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Damien Mavaleix-Marchessoux

Composition du Jury :

Marion Darbas
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Remerciements

Les travaux réalisés durant cette thèse, et présentés dans ce document, ont requis la
précieuse contribution d’un grand nombre de collaborateurs, collègues et amis.

Je souhaite tout d’abord remercier les membres de mon jury pour leur participation
à ma soutenance, en particulier Madame Marion Darbas pour l’avoir pilotée en qualité
de Présidente, Messieurs Régis Cottereau et Christophe Geuzaine pour avoir relu avec
attention ce mémoire et fourni des rapports très précis qui soutiennent les contributions de
ce travail, et Messieurs François Alouges et Guillaume Barras pour l’attention qu’ils ont
portée au sujet.

J’ai eu la chance d’être remarquablement bien encadré. Je remercie Bruno Leblé, mon
encadrant industriel, pour avoir initié ce projet, pour le temps qu’il y a consacré, pour
les formations qu’il m’a permis de suivre, et pour les visites des lieux de fabrication et
d’entretien des navires (peu de personnes ont l’opportunité et le privilège de visiter un
sous-marin et une frégate !). Je remercie également Marc Bonnet, mon directeur de thèse,
pour son importante contribution à notre travail, en particulier à nos articles ; pour tous
ses éclaircissements sur le plan théorique, notamment lors de nos longues discussions à
l’ENSTA ou au téléphone ; et pour sa patience pendant nos échanges. Merci encore pour
les relectures du mémoire et les nombreuses répétitions pour ma soutenance. Ma profonde
gratitude va à ma directrice de thèse, Stéphanie Chaillat. Elle m’a apporté une aide
précieuse, notamment sur le plan numérique et par ses très nombreuses relectures attentives
de toutes mes contributions, et du mémoire en particulier. De plus, travailler avec elle
pendant ces quatre années fut un réel bonheur ! Elle a été l’encadrante parfaite, aussi
bien sur le plan humain que scientifique. Elle a su me guider au quotidien de manière
bienveillante, m’accompagner dans les moments difficiles, m’encourager continuellement,
me féliciter toujours. Pour tout cela, un grand merci !

Le contexte CIFRE de ma thèse m’a permis d’évoluer dans deux mondes assez différents :
académique et industriel. Dans le premier, j’ai eu le privilège d’échanger avec différents
chercheurs et étudiants. Je remercie tous mes collègues du laboratoire POEMS, et plus
largement de l’UMA, pour la bonne ambiance, les discussions au coin café et au Magnan.
Je remercie plus spécifiquement ceux qui m’ont aidé durant la thèse en répondant à mes
diverses questions : Nicolas, Maurice et Christophe pour leur aide toujours très rapide et
efficace concernant les problèmes informatiques ; Axel, Marc, Maryna et Eliane pour leurs
explications concernant certains points théoriques précis ; Adrien pour avoir répondu à mes
diverses questions et m’avoir fourni gracieusement un programme pour l’interpolation de
maillage ; Nicolas pour m’avoir expliqué l’algorithme de la CQM ; Faisal pour nos échanges
enrichissants. Merci à Corinne pour tout le temps passé à gérer mes venues à l’ENSTA,
en particulier à me trouver un logement, et à Damien, Lucas, Xavier qui m’ont hébergé,
souvent en dernière minute, quand je n’avais pas d’autre solution. Je remercie également
Robin, mon homologue dirigeable/air, pour nos discussions très instructives concernant

i



ii

les problèmes d’écoulement potentiel. Un remerciement spécial à mon camarade Émile
pour sa gentillesse et ses réponses toujours très précises à mes questions scientifiques et
administratives. Un clin d’oeil sympathique à Jean-François pour son sprint mémorable
avec ma lourde valise dans l’Aéroport Charles de Gaulle pour m’éviter de manquer ma
correspondance ! Enfin, je remercie Alice pour avoir accepté de continuer nos travaux dans
le cadre de sa thèse, et je lui souhaite bon courage.

