd “ 11 δp “ 0.09

Radial thickness (in mm) « 3 « 15

Table 2.1: Skin depth and scale difference between the deposit and the support plate at 100 kHz

appropriate scaling between the electric and magnetic fields on the surface, as well as a better
approximation for taking into account reflection from highly conductive materials. They have been
studied for two main configurations in the context of electromagnetic scattering: highly conductive
materials [44] and thin conductive coatings on a perfectly conductive material [3]. Formal analysis of
the scattered field problem with GIBC was conducted in [13]. They can be used in scattering inverse
problems [38] to reconstruct the scattering surface.

The principle of the IBC is to use asymptotic expansions with respect to the skin depth or the
thickness and a scaling of the fields inside the materials to derive boundary conditions. In the
following we use this approach to our 2D-axisymmetric model.

2.2.1 Formal derivation of the IBCs

For reading purposes, we work in this subsection with u “ rEθ. Consider a semi-infinite plane
alongside z, at radius rp. We denote by Ωp :“ tpr, zq P R2

` { r ą rpu the plate and by Γp, its
boundary. Let u´ be the field outside the plate and u`, the field inside. Both u´ and u` verify the
scalar PDE:

´∇ ¨

ˆ

1

µ

1

r
∇u˘

˙

´
iωσu˘

r
“ iωJ in Ω˘

In addition to the equation, the two fields as well as their fluxes are continuous on the interface
Γp.

u´

µ

σ

u`

µp

σp

Ωp

Γp

Figure 2.3: Solutions for a semi-infinite plate

The total field u (defined as u|ΩzΩp “ u´ and u|Ωp “ u`) verifies then the following problem:
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’
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’

’

’

’

’

’

’
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´∇ ¨

ˆ

1

µ

1

r
∇u

˙

´
iωσu

r
“ iωJ in Ωp Y pΩzΩpq

u´ “ u` on Γp

1

µ

1

rp

Bu´

Br
“

1

µp

1

rp

Bu`

Br
on Γp

u ÝÝÝÝÝÑ
r2`z2Ñ`8

0
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We assume that the source has its support outside the plate, which is true in our case as the coils
are located inside the tube: the source term vanishes for u`. The divergence equation becomes:

B2u`

Br2
´

1

r

Bu`

Br
`

i

δ2
u` `

B2u`

Bz2
“ 0 in Ωp

where δ “ 1{
?
ωσpµp is the skin depth of the medium.

Consider the following change of variable ξ “
r´rp
δ . For all ξ and z, let ũ` be the scaled function

defined by ũ`pξ, zq “ u`pδξ ` rp, zq. It is solution of:
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B2ũ`

Bξ2
` iũ` ´

δ

δξ ` rp

Bũ`

Bξ
` δ2 B

2ũ`

Bz2
“ 0 in Ωp

ũ`
|ξ“0 “ u´

|r“rp

1

µp

1

rp

Bũ`

Bξ |ξ“0

“
δ

µ

1

rp

Bu´

Br |r“rp

ũ` ÝÝÝÝÝÑ
ξ2`z2Ñ`8

0

(2.10)

Since the skin depth δ is a small parameter (« 10´4), u` and u´ can be expanded into Taylor
series with respect to δ:

ũ` “ ũ`0 ` δũ
`
1 ` δ

2ũ`2 ` . . .

u´ “ u´0 ` δu
´
1 ` δ

2u´2 ` . . . (2.11)

The aim here is to find a boundary condition satisfied by the field u´. To do so, we explicitly
calculate each ũ`i in function of u´j and its associated flux on the interface Γp. Let us denote by

uk “
řk
j“0 δ

ju´j , the approximation of u´ at order k with respect to δ.

At the order 0 with respect to δ, ũ`0 is solution of the problem:
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B2ũ`0
Bξ2

` iũ`0 “ 0 in Ωp

pũ`0 q|ξ“0 “ pu
´
0 q|r“rp

1

µp

1

rp

Bũ`0
Bξ |ξ“0

“ 0

ũ`0 ÝÝÝÝÝÑ
ξ2`z2Ñ`8

0

(2.12)

The condition at infinity yields ũ`0 pξ, zq “ ũ`0 p0, zqe
i
?
iξ, where

?
i “ `p1{

?
2 ` i{

?
2q, and the

Neumann condition at ξ “ 0 imposes ũ`0 ” 0. Hence at order 0 with respect to δ, the boundary
condition to impose is a Dirichlet condition: u0 “ 0 on Γp, which is equivalent to model the plate by
a perfect conductor (σp “ `8).

At order 1 with respect to δ, ũ`1 is solution of the problem:
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B2ũ`1
Bξ2

` iũ`1 “ 0 in Ωp

pũ`1 q|ξ“0 “ pu
´
1 q|r“rp

1

µp

1

rp

Bũ`1
Bξ |ξ“0

“
1

µ

1

rp

Bu´0
Br |r“rp

ũ`1 ÝÝÝÝÝÑ
ξ2`z2Ñ`8

0

(2.13)

As before, the condition at the infinity yields ũ`1 pξ, zq “ ũ`1 p0, zq expi
?
iξ. Therefore the boundary

condition on the derivative yields 1
µp
i
?
iũ`1 p0, zq “

1
µ
Bu´0
Br prp, zq. Hence, the order 1 approximation of

u` satisfies:
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1

µ

Bu1

Br
“

1

µp

i
?
i

δ
u1 on Γp

Note that for a semi-infinite plate at the altitude zp, the same calculations lead to:

1

µ

Bu1

Bz
“

1

µp

i
?
i

δ
u1 on Γp

Inside the steam generators, the interface between the plate and the rest of the domain can be split
between three components: Γ0

p :“ tpr, zq P R2
` { r “ rp and z P r´zp, zpsu, Γ1

p :“ tpr, zq P R2
` { r ą

rp and z “ ´zpu, Γ2
p :“ tpr, zq P R2

` { r ą rp and z “ zpu. Applying the previous calculations to the
actual support plate leads to the following impedance condtion:

1

µ

B

Bn
prEθq “

1

µp

1

δ

ˆ

´

?
2

2
` i

?
2

2

˙

prEθq on Γp (2.14)

Let Ω̃ be the computational domain where the plate has been removed to be replaced by the
impedance boundary condition (2.14), Ω̃ “ ΩzΩp. The field Eθ is now solution of the problem:
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´∇ ¨

ˆ

1

µr
∇prEθq

˙

´ iωσEθ “ iωJθ in Ω̃

1

µ

B

Bn
prEθq “

1

µp

1

δ

ˆ

´

?
2

2
` i

?
2

2

˙

prEθq on BΩp

` b.c. (2.6)3 on BΩzBΩp

(2.15)

From here, by multiplying by a function test v P HpΩ̃q and integrating by parts, one obtains the
resulting variational formulation:

ż

Ω̃

ˆ

1

µr
∇prEθq ¨∇prvq ´ iωσrEθv

˙

drdz ´

ż

BΩp

1

µpδ

ˆ

´

?
2

2
` i

?
2

2

˙

rEθv ds “

ż

Ω̃

iωJθrv dr dz

The incorporation of an impedance boundary condition modifies the expression of the impedance
signal. Going back to the surface integral, it can be written as:

∆Zkl “
1

I2

ż

BΩ3D
d

pE0
l ˆHk ´Ek ˆH0

l q ¨ n dS

`
1

I2

ż

BΩ3D
p

pE0
l ˆHk ´Ek ˆH0

l q ¨ n dS

Using the divergence theorem and Maxwell equations on the integral over the deposit boundary
leads to expression (2.9). For the second integral, we use the relations between E and H defined in
(2.2a) and (2.2b) for an axisymmetric configuration, as well as the impedance condition (2.14):

1

I2

ż

BΩ3D
p

pE0
l ˆHk ´Ek ˆH0

l q ¨ n dS “
2π

iωI2

ż

BΩp

ˆ

´
1

µ

1

r

B

Bn
prEθ,kqE

0
l,θ `

1

µ0

1

r

B

Bn
prE0

θ,lqEθ,k

˙

r dS

“
2π

iωI2

ż

BΩp

ˆ

´
1

µp

1

δ
i
?
iE0

θ,l `
1

µ0

1

r

B

Bn
prE0

θ,lq

˙

prEθ,kqdS

Note that the normal considered in the definition is the normal pointing outward from Ωp, whereas

the normal used in Ω̃ on BΩp is the inward pointing normal, hence the sign difference. In summation,
the impedance signal formula while using a boundary impedance condition becomes:

∆Zkl “
2π

iωI2

ż

Ωd

ˆˆ

1

µ
´

1

µ0

˙

1

r
∇prEθ,kq ¨∇prE0

θ,lq ´ iωpσ ´ σ
0qEθ,kE

0
θ,lr

˙

dr dz

`
2π

iωI2

ż

BΩp

ˆ

´
1

µp

1

δ
i
?
iE0

θ,l `
1

µ0

1

r

B

Bn
prE0

θ,lq

˙

prEθ,kqdS

(2.16)
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2.2.2 Numerical validation

To validate the impedance condition, we propose to analyse the numerical L2-error on the electric
field. Let Ep be the electric field in the domain Ω where the support plate is incorporated to the

computational mesh, solution of (2.3). Ẽp, defined in Ω̃, denotes the electric field where the support
plate is modeled by the impedance condition (2.14). The support plate used in the steam generator
has its geometrical and physical parameters fixed: σp “ 3 ¨ 106 S ¨m´1 and µ “ 50µv.

(a) Mesh for Ω (b) Mesh for Ω̃

Figure 2.4: Zoom of the meshes used to solve the Finite Element problems with support plate

To solve the different variational problems, we consider the computational meshes featured on
Figure 2.4. For the domain Ω̃, the mesh size is fixed in the whole domain at 500µm. For the domain
Ω with plate, around the area plate, the mesh size is of 50µm: as the skin depth of the plate is of
order 100µm, such mesh size ensures there a 2 elements to render the vanishing of the wave inside
the plate.

Pulsation ||Ep ´ Ẽp||L2pΩ̃q{||Ep||L2pΩ̃q

ω1 0.28%

ω2 0.73%

ω3 1.9%

Table 2.2: L2-relative errors between Ep and Ẽp for the different probe pulsations.

Let us now solve the resulting Finite Element problems on each mesh. Figure 2.5 displays Ep
and Ẽp for one pulsation ω1: the two fields are quite alike, even though the difference grows larger
on the plate boundary far from the source. Note that when the plate is meshed, the field barely
penetrates the material as expected. For each pulsation, we calculated the resulting L2 relative error
||Ep ´ Ẽp||L2pΩ̃q{||Ep||L2pΩ̃q in order to assess the precision of the impedance boundary condition.

The errors are synthesized on Table 2.2.
For a given pulsation ω, the skin depth inside the support plate is δp “ 1{

?
ωσpµp. Therefore,

since ω1 ą ω2 ą ω3, the skin depth grows bigger with the pulsation: this explains why the impedance
boundary condition is better for bigger pulsations as the premise supposes δ to be small.

2.3 Asymptotic models for thin defects

The manufacturing of the steam generator is a highly complex process that needs to be precise to
the utmost in order to guarantee reliability on the structure. However, thorough investigations on
the steam generator showed small variations of the tube thickness. On the exterior tube wall, outside
the support plate area, thin clogging deposits have been observed. Due to their thin thickness,
these structures require a fine mesh in order to properly reconstruct the fields. To remove that
computational cost, an approach would be to use an asymptotic expansion with respect to the small
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Figure 2.5: Comparison between Ep and Ẽp for the pulsation ω1.

thickness and replace the material by an appropriate transmission condition. The study of thin
conductive layers in the context of eddy currents is not quite recent, papers like [39] developed shell
models for a formulation pH, V q of the equations. In recent years, the introduction of Impedance
Transmission Conditions (ITCs) provided an interesting model that has been studied in 2D [57, 58]
in both harmonic or magneto-quasistatics frameworks, or in 3D [62]. The approach considered in
these papers is similar to the support plate case: asymptotic expansions with respect to the thickness
of the layer are used to derive transmission condition on an ideal interface. Note that they propose a
scaling of the conductivity with respect to the thickness in the layer to obtain a better approximation.
We propose to use this approach to model a thin tube thickness variation or a thin deposit on the
tube wall.

2.3.1 Formal derivation of thin interface conditions

Figure 2.6: Domain configuration for a thin highly conductive material

Consider the following setting represented on Figure 2.6: we denote by Γ, the straight interface
at r “ r˚ and Γδ a small variation of Γ. The variation is parametrized by a thickness function
fδpzq “ δdpzq, where δ is a small parameter and dpzq represents the amplitude of the variation. Γδ is
then the interface at r “ r˚ ´ δdpzq. We make here no assumptions on the sign of dpzq, unlike [67]
in Chapters 3 and 4, where the case d ă 0 was treated. In fact, we can treat the cases d ą 0 and
d ă 0 separately as the interface Γδ is a succession of such cases. In the following, we focus on the
case d ą 0 and invite the reader to look at [67], Chapters 3 and 4 for the case d ă 0. In this section
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we shall assume that the thin materials are non-magnetic, meaning that its permeability µδ is equal
to µv. This assumption is true for the tube, however it is not necessarily true for thin deposits. Note
that considering the order of the approximation here, the resulting transmission does not depend on
the permeability. In case of a magnetic material, a different order in the asymptotic expansion should
be considered in order to take into account µδ.

Under the hypothesis that d ą 0, let us define the different domains:

Ωδ´ :“ tpr, zq P R2
` { r ď r˚´δdpzqu, Ωδ :“ tpr, zq P R2

` { r˚ ´ δdpzq ď r ď r˚u,

Ωδ` :“ tpr, zq P R2
` { r ě r˚u,

Thin deposit Tube variation Tube

Radial thickness (in mm) « 0.25 « 0.1 1

Table 2.3: Thickness difference between the different structures

Let us call u, the solution of (2.3) in the domain Ω “ Ωδ´ YΩδ YΩδ`. We introduce the notation
uδ´ “ u|Ωδ

´
, uδ “ u|Ωδ and uδ` “ u|Ωδ

`
. Similarly, pσ´, µ´q, pσδ, µδq and pσ`, µ`q denote the physical

parameters in each region. Note that inside Ωδ, the conductivity and permeability are constant.

The objective here is to find a transmission condition at the interface Γ between uδ´ and uδ`, using
uδ to link the two quantities. As the materials under study are highly conductive, we consider the
following scaling for the conductivity:

σδ “
σ1

δ

Given the size of the thin structures in Table 2.3, let us introduce the following asymptotic
expansions with respect to δ:

uδ “
`8
ÿ

n“0

δnun, uδ´ “
`8
ÿ

n“0

δnun´, uδ` “
`8
ÿ

n“0

δnun`

The field uδ P Ωδ verifies the 2D axisymmetric Maxwell equation with no source, which can be
rewritten as:

´uδ ` rBru
δ ` r2B2

ru
δ ` r2B2

zu
δ `

k2
1r

2

δ
uδ “ 0

where k2
1 “ iωσ1µδ. Let us introduce the change of variables ρ “ r˚´r

δ in Ωδ and ũpρ, zq “ uδpr˚ ´
ρδ, zq,@pρ, zq P r0, dpzqs ˆ R. This leads to the following equation for ũ:

B2
ρũ “ p´δB1 ´ δ

2B2 ´ δ
3B3 ´ δ

4B4qũ

Where B1 “ ´
1

r˚
Bρ ´

2ρ

r˚
B2
ρ ` k

2
1

B2 “
ρ

r2
˚

Bρ `
ρ2

r2
˚

B2
ρ ´

1

r2
˚

` B2
z ´

2ρ

r˚
k2

1

B3 “ ´
2ρ

r˚
B2
z `

ρ2

r2
˚

k2
1

B4 “
ρ2

r2
˚

B2
z

(2.17)

In addition to the equation (2.17), ũ verifies two boundary conditions. On ρ “ 0, there is
continuity of the fields and their normal derivative, which can be written as :
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$

’

&

’

%

ũ|ρ“0 “ uδ`|r“r˚
1

µδ

´

ũ|ρ“0 ´
r˚
δ
Bρũ|ρ“0

¯

“
1

µ`
Brpru

δ
`q|r“r˚

(2.18)

On the interface ρ “ dpzq, the quantities u et 1
µ

1
rBnpruq are continuous. The continuity of the

field yields the continuity of the tangential gradient τ ¨ ∇pruq. The normal and the tangent to the
surface is given by :

τ “

˜

´δd1pzq

1

¸

1

1` pδd1pzqq2
, n “

˜

1

δd1pzq

¸

´1

1` pδd1pzqq2

Combining the continuities of the field, the tangential gradient and of 1
µ

1
r∇pruq, we obtain the

following conditions :

$

’

’

&

’

’

%

ũ|dpzq “ uδ´|r˚´δd

ũ|dpzq ´
r˚ ´ δdpzq

δ
Bρũ|dpzq “

˜

µδ
µ´ ` pδd

1pzqq2

1` pδd1pzqq2
Brpru

δ
´q `

ˆ

´1`
µδ
µ´

˙

δd1pzq

1` pδd1pzqq2
Bzpru

δ
´q

¸

|r˚´δd

(2.19)

System (2.19) links the in-layer field ũ at ρ “ dpzq and the left field uδ´ at r “ r˚ ´ δdpzq. In
order to obtain information on the interface r “ r˚, uδ´ needs to be extended from r “ r˚ ´ δdpzq
to r˚. In this area, uδ´ verifies the 2D axisymmetric Maxwell equation (the support of the source
J does not intersect with the layer). Introducing a new variable ν “ r˚ ´ r and five operators
AipνBν , Bzq, i P r|0, 4|s yields:

4
ÿ

j“0

νjAjpνBν , Bzquδ´ “ 0

Where A0 “ pνBνq
2 ´ νBν , A1 “ ´

2

r˚
pνBνq

2 `
1

r˚
νBν

A2 “
1

r2
˚

pνBνq
2 ´

1

r2
˚

` iωσ´µ´ ` B2
z , A3 “ ´

2

r2
˚

pB2
z ` iωσ

´µ´q

A4 “
1

r2
˚

pB2
z ` iωσ

´µ´q

(2.20)

Consider the asymptotic expansion with respect to δ on uδ´: we derive into Taylor series the n-th
term un´.

un´pr, zq “ un´pr˚ ´ ν, zq

“

`8
ÿ

k“0

νk
p´1qk

k!
pBkru

n
´qpr˚, zq

looooooooooomooooooooooon

un,k
´
pzq

, @n, k P N, @pr, zq P Ωδ

Note that νBνpν
kun,k´ q “ kνkun,k´ : when applied to a monomial in ν, the differential operator νBν

becomes the operator k where k is the degree of the monomial. Using the above Taylor series, we
see that the operators pAiqi“0...4 can then be seen as a function of k and Bz, as they are applied to

monomials νkun,k´ , @k P N.

Each term un´, @n P N verifies (2.20), which means:

4
ÿ

j“0

`8
ÿ

k“0

Ajpk, Bzqpνk`jun,k´ q “ 0
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At order k, the operator A0 can be explicitly determined: A0pk, Bzq “ k2 ´ k,@k ě 2. With the
initial conditions un,0´ pzq “ un´pr˚, zq, @z, @n and un,1´ pzq “ ´Bru

n
´pr˚, zq, @z, @n, A0 is invertible.

Hence the following recurrence relation:

un,k´ “ ´A´1
0 pk, Bzq

˜

4
ÿ

j“1

Ajpk ´ j, Bzqun,k´j´

¸

By introducing some new notations, we have:

un,k´ pzq “ S0
kpBzqu

n
´pr˚, zq ` S

1
kpBzqBru

n
´pr˚, zq

With S0
0pBzq “ Id, S1

0pBzq “ 0, S0
1pBzq “ 0, S1

1pBzq “ ´Id

S0
kpBzq “ ´A´1

0 pk, Bzq

˜

4
ÿ

j“1

Ajpk ´ j, BzqS0
k´jpBzq

¸

S1
kpBzq “ ´A´1

0 pk, Bzq

˜

4
ÿ

j“1

Ajpk ´ j, BzqS1
k´jpBzq

¸

Going back to the asymptotic series, @ν, @z :
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un´pr˚ ´ ν, zq “
`8
ÿ

k“0

νk
´

S̃0
kpBzqu

n
´pr˚, zq ` S̃

1
kpBzqBrpru

n
´qpr˚, zqq

¯

Brpru
n
´qpr˚ ´ ν, zq “

`8
ÿ

k“0

νkpk ` 1q
´

pS̃0
k ´ r˚S̃

0
k`1qu

n
´pr˚, zq

`pS̃1
k ´ r˚S̃

1
k`1qBrpru

n
´qpr˚, zq

¯

(2.21)

Where S̃0
kpBzq “ S0

kpBzq ´
S1
kpBzq

r˚
and S̃1

kpBzq “
S1
kpBzq

r˚
.

In the following, we derive the transmission conditions between u´ and u` at order 0 with respect
to δ. Inside the thin layer, u0 verifies :

B2
ρu

0 “ 0, u0
|ρ“0 “ u0

`|r“r˚
, Bρu

0
|ρ“0 “ 0

Hence u0pρ, zq “ u0
`|r“r˚

, @ρ P r0, dpzqs, which means at ρ “ dpzq, using (2.19) and (2.21) at

order 0:

u´|r˚ “ u`|r˚

At order 1 with respect to δ, u1 verifies :

$

’

’

’

’

&

’

’

’

’

%

B2
ρu

1 “ ´B1u
0 “ ´k2

1u
0
`|r˚

u1
|ρ“0 “ u1

`|r“r˚

Bρu
1
|ρ“0 “

1

r˚

ˆ

u0
`|r˚

´
µδ
µ`
Brpru

0
`q|r˚

˙

Hence Bρu
1pρ, zq “ 1

r˚

´

u0
`|r˚

´
µδ
µ` Brpru

0
`q|r˚

¯

´ ρk2
1u

0
`|r˚

, @ρ P r0, dpzqs. Using (2.19) at order

1 with respect to δ and the extension of uδ´ in (2.21) gives the following transmission condition on
the derivative:

u0
|ρ“dpzq ´ r˚Bρu

1
|ρ“dpzq `�������

dpzqBρu
0
|ρ“dpzq

looooooomooooooon

“0

“
µδ
µ´
Brpru

0
´q|r“r˚´δdpzq

“
µδ
µ´

´

pS̃0
0 ´ r˚S̃

0
1qu

0
´|r“r˚

` pS̃1
0 ´ r˚S̃

1
1qBrpru

0
´q|r“r˚

¯

“
µδ
µ´
Brpru

0
´q|r“r˚
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Hence Bρu
1
|ρ“dpzq “

1
r˚

´

u0
´|r“r˚

´
µδ
µ´ Brpru

0
´q|r“r˚

¯

, which yields the following transmission con-

dition on the derivative:

1

µ`
1

r˚
Brpru`q|r˚ ` iωσδ δdpzq

loomoon

fδpzq

u`|r˚ “
1

µ´
1

r˚
Brpru´q|r˚

For the derivation of the transmission conditions when d ă 0, we advise the reader to look at [67,
Chapter 3 and 4]. In summation, the transmission conditions are the following:

$

&

%

u´|r˚ “ u`|r˚
1

µ`
1

r˚
Brpru`q|r˚ ` iωσδ|fδpzq|u|r˚ “

1

µ´
1

r˚
Brpru´q|r˚

(2.22)

Figure 2.7: Domain configuration under the transmission conditions

Consider now a setting displayed in Figure 2.7 where the thin material has been replaced by
the transmission conditions (2.22) on the straight interface Γ. We introduce the following new
subdomains:

Ω´ :“ tpr, zq P R2
` { r ď r˚u, Ω` :“ tpr, zq P R2

` { r ě r˚u

Let us introduce u P HpΩ´ Y Ω`q the solution of (2.3) and the transmission conditions (2.22) in
Ω “ Ω´ Y Ω` and u´ P HpΩ´q and u` P HpΩ

`q be respectively its restriction to Ω´ and Ω`.

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

´∇ ¨

ˆ

1

µ´
1

r
∇pruq

˙

´ iωσ´u “ iωJ pΩ´q

´∇ ¨

ˆ

1

µ`
1

r
∇pruq

˙

´ iωσ`u “ 0 pΩ`q

1

µ`
1

r˚
Brpru`q ` iωσδ|fδpzq|u “

1

µ´
1

r˚
Brpru´q pΓq

(2.23)

Let v P HpΩ` YΩ´q a test function. Multiplying the Maxwell equations in pΩ´q and pΩ`q by v,
integrating over the domains and applying the Green formula leads to:

ż

Ω

ˆ

1

µ

1

r
∇pruq ¨∇prv̄q ´ iωσruv̄

˙

drdz`

ż

Γ

ˆ

´
1

µ´
1

r
Brpru´q `

1

µ`
1

r
Brpru`q

˙

rv̄ dS “

ż

Ω

iωJrv̄ drdz

Using the transmission condition finally yields :
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ż

Ω

ˆ

1

µ

1

r
∇pruq ¨∇prv̄q ´ iωσruv̄

˙

drdz ´ iωσδ

ż

Γ

|fδpzq|urv̄ dS “

ż

Ω

iωJrv̄ drdz

Let us now transpose the previous calculations for a tube thickness variation and thin deposits.
Let ft and fd be the thickness functions, respectively for the thin tube thickness variation and the
thin deposits, defined on Γt1 :“ tpr, zq P R2

` { r “ rt1u and Γt2 :“ tpr, zq P R2
` { r “ rt2u, the inner

and outer tube walls. We shall assume in the following that ft and fd are both L2 functions on their
respective interface. Note that while there are no a priori on the sign of ft, fd is supposed to be
non positive. For the tube thickness variation, the area represented by ft ą 0 represents an excess
of tube material, of physical parameters pσt, µt “ µvq while for ft ă 0, it represents an excess of
vacuum inside the tube wall (or conversely a lack of material) of physical parameters pσv “ 0, µvq.
The transmission conditions defined on (2.22) then become for each case:

$

&

%

Eθ,´|rt1 “ Eθ,`|rt1
1

µt

1

rt1
BrprEθ,`q|rt1 ` iωσtf

`
t pzqEθ |rt1 “

1

µv

1

rt1
BrprEθ,´q|rt1

(2.24)

$

&

%

Eθ,´|rt2 “ Eθ,`|rt2
1

µv

1

rt2
BrprEθ,`q|rt2 ´ iωσdfdpzqEθ |rt2 “

1

µt

1

rt2
BrprEθ,´q|rt2

(2.25)

where the notation f`t refers to the positive part p|ft| ` ftq{2 of the function. Combining the two
transmission conditions leads to the following variational formulation:

ż

Ω

ˆ

1

µ

1

r
∇prEθq ¨∇prv̄q ´ iωσrEθv̄

˙

drdz ´ iωσt

ż

Γt1

f`t pzqEθrv̄ dS

` iωσd

ż

Γt2

fdpzqEθrv̄ dS “

ż

Ω

iωJrv̄ drdz

(2.26)

The impedance signal compares the fields in a given configuration, with thin materials, to the
fields in an ideal configuration where the straight tube is the sole conductive material. As such, the
presence of thin materials induces a change in the signal that needs to be addressed. Let Ωδt and Ωδd
be respectively the thin tube thickness variation and thin deposit domains.

As the sign of ft is not constant, we introduce the sub-domains Ωδt,` :“ tpr, zq P Ωδt { rt1´ftpzq ď

r ď rt1u and Ωδt,´ :“ tpr, zq P Ωδt { rt1 ď r ď rt1 ´ ftpzqu. The contribution of ft to the impedance
signal is:

∆Zkl “ ´
2π

iωI2

ż

Ωδt,`

iωpσt ´ σvqrEθ,kE
0
θ,l dr dz ´

2π

iωI2

ż

Ωδt,´

iωpσv ´ σtqrEθ,kE
0
θ,l dr dz

“ ´
2π

iωI2

ż

pz{ftą0q

ż rt1

rt1´ft

iωpσt ´ σvqrEθ,kE
0
θ,l dr dz `

2π

iωI2

ż

pz{ftă0q

ż rt1´ft

rt1

iωpσt ´ σvqrEθ,kE
0
θ,l dr dz

Note that we do not consider the gradient term in the impedance here as the tube permeability
is equal to that of the vacuum. Since the thickness variation is small (δ ! 1) and Eθ is continuous
through the interface Γt1, Eθpr, zq “ Eθprt1, zq `Opδq @pr, zq P Ωδt,` Y Ωδt,´. Hence,

∆Zkl “´
2π

iωI2

ż

pz{ftą0q

iωpσt ´ σvqEθ,k|rt1E
0
θ,l|rt1

„

r2
t1 ´ prt1 ´ ftpzqq

2

2



dz

´
2π

iωI2

ż

pz{ftă0q

iωpσt ´ σvqEθ,k|rt1E
0
θ,l|rt1

„

r2
t1 ´ prt1 ´ ftpzqq

2

2
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„ftrt1`Opδ2q

dz `Opδ2q

At order one it leads to:
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∆Zkl “ ´
2π

iωI2

ż

Γt1

iωpσt ´ σvqftpzqEθ,k|rt1E
0
θ,l|rt1

rt1 dz `Opδ2q (2.27)

For thin deposits, the reasoning is similar, though the material is on one side of the interface.
The contribution of fd to the impedance signal is then:

∆Zkl “ ´
2π

iωI2

ż

Ωδd

iωpσd ´ σvqrEθ,kE
0
θ,l dr dz “ ´

2π

iωI2

ż

z

ż rt2´fd

rt2

iωpσd ´ σvqrEθ,kE
0
θ,l dr dz

As the deposit thickness is small (δ ! 1) and Eθ is continuous through the interface Γt2, Eθpr, zq “
Eθprt2, zq `Opδq, @pr, zq P Ωδd. The same reasoning applies to the incident field E0. Hence:

∆Zkl “
2π

iωI2

ż

Γt2

iωpσd ´ σvqEθ,k|rt2E
0
θ,l|rt2

rt2fdpzqdz `Opδ2q (2.28)

2.3.2 Numerical validation

In this section we validate numerically the asymptotic model derived before for both the tube thickness
variation and the clogging deposits.

Consider two settings containing either thin materials meshed in the computational domains. Let
Et and Ed the electric fields in these configurations solutions of (2.3). Consider two other settings
where each default is replaced by the adequate transmission condition on the proper straight interface.
Et and Ed denote the fields in these configurations. We compare the L2 norm of the error Et ´ Et
and Ed ´ Ed.

In each test, the tube has a conductivity σt of 0.97 ¨ 106 S ¨ m´1 and a magnetic permeability
µt “ µv. For the clogging deposit, though the permeability may not be equal to µv, due to the
beforehand hypothesis, we suppose µd “ µv. For both thin structures, we propose to analyse the
influence of the maximum thickness δ to the precision of the asymptotic model: we vary δ from 25µm
to 250µm for the tube, and from 50µm to 1mm for the deposit.
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Figure 2.8: Relative error for the total field for thin tube variation, for each pulsation

In the context of shape reconstruction inside steam generators, we also investigate the error be-
tween the asymptotic model and the reality on the impedance signals, as it could highly influence
the convergence of our algorithm depending on how different the signals may be. Similarly to the
electric field, we introduce for each setting Zt, Zd, Zt and Zd.
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Figure 2.9: Relative error for the each impedance signal for thin tube variation

We start with the study of the errors for a thin tube thickness variation fd. We consider the
following test case for the error plots: no volumetric deposit and an elliptic tube excess, that is to
say ftpzq “ δ

a

1´ pz{ztq2,@z P r´zt, zts, with zt “ 0.010m. Figure 2.8 displays the relative error
plot of the electric field for the different different pulsations and Figure 2.9, the same error plot for
the resulting different impedance signals.

According to these plots, in order for the approximation to be satisfying, the maximum thickness
to pick would be 50µm, above even though the scattered field remains satisfying, the impedance
signals are too different.
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Figure 2.10: Relative error for the total field for thin deposit, for each pulsation

For thin deposits, we consider the following test case for the error plots : no volumetric deposit
and a thin clogging deposit, of a thickness δd varying from 50µm to 1000µm. The impedance signal is
computed for 71 coil positions. The mesh size of the computational domain for Ed is fixed to 10´3mm
and 4¨10´3 for Ed. Figure 2.10 displays the relative error plots for the total field. Figure 2.11 displays
the same error plot for the resulting different impedance signals.
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Figure 2.11: Relative error for the each impedance signal for thin deposit

According to these plots, in order for the approximation to be satisfying, the maximum thickness
to pick would be 250µm, above even though the total field remains satisfying, the impedance signals
are too different.

2.4 Summary

Consider the domain Ω defined on Figure 2.12. Let Ωd be the volumetric deposit between the support
plate Ωd and the outer tube wall Γt2. We consider the deposits on Γt2 outside the support plate
area to have a small thickness parametrized by the function fd. The tube has a variable thickness
parametrized by the function ft defined on the straight interface Γt1 at r “ rt1.

Note that for readability purposes, we drop the θ in Eθ. The support plate is replaced by
the impedance condition (2.14) on its boundary and the thin materials modeled by the thicknesses
functions ft and fd are replaced by the transmission conditions (2.24) and (2.25) on their respective
interface. We introduce the sub-domains Ω1 :“ tpr, zq P R2

` { r ď rt1u, Ωt :“ tpr, zq P R2
` { rt1 ď r ď

rt2u and Ω2 :“ tpr, zq P R2
` { rt2 ď ru. Under these hypotheses and this configuration, the problem

satisfied by the field E is the following:

$

’

’

’

’

’

’

’

’
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’

’
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’

’

’

’

’

’
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´∇ ¨

ˆ

1

µ

1

r
∇prEq

˙

´ iωσE “ iωJ in Ω1 Y Ωt Y Ω2

1

µ

1

r

BprEq

Bn
“

1

µp

1

δ

ˆ

´

?
2

2
` i

?
2

2

˙

E on BΩp

1

µt

BprE`q

Br
` iωσtf

`
t pzqrt1E “

1

µv

BprE´q

Br
on Γt1

1

µt

BprE´q

Br
` iωσdfdpzqr2E “

1

µv

BprE`q

Br
on Γt2

` b.c. (2.6)3 on BΩzBΩp

(2.29)

where δ “ 1{
?
ωµpσp refers to the support plate skin depth. For an interface Γ at r “ r˚, the

notations E´ and E` respectively stand for the field E in Ω´ “ tpr, zq P R2
` { r ď r˚u and Ω` “

tpr, zq P R2
` { r ě r˚u.

Multiply (2.29)1 by a test function v P HpΩ1YΩtYΩ2q and integrate by parts on each sub-domain
leads to the following variational formulation:
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Figure 2.12: General domain Ω

@v P HpΩ1 Y Ωt Y Ω2q,
ż

Ω

ˆ

1

µ

1

r
∇prEq ¨∇prvq ´ iωσrEv

˙

dr dz ´

ż

BΩp

1

µp

1

δ

ˆ

´

?
2

2
` i

?
2

2

˙

rEv ds

´ iωσt

ż

Γt1

f`t pzqrEv dr ` iωσd

ż

Γt2

fdpzqrEv dr “ iω

ż

Ω

Jrv dr dz

(2.30)

In an axisymmetric model, we use solely the SAX probe: it is made out of two coaxial coils
numbered 1 and 2. Under the considered model and hypotheses, the impedance signal expression
becomes:

∆Zkl “
2π

iωI2

ż

Ωd

ˆˆ

1

µ
´

1

µ0

˙

1

r
∇prEkq ¨∇prE0

l q ´ iωpσ ´ σ
0qEkE

0
l r

˙

dr dz

`
2π

iωI2

ż

BΩp

ˆ

´
1

µp

1

δ

ˆ

´

?
2

2
` i

?
2

2

˙

E0
l `

1

µ0

1

r

BprE0
l q

Bn

˙

prEkqds

´
2π

iωI2

ż

Γt1

iωpσt ´ σvqftEkE
0
l rt1 dz `

2π

iωI2

ż

Γt2

iωpσd ´ σvqfdEkE
0
l rt2 dz

(2.31)

where k, l “ 1, 2 is the coil number and E0 is the incident field satisfying the problem on a domain
with solely a straight tube.
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During the detection process, a probe, here the SAX probe, is inserted inside the tubes from one
end to the other end. It is then pulled back at a constant speed alongside the tube axis. At given time
steps, or equivalently at given spacial steps, the probe takes an impedance measurement. To analyse
the resulting signals, noted pZimeasqi“1...Ns with Ns the number of signals, different approaches can
be considered in terms of signal processing.

We here assume we can simulate any impedance signal, noted pZiqi“1...Ns , for any configuration
of the deposit shape Ωd, the tube thickness variation ft and the thin deposit thickness fd using the
model elaborated in Chapter 2. The aim is to find the configuration Ω˚d , f

˚
t , f

˚
d that led to these

measurements. In terms of optimization, it leads to the following problem:

Find Ω˚d , f
˚
t and f˚d solution of :

min
Ωd,ft,fd

«

J pΩd, ft, fdq :“
Ns
ÿ

i“1

ˆ
ż z0

´z0

ˇ

ˇZipΩd, ft, fd; ζq ´ Zimespζq
ˇ

ˇ

2
dζ

˙

ff

(3.1)

This optimization problem raises different challenges: since the cost function J depends on a shape,
the notion of shape optimization has to be carefully defined. In practice, the operator does not
provide the signal per se, but its value at given probe positions. The signal is then reconstructed by
interpolating the different values: in the optimization problem (3.1), the integral becomes a discrete
sum on the Np positions, and the Ns signals pZiq and pZimeasq become vectors of size Np. For the
SAX probe, Ns “ 4 as three differential modes for three different pulsations and one absolute mode
are considered while Np depend on the precision wanted by the operator. In this work, we choose to
assign to each signal the same weight.

Optimization with respect to the thickness functions ft and fd is quite classical: we propose here
to use a gradient descent for each unknown. We choose here to apply the same algorithm to solve
shape optimization problem. In the literature, other optimization algorithm have been studied to
solve shape optimization problems, for instance Gauss-Newton [23], Levenberg-Marquardt [43] or
augmented Lagrangian [16] should the problem be constrained. The approach considered to solve the
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optimization problem is here a gradient descent simultaneously on the three unknowns pΩd, ft, fdq.
The first section introduces the notions related to shape optimization, using level-set method in order
to reconstruct Ωd. In the second section, we tackle the question of reconstructing the thicknesses
function ft and fd. The last section is dedicated to the reconstruction of the physical parameters
pσ, µq of the deposit, as in most cases during data acquisition in the nuclear plants, the operator only
has an empiric value.

3.1 Shape optimization

Shape optimization problems can be found in various context, e.g. in fluid mechanics [10], in the con-
ception of optimal structures under fixed loads, like the cantilever beam problem [66], . . . Depending
on the specificities of each problem, three main approach to shape reconstruction can be considered.
The simplest one would be parametric optimization: the shape is represented through a given set of
meaningful parameters: the thickness [42] or control points of the shape boundary [9] for instance.
Such approach offers restricted variability in the reconstructed shape. Geometrical optimization con-
siders the shape boundary is the unknown: at each iteration the boundary is deformed to fit the data.
Such approach is widely used in modern day problems [10, 66, 45, 48, 56] as it allows to reconstruct
a wide variety of shapes. Topological optimization is the most generic method to shape optimization
and allows holes to appear inside the shape in order to reconstruct complex structures. However,
such approach may prove to be hard to implement due to the complexity of the computation of
topological derivatives [33].

In this work, we take a geometric approach to the optimization problem: the unknown is the
boundary BΩ. We consider in this section that the thickness functions ft and fd are fixed, so that
the cost function J solely depends on the shape Ωd. Note that by observation of the formation of
deposits inside the Steam Generators, we consider that thin deposits form sufficiently far from the
volumetric deposit: the support of fd does not intersect with Ωd.

