
HAL Id: tel-03145374
https://theses.hal.science/tel-03145374

Submitted on 18 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Discovering human mobility from mobile data :
probabilistic models and learning algorithms

Weizhu Qian

To cite this version:
Weizhu Qian. Discovering human mobility from mobile data : probabilistic models and learning algo-
rithms. Other [cs.OH]. Université Bourgogne Franche-Comté, 2020. English. �NNT : 2020UBFCA025�.
�tel-03145374�

https://theses.hal.science/tel-03145374
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE L’ÉTABLISSEMENT UNIVERSITÉ BOURGOGNE FRANCHE-COMTÉ

PRÉPARÉE À L’UNIVERSITÉ DE TECHNOLOGIE DE BELFORT-MONTBÉLIARD

École doctorale n°37

Sciences Pour l’Ingénieur et Microtechniques

Doctorat d’Informatique

par

WEIZHU QIAN

Discovering Human Mobility from Mobile Data: Probabilistic Models and
Learning Algorithms

Thèse présentée et soutenue à Belfort, le 7 décembre 2020

Composition du Jury :

SIDI-MOHAMMED SENOUCI Professeur à Université de Bourgogne Président
GERMAIN FORESTIER Professeur à Université de Haute Alsace Rapporteur
YACINE OUZROUT Professeur à Université Lumière Lyon 2 Rapporteur
YE-QIONG SONG Professeur à Université de Lorraine Examinateur
FABRICE LAURI MCF à Université de Technologie de Belfort

Montbéliard, UBFC
Examinateur

FRANCK GECHTER MCF-HDR à Université de Technologie de
Belfort Montbéliar, UBFC

Directeur de thèse

N◦ X X X

école doctorale sciences pour l ’ingénieur et microtechniques

Université Bourgogne Franche-Comté
32, avenue de l’Observatoire
25000 Besançon, France

Title: Discovering Human Mobility from Mobile Data: Probabilistic Models and Learning Algorithms

Keywords: Machine Learning, Deep Learning, Probabilistic Models, Variational Inference, Mobile Data

Abstract:
Smartphone usage data can be used to study human
indoor and outdoor mobility. In our work, we investigate
both aspects in proposing machine learning-based
algorithms adapted to the different information sources
that can be collected. In terms of outdoor mobility,
we use the collected GPS coordinate data to discover
the daily mobility patterns of the users. To this end,
we propose an automatic clustering algorithm using the
Dirichlet Process Gaussian Mixture Model (DPGMM) so
as to cluster the daily GPS trajectories. This clustering
method is based on estimating probability densities of
the trajectories, which alleviate the problems caused by
the data noise. By contrast, we utilize the collected
WiFi fingerprint data to study indoor human mobility. In
order to predict the indoor user location at the next time
points, we devise a hybrid deep learning model, called the
Convolutional Mixture Density Recurrent Neural Network
(CMDRNN), which combines the advantages of different
multiple deep neural networks. Moreover, as for accurate

indoor location recognition, we presume that there exists
a latent distribution governing the input and output at
the same time. Based on this assumption, we develop
a Variational Autoencoder (VAE)-based semi-supervised
learning model. In the unsupervised learning procedure,
we employ a VAE model to learn a latent distribution of the
input, the WiFi fingerprint data. In the supervised learning
procedure, we use a neural network to compute the
target, the user coordinates. Furthermore, based on the
same assumption used in the VAE-based semi-supervised
learning model, we leverage the Information Bottleneck
theory to devise a Variational Information Bottleneck (VIB)-
based model. This is an end-to-end deep learning model
which is easier to train and has better performance. Finally,
we validate these proposed methods on several public
real-world datasets providing the results that verify the
efficiencies of our methods as compared to other existing
methods generally used.

Titre : Discovering Human Mobility from Mobile Data: Probabilistic Models and Learning Algorithms

Mots-clés : Machine Learning, Deep Learning, Probabilistic Models, Variational Inference, Mobile Data

Résumé :
Les données d’utilisation des smartphones peuvent être
utilisées pour étudier la mobilité humaine que ce soit
en environnement extérieur ouvert ou à l’intérieur de
bâtiments. Dans ce travail, nous étudions ces deux
aspects de la mobilité humaine en proposant des
algorithmes de machine learning adapté aux sources
d’information disponibles dans chacun des contextes.
Pour l’étude de la mobilité en environnement extérieur,
nous utilisons les données de coordonnées GPS
collectées pour découvrir les schémas de mobilité
quotidiens des utilisateurs. Pour cela, nous proposons
un algorithme de clustering automatique utilisant le
Dirichlet process Gaussian Mixture Model (DPGMM) afin
de regrouper les trajectoires GPS quotidiennes. Cette
méthode de segmentation est basée sur l’estimation des
densités de probabilité des trajectoires, ce qui atténue les
problèmes causés par le bruit des données. Concernant
l’étude de la mobilité humaine dans les bâtiments,
nous utilisons les données d’empreintes digitales WiFi
collectées par les smartphones. Afin de prédire la
trajectoire d’un individu à l’intérieur d’un bâtiment, nous
avons conçu un modèle hybride d’apprentissage profond,
appelé le Convolutional Mixture Density Recurrent Neural
Network (CMDRNN), qui combine les avantages de

différents réseaux de neurones profonds multiples. De
plus, en ce qui concerne la localisation précise en
intérieur, nous supposons qu’il existe une distribution
latente régissant l’entrée et la sortie en même temps.
Sur la base de cette hypothèse, nous avons développé
un modèle d’apprentissage semi-supervisé basé sur
le Variational Autoencoder (VAE). Dans la procédure
d’apprentissage non supervisé, nous utilisons un modèle
VAE pour apprendre une distribution latente de l’entrée
qui est composée de données d’empreintes digitales
WiFi. Dans la procédure d’apprentissage supervisé, nous
utilisons un réseau de neurones pour calculer la cible,
coordonnées par l’utilisateur. De plus, sur la base de la
même hypothèse utilisée dans le modèle d’apprentissage
semi-supervisé basé sur le VAE, nous exploitons la théorie
des goulots d’étranglement de l’information pour concevoir
un modèle basé sur le Variational Information Bottleneck
(VIB). Il s’agit d’un modèle d’apprentissage en profondeur
de bout en bout plus facile à former et offrant de meilleures
performances. Enfin, les méthodes proposées ont été
validées sur plusieurs jeux de données publics acquis
en situation réelle. Les résultats obtenus ont permis de
vérifier l’efficacité de nos méthodes par rapport à l’existant.

ACKNOWLEDGEMENT

This thesis would not have been possible without the guidance, insight and encourage-

ment of my PhD advisor, Dr. Franck Gechter. Therefore I would like first to thank Dr.

Franck Gechter for his efforts during my pursuit of PhD. I would like to thank Dr. Fabrice

Lauri for his suggestions to my work. Also, many thanks for other colleges, the secretary

of the computer science department, the secretary of CIAD, the secretary of PhD student

office and other staffs working at CIAD and UTBM. I also would thank for the reviewers

who are willing to spend their time to provide their valuable suggestions about my thesis.

I would like to thank Dr. Bowei Chen at University of Glasgow. It is a great time for me to

work and discus scientific problems with him. I would like thank my land lord, Mr. Marc

Stori. He had always been very kind and helpful to me. I also would like to thank the

PhD students working together at UTBM, Chen Liu, Jian Zhang, Yong Shi, Tao Yang,

Rongrong Liu, Hailong Wu, Hanqing Wang, Yang Zhou and many other students. We had

a great time together in France, which prevent me being consumed by work completely.

Some of them already graduated and I wish them all have a bright future. Thank other

friends I met in France for their help for my work and life during the last three years.

Finally, I would like to thank my friends in China and my family for their long-time support

and encouragement. Especially, I want to thank my mother for all her efforts to raise and

educate me.

v

CONTENTS

1 Introduction 1

1.1 Context . 1

1.2 Main Issues of the Thesis . 3

1.2.1 Discovering Daily Mobility Patterns from GPS data 3

1.2.2 WiFi Fingerprint-based Location Prediction 4

1.2.3 WiFi Fingerprint-based Location Recognition 6

1.3 Main Contributions of the Thesis . 7

1.3.1 DPGMM-based Clustering Algorithm 7

1.3.2 CMDRNN for Sequential Location Prediction 8

1.3.3 VAE-based Model for Location Recognition 9

1.3.4 VIB-based Model for Location Recognition 9

1.4 Thesis Organization . 10

2 State of the Art 11

2.1 Discovering User Mobility Patterns from GPS Data 11

2.1.1 Discovering Frequently Visited Places 12

2.1.2 Clustering GPS Trajectories . 15

2.2 Predicting Next User Location . 16

2.2.1 Machine Learning-based Prediction Methods 17

2.2.2 Deep Learning-based Prediction Methods 20

2.3 Indoor User Location Recognition . 21

2.3.1 Classification-based Location Recognition 21

vii

viii CONTENTS

2.3.2 Accurate Location Recognition . 23

3 Discovering Daily Outdoor Mobility Patterns 31

3.1 Introduction . 31

3.2 Method . 33

3.2.1 Probability Estimation . 33

3.2.1.1 Gaussian Mixture Models 34

3.2.1.2 Dirichlet Process Gaussian Mixture Model 35

3.2.2 Computing KL Divergence . 37

3.2.3 DPGMM-based Trajectory Clustering Algorithm 38

3.3 Experiments and Results . 41

3.3.1 Dataset Description . 41

3.3.2 Experimental Setup . 41

3.3.3 Task 1: Probability Density Estimation 44

3.3.4 Task 2: Measuring Daily Trajectories Similarities 45

3.3.5 Task 3: Discovering Daily Mobility Patterns 48

3.3.5.1 Discovered Patterns . 48

3.3.5.2 Number of Patterns and Trajectories 51

3.3.5.3 Number of members for each patterns 51

3.3.6 Task 4: Comparison to other Models 52

3.3.7 Task 5: Varying Data Lengths . 53

3.4 Conclusion . 53

4 Predicting Indoor Location with WiFi Fingerprints 55

4.1 Introduction . 55

4.2 Method . 56

4.2.1 Convolutional Neural Network . 56

CONTENTS ix

4.2.1.1 1D Convolutional Neural Network 56

4.2.2 Recurrent Neural Network . 57

4.2.2.1 Vanilla RNN . 58

4.2.2.2 LSTM . 58

4.2.2.3 GRU . 60

4.2.3 Mixture Density Network . 61

4.2.4 Convolutional Mixture Density Recurrent Neural Network 63

4.2.5 Optimizers . 65

4.2.5.1 Adam . 65

4.2.5.2 RMSProp . 66

4.3 Experiments and Results . 66

4.3.1 Dataset Description . 66

4.3.2 Model Implementation Details . 67

4.3.3 Choice of Hypermeters . 67

4.3.4 Comparisons with Other Methods 70

4.4 Conclusion . 73

5 Recognizing Indoor Location via Semi-supervised Learning 75

5.1 Introduction . 75

5.2 Method . 76

5.2.1 Model Setup . 77

5.2.2 Unsupervised Learning Procedure 78

5.2.2.1 Evidence Lower Bound of VAEs 79

5.2.2.2 Learning Method of VAEs 80

5.2.3 Supervised Learning Procedure . 81

5.2.3.1 Deterministic Predictor (M1 Model) 81

x CONTENTS

5.2.3.2 Probabilistic Predictor (M2 Model) 82

5.3 Experiments and Results . 85

5.3.1 Dataset Description . 85

5.3.2 Model Implementation Details . 85

5.3.3 Results . 87

5.4 Conclusion . 90

6 Recognizing Indoor Location via End-to-End Learning 91

6.1 Introduction . 91

6.2 Method . 92

6.2.1 Model Setup . 92

6.2.2 Model . 93

6.2.2.1 Variational Approximation 95

6.2.2.2 Solving Model . 97

6.2.2.3 Predicting . 98

6.3 Experimental Results . 99

6.3.1 Dataset Description . 99

6.3.2 Model Implementation Details . 99

6.3.3 Experiment 1 . 99

6.3.4 Experiment 2 . 104

6.3.5 Experiment 3 . 104

6.3.6 Discussion . 106

6.4 Conclusion . 106

7 Conclusions and Perspectives 109

7.1 Conclusions . 109

7.2 Perspectives . 111

CONTENTS xi

A Related Publications 133

1

INTRODUCTION

1.1/ CONTEXT

Discovering human mobility using user data collected from smartphones has become a

critical challenge especially in the recent similar context. Thanks to the recent advances

in hardware and software technology, smartphone devices now integrated with various

types of built-in sensors, such as cameras, accelerators, gyroscopes, Bluetooth, GPS

modules and WiFi modules, etc., can offer various functions to users. Smartphone hand-

sets are portable so that they can be used by their owners almost anytime and anywhere.

For many people, smartphones have become important tools in their daily life. Conse-

quently, the usage of smartphones reflects the daily life of the smartphone users as well.

Therefore, some researchers attempt to take advantage of mobile data to study human

behavior. Mobile data in this thesis is referring to smartphone usage data, including

making phone calls, texting, taking photos, listening to music, etc.

In recent years, Location-Based Service (LBS) [Schiller et al., 2004] has been an im-

portant part of many applications, such as advertisement, social network and nav-

igation. LBS is a type of technology that uses geographic information to provide

users services. These services include health care, advertising, entertainment and

indoor localization. Studying human mobility is essential for developing LBS applica-

tions. In this thesis, we want to study human mobility in both outdoor and indoor en-

vironment with mobile data. Hence, among all the aforementioned usage data, the

location-related data attracts our attention the most. In literature, there are various

types of data one can use for studying human mobility, such as GPS, WiFi and cell-

IDs [Trevisani et al., 2004], [Bazzani et al., 2010], [Lin et al., 2005], [Zheng et al., 2008],

1

2 CHAPTER 1. INTRODUCTION

[Yavaş et al., 2005], [Su et al., 2000].

The Global Positioning System (GPS) is a satellite-based navigation system developed

and owned by the United States, which can provide both geological and temporal informa-

tion when users stay outdoors [Hofmann-Wellenhof et al., 2012]. The advantage of using

GPS data is that it is more convenient than other indirect methods, such as cell-ID based

methods and WiFi based methods which need further interpretation to acquire geological

information. However, the drawback is that GPS modules do not work well in an indoor

environment.

Fortunately, in recent decades, wireless networking technology has rapidly developed so

we can consider WiFi-based localization techniques as an alternative. WiFi is a type of

wireless networking technologies based on the IEEE 802.11 family of standards, which is

used to local area networking and internet access [Gast, 2005]. When the WiFi module

in a smartphone is turned on, it will automatically scan the WiFi access points (WAPs)

near the device. Then, the WiFi scan list will show the Received Signal Strength Indicator

(RSSI) values of each detected WAP. Normally, the RSSI values are lower as the WAP

are farther from the device. Thank to this characteristic, we can localize the user position

based on the corresponding RSSI values. The data obtained via such method is called

WiFi fingerprint data.

To acquire GPS and WiFi fingerprint data, researchers can resort to the crowd-sourcing

technique [Brabham, 2013]. The crowd-sourcing technique, in the context of this thesis,

is to use the help of voluntary smartphone users to collect a large scale of data from a

large group of users. This kind of databases can also be regarded as Big Data. Usually,

more data means more information. Hence, training models with more data results in

better results.

In order to build a large database more easily, a widely used approach in previous

research work is to launch a campaign by asking volunteers to install the ad hoc

applications developed by researchers on their smartphone devices. Such appli-

cations includes Mobile Data Challenge [Laurila et al., 2012], [Laurila et al., 2013],

Device Analyzer [Wagner et al., 2013], [Wagner et al., 2014], UJIIndoor-

Loc [Torres-Sospedra et al., 2014] and Tampere [Lohan et al., 2017b]. These kinds

of applications usually are designed to record the smartphone device usage. By contrast

with traditional data collecting methods, crowd-sourcing does not need stand-alone

1.2. MAIN ISSUES OF THE THESIS 3

devices, i.g., GPS devices, to record human behavior. Instead, the practitioners can take

advantage of the built-in sensors to collect user behavior data so that the normal daily

life of the user will not be affected. As a result, the obtained data are more reliable for

reflecting real human behavior.

Finally, with the access to the GPS and WiFi fingerprint data collected from smartphone

users, the main objective of this thesis is to discover human mobility from the data. To

this end, we will propose several machine learning and deep learning based methods in

our work.

1.2/ MAIN ISSUES OF THE THESIS

In this thesis, the main goal is to discover the user mobility from the collected smartphone

usage data. In order to have a comprehensive understanding of human mobility, we need

to investigate both indoor and outdoor mobility of smartphone users. The data utilized in

our work are GPS data and WiFi fingerprint data. When studying outdoor user mobility,

using GPS data is more convenient though WiFi hotspots can be detected outdoors in

some cases. As for studying indoor user mobility using WiFi fingerprint data is a feasible

choice.

1.2.1/ DISCOVERING DAILY MOBILITY PATTERNS FROM GPS DATA

We want first to shed some light on the outdoor mobility of smartphone users. Because

by doing this, we can have general knowledge of human mobility and behavior. In this

work, in particular, we focus on discovering the daily mobility of the users. We believe that

daily mobility can reflect life styles of smartphone users, which will help us to understand

human behavior better. Nowadays, GPS modules are widely built in smartphone devices

so as to provide the geographical location information for location-based services, such

as navigation, advertisement and entertainment. Naturally, we can leverage these GPS

modules to collect GPS data from smartphones in order to study human mobility.

In order to investigate daily activity patterns of people more thoroughly and precisely, we

choose to resort to a considerable amount of GPS data enables us to study the human

mobility at a large spatial and temporal scale. Thus for the GPS data-based method, we

4 CHAPTER 1. INTRODUCTION

want to analyze these patterns along a relatively long period (in our case, up to several

months). Here daily mobility patterns refer to the most common trajectories users pass

every day. Also, in order to make our method more convincing, we need to verify our

method on sufficient user data. It means that we need to adopt a dataset collected from

a number of different users. In our experiments, we take advantage of the Mobile Data

Challenge (MDC) database [Laurila et al., 2012], [Laurila et al., 2013].

In this thesis, especially, we choose to study user mobility at the time slot of one day. It is

because we argue that human mobility repeat daily, e.g., home → work place/school →

home. In our work, we aim to discover mobility patterns in particular. Here, mobility pat-

terns refer to the common trajectories used by users. Therefore, this can be regarded as

a clustering daily trajectories problem. We can apply some machine learning techniques

to this issue. A trajectory here is a set of GPS data points recording the mobility of the

smartphone user during a certain time period. In this task, we do not treat these data

points as sequences.

Moreover, we also should be aware of that the trajectories of users vary largely in space

and time. For example, we may stay home on weekends and go to work on work days.

Or on the way we go back to home, we may take a detour to go shopping. Consequently,

these behaviors cause the uncertainty of human mobility. This issue will make some

conventional clustering techniques, such as K-means, DBSCAN and Gaussian Mixture

Models, unsuitable for this task.

By clustering user daily trajectories, we can understand human behavior, analyze people

daily routines and activities, arrange better advertising strategies and analyze specific

regions. In order to discover the daily mobility patterns, we propose a Dirichlet Process

Gaussian Mixture Model-based model for clustering daily user GPS trajectories.

1.2.2/ WIFI FINGERPRINT-BASED LOCATION PREDICTION

Apart from the GPS data-based outdoor mobility problem, we also want to address the

indoor user mobility issues by using smartphone usage data. However, the difficulty is

that GPS modules are malfunctional when users stay indoor, thus we cannot use GPS

data to model indoor user mobility.

As previously mentioned, there are fortunately alternative methods. Nowadays, WiFi ac-

1.2. MAIN ISSUES OF THE THESIS 5

cess points are widely installed in modern buildings so as to provide Internet connection.

And the signal strength of WiFi access points is related to the physical distance between

the devices and the WiFi hotspots. Naturally, we can use this property for indoor localiza-

tion.

In our work, we want to utilize WiFi fingerprint data for accurate location prediction. Here

”accurate” means that we will use the real user coordinates (which can be seen as the

target of a regression task), instead of building IDs or floor IDs (which can be seen as the

target of a classification task). More specifically, in our task, we want to do the location

prediction task, which is to predict the next user location by using the WiFi fingerprint

at the current time point. This task can be treated as a time series prediction. The input

of this problem is the WiFi fingerprints and the target is the real coordinates of users.

They are both sequential data. The WiFi fingerprint-based time series applications can

be used for the services such as indoor navigation and advertisement.

Predicting user next location with WiFi fingerprints is a tricky problem because the input

data is not easy to process. First, generally, for the purpose of providing high quality

Internet connection, public buildings, such as office building, school buildings and super

malls, are equipped with a large number of WiFi hotspots. Nevertheless, this also leads

to the high dimensionality problem, which make the models prone to be overfitting and

hard to converge. Furthermore, WiFi the signal fluctuations is detrimental to the accuracy

of WiFi-based positioning methods. Theses challenges require us to adopt some feature

detection techniques to extract the useful information from the input data.

Moreover, the relationship between RSSI values and actual user location is not trivial. Es-

pecially when the number of the WiFi access points and the amount of the data are large,

using conventional machine learning methods is not easy to tune [Nowicki et al., 2017].

Thus a better approach is to utilize a model scalable enough, for example, a deep learn-

ing model. Therefore, in order to tackle with the aforementioned problems, we resort to

the advanced deep learning techniques, to propose a novel deep learning-based method

in our work, which is called the Convolutional Mixture Density Recurrent Neural Network.

6 CHAPTER 1. INTRODUCTION

1.2.3/ WIFI FINGERPRINT-BASED LOCATION RECOGNITION

In this work, we want to improve the WiFi fingerprint-based method even further, which

means interpreting the WiFi fingerprints into real user coordinates more accurately. We

treat this problem as a high dimensional regression task whose learning targets are nu-

merical values. This task can be supervised, which means the targets are learned directly

from the input, or semi-supervised, which means the targets are learned from a repre-

sentation of the input. Accordingly, this problem is named as location recognition in this

work.

To solve this problem, we can use some conventional machine learning models, such as

k-nearest neighbours, Decision Trees and Random Forests, etc. These methods attempt

to model the relationship between the input and the output directly. However, the modeling

accuracies will be largely affected by the noise of the data. This issue remains the same

even for some probabilistic models, such as Mixture Density Networks (MDNs), Gaussian

Processes (GPs) and Bayesian Neural Networks (BNNs).

In order to address this issue, we find that both the input of the model, i.e., WiFi finger-

prints, and the target of the model, i.e., the user coordinates, are related to the actual

user location. Based on this idea, we can utilize a latent distribution to connect the input

with the output instead of directly modeling the relationship between the input and the

output. By doing so, we can obtain the useful information for learning the task from the

original WiFi fingerprint data so as to circumvent the overfitting problem and improve the

modeling accuracy.

We can use Generative Latent Variable Models (GLVMs) to implement our idea. In our

approach, we use a encoder-decoder structure. We can either use a unsupervised deep

learning model, for instance, a Variational Autoencoder (VAE), to do learn the latent repre-

sentation first. Or we can use supervised deep learning model, for instance, a Variational

Information Bottleneck (VIB), to proceed end-to-end learning.

Finally, we propose a Variational Autoencoder-based semi-supervised learning model for

WiFi fingerprint-based accurate indoor positioning. Furthermore, we combine the Infor-

mation Bottleneck method with Variational Inference to devise a new model, the Varia-

tional Information Bottleneck model for WiFi fingerprint-based accurate indoor location

recognition.

1.3. MAIN CONTRIBUTIONS OF THE THESIS 7

1.3/ MAIN CONTRIBUTIONS OF THE THESIS

To address the problems in last section, we propose several methods in this thesis. They

are the Dirichlet Process Gaussian Mixture Model-based algorithm for clustering GPS tra-

jectories, the Convolutional Mixture Density Recurrent Neural Network for sequential lo-

cation prediction, the Variational Autoencoder-based semi-supervised model for location

recognition and the Variational Information Bottleneck-based model for location recogni-

tion. The overview of our contributions in this thesis is exhibited in Fig. 1.1.

Figure 1.1: Overview of the thesis contributions.

