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C-AMP response element-binding
Granulocyte-macrophage colony-stimulating factor
C-terminal binding protein
CCCTC-binding factor

Cardiac troponin T

CXC motif chemokine ligand 1-3,5-6
CXC motif chemokine Receptor 2
4',6-Diamidino-2-Phenylindole

DNA binding domain

DNA damage response

Differentially expressed genes

DNA methyltransferase 1

double strand break

extra cellular matrix
5-Ethynyl-2"-deoxyuridine

Epidermal growth factor

Epidermal growth factor receptor
ETS-like protein 1
Epithelial-mesanchymal transition
Extracellular-signal-regulated Kinases
Embryonic stem cell

Enhancer of zeste homologue 2
Fibroblast growth factor 4

GATA binding protein 4
Granulocyte-macrophage colony-stimulating factor
Guanosine monophosphate

CXCLA1

Glycogen synthase kinase 3 beta
Histone 1

Histone 2

Histone 3

Histone 4

Hepatocellular carcinoma

Histone de-acetylase 1,-3

hairy and enhancer of split-1

Human growth factor

Hutchinson-gilfrod progeria syndrome
High mobility group protein 1/2

High Mobility Group Nucleosome-Binding Domain-
Containing Protein 1

Homobox protein hox-B7

Histone protein 1

Histone parylation factor 1

Heat shock

Heat shock protein 70

HUS checkpoint clamp component
Intercellular Adhesion Molecule -1,-3
Insulin-like growth factor-1,-2,-3,-4,-6,-7
Insulin-like growth factor binding proteins

VI



IGFBP-5/7
IKKa,-b,-g

IL-1a,-1b,-6,-7,-13,-15,-8,-12,-
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IL6R
INF-B
INK4A
iNOS

IPF
IRF1,-3
JNK3
K20me3
K27Ac
k4me1
K4me3
K9me2
K9me3
KDM-4,-5
KGF
KLF4

KO

LADS
LIG3

LPS
LSD1
Mash1
MCAT
MCP-2,4
MDC1
MDM2
MEK
MER11
mESCs
MiDAS
MIF
MIP-1a/3a
MMP-1,-3,-10,-12,-13,-14,
MNASE
MRN
MTA1
mTOR
mTORC1/2
Myc
NAD+/NADH
NBS1
NCoR
NEIL1
NELF
NEMO
NER

NF1
NFAT
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Insulin-link growth factor binding protein

Inhibitor of nuclear factor kappa-B kinase subunit -a,-b,-g

Interleukin-1a,-1b-6, 7,-13, -15,-8,-12,-15

IL-6 Receptor
Interferon beta
Inhibitor of CDK4

Inducible nitric oxide synthase
Idiopathic pulmonary fibrosis
Interferon regulatory factor-1,-3

c-Jun N-terminal Kinase
Lysine 20 tri-methylation
Lysine 27 acetylation
Lysine 4 mono-methylation
Lysine 4 tri-methylation
Lysine 9 di-methylation
Lysine 9 tri-methylation
Lysine demethylase -4,-5
Keratinocyte growth factor
Kruppel like factor 5
Knock-out

Lamina associated domains

DNA ligase 3
Lipopolysaccharides

Lysine-specific histone demethylase 1A
Mammalian Accaete —Scute Homolog-1
Malonyl CoA-acyl carrier protein transacylase
Monocyte chemoattractant protein -2, -4
Mediator of DNA damage checkpoint 1

Murine double minute 2

Mitogen-activated protein kinase

meiotic recombination 11-like protein

Mouse embryonic stem cells

Mitochondrial dysfunction-associated senescence
Macrophage Migration Inhibitory Factor

Major Intrinsic Protein Of Lens Fiber -1a,-3a
matrix metalloproteinases-1,-3,-10,-12,-13,-14,

Micrococcal nuclease
Mre11, Rad50 and Nbs1
metastisis protein 1

mammalian target of rapamycin

mammalian target of rapamycin complex 1/2
Avian Myelocytomatosis Viral Oncogene Homolog
Nicotinamide adenine dinucleotide

Nibrin

Nuclear Receptor Corepressor 1
Nei Like DNA Glycosylase 1

negative elongation factor

NF-kappa-B essential modulator

Nucleotide excision repair
Nuclear factor 1

Nuclear Factor of Activated T-Cells



NfkB

NHEJ
NIS

NK
NKG2
NLS

NO
NOTCH1
NOX4A
NuRD
OA
OB-fold
Oct4
OGG1
OIS

OPG
P38MAPK
pADPr
PAI-1
PANADA
PAR
PARG
PARK2
PARP1
PARPI
PC-PPLC
PcG
PCNA
PGE2
PI3K
PIASy
PIDD
PIGF

PIN
PINKA1
PKB
PML

Pot1

pRB
PRC1/2
PTEFb
PTEN
PTM
RAC1
RAD-1,-9
RAF
Rap1
RAR-A,-B
RAS
RBP2
RECQ1
REL-A,-B,-C
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Nuclear factor kappa-light-chain-enhancer of activated B
cells

Non-homologous end joining

Notch-mediated juxtracrine induced senescence
Natural Killer

Natural Killer group 2

nuclear locationzation signal

Nitric Oxide

NOTCH receptor 1

NADPH oxidase 4A

Nucleosome remodelling deacetylase
Osteoarthritis
Oligonucleotide/oligosaccharide-binding fold
Octamer-binding transcription factor 4
8-Oxoguanine DNA Glycosylase-1
Oncogene-induced senescence
Osteoprotegerin

P38 mitogen-activated protein kinases
Poly-ADP-ribose

Plasminogen activator inhibitor-1
P21-associated noncoding RNA DNA damage-activated
Poly-ADP-ribose

Poly (ADP-ribose) glycohydrolase

Parkin RBR E3 Ubiquitin-Protein Ligase
Poly-ADP-ribose polymerase 1

PARP inhibitor

Phosphatidylcholine-specific phospholipase C
Polycomb group proteins

proliferating cell nuclear antigen 2

Prostoglandin E2

Phosphoinositide 3-kinase

Protein inhibitor of activated STAT protein gamma
p53-induced protein with a death domain
Phosphatidylinositol Glycan Anchor Biosynthesis Class F
Peptidyl-prolyl cis-trans isomerase NIMA-interacting
PTEN-induced putative kinase 1

Protein kinase B

Promyelocytic Leukemia

Protection of telomeres protein 1
Retinoblastoma protein (phosphorylated)
Protein Regulator Of Cytokinesis 1

positive transcription elongation factor-b
Phosphatase And Tensin Homolog
Post-translational modification

Ras-Related C3 Botulinum Toxin Substrate 1
RAD1 Checkpoint DNA Exonuclease -1,-9
Rapidly Accelerated Fibrosarcoma

RAS-related protein

Tetinoic acid receptor-A,-B

Rat sarcoma

Retinol Binding Protein 2

RecQ Like Helicase

REL-associated protein-A,-B,-C



RIG1
RIP-1
RNA pol-Ii
RNA-let7
RNF168
ROS
RPA
RRM2
SA-B-gal
SADS
SAFA
SAHF
Sam68
SAPD
SASP
SCF
SDF —
SDF-1
SEGs
SET7/9
SGP130
shRNA
Sin3
siRNA

SIRT-1,-3,-5
SMAD-2,-3,-4

SMARCA5

SMRT
SMS
Sox2
SP1
SSB
SSBR
STAT3
STING
sTNFR1
Suv39h1
Suzi2
SWI/SNF
TAKA1
TARGH1
TEF-1
TERT
TF
TGF-B
TGS
TIF
TIMP-2
TIN2
TIS
TLEA
TLR
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Retinoic acid-inducible gene |
Receptor-interacting protein 1

RNA polymerase Il

RNA-the lethal 7

Ring Finger Protein 168

Reactive oxygen species

Replication Protein A

Ribonucleotide Reductase Regulatory Subunit M2
Senescence-associated beta galactosidase
Senescence-associated distention of satellites
Scaffold-attachment-factor A
Senescence-associated heterochromatin foci
Src-associated in mitosis 68 kDa protein
Senescence-associated protein degradation
Senescence-associated secretory phenotype
Stem cell factor

Senescence DNA damage foci

Stromal cell derived factor 1

Stably expressed genes

Histone H3-K4 methyltransferase

Soluble gp130

Short-hairpin RNA

SIN3 Transcription Regulator Family Member
Small-interfering RNA

Sirtuin -1,-3,-5

SMAD family member-2,-3,-4

SWI/SNF related, matrix associated, actin dependent
regulator of chromatin 5

Silencing Mediator For Retinoid And Thyroid Hormone
Senescence messaging secretome

SRY (sex determining region Y)-box 2
Specificity protein 1

Single strand break

Single strand break repair

Signal Transducer And Activator Of Transcription 3
Stimulator of interferon genes

Soluble tumor necrosis factor receptor 1
Suppressor Of Variegation 3-9 Homolog 1
Suppressor Of Zeste 12 Protein
SWitch/Sucrose Non-Fermentable

TGF-b activated kinase 1

Terminal ADP-ribose protein glycohydrolase
Translation elongation factor-1

Telomerase reverse transcriptase
Transcription Factor

Transforming growth factor

Transcriptional gene silencing
Telomere-dysfunction-induced foci

Tissue inhibitor of metalloproteinases -2

TRF1 interacting nuclear factor 2
Therapy-induced senescence
Groucho/Transducin-like Enhancer of Split 1 xv
Toll-like receptor

Xl



TMEM9B
TNF-a
TOPBP1
TopollB —
Tpp1 —
TRAF6
TRAIL-R3,

Trf1/2
UHRF1
uPAR
VEGF
VHL
VSMC
WIP1
XRCC1
YB-1
YY1
ZFP36L1
Znl, -, -l
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Transmembrane protein 9-B

Tumor necrosis factor-a

Topoisomerase |l Binding Protein 1

Topoisomerase 11-B

Tripeptidyl peptidase 1

TNF Receptor-Associated Factor 6
Tumor-necrosis-factor related apoptosis inducing ligand-
receptor 3

Telomeric repeat-binding factor 1 — TERF1 gene
Ubiquitin Like With PHD And Ring Finger Domains 1
Urokinase receptor,

Vascular endothelial growth factor

Von Hippel-Lindau

Vascular smooth muscle cells

Wild-type p53-induced phosphatase gene

X-ray repair cross-complementing protein 1

Y box binding protein 1

Ying yang 1

ZFP36 Ring Finger Protein Like 1

Zinc fingerl, -11, -llI

Xl
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Foreword

Cellular senescence is a cell fate triggered in response to a variety of non-lethal stressors
acting as a safeguard of damaged or dysfunctional cells and playing important roles in
aging, health, and disease. Senescent cells are characterized by their stable cell cycle
arrest and important changes in chromatin architecture and gene expression, become
resistant to cell death and secrete a bevy of inflammatory chemokines/cytokines and
matrix remodeling metalloproteases, the so-called senescence-associate secretory
phenotype (SASP). In line with its prominent role in aging and age-related diseases,
elimination of senescent cells holds excellent therapeutic promise; however, a
comprehensive understanding of the genetic and epigenetic mechanisms, which underlie
the induction and maintenance of senescence, is still fragmentary and thus, prevents a
deliberate manipulation of this cell fate.

PARP1 (Poly (ADP-ribose) polymerase 1), also referred to as ADP-
ribosyltransferase Diphtheria toxin-like 1 (ARTD1), is an abundant nuclear protein, that
catalyzes the transfer of ADP-ribose (ADPr) from NAD+ onto target proteins, a process
that is referred to as ADP-ribosylation. Historically the prime PARP1 function was
associated with DNA damage repair; however, we know now that it is also implicated in
many other nuclear processes, markedly in the transcriptional regulation of inflammatory
genes, although many details are still missing.

Given its role in the transcriptional regulation of inflammatory genes, and chromatin
structure we hypothesized that PARP1 plays a role in the regulation of the senescence
gene expression program. To characterize the gene-regulatory role of PARP1 in the
execution and maintenance of senescence we combined reverse genetics and
pharmacological inhibitors with transcriptome, chromatin accessibility (ATAC-seq),
genome-wide PARP1 (PARP1 ChIP-seq), and ADP-ribosylated chromatin profiling using
a novel technique termed CRAP-seq (Chromatin-ribosylation affinity pull-down
sequencing).

We discovered a novel and unexpected enzymatic and non-enzymatic function of

PARP1 in senescence-associated gene regulation. Specifically, we unraveled that the
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enzymatic function of PARP1-mediated ADP-ribosylation of chromatin was significantly
enriched at enhancers of lowly expressed genes to fine-tune their transcription. PARP1’s
non-enzymatic function was particularly crucial at promoters, where it acts to maintain a
stable and specific positioning to control transcription. Finally, we provided evidence that
PARP inhibitors may be potent cell-death inducing agents of senescent cells by
modulating the expression of apoptotic genes.

In conclusion, we uncovered novel gene-regulatory mechanisms of PARP1
function, thus expanding our understanding of how senescence is regulated
epigenetically. Our long-term goal is to explore PARP1 inhibition as a therapeutic modality

to manipulate the senescence phenotype.
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General Introduction
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Age is the most significant risk factor of disease and death in developed countries
(Harman, 1991). Old age is accompanied by a striking increase in diseases that are rare
in younger individuals, including cardiovascular disease, cancer, and neurodegeneration
(Lopez-otin et al., 2013). This correlation has led to the hypothesis that there are common
underlying biological mechanisms of aging that drive disease. Hence, if we can target
these underlying mechanisms of aging, we could ameliorate health-span and potentially
extend life-span.

Aging is the progressive decline in functional integrity and homeostasis,
culminating in death (Kennedy et al., 2014; Lépez-otin et al., 2013; Mahmoudi and Brunet,
2012). Much of our understanding of the genetics of aging originates from short-lived non-
vertebrate model organisms such as yeast, worms, and flies (Kennedy et al., 2014).
Historically, aging was considered a stochastic process. We assumed that nature evolved
mechanisms for protection and maximal fitness of an organism only until sexual maturity,
and that beyond the age of reproductive capacity, absence of selective pressure leads to
a gradual, decline of these systems (evolutionary theory of antagonistic pleiotropy as
proposed by Paul Williams) (Williams and Day, 2003). However, as we advanced our
molecular understanding of the aging process, it has become clear that aging is a much
more organized and programmed process that can be manipulated (Lopez-Otin et al.,
2013; Mahmoudi and Brunet, 2012). Hence, we need to delineate the underlying
mechanisms that drive age-related pathology, understand how systems that are
protective in young organisms can become deleterious with age, and define how the

progression of aging takes place across all organismal levels starting from the cell
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passing through tissues, organs and of course the whole organism. Indeed, aging may,
at one point in time, be qualified as a treatable disease.

Similar to the “Hallmarks of Cancer” (Weinberg and Hanahan), “Hallmarks of
Aging” were stipulated (Introduction Figure 1) (Lépez-Otin et al., 2013). The hallmarks
of aging include: genomic instability, telomere attrition, epigenetic alterations, loss of
proteostasis, deregulating nutrient-sensing, mitochondrial dysfunction, cellular
senescence, stem cell exhaustion, and altered intercellular communication (L6pez-Otin
et al, 2013). These entities are not mutually exclusive, but maybe functionally
interconnected and are meant to serve as primary entry points for scientific investigations

and inroads for therapeutic interventions.
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Introduction Figure 1. Hallmarks of Aging (Adapted from Lopez-Otin, 2013)

1.1. A Brief History of Cellular Senescence
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One fundamental aging mechanism is cellular senescence (van Deursen, 2014).
Leonard Hayflick and Paul Moorhead first described cellular senescence in 1961
(Hayflick, 1965; Hayflick and Moorhead, 1961). They observed that primary human cells
grown in culture have a finite replicative lifespan, which refuted the long-standing dogma
by Alexis Carrel that cells are inherently immortal (Carrel, 1912). Hayflick coined the term
replicative senescence, and Olovnikov hypothesized that this cell culture phenomenon is
related to organismal aging (Olovnikov, 1971). We now know that replicative senescence
is a result of the progressive shortening of telomeres and only one example of many non-
lethal stressors that can induce what we now more generally refer to as cellular
senescence (Allsopp et al., 1992). Following this seminal discovery, an entire research
field has developed, implicating cellular senescence in many physiological and
pathophysiological conditions.

Cellular senescence is a cell fate and complex stress response characterized by a
stable cell cycle arrest and inflammatory phenotype. Stressors include, replication-
induced telomere shortening, hyper-active oncogenes, loss or derepression of tumor
suppressor genes, cell fusion, wound-healing, mitochondrial dysfunction, DNA damage
(chemotherapy, reactive oxygen species, irradiation), developmental signals, or cytokine
signaling (Campisi and d’Adda di Fagagna, 2007; Kuilman et al., 2010; Martinez-Zamudio
et al., 2017a; Munoz-Espin and Serrano, 2014). To protect the organism from
malignancy, and avoid the mass tissue loss through apoptosis, damaged cells are
removed from the cell cycle and prevented from proliferating (Campisi and d’Adda di

Fagagna, 2007; Kuilman et al., 2010; Martinez-Zamudio et al., 2017a; Mufioz-Espin and
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Serrano, 2014). Yet, senescence is not only a potent tumor suppressor mechanism, but
it also plays many other significant physiological and pathophysiological roles, for
example, in tissue regeneration, maintenance of stem cell plasticity, age-related
diseases, tissue degeneration and paradoxically tumor promotion (Kuilman et al., 2010;

Martinez-Zamudio et al., 2017b).
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1.2 Markers of Senescence

There is a diversity of senescence triggers, and all of these produce a panoply of
senescence-associated biomarkers (Introduction Figure 2). However, not all
biomarkers are present in each senescence context and none of them is specific for
senescent cells. The faithful identification of senescent cells therefore requires a
combination of a minimum two biomarkers (Campisi and d’Adda di Fagagna, 2007;
Kuilman et al., 2010). Thus, it is critical to the field to identify specific, rather associated
biomarkers, and ideally, a single biomarker to improve studies on the occurrence of

senescence in health and disease.

Flat, enlarged cytomorphology
and ECM reorganization

Mitochondrial
@D disruptions

Protein turnover

Stressed cell

SADS, SDF, TIF

Introduction Figure 2. Markers of Senescence (Adapted from Zamudio-Martinez,
2017)

1.2.1. Senescence-Associated Growth Arrest (SAGA)

One of the most robust biomarkers of senescence is the stable cell cycle arrest.
SAGA occurs typically in the G1 phase of the cell cycle and accordingly, cells stain
negative for proliferation marker Ki67 and lack incorporation of nucleotide analogues like
BrdU or Edu (Mufioz-Espin and Serrano, 2014). In certain instances of tumor senescence

and OIS, the senescence arrest can also occur at the G2/S phase of the cell cycle (Bielak-
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Zmijewska et al., 2014; Di Micco et al., 2006). Senescence can be identified through the
upregulation of CDKis p16, p21, p14ARF, p15, and the phosphorylation-status of
Retinoblastoma Protein (pRB) (Serrano et al., 1997a; Sharpless and Sherr, 2015;

Takahashi et al., 2007).

1.2.2. Apoptosis Resistance

Apoptosis and senescence are considered complementary mechanisms for controlling
the outgrowth of abnormal or damaged cells. Apoptosis is a controlled and programmed
cell death, while senescence maintains the cell in a metabolically active and are resistant
to cellular death. Senescent cells downregulate pro-apoptotic genes, and upregulation of
anti-apoptotic genes such as members of the BCL2 family of proteins (Piccolo and Crispi,
2012). Additionally, p21 can promote cell survival in the context of chronic DDR (Soto-
Gamez et al., 2019). p21KD leads to upregulated JNK signaling and subsequent cell
death (Soto-Gamez et al., 2019). Levels of autophagy during senescence also play an
important role in survivability, as low levels of autophagy can lead to cell death through

proteotoxic stress (Soto-Gamez et al., 2019).

1.2.3. Cytomorphological Changes

Senescent cells will often experience cytomorphological changes. In the context of DNA

damage and replicative senescence, senescent cells become very enlarged, and flat
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(Mufioz-Espin and Serrano, 2014). However, BRAF induced senescent cells, although
they have striking morphological changes, they will often become elongated and exhibit
a spindle-like shape (Michaloglou et al., 2005). Visually, there is a dramatic increase in
the number of stress vacuoles and stress fibers (Kuilman et al., 2010; Munoz-Espin and
Serrano, 2014). ltis also not uncommon to see an increased number of multi-nucleated

cells (Kuilman et al., 2010).

1.2.4. Senescence-Associated Beta-Galactosidase (SABG)

The most widely used and most readily applicable biomarker for identifying senescent
cells in cell culture and tissues is senescence-associated beta-galactosidase (SABQG)
activity (Debacqg-Chainiaux et al., 2009; Sharpless and Sherr, 2015). p—Galactosidase
activity in lysosomes is typically optimal at a pH of 10; however, in senescent cells,
increased activity is achieved at an acidic pH of 2.0-6.0 (Dimri et al., 1995). During
senescence, the expression of the gene encoding the lysosomal B-D-galactosidase GLB1
is increased but the gene is dispensable for senescence (Lee et al., 2006). Additionally,
senescent cells have enlarged lysosomal compartment and activity, which corresponds
with the increased autophagy in senescent cells (Criscione et al., 2016a; Wiley and

Campisi, 2016).

10
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1.2.5. Metabolism

Even though senescent cells cease proliferation, they are still metabolically active
(Introduction Figure 3) (Rodier et al., 2009). Similar to the Warburg effect seen in
cancer cells, senescent cells also display increased glycolysis, shifting to an increased
AMP/ADP: ATP ratio (Baker et al., 2017; Wiley and Campisi, 2016; Wiley et al., 2016a).
Energy sensing kinases, such as AMPK, are active components involved in senescence
arrest (discussed in section 1.3.6) (Moiseeva et al., 2009; Wang et al., 2003). Along with
increased glycolysis comes also a marked increase in pyruvate levels as well as an
increased NADH/NAD* ratio (Kaplon et al., 2013; Ohanna et al., 2011a). This increased
ratio can block senescence-inhibiting activities of SIRT3/5 and mitotic checkpoint kinase
budding uninhibited by benzimidazole-related 1 (BUBR1) (Wiley and Campisi, 2016).
Senescent cells also decrease the production of deoxyribonucleotides (ANTPs) through
the downregulation of ribonucleotide reductase (RRM2), which impacts DNA replication
and DNA damage — contributing to senescence promoting DDR signaling (Aird et al.,
2015; Salama et al., 2014). Furthermore, cells shift autophagic and lysosomal activity and
increase protein turn over to senescence-associated protein degradation (SAPD)
(Salama et al., 2014). There is a decrease in autophagosome formation and fusion with
the lysosome, even though the inhibition of autophagy can induce senescence (Galluzzi
et al., 2016). That being said, there is increased autophagy and lysosome activity during
OIS (Wiley and Campisi, 2016). Autophagy regulating protein mTOR is a significant

driver for the expression of inflammatory components of the SASP (Herranz et al., 2015).

11
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Introduction Figure 3. Metabolic characteristics of senescent cells (Adapted from
Wiley, 2016).

1.2.6. Chromatin Conformation: SAHF/SAD/SDF/TIFS/LADS

Chromatin undergoes dramatic architectural changes in senescent cells epitomized by
the appearance of senescence-associated heterochromatin foci (SAHF) (Narita et al.,
2003). SAHF are regions of highly condensed heterochromatin that can be identified
using DAPI DNA counterstaining. They are enriched for repressive histone marks
H3K9me2/3, histone H4 hypoacetylation, histone variant macroH2A, and
heterochromatin protein 1 (HP1), and are thought to stabilize the senescence arrest
(Adams, 2007; Narita et al., 2003). Although these foci exhibit high condensation, there
is also chromatin decondensation and 3-D architectural changes at pericentromeric
satellite regions (senescence-associated distension of satellites (SADS) (Chandra et al.,
2015a; Criscione et al., 2016a) that contribute to enforcing the senescence arrest
(Swanson et al., 2013). Additional nuclear markers include senescence DNA damage

foci (SDF) and telomere-dysfunction-induced foci (TIFs) (Criscione et al., 2016b; Rodier

12



ROBINSON Lucas - Thése de doctorat — 2019

et al., 2011; Takai et al., 2003). Sites of chronic DDR sites are called SCARS (DNA
segments with chromatin alterations reinforcing senescence) and contain PML, ATM,
TP53 binding protein (53BP1), yH2AX, and supporting DDR signaling proteins (Rodier et
al., 2011). SCARS help to maintain a chronic DDR signaling which stimulates the SASP

and reinforces arrest (Adams, 2007; Criscione et al., 2016b; Salama et al., 2014).

1.2.7. Senescence-Associated Secretory Phenotype (SASP)

Upon their arrest, senescent cells establish and maintain an extensive program to secrete
factors, proteins, and vesicles into the surrounding microenvironment, which may act in
an autocrine, paracrine or juxtacrine fashion to reinforce the senescence phenotype and
spread it to the immediate cellular environment (Table 1) (Campisi and d’Adda di
Fagagna, 2007; Coppé et al., 2008, 2010a; Kuilman and Peeper, 2009). SASP has
pleiotropic functions in aging, age-related diseases, tissue homeostasis, and immune-
surveillance (discussed in section 1.5) (Campisi and d’Adda di Fagagna, 2007; Kang et
al., 2011; Sagiv and Krizhanovsky, 2013). SASP composition is heterogeneous and is

dependent upon senescence context (Coppé et al., 2008, 2010a).

13
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Introduction Table 1. Notable SASP Factors (Adapted from Coppé, 2008).

SASP factors

Soluble factors

Interleukins (IL)
IL-6

IL-7

IL-1a, -1B
IL-13

IL-15

Chemokines (CXCL, CCL)

IL-8
GRO-a,-b,-gc
MCP-2
MCP-4
MIP-1a
MIP-3a
HCC-4
Eotaxin-3

Other inflammatory factors

GM-CSF
MIF

Growth factors and regulators

Amphiregulin
Epiregulin
Heregulin
EGF

bFGF

HGF

KGF (FGF7)
VEGF
Angiogenin
SCF

SDF-1

PIGF
IGFBP-2, -3, -4, -6, -7

Proteases and regulators

MMP-1, -3, -10, -12, -13, -14
TIMP-2

PAI-1, -2; tPA; uPA
Cathepsin B

Soluble or shed receptors or ligands

ICAM-1, -3

OPG

sTNFRI

TRAIL-R3, Fas, sTNFRII
Fas

uPAR

SGP130

EGF-R

Nonprotein soluble factors

PGE2
Nitric oxide
Reactive oxygen species

Insoluble factors (ECM)
Fibronectin

Collagens

Laminin

14
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1.3 Causes of Senescence

1.3.1. Replicative Senescence (RS)

Primary human cells have a finite replicative lifespan termed replicative senescence (RS).
It is caused by the gradual shortening of telomeres during each replicational cycle,
ultimately producing critically short telomeres (Allsopp et al., 1992). Telomeres consist
of repetitive (TTAGGG) sequences, including a terminal 3’ single-stranded over-hang that
forms a t-loop. This DNA structure is protected by the “Shelterin” complex, which is
composed of telomere binding proteins TRF1, TRF2, POT1, TPP1, TIN2 and RAP1
among others (Cech, 2004; Porro et al., 2014; Sharpless and DePinho, 2004). TRF1,
TRF2, RAP1, TIN2 interact with the double-stranded DNA portion of the telomere while
POT1 and TPP1 bind to the single-stranded over-hang as a dimer (Klement and
Goodarzi, 2014). The Shelterin complex effectively protects the single-stranded t-loop
from being sensed as a single-strand break, thus effectively blocking the activation of a
DNA damage repair (DDR) response (Karlseder et al., 2004; Klement and Goodarzi,
2014; Schmutz and de Lange, 2016). When telomere integrity is compromised t-loops
become undone and telomeres are sensed as DNA damage as the protective Shelterin
complex is released (d’Adda di Fagagna et al., 2003; Fumagalli et al., 2012; Kuilman et
al., 2010). The result is a chronic DDR including the recruitment of y-H2AX, 53BP1,
Mre11, NBS1, and MDC1 to unmasked telomeres (Takai et al., 2003). The DDR is
relayed by ATR (Ataxia telangiectasia and Rad-3 related), ATM (Ataxia telangiectasia
mutated gene) kinases, which phosphorylate checkpoint kinases CHK1/2 (D’Adda Di

Fagagna, 2008; d’Adda di Fagagna et al., 2003). Furthermore, long-non coding RNA
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TERRA directs the activity of histone demethylases LSD1 to facilitate the recruitment of
the MRE11 complex (Porro et al., 2014). Ultimately, the DDR induces downstream
stabilization of the tumor suppressor and guardian of the genome TP53 engaging the
senescence arrest by transcriptional activation of cell-cycle-dependent kinase inhibitor
CDKNA1A (alias p21CIP) (d’Adda di Fagagna, 2008; Fumagalli et al., 2012; Herbig et al.,
2004; Takai et al., 2003). RS further relies upon the activation of the INK4A locus, which
encodes cell-cycle-dependent kinase inhibitors (CDKi) and tumor suppressor proteins
CDKN2A and -B (alias p16 and p14ARF). Together, these CDKi’s activate the tumor
suppressor protein pRB through hypophosphorylation enforcing senescence arrest by
repressing cell cycle genes regulated by the E2F family of transcription factors (Dynlacht

et al., 1994).

1.3.2. Stress-Induced Premature Senescence (SIPS)

Various other stressors, that | will discuss in the following sections, can also lead cells

acutely into senescence (Munoz-Espin and Serrano, 2014).

1.3.3. Oncogene-Induced Senescence (OIS)

Senescence is a tumor suppressor mechanism which arrests the proliferation of pre-
cancerous cells. The initial discovery came from the observation that primary human and
rodent cells over-expressing oncogenic RAS exhibited a senescent-like phenotype

including loss of proliferative capacity, SABG activity, and enlarged, and flattened
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cytomorphology (Serrano et al., 1997b). RAS-OIS depended both on functional TP53/p21
and p16/pRB activities (Ruiz et al., 2008; Serrano et al., 1997b). These results were
validated in vivo in mice expressing oncogenic KRASG12D, where senescent cells were
found in the pre-cancerous stages of the lung, liver or pancreas (Collado et al., 2007;
Kang et al., 2011). In the case of RAS-OIS, senescence is induced through a chronic
hyperactivation of the RAS-RAF-MEK-ERK pathway, replication stress, production of
reactive oxygen species (ROS), DDR as well as activation of the JNK/p38MAPK stress
kinase signaling pathway (Fumagalli et al., 2012; Gorgoulis and Halazonetis, 2010; Di
Micco et al., 2006; Wang et al., 2002).

Similar to oncogenic RAS, overexpression of its direct downstream target kinase
BRAFVG600E also triggers OIS (Michaloglou et al.,, 2005). In vivo, BRAFV600E
expression is the root cause for the development of benign melanocytic nevi that rarely
progress to melanomas (Wang et al., 1996). Melanocytes in these nevi stain strongly
positive for several senescence biomarkers (Wang et al., 1996). Although RAS and RAF
function within the MAPK signaling pathway, senescence arrest kinetics, and genetic
requirements are not identical. Other oncogenes inducing OIS are MYC, B-cadherin,
PML, MOS, RAC1, MEK, AKT, E2F1, CCNE (Liu et al., 2018b).

In addition to oncogenic hyperactivation, disruption of tumor suppressor genes
such as PTEN (Phosphatase And Tensin Homolog), NF1 (neurofibromin 1) or VHL (von
Hippel Lindau) also induce a senescence arrest (Liu et al., 2018b). PTEN is the primary
negative regulator of the PIBK-AKT-MDM2 pathway (Kuchay et al., 2017). However, in

the absence of PTEN, mTORC1 and MTOC2 bind and phosphorylate Ser15 of TP53 and
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out-compete the negative regulatory activities of MDM2 (Astle et al., 2012; Jung et al.,
2019). The cells arrest with the upregulation of p21 and other downstream senescence
targets (Astle et al., 2012; Jung et al., 2019). This TP53-mediated senescence arrest is
DDR independent (Jung et al., 2019). In the absence of PTEN or RAS activation the loss
of S-phase kinase-associated protein (SKP2) results in a senescence-arrest regulated by
p21, p27 and ATF4 (Lin et al., 2010). Neurofibromin 1 (NF1) is a tumor suppressor gene
which is a negative regulator of RAS, and upon disruption can lead to a senescence-
arrest (Courtois-Cox et al., 2006). Senescence was demonstrated in human fibroblasts
following treatment with RNA interference of NF1 which lead to a transient upregulation
of the RAS/PI3k pathway followed by repression and subsequent growth arrest (Courtois-
Cox et al.,, 2006). The RAS/PISK pathway is repressed through negative-feedback
signaling from RasGAPs and sprout proteins (Courtois-Cox et al., 2006). Lastly, VHL-loss
induced senescence, is TP53 independent and is mediated through the upregulation of

cyclin-dependent kinase inhibitor p27, which activates pRB (Young et al., 2008).

1.3.4. DNA Damage Induced Senescence (DDIS)

Senescence also acts as a stress response to genotoxic insults other than telomere
damage (Introduction Figure 4) (d’Adda di Fagagna, 2008). Oxidative stress, sub-lethal
H202 treatment, and the exposure to DNA damaging agents induce single (SSBs) or
double strand breaks (DSBs) which can lead to an increase in mutagenic events and

genomic instability (Chen et al., 1998; Pedro de Magalhées et al., 2004; te Poele et al.,
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2002). An SSB is sensed by replication protein A (RPA) and ATR kinase (Falck et al.,
2005) and the kinase signal is amplified by the heterotrimeric 9-1-1 complex (RAD9,
RAD1, HUS1) and Topoisomerase llI-binding protein 1 (TOPBP1) (Schmitt et al., 2007).
DSBs recruit ATM kinase to the site of damage (Falck et al., 2005). ATM and ATR kinases
activate DDR by phosphorylating yH2AX to reinforce the recruitment of ATM
(Introduction Figure 3) (Falck et al., 2005). These kinases chronically act at the sites of
DNA damage to create a positive feedback loop, and the formation DNA-SCARS.
(d’Adda di Fagagna, 2008; Rodier et al., 2011; Schmitt et al., 2007). Additional mediators
collaborating with ATM and ATR at the sight of damage are 53BP1, claspin/RAD1 and
the mediator of DNA-damage checkpoint 1 (MDC1), which help in the activation of
checkpoint kinases CHK1 and CHK2 (Armata et al., 2007; D’Amours and Jackson, 2002;
Salama et al., 2014; Schmitt et al., 2007). The latter will phosphorylate and (in)activate
cell cycle proteins, including TP53 and CDC25, enforcing a rapid cell cycle arrest that is

stabilized by the activation of p21 and p16/pRB (Armata et al., 2007).
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Introduction Figure 4. Characteristic DNA-damage response during senescence
(Adapted from d’Adda di Fagagna, 2007).
ROS signaling can also induce a senescence arrest. To arrest the cells ROS triggers
DNA damage and initiate TP53-p21 as well as activation of ERK-p38MAPK signaling
pathway (Freund et al., 2011). Additionally, ROS-induced p21 activation triggers down-
stream mitochondrial dysfunction, which in turn produces more ROS and creates a
positive feed-forward loop which sustains the senescence arrest (Passos et al., 2010a).
DNA damage from radiation (UV, gamma, X-ray) will form DNA breaks, which can arrest

cells through DDR pathways described above (Mirzayans et al., 2012).

1.3.5. Therapy-induced senescence (TIS)

Tumor cells can still be driven into senescence through ionizing radiation, DNA damaging

chemotherapy, or epigenomic damage (e.g., HDAC inhibition) (Fan and Schmitt, 2017;
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Gewirtz et al., 2008; Li et al., 2018). For example, a moderate dose of chemotherapeutic
agents such as doxorubicin (20-100 nM) or etoposide (20uM), induces senescence rather
than cell death in cancer cells (Bielak-Zmijewska et al., 2014; Roberson et al., 2005).
Additionally, in BCL-2 null (a pro-apoptotic factor) context, Eu-MYC B-cell lymphoma in
mice treated with chemotherapeutic agent cyclophosphamide experience a TP53-
dependent cell cycle arrest (Schmitt et al., 2002). Finally, during cancer therapy, INK4A
mutations negatively impact treatment outcome, which suggests that senescence
induction is a definite indicator for treatment success, a failsafe mechanism for apoptosis
(Schmitt et al., 2002). Radiation therapy induces large number of senescent cells in the
regions outside of the direct target (non-lethal doses) (Li et al., 2018; Mirzayans et al.,
2012). lonizing radiation can push malignant tumors into apoptosis through direct DNA
damage or secondary damage. Mitochondrial dysfunction from the radiation can produce
large quantities of ROS through NOX4, which creates a perpetuating loop of damage and
ROS production in the mitochondria itself, leading to senescence-arrest (Sakai et al.,

2018; Shimura et al., 2017)

1.3.6. Mitochondrial Dysfunction-Associated Senescence (MiDAS)

Mitochondria dysfunction, which occurs with age, can induce a senescent phenotype
markedly differing from that found in other senescence contexts and can occur also in
post-mitotic cells (Wiley et al., 2016b). Cells that undergo MIDAS have lower
NAD+/NADH ratios, which cause both the proliferative arrest and prevent the classical IL-

1-associated senescence-associated phenotype (SASP) through AMPK (AMP-activated
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protein kinase)-mediated TP53 activation. Furthermore, deregulation of anti-senescent
mitochondrial proteins SIRT3 and SIRT5 can lead to MiDAS (Nacarelli et al., 2019; Wiley

et al., 2016b).

1.3.7. Development

In recent years, senescence has been linked to embryonic development (Mufioz-Espin
et al., 2013; Storer et al., 2013). Detailed studies of the mesonephros, the endolymphatic
sac of the inner ear, apical ectodermal ridge, and neural roof plate show that senescence
occurs naturally during embryonic development. Developmental cues evoke a
senescence response through PIBK/SMAD and TGFB/FOXO signaling, which induce p21
independent of TP53 activation and a canonical SASP, however, devoid of IL-6 and IL-8.
During development, senescent cells are removed through apoptosis or the recruitment
of macrophages (Mufoz-Espin et al., 2013; Storer et al., 2013). Together, these studies

provided a first glance to the putative evolution of the senescence phenotype.

1.3.8. Tissue Regeneration, Repair and Maintenance of Plasticity and

Stemness

Senescence plays a critical role in tissue regeneration, wound healing and the
maintenance of cellular plasticity and stemness (Chiche et al., 2016; Milanovic et al.,
2018; Mosteiro et al., 2016a; Ritschka et al., 2017a). In the context of cutaneous wound

healing, senescent cells appear very early after injury, following CCN1 release, activating
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integrin a6B1, heparan sulfate proteoglycans (HSPGs) as well as downstream RAC-
1dependent NADPH oxidase 1 (Jun and Lau, 2010). Together, this upregulates ROS
production, which induces senescence arrest via p38MAPK/ERK signaling and
subsequent induction of p16/pRB and TP53 (Jeon et al., 2017; Jun and Lau, 2010).
Wound-resident senescent cells release a SASP containing platelet-derived growth factor
(PGDF-AA) (Jeon et al., 2017; Jun and Lau, 2010). PGDF-AA dependent tissue
remodeling through the differentiation of myofibroblasts was found to be senescence-
dependent, thus displaying the physiological benefits of senescence (Jeon et al., 2017;
Jun and Lau, 2010). Additionally, in a mouse model expressing Yamanaka TFs (OCT4,
SOX2, Klf4, and c-MYC), senescence was found to be a crucial component for cellular
reprogramming and wound healing via SASP factor IL-6 in the context of muscle repair
(Chiche et al., 2016; Mosteiro et al., 2016b). In the context of the liver, senescence
induction and subsequent SASP expression leads to an increase in the presence of stem
cell markers, as well as an increased capacity at regeneration, further emphasizing the

role of senescence in facilitating stemness and plasticity (Ritschka et al., 2017b).
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1.5. Mechanisms and Regulation of Cellular Senescence
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Introduction Figure 5. Pathways of Senescence (Adapted from Zamudio-Martinez,
2017).

1.5.1. Senescence arrest

Cell proliferation is under tight control, receiving a variety of signals from the environment
or cell-autonomously to progress or not through replication of its genetic code, and finally
division, known as the cell cycle (Smith and Martin, 1973). Cyclins and CDKs are
contributory factors for cell cycle progression, facilitating the passing through various
checkpoints in G1, S, G2, and M phase of the cell cycle to ensure proper proliferation
(Johnson and Walker, 1999). During G1 phase, cyclin Ds receive signaling from the
external environment, and depending on this messaging, will direct CDK4/6 to initiate the

expression of cell cycle genes, pushing the cell through the next steps of the cell cycle
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when other cyclins will take over (Johnson and Walker, 1999). CDKis p16INK4A,
p15INK4B, p27Kip1, and p57Kip2, p18INK4C, p19INK4D, and p21Cip1 all negatively
regulate CDKs, thus keeping pRB in a hypophosphorylated, active state. CDKis control
check-points of the cell cycle and are instrumental in orchestrating the senescence arrest
(Campisi, 1997; Itahana et al., 2003; Serrano, 1997).

Although various stressors trigger the senescence response, the arrest itself
depends primarily on the activation of the tumor suppressor pathways pRB/p16 and
TP53/p21 (Beauséjour et al., 2003; Shay et al., 1991). The mutation or disruption of the
pRB/p16 and TP53/p21 pathways can facilitate senescence-bypass or senescence
escape (Roberson et al., 2005). For example, expression of the SV40 large T antigen

inhibits both TP53 and pRB, resulting in a senescence bypass (Shay et al., 1991).

1.4.2. TP53 and the Senescence Arrest

TP53 regulates a critical tumor suppressor pathway in senescence (ltahana et al., 2003;
Serrano, 1997). TP53, a tetrameric transcription factor, is the most important tumor
suppressive transcription factor, and as such is subject to complex regulation. Not
surprisingly TP53 is mutated in more than 50% of all cancers (Harris, 1996). TP53
activation can halt cell proliferation and is implicated in the regulation of metabolism,
apoptosis, and development (Bosari et al., 1995; Brady and Attardi, 2010).

In senescence, a bevy of factors such as DDR signaling, ROS, hyperactivated

oncogenes, TGFB, and cytokine signaling (including SASP from neighboring cells)
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functionally activate TP53 (Lujambio et al., 2013). These stressors upregulate signaling
pathways via AMPK, ATR, p38 mitogen-activated protein kinases, and ATM to post-
translationally modify TP53 (Lujambio et al., 2013). In RAS-OIS, RAS signaling induces
the formation of a trimeric complex, including acetyltransferase CBP, TP53, and PML
(Pearson et al.,, 2000). In the absence of TP53 acetylation, senescence may be
bypassed (Pearson et al., 2000). Furthermore, Protein Inhibitors of the of Activated STAT
(PIASYy), an E3 sumoylation ligase, sumoylates and activates TP53, and in concert with
pRB induces a senescence arrest (Bischof et al., 2006). TP53 is strongly antagonized by
MDM2, which facilitates its export from the nucleus and degradation via ubiquitylation;
however, p14ARF acts as an inhibitor of MDM2, to stabilize TP53 (Brady and Attardi, 2010;
Stott et al., 1998; Takemoto et al., 2000). Under normally proliferating conditions, the
p21/CDKN1A gene locus is repressed by scaffold-attachment factor A (SAFA) and long-
noncoding RNA PANDA, which recruit polycomb repressive complexes (PRC1 and
PRC2), to produce the repressive chromatin mark H3K27me3 (Liu et al., 2018a; Puvvula
et al., 2014a). Upon senescence induction, TP53 antagonizes these repressive
complexes and strongly upregulate the expression of the p21/CDKN1A gene locus
(Puvvula et al., 2014b). CDKN1A inhibits the kinase activity of CDK1, CDK2, CDK4/6,
thereby inducing the hypophosphorylation and activation of pRB, thus, enforcing the

senescence arrest (Datto et al., 2006; Yosef et al., 2017).
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1.4.3. pRB and the Senescence Arrest

The second critical senescence arrest pathway is mediated by the gatekeeper of cell
cycle progression, pRB (Serrano, 1997). Like TP53, pRB is tightly regulated by different
posttranslational modifications, and upon hyperphosphorylation will allow for the G1/S
transition to occur (Johnson and Walker, 1999). CDK 4/6 and CDK2 phosphorylate pRB
to release its inhibitory effect on the E2F-DP1 TF dimer (Alexander et al., 2003). During
senescence, pRB is maintained in a hypophosphorylated state, binding, and inhibiting
E2F mediated cell cycle progression (Campisi, 1997; Haferkamp et al., 2009). pRB binds
and represses the activity of E2F1-3 and recruit histone deacetylases (Brehm et al., 1998;
Hara et al., 1996). The INK4a/ARF gene locus encodes both p16 and p14ARF (Stott et
al., 1998). Under normal proliferating conditions, the CDKN2A locus is repressed by
complexes including ANRIL (anti-sense ncRNA in the INK4 locus), CBX7, SUZ12 and
polycomb repressive proteins, and is marked by inactive chromatin modifications such as
H3K27me3 (DiMauro et al., 2015; Kotake et al., 2011). The depression of this locus is
instrumental for the senescence arrest (Kotake et al., 2011). Identified factors involved in
depressing the INK4A locus are p38MAPK stress kinase, transcription factor ETS, or
SWI/SNF chromatin remodeling complexes leading to an increasingly active chromatin
state (Childs et al., 2014; Hiroaki et al., 2003). p16, like other CDK inhibitors, acts to
block CDKs from phosphorylating and inactivating pRB, thus facilitating the binding to
and inhibition of E2F-regulated expression of genes important for cell cycle progression

(for example, PCNA, CCNA2, or CCNB1/2) (Johnson and Walker, 1999). In a positive
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loop, pRB prevents the down-regulation of the CDKN2A locus, maintaining the expression
of p16 and p14ARF (Hara et al., 1996).

In addition to its interactions with E2F TFs, pRB facilitates a permanent cell cycle
arrest during senescence through heterochromatin formation (Brehm et al., 1998; Narita
et al., 2003). The most prominent heterochromatin structures are SAHF. The formation
of SAHF is dependent upon activation of p16/pRB, and represses E2F cell cycle targets
thus, forming a functional link between cell cycle arrest and the formation of
heterochromatin foci during senescence (Corpet and Stucki, 2014; Narita et al., 2003).
SAHF are enriched for macroH2A and HP1 (Zhang et al., 2005), which also facilitate the
recruitment of PRC1 and PRC2 factors, which generate the repressive histone
modification H3K27me3 (Narita et al., 2003, 2006; Zhang et al., 2005). In complex, PML
bodies require the activity of high mobility group-A and B1 (HMGA2 and HMGB1) to bind
E2F target areas and place repressive histone marks which alters the higher-order
structure into foci (Narita et al., 2006). To form SAHF and repress cell cycle genes, pRB
interacts with chromatin modifying proteins to shape the 3-D chromatin architecture and
epigenomic landscape (Uchida, 2016). pRB drives specific SWI/SNF chromatin
remodeling complexes during senescence (Uchida, 2016). SWI/SNF remodels chromatin
through disrupting the nucleosome interaction with DNA, to increase, or in some cases,
repress gene expression (Uchida, 2016). In the case of senescence, pRB recruits the
SWI/SNF, BRM or BRG1 ATPases as part of a complex to remodel the chromatin into a
repressed state in cooperation with histone deacetylases and histone methyltransferases

(Adams, 2007; Tu et al., 2013b, 2013a).
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As part of chromatin remodeling complexes, pRB, often acts in concert with PML
nuclear bodies to facilitate the deacetylation of E2F target genes and promoters (Zhang
et al., 2005). pRB recruits histone deacetylase 1 (HDAC1) to sites near the promoters of
E2F target genes, in some cases in complex with SIN3B or COOH-terminal binding
protein (CtBP) (DiMauro et al., 2015). Deacetylation of lysine on histones through
complexes containing HDAC1 represses gene expression at these sites (Brehm et al.,
1998; Narita et al., 2003). One study found that cyclin E could be re-expressed when pRB
mediated repressive chromatin modifications were counteracted by HDAC inhibitors
(Klement and Goodarzi, 2014; Zhang et al., 2005). pRB forms a complex with histone
methyltransferase SUV39H1, which catalyzes di/trimethylation of histone three lysine 9
(H3K9me3/2) (Narita et al., 2003). These repressive marks are targeted to repress
expression of cell cycle genes (E2F targets) and form the SAHF (Narita et al., 2003).
H3K9me2/3 and macroH2A recruit heterochromatin protein 1 (HP1) (Rai et al., 2014).
During the onset of senescence, the colocalization of histone chaperones HIRA and ASF1
into the PML nuclear bodies with HP1 is required for the formation of the SAHF (Zhang
et al., 2005). These repressive complexes further compact chromatin through

interactions with surrounding methylated histones (Chandra et al., 2012, 2015a).

1.4.4. Other Critical Players Regulating the Senescence Arrest

The senescence arrest and repression of E2F target genes also employ microRNA-

mediated transcriptional gene silencing (TGS) (Benhamed et al., 2012). Micro-RNA (MiR)
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molecules can disrupt gene expression through binding DNA, disrupting protein
translocation, or degrading already transcribed mRNAs (Benhamed et al., 2012). In the
context of senescence, AGO-2/MiR complexes are translocated to the nucleus
(Benhamed et al., 2012; Rentschler et al., 2018). As part of the pRB repressor complex
containing HDACs, AGO-2 is guided to E2F target genes MiR-let 7 (Benhamed et al.,
2012). This gene silencing may also assist in the recruitment of additional chromatin
repressive complexes to durably repress gene expression of E2F targets (Benhamed et
al., 2012).

Nuclear lamina proteins regulate senescence. A shortened splice variant of Lamin
A in Hutchinson-Gilford progeria syndrome (HGPS) leads to rapid aging (McClintock et
al., 2007). Nuclear lamina proteins interact with DNA at lamina-associated domains
(LADS) in a structural capacity, often interacting with vast stretches of heterochromatin
and gene-poor areas, but as well to silence the expression of specific genes (Hanzelmann
et al., 2015; Kind et al., 2015). In senescence, there is a downregulation of lamin B
(LMNB1) (Shah et al., 2013). Loss of LMNB1 causes dissociation of the LADs and the
delocalization of heterochromatin (Shah et al., 2013). These changes further stabilize the

cell cycle arrest (Salama et al., 2014).

1.5. Mechanisms and Effects of the SASP

The SASP is one of the most important functional features of senescent cells. The SASP

displays variability between different cell types and inducers, and is dynamic, which is to
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say that not all components are expressed simultaneously and at all times (Acosta et al.,
2013; Coppé et al., 2008).

