Chen Utbm

Jian Liu

Yong Zhang

Tao Shi

Rongrong Yang

Hailong Liu

Hanqing Wu

Yang Wang

Zhou

Keywords: Discovering Human Mobility from Mobile Data: Probabilistic Models and Learning Algorithms Machine Learning, Deep Learning, Probabilistic Models, Variational Inference, Mobile Data

other students. We had a great time together in France, which prevent me being consumed by work completely. Some of them already graduated and I wish them all have a bright future.

Smartphone usage data can be used to study human indoor and outdoor mobility. In our work, we investigate both aspects in proposing machine learning-based algorithms adapted to the different information sources that can be collected. In terms of outdoor mobility, we use the collected GPS coordinate data to discover the daily mobility patterns of the users. To this end, we propose an automatic clustering algorithm using the Dirichlet Process Gaussian Mixture Model (DPGMM) so as to cluster the daily GPS trajectories. This clustering method is based on estimating probability densities of the trajectories, which alleviate the problems caused by the data noise. By contrast, we utilize the collected WiFi fingerprint data to study indoor human mobility. In order to predict the indoor user location at the next time points, we devise a hybrid deep learning model, called the Convolutional Mixture Density Recurrent Neural Network (CMDRNN), which combines the advantages of different multiple deep neural networks. Moreover, as for accurate indoor location recognition, we presume that there exists a latent distribution governing the input and output at the same time. Based on this assumption, we develop a Variational Autoencoder (VAE)-based semi-supervised learning model. In the unsupervised learning procedure, we employ a VAE model to learn a latent distribution of the input, the WiFi fingerprint data. In the supervised learning procedure, we use a neural network to compute the target, the user coordinates. Furthermore, based on the same assumption used in the VAE-based semi-supervised learning model, we leverage the Information Bottleneck theory to devise a Variational Information Bottleneck (VIB)based model. This is an end-to-end deep learning model which is easier to train and has better performance. Finally, we validate these proposed methods on several public real-world datasets providing the results that verify the efficiencies of our methods as compared to other existing methods generally used. Les donn ées d'utilisation des smartphones peuvent être utilis ées pour étudier la mobilit é humaine que ce soit en environnement ext érieur ouvert ou à l'int érieur de b âtiments. Dans ce travail, nous étudions ces deux aspects de la mobilit é humaine en proposant des algorithmes de machine learning adapt é aux sources d'information disponibles dans chacun des contextes. Pour l' étude de la mobilit é en environnement ext érieur, nous utilisons les donn ées de coordonn ées GPS collect ées pour d écouvrir les sch émas de mobilit é quotidiens des utilisateurs. Pour cela, nous proposons un algorithme de clustering automatique utilisant le Dirichlet process Gaussian Mixture Model (DPGMM) afin de regrouper les trajectoires GPS quotidiennes. Cette m éthode de segmentation est bas ée sur l'estimation des densit és de probabilit é des trajectoires, ce qui att énue les probl èmes caus és par le bruit des donn ées. Concernant l' étude de la mobilit é humaine dans les b âtiments, nous utilisons les donn ées d'empreintes digitales WiFi collect ées par les smartphones.

Afin de pr édire la trajectoire d'un individu à l'int érieur d'un b âtiment, nous avons conc ¸u un mod èle hybride d'apprentissage profond, appel é le Convolutional Mixture Density Recurrent Neural Network (CMDRNN), qui combine les avantages de diff érents r éseaux de neurones profonds multiples. De plus, en ce qui concerne la localisation pr écise en int érieur, nous supposons qu'il existe une distribution latente r égissant l'entr ée et la sortie en m ême temps. Sur la base de cette hypoth èse, nous avons d évelopp é un mod èle d'apprentissage semi-supervis é bas é sur le Variational Autoencoder (VAE). Dans la proc édure d'apprentissage non supervis é, nous utilisons un mod èle VAE pour apprendre une distribution latente de l'entr ée qui est compos ée de donn ées d'empreintes digitales WiFi. Dans la proc édure d'apprentissage supervis é, nous utilisons un r éseau de neurones pour calculer la cible, coordonn ées par l'utilisateur. De plus, sur la base de la m ême hypoth èse utilis ée dans le mod èle d'apprentissage semi-supervis é bas é sur le VAE, nous exploitons la th éorie des goulots d' étranglement de l'information pour concevoir un mod èle bas é sur le Variational Information Bottleneck (VIB). Il s'agit d'un mod èle d'apprentissage en profondeur de bout en bout plus facile à former et offrant de meilleures performances. Enfin, les m éthodes propos ées ont ét é valid ées sur plusieurs jeux de donn ées publics acquis en situation r éelle. Les r ésultats obtenus ont permis de v érifier l'efficacit é de nos m éthodes par rapport à l'existant.

INTRODUCTION 1.1/ CONTEXT

Discovering human mobility using user data collected from smartphones has become a critical challenge especially in the recent similar context. Thanks to the recent advances in hardware and software technology, smartphone devices now integrated with various types of built-in sensors, such as cameras, accelerators, gyroscopes, Bluetooth, GPS modules and WiFi modules, etc., can offer various functions to users. Smartphone handsets are portable so that they can be used by their owners almost anytime and anywhere.

For many people, smartphones have become important tools in their daily life. Consequently, the usage of smartphones reflects the daily life of the smartphone users as well.

Therefore, some researchers attempt to take advantage of mobile data to study human behavior. Mobile data in this thesis is referring to smartphone usage data, including making phone calls, texting, taking photos, listening to music, etc.

In recent years, Location-Based Service (LBS) [START_REF] Schiller | Location-based services[END_REF] has been an important part of many applications, such as advertisement, social network and navigation. LBS is a type of technology that uses geographic information to provide users services. These services include health care, advertising, entertainment and indoor localization. Studying human mobility is essential for developing LBS applications. In this thesis, we want to study human mobility in both outdoor and indoor environment with mobile data. Hence, among all the aforementioned usage data, the location-related data attracts our attention the most. In literature, there are various types of data one can use for studying human mobility, such as GPS, WiFi and cell-IDs [START_REF] Trevisani | Cell-id location technique, limits and benefits: an experimental study[END_REF], [Bazzani et al., 2010], [START_REF] Lin | Mobile location estimation based on differences of signal attenuations for gsm systems[END_REF], [START_REF] Zheng | Understanding mobility based on gps data[END_REF], [START_REF] Yavas | A data mining approach for location prediction in mobile environments[END_REF], [START_REF] Su | Mobility prediction in wireless networks[END_REF].

The Global Positioning System (GPS) is a satellite-based navigation system developed and owned by the United States, which can provide both geological and temporal information when users stay outdoors [START_REF] Hofmann-Wellenhof | Global positioning system: theory and practice[END_REF]. The advantage of using GPS data is that it is more convenient than other indirect methods, such as cell-ID based methods and WiFi based methods which need further interpretation to acquire geological information. However, the drawback is that GPS modules do not work well in an indoor environment.

Fortunately, in recent decades, wireless networking technology has rapidly developed so we can consider WiFi-based localization techniques as an alternative. WiFi is a type of wireless networking technologies based on the IEEE 802.11 family of standards, which is used to local area networking and internet access [Gast, 2005]. When the WiFi module in a smartphone is turned on, it will automatically scan the WiFi access points (WAPs) near the device. Then, the WiFi scan list will show the Received Signal Strength Indicator (RSSI) values of each detected WAP. Normally, the RSSI values are lower as the WAP are farther from the device. Thank to this characteristic, we can localize the user position based on the corresponding RSSI values. The data obtained via such method is called WiFi fingerprint data.

To acquire GPS and WiFi fingerprint data, researchers can resort to the crowd-sourcing technique [Brabham, 2013]. The crowd-sourcing technique, in the context of this thesis, is to use the help of voluntary smartphone users to collect a large scale of data from a large group of users. This kind of databases can also be regarded as Big Data. Usually, more data means more information. Hence, training models with more data results in better results.

In order to build a large database more easily, a widely used approach in previous research work is to launch a campaign by asking volunteers to install the ad hoc applications developed by researchers on their smartphone devices. Such applications includes Mobile Data Challenge [START_REF] Laurila | The mobile data challenge: Big data for mobile computing research[END_REF], [START_REF] Laurila | From big smartphone data to worldwide research: The mobile data challenge[END_REF],

Device

Analyzer [START_REF] Wagner | Device analyzer: Understanding smartphone usage[END_REF], [START_REF] Wagner | Device analyzer: Large-scale mobile data collection[END_REF], UJIIndoor-Loc [START_REF] Torres-Sospedra | Ujiindoorloc: A new multi-building and multi-floor database for wlan fingerprint-based indoor localization problems[END_REF] and Tampere [START_REF] Lohan | Crowdsourced wifi database and benchmark software for indoor positioning[END_REF]. These kinds of applications usually are designed to record the smartphone device usage. By contrast with traditional data collecting methods, crowd-sourcing does not need stand-alone devices, i.g., GPS devices, to record human behavior. Instead, the practitioners can take advantage of the built-in sensors to collect user behavior data so that the normal daily life of the user will not be affected. As a result, the obtained data are more reliable for reflecting real human behavior.

Finally, with the access to the GPS and WiFi fingerprint data collected from smartphone users, the main objective of this thesis is to discover human mobility from the data. To this end, we will propose several machine learning and deep learning based methods in our work.

1.2/ MAIN ISSUES OF THE THESIS

In this thesis, the main goal is to discover the user mobility from the collected smartphone usage data. In order to have a comprehensive understanding of human mobility, we need to investigate both indoor and outdoor mobility of smartphone users. The data utilized in our work are GPS data and WiFi fingerprint data. When studying outdoor user mobility, using GPS data is more convenient though WiFi hotspots can be detected outdoors in some cases. As for studying indoor user mobility using WiFi fingerprint data is a feasible choice.

1.2.1/ DISCOVERING DAILY MOBILITY PATTERNS FROM GPS DATA

We want first to shed some light on the outdoor mobility of smartphone users. Because by doing this, we can have general knowledge of human mobility and behavior. In this work, in particular, we focus on discovering the daily mobility of the users. We believe that daily mobility can reflect life styles of smartphone users, which will help us to understand human behavior better. Nowadays, GPS modules are widely built in smartphone devices so as to provide the geographical location information for location-based services, such as navigation, advertisement and entertainment. Naturally, we can leverage these GPS modules to collect GPS data from smartphones in order to study human mobility.

In order to investigate daily activity patterns of people more thoroughly and precisely, we choose to resort to a considerable amount of GPS data enables us to study the human mobility at a large spatial and temporal scale. Thus for the GPS data-based method, we want to analyze these patterns along a relatively long period (in our case, up to several months). Here daily mobility patterns refer to the most common trajectories users pass every day. Also, in order to make our method more convincing, we need to verify our method on sufficient user data. It means that we need to adopt a dataset collected from a number of different users. In our experiments, we take advantage of the Mobile Data Challenge (MDC) database [START_REF] Laurila | The mobile data challenge: Big data for mobile computing research[END_REF], [START_REF] Laurila | From big smartphone data to worldwide research: The mobile data challenge[END_REF].

In this thesis, especially, we choose to study user mobility at the time slot of one day. It is because we argue that human mobility repeat daily, e.g., home → work place/school → home. In our work, we aim to discover mobility patterns in particular. Here, mobility patterns refer to the common trajectories used by users. Therefore, this can be regarded as a clustering daily trajectories problem. We can apply some machine learning techniques to this issue. A trajectory here is a set of GPS data points recording the mobility of the smartphone user during a certain time period. In this task, we do not treat these data points as sequences.

Moreover, we also should be aware of that the trajectories of users vary largely in space and time. For example, we may stay home on weekends and go to work on work days.

Or on the way we go back to home, we may take a detour to go shopping. Consequently, these behaviors cause the uncertainty of human mobility. This issue will make some

1.2.2/ WIFI FINGERPRINT-BASED LOCATION PREDICTION

Apart from the GPS data-based outdoor mobility problem, we also want to address the indoor user mobility issues by using smartphone usage data. However, the difficulty is that GPS modules are malfunctional when users stay indoor, thus we cannot use GPS data to model indoor user mobility.

As previously mentioned, there are fortunately alternative methods. Nowadays, WiFi ac-cess points are widely installed in modern buildings so as to provide Internet connection.

And the signal strength of WiFi access points is related to the physical distance between the devices and the WiFi hotspots. Naturally, we can use this property for indoor localization.

In our work, we want to utilize WiFi fingerprint data for accurate location prediction. Here "accurate" means that we will use the real user coordinates (which can be seen as the target of a regression task), instead of building IDs or floor IDs (which can be seen as the target of a classification task). More specifically, in our task, we want to do the location prediction task, which is to predict the next user location by using the WiFi fingerprint at the current time point. This task can be treated as a time series prediction. The input of this problem is the WiFi fingerprints and the target is the real coordinates of users.

They are both sequential data. The WiFi fingerprint-based time series applications can be used for the services such as indoor navigation and advertisement.

Predicting user next location with WiFi fingerprints is a tricky problem because the input data is not easy to process. First, generally, for the purpose of providing high quality Internet connection, public buildings, such as office building, school buildings and super malls, are equipped with a large number of WiFi hotspots. Nevertheless, this also leads to the high dimensionality problem, which make the models prone to be overfitting and hard to converge. Furthermore, WiFi the signal fluctuations is detrimental to the accuracy of WiFi-based positioning methods. Theses challenges require us to adopt some feature detection techniques to extract the useful information from the input data.

Moreover, the relationship between RSSI values and actual user location is not trivial. Especially when the number of the WiFi access points and the amount of the data are large, using conventional machine learning methods is not easy to tune [START_REF] Nowicki | Low-effort place recognition with wifi fingerprints using deep learning[END_REF].

Thus a better approach is to utilize a model scalable enough, for example, a deep learning model. Therefore, in order to tackle with the aforementioned problems, we resort to the advanced deep learning techniques, to propose a novel deep learning-based method in our work, which is called the Convolutional Mixture Density Recurrent Neural Network.

1.2.3/ WIFI FINGERPRINT-BASED LOCATION RECOGNITION

In this work, we want to improve the WiFi fingerprint-based method even further, which means interpreting the WiFi fingerprints into real user coordinates more accurately. We treat this problem as a high dimensional regression task whose learning targets are numerical values. This task can be supervised, which means the targets are learned directly from the input, or semi-supervised, which means the targets are learned from a representation of the input. Accordingly, this problem is named as location recognition in this work.

To solve this problem, we can use some conventional machine learning models, such as k-nearest neighbours, Decision Trees and Random Forests, etc. These methods attempt to model the relationship between the input and the output directly. However, the modeling accuracies will be largely affected by the noise of the data. This issue remains the same even for some probabilistic models, such as Mixture Density Networks (MDNs), Gaussian Processes (GPs) and Bayesian Neural Networks (BNNs).

In order to address this issue, we find that both the input of the model, i.e., WiFi fingerprints, and the target of the model, i.e., the user coordinates, are related to the actual user location. Based on this idea, we can utilize a latent distribution to connect the input with the output instead of directly modeling the relationship between the input and the output. By doing so, we can obtain the useful information for learning the task from the original WiFi fingerprint data so as to circumvent the overfitting problem and improve the modeling accuracy.

We can use Generative Latent Variable Models (GLVMs) to implement our idea. In our approach, we use a encoder-decoder structure.

1.3/ MAIN CONTRIBUTIONS OF THE THESIS

To address the problems in last section, we propose several methods in this thesis. They

1.3.1/ DPGMM-BASED CLUSTERING ALGORITHM

In order to discover daily mobility patterns, we can cluster daily GPS trajectories. However,there are several issues when we try to cluster GPS data. One issue is that in some occasions the GPS modules do not function normally during the data collecting process, CHAPTER 1. INTRODUCTION for example, when the user is in a tunnel or stay indoor. Due to this, some part of the GPS data are missing, which cause the data sparsity problem. The other issue is that the GPS data are not distributed evenly space because the users stay in different places for different time periods. For instance, people stay at home or work places for longer time than in supermarkets.

For discovering daily mobility patterns, we propose a Dirichlet Process Gaussian Mixture Model (DPGMM)-based clustering method to cluster daily trajectories. This method has several advantages. First, this method adopts a probabilistic approach. It calculates the probability density of each trajectory and uses the Kullback-Leibler divergences as the clustering metrics instead of using the conventional Euclidean distance. By doing this, we can circumvent the data sparsity problem.

Furthermore, for estimating the probability densities more accurately, we use the Gaussian Mixture Model with a Dirichlet Process prior, this can avoid pre-defining the number of mixture models. Moreover, our algorithm is an automatic clustering algorithms, which means it does not need the prior knowledge of the cluster number.

1.3.2/ CMDRNN FOR SEQUENTIAL LOCATION PREDICTION

Since each element of the high dimensional features of the WiFi fingerprint data contributes equally (each element relates to one WiFi access point) to the user location information, Principal Component Analysis (PCA), a kind of dimension reduction method, is not suitable for such tasks [START_REF] Nowicki | Low-effort place recognition with wifi fingerprints using deep learning[END_REF]. Instead, we can resort to deep learning based techniques, for example, Autoencoders and Convolutional Neural Networks.

