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Syzygies: Algebre, Combinatoire et Géométrie

Résumé

La régularité de Castelnuovo-Mumford est I'un des principaux invariants numériques per-
mettant de mesurer la complexité de la structure des modules gradués de type fini sur des
anneaux polynomiaux. Il mesure le degré maximal des générateurs des modules de syzygies.
Dans cette these, nous étudions la régularité de Castelnuovo-Mumford avec différents points
de vue et, dans certaines parties, nous nous concentrons principalement sur les syzygies
linéaires.

Dans le chapitre 2, nous étudions la régularité des homologies de Koszul et des cycles de
Koszul de quotients unidimensionnels. Comme application, cela donne une limite inférieure
pour le nombre d’étapes linaires dans la résolution libre du plongement de Veronese.

Dans le chapitre 3, nous étudions les propriétés de Lefschetz faibles et fortes d’une classe
d’idéaux monomiaux artiniens. Nous donnons, dans certains cas, une réponse affirmative a
une conjecture d’Eisenbud, Huneke et Ulrich.

Dans les chapitre 4 et 5, nous étudions deux comportements asymptotiques différents de
la régularité de Castelnuovo-Mumford. Dans le chapitre 4, nous travaillons sur un quotient
A d’une algebre noethérienne standard S par suite réguliere homogene. Tout d’abord, nous
montrons que la régularité de Ext’ (M, N) devient une fonction linéaire de i, séparément
pour ¢ pair et pour ¢ impair, pour M de dimension projective finie sur S. Lorsque, de plus,
la dimension de Tor (M, N) est au plus un pour i > 0, un résultat similaire est valable
pour Torf(M ,N); de plus, nous donnons deux exemples montrant que I'hypothese sur la
dimension asymptotique des modules Tor est essentielle.

La régularité des puissances d’un idéal dans un anneau polynomial est, a partir d'un
certain ordre, une fonction linéaire de la puissance. Au chapitre 5, nous étudions la régularité
des puissances des idéaux monomiaux associés aux graphes en haltere. Nous donnons une
valeur exacte pour la régularité de toutes les puissances et en déduisons que la régularité des
puissances est une fonction linaire depuis le début.

Dans le chapitre 6, nous travaillons sur des espaces projectifs. Au début de ce chapitre,
nous présentons un package pour le logiciel informatique Macaulay2 qui recherche les multi-
degrés minimaux en lesquels la troncature d’'un module multigradé a une résolution linéaire.
De plus, nous étudions les cohomologies des“intersections completes” dans P x P™. En
particulier, nous étudions la fonction de Hilbert bigraduée d’ensembles de points intersec-
tion complete (i.e. définis par n + m polynomes) dans cet espace. Nous donnons une limite
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inférieure optimale pour la stabilisation de la fonction de Hilbert (en d’autres termes, nous
fournissons un contréle précis pour le support de la cohomologie locale). De plus, nous
montrons que, dans une zone spécifique et assez grande, la fonction de Hilbert ne dépend
que du degré des formes définissant les points. Enfin, nous considérons le cas ou les formes
définissant les points sont choisies de maniere générique. Dans ce cas, nous montrons que
les projections naturelles sur P et P™ sont des isomorphismes et en tiront des conséquences
pour la cohomologie.

Mots-clés

Anneaux d’intersection complete, anneaux multigradués, cohomologie locale, fonction de
Hilbert, homologie de Koszul, edge ideals, propriétés de Lefschetz, régularité de Castelnuovo-
Mumford, résolution libre, résolution presque linéaire, syzygies.



Syzygies: Algebra, Combinatorics and Geometry

Abstract

Castelnuovo-Mumford regularity is one of the main numerical invariants that measure the
complexity of the structure of homogeneous finitely generated modules over polynomial rings.
It measures the maximum degrees of generators of the syzygies. In this thesis we study the
Castelnuovo-Mumford regularity with different points of view and, in some parts, we mainly
focus on linear syzygies.

In Chapter 2 we study the regularity of Koszul homologies and Koszul cycles of one
dimensional quotients. As an application, this gives a lower of bound for the number of
linear steps in the minimal free resolution Veronese embeddings.

In Chapter 3 we study the weak and strong Lefschetz properties of a class of artinain
monomial ideals. We show how the structure of the minimal free resolution could force weak

or strong Lefschetz properties. We give, in some cases, an affirmative answer to a conjecture
of Eisenbud, Huneke, and Ulrich.

In Chapter 4 and 5 we study two different asymptotic behavior of Castelnuovo-Mumford
regularity. In Chapter 4 we work on a quotient of a standard graded Noetherian algebra by
homogeneous regular sequence. First, we show that the regularity of Ext’(M, N) becomes a
linear function for odd and even ¢ separately. With additional mild assumptions on the base
ring we prove that, if the dimension of Tor;(M, N) is at most one for i > 0, then a similar
result holds for Tor;(M, N). In addition, we give two examples showing that the assumption
on the dimension is essential.

It is a celebrated result that the regularity of powers of an ideal in a polynomial ring
becomes a linear function. In Chapter 5, we study the regularity of powers of dumbbell
graphs. We give an exact value for regularity of all the powers and, in particular, we show
that the regularity of the powers is a linear function from the beginning.

In Chapter 6, we work on product of projective spaces. In the begining of this chapter, we
present a package for the computer software Macaulay2 which finds the minimal multidegrees
where the truncation of a multigraded module has a linear resolution. Furthermore, we study
the cohomologies of the “complete intersections” in P x P™. In particular, we study the
bigraded Hilbert function of complete intersection sets of points in this space. We give a
sharp lower bound for the stabilization of the bigraded Hilbert function (in other words we
provide a sharp control for the support of local cohomology). In addition, we show that, in a
specific and pretty large region, the bigraded Hilbert Function only depends upon the degree
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of the forms defining the points. Finally, we consider the case where the forms defining the
points are chosen generically. In this case we show that the natural projections to P™ and
P are one-to-one and derive consequences on cohomology.

Keywords

Almost linear resolution, Castelnuovo-Mumford regularity, complete intersection rings, edge
ideals, free resolution, Hilbert function, Koszul homology, Lefschetz properties, local coho-
mology, multigraded rings, syzygies.
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Introduction

Algebraic geometry, implicit in the name, is the relation between geometry and equations.
One of the main subjects of commutative algebra is the qualitative study of systems of
polynomial equations. But when we actually study a ring or a variety we often have to
know a great deal about it before understanding its equations. Conversely, given a system
of equations, it can be extremely difficult to analyze its qualitative properties, such as the
geometry of the corresponding variety. The theory of syzygies offers a microscope for looking
at systems of equations. Castelnuovo-Mumford regularity is an important invariant in com-
mutative algebra and algebraic geometry which is strongly related to syzygies. D. Eisenbud
and S. Goto in [35] showed that Castelnuovo-Mumford regularity can be obtained from the
minimal free resolution. The minimal free resolution was first introduced by Hilbert in order
to study Hilbert function. It is one of the finest invariant that we can associate with a finitely
generated module M over a polynomial ring.

What are syzygies?

In algebraic geometry over a field k£ we study the geometry of varieties through properties
of the polynomial ring

S =klxy, ..., x,)

and its ideals. It turns out that to study ideals effectively we also need to study more
general graded modules over S. The simplest way to describe a module is by generators
and relations. We may think of a set A C M of generators for an S-module M as a map
from a free S-module F' = Sl onto M, sending the basis element of I corresponding to a
generator m € A to the element m € M.

Let M; be the kernel of the map ' — M; it is called the module of syzygies of M
corresponding to the given choice of generators, and a syzygy of M is an element of M.
Given generators of M, the module M is uniquely defined by its module of syzygies.
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If n = 1, so that we are working over the polynomial ring in one variable, the module
of syzygies is itself a free module, since over a principal ideal domain every submodule of a
free module is free. But when n > 2 it may be the case that any set of generators of the
module of syzygies has relations. To understand them, we proceed as before: we choose a
generating set of syzygies and use them to define a map from a new free module, say Fi,
onto M;y; equivalently, we give a map 0y : F; — F whose image is M;. Continuing in this
way we get a free resolution of M, that is, a sequence of maps

o BARB M0,

where all the modules F; are free and each map is a surjection onto the kernel of the following
map. The image M; of 0; is called the i-th module of syzygies of M.

In projective geometry we treat S as a graded ring by giving each variable x; degree 1,
and we will be interested in the case where M is a finitely generated graded S-module. In
this case we can choose a minimal set of homogeneous generators for M (that is, one with
as few elements as possible), and we choose the degrees of the generators of F' so that the
map ' — M preserves degrees. The syzygy module M, is then a graded submodule of F',
and Hilbert’s Basis Theorem tells us that M is again finitely generated, so we may repeat
the procedure. Hilbert’s Syzygy Theorem tells us that the modules M; are free as soon as

7> n.

The free resolution of M appears to depend strongly on our initial choice of generators
for M, as well as the subsequent choices of generators of M, and so on. But if M is a finitely
generated graded module and we choose a minimal set of generators for M, then M, is, up
to isomorphism, independent of the minimal set of generators chosen. It follows that if we
choose minimal sets of generators at each stage in the construction of a free resolution we
get a minimal free resolution of M that is, up to isomorphism, independent of all the choices
made. Since, by the Hilbert Syzygy Theorem, M; is free for ¢ > n, we see that in the minimal
free resolution F; = 0 for « > n+ 1. In this sense the minimal free resolution is finite: it has
length at most n. Moreover, any free resolution of M can be derived from the minimal one
in a simple way.

The minimal free resolution is one of the finest invariant that we can associate to a finitely
generated graded S-module M. For instance, Hilbert functions and Hilbert polynomials can
be obtained from the minimal free resolution. Since studying minimal free resolution is
somehow studying the modules of syzygies then it seems reasonable to study the modules
of syzygies instead. In this thesis we put some assumptions on the module of syzygies
and investigate how these assumptions affect the properties of M. Since any module can
be represented by generators and relations, the simplest relations that minimal generators
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could have are ones with linear forms as coefficients, these are called linear syzygies. We
study the syzygies with three points of view: algebraic, combinatorial and geometric.

What 1s in this thesis?

This thesis is based on the following articles. We will give a short overview below.

(1) Castelnuovo-Mumford regularity of Koszul cycles and Koszul homologies
(with K. Lamei). Proc. Amer. Math. Soc. 146(2018), 2765-2772.

(2) Lefschetz properties of monomial ideals with almost linear resolution (with
N. Altafi). Submitted, arXiv:1803.01388.

(3) The (ir)regularity of Tor and Ext(with M. Chardin and D. Ghosh). In preparation.

(4) Regularity of bicyclic graphs and their powers (with Y. Cid-Ruiz, S. Jafari and
B. Picone). To appear in Journal of Algebra and its Applications, arXiv:1802.07202.

(5) Cohomologies of complete intersections in P" x P (with M. Chardin). In prepa-
ration.

(6) Linear truncations package in Macaulay2 (with David Eisenbud). In preparation.

Regularity of Koszul cycles and Homologies: The first part of this thesis is about
Castelnuovo-Mumford regularity of Koszul cycles and Koszul homologies for one dimensional
quotients. The motivation of this work is studying the minimal free resolution of Veronese
embedding. There is a very famous conjecture due to Ottaviani and Paoletti in [72] about
the minimal free resolution of Veronese embedding. They conjectured that the minimal free
resolution of Veronese embedding of degree d has linear syzygies for 3d — 3 steps. Up to
now, this conjecture is widely open and the best known results are pretty far from the one in
the conjecture. We have two goals in this part. First, we prove that Castelnuovo-Mumford
regularity of Koszul cycles of one dimensional quotients is an additive function.

Theorem 1. [0/, Thm. 3.4] Let S = k[x1,...,x,] and I be a graded ideal of S, if dim S/1 <
1 and characteristic of k is 0 or bigger than s +t, then

reg(Zsyi (1)) < reg(Z,(1)) + reg(Zs(1)).

Second, by providing a relation between the regularity of Koszul cycles and Koszul ho-
mologies we prove a sharp regularity bound for the Koszul homologies of a homogeneous
ideal in a polynomial ring under the same conditions.
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Theorem 2. [0/, Thm. 4.3] Let S be a polynomial ring, I be a homogeneous ideal of S. If
dim S/I <1, then for all 0 < i < pu(I)
reg(Z;(1,5)) = max {reg(H;_;(1,S5)) +j+ 1}.

0<j<n

Here u(1) is the minimal number of generators of I.

As an application we state sharp bound for the regularity of Koszul homologies in dimen-
sion 1 which is a refinement of the result of A. Conca and S. Murai in dimension 0.

Theorem 3. [0/, Thm. 4.5] Let I be an ideal of S and dim S/I < 1, then we have the
following inequalities between Koszul homologies of I for all i,7 > 1
reg(H;i+j-1(1,9)) < 1<0%z?;_1{reg(]{i_a(], S)) +reg(H;_p(1,9)) +a+ G}

By using the above theorems we are able to give a new proof for a classical result due to
M. Green on the Ottaviani and Paoletti conjecture.

Lefschetz properties: The weak Lefschetz property (WLP) of an Artinian graded algebra
A, says that there exists a linear form ¢ that induces a multiplication map x¢: A; — A; 14
that has the maximal rank for each ¢, i.e. that is either surjective or injective. The strong
Lefschetz property (SLP) says the map x¢' : A; — A;,; has maximal rank for each 7 and
t. It turns out to be rather hard to determine if (SLP) or (WLP) holds, even for natural
families of algebras. It is also interesting to ask for which ¢ the map x/¢' : A; — A4 has
maximal rank (see [08]). These fundamental properties have been studied by many authors
from different point of views and for different families of algebras. We study the Lefschetz
properties of Artinian monomial ideals generated in a single degree d with assumptions on
their minimal free resolutions. In [37], Eisenbud, Huneke and Ulrich study the minimal
free resolutions of Artinian ideals in the polynomial ring S = k[z1,...,z,| and the authors
provide the following conjecture

Conjecture 1 (Eisenbud, Huneke and Ulrich). Let I C S = k[zy,...,x,] is an artinian
ideal generated in degree d and its minimal free resolution is linear for p — 1 steps, then

m? ST+ (I lprr-- -y 1n)?
for sufficiently general linear forms I, ..., 1,.

There is a strong relationship between this conjecture and Lefschetz properties of S/I.
This conjecture was our motivation and we give an affirmative answer in the monomial case
where [ has almost linear resolution (the minimal free resolution of I is linear except in the
last step). The main theorems we prove are the following:
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Theorem 4. [/, Thm. 3.9] Let I C S =Klzy,...,x,] be an artinian monomial ideal gener-
ated in degree d with almost linear resolution, then for generic linear form ¢, multiplication
map x0*: (S/1)q — (S/1)as2 has mazimal rank for any a.

Theorem 5. [/, Thm. 4.6] Let I C S = Klzy,...,x,] be a monomial ideal generated in
degree d such that mett C I. If the minimal free resolution of I is linear except in the last
two steps, then S/I satisfies the WLP.

We show by example that both conditions in the above theorem are necessary.

Asymptotic behavior of regularity: The study of homological invariants of powers of
ideals goes back, at least, to the work of Brodmann in the 70’s which has attracted a lot of
attention over the last two decades. Given a projective variety X C P", let Zx be the ideal
sheaf of the embedding of X. Let dx denotes the minimum of the degrees d such that X is
a scheme-theoretic intersection of hypersurfaces of degree at most d. For a smooth complex
projective variety, Bertram, Ein and Lazarsfeld [9] have shown that there is a number e such
that
H (P, T3 (a)) = 0

for all a > ndx +e,i > 1.

One of the most important results in this area is the asymptotic linearity of the Castelnuovo-
Mumford regularity of an ideal I over a polynomial ring, obtained by Kodiyalam [63] and
Cutkosky, Herzog and Trung [30], independently. There exist d, ¢, ny such reg(/°) = sd+c for
every s > ng. There are series of results about the value of d, ¢, ng. An interesting question
in this regard is to give an explicit description of these numbers in some special cases. In
8], Banerjee, Beyarslan and Ha gave a conjecture describing ¢, ng for graphs.

In [27], we studied the regularity of bicyclic graphs and the regularity of powers of dumb-
bell graphs. For any bicyclic graphs, we provide an exact formula for the regularity of their
edge ideals in terms of induced matching number of the graph. We also study the asymptotic
behavior of the regularity of powers. Let G be a graph obtained by attaching two cycles
with a path of length < 1 then we prove

reg(I(G)%) = 2s+reg I(G) — 2.

The above theorem implies that regularity of /(G)® is a linear function in terms of s when
s > 1 and answers the mentioned conjecture.

As we mentioned before the fundamental theorem on asymptotic linearity of regularity
is for an ideal over a polynomial ring. The next step is to studying modules over complete
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intersections. Recently D. Eisenbud and I. Peeva in [39] stdudied the structure of minimal
free resolutions over complete intersections. In [22] we focus on the asymptotic behavior
of regularity of Ext’(M, N) and Tor;(M, N) in terms of i for modules over a quotient of
standard graded Noetherian algebra by regular sequence. The special, but very important,
case of our theorems is for modules over a complete intersection ring.

Theorem 6. [22, Thm. 3.2] Let Q be a standard graded Noetherian algebra, A := Q/(f),
where £ := fi,..., fc is a homogeneous Q-reqular sequence. Let M and N be finitely generated
graded A-modules such that Extg (M, N) =0 for all i > 0.

Then, for every ( € {0,1}, there exist a; € {deg(f;) : 1 < j < ¢} and ey € ZU {—o0}
such that
reg (Exty (M, N)) = —a;-i+e;  for alli>> 0.

Theorem 7. [22, Th. 3.3] Let Q be a standard graded Noetherian algebra, A := Q/(f), where
f:= fi,...,f. is a homogeneous Q-reqular sequence. Assume (Q is *local or the epimorphic
image a Gorenstein ring. Let M and N be finitely generated graded A-modules such that,

(i) M has finite projective dimension over @Q,
(ii) dim(Tor*(M, N)) < 1 for any i > 0.
Then, for every ¢ € {0,1}, there exist a, € {deg(f;) : 1 < j < ¢} and ey € Z U {—o0}
such that
reg (Torgy, (M, N)) = a-i+ e, Vi>> 0.

In addition, we provide examples showing that the behavior of the regularity of Tor
modules could be very different without the assumption in the result above.

Example 1. [22, Example 4.1] Let Q := K[Y, Z,V,W] be a polynomial ring with usual
grading over a field K and A := Q/(Y?,Z?). Write A = K|y, z,v,w]|, where y, z,v and w
are the residue classes of Y, Z,V and W respectively. Fix an integer m > 1. Set

A(—m)? A(—=m+1)
M := Coker 4 z 0o b — .
™" —w™ Yy oz
A(=1)? A

and N := A/(y, z). Then, for every i > 1, we have
(i) indeg (Ext’y(M, N)) = —i —m + 1 and reg (Ext’,(M, N)) = —i.

(i) indeg (Tor{'(M,N)) =i and reg (Tor! (M, N)) = (m + 1)i + (2m — 2).
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In this example, Torf(M ,N) is supported in dimension 2 for ¢ > 0, its regularity is
eventually linear, but the leading term depends on the module M and could be arbitrary
big. This shows that the finiteness result for the Tor-algebra that we prove under the
condition that Tor:*(M, N) is supported in dimension 1 for i > 0 can fail if this hypothesis
is removed.

The following example that we develop in the last section shows that the eventual regu-
larity of Tor could be very far from being linear,

Example 2. [22, Example 5.1] Let Q := K[X,Y,Z, U, V,W] be a standard graded poly-
nomial ring over a field K of characteristic 2 and A := Q/(X? Y? Z%). We write A =
Klz,y,z,u,v,w], where x,y,z,u,v and w are the residue classes of XY, Z U,V and W
respectively. Set

M = Coker([i z Z 2 2 2 :A(—1)6—>A2> and N :=A/(z,y,2).

Then, for every n > 1, we have

(i) indeg (Ext" (M, N))

reg (Ext’y (M, N)) = —n.
(i) indeg (Tor;!(M,N)) = n and reg (Tor, (M, N)) = n + f(n), where

2+l 9 ifn =2 -1 .
f(n) ::{ o1 _1 ifol << o+l _9 for all integers [ > 1.

As a consequence, in this example,
{reg(Tory, (M, N))/2n :n > 1} and {reg(Tors, (M, N))/2n+1:n > 1}

are dense sets in [2, 3] and

Tord (M, N Tor (M, N
liminfreg( or,, (M, >):2 and limsupreg( or,, (M, N))

n—00 n n—o00 n

=3.

Multigraded Castelnuovo-Mumford regularity. An extension of Castelnuovo-Mumford
regularity for a multigraded case was first introduced by Hoffman and Wang in a special case
[57], and later by Maclagan and Smith in [65] and Botbol and Chardin in [12] in a more gen-
eral setting. In [38] and [25], we studied the multigraded regularity. An interesting question
to ask is the relation between Castelnuovo-Mumford regularity of M in the multigraded case
and the degrees d where the truncation M>q4 has a linear resolution. Note that, if M4 has
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a linear resolution so does Msg for all d’ > d. Therefore these multidegrees form a region
and we call it linear truncations. Also, it is enough to find minimal generators for the region
where the truncation has a linear resolution. The first non-trivial thing is to show the linear
truncations is a non-empty set. Indeed, in [31] the authors provide a degree d where M>q4
has a linear resolution. Unfortunately, this degree, in general, is greater than the generators
of a linear truncation region. In [38], we refine this theorem and give a better bound in the
bigraded case. In addition, we implemented a Macaulay2 package which computes all the
minimal generators of linear truncation in general.

In [25] we studied the multigraded regularity of complete intersection points in P™ x P™.
We find a bound for the multigraded regularity region and this bound is sharp in some cases.
We show that this region is not convex and in particular, this result provides a negative
answer to a question asked by D. Eisenbud.

In addition, we relate this result to the bigraded Hilbert function of these points. In this
regard, we find a lower bound for the region of the stabilization of the bigraded Hilbert
function.

Example 3. Let S = k[zo, 21, %2, Y0, Y1, y2], I = (2595, 21y1, 3y3, (vo+a1+22)* (Yo +y1+y2)?)
and V' be the complete intersection scheme of points defined by 1. For (0,0) < p < (8,38)
the bigraded Hilbert function HFy (p) is

24 72 96 96 96 96 96 96
24 72 96 96 96 96 96 96
21 63 86 90 93 95 96 96
15 45 66 78 87 93 96 96
10 30 48 64 78 90 96 96
6 18 32 48 66 86 96 96
3 9 18 30 45 63 72 T2
1 3 6 10 15 21 24 24.

By Theorem 6.2.12 we show all points except the underline ones can be computed explicitly
and they only depend on the degree of the generators of I which in this case is (2, 2).

The following theorem deals with the case where the scheme of points is defined by generic
forms. In this case, the natural projections to P" and P™ are one to one.

Theorem 8. Let S = k[xo,...,Tn,Y0,---,Yml|- If I is generated by n + m generic forms of
bidegree (d,e), then the scheme V defined by I is reduced set of points and

{1 € N?[ HFy (1) # deg(V)}] < oo.



Chapter 1

Preliminaries

In this chapter we collect the basic definitions and techniques that we will use in the next
chapters. In fact, most of the materials in this chapter is well known. We refer to [16] and
[32] as standard text books, in particular for the discussion of Koszul complex and basic
theorems in commutative algebra. The reader can consult the notations and general facts
about spectral sequences in [79)].

1.1 Castelnuovo-Mumford regularity

We start by recalling Castelnuovo-Mumford regularity which is a fundamental notion in this
thesis. There are two classical definitions for Castelnuovo-Mumford regularity, one with
graded Betti numbers and one with local cohomology.

1.1.1 Minimal free resolution

Let S = k[xy,...,z,] be a polynomial ring over a field k and M = @®g4ez M,y be a finitely
generated graded S-module. Given homogeneous elements m; € M of degree a; that generate
M as an S-module, we may define a map from the graded free module Fy = @;5(—a;) onto
M by sending the i-th generator to m;. Let M; C Fy be the kernel of this map Fy — M.
By the Hilbert Basis Theorem, M; is also a finitely generated module. The elements of M,
are called syzygies on the generators m;, or simply syzygies of M. Choosing finitely many
homogeneous syzygies that generate M;, we may define a map from a graded free module
Fy to Fy with image M;. Continuing in this way we construct a sequence of maps of graded

9
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free modules, called a graded free resolution of M:
—>Ei>Fl_1—>—>F1 i).F()

The above sequence is minimal if for each ¢ the image of 0; is contained in mF;_; where
m = (x1,...,x,) is the unique homogeneous maximal ideal of S.

Theorem 1.1.1. Let M be a finitely generated graded S-module. If F and G are minimal
graded free resolutions of M, then there is a graded isomorphism of compleres F — G induc-
ing the identity map on M. Any free resolution of M contains the minimal free resolution
as a direct summand.

Proof. See [73, Theorem 7.5 O

The above theorem not only says minimal free resolutions of M are unique up to iso-
morphism, but also we can obtain it from any non-minimal resolution by deleting trivial
complexes of the form

0— S(—a) > S(—a) =0
for a nonzero scalar c.

Suppose that F : 0 - F, — --- — F,, — --- — F} is a minimal free resolution of M
where F; = @©;S(—a;;), we can rewrite it as F; = @,5(—7)%®); that is F; requires 3; j(M)
minimal generators of degree j. Numbers ; ;(M) are called graded Betti numbers of M.
There are other interpretations of graded Betti numbers via Tor and Ext modules

Bij(M) = dimy, (Tor;(M, k);) = dimy, (Exti(M, k:)_j) )

Castelnuovo-Mumford regularity is a measure of the maximal degrees of generators of the
syzygy modules. We denote Castelnuovo-Mumford regularity of M by reg(M) and it is
defined as follows:

reg(M) = max{j — i|; (M) # 0},

1.1.2 Cech complex and local cohomology
In this section we adopt more general setting. If R is a Noetherian ring, () C R is an ideal,
and M is an R-module, then the zeroth local cohomology module of M is

HY(M) := {m € M|Q%m = 0 for some d}.

H is a functor in an obvious way: if ¢ : M — N is a map, the induced map Hg(¢) is the
restriction of ¢ to H%(M ). One sees immediately from this that the functor H, 82 is left exact,
so it is natural to study its derived functors, which we call Hé.
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Cech complex

Another useful expression for the local cohomology is obtained from a Cech complex: suppose
that @ is generated by elements (z1,...,z;). We write [t] = {1,...,t} for the set of integers
from 1 to ¢, and for any subset J C [t] we let z; = [[,.;z;. We denote by M][z5"] the
localization of M by inverting x .

Definition 1.1.2 (Cech complex). Let R be a commutative ring, ¢ = (z1,...,7;) be an
ideal of R and M be a finitely generated R-module. The Cech complex C(Q, M) is

.....

t
CQ.M): 0+ M S PMer'] % — P Mlaj') =5 - — My (] —0
1

where the differential maps are the natural ones.

Theorem 1.1.3. Suppose R is a Noetherian ring and QQ = (z1,...,x;). For any R-module
M,
Hy(M) = H(C(Q, M)).

Here we give two simple examples of local cohomologies that we will use later

Example 1.1.4. [33, Corollary A1.5] Let S = k[xy,...,2,]. [ is an m-primary ideal if and
only if
HY(S/I) = S/I and H.(S/I) =0 for i # 0.

Example 1.1.5. [59, Example 7.16] Let S = k[xy,...,,], then H.(S) = 0 for i # n and
HY(S)=w1-ynklyr, ..., yn] where k[y1,...,y,] is the polynomial ring over k, in variables
Y1, ---,Yn of degree —1, and the S-module structure on it is defined by

a;—1 :
a “ yal...yi'b y’gn lf a122
zi- (Y gy = 40 o
0 otherwise.

There are two fundamental results. First, Grothendieck’s theorem asserts the vanishing
of HL (M) for i > dim(M) and i < depth(M), as well as the nonvanishing of these modules
for i = depth(M) and ¢ = dim(M). Second is Serre’s vanishing theorem that implies the
vanishing of graded pieces H{ (M), for any i if u is big enough. The Castelnuovo-Mumford
regularity is a measure of this vanishing degree.
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Theorem 1.1.6. [20, Corollary 1.2.2] If M s a finitely generated graded S-module, then
for any 1

max{a,(M) + p} = max{b,(M) — ¢}

p<l q>n—l

where a;(M) = max{u|H. (M), # 0} and bj(M) := max{u|Tor](M,K), # 0}. As a
consequence,
reg(M) = maus{a,(M) + p} = maxc{by (M) ~ .

1.2 Lefschetz Properties

The Weak and Strong Lefschetz properties are strongly connected to many topics in algebraic
geometry, commutative algebra and combinatorics. Some of these connections are quite
surprising and still not completely understood, and much work remains to be done.

Let S = k[z1,...,x,] be the polynomial ring in n variables over k. Let

A=8/I= éAi
=0

be a graded artinian algebra. Note that A is finite dimensional over k.

Definition 1.2.1. Let ¢ be a general linear form. We say that A has the Weak Lefschetz
Property (WLP) if the homomorphism induced by multiplication by ¢,

X/l : Az — Ai+1

has maximal rank for all 7 (i.e. is injective or surjective). We say that A has the Strong
Lefschetz Property (SLP) if
X@d : Az — Ai+d

has maximal rank for all 7 and d.

How do we determine if S/I fails to have the WLP? Let ¢ be a general linear form and
fix an integer 7. Then we have an exact sequence

(8/1)imr = (8/1)i — (S/(I,£)); — 0.
Thus x/ fails to have maximal rank from degree 7 — 1 to degree 7 if and only if
dim(S/(1,¢)); > max{0,dim(S/I); — dim(S/1);—1}.

More precisely, if we want to show that the WLP fails, it is enough to identify a degree i for
which we can produce one of the following two pieces of information:
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(1) dim(S/1);—1 < dim(S/I); and dim (S/(1,?¢)), > dim(S/1); — dim(S/1);_1; in this case
we loosely say that WLP fails because of injectivity; or

(2) dim(S/1);—1 > dim(S/I); and dim (S/(Z,¢)), > 0; in this case we loosely say that WLP

fails because of surjectivity.

In general, even identifying which ¢ is the correct place to look can be difficult. Then deter-
mining which of (1) or (2) holds, and establishing both inequalities, is often very challenging.
This is where computer algebra programs have been very useful, in suggesting where to look
and what to look for! On the other hand, to prove that S/I does have the WLP, the following
result is helpful:

Proposition 1.2.2. If I is a monomial ideal in S = klz1,...,x,] then the linear form
{=x1+ -+ x, is "general enough” to determine S/I has the WLP or SLP.

The above Proposition has been extremely useful in simplifying calculations to show the
existence or failure of the WLP or SLP.

In the case of one variable, the WLP and SLP are trivial since all ideals are principal.
The case of two variables also has a nice result, at least in characteristic 0:

Theorem 1.2.3. If char(k) = 0 and I is any homogeneous ideal in S = k[z,y| then S/I has
the SLP.

The above theorem is also true for the case of WLP in any characteristic. However, the
characteristic zero assumption cannot be omitted for guaranteeing the SLP. In fact, also the
WLP may fail if there are at least three variables.

Theorem 1.2.4. Let S = k[x,y, z| and I = (f1, fa, f3) be a complete intersection. Then S/1
has the WLP.

1.3 Edge ideals

In this part we recall a notion of edge ideals and some important theorems about regularity
of powers of them. Let G = (V, E) be a graph with vertex set V' = {vy,...,v}. For a vertex
uwin a graph G = (V, E), let Ng(u) = {v € V|{u,v} € E} be the set of neighbors of u,
and set Nglu] :== Ng(u) U{u}. An edge e is incident to a vertex u if u € e. The degree
of a vertex u € V, denoted by degg(u), is the number of edges incident to u. When there

is no confusion, we will omit G and write N(u), N[u] and deg(u). For an edge e in a graph
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G = (V,E), we define G \ e to be the subgraph of G' obtained by deleting e from E (but
the vertices are remained). For a subset W C V of the vertices in G, we define G \ W to
be the subgraph of G deleting the vertices of W and their incident edges. When W = {u}
consists of a single vertex, we write G \ u instead of G \ {u}. For an edge e = {u,v} € E,
let Ngle] = Nglu] U Ng[v] and define G, to be the induced subgraph of G over the vertex
set V'\ Nglel.

One can think of the vertices of G = (V, E) as the variables of the polynomial ring
S = klzy,...,x,] for convenience. Similarly, the edges of G can be considered as square free
monomials of degree two. We define edge ideal of G as an ideal generated by x;x; where
{z;,z;} is an edge of G and we denote it by I(G). By abuse of notation, we use e to refer
to both the edge e = {z;,;} and the monomial e = x;z; € I(G).

Theorem 1.3.1. [0/, Lemma 3.1, Theorems 3.4 and 3.5] Let G = (V, E) be a graph.
(1) If H is an induced subgraph of G, then reg I(H) < regI(G);
(i) Let x € V', then
reg I(G) < max{reg I(G \ z),reg I[(G \ N[z]) + 1};

(111) Let e € E, then
reg I(G) < max{2,reg I(G \ e),reg I(G.) + 1}.

Now we recall the concept of even-connection introduced by Banerjee in [7].

Definition 1.3.2 ([7]). Let G = (V, E) be a graph with edge ideal I = I(G). Two vertices
x; and x; in G are called even-connected with respect to an s-fold product M = e; ---e;,
where e1, ..., e are edges in G, if there is a path py, ..., pays1, for some [ > 1, in G such that
the following conditions hold:

(1) Po = X; and DPoi+1 = ZL‘j;
(i) forall 0 < j <1 —1,{pojs1,p2j1+2} = e; for some i;

{j | {p2j+1ap2j+2} = €z‘}‘ < |{t | e = ei}|.

Theorem 1.3.3. [7, Theorems 6.1 and 6.5] Let M = ejey---e5 be a minimal generator of
I%. Then (IfT1: M) is minimally generated by monomials of degree 2, and uv (u and v may
be the same) is a minimal generator of (I*T': M) if and only if either {u,v} € E or u and
v are even-connected with respect to M.

(iii) for all 7,
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Remark 1.3.4. [7, Lemma 6.11] Let (I571: M)™ be the polarization of the ideal (I5t1: M)
(see e.g. [55, §1.6]). From the previous theorem we can construct a graph G’ whose edge
ideal is given by (I5*1: M )pOI. The new graph G’ is given by:

(i) All the vertices and edges of G.

(ii) Any two vertices u,v, u # v that are even-connected with respect to M are connected
by an edge in G'.

(iii) For every vertex u which is even-connected to itself with respect to M, there is a new
vertex u' which is connected to u by an edge and not connected to any other vertex
(so wu' is a whisker).

Theorem 1.3.5. [7, Theorem 5.2] Let G be a graph and {m1,...,m,} be the set of minimal
monomial generators of 1(G)? for all ¢ > 1, then

reg [(G)" < max{reg (1(G)?: my) +2¢,1 <1 < r,reg I(G)?}.

The aforementioned theorem is our main tool to provide an upper bound for the regularity
of powers of edge ideals.

The decycling number of a graph is an important combinatorial invariant which can be
used to obtain an upper bound for the regularity of the edge ideal of a graph.

In [10] Beyarslan, Ha and Trung provided a formula for the regularity of the powers of
edge ideals of forests and cycles in terms of the induced matching number.

Theorem 1.3.6. [10, Theorem 4.7] Let G be a forest, then
reg [(G)! =2¢+v(G) -1
forall ¢ > 1.

Theorem 1.3.7. [0, Theorem 5.2]. Let C,, be a cycle with n vertices, then

~Jv(Ch) +1 if n=0,1 (mod 3),
reg [(C) = {I/(Cn) +2 if n =2 (mod 3),

where v(C),) = [gj denote the induced matching number of C,. Moreover,

reg [(C,)" =2q+v(C,) — 1

for all g > 2.
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In addition, the authors of [10] provided a lower bound for the regularity of the powers
of the edge ideal of an arbitrary graph, and an upper bound for the regularity of the edge
ideal of a graph containing a Hamiltonian path.

Theorem 1.3.8. [10), Theorem 4.5] Let G be a graph and let v(G) denote its induced match-
ing number. Then, for all ¢ > 1, we have

reg I(G)? > 2q + v(G) — 1.

Theorem 1.3.9. [10, Theorem 3.1] Let G be a graph on n vertices. Assume G contains a

Hamiltonian path, then
n—+1

7]

reg I[(G) < | + 1.



Chapter 2

Regularity of Koszul homologies and
Koszul cycles

We extend to one dimensional quotients the result of A. Conca and S. Murai on the convexity
of the regularity of Koszul cycles. By providing a relation between the regularity of Koszul
cycles and Koszul homologies we prove a sharp regularity bound for the Koszul homologies
of a homogeneous ideal in a polynomial ring under the same conditions.

A classic way to describe projective variety and its properties is by means of its defining
equations and syzygies among them. In this regard, M. Green and R. Lazarsfeld defined the
property NN, which, roughly speaking, refers to the simplicity of syzygies of the homogeneous
coordinate ring of a smooth projective variety embedded by a very ample line bundle. M.
Green in [18] proved that the coordinate ring of the image of Veronese embedding of degree
d satisfies the property Ny. W. Bruns, A. Conca and T. Rémer in [15] improved this result
so that the d-th Veronese subring of a polynomial ring has Green-Lazarsfeld index larger
than or equal to d + 1, their approach is based on investigation of the homological invariants
of the Koszul cycles and Koszul homologies of d-th power of the maximal ideal.

With the aforementioned motivation A. Conca and S. Murai studied the Castelnuovo-
Mumford regularity of the Koszul cycles Z;(1,5) of a homogeneous ideal in a polynomial
ring S in n variables. Under mild assumptions on the base field A. Conca and S. Murai proved
that regularity of Koszul cycles Z;(I,S) as a function of i is subadditive when dim S/I = 0
as follows:

reg(Zon(1,5)) < res(Z(1,S)) + reg(Z(1, 5)).

We make a generalization showing that with the same assumptions on the base field the
same formula holds when dim S/1 < 1.

17
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From the convexity of the regularity of Koszul cycles in dimension 0, A. Conca and S.
Murai [29, Corollary 3.3] obtained a bound on the regularity of Koszul homologies. Inspired
by the remarkable result of M.Chardin and P. Symonds [26] on the regularity of cycles and
homologies of a general complex, first we determine the regularity of Koszul cycles by the
regularity of the previous Koszul homologies. Let S be a polynomial ring, I be a homogeneous
ideal of S. If dim S/I < 1, then for all 0 < i < u(I)

reg(Z;(1,S5)) = max {reg(H;_;(1,S)) + 7+ 1}.

0<j<n

Here p(7) is the minimal number of generators of I.

As an application we state sharp bounds for the regularity of Koszul homologies in di-
mension 1 which is a refinement of the result of A. Conca and S. Murai in dimension 0. Let
I be an ideal of S and dim S/I < 1, then we have the following inequalities between Koszul
homologies of I for all 7,57 > 1

reg(Hiyj—1(£,9)) < max {reg(H;—a(I,S)) +reg(H;—p(1,S)) + a+ B}

T 1<a,8<n~—1

2.1 Regularity of Koszul cycles

In this section we will present a generalization of a result about convexity of regularity of
Koszul cycles of A. Conca and S. Murai.

Let I = (f1,...,[f-) be a graded S-ideal minimally generated in degrees dy,--- ,d,. De-
fine K(1,S) = ®K(1,S) as the Koszul complex associated to the S-linear map ¢ : Iy =
®S(—d;) — S in which ¢(e;) = f;. Let K(I,M) = K(I,S) ® M and denote Z,(I, M),
By(I, M) and H,(I, M) the cycles, boundaries and homologies of K (I, M) respectively at
the homological position t. We use Z;(I), B;(I) and H;(I) whenever M = S. We set
K(1,5) =0 fort <O0.

Remark 2.1.1. The Koszul complex does depend on the choice of the generators, but it is
unique up to isomorphism if we choose minimal set of generators. Since we only deal with
the case the set of generators is minimal, we use K (I) instead of K(f,..., f.).

The following result is due to W. Bruns, A. Conca and T. Rémer in [11]

Lemma 2.1.2. [/, Lemma 2.4] Let S be a polynomial ring, 1 be a homogeneous ideal of
S and M be a finitely generated graded S-module. Suppose that the element < y t:t ) 18
invertible in S. Then Zs (I, M) is a direct summand of Zs(I, Z(1, M))
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The following lemma allows us to compare regularities of different terms of exact sequences
and basically it plays the main role in the generalization of the result of A. Conca and S.
Murai[29] on the convexity of regularity of Koszul cycles.

Lemma 2.1.3. Let L : 0 — L4 N Ls 4, Lo BN L1 — 0 be an exact sequence of finitely
generated graded S-modules such that Ly and Ly have dimension < 1, and depth Ly > 2 then

reg(Ls) = max{reg(L4),reg(Ls),reg(Ly) — 1},

in particular reg(Ly) < reg(Ls).
Proof. First we decompose the complex L into the following short exact sequences

0— Ly sy Ly &% coker(d,) — 0,

0 — coker(dy) sy Ly 2L, —0.

Given the above short exact sequences, one can obtain the following induced long exact
sequences on local cohomology:

(I) oo — H!(Ly) = HL(L3) — HE (coker(dy)) — HE(Ly) — -+
(IT) oo — H! (Ly) — HL(Ly) — HE ' (coker(dy)) — HE(Ly) — - -

Hi(Ly) =0 for i > 2 as dim Ly < 1 thus (I) gives
H2(L3) = HZ(coker(dy)). (2.1.1)
As dim Ly < 1, by (II) we have
H (coker(dy)) = H..(Ly) Vi > 3.
As depth Ly > 2 and H{(Ly) = 0 for i = 0,1, by (II)
HY(Ly) = H} (coker(dy)) and HY (coker(dy)) = 0. (2.1.2)
From the exact sequences (I) and (2.1.2) we get the following short exact sequences

0— HL(Ly) — H:(Ls) — H2(Ly) — 0,
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also the exact sequences (II) and (2.1.1) give
0 — Hy(Ly) — Hi(Ls) — HA(Ls) — 0.

As a result we have

al (Ly) ifi=0
0l (L) = max{al (Ly),a’ (L)} ifi=1
" max{a?(Ls),ak(L1)} ifi=2
ai (Lo) ifi >3
which proves the statement. O

Proposition 2.1.4. Let S = k[zy,...,x,| be a polynomial ring, let M be a finitely generated

graded S-module with depth M > 2 and let I be a graded ideal of S such that dim S/ < 1,
then
veg(Z(Z,(I, M))) < reg(Z(1)) + reg(Z,(I, M)).

Proof. By definition one has the following exact sequences,
(1) 0= Z,(1,M)) = K,(I, M) “ K,_1(,M)

(1) 0= Z,(I, Zo(I, M)) = K,(I, Z,(I, M)) % K, y(I, Z,(I, M))

Note that K (I, M) and Ks_1(I, M) are direct sums of copies of M, () then implies that
depth Z,(1, M) > min{2,depth M} = 2. Using (1),

depth Z,(I, Zs(1, M)) > min{2, depth Z,(1, M)} = 2.

For the canonical map in 14, Section 5]
syt Zo(I) @ Zy(I, M) — Zy(I, Zy(I, M))
Proposition 5.1 in [14] gives an exact sequence,

Ky (I, M)

0 — ker(ugy) — Z,(I) @ Zy(I, M) — Zy(Zo(1,M)) — Torf(m

, Zi(1)) — 0.

Notice that after localization at prime ideals not in the support of S/I all the Koszul cycles
become direct sum of copies of M and the map us, becomes an isomorphism. Therefore
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K, 1(1,M)

Tory (=1~
o (Bsfl([7M)

1.

Thus the conditions of Lemma 2.1.3 are fulfilled, and this lemma gives:

, Z(1)) and ker(us,) are supported in S/I, hence have dimension at most

reg(Zt<Zs(]7M))) < reg(Zt(I’ M) ® Zs(]vM))

Notice that Tort(Z,(I), Zs(I, M)) has dimension at most 1 because Z,(I) is free when we
localize at prime ideals not in the support of S/I, so we apply Corollary 3.1 in [37] to get

reg(Z(I, M) ® Zu(I, M) < reg(Z,(1)) + reg(Zs(I, M)).
As a result we get
reg(Zi(Zs(1, M))) < reg(Z,(1)) + reg(Z(1, M)).
O

Theorem 2.1.5. Let S = k[zy,...,x,] and I be a graded ideal of S, if dim S/I < 1 and
characteristic of k is O or bigger than s +t, then

reg(Zyni(1)) < veg(Z(1)) + reg(Z(D)).

Proof. The theorem follows from Proposition 2.1.4 and Lemma 2.1.2. O

2.2 Regularity of Koszul homologies

We start this section by a fact which is likely part of folklore but we did not find it in the
classical references.

Proposition 2.2.1. Let S = k[zy,...,x,] be a polynomial ring and I be an ideal of S
minimally generated by fi ..., f., then Z;(I) C mK;(I) for all i.

Proof. Suppose it is not, then there exists z € Z;(I) that is not in mK;(7). By symmetry
we may assume it has the form:

Z:61/\"'/\@i"‘ZCj@l/\"‘Aei_l/\€j+termsWithout er N+ Nei_q.
j>i
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Since d(z) = 0 it follows that (—1)'fi + > . ;(=1)c;f; = 0, as it is the coefficient of
e1 A+ - Ae;_q in the expression of 0(z), which is a contradiction with the fact that fi,..., f.
is a minimal set of generators for . O

Corollary 2.2.2. Let S = klxy,...,x,] be a polynomial ring and I = (fi,...,[f.) be a
homogeneous ideal of S. Let fi,..., f. be a minimal generating set of I and deg(f;) = d;
where dy > dy > -+ > d,, thenreg(Z;(I)) > dy + -+ -+ d; fori<r.

Proof. Fix a basis element e; A --- Ae; € K;. Since Ko(/) is a complex,

8(61/\- . '/\61'/\61'4_1) = (—1)i+1fi+161/\' . /\€Z+ Z (—1)jf]’61/\‘ . /\éj/\ . '/\61'4_1 € Zl(I)
0<y<i+1

Therefore an element of the form ge; A --- A e; should appear as a summand in a minimal
generating element of Z;(I). By Proposition 2.2.1, g € m. So there exists minimal generator
of degree at least d; 4+ --- +d; + 1. Hence reg(Z;(1)) > dy + -+ - + d,. d

M. Chardin and P. Symonds in [20] presented a new approach to the study of the regularity
of cycles of a general complex by the regularity of previous homologies. Here we determine
a concrete relation between regularity of cycles and homologies of a Koszul complex.

Theorem 2.2.3. Let S = klzy,...,x,]| be a polynomial ring and I be a homogeneous ideal
of S minimally generated by f1,..., fr. If dim S/I <1, then for 0 <i < r:

reg(Z;(1)) = max }{reg(Hi_j(])) +j+1}. (2.2.1)

0<j<min{n—1,i

Proof. Let I = (f1,..., f,) and deg(f;) = d; where dy > dy > -+ > d,. Let K!(I) be the
i-th truncated Koszul complex of I as follows:

Ki(I):0 = Zi(I) 2 K1) 2 Koy (1) 20 o 2 Ko(1) = 0

and C* be the Cech complex. Consider double complex X = C*® K (I) where X,, =
C* P ® K[(I),, and its associated spectral sequence. We first compute homology vertically
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and we get
HL(Zi(1)) 0 0 0
HL(Z,(1)) 0 0 0
H3(Z:(1)) 0 0 0

n HE () n HI(9;) n H{(9; 1) HI(9)) n
Hy(Zi(1) =" Hu(Ki(l) =" Hg(Ki1 (1)) VoY Hp(Ko(1)).
By continuing the process we have:
HY(Z(D)  ifq=i+1Lp<n
pa TR ker(Hp (7)) if (p.q) = (n,i+1)
0 Otherwise.

Notice that since aft(K;(I)) = dy + --- + dj — n, it follows that for all 0 < ¢ <1 we have
end(E°) <end(E, ) =dy+ - +d, —n.

On the other hand, if we start taking homology horizontally we have E’;q = HP(H,(I))
for all p and ¢ < 7 and E’;q = 0 for ¢ = 4,7 + 1. Notice that dim H;(I) < dimS/I < 1,
therefore spectral sequence collapses in the second page and we have:

g pe | HA(H(I)) ifp=0,1and ¢ <i
0 otherwise.

The comparison of two spectral sequences gives

Hy(Z (1))—H1(Z(I))=0
an(Zi(1)) = ag(Hi-1(1))
an(Zi(1)) = max{ag (Hi—js2(1)), an(Hi—jsa (1)}, V2 <j <n

In addition, for the last local cohomology we have

an(Zi(1)) < max{ay(Hi—ns+2(1)), ap (Hi-ns1(1)), di + - di — n},

m
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furthermore
an(Zi(I)) = max{ay(Hi—n+2(1)), an(Hi—ps1(1))}
if a? (Z;(I)) > dy + - --d; — n. By Corollary 2.2.2, we can deduce that

a (Zi(1)) = max{ag (Hi—ns2(1)), an(Hi—ns1 (1))} or ag(Zi(I)) +n < reg(Zi(1))
In addition, the comparison of the two spectral sequences and Corollary 2.2.2 give

ar (Hi_pi1 () <end(EX_ ) <dy + -+ +di_y —n < reg(Z;(I)) — n.

n,i—1

As a result we have:

reg(Z;(1)) = max {a},(Z(1))) + j}

0<j<n

= max  Aag(Hi1(D) + 2, a(Himjio(1)) + Jy g (Himjia (1)) + jydi + - -

3<j<max{n,i+2}

B 2§j§nrlrla%§b,i+1}{reg(Hi_j+1(I)) +7}

Remark 2.2.4. From the proof of the Theorem 2.2.3, the following equality also holds

reg(Z;(I)) = max{reg(H;_;(I)) + j + 1}.

§>0

As a consequence of the Theorem 2.2.3 and Theorem 2.1.5 we give a regularity bound for

Koszul homologies in dimension at most 1.

Theorem 2.2.5. Let S = k[xy,...,x,] be a polynomial ring and I be a homogeneous ideal
of S. If dim S/I < 1, then for all i,j > 1 we have the following reqularity bound for the

Koszul homologies of 1.

reg(Hi+j—1(1)) < max {reg(H;_o(l)) +reg(H;—5(I)) + a+ B}. (2.2.2)

T 0<a,B<n

Proof. By Theorem 2.1.5 we have the following inequality for all 7, j

reg(Ziy;(1)) < reg(Zi(1)) + reg(Z;(1)).

By using Theorem 2.2.3 we have
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reg(Hirj-1(1)) + 2 < reg(Zi1;(1))
< reg(Zi(1)) + reg(Z;(1))
= jnax {reg(Hi—o(I)) + o+ 1} + max {reg(H;_5(I)) + § + 1}

0<a<n

= max {reg(H;_o(I)) +reg(H;_p(I)) + a+ 3+ 2}.

0<a,B<n

O

The following example shows the deviation degree of our bound comparing to the bound
provided by A. Conca and S. Murai in dimension 0.
Example 2.2.6. Let S = k[z,y, 2] be a polynomial ring and I = (z,y,2)*. We compare
our bound for the regularity of Hiy(I) for different i,j by the bound in the [29]. By us-
ing Macaulay2 [17] one can see that the reg(H2(/)) = 57. For bounding regularity of
Hi5(I) we should choose 4, j such that i + j = 13. By choosing (i, 7) = (1, 12) (respectively
(2,11),(3,10),(4,9),(5,8),(6,7)) the right hand side of Equation 2.2.2 is 57 (respectively
58, 58,59, 59,58). On the other hand in the bound proposed by A. Conca and S. Murai the
best possible estimate is 61.

Corollary 2.2.7. Let S = k[xy,...,x,] be a polynomial ideal and I be an ideal of S. If
dim S/I <1, then

veg(Hi(I)) < (i + 1) reg(Ho(1)) + 2.
In particular, reg(H;(I)) < (i + 1)(reg(I) — 1) + 2i.
Proof. We prove by induction. For ¢ =1 by Theorem 2.2.5 we have

reg(Hy(1)) < {reg(Ho(1)) + 1+ reg(Ho(I)) + 1} = 2reg(Ho(I)) + 2.
Let reg(H;(1)) < (i + 1)reg(Ho(1)) + 2i for all ¢ < r, by choosing i = 1 and j =7+ 1 in
Equation 2.2.2 we have
reu(Hy (1)) < o res(Ho(1)) + xeg(H c1_o(1)) + 5+ 1}
For all 0 < 8 < n we have

reg(Hry1-p(1))+B8+1<(r—pF+2)reg(Ho(I))+2(r+1—-5)+5+1

<
< (r+1)reg(Ho(I)) +2(r +1).

Therefore reg(H,+1(1)) < (r+ 2)reg(Ho(1)) + 2(r + 1). O



26 Chapter 2. Regularity of Koszul homologies and Koszul cycles

2.3 Green-Lazarsfeld index of Veronese embedding

Let X be a smooth projective variety with a very ample line bundle L which sets up an
embedding into projective space P” where r = h%(X,L) — 1. Let S = Sym H°(X, L) be
the homogeneous coordinate ring of P" and if we define R := ®H°(X,O(kL)), then R can
be viewed as a finitely generated graded S-module. The syzygies of R as an S-module is
investigated by M. Green. Let X be a curve of genus g and let £ be a very ample line bundle
on X M. Green proved that if deg L = 2g + p + 1 then the embedding defined by £ has
property N,. In the case of Veronese embedding of projective spaces ¢, : Pt — PY M.
Green proved that the Veronese subring S = P, cn Sic satisfies property N, and then W.
Bruns A., Conca and T. Romer extend the lower bound to ¢+ 1.

G. Ottaviani and R. Paolletti [72] proved that the Veronese embedding ¢ for n > 2 and
¢ > 3 does not satisfy property Ns._o. In zero characteristic therefore one can deduce that

c+1< index(S(C)) < 3c - 3.

G. Ottaviani and R. Paolletti showed that if n = 3 then index(S)) = 3¢ — 3 and they
conjectured that the equality holds for arbitrary n > 3. Recently, in an unpublished work T.
Vu proved the conjecture of G. Ottaviani and R. Paoletti in the case ¢ = 4 . The following
theorem provides an equivalence between the study of the syzygies of Veronese embedding
and the study of Koszul homologies of powers of the maximal ideal.

Theorem 2.3.1. Let S = k[zy,...,x,]. Fori € N and j € Z we have:
ﬁm(VS(c)) = dlIIlK Hz»(mc, R)jc (231)
Proof. See 4.1 in [14] for the proof. O

Now we use our results on regularity of Koszul cycles and Koszul homologies to find a
lower bound for the Green-Lazarsfeld index of Veronese embedding. In this regard, we are
able to reproof the statement of M. Green in [15].

Lemma 2.3.2. Let S = k[zy,...,x,] and Vi(c) be the c-th Veronese subring of S, then
reg(Zi12(m€)) = reg(H;11(m)) + 2, for i < min{index(Vs(c)),2c}

Proof. By Theorem 2.2.3, it suffices to prove that the regularity of Koszul homologies are
increasing as a function of 7. Since i < index(Vs(c)), by Theorem 2.3.1

H;(m)(i42). = 0 and reg(H;11(m€)) > (i + 2)c.
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As H;(m®) (o). = 0, reg(H;(m)) < (i + 2)c if and only if H;(m®) has no generator of degree
greater than (i + 2)c. Hence it suffices to show that reg(Z;(m¢)) < (i + 2)c. By Theorem
2.1.5 and Theorem 2.2.3 we have

reg(Zi(m?)) <ireg(Z1(m?)) = i(reg(Ho(m®)) + 2) = i(c + 1)
Since ¢ < 2¢, then reg(Z;(m)) < (i + 2)ec. O

As a consequence of Theorem 2.3.1 we know that reg(H;(m°)) = (i + 1)c + r;. From the
definition of Green-Lazarsfeld index one can see i < index(Vy(c)) if and only if r;, < ¢ — 1.
In order to find a bound for the index of Veronese embedding we can study the behavior of
r;’s. Notice that r; € Z for instance ro = —1.

Proposition 2.3.3. With the above notations, for all i < min{index (Vs(c)) + 1,2c¢+ 1} we
have r;y1 <r; + 1.

Proof. By Theorem 2.1.5 we have a triangle inequality between the regularity of Koszul
cycles, in particular for Z;(m¢) and Z;(m¢). By using Corollary 2.3.2 and Theorem 2.2.3

reg(Hi1(m°)) + 2 = reg(Zi2(m°))
< reg(Zip1(m€)) + reg(Z;(m®))
— reg(H,(m)) +2 + reg(Ho(m)) + 2.

By the above notation we have that (i + 2)c +r;p1 < (i + 1)c + r; + ¢+ 1. In particular
rigr <11+ 1 U

Corollary 2.3.4. The Green-Lazarsfeld index of Veronese embedding Vs(c) is at least c.

Proof. As we mention above, for finding the Green-Lazarsfeld index of Veronese embedding
we should control 7;’s. Proposition 2.3.3 shows that in each step, r;’s can be increased only
be one. Since ryp = —1 so r. < ¢ — 1 that means index(Vs(c)) > c. O
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Chapter 3

Lefschetz properties of monomial
ideals

3.1 Background and introduction

In this chapter we study the WLP and SLP of artinian monomial ideals in S = k[zy, ..., z,]
via studying their minimal free resolutions. We study the Lefschetz properties of such ideals
where the minimal free resolution of S/I is linear for at least n — 2 steps. We give an
affirmative answer to a conjecture of Eisenbud, Huneke and Ulrich for artinian monomial
ideals with almost linear resolutions.

The weak Lefschtez property (WLP) of an artinian graded algebra A, says that there
exists a linear form ¢ that induces a multiplication map x¢ : A; — A;,; that has maximal
rank for each 7, i.e. that is either surjective or injective. The strong Lefschetz property
(SLP) says the map x/': A; — A;;, has maximal rank for each ¢ and . It may seem a
simple problem to establish the algebras with this properties but it turns out to be rather
hard to determine even for natural families of algebras. It is also interesting to ask for which
¢t the map x¢' : A; — A;;; has maximal rank (see [60]). These fundamental properties
have been studied by many authors from different point of views and for different families
of algebras. In this chapter we study the Lefschetz properties of artinian monomial ideals
generated in a single degree d with assumptions on their minimal free resolutions.

In [37], Eisenbud, Huneke and Ulrich studied the minimal free resolutions of artinian
ideals in the polynomial ring S = k[xy, ..., x,]. They proved that for an artinian ideal 7 C §

29
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generated in degree d with the minimal free resolution with p — 1 linear steps, we have that
m? C I+ (L4 +1,),

where [y, ..., are linearly independent linear forms and m = (xy,...,x,) is the maximal
ideal of S (see [37, Corollary 5.2]). They also conjectured that under this assumption, we
have that m? € I + (I, + --- + 1,)? for sufficiently general linear forms Iy ... 1, (see [37,
Conjecture 5.5]). Note that this conjecture in the case that p = n — 1 is equivalent to the
Lefschetz property of S/I. This conjecture motivated us to study the Lefschetz properties
of artinian monomial ideals in S = k[z1, ..., x,| generated in degree d by considering some
assumptions on their minimal free resolutions.

As a corollary of the result of Eisenbud, Huneke and Ulrich [37, Corollary 5.2] we conclude
that for artinian ideal I C S generated in degree d with almost linear resolution (the minimal
free resolution of S/I is linear for n — 1 steps), S/I satisfies the WLP. In Section 3.2, we
study the multiplication map by higher powers of a linear form on an artinian monomial
algebra S/I where the minimal free resolution of S/I is linear for n — 1 steps, see Theorem
3.2.8. In particular, in this case we are able to give an affirmative answer the conjecture
posed by Eisenbud, Huneke and Ulrich. In the rest of this section, we prove that an artinian
monomial algebra S/ satisfies the SLP, where we consider an assumption on the generators
of I, see Theorem 3.2.10. For artinian monomial ideals I C S where the minimal free
resolution of S/I is linear for n — 2 steps the WLP does not hold necessarily. In the main
theorem of Section 3.3, Theorem 3.3.6, we prove for an artinian monomial ideal I C S
generated in degree d, S/I satisfies the WLP if the minimal free resolution of S/I has n — 2
linear steps and m®*! C I. The last assumption is equivalent to say Castelnuovo-Mumford
regularity of I, reg(S/I), is d. Observe that the assumption on the Castelnuovo-Mumford
regularity of I is essential. In the polynomial ring with three variables the assumption of
having n — 2 linear steps in the minimal free resolution of S/I is always fulfilled whenever 1
is generated in a single degree, but the Togliatti system defined by artinian monomial ideal
I = (23,23, 23, x129w3) fails the WLP.

We consider standard graded algebra S/I = @®;>0(S/1);, where S = k[zy,...,x,] is a
polynomial ring over a field of characteristic zero and all x;’s have degree 1 and I C S is
an artinian homogeneous ideal generated in a single degree d. Let us define the weak and
strong Lefschetz properties for artinian algebras.

Definition 3.1.1. Let I C S be an artinian homogeneous ideal. We say that S/I has the
weak Lefschetz property (WLP) if there is a linear form ¢ € (S/I); such that, for all integers
J, the multiplication map

xC:(S/1); — (S/1)j1
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has maximal rank, i.e. it is injective or surjective. In this case the linear form ¢ is called a
Lefschetz element of S/I. If for general form ¢ € (S/I); and for an integer number j the
map X/ does not have the maximal rank we will say that the ideal I fails the WLP in degree
J-

We say that S/I has the strong Lefschetz property (SLP) if there is a linear form ¢ € (S/1),
such that, for all integers j and k& the multiplication map

0" (/1) — (/1) j4n

has the maximal rank, i.e. it is injective or surjective. By abusing the notation we often say
that I satisfies or fails the SLP or WLP.

In the case of one variable, the WLP and SLP trivially hold since all ideals are principal.
In the case of two variables there is a nice result in characteristic zero by Harima, Migliore,
Nagel and Watanabe [53, Proposition 4.4].

Proposition 3.1.2. Every artinian ideal I C k[z,y| where k has characteristic zero, has the
Strong Lefschetz property (and consequently also the Weak Lefschetz property).

In [67, Proposition 2.2], Migliore, Mir6-Roig and Nagel by using the action of a torus on
monomial algebras provide the existence of the canonical Lefschetz element.

Proposition 3.1.3. [67, Proposition 2.2] Let I C S = k[xq,...,x,] be an artinian monomial
ideal. Then S/I has the weak Lefschetz property if and only if x1+xo+- - -+, is a Lefschetz
element for S/I.

Remark 3.1.4. Let multiplication map x¢¢ : (S/1)s—c — (S/I), where I is an ideal of S
generated in degree d. If HFg/;(d) < HFg//(d — ¢), then x/¢ : (S/I)a —c — (S/I), has
maximal rank for every a if and only if it is surjective for a = d. In fact if the multiplication
map x{° : (S/1)e—c — (S/1), is surjective we have that [(S/1)/¢°(S/I)], = 0 therefore
[(S/1)/t¢(S/1)], for all k > d and so x(¢: (S/1)g— — (S/1)j is surjective for each k > d.
On the other hand, since I is generated in degree d, the multiplication map by ¢ is injective
in the degrees less than d — ¢ hence S/1.

Definition 3.1.5. Let I C S = k[xy,...,2,| be an ideal of S generated in degree d. We
say that the minimal free resolution of S/I is linear for r steps if f;,;4,;(S/1) = 0, for all
1 <i<randall j >d Wesay S/I has linear resolution if r = n, and it has almost linear
resolution if r =n — 1.

In [37] Eisenbud, Huneke and Ulrich studied artinian ideals in polynomial rings. They
prove the following result:
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Theorem 3.1.6. [37, Corollary 5.2] Let I C S be an artinian ideal generated in degree d
and m = (xy,...,2,). If the minimal free resolution of I is linear for p — 1 steps, then

m? C I+ (ly,...,0)
for linearly independent linear forms l,, l,11,. .., 1,.

The above result says that in terms of the minimal free resolution with these assumptions
we have reg(I + (I, ...,l,)) < d. They also conjecture that under the same assumptions as
Theorem 3.1.6, reg(I + (L, . .., 1,)?) < d where [, ..., 1, are sufficiently general linear forms.

Conjecture 3.1.7. [77, Conjecture 5.4] Suppose I C S is artinian ideal generated in degree
d and its minimal free resolution is linear for p — 1 steps then

m? ST+ (L, lpsts ooy 1)
for sufficiently general linear forms 1, ... 1,.

Remark 3.1.8. Note that Theorem 3.1.6 holds for any set of linearly independent linear
forms [, l,+1 ..., 1, but this is not the case necessarily for Conjecture 3.1.7. For instance let
S =klz,y,z] and I = (23,9>, 2%, xy?, 2%y, 22, 222, y?2, yz?). The minimal free resolution of
I is as follows:

0— S(=5)°® S(—6) = S(—4)"* = S(=3)° = S =0
and [ has almost linear resolution. By Theorem 3.1.6 we have
m® C I+ (v).

The statement of Conjecture 3.1.7 does not hold for the linear form [ = x since we have that
zyz ¢ I+ (2%), m® € I+ (z)*>. But if | = 2 — y, one can check that m* C I + (I)* and
the Conjecture 3.1.7 holds in this case. Thus we need to consider sufficiently general linear
forms in the conjecture.

As a consequence of Theorem 3.1.6 we have:

Corollary 3.1.9. If I C S is an artinian ideal generated in degree d with almost linear
resolution, then S/I satisfies the WLP.

Proof. Since the minimal free resolution of I is linear for n — 1 steps, Theorem 3.1.6 implies
that for a general linear form /¢, we have that m? C I + (¢). This is equivalent to have the
surjective map x{ : (S/I)4—1 — (S/I)4 and the assertion follows from Remark 3.1.4. O
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Macaulay inverse systems

Let us now recall some facts of the theory of the inverse system, or Macaulay duality, which
will be a fundamental tool in this paper. For a complete introduction, we refer the reader
to [13] and [58].

Let R = k[yi,...,ys], and consider R as a graded S-module where the action of z; on R
is partial differentiation with respect to ;.
There is a one-to-one correspondence between graded artinian algebras S/I and finitely
generated graded S-submodules M of R, where I = Anng(M) is the annihilator of M in S
and, conversely, M = I~! is the S-submodule of R which is annihilated by I (cf. [13, Remark
1]), p-17). By duality, the map of : R;;; — R; is dual to the map x/ : (S/I); — (S/1)i41.
So the injectivity(resp. surjectivity) of the first map is equivalent to the surjectivity (resp.
injectivity) of the second one. Here by ” o ¢” we mean the linear form ¢ acts on R.

The inverse system module 1! of an ideal I is generated by monomials in R if and only
if I is a monomial ideal in S.

3.2 Lefschetz properties of monomial ideals with n — 1
linear steps

The goal of this section is to give an affirmative answer to the Conjecture 3.1.7 in the case
of monomial ideals with almost linear resolution.

Let I C S be an artinian monomial ideal generated in degree d, in the following proposition
we provide an upper bound for the Hilbert function Hg/;(d) := dimy(S/I)4 in terms of the
number of linear steps in the minimal free resolution of S/I.

Proposition 3.2.1. Let I C S = k[xy,...,x,) be an artinian monomial ideal generated in
degree d. If the minimal free resolution of I is linear for r steps, then for every monomial
m € Mon(S/I); we have | Supp(m)| > r + 1. In particular,

n
HF <
S/I(d) - (7’—|— 1

) HFg);(d —r — 1).

Proof. Let

0= F, 2 F Y 2 20

be the minimal free resolution of I~! which is dual to the minimal free resolution of S/I.
By Macaulay duality we can consider m as an element in (/') there exists a generator
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m/ € I7! such that m = hom’ for some h € S. Suppose | Supp(m)| < r and variables
Yly -y Yn—r & Supp(m). If p1(e1) = m’ for a basis element e; of Fy, then Ly := (x1h)oe; isa
first syzygy of I=1. Therefore, it corresponds to a basis element of F;, say e;. Observe that
Ly := x5 0 €5 is a second syzygy and it corresponds to a basis element of F5. By continuing
this procedure n — r times, we find a basis element for F;,_, of degree higher than d —n —r.
Using the duality of the minimal free resolution of I=! and S/I, we get B,a:r(S/I) # 0
which contradicts the fact that the minimal free resolution of S/I is linear for r steps. [

Remark 3.2.2. In [37, Proposition 11.1] Eisenbud, Huneke and Ulrich find a lower bound for
the number of generators of an ideal with almost linear resolution where the bound implies
that HFg/;(d) < HFg/;(d — 2). By Proposition 3.2.1 for a monomial ideal I with almost
linear resolution, HFg/;(d) < HFg/;(d —n).

Let us define a specific class of well-known matrices with non-negative integer entries:

Definition 3.2.3. For integers n, m, k where m > 1, we define the following Toeplitz matrix
T m ks the m X m matrix

[ (;
j%nn$ =

0

)

(kﬁl

)

(

n
k+1

(%)

0

) (
(

n
k+2

n
k+1

0

where the (4, 7)"" entry of this matrix is (

)
)

(

(

n—1

n
k=3

)

) |

n
k—2

) (

n
k-1

) (

n
k

).

and we use the convention that (?) =0 for

")
. . k+j—i
1 <0 and 7 > n.

Determining the rank of such matrices is an open problem even in many specific cases.
Here using the fact that any monomial algebra in the polynomial ring with two variables has
the SLP we show that Toeplitz matrix 7;, ,,  has maximal rank.

Lemma 3.2.4. For every integers 0 < k < n and m > 1, Toeplitz matrixz T}, ,,, 1. is invertible.

Proof. Consider ideal I = (x™*=% ym+*1) in the polynomial ring S = k[z,y]. Choose
monomial bases {™ 'y}, and {z"tF Iy for k-vector spaces (S/1)p—1 and
(S/1)mtn—1, respectively. Observe that, T}, ,,x is the matrix representing the multiplication

map X(x+y)" : (S/1)m-1 — (S/I)min—1 with respect to the chosen monomial bases. Since
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by Proposition 3.1.2, any monomial R-algebra has the SLP, and by Proposition 3.1.3, =z 4+ vy
is a Lefschetz element for S/I, the multiplication map by x + y is bijection and therefore
Toeplitz matrix 7,, ,, , has nonzero determinant and therefore it is invertible. O

Remark 3.2.5. In [3] there is a more general result about this case of Toeplitz matrices using
the same technique as the proof of Lemma 3.2.4.

Definition 3.2.6. Let M = {my,...,m,} be a set of monomials in S = k[zy,...,x,] of
degree d. We say M is a line segment with respect to (z;, z;) if

(1) zxjlmy, ¥V 1<t<r,

(2) (zj/x)my=myyr, V1<t <r—1

In addition, for a monomial ideal I C S generated in degree d we say M is a S/I-mazimal
line segment with respect to (z;, ;) if in addition we have (x;/z;)mq, (x;/x;)m, € I.

Lemma 3.2.7. Let M = {my,...,m,} be a set of monomials of degree d in S = klz1, ..., x,]
which form a line segment w.r.t. (z;,x;) and let Jy be the ideal generated by all the mono-
mials in Sg \ M. If x?x?|mt, for every 1 <t < r, then multiplication map x(x; + x;)°* :
(S/ ) k—a—b — (S/Jnr)k has mazimal rank for every k.

Proof. Without loss of generality assume ¢ = 1 and j = 2. Since Hg,,,,(d) < Hgyy,,(d—a—0)
and Jy, is generated in degree d, by Remark 3.1.4 it is suffices to show that the map x(z; +
22)* 2 (S/Jar)d—a—p — (S/Jar)a is surjective. Set fi := m;/x¢ah and ¢ the restriction of
multiplication map X (z; + 22)**° : (S/Ja)a—a—b — (S/Jn)a to fi,..., fr. Observe that the
Toeplitz matrix T}, 1, , is the matrix representing ¢. By Lemma 3.2.4 this matrix is invertible
so we can find preimage of each m; which means x (z1 + 22)**° : (S/Ja)d—a—p — (S/Jar)a is
surjective. U

Using Lemma 3.2.4 and Lemma 3.2.7 we prove that the multiplication map by a power
of a linear form on an specific class of artinian monomial algebra has maximal rank in every
degree.

Theorem 3.2.8. Let I C S = kl[xy,...,x,] be an artinian monomial ideal generated in
degree d. If there exist integers 1 < i < j < m such that for every monomial m € (S/I)q4,
z¢xllm for some a,b > 0, then the multiplication map X (x; + ;)" : (S/1)j—a—p = (S/1)i
has maximal rank for every k.
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Proof. Note that by Remark 3.1.4 it is enough to show that x(z; + ;)%™ : (S/I)g—a—p —
(S/1)g is surjective. Without loss of generality we assume that ¢ = 1 and j = 2. For an
n — 2-tuple a := (as,...a,) € (NU{0})"2 define

Ma = {ajclblng.Igg .. .T?Ln € (S/[)d | ay, g 2 0}

We will show that M, is in the image of x(z; + 22)?*° : (S/1)q_ap — (S/I)4 for every
a. For a fixed n — 2-tuple a, M, may contains different S/I-maximal line segments w.r.t
(x1,22) by Lemma 3.2.7 each of them is in the image. By the procedure in the proof of
Lemma 3.2.7, the preimages of the elements in M, are all distinct and this completes the
proof.

O

As a consequence of the above result and Proposition 3.2.1 we prove Conjecture 3.1.7
holds for monomial ideals I C S with almost linear resolution.

Theorem 3.2.9. Let I C S = k[z1,...,x,] be an artinian monomial ideal generated in
degree d with almost linear resolution, then Conjecture 5.1.7 holds.

Proof. Proposition 3.2.1 implies that for all m € Mon(S/I),; we have | Supp(m)| > n there-
fore xy - - x,|m. By Theorem 3.2.8 the multiplication map

(i + 1) 1 (S/D)acs — (S/1)a

is surjective for every 1 < i < j < m. This implies that m® C I + (z; + x;)? for every
1<i<j<n. O

Now in the last theorem of this section we prove that for a class of artinian monomial
ideals the SLP is satisfied.

Theorem 3.2.10. Let I C S = klxy,...,x,) be an artinian monomial ideal generated in
degree d. If there exist integers 1 < i < j <mn such that for every monomial m € Sq, x;x;|m
is equivalent to m ¢ I. Then S/I enjoys the SLP.

Proof. If n = 2, by Proposition 3.1.2 every artinian ideal I has the SLP. Let n > 3. Without
loss of generality, assume @ = 1 and j = 2. Consider bigrading deg(z;) = deg(xs) = (1,0)
and deg(z;) = (0,1) for 3 <i <non S. By the assumption, if b > d we have (S/I)(*@ = 0.
For every b < d module (S/I)(,y is isomorphic to some copies of (k[zy, zo]/(2{ 7", 25 ).
Since every artinian algebra in two variables has the SLP, for all a, b, ¢ multiplication map
X0 (S/1)(a—cp)y = (S/1)(ap) has maximal rank for a generic linear form /.
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For completing the proof it is sufficient to show that if a + b = o’ + b’ then x/(¢ :
(S/1)(a-cp) = (S/1)(@ap) is injective (respectively, surjective ) if and only if x€¢: (S/I) @ —cw)
— (S/1)(a ) is injective (respectively, surjective). Since (S/1)(.p) is a complete intersection
artinian algebra, its Hilbert function (as a sequence) is symmetric and the maximum value
obtained in the bidegree (d — b — 1,b). Now we have equivalent conditions:

X L (S/T)(a—cp) = (S/I)@p) Is injective
sld-b—1)—(a—c)|>|(d—b—1)—a
Sld=bt 1) = (' —c)| 2 [(d=¥ —1) - d|
& XL (S)T)@—cpry = (S/1)(@wwp) Is injective.

Similar argument works for surjectivity. O

We end this section by stating a conjecture that we have observed experimentally in a
large number of cases using Macaulay2 software [17].

Conjecture 3.2.11. Let I C S = k[zy,...,x,] and I C S be an artinian monomial ideal
generated in degree d. If for (”U(’?“y monomial m € (S/1)y we have x}'x5? - --x%"|m, then
the multiplication map x(£)* : (S/1)k—q — (S/I)x has mazimal rank for every k, where
(=21 +-- +xnanda—a1+ -+ ay,.

If Conjecture 3.2.11 is true by combining with 3.2.1 we get that if I is a monomial ideal
generated in a single degree d with almost linear resolution then m¢ C I+ (¢)" for a sufficiently
general linear form /.

3.3 Lefschetz properties via studying Macaulay inverse
systems

In this section we study the inverse system module /! for monomial ideals in S generated in
degree d and prove some results about the number of generators of I satisfying the WLP. Also
we study the artinian monomial ideals I C S = k[zy,...,x,] generated in degree d where
the minimal free resolution of S/I is linear for n — 2 steps and we prove that if reg(S/I) = d
then S/I satisfies the WLP.

Definition 3.3.1. In a polynomial ring S = k[zq,. .., x,], for any monomial m and variable
x;, define
deg;(m) := max{e | zi|m}.
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Proposition 3.3.2. Let I C S = k[z1,...,x,] be a monomial ideal of S generated in a single
degree d and homogeneous form I =37 ;1) amm € (I such that (z1+ - -+x,)oF = 0.
If ay, # 0 and y;|m, then for all 0 < j < deg;(m) there exists a monomial m;; € (I™), with
deg;(m; ;) = j such that a, , # 0.

Proof. Let m =y -+ ybr € (I71)4 and a,, # 0,

(x1+ -+ x,) om:amZbi@.

yilm ‘
Since (zq + -+ 4+ x,) 0o F = 0 for each 1 < i < n where y;/m there exists a monomial
m e (I~ )d with nonzero coefficient in F* such that t = Z"L—k/ for some k # i. Note that
deg;(m) = deg;(m’') +1 = b; + 1 and define m;p,_ = m If b; — 1 # 0 then we can do the
same and find m; 5,2 in the support of F'. The assertion follows by continuing this procedure
to find distinct monomials m;p,_s, ..., m; o in the support of F. O

Corollary 3.3.3. Let I C S be a monomial ideal generated in degree d. If the multiplication
map XU : (S/1)g—1 — (S/I)q fails to be surjective for every linear form I, then HFg/(d) >
d+ 1. In other word, if HF g/;(d) < d then S/I enjoys the WLP.

Proof. Suppose the multiplication map X(x1+---+x,) : (S/1)4—1 — (S/I)q is not surjective
so by Macaulay duality there exists a non-zero form F' =3 ;1) amm € (I ~1)4 such that
(1 + -+ a,) 0o F =0. Let m = ¢ ---yb € (I"')4 be a monomial in the support of the
form F', using Proposition 3.3.2, there are at least deg,(m) + --- + deg,(m) = by + --- +

b, = d monomials different from m with nonzero coefficients in F'. Therefore we have that
HFEg);(d) > d+ 1. O

Remark 3.3.4. In [3] N. Altafi and M. Boij provide a better bound for Hg/;(d) when I is an
artinian monomial ideal in S generated in degree d and fails the WLP.

Definition 3.3.5. Let I C S be an ideal, the socle elements of S/I is

soc(S/1)={f € S/l |mf =0}.

If I C S is an artinian ideal with linear resolution it equals a power of maximal ideal and
therefore it satisfies the WLP trivially. On the other hand in Corollary 3.1.9 we have seen
that an artinian ideal I C .S with almost linear resolution satisfies the WLP. In the following
result we determine whether an artinian monomial ideal I C S has the WLP where the
minimal free resolution of S/I is linear for n — 2.
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Theorem 3.3.6. Let [ C S = k[xy,...,x,] be a monomial ideal generated in degree d and
mdtl C 1. If the minimal free resolution of S/I is linear for n — 2 linear steps, then S/I
satisfies the WLP.

Proof. Since I has linear resolution for n — 2 steps by Proposition 3.2.1, for all m € soc(S/1)
we have |Supp(m)| > n — 1. If for all m € soc(S/I) we have | Supp(m)| = n then clearly
we have the WLP. Suppose that there exists m € soc(S/I) such that | Supp(m)| =n — 1.
Since [ is generated in degree d, to prove that S/I has the WLP it is enough to show that
the multiplication map

X(x1+ -4 xy) : (S/1)g—1 — (S/1)a
is surjective, or equivalently the differentiation map
o(wy+ -+ x,): (IHg— (I
is injective. Suppose not, so there exists a non-zero form F' =3, a,,m such that
(x14+---+x,) 0 F=0. (3.3.1)

Observe that, there exists a monomial m € I~ with non-zero coefficient in F such that
| Supp(m)| =n — 1. Let m = yll’l, . ,yf]‘_‘f hence
m

m
(T1 4+ Fa)om=b—+-+ b, —.
Y1 Yn—1

If Equation (3.3.1) holds there must exist m; € I~! and integer 1 < i < n such that mo_m
Yi n
Suppose y,, 1 my then | Supp(m;y)| = | Supp(m)| =n — 1. Let

Fy = (bij+ 1Dxyom— (by)x;omy, Fy:=x,0om and F3:=z,0my
are the linear first syzygies for the inverse system module. In addition,
Ty O F1 — (bl + 1)33’1 o FQ + (bl).'liz o F3

is a linear second syzygy for the inverse system module which contradicts the fact that the
minimal free resolution of [ is linear for n — 2 steps. Therefore, y,, | m; and since y,, { m we
conclude that ¢ = n.

By duality, if for m € soc(S/I) we have z,, { m, then there exist monomials my, ..., m,_1 €
soc(S/I) such that 7 = 2 for all 1 <7 < n—1. This implies that x,,m € mét but x,m ¢ I
which contradicts the assumption that mé! c 1. O
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Next example illustrates that the assumption, m?*! C I in Theorem 3.3.6 is necessary.

Example 3.3.7. The artinian monomial ideal I = (a3, 23, 23, x17923) in S = klxy, 29, 73]
defines a Togliatti system and therefore fails the WLP. Note that the minimal free resolution
of S/I is linear for 1 step but m* & 1.



Chapter 4

The (ir)regularity of Tor and Ext

4.1 Introduction

There has been a keen interest in understanding the behavior of reg(I™) as a function of
n, where I is a homogeneous ideal in a polynomial ring S = Klz1,...,x4 over a field.
Geramita, Gimigliano and Pitteloud [11] and Chandler [18] proved that if dim(S/I) < 1,
then reg(I™) < n -reg(l) for all n > 1. This bound need not be true for higher dimension,
due to an example of Sturmfels [76]. However, in [77, Thm. 3.6], Swanson showed that
reg(I™) < cn for all n > 1, where ¢ is some constant. Thereafter, Cutkosky, Herzog and
Trung [30, 1.1] and Kodiyalam [63] independently showed that asymptotically reg(I™) is
a linear function of n. Later, in [78, 3.2], Trung and Wang generalized this result over
Noetherian standard graded ring. This behavior also has been studied for powers of more
than one ideals in [0], [15] and [13].

One notices that Tor{(S/I?, S/I9) = I /I"*4 if p > q, which relates this question to more
general results for finitely generated graded S-modules M and N. The following results are
known in this case

(1) [37, Cor. 3.1] and [19, Thm. 5.7] If dim(Tor; (M, N)) < 1, then
max {reg (Tor{ (M, N)) — i} = reg(M) + reg(N).

0<i<d
This generalizes results of Sidman [75], Conca-Herzog [25], and Caviglia [17] and Eisenbud-
Huneke-Ulrich. The equality in (1) extends to the case when S is standard graded, and
M or N has finite projective dimension, replacing the right hand side by reg(M) +
reg(N) — reg(S).

41
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(2) [21, 3.2 and 4.6]

min {indeg(Ext% (M, N)) + i} = indeg(N) — reg(M)

o<i<d
and if dim(M ®¢ N) < 1, then

max {reg (Ext§(M,N)) + i} = reg(N) — indeg(M),

0<i<d
where indeg(W) := inf{n € Z : W,, # 0}.

(3) [23, Thm. 2.4(2) and 3.5] An upper bound of reg(Exts(M, N)) + i is given in terms of
certain invariants of M and N.

When working over standard graded algebras that are not regular (i. e. not a polynomial
ring over a regular ring), one can also bound regulariy of Tor modules under the same kind
of hypothesis, for instance

Theorem 4.1.1. [19, Thm. 5.7] Suppose Q is a standard graded ring over a field, but
Q is not a polynomial ring. Let M and N be finitely generated graded (QQ-modules, and

d := min{dim(M), dim(N)}. If dim (Tor?(M, N)) <1 for all i > i, then

i+d

reg (Tor?(M, N)) —i <reg(M) +reg(N) + L J (reg(@Q) — 1), Vi =iy — 1.

This implies that if Proj(Q) has isolated singularities, then the estimate in Theorem 4.1.1
holds true for ¢ > dim(Q) — 2.

Over complete intersection ring, the following result controls the asymptotic behavior
with respect to both a power of an ideal and the homological degree,

Theorem 4.1.2. [0, Thm. 5.4] Set A = Q/(f), where Q is a polynomial ring over a field,
and £ = fi,..., f. is a homogeneous QQ-reqular sequence. Let M and N be finitely generated
graded A-modules, and I be a homogeneous ideal of A. Then,

(i) reg (Ext’y(M,I"N)) < py(I) - n—w- %] +e, Vi,n>0,
(ii) reg (Exty(M,N/I"N)) < pn(I)-n—w-|3] +¢, Vi,n>0,

where e, e’ € Z, w := min{deg(f;) : 1 < j < ¢}, and pn(I) is an invariant defined in terms
of reduction ideals of I with respect to N.
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Moreover, in [16], the authors raised the following question.

Question 4.1.3. For ¢ € {0,1}, do there exist ay, a) € Z=o and ep, e, € ZU{—o0} such that
(i) reg (Extsz(M, N)) = —ag-i+e foralli>0?
(i) reg (Tory, (M, N)) =a,-i+¢€, foralli>0 ?

In this text we are addressing this question. We prove that the answer to (i) is pos-
itive, even in a more general situation, while the answer to (ii) is negative. However, if
dim (ToriA(M , N )) < 1 for all 7 > 0, the second question does have a positive answer.

Our main positive result on these questions is the following,
Theorem 4.1.4. Let QQ be a standard graded Noetherian algebra, A := Q/(f), where f :=

Ji,---s fe 18 a homogeneous Q-regular sequence. Let M and N be finitely generated graded
A-modules such that Extg (M, N) =0 for all i > 0.

Then,

(i) for ¢ € {0,1}, there exist ay € {deg(f;) : 1 < j < c} and e, € ZU{—o0} such that
reg (Extif“(M, N)) =—a¢-i+e foralli> 0.

(ii) of further Q is *local or the epimorphic image a Gorenstein ring, M has finite projective
dimension over ) and
dim (Tor (M, N)) < 1, Vi > 0,
then, for ¢ € {0,1}, there exist a; € {deg(f;) : 1 < j < c} and e, € ZU {—o0} such
that
reg (Torg;, (M, N)) = aj i+ ¢, Vi > 0.

On the negative side, we provide exemples showing that the behavior of the regularity of
Tor modules could be very different without the assumptions as in the result above.

Example 4.1.5. Let Q := K[Y, Z,V,W] be a polynomial ring with usual grading over a
field K and A := Q/(Y?,Z%). Write A = K|y, z,v,w], where y, z,v and w are the residue
classes of Y, Z,V and W respectively. Fix an integer m > 1. Set

A(=m)? A(—=m+1)
Mo=Coker || ¥ 2 00 """ g
™M —w™ Yy oz
A(=1)2 A

and N := A/(y, z). Then, for every i > 1, we have
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(i) indeg (Ext’y(M,N)) = —i —m + 1 and reg (Ext’;(M, N)) = —i.

(i) indeg (ToriA(M, N)) =i and reg (Tor; (M, N)) = (m + 1)i + (2m — 2).

In this example, Tor:*(M, N) is supported in dimension 2 for i > 0, its regularity is
eventually linear, but the leading term depends on the module M and could be arbitrary
big, opposite to the case where Torf‘(M , ) is supported in dimension 1 for ¢ > 0 — in that
case we showed the leading term would then be % = 1, as compared to m + 1 here.

This shows that the finiteness result for the Tor-algebra that we prove under the condition
that Torf(M , V) is supported in dimension 1 for ¢ > 0 can fail if this hypothesis is removed.
Additional results around the hypothesis on the asymptotic dimension of Tor are given in
Remark 4.3.8 and in Proposition 4.3.9.

The following example that we develop in the last section shows that the eventual regu-

larity of Tor could be very far from being linear,

Example 4.1.6. Let Q := K[X,Y, Z, U, V, W] be a standard graded polynomial ring over a
field K of characteristic 2 and A := Q/(X?,Y? Z?). We write A = K|z,v, 2, u,v,w|, where
x,1y, z,u,v and w are the residue classes of X, Y, Z, U,V and W respectively. Set

M = Coker([i z Z 2 2 2 :A(—1)6—>A2> and N :=A/(z,y,2).

Then, for every n > 1, we have

—n.

(i) indeg (Ext’y(M, N)) = reg (Ext’y (M, N))

(i) indeg (Tor;!(M,N)) = n and reg (Tor, (M, N)) = n + f(n), where

2L — 9 ifn=2-1 .
f(n) ::{ o1 _ 1 ifol << o+l _ 9 for all integers [ > 1.

As a consequence, in this example,
{reg(Tory, (M, N))/2n:n > 1} and {reg(Tors, . ,(M,N))/2n+1:n > 1}
are dense sets in [2, 3] and

Tor (M, N Tor (M, N
liminfreg( or, (M, )):2 and limsupreg( or, (M, N))

n— 00 n n—o00 n

= 3.
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4.2 Module structures on Ext and Tor

Most of our results are proved under the following hypothesis.

Hypothesis 4.2.1. The ring Q is a standard graded Noetherian algebra, A = Q/(f), where
f:=fi,...., Jc is a homogeneous Q-regular sequence with w; = deg(f;), and M, N are finitely
generated graded A-modules such that Extg(M, N) =0 for all i > 0.

4.2.2. Write A = Ap|xy, ..., x4), where deg(x;) = 1 for 1 < i < d. When Ay is local,
then following the terminologies in [10, pp. 141], A is *local, i.e., it has a unique mazximal
homogeneous ideal m = mg+ Ay. Setting Ey := Ea,(Ao/my), the Matlis dual of M is defined
to be MY := *Homu, (M, Ey), where (M), = Homa,(M_,, Ey) for everyn € Z. In view of
[10, 3.6.16 and 3.6.17], the contravariant functor (—)" from the category of finitely generated
graded A-modules to itself is exact, and M"Y = M.

4.2.3 (Eisenbud operators). We need to remind facts about Eisenbud operators [71, Sec-
tion 1] in the graded setting. By a homogeneous homomorphism, we mean a graded homo-
morphism of degree zero. LetF : .- — F, — --- — Fy — Fy — 0 be a graded free
resolution of M over A. In view of the construction of Fisenbud operators [71, p. 39, (b)],
one may choose homogeneous A-module homomorphisms t; : Fiiy — Fi(—w;) (for every i)
corresponding to f;.

Thus the Eisenbud operators corresponding to f = fi,..., f. are given by t; : F[2] —
F(—w;), 1 < j < ¢, where [—] and (=) denote respectively shift in homological degree and
internal degree.

4.2.4 (Graded module structures on Ext and Tor). The homogeneous chain maps t
are determined uniquely up to homotopy; see [71, 1.4]. Therefore the maps
Homy(t;, N) : Homs(FY, N) — Hom(F[2], N)
' ®aly :F2loa N —FY @4 N

induce well-defined homogeneous A-module homomorphisms

s; « Exty (M, N) — Ext>(M, N)(—w;) for alli and

1< ¢, (4.2.1)
tj: Torpho(M, N) — Tor (M, N)(—w;) for alli and 1 <

J<
j<e. (4.2.2)

Hence, for every | = 0, applying the functors Hf4+(—) and (=) successively on (4.2.2), one
obtains the homogeneous A-module homomorphisms

Tl = HYy (t;)" + Hy (Tor}(M,N))" — HY (Torf,(M,N))"(—w;) (4.2.3)
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™= H(t;)" « Hy(Tor; (M, N))¥ — Hy(Torh o (M, N))¥ (—w;) (4.2.4)

for all i and 1 < j < c. These coincide whenever Aq is artinian. By [71, 1.5], since the
chain maps t; (1 < j < ¢) commute up to homotopy,

Exty(M,N), H)y (Tor}(M,N))" and H}(Tor(M,N))"

turn into graded T := Alyy, .. ., y.|-modules, where T is a graded polynomial ring over A with
deg(y;) =2 for 1 < j < c. The actions of y; on these three graded T-modules are defined by
the maps s;, +t§~ and mté-, respectively.

These structures depend only on f, are natural in both module arguments and commute
with the connecting maps induced by short exact sequences.

Choosing a graded epimorphism B — Q, such that B is *local and Cohen-Macaulay of
dimension b, with canonical module wg, local duality provides a commutative diagram,

m tl-

Hl (Tor/ (M, N))¥ ’ Hl (Torf (M, N))Y(—w;)

l Ext? t (1 l

B lg)
EthB_l(TOI“?(M, N)va) K - Eth])B l(TOI‘?_i_Q(M, N)va)(_wj)

where map on the top row identifies to the one in J.2.3, whenever Aqy is artinian.

Theorem 4.2.5. [50, 3.1] The graded module Ext’y (M, N) is finitely generated over Aly, . . ., yc|
provided Extg (M, N) =0 for all i > 0.

For instance, when () is a polynomial ring over a field, Ext% (M, N) is finitely gener-
ated over Alyy,...,y.], but qu+ (Torf(M ,N))¥ is not necessarily finitely generated by Re-
mark 4.4.4. Nevertheless, we prove that if dim(Tor(M, N)) < 1 for all i > 0, then the
modules H!(Tor, (M, N))" are finitely generated over Alyi,...,y.]; see Theorem 4.3.6. In
order to prove our results, we use the canonical bigraded structures on these graded modules.

4.2.6 (Bigraded structures). We make T = Alyy,...,y.] a Z*-graded ring as follows.
Wrrite

T=Aly,.. ¥ = Aolx1, -, Ta, Y1y -, Yels (4.2.5)
and set deg(z;) = (0,1) for 1 < i < d and deg(y;) = (2,—w,) for 1 < j < c. We
give Z2-grading structures on E* := Ext’(M,N), TD! := Hf4+(Torf(M, N))Y and ™D. :=
H@(Torf(M, N))V by setting their (i,a)th graded components as the ath graded components
of Z-graded modules Ext'y(M,N), H!, (Tor; (M, N))V and H!(Tor(M,N))" respectively,
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for (i,a) € Z2. Hence, in view of Section 4.2.4, E* *D. and ™D' are Z2-graded T-modules.
We consider the corresponding graded submodules corresponding to direct sums of even and
odd components :

E* = PExt(M,N), E>*:=HExti (M, N), (4.2.6)

€L €L

that we will also refer to as Exty™(M, N) and ExtS! (M, N), respectively, depending on the
context. Similarly one defines

+D12*)+ Dl2*+1vm Dl2*am Dl2*+1 (427)

by taking direct sums over even or odd homological degree components.

In view of (4.2.5), set a polynomial ring S := Qo[ X1, ..., Xa, Y1,..., Y], where deg(X;) =
(0,1) for 1 <i < d and deg(Y;) = (1, —w;) for 1 < j < c. The modules stated in (4.2.6) and
(4.2.7) are canonically Z*-graded S-modules. For instance, the (i,a)th graded component of
E? is defined to be Ext% (M, N), for (i,a) € Z?, while the actions of X1, ..., Xq,Y1,...,Y. on
E* are defined by 1, . .., T4, Y1, - - -, Ye respectively. Note that Y;-Ext® (M, N) C Exti(iﬂ)(M, N)
forieZ and 1< j <ec.

Thus, in bigraded setup, we have the following result on Ext modules

Proposition 4.2.7. IfExt,(M,N) =0 for alli > 0, then Exty*(M, N) and Ext%“(M, N)
are finitely generated Z*-graded over S = Qo[X1, ..., X4, Y1, .., Y], where deg(X;) = (0,1)
for 1 <1< d anddeg(Y;) = (1,—w;) for 1 < j <ec.

Recall that for every i,a € Z,
Ext3 (M, N) () = Exty(M,N), and ExtyY(M,N)qq = Ext3™ (M, N),,

where L. := @,z Lia) for a Z?-graded S-module L.

Proof. By virtue of Theorem 4.2.5, Ext (M, N) is a finitely generated graded module over
T = Alys,...,y.]. Therefore the graded submodules Ext%® (M, N) and Ext%¢(M, N) are
also finitely generated. Since we are only extending the grading, the proposition now follows
from 4.2.6. O
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4.3 Linearity of regularity of Ext and Tor

In this section, we show that reg(Ext% (M, N)) and reg(Ext% (M, N)) are asymptotically
linear in ¢, where M and N are finitely generated graded modules over a complete intersection
ring A. Moreover, a similar result for Tor modules is proved when dim(Tor?(M, N)) < 1 for

all 2 > 0. We use the following result, which is a consequence of a theorem due to Bagheri,
Chardin and Ha.

Proposition 4.3.1. [0, Thm. 4.6] Let Qo be a commutative Noetherian ring. Set R :=
QolX1,..., Xa, Z1,..., 2], where deg(X;) = (0,1) for 1 < i < d and deg(Z;) = (1,9;)
for some g; € Z, 1 < j < c. Let L be a finitely generated Z*-graded R-module. Set
Q = Qo[ Xy, ..., Xy, where deg(X;) =1 for 1 <i<d.

Then, for every | > 0, there exist aj,a; € {g; : 1 < j < ¢} and e,e; € Z U {—00, 400}
such that

end (Tory (L, Qo)) =t-ai+e  for all t >0, (4.3.1)
(Lt), Qo)) =t-a;+e forallt>> 0. (4.3.2)
Hence, there exist a,a’ € {g; : 1 < j<c}, e€ ZU{—o0} and ¢’ € ZU {+o0} such that

indeg ( Tor

reg (L(t,*)) = max{end (Torl (Lt), @ )) —1:0<IK d} =t-a+e forallt>0,
indeg (L(t,*)) = indeg (Tor0 (Lt QO)) =t-d +¢é forallt>0.

Proof. The same proof as of [6, Thm. 4.6] works if one considers L in place of MR.

So there exists a finite collection of integers {0, ¢, : 1 < p < m}, and a subset E.
of ' = {g; : 1 < j < c} such that AEIIL1 is linearly independent for every 1 < p < m,
satisfying:

m

Suppy, (TorlQ(L(t*), Q0)> = U (5; + U 1 -ELI) (4.3.3)

p=1 |zl
€Ly ler]|=t— t

for all t > max,{t!,}, where AE!l | = {hy —hy,... hy —h,_1} if E | ={hy,... h}. So the
cardinality of each E!, must be at most 2. It can be observed that the equahtles (4.3.1) and
(4.3.2) follow from (4 3 3) once we set

a; = max{h: h € pl,l\pg m}, a;:=min{h:he€ p1,1<p<m},
e = max{éé —a-th, 1 <p<mfor whichq € E};} and
¢; := min{d, — tl :1 < p < m for which a; € E | }.
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Finally, one obtains the last part from (4.3.1) and (4.3.2) by choosing suitable a,a’,e and
e. O

Here are our results on the linearity of regularity for Ext and Tor modules.

Theorem 4.3.2. Let Q be a standard graded Noetherian algebra, A := Q/(f), where f :=
Ji, -+, Je is a homogeneous Q-regular sequence. Let M and N be finitely generated graded
A-modules such that Extg (M, N) =0 for all i > 0.

Then, for every ( € {0,1}, there exist a, € {deg(f;) : 1 < j < ¢} and e € ZU {—o0}
such that A
reg (Exty™(M,N)) = —as-i+e; for alli>> 0.

Proof. The theorem follows from Propositions 4.2.7 and 4.3.1. O

If Q is regular, then the assumption on vanishing of Ext modules over @) is superfluous.

The asymptotic linearity of regularity for Tor modules holds in certain cases.

Theorem 4.3.3. Let ) be a standard graded Noetherian algebra, A := Q/(f), where £ :=
fi,-.., fe is a homogeneous Q-reqular sequence. Assume Q) is *local or the epimorphic image
a Gorenstein ring. Let M and N be finitely generated graded A-modules such that,

(i) M has finite projective dimension over @,
(ii) dim(Tor: (M, N)) < 1 for any i > 0.

Then, for every ¢ € {0,1}, there exist a;, € {deg(f;) : 1 < j < ¢} and e, € Z U {—00}
such that
reg (Torg;, (M, N)) = as i+ e, Vi> 0.

We postpone the proof of the above theorem until presenting ingredients of the proof.

Remark 4.3.4. In Sections 4.4 and 4.5 we show that the condition (ii) in the Theorem 4.3.3
is necessary.

Lemma 4.3.5. Let B — A be a graded epimorphism of *local rings. Assume B is Cohen-
Macaulay. Let W be a finitely generated graded A-module. Setreg, (W) := max;{end(HZ(W))+
j}. Then one has

(1) end(H:(W)) = — indeg(BExtS™ P~/ (W, wp)).

(2) reg(W) < reg, (W) < reg(W) + dim Ay.
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(3) IfdimW < 1, then HE (H3, (W)) =0 forp+q>1 and

regy, (W) = max{end(Hy (W), end(Hy, (H3, (W))) + 1, end(Hy (Ha, (W))) + 1}
reg(W) = max{end(Hy (W), end(Hy, (3, (W), end(Hy, (Ha (W))) + 1}

Proof. Part (1) follows from [16, Thm. 3.6.19]. Parts (2) and (3) follow from [54, Prop. 3.4]
by considering the composed functor spectral sequence H? (HZ‘&(_» = HPTI(—). O

mo

Theorem 4.3.6. Let B — Q) be a graded epimorphism, A := Q/(f), where £ := f1,..., fe
1s a homogeneous QQ-reqular sequence. Let P be a finitely generated graded B-module and M
and N be finitely generated A-modules such that

(i) ExtL (N, P) =0 for ¢ >0,
(ii) M has finite projective dimension over @,
(iit) 3r, Ext%(Tor? (M, N), P) =0 for ¢ & {r — 1,7} and i > 0.
Then, for any q,
Ext% (Tor (M, N), P)

is a finitely generated graded Alyi, ..., y.|-module.

Recall that whenever B is Cohen-Macaulay and P = wp, then the modules Ext%, (Torf(M ,N), wB)

only depend upon Torf(M ,N) as, in the local case, these are Matlis dual to local cohomolo-
gies of Tor? (M, N).

With such a choice for B and P, condition (i) is satisfied and condition (iii) with » = dim B
is equivalent to dim (Torf(M ,N)) < 1. This will be the main case of application of this
result.

Also condition (i) is always satisfied if B is regular.

Proof. Let FM be a graded minimal free resolution of M over A, and % be a graded minimal
injective resolution of P over B. Consider the double complex K** defined by

K := Homp (F) ®4 N,1%) = Homyu (F,)', Homp(N,1})) (4.3.4)

and its associated spectral sequences. The double complexes in (4.3.4) are equalized by the
natural isomorphism. Since Hom 4 (IFI])”, —) is an exact functor, by computing cohomology
vertically,

"B} = Hom, (FY, Ext}(N, P)) and *E}? = Ext!y(M, Ext}(N. P)).
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According to Theorem 4.2.5, condition (ii) implies that the graded Aly,...,y.-modules
Ext’ (M, Ext% (N, P)) are finitely generated for every ¢. As these are not zero for all but
finitely many ¢ by (i), VE%4, for any ¢, as well as the homology H* of the totalization of K**
are finitely generated graded Aly,, ..., y.]-modules.

On the other hand, since Homp(—,1%) is an exact functor, if we start taking cohomology
horizontally, then we obtain the first pages of the spectral sequence:

"EP? = Homp (Tor) (M, N),1%) * EY? = Extf,(Tor,' (M, N), P)
and condition (iii) implies that there exists py such that "E5? = 0 unless g =r or ¢ =r — 1,
if p > po. Hence "EYY =h"EPa for p > py.

Taking direct sum over p > pg + r and using the naturality of Eisenbud operators, as in
4.2.4, we obtain a short exact sequence of graded Alyy, ..., y.]-modules:

0 — @D Exty(Tor (M,N),P)— P H”
p=po+r p=po+r
— @ Exty'(Tor),,,(M,N),P)— 0.

p=po+r

The middle term is a finitely generated graded Alyi, ..., y.]-module, as H* is so. Hence
the assertion follows. O

Proof of Theorem 4.3.3. Set W; := Tor:(M, N), We will show the linearity of reg(W;) for
i > 0. The result for Torg, (M, N) follows similarly. We adopt the notations of the proof of
4.3.6 after choosing a graded epimorphism B — () with B equidimensional Cohen-Macaulay
and P = wp in this statement and choose 7o such that dim(W;) < 1 for 7 > 4o. Notice that
ExtS™ P~ (W, wp) = 0 for i > 7;0. and j # 0,1. Set H[%](M) i= UnoeSpecmax(Ao) Hug (M) as
in [24, Section 7]. Let D; := ExtS™?~Y(W;, wp), E; == Hyy(D;), F; be defined by the exact
sequence .

0— @iZiOEi — @i>io EXt%lmB_l(Wi,wB) — @iZio-Fi — 0, (435)
and G; := Ext‘gn‘B(Wi7 wp). By Theorem 4.3.6, ®;G; and @;D; are finitely generated graded
Alyr, ..., ye]- modules. Hence by 4.3.5 so are &; F; and @;F;. Then Proposition 4.3.1 shows
that there exist a,a’,a” € {deg(f;) : 1 < j <c}, e €, e” € ZU{—o0} and if, > iy, such that
for all 7 > i,

indeg(G;) = —ai — e
indeg(F;) = —a'i — ¢
indeg(E;) = —a"i — "
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We will now show that for i > 7,
reg(W;) = r(i) :== max{ai + e,a’i + €',a"i + " + 1}.

By [24, Lemma 7.2|, for any graded A-module M, H[O](M) = H[o](Mu) and for my €
Specmax(Ay)
H[(()J}(M) ® 4, (AO)mo = Hr?m(M ® 4, (AO)m0)~ (436)

Recall that reg(W;) = max{reg(W;®.4,(Ao)m,)|mo € Specmax(Ay)}. Let my € Specmax(Ay),
m:=my+ A, and write

~ = —®y4, (Ag)m, and -V :=7 HomAg(—,EAé(A()/mo)).
Applying —' to the sequence 4.3.5 we get by 4.3.6 for ¢ > iy exact sequences
0 — Hp (D)) — D. — F} — 0. (4.3.7)

With (D})Y = HL(W/) by [16, Cor. 3.5.9]. With the notations as in Lemma 4.3.5 and
considering the composed functor spectral sequence H£0<HZV+ (—)) = HPT(—) as in the

proof of [51, Prop. 3.4] for i > iy we have the following exact sequences of graded A’-
modules
0 — Hy, (Hy (W) — Hy (W) — Hy (Hp, (W) = 0. (4.3.8)

Since Hg, (W/), is a finitely generated Ag-module of dimension at most 1 for any z, Hy_ (Hg,+ (WhH)Y =
®uHo, (]—Ig,+ (W/),)" has no mg-torsion, it follows that

Hy, (Hy (W)Y = Hy (D).

It shows that 4.3.8 is the Matlis dual of 4.3.7 and the Matlis dual of G% is HO(W/). In
particular, we get

%

end(H2(W/)) = — indeg(G})
end(HL, (HS, (W) = — indeg(FY)
end(HY, (H, (7)) = — indeg(E))

%

2

As for any graded A-module M, indeg(M’) > indeg(M) with equality for some my €
Specmax(Ap) if indeg(M) # —oo, it follows from Lemma 4.3.5 that reg(W;) = r(i) for
all 7 > 1. O
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Remark 4.3.7. Notice that whenever A is *local Cohen-Macaulay (equivalently @), one may
apply the same line of proof with B = A, P = w4 and N replaced by a high syzygy to
assume that N is maximal Cohen-Macaulay. In this particular (but important) situation,
the vertical spectral sequence abuts on step 2.

Remark 4.3.8. Theorem 4.3.6 with B *local Cohen-Macaulay shows that if there exits an
integer 7 > 1 such that r — 1 < depth (Tor;' (M, N)) and dim (Tor{'(M,N)) < r for all
1> 0, then for any ¢,

Ext% (Tor, (M, N),wp)

is a finitely generated graded Aly, ..., y.]-module.

Proposition 4.3.9. In Theorem 4.53.6, assume B is Cohen-Macaulay, P = wp and replace
the hypothesis (iii) by the following weaker assumption

(iii)’ dim (Tor{' (M, N)) < 2 fori > 0.

Then, for any q # dim B,dim B — 2, Ext% (Torf(M, N),wg) is a finitely generated graded
Alyr, . .., ye|-module and the following are equivalent :

(a) ExtimB (Torf(M, N),wp) is a finitely generated graded Aly, ..., y.]-module,
(b) Ext§™ P=2(Tor (M, N),wg)is a finitely generated graded Aly, .. .,y.]-module.

Proof. Using the same argument as in the proof of Theorem 4.3.6, the abutment of the
spectral sequence is obtained in the third page for the following components:

Coker(®,41) if p>po—2and g =0,
npra _ hppa _ ) EXU(Tor (M, N),wp) if p>py— 1and ¢ =b—1, (13.9)
> K Ker(®,) ifp>py—1land g=0b-2, o
0 if p > po and q ¢ {b,b—1,b 2},

where @, : BExt’? (Torﬁ(M, N),wp) — ExtY, (Torﬁ_l(M, N),wp) are the induced maps
in the second page of the spectral sequence. For every ¢, the graded Alyy, ..., y.]-module
@p " EPais finitely generated, because the spectral sequence identifies it as a quotient of two
graded submodules of H*. Thus, according to (4.3.9), it shows that

@Coker(ép), @ Ext%(Tor;‘(M, N),wp) and @Ker(q)p) (4.3.10)

p=zpo—1 p=zpo—1 p=zpo—1

are finitely generated over Alyy,...,y.]. For completing the proof, we use (4.3.10) and the
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exact sequence

0— @ Ker(®,) — @EXtIEQ (Tor;‘(M, N),wp)
P P
— @Exth (Tor;;l_l(M7 N),wp) — EB Coker(®,) — 0

p p

of graded modules over Alyy, ...,y O

Remark 4.3.10. Whenever B is a standard graded Gorenstein ring over a field and W or P
has finite projective dimension over B, the regularity of W is provided by the formula [21,
3.2] :
reg(W) = reg(B) + indeg(P) — min{indeg(Exty(W, P)) + j}.
j
Hence Theorem 4.3.6 offers other choices of P that could be used to deduce the linearity of
the regularity for high Tor modules in specific situations, or to derive its value. To emphasize

this remark, we recall now what Theorem 4.3.6 and this fact says whenever @) is a polynomial
ring over a field.

Proposition 4.3.11. Let Q be a polynomial ring over a field, A = Q/(f), where £ :=
fi,..., fe is a homogeneous QQ-reqular sequence. Let M, N and P be finitely generated graded
A-modules and r € N. If

Extg,(Tor{ (M, N), P) =0,¥i > 0 if ¢ & {r — 1,7},

then

(i) Exté? (Torf(M, N), P) is a finitely generated graded Aly, ..., y.]-module, for any j.

(ii) reg(Tor*(M, N)) = indeg(P) — minj{indeg(Extgg(Tor?(M, N),P))+j}. for any i.
Remark 4.3.12. Along with the same proof as of Corollary 4.3.3, Remark 4.3.8 yields the
following. With Hypothesis 4.2.1, further assume that r — 1 < depth (Torf(M , N )) and
dim (Torf(M, N)) < r for all i > 0, where r > 1 is an integer. Then, for every [ € {0, 1},
there exist ¢; € {w; : 1 < j < ¢} and ¢; € ZU{—oc} such that reg (Torg;, (M, N)) = a;-i+e;
for all 7 > 0.

4.4 Examples on linearity of regularity

Here we construct an example, which shows that the result in Theorem 4.3.3 does not
necessarily hold true for higher dimension. In this example, though reg (Torf(M , N )) is
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asymptotically linear in 7, but unlike Ext modules, the leading term of the linear function
for Tor depends on the modules M and N.

Example 4.4.1. Let Q := K[Y, Z,V,W] be a polynomial ring with usual grading over a
field K and A := Q/(Y?, Z%). Write A = Kly, z,v,w], where y, 2,v and w are the residue
classes of Y, Z, V and W respectively. Fix an integer m > 1. Set

A(—=m)? A(—m +1)
M := Coker 4 : 0o b — )
" =™y oz
A(—1)? A

and N := A/(y, z). Then, for every i > 1, we have
(i) indeg (Ext’y(M,N)) = —i —m+ 1 and reg (Ext’y(M, N)) = —i.
(i) indeg (Tor{'(M,N)) =i and reg (Tor! (M, N)) = (m + 1)i + (2m — 2).

We postpone the proof of Example 4.4.1 until the end of this section.

Remark 4.4.2. In Example 4.4.1(ii), though reg (Torf(M, N)) is linear in 4, but the leading
term is (m+1), which can be as large as possible depending on M. In particular, it shows that
the result in Corollary 4.3.3 is not necessarily true for higher dimension of ToriA(M ,N). In
the proof of Example 4.4.1(ii), since dim(Ker(®;)) = 2, it follows that dim (Tor;" (M, N)) = 2
for all 4 > 1.

Remark 4.4.3. In view of Theorem 4.1.1 and Example 4.4.1(ii), by comparing the coefficients
of ¢ from both sides, we can conclude that the inequalities in Theorem 4.1.1 do not necessarily
hold true for higher dimension of Tor modules.

Remark 4.4.4. With Setup 4.4.5, the graded modules

P =Y, (Tor (M. N))” and €D H3, (Torf (M, N))"

i>0 i>0
are not finitely generated over Alyy, ..., y.]. Otherwise, using Proposition 4.3.9, as in Corol-
lary 4.3.3, one obtains that reg (Torg‘i(M , N )) is linear in ¢ with leading coefficient 2, which
is a contradiction because reg (Torg; (M, N)) = 2(m + 1)i + (2m — 2).
Setup 4.4.5. Along with the hypotheses of Example 4.4.1, for every integer n > 1, we set
the matrices Ba, and Cy, of order 2n x (2n+ 1) as follows:

y —2z 0 0 --- 0 o™ w™ 0 0 0
0 Yy z 0 .o 0 0 —u™m ™ 0 . 0
By, = 0 0 Yy —c - 0 aCZn — 0 0 vmow™ o 0
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while for n > 0, we set the matrices Boyy1 and Ca,yq of order (2n + 1) X (2n + 2) as
follows:

(v 2 0 0 0] [~y —w™ 0 0 0 ]

0y —2 0 0 0O ™ —w™ 0 0
Bonii=|0 0y 2 0, Conyri=| O 0 —um —w™m 0

_0 o 0 - y z] i 0 0 0 —u™ —wm_

Note that B, and C,, are matrices over A both of order n x (n+1) for everyn > 1. Finally,
we set a block matriz D,, of order 2n x (2n + 2) as follows:

BTL OTL

N >
D, : [Cn BJ for every n > 1,

where O,, denotes the matriz of order n X (n + 1) with all entries 0.

The following relations of B,, and C,, (n > 1) help us to build minimal free resolution of
M.

Proposition 4.4.6. With Setup 4.4.5, for everyn > 1, B,Cp.1 + C,B,11 = 0.

Proof. We use induction on n. It can be verified that B;Co+C1Bs = 0 and BoC3+CyBs = 0.
Assuming the equality B,Cp1+C,B,+1 = 0 for p < n, we verity it for n+1. We may assume
that n is even, say 2q. The case when n is odd can be treated in a similar way. Note that

yu™  yw™ — zo™ zw™ 0
0 —yv™ yw™ — zo™m  —zw™
B2q+102q+2 = 0 0 and
: : B2q—102q
- 0 0 -
[y 0™ — yw™ —zw™ 0 0 0]
0 yv o™ —yw™ zw™ 0 0
Cogy1Bagio = 0 0
CQq—lBQq
. 0 0 =

Hence induction hypothesis yields that Bagy1Coq42 + Cogr1Bag+2 = 0. O
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Here we construct graded minimal free resolutions of M and N over A.

Lemma 4.4.7. With Setup 4.4.5, the following statements hold true.
(i) A graded minimal free resolution of N over A is given by FY :

0¢— AL A1) E e A(—n+ 1" &2 A(—n)™ T — ...

(ii) A graded minimal free resolution of M over A is given by FM

A(—m+1) A(—=m —n+ 2)" A(=m —n+ 1)"H 5
0+ D P S P P P s N,
A A(=n+1)" A(—n)"tt

Proof. (i) Set Ny := A/(y) and Ny := A/(z). Clearly,

FVoo 0 AeE A(-1) & A(-2) <& .- and

F)2 0 04 A A(-1) — A(=2) +— -+~

are graded minimal A-free resolutions of Ny and Ny respectively. Since F2 ® 4 N, is acyclic, it
follows that Tor (N1, No) = 0 for all i > 1. Let F, be the tensor product of FNt and FY2 over
A; see [74, pp 614]. Note that the homology H;(F,) = Tor:*(Ny, Ny) (cf. [74, 10.22]). Thus,
since H;(F,) = 0 for all i > 1, F, provides a free resolution of Ny ®4 No = A/(y,z) = N.
It follows from the definition of tensor product of complexes that F, is same as the desired
free resolution F2.