1.3.1/ DPGMM-BASED CLUSTERING ALGORITHM

In order to discover daily mobility patterns, we can cluster daily GPS trajectories. How-

ever,there are several issues when we try to cluster GPS data. One issue is that in some

occasions the GPS modules do not function normally during the data collecting process,

8 CHAPTER 1. INTRODUCTION

for example, when the user is in a tunnel or stay indoor. Due to this, some part of the

GPS data are missing, which cause the data sparsity problem. The other issue is that the

GPS data are not distributed evenly space because the users stay in different places for

different time periods. For instance, people stay at home or work places for longer time

than in supermarkets.

For discovering daily mobility patterns, we propose a Dirichlet Process Gaussian Mixture

Model (DPGMM)-based clustering method to cluster daily trajectories. This method has

several advantages. First, this method adopts a probabilistic approach. It calculates the

probability density of each trajectory and uses the Kullback-Leibler divergences as the

clustering metrics instead of using the conventional Euclidean distance. By doing this,

we can circumvent the data sparsity problem.

Furthermore, for estimating the probability densities more accurately, we use the Gaus-

sian Mixture Model with a Dirichlet Process prior, this can avoid pre-defining the number

of mixture models. Moreover, our algorithm is an automatic clustering algorithms, which

means it does not need the prior knowledge of the cluster number.

1.3.2/ CMDRNN FOR SEQUENTIAL LOCATION PREDICTION

Since each element of the high dimensional features of the WiFi fingerprint data con-

tributes equally (each element relates to one WiFi access point) to the user location in-

formation, Principal Component Analysis (PCA), a kind of dimension reduction method,

is not suitable for such tasks [Nowicki et al., 2017]. Instead, we can resort to deep learn-

ing based techniques, for example, Autoencoders and Convolutional Neural Networks.

In practice, we find that the Convolutional Neural Network outperforms the Autoencoder

[Ibrahim et al., 2018].

Since the state transition information of the time-series data is implicit and the possible

state space is very large, conventional approaches, such as Markov Models and Hidden

Markov Models are not feasible for our tasks. Alternatively, we can use a deep learning

model, such as a Recurrent Neural Network, to model the state transitions.

We also find that computing the user coordinates with a conventional neural network di-

rectly will result in severe overfitting. To solve this problem, we employ a Mixture Density

Network in our model. The Mixture Density Network uses a set of mixed Gaussian dis-

1.3. MAIN CONTRIBUTIONS OF THE THESIS 9

tributions to sample the final output rather than compute it directly like a deterministic

function. We deploy a Mixture Density Network at the final output layer of our model,

which make the proposed model a Maximum Likelihood Estimation (MLE) model.

Finally, in order to predict user next location with WiFi fingerprints, through combining

the advantages of the aforementioned deep learning models, we propose a novel deep

learning-based model, called the Convolutional Mixture Density Recurrent Neural Net-

work (CMDRNN). The proposed model is an end-to-end model, which means that it can

be trained straightforwardly.

1.3.3/ VAE-BASED MODEL FOR LOCATION RECOGNITION

In order to localize user location with WiFi fingerprint data, we design a semi-supervised

learning model based on Variational Autoencoders (VAEs) [Kingma et al., 2014b]. Our

approach consists of two learning procedures, the first learning procedure is unsuper-

vised learning which is used to learn a latent representation of the input data. In this

procedure, we make use of a Variational Autoencoder to achieve the learning task.

The second learning procedure is a supervised learning process aiming to calculating

the final user coordinates. To this end, we devise two neural network predictors. One

predictor is a deterministic model whose loss function is root mean squared error and the

other predictor is a stochastic model whose loss function is the negative log-likelihood.

1.3.4/ VIB-BASED MODEL FOR LOCATION RECOGNITION

We propose another deep learning model for accurate location recognition, which is called

the Variational Information Bottleneck (VIB)-based model. This model combine the Infor-

mation Bottleneck method and the Variational Inference. According to the Information

Bottleneck theory, through learning a latent distribution, we can solely have the task-

related information from the original data so as to alleviate the overfitting problem. How-

ever, implementing the Information Bottleneck method via neural network directly is not

easy. Therefore, we leverage Variational Inference to derive a variational lower bound as

the optimization target.

Similar to the VAE-based semi-supervised model, in the model we use a latent distribution

10 CHAPTER 1. INTRODUCTION

as the representation of the input as well. But the difference is the VIB-based model

is supervised learning model. Its advantage is that it does not need an unsupervised

learning process to learn the latent representation. It is an end-to-end model and able

to learn directly the latent representation of the input data during the supervised learning

process. This make its training process more straightforward than the VAE-based semi-

supervised model.

1.4/ THESIS ORGANIZATION

The thesis includes 7 chapters and the remainder of the thesis is organized as follows:

Chapter 2: State of the Art. In this chapter, we review the previous work, both GPS-

based methods and WiFi-based methods in literature.

Chapter 3: Discovering Daily Outdoor Mobility Patterns. In this chapter, we present

the Dirichlet Process Gaussian Mixture Model-based algorithm for clustering daily GPS

trajectory data to discover the outdoor mobility patterns of the users.

Chapter 4: Predicting Indoor Location with WiFi Fingerprints. In this chapter, we in-

troduce the Convolutional Mixture Density Recurrent Neural Network for predicting indoor

next location.

Chapter 5: Recognizing Indoor Location via Semi-Supervised Learning. In this

chapter, we propose the Variational Autoencoder-based semi-supervised learning model

for accurate user location recognition.

Chapter 6: Recognizing Indoor Location via End-to-End Learning. In this chapter, we

develop the Variational Information Bottleneck-based model to compute the user location.

Chapter 7: Conclusions and Perspectives. In this chapter, we draw the final conclu-

sions of the thesis and point out some possible research directions of the future work.

2

STATE OF THE ART

In this chapter, we will review prior works using GPS data and WiFi fingerprint data to

study human mobility. Generally, the problems in theses works can be framed as different

types of learning tasks, for instance, clustering, classification, regression and sequential

prediction. Accordingly, we can adopt some techniques, such as conventional machine

learning (ML) methods and deep learning (DL) methods, to address these problems. Ma-

chine learning [Bishop, 2006], [Murphy, 2012] is a class of algorithms that is used for data

analysis, pattern recognition (PR), computer vision (CV), signal processing, natural lan-

guage processing (NLP), etc. Thanks to the recent advances in hardware technology,

computers are becoming more powerful and more adaptive to specific algorithms based

on vectoral processing. Due to this reason, a group of machine learning algorithms,

called deep learning [LeCun et al., 2015], [Goodfellow et al., 2016], has been rapidly de-

veloped. Deep learning models have very powerful modeling ability because they can

have very deep structures with multiple hidden layers. In this chapter, we will introduce

both machine learning and deep learning approaches previously applied to discover hu-

man mobility from mobile data.

2.1/ DISCOVERING USER MOBILITY PATTERNS FROM GPS DATA

GPS data contains the information of latitudes and longitudes, which is able to directly

provide relatively accurate the coordinates of users when users stay outdoors. Moreover,

GPS data can record user mobility from a large range of space and time, which en-

ables the researchers to unveil the human mobility patterns. Many previous researchers

have developed various methods based on GPS data. In literature, previous research

11

12 CHAPTER 2. STATE OF THE ART

such as [Lu et al., 2013], [Ye et al., 2012], [Lin et al., 2014], [Pirozmand et al., 2014],

[Zheng, 2015] and [Cao et al., 2007], have studied human mobility by using GPS data

collected form smartphone users. These works mainly focused on the tasks such as

extracting significant visiting places, clustering trajectories, discovering travel sequences

and so on.

2.1.1/ DISCOVERING FREQUENTLY VISITED PLACES

Through discovering frequently visited places, we can reveal how people behave in their

daily life. To some extent, it can be seen as a task of clustering GPS data in our context.

Clustering is a type of unsupervised learning approach with unlabeled data. The purpose

of a clustering task is to separate datapoints into a number of different groups and the

datapoints within the same groups share some kinds of similarities based on the distance

metrics we choose.

In our study, the original GPS data collected from the users is not labeled semantically,

thus practitioners need to label the raw data first, to find the frequently visited places,

which can be regarded as a clustering task in some sense. Here, frequently visited

places refer to the places where the users visit frequently and stay for a relatively long

time period. For example, a frequently visited place can be someone’s home, his/her

workplace or his/her school.

Figure 2.1: A GPS trajectory and a stay point.

Fig. 2.1 exhibits a GPS trajectory and its corresponding stay points. In this figure, p1 ∼ p8

2.1. DISCOVERING USER MOBILITY PATTERNS FROM GPS DATA 13

represent the GPS data points and the shaded area, S , denotes the stay point which

contains 4 GPS datapoints, p3 ∼ p6.

There are numerous machine learning methods which can be used for clustering GPS

datapoints. For instance, K-means [Wu et al., 2008] is a widely used method for many

clustering tasks. It measures the closeness between datapoints through calculating the

Euclidean distances. The main advantage of K-means is that it is computationally effi-

cient. But it cannot handle data with complex shapes and it is sensitive to noises because

it uses Euclidean distances. If we want to find the frequently visited places, then we only

care about the GPS data collected in the significant places and ignore the less important

data. However, we cannot achieve this goal through using K-means because it cannot

distinguish useful datapoints from noise datapoints. Moreover, it needs to set the clus-

ter number properly in advance, otherwise the obtained result will not be as expected.

However, we do not access to such prior knowledge in many cases.

One alternative is to use Gaussian Mixture Models (GMMs) [Reynolds, 2015]. GMMs are

Probabilistic Graphical Models (PGMs). As opposed to K-means, in a GMM, each sub-

Gaussian distribution represents a cluster and the category assignments of the datapoints

depend on the corresponding likelihoods. GMMs are usually solved by the Expectation

Maximization (EM) algorithm [Moon, 1996]. Like K-means, GMMs also need the prior

knowledge of the cluster number. However, it is not acquirable in many real-world cases.

In [Cho, 2016], the author modified the standard GMM to make the algorithm more ro-

bust to noise so as to cluster the original GPS datapoints. In addition, by using the

Dirichlet process prior [Neal, 2000], GMMs can be even further developed as a nonpara-

metric hierarchical model, called Hierarchical Dirichlet Process (HDP) [Teh et al., 2005],

in which the number of sub-Gaussian models does not need to be specified in advance.

In [McInerney et al., 2013], the authors developed a location HDP-based approach to

model heterogeneous location habits and tackled with the data sparsity issue success-

fully.

Another feasible method is called Density-based Spatial Clustering of Applications with

Noise (DBSCAN) [Ester et al., 1996], which is a density-based clustering algorithm. DB-

SCAN recognizes the core areas by setting the minimum points number and neighbour-

hood radius. In contrast with K-means, DBSCAN can handle data with complex shapes

and is robust to noise. Moreover, it does not require to know the number of cluster in ad-

14 CHAPTER 2. STATE OF THE ART

vance. However, it still needs to set some parameters properly, i.e., the minimum points

number and the neighbourhood radius, to recognize the core areas and it treats the non-

core data points as noise. Due to this reason, DBSCAN is not suitable for clustering the

GPS data that is unevenly distributed in space.

Fig. 2.2 illustrates how the DBSACN algorithm works, where Eps is the neighbourhood

radius.

Figure 2.2: DBSCAN.

As for other methods proposed in literature, in [Do et al., 2012], the researchers proposed

a grid clustering method to labeled GPS data. This grid clustering algorithm separates

the GPS data via grids and it focuses on detecting the stay points within a set of square

regions, while fails to reveal the mobility at a larger scale. Another possible approach

is proposed by [Zheng et al., 2009], which is a hypertext induced topic search (HITS)-

based inference model. It is proposed to mine interesting locations and travel sequences

through using a GPS dataset of large scale in a certain region. In this model, especially,

the travel interests and the travel experiences of the users are taken into account. In the

work of [Zheng et al., 2010a], the authors took advantage of a real-world GPS dataset

collected from more than 150 users over a time period of 2.5 years, to devise a location

recommendation model. This model is able to discover both the interesting locations and

possible activities.

The comparisons of different clustering methods are summarised in Table 2.1.

2.1. DISCOVERING USER MOBILITY PATTERNS FROM GPS DATA 15

Table 2.1: Comparisons of Different Clustering Methods

Method Distance metrics Parameter

K-means Euclidean Cluster number

GMM Log-likelihood Cluster number

DBSCAN Density Minimum points, radius

HDP Log-likelihood Concentration parameter

HITS Euclidean Cluster number, hierarchy number

2.1.2/ CLUSTERING GPS TRAJECTORIES

Although through discovering frequently visited places can reveal human mobility patterns

in a sense, we attempt to shed some light on human mobility patterns in a more detailed

manner. That is to say, we want to use not only the data collected from the frequently

visited places but also all the user mobility data. Therefore, in this thesis, one of our goal

is to cluster GPS trajectories so as to find the common patterns existing in GPS data. A

applicable way to achieve this goal is to cluster GPS trajectories.

Researchers have developed many methods for clustering GPS trajectories

[Bian et al., 2018], [Castro et al., 2013]. Some researchers used K-means

[Jiang et al., 2012], [Ashbrook et al., 2003] in their work. However, K-means cannot

handle the trajectories with complex data shapes or noise because its clustering metrics

is based on the Euclidean distance. Besides, similar to Gaussian Mixture Models, it also

needs the prior knowledge of cluster number as we mentioned before.

DBSCAN is capable of dealing with the data with arbitrary shapes, therefore it can be

used to cluster GPS trajectories [Tang et al., 2015], [Yu et al., 2017]. However, it treats

the non-core data points as noise so it cannot deal with unevenly distributed data. From

our study, we argue that the trajectory parts with less data density are also essential to

demonstrate the human mobility, thus DBSCAN is not suitable for our task. Dynamic

Time Warping (DTW) is a sequence aligned approach that is able to measure the simi-

larity between two different time series regardless of sequence lengths and time order-

ing [Agrawal et al., 1993]. However, when it is used to measures the similarity of two GPS

trajectories, it can be easily affected by noise. Therefor DTW is not suitable for our task

either.

16 CHAPTER 2. STATE OF THE ART

In particular, some researchers focus on discovering the correlations between locations

through the use of the user location history [Khetarpaul et al., 2011], [Zheng et al., 2011].

Furthermore, they utilized the travel experiences of the users and the correlations be-

tween the visited locations to construct a personalized location recommendation system.

In the work of [Xiao et al., 2010], the researchers attempted to find the similar users by

estimating the closeness of their GPS trajectories. To this end, first, they build the seman-

tic location history (SLH), for instance, ’school’ → ’bus stop’ → ’home’. Then, they esti-

mated the similarities between different users by using the maximal travel match (MTM)

algorithm. [Lou et al., 2009] proposed a global map-matching method, ST-Matching algo-

rithm. Compared to other methods, this algorithm considers both the spatial and topolog-

ical structure of the road networks. In addition, it takes the speed and temporal constraint

of the GPS trajectories into count. In the study of [Zheng et al., 2010b], the authors aimed

to construct a user-specific recommendation system through estimating the correlations

between different trajectories. In order to do so, they used the travel experiences of the

users and the sequentiality of the locations.

However, the aforementioned methods have their limitations. Clustering real-world GPS

trajectory data is a very tricky problem because, firstly, different trajectories may have

different data lengths due to the data collecting mechanism; secondly, the shapes of the

trajectories may be very complex and unevenly distibuted in space in some cases; thirdly,

GPS data may contain noisy information. Therefore, in order to handle these problems,

we need to devise a novel method to achieve our goal. In our work, we propose a prob-

abilistic approach, in which we estimate the probability densities of the GPS trajectories

first, then use the Kullback-Leibler divergences as the distance metrics to cluster the GPS

trajectory data. By doing so, we can avoid the aforementioned issues successfully.

2.2/ PREDICTING NEXT USER LOCATION

Forecasting the next places that users will visit is an interesting research topic. It can be

useful for many applications. For instance, it can be used for travel destination recom-

mendation for tourists. Moreover, human behavior is highly related to locations, thereby

we can improve the predicting accuracy by using the smartphone usage contextual in-

formation, e.g., temporal information, application usage, call logs and WiFi status, etc.

2.2. PREDICTING NEXT USER LOCATION 17

The next-place prediction can be classified into two groups of learning tasks. One is to

predict the next time-slot location, the other kind is to predict the next visit location. The

predicting task of next time-slot location is to predict the place where the users stay in the

next-time slots.

2.2.1/ MACHINE LEARNING-BASED PREDICTION METHODS

In [Baumann et al., 2018] and [Do et al., 2014], the authors applied various machine

learning techniques to accomplish both the next time-slot location prediction and the

next-place prediction. In particular, they exploited how different combinations of contex-

tual features related to smartphone usage can affect the predicting accuracy. Meanwhile,

they also compared the predicting performance of individual models and generic models.

One class of the task is to predict the transitions among the places, i.e., the next visit

location. In the task, different tasks are regarded as a set of separated places and the

data related to these places can be either semantic labels or spatial coordinates.

In this thesis, in particular, we focus on predicting next visited places. This task can be

regarded as a time series prediction task. A time series is a series of datapoints indexed

in the order of time appearance. Since human behavior is stochastic by nature, thus

deterministic may cause the overfitting issue. Overfitting is a phenomena that after we

train a the model, the trained model fits the training data too well but fails to have good

performance on the testing data. This may be due to the limited amount training data or

noise in the training data. To overcome this difficulty, some probabilistic models, which

leverage the conditional probabilities to make predictions, can be the alternative options.

For the events A and B, the conditional probability P(A|B) is defined as:

P(A|B) =
P(A, B)

P(B)
(2.1)

where P(A, B) is the joint probability and P(B) is the marginal probability.

In the context of predicting the location of users, one can let B be some context events

related to the location information, for instance, the hour of the day or the day of the week,

and A be the next visit place. If we can calculate the marginal probability P(B) and the

joint probability P(A, B), then we can leverage Eq. (2.1) to predict the next visit place via

computing the conditional probability P(A|B).

18 CHAPTER 2. STATE OF THE ART

Based on this idea, in [Do et al., 2012], the researchers developed the contextual condi-

tional models for both the next-place prediction and the visit duration prediction by cal-

culating the conditional probabilities between contextual features. The duration model is

based on mixed log-Normal distributions of relation contextual information. In order to

increase the fidelity of the prediction, they developed a general model and personalized

model.

In [Do et al., 2015] and [Peddemors et al., 2010], the researchers presented

the probabilistic prediction frameworks based on Kernel Density Estimation

(KDE) [Davis et al., 2011]. KDE is a non-parametric method in statistics to esti-

mate Probability Density Function (PDF). KDE casts the problem of PDF estimation

into data smoothing task and one of the key issue is choosing the proper band-

width. [Do et al., 2015] utilized conditional KDE to predict the mobility events and

[Peddemors et al., 2010] devised a set of ad hoc kernels for different context information

types. Additionally, [Scellato et al., 2011] proposed to use nonlinear time series analysis

of the arrival time and residence time for location prediction.

Various machine learning models have been applied to next-place prediction, such

as Naive Bayes (NB) [Muhlenbrock et al., 2004], Markov models [Yu et al., 2017],

Hidden Markov Models (HMMs) [Cho, 2016], Dynamic Bayesian Networks

(DBNs) [Etter et al., 2013], [Patterson et al., 2003], etc. These models attempt to

forecast the future states of human behavior by computing the state transition proba-

bilities. Nevertheless, these methods have their disadvantages, when the number of

possible states expands, the calculation load will grow exponentially.

[Liao et al., 2007] introduced a hierarchical Markov model which can model a the daily

moments of users in urban areas. This model utilizes not only raw GPS data but also

semantic information, such as different transportation modes. The author also used the

Rao–Blackwellized particle filter [Doucet et al., 2013] to improve inference efficiencies.

Bayesian Networks [Heckerman, 2008] are a kind of Probabilistic Graphical Models

(PGMs). Bayesian network represents the variables and the dependencies between them

by using Directed Acyclic Graph (DAG). Normally, devising a Bayesian Network requires

domain knowledge from experts, which is not always easy to do.

2.2. PREDICTING NEXT USER LOCATION 19

Figure 2.3: The structure of a Bayesian Network.

The model structure of a classic Bayesian network is illustrated in Fig. 2.3, where A ∼

G represent different variables and the arrows denote the dependencies between the

variables.

Figure 2.4: The structure of a Dynamic Bayesian Network.

The model structure of a Dynamic Bayesian Network is illustrated in Fig. 2.4, where t

is the time point, A, B and C represent different variables and as opposed to classic

Bayesian networks, the dependencies between variables are related to time in the Dy-

namic Bayesian Network.

However, the aforementioned conventional machine learning models are not applicable

to WiFi fingerprint-based user location prediction. Because to represent the time series

state transition, due to the complex relationship between the WiFi RSSI values and the co-

ordinates, neither Kalman filter-based approaches [Yang et al., 2019], Bayesian network-

based model or hidden Markov model-based approaches [Krogh et al., 2001] are suitable

for the tasks.

20 CHAPTER 2. STATE OF THE ART

2.2.2/ DEEP LEARNING-BASED PREDICTION METHODS

In order to solve this problem, we can resort to deep learning techniques, for instance,

Recurrent Neural Networks (RNNs) [Elman, 1990]. The RNN is a widely used deep

learning model specializing in time series prediction. The unfold structure of a RNN is

depicted as in Fig. 2.5. The model structure of a RNN consists of the input layer, the

hidden layer and the output layer as shown in Fig. 2.5. RNNs have other two variants, the

Long Short-Term Memory (LSTM) [Gers et al., 1999] and Gated Recurrent Units (GRUs)

[Chung et al., 2014]. LSTM solves the dependency problem in RNNs using a special

structure. A LSTM unit has three gates, namely, an input gate, an output gate and a forget

gate. These gates regulate the cell states of the LSTM. The GRU adopts a lighter struc-

ture compared to the LSTM while they has similar performance. In [Hoang et al., 2019],

the authors compared different types of Recurrent Neural Networks including the vanilla

RNN model, the Long Short-Term Memory model, the Gated Recurrent Unit model and

the bidirectional LSTM [Graves et al., 2005] for accurate RSSI indoor localization. They

also employed a weighted filter for both input and output layers to enhance the sequential

modeling accuracy.

Figure 2.5: The architecture of a Recurrent Neural Network.

2.3. INDOOR USER LOCATION RECOGNITION 21

2.3/ INDOOR USER LOCATION RECOGNITION

Though GPS can provide the accurate information of user position, the disadvantage of

GPS data-based methods is that GPS modules only function outdoors. Therefore, in in-

door environment, we need to utilize WiFi fingerprint-based approaches as an alternative

to study human mobility (other methods, for instance, laser-based methods, could be the

options as well, however, in this thesis we only focus on smartphone usage data). WiFi

fingerprint data records the Received Signal Strength Indicator (RSSI) values, which are

numerical vectors related to the actual geographic location of smartphone users. Since

WiFi fingerprints cannot directly be used to localize smartphone users, it needs to be

labeled manually. The label values can be the building IDs, floor IDs or GPS coordinates.

In the literature, researchers have explored various types of machine learning techniques,

both conventional machine learning and deep learning methods, on location recognition

and prediction with WiFi fingerprint data. There are different kinds of research tasks

related to WiFi fingerprints. Some researchers used WiFi fingerprints to identify building

IDs and floor IDs, which can be regarded as classification tasks.

2.3.1/ CLASSIFICATION-BASED LOCATION RECOGNITION

For classification tasks, WiFi fingerprint data is labeled with building IDs and Floor

IDs. Many conventional machine learning algorithm can be used for this type of clas-

sification task, for example, Decision Tree (DT) [Wu et al., 2008], K-nearest neighbors

(KNN) [Bozkurt et al., 2015], Naive Bayes (NB) [Wu et al., 2008], Neural Networks (NNs)

[Nowicki et al., 2017], Support Vector Machine (SVM) [Cortes et al., 1995], etc.

One widely used method is called the Classification and Regression Tree (CART)

[Loh, 2011]. It is a kind of decision tree model, which can be used for both classifica-

tion and regression tasks. CART is prone to be overfitting in practice. Therefore, in

order to improve the performance, the CART method can be used as the basic esti-

mators for the bagging method [Breiman, 1996] or the boosting method [Zhou, 2012].

For instance, Random Forest (RF) is a frequently used ensemble method called bag-

ging [Breiman, 1996]. To overcome the overfitting problem, Random Forests utilize the

bootstrap aggregating technique to decrease the variance of each decision tree.