In practice, we find that the Convolutional Neural Network outperforms the Autoencoder [START_REF] Ibrahim | Cnn based indoor localization using rss time-series[END_REF].

Since the state transition information of the time-series data is implicit and the possible state space is very large, conventional approaches, such as Markov Models and Hidden Markov Models are not feasible for our tasks. Alternatively, we can use a deep learning model, such as a Recurrent Neural Network, to model the state transitions.

We also find that computing the user coordinates with a conventional neural network directly will result in severe overfitting. [Kingma et al., 2014b]. Our approach consists of two learning procedures, the first learning procedure is unsupervised learning which is used to learn a latent representation of the input data. In this procedure, we make use of a Variational Autoencoder to achieve the learning task.

The second learning procedure is a supervised learning process aiming to calculating the final user coordinates. To this end, we devise two neural network predictors. One

predictor is a deterministic model whose loss function is root mean squared error and the other predictor is a stochastic model whose loss function is the negative log-likelihood.

1. [START_REF] Lu | Approaching the limit of predictability in human mobility[END_REF], [START_REF] Ye | Situation identification techniques in pervasive computing: A review[END_REF], [START_REF] Lin | Mining gps data for mobility patterns: A survey[END_REF], [START_REF] Pirozmand | Human mobility in opportunistic networks: Characteristics, models and prediction methods[END_REF], [Zheng, 2015] and [Cao et al., 2007], have studied human mobility by using GPS data collected form smartphone users. These works mainly focused on the tasks such as extracting significant visiting places, clustering trajectories, discovering travel sequences and so on.

2.1.1/ DISCOVERING FREQUENTLY VISITED PLACES

Through discovering frequently visited places, we can reveal how people behave in their daily life. To some extent, it can be seen as a task of clustering GPS data in our context.

Clustering is a type of unsupervised learning approach with unlabeled data. The purpose of a clustering task is to separate datapoints into a number of different groups and the datapoints within the same groups share some kinds of similarities based on the distance metrics we choose.

In our study, the original GPS data collected from the users is not labeled semantically, thus practitioners need to label the raw data first, to find the frequently visited places, which can be regarded as a clustering task in some sense. Here, frequently visited places refer to the places where the users visit frequently and stay for a relatively long time period. For example, a frequently visited place can be someone's home, his/her workplace or his/her school. represent the GPS data points and the shaded area, S , denotes the stay point which contains 4 GPS datapoints, p 3 ∼ p 6 .

There are numerous machine learning methods which can be used for clustering GPS datapoints. For instance, K-means [START_REF] Wu | Top 10 algorithms in data mining[END_REF]] is a widely used method for many clustering tasks. It measures the closeness between datapoints through calculating the Euclidean distances. The main advantage of K-means is that it is computationally efficient. But it cannot handle data with complex shapes and it is sensitive to noises because it uses Euclidean distances. If we want to find the frequently visited places, then we only care about the GPS data collected in the significant places and ignore the less important data. However, we cannot achieve this goal through using K-means because it cannot distinguish useful datapoints from noise datapoints. Moreover, it needs to set the cluster number properly in advance, otherwise the obtained result will not be as expected.

However, we do not access to such prior knowledge in many cases.

One alternative is to use Gaussian Mixture Models (GMMs) [Reynolds, 2015]. GMMs are Probabilistic Graphical Models (PGMs). As opposed to K-means, in a GMM, each sub-Gaussian distribution represents a cluster and the category assignments of the datapoints depend on the corresponding likelihoods. GMMs are usually solved by the Expectation Maximization (EM) algorithm [Moon, 1996]. Like K-means, GMMs also need the prior knowledge of the cluster number. However, it is not acquirable in many real-world cases.

In [Cho, 2016], the author modified the standard GMM to make the algorithm more robust to noise so as to cluster the original GPS datapoints. In addition, by using the Dirichlet process prior [Neal, 2000], GMMs can be even further developed as a nonparametric hierarchical model, called Hierarchical Dirichlet Process (HDP) [START_REF] Teh | Sharing clusters among related groups: Hierarchical dirichlet processes[END_REF],

in which the number of sub-Gaussian models does not need to be specified in advance.

In [START_REF] Mcinerney | Modelling heterogeneous location habits in human populations for location prediction under data sparsity[END_REF], the authors developed a location HDP-based approach to model heterogeneous location habits and tackled with the data sparsity issue successfully.

Another feasible method is called Density-based Spatial Clustering of Applications with Noise (DBSCAN) [START_REF] Ester | A density-based algorithm for discovering clusters in large spatial databases with noise[END_REF], which is a density-based clustering algorithm. DB-SCAN recognizes the core areas by setting the minimum points number and neighbourhood radius. In contrast with K-means, DBSCAN can handle data with complex shapes and is robust to noise. Moreover, it does not require to know the number of cluster in ad-CHAPTER 2. STATE OF THE ART vance. However, it still needs to set some parameters properly, i.e., the minimum points number and the neighbourhood radius, to recognize the core areas and it treats the noncore data points as noise. Due to this reason, DBSCAN is not suitable for clustering the GPS data that is unevenly distributed in space. As for other methods proposed in literature, in [START_REF] Do | Contextual conditional models for smartphone-based human mobility prediction[END_REF], the researchers proposed a grid clustering method to labeled GPS data. This grid clustering algorithm separates the GPS data via grids and it focuses on detecting the stay points within a set of square regions, while fails to reveal the mobility at a larger scale. Another possible approach is proposed by [START_REF] Zheng | Mining interesting locations and travel sequences from gps trajectories[END_REF], which is a hypertext induced topic search (HITS)based inference model. It is proposed to mine interesting locations and travel sequences through using a GPS dataset of large scale in a certain region. In this model, especially, the travel interests and the travel experiences of the users are taken into account. In the work of [Zheng et al., 2010a], the authors took advantage of a real-world GPS dataset collected from more than 150 users over a time period of 2.5 years, to devise a location recommendation model. This model is able to discover both the interesting locations and possible activities.

The comparisons of different clustering methods are summarised in Table 2.1. in a sense, we attempt to shed some light on human mobility patterns in a more detailed manner. That is to say, we want to use not only the data collected from the frequently visited places but also all the user mobility data. Therefore, in this thesis, one of our goal is to cluster GPS trajectories so as to find the common patterns existing in GPS data. A applicable way to achieve this goal is to cluster GPS trajectories.

Researchers have developed many methods for clustering GPS trajectories [Bian et al., 2018], [Castro et al., 2013]. Some researchers used K-means [START_REF] Jiang | Clustering daily patterns of human activities in the city[END_REF], [Ashbrook et al., 2003] in their work. However, K-means cannot handle the trajectories with complex data shapes or noise because its clustering metrics is based on the Euclidean distance. Besides, similar to Gaussian Mixture Models, it also needs the prior knowledge of cluster number as we mentioned before.

DBSCAN is capable of dealing with the data with arbitrary shapes, therefore it can be used to cluster GPS trajectories [START_REF] Tang | Uncovering urban human mobility from large scale taxi gps data[END_REF], [START_REF] Yu | Modeling user activity patterns for next-place prediction[END_REF]. However, it treats the non-core data points as noise so it cannot deal with unevenly distributed data. From our study, we argue that the trajectory parts with less data density are also essential to demonstrate the human mobility, thus DBSCAN is not suitable for our task. Dynamic Time Warping (DTW) is a sequence aligned approach that is able to measure the similarity between two different time series regardless of sequence lengths and time ordering [Agrawal et al., 1993]. However, when it is used to measures the similarity of two GPS trajectories, it can be easily affected by noise. Therefor DTW is not suitable for our task either.

In particular, some researchers focus on discovering the correlations between locations through the use of the user location history [START_REF] Khetarpaul | Mining gps data to determine interesting locations[END_REF], [START_REF] Zheng | Learning travel recommendations from user-generated gps traces[END_REF].

Furthermore, they utilized the travel experiences of the users and the correlations between the visited locations to construct a personalized location recommendation system.

In the work of [START_REF] Xiao | Finding similar users using category-based location history[END_REF], the researchers attempted to find the similar users by estimating the closeness of their GPS trajectories. To this end, first, they build the semantic location history (SLH), for instance, 'school' → 'bus stop' → 'home'. Then, they estimated the similarities between different users by using the maximal travel match (MTM)

algorithm. [START_REF] Lou | Map-matching for low-sampling-rate gps trajectories[END_REF] proposed a global map-matching method, ST-Matching algorithm. Compared to other methods, this algorithm considers both the spatial and topological structure of the road networks. In addition, it takes the speed and temporal constraint of the GPS trajectories into count. In the study of [START_REF] Zheng | Learning location correlation from gps trajectories[END_REF], the authors aimed to construct a user-specific recommendation system through estimating the correlations between different trajectories. In order to do so, they used the travel experiences of the users and the sequentiality of the locations.

However, the aforementioned methods have their limitations. Clustering real-world GPS trajectory data is a very tricky problem because, firstly, different trajectories may have different data lengths due to the data collecting mechanism; secondly, the shapes of the trajectories may be very complex and unevenly distibuted in space in some cases; thirdly, GPS data may contain noisy information. Therefore, in order to handle these problems, we need to devise a novel method to achieve our goal. In our work, we propose a probabilistic approach, in which we estimate the probability densities of the GPS trajectories first, then use the Kullback-Leibler divergences as the distance metrics to cluster the GPS trajectory data. By doing so, we can avoid the aforementioned issues successfully.

2.2/ PREDICTING NEXT USER LOCATION

Forecasting the next places that users will visit is an interesting research topic. It can be useful for many applications. For instance, it can be used for travel destination recommendation for tourists. Moreover, human behavior is highly related to locations, thereby we can improve the predicting accuracy by using the smartphone usage contextual information, e.g., temporal information, application usage, call logs and WiFi status, etc.

The next-place prediction can be classified into two groups of learning tasks. One is to predict the next time-slot location, the other kind is to predict the next visit location. The predicting task of next time-slot location is to predict the place where the users stay in the next-time slots.

2.2.1/ MACHINE LEARNING-BASED PREDICTION METHODS

In [Baumann et al., 2018] and [START_REF] Do | Where and what: Using smartphones to predict next locations and applications in daily life[END_REF], the authors applied various machine learning techniques to accomplish both the next time-slot location prediction and the next-place prediction. In particular, they exploited how different combinations of contextual features related to smartphone usage can affect the predicting accuracy. Meanwhile, they also compared the predicting performance of individual models and generic models.

One class of the task is to predict the transitions among the places, i.e., the next visit location. In the task, different tasks are regarded as a set of separated places and the data related to these places can be either semantic labels or spatial coordinates.

In this thesis, in particular, we focus on predicting next visited places. This task can be regarded as a time series prediction task. A time series is a series of datapoints indexed in the order of time appearance. Since human behavior is stochastic by nature, thus deterministic may cause the overfitting issue. Overfitting is a phenomena that after we train a the model, the trained model fits the training data too well but fails to have good performance on the testing data. This may be due to the limited amount training data or noise in the training data. To overcome this difficulty, some probabilistic models, which leverage the conditional probabilities to make predictions, can be the alternative options.

For the events A and B, the conditional probability P(A|B) is defined as:

P(A|B) = P(A, B) P(B) (2.1)
where P(A, B) is the joint probability and P(B) is the marginal probability.

In the context of predicting the location of users, one can let B be some context events related to the location information, for instance, the hour of the day or the day of the week, and A be the next visit place. If we can calculate the marginal probability P(B) and the joint probability P(A, B), then we can leverage Eq. (2.1) to predict the next visit place via computing the conditional probability P(A|B).

Based on this idea, in [START_REF] Do | Contextual conditional models for smartphone-based human mobility prediction[END_REF], the researchers developed the contextual conditional models for both the next-place prediction and the visit duration prediction by calculating the conditional probabilities between contextual features. The duration model is based on mixed log-Normal distributions of relation contextual information. In order to increase the fidelity of the prediction, they developed a general model and personalized model.

In [START_REF] Do | A probabilistic kernel method for human mobility prediction with smartphones[END_REF] and [START_REF] Peddemors | Predicting mobility events on personal devices[END_REF], the researchers presented the probabilistic prediction frameworks based on Kernel Density Estimation (KDE) [START_REF] Davis | Remarks on some nonparametric estimates of a density function[END_REF]. KDE is a non-parametric method in statistics to estimate Probability Density Function (PDF). KDE casts the problem of PDF estimation into data smoothing task and one of the key issue is choosing the proper bandwidth. [START_REF] Do | A probabilistic kernel method for human mobility prediction with smartphones[END_REF] utilized conditional KDE to predict the mobility events and [START_REF] Peddemors | Predicting mobility events on personal devices[END_REF] devised a set of ad hoc kernels for different context information types. Additionally, [START_REF] Scellato | Nextplace: a spatio-temporal prediction framework for pervasive systems[END_REF] proposed to use nonlinear time series analysis of the arrival time and residence time for location prediction.

Various machine learning models have been applied to next-place prediction, such as Naive Bayes (NB) [START_REF] Muhlenbrock | Learning to detect user activity and availability from a variety of sensor data[END_REF], Markov models [START_REF] Yu | Modeling user activity patterns for next-place prediction[END_REF],

Hidden Markov Models (HMMs) [Cho, 2016], Dynamic Bayesian Networks (DBNs) [START_REF] Etter | Where to go from here? mobility prediction from instantaneous information[END_REF], [START_REF] Patterson | Inferring high-level behavior from low-level sensors[END_REF], etc. These models attempt to forecast the future states of human behavior by computing the state transition probabilities. Nevertheless, these methods have their disadvantages, when the number of possible states expands, the calculation load will grow exponentially.

[[START_REF] Liao | Learning and inferring transportation routines[END_REF] introduced a hierarchical Markov model which can model a the daily moments of users in urban areas. This model utilizes not only raw GPS data but also semantic information, such as different transportation modes. The author also used the Rao-Blackwellized particle filter [START_REF] Doucet | Raoblackwellised particle filtering for dynamic bayesian networks[END_REF] to improve inference efficiencies.

Bayesian Networks [Heckerman, 2008] are a kind of Probabilistic Graphical Models (PGMs). Bayesian network represents the variables and the dependencies between them by using Directed Acyclic Graph (DAG). Normally, devising a Bayesian Network requires domain knowledge from experts, which is not always easy to do. However, the aforementioned conventional machine learning models are not applicable to WiFi fingerprint-based user location prediction. Because to represent the time series state transition, due to the complex relationship between the WiFi RSSI values and the coordinates, neither Kalman filter-based approaches [START_REF] Yang | Online multi-object tracking combining optical flow and compressive tracking in markov decision process[END_REF], Bayesian networkbased model or hidden Markov model-based approaches [START_REF] Krogh | Predicting transmembrane protein topology with a hidden markov model: application to complete genomes[END_REF] are suitable for the tasks.

2.2.2/ DEEP LEARNING-BASED PREDICTION METHODS

In order to solve this problem, we can resort to deep learning techniques, for instance, Recurrent Neural Networks (RNNs) [Elman, 1990]. The RNN is a widely used deep learning model specializing in time series prediction. The unfold structure of a RNN is depicted as in Fig. 2.5. The model structure of a RNN consists of the input layer, the hidden layer and the output layer as shown in Fig. 2.5. RNNs have other two variants, the Long Short-Term Memory (LSTM) [START_REF] Gers | Learning to forget: Continual prediction with lstm[END_REF] and Gated Recurrent Units (GRUs) [START_REF] Chung | Empirical evaluation of gated recurrent neural networks on sequence modeling[END_REF]. LSTM solves the dependency problem in RNNs using a special structure. A LSTM unit has three gates, namely, an input gate, an output gate and a forget gate. These gates regulate the cell states of the LSTM. The GRU adopts a lighter structure compared to the LSTM while they has similar performance. In [START_REF] Hoang | Recurrent neural networks for accurate rssi indoor localization[END_REF],

the authors compared different types of Recurrent Neural Networks including the vanilla RNN model, the Long Short-Term Memory model, the Gated Recurrent Unit model and the bidirectional LSTM [START_REF] Graves | Bidirectional lstm networks for improved phoneme classification and recognition[END_REF] for accurate RSSI indoor localization. They also employed a weighted filter for both input and output layers to enhance the sequential modeling accuracy. WiFi fingerprints cannot directly be used to localize smartphone users, it needs to be labeled manually. The label values can be the building IDs, floor IDs or GPS coordinates.

In the literature, researchers have explored various types of machine learning techniques, both conventional machine learning and deep learning methods, on location recognition and prediction with WiFi fingerprint data. There are different kinds of research tasks related to WiFi fingerprints. Some researchers used WiFi fingerprints to identify building IDs and floor IDs, which can be regarded as classification tasks.