Before detailing the optimization algorithm, let us explain how to differentiate a function depend-
ing on a shape. The definitions hereafter can be found in [24].

3.1.1 Shape derivative

LetQ be a regular open subset of Ω and θ PW 1,8pQ,Qq2, a perturbation field. A domain deformation
can be seen as a perturbation of the identity:

Id` θ : QÑ Qθ “ pId` θqQ
where Qθ is the deformed shape. Let v “ vpQq be a shape-dependent function that belongs to some
Banach space B (that may depend on Q). Figure 3.1 illustrates the two ways to define perturbations
of a function due to perturbation of its domain of definition.

Figure 3.1: Differentiation with respect to a shape

Definition 3.1. Consider the above definitions of Ω, v, θ and Ωθ.
If ṽpθq :“ vpQθq ˝ pId ` θq P B, then the material derivative (Lagrangian derivative) V pθq of

v is defined as a linear functional with respect to θ with values in B such that
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ṽpθq “ ṽp0q ` V pθq ` opθq in Q

where limθÑ0
||opθq||B
||θ||1,8

“ 0.

Under the assumption that the shape perturbation norm is sufficiently small, the shape deriva-
tive (Eulerian derivative) v1pθq of v is defined as a linear functional with respect to θ with values in
B such that:

vpQθq “ vpQq ` v1pθq ` opθq in ω Ă QXQθ

Remark 3.2. Using the chain rule, a relation ties the material and shape derivative :

V pθq “ v1pθq ` θ ¨∇vpQq (3.2)

Note that in the following, we use the notation opθq to refer to a function such that limθÑ0
||opθq||
||θ||1,8

“

0. The norm || ¨ || used should be clear from the context.
Similarly to solid or fluid mechanics, there are two interpretations for shape differentiation. The

Eulerian approach, in a fixed domain, is the easiest one to understand: it compares for each point
x P Q X Qθ the two functions vpQq and vpQθq. The Lagrangian approach, in a moving domain,
compares for a point x P Q the value of vpQq at x and the value of vpQθq at x ` θpxq. Formula
(6.2) then explains that the Lagrangian derivative combines the Eulerian derivative plus the domain
displacement.

In the case of the reconstruction of deposits inside Steam Generators, we consider the perturbation
θ is such that its support is null inside Ωs or Ωt, invariant domains, as we are specifically interested in
deformations at the vicinity of the deposit boundary and the vacuum. In order to solve (3.1) through
gradient descent, a gradient of the cost function must be computed. Here we choose to calculate its
shape derivative, as it appears naturally in the calculations. For a given signal Z “ Zi, i “ 1 . . . Ns,
measurement Zmeas “ Zimeas, i “ 1 . . . Ns and one position z, we have:

|ZpΩq ´ Zmeas|
2
“ pZpΩq ´ ZmeasqpZpΩq ´ Zmeasq

“ |ZpΩq|
2
` |Zmeas|

2
´ ZpΩqZmeas ´ ZpΩqZmeas

“ |ZpΩq|
2
` |Zmeas|

2
´ 2<

`

ZpΩqZmeas

˘

Given the definition above, the shape derivative of |ZpΩq ´ Zmes|
2
, for a perturbation θ, writes :

|ZpΩθq ´ Zmeas|
2
“

ˇ

ˇZpΩq ` Z 1pθq
ˇ

ˇ

2
` |Zmeas|

2
´ 2<

`

pZpΩq ` Z 1pθqqZmeas

˘

` opθq

“ |ZpΩq ´ Zmeas|
2
`2<

´

pZ 1pθqqpZpΩq ´ Zmeasq

¯

looooooooooooooooooomooooooooooooooooooon

shape derivative

`
ˇ

ˇZ 1pθq
ˇ

ˇ

2

looomooon

opθq

`opθq

Hence for the shape derivative of the cost function:

J 1pΩdqpθq “
Ns
ÿ

i“1

ż zmax

zmin

2<
´

pZiq1pθqpZipΩd; ζq ´ Zimeaspζqq
¯

(3.3)

To compute the shape derivative of the impedance, some preliminary results need to be proven.
In the following, it will be more convenient to work with w :“ rEθ P H̃pΩq :“ tv : rv P HpΩqu. For
any Q Ă Ω, let αpQq be the following shape-dependent sesquilinear form :

αpQqpupQq, vpQqq :“

ż

Q

ˆ

1

µr
∇u ¨∇v̄ ´

iωσ

r
uv̄

˙

drdz, @pu, vq P H̃pΩq2

Lemma 3.3. Assume that µ and σ are constant in Q. Let upQq P H̃pQq satisfying in the weak sense

´∇ ¨

ˆ

1

µr
∇u

˙

´
iωσ

r
u “ 0, inQ (3.4)
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and vpQq P H̃pQq and assume that their shape derivatives pu1pθq, v1pθqq and material derivatives

pUpθq, V pθqq exist in H̃pQq. We assume in addition that the Hessian matrices D2u and D2v are in
L2pQ X tΩv Y Ωduq. Then the shape derivative of αpQqpupQq, vpQqq, denoted by βpθq exists for all
admissible perturbations θ and is given by

βpθq “ αpQqpu1pθq, vpQqq ` αpQqpupQq, V pθqq

`

ż

BQ

"

pθ ¨ nq

ˆ

1

µr
∇τu ¨∇τ v̄ ´

iωσ

r
uv̄

˙

´

ˆ

1

µr
Bnupθ ¨∇τ v̄q

˙*

ds
(3.5)

Proof : In order to compute the shape derivative, we consider αpQθqpupQθq, vpQθqq and the change
of variables

pId` θq´1 : Qθ Ñ Q, y ÞÑ x

Under that change of variables, we have the following chain rule:

p∇vq ˝ pId` θq “ pI`∇θq´t∇pv ˝ pId` θqq @v P H̃pQθq

where ∇θ is the Jacobian matrix of the deformation. Hence,

αpQθqpupQθq, vpQθqq

“

ż

Q

ˆ

1

r
` θ ¨∇

ˆ

1

r

˙

` opθq

˙ˆ

1

µ
rApθq∇ũpθqs ¨∇ṽpθq ´ iωσũpθqṽpθq|detpI `∇θq|

˙

drdz

where Apθq :“ |detpI `∇θq|pI `∇θq´1|pI `∇θq´t and ũpθq is the notation introduced in Defi-
nition 3.1. By definition of the material derivative and expanding with respect to θ, we have the
developments:

ũpθq “ upQq ` Upθq ` opθq,
ṽpθq “ vpQq ` V pθq ` opθq,

detpI `∇θq “ 1`∇ ¨ θ ` opθq,

pI `∇θq´1 “ I ´∇θ ` opθq.

which leads to:

αpQθqpupQθq, vpQθqq
“ αpQqpupQq, vpQqq ` αpQqpUpθq, vpQqq ` αpQqpupQq, V pθqq

`

ż

Q

"

1

µ

„ˆˆ

θ ¨∇
ˆ

1

r

˙˙

I `
1

r
pp∇ ¨ θqI ´∇θ ´ p∇θqtq

˙

∇u



¨∇v̄

´iωσ

ˆ

θ ¨∇
ˆ

1

r

˙

`
∇ ¨ θ

r

˙

uv̄

*

drdz ` opθq

“ αpQqpupQq, vpQqq ` αpQqpUpθq, vpQqq ` αpQqpupQq, V pθqq

`

ż

Q

"

1

µ

„ˆˆ

∇ ¨

ˆ

θ

r

˙˙

I ´
1

r
p∇θ ` p∇θqtq

˙

∇u



¨∇v̄ ´ iωσ∇ ¨

ˆ

θ

r

˙

uv̄

*

drdz ` opθq

Using the definition of βpθq, one has:

βpθq “ αpQqpUpθq, vpQqq ` αpQqpupQq, V pθqq ` I1 ` I2 ` I3 ` I4

with
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I1 “

ż

Q

1

µ
∇ ¨

ˆ

θ

r

˙

∇u ¨∇v̄ drdz

I2 “ ´

ż

Q

1

µ

1

r
p∇θ∇uq ¨∇v̄ drdz

I3 “ ´

ż

Q

1

µ

1

r
pp∇θqt∇uq ¨∇v̄ drdz

I4 “ ´

ż

Q
iωσ∇ ¨

ˆ

θ

r

˙

uv̄ drdz

Using integration by parts, the first integral becomes:

I1 “ ´

ż

Q

1

µr
θ ¨∇p∇u ¨∇v̄qdrdz `

ż

BQ

pθ ¨ nq

µr
∇u ¨∇v̄ ds

“ ´

ż

Q

1

µr
θ ¨ pD2u∇v̄ `D2v̄∇uqdrdz `

ż

BQ

pθ ¨ nq

µr
∇u ¨∇v̄ ds

“ ´

ż

Q

1

µr
θ ¨ p∇p∇u ¨ θq ´ rp∇θqt∇us ¨∇v̄ `D2v̄∇uqdrdz `

ż

BQ

pθ ¨ nq

µr
∇u ¨∇v̄ ds

“ ´

ż

Q

1

µr
θ ¨ p∇p∇u ¨ θq `D2v̄∇uqdrdz `

ż

BQ

pθ ¨ nq

µr
pBnu Bnv̄ `∇τu ¨∇τ v̄qds´ I3

and for the second:

I2 “ ´

ż

Q

1

µr
pp∇θr ¨∇uqBrv̄ ` p∇θz ¨∇uqBz v̄qdrdz

“

ż

Q

1

µ

ˆ

∇ ¨

ˆ

∇u

r
Brv̄

˙

θr `∇ ¨

ˆ

∇u

r
Bz v̄

˙

θz

˙

drdz ´

ż

BQ

1

µr
pθ ¨∇v̄qBnuds

“

ż

Q

1

µ

"

∇ ¨

ˆ

∇u

r

˙

pθ ¨∇v̄q `
1

r
∇u ¨ p∇pBrv̄qθr `∇pBz v̄qθzq

*

drdz ´

ż

BQ

1

µr
pθ ¨∇v̄qBnuds

“

ż

Q

1

µ

"

∇ ¨

ˆ

∇u

r

˙

pθ ¨∇v̄q `
1

r
∇u ¨ rD2v̄θs

*

drdz ´

ż

BQ

1

µr
ppθ ¨ nqBnv̄ ` pθ ¨∇τ v̄qqBnuds

“

ż

Q

1

µ

"

´
iωσ

r
upθ ¨∇v̄q `

1

r
rD2v̄∇us ¨ θ

*

drdz ´

ż

BQ

1

µr
ppθ ¨ nqBnv̄ ` pθ ¨∇τ v̄qqBnuds

The last equality uses the equation (3.4) verified by u in the weak sense. Finally :

I4 “

ż

Q

iωσ

r
θ ¨∇puv̄qdrdz ´

ż

BQ
pθ ¨ nq

iωσ

r
uv̄ ds

“

ż

Q

iωσ

r
ppθ ¨∇uqv̄ ` pθ ¨∇v̄quqdrdz ´

ż

BQ
pθ ¨ nq

iωσ

r
uv̄ ds

To summarize the previous calculations, one gets :

I1`I2 ` I3 ` I4 “ ´

ż

Q

"

1

µr
∇pθ ¨∇uq ¨∇v̄ ´

iωσ

r
pθ ¨∇uqv̄

*

drdz

`

ż

BQ

"

pθ ¨ nq

ˆ

1

µr
∇τu ¨∇τ v̄ ´

iωσ

r
uv̄

˙

´
1

µr
Bnupθ ¨∇τ v̄q

*

ds

(3.6)

Since by definition Upθq ´ θ ¨ ∇u “ u1pθq, by substituting (3.6) in (3.1.1), we obtain the result
(3.5).
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In our model, the impedance has the following expression:

∆Z “
2π

iωI2

ż

Ωd

ˆˆ

1

µ
´

1

µ0

˙

1

r
∇w ¨∇w0 ´

iωpσ ´ σ0q

r
ww0

˙

dr dz

`
2π

iωI2

ż

BΩp

ˆ

´
1

µp

1

δ

ˆ

´

?
2

2
` i

?
2

2

˙

w0

r
`

1

µ0

1

r

Bw0

Bn

˙

w ds

´
2π

iωI2

ż

Γt1

iωpσt ´ σvq

rt1
ftww

0 dz `
2π

iωI2

ż

Γt2

iωpσd ´ σvq

rt2
fdww

0 dz

where E “ w{r is the solution of the direct problem (2.29) with coefficients pµ, σq and E0 “ w0{r, the
solution in an ideal situation where the straight tube is the sole conductive material, with coefficients
pµ0, σ0q.

Proposition 3.4. The shape derivative of the impedance ∆Z is well defined and is given by :

∆Z 1pθq “
2π

iωI2

ż

Ωd

ˆˆ

1

µ
´

1

µ0

˙

1

r
∇w1pθq ¨∇w0 ´

iωpσ ´ σ0q

r
w1pθqw0

˙

dr dz

´
2π

iωI2

ż

Γt1

iωpσt ´ σvq

r
ftw

1pθqw0 dz `
2π

iωI2

ż

Γt2

iωpσd ´ σvq

r
fdw

1pθqw0 dz

`
2π

iωI2

ż

BΩp

ˆ

´
1

µp

1

r

1

δ

ˆ

´

?
2

2
` i

?
2

2

˙

w0 `
1

µ0

1

r

Bw0

Bn

˙

w1pθq ds

`
2π

iωI2

ż

BΩd

pθ ¨ nq

ˆˆ

1

µ
´

1

µ0

˙

1

r
∇w ¨∇w0 ´

iωpσ ´ σ0q

r
ww0

˙

ds

(3.7)

where E1pθq is the shape derivative of the electric field.

Proof : Consider a deformation pId`θq of the deposit. This deformation leaves the incident field
w0 invariant: therefore its shape derivative is equal to zero and its material derivative is W 0pθq “
θ ¨∇w0. As θ is supported on a vicinity of Ωd, it leaves BΩp, Γt1 and Γt2 invariant.

We first consider the shape derivative of:

I1 “
2π

iωI2

ż

BΩp

ˆ

´
1

µp

1

r

1

δ
i
?
iw0 `

1

µ0

1

r

Bw0

Bn

˙

w ds

´
2π

iωI2

ż

Γt1

iωpσt ´ σvq

r
ftww

0 dz `
2π

iωI2

ż

Γt2

iωpσd ´ σvq

r
fdww

0 dz

By definition of the shape derivative, I 11pθq can be computed quite easily :

I 11pθq “
2π

iωI2

ż

BΩp

ˆ

´
1

µp

1

r

1

δ
i
?
iw0 `

1

µ0

1

r

Bw0

Bn

˙

w1pθqds

´
2π

iωI2

ż

Γt1

iωpσt ´ σvq

r
ftw

1pθqw0 dz `
2π

iωI2

ż

Γt2

iωpσd ´ σvq

r
fdw

1pθqw0 dz

We now consider the shape derivative of:

I2 “
2π

iωI2

ż

Ωd

ˆˆ

1

µ
´

1

µ0

˙

1

r
∇w ¨∇w0 ´

iωpσ ´ σ0q

r
ww0

˙

dr dz

It can be rewritten as : iωI2

2π I2 “ αpΩdqpw, w̄
0q ´ α0pΩdqpw

0, w̄q. Since w verifies (3.4) in Ωd with µ
and σ constant and w0, the same problem with pµ, σq “ pµ0, σ0q, Lemma 3.3 implies:

iωI2

2π
I 12pθq “ αpΩdqpw

1pθq, w0q ` αpΩdqpw,W 0pθqq ´ α0pΩdqpw
0,W pθqq

`

ż

BΩd

"

pθ ¨ nq

ˆ

1

µr
∇τw ¨∇τw

0 ´
iωσ

r
ww0

˙

´
1

µr
Bnwpθ ¨∇τw

0q

*

ds

´

ż

BΩd

"

pθ ¨ nq

ˆ

1

µ0r
∇τw ¨∇τw

0 ´
iωσ0

r
ww0

˙

´
1

µ0r
Bnw

0pθ ¨∇τwq

*

ds
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We evaluate term by term the right-hand-side of above equality. By integration by parts and using
the equation satisfied by w in Ωd

αpΩdqpw,W 0pθqq “ αpΩdqpw, pθ ¨∇w0qq

“

ż

Ωd

ˆ

1

µr
∇w ¨∇pθ ¨∇w0q ´

iωσ

r
wpθ ¨∇w0q

˙

drdz

“

ż

Ωd

ˆ

´∇ ¨

ˆ

1

µr
∇w

˙

´
iωσ

r
w

˙

pθ ¨∇w0qdrdz `

ż

BΩd

1

µr
Bnwpθ ¨∇w0qds

“

ż

BΩd

1

µr
Bnwppθ ¨ nqBnw

0 ` pθ ¨∇τw
0qqds

From the definition of the sesquilinear form,

α0pΩdqpw
0,W pθqq “ α0pΩdqpW pθq, w0q

Using the equation verified by w0 on Ωd, we get
ż

BΩd

1

µ0r
Bnw

0pθ ¨∇τwqds

“

ż

BΩd

1

µ0r
Bnw

0ppθ ¨∇wq ´ pθ ¨ nqBnwqds

“

ż

Ωd

∇ ¨

ˆ

1

µ0r
∇w0pθ ¨∇wq

˙

drdz ´

ż

BΩd

1

µ0r
pθ ¨ nqBnw

0Bnw ds

“

ż

Ωd

"

∇ ¨

ˆ

1

µ0r
∇w0

˙

pθ ¨∇wq `
1

µ0r
∇w0 ¨∇pθ ¨∇wq

*

drdz ´

ż

BΩd

1

µ0r
pθ ¨ nqBnw

0Bnw ds

“

ż

Ωd

"ˆ

´
iωσ0

r
w0

˙

pθ ¨∇wq `
1

µ0r
∇w0 ¨∇pθ ¨∇wq

*

drdz ´

ż

BΩd

1

µ0r
pθ ¨ nqBnw

0Bnw ds

“ α0pΩdqpθ ¨∇w,w0q ´

ż

BΩd

1

µ0r
pθ ¨ nqBnw

0Bnw ds

Finally, with the above results, one obtains:

iωI2

2π
I 12pθq “ αpΩdqpw

1pθq, w0q ´ α0pΩdqpW pθq, w0q ` α0pΩdqppθ ¨∇wq, w0q

`

ż

BΩd

pθ ¨ nq

"ˆ

1

µ
´

1

µ0

˙

p∇τw ¨∇τw
0 ` BnwBnw

0q ´
iωpσ ´ σ0q

r
ww0

*

ds

“ αpΩdqpw
1pθq, w0q ´ α0pΩdqpw

1pθq, w0q

`

ż

BΩd

pθ ¨ nq

"ˆ

1

µ
´

1

µ0

˙

∇w ¨∇w0 ´
iωpσ ´ σ0q

r
ww0

*

ds

The gradient descent method requires to find a perturbation θ such that the shape derivative of the
cost function applied to it is strictly negative. Considering (3.7), computation of such a perturbation
is not an easy task as it is partially implicit with respect to θ.

To transform it into a fully explicit expression, we define a new variational problem called adjoint
problem, where we want to find p called the adjoint state solution of:

apq, pq “: a˚pp, qq “

ż

Ωd

1

r

ˆˆ

1

µ
´

1

µ0

˙

∇w0 ¨∇q `
iωpσ ´ σ0q

r
w0q

˙

dr dz, @q P H̃pΩq

`

ż

Γt1

iωpσt ´ σvqft
r

w0q dz ´

ż

Γt2

iωpσd ´ σvqfd
r

w0q dz

`

ż

BΩp

˜

´
1

µp

1

δ

1

r

ˆ

´

?
2

2
´ i

?
2

2

˙

w0 `
1

µ0

1

r

Bw0

Bn

¸

q ds

(3.8)
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In particular, p satisfies in the weak sense :
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’
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’

’

’

’

’

’

’

’

’

’

’

’
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’

’

’

’

%

´∇ ¨

ˆ

1

µr
∇p

˙

`
iωσ

r
p “ ´∇ ¨

ˆˆ

1

µ
´

1

µ0

˙

1

r
∇w0

˙

`
iωpσ ´ σ0q

r
w0 in Ωd,

´∇ ¨

ˆ

1

µr
∇p

˙

`
iωσ

r
p “ 0 in ΩC

d ,

rps “ 0 on BΩd,
„

µ´1 Bp

Bn



“ ´

ˆ

1

µ
´

1

µ0

˙

Bw0

Bn
on BΩd,

1

µv

Bp

Bn
“

1

µp

ˆ

´

?
2

2
´ i

?
2

2

˙

1

δ
p´

1

µv

Bw0

Bn
`

1

µp

ˆ

´

?
2

2
´ i

?
2

2

˙

1

δ
w0 on BΩp,

1

µt

Bp`

Br
´ iωσt|ftpzq|p “

1

µv

Bp´

Br
` iωpσt ´ σvqftpzqw0 on Γt1,

1

µt

Bp´

Br
` iωσdfdpzqp “

1

µv

Bp`

Br
´ iωpσd ´ σvqfdpzqw0 on Γt2.

where the jump operator rps on the boundary BΩd is defined by rpspx0q “ limxPΩC
dÑx0

ppxq ´

limxPΩdÑx0
ppxq, for x0 P BΩd. Since this problem has the same structure as the direct problem,

one can conclude:

Proposition 3.5. Let w0 P H̃pΩq be the solution to the eddy-current problem in a deposit-free case.

Then the variational formulation (3.8) has a unique solution p P H̃pΩq.

Using calculations developed in [69] leads to:

Proposition 3.6. Let p be the adjoint state satisfying the adjoint problem (3.8), then the shape
derivative of the impedance ∆Z has the following expression :

∆Z 1pθq “
2π

iωI2

ż

BΩd

pθ ¨ nq

r

"„

1

µ



∇τw ¨∇τ pp´ w
0q

´ rµspµ´1Bnwq
`

pµ0q´1pBnpq` ´ pµ
0q´1pBnw

0q
˘

´ iωrσsw
`

p´ w0
˘

*

ds

(3.9)

Note that because rµ´1Bnps “ ´pµ
´1
d ´µ´1

0 qBnw
0 and rµ´1Bnw

0s “ 0 on Γ, rµ´1Bnpp´w
0qs “ 0.

Formula (3.9) can then be rewritten as :

∆Z 1pθq “ ´
2π

iωI2

ż

BΩd

pθ ¨ nq

r

`

rµspµ´1∇wq ¨ ppµ0q´1∇pp´ w0qq ` iωrσsw
`

p´ w0
˘˘

ds (3.10)

The main advantage of such a formulation is that it removes numerical instabilities due to the
calculation of the tangential gradient on the deposit surface.

Z 1pθq is a linear combination of ∆Z 1kl, therefore the shape derivative of the cost functional J can
be written as

J 1pΩdqpθq “
Ns
ÿ

i“1

2π

ωI2

ż

BΩd

pθ ¨ nqgiψ ds (3.11)

where the array of gradients gψ is, according to the measuring mode

giψ “

#

pgiψq11 ` pg
i
ψq21 absolute mode

pgiψq11 ´ pg
i
ψq22 differential mode

with
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pgiψqkl “ ´

ż zmax

zmin

<
"

pZipΩd; ζq ´ Zimeaspζqq

ˆ

1

r
rµs

`

µ´1∇prEkq
˘

¨
`

pµ0q´1∇
`

r
`

pl ´ E
0
l

˘˘˘

` iωrσsrEk
`

pl ´ E
0
l

˘

˙
ˇ

ˇ

ˇ

ˇ

ζ

+

dζ

where the notation E|ζ refers to the solution of (2.29) with the source term generated by the probe
at position ζ.

Note in particular that if one chooses θψ such that

θψ “ ´γψ

Ns
ÿ

i“1

giψn on BΩd, (3.12)

it provides a descent direction for γψ ą 0 sufficiently small.

We hereafter explain how one formally can obtain a quick derivation (without expressing the state
derivative) of the cost functional derivative using the Lagrangian. The reasoning is based on optimal
control of systems governed by partial differential equations (see [8, 46] for more information on the
topic).

We introduce first some notation: consider an impedance measurement Zmeas for a given coil
position, Z denotes the numerical measurement for a given shape Ωd. Depending on the mode
chosen, Z can be written as i{2p∆Zk1l1 ˘ ∆Zk2l2q, where k1 and k2 refer to the receiver coils and
l1 and l2, to the emitter coils. We note Ek1

pΩdq (resp. Ek2
pΩdq) the solution of the direct problem

(2.29) where the source term J is supported by the coil k1 (resp. k2). The variational problems can
be rewritten as apEk1pΩdq,Ωd, vq “ lk1pvq, @v P HpΩq and apEk2pΩdq,Ωd, vq “ lk2pvq, @v P HpΩq,
where:

@u, v P HpΩ1 Y Ωt Y Ω2q,@admissible shape Ωd

apu,Ωd, vq :“

ż

Ωd

ˆ

1

µ

1

r
∇pruq ¨∇prvq ´ iωσruv

˙

dr dz

`

ż

ΩC
d

ˆ

1

µ

1

r
∇pruq ¨∇prvq ´ iωσruv

˙

dr dz ´

ż

BΩp

1

µp

1

δ

ˆ

´

?
2

2
` i

?
2

2

˙

ruv ds

´ iωσt

ż

Γt1

f`t pzqruv dr ` iωσd

ż

Γt2

fdpzqruv dr

lk1
pvq :“

ż

Ω

iωJk1
prvqdrdz

lk2
pvq :“

ż

Ω

iωJk2
prvqdrdz

where the notation Jk1
(resp. Jk2

) refers to the source term J being supported by the coil k1 (resp.
k2). Note that a is linear with respect to u and v and l is linear with respect to v.

We focus here on a single probe position: we denote by J̃ pΩdq the following cost function.

J̃ pΩdq :“ |ZpEk1
pΩdq, Ek2

pΩdq,Ωdq ´ Zmeas|
2
“ jpEk1

pΩdq, Ek2
pΩdq,Ωdq

with, for a given coil number k (receiver) and l (emitter)
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@uk, uk1
, uk2

P HpΩ1 Y Ωt Y Ω2q,@admissible shape Ωd

∆Zklpuk,Ωdq :“
2π

iωI2

ż

Ωd

ˆˆ

1

µ
´

1

µ0

˙

1

r
∇prukq ¨∇prE0

l q ´ iωpσ ´ σ
0qukE

0
l r

˙

dr dz

`
2π

iωI2

ż

BΩp

ˆ

´
1

µp

1

δ

ˆ

´

?
2

2
` i

?
2

2

˙

E0
l `

1

µ0

1

r

BprE0
l q

Bn

˙

prukqds

´
2π

iωI2

ż

Γt1

iωpσt ´ σvqftukE
0
l rt1 dz `

2π

iωI2

ż

Γt2

iωpσd ´ σvqfdukE
0
l rt2 dz

jpuk1
, uk2

,Ωdq :“

ˇ

ˇ

ˇ

ˇ

i

2
p∆Zk1l1puk1

,Ωdq ˘∆Zk2l2puk2
,Ωdqq ´ Zmeas

ˇ

ˇ

ˇ

ˇ

2

The state equations satisfied by the direct fields Ek1
pΩdq and Ek2

pΩdq can be seen as constraints
of type F pEkpΩdqq “ 0, added to the optimization problem. As such, we introduce the Lagrangian
L of the system:

@uk1
, uk2

, vk1
, vk2

P HpΩq, @admissible shape Ωd,

Lpuk1
, uk2

,Ωd, vk1
, vk2

q :“ jpuk1
, uk2

,Ωdq ´
2π

ωI2
<
!

pZ ´ Zmeasq
`

apuk1
,Ωd, vk1

q ´ lk1
pvk1

q

˘pZ ´ Zmeasqpapuk2
,Ωd, vk2

q ´ lk2
pvk2

qq
˘

)

where vk1
and vk2

play the role of the Lagrange multipliers for each state equation. Under the above

definition, we have J̃ pΩdq “ LpEk1
pΩdq, Ek2

pΩdq,Ωd, vk1
, vk2

q, @vk1
, vk2

P HpΩq. Hence, if we note

J̃ 1pΩdqpθq the shape derivative of the cost function for a given perturbation θ of the shape, we have:

@vk1
, vk2

P HpΩq,

J̃ 1pΩdqpθq “ Buk1
LpEk1pΩdq, Ek2pΩdq,Ωd, vk1 , vk2qpE

1
k1
pΩdqpθqq

` Buk2
LpEk1

pΩdq, Ek2
pΩdq,Ωd, vk1

, vk2
qpE1k2

pΩdqpθqq

` BΩdLpEk1pΩdq, Ek2pΩdq,Ωd, vk1 , vk2qpθq

(3.13)

where the notations Buk1
, Buk2

and BΩd refer to the partial differentials of the Lagrangian with respect
to the adequate variables.

Let us now define the adjoint state pl1pΩdq P HpΩq (resp. pl2pΩdq P HpΩq) for a given shape
Ωd by:

Buk1
LpEk1pΩdq, Ek2pΩdq,Ωd, pl1pΩdq, vk2qpqq “ 0, @q, vk2 P HpΩq

Buk2
LpEk1

pΩdq, Ek2
pΩdq,Ωd, vk1

, pl2pΩdqqpqq “ 0, @q, vk1
P HpΩq

(3.14)

By taking q to be E1k1
pθq in (3.14)1 and E1k2

pθq in (3.14)2 and vk1 “ pl1pΩdq and vk2 “ pl2pΩdq

in (3.13), the shape derivative of the cost function J̃ becomes:

J̃ 1pΩdqpθq “ BΩdLpEk1pΩdq, Ek2pΩdq,Ωd, pl1pΩdq, pl2pΩdqqpθq

“ BΩdjpEk1pΩdq, Ek2pΩdq,Ωdqpθq ´
2π

ωI2
<
!

pZ ´ ZmeasqBΩdapEk1
pΩdq,Ωd, pl1pΩdqqpθq

)

¯
2π

ωI2
<
!

pZ ´ ZmeasqBΩdapEk2
pΩdq,Ωd, pl2pΩdqqpθq

)

Let us specify the problem satisfied by the adjoint states:

2π

ωI2
<
 

Buk1
apEk1

pΩdq,Ωd, pl1pΩdqqpqq
(

“ Buk1
jpEk1

pΩdq, Ek2
pΩdq,Ωdqpqq, @q P HpΩq

˘
2π

ωI2
<
 

Buk2
apEk2

pΩdq,Ωd, pl2pΩdqqpqq
(

“ Buk2
jpEk1

pΩdq, Ek2
pΩdq,Ωdqpqq, @q P HpΩq

(3.15)
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As a is linear with respect to the variable u, the adjoint equation for either pk1
pΩdq or pk2

pΩdq can
be rewritten as, @q P HpΩq:

ż

Ω

ˆ

1

µ

1

r
∇prqq ¨∇prpq ` iωσrqp

˙

dr dz ´

ż

BΩp

1

µp

1

δ

ˆ

´

?
2

2
´ i

?
2

2

˙

rqpds

` iωσt

ż

Γt1

f`t pzqrqpdr ´ iωσd

ż

Γt2

fdpzqrqpdr

“ ˘

ż

Ωd

ˆˆ

1

µ
´

1

µ0

˙

1

r
∇prqq ¨∇prE0q ` iωpσ ´ σ0qqE0r

˙

dr dz

`

ż

BΩp

˜

´
1

µp

1

δ

ˆ

´

?
2

2
´ i

?
2

2

˙

E0 `
1

µ0

1

r

BprE0q

Bn

¸

prqqds

`

ż

Γt1

iωpσt ´ σvqftqE0rt1 dz ´

ż

Γt2

iωpσd ´ σvqfdqE0rt2 dz

(3.16)

Note that we got rid of the real part in the formulation and took the conjugate of the resulting
problem as it does not change the definition given by (3.15). We would like to point out that the
variational problem (3.16) corresponds to the adjoint problem defined earlier in (3.8).

The shape derivative of the cost function J̃ depends on the differentiation of apu,Ωd, vq and
jpuk1 , uk2 ,Ωdq. Both functions are of the form gpΩdq :“

ş

Ωd
f dr dz, where f is a function at least

L2pΩdq. For a given deformation θ, the shape derivative of g is given by:

gpΩdq “

ż

Ωd

f dr dz ñ g1pΩdqpθq “

ż

BΩd

pθ ¨ nqf ds

In the following calculations, we drop the pΩdq in front of the different fields for readability purposes:

J̃ 1pΩdqpθq “
2π

ωI2
<
"ˆ

ż

BΩd

pθ ¨ nq

ˆˆ

1

µ
´

1

µ0

˙

1

r
∇prEk1

q ¨∇prE0
l1q ´ iωpσ ´ σ

0qEk1
E0
l1r

˙

ds

˘

ż

BΩd

pθ ¨ nq

ˆˆ

1

µ
´

1

µ0

˙

1

r
∇prEk2q ¨∇prE0

l2q ´ iωpσ ´ σ
0qEk2E

0
l2r

˙

ds

˙

pZ ´ Zmeasq

*

`
2π

ωI2
<
"ˆ

ż

BΩd

pθ ¨ nq

„ˆ

1

µ

1

r
∇prEk1

q ¨∇prpl1q ´ iωσEk1
pl1r

˙

ds

˘

ż

BΩd

pθ ¨ nq

„ˆ

1

µ

1

r
∇prEk2

q ¨∇prpl2q ´ iωσEk2
pl2r

˙

ds

˙

pZ ´ Zmeasq

*

“

2π

ωI2
<
"ˆ

ż

BΩd

pθ ¨ nq

ˆ

´

„

1

µ



1

r
∇prEk1

q ¨∇prE0
l1q ` iωrσsEk1

E0
l1r

˙

ds

˘

ż

BΩd

pθ ¨ nq

ˆ

´

„

1

µ



1

r
∇prEk2

q ¨∇prE0
l2q ` iωrσsEk2

E0
l2r

˙

ds

˙

pZ ´ Zmeasq

*

`
2π

ωI2
<
"ˆ

ż

BΩd

pθ ¨ nq

ˆ„

1

µ

1

r
∇prEk1q ¨∇prpl1q



´ iωrσsEk1pl1r

˙

ds

˘

ż

BΩd

pθ ¨ nq

ˆ„

1

µ

1

r
∇prEk2

q ¨∇prpl2q


´ iωrσsEk2
pl2r

˙

ds

˙

pZ ´ Zmeasq

*

This leads to the expression given in (3.11).

3.1.2 Level Set representation

In [69], a reconstruction algorithm was developed using a boundary variation method to model the
shape over the course of the optimization algorithm: the deposit shape at each iteration is meshed
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inside the computational domain. At each descent, the gradient is applied to the vertices on the
boundary to update the shape. Such method provides a good precision on the deposit, however it
does not handle easily changes like two shapes merging, or two shapes splitting and requires costly
re-meshing steps as well as a new FE-matrix assembly at each iteration for the update.
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Figure 3.2: Representation of a shape (in red) by a level-set function

The aim of this work is to be able to invert the measurements as fast as possible. For that matter,
we choose here to model the shape using a level-set function as displayed on Figure 3.2. Note D Ă Ω
a space containing all the admissible shapes Ωd called Region Of Interest (ROI). We assume that
the shape is contained in this subdomain. According to [25], the level-set function ψ in D associated
to a shape Ωd verifies:

$

’

&

’

%

ψpxq “ 0 ô x P BΩd XD

ψpxq ă 0 ô x P Ωd

ψpxq ą 0 ô x P pDzΩdq

(3.17)

Compared to a boundary variation method, with a level-set function the deposit shape is removed
from the computational mesh and implicitly stored through ψ in the ROI D. The use of level-set
functions in shape optimization is quite common as it provides a tool capable of handling topological
changes like two shapes merging or splitting more easily. A lot of literature can be found on the
matter, in the conception of optimal structures [66, 25], in electromagnetic scattering [48], in opti-
cal tomography [45], or in fluid mechanics [56]. This consequently removes the re-meshing steps at
each iterations, alleviating the computational cost. D has a mesh not correlated to that of the com-
putational domain, and by taking a mesh size low enough, we can have a good precision on the shape.

Over the course of the gradient descent algorithm, the shape Ωdptq evolves according to a fictitious
time t P R`. Note V the deformation speed of the Ωdptq and V , its norm. Consider a level-set of
ψ : ψpt, xptqq “ Cst. Differentiating that equation leads to the following Hamilton-Jacobi transport
equation:

Bψ

Bt
` V |∇ψ| “ 0 in D (3.18)

The advantage of using a level-set to model the shape is that the shape update is simple as
it is equivalent to solving the Hamilton-Jacobi for a given time step ∆t. Note that ∆t plays the
same role as γψ in (3.12): it needs to be sufficiently small to actually descent in the algorithm and
sufficiently high so that the convergence is fast enough. The deformation speed V is known on the
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shape boundary, where it equal to ´
řNs
i“1 giψn. In order to solve the convection problem, V needs

to be defined for any point in D. We choose here to extend the deformation speed by solving the
following regularization problem:

´ α∆Ṽ ` Ṽ “ ´

Ns
ÿ

i“1

giψn δBΩd (3.19)

where Ṽ is the regularized and extended deformation speed used to solve the Hamilton-Jacobi equa-
tion and α, a regularization parameter chosen empirically. δBΩd is the characteristic function of the
shape boundary and is defined using distributions as ∇psgnpψqq ¨ nBΩd (nBΩd “ ∇ψ{||∇ψ|| is the
normal at the shape boundary). To close the regularization problem, boundary conditions need to

be added: we choose here to impose Dirichlet on BD except on the tube wall interface where Ṽ ¨ er
satisfies a Dirichlet condition while Ṽ ¨ ez satisfies a Neumann condition. The idea is to prevent the
deposit from penetrating inside tube as it is physically impossible.

To solve (3.18), we use a numerical software developed in [11] by Charles Dapogny and Pascal
Frey in C++. It is based on a backward method of characteristics.

Let x P D and t ą 0 be respectively a point and a time. The characteristic curve s P R ÞÑ Xps, t,xq
is the solution of the following ODE:

$

&

%

dX

ds
ps, t,xq “ Vps,Xps, t,xqq

Xpt, t,xq “ x

Assume the level-set satisfies the initial condition ψp0,xq “ ψinpxq. Then the unique solution to
Hamilton-Jacobi equation is ψpt,xq “ ψinpXp0, t,xqq.

The method developed by Dapogny and Frey applies this method on an unstructured mesh for
the domain D: for each vertex of the mesh, an approximation of the characteristic curve is computed
between two times Tn and Tn`1 “ Tn`∆t. From an initial value at time Tn, they deduce using the
curve the level-set function at time Tn`1. Note that the ODE for the characteristics is solved using
a Runge-Kutta method of order 4.

In gradient descent algorithms, the choice of the step size is usually crucial in the convergence
speed: a small step size means that the objective function slowly decreases at each iteration while a
great step size may provoke an oscillation of the cost function around a minimum. A constant step
size may also raise problems in the case of a high step value.

Under the level-set model, ∆t, the time for which the level-set is convected according to the
Hamilton-Jacobi equation act like a step. In the reconstruction algorithm, we choose to use a variable
step size, the heuristic is the following: consider a threshold distance d, it represents the maximum
distance at which we allow the shape to be convected. When a descent is accepted, i.e. the cost
function decreases, ∆t “ d{max |V|, when it is rejected, i.e. the time step is too great, ∆t is not
updated and d is halved.