The SASP plays a critical biological role in a cell-autonomous and cell non-
autonomous fashion. Cell autonomously, senescent cells create a positive-feedback
loop, to reinforce the senescent phenotype through the SASP (Chien et al., 2011; Orjalo
et al., 2009). First, IL-6 and IL-8 SASP factors are essential to the maintenance of the
senescence phenotype (Acosta et al., 2008). Silencing of CXCR2 (Receptor for IL-6 and
IL-8) expression prevents the onset of OIS, with diminished activation of ATM and DDR
(Acosta et al., 2008). The upregulation of CXCR2 and the accompanying chemokine
production is largely regulated by NFkB (Nuclear Factor Kappa-light-chain-enhancer of
activated B cells) and CEBP (CCAAAT/enhancer binding protein ) (Acosta et al., 2008).
The mechanism by which CXCR2 can facilitate cell-autonomous maintenance of
senescence involves ROS, DDR and continued activation of p21, which also helps their
survival and avoidance of apoptosis through JNK (Yosef et al., 2017). Independently of
CXCR2, IL-6 plays a significant role in autocrine maintenance and establishment of
senescence (Kuilman et al., 2008). IL-6 production is significantly increased, as well as
the IL-6 receptor (IL6R) (Kuilman et al., 2008). This cascade upregulates an entire
inflammatory network in collaboration with CEBPB (Kuilman et al., 2008). The IL-
6/CEBPB axis is involved in upregulating p15, contributing to the senescence arrest
(Kuilman et al., 2008). Abrogation of this axis diminishes the formation of SAHF, SASP,
and disrupts the senescence phenotype (Kuilman et al., 2008). Additionally, Plasminogen

Activator Inhibitor 1 (PAI1), a known biomarker of senescence, plays an autocrine
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functional role in senescence through the regulation of growth signaling pathways
(Kortlever et al., 2006). PAI1, downstream of TP53 is upregulated during aging. PAI1
acts in an autocrine fashion to disrupt cell cycle progression through inhibiting PI3K-PKB-
GSKB3B and inhibiting the activity of cyclin D1. Ectopic expression of PAI1 is sufficient to
induce senescence in TP53 positive cells. Additionally, secreted insulin-like growth factor
binding proteins 5/7 (IGFBP-5/7 can also mediate senescence. Insulin-like growth factor
pathways are critical in cell growth, as well as several other cell fate pathways (Kim et al.,
2007). In the context of senescence, signaling from IGFBP-5/7 facilitates growth arrest

through a DDR signaling pathway to induce a TP53/p21 cell cycle arrest (Kim et al., 2007).

1.5.1. Paracrine/Juxtracrine Effects of the SASP

In addition to the autocrine-maintenance of senescence, the SASP induces senescence
in neighboring cells through paracrine-induced senescence (Young and Narita, 2009).
Conditioned media from OIS, RS, or DDIS cells induce senescence in proliferating cells
(Acosta et al., 2013) through ROS, an ensuing DDR and stimulation of the IL-6/STATS,
IL1B/ NFxB, and TGFB/SMAD pathways. TGF family proteins (specifically TGFp 1,
Activin A, BMP2) are the primary modulators of paracrine induced senescence (Acosta
et al., 2013). IL1a was found to induce DDR and ROS in bystander cells. TGFf alone
can induce a senescence arrest independently of TP53 through increased ROS and DDR

signaling via Nox4 activation of p21 in the secondary senescent cell, as well as TGFf3
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activated p27, and SMADZ2/3 activation of p15 (Senturk et al., 2010). This response relies
upon DDR signaling and the presence of ATM and macro H2A1.1 (Senturk et al., 2010).

Senescence can also be induced through cell-cell contacts and juxtacrine induced
senescence (Hoare et al., 2016; Teo et al.,, 2019). The latter is a distinct form of
senescence and is mediated through Notch signaling (Notch-mediated juxtracrine
induced senescence, NIS) (Hoare et al., 2016; Teo et al., 2019). Notch signaling is
mediated through JAG1 (Hoare et al., 2016; Teo et al., 2019). Although these cells are
senescent, they express a modified SASP in comparison to OIS cells (Hoare et al., 2016).
NIS is a TGFB-driven primary SASP that is distinct from the late, secondary SASP in fully

senescent cells and may have pro-tumorigenic potential (Hoare et al., 2016).

1.5.2. Immune Surveillance of Senescent Cells

To maintain tissue homeostasis, senescent cells are cleared by the adaptive and innate
immune systems, a process that is called senescence immune surveillance (Introduction
Figure 6) (Lujambio et al., 2013). Initially, innate immune cells were identified as the
mediators of immune surveillance of senescent pre-cancerous cells (Xue et al., 2007). In
a RAS-driven liver cancer model, induction of TP53 induces a SASP, that attracts the
innate immune system (macrophages, natural killer cells, and neutrophils) (Xue et al.,
2007). Furthermore, NK cells target senescence cells following the expression of NKG2
ligands and release of ICAM1 and IL-15 which is followed by NK cells initiating apoptosis

in the target senescent cell (Burton et al., 2016). Additional studies also identified a role
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for the adaptive immune system and specifically CD4+T cells (Kang et al., 2011). In this
context, the clearance of the senescent cells required the recruitment of monocytes and
freshly replenished macrophages (Kang et al., 2011). CCL2 signaling from the SASP
brings CCR2+ myeloid cells to differentiate into macrophages (Eggert et al., 2016a).
However, as liver carcinoma progresses, NK cells are blocked from infiltrating and
clearing the tumors (Eggert et al., 2016a). Immune surveillance of senescent cells is
critical for maintaining homeostasis, and the inhibition of this process can lead to the
accumulation of senescent cells, tumor progression and age-related pathology (Burton

and Faragher, 2015; Hoenicke and Zender, 2012).
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Introduction Figure 6. Immune surveillance of senescent cells (Adapted from
Hoenicke, 2012). The immune system recognizes and eliminates senescent cells in
through innate and adaptive immune responses, including CD4+ T-cells, NK cells,
neutrophils and macrophages.
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1.5.3. SASP and Tumor Promotion

The SASP can contribute to cancer progression (Coppé et al., 2010b; Gorgoulis and
Halazonetis, 2010). Senescent cells both drive pre-neoplastic cells into hyperproliferation
and accelerate the growth of neoplastic cells (Krtolica et al., 2001). Increased tumor
outgrowth was attributed to SASP factors, including GROa and extracellular-matrix
remodeling MMPs. Furthermore, the SASP has been implicated in endothelial-
mesenchymal transition (EMT) via secretion of MMPs, uPAR, HGF, and modulating
tumor angiogenesis via VEGF, CCL1, IL-8 (Balentien et al., 1991; Coppé et al., 2010b;
Kim et al., 2007; Strieter et al., 2006; Wajapeyee et al.; Yang et al., 2005). In addition to
cell proliferation, the SASP promotes cell motility, and cancer metastasis by remodeling

the extracellular matrix (Coppé et al., 2010b; Liu and Hornsby, 2007).
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1.6. Regulation of the SASP
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Introduction Figure 7. SASP Pathways. Outlining the pathways involved in regulating
SASP expression (Adapted from Zamudio-Martinez, 2017).

The composition of the SASP is very diverse and dynamic, and its regulation is complex
(Ito et al.,, 2017). Proteomics and transcriptomics studies showed that most of the
regulation of the secretion occurs at the transcriptional level — i.e., there is a strong
correlation between secreted protein and mRNA levels (Coppé et al., 2008). Secretion of
inflammatory factors is often mediated by the TFs NFxB and CEBPJ, whose induction
can be induced through several pathways, but not through SAGA alone (Rodier et al.,
2009). Overexpression of p16 or pRB induces senescence growth arrest; however, these
cells lack a SASP. NFkB and CEBPp both act to upregulate the expression of
inflammatory pathways including IL-6 and IL-8 though IL1a/p (Acosta et al., 2008; Chien
et al., 2011; Kuilman et al., 2008). Positive feedback loops maintain their expression and
facilitate a steady inflammatory signaling secretion (autocrine maintenance) (Acosta et
al., 2008). Within this context, there is upregulation of a dampening signal from non-

coding RNA miR146 a/b (Liu et al., 2012). miR146 a/b acts to restrict the secretion of IL-
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6 and IL-8 but is not strong enough to completely diminish their expression (Liu et al.,
2012). NFxB and CEBPp are the primary executors of the SASP, and they are regulated

extensively (Introduction Figure 7).

1.6.1. NF-xB and SASP Regulation

NF-xB is one of the primary regulators of SASP production. In addition to mediating
inflammation, NFxB contributes to the establishment of senescence, localizes in the
nuclei of senescent cells and one of its subunits p65 co-localizes with the SAHF (Chien
et al., 2011). Pre-stimulation, NFxB subunits (RelA/B/C and NFkB1/2) are dimerized in
the cytosol and repressed by NFkB inhibitor proteins (IKBs) (Shifera, 2010). Post-
stimulation IKB kinase (IKK)s are phosphorylated by upstream kinases, which then
phosphorylate IKB proteins and mediate their degradation (Shifera, 2010). Following IKB
degradation, the components of NF«kB are free to translocate from the cytosol to the
nucleus.

NF«B is activated by DNA damage, inflammation, environmental cues, and the
inflammasome (Shifera, 2010). As part of the DDR, ATM activates phosphorylation of
p38MAPK and IKKg (NEMO), critical for the expression of the NF«kB activation and SASP
production (Ohanna et al., 2011b). NEMO forms a shuttle complex to activate and
translocate NFkB and associated proteins to the nucleus (Shifera, 2010). Additionally,
DNA damage can activate PARP1 and LUBAC which will induce ADP-ribosylation and
ubiquitination of the IKK complex (Ohanna et al., 2011b). Together, this will free NFxB

subunits and facilitate their nuclear translocation (Ohanna et al., 2011b).
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Inflammasomes are cellular complexes that include cell surface receptors, and
downstream signaling components which regulates expression of inflammatory
cytokines, including IL6 and IL8 via NFkB and p38MAPk (Acosta et al., 2013).

NF«xB is also activated through secreted proteins TGFf, TNFa, TLR ligands, and
IL1B (Salminen et al., 2012). TGFp phosphorylates SMAD2/3 TFs, which can induce
SASP expression.

Upon activation, NFkB interacts with TFs to facilitate inflammatory gene-
expression. For example, SIRT6, which acetylates histones, cooperates with NFxB to
enhance gene expression (Kawahara et al., 2009; Rovillain et al., 2011). High-mobility
group protein B1 (HMGB1), which modifies chromatin structure around H1, is bound by
NF«B to enhance DNA affinity for inflammatory targets (Agresti and Bianchi, 2003). NFxB
driven inflammation is also stabilized through the activity of TF GATAA4 in the presence of
a DDR (Kang et al., 2015). GATA4 is activated independently of p16/TP53 and the cell
cycle arrest by ATR, but its mRNA levels do not increase during senescence (Kang et al.,
2015). GATAA4 protein levels are stabilized during senescence due to the downregulation
of p62, which targets GATA4 for degradation via lysosomal autophagy. GATA4 and NF«kB

collaborate to regulate the SASP (Kang et al., 2015).

1.6.2. CEBPp and SASP Regulation

CEBPg is another primary regulator of the SASP. CEBPp is a TF that activates
expression of inflammatory cytokines IL-6, IL-8, TNF-a, and other SASP components

(Hardy et al., 2005). CEBP contributes to the senescence arrest in addition to mediating
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inflammation and protease secretions (Chien et al., 2011). Unlike NFkB, the SASP driven
by CEBPp binding activity is dynamically regulated during senescence (Hoare et al.,
2016; Ito et al., 2017; Teo et al., 2019). During the induction of senescence CEBPf
MRNA levels are repressed via NOTCH1. During senescence, NOTCH1 is upregulated,
however, the cleavage of NOTCH1 is dynamic, and it peaks in activity only during the
initial phases of senescence induction. This activity is reciprocally regulated with TGFp,
and coincides with the distinct shift between the TGFB, mediated SASP and the pro-
inflammatory SASP seen at the final stage of OIS. Initially, the SASP is driven by TGFp,
contributing to growth arrest (via p15), and producing a similar SASP to that seen during
developmental senescence. NOTCH1 actively inhibits the inflammatory SASP via
blockage of CEBPf and downstream induction of IL1a, IL6, IL8. This inhibition is then
lifted as NOTCH1 becomes deactivated, ushering in the full NFkB, and CEBPB driven

SASP (Hoare et al., 2016).
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Introduction Figure 8. Two-phases of SASP governed by NOTCH signaling (Adapted
from Hoare, 2016).
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Other factors also have been implicated in regulating SASP expression. During
senescence sensing of cytosolic DNA will also induce SASP gene expression through
cyclic GMP/AMP (cGAS) and downstream inflammatory mediator Stimulator of interferon
genes (STING) (Dou et al., 2017; Glick et al., 2017; Yang et al., 2017). DNA damage,
reorganization of chromatin, and LADs leads to an increase in cytosolic DNA fragments
(Dou et al., 2017; Gluck et al., 2017). The sensing of cytoplasmic DNA reinforces
inflammatory signaling in the SASP (Dou et al., 2017; Gluck et al., 2017). mTOR is
another regulatory component of the SASP production on a transcriptional and
translational level (Herranz et al., 2015). Rapamycin inhibits mTOR which decreases IL6
and translation of IL1a, which negatively impacts NF«B activation. mTOR facilitates the
translation MAPKAPK2, which phosphorylates and inhibits the activity of ZFP36L1 such
that it can no longer bind and degrade SASP factor mMRNAs. Additionally, histone variants
like histone variant H2A.J can influence SASP expression during senescence (Contrepois

et al., 2017).
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1.7. Regulation of the Senescence-Associated Gene Expression
Program

In addition to the dramatic chromatin architectural changes, cis-regulatory regions and
enhancers govern the senescence gene expression program (Shlyueva et al., 2014).
Enhancers are non-coding stretches of DNA often considered to be cis-acting (although
they can act from very long distances) upstream or downstream of a target gene to
enhance gene expression (Mercola et al., 1983). Enhancers can form activating
complexes with TFs and chromatin modifiers to regulate transcription (Wang et al., 2009).
Enhancers are marked by activating histone modifications H3K27ac and H3K4me1 as
well as activating proteins p300 and CBP. The active-enhancer landscape and the TFs,
which establish this landscape dictate cell identity and the gene-expression program that
is executed by the cell (Hnisz et al., 2013; Ong and Corces, 2012). Specifically, a sub-
type of TFs known as pioneers can access and bind to areas of heterochromatin and
recruit other TFs to the previously inaccessible site (Hnisz et al., 2013; Ong and Corces,
2012).

In the context of senescence, the enhancer landscape is significantly remodeled
and several enhancers were identified to control SASP gene expression (Tasdemir et al.,
2016). Not surprisingly, SASP associated enhancers were enriched for bromodomain
protein 4 (BRD4) binding, and accordingly, BRD4 inhibition disrupts part of the SASP
gene expression program (Tasdemir et al., 2016). During replicative senescence, p300
histone acetyltransferase associated with enhancers that drive the senescence gene
expression program (Sen et al., 2019). Depletion of p300, but not closely related CBP,
impacted the senescence phenotype. Finally, recent studies revealed the underlying
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transcription factor networks that drive the establishment of the senescence-associated
enhancer landscape in OIS (Zamudio et al., 2019). The AP1 family of pioneer TFs
orchestrates a hierarchical TF network. AP1 TFs pre-mark senescence-associated
enhancers, which dynamically gain the activating histone marks H3K27ac and H3K4me1
during senescence establishment. Furthermore, AP1 facilitates the recruitment of other
activating TFs to these senescence-driving enhancers. Disruption of the AP-1 network

leads to a partial reversion of the senescence phenotype (Zamudio et al., 2019).
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1.8. Clinical Relevance of Senescence

Senescence is a protective and health promoting mechanism enhancing wound-healing,
mediating embryonic development, and acting as a durable tumor suppressive
mechanism in the face of oncogenic stress, or DNA damage (Campisi and d’Adda di
Fagagna, 2007; Kuilman et al., 2010). However, senescence has now also been linked
to aging and age-related disease. Senescent cells accumulate in older organisms, as
exemplified in baboons and human skin (Jeyapalan et al., 2007). When young mice are
transplanted with senescent cells, or premature-senescence is induced, they express
characteristics of aged mice: decreased movement speed, grip strength, and hanging
endurance (Xu et al., 2018).

Although the elimination of senescent cells in vivo increases the lifespan of mice
by approximately 17-35%, more importantly, it significantly increases their healthspan
(Introduction Figure 9) (Baker et al., 2016; Xu et al., 2018). Specifically, senescence
eliminator mouse models demonstrated a significant decrease in the onset of age-related
pathologies and delayed aging. These seminal studies exemplify the potential of

senescence-targeting therapies to treat age-related pathologies and delay aging.
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Introduction Figure 9. INK-ATTAC mice: Representative mice with (+AP, senescent
cells are cleared) and without (-AP, senescent cells are not cleared). (Adapted from
Baker, 2016).

Senescence therapies have also been introduced as an anti-cancer treatment
modality (Therapy-induced senescence, TIS). A so-called one-two punch cancer therapy
includes using senescence-inducing anti-cancer drugs followed by senolytics — drugs to
eliminate senescent cells (Leite de Oliveira and Bernards, 2018; Wang and Bernards,
2018). Elimination of senescent cells following chemotherapy had a profound effect on
the health of mice, decreasing chemotherapy-induced fatigue (Demaria et al., 2017).

However, a senescence arrest during anti-cancer therapy is a double-edged sword
(Milanovic et al., 2018; Passos et al., 2010b). Senescent cells in the tumor
microenvironment release pro-tumorigenic factors (discussed above). In pre-cancerous
senescent hepatocytes, the release of CCL2 can trigger the differentiation of CCR2+
myeloid cells to mature macrophages and clear the senescent cells (Eggert et al., 2016;

Kang et al., 2011). However, upon out-growth of hepatocellular carcinoma (HCC), the
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micro-environmental changes from tumor-secreted factors block the maturation of the
myeloid cells recruited by senescent cells, blocking NK cells from acting on the tumor,
thus promoting the growth of the HCC (Eggert et al., 2016). Furthermore, in Eu-MYC B-
cell lymphomas the stemness-promoting factors released by senescent cells can
reprogram tumor cells into tumor stem cells, as well, upon senescence escape through
the loss of TP53 or H3k9me3 from SUV39H1, these post-senescent cells grow more
aggressively in a WNT-dependent manner (Milanovic et al., 2018). Senescence-induction

is a viable target in cancer therapy.
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Introduction Figure 10. Cellular senescence in Pathophysiology (Adapted from
Martinez, Zamudio 2017).
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1.8.1 Senescence and Pathology

Senescence has been linked to many pathophysiological settings, where it can contribute
functionally to age-related disease (Introduction Figure 10) (Martinez-Zamudio et al.,
2017b). For example idiopathic pulmonary fibrosis (IPF) and smoking-induced chronic
obstructive pulmonary disease (COPD) (Houssaini et al., 2018). Senescent cells
accumulate during IPF in the mesenchymal, bronchial and alveolar layers of the lung as
evidenced by the increased presence of senescence biomarkers including SABG, p16,
p21, and TP53 (Schafer et al., 2017). In damaged IPF lungs, senescent cells secrete
inflammatory cytokines, as well as NOX4 mediated ROS. The combination of
inflammation and ROS contributes to the pathogenesis of IPF (Hecker et al., 2014). The
knock-down of caveolin (CAV1) prevents senescence establishment in IPF conditions,
and treatment with NOX4 inhibitors or anti-inflammatory agents improves the condition
(Schafer et al., 2017). Furthermore, treatment with senescence eliminating drugs
(Dasatinib and Quercetin) or using the INK-ATTAC senescence eliminator mouse model
to eliminate p16 -expressing cells attenuates IPF dramatically (Schafer et al., 2017).
Cigarette smoking can induce COPD (Shivshankar et al., 2012). Similar to IPF,
there is an increase in senescence biomarkers present in lungs, with an increase in
inflammatory cytokines and ROS, which contribute to fibrosis (Rashid et al., 2018).
However, in the context of COPD, the smoke damage to the mitochondria contributes to
the disease (Rashid et al., 2018). Mitophagy mediating pathway PTEN-induced putative
kinase 1 (PINK1)-PARK2 are involved in repairing mitochondrial damaging and
dampening the production of ROS (Shivshankar et al., 2012). During COPD-senescence,

there is an increase in ROS and a downregulation of this mitophagy pathway (lto et al.,
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2015). PARK2 is downregulated in COPD senescence, suggesting that the loss of this
pathway contributes to senescence formation. COPD presents another potential target
for senescence therapy (Rashid et al., 2018).

Senescence also contributes to neurodegenerative diseases. Although much of
the brain cells are post-mitotic neurons, p16 expressing senescent astrocytes and
microglia accumulate in a model of Alzheimer's disease (Bussian et al., 2018). Using the
INK-ATTAC senescence eliminator mouse model showed a dramatic improvement of
disease outcome including a reduction of neurofibrillary tangles of hyperphosphorylated
TAO proteins, and prevention of degeneration of the hippocampus and cortical neurons
(Bussian et al., 2018). These mice were able to maintain cognitive function compared to
the control group. Besides, the use of senolytics ameliorated the neurodegeneration
(Bussian et al., 2018).

Osteoarthritis (OA) is an age-related pathology of the joints that is characterized
by an increase of inflammation, loss of cartilage tissue, and pain. Senescent cells
accumulate in these damaged, inflamed tissues, contributing to inflammation as well as
degradation of the extracellular matrix (Jeon et al., 2017; Marzetti et al., 2009) In a mouse
model, the clearance of senescent cells ameliorates the OA and facilitates a regenerative
microenvironment (Jeon et al.,, 2017). Treatment of osteoarthritis with senolytics is
currently being explored in clinical trials. Furthermore, the muscle loss associated with
aging, sarcopenia, is driven by senescence. Muscle satellite cells (muscle stem cells
which renew lost muscle tissue) gain markers of senescence with age, corresponding to

a decline of muscular function. Clearance of senescence, as well as a calorie-restricted
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nutritious diet restores these stem cells to regenerate lost muscle tissue (Marzetti et al.,
20009).

Obesity and type Il diabetes are also associated with senescence. Adipocyte
accumulation is associated with senescence and increased inflammation, contributing to
detrimental health, and diabetes type Il is intimately linked with senescence (Minamino et
al., 2009). Pancreatic B-islet cells produce insulin in response to uptake of glucose. In the
case of obesity and over-eating, B cells produce a large amount of insulin and multiply to
meet the need. However, these cells can reach proliferative exhaustion and replicative
senescence. Furthermore, mutations found in these cells to induced type-2 diabetes are
also found to be associated with an upregulation of senescence biomarkers (Palmer et
al., 2015; Tacutu et al., 2011).

Senescent cells can also contribute to cardiac disease, atherosclerosis, and
hypertension in the cellular context of vascular smooth muscle and vascular endothelial
cells (Fyhrquist et al., 2013; Katsuumi et al., 2018). Initial findings showed that there was
an association between telomere shortening and cardiovascular disease, even in patients
under the age of 50 (Fyhrquist et al., 2013; Katsuumi et al., 2018). Moreover, other
senescence biomarkers including increased TP53, p16, p21, inflammatory cytokines, and
ROS were also present (Fyhrquist et al., 2013). Senescent cells accumulate in patients
with hypertension, which contributed to increased inflammation and stiffness of the
vascular smooth muscle, and further exacerbating the condition in a feed-forward loop.
Senescent cells can be causative and detrimental in atherosclerotic plagues (Chen et al.,

1995). The presence of senescence increases TNFa, INFB, IL8, IL13, MCP-1, which
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further drive pathology (Campisi et al., 2011; Katsuumi et al., 2018). In mouse models,
elimination of senescent cells, and overexpression of SIRT1 (found to suppress
senescence in VSMC) have strong promise in treating cardiac and vascular disease
associated with aging individuals (Visel et al., 2010).

There are more and more pathologies linked causatively with senescence, which
further underscores the need for the developing of senescence-targeting therapies to

increase health- and lifespan.
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2.1 Poly (ADP-ribose) Polymerase 1 (PARP1)

Poly (ADP-ribose) polymerase 1 (PARP1) is the predominant member of a large family
of enzymes, catalyzing the transfer of nicotinamide adenine dinucleotide (NAD+) to target
proteins as ADP-ribose (ADPr) (Gupte et al., 2017). ADPr is covalently attached to target
proteins as a single unit of ADPr as mono-ADPr and in a branched or linear post-
translational modification composed of ADPr units linked by glycosidic bonds - poly-(ADP-
ribose) (pADPr) (Kiehlbauch et al., 1993). This protein and its post-translational
modification have a rich history of research starting nearly 60 years ago, and the
understanding of its biological significance continues to expand. PARP1 is implicated in
DNA sensing and repair, modulation of transcription, chromatin structure, mediation of
inflammation, and replication. PARP1 is omnipresent in the nucleus with 5x105 -1x106
molecules per cell, accounting for 80-90% of the pADPr activity of the cell and is the
primary target of pADPr automodification (Ludwig et al., 1988; Yamanaka et al., 1988a).
Despite years of research, delineating its mechanisms of action and regulatory roles is

still incomplete.

2.2 PARP1 Protein Structure

PARP1 is a 1014 amino acid 116 kD protein that is divided into three domains: N-terminal
DNA binding domain (DBD), auto-modification domain (AD), and the C-terminal catalytic
domain that contains the NAD* binding site and PARP homology site (CAT) (Introduction

Figure 11) (Kameshita et al., 1984, 1986).
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Introduction Figure 11. Structure of PARP1: Outline of features (DNA-Binding Domain,
Auto-modification Domain and Catalytic domain) in PARP1 protein. (Adapted from Kraus,
2005).

The N-terminal DNA binding domain (DBD) is 372 amino acids long (42 kDa) and contains
the nuclear localization signal (NLS) (Kameshita et al., 1984, 1986). The DNA binding
domain contains three zinc fingers, which are critical for the DNA binding (binding to DNA
breaks and damage), as well as inducing catalytic activity on the C-terminus (D’Amours
et al.,, 1999). Znl, Znll, and Znlll are all zinc fingers; however, they exhibit functional
differences. Single strand breaks are identified explicitly by the Znll zinc finger (Malanga
and Althauss, 1994). In vitro studies showed that PARP1 can form a dimer with its DBD
when binding to a 5’-recessed DNA break, and binds a monomer to a 3’-recessed and
double-stranded DNA (Pion et al., 2005). The third zinc finger, Znlll (located further from
the N-terminal than Znl and Znll) of PARP1 was not identified until recently (Langelier et
al., 2008). Znlll is not critical for DNA binding activity; instead, Znlll acts to activate PARP1
enzymatic activity by interacting with the C-terminal. PARP1 also binds directly to intact
DNA, junctions, looped DNA, and nuclear matrix DNA (Galande and Kohwi-Shigematsu,

1999; Gradwohl et al., 1987; Lonskaya et al., 2005).
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The AD is an important site for PARP1 automodification in addition to other PTMs
(D’Amours et al., 1999). AD is enriched for glutamic acid, lysine, and aspartate residues,
which are the prime acceptors of ADPr (Kraus and Lis, 2003; Naegelis and Althaust,
1991). Recent proteomics studies have found several different ADPr-modified residues,
including serine, and asparagine (Bai, 2015). The mechanism of PARP1 automodification
can occur through the formation of trans modification in a PARP1 dimer, as well as
through cis modification through a monomer of PARP1 (Alemasova and Lavrik, 2019;
Bauer et al., 1990). However, PARP1 is also modified outside of the AD (Alemasova et
al., 2019). The AD contains the BRCA c-terminus (BCRT) domain which was first
characterized in the BRCA1 DNA damage repair protein (Bai, 2015). Initially, this domain
was found to function in recruitment of other proteins to sites of DNA damage (i.e.,
XRCC1); however, many other proteins, DNA binding proteins, and protein complexes
have been identified (Kim et al., 2005).

The C-terminus of PARP1 (aa 525-1014) contains the catalytic domain (CAT) as well
as the PARP protein family PARP signature motif (D’Amours et al., 1999). The CAT of
PARP1 is capable catalyzing each step of ADP-ribosylation: initiation (first ADPr moiety),
elongation (additional glycosidic bonds between moieties of ADPr) and branching of the
pADPr chains (Kim et al., 2005). The donor site contains an NAD+ binding pocket of
histidine, tyrosine, and glutamic acid (Barkauskaite et al., 2015). The histidine binds the
2’-OH of NAD+*, and any substitutions of this amino acid result in a catalytically inactive

PARP1 (Barkauskaite et al., 2015; Vyas et al., 2014). The glutamic acid is necessary for
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the elongation step of the reaction, and an amino acid substitution at this location

precludes elongation (Barkauskaite et al., 2015).

2.3. ADP-ribose

Individual units of ADPr are linked through a 17-2’ ribose-ribose glycosidic bonds, and
each ADPr has a strong negative charge (Introduction Figure 12) (Kiehlbauch et al.,
1993). The addition of ADPr from NAD+ creates the by-product of nicotinamide (NAA).
PADPr can reach up to 200 units long with branches every 20-50 units(Kawaichi et al.,
1981; Miwa et al., 1981). These long chains can form secondary structures, including
helices and larger matrix structures (Minaga and Kun, 2011; Miwa et al., 1981). Other
PARP family members contribute to ADP-ribosylation events in the cell, including PARP2
(the second most abundant and active member of the family) and the tankyrases, which

are known to modify the telomeres (Smith et al., 1998).
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Introduction Figure 12. ADP-ribosylation metabolism: Displaying the initiation (a),
elongation (b), and branching (c) steps of pADPr synthesis as catalyzed by PARP1. The
degradation of pADPr by exoglycosidase (d) endoglycosidase (e) activities of PARG.
Protein-proximal ADPr monomers are cleaved by ADPr-protein lyase (f). (Adapted from
Zamudio-Martinez, 2012).

ADPr is a dynamic PTM that once added is removed rapidly by poly-ADP-ribose
glycohydrolase (PARG), endoglycosidase to remove pADPr, ADP-ribose protein lyase
and the recently discovered terminal ADP-ribose glycohydrolase 1 (TARG1) to remove
the final ADPr unit (Gibson and Kraus, 2012). During stress and DNA damage, the half-

life of ADPr can be as low as 1 minute, while under normal conditions it may last several

7 hours (Alvarez-Gonzalez and Althaus, 1989).

2.4. Modes of PARP1 Regulation
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Many different signaling pathways, protein-protein interactions, and PTMs including ADP-
ribosylation, phosphorylation, methylation, or acetylation regulate PARP1 activity
(Hottiger, 2015). For example, SET7/9 can methylate PARP1 at K508 for recruitment
purposes during DNA damage (Kassner et al., 2013). Methylation of PARP1 can stabilize
the AD which enhances enzymatic activity. DDR signaling kinases JNK and ERKs
phosphorylate and activate PARP1 (Kauppinen et al., 2006). ERK2 phosphorylates
PARP1 at S732 and T373 to stimulate its enzymatic activity via increasing affinity for
NAD+* (Cohen-armon et al., 2007; Kauppinen et al., 2006). In the context of DNA damage,
maximal ADP-ribosylation activity depends upon ERK1/2 kinase activity, and inhibition of
this phosphorylation decreases PARP1 enzymatic activity (Cohen-Armon, 2007).
However, phosphorylation by protein kinase C decreases PARP1 activity, which acts to
protect the cell from necrotic death through over-activated PARP1 (El-Hamoly and
Hegedls, 2014). Acetylation of PARP1 by CBP/p300 and PCAF stimulates ADP-
ribosylation activity and is essential in the full activation of the PARP1-NF«kB signaling
axis (Hassa et al., 2005). However, this acetylation can be reversed by deacetylases
such as SIRT1 and HDACs (Kolthur-Seetharam et al., 2006). Another PTM, sumoylation
acts to specify gene targets for PARP1 action as exemplified for the localization of PARP1
to the heatshock protein 70 (HSP70) gene locus after heat stress (Martin et al., 2009).
Protein-protein interactions also dictate PARP1 enzymatic activity. The first PARP
interaction discovered was with histones (Wong et al., 1982). Histone 1 (H1) and Histone
3 (H3) were found to be potent stimulators of ADP-ribosylation activity (Ernest Kun et al.,

2005). Acetylation of PARP1 prevents PARP-histone associations (Ernest Kun et al.,
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2005). Furthermore, H4 and H2B binding activates PARP1 at promoters, while H2A can
repress ADP-ribosylation activity (Hurtado-Bages et al., 2018; Pinnola et al., 2007). The
interactions with histones and histone variants are important mediators of chromatin
remodeling, DNA damage, and gene-expression regulatory roles of PARP1 discussed in
further sections. Proteins involved in DNA damage repair can stimulate PARP1 through
protein-protein interactions, including HMGN1, NEIL1, OGG1, HPF1, SAM68 (Gibbs-
Seymour et al., 2016; Masaoka et al., 2012; Noren Hooten et al., 2012; Sun et al., 2016).
These interactions are not all of the same quality; for instance, histone ADR-r factor 1
(HPF1) primes the PARP1 catalytic domain by increasing its affinity for serine (Leung,
2017). YB-1 is an RNA-binding protein that can bind and disrupt PARP activity
(Alemasova and Lavrik, 2019). Interestingly, ADP-ribosylation of YB-1 can prevent
binding to PARP1, and thus loses its inhibitory effects. Furthermore, TP53 is found to
interact with PARP1, modulating its activity (Fischbach et al., 2018). Although TP53 can
be ADP-ribosylated, non-covalent protein-protein interactions can still stimulate PARP 1
activity (Fischbach et al., 2018). LPS challenge or stimulation of toll-like receptor 4 (TLR-
4), which signals bacterial infections, induces a signaling cascade through MEK1/2, which
phosphorylates ERK2, leading to the activation of PARP1 (Martinez-Zamudio and Ha,
2012). Furthermore, PARP activation through ERK is also possible through TNFa

signaling (Vuong et al., 2015).

2.5. Functions and mechanisms of PARP1 and ADP-ribosylation
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To understand PARP1 function in vivo, various labs have generated PARP1 knock-out
(KO) mouse models. These mouse models were instrumental for defining a role for
PARP1 in DNA damage repair, gene expression, replication, transcription, inflammatory
signaling, and iNOS production (Shall and de Murcia, 2000a). Despite the involvement
of PARP1 in many cellular processes, and its high abundance in cells, PARP1 knock-out
is not lethal in mice; however, a double KO of PARP1 and PARP2 is lethal (Shall and de
Murcia, 2000a). The latter indicates that PARP2 may compensate for the loss of PARP1
(Ménissier de Murcia et al., 2003). PARP1 deficient mice are significantly impaired in
maintaining genomic instability. Sister chromatid exchanges are increased by 5-fold, and
formation of micronuclei, sensitivity to gamma irradiation and DNA alkylating reagent N-
Nitroso-N-methyl urea are equally increased. A surprising feature of these mice is their
resistance to stress. PARP1 deficient mice are more resistant to the streptozotocin (STZ)
induced diabetes, myocardial and cerebral ischemia, and inflammatory stressors such as
LPS-induced septic shock (Shall and de Murcia, 2000a). Increased resistance to
inflammatory stress results from defective induction of NF«B in these mice (Boulares et
al., 2003). PAPR1 KO mice are also particularly sensitive to carcinogenesis and display

a shortened life-span (Piskunova et al., 2008).

2.6. PARP1 binding and catalytic activity play a multi-facetted role in
the nucleus
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2.6.2. PARP1 is a key player in DNA damage repair

PARP1 was historically recognized for its involvement in DNA damage repair. PARP1
rapidly binds to sites of DNA damage and activates ADP-ribosylation activity, which
recruits DDR proteins through ADPr recognition domains: PAR binding motif (PBM), PAR
binding zinc fingers, macrodomains, WWE domains, BRC, PIN domains, and an OB-fold
(Teloni and Altmeyer, 2016). The different readers of ADPr can form complexes and
begin the repair process (Teloni and Altmeyer, 2016). PARP1 sensing and subsequent
hyper-ADP-ribosylation is involved in double-strand breaks, single-strand breaks, base-
pair excision repair (BER), nucleotide excision repair (NER), non-homologous end joining
(NEJ), replication fork stability, and homologous recombination. Double-strand breaks
are quickly recognized by PARP1, leading to enzymatic activity (Schuhwerk et al., 2017).
ADP-ribosylation recruits DDR signaling kinase ATM to recruit and phosphorylate H2AX,
TP53, PARP2, the MRN complex (Mre11/RAD50/NBS1), and SMC1 (Aguilar-Quesada
et al., 2007; D’Amours and Jackson, 2002; Haince et al., 2007, 2008). In this context,
PARP1 binds DDR-ATM-yH2AX foci and mediates damage signaling (Aguilar-Quesada
et al., 2007; D’Amours and Jackson, 2002; Haince et al., 2007, 2008). The DNA DSBs
repair pathway regulated by the PARP1-ATM axis includes both homologous
recombination (HR) and non-homologous end-joining (NHEJ) (Aguilar-Quesada et al.,
2007). For HR, PARP1 recognizes the DSB and recruits the MRN complex, facilitating
the co-binding of Mre11 onto DNA with replication protein A (RPA) and BRCA1 (D’Amours

and Jackson, 2002; Haince et al., 2008), thus, limiting the extent of DNA end resection

59



ROBINSON Lucas - Thése de doctorat — 2019

through ADP-ribosylation of BRCA1 (Hochegger et al., 2006). PARP1 can also initiate
NHEJ and the alternative NHEJ at sites of DSBs through ADP-ribosylation of DNA-
dependent protein kinase catalytic subunit (DNA-PKcs) and Cadherin 2 (CDH2) in a Ku-
70/Ku-80 dependent fashion (Luijsterburg et al., 2016; Ruscetti et al., 1998).

During replication stress, ADP-riobsylation activity inhibits ATP-dependent DNA
helicase Q1 (RECQ1), preventing damaging actions by prematurely restarting the
replication machinery (Berti et al., 2013).

Single-strand breaks (SSBs), which are repaired through single-strand break repair
(SSBR), nucleotide excision repair (NER) rely upon PARP1 catalytic activity (El-khamisy
et al., 2003; Marintchev et al., 2000). During SSBR, ADP-ribosylation recruits X-ray repair
cross-complimenting protein 1 (XRCC1), which forms a complex including DNA
polymerase (3, DNA ligase 3 (LIG3), and bifunctional polynucleotide kinase 3'-
phosphatase (PNKP) (El-khamisy et al., 2003; Marintchev et al., 2000). In the context of
NER, DNA damage-binding protein 2 (DDB2) will binds and activates PARP1 to recruit
and ADP-ribosylate chromatin-remodeling helicase amplified in liver cancer protein 1

(ALC1) (Luijsterburg et al., 2012; Robu et al., 2013).

2.6.3. Chromatin remodeling during DNA damage

PARP1 binding and catalytic activity influence chromatin accessibility to facilitate safe
DNA damage repair (Ray Chaudhuri and Nussenzweig, 2017). During DNA repair, ADP-
ribosylation drives ALC1 nucleosome sliding away from the site of damage and relaxation

of chromatin, to facilitate the recruitment of protein complexes for repair (Ahel et al., 2012;
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Gottschalk et al., 2009). ALC1 binds to ADPr via its C-terminal macrodomain, which
stimulates nucleosome sliding while maintaining the histone octamer, through an N-
terminal ATPase. Under normal conditions, ALC1 is maintained in an auto-repressed
state, and not until PARP1 activation when it binds to ADPr through its macrodomain is it
released (Singh et al., 2017). Chromatin remodeling at the periphery of DNA damage is
facilitated through ADP-ribosylation of SWI/SNF related, matrix associated, actin-
dependent regulator of chromatin, subfamily A 5 (SMARCAS5), which binds to ADPr
through an E3 ubiquitin ligase ring finger protein 168 (RNF168) (Smeenk et al., 2013).
Additionally, to further relax the chromatin during DDR, ADP-ribosylation activates
chromatin remodeling protein CHD2, which deposits histone variant H3.3, known to be a
chromatin-relaxing histone variant (Luijsterburg et al., 2016).

Faithful DNA damage repair requires the repression of transcription in the flanking
regions as a protective mechanism until the repair is completed (Ray Chaudhuri and
Nussenzweig, 2017). Activated PARP1 recruits polycomb repressor complex (PRC)
proteins, nucleosome remodelers, and members of the deacetylase complex (NuRD),
CHD4 and metastasis protein 1 (MTA1) (Chou et al., 2010). As such, RNA pol I
transcription is disrupted, and transcription can be repressed. The recruitment of PRC
proteins leads to chromatin compaction, deacetylation and PRC-EZH2 driven methylation
of H3K27 (Chou et al., 2010). Following UV laser micro-irradiation, PARG inhibition (i.e.,
increased ADP-ribosylation activity) leads to enhanced repression of transcription and
removal of nascent RNA. Additionally, during DNA damage repair, the macrodomain of

MacroH2A1.1 can bind to ADPr chains on PARP1 leading to chromatin compaction which
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can be abrogated using PARP1 inhibition (Timinszky et al., 2009). The chromatin
compaction driven by the binding of ADPr and MacroH2A1.1 alters the binding of DDR
signaling gH2Ax as well as repair machinery Ku70 and Ku68. MacroH2A1.1 is immobile,
and it is thought that chromatin containing this histone variant may be binding PARP1
though a looping mechanism, although this still needs to be confirmed (Timinszky et al.,

20009).

2.6.4 PARP1 and ADP-ribosylation and the Regulation of Gene

Expression

PARP1 regulates transcription via distinct and non-mutually exclusive mechanisms
including chromatin accessibility, histone modifications, chromatin insulation, DNA
methylation, serving as a co-regulator of TF function and other chromatin associated
proteins, and binding to and functioning at gene regulatory loci such as promoters and

enhancers.

2.6.5 PARP1-Driven Chromatin Decondensation at D. melanogaster
heat-shock protein 70 (HSP70) loci

One of the best-characterized examples of PARP1 mediated chromatin decondensation
is demonstrated at the D. melanogaster heat-shock protein 70 (HSP70) loci. On the
polytene chromosome, heat-shock very rapidly induces massive chromatin loosening and
formation of a puff, seen through microscopy and sensitivity to micrococcal nuclease

(MNase) digestion (Petesch and Lis, 2008). This functions increase accessibility of the
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locus to transcription factors and the transcriptional machinery to rapidly induce
transcription of HSP70 (Boehm et al., 2003). Rapid loosening of chromatin includes the
release of nucleosomes from the chromatin (Petesch and Lis, 2008). PARP1 is a critical
regulator of this process through ADP-ribosylation of histones, auto-modification resulting
in release from the chromatin, and rapid recruitment of the transcriptional machinery to
the gene locus (Petesch and Lis, 2008). Upon inhibition of PARP1, the heat shock puff
is disrupted, and the expression of HSP70 is diminished (Tulin and Spradling, 2003a).
Additionally, the rapid recruitment of Positive-Transcription Elongation Factor b
(pTEFb) and RNA-polymerase Il (RNA pol-ll) is dependent on PARP1 through a
mechanism called the cage effect of pADP-PARP1 (Zobeck et al., 2010). Newly released
auto-modified PARP1 can recruit and keep the transcriptional machinery close to the HS
puff, facilitating transcription (Zobeck et al., 2010). Furthermore, these mechanisms work
in concert with chromatin remodeling protein MI-2 (Murawska et al., 2011). Mi-2 binds to
ADPr through a K/R rich domain and is attracted to the heat shock puff, where it enhances
transcription through interactions with nascent RNA transcripts (Murawska et al., 2011).

The HS puff is a robust model for its potential mediation of relaxation of chromatin.

2.6.6. PARP1 and the Regulation of Histones and DNA Modification

Histone methylation
PARP1 binding at promoters strongly correlates with H3K4me3, a hallmark of active

transcription (Krishnakumar and Kraus, 2010a). These promoters are protected from the
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demethylase KDM5B, which becomes ADP-ribosylated, thus, preventing the removal of
methyl groups from H3K4 (Krishnakumar and Kraus, 2010a). However, PARP1, through
its binding activity, has been also found to repress H3K4me3 through binding to histone
methyltransferase MLL (Minotti et al., 2015). Furthermore, in a similar fashion to KDM5B
inhibition, ADP-ribosylation of KDM4 disrupts the demethylation of repressive

heterochromatin methylation marks K3K9me2/3 (Khoury-haddad et al., 2014).

Histone acetylation

Histone acetylation is associated with actively transcribed genes and active chromatin
states (Wang et al., 2009). Early in vitro studies suggested a positive link between
acetylated histones H3/H4 and ADP-ribosylation through binding of acetylated chromatin
in an ADPr antibody column (Wong and Smulson, 1984). Furthermore, in human cells,
transcriptomic studies observed that macroH2A driven gene expression requires PARP1
and CBP to facilitate acetylation and promote gene expression (Chen et al., 2014). PARP
can maintain acetylation levels through its antagonistic relationship with SIRT1
deacetylase (Bai et al., 2011; Mendelsohn and Larrick, 2017). Sirtuins compete with
PARP enzymes for intracellular NAD+* pools, and while deacetylation of PARP1 by SIRT1
can decrease activation, so to can ADPr of SIRT 1 reduce deacetylation activity (Bai et

al.,, 2011a; Canto et al., 2011; Cantoé et al., 2013).

DNA methylation
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DNA methylation is an extensive and repressive epigenetic modification and is
characterized by the addition of 5-methylcytosine (5mc) at CpG islands (repetitive CG
dinucleotides) via DNA-methyl transferase (DNMT 1, 3A, 3B) (Li et al., 1992). Global DNA
methylation levels decrease with age; however, there is upregulation at specific loci
(Horvath, 2013). PARP1 inhibition results in a global increase in 5mc, which is mediated
through an ADPr-mediated binding and inhibition of DNMT1 (Caiafa et al., 2009).
Therefore, PARP is antagonistic of DNA methylation (Caiafa et al., 2009). ADP-
ribosylation drives CTCF translocation into the nucleus where it protects the genome from
DNA methylation (Ohanna et al., 2011b; Zampieri et al., 2012). PARP1 forms a complex
with CTFC, ChIP-seq analysis revealed co-localization of PARP1 with CTCF binding sites
and low DNA-methylation areas was observed through a ChIP-seq of PARP1

(Nalabothula et al., 2015).

2.6.6. PARP1 and Chromatin insulation

Insulators are cis-regulatory elements, which control gene expression by blocking the
interaction of enhancers with promoters or prevent repression through disrupting
heterochromatinization (Phillips-Cremins and Corces, 2013). PARP1 is implicated in
insulation through interactions with one of the most essential proteins driving this process,
CTCF (Yu et al., 2004). CTCF and other insulators are involved in maternal imprinting
and maintaining repression of H19 imprinting control region, which regulates the
expression of insulin-like growth factor 2 (IGF2) (Yu et al., 2004). A study in mouse cells
demonstrated that ADP-ribosylation of CTCF at the H19 locus is required to maintain

repression, and PARP inhibitors disrupt chromatin insulation, leading to increased
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expression. Currently, the exact mechanism by which ADP-ribosylation of CTCF can

repress chromatin is unclear.

2.6.7 PARP1 and Heterochromatin

PARP1 is now also recognized as a critical factor for the stability and formation of
heterochromatin (e.g. at telomeres and pericentromeric regions), repressed chromatin
states, and X chromosome inactivation (Dantzer and Santoro, 2013). PARP1 co-localizes
and ADP-ribosylates chromobox homolog 5 (CBX5), also known as heterochromatin
protein 1 — involved in heterochromatin complexes, and interactions with repressive
histone methylation (Quénet et al., 2008). Compelling evidence displays PARP1 activity
at the inactive X chromosome in females, wherein heterochromatinization of one of the
X-chromosomes represses gene expression (Pollex and Heard, 2012). PARP1 -/+;
PARP2 -/- mice display lethality only in females, and this was due to the improper
silencing of the second X-chromosome (Pollex and Heard, 2012). The silent X-
chromosome accumulates histone variant macro-H2A1.2, which binds PARP1 and
inhibits its enzymatic activity, contributing to the formation of heterochromatin and
silencing (Dantzer and Santoro, 2013; Pollex and Heard, 2012). PARP1 KO decreases
global levels of heterochromatin marks H3K27me3, H3K9me2/3, H4K20me3, and
methylated DNA (Ciccarone et al., 2017). Through ADPr of UHRF1, PARP1 mediates the
stability of H4K20me3, preventing the ubiquitylation of DNMT1 by UHRF1 (De Vos et al.,
2014). At centromeres, PARP1 colocalizes with centromere protein A and B (CENPA/B)

and budding uninhibited by benzimidazoles 3 (BUB3), which upon DNA damage activates
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ADPr activity and dissociation from centromeres (Saxena et al., 2002). The above
suggests that unmodified PARP1 is involved in maintaining the condensed chromatin
found typically at centromeres. In the absence of PARP1 enzymatic activity chromatin
accessibly is decreased, which can be reversed through its activation; however, ADPr is
found to recruit heterochromatin forming proteins and complexes during DNA damage

(as discussed earlier).

2.6.8 Interactions with Histones

Early In vitro studies observed that ADP-ribosylation of histones lead to relaxed chromatin
structure through histone modifications. Using purified chromatin, exogenous PARP1 and
NAD+* reduced chromatin compaction, and higher-order chromatin structure in an NAD+
concentration-dependent manner via modification of histones, which was reversible
through PARG addition (Huletsky et al., 1985, 1989; De murcia et al., 1986; Poirier et al.,
1982). This argues that the highly negative charge of ADPr is a disruptive and repulsive
force to DNA. Accordingly, in the absence of NAD*, PARP1 binding to histones compacts
DNA structure; however, in the presence of NAD+, PARP1 activity relaxes chromatin
structure to "a beads on string" conformation, and eventually release nucleosomes from
chromatin (Kim et al., 2004).

PARP1, core histones, and linker histone H1 are the most abundant interaction
partners on chromatin (Wong and Smulson, 1984). H1 and PARP1 dynamics are
instructive, and their interplay is a critical component of gene expression (Nalabothula et

al., 2015). Linker histone H1 binds to the linker DNA exiting from the core nucleosome
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and can influence local chromatin structure around promoters. ChIP-seq of PARP1
displayed that genomic binding is primarily at actively transcribed genes, in a mutually
exclusive relationship with H1 (Khoury-haddad et al., 2014; Krishnakumar and Kraus,
2010a; Nalabothula et al., 2015). Using purified chromatin, PARP1, and H1 compete for
the same linker DNA, wherein H1 can exclude PARP1 binding to the nucleosome at this
position (Kim et al., 2004). The mechanism by which PARP1 binds to linker DNA

competes with H1 binding in vivo is still unclear.

2.6.10 PARP1 Binding and Enzymatic Interactions with Transcription

Factors

PARP1 co-binding and enzymatic activity functionally impact transcription factors in both
activating and repressive functions and biological outcomes depending on the context.
There is also still no unifying mechanism or role for PARP1 in terms of its effects on
chromatin structure, gene-expression regulation, and so far, it remains at the whimsy of
its local context and interacting partners. This section will outline some of the known
PARP1 interactions with transcription factors.

PARP1 interactions, independent of its catalytic function can be instrumental in
activating TF functions. PARP1 regulates Retinoic acid receptor (RAR) dependent
determination of site-specificity and composition of the Mediator complex located at the
RARJ promoter (Pavri et al., 2005). In the inactive state, the RARB promoter is bound by
repressive complexes, including HDACs, NCoR, SMRT, and the Mediator complex,
including repressive TF CDK8 (Pavri et al., 2005). Upon stimulation with retinoic acid

(RA), PARP1, through BRCT binding to the Mediator complex facilitates the exchange of
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the repressive TF CDK8 with activating TF ERCCS3/TFIIH (Pavri et al., 2005). The release
of CDK8 and the activation of the Mediator complex drives expression of the RARB gene
in a PARP1 catalytic-independent fashion (Pavri et al., 2005). In mouse embryonic stem
cells, PARP1 interacts with SOX2, a TF that is critical for maintaining pluripotency (Liu et
al.,, 2017). PARP1 localizes at SOX2 binding sites, as shown through a ChlP-seq study
(Liu et al., 2017). The DNA binding motifs of PARP1, DBD, and BRCT, together are
required to bind to nucleosomes containing SOX2 DNA sequence motifs. Co-binding with
PARP1 is required to overcome the barriers of binding at nucleosomal DNA and is
independent of ADPr activity. PARP1 knock-down and inhibition of ADPr decreases the
efficiency of Yamanaka-factors (KLF4/SOX2/0OCT4/c-MYC) to induce pluripotent stem
cells (Chiou et al., 2013). Additionally, PARP1, independent of its enzymatic activity, can
act as a co-activating transcription factor with E2F1, B-MYB and Tax progression and
growth (Anderson et al., 2000; Cervellera and Sala, 2000; Simbulan-Rosenthal et al.,
2003).