2.3.1/ CLASSIFICATION-BASED LOCATION RECOGNITION

For classification tasks, WiFi fingerprint data is labeled with building IDs and Floor

IDs. Many conventional machine learning algorithm can be used for this type of classification task, for example, Decision Tree (DT) [START_REF] Wu | Top 10 algorithms in data mining[END_REF], K-nearest neighbors (KNN) [Bozkurt et al., 2015], Naive Bayes (NB) [START_REF] Wu | Top 10 algorithms in data mining[END_REF], Neural Networks (NNs) [START_REF] Nowicki | Low-effort place recognition with wifi fingerprints using deep learning[END_REF], Support Vector Machine (SVM) [START_REF] Cortes | Support-vector networks[END_REF], etc.

One widely used method is called the Classification and Regression Tree (CART) [Loh, 2011]. It is a kind of decision tree model, which can be used for both classification and regression tasks. CART is prone to be overfitting in practice. Therefore, in order to improve the performance, the CART method can be used as the basic estimators for the bagging method [Breiman, 1996] or the boosting method [Zhou, 2012].

For instance, Random Forest (RF) is a frequently used ensemble method called bagging [Breiman, 1996]. To overcome the overfitting problem, Random Forests utilize the bootstrap aggregating technique to decrease the variance of each decision tree.

Support Vector Machine (SVM) [START_REF] Cortes | Support-vector networks[END_REF] is another popular method. SVM is a kernel method which can be applied for both classification and regression. In a classification problem, SVM aims to find the optimal hyperplane to separate data.

In the work of [Bozkurt et al., 2015], the authors compared many traditional machine learning methods, for classifying buildings, floors and regions. In [START_REF] Cramariuc | Clustering benefits in mobile-centric wifi positioning in multi-floor buildings[END_REF],

the authors clustered the 3D coordinates data by K-means and clustered the RSSI data by the affinity clustering algorithm, respectively.

Since WiFi fingerprint data are usually high dimensional, some deep learning techniques can be utilized for dimension reduction. Dimension reduction is to transform data from a high dimensional space to a rather low dimensional space while the information in the data retains. Because using high dimensional data to train models directly may be too computationally expensive and easy to be overfitting.

In [START_REF] Nowicki | Low-effort place recognition with wifi fingerprints using deep learning[END_REF], [START_REF] Kim | A scalable deep neural network architecture for multi-building and multi-floor indoor localization based on wi-fi fingerprinting[END_REF], the authors used auto-encoders to reduce the input dimension before using a Multi-Layer Perceptron (MLP) to classify buildings and floors.

One essential issue of using WiFi fingerprint data is to deal with the high dimensionality issue. Therefore, in some tasks, training a model to predicting the targets through using the learnt low latent representation is more accurate than using the original input data. In order to reduce the dimension, some deep learningbased dimension-reduction methods like Autoencoders (AEs) can be an appropriate choice [START_REF] Nowicki | Low-effort place recognition with wifi fingerprints using deep learning[END_REF], [START_REF] Song | A novel convolutional neural network based indoor localization framework with wifi fingerprinting[END_REF], [START_REF] Kim | A scalable deep neural network architecture for multi-building and multi-floor indoor localization based on wi-fi fingerprinting[END_REF]. Autoencoders (AEs) [START_REF] Hinton | Reducing the dimensionality of data with neural networks[END_REF]

2.3.2/ ACCURATE LOCATION RECOGNITION

However, treating user the location recognition problem as classification tasks is only able to localize users at the accuracy level of buildings or floors. In some cases, we need to know the exact coordinates of users to proceed some tasks, for example, indoor navigation. In this case, we ought to frame location recognition as a regression problem.

It means that we use WiFi RSSI vectors as the learning input and use the actual user location coordinates as learning targets of the proposed models.

Conventional machine learning models such as, Decision Tree, K-nearest neighbors and Random Forests can be used for such regression tasks. Specially, in [START_REF] Torres-Sospedra | Comprehensive analysis of distance and similarity measures for wi-fi fingerprinting indoor positioning systems[END_REF], the researchers compared 51 different distance metrics to investigate the most suitable distance functions for accurate WiFi-based indoor localization. Some researchers used Gaussian Processes (GPs) to model the relations between the WiFi signal strengths and the corresponding indoor locations [START_REF] Ferris | Wifi-slam using gaussian process latent variable models[END_REF], [H ähnel et al., 2006], [START_REF] Yiu | Gaussian process assisted fingerprinting localization[END_REF]. The Gaussian process is a type of stochastic process. The GP uses the kernel methods to measure the similarity between datapoints and to predict new values. The main drawback of the GP is that it is highly computationally expensive thus it is not suitable for datasets with large scales.

Besides, the aforementioned conventional machine learning models, we can also adopt advanced deep learning methods to slove the WiFi fingerprint-based location recognition problems. For accurate positioning, namely, interpreting WiFi RSSI values into actual numerical coordinates, the main issue of using conventional neural networks is overfitting.

For a traditional neural network, once it is trained, it can be regarded as a deterministic model (even the training process is stochastic). The neural network can be described as follow:

y = F (x; w) (2.2)
where x and y are the input and output of the NN, respectively, F represents the neural network structure and w are the weights of the NN.

Accordingly, the training loss (for instance, typically, mean squared errors) of NNs can be described as follow:

Loss = 1 N N n=1 (ŷn -y n) 2 (2.3)
where N is the total number of the input, ŷ is the model target and n is the mini batch size.

In the research of [START_REF] Song | A novel convolutional neural network based indoor localization framework with wifi fingerprinting[END_REF], the authors used an auto-encoder network to reduce the data dimension, then used a CNN to proceed accurate user positioning. Deep learning methods, such as Convolutional Neural Networks (CNNs) [START_REF] Lecun | Gradient-based learning applied to document recognition[END_REF]],

Autoencoders (AEs) [START_REF] Hinton | Reducing the dimensionality of data with neural networks[END_REF] and Recurrent Neural Networks (RNNs) also have been utilized in WiFi fingerprint data-based positioning tasks. For instance, [START_REF] Ibrahim | Cnn based indoor localization using rss time-series[END_REF] In many situations, a NN model is powerful enough to obtain satisfying results. However, in some cases, for instance, to solve a high non-Gaussian inverse problem (which means that a input value may correspond to multiple possible output values), using a traditional deterministic neural networks will lead to very poor modeling results [Bishop, 2006]. A good solution to this issue is to seek for a probabilistic framework that can calculate conditional probability distributions between input and output.

A class of probabilistic methods is called Maximum Likelihood Estimation (MLE), which uses likelihood as the optimization objective. The MLE methods are flexible but prone to be overfitting, especially when it comes to the cases in which the data are sparse or noisy.

p(θ|D) ∝ p(D|θ) (2.4) where D is the dataset and θ is the model parameters. p(θ|D) is the posterior and p(D|θ)

is the likelihood.

Mixture Density Networks (MDNs) are deep learning models using the Maximum Likelihood Estimation method [Bishop, Christopher M, 1994]. In a MDN, the final output is sampled by a mixture distribution rather than computed directly as opposed to conventional neural networks. One advantage of MDNs is that they can be applied to an estimation situation in which a large variety lies. For instance, we can incorporate more mixture modles of Gaussians to a MDN to enhance its estimating capacity for more complex distributions. However, as a MLE approach, MDNs also have obvious disadvantages. First, it needs to set some hyper-parameters properly (i.g., the mixture number of for a MDN), otherwise, it may not provide the desirable results due the underfitting or overfitting issue. Moreover, MLE methods may be severely biased when the training sample number are small, thus MDNs are not suitable for some tasks, for instance, the supervised step in semi-supervised learning. In practice, we find that MDNs suffer from computational instability when the mixture number at the output layer is large as well. In contrast with MLE methods, Maximum A Posteriori (MAP) methods consider not only the likelihood but also the prior of model parameters. MAP methods can be described as follow:

p(θ|D) ∝ p(D|θ)q(θ) (2.5)
where, p(θ|D) is the prior of the model parameters q(θ).

Compared to MLE, MAP is less easily to be overfitting and more robust to noise because it takes the prior of model parameters in count. MAP models can be solved by Variational Inference (VI) [Blei et al., 2017], [START_REF] Zhang | Advances in variational inference[END_REF] or Markov chain Monte Carlo (MCMC) [START_REF] Gilks | Markov chain Monte Carlo in practice[END_REF].

Based on the idea of MAP, to alleviate the disadvantages of MDNs, Bayesian Neural Networks (BNNs), which apply Bayesian inference, have been introduced in jectories (this data is from the MDC dataset [START_REF] Kiukkonen | Towards rich mobile phone datasets: Lausanne data collection campaign[END_REF], [START_REF] Laurila | The mobile data challenge: Big data for mobile computing research[END_REF],

the detailed data description will be presented in the later section).

We hypothesize that the daily mobility of a user is rather regular and there are common mobility patterns shared among different daily trajectories. Generally, one may follow the regular daily itineraries, for instance, home → work place/school → home. Yet, on different days, the daily itineraries may not be the same. For instance, on the way to home, one may take a detour to do shopping in a supermarket. Hence, the objective of our research is to discover all the potential daily mobility from the data with the location information.

Figure 3.2: One randomly selected daily trajectory from a user.

We extract each day's trajectory from the whole dataset as shown in Fig. 3.2. It reveals that a daily trajectories recorded by GPS data is not distributed evenly in space, and is even not continuous in some areas. It may be caused by the data collecting procedure: some data collecting time range is actually relatively short (less than 24 hours, in fact, only few hours in some occasions), which leads to the data sparsity problem.

In order to overcome the data sparsity issue and to exploit as much information as possible from the available GPS data, we argue that a reasonable way to describe the daily trajectories is to estimate the probability density of the location data. And the relationships among the trajectories can be represented by their probability densities. As a result, we can discover all the mobility patterns for each user.

The tasks in this chapter are summarized as follows:

• Task 1: Estimating the probability density of each day. We will compare the results of the Gaussian Mixture Model (GMM) and the Dirichlet Process Gaussian Mixture Model (DPGMM) [Rasmussen, 2000];

• Task 2: Measuring the closeness between different trajectories. We will use the KL divergences as the metrics;

• Task 3: Discovering the similar mobility patterns among all the recorded daily trajectories. This can be regarded as a clustering problem;

• Task 4: Comparing the DPGMM-based algorithm with the GMM-based algorithms;

• Task 5: Identifying the minimum data length for discovering all the mobility patterns.

3.2/ METHOD

From Fig. 3.1 and Fig. 3.2, we can see that the GPS location data points are randomly spatially distributed. Besides, the distribution of each day consists of unknown number of heterogeneous sub-distributions. Therefore, it is reasonable to adopt the mixed Gaussian models to estimate the probability densities of daily mobility. The proposed clustering algorithm is summarized as follows:

• First, we estimate the probability densities of the trajectories via the Dirichlet Process Gaussian Mixture Models [Rasmussen, 2000];

• Second, we use the Kullback-Leibler (KL) divergence (computed via Monte Carlo sampling) as the distance metrics;

• Finally, we propose an automatic clustering algorithm based on DPGMM and KL divergence.

3.2.1/ PROBABILITY ESTIMATION

Since the daily trajectories are composed of different geo-locations, such as roads, homes, schools and offices, we need to use different sub-models to represent these geo-locations. One feasible way is to combine a set of sub-models.

3.2.1.1/ GAUSSIAN MIXTURE MODELS

Gaussian Mixture Models (GMMs) are composed of a fixed number K of sub-components.

The probability distribution of a GMM can be described as follow:

p(x) = K k=1 π k p(x|θ k) (3.1)
where x is the observable variable, π k is the assignment probability for each sub-model,

with K k=1 π k = 1, (0 ≤ π k ≤ 1
), θ k is the internal parameters of the base distribution.

Let z n be the latent variables to indicate the category assignment of the sub-models, then

z n ∼ Categorical(z n |π) K k=1 z nk = 1 (3.2)
where z n = {z n1 , z n2 , ..., z nk , ..., z nK }, in which only one element z nk = 1; it means that x n is related to θ k .

If the base distribution is a Gaussian, then

P(x|θ k) = N(x|µ k , Λ -1 k) (3.3)
where µ k is the mean vector and Λ k is the precision matrix.

Therefore, an observable sample x n can be drawn from a GMM according to

x n ∼ K k=1 N(x n |ν k , Λ k) z nk (3.4)
As it is illustrated above, one crucial issue of GMM is to pre-define the number of components K. This is a tricky problem because the probability distribution for each day's mobility is not identical and we do not have such prior knowledge in practice. Hence, using the GMM models with fixed K is not suitable in our case.

3.2.1.2/ DIRICHLET PROCESS GAUSSIAN MIXTURE MODEL

Alternatively, we resort to the Dirichlet Process Gaussian Mixture Model (DPGMM) [Rasmussen, 2000] (which is also called the Infinite Gaussian Mixture

G ∼ DP(α, G 0) (3.5)
G is a random measure, which consists of infinite base measure G 0 and λ is the hyperparameter of G 0 (in our case, this is a set of Gaussian distributions), α ∼ Gamma(1, 1) is the concentration parameter, N is the total sample number, θ k is the parameters of base distribution, x k is the observable data for θ k , z k is the latent variables that indicates the category of x k .

G can also be explicitly depicted as follow:

G(θ) = ∞ k=1 π k δ θ k (3.6)
where θ k ∼ G 0 (λ), δ is the Dirac function, π k determines the proportion weights of the clusters and the δ θ k is the prior of the θ k to determine the location of clusters in space.

The Dirichlet Process can be implemented via two approaches, one is called the Chinese Restaurant Process (CRP) [Aldous, 1985] and the other is called the Stick-Breaking Process (SBP) [Sethuraman, 1994]. In practice, the Chinese Restaurant Process is more compatible with Markov chain Monte Carlo sampling method while the Stick-Breaking

Process is more compatible with Variational Inference. More importantly, in terms of computational efficiency, Variational Inference is much faster than Markov chain Monte Carlo sampling.

Since our dataset is of large scale, we adopt the Stick-Breaking Process to implement the Dirichlet Process as the prior for π k . The Stick-Breaking Process can be described as follow:

π k = β k k-1 j=1 (1 -β j) k ≥ 2 (3.7)
where β k ∼ Beta(1, α). to create a new sub-model, we can break the remain of the "stick" and this process can be proceeded infinitely. As a result, we can obtain the infinite sub-mixture models.

Since P(x|θ) is Gaussian, θ = {µ, Λ}. µ is the mean and Λ is the variance. Further, let G 0 be a Gaussian-Wishart distribution [Rasmussen, 2000], then, µ k , Λ k ∼ G 0 (µ, Λ). Therefore, similarly, we can draw an observable sample x n from DPGMM:

x n ∼ ∞ k=1 N(x n |ν k , Λ -1 k) z nk (3.8)
Variational Inference is used to solve the DPGMM models. As compared to Gibbs sampling, a type of Markov chain Monte Carlo (MCMC) method which consumes a large mount of calculating time, Variational Inference is relatively fast [Blei et al., 2006] especially when the dataset is large.

3.2.2/ COMPUTING KL DIVERGENCE

The Kullback-Leibler (KL) divergence is a metrics to evaluate the closeness between two distributions. For continuous variables, the KL divergence D KL (p||q) is the expectation of the logarithmic difference between the p and q with respect to probability p and vice versa. From Eq. (3.9) and Eq. (3.10), it can be seen that the KL divergence is nonnegative and asymmetric. Here, "asymmetric" means the distance from p to q is different from the distance from q to p unless they are identical distributions. In many occasions, the inequality of the KL divergence is notorious. However, in our method, on the contrary, we take advantage of the characteristics of inequality to reveal the similarities among different trajectories instead of using the symmetric metrics (for example, the Jensen-Shannon divergence [START_REF] Fuglede | Jensen-shannon divergence and hilbert space embedding[END_REF]).

D KL (p||q) = ∞ -∞ p(x) log p(x) q(x) dx (3.9) D KL (q||p) = ∞ -∞ q(x) log q(x) p(x) dx (3.10)
There is no closed form to compute the KL divergence by the definition of Eq. (3.9) and Eq. (3.10) for the Gaussian Mixture Models. Instead, we resort to the Monte Carlo simulation method proposed in [START_REF] Hershey | Approximating the kullback leibler divergence between gaussian mixture models[END_REF]. Then, the KL divergence D KL (p||q) can be calculated by:

D KL MC (p||q) ≈ 1 n n i=1 log p(x i) q(x i) (3.11)
where n is the sample sample for the Monte Carlo sampling.

Similarly, the KL divergence D KL (q||p) can be calculated by:

D KL MC (q||p) ≈ 1 n n i=1 log q(x i) p(x i) (3.12)
This method is to draw a rather large amount of i.i.d (independent and identically distributed) samples x i from distribution p to calculate D KL MC (p||q) according to Eq. (3.11) and

D KL MC (p||q) approximates D KL (p||q) as n → ∞.
It is the same for implementing Eq. (3.10) via Eq. (3.12). The results will be demonstrated in the later experiments. Furthermore, if we define a representative trajectory for a mobility pattern then we can identify whether a new trajectory belongs to this cluster by comparing it to the representative trajectory. To this end, we need to set a threshold with a lower bound and an upper bound for the KL divergence, then it can be used as the metrics to cluster mobility patterns.