3.1.3 Perimeter penalization

The optimization problem (3.1) is naturally ill-posed: due to the existence of multiple local optima,
the gradient descent has no chance to converge to an global optimum. As such, several different
optimal shapes can fit with same precision the data. To ensure the algorithm converges in the right
direction, a first step is the initialization choice: the effectiveness of the gradient descent method is
highly correlated to the initialization. Should it be far from the target, the algorithm may converge
towards a local optimum.

A different approach consists of restraining the set of admissible shapes in order to discriminate
unwanted solutions by adding constraints to the optimization problem. For shape optimization,
perimeter penalization provides a natural filter by imposing solutions with the perimeter as small as
possible. The corresponding problem is then :
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Find Ω˚d solution of :

min
Ωd
PpΩdq :“

ż

BΩd

1 dS

subject to J pΩdq ď ε

(3.20)

where PpΩdq is the perimeter of the shape and J pΩdq, the cost function defined in (3.1). The
aim is to find the shape of minimal perimeter such that the cost function satisfies a given fitting
level monitored by ε. As the shape is implicitly defined by a level-set function ψ, the perimeter is
computed numerically using the function δBΩd defined on D such that it is 1 on BΩd and 0 elsewhere:
PpΩdq “

ş

D
δBΩd dx.

Instead of the constrained problem, we prefer minimizing the Lagrangian of the problem, λ is a
parameter chosen empirically:

LpΩdq “ PpΩdq ` λpJ pΩdq ´ εq

Before discussing the shape derivative of the perimeter function P, let us introduce first some
elements of surface differential geometry. Consider a surface Γ, a function g : Γ ÞÑ R and a field

W : Γ ÞÑ R2 defined on the surface. We denote by g̃ and W̃ a lifting of the functions to D. We
assume each lifting is in C1pDq.

Let ∇Γ and divΓ be respectively the tangential gradient and tangential divergence operators.
They are defined as follows:

∇Γg “∇g̃ ´ p∇g̃ ¨ nqn, divΓW “ divW̃ ´ pp∇W̃qnq ¨ n (3.21)

where n, the outward unit normal to the surface Γ. Let H be the mean curvature of Γ, it is defined
by: H “ divΓ n.

Theorem 3.7. Let Q Ă R2 be a regular domain, PpQq, the perimeter function defined above and θ
a perturbation of Q.

Then the shape derivative of the perimeter function writes :

P 1pQqpθq “
ż

BQ
Hpθ ¨ nq dS (3.22)

where H is the mean curvature of BQ.

Proof : Note T “ Id` θ the deformation of the domain.

PpT pQqq “
ż

BT pQq
1 dŜ

According to [5] in Chapter 5, the change of variables introduced by T yields :

PpT pQqq “
ż

BQ
|det pdT q|||pdT q´Tn|| dS

From T “ Id` θ comes the following Taylor expansions :

det pdT q “ det pI`∇θq “ 1`∇ ¨ θ ` opθq

pdT q´Tn “ n´ p∇θqTn` opθq

||pdT q´Tn|| “ ||n´ p∇θqTn|| “ n ¨ n
loomoon

“1

´pp∇θqTnq ¨ n` opθq

Hence the Taylor expansion of the perimeter function :
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PppId` θqQq “
ż

BQ
p1`∇ ¨ θ ` opθqqp1´ pp∇θqnq ¨ n` opθqqdS

“ PpQq `
ż

BQ
p∇ ¨ θ ´ pp∇θqnq ¨ nqdS ` opθq

“ PpQq `
ż

BQ
divΓ θ dS ` opθq

Let us the tangential component θΓ “ θ ´ pθ ¨ nqn of the field θ. By using the vector calculus
identity divΓ pgWq “ g divΓ W `∇Γg ¨W, it yields:

ż

BQ
divΓ θ dS “

ż

BQ
divΓpθΓ ` pθ ¨ nqnqdS

“

ż

BQ
rdivΓθΓ ` pθ ¨ nqdivΓn` n ¨∇Γpθ ¨ nqsdS

“

ż

BQ
rdivΓθΓ ` pθ ¨ nqdivΓnsdS

The last line comes from the definition of the tangential gradient ∇Γ. Using Lemma 5.4.10 from [5]
leads to the formula.

Note that to compute numerically the mean curvature H, the normal n is calculated using the
gradient of the distance function.

dBQpxq “

#

dpx, BQq, x P Q
´dpx, BQq, x P Qc

Before taking the divergence to compute the mean curvature, we need first to regularize the lifting
of the normal n due to the possibly irregular shape surface. To that matter we solve the following
regularization equation:

#

´β∆N`N “ n in D

N “ 0 on BD
(3.23)

3.2 Recovery of the asymptotic model interface parameters

We consider in this section that the deposit shape Ωd is fixed. As ft and fd play a similar role in the
model, we present here optimization with respect to one function, say ft, the other thickness fd is
fixed, so that the cost function J solely depends on the function ft.

Note that in the following, we write Eθ as E, for reading purposes.

Consider the interior tube wall Γt1, discretized by N1 points. ft is discretized on these points, a
linear interpolation is used to evaluate the function on any point of the boundary. This transform
the problem to an optimization problem with respect to a vector unknown, the different components
being the value of ft on each discretization point.

Note h a perturbation of ft and E1pftqphq, the derivative of E with respect to ft defined by:

Epft ` hq “ Epftq ` E
1pftqphq ` ophq, where limhÑ0

||ophq||

||h||L2pΓt1q
“ 0

Using that definition, the thickness derivative of the cost function writes:

J 1pftqphq “
Ns
ÿ

i“1

ż zmax

zmin

2<
´

pZiq1phqpZipft; ζq ´ Zimeaspζqq
¯
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Similarly to the previous subsection, for a given signal Z “ Zi, i “ 1 . . . Ns, the thickness derivative
Z 1phq of the impedance writes:

∆Z 1phq “
2π

iωI2

ż

Ωd

ˆˆ

1

µ
´

1

µ0

˙

1

r
∇prE1phqq ¨∇prE0q ´ iωpσ ´ σ0qrE1phqE0

˙

dr dz

´
2π

iωI2

ż

Γt1

iωpσt ´ σvqftrt1E
1phqE0 dz `

2π

iωI2

ż

Γt2

iωpσd ´ σvqftrt2E
1phqE0 dz

`
2π

iωI2

ż

BΩp

ˆ

´
1

µp

1

δ

ˆ

´

?
2

2
` i

?
2

2

˙

E0 `
1

µ0

1

r

BprE0q

Bn

˙

prE1phqqds

´
2π

iωI2

ż

Γt1

iωpσt ´ σvqhrt1EE
0 dz

That expression is not satisfying as it is partly implicit with respect to h, which makes the
computation of the descent direction h costly. To remove that issue, we use once again the adjoint
problem introduced previously in (3.8) and p the adjoint state.

Proposition 3.8. Let p be the adjoint state satisfying the adjoint problem (3.8), then the thickness
derivative of the impedance ∆Z has the following expression:

∆Z 1phq “ ´
2π

iωI2

ż

Γt1

hσtiωrt1E
`

p` E0
˘

dz (3.24)

Proof : Consider the variational problem verified by E. Using the definition of the thickness deriva-
tive, E1phq verifies the following problem :

apE1phq, vq “ ´

ż

Γt1

iωhrt1Ev dz (3.25)

For v “ p in (3.25) and q “ E1phq in (3.8), we have :

´

ż

Γt1

iωhrt1Ep dz “ apE1phq, pq

“ a˚pp,E1phqq

“

ż

Ωd

ˆˆ

1

µ
´

1

µ0

˙

1

r
∇prE1phqq ¨∇prE0q ´ iωpσ ´ σ0qrE1phqE0

˙

dr dz

´

ż

Γt1

iωpσt ´ σvqftrt1E
1phqE0 dz `

ż

Γt2

iωpσd ´ σvqftrt2E
1phqE0 dz

`

ż

BΩp

ˆ

´
1

µp

1

δ

ˆ

´

?
2

2
` i

?
2

2

˙

E0 `
1

µ0

1

r

BprE0q

Bn

˙

prE1phqqds

Hence formula (3.24).

Z 1phq is a linear combination of ∆Z 1kl, therefore the shape derivative of the cost functional J can
be written as

J 1pftqphq “
Ns
ÿ

i“1

2π

ωI2

ż

Γt1

hgit dz

where the array of gradients gt is, according to the measuring mode

git “

#

pgitq11 ` git21 absolute mode

pgitq11 ´ git22 differential mode

with
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pgitqkl “ ´

ż zmax

zmin

<
!

pZipftq ´ Zimeaspζqq
`

iωσtrt1Ek
`

pl ` E
0
l

˘˘
ˇ

ˇ

ζ

)

dζ (3.26)

Note in particular that if one chooses a direction ht such that

ht “ ´γt

Ns
ÿ

i“1

git on Γt1,

it provides a descent direction for γt ą 0 sufficiently small.

For thin deposits parametrized by the thickness function fd, the reasoning is very similar to the
above. As such, we do not expand on it, we rather present the final results. Consider in the following
that ft and Ωd are fixed: the cost function J depends solely on fd. Let h be a perturbation of fd,
derivation with respect to fd leads to the following derivative of J :

J 1pfdqphq “
Ns
ÿ

i“1

2π

ωI2

ż

Γt2

hgid dz

where the array of gradients gd is, according to the measuring mode

gid “

#

pgidq11 ` pg
i
dq21 absolute mode

pgidq11 ´ pg
i
dq22 differential mode

with

pgidqkl “

ż zmax

zmin

<
!

pZipfd; ζq ´ Zimeaspζqq
`

iωσdrt2Ek
`

pl ` E
0
l

˘˘
ˇ

ˇ

ζ

)

dζ (3.27)

Note in particular that if one chooses a direction hd such that

hd “ ´γd

Ns
ÿ

i“1

gid on Γt2

it provides a descent direction for γd ą 0 sufficiently small.

Determination of the steps γt (and γt optimization with respect to ft) follows the same heuristic
than the time ∆t in the shape optimization algorithm. We introduce a maximum distance dt and dd
we allow the functions to move at each iteration: when a descent is accepted, γ “ d{maxz g. If a
descent is rejected, γ, g and f does not change and instead d is halved.

3.3 Reconstruction of the deposit conductivity and perme-
ability

The formation of deposits inside Steam Generators is a complex phenomenon, making the identifica-
tion of the physical properties of the material. As the Steam Generator is enclosed inside the reactor
building, taking samples is not possible. In most cases, for σd and µd intervals of value are given as
it is not possible to be more precise. However, the value given to σd and µd can significantly modify
the convergence of the algorithm. We propose here to consider a problem where Ωd, ft and fd are
fixed at the optimal solutions and we aim at reconstructing the physical properties of the deposit.
The optimization problem then becomes:

Find σ˚d and µ˚d solution of :

min
σd,µd

«

J pσd, µdq :“
Ns
ÿ

i“1

ˆ
ż z0

´z0

ˇ

ˇZipσd, µd; ζq ´ Zimespζq
ˇ

ˇ

2
dζ

˙

ff

(3.28)

Under the assumption that there are no plate or thin structure variation, we remind the variational
formulation satisfied by Eθ:
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@v P HpΩq :“
!

v : r1{2p1` r2q´λ{2v P L2pΩq, r´1{2∇prvq P L2pΩq
)

,
ż

Ω

ˆ

1

µ

1

r
∇prEθq ¨∇prvq ´ iωσrEθv

˙

dr dz “

ż

Ω

iωJrv dr dz
(3.29)

As for the impedance signal:

∆Zkl “
2π

iωI2

ż

Ωd

ˆˆ

1

µ
´

1

µ0

˙

1

r
∇prEθ,kq ¨∇prE0

θ,lq ´ iωpσ ´ σ
0qEθ,kE

0
θ,lr

˙

dr dz

We furthermore make the assumption that both µ and σ are constant inside the deposit.

3.3.1 Differentiation with respect to the conductivity

Consider a perturbation δσd of the conductivity : σd Ð σd ` δσd. That yields a perturbation of the
field, noted δEθ. We apply this to (3.29) :

ż

Ω

ˆ

1

µ

1

r
∇prpEθ ` δEθqq ¨∇prvq ´ iωpσ ` χΩdδσdqrpEθ ` δEθqv

˙

dr dz “

ż

Ω

iωJrv dr dz

where χΩd is the characteristic function of Ωd. At order 0 we find the variational formulation (3.29).
For the first order terms, we introduce BσEθ the derivative of Eθ with respect to σd such that :

BσEθ :“ lim
δσdÑ0

δEθ
δσd

This definition leads to the following equation as δσd tends to 0 :

ż

Ω

ˆ

1

µ

1

r
∇prBσEθq ¨∇prvq ´ iωσrBσEθv

˙

dr dz “

ż

Ωd

iωEθrv dr dz (3.30)

Using the definition of Bσ, we can then compute Bσp∆Zklq :

Bσp∆Zklq “
2π

iωI2

ż

Ωd

˜

ˆ

1

µ
´

1

µ0

˙ ∇prBσEθ,kq ¨∇prE0
θ,lq

r
´ iωrE0

θ,l

`

pσ ´ σ0qBσEθ,k ` Eθ,k
˘

¸

dr dz

(3.31)
Knowing the derivatives of Eθ and ∆Zkl with respect to σd, we are eventually able to compute the
derivative of the cost function J :

BσJ “
Ns
ÿ

i“1

ż zmax

zmin

2<
!

BσZipΩd; ζqpZipΩd; ζq ´ Zimeaspζqq
)

dζ (3.32)

To minimize the cost function with respect to σd, we use a descent gradient method based on the
derivative of the cost function J .

3.3.2 Differentiation with respect to the permeability

Similarly to the previous subsection, consider a perturbation δµd of the conductivity : µd Ð µd`δµd.
That yields a perturbation of the field, noted δEθ. We apply this to (3.29) :

ż

Ω

ˆ

1

µ` χdδµd

1

r
∇prpEθ ` δEθqq ¨∇prvq ´ iωσrpEθ ` δEθqv

˙

dr dz “

ż

Ω

iωJrv dr dz

where χΩd is the characteristic function of Ωd. At order 0 we find the variational formulation (3.29).
For the first order terms, we introduce BµEθ the derivative of Eθ with respect to µd such that :

BµEθ :“ lim
δµdÑ0

δEθ
δµd



3.3. Reconstruction of the deposit conductivity and permeability 77

This definition leads to the following equation as δσd tends to 0 :

ż

Ω

ˆ

1

µ

1

r
∇prBµEθq ¨∇prvq ´ iωσrBµEθv

˙

dr dz “

ż

Ωd

1

µ2r
∇prEθq ¨∇prvqdr dz

Using the definition of Bµ, we can then compute Bµp∆Zklq :

Bµp∆Zklq “
2π

iωI2

ż

Ωd

˜

ˆ

1

µ
´

1

µ0

˙ ∇prBµEθ,kq ¨∇prE0
θ,lq

r
´ iωpσ ´ σ0qrBµEθ,kE

0
θ,l

´
1

µ2r
∇prEθ,kq ¨∇prvq

˙

dr dz

Knowing the derivatives of Eθ and ∆Zkl with respect to µd, we are eventually able to compute the
derivative of the cost function J :

BµJ “
Ns
ÿ

i“0

ż zmax

zmin

2<
!

BµZipΩd; ζqpZipΩd; ζq ´ Zimeaspζq
)

dζ

To minimize the cost function with respect to µd, we use a descent gradient method based on the
derivative of the cost function J .
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Numerical implementation
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The objective of constructing a 2D axisymmetric model is to drastically reduce the cost of the
reconstruction algorithm by decreasing the degrees of freedom in the Finite Element method used to
compute the fields at each coil position. Prior to testing the algorithm, a lot of work has been done to
accelerate as much as possible the convergence of the algorithm. Different techniques were combined
to achieve such objective, for instance by using a formulation of the direct problem in terms of the
scattered field and by re-arranging the Finite Elements matrix assemblies to optimize the assembly
operations. Note that domain decomposition provides an additional tool to accelerate computations
at each iteration, though we do not expand on the matter here since the speedup provided by parallel
computing is quite low in the current axisymmetric configuration.

Most of the tests discussed in this chapter rely on synthetic data generated with a separate code
and different mesh than the one used for inversion. Note that none of the asymptotic models and
no impedance boundary conditions are used in the code that generates the data for the inverse
problem so that we avoid bias in using these models for inversion. Due to the strong assumption
on the configuration symmetry, few adequate industrial data is available for our inversion problem.
We conclude this chapter with a test case based on data provided by the nuclear plant operator:
it corresponds to data acquired on an experimental setting with no support plate, where the shape
deposit is known and is axisymmetric.

4.1 Algorithm optimization

On Figure 4.1 is given an outline of the algorithm derived in the previous chapter.

4.1.1 Formulation of the problem in terms of the scattered field

In Figure 4.1, the direct problem has to be solved for each coil position, the same goes for the adjoint
problem should the descent be accepted. Yet each position requires a mesh adapted to the coils
position. This requires first the storage of a great number of meshes, depending on the number
of coil positions. In addition, for each coil position the Finite Element matrices are re-assembled,
increasing the computational cost even more. To alleviate the cost of an iteration, we propose here
to solve the problem satisfied by the scattered field.
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input: 4N impedance measurements on a z interval (4 signals and 3 pulsations)
Incident field E0 for each pulsation, each coil at each coil position

1: Init: ψ0, f0
t “ 0 and f0

d “ 0
2: while J pψk, fkt , fkd q ą η do
3: Update the unknowns:

• Solve Hamilton-Jacobi for a time step ∆tk and a deformation speed νk: ψk`1

• Functions: fk`1
t “ fkt ´ γ

k
t g

k
t and fk`1

d “ fkd ´ γ
k
dg

k
d

4: Solve direct problem for each coil position, coil and pulsation
5: Compute Zpψk`1, fk`1

d , fk`1
t q and J pψk`1, fk`1

d , fk`1
t q

6: if J pψk`1, fk`1
t , fk`1

d q ă J pψk, fkt , fkd q then
7: Solve adjoint problem for each coil position, coil and pulsation
8: Compute the gradients gk`1

ψ , gk`1
d and gk`1

t

9: Solve regularization problem to compute the descent direction θk`1
ψ

10: else
11: Descent rejected: ψk`1 “ ψk, fk`1

t “ fkt , fk`1
d “ fkd

12: Decrease steps: ∆tk`1 “ ∆tk{2, γk`1
t “ γkt {2 and γk`1

d “ γkd {2
13: end if
14: end while

Figure 4.1: Reconstruction algorithm

Consider the incident field E0, associated with the physical parameters pσ0, µ0q. It corresponds to
a configuration where the straight tube is the sole conductive material (no deposit or support plate).
In presence of a support plate, deposit or a tube thickness variation, the incident field is scattered and
the scattered field is denoted Es as displayed on Figure 4.2. The direct field E of physical parameters
pσ, µq is then the superposition of the incident field and the scattered field.

Figure 4.2: Example of scattering in presence of a deposit

Consider the variational formulation satisfied by the incident field on the domain Ω where the plate
Ωp is removed:

ż

Ω

1

µ0r
∇prE0q ¨∇prv̄qdrdz ´

ż

Ω

iωσ0rE0v̄ drdz ´

ż

BΩp

1

µv

1

r

BprE0q

Bn
rv̄ dS “

ż

Ω

iωJrv̄ drdz

As for the direct field, we remind the variational formulation is the following:



4.1. Algorithm optimization 81

ż

Ω

ˆ

1

µ

1

r
∇prEq ¨∇prvq ´ iωσrEv

˙

dr dz ´

ż

BΩp

1

µp

1

δ

ˆ

´

?
2

2
` i

?
2

2

˙

rEv ds

´ iωσt

ż

Γt1

f`t pzqrEv dr ` iωσd

ż

Γt2

fdpzqrEv dr “ iω

ż

Ω

Jrv dr dz

In both variational formulations, the right-hand side depends on the current density J , supported
inside the coils. This is the term we want to get rid of as it requires to mesh the coil inside the
computational domain. Consider the scattered field Es defined by Es “ E ´E0. By subtracting the
two previous equations, we obtain the following variational formulation for the scattered field:

ż

Ω

ˆ

1

µ

1

r
∇prEsq ¨∇prvq ´ iωσrEsv

˙

dr dz ´

ż

BΩp

1

µp

1

δ

ˆ

´

?
2

2
` i

?
2

2

˙

rEsv ds

´ iωσt

ż

Γt1

f`t pzqrE
sv dr ` iωσd

ż

Γt2

fdpzqrE
sv dr

“ ´

ż

Ω

ˆˆ

1

µ
´

1

µ0

˙

1

r
∇prE0q ¨∇prvq ´ iωpσ ´ σ0qrE0v

˙

dr dz

`

ż

BΩp

ˆ

´
1

µv

1

r

BprE0q

Bn
`

1

µp

1

δ

ˆ

´

?
2

2
` i

?
2

2

˙

E0

˙

prvqdS

` iωσt

ż

Γt1

f`t pzqrE
0v dr ´ iωσd

ż

Γt2

fdpzqrE
0v dr

(4.1)

In (4.1) the right-hand side depends solely on the the incident state, that is to say the field E0

and the physical parameters pσ0, µ0q. The major advantage of this formulation is that it does not
depend on the coils anymore: there is no need to mesh them inside the computational domain. For
each Finite Element problem, we have to inject the proper incident field to compute the right-hand
side. In other words, no more re-meshing steps for each coil position at each iteration.
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Figure 4.3: Relative error ||E ´ Ẽ||L2pΩq{||E||L2pΩq for the total field, for each pulsation

It remains addressing the issue of computing the incident field for each coil position. To that
matter we make use of the incident configuration, displayed on Figure 4.2: for any coil position,
E0 can be seen as the translation of a generic solution for a given position at the proper hight z.
Therefore, the computation of the different right-hand sides in the scattering problem requires the
offline calculation of the incident field for a generic coil position and as many translations as the
number of positions.
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Once the scattered field is computed, the total field can be easily deduced by adding the incident
field to Es. This is the scattered approach we use in the reconstruction algorithm in order to reduce
the computational cost of one iteration.

2 3 4 5 6 7 8 9 10

Mesh size ×10
−4

0

0.5

1

1.5

2

2.5

3

3.5

R
e
la
t
iv
e
e
r
r
o
r

×10
−3

ZF1

ZF2

ZF3

ZFA

Figure 4.4: Relative error ||Z ´ Z̃||L2pr´z0,z0sq{||Z||L2pr´z0,z0sq for each impedance signal

In order to ensure the total field E reconstructed using the scattered field Es is close to the
solution noted E of (2.3), we propose to numerically study the evolution L2-error between E and
E with the mesh size h. The test case is the following: we consider a rectangular non-magnetic
deposit of thickness 0.015mm and height 0.01mm, centered at the origin. In the context of shape
reconstruction, we also investigate the error for the impedance signals Z and Z, the former using E
and the latter, E.

These plots show that the scattering approach is valid for any mesh size. Note that for a given
mesh size, the error increases with the pulsation (ω1 ą ω2 ą ω3) as for great values, the deposit is
barely seen by the coils (the skin depth is even smaller), which leads to a low signal more sensitive
to noise.

Ndof Time scattering Time no scattering

5000 12.1 s 195 s

15 000 53.7 s 868 s

35 000 117 s 2394 s

Table 4.1: Computational time of E with or without scattering approach for different mesh size

For each mesh size, we also compared the time to compute the total fields for each coil position
and each pulsation with both approaches. Such computational time corresponds to the time it takes
to generate the impedance signals, as such it is representative of the iteration time in the inverse
algorithm. In the test case considered, there are 41 coil positions, meaning there are 41ˆ 3 problems
to solve. Table 4.1 displays the different times: we observe that the scattering approach is more that
ten times faster than the total field approach. Given the effectiveness of the formulation, we use it
in the next tests.

4.1.2 Finite Element matrix assembly

The Finite Element method makes use of discretization of the domain Ω to approximate functions
in HpΩq by functions from a finite space Vh. The discretization consists of a triangulation of Ω: the
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triangles, of maximum size h, are the elements. Depending on the regularity of the continuous space,
different discretizations of the elements are possible. Here, we choose P2 elements to approximate
E P HpΩq: each element is discretized by 6 points called degrees of freedom, one on each vertex and
one on each edge center.

Let K be an element and pM i
Kqi“1...6 the degrees of freedom on an element K. The finite space

here is defined by:

Vh :“ tv P C0pΩq { @K, v|K P P2pKqu

where P2 is the set of polynoms of maximum degree 2. For an element K, let pϕiKqi“1...6 be the basis

functions defined by ϕiKpM
j
Kq “ δij , @i, j “ 1 . . . 6. For readability purposes, we re-write the basis

on the whole triangulation by pϕiqi“1...N , N being the number of degrees of freedom. A function
v P HpΩq is discretized on Vh as follows:

v “
N
ÿ

i“1

viϕi

Consider a generic variational formulation apu, vq “ lpvq, @v P HpΩq. To solve the equation
numerically, the function u and v are projected on to the discrete space Vh. Using the basis pϕqi,
the variational formulation becomes a linear system AU “ L, where Aij “ apϕj , ϕiq, Ui “ ui and
Li “ lpϕiq, @i, j “ 1 . . . N .

Figure 4.5: Flow chart of the reconstruction algorithm (in double boxes are the FE matrix assembly)

The assembly operation in a Finite Element method consists of computing the matrix A and the
right-hand side L. Depending on the size of the problem, in other word of the number of degrees of
freedom, that operation may have a great computational time. On Figure 4.5 is represented a flow
chart of the different steps of the algorithm that emphasizes on the different Finite Element matrices
assembled at each iteration, highlighted by double boxes.
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At each iteration, we re-assemble all the matrices for the direct problem defined in (4.1) and
the adjoint problem, provided the descent is accepted. As reminder, the bilinear form used in these
problem is, up to a transpose conjugate, is:

apu, vq : “

ż

Ω

ˆ

1

µ

1

r
∇pruq ¨∇prvq ´ iωσruv

˙

dr dz ´

ż

BΩp

1

µp

i
?
i

δ
ruv ds

´ iωσt

ż

Γt1

f`t pzqruv dr ` iωσd

ż

Γt2

fdpzqruv dr

“ a0pu, vq ` adpu, vq

where

a0pu, vq “

ż

Ω

ˆ

1

µ0

1

r
∇pruq ¨∇prvq ´ iωσ0ruv

˙

dr dz ´

ż

BΩp

1

µp

i
?
i

δ
ruv ds

adpu, vq “

ż

Ω

ˆˆ

1

µ
´

1

µ0

˙

1

r
∇pruq ¨∇prvq ´ iωpσ ´ σ0qruv

˙

dr dz

´ iωσt

ż

Γt1

f`t pzqruv dr ` iωσd

ż

Γt2

fdpzqruv dr

From one iteration to an other, Ωd changes: the values of σ and µ around the deposit shape
change, otherwise, the bilinear form remains the same. It can be represented by two bilinear forms:
a0pu, vq models the constant part of a, that does not change throughout the iterations, while adpu, vq
is the part of a that changes at each iteration. Note that 1{µ ´ 1{µ0 and σ ´ σ0 are supported
by the deposit. In summation, the bilinear form a0 can be assembled outside the gradient descent,
beforehand while ad is assembled at each iteration. The advantage of splitting the assembly of a like
this is that the number of degrees of freedom reassembled in ad is significantly lower than that of a0,
allowing a faster convergence.

Note that in our model, the deposit is implicitly defined by a level-set whose support is located in
the ROI D. As such, only the values of σ and µ on the degrees of freedom inside the ROI are modified.
This adds more degrees of freedom to re-assemble at each iteration but it remains advantageous as a
whole compared to the re-assembly of a.

The assembly of the linear form l can also be re-written as follows:

lpvq : “ ´

ż

Ω

ˆ

1

µ
´

1

µ0

˙

1

r
∇prE0q ¨∇prv̄qdrdz `

ż

Ω

iωpσ ´ σ0qrE0v dr dz

`

ż

BΩp

ˆ

´
1

µv

1

r

BprE0q

Bn
`

1

µp

i
?
i

δ
E0

˙

prvqds ` iωσt

ż

Γt1

f`t pzqrE
0v dr ´ iωσd

ż

Γt2

fdpzqrE
0v dr

“ aRHSpE
0, vq

where

aRHSpu, vq : “ ´

ż

Ω

ˆ

1

µ
´

1

µ0

˙

1

r
∇pruq ¨∇prv̄qdrdz `

ż

Ω

iωpσ ´ σ0qruv dr dz

`

ż

BΩp

ˆ

´
1

µv

1

r

Bpruq

Bn
`

1

µp

i
?
i

δ
u

˙

prvqds ` iωσt

ż

Γt1

f`t pzqruv dr ´ iωσd

ż

Γt2

fdpzqruv dr

After assembly of aRHS , the computation of the RHS is equivalent to a matrix-vector product
between the assembled bilinear form and the incident field E0. Instead of assembling l for each probe
position, we prefer assembling aRHS prior to the position loop and compute as many matrix-vector
operations as there are coil positions. Note that the support of l is located on the degrees of freedom
in the deposit, reducing even more the assembly cost.
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Figure 4.6: Organization diagram of the inversion algorithm

For the adjoint state p, as the bilinear form a˚ is the hermitian transpose of a, instead of assembling
a˚, we propose here to re-use a to compute p. As for the RHS, we follow the same reasoning we used
for E.

Finally for the impedance, we can rewrite it as:

∆Zkl “
2π

iωI2

ż

Ωd

ˆˆ

1

µ
´

1

µ0

˙

1

r
∇prEkq ¨∇prE0

l q ´ iωpσ ´ σ
0qEkE

0
l r

˙

dr dz

`
2π

iωI2

ż

BΩp

ˆ

´
1

µp

1

δ
i
?
iE0

l `
1

µ0

1

r

BprE0
l q

Bn

˙

prEkqds

´
2π

iωI2

ż

Γt1

iωpσt ´ σvqftEkE
0
l rt1 dz `

2π

iωI2

ż

Γt2

iωpσd ´ σvqfdEkE
0
l rt2 dz

“
2π

iωI2
aImppEk, E0

l q

where
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aImppu, vq “

ż

Ωd

ˆˆ

1

µ
´

1

µ0

˙

1

r
∇pruq ¨∇prvq ´ iωpσ ´ σ0quv0r

˙

dr dz

`

ż

BΩp

ˆ

´
1

µp

1

δ
i
?
iv `

1

µ0

1

r

Bprvq

Bn

˙

pruqds

´

ż

Γt1

iωpσt ´ σvqftuvrt1 dz `

ż

Γt2

iωpσd ´ σvqfduvrt2 dz

Similarly to what was done for the RHS assembly, to compute the impedance signal for a given
probe position, we prefer prior to the position loop assemble the matrix aImp and do for each coil

position the product E0
θ,l

t
AImpEθ,k.

Figure 4.6 displays the updated flow chart of the algorithm.

Ndof Time MV product Time no MV product

5000 6.91 s 12.1 s

15 000 27.9 s 53.7 s

35 000 61.7 s 117 s

Table 4.2: Computational time of E with or without assembly re-arrangement for different mesh size

The gain from this re-organisation of matrix assemblies is synthesized on Table 4.2. We used the
same test case than on Table 4.1: 41 coil positions, 3 frequencies and a deposit on the tube exterior.
We compare the time to compute the 41 ˆ 3 total fields, for each position and frequency with or
without re-arrangement for different numbers of degrees of freedom, which provides a good estimate
of the computational time of one inversion iteration. As expected, re-organizing the calculations
allows to halve the computational time. Note that when comparing fields and the impedance signals,
the error is null. In the next simulations, we consider this approach to assemble and solve the problem.

4.2 Numerical results

We discuss in this section some inversion tests in order to analyse the influence of the different pa-
rameters of the algorithm on the convergence. The data provided is of two types: synthetic data
generated using a different code or industrial data from the operator. Note that in order to remove
any bias from synthetic data, we shall not use neither the impedance boundary or the asymptotic
transmission conditions to model the support plate or thin materials. In this specific case they are
finely meshed in the computational domain.

The physical and geometrical properties are provided by the operator: the tube is non magnetic,
its permeability is µt “ µv and its conductivity is 0.97 ¨106 S ¨m´1. Note that µv refers to the vacuum
permeability. Due to the complex phenomenon responsible for the formation of deposits, it is quite
difficult to precisely assess the physical properties of deposits. For the following tests, we chose the
conductivity to be σd “ 1 ¨ 104 S ¨ m´1 and the permeability to be either µd “ µv or µd “ 2.5µv,
accordingly to the operator feedback.

We use here the SAX probe to detect deposits, in consequence three pulsations are available:
ω1 “ 2π 5 ¨ 105 rad ¨ s´1 ą ω2 “ 2π 2.4 ¨ 105 rad ¨ s´1 ą ω3 “ 2π 5 ¨ 105 rad ¨ s´1. There are four input
signals: three differential modes for each pulsation ZF1, ZF2 and ZF3 and one absolute mode ZFA
for ω3.

The scattered field problem (4.1) is solved using the Finite Element software FreeFEM (see [22]
for more information on the C++-based language). An unstructured mesh is used to describe the
computational domain Ω, while P2-Lagrange elements are used to solve the variational formulation.
The level-set function defined on a sub-domain called Region Of Interest (ROI) is modeled using P1
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elements on an unstructured triangulation of the ROI de-correlated from the computational mesh.
In general, the ROI mesh is finer than the other mesh in order to have a good precision on the shape.

(a) Computational mesh (b) ROI mesh

Figure 4.7: Different meshes used in the inversion algorithm

Figure 4.7 displays the two meshes mentioned above: on Figure 4.7a, the gray domain is the ROI,
while the blue one represents the tube. Each zone has a mesh size h of 10´3m while on Figure 4.7b,
the mesh size is 4 ¨ 10´4m.

4.2.1 Synthetic data

Note that if not mentioned, the deposit considered in the tests is non-magnetic: µd “ µv.

Initialization of the algorithm

In a gradient descent method, the choice of the initialization is crucial as it needs to be close enough
to the solution in order to ensure a fast convergence. However, in most cases there is little to no
information on the solution nature, therefore the initialization has to be as generic as possible to
tackle any solution. Considering the physical phenomenon responsible for the creation of deposits,
we can assume that the shape has to touch the exterior tube wall since water is flowing outside the
tube.

Figure 4.8 displays the different initializations considered for a target shape made out of a semi-
ellipse of radii 3mm and 6mm. For each test, we used 41 probe position to generate the data signals.
Here is a description of each initialization:

1. Initialization : semi-ellipse of radii 1.5mm and 3mm on the exterior tube wall.

2. Initialization : nine evenly spaced semi-circles of radius 1.33mm on the exterior tube wall.

3. Initialization : three lines of nine evenly spaced semi-circles of radius 1.33mm.

Figure 4.9 displays the optimal shape found by the algorithm for each initialization.

As the first two initializations converge towards the target shape, the third case is more interesting:
whereas the shape on the tube merge in the area where the target shape is located, the shapes floating
in the vacuum are barely distorted by the gradient. It can be explained due to the fact that the electric
field vanishes close to the tube due to skin depth phenomenon: outside a given area, the deposit has
little to no influence on the impedance signal, which is why the gradient barely changes theses shapes.
Moreover, experimentations on steam generators have proven that the expected deposits are glued to
the tube wall. Therefore the third initialization should not be considered as the optimal shape found
is not satisfying and it does not comply with the observations.
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(c) 27 disks

Figure 4.8: Initializations (in yellow) of the reconstruction algorithm. In red, the target shape.
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Figure 4.9: Optimal shape (in yellow) computed by the reconstruction algorithm for different
initializations. In red, the target shape.

If the target deposit has now more than one connected component, which initialization is the best
suited to reconstruct the shape? Figure 4.10 displays three different initializations for a target shape
made out of two semi-disks of radius 4mm. Note that for these tests, we take 61 probe positions to
generate the data signal. Below is the description of each initialization:

1. Initialization : one small semi-disk of radius 1mm on the exterior tube wall.

2. Initialization : one small semi-disk of radius 4mm on the exterior tube wall.

3. Initialization : nine evenly spaced semi-circles of radius 1.33mm on the exterior tube wall.

Figure 4.11 displays the optimal shape found by the algorithm for each initialization.
The first test shows that if the initialization is chosen poorly, here in an area where there is no

target deposit, the gradient makes the initial deposit disappear: should the deposit grow, the data
fitting would worsen, therefore the best option here is to make it disappear in order to decrease the
cost function and reach a local minimum which is no deposit at all.



4.2. Numerical results 89

Deposit

0.015 0.02

r position

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

z
p
o
si
ti
o
n

Target

(a) Small semi-disk

Deposit

0.015 0.02

r position

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

z
p
o
si
ti
o
n

Target

(b) Big semi-disk

Deposit

0.015 0.02

r position

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

z
p
o
si
ti
o
n

Target

(c) Nine semi-disks

Figure 4.10: Initializations (in yellow) of the reconstruction algorithm. In red, the target shape.

Deposit

0.015 0.02

r position

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

z
p
o
si
ti
o
n

Target

(a) Small semi-disk (7
iterations)

Deposit

0.015 0.02

r position

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

z
p
o
si
ti
o
n

Target

(b) Big semi-disk (14
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Figure 4.11: Optimal shape (in yellow) computed by the reconstruction algorithm for different
initializations. In red, the target shape.

The second test shows that a bigger initialization removes that problem as it converges towards
the target. However, on Figure Figure 4.11 we see that the optimal deposit has still one connected
component. That is a consequence of the boundary conditions imposed on the gradient regularization
equation : the deposit cannot penetrate the tube, therefore the r-component of the gradient has to
be equal to zero on the tube wall. This condition imposes that component to decrease to zero close
to the tube, which explains the thin layer of deposit between the two target shapes. Close to the
tube, the gradient can only stretch the deposit.

In conclusion, in order to cope with multiple connected components and to remain as general as
possible (since we know nothing about the shape behind industrial signals), initializing the algorithm
with nine semi-disks evenly spaced gives a good trade-off between fast convergence and reconstruction
of the shape.
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Magnetic deposit

We look here briefly at the reconstruction of a magnetic deposit (µd ‰ µv). According to the data
provided by the operator, we fix µd “ 2.5µv. We consider the two tests defined by Figure 4.8b and
Figure 4.10c: nine semi-disks on the tube wall where the target shape is either one or two semi-ellipses.
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Figure 4.12: Optimal shape (in yellow) computed by the reconstruction algorithm for target shapes
(in red).

Comparing Figure 4.15 to previous convergence results seems to imply that the introduction of a
magnetic deposit changes the optimal solution. A reason behind this difference may be in the gradient
computation that involves to calculate the gradient on the deposit surface. It may introduce some
instabilities leading to a different convergence result. Additionally, by increasing the permeability,
the skin depth δ “ 1{

?
ωσµ decreases for each pulsation: thus the electromagnetic wave penetrates

a thiner layer of the deposit, making the reconstruction of thick deposits harder.

Gradient regularization

Let us focus here on the shape update at each iteration. In Section 3.1.2, we evidenced that over
the course of the optimization algorithm, the level-set function modeling the shape was evolving
accordingly to the Hamilton-Jacobi equation (3.18). Updating the shape was then equivalent to
convecting the function for a chosen time step ∆t. The deformation speed V of the shape is derived
from the descent direction θψ of the cost function. However that information is localized on the
shape boundary BΩd while it is required to determine V on the whole domain D in order to convect
the shape. We chose to extend the information by solving the following regularization equation:

´α∆Ṽ ` Ṽ “ θψ δBΩd

Note that we choose here to impose on the following boundary conditions: we choose impose
Dirichlet on BD except on the tube wall interface where Ṽ ¨ er satisfies a Dirichlet condition while
Ṽ ¨ez satisfies a Neumann condition. The idea is to prevent the deposit from penetrating inside tube
as it is physically impossible.