22 CHAPTER 2. STATE OF THE ART

Support Vector Machine (SVM) [Cortes et al., 1995] is another popular method. SVM

is a kernel method which can be applied for both classification and regression. In a

classification problem, SVM aims to find the optimal hyperplane to separate data.

In the work of [Bozkurt et al., 2015], the authors compared many traditional machine

learning methods, for classifying buildings, floors and regions. In [Cramariuc et al., 2016],

the authors clustered the 3D coordinates data by K-means and clustered the RSSI data

by the affinity clustering algorithm, respectively.

Since WiFi fingerprint data are usually high dimensional, some deep learning tech-

niques can be utilized for dimension reduction. Dimension reduction is to trans-

form data from a high dimensional space to a rather low dimensional space while

the information in the data retains. Because using high dimensional data to train

models directly may be too computationally expensive and easy to be overfitting.

In [Nowicki et al., 2017], [Kim et al., 2018], the authors used auto-encoders to reduce the

input dimension before using a Multi-Layer Perceptron (MLP) to classify buildings and

floors.

One essential issue of using WiFi fingerprint data is to deal with the high dimen-

sionality issue. Therefore, in some tasks, training a model to predicting the tar-

gets through using the learnt low latent representation is more accurate than us-

ing the original input data. In order to reduce the dimension, some deep learning-

based dimension-reduction methods like Autoencoders (AEs) can be an appropri-

ate choice [Nowicki et al., 2017], [Song et al., 2019], [Kim et al., 2018]. Autoencoders

(AEs) [Hinton et al., 2006] are unsupervised deep learning models used to compress

input data. An Autoencoder contains an encoder and a decoder as shown in Fig. 2.6.

During the training process, the encoder aims to learn a low-dimension representation

of the input while the decoder is to reconstruct the original input. After the training pro-

cess, we can obtain the latent representation of the input. Therefore, Autoencoders are

commonly used for dimension reduction.

2.3. INDOOR USER LOCATION RECOGNITION 23

Figure 2.6: The architecture of an Autoencoder.

2.3.2/ ACCURATE LOCATION RECOGNITION

However, treating user the location recognition problem as classification tasks is only

able to localize users at the accuracy level of buildings or floors. In some cases, we

need to know the exact coordinates of users to proceed some tasks, for example, indoor

navigation. In this case, we ought to frame location recognition as a regression problem.

It means that we use WiFi RSSI vectors as the learning input and use the actual user

location coordinates as learning targets of the proposed models.

Conventional machine learning models such as, Decision Tree, K-nearest neigh-

bors and Random Forests can be used for such regression tasks. Specially,

in [Torres-Sospedra et al., 2015], the researchers compared 51 different distance met-

rics to investigate the most suitable distance functions for accurate WiFi-based in-

door localization. Some researchers used Gaussian Processes (GPs) to model the

relations between the WiFi signal strengths and the corresponding indoor locations

[Ferris et al., 2007], [Hähnel et al., 2006], [Yiu et al., 2015]. The Gaussian process is a

type of stochastic process. The GP uses the kernel methods to measure the similarity

between datapoints and to predict new values. The main drawback of the GP is that it is

highly computationally expensive thus it is not suitable for datasets with large scales.

Besides, the aforementioned conventional machine learning models, we can also adopt

advanced deep learning methods to slove the WiFi fingerprint-based location recognition

problems. For accurate positioning, namely, interpreting WiFi RSSI values into actual

numerical coordinates, the main issue of using conventional neural networks is overfitting.

24 CHAPTER 2. STATE OF THE ART

For a traditional neural network, once it is trained, it can be regarded as a deterministic

model (even the training process is stochastic). The neural network can be described as

follow:

y = F (x; w) (2.2)

where x and y are the input and output of the NN, respectively, F represents the neural

network structure and w are the weights of the NN.

Accordingly, the training loss (for instance, typically, mean squared errors) of NNs can be

described as follow:

Loss =
1
N

N∑
n=1

(ŷn − yn)2 (2.3)

where N is the total number of the input, ŷ is the model target and n is the mini batch size.

In the research of [Song et al., 2019], the authors used an auto-encoder network to re-

duce the data dimension, then used a CNN to proceed accurate user positioning. Deep

learning methods, such as Convolutional Neural Networks (CNNs) [LeCun et al., 1998],

Autoencoders (AEs) [Hinton et al., 2006] and Recurrent Neural Networks (RNNs) also

have been utilized in WiFi fingerprint data-based positioning tasks. For instance,

[Ibrahim et al., 2018] used a CNN model for time-series analysis. Generally, in order

to provide good wireless Internet connection, modern buildings have many different WiFi

access points, thus RSSI value data in many situations, can be very high dimensional.

Due to this reason, it is reasonable to reduce the data dimension before carrying out a

regression or classification task using WiFi fingerprints.

Principal Component Analysis (PCA) [Abdi et al., 2010] is a dimension reduction tech-

nique. PCA calculates the correlation matrix of original input data first, and then proceeds

eigenvalue decomposition on the correlation matrix. However, in our case, each feature of

the WiFi RSSI data has the equal contribution to the output, therefore PCA is not suitable

for our problem.

Convolutional Neural Networks are a kind of deep neural networks that are widely used

for images analysing, signal processing and natural language processing. The CNN in-

cludes various operations such as convolution operation, pooling operation and flatting

operation. Each input channel of the CNN represents different colors of images. Convo-

lution operation is to use a filter, which is a matrix, to detect the features of images. The

2.3. INDOOR USER LOCATION RECOGNITION 25

size of the matrix is called the kernel size. The stride is the shift length of the kernel in

the convolution operation. After convolution operation is pooling operation, which aims to

reduce the dimension of the convolved features and find the dominant features. There

are two types of pooling, max pooling and average pooling. The difference is that max

pooling is to return the maximum values of the convolved features while average pooling

is to return the average values of all convolved features. After the pooling is to use a flat-

ten layer to connect a MLP, for example, a classifier or a regressor. The model structure

of a typical CNN is illustrated in Fig. 2.7.

Figure 2.7: The architecture of a Convolutional Neural Network.

In many situations, a NN model is powerful enough to obtain satisfying results. However,

in some cases, for instance, to solve a high non-Gaussian inverse problem (which means

that a input value may correspond to multiple possible output values), using a traditional

deterministic neural networks will lead to very poor modeling results [Bishop, 2006]. A

good solution to this issue is to seek for a probabilistic framework that can calculate

conditional probability distributions between input and output.

A class of probabilistic methods is called Maximum Likelihood Estimation (MLE), which

uses likelihood as the optimization objective. The MLE methods are flexible but prone

to be overfitting, especially when it comes to the cases in which the data are sparse or

noisy.

p(θ|D) ∝ p(D|θ) (2.4)

where D is the dataset and θ is the model parameters. p(θ|D) is the posterior and p(D|θ)

is the likelihood.

26 CHAPTER 2. STATE OF THE ART

Mixture Density Networks (MDNs) are deep learning models using the Maximum Like-

lihood Estimation method [Bishop, Christopher M, 1994]. In a MDN, the final output is

sampled by a mixture distribution rather than computed directly as opposed to conven-

tional neural networks. One advantage of MDNs is that they can be applied to an estima-

tion situation in which a large variety lies. For instance, we can incorporate more mixture

modles of Gaussians to a MDN to enhance its estimating capacity for more complex dis-

tributions. However, as a MLE approach, MDNs also have obvious disadvantages. First,

it needs to set some hyper-parameters properly (i.g., the mixture number of for a MDN),

otherwise, it may not provide the desirable results due the underfitting or overfitting is-

sue. Moreover, MLE methods may be severely biased when the training sample number

are small, thus MDNs are not suitable for some tasks, for instance, the supervised step

in semi-supervised learning. In practice, we find that MDNs suffer from computational

instability when the mixture number at the output layer is large as well.

Figure 2.8: The architecture of a Mixture Density Network.

As demonstrated in Fig. 2.8, k is the mixture number, πk is the weight of the Gaussian, µk

is the mean and σk is the variance. In contrast to conventional neural networks, a Mixture

Density Network deploys a mixed Gaussian distributions at the final output layer, so the

MDN acquires the final output by sample from the mixed Gaussian distributions instead

of using deterministic functions. This enables the MDN to solve the inverse-Gaussian

problem.

In contrast with MLE methods, Maximum A Posteriori (MAP) methods consider not only

the likelihood but also the prior of model parameters. MAP methods can be described as

2.3. INDOOR USER LOCATION RECOGNITION 27

follow:

p(θ|D) ∝ p(D|θ)q(θ) (2.5)

where, p(θ|D) is the prior of the model parameters q(θ).

Compared to MLE, MAP is less easily to be overfitting and more robust to noise because

it takes the prior of model parameters in count. MAP models can be solved by Varia-

tional Inference (VI) [Blei et al., 2017], [Zhang et al., 2018] or Markov chain Monte Carlo

(MCMC) [Gilks et al., 1995].

Based on the idea of MAP, to alleviate the disadvantages of MDNs, Bayesian Neu-

ral Networks (BNNs), which apply Bayesian inference, have been introduced in

[Hernández-Lobato et al., 2015]. BNNs follow the scheme of Maximum A Posterior esti-

mation, in which the prior knowledge of model parameters and likelihood are both consid-

ered. As a result, MAP has the regularizing effect which can prevent overfitting. Unfortu-

nately, in practice, we find that BNNs are not flexible enough for very complex distribution

like our cases, i.e., recognizing user coordinates with WiFi fingerprints.

Figure 2.9: The architecture of a Bayesian Neural Network.

As for other MAP deep learning models, Variational Autoencoders (VAEs)

[Kingma et al., 2013] are deep latent generative models trained in a unsupervised man-

ner. Like conventional Autoencoders, a VAE consists of an encoder network and a de-

coder network. While the difference is that VAEs are designed to generative new image

28 CHAPTER 2. STATE OF THE ART

samples and the latent variables of VAEs are stochastic. VAEs adopt two special tech-

niques to infer the model parameters, one is called Variational Inference and the other is

called the reparameterization trick. The structure of a VAE is depicted as in Fig. 2.10.

Figure 2.10: The architecture of a Variational Autoencoder.

Table 2.2: Comparisons of Different Deep Learning Models

Model Learning Scheme Learning Purpose

Autoencoders Unsupervised Dimension reduction

Convolutional Neural Networks Supervised Feature extraction

Mixture Density Networks Supervised Regression

Bayesian Neural Networks Supervised Regression/classification

Recurrent Neural Networks Supervised Sequential prediction

Variational Autoencoders Unsupervised Data generation

Table 2.2 summarises the differences between the popularly used deep learning models.

As we explained before, the data used for our study are GPS coordinate data and WiFi

fingerprint data. These data commonly have the issues of sparsity, noise and high dimen-

sionality. If we use conventional methods, it will result in poor modelling performance. For

this reason, in this thesis, we propose a series of probabilistic methods to solve the afore-

mentioned problems. First, for clustering GPS trajectories, we devise a novel method

using Dirichlet Process Gaussian Mixture Models to estimate the probability densities of

the trajectories instead of computing the Euclidean distances. Second, to predict the next

indoor location, we design a deep learning model combining a CNN sub-model, a RNN

2.3. INDOOR USER LOCATION RECOGNITION 29

sub-model and a MDN sub-model, which allows us to detect the high dimensional fea-

tures and avoid overfitting. Third, in order to recognize accurate indoor user location, we

suggest that, compared to use the WiFi fingerprint data directly, it is better to use a rep-

resentation of the input data. Based on this idea, we devise a Variational Autoencoder-

based semi-supervised learning model and a Variational Information Bottleneck-based

model, respectively. In the following chapters, the proposed methods in our work will be

introduced.

3

DISCOVERING DAILY OUTDOOR

MOBILITY PATTERNS

3.1/ INTRODUCTION

In this chapter, we focus on discovering the daily mobility patterns of multiple users in a

specific region. Our purpose is to discover the mobility patterns for each individual based

on their GPS location data. In order to do so, we need to cluster the daily trajectories of

the users.

Figure 3.1: GPS data collected from a randomly selected user, different colors represent
different data-collecting days.

As shown in Fig. 3.1, the mobility patterns of one individual consists of many different tra-

31

32 CHAPTER 3. DISCOVERING DAILY OUTDOOR MOBILITY PATTERNS

jectories (this data is from the MDC dataset [Kiukkonen et al., 2010], [Laurila et al., 2012],

the detailed data description will be presented in the later section).

We hypothesize that the daily mobility of a user is rather regular and there are common

mobility patterns shared among different daily trajectories. Generally, one may follow

the regular daily itineraries, for instance, home → work place/school → home. Yet, on

different days, the daily itineraries may not be the same. For instance, on the way to

home, one may take a detour to do shopping in a supermarket. Hence, the objective of

our research is to discover all the potential daily mobility from the data with the location

information.

Figure 3.2: One randomly selected daily trajectory from a user.

We extract each day’s trajectory from the whole dataset as shown in Fig. 3.2. It reveals

that a daily trajectories recorded by GPS data is not distributed evenly in space, and is

even not continuous in some areas. It may be caused by the data collecting procedure:

some data collecting time range is actually relatively short (less than 24 hours, in fact,

only few hours in some occasions), which leads to the data sparsity problem.

In order to overcome the data sparsity issue and to exploit as much information as pos-

sible from the available GPS data, we argue that a reasonable way to describe the daily

trajectories is to estimate the probability density of the location data. And the relationships

among the trajectories can be represented by their probability densities. As a result, we

can discover all the mobility patterns for each user.

3.2. METHOD 33

The tasks in this chapter are summarized as follows:

• Task 1: Estimating the probability density of each day. We will compare the results

of the Gaussian Mixture Model (GMM) and the Dirichlet Process Gaussian Mixture

Model (DPGMM) [Rasmussen, 2000];

• Task 2: Measuring the closeness between different trajectories. We will use the KL

divergences as the metrics;

• Task 3: Discovering the similar mobility patterns among all the recorded daily tra-

jectories. This can be regarded as a clustering problem;

• Task 4: Comparing the DPGMM-based algorithm with the GMM-based algorithms;

• Task 5: Identifying the minimum data length for discovering all the mobility patterns.

3.2/ METHOD

From Fig. 3.1 and Fig. 3.2, we can see that the GPS location data points are randomly

spatially distributed. Besides, the distribution of each day consists of unknown number of

heterogeneous sub-distributions. Therefore, it is reasonable to adopt the mixed Gaussian

models to estimate the probability densities of daily mobility. The proposed clustering

algorithm is summarized as follows:

• First, we estimate the probability densities of the trajectories via the Dirichlet Pro-

cess Gaussian Mixture Models [Rasmussen, 2000];

• Second, we use the Kullback-Leibler (KL) divergence (computed via Monte Carlo

sampling) as the distance metrics;

• Finally, we propose an automatic clustering algorithm based on DPGMM and KL

divergence.

3.2.1/ PROBABILITY ESTIMATION

Since the daily trajectories are composed of different geo-locations, such as roads,

homes, schools and offices, we need to use different sub-models to represent these

34 CHAPTER 3. DISCOVERING DAILY OUTDOOR MOBILITY PATTERNS

geo-locations. One feasible way is to combine a set of sub-models.

3.2.1.1/ GAUSSIAN MIXTURE MODELS

Gaussian Mixture Models (GMMs) are composed of a fixed number K of sub-components.

The probability distribution of a GMM can be described as follow:

p(x) =

K∑
k=1

πk p(x|θk) (3.1)

where x is the observable variable, πk is the assignment probability for each sub-model,

with
∑K

k=1 πk = 1, (0 ≤ πk ≤ 1), θk is the internal parameters of the base distribution.

Let zn be the latent variables to indicate the category assignment of the sub-models, then

zn ∼ Categorical(zn|π)
K∑

k=1

znk = 1 (3.2)

where zn = {zn1, zn2, ..., znk, ..., znK}, in which only one element znk = 1; it means that xn is

related to θk.

If the base distribution is a Gaussian, then

P(x|θk) = N(x|µk,Λ
−1
k) (3.3)

where µk is the mean vector and Λk is the precision matrix.

Therefore, an observable sample xn can be drawn from a GMM according to

xn ∼

K∏
k=1

N(xn|νk,Λk)znk (3.4)

As it is illustrated above, one crucial issue of GMM is to pre-define the number of com-

ponents K. This is a tricky problem because the probability distribution for each day’s

mobility is not identical and we do not have such prior knowledge in practice. Hence,

using the GMM models with fixed K is not suitable in our case.

3.2. METHOD 35

3.2.1.2/ DIRICHLET PROCESS GAUSSIAN MIXTURE MODEL

Alternatively, we resort to the Dirichlet Process Gaussian Mixture Model

(DPGMM) [Rasmussen, 2000] (which is also called the Infinite Gaussian Mixture

Model). As compared to the standard Gaussian Mixture Model, by using a Dirichlet

Process (DP) prior for the mixture number, DPGMM does not need to specify the number

of components in advance. Fig. 3.3 presents the graphical structure of the Dirichlet

Process Gaussian Mixture Model.

Figure 3.3: The plate representation of the Dirichlet Process Gaussian Mixture Model.

In Fig. 3.3, the nodes represent the random variables and especially, the shaded node is

observable (the available dataset) and the unshaded nodes are unobservable (the latent

variables); the edges represent the conditional dependencies between variables; the vari-

ables are within the plates means that they are drawn repeatedly. According to Fig. 3.3,

the Dirichlet Process can be depicted as follow:

G ∼ DP(α, G0) (3.5)

G is a random measure, which consists of infinite base measure G0 and λ is the hyper-

parameter of G0 (in our case, this is a set of Gaussian distributions), α ∼ Gamma(1, 1) is

the concentration parameter, N is the total sample number, θk is the parameters of base

distribution, xk is the observable data for θk, zk is the latent variables that indicates the

category of xk.

36 CHAPTER 3. DISCOVERING DAILY OUTDOOR MOBILITY PATTERNS

G can also be explicitly depicted as follow:

G(θ) =

∞∑
k=1

πkδθk (3.6)

where θk ∼ G0(λ), δ is the Dirac function, πk determines the proportion weights of the

clusters and the δθk is the prior of the θk to determine the location of clusters in space.

The Dirichlet Process can be implemented via two approaches, one is called the Chinese

Restaurant Process (CRP) [Aldous, 1985] and the other is called the Stick-Breaking Pro-

cess (SBP) [Sethuraman, 1994]. In practice, the Chinese Restaurant Process is more

compatible with Markov chain Monte Carlo sampling method while the Stick-Breaking

Process is more compatible with Variational Inference. More importantly, in terms of

computational efficiency, Variational Inference is much faster than Markov chain Monte

Carlo sampling.

Since our dataset is of large scale, we adopt the Stick-Breaking Process to implement

the Dirichlet Process as the prior for πk. The Stick-Breaking Process can be described as

follow:

πk = βk

k−1∏
j=1

(1 − β j) k ≥ 2 (3.7)

where βk ∼ Beta(1, α).

Figure 3.4: The Stick-Breaking Process.

3.2. METHOD 37

Fig. 3.4 demonstrates the sampling scheme of the Stick-Breaking Process. In SBP, the

”stick” breaks into different sub-parts with respect to different probabilities. When we want

to create a new sub-model, we can break the remain of the ”stick” and this process can

be proceeded infinitely. As a result, we can obtain the infinite sub-mixture models.

Since P(x|θ) is Gaussian, θ = {µ,Λ}. µ is the mean and Λ is the variance. Further, let G0 be

a Gaussian-Wishart distribution [Rasmussen, 2000], then, µk,Λk ∼ G0(µ,Λ). Therefore,

similarly, we can draw an observable sample xn from DPGMM:

xn ∼

∞∏
k=1

N(xn|νk,Λ
−1
k)

znk (3.8)

Variational Inference is used to solve the DPGMM models. As compared to Gibbs sam-

pling, a type of Markov chain Monte Carlo (MCMC) method which consumes a large

mount of calculating time, Variational Inference is relatively fast [Blei et al., 2006] espe-

cially when the dataset is large.

3.2.2/ COMPUTING KL DIVERGENCE

The Kullback-Leibler (KL) divergence is a metrics to evaluate the closeness between two

distributions. For continuous variables, the KL divergence DKL(p||q) is the expectation

of the logarithmic difference between the p and q with respect to probability p and vice

versa. From Eq. (3.9) and Eq. (3.10), it can be seen that the KL divergence is non-

negative and asymmetric. Here, ”asymmetric” means the distance from p to q is different

from the distance from q to p unless they are identical distributions. In many occasions,

the inequality of the KL divergence is notorious. However, in our method, on the contrary,

we take advantage of the characteristics of inequality to reveal the similarities among

different trajectories instead of using the symmetric metrics (for example, the Jensen-

Shannon divergence [Fuglede et al., 2004]).

DKL(p||q) =

∫ ∞

−∞

p(x) log
{

p(x)
q(x)

}
dx (3.9)

DKL(q||p) =

∫ ∞

−∞

q(x) log
{

q(x)
p(x)

}
dx (3.10)

38 CHAPTER 3. DISCOVERING DAILY OUTDOOR MOBILITY PATTERNS

There is no closed form to compute the KL divergence by the definition of Eq. (3.9) and

Eq. (3.10) for the Gaussian Mixture Models. Instead, we resort to the Monte Carlo simu-

lation method proposed in [Hershey et al., 2007]. Then, the KL divergence DKL(p||q) can

be calculated by:

DKLMC (p||q) ≈
1
n

n∑
i=1

log
{

p(xi)
q(xi)

}
(3.11)

where n is the sample sample for the Monte Carlo sampling.

Similarly, the KL divergence DKL(q||p) can be calculated by:

DKLMC (q||p) ≈
1
n

n∑
i=1

log
{

q(xi)
p(xi)

}
(3.12)

This method is to draw a rather large amount of i.i.d (independent and identically dis-

tributed) samples xi from distribution p to calculate DKLMC (p||q) according to Eq. (3.11) and

DKLMC (p||q) approximates DKL(p||q) as n → ∞. It is the same for implementing Eq. (3.10)

via Eq. (3.12). The results will be demonstrated in the later experiments. Furthermore, if

we define a representative trajectory for a mobility pattern then we can identify whether a

new trajectory belongs to this cluster by comparing it to the representative trajectory. To

this end, we need to set a threshold with a lower bound and an upper bound for the KL

divergence, then it can be used as the metrics to cluster mobility patterns.

3.2.3/ DPGMM-BASED TRAJECTORY CLUSTERING ALGORITHM

As mentioned before, our task is to find the trajectories which are mutually similar. For

this reason, we treat the different mobility patterns as different clusters in which the daily

trajectories are their sub-members. Even so, the trajectories within the same clusters

still can not be treated as identically distributed as other conventional clustering methods

because of different trajectory lengths. Hence, we need to devise an algorithm that is

able to cluster the trajectories based on the distribution similarity and the aforementioned

KL divergence can be applicable as the closeness metrics. Note that due to the large

data scale and the number of the potential clusters, a solution with high accuracy is not

acquirable in some cases. Therefore, instead of pursuing a very accurate result, our

purpose is to obtain a relative accurate result in a reasonable amount of calculating time.

3.2. METHOD 39

Algorithm 1 Mobility Pattern Discovering Algorithm
Input: X

Output: M

1: P← DPGMM(X) . probability density estimation

2: Initialize:M = {Mk} . create the mobility patterns set

3: while P , ∅ do

4: Xs = X1 . set the baseline mobility for Mk

5: Mk = {Xs} . create current pattern Mk

6: for d = 2, . . . ,D do

7: DKL ← (Ps, Pd) . measure similarity

8: if (min(DKL) < Th[0]) & (max(DKL) < Th[1]) then . two patterns are similar

9: add Pd to Mk . add new member

10: if DKL[0] > DKL[1] then

11: Ps ← Pd . change the baseline mobility

12: end if

13: end if

14: end for

15: remove Pd ∈ Mk from P . current pattern is finished

16: create Mk+1 . find new mobility pattern

17: add Mk+1 to M

18: end while

19: return M

40 CHAPTER 3. DISCOVERING DAILY OUTDOOR MOBILITY PATTERNS

Table 3.1: Variables Description

Variable Domain Description

d {1, 2, . . . ,D} Number of data collecting day

X {X1, X2, . . . , Xd, . . . , XD} Total GPS data (longitudes, latitudes

P {P1, P2, . . . , Pd, . . . , PD} Probability density for X

M {M1,M2, . . . ,Mk, . . .MK} Total mobility patterns

Mk {Xk1, Xk2, . . . , Xkn} Discovered mobility pattern

Th {lower bound,upper bound} Threshold for distinguishing patterns

DKL {DKL(p||q),DKL(q||p)} KL divergences

The proposed algorithm is shown in Algorithm 1 and its variables are described in Table

3.1. The first step of the clustering algorithm is to calculate the probability densities using

the Dirichlet Process Gaussian Mixture Models. At this step, we create a list, in which the

members are the probability densities of each trajectory. Then, the first cluster is created

with one trajectory as its first member and it also will be compared with other trajectories.