3.2.3/ DPGMM-BASED TRAJECTORY CLUSTERING ALGORITHM

As mentioned before, our task is to find the trajectories which are mutually similar. For this reason, we treat the different mobility patterns as different clusters in which the daily trajectories are their sub-members. Even so, the trajectories within the same clusters still can not be treated as identically distributed as other conventional clustering methods because of different trajectory lengths. Hence, we need to devise an algorithm that is able to cluster the trajectories based on the distribution similarity and the aforementioned KL divergence can be applicable as the closeness metrics. Note that due to the large data scale and the number of the potential clusters, a solution with high accuracy is not acquirable in some cases. Therefore, instead of pursuing a very accurate result, our purpose is to obtain a relative accurate result in a reasonable amount of calculating time.

D KL {D KL (p||q), D KL (q||p)} KL divergences
The proposed algorithm is shown in Algorithm 1 and its variables are described in Table 3.1. The first step of the clustering algorithm is to calculate the probability densities using the Dirichlet Process Gaussian Mixture Models. At this step, we create a list, in which the members are the probability densities of each trajectory. Then, the first cluster is created with one trajectory as its first member and it also will be compared with other trajectories.

Afterwards, we select another daily trajectory in the list and calculate the KL divergences, both D KL (p||q) and D KL (q||p). The new trajectory is added to the current cluster if the minimum and maximum of the KL-divergences are smaller than the lower bound and upper bound of the thresholds respectively at the same time. If the D KL (p||q) is smaller than D KL (q||p), the new trajectory becomes the benchmark for the current cluster. An alternative way to do this is to compute the probability density of the current cluster using all the data of the discovered trajectories, however, the calculation cots will be expensive. This step will be repeated until all the trajectories belonging to the current cluster are discovered at the end of this iteration. Then, all the members of the current cluster are removed from iteration because, we assume that each trajectories can only be a member of one mobility pattern. At the start of a new iteration, a new cluster is created. The above steps will be repeated until the list of the trajectory probability densities is empty. Finally, all the mobility patterns are discovered.

It can be seen that our algorithm is designed to discover the latent mobility patterns automatically without the pre-knowledge of the numbers of the existing patterns.

3.3/ EXPERIMENTS AND RESULTS

3.3.1/ DATASET DESCRIPTION

We use the Mobile Data Challenge (MDC) dataset [START_REF] Kiukkonen | Towards rich mobile phone datasets: Lausanne data collection campaign[END_REF], [START_REF] Laurila | The mobile data challenge: Big data for mobile computing research[END_REF] to validate our method. This dataset records comprehensive smartphone usage information with fine granularity of time. The participants of the MDC dataset are up to nearly 200 and the data collection campaign lasts more than 18 months.

This abundant information thus can be used to investigate individual mobility patterns for our research.

In order to collect the individual location information, as compared to other methods, for instance, through stand-alone GPS devices, using GPS-equipped smartphones is a more practical way to have a larger group of participants without affecting their daily life.

In our study, we attempt to find the trajectories that belong to the same mobility patterns, thus we focus the spatial information of the GPS records, namely, the latitudes and longitudes and the time-stamps of the data are not considered. Meanwhile, since we consider not only the significant places but all location records, we use the unlabeled data without any semantic information.

3.3.2/ EXPERIMENTAL SETUP

In the conducted experiments, we randomly select 20 users with sufficient data. Each user's data is segmented by the time range of one day. Fig. 3.5 demonstrates the number of data collecting days for each user. It can be seen that the data collecting days for most users are more than 200. With such amount of data, we believe that it is possible to discover the mobility patterns of individuals. However, as it is illustrated in Fig. 3.6 and Fig. 3.7, the data length of each day varies from less than 4 hours to 24 hours. Most of them are less than 8 hours. Hence, we should also be aware that some data may be missing because the GPS modules were turned off or were not functioning. Consequently, it is one of the reasons that causes the data sparsity problem. In the following sections, we will prove that our method can mitigate the impact of data sparsity.

Average Total

Collecting days for all users 300.25 days 6005.0 days Collecting hours per day for all users 6.93 hours 41595.0 hours Collecting hours per day for each user 6.67 hours 2084.65 hours Table 3.2 summarizes the statistical temporal information about the GPS data for conducting the experiments. To test the performance of our method, we will conduct 5 experiments from different perspectives:

• We compare the DPGMM model with the GMM model on estimating the daily trajectories probability density;

• We use that the KL divergence to measure the closeness of different trajectories;

• We test our method on each selected user data so as to find the daily mobility patterns for each individual;

• We compare the results of the DPGMM models to a series of fixed-number component GMM models;

• We run the algorithm on the varying-length datasets so as to identify the minimum data length for discovering most mobility patterns of one individual. Fig. 3.8 and Fig. 3.9 show the density estimation results obtained by the GMM and the DPGMM, respectively. It can be seen that, compared to the GMM model, the result of the DPGMM model is more smooth. It suggests that the DPGMM is not affected by the number of components and it infers more information from the original data and it is less influenced by data sparsity. That is to say, on the same dataset, the computational results of the DPGMM have higher fidelity. Hence in our approach, we chose the DPGMM to estimate the probability density of daily mobility.

3.3.4/ TASK 2: MEASURING DAILY TRAJECTORIES SIMILARITIES

In this experiment, we use the KD divergences as the metrics to measure the closeness between different trajectories.

As shown in Fig. 3.10, Fig. 3.11, Fig. 3.12 and Fig. 3.13, we select 5 daily trajectories from the data of one random user to present the KD divergences between different trajectories.

The baseline trajectory is the Trajectory 1 and the rest of trajectories are chosen to make comparisons. According to the trajectories in the Fig. 3.10, Fig. 3.11, Fig. 3.12 and Fig. 3.13 and the corresponding results in Table 3.3, it shows that the KL divergence is able to illustrate the differences among the trajectories and can be the metrics for clustering.

3.3.5/ TASK 3: DISCOVERING DAILY MOBILITY PATTERNS

In this experiment, we will use the proposed algorithm to discover the similar mobility patterns among all the recorded daily trajectories. We also will try to find how many patterns each user has and how many trajectories each pattern has.

3.3.5.1/ DISCOVERED PATTERNS

The partial results of the data from different randomly selected users are demonstrated in Fig. 3.14. It shows that, after clustered by our proposed algorithm, the data is split into different mobility patterns.

Each cluster is composed of trajectories close to each other even if they are not distributed with the same density in the space. This proves our methodology is able to find the different mobility patterns even under the condition of noise and discontinuous trajectories.

Fig. 3.15 shows that our methodology is not only able to identify the different patterns in the daily trajectories data but is also able to find the most representative trajectories for each mobility pattern. One should notice that the number of discovered patterns depends on the Kullback-Leibler divergence thresholds we set in the proposed clustering algorithm. When the thresholds are small, it means that the condition to be in the same mobility pattern is more strict and naturally the discovered mobility patterns are more and the members of each patterns are less, and vice versa.

3.3.6/ TASK 4: COMPARISON TO OTHER MODELS

In this experiment, to compare the Dirichlet Process Gaussian Mixture Models, we use a set of Gaussian Mixture Models with different numbers of components to estimate the daily mobility probability densities in our proposed clustering algorithm. The metrics we adopt to evaluate the results is the mean log-likelihoods. Higher log-likelihoods mean more reliable results. It can be seen that, from 50-day data length to 200-day data length, the average discovered mobility pattern numbers increase as the data length grows. While, when the data length is larger than 200 days, the patterns numbers change marginally. According to the results, we can say that, generally, a 200-day GPS dataset is large enough to discover most of the mobility patterns of an individual.

3.4/ CONCLUSION

In this chapter, we present a probabilistic approach to discover human daily mobility patterns based on GPS data collected by smartphones.

In our approach, human daily mobility is considered as sets of probability distributions.

The proposed approach consists of three steps. The first step is to estimate the probability densities of the GPS daily trajectories. We argue that the Dirichlet Process Gaussian Mixture Model is more appropriate than the standard Gaussian Mixture Model on this issue. This argument is validated by the corresponding experimental results. Further, in order to find the similar trajectories, one needs to measure the closeness between the trajectories. For this task, we choose the Kullback-Leibler divergence as the distance metrics. According to the computational results from the selected trajectories, we validate that the KL divergences are able to measure the similarities among the trajectories.

Finally, we devised a novel automatic clustering algorithm combining the advantages of both DPGMM and the KL divergence so as to discover human daily mobility patterns without requiring the knowledge of the cluster numbers in advance.

For validation, we select the data of 20 random individuals from the MDC dataset to conduct a series of experiments. The results obtained show that our proposed approach can discern different mobility patterns and select the most representative trajectories for each mobility patterns from the GPS data. In addition, we also compare the DPGMM-based algorithm with a group of GMM-based algorithms with various fixed-number components, the results reveal that the DPGMM model performs better. Finally, testing our method on varying-length dataset leads to the results which suggest that a 200-day GPS is generally sufficient enough to discover most of the individual daily mobility patterns.

PREDICTING INDOOR LOCATION WITH WIFI FINGERPRINTS 4.1/ INTRODUCTION

In the previous chapter, our work has focused on studying outdoor user mobility with using the collected GPS coordinate data. In this chapter, in order to have a comprehensive understanding of human mobility, we need to investigate user mobility from both indoor and outdoor aspects. However, GPS data-based approaches are not suitable anymore for studying indoor user mobility because GPS modules do not work well when smartphone users stay indoors. Therefore, in this chapter, we choose to use WiFi fingerprint data to study user mobility.

Our goal is to interpret the smartphone user location with the corresponding WiFi fingerprints. This task can be regarded as a high dimensional time-series regression task The main contributions of our work in this chapter are summarized as follows:

• We devise a novel hybrid deep-learning model which allows us to predict the accurate position of the smartphone users based on detected WiFi fingerprints;

• We conduct the evaluation experiments to compare our method with other deeplearning methods;

• We vary the hyperparameters of the proposed model, i.e., the memory length of the RNN and the mixture number of the MDN, to seek the best performance. et al., 1998]. CNNs are powerful tools for detecting features and are widely used for tasks such as image processing, natural language processing (NLP) and sensor signal processing.

4.2.1.1/ 1D CONVOLUTIONAL NEURAL NETWORK

In particular, since the input of our model are one dimensional RSSI value vectors, we adopt the 1D Convolutional Neural Network to extract the properties of the high dimensional input. In literature, 1D CNN models are used to process one dimensional data, such as medical data and sensor signal data [START_REF] Zhao | Speech emotion recognition using deep 1d & 2d cnn lstm networks[END_REF], [START_REF] Li | Classification of ecg signals based on 1d convolution neural network[END_REF], [START_REF] Eren | A generic intelligent bearing fault diagnosis system using compact adaptive 1d cnn classifier[END_REF]. In a typical image-processing CNN, the filters are 2 dimensional (if the input are gray image) or 3 dimensional (if the input are RGB image). While in 1D

CNN, the filters are one dimensional, which can be seen as a set of sliding widows. Likewise, the output of the convolutional operations and the max pooling operations will be one dimensional as well. The model structure of one dimensional CNN is illustrated in Fig. 4.1.

4.2.2/ RECURRENT NEURAL NETWORK

To depict the state transitions in the time-series WiFi fingerprint data, we can adopt a deep learning model called Recurrent Neural Network (RNN) [Elman, 1990]. RNNs are widely used for natural language processing (NLP), computer vision and other time series prediction task. In our model, we employ the RNNS to model the complicated relationship between the input (RSSI values) and the output (user location) so as to forecast the user location. As compared to other conventional machine learning model, another advantage of using RNNs is that it is compatible with other deep learning model, such as CNNs.

In this section, we briefly review RNNs add their two variants, Long Short-Term Memory networks [START_REF] Hochreiter | Long short-term memory[END_REF] and Gated Recurrent Unit (GRU) [START_REF] Chung | Empirical evaluation of gated recurrent neural networks on sequence modeling[END_REF].

4.2.2.1/ VANILLA RNN

The state transitions of RNNs can be expressed as follow

h t = σ h (W h x t + U h h t-1 + b h) (4.1)
where x t is the input, h t is the hidden state, σ h is the activation function, W h are the weights from the input layer to the hidden layer, U h are the weights in the hidden layers and b h are the biases.

The output of a conventional RNN can be described as follow

y t = σ y (W y h t + b y) (4.2)
where y t is the output, σ y is the activation function, W y is the weight and b y is the output bias.

4.2.2.2/ LSTM

In some situations, RNNs may suffer from the long-term dependency issue during learning process [START_REF] Hochreiter | Long short-term memory[END_REF]. When we try to predict the output at the next time point, we may only need the recent input not any further previous information, in this case a vanilla RNN is capable of handling the problem. But for time-series prediction, in some cases, only the recent information is not enough to learn the tasks, we need to consider the further previous input in order to predict the output at the next time point. This case is called the long-term dependency problem.

To address this issue, researchers proposed a variant of RNNs, called Long Short-Term Memory (LSTM) networks [START_REF] Hochreiter | Long short-term memory[END_REF].The LSTM adopts a special structure which consists of three gates, namely, an input gate, an output gate and a forget gate.

These gates regulate the cell states of the LSTM to avoid the long-term dependency problem.

Let C t be the cell state. The possible value of C t is between 0 and 1. 1 means that the information is completely kept while 0 means that the information is completely discarded. The first step of LSTM is to compute the output of the forget gate which is to used to decide how much old information will be retained.

f t = σ y (W y [h t-1 , x t] + b f) (4.3)
where f t is the output vector of the forget gate, b f is the bias, [] is the concatenation operation.

The second step of the LSTM is to compute the output the input gate. An input layer with a sigmoid activation function, called the input gate layer, is used to decide how much new information will be used.

i t = σ y (W i [h t-1 , x t] + b i) (4.4)
where i t is the output vector of the input gate, W i is the weights and b i is the bias.

In this step, we update the cell state as well. We need to calculate the candidate value of the cell state, Ĉt .

Ĉt = tanh(W C [h t-1 , x t] + b C) (4.5)
where W C is the weight and b C is the bias. In order to update the cell state, we drop the old information based on the output of the forget gate and add the new information base on the output of the input gate.

C t = f t * C t-1 + i t * Ĉt (4.6)
The last step of the LSTM is to compute the output.

o t = σ(W o [h t-1 , x t] + b o) (4.7)
where o t is the activation vector of the output gate, W o is the weight and b o is the bias.

Finally, the hidden state is updated as well.

h t = o t tanh(C t) (4.8) 4.2.2.3/ GRU
More recently, the researchers proposed a variant of RNNs, Gated Recurrent Units (GRUs) [START_REF] Chung | Empirical evaluation of gated recurrent neural networks on sequence modeling[END_REF], [START_REF] Chung | Empirical evaluation of gated recurrent neural networks on sequence modeling[END_REF], which has the similar accuracy as LSTMs but less computing cost. The differences between LSTMs and GRUs are that GRUs merge the forget gate and the input gate into one update gate, and merges the cell state and the hidden state into one. By doing so, GRUs have a simpler structure than LSTMs.

The learning procedure of the GRU can be summarized as follows:

First, we update the update gate z t :

z t = σ(W z [h t-1 , x t] + b z) (4.9)
where W z is the weight and b z is the bias.

Then, compute the output r t :

r t = σ(W r [h t-1 , x t] + b r) (4.10)
where W r is the weight and b r is the bias.

Afterwards, we compute the candidate hidden state ĥt :

ĥt = tanh(W h [h t-1 , x t] + b C) (4.11)
where W h is the weight and b C is the bias.

Finally, we update the hidden state:

h t = (1 -z t) * h t-1 + i t * ĥt (4.12)
where W h is the weight and b C is the bias. [[START_REF] Greff | Lstm: A search space odyssey[END_REF] compared a number of the variants of RNNs, and the results show that some variants have better performance than LSTMs on some certain tasks. Therefore, in the latter experiments of this chapter, we will deploy these three RNN architectures in the proposed model respectively for the comparisons.

4.2.3/ MIXTURE DENSITY NETWORK

A traditional neural network with a loss function, for instance, mean squared errors (MSE), is optimized by a gradient-descent based method. Generally, such model can perform well on the problems that can be described by a deterministic function f (x), i.e., each input corresponds to an output of one specific value. However, for some stochastic problems, one input may map to more than one possible values. Generally, this kind of problems are better to be described by a conditional distribution p(y|x) than by a deterministic function y = f (x). In such cases, traditional neural networks may not work as expected.