PARP1 catalytic activity can be instrumental for its specific binding to DNA. NFAT
is the master regulator of IL-2 expression upon stimulation (Olabisi et al., 2008). Nuclear
factor of activated T-cells (NFAT) is recruited to the nucleus where it forms an activating
complex with CEBPs, FOS-JUN, FOX3p, CREB/p300 as well as histone acetylases to
upregulate IL-2 expression (Olabisi et al., 2008). In this scenario, binding of PARP1 and
ADP-ribosylation of NFAT acts as a molecular switch to activate expression. During ERK2
signaling of mouse cardiomyocytes and cortical brain neurons treated with growth factors,

PARP1 is activated and assists in the downstream activation of ELK1 (Cohen-Armon,
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2007). Phosphorylation of ERK2 is found to activate the enzymatic activity of PARP1 in a
phosphorylation-independent and DNA-independent mechanism (Cohen-Armon, 2007).
PARP1 binds and ADP-ribosylates pERK2, which functions as a complex to increase the
phosphorylation of ELK1. In the transcriptional control of muscle-specific genes, PARP1
and its enzymatic activity drive TEF-1 transcription factor binding to promoters and
enhancers in MCAT elements (Butler and Ordahl, 1999). Cardiac troponin T (cTNT)
expression is driven by TEF-1 binding at an MCAT1 element, where PARP1 can be co-
immunoprecipitated with TEF1, and inhibiting PARP activity decreased gene expression
(Butler and Ordahl, 1999).

PARP1 catalytic activity also drives the transition from a repressed to a
transcriptionally active chromatin state through Mammalian Accaete —Scute Homolog-1
(MASH?1) in rat neural stem cells (Ju et al., 2004). Under normal conditions, MASH1 is
repressed by a repressive complex containing PARP1, Hairy/Enhancer of split (HES1
transcription factor), Groucho (GRO)/like enhancer of split 1 (TLE1) (Ju et al., 2004). This
repressor complex recruits HDAC1 and repressive SIN3 components (Ju et al., 2004).
Upon stimulation of PDGF, calcium-dependent protein kinase CaKlld becomes activated,
and MASH1 is expressed by through the transition of this repressive complex into an
activating complex. CakKlld phosphorylates PARP1, leading to its subsequent enzymatic
activation, which in concert with phosphorylated HES1 (now in a transcriptionally
promoting conformation) facilitates the site-specific recruitment of activating transcription

factors. This transformation is disrupted during PARP1 inhibition (Ju et al., 2004).

70



ROBINSON Lucas - Thése de doctorat — 2019

PARP1 enzymatic activity can also lead to decreased function of TFs. TGFf is an
important cytokine that induces phosphorylation of SMAD transcription factors and
formation of a SMAD2:3:4 TF complex in the nucleus (Feng and Derynck, 2005). PARP1
binds to the SMAD complex as shown in co-immunoprecipitation studies of SMAD4 and
PARP1 (Lé6nn et al.,, 2010). However, upon PARP1 activation, ADP-ribosylation of
SMADS3 and SMAD4 inhibits gene expression of SMAD2:3:4 bound promoters (L6nn et
al., 2010). ADP-ribosylation-mediated disruption of expression is a potent barrier to EMT,
which can occur after the extended exposure to TGFB and in line with these findings,
PARP inhibitors accelerate EMT (Lénn et al., 2010).

During differentiation, PARP1 has an antagonistic relationship with SOX-2,
contrary to the relationship during stem cell maintenance (Gao et al., 2009; Liu et al.,
2017) PARP1 acts as a decisive transcription factor, binding to the FGF4 enhancer to
facilitate its expression as well as ADP-ribosylating SOX-2, leading to its detachment from
the chromatin (Gao et al.,, 2009). In a similar fashion, ADP-ribosylation of CEBP,
HOXB7, CREB, YY1, Sp1, or TP53 results in reduced affinity for DNA binding, thus
inhibiting part of their binding activity (Oei et al., 1997; Simbulan-rosenthal et al., 1999;
Simbulan-Rosenthal et al., 2000; Wu et al., 2012; Zaniolo et al., 2007). Interestingly,
PARP1 catalyzed ADP-ribosylation of TP53 disrupts its binding to the consensus
sequence, but this may act to stabilize the protein during its upregulation in the early
stages of apoptosis (Kumari et al., 1998; Simbulan et al., 2001). Furthermore, one of the
critical transcriptional programs of adipocyte differentiation driven by CEBP relies upon

the enzymatic activity of PARP1 (Erener et al., 2012; Luo et al., 2017). ADP-ribosylation
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of amino acids K133, E135, E139 in pre-adipocytes prevents gene-expression driven by
CEBPS (Erener et al., 2012; Luo et al., 2017). Only during the differentiation process
ADPr is removed, and DNA binding activity can start unimpeded (Erener et al., 2012; Luo

et al., 2017).

2.6.9 PARP1 Regulation of Inflammatory Gene Expression

PARP1 is instrumental in the inflammatory gene expression program. PARP1 KO mice
are highly resistant to LPS-induced endotoxic-shock (Shall and de Murcia, 2000b). In
response to LPS treatment, PARP1 null mice do not accumulate TNF-a, VCAM, ICAM,
INF-g, P-selectin, iINOS, which is attributed to a complete failure to activate the NFxB
signaling pathway (Oliver et al., 1999). Furthermore, mice treated with PARP inhibitors
and challenged with zymosan (a glucan found on the surface of fungi to induce sterile
inflammation) display diminished recruitment of neutrophils alongside a global and local
reduction in inflammation, iINOS signaling, and inflammatory cytokine release (Szaboé et
al.,, 1997a). The latter is in part due to defective NFkB signaling. In a glial cell model,
PARP inhibitors disrupt the expression of IL1B, INOS2, TNF, INFy, which is linked to
defective p38MAPk downstream phosphorylation of ATF-2, cAMP signaling and p65
NF«xB (Ha, 2004). Several inflammatory genes are thus affected by the loss of PARP1
function.

The primary pathway highlighted in these functional studies is the PARP1-NFxB

signaling axis. NFkB commonly refers to the classical and most common heterodimer
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containing p65 (RELA) and p50 (NFkB1). Early studies found that PARP1 interacts with
p50 and p65 in an enzymatic and DNA-independent fashion to facilitate NFkB binding
shown through induction of a constructed NFxB reporter gene (Hassa et al., 2001).
Furthermore, this study showed NF«B signaling using a PARP1 -/- complementation with
a mutated PARP1 that is enzymatically inactive and mutated DNA-binding domain (Hassa
et al., 2001). This PARP1-NF«kB co-binding is stabilized through acetylation of PARP1
by CBP/p300 and facilitates the formation of PARP1- NF«B with activating Mediator
complex (Hassa et al., 2005). However, contradictory to this, early in vitro studies found
that ADP-ribosylation strengthened the PARP1-NF«B protein-protein interaction, and this
interaction was weaker in the presence of a PARP1 inhibitor (Chang and Alvarez-
Gonzalez, 2001). Besides, auto-modification, PARP1 can facilitate the gene-regulatory
activities by increasing the DNA binding capacity of NFkB (Nakajima et al., 2004). PARP
inhibition reduces the expression of LPS induced TNFa in a dose-dependent manner
(Nakajima et al., 2004). Furthermore, a study in macrophage during LPS challenge found
that PARP1 ADP-ribosylates histones at the promoters of IL13, MIP-2, and csf2, to recruit
NFkB, as well as maintain an open chromatin structure for the increase expression
(Martinez-Zamudio and Ha, 2012). They found that LPS stimulation induces upregulation
of ADP-ribosylation of histones, with H3 being the most favored (Martinez-Zamudio and
Ha, 2012). This ADP-ribosylation activity is driven through toll-like receptor 4 signaling
(TLR-4), which activates the phosphorylation of MEK1/2 and downstream ERK, which is

a known activator of PARP1 (Martinez-Zamudio and Ha, 2012). In the LPS challenge,
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treatment with a MEK1/2 inhibitor blocks PARP1 activation and ADP-ribosylation of
histones (Martinez-Zamudio and Ha, 2012).

Additionally, the regulation of CXCL-1 expression present further insight into the
mechanisms by which PARP1 controls expression in collaboration with NFkB (Amiri et
al., 2006). In normal melanocytes, enzymatically-inactive PARP1 binds to the CXCL1
promoter, represses expression, and prevents NFxB binding (Amiri et al., 2006).
However, in the malignant melanoma setting, PARP1 becomes active at this promoter,
which results in NF«xB binding (Amiri et al., 2006). PARP1 auto-modification leads its
release from the promoter, facilitating NFxB binding (Amiri et al., 2006). PARP1 inhibition
leads to the downregulation of CXCL1 expression, while PARP1 depletion leads to an
increase in its expression (Amiri et al., 2006). It may also be possible that this catalytic
activity plays a role in recruiting NFkB to the CXCL1 promoter site.

Together, these findings exemplify the complexity of PARP1 in gene-regulation.
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2.7 Role of PARP1 Binding and Catalytic Activity in Physiology and
Pathophysiology

PARP1 displays a wide range of nuclear, metabolic, and regulatory functions. Thus, it
stands to reason that PARP1 dysfunction is a significant contributor to human
pathologies. Human pathologies, especially those in which oxidative stress or
inflammation plays a vital role, are accompanied by an elevated level of ADPr; however,
a causative role for ADPr is still in question for many pathologies (Pacher and Szabo,
2008). Over-activated PARP can lead to a dangerous level of inflammation, ROS, iNOS,
as well as NAD+ depletion-driven necrosis (Ha and Snyder, 1999). In the context of
cardiovascular disease, PARP1 activity exacerbates injury by generating iNOS and
increased inflammation in vascular endothelial cells, which can lead to rigidity of the
vasculature (Szabé et al., 1997b). During hypertension, angiotensin |l signaling increases
cellular levels of NADPH and peroxynitrate, which drive DNA strand breaks and
subsequent PARP1 overactivation (Szabo et al., 1997b). PARP1-mediated injury can be
attenuated through the use of PARP inhibitors (Szabé et al., 1997b). In diabetes, PARP1
can worsen vascular conditions through similar mechanisms, wherein mitochondrial
dysfunction causes superoxide from mitochondrial complex Ill, which leads to
peroxynitrate production and DNA damage. Besides, PARP1 overactivation disrupts
GAPDH function further exacerbating metabolic distress (Du et al., 2003). PARP1 levels
and ADP-ribosylation are also elevated in asthma, wherein PARP inhibition facilitated
recruitment of CD4+ T-cells through IL-17 signaling ameliorating the condition (Ghonim

et al., 2015).
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2.7.1 Role of PARP1 in Cancer

PARP1 KO mice are significantly impaired in their ability to repair damaged DNA, which
contributes to their increased rate of carcinogenesis, especially after exposure to DNA
damaging agents such as cigarette smoke, asbestos, Helicobacter pylori infection,
increases the rate of carcinogenesis when PARP1 is depleted (Masutani and Fujimori,
2013; Tsutsumi et al., 2001). PARP1 controls epigenetic stability and plasticity through,
for example, maintenance of DNA methylation and chromatin insulation through CTCF
interactions as mentioned earlier (Caiafa et al., 2009). Changes in DNA demethylation
and chromatin accessibility, working in concert with PARP1, are an essential step in the
reprogramming of cells to pluripotent stem cells and are involved in malignant
transformation (Masutani and Fujimori, 2013; Yu et al., 2004). Although PARP1 can block
EMT through attenuating TGFB—SMADZ2:3:4 signaling, malignant transformation can be
exacerbated through increased PARP1-mediated inflammatory signaling and secretion

of matrix remodeling metalloproteases (MMPs) (Mabley et al., 2002).

2.7.2. PARP1 Inhibitors in Cancer Therapy

Many PARP inhibitors are to-date employed in cancer therapy based on the hypothesis
that PARP1 inhibition leads to increased DNA damage, and therefore PARP inhibitors
are used extensively in BRCA1/2 mutated breast and ovarian cancers (D’Andrea, 2018).
For example, Olaparib shows synthetic lethality in mutated BRAC1/2 cancers and is

already approved as a first line treatment in the clinic (Tutt et al., 2010). With the

76



ROBINSON Lucas - Thése de doctorat — 2019

impairment of DNA damage repair in BRCA1/2 mutant cancer cells, PARP1 inhibition
further increases genomic instability, eventually inducing cell death (Tutt et al., 2010).
Besides, combination therapies using genotoxic agents, such as topoisomerase inhibitors
or doxorubicin together with PARP1i, exacerbate genotoxicity (Munhoz-Gamez et al.,
2005). The exploration of PARP1 inhibition in cancer therapy has immense potential,

especially, as we know now that the roles of PARP1 go beyond DNA damage repair.

2.7.3. PARP1 and Aging

PARP1 is also an exciting target for other age-related pathologies other than cancer.
Indeed, using a classical hyperglycemic C. elegans aging model Olaparib was able to
rescue the shortened life-span of these worms (Xia et al., 2017). PARP1 is an essential
contributor to the cellular NAD+/NADH ratio, and NAD+ has been implicated for many
years as a life-extending agent initially from the work of David Sinclair and Leo Guarente
(Anderson et al., 2003). NAD+ decreases with age, and supplementation has been found
to increase life-span in mice (Imai and Guarente, 2016). In aging cells, PARP1 has a
decreased accessibility to NAD* as it becomes sequestered by DBC1 (Deleted in breast
cancer 1 protein) (Li et al., 2017). These studies usually link the decrease in NAD+ with
decreased sirtuin activity; however, there is also decreased PARP1 activity with age, and
an inability to maintain genomic stability as a result (Mendelsohn and Larrick, 2017).
Despite early indications that PARP1 activity plays a role in aging through SIRT
interactions, there are still many unknowns (Bai et al., 2011b; Mouchiroud et al., 2013).

On the one hand, there is the upside in inhibiting PARP1 to ablate associated
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inflammaging; on the other hand, there is the downside in the potential increase of genetic

instability and carcinogenesis.
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3. Thesis Rationale, Aims and Hypothesis

Cellular senescence is a durable cell cycle arrest induced by diverse forms of
cellular stress. It is characterized by cell death resistance as well as an inflammatory gene
expression. This complex pro-inflammatory response is known as the senescence-
associated secretory phenotype (SASP), which can modulate senescence status, tissue
microenvironment, and interactions with immune cells. The execution of the senescence
program goes hand-in-hand with a large-scale restructuring of the epigenetic landscape.
While select genetic and epigenetic elements crucial for senescence induction have been
identified, the dynamics, underlying mechanisms, and regulatory networks defining
senescence competence, induction and maintenance remain poorly understood,
precluding a deliberate therapeutic manipulation of these dynamic processes.

Mounting evidence supports a role of PARP1, as a chromatin-based transcriptional
co-regulator of genes involved in inflammation and cancer, in addition to its canonical role
in DNA damage repair. The moonlighting functions of PARP1 as a chromatin-based
transcriptional co-regulator are underexplored, and clinical focus has remained mainly on
its role in DNA repair for its efficacy in cancer therapies.

As a nuclear protein, PARP1 binding and catalytic activity directly affects higher-
order chromatin structure through binding to DNA, binding and modifying histones,
regulating histone modifications (acetylation, methylation), DNA-methylation, chromatin
insulation through CTCF interactions, as well as modulation of gene expression through
promoter and enhancer-binding and interactions with transcription factors. PARP1 is a

driver of inflammatory gene expression through interactions with NF«xB. Given the
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parallels between the SASP and inflammatory responses, and the chromatin-based
regulation of inflammatory gene expression by PARP1 enzymatic activity, it is of interest

to establish the function of PARP1 in the transcriptional control in senescent cells.

3.1. Thesis Aims

My PhD thesis aims at closing these critical gaps in our knowledge by
characterizing the gene-regulatory role of PARP1 in the execution and maintenance of
senescence by combining reverse genetics and pharmacological inhibitors with
transcriptome, chromatin accessibility (ATAC-seq), genome-wide PARP1 (by ChIP-seq)
and ADP-ribosylated chromatin profiling (using a novel technique termed CRAP-seq).
Specifically, | proposed to:

Aim 1: Delineate the individual contributions of PARP1 chromatin-binding and enzymatic
activity in regulation of senescence gene-expression.

Aim 2: Determine the impact of PARP1 chromatin binding and ADP-ribosylation of
chromatin associated proteins on the epigenetic landscape and structural changes that
occur during senescence.

Aim 3: Establish the functional partners by which PARP1 binding and enzymatic functions
regulate the senescence gene expression program.

Aim 4: Evaluate the potential of PARP1 inhibitors as senescence-eliminating drugs

(seonlytics), and a new treatment paradigm for PARP inhibitors in cancer therapy.
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3.2. Hypothesis:

Together, my Ph.D. thesis will define a novel and global role for PARP1 in the
regulation senescence-associated gene regulation and chromatin structure both through
its prevalent and direct interaction with chromatin and its enzymatic modification of
chromatin components. An expanded understanding of how PARP1 function contributes
to senescence will therefore open new therapeutic in-roads aimed at establishing PARP

inhibitors in a new senescence treatment paradigm.
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4. Results
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4.1 PARP1 enzymatic activity and ADP-ribosylation are increased in
OIS

PARP1 is the most abundant nuclear PARP family member catalyzing the majority of
ADP-ribosylation from NAD+ onto target proteins and playing an essential role in gene
regulation (Bai, 2015; D’Amours et al., 1999; Kraus and Lis, 2003). Genome-wide
chromatin ADP-ribosylation analysis of chromatin still poses a significant challenge due
to the lack of robust experimental methodologies. To overcome this limitation, we
developed a novel “Chromatin ADP-ribosylation Affinity Purification Sequencing (CRAP-
seq)” method to detect and track genome-wide PARP1-mediated changes in chromatin-
associated ADP-ribosylation in senescence (Figure 1A). This method relies on metabolic
pulse labeling with biotinylated NAD* as previously introduced by (Zhang and Snyder,
1992), followed by nuclear fractionation and micrococcal nuclease (MNase) digestion of
the isolated chromatin fraction. ADP-ribosylated chromatin fragments are then affinity-
purified with streptavidin (SA)-coupled beads, and bound proteins are analyzed by
Western blotting (CRAP-WB) (see figures 1 and 2) or DNA is analyzed by high-throughput

sequencing (CRAP-seq) (see Figure 4).
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Figure 1: Outline and validation of Chromatin ADP-ribosylation Affinity Purification

(CRAP) method A. Digitonin-permeabilized cells are metabolically labelled with biotinylated-NAD+. Chromatin
is isolated and digested with Micrococcal nuclease (MNase). ADP-ribosylated chromatin is affinity-purified by
streptavidin-coupled beads (SA-AP) coupled beads and analysed by high-throughput sequencing (CRAP-seq) or
Western Blot (CRAP-WB). B. Cells were labelled with biotinylated-NAD+ (20 pyM) and treated with H202 (500 pM) for
15 minutes either alone or together with PARPi PJ34 (50uM), or niraparib (30uM) for 2 hours prior to
H202 treatment. Equal loading was controlled with Ponceau staining, and blots were stained with IRDye 800CW
Streptavidin (Licor). 1% input is shown in the left blot. ADP-ribosylation levels (primarily automodification of PARP1
and histones) represent the enzymatic activity of PARP1. C. Cells expressing two independent doxycycline-inducible
shPARP1 retroviral vectors (1952 and 1706). PARP1 silencing was induced for seven days with doxycycline
(10ug/mL). Relative mRNA levels were measured by RT-gPCR. Values represent mean relative expression (n=3) +/-
s.e.m. D. Cells were infected with doxycycline-inducible retroviral vector expressing shPARP1-1952. PARP1 silencing
was induced for seven days with doxycycline (10ug/mL). Western blot analysis with antibodies to PARP1 and histone-
H3 for loading control. Densitometric quantification of PARP1 signal is shown in the bar plot as a function of time in
days (D) after PARP1 silencing. E. CRAP-WB analysis with antibodies to PARP1, histone H3 and IRDye-800CW
Streptavidin (SA-Dye) of H202 treated cells following PARP1 silencing or PARP enzymatic inhibition.
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To validate our method, we first treated cells with a sub-lethal dose of hydrogen
peroxide (H202) to hyper-induce PARP1 enzymatic activity (Ba and Garg, 2011). We
observed a substantial and global increase in ADP-ribosylated proteins only in the
chromatin fraction of cells labeled with biotinylated-NAD*, affecting primarily
automodification of PARP1 (ADPr-PARP1) (Bartolomei et al., 2016), representing PARP1
enzymatic activity, and ADP-ribosylation of histones, known PARP1 targets (Figure 1B,
compare lanes 1-2 and 5-6). Importantly, ADP-ribosylation of target proteins was
markedly diminished by pre-treatment of cells with two selective PARP1/2 inhibitors
(PARPi’s), PJ34 and niraparib (Hopkins et al., 2018) (Figure 1B, compare lanes 3-4 and
7-8).

To study the relative contribution of PARP1-mediated ADP-ribosylation of target
proteins more directly and compare it with PARPI treatment, we depleted PARP1 in cells
using doxycycline-inducible retroviral shRNA vectors (shPARP1-1952 and -1706). Both
shRNAs effectively reduced PARP1 transcript levels by approximately two-fold (Figure
1C) and PARP1 protein levels decreased approximately two-fold as soon as two days
after shRNA-induced PARP1 silencing, reaching a maximum five-fold reduction at day
seven (D7) (Figure 1D). Overall PARP1-depleted cells showed a less prominent, but still
robust reduction in ADPr-PARP1 and -H3 levels, when compared to PARPi PJ34-treated

cells (Figure 1E, compare lanes 4-6).
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Figure 2: PARP1 enzymatic activity and ADP-ribosylation levels are increased in

OIS cells. A. Gene expression profiling of select genes in proliferating and OIS cells. B. Quantification of EdU
incorporation and senescence-associated beta galactosidase (SABG) staining in proliferating and OIS cells. C.
Representative microscopy images of OIS and proliferating cells stained for EAU, SABG and DAPI. Scale bar, 20mM.
D. Proliferating and 40HT-induced ER:RasV12 OIS cells (at day seven after induction) were treated with biotinylated-
NAD+ (20 pM) alone or together with PARPi PJ34 (50 uM) for 2 hours. ADP-ribosylated chromatin was purified as
outlined in Figure 1A. Western Blot was performed with antibodies directed against PARP1, histone-H3 and IRDye
800CW streptavidin (SA-Dye). PARP1 automodification signal (ADPr-PARP1) corresponding to size of PARP1 is also
shown.
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Having established the validity of our CRAP method, we then asked whether chromatin-
associated PARP1 enzymatic activity and ADP-ribosylation levels are altered in cells
undergoing RAS-OIS when compared to proliferating cells (Figure 2A-C). While PARP1
protein levels remained unchanged in proliferating and RAS-OIS cells (Figure 2D, lanes
1-4), RAS-OIS cells had largely increased PARP1 enzymatic activity as evidenced by
their much higher PARP1 automodification (ADPr-PARP1) and histone H3 ADP-
ribosylation (ADPr-histone H3) levels (Figure 2D, compare lanes 5 and 6). Importantly,
treatment of RAS-OIS cells with PARPi PJ34 substantially decreased ADPr-PARP1 and
-H3 levels (Figure 2D, lanes 7-8) underscoring further the prime role of PARP1 in
chromatin-associated ADP-ribosylation in RAS-OIS cells.

Altogether, our results establish CRAP as a methodology to accurately monitor
chromatin-associated PARP1 enzymatic activity and -ADP-ribosylation levels and
demonstrate that RAS-OIS cells have substantially increased PARP1 enzymatic activity

and -ADP-ribosylation levels.

4.2 Experimental outline to measure the differential impact of PARP1
depletion and enzymatic inhibition on the RAS-OIS gene expression
program

If and how PARP1 regulates gene expression during senescence and whether or not
PARP1 chromatin binding and chromatin-associated ADP-ribosylation play distinct roles
in this process are open questions.

To address these questions, we employed time-series experiments on WI38
fibroblasts undergoing oncogene-induced senescence (OIS) using a tamoxifen-inducible
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ER:RASV12 expression system as previously described (Figure 3A) (Puvvula et al.,
2014b) (Zamudio et al.,, 2019). We determined global gene expression profiles by
microarrays and mapped the full set of accessible chromatin sites by ATAC-seq at
indicated points and different treatment regimen (green spheres PARP1 depletion; red
spheres, PARPi PJ34 treatment). From accessible chromatin regions determined by
ATAC-seq, we deduced TF binding dynamics. Cells intended for PARP1-seq and CRAP-

seq (blue spheres) were obtained at three and two time-points, respectively, as indicated.
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Figure 3: Differential impact of PARP1 depletion and enzymatic inhibition on the

senescence gene expression program. A. Experimental outline. Time-resolved study of RAS-OIS WI-
38 Fibroblasts (transcriptome, ATAC-seq, PARP1-seq, and CRAP-seq), treatments with PARP1i PJ34, and PARP1KD
with shRNA. B. Transcriptome data quality heatmap as determined by sample clustering. Heatmap of the sample-to-
sample distances estimated using Pearson correlation of time-resolved transcriptome data sets for biological replicates
of: RAS-OIS (RAS_Rep 1 and -2), RAS-OIS PARP1 depletion (KD) (shPARP1-1952 (KD_Rep 1) and -1706 (KD_Rep
2), and RAS-OIS PJ34-treatment (PJ). C. Venn diagram of differentially expressed genes (DEGs) in RAS-OIS (RAS),
PJ34-treated RAS-OIS (PJ_Rep 1 and -2), and the PARP1 knock-down (KD) RAS-OIS cells. Numbers outside the
circles correspond to total DEGs per treatment, while those inside indicate the number of overlapping DEGs between
treatments. D. GAGE-based gene set enrichment statistic for the 10 top gene sets of significantly enriched (adjusted
p-value < 0.075) RAS-OIS DEGs affected by PJ34 and PARP1 KD treatment. E. Proportion of RAS-OIS DEGs affected
by PJ34 and PARP1 KD treatment grouped as a function of their expression level. Genes were grouped into quantiles
according to their expression decile in low (Q1 - Q3), medium (Q4 - Q7), and high (Q8 - Q10). For each category the
proportion of PJ and KD DEGs is represented using the total number of DEGs. Lines represent the expected proportion
of DEGs calculated over the 6204 genes that are differentially expressed in at least one of the time course
transcriptomes.
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4.3 Differential impact of PARP1 depletion and enzymatic inhibition on
the RA-OIS gene expression program

To determine the impact of PARP1 enzymatic inhibition and PARP1 depletion have on
the senescence transcriptional program we treated RAS-OIS cells either with PARPi PJ34
for 24 hrs or stably silenced PARP1 expression with our two validated shRNAs for PARP1
for seven days (Figure 3A). Time-resolved transcriptomic analysis revealed that PJ34
treatment and PARP1 depletion differentially impacted the senescence transcriptional
program (Figures 3B and -C). PJ34 treatment caused the differential expression of 1841
genes in total, 536 of which were differentially expressed and 1305 stably expressed in
RAS-OIS cells. PARP1 silencing affected 1283 genes in total, 484 of which were
differentially expressed, and 799 stably expressed in RAS-OIS cells (Figure 3C).
Remarkably, PARPi PJ34 treatment and PARP1 silencing communally affected only 95
genes strongly arguing in favor of separable enzymatic and non-enzymatic roles for
PARP1 in gene regulation. Functional overrepresentation analyses of differentially
regulated genes (DEGs) in RAS-OIS affected by PJ34 treatment or PARP1 depletion
highlighted distinct biological pathways for each treatment (Figure 3D). For example,
PJ34 treatment had significant effects on genes involved in ubiquitin-mediated
proteolysis, NOD-like receptor signaling, and apoptosis, while PARP1 depletion affected
strongly the expression of genes involved in ribosome biology and regulation of actin
cytoskeleton. To further refine PARP1 function in the transcriptional regulation of RAS-
OIS, we divided RAS-OIS DEGs affected by PARPi PJ34 treatment or PARP1 depletion
into three quantiles representing lowly (L), medium (M) and highly (H) expressed genes.
This analysis revealed that PJ34 treatment predominantly affected the expression level
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of lowly differentially expressed genes in RAS-OIS, while medium expressed genes were
only marginally affected and highly expressed not at all (Figure 3E, left panel). By
contrast, the effect of PARP1 depletion on lowly expressed genes in RAS-OIS was only
moderate (Figure 3E, right panel).

We conclude that PARP1 exercises a hither-to underappreciated global gene-
regulatory role in RAS-OIS, with functionally disparate enzymatic and non-enzymatic

roles in the transcriptional regulation of lowly expressed genes.
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Figure 4: Validation of K/S metric to measure changes in ADP-ribosylation in

RAS-OIS. A. Average CRAP-seq read coverage is shown for active enhancers associated to
differentially expressed genes according to their expression level at day 6 of RAS OIS induction: low (Q1
- Q3), medium (Q4 - Q7) and high (Q8 - Q10). The distribution was calculated for the MINUS (above) and
PLUS (below) biotin-NAD+ conditions and for day zero (black) and day six (red) after RAS-OIS induction
time points. Kolmogorov-Smirnov statistic was used, which quantifies the distance between the empirical
distribution function of the signal between any two samples, which we called K/S metric. This test can be
applied to the distribution of the CRAP-seq signal calculated over any set of annotations, e.g. TSSs,
enhancers, as the average read coverage normalized by size. To quantify the gain in ADP-ribosylation
between day zero and six, the alternative hypothesis will be that the empirical distribution function of day
zero is not greater than that of day six 6. When applied to the comparison of the CRAP-seq signal
between day zero and six, the K/S metric reproduces the global increase in ADP-ribosylation measured
by CRAP-WB (Figure 2D). The K/S metric detects a significant increase only for the PLUS biotin-NAD+
condition and not for the MINUS biotin-NAD+, indicating that it efficiently distinguishes biologically
relevant differences. B. Empirical distribution function of CRAP-seq signal at active enhancers at days
zero and six of RAS OIS induction. Cumulative distributions of the CRAP-seq signal as plotted in panel
4A.
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4.4 PARP1 regulates chromatin-associated ADP-ribosylation at
enhancers to fine-tune the transcription of lowly expressed genes

Given that inhibiting the enzymatic activity of PARP1 affected mainly the expression of
lowly expressed genes in RAS-OIS, we focused our attention on the gene-regulatory role
of ADP-ribosylation at these genes. To this effect, we first mapped genome-wide ADP-
ribosylation changes using CRAP-seq between day zero (D0) and six (D6) after RAS-OIS
induction (see Figure 1A) and correlated chromatin-associated ADP-ribosylation profiles
(Figure 4A and -B) with our previously published RAS-OIS chromatin states (Figure 5A)
(Zamudio et al., 2019). Our analysis revealed that ADP-ribosylation is strongly enriched
(approximately 10-100-fold) at enhancers as well as unmarked chromatin, and particularly
at active enhancers at day six post OIS induction, when compared to transcriptional start
sites (TSS) and polycomb-repressed chromatin, which is in line with previous findings
(Bartolomei et al., 2016). These data imply that ADP-ribosylation plays a critical role at
active enhancers. To further define the role of enhancer-associated ADP-ribosylation, we
investigated whether ADP-ribosylation at active enhancers correlated with any of the
three gene expression quantiles as defined in Figure 3. We previously published that
there is a tight correlation between OIS enhancer activation and the expression of their
nearest genes (Zamudio et al., 2019). As shown in Figure 5B, we found that gains in ADP-
ribosylation levels at day six post-RAS-OIS induction were highest at active enhancers of
lowly differentially expressed genes progressively declining at active enhancers of
medium and highly expressed genes. Interestingly, we observed this correlation also in
stably expressed genes (SEGs) in RAS-OIS (Figure 5B, left panels). By contrast, the

loss of enhancer ADP-ribosylation did not correlate significantly with gene expression
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quantiles in RAS-OIS (Figure 5B, right panels). These data indicate that a gain of ADP-
ribosylation at active enhancers plays a regulatory role of lowly expressed genes in RAS-
OIS. We then asked whether changes in ADP-ribosylation occurred preferentially at
active enhancers of RAS-OIS-specific genes sensitive to PARP1 enzymatic inhibition by
PARPi PJ34 (Figure 5C). Indeed, gains in ADP-ribosylation were highest at active
enhancers of RAS-OIS-specific genes sensitive to PJ34 (OIS-PJ) when compared to
RAS-OIS-specific genes insensitive to PJ34 (OIS only) and stably expressed RAS-OIS
genes sensitive to PJ34 treatment (PJ only) (Figure 5C). To investigate how ADP-
ribosylation at active enhancers impacts transcriptional outcomes, we then plotted gene
expression changes upon PJ34 treatment against quantiles of ADP-ribosylation gain in
RAS-OIS (Figure 5D). This analysis revealed that PJ34 treatment of RAS-OIS cells
preferentially dysregulates (i.e. genes become up- or down-regulated) the transcription of
lowly expressed genes whose enhancers have the greatest gains in ADP-ribosylation (Q9
and -10), irrespective of whether these genes are stably (SEGs) (Figure 5D, left panels)
or differentially (Figure 5D, right panels) expressed (DEGs) in RAS-OIS.

Altogether, our analysis uncovers a new layer of complexity to ADP-ribosylation-
mediated gene regulation by demonstrating that PARP1-mediated ADP-ribosylation of

enhancers fine-tunes the transcription of lowly expressed genes.
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Figure 5. PARP1 regulates chromatin-associated ADP-ribosylation at enhancers

to fine-tune the transcription of lowly expressed genes. A. ADP-ribosylation was
determined by CRAP-seq in cells undergoing RAS-OIS at day six after OIS induction. Log10-fold changes
in ADP-ribosylation using the K/S metric were plotted against indicated chromatin states as described
previously (Zamudio et al., 2019). B. Gain (left) and loss (right) in ADP-ribosylation were measured using
the K/S metric in active enhancers at day six and associated to stably (SEGs) and differentially expressed
genes (DEGs) as a function of expression quantiles (see Figure 3) at day six. C. Bar plot depicting
changes in ADP-ribosylation at active enhancers of genes at day six of RAS-OIS the expression of which
is affected by OIS only, PJ34-treatment only, or OIS-PJ34-treatment. D. Log2-fold changes of OIS DEGs
and -SEGs after 24 hrs of PJ 34 treatment of RAS-OIS cells at day six after OIS induction is plotted as a
function of log2-fold changes in ADP-ribosylation quantiles at associated active enhancers.
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4.5 PARP1-mediated ADP-ribosylation modulates chromatin
accessibility of active RAS-OIS enhancers

Chromatin accessibility is determined by the degree of nucleosomes, as well as TFs and
other chromatin-binding factors, to contact chromatinized DNA physically (Klemm et al.,
2019). Whether chromatin-associated ADP-ribosylation effects chromatin accessibility
genome-wide is currently not known.

To determine how ADP-ribosylation affects chromatin accessibility at ADP-
ribosylated active enhancers first, we overlaid ADP-ribosylation profiles, as determined
by CRAP-seq, with accessible chromatin regions as determined by ATAC-seq in RAS-
OIS cells. While gains in chromatin accessibility were independent of enhancer-
associated increases of ADP-ribosylation (Figure 6A, left panel), loss of chromatin
accessibility was positively correlated to enhancer-associated increases of ADP-
ribosylation (Figure 6A, right panel). Next, we determined the effect of PARPi PJ34 on
chromatin accessibility of these active enhancers. Remarkably, we found that inhibition
of PARP1 enzymatic activity resulted both in gains (Figure 6B, top panels) and losses
(Figure 6B, bottom panels) of chromatin accessibility as a function of ADP-ribosylation
levels at active enhancers that either gain or lose chromatin accessibility in RAS-OIS. We
conclude that PARP-mediated ADP-ribosylation of active enhancers fine-tunes chromatin

accessibility.
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Figure 6: ADP-ribosylation modulates chromatin accessibility of active RAS-OIS

enhancers. A. Gain and loss of in DNA accessibility is measured as the normalized ATAC-seq
coverage. Log2 fold change of DNA accessibility at active enhancers in RAS-OIS cells between day zero
and six after OIS induction is plotted against log2 fold changes in ADP-ribosylation quantiles (Q1-10). B
Log2 fold change of DNA accessibility at active enhancers at day six 24 hrs after PARPi PJ34 treatment
is plotted according to the corresponding log2 fold change in ADP-ribosylation quantiles. Distributions are
shown for active enhancers gaining accessibility (left) and those losing (right) accessibility during RAS
OIS induction at day six.
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4.6 Active ADP-ribosylated RAS-OIS enhancers are enriched for select
TF binding sites

The mechanism of enhancer-associated ADP-ribosylation to fine-tune chromatin
accessibility and the RAS-OIS gene expression program likely include the differential
recruitment of TFs (Hassa and Hottiger, 1999; Liu et al., 2017; Olabisi et al., 2008). Our
ATAC- and CRAP-seq data sets allow us to quantify TF binding sites in ADP-ribosylated
active RAS-OIS enhancers. We previously established that ATAC-seq is a reliable
method to deduct TF-binding sites (TFBSSs) in silico (Zamudio et al., 2019). Plotting the
ADP-ribosylation signal of active RAS-OIS enhancers against TFBSs showed significant
enrichment for select TFs, notably SREBF2, TBX1, RARB, PAX5, and SMAD2:3:4
(Figure 7). Interestingly, PARP1 functionally and physically interacts with SMAD2:3:4 and
RARB and SMADs are ADP-ribosylated by PARP1 (Dahl et al., 2014; Izhar et al., 2015).
These data suggest that enhancer-associated ADP-ribosylation is involved in the
recruitment of select TFs to active RAS-OIS enhancers to fine-tune the transcription of

associated genes.
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Figure 7: Active ADP-ribosylated RAS-OIS enhancers are enriched for select TF

binding sites. A. Transcription factor (TF) ranking at ADP-ribosylated enhancers in RAS-OIS. TF-
footprinting was performed as described previously (Zamudio et al., 2019), Highest coincidence between
ADP-ribosylated enhancers and TFBSs is seen on the right side of the plot. Top TFs are indicated.
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4.7 PARP1 binding is enriched at transcription start-sites to regulate
the RAS-OIS transcriptional program

We have shown that PARP1 depletion and the enzymatic inhibition of PARP1
differentially impact the RAS-OIS gene expression program (Figure 3C) and that the
enzymatic function of PARP1 and ADP-ribosylation are predominantly linked to RAS-OIS
enhancer activation (Figures 5 and 6). Together, these results strongly suggest that
PARP1 also regulates transcription in a manner independent of enhancer-associated
ADP-ribosylation, most likely through direct binding to other cis-regulatory elements. We,
therefore, mapped PARP1 binding genome-wide during RAS-OIS. Previous PARP1-seq
analysis failed to define the genome-wide PARP1 binding profile because only a
chromatin-feature centric approach was applied (Liu et al., 2017; Nalabothula et al., 2015)
and because of PARP’s inherent nucleosomal binding activity (Martinez-Zamudio, 2012)
and potentially non-optimal PARP1-seq conditions. To overcome this technical impasse,
we optimized a new crosslinking ChiP-seq protocol (X-ChlP-seq) pioneered by Henikoff
and co-workers (Orsi et al., 2015) and used a “spike-in” ChlP-seq approach comparing
PARP1 binding in control OIS and PARP1-depleted cells using our validated shRNAs
against PARP1. Applying these two modifications allowed us to separate real PARP1
binding events from background binding unequivocally, and thus to faithfully identify
genome-wide PARP1 binding sites (Figure 8A). We found that PARP1 binds extensively
throughout the genome behaving essentially like a histone, which was corroborated by

its interaction with histone H3 in co-immunoprecipitation experiments (Figure 8B).
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Figure 8: PARP1 binding is enriched at transcription start-sites to regulate the

RAS-OIS transcriptional program. A. PARP1 meta-profiles in control and PARP1-depleted
(shPARP1-1952 and -1706) RAS-OIS cells at enhancers and gene bodies. RAS-OIS cells were treated
for three days with doxycycline to reduce PARP1 protein levels to 50% (see Figure 1E). B. Co-
immunoprecipitation using WI-38 fibroblasts of histone H3 with PARP1, conducted with two independent
PARP1 antibodies AM (Active Motif Cat#39561) and SC (Santa-Cruz, Cat#sc-7150), with Igg as an
immunoprecipitation control C. PARP1 binding instances in control and PARP1-depleted (shPARP1-
1952 and -1706) RAS-OIS cells as a function of chromatin state (Zamudio et al., 2019). PRC, polycomb-
repressed chromatin. D. PARP1 binding profiles 500 bp up- and downstream of TSSs in RAS OIS cells
for SEGs and DEGs sensitive to PARPi PJ34 treatment and PARP1 depletion. E. Spatial phasing of
PARP1 binding proximal to TSSs in control and PARP1-depleted (shPARP1-1952 and -1706) RAS-OIS
cells. Autocorrelation function of PARP1 binding for SEGs and DEGs genes sensitive to PARPi PJ34
treatment and PARP1 depletion. Up- and down-stream minima are located at -360, 420 (SEGs, black
line) -240, 185 (DEGs KD sensitive, orange line) -235, 170 (DEGs PJ34 sensitive, blue line) bps relative
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A gene-centered analysis revealed global binding of PARP1 both at enhancers
(Figure 8A, left panels) and gene bodies, with a prominent peak at TSSs
(Krishnakumar and Kraus, 2010a; Nalabothula et al., 2015), which was significantly
reduced upon PARP1 depletion. This result was corroborated with a chromatin-state
centered analysis demonstrating that PARP1 depletion led to a sharp reduction of
binding at active TSSs, while this reduction was moderate at enhancers and mostly
absent at other chromatin states (Figure 8C).

Given the preference of PARP1 binding for TSSs, we asked how PARP1
binding at TSSs regulates the RAS-OIS transcriptional program. Mapping PARP1 TSS
binding to RAS-OIS SEGs and DEGs sensitive to PJ34 treatment or PARP1 silencing
showed that PARP1 preferentially bound in a well-defined fashion up- and down-
stream of TSS of genes sensitive to PARPi PJ34 treatment and PARP1 depletion
(Figure 8D) (Valouev et al., 2011). These data suggested that PARP1 is involved in
chromatin structuring of TSSs. To support this finding, we performed an autocorrelation
analysis of PARP1 binding at these TSSs, which confirmed the strong phasing of
PARP1 binding with minima at positions -240, -235, 170, and 185 bp relative to TSSs.
By contrast, TSSs of SEGs displayed a more relaxed phasing with minima at positions
-360 and 420 base-pairs (bps) relative to TSSs.

In conclusion, our analysis demonstrates that PARP1 binds extensively across
the genome, pointing at a gene-regulatory role of PARP1 phasing through well-defined
binding at TSSs of promoters that is distinct from its ADP-ribosylation-mediated

transcriptional regulation at enhancers.

4.8 Repositioning PARP1-inhibitors as potential senolytics
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PARP inhibitors are currently employed in the treatment of breast cancers harboring
BRCA1/2 mutations (Lord et al., 2015). Considering that PARP1 has many other
nuclear functions outside of DDR, we asked if these other functions are actionable
therapeutic targets. Our transcriptome analysis revealed that PARP1 enzymatic
activity is an important regulator of apoptotic genes in RAS-OIS, raising the possibility
PARP inhibitors could function as senescence-eliminating drugs (senolytics).
Exposing proliferating, quiescent and senescent WI38 fibroblasts to 10 yM niraparib
for seven days induced the death of 95% of senescent cells but only 30% of quiescent
and no death of proliferating fibroblasts (Figure 10A). These data suggest that
senescent cells are preferentially sensitive to PARP inhibitors. A “one-two punch”
consecutive therapy for cancer treatment involves senescence induction of cancer
cells therapy-induced senescence, TIS), followed by the elimination of these
cancerous senescent cells by senolytics (Wang and Bernards, 2018). To test the
efficacy of PARPIs in this approach, we induced or not TIS in MCF-7 breast cancer
cells by doxorubicin (1uM) treatment for six days followed by a niraparib (5uM)
treatment for three consecutive days (Figure 10B). Strikingly, 75% of MCF-7 TIS cells
underwent cell death within three days, while proliferating cells continued to grow
unimpeded. These preliminary data highlight the potential of PARP inhibitors as

clinically relevant senolytics.
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Figure 9: Repositioning PARP1-inhibitors as potential senolytics. A. Proliferation
curves of proliferating and RAS-OIS cells treated with PARPi niraparib. Growth curves display
percentage of cells compared to day zero (DO) following treatment of RAS-OIS and proliferating WI-38
fibroblasts with 10pyM niraparib over seven days. B. Proliferation curves of proliferating and therapy-
induced (1 pM doxorubicin treatment for six days) senescent (TIS) MCF-7 breast cancer cells treated
with niraparib (5uM) for three days.
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5. Discussion and
Future Directions
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Cellular senescence has long been considered a pure cell culture artifact (Sherr et al.,
2000). However, we now know that this cell fate has significant implications for human
physiology, pathophysiology and longevity. Senescence is a double edged-sword - on
the one hand, senescence promotes health through suppression of tumorigenesis,
aiding in development, maintaining cellular plasticity, and tissue homeostasis, on the
other side, the chronic accumulation of senescent cells contributes to aging, age-
related disease, tissue dysfunction, and tumor growth through its inflammatory
phenotype, the SASP (Martinez-Zamudio et al., 2017a). As such, senescence is an
attractive target for clinical interventions and therapies to promote healthspan.

Senescent cells undergo a significant reorganization of their chromatin
structure, epigenomic landscape and transcriptional program. Recent studies have
started to describe the significance of the epigenetic landscape and transcription
factors which govern the senescence gene expression program (described in detail in
section 1.5-1.7). This expanding area of research has yet to entirely define the
underlying framework and agents, which drive and maintain the senescence
phenotype. My thesis aimed to further define the gene-regulatory mechanisms
regulating the senescence gene expression program.

PARP1, after histones, is one of the most abundant nuclear proteins (5 x 10° —
1 x 108 copies per nucleus) (Ludwig et al., 1988; Yamanaka et al., 1988b). It is integral
to a wide host of nuclear functions including transcriptional and chromatin structure
control as well as DNA damage repair (described in detail in section 2.4-2.6) (Kraus
and Hottiger, 2013). For example, during DNA damage, PARP1 binding and catalytic
activity are induced to sense DNA breaks, recruiting proteins and modulating

chromatin structure and transcription to facilitate error-free DNA repair (Ray Chaudhuri
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and Nussenzweig, 2017). Furthermore, PARP1 displays context-dependent
interactions with TF SOX2 to maintain the pluripotency gene expression program of
embryonic stem (ES) cells (Liu et al., 2017). PARP1 is also a major player in the
expression of inflammatory genes functionally interacting with NFxB though the
precise underlying mechanism is currently not known (Amiri et al., 2006; Hassa et al.,
2005; Martinez-Zamudio and Ha, 2012; Nakajima et al., 2004). Given its roles in
regulation of chromatin structure and gene expression, especially in inflammation, we
hypothesized that PARP1 regulates the senescence gene expression program. Using
time-resolved integrative profiling, we elucidated how PARP1 regulates the
transcriptional senescence program, thus, expanding our understanding of the
underlying framework controlling the senescence phenotype.

Our results show that PARP1 plays a global regulatory role in the senescence
gene expression program rather than only contributing specifically to the regulation of
NFkB-dependent gene expression, a process PARP1 has been historically tightly
associated to (Hassa and Hottiger, 1999; Hassa et al., 2003; Martinez-Zamudio, 2012).
Furthermore, we demonstrate that PARP1chromatin-binding and catalytic activities
play largely distinct gene-regulatory roles. PARP1 enzymatic activity increases
dramatically during RAS-OIS, leading to a prominent ADP-ribosylation especially of
active enhancers driving the expression of lowly expressed genes. In particular, ADP-
ribosylation of active enhancers resulted in both gains and losses in chromatin
accessibility. We suggest a model by which ADP-ribosylation at active enhancers of
lowly expressed genes fine-tunes chromatin accessibility and gene expression through
context-dependent TF recruitment as well as the electrostatic repulsion of chromatin-

associated proteins driven by the negative charge of ADPr chains.
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Apart from this enzymatic role, PARP1 plays a more chromatin structural role.
Indeed, our data indicate that PARP1 stabilizes nucleosome positioning specifically at
the —1 and +1 nucleosomes of TSSs for a subset of senescence-associated genes.
Thus, we uncovered that PARP1 modulates the RAS-OIS transcription program in a

previously underappreciated and novel dichotomous fashion.

5.1. PARP1 is enzymatically activated during OIS

By exploiting our newly developed CRAP approach, we revealed a sharp global
increase of ADP-ribosylation in RAS-OIS when compared to proliferating cells that was
mostly linked to PARP1 automodification and ADP-ribosylation of histones and could
be reduced by PARP1 inhibitors (Figure 2E). These findings highlight that PARP1 is
the major ADP-poly-ribosylase responsible for ADP-ribosylation of target proteins in
RAS-OIS.

How is PARP1 activity induced in RAS-OIS? PARP1 and its enzymatic activity
play significant role in the context of DNA damage sensing and repair, and it is a
possible mechanism by which ADP-ribosylation levels increase during RAS-OIS
because a strong DDR accompanies RAS-OIS (Gorgoulis and Halazonetis, 2010). In
addition to the activation through DNA binding, PARP1 can be activated by SET 7/9 at
the sites of DNA damage.

Alternatively, PARP1 catalytic activity may increase during senescence through
a DNA-damage independent mechanism. For example, PARP1 catalytic activity is
induced through acetylation by CBP/p300 or sumoylation via PIASy, kinase
phosphorylation, direct histone interactions, and transcription factors (as described in

section 1.11) (Hassa et al., 2005; Kolthur-Seetharam et al., 2006; Martin et al., 2009).
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One potential candidate activation pathway of PARP1 in a non-DNA damage
dependent mechanism may be facilitated through ERK2. It was shown that ERK2
activation through Toll-like receptor 4, independent of a p38MAPK response, can
activate PARP1 (Cohen-Armon, 2007; Martinez-Zamudio and Ha, 2012). This
mechanism is similar to the signal transduction cascade that is engaged upon
oncogenic RAS activation, which leads to the downstream activation of ERK1/2
(Vasudevan et al., 2007). Therefore, it is possible that activated ERK2, as a result of
oncogenic RAS hyper-activation, activates PARP1 enzymatic activity. Additional
experiments are needed to elucidate the exact mechanism by which PARP1 is

activated during RAS-OIS.