Afterwards, we select another daily trajectory in the list and calculate the KL divergences,

both DKL(p||q) and DKL(q||p). The new trajectory is added to the current cluster if the

minimum and maximum of the KL-divergences are smaller than the lower bound and

upper bound of the thresholds respectively at the same time. If the DKL(p||q) is smaller

than DKL(q||p), the new trajectory becomes the benchmark for the current cluster. An

alternative way to do this is to compute the probability density of the current cluster using

all the data of the discovered trajectories, however, the calculation cots will be expensive.

This step will be repeated until all the trajectories belonging to the current cluster are

discovered at the end of this iteration. Then, all the members of the current cluster are

removed from iteration because, we assume that each trajectories can only be a member

of one mobility pattern. At the start of a new iteration, a new cluster is created. The above

steps will be repeated until the list of the trajectory probability densities is empty. Finally,

all the mobility patterns are discovered.

It can be seen that our algorithm is designed to discover the latent mobility patterns

automatically without the pre-knowledge of the numbers of the existing patterns.

3.3. EXPERIMENTS AND RESULTS 41

3.3/ EXPERIMENTS AND RESULTS

3.3.1/ DATASET DESCRIPTION

We use the Mobile Data Challenge (MDC) dataset [Kiukkonen et al., 2010],

[Laurila et al., 2012] to validate our method. This dataset records comprehensive

smartphone usage information with fine granularity of time. The participants of the MDC

dataset are up to nearly 200 and the data collection campaign lasts more than 18 months.

This abundant information thus can be used to investigate individual mobility patterns for

our research.

In order to collect the individual location information, as compared to other methods, for

instance, through stand-alone GPS devices, using GPS-equipped smartphones is a more

practical way to have a larger group of participants without affecting their daily life.

In our study, we attempt to find the trajectories that belong to the same mobility patterns,

thus we focus the spatial information of the GPS records, namely, the latitudes and longi-

tudes and the time-stamps of the data are not considered. Meanwhile, since we consider

not only the significant places but all location records, we use the unlabeled data without

any semantic information.

3.3.2/ EXPERIMENTAL SETUP

In the conducted experiments, we randomly select 20 users with sufficient data. Each

user’s data is segmented by the time range of one day. Fig. 3.5 demonstrates the number

of data collecting days for each user. It can be seen that the data collecting days for

most users are more than 200. With such amount of data, we believe that it is possible to

discover the mobility patterns of individuals.

42 CHAPTER 3. DISCOVERING DAILY OUTDOOR MOBILITY PATTERNS

Figure 3.5. Number of data collecting days for each user.

However, as it is illustrated in Fig. 3.6 and Fig. 3.7, the data length of each day varies

from less than 4 hours to 24 hours. Most of them are less than 8 hours. Hence, we should

also be aware that some data may be missing because the GPS modules were turned

off or were not functioning. Consequently, it is one of the reasons that causes the data

sparsity problem. In the following sections, we will prove that our method can mitigate the

impact of data sparsity.

Figure 3.6. Empirical cumulative distribution of data collecting days.

3.3. EXPERIMENTS AND RESULTS 43

Figure 3.7. Empirical cumulative distribution of hours per data collecting day.

TABLE 3.2. DATA COLLECTING TIME.

Average Total

Collecting days for all users 300.25 days 6005.0 days
Collecting hours per day for all users 6.93 hours 41595.0 hours
Collecting hours per day for each user 6.67 hours 2084.65 hours

Table 3.2 summarizes the statistical temporal information about the GPS data for con-

ducting the experiments. To test the performance of our method, we will conduct 5 exper-

iments from different perspectives:

• We compare the DPGMM model with the GMM model on estimating the daily tra-

jectories probability density;

• We use that the KL divergence to measure the closeness of different trajectories;

• We test our method on each selected user data so as to find the daily mobility

patterns for each individual;

• We compare the results of the DPGMM models to a series of fixed-number compo-

nent GMM models;

44 CHAPTER 3. DISCOVERING DAILY OUTDOOR MOBILITY PATTERNS

• We run the algorithm on the varying-length datasets so as to identify the minimum

data length for discovering most mobility patterns of one individual.

3.3.3/ TASK 1: PROBABILITY DENSITY ESTIMATION

In this experiment, we compare the probability density estimation results of the GMM

model and the DPGMM model.

Figure 3.8. Distribution estimation by GMM (negative log-likelihood).

Figure 3.9. Distribution estimation by DPGMM (negative log-likelihood).

Fig. 3.8 and Fig. 3.9 show the density estimation results obtained by the GMM and the

3.3. EXPERIMENTS AND RESULTS 45

DPGMM, respectively. It can be seen that, compared to the GMM model, the result of

the DPGMM model is more smooth. It suggests that the DPGMM is not affected by the

number of components and it infers more information from the original data and it is less

influenced by data sparsity. That is to say, on the same dataset, the computational results

of the DPGMM have higher fidelity. Hence in our approach, we chose the DPGMM to

estimate the probability density of daily mobility.

3.3.4/ TASK 2: MEASURING DAILY TRAJECTORIES SIMILARITIES

In this experiment, we use the KD divergences as the metrics to measure the closeness

between different trajectories.

As shown in Fig. 3.10, Fig. 3.11, Fig. 3.12 and Fig. 3.13, we select 5 daily trajectories from

the data of one random user to present the KD divergences between different trajectories.

The baseline trajectory is the Trajectory 1 and the rest of trajectories are chosen to make

comparisons.

Figure 3.10. Trajectory 1 and Trajectory 2.

From Fig. 3.10, we can see that Trajectory 2 is nearly a subset of Trajectory 1 and thus

DKL(p||q) is larger than DKL(p||q). Their values are both small, thus Trajectory 2 and

Trajectory 1 can be regarded to belong to the same mobility pattern.

46 CHAPTER 3. DISCOVERING DAILY OUTDOOR MOBILITY PATTERNS

Figure 3.11. Trajectory 1 and Trajectory 3.

From Fig. 3.11, we can see that Trajectory 3 is very similar to Trajectory 1 and DKL(p||q)

almost equals DKL(q||p). Hence, they also are the members of the same mobility pattern.

Figure 3.12. Trajectory 1 and Trajectory 4.

From Fig. 3.12, we can see that Trajectory 4 share a small part with Trajectory 1 whereas

generally they are very different, thus DKL(p||q) and DKL(q||p) are both very large. There-

fore, it is reasonable to recognize Trajectory 4 and Trajectory 1 as different patterns.

3.3. EXPERIMENTS AND RESULTS 47

Figure 3.13. Trajectory 1 and Trajectory 5.

From Fig. 3.13, we can see that Trajectory 5 is totally different from Trajectory 1, thus

DKL(p||q) is small but DKL(p||q) are very large. So they naturally are not in the same

pattern.

TABLE 3.3. KL-DIVERGENCES BETWEEN DIFFERENT TRAJECTORIES.

p q DKL(p||q) DKL(q||p)

Trajectory 1 Trajectory 2 7.21 2.82

Trajectory 1 Trajectory 3 1.28 1.83

Trajectory 1 Trajectory 4 19.07 1269.47

Trajectory 1 Trajectory 5 3.08 996.17

According to the trajectories in the Fig. 3.10, Fig. 3.11, Fig. 3.12 and Fig. 3.13 and the

corresponding results in Table 3.3, it shows that the KL divergence is able to illustrate the

differences among the trajectories and can be the metrics for clustering.

48 CHAPTER 3. DISCOVERING DAILY OUTDOOR MOBILITY PATTERNS

3.3.5/ TASK 3: DISCOVERING DAILY MOBILITY PATTERNS

In this experiment, we will use the proposed algorithm to discover the similar mobility

patterns among all the recorded daily trajectories. We also will try to find how many

patterns each user has and how many trajectories each pattern has.

3.3.5.1/ DISCOVERED PATTERNS

The partial results of the data from different randomly selected users are demonstrated

in Fig. 3.14. It shows that, after clustered by our proposed algorithm, the data is split into

different mobility patterns.

Each cluster is composed of trajectories close to each other even if they are not dis-

tributed with the same density in the space. This proves our methodology is able to find

the different mobility patterns even under the condition of noise and discontinuous trajec-

tories.

Fig. 3.15 shows that our methodology is not only able to identify the different patterns in

the daily trajectories data but is also able to find the most representative trajectories for

each mobility pattern.

3.3. EXPERIMENTS AND RESULTS 49

Figure 3.14. Discovered mobility patterns of three random selected users. Different colors denote different days.

50 CHAPTER 3. DISCOVERING DAILY OUTDOOR MOBILITY PATTERNS

Figure 3.15. Representative trajectories for each discovered mobility patterns.

3.3. EXPERIMENTS AND RESULTS 51

3.3.5.2/ NUMBER OF PATTERNS AND TRAJECTORIES

Fig. 3.16 shows the number of discovered mobility pattern for all the users in our exper-

iments. We can see that the number of mobility patterns varies from 5 to more than 30

and most of them are about 10 to 15. It also can be found that the lengths of the data

collecting days are not proportional to the number of discovered mobility patterns, which

indicates that the results rely more on the individual behavior rather than the data lengths.

Figure 3.16. Number of discovered mobility patterns for each user.

3.3.5.3/ NUMBER OF MEMBERS FOR EACH PATTERNS

Fig. 3.17 depicts the number of members for each discovered mobility patterns for all

users. We can see that most mobility patterns consist of less than 50 trajectories. Nearly

40% of the patterns have only one trajectory, whereas few patterns have more than 100

trajectories.

52 CHAPTER 3. DISCOVERING DAILY OUTDOOR MOBILITY PATTERNS

Figure 3.17. Empirical cumulative distribution of the members of the discovered patterns.

One should notice that the number of discovered patterns depends on the Kullback-

Leibler divergence thresholds we set in the proposed clustering algorithm. When the

thresholds are small, it means that the condition to be in the same mobility pattern is

more strict and naturally the discovered mobility patterns are more and the members of

each patterns are less, and vice versa.

3.3.6/ TASK 4: COMPARISON TO OTHER MODELS

In this experiment, to compare the Dirichlet Process Gaussian Mixture Models, we use

a set of Gaussian Mixture Models with different numbers of components to estimate the

daily mobility probability densities in our proposed clustering algorithm. The metrics we

adopt to evaluate the results is the mean log-likelihoods. Higher log-likelihoods mean

more reliable results.

TABLE 3.4. OVERALL MEAN LOG-LIKELIHOODS OF DIFFERENT MODELS

Model Mean log-likelihood

KDE -51991.03
GMM-1 -26078.15
GMM-2 -38514.32
GMM-3 -52431.62
GMM-4 -63794.70
GMM-5 -73508.10
GMM-8 -101306.32
DPGMM -24871.78

3.4. CONCLUSION 53

The results shown in Table 3.4 indicate that changing the fixed number of component

Gaussian Mixture Models can not enhance the clustering performance. On the contrary,

the Dirichlet Process Gaussian Mixture Model can improve the clustering performance.

3.3.7/ TASK 5: VARYING DATA LENGTHS

In this experiment, in order to investigate how the data lengths, namely, the number of

days of the data, affect the final results. We utilize different data lengths which varies from

50 days to 350 days. The obtained results are shown in Fig. 3.18.

Figure 3.18. Average number of discovered patterns for different data collecting day length, error bars represent the
standard deviations.

It can be seen that, from 50-day data length to 200-day data length, the average discov-

ered mobility pattern numbers increase as the data length grows. While, when the data

length is larger than 200 days, the patterns numbers change marginally. According to the

results, we can say that, generally, a 200-day GPS dataset is large enough to discover

most of the mobility patterns of an individual.

3.4/ CONCLUSION

In this chapter, we present a probabilistic approach to discover human daily mobility pat-

terns based on GPS data collected by smartphones.

In our approach, human daily mobility is considered as sets of probability distributions.

54 CHAPTER 3. DISCOVERING DAILY OUTDOOR MOBILITY PATTERNS

The proposed approach consists of three steps. The first step is to estimate the probabil-

ity densities of the GPS daily trajectories. We argue that the Dirichlet Process Gaussian

Mixture Model is more appropriate than the standard Gaussian Mixture Model on this

issue. This argument is validated by the corresponding experimental results. Further, in

order to find the similar trajectories, one needs to measure the closeness between the

trajectories. For this task, we choose the Kullback-Leibler divergence as the distance

metrics. According to the computational results from the selected trajectories, we vali-

date that the KL divergences are able to measure the similarities among the trajectories.

Finally, we devised a novel automatic clustering algorithm combining the advantages of

both DPGMM and the KL divergence so as to discover human daily mobility patterns

without requiring the knowledge of the cluster numbers in advance.

For validation, we select the data of 20 random individuals from the MDC dataset to con-

duct a series of experiments. The results obtained show that our proposed approach can

discern different mobility patterns and select the most representative trajectories for each

mobility patterns from the GPS data. In addition, we also compare the DPGMM-based

algorithm with a group of GMM-based algorithms with various fixed-number components,

the results reveal that the DPGMM model performs better. Finally, testing our method on

varying-length dataset leads to the results which suggest that a 200-day GPS is generally

sufficient enough to discover most of the individual daily mobility patterns.

4

PREDICTING INDOOR LOCATION WITH

WIFI FINGERPRINTS

4.1/ INTRODUCTION

In the previous chapter, our work has focused on studying outdoor user mobility with using

the collected GPS coordinate data. In this chapter, in order to have a comprehensive

understanding of human mobility, we need to investigate user mobility from both indoor

and outdoor aspects. However, GPS data-based approaches are not suitable anymore for

studying indoor user mobility because GPS modules do not work well when smartphone

users stay indoors. Therefore, in this chapter, we choose to use WiFi fingerprint data to

study user mobility.

Our goal is to interpret the smartphone user location with the corresponding WiFi finger-

prints. This task can be regarded as a high dimensional time-series regression task. The

training input of our model are the RSSI value vectors and the training targets are the

corresponding coordinate values (2D). For our problem, the RSSI values of WiFi hotpots

are formulated into a series of one dimensional vectors, in which each element corre-

sponds to the RSSI value of a WiFi access point. And in the real world, a building may be

equipped with a relatively large number of WiFi hotpots to provide good wireless connec-

tions, which leads to the problem of high dimensionality. Meanwhile, due to the signal-

fading and multi-path effects, WiFi signals are not stable [Hoang et al., 2019]. Therefore,

a common neural network based regressor is not powerful enough to describe such com-

plicated relationship between WiFi signals and user location. Moreover, since this task

is a sequential prediction, the transition of the hidden states needs to be represented as

55

56 CHAPTER 4. PREDICTING INDOOR LOCATION WITH WIFI FINGERPRINTS

well.

The main contributions of our work in this chapter are summarized as follows:

• We devise a novel hybrid deep-learning model which allows us to predict the accu-

rate position of the smartphone users based on detected WiFi fingerprints;

• We conduct the evaluation experiments to compare our method with other deep-

learning methods;

• We vary the hyperparameters of the proposed model, i.e., the memory length of the

RNN and the mixture number of the MDN, to seek the best performance.

4.2/ METHOD

4.2.1/ CONVOLUTIONAL NEURAL NETWORK

In our first task, the input features are composed of the RSSI values of all the WiFi access

points (WAPs) in the buildings, therefore the input dimension can be very high. Since the

feature of WiFi fingerprint data represents the different WiFi WAP IDs. The adjacent

features suggests that they are close spatially in the real world. Therefore, their RSSI

values are more similar when the users are approaching compared to the WAPs that

are remote to them (it will be illustrated in the WiFi data samples in the experimental

part). For this reason, to deal with the high dimensionality problem, we resort to the

technique of Convolutional Neural Networks [LeCun et al., 1998]. CNNs are powerful

tools for detecting features and are widely used for tasks such as image processing,

natural language processing (NLP) and sensor signal processing.

4.2.1.1/ 1D CONVOLUTIONAL NEURAL NETWORK

In particular, since the input of our model are one dimensional RSSI value vectors,

we adopt the 1D Convolutional Neural Network to extract the properties of the high di-

mensional input. In literature, 1D CNN models are used to process one dimensional

data, such as medical data and sensor signal data [Zhao et al., 2019], [Li et al., 2017],

[Eren et al., 2019]. In a typical image-processing CNN, the filters are 2 dimensional (if

4.2. METHOD 57

the input are gray image) or 3 dimensional (if the input are RGB image). While in 1D

CNN, the filters are one dimensional, which can be seen as a set of sliding widows. Like-

wise, the output of the convolutional operations and the max pooling operations will be

one dimensional as well.

Figure 4.1. The structure of the one dimensional Convolutional Neural Network.

The model structure of one dimensional CNN is illustrated in Fig. 4.1.

4.2.2/ RECURRENT NEURAL NETWORK

To depict the state transitions in the time-series WiFi fingerprint data, we can adopt a

deep learning model called Recurrent Neural Network (RNN) [Elman, 1990]. RNNs are

widely used for natural language processing (NLP), computer vision and other time series

prediction task. In our model, we employ the RNNS to model the complicated relationship

between the input (RSSI values) and the output (user location) so as to forecast the user

location. As compared to other conventional machine learning model, another advantage

of using RNNs is that it is compatible with other deep learning model, such as CNNs.

In this section, we briefly review RNNs add their two variants, Long Short-Term Memory

networks [Hochreiter et al., 1997] and Gated Recurrent Unit (GRU) [Cho et al., 2014].

58 CHAPTER 4. PREDICTING INDOOR LOCATION WITH WIFI FINGERPRINTS

4.2.2.1/ VANILLA RNN

The state transitions of RNNs can be expressed as follow

ht = σh(Whxt + Uhht−1 + bh) (4.1)

where xt is the input, ht is the hidden state, σh is the activation function, Wh are the weights

from the input layer to the hidden layer, Uh are the weights in the hidden layers and bh are

the biases.

The output of a conventional RNN can be described as follow

yt = σy(Wyht + by) (4.2)

where yt is the output, σy is the activation function, Wy is the weight and by is the output

bias.

4.2.2.2/ LSTM

In some situations, RNNs may suffer from the long-term dependency issue during learn-

ing process [Hochreiter et al., 1997]. When we try to predict the output at the next time

point, we may only need the recent input not any further previous information, in this case

a vanilla RNN is capable of handling the problem. But for time-series prediction, in some

cases, only the recent information is not enough to learn the tasks, we need to consider

the further previous input in order to predict the output at the next time point. This case is

called the long-term dependency problem.

To address this issue, researchers proposed a variant of RNNs, called Long Short-Term

Memory (LSTM) networks [Hochreiter et al., 1997].The LSTM adopts a special structure

which consists of three gates, namely, an input gate, an output gate and a forget gate.

These gates regulate the cell states of the LSTM to avoid the long-term dependency

problem.

Let Ct be the cell state. The possible value of Ct is between 0 and 1. 1 means that the

information is completely kept while 0 means that the information is completely discarded.

Fig. 4.2 depicts the structure of the LSTM.

4.2. METHOD 59

The first step of LSTM is to compute the output of the forget gate which is to used to

decide how much old information will be retained.

ft = σy(Wy[ht−1, xt] + b f) (4.3)

where ft is the output vector of the forget gate, b f is the bias, [] is the concatenation

operation.

The second step of the LSTM is to compute the output the input gate. An input layer with

a sigmoid activation function, called the input gate layer, is used to decide how much new

information will be used.

it = σy(Wi[ht−1, xt] + bi) (4.4)

where it is the output vector of the input gate, Wi is the weights and bi is the bias.

In this step, we update the cell state as well. We need to calculate the candidate value of

the cell state, Ĉt.

Ĉt = tanh(WC[ht−1, xt] + bC) (4.5)

where WC is the weight and bC is the bias.

Figure 4.2. The structure of the Long-Short Term Memory network.

60 CHAPTER 4. PREDICTING INDOOR LOCATION WITH WIFI FINGERPRINTS

In order to update the cell state, we drop the old information based on the output of the

forget gate and add the new information base on the output of the input gate.

Ct = ft ∗Ct−1 + it ∗ Ĉt (4.6)

The last step of the LSTM is to compute the output.

ot = σ(Wo[ht−1, xt] + bo) (4.7)

where ot is the activation vector of the output gate, Wo is the weight and bo is the bias.

Finally, the hidden state is updated as well.

ht = ottanh(Ct) (4.8)

4.2.2.3/ GRU

More recently, the researchers proposed a variant of RNNs, Gated Recurrent Units

(GRUs) [Cho et al., 2014], [Chung et al., 2014], which has the similar accuracy as LSTMs

but less computing cost. The differences between LSTMs and GRUs are that GRUs

merge the forget gate and the input gate into one update gate, and merges the cell state

and the hidden state into one. By doing so, GRUs have a simpler structure than LSTMs.

The learning procedure of the GRU can be summarized as follows:

First, we update the update gate zt:

zt = σ(Wz[ht−1, xt] + bz) (4.9)

where Wz is the weight and bz is the bias.

Then, compute the output rt:

rt = σ(Wr[ht−1, xt] + br) (4.10)

where Wr is the weight and br is the bias.

Afterwards, we compute the candidate hidden state ĥt:

ĥt = tanh(Wh[ht−1, xt] + bC) (4.11)

4.2. METHOD 61

where Wh is the weight and bC is the bias.

Finally, we update the hidden state:

ht = (1 − zt) ∗ ht−1 + it ∗ ĥt (4.12)

where Wh is the weight and bC is the bias.

Figure 4.3. The structure of the Gated Recurrent Unit.

Fig. 4.3 depicts the structure of the GRU network.

[Greff et al., 2016] compared a number of the variants of RNNs, and the results show that

some variants have better performance than LSTMs on some certain tasks. Therefore, in

the latter experiments of this chapter, we will deploy these three RNN architectures in the

proposed model respectively for the comparisons.

4.2.3/ MIXTURE DENSITY NETWORK

A traditional neural network with a loss function, for instance, mean squared errors (MSE),

is optimized by a gradient-descent based method. Generally, such model can perform

well on the problems that can be described by a deterministic function f (x), i.e., each input

corresponds to an output of one specific value. However, for some stochastic problems,

one input may map to more than one possible values. Generally, this kind of problems are

62 CHAPTER 4. PREDICTING INDOOR LOCATION WITH WIFI FINGERPRINTS

better to be described by a conditional distribution p(y|x) than by a deterministic function

y = f (x). In such cases, traditional neural networks may not work as expected.

To tackle with this type of problems, we can replace the original loss function with a

conditional function. For a regression task, the Gaussian distribution can be a proper

choice. Moreover, utilizing the mixed Gaussian distributions can improve the representa-

tion capacity of the model. Based on this idea, the researcher proposed Mixture Density

Networks (MDNs) [Bishop, Christopher M, 1994]. In contrast with traditional neural net-

works, the output of a MDN is the parameters of a set of mixed distributions and the loss

function becomes the conditional probabilities.

For the target with continuous values (in our case, it is the user coordinates), we can

employ a set of Gaussian distributions at the output layer to sample it. Therefore, the

optimization process is to minimize the negative log-probability. Hence, the relationship

between the input and the output can be described as follow:

p(y|x) =

K∑
k=1

πk p(y|x; θk) (4.13)

where x is the input, K is the total mixture number, πk is the assignment probability for

each model, with
∑K

k=1 πk = 1, (0 ≤ πk ≤ 1), and θk are the internal parameters of the base

distribution. For Gaussian distributions, θk = {µk, σk}, µk are the means and σk are the

variances.

Accordingly, in the proposed model, the original output layer of the RNN, Eq. (4.2), is

rewritten as:

θt = σθ(Wθht + bθ) (4.14)

where θt is the output of the RNN sub-model and also the input of the MDN sub-model,

σθ is the activation function, Wθ are the weights and bθ are the biases.

After the training process, we can use the neural network along with the mixed Gaussian

distributions to represent the target distributions.