To tackle with this type of problems, we can replace the original loss function with a conditional function. For a regression task, the Gaussian distribution can be a proper choice. Moreover, utilizing the mixed Gaussian distributions can improve the representation capacity of the model. Based on this idea, the researcher proposed Mixture Density Networks (MDNs) [Bishop, Christopher M, 1994]. In contrast with traditional neural networks, the output of a MDN is the parameters of a set of mixed distributions and the loss function becomes the conditional probabilities.

For the target with continuous values (in our case, it is the user coordinates), we can employ a set of Gaussian distributions at the output layer to sample it. Therefore, the optimization process is to minimize the negative log-probability. Hence, the relationship between the input and the output can be described as follow:

p(y|x) = K k=1 π k p(y|x; θ k) (4.13)
where x is the input, K is the total mixture number, π k is the assignment probability for each model, with K k=1 π k = 1, (0 ≤ π k ≤ 1), and θ k are the internal parameters of the base distribution. For Gaussian distributions, θ k = {µ k , σ k }, µ k are the means and σ k are the variances.

Accordingly, in the proposed model, the original output layer of the RNN, Eq. (4.2), is rewritten as:

θ t = σ θ (W θ h t + b θ) (4.14)
where θ t is the output of the RNN sub-model and also the input of the MDN sub-model, σ θ is the activation function, W θ are the weights and b θ are the biases.

After the training process, we can use the neural network along with the mixed Gaussian distributions to represent the target distributions. while i < batch num do 3:

h 0 ← Conv1d(x t) convolutional operation 4:
h 1 ← max pool h 0 5: The uniqueness of our method is that, compared with other existing models in literature, our model adopts a sequential density estimation approach. Thus, the learning target of the proposed method becomes a conditional distribution of the data rather than a common regressor. Thanks to this, our model can solve the complicated sequential modeling task in this work.

f t ← flatten h 1 6: h t ← σ h (W h * f t + U h * y t-1 + b h) update hidden

4.2.5/ OPTIMIZERS

Deep learning models are usually optimized by gradient descent optimization methods [Ruder, 2016].

Here we compare two most widely used optimizers, Adam [START_REF] Kingma | Adam: A method for stochastic optimization[END_REF] and RMSProp [START_REF] Tieleman | Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude[END_REF].

4.2.5.1/ ADAM

Adaptive Moment Estimation (Adam) is a optimization method with adaptive learning rate.

Adam can be described as follows:

m t = β 1 m t-1 + (1 -β 1)g t (4.15)
where g t is the gradient and β 1 is the moving the averaging parameter, m t is the estimation of the mean of the gradients.

ν t = β 2 ν t-1 + (1 -β 2)g 2 t (4.16)
where β 2 is the moving the averaging parameter, ν t is the estimation of the variance of the gradients.

The bias of the m t is alleviated by

mt = m t 1 -β t 1 (4.17)
The bias of the ν t is alleviated by

νt = ν t 1 -β t 2 (4.18)
Finally, the parameters θ are updated by

θ t+1 = θ t - η √ νt + mt (4.19)
where η is the learning rate.

4.2.5.2/ RMSPROP

RMSProp keeps the moving average of the squared gradients for each weight and it divides the gradient of the root mean square (RMS). RMSProp can be described as follows:

E[g 2] t = β E[g 2] t-1 + (1 -β) δC δw 2 (4.20)
where E[g 2] is the moving average of the square gradient, β is the moving average parameter, usually set to be 0.9, δC δw is the gradient the loss function with respect to the weight.

w t = w t-1 - η E[g 2] t δC δw (4.21)
where η is the learning rate.

In the experimental parts, we will adopt both Adam and RMSProp as the optimizers in order to see which performs better on the learning tasks.

4.3.2/ MODEL IMPLEMENTATION DETAILS

The implementation details of our model are illustrated in Table 4.1. The CNN subnetwork consists of three layers, a convolutional layer, a max pooling layer and a flatten layer. The RNN sub-network includes a hidden layer with 200 neurons. The MDN subnetwork has a hidden layer and output layer. The mixed Gaussians number of the MDN output layer is 30, and each mixture has 5 parameters, namely, two dimensional means, diagonal variances and corresponding weights. For the optimizer, we choose RMSProp. In [Martin [START_REF] Arjovsky | [END_REF], it reports that RMSProp [START_REF] Tieleman | Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude[END_REF] may have better performance on very non-stationary tasks than the Adam optimizer [START_REF] Kingma | Adam: A method for stochastic optimization[END_REF]. To verify this, we train our algorithm with RMSProp and Adam, respectively. As it is shown in Fig. 4.6, the proposed model can converge to a lower negative log-likelihood via RMSProp than Adam. Thus, we choose RMSProp as the optimizer for our model. Fig. 4.9 demonstrates different results of using different memory lengths at the output layer of the MDN. We can see that when the memory length is shorter, the result is better, thus we set the memory length of our model to be 5.

4.3.3/ CHOICE OF HYPERMETERS

4.3.4/ COMPARISONS WITH OTHER METHODS

In order to evaluate the effectiveness of our method, we conducted several experiments to thoroughly compare our CMDRNN model to other deep learning approaches. K-NN, DT and RF are used as the baseline models [START_REF] Rojo | Machine learning applied to wi-fi fingerprinting: The experiences of the ubiqum challenge[END_REF]. The purposes of experiments are indicated as follows:

• Comparing different optimizers: Adam v.s. RMSProp;

• Comparing different feature detectors: RNN, RNN+MDN, AE + RNN + MDN, CM-DRNN;

• Comparing different regressors: RNN, CNN+RNN and CMDRNN;

• Comparing RNN variants: CMDRNN, CMDLSTM and CMDGRU. The overall results are demonstrated in Table 4.2.

Since the input is high dimensional, the sagacious way to deal with this is to incorporate a sub-network into the model for dimension reduction or feature detection. Many previous research adopted auto-encoders to reduce dimension, while we argue that the more appropriate choice for the task in our work is using a one-dimensional CNN. In order to prove that, we test three different models, one without a feature-detecting structure, one using an Autoencoder and one using 1D CNN (the proposed model). The auto-encoder model with structure {hidden neurons: 256; hidden neurons: 128; code size: 64; hidden neurons: 128; hidden neurons: 256}.

In the experiments, we used three baseline models, k-NN, Decision Tree and Random Forests (which are not sequential models). We run the algorithms multiple times with random initialisation. From Table 4.2, we can see that, compared to the baseline models, our proposed models (which are sequential models) have comparable performances, especially for CMDGRU.

In addition, for sequential predicting models, as the results illustrated Fig.

4.4/ CONCLUSION

In this chapter, we attempt to tackle with the WiFi fingerprint-based user positioning problem. In contrast with existing approaches, our solution is a hybrid deep learning model.

The proposed model is composed of three deep neural network, a CNN, a RNN and a MDN. This unique deep architecture combines all the strengths of three deep learning models, which enables us to recognize and predict user location with high accuracy.

Finally, we tested our model on the real-world dataset and found the optimal hyperparameters for the CMDRNN models. The obtained results verifies the effectiveness of our In this chapter, our research goal is to calculate more accurate user location via the relevant WiFi fingerprints. That is to say, we use the WiFi RSSI value data as the input and the actual user location (latitudes and longitudes) as the output. This problem can be regarded as a high dimensional regression problem without considering the temporal order of the data.

However, in order to achieve this goal, there are some difficulties, such as the signalfading and multi-path effects, as we mentioned in the previous chapter. Therefore, if we use a Conventional Neural Network model to solve this problem directly, the existence of the noisy information within the input data is detrimental to the modeling accuracy. This prevents us from computing the user location more precisely.

Hence, we need to utilize a specific method to extract the task-related information from the input. Previous deep learning methods, such as Autoencoders and Convolutional Neural

Networks [START_REF] Nowicki | Low-effort place recognition with wifi fingerprints using deep learning[END_REF], [START_REF] Ibrahim | Cnn based indoor localization using rss time-series[END_REF] are not powerful enough to accom-plish this task. To circumvent this problem, we suggest that learning a representation of the input via unsupervised learning first can extract the useful task-related information effectively. Based on this idea, we propose a novel semi-supervised deep learning method for accurate indoor user location recognition.

The main contributions in this chapter are summarized as follows:

• We propose a Variational Autoencoder-based semi-supervised learning model;

• We conduct a series of experiments with different amounts of labeled data to evaluate the proposed model;

• We compare our model with other existing machine learning and deep learning models.

5.2/ METHOD

To accomplish the task, we presume that the input (WiFi fingerprints) and the output (GPS coordinates) are related to the same underlying variable related to the physical user location. Additionally, according to the Bayesian Central Limit Theorem, the posterior probability distribution is approximately a normal distribution under certain circumstances.

Based on this, we can leverage a Deep Latent Generative Model (DLGM) to learn the latent distribution with the input data in an unsupervised manner. In fact, we find that a

Variational Autoencoder (VAE) model [START_REF] Kingma | Auto-encoding variational bayes[END_REF]] can be a very good choice for this task.

Once we have the learned latent distribution of the input, we utilize it as the input to feed a predictor model. The predictor can simply be a regression neural network. This learning procedure is supervised. Combining the unsupervised learning and supervised procedures, we now devise a semi-supervised learning method. The advantage of using a semi-supervised learning model is that we can make use of not only the labeled data but also the unlabeled data to improve the location recognition accuracy. This learning scheme can be very useful when we have a relatively large amount of unlabeled data but a relatively small amount of labeled data, which occurs in many real-world cases.

5.2.1/ MODEL SETUP

From a probabilistic perspective, in order to let the proposed semi-supervised learning method work, we need to make following assumptions first:

• Assumption 1: There a statistic t(x) solely of x that is enough to be the sufficient statistic for z, i.e., t(x) captures all the necessary information for calculating the parameters in the distribution of z.

• Assumption 2: There exists a statistic t(z) solely of z that is enough to be the sufficient statistic for y, i.e, t(z) captures all the necessary information for calculating the parameters in the distribution of y.

• Assumption 3: We assume the marginal distribution q(z) is a normal distribution (because Bayesian Central Limit Theorem says that under certain circumstances, the posterior probability distribution is approximately a normal distribution).

Assumption 1 describes the relationship between the input x and the latent variable z and explain why we can infer the distribution of the latent variable z with the input x. This is the theoretical fundamental for the unsupervised learning process in our model. Similarly, the second assumption indicates why we can use the latent variable z to calculate the target y. This is the theoretical fundamental for the supervised learning process in our model.

To understand our assumptions better, here we use a example to briefly explain what a sufficient statistics is. For a Gaussian distribution with known variance and unknown mean µ, if we want to estimate µ, we can use the sample mean as the estimate of this mean. Then the sample mean is the a sufficient statistics of µ.

In addition, it is a practical reason for doing so. Since in many real-world cases, the available datasets have more information about the input x and less information about the target y, therefore it is more reliable to infer the latent distribution of z, q(z), via p(z|x) rather than via p(z|y).

According to the chain rule and with the assumptions we made, then the generative From the perspective of Monte Carlo sampling, in Eq. (5.1), p(x) can be approximated by drawing the input samples from the dataset D, p(z|x) can be a neural network-based encoder. Accordingly, the predictor model can be described as:

y ∼ p(y|z, x) (5.2)
Eq. (5.2) can be learned by a multi-layer perceptron (MLP), which can be either deterministic or a probabilistic in practice.

To construct the proposed model, we can implement Eq. (5.1) and Eq. (5.2) through combining an unsupervised learning process and a supervised learning process. Hence, our method consists of two learning steps:

• The first step (unsupervised learning): we employ a deep generative model, e.g., a

VAE model, to learn the latent distribution p(z|x);

• The second step (supervised learning): we employ a MLP predictor and use the learnt latent variable to learn the target y.

5.2.2/ UNSUPERVISED LEARNING PROCEDURE

For the unsupervised learning, we adopt a Variational Autoencoder as the generative model used to learn the latent distribution. Variational Autoencoders (VAEs) [Doersch, 2016], [Kingma et al., 2014b] are deep latent generative models which adopt Variational Inference. Different to conventional autoencoders or other generative models, the latent representations of VAEs are continuous probabilistic distributions, which can be used to represent the real user coordinates.

In this part, we introduce the background of VAEs briefly. VAEs are similar to conventional Autoencoder (AEs) in a sense, it also is a unsupervised learning model which consists of a encoder neural network and an decoder neural network. The difference between AEs

METHOD

and VAEs is that the latent codes of the AE are deterministic, thus the AE usually can be used to reduce the input dimension but not to generate new data samples.

In contrast, the latent codes of VAEs are stochastic thus VAEs can be used to generate new data samples. Additionally, more complex posteriors of VAEs can be constructed by a kind of methods called Normalizing Flows (NFs) [START_REF] Rezende | Variational inference with normalizing flows[END_REF], through bijective mappings, two simple flows, the planar flow and radial flow. Or to compute even more complicated flows, we can resort to the autoregressive flow methods, such as, the Masked Autoregressive Flows (MAFs) [START_REF] Papamakarios | Masked autoregressive flow for density estimation[END_REF] and Inverse Autoregressive Flows (IAFs) [START_REF] Kingma | Improved variational inference with inverse autoregressive flow[END_REF].

5.2.2.1/ EVIDENCE LOWER BOUND OF VAES

VAEs are originally proposed to sample new data samples. But direct computing the evidence of data, p(x), is difficult, we need to adopt Variational Inference to approximate it. To this end, we need to derive of the evidence lower bound (ELBO). The derivation is as follows:

log p(x) = E q(z|x) [log p(x)]
= E q(z|x) log p(x, z) p(z|x)

= E q(z|x) log p(x, z)q(z|x) q(z|x)p(z|x)

= E q(z|x) log p(x, z) q(z|x) + E q(z|x) log q(z|x) p(z|x)

= E q(z|x) log p(x, z) q(z|x) + D KL q(z|x)||p(z|x) (5.3)
Since the Kullback-Leibler divergence D KL q(z|x)||p(z|x) ≥ 0, then we have log p(x) ≥ E q(z|x) log p(x, z) q(z|x)

= E q(z|x) log p(x|z)q(z) p(z|x)

= E q(z|x) log p(x|z) + E p(z|x) log q(z) q(z|x)

= E q(z|x) log p(x|z) -D KL q(z|x)||q(z) (5.4) 80CHAPTER 5. RECOGNIZING INDOOR LOCATION VIA SEMI-SUPERVISED LEARNING where q(z) is the prior of the latent variable z, which can be regarded as a standard Gaussian distribution z ∼ N(0, I) (5.5)

Now we have the evidence lower bound as the optimization objective for VAEs.

5.2.2.2/ LEARNING METHOD OF VAES

In order to build a VAE model, we can use an encoder parameterized by φ, p φ (z|x), to represent the posterior, and a decoder parameterized by θ, p θ (z|x), to represent the reconstructing likelihood. Note that Eq. (5.4) cannot be computed explicitly, but we can leverage the reparameterization trick [Kingma et al., 2014b] and Monte Carlo sampling to solve it.

According the VAE decoder used to compress the input can be described as:

z ∼ p φ (z|x) (5.6)
In order to use a neural network to learn the posterior p φ (z|x), the encoder needs to be differentiable. To this end, the posterior sample z is reparameterized by using the following equation:

z = µ z + σ z , ∼ N(0; I) (5.7)
where µ z is the mean of z, σ z is the variance of z, is the Hadamard product, is the noise.

The VAE decoder used to reconstruct the original input can be described as:

x ∼ p θ (x|z) (5.8) where x is the reconstructed input.

Since maximizing ELBO is equivalent to minimizing the loss function of the VAE, then accordingly, the loss function of the VAE yields:

L(x, θ, φ) = E z∼p φ (z|x) -log(p θ (x|z)) + D KL p φ (z|x)||q(z) (5.9)
Once L(θ, φ, D) is minimized, we can have the approximate posterior p φ (z|x) for sampling the latent variable z. Note that in the unsupervised learning process, we can use all the input data whether it is labeled or not to train the VAE model. In this way, we take advantage of the available data maximally.

5.2.3/ SUPERVISED LEARNING PROCEDURE

After the unsupervised learning procedure, we can compute the latent distribution of z via the encoder. In the following step, we utilize the WiFi RSSI data as the input x and the user coordinates as the target y to proceed the supervised learning procedure. To this end, we devise two predicting models, one is a deterministic model and the other is a stochastic model.

5.2.3.1/ DETERMINISTIC PREDICTOR (M1 MODEL)

In the first model, we build a deterministic predictor which consists of two steps:

Step 1: to obtain the mean of the Gaussian distribution of latent variables.

µ z = F µ (x; φ) (5.10)
where F µ (x; φ) can be regarded as the encoder of the VAE.

Step 2: to obtain the final prediction based on the output of Step 1. y = F y (µ z ; w) (5.11) where F y (µ; w) is a deterministic multi-layer perceptron model. Consequently, the loss function is 5.12) where ŷn is the labeled target.