Dans le milieu industriel, j’ai découvert de nombreuses thématiques en lien avec le monde
maritime grâce à mes collègues de Naval Research avec qui j’ai eu le plaisir d’échanger
au quotidien. Je remercie Cédric, spécialiste de mon sujet de thèse, pour son savoir sur
les aspects mathématiques appliquées qui m’a été très précieux ; Quentin et Ladya pour
avoir accepté de travailler avec moi sur un cas de validation de nos procédures numériques ;
Éric pour son assistance dans l’utilisation du CSE d’Abaqus ® et son aide sur des points
précis d’implémentation. Merci à tous mes collègues de Sirehna, dont Maïté, Adrien, Luc,
Jean-Jacques, Pierre et Pol pour leurs réponses à mes questions ; et Guillaume et Charles-
Edouard qui m’ont permis d’améliorer mon niveau d’implémentation en m’expliquant avec
patience et pédagogie la bonne méthode et le bon outil pour aborder chaque problème.
Merci à Romain et Maud pour leurs conseils sur la vie en entreprise et la gestion de ma
carrière ; Thomas, mon manager, qui m’a fait confiance pour gérer mon temps ; Damien,
Maud, Yann, Christian, Mikaël, Jean-Michel, Pierre et tous ceux qui ont fait leur possible
pour m’aider à trouver un financement pour continuer mes travaux au sein de Naval
Group ; Julia et Camille pour leurs conseils pour mes présentations ; Nicolas et Gilles pour
nos échanges sur les problématiques de fonctions de Green et rayonnement acoustique ;
Laurent, Alexis, mes collègues de l’usine du futur et ceux de Sirehna qui m’ont aidé pour
la rétro-construction de CAO à partir d’un maillage ; Stéphane, Nicolas, Killian, Florent
et Sébastien pour leur soutien sur les outils informatiques et le cluster. Un remerciement
chaleureux aux doctorants, stagiaires, jeunes permanents et intérimaires avec qui j’ai passé
de bons moments : Étienne pour nos extravagantes parties de Age Of Empires, très utiles
pour décompresser ; Quentin pour avoir soutenu la science avant tout ; Ronan, Julie,
Matthieu, Julia et tous les autres ! Enfin, merci à tous les collègues du cross-training pour
leur bonne humeur pendant que nous faisions du gainage !

Je veux maintenant remercier ceux qui n’ont pas contribué directement à mon sujet
pendant cette thèse, mais qui m’ont guidé tout au long de ma scolarité vers le doctorat :
mes professeurs de sciences de collège, de lycée, de prépa, de l’ENSTA et de l’École
Polytechnique. Je n’oublie pas mes camarades de l’ENSTA qui, dans un cadre convivial et
bienveillant, m’ont donné envie de continuer mes études ; et mes amis d’enfance, toujours
fidèles malgré l’éloignement nécessaire pour le besoin de mes études, qui ont accepté et
compris l’importance que j’accordais à ces dernières. Je remercie ma famille, notamment
mes parents, mes grands-parents, mon frère et Lulu pour m’avoir soutenu tout au long de
mon éducation et de mon instruction, et pour m’avoir toujours exprimé sans réserve leur
fierté.

Pour conclure ces remerciements, je veux exprimer ma profonde gratitude et mon
admiration pour ma camarade, collègue, amie, compagne Léa. Je la remercie pour ses
enseignements sur la maîtrise de Git et du développement logiciel, et je lui suis infiniment
reconnaissant pour son soutien au quotidien dans cette longue aventure de la thèse, d’abord
à Paris puis à Nantes. Tu as été exactement ce dont j’avais besoin : toi.



Résumé étendu

Contexte

Les sous-marins militaires doivent résister aux sollicitations induites par une explosion
sous-marine. La simulation numérique des effets d’une explosion sous-marine lointaine
sur une structure donnée est d’une importance capitale, compte tenu du coût très élevé
des campagnes expérimentales. Une explosion sous-marine lointaine est un événement
complexe qui a deux effets distincts (voir Figure 1.1, Snay, 1956) : elle libère une onde
de choc, puis crée une bulle de gaz oscillante qui pousse une grande quantité d’eau plus
lentement.