4.2. METHOD 63

4.2.4/ CONVOLUTIONAL MIXTURE DENSITY RECURRENT NEURAL NETWORK

Knowing the merits of the three aforementioned neural networks, we devised a novel

deep neural network architecture, called the Convolutional Mixture Density Recurrent

Neural Network (CMDRNN). In the CMDRNN model, a 1D CNN is used to capture the

features of the high dimensional input, then the state transitions of the time series data is

modeled by a RNN model, and the output layer composed of mixed Gaussian densities

to enhance the prediction accuracy. With such a structure, we believe that our model is

able to illustrate complicated high dimensional time series data. Fig. 4.4 shows the whole

structure of the CMDRNN model and Algorithm 2 demonstrates the learning process of

the CMDRNN model.

Algorithm 2 Algorithm: CMDRNN

Input: xt (RSSI Values)

Output: yt (Coordinates)

1: while epoch < max epoch do

2: while i < batch num do

3: h0 ← Conv1d(xt) . convolutional operation

4: h1 ← max pool h0

5: ft ← flatten h1

6: ht ← σh(Wh ∗ ft + Uh ∗ yt−1 + bh) . update hidden states

7: θt ← σy(Wy ∗ ht + by) . compute network output

8: θk ← θt . assign mixture density parameters

9: minimize loss function: −p(yt|xt; θk)

10: end while

11: end while

12: yt ∼ p(yt|xt; θk) . sample final output

return yt

The uniqueness of our method is that, compared with other existing models in literature,

our model adopts a sequential density estimation approach. Thus, the learning target of

64 CHAPTER 4. PREDICTING INDOOR LOCATION WITH WIFI FINGERPRINTS

Figure
4.4.T

he
structure

ofthe
C

onvolutionalM
ixture

D
ensity

R
ecurrentN

euralN
etw

ork.

4.2. METHOD 65

the proposed method becomes a conditional distribution of the data rather than a common

regressor. Thanks to this, our model can solve the complicated sequential modeling task

in this work.

4.2.5/ OPTIMIZERS

Deep learning models are usually optimized by gradient descent optimization meth-

ods [Ruder, 2016]. Here we compare two most widely used optimizers, Adam

[Kingma et al., 2015] and RMSProp [Tieleman et al., 2012].

4.2.5.1/ ADAM

Adaptive Moment Estimation (Adam) is a optimization method with adaptive learning rate.

Adam can be described as follows:

mt = β1mt−1 + (1 − β1)gt (4.15)

where gt is the gradient and β1 is the moving the averaging parameter, mt is the estimation

of the mean of the gradients.

νt = β2νt−1 + (1 − β2)g2
t (4.16)

where β2 is the moving the averaging parameter, νt is the estimation of the variance of the

gradients.

The bias of the mt is alleviated by

m̂t =
mt

1 − βt
1

(4.17)

The bias of the νt is alleviated by

ν̂t =
νt

1 − βt
2

(4.18)

Finally, the parameters θ are updated by

θt+1 = θt −
η

√
ν̂t + ε

m̂t (4.19)

66 CHAPTER 4. PREDICTING INDOOR LOCATION WITH WIFI FINGERPRINTS

where η is the learning rate.

4.2.5.2/ RMSPROP

RMSProp keeps the moving average of the squared gradients for each weight and it di-

vides the gradient of the root mean square (RMS). RMSProp can be described as follows:

E[g2]t = βE[g2]t−1 + (1 − β)
{
δC
δw

}2
(4.20)

where E[g2] is the moving average of the square gradient, β is the moving average pa-

rameter, usually set to be 0.9, δC
δw is the gradient the loss function with respect to the

weight.

wt = wt−1 −
η√

E[g2]t

δC
δw

(4.21)

where η is the learning rate.

In the experimental parts, we will adopt both Adam and RMSProp as the optimizers in

order to see which performs better on the learning tasks.

4.3/ EXPERIMENTS AND RESULTS

4.3.1/ DATASET DESCRIPTION

For the validation dataset, we select two WiFi RSSI-Coordinate paths from the Tampere

dataset [Lohan et al., 2017a]. As shown in Fig. 4.5 The input dimension of the Tampere

dataset is 489. The RSSI values of the detected WAPs range from −110 dB to 0 dB and

the RSSI values of undetected WAPs are set to be 100. The units of the target values are

meters. For pre-processing the data, we set the undetected values to 0.

4.3. EXPERIMENTS AND RESULTS 67

Figure 4.5. WiFi fingerprint data samples.

4.3.2/ MODEL IMPLEMENTATION DETAILS

The implementation details of our model are illustrated in Table 4.1. The CNN sub-

network consists of three layers, a convolutional layer, a max pooling layer and a flatten

layer. The RNN sub-network includes a hidden layer with 200 neurons. The MDN sub-

network has a hidden layer and output layer. The mixed Gaussians number of the MDN

output layer is 30, and each mixture has 5 parameters, namely, two dimensional means,

diagonal variances and corresponding weights. For the optimizer, we choose RMSProp.

4.3.3/ CHOICE OF HYPERMETERS

Figure 4.6. Training losses using different optimizers.

68 CHAPTER 4. PREDICTING INDOOR LOCATION WITH WIFI FINGERPRINTS

Table
4.1.C

M
D

R
N

N
Im

plem
entation

D
etails

S
ub-netw

ork
Layer

H
yperparam

eter
A

ctivation
Function

C
N

N
C

onvolutionallayer
filternum

ber:
100;stride:

2
S

igm
oid

C
N

N
m

ax
pooling

layer
neuron

num
ber:

100
R

eLU
C

N
N

flatten
layer

neuron
num

ber:
100

S
igm

oid
R

N
N

hidden
layer

m
em

ory
length:

5;neuron
num

ber:
200

S
igm

oid
M

D
N

hidden
layer

neuron
num

ber:
200

Leaky
R

eLU
M

D
N

outputlayer
5*m

ixed
G

aussian
num

ber(5*30)
-

O
ptim

izer:
R

M
S

P
rop;learning

rate:
10
−

3

4.3. EXPERIMENTS AND RESULTS 69

In [Martin Arjovsky et al., 2017], it reports that RMSProp [Tieleman et al., 2012] may

have better performance on very non-stationary tasks than the Adam optimizer

[Kingma et al., 2015]. To verify this, we train our algorithm with RMSProp and Adam,

respectively. As it is shown in Fig. 4.6, the proposed model can converge to a lower neg-

ative log-likelihood via RMSProp than Adam. Thus, we choose RMSProp as the optimizer

for our model.

Figure 4.7. Training losses using different feature detectors.

Fig. 4.7 exhibits different results of using different feature detectors.

Figure 4.8. Prediction results of different mixture numbers in the MDN (bars represent the standard deviations).

70 CHAPTER 4. PREDICTING INDOOR LOCATION WITH WIFI FINGERPRINTS

Fig. 4.8 exhibits different results of using different mixture numbers at the output layer of

the MDN. We can see that the most appropriate number is 30.

Figure 4.9. Prediction results of different memory lengths in the RNN (bars represent the standard deviations).

Fig. 4.9 demonstrates different results of using different memory lengths at the output

layer of the MDN. We can see that when the memory length is shorter, the result is better,

thus we set the memory length of our model to be 5.

4.3.4/ COMPARISONS WITH OTHER METHODS

In order to evaluate the effectiveness of our method, we conducted several experiments to

thoroughly compare our CMDRNN model to other deep learning approaches. K-NN, DT

and RF are used as the baseline models [Rojo et al., 2019]. The purposes of experiments

are indicated as follows:

• Comparing different optimizers: Adam v.s. RMSProp;

• Comparing different feature detectors: RNN, RNN+MDN, AE + RNN + MDN, CM-

DRNN;

• Comparing different regressors: RNN, CNN+RNN and CMDRNN;

• Comparing RNN variants: CMDRNN, CMDLSTM and CMDGRU.

4.3. EXPERIMENTS AND RESULTS 71

Fig. 4.10 and Fig. 4.11 shows the predicting results of two selected paths, respectively.

Figure 4.10. Path 1 prediction results.

Figure 4.11. Path 2 prediction results.

72 CHAPTER 4. PREDICTING INDOOR LOCATION WITH WIFI FINGERPRINTS

Table 4.2. Root mean squared errors of the path prediction results (meter).

(a) Results of the baseline models.

Path k-NN DT RF

Path 1 7.44 ± 0.00 8.78 ± 0.76 7.25 ± 0.25

Path 2 8.02 ± 0.00 20.94 ± 1.52 9.60 ± 0.75

(b) Results of the sequential prediction models.

Path RNN CNN+RNN RNN+MDN AE+RNN+MDN

Path 1 29.36 ± 1.61 34.26 ± 3.04 23.86 ± 5.50 11.24 ± 0.86

Path 2 31.61 ± 0.74 36.75 ± 6.17 23.58 ± 2.29 12.01 ± 1.68

(c) Results of the proposed models.

Path CMDRNN CMDLSTM CMDGRU

Path 1 8.26 ± 1.31 7.38 ± 0.89 6.25 ± 0.80

Path 2 10.17 ± 0.72 9.26 ± 0.31 8.67 ± 0.23

The overall results are demonstrated in Table 4.2.

Since the input is high dimensional, the sagacious way to deal with this is to incorporate

a sub-network into the model for dimension reduction or feature detection. Many previ-

ous research adopted auto-encoders to reduce dimension, while we argue that the more

appropriate choice for the task in our work is using a one-dimensional CNN. In order to

prove that, we test three different models, one without a feature-detecting structure, one

using an Autoencoder and one using 1D CNN (the proposed model). The auto-encoder

model with structure {hidden neurons: 256; hidden neurons: 128; code size: 64; hidden

neurons: 128; hidden neurons: 256}.

In the experiments, we used three baseline models, k-NN, Decision Tree and Random

Forests (which are not sequential models). We run the algorithms multiple times with

random initialisation. From Table 4.2, we can see that, compared to the baseline mod-

els, our proposed models (which are sequential models) have comparable performances,

especially for CMDGRU.

In addition, for sequential predicting models, as the results illustrated Fig. 4.7 and Ta-

ble 4.2, the proposed model with 1D CNN feature detector can reach lower negative

log-likelihood during the training process and has the smallest RMSE on the test data,

4.4. CONCLUSION 73

respectively.

4.4/ CONCLUSION

In this chapter, we attempt to tackle with the WiFi fingerprint-based user positioning prob-

lem. In contrast with existing approaches, our solution is a hybrid deep learning model.

The proposed model is composed of three deep neural network, a CNN, a RNN and

a MDN. This unique deep architecture combines all the strengths of three deep learn-

ing models, which enables us to recognize and predict user location with high accuracy.

Finally, we tested our model on the real-world dataset and found the optimal hyperpa-

rameters for the CMDRNN models. The obtained results verifies the effectiveness of our

approach and shows the superiority of our methods compared other deep learning-based

methods as well.

5

RECOGNIZING INDOOR LOCATION VIA

SEMI-SUPERVISED LEARNING

5.1/ INTRODUCTION

In the previous chapter, we have studied how to use WiFi fingerprint data to predict user

location at next time points. We employed a hybrid deep learning model to tackle with

the problem. Although the obtained results are satisfying, we still want to improve the

accuracy of the location recognition even further by exploring other advanced machine

learning techniques.

In this chapter, our research goal is to calculate more accurate user location via the

relevant WiFi fingerprints. That is to say, we use the WiFi RSSI value data as the input

and the actual user location (latitudes and longitudes) as the output. This problem can

be regarded as a high dimensional regression problem without considering the temporal

order of the data.

However, in order to achieve this goal, there are some difficulties, such as the signal-

fading and multi-path effects, as we mentioned in the previous chapter. Therefore, if we

use a Conventional Neural Network model to solve this problem directly, the existence of

the noisy information within the input data is detrimental to the modeling accuracy. This

prevents us from computing the user location more precisely.

Hence, we need to utilize a specific method to extract the task-related information from the

input. Previous deep learning methods, such as Autoencoders and Convolutional Neural

Networks [Nowicki et al., 2017], [Ibrahim et al., 2018] are not powerful enough to accom-

75

76CHAPTER 5. RECOGNIZING INDOOR LOCATION VIA SEMI-SUPERVISED LEARNING

plish this task. To circumvent this problem, we suggest that learning a representation of

the input via unsupervised learning first can extract the useful task-related information ef-

fectively. Based on this idea, we propose a novel semi-supervised deep learning method

for accurate indoor user location recognition.

The main contributions in this chapter are summarized as follows:

• We propose a Variational Autoencoder-based semi-supervised learning model;

• We conduct a series of experiments with different amounts of labeled data to eval-

uate the proposed model;

• We compare our model with other existing machine learning and deep learning

models.

5.2/ METHOD

To accomplish the task, we presume that the input (WiFi fingerprints) and the output

(GPS coordinates) are related to the same underlying variable related to the physical

user location. Additionally, according to the Bayesian Central Limit Theorem, the posterior

probability distribution is approximately a normal distribution under certain circumstances.

Based on this, we can leverage a Deep Latent Generative Model (DLGM) to learn the

latent distribution with the input data in an unsupervised manner. In fact, we find that a

Variational Autoencoder (VAE) model [Kingma et al., 2013] can be a very good choice for

this task.

Once we have the learned latent distribution of the input, we utilize it as the input to

feed a predictor model. The predictor can simply be a regression neural network. This

learning procedure is supervised. Combining the unsupervised learning and supervised

procedures, we now devise a semi-supervised learning method. The advantage of using

a semi-supervised learning model is that we can make use of not only the labeled data

but also the unlabeled data to improve the location recognition accuracy. This learning

scheme can be very useful when we have a relatively large amount of unlabeled data but

a relatively small amount of labeled data, which occurs in many real-world cases.

5.2. METHOD 77

5.2.1/ MODEL SETUP

From a probabilistic perspective, in order to let the proposed semi-supervised learning

method work, we need to make following assumptions first:

• Assumption 1: There a statistic t(x) solely of x that is enough to be the sufficient

statistic for z, i.e., t(x) captures all the necessary information for calculating the

parameters in the distribution of z.

• Assumption 2: There exists a statistic t(z) solely of z that is enough to be the

sufficient statistic for y, i.e, t(z) captures all the necessary information for calculating

the parameters in the distribution of y.

• Assumption 3: We assume the marginal distribution q(z) is a normal distribution

(because Bayesian Central Limit Theorem says that under certain circumstances,

the posterior probability distribution is approximately a normal distribution).

Assumption 1 describes the relationship between the input x and the latent variable z and

explain why we can infer the distribution of the latent variable z with the input x. This is the

theoretical fundamental for the unsupervised learning process in our model. Similarly, the

second assumption indicates why we can use the latent variable z to calculate the target

y. This is the theoretical fundamental for the supervised learning process in our model.

To understand our assumptions better, here we use a example to briefly explain what

a sufficient statistics is. For a Gaussian distribution with known variance and unknown

mean µ, if we want to estimate µ, we can use the sample mean as the estimate of this

mean. Then the sample mean is the a sufficient statistics of µ.

In addition, it is a practical reason for doing so. Since in many real-world cases, the

available datasets have more information about the input x and less information about the

target y, therefore it is more reliable to infer the latent distribution of z, q(z), via p(z|x) rather

than via p(z|y).

According to the chain rule and with the assumptions we made, then the generative

78CHAPTER 5. RECOGNIZING INDOOR LOCATION VIA SEMI-SUPERVISED LEARNING

scheme can be formulated as follow:

p(y, z, x) = p(y|z, x)p(z, x)

= p(y|z, x)p(z|x)p(x) (5.1)

From the perspective of Monte Carlo sampling, in Eq. (5.1), p(x) can be approximated

by drawing the input samples from the dataset D, p(z|x) can be a neural network-based

encoder. Accordingly, the predictor model can be described as:

y ∼ p(y|z, x) (5.2)

Eq. (5.2) can be learned by a multi-layer perceptron (MLP), which can be either determin-

istic or a probabilistic in practice.

To construct the proposed model, we can implement Eq. (5.1) and Eq. (5.2) through

combining an unsupervised learning process and a supervised learning process. Hence,

our method consists of two learning steps:

• The first step (unsupervised learning): we employ a deep generative model, e.g., a

VAE model, to learn the latent distribution p(z|x);

• The second step (supervised learning): we employ a MLP predictor and use the

learnt latent variable to learn the target y.

5.2.2/ UNSUPERVISED LEARNING PROCEDURE

For the unsupervised learning, we adopt a Variational Autoencoder as the gen-

erative model used to learn the latent distribution. Variational Autoencoders

(VAEs) [Doersch, 2016], [Kingma et al., 2014b] are deep latent generative models which

adopt Variational Inference. Different to conventional autoencoders or other genera-

tive models, the latent representations of VAEs are continuous probabilistic distributions,

which can be used to represent the real user coordinates.

In this part, we introduce the background of VAEs briefly. VAEs are similar to conventional

Autoencoder (AEs) in a sense, it also is a unsupervised learning model which consists of

a encoder neural network and an decoder neural network. The difference between AEs

5.2. METHOD 79

and VAEs is that the latent codes of the AE are deterministic, thus the AE usually can be

used to reduce the input dimension but not to generate new data samples.

In contrast, the latent codes of VAEs are stochastic thus VAEs can be used to generate

new data samples. Additionally, more complex posteriors of VAEs can be constructed

by a kind of methods called Normalizing Flows (NFs) [Rezende et al., 2015], through bi-

jective mappings, two simple flows, the planar flow and radial flow. Or to compute even

more complicated flows, we can resort to the autoregressive flow methods, such as, the

Masked Autoregressive Flows (MAFs) [Papamakarios et al., 2017] and Inverse Autore-

gressive Flows (IAFs) [Kingma et al., 2016].

5.2.2.1/ EVIDENCE LOWER BOUND OF VAES

VAEs are originally proposed to sample new data samples. But direct computing the

evidence of data, p(x), is difficult, we need to adopt Variational Inference to approximate

it. To this end, we need to derive of the evidence lower bound (ELBO). The derivation is

as follows:

log p(x) = E q(z|x)[log p(x)]

= E q(z|x)

[
log

{
p(x, z)
p(z|x)

}]
= E q(z|x)

[
log

{
p(x, z)q(z|x)
q(z|x)p(z|x)

}]
= E q(z|x)

[
log

{
p(x, z)
q(z|x)

}]
+ E q(z|x)

[
log

{
q(z|x)
p(z|x)

}]
= E q(z|x)

[
log

{
p(x, z)
q(z|x)

}]
+ DKL

(
q(z|x)||p(z|x)

)
(5.3)

Since the Kullback-Leibler divergence DKL
(
q(z|x)||p(z|x)

)
≥ 0, then we have

log p(x) ≥ E q(z|x)

[
log

{
p(x, z)
q(z|x)

}]
= E q(z|x)

[
log

{
p(x|z)q(z)

p(z|x)

}]
= E q(z|x)

[
log p(x|z)

]
+ E p(z|x)

[
log

{
q(z)

q(z|x)

}]
= E q(z|x)

[
log p(x|z)

]
− DKL

(
q(z|x)||q(z)

)
(5.4)

80CHAPTER 5. RECOGNIZING INDOOR LOCATION VIA SEMI-SUPERVISED LEARNING

where q(z) is the prior of the latent variable z, which can be regarded as a standard

Gaussian distribution

z ∼ N(0, I) (5.5)

Now we have the evidence lower bound as the optimization objective for VAEs.

5.2.2.2/ LEARNING METHOD OF VAES

In order to build a VAE model, we can use an encoder parameterized by φ, pφ(z|x), to

represent the posterior, and a decoder parameterized by θ, pθ(z|x), to represent the re-

constructing likelihood. Note that Eq. (5.4) cannot be computed explicitly, but we can

leverage the reparameterization trick [Kingma et al., 2014b] and Monte Carlo sampling to

solve it.

According the VAE decoder used to compress the input can be described as:

z ∼ pφ(z|x) (5.6)

In order to use a neural network to learn the posterior pφ(z|x), the encoder needs to be

differentiable. To this end, the posterior sample z is reparameterized by using the following

equation:

z = µz + σz � ε, ε ∼ N(0; I) (5.7)

where µz is the mean of z, σz is the variance of z, � is the Hadamard product, ε is the

noise.

The VAE decoder used to reconstruct the original input can be described as:

x′ ∼ pθ(x|z) (5.8)

where x′ is the reconstructed input.

Since maximizing ELBO is equivalent to minimizing the loss function of the VAE, then

accordingly, the loss function of the VAE yields:

L(x, θ, φ) = E z∼pφ(z|x)
[
− log(pθ(x|z))

]
+ DKL

(
pφ(z|x)||q(z)

)
(5.9)

5.2. METHOD 81

Once L(θ, φ,D) is minimized, we can have the approximate posterior pφ(z|x) for sampling

the latent variable z. Note that in the unsupervised learning process, we can use all

the input data whether it is labeled or not to train the VAE model. In this way, we take

advantage of the available data maximally.

5.2.3/ SUPERVISED LEARNING PROCEDURE

After the unsupervised learning procedure, we can compute the latent distribution of z via

the encoder. In the following step, we utilize the WiFi RSSI data as the input x and the

user coordinates as the target y to proceed the supervised learning procedure. To this

end, we devise two predicting models, one is a deterministic model and the other is a

stochastic model.

5.2.3.1/ DETERMINISTIC PREDICTOR (M1 MODEL)

In the first model, we build a deterministic predictor which consists of two steps:

Step 1: to obtain the mean of the Gaussian distribution of latent variables.

µz = Fµ(x; φ) (5.10)

where Fµ(x; φ) can be regarded as the encoder of the VAE.

Step 2: to obtain the final prediction based on the output of Step 1.

y = Fy(µz; w) (5.11)

where Fy(µ; w) is a deterministic multi-layer perceptron model. Consequently, the loss

function is

L(D; w) =
1
N

N∑
n=1

(ŷn − yn)2 (5.12)

where ŷn is the labeled target.

Compared to using the original data as the input to compute the target directly, using the

learnt latent distribution as the input of the predictor can reduce the noisy information of

the original input. As a result, our model can alleviate the overfitting problem. The loss

82CHAPTER 5. RECOGNIZING INDOOR LOCATION VIA SEMI-SUPERVISED LEARNING

function of the M1 model is the mean squared errors. The training scheme of the M1

model is summarized in Algorithm 3.

Algorithm 3 Algorithm: M1 model

Input: xa (all input), xl (labeled input), ŷ (labels)

Output: y (predictions)

1: while unsupervised learning do

2: µz, σz ← Eφ(xa) . Eφ(xa): Encoder networks

3: z ∼ N(µz, σz) . Sample latent codes

4: x′a ← p(x|z; θ) . x′a: reconstructed input

5: minimize loss function L(θ, φ,D) . Eq. (5.9)

6: end while

7:

8: while supervised learning do

9: µz ← Fµ(xl; φ) . get latent codes

10: y← Fy(µz; w) . get predictions

11: minimize loss function L(D; w) . Eq. (5.12)

12: end while

13: return y

5.2.3.2/ PROBABILISTIC PREDICTOR (M2 MODEL)

Alternatively, in contrast with the M1 model, we can also devise a stochastic predictor, the

M2 model whose loss function is the negative likelihood as opposed to the M1 model. To

this end, based on Eq. (5.1), we factorize the joint distribution:

p(y, z, x; w, φ) = pw(y|z, x)pφ(z|x)p(x) (5.13)

where pφ(z|x) is the encoder network parameterized by φ, and pw(y|z, x) the predictor net-

work parameterized by w, p(x) can be approximated via empirically drawing the samples

from the dataset.

Based on Eq. (5.13), we can formulate a probabilistic prediction model. However, since

Eq. (5.13) cannot be computed explicitly, we can use Monte Carlo method to solve to it

5.2. METHOD 83

by drawing the samples of z and y. To this end, first, we draw the latent variables z from

the VAE encoder according to Eq. (5.6). Then, we draw the predicted values y by using

the conditional probability:

y ∼ pw(y|z, x) (5.14)

Hence based on Eq. (5.9) and Eq. (5.13), the total loss function of the M2 model can be

written as:

L(D; θ, φ,w) = E z∼pφ(z|x)
[
− log pw(y|z, x)

]
+ E z∼pφ(z|x)

[
− log pθ(x|z)

]
+ DKL

(
pφ(z|x)||q(z)

)
(5.15)

In Eq. (5.15), the first term represents the predictor, the second term represents the

decoder and the last term represents the encoder. The second term and the last term

can be optimized by the unsupervised procedure at the first step.