L(D; w) = 1 N N n=1 (ŷ n -y n) 2 (
Compared to using the original data as the input to compute the target directly, using the learnt latent distribution as the input of the predictor can reduce the noisy information of the original input. As a result, our model can alleviate the overfitting problem. The loss x a ← p(x|z; θ)

x a : reconstructed input 5:

minimize loss function L(θ, φ, D) Eq. (5.9) Alternatively, in contrast with the M1 model, we can also devise a stochastic predictor, the M2 model whose loss function is the negative likelihood as opposed to the M1 model. To this end, based on Eq. (5.1), we factorize the joint distribution:

p(y, z, x; w, φ) = p w (y|z, x)p φ (z|x)p(x) (5.13) where p φ (z|x) is the encoder network parameterized by φ, and p w (y|z, x) the predictor network parameterized by w, p(x) can be approximated via empirically drawing the samples from the dataset.

Based on Eq. (5.13), we can formulate a probabilistic prediction model. However, since Eq. (5.13) cannot be computed explicitly, we can use Monte Carlo method to solve to it by drawing the samples of z and y. To this end, first, we draw the latent variables z from the VAE encoder according to Eq. (5.6). Then, we draw the predicted values y by using the conditional probability:

y ∼ p w (y|z, x) (5.14)
Hence based on Eq. (5.9) and Eq. (5.13), the total loss function of the M2 model can be written as:

L(D; θ, φ, w) = E z∼p φ (z|x) -log p w (y|z, x) + E z∼p φ (z|x) -log p θ (x|z) + D KL p φ (z|x)||q(z)
(5.15)

In Eq. (5.15), the first term represents the predictor, the second term represents the decoder and the last term represents the encoder. The second term and the last term can be optimized by the unsupervised procedure at the first step.

Since φ and θ are trained, according to Eq. (5.15), here we only need to optimize p w (y|z, x)

at the second step. Thus, the loss function for training the predictor becomes:

L(D; w) = E z∼p θ (z|x)log p w (y|z, x) (5.16) In practice, we can use Monte Carlo sampling to solve the above loss:

L(D; w) ≈ - 1 N N n=1
log p w (y|z, x) (5.17) where N is the mini batch size.

Furthermore, in contrast with the deterministic M1 model, in order to build a stochastic predictor, we assume that the likelihood function p w (y|z) is a Gaussian distribution with noise σ y which can be seen as a hyper-parameter. For predicting, we draw multiple samples via the predictor and use their mean value as the final output. x a ← p θ (x|z)

x a : reconstructed input 5:

minimize loss function L(θ, φ, D) Eq. (5.9) 6: end while minimize loss function L(D; w) Eq. (5.17) 12: end while 13: return y For pre-processing the data, we set the undetected values into 0 and remove the duplicate instances. The original target data are longitudes and latitudes with very large values.

They are scaled for the experiments, thus the predicting results in Table 5.2 do not have units. We run the algorithms multiple times with random initialisation.

5.3.2/ MODEL IMPLEMENTATION DETAILS

The VAE-based model consists of three sub-networks, the encoder, the decoder and the predictor. The implementation details of the VAE-based semi-supervised learning model are demonstrated in For the experimental set up, we use different portions of the labeled data, ranging from in [START_REF] Rojo | Machine learning applied to wi-fi fingerprinting: The experiences of the ubiqum challenge[END_REF]. Moreover, M1 and M2 can provide satisfying results even when the labeled data are scarce. The predicting accuracy is improved when the labeled data increases.

In contrast with other methods, the proposed models have better performance. Through the experiments, we also find that the proposed models, compared to other methods, besides the modeling accuracies, have the following advantages:

• Compared to the GP model, the proposed models are less computationally expensive;

• Compared to the MDN models, the proposed models are more computationally stable.

5.4/ CONCLUSION

In this chapter, we propose a VAE-based semi-supervised model for accurate indoor position recognition. In the unsupervised learning procedure, we use a Variational Autoencoder to learn a latent distribution with all the unlabeled data. For the supervised learning procedure, we design two predictors, one is deterministic and the other is stochastic. We utilize the latent distribution as the input to feed the predictor neural network so as to learn the final output. The advantage of doing so is that using the latent variables instead of using the original input can alleviate the overfitting problem.

For evaluating the proposed models, we choose a real-world dataset and conduct a series of the experiments with different amounts of labeled data to compare our model with other methods. The results show that the modeling accuracy is improved as the labeled portion increases. Meanwhile, the final results show that our method outperforms other existing methods as well. In the previous chapter, we propose to calculate the accurate user location by using the related WiFi fingerprints via the semi-supervised VAE model and the performances are significantly improved compared to the existing methods. However, as a semi-supervised learning model, the training process is not straightforward. Thus, in this chapter, we aim to develop a method which can be trained via end-to-end learning and achieves better performance.

To this end, we treat this problem as a supervised regression problem, whose input is WiFi RSSI values and whose output is the actual user location (latitudes and longitudes), as in the previous chapter. The difference is that, the in this chapter, we solve this problem directly via end-to-end learning instead of using semi-supervised learning. However, we have to deal with the same issues in Chapter 5, i.e., high dimensionality and noise.

For this reason, in contrast with the existing methods, based on the Information Bottleneck (IB) method [START_REF] Tishby | The information bottleneck method[END_REF] and Variational Inference (VI), we propose a Variational Information Bottleneck (VIB)-based model [Alemi et al., 2017] in this chapter. This model consists of two sub-models, one is the encoder model used to compress the input, the other is the predictor model used to predict the target values. According to the Information Bottleneck theory, the encoder in our model is used to find a good latent representation of the input data for the related learning task so that the nuisance information in the original input will be token out. Afterwards, the predictor utilizes the learnt latent representation as its input, instead of the original input, to predict the target values. Our model is an endto-end deep learning model and scalable to large scale datasets, which makes it easy to train.

The main contributions in this chapter are summarized as follows:

• We devise a Variational Information Bottleneck model for computing accurate user location with WiFi fingerprint data;

• We vary the value of β of the proposed model to find the optimal value;

• In order to compare our method with other previous methods, we conduct a series of evaluation experiments.

6.2/ METHOD

Mathematically speaking, our goal is to map a very high dimensional source distribution, about 520, to a rather low dimensional target distribution, typically 2. However, the issue is that the dimension "gap" between the two distributions is too large, which easily results in overfitting. Therefore, a better way to accomplish our task is to find a low dimension manifold to connect the input subspace and output space.

6.2.1/ MODEL SETUP

In our model, the input is the WiFi RSSI values x, the output is the coordinates of the user, y. To make the model more robust to noise, we use a set of probabilistic distributions such as p(z|x) and p(y|z) to describe the relationship between the variables instead of deterministic functions as opposed to conventional neural networks. Furthermore, in order to build the theoretical base for our model, we need to make the following assumptions first:

• Assumption 1: There exists a latent distribution of z governing both the input x and output y and consequently we have the information Markov chain: x → z → y.

• Assumption 2: The input x is solely sufficient enough to learn z, i.e., p(z|x, y) = p(z|x).

• Assumption 3: The learnt latent representation z is solely sufficient enough to learn the output y, i.e., p(y|x, z) = p(y|z).

We make the above assumptions based on the idea that the values of both the WiFi RSSIs and GPS coordinates are related to the real physical position of the users. Hence, either the WiFi RSSI values or the GPS coordinates has the sufficient information for calculating the real user physical position (which we denote it as the latent variable z). It means that we can use x to compute p(z|x) (encoding step) and to compute p(y|z) (predicting step).

What's more, with the above assumptions, the derivations of our model will be easier.

Moreover, as it can be seen here, compared to the assumptions made in the VAE-based semi-supervised model in Chapter 5, we enhance the assumptions by adding Assumption 3, which allows us to develop a straightforward end-to-end model.

6.2.2/ MODEL

In a Maximum A Posteriori (MAP) modeling setting, the parameters of the model is related to not only the dataset but also the prior of the parameters: p(λ|D) ∝ p(D|λ)q(λ) (6.1)

where D is the dataset, λ is the model parameters, p(λ|D) is the posterior, p(D|λ) is the likelihood and q(λ) is the prior. Applying such a setting to our problem, then the prior of the latent representation z, q(z) and the posterior p(z|x) can both be represented by Gaussian distributions. In Variational Inference, p(z|x) can be calculated via deep neural networks.

In Variational Autoencoders, one assumes that there is a latent distribution of z which can be used to reconstruct the original input x. Hence the information Markov chain for VAEs is x → z → x , where x is the reconstructed input. Accordingly, the loss function can be written as follow:

L(D, w, φ) = E z∼p φ (z|x) [p w (x|z)] -D KL p φ (z|x)||q(z) (6.2)
where φ is the parameters of the encoder network, w is the parameters of the decoder network, q(z) is an uninformative prior of z, here we can use a standard Normal distribution N(0, I).

Meanwhile, according to the Information Bottleneck principle [START_REF] Tishby | The information bottleneck method[END_REF], [START_REF] Tishby | Deep learning and the information bottleneck principle[END_REF], let x be the input, y be the learning target and z be the representation, then we can have the following optimization objective: max I(Z; Y) s.t. I(X; Z) ≤ I C (6.3) where I denotes the mutual information, I c is the information constraint.

In information theory, mutual information (MI) is used to measure the dependence between two random variables. The mutual information between two variables equals 0 if and only if the two variables are independent. Fig. 6.3 demonstrates the principle of information bottleneck. As it can be seen that for a multi-layer neural network, the nuisance information, which is not related to the learning task, is less when it is closer to the target.

Since it is tricky to solve Eq. (6.3) directly, we need to apply the Karush-Kuhn-Tucker (KKT) conditions [Avriel, 2003] to Eq. (6.3), then we can cast the constrained optimization problem into an unconstrained optimization problem, as a result, we will have the following Lagrangian form of Eq. (6.3):

L IB = I(Z; Y) -βI(X; Z) (6.4)
where I(X; Z) is the upstream task used to compress the input, I(Z; Y) is the downstream task used to predict the input, β is a Lagrangian multiplier controlling the trade off between the upstream task and downstream task. Now we derive the upper bound for I(X; Z):

I(Z; X) = p(z, x) log p(z, x) p(z)p(x) dzdx = p(z, x) log p(z, x) p(z)p(x) dxdz = p(z, x) log p(z|x)q(z) p(z)q(z) dxdz = p(z, x) log p(z|x) q(z) -log p(z) q(z) dxdz = p(z|x)p(x) log p(z|x) q(z) - p(z|x)p(x) log p(z) q(z) dxdz = E x D KL p(z|x)||q(z) -D KL p(z)||q(z) ≤ E x D KL p(z|x)||q(z) (6.6)
Since our learning task is supervised, as opposed to VAEs and β-VAEs, we have this information Markov chain: X → Z → Y.

As opposed to β-VAEs [START_REF] Higgins | beta-vae: Learning basic visual concepts with a constrained variational framework[END_REF], [Burgess et al., 2018], based on Eq. (6.3) and the assumptions we have made, we know that the latent variable z can be represented by x alone (p(z|x, y) = p(z|x)) and the output y can depend on y alone (p(y|x, z) = p(y|z)). For this reason, we can replace the term p(x|z) in Eq. (6.2) with p(y|z). As a result, now the original optimization objective Eq. (6.4) can be cast into a new optimization objective:

argmax θ, φ E D [E p φ (z|x) [log p w (y|z)]] s.t. E D D KL p(z|x)||q(z) ≤ (6.7)
where D = {x, y} is the dataset, φ is the parameters of the encoder network, w is the parameters of the predictor network, is a positive constant with small value.

Based on Eq. (6.4) and Eq. (6.7), we can have the following lower bound:

I(Z; Y) -βI(Z; X) ≥ E D E z∼p(z|x) log{p(y|z)} -βD KL pp φ (z|x)||q(z) (6.8)
Our purpose is to maximize Eq. (6.8), which is equivalent to minimizing the following loss function:

L(D, θ, φ) = E D E z∼p φ (z|x) -log{p θ (y|z)} + βD KL p φ (z|x)||q(z) (6.9)
Eq. (6

6.2.2.2/ SOLVING MODEL

To solve Eq. (6.9), we need to adopt some special techniques. First, for computing the term D KL p φ (z|x)||q(z) , we can use the reparameterization trick proposed in [START_REF] Kingma | Auto-encoding variational bayes[END_REF] to make the parameters of the neural networks differentiable. In the reparameterization trick, the random distribution of z is decomposed as the combination of the standard deviation µ and the variance σ: 6.10) where µ z and σ z can be calculated via the neural networks respectively, and the random noise z can be sampled from a standard diagonal Normal distribution N(0, I).

z = µ z + σ z z (
Afterwards we need to calculate the term E z∼p φ (z|x) [p w (y|z)]. This term cannot be solved directly but we can use Monte Carlo method to compute it.

We adopt Monte Carlo sampling, and Eq. (6.9) becomes:

L(D, w, φ) = 1 N N n=1
E z ∼p(z) [p w y n | f φ (x n , z)] -βD KL p φ (z|x n)||q(z) (6.11) where N the total instance number, f φ (x) is the same deterministic neural network used in the encoder to calculate the parameters of the distribution p(z|x):

f φ (x) = µ z (x) + σ z (x) z (6.12)

Note that β is a hyperparameter used to balance the encoding term and the predicting term so that it needs to be chosen very carefully. proposed model has the best performance. Thus, we will hereafter set β to 10 -6 for the propose model in all following experiments. In addition, Fig. 6.5 demonstrates how the latent distribution is related to the building IDs and floor IDs, respectively. And it verifies the assumptions we made before, i.e., the latent variable Z governs both the input X and the output Y. 6.2. We use the root mean squared errors (RMSE) as the evaluation metrics.

From the results, we can see that the proposed model has the best modeling performance. Also in practice we find that compared to our model, the Gaussian process model suffers from heavy computation load and the MDN models are unstable during the learning process.

6.3.5/ EXPERIMENT 3

According to our previous assumptions, as an alternative approach, we can also formulate a semi-supervised learning approach, the semi-supervised VAE model proposed in Chapter 5. To compare with the semi-supervised learning approach, we run our model and other baseline models on different portions of the labeled data. As the results shown in Fig. 6.6, we can see that once the labeled data used for the supervised learning procedure is more than 10% of the total training data, our method surprisingly has the best performance among all the methods.

6.3.6/ DISCUSSION

Why the proposed method can outperform other deep learning methods? First, our problem can be regarded as a regression problem, and especially, the input (RSSI vectors) is relatively high dimensional and the target (GPS coordinates) is low dimensional. Thus, it causes the issue that the input has redundant information for the learning tasks. If we use a conventional neural network to solve this problem directly, the results will not be satisfying at all. Mixture Density Networks (MDNs) and Bayesian Neural Networks (BNNs) handle this problem by inducing uncertainty into the models. The difference is that MDNs are MLE based method while BNNs are MAP based method. Surprisingly, BNNs have worse performance than MDNs on our tasks because the uncertainty of BNNs does not depend on the input data. Variational Autoencoders (VAEs) are originally designed as generative approaches to obtain new sample data. For out problem, we can use VAEs to learn the latent representation of the input data first. Then, this model can be trivially extended to be a semi-supervised model by using the pre-learned representation to obtain the final output.

However, in our study, we find that leveraging the Information Bottleneck method to this problem is a better option than the semi-VAE model. It is because that, with the Information Bottleneck method, we can view the original task as a constrained optimization problem. The optimization objective is the learning tasks and the constraint is the data representation. That's to say the Variational Information Bottleneck model is to directly find the optimal representation for the learning tasks, computing the output, whereas the semi-supervised VAE model is to find the representation to reconstruct the original input.

6.4/ CONCLUSION

Interpreting WiFi fingerprints into real user location via neural networks is a tricky problem. In this chapter, we combined the Information Bottleneck theory with Variational Inference to propose a novel deep learning model for WiFi fingerprint-based user location recognition. The proposed model consists of two neural networks, an encoder and a predictor. According to the Information Bottleneck theory, the encoder neural network is to find an optimal representation of the data and mitigate the negative effect of the nuisance information for the learning tasks. The predictor neural network is to use the data representation to compute the final output. The main advantages of the proposed model is that it is scalable to large scale dataset, computationally stable and robust to noisy information. To evaluate our model, we run our model and other previous models on the real-world WiFi fingerprint dataset and the finally results verifies the effectiveness and show the advantages of our method compared to the existing approaches. task. This model includes an encoder neural network, a decoder neural network and a predictor neural network;

• For Task 3, we further proposed an end-to-end deep learning model, the Variational Information Bottleneck (VIB) model for recognizing indoor user location.

The total contributions in this thesis are summarised as follows:

• Contribution 1: We first extract each daily trajectory from the whole user GPS dataset. Then, we use the Dirichlet Process Gaussian mixture model to estimate the probability density of each trajectory. Afterwards, we use the Kullback-Leibler divergence to measure the similarities between different trajectories. Finally, we use the computed similarities as the metrics to devise a automatic clustering algorithm to cluster the similar GPS trajectories into the same clusters. In order to validate the proposed methods, we conducted a series of experiments on several real-world datasets. The corresponding results show the effectiveness of our methods. We also compare the proposed methods with other existing methods, including conventional machine learning and deep learning methods. The final results suggest that our methods outperform other existing methods.

There are some remain works in this work. For instance, in terms of studying outdoor user mobility, we have devised a machine learning-based methods. But deep learning methods are known for being salable for large data scale, thus one can explore other advanced deep learning methods or combine probabilistic approaches with deep learning approaches to analyze GPS coordinate data.

7.2/ PERSPECTIVES

In this section, we will shed some lights on the possible future research. These research topics include, but are not limited to using other Usage data, improving sequential prediction, exploring other deep learning methods.

Using other Usage Data. In terms of applications, apart from GPS coordinate data and WiFi fingerprint data which we already used in our research, we can also take advantage of other kinds of smartphone usage data to study human behavior, such as application usage, cell Ids, call logs and battery usage, etc. These kinds of data enable researchers to investigate some other interesting research topics, such as smartphone application recommendation, travel destination recommendation and social relationship discovery.

By doing so, we may be able to learn other types of user behavior so as to have holistic perspective of human behavior.

Improving Sequential Prediction. Our proposed methods have shown good performance in contrast with other existing methods but there are still room to improve them.

For example, in terms of predicting indoor user location, one can leverage VAE or VIB models to develop latent recurrent deep learning models. n Exploring other Deep Learning Methods. We can continue on focusing on improving probabilistic inference methods for deep learning models. There are some promising directions worthy digging into. For example, the performance of a Variational Autoencoder

Titre:

 Discovering Human Mobility from Mobile Data: Probabilistic Models and Learning Algorithms Mots-cl és : Machine Learning, Deep Learning, Probabilistic Models, Variational Inference, Mobile Data R ésum é :

 are the Dirichlet Process Gaussian Mixture Model-based algorithm for clustering GPS trajectories, the Convolutional Mixture Density Recurrent Neural Network for sequential location prediction, the Variational Autoencoder-based semi-supervised model for location recognition and the Variational Information Bottleneck-based model for location recognition. The overview of our contributions in this thesis is exhibited in Fig. 1.1.

Figure 1 . 1 :

 11 Figure 1.1: Overview of the thesis contributions.

Figure 2 .

 2 Figure 2.1: A GPS trajectory and a stay point.

Fig. 2 .

 2 Fig. 2.1 exhibits a GPS trajectory and its corresponding stay points. In this figure, p 1 ∼ p 8

Fig. 2 .

 2 Fig. 2.2 illustrates how the DBSACN algorithm works, where E ps is the neighbourhood radius.

Figure 2

 2 Figure 2.2: DBSCAN.

Figure 2 . 3 :

 23 Figure 2.3: The structure of a Bayesian Network.

Figure 2 . 4 :

 24 Figure 2.4: The structure of a Dynamic Bayesian Network.

Figure 2 . 5 :

 25 Figure 2.5: The architecture of a Recurrent Neural Network.

 are unsupervised deep learning models used to compress input data. An Autoencoder contains an encoder and a decoder as shown in Fig. 2.6. During the training process, the encoder aims to learn a low-dimension representation of the input while the decoder is to reconstruct the original input. After the training process, we can obtain the latent representation of the input. Therefore, Autoencoders are commonly used for dimension reduction.

Figure 2 . 6 :

 26 Figure 2.6: The architecture of an Autoencoder.

 Convolutional Neural Networks are a kind of deep neural networks that are widely used for images analysing, signal processing and natural language processing. The CNN includes various operations such as convolution operation, pooling operation and flatting operation. Each input channel of the CNN represents different colors of images. Convolution operation is to use a filter, which is a matrix, to detect the features of images. The size of the matrix is called the kernel size. The stride is the shift length of the kernel in the convolution operation. After convolution operation is pooling operation, which aims to reduce the dimension of the convolved features and find the dominant features. There are two types of pooling, max pooling and average pooling. The difference is that max pooling is to return the maximum values of the convolved features while average pooling is to return the average values of all convolved features. After the pooling is to use a flatten layer to connect a MLP, for example, a classifier or a regressor. The model structure of a typical CNN is illustrated in Fig.2.7.

Figure 2 .

 2 Figure 2.7: The architecture of a Convolutional Neural Network.

Figure 2 .

 2 Figure 2.8: The architecture of a Mixture Density Network.

[

 Hern ández-Lobato et al., 2015]. BNNs follow the scheme of Maximum A Posterior estimation, in which the prior knowledge of model parameters and likelihood are both considered. As a result, MAP has the regularizing effect which can prevent overfitting. Unfortunately, in practice, we find that BNNs are not flexible enough for very complex distribution like our cases, i.e., recognizing user coordinates with WiFi fingerprints.

Figure 2 .

 2 Figure 2.9: The architecture of a Bayesian Neural Network.

Figure 2 .

 2 Figure 2.10: The architecture of a Variational Autoencoder.

 In this chapter, we focus on discovering the daily mobility patterns of multiple users in a specific region. Our purpose is to discover the mobility patterns for each individual based on their GPS location data. In order to do so, we need to cluster the daily trajectories of the users.

Figure 3 .

 3 Figure 3.1: GPS data collected from a randomly selected user, different colors represent different data-collecting days.

 Model). As compared to the standard Gaussian Mixture Model, by using a Dirichlet Process (DP) prior for the mixture number, DPGMM does not need to specify the number of components in advance. Fig. 3.3 presents the graphical structure of the Dirichlet Process Gaussian Mixture Model.

Figure 3 . 3 :

 33 Figure 3.3: The plate representation of the Dirichlet Process Gaussian Mixture Model.

Figure 3 . 4 :

 34 Figure 3.4: The Stick-Breaking Process.

Fig. 3 .

 3 Fig. 3.4 demonstrates the sampling scheme of the Stick-Breaking Process. In SBP, the "stick" breaks into different sub-parts with respect to different probabilities. When we want

Figure 3 . 5 .

 35 Figure 3.5. Number of data collecting days for each user.

Figure 3 . 6 .

 36 Figure 3.6. Empirical cumulative distribution of data collecting days.

Figure 3 .

 3 Figure 3.7. Empirical cumulative distribution of hours per data collecting day.

3. 3 . 3 /

 33 TASK 1: PROBABILITY DENSITY ESTIMATION In this experiment, we compare the probability density estimation results of the GMM model and the DPGMM model.

Figure 3 .

 3 Figure 3.8. Distribution estimation by GMM (negative log-likelihood).

Figure 3 .

 3 Figure 3.9. Distribution estimation by DPGMM (negative log-likelihood).

Figure 3 .

 3 Figure 3.10. Trajectory 1 and Trajectory 2.

Figure 3 .

 3 Figure 3.11. Trajectory 1 and Trajectory 3.

From Fig. 3 .

 3 11, we can see that Trajectory 3 is very similar to Trajectory 1 and D KL (p||q) almost equals D KL (q||p). Hence, they also are the members of the same mobility pattern.

Figure 3 .

 3 Figure 3.12. Trajectory 1 and Trajectory 4.

Figure 3 .

 3 Figure 3.13. Trajectory 1 and Trajectory 5.

From Fig. 3 .

 3 13, we can see that Trajectory 5 is totally different from Trajectory 1, thus D KL (p||q) is small but D KL (p||q) are very large. So they naturally are not in the same pattern.

Figure 3 .

 3 Figure 3.14. Discovered mobility patterns of three random selected users. Different colors denote different days.

Figure 3 .Fig. 3 .

 33 Figure 3.15. Representative trajectories for each discovered mobility patterns.

Figure 3 .

 3 Figure 3.16. Number of discovered mobility patterns for each user.

3. 3 . 5 . 3 /Fig. 3 .

 3533 Fig.3.17 depicts the number of members for each discovered mobility patterns for all users. We can see that most mobility patterns consist of less than 50 trajectories. Nearly 40% of the patterns have only one trajectory, whereas few patterns have more than 100 trajectories.

Figure 3 .

 3 Figure 3.17. Empirical cumulative distribution of the members of the discovered patterns.

3. 3

 3 .7/ TASK 5: VARYING DATA LENGTHS In this experiment, in order to investigate how the data lengths, namely, the number of days of the data, affect the final results. We utilize different data lengths which varies from 50 days to 350 days. The obtained results are shown in Fig. 3.18.

Figure 3 .

 3 Figure 3.18. Average number of discovered patterns for different data collecting day length, error bars represent the standard deviations.

 . The training input of our model are the RSSI value vectors and the training targets are the corresponding coordinate values (2D). For our problem, the RSSI values of WiFi hotpots are formulated into a series of one dimensional vectors, in which each element corresponds to the RSSI value of a WiFi access point. And in the real world, a building may be equipped with a relatively large number of WiFi hotpots to provide good wireless connections, which leads to the problem of high dimensionality. Meanwhile, due to the signalfading and multi-path effects, WiFi signals are not stable[START_REF] Hoang | Recurrent neural networks for accurate rssi indoor localization[END_REF]. Therefore, a common neural network based regressor is not powerful enough to describe such complicated relationship between WiFi signals and user location. Moreover, since this task is a sequential prediction, the transition of the hidden states needs to be represented as 55 well.

 task, the input features are composed of the RSSI values of all the WiFi access points (WAPs) in the buildings, therefore the input dimension can be very high. Since the feature of WiFi fingerprint data represents the different WiFi WAP IDs. The adjacent features suggests that they are close spatially in the real world. Therefore, their RSSI values are more similar when the users are approaching compared to the WAPs that are remote to them (it will be illustrated in the WiFi data samples in the experimental part). For this reason, to deal with the high dimensionality problem, we resort to the technique of Convolutional Neural Networks [LeCun

Figure 4 .

 4 Figure 4.1. The structure of the one dimensional Convolutional Neural Network.

Fig. 4 .

 4 Fig. 4.2 depicts the structure of the LSTM.

Figure 4 . 2 .

 42 Figure 4.2. The structure of the Long-Short Term Memory network.

Figure 4 . 3 .

 43 Figure 4.3. The structure of the Gated Recurrent Unit.

Fig. 4 .

 4 Fig. 4.3 depicts the structure of the GRU network.

 dataset, we select two WiFi RSSI-Coordinate paths from the Tampere dataset[Lohan et al., 2017a]. As shown in Fig. 4.5 The input dimension of the Tampere dataset is 489. The RSSI values of the detected WAPs range from -110 dB to 0 dB and the RSSI values of undetected WAPs are set to be 100. The units of the target values are meters. For pre-processing the data, we set the undetected values to 0.

Figure 4 . 5 .

 45 Figure 4.5. WiFi fingerprint data samples.

Figure 4 . 6 .

 46 Figure 4.6. Training losses using different optimizers.

Figure 4 .

 4 Figure 4.7. Training losses using different feature detectors.

Fig. 4 .

 4 Fig. 4.7 exhibits different results of using different feature detectors.

Figure 4 .

 4 Figure 4.8. Prediction results of different mixture numbers in the MDN (bars represent the standard deviations).

Fig. 4 .

 4 Fig.4.8 exhibits different results of using different mixture numbers at the output layer of the MDN. We can see that the most appropriate number is 30.

Figure 4 .

 4 Figure 4.9. Prediction results of different memory lengths in the RNN (bars represent the standard deviations).

Fig. 4 .

 4 Fig. 4.10 and Fig. 4.11 shows the predicting results of two selected paths, respectively.

Figure 4 .

 4 Figure 4.10. Path 1 prediction results.

Figure 4 .

 4 Figure 4.11. Path 2 prediction results.

 approach and shows the superiority of our methods compared other deep learningchapter, we have studied how to use WiFi fingerprint data to predict user location at next time points. We employed a hybrid deep learning model to tackle with the problem. Although the obtained results are satisfying, we still want to improve the accuracy of the location recognition even further by exploring other advanced machine learning techniques.

78CHAPTER 5 .

 5 scheme can be formulated as follow:

82CHAPTER 5 .Algorithm 3

 53 RECOGNIZING INDOOR LOCATION VIA SEMI-SUPERVISED LEARNING function of the M1 model is the mean squared errors. The training scheme of the M1 model is summarized in Algorithm 3. Algorithm: M1 model Input: x a (all input), x l (labeled input), ŷ (labels) Output: y (predictions) 1: while unsupervised learning do 2: µ z , σ z ← E φ (x a) E φ (x a): Encoder networks 3: z ∼ N(µ z , σ z) Sample latent codes 4:

84CHAPTER 5 .

 5 RECOGNIZING INDOOR LOCATION VIA SEMI-SUPERVISED LEARNING Algorithm 4 Algorithm: M2 Model Input: x a (all input),x l (labeled input),y l (labels) Output: y (predictions) 1: while unsupervised learning do 2: µ z , σ z ← E φ (x a) E φ (x a):

Figure 5 .

 5 Figure 5.1. VAE-based semi-supervised learning model.

 Latent variables labeled with the building IDs, here shows the 2D projection. (b) Latent variables labeled with the floor IDs, here shows the 2D projection.

Figure 5 . 2 .

 52 Figure 5.2. Latent variables with dimension of 5, here shows the 2D projection.

Fig. 5 .

 5 Fig. 5.2 demonstrate the distribution of latent variable z. We can see that the latent distribution is related to the building IDs and the floor IDs.

Figure 5 . 3 .

 53 Figure 5.3. Testing results for M2 model.

6 RECOGNIZING

 6

Figure 6 .

 6 Figure 6.1. The information bottleneck.

 .9) is the final loss function of our proposed model. In contrast with VAEs and β-VAEs, which are unsupervised learning models, whereas our model is an end-to-end supervised learning model. As shown in Fig. 6.2, p φ (z|x) represents the encoder neural network and p w (y|z) represents the predictor neural network.

Figure 6 . 2 .

 62 Figure 6.2. The structure of the VIB model.

5

 5 β-VAEs, one can obtain new samples from an uninformative standard Gaussian first then use them as the input of the decoder. Whereas since our model is a supervised model, we use the samples from the conditional distribution, i.e., p(z|x), to feed the predictor network, which is the same as the training procedure.Algorithm AlgorithmInput: X (input), Y (target) Output: Y (prediction) 1: while epoch ≤ max epoch do 2: µ z , σ z ← E φ (X) E φ (X):The overall algorithm is summarized in Algorithm 5.

Figure 6 . 3 .

 63 Figure 6.3. Results with respect to different β values.

Fig. 6 .

 6 Fig. 6.4 shows the ground truth and the testing result of our model. It can be seen the proposed model can calculate the location coordinates of the users accurately using the relevant WiFi fingerprints.

Figure 6 . 4 .

 64 Figure 6.4. Experimental result of the VIB-based model.

 (a) Latent variables labeled with the building IDs, here shows the 2D projection. (b) Latent variables labeled with the floor IDs, here shows the 2D projection.

Figure 6 . 5 .

 65 Figure 6.5. Latent variables with dimension of 5, here shows the 2D projection.

3 (

 3 092 ± 2e-3 0.252 ± 3e-3 0.112 ± 3e-3 0.087 ± 3e-099 ± 3e-4 0.103 ± 3e-3 1.033 ± 4e-3 0.077 ± 4e-3 0.075 ± 6e-3 6.3.4/ EXPERIMENT 2 In order to show the advantages of our method, we run other methods proposed in the literature on the UJIindoor dataset. K-NN is used as the baseline model. The MDN-2 model refers to the Mixture Density Network (MDN) model with 2 mixed Gaussian distributions at the output layers. Similarly, the MDN-5 model is a MDN model with 5 mixed Gaussian distributions at the output layers. The Semi-VAE model is a semi-supervised Variational Autoencoder (VAE) model, which will be explained later. The overall results are shown in Table

• Contribution 2 :

 2 In the CMDRNN model, we employ a 1D Convolutional Neural Network to detect the high dimensional input, a Recurrent Neural Network to represent the state transition in the time-series data, and a Mixture Density Network to sample the final output. With such design, our model can not only overcome the issue of high dimensionality but also the overfitting problem. For the validation, we conduct a series of experiments on a real-world dataset. In order to find the optimal hyper-parameters, we also compare different optimizers, different memory lengths and different mixture numbers.• Contribution 3: In the VAE-based semi-supervised learning model, we use all the input data to learn a latent distribution in the unsupervised learning process. Then in the supervised process, we use the learnt latent distribution as the input of the new input for the predictor. Furthermore, we design two predictors, one predictor is a deterministic predictor and one predictor is a stochastic predictor. • Contribution 4: We combines the Information Bottleneck method and Variational Inference to propose a Deep Variational Information Bottleneck model for user location recognition. This model consists of an encoder neural network and a decoder neural network. The advantage of the proposed model is that it is an end-to-end model, which makes it easier to train compared to the VAE-based model.

 We deploy a Mixture Density Network at the final output layer of our model, which make the proposed model a Maximum Likelihood Estimation (MLE) model.

	Finally, in order to predict user next location with WiFi fingerprints, through combining
	the advantages of the aforementioned deep learning models, we propose a novel deep
	learning-based model, called the Convolutional Mixture Density Recurrent Neural Net-
	work (CMDRNN). The proposed model is an end-to-end model, which means that it can
	be trained straightforwardly.

To solve this problem, we employ a Mixture Density Network in our model. The Mixture Density Network uses a set of mixed Gaussian dis-tributions to sample the final output rather than compute it directly like a deterministic function.

1.3.3/ VAE-BASED MODEL FOR LOCATION RECOGNITION

In order to localize user location with WiFi fingerprint data, we design a semi-supervised learning model based on Variational Autoencoders (VAEs)

Chapter 5: Recognizing Indoor Location via Semi-Supervised Learning. In this chapter, we propose the Variational Autoencoder-based semi-supervised learning model for accurate user location recognition. Chapter 6: Recognizing Indoor Location via End-to-End Learning. In

 of the input as well. But the difference is the VIB-based model is supervised learning model. Its advantage is that it does not need an unsupervised learning process to learn the latent representation. It is an end-to-end model and able to learn directly the latent representation of the input data during the supervised learning process. This make its training process more straightforward than the VAE-based semi-

	such as	2
	STATE OF THE ART
	supervised model.	
	1.4/ THESIS ORGANIZATION	
	In this chapter, we will review prior works using GPS data and WiFi fingerprint data to
	study human mobility. Generally, the problems in theses works can be framed as different
	types of learning tasks, for instance, clustering, classification, regression and sequential
	prediction. Accordingly, we can adopt some techniques, such as conventional machine
	learning (ML) methods and deep learning (DL) methods, to address these problems. Ma-
	chine learning [Bishop, 2006], [Murphy, 2012] is a class of algorithms that is used for data
	analysis, pattern recognition (PR), computer vision (CV), signal processing, natural lan-
	Chapter 4: Predicting Indoor Location with WiFi Fingerprints. In this chapter, we in-guage processing (NLP), etc. Thanks to the recent advances in hardware technology,
	troduce the Convolutional Mixture Density Recurrent Neural Network for predicting indoor computers are becoming more powerful and more adaptive to specific algorithms based
	next location. on vectoral processing. Due to this reason, a group of machine learning algorithms,
	called deep learning [LeCun et al., 2015], [Goodfellow et al., 2016], has been rapidly de-
	veloped. Deep learning models have very powerful modeling ability because they can
	have very deep structures with multiple hidden layers. In this chapter, we will introduce
	this chapter, we both machine learning and deep learning approaches previously applied to discover hu-
	develop the Variational Information Bottleneck-based model to compute the user location. man mobility from mobile data.	
	Chapter 7: Conclusions and Perspectives. In this chapter, we draw the final conclu-	
	sions of the thesis and point out some possible research directions of the future work. 2.1/ DISCOVERING USER MOBILITY PATTERNS FROM GPS DATA
	GPS data contains the information of latitudes and longitudes, which is able to directly
	provide relatively accurate the coordinates of users when users stay outdoors. Moreover,
	GPS data can record user mobility from a large range of space and time, which en-
	ables the researchers to unveil the human mobility patterns. Many previous researchers
	have developed various methods based on GPS data. In literature, previous research
	11	

3.4/ VIB-BASED MODEL FOR LOCATION RECOGNITION We propose another deep learning model for accurate location recognition, which is called the Variational Information Bottleneck (VIB)-based model. This model combine the Information Bottleneck method and the Variational Inference. According to the Information Bottleneck theory, through learning a latent distribution, we can solely have the taskrelated information from the original data so as to alleviate the overfitting problem. However, implementing the Information Bottleneck method via neural network directly is not easy. Therefore, we leverage Variational Inference to derive a variational lower bound as the optimization target. Similar to the VAE-based semi-supervised model, in the model we use a latent distribution as the representation The thesis includes 7 chapters and the remainder of the thesis is organized as follows: Chapter 2: State of the Art. In this chapter, we review the previous work, both GPSbased methods and WiFi-based methods in literature. Chapter 3: Discovering Daily Outdoor Mobility Patterns. In this chapter, we present the Dirichlet Process Gaussian Mixture Model-based algorithm for clustering daily GPS trajectory data to discover the outdoor mobility patterns of the users.

Table 2

 2

		.1: Comparisons of Different Clustering Methods
	Method	Distance metrics Parameter
	K-means	Euclidean	Cluster number
	GMM	Log-likelihood	Cluster number
	DBSCAN	Density	Minimum points, radius
	HDP	Log-likelihood	Concentration parameter
	HITS	Euclidean	Cluster number, hierarchy number
	2.1.2/ CLUSTERING GPS TRAJECTORIES
	Although through discovering frequently visited places can reveal human mobility patterns

Table 2 .

 2

	Model	Learning Scheme	Learning Purpose
	Autoencoders	Unsupervised	Dimension reduction
	Convolutional Neural Networks	Supervised	Feature extraction
	Mixture Density Networks	Supervised	Regression
	Bayesian Neural Networks	Supervised	Regression/classification
	Recurrent Neural Networks	Supervised	Sequential prediction
	Variational Autoencoders	Unsupervised	Data generation

2: Comparisons of Different Deep Learning Models

Table 2 .

 2 2 summarises the differences between the popularly used deep learning models. and a MDN sub-model, which allows us to detect the high dimensional features and avoid overfitting. Third, in order to recognize accurate indoor user location, we suggest that, compared to use the WiFi fingerprint data directly, it is better to use a rep-

	As we explained before, the data used for our study are GPS coordinate data and WiFi
	fingerprint data. These data commonly have the issues of sparsity, noise and high dimen-
	sionality. If we use conventional methods, it will result in poor modelling performance. For
	this reason, in this thesis, we propose a series of probabilistic methods to solve the afore-
	mentioned problems. First, for clustering GPS trajectories, we devise a novel method

using Dirichlet Process Gaussian Mixture Models to estimate the probability densities of the trajectories instead of computing the Euclidean distances. Second, to predict the next indoor location, we design a deep learning model combining a CNN sub-model, a RNN sub-model

 , X 2 , . . . , X d , . . . , X D } Total GPS data (longitudes, latitudes P {P 1 , P 2 , . . . , P d , . . . , P D } Probability density for X M {M 1 , M 2 , . . . , M k , . . . M K }

	Algorithm 1 Mobility Pattern Discovering Algorithm Table 3.1: Variables Description
	Input: X	
	Output: M Variable Domain	Description
	d	{1, 2, . . . , D}	Number of data collecting day
	1: P ← DPGMM(X) 2: Initialize:M = {M k } 3: while P ∅ do X {X 1 Total mobility patterns probability density estimation create the mobility patterns set
	4: M k	X s = X 1 {X k1 , X k2 , . . . , X kn }	set the baseline mobility for M k Discovered mobility pattern
	5: T h	M k = {X s } {lower bound, upper bound} Threshold for distinguishing patterns create current pattern M k
	6:		
	9:	add P d to M k	add new member
	10:		
	11:	P s ← P d	change the baseline mobility
	12:	end if	
	13:	end if	
	14:	end for	
	15:	remove P d ∈ M k from P	current pattern is finished
	16:	create M k+1	find new mobility pattern
	17:	add M k+1 to M	
	18: end while	
	19: return M	

for d = 2, . . . , D do 7: D KL ← (P s , P d) measure similarity 8:

if (min(D KL) < T h[0]) & (max(D KL) < T h[1]) then two patterns are similar if D KL [0] > D KL [1] then

TABLE 3 .

 3

2. DATA COLLECTING TIME.

TABLE 3 .

 3 3. KL-DIVERGENCES BETWEEN DIFFERENT TRAJECTORIES.

	p	q	D KL (p||q) D KL (q||p)
	Trajectory 1 Trajectory 2	7.21	2.82
	Trajectory 1 Trajectory 3	1.28	1.83
	Trajectory 1 Trajectory 4	19.07	1269.47
	Trajectory 1 Trajectory 5	3.08	996.17

TABLE 3 .

 3 The results shown in Table3.4 indicate that changing the fixed number of component Gaussian Mixture Models can not enhance the clustering performance. On the contrary, the Dirichlet Process Gaussian Mixture Model can improve the clustering performance.

	4. OVERALL MEAN LOG-LIKELIHOODS OF DIFFERENT MODELS
	Model	Mean log-likelihood
	KDE	-51991.03
	GMM-1	-26078.15
	GMM-2	-38514.32
	GMM-3	-52431.62
	GMM-4	-63794.70
	GMM-5	-73508.10
	GMM-8	-101306.32
	DPGMM	-24871.78

 4.2.4/ CONVOLUTIONAL MIXTURE DENSITY RECURRENT NEURAL NETWORK Knowing the merits of the three aforementioned neural networks, we devised a novel deep neural network architecture, called the Convolutional Mixture Density Recurrent Neural Network (CMDRNN). In the CMDRNN model, a 1D CNN is used to capture the features of the high dimensional input, then the state transitions of the time series data is modeled by a RNN model, and the output layer composed of mixed Gaussian densities to enhance the prediction accuracy. With such a structure, we believe that our model is able to illustrate complicated high dimensional time series data. Fig. 4.4 shows the whole structure of the CMDRNN model and Algorithm 2 demonstrates the learning process of the CMDRNN model.

	Algorithm 2 Algorithm: CMDRNN
	Input: x t (RSSI Values)
	Output: y t (Coordinates)

1: while epoch < max epoch do 2:

Table 4

 4

		MDN	MDN	RNN	CNN	CNN	CNN	Sub-network	
	Optimizer: RMSProp; learning rate: 10 -3	output layer 5*mixed Gaussian number (5*30)	hidden layer neuron number: 200	hidden layer memory length: 5; neuron number: 200	flatten layer neuron number: 100	max pooling layer neuron number: 100	Convolutional layer filter number: 100; stride: 2	Layer Hyperparameter	.1. CMDRNN Implementation Details
		-	Leaky ReLU	Sigmoid	Sigmoid	ReLU	Sigmoid	Activation Function	

Table 4 .

 4 2. Root mean squared errors of the path prediction results (meter).

			(a) Results of the baseline models.
		Path	k-NN	DT	RF
		Path 1 7.44 ± 0.00 8.78 ± 0.76 7.25 ± 0.25
		Path 2 8.02 ± 0.00 20.94 ± 1.52 9.60 ± 0.75
			(b) Results of the sequential prediction models.
	Path	RNN	CNN+RNN RNN+MDN AE+RNN+MDN
	Path 1 29.36 ± 1.61 34.26 ± 3.04 23.86 ± 5.50	11.24 ± 0.86
	Path 2 31.61 ± 0.74 36.75 ± 6.17 23.58 ± 2.29	12.01 ± 1.68
			(c) Results of the proposed models.
		Path	CMDRNN CMDLSTM CMDGRU
		Path 1 8.26 ± 1.31	7.38 ± 0.89 6.25 ± 0.80
		Path 2 10.17 ± 0.72 9.26 ± 0.31 8.67 ± 0.23

Table 5

 5

	.1.

Table 5

 5

		Predictor	Predictor	Predictor	Decoder	Encoder	Encoder	Sub-network	
	Optimizer: Adam; learning rate: 10 -3	hidden layer neuron number: 512; dropout rate: 0.3	hidden layer neuron number: 512; dropout rate: 0.3	hidden layer neuron number: 512; dropout rate: 0.3	hidden layer neuron number: 512	hidden layer neuron number: 512; latent dimension: 5	hidden layer neuron number: 512;	Layer Hyperparameter	.1. VAE-based model implementation details
		ReLU	ReLU	ReLU	ReLU	ReLU	ReLU	Activation Function	

Table 5 .

 5 2. Root mean squared errors of testing results with different portions of labeled data We use k-NN, DT and RF as the baseline models and use GP, MDN with 2 mixtures, noted as MDN(2), MDN with 5 mixtures, noted as MDN(5), as comparisons. Fig. 5.3 and Table5.2 show the results obtained by different methods. From the results, we can see that the proposed models outperform the baseline model proposed

	M2	
	M1	
	MDN(5)	
	MDN(2)	
	GP	
	RF	
	DT	
	k-NN	
	Labeled data	2%

Table 6

 6

		Predictor	Predictor	Predictor	Encoder	Sub-network	
	Optimizer: Adam; learning rate: 10 -3 .	hidden layer neuron number: 512; dropout rate: 0.3	hidden layer neuron number: 512; dropout rate: 0.3	hidden layer neuron number: 512; dropout rate: 0.3	hidden layer neuron number: 512; latent dimension: 5	Layer Parameter	.1. Model Implementation Details
		ReLU	ReLU	ReLU	ReLU	Activation Function	

Table 6 .

 6 2. Comparison Results

Figure 6.6. Results on different portions of the labeled data.

For the validation, we use the UJIindoor dataset [START_REF] Torres-Sospedra | Ujiindoorloc: A new multi-building and multi-floor database for wlan fingerprint-based indoor localization problems[END_REF] whose input are 520 dimensional and each dimension represents a WAP. The RSSI values range from -110 dB to 0 dB when the WAPs are detected, otherwise the RSSI values are set to be 100. Also each RSSI vector corresponds to a pair of latitude and longitude as the geo-location label. In our experiments, we use scaled GPS coordinates values for computational convenience. The total instance number is about 20000. For Experiment 1 and Experiment 2, we use 80% of the dataset for training and the rest 20% as the test dataset. In Experiment 3, the training data number will vary. 6.3.2/ MODEL IMPLEMENTATION DETAILS Table 6.1 demonstrates the implementation details of our model. The encoder neural network includes of one hidden layer, and the dimension of the latent codes is set to be 5. In practice, we find that the latent dimension of 5 can be regarded as the Minimal Description Length [START_REF] Hinton | Autoencoders, minimum description length and helmholtz free energy[END_REF] for our task. The predictor is composed of three hidden layers. Each hidden layer has 512 units. Especially, in order to improve modeling generalization on test data, we can increase the model uncertainty. Hence we apply the Dropout technique [START_REF] Dahl | Improving deep neural networks for lvcsr using rectified linear units and dropout[END_REF] to the hidden layers of the predictor. The optimizer for the model is Adam [Kingma et al., 2014a] and the learning rate is 10 -3 .

6.3.3/ EXPERIMENT 1

In the loss function of the proposed model, the constant β is related to the constraint for the optimization, which is to balance the encoding error term E z∼p φ (z|x) p w (y|z) and the prediction error term D KL p φ (z|x n)||q(z) . A larger β value means the model tends to be more compressive for the input and less expressive for the output, and vice versa.

Therefore, different β values can result in different modeling results.

To find the optimal β values, we will test different β values, ranging from 10 -3 to 10 -8 , for our model. From the results shown in Fig. 6.3, we can see that, when β is 10 -6 , the CONCLUSIONS AND PERSPECTIVES

7.1/ CONCLUSIONS

In this thesis, the research goal is studying human mobility through using the usage data collected from smartphone users. In order to have a comprehensive understanding, we have investigated user mobility from both outdoor and indoor aspects. Accordingly, we formulate the following tasks related to indoor and outdoor user mobility. Task 1 is discovering the daily mobility patterns of the users through using the collected GPS coordinate data; Task 2 is predicting the next time-point indoor user location with using the relevant WiFi fingerprint data; Task 3 is learning accurate indoor user location through using the relevant WiFi fingerprint data.

In order to accomplish the above tasks, we have investigated two types of approaches for learning user mobility, one type of approach is using GPS data and the other type is using WiFi fingerprint data. In particular, from a probabilistic perspective, we proposed the following solutions.

• For Task 1, we proposed a Dirichlet Process Gaussian Mixture Model (DPGMM)based clustering algorithm to discover the daily user mobility patterns from the collected GPS coordinate data;

• For Task 2, we devise a hybrid sequential deep learning model, the Convolutional Mixture Density Recurrent Neural Network (CMDRNN), to predict the next timepoint user location with the WiFi fingerprint data;

• For Task 3, we leveraged the idea of Variational Autoencoders (VAEs) to propose a VAE-based semi-supervised learning model for the indoor user location recognition can be enhanced by using the techniques like Normalising Flows and Autoregressive Flows to construct more complex posterior distributions. Instead of using mean-field assumption, one can use auxiliary variables to construct more complex posterior distributions [START_REF] Maaløe | Auxiliary deep generative models[END_REF].

Moreover, self-supervised representation learning has become an active research ares in recent years. Self-supervised learning is a kind of method whose loss function are supervised but it does not nedd labels. Based on mutual information estimation and maximization, some novel deep learning methods were proposed, for instance, Mutual Information Neural Estimation (MINE) [Belghazi et al., 2018], Contrastive Predictive Coding (CPC) [START_REF] Oord | Representation learning with contrastive predictive coding[END_REF] and Deep InfoMax (DIM) [START_REF] Hjelm | Learning deep representations by mutual information estimation and maximization[END_REF]. [Burgess et al., 2018] Burgess, C. P., Higgins, I., Pal, A., Matthey, L., Watters, N., Desjardins, G., et Lerchner, A. (2018). Understanding disentangling in β-vae. arXiv preprint arXiv:1804.03599.