(i) Set G := FY, the resolution shown in (i), and H := G[1](—=m + 1), i.e.,
H, =Guui(-m+1) and d, = (=1)d;,, for every n;

see [79, 1.2.8]. We construct a map f : H — G as follows: the nth component f, : H,, — G,
of f is defined by (—1)C,41. By virtue of Proposition 4.4.6, f is a homogeneous map of
chain complexes. We consider the mapping cone Cone(f); see [79, 1.5.1] for its definition.
Note that Cone(f), = H,_; ® G,, with the nth differential

_d]HI 0 Hn—l — Hn—Q
|:_f::1 dG:|: @ \( €B

Gn — Gn—l

which is nothing but D,, as given in the desired resolution. Since H,(G) = 0 = H,,_;(H)
for every n > 1, in view of [79, 1.5.2], we have H,(Cone(f)) = 0 for every n > 1. Hence
Cone(f) provides the desired free resolution F27. O
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4.4.8 (Computations of Tor: (M, N) and Ext’, (M, N) with Setup 4.4.5). In view of Lemma 4.4.7(%i),
we obtain that the complex FM @4 N is given by

N(-m+1) N(=m—-n+2)" = N(=m-—n+1)"""
N N(—n+1)" N(—n)mtt

where

Dl = D, 04 Af(y, ) = [O "

C" 0 ] for every n > 1.

This yields that

Ker (N(—m —n+1)"* Cny N(—n+ 1)”)
Tord(M,N)= & forn > 1. (4.4.1)
Coker (N(—m —n)"t2 RSN N(—n)"“)
It follows that Tor?}(M, N), = 0 for every u < n, and Toria(M,N), # 0. Therefore
indeg (Tor; (M,N)) =n  for every n > 1. (4.4.2)

To compute Ext modules, consider the complex Hom4(FX, N), which is given by

N(m —1) N(m+n—2)" N(m+n—1)"
(DY) (D) (Dps1)
0o— o .. — D 7 L
N N(n—1) N(n)™+

where (=)' stands for the transpose of a matriz. Hence it can be observed that

Coker (N(n -1 Cn, N(m-+n— 1)"+1>
Exti(M,N)= & forn > 1. (4.4.3)
ot
Ker (N(n)n+1 S N(m + n)n+2)

We are now able to provide a proof for the example.

Proof of Example 4./.1. In view of (4.4.1) and (4.4.3), it suffices to study the regularity of
kernel and cokernel of

B, i= N(=m —n+ 1™ D% N(—n +1)", ¥, := N(n— 1)" & N(m +n - 1)+
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for all n > 1. Since N is annihilated by (y, z), we can substitute N with R := K[V, W], and
v™, w™ in the entries of the matrices C,, with V'™ W™ respectively.

(i) Since I,,(CY), the ideal of maximal minors of C?., has depth = 2, by the Hilbert-Burch
Theorem (cf. [16, 1.4.17]), we have a graded minimal R-free resolution of Coker(¥,,):

0 — R(n—1)" <% R(m +n — 1)" —% Coker(W,,) = [,(C) — 0, (4.4.4)

where 7 sends the standard basis element e; to (—1)%;, and ¢; denotes the n x n minor of
C! with the ith row deleted for 1 < i < n + 1. Therefore, for every n > 1, one obtains that
Ker(¥,) = 0, indeg(Coker(¥,,)) = —m — n + 1 and reg(Coker(¥,,)) = —n. Thus it follows
from (4.4.3) that for every n > 1,
indeg(Ext"y (M, N)) = min{indeg(Coker(¥,)), indeg(Ker(V,,+1))}
=-n—m+1 and
reg(Ext’y (M, N)) = max{reg(Coker(¥,)), reg(Ker(V,4+1))} = —n.

(ii) By (4.4.4), since deg(d;) = mn, we get an exact sequence of graded R-modules:

t Ep:=|—01 8 - (=1)"+15,
0 — R(n—1)" <% R(m +n — 1)"*! 0% il

> R(mn+m+n —1).
Applying Hompg(—, R), we obtain a complex

0 — R(—mn—m—n+1) Ly R(—m —n + 1)"** SN R(—n+1)" — 0 (4.4.5)
which is acyclic, due to Buchsbaum-Eisenbud acyclicity criterion [16, 1.4.13]. Thus (4.4.5)
is a graded minimal R-free resolution of Coker(®,,), and Ker(®,) = R(—mn —m —n + 1).

Hence it follows from (4.4.1) that for every n > 1,
reg (Tor;, (M, N)) = max{reg(Ker(®,)), reg(Coker(®,1))} (4.4.6)
=max{(m+1)n+m—1,(m+1)(n+1)+m—3}
=(m+1)n+ (2m — 2).

Thus (4.4.2) and (4.4.6) yield the assertion (ii). O

4.5 Examples on nonlinearity of regularity

The aim of this section is to show that reg (Tor?z»(M, N)) and reg (TorgﬁH(M, N)) need not
be asymptotically linear in ¢ even over a complete intersection ring A. We give the following
example over a codimension three complete intersection ring in positive characteristic.
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Example 4.5.1. Let Q := K[X,Y, Z, U, V, W] be a standard graded polynomial ring over a
field K of characteristic 2 and A := Q/(X?,Y? Z?). We write A = K|z,y, z,u,v,w|, where
x,1y, z,u,v and w are the residue classes of X, Y, Z, U,V and W respectively. Set

M::Coker([x y = 000 :A(—1)6—>A2> and N :=A/(x,y,z).
uvow Ty 2

Then, for every n > 1, we have

(i) indeg (Ext’y(M, N)) = —n and reg (Ext’y (M, N)) = —n.

(i) indeg (Tor; (M, N)) = n and reg (Tor, (M, N)) = f(n) + n, where

2+l 92 ifn=2'—1 .
f(n) ::{ o1 _ 1 ifol << ot 9 for all integers [ > 1.

Remark 4.5.2. Example 4.5.1(ii) shows that reg(Torg, (M, N)) and reg(Tory, (M, N)) are
not asymptotically linear as functions of n. Moreover, one obtains that n + 1 < f(n) < 2n
for every n > 1, while f(n) =n+1if n =2% -2 and f(n) =2nifn =2 — 1 for [ > 1.
Therefore

= 3.

A A
lim inf reg(Tor, (M, N)) _ 2 and limsup reg(Tor, (M, N))

n—00 n n—o00 n

Furthermore, for any a € (2,3), by choosing any subsequence n,(l) such that |n.(l) —
12! /(e — 1)]| is bounded for all [ > 1,

. reg(Tor), (M, N))
lim = «.
[—00 na(l

In particular, n,(l) can be a sequence of even (resp. odd) integers. Thus both
{reg(Tory, (M, N))/2n :n > 1} and {reg(Tors, . ,(M,N))/2n+1:n > 1}

are dense sets in [2, 3].

Before proving the claims in Example 4.5.1, we need to setup some notations and provide
some preliminary lemmas.
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Setup 4.5.3. Along with the hypotheses of Example /.5.1, for every integer n = 1, we set
the matrices B, and C,, of order n x (n+ 1) as follows:

y z 0 0 0 v w 0 0 0
0 z 0 0 0 v 0O - 0
B,=100wyg =z - 0| gnac,:=10 0 v w --- 0
_0 0 0 y oz _O 0 0 voow

Setting I,, as the n X n identity matriz, we construct the block matrices FE, and F,, both of

order (";1) X (";2) as follows:
$[1 Bl UIl Cl
xly | B uly | C
E, = 2 : 2 ‘ and F,, = 2 ] :
xzl, | B, ul, | C,

Finally, we set the block matrix

E, n+1 n—+ 2
D"'_{Fn En:| of order 2( 5 >><2( 5 >
Here the empty blocks in E,, F,, and D,, are filled with zero matrices of suitable order.

In view of Proposition 4.4.6, replacing v™ and w™ by v and w respectively, since char(K) =
2, one obtains the following relations.

Remark 4.5.4. With Setup 4.5.3, B,,C,, 11 + C, B, +1 = 0 for every n > 1.

A similar relation holds for F, and F),, which helps us to build minimal free resolution of
M.

Proposition 4.5.5. With Setup 4.5.3, E,Foi1 + FoEnv1 =0 for everyn > 1.
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Proof. For every n > 1, the block matrix multiplication yields that

[ zuly | 2Cy + uBy B0,
zuly xCy +uBy | BoCly

EnFn—H =

xul, | 2C, +uB, | B,Cph11

- UZL‘Il UBl + Z‘Cl OlBQ
uxrlsy uBy + xCy | CyBs

FnEn+1 =

uxl, | uB, + xC, | C,Bni1 |

Hence ‘char(K) = 2’ and Remark 4.5.4 yield that E,F,+1 + F,E,+1 = 0 for every n >
1. |

We compute Tor? (M, N) (n > 1) by constructing a graded minimal free resolution of M.

Lemma 4.5.6. With Setup 4.5.3, the following statements hold true.
(i) A graded minimal free resolution of N over A is given by FY -

0e— A« A1) 2 e A=+ D)) I A(n) () —

(i) A graded minimal free resolution of M over A is given by FM

A A(-1)3 A(=n+ 1)) A=) (")
0+— P L P P D LPn P Dy
A AL A=n+ D) A=) ()

Proof. The proof is almost same as that of Lemma 4.4.7. So we just mention the steps here.
(i) Set Ny := A/(x) and Ny := A/(y, z). Then

FM o 0 A< A(-1) & A(-2) <~ .-~ and
FN2 0 04— AN A(-1)2 &2 A(=2)% & ...

are graded minimal A-free resolutions of N; and N respectively, where F22 is obtained as
in Lemma 4.4.7(i). Set F, := FM @, FY2. Hence H;(F,) = Tor?(Ny, No) = 0 for all 4 > 1
(since FN' @4 Ns is acyclic). Therefore F, is a free resolution of Ny®4 Ny = A/(z,y,2) = N.
The assertion follows because F, is same as the given free resolution FY,
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(ii) Set G := FY and H := G[1], i.e., H, = G,41 and d, = (—1)d7,, for every n. We
construct a map f : HH — G as follows: the nth component fn : H,, —» G, of f is defined by
(—=1)F,41. By virtue of Proposition 4.5.5, f is a homogeneous map of chain complexes. As

in the proof of Lemma 4.4.7(ii), the mapping cone of f provides the desired free resolution
FM. 0

4.5.7 (Computations of Tor:(M, N) and Ext’,(M, N) with Setup 4.5.3). In view of Lemma 4.5.6(ii),
by considering the complex IF{” ®a N as in 4.4.8, we compute that

Ker (N(=m)("F) L5 N(—n+ 1))
Tor(M,N)= & forn > 1. (4.5.1)

Coker (N(—n — 1)(71;3) RILEIN N(—n) (")

It follows that Tor? (M, N), =0 for every u < n, and Tor (M, N),, # 0. Therefore
indeg (Tor; (M,N)) =n  for every n > 1. (4.5.2)
To compute Ext modules, we consider the complex Homa(FM N, which yields that

Coker (N(n — 1)<n+1) —> N(n )("+2)>
Ext’(M,N) = @ forn > 1, (4.5.3)

n+2

Ker (N(n)( 2 ) "—“> N( + 1)(";3))
where F! is the transpose of F,,. It follows from (4.5.3) that

indeg (Ext’y(M,N)) = —n  for every n > 1. (4.5.4)

In order to compute regularity of Tor? (M, N) and Ext (M, N), we interpret the matrix
maps F,, and F! in different ways.
Definition 4.5.8. For a ring S, we denote by dx : S[X] — S[X] the S-linear map defined
by
a—1 3 >
PN X ifa>1,
0 else.

4.5.9 (Interpretations of F, and F}). Set R := K[U,V, W/, polynomial ring over a field K of
characteristic 2. Consider the sequences of graded R-linear maps (which are not complezes):

FV: ... — R(-3) 5 R(-2) 5 R(-1) 5 R — 0,
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similarly FY and FY. Set Fy := FV @z FY @i FY, which can be defined exactly in the same
way as tensor product of complexes is defined. In view of Lemma 4.5.6(i) and its proof, the
nth map of the sequence F, is given by

n+42 n+1)
)

R(—n)("2") Ly R(—pn + 1)("

where F), is obtained from Setup 4.5.3 by replacing u,v,w with U, V,W respectively. Iden-
tifying the free summand R(—n) corresponding to ]Fg1 ® ]FZ2 ® ]FZ‘; with RX*“Y 7% C

R(X,Y,Z],, where a; + as + a3 = n and a; > 0, one obtains an R-module isomorphism
n+2)

R(—n)<n;2) = RIX,Y,Z),. On the other hand, labeling the basis elements of R(—n)( 2
bY €(ay,az,a), the action of Iy, on €, ay.a5) can be described as follows:

Fn (e(al,ag,ag)) - 61(]6((11—1,(12,(13) + 62‘/6(111,(12—1,113) + 6SVVG(al,ag,ag—l)7
where ¢, =1 if a; > 1, else ¢, = 0. Hence it can be checked that the diagram

n+2 n+1
2

R(—n)("2") Lo R(—n 4+ 1)(") (4.5.5)

ul lu

R[X.,Y, Z], —2= R[X.Y, Z],_1

s commutative, where § := Udx +V oy + Wy, which is an R-linear map. Dualizing the com-
mutative diagram (4.5.5), or dualizing the above notion, one obtains another commutative
diagram

Rn) (") L R — 1)("3)

4 T%

RIX,Y, Z), < R[X.Y, Z],_1

(4.5.6)

where p, 1s an R-linear map defined by multiplication with UX + VY + W Z. Since u, is
injective, it follows that the map given by F' is an injective map.

The origin of the nonlinear behavior of regularity in Example 4.5.1(ii) rely on the behavior
of coefficient ideals in positive characteristic.

Lemma 4.5.10. Set R := K|[U,V,W|, where char(K) = 2. For every n > 1, let B,, be the
set of all monomials in U, V, W which are the coefficients of (UX + VY +WZ)", and I, be
the ideal of R generated by B,. Then reg(R/1,) = 3(2' — 1) if 2! < n < 241 — 1 for some
1 >0.
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Proof. Writing n in base 2, n = ),
Sp :={i:a; # 0}. Since char(K) = 2,

a;2" with a; € {0,1}, set | := max{i : a; # 0} and

> UVWXYZ = (UX +VY + WZ)"
UasVOIWeeB,
=T (v x® +vey? w22,
i€Sn

Bgi — Bn
a;=1 ]22’. It
shows that the minimal number of generators of I, is 3/°l, a fact that we will not use for
the proof.

Since ) ;o 2 < 27! for any r > 0, the above equalities show that the map [,
sending a tuple of monomials to their product is a bijection. Therefore I, = []

We now use induction on [. Since reg(R/I;) = 0, for [ = 0, the assertion holds. Suppose

reg(R/I,) = 3(2' — 1) if 28 < n < 21 — 1 for some [ > 0. Since R/I, is Artinian, and the

regularity is given by the shifts in the last component of the minimal free resolution Fe/ I

applying the Frobenius map, we get Fi/n S
reg(R/I5,) = 2(reg(R/I,) + 3) — 3 = 32" — 1) if 271 < 2n < 2172 — 2. (4.5.7)
Note that Iy, = mly,, where m = (U, V,W). Considering the exact sequence
0 — Iy, /mly, — R/mly, — R/I5, — 0,
for every 24t +1 < 2n +1 < 242 — 1,

reg(R/Ion11) = max{reg(R/Is,),reg(lo,/mls,)} (4.5.8)
= max{3(2""! —1),2n} = 3(2"*"* - 1).

Thus the assertion for [ + 1 follows from (4.5.7) and (4.5.8). O

Using the interpretation of F), given in 4.5.9, we now prove the following facts.

Lemma 4.5.11. Set R := K[U,V,W/|, where char(K) = 2. Then the R-linear map ®, :
n+2

R(—n)( 27) R(—n + 1)(n31> has the following properties.
(i) For every n > 1, Coker(®,,) is an Artinian R-module.
(ii) For every n > 1, reg(Coker(®,)) < reg(Coker(®,,41)) — 1.

(iii) reg(Coker(®;Py---®,)) =3(2' — 1) if 2! <n <21 — 1 for some | > 0.
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(iv) reg(Coker(®,)) = 2(n — 1) if n =2 — 1 for some | >
(v) reg(Coker(®,,))

Proof. (i) Let I(F,) be the ideal of maximal minors of F,,. By construction, and changing
the role of U,V and W, one can see that (U(";l), V(ngl), W(nf)) C I(F,). Therefore the
assertion follows from the fact that Supp(Coker(®,,)) C Supp(R/I(F,)), which is shown in

(32, 20.4 and 20.7.a).
(ii) By virtue of (i), reg(Coker(®,,)) is the smallest number r such that ®,, is surjective

on the graded components > r + 1. Set W, : R(—l)(n;2) LN R<n;1>, which is same as ®,,
but the grading is shifted by n — 1. So reg(Coker(®,,)) = reg(Coker(¥,,)) +n — 1. It can be
derived from

220 =D +n—1if 2 <n <2 — 1 for somel > 0.

n+2 F 11
F Fy | 0 .Re(a_l)(”? 6(92>
n+l — .
+ 0 --- 0 UI»,H_l‘C'rH—I R(_l)n+2 -3 R

that reg(Coker(¥,,)) < reg(Coker(¥,+1)), and hence
reg(Coker(®,,)) < reg(Coker(®,,41)) — 1.

(iii) In view of the diagram (4.5.5), the composition ®; P, - - - ®,, can be interpreted by the
map 0" : R[X,Y, Z], — R, where 06 = Udx + Vy + Wy. Therefore Image(®1Py - - - P,,)
is equal to the coefficient ideal of (Udx + Vdy + Wéz)". Hence the result follows from
Lemma 4.5.10.

(iv) Let B!, := {ml, e ,m(n+2>} be the set of monomial generators of R X, Y, Z],, ordered

by lex with X > Y > Z. Let A,, be the R-submodule of R(X,Y, Z) generated by the ordered

set xnynzn
B {7 << ("“)}.

Clearly, R[X,Y, Z],, and A, both are free R-modules of same rank with ordered bases B/, and
B! respectively. Consider the R-linear map 0" : A, — R[X,Y, Z], defined by acting 6" on
the basis elements of A,,, where § = Udx +Vdy + Wdz. Let G, be the matrix representation
of 6™ with respect to the described bases. Thus we have a commutative diagram

R(—2n)(") Grs R(—n)("37) T2 R+ 1)("3) (4.5.9)

lg

A, o Z]py —2=RIX)Y, Z]n_1.

1%
1%
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Since n = 2! — 1, the composition 6" : A, — R[X,Y,Z],_; is a zero map. It follows that
the top row of (4.5.9) is also a complex. Writing m; = X 1Y% Z%s for 1 <1i < (”;’2), the
matrix (G,, can be expressed as

n—a;, —a; N—Ajq —aj4 N—Qj,—aj
(Gn)iig) = €apUm " VIt mmts s,

where € ;) = 1 if Ut~ Y-t " G yn=es=%b ¢ B, as defined in Lemma 4.5.10, and
€@ij) = 0 else. Therefore G, is a symmetric matrix. Hence
n t n
0 — R(—2n — 1)("2) Iy p(—2p)("2")

Gy R—n)("F) Ly Ren+ 1)) 0

(4.5.10)

is a complex. Note that the ideal of maximal minors of F,, has depth 3. On the other hand,
choosing the (n + 1) rows and columns of G, indexed by

X"V 0<i<nt and  {X"Y"ZU/X"UYT0< ) <n}

respectively, the corresponding submatrix is antidiagonal with entries W on the antidiago-
nal. Similarly, one may consider suitable minors for U and V. Thus the ideal I,1(G,,) of
all (n 4+ 1) minors of G,, contains pure powers of U, V and W. So depth(/,4+1(G,), R) = 3.
Therefore, by Buchsbaum-Eisenbud acyclicity criterion [16, 1.4.13], (4.5.10) is acyclic. So
reg(Coker(®,)) = 2(n — 1).

(v) Set g(n) := reg(Coker(®, Py - - - @,,)). It follows from (i) that every ®,, is surjective on
all high enough graded components. Let n = 2. Then, by (iii), g(n) > g(n—1), which implies
that the component [®1®y--- P14, is onto, but [®1Py - - P, ]y, is not onto. Therefore
[@,,]g(ny is not onto, and hence reg(Coker(®,)) > g(n) = 3(n — 1) by (iii). Along with this
inequality, the statements (ii) and (iv) yield that

3(n — 1) < reg(Coker(®,,))
< reg(Coker(®,,11)) — 1

< reg(Coker(®g,—1)) — (n — 1)
=22n—-2)—(n—1)=3(n—-1).

Therefore all the above inequalities must be equalities, and it follows that

reg(Coker(®,)) = 2(2" = 1) +n — 1if 2" <n < 2" — 1 for some [ > 0.
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With all the ingredients in Lemma 4.5.11, we are now able to compute the regularity of
Ext and Tor modules in Example 4.5.1.

Proof of Example 4.5.1. The expressions for indeg are shown in (4.5.2) and (4.5.4). In view
of (4.5.1) and (4.5.3), it requires to compute the regularity of kernel and cokernel of

n+2 n+1
2

&, = N(—n)("*) L N+ 1)) and (4.5.11)

n+1> F n+2)

U, = N(n— 1)) Loy )

for all n > 1. Since N is annihilated by (z, vy, z), we can substitute N with R := K[U,V, W],
and the entries u, v, w in the matrices F,, with U, V, W respectively.

(i) By the observations made in 4.5.9, the complex

n+l) F n+2

0 — R(n—1)("3) L Rn) ('3 — 0

is acyclic, and it provides a graded minimal R-free resolution of Coker(W¥,). Therefore,
Ker(¥,) = 0 and reg(Coker(V,,)) = —n for every n > 1. Hence the assertion follows from
(4.5.3).

(ii) It follows from the Koszul complex of U, V, W over R that regularities of Coker(®)
and Ker(®;) are 0 and 2 respectively. So we need to focus on n > 2. By virtue of
Lemma 4.5.11(v),

reg(Coker(®,)) =2(2' — 1) +n -1 if2' <n <2 — 1. (4.5.12)
Thus, for every n > 2, since reg(Coker(®,,)) > n — 1, in view of (4.5.11),
reg(Coker(®,,)) = max{n — 1, reg(Ker(®,)) — 2} = reg(Ker(®,)) — 2. (4.5.13)
Therefore (4.5.12) and (4.5.13) yield that
reg(Ker(®,)) =2(2' = 1) +n+1 if2' <n <2 — 1. (4.5.14)
It follows from (4.5.1), (4.5.12) and (4.5.14) that

reg (Tor; (M, N)) = max {reg(Ker(®,)), reg(Coker(®,41))} =

{max{z(zl +n+1,22' =) 4+np =2 —14n if2r<n<2 -2

_1)
max {2(2' = 1) +n+1,22"" = 1) +n} =22 —24n ifn=2" 1.
{2( ,

Hence, computing reg(Tor{ (M, N)) = 3 separately, the assertion follows. O



4.5. Examples on nonlinearity of regularity 69

Remark 4.5.12. Note that by (4.5.1) and Lemma 4.5.11(i),

HY (Tor} (M, N))” = @ (Coker(,,))".

n>1
Hence Lemma 4.5.11(i) and (v) yield that
indeg (Hg+(TOrﬁ(M’ N))\/) — _2(2l - 1) -n + 1 lf 2l < n < 2l+1 . 1

Therefore, by Proposition 4.3.1, one cannot make H91+(Torf(M ,N))¥ a finitely generated
module over any Noetherian Z-graded algebra Az, ..., z.].
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Chapter 5

Regularity of powers of bicyclic
graphs

One of the most important results on the behavior of the regularity of powers of ideals was
given independently by Cutkosky, Herzog, and Trung in [30], and by Kodiyalam in [63]. In
both papers, it is proved that for all ¢ > ¢g, the regularity of powers of I is asymptotically
a linear function reg (19) = dq + b, where ¢qq is the so-called stabilizing index, and b is the
so-called constant. The value of d in the above formula is well understood. For example, d
is equal to the degree of the generators of I when [ is equigenerated. However, their method
does not give precise information on ¢y and b.