Since φ and θ are trained, according to Eq. (5.15), here we only need to optimize pw(y|z, x)

at the second step. Thus, the loss function for training the predictor becomes:

L(D; w) = E z∼pθ(z|x)
[
− log pw(y|z, x)

]
(5.16)

In practice, we can use Monte Carlo sampling to solve the above loss:

L(D; w) ≈ −
1
N

N∑
n=1

log pw(y|z, x) (5.17)

where N is the mini batch size.

Furthermore, in contrast with the deterministic M1 model, in order to build a stochastic

predictor, we assume that the likelihood function pw(y|z) is a Gaussian distribution with

noise σy which can be seen as a hyper-parameter. For predicting, we draw multiple

samples via the predictor and use their mean value as the final output.

84CHAPTER 5. RECOGNIZING INDOOR LOCATION VIA SEMI-SUPERVISED LEARNING

Algorithm 4 Algorithm: M2 Model

Input: xa (all input),xl (labeled input),yl (labels)
Output: y (predictions)

1: while unsupervised learning do
2: µz, σz ← Eφ(xa) . Eφ(xa): Encoder networks
3: z ∼ N(µz, σz) . Sample latent codes
4: x′a ← pθ(x|z) . x′a: reconstructed input
5: minimize loss function L(θ, φ,D) . Eq. (5.9)
6: end while
7:
8: while supervised learning do
9: z ∼ N(µz, σz) . Sample latent codes

10: y ∼ py(z; w) . Sample predictions
11: minimize loss function L(D; w) . Eq. (5.17)
12: end while
13: return y

Figure 5.1. VAE-based semi-supervised learning model.

The training scheme of the M2 model is summarized in Algorithm 4 and the structure of

the VAE-based semi-supervised learning model is illustrated in Fig. 5.1.

5.3. EXPERIMENTS AND RESULTS 85

5.3/ EXPERIMENTS AND RESULTS

5.3.1/ DATASET DESCRIPTION

For the validation dataset, we use the UJIIndoorLoc dataset

[Torres-Sospedra et al., 2014]. The input dimension of the UJIIndoorLoc dataset is

520. The RSSI values of the detected WAPs range from −100 dB to 0 dB and the RSSI

values of undetected WAPs are set to be 100. The coordinates are in longitudes and

latitudes. The total instances number for the experiments is about 20000.

For pre-processing the data, we set the undetected values into 0 and remove the duplicate

instances. The original target data are longitudes and latitudes with very large values.

They are scaled for the experiments, thus the predicting results in Table 5.2 do not have

units. We run the algorithms multiple times with random initialisation.

5.3.2/ MODEL IMPLEMENTATION DETAILS

The VAE-based model consists of three sub-networks, the encoder, the decoder and the

predictor. The implementation details of the VAE-based semi-supervised learning model

are demonstrated in Table 5.1.

86CHAPTER 5. RECOGNIZING INDOOR LOCATION VIA SEMI-SUPERVISED LEARNING

Table
5.1.VA

E
-based

m
odelim

plem
entation

details

S
ub-netw

ork
Layer

H
yperparam

eter
A

ctivation
Function

E
ncoder

hidden
layer

neuron
num

ber:
512;

R
eLU

E
ncoder

hidden
layer

neuron
num

ber:
512;latentdim

ension:
5

R
eLU

D
ecoder

hidden
layer

neuron
num

ber:
512

R
eLU

P
redictor

hidden
layer

neuron
num

ber:
512;dropoutrate:

0.3
R

eLU
P

redictor
hidden

layer
neuron

num
ber:

512;dropoutrate:
0.3

R
eLU

P
redictor

hidden
layer

neuron
num

ber:
512;dropoutrate:

0.3
R

eLU
O

ptim
izer:

A
dam

;learning
rate:

10
−

3

5.3. EXPERIMENTS AND RESULTS 87

5.3.3/ RESULTS

(a) Latent variables labeled with the building IDs, here shows the 2D projection.

(b) Latent variables labeled with the floor IDs, here shows the 2D projection.

Figure 5.2. Latent variables with dimension of 5, here shows the 2D projection.

Fig. 5.2 demonstrate the distribution of latent variable z. We can see that the latent

distribution is related to the building IDs and the floor IDs.

88CHAPTER 5. RECOGNIZING INDOOR LOCATION VIA SEMI-SUPERVISED LEARNING

(a) Ground truth. (b) Labeled data: 2%.

(c) Labeled data: 5%. (d) Labeled data: 10%.

(e) Labeled data: 20%. (f) Labeled data: 30%.

(g) Labeled data: 50%. (h) Labeled data: 80%.

Figure 5.3. Testing results for M2 model.

For the experimental set up, we use different portions of the labeled data, ranging from

5.3. EXPERIMENTS AND RESULTS 89

Ta
bl

e
5.

2.
R

oo
tm

ea
n

sq
ua

re
d

er
ro

rs
of

te
st

in
g

re
su

lts
w

ith
di

ff
er

en
tp

or
tio

ns
of

la
be

le
d

da
ta

La
be

le
d

da
ta

k-
N

N
D

T
R

F
G

P
M

D
N

(2
)

M
D

N
(5

)
M

1
M

2
2%

0.
20

2
±

3e
-2

0.
34

9
±

5e
-2

0.
23

4
±

3e
-2

0.
56

5
±

3e
-2

0.
16

1
±

5e
-3

0.
15

9
±

4e
-3

0.
17

5
±

6e
-3

0.
16

6
±

8e
-3

5%
0.

17
7
±

1e
-2

0.
25

4
±

2e
-2

0.
18

4
±

2e
-2

0.
31

3
±

2e
-2

0.
13

9
±

4e
-3

0.
14

3
±

3e
-3

0.
13

3
±

3e
-3

0.
12

3
±

4e
-3

10
%

0.
15

6
±

6e
-3

0.
20

1
±

2e
-2

0.
13

8
±

6e
-3

0.
27

5
±

3e
-3

0.
12

0
±

6e
-3

0.
12

9
±

1e
-3

0.
10

5
±

2e
-4

0.
10

6
±

5e
-3

20
%

0.
12

0
±

4e
-3

0.
16

1
±

9e
-3

0.
11

2
±

5e
-4

0.
26

2
±

8e
-4

0.
10

7
±

6e
-3

0.
10

5
±

4e
-3

0.
09

3
±

2e
-3

0.
09

3
±

2e
-3

30
%

0.
10

4
±

2e
-3

0.
14

0
±

4e
-2

0.
10

0
±

2e
-3

0.
25

8
±

2e
-3

0.
10

2
±

5e
-3

0.
10

5
±

4e
-3

0.
08

6
±

3e
-3

0.
08

7
±

2e
-3

50
%

0.
10

0
±

1e
-2

0.
12

6
±

2e
-3

0.
09

1
±

2e
-3

0.
25

3
±

2e
-3

0.
10

1
±

7e
-3

0.
09

7
±

4e
-3

0.
08

0
±

9e
-4

0.
08

3
±

4e
-3

80
%

0.
09

2
±

7e
-3

0.
11

2
±

3e
-3

0.
08

7
±

3e
-3

0.
25

3
±

2e
-3

0.
09

8
±

7e
-3

0.
10

3
±

3e
-3

0.
07

7
±

4e
-3

0.
07

9
±

3e
-3

90CHAPTER 5. RECOGNIZING INDOOR LOCATION VIA SEMI-SUPERVISED LEARNING

2% to 80%. We use k-NN, DT and RF as the baseline models and use GP, MDN with 2

mixtures, noted as MDN(2), MDN with 5 mixtures, noted as MDN(5), as comparisons.

Fig. 5.3 and Table 5.2 show the results obtained by different methods. From the re-

sults, we can see that the proposed models outperform the baseline model proposed

in [Rojo et al., 2019]. Moreover, M1 and M2 can provide satisfying results even when

the labeled data are scarce. The predicting accuracy is improved when the labeled data

increases.

In contrast with other methods, the proposed models have better performance. Through

the experiments, we also find that the proposed models, compared to other methods,

besides the modeling accuracies, have the following advantages:

• Compared to the GP model, the proposed models are less computationally expen-

sive;

• Compared to the MDN models, the proposed models are more computationally

stable.

5.4/ CONCLUSION

In this chapter, we propose a VAE-based semi-supervised model for accurate indoor po-

sition recognition. In the unsupervised learning procedure, we use a Variational Autoen-

coder to learn a latent distribution with all the unlabeled data. For the supervised learning

procedure, we design two predictors, one is deterministic and the other is stochastic. We

utilize the latent distribution as the input to feed the predictor neural network so as to learn

the final output. The advantage of doing so is that using the latent variables instead of

using the original input can alleviate the overfitting problem.

For evaluating the proposed models, we choose a real-world dataset and conduct a series

of the experiments with different amounts of labeled data to compare our model with other

methods. The results show that the modeling accuracy is improved as the labeled portion

increases. Meanwhile, the final results show that our method outperforms other existing

methods as well.

6

RECOGNIZING INDOOR LOCATION VIA

END-TO-END LEARNING

6.1/ INTRODUCTION

In the previous chapter, we propose to calculate the accurate user location by using the

related WiFi fingerprints via the semi-supervised VAE model and the performances are

significantly improved compared to the existing methods. However, as a semi-supervised

learning model, the training process is not straightforward. Thus, in this chapter, we aim

to develop a method which can be trained via end-to-end learning and achieves better

performance.

To this end, we treat this problem as a supervised regression problem, whose input is

WiFi RSSI values and whose output is the actual user location (latitudes and longitudes),

as in the previous chapter. The difference is that, the in this chapter, we solve this problem

directly via end-to-end learning instead of using semi-supervised learning. However, we

have to deal with the same issues in Chapter 5, i.e., high dimensionality and noise.

For this reason, in contrast with the existing methods, based on the Information Bottleneck

(IB) method [Tishby et al., 2000] and Variational Inference (VI), we propose a Variational

Information Bottleneck (VIB)-based model [Alemi et al., 2017] in this chapter. This model

consists of two sub-models, one is the encoder model used to compress the input, the

other is the predictor model used to predict the target values. According to the Information

Bottleneck theory, the encoder in our model is used to find a good latent representation of

the input data for the related learning task so that the nuisance information in the original

91

92 CHAPTER 6. RECOGNIZING INDOOR LOCATION VIA END-TO-END LEARNING

input will be token out. Afterwards, the predictor utilizes the learnt latent representation

as its input, instead of the original input, to predict the target values. Our model is an end-

to-end deep learning model and scalable to large scale datasets, which makes it easy to

train.

The main contributions in this chapter are summarized as follows:

• We devise a Variational Information Bottleneck model for computing accurate user

location with WiFi fingerprint data;

• We vary the value of β of the proposed model to find the optimal value;

• In order to compare our method with other previous methods, we conduct a series

of evaluation experiments.

6.2/ METHOD

Mathematically speaking, our goal is to map a very high dimensional source distribution,

about 520, to a rather low dimensional target distribution, typically 2. However, the issue

is that the dimension ”gap” between the two distributions is too large, which easily results

in overfitting. Therefore, a better way to accomplish our task is to find a low dimension

manifold to connect the input subspace and output space.

6.2.1/ MODEL SETUP

In our model, the input is the WiFi RSSI values x, the output is the coordinates of the user,

y. To make the model more robust to noise, we use a set of probabilistic distributions such

as p(z|x) and p(y|z) to describe the relationship between the variables instead of determin-

istic functions as opposed to conventional neural networks. Furthermore, in order to build

the theoretical base for our model, we need to make the following assumptions first:

• Assumption 1: There exists a latent distribution of z governing both the input x and

output y and consequently we have the information Markov chain: x→ z→ y.

• Assumption 2: The input x is solely sufficient enough to learn z, i.e., p(z|x, y) =

p(z|x).

6.2. METHOD 93

• Assumption 3: The learnt latent representation z is solely sufficient enough to learn

the output y, i.e., p(y|x, z) = p(y|z).

We make the above assumptions based on the idea that the values of both the WiFi RSSIs

and GPS coordinates are related to the real physical position of the users. Hence, either

the WiFi RSSI values or the GPS coordinates has the sufficient information for calculating

the real user physical position (which we denote it as the latent variable z). It means that

we can use x to compute p(z|x) (encoding step) and to compute p(y|z) (predicting step).

What’s more, with the above assumptions, the derivations of our model will be easier.

Moreover, as it can be seen here, compared to the assumptions made in the VAE-based

semi-supervised model in Chapter 5, we enhance the assumptions by adding Assumption

3, which allows us to develop a straightforward end-to-end model.

6.2.2/ MODEL

In a Maximum A Posteriori (MAP) modeling setting, the parameters of the model is related

to not only the dataset but also the prior of the parameters:

p(λ|D) ∝ p(D|λ)q(λ) (6.1)

where D is the dataset, λ is the model parameters, p(λ|D) is the posterior, p(D|λ) is the

likelihood and q(λ) is the prior. Applying such a setting to our problem, then the prior of the

latent representation z, q(z) and the posterior p(z|x) can both be represented by Gaussian

distributions. In Variational Inference, p(z|x) can be calculated via deep neural networks.

In Variational Autoencoders, one assumes that there is a latent distribution of z which can

be used to reconstruct the original input x. Hence the information Markov chain for VAEs

is x → z → x′, where x′ is the reconstructed input. Accordingly, the loss function can be

written as follow:

L(D,w, φ) = E z∼pφ(z|x)[pw(x|z)] − DKL
(
pφ(z|x)||q(z)

)
(6.2)

where φ is the parameters of the encoder network, w is the parameters of the decoder

network, q(z) is an uninformative prior of z, here we can use a standard Normal distribution

94 CHAPTER 6. RECOGNIZING INDOOR LOCATION VIA END-TO-END LEARNING

N(0, I).

Meanwhile, according to the Information Bottleneck princi-

ple [Tishby et al., 2000], [Tishby et al., 2015], let x be the input, y be the learning

target and z be the representation, then we can have the following optimization objective:

max I(Z; Y)

s.t. I(X; Z) ≤ IC (6.3)

where I denotes the mutual information, Ic is the information constraint.

In information theory, mutual information (MI) is used to measure the dependence be-

tween two random variables. The mutual information between two variables equals 0 if

and only if the two variables are independent.

Figure 6.1. The information bottleneck.

Fig. 6.3 demonstrates the principle of information bottleneck. As it can be seen that for a

multi-layer neural network, the nuisance information, which is not related to the learning

task, is less when it is closer to the target.

Since it is tricky to solve Eq. (6.3) directly, we need to apply the Karush-Kuhn-Tucker

6.2. METHOD 95

(KKT) conditions [Avriel, 2003] to Eq. (6.3), then we can cast the constrained optimization

problem into an unconstrained optimization problem, as a result, we will have the following

Lagrangian form of Eq. (6.3):

LIB = I(Z; Y) − βI(X; Z) (6.4)

where I(X; Z) is the upstream task used to compress the input, I(Z; Y) is the downstream

task used to predict the input, β is a Lagrangian multiplier controlling the trade off between

the upstream task and downstream task.

6.2.2.1/ VARIATIONAL APPROXIMATION

However, Eq. (6.4) is still computationally prohibitive, thus we need to derive a variational

approximation. To this end, first, we derive the variational lower bound for I(Z; Y):

I(Z; Y) =

"
p(z, y) log

p(z, y)
p(z)p(y)

dzdy

= Ep(z,y)

[
log

{
p(z, y)

p(z)p(y)

}]
= Ep(z,y)

[
log

{
p(z, y)
p(z)

}
− log {p(y)}

]
= Ep(z,y)

[
log

{
p(y|z)p(z)

p(z)

}
− log {p(y)}

]
≥ Ep(z,y)

[
log {p(y|z)}

]
(6.5)

96 CHAPTER 6. RECOGNIZING INDOOR LOCATION VIA END-TO-END LEARNING

Now we derive the upper bound for I(X; Z):

I(Z; X) =

"
p(z, x) log

p(z, x)
p(z)p(x)

dzdx

=

"
p(z, x) log

{
p(z, x)

p(z)p(x)

}
dxdz

=

"
p(z, x) log

{
p(z|x)q(z)
p(z)q(z)

}
dxdz

=

"
p(z, x)

[
log

{
p(z|x)
q(z)

}
− log

{
p(z)
q(z)

}]
dxdz

=

"
p(z|x)p(x) log

{
p(z|x)
q(z)

}
−

"
p(z|x)p(x) log

{
p(z)
q(z)

}
dxdz

= Ex
[
DKL

(
p(z|x)||q(z)

)]
− DKL

(
p(z)||q(z)

)
≤ Ex

[
DKL

(
p(z|x)||q(z)

)]
(6.6)

Since our learning task is supervised, as opposed to VAEs and β-VAEs, we

have this information Markov chain: X → Z → Y. As opposed to β-

VAEs [Higgins et al., 2017], [Burgess et al., 2018], based on Eq. (6.3) and the assump-

tions we have made, we know that the latent variable z can be represented by x alone

(p(z|x, y) = p(z|x)) and the output y can depend on y alone (p(y|x, z) = p(y|z)). For this rea-

son, we can replace the term p(x|z) in Eq. (6.2) with p(y|z). As a result, now the original

optimization objective Eq. (6.4) can be cast into a new optimization objective:

argmax
θ, φ

E D[E pφ(z|x)[log pw(y|z)]]

s.t. ED
[
DKL

(
p(z|x)||q(z)

)]
≤ ε (6.7)

where D = {x, y} is the dataset, φ is the parameters of the encoder network, w is the

parameters of the predictor network, ε is a positive constant with small value.

Based on Eq. (6.4) and Eq. (6.7), we can have the following lower bound:

I(Z; Y) − βI(Z; X) ≥ ED
[
Ez∼p(z|x)

[
log{p(y|z)}

]
− βDKL

(
ppφ(z|x)||q(z)

)]
(6.8)

Our purpose is to maximize Eq. (6.8), which is equivalent to minimizing the following loss

6.2. METHOD 97

function:

L(D, θ, φ) = ED
[
Ez∼pφ(z|x)

[
− log{pθ(y|z)}

]
+ βDKL

(
pφ(z|x)||q(z)

)]
(6.9)

Eq. (6.9) is the final loss function of our proposed model. In contrast with VAEs and

β-VAEs, which are unsupervised learning models, whereas our model is an end-to-end

supervised learning model. As shown in Fig. 6.2, pφ(z|x) represents the encoder neural

network and pw(y|z) represents the predictor neural network.

Figure 6.2. The structure of the VIB model.

6.2.2.2/ SOLVING MODEL

To solve Eq. (6.9), we need to adopt some special techniques. First, for comput-

ing the term DKL
(
pφ(z|x)||q(z)

)
, we can use the reparameterization trick proposed in

[Kingma et al., 2013] to make the parameters of the neural networks differentiable. In the

reparameterization trick, the random distribution of z is decomposed as the combination

of the standard deviation µ and the variance σ:

z = µz + σz � εz (6.10)

where µz and σz can be calculated via the neural networks respectively, and the random

noise εz can be sampled from a standard diagonal Normal distribution N(0, I).

98 CHAPTER 6. RECOGNIZING INDOOR LOCATION VIA END-TO-END LEARNING

Afterwards we need to calculate the term E z∼pφ(z|x)[pw(y|z)]. This term cannot be solved

directly but we can use Monte Carlo method to compute it.

We adopt Monte Carlo sampling, and Eq. (6.9) becomes:

L(D,w, φ) =
1
N

N∑
n=1

Eεz∼p(εz)[pw
(
yn| fφ(xn, εz)

)
] − βDKL

(
pφ(z|xn)||q(z)

)
(6.11)

where N the total instance number, fφ(x) is the same deterministic neural network used

in the encoder to calculate the parameters of the distribution p(z|x):

fφ(x) = µz(x) + σz(x) � εz (6.12)

Note that β is a hyperparameter used to balance the encoding term and the predicting

term so that it needs to be chosen very carefully.

6.2.2.3/ PREDICTING

In VAEs and β-VAEs, one can obtain new samples from an uninformative standard Gaus-

sian first then use them as the input of the decoder. Whereas since our model is a

supervised model, we use the samples from the conditional distribution, i.e., p(z|x), to

feed the predictor network, which is the same as the training procedure.

Algorithm 5 Algorithm

Input: X (input), Y (target)

Output: Y ′ (prediction)

1: while epoch ≤ max epoch do

2: µz, σz ← Eφ(X) . Eφ(X): Encoder network

3: z ∼ N(µz, σz) . Sample latent codes

4: Y ′ ← Fy(z; w) . Fy: Predictor network

5: minimize loss function L(D,w, φ) . Eq. (6.9)

6: end while

7: return Y ′

The overall algorithm is summarized in Algorithm 5.

6.3. EXPERIMENTAL RESULTS 99

6.3/ EXPERIMENTAL RESULTS

6.3.1/ DATASET DESCRIPTION

For the validation, we use the UJIindoor dataset [Torres-Sospedra et al., 2014] whose

input are 520 dimensional and each dimension represents a WAP. The RSSI values range

from −110 dB to 0 dB when the WAPs are detected, otherwise the RSSI values are set

to be 100. Also each RSSI vector corresponds to a pair of latitude and longitude as

the geo-location label. In our experiments, we use scaled GPS coordinates values for

computational convenience. The total instance number is about 20000. For Experiment

1 and Experiment 2, we use 80% of the dataset for training and the rest 20% as the test

dataset. In Experiment 3, the training data number will vary.

6.3.2/ MODEL IMPLEMENTATION DETAILS

Table 6.1 demonstrates the implementation details of our model. The encoder neural

network includes of one hidden layer, and the dimension of the latent codes is set to be

5. In practice, we find that the latent dimension of 5 can be regarded as the Minimal

Description Length [Hinton et al., 1994] for our task. The predictor is composed of three

hidden layers. Each hidden layer has 512 units. Especially, in order to improve modeling

generalization on test data, we can increase the model uncertainty. Hence we apply the

Dropout technique [Dahl et al., 2013] to the hidden layers of the predictor. The optimizer

for the model is Adam [Kingma et al., 2014a] and the learning rate is 10−3.

6.3.3/ EXPERIMENT 1

In the loss function of the proposed model, the constant β is related to the constraint

for the optimization, which is to balance the encoding error term E z∼pφ(z|x)
[
pw(y|z)

]
and

the prediction error term DKL
(
pφ(z|xn)||q(z)

)
. A larger β value means the model tends to

be more compressive for the input and less expressive for the output, and vice versa.

Therefore, different β values can result in different modeling results.

To find the optimal β values, we will test different β values, ranging from 10−3 to 10−8,

for our model. From the results shown in Fig. 6.3, we can see that, when β is 10−6, the

100 CHAPTER 6. RECOGNIZING INDOOR LOCATION VIA END-TO-END LEARNING

Table
6.1.M

odelIm
plem

entation
D

etails

S
ub-netw

ork
Layer

P
aram

eter
A

ctivation
Function

E
ncoder

hidden
layer

neuron
num

ber:
512;latentdim

ension:
5

R
eLU

P
redictor

hidden
layer

neuron
num

ber:
512;dropoutrate:

0.3
R

eLU
P

redictor
hidden

layer
neuron

num
ber:

512;dropoutrate:
0.3

R
eLU

P
redictor

hidden
layer

neuron
num

ber:
512;dropoutrate:

0.3
R

eLU
O

ptim
izer:

A
dam

;learning
rate:

10
−

3.

6.3. EXPERIMENTAL RESULTS 101

proposed model has the best performance. Thus, we will hereafter set β to 10−6 for the

propose model in all following experiments.

Figure 6.3. Results with respect to different β values.

Fig. 6.4 shows the ground truth and the testing result of our model. It can be seen the

proposed model can calculate the location coordinates of the users accurately using the

relevant WiFi fingerprints.

102 CHAPTER 6. RECOGNIZING INDOOR LOCATION VIA END-TO-END LEARNING

(a) Ground truth.

(b) Testing result.

Figure 6.4. Experimental result of the VIB-based model.

6.3. EXPERIMENTAL RESULTS 103

(a) Latent variables labeled with the building IDs, here shows the 2D projection.

(b) Latent variables labeled with the floor IDs, here shows the 2D projection.

Figure 6.5. Latent variables with dimension of 5, here shows the 2D projection.

In addition, Fig. 6.5 demonstrates how the latent distribution is related to the building IDs

and floor IDs, respectively. And it verifies the assumptions we made before, i.e., the latent

variable Z governs both the input X and the output Y.