The parameter α in the regularization equation is the regularization parameter we want to analyse.
It needs to be small enough so that the regularized gradient is not too different from its actual value
on the boundary and big enough to ensure regularity. We propose here to investigate its influence
of the convergence of the algorithm through a test case. We consider the initialization and test case
defined on Figure 4.8b and run the algorithm for three different values of α, 0.5, 5 ¨ 10´4 and 5 ¨ 10´7.

Figure 4.13 displays the optimal shape found by the reconstruction algorithm. Note that for
all tests, the residual cost function is very similar, meaning all convergences are satisfying. The
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difference appears when looking at the optimal solution aspect. For a value of order 1, the optimal
shape displays some oscillations at its boundary that does not appear for a smaller value. For α ! 1,
the gradient is little regularized which allows the algorithm to make high frequencies in the shape
disappear. Conversely, for a value of order 1, the regularization prevents the gradient from dealing
with high frequencies. In conclusion, for the next cases we take α “ 5 ¨ 10´7.
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Figure 4.13: Optimal shape (in yellow) computed by the reconstruction algorithm for values of α.
In red, the shape to reconstruct.

Robustness of the method to uncertainties in the data

In the previous tests, the input data is a synthetic signal generated on an ideal given configuration.
Such signals are properly inverted to quickly recover the exact deposit shape. How does the conver-
gence evolve when we perturb the entry signal with noise? Does it remain robust to noise? The final
aim being the inversion of industrial signals, the introduction of noise is important in order to deal
with imprecision in data acquisition.

Uncertainties on the data may come from different points in the detection process, We consider
here three different noise sources, representing different uncertainties that might be faced in industrial
signals:

• Uncertainty in the coil position: during the detection process, the coils are being pulled along-
side the tube at a constant speed. At regular heights z, an impedance measurement is made.
Due to a variation of the speed, a slight imprecision on the coils position appears.

• Uncertainty in the impedance signal, which corresponds to noise in the signal.

• Uncertainty in the tube thickness: as explained before, slight variation in the tube thickness
produces a perturbation of the signal. In order to asses the pertinence of reconstructing the
thickness in the optimization algorithm, we want to study its impact on the convergence when
seen as noise.

• Uncertainty in the physical parameters pσd, µdq of the deposit: due to the complexity of the
formation of deposits, proper determination of the conductivity and permeability is almost
impossible. At best bounds are provided. This point motivates the work on the inversion of
the physical parameters.

To test the robustness of the algorithm with respect to each noise source, we propose the follow-
ing test case: the shape to reconstruct is a semi-ellipse semi-ellipse of radii 3mm and 6mm and the
initialization, nine semi-disks, corresponding to Figure 4.8b.
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Let us start with uncertainty on the physical parameters pσd, µdq. Let us consider the deposit
to reconstruct is such that σd “ 1 ¨ 104 S ¨m´1 and µd “ 2.8µv. To understand the effect of each
parameter on the impedance signal, on Figure 4.14 are displayed the impedance signals for the deposit
defined above, with µ̃d “ δµd and σ̃d “ δσd, where δ P t0.5, 0.75, 0.9, 0.95, 1, 1.05, 1.1, 1.25, 1.5u.
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(a) µ̃d “ δµd, with δ ď 1
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(b) µ̃d “ δµd, with δ ě 1
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(c) σ̃d “ δσd, with δ ď 1
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(d) σ̃d “ δσd, with δ ě 1

Figure 4.14: Evolution of the impedance signal ZF3 for µ and ZFA for σ with σ and µ for a fixed
deposit shape. 31 probe positions.

From the plots, it appears that µ and σ play a predominant role in the shape of the impedance
signal. Small variations of their value can greatly modify the signal. Note that, though it is not
shown here, sensitivity with respect to the conductivity is quite low on differential modes, but is
quite visible on absolute modes. On the contrary, the influence of µ is acute no matter the nature of
the signal.
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Figure 4.15: Optimal solution with a target shape of permeability µ̃d “ δµd.
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Let us now try to reconstruct the shape with physical parameters σ̃d and µ̃d for δ ď 1, while
assuming in the algorithm the deposit has the ideal physical parameters σd and µd.
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(d) δ “ 0.5

Figure 4.16: Data fitting for ZF3 with a target shape of permeability µ̃d “ δµd.

The convergence plots on Figure 4.15 and Figure 4.17 remain quite satisfying even for a difference
of 25% in the physical parameters: the target shape remains on the whole well reconstructed, even
though the fitting worsens. Results for δ “ 0.5 shows that a bad determination can prevent the
algorithm from converging to the target: this motivates the work in Section 2.3 on the reconstruction
of σd and µd.

To model the noise on the coil positions or the impedance signal, we introduce a noise level ν
varying from 1% to 20% and a uniform law X on the interval r´1, 1s and apply 1` νX to either the
position or the impedance. For the tube thickness, we considered a sinusoid tube thickness variation
of maximum amplitude 5µm.
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(c) δ “ 0.75
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(d) δ “ 0.5

Figure 4.17: Optimal solution with a target shape of conductivity σ̃d “ δσd.

-0.015 -0.01 -0.005 0 0.005 0.01 0.015

Coil z position

-0.3

-0.2

-0.1

0

R
ea
l
p
a
rt

Impedance FA

Target

Current impedance

-0.015 -0.01 -0.005 0 0.005 0.01 0.015

Coil z position

-0.1

0

0.1

0.2

0.3

Im
a
g
in
a
ry

p
a
rt
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-0.015 -0.01 -0.005 0 0.005 0.01 0.015

Coil z position

-0.3

-0.2

-0.1

0

R
ea
l
p
a
rt

Impedance FA

Target

Current impedance

-0.015 -0.01 -0.005 0 0.005 0.01 0.015

Coil z position

-0.1

0

0.1

0.2

0.3

Im
a
g
in
a
ry

p
a
rt

(c) δ “ 0.75
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Figure 4.18: Data fitting for ZFA with a target shape of conductivity σ̃d “ δσd.

For the coil position on Figure 4.19 and impedance noise on Figure 4.21, we observe that in each
noise level, the reconstruction is satisfying, meaning our algorithm is robust to noise. When looking
at the data fitting on Figure 4.20 and on Figure 4.22, it appears that the reconstructed signal remains
smooth compared to the data signal: it is not able to fit high frequencies in the signal.

For the tube thickness, when comparing the data signal to the signal in the previous simulations
on Figure 4.23, it appears that it has a non trivial impact on the general aspect. As a consequence,
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Figure 4.19: Optimal solution with different noise level in the coil position.
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Figure 4.20: Data fitting for ZF3 with different noise level in the coil position.

the algorithm does not successfully converge to the target shape. This proves the necessity of recon-
structing the tube thickness as well as the shape in the algorithm in order to converge properly.
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Figure 4.21: Optimal solution with different noise level in the impedance signal.

-0.05 0 0.05

Coil z position

-0.01

0

0.01

R
ea
l
p
a
rt

Impedance F3

Target

Current impedance

-0.05 0 0.05

Coil z position

-0.02

0

0.02

Im
a
g
in
a
ry

p
a
rt

Target

Current impedance

(a) Noise level 1%

-0.05 0 0.05

Coil z position

-0.01

0

0.01

R
ea
l
p
a
rt

Impedance F3

Target

Current impedance

-0.05 0 0.05

Coil z position

-0.02

0

0.02

Im
a
g
in
a
ry

p
a
rt

Target

Current impedance

(b) Noise level 5%

-0.05 0 0.05

Coil z position

-0.01

0

0.01

R
ea
l
p
a
rt

Impedance F3

Target

Current impedance

-0.05 0 0.05

Coil z position

-0.02

0

0.02

Im
a
g
in
a
ry

p
a
rt

Target

Current impedance

(c) Noise level 10%

-0.05 0 0.05

Coil z position

-0.01

0

0.01

0.02

R
ea
l
p
a
rt

Impedance F3

Target

Current impedance

-0.05 0 0.05

Coil z position

-0.02

0

0.02

Im
a
g
in
a
ry

p
a
rt

Target

Current impedance

(d) Noise level 20%

Figure 4.22: Data fitting for ZF3 with different noise level in the impedance signal.

Initialization of the algorithm in presence of a support plate

Considering the generic initialization we chose at the beginning, what changes brings the presence
of a plate? To investigate the influence of a plate in the choice of the initialization, we considered
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(b) Data fitting for ZF3

Figure 4.23: Optimal solution and data fitting for a test case with an elliptic tube variation of
maximum thickness 5µm.
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(b) Initialization on
the support plate
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Figure 4.24: Different initializations (in yellow) of the reconstruction algorithm. In red, the shape
to reconstruct and in green, the plate boundary.

three test cases displayed on Figure 4.24, where the target shape is made out of a semi-ellipse of radii
3mm and 6mm on the tube wall. Note that for these simulations, 81 probe positions were used to
generate the data signals. The three initializations are the following:

1. Initialization: nine evenly spaced semi-circles of radius 1.33mm on the tube wall.

2. Initialization: five evenly spaced semi-circles of radius 1.33mm on the tube wall.

3. Initialization: a combination of the first two initializations

Figure 4.25 shows the optimal shape found by the algorithm for each initialization. Whereas the
first initialization converges towards the target, the last initialization demonstrates that the deposits
on the support plate have a far smaller impedance signature than the deposits on the tube wall. This
is a consequence of the vanishing of the field inside a conductive material (here the deposit), which
explains the optimal solution found by the algorithm: the signal can be explained using only the
deposits on the tube wall, those on the support plate induce insignificant perturbation.

The second initialization corroborates that observation: in order to explain the signal created by
a deposit on the tube wall, the deposit on the support plate needs to expand until it reaches the tube
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Figure 4.25: Optimal shape (in yellow) computed by the reconstruction algorithm for different
initializations. In red, the shape to reconstruct.

wall. Note that because we impose the r-component of the gradient null on the tube and the plate,
the deposit can neither leave the plate nor glue the tube.
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Figure 4.26: Optimal shape (in yellow) computed by the reconstruction algorithm with or without
perimeter penalization. In red, the shape to reconstruct.

Figure 4.25a underlines the interest of adding a perimeter penalization to the shape optimization
problem: in this test case, the residual cost function is quite low, meaning the data fitting is satisfying.
However, the optimal shape is not exactly what was anticipated. The target shape is supposed to be
a semi-ellipse and yet the optimal shape is not simply connected even though it fits the target area.
These differences are due to the ill-conditionned inverse problem: several different optimal shapes
can fit with same precision the data.

If the objective is to reconstruct with great precision the target shape, adding constraints to the
problem helps discriminating optimal shapes like that of Figure 4.25a. For instance, we offer here to
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add a constraint on the shape perimeter: it has to be the smallest. To see the effects of perimeter
penalization on the convergence, let us start from the initialization defined on Figure 4.24a and add
in the algorithm the penalization. As the parameter λ that links the cost function and the perimeter
function is defined empirically, we pick λ “ 10 for this test case.

Figure 4.26 displays on the left the previous result, without penalization and on the right, the
result with penalization. When controlling the perimeter, the optimal shape is smoothed so that its
perimeter is smaller than the previous result. In terms of data fitting, both approach leads to the
same level of precision as expressed by Figure 4.27a and Figure 4.27b. The main inconvenience of our
approach is that it increases the number of iterations required to reach a given level of convergence.
Both algorithms converged to an optimum. With the penalization, to reach the same cost level than
without it more iterations are required, as one can expect (cf Figure 4.27a and 4.27b). The resulting
tradeoff is a better shape at the end.
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(b) With perimeter penalization (19 iterations)

Figure 4.27: Evolution of J pΩdq with/without perimeter penalization

In addition to smoothing the optimal shape, the perimeter penalization is also a mean to reduce
the variability of the optimization problem. For completely different initializations, the constraint
leads to optimal shapes that are less different. To illustrate this phenomenon, we considered the
initialization defined on Figure 4.8c, with three rows of nine circles. Figure 4.28 displays on the
left the result presented before and on the right the result obtained with perimeter penalization.
The constraint forces the algorithm to converge towards a solution with the lowest perimeter, hence
suppressing the small circles.

Inversion with tube thickness variation

In the previous tests we have tested simple configurations where the only unknown was the deposit
shape. The introduction of a support plate has introduced some complexity. Here, we add a new
level of complexity by adding a new unknown to the algorithm: the tube thickness variation ft.
Optimization with respect to ft is much simpler than shape optimization and we do not elaborate
more on the initialization choice, we choose the null function.

We want to investigate the behavior of the algorithm when there are two unknowns available to fit
the data entry: does it successfully reconstruct both ft and Ωd? Is the optimal solution less satisfying
than the optimization with one unknown? We consider the test case defined by Figure 4.24a : the
target configuration is an elliptic deposit on the tube wall and the shape initialization is composed
of nine semi-disks. We add to this configuration a sinusoid tube thickness variation, of maximum
thickness 25µm.

As the objective here is to investigate the influence of ft on the data reconstruction, we assume
here that the function has its support located on an area defined by the support plate height. In
consequence, we can add this constraint to the optimization problem: ff pzq “ 0,@z P rz1, z2s, where
z2 “ ´z1 “ 0.020m. Numerically, that constraint is taken into account using a projected gradient
method. Figure 4.29 and Figure 4.30 present the optimal results. In each case, the reconstruction is
quite satisfying. Note that for the optimal thickness function, some high frequencies appear around
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Figure 4.28: Optimal shape (in yellow) computed by the reconstruction algorithm with or without
perimeter penalization. In red, the shape to reconstruct.

the sudden variations. To make it disappear, we would have to add constraints on the function
regularity.
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(a) Shape initialization
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Figure 4.29: Optimal solution (31 iterations) for a shape optimization problem with a tube
thickness variation.

Comparing the shape convergence in this configuration to the result for the same configuration,
without the thickness variation shows that the addition of a new unknown to the problem modifies
the convergence of the algorithm. Based on the satisfying reconstruction of both ft and Ωd, the
modifications remain minor.

Comparing this result to Figure 4.23 where the tube thickness variation was modeled as a pertur-
bation of the signal, the shape is much better reconstructed: adding the variation to the unknown
provides a more robust algorithm.
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(a) Tube thickness variation

Figure 4.30: Optimal solution (13 iterations) for a shape optimization problem with a tube
thickness variation.

Inversion with thin clogging deposits

Clogging deposits appear outside of the support plate area. Therefore, we consider the following test
case : the target configuration is an elliptic deposit on the tube wall, with two clogging deposits,
above and below the support plate, of constant thickness 100µm.

Similarly to the tube thickness variation, we assumed that the clogging deposit could only form
in a given area : fdpzq “ 0,@z Ps ´ 8, z3s Y rz4,`8r, where z4 “ ´z3 “ 0.010m. We add to that
a second constraint, as the thickness function can not be positive (the deposit has to be outside the
tube wall. Compared to thin tube variation, the addition of thin clogging deposits does not seem to
alter significantly the reconstruction of the volumetric deposit.

4.2.2 Industrial data on mock-up configurations

After testing the algorithm on synthetic data, we want now to invert industrial data provided by
EDF. Due to the hypotheses we made in order to build the 2D-axisymmetric model, we have little
data available, as either the deposit or the support plate are non axisymmetric. In consequence, the
signal to invert comes from the mock-up situation represented on Figure 4.32.

The test case is the following: on a conductive mock-up tube, five annular deposits of known
dimensions are located on its exterior wall (0.1mm, 0.2mm, 0.3mm, 0.5mm and 1mm of thickness,
28mm in length). There are no support plates and the tube wall is supposed to be straight. Note
that there are only guesses of the physical properties of the deposits (µ, σ).

In the detection process, after the tube with the deposits is placed a standard tube with known
defaults. During data acquisition, the probe goes through both the mock-up tube and the standard
tube. This configuration allows the operator to calibrate the signal for post-processing purposes.
The transformation applied to the resulting signal is of the form κeiϕ. That leads to the signal on
Figure 4.33.

As the signal provided has been post-processed, we first need to apply the reverse transformation
before inverting the signal (normalisation step). Using the standard tube dimensions, we are able to
simulate the resulting impedances. By comparing the simulated impedances to the standard tube
data, we obtain the transformation κeiφ to apply to the signal in order to re-normalize the data. We
then extract the signal part corresponding to the mock-up tube. That leads to the signal on Figure
4.34.

Once the data renormalized, we need to reconstruct the physical properties (µ, σ): due to the
impossibility to extract a sample deposit from the tube in order to analyse it, no precise value of the
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(c) Thin clogging deposit thickness

Figure 4.31: Optimal solution (12 iterations) for a shape optimization problem with thin clogging
deposits

Figure 4.32: Configuration of the mock-up. Source : EDF.

parameters is available. As they each have a non trivial influence on the impedance signal, we propose
before inverting the shape to artificially reconstruct µ and σ. To that matter, the reconstruction
algorithm defined in Section 3.3 is computed for a fixed shape, as we know the deposit shape. To
reduce the computational time, we use here the signal corresponding to the 1mm-thickness deposit.

Figure 4.35 displays the fitting plots obtained for the optimal physical parameters. Imprecisions
on the shape (non constant thickness, wrong length, ...) and presence of noise during the measure-
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Figure 4.33: ZF3 signal of the above mock-up configuration. Source : EDF.
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Figure 4.34: ZF3 signal of the deposits after normalisation. Source : EDF.

ments can explain why the data fitting can not be better than this. Conversely, this gives us a good
infimum for the fitting error in the shape reconstruction algorithm. Here, the optimal values are
equal to σd “ 225.63S ¨m´1 and µd “ 2.47899µv. Once σ and µ are retrieved, we move on to shape
optimization.

As for the shape reconstruction algorithm, a consideration needs to be made beforehand: the
deposits in the signal have a length that is at least 10 times greater than their thickness. Due to
the boundary condition we impose on the shape gradient regularization, the reconstruction of the
thinest deposits is rather complex: it would require to mesh the region of interest of the deposit
with extremely small elements so that the thickness can be properly reconstructed, but also for the
gradient to be non zero in order to actually converge. As such, in the results after, we consider the
biggest deposit, of thickness 1mm.

The next idea would be to use the asymptotic model for thin deposits to reconstruct the thick-
nesses lower than the millimeter, however that requires new calculations as we assumed in that model
µ to be that of the vacuum. Therefore, we focus in the following on the reconstruction of the deposits
of thickness 1mm. This means the signal considered here is the rightmost on Figure 4.33. It is made
out of 141 coil positions.

On Figure 4.36 are the optimal shapes found by the algorithm with or without perimeter penal-
ization, because we observed that without penalization, even though the data fitting was satisfying,
the optimal shape barely moved in the course of the iterations. What has been said above still holds
true: due to the thin layer of deposit and the gradient regularization, the algorithm can only move
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Figure 4.35: Data fitting for the impedance signals for the optimal µ and σ (16 iterations).

the shapes in the area of the target shape, but it can hardly reduce their thickness.
On the contrary, by adding perimeter penalization, we are able to actually merge the different

shapes from the initialization. Once again, adding the constraint increases the number of iterations
but neither the optimal cost function or the data fitting as it can be seen on Figure 4.37. On
Figure 4.38 is the resulting data fitting for the optimal shape with perimeter penalization.
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Figure 4.36: Optimal solutions with or without perimeter penalization for the inversion of industrial
signals
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Figure 4.37: Evolution of the cost function with or without perimeter penalization for the inversion
of industrial signals
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Figure 4.38: Data fitting for the impedance signals for the shape optimization problem with
perimeter penalization (24 iterations).



Conclusion

In this part, we developed a robust deposit reconstruction algorithm in a simplified axisymmetric
configuration using an inverse approach coupled to a Level-Set model of the deposit.

Computation of a signal for a given medium requires the elaboration of the elaboration of an
appropriate model and an adequate Finite Element solution. Our work is based on [69]: from the
model defined in the paper, we add new elements in order to model more complex configurations:
support plates for plugging deposits detection, thin clogging deposits alongside the tube or thin tube
thickness variation. The final objective being a real-time inversion of the data, we made modeling
choices which allow to efficiently incorporate these elements in the model: by replacing the plate
with an impedance boundary condition, or the thin structures by transmission conditions on the
proper interfaces. We numerically ensured the precision of these conditions to guarantee a satisfying
reconstruction algorithm. Note that the asymptotic model derived for plugging deposits does not take
into account a variation in µ. Additional calculations are required to model a contrast in the material
permeability. In the 3D, we do not tackle asymptotic transmission conditions for thin materials, we
refer to [62] for the derivation of 3D asymptotic models for thin deposits with high conductivities.

The inversion algorithm is formulated as an optimization problem where the unknowns are: the
shape Ωd, the tube variation thickness ft and the thin deposit thickness fd. We use a gradient de-
scent method simultaneously on each unknown. An interesting point not discussed here would be
the acceleration of the gradient descent method for shape optimization. One may consider the use
of Nesterov methods [34] as they are proven to be effectively accelerate first-order, gradient-based
methods when second-order optimization strategies are impractical. The main issue with Nesterov
approach is that it requires the combination of precedent iterations of the shape. The optimization
problem is subject to the 2D axisymmetric equations which play the role of constraints. As such, the
computation of a descent direction requires the introduction of an additional Finite Element problem,
the adjoint problem. The introduction of a level-set function to model the deposit provides a fast
solution to the shape update compared to the boundary variation method developed in [69].

The different numerical tests emphasize the importance of the initialization in a gradient descent
method as it can drastically modify the convergence of the algorithm. It also highlights the ill-
posedness of the inverse problem as multiple solutions are possible for a given level of convergence.
In order to reduce the problem variability, constraints may be added to the optimization problem:
we implemented here perimeter penalization which provides a good filter. Reconstruction of the
thickness functions is efficient though additional constraints may be added to better the optimal
solution, one may think of total variation methods developed by [4] used in image denoising. General
reconstruction of all the unknowns is a more difficult problem as the same data may be explained by
different sets of optimal solutions.

As a whole the algorithm converges quickly, in average in less than 20 iterations, which is faster
than expected. In addition to fast convergence, the optimal solutions as well as the final data fitting
are quite satisfying. The algorithm also proves to be quite robust to noise variation in the coil position
or in the signal. This is also verified by inverting industrial data that is less smooth than synthetic
data.
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Part II

Shape Reconstruction of 3D
deposits
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Introduction

In Part 1 we designed a reconstruction algorithm for a specific setting, where the geometries were
assumed to be axisymmetric. By taking advantage of the fast inversion of data due to the small size
of the direct problem, we were able to analyse the sensitivity of the method to different parameters.
We expect the results of this analysis to hold true for the 3D algorithm. Though the 2D-axisymmetric
algorithm provides a satisfying reconstruction of axisymmetric deposits with the SAX probe, we can
not expect to be able to use it in the context of the reconstruction of plugging deposits between
the tube and the support plate. Whether it be the quatrofoil holes in the support plate, or a non-
axisymmetric deposit, we need to develop a 3D reconstruction algorithm. A 3D model also gives
us the opportunity to study the SMX probe that was not used in Part 1 as it provides different
information on the azimuthal component.

On the subject of 3D inversion, previous work was conducted in [29] and [37]. Similarly to 2D
considerations, the approach in these papers is to mesh the deposit inside the computational domain
and move the boundary at each iteration accordingly to a deformation speed. We propose here to
model the shape using level-set functions in order to remove a re-meshing step each time the shape
boundary evolves and to offer more flexibility to tackle two shapes merging or splitting. Examples of
3D shape optimization are numerous in the literature, for electromagnetic scattering, image process-
ing, optical tomography or two-phases flows, etc [56, 48, 45]. Many challenges need to be addressed
in the design of the algorithm: by moving on to 3D, the size of the problem is bound to greatly
increase, making the numerical resolution of the governing equations costlier. The propagation of
time-harmonic electromagnetic waves in conductive material is complex phenomenon to model, as
discussed by [1] and explained in Chapter 1.

In the first chapter, we discuss the direct problem in which the domain configuration is fixed and
the electromagnetic fields are computed. To tackle the complexity of the propagation of electromag-
netic waves, we propose to model the eddy-current approximation of Maxwell equations using the
pA, VCq-formulation. Unlike the 2D axisymmetric model where the field was defined on the whole
domain, here the electric potential VC only exists on conductive materials, which raises some ad-
ditional difficulties as the two unknowns A and VC do not belong to the same function space and
domain. Numerical resolution of the resulting Finite Element problem can be quite costly depending
on the size of the problem: the final aim being the fast reconstruction of deposits, we need to find
solutions to speed up the resolution time. To that matter we introduce domain decomposition and
parallel computing in the model. However, depending on the probe considered, computation of the
impedance signals may require the resolution of a great number of Finite Element problems: this
motivates the investigation of block iterative solvers in order to solve the different systems. With the
use of level-set functions to implicitly define the deposit shape on a unstructured mesh, when interpo-
lated on the mesh, the shape boundary appears strongly irregular, leading to unwanted instabilities
due to sharp angles. These instabilities need to be removed as they may alter the computation of the
signal or the gradient inside the inversion algorithm. Different solutions are proposed to cope with
them: smoothing the conductivity σ around the shape boundary or smoothing the surface defined by
the level-set function. We also discuss the incorporation of support plates to the domain through the
use of Generalized Impedance Boudnary Conditions (GIBCs), more precisely a low approximation of
these conditions called Impedance Boundary Conditions. Calculations are based on the work of [44]
on the topic of impedance boundary conditions for highly conductive materials. Other examples of
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applications of the GIBCs can be found in [13, 3, 38]. Note that we do not tackle the question of
thin materials in this part. We refer to [39] or more recently at [62, 58, 57] for more information on
the derivation and use of Impedance Transmission Conditions (ITCs) to model thin interfaces..

In the second chapter, we focus on the inversion problem: given impedance measurements as
input data, the aim is to find the optimal shape that generated the data. As indicated earlier, we
take a geometrical approach to the shape optimization problem where the boundary is the unknown.
Compared to the boundary variation method developed in [29] and [37], we propose here to define
implicitly the shape using a level-set function. We then test the resulting algorithm on different
configurations. In the context of ECT inside Steam Generators, we focus on two probes, SAX
and SMX, for the detection of deposits, each type offering different information about the medium
configuration. We propose to study in this chapter the difference in the shape reconstruction between
the two probes.
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5.1 Model definition

Figure 5.1: Conductor ΩC and insulator ΩI domains

We review in this section some key results from the introductive chapter.
Consider a medium, delimited by a domain Ω, defined by its physical parameters pσ, µ, εq, re-

spectively the medium conductivity, permeability and permittivity. We assume in the following
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the parameters to be piecewise constant. While µ, ε ą 0, σ ě 0: as such we define the disjoint
sub-domains representing respectively the conductor, ΩC :“ tx P Ω {σpxq ą 0u and the insulator,
ΩI :“ tx P Ω {σpxq “ 0u. Let J be the current density. As J is an alternate current of pulsation ω,
after a transient state, the electromagnetic waves pE ,Hq induced have the same alternate behavior,
with the same pulsation ω. We denote in the following by pE,Hq the complex valued amplitude of
the fields.

Let Ωs be the probe, Ωt the tube thickness, Ωvi the vacuum inside the tube, Ωve the vacuum
outside the tube, and Ωd the deposit. The source J is supported by the probe while we assume
that Ωs has no conductivity. As such, ΩC “ Ωt Y Ωd and ΩI “ Ωs Y Ωvi Y Ωve. We denote by
pσv “ 0, µv, εvq, pσt, µt, εtq and pσd, µd, εdq, the physical parameters respectively inside the vacuum,
the tube and the deposit.

Due to the presence of conductive material in the medium, small surface currents Je, called eddy
currents, appear in the conductor. They follow Ohm’s law: Je “ σE. Careful observation of eddy
current phenomena led to the approximation:

σ " ωε

We assume in the following that the approximation holds true. Under this hypothesis, pE,Hq satisfy
the following equations:

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

∇ˆE´ iωµH “ 0 in Ω

∇ˆH´ σE “ J in Ω

∇ ¨ pεIEIq “ 0 in ΩI

Hˆ n “ 0 on BΩ

εIEI ¨ n “ 0 on BΩ

(5.1)

with the source term J verifying the compatibility equations:

#

∇ ¨ JI “ 0 in ΩI

JI ¨ n “ 0 on BΩ
(5.2)

where EI denotes E|ΩI and n denotes the outward normal on BΩ.

Compared to the 2D-axisymmetric problem, 3D configurations introduce more complex phenom-
ena, notably a different behavior in the insulator ΩI and the conductor ΩC , manifested by the two
differential constraints ∇ˆHI “ JI and ∇ ¨ pεIEIq “ 0.

The topological nature of ΩI and ΩC adds complexity to the model: in case of a non-simply
connected conductor, computation of the fields requires calculation of harmonic fields in each con-
nected components after introducing appropriate cuts. Likewise, in presence of cutting surfaces in
the insulator, additional harmonic fields need to be considered.

In the context of shape reconstruction, we expect over the course of the inversion algorithm to
modify the insulator and conductive domains, requiring a re-calculation of the harmonic fields at each
iteration. This is what motivates us to find a formulation that copes with the differential constraints
as well as the computation of harmonic fields. In the following we consider the pA, VCq-formulation
as defined in [1, Chapter 6].

Let us introduce the magnetic vector potential A and the electric scalar potential V , defined on
Ω, by:

µH “∇ˆA in Ω, EC “ iωAC `∇VC in ΩC

The configuration depicted in [1] corresponds to a conductor domain surrounded by the insulator.
Depending on the topological nature of the conductor domain ΩC , more calculations are required
to compute the electric field in ΩI from the potentials pA, V q. More precisely, the connectivity
of the interface Γ affects the relation E “ iωA `∇V in ΩI : should it be simply connected, the
relation holds true in the insulator. If not, based on the analysis from [1, Chapter 6], harmonic
vector fields associated to each component need to be computed. In our configuration however, ΩC is
simply connected and ΩI has two connected components: as such the interface Γ has two connected
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components as well. Resolution of the problem verified by the harmonic fields proves the functions
are null, hence in our case there are no harmonic functions to add to the problem. We refer to [1,
Appendix 4] for more details on the definition of the harmonic fields.

To close the problem, a gauge condition must be added to A. In this work, we consider the
Coulomb gauge ∇ ¨A “ 0 in Ω, with A ¨ n “ 0 on BΩ. Under these definitions, Maxwell equations
(5.1) can be rewritten in terms of potentials:

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

∇ˆ pµ´1∇ˆAq ´ µ´1
˚ ∇p∇ ¨Aq ´ σpiωAC `∇VCq “ J in Ω

∇ ¨ pσpiωAC `∇VCqq “ ´∇ ¨ J in ΩC

σpiωAC `∇VCq ¨ nC “ ´pJC ¨ nC ` JI ¨ nIq on Γ

A ¨ n “ 0 on BΩ

pµ´1∇ˆAq ˆ n “ 0 on BΩ

(5.3)

where Γ “ BΩI X BΩC , nI (resp. nC) refers to the normal on Γ going towards ΩC (resp. ΩI).
Solving problem (5.3) yields the magnetic potential A and the electric potential V inside the

conductor domain. In order to reconstruct the scalar potential on the whole domain, an additional
problem has to be solved:

$

’

&

’

%

∇ ¨ pεI∇VIq “ ´iω∇ ¨ pεIAIq in ΩI

VI “ VC on Γ

εI∇VI ¨ n “ ´iωεIAI ¨ n on BΩ

(5.4)

Note that the essential condition ∇ ¨A “ 0 is enforced inside the equations using a penalization
term, µ˚ being a suitable average of µ. It is proved in [1, Lemma 6.1] that a solution pA, VCq of (5.3)
satisfies ∇ ¨A “ 0 in Ω. Numerically speaking, the penalization term is handled more simply with
Finite Elements than the essential condition that requires the construction of locally divergence-free
elements. Equations (5.3)2 and (5.3)3 are compatibility equations due to the penalization of the
divergence.

In terms of regularity, A lives in the function space XpΩq “ Hpcurl; Ωq XH0pdiv; Ωq. As V is
defined up to a constant, its function space is H1pΩC Y ΩIq{C.

In the following computations, since the generation of impedance signals requires to know the
electric field E inside the conductor ΩC , we focus on calculating the potentials pA, VCq, with VC P
H1pΩCq{C. As such, from (5.3), we can derive a variational formulation. By multiplying (5.3)1 by a
test function Ψ P XpΩq and integrating by parts over Ω, we obtain:
ż

Ω

“

µ´1p∇ˆAq ¨ p∇ˆΨq ` µ´1
˚ p∇ ¨Aqp∇ ¨Ψq

‰

dx ´

ż

ΩC

σpiωAC `∇VCq ¨ΨC dx “

ż

Ω

J ¨Ψ dx

We multiply (5.3)2 by a test function ΦC P H
1pΩCq{C and integrate by parts over ΩC :

ż

ΩC

σpiωAC `∇VCq ¨∇ΦC dx “ ´

ż

ΩC

JC ¨∇ΦC dx´

ż

Γ

pJI ¨ nIqΦC dS

Combining the two previous relations leads to the following variational formulation:

AppA, VCq, pΨ,ΦCqq “ LppΨ,ΦCqq, @pΨ,ΦCq P XpΩq ˆH1pΩCq{C (5.5)

with AppA, VCq, pΨ,ΦCqq :“

ż

Ω

“

µ´1p∇ˆAq ¨ p∇ˆΨq ` µ´1
˚ p∇ ¨Aqp∇ ¨Ψq

‰

dx

`
1

iω

ż

ΩC

σpiωAC `∇VCq ¨ piωΨC `∇ΦCqdx

LppΨ,ΦCqq :“

ż

Ω

J¨Ψ dx´
1

iω

ż

ΩC

JC ¨∇ΦC dx´
1

iω

ż

Γ

pJI ¨ nIqΦC dS

The equivalence between (5.5) and (5.3) as well as the existence and uniqueness of the solution
pA, VCq P XpΩq ˆH1pΩCq{C is proven in [1, Chapter 6].
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As VC remains defined up to an additive constant on each connected component of ΩC noted ΩCi ,
we propose to fix the constant by adding the constraint

ş

ΩCi
VC “ 0. We implement it in the bilinear

form by adding a penalization of the form
ş

ΩCi
δ0VCqC dx where δ0 is chosen empirically, which can

be condensed as
ş

ΩC
δ0σVCqC dx, since σ is piecewise constant in each connected component.

For the same purposes as in the 2D-axisymmetric problem, we would like to define for the total
field pH,Eq a scattered field pHs,Esq so that the total field is the superposition of the incident
and scattered field. Over the course of the scan of the tube by the probe, the source term J will
move accordingly as it is supported by the probe. Thus, each probe position requires to solve a
Finite Element problem, and at the same time a different mesh with Ωs at the proper location: each
position demands to re-assemble the sesquilinear and the linear form of (5.5). Conversely, we expect
to obtain for the scattered field a source term depending on the incident field. We would be able to
remove the probe from the computational mesh and use solely one mesh for each probe position: it
would limit the re-assembly step to the linear form, by injecting the incident state generated by the
probe at the proper position.

We recall here the equations satisfied by the total field pH,Eq and incident field pH0,E0q:

$

’

&

’

%

∇ˆE´ iωµH “ 0 in Ω

∇ˆH´ σE “ J in Ω

∇ ¨ pεIEIq “ 0 in ΩI

$

’

&

’

%

∇ˆE0 ´ iωµ0H “ 0 in Ω

∇ˆH0 ´ σ0E0 “ J in Ω

∇ ¨ pε0
IE0

Iq “ 0 in Ω0
I

where the incident configuration corresponds to a configuration where the conductor is reduced to
the tube thickness: Ω0

C “ Ωt, that is to say the deposit Ωd is filled with vacuum. pσ0, µ0, ε0q denote
the physical parameters of the medium.

Combining the two systems leads to the following equation satisfied by the scattered field pHs,Esq:

$

’

&

’

%

∇ˆEs ´ iωµHs “ iωpµ´ µ0qH0 in Ω

∇ˆHs ´ σ0E0 “ pσ ´ σ0qE0 in Ω

∇ ¨ pεIEs
Iq “ ´∇ ¨

`

pεI ´ ε
0
IqE

0
˘

in ΩI

(5.6)

To solve the differential system, we want to re-formulate the problem in terms of the potentials
pA, V q for the scattered field. To that extent, we introduce H̃ such that µH̃ “ µHs ` pµ ´ µ0qH0:
(5.6)2 proves the field is divergence-free. Thus, since the domain Ω is simply connected, a vector

potential As can be extracted from H̃ such that

µH̃ “ µHs ` pµ´ µ0qH0 “∇ˆAs, in Ω

To ensure the uniqueness of the magnetic potential As, we add the Coulomb gauge defined earlier.
Injecting the definition of As in (5.6)2 proves that pEs ´ iωAsq is curl-free. In consequence, since Ω
is simply connected, a scalar potential V s can be extracted:

Es ´ iωAs “∇V s, in Ω

As explained earlier in this section, determination of the electric field Es inside the insulator ΩI
requires to solve an additional PDE. Since the generation of impedance signals requires to know E
only in the conductor ΩI , we do not expand on the subject. With the definition of the magnetic
potential As and electric potential V s, the system (5.6) can be re-written:
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%

∇ˆ pµ´1∇ˆAsq ´ µ´1
˚ ∇p∇ ¨Asq ´ σpiωAs

C `∇V sC q

“∇ˆ

ˆˆ

1´
µ0

µ

˙

H0

˙

` pσ ´ σ0qE0 in Ω

∇ ¨ pσpiωAs
C `∇V sC qq “ ´∇ ¨ ppσ ´ σ0qE0q in ΩC

σpiωAs
C `∇V sC q ¨ nC “ ´pσ ´ σ

0qE0
C ¨ nC on Γ

As ¨ n “ 0 on BΩ

pµ´1∇ˆAsq ˆ n “ 0 on BΩ

Note that the Coulomb gauge ∇ ¨As “ 0, in Ω is penalized inside the PDE.
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The Right-Hand Side (RHS) depends on the incident field pH0,E0q. It can be easily re-written
in terms of potentials pA0, V 0q as:

µ0H0 “∇ˆA0 in Ω, E0 “ iωA0 `∇V 0 in Ω0

However this definition of the scattered potentials pAs, V sq does not completely satisfy us as
the interface Γ between the conductor and the insulator contains the shape boundary. Indeed,
in the context of shape reconstruction using Level-Set functions, the shape boundary is defined
implicitly and is bound to change at each reconstruction iteration. When dealing with Finite Element
meshes, this requires at each iteration the re-computation of the conductor and insulator domains,
as well as the re-definition of all the matrices. To avoid these operations, we propose here to add a
small conductivity σε ! σd to ensure ΩC and ΩI remain unchanged throughout the reconstruction
algorithm:

σpxq “

$

’

’

’

&

’

’

’

%

σv, x P Ωvi

σt, x P Ωt

σd, x P Ωd

σε, x P Ωve

σ0pxq “

$

’

&

’

%

σv, x P Ωvi

σt, x P Ωt

σε, x P Ωve Y Ωd

From these assumptions stem the following equations satisfied by the scattered field pAs, V sq:
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%

∇ˆ
`

µ´1∇ˆAs
˘

´ µ˚
´1∇p∇ ¨Asq ´ σpiωAs

C `∇V sC q

“ ´∇ˆ
“`

µ´1 ´ pµ0q´1
˘

p∇ˆA0q
‰

` pσ ´ σ0qpiωA0
C `∇V 0

C q in Ω

∇ ¨ rσpiωAs
C `∇V sC qs “ ´∇ ¨

“

pσ ´ σ0qpiωA0
C `∇V 0

C q
‰

in ΩC

σpiωAs
C `∇V sC q ¨ nC “ ´pσ ´ σ

0qpiωA0
C `∇V 0

C q ¨ nC on Γ

As ¨ n “ 0 on BΩ

pµ´1∇ˆAsq ˆ n “ 0 on BΩ

(5.7)

Multiplying (5.7)1 by a test function Ψ P XpΩq and (5.7)2 by ΦC P H1pΩCq{C, integrating
respectively over Ω and ΩC and adding the two resulting integral equations yields the following
scattering variational formulation:

AppAs, V sC q, pΨ,ΦCqq “LsppΨ,ΦCqq, @pΨ,ΦCq P XpΩq ˆH1pΩCq{C (5.8)

with LsppAs, V sC q, pΨ,ΦCqq :“´

ż

Ω

ˆ

1

µ
´

1

µ0

˙

p∇ˆA0q ¨ p∇ˆΨqdx

´
1

iω

ż

ΩC

pσ ´ σ0qpiωA0
C `∇V 0

C q ¨ piωΨC `∇ΦCqdx

Proposition 5.1. Let pA0, V 0
C q P XpΩq ˆH1pΩCq be the solution to the eddy-current problem in a

deposit-free case. Then the variational formulation (5.8) has a unique solution pAs, V sC q P XpΩq ˆ
H1pΩCq.

Proof : To prove the existence and uniqueness of the variational formulation we want to use Lax-
Milgram theorem. To that extent, the continuity of the sesquilinear form A and the linear form L
are easy to prove. The main difficulty lies in the proof of the coercivity of A.

For all pΨ,ΦCq P XpΩq ˆH1pΩCq, we have:

|AppΨ,ΦCq, pΨ,ΦCqq| ě

ż

Ω

“

µ´1|∇ˆΨ|2 ` µ´1
˚ |∇ ¨Ψ|2

‰

dx

`
1

ω

ż

ΩC

σpω2|ΨC |
2 ` 2<piωΦC ¨∇ΨCq ` |∇ΦC |

2qdx
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Note that for a pair of complex numbers a and b, and for any 0 ă δ ă 1,

2|<pabq| ď δ|a|2 ` δ´1|b|2

Therefore,

|AppΨ,ΦCq, pΨ,ΦCqq| ě

ż

Ω

“

µ´1|∇ˆΨ|2 ` µ´1
˚ |∇ ¨Ψ|2

‰

dx

`
1

ω
σmin

ż

ΩC

pω2p1´ δq|ΨC |
2 ´ p1´ δqδ´1|∇ΦC |

2qdx

To finish the proof, we need two Poincaré-like inequalities. For ΦC P H
1pΩCq{C that verifies

ş

ΩC,j
ΨC dx “ 0 on each connected component of ΩC , there exists a constant C1 ą 0 such that:

ż

ΩC

|∇ΨC |
2 dx ě C1

ż

ΩC

p|∇ΨC |
2 ` |ΨC |

2qdx

For vector fields Φ P XpΩq “ Hpcurl; ΩqXH0pdiv; Ωq, a similar inequality holds, called Friedrichs
inequality (see [36, 47] for more details on the inequalities): there exists a constant C2 ą 0 such that

ż

Ω

p|∇ˆΨ|2 ` |∇ ¨Ψ|2qdx ě C2

ż

Ω

p|∇ˆΨ|2 ` |∇ ¨Ψ|2 ` |Ψ|2qdx

From a careful choice of δ and the two inequalities we have the coercivity of the sesquilinear form.

To assess the validity of the model, namely the introduction of a small conductivity in the outer
vacuum, we propose here to compare numerically the computation of Es

C “ iωAs
C ` ∇V sC for an

axisymmetric configuration. We compare here the scattered field Es,2D
C computed using the 2D-

axisymmetric model defined in the previous part to the scattered field Es,3D
C computed by solving

(5.7). We consider here a configuration with a deposit shaped as a ring of radial thickness 14.86mm
and height 10mm. We suppose here its conductivity is σd “ 1 ¨ 104S ¨ m´1 and its permeability
µd “ µv. In both tests we use the SAX probe for the axisymmetry hypothesis to be true. We remind
that in the computation of Es,2D, no extra conductivity has been added. We fix σε “ 1 for the rest
of the manuscript.

(a) 3D scattered field Es,3D
C (b) 2D-axisymmetric scattered field Es,2D

C

Figure 5.2: Comparison of the scattered field Es
C for an axisymmetric configuration with the SAX

probe between the 2D-axisymmetric and 3D models.

Figure 5.2 displays the different fields. While the relative L2-error between the two fields in the
conductor domain is quite large, about 25%, it becomes 8% inside the deposit shape. A reason for the
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relative high error in the vacuum is due to the addition of a small conductivity in the vacuum: acting
like an absorption, the field tends to vanish inside the vacuum. However, we are more interested in
the error in the deposit as the field value in this region is used to generate the impedance signal. As
such, computation of Es is satisfying.

Figure 5.3 compares the impedance signals ZFA and ZF3 generated by the SAX probe for the test
case defined above. The relative error for ZFA is about 5% and for ZF3, about 7%. This corroborates
what we said in the previous paragraph.

(a) Impedance ZF3 (b) Impedance ZFA

Figure 5.3: Comparison of the SAX impedance signals for an axisymmetric configuration between
the 2D-axisymmetric (in blue) and 3D models (in dashed green).

5.2 Block iterative methods for HPC formulation

Figure 5.4: Example of a domain partition (90 subdomains)

Resolution of the problem (5.8) is done by using the Finite Element tool FreeFEM. Consider a
triangulation Th of Ω and TC,h, of ΩC , h being the average size of a mesh element. After projection
of the fields onto discrete spaces and discretization on the spaces basis, the variational form becomes
equivalent to the following linear system:

ˆ

MAA MAV

MV A MV V

˙

looooooooomooooooooon

M

ˆ

XA

XV

˙

“

ˆ

BA
BV

˙

(5.9)

where n is the number of degrees of freedom of the problem: n “ nA ` nV , with nA the number
of degrees of freedom for A and nV , for VC . We also have M P Mn,npCq, MAA P MnA,nApCq,
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MAV PMnA,nV pCq, MV A PMnV ,nApCq, MV V PMnV ,nV pCq, XA, BA P CnA and XV , BV P CnV .

Solving the mixed-formulation (5.9) on a 3D mesh can quickly become memory and time consum-
ing, according to the size of the computational mesh considered. Solving the problem as efficiently as
possible is essential as we expect in the inversion algorithm to solve such problems at each iteration.
Domain decomposition paired with parallel computing provides a powerful tool to cut the computa-
tional time of the resolution. An example of domain decomposition is displayed on Figure 5.4: each
color represent a subdomain.

In High Performance Computing (HPC), there are two main families of solvers: direct and iterative
solvers. Direct solvers compute the inverse of the matrix in order to find the exact solution, while
scaling poorly with the problem size, as they are time and memory consuming. The most used direct
solver is based on the LU decomposition of the matrix in order to compute the inverse: softwares
like MUMPS [53] provide an effective parallel LU solver to solve medium scale problems. Iterative
methods derive sequences that converge towards the exact solution, where at each iteration step, only
matrix vector multiplication is performed. Though they may not reconstruct the exact solution, they
provide effective methods for the resolution of large scale problems by reducing the memory and time
cost. The main family of iterative solvers is derived from Krylov methods: it forms a basis of the
sequence of successive matrix powers times the initial error estimate, or residual. Approximation to
the solution is then formed by minimizing the residual over the subspace formed by the basis. More
details on the Krylov methods are exposed in Section 5.2.2. Generalized minimal residual (GMRES)
method [65] or Conjugate Gradient (CG) are examples of Krylov methods.

Note that for iterative methods, the conditioning of the matrix M PMnpCq has a great impact
on the method convergence. To enhance the condition number, most iterative solvers apply to the
matrix a preconditioner P P GLnpCq so that the condition number of P´1M (left preconditioning) or
MP´1 (right preconditioning) is smaller.

5.2.1 Impedance signal generation and block problem

In the context of shape reconstruction, the purpose of the direct problem is to generate for a given
domain configuration the associated impedance signals. A first numerical blocking point is the size of
the mesh: we expect to consider problems with more than one million degrees of freedom in order to
solve correctly the Finite Element problems. Adding to the problem size, the matrix M to invert is
complex-valued as well as non symmetric: under such features, the use of direct solvers is prohibited
due to their cost (on a test case of 3M degrees of freedom MUMPS LU solver crashes). We investigate
in this section the use of different iterative solvers to enhance the resolution of (5.9).

(a) SAX probe (b) SMX probe

Figure 5.5: Two probes used for ECT

Another blocking point is a consequence of the generation of the impedance signals for a given
configuration. Let us consider a probe Ωs. It consists of Nc coils that play the role of either the
emitter or the receiver and measure at different coil positions the impedance of the medium. Let coil
l “ 1 . . . Nc be the emitter and coil k “ 1 . . . Nc be the receiver. An impedance measurement has the
following expression for one probe position:
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∆Zkl “
iω

I2

ż

Ωd

ˆˆ

1

µ
´

1

µ0

˙

p∇ˆAkq ¨ p∇ˆA0
l q

´
1

iω
pσ ´ σ0qpiωAk `∇VC,kq ¨ piωA0

l `∇V 0
C,lq

˙

dx

(5.10)

where the notation Ak denotes the solution of (5.5), with the source term J supported by the coil k.
Among the different probes used for Eddy Current Testing inside Steam Generators (see [51] for

more details on the different measuring devices), we consider here two types of probes: the SAX
probe and the SMX probe. While the former consists of two co-axial coils, one above the other, the
latter has two rings of coils alongside the azimuthal direction, as displayed on Figure 5.5.

Figure 5.6: Receivers for a given emitter on the SMX probe

The probes can not measure the quantity ∆Zkl, rather some linear combinations of these quantities
called modes:

#

ZF “ 0.5ip∆Zll ´∆Zkkq : differential mode

ZFA “ 0.5ip∆Zll `∆Zklq : absolute mode

The SAX probe works for three different pulsations ω1 ą ω2 ą ω3, for which it computes the
differential mode. Note that an absolute mode is available for ω3. In this part, we consider solely
the pulsation ω3: it ensures that the electromagnetic wave would not be completely blocked by tube
wall and reach the deposit. As such, two signals, noted ZF3 (differential mode) and ZFA (absolute
mode) are considered for the SAX probe.

The SMX probe can only measure absolute modes. Four pulsations are available: the three SAX
pulsations ω1, ω2, ω3 and a fourth value ω4 ă ω3. In order to properly compare the reconstruction
of deposits between the SAX and SMX probe, the pulsation is also fixed to ω3. The acquisition
principle for the SMX probe is represented on Figure 5.6. Each emitter coil is on the lower row: to
each emitter are assigned four receivers on both rows. An absolute mode is generated for each couple
emitter/receiver.

On Figure 5.7, we display an exhaustive example of the impedance signals (on Figure 5.7b) gen-
erated by the SMX probe for a given deposit shape (on Figure 5.7a). On each graph, the horizontal
axis represents the number of the emitter coil used to generate the signal, and on the vertical axis is
the probe position. Each graph is associated with a receiver type, as explained in Figure 5.6: upper
left hand side corresponds to the receiver number 1, upper right hand side, with receiver 2, lower left
hand side, with receiver 3 and the last one with receiver 4. As such, on each graph a given column
displays the impedance signal for a given pair of emitter/receiver: the colorbar provides the signal
norm. Figure 5.7b shows that the signal is significant for coils close to the deposit, for coils opposite
to the defect, the signal is close to zero: the horizontal axis contains information about the azimuthal
scope of the deposit while the vertical axis provides information on its height. The defect thickness
is linked to the signal norm.

To generate one impedance signal, one needs to compute (5.10) for each probe position, with
the proper emitter and receiver coils. Let us consider that a probe generates Ns signals, for a fixed
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(a) Non axisymmetric deposit (in transparent green)
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(b) Resulting impedance signals with SMX probe

Figure 5.7: Example of SMX signals for a given deposit shape

pulsation ω. Here we assume that all Nc coils are used at least once as receivers (which is true if all
signals are used). Thus, in order to compute the Ns signals for a given probe, one needs to calculate
the potentials pA, VCq for each receiver coil and at all Np positions. As each resulting problem has the
same matrix M, only the source term changes: a probe requires to solve (5.8) for Nc ˆNp different
source terms.

Note that with the scattered field formulation, the different Right-Hand Sides (RHS) are char-
acterized by the incident state pA0, V 0

C q at the corresponding probe position. Due the medium
configuration for the incident problem, by solving the problem satisfied by the incident field for a
generic probe position, we are able to retrieve the fields at each position by translating the resulting
solution.

SAX SMX

# of signals Ns 2 76

# of coils Nc 2 38

# of direct problem RHS 2Np 38Np

Table 5.1: Main features of ECT probes.

As it is summarized in Table 5.1, the SMX probe requires more direct problem resolutions as
it generates more signals than the SAX probe, leading to a higher computational cost. Note that
some measures can be taken to reduce the number of Finite Element problems to be solved for the
SMX probe. As explained at the beginning of the section, the device generates for each emitter coil,
placed on the lower row, four absolute modes ZFA “ i{2p∆Zll `∆Zklq where k denotes the receiver
coil number and l, the emitter coil number. The definition of ∆Zkl for any k, l is given in (5.10): it
requires to compute the incident field pA0, V 0

C q with the source J located in coil l and the direct field
pA, VCq with the source J located in coil k. Based on the definition of the absolute mode, for one
emitter one needs to compute the four direct fields associated to the receivers and one direct field
associated to the emitter.

However, due to the definition of ∆Zkl, we can prove that ∆Zkl “ ∆Zlk for any k, l. Let us denote
by Lsl and Lsk, the right-hand side of the scattered field problem (5.8), where the incident field is
generated by respectively coil l and k. By definition of the scattered fields pAs

l , V
s
C,lq and pAs

k, V
s
C,kq:
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LskppAs
l ,´V

s
C,lqq

“ AppAs
k, V

s
C,kq, pA

s
l ,´V

s
C,lqq

“

ż

Ω

“

µ´1p∇ˆAs
kq ¨ p∇ˆAs

l q ` µ
´1
˚ p∇ ¨As

kqp∇ ¨As
l q
‰

dx

´
1

iω

ż

ΩC

σpiωAs
k `∇V sC,kq ¨ piωAs

l `∇V sC,lqdx

“ AppAs
l , V

s
C,lq, pA

s
k,´V

s
C,kqq

“ Lsl ppAs
k,´V

k
C,lqq

We then use of the above equality to demonstrate ∆Zkl “ ∆Zlk:

∆Zkl “
iω

I2

ż

Ωd

ˆˆ

1

µ
´

1

µ0

˙

p∇ˆAkq ¨ p∇ˆA0
l q

´
1

iω
pσ ´ σ0qpiωAk `∇VC,kq ¨ piωA0

l `∇V 0
C,lq

˙

dx

“
iω

I2

ż

Ωd

ˆˆ

1

µ
´

1

µ0

˙

p∇ˆ pAs
k `A0

kqq ¨ p∇ˆA0
l q

´
1

iω
pσ ´ σ0qpiωpAs

k `A0
kq `∇pV sC,k ` V 0

C,kqq ¨ piωA0
l `∇V 0

C,lq

˙

dx

“ ´
iω

I2
Lsl ppAs

k,´V
s
C,kqq `

iω

I2

ż

Ωd

ˆˆ

1

µ
´

1

µ0

˙

p∇ˆA0
kq ¨ p∇ˆA0

l q

´
1

iω
pσ ´ σ0qpiωA0

k `∇V 0
C,kq ¨ piωA0

l `∇V 0
C,lq

˙

dx

“ ´
iω

I2
LskppAs

l ,´V
s
C,lqq `

iω

I2

ż

Ωd

ˆˆ

1

µ
´

1

µ0

˙

p∇ˆA0
kq ¨ p∇ˆA0

l q

´
1

iω
pσ ´ σ0qpiωA0

k `∇V 0
C,kq ¨ piωA0

l `∇V 0
C,lq

˙

dx

“
iω

I2

ż

Ωd

ˆˆ

1

µ
´

1

µ0

˙

p∇ˆA0
kq ¨ p∇ˆ pAs

l `A0
l qq

´
1

iω
pσ ´ σ0qpiωA0

k `∇V 0
C,kq ¨ piωpA

s
l `A0

l q `∇pV sC,l ` V 0
C,lqq

˙

dx

“ ∆Zlk

Using this equality to generate the SMX signals allows us to halve the number of direct problem
RHS as it would require to compute the direct field only for the emitter coils. As such, we are able
to bring the number of RHS down to 19Np.

Nonetheless, during the ECT process, the probe is supposed to scan all the U-shaped tube length,
leading to huge amount of coil positions. In the case of the detection of plugging deposits between the
tube wall and the support plate, the scanning area is more restricted, the number Np of coil positions
can increase up to more than a hundred. As such, the number of RHS for the SMX quickly exceeds
a thousand. Hence the need for an iterative solver that scales properly with large scale problems and
can handle a large number of source terms.

5.2.2 Efficient solution strategies

For simplicity, the notation from (5.9) is cast into the following condensed form:

MX “ B (5.11)

where M PMn,npCq, X,B PMn,ppCq and p refers to the number of source terms.
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Consider in this subsection that the domain Ω is partitioned into N sub-domains pΩiqi“1...N using
METIS software, each subdomain being handled by a processor. A first step for setting up an efficient
solver is the definition of a preconditioner. Here we choose the Restricted Additive Schwarz method
[64] (RAS) defined by:

P´1 “

N
ÿ

i“1

R̃Ti pRiMRTi q
´1Ri (5.12)

where tRiu
N
i“1 are restriction operators from a global vector to local vectors on each subdomain,

possibly with some overlap. tR̃iu
N
i“1 are similar operators for which coefficients on the overlap are

set to 0 instead.

Resolution of the Finite Element problems is done using the software FreeFEM [22]. In addition
to interfacing Finite Element method with C++, it provides many routines for parallel resolution of
partial differential equations, gathered in the software PETSc. To handle the large number of source
terms, specialized iterative methods may prove to be useful. Indeed, they leverage the fact that the
RHS, yielded by the different coils and their position, are available simultaneously. Block Krylov
methods are part of these specialized iterative methods. They have a higher arithmetic intensity
than standard Krylov methods, and typically converge in fewer iterates since they generate larger
Krylov subspaces at each iteration. In this section, it will be shown how block Krylov methods can
significantly speedup the generation of impedance signals for a given configuration.

Krylov subspace-based methods

Consider a simpler linear system Ax “ b. Let us explain the main features of a Krylov subspace-based
method. Let x0 be an initial guess of the solution x, usually equal to 0 and r0 “ b ´ Ax0 be the
initial residual. At an iteration n, let KnpA, r0q be the n-th Krylov subspace. It is defined as:

KnpA, r0q “ span
 

r0, Ar0, . . . A
n´1r0

(

The n-th approximation xn of x is then computed by minimizing the residual in KnpA, r0q:

xn “ x0 ` argminvPKnpA,r0q||b´Av||

where the norm || ¨ || is the Euclidean norm of Cn.
Note that the pAkr0q may be close to linearly dependent, leading to poor convergence of the

method: the choice of the Krylov space basis is crucial for fast convergence. In the literature, the
main methods based on Krylov subspaces propose different approaches to the computation of the
bases.

In this work, the following methods are considered:

• standard GMRES [65];

• standard GCRODR [41];

• pseudo-block GMRES;

• pseudo-block GCRODR;

• block GMRES [28];

• block GCRODR [49] sketched in Figure 5.8.

Here, standard means that the method is not able to deal with multiple right-hand sides available
simultaneously. Pseudo-block means that the method is mathematically equivalent to the standard
one, in the sense that it generates the same Krylov subspace, but it fuses similar operations together,
e.g., multiple simultaneous sparse matrix–vector multiplications become a single sparse matrix–dense
matrix multiplication.

GMRES algorithm is based on an Arnoldi iteration to compute an orthogonal Krylov subspace
basis. The principle, close to the Gram-Schmidt orthogonalization algorithm, is summarized on
Figure 5.9. At a given iteration k, we denote by Vk “ pv1 . . . vkq the resulting orthogonal base of the
subspace KkpA, r0q. The Arnoldi iteration introduces the following Hessenberg pk ` 1q ˆ k matrix
(matrix with zero entries below the first subdiagonal):
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1: R0 “ Bi ´AiX0

2: if Uk is defined (from solving a previous sub-block) then
3: rQ,Rs “ distributed qrpAiUkq
4: Ck “ Q
5: Uk “ UkR

´1

6: X1 “ X0 ` UkC
H
k R0

7: R1 “ R0 ´ CkC
H
k R0

8: else
9: rV1, S1s “ distributed qrpR0q

10: perform m steps of BGMRES, thus generating Vm`1 and rQ,Rs “ qrpHmq

11: find Ym such that RYm “ Q´1

„

S1

0p¨pm´1qˆp



12: X1 “ X0 ` VmYm
13: R1 “ Bi ´AiX1

14: solve Hzλ “ θλzλ
15: store the k eigenvectors zλ associated to the smallest eigenvalues in magnitude in Pk
16: rQ,Rs “ qrpHmPkq
17: Ck “ Vm`1Q
18: Uk “ VmPkR

´1

19: end if
20: j “ 1
21: while convergence not reached do
22: rVk, Sks “ distributed qrpRjq
23: j `“ 1
24: perform m ´ k steps of BGMRES with the linear operator pI ´ CkC

H
k qAi, thus generating

Vm`1´k, rQ,Rs “ qrpHm´kq, and Ek “ CkAiVm´k

25: find Ym´k such that RYm´k “ Q´1

„

Sk
0p¨pm´k´1qˆp



26: Yk “ CHk Rj´1 ´ EkYm´k
27: Xj “ Xj´1 ` UkYk ` Vm´kYm´k
28: Rj “ Bi ´AiXj

29: scale the columns of Uk so that they are of unit norm
30: solve Tzλ “ θλWzλ
31: store the k eigenvectors zλ associated to the smallest eigenvalues in magnitude in Pk
32: rQ,Rs “ qrpHmPkq
33: Ck “

“

Ck Vm´k`1

‰

Q

34: Uk “
“

UkPk Vm´kPk
‰

R´1

35: end while

Figure 5.8: BGCRODR as written by Jolivet and Tournier [49].

Hk “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

h1,1 h1,2 h1,3 . . . h1,k

h2,1 h2,2 h2,3 . . . h2,k

0 h3,2 h3,3 . . . h3,k

...
. . .

. . .
. . .

...
... 0 hk,k´1 hk,k
0 . . . . . . 0 hk`1,k

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

where the coefficients hi,j are naturally defined in Figure 5.9.

From the construction of the basis comes the following formula:

AVk “ Vk`1Hk, @k

An element v of the Krylov subspace KkpA, r0q can then be decomposed in the basis Vk: v “ VkYk,
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1: r0 “ b´Ax0

2: if k “ 1 then
3: v1 “

r0
||r0||

4: else
5: vk “ Avk´1

6: for j ď k do
7: hj,k´1 “ v˚j vk
8: vk “ vk ´ hj,k´1vj
9: end for

10: hk,k´1 “ ||vk||
11: vk “

vk
hk,k´1

12: end if

Figure 5.9: Arnoldi iteration at an iteration k.

with Yk P Rk. Therefore, the residual on the Krylov subspace can be rewritten as:

||b´Av|| “ ||r0 ´ Vk`1HkYk|| “ ||βe1 ´HkYk||

where β “ ||r0|| and e1 “ p1, 0, . . . , 0q
T P Rk`1.

In summation, at each iteration, the GMRES algorithm computes the corresponding new vector
in the orthogonal basis of the Krylov subspace, then solves the minimization problem:

min
YkPRk

||βe1 ´HkYk||

The resolution of such minimization problem is performed by using a QR-factorization of the Hes-
senberg matrixHk with Givens rotations (compared to Householder approach to theQR-factorization,
Givens rotations are more efficient on Hessenberg matrices as they are ”almost” triangular, and the
method can be parallelisable more easily).

Since the dimension of the Krylov subspaces increases with the iterations, for large iterations, the
memory required to store all the basis vectors can exceed the memory available on the process. In
order to limit the memory cost of the iterations, the GMRES algorithm can be ”restarted”: beyond
a chosen iteration m, the algorithm restarts from the last residual rm and the last iterate xm. When
using the restart option, the algorithm is denoted GMRESpmq.

The GCRODR algorithm is based on the GCRO [17] (Generalized Conjugate Residual with inner
Orthogonalization) method. It belongs to the family of inner-outer methods: at an iteration m, it
introduces the families of vectors Um “ pu1 . . . umq P Cnˆm and Cm “ pc1 . . . cmq P Cnˆm such that

AUm “ Cm, CHmCm “ Im

The solution of the minimization problem over the subspace x0 ` rangepUmq is then found as
xm “ x0 ` UmC

H
mr0. The resulting residual rm is given by

rm “ b´Axm “ r0 ´ CmC
H
mr0, rm K rangepCmq

Let us consider now the the minimization problem:

min
yPCn

||rm ´ pIm ´ CmC
H
m qAy||

This projected residual equation is solved by calling a GMRES solver for k iterations (k not
being fixed throughout the algorithm). Let us write tv1, . . . , vk`1u the orthogonal basis at the end
the GMRES call. The solution of the inner problem is noted y “ VkYk, Yk P Ck. The idea of the
GCRO algorithm is that it splits the iterate at an iteration m between rangepUmq (outer iterate) and
rangepVkq (inner iterate):

xm`1 “ x0 ` UmC
H
mb` VkYk ´ UmC

H
mAVkYk
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The families Um and Cm are then updated from the new iterate.
Consider now a set of linear systems Apiqx “ bpiq, i “ 1, 2, . . .. The GRCRODR algorithm adds

the option of recycling l vectors of the Arnoldi basis at the end of a cycle, from one linear system solve
to another. Assume the algorithm for one system converges in m iterations: the recycling operation
involves the computation of l Ritz eigenvectors ỹ from the Krylov subspace basis

Aỹ ´ θ̃ỹ K w̃, @w̃ P AKmpA, r0q

The l eigenvectors are then used in a new cycle for a new linear system to generate the families
Ul and Vl.

Block iterative solvers like BGMRES and BGCRODR use essentially the same principles than
their standard counterparts. Consider here the block problem (5.11). The main feature of such
methods is that the block structure is conserved throughout the process: the iterate lies now in a
Block Krylov space B�k pM, r0q :“ spanpr0,Mr0, . . . ,Mn´1r0q Ă Cnˆp, where r0 “ v is the initial
residual. The Arnoldi iteration generates then a basis of block-orthogonal vectors Vm PMn,mp and
the resulting matrix Hm PMpm`1qp,mp is a block Hessenberg matrix.

Different parameters can be modified in order to enhance the convergence of the algorithms:

• The relative tolerance rtol: at iteration k, the stopping criterion ||rk||{||r0|| ď rtol is evaluated.
Should it be true, the algorithm stops. rtol is supposed to be sufficiently small to ensure the
proper reconstruction of the solution but not too small to avoid unnecessary iterations.

• The deflation parameter, dtol, used for block solvers only, allows to reduce the number of
systems to solve, should the initial block residual r0 be rank deficient. A rank-revealing QR
factorization of the block of initial residuals is computed, and the Arnoldi process only iterates
on blocks of size i “ 2 . . . p such that Ri,i ď dtolR1,1.

• The size p1 of the RHS blocks with p1 ď p, p being the number of RHS in (5.11). Block
Krylov methods have higher arithmetic intensities and require more involved kernels such as
block orthogonalizations. They are also more memory demanding, since, for example, the block
Arnoldi process generates block Hessenberg matrices, whose QR factorizations are costlier to
compute using Householder reflectors than plain Hessenberg matrices factorized with Givens
rotations. For that reason, solving the full system (5.11) with p right-hand sides might not be
not tractable. Instead, the complete block of right-hand sides is decomposed into contiguous

sub-blocks of size p1 which are then solved in sequence: it will then successively solve
Y

p
p1

]

subsystems with at most p1 right-hand sides.

These parameters are chosen empirically to ensure a fast convergence as well as the proper recon-
struction of the solution of the linear systems.

Numerical comparison of the solvers

As said in the introductory paragraph of this section, block Krylov methods generate different sub-
spaces than their standard counterpart. Throughout this section, the relative convergence tolerance
is set to 10´3 and the overlapping Schwarz preconditioner defined in (5.12) is applied on the right.

A restart parameter of size 40 is used for standard and pseudo-block methods, and is set to 30 for
block methods, which require more memory: the restart option allows to limit the storage of Krylov
basis as it increases for each iteration. After a given number of iterations, the algorithm restarts from
scratch, only conserving the intermediary residual.

For standard GMRES and GCRODR, instead of solving the full system (5.11), we consider only
the first column of B and X. Results for the complete block of p columns may be extrapolated by
multiplying the timings obtained by p, since it is expected that the number of GMRES and GCRODR
iterations will be similar as B is traversed. These standard solvers could solve the full system, but
as highlighted next, they are extremely inefficient so it would only be a waste of resources.

For only the first column of B, GMRES (resp. GCRODR) converges in 197 (resp. 125) iterations.
This shows an advantage of such a recycling Krylov methods, which also translates to runtime:
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8.6 sec against 6.3 sec. However, these timings are not satisfactory, since by extrapolation, it would
approximately take 1.8 h (resp. 1.4 h) to solve the full system with p “ 779 RHS. With GCRODR,
five vectors are recycled throughout the restarts.

For pseudo-block methods, again, it will be shown next that the timings are not satisfactory.
Again, GCRODR has the edge over GMRES, both in terms of iterates, 130 against 171, and in terms
of runtime, 20.7 min against 26.3 min. This is a significant improvement compared to the standard
methods, with approximately a 4x speedup. The previous command line options remain unchanged,
as HPDDM will by default switch to the pseudo-block variants when solving systems with multiple
right-hand sides.

Eventually, the performance of BGMRES and BGCRODR are evaluated. At the beginning of
each new cycle, deflation is performed using a tolerance of 10´10. Four different values of p1 are
used: 390, 195, 98, and 49. This corresponds to respectively 4, 8, 16, and 32 successive subsystem
solves. The number of iterations, summed over all subsystem solves, is respectively 42, 101, 263,
and 900. Looking at these numbers, the configuration p1 “ 390 is the most efficient numerically, as
expected, since it is the one that enlarges the generated Krylov subspace the most per block Arnoldi
iteration. However, this numerical efficiency does not transpose to algorithmic efficiency. Indeed,
the time to solution for the previous four block sizes is respectively 4.7 min, 3.9 min, 3.8 min, and
5.6 min. This highlights the fact that one has to carefuly pick the number of right-hand sides treated
simultaneously. On the one hand, the higher this number, the faster the convergence. On the other
hand, the lower this number, the cheaper block Krylov kernels are, e.g., block orthogonalizations.
BGCRODR has the advantage of handling both blocking and recycling. This is of great interest
here, since multiple solves with the same coefficient matrix A are performed while traversing all
sub-blocks of B. For one of the two near-optimal configurations with BGMRES, p1 “ 98, we instead
now switch to BGCRODR. A single basis vector is recycled throughout successive solves. However,
it is important to keep in mind that a basis vector in the block Krylov sense is in practice a set of
p1 vectors. As expected, the number of iterations, summed over all subsystem solves, is lowered with
respect to BGMRES. It becomes 318 instead of 525. One could then expect faster timings than with
BGMRES, but this is in practice not the case. The time to solution is indeed 7.0 min, which is a
great deterioration of the BGMRES timing: almost 3 min slower. This will be investigated in the
next paragraph.

All the obtained results are gathered in Table 5.2. Results that are extrapolated are typeset in
gray, just to highlight that the figures may slightly vary if complete but wasteful runs were performed
instead. Clearly, the use of block Krylov methods is highly beneficial for solving efficiently (5.9). The
most effective methods, BGMRES with block size of 98 or 195, exhibit a 28x speedup with respect
to a standard GMRES implementation which does not use blocking.

Krylov method # of blocks # of RHS/block
ř

(# of iterates) Time /RHS Speedup

GMRES(40) 779 1 153,463 1.8 h 8.3 sec —
GCRODR(40, 5) 779 1 97,375 1.4 h 6.4 sec 1.3
P-BGMRES 1 779 171 26.3 min 2.0 sec 4.1
P-BGCRODR 1 779 130 20.7 min 1.6 sec 5.2

16 49 900 5.6 min 0.43 sec 19.3
8 98 263 3.8 min 0.29 sec 28.6
4 195 101 3.9 min 0.30 sec 27.6

BGMRES(30)

2 390 42 4.7 min 0.36 sec 23.0
BGCRODR(30, 1) 8 98 166 7.0 min 0.53 sec 15.7

Table 5.2: Comparison of GMRES, GCRODR, their pseudo-block variant, and their block variant,
for solving Equation (5.11) on 960 processes using a restricted additive Schwarz preconditioner

Though recycling block Krylov methods have been used succesfully in the past, results shown
in the previous section are not encouraging. There is at least one explanation for this discrepancy.
Previous studies, e.g., [27, 52], deal with rather moderate numbers of right-hand sides, in the hun-
dreds. In the present work, there is one order of magnitude more vectors, in the thousands. Thus,
all algebraic operations from BGCRODR that scale superlinearly with the dimension of the Krylov
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subspace are difficult to amortize. Indeed, these operations are often done redundantly by each pro-
cess. Similar considerations apply to, for example, GMRES, where Hessenberg matrices generated
by the Arnoldi process are stored redundantly by each process, at least as implemented in PETSc,
Trilinos [6] and more specificaly its Belos package [18], and HPDDM.

In order to alleviate this severe limitation, we propose to redistribute the standard (resp. general-
ized) eigenvalue problem from BGCRODR line 14 (resp. 30) in the BGCRODR algorithm on a small
subset of N 1 ă N processes. Then, the “small” dense distributed operators are passed to SLEPc [61],
which is used to solve the problem instead of using sequential LAPACK routines redundantly. The
computed eigenvectors are then broadcast to the other N ´N 1 processes. This redistribution scheme
has the advantage that not all N processes used for solving (5.11) will be involved in the eigensolves.
The parallel granularity of this workload is way too fine: solving dense eigenproblems with a few
thousand unknowns on thousands of processes is likely to perform very poorly due to the very high
communication-to-computation ratio. There is also no available computational routine in distributed
dense linear algebra libraries such as ScaLAPACK for nonsymmetric eigenproblems. With SLEPc,
we instead use the Krylov–Schur method [63], coupled either by a shift or a shift-and-invert spectral
transformation. In this spectral transformation, an exact distributed LU factorization is computed
by Elemental [32]. This strategy is investigated next with a small communicator of size N 1 “ 9. In
the previous section, calls to LAPACK for recycling information took 4.5 min, which explains why the
naive BGCRODR implementation was not competitive against BGMRES. With this new distributed
strategy, again with p1 “ 98, only 6.4 sec are spent in EPSSolve, SLEPc computational routine for
solving eigenproblems. Even if the recycled information is now computed iteratively, instead of di-
rectly with LAPACK, the overall convergence of BGCRODR is not impacted, and it still takes 318
iterations to solve all sub-blocks. However, the time to solution is now 2.6 min. This is now more
competitive than the previous BGMRES timing of 3.8 min, and it also makes recycling much more
affordable than in the naive BGCRODR implementation which converged in 7.0 min. The most effi-
cient strategy has a 45x speedup with respect to a standard GMRES implementation which does not
use blocking. With this efficient BGCRODR implementation, the case p1 “ 195 is also investigated.
The time spent in EPSSolve now becomes 18.0 sec, so the effect of the number of right-hand sides
in the sub-block is clearly highlighted. The number of iterations (resp. time to solution) is now 70
(resp. 3.1 min), which is indeed less than with BGMRES, but still does not beat BGCRODR with
p1 “ 98. These results are gathered in Table 5.3.

Krylov method # of blocks # of RHS/block Time /RHS Speedup

GMRES(40) 779 1 1.8 h 8.3 sec —
8 98 3.8 min 0.29 sec 28.6

BGMRES(30)
4 195 3.9 min 0.30 sec 27.6

Naive BGCRODR(30, 1) 8 98 7.0 min 0.53 sec 15.7
8 98 2.6 min 0.20 sec 41.5

BGCRODR(30, 1) + N 1 “ 9
4 195 3.1 min 0.24 sec 34.6

Table 5.3: Improvements of the proposed methodology over previous results from Table 5.2

5.3 Direct problem and Level Set functions

In this section we investigate the numerical effects of implicitly defining the deposit shape using
Level-Set functions. Let Ωd be the deposit, defined by a function ψ such that:

$

’

&

’

%

ψpxq “ 0 ô x P BΩd XD

ψpxq ă 0 ô x P Ωd

ψpxq ą 0 ô x P pDzΩdq

(5.13)

where D Ă Ω is supposed to contain all admissible shapes Ωd.
Consider now a triangulation Th of the sub-domain D. We denote by K P Th an element of Th, a

tetrahedron in our case, and by pMi
Kqi“1...4, the vertices of an element K. On this mesh, the deposit



130 Chapter 5. An efficient 3D solver for eddy currents

Ωd is numerically defined by |Ωd :“ tK P Th { D i “ 1 . . . 4 s.t. ψpMi
Kq ď 0u. As such, the boundary

corresponds exactly to the isosurface 0 and is numerically defined by Sψ :“ B|Ωd.

Figure 5.10: Boundary of the deposit defined by a level-set function (mesh size 0.6mm)

On Figure 5.10, we display an example of a numerical isosurface Sψ for a deposit made out of
four partial ellipsoids on the tube wall of z-radius 3.25 mm and r-radius 5 mm. The mesh size h here
is 0.6 mm. Note that due to the unstructured nature of Th, the deposit surface is strongly irregular,
with single elements pointing towards the exterior. Note that as the size mesh h decreases, the size
of the irregularities on the surface will decrease as well, at the cost of an increase in the number of
degrees of freedom. For h sufficiently small, one may expect the surface to become smooth, though
numerically speaking the size of the resulting problem would be prohibitive.

(a) h “ 1.0mm (b) h “ 0.66mm

(c) h “ 0.50mm (d) h “ 0.40mm

Figure 5.11: Numerical deposit |Ωd for different mesh sizes.

To explore the consequences of the non-smooth shape boundary to the resolution of the scattered
field problem, we considered four simulations. In each, the SAX probe is used as the source, while
the physical parameters inside the deposit are equal to σd “ 1 ¨ 104 S ¨m´1 and µd “ 2.5µv. The
exact deposit Ωd is a ring of thickness 3.75 mm and height 10 mm. Note that the resulting numerical
deposits are represented on Figure 5.11.

Going back to the scattered field variational formulation (5.8), the major change is hidden inside
the definition of the physical parameters pσ, µq. On Figure 5.12, we solved the resulting problem for
different mesh size and computed the scattered electric field Es “ iωAs`∇V s, corresponding to the
deposits displayed on Figure 5.11 (each figure is a slice, of normal ey, of ΩC of the 3D configuration).

As explained at the beginning of the section, the numerical deposit has a non-regular boundary:
as the mesh size decreases, the smaller the irregularities get, though the boundary does not become
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Figure 5.12: Electric field Es for an implicit definition of Ωd, for different mesh sizes.

smooth. On Figure 5.13 is the scattered field Es for a deposit that meshed inside Th, with the same
physical parameters (with h “ 0.5mm). As we consider here an axisymmetric deposit, we propose
to use the scattered field computed with the 2D-axisymmetric model defined in the previous part.
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Figure 5.13: Electric field Es for an explicit definition of Ωd.