Since then, many researchers have tried to compute gy and b for special families of ideals.
The most simple case, yet interesting, is when [ is the edge ideal of a finite simple graph.
Let G = (V(G), E(G)) denote a finite simple undirected graph. Let R be the polynomial
ring k[z; | z; € V(G)] where K is any field. The edge ideal I(G) of G is the ideal

I(G) = (zixj | {zi, 25} € BE(G)).

Several authors have settled the problem of determining the stabilizing index and the con-
stant for special families of graphs. Banerjee proved that reg I(G)? = 2q, for all ¢ > 2,
7

when G is a gap-free and cricket-free graph (see [7]). E. Nevo and I. Peeva give a conjecture

on regularity of powers of Cy-free edge ideals (see [70]). Moghimian, Fakhari, and Yassemi
answered the question for the family of whiskered graphs (see [(69]). Beyarslan, Ha, and
Trung settled the problem for the family of forests and cycles (see [10]). Their results were

expanded to the family of unicyclic graphs by Alilooee, Beyarslan, and Selvaraja (see [2]).
Moreover, Alilooee and Banerjee determined the stabilizing index and the constant for the
family of bipartite graphs with regularity equal to three (see [1]). Jayanthan and Selvaraja

71
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settled the problem for the family of very well-covered graphs (see [60]). Recently, Erey
proved that if G is a gap-free and diamond-free graph, then reg I(G)? = 2¢ for all ¢ > 2 (see
[10]). The approach is focused on the relations between the combinatorics of graphs and

algebraic properties of edge ideals. We refer the reader to see [62], [52], [L1], [56], [5], [30]
and [71] for more information on this topic.

5.1 Castelnuovo-Mumford regularity of bicyclic graphs

In this section we recall some theorems about regularity of bicyclic graphs from [27].

Notation 5.1.1. Let &3 be the function defined as below

() = {1 if n=0,1 (mod 3),

0 if n =2 (mod 3).

Let C), - P, be the graph given by connecting the path P, to the cycle C,. For instance,
the graph C'3 - P; can be illustrated as the following:

Proposition 5.1.2. [27, Proposition 2.3] Let n > 3 and | > 1, then
n I—&(n)+1
o= 3]+ [28021)
V( l) 3 + 3
Theorem 5.1.3. [27, Theorem 2.4] Let n,m > 3 and | > 1, then
[ — fg(n) — fg(m) +1
(2] +[2] 4] J-

V(C 1 O ) 3 + 3 + 3

Theorem 5.1.4. [27, Theorem 2.16] Let m,n > 3 and | > 1, then

n m

(1) if L=0,1 (mod 3), then

v(Cy- P -Cp)+2 if n,m =2 (mod 3),

reg I( I ) {I/(Cn P -Cy)+1 otherwise;
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(i1) if | = 2 (mod 3), then

(Cp-P-Cp)+2 n=0,1(mod3), m=2 (mod 3);

reg [(C, - P -Cy,) = v _
v(C,-PF-Cp)+1 otherwise.

5.2 Castelnuovo-Mumford regularity of powers

In this section, we study the regularity of the powers of I(C,, - P, - C,,) when | < 2. Our
strategy to compute reg I(C,, - P - Cy,)? for ¢ > 1 relies on finding an upper bound and a
lower bound on reg I(C,, - B, - C},,)? where these bounds coincide and are equal to

2q +regI(C, - P - Cy,) — 2.

In order to obtain an upper bound, we follow the even-connection argument given in [7,
Theorem 5.2]. Then we proceed by looking at “nice” induced subgraphs of C,, - B, - C,,, and
we find a lower bound on reg I(C,, - P, - C,,)? which is equal to the found upper bound.

Let I be an arbitrary ideal generated in degree d and let b, := reg(/9) — dq for ¢ > 1. An
interesting question is to study of the sequence {b;};>1. In [36] Eisenbud and Harris proved
that if dim(R/I) = 0, then {b;};>; is a weakly decreasing sequence of non-negative integers.
In [8] Banerjee, Beyarslan and Ha conjectured that for any edge ideal, {b;};>1 is a weakly
decreasing sequence (see [3, Conjecture 7.11]). For the edge ideal of any dumbbell graph
with [ < 2, we prove b; = by for all © > 1. However, we expect b; < b; for all © > 1 for any
graph.

Remark 5.2.1. From Theorem 5.1.3 and Theorem 5.1.4, for any [ < 2 we have that

n+m+l+1J

regI(C’n-Pl-C'm)>{ 3

The previous inequality is not satisfied when [ > 3, because reg I[(Cy - Py - Cy) = 3 and
L4+4+3+1 J _ 4
e =4

As recalled earlier, we use the notation of even-connection from Banerjee [7, Theorem

5.2]. The following lemma is important in our treatment of the even-connected vertices, and
its proof is similar to [7, Lemma 6.13].

Lemma 5.2.2. Let G be a graph. As in Remark 1.3.4, let G' be the graph associated to
(I(G)*H: ey - eq)pOl. Suppose u = po, P1,--.,P2sr1 = U 1S a path that even-connects u and
v with respect to the g-fold ey - --eq,. Then we have

2s+1

U N(;/[pi] C NG/[u] U Ngl[U}.

=0
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Proof. Let U be the set of vertices U = {po, p1,. .., Past+1}. For each 1 < k < s we have that
Pak—1P2k = €, for some 1 < j < ¢, i.e. v and v are even connected with respect to the s-fold
€, €Cjy " " Cjy -

Let w be a vertex even-connected to some vertex z € U with respect to the ¢-fold e; - - - ¢,.
Then, there exists a path z = rg, 71, ..., 7941 = w that even-connects z and w with respect
to the g¢-fold e;---¢e,. Let i be the largest integer such that r; € U. From the fact that
ro = z € U, we have that the integer 7 is well defined and 7 > 0. Let k£ be an integer such
that p, = r;.

The proof is now divided into four different cases depending on 7 mod 2 and £ mod 2. When
i and k are both odd integers, we have that r;r;+; is equal to some edge of {e1,eq,...,¢,}
and that py_1py is not equal to any edge of {e;,,ej,,...€;, }. By the definition of ¢ we have

{ris1,izas - a1y NU = 0.

So, in this case, it follows that

U=DPos---Pk—1,Pk = Ti, Tit1, - - -, 2141 = W

is a path that even-connects u and w with respect to the g-fold e; - - - ¢,.

The other three cases follow in a similar way. Therefore, we have that if w even-connected
to some z € U, then w is even-connected to either u or v.

Now, we only need to prove that any w € Ng[z] for some z € U is even-connected to
either u or v. This part is simple, if z = py; then v = po,...,ps; = z,w is a path that
even-connects v and w, otherwise, if 2 = py;_1 then w,z = paj_1,...,p2s41 = v is a path
that even-connects w and v.

So we are done. O

The next lemma is similar to [10, Lemma 5.1], but adapted to the current setting of a

dumbbell.

Lemma 5.2.3. Let G = C,, - P, - Cp,. If (I(G)"™: ey -+ ¢,) is not a square-free monomial
ideal and G’ is the associated graph, then there exists a vertexr z which is even-connected to
itself. Then, G' has a leaf and Ng[z| contains one of the two cycles. In particular, if we
denote the corresponding leaf by e, then G’ is an induced subgraph of a unicyclic graph.

Proof. Suppose z = pg, p1,--.,Pas1 = z is an even-connection of z with itself. Let 0 < a <
b < 21 4+ 1 be integers such that p,, pas1,---,P = pPa 18 an even-connection and b — a is
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minimal. Then, p,, pas1,--.,Pp = Pa is a simple closed path lying on C, - P, - C},, and so it is
necessarily equal to either C,, or C,,.

Finally, Lemma 5.2.2 implies that Ng/[z]| contains either C,, or C,,. O

Lemma 5.2.4. Let G =C,, - P, - C,, with | < 2 and H be a graph such that G is a subgraph
of H with the same set of vertices (i.e., V(H) = V(G) and E(H) 2 E(G)). For any two
vertices u,v € H such that {u,v} ¢ E(G), we have that

reg I (H \ (Ng[u] U Ng[v])) <regl(G)— 1.

Proof. Let K = Nglu] N Ng[v]. We divide the proof according to the cardinality |K| of K.
Notice that for the dumbbell G we always have 0 < | K| < 2.

Since H \ (Ng[u] U Ngv]) is an induced subgraph of H \ (Ng[u] U Ng[v]), from Theorem
1.3.1(4), it is enough to prove that reg I (H \ (Ng[u] U Ng[v])) < regI(G) — 1.

Step 1. Suppose that | K| = 0. Then, the graph H\ (Ng[u] U N¢[v]) is obtained by deleting
at least 6 vertices, and so |H \ (Ng[u] U Ngl[v])| < |G] =6 < n+ m + 1 — 8. Note that
we can add two vertices to H \ (Ng[u] U Ng[v]) and connect them in such a way that we
obtain a Hamiltonian path. Let L be a graph obtained by adding two vertices and certain
edges connecting these two new vertices, such that L has a Hamiltonian path. Since |L| <
n+m+ 1 — 6, Theorem 1.3.9 yields

[ =5 [+1
reg](L)g {%J +1= L%J -1,

and by applying Remark 5.2.1, we get reg I(L) < regI(G) — 1. Since H \ (Ng[u| U Ng[v])
is an induced subgraph of L, Theorem 1.3.1(7) implies that reg I (H \ (Ng[u] U Nglv])) <
reg I(G) — 1.

Step 2. Suppose that |K| = 1. Here the proof follows along the same lines of Step 1. In
this case the graph H \ (Ng[u] U Ng[v]) is obtained by deleting at least 5 vertices. Now,
note that we can add one vertex to H \ (Ng[u| U Ng[v]) and connect it in such a way
that we obtain a Hamiltonian path. Let L be a graph obtained by adding one vertex
and certain edges connecting this new vertex, such that L has a Hamiltonian path. Since
IL| < (n+m+1—2)—5+4+1=n+m+1—06, then the rest of the proof follows as in Step 1.

Step 3. Suppose that |K| = 2. In this case, note that one of the cycles is necessarily
equal to Cy, say C, = Cy, and that u,v € Cy with {u,v} ¢ E(G). Hence, it follows that
H\ (Ng[u] U Ng[v]) has a Hamiltonian path with < m vertices if [ = 2 and < m — 1 vertices
if | = 1. From Theorem 1.3.9 and Remark 5.2.1, then we have reg I(H \ (Ng[u] U Ng[v])) <
reg [(G) — 1.

So we are through. O
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Theorem 5.2.5. Let G =C,, - P, - Cp, with 1 <2 and I = I(G) be ils edge ideal, then
reg (197! ey -+ ve,) <tegl

for any 1 < q and any edges ey, ..., e, € E(Q).

Proof. We split the proof into two cases.

Case 1. First, suppose ([7M': e;---¢,) is a square-free monomial ideal. In this case
(I e;---e,) = I(G') where G’ is a graph with V(G) = V(G') and E(G) C E(G).
Let E(G'") = E(G) U {ay,...,a,}, then each edge a; is induced from even-connecting two
different vertices (i.e., each a; is not a whisker). By Theorem 1.3.1, we have

reg [(G') < max{reg I(G"\ ay),regI(G!, )+ 1}
Since a; ¢ E(G), Lemma 5.2.4 implies that reg I(G7,,) + 1 < reg I(G).
In the same way, for any subgraph H = G’ \ {ay,...,a;}, since V(H) = V(G) and
E(H) O F(G), Lemma 5.2.4 also gives us that
reg(I(H,,,,)) + 1 < reg(I(G)).
By continuing this process, we get reg I(G') < reg I(G).
Case 2. Suppose (I771: e;---¢,) is not square-free and G’ is the graph associated to

(17t ey - eq)pOI. Let {b1,bs,...,bs} be the subset of edges of E(G') \ E(G) that are gen-
erated by square monomials (i.e., each b; is a whisker).

From Theorem 1.3.1 we have the inequality
reg I(G') < max{reg I(G"\ by),1 4+ reg I(G},)}.

Remark 5.2.3 implies that one of the cycles is deleted from Gy , then there exists an edge
e € G such that d(e, G} ) > 2. So, for such an edge e we get that the disjoint union G} Ue
is an induced subgraph of G’ \ b;. Thus, Theorem 1.3.1 and [3, Corollary 3.10] yield that

reg(1(Gy,)) + 1 = reg(I(Gy, Ue)) < reg(I(G'\ by)).
Therefore, we obtain that reg I(G") < reg I(G’ \ by).
By applying the same argument, it follows that

reg I(G') < reg I(G'\ by) < reg I(G'\ {b1,ba}) < -+ < reg I(G'\ {by, ., ba}).
Since the graph G’ \ {b1,...,bs} has no whiskers, then Step 1 implies that
teg I(G") < xeg I(G'\ {by, .., ba}) < reg I(G),

Therefore, the proof is completed. O
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Remark 5.2.6. The previous theorem is a generalization of a work done by Gu in [19] for the
case [ = 1.

Theorem 5.2.7. For the dumbbell graph C,, - P, - C,, with | < 2, we have
regI(C,, - P - Cp)? > 2q+regI(C,, - P, - Cp) — 2,
for any q > 1.

Proof. Using the inequality reg I(C,, - Py - Cy,)? = 2q+v(C,, - Py - C,,) — 1 of Theorem 1.3.8,
for the cases where reg I(C,, - P, - C,) = v(C,, - P, - Cy,) + 1 we get the expected inequality.
We divide the proof in two halves, the cases [ =1 and [ = 2.

Case 1. Let I = 1. We only need to focus on the case where n,m = 2 (mod 3). Let
H=(C, -P-Cy)\{x,} = P,—1-Cp, be an induced subgraph of C,, - P; - C,, Using Theorem
5.1.3, Proposition 5.1.2 and the modularity n,m = 2 (mod 3), we can check that

v(H)=v(C, P, -Cp)
and that

v(H)=v(H\Ty(Cp)).
From Theorem 5.1.4 and [2, Theorem 1.2] we get

reg [(C, - P, -Cp) =v(Cp- P -Cp)+2=v(H)+2=regI(H).

Since H is an induced subgraph of C,, - P, - C,,, then from [2, Theorem 1.1] and [10, Corollay
4.3] we get the inequality

reg [(Cy, - Py - C)? > regI(H)? = 2q +regl(H) — 2 =2q +regI(C,, - P, - Cp,) — 2.

Case 2. Let | = 2. We only need to focus on the cases where n = 0,1 (mod 3) and
m =2 (mod 3). We take H = (C,, - P, - Cy,) \ {z1} of C,, - Py - C,, is given as the union of a
path of length n — 1 and the cycle C,,, i.e., H = P,_1 UC,,.

By Theorem 5.1.4, for the cases n = 0,1 (mod 3) and m = 2 (mod 3), we have

teg [(Co Po+ ) = v(Cu- Po- C) + 2= 5] + | ] 42

and from [3, Corollary 3.10], [81, Theorem 2.18] and Theorem 1.3.7 we obtain

reg I(H) = reg(I(Py_1)) + 1eg(1(C)) — 1 = v(Pa_y) + v(Cy) + 2 = L% |+ L%J t2.
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Hence, we get regI(C,, - P, -C,,) = regl(H). Finally, using [2, Theorem 1.1] and [10,
Corollary 4.3], we get the inequality

reg [(Cy, - Py - C)! 2 reg I(H)? = 2q +reg[(H) —2 =2q +1regI(C,, - P, - Cp,) — 2.
Therefore, the proof is completed. O
Theorem 5.2.8. For the dumbbell graph C,, - P, - C,, with | < 2, we have

reg [(Cy, - B - Cp,)? =2q+reg I(Cy, - P, - Cy,) — 2
for all g > 1.

Proof. 1t follows by Theorem 5.2.5, Theorem 1.3.5 and Theorem 5.2.7. O
Remark 5.2.9. One may ask whether
regI(Cn : Pl . Om)q - 2q+regI(Cn ' 1Dl Cm) -2

always holds for given n,m,[l and ¢. Unfortunately, it is no longer true for any n, m, [ and
q as it can be seen from the following example:

6 =1egI(Cs-Py-C5)* <4+r1egl(Cs-Py-Cs) —2=T.



Chapter 6

Cohomologies of complete intersection
in P" x P

6.1 linearTruncations Package

In the begining of this section we present a Macaulay2 package, entitled linearTruncations,
which computes the multigraded truncations that give linear resolutions.

Castelnuovo-Mumford regularity is a fundamental invariant in commutative algebra and
algebraic geometry. Roughly speaking, it measures the complexity of a module or a sheaf.
There is a folklore result that Castelnuovo-Mumford regularity is the smallest number where
truncation of the module has a linear resolution. An extension of Castelnuovo-Mumford
regularity for a multigraded case was first introduced by Hoffman and Wang in a special
case [77], and later by Maclagan and Smith in [65] and Botbol and Chardin in [12] in a more
general setting. An interesting question is to ask about the relation between Castelnuovo-
Mumford regularity of M in the multigraded case and the degrees d where the truncation
M>q4 has a linear resolution. Note that, If M>q has a linear resolution so does M4 for
all d’ > d. Therefore these multidegrees form a region and we call it linear truncations.
Also, it is enough to find minimal generators for the region where the truncation has a linear
resolution.

The first question is to show that the linear truncations is a non-empty set. In Subsection
6.1.1 we will answer to this question. Indeed, in [34] the authors provide a degree d where
M-=4 has a linear resolution. Unfortunately, this degree, in general, is greater than the
generators of a linear truncation region. Moreover, we refine this theorem and give a better
bound in the bigraded case in Theorem 6.1.3.

79



80 Chapter 6. Cohomologies of complete intersection in P™ x P™

In the last section, we provide some interesting examples and give an answer to some
initial questions that may arise about linear truncations.

6.1.1 Linear Truncations

Throughout, we shall use the following notations. Let k be a field and S = k[zy, ..., z,]
be a Z"-graded polynomial ring over k. Let M be a finitely generated S-module, let d =
(dy,...,d,) € Z", defined = d; + - - -+ d, to be the total degree of d and Msq := DarsaMya
is the truncation of M at d. We define the linear truncations of M to be

{d € Z" | M>q4has a linear resolution} C Z".

As we mentioned before, in [34] the authors proved the linear truncations is a non-empty
set.

Proposition 6.1.1. [7/, Proposition 1.7 | Let M be finitely generated 7" -graded S-module.
Suppose M has a finite free multi-homogeneous resolution

0 M+ Gy Gy -+ Gy« 0.

Write Gy, = ®S(—a)Pta and set b; = max{a; | by # 0} and b = (by,...,b,), then My has
a linear resolution.

The code CoarseMultigradedRegularity in the package is implemented to find an el-
ement in the linear truncations of a finitely generated module. While » > 3, this code is
implemented by using Proposition 6.1.1.

i0 : 8= QQlx,y,z,Degrees=>{{1,0,0},{0,1,0}, {0,0,1}}1;
i1 : I = ideal(x*y*z, x*y~2, y*z"2);

i2 : M = 8"1/1;

i3 : coarseMultigradedRegularity M

o3 : {1, 2, 2}

In the above example one can check truncation of M at (0,0,2), (0,1,1),(1,0,1) and (1, 1,0)
has a linear resolution.
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Bigraded Case

In this part, let S = k[zo,...,Zn, Yo, -, Ym] be a polynomial ring and deg(x;) = (1,0) and
deg(y;) = (0,1). for any d € Z* we have

0= Msq—+M—E—=0

where E' = M /M>q4. The above short exact sequence yields the following long exact sequence
on Tor modules

- = Tor} (M, k) — Torl, | (E, k) — Tor (Msa, k) — Tory (M, k) — - - .

Therefore, the vanishing of Tor? (Mg, k) in degree y is deduced from vanishing of Tor? (M, k)
and Tor?,,(F) in that degree.

Definition 6.1.2. Let M be a finitely generated bigraded S-module. Define
bf (M) := max{p| 3q: Tor? (M, k), # 0} = max{p| Tor; (M, k[y]) (20}
b (M) := max{q|3p; Tor (M, k),, # 0} = max{q| Tor; (M, E[2]) eg)20}-

(2

The partial regularities of M up to i-th step are defined as follows:
reg, (M) := max{bj (M) — j}, reg, (M) = max{bj(M) — j}
and partial regularities of M are:

reg, (M) := m]ax{b‘;(M) —j} reg, (M) = mjax{b?(M) —Jj}

Theorem 6.1.3. Let S = klzo, ..., Zn, Yo, - -, Ym| be a bigraded polynomial ring and M be a
finitely generated bigraded S-module. Let d € 7, if d > reg(M) and d > (reg’.(M), reg! (M)),
then M q has a linear resolution fort steps. In particular, truncation of M at (veg,(M),reg,(M))
has a linear resolution.

Proof. For simplicity, we replace M with M (d) and we show M has a linear resolution.

We have Tor; (M, k)(ap = 0 for any a > 0 or b > 0 and ¢ < t. Hence, it is suffices to show
Tor?, \(E, k) @y = 0if a+b > i+1. Note that, Tor? (E, k) can be computed by the homologies
of the Koszul complex Kq((x,¥), F), where x = (zq,...,z,) and y = (Yo, ..., ¥Ym). On the
other hand, homologies of K,((x,y), F) is the total homologies of the double Koszul complex
K..(x;y, E). Therefore,

Tor?, (B, k) ap = HiiKe(X,5), E) (o)
= Hip1(Tot(Ke o (X5 Y, E)) (a)-



82 Chapter 6. Cohomologies of complete intersection in P" x P™

m
q

In the spectral sequence, K,, o(x;y, E)(ap) = E(a —p,b — q)(;)( ). Let
z € Zip1(Tot(K, o (x;y, E))(a,b) C Bprg=i1 Kpg(x3y, E)(a,b)

be a cycle. Decompose z into z = 2,®2,, where 21 € ©pso Ky o (XY, E) (0),22 € ©g=6Kp o (XY, E)(ap)
and p+ g =14+ 1. It is suffices to show that

21 @ 22 € Biy1(Tot(Ke o (%Y, E))) (a,0)-

Truncate K, , where p > a and denote it by (K.3") and denote the total complex by
(K2~?, 0P>). Note that

Ky (Y, By = KI5y, M) ()

Denote the corresponding spectral sequence to Kfia (x;¥, E)(ap) by &, therefore gqu = 0 for
p < a and if p > a then
(3)

Epaian = Tori (M k[x]) 2 .

P:d(ab)

In particular, (£ ,)p = 0 if b — ¢ > bY(M) — q. This holds as b — ¢ > regl(M). Indeed,

p.q
g<isincep>landb>qgasp+q<a-+b.

Hence there exists ¢; € K25 (x;y, E) (4 such that 0°>7(c1) = z;. Write ¢1 = Bp=aCpita—p

d(c1) = 0" (c1) + 0" (Catryit1-a)
0" (Catr1,it1-a) € Kait1-a(X3Y, E)(ap) = E(07a+b_(i+1))<2)(i+rlnfa) =0since a+b>i+ 1. The
argument for z, is the same. O

Remark 6.1.4. The assumption d > reg M is necessary for the Theorem 6.1.3. Let S =
k[z1,y1,y2] and I = (z3y1,z193), reg(S/I) = 3. The partial regularities of S/I is (1,1), but
one can see the truncation of M at (1,1) does not have a linear resolution.

Proposition 6.1.1 and Theorem 6.1.3 give a single degree in the linear truncations of
M . In general, this degree could be far from the minimal generators. Because of that, we
implemented findAllLinearTruncation, which is useful to find all minimal generators of
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linear truncations of M.