5.2. Distinct PARP1 catalytic and chromatin-binding activities control
the RAS-OIS gene expression program.

A previous study identified PARP1 as a critical factor of SASP regulation by inducing
the transcriptional activity of NFkB (Ohanna et al., 2011a). However, the precise
mechanisms underlying this activation are still unknown. To begin to dissect the gene-
regulatory role of PARP1 during senescence, we first performed time resolved
transcriptome analysis on cells undergoing RAS-OIS following PARP1 enzymatic
inhibition and PARP1 depletion. Although we saw effects on SASP gene expression,
our transcriptome analysis revealed a much broader role of PARP1 catalytic activity in
the regulation of the senescence gene expression program (Figure 3C). Remarkably,
we found that PARP1 enzymatic inhibition and depletion differentially impacted the
RAS-OIS gene expression program and there was only a small overlap in genes

affected by both treatments.
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Inhibition of ADP-ribosylation led to changes in expression of genes related to
NF«B, inflammation, RNA, metabolism of proteins and nucleic acids, growth signaling
as well as Apoptosis. PARP1 protein depletion led to the dysregulation of genes
involved in DNA damage repair, cytoskeleton, metabolism of proteins, as well as
growth signaling. The overlapping gene sets related to nucleic acid metabolism, DNA
replication and growth. Our results suggest a much more global role of PARP1 in the
regulation of gene expression during OIS through distinct catalytic and catalytic-
independent mechanisms. Indeed, PARP1 is functionally linked to a number of
biological functions through transcriptional regulation in other cellular contexts,
including the regulation of inflammation, differentiation, growth, metabolism and

circadian rhythm genes (Kraus and Lis, 2003).

5.3. Genome-wide mapping of ADP-ribosylation

A major obstacle in the study of PARP1 and ADP-ribosylation has been the generation
of high-quality genomic profiles due to the lack of specific, ChlP-seq quality antibodies
against both for PARP1 and ADPr. Consequently, alternative methods have been
explored to map ADP-ribosylated proteins along the genome. For instance, the
Hottiger laboratory developed a chromatin-affinity precipitation (ChAP) technique,
which relied on the affinity of RNF146 WWE domain to poly-ADPr (Bartolomei et al.,
2016). The second technique developed to identify ADP-ribosylated proteins comes
from the Kraus laboratory, and uses a mutated PARP proteins with a “click” chemistry-
compatible NAD* analog (8-Bu(3-yne)T-NAD*) (Gibson et al., 2016). Utilization of 8-
Bu(3-yne)T-NAD+* required the development of PARPs 1, 2, and 3 mutants which can

use the NAD+*-analog as a substrate. Both methodologies have their own limitations
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and therefore, we developed our own methodology to map ADP-ribosylation genome-
wide, that we termed CRAP-seq for “Chromatin-Ribosylation-Affinity-Purification
Sequencing” (Figure 1A). We validated the technique extensively, but we are aware
of its short-comings: exogenously added biotinylated-NAD* may vary from in vivo
levels and cells are permeabilized by detergents, and the length of the ADPr chains is

unknown.

5.4. PARP1 catalytic activity localizes to active enhancers of lowly
expressed genes

Using CRAP-seq, we mapped ADP-ribosylation genome-wide and evaluated the
chromatin states ADP-ribosylation coincided with. We found that ADP-ribosylation was
most enriched at active enhancers. We then wanted to understand how ADP-
ribosylation at enhancers was related to transcriptional outcomes. During the
transcriptome analysis we revealed that PARP1 inhibition had a more pronounced
effect on lowly expressed genes differentially regulated during OIS. This prompted us
to determine ADP-ribosylation levels of active enhancers of genes in the three
quantiles of expression: low, medium and high (Figure 5B). We observed that the
highest accumulation of ADP-ribosylation during OIS was at active enhancers
associated to lowly expressed, senescence-associated genes. In order to evaluate
the functionality of these ADP-ribosylated enhancers with regards to PJ34 treatment,
we observed that genes sensitive to PJ34 treatment accumulated the highest ADPr
levels at their respective active enhancers (Figure 5D). Interestingly, this included
genes which were stable during RAS induction but changed their expression upon

PJ34 treatment also shared a correlation with ADP-ribosylation accumulation. This
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argues that ADP-ribosylation is involved in the basal expression of these genes during
RAS-OIS, which was only observable during PJ34 treatment. Together, these data
indicate a regulatory mechanism by which ADP-ribosylation fine-tunes gene

expression at active enhancers specific to lowly expressed genes.

5.5. PARP1 catalytic activity influences chromatin accessibility at
active enhancers of senescence-associated genes through a

context-dependent mechanism

To understand the mechanisms by which ADP-ribosylation at enhancers fine-tunes
transcription of lowly expressed genes, we evaluated how chromatin accessibility is
affected by PARP1 enzymatic activity. We saw that active enhancers, which lose
accessibility during RAS-OIS correlated with accumulating ADP-ribosylation, while
accumulation of ADP-ribosylation did not lead to an obvious increase in chromatin
accessibility during OIS. In response to PJ34 treatment, these enhancers both
increased and decreased chromatin accessibility as a function of increasing ADP-
ribosylation levels (Figure 7B). These data suggest that ADP-ribosylation functions in
both maintenance of open chromatin and the restricting of chromatin accessibility of
enhancers during OIS. However, the mechanism by which this dualistic function is
exerted is presently unclear.

Previous studies have shown that PARP1 catalytic activity impacts chromatin
structure and accessibility through chromatin insulation, histone-ADP-ribosylation, and
modification of transcription factors (Krishnakumar and Kraus, 2010b). One hypothesis
is therefore that ADP-ribosylation is mediating 3-D chromatin structures at enhancers

to modulate chromatin accessibility and subsequent gene expression during RAS-OIS.
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ADP-ribosylation is implicated in chromatin insulation through interactions with CTCF
(Yu et al., 2004). 3-D chromatin structures are important features which halt the
expansion of heterochromatin, and regulate interactions between promoters and
enhancers (Phillips-Cremins and Corces, 2013; Wallace and Felsenfeld, 2008). ADP-
ribosylation of CTCF can facilitate the formation of chromatin loops between enhancers
and promoters to augment expression (Yu et al., 2004).

Furthermore, we propose that ADP-ribosylation may contribute to open
chromatin at active enhancers during OIS through its negative electrostatic charge.
ADPr is a negatively charged modification, which can influence chromatin accessibility
(Poirier et al., 1982). ADP-ribosylation is implicated in transcriptional activation and
chromatin remodeling in D. melanogaster at the HSP70 locus (Tulin and Spradling,
2003b). Heat shock leads to a rapid increase in chromatin accessibility at the HSP70
locus in an ADP-ribosylation dependent fashion (Collesano et al., 2008; Tulin and
Spradling, 2003b). ADP-ribosylation also impacts chromatin structure during NFxB
driven inflammatory gene expression following LPS challenge (Martinez-Zamudio and
Ha, 2012). ADP-ribosylation of histones increases accessibility of chromatin at NFxB
target sites through disruption of nucleosomes (Martinez-Zamudio and Ha, 2012).
Oppositely, PARP1 catalytic activity also recruits the formation of repressive chromatin
(Guetg et al., 2012; Timinszky et al., 2009). PARP1 modifies histone variant H2A1.1
which forms repressive structures, potentially through chromatin loops (Timinszky et
al., 2009).

We further hypothesize that PARP1 enzymatic activity acts to recruit
transcription factors to active enhancers of lowly expressed genes during OIS,

rendering the chromatin less accessible. ADP-ribosylation is an important post-
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translational modification (PTM) for transcription factor function in activating and
repressive chromatin contexts (Gibson and Kraus, 2012; Kraus and Lis, 2003; Ryu et
al., 2015). ADP-ribosylation can facilitate site-specificity of TF binding (Olabisi et al.,
2008). ADP-ribosylation of NFAT dictates the binding of transcription factors (C/EBP,
FOS-JUN, CREB/p300) which increases the expression of IL-2 (Olabisi et al., 2008).
In the context of rDNA repression, ADP-ribosylation activity forms repressive chromatin
complex with NoRC through interactions with TIP5 (Guetg et al., 2012). Disruption of
ADP-ribosylation results in the abrogation of this NORC repressive complex (Guetg et
al., 2012).

Considering the current knowledge of ADP-ribosylation described above, and
our results demonstrating its dualistic role in changes of chromatin accessibility during
RAS- OIS, we propose that PARP1 and ADP-ribosylation is present at active
enhancers of lowly expressed genes to recruit and modify transcription factors and
other chromatin factors rendering chromatin less accessible. Additionally, ADP-
ribosylation physically maintains open chromatin through electrostatic disruption of
nucleosomes. The combination and balance of these antagonistic forces contributes
to fine-tuning of chromatin accessibility and subsequent transcription of lowly

expressed, senescence-associated genes.

5.6. ADP-ribosylation co-localizes with TFs at enhancers during OIS

We found TF binding sites (TFBSs) (e.g., NR2F, RARB, FOXDS3, TBX1,
NR2F1,TCF3:TFC4, DDIT3:CEBPA, PAX5, SREBF1/2 and SMAD2:3:4) at enhancers
enriched for ADP-ribosylation, which included TFBSs. Past research has linked SMAD

2:3:4, RARB and FOXD3 to PARP1 and ADP-ribosylation (Izhar et al., 2015; Lénn et
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al.,, 2010; Zhao et al., 2018). ADP-ribosylation of SMAD TFs decreases affinity for
genes induced by TGF-B (L6nn et al.,, 2010). FOXDS interacts with PARP1 during
Neuroblastoma to disrupt CTCF ADP-ribosylation, which leads to the upregulation of
tumor-promoting gene expression (Zhao et al., 2018). It would be valuable to explore
further the context-dependent function of these TFs during RAS-OIS and how TF-ADP-

ribosylation regulates gene expression during OIS.

5.7. PARP1 binds globally across the genome, but exerts a regulatory
role at the TSS by maintaining stable nucleosome positioning at

TSSs through its chromatin-binding activity

We optimized PARP1-seq to faithfully map PARP1 to the genome. We detected global
binding with enrichment at the TSS of promoters and PARP1 depletion studies
unraveled that PARP1 is preferentially lost at these sites with more moderate loss
across the genome (Figure 9A). These data suggest a differential regulatory role
between global PARP1 binding and its presence at TSSs. Upon evaluation of PARP1
binding at the TSS we found higher signals at genes, which were transcriptionally
sensitive to PARP1 silencing or PARP inhibition. Interestingly, the binding pattern of
PARP1 appeared to be more stable and phased at these sites. A more detailed
analysis indicated that PARP1 may facilitate the positioning of TSS-proximal
nucleosomes, which correlates with the presence of RNA-pol-Il at genes that are
poised or actively transcribed (Schones et al., 2008). Well phased nucleosomes are
seen more often at the TSS of house-keeping genes and is more variable throughout
the rest of the genome (Discussion Figure 1) (Radman-Livaja and Rando, 2010a).

The nucleosome positioning in the human genome is less reliant upon sequence
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composition, and rather regulated through transcription factors, chromatin remodelers
and RNA polymerases (Lascaris et al., 2000; Radman-Livaja and Rando, 2010b). As
such, we propose that PARP1 binding stabilizes nucleosome positioning at the TSS to

facilitate transcription during OIS.
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Discussion Figure 1: Well-positioned nucleosomes at TSS facilitate
transcription. Nucleosome positioning near the TSS with or without Pol Il generated
from sequencing data on the 5’ and 3’ DNA strands. This figure shows the stability of
nucleosomes at transcriptionally active TSSs. (Adapted from Schones, 2008).

5.8. PARP inhibitors selectively eliminate senescent cells from cell
culture through prolonged exposure

We found that extended treatment of senescent cells with PARP inhibitors
resulted in their selective cell death when compared to quiescent and proliferating
controls. OIS fibroblasts and chemotherapy-induced senescent cancer cells treated
with clinically approved PARP inhibitors induced cell death within five to seven days.
Although the mechanisms underlying synthetic lethality of PARP inhibitors used in the
clinic remain hotly disputed, the current tenet holds that synthetic lethality is mainly a
result of the disruption of PARP1 in DNA repair pathways (Lord et al., 2015). In

contrast, whether PARP inhibitors exert their effects through other mechanisms such
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as the gene expression programs remains to be explored (Frizzell and Kraus, 2009).
Indeed, we found that PARP inhibition effects the expression of genes related to anti-
apoptotic functions, and perhaps this is one such mechanism of synthetic lethality.
However, we have yet to elucidate in detail the mechanism by which inhibition of ADP-
ribosylation leads to the selective death of senescent cells and have to test the efficacy

of PARPi’s as senolytics in animal models.
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5.9. Future Directions:

To deepen our understanding of the context-dependent mechanisms by which
PARP1 regulates gene expression and chromatin structure in RAS-OIS, we would like
to specifically identify the binding partners of PARP1 and ADP-ribosylated transcription
factors. ADP-ribosylation at enhancers involves both the maintenance of open
chromatin and restricted chromatin accessibility. Thus, specifying the ADP-ribosylated
proteins in these enhancer contexts is critical. We can exploit further in silico
approaches using TF-footprinting to predict potential interactions between ADPr signal
and TFs at these enhancers. Direct targets of ADP-ribosylation may also be identified
by expanding the CRAP technology to include proteomics studies. One such study
applied the technology developed from the WWE ADPr-ChAP technique with
proteomics (Hendriks et al., 2019). Applying proteomics with CRAP technology in the
context of OIS would allow us to see the entire spectrum of ADP-ribosylated proteins,
and further understand the role TFs.

Additionally, we would like to define the relevance of auto-modified PARP1 on
the genome. Currently, we are unable to distinguish unmodified and modified PARP1.
We would like to identify the genomic locations of auto-modified PARP1 compared to
unmodified PARP1. In order to accomplish this, we can perform sequential CRAP-
PARP1-ChIP-Seq.

There are a number of large-scale chromatin reorganizations that occur during
the establishment of the senescent cell-fate discussed above: pericentromeric regions
become dissociated, hypomethylation, down-regulation of Lamin B and the
reorganization of lamina associated domains and the formation of SAHFs (Chandra et

al., 2015b; Ito et al., 2017). Hi-C has been performed on senescent cells, however,
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further investigation to the functional mechanisms controlling these 3-D
reorganizations is warranted (Criscione et al., 2016¢, 2016a). We found that PARP1
stabilizes chromatin structure around promoters of senescence-associated genes, and
structural potential across the genome, however, we did not consider 3-D chromatin
structures that may be regulated by PARP1 chromatin binding and catalytic activity.
We would like to compare our ADP-ribosylation and PARP1 positioning data with
CTCF ChlP-seq or Hi-C data in OIS cells to make predictions regarding PARP1’s
impact on 3-D structures in the genome. Additionally, we can employ Hi-ChIP, a
technique which combines the power of ChIP-Seq and chromatin capture
technologies, to evaluate the looping structures which may be regulated by PARP1
and ADP-ribosylation (Mumbach et al., 2016). It is possible that PARP1 catalytic and
binding functions are involved in the formation of the 3-D chromatin conformation in
OIS.

PARP inhibition is an exciting avenue we would like to further explore in the
context of cancer and age-related pathology. We found that PARP inhibitors
selectively eliminate OIS and TIS cells compared to proliferating and quiescent cells.
We would like to further explore the potentiality of PARP inhibitors and to define the
mechanism by which senescent cells are selectively eliminated. To this end, we will
begin by discriminating the type of cell death senescent cells succumb to upon PARP
inhibition: apoptosis, necrosis or necroptosis. We suspect that the mechanism may
include disruption of DDR signaling, or disrupt the anti-apoptosis transcriptional
program.

We also plan to explore the potential of PARP1 inhibition in the context of cancer

therapy in vivo. Precancerous senescent hepatocytes via the SASP evoke very
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efficient immune responses resulting in clearance of these cells and suppression of
liver tumorigenesis (Kang et al., 2011). However, the SASP of the same precancerous
hepatocytes can accelerate the growth of fully transformed liver carcinomas (Eggert et
al.,, 2016c). The latter finding is of high relevance for patients with advanced liver
cancer, as liver carcinomas develop in chronically damaged livers, eventually resulting
in a situation where full-blown cancer cells and precancerous senescent cells co-exist.
Based on our data PARP1 can impact senescence gene expression programs
including the SASP and may be a viable senolytic. It is possible that transcriptional
disruption from PARP inhibition allows immune surveillance of pre-cancerous
senescent cells but abolish the pro-tumorigenic effect of SASP. In vivo, it would be
important to evaluate whether sustained exposure to PARP inhibition or depletion
exerts senolytic activity.

Together, our study and prospective studies to follow provide exciting
possibilities in the fields of ageing and cancer research as well as deepening the

understanding of PARP1.
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Methods
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Cell culture
WI-38 fibroblasts (purchased from ECCAC) were cultured in high glucose Dulbecco’s
Modified Eagle medium GlutaMAX (Gibco) supplemented with 10% FBS, 1X primocin
antibiotic cocktail (Invivogen) at 37°C in 3% oxygen. Tamoxifen inducible WI-ER:H-
RASV12 (puromycin or neomycin resistant) and doxycycline-inducible retrovirus vector
containing GFP, puromycin selection cassette and shRNA-PARP1 (1952 or 1706) cells
were generated through retroviral transfection and infection as previously described
(Puvvula et al., 2014a). Oncogene-induced senescence was induced with 400nM
tamoxifen (4-hydroxytamoxifen, Sigma) with the culture media. PARP1 inhibition was
performed through the addition of PJ34 20-50uM (PJ34 hydrochloride — Abcam) or
20uM Niraparib (MF-4827-tosylate — Selleck Chem) to the culture media. ShRNA
PARP1 expression was induced with 10 yg/mL doxycycline added to the culture media.
Mycoplasma testing was conducted routinely throughout the experiments using the
MycoAlert (Lonza) according to manufacturer’s instructions.
shRNA Sequences
shRNA PARP1 1952
TGCTGTTGACAGTGAGCGCACGGTGATCGGTAGCAACAAATAGTGAAGCCACA
GATGTATTTGTTGCTACCGATCACCGTATGCCTACTGCCTCGGA
shRNA PARP1 1706
TGCTGTTGACAGTGAGCGAAAGGAGGAAGGTATCAACAAATAGTGAAGCCACA
GATGTATTTGTTGATACCTTCCTCCTTGTGCCTACTGCCTCGGA
Edu/SABGal

A representative sampling from proliferating and OIS cells, 6 days post-4OHT

tamoxifen induction, were seeded in LabTek chamber slides (Nunc). Senescence-
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associated beta-galactosidase was performed using the previously described protocol
(Itahana et al., 2007). To measure EdU incorporation, Click-iT EdU Alexa Fluor
Imaging Kit (Thermo fisher) was used as per manufacturer’s instructions. Images were
collected using the Zeiss confocal fluorescence microscope and analyzed using the
Zen software.
Western Blot

Standard western blotting analysis was carried out using whole-cell lysate,
generated using Lamely buffer, and boiled at 100°C for 5 minutes. Protein was
measured using gbit protein (Thermo) and equalized to 30ug. After membrane
transfer, blots were analyzed via Ponceau staining for equal loading of wells. Blots
were probed with the following antibodies: PARP1 ((H-250)— Santa Cruz — SC- 7150
— lot K1815), H3 (Histone 3 ab 1791 — Abcam - lot: GR265017-2), PARP1 (Active
Motif, 39561) and Streptavidin IRDye 800cw (1:2000, Licor, 925-32230).
RNA extraction and quality control
Total RNA from each time point, specified above was collected from the cells using
QIAGEN RNeasy Plus kit according to the manufacturers provided protocol. Quality
of RNA (RIN metric) was measured using Agilent Technologies 4200 Tapestation
(G2991-90001).
Quantitative RT-PCR
RNA extracted, as described above, was reverse transcribed into cDNA using High-
Capacity Reverse-Transcriptase Kit following manufacturer’s instructions (Applied
biosystems, Thermo Fisher). qRT-PCR was performed using SYBR green gPCR
Universal super mix (Bio-rad), with 500 ng cDNA using primers listed below:

QPCR Primer list
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IL-1B Hs_IL1B_1_SG QuantiTect Primer Assay — QT00021385

IL-6 Hs_IL6_1_SG QuantiTect Primer Assay — QT00083720

IL-8 Hs CXCL8 1 SG QuantiTect Primer Assay — QT00000322
CCNA2 Hs CCNA2 1 SG QuantiTect Primer Assay — QT00014798
CCNE2 Hs CCNE2 1 SG QuantiTect Primer Assay — QT00063511
p16 Hs_CDKN2A_1_SG QuantiTect Primer Assay — QT00089964
GAPDH Hs GAPDH 1 SG QuantiTect Primer Assay — QT00079247
PARP1 Hs PARP1 1 SG QuantiTect Primer Assay — QT00032690

Affymetrix RNA microarrays

Collection of RNA and QC was performed as described above. Whole transcriptome
profiling was performed using Clariom™ D and GeneChip™ WT PLUS Reagent Kit
(Affymetrix/Thermo Fisher) according to the manufacturer’s instructions.

ATAC-seq

Proliferating and senescent WI-38 fibroblasts were treated with 4OHT for 6 days,
followed by treatment (PJ34) or induction of shRNA over time course described.

Method for ATAC-seq was described previously (Zamudio et al., 2019).

Chromatin ADP-ribosylation Affinity Purification (CRAP)

Proliferating and senescent WI-38 fibroblasts treated with 4OHT for 6 days were
washed with PBS and 20 million cells were collected per condition. Cells were spun
down at 2500 rpm for 5 min, 4°C. The cell pellet was transferred to a1.5 mL Eppendorf
tube. Pellet was resuspended in 300 uL of freshly PARP-assay buffer (50mM Tris-Cl
pH8.0, 28mM KCI, 10mM MgClz, 0.01% digitonin, 1ImM DTT, 20uM biotinylated NAD+
(6-biotin-17NAD+ — Trevigin), 500nM ADP-HPD (Merck Chemicals). Cells were
incubated at room temperature for 30 minutes, agitating the tube every 10 minutes.
The labelling reaction was quenched by adding PJ34 to a concentration of 10uM and

immediately transferred to ice for 5 min. Mixture was spun down for 5 min, 2500 RPM,
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4°C and the supernatant discarded. The cell pellet was resuspended in 1 mL cold
PBS, spin down for 5 min at 2500 RPM, 4°C. Supernatant was discarded, and wash
was repeated. 15 mL of 1x PBS was added and transferred to a 50 mL falcon tube.
Cells were cross-linked with 1% formaldehyde (1mL of 16% formaldehyde) and rocked
for 10 min at room temperature.

Cross-linking was quenched with 1mL of 2M glycine and rocked for 5 min. Cells
were spun down at 2500 RPM for 5 min, 4°C. Discard supernatant. Cells were washed
with 1 mL of cold 1xPBS and transferred to a 1.5 mL Eppendorf tube. Nuclei were
isolated and chromatin was digested with 1.2 pyL of Micrococcal Nuclease for 20
minutes at 37°C using the SimpleChlP kit (Cell Signalling). The MNase digestion was
validated through DNA gel electrophoresis to reach a level of 70% mononucleosome
fragments with up to 5 nucleosome fragments visible. Final volume was brought up to
1mL with ChIP dilution buffer. 10uL of diluted chromatin was reserved for input (1%
input).
70uL of streptavidin beads coupled magnetic beads (Dynabeads™ M-280 Streptavidin
— Invitrogen) were washed with ChIP dilution buffer three times. Labelled, MNase
digested chromatin with was incubated with 70uL of washed streptavidin beads over
night at 4°C rotating.

Following incubation, tubes were transferred to magnetic rack and let the beads
separate from the solution for 2 min. Supernatant was removed and samples were
beads were washed with 1mL low-salt buffer (150mM NaCl, 0.1% SDS, 1% Triton
X100, 20mM EDTA, 20mM Tris-Cl PH 8, 10mM Tris-Cl PH 8, 5mM EDTA, 150mM
NaCl, 0.5% SDS). Wash was repeated two times with 1mL high-salt buffer (150 mM

NaCl, 0.1% SDS, 1% Triton X100, 20mM EDTA, 20mM Tris-Cl PH 8, 10mM Tris-Cl
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PH 8, 5mM EDTA, 300mM NaCl, 0.5% SDS), and twice with EDTA Buffer (10mM Tris-
Cl PH 8, 1mM EDTA). For Western blots, beads were resuspended in 1x protein
loading buffer and incubated at 95°C for 5 minutes, and Western blot was performed
as described above.

CRAP-Sequencing

For sequencing of CRAP isolated chromatin, beads were resuspended in 50 yL of
ChIP elution buffer (10 mM Tris-Cl pH 8.0, 5 mM EDTA, 300 mM NaCl, 0.5% SDS)
and treated with 2 yL of RNase A for 30 minutes at 37°C followed by 2 hours incubated
with 1 pL of glycogen (20 mg/mL) and 2.5 pL of Proteinase K. These samples were
de-crosslinked at 65°C over-night. Supernatant was removed from beads and DNA
was extracted with the addition of 1:1 25:24:1 phenol:chloroform:isoamyl alcohol and
subsequent precipitation with ethanol over-night at -20°C with a 1/10 volume of 3M
sodium acetate, MgCl: to a final concentration of 0.01M, 1uL glycogen (20mg/ml). The
DNA pellet was washed 2 times with 70% ethanol and resuspended in 20 yL of low-
EDTA TE buffer. The DNA subsequently underwent library preparation.

DNA preparation for ChIP-Seq and CRAP-seq libraries:

DNA was eluted by phenol/chloroform extraction (2X) followed by ethanol precipitation
overnight at -20°C. The DNA pellet was washed with 70% ethanol, allowed to dry, and
DNA was resuspended in 35 yL 10 mM Tris-Cl pH 8.0. CRAP/ChIP-Seq libraries were
produced following the Accel-NGS 2S Plus DNA Library Kit (#21024), with a modified
protocol where we used 25:24:1 phenol:chloroform:isoamyl alcohol extractions
followed by overnight ethanol precipitation of DNA with 1/10 volume of 3M sodium
acetate, MgClz to a final concentration of 0.01M, 1uL glycogen (20mg/ml) following

each step of the protocol up to the PCR amplification. Before PCR amplification, we
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performed an enrichment for small DNA fragments using Ampure XP (Beckman
coulter) SPRI beads outlined previously in the X-ChIP protocol (Skene and Henikoff,
2015). We performed 9 cycles of PCR amplification, followed by a clean-up as per the
Accel-NGS 2S Plus DNA Library Kit instructions. CRAP/ChIP-Seq libraries underwent
quality control using the 4200 Tape-station (Agilent Technologies, G2991-90001) and
quantified using the Invitrogen Qbit DS DNA HS Assay kit (Q32854). Libraries were
sequenced using an lllumina High-Seq 2500 to a depth of 100 million reads per library.
Chromatin preparation and ChiIP-seq

15 million cells were harvested in 10 million cell aliquots in 15 mL media. Each aliquot
was cross-linked in 1% paraformaldehyde for 10 minutes at room temp. The cross-
linking was quenched with the addition of TmL of 2 M glycine and incubated at room
temperature for 5 minutes. Nuclei were isolated and chromatin was digested with 1.2
uL of Micrococcal Nuclease for 20 minutes at 37°C using the Simple-ChIP kit (Cell
Signaling, #9002). The MNase digestion was validated through DNA gel
electrophoresis to reach a level of 70% mononucleosome fragments with up to 5
nucleosome fragments. 15 million cell equivalents of chromatin were pre-cleared
incubating 12.5 pL of Protein A/G Ultralink resin beads (Thermo Fisher). Chromatin
volume was brought up to 1 mL with ChIP-buffer (Cell Signaling) and inputs were
derived from 500 000 cell equivalents of chromatin. The immunoprecipitation was
performed overnight at 4°C with rotation using 4ug PARP1 antibody (H-250— Santa
Cruz — SC- 7150 — lot K1815). Following immunoprecipitation, 30 pyL of Ultralink resin
beads were added and incubated for 4 hours rotating at 4°C. The beads were pelleted
by centrifugation (1000 RPM) and washed three times in low salt buffer (150 mM NacCl,

0.1% SDS, 1% Triton X-100, 20 mM EDTA, 20 mM Tris-HCI pH 8.0), once in high salt
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buffer (500 mM NaCl, 0.1% SDS, 1% Triton X-100, 20 mM EDTA, 20 mM Tris-HCI pH
8.0), twice in lithium chloride buffer (250 mM LiCl, 1% IGEPAL CA-630, 15 sodium
deoxycholate, 1 mM EDTA, 10 mM Tris- HCI pH 8.0) and twice in TE buffer (10 mM
Tris-HCI, 1 mM EDTA). Washed beads were resuspended in 50 L elution buffer (10
mM Tris-Cl pH 8.0, 5 mM EDTA, 300 mM NaCl, 0.5% SDS) and treated with 2 pyL of
RNase A for 30 minutes at 37°C followed by 2 hours incubated with 1 pyL of glycogen
(20 mg/mL) and 2.5 uL of Proteinase K. These samples were de-crosslinked at 65°C
over-night. DNA was purified with the addition of 1:1 25:24:1
phenol:chloroform:isoamyl alcohol and subsequent precipitation with ethanol over-
night at -20°C with a 1/10 volume of 3M sodium acetate, MgCl: to a final concentration
of 0.01M, 1uL glycogen (20mg/ml). The DNA pellet was washed 2 times with 70%
ethanol and resuspended in 20 yL of low-EDTA TE buffer. The DNA subsequently
underwent library preparation.
Spike-in ChiP-seq

Standard ChlP-seq protocol was performed, with the addition of 1:20 ratio of
drosophila chromatin (Active Motif, 53083) following manufacturer’s instructions. The
immuno-precipitation was performed using the standard PARP1 antibody with an
addition of the drosophila-specific histone variant H2Av spike-in antibody (Active Motif,
61686). The following ChIP and library preparation were performed as described
above.
Quality control of sequencing data
The quality of every library was determined using the fastqc tool

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Reads were

subsequently  trimmed and adapters clipped using the fastg-mcf
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(https://github.com/ExpressionAnalysis/ea-utils/blob/wiki/FastgMcf.md). Only reads

with none of the known high-throughput sequencing adapters, longer than 25 base
pairs, with a mean quality score above 30 and maximum 1 N-call were kept.
ChiP-seq, ATAC-seq and CRAP-seq mapping

High quality single end reads were mapped to the Homo sapiens reference genome
(hg19) using the end-to-end mode and the very-sensitive parametrization of bowtie2

(https://www.ncbi.nim.nih.gov/pubmed/22388286) and keeping the read matches

reported by default. For ATAC-seq only concordant pairs even if they dovetail and with
a maximum fragment size of 2 Kbp were kept. In order to avoid PCR amplification
biases in read quantification, duplicated reads were removed using the MarkDuplicates

tool of Picard v1.94 (htips://broadinstitute.github.io/picard/). Following the ENCODE

guidelines for the analysis of ChlP-seq datasets

(https://www.ncbi.nim.nih.gov/pubmed/22955991) blacklisted regions were removed

with bedtools v2.19.1 (http://bedtools.readthedocs.io/en/latest/)

Quantification and visualization of sequence data

The quality of the ChIP-seq, ATAC-seq and CRAP-seq libraries was checked by
clustering and principal component analysis. Outlying replicates were thus identified
and discarded. Genome browser visualizations were obtained by calculating the read
coverage over non-overlapping windows of 50 bp genome wide. This tiled coverage
was then quantile normalized to allow comparisons between different samples. For the
quantification of ChIP-seq, ATAC-seq and CRAP-seq at specific regions, the
corresponding read coverage was calculated and normalized over 1 Kbp windows
around all the annotated transcription start sites (TTSs) and over active enhancers at

day 6 of RAS OIS induction, as defined by chromatin state analysis of histone
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modifications (ref). The obtained values were normalized using the DESeq2 size

normalization approach (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4302049/)

and by the size of the annotation when necessary. The average coverage profiles
around the TSS were obtained by calculating the read coverage over non-overlapping
windows of 10 bp spanning 1 Kbp around the TTS and normalized by using the
DESeq2 approach. This normalized coverage was then averaged over the gene
categories of interest according to the specific analysis.

Comparative transcriptome analysis

Cell files transcriptome were RMA normalized using the affy R package

(https://doi.org/10.1093/bioinformatics/btg405); they were subsequently annotated

using the pd.clariom.d.human R annotation package

(https://bioconductor.org/packages/release/data/annotation/html/pd.clariom.d.human.

html). To maximize the detection power for the time course analysis, control probe sets
as well as lowly expressed probes were removed. Additionally, batch effects were

identified and removed using the sva package (DOI:_10.18129/B9.bioc.sva).

The normalized and batch corrected expression time courses for PJ and KD treatments
were analyzed with the Transcript time course analysis (TTCA) R package

(https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-016-1440-8)

using default parameters for the lambda smoothing factor and the p-value threshold
for significance tests. The first time point was used as the control proliferative state for
the time course comparison. All genes identified as significantly dynamic by any of the
metrics of the TTCA method were defined as the PJ and KD sensitive genes.

The differential analysis for the RAS time course was performed as described in

(Zamudio et al., 2019)
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Functional analysis of PJ and KD time-course transcriptomes
The functional analysis of the pathways affected by the PJ and KD treatments was
done using GAGE

(https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-10-161), a

generalized version of the gene set analysis (GSA) method and the kegg.gs data
collection of up-to-date gene sets from the KEGG. All time points were compared to
the initial one (Oh for PJ and day 0 for KD) and gene sets significantly enriched
(adjusted p-value < .075) with up or down regulated genes were identified for each
transcriptome.

ADP-ribosylation quantification and comparison

A metric had to be developed to translate the sequencing information of the CRAP-seq
technique into a quantification of ADP-ribosylation changes during OIS RAS induction.
The broad distribution and the high variability of this signal prevented the application
of peak-calling or differential analysis-based approaches. As an alternative, the non-
parametric Kolmogorov-Smirnov statistic was used, which quantifies the distance
between the empirical distribution function of the signal between any two samples,
which we called KS metric. This test can be applied to the distribution of the CRAP-
seq signal calculated over any set of annotations, e.g. TSSs, enhancers, as the
average read coverage normalised by size (Figure S1 A and B). Moreover, itis possible
to test both the gain and loss of ADP-ribosylation by setting the alternative hypothesis
of the Kolmogorov-Smirnov test. For example, to quantify the gain in ADP-ribosylation
between day 6 and 0, the alternative hypothesis will be that the empirical distribution
function of day 0 is not greater than that of day 6. When applied to the comparison of

the CRAP-seq signal between day 6 and 0, the KS metric reproduces the global

131



ROBINSON Lucas - Thése de doctorat - 2019

increase in ADP-ribosylation. Additionally, the KS metric detects a significant increase
only for the PLUS NAD+* condition and not for the MINUS NAD*+, indicating that it
efficiently distinguishes biologically relevant differences from the technical variation
intrinsic to the CRAP-seq technique.
PARP1 binding analysis
PARP1 binding was explored by quantifying and plotting the average ChIP-seq
coverage up and downstream from the TSS of various gene categories. In order to
study the differential phasing of the PARP1 signal around the TSS and autocorrelation
analysis of this average signal was performed. For each coverage profile 2 calculations
were done: from the TSS downstream and from the TSS upstream. The resulting
autocorrelation vectors were then merged at the TSS, which corresponds to lag 0 and
thus the autocorrelation maxima. The function shows up and down stream minima for
the distances at which there is a maximum average enrichment of PARP1 ChlIP-seq
coverage around the nucleus. These distances are subsequently compared to the
nucleosome positioning.
Transcription factor footprinting

In silico foot-printing was performed as described previously (Zamudio et al.,
2019).
Chromatin state differential analysis

Chromatin state analysis was performed as described previously (Zamudio et

al., 2019).

132



ROBINSON Lucas - Thése de doctorat - 2019

133



ROBINSON Lucas - Thése de doctorat - 2019

/. Bibliography

134



ROBINSON Lucas - Thése de doctorat - 2019

Acosta, J.C., O’Loghlen, A., Banito, A., Guijarro, M. V, Augert, A., Raguz, S., Fumagalli, M.,
Da Costa, M., Brown, C., Popov, N., et al. (2008). Chemokine signaling via the CXCR2
receptor reinforces senescence. Cell 133, 1006—1018.

Acosta, J.C., Banito, A., Wuestefeld, T., Georgilis, A., Janich, P., Morton, J.P., Athineos, D.,
Kang, T.-W., Lasitschka, F., Andrulis, M., et al. (2013). A complex secretory program
orchestrated by the inflammasome controls paracrine senescence. Nat. Cell Biol. 15, 978—
990.

Adams, P.D. (2007). Remodeling of chromatin structure in senescent cells and its potential
impact on tumor suppression and aging. Gene 397, 84—93.

Agresti, A., and Bianchi, M.E. (2003). HMGB proteins and gene expression. Curr. Opin. Genet.
Dev. 13, 170-178.

Aguilar-Quesada, R., Munoz-Gamez, J., Martin-Oliva, D., Peralta, A., Valenzuela, M.T.,
Matinez-Romero, R., Quiles-Pérez, R., Murcia, J., de Murcia, G., de Almodévar, M., et al.
(2007). Interaction between ATM and PARP-1 in response to DNA damage and sensitization
of ATM deficient cells through PARP inhibition. BMC Mol. Biol. 8, 29.

Ahel, D., Ho, Z., Wiechens, N., Polo, S.E., Garcia-, E., Owen-hughes, T., and Boulton, S.J.
(2012). MEU AGRADECIMENTO AOS CRIACIONISTAS (comentado) . 325, 1240—1243.

Aird, K.M., Worth, A.J., Snyder, N.W., Lee, J. V., Sivanand, S., Liu, Q., Blair, I.A., Wellen, K.E.,
and Zhang, R. (2015). ATM Couples Replication Stress and Metabolic Reprogramming during
Cellular Senescence. Cell Rep. 11, 893-901.

Alemasova, E.E., and Lavrik, O.l. (2019). Poly(ADP-ribosyl)ation by PARP1: reaction
mechanism and regulatory proteins. Nucleic Acids Res. 1-17.

Alexander, K., Yang, H.-S., and Hinds, P.W. (2003). pRb inactivation in senescent cells leads
to an E2F-dependent apoptosis requiring p73. Mol. Cancer Res. 1, 716-728.

Allsopp, R.C., Vaziri, H., Pattersont, C., Goldsteint, S., Younglai, E. V, Futcher, A.B., Greidert,
C.W., and Harley, C.B. (1992). Telomere length predicts replicative capacity of human
fibroblasts. Biochemistry 89, 10114-10118.

Alvarez-Gonzalez, R., and Althaus, F.R. (1989). Poly(ADP-ribose) catabolism in mammalian
cells exposed to DNA-damaging agents. Mutat. Res. 218, 67-74.

Amiri, K.I., Ha, H.C., Smulson, M.E., and Richmond, A. (2006). Differential regulation of CXC
ligand 1 transcription in melanoma cell lines by poly(ADP-ribose) polymerase-1. Oncogene 25,
7714-7722.

Anderson, M.G., Scoggin, K.E.S., and Simbulan-rosenthal, C.M. (2000). Identification of Poly
(ADP-Ribose ) Polymerase as a Transcriptional Coactivator of the Human T-Cell Leukemia
Virus Type 1 Tax Protein. 74, 2169-2177.

Anderson, R.M., Bitterman, K.J., Wood, J.G., Medvedik, O., and Sinclair, D.A. (2003).

Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharomyces
cerevisiae. Nature 423, 181-185.

135



ROBINSON Lucas - Thése de doctorat - 2019

Armata, H.L., Garlick, D.S., and Sluss, H.K. (2007). The ataxia telangiectasia-mutated target
site Ser18 is required for p53-mediated tumor suppression. Cancer Res. 67, 11696—11703.

Astle, M. V., Hannan, K.M., Ng, P.Y., Lee, R.S., George, A.J., Hsu, A.K., Haupt, Y., Hannan,
R.D., and Pearson, R.B. (2012). AKT induces senescence in human cells via mTORC1 and
p53 in the absence of DNA damage: Implications for targeting mTOR during malignancy.
Oncogene 31, 1949-1962.

Ba, X., and Garg, N.J. (2011). Signaling mechanism of poly(ADP-ribose) polymerase-1
(PARP-1) in inflammatory diseases. Am. J. Pathol. 178, 946—955.

Bai, P. (2015). Biology of Poly(ADP-Ribose) Polymerases: The Factotums of Cell
Maintenance. Mol. Cell 58, 947—958.

Bai, P., Canto, C., Oudart, H., Brunyanszki, A., Cen, Y., Thomas, C., Yamamoto, H., Huber,
A., Kiss, B., Houtkooper, R.H., et al. (2011a). PARP-1 Inhibition Increases Mitochondrial
Metabolism through SIRT1 Activation. Cell Metab. 13, 461-468.

Bai, P., Canto, C., Oudart, H., Brunyanszki, A., Cen, Y., Thomas, C., Yamamoto, H., Huber,
A., Kiss, B., Houtkooper, R.H., et al. (2011b). PARP-1 Inhibition Increases Mitochondrial
Metabolism through SIRT1 Activation. Cell Metab. 13, 461-468.

Baker, D.J., Childs, B.G., Durik, M., Wijers, M.E., Sieben, C.J., Zhong, J., Saltness, R.A,,
Jeganathan, K.B., Casaclang Verzosa, G., Pezeshki, A., et al. (2016). Naturally occurring p16
Ink4a -positive cells shorten healthy lifespan. Nature 530, 1-5.

Baker, D.J., Alimirah, F., van Deursen, J.M., Campisi, J., and Hildesheim, J. (2017). Oncogenic
senescence: a multi-functional perspective. Oncotarget 8, 27661-27672.

Balentien, E., Mufson, B.E., Shattuck, R.L., Derynck, R., and Richmond, A. (1991). Effects of
MGSA/GRO alpha on melanocyte transformation. Oncogene 6, 1115—-1124.

Barkauskaite, E., Jankevicius, G., and Ahel, I. (2015). Structures and Mechanisms of Enzymes
Employed in the Synthesis and Degradation of PARP-Dependent Protein ADP-Ribosylation.
Mol. Cell 58, 935-946.

Bartolomei, G., Leutert, M., Manzo, M., Baubec, T., and Hottiger, M.O. (2016). Analysis of
Chromatin ADP-Ribosylation at the Genome-wide Level and at Specific Loci by ADPr-ChAP.
Mol. Cell 61, 474—-485.

Bauer, P.l., Buki, K.G., Hakam, A., and Kun, E. (1990). Macromolecular association of ADP-
ribosyltransferase and its correlation with enzymic activity. Biochem. J. 270, 17-26.

Beauséjour, C.M., Krtolica, A., Galimi, F., Narita, M., Lowe, S.W., Yaswen, P., and Campisi, J.
(2003). Reversal of human cellular senescence: roles of the p53 and p16 pathways. EMBO J.
22, 4212-4222.

Benhamed, M., Herbig, U., Ye, T., Dejean, A., and Bischof, O. (2012). Senescence is an
endogenous trigger for microRNA-directed transcriptional gene silencing in human cells. Nat.
Cell Biol. 14, 266—-275.

Berti, M., Ray Chaudhuri, A., Thangavel, S., Gomathinayagam, S., Kenig, S., Vujanovic, M.,

136



ROBINSON Lucas - Thése de doctorat - 2019

Odreman, F., Glatter, T., Graziano, S., Mendoza-Maldonado, R., et al. (2013). Human RECQ1
promotes restart of replication forks reversed by DNA topoisomerase | inhibition. Nat. Struct.
Mol. Biol. 20, 347-354.

Bielak-Zmijewska, A., Wnuk, M., Przybylska, D., Grabowska, W., Lewinska, A., Alster, O.,
Korwek, Z., Cmoch, A., Myszka, A., Pikula, S., et al. (2014). A comparison of replicative
senescence and doxorubicin-induced premature senescence of vascular smooth muscle cells
isolated from human aorta. Biogerontology 15, 47—-64.

Bischof, O., Schwamborn, K., Martin, N., Werner, A., Sustmann, C., Grossched|, R., and
Dejean, A. (2006). The E3 SUMO Ligase PIASy Is a Regulator of Cellular Senescence and
Apoptosis. Mol. Cell 22, 783-794.

Boehm, A.K., Saunders, A., Werner, J., and Lis, J.T. (2003). Transcription factor and
polymerase recruitment, modification, and movement on dhsp70 in vivo in the minutes
following heat shock. Mol. Cell. Biol. 23, 7628-7637.

Bosari, S., Marchetti, A., Buttitta, F., Graziani, D., Borsani, G., Loda, M., Bevilacqua, G., and
Coggi, G. (1995). Detection of p53 mutations by single-strand conformation polymorphisms
(SSCP) gel electrophoresis. A comparative study of radioactive and nonradioactive silver-
stained SSCP analysis. Diagn. Mol. Pathol. 4, 249-255.

Boulares, A.H., Zoltoski, A.J., Sherif, Z.A., Jolly, P., Massaro, D., and Smulson, M.E. (2003).
Gene knockout or pharmacological inhibition of poly(ADP-ribose) polymerase-1 prevents lung
inflammation in a murine model of asthma. Am. J. Respir. Cell Mol. Biol. 28, 322—329.

Brady, C.A., and Attardi, L.D. (2010). p53 at a glance. J. Cell Sci. 123, 2527-2532.

Brehm, A., Miska, E.A., McCance, D.J., Reid, J.L., Bannister, A.J., and Kouzarides, T. (1998).
Retinoblastoma protein recruits histone deacetylase to repress transcription. Nature 391, 597—
601.

Burton, D.G. a., and Faragher, R.G. a. (2015). Cellular senescence: from growth arrest to
immunogenic conversion. Age (Omaha). 37.

Burton, D.G.A., Moshayev, Z., Vadai, E., Wensveen, F., Golani, O., Polic, B., and
Krizhanovsky, V. (2016). NKG2D ligands mediate immunosurveillance of senescent cells. 8,
328-344.

Bussian, T.J., Aziz, A., Meyer, C.F., Swenson, B.L., van Deursen, J.M., and Baker, D.J. (2018).
Clearance of senescent glial cells prevents tau-dependent pathology and cognitive decline.
Nature 562, 578-582.

Butler, A.J., and Ordahl, C.P. (1999). Poly ( ADP-Ribose ) Polymerase Binds with Transcription
Enhancer Factor 1 to MCAT1 Elements To Regulate Muscle-Specific Transcription. 19, 296—
306.

Caiafa, P., Guastafierro, T., and Zampieri, M. (2009). Epigenetics: poly(ADP-ribosyl)ation of
PARP-1 regulates genomic methylation patterns. FASEB J. 23, 672—678.

Campisi, J. (1997). The biology of replicative senescence. Eur. J. Cancer 33, 703-709.

137



ROBINSON Lucas - Thése de doctorat - 2019

Campisi, J., and d’Adda di Fagagna, F. (2007). Cellular senescence: when bad things happen
to good cells. Nat. Rev. Mol. Cell Biol. 8, 729-740.

Campisi, J., Andersen, J.K., Kapahi, P., and Melov, S. (2011). Cellular senescence: A link
between cancer and age-related degenerative disease? Semin. Cancer Biol. 21, 354-359.

Canto, C., Oudart, H., Brunya, A., Cen, Y., Thomas, C., Yamamoto, H., Houtkooper, R.H.,
Schoonjans, K., Sauve, A.A., and Huber, A. (2011). Short Article PARP-1 Inhibition Increases
Mitochondrial Metabolism through SIRT1 Activation. 1720.

Canto, C., Sauve, A.A., and Bai, P. (2013). Crosstalk between poly(ADP-ribose) polymerase
and sirtuin enzymes. Mol. Aspects Med. 34, 1168—1201.

Carrel, A. (1912). On the permanent life of tissues outside of the organism. J. Exp. Med. 15,
75 and 76.

Cech, T.R. (2004). Beginning to understand the end of the chromosome. Cell 116, 273-279.

Cervellera, M.N., and Sala, A. (2000). Poly ( ADP-ribose ) Polymerase Is a B-MYB Coactivator
. 275, 10692—-10696.

Chandra, T., Kirschner, K., Thuret, J.Y., Pope, B.D., Ryba, T., Newman, S., Ahmed, K,
Samarajiwa, S.A., Salama, R., Carroll, T., et al. (2012). Independence of Repressive Histone
Marks and Chromatin Compaction during Senescent Heterochromatic Layer Formation. Mol.
Cell 47, 203-214.

Chandra, T., Ewels, P.A., Schoenfelder, S., Furlan-Magaril, M., Wingett, S.W., Kirschner, K.,
Thuret, J.-Y., Andrews, S., Fraser, P., and Reik, W. (2015a). Global Reorganization of the
Nuclear Landscape in Senescent Cells. Cell Rep. 10, 471-483.

Chandra, T., Ewels, P.A., Schoenfelder, S., Furlan-Magaril, M., Wingett, S.W., Kirschner, K.,
Thuret, J.-Y., Andrews, S., Fraser, P., and Reik, W. (2015b). Global Reorganization of the
Nuclear Landscape in Senescent Cells. Cell Rep. 10, 471-483.

Chang, W., and Alvarez-Gonzalez, R. (2001). The Sequence-specific DNA Binding of NF-kB
Is Reversibly Regulated by the Automodification Reaction of Poly (ADP-ribose) Polymerase 1.
J. Biol. Chem. 276, 47664—-47670.

Chen, H., Ruiz, P.D., Novikov, L., Casill, A.D., Park, J.W., and Gamble, M.J. (2014).
MacroH2A1.1 and PARP-1 cooperate to regulate transcription by promoting CBP-mediated
H2B acetylation. Nat. Struct. Mol. Biol. 271, 981-989.

Chen, Q., Fischer, A., Reagan, J.D., Yan, L.J., and Ames, B.N. (1995). Oxidative DNA damage
and senescence of human diploid fibroblast cells. Proc. Natl. Acad. Sci. U. S. A. 92, 4337—-
4341.

Chen, Q.M., Bartholomew, J.C., Campisi, J., Acosta, M., Reagan, J.D., and Ames, B.N. (1998).
Molecular analysis of H202-induced senescent-like growth arrest in normal human fibroblasts:
p53 and Rb control G1 arrest but not cell replication. Biochem. J. 332, 43.

Chiche, A., Le Roux, I., von Joest, M., Sakai, H., Aguin, S.B., Cazin, C., Salam, R., Fiette, L.,
Alegria, O., Flamant, P., et al. (2016). Injury-Induced Senescence Enables In Vivo

138



ROBINSON Lucas - Thése de doctorat - 2019

Reprogramming in Skeletal Muscle. Cell Stem Cell 1-8.

Chien, Y., Scuoppo, C., Wang, X., Fang, X., Balgley, B., Bolden, J.E., Premsrirut, P., Luo, W.,
Chicas, A., Lee, C.S., et al. (2011). Control of the senescence-associated secretory phenotype
by NF-kB promotes senescence and enhances chemosensitivity. Genes Dev. 25, 2125-2136.

Childs, B.G., Baker, D.J., Kirkland, J.L., Campisi, J., and Deursen, J.M. Van (2014).
Senescence and apoptosis : dueling or complementary cell fates ? 15, 1139—-1154.

Chiou, S.-H., Jiang, B.-H., Yu, Y.-L., Chou, S.-J., Tsai, P.-H., Chang, W.-C., Chen, L.-K., Chen,
L.-H., Chien, Y., and Chiou, G.-Y. (2013). Poly(ADP-ribose) polymerase 1 regulates nuclear
reprogramming and promotes iPSC generation without c-Myc. J. Exp. Med. 210, 85-98.

Chou, D.M., Adamson, B., Dephoure, N.E., Tan, X., Nottke, A.C., and Hurov, K.E. (2010). A
chromatin localization screen reveals poly ( ADP ribose ) -regulated recruitment of the
repressive polycomb and NuRD complexes to sites of DNA damage. 707, 18475—18480.

Ciccarone, F., Zampieri, M., and Caiafa, P. (2017). PARP1 orchestrates epigenetic events
setting up chromatin domains. Semin. Cell Dev. Biol. 63, 123—134.

Cohen-armon, M., Visochek, L., Rozensal, D., Kalal, A., and Geistrikh, 1. (2007). Article by
Phosphorylated ERK2 Increases Elk1 Activity : A Link to Histone Acetylation. 297-308.

Cohen-Armon, M. (2007). PARP-1 activation in the ERK signaling pathway. Trends
Pharmacol. Sci. 28, 556-560.

Collado, M., Blasco, M.A., and Serrano, M. (2007). Cellular Senescence in Cancer and Aging.
Cell 130, 223—-233.

Collesano, M., Sala, A., Rocca, G. La, Burgio, G., Kotova, E., Gesu, D. Di, Ingrassia, AAM.R.,
Tulin, A. V, and Corona, D.F. V (2008). The Nucleosome-Remodeling ATPase ISWI Is
Regulated by Poly-ADP-Ribosylation. 6.

Contrepois, K., Coudereau, C., Benayoun, B.A., Schuler, N., Roux, P.F., Bischof, O.,
Courbeyrette, R., Carvalho, C., Thuret, J.Y., Ma, Z., et al. (2017). Histone variant H2A.J
accumulates in senescent cells and promotes inflammatory gene expression. Nat. Commun.
8.

Coppé, J.-P., Patil, C.K., Rodier, F., Sun, Y., Mufioz, D.P., Goldstein, J., Nelson, P.S., Desprez,
P.-Y., and Campisi, J. (2008). Senescence-associated secretory phenotypes reveal cell-
nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 6,
2853-2868.

Coppé, J.-P., Patil, C.K., Rodier, F., Krtolica, A., Beauséjour, C.M., Parrinello, S., Hodgson,
J.G., Chin, K., Desprez, P.-Y., and Campisi, J. (2010a). A human-like senescence-associated
secretory phenotype is conserved in mouse cells dependent on physiological oxygen. PLoS
One 5, €9188.

Coppé, J.-P., Desprez, P., Krtolica, A., and Campisi, J. (2010b). The Senescence-Associated
Secretory Phenotype: The Dark Side of Tumor Suppression. Annu. Rev. Pathol. Mech. Dis. 5,
99-118.

139



ROBINSON Lucas - Thése de doctorat - 2019

Corpet, A., and Stucki, M. (2014). Chromatin maintenance and dynamics in senescence: a
spotlight on SAHF formation and the epigenome of senescent cells. Chromosoma 123, 423—
436.

Courtois-Cox, S., Genther Williams, S.M., Reczek, E.E., Johnson, B.W., McGillicuddy, L.T.,
Johannessen, C.M., Hollstein, P.E., MacCollin, M., and Cichowski, K. (2006). A negative
feedback signaling network underlies oncogene-induced senescence. Cancer Cell 10, 459—
472.

Criscione, S.W., Teo, Y.V., and Neretti, N. (2016a). The Chromatin Landscape of Cellular
Senescence. Trends Genet. 32, 751-761.

Criscione, S.W., De Cecco, M., Siranosian, B., Zhang, Y., Kreiling, J.A., Sedivy, J.M., and
Neretti, N. (2016b). Reorganization of chromosome architecture in replicative cellular
senescence. Sci. Adv. 2, e1500882.

Criscione, S.W., De Cecco, M., Siranosian, B., Zhang, Y., Kreiling, J.A., Sedivy, J.M., and
Neretti, N. (2016c). Reorganization of chromosome architecture in replicative cellular
senescence. Sci. Adv. 2, e1500882.

D’Adda di Fagagna, F. (2008). Living on a break: cellular senescence as a DNA-damage
response. Nat. Rev. Cancer 8, 512-522.

D’Adda di Fagagna, F., Reaper, P.M., Clay-Farrace, L., Fiegler, H., Carr, P., von Zglinicki, T.,
Saretzki, G., Carter, N.P., and Jackson, S.P. (2003). A DNA damage checkpoint response in
telomere-initiated senescence. Nature 426, 194—198.

D’Adda Di Fagagna, F. (2008). Living on a break: Cellular senescence as a DNA-damage
response. Nat. Rev. Cancer 8, 512-522.

D’Amours, D., and Jackson, S.P. (2002). The MRE11 complex: at the crossroads of DNA repair
and checkpoint signalling. Nat. Rev. Mol. Cell Biol. 3, 317-327.

D’Amours, D., Desnoyers, S., D’Silva, |., and Poirier, G.G. (1999). Poly(ADP-ribosyl)ation
reactions in the regulation of nuclear functions. Biochem. J. 342 ( Pt 2, 249-268.

D’Andrea, A.D. (2018). Mechanisms of PARP inhibitor sensitivity and resistance. DNA Repair
(Amst). 71.

Dahl, M., Maturi, V., L6nn, P., Papoutsoglou, P., Zieba, A., Vanlandewijck, M., Van Der Heide,
L.P., Watanabe, Y., Sdderberg, O., Hottiger, M.O., et al. (2014). Fine-tuning of smad protein
function by poly(ADP-ribose) polymerases and poly(ADP-ribose) glycohydrolase during
transforming growth factor 3 signaling. PLoS One 9.

Dantzer, F., and Santoro, R. (2013). The expanding role of PARPs in the establishment and
maintenance of heterochromatin. FEBS J.

Datto, M.B., Li, Y., Panus, J.F., Howe, D.J., Xiong, Y., and Wang, X.F. (2006). Transforming
growth factor beta induces the cyclin-dependent kinase inhibitor p21 through a p53-
independent mechanism. Proc. Natl. Acad. Sci. 92, 5545-5549.

Debacg-Chainiaux, F., Erusalimsky, J.D., Campisi, J., and Toussaint, O. (2009). Protocols to

140



ROBINSON Lucas - Thése de doctorat - 2019

detect senescence-associated beta-galactosidase (SA-betagal) activity, a biomarker of
senescent cells in culture and in vivo. Nat. Protoc. 4, 1798—-1806.

Demaria, M., O’leary, M.N., Chang, J., Shao, L., Liu, S., Alimirah, F., Koenig, K., Le, C., Mitin,
N., Deal, A.M., et al. (2017). Cellular senescence promotes adverse effects of chemotherapy
and cancer relapse. Cancer Discov 7, 165—-176.

Van Deursen, J.M. (2014). The role of senescent cells in ageing. Nature 509, 439-446.

DiMauro, T., Cantor, D.J., Bainor, A.J., and David, G. (2015). Transcriptional repression of
Sin3B by Bmi-1 prevents cellular senescence and is relieved by oncogene activation.
Oncogene 34, 4011-4017.

Dimri, G.P., Lee, X., Basile, G., Acosta, M., Scott, G., Roskelley, C., Medrano, E.E., Linskens,
M., Rubelj, I., and Pereira-Smith, O. (1995). A biomarker that identifies senescent human cells
in culture and in aging skin in vivo. Proc. Natl. Acad. Sci. U. S. A. 92, 9363-9367.

Dou, Z., Ghosh, K., Vizioli, M.G., Zhu, J., Sen, P., Wangensteen, K.J., Simithy, J., Lan, Y., Lin,
Y., Zhou, Z., et al. (2017). Cytoplasmic chromatin triggers inflammation in senescence and
cancer. Nature 550, 402—406.

Du, X., Matsumura, T., Edelstein, D., Rossetti, L., and Brownlee, M. (2003). Inhibition of
GAPDH activity. J. Clin. Invest. 112, 1049-1057.

Dynlacht, B.D., Lees, J.A., and Harlow, E. (1994). Differential regulation of E2F trans-activation
by cyclin / cdk2 complexes. 130, 1772—1786.

Eggert, T., Wolter, K., Ji, J., Ma, C., Yevsa, T., Klotz, S., Medina-Echeverz, J., Longerich, T.,
Forgues, M., Reisinger, F., et al. (2016a). Distinct Functions of Senescence-Associated
Immune Responses in Liver Tumor Surveillance and Tumor Progression. Cancer Cell 30, 533—
547.

Eggert, T., Wolter, K., Ji, J., Ma, C., Yevsa, T., Klotz, S., Medina-Echeverz, J., Longerich, T.,
Forgues, M., Reisinger, F., et al. (2016b). Distinct Functions of Senescence-Associated
Immune Responses in Liver Tumor Surveillance and Tumor Progression. Cancer Cell 30, 533—
547.

Eggert, T., Wolter, K., Ji, J., Ma, C., Yevsa, T., Klotz, S., Medina-Echeverz, J., Longerich, T.,
Forgues, M., Reisinger, F., et al. (2016c). Distinct Functions of Senescence-Associated
Immune Responses in Liver Tumor Surveillance and Tumor Progression. Cancer Cell 30, 533—
547.

El-Hamoly, T., and Heged(s, C, Lakatos, P., Kovacs, K., Bai, P., EI-Ghazaly, M., EI-Denshary,
E., Szabo, E., Virag, L. (2014). Activation of Poly (ADP-Ribose) Polymerase 1 delays wound
healing by regulating keratinocyte migration and production of inflammatory medators. Mol.
Med. 20, 1.

El-khamisy, S.F., Masutani, M., Suzuki, H., and Caldecott, K.W. (2003). A requirement for
PARP-1 for the assembly or stability of XRCC1 nuclear foci at sites of oxidative DNA damage.
31, 5526-5533.

Erener, S., Hesse, M., Kostadinova, R., and Hottiger, M.O. (2012). Poly(ADP-

141



ROBINSON Lucas - Thése de doctorat - 2019

Ribose)Polymerase-1 (PARP1) Controls Adipogenic Gene Expression and Adipocyte
Function. Mol. Endocrinol. 26, 79-86.

Ernest Kun, *, Eva Kirsten, Jerome Mendeleyev, and, and Charles P. Ordahl, * (2005).
Regulation of the Enzymatic Catalysis of Poly(ADP-ribose) Polymerase by dsDNA,
Polyamines, Mg2+, Ca2+, Histones H1 and H3, and ATP, by.

Falck, J., Coates, J., and Jackson, S.P. (2005). Conserved modes of recruitment of ATM, ATR
and DNA-PKcs to sites of DNA damage. Nature 434, 605-611.

Fan, D.N.Y., and Schmitt, C.A. (2017). Detecting Markers of Therapy-Induced Senescence in
Cancer Cells. pp. 41-52.

Feng, X.-H., and Derynck, R. (2005). SPECIFICITY AND VERSATILITY IN TGF-B
SIGNALING THROUGH SMADS. Annu. Rev. Cell Dev. Biol. 21, 659—693.

Fischbach, A., Kr, A., Hampp, S., Assmann, G., Rank, L., Fischer, J.M.F., Veith, S., Hufnagel,
M., St, M.T., Rossatti, P., et al. (2018). The C-terminal domain of p53 orchestrates the interplay
between non-covalent and covalent poly ( ADP-ribosyl ) ation of p53 by PARP1. 46, 804—-822.

Freund, A., Patil, C.K., and Campisi, J. (2011). P38MAPK is a novel DNA damage response-
independent regulator of the senescence-associated secretory phenotype. EMBO J. 30, 1536—
1548.

Frizzell, K.M., and Kraus, W.L. (2009). PARP inhibitors and the treatment of breast cancer:
Beyond BRCA1/2? Breast Cancer Res. 11, 11-12.

Fumagalli, M., Rossiello, F., Clerici, M., Barozzi, S., Cittaro, D., Kaplunov, J.M., Bucci, G.,
Dobreva, M., Matti, V., Beausejour, C.M., et al. (2012). Telomeric DNA damage is irreparable
and causes persistent DNA-damage-response activation. Nat. Cell Biol. 74, 355-365.

Fyhrquist, F., Saijonmaa, O., and Strandberg, T. (2013). The roles of senescence and telomere
shortening in cardiovascular disease. Nat. Rev. Cardiol. 10, 274-283.

Galande, S., and Kohwi-Shigematsu, T. (1999). Poly(ADP-ribose) Polymerase and Ku
Autoantigen Form a Complex and Synergistically Bind to Matrix Attachment Sequences. J.
Biol. Chem. 274, 20521-20528.

Galluzzi, L., Bravo-San Pedro, J.M., and Kroemer, G. (2016). Autophagy Mediates Tumor
Suppression via Cellular Senescence. Trends Cell Biol. 26, 1-3.

Gao, F., Kwon, S.W., Zhao, Y., and Jin, Y. (2009). PARP1 Poly(ADP-ribosyl)ates Sox2 to
Control Sox2 Protein Levels and FGF4 Expression during Embryonic Stem Cell Differentiation.
J. Biol. Chem. 284, 22263-22273.

Gewirtz, D.A., Holt, S.E., and Elmore, L.W. (2008). Accelerated senescence: An emerging role
in tumor cell response to chemotherapy and radiation. Biochem. Pharmacol. 76, 947-957.

Ghonim, M.A., Pyakurel, K., Ibba, S. V, Wang, J., Rodriguez, P., Al-khami, A.A., Lammi, M.R.,

Kim, H., Zea, A.H., Davis, C., et al. (2015). PARP is activated in human asthma and its
inhibition by olaparib blocks house dust mite-induced disease in mice. 951-962.

142



ROBINSON Lucas - Thése de doctorat - 2019

Gibbs-Seymour, I., Fontana, P., Rack, J.G.M., and Ahel, I. (2016). HPF1/C4orf27 Is a PARP-
1-Interacting Protein that Regulates PARP-1 ADP-Ribosylation Activity. Mol. Cell 62, 432—442.

Gibson, B.A., and Kraus, W.L. (2012). New insights into the molecular and cellular functions
of poly(ADP-ribose) and PARPs. Nat. Rev. Mol. Cell Biol. 13, 411-424.

Gibson, B.A., Zhang, Y., Jiang, H., Hussey, K.M., Shrimp, J.H., Lin, H., Schwede, F., Yu, Y.,
and Kraus, W.L. (2016). Chemical genetic discovery of PARP targets reveals a role for PARP-
1 in transcription elongation. Science (80-. ). 353, 45-50.

Glick, S., Guey, B., Gulen, M.F., Wolter, K., Kang, T.-W., Schmacke, N.A., Bridgeman, A,
Rehwinkel, J., Zender, L., and Ablasser, A. (2017). Innate immune sensing of cytosolic
chromatin fragments through cGAS promotes senescence. Nat. Cell Biol. 19.

Gorgoulis, V.G., and Halazonetis, T.D. (2010). Oncogene-induced senescence: the bright and
dark side of the response. Curr. Opin. Cell Biol. 22, 816-827.

Gottschalk, A.J., Timinszky, G., Kong, S.E., Jin, J., Cai, Y., Swanson, S.K., Washburn, M.P.,
Florens, L., Ladurner, A.G., Conaway, J.W., et al. (2009). Poly(ADP-ribosyl)ation directs
recruitment and activation of an ATP-dependent chromatin remodeler. Proc. Natl. Acad. Sci.
106, 13770-13774.

Gradwohl, G., Mazen, A., and Murcia, G. de (1987). Poly(ADP-ribose) polymerase forms loops
with DNA. Biochem. Biophys. Res. Commun. 748, 913-919.

Guetg, C., Scheifele, F., Rosenthal, F., Hottiger, M.O., and Santoro, R. (2012). Inheritance of
Silent rDNA Chromatin Is Mediated by PARP1 via Noncoding RNA. Mol. Cell 45, 790-800.

Gupte, R., Liu, Z., and Kraus, W.L. (2017). PARPs and ADP-ribosylation: recent advances
linking molecular functions to biological outcomes. Genes Dev. 31, 101-126.

Ha, H.C. (2004). Defective transcription factor activation for proinflammatory gene expression
in poly(ADP-ribose) polymerase 1-deficient glia. Proc. Natl. Acad. Sci. U. S. A. 101, 5087—
5092.

Ha, H.C., and Snyder, S.H. (1999). Poly(ADP-ribose) polymerase is a mediator of necrotic cell
death by ATP depletion. Proc. Natl. Acad. Sci. U. S. A. 96, 13978—-13982.

Haferkamp, S., Tran, S.L., Becker, T.M., Scurr, L.L., Kefford, R.F., and Rizos, H. (2009). The
relative contributions of the p53 and pRb pathways in oncogene-induced melanocyte
senescence. Aging (Albany. NY). 1, 542-556.

Haince, J.-F., Kozlov, S., Dawson, V.L., Dawson, T.M., Hendzel, M.J., Lavin, M.F., and Poirier,
G.G. (2007). Ataxia Telangiectasia Mutated ( ATM ) Signaling Network Is Modulated by a Novel
Poly ( ADP-ribose ) -dependent Pathway in the Early Response to DNA-damaging Agents * o.
282, 16441-16453.

Haince, J.F., McDonald, D., Rodrigue, A., Déry, U., Masson, J.Y., Hendzel, M.J., and Poirier,
G.G. (2008). PARP1-dependent kinetics of recruitment of MRE11 and NBS1 proteins to
multiple DNA damage sites. J. Biol. Chem. 283, 1197—-1208.

Hanzelmann, S., Beier, F., Gusmao, E.G., Koch, C.M., Hummel, S., Charapitsa, |., Joussen,

143



ROBINSON Lucas - Thése de doctorat - 2019

S., Benes, V., Brummendorf, T.H., Reid, G., Wagner, W. (2015). Replicative senescence is
associated with nuclear reorganization and with DNA methylation at specific transcription
factor binding sites. Clin. Epigenetics 7, 19.

Hara, E., Smith, R., Parry, D., Tahara, H., Stone, S., and Peters, G. (1996). Regulation of
p16CDKN2 expression and its implications for cell immortalization and senescence. Mol. Cell.
Biol. 16, 859-867.

Hardy, K., Mansfield, L., Mackay, a, Benvenuti, S., Ismail, S., Arora, P., O’'Hare, M.J., and Jat,
P.S. (2005). Transcriptional networks and cellular senescence in human mammary fibroblasts.
Mol. Biol. Cell 16, 943-953.

Harman, D. (1991). The aging process: major risk factor for disease and death. Proc. Natl.
Acad. Sci. U. S. A. 88, 5360-5363.

Harris, C.C. (1996). Structure and Function of the p53 Tumor Suppressor Gene: Clues for
Rational Cancer Therapeutic Strategies. 88.

Hassa, P.O., and Hottiger, M.O. (1999). A Role of Poly (ADP-Ribose) Polymerase in NF- B
Transcriptional Activation. Biol. Chem. 380, 953—959.

Hassa, P.O., Covic, M., Hasan, S., Imhof, R., and Hottiger, M.O. (2001). The Enzymatic and
DNA Binding Activity of PARP-1 Are Not Required for NF-??B Coactivator Function. J. Biol.
Chem. 276, 45588—-45597.

Hassa, P.O., Buerki, C., Lombardi, C., Imhof, R., and Hottiger, M.O. (2003). Transcriptional
Coactivation of Nuclear Factor- O B-dependent Gene Expression by p300 Is Regulated by Poly
( ADP ) -ribose Polymerase-1 *. 278, 45145-45153.

Hassa, P.O., Haenni, S.S., Buerki, C., Meier, N.I., Lane, W.S., Owen, H., Gersbach, M., Imhof,
R., and Hottiger, M.O. (2005). Acetylation of Poly ( ADP-ribose ) Polymerase-1 by p300 /
CREB-binding Protein Regulates Coactivation. 280, 40450-40464.

Hayflick, L. (1965). The limited in vitro lifetime of human diploid cell strains. Exp. Cell Res. 37,
614-636.

Hayflick, L., and Moorhead, P.S. (1961). The serial cultivation of human diploid cell strains.
Exp. Cell Res. 25, 585-621.

Hendriks, I.A., Larsen, S.C., and Nielsen, M.L. (2019). An Advanced Strategy for
Comprehensive Profiing of ADP-ribosylation Sites Using Mass Spectrometry-based
Proteomics. Mol. Cell. Proteomics 78, 1010-1026.

Herbig, U., Jobling, W.A., Chen, B.P.C., Chen, D.J., and Sedivy, J.M. (2004). Telomere
shortening triggers senescence of human cells through a pathway involving ATM, p53, and
p21(CIP1), but not p16(INK4a). Mol. Cell 74, 501-513.

Herranz, N., Gallage, S., Mellone, M., Wuestefeld, T., Klotz, S., Hanley, C.J., Raguz, S.,
Acosta, J.C., Innes, A.J., Banito, A., et al. (2015). mTOR regulates MAPKAPK2 translation to
control the senescence-associated secretory phenotype. Nat. Cell Biol. 17, 1205-1217.

Hiroaki, I., Jiahuai, H., and Huyuki, . (2003). Mitogen-activated protein kinase p38 defines the

144



ROBINSON Lucas - Thése de doctorat - 2019

common senescence-signalling pathway. Genes to Cells 8, 131-134.

Hnisz, D., Abraham, B.J., Lee, T.l,, Lau, A., Saint-André, V., Sigova, A.A., Hoke, H.A., and
Young, R.A. (2013). XSuper-enhancers in the control of cell identity and disease. Cell 155.

Hoare, M., Ito, Y., Kang, T.-W., Weekes, M.P., Matheson, N.J., Patten, D.A., Shetty, S., Parry,
A.J., Menon, S., Salama, R, et al. (2016). NOTCH1 mediates a switch between two distinct
secretomes during senescence. Nat. Cell Biol. 18.

Hochegger, H., Fukushima, T., Morrison, C., Sonoda, E., Zhao, G.Y., Saberi, A., Masutani, M.,
Adachi, N., Koyama, H., Murcia, G. De, et al. (2006). Parp-1 protects homologous
recombination from interference by Ku and Ligase IV in vertebrate cells. 25, 1305-1314.

Hoenicke, L., and Zender, L. (2012). Immune surveillance of senescent cells-biological
significance in cancer-and non-cancer pathologies. Carcinogenesis 33, 1123—1126.

Hopkins, T.A., Ainsworth, W.B., Ellis, P.A., Donawho, C.K., DiGiammarino, E.L., Panchal,
S.C., Abraham, V.C., Algire, M.A., Shi, Y., Olson, A.M., et al. (2018). PARP1 trapping by PARP
inhibitors drives cytotoxicity both in cancer cells and healthy bone marrow. Mol. Cancer Res.
12, molcanres.0138.2018.

Hottiger, M.O. (2015). Nuclear ADP-Ribosylation and Its Role in Chromatin Plasticity, Cell
Differentiation, and Epigenetics. Annu Rev Biochem 84, 227-263.

Houssaini, A., Breau, M., Kebe, K., Abid, S., Marcos, E., Lipskaia, L., Rideau, D., Parpaleix,
A., Huang, J., Amsellem, V., et al. (2018). mTOR pathway activation drives lung cell
senescence and emphysema. JCI Insight 3, 1-20.

Huletsky, A., Niedergang, C., Fréchette, A., Aubin, R., Gaudreau, A., and Poirier, G.G. (1985).
Sequential ADP-ribosylation pattern of nucleosomal histones. ADP-ribosylation of
nucleosomal histones. Eur. J. Biochem. 146, 277—-285.

Huletsky, A., de Murcia, G., Muller, S., Hengartner, M., Menard, L., Lamarre, D., and Poirier,
G.G. (1989). The Effect of Poly(ADP-ribosyl)ation on Native and H1-depleted Chromatin. J.
Biol. Chem. 264, 8878—8886.

Hurtado-Bages, S., Guberovic, I., and Buschbeck, M. (2018). The MacroH2A1.1 — PARP1 Axis
at the Intersection Between Stress Response and Metabolism. Front. Genet. 9, 417.

Imai, S., and Guarente, L. (2016). It takes two to tango: NAD+ and sirtuins in aging/longevity
control. Npj Aging Mech. Dis. 2, 16017.

Itahana, K., Zou, Y., Itahana, Y., Martinez, J.-L., Beausejour, C., Jacobs, J.J.L., van Lohuizen,
M., Band, V., Campisi, J., and Dimri, G.P. (2003). Control of the Replicative Life Span of
Human Fibroblasts by p16 and the Polycomb Protein Bmi-1. Mol. Cell. Biol. 23, 389—401.

Itahana, K., Campisi, J., and Dimri, G.P. (2007). Methods to detect biomarkers of cellular
senescence: the senescence-associated beta-galactosidase assay. Methods Mol. Biol. 371,
21-31.

Ito, S., Araya, J., Kurita, Y., Kobayashi, K., Takasaka, N., Yoshida, M., Hara, H., Minagawa,
S., Wakui, H., Fuijii, S., et al. (2015). PARK2-mediated mitophagy is involved in regulation of

145



ROBINSON Lucas - Thése de doctorat - 2019

HBEC senescence in COPD pathogenesis. Autophagy 71, 547-559.

Ito, Y., Hoare, M., and Narita, M. (2017). Spatial and Temporal Control of Senescence. Trends
Cell Biol 27, 820—832.

Izhar, L., Adamson, B., Ciccia, A., Lewis, J., Pontano-Vaites, L., Leng, Y., Liang, A.C.,
Westbrook, T.F., Harper, J.W., and Elledge, S.J. (2015). A Systematic Analysis of Factors
Localized to Damaged Chromatin Reveals PARP-Dependent Recruitment of Transcription
Factors. Cell Rep. 11, 1486—1500.

Jeon, O.H., Kim, C., Laberge, R.-M., Demaria, M., Rathod, S., Vasserot, A.P., Chung, J.W.,
Kim, D.H., Poon, Y., David, N., et al. (2017). Local clearance of senescent cells attenuates the
development of post-traumatic osteoarthritis and creates a pro-regenerative environment. Nat.
Med. 1-9.

Jeyapalan, J.C., Ferreira, M., Sedivy, J.M., and Herbig, U. (2007). Accumulation of senescent
cells in mitotic tissue of aging primates. Mech. Ageing Dev. 128, 36—44.

Johnson, D.G., and Walker, C.L. (1999). CYCLINS AND CELL CYCLE CHECKPOINTS. Annu.
Rev. Pharmacol. Toxicol. 39, 295-312.

Ju, B., Solum, D., Song, E.J., Lee, K., Rose, D.W., Glass, C.K., and Rosenfeld, M.G. (2004).
TLE1 Corepressor Complex Mediates a CaMKinase Il ¢ -Dependent Neurogenic Gene
Activation Pathway. 1719, 815-829.

Jun, J. Il, and Lau, L.F. (2010). Cellular senescence controls fibrosis in wound healing. Aging
(Albany. NY). 2, 627—631.

Jung, S.H., Hwang, H.J., Kang, D., Park, H.A., Lee, H.C., Jeong, D., Lee, K., Park, H.J., Ko,
Y.G., and Lee, J.S. (2019). mTOR kinase leads to PTEN-loss-induced cellular senescence by
phosphorylating p53. Oncogene 38, 1639—-1650.

Kameshita, |., Matsuda, Z., Taniguchi, T., and Shizuta, Y. (1984). Poly ( ADP-Ribose )
Synthetase. 259, 4770-4777.

Kameshita, |., Matsuda, M., Nishikimis, M., Ushiro, H., and Shizuta, Y. (1986). Reconstitution
and Poly(ADP-ribosy1)ation of Proteolytically Fragmented Poly(ADP-Ribose) Synthetase*.
261, 3863—3868.

Kang, C., Xu, Q., Martin, T.D., Li, M.Z., Demaria, M., Aron, L., Lu, T., Yankner, B.A., Campisi,
J., and Elledge, S.J. (2015). The DNA damage response induces inflammation and
senescence by inhibiting autophagy of GATA4. Science (80-. ). 349, aaa5612—aaa5612.

Kang, T.-W., Yevsa, T., Woller, N., Hoenicke, L., Wuestefeld, T., Dauch, D., Hohmeyer, A.,
Gereke, M., Rudalska, R., Potapova, A., et al. (2011). Senescence surveillance of pre-
malignant hepatocytes limits liver cancer development. Nature 479, 547-551.

Kaplon, J., Zheng, L., Meissl, K., Chaneton, B., Selivanov, V. a, Mackay, G., van der Burg,
S.H., Verdegaal, E.M.E., Cascante, M., Shlomi, T., et al. (2013). A key role for mitochondrial
gatekeeper pyruvate dehydrogenase in oncogene-induced senescence. Nature 498, 109-112.

Karlseder, J., Hoke, K., Mirzoeva, O.K., Bakkenist, C., Kastan, M.B., Petrini, J.H.J., and Lange,

146



ROBINSON Lucas - Thése de doctorat - 2019

T. de (2004). The Telomeric Protein TRF2 Binds the ATM Kinase and Can Inhibit the ATM-
Dependent DNA Damage Response. PLoS Biol. 2, e240.

Kassner, I., Andersson, A., Fey, M., Tomas, M., Ferrando-May, E., and Hottiger, M.O. (2013).
SET7/9-dependent methylation of ARTD1 at K508 stimulates poly-ADP-ribose formation after
oxidative stress. Open Biol. 3, 120173.

Katsuumi, G., Shimizu, |., Yoshida, Y., and Minamino, T. (2018). Vascular Senescence in
Cardiovascular and Metabolic Diseases. Front. Cardiovasc. Med. 5, 1-13.

Kauppinen, T.M., Chan, W.Y., Suh, S.W., Wiggins, A.K., Huang, E.J., and Swanson, R.A.
(2006). Direct phosphorylation and regulation of poly ( ADP-ribose ) polymerase-1 by
extracellular signal-regulated kinases T 2. 6.

Kawahara, T.L.A., Michishita, E., Adler, A.S., Damian, M., Berber, E., Lin, M., McCord, R.A.,
Ongaigui, K.C.L., Boxer, L.D., Chang, H.Y., et al. (2009). SIRT6 Links Histone H3 Lysine 9
Deacetylation to NF-kB-Dependent Gene Expression and Organismal Life Span. Cell 136, 62—
74.

Kawaichi, M., Ueda, K., and Hayaishi, O. (1981). Multiple autopoly(ADP-ribosyl)ation of rat
liver poly(ADP-ribose) synthetase. Mode of modification and properties of automodified
synthetase. J. Biol. Chem. 256, 9483—-9489.

Kennedy, B.K., Berger, S.L., Brunet, A., Campisi, J., Cuervo, A.M., Epel, E.S., Franceschi, C.,
Lithgow, G.J., Morimoto, R.l., Pessin, J.E., et al. (2014). Geroscience: Linking Aging to Chronic
Disease. Cell 159, 709-713.

Khoury-haddad, H., Guttmann-raviv, N., Ipenberg, I., Huggins, D., and Jeyasekharan, A.D.
(2014). PARP1-dependent recruitment of KDM4D histone demethylase to DNA damage sites
promotes double-strand break repair.

Kiehlbauch, C.C., Aboul-Ela, N., Jacobson, E.L., Ringer, D.P., and Jacobson, M.K. (1993).
High resolution fractionation and characterization of ADP-ribose polymers. Anal. Biochem.
208, 26-34.

Kim, K.S., Kim, M.-S., Seu, Y.B., Chung, H.Y., Kim, J.H., and Kim, J.-R. (2007). Regulation of
replicative senescence by insulin-like growth factor-binding protein 3 in human umbilical vein
endothelial cells. Aging Cell 6, 535-545.

Kim, M.Y., Mauro, S., Gévry, N., Lis, J.T., and Kraus, W.L. (2004). NAD+-Dependent
Modulation of Chromatin Structure and Transcription by Nucleosome Binding Properties of
PARP-1. Cell 119, 803-814.

Kim, M.Y., Zhang, T., and Kraus, W.L. (2005). Poly ( ADP-ribosyl ) ation by PARP-1: * PAR-
laying ’ NAD + into a nuclear signal. 1951-1967.

Kind, J., Pagie, L., De Vries, S.S., Nahidiazar, L., Dey, S.S., Bienko, M., Zhan, Y., Lajoie, B.,
De Graaf, C.A., Amendola, M., et al. (2015). Genome-wide Maps of Nuclear Lamina
Interactions in Single Human Cells. Cell 163, 134—147.

Klement, K., and Goodarzi, A.A. (2014). DNA double strand break responses and chromatin
alterations within the aging cell. Exp. Cell Res. 329, 42-52.

147



ROBINSON Lucas - Thése de doctorat - 2019

Klemm, S.L., Shipony, Z., and Greenleaf, W.J. (2019). Chromatin accessibility and the
regulatory epigenome. Nat. Rev. Genet. 20, 207-220.

Kolthur-Seetharam, U., Dantzer, F., McBurney, M.W., Murcia1, G. de, and Sassone-Corsi, P.
(2006). Control of AlF-mediated Cell Death by the Functional Interplay of SIRT1 and PARP-1
in Response to DNA Damage. Cell Cycle 5, 873-877.

Kortlever, R.M., Higgins, P.J., and Bernards, R. (2006). Plasminogen activator inhibitor-1 is a
critical downstream target of p53 in the induction of replicative senescence. Nat. Cell Biol. 8,
877-884.

Kotake, Y., Nakagawa, T., Kitagawa, K., Suzuki, S., Liu, N., Kitagawa, M., and Xiong, Y.
(2011). Long non-coding RNA ANRIL is required for the PRC2 recruitment to and silencing of
p15(INK4B) tumor suppressor gene. Oncogene 30, 1956—1962.

Kraus, W.L., and Hottiger, M.O. (2013). PARP-1 and gene regulation: Progress and puzzles.
Mol. Aspects Med. 34, 1109—-1123.

Kraus, W.L., and Lis, J.T. (2003). PARP goes transcription. Cell 113, 677—683.

Krishnakumar, R., and Kraus, W.L. (2010a). PARP-1 Regulates Chromatin Structure and
Transcription through a KDM5B-Dependent Pathway. Mol. Cell 39, 736-749.

Krishnakumar, R., and Kraus, W.L. (2010b). The PARP Side of the Nucleus: Molecular Actions,
Physiological Outcomes, and Clinical Targets. Mol. Cell 39, 8-24.

Krtolica, A., Parrinello, S., Lockett, S., Desprez, P.-Y., and Campisi, J. (2001). Senescent
fibroblasts promote epithelial cell growth and tumorigenesis: A link between cancer and aging.
Proc. Natl. Acad. Sci. 98, 12072—-12077.

Kuchay, S., Giorgi, C., Simoneschi, D., Pagan, J., Missiroli, S., Saraf, A., Florens, L.,
Washburn, M.P., Collazo-Lorduy, A., Castillo-Martin, M., et al. (2017). PTEN counteracts
FBXL2 to promote IP3R3- and Ca2+-mediated apoptosis limiting tumour growth. Nature 546,
554-558.

Kuilman, T., and Peeper, D.S. (2009). Senescence-messaging secretome: SMS-ing cellular
stress. Nat. Rev. Cancer 9, 81-94.

Kuilman, T., Michaloglou, C., Vredeveld, L.C.W., Douma, S., van Doorn, R., Desmet, C.J.,
Aarden, L.A., Mooi, W.J., and Peeper, D.S. (2008). Oncogene-induced senescence relayed
by an interleukin-dependent inflammatory network. Cell 733, 1019-1031.

Kuilman, T., Michaloglou, C., Mooi, W.J., and Peeper, D.S. (2010). The essence of
senescence. Genes Dev. 24, 2463—2479.

Kumari, S.R., Mendoza-alvarez, H., and Alvarez-gonzalez, R. (1998). Apoptosis following DNA
Damage : Covalent Poly ( ADP-ribosyl ) ation of p53 by Exogenous PARP and Noncovalent
Binding of p53 to the Mr 85, 000. 5075-5078.

Langelier, M.F., Servent, K.M., Rogers, E.E., and Pascal, J.M. (2008). A third zinc-binding
domain of human poly(ADP-ribose) polymerase-1 coordinates DNA-dependent enzyme
activation. J. Biol. Chem. 283, 4105—4114.

148



ROBINSON Lucas - Thése de doctorat - 2019

Lascaris, R.F., Groot, E., Hoen, P.B., Mager, W.H., and Planta, R.J. (2000). Different roles for
Abf1p and a T-rich promoter element in nucleosome organization of the yeast RPS28A gene.
Nucleic Acids Res. 28, 1390—-1396.

Lee, B.Y., Han, J.A,, Im, J.S., Morrone, A., Johung, K., Goodwin, E.C., Kleijer, W.J., DiMaio,
D., and Hwang, E.S. (2006). Senescence-associated [(-galactosidase is lysosomal -
galactosidase. Aging Cell 5, 187—195.

Leite de Oliveira, R., and Bernards, R. (2018). Anti-cancer therapy: senescence is the new
black. EMBO J. 37, €99386.

Leung, A.K.L. (2017). SERious Surprises for ADP-Ribosylation Specificity: HPF1 Switches
PARP1 Specificity to Ser Residues. Mol. Cell 65, 777-778.

Li, E., Bestor, T.H., and Jaenisch, R. (1992). Targeted mutation of the DNA methyltransferase
gene results in embryonic lethality. Cell 69, 915-926.

Li, J., Bonkowski, M.S., Moniot, S., Zhang, D., Hubbard, B.P., Ling, A.J.Y., Rajman, L.A., Qin,
B., Lou, Z., Gorbunova, V., et al. (2017). A conserved NAD + binding pocket that regulates
protein-protein interactions during aging. Science (80-. ). 355.

Li, M., You, L., Xue, J., and Lu, Y. (2018). lonizing Radiation-Induced Cellular Senescence in
Normal, Non-transformed Cells and the Involved DNA Damage Response: A Mini Review.
Front. Pharmacol. 9, 522.

Lin, H.-K., Chen, Z., Wang, G., Nardella, C., Lee, S.-W., Chan, C.-H., Yang, W.-L., Wang, J.,
Egia, A., Nakayama, K., et al. (2010). Skp2 targeting suppresses tumorigenesis by Arf-p53-
independent cellular senescence. Nature 464, 374-379.

Liu, D., and Hornsby, P.J. (2007). Senescent Human Fibroblasts Increase the Early Growth of
Xenograft Tumors via Matrix Metalloproteinase Secretion. Cancer Res. 67, 3117-3126.

Liu, F.-d., Wen, T., and Liu, L. (2012). MicroRNAs as a novel cellular senescence regulator.
Ageing Res. Rev. 11, 41-50.

Liu, J., Ben, Q., Lu, E., He, X,, Yang, X., Ma, J., Zhang, W., Wang, Z., Liu, T., Zhang, J., et al.
(2018a). Long noncoding RNA PANDAR blocks CDKN1A gene transcription by competitive
interaction with p53 protein in gastric cancer. Cell Death Dis. 9, 168.

Liu, X., Ding, J., and Meng, L. (2018b). Oncogene-induced senescence: a double edged sword
in cancer. Acta Pharmacol. Sin. 39, 1553—1558.

Liu, Z., Kraus, W.L., Liu, Z., and Kraus, W.L. (2017). Catalytic-Independent Functions of PARP-
1 Determine Sox2 Pioneer Activity at Intractable Genomic Loci Article Catalytic-Independent
Functions of PARP-1 Determine Sox2 Pioneer Activity at Intractable Genomic Loci. Mol. Cell
65, 589-603.€9.

Lénn, P., van der Heide, L.P., Dahl, M., Hellman, U., Heldin, C.H., and Moustakas, A. (2010).
PARP-1 attenuates smad-mediated transcription. Mol. Cell 40, 521-532.

Lonskaya, ., Potaman, V.N., Shlyakhtenko, L.S., Oussatcheva, E.A., Lyubchenko, Y.L., and
Soldatenkov, V.A. (2005). Regulation of Poly ( ADP-ribose ) Polymerase-1 by DNA Structure-

149



ROBINSON Lucas - Thése de doctorat - 2019

specific Binding * 0. 280, 17076—-17083.

Lépez-otin, C., Blasco, M.A., Partridge, L., and Serrano, M. (2013). The Hallmarks of Aging
(copy without figures, can’t seem to remove). 153, 1194—-1217.

Lépez-Otin, C., Blasco, M.A., Partridge, L., Serrano, M., and Kroemer, G. (2013). The
Hallmarks of Aging. Cell 153, 1194-1217.

Lord, C.J., Tutt, A.N.J., and Ashworth, A. (2015). Synthetic lethality and cancer therapy:
lessons learned from the development of PARP inhibitors. Annu. Rev. Med. 66, 455—470.

Ludwig, A., Behnke, B., Holtlund, J., and Hilz, H. (1988). Immunoquantitation and size
determination of intrinsic poly(ADP-ribose) polymerase from acid precipitates. An analysis of
the in vivo status in mammalian species and in lower eukaryotes. J. Biol. Chem. 263, 6993—
6999.

Luijsterburg, M.S., Lindh, M., Acs, K., Vrouwe, M.G., Pines, A., van Attikum, H., Mullenders,
L.H., and Dantuma, N.P. (2012). DDB2 promotes chromatin decondensation at UV-induced
DNA damage. J. Cell Biol. 197, 267—-281.

Luijsterburg, M.S., de Krijger, |., Wiegant, W.W., Shah, R.G., Smeenk, G., de Groot, A.J.L.,
Pines, A., Vertegaal, A.C.O., Jacobs, J.J.L., Shah, G.M,, et al. (2016). PARP1 Links CHD2-
Mediated Chromatin Expansion and H3.3 Deposition to DNA Repair by Non-homologous End-
Joining. Mol. Cell 61, 547-562.

Lujambio, A., Akkari, L., Simon, J., Grace, D., Tschaharganeh, D.F., Bolden, J.E., Zhao, Z.,
Thapar, V., Joyce, J.A., Krizhanovsky, V., et al. (2013). Non-cell-autonomous tumor
suppression by p53. Cell 153, 449-460.

Luo, X., Ryu, KW., Kim, D.S., Nandu, T., Medina, C.J., Gupte, R., Gibson, B.A., Soccio, R.E.,
Yu, Y., Gupta, R.K,, et al. (2017). PARP-1 Controls the Adipogenic Transcriptional Program
by PARylating C/EBP@ and Modulating lts Transcriptional Activity. Mol. Cell 65, 260—271.

Mabley, J.G., Németh, Z.H., Pacher, P., Deitch, E.A., and Szabd, C. (2002). Poly ( ADP-ribose
) Polymerase is a Regulator of Chemokine Production: Relevance for the Pathogenesis of
Shock and Inflammation. 8, 283—-289.

Mahmoudi, S., and Brunet, A. (2012). Aging and reprogramming: a two-way street. Curr. Opin.
Cell Biol. 24, 744-756.

Malanga, M., and Althauss, F.R. (1994). THE JOURNAL OF BIOUICICAL CHEMISTRY
Poly(ADP-ribose) Molecules Formed during DNA Repair in Vivo*. 269, 17691-17696.

Marintchev, A., Robertson, A., Dimitriadis, E.K., Prasad, R., Wilson, S.H., and Mullen, G.P.
(2000). Domain specific interaction in the XRCC1 — DNA polymerase 3 complex. 28, 2049—
2059.

Martin, N., Schwamborn, K., Schreiber, V., Werner, A., Guillier, C., Zhang, X.-D., Bischof, O.,
Seeler, J.-S., and Dejean, A. (2009). PARP-1 transcriptional activity is regulated by
sumoylation upon heat shock. EMBO J. 28, 3534—-3548.

Martinez-Zamudio, R., and Ha, H.C. (2012). Histone ADP-Ribosylation Facilitates Gene

150



ROBINSON Lucas - Thése de doctorat - 2019

Transcription by Directly Remodeling Nucleosomes. Mol. Cell. Biol. 32, 2490-2502.

Martinez-Zamudio, R.l. (2012). Histone ADP-ribosylation by Poly(ADP-ribose) Polymerase 1
(PARP1) Facilitates Inflammatory Gene Transcription by Directly Altering Nucleosome
Structure.

Martinez-Zamudio, R.l., Robinson, L., Roux, P.F., and Bischof, O. (2017a). SnapShot: Cellular
Senescence Pathways. Cell 170, 816-816.e1.

Martinez-Zamudio, R.l., Robinson, L., Roux, P.F., and Bischof, O. (2017b). SnapShot: Cellular
Senescence in Pathophysiology. Cell 170, 1044-1044.e1.

Marzetti, E., Lees, H.A., Wohilgemuth, S.E., and Leeuwenburgh, C. (2009). Sarcopenia of
aging: Underlying cellular mechanisms and protection by calorie restriction. BioFactors 35, 28—
35.

Masaoka, A., Gassman, N.R., Kedar, P.S., Prasad, R., Hou, E.W., Horton, J.K., Bustin, M.,
and Wilson, S.H. (2012). HMGN1 Protein Regulates Poly ( ADP-ribose ) Polymerase-1 (
PARP-1) Self-PARylation in Mouse Fibroblasts *. 287, 27648—27658.

Masutani, M., and Fujimori, H. (2013). Molecular Aspects of Medicine Poly ( ADP-ribosyl ) ation
in carcinogenesis. Mol. Aspects Med. 34, 1202-1216.

McClintock, D., Ratner, D., Lokuge, M., Owens, D.M., Gordon, L.B., Collins, F.S., and Djabali,
K. (2007). The Mutant Form of Lamin A that Causes Hutchinson-Gilford Progeria Is a
Biomarker of Cellular Aging in Human Skin. PLoS One 2, e1269.

Mendelsohn, A.R., and Larrick, J. (2017). A NAD+/PARP1/SIRT1 axis in Aging. Rejuvenation
Res. 20, rej.2017.1980.

Ménissier de Murcia, J., Ricoul, M., Tartier, L., Niedergang, C., Huber, A., Dantzer, F.,
Schreiber, V., Amé, J.C., Dierich, A., LeMeur, M., et al. (2003). Functional interaction between
PARP-1 and PARP-2 in chromosome stability and embryonic development in mouse. EMBO
J. 22, 2255-2263.

Mercola, M., Wang, X.F., Olsen, J., and Calame, K. (1983). Transcriptional enhancer elements
in the mouse immunoglobulin heavy chain locus. Science 221, 663—665.

Di Micco, R., Fumagalli, M., Cicalese, A., Piccinin, S., Gasparini, P., Luise, C., Schurra, C.,
Garre’, M., Nuciforo, P.G., Bensimon, A., et al. (2006). Oncogene-induced senescence is a
DNA damage response triggered by DNA hyper-replication. Nature 444, 638—642.

Michaloglou, C., Vredeveld, L.C.W., Soengas, M.S., Denoyelle, C., Kuilman, T., Van Der Horst,
C.M.A.M., Majoor, D.M., Shay, J.W., Mooi, W.J., and Peeper, D.S. (2005). BRAFE600-
associated senescence-like cell cycle arrest of human naevi. Nature 436, 720-724.

Milanovic, M., Fan, D.N.Y., Belenki, D., Dabritz, J.H.M., Zhao, Z., Yu, Y., Dérr, J.R., Dimitrova,
L., Lenze, D., Monteiro Barbosa, I.A., et al. (2018). Senescence-associated reprogramming
promotes cancer stemness. Nature 553, 96—100.

Minaga, T., and Kun, E. (2011). Probable Helical Conformation of Poly(ADP-Ribose). 25, 41—
46.

151



ROBINSON Lucas - Thése de doctorat - 2019

Minamino, T., Orimo, M., Shimizu, I., Kunieda, T., Yokoyama, M., Ito, T., Nojima, A., Nabetani,
A., Oike, Y., Matsubara, H., et al. (2009). A crucial role for adipose tissue p53 in the regulation
of insulin resistance. Nat. Med. 75, 1082—1087.

Minotti, R., Andersson, A., and Hottiger, M.O. (2015). ARTD1 suppresses interleukin 6
expression by repressing MLL1-dependent histone H3 trimethylation. Mol. Cell. Biol. 35,
MCB.00196-15.

Mirzayans, R., Andrais, B., Hansen, G., and Murray, D. (2012). Role of p16 INK4A in replicative
senescence and DNA damage-induced premature senescence in p53-deficient human cells.
Biochem. Res. Int. 2012.

Miwa, M., Ishihara, M., Takishima, S., Takasuka, N., Maeda, M., Yamaizumi, Z., Sugimura, T.,
Yokoyama, S., and Miyazawa, T. (1981). The branching and linear portions of poly(adenosine
diphosphate ribose) have the same alpha(1 leads to 2) ribose-ribose linkage. J. Biol. Chem.
256, 2916-2921.

Moiseeva, O., Bourdeau, V., Roux, A., Deschenes-Simard, X., and Ferbeyre, G. (2009).
Mitochondrial Dysfunction Contributes to Oncogene-Induced Senescence. Mol. Cell. Biol. 29,
4495-4507.

Mosteiro, L., Pantoja, C., Alcazar, N., Marion, R.M., Chondronasiou, D., Rovira, M.,
Fernandez-Marcos, P., Munoz-Martin, M., Blanco-Aparicio, C., Pastor, J., et al. (2016a).
Tissue damage and senescence provide critical signals for cellular reprogramming in vivo.
Science (80-. ). 354.

Mosteiro, L., Pantoja, C., Alcazar, N., Marion, R.M., Chondronasiou, D., Rovira, M.,
Fernandez-Marcos, P.J., Mufioz-Martin, M., Blanco-Aparicio, C., Pastor, J., et al. (2016b).
Tissue damage and senescence provide critical signals for cellular reprogramming in vivo.
Science (80-. ). 354, aaf4445.

Mouchiroud, L., Houtkooper, R.H., Moullan, N., Katsyuba, E., Ryu, D., Canto, C., Mottis, A.,
Jo, Y., Viswanathan, M., Schoonjans, K., et al. (2013). The NAD + / Sirtuin Pathway Modulates
Longevity through Activation of Mitochondrial UPR and FOXO Signaling.

Mumbach, M.R., Rubin, A.J., Flynn, R.A., Dai, C., Khavari, P.A., Greenleaf, W.J., and Chang,
H.Y. (2016). HiChIP: Efficient and sensitive analysis of protein-directed genome architecture.
BioRxiv 073619.

Mufioz-Espin, D., and Serrano, M. (2014). Cellular senescence: from physiology to pathology.
Nat. Rev. Mol. Cell Biol. 15, 482—496.

Mufoz-Espin, D., Cafamero, M., Maraver, A., Gdmez-Lopez, G., Contreras, J., Murillo-
Cuesta, S., Rodriguez-Baeza, A., Varela-Nieto, |., Ruberte, J., Collado, M., et al. (2013).
Programmed cell senescence during mammalian embryonic development. Cell 155, 1104—
1118.

Mufoz-Gamez, J.A., Martin-Oliva, D., Aguilar-Quesada, R., Cafuelo, A., Nufiez, M.l.,
Valenzuela, M.T., Ruiz De Almodévar, J.M., De Murcia, G., and Oliver, F.J. (2005). PARP
inhibition sensitizes p53-deficient breast cancer cells to doxorubicin-induced apoptosis.
Biochem. J. 386, 119—-125.

152



ROBINSON Lucas - Thése de doctorat - 2019

Murawska, M., Hassler, M., Renkawitz-Pohl, R., Ladurner, A., and Brehm, A. (2011). Stress-
Induced PARP Activation Mediates Recruitment of Drosophila Mi-2 to Promote Heat Shock
Gene Expression. PLoS Genet. 7, e1002206.

De murcia, G., Huletskyst, A., Lamarregli, D., Gaudreaugff, A., Pouyets, J., and Poirier, G.G.
(1986). Modulation of Chromatin Superstructure Induced by Poly ( ADP-ribose ) Synthesis and
Degradation *. 261, 7011-7017.

Nacarelli, T., Lau, L., Fukumoto, T., Zundell, J., Fatkhutdinov, N., Wu, S., Aird, K.M., lwasaki,
0., Kossenkov, A. V, Schultz, D., et al. (2019). NAD+ metabolism governs the proinflammatory
senescence-associated secretome. Nat. Cell Biol. 21, 397—407.

Naegelis, H., and Althaust, F.R. (1991). Regulation of Poly(ADP-ribose) Polymerase. 10596—
10601.

Nakajima, H., Nagaso, H., Kakui, N., Ishikawa, M., Hiranuma, T., and Hoshiko, S. (2004).
Critical Role of the Automodification of Poly(ADP-ribose) Polymerase-1 in Nuclear Factor-«kB-
dependent Gene Expression in Primary Cultured Mouse Glial Cells. J. Biol. Chem. 279,
42774-42786.

Nalabothula, N., Al-jumaily, T., Eteleeb, A.M., Flight, R.M., Xiaorong, S., Moseley, H.,
Rouchka, E.C., and Fondufe-Mittendorf, Y.N. (2015). Genome-Wide Profiling of PARP1
Reveals an Interplay with Gene Regulatory Regions and DNA Methylation. PLoS One 10,
€0135410.

Narita, M., Nlnez, S., Heard, E., Narita, M., Lin, AW., Hearn, S.A., Spector, D.L., Hannon,
G.J., and Lowe, S.W. (2003). Rb-mediated heterochromatin formation and silencing of E2F
target genes during cellular senescence. Cell 113, 703-716.

Narita, M., Narita, M., Krizhanovsky, V., Nufez, S., Chicas, A., Hearn, S.A., Myers, M.P., and
Lowe, S.W. (2006). A Novel Role for High-Mobility Group A Proteins in Cellular Senescence
and Heterochromatin Formation. Cell 7126, 503—-514.

Noren Hooten, N., Fitzpatrick, M., Kompaniez, K., Jacob, K.D., Moore, B.R., Nagle, J., Barnes,
J., Lohani, A., and Evans, M.K. (2012). Coordination of DNA repair by NEIL1 and PARP-1: A
possible link to aging. Aging (Albany. NY). 4, 674-685.

Oei, S.L., Griesenbeck, J., Schweiger, M., Babich, V., Kropotov, A., and Tomilin, N. (1997).
Interaction of the Transcription Factor YY1 with Human Poly(ADP-Ribosyl) Transferase.
Biochem. Biophys. Res. Commun. 240, 108—111.

Ohanna, M., Giuliano, S., Bonet, C., Imbert, V., Hofman, V., Zangari, J., Bille, K., Robert, C.,
Bressac-de Paillerets, B., Hofman, P., et al. (2011a). Senescent cells develop a PARP-1 and
nuclear factor-{kappa}B-associated secretome (PNAS). Genes Dev. 25, 1245-1261.

Ohanna, M., Giuliano, S., Bonet, C., Imbert, V., Hofman, V., Zangari, J., Bille, K., Robert, C.,
Bressac-de Paillerets, B., Hofman, P., et al. (2011b). Senescent cells develop a PARP-1 and
nuclear factor- B-associated secretome (PNAS). Genes Dev. 25, 1245-1261.

Olabisi, O.A., Soto-Nieves, N., Nieves, E., Yang, T.T.C., Yang, X., Yu, R.Y.L., Suk, H.Y.,
Macian, F., and Chow, C.-W. (2008). Regulation of Transcription Factor NFAT by ADP-
Ribosylation. Mol. Cell. Biol. 28, 2860-2871.

153



ROBINSON Lucas - Thése de doctorat - 2019

Oliver, F.J., Ménissier-de Murcia, J., Nacci, C., Decker, P., Andriantsitohaina, R., Muller, S.,
De La Rubia, G., Stoclet, J.C., and De Murcia, G. (1999). Resistance to endotoxic shock as a
consequence of defective NF-kB activation in poly (ADP-ribose) polymerase-1 deficient mice.
EMBO J. 18, 4446-4454.

Olovnikov, A.M. (1971). [Principle of marginotomy in template synthesis of polynucleotides].
Dokl. Akad. Nauk SSSR 201, 1496—1499.

Ong, C.-T., and Corces, V.G. (2012). Enhancers: emerging roles in cell fate specification.
EMBO Rep. 13, 423.

Orjalo, A. V., Bhaumik, D., Gengler, B.K., Scott, G.K., and Campisi, J. (2009). Cell surface-
bound IL-1 is an upstream regulator of the senescence-associated IL-6/IL-8 cytokine network.
Proc. Natl. Acad. Sci. 106, 177031-17036.

Orsi, G.A., Kasinathan, S., Zentner, G.E., Henikoff, S., and Ahmad, K. (2015). Mapping
regulatory factors by immunoprecipitation from native chromatin. Curr. Protoc. Mol. Biol. 2015,
21.31.1-21.31.25.

Pacher, P., and Szabo, C. (2008). Role of the peroxynitrite-poly(ADP-ribose) polymerase
pathway in human disease. Am. J. Pathol. 173, 2—13.

Palmer, A.K., Tchkonia, T., LeBrasseur, N.K., Chini, E.N., Xu, M., and Kirkland, J.L. (2015).
Cellular senescence in type 2 diabetes: A therapeutic opportunity. Diabetes 64, 2289-2298.

Passos, J.F., Nelson, G., Wang, C., Richter, T., Simillion, C., Proctor, C.J., Miwa, S.,
Olijslagers, S., Hallinan, J., Wipat, A., et al. (2010a). Feedback between p21 and reactive
oxygen production is necessary for cell senescence. Mol. Syst. Biol. 6, 347.

Passos, J.F., Nelson, G., Wang, C., Richter, T., Simillion, C., Proctor, C.J., Miwa, S.,
Olijslagers, S., Hallinan, J., Wipat, A., et al. (2010b). Feedback between p21 and reactive
oxygen production is necessary for cell senescence. Mol. Syst. Biol. 6, 347.

Pavri, R., Lewis, B., Kim, T., Dilworth, F.J., Erdjument-bromage, H., Tempst, P., Murcia, G.
De, Evans, R., Chambon, P., Reinberg, D., et al. (2005). PARP-1 Determines Specificity in a
Retinoid Signaling Pathway via Direct Modulation of Mediator. 18, 83—-96.

Pearson, M., Carbone, R., Sebastiani, C., Cioce, M., Fagioli, M., Saito, S., Higashimoto, Y.,
Appella, E., Minucci, S., Pandolfi, P.P., et al. (2000). PML regulates p53 acetylation and
premature senescence induced by oncogenic Ras. Nature 406, 207-210.

Pedro de Magalhaes, J., Chainiaux, F., de Longueville, F., Mainfroid, V., Migeot, V., Marcq, L.,
Remacle, J., Salmon, M., and Toussaint, O. (2004). Gene expression and regulation in H202-
induced premature senescence of human foreskin fibroblasts expressing or not telomerase.
Exp. Gerontol. 39, 1379—-1389.

Petesch, S.J., and Lis, J.T. (2008). Rapid, Transcription-Independent Loss of Nucleosomes
over a Large Chromatin Domain at Hsp70 Loci. Cell 134, 74—84.

Phillips-Cremins, J.E., and Corces, V.G. (2013). Chromatin insulators: linking genome
organization to cellular function. Mol. Cell 50, 461-474.

154



ROBINSON Lucas - Thése de doctorat - 2019

Piccolo, M.T., and Crispi, S. (2012). The Dual Role Played by p21 May Influence the Apoptotic
or Anti-Apoptotic Fate in Cancer. 189-202.

Pinnola, A., Naumova, N., Shah, M., and Tulin, A. V (2007). Nucleosomal Core Histones
Mediate Dynamic Regulation of Poly ( ADP-ribose ) Polymerase 1 Protein Binding to
Chromatin and Induction of Its Enzymatic Activity * o. 282, 32511-32519.

Pion, E., Ullmann, G.M., Amé, J.-C., Gérard, D., de Murcia, G., and Bombarda, E. (2005).
DNA-Induced Dimerization of Poly(ADP-ribose) Polymerase-1 Triggers lts Activation f.
Biochemistry 44, 14670-14681.

Piskunova, T.S., Yurova, M.N., Ovsyannikov, A.l., Semenchenko, A. V, Zabezhinski, M.A.,
Popovich, I.G., Wang, Z., and Anisimov, V.N. (2008). Accelerates Aging and Spontaneous
Carcinogenesis in Mice. 2008.

Te Poele, R.H., Okorokov, A.L., Jardine, L., Cummings, J., and Joel, S.P. (2002). DNA damage
is able to induce senescence in tumor cells in vitro and in vivo. Cancer Res. 62, 1876—1883.

Poirier, G.G., de Murcia, G., Jongstra-Bilen, J., Niedergang, C., and Mandel, P. (1982).
Poly(ADP-ribosyl)ation of polynucleosomes causes relaxation of chromatin structure. Proc.
Natl. Acad. Sci. U. S. A. 79, 3423-3427.

Pollex, T., and Heard, E. (2012). Recent advances in X-chromosome inactivation research.
Curr. Opin. Cell Biol. 24, 825-832.

Porro, A., Feuerhahn, S., Delafontaine, J., Riethman, H., Rougemont, J., and Lingner, J.
(2014). Functional characterization of the TERRA transcriptome at damaged telomeres. Nat.
Commun. 5, 5379.

Puvvula, P.K., Desetty, R.D., Pineau, P., Marchio, A., Moon, A., Dejean, A., and Bischof, O.
(2014a). Long noncoding RNA PANDA and scaffold-attachment-factor SAFA control
senescence entry and exit. Nat. Commun. 5, 5323.

Puvvula, P.K., Desetty, R.D., Pineau, P., Marchio, A., Moon, A., Dejean, A., and Bischof, O.
(2014b). Long noncoding RNA PANDA and scaffold-attachment-factor SAFA control
senescence entry and exit. Nat. Commun. 5.

Quénet, D., Gasser, V., Fouillen, L., Cammas, F., Sanglier-Cianferani, S., Losson, R., and
Dantzer, F. (2008). The histone subcode: poly(ADP-ribose) polymerase-1 (Parp-1) and Parp-
2 control cell differentiation by regulating the transcriptional intermediary factor TIF1beta and
the heterochromatin protein HP1alpha. FASEB J. 22, 3853-3865.

Radman-Livaja, M., and Rando, O.J. (2010a). Nucleosome positioning: How is it established,
and why does it matter? Dev. Biol. 339, 258—-266.

Rai, T.S., Cole, J.J., Nelson, D.M., Dikovskaya, D., Faller, W.J., Vizioli, M.G., Hewitt, R.N.,
Anannya, O., McBryan, T., Manoharan, |., et al. (2014). HIRA orchestrates a dynamic
chromatin landscape in senescence and is required for suppression of neoplasia. Genes Dev.
28, 2712-2725.

Rashid, K., Sundar, |.K., Gerloff, J., Li, D., and Rahman, I. (2018). Lung cellular senescence
is independent of aging in a mouse model of COPD/emphysema. Sci. Rep. 8, 1-14.

155



ROBINSON Lucas - Thése de doctorat - 2019

Ray Chaudhuri, A., and Nussenzweig, A. (2017). The multifaceted roles of PARP1 in DNA
repair and chromatin remodelling. Nat. Rev. Mol. Cell Biol. 18, 610-621.

Rentschler, M., Chen, Y., Pahl, J., Soria-Martinez, L., Braumdller, H., Brenner, E., Bischof, O.,
Rdécken, M., and Wieder, T. (2018). Nuclear Translocation of Argonaute 2 in Cytokine-Induced
Senescence. Cell. Physiol. Biochem. 57, 1103-1118.

Ritschka, B., Storer, M., Mas, A., Heinzmann, F., Ortells, M.C., Morton, J.P., Sansom, O.J.,
Zender, L., and Keyes, W.M. (2017a). The senescence-associated secretory phenotype
induces cellular plasticity and tissue regeneration. Genes Dev. 31, 172—-183.

Roberson, R.S., Kussick, S.J., Vallieres, E., Chen, S.-Y.J., and Wu, D.Y. (2005). Escape from
Therapy-Induced Accelerated Cellular Senescence in p53-Null Lung Cancer Cells and in
Human Lung Cancers. Cancer Res. 65, 2795-28083.

Robu, M., Shah, R.G., Petitclerc, N., Brind’Amour, J., Kandan-Kulangara, F., and Shah, G.M.
(2013). Role of poly(ADP-ribose) polymerase-1 in the removal of UV-induced DNA lesions by
nucleotide excision repair. Proc. Natl. Acad. Sci. 170, 1658—1663.

Rodier, F., Coppé, J.-P., Patil, C.K., Hoeijmakers, W.A.M., Mufoz, D.P., Raza, S.R., Freund,
A., Campeau, E., Davalos, A.R., and Campisi, J. (2009). Persistent DNA damage signalling
triggers senescence-associated inflammatory cytokine secretion. Nat. Cell Biol. 11, 973-979.

Rodier, F., Mufioz, D.P., Teachenor, R., Chu, V., Le, O., Bhaumik, D., Coppé, J.-P., Campeau,
E., Beauséjour, C.M., Kim, S.-H., et al. (2011). DNA-SCARS: distinct nuclear structures that
sustain damage-induced senescence growth arrest and inflammatory cytokine secretion. J.
Cell Sci. 124, 68-81.

Rovillain, E., Mansfield, L., Lord, C.J., Ashworth, A., and Jat, P.S. (2011). An RNA interference
screen for identifying downstream effectors of the p53 and pRB tumour suppressor pathways
involved in senescence. BMC Genomics 12, 355.

Ruiz, L., Traskine, M., Ferrer, I., Castro, E., Leal, J.F.M., Kaufman, M., and Carnero, A. (2008).
Characterization of the p53 response to oncogene-induced senescene. PLoS One 3.

Ruscetti, T., Lehnert, B.E., Halbrook, J., Trong, H. Le, Hoekstra, M.F., Chen, D.J., and
Peterson, S.R. (1998). Stimulation of the DNA-dependent Protein Kinase by Poly ( ADP-
Ribose ) Polymerase *. 273, 14461-14467.

Ryu, KW., Kim, D.S., and Kraus, W.L. (2015). New facets in the regulation of gene expression
by ADP-ribosylation and poly(ADP-ribose) polymerases. Chem. Rev. 115, 2453—-2481.

Sagiv, A., and Krizhanovsky, V. (2013). Immunosurveillance of senescent cells: the bright side
of the senescence program. Biogerontology.

Sakai, Y., Yamamori, T., Yoshikawa, Y., Bo, T., Suzuki, M., Yamamoto, K., Ago, T., and
Inanami, O. (2018). NADPH oxidase 4 mediates ROS production in radiation-induced
senescent cells and promotes migration of inflammatory cells. Free Radic. Res. 52, 92—102.
Salama, R., Sadaie, M., Hoare, M., and Narita, M. (2014). Cellular senescence and its effector
programs. 99—-114.

156



ROBINSON Lucas - Thése de doctorat - 2019

Salminen, A., Kauppinen, A., and Kaarniranta, K. (2012). Emerging role of NF-«kB signaling in
the induction of senescence-associated secretory phenotype (SASP). Cell. Signal. 24, 835—
845,

Saxena, A., Wong, L.H., Kalitsis, P., Earle, E., Shaffer, L.G., and Choo, K.H.A. (2002).
Poly(ADP-ribose) polymerase 2 localizes to mammalian active centromeres and interacts with
PARP-1, Cenpa, Cenpb and Bub3, but not Cenpc. Hum. Mol. Genet. 11, 2319-2329.

Schafer, M.J., White, T.A,, lijima, K., Haak, A.J., Ligresti, G., Atkinson, E.J., Oberg, A.L., Birch,
J., Salmonowicz, H., Zhu, Y., et al. (2017). Cellular senescence mediates fibrotic pulmonary
disease. Nat. Commun. 8.

Schmitt, C.A., Fridman, J.S., Yang, M., Lee, S., Baranov, E., Hoffman, R.M., Lowe, S.W., and
Diego, S. (2002). A Senescence Program Controlled by p53 and p16 INK4a Contributes to the
Outcome of Cancer Therapy. 109, 335-346.

Schmitt, E., Paquet, C., Beauchemin, M., and Bertrand, R. (2007). DNA-damage response
network at the crossroads of cell-cycle checkpoints, cellular senescence and apoptosis. J.
Zhejiang Univ. Sci. B 8, 377-397.

Schmutz, |., and de Lange, T. (2016). Shelterin. Curr. Biol. 26, R397-R399.

Schones, D.E., Cui, K., Cuddapah, S., Roh, T.Y., Barski, A., Wang, Z., Wei, G., and Zhao, K.
(2008). Dynamic Regulation of Nucleosome Positioning in the Human Genome. Cell 132, 887—
898.

Schuhwerk, H., Bruhn, C., Siniuk, K., Min, W., Erener, S., Grigaravicius, P., Krlger, A., Ferrari,
E., Zubel, T., Lazaro, D., et al. (2017). Kinetics of poly(ADP-ribosyl)ation, but not PARP1 itself,
determines the cell fate in response to DNA damage in vitro and in vivo. Nucleic Acids Res.
45.

Sen, P., Lan, Y., Li, C.Y., Sidoli, S., Donahue, G., Dou, Z., Frederick, B., Chen, Q., Luense,
L.J., Garcia, B.A., et al. (2019). Histone Acetyltransferase p300 Induces De Novo Super-
Enhancers to Drive Cellular Senescence. Mol. Cell 73, 684-698.e8.

Senturk, S., Mumcuoglu, M., Gursoy-Yuzugullu, O., Cingoz, B., Akcali, K.C., and Ozturk, M.
(2010). Transforming growth factor-beta induces senescence in hepatocellular carcinoma cells
and inhibits tumor growth. Hepatology 52, 966-974.

Serrano, M. (1997). MINIREVIEW The Tumor Suppressor Protein p16 INK4a. Exp. Cell Res.
13, 7-13.

Serrano, M., Lin, AW., McCurrach, M.E., Beach, D., and Lowe, S.W. (1997a). Oncogenic ras
provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell
88, 593-602.

Serrano, M., Lin, AW., McCurrach, M.E., Beach, D., and Lowe, S.W. (1997b). Oncogenic ras
provokes premature cell senescence associated with accumulation of p53 and p16(INK4a).
Cell 88, 593—-602.

Shah, P.P., Donahue, G., Otte, G.L., Capell, B.C., Nelson, D.M., Cao, K., Aggarwala, V.,
Cruickshanks, H. a, Rai, T.S., McBryan, T., et al. (2013). Lamin B1 depletion in senescent cells

157



ROBINSON Lucas - Thése de doctorat - 2019

triggers large-scale changes in gene expression and the chromatin landscape. Genes Dev.
1787-1799.

Shall, S., and de Murcia, G. (2000a). Poly(ADP-ribose) polymerase-1: what have we learned
from the deficient mouse model? Mutat. Res. Repair 460, 1-15.

Shall, S., and de Murcia, G. (2000b). Poly(ADP-ribose) polymerase-1: What have we learned
from the deficient mouse model? Mutat. Res. - DNA Repair 460, 1-15.

Sharpless, N.E., and DePinho, R.A. (2004). Telomeres, stem cells, senescence, and cancer.
J. Clin. Invest. 113, 160—168.

Sharpless, N.E., and Sherr, C.J. (2015). Forging a signature of in vivo senescence. Nat. Rev.
Cancer 15, 397-408.

Shay, J.W., Pereira-Smith, O.M., and Wright, W.E. (1991). A role for both RB and p53 in the
regulation of human cellular senescence. Exp. Cell Res. 196, 33-39.

Sherr, C.J., Depinho, R.A., and Hughes, H. (2000). Cellular Senescence: Mitotic Clock or
Culture Shock? 102, 407-410.

Shifera, A.S. (2010). The zinc finger domain of IKKy (NEMO) protein in health and disease. J.
Cell. Mol. Med. 14, 2404—-2414.

Shimura, T., Sasatani, M., Kawai, H., Kamiya, K., Kobayashi, J., Komatsu, K., and Kunugita,
N. (2017). A comparison of radiation-induced mitochondrial damage between neural progenitor
stem cells and differentiated cells. Cell Cycle 16, 565-573.

Shivshankar, P., Brampton, C., Miyasato, S., Kasper, M., Thannickal, V.J., and Le Saux, C.J.
(2012). Caveolin-1 Deficiency Protects from Pulmonary Fibrosis by Modulating Epithelial Cell
Senescence in Mice. Am. J. Respir. Cell Mol. Biol. 47, 28-36.

Shlyueva, D., Stampfel, G., and Stark, A. (2014). Transcriptional enhancers: from properties
to genome-wide predictions. Nat. Rev. Genet. 15, 272-286.

Simbulan-rosenthal, C.M., Rosenthal, D.S., Luo, R., and Smulson, M.E. (1999). Poly ( ADP-
ribosyl ) ation of p53 during Apoptosis in Human Osteosarcoma Cells 1. 2190-2194.

Simbulan-Rosenthal, C.M., Ly, D.H., Rosenthal, D.S., Konopka, G., Luo, R., Wang, Z.Q.,
Schultz, P.G., and Smulson, M.E. (2000). Misregulation of gene expression in primary
fibroblasts lacking poly(ADP-ribose) polymerase. Proc. Natl. Acad. Sci. U. S. A. 97, 11274
11279.

Simbulan-Rosenthal, C.M., Rosenthal, D.S., Luo, R., Samara, R., Espinoza, L. a, Hassa, P.O.,
Hottiger, M.O., and Smulson, M.E. (2003). PARP-1 binds E2F-1 independently of its DNA
binding and catalytic domains, and acts as a novel coactivator of E2F-1-mediated transcription
during re-entry of quiescent cells into S phase. Oncogene 22, 8460-8471.

Simbulan, C.M., Rosenthal, D.S., Luo, R., Samara, R., Jung, M., Dritschilo, A., Spoonde, A.,

and Smulson, M.E. (2001). Poly ( ADP-ribosyl ) ation of p53 In Vitro and In Vivo Modulates
Binding to its DNA Consensus Sequence 1. 3, 179-188.

158



ROBINSON Lucas - Thése de doctorat - 2019

Singh, H.R., Nardozza, A.P., Méller, I.R., Knobloch, G., Kistemaker, H.A.V., Hassler, M.,
Harrer, N., Blessing, C., Eustermann, S., Kotthoff, C., et al. (2017). A Poly-ADP-Ribose Trigger
Releases the Auto-Inhibition of a Chromatin Remodeling Oncogene. Mol. Cell 68, 860-871.e7.

Skene, P.J., and Henikoff, S. (2015). A simple method for generating highresolution maps of
genome-wide protein binding. Elife 4, 1-9.

Smeenk, G., Wiegant, W.W., Marteijn, J.A., Luijsterburg, M.S., Sroczynski, N., Costelloe, T.,
Romeijn, R.J., Pastink, A., Mailand, N., Vermeulen, W., et al. (2013). Poly(ADP-ribosyl)ation
links the chromatin remodeler SMARCA5/SNF2H to RNF168-dependent DNA damage
signaling. J. Cell Sci. 126, 889-903.

Smith, J.A., and Martin, L. (1973). Do cells cycle? Proc. Natl. Acad. Sci. U. S. A. 70, 1263—
1267.

Smith, S., Giriat, I., Schmitt, A., and de Lange, T. (1998). Tankyrase, a Poly(ADP-Ribose)
Polymerase at Human Telomeres. Science (80-. ). 282, 1484—1487.

Soto-Gamez, A., Quax, W.J., and Demaria, M. (2019). Regulation of Survival Networks in
Senescent Cells: From Mechanisms to Interventions. J. Mol. Biol. 431, 2629—2643.

Storer, M., Mas, A., Robert-Moreno, A., Pecoraro, M., Ortells, M.C., Di Giacomo, V., Yosef, R.,
Pilpel, N., Krizhanovsky, V., Sharpe, J., et al. (2013). XSenescence is a developmental
mechanism that contributes to embryonic growth and patterning. Cell 155, 1119-1130.

Stott, F.J., Bates, S., James, M.C., McConnell, B.B., Starborg, M., Brookes, S., Palmero, I.,
Ryan, K., Hara, E., Vousden, K.H., et al. (1998). The alternative product from the human
CDKN2A locus, p14(ARF), participates in a regulatory feedback loop with p53 and MDM2.
EMBO J. 17, 5001-5014.

Strieter, R.M., Burdick, M.D., Mestas, J., Gomperts, B., Keane, M.P., and Belperio, J.A. (2006).
Cancer CXC chemokine networks and tumour angiogenesis. Eur. J. Cancer 42, 768-778.

Sun, X., Fu, K., Hodgson, A., Wier, E.M., and Wen, M.G. (2016). Sam68 Is Required for DNA
Damage Responses via Regulating Poly ( ADP-ribosyl ) ation. 1-28.

Swanson, E.C., Manning, B., Zhang, H., and Lawrence, J.B. (2013). Higher-order unfolding of
satellite heterochromatin is a consistent and early event in cell senescence. J. Cell Biol. 203,
929-942.

Szabo, C., Lim, L.H.K., Cuzzocrea, S., Getting, S.J., Zingarelli, B., Flower, R.J., Salzman, A.L.,
and Perretti, M. (1997a). Inhibition of poly (ADP-ribose) Synthetase Attenuates Neutrophil
Recruitment and Exerts Antiinflammatory Effects. 186.

Szabo, C., Cuzzocrea, S., Zingarelli, B., Connor, M.O., and Salzman, A.L. (1997b). Endothelial
Dysfunction in a Rat Model of Endotoxic Shock Importance of the Activation of Poly ( ADP-
ribose ) Synthetase by Peroxynitrite. 723-735.

Tacutu, R., Budovsky, A., Yanai, H., and Fraifeld, V.E. (2011). Molecular links between cellular

senescence, longevity and age-related diseases - a systems biology perspective. Aging
(Albany. NY). 3, 1178-1191.

159



ROBINSON Lucas - Thése de doctorat - 2019

Takahashi, A., Ohtani, N., and Hara, E. (2007). Irreversibility of cellular senescence: Dual roles
of p16INK4a/Rb-pathway in cell cycle control. Cell Div. 2, 1-5.

Takai, H., Smogorzewska, A., and de Lange, T. (2003). DNA damage foci at dysfunctional
telomeres. Curr. Biol. 13, 1549-1556.

Takemoto, S., Trovato, R., Cereseto, A., Nicot, C., Kislyakova, T., Casareto, L., Waldmann,
T., Torelli, G., and Franchini, G. (2000). p53 stabilization and functional impairment in the
absence of genetic mutation or the alteration of the p14(ARF)-MDM2 loop in ex vivo and
cultured adult T-cell leukemia/lymphoma cells. Blood 95, 3939-3944.

Tasdemir, N., Banito, A., Roe, J.-S., Alonso-Curbelo, D., Camiolo, M., Tschaharganeh, D.F.,
Huang, C.-H., Aksoy, O., Bolden, J.E., Chen, C.-C., et al. (2016). BRD4 Connects Enhancer
Remodeling to Senescence Immune Surveillance. Cancer Discov. 6, 612—629.

Teloni, F., and Altmeyer, M. (2016). Readers of poly ( ADP-ribose ): designed to be fit for
purpose. 44, 993—1006.

Teo, Y.V., Rattanavirotkul, N., Olova, N., Salzano, A., Quintanilla, A., Tarrats, N., Kiourtis, C.,
Miller, M., Green, A.R., Adams, P.D., et al. (2019). Notch Signaling Mediates Secondary
Senescence. Cell Rep. 27, 997-1007.e5.

Timinszky, G., Till, S., Hassa, P.O., Hothorn, M., Kustatscher, G., Nijmeijer, B., Colombelli, J.,
Altmeyer, M., Stelzer, E.H.K., Scheffzek, K., et al. (2009). A macrodomain-containing histone
rearranges chromatin upon sensing PARP1 activation. Nat. Struct. Mol. Biol. 16, 923—929.

Tsutsumi, M., Masutani, M., Nozaki, T., Kusuoka, O., Tsujiuchi, T., Nakagama, H., Suzuki, H.,
Konishi, Y., and Sugimura, T. (2001). Increased susceptibility of poly(ADP-ribose) polymerase-
1 knockout mice to nitrosamine carcinogenicity. Carcinogenesis 22, 1-3.

Tu, Z., Aird, K.M., and Zhang, R. (2013a). Chromatin remodeling, BRCA1, SAHF and cellular
senescence. Cell Cycle 12, 1653—1654.

Tu, Z., Zhuang, X., Yao, Y.-G., and Zhang, R. (2013b). BRG1 Is Required for Formation of
Senescence-Associated Heterochromatin Foci Induced by Oncogenic RAS or BRCA1 Loss.
Mol. Cell. Biol. 33, 1819-1829.

Tulin, A., and Spradling, A. (2003a). Chromatin Loosening by Poly ( ADP ) -Ribose Polymerase
( PARP ) at Drosophila Puff Loci. 299, 560-563.

Tutt, A., Robson, M., Garber, J.E., Domchek, S.M., Audeh, M.\W., Weitzel, J.N., Friedlander,
M., Arun, B., Loman, N., Schmutzler, R.K., et al. (2010). Oral poly(ADP-ribose) polymerase
inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a
proof-of-concept trial. Lancet 376, 235-244.

Uchida, C. (2016). Roles of pRB in the Regulation of Nucleosome and Chromatin Structures.
Biomed Res. Int. 20716, 1—-11.

Valouev, A., Johnson, S.M., Boyd, S.D., Smith, C.L., Fire, A.Z., and Sidow, A. (2011).
Determinants of nucleosome organization in primary human cells. Nature 474, 516-520.

Vasudevan, K.M., Burikhanov, R., Goswami, A., and Rangnekar, V.M. (2007). Suppression of

160



ROBINSON Lucas - Thése de doctorat - 2019

PTEN Expression Is Essential for Antiapoptosis and Cellular Transformation by Oncogenic
Ras. Cancer Res. 67, 10343—-10350.

Visel, A, Zhu, Y., May, D., Afzal, V., Gong, E., Attanasio, C., Blow, M.J., Cohen, J.C., Rubin,
E.M., and Pennacchio, L.A. (2010). Targeted deletion of the 9p21 non-coding coronary artery
disease risk interval in mice. Nature 464, 409—412.

De Vos, M., El Ramy, R., Quénet, D., Wolf, P., Spada, F., Magroun, N., Babbio, F., Schreiber,
V., Leonhardt, H., Bonapace, .M., et al. (2014). Poly(ADP-ribose) polymerase 1 (parp1)
associates with E3 ubiquitin-protein ligase UHRF1 and modulates UHRF1 biological functions.
J. Biol. Chem. 289, 16223—-16238.

Vuong, B., Hogan-Cann, A.D.J., Alano, C.C., Stevenson, M., Chan, W.Y., Anderson, C.M.,
Swanson, R.A., and Kauppinen, T.M. (2015). NF-kB transcriptional activation by TNFa
requires phospholipase C, extracellular signal-regulated kinase 2 and poly(ADP-ribose)
polymerase-1. J. Neuroinflammation 712, 229.

Vyas, S., Matic, I., Uchima, L., Rood, J., Zaja, R., Hay, R.T., Ahel, |., and Chang, P. (2014).
Family-wide analysis of poly(ADP-ribose) polymerase activity. Nat. Commun. 5, 4426.

Wajapeyee, N., Malonia, S.K., Palakurthy, R.K., and Green, M.R. Oncogenic RAS directs
silencing of tumor suppressor genes through ordered recruitment of transcriptional repressors.
2221-2226.

Wallace, J.A., and Felsenfeld, G. (2008). NIH Public Access. 17, 400—407.

Wang, L., and Bernards, R. (2018). Taking advantage of drug resistance, a new approach in
the war on cancer. Front. Med. 12, 490—495.

Wang, W., Chen, J.X., Liao, R., Deng, Q., Zhou, J.J., Huang, S., and Sun, P. (2002).
Sequential Activation of the MEK-Extracellular Signal-Regulated Kinase and MKK3/6-p38
Mitogen-Activated Protein Kinase Pathways Mediates Oncogenic ras-Induced Premature
Senescence. Mol. Cell. Biol. 22, 3389-3403.

Wang, W., Yang, X., De Silanes, |.L., Carling, D., and Gorospe, M. (2003). Increased AMP:ATP
ratio and AMP-activated protein kinase activity during cellular senescence linked to reduced
HuR function. J. Biol. Chem. 278, 27016—27023.

Wang, Y.L., Uhara, H., Yamazaki, Y., Nikaido, T., and Saida, T. (1996). Immunohistochemical
detection of CDK4 and p16INK4 proteins in cutaneous malignant melanoma. Br. J. Dermatol.
134, 269-275.

Wang, Z., Zang, C., Cui, K., Schones, D.E., Barski, A., Peng, W., and Zhao, K. (2009).
Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive
genes. Cell 138, 1019.

Wiley, C.D., and Campisi, J. (2016). From Ancient Pathways to Aging Cells—Connecting
Metabolism and Cellular Senescence. Cell Metab. 23, 1013-1021.

Wiley, C.D., Velarde, M.C., Lecot, P., Liu, S., Sarnoski, E.A., Freund, A., Shirakawa, K., Lim,
H.W., Davis, S.S., Ramanathan, A., et al. (2016a). Mitochondrial dysfunction induces
senescence with a distinct secretory phenotype. Cell Metab. 23, 303—-314.

161



ROBINSON Lucas - Thése de doctorat - 2019

Wiley, C.D., Velarde, M.C., Lecot, P., Liu, S., Sarnoski, E.A., Freund, A., Shirakawa, K., Lim,
H.W., Davis, S.S., Ramanathan, A., et al. (2016b). Mitochondrial dysfunction induces
senescence with a distinct secretory phenotype. Cell Metab. 23, 303—-314.

Williams, P.D., and Day, T. (2003). Antagonistic pleiotropy, mortality source interactions, and
the evolutionary theory of senescence. Evolution (N. Y). 57, 1478—-1488.

Wong, M., and Smulson, M. (1984). A relationship between nuclear poly(adenosine
diphosphate ribosylation) and acetylation posttranslational modifications. 2. Histone studies.
Biochemistry 23, 3726-3730.

Wong, M., Malik, N., and Smulson, M. (1982). The participation of poly(ADP-ribosyl)ated
histone H1 in oligonucleosomal condensation. Eur. J. Biochem. 128, 209—213.

Wu, X., Ellmann, S., Rubin, E., Gil, M., Jin, K., Han, L., Chen, H., Kwon, E.M., Guo, J., Ha,
H.C., et al. (2012). ADP ribosylation by PARP-1 suppresses HOXB7 transcriptional activity.
PLoS One 7, 1—14.

Xia, Q., Lu, S., Ostrovsky, J., McCormack, S.E., Falk, M.J., Grant, S.F.A., Xia, Q., Lu, S.,
Ostrovsky, J., McCormack, S.E., et al. (2017). PARP-1 Inhibition Rescues Short Lifespan in
Hyperglycemic <em>C. Elegans</em> And Improves GLP-1 Secretion in Human Cells. Aging
Dis. 8, 0.

Xu, M., Pirtskhalava, T., Farr, J.N., Weigand, B.M., Allyson, K., Weivoda, M.M., Inman, C.L.,
Ogrodnik, M.B., Christine, M., Fraser, D.G., et al. (2018). Senolytics Improve Physical Function
and Increase Lifespan in Old Age. Nat. Med. 24, 1246-1256.

Xue, W., Zender, L., Miething, C., Dickins, R.A., Hernando, E., Krizhanovsky, V., Cordon-
Cardo, C., and Lowe, S.W. (2007). Senescence and tumour clearance is triggered by p53
restoration in murine liver carcinomas. Nature 445, 656—660.

Yamanaka, H., Penning, C.A., Willis, E.H., Wasson, D.B., and Carson, D.A. (1988a).
Characterization of human poly(ADP-ribose) polymerase with autoantibodies. J. Biol. Chem.
263, 3879-3883.

Yamanaka, H., Penning, C.A., Willis, E.H., Wasson, D.B., and Carson, D.A. (1988b).
Characterization of human poly(ADP-ribose) polymerase with autoantibodies. J. Biol. Chem.
263, 3879—-3883.

Yang, F., Tuxhorn, J.A., Ressler, S.J., McAlhany, S.J., Dang, T.D., and Rowley, D.R. (2005).
Stromal Expression of Connective Tissue Growth Factor Promotes Angiogenesis and Prostate
Cancer Tumorigenesis. Cancer Res. 65, 8887—8895.

Yang, H., Wang, H., Ren, J., Chen, Q., and Chen, Z.J. (2017). cGAS is essential for cellular
senescence. Proc. Natl. Acad. Sci. 114, E4612—-E4620.

Yosef, R., Pilpel, N., Papismadov, N., Gal, H., Ovadya, Y., Vadai, E., Miller, S., Porat, Z., Ben-
Dor, S., and Krizhanovsky, V. (2017). p21 maintains senescent cell viability under persistent
DNA damage response by restraining JNK and caspase signaling. EMBO J. 36, 2280—2295.

Young, A.R.J., and Narita, M. (2009). SASP reflects senescence. EMBO Rep. 10, 228-230.

162



ROBINSON Lucas - Thése de doctorat - 2019

Young, A.P., Schlisio, S., Minamishima, Y.A., Zhang, Q., Li, L., Grisanzio, C., Signoretti, S.,
and Kaelin, W.G. (2008). VHL loss actuates a HIF-independent senescence programme
mediated by Rb and p400. Nat. Cell Biol. 10, 361-369.

Yu, W., Ginjala, V., Pant, V., Chernukhin, |., Whitehead, J., Docquier, F., Farrar, D.,
Tavoosidana, G., Mukhopadhyay, R., Kanduri, C., et al. (2004). Poly ( ADP-ribosyl ) ation
regulates CTCF-dependent chromatin insulation. 36, 1105-1110.

Zampieri, M., Guastafierro, T., Calabrese, R., Ciccarone, F., Bacalini, M.G., Reale, A., Perilli,
M., Passananti, C., and Caiafa, P. (2012). methylation of Ctcf target sites. 652, 645-652.

Zamudio, R.I.M., Roux, P.-F., Freitas, J.A., Robinson, L., Dore, G., Sun, B., Gil, J., Herbig, U.,
and Bischof, O. (2019). AP-1 Imprints a Reversible Transcriptional Program of Senescent
Cells. BioRxiv 633594.

Zaniolo, K., Desnoyers, S., Leclerc, S., and Guérin, S.L. (2007). Regulation of poly(ADP-
ribose) polymerase-1 (PARP-1) gene expression through the post-translational modification of
Sp1: A nuclear target protein of PARP-1. BMC Mol. Biol. 8, 1-18.

Zhang, J., and Snyder, S.H. (1992). Nitric oxide stimulates auto-ADP-ribosylation of
glyceraldehyde-3-phosphate dehydrogenase. Proc. Natl. Acad. Sci. 89, 9382—-9385.

Zhang, R., Poustovoitov, M. V., Ye, X., Santos, H.A., Chen, W., Daganzo, S.M., Erzberger,
J.P., Serebriiskii, I.G., Canutescu, A.A., Dunbrack, R.L., et al. (2005). Formation of macroH2A-
containing senescence-associated heterochromatin foci and senescence driven by ASF1a and
HIRA. Dev. Cell 8, 19-30.

Zhao, X., Li, D., Huang, D., Song, H., Mei, H., Fang, E., Wang, X., Yang, F., Zheng, L., Huang,
K., et al. (2018). Risk-Associated Long Noncoding RNA FOXD3-AS1 Inhibits Neuroblastoma
Progression by Repressing PARP1-Mediated Activation of CTCF. Mol. Ther. 26, 755-773.

Zobeck, K.L., Buckley, M.S., Zipfel, W.R., and Lis, J.T. (2010). Recruitment Timing and
Dynamics of Transcription Factors at the Hsp70 Loci in Living Cells. Mol. Cell 40, 965-975.

163



ROBINSON Lucas - Thése de doctorat - 2019

8. Appendix

164



ROBINSON Lucas - Thése de doctorat - 2019

8.1 Contributions to Publications:

165



ROBINSON Lucas - Thése de doctorat - 2019

8.1.1 AP-1 Imprints a Reversible Transcriptional Program of Senescent Cells

166



ROBINSON Lucas - Thése de doctorat - 2019

bioRxiv preprint first posted online May. 9, 2019; doi: http://dx.doi.org/10.1101/633594. The copyright holder for this preprint (which
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
All rights reserved. No reuse allowed without permission.

AP-1 Imprints a Reversible Transcriptional Program of Senescent Cells

Ricardo Ivan Martinez-Zamudio'*%, Pierre-Frangois Roux'*, José Américo N L F de
Freitas'*, Lucas Robinson'*, Gregory Doré', Bin Sun®’, Jesus Gil®’, Utz Herbig® and

Oliver Bischof'?%%

! Institut Pasteur, Laboratory of Nuclear Organization and Oncogenesis, Department of
Cell Biology and Infection, 75015 Paris, France

?INSERM, U993, 75015 Paris, France

% Equipe Labellisée Fondation ARC pour la recherche sur le cancer, Paris, France

* Université de Paris, Sorbonne Paris Cité, Paris, France

®These authors contributed equally to this work

® MRC London Institute of Medical Sciences (LMS), Du Cane Road, London, W12 ONN,
UK.

" Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du
Cane Road, London W12 ONN, UK.

® Department of Microbiology, Biochemistry & Molecular Genetics, Rutgers Biomedical &
Health Sciences, Rutgers University, 205 South Orange Avenue, Newark, NJ 07103,
USA

°Lead contact

*Correspondence: oliver.bischof@pasteur.fr

167



ROBINSON Lucas - Thése de doctorat - 2019

bioRxiv preprint first posted online May. 9, 2019; doi: http://dx.doi.org/10.1101/633594. The copyright holder for this preprint (which
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
All rights reserved. No reuse allowed without permission.

SUMMARY

Senescent cells play important physiological- and pathophysiological roles in tumor
suppression, tissue regeneration, and aging. While select genetic and epigenetic
elements crucial for senescence induction were identified, the dynamics, underlying
epigenetic mechanisms, and regulatory networks defining senescence competence,
induction and maintenance remain poorly understood, precluding a deliberate
therapeutic manipulation of these dynamic processes. Here, we show, using dynamic
analyses of transcriptome and epigenome profiles, that the epigenetic state of
enhancers predetermines their sequential activation during senescence. We

demonstrate that activator protein 1 (AP-1) ‘imprints’ the senescence enhancer

landscape effectively regulating transcriptional activities pertinent to the timely execution

of the senescence program. We define and validate a hierarchical transcription factor
(TF) network model and demonstrate its effectiveness for the design of senescence
reprogramming experiments. Together, our findings define the dynamic nature and
organizational principles of gene-regulatory elements driving the senescence program

and reveal promising inroads for therapeutic manipulation of senescent cells.
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INTRODUCTION

Cellular senescence plays beneficial roles during embryonic development, wound
healing, and tumor suppression. Paradoxically, it is also considered a significant
contributor to aging and age-related diseases including cancer and degenerative
pathologies’. As such, research on therapeutic strategies exploiting senescence
targeting (e.g., senolytics, senomorphics or pro-senescence cancer therapies) to
improve healthspan has gained enormous momentum in recent years?.

Cellular senescence is a cell fate that stably arrests proliferation of damaged and
dysfunctional cells as a complex stress response. The most prominent inducers of
senescence are hyper-activated oncogenes (oncogene-induced senescence, OIS)%. The
senescence arrest is accompanied by widespread changes in gene expression,
including a senescence-associated secretory phenotype (SASP) — the expression and
secretion of inflammatory cytokines, growth factors, proteases, and other molecules,
which exert pleiotropic effects on senescent cells themselves as well as the surrounding
tissue*. Importantly, although activation of the senescence program can pre-empt the
initiation of cancer, the long-term effects of the SASP make the local tissue environment
more vulnerable to the spread of cancer and other age-related diseases. Therefore,
therapeutic interventions aimed at limiting SASP production are of relevance for cancer
and many age-related diseases®®.

The knowledge on epigenetic mechanisms underlying senescence has only
recently increased revealing significant contributions of select transcription factors (TFs),
chromatin modifiers and structural components, as well as non-coding RNAs to the
senescent phenotype’ 2. A major limitation of such studies, however, was their

restriction to start-end-point comparisons, ignoring the dynamic nature of the
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senescence fate transition. Consequently, critical gene-regulatory aspects of the
execution and maintenance of the senescence state remain poorly understood.
Therefore, an integrative, temporally resolved, multidimensional profiling approach is
required to establish essential regulatory principles that govern this key biological
decision-making process. Such knowledge would be instrumental both for identifying
stage-specific senescence regulators and urgently needed specific biomarkers as well
as control points in TF and gene regulatory networks, which would pave the way for a
deliberate therapeutic manipulation of the senescence cell fate.

Enhancers are key genomic regions that drive cell fate transitions. The enhancer
landscape is established during development by the concerted action of TF networks
and chromatin modifiers'®. The details on how this information converges in cis remain
unclear, and we still lack valid organizational principles that explain the function of
mammalian TF networks. In mammalian cells, enhancer elements are broadly divided
into two major categories -active and poised. While active enhancers are characterized
by the simultaneous presence of H3K4me1 together with H3K27ac and are associated
with actively transcribed genes, only H3K4me1 marks poised enhancers, and their
target genes are generally not expressed'®. A subset of enhancers may also be
activated de novo from genomic areas devoid of any TF binding and histone
modifications. These latent or nascent enhancers serve an adaptive role in mediating
stronger and faster gene expression upon cycles of repeated stimulation'®'®. Recent
evidence showed a role for enhancer remodeling in driving senescence-associated gene
expression'"'2"_However, it is currently unknown which enhancer elements, epigenetic
marks or TFs render cells competent to respond to senescence-inducing signals with

precise timing and output. A thorough understanding of how senescence competence is
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established, realized and what defines it would allow for the prediction of a positive
senescence engagement for example in pro-senescence cancer therapies'®.

Pioneer TFs are critical in establishing new cell fate competence by granting long-
term chromatin access to non-pioneer factors and are also crucial determinants of cell
identity through their opening and licensing of the enhancer landscape'®?. We can now
reliably deduce pioneer and non-pioneer TF activity from chromatin accessibility data
allowing for the hierarchization of TF function whereby pioneer TFs sit atop a TF binding
hierarchy, recruiting non-pioneers such as settler and migrant TFs to gene-regulatory
regions for optimal transcriptional output®'. The pioneer TFs bestowing senescence
potential have not been identified to date. However, their identification might be a pre-
requisite for reprogramming or manipulation of senescent cells for future therapeutic
benefit as was shown successfully for the reprogramming to adopt full stem cell
identity®.

In this study, we examined the possibility that the epigenetic state of enhancers
could determine senescence cell fate. We explored this question by generating time-
resolved transcriptomes and comprehensive epigenome profiles during oncogenic RAS-
induced senescence. Through integrative analysis and further functional validation, we
revealed novel and unexpected links between enhancer chromatin, TF recruitment, and
senescence potential and defined the organizational principles of the TF network that
drive the senescence program. Together, this allowed us to precisely manipulate the
senescence phenotype with important therapeutic implications. Specifically, we show
that the senescence program is predominantly encoded at the enhancer level and that
the enhancer landscape is dynamically reshaped at each step of the senescence

transition. Remarkably, we find that this process is pre-determined before senescence
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induction and AP-1 acts as a pioneer TF that ‘premarks’ prospective senescence
enhancers to direct and localize the recruitment of other transcription factors into a
hierarchical TF network that drives the senescence transcriptional program after
induction. We also uncover a class of enhancers that retain an epigenomic memory after
their inactivation during the senescence transition. These “remnant” enhancers lack
traditional enhancer histone-modification marks but are instead “remembered” by AP-1
TF bookmarking for eventual future re-activation. Finally, functional perturbation of
prospective senescence enhancers and AP-1 validated and underscored the importance
of these entities for the timely execution of the senescence gene expression program

and allowed for the precise reprogramming and reversal of the senescence cell fate.
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RESULTS

We employed time-series experiments on WI38 fibroblasts undergoing oncogene-
induced senescence (OIS) using a tamoxifen-inducible ER: RASV12 expression
system?. We determined global gene expression profiles by microarrays and mapped
the full set of accessible chromatin sites by ATAC-seq? at 6-time points (0, 24, 48, 72,
96 and 144 h). Cells intended for ChlP-seq were crosslinked at 3-time-points (0, 72 and
144h) and used for profiling histone modifications including H3K4me1 (putative
enhancers), H3K4me3 (promoters), H3K27ac (active enhancers and promoters) and
H3K27me3 (polycomb repressed chromatin). From accessible chromatin regions
determined by ATAC-seq we deduced TF binding dynamics and hierarchies (Figure 1A).
For comparison, we included cells undergoing quiescence (Q) by serum withdrawal for
up to 96h. Unlike senescence arrested cells, quiescence arrested cells can be triggered
to re-enter the cell cycle upon serum addition. Q and OIS cells were validated using

classical markers (Supplementary Figures 1A-B).

Multi-state establishment of the senescence transcriptional program

To identify and visualize dynamic gene expression patterns across the entire Q and
RAS-OIS time-courses, we employed an unsupervised, self-organizing map (SOM)
machine learning technique25 (Figure 1B) and multidimensional scaling (MDS) (Figure
1C) to our transcriptome data sets. Remarkably, serum-deprived fibroblasts rapidly
established a Q-specific gene expression program within 24 h after serum deprivation,
which changed only marginally within the remainder of the time-course (Figure 1B, left
column and Figure 1C), and mainly involves only up-regulated (Figure 1B, top right

corner, red) and down-regulated (Figure 1B, bottom left corner, blue) genes. By
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contrast, fibroblasts undergoing RAS-OIS displayed dynamic gene expression
trajectories that evolved steadily, both for up- (red) and down-regulated metagenes
(blue) (Figures 1B, right column and Figure 1C). Thus, RAS-OIS, unlike Q, is highly
dynamic and does not gyrate towards a stable transcriptome end state. To substantiate
this further we calculated the diversity and specialization of transcriptomes and gene
specificity?®® (Figure 1D) and performed a kernel density estimation analysis
(Supplementary Figure 1C). These analyses demonstrated that RAS-OIS cells exhibit a
temporally evolving increase in transcriptional diversity, whereas Q cells exhibit a
temporally evolving, specific gene expression program. We conclude that the RAS-OIS
cell fate is an open-ended succession of cell states rather than a fixed cell fate with a
defined end-point, which is the current tenet. The apparent open-endedness and
transcriptional diversity may provide a fertile soil for the eventual escape of pre-
cancerous senescent cells as previously shown®" %,

To further delineate the evolution of the RAS-OIS gene expression program, we
next performed dynamic differential gene expression analysis on the Q and OIS
datasets®. A total of 4,986 genes (corresponding to 2,931 up-regulated and 2,055
down-regulated genes) were differentially regulated in at least one-time point (with a
minimal leading log2 fold-change of 1.2; q=5*10") and partitioned into seven (I-VIl) gene
expression modules with distinct functional overrepresentation profiles in line with the
senescence phenotype (Figures 1E-F and Figure S1D). The highly reproducible
dynamics of gene expression during RAS-OIS transition suggest a high degree of
preprogramming of this succession of cell states.

Cell-fate decisions are typically associated with stable changes in gene

expression that shift the regulatory system from one steady state to the next*’. In line
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with this, we found that proliferation-promoting genes of modules Il and IV (E2F targets
and G2M checkpoint) became increasingly repressed (i.e. senescence arrest), while
pro-senescent SASP genes of modules VI and VIl (e.g., inflammatory and interferon
response genes) became persistently induced (Figure 1F and Supplementary Figure
1E). Apoptosis-related genes of module Il were repressed very early on in the time-
course (within the first 24-48 hours during RAS-OIS induction), which is surprising given
that apoptosis-resistance is considered a very late event in senescence (Figure 1F and
Supplementary Figure 1E). This indicates that the commitment to senescence is a very
early event made at the expense of apoptosis. Finally, we identified a set of genes in
modules | and V that would have gone unnoticed in a traditional start-end-point analysis
because they follow an “impulse”-like pattern. In these modules, transcript levels
spiked-up (module V) or down (module 1) following RAS-OIS induction, then sustained a
new level, before transitioning to a new steady state, similar to the original levels
(Figures 1E and Supplementary Figure 1E). These expression patterns support the
notion that genes of module V play an active and vital role early in the transition to RAS-
OIS, while genes in module | hold key regulators to maintain the proliferative fibroblast
state.

Altogether, our investigation of transcriptome dynamics defined a modular
organization and transcriptional diversity of the RAS-OIS gene expression program,
providing a framework to unravel the gene-regulatory code underlying the senescence

process.
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A dynamic enhancer program shapes the senescence transcriptome

Senescence cell fate involves a global remodeling of chromatin and specifically, the
enhancer landscape'"'2. An unanswered question, however, is how TFs and epigenetic
modifications cooperatively shape a transcriptionally permissive enhancer landscape
prior to gene activation to endow the cell with senescence potential.

To provide mechanistic insight into this question, we first comprehensively
mapped genomic regulatory elements (i.e. putative enhancers, promoters and
polycomb-repressed chromatin) during the transition of proliferating cells to RAS-OIS,
profiling genome-wide histone modifications by ChlP-seq and transposon-accessible
chromatin by ATAC-seq. To capture and quantify chromatin state dynamics we used
ChromstaR (see Materials and Methods), which identified a total of sixteen chromatin
states (Supplementary Figure 2A). The majority of the genome (=80%) was, irrespective
of the time-point, either devoid of any of the histone modifications analyzed (=62%) or
polycomb-repressed (=18%). The fraction of the genome represented by active and
accessible chromatin states (i.e., enhancers and promoters) was comparably lower
(=20% combined). Chromatin state transitions occurred most prominently at enhancers,
while promoters were only mildly affected (Figures 2A-B and Supplementary Figure 2A,
arrows) congruent with previous results'’. Unexpectedly, we found, however, that most
of the enhancer activation, i.e. acquisition of H3K4me1 and H3K27ac, occurred de novo
from unmarked chromatin at the T0-72 h and 72 h-144 h intervals, followed by the more
stereotypical enhancer activation from a poised state (H3K4me1* plus H3K27ac
acquisition) and enhancer poising from the unmarked and polycomb-repressed state at

the TO-72 h interval (acquisition of H3K4me1) (Figures 2A and -B). Thus, the regulatory
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landscape of senescence is largely predetermined by sequential enhancer activation
from de novo and poised enhancers implying the existence of a prior imprint of past cell
fate decisions.

The (in)activation chronology of enhancers was highly concordant with the
temporal expression pattern of the nearest genes, indicating that most of these elements
indeed function as bona fide enhancers (Supplementary Figure 2B). In line with this,
correspondence analysis (CA) (Supplementary Figure 2C) revealed a strong correlation
between gene expression modules (Figure 1E) and chromatin state transitions (Figure
2A). For example, globally up-regulated transcriptomic modules V, VI, VII projected
proximally to chromatin state transitions involving enhancer activation congruent with the
installation of the SASP. By contrast, dynamic enhancer inactivation associated with
repressed transcriptomic modules (l1, Ill, IV) congruent with installation of the
senescence arrest. Finally, the oscillatory expression of genes in the module |
associated with an equally oscillatory activation of its closest enhancers. Therefore,
dynamic remodeling of the enhancer landscape reflects and defines the modular and
dynamic nature of the RAS-OIS gene expression program.

We next addressed the question of which TFs are key drivers for the dynamic
enhancer remodeling driving the senescence transcriptome. To this end, we first
intersected ATAC-seq peaks with the identified enhancer coordinates (Figure 2A-B) and
performed a motif over-representation test. This analysis identified AP-1 super-family
members (cJUN, FOS, FOSL1, FOSL2, BATF) as well as AP-1-associated TFs ATF3
and ETS1 as the most enriched motifs at any given time-point, thus, hinting at a putative
chromatin priming and pioneer function for these TFs (Supplementary Figure 2D).

Because AP-1 TFs are essential and inducible downstream effectors for the RAS
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signaling pathway in cellular transformation®' the possibility remains that the observed
enrichment of AP-1 TFs at enhancers is strictly dependent on oncogenic RAS signaling
per se and not a reflection of a specific pioneering role in the enhancer landscape
independent of RAS signaling. We therefore performed the same analysis in cells
undergoing replicative senescence (which is driven by loss of telomere integrity) and
also in growth factor-deprived (and thus RAS signaling-muted) quiescent cells
(Supplementary Figures 2E-F). In both cases, the AP-1 motif ascended as the
predominant motif enriched at enhancers, thus, corroborating the notion that AP-1 TFs
act as the universal pioneers imprinting the global as well as senescence-associated
enhancer landscape.

To elaborate this further, we analyzed our time-resolved ATAC-seq data sets by
adapting the “Protein Interaction Quantitation (PIQ)” algorithm, which was developed
initially for DNAse-seq-based digital TF footprinting®'. Importantly, PIQ allows for the
functional hierarchization of TFs into pioneers, settlers, and migrants - whereby pioneer
TFs bind nucleosome-compacted chromatin to initiate chromatin remodeling and to
enable subsequent binding of non-pioneers (i.e., settler and migrant TFs). PIQ
segregated TFs into pioneers (e.g., AP-1 TF family members), settlers (e.g., NFY and
RELA subunit of NF-kB) and migrants (e.g., TF RAR family members and SREBF1)
(Figure 2C). We confirmed this TF hierarchization by inspecting a selection of individual
TF footprints for their adjacent nucleosomal positioning (Supplementary Figure 2G-I).
AP-1 family member FOSL1, for example, bound to its cognate binding site despite the
presence of strongly positioned flanking nucleosomes, as would be expected from a

pioneer TF (Supplementary Figure 2G), while RELA binding required partial nucleosome
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displacement/chromatin opening, as would be expected for a settler TF (Supplementary
Figure 2H), and SREBF1 bound to its cognate site in a near-nucleosome free context,
as would be expected for a migrant TF (Supplementary Figure 21). Importantly, there
was a high correspondence between PIQ predictions and TF ChlP-seq profiling as
exemplified for AP-1-members FOSL2 and cJUN, which we used as surrogate marks for
bound AP-1 (which is typically a complex of JUN-JUN or JUN-FOS family member
dimers), and RELA (Supplementary Figure 2J).

To decode additional TF properties critical for shaping the dynamic RAS-OIS
enhancer landscape, we applied a principal component analysis (PCA) considering
several metrics describing TF binding characteristics (Figure 2D). This analysis revealed
two key features: First, pioneer TFs bind statically, extensively, and most importantly
before RAS-OIS induction (i.e., pre-stimulation) along the genome, while settler and
migrant TFs bind more dynamically (“Dynamicity” in Figure 2D), far less frequently
(“Windows” in Figure 2D), and on average less often before OIS induction (i.e. pre-
stimulation) along the genome. Second, and in line with the proposed pioneering activity
of AP-1 TFs, the latter clearly stand out amongst other pioneer TFs (highlighted by black
circle in Figure 2D) because they bind exclusively and extensively to enhancers prior to
RAS-OIS induction whereas most of the remaining pioneer TFs tend to accumulate
away from them.

In summary, we identify de novo enhancer activation and AP-1 as novel and key
elements that pioneer and shape a transcriptionally permissive enhancer landscape in

senescence.
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AP-1 pioneer TF bookmarking of senescence enhancer landscape foreshadows
the senescence transcriptional program

Given our unexpected finding that most of the enhancer activation occurred de novo out
of unmarked chromatin territories, i.e., devoid of enhancer-related histone modifications
H3K4me1 and H3K27ac and ending in an active H3K4me1*/ H3K27ac* enhancer state
at 144h, and that AP-1 TFs act as pioneers to shape the senescence enhancer
landscape, we explored a possible role of AP-1 as a general bookmarking agent for
future and past enhancer activity. Quantification of enhancer mark dynamics (Figure 3A
and Supplementary Figures 3A-C) unveiled that for windows shifting from the
“unmarked” state at Ty to an “active enhancer” state (H3K4me1* / H3K27ac™) at either
72 h or 144 h, i.e. “de novo enhancers”, there is both a gradual increase in H3K4me1
and H3K27ac levels from initial levels (To) similar to steady-state unmarked regions but
different from poised enhancers, to final levels (144 h) indistinguishable from constitutive
enhancers (Figure 3A and Supplementary Figures 3A-B). By contrast, for windows
shifting from an “active enhancer” state at Ty to an “unmarked” state at either 72 h or
144 h, that we refer to as “remnant enhancers”, there is a progressive decrease both in
H3K4me1 and H3K27ac levels from initial levels indistinguishable from constitutive
enhancers to final levels similar to unmarked regions and distinct from poised enhancers
(Figure 3A and Supplementary Figures 3A and 3C). The dynamic behavior of each
enhancer class on average associated with the expression profile of nearby genes, with
constitutive enhancers displaying constant gene expression, de novo enhancers
increasing and remnant enhancers decreasing gene expression (Supplementary Figure
3D). To directly show the functional role of de novo enhancers we used a CRISPR

interference (CRISPRI) approach®®®. Expression of 4 different gRNA targeting the
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dCas9-KRAB transcriptional repressor to de novo enhancers in the IL1a /IL1B genomic
locus (g7, -14, -15, and -61) significantly reduced the expression of IL1B when analyzed
8 days after oncogenic RAS induction (Figure 3B). Interestingly, IL1a expression was
only mildly reduced by the two gRNAs (g61 and g7) adjacent to the IL1 promoter
(Figure 3B). While similar results were observed 14 days after oncogenic RAS induction
(Supplementary Figure 3E), a control gRNA (g54) targeting a genomic region just
downstream of the IL1a /IL1B locus did not affect either expression, while control gRNA
guides g2 and g48, targeting sequences in-between two de novo enhancers, had only
very moderate effects (Supplementary Figure 3F). Together, we render ample evidence
that de novo and remnant enhancers are novel senescence-associated cis-regulatory
modules that define the senescence transcriptional program.

We next determined whether TFs bookmark de novo enhancers for future
activation and also, whether TFs bookmark remnant enhancers after their inactivation as
part of a molecular memory. Indeed, as shown in Figure 3C, we found that AP-1 is the
predominant TF bookmarking de novo and remnant enhancers. Importantly, and
highlighting the importance of AP-1 in bookmarking de novo enhancers for future
activation, gRNAs chosen for CRISPRI were either overlapping with AP-1 binding sites
(914, g15 and g61) or in close proximity (g7), i.e. ~125bp outside of it (Figure 3B).
Because CRISPRI can control repression over a length of two nucleosomes (~300bp)**,
it is highly probable that g7 also affects this AP-1 binding site. Moreover, a control gRNA
(92) targeting a non-enhancer AP-1 site (Supplementary Figure 3F) did not affect IL1
expression strongly suggesting that only enhancer-positioned AP-1 sites are functional.
Finally, we validated the importance of AP-1 TFs for de novo and remnant enhancer

bookmarking by examining their positioning also in cells undergoing replicative
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senescence, which demonstrated that AP-1 TFs here also play a leading role for
bookmarking (Supplementary Figure 3G). We conclude that AP-1 bookmarking of de
novo and remnant enhancers is independent of oncogenic RAS signaling and a novel
and cardinal feature that reflects future and past transcriptional activities in senescence.
While performing this analysis, we noticed that only 2,480 out of 3,334 de novo
enhancers were TF bookmarked, while the remainder (n=854) lacked any detectable TF
binding activity (Figure 3D). Thus, de novo enhancers can be further divided into two
subclasses: 1) “TF bookmarked de novo enhancers” and 2) “TF virgin de novo

enhancers” that are reminiscent to previously described latent enhancers'®*°

expanding
the senescence enhancer landscape. Next, we considered the chromatin state
environment of the two de novo enhancer classes to further characterize them
(Supplementary Figure 3H). While a chromatin state environment already rich in
constitutive enhancers surrounded bookmarked de novo enhancers at T (i.e., pre-OIS
stimulation; left top and bottom plots), a chromatin state environment poor in constitutive
enhancer elements surrounded virgin de novo enhancers at Ty (right top and bottom
plots). Both AP-1 bookmarked and virgin de novo enhancers became progressively
activated and expanded upon RAS-OIS induction. Given that AP-1 premarked de novo
enhancers operate within pre-existing, active enhancer-rich cis-regulatory regions and
virgin de novo enhancers in poor ones, we hypothesized that this might impact absolute
gene expression levels and kinetics upon enhancer activation. Indeed, we observed that
the nearest genes associated with bookmarked de novo enhancers were already
expressed at higher basal levels (as were genes proximal to poised enhancers) and

reached significantly higher absolute expression levels with faster kinetics after RAS-

OIS induction. In contrast, virgin de novo enhancers showed only low-to-background

182



ROBINSON Lucas - Thése de doctorat - 2019

bioRxiv preprint first posted online May. 9, 2019; doi: http://dx.doi.org/10.1101/633594. The copyright holder for this preprint (which
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
All rights reserved. No reuse allowed without permission.

basal expression levels and reached comparatively lower absolute expression levels
with slower kinetics after RAS-OIS induction (Figure 3E). These results argue that TF
bookmarking of de novo enhancers, similar to traditional enhancer poising®, is a
chromatin-priming event that impacts gene expression kinetics and absolute output.
Contrary to latent enhancers, our newly identified virgin enhancers do not serve an
adaptive role in mediating stronger and faster gene expression upon restimulation as
observed in macrophages'?, but instead serve as novel enhancer elements for de novo
gene expression. Finally, we plotted leading gene expression fold-changes against the
number of de novo enhancers in a given prospective senescence enhancer region.
Remarkably, we discovered that a single de novo enhancer element of 100 bp can
substantially activate the expression of its nearest gene and that there exists a positive
correlation between the number of de novo enhancer elements and the expression
increase of their nearest genes (Supplementary Figure 3l).

Altogether, our results provide compelling evidence that de novo and remnant
enhancers play a critical role for ensuring that genes pertinent for senescence are
expressed at the correct time and the correct level and highlight the importance of AP-1
bookmarking for epigenetic memorization of past and future enhancer activity to define

the senescence transcriptional program.

A hierarchical TF network defines the senescence transcriptional program

The combinatorial and dynamic binding of TFs to enhancers and their organization into
TF networks are central to the spatiotemporal specificity of gene expression and a key
determinant in cell fate decisions®. TF networks are frequently corrupted in disease and

thus, a detailed understanding on TF networks has important implications for developing
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and improving new therapeutic strategies®. Currently, a TF network regulating
senescence is not available, which precludes a deliberate therapeutic manipulation of
the senescence phenotype. Importantly, TF networks deduced in silico from the
integration of time-resolved multidimensional, genome-wide datasets improve the
accuracy and predictive power of such networks.

To elucidate the combinatorial and dynamic binding of TFs to enhancers and their
organization into TF networks, we first computed co-occurring pairs of TFs in enhancers
(Figure 4A, Supplementary Figure 4A and Supplementary data: see under Code
availability in Material and Methods) followed by a topic machine learning approach that
dissects the complexity of combinatorial binding of many TFs into compact and easily
interpretable regulatory modules or TF "lexicons" that form the thematic structures
driving the RAS-OIS gene expression program (Figure 4B)*“°. These analyses
illustrated two key points. First, as shown in the co-binding matrix of Figure 4A and
heatmap of Figure 4B, AP-1 pioneer TFs interact genome-wide with most of the
remaining non-pioneer TFs (i.e., settlers and migrant TFs; Figure 4A), have the highest
total number of binding sites (Figure 4B, grey colored box plot) and contribute to virtually
all of the 54 TF lexicons (Figure 4B, green colored boxplot) with lexicon 22 being the
most frequently represented lexicon genome-wide (Figure 4B, top orange colored box
plot). Our interactive heatmap of Figure 4B (Supplementary data: see under Code
availability in Material and Methods) provides a valuable resource for generating new
hypotheses to functionally dissect TF interactions in cells undergoing RAS-OIS. Second,
TF lexicon usage associates with specific chromatin states (Supplementary Figure 4B).
For example, lexicons 21 and 22 are exclusively used for enhancers holding most of the

AP-1 binding instances, while lexicon 50 is strongly related to polycomb repressor
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complex (PRC)-repressed regions and lexicons 44 and 52 predominantly associate with
promoters. Interestingly among the most prominent TFs in lexicon 50 are the known
PRC-interacting transcriptional co-repressor complex REST and insulator CTCF*'#2.
The latter implies that these proteins may recruit PRC to silence or structure genomic
regions, an intriguing possibility that deserves further investigation. Moreover, the
promoter-centric lexicon 52 holds many E2F TFs, which is in line with a primary role of
E2Fs at promoters™®.

Next, we developed an algorithm, based on our temporal TF co-binding
information and a previously published TF network (Supplementary Figure 4C)*, to
visualize the hierarchical structure of the senescence TF network. In Figure 4C we show
a representative example of the TF network of SASP gene module VI. The network has
a three-layered architecture: i) a top layer defined exclusively by the AP-1 family of
pioneer TFs ii) a core layer composed mostly of other pioneer and settler TFs, and iii) a
bottom layer characterized by settler and migrant TFs (Figures 4C and Cytoscape
interactive maps in Supplementary Data: see under Code availability in Material and
Methods). The core layer itself separates into a multi-level and single-level core,
depending on the complexity of TF connectivity to the top and bottom layers (Figure 4C).
Remarkably, the organizational logic of the TF network is highly similar, if not identical,
for all gene expression modules despite high transcription factor diversity in the core and
bottom layers (Supplementary data: see under Code availability in Material and
Methods). The TF network topology for RAS-OIS is congruent with the biochemical and
dynamic properties of each TF category (i.e., pioneer, settler or migrant) in each layer of
the network. As the interactions flow from the top to the bottom layer, there is an

increasing dynamicity and number of TFs and a decreasing number of bound regions
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(Supplementary Figures 4D-E). Ranking the dynamicity index and the number of bound
regions for all TFs in each network confirmed the hierarchical principles of their
organization, with a common core of highly connected TFs from the top and core layers
shared across all networks (Supplementary Figure 4F, black circle at center). Variability
in the composition of the most dynamic TFs of the core and bottom layers defines the
gene expression module specificity for each network and its corresponding specialized
transcriptional output (Supplementary Figures 4G-1). Thus, TF network topology
imposes and constrains the position of a given TF in the network and thus, its gene-
regulatory contribution. Our data also revealed unanticipated plasticity in transcription
factor binding leading to similar gene expression, thus, refuting the simple rule that co-
expression behooves co-regulation®.

Our hierarchical TF network model for RAS-OIS enhancers predicted that the
number of direct target genes regulated by a given TF is a function of its position in the
TF network hierarchy. To test this prediction, we performed transient RNA interference
(siRNA) experiments targeting AP-1-cJUN (top layer), ETS1 (multi-level core layer) and
RELA (single-level core layer) in fully senescent RAS-OIS cells (144 h), determined the
global transcriptome profiles and compared them to the transcriptomes of cells
transfected with a non-targeting siRNA (siCTRL) (Figure 4D). Consistent with the TF
network hierarchy, silencing of AP-1-cJUN affected the most substantial number direct
gene targets (n=5,089), followed by ETS1 (n=2,431) and RELA (n=2,224), thus,
confirming the master regulatory role of AP-1 pioneer TFs at enhancers and in the
execution of the RAS-OIS gene expression program. Specifically, 172 genes were co-
regulated by the three TFs, while 987 were co-regulated by cJUN and ETS1, 520 by

JUN and RELA, and 293 by ETS and RELA. Correspondence analysis (CA) revealed
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that perturbing the function of AP-1-cJUN, ETS1 or RELA could separate faithfully (p =
1.8 x 10-"*9) up-regulated (V-VII) from down-regulated gene expression modules (I-1V)
(Figure 4E), which aligns perfectly, both with the CA for chromatin states (see Figures
2A-B) and the differential impact of the TFs on RAS-OIS-associated enhancer activation
as predicted in the TF network analysis (Figure 4C and Supplementary data: see under
Code availability in Material and Methods).

We conclude that the senescence response is encoded by a universal three-
layered TF network architecture and relies strongly on the exploitation of an enhancer
landscape implemented by AP-1 pioneer TFs to choreograph the OIS transcriptional

program via local, diverse and dynamic interactions with settler and migrant TFs.

Hierarchy Matters: Functional Perturbation of AP-1 pioneer TF, but no other TF,
reverts the senescence clock

Pioneer TFs have been identified as important drivers of cell fate changes during
adaptive and cellular reprogramming as well as in cells undergoing malignant
transformation*®*”. As such, they represent attractive targets to manipulate cell fate for
diverse research and therapeutic purposes’®.

The identification of AP-1-cJUN as a principal pioneer TF in fibroblasts
undergoing RAS-OIS raised the possibility that perturbing its function could considerably
change the transcriptional trajectory of the OIS cell fate, while perturbation of other TFs
should not. To test this hypothesis, we depleted AP-1-cJUN, ETS1 and RELA at Ty, 72 h
and 144 h following oncogenic RAS expression and compared global gene expression

profiles with siCTRL treated cells at identical time-points. Capturing their transcriptional
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trajectories using PCA illustrated that functional perturbation of ETS1 and RELA shifted
trajectories along the second principal component (PC2, which captures siRNA-related
variability) at any given time-point compared to the control time course, but it did not
affect the timely execution of the RAS-OIS gene expression program, since there is not
shift along the first principal component (PC1, which captures time-related variability).
By contrast, perturbing AP-1-cJUN function shifted trajectories both along PC1 and PC2
and effectively reverted the RAS-OIS transcriptional trajectory to a profile closely related
to that of siCTRL-treated fibroblasts at 72 h after RAS-OIS induction. Silencing AP-1-
cJUN expression at 72 h also pushed the transcriptional profile closer to control-treated
cells at day TO (Figure 5A, blue arrow). Functional overrepresentation analyses of the
target genes (direct and/or indirect) of each TF further supported the siJUN-mediated
reversion of the RAS-OIS transcriptional trajectory demonstrating that depletion of AP-1-
cJUN strongly affected both the repression of the inflammatory response (i.e., the
SASP) and a partial reactivation of pro-proliferation genes (i.e., E2F, G2M and mitotic
spindle targets) (Figure 5B and Supplementary Figures 5A-C). A complete exit of
senescence is not expected here, however, as AP-1 is absolutely required for
proliferation*®°.

To quantify and visualize the temporal overlaps in differentially expressed genes
between siJUN and siCTRL-treated cells we used an UpSet plot (Supplementary
Figures 5D) and expression heatmaps (Figure 5C and Supplementary Figures 5E-G).
Congruent with a resetting of the senescence clock, a significant number of pro-

proliferation E2F target genes (14%; e.g. CCNB2 or CDCAS8) were up-regulated

(Supplementary Figure 5E) and NF-xB-regulated SASP target genes (e.g. IL1B or IL6)
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were down-regulated (60%) (Supplementary Figure 5F). cJUN-depleted RAS-OIS cells
also shared a similar expression profile for a subset of genes (27%) of the Notch-1
intracellular domain (NC1ID)-induced senescence (NIS) transcriptional signature® that
develops within the first 72-96 h of RAS-OIS (Supplementary Figure 5G). Thus, AP-1
inhibition is a powerful and save means to potently repress SASP expression in
senescent cells without affecting their cell cycle arrest.

Altogether, these data identify AP-1 as a master regulator and molecular “time-
keeper” of senescence. Our detailed description of the layered TF network architecture
will facilitate targeted disruption of TFs to manipulate specific features of the

senescence phenotype for future therapeutic benefit.
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DISCUSSION

Exploiting senescence targeting for treating age-related diseases and cancer requires a
detailed knowledge of the transcriptional, epigenetic, and signaling mechanisms defining
the basis and realization of the senescence program, which is currently missing. To fill
this critical gap in our knowledge, we used a dynamic, multidimensional approach at
high-resolution to define the gene-regulatory code driving the senescence cell fate.

A central finding of our study is that the senescence program is defined and driven
by a predetermined enhancer landscape that is sequentially (in)activated during the
senescence process. AP1 is instrumental for this predetermination by imprinting a
prospective senescence enhancer landscape that, in the absence of traditional
enhancer histone-modification marks, foreshadows future transcriptional activation. This
is a surprising discovery given that AP-1 transcriptional activation has been traditionally
linked to growth-factor and MAPK signalin951. There is, however, now accumulating
evidence that AP-1 also plays an essential role as a pioneering factor for establishing
cell type-specific enhancers and cellular identities®**®. In line with its role in pioneering
and bookmarking enhancers, we show that AP-1 is also recruited de novo as a first line
TF to “virgin” enhancers and that it serves as a molecular memory for enhancers that
become inactivated during the senescence fate transition that we termed “remnant”
enhancers. Based on these findings we propose a model by which “enhancer recycling”
of AP1-bookmarked future and past enhancer activities is an evolutionary conserved
mechanism that allows for modular and flexible, yet, efficient transcriptional responses
to incoming signals. We stipulate that the senescence program is preserved through AP-
1 binding to enhancer chromatin as part of epigenetic memory of the cell’s

developmental (stress) history bypassing histone modification-dependent bookmarking
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to store genomic information. Further, given the pristine specificity of the newly identified
prospective and remnant enhancers they can be used as urgently needed specific,
rather than associated, senescence biomarkers and to predict a cell’'s potential to
undergo senescence. This latter carries also important translational implications for
identifying cancers that would respond positively to pro-senescence therapy. A natural
question that arises from our data is whether the senescence program is universal to all
inducing stimuli and cell types or if multiple senescence programs exist. Based on the
data presented here and work in progress, we predict that the organizational principles
of the senescence program we defined here hold for all cell types and inducers.
Additional time-resolved studies of various inducers in different cell types are required
and currently ongoing to answer this question definitively.

Another key finding is the reversibility of senescence by an informed intervention on
network topology that we delineated in this study. Indeed, silencing the function of a
single TF sitting atop the TF network hierarchy, AP-1, is sufficient to revert the
“senescence clock”. We thus define after the “telomere clock” a second, “epigenomic-
enhancer clock” regulating the senescence process. Why does functional AP-1
perturbation not lead to complete senescence exit? Based on published*® and our own
results we surmise that AP1 depletion does not lead to a full cell cycle re-entry and
proliferation, because AP1 plays important roles for proliferation. Thus, AP1 confines
cells to their existing proliferative state and therefore may be viewed as a ‘locking
device’ that restricts cells to their current state. However, we provide compelling
evidence that functional inhibition of AP1 factors reverts the senescence transcriptional
program and potently represses the expression of the pro-inflammatory senescence-

associated secretory phenotype (SASP). This finding has great therapeutic potential, as
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pharmacological interference with AP1 using selective inhibitors (e.g. improved T-5224
derivatives) would allow to control effectively the detrimental effects of the SASP in
promoting cancer and other age-related diseases®*®. In summary, we believe that AP1
is a prime target for therapeutic SASP modulation in vivo.

By determining the layered architecture/organizational principles of the TF network
that orchestrate(s) the transition to OIS, we revealed the plasticity and stability of the
senescent phenotype. We show that a highly flexible, combinatorial TF interactome
establishes the senescence program, which is in line with the TF network dynamics
during hematopoietic and stem cell differentiation®°%. In addition, we demonstrate that
targeted engineering of specific nodes at different layers of the TF network disrupts
gene expression with a corresponding magnitude, suggesting a path for the
manipulation of the senescent phenotype in vivo. Pharmacological inhibition of TFs (see
above for AP-1), signal transduction molecules, such as kinases or acetylases that
converge in the activation of TFs, could represent a viable approach for manipulating the
senescent phenotype in vivo™. Alternatively, small molecules that prevent TF-TF
combinatorial interactions could also be envisioned®.

In conclusion, the present work emphasizes the advantages of, and indeed the need
for, integrating time-resolved genome-wide profiles to describe and interrogate the
transition to senescence. This approach generates detailed knowledge necessary to
develop strategies for manipulating/engineering the senescent cell fate (and other cell
fate transitions) in vivo for research and therapeutic purposes. Overall, our study
provides a comprehensive resource for the generation of novel hypotheses regarding

senescence regulation, offers important mechanistic, regulatory insights that could

192



ROBINSON Lucas - Thése de doctorat - 2019

bioRxiv preprint first posted online May. 9, 2019; doi: http://dx.doi.org/10.1101/633594. The copyright holder for this preprint (which
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
All rights reserved. No reuse allowed without permission.

translate to the study of other cell fate transitions and provide new inroads for the

diagnosis and manipulation of the senescence state in age-related diseases and cancer.
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MATERIAL AND METHODS

Cell culture

WI-38 fibroblasts (purchased from ECCAC) were cultured in Dulbecco’s Modified
Eagle’s medium (DMEM) containing 10% FBS and 1X Primocin (Invivogen) at 37°C and
3% oxygen. WI-38-ER: RASV12 fibroblasts were generated by retroviral transduction as
previously described®. Senescence was induced by addition of 400 nM 4-
hydroxytamoxifen (4-OHT, Sigma Cat no. H7904-5MG) to the culture medium and
samples were collected and processed at the time points indicated in the main text.
Replicative senescent cells were generated by proliferative exhaustion and were used
for experiments when cell cultures went through 1 population (PD) per 3 weeks, were
>80% positive for senescence-associated beta galactosidase activity (SABG) and
stained negative for EdU (see below for details). For the induction of quiescence, WI-38
fibroblasts were cultured in DMEM containing 0.2% FBS for up to 4 consecutive days

and samples were collected and processed as described in the main text.

ATAC-seq

The transposition reaction and library construction were performed as previously
described?. Briefly, 50,000 cells from each time point of the senescence time course (2
biological replicates) were collected, washed in 1X in PBS and centrifuged at 500 x g at
4°C for 5 min. Nuclei were extracted by incubation of cells in Nuclear Extraction Buffer
(NEB) containing 10 mM Tris-HCI, pH 7.4, 10 mM NaCl, 3 mM MgCI2, 0.1% IGEPAL
CA-630 and immediately centrifuging at 500 x g at 4°C for 5 min. The supernatant was
carefully removed by pipetting, and the transposition was performed by resuspension of

nuclei in 50 pL of Transposition Mix containing 1X TD Buffer (lllumina) and 2.5 L Tn5
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(Humina) for 30 min at 37°C. DNA was extracted using the QIAGEN MinElute kit.
Libraries were produced by PCR amplification (12-14 cycles) of tagmented DNA using
the NEB Next High-Fidelity 2x PCR Master Mix (New England Biolabs). Library quality
was assessed in an Agilent Bioanalyzer 2100. Paired-end sequencing was performed in
an lllumina Hiseq 2500. Typically, 30-50 million reads per library are required for

downstream analyses.

Histone modification and transcription factor ChIP-seq

WI-38-ER: RASV12 fibroblasts were treated with 400 nM 4-OHT for 0, 72 and 144
hours, and 107 cells (per time point, minimum two biological replicates) were fixed in 1%
formaldehyde for 15 min, quenched in 2M glycine for additional 5 min and pelleted by
centrifugation at 2,000 rpm, 4°C for 4 min. For histone modification ChlP-seq, nuclei
were extracted in Extraction Buffer 2 (0.25 M sucrose, 10 mM Tris-HCI pH 8.0, 10 mM
MgClz, 1% Triton X-100 and proteinase inhibitor cocktail) on ice for 10 min followed by
centrifugation at 3,000 x g at 4°C for 10 min. The supernatant was removed and nuclei
were resuspended in Nuclei Lysis Buffer (50 mM Tris-HCI pH 8.0, 10 mM EDTA, 1%
SDS and proteinase inhibitor cocktail). Sonication was performed using a Diagenode
Picoruptor until the desired average fragment size (100-500 bp) was obtained. Soluble
chromatin was obtained by centrifugation at 11,500 rpm for 10 min at 4°C and chromatin
was diluted 10-fold. Immunoprecipitation was performed overnight at 4°C with rotation
using 1-2 x 10° cell equivalents per immunoprecipitation using antibodies (5 ug) against
H3K4me1 (Abcam), H3K27ac (Abcam), H3K4me3 (Millipore), H3K27me3 (Millipore).
Subsequently, 30 uL of Ultralink Resin (Thermo Fisher Scientific) was added and

allowed to tumble for 4h at 4°C. The resin was pelleted by centrifugation and washed
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three times in low salt buffer (150 mM NaCl, 0.1% SDS, 1% Triton X-100, 20 mM EDTA,
20 mM Tris-HCI pH 8.0), one time in high salt buffer (500 mM NaCl, 0.1% SDS, 1%
Triton X-100, 20 mM EDTA, 20 mM Tris-HCI pH 8.0), two times in lithium chloride buffer
(250 mM LiCl, 1% IGEPAL CA-630, 15 sodium deoxycholate, 1 mM EDTA, 10 mM Tris-
HCI pH 8.0) and two times in TE buffer (10 mM Tris-HCI, 1 mM EDTA). For transcription
factor ChlP-seq, fibroblasts were treated as described above except that chromatin was
isolated using the enzymatic SimpleChlP kit (Cell Signaling) according to the
manufacturer’s instructions, obtaining chromatin with an average fragment length of 4-5
nucleosomes. Immunoprecipitation was performed overnight at 4°C with rotation using
6-10 x 10° cell equivalents per immunoprecipitation using antibodies (5 ug) against
cJUN, FOSL2 and RELA (Santa Cruz Biotechnologies) and processed as described
above. Washed beads were resuspended in elution buffer (10 mM Tris-Cl pH 8.0, 5 mM
EDTA, 300 mM NaCl, 0.5% SDS) treated with RNAse H (30 min, 37 2C) and Proteinase
K (2 h, 372C), 1 uL glycogen (20 mg/mL, Ambion) was added, and decrosslinked
overnight at 65 °C. For histone modifications, DNA was recovered by mixing the
decrosslinked supernatant with 2.2X SPRI beads followed by 4 min incubation at RT.
The SPRI beads were washed twice in 80% ethanol, allowed to dry, and DNA was
eluted by in 35 uL 10 mM Tris-Cl pH 8.0. For transcription factors, DNA was eluted by
phenol/chloroform extraction (2X) followed by ethanol precipitation overnight at -20°C.
The DNA pellet was washed with 70% ethanol, allowed to dry, and DNA was
resuspended in 35 uL. 10 mM Tris-Cl pH 8.0. Histone modification libraries were
constructed using the NextFlex ChlP-seq kit (Bioo Scientific) according to the
manufacturer’s instructions. Libraries were amplified for 12 cycles. Transcription factor

libraries were constructed using a modified protocol from the Accel-NGS 2S Plus DNA
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Library Kit (#21024), where we performed DNA extraction at each step using 25:24:1
phenol:chloroform:isoamyl alcohol followed by overnight ethanol precipitation of DNA at
each step of the protocol. Additionally, we enriched for small DNA fragments using
AMPure-XP beads (Beckman-Coulter (#A63881). Libraries were then resuspended in
20 pL of low EDTA-TE buffer. Libraries were quality controlled in an Agilent
Technologies 4200 Tapestation (G2991-90001) and quantified using the Invitrogen
Qubit DS DNA HS Assay kit (Q32854). Libraries were sequenced using an lllumina

High-Seq 2500. Typically, 30-50 million reads were required for downstream analyses.

RNA and microarrays

RNA from each time point from the senescence and quiescence time series (2 biological
replicates) was purified using the QIAGEN RNeasy Plus kit according to the
manufacturer’s instructions. 100 ng RNA per sample was analyzed using Affymetrix

Human Transcriptome Arrays 2.0, according to the manufacturer’s instructions.

EdU staining and senescence-associated beta galactosidase activity (SABG)
Representative samples from the senescent and quiescent time series were evaluated
for EAU incorporation using the Click-iT EAU Alexa Fluor Imaging Kit (Thermo Fisher
Scientific) according to the manufacturer’s instructions. SABG activity was assessed as
previously described®’. Cells were imaged in a Zeiss confocal fluorescence microscope

and images analyzed using the ZEN suite.
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RNA interference

Small interfering RNAs (20 uM) targeting JUN (QIAGEN, Ambion), ETS1 (QIAGEN) and
RELA (QIAGEN) as well as non-targeting controls were transfected into WI-38-ER:
RASV12 using siIMPORTER reagent (Millipore) according to the manufacturer’s
instructions (minimum 2 biological replicates per transcription factor per time course
experiment). RAS-OIS was induced with 400 nM 4-OHT concomitantly with the addition
of DMEM containing 20% FBS 4 hours after transfection and incubated overnight.
Sixteen hours after transfection, cells were replenished with new media containing 10%
FBS and 400 nM 4-OHT, and RNA was isolated at indicated time points and analyzed in

Affymetrix Human Transcriptome Arrays 2.0.

Expression microarray pre-processing

Raw Affymetrix HTA 2.0 array intensity data were analyzed using open-source
Bioconductor packages on R. The quiescence and the RAS-OIS time series data were
normalized together (2 conditions, 2 biological replicates per condition, 6 time points per
replicates) using the robust multi-array average normalization approach implemented in
the oligo package. Internal control probe sets were removed and average expression
deciles over time-points were independently defined for each treatment. Probes whose
average expression was lower than the 4™ expression decile in both conditions were
removed for subsequent analyses. To remove sources of variation and account for
batch effects, data were finally corrected with the sva package. To recover as much
annotation information as possible, we combined Affymetrix HTA 2.0 annotations
provided by Affymetrix and Ensembl through the packages hta20sttranscriptcluster.db

and biomaRt. Principal component analysis and bi-clustering based on Pearson’s
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correlation and Ward’s aggregation criterion were used to confirm consistency between

biological replicates and experimental conditions at each step of the pre-processing.

Self-organizing maps (SOM)

Normalized log-scaled and filtered expression values were processed using the
unsupervised machine learning method implemented in 0posSOM? to train a self-
organizing map. This algorithm applies a neural network algorithm to project high
dimensional data onto a two-dimensional visualization space. In this application, we
used a two-dimensional grid of size 60 x 60 metagenes of rectangular topology. The
SOM portraits were then plotted using a logarithmic fold-change scale. To define
modules of co-expressed meta-genes, we used a clustering approach relying on
distance matrix and implemented in oposSOM. Briefly, clusters of gene expression were
determined based on the patterns of the distance map which visualizes the mean
Euclidean distance of each SOM unit to its adjacent neighbors. This clustering algorithm
— referred to as D-clustering — finds the SOM units referring to local maxima of their
mean distance with respect to their neighbors. These pixels form halos edging the
relevant clusters in the respective distance map and enable robust determination of
feature clusters in the SOM. We finally performed a gene set over-representation
analysis in each cluster considering the Molecular Signature Database (MSigDB)
hallmark gene sets using a right-tail modified Fisher’s exact test and the hypergeometric

distribution to provide p-value.
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Correlation and multidimensional analyses

To highlight differences in expression profiles between quiescence and RAS-OIS
through time, we used multi-dimensional scaling plot representing leading fold change,
which is defined as the root-mean-square average of the log-fold-changes for the genes
best distinguishing each pair of samples. To quantify the evolution of transcriptomic
variability and noise through time, we looked at the gene expression density distributions
for all possible pairs of treated vs Ty transcriptomes. Distributions were estimated using
kernel density estimation of all genes’ expression in the i Ty transcriptome and the ;™
treated transcriptome. We also computed Pearson’s correlation for each of these
combinations. The Pearson’s correlation between two transcriptomes, X and Y
containing n gene expressions, is obtained by R(X,Y) = Y=, (x; — ux) (v; — uy)/(0x0y),
where x; and y; are the i observation in the vectors X and Y respectively, uy and u, the
average values of each transcriptome, and gy and oy, the corresponding standard

deviations.

Information theory — derived metrics
To evaluate transcriptome diversity and specialization, we used an approach based on

information theory as described in %°.

Gene expression time series analysis
Normalized log-scaled and filtered expression data related to the quiescence and the
OIS time series were further considered for differential analysis with limma®. To define

an RAS-OIS specific transcriptomic signature, we proceeded in three steps, each relying
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on linear mixed model cubic B-splines, as nonlinear response patterns are commonly
encountered in time course biological data. For each probe, and each treatment the
expression was modeled as follow:

Y = Bo+ Bax + Box® + Bax® + Yo ve(x — &) + €

with (x — &) = {x ?Zcff i §

where f,is the average probe expression over all samples in a given condition, S;_; the
model coefficients, K the number of knots, &, the k™ knot and ¢ the error term. First, we
defined probes responding over time to RASV12 induction. Second, we considered all
together the quiescence and the RAS-OIS time series, as well as the interaction
between time and treatment, and defined probes responding to one or the other
treatment over time, as well as probes responding differently between the two
treatments at any time point. We finally defined the set of probes responding
consistently to both treatment and time and removed these probes from the global set of
probes responding to RASV12 induction defined at the first step. Moderated F-statistics
that combine the empirical Bayes moderated t-statistics for all contrasts into an overall
test of significance for each probe were used to assess the significance of the observed
expression changes. At any step of this workflow, p-values were corrected for multiple
testing using the FDR approach for a stringent significance level of 0.005. For validation
purposes, we also wanted to compress the RAS-OIS time-series and achieve a volcano
plot representation. To do so, we've computed the maximal absolute logz fold change in
expression in the RAS-OIS time series considering Ty as the reference and selected up
and down regulated probes using an absolute logz fold change cutoff at 1.2 and a

corrected p-value cutoff of 0.005. We then build a scatter-plot plotting the logo
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significance versus logs fold-change on the y and x axes, respectively. Probes
responding consistently to both ER: RASV12 induction and quiescence were finally

over-plotted.

Gene expression unsupervised clustering

Probes constitutive of the RAS-OIS specific transcriptomic signature were clustered
using the weighted gene correlated network analysis approach implemented in the
WGCNA R package®. Standard WGCNA parameters were used for the analysis, with
the exceptions of soft-thresholding power which was defined using methods described
by and set at 18. The 7 co-expressed probe clusters identified were further functionally
characterized using gene set over-representation tests. The same approach as

previously described for the SOM-defined clusters was used.

Histone modification ChiP-seq data processing

Reads were cleaned and trimmed using fastg-mcf from the ea-utils suite v1.1.2 to
remove adapters, low quality bases and reads, and discard reads shorter than 25 bp
after filtering. Reads were then aligned to the human reference genome (hg19) with
bowtie v1.1.1 using best matches parameters (bowtie -v 2 -m 1 --best --strata).
Alignment files were further processed with samtools v1.2 and PicardTools v1.130 to
flag PCR and optical duplicates and remove alignments located in Encode blacklisted
regions. Fragment size was estimated in silico for each library using spp v1.10.1.
Genome-wide consistency between replicates was checked using custom R scripts.
Enriched regions were identified for each replicate independently with MACS v2.1.0 with

non-IPed genomic DNA as a control (macs2 callpeak --nomodel --shiftsize --shift-control
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--gsize hs -p 1e-1). These relaxed peak lists were then processed through the
irreproducible discovery rate (IDR) pipeline® to generate an optimal and reproducible

set of peaks for each histone modification and each time point.

ATAC-seq data processing

Paired-ends reads were cropped to 100bp with trimmomatic v0.36% and cleaned using
cutadapt v1.8.3% to remove Nextera adapters, low quality bases and reads, and discard
reads shorter than 25 bp after filtering. Fragments were then aligned to the human
reference genome (hg19) using bowtie2 v2.2.3 discarding inconsistent pairs and
considering a maximum insert size of 2kb (bowtie2 -N 0 --no-mixed --no-discordant --
minins 30 --maxins 2000). Alignment files were further processed with samtools v1.2
and PicardTools v1.130 to flag PCR and optical duplicates and remove alignments
located in Encode blacklisted regions. Accessible regions were identified using MACS2
v2.1.0 without control (macs2 callpeak --gsize hs -p 1e-3). These relaxed peak lists were
then processed through the irreproducible discovery rate (IDR) pipeline to generate an

optimal and reproducible set of peaks for each time point.

Normalized ATAC-seq and ChiP-seq signal tracks

After verifying the consistency between biological replicates, time points and data type
using deepTools®’, alignments related to biological replicates for a given assay and a
given time point were combined. We then binned the genome in 200bp non-overlapping

windows and generated genome-wide read count matrices for each assay
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independently. These matrices were finally quantile normalized with custom R script and

further used to generate genome-wide signal tracts.

Histone modification ChIP-seq and ATAC-seq differential analysis

After assessing library saturation using preseqR, alignment and peak data were
imported and pre-processed in R using the DiffBind package®. Briefly, for a given
histone modification type, we first defined the global reproducible peak set as the union
of each time-specific reproducible peak sets defined previously. We then counted the
number of reads mapping inside each of these intervals at each time point and for each
replicate. The raw count matrix was then normalized for sequencing depth using a non-
linear full quantile normalization as implemented in the EDASeq package®. To remove
sources of unwanted variation and consider batch effects, data were finally corrected
with the RUVSeq™® package considering 2 surrogate variables. Differential analyses for
count data were performed using edgeR’' considering time and batch in the design
matrix, by fitting a negative binomial generalized log-linear model to the read counts for
each peak. Peaks were finally annotated using ChiPpeakAnno considering annotations

provided by Ensembl v86.

Chromatin state differential analysis

To quantify and define combinatorial chromatin state dynamics in space and time, we
analyzed histone modification combinations with the chromstaR package’. Briefly, after
partitioning the genome into 100bp non-overlapping bins and counting the number of

reads mapping into each bin at each time point and for each histone modification, this
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algorithm relies on a univariate Hidden Markov Model (HMM) with two hidden states
(unmodified, modified). This HMM is used to fit the parameters of the two-component
mixture of zero-inflated negative binomial distribution considered to model read counts
for every ChIP-seq experiments. A multivariate HMM is then used to assign every bin in

3 time points x 4 histone

the genome to one of the multivariate components considering 2
modifications) nossible states. To limit computational burden and focus on accurate
differences, the analysis was run in differential mode with a 100bp resolution (i.e.
smaller than a single nucleosome), such that every mark is first analyzed separately with
all conditions combined while the full combinatorial state dynamics is rebuilt by
combining the differential calls obtained for the four marks. We finally filtered out
differential calls not overlapping with any histone modification and ATAC-seq
reproducible peaks. To properly associate histone modification combinations with
biologically meaningful mnemonics, we made an extensive comparison between the
binning we obtained in WI38 fibroblasts undergoing RAS-OIS and IMROO fetal lung
fibroblasts chromatin states described in the scope of the Epigenomic Roadmap
consortium. To test for association between changes in chromatin states through time
and gene expression modules we ran a correspondence analysis. Briefly, genomic loci
experiencing changes in chromatin states through time were first associated to the
nearest gene. We then specifically focused on loci associated to genes belonging to any
expression module and built a two-way contingency table summarizing the number of
transition in states (considering all possible combinations) occurring in each expression
module, further used as an input for a correspondence analysis using FactoMineR".

The significance of association between the two qualitative variables (transition in state

and module) was assed using a x*test. Results of the CA were visualized using a row-
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metric-preserving contribution asymmetric biplot and filtering for the top contributing and

well-projected (squared cosine > 0.5) changes in chromatin states.

Motif enrichment analysis in active enhancers

For each time point independently, we defined the set of active enhancers as the
overlap between H3K4me1, H3K27ac and ATAC-seq reproducible peaks using
bedtools™. We then ran 3 independent motif enrichment analyses with homer v4.9”

using default parameters.

Transcription factor footprinting

All transcription factor Position-Weight Matrices (PWM) representing eukaryote
transcription factors were downloaded from the JASPAR database and used as an input
for PIQ?' to predict transcription factor binding sites from the genome sequence on
down-sampled ATAC-seq alignments. For each motif, we retained only binding sites that
were within the reproducible ATAC-seq peaks and passed the default purity cut-off
(70%). We then computed pairwise PWM similarities based on Pearson’s correlation,
and clustered together PWMs sharing more than 90% similarity, defining a set of 310
non-redundant and distinct PWMs. The Pearson’s correlation between two PWM P! and

P? of length | was defined as:

!
(PLP?) = 1 ” Yoetacer(Piy — 0.25)(P% — 0.25)

[ 5 -
=L JZbE{A,C,G,T}(Pgb —0.25)" X Xpeqacam(P2 — 0.25)

We further combined the bound instances identified with PIQ according to the PWM

clustering.
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Transcription factor metrics
For each transcription factor, we computed the chromatin-opening index (COI), the motif

dependence and the chromatin dependence (CD) following the approach described in

21

Validation of PIQ predictions through ChIP-seq

To compare PIQ prediction with RELA, JUN and FOSL2 ChlP-seq data, we first used
the approach suggested in ', computing how many of the total ChlP-seq peaks are
overlapping with any potential factor motif (since ChlP-Seq peaks can result from co-
factor binding, and methods such as digital genomic footprinting are factor agnostic). We
then used a more sophisticated approach aiming at correlating the ChlP-seq signal
intensity with the bound / unbound status at PWM matches. For a given transcription
factor (cJUN, FOSL2 or RELA,), we first considered all the PWM matches located inside
ATAC-seq reproducible peaks, we selected all the PWM matches assigned with a purity
score > 0.7 (the threshold used to define “bound” instances), and then randomly
selected 3 times more PWM matches assigned to a purity score < 0.7 (considered as
“unbound” instances) to obtain a global set containing 25% / 75% of bound / unbound
instances for each TF. The selected regions were extended up to 2kb (1kb in each
direction, from the middle of the match), and the 2kb intervals were binned in one
hundred 20bp windows. We computed the normalized ChlP-seq and ATAC-seq signal
inside each bin. The windows were finally ranked according to the summed ChIP-seq
signal in the 10 most central bins (200bp). We finally run a set enrichment analysis with
the fgsea package to assess whether bound / unbound PWM matches were enriched /

depleted along this ranking and computed the enrichment score (ES, positive when
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bound instances are enriched for highest ChlP-seq signals, negative when unbound
instances are depleted for highest ChlP-seq signals) and p-values which revealed the

strength of the correlation. We performed 1,000 permutations to obtain p-values.

Distribution of transcription factor binding sites in space and time

Using the R package annotatr we first created an annotation datasets combining
coordinates for hg19 promoters, 3'UTRs, exons, introns and intergenic regions as
defined in UCSC, as well as our custom set of enhancers (intersection of the global sets
of reproducible H3K4me1 peaks with global sets of reproducible H3K27ac peaks, to
focus on enhancers that are active at least in one time point during RAS OIS in WI38
fibroblasts). We then annotated the PIQ binding occurrences for each of the PWM
independently, and for the 6 time-points independently. Data were further normalized, to
account for differences between time-points in the total number of bound occurrences
summed across PWM, and finally they were converted to frequencies. We filtered TFs
for which less than 100 binding sites were identified throughout the entire timecourse.
TFs were ordered according to the proportions of binding sites located in promoters,
introns or exons, and we finally computed the density in migrant, settler and pioneer

factors along the ranking.

Transcription factor co-binding
For every cluster of PWM and time-point independently, we first removed all the bound
instances identified outside enhancers. The remaining bound instances for all PWM

were then combined for every time point using GEM regulatory module discovery®
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setting at 500 bp the minimal distance for merging nearby TF bound instances into co-
binding regions and at 3 the minimum number of TF bound instances in a co-binding
region.

Global pairwise co-binding heatmap. At this step, we obtained a set of contingency
matrices My of dimension n,,; X j with ithe number of co-binding regions for the
transcriptomic module m at the time point t and j = 310 PWM clusters, for each time
point and each transcriptomic module. We then generated module- and time- specific
normalized pairwise co-binding matrices C,; by computing the normalized cross-product
of matrices M defined as:

_ Mmt X tMmt

=ca—=—-X%x10°
ZthZj atmj

Cmt

with asmithe number of bound instances for the PWM clusters j, in transcriptomic module
m, at the time point t. To get a global picture of pairwise co-binding, we summed these
matrices and tested for each combination of PWM clusters A and B whether the overlap
between bound instances for A and B was significant using a hyper-geometric test
defined as:

min (k,B} (M (Q — M
p(Q,M,nk) = Z %
m=k on

where Q is the overall number of regions in the universe, M is the number of regions
bound by A, nis the number of regions bound by B, and k the total number of regions
bound by A and B. The p-values were further corrected for multiple testing using the
Bonferroni strategy. We finally clustered the co-binding occurrence matrix using Ward’s

aggregation criterion and projected corresponding corrected g-values on this clustering.
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Pair-wise co-binding circos plots. To generate the co-binding circos plots, we used the
global time- and, module-specific pair-wise normalized co-binding matrix C: described
above, after a logarithmic transformation. For each time-point and module
independently, we selected the top 500 interactions based on their occurrence N. The

images were generated using the Circos suite”®.

Identification of TF regulatory modules

We used the data-sets generated using GEM regulatory module discovery described
above. We applied a Hierarchical Dirichlet Process topic model which automatically
determines the number of topics from the data, with the hyperparameter for the topic
Dirichlet distribution set at 0.1 (encoding the assumption that most of the topics contains
a few TFs) and the maximum number of iterations set at 2000. The lexicon usage for
each time point and each transcriptomic was explored using a multiple factor analysis
(MFA) with the R package FactoMineR, and lexicons were further selected based on

their goodness of representation on the 3 first components (squared cosine > 0.5).

TF properties

With the aim of characterizing the binding properties of each TF, we computed the
dynamicity, the total number of bound regions, the fraction of bound regions in
enhancers and the fraction of bound regions before stimulation.

Dynamicity. We quantified the dynamicity of a TF accordingly to the following

expression:
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¢(4)
S
t.(4)
XTR,

d(A) =

where d(4) is the dynamicity of TF A; n.(4) is the number of regions bound by A for the
first time at time point t ; t.(4) is the number of regions bound by A at time point t and
TR, is the number of regions bound by any TF in time point t. The factor TR, was added
to the expression to account for differences in the number of reads sequenced by the
ATAC-seq protocol and normalizes the number of regions bound by TF A based on the
number of bound regions detected at its corresponding time point. Notice that, if all
samples have the same amount of TF binding events, this expression is reduced to the
quotient of the sum of the regions first bound at each time point by the sum of all regions

bound by the TF at each time point. By using this definition, the function d(4) maps the
activity of a TF to the interval [Ni 1], where N, is the number of time points in the
t

timecourse and is higher as the TF binds to previously not bound regions or leaves
already bound regions. In the case of a TF that, for every time point, leaves all its
previous bound regions and binds to only regions not previously bound, the numerator
will be identical to the denominator, leading to d(A4) = 1. Alternatively, if a TF remains on

the same regions it has bound at t = 0, then },n, = ny and }, t, = N, * ngy , resulting in
d(A) = Ni One can observe that, if the same region is bound by TF A in different time
t

points, it will contribute once to the numerator of the expression, while it will contribute to
the denominator once for each time point it has been bound to.
Total number of bound regions. The number of bound regions was calculated by the

following the expression:
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TR,
N,

LACYNE T
RA)=—TRe = *

where R(A4) is the normalized number of bound regions by TF A during the timecourse
and n.(A4), TR, and N, are defined as above. The first factor is a normalized sum of the
regions bound by TF A, counting each region only once. The second factor scales the
result by the mean of the number of regions bound by all TFs on each day.

TF percentage of binding at enhancers. The ratio of binding at enhancers, relative to all
cis regulatory regions, was assessed by:

Re(4)
Rp(A) + Rp(4)

Pg(A) =
where P;(A) is the percentage of bound regions in enhancers for TF A, R;(4) is the
number of regions bound by TF A marked as enhancers and R, (4) is the number of
regions bound by TF A marked as promoters.

TF prestimulation binding. For each TF, we computed the ratio of regions bound at Ty,

relative to the number of regions bound during the whole timecourse. We used the

following definition for the prestimulation binding factor for each TF:

where p(A) corresponds to the prestimulation binding of TF A and n.(4) and TR, are
defined as above. The numerator of this expression corresponds to the normalized
number of regions bound by TF A at t = Ty, while the denominator is the normalized
number of regions bound by TF A during the whole timecourse. Notice the denominator

also corresponds to factor R(A) before scaling.
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Hierarchical transcription factor network
In order to assess the TF chromatin binding hierarchy, i.e. TFs required for the binding
of a specific TF, we generated a network for each gene module depicting the
precedence of TF chromatin binding. The algorithms mentioned were implemented in R
and all networks were visualized in CytoScape”’.
Computing precedence relationships. The edges in the generated networks represent
the precedence relationship of TFs: an oriented edge from TF A to TF B, represented as
(A, B), means that A was present in at least 30 % of the cis-regulatory regions bound by
B at the same instant or before**. To account for the difference in the number of reads
sequenced for each sample in the ATAC-seq, we normalized the number of regions
bound based on the first day they appeared. The weight of an edge from A to B is given
by:

y A

WaB = 5 Re(B)
Rt

where R.(B) stands for the number of regions first bound by TF B at time point ¢ ;

R.:(4, B), for the number of regions first bound by TF B at time point t that were bound by
TF A at time point t or before; and R, represents the total number of regions bound by
any TF in time point ¢. In order to handle the networks, we used the igraph package’®.
Network simplification. Aiming to analyze the hierarchical relationship of TFs and
simplify the interpretation of the network, we performed two operations over each gene
module network: Vertex Sort and transitive reduction (TR)"®. Briefly, the vertex sort
algorithm assigns two parameters for each node in the network: the distance, in edges,

between the node and the bottom of the network; and the distance between the node
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and the top of the network. Combined, those parameters allow for the topological
ordering of the network, which consists in listing its nodes such that nodes at the top
precede downstream nodes. We then defined the 'top layer’ as the set of nodes with
lowest distance to the top of the network, i.e., nodes that have no incoming edges or
nodes that assemble a strongly connected component (SCC) with all upstream nodes.
Analogously, the 'bottom layer’ was defined as the set of nodes with lowest distance to
the bottom of the network, i.e., nodes with no outgoing edges or that form a SCC with all
downstream nodes. The ’core layer’ comprises nodes that link top layer and bottom
layer. Nodes in the core layer that are exactly one edge from both top and bottom layers
constitute the 'single-level core layer’, while nodes that link top and bottom through
paths composed of more than one edge form the 'multi-level core layer’. The result of
this procedure for each gene module can be seen in Figure 4 and supplementary data.
The TR, in turn, simplifies the network visualization by generating the network with the
smallest number of edges that keeps the reachability of the original network.

Network validation. We validated our approach by comparing the network produced
when applying our method to the ChIP-seq data produced by * with the network they
obtained. Transcription factor ChlP-seq peak files were retrieved from Gene Expression
Omnibus (GSE36099, 23 TFs, and 4 time points; note that RUNX1 and ATF4 were
discarded from the analysis since one and three time points, respectively, were missing
on GEO for those TFs) and preprocessed as previously described to generated time
resolved co-binding matrices, further used as an input for our networking algorithm. We
computed the precedence relationships among TFs and generated the TF binding
hierarchy networks for visualization. We compared the produced TF hierarchy network

with the network shown in Figure S4 and in * using two metrics: sensitivity and
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specificity. Sensitivity is calculated as the ratio of edges described in this study over the
edge number sum for both networks. Specificity is defined as the ratio of the number of
edges that were described to not exist in the network produced by our software over the
number of edges described to not occur in any of both studies.

Proportion of incoming edges based on the classification of the TF source node. Aiming
to assess the hierarchy of TFs accordingly to their chromatin dependence and
chromatin-opening index, we computed the number of edges connecting the sets of all
TFs with a given classification for each gene module. We then divided those values by
the number of edges that target TFs with a specific classification. Hence, the proportion
of incoming edges based on TF classification is given by:

B _ Weiacal
T BlWkcal

where P, _,¢, is the proportion of edges from nodes with classification C1 to nodes with
classification C2; W,,_,¢, is the set of edges from nodes with classification C1 to nodes
with classification C2; K can represent either pioneer, settler or migrant and |-| means the
cardinality of a set, i.e. the number of elements it contains.

We assessed the classification precedence significance for TF interaction with a
hyper-geometric test. We consider the sample space as all possible oriented edges in a
network with the same number of nodes for each classification as the hierarchy network
for a given transcriptional module. Formally:

] Cere)(“wita”)
w X -X
Pcisc2(E Ecinea W, Werse2) = 2x=|WC1—>C2| ( E )

W

Where Eis the number of edges on the sample space network, i.e., a fully

connected network with the same number of nodes as the TF hierarchy network for a
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given transcriptional module (excluding self-loops),E¢;-c2is the number of edges from
TFs with classification C1to TFs with classification €2 in the sample space network,
|[Wis the number of edges on the TF hierarchy network for a given transcriptional
module and |W,,_¢,lis the number of edges in the same network connecting TFs with
classification C1to TFs with classification C2.

Network visualization. In order to visualize the network, we exported the adjacency

|80

matrices in the R environment to CytoScape using the CyREST API*". The networks’

layout and style were automated with the help of packages RCy3®' and RUSONIO.

Network mining
With the purpose of identifying key TFs in the transition to the senescent phenotype, we
analyzed the TF binding characteristics with their relative location in the chromatin
binding hierarchy networks for each gene module. The figures illustrating this analysis
were generated with the help of the ggplot2 R package.
TF classification. For each network relative to a transcriptional gene module, the number
of TF classified as either pioneer, settler or migrant was calculated for each layer, with
the subdivision of the core layer as 'multi-level’ and 'single-level’ (see “Network
simplification”). The overrepresentation of TFs with a specific classification in a given
layer was evaluated by using a hypergeometric test. We calculated the p-value given by:
K\(N—-K
p(K,N,n, k) = Z%")‘x)
n
where Kis the number of TFs with a certain classification in the whole network, Nis the

number of TFs in the network; nis the number of TFs that belong to a specific layer and
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k is the number of TFs that belong to the same layer and have the referred
classification. The p-values were corrected for multiple testing with FDR and a corrected
p = 0.05 was considered an indicative of enrichment for that specific classification in the
corresponding layer.

TF dynamicity. For each network relative to a transcriptional gene module, we compared
the distribution of the dynamicity of TFs belonging to a certain layer with the distribution
of the dynamicity of TFs belonging to the rest of the network. We used the dynamicity
index defined previously for each TF, considering only the regions marked as enhancers
belonging only to the gene module relative to the network. For each layer in the network,
we applied the Kolmogorov-Smirnov test to compare the TF dynamicity distribution for
the chosen layer with the dynamicity distribution relative to the TFs belonging to three
other layers in the respective network. To account for multiple hypothesis testing, we
also performed an FDR correction, considering values of p = 0.05 as an indicative of
statistical significance.

TF number of binding regions. We performed the same analysis as described in the
previous section (“TF dynamicity”) for the number of bound regions defined in section
“Total number of bound regions”, instead of the dynamicity index.

TF binding characteristics and transcriptional modules. In order to characterize the
binding activity of each TF for the different gene modules, we ranked them accordingly
to their dynamicity and their number of bound regions. Both parameters for each gene
module are shown in Supplementary Figure 4E, which was generated with the
ComplexHeatmap®® and circlize®® R packages. We used the mean of the ratio
dynamicity - number of bound regions to order the TFs. We assessed the significance of

pioneer (respectively, migrant) TF enrichment at the top (respectively, bottom) of the
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ranked clustered list by employing a set enrichment analysis implemented in the
package fgsea.

TF chromatin binding hierarchy networks overlap. To analyze the similarity between the
networks for different transcriptional gene modules, we generated a 7-set Euler diagram,
where each set contains the edges present in the TF hierarchy network relative to a
gene module. Edges in two different networks are considered equal if they link nodes
corresponding to the same TFs in their respective networks. We used the package
Vennerable to compute the intersections of all possible network combinations and to
create the Euler diagram in Supplementary Figures 4F-I. In this figure, the area of each
region is proportional to the number of edges shared by the networks corresponding to
the sets that contain the referred region and was calculated using the Chow-Ruskey
algorithm®. A Euler diagram is similar to a Venn diagram, with the difference that the

area of a region representing a set is proportional to the number of elements in the set.

Analysis of de novo and remnant enhancers

To track combinatorial chromatin state dynamics in space and time, we integrated
histone modification ChIP-seq signals at a sub-nucleosomal resolution considering non-
overlapping 100bp windows genome-wide using chromstaR (see above), which converts
quantitative ChlP-seq data to qualitative chromatin states. For subsequent analysis,
since these 100bp windows can be either isolated or organized in stretches
experiencing consistent changes in states, we summarized the information at a higher
level, and linked them with the histone modification peaks identified using the more
classical ChlP-seq and ATAC-seq peak-calling approach (see flowchart). Briefly, after

merging all the peaks identified for all the time-points, for all the histone modification and
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for the ATAC-seq data sets defining cis-regulatory regions, we determined the overlap
between “poised enhancers*-, “de novo enhancers”-, “remnant enhancer” or “constitutive
enhancers”flagged 100bp windows. When an overlap was found, the entire cis-
regulatory regions were annotated according to the 100bp window it is overlapping with.
This operation rendered a list of annotated cis-regulatory regions with de novo,
constitutive, poised or remnant enhancer elements. We finally considered the center +/-

10kb of these elements.
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CRISPR interference (CRISPRI)

hU6-gRNA-hUbc-dCas9-KRAB plasmid was a kind gift from Charles Gerbach (Addgene
71236). gRNA cloning was as published **. Briefly, the plasmid was digested with BsmBlI
and dephosphorylated before ligation with phosphorylated oligo pairs. The gRNA
sequences were listed in the Table 1. The plasmid was then transfected in HEK293T

cells, together with packaging plasmids psPAX2 and pMD2.G. 24 hours after fresh
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medium was added and the medium containing lentivirus was collected and filtered

subsequently. Cells were infected for 3 hours. 3 days post infection, cells were

passaged and selected with puromycin and used for analyses.

Table 1. gRNA sequences

gRNA | Sequence

ctrl caccgGTATTACTGATATTGGTGGG | aaacCCCACCAATATCAGTAATACCc
2 caccgAGATGAGGTGTTGCGTGTCT | aaacAGACACGCAACACCTCATCTc
7 caccgTCTGCTCATTGGGGATCGGA | aaacTCCGATCCCCAATGAGCAGAC
14 caccgAAGGCGAAGAAGACTGACTC | aaacGAGTCAGTCTTCTTCGCCTTc
15 caccgCAATGAAATGACTCCCTCTC | aaacGAGAGGGAGTCATTTCATTGc
48 caccgGGAGAACAGTCGCATGAACA | aaacTGTTCATGCGACTGTTCTCCc
54 caccgTTCCAGGGAGTCACCTGTCC | aaacGGACAGGTGACTCCCTGGAAC
61 caccgTTGAAGCAGCACTAGTATCC | aaacGGATACTAGTGCTGCTTCAAc

Immunofluorescence staining and imaging of cells

Immunofluorescence staining was performed as previously published®. Cells grown in
96-well plates were fixed with 4% PFA and permeabilised with 0.2% Triton-X in PBS.
After blocking, the cells were incubated with primary antibody for 1 hour, and then Alexa
Fluor secondary antibody for 30 min. Nuclei were counterstained with DAPI. The
antibodies were listed in Table 2. The imaging was carried out by IN Cell Analyzer 2000
(GE Healthcare) with the 20x objective and the quantification was processed using IN

Cell Investigator 2.7.3 software.
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Table 2. Antibodies

Antibody | Dilution Cat. No.

IL1a 1:100 R&D MAB200
IL1B 1:100 R&D MAB201
IL8 1:100 R&D MAB208

Quantitative RT-qPCR

RNA was extracted with TRIzol (Ambion) and RNAeasy Mini Kit (Qiagen) according to
the manufacturer’s protocol. Reverse transcription was carried out with SuperScript Il RT
kit (Invitrogen). Samples were analysed with SYBR Green PCR Master Mix (Applied
Biosystems) in CFX96™ Real-Time PCR Detection system (Bio-Rad). Ribosomal

protein S14 (RPS14) was used as the housekeeping gene. Primers are listed in Table 3.

Table 3. qPCR primer sequence

Gene | Sequence

RPS14 | CTGCGAGTGCTGTCAGAGG TCACCGCCCTACACATCAAACT

IL1a AGTGCTGCTGAAGGAGATGCCTGA | CCCCTGCCAAGCACACCCAGTA

IL1B GGAGATTCGTAGCTGGATGC AGCTGATGGCCCTAAACAGA

IL8 GAGTGGACCACACTGCGCCA TCCACAACCCTCTGCACCCAGT
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Data availability
All transcriptome data are hosted on Gene Expression Omnibus (BioProject
PRJNA439263, accession n°GSE112084). ATAC-seq, and ChIP-seq data (histone

modification and transcription factor) are hosted on SRA (BioProject PRUNA439280).

Code availability for reproducible science
Interactive maps, circus plots, workflows, scripts and software developed to pre-process
raw data, perform statistical analyses as well as data mining and integration are

available as .html, and R Markdown files provided in Supplementary data hosted on

Zenodo (https://zenodo.org, DOI : 10.5281/zenodo.1493872). This archive collapses all
the material (including processed data) required to reproduce figures presented in the

manuscript.
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FIGURE 1:

Multi-state establishment of the senescence transcriptional program

(a) Schematic overview for defining the gene-regulatory code of RAS-OIS using time-
resolved, high-throughput transcriptome (microarray) and epigenome (ChlP-seq, and
ATAC-seq) data sets.

(b) Self-organizing maps (SOMs) of gene expression profiles for quiescence and RAS-
OIS time-series experiments as logarithmic fold-change. Red spots mark
overexpression, blue spots underexpression.

(c) Multidimensional scaling (MDS) analysis scatter plot visualizing the level of
similarity/dissimilarity between normalized quiescence and RAS-OIS time-series
transcriptomes. Distances between samples represent leading logarithmic fold-changes
defined as the root-mean-squared average of the logarithmic fold-changes for the genes
best distinguishing each pair of samples.

(d) Scatter plot depicting the evolution of transcriptome diversity (H;) vs. transcriptome
specialization (o)) in cells undergoing quiescence or RAS-OIS. For each time-point and
treatment, the average H;and oj values across biological replicates are given. Ty is start
of time-course.

(e) Heatmap showing seven modules (I-VII) of temporally co-expressed genes specific
for RAS-OIS using an unsupervised WGCNA clustering approach. Data are expressed
as raw Z-scores.

(f) Functional over-representation map depicting Molecular Signatures Database
(MSigDB) hallmark gene sets associated to each transcriptomic cluster. Dots are color-
coded according to the FDR corrected p-value based on the hypergeometric distribution.

Size is proportional to the percentage of genes in the gene set belonging to the cluster.
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FIGURE 2:

A dynamic enhancer program shapes the senescence transcriptome

(a) Arc plot visualizing dynamic chromatin state transitions for the indicated intervals.
Edge width is proportional to the number of transitions.

(b) Histogram showing the total number of windows of the top 15 chromatin states
transitions. Chromatin state transitions corresponding to de novo enhancer activation
are highlighted as white bars.

(c) Chromatin dependence (CD) versus chromatin opening index (COI) are plotted for
high-confidence TF sequence motifs used in our study (see Materials and Methods for
details). Pioneer, settler and migrant TFs as defined by their COIl and CD property are
color-coded and select members of each TF class are listed. Same color code is used in
all figures.

(d) Biplot for principal component analysis performed with select TF binding parameters:
dynamicity, total number of bound windows (N), percentage of binding at enhancers,
pioneer index (referred to as the number of bound windows pre-stimulation), chromatin
opening index (COIl) and chromatin dependence (CD). The plot depicts the projections
of the TFs and the loading of the different covariates for the first two principle
components which explain 76.9% of the total inertia. The ellipses delineate the 95%
confidence intervals for AP1 pioneers (blue with black outline), non-AP1 pioneers (blue),

settlers (red), and migrants (green).
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FIGURE 3:

AP-1 pioneer TF bookmarking of senescence enhancer landscape foreshadows
the senescence transcriptional program

(a) Distribution of fold-change in normalized enhancer marks H3K27ac and H3K4me1
ChIP-seq signals over input in the “unmarked”’-, “constitutive”-, “poised”-, “de novo™-, and
“remnant enhancers”-flagged genomic bins at indicated time-points (see Material and
Methods for details). The cartoon at the top illustrates the temporal rules used to flag
genomic bins. Bottom specifies the genomic coverage in mega bases (Mb) for each
category and the corresponding number of enhancers.

(b) WI38-ER: RASV12 were super-infected with dCas9-KRAB and individual guides
(914, 15, g61 and g7) targeting two de novo enhancers. Cells were pharmacologically
selected and induced into RAS-OIS by 4-OHT. 8 days after RAS-OIS induction cells
were stained by indirect immunofluorescence for IL1B or analyzed by RT-gPCR for the
expression of IL1a or IL1B. WI38-ER: RASV12 treated with 4-OHT or DMSO served as
positive and negative controls. Data represent mean = SD (n=3). *p<0.05, ***p<0.001.
Comparison with ctrl 4-OHT, one-way ANOVA (Dunnett’s test). Scale bar, 100 um.

(c) Rank plot depicting the summed occurrences for TF binding in de novo enhancers
before RAS-OIS induction (left) and remnant enhancers after RAS-OIS (6 days)
induction (right). Top ten TFs are indicated.

(d) Distribution of total number (N) of TFs bound per enhancer for constitutive
enhancers (grey), TF pre-marked de novo enhancers (yellow) and TF virgin de novo
enhancers (orange).

(e) Average absolute expression level (logz scale) kinetics for genes associated with:

poised (blue), TF pre-marked de novo (yellow), and TF virgin de novo enhancers
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(orange). Dots depict the average absolute expression level, and bars depict the
standard error of the mean. Inset histogram illustrates the average leading log. fold-
change in expression (+/- standard error of the mean) for genes associated with
constitutive (black), poised (light blue), TF pre-marked de novo (yellow) and TF virgin de

novo (orange), and remnant enhancers (dark blue).

FIGURE 4:

A hierarchical TF network defines the senescence transcriptional program

(a) Genome-wide transcription factor co-binding occurrence matrix summed across all
time-points (left, shades from blue to yellow, in log1o scale). Overlap significance was
calculated by a hyper-geometric test (right, shades from blue to red, in -log1 scale). The
co-binding occurrence matrix was clustered using Ward’s aggregation criterion and
corresponding, corrected g-values were projected on this clustering. The graphs on the
left and bottom show the density in pioneer, migrant and settler TFs along each axis of
the matrix.

(b) Heatmap describing the association between individual TFs (row) and TF lexicons
(columns). Four boxed out insets provide detailed information on TF composition of
lexicons. A comprehensive, high-resolution and interactive heatmap is shown in
Supplementary Data (see under Code availability in Material and Methods). The right
bar plot shows the total number of binding sites for each TF. The top bar plot shows the
total number of regions for each regulatory module. The bottom bar plot shows the
average proportion of AP1 binding sites inside each regulatory module.

(c) Graphical representation of the hierarchical TF network for transcriptomic module VI.

Nodes (circles) represent TFs and an oriented edge (line) connecting TFs A and B
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means that at least 30 % of the regions bound by B were also bound by A at the same
time point or before. In order to simplify the visualization, we represent strongly
connected components (SCCs) as a single node and performed a transitive reduction
(TR). Node color is based on the average dynamicity of the SCC members. Node border
color indicates their classification as pioneer (blue), settler (red) or migrant (green).
Node border thickness encodes the percentage of bound regions before RAS
stimulation. Edge color was calculated accordingly to the relative coverage of the
outgoing TF over the incoming TF. The network has three layers: top, core and bottom.
Nodes in the top have no incoming edges and nodes in the bottom have no outgoing
edges. The core layer comprises TFs that have both incoming and outgoing edges.
Interactive Cytoscape graphs are accessible as Supplementary data (see under Code
availability in Material and Methods).

(d) Venn diagram showing the specificities and overlaps in differentially expressed direct
target genes upon siRNA-mediated AP-1-cJUN, ETS1, and RELA depletion in RAS-OIS
cells at day 6 (fully senescent cells). Genes are considered as direct targets of a given
TF when PIQ predicts that the TF bound to an enhancer associates to this gene (see
Materials and Methods for details). Promoters were excluded from the analysis.

(e) Asymmetric biplot for correspondence analysis between transcriptomic clusters and
the number of up-, down-, up-or-down- or nonregulated (stable) genes upon siRNA-
mediated AP-1-cJUN, ETS1 or RELA depletion. The p-value reflects the strength of the

association as assessed with a y° test.
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FIGURE 5:

Hierarchy Matters: Functional Perturbation of AP-1 pioneer TF, but no other TF,
reverts the senescence clock

(a) Principal component analysis (PCA) on transcriptomes obtained from siRNA-
mediated depletion of AP-1-cJUN, ETS1 or RELA at indicated timepoints of the RAS-
OIS timecourse. Horizontal and vertical bars show minimal and maximal coordinates for
each siRNA and time-point on principal components one (PC1, horizontal axis) and two
(PC2, vertical axis).

(b) Functional overrepresentation map showing Molecular Signature Database
(MSigDB) hallmark pathways associated to “All, Direct Target and Indirect Target” genes
differentially expressed after siRNA-mediated AP-1-cJUN, ETS1 or RELA depletion.
Genes are considered as direct targets when a PIQ prediction for the given TF is falling
inside an enhancer associated to this specific gene. Promoters are excluded from the
analysis. The size of dots is proportional to the -log1o g-value based on the
hypergeometric distribution obtained when testing for over-representation, and their
color denote whether the term is enriched for an up or down-regulated gene list.

(c) Heatmap comparing gene expression profiles of siRNA-Control-treated (siCTRL)
cells at indicated time-points of OIS and siRNA-cJUN treated senescent RAS-OIS cells

at day 6 (144h).

Figure S1:
Multi-state establishment of the senescence transcriptional program
(a-b) Characterization of quiescence and RAS-OIS cells. (a) Representative DAPI, EdU,

SABG (from left to right) indirect fluorescence and phase contrast microscopy images of
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WI38 fibroblasts undergoing quiescence at indicated time-points. Proliferative capacity is
% of EdU-positive staining cells. Scale bar, 100um. (b) Representative DAPI, EdU,
SABG (from left to right) indirect fluorescence and phase contrast microscopy images of
WI38 fibroblasts undergoing OIS at indicated time-points. Scale bar, 100um.

(c) Distribution of gene expression levels as kernel density estimates for time-resolved
quiescence and RAS-OIS transcriptomes. Pearson’s correlation coefficient (R?) is
shown.

(d) Volcano plot of RAS-OIS time-series transcriptome data. Dark grey dots highlight
genes sharing a common gene expression pattern between quiescence and OIS time-
series experiments and were removed to define the RAS-OIS specific temporal
transcriptomic signature used for all further downstream analyses.

(e) Boxplot depicting expression patter for each of the RAS-OIS transcriptomic modules.

Data are expressed as row Z-score.

Figure S2:

A dynamic enhancer program shapes the senescence transcriptome

(a) Histogram showing the percentage of genome covered by each chromatin state at
indicated time. Bottom table assigns histone modification combinations (grey: presence,
white: absence) to biologically meaningful mnemonics. Venn diagrams highlight the
specificities and overlaps in chromatin states associated with active (left) and poised
enhancers (right) at indicated time-points.

(b) Boxplots showing the distribution of relative gene expression (row Z-score) through

time for genes associated to regions undergoing different chromatin state changes. The

239



ROBINSON Lucas - Thése de doctorat - 2019

bioRxiv preprint first posted online May. 9, 2019; doi: http://dx.doi.org/10.1101/633594. The copyright holder for this preprint (which
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
All rights reserved. No reuse allowed without permission.

pictogram at the top of each graph describes the class of chromatin state change
considered.

(c) Asymmetric biplot for correspondence analysis between changes in chromatin states
and gene expression modules. The p-value reflects the strength of the association using
a y’test. Only the top 20 contributing and best projected (squared cosine > 0.5)
chromatin state changes are shown.

(d-f) Most enriched sequence motifs in (d) active enhancers or (e-f) ATAC-seq peaks at
each time point for the (d) RAS-OIS, (e) replicative senescence, and (f) quiescence time
courses. (d) Motif logos are shown on left of the histogram. Black, dotted boxes highlight
the core motif for AP1 transcription factor family members. Note that the transcriptional
repressor BACH shares this motif.

(g-i) ATAC-seq (grey lines for forward, black lines for reverse reads) and nucleosome
(red line) footprints for (g) AP-1 FOSL1 (pioneer), (h) RELA (settler), and (i) SREBF1
(migrant).

(j) Comparison between PIQ predictions and RELA (left), AP-1-JUN (middle) and AP-1-
FOSL2 (right) ChlP-seq. The two density heatmaps at the center of each panel illustrate
ChIP-seq (left) and ATAC-seq (right) signals computed in 10bp non-overlapping
windows at selected bound- (25%) and unbound- (75%) predicted PWM hits + 1kb
ranked according to the ChlP-seq signal in the most central 100bp. The stack histogram
on the left shows the distribution of bound (red) and unbound (green) PWM hits as
defined by PIQ along the ranking. The curves on the right depict the evolution of the
enrichment score (ES) along the ranking as defined with a set enrichment analyses

(SEA) comparing the ChlP-seq signal and the bound (red) and unbound (green) status
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of the PWM hit. For each SEA, we performed 1 000 permutations and provide the

associated Benjamini—Hochberg adjusted p-value and ES score.

Figure S3:

AP-1 pioneer TF bookmarking of senescence enhancer landscape foreshadows
the senescence transcriptional program

(a) Density heatmaps of normalized H3K27ac and H3K4me1 ChIP-seq signals
computed in 10bp non-overlapping windows at enhancers +/- 10kb grouped by
enhancer status (constitutive, de novo or remnant) at indicated time-points after RAS-
OIS induction.

(b-c) Representative genome browser screenshots of normalized H3K4me1 (pink),
H3K27ac (orange), H3K4me3 (blue) and H3K27me3 (green) ChiP-seq and ATAC-seq
(light grey) profiles and chromatin states at (b) /L73 and (c) CDC6 gene loci. Red boxes
single-out (b) IL13 de novo and (¢) CDC6 remnant enhancers.

(d) Boxplots depicting the distribution of relative gene expression (row Z-score) through
time for genes associated with constitutive (left), de novo (middle) and remnant (left)
enhancer windows.

(e) RAS-OIS cells at day 14 infected with dCas9-KRAB and individual guides (g14, g15,
g61, and g7) and analyzed by RT-gPCR for the expression of IL1a or IL1B as described
in Figure 3b. Data represent mean + SD (n=3). *p<0.05, ***p<0.001. Comparison with
ctrl 4OHT, one-way ANOVA (Dunnett’s test).

(f) RAS-OIS cells were infected with dCas9-KRAB and individual guides (g2, g48 and
g54) for non-enhancer regions (outside de novo enhancers) as described in Figure 3b. 8

or 14 days after infection, cells were stained for IL1a or IL1B by indirect
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immunofluorescence and percentage positive cells were quantified (n=3 for 8 days and
n=2 for 14 days). Data represent mean * SD. *p<0.05, **p<0.01, ***p<0.001.
Comparison with ctrl 4OHT, one-way ANOVA (Dunnett’s test).

(g) Rank plot depicting the summed occurrences for TFs binding in proliferating cells
(To) in de novo enhancers (left) and after replicative senescence in remnant enhancers
(right). Top ten TFs are highlighted.

(h) Metaprofiles showing the density in “active enhancer’-flagged genomic bins (top)
and “constitutive enhancer”-flagged genomic bins (bottom) in the vicinity (+/- 50kb) of TF
bookmarked de novo (left) and TF virgin de novo enhancers (right). The density in
“active enhancer’-flagged genomic bins is provided for the indicated time points.

(i) Boxplot showing the correlation between absolute leading logz expression fold-
change and the number of genomic bins flagged as “de novo” enhancers per enhancer.
. pvalue < 10, Student’s t-test considering regions with 0 “de novo” enhancers bins

as a control.

Figure S4:

A hierarchical TF network defines the senescence transcriptional program

(a) Representative circos plots summarizing pairwise transcription factor co-binding at
enhancers for down-regulated transcriptomic module (1V, top) and up-regulated
transcriptomic module (VI, bottom) at indicated time-points. Co-interactions involving
AP1 are shown in black. Selected examples of gained (green) and lost (orange)
interactions are highlighted. Pioneer TFs blue, settler TFs red, migrant TFs green. See
also dynamic circos plot movies in Supplementary Data (see under Code availability in

Material and Methods).
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(b) Heatmap showing the overlap between TF lexicons (rows) and chromatin states,
ChIP-seq and ATAC-seq peaks (columns). The dendrograms were computed by
applying hierarchical clustering on the fraction matrix with Pearson’s correlation and
average linkage.

(c) Validation of TF network algorithm using TF ChlP-seq published data sets (Garber et
al., 2012). Edges colored in gray were detected in both studies and edges colored in red
were found only the analysis performed by Garber et al.. The displayed edge set is the
same as in Figure 5A (Garber et al., 2012). We employed a transitive reduction step in
order to facilitate visualization. Comparison of the two networks resulted in a sensitivity
of 88,9 % and a specificity of 100 %.

(d) Ratio of incoming edges based on the classification of the TF source node. The
relative and absolute number of edges corresponding to all seven modules are
displayed inside the nodes, which are colored accordingly to TF classification as in
previous panels. The thickness of links is proportional to the relative number of TF
hierarchy edges connecting nodes with the corresponding classification.

(e) Number of bound regions and dynamicity index for each TF (rows) across all gene
modules (columns). The left heatmap depicts the dynamicity index scaled by column.
The middle heatmap depicts the square root of number of bound regions scaled by
column. The right single-column heatmap illustrates TF classification.

(f) Venn diagram showing specificities and overlaps of TF interactions in each gene
module. Each set corresponds to the TF-TF network edges identified for a given
transcriptomic module. The global area of each set is proportional to the number of
edges in its respective transcriptomic module and was calculated with the Chow-

Ruskey algorithm.
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(g-i) Chow-Ruskey diagrams for edges (g) originating only from TFs at the top of
hierarchy, (h) connecting only TFs at the core layer or (i) reaching only TFs at the
bottom. Note that edges at the top of the hierarchy are shared among the gene modules

while edges towards the bottom of the hierarchy are module-specific.

Figure S5:

Hierarchy Matters: Functional Perturbation of AP-1 pioneer TF, but no other TF,
reverts the senescence clock

(a-c) Volcano plots depicting the -log1o p-value as a function of the logz fold-change in
gene expression defined by a differential analysis conducted with /imma to highlight the
effect of siRNA-mediated (a) AP-1-cJUN, (b) ETS1 and (¢) RELA depletion in senescent
RAS-OIS cells at day 6 (144h). Blue dots in respective plots indicate probes
corresponding to AP-1-cJUN, ETS1 and RELA. Black outlined dots highlight direct
targets of AP-1-cJUN, ETS1 and RELA.

(d) Upset plot depicting specificities and overlaps in differentially expressed genes of
siRNA-Control and siRNA-JUN silenced OIS fibroblasts at indicated time-points. The
yellow dots highlight gene sets specific to a single comparison set, while green dots
highlight gene sets find in two different pair-wise comparison.

(e-g) Venn diagrams (top) and heatmaps (bottom) depicting the overlap between genes
belonging to (e) E2F-, (f) NFkB target, and (g) N1ICD-induced senescence (NIS) gene
signatures. Venn diagrams show the overlap of up-regulated genes after siRNA-
mediated AP-1-cJUN knock-down for upregulated E2F- (i.e. pro-proliferation genes),
NIS- (i.e. early SASP genes), and downregulated NFkB target genes (i.e. late SASP

genes) RAS-OIS cells at day 6 (144h). Bottom heatmaps show the comparison of gene
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expression profiles of siRNA-Control (siCtrl) and siRNA-cJUN treated cells undergoing
RAS-OIS at indicated time-points. Data are expressed as row Z-score. E2F targets and

NFkB targets were defined according to Molecular Signature Database (MSigDB).
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8.1.2 Necroptosis Microenvironment Directs Lineage Commitment in Liver

Cancer
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Appendix 8.1.2 is removed from this version of the manuscript. Due to unauthorized distribution of
the following article the pages are left vacant so that the layout and pagination of the thesis will
remain unchanged.

See article:

Seehawer, M., Heinzmann, F., D’Artista, L., Harbig, J., Roux, P.-F., Hoenicke, L., Dang, H., Klotz,
S., Robinson, L., Doré, G., et al. (2018). Necroptosis microenvironment directs lineage
commitment in liver cancer. Nature 562, 69-75.
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8.1.3 Cell Snapshot: Cellular Senescence Pathways
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Causes and Characteristics of Cellular Senescence-Top Panel

The stressors/stimuli leading to senescence include telomere shortening due to replicative exhaustion (replicative senescence, RS), oncogene hyperactivation (oncogene-
induced senescence, OIS), tumor suppressor loss, damage to DNA or chromatin structure (including from anti-cancer therapy), developmental cues, mitochondrial dysfunc-
tion, reprogramming factors, oxidative stress, wound healing, cell-cell fusion, and certain cytokines (including the senescence-associated secretory phenotype itself [SASP)).
Senescence arrest occurs mostly in the G, phase of the cell cycle, distinguishing it from G -arrested quiescent cells. The arrest is mediated by cyclin-dependent kinase
inhibitors and is dependent on the TP53 and pRB tumor suppressor pathways. The SASP modulates immune surveillance during development, tissue regeneration, and pro-
and anti-tumoral responses and enhances cellular reprogramming. The composition of the SASP is stimulus-dependent and includes pro- and anti-inflammatory cytokines,
chemokines, stemness factors, and matrix metalloproteinases.

The archetypical senescence biomarker is acidic lysosomal SA-BGal activity, indicative of augmented autophagy and enlargement of the lysosomal compartment. Senes-
cent cells undergo changes in chromatin architecture epitomized by the appearance of senescence-associated heterochromatin foci (SAHF), regions of condensed chromatin
containing repressive histone marks. The formation of these foci depends on the CDKN2A-pRB pathway. The persistent DNA damage response (DDR) in senescent cells
leads to senescence DNA damage foci (SDF) and telomere-dysfunction-induced foci (TIF). SDF and TIF are identified by the colocalization of DDR-associated proteins 53BP1,
yH2AX, and ATM. Senescent cells also display distension of peri- and centromeric satellites (SADS). Senescent cells exhibit increased protein turnover and massive proteo-
toxic stress due to augmented autophagy and SASP component synthesis. This is partially explained by the colocalization of autophagic, lysosomal, and nascent proteins in
the TOR-autophagy spatial coupling compartment, coupling protein catabolism and anabolism. Senescence is associated with increased rates of mitochondrial metabolic
activity, including the tricarboxylic acid cycle, oxidative phosphorylation, and glycolytic pathways. Senescent cells have increased AMP/ADP:ATP and NAD*/NADH ratios,
activating AMPK, which reinforces a TP53-dependent cell-cycle arrest. Senescent cells undergo notable changes in their extracellular matrix organization, which are reflected
in their enlarged and flat morphology.

Regulation of the Cell Cycle Arrest-Middle Panel

Most senescence inducers activate the tumor suppressor pathways TP53/CDKN1A and/or pRB/CDKN2A. TP53 integrates signals for DNA-damage-induced senescence,
imposing a CDKN1A-mediated cell-cycle arrest. DNA damage caused by genotoxic agents or reactive oxygen species (ROS) activates TP53 via the p38MAPK and ATM path-
ways. Generation of ROS occurs via tissue damage-activated RAC1, dysfunctional mitochondria, OIS, or SASP signaling. Dysfunctional mitochondria and other metabolic per-
turbations also induce a TP53-dependent arrest via AMPK activation. TP53-dependent upregulation of CDKN1A overrides the repression of the CDKN1A locus by Polycomb
repressor complexes (PRC) 1 and 2, the long non-coding RNA PANDA, and the scaffolding factor hnRNPU. Additional regulation of the TP53-mediated senescence arrest
occurs through acetylation by CBP and sumoylation by E3 SUMO ligase PIASy .

During senescence, E2F7 and pRB act to repress pro-proliferation genes. E2F7 is a TP53 target gene and is the only E2F transcription factor (TF) family member that is
strongly upregulated in senescence. The activity of pRB is tightly regulated by CDK-mediated phosphorylation. In senescence, CDK inhibitors, such as CDKN2A or 1A,
maintain pRB in an active, hypophosphorylated state, leading to its association with and inhibition of E2F1-3, promoting the senescence arrest. E2F7 and pRB reinforce the
repression of E2F target genes by promoting local heterochromatinization via the recruitment of histone deacetylases (HDACs), histone methyl transferases (HMTs), and PIASy.
The RNA interference machinery also contributes to the repression of a subset of E2F target genes. This is mediated by a microRNA (miR)-loaded AGO2 dimeric complex,
which facilitates formation and binding of the pRB co-repressor complex to a subset of E2F targets to deposit repressive chromatin marks. In addition, OIS signaling through
the MAPK pathway activates JunB-containing AP1 dimers to repress expression of CCND1 and strengthen the cell cycle arrest. Finally, increased promoter methylation, par-
ticularly flanking CpG islands, is associated with repression of cell cycle genes in senescence.

In proliferating cells, the INK4 locus (encoding for CDKN2A, -2B, and p14*%) is maintained in a repressive chromatin state through IncRNA ANRI/L-mediated recruitment
of PRC1/2, catalyzing repressive histone methylation. Transcriptional activation of the CDKN2A gene and increased levels of CDKN2A are observed during senescence and
aging, and thus, it is now considered an aging biomarker. The p144%¥ protein also contributes to senescence by stabilizing TP53 levels through inhibition of the HMDM2 ubiqui-
tin ligase. Increased expression of the CDKN2B gene has been observed in developmentally programmed, SASP-mediated, DNA-damage- and oncogene-induced senes-
cence. Increased levels of COKN2B are dependent on TGF-B-SMAD and PI3K-FOXO signaling and IL6-mediated activation of C/EBPB. TP53-independent CDKN1A induction
is central to developmentally programmed senescence. As with CDKN2B, CDKN1A induction during development is dependent upon TGF-B-SMAD and PI3K-FOXO signaling
in the absence of detectable DNA damage. Increased levels of CDKN1B are also observed in this context. The mechanisms underlying the derepression of the INK4 locus
include H3K27me3 demethylation, displacement of PRC complexes, and activation of TFs ETS1/2. In addition, ID proteins inhibit ETS TFs.

Regulation of the Inflammatory SASP-Bottom Panel

SASP induction relies on the activation of the inflammatory TFs NF-xB and C/EBPB, a chronic DNA damage response, and on the p38MAPK pathway. Many cis-regulatory
regions of SASP genes contain NF-kB and C/EBPB binding sites, and their increased expression promotes a positive feedback loop that reinforces the senescent state
through intra-, auto-, and paracrine signaling. In response to DNA damage, a DDR-activated PARP1-NF-kB axis induces the expression of a CCL2-dominated inflammatory
SASP that confers metastatic properties in vivo. DDR-driven senescence involves stabilization of GATA4 by inhibiting its degradation through p62-mediated autophagy, which
in turn leads to activation of NF-kB and transcription of inflammatory cytokines. OIS-induced SASP is dynamic, with an initial secretion dominated by NOTCH1, whose intra-
cellular domain N1ICD restrains the inflammatory SASP by inhibiting the activity of C/EBPB. In this context, the super enhancer (SE) landscape is remodeled to facilitate the
expression of inflammatory cytokines. This process requires the concerted binding of NF-kB and BRD4 at later stages of OIS, which promote activation of SASP-associated
SEs. The NF-kB pathway is also activated through the RIG-I and IRF pathways in response to DNA damage. In this context, IRF3 contributes to the SASP by directly transcrib-
ing the IFNB gene. The majority of TFs involved in SASP transcriptional activation during development and reprogramming remain to be identified.
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Cellular Senescence in (Patho)physiology and Aging

Cellular senescence plays important roles during development, modulation of the (pre)cancerous state, and reprogramming/regeneration and is implicated in aging and
age-related pathologies. In many instances, senescent cells exert their effects through the senescence associated secretory phenotype (SASP).
Development

Senescent cells have been observed in transient developmental structures, including the mesonephros, the apical ectodermal ridge (AER), the endolymphatic sac, and the
neural roof plate, where they are thought to facilitate tissue growth and patterning, after which they are cleared by macrophages through a SASP-dependent mechanism.
Cellular Plasticity

The SASP enhances cellular plasticity and tissue regeneration in the context of senescence induced by cellular reprograming and oncogene induced senescence (OIS).
These processes are generally completed with the removal of senescent cells by the immune system.
Cancer

Senescence is a potent, cell-autonomous tumor-suppressor mechanism effectively arresting the proliferation of pre-cancerous cells. Through the SASP, it further limits
tumorigenic risk, cell non-autonomously, via paracrine senescence and immune surveillance. However, many SASP factors secreted by senescent cells can promote tumor
development in vivo and malignant phenotypes such as proliferation and invasiveness in cell culture models. Thus, the role of senescence in cancer is time- and context-
dependent.
Aging and Age-Related Pathologies

Diverse tissues of aging organisms accumulate CDNK2A-expressing senescent cells, which can compromise tissue function by loss of structural integrity and/or depletion
of tissue-specific stem cell pools, thus contributing to age-related pathology and morbidity. Remarkably, depletion of CDKN2A-expressing cells in mice promotes tissue fit-
ness and prolongs lifespan.

Perspective
It is becoming increasingly clear that senescence cannot be treated as a single-cell fate. Rather, it is a collection of phenotypes that share certain key features but oth-
erwise are specific to the triggering stimulus and follow specific kinetics. As such, it is likely that these specific senescence programs are reflected in the physiological and

pathological consequences of the senescence phenotype. Collectively, our present knowledge suggests that the senescence phenotype has its evolutionary origins in tissue
regeneration and has been co-opted successively to other physiological processes. Finally, senescence therapies hold great potential to substantially improve health-span.
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Titre : Décryptage les Processus Transcriptionelle dans la Sénescence Cellulaire: Le Role de PARP1 dans la
Régulation de I'Expression Génique Associée a La Sénescence

Résumé :

La sénescence cellulaire est une réaction de stress complexe qui arréte la prolifération cellulaire et s'accompagne de
bouleversements généralisés du métabolisme, de la structure de la chromatine et de I'expression des génes, y compris
la surexpression et la sécrétion de facteurs inflammatoires. La sénescence cellulaire a des effets bénéfiques en tant
que mécanisme suppresseur de tumeurs et facilite le développement embryonnaire ainsi que la régénération tissulaire.
Cependant, ce processus est également considéré comme un acteur important du vieillissement et des maladies liées
a l'age, principalement par son phénotype inflammatoire, appelé SASP (Senescence-associated secretory phenotype).

Les recherches actuelles pointent vers un réle de PARP1 (poly(ADP-ribose) polymérase 1) dans la régulation
transcriptionnelle des processus inflammatoires et la modulation de la structure de la chromatine. Néanmoins, les
mécanismes exacts par lesquels PARP1 exerce ses fonctions de régulation et ses roles dans le contexte de la régulation
transcriptionnelle de la sénescence demeurent peu connus.

Dans ma thése, j'ai entrepris de définir le réle fonctionnel des activités catalytique et de liaison a la chromatine
de PARP1 dans la régulation transcriptionnelle et la structure de la chromatine dans les cellules en sénescence. J'ai
réalisé des analyses transcriptomiques a résolution temporelle, des études d'accessibilité de la chromatine et du
paysage chromatinien de PARP1 par ChIP-Seq, ainsi que de la chromatine ADP-ribosylée en développant une nouvelle
technique le CRAP-seq (Chromatin-Ribosylation-Affinity-Pulldown).

Ces analyses ont permis d’identifier une dichotomie de la fonction de PARP1 - Il'une liée a son activité
enzymatique d’ADP-ribosylation et I'autre a son activité de liaison a la chromatine non enzymatique - avec des impacts
distincts sur le programme transcriptionnel de la sénescence. Sur la base de ces résultats, j'ai pu définir un nouveau
role global pour PARP1 dans la modulation de la structure de la chromatine, d’'une part par la stabilisation du
positionnement des nucléosomes au niveau des promoteurs géniques et d’autre part par ’ADP-ribosylation des
éléments régulateurs en cis pour finement réguler la transcription des génes peu exprimés. Ainsi, ces recherches
permettent d’envisager le réle des inhibiteurs de PARP dans les thérapies ciblant la sénescence (thérapies
sénolytiques) pour le traitement des pathologies liées au vieillissement.

Mots clefs : Sénescence, cancer, vieillissement, Epigénetique

Title : Deciphering Gene-regulatory Processes in Cellular Senescence: The Role of PARP1 in the Regulation of
Senescence-Associated Gene Expression

Abstract :

Cellular senescence is a complex stress response that arrests cell proliferation and is accompanied by widespread
changes in metabolism, chromatin structure, and gene-expression, including the overexpression and secretion of
inflammatory factors. Cellular senescence is health-promoting as a tumor-suppressive mechanism, facilitating
embryonic development and tissue regeneration. However, it is also considered a major contributor to aging and age-
related diseases, mostly through its inflammatory phenotype, the so-called SASP (senescence-associated secretory
phenotype).

Current research supports the role of PARP1 (Poly (ADP-ribose) polymerase 1) in the transcriptional regulation
of inflammatory processes and modulation chromatin structure. However, the exact mechanisms by which PARP1
exerts its regulatory functions, and its roles in the context of regulating senescence gene-expression are underexplored.

In my thesis, | set out to define the functional role of PARP1 catalytic and chromatin binding activities in gene
regulation and chromatin structure in cells undergoing senescence. | performed time-resolved transcriptomics,
chromatin-accessibility studies, and mapping of the genome-wide locations of PARP1 using ChIP-seq and ADP-
ribosylated chromatin using a novel technique CRAP-seq (Chromatin-Ribosylation-Affinity-Pulldown).

Together, | identified a dichotomy of PARP1 function — one related to its enzymatic ADP-ribosylation activity
and the other related to its non-enzymatic chromatin binding activity — with distinct impacts on the senescence
transcriptional program. Based on these findings, | can define a novel and global role for PARP1 in and chromatin
structure modulation by stabilizing nucleosomes positioning at gene promoters and ADP-ribosylation of cis-regulatory
modules to fine-tune transcription of lowly expressed genes. Indeed, based on my investigations, the role of PARP-
inhibitors in senescence targeting therapies (senolytic therapies) for the treatment of age-related pathologies can be
envisioned.
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