When comparing the different scattered fields, there seems to be some numerical instabilities on
the shape boundary if defined implicitly. More precisely, Figure 5.14 displays the evolution of the
relative L2-error inside the deposit shape between the scattered fields computed with a numerical
boundary or the 2D-axisymmetric model. We restrict the comparison to the deposit as the field value
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in this region determines the impedance signal. As evidenced by the plots and the error graph, the
error decreases with the mesh size.
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Figure 5.14: Relative L2-error between the 3D scattered field with level-set, Es,3D and the
2D-axisymmetric field Es,2D with the mesh size h.

The implicit definition of Ωd creates numerical instabilities on its boundary B|Ωd. On this bound-
ary, the conductivity σ and the permeability µ jump from pσd, µdq in |Ωd, to pσε, µvq in Ωve. Since
Es “ iωAs`∇V sC , let us compare the quantities As and ∇V sC for the implicit and explicit definition
of Ωd (h “ 0.50mm).

Note that the fields pAs,∇s
q computed with implicit definition of the deposit where projected to

the computational mesh with a meshed deposit before rendering.
According to Figure 5.15, while the magnetic vector potential As is well computed in both cases,

the numerical instabilities appear in ∇V sC . This seems to show that the jump of σ on the numer-
ical interface plays a predominant role in the instabilities. Further computations show that when
removing the jump of σ and keeping the jump of µ, the instabilities disappear. Thus, the numerical
instabilities are a consequence of a non-negligible jump of the conductivity on a non-smooth interface.

The first idea to remove the instabilities would be to refine the mesh inside D: as observed
above, as the mesh elements become smaller, the instabilities tend to disappear, since B|Ωd becomes
smoother. However, decreasing the mesh size enough so that the instabilities disappear or become
negligible is not a solution as it would greatly increase the computational cost of the Finite Element
resolution.

We investigate in the following two different strategies in order to make these instabilities disap-
pear, as they may have a non negligible impact on the inversion algorithm.

5.3.1 Smoothing of the interface

Consider here a given Level-Set function ψ defined inD, associated to a deposit Ωd. On a triangulation
Th of the space, the deposit boundary is implicitly defined by Sψ. As evidenced by Figure 5.10, the
boundary is severely non-smooth, with element vertices pointing out of it. The idea is to re-arrange
the mesh elements inside Th so that the implicit surface becomes explicit and at the same time is
smoothed.

This difficult operation is done here using the Mmg software, an open source software for simplicial
remeshing. The main features of the software are developed in [12]. Note that the method used here
is described in Section 5 of the article.

The smoothing process marks the elements intercepted by the implicit surface. Then for each
marked element, mark the intercepted edges and add a new point at each intersection: by knowing
the value of ψ on the elements vertices, through barycentric coordinates, it is possible to compute
the intersection points. By splitting the intercepted elements according to the added points, the
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Figure 5.15: Potentials pAs,∇V sq for an implicit and explicit definition of Ωd.

Figure 5.16: (left) One of the possible situations when the isosurface (in light red) crosses an
element K P Th ; (right) example of a splitting pattern for a tetrahedron K P Th which is crossed by
the isosurface in such a way as three of its vertices share the same sign (the blue ones). Source: [12]

isosurface is materialized. Figure 5.16 summarizes the different steps to the explicit definition of
the shape boundary. However the resulting mesh has poor features, additional re-meshing steps are
required in order to enhance the mesh quality.

Let us consider again the example defined on Figure 5.10, where the Level-Set function models
a deposit made of four identical ellipsoids intercepted with the cylinder. We want to apply the
Mmg software to the computational mesh Th to re-mesh the mesh so that the numerical shape qΩh
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is smoothed and its boundary is properly added to the resulting new mesh T̃h. Figure 5.17 displays
the numerical shape before and after re-meshing.

(a) Before mesh re-meshing (b) After mesh re-meshing

Figure 5.17: Numerical deposit |Ωd before and after application of the Mmg software.

As evidenced by the above figures, the Mmg software effectively smooths the numerical shape.
Now let us consider this specific configuration (four ellipsoids) and solve the direct problem with
either deposits: the smoothed and the non-smoothed version of Ωd. On Figure 5.18, we display the
scattered electric field Es for both configurations. Note that the mesh size inside D in each case is of
0.5mm. On the figures, we see that the resolution of the Finite Element problem on the the smooth
boundary removes a lot of the numerical instability compared to the non-smooth boundary. Note
that the numerical deposit |Ωd is manifested in transparent green.
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(b) Smooth shape

Figure 5.18: Electric field Es for an implicit deposit of four ellipsoids, with or without smoothing of
the boundary (mesh size 0.5mm).

By re-meshing Th, we are able to smooth the shape boundary hence removing a lot of the insta-
bilities. However as the mesh size h increases, the computational cost of the operation gets higher
and higher. In addition, re-definition of the computational mesh forces us to re-assemble the Finite
Element matrices, increasing even more the computational cost of an iteration. As such, we would
like to find an approach that reduces or removes the instabilities without altering the mesh to avoid
unwanted costs.

5.3.2 Smoothing of the conductivity

Let us assume here that the Level-Set function is the signed distance function qψ defined by:
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qψpxq “ 0, x P BΩd XD

qψpxq “ ´distpx, BΩdq, x P Ωd

qψpxq “ distpx, BΩdq, x P pDzΩdq

(5.14)

where distpx, BΩdq “ infyPBΩd distpx, yq is the distance function. Note that should the Level-Set

function ψ be different from qψ, there exists algorithms that can transform the function to a signed
distance function, e.g. the Fast Marching Method [55].

As we established that the instabilities were a consequence of the contrast of σ at the non-smooth
interface between the deposit and the vacuum, we investigate the effects of smoothing the conductivity
on the computation of the scattered field. By definition, σ is a piecewise-constant function: here we
let σ vary on a chosen vicinity of the deposit surface Ωδ :“ tx P D {distpx, BΩdq ă δ{2u, where δ ą 0
denotes the width of the sub-domain.
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Figure 5.19: Examples of fη for different η values in 1D, for ψpxq “ x2 ´ 1.

Let us introduce the function:

fηpψqpxq “
1

2

ˆ

1´
ψpxq

|ψpxq| ` η

˙

P r0, 1s, x P D

where η ą 0 is a small parameter ensuring the proper definition of fη when ψ “ 0. For η “ 0, f is
similar to a Heaviside function equal to 0 when ψ ě 0 and equal to 1 when ψ ă 0. The addition of the
parameter η creates a family of functions that are equal to 0.5 on the isosurface 0, and asymptotically
equal to 1 (resp. 0) for ψ ! η (resp. ψ " η), cf. Figure 5.19.

The lower η is the faster the function goes from 1 to 0, and conversely, the greater η is the slower
the function goes from 1 to 0. As such, consider a level ν ă 0.5:

tx P D { 1´ ν ą fηpψqpxq ą νu “

"

x P D {
1´ 2ν

2ν
η ą ψpxq ą ´

1´ 2ν

2ν
η

*

“ Ω
1´2ν
ν η

Consider now the conductivity σ in the subdomain D. We choose to define it by:

σpxq “ σd ˆ fηpψqpxq ` ση,x P D (5.15)

The idea now is to fix the parameters ν (the level), δ (the width of the variation) and η (the relax-
ation parameter) in order to have a satisfying smoothing of the conductivity. As fη is asymptotically
equal to 1 and 0, we do expect the resulting conductivity to be continuous: we aim at reducing the
jump in conductivity.

Consider the tetrahedral mesh Th of D. The width of the variation is directly linked to the mesh
size: typically, we would like σ to vary on k elements. On the boundary of Ωδ, we would like fη to
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(a) η “ 0.00001 (b) η “ 0.0001 (c) η “ 0.001

Figure 5.20: fηpψq inside the sub-domain D for different η values.

be above 1´ ν or below ν, with ν ! 1, in order to prevent non negligible jumps in the conductivity
that could lead to instabilities. η can be deduces from the two other parameters:

δ “ kh, ν “ ν, η “
ν

1´ 2ν
kh
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Figure 5.21: Electric field Es for a conductivity defined by (5.15), for different η values.
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Note that the mesh size imposes bounds on the parameters, so that the variation of fη can be
properly rendered using P1 Lagrange elements. As such, there exists some constant C ą 0 such that
δν ą C. Should the quantity be too small, the variation of fη would be too fast and the smoothing
would not be visible on the mesh.

For a given mesh size h, for instance 0.4 mm. Let us investigate the width δ of the variation
for a given level ν “ 0.04, as function of different values of η (cf Table 5.4). The resulting fηpψq is
represented in Figure 5.20.

η δ

0.00001 0.575h

0.0001 5.75h

0.0005 28.75h

0.001 57.5h

Table 5.4: Different values of η and the corresponding widths δ for a given level ν “ 0.04.

Figure 5.20 displays longitudinal cut of D, orthogonal to ex, with logarithmic scale to be able
to properly see the variations. As η increases, we observe that the variation is larger and larger:
while for the lowest value, the function is effectively asymptotically decreasing towards 0 far from the
deposit, for the largest value, the actual value at the end of the sub-domain is only one order smaller
than σd.

In Figure 5.21 we show the scattered electric field Es for the same η values. As expected, for the
smallest value the variation is too steep for the mesh to properly render it, as such some instabilities
remain.
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Figure 5.22: Relative L2-error between the 3D scattered field with smoothed conductivity, Es,3D

and the 2D-axisymmetric field Es,2D with the parameter η.

However for the other values, the instabilities disappear and the electric field seems identical. The
smoothing of σ effectively removes the instabilities without re-meshing the domains. When looking
at fηpψq on Figure 5.20, it appears that η “ 0.0005 is an adequate value to choose for this parameter
as it does not deteriorate the conductivity. We shall then use this value for future computations.

5.4 GIBCs as a model for the support plate

As explained before, inside the Steam Generator different types of deposits may emerge: thin clogging
deposits alongside the tube wall or volumetric plugging deposits between the tube wall and its support
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plate, cf. Figure 5.23 for an example of support plate. While the former may be reconstructed
using asymptotical models (see for instance [62]), the detection of plugging deposits is crucial for
the operator as it may create additional mechanical constraints on the device. This motivates the
addition of a support plate Ωp in the configuration. As it is made of a magnetic and conductive
material, of physical parameters pσp, µpq, the conductor domain changes: ΩC “ Ωt YΩd YΩp YΩve.
We recall that we placed a small conductivity inside the exterior vacuum in order to simplify the
computation of the scattered field pAs, V sC q.

Figure 5.23: Picture of a support plate.

Due to the high conductivity of the plate, the electromagnetic wave penetrates a thin layer
δ “ 1{

?
ωσpµp of the material. Proper simulation of the field inside the plate would require a fine

mesh that would weigh on the resolution of the Finite Element problems. Instead of meshing the
plate, we propose here to replace the volumetric plate by its boundary, with the appropriate boundary
condition in order to compute a proper approximation of the field.

In the context of scattering, Generalized Impedance Boundary Conditions (GIBCs) have been
used to model thin coatings around perfectly conductive materials [3], or highly conductive materials
[44]. GIBCs can be use in inverse scattering problems [38] to reconstruct scattering surfaces. We
propose here to use the results of [44] for highly conductive materials. Derivation of the boundary
condition is based on an asymptotical expansion with respect to the skin depth δ on a small vicinity
around the material’s boundary. Consider the resulting first order boundary condition with respect
to δ:

Eˆ n´ ipµpωqδ

ˆ

´

?
2

2
´ i

?
2

2

˙

pnˆ pHˆ nqq “ 0 on BΩp

(Note that there [44] does not use the same convention for the definition of the time-harmonic waves,
hence the sign difference). Given the definition of the potentials pA, VCq, the impedance condition is
equivalent to:

piωAC `∇ΓVCq ˆ n´ ipµpωqδ

ˆ

´

?
2

2
´ i

?
2

2

˙"

nˆ

ˆˆ

1

µ
∇Γ ˆA

˙

ˆ n

˙*

“ 0 on BΩp (5.16)

where n is the normal interior to Ωp and ∇Γ represents the surface operator on BΩd.

Let us now introduce the domain Ω̃ “ ΩzΩp where the plate was removed and Ω̃C the resulting

new conductor domain. We assume the total state pA, VCq satisfies (5.3) in Ω̃ with the impedance
condition (5.16). Let us build the new variational formulation verified by pA, VCq. By multiplying

(5.3)1 by a test function Ψ P XpΩ̃q and integrating by parts over Ω̃, we obtain:
ż

Ω̃

“

µ´1p∇ˆAq ¨ p∇ˆΨq ` µ´1
˚ p∇ ¨Aqp∇ ¨Ψq

‰

dx`

ż

BΩp

ˆ

1

µ
∇Γ ˆA

˙

¨ pΨˆ nqdS

´

ż

Ω̃C

σpiωAC `∇VCq ¨ΨC dx “

ż

Ω̃

J ¨Ψ dx
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Note that, due to the impedance condition we have:

ˆ

1

µ
∇Γ ˆA

˙

¨ pΨˆ nq “ ´

ˆˆ

1

µ
∇Γ ˆA

˙
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˙

¨Ψ
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¨
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˘˘

“

"

nˆ

ˆˆ

1

µ
∇Γ ˆA

˙

ˆ n

˙*

¨
`
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“
1
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´

´
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2
2 ´ i

?
2

2

¯ ppiωAC `∇ΓVCq ˆ nq ¨
`

Ψˆ n
˘

Hence:

ż

Ω̃

“

µ´1p∇ˆAq ¨ p∇ˆΨq ` µ´1
˚ p∇ ¨Aqp∇ ¨Ψq

‰

dx

`
1

iωµpδ
´

´
?

2
2 ´ i

?
2

2

¯

ż

BΩp

ppiωAC `∇ΓVCq ˆ nq ¨
`

Ψˆ n
˘

dS

´

ż

Ω̃C

σpiωAC `∇VCq ¨ΨC dx “

ż

Ω̃

J ¨Ψ dx

(5.17)

We multiply (5.3)2 by a test function ΦC P H
1pΩ̃Cq{C and integrate by parts over Ω̃C :

ż

Ω̃C

σpiωAC `∇VCq ¨∇ΦC dx´

ż

BΩp

pσpiωAC `∇ΓVCq ¨ nqΦC dS

“ ´

ż

Ω̃C

JC ¨∇ΦC dx´

ż

Γ

pJI ¨ nIqΦC dS

Using (5.3)1 and surface integration yields:

ż
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Hence:
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Γ

pJI ¨ nIqΦC dS

(5.18)
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Combining the two previous relations leads to the following variational formulation:

ApppA, VCq, pΨ,ΦCqq “ LppΨ,ΦCqq, @pΨ,ΦCq P XpΩ̃q ˆH1pΩ̃Cq{C (5.19)

with ApppA, VCq, pΨ,ΦCqq :“

ż

Ω̃

“

µ´1p∇ˆAq ¨ p∇ˆΨq ` µ´1
˚ p∇ ¨Aqp∇ ¨Ψq

‰

dx

`
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iω
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¯
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piωΨC `∇ΓΦCq ˆ n
¯

dS

The well-posedness of (5.19) in XpΩ̃q ˆ H1pΩ̃Cq{C can be proved the same way as for the well-
posedness of (5.5) and (5.8).

In order to ensure a fast resolution of the variational problem for each probe position, we prefer
solving for the scattered field. Let us consider the integration of the incident state pA0, V 0

C q equations

over Ω̃. It leads to the following formulation:

A0
pppA

0, V 0
C q, pΨ,ΦCqq “ LppΨ,ΦCqq, @pΨ,ΦCq P XpΩ̃q ˆH1pΩ̃Cq{C (5.20)

with A0
pppA
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C q, pΨ,ΦCqq :“
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Combining (5.19) and (5.20) leads to the following scattered field variational formulation:

ApppAs, V sC q, pΨ,ΦCqq “ LppΨ,ΦCqq, @pΨ,ΦCq P XpΩ̃q ˆH1pΩ̃Cq{C (5.21)

with LspppAs, V sC q, pΨ,ΦCqq :“´
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The incorporation of an impedance boundary condition modifies the expression of the impedance
signal. Going back to the surface integral, it can be written as:

∆Zkl “
1

I2

ż

BΩd

pE0
l ˆHk ´Ek ˆH0

l q ¨ n dS

`
1

I2

ż

BΩp

p´E0
l ˆHk `Ek ˆH0

l q ¨ n dS
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Note that in Ω̃ the normal on BΩp is the normal pointing to the interior of Ωp, while in the
definition of the impedance, the normal is pointing to the exterior. Thus the sign difference for the
integral over the plate boundary.

Using the divergence theorem and Maxwell equations on the integral over the deposit boundary
and the equations (5.3) leads to expression (5.10). For the second integral, we use the definition of
the potentials pA, VCq and pA0, V 0

C q, as well as the impedance condition (5.16).
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In summary, in presence of a support plate modeled by the impedance boundary condition (5.16)
the impedance expression becomes:
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(5.22)
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Inversion of 3D impedance signals

Contents
6.1 Optimization algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.2 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.2.1 Axisymmetric deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

6.2.2 Non axisymmetric deposits without surface penalization . . . . . . . . . . . 160

6.2.3 Surface penalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

The 3D inversion algorithm remains fairly similar to the 2D-axisymmetric case. During the ECT
process, a probe is introduced inside a tube of axis ez. At regular z-positions, it realizes Ns different
impedance measurements. At the end of the process, the probe generates Ns impedance signals
pZimeasqi“1...Ns , containing information about the domain configuration.

The signals are processed through the lens of inverse problems: using the model defined in Chap-
ter 5, we are able to compute the signals pZiqi“1...Ns for any configuration of deposit Ωd. The
objective is to find the shape Ω˚d that generated the measurements Zmeas. In terms of optimization
problem, this leads to:

Find Ω˚d solution of :

min
Ωd

«

J pΩdq :“
1

Ns

Ns
ÿ

i“1

ˆ
ż z0

´z0

ˇ

ˇZipΩd; ζq ´ Zimeaspζq
ˇ

ˇ

2
dζ

˙

ff

(6.1)

The optimization problem is solved using a gradient descent on the shape. This problem is in
apparence simpler than the 2D-axisymmetric one in the sense that there is unknown available to
optimize the cost function. However we expect the reconstruction of 3D shapes to be more complex
as the variability of the problem has greatly increased.

With a 3D configuration, we are able to consider different types of probes. Here we focus on two
devices: the SAX and SMX probes. While the former provides information averaged on the azimuthal
direction, the latter allows to obtain different information on the same direction. As such, we expect
the SMX probe to provide better reconstruction results on non-axisymmetric configurations.

The greatest challenge to a 3D reconstruction of deposits lies in the computational cost of one
iteration: as explained on Section 5.2, depending on the nature of the probe and the number of probe
positions, the number of Finite Element problems to solve can exceed a thousand. Paired with a
problem with a great number of degrees of freedom, say more than a million, the computational cost
of one iteration may become huge, hindering a fast convergence. The study of different iterative block
solvers makes then even more sense as each iteration requires to solve up to more that a thousand
Finite Element problems.

The considerations of Section 5.3 take root in the inverse algorithm: the deposit shape is implicitly
defined using a Level-Set function that moves at each iteration. The geometry resulting from the
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Level-Set function creates instabilities due to the jump of σ on a non-smooth interface, which could
echo to the impedance, the adjoint state and/or the gradient. We developed two methods that can
reduce/remove these instabilities. However, due to the potential high cost of the smoothing of the
surface, in this chapter we use the smoothing of the conductivity to handle the numerical instabilities
as the inversion algorithm requires to apply the smoothing at each iteration.

6.1 Optimization algorithm

To apply a gradient descent method to the optimization problem (6.1), we need to properly define
the shape derivative of the cost function.

Let us reintroduce some notation. Let Q be a regular open subset of Ω and θ P W 1,8pQ,Qq3, a
perturbation field. A domain deformation can be seen as a perturbation of the identity:

Id` θ : QÑ Qθ “ pId` θqQ
where Qθ is the deformed shape. Let v “ vpQq and a “ apQq be respectively a shape-dependent
scalar and vector functions. For scalar functions, we previously defined the notions of material and
shape derivatives. Let us note upθq and v1pθq the respective derivatives. We recall their definitions:

v∇pθq :“ vpQθq ˝ pId` θq “ vpQq ` upθq ` opθq in Q
vpQθq “ vpQq ` v1pθq ` opθq in ω “ QXQθ

where limθÑ0
||opθq||B
||θ||1,8

“ 0. Note that the function v∇pθq preserves the gradient through the change

of variables. Both derivatives are linked together through a chain rule:

upθq “ v1pθq ` θ ¨∇vpQq (6.2)

Definition of the different derivatives for vector fields is more difficult: the transformation Id` θ
has to preserve the curl or the divergence operators in order to properly define the derivatives. We
use in the following the transformed functions defined by [50, Chapter 3].

Under the assumption that the curl and the divergence of a are well-defined, we call acurlpθq, the
curl conforming function and adivpθq, the divergence conforming function defined as:

acurlpθq “ pI`∇θqTapQθq ˝ pId` θq
adivpθq “ detpI`∇θqpI`∇θq´1apQθq ˝ pId` θq

Following these definitions, the curl (resp. divergence) of acurlpθq (resp. adivpθq) exists and is given by:

pI`∇θq
detpI`∇θq∇ˆ pacurlpθqq “∇θ ˆ papQθq ˝ pId` θqq

1

detpI`∇θq∇ ¨ padivpθqq “∇θ ¨ papQθq ˝ pId` θqq

where ∇ denotes the operator in Q and ∇θ, the operator in Qθ.
Note that a similar formula on the gradient of v can be found:

pI`∇θq´T∇pvpQθq ˝ pId` θqq “ p∇θ vpQθqq ˝ pId` θq
The material derivative of a, denoted bpθq, is then defined using acurlpθq. Note that a material

derivative bdivpθq can similarly be defined using adivpθq. The definition of the shape derivative,
denoted a1pθq, remains unchanged:

acurlpθq “ apQq ` bpθq ` opθq in Q
adivpθq “ apQq ` bdivpθq ` opθq in Q

apQθq “ apQq ` a1pθq ` opθq in ω “ QXQθ
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Using the definitions of the different derivatives and the operator conforming functions, we have
the following chain rules;

a1pθq “ bpθq ´ pθ.∇qapQq ´ p∇θqTapQq
bdivpθq “ bpθq `

`

p∇ ¨ θq I´ p∇θq ´ p∇θqT
˘

apQq

The domain perturbation is supposed to move the shape boundary BΩd at each iteration. Hence,
we consider θ such that its support does not intersect Ωs or Ωt, that are seen as invariant domains.
A gradient descent method requires to compute the derivative of the cost function in order to find
a descent direction. Here we choose to calculate its shape derivative, as it appears naturally in the
calculations. For one position z and a signal i “ 1 . . . Ns, we have:

ˇ

ˇZipΩq ´ Zimeas

ˇ

ˇ

2
“ pZipΩq ´ ZimeasqpZ

ipΩq ´ Zimeasq

“
ˇ
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ˇ

ˇ

2
`
ˇ
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ˇ

ˇ

2
´ ZipΩqZimeas ´ ZipΩqZimeas

“
ˇ
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ˇ

ˇ

2
`
ˇ

ˇZimeas

ˇ

ˇ

2
´ 2<

´

ZipΩqZimeas

¯

Given the definition above, the shape derivative of
ˇ

ˇZipΩq ´ Zimeas

ˇ

ˇ

2
, for a perturbation θ, writes :

ˇ

ˇZipΩθq ´ Zimeas

ˇ

ˇ

2
“

ˇ

ˇZipΩq ` pZiq1pθq
ˇ

ˇ

2
`
ˇ

ˇZimeas

ˇ

ˇ

2
´ 2<

´

pZipΩq ` pZiq1pθqqZimeas

¯

` opθq

“
ˇ

ˇZipΩq ´ Zimeas

ˇ

ˇ

2
´2<

´

ppZiq1pθqqpZipΩq ´ Zimeasq

¯

looooooooooooooooooooomooooooooooooooooooooon

shape derivative

`
ˇ

ˇpZiq1pθq
ˇ

ˇ

2

loooomoooon

opθq

`opθq

Hence for the cost function :

J 1pΩdqpθq “
1

Ns

Ns
ÿ

i“1

ż zmax

zmin

2<
´

pZiq1pθqpZipΩd; ζq ´ Zimeaspζqq
¯

(6.3)

The computation of Z 1pΩq requires some preliminary results. For any Q Ă Ω, let κpQq be the
following shape-dependent sesquilinear form, @pa, vq, pψ, φq P XpQq ˆH1pQX ΩCq{C:

κpQqppa, vq, pψ, φqq “
ż

Q

1

µ
p∇ˆ aq ¨ p∇ˆψqdx`

1

iω

ż

Q
σpiωa`∇vq ¨ piωψ `∇φqdx (6.4)

For a shape dependent scalar function vpQq, we define the surface gradient ∇τv on BQ as ∇τv “
∇v ´ p∇v ¨ nqn, where n is the outward normal of the surface.

The following calculations are based on [67], Chapter 5.

Lemma 6.1. Assume that µ and σ are constant in Q. Let pa, vq P XpQqˆH1pQXΩCq{C satisfy in
the weak sense

$

’

&

’

%

∇ˆ pµ´1∇ˆ aq ´ σpiωa`∇vq “ 0 in Q
∇ ¨ a “ 0 in Q
σpiωa`∇vq ¨ n “ 0 on BQ

(6.5)

and pψ, φq P XpQqˆH1pQXΩCq{C and assume that their shape derivatives ppa1pθq, v1pθqq, pψ1pθq, φ1pθqqq
and material derivatives ppbpθq, upθqq, pηpθq, χpθqqq exist. We assume in addition that D2v and D2φ
are in L2pQ X tΩv Y Ωduq. Then the shape derivative of κpQqpupQq, vpQqq, denoted by κ1pθq exists
for all admissible perturbations θ and is given by

κ1pθq “ κpQqppa1pθq, v1pθqq, pψ, φqq ` κpQqppa, vq, pηpθq, χpθqqq

`

ż

BQ

1

µ
pθ ¨ p∇ˆ aqqpn ¨ p∇ˆψqq dS `

1

iω

ż

BQ
σpn ¨ θqpiωa`∇vq ¨ piωψ `∇φq dS

(6.6)
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Proof : In order to compute the shape derivative, we consider κpQθqppa, vq, pψ, φqq and the change
of variables

pId` θq´1 : Qθ Ñ Q, y ÞÑ x

We recall that κpQθq is defined by:

κpQθqppa, vq, pψ, φqq “
ż

Qθ

1

µ
p∇θ ˆ apQθqq ¨ p∇θ ˆψpQθqqdy

`
1

iω

ż

Qθ
σpiωapQθq `∇θ vpQθqq ¨ piωψpQθq `∇θ φpQθqqdy

After application of the change of variables to the integrals, we have:

κpQθqppa, vq, pψ, φqq “
ż

Q

1

µ

„

pI`∇θqTpI`∇θq
|detpI`∇θq| p∇ˆ acurlpθqq



¨ p∇ˆψcurlpθqqdx

`
1

iω

ż

Q
σ|detpI`∇θq|

“

pI`∇θq´1pI`∇θq´Tpiωacurlpθq `∇v∇pθqq
‰

¨ piωψcurlpθq `∇φ∇pθqqdx

The shape derivative κ1pθq corresponds to the first order of the Taylor expansion of κpQθq at
order 1 with respect to the perturbation θ. Knowing the definitions of the material derivatives for
vector and scalar fields, and :

detpI`∇θq “ 1`∇ ¨ θ ` opθq

pI`∇θq´1 “ I´∇θ ` opθq

We have the following formula:

κ1pθq “κpQqppbpθq, upθqq, pψ, φqq ` κpQqppa, vq, pηpθq, χpθqqq

`

ż

Q

1

µ

“`

´p∇ ¨ θqI`∇θ ` p∇θqT
˘

p∇ˆ aq
‰

¨ p∇ˆψqdx

*

I1

`
1

iω

ż

Q
σ
“`

p∇ ¨ θqI´∇θ ´ p∇θqT
˘

piωa`∇vq
‰

¨ piωψ `∇φqdx

*

I2

In the following we clarify the integrals I1 and I2.

Consider the following vector calculus identity, using the problem (6.5) satisfied by pa, vq:

´

p´∇ ¨ θqI`∇θ `∇θT
¯

p∇ˆaq “ ´∇ˆppθ.∇qa`p∇θqTaq`∇pθ ¨ p∇ˆaqq`µσpiωa`∇vqˆθ

Hence:

I1 “´

ż

Q

1

µ

“

∇ˆ
`

pθ.∇qa` p∇θqTa
˘‰

¨
“

∇ˆψ
‰

dx

`

ż

Q

1

µ
∇pθ ¨ p∇ˆ aqq ¨

“

∇ˆψ
‰

dx
loooooooooooooooooooooomoooooooooooooooooooooon

I11

`

ż

Q
σppiωa`∇vq ˆ θq ¨

“

∇ˆψ
‰

dx
looooooooooooooooooooooomooooooooooooooooooooooon

I12

From the vector calculus identity ∇ ¨ pϕFq “ p∇ ¨Fqϕ` p∇ϕq ¨F and integration by parts, we have:

I11 “

ż

Q

1

µ
∇ ¨

“

pθ ¨ p∇ˆ aqqp∇ˆψq
‰

dx “

ż

BQ

1

µ
pθ ¨ p∇ˆ aqq

`

n ¨ p∇ˆψq
˘

dS
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Consider the vector calculus identity ∇ ˆ pf ˆ gq “ fp∇ ¨ gq ´ gp∇ ¨ fq ` pg ¨∇qf ´ pf ¨∇qg,
integration by parts and the boundary condition (6.5)3 leads to:

I12 “

ż

Q
r∇ˆ pσpiωa`∇vq ˆ θqs ¨ψ dx`

ż

BQ
pψ ˆ pσpiωa`∇vq ˆ θqq ¨ n dS

“´
1

iω

ż

Q
σ rpp∇ ¨ θqI´∇θqpiωa`∇vq ` pθ.∇qpiωa`∇vqs ¨ iωψ dx

`
1

iω

ż

BQ
σpθ ¨ nqpiωa`∇vq ¨ iωψ dS

As for I2, we have:

I2 “
1

iω

ż

Q
σ
“`

p∇ ¨ θqI´∇θ ´ p∇θqT
˘

piωa`∇vq
‰

¨ iωψ dx

`
1

iω

ż

Q
σp∇ ¨ θq

“

piωa`∇vq ¨∇φ
‰

dx
loooooooooooooooooooooooomoooooooooooooooooooooooon

I21

`
1

iω

ż

Q
σ
“`

´∇θ ´ p∇θqT
˘

piωa`∇vq
‰

¨∇φdx
looooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooon

I22

Consider the vector calculus identity ∇pf ¨ p∇hqq “ p∇fqT∇h ` pD2hqf , combining it with an
integration by parts yields:

I21 “
1

iω

ż

BQ
σpθ ¨ nqpiωa`∇vq ¨∇φdS ´

1

iω

ż

Q
σθ ¨∇ppiωa`∇vq ¨∇φqdx

“
1

iω

ż

BQ
σpθ ¨ nqpiωa`∇vq ¨∇φdS ´

1

iω

ż

Q
iωσ rpθ.∇qas ¨∇φ dx

´
1

iω

ż

Q
σ
“

pD2vqθ
‰

¨∇φ dx´
1

iω

ż

Q
σ
“

pD2φqpiωa`∇vq
‰

¨ θ dx

For calculation of I22, note that:

´
1

iω

ż

Q
σ rp∇θqpiωa`∇vqs ¨∇φ dx

“ ´
1

iω

ż

Q
σpiωa`∇vq ¨

“

p∇θqT∇φ
‰

dx

“
1

iω

ż

Q
σ
“

pD2φqpiωa`∇vq
‰

¨ θ dx´
1

iω

ż

Q
σpiωa`∇vq ¨∇pθ ¨∇φqdx

“
1

iω

ż

Q
σ
“

pD2φqpiωa`∇vq
‰

¨ θ dx

Therefore

I2 “
1

iω

ż

Q
σ
“`

p∇ ¨ θqI´∇θ ´ p∇θqT
˘

piωa`∇vq
‰

¨ iωψ dx`
1

iω

ż

BQ
σpθ ¨ nqpiωa`∇vq ¨∇φdS

´
1

iω

ż

Q
iωσ

“

pθ.∇qa` p∇θqTa
‰

¨∇φdx´
1

iω

ż

Q
σ∇pθ ¨∇vq ¨∇φdx

Combining I1 and I2 and the fact that σpiωa`∇vq ¨ n “ 0 on BQ leads to the wanted result.

We recall the expression of an impedance measurement at a given position z, for a given signal
Z “ Zi:
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∆Z “
iω

I2

ż

Ωd

ˆˆ

1

µ
´

1

µ0

˙

p∇ˆAq ¨ p∇ˆA0q

´
1

iω
pσ ´ σ0qpiωA`∇VCq ¨ piωA0 `∇V 0

C q

˙

dx

where pA, VCq is the direct field, solution of (5.5) with physical parameters pσ, µq and pA0, V 0
C q is

the incident field, solution of the same problem with physical parameters pσ0, µ0q. Note that we
assume that a small conductivity σε is placed in the vaccum outside the tube and in the deposit
for the incident configuration so that Ω0

C “ ΩC . We drop the subscripts k and l, referring to the
receiver/emitter coil to ensure a better readability of the calculations.

Note that similarly to (6.4), we define for the incident field a sesquilinear form κ0:

κ0pQqppa0, v0q, pψ, φqq “

ż

Q

1

µ0
p∇ˆ a0q ¨ p∇ˆψqdx`

1

iω

ż

Q
σ0piωa0 `∇v0q ¨ piωψ `∇φqdx

Under the assumptions of Lemma 6.1, we can derive a formula for the shape derivative of κ0,
similar to (6.6).

Proposition 6.2. The shape derivative of the impedance ∆Z is well defined and is given by :

∆Z 1pθq “
iω

I2

ż

Ωd

ˆˆ

1

µ
´

1

µ0

˙

p∇ˆA1pθqq ¨ p∇ˆA0q

´
1

iω
pσ ´ σ0qpiωA1pθq `∇V 1Cpθqq ¨ piωA0 `∇V 0

C q

˙

dx

`
iω

I2

ż

Γ

pθ ¨ nq

ˆ„

1

µ



p∇ˆAq ¨ p∇ˆA0q

´
1

iω
rσspiωA`∇VCq ¨ piωA0 `∇V 0

C q

˙

dx

(6.7)

where Γ is the shape boundary.

Note that the notation rσs is defined by rσspx0q “ limxPΩC
dÑx0

σpxq ´ limxPΩdÑx0 σpxq, for x0 P Γ.

Proof : Consider a deformation pId ` θq of the deposit. This deformation leaves the incident
field pA0, V 0

C q invariant: therefore its shape derivative is equal to zero. Consequently its material
derivative pB0pθq, U0

C pθqq writes:

B0pθq “ pθ.∇qA0 ` p∇θqTA0, U0
C pθq “ θ ¨∇V 0

C

Let pA1pθq, V 1Cpθqq be the shape derivative and pBpθq, UCpθqq, the material derivative of the direct
field pA, VCq.

Given the definition of the sesquiliear forms κ and κ0, the impedance measurement can be rewrit-

ten as I2

iω∆Z “ κpΩdqppA, VCq, pA0,´V 0
C qq ´ κ0pΩdqppA

0, V 0
C q, pA,´VCqq. Since in Ωd, the physical

parameters σ, σ0, µ, µ0 are constant and the different fields verify (6.5), we can apply Lemma 6.1 to
compute the shape derivative of the impedance:

I2

iω
∆Z 1pθq “κpΩdqppA

1pθq, V 1Cpθqq, pA
0,´V 0

C qq ` κpΩdqppA, VCq, pB
0pθq,´U0

C pθqqq

´ κ0pΩdqppA
0, V 0

C q, pBpθq,´UCpθqqq

`

ż

Γ

ˆ

1

µ
pθ ¨ p∇ˆAqqpn ¨ p∇ˆA0qq ´

1

µ0
pθ ¨ p∇ˆA0qqpn ¨ p∇ˆAqq

˙

dS

´
1

iω

ż

Γ

rσspn ¨ θqpiωA`∇VCq ¨ piωA0 `∇V 0
C qdS

(6.8)
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Observe that:

κpΩdqppA, VCq, pB0pθq,´U0
C pθqqq

“ κpΩdqppA, VCq, ppθ.∇qA0 ` p∇θqTA0,´θ ¨∇V 0
C qq

“

ż

Ωd

1

µ
p∇ˆAq ¨ p∇ˆ ppθ.∇qA0 ` p∇θqTA0qqdx

*

S1

´
1

iω

ż

Ωd

σpiωA`∇VCq ¨
“

iωppθ.∇qA0 ` p∇θqTA0q `∇pθ ¨∇V 0
C q

‰

dx

*

S2

Consider the vector calculus identities ∇ ˆ ppθ.∇qA0 ` p∇θqTA0q “ ∇ ˆ
“

p∇ˆA0q ˆ θ
‰

and
pθ.∇qA0 ` p∇θqTA0 “ p∇ ˆA0q ˆ θ `∇pA0 ¨ θq. Combining it with (6.5) and by integration by
parts we have:

S1 “

ż

Ωd

1

µ
p∇ˆAq ¨ p∇ˆ

“

p∇ˆA0q ˆ θ
‰

qdx

“

ż

Ωd

„

∇ˆ

ˆ

1

µ
p∇ˆAq

˙

¨
“

p∇ˆA0q ˆ θ
‰

dx`

ż

Γ

1

µ
pp∇ˆAq ˆ nq ¨ pp∇ˆA0q ˆ θqdS

“

ż

Ωd

σpiωA`∇VCq ¨
“

p∇ˆA0q ˆ θ
‰

dx`

ż

Γ

1

µ
pp∇ˆAq ˆ nq ¨ pp∇ˆA0q ˆ θqdS

Similarly,

S2 “ ´
1

iω

ż

Ωd

σpiωA`∇VCq ¨
“

iωp∇ˆA0q ˆ θq `∇pθ ¨ piωA0 `∇V 0
C qq

‰

dx

“ ´

ż

Ωd

σpiωA`∇VCq ¨
“

p∇ˆA0q ˆ θ
‰

dx

Combining S1 and S2 yields:

κpΩdqppA, VCq, pB0pθq,´U0
C pθqqq

“

ż

Γ

1

µ
pp∇ˆAq ˆ nq ¨ pp∇ˆA0q ˆ θqdS

“

ż

Γ

1

µ

 

ppθ ¨ nqpp∇ˆAq ¨ p∇ˆA0qq ´ pθ ¨ p∇ˆAqqpn ¨ p∇ˆA0qq
(

dS

(6.9)

Similar reasoning lead to:

κ0pΩdqppA
0, V 0

C q, pBpθq,´UCpθqqq

“ κ0pΩdqppA
0, V 0

C q, pA
1pθq,´V 1Cpθqqq ` κ

0pΩdqppA
0, V 0

C q, ppθ.∇qA` p∇θqTA,´θ ¨∇VCqq

“ κ0pΩdqppA
0, V 0

C q, pA
1pθq,´V 1Cpθqqq

`

ż

Γ

1

µ0

 

ppθ ¨ nqpp∇ˆA0q ¨ p∇ˆAqq ´ pθ ¨ p∇ˆA0qqpn ¨ p∇ˆAqq
(

dS

(6.10)

From (6.8), (6.9) and (6.10), we find the wanted formula.