Les deux phénomènes ont des caractéristiques et des échelles de temps assez différentes
(Cole, 1948). L’onde de choc est libérée au moment de la détonation, et son échelle de
temps typique est la milliseconde. Ensuite, une bulle de gaz brûlés, qui résulte de la
réaction chimique de l’explosion, oscille sous l’eau avec une pseudo-période de l’ordre d’une
demi-seconde, à la recherche d’un équilibre entre ses pressions interne et externe.

Dans ce travail, nous supposons que l’explosion est suffisamment éloignée pour (i) que
la présence du navire affecte peu l’explosion, et (ii) permettre une séparation temporelle des
deux phénomènes, tels que perçus par le navire. Notre objectif est de développer, dans ces
conditions, une méthodologie de simulation pour le problème d’interaction fluide-structure
prenant en compte les deux phénomènes. En plus de la phase de conception théorique,
nous recherchons une implémentation numérique efficace de la procédure, dans le cadre
du calcul haute performance, puis la validation de celle-ci sur des cas simples, et enfin
l’application à des cas industriels réalistes.

Chapitre 1 : L’onde de choc et la bulle de gaz oscillante

La première partie de cette étude commence par un aperçu global du problème physique,
dans la Section 1.1. L’objectif est double : (i) se familiariser avec les phénomènes de l’onde
de choc et de la bulle, en s’appuyant notamment sur des études expérimentales disponibles
dans la littérature, et (ii) poser le cadre de notre analyse, en précisant notamment les
hypothèses. Certaines de ces hypothèses (comme par exemple celle d’écoulement potentiel)
sont simplement énoncées dans le texte principal, et justifiées dans l’Annexe A.

L’onde de choc est une sollicitation rapide, qui vient impacter localement la structure
dans la région qui fait face à l’explosion, provoquant des déformations élastiques, voire
plastiques, de la coque du sous-marin. Le passage de l’onde autour du navire dure
quelques millisecondes, et, sur cette durée, on observe de petits déplacements et de petites
déformations. Le cas d’une explosion proche (étudié par exemple dans Barras 2012), dont
l’onde de choc peut engendrer de grandes déformations plastiques, voire la rupture de la
coque, n’est pas considéré.
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La Section 1.2 se concentre sur l’onde de choc et ses théories de propagation (en
l’absence du sous-marin). Nous y expliquons pour quelles raisons et dans quelle mesure la
théorie de l’acoustique linéaire est pertinente pour modéliser la propagation de l’onde de
choc suffisamment loin de l’explosion. Une étude complémentaire, introduisant notamment
la théorie de propagation des ondes de choc de Kirkwood-Bethe (Brinkley and Kirkwood,
1947a,b) est proposée en Annexe B.

Consécutivement à l’onde de choc, des gaz chauds, libérés par la réaction chimique de
l’explosion (principalement du CO2), forment une bulle de gaz. Initialement, la pression
interne de la bulle est plus élevée que la pression hydrostatique qui appuie sur sa surface ;
la bulle gonfle. Après un certain temps, la pression interne est égale à la pression externe,
et la surface de la bulle, qui a acquis une vitesse dans le processus d’expansion, entame un
mouvement de décélération. Lorsque la surface a une vitesse nulle, la pression interne est
inférieure à la pression hydrostatique, et on observe alors le processus inverse : la bulle se
contracte. Cette oscillation quasi-périodique autour d’un équilibre des pressions interne
et externe, dont la pseudo-période est de l’ordre d’une demi-seconde, s’accompagne d’une
migration de la bulle vers la surface (voir Figure 1.2, Brett et al., 2003). En oscillant, la bulle
de gaz provoque de grands déplacements d’eau, qui engendrent un mouvement d’ensemble
du sