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Abstract

Cells are the basic building blocks of all living organisms. All living organisms share
life processes such as growth and development, movement, nutrition, excretion,
reproduction, respiration and response to the environment.

In cell biology research, understanding cells structure and function is essential
for developing and testing new drugs. In addition, cell biology research provides a
powerful tools to study embryo development. Furthermore, it helps the scientific
research community to understand the effects of mutations and various diseases.

Time-Lapse Fluorescence Microscopy (TLFM) is one of the most appreciated
imaging techniques which can be used in live-cell imaging experiments to quan-
tify various characteristics of cellular processes, i.e., cell survival, proliferation,
migration, and differentiation.

In TLFM imaging, not only spatial information is acquired, but also temporal
information obtained by repeating imaging of a labeled sample at specific time
points, as well as spectral information, that produces up to five-dimensional (X,
Y, Z + Time + Channel) images. Typically, the generated datasets consist of
several (hundreds or thousands) images, each containing hundreds to thousands
of objects to be analyzed.

To perform high-throughput quantification of cellular processes, nuclei segmen-
tation and tracking should be performed in an automated manner. Nevertheless,
nuclei segmentation and tracking are challenging tasks due to embedded noise,
intensity inhomogeneity, shape variation as well as a weak boundary of nuclei.
Although several nuclei segmentation approaches have been reported in the lit-
erature, dealing with embedded noise remains the most challenging part of any

segmentation algorithm.
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We propose a novel 3D denoising algorithm, based on unsupervised dictionary
learning and sparse representation, that can both enhance very faint and noisy
nuclei, in addition, it simultaneously detects nuclei position accurately. Further-
more, our method is based on a limited number of parameters, with only one
being critical, which is the approximate size of the objects of interest.

The framework of the proposed method comprises image denoising, nuclei
detection, and segmentation. In the denoising step, an initial dictionary is
constructed by selecting random patches from the raw image then an iterative
technique is implemented to update the dictionary and obtain the final one which
is less noisy. Next, a detection map, based on the dictionary coefficients used to
denoise the image, is used to detect marker points. Afterward, a thresholding-based
approach is proposed to get the segmentation mask. Finally, a marker-controlled
watershed approach is used to get the final nuclei segmentation result.

We generate 3D synthetic images to study the effect of the few parameters
of our method on cell nuclei detection and segmentation, and to understand the
overall mechanism for selecting and tuning the significant parameters of the several
datasets. These synthetic images have low contrast and low signal to noise ratio.
Furthermore, they include touching spheres where these conditions simulate the
same characteristics exist in the real datasets.

The proposed framework shows that integrating our denoising method along
with classical segmentation method works properly in the context of the most
challenging cases. To evaluate the performance of the proposed method, two
datasets from the cell tracking challenge are extensively tested. Across all datasets,
the proposed method achieved very promising results with 96.96% recall for the
C.elegans dataset. Besides, in the Drosophila dataset, our method achieved very
high recall (99.3%).

Keywords:
Unsupervised dictionary learning; Sparse representation; Denoising; Nuclei

segmentation; Embryo development; 3D time-lapse fluorescence microscopy.




Résumé

Les cellules sont les éléments constitutifs de base de tout organisme vivant.
Tous les organismes vivants partagent des processus vitaux tels que croissance,
développement, mouvement, nutrition, excrétion, reproduction, respiration et
réaction a ’environnement.

En biologie cellulaire, comprendre la structure et fonction des cellules est
essentielle pour développer et tester de nouveaux médicaments. Par ailleurs, cela
aide aussi a I’étude du développement embryonnaire. Enfin, cela permet aux
chercheurs de mieux comprendre les effets des mutations et de diverses maladies.

La vidéo-microscopie (Time Lapse Fluorescence Microscopie) est 'une des
techniques d’imagerie les plus utilisées afin de quantifier diverses caractéristiques
des processus cellulaires, a savoir la survie, la prolifération, la migration ou la
différenciation cellulaire.

En vidéo-microscopie, non seulement les informations spatiales sont disponibles,
mais aussi les informations temporelles en réitérant 1’acquisition de ’échantillon, et
enfin les informations spectrales, ce qui généere des données dites « cing dimensions
» (X, Y, Z + temps + canal). En regle générale, les jeux de données générés
consistent en plusieurs (centaines ou milliers) d’images, chacune contenant des
centaines ou milliers d’objets a analyser.

Pour effectuer une quantification précise et a haut débit des processus cel-
lulaires, les étapes de segmentation et de suivi des noyaux cellulaires doivent
étre effectuées de maniere automatisée. Cependant, la segmentation et le suivi
des noyaux sont des taches difficiles dii notamment au bruit intrinseque dans les
images, a I'inhomogénéité de l'intensité, au changement de forme des noyaux ainsi

qu’a un faible contraste des noyaux. Bien que plusieurs approches de segmenta-



tion des noyaux aient été rapportées dans la littérature, le fait de traiter le bruit
intrinseque reste la partie la plus difficile de tout algorithme de segmentation.

Nous proposons un nouvel algorithme de débruitage 3D, basé sur I'apprentissage
d’'un dictionnaire non supervisé et une représentation parcimonieuse, qui a la fois
améliore la visualisation des noyaux trés peu contrastés et bruités, mais aussi
détecte simultanément la position de ces noyaux avec précision. De plus, notre
méthode possede un nombre limité de parametres, un seul étant critique, a savoir
la taille approximative des objets a traiter.

Le cadre de la méthode proposée comprend le débruitage d’images, la détection
des noyaux et leur segmentation. Dans I’étape de débruitage, un dictionnaire
initial est construit en sélectionnant des régions (patches) aléatoires dans I'image
originale, puis une technique itérative est implémentée pour mettre a jour ce
dictionnaire afin d’obtenir un dictionnaire dont les éléments mis a jour présentent
un meilleur contraste. Ensuite, une carte de détection, basée sur le calcul des
coefficients du dictionnaire utilisés pour débruiter I'image, est utilisée pour détecter
le centre approximatif des noyaux qui serviront de marqueurs pour la segmentation.
Ensuite, une approche basée sur le seuillage est proposée pour obtenir le masque
de segmentation des noyaux. Finalement, une approche de segmentation par
partage des eaux controlée par les marqueurs est utilisée pour obtenir le résultat
final de segmentation des noyaux.

Nous avons créé des images synthétiques 3D afin d’étudier I'effet des parametres
de notre méthode sur la détection et la segmentation des noyaux, et pour compren-
dre le mécanisme global de sélection et de réglage de ces parametres significatifs
sur différents jeux de données. Ces images synthétiques ont un tres faible contraste
et un rapport signal/bruit aussi tres faible. De plus, ces images contiennent des
spheres touchantes qui simulent les caractéristiques des jeux de données réels.

Le cadre proposé montre que l'intégration de notre méthode de débruitage
ainsi que la méthode de segmentation fonctionne correctement méme pour les
cas les plus difficiles. Pour évaluer les performances de la méthode proposée,
deux jeux de données du défi de suivi des cellules sont testés. Dans ’ensemble,
la méthode proposée a obtenu des résultats tres prometteurs avec un rappel de

96.96% pour le jeu de données de C. elegans. De méme, pour le jeu de données
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Drosophile, notre méthode a obtenu un rappel tres élevé de (99.3%) %.

Mots-clés:
Apprentissage de dictionnaire non supervisé; Représentation clairsemée; Débruitage;
Segmentation de noyaux; Développement embryonnaire; microscopie a fluorescence

3D.
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1.1 Biological Background

Cells are the basic building blocks of all living organisms. All living organisms share
life processes such as growth and development, movement, nutrition, excretion,
reproduction, respiration and response to the environment. These life processes
become the criteria for scientists to differentiate between the living and the
non-living things in nature.

Roughly speaking, cells have three main parts (as shown in Figure 1.1), each
with a different function. The first part, the membrane is the outermost layer in
the animal cell and is found inside the cell wall in the plant cell. The second part
is the nucleus that contains hereditary genetic information (DNA) and controls
all cell activities. The third part, the cytoplasm, which consists of the complete
contents of a biological cell i.e., enzymes, and various organic molecules, excluding
the nucleus.

In cell biology research, understanding the structure and the function of the cells
is essential for developing and testing new drugs. In addition, it provides a powerful
tool to study embryo development. Furthermore, it helps the scientific research
community to understand the effects of mutations and various diseases. Indeed,
as emphasized long ago by the pioneering cell biologist E.B Wilson [Wilson 1900]
“The key to every biological problem must finally be sought in the cell, for every
living organism is, or at some time has been, a cell”.

Nowadays, advances in microscopy techniques have enabled scientists to get a
better idea of how the cells are structured and how the new morphological charac-
teristics of living cells are visualized. As these techniques allow high-throughput,
high-resolution imaging of a wide variety of samples in three-dimensional space
(X, Y, Z) which can raise up to five-dimensional space (X, Y, Z Time Chan-
nel) [Meijering 2008].
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Figure 1.1: The structure of an animal cell. Retrieved from
yourgenome: https://www.yourgenome.org/facts/what-is-a-cell

1.1.1  Cell cycle

The cell cycle, as known as the cell-division cycle [Mitchison 1971], is the series of
events by which cells grow and divide to produce two daughter cells (as depicted in
Figure 1.2). In order for a cell to divide, many important tasks must be completed.
To explain, it should grow, copy its genetic information (DNA), and physically
split to produce two identical daughter cells. The cell cycle consists of two main
phases, namely an interphase, and a mitotic (M) phase. In the interphase, the
cell grows, replicates its genetic material and produces proteins. Similarly, during
the mitotic (M) phase, the cell divides in two identical daughter cells. Each of
these phases includes sub-phases that correspond to certain cellular events. At

any given time, a cell is either in an interphase or a mitosis.
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Furthermore, the cell-division cycle is a vital process by which a single-cell
fertilized egg develops into a mature organism, as well as, the process by which
all organs and tissues are renewed. In the following sections, we discuss some of

the common model organisms used for studying the cell cycle.

Preparation
for DNA
Synthesis

G1

Replication

4

S

Figure 1.2: The two major phases of the cell cycle include mitosis (M),
and interphase, as well as their sub-phases. . Retrieved from Earth’s
Lab website: https://www.earthslab.com/physiology/the-cell-cycle/

1.1.2 Model organisms for studying the cell cycle.

Model organisms are used to investigate the basic mechanisms common to all
living organisms and to understand the biological processes that may be difficult

or unethical to experiment in humans. The model organisms are usually chosen
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for reasons that make the study easier. Some of these reasons are the transparent
bodies of the organisms, the ability to grow and reproduce quickly in a small
space and the prominent cell structure of interest or the ability to closely model
some aspect of human biology. Most model organisms combine many if not all of
these characteristics. In the following section, we present the two model organisms

relevant to our experiments.

Caenorhabditis elegans (C.elegans)

The nematode C. elegans [Brenner 1974] has emerged as an important animal
model in different fields such as neurobiology, developmental biology, and genetics.
The characteristics of this animal model that have contributed to its success are
being easy to culture; quick reproduction with a short generation time enabling
large-scale production of organisms; small size, which allows organisms to grow in
a single well of a 96-well plate; transparency throughout its life, which enables the
use of fluorescent markers to study biological processes in vivo; as well as cellular
complexity because C. elegans is a multicellular organism which has multiple
organs and tissues. Moreover, C. elegans investigations have already provided a
better understanding of the underlying mechanism for several diseases such as

neurological disorders, congenital heart disease, kidney disease, and other diseases.

Drosophila melanogaster

Similar to the C.elegans model, the fly Drosophila melanogaster [Adams 2000] is
one of the most extensively studied organism in biology and it serves as a model
system for the investigation of many developmental and cellular processes.
Several features of Drosophila make it a powerful tool in developmental biology.
These features include having a close relationship with human genes (in particular
the sequences of recently discovered human genes including disease genes can be
matched with equivalent genes in the fly); short and simple reproduction cycle
that is usually about 8 — 14 days, based on the environmental temperature; small
size that allows scientists to keep millions of them in the laboratory at a time; in

addition providing a simple means of creating genetically modified animals that
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express certain proteins such as the green fluorescent protein (GFP) [Chalfie 1994]

of jellyfish for live-cell imaging experiments.

1.2  Microscopy imaging techniques

Time-lapse fluorescence microscopy (TLFM) is one of the most appreciated imaging
techniques which can be used in live-cell imaging experiments to quantify various
characteristics of cellular processes, such as cell survival [Payne 2018], proliferation
[Rapoport 2011], migration [Bise 2011a], and differentiation [Zhang 2018]. Time-
lapse imaging is a technique by which a series of images are acquired at regular
time points to capture the dynamics of what is being observed.

In TLFM imaging, not only spatial information is acquired, but also temporal
information, as well as spectral information, that produces up to five-dimensional
(X, Y, Z 4+ Time + Channel) images. Typically, the generated datasets consist of
several (hundreds or thousands) images, each containing hundreds to thousands
of objects to be analyzed [Meijering 2008].

The basic principle of fluorescence mi