104 CHAPTER 6. RECOGNIZING INDOOR LOCATION VIA END-TO-END LEARNING

Table 6.2. Comparison Results

(a) Results of the Baseline Models

Method k-NN GP DT RF
RMSE 0.092 ± 2e-3 0.252 ± 3e-3 0.112 ± 3e-3 0.087 ± 3e-3

(b) Results of the Advanced Models

Method MDN-2 MDN-5 BNN Semi-VAE Proposed
RMSE 0.099 ± 3e-4 0.103 ± 3e-3 1.033 ± 4e-3 0.077 ± 4e-3 0.075 ± 6e-3

6.3.4/ EXPERIMENT 2

In order to show the advantages of our method, we run other methods proposed in the

literature on the UJIindoor dataset. K-NN is used as the baseline model. The MDN-2

model refers to the Mixture Density Network (MDN) model with 2 mixed Gaussian distri-

butions at the output layers. Similarly, the MDN-5 model is a MDN model with 5 mixed

Gaussian distributions at the output layers. The Semi-VAE model is a semi-supervised

Variational Autoencoder (VAE) model, which will be explained later. The overall results

are shown in Table 6.2. We use the root mean squared errors (RMSE) as the evaluation

metrics.

From the results, we can see that the proposed model has the best modeling perfor-

mance. Also in practice we find that compared to our model, the Gaussian process

model suffers from heavy computation load and the MDN models are unstable during the

learning process.

6.3.5/ EXPERIMENT 3

According to our previous assumptions, as an alternative approach, we can also formu-

late a semi-supervised learning approach, the semi-supervised VAE model proposed in

Chapter 5. To compare with the semi-supervised learning approach, we run our model

and other baseline models on different portions of the labeled data. As the results shown

in Fig. 6.6, we can see that once the labeled data used for the supervised learning pro-

cedure is more than 10% of the total training data, our method surprisingly has the best

performance among all the methods.

6.3. EXPERIMENTAL RESULTS 105

Fi
gu

re
6.

6.
R

es
ul

ts
on

di
ff

er
en

tp
or

tio
ns

of
th

e
la

be
le

d
da

ta
.

106 CHAPTER 6. RECOGNIZING INDOOR LOCATION VIA END-TO-END LEARNING

6.3.6/ DISCUSSION

Why the proposed method can outperform other deep learning methods? First, our prob-

lem can be regarded as a regression problem, and especially, the input (RSSI vectors) is

relatively high dimensional and the target (GPS coordinates) is low dimensional. Thus,

it causes the issue that the input has redundant information for the learning tasks. If we

use a conventional neural network to solve this problem directly, the results will not be

satisfying at all.

Mixture Density Networks (MDNs) and Bayesian Neural Networks (BNNs) handle this

problem by inducing uncertainty into the models. The difference is that MDNs are MLE

based method while BNNs are MAP based method. Surprisingly, BNNs have worse

performance than MDNs on our tasks because the uncertainty of BNNs does not depend

on the input data. Variational Autoencoders (VAEs) are originally designed as generative

approaches to obtain new sample data. For out problem, we can use VAEs to learn the

latent representation of the input data first. Then, this model can be trivially extended to

be a semi-supervised model by using the pre-learned representation to obtain the final

output.

However, in our study, we find that leveraging the Information Bottleneck method to this

problem is a better option than the semi-VAE model. It is because that, with the Infor-

mation Bottleneck method, we can view the original task as a constrained optimization

problem. The optimization objective is the learning tasks and the constraint is the data

representation. That’s to say the Variational Information Bottleneck model is to directly

find the optimal representation for the learning tasks, computing the output, whereas the

semi-supervised VAE model is to find the representation to reconstruct the original input.

6.4/ CONCLUSION

Interpreting WiFi fingerprints into real user location via neural networks is a tricky prob-

lem. In this chapter, we combined the Information Bottleneck theory with Variational

Inference to propose a novel deep learning model for WiFi fingerprint-based user loca-

tion recognition. The proposed model consists of two neural networks, an encoder and

a predictor. According to the Information Bottleneck theory, the encoder neural network

6.4. CONCLUSION 107

is to find an optimal representation of the data and mitigate the negative effect of the

nuisance information for the learning tasks. The predictor neural network is to use the

data representation to compute the final output. The main advantages of the proposed

model is that it is scalable to large scale dataset, computationally stable and robust to

noisy information. To evaluate our model, we run our model and other previous models

on the real-world WiFi fingerprint dataset and the finally results verifies the effectiveness

and show the advantages of our method compared to the existing approaches.

7

CONCLUSIONS AND PERSPECTIVES

7.1/ CONCLUSIONS

In this thesis, the research goal is studying human mobility through using the usage data

collected from smartphone users. In order to have a comprehensive understanding, we

have investigated user mobility from both outdoor and indoor aspects. Accordingly, we

formulate the following tasks related to indoor and outdoor user mobility. Task 1 is discov-

ering the daily mobility patterns of the users through using the collected GPS coordinate

data; Task 2 is predicting the next time-point indoor user location with using the relevant

WiFi fingerprint data; Task 3 is learning accurate indoor user location through using the

relevant WiFi fingerprint data.

In order to accomplish the above tasks, we have investigated two types of approaches

for learning user mobility, one type of approach is using GPS data and the other type is

using WiFi fingerprint data. In particular, from a probabilistic perspective, we proposed

the following solutions.

• For Task 1, we proposed a Dirichlet Process Gaussian Mixture Model (DPGMM)-

based clustering algorithm to discover the daily user mobility patterns from the col-

lected GPS coordinate data;

• For Task 2, we devise a hybrid sequential deep learning model, the Convolutional

Mixture Density Recurrent Neural Network (CMDRNN), to predict the next time-

point user location with the WiFi fingerprint data;

• For Task 3, we leveraged the idea of Variational Autoencoders (VAEs) to propose a

VAE-based semi-supervised learning model for the indoor user location recognition

109

110 CHAPTER 7. CONCLUSIONS AND PERSPECTIVES

task. This model includes an encoder neural network, a decoder neural network

and a predictor neural network;

• For Task 3, we further proposed an end-to-end deep learning model, the Variational

Information Bottleneck (VIB) model for recognizing indoor user location.

The total contributions in this thesis are summarised as follows:

• Contribution 1: We first extract each daily trajectory from the whole user GPS

dataset. Then, we use the Dirichlet Process Gaussian mixture model to estimate

the probability density of each trajectory. Afterwards, we use the Kullback-Leibler

divergence to measure the similarities between different trajectories. Finally, we use

the computed similarities as the metrics to devise a automatic clustering algorithm

to cluster the similar GPS trajectories into the same clusters.

• Contribution 2: In the CMDRNN model, we employ a 1D Convolutional Neural Net-

work to detect the high dimensional input, a Recurrent Neural Network to represent

the state transition in the time-series data, and a Mixture Density Network to sam-

ple the final output. With such design, our model can not only overcome the issue

of high dimensionality but also the overfitting problem. For the validation, we con-

duct a series of experiments on a real-world dataset. In order to find the optimal

hyper-parameters, we also compare different optimizers, different memory lengths

and different mixture numbers.

• Contribution 3: In the VAE-based semi-supervised learning model, we use all the

input data to learn a latent distribution in the unsupervised learning process. Then

in the supervised process, we use the learnt latent distribution as the input of the

new input for the predictor. Furthermore, we design two predictors, one predictor is

a deterministic predictor and one predictor is a stochastic predictor.

• Contribution 4: We combines the Information Bottleneck method and Variational

Inference to propose a Deep Variational Information Bottleneck model for user loca-

tion recognition. This model consists of an encoder neural network and a decoder

neural network. The advantage of the proposed model is that it is an end-to-end

model, which makes it easier to train compared to the VAE-based model.

7.2. PERSPECTIVES 111

In order to validate the proposed methods, we conducted a series of experiments on

several real-world datasets. The corresponding results show the effectiveness of our

methods. We also compare the proposed methods with other existing methods, including

conventional machine learning and deep learning methods. The final results suggest that

our methods outperform other existing methods.

There are some remain works in this work. For instance, in terms of studying outdoor

user mobility, we have devised a machine learning-based methods. But deep learning

methods are known for being salable for large data scale, thus one can explore other

advanced deep learning methods or combine probabilistic approaches with deep learning

approaches to analyze GPS coordinate data.

7.2/ PERSPECTIVES

In this section, we will shed some lights on the possible future research. These research

topics include, but are not limited to using other Usage data, improving sequential predic-

tion, exploring other deep learning methods.

Using other Usage Data. In terms of applications, apart from GPS coordinate data and

WiFi fingerprint data which we already used in our research, we can also take advantage

of other kinds of smartphone usage data to study human behavior, such as application

usage, cell Ids, call logs and battery usage, etc. These kinds of data enable researchers

to investigate some other interesting research topics, such as smartphone application

recommendation, travel destination recommendation and social relationship discovery.

By doing so, we may be able to learn other types of user behavior so as to have holistic

perspective of human behavior.

Improving Sequential Prediction. Our proposed methods have shown good perfor-

mance in contrast with other existing methods but there are still room to improve them.

For example, in terms of predicting indoor user location, one can leverage VAE or VIB

models to develop latent recurrent deep learning models. n

Exploring other Deep Learning Methods. We can continue on focusing on improving

probabilistic inference methods for deep learning models. There are some promising di-

rections worthy digging into. For example, the performance of a Variational Autoencoder

112 CHAPTER 7. CONCLUSIONS AND PERSPECTIVES

can be enhanced by using the techniques like Normalising Flows and Autoregressive

Flows to construct more complex posterior distributions. Instead of using mean-field as-

sumption, one can use auxiliary variables to construct more complex posterior distribu-

tions [Maaløe et al., 2016].

Moreover, self-supervised representation learning has become an active research ares

in recent years. Self-supervised learning is a kind of method whose loss function are

supervised but it does not nedd labels. Based on mutual information estimation and

maximization, some novel deep learning methods were proposed, for instance, Mutual

Information Neural Estimation (MINE) [Belghazi et al., 2018], Contrastive Predictive Cod-

ing (CPC) [Oord et al., 2018] and Deep InfoMax (DIM) [Hjelm et al., 2019].

BIBLIOGRAPHY

[Abdi et al., 2010] Abdi, H., et Williams, L. J. (2010). Principal component analysis.

Wiley interdisciplinary reviews: computational statistics, 2(4):433–459.

[Agrawal et al., 1993] Agrawal, R., Faloutsos, C., et Swami, A. (1993). Efficient similarity

search in sequence databases. In International Conference on Foundations of Data

Organization and Algorithms, pages 69–84. Springer.

[Aldous, 1985] Aldous, D. J. (1985). Exchangeability and related topics. In École d’Été

de Probabilités de Saint-Flour XIII—1983, pages 1–198. Springer.

[Alemi et al., 2017] Alemi, A. A., Fischer, I., Dillon, J. V., et Murphy, K. (2017). Deep

variational information bottleneck. 5th International Conference on Learning Rep-

resentations.

[Ashbrook et al., 2003] Ashbrook, D., et Starner, T. (2003). Using gps to learn signifi-

cant locations and predict movement across multiple users. Personal and Ubiqui-

tous computing, 7(5):275–286.

[Avriel, 2003] Avriel, M. (2003). Nonlinear programming: analysis and methods.

Courier Corporation.

[Baumann et al., 2018] Baumann, P., Koehler, C., Dey, A. K., et Santini, S. (2018). Se-

lecting individual and population models for predicting human mobility. IEEE

Transactions on Mobile Computing, 17(10):2408–2422.

[Bazzani et al., 2010] Bazzani, A., Giorgini, B., Rambaldi, S., Gallotti, R., et Giovannini, L.

(2010). Statistical laws in urban mobility from microscopic gps data in the area of

florence. Journal of Statistical Mechanics: Theory and Experiment, 2010(05):P05001.

[Belghazi et al., 2018] Belghazi, M. I., Baratin, A., Rajeshwar, S., Ozair, S., Bengio, Y.,

Courville, A., et Hjelm, D. (2018). Mutual information neural estimation. In Proceed-

ings of the 35th International Conference on Machine Learning, pages 531–540.

113

114 BIBLIOGRAPHY

[Bian et al., 2018] Bian, J., Tian, D., Tang, Y., et Tao, D. (2018). A survey on trajectory

clustering analysis. arXiv preprint arXiv:1802.06971.

[Bishop, 2006] Bishop, C. M. (2006). Pattern recognition and machine learning.

Springer Science+ Business Media.

[Bishop, Christopher M, 1994] Bishop, Christopher M (1994). Mixture density networks.

[Blei et al., 2006] Blei, D. M., Jordan, M. I., et others (2006). Variational inference for

dirichlet process mixtures. Bayesian analysis, 1(1):121–143.

[Blei et al., 2017] Blei, D. M., Kucukelbir, A., et McAuliffe, J. D. (2017). Variational in-

ference: A review for statisticians. Journal of the American statistical Association,

112(518):859–877.

[Bozkurt et al., 2015] Bozkurt, S., Elibol, G., Gunal, S., et Yayan, U. (2015). A compara-

tive study on machine learning algorithms for indoor positioning. In 2015 Inter-

national Symposium on Innovations in Intelligent SysTems and Applications (INISTA),

pages 1–8. IEEE.

[Brabham, 2013] Brabham, D. C. (2013). Crowdsourcing. Mit Press.

[Breiman, 1996] Breiman, L. (1996). Bagging predictors. Machine learning, 24(2):123–

140.

[Burgess et al., 2018] Burgess, C. P., Higgins, I., Pal, A., Matthey, L., Watters, N., Des-

jardins, G., et Lerchner, A. (2018). Understanding disentangling in β-vae. arXiv

preprint arXiv:1804.03599.

[Cao et al., 2007] Cao, H., Mamoulis, N., et Cheung, D. W. (2007). Discovery of periodic

patterns in spatiotemporal sequences. IEEE Transactions on Knowledge and Data

Engineering, 19(4):453–467.

[Castro et al., 2013] Castro, P. S., Zhang, D., Chen, C., Li, S., et Pan, G. (2013). From

taxi gps traces to social and community dynamics: A survey. ACM Computing

Surveys (CSUR), 46(2):1–34.

[Cho et al., 2014] Cho, K., van Merrienboer, B., Gülçehre, Ç., Bahdanau, D., Bougares,

F., Schwenk, H., et Bengio, Y. (2014). Learning phrase representations using RNN

BIBLIOGRAPHY 115

encoder-decoder for statistical machine translation. In Proceedings of the 2014

Conference on Empirical Methods in Natural Language Processing, EMNLP 2014, Oc-

tober 25-29, 2014, Doha, Qatar, A meeting of SIGDAT, a Special Interest Group of the

ACL, pages 1724–1734. ACL.

[Cho, 2016] Cho, S.-B. (2016). Exploiting machine learning techniques for location

recognition and prediction with smartphone logs. Neurocomputing, 176:98–106.

[Chung et al., 2014] Chung, J., Gulcehre, C., Cho, K., et Bengio, Y. (2014). Empiri-

cal evaluation of gated recurrent neural networks on sequence modeling. arXiv

preprint arXiv:1412.3555.

[Cortes et al., 1995] Cortes, C., et Vapnik, V. (1995). Support-vector networks. Machine

learning, 20(3):273–297.

[Cramariuc et al., 2016] Cramariuc, A., Huttunen, H., et Lohan, E. S. (2016). Cluster-

ing benefits in mobile-centric wifi positioning in multi-floor buildings. In 2016

International Conference on Localization and GNSS (ICL-GNSS), pages 1–6. IEEE.

[Dahl et al., 2013] Dahl, G. E., Sainath, T. N., et Hinton, G. E. (2013). Improving deep

neural networks for lvcsr using rectified linear units and dropout. In 2013 IEEE

international conference on acoustics, speech and signal processing, pages 8609–

8613. IEEE.

[Davis et al., 2011] Davis, R. A., Lii, K.-S., et Politis, D. N. (2011). Remarks on some non-

parametric estimates of a density function. In Selected Works of Murray Rosenblatt,

pages 95–100. Springer.

[Do et al., 2015] Do, T. M. T., Dousse, O., Miettinen, M., et Gatica-Perez, D. (2015). A

probabilistic kernel method for human mobility prediction with smartphones.

Pervasive and Mobile Computing, 20:13–28.

[Do et al., 2012] Do, T.-M.-T., et Gatica-Perez, D. (2012). Contextual conditional mod-

els for smartphone-based human mobility prediction. In Proceedings of the 2012

ACM conference on ubiquitous computing, pages 163–172. ACM.

[Do et al., 2014] Do, T. M. T., et Gatica-Perez, D. (2014). Where and what: Using smart-

phones to predict next locations and applications in daily life. Pervasive and Mo-

bile Computing, 12:79–91.

116 BIBLIOGRAPHY

[Doersch, 2016] Doersch, C. (2016). Tutorial on variational autoencoders. arXiv

preprint arXiv:1606.05908.

[Doucet et al., 2013] Doucet, A., De Freitas, N., Murphy, K., et Russell, S. (2013). Rao-

blackwellised particle filtering for dynamic bayesian networks. arXiv preprint

arXiv:1301.3853.

[Elman, 1990] Elman, J. L. (1990). Finding structure in time. Cognitive science,

14(2):179–211.

[Eren et al., 2019] Eren, L., Ince, T., et Kiranyaz, S. (2019). A generic intelligent bearing

fault diagnosis system using compact adaptive 1d cnn classifier. Journal of Signal

Processing Systems, 91(2):179–189.

[Ester et al., 1996] Ester, M., Kriegel, H.-P., Sander, J., Xu, X., et others (1996). A

density-based algorithm for discovering clusters in large spatial databases with

noise. In Kdd, volume 96, pages 226–231.

[Etter et al., 2013] Etter, V., Kafsi, M., Kazemi, E., Grossglauser, M., et Thiran, P. (2013).

Where to go from here? mobility prediction from instantaneous information.

Pervasive and Mobile Computing, 9(6):784–797.

[Ferris et al., 2007] Ferris, B., Fox, D., et Lawrence, N. D. (2007). Wifi-slam using gaus-

sian process latent variable models. In IJCAI, volume 7, pages 2480–2485.

[Fuglede et al., 2004] Fuglede, B., et Topsoe, F. (2004). Jensen-shannon divergence

and hilbert space embedding. In International Symposium onInformation Theory,

2004. ISIT 2004. Proceedings., page 31. IEEE.

[Gast, 2005] Gast, M. (2005). 802.11 wireless networks: the definitive guide. ” O’Reilly

Media, Inc.”.

[Gers et al., 1999] Gers, F. A., Schmidhuber, J., et Cummins, F. (1999). Learning to

forget: Continual prediction with lstm.

[Gilks et al., 1995] Gilks, W. R., Richardson, S., et Spiegelhalter, D. (1995). Markov chain

Monte Carlo in practice. Chapman and Hall/CRC.

[Goodfellow et al., 2016] Goodfellow, I., Bengio, Y., et Courville, A. (2016). Deep learn-

ing. MIT press.

BIBLIOGRAPHY 117

[Graves et al., 2005] Graves, A., Fernández, S., et Schmidhuber, J. (2005). Bidirectional

lstm networks for improved phoneme classification and recognition. In Interna-

tional Conference on Artificial Neural Networks, pages 799–804. Springer.

[Greff et al., 2016] Greff, K., Srivastava, R. K., Koutnı́k, J., Steunebrink, B. R., et Schmid-

huber, J. (2016). Lstm: A search space odyssey. IEEE transactions on neural

networks and learning systems, 28(10):2222–2232.

[Hähnel et al., 2006] Hähnel, B. F. D., et Fox, D. (2006). Gaussian processes for signal

strength-based location estimation. In Proceeding of robotics: science and systems.

[Heckerman, 2008] Heckerman, D. (2008). A tutorial on learning with bayesian net-

works. In Innovations in Bayesian networks, pages 33–82. Springer.

[Hernández-Lobato et al., 2015] Hernández-Lobato, J. M., et Adams, R. (2015). Proba-

bilistic backpropagation for scalable learning of bayesian neural networks. In

International Conference on Machine Learning, pages 1861–1869.

[Hershey et al., 2007] Hershey, J. R., et Olsen, P. A. (2007). Approximating the kullback

leibler divergence between gaussian mixture models. In 2007 IEEE International

Conference on Acoustics, Speech and Signal Processing-ICASSP’07, volume 4, pages

IV–317. IEEE.

[Higgins et al., 2017] Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick,

M., Mohamed, S., et Lerchner, A. (2017). beta-vae: Learning basic visual concepts

with a constrained variational framework. Iclr, 2(5):6.

[Hinton et al., 2006] Hinton, G. E., et Salakhutdinov, R. R. (2006). Reducing the dimen-

sionality of data with neural networks. science, 313(5786):504–507.

[Hinton et al., 1994] Hinton, G. E., et Zemel, R. S. (1994). Autoencoders, minimum

description length and helmholtz free energy. In Advances in neural information

processing systems, pages 3–10.

[Hjelm et al., 2019] Hjelm, R. D., Fedorov, A., Lavoie-Marchildon, S., Grewal, K., Bach-

man, P., Trischler, A., et Bengio, Y. (2019). Learning deep representations by mu-

tual information estimation and maximization. In 7th International Conference on

Learning Representations.

118 BIBLIOGRAPHY

[Hoang et al., 2019] Hoang, M. T., Yuen, B., Dong, X., Lu, T., Westendorp, R., et Reddy,

K. (2019). Recurrent neural networks for accurate rssi indoor localization. arXiv

preprint arXiv:1903.11703.

[Hochreiter et al., 1997] Hochreiter, S., et Schmidhuber, J. (1997). Long short-term

memory. Neural computation, 9(8):1735–1780.

[Hofmann-Wellenhof et al., 2012] Hofmann-Wellenhof, B., Lichtenegger, H., et Collins, J.

(2012). Global positioning system: theory and practice. Springer Science & Busi-

ness Media.

[Ibrahim et al., 2018] Ibrahim, M., Torki, M., et ElNainay, M. (2018). Cnn based indoor

localization using rss time-series. In 2018 IEEE Symposium on Computers and

Communications (ISCC), pages 01044–01049. IEEE.

[Jiang et al., 2012] Jiang, S., Ferreira, J., et González, M. C. (2012). Clustering daily

patterns of human activities in the city. Data Mining and Knowledge Discovery,

25(3):478–510.

[Khetarpaul et al., 2011] Khetarpaul, S., Chauhan, R., Gupta, S., Subramaniam, L. V.,

et Nambiar, U. (2011). Mining gps data to determine interesting locations. In

Proceedings of the 8th International Workshop on Information Integration on the Web:

in conjunction with WWW 2011, pages 1–6.

[Kim et al., 2018] Kim, K. S., Lee, S., et Huang, K. (2018). A scalable deep neural

network architecture for multi-building and multi-floor indoor localization based

on wi-fi fingerprinting. Big Data Analytics, 3(1):4.

[Kingma et al., 2014a] Kingma, D. P., et Ba, J. (2014a). Adam: A method for stochastic

optimization. arXiv preprint arXiv:1412.6980.

[Kingma et al., 2015] Kingma, D. P., et Ba, J. (2015). Adam: A method for stochastic

optimization. In Bengio, Y., et LeCun, Y., editors, 3rd International Conference on

Learning Representations (ICLR).

[Kingma et al., 2016] Kingma, D. P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I.,

et Welling, M. (2016). Improved variational inference with inverse autoregressive

flow. In Advances in neural information processing systems, pages 4743–4751.

BIBLIOGRAPHY 119

[Kingma et al., 2013] Kingma, D. P., et Welling, M. (2013). Auto-encoding variational

bayes. arXiv preprint arXiv:1312.6114.

[Kingma et al., 2014b] Kingma, D. P., et Welling, M. (2014b). Auto-encoding variational

bayes. In Bengio, Y., et LeCun, Y., editors, Proceedings of the 3rd International Con-

ference on Learning Representations (ICLR).

[Kiukkonen et al., 2010] Kiukkonen, N., Blom, J., Dousse, O., Gatica-Perez, D., et Lau-

rila, J. (2010). Towards rich mobile phone datasets: Lausanne data collection

campaign. Proc. ICPS, Berlin, 68.

[Krogh et al., 2001] Krogh, A., Larsson, B., Von Heijne, G., et Sonnhammer, E. L. (2001).

Predicting transmembrane protein topology with a hidden markov model: appli-

cation to complete genomes. Journal of molecular biology, 305(3):567–580.

[Laurila et al., 2013] Laurila, J. K., Gatica-Perez, D., Aad, I., Blom, J., Bornet, O., Do, T.

M. T., Dousse, O., Eberle, J., et Miettinen, M. (2013). From big smartphone data to

worldwide research: The mobile data challenge. Pervasive and Mobile Computing,

9(6):752–771.

[Laurila et al., 2012] Laurila, J. K., Gatica-Perez, D., Aad, I., Bornet, O., Do, T.-M.-T.,

Dousse, O., Eberle, J., Miettinen, M., et others (2012). The mobile data challenge:

Big data for mobile computing research. Technical Report.

[LeCun et al., 2015] LeCun, Y., Bengio, Y., et Hinton, G. (2015). Deep learning. nature,

521(7553):436–444.

[LeCun et al., 1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., et others (1998).

Gradient-based learning applied to document recognition. Proceedings of the

IEEE, 86(11):2278–2324.

[Li et al., 2017] Li, D., Zhang, J., Zhang, Q., et Wei, X. (2017). Classification of ecg

signals based on 1d convolution neural network. In 2017 IEEE 19th International

Conference on e-Health Networking, Applications and Services (Healthcom), pages

1–6. IEEE.

[Liao et al., 2007] Liao, L., Patterson, D. J., Fox, D., et Kautz, H. (2007). Learning and

inferring transportation routines. Artificial Intelligence, 171(5-6):311–331.

120 BIBLIOGRAPHY

[Lin et al., 2005] Lin, D.-B., et Juang, R.-T. (2005). Mobile location estimation based on

differences of signal attenuations for gsm systems. IEEE transactions on vehicular

technology, 54(4):1447–1454.

[Lin et al., 2014] Lin, M., et Hsu, W.-J. (2014). Mining gps data for mobility patterns:

A survey. Pervasive and mobile computing, 12:1–16.

[Loh, 2011] Loh, W.-Y. (2011). Classification and regression trees. Wiley Interdisci-

plinary Reviews: Data Mining and Knowledge Discovery, 1(1):14–23.

[Lohan et al., 2017a] Lohan, E. S., Torres-Sospedra, J., Leppäkoski, H., Richter, P., Peng,

Z., et Huerta, J. (2017a). Wi-fi crowdsourced fingerprinting dataset for indoor

positioning. Data, 2(4):32.

[Lohan et al., 2017b] Lohan, E.-S., Torres-Sospedra, J., Richter, P., Leppkoski, H.,

Huerta, J., et Cramariuc, A. (2017b). Crowdsourced wifi database and benchmark

software for indoor positioning. Data set], Zenodo. doi, 10.

[Lou et al., 2009] Lou, Y., Zhang, C., Zheng, Y., Xie, X., Wang, W., et Huang, Y. (2009).

Map-matching for low-sampling-rate gps trajectories. In Proceedings of the 17th

ACM SIGSPATIAL international conference on advances in geographic information

systems, pages 352–361.

[Lu et al., 2013] Lu, X., Wetter, E., Bharti, N., Tatem, A. J., et Bengtsson, L. (2013). Ap-

proaching the limit of predictability in human mobility. Scientific reports, 3:2923.

[Maaløe et al., 2016] Maaløe, L., Sønderby, C. K., Sønderby, S. K., et Winther, O. (2016).

Auxiliary deep generative models. In 33rd International Conference on Machine

Learning (ICML 2016).

[Martin Arjovsky et al., 2017] Martin Arjovsky, S., et Bottou, L. (2017). Wasserstein gen-

erative adversarial networks. In Proceedings of the 34 th International Conference

on Machine Learning, Sydney, Australia.

[McInerney et al., 2013] McInerney, J., Zheng, J., Rogers, A., et Jennings, N. R. (2013).

Modelling heterogeneous location habits in human populations for location pre-

diction under data sparsity. In Proceedings of the 2013 ACM international joint con-

ference on Pervasive and ubiquitous computing, pages 469–478. ACM.

BIBLIOGRAPHY 121

[Moon, 1996] Moon, T. K. (1996). The expectation-maximization algorithm. IEEE Sig-

nal processing magazine, 13(6):47–60.

[Muhlenbrock et al., 2004] Muhlenbrock, M., Brdiczka, O., Snowdon, D., et Meunier, J.-L.

(2004). Learning to detect user activity and availability from a variety of sensor

data. In Second IEEE Annual Conference on Pervasive Computing and Communica-

tions, 2004. Proceedings of the, pages 13–22. IEEE.

[Murphy, 2012] Murphy, K. P. (2012). Machine learning: a probabilistic perspective.

MIT press.

[Neal, 2000] Neal, R. M. (2000). Markov chain sampling methods for dirichlet process

mixture models. Journal of computational and graphical statistics, 9(2):249–265.

[Nowicki et al., 2017] Nowicki, M., et Wietrzykowski, J. (2017). Low-effort place recog-

nition with wifi fingerprints using deep learning. In International Conference Au-

tomation, pages 575–584. Springer.

[Oord et al., 2018] Oord, A. v. d., Li, Y., et Vinyals, O. (2018). Representation learning

with contrastive predictive coding. arXiv preprint arXiv:1807.03748.

[Papamakarios et al., 2017] Papamakarios, G., Pavlakou, T., et Murray, I. (2017). Masked

autoregressive flow for density estimation. In Advances in Neural Information Pro-

cessing Systems, pages 2338–2347.

[Patterson et al., 2003] Patterson, D. J., Liao, L., Fox, D., et Kautz, H. (2003). Inferring

high-level behavior from low-level sensors. In International Conference on Ubiqui-

tous Computing, pages 73–89. Springer.

[Peddemors et al., 2010] Peddemors, A., Eertink, H., et Niemegeers, I. (2010). Pre-

dicting mobility events on personal devices. Pervasive and Mobile Computing,

6(4):401–423.

[Pirozmand et al., 2014] Pirozmand, P., Wu, G., Jedari, B., et Xia, F. (2014). Human mo-

bility in opportunistic networks: Characteristics, models and prediction meth-

ods. Journal of Network and Computer Applications, 42:45–58.

[Rasmussen, 2000] Rasmussen, C. E. (2000). The infinite gaussian mixture model. In

Advances in neural information processing systems, pages 554–560.

122 BIBLIOGRAPHY

[Reynolds, 2015] Reynolds, D. (2015). Gaussian mixture models. Encyclopedia of bio-

metrics, pages 827–832.

[Rezende et al., 2015] Rezende, D., et Mohamed, S. (2015). Variational inference with

normalizing flows. In International Conference on Machine Learning, pages 1530–

1538.

[Rojo et al., 2019] Rojo, J., Mendoza-Silva, G. M., Cidral, G. R., Laiapea, J., Parrello, G.,

Simó, A., Stupin, L., Minican, D., Farrés, M., Corvalán, C., et others (2019). Machine

learning applied to wi-fi fingerprinting: The experiences of the ubiqum challenge.

In 2019 International Conference on Indoor Positioning and Indoor Navigation (IPIN),

pages 1–8. IEEE.

[Ruder, 2016] Ruder, S. (2016). An overview of gradient descent optimization algo-

rithms. arXiv preprint arXiv:1609.04747.

[Scellato et al., 2011] Scellato, S., Musolesi, M., Mascolo, C., Latora, V., et Campbell, A. T.

(2011). Nextplace: a spatio-temporal prediction framework for pervasive sys-

tems. In International Conference on Pervasive Computing, pages 152–169. Springer.

[Schiller et al., 2004] Schiller, J., et Voisard, A. (2004). Location-based services. Else-

vier.

[Sethuraman, 1994] Sethuraman, J. (1994). A constructive definition of dirichlet pri-

ors. Statistica sinica, pages 639–650.

[Song et al., 2019] Song, X., Fan, X., Xiang, C., Ye, Q., Liu, L., Wang, Z., He, X., Yang,

N., et Fang, G. (2019). A novel convolutional neural network based indoor local-

ization framework with wifi fingerprinting. IEEE Access, 7:110698–110709.

[Su et al., 2000] Su, W., Lee, S.-J., et Gerla, M. (2000). Mobility prediction in wireless

networks. In MILCOM 2000 Proceedings. 21st Century Military Communications. Ar-

chitectures and Technologies for Information Superiority (Cat. No. 00CH37155), vol-

ume 1, pages 491–495. IEEE.

[Tang et al., 2015] Tang, J., Liu, F., Wang, Y., et Wang, H. (2015). Uncovering urban

human mobility from large scale taxi gps data. Physica A: Statistical Mechanics

and its Applications, 438:140–153.

BIBLIOGRAPHY 123

[Teh et al., 2005] Teh, Y. W., Jordan, M. I., Beal, M. J., et Blei, D. M. (2005). Sharing

clusters among related groups: Hierarchical dirichlet processes. In Advances in

neural information processing systems, pages 1385–1392.

[Tieleman et al., 2012] Tieleman, T., et Hinton, G. (2012). Lecture 6.5-rmsprop: Divide

the gradient by a running average of its recent magnitude. COURSERA: Neural

networks for machine learning, 4(2):26–31.

[Tishby et al., 2000] Tishby, N., Pereira, F. C., et Bialek, W. (2000). The information

bottleneck method. arXiv preprint physics/0004057.

[Tishby et al., 2015] Tishby, N., et Zaslavsky, N. (2015). Deep learning and the informa-

tion bottleneck principle. In 2015 IEEE Information Theory Workshop (ITW), pages

1–5. IEEE.

[Torres-Sospedra et al., 2014] Torres-Sospedra, J., Montoliu, R., Martı́nez-Usó, A., Avari-

ento, J. P., Arnau, T. J., Benedito-Bordonau, M., et Huerta, J. (2014). Ujiindoorloc:

A new multi-building and multi-floor database for wlan fingerprint-based indoor

localization problems. In 2014 international conference on indoor positioning and

indoor navigation (IPIN), pages 261–270. IEEE.

[Torres-Sospedra et al., 2015] Torres-Sospedra, J., Montoliu, R., Trilles, S., Belmonte, Ó.,

et Huerta, J. (2015). Comprehensive analysis of distance and similarity measures

for wi-fi fingerprinting indoor positioning systems. Expert Systems with Applica-

tions, 42(23):9263–9278.

[Trevisani et al., 2004] Trevisani, E., et Vitaletti, A. (2004). Cell-id location technique,

limits and benefits: an experimental study. In Sixth IEEE workshop on mobile

computing systems and applications, pages 51–60. IEEE.

[Wagner et al., 2013] Wagner, D. T., Rice, A., et Beresford, A. R. (2013). Device analyzer:

Understanding smartphone usage. In International Conference on Mobile and Ubiq-

uitous Systems: Computing, Networking, and Services, pages 195–208. Springer.

[Wagner et al., 2014] Wagner, D. T., Rice, A., et Beresford, A. R. (2014). Device analyzer:

Large-scale mobile data collection. ACM SIGMETRICS Performance Evaluation

Review, 41(4):53–56.

124 BIBLIOGRAPHY

[Wu et al., 2008] Wu, X., Kumar, V., Quinlan, J. R., Ghosh, J., Yang, Q., Motoda, H.,

McLachlan, G. J., Ng, A., Liu, B., Philip, S. Y., et others (2008). Top 10 algorithms in

data mining. Knowledge and information systems, 14(1):1–37.

[Xiao et al., 2010] Xiao, X., Zheng, Y., Luo, Q., et Xie, X. (2010). Finding similar users

using category-based location history. In Proceedings of the 18th SIGSPATIAL

international conference on advances in geographic information systems, pages 442–

445.

[Yang et al., 2019] Yang, T., Cappelle, C., Ruichek, Y., et El Bagdouri, M. (2019). On-

line multi-object tracking combining optical flow and compressive tracking in

markov decision process. Journal of Visual Communication and Image Representa-

tion, 58:178–186.

[Yavaş et al., 2005] Yavaş, G., Katsaros, D., Ulusoy, Ö., et Manolopoulos, Y. (2005). A

data mining approach for location prediction in mobile environments. Data &

Knowledge Engineering, 54(2):121–146.

[Ye et al., 2012] Ye, J., Dobson, S., et McKeever, S. (2012). Situation identification

techniques in pervasive computing: A review. Pervasive and mobile computing,

8(1):36–66.

[Yiu et al., 2015] Yiu, S., et Yang, K. (2015). Gaussian process assisted fingerprinting

localization. IEEE Internet of Things Journal, 3(5):683–690.

[Yu et al., 2017] Yu, C., Liu, Y., Yao, D., Yang, L. T., Jin, H., Chen, H., et Ding, Q. (2017).

Modeling user activity patterns for next-place prediction. IEEE Systems Journal,

11(2):1060–1071.

[Zhang et al., 2018] Zhang, C., Bütepage, J., Kjellström, H., et Mandt, S. (2018). Ad-

vances in variational inference. IEEE transactions on pattern analysis and machine

intelligence, 41(8):2008–2026.

[Zhao et al., 2019] Zhao, J., Mao, X., et Chen, L. (2019). Speech emotion recognition

using deep 1d & 2d cnn lstm networks. Biomedical Signal Processing and Control,

47:312–323.

BIBLIOGRAPHY 125

[Zheng et al., 2010a] Zheng, V. W., Zheng, Y., Xie, X., et Yang, Q. (2010a). Collaborative

location and activity recommendations with gps history data. In Proceedings of

the 19th international conference on World wide web, pages 1029–1038.

[Zheng, 2015] Zheng, Y. (2015). Trajectory data mining: an overview. ACM Transac-

tions on Intelligent Systems and Technology (TIST), 6(3):29.

[Zheng et al., 2008] Zheng, Y., Li, Q., Chen, Y., Xie, X., et Ma, W.-Y. (2008). Understand-

ing mobility based on gps data. In Proceedings of the 10th international conference

on Ubiquitous computing, pages 312–321.

[Zheng et al., 2010b] Zheng, Y., et Xie, X. (2010b). Learning location correlation from

gps trajectories. In 2010 Eleventh International Conference on Mobile Data Manage-

ment, pages 27–32. IEEE.

[Zheng et al., 2011] Zheng, Y., et Xie, X. (2011). Learning travel recommendations

from user-generated gps traces. ACM Transactions on Intelligent Systems and Tech-

nology (TIST), 2(1):1–29.

[Zheng et al., 2009] Zheng, Y., Zhang, L., Xie, X., et Ma, W.-Y. (2009). Mining interesting

locations and travel sequences from gps trajectories. In Proceedings of the 18th

international conference on World wide web, pages 791–800. ACM.

[Zhou, 2012] Zhou, Z.-H. (2012). Ensemble methods: foundations and algorithms.

CRC press.

LIST OF FIGURES

1.1 Overview of the thesis contributions. 7

2.1 A GPS trajectory and a stay point. 12

2.2 DBSCAN. 14

2.3 The structure of a Bayesian Network. 19

2.4 The structure of a Dynamic Bayesian Network. 19

2.5 The architecture of a Recurrent Neural Network. 20

2.6 The architecture of an Autoencoder. 23

2.7 The architecture of a Convolutional Neural Network. 25

2.8 The architecture of a Mixture Density Network. 26

2.9 The architecture of a Bayesian Neural Network. 27

2.10 The architecture of a Variational Autoencoder. 28

3.1 GPS data collected from a randomly selected user, different colors repre-

sent different data-collecting days. 31

3.2 One randomly selected daily trajectory from a user. 32

3.3 The plate representation of the Dirichlet Process Gaussian Mixture Model. . 35

3.4 The Stick-Breaking Process. 36

3.5 Number of data collecting days for each user. 42

3.6 Empirical cumulative distribution of data collecting days. 42

3.7 Empirical cumulative distribution of hours per data collecting day. 43

3.8 Distribution estimation by GMM (negative log-likelihood). 44

3.9 Distribution estimation by DPGMM (negative log-likelihood). 44

127

128 LIST OF FIGURES

3.10 Trajectory 1 and Trajectory 2. 45

3.11 Trajectory 1 and Trajectory 3. 46

3.12 Trajectory 1 and Trajectory 4. 46

3.13 Trajectory 1 and Trajectory 5. 47

3.14 Discovered mobility patterns of three random selected users. Different col-

ors denote different days. 49

3.15 Representative trajectories for each discovered mobility patterns. 50

3.16 Number of discovered mobility patterns for each user. 51

3.17 Empirical cumulative distribution of the members of the discovered patterns. 52

3.18 Average number of discovered patterns for different data collecting day

length, error bars represent the standard deviations. 53

4.1 The structure of the one dimensional Convolutional Neural Network. 57

4.2 The structure of the Long-Short Term Memory network. 59

4.3 The structure of the Gated Recurrent Unit. 61

4.4 The structure of the Convolutional Mixture Density Recurrent Neural Network. 64

4.5 WiFi fingerprint data samples. 67

4.6 Training losses using different optimizers. 67

4.7 Training losses using different feature detectors. 69

4.8 Prediction results of different mixture numbers in the MDN (bars represent

the standard deviations). 69

4.9 Prediction results of different memory lengths in the RNN (bars represent

the standard deviations). 70

4.10 Path 1 prediction results. 71

4.11 Path 2 prediction results. 71

5.1 VAE-based semi-supervised learning model. 84

5.2 Latent variables with dimension of 5, here shows the 2D projection. 87

LIST OF FIGURES 129

5.3 Testing results for M2 model. 88

6.1 The information bottleneck. 94

6.2 The structure of the VIB model. 97

6.3 Results with respect to different β values. 101

6.4 Experimental result of the VIB-based model. 102

6.5 Latent variables with dimension of 5, here shows the 2D projection. 103

6.6 Results on different portions of the labeled data. 105

LIST OF TABLES

2.1 Comparisons of Different Clustering Methods 15

2.2 Comparisons of Different Deep Learning Models 28

3.1 Variables Description . 40

3.2 Data collecting time. 43

3.3 KL-Divergences between Different Trajectories. 47

3.4 Overall Mean Log-likelihoods of Different Models 52

4.1 CMDRNN Implementation Details . 68

4.2 Root mean squared errors of the path prediction results (meter). 72

5.1 VAE-based model implementation details 86

5.2 Root mean squared errors of testing results with different portions of la-

beled data . 89

6.1 Model Implementation Details . 100

6.2 Comparison Results . 104

131

A

RELATED PUBLICATIONS

Journal:

• Weizhu QIAN, Bowei Chen,Yichao Zhang, Guanghui Wen, and Franck Gechter,

Multi-Task Variational Information Bottleneck. (under review), IEEE Transactions on

Cybernetics, IEEE.

• Weizhu QIAN, Fabrice Lauri and Franck Gechter, Supervised and Semi-supervised

Deep Probabilistic Models for Indoor Positioning Problems (accepted), Neurocom-

puting, Elsevier.

Conferences:

• Weizhu QIAN and Franck Gechter, Variational Information Bottleneck Model for

Accurate Indoor Position Recognition (accepted), In the proceeding of the 25th In-

ternational Conference on Pattern Recognition (ICPR 2020), 2020, Milan, IEEE.

• Weizhu QIAN, Fabrice Lauri and Franck Gechter, A Probabilistic Approach for Dis-

covering Daily Human Mobility Patterns with Mobile Data, In the proceeding of the

18th International Conference on Information Processing and Management of Un-

certainty in Knowledge-Based Systems (IPMU 2020), p457–p470, 2020, Lisboa,

Springer.

• Weizhu QIAN, Franck Gechter and Fabrice Lauri, Comparisons of Machine Learn-

ing Algorithms on Smartphone Energy Consumption Modeling Issue Based on Real

User Context Data, (In the proceeding of the 11th International Conference on In-

formation, Process,and Knowledge Management eKNOW 2019).

133

134 APPENDIX A. RELATED PUBLICATIONS

• Weizhu QIAN and Franck Gechter, Modeling Smartphone Energy Consumption

Based on User Behavior Data. In the proceeding of the 5th International Conference

on Computational Science and Computational Intelligence (CSCI’18), Las Vegas,

2018.

Document generated with LATEX and:

the LATEX style for PhD Thesis created by S. Galland — http://www.multiagent.fr/ThesisStyle

the tex-upmethodology package suite — http://www.arakhne.org/tex-upmethodology/

http://www.multiagent.fr/ThesisStyle
http://www.arakhne.org/tex-upmethodology/

	1 Introduction
	1.1 Context
	1.2 Main Issues of the Thesis
	1.2.1 Discovering Daily Mobility Patterns from GPS data
	1.2.2 WiFi Fingerprint-based Location Prediction
	1.2.3 WiFi Fingerprint-based Location Recognition

	1.3 Main Contributions of the Thesis
	1.3.1 DPGMM-based Clustering Algorithm
	1.3.2 CMDRNN for Sequential Location Prediction
	1.3.3 VAE-based Model for Location Recognition
	1.3.4 VIB-based Model for Location Recognition

	1.4 Thesis Organization

	2 State of the Art
	2.1 Discovering User Mobility Patterns from GPS Data
	2.1.1 Discovering Frequently Visited Places
	2.1.2 Clustering GPS Trajectories

	2.2 Predicting Next User Location
	2.2.1 Machine Learning-based Prediction Methods
	2.2.2 Deep Learning-based Prediction Methods

	2.3 Indoor User Location Recognition
	2.3.1 Classification-based Location Recognition
	2.3.2 Accurate Location Recognition

	3 Discovering Daily Outdoor Mobility Patterns
	3.1 Introduction
	3.2 Method
	3.2.1 Probability Estimation
	3.2.1.1 Gaussian Mixture Models
	3.2.1.2 Dirichlet Process Gaussian Mixture Model

	3.2.2 Computing KL Divergence
	3.2.3 DPGMM-based Trajectory Clustering Algorithm

	3.3 Experiments and Results
	3.3.1 Dataset Description
	3.3.2 Experimental Setup
	3.3.3 Task 1: Probability Density Estimation
	3.3.4 Task 2: Measuring Daily Trajectories Similarities
	3.3.5 Task 3: Discovering Daily Mobility Patterns
	3.3.5.1 Discovered Patterns
	3.3.5.2 Number of Patterns and Trajectories
	3.3.5.3 Number of members for each patterns

	3.3.6 Task 4: Comparison to other Models
	3.3.7 Task 5: Varying Data Lengths

	3.4 Conclusion

	4 Predicting Indoor Location with WiFi Fingerprints
	4.1 Introduction
	4.2 Method
	4.2.1 Convolutional Neural Network
	4.2.1.1 1D Convolutional Neural Network

	4.2.2 Recurrent Neural Network
	4.2.2.1 Vanilla RNN
	4.2.2.2 LSTM
	4.2.2.3 GRU

	4.2.3 Mixture Density Network
	4.2.4 Convolutional Mixture Density Recurrent Neural Network
	4.2.5 Optimizers
	4.2.5.1 Adam
	4.2.5.2 RMSProp

	4.3 Experiments and Results
	4.3.1 Dataset Description
	4.3.2 Model Implementation Details
	4.3.3 Choice of Hypermeters
	4.3.4 Comparisons with Other Methods

	4.4 Conclusion

	5 Recognizing Indoor Location via Semi-supervised Learning
	5.1 Introduction
	5.2 Method
	5.2.1 Model Setup
	5.2.2 Unsupervised Learning Procedure
	5.2.2.1 Evidence Lower Bound of VAEs
	5.2.2.2 Learning Method of VAEs

	5.2.3 Supervised Learning Procedure
	5.2.3.1 Deterministic Predictor (M1 Model)
	5.2.3.2 Probabilistic Predictor (M2 Model)

	5.3 Experiments and Results
	5.3.1 Dataset Description
	5.3.2 Model Implementation Details
	5.3.3 Results

	5.4 Conclusion

	6 Recognizing Indoor Location via End-to-End Learning
	6.1 Introduction
	6.2 Method
	6.2.1 Model Setup
	6.2.2 Model
	6.2.2.1 Variational Approximation
	6.2.2.2 Solving Model
	6.2.2.3 Predicting

	6.3 Experimental Results
	6.3.1 Dataset Description
	6.3.2 Model Implementation Details
	6.3.3 Experiment 1
	6.3.4 Experiment 2
	6.3.5 Experiment 3
	6.3.6 Discussion

	6.4 Conclusion

	7 Conclusions and Perspectives
	7.1 Conclusions
	7.2 Perspectives

	A Related Publications