A gradient descent method requires the computation of a descent direction θ such that the shape
derivative of the cost function is strictly negative. As such, formula (6.7) makes computation of
such a deformation difficult as it is partly implicit with respect to θ. Similarly to the first part,
we introduce an adjoint state pP,WCq to rewrite (6.7) explicitly with respect to θ. It verifies the
following variational formulation:
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A˚ppP,WCq, pΨ,ΦCqq “ L˚ppΨ,ΦCqq, @pΨ,ΦCq P XpΩq ˆH1pΩCq{C (6.11)

with A˚ppP,WCq, pΦ,ΨCqq :“ AppΦ,ΨCq, pP,WCqq

L˚ppΨ,ΦCqq :“

ż

Ωd

ˆˆ

1

µ
´

1

µ0

˙

p∇ˆA0q ¨ p∇ˆΨq

`
1

iω
pσ ´ σ0qpiωA0 `∇V 0

C q ¨ piωΨ`∇ΦCq

˙

dx

Note that in the weak sense, the adjoint state satisfies:

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

∇ˆ pµ´1∇ˆPq ´ µ´1
˚ ∇p∇ ¨Pq ` σpiωPC `∇WCq

“∇ˆ

„ˆ

1

µ
´

1

µ0

˙

p∇ˆA0q



´ pσ ´ σ0qpiωA0 `∇V 0
C q in Ωd

∇ˆ pµ´1∇ˆPq ´ µ´1
˚ ∇p∇ ¨Pq ` σpiωPC `∇WCq “ 0 in ΩC

d

rn ¨ p∇ˆPqs “ 0 on Γ
„

1

µ
p∇ˆPq ˆ n



“ ´

ˆ

1

µ
´

1

µ0

˙

p∇ˆA0q ˆ n on Γ

∇ ¨ pσpiωPC `∇WCqq “ 0 in ΩC

σpiωPC `∇WCq ¨ nC “ 0 on BΩC X BΩI

P ¨ n “ 0 on BΩ

pµ´1∇ˆPq ˆ n “ 0 on BΩ

The above formulation involves the same penalization of the divergence as for A. Similarly, using
[1] Lemma 6.1, we are able to prove that ∇ ¨P “ 0 in Ω.

Proposition 6.3. Let pA0, V 0
C q P XpΩq ˆ H1pΩCq{C be the solution to the eddy-current problem

in a deposit-free case. Then the variational formulation (6.11) has a unique solution pP,WCq P

XpΩq ˆH1pΩCq{C.

The proof to this theorem is a consequence of the well-posedness of (5.8).

Proposition 6.4. Let pP,WCq be the adjoint state satisfying the adjoint problem (6.11), then the
shape derivative of the impedance ∆Z has the following expression :

∆Z 1pθq “
iω

I2

ż

BΩd

pθ ¨ nq

" „

1

µ



pn ¨ p∇ˆAqqppn ¨ p∇ˆPq ´ pn ¨ p∇ˆA0qqq

´ rµs

ˆ

1

µ
p∇ˆAq ˆ n

˙

¨

ˆ

1

µ0
p∇ˆP`q ˆ n´

1

µ0
p∇ˆA0q ˆ n

˙

`
1

iω
rσspiωAτ `∇τVCq ¨ piωP`∇WC ` iωA0 `∇V 0

C q

*

dS

(6.12)

where the notation P` is defined by P`px0q “ limxPΩC
dÑx0

Ppxq, for x0 P Γ.

We refer to [29] for more details on the proof to Proposition 6.4. It is based on the problem
verified by the material derivatives pBpθq, Upθqq, of the form:

AppBpθq, UCpθqq, pΨ,ΦCqq “ LppΨ,ΦCqq, @pΨ,ΦCq P XpΩqq ˆH1pΩCq{C (6.13)

where A is the sesquilinear form of the direct problem. By taking pΨ,Φq “ pP,WCq in (6.13) and
pΨ,Φq “ pBpθq, UCpθqq in (6.11), we have:

LppP,WCqq “ AppBpθq, UCpθqq, pP,WCqq “ A˚ppP,WCq, pBpθq, UCpθqq “ L˚ppBpθq, UCpθqq
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From this relation between the linear forms L and L we can deduce after further calculations the
wanted result.

The shape derivative of a given impedance signal pZiq1pθq is a linear combination of ∆Z 1pθq,
depending on the mode considered, absolute or differential, and the coils considered (for the SMX
probe). In conclusion, the shape derivative of the cost function can be written as:

J 1pΩdqpθq “ ´
1

Ns

Ns
ÿ

i“1

ω

I2

ż

BΩd

pθ ¨ nqgi dS

For a signal i, let us write ki, li “ 1 . . . Nc the number of the receiver and emitter coil. The vector g
of gradients is then defined by:

gi “

#

glili ` gkili absolute mode

glili ´ gkiki differential mode

where for a given emitter coil l “ 1 . . . Nc and a receiver k “ 1 . . . Nc,

gkl “

ż z0

´z0

<
ˆ

pZpΩd; ζq ´ Zmeaspζqq

"„

1

µ



pn ¨ p∇ˆAkqqppn ¨ p∇ˆPlq ´ pn ¨ p∇ˆA0
l qqq

´ rµs

ˆ

1

µ
p∇ˆAkq ˆ n

˙

¨

ˆ

1

µ0
p∇ˆ pPlq`q ˆ n´

1

µ0
p∇ˆA0

l q ˆ n

˙

`
1

iω
rσspiωAk `∇VC,kq ¨ piωPl `∇WC,l ` iωA0

l `∇V 0
C,lq

*
ˇ

ˇ

ˇ

ˇ

ζ

¸

dS

(6.14)

where the notation A|ζ refers to the solution of the direct problem with the source term generated
by the coils at position ζ.

If one chooses a descent θψ such that

θψ “ γ
1

Ns

Ns
ÿ

i“1

gin on BΩd (6.15)

then this provides a descent direction a γ ą 0 sufficiently small.

In terms of the numerical implementation of the descent direction using FreeFEM, computation
of the gradients associated with the different signals is a costly operation that we might want to
optimize. For the SAX probe, we do not change the calculation of θψ as the device generates only
four signals. However, as the SMX probe produces 78 signals, the computational cost of the descent
direction can be quite heavy. However, the equality ∆Zkl “ ∆Zlk proven in Section 5.2.1 for any
k, l can offer a clever re-definition of the descent direction: given the definition of gkl, we can derive
the same equality for the gradient, that is to say gkl “ glk for any k, l. Hence the expression of the
shape gradient for one signal i becomes gi “ glili ` gliki .

Let us denote from 1 to Nc{2 the emitter coil numbers (the lower row of coils) and for a given
emitter e P 1 . . . Nc{2, re1, r

e
2, r

e
3, r

e
4 P 1 . . . Nc denote the receiver coil number associated with the

emitter number e, while Ze1 ,Ze2 ,Ze3 ,Ze4 are the four signals associated with the emitter coil e. The
descent direction definition can be then re-written as:

θψ “ γ
1

Ns

Nc{2
ÿ

e“1

pge1 ` ge2 ` ge3 ` ge4qn on BΩd

“ γ
1

Ns

Nc{2
ÿ

e“1

``

gee ` gere1
˘

`
`

gee ` gere2
˘

`
`

gee ` gere3
˘

`
`

gee ` gere4
˘˘

n on BΩd

“ γ
1

Ns

Nc{2
ÿ

e“1

gen on BΩd
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where the quantity ge for a given emitter coil e is defined by:

ge “

ż z0

´z0

<
"„

1

µ



pn ¨ p∇ˆAeqqppn ¨ p∇ˆ P̃eq ´ pn ¨ p∇ˆ Ã0
eqqq

´ rµs

ˆ

1

µ
p∇ˆAeq ˆ n

˙

¨

ˆ

1

µ0
p∇ˆ pP̃eq`q ˆ n´

1

µ0
p∇ˆ Ã0

eq ˆ n

˙

`
1

iω
rσspiωAe `∇VC,eq ¨ piωP̃e `∇W̃C,e ` iωÃ0

e `∇Ṽ 0
C,eq

*
ˇ

ˇ

ˇ

ˇ

ζ

dS

The fields pP̃e, W̃C,eq and pÃ0
e, Ṽ

0
C,eq for e P 1 . . . Nc{2 are defined by:

P̃e “

4
ÿ

i“1

`

pZei ´ Zeimeasq
`

Prei
`Pe

˘˘

, W̃C,e “

4
ÿ

i“1

`

pZei ´ Zeimeasq
`

WC,rei `WC,e
˘˘

Ã0
e “

4
ÿ

i“1

´

pZei ´ Zeimeasq

´

A0
rei
`A0

e

¯¯

, Ṽ 0
C,e “

4
ÿ

i“1

´

pZei ´ Zeimeasq

´

V 0
C,rei ` V

0
C,e

¯¯

As they are weighted linear combinations of solutions of (6.11), the fields pP̃e, W̃C,eq can be com-
puted by solving the same problem with a different RHS corresponding to the combinations. Hence
we are able to alleviate computational costs by the reducing the number of gradients to compute:
for the considered SMX probe, we go from 78 gradients (one for each signal) to 19 gradients (one for
each emitter).

We remark that similarly to the 2D case, formal calculations using the Lagrangian can be used
to derive the expression of the derivative in terms of the adjoint state.

We introduce the same notations as in Chapter 3: consider an impedance measurement Zmeas for
a given coil position, Z denotes the numerical measurement for a given shape Ωd. Depending on the
mode chosen, Z can be written as i{2p∆Zk1l1 ˘∆Zk2l2q, where k1 and k2 refer to the receiver coils
and l1 and l2, to the emitter coils. We note pAk1

pΩdq, VC,k1
pΩdqq (resp. pAk2

pΩdq, VC,k2
pΩdqq) the

solution of the direct problem (5.5) where the source term J is supported by the coil k1 (resp. k2).
The variational problems can be rewritten as:

@pΨ,ΦCq P XpΩq ˆH1pΩCq,

a
´

pAk1
pΩdq, VC,k1

pΩdqq,Ωd, pΨ,ΦCq
¯

“ lk1

´

pΨ,ΦCq
¯

a
´

pAk2
pΩdq, VC,k2

pΩdqq,Ωd, pΨ,ΦCq
¯

“ lk2

´

pΨ,ΦCq
¯

where:

@pA, VCq, pΨ,ΦCq P XpΩq ˆH1pΩCq,@admissible shape Ωd

a
´

pA, VCq,Ωd, pΨ,ΦCq
¯

:“

ż

Ωd

“

µ´1p∇ˆAq ¨ p∇ˆΨq ` µ´1
˚ p∇ ¨Aqp∇ ¨Ψq

‰

dx

`
1

iω

ż

Ωd

σpiωAC `∇VCq ¨ piωΨC `∇ΦCqdx

`

ż

ΩzΩd

“

µ´1p∇ˆAq ¨ p∇ˆΨq ` µ´1
˚ p∇ ¨Aqp∇ ¨Ψq

‰

dx

`
1

iω

ż

ΩCzΩd

σpiωAC `∇VCq ¨ piωΨC `∇ΦCqdx

lk1

´

pΨ,ΦCq
¯

:“

ż

Ω

Jk1
¨Ψ dx

lk2

´

pΨ,ΦCq
¯

:“

ż

Ω

Jk2
¨Ψ dx
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where the notation Jk1
(resp. Jk2

) refers to the source term J being supported by the coil k1 (resp.
k2). Note that a is linear with respect to pA, VCq and pΨ,ΦCq and l is linear with respect to pΨ,ΦCq.

We focus here on a single probe position: we denote by J̃ pΩdq the following cost function.

J̃ pΩdq : “
ˇ

ˇ

ˇ
Z
´

pAk1pΩdq, VC,k1pΩdqq, pAk2pΩdq, VC,k2pΩdqq,Ωd

¯

´ Zmeas

ˇ

ˇ

ˇ

2

“ j
´

pAk1pΩdq, VC,k1pΩdqq, pAk2pΩdq, VC,k2pΩdqq,Ωd

¯

with, for a given coil number k (receiver) and l (emitter)

@pAk, VC,kq, pAk1
, VC,k1

q, pAk2
, VC,k2

q P XpΩq ˆH1pΩCq,@admissible shape Ωd,

∆Zkl

´

pAk, VC,kq,Ωd

¯

:“
iω

I2

ż

Ωd

ˆˆ

1

µ
´

1

µ0

˙

p∇ˆAkq ¨ p∇ˆA0
l q ´

1

iω
pσ ´ σ0qpiωAk `∇VC,kq ¨ piωA0

l `∇V 0
C,lq

˙

dx

j
´

pAk1
, VC,k1

q, pAk2
, VC,k2

q,Ωd

¯

:“

ˇ

ˇ

ˇ

ˇ

i

2

´

∆Zk1l1

´

pAk1
, VC,k1

q,Ωd

¯

˘∆Zk2l2

´

pAk2
, VC,k2

q,Ωd

¯¯

´ Zmeas

ˇ

ˇ

ˇ

ˇ

2

The state equations satisfied by the direct fields pAk1
pΩdq, VC,k1

pΩdqq and pAk2
pΩdq, VC,k2

pΩdqq
can be seen as constraints of type F ppAkpΩdq, VC,kpΩdqqq “ 0, added to the optimization problem.
As such, we introduce the Lagrangian L of the system:

@pAk1 , VC,k1q, pAk2 , VC,k2q, pΨk1 ,ΦC,k1q, pΨk2 ,ΦC,k2q P XpΩq ˆH1pΩCq,@admissible shape Ωd,

L
´

pAk1
, VC,k1

q, pAk2
, VC,k2

q,Ωd, pΨk1
,ΦC,k1

q, pΨk2
,ΦC,k2

q

¯

:“ j
´

pAk1
, VC,k1

q, pAk2
, VC,k2

q,Ωd

¯

´
ω

I2
<
!

pZ ´ Zmeasq

´

a
´

pAk1
, VC,k1

q,Ωd, pΨk1
,ΦC,k1

q

¯

´ lk1

´

pΨk1
,ΦC,k1

q

¯

˘ pZ ´ Zmeasq

´

a
´

pAk2
, VC,k2

q,Ωd, pΨk2
,ΦC,k2

q

¯

´ lk2

´

pΨk2
,ΦC,k2

q

¯¯¯)

where pΨk1
,ΦC,k1

q and pΨk2
,ΦC,k2

q play the role of the Lagrange multipliers for each state equation.
Under the above definition, we have

@pΨk1 ,ΦC,k1q, pΨk2 ,ΦC,k2q P XpΩq ˆH1pΩCq,

J̃ pΩdq “ L
´

pAk1
pΩdq, VC,k1

pΩdqq, pAk2
pΩdq, VC,k2

pΩdqq,Ωd, pΨk1
,ΦC,k1

q, pΨk2
,ΦC,k2

q

¯

Hence, if we note J̃ 1pΩdqpθq the shape derivative of the cost function for a given perturbation θ
of the shape, we have:
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@pΨk1 ,ΦC,k1q, pΨk2 ,ΦC,k2q P XpΩq ˆH1pΩCq,

J̃ 1pΩdqpθq

“ BAk1
L
´

pAk1pΩdq, VC,k1pΩdqq, pAk2pΩdq, VC,k2pΩdqq,Ωd, pΨk1 ,ΦC,k1q, pΨk2 ,ΦC,k2q

¯

pA1
k1
pΩdqpθqq

` BVk1
L
´

pAk1pΩdq, VC,k1pΩdqq, pAk2pΩdq, VC,k2pΩdqq,Ωd, pΨk1 ,ΦC,k1q, pΨk2 ,ΦC,k2q

¯

pV 1k1
pΩdqpθqq

` BAk2
L
´

pAk1
pΩdq, VC,k1

pΩdqq, pAk2
pΩdq, VC,k2

pΩdqq,Ωd, pΨk1
,ΦC,k1

q, pΨk2
,ΦC,k2

q

¯

pA1
k2
pΩdqpθqq

` BVk2
L
´

pAk1
pΩdq, VC,k1

pΩdqq, pAk2
pΩdq, VC,k2

pΩdqq,Ωd, pΨk1
,ΦC,k1

q, pΨk2
,ΦC,k2

q

¯

pV 1k2
pΩdqpθqq

` BΩdL
´

pAk1
pΩdq, VC,k1

pΩdqq, pAk2
pΩdq, VC,k2

pΩdqq,Ωd, pΨk1
,ΦC,k1

q, pΨk2
,ΦC,k2

q

¯

pθq

(6.16)

where the notations BAk1
, BVk1

, BAk2
, BVk2

and BΩd refer to the partial differentials of the Lagrangian
with respect to the adequate variables.

Let us now define the adjoint state pPl1pΩdq,WC,l1pΩdqq P XpΩqˆH1pΩCq (resp. pPl2pΩdq,WC,l2pΩdqq P
XpΩq ˆH1pΩCq) for a given shape Ωd by:

@pΨ,ΦCq, pΨk1
,ΦC,k1

q, pΨk2
,ΦC,k2

q P XpΩq ˆH1pΩCq,

BAk1
L
´

pAk1
pΩdq, VC,k1

pΩdqq, pAk2
pΩdq, VC,k2

pΩdqq,Ωd, pPl1pΩdq,ΦC,k1
q, pΨk2

,ΦC,k2
q

¯

pΨq “ 0

BVk1
L
´

pAk1
pΩdq, VC,k1

pΩdqq, pAk2
pΩdq, VC,k2

pΩdqq,Ωd, pΨk1
,WC,l1pΩdqq, pΨk2

,ΦC,k2
q

¯

pΦCq “ 0

BAk2
L
´

pAk1
pΩdq, VC,k1

pΩdqq, pAk2
pΩdq, VC,k2

pΩdqq,Ωd, pΨk1
,ΦC,k1

q, pPl2pΩdq,ΦC,k2
q

¯

pΨq “ 0

BVk2
L
´

pAk1
pΩdq, VC,k1

pΩdqq, pAk2
pΩdq, VC,k2

pΩdqq,Ωd, pΨk1
,ΦC,k1

q, pΦk2
,WC,l2pΩdqq

¯

pΦCq “ 0

(6.17)

By taking Ψ to be A1
k1
pθq in (6.17)1 and A1

k2
pθq in (6.17)3 and ΦC to be V 1C,k1

pθq in (6.17)2 and
V 1C,k2

pθq in (6.17)4, pΨk1
,ΦC,k1

q “ pPl1pΩdq,WC,l1pΩdqq and pΨk2
,ΦC,k2

q “ pPl2pΩdq,WC,l2pΩdqq in

(6.16), the shape derivative of the cost function J̃ becomes:

J̃ 1pΩdqpθq

“ BΩdL
´

pAk1
pΩdq, VC,k1

pΩdqq, pAk2
pΩdq, VC,k2

pΩdqq,Ωd, pPl1pΩdq,WC,l1pΩdqq, pPl2pΩdq,WC,l2pΩdqq
¯

pθq

“ BΩdjppAk1
pΩdq, VC,k1

pΩdqq, pAk2
pΩdq, VC,k2

pΩdqq,Ωd

¯

pθq

´
ω

I2
<
!

pZ ´ ZmeasqBΩda
´

pAk1
pΩdq, VC,k1

pΩdqq,Ωd, pPl1pΩdq,WC,l1pΩdqq
¯

pθq
)

¯
ω

I2
<
!

pZ ´ ZmeasqBΩda
´

pAk2
pΩdq, VC,k2

pΩdqq,Ωd, pPl2pΩdq,WC,l2pΩdqq
¯

pθq
)

Let us specify the problem satisfied by the adjoint states:
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@pΨ,ΦCq, pΨk1 ,ΦC,k1q, pΨk2 ,ΦC,k2q P XpΩq ˆH1pΩCq,

ω

I2
<
!

BAk1
a
´

pAk1pΩdq, VC,k1pΩdqq,Ωd, pPl1pΩdq,ΦC,k1q

¯

pΨq
)

“ BAk1
j
´

pAk1pΩdq, VC,k1pΩdqq, pAk2pΩdq, VC,k2pΩdqq,Ωd

¯

pΨq

ω

I2
<
!

BVk1
a
´

pAk1pΩdq, VC,k1pΩdqq,Ωd, pΨk1 ,WC,l1pΩdqq
¯

pΦCq
)

“ BVk1
j
´

pAk1pΩdq, VC,k1pΩdqq, pAk2pΩdq, VC,k2pΩdqq,Ωd

¯

pΦCq

˘
ω

I2
<
!

BAk2
a
´

pAk2pΩdq, VC,k2pΩdqq,Ωd, pPl2pΩdq,ΦC,k2q

¯

pΨq
)

“ BAk2
j
´

pAk1pΩdq, VC,k1pΩdqq, pAk2pΩdq, VC,k2pΩdqq,Ωd

¯

pΨq

˘
ω

I2
<
!

BVk2
a
´

pAk2pΩdq, VC,k2pΩdqq,Ωd, pΨk2 ,WC,l2pΩdqq
¯

pΦCq
)

“ BVk2
j
´

pAk1pΩdq, VC,k1pΩdqq, pAk2pΩdq, VC,k2pΩdqq,Ωd

¯

pΦCq

(6.18)

We can combine (6.18)1 with (6.18)2, and (6.18)3 with (6.18)4 by specifying the test functions
pΨk1

,ΦC,k1
q and pΨk2

,ΦC,k2
q, and using the linearity of a with respect to the fields pA, VCq. This

leads to the following adjoint equation for either pPl1pΩdq,WC,l1pΩdqq or pPl2pΩdq,WC,l2pΩdqq, for all
pΨ,ΦCq P XpΩq ˆH1pΩCq:

ż

Ωd

“

µ´1p∇ˆΨq ¨ p∇ˆPq ` µ´1
˚ p∇ ¨Ψqp∇ ¨Pq

‰

dx´
1

iω

ż

Ωd

σpiωΨC `∇ΦCq ¨ piωPC `∇WCqdx

“ ˘

ż

Ωd

ˆˆ

1

µ
´

1

µ0

˙

p∇ˆA0q ¨ p∇ˆΨq `
1

iω
pσ ´ σ0qpiωA0 `∇V 0

C q ¨ piωΨ`∇ΦCq

˙

dx

(6.19)

Note that we got rid of the real part in the formulation and took the conjugate of the resulting
problem as it does not change the definition given by (6.18). We would like to point out that the
variational problem (6.19) corresponds to the adjoint problem defined earlier in (6.11).

The shape derivative of the cost function J̃ depends on the differentiation of appA, VCq,Ωd, pΨ,ΦCqq

and jppAk1
, VC,k1

q, pAk2
, VC,k2

q,Ωdq with respect to the shape Ωd. Both functions are of the form
gpΩdq :“

ş

Ωd
f dx, where f is a function at least L2pΩdq. For a given deformation θ, the shape

derivative of g is given by:

gpΩdq “

ż

Ωd

f dx ñ g1pΩdqpθq “

ż

BΩd

pθ ¨ nqf ds

Note that in the following computations, we drop the pΩdq in front of the different functions so as to
make the arguments clearer. Hence:
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J̃ 1pΩdqpθq “
ω

I2
<
"ˆ

ż

BΩd

pθ ¨ nq

ˆˆ

1

µ
´

1

µ0

˙

p∇ˆAk1
q ¨ p∇ˆA0

l1q

´
1

iω
pσ ´ σ0qpiωAk1

`∇VC,k1
q ¨ piωA0

l1 `∇V 0
C,l1q

˙

ds

˘

ż

BΩd

pθ ¨ nq

ˆˆ

1

µ
´

1

µ0

˙

p∇ˆAk2
q ¨ p∇ˆA0

l2q

´
1

iω
pσ ´ σ0qpiωAk2

`∇VC,k2
q ¨ piωA0

l2 `∇V 0
C,l2q

˙

ds

˙

pZ ´ Zmeasq

*

`
ω

I2
<
"ˆ

ż

BΩd

pθ ¨ nq

„

1

µ
p∇ˆAk1

q ¨ p∇ˆPl1q `
1

µ˚
p∇ ¨Ak1

qp∇ ¨Pl1q ds

`
1

iω
σpiωAk1

`∇VC,k1
q ¨ piωPl1 `∇WC,l1q



ds

˘

ż

BΩd

pθ ¨ nq

„

1

µ
p∇ˆAk1

q ¨ p∇ˆPl1q `
1

µ˚
p∇ ¨Ak1

qp∇ ¨Pl1q ds

`
1

iω
σpiωAk1

`∇VC,k1
q ¨ piωPl1 `∇WC,l1q



ds

˙

pZ ´ Zmeasq

*

Based on the equations satisfied by the different direct and adjoint fields, we proved that each vector
potential A and P is divergence-free. This leads to:

J̃ 1pΩdqpθq “
ω

I2
<
"ˆ

ż

BΩd

pθ ¨ nq

ˆ

´

„

1

µ



p∇ˆAk1q ¨ p∇ˆA0
l1q

`
1

iω
rσspiωAk1

`∇VC,k1
q ¨ piωA0

l1 `∇V 0
C,l1q

˙

ds

˘

ż

BΩd

pθ ¨ nq

ˆ

´

„

1

µ



p∇ˆAk2q ¨ p∇ˆA0
l2q

`
1

iω
rσspiωAk2

`∇VC,k2
q ¨ piωA0

l2 `∇V 0
C,l2q

˙

ds

˙

pZ ´ Zmeasq

*

`
ω

I2
<
"ˆ

ż

BΩd

pθ ¨ nq

„

1

µ
p∇ˆAk1q ¨ p∇ˆPl1q



ds

`
1

iω
rσspiωAk1

`∇VC,k1
q ¨ piωPl1 `∇WC,l1qds

˘

ż

BΩd

pθ ¨ nq

„

1

µ
p∇ˆAk1

q ¨ p∇ˆPl1q



ds

`
1

iω
rσspiωAk1

`∇VC,k1
q ¨ piωPl1 `∇WC,l1qds

˙

pZ ´ Zmeasq

*

This leads to the expression given in (6.14).

Compared to the boundary variation method developed by [29] to solve the shape optimization
problem, we choose here the same implicit method defined in the previous part. The shape Ωd is
modeled using a level-set function ψ defined on D Ă Ω, a space containing all the admissible shapes
Ωd, by

$

’

&

’

%

ψpxq “ 0 ô x P BΩd XD

ψpxq ă 0 ô x P Ωd

ψpxq ą 0 ô x P pDzΩdq

(6.20)
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Over the course of the gradient descent algorithm, the shape Ωdptq evolves according to a fictitious
time t P R`. We recall that the level-set function satisfies the Hamilton-Jacobi equation:

Bψ

Bt
` V |∇ψ| “ 0 in D (6.21)

where V is the deformation speed of the Ωdptq and V , its norm. V being known on the shape
boundary, it needs to be defined for any point in D in order to solve the convection equation. We
choose here to extend the deformation speed by solving the following regularization problem:

´ α∆Ṽ ` Ṽ “
1

Ns

Ns
ÿ

i“1

gin δBΩd (6.22)

Hamilton-Jacobi equation is then solved for given time ∆t using the backward method of character-
istics developed in [11].

To further address the ill-posedness of this inverse problem, we add to the optimization problem
a surface constraint. The idea is to reduce the variability of the problem by discriminating optimal
solutions with larger surfaces. The algorithm with surface penalization is explained in the previous
part.

6.2 Numerical results

We consider here that we use the optimized version of the algorithm defined in the previous part in
order to ensure the fastest convergence. Let us recall the 3D inversion algorithm:

input: Ns ˆNp impedance measurements on a z interval
Incident fields pA0, V 0

C q, for each coil at each probe position
1: init: ψ0

2: while J pψkq ą η do
3: convect the level-set function for a time ∆tk and a deformation speed νk: ψk`1

4: solve direct problem (5.8) for each probe position and coil
5: compute Zpψk`1q and J pψk`1q

6: if J pψk`1q ă J pψkq then
7: solve adjoint problem (6.11) for each probe position and coil
8: compute the gradient gk`1

ψ for each signal

9: compute the descent direction θk`1
ψ

10: solve the regularization equation (6.22) to compute the deformation speed νk`1

11: else
12: descent rejected: ψk`1 “ ψk

13: decrease steps: ∆tk`1 “ ∆tk{2
14: end if
15: end while

Figure 6.1: Reconstruction algorithm

In this section we only consider synthetic input data, i.e. generated numerically by an additional
code where the deposit is explicitly meshed inside the computational domain (the computational
mesh is necessarily different from the one used during the inversion iterations). Compared to the
2D-axisymmetric inversion, the generic 3D approach allows us to reconstruct more complex deposits,
for instance non-axisymmetric deposits. Note that generation of complex deposit meshes uses the
Mmg software introduced in Section 5.3.1. It also gives the choice of the probe used for ECT: either
the SAX probe, previously used or the SMX probe.

The main difference between the two probes is that the SAX probe is axisymmetric and generates
a few signals, while the SMX probe provides different information on the azimuthal component as well
as a great number of signals. As such, we expect the former to effectively reconstruct axisymmetric
deposits, as evidenced by the previous part, but to fail reconstructing non-axisymmetric deposits
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since it provides information that is averaged on the azimuthal component. The latter should prop-
erly reconstruct any deposit, however the high number of signals generated hinders the convergence
speed of the method as it requires to solve for each iteration a high number of Finite Element problems.

The physical and geometrical properties are similar to those used in the previous part: the tube
is non magnetic, its permeability is µt “ µv and its conductivity is 0.97 ¨ 106 S ¨m´1, while for the
deposit, we chose the conductivity to be σd “ 1 ¨104 S ¨m´1 and the permeability to be either µd “ µv
or µd “ 2.5µv.

Due to the high computational cost of the Finite Element problems, we consider here that the
probes use only one pulsation ω3 “ 2π ¨ 5 ¨ 105 rad ¨ s´1. Note that we chose the lowest value avail-
able to ensure the electromagnetic wave can detect the deposits. Under this consideration, the SAX
probe provides two signals, one differential mode ZF3 and one absolute mode ZFA. As explained in
Section 5.2, the SMX probe contains 38 coils, placed on two rows. It generates 76 absolute modes:
each coil on the lower row is the emitter and for each emitter there are four receiver associated.

We still use FreeFEM software to solve the scattered field formulation (5.8). The software con-
tains Tetgen [30], a tetrahedral mesh generator as well as other useful components for HPC such as
metis for domain decompostion or PETSc and HPDDM to define iterative solvers. We introduce an
unstructured mesh Th to describe the computational domain Ω, as well as TC,h, to describe ΩC . Note
that TC,h is computed as the truncation of Th.

As VC P H
1pΩCq{C, we use P1-Lagrange elements to describe the function. For the vector potential

A P XpΩq “ H0pdiv,Ωq XHpcurl,Ωq, due to the regularity of Ω (convex polygon in our numerical
experiments), it can be said that A P pH1pΩqq3XH0pdiv,Ωq. As such, vectorial P1-Lagrange elements
may be used to describe the vector field.

The level-set function defined on a sub-domain called Region Of Interest (ROI) is modeled using
P1 elements on an unstructured triangulation of the ROI de-correlated from the computational mesh.
In general, the ROI mesh is finer than the other mesh in order to have a good precision on the shape.

(a) Computational mesh (b) ROI mesh

Figure 6.2: Different meshes used in the 3D inversion algorithm

Figure 6.2 displays the two meshes mentioned above. We chose here a mesh size inside the ROI
and the tube wall of 4 ¨ 10´4m, while in the vacuum, the mesh size is of 3 ¨ 10´3m. Resolution of
the Finite Element problems, direct and adjoint, is done using the modified BGCRODR algorithm
defined in Section 5.2 on 960 process as it provides the best speedup: one vector basis is recycled and
the recycling operation is distributed between nine process.

6.2.1 Axisymmetric deposits

We start with the reconstruction of axisymmetric deposits. Even though it has already been done in
2D with the SAX probe, we would like to compare here the reconstruction results between the SAX
and SMX probes, as well as the performances.
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(a) Initialization (b) Optimal solution (8 iterations)

(c) Optimal solution, longitudinal plane (d) Optimal solution, transverse plane

Figure 6.3: Convergence results for the SAX probe (in blue) for a target formed by one torus (in
green) using 960 processors; in red is the deposit shape

(a) Initialization (b) Optimal solution (12 iterations)

(c) Optimal solution, longitudinal plane (d) Optimal solution, transverse plane

Figure 6.4: Convergence results for the SMX probe (in blue) for a target formed by one torus (in
green) using 960 processors; in red is the deposit shape

Consider a simple test case where the target shape is the intersection of a torus, centered on the



160 Chapter 6. Inversion of 3D impedance signals

outer tube wall, of inner radius 5 mm. We consider 41 probe positions and two different initializations:

• An axisymmetric initialization composed of three small toruses intercepted by the tube wall of
radius 2.00mm.

• A non-axisymmetric initialization composed of 36 small ellipsoids intercepted by the tube wall,
placed on different areas around the tube wall.

Figure 6.3 and Figure 6.4 display the convergence results.

For this simple test case, both the SAX and SMX probe are able to reconstruct the target shape,
though it may be worth noticing that the SAX probe reconstructs the exact thickness while for the
SMX, a small gap remains.

Let us illustrate these reconstructions with the analysis of the data fitting for each probe on
Figure 6.5 and Figure 6.6. Let us explain briefly Figure 6.6a: on each subplot, the horizontal axis
represents the number of the emitter coil, the vertical axis, the probe position on the z-axis. Consider
the l-th column of the upper left-hand side subplot: it represents the function |Z̃ ´ Z̃meas|{|Z̃meas|pzq
for the different probe positions, where the signal Z̃ is associated with the emitter number l and the
receiver 1. For the upper right-hand subplot, it is the signal associated with the emitter number l
and the receiver 2, and so on. The convention of receiver 1, 2, 3 and 4 is defined by Figure 5.6.

(a) ZF3 signal (b) ZFA signal

Figure 6.5: Optimal impedance signals with SAX probe for the test case on Figure 6.3a

Let us make some brief observations on the computational time of each inversion, to highlight
the benefits of using block iterative solvers to solve the high number of Finite Element problems.
Consider the first convergence result: the signal contains 41 probe positions. As such, there are 779
(resp. 82) source terms for the SMX (resp. SAX) direct problem, and as many (resp. as many) terms
for the adjoint problem. The problem size exceeds two million degrees of freedom.

For the considered case, the method with SMX (resp. with SAX) converges in about 2.5 hours,
for 13 iterations (resp. 1 hour and 27 minutes), at a rate of about 27 minutes (resp. 8 minutes)
per iteration when the descent is accepted, and 7 minutes (resp. 4 minutes) per iteration when the
descent is rejected (as we do not compute the adjoint state and the gradient). Table 6.1 summarize
the computational time of the limiting operations for one iteration in the algorithm for the two
probes.

As evidenced by Table 6.1, the main limiting operations for an inversion iteration are the con-
vection of the level-set, the resolution of the direct and adjoint problems and the computation of the
gradients. Thanks to the use of block Krylov methods, the weight of one solve operator is of same
order as the other operations. Compared to the computational time of about one hour with standard
methods like GMRES or GCRODR, the speedup is quite dramatic. Thanks to the speedup, the
remaining limiting operations are the convection of the shape and the gradient computation. For the
former, as for now the Hamilton-Jacobi equation (6.21) is solved sequentially on one process, parallel
resolution of the convection equation would require further investigations. The latter, however, is
more complex to optimize, due to the high number of degrees of freedom inside Level-Set mesh: the
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(a) Colormap of the relative error between the input and the numerical
signal for each emitter/receiver pair

(b) Example of final signal Z

Figure 6.6: Optimal impedance signals with SMX probe for the test case on Figure 6.4a

computation of the gradients contains the calculation of the formula (6.14), as well as the resolution
of the regularization problem (6.22). Note that for now due to the structure of the regularization
problem (symmetric positive definite Finite Element matrix), we use a sequential Gradient Conjugate
method to solve it. However, due to limitations from FreeFEM, calculation of (6.14) can hardly be
shortened.

Time (SAX) Time (SMX)

Iteration 437 s 16 min
Convection 214 s 2.9 min
Direct solve 14 s 2.6 min
Adjoint solve 14 s 2.6 min
Gradient computation 151 s 7.5 min

Table 6.1: Different limiting operations for one iteration in the inversion algorithm, using 960
processors, using modified BGCRODR

When comparing the computational times for each probe, it appears quite evidently that the SAX
probe is more interesting for fast inversion of the data, as it generates in our case two signals. On the
contrary, the SMX probe, with its 76 signals, take much more time to invert the input data. Given
the convergence results in this part, it would appear the SAX probe is more interesting when the
target deposit is axisymmetric as it effectively and quickly reconstructs the deposit.

On the test above, we tried to reconstruct an axisymmetric deposit with an axisymmetric ini-
tialization. Let us now consider a similar deposit (we reduced the maximum thickness for the result
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to be more readable), but a different, non-axisymmetric initialization. We voluntarily make a bad
initial guess by putting an initialization on a small fraction of the ROI as displayed on Figure 6.7b.
We run the algorithm with the SAX probe.

(a) Initialization (b) Optimal solution (56 iterations)

(c) Transverse cut of the optimal deposit

Figure 6.7: Convergence results for the SAX probe (in blue) for an axisymmetric target (in green),
with an bad initial guess using 960 processors; in red is the deposit shape

Figure 6.7b and Figure 6.7c display the optimal shape reconstructed by the SAX algorithm. While
the height of the optimal shape corresponds to that of the target shape, the thickness is not satisfying
at all: it reaches the maximum value defined by the ROI. The main reason behind a fast evolution
of the thickness is due to the nature of the probe: it averages the configuration on the azimuthal
direction. As such, the signature of the initial guess is by far smaller than that of the target, cf
Figure 6.8.

Thus the algorithm first increases the radial thickness of the deposit to rapidly increase the
signature. However, beyond a given value, defined by the skin depth of the material, the fields
vanish in the deposit: a small increase of the thickness will not change the signal which is why the
thickness does not decrease over the course of the algorithm. It is also worth noticing that though
the initialization is localized in a small region of the ROI, the gradient stretches the shape in order to
make the reconstructed shape axisymmetric. The bad initial guess also leads to a slower convergence
(56 iterations) compared to previous tests (about 15 iterations) to reach a given tolerance. This test
shows once again the importance of the initialization choice as it could greatly modify the convergence
of the algorithm should it be bad.

6.2.2 Non axisymmetric deposits without surface penalization

In the previous subsection, we considered the reconstruction axisymmetric deposits. However, inside
Steam Generator, it was observed deposits hardly have such properties, especially between the support
plate and the tube wall due to the quatrofoil hole drilled in the plate. Therefore, reconstruction of
non-axisymmetric is more interesting as it allows to reconstruct more complex structures and offers
a better render of industrial configurations.
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(a) ZF3 signal (b) ZFA signal

Figure 6.8: Initial signals with SAX probe for the test case on Figure 6.7a

Note that if not mentioned, the deposit considered in the tests is non-magnetic: µd “ µv.

(a) Axisymmetric initialization (b) Non axisymmetric initialization

Figure 6.9: Initializations (in red) considered for a target formed by four ellipsoids (in green) using
960 processors

Let us consider first the following test case: the target shape is composed of four ellipsoids
intercepted by the tube wall at four different angles, 0, π{2, π and 3π{2. The z-radius is 3.25mm,
the r-radius is 2.5mm and the θ-radius 5.00mm. We consider 41 probe positions and two different
initializations:

• An axisymmetric initialization composed of three small toruses intercepted by the tube wall of
radius 2.00mm, on Figure 6.9a.

• A non-axisymmetric initialization composed of 36 small ellipsoids intercepted by the tube wall,
placed on the areas around the different target shapes, on Figure 6.9b.

Figure 6.10 and Figure 6.11 display the convergence results for each initialization and each probe.
While the algorithm converges properly and quickly (less than twenty iterations) with the SMX, it
appears that with the SAX probe, though it converges in as many iterations, the optimal solution
with the non-axisymmetric deposit is worse than the SMX probe and for the other one, it does not
reconstruct the proper shape at all.

This is a consequence of the constitution of the SAX probe: it contains two coaxial probes, with
their axis being the tube’s. Thus, the information provided by the device is averaged on the azimuthal
direction: for a given non-axisymmetric deposit, there exists an axisymmetric one that generates a
close by signal. Note that this equivalent deposit has necessarily a smaller radial thickness. In
consequence, when given an axisymmetric initialization, the algorithm with SAX converges towards
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the equivalent axisymmetric solution. Figure 6.12 displays the final data fitting between the input
and the numerical signals: though the shape does not correspond to the target, the signals show the
algorithm actually converged to a satisfying minimum in terms of cost function.

(a) Optimal solution for axisymmetric
initialization (11 iterations)

(b) Optimal solution for axisymmetric
initialization, transverse plane

(c) Optimal solution for non-axisymmetric
initialization (14 iterations)

(d) Optimal solution for non-axisymmetric
initialization, transverse plane

Figure 6.10: Convergence results for the SAX probe (in blue) for a target formed by four ellipsoids
(in green) using 960 processors; in red is the deposit shape

Note that in the above tests, the second initialization supposes we have some information about
the localization of the deposit. Should we have to invert industrial data, this initialization is not
generic enough to properly reconstruct any configuration, we picked in order to demonstrate that it is
possible to enhance the reconstruction with the SAX probe by using non-axisymmetric initializations.
In order to remain as generic as possible though, axisymmetric initializations are more interesting.

In the previous subsection, we stated that the SAX algorithm was better suited than the SMX
algorithm to reconstruct axisymmetric deposits as the optimal solutions were good and it was by far
faster than the other method. However, in non-axisymmetric configurations like the one above, it
appears that SMX are more efficient as they provide different information on the azimuthal compo-
nent.

From the point of view of the operator, the main objective is not to reconstruct precisely the
deposit shape: should the radial thickness be effectively reconstructed, the convergence could be
seen as a success. The radial thickness plays a predominant role in the drop in the yield, or in the
plugging phenomenon near a support plate. Thus even for the operator, the result of Figure 6.10c is
not satisfying as the axisymmetric deposit reconstructed is by far thinner than the target’s.

For the next test case, we run the algorithm solely for the SMX probe. We consider a new target
composed of four different ellipsoids:

• One ellipsoid centered at prt2, 0, 0q, of radial thickness 2.5mm and height 3.25mm,

• One ellipsoid centered at p´0.001, rt2, 0q, of radial thickness 3mm and height 5mm

• One ellipsoid centered at p´rt2, 0, 0q, of radial thickness 2.5mm and height 4mm

• One ellipsoid centered at p´0.001,´rt2,´0.003q, of radial thickness 2mm and height 3.25mm
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(a) Optimal solution for axisymmetric
initialization (12 iterations)

(b) Optimal solution for axisymmetric
initialization, transverse plane

(c) Optimal solution for non-axisymmetric
initialization (14 iterations)

(d) Optimal solution for non axisymmetric
initialization, transverse plane

Figure 6.11: Convergence results for the SMX probe (in blue) for a target formed by four ellipsoids
(in green) using 960 processors; in red is the deposit shape

(a) ZF3 signal (b) ZFA signal

Figure 6.12: Optimal impedance signals for the test case on Figure 6.9a

The initialization is axisymmetric, with three torus of inner radius 2mm. The reconstruction
results are featured on Figure 6.13: it remains quite satisfying.

Compared to the SAX probe, the SMX probe offers a good resolution on the azimuthal direction
due to the coil repartition. As such, we want to put that resolution to a test by considering the
following test case. The target is composed of two simply connected components placed close to
each other on the azimuthal direction: the space between the two shapes can contain one coil. As
displayed on Figure 6.14, the algorithm can distinguish the two shapes from the signals.

Let us now focus on the detection of deposits around the support plate. On Figure 6.15 is a mesh
of the quatrofoil hole in the support plate, as well as the tube. The dimensions of the hole are such
that for the inner radius, the space between the plate and the tube is less than a millimeter. Meshing
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(a) Initialization (b) Optimal solution (16 iterations)

Figure 6.13: Convergence results for the SMX probe (in blue) for a target formed by four different
ellipsoids (in green), using 960 processors; in red is the deposit shape

(a) Initialization

(b) Optimal solution (26 iterations) (c) Optimal solution (26 iterations),, transverse
plane

Figure 6.14: Convergence results for the SMX probe (in blue) for a target formed by two shapes (in
green), using 960 processors; in red is the deposit shape

such a region requires a fine mesh that would increase the size of the Finite Element problems, thus
the computational cost of the algorithm.

A simple way to handle the thin layer of vacuum between the plate and the tube would be to
replace the layer by an ideal plate that would actually touch the tube wall. However that would lead
to some new calculations in order to find the proper boundary condition to apply on the tube section
concerned. As an introduction to the problematics of the reconstruction of deposits in presence of
a support plate, we propose here to change the ROI of the Level-Set from a ring to four separate
sectors, as displayed on Figure 6.16.
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Figure 6.15: Mesh of the support plate and the tube.

(a) ROI shaped as a ring (b) ROI with four sectors

Figure 6.16: Two different types of ROI considered in this section.

With the quatrofoil support plate glued to the tube wall, the deposit can only form on four separate
sections around the tube. Hence we copy this configuration with the ROI displayed on Figure 6.16b.
Note that unlike the support plate, no impedance condition is imposed on its boundary.

With this configuration, let us consider a new test case. The target shape is one ellipsoid inter-
cepted with the tube wall inside one of the four sectors. The initialization is placed in each sector
so as to not favor any sector. We run the reconstruction algorithm for both probes. Results are
displayed on Figure 6.17.

As explained earlier, the SAX probe does not reconstruct the target shape: the optimal shape
found is located on each sector and its radial thickness is far smaller than the actual value. Because
the device averages information on the azimuthal direction, the resulting signal for an ellipsoid in
one sector can be explained by four small deposits on each sectors. Should we use a initialization
located in the sector of the target shape, we would obtain a much better reconstruction, like in
Figure 6.10c: if there is no initialization in the other sectors, no deposit will be created there.
Conversely, reconstruction with the SMX probe works very well since the information provided by
the device is finer. In general, using the SAX probe to recover non-axisymmetric deposits is not
reliable as it does not provide enough information, compared to the SMX probe.
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(a) Initialization

(b) Optimal solution (15 iterations) with SAX (c) Transverse plane of the SAX optimal solution

(d) Optimal solution (13 iterations) with SMX (e) Transverse plane of the SMX optimal solution

Figure 6.17: Convergence results for a target formed by one ellipsoid (in green), for a split ROI
using 960 processors; in red is the deposit shape

6.2.3 Surface penalization

Through the different test cases displayed above, we saw that the shape reconstructed at the end of
the algorithm was not entirely satisfying, though the data fitting was quite good. Small artefacts
may remain on the tube wall: due to their small size, they barely change the impedance signal, which
is why the gradient does not remove them.

Additionally, inverse problems are naturally ill-posed problems: different shapes can lead to the
same cost function level. For 2D experiments, we proposed an approach to discriminate some of the
local minima using surface penalization: the idea is to impose to the algorithm to find the solution
that minimizes the cost function with the lowest surface. We shall experiment here the same approach
where now it is the measure of the deposit surface that will be penalized.

To illustrate the method, let us consider the test case from Figure 6.9b: the target shape is com-
posed of four ellipsoids, the ROI is divided into four parts, representing a quatrofoil support plate
and the initialization is made of 4ˆ9 small ellipsoids intercepted with the cylinder. For the Lagrange
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multiplier defined in the surface penalization method, we take the value 1 ¨ 10´3. This leads to the
results on Figure 6.18.

(a) Optimal solution (14 iterations) without
penalization

(b) Optimal solution (20 iterations) with
penalization

Figure 6.18: Convergence results for the SMX probe (in blue) for a target formed by four ellipsoids
(in green) with surface penalization using 960 processors; in red is the deposit shape

The major effect the surface penalization has on the convergence is to remove the small artifacts
remaining on the tube wall, leading to a more satisfying optimal solution. However, for this example,
without the constraint, the optimal shape was already quite satisfying.

The surface penalization, in addition to discriminating some local minima in order to have an
optimal shape closer to the target, also reduces the variability of the method. We have discussed this
point with 2D reconstruction and let us illustrate it here with the SMX probe. To that matter, we
consider a test case where the ROI is split into four sectors as we defined the previous subsection.
The target is made of four ellipsoids intercepted with the cylinder. We choose to initialize the
algorithm with a deliberately bad initial guess, with deposits floating in the vacuum, as displayed on
Figure 6.19a.

Convergence results with and without penalization are shown on Figure 6.19. The observations
are quite similar to 2D tests: without penalization, the connected components floating in the vacuum
are barely dissipated. This is due to the distance separating the deposits and the probe: as they are
far from the source, their contribution to the signal is quite small, which explains why the gradient
has little effect on them. At the same time, the initialization on the wall converges towards the target
shape. On the contrary, with surface penalization, the deposits in the vacuum are removed while the
algorithm still converges to the target.
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(a) Initialization without penalization (b) Optimal solution (20 iterations) without
penalization

(c) Initialization with penalization (d) Optimal solution (12 iterations) with
penalization

Figure 6.19: Convergence results for the SMX probe (in blue) for a target formed by four ellipsoids
(in green), with penalization and bad initial guess using 960 processors; in red is the deposit shape



Conclusion

The transition from a 2D-axisymmetric to a 3D reconstruction of deposits raised many challenges. In
terms of mathematical model, the presence of conductive materials and eddy-currents creates differ-
ential constraints inside the insulator. Depending on the topological nature of the latter, additional
conditions on connected components or on cutting surfaces need to be added to the problem. We
chose here to model the electromagnetic fields pE,Hq using the potentials pA, VCq as it satisfies for
our configuration simpler equations.

The principle behind the inverse problem remains unchanged: from an input data, we use a
gradient descent on the shape to minimize the difference between the input and the numerical data.
As the shape is modeled with a Level-Set function, at each iteration we compute a gradient used to
convect the shape. After preliminary tests, we realized that the implicit definition of the deposit with
Level-Set functions generates numerical instabilities that could impact negatively the algorithm. As
the numerical surface of the shape is strongly non-smooth, the jump of σ at this surface generates
instabilities. By smoothing the surface using remeshing software or by smoothing the jump of σ, we
are able to efficiently reduce these instabilities.

The main issue with the 3D algorithm is the computational time to reach an optimal solution
as we expect the problem size to exceed two million degrees of freedom. As such, we made many
efforts to bring down this computational time, hoping for a reasonable time inversion. Similarly to
the 2D-axisymmetric algorithm, we prefer solving the scattered field formulation pAs, V sC q to com-
pute the total field pA, VCq as it requires one mesh for all the probe positions. Among the different
approaches to the definition of the scattered field, we chose here to add a small conductivity inside
the outer vacuum in order to simplify the computation of pAs, V sC q. With the addition of the SMX
probe, new numerical challenges emerge: due to the number of signals generated by the probe, the
number of source terms in the Finite Element problems increases dramatically. To cope with both the
size of the problem and the high number of RHS, we implemented a block iterative solver, modified
BGCRODR, paired with domain decomposition as it allows us to solve blocks of source terms at once.

In terms of numerical results, as it was already established in the 2D-axisymmetric algorithm, the
SAX probe can reconstruct with great precision axisymmetric deposits. The SMX probe is efficient
as well though in terms of performances, it is by far slower than the other device due to the high
number of signals to invert. However, in cases where the deposit is non-axisymmetric, the SAX proves
its limits: as it provides information averaged on the azimuthal component, the signal generated for
a non-axisymmetric deposit is equivalent to that of an axisymmetric one of a lower thickness. As
such, it may fail to reconstruct not only the target but also the thickness on the radial coordinate.
In contrary, the SMX provides different information on the azimuthal component and thus is able to
properly reconstruct non-axisymmetric deposits.

In general, the method converges in a few iterations, usually less than twenty. While the optimal
data fitting is usually quite good, the optimal shape may not appear as good: small artifacts may
remain untouched on the tube wall as they do not influence the impedance. Additionally, the ill-
posedness of inverse problems leads to a great variability in the optimal shapes. By adding a constraint
on the surface, that is to say we require the optimal shape to have the smallest surface possible, we
are able to discriminate unwanted shapes to enhance the aspect of the optimal solution.
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Conclusion and Perspectives

In this PhD, we developed a reconstruction algorithm to process impedance signals from ECT in-
side Steam Generators. We studied two main configurations: 2D-axisymmetric geometries and 3D
geometries, and analyzed data from two sources: the SAX probe and the SMX probes. The main
input of this work is the integration of a Level-Set framework to the method derived by [69, 29, 37]
as well as a substantive work to ensure a fast inversion of 3D input signals.

In the first part, we defined an effective model for eddy currents in 2D-axisymmetric configurations:
the 3D time-harmonic Maxwell equations under the eddy current approximation were reduced to a
scalar PDE verified by the azimuthal component of the electric field E. Taking advantage of the
problem small size, we enriched the physical model by adding a support plate, a thin tube thickness
variation and thin clogging deposits to the domain. These elements are complex to simulate as
they require fine meshes to properly render the field variation. Aiming at a fast resolution of the
equations, we made several modeling choices by using Generalized Impedance Boundary Conditions
to represent the support plate or Impedance Transmission Conditions for the thin layers of conductive
material and assessed the validity of the approximation. Note that in industrial configurations a thin
tube thickness variation or a clogging deposit are supposed to be unknown, as such in addition to the
reconstruction of the deposit shape, we add the reconstruction of the thickness of both thin layers. We
defined the reconstruction algorithm as an optimization problem for a least squares misfit functional.
Resolution of the optimization problem is done using a gradient descent on each unknown. While
optimization with respect to the thickness functions is classical, shape optimization required some
extensive calculations following definitions from [24]. We chose here to model the shape using Level-
Set functions as opposed to a boundary variation method as defined in [69]. Under this definition,
the shape update becomes equivalent to the resolution of a convection equation for a given time. To
restrict the variability of the problem as well as the ill-posedness of the inverse problem, we proposed
the addition of a perimeter constraint in order to enforce optimal solutions of minimal perimeter
as actual deposits inside Steam Generators tend to have a rather smooth surface due to the water
flowing. The resulting inversion algorithm has been tested on several synthetic test cases in order
to assess the sensitivity to various parameters. Note that, to limit the computational time of one
iteration, we re-arranged Finite Element matrix assemblies to minimize the number of operations. We
also chose to solve the scattered scalar PDE instead of the total scalar PDE as the former allows us to
work with a single mesh and does not require to re-assemble the bilinear form. Throughout the test
cases, we evidenced the impact of the shape initialization to the algorithm: for the optimal shape to
be satisfying, the initialization should be as generic as possible, with enough connected components
to cover a wide variety of shapes. We also illustrated with multiple tests the algorithm robustness
towards different uncertainty in the measurements yielding noise (with respect to the probe position,
to the tube thickness, to the physical parameters) as it does not see high frequencies in the signal.
Modifying the gradient regularization parameter also impacts the quality of the optimal shape: the
more regularized the gradient is, the less smooth the optimal shape will be as the gradient will not
be able to smooth high frequencies on the surface. In general, the shape reconstruction algorithm
converges in a few iterations to a quite satisfying optimal solution. However, as inverse problems
are naturally ill-posed, optimal shapes may not be entirely satisfying, with small artefacts remaining
as their signature in the signal is almost zero. To reduce the problem variability and enhance the
method stability, we propose to add to the optimization problem a perimeter constraint in order
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to enforce optimal solutions with minimal perimeter. Applying the constraint to the problem leads
indeed to more accurate solutions without deteriorating the data fitting. As for the reconstruction
of the thin layers in the configuration, when taken individually the algorithm converges quickly and
precisely to the solution. However as we invert the data with respect to these two functions and the
shape, we observe that the optimal solutions found are less satisfying than when taken individually
as the problem gets under-determined. We concluded this part with the inversion of industrial data:
as the physical parameters of the deposits are not precisely determined, we introduced an inversion
algorithm to reconstruct σ and µ in order to have a good estimation of their value. Then, after a
pre-processing step required to normalize the signal, we are able to properly recover the shape of the
deposit.

In the second part we designed a 3D model for the inversion algorithm. Starting from the pA, VCq-
formulation of time-harmonic Maxwell equations under the eddy current approximation, we made
several choices to ensure precise and fast resolution of the resulting equations, like solving the scat-
tered problem for instance. Through the benchmark between different iterative solvers, GMRES,
GCRODR, block GMRES and block GCRODR, we were able to demonstrate the advantages of the
block GCRODR method for solving the multiple right-hand side problem needed for the signal gen-
eration. While classical approaches like GMRES and GCRODR scale poorly with an increasingly
bigger RHS block, block methods provide an efficient solver for block problems. By recycling a por-
tion of the block Krylov subspace from one set of block to another, block GCRODR allows us to cut
computational costs even more. After some computations we realized the implicit declaration of the
deposit shape with a Level-Set function created numerical instabilities on its interpolated numerical
boundary. Further investigations showed that the jump of conductivity from σd to σε ! σd on the
boundary was the source of the phenomenon. We introduced two countermeasures to palliate the
instabilities: smoothing the numerical surface by re-meshing the domain using Mmg software, or
smoothing the jump of the conductivity using a smoothing function. As the re-meshing operation
may take a long time depending on the mesh size, we use it only to generate synthetic data for
complex surfaces in numerical tests. For the inversion algorithm, we use the conductivity smooth-
ing. We also introduced the modeling of the support plate using Generalized Impedance Boundary
Conditions. Compared to 2D-axisymmetric geometries, the 3D inversion algorithm reconstructs only
the deposit shape: we wanted to put the emphasis here on the reconstruction performances between
two different probes, the SAX probe and the SMX probe. For axisymmetric deposits, as expected
given the results in 2D, the SAX probe finds a better optimal solution and in terms of memory and
time costs, it is more efficient than the SMX probe since it uses solely two signals compared to the 72
signals of the SMX probe. However, for non-axisymmetric deposits it becomes quickly apparent that
the SMX probe yields better reconstruction as it provides different information on the azimuthal di-
rection while the SAX averages the information on the same direction. As a consequence, the optimal
shape for the SAX is a thin axisymmetric deposit whose signal matches that of the non-axisymmetric
deposit. With the addition of perimeter penalization we are able to reduce the problem variability
and to obtain better optimal shape, removing small artefacts of signature zero.

Perspectives

On the topic of deposit reconstruction inside Steam Generators with ECT signals, discussions with
the power plant operator led to a new problematic setting for which an empiric model based on a
database fails to properly process the signals: detection of deposit when the tube has cracks. This
problem is complex as the signal contains information on both the crack and the deposit. Protocols
for crack detection in Steam Generators have already been implemented in industries [51, 40, 31] using
among others the SAX and SMX probes. However a theoretical framework needs to be developed
for the inversion of impedance signals to reconstruct cracks. Introducing a new unknown in the
inversion problem increase the instability and solution variabilities. This is why the design of good
initial guess using alternative model free methods, such as sampling methods [21] can be helpful.
The thin clogging deposit reconstruction algorithm can also have applications in other sections of the
nuclear plant, however additional work needs to be done in order to reconstruct slightly magnetic
deposits µd ‰ µv. Preliminary work in [68] lays some bases to the model and algorithm, though some
modifications need to be added. In the topic of the reconstruction of thin material, a 3D model can
be derived from the computations in [62]: it involves a scaling of the field on a vicinity of the material
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boundary and an asymptotic expansion with respect to the thickness.
We chose here to solve the shape optimization problem with a gradient descent method. It is

possible to accelerate the method using Nesterov’s accelerated gradient [34]. The approach consists
of a combination of two precedent iterations and then a correction with the gradient to compute the
new iterate. However in the context of shape optimization, the combination of shapes is a non trivial
operation and as such applying Nesterov to the reconstruction algorithm may prove to be difficult.
A solution to that would be to use the signed distance function to model the shape boundary, but
further tests are required to assess the validity of the approach. Some improvements can also be done
with the addition of the perimeter constraint to the algorithm. The solution we proposed here was
to minimize the perimeter while imposing the impedance error to be lower than a given value. The
latter was enforced in the cost function with the introduction of the parameter λ, a constant chosen
empirically. Such approach may not be satisfying as it requires to determine the proper parameter for
each situation. In the field of optimization under constraint, different algorithms may be considered,
for instance an augmented Lagrangian method [16], where the function to minimize is the modified
Lagrangian of the system, or a dual method like Uzawa’a algorithm [15]. They provide a more robust
method that does not rely on the empiric determination of a dual variable and modify its value
depending on the value of the constraint at each iteration.

As explained in this PhD, both probes provide a given number, Ns, of signals to process in order
to reconstruct the domain configuration. In the inversion algorithm, we assign to each signal the
same weight to compute the cost function and thus, to the different gradients. However, depending
on the setting, some signals may contain more information than others. As such, one may think
of re-arranging the weights in the cost function: one may think of multi-objective optimization [35]
to find a more suitable linear combination of the gradients to converge faster. On the topic of a
fast reconstruction of the configuration, a lot of work has been done to reduce as much as possible
the computational time of one iteration, by solving the scattered problem, re-arranging the Finite
Element matrix assembly or by using block iterative solvers in 3D. Though performances have greatly
improved, some additional work could be done: from one iteration to another, only degrees of freedom
around the shape boundary change as the shape boundary moved. Instead of re-assembling the right-
hand sides on each degree of freedom, one may think of assembling in a restricted area around the
shape boundary. Additionally, this information could also be used in the iterative solver as a way
to enhance the resolution since from one iteration to another, the right-hand sides are very close,
differing only on a small portion of the computational mesh.
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Conclusion et Perspectives

Dans cette thèse, nous avons développé un algorithme de reconstruction pour analyser des signaux
d’impédances provenant de l’inspection de générateurs de vapeur. Nous avons étudié deux configura-
tions : des géométries 2D-axisymétriques et des géométries 3D, et analysé les données à l’aide de deux
sources : la sonde SAX et la sonde SMX. Le principal apport de ce travail de thèse est l’intégration
de fonctions Level-Set à la méthode développée par [69, 29, 37], ainsi qu’un travail important sur
l’inversion rapide de signaux 3D.

Dans la première partie, nous avons défini un modèle effectif pour la formation de courants de
Foucault dans des configurations 2D-axisymétriques : les équations de Maxwell 3D harmoniques
soumises à l’approximation des courants de Foucault ont été réduites à une équation scalaire vérifiée
par la composante azimutale du champ électrique E. Grâce à la faible taille du problème qui en
résulte, nous avons pu enrichir le modèle physique par l’ajout d’une plaque entretoise, de dépôts
fins d’encrassement ou d’une faible variation d’épaisseur de tube. La simulation de ces éléments
s’avère complexe car elle requiert une taille de maille fine pour pouvoir simuler comme il faut la
variation de champ. Dans l’optique d’une inversion rapide des données, nous avons fait différents
choix de modélisation en utilisant des conditions d’impédance pour représenter la plaque ou bien
des conditions de transmission pour les fines couches de matériau conducteur et nous avons évalué
la validité de l’approximation. Il est important de noter que dans des configurations industrielles,
les dépôts d’encrassement ainsi que la variation d’épaisseur de tube sont supposés être inconnus,
c’est pourquoi nous avons ajouté en plus de la forme, la reconstruction des différentes épaisseurs de
couches minces dans le problème d’inversion. Le problèmes de reconstruction est défini comme étant
un problème d’erreur aux moindres carrés, que nous résolvons à l’aide d’une descente de gradient sur
chaque inconnue. Tandis que pour les fonctions d’épaisseur, l’algorithme d’optimisation est classique,
l’optimisation de forme nécessite des calculs plus poussés se basant sur le travail de [24]. Nous avons
ici choisi de modéliser la forme en utilisant des fonctions Level-Set et non pas en utilisant une méthode
de variation de frontière comme développé dans [69]. Sous cette nouvelle définition, la mise à jour de
la forme devient équivalente à la résolution d’une problème de convection sur un temps donné. Pour
réduire la variabilité du problème inverse ainsi que son caractère mal-posé, nous avons proposé l’ajout
d’une contrainte sur le périmètre de la forme de sorte que les formes optimales avec un périmètre
minimal soient favorisées par l’algorithme, puisque c’est ce qui est observé à l’intérieur des GV du
fait de la circulation de l’eau le long des parois du tube. L’algorithme d’inversion qui en résulte
a ensuite été testé sur différentes données artificielles dans le but d’en étudier la sensibilité aux
différents paramètres qui définissent la méthode. Il est important de remarquer que pour réduire
le coût en temps d’une itération, nous avons réarrangé les assemblages des matrices éléments finis,
minimisant ainsi le nombre d’opération d’assemblage. Nous avons également choisi de résoudre le
problème diffracté plutôt que le problème total car le premier permet de travailler sur un seul maillage
pour toutes les positions de sonde et donc ne nécessite pas de ré-assembler le problème à chaque fois
que la position change. Au travers des différents tests, nous avons souligné l’importance du choix
de l’initialisation sur l’algorithme : pour espérer pouvoir obtenir une forme optimale satisfaisante,
l’initialisation se doit d’être aussi générique que possible, avec suffisamment de composantes connexes
pour pouvoir couvrir une grande variété de formes. Nous avons également illustré par de multiples
tests la robustesse de la méthode vis-à-vis différentes incertitudes sur les mesures (par rapport à
la position de sonde, de l’épaisseur de tube, aux paramètres physiques du dépôt) car l’algorithme
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n’est pas sensible aux hautes fréquences dans le signal. Le paramètre de régularisation du gradient
peut également impacter la qualité de la reconstruction : plus le gradient est régularisé et moins la
forme optimale sera lisse car le gradient ne sera pas capable de lisser des hautes fréquences sur la
surface. De manière générale, l’algorithme de reconstruction de forme converge en quelques itérations
vers une forme optimale satisfaisante. Cependant, comme les problèmes inverses sont naturellement
mal-posés, les formes optimales peuvent parfois ne pas être entièrement satisfaisantes, avec des petits
artefacts qui ne sont pas dissipés car leur signature dans le signal est presque nulle. Pour réduire la
variabilité du problème et améliorer sa stabilité, nous avons ajouté une contrainte sur le périmètre
au problème d’optimisation permettant de discriminer les solutions avec un grand périmètre. L’ajout
de cette contrainte permet de facto de reconstruire des solutions plus satisfaisantes sans pour autant
perdre en précision dans l’écart aux données. Pour ce qui est de la reconstruction des couches fines
de matériaux, quand nous avons considéré chaque reconstruction indépendamment l’algorithme avait
convergé rapidement et précisément vers la solution. Cependant le problème d’optimisation vis-à-
vis de la forme et des épaisseurs en même temps est plus complexe, et nous avons observé que les
solutions optimales sont moins satisfaisantes que lorsqu’elles sont calculées indépendamment en fixant
les autres car le problème devient sous-déterminé. Nous avons conclu cette partie avec l’inversion de
données industrielles : dans un premier temps, comme les paramètres physiques du dépôt ne sont pas
précisément déterminés, nous avons introduit un algorithme d’inversion permettant de reconstruire
σ et µ pour pouvoir avoir une bonne estimation. Puis après une étape de pré-traitement permettant
de re-normaliser les signaux, nous avons été capables de reconstruire la forme du dépôt.

Dans la deuxième partie nous avons conçu un modèle 3D pour l’algorithme d’inversion. A partir
de la formulation en potentiels pA, VCq des équations de Maxwell harmoniques sous l’approximation
des courants de Foucault, nous avons fait différents choix pour assurer une résolutions rapide et
précise des équations, comme résoudre le problème diffracté par exemple. Après comparaison entre
différents solveurs itératifs soit GMRES, GCRODR, block GMRES et block GCRODR, nous avons
été capables de démontrer les avantages d’une méthode GCRODR par bloc pour la résolution de
problèmes avec multiples seconds membres nécessaires à la génération des signaux d’impédance.
Alors que des méthodes classiques comme GMRES ou GCRODR peinent à résoudre des problèmes
avec un nombre croissant de seconds membres, les méthodes par bloc constituent un outil efficace
pour ce même type de problème. En recyclant une partie des espaces de Krylov par bloc d’un bloc
de second membre à l’autre, la méthode GCRODR par bloc est capable de réduire le temps de
calcul encore plus. Après quelques calculs préliminaires, nous avons vite réalisé que la déclaration
implicite de la forme du dépôt à l’aide de fonctions Level-Set créait des instabilités numériques sur
la frontière numérique interpolée sur le maillage. Une analyse plus poussée du phénomène a mis en
lumière l’impact du saut de la conductivité de σd à σε ! σd au niveau de la frontière sur la résolution
du problème. Nous avons donc introduit deux contremesures pour pallier à ces instabilités : en
lissant la frontière numérique par re-maillage du domain à l’aide du logiciel Mmg, ou bien en lissant
le saut de la conductivité en utilisant une fonction régulière. Comme l’étape de re-maillage peut
très rapidement coûter cher selon la taille du maillage, nous utilisons cette approche seulement pour
générer des données artificielles pour des surfaces complexes que nous inverserons plus tard. Pour
l’algorithme d’inversion, nous utilisons le lissage de la conductivité. Nous avons également introduit
la modélisation de la plaque entretoise à l’aide de conditions d’impédances au bord. Comparé à
l’algorithme 2D, ici nous ne reconstruisons que la forme du dépôt : nous voulions mettre l’accent
sur les performances de reconstruction des deux sondes utilisées, la SAX et la SMX. Pour des dépôts
axisymétriques, comme attendu lorsqu’on regarde le 2D, la sonde SAX reconstruit une meilleure
solution optimale que la SMX. En terme de coût en temps et en mémoire, la SAX est plus efficace
que la SMX car elle ne considère que deux signaux quand la SMX en considère 76. Cependant, pour
des dépôts non axisymétriques, il devient très vite évident que la sonde SMX donne de meilleurs
résultats de convergence car elle fournit une information plus complète sur la direction azimutale
tandis que la sonde SAX moyenne cette information. Par conséquent, la forme optimale pour la
SAX est un dépôt axisymétrique fin dont le signal correspond à celui du dépôt non-axisymétrique du
départ. Avec l’ajout d’une pénalisation du périmètre nous sommes capables de réduire la variabilité
du problème et d’obtenir une meilleur forme optimale en se débarrassant des petits artefacts de
signature proche de zéro.
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Perspectives

A propos de la reconstruction de dépôt dans les GV avec des signaux à base de courants de Foucault,
des discussions avec l’opérateur de centrales a permis de mettre en lumière une nouvelle problématique
pour lesquelles l’approche empirique actuelle n’est pas capable d’analyser le signal comme il faut : la
détection de dépôts en présence de fissures dans le tube. Ce problème est complexe car le signal va
contenir des informations non seulement sur le dépôt mais également sur la fissure. Des protocoles
de détection de fissure dans les GV existe déjà en industrie [51, 40, 31] par le biais de différentes
sondes dont la SAX et la SMX. Cependant, pour la reconstruction de fissures par un approche inverse
va nécessiter l’élaboration du modèle théorique à mettre en oeuvre. L’introduction d’une nouvelle
inconnue dans le problème risque également d’augmenter la variabilité et l’instabilité du problème.
C’est pourquoi le conception d’un bon estimateur à partir de méthodes alternatives comme une
méthode d’échantillonnage [21] peut s’avérer utile. La reconstruction de dépôts fins d’encrassement
peut avoir également d’autres applications dans d’autres sections de la centrale nucléaire, cependant
cela nécessite un travail supplémentaire pour être capable de reconstruire des dépôts magnétiques
tels que µd ‰ µv. Le travail préliminaire de [68] pose les bases du modèle et de l’algorithme, bien
que des modifications doivent être apportées au tout. Pour ce qui est de la reconstruction de couches
fines de matériau conducteur, un modèle 3D peut être développé à partir du travail de [62], se basant
sur une mise à l’échelle du champ sur un voisinage de la frontière du matériau et un développement
asymptotique par rapport à l’épaisseur.

Nous avons choisi de résoudre le problème d’optimisation de forme à l’aide d’une descente de gra-
dient. Il est possible d’accélérer l’algorithme en utilisant la méthode de gradient accéléré de Nesterov
[34]. Cette approche revient à combiner deux itérations précédentes et de corriger ensuite avec le
gradient pour calculer la nouvelle itération. Cependant, dans le cas d’une optimisation de forme, la
combinaison de formes est une opération non triviale à clarifier, rendant l’paplication de l’approche
de Nesterov difficile. Une solution que nous pourrions considérer reviendrait à utiliser la fonction
distance signée pour modéliser la forme, mais des tests plus poussés sont nécessaires pour vérifier la
validité de l’approche. Par rapport à la pénalisation du périmètre, des améliorations peuvent être
apportée. Dans cette thèse, nous avons choisi de minimiser le périmètre tour en imposant un certain
niveau d’attache aux données. La contrainte sur l’écart aux données étant ajoutée dans la fonction-
nelle coût à l’aide d’un paramètre constant λ fixé de manière empirique. Cette manière de pénaliser le
périmètre n’est pas pleinement satisfaisante car elle contraint l’utilisateur à déterminer le paramètre
λ à imposer pour chaque situation. Dans le domaine de l’optimisation sous contrainte, différents
algorithmes peuvent être considérés, comme par exemple la méthode du Lagrangien augmenté [16],
où la fonction à minimiser est le Lagrangien modifié du système, ou bien une méthode duale telle
que l’algorithme d’Uzawa [15]. Ces méthodes offrent une approche plus robuste qui ne repose pas
sur la détermination empirique d’une variable duale et modifie sa valeur selon la valeur prise par la
contrainte à chaque itération.

Comme expliqué dans cette thèse, les deux sondes considérées génèrent un certain nombre Ns
de signaux à analyser pour pouvoir reconstruire la configuration du domaine. Dans l’algorithme
d’inversion, nous avons assigné à chaque signal le même poids pour calculer la fonctionnelle coût
et donc les différents gradients. Cependant, selon la configuration certains signaux peuvent con-
tenir plus d’information que d’autres. De là, il peut sembler intéressant de changer les poids as-
signés aux différents signaux : par extension, il est possible d’imaginer utiliser des principes tirés de
l’optimisation multi-critère [35] pour trouver une meilleure combinaison linéaire des différents gradi-
ents pour converger plus rapidement. Par rapport à la reconstruction rapide des dépôts, un travail
conséquent a été accompli pour réduire autant que possible le temps de calcul d’une itération, en
résolvant le problème diffracté, en ré-arrangeant les assemblages de matrices éléments finis ou bien
en utilisant en 3D des solveurs itératifs par bloc. Bien que les performances aient été grandement
améliorées, il reste d’autres points à traiter : par exemple d’une itération à une autre, seuls quelques
degrés de liberté autour de la frontière de la forme vont changer après convection de la forme. De
fait, au lieu de ré-assembler les matrices éléments finis sur tous les degrés de liberté, il est possible
d’imaginer pouvoir n’assembler que la zone correspondant aux mailles qui ont changé. Cette infor-
mation pourrait de plus être utilisée dans un solveur itératif pour améliorer la résolution du système
linéaire puisque d’une itération à une autre, les seconds membres sont très proches, ne différant que
sur une petit portion du domaine de calcul.
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Titre : Reconstruction de dépôts à l’intérieur de générateurs de vapeur à l’aide de mesures de courant de Foucault

Mots clés : Courants de Foucault, Optimisation de forme, Level Set, Problème inverse, Méthode asymptotique

Résumé : Le contrôle non destructif est un outil essentiel
pour évaluer la sûreté des infrastructures dans les cen-
trales nucléaires. En particulier, la présence de dépôts
conducteurs dans les tubes en U des générateurs de
vapeur constitue un enjeu de sûreté en bloquant le cir-
cuit d’eau secondaire. Pour les détecter, des sondes à
courants de Foucault sont insérées dans les tubes en U
pour générer des courants et mesurer en retour un si-
gnal d’impédance. Pour inverser ces mesures et recons-
truire le dépôt, nous développons une méthode d’optimi-
zation de forme avec descente de gradient régularisée.
Du fait du caractère inconnu et possiblement complexe
de la géométrie et de la topologie du dépôt, nous propo-
sons de le modéliser par une fonction level-set.
La méthode est validée dans un premier temps sur
des configurations axisymétriques artificielles et une ra-
pide convergence est assurée par un choix réfléchi
des paramètres de régularisation ainsi qu’une adap-
tation fine des pas de descente. En nous appuyant
sur la configuration réelle dans laquelle sont réalisées
les mesures expérimentales, nous considérons ensuite
une modélisation plus réaliste incorporant la plaque en-
tretoise ainsi que la présence d’imperfections sur la
paroi intérieure du tube. Plus précisément, nous utili-

sons un modèle asymptotique pour prendre en compte
ces imperfections et nous les traitons comme de nou-
velles inconnues dans notre problème inverse. Une
stratégie d’optimisation multi-critères se basant sur l’utili-
sation de différentes fréquences est ensuite développée
pour résoudre le problème. Nous présentons différents
résultats numériques sur des tests artificiels ou réels
pour montrer la validité de notre approche.
Nous nous focalisons ensuite sur la transposition du
modèle 2D à des configurations 3D plus génériques. La
résolution des équations de Maxwell en présence de
courants de Foucault en 3D pose plusieurs problèmes
de modélisation de part le choix de la formulation du
problème ainsi que des coûts de calculs conséquents
à réduire avant de pouvoir élaborer l’algorithme de re-
construction. Avec l’expérience acquise dans la recons-
truction en 2D, nous proposons ensuite une stratégie
d’inversion efficace que nous mettons en oeuvre sur
des données artificielles 3D. La validation des exemples
numériques prouve ainsi la faisabilité de l’inversion pour
des problèmes de taille conséquente pour des coûts
modérés et avec une bonne précision et robustesse par
rapport au bruit et aux erreurs de modélisation.

Title : Shape reconstruction of deposits inside a steam generator using eddy current measurements

Keywords : Eddy Currents, Shape Optimization, Level Set, Inverse Problems, Asymptotic Methods

Abstract : Non-destructive testing is an essential tool to
assess the safety of the facilities within nuclear power
plants. In particular, conductive deposits on U-tubes in
steam generators constitute a safety issue as they may
block the cooling loop. To detect these deposits, eddy-
current probes are introduced inside the U-tubes to ge-
nerate currents and measuring back an impedance si-
gnal. We develop a shape optimization technique with
regularized gradient descent to invert these measure-
ments and recover the deposit shape. To deal with the
unknown geometry, and its possibly complex topological
nature, we propose to model it using a level set function.
The methodology is first validated on synthetic axisym-
metric configurations and fast convergence is ensured by
careful adaptation of the gradient steps and regulariza-
tion parameters. Using the actual domain, from which the
acquisitions are made, we then consider a more realis-
tic modeling that incorporates the support plate and the
presence of imperfections on the tube interior section.
We employ in particular an asymptotic model to take into

account these imperfections and treat them as additional
unknowns in our inverse problem. A multi-objective opti-
mization strategy, based on the use of different operating
frequencies, is then developed to solve this problem. We
present various numerical examples with synthetic and
experimental data showing the viability of our approach.
The focus is then placed on the transposition of the 2D-
axisymmetric work to more generic 3D configurations.
Solving Maxwell eddy-current equations in 3D raises mo-
deling issues related to the choice of the problem formu-
lation as well as high computational costs that need to be
reduced before discussing the reconstruction algorithm.
Using the knowledge acquired with 2D-axisymmetric re-
construction, an efficient inversion strategy is then pro-
posed and implemented on 3D synthetic data. Validating
numerical examples demonstrate the feasibility of the in-
version even for large data at a relatively moderate cost
and with good accuracy and robustness with respect to
noise and modeling errors.
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