Input : A module M and a range (a,b)
Output: Minimal generators of linear truncation with total degree between a and b
AL=0CZ:
while ¢ <7 <bdo
for all d € 7" with d = i do

if d¢ L and M=y has a linear resolution then

| L:=LU(d+Z") A:=AuU{d}
end

end
end

return A. | _ ) .
Algorithm 1: Algorithm for implementing findAl1lLinearTruncation

6.1.2 Some Examples

In this section, we provide some interesting examples. In the following example ,the minimal
generators of linear truncations have two different total degrees.

i0 : S = QQ[x_1..x_6,Degrees=>{{1,0,0},{1,0,0%},{0,1,0},{0,1,0},{0,0,1},{0,0,13}];

il : I = ideal(x_1*x_4*x_6,x_1%x_3"2,x_3"2*%x_4*x_5,x_2"2%x_5"2,x_1*x_4"2%x_5,x_1*x_2"2%x_4);
i2 : M = 8°1/1;

i3 : c = coarseMultigradedRegularity M

03 = {3, 4, 2}
i4 : findAllLinearTruncations({regularity M, sum coarseMultigradedRegularity M}, M)
o4 = {{2, 2, 1}, {1, 3, 2}}

Question 6.1.5. Let S = k[zy,...,x,] be polynomial ring and M be a finitely generaled
S-module. Is it possible for a degree d where d < reg(M) to be in a linear truncations of M %

The answer to this question is yes. Let M be an Artinian module, the regularity of M is
equal to the maximum degree of the socle elements. On the other hand, truncating at each
socle element has a linear resolution. Hence, it is possible to find that d if the two socle
elements of M have different degrees. Here is a simple example:

i0 : S = QQ[x,y,Degrees=>{{1,0},{0,1}}];

i1 I ideal (x73, x*y,y"7 );

i2 : M = 8"1/1;

i3 : regularity M

o3 =6

i4 : isLinearComplex (res truncate({2,0},M))
04 = true
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Since M is an Artinian module, it is are not very interesting in the algebraic geometry’s
point of view. Moreover, there is an interesting example by studying 96 complete intersection
points in P? x P2

i0 : S = QQ[x_0,x_1,x_2,y_0,y_1,y_2,Degrees=>{{1,0},{1,0},{1,0},{0,1},{0,1},{0,13}}];
il ¢ I = ideal(x_0"2*%y_072,x_1"2xy_172,x_272%y_2"2, (x_0+x_1+x_2) "2*(y_O+y_1+y_2)"2);
i2 : B = intersect(ideal(x_0,x_1,x_2), ideal(y_0, y_1,y_2));

i3 : J = saturate (I,B);

i4 : M = 8°1/73;

i5 : regularity M

ob =11

i6 : findAllLinearTruncations({0,11},M)
o6 = {{2, 6}, {6, 2}}

This example is also interesting because the minimal generators of the linear truncations of
M is not a convex set. Furthermore, by looking at the bigraded Hilbert function of M and
applying [05, Proposition 6.7], one can see the multigraded regularity and linear truncations
in this example are the same.

6.2 Complete intersections in P" x P

Notation 6.2.1. Let S = k[zo,...,Zn,%0,-..,Ym| be a bigraded polynomial ring where
deg(mz) - (170) and deg(yz) = (07 1) Define Bl = (-770’ s 7xn)>BQ = (y0> s 7ym) and
B = (xo,...,2n) - (Yo,---,Ym) the irrelevant ideals of P P and P" x P™.

Definition 6.2.2. A subscheme V' C P" x P™ | is a complete intersection if V' = Proj(S/I)
where [ is generated by codim(V') bihomogeneous elements.

Proposition 6.2.3. [/2, Example 8.4.2] Let S = k[zo, ..., Tn, Yo, - - -, Ym| be a bigraded poly-
nomial ring where deg(z;) = (1,0) and deg(y;) = (0,1). Let I = (fi,..., fatm) generated
by n + m forms of degree (d;,e;) and V' be the scheme defined by I. If I is a complete
intersection, then

deg(v) = Z dil e din ’ ejl o 6jm’

where the sum is over all permutations (di,, ..., d;, ,€j,...,¢€;.) of (1,...,n+m) with i, <
Iog <+ <y and j1 < jo < -+ < jm. In particular if d; = d and e; = e for all i, then

deg(V) = (n —;m) d"e™.
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Proposition 6.2.4. Let [ = (f1,..., f.) be a bigraded ideal defining a complete intersection
of codimension r and let deg(f;) = dZ For u € M;regp(H;(K(f,9)),

HFg(p) = P(p),

where P is a polynomaial that only depends upon dy, ..., d,.

Proof. By the Serre Grothendieck formula

HPsy;(p) = HFs/r(p Z )i dim H5(S/1),. (6.2.1)

Hence, if p € regp(S/I) then HPs/i(p) = HFs/r(p). Set

V() = S (1) dim(HL(K(E, $)), = S (1) dim(KG) . (6.2.2)
Note that the second equality shows that x is a function that only depends upon the degrees.
Since I is complete intersection, H;(K(f, S) = H%(H;(K(f,S)). Hence, Supp(H;(K(f,S)) N
regp(H;(K(f,S)) = 0. Therefore, for € Nisoregg(H;(K(f,S)), x(1) = HFs;(p). Hence,
for € N;regz(H;(K(f,9)),

HPsr(p) = HFg/1(p) = x(p).

Setting P := H Pg/ the first equality shows that [ Fg;(;) = P(i) and the second equality
shows this function only depends upon the degrees. O

Proposition 6.2.5. With the Notation 6.2.1, for any bigraded free S-module M,
H ™ (M) = Hy ™™ (M).
Furthermore, If n = m then
Hy™ (M) = HEH (M) ® Hyl' (M),
else if n < m then,
Hy* (M) = Hgf' (M) and  HE™'(M) = Hg(M).

Proof. Note that Hg (M) = Hp (M) = HS(M) = 0if a # n+1, b # m+1 and ¢ # n+m+2.
The Meyer-Vietoris exact sequence

o HL (M) — H};](M) D Hj'92(M) — Hp(M) — HFY (M) — -

gives the results. O
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Theorem 6.2.6. Let S = k[xg,...,Tn,Y0,---,Ym] be a bigraded polynomial ring where
deg(x;) = (1,0) and deg(y;) = (0,1). Define B = (xqg,...,2n) * (Yo, ---,Ym) the irrele-
vant ideal of P" x P™. Assume I = (f1,..., fr) with deg(f;) = (d;,e;) and V be the scheme
defined by I. If codim(V') = r then

o Supp(H;(K(f.S)) = Supp(Vt144) U Supp(Wins14i)  fori >0
e Supp(Hp(S/1)) = Supp(Vor1-:) USupp(Wip1—i) for0<i<dimV, and
o Supp(HEVH(S/1)) = {(, )|V (V, Oy (1, v)) £ 0}

C Supp(Vy—m) U Supp(W,—,) U {0 — Supp (5/1)}

where V; (resp. W;) is a subquotient of Hy T (Ki(f,S)) (resp. Hp ' (Ki(£,S))) and o =
>oildie;) —(n+1,m+1).

Proof. Consider the double complex C%(K,(f,S)) and suppose n < m. If we start taking
homologies vertically, by 6.2.5 in the third page we have:

0 o - 0 0
V:Z V;"/:—l ‘}1/ I:/0
WL W
Mo 0 0 o

where
M = H (HE™HK(f,9))
=~ H, (Hy'™ (K(£,9)))
~ H,(K(f,5) (d— (n+1,m+1))*)
= (S/H*(d—(n+1,m+1)).

If we start taking homology horizontally, in the second page we have

0 H, --- H,  HYS/I)
00 0 0 HL(S/I)
00 0 0 : .
- . Hgim(v)ﬂ (S/1)

0
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where v := max{0,7 —n — 1,7 —m — 1}. The result is obtained by comparing the two
abutments. O

Definition 6.2.7. Let d = (d,e) € N2, define

vi:=1i-d—(n+1,0),
w; :=1i-d—(0,m+1),
o:=Mm+m)-d—(n+1,m+1).

Lemma 6.2.8. Let I = (f1,...,[,) € S and deg(f;) = d = (d,e) and V' be the scheme
defined by I. If codim(V') = r then

Supp(H;(K(f, S)) Cony14i + (N, N) Uwpir4: + (N, =N) - fori >0,
Supp(Hy5(S/1)) Copyi—i + (=N, N) Uwpy1-; + (N, =N)  for 0 <i < dimV.

In addition, the inclusions are sharp.

Proof. With the proof of Theorem 6.2.6, in the second page of the spectral sequence we have
forp<n+m+1

Hy(HEK(£,5)) ifp=n+1,
Epy =" Ey, = H(HE'K(£,S)) ifp=m+1,

0 else.

Combining with the Theorem 6.2.6 shows the inclusions. The sharpness follows from the
fact that for any ¢, v, (resp. w,) is in the support of HEH Ky (f,S) (resp. HE K, (£,9))
and it is not in the support of H ' K,1(f,S) and HE " Koy (f, S) (resp. HET'K, (£, 5)
and Hi M Ky (F,9)). O

Corollary 6.2.9. Let I = (f1,...,f,) € S and deg(f;) = d = (d,e) and V be the scheme
defined by I. If codim(V') = r, then

(1) i p v+ (-NN)Uw;+(N,-N) fori=r—m,r—m—1andj=r—nr—n-1
then

Proof. Note thatSupp (Hp™ (K;(f,5))) = v + (—N,N) and Supp Hj." (Ki(£, S)) = w; +
(N, +N) for all . Consider the double complex C%(K,4(f,S)) and suppose n < m as in
the proof of Theorem 6.2.6. Since Supp(V;) N Supp(W,) = 0, there will be no nonzero
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map in the spectral sequence among them. In this case, in the n + 2-th page we have
an induced map ¢ : M — W,_,_1, and in the m + 2-th page we have an induced map
o tkeryyy = Vi p ¢ vy + (N, N) Uw,—,, + (N, =N), H;(S/I), = (kert),. In
addition, if p & v,—p—1 + (N, N) U w,_,,—1 + (N, —N)

HOY (V, Oy () = Hp(5/1), = (ker i), = M, = (S/1);..

6.2.1 Complete intersection points in P" x P

In this section we apply the results in the previous section to the case of complete intersection
points in P* x P™. In the rest of this section, I = (f1,..., fusm) and V' be the complete
intersection scheme of points defined by I with d := deg(f;) = (d,e).

Definition 6.2.10. Set I'; := Supp(Hp (Ko14(f, 5))) U Supp(HjH (Kinti(£,5))). Notice
that T'; = ) if and only if i > max{n,m}. If i < m then

Supp(HEH (Kppi(£,9))) = vpai + (=N, N),
and similarly for Supp(HjH (Koni4(f, 5))) if @ < n.
Definition 6.2.11. For a function F : Z? — 7 define

F*(a,b) := F(—a, —b)
F'(a,b) (—a,b)
F"(a,b) (a, —b).

F
F

Theorem 6.2.12. Let S = kl[zo,...,Zn,Yo,---,Ym] be a bigraded polynomial ring where
deg(x;) = (1,0) and deg(y;) = (0,1). Assume V' be a complete intersection scheme of points

defined by I = (f1,..., fotm) with deg(fi) = (d,e).
(1) If p & Uisal'; then
HFgyr(p) = x(1)
where x((a,b)) = >_,(=1)!("*™) (n-i—t;—id) (77L+7Z:L—ie)'

(2) If u ¢ Ty then
HEg/(p) = HFv(p)
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(3) If p ¢ Ty then
n+m
HFy(u) + HFy (0 — p) = deg(V) = < i )dnem.

In particular, if p € (nd —n, (n+m)e —m) +N>*U((n +m)d — n,me —m) + N? then
HFy (1) = deg(V') and pu € regp(V)

(4) [f/L el \ {F_l U Pl} then

HFy () + HFy (o — 1) = (" ;m) (@™ — e(y)

where e(p) = HFL (i — v,) + HF( — wy) as in the Definition 6.2.11.
(5) If p € Uis1 Iy \ {To} then

n-+m
n

HFy (p) = ( )d"em —x(o —p).

In particular, if p € T'y \ {To U2} then

n—+m n+m

ain(r /1 = (1) 8= )+ (20 MGG )

Proof. Denote the saturation of I with respect to B by J. In this case HFy (1) = dim(S/J),,
for all © € Z2. In the proof we use these two simple fact that p € I';_; U, yields p € T;
and if u € I'; then ¢ — p € T'_;. By Proposition 6.2.3 the Hilbert polynomial of V' is
D := ("T™)d"e™ which in this case is equal to the deg(V). By Serre Grothendieck formula,

HF sy (1) + dim(Hp(S/J),) = D (6.2.3)

(1) If o ¢ U;»oly, by Lemma 6.2.8 (H;(K(f,S)), = 0 for all ¢ > 1. Therefore by Equation
6.2.2, (S/1), = x(p).
(2) If 4 ¢ Ty, by Lemma 6.2.8, (H%(S/I)), = 0 therefore (S/I), = (S/J),.
(3) First note that p,o0 — u ¢ I'y. We claim that p ¢ T'_y or 0 — u ¢ I'_;. Suppose not,
then p € I'_y N Ty which yields p € T’y which is a contradiction. So assume p ¢ I'_;. By
Corollary 6.2.9,

dim(Hpy(S/1),) = HEs1(0 — po).
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Since o — p ¢ I'y, by part (2) and Equation 6.2.1

(n J;m) d"e™ — HFy () HFy (0 — p).

The same argument works if we assume o — pu ¢ I'_;.
(4) By part (1) HFg/;(n) = HFy (). By considering the double complex as in the proof of
Theorem 6.2.6 and Lemma 6.2.8,

(Ho(HEMK(£,9))) p = (Hp T (Ka(£,9)), and  (H,, (HE K(f, S)))M = (HEM(Kn(f, S))u.
By the abutment of the spectral sequence

(Hp(S/J)), = HFs1(0 — p) + dim(Hg ™ (Ko(£,5)) + . (HE (Ka(£.5)) -
Since ¢ — pu ¢ I'y, by parts (1) and (2), HFg/; (1) = HFy(p) and by the definition,
dim(H 5 (K (f, 8))u+ (HpH (K (£, S9)) = ("3™)e(p). The assertion follows by (Hp(S/.J)), =
("TMydre™ — HFy (p).
(5) By part (3), HFy(u) = ("I™)d"e™ — HFy (0 — p). Because p ¢ Iy (u € T'_y yields

p € I'y) therefore o — p ¢ T'y, which by part (2), yields HFy (0 — p) = HFg/1(0 — ). On
the other hand, since 1 ¢ U;>oI';, by part (1), HFs/i(0 — p) = x(0 — p). O

I

Let S = [xo, 21, T2, Yo, Y1, y2| and deg(z;) = (1,0) and deg(y;) = (0,1). Let I = (f1,..., f1)
where deg(f;) = (2,2). Suppose scheme V' defined by I is complete intersection. The
following picture demonstrate the regions I'; in the Theorem 6.2.12.

A |

P

\ 4
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['_; is the red region, I'y is the blue region and I'; is the green region. By Theorem 6.2.12,
Hilbert function of V' at the bidegrees except the intersection of blue and green are indepen-
dent from the choices of f;’s and they can be computed via y and e defined in the Theorem
6.2.12.  On the other hand, the rest do depends upon the f;’s. Here we computed two
example via computer system Macaulay2 [17].

Example 6.2.13. Let S = k[zo, 21,2, Y0, Y1, ya], 1 = (2595, 23y7, 23y3, (2o + 21 + 22)* (3o +
Y1 + v2)?) and V be the complete intersection scheme of points defined by I. For (0,0) <
< (7,7) the bigraded Hilbert function HFy (u) is

247296 96 96 96 96 96
247206 96 96 96 96 96
21 63 8 90 93 95 96 96

15 45 66 78 87 93 96 96
10 30 48 64 78 90 96 96
6 18 32 48 66 86 96 96
3 9 18 30 45 63 72 72
1 3 6 10 15 21 24 24

Where blue corresponds to the bidegrees in I'y, green corresponds to I'; and orange to their
intersections. Also red indicate the HFy (o). For p ¢ 'y by Theorem 6.2.12 parts (1), (2)
and (3) one can compute the bigraded Hilbert function and for blue points by part (4). For
the orange points, Theorem 6.2.12 does not say anything. In addition, every points except
orange ones only depend on the degree of the generator of I which in this case is (2,2).

Assume [’ is generated by 4 random forms, in a sense of computer software Macaulay2,
of bidegree (2,2) and V' be the complete intersection scheme of points defined by /. For
(0,0) < p < (13,7) the bigraded Hilbert function HFy/(u) is

33 84 96 96 96 96 96 96 96 96 96 96 96 96
27 81 96 96 96 96 96 96 96 96 96 96 96 96
21 63 8 90 93 95 96 96 96 96 96 96 96 96
15 45 66 78 87 93 96 96 96 96 96 96 96 96
10 30 48 64 78 90 96 96 96 96 96 96 96 96
18 32 48 66 86 96 96 96 96 96 96 96 96

18 30 45 63 81 84 96 96 96 96 96 96

6 10 15 21 28 36 45 55 66 78 91 96

The only differences are in the orange spots. In addition, in this case HFy/(0,13) =
HFy/(13,0) = 96 which means the natural projection of V’ to each P™ and P™ is one to one.
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6.2.2 Generic complete intersection points in P" x P™
In this subsection we adopt the Notation 6.2.1 as well.

Proposition 6.2.14. Let k be a field of characteristics zero and V C P} x P}* be a reduced
scheme and (d,e) € N? with d,e # 0. Let fyr be a form of bidegree (d, e) with indeterminate
coefficients U, g. There exists a non empty open set Q C Spec(k[U,s]) such that for any
p € (1, the corresponding form f, is such that

VNZ(f) S B, x P,

where ky, is the residue field of k[U, gly, is reduced of dimension equal dim V' — 1, unless the
dimV = 0 in which case VN Z(f,) = 0.

Proof. Consider the Segre-Veronese map W : P* x P™ — PV with N = (";d) X (m+e) - 1.

e

Let V! = ¥(V). Under the map V¥, fy is mapped to a linear form ¢ in N + 1 variables
and this correspondence is one to one. By Bertini theorem (see [11, Corollary 3.4.9]) there
exists © as claimed such that for p € Q, V' N Z({,) =V N Z(f,) is a reduced scheme with
the asserted dimension. O

Definition 6.2.15. Forms of bidegree (d,e) are in one to one correspondence with closed

. . [S(d,e)
points in A, )

Remark 6.2.16. Notice that Q C Speck[U,g| \ Z(F) for some form F' # 0. In particular,
for ¢ = (ca5) € KV such that F(c) # 0, Proposition 6.2.14 with p generated by the elements
Ua,3 — Ca3, sShows that Z(f.) NV is reduced.

Theorem 6.2.17. Let S = k[xg,...,ZTn, Yo, ---,Ym) be a bigraded polynomial ring over a

field k of characteristic zero where deg(x;) = (1,0) and deg(y;) = (0,1). Let (d;,e;) > (1,1)
fori=1,....,n+m be bidegrees. Then, there exists a non-empty open set

n+m

N .__ lS(divei)l
QcAy =] A
i=1

such that, for any (fi,..., fatm) corresponding to a point in €2,

(1) Z :=Proj(S/(f1,---, fntm)) is reduced of dimension zero.

(2) The natural projections of Z to the factors P" and P™ are isomorphism.
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Proof. Let V := Z(g1, .-, gnem) C AN xPPxPP where AYY = Spec k[U; o 5] for 1 < i < n+m,
la] = d;, |B] = €; and g; := > Ui 0.5x%y?. Set m: AN x PP x P — P? x P be the natural
projection, then V' is a vector bundle over P} x P}* via w. For any point p € P} x P}* the
fiber of p is a linear space of dimension N —n — m. Hence V is geometrically irreducible
scheme and dim(V) =n+m+ (N —n—m) = N.

(1) Set W := (g1, -+, Gnsm> Jac" ™ (g1, .., Gnim)) C V where Jac™™™ is the Jacobian
of order n + m. By using Proposition 6.2.14 inductively, there exist a point u € AY and
(fi,- -+, farm) corresponding to u such that Jac™*™(fi,..., faym) # 0 which yields W C V
and dim(1W) < dim(V) = N. Consider the natural projection p : AY x PP x P* — AY.
Since dim(W) < N, p(W) is a non empty closed subset of AYY. Set Qp := (AY \ #(W)).
Therefore for any (fi,..., fnem) corresponding to a point in Qq, Proj (S/(f1, ..., form)) is
geometrically reduced and is of dimension zero.

(2) Set py : AY x PP x P — AY x P? and ¢o : AY x P? — AL the natural projections.
First we show that it is enough to show that the restriction pj : V' — p;(V) is birational.
Indeed if p) is birational then there exists a closed subset Z; C p;(V) such that setting
Wi = (p)) "1 (Z1) then pily\w, : V\ Wi — pi(V) \ Z; is an isomorphism. As dim(Z;) < N,
@(Z1) © AY. Set Q = AY \ (2(Z1) Un(W)). For any point v € Q; and (fy,. .., foirm)
corresponding to u,

a3 (W) = pr(w, Z(f1, - form)) = (W, Z(frs - faem)

showing that the natural projection of Z onto P" is an isomorphism. By replacing p; and
g by pa : AN X P x PP — AY x P and ¢; : AY x P" — AV along the same lines it
shows the existence of Zy € py(V) and Qy = AN\ (¢1(Z3) U m(W)) such that for u € O, and
(f1,- -, fntm) corresponding to u,

qfl(u) = pQ(uv Z(fla <. 7fn+m>) = (u7 Z(fla cee fner)) .
Consider the following diagram

% S AN x PR x PP

| |»

Vii=p (V) ——=AN x P?

jqzlv1 L‘l?

AN = AN
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We now show that p is birational.

Let I := (g1,...,9n4m) and J := I : B*. By part (1), Vi is a geometrically irreducible
scheme. Hence J and Iy, = J N k[x, U] are prime and remain prime under any extension of
k.

oG

1,03
i,a, and  unless G' € k[y] which is impossible: indeed Iy, Nk[y] = (0) because the projection

V — P™ is onto.
Set Zy := Z (D) C V;. By [61, Lemma 4.6.1],
oG oy OG
8Ui,a’7ﬂ’ an,a,ﬁ
for any choices of o’ and (. Let y* = y,y? for some 4. For any 0 < j < m put o’ := a and
B :=y;B0. As x* and y™ are not in Iy it follows that
SIS
D Ui s VU
for all 0 < 7 < m. Therefore by localizing at D, we get an isomorphism
(k[0 x|ply]) =, (K[U,X]p[y,])
Iy Iy,

As Vi is generically smooth, there exists G € Iy, such that D := ¢ Iy, for some

x%y? ely

€ ly

O :
Therefore the natural maps

EU.x]\ .« (K[U,x]ply]) (k[U. x]p[yy))
( ]Vl >D(—> Iy i> ]V1

are such that ¢os induces the identity from Proj ((k[U, x|ply,]|) /1v,) to Spec ((k[U,x|p) /1y, ).
Hence ¢ provides the inverse ¢

i\ Z -5 V\ (Z x P 25 Vi \ 2y
O

Theorem 6.2.18. Let S = k[xq,...,Tn,Y0,---,Ym] be a bigraded polynomial ring over a
field k of characteristics zero. If I is generated by n + m generic forms of bidegree (d,e),
then the scheme V' defined by I is a set of reduced points and

{1 € N*| HFy (1) # deg(V)}| < o0

Proof. By Theorem 6.2.17 part (1), V' is a set of reduced points and by part (2), HF(0,i) =
HFy(4,0) = deg(V) for any 4,5 > 0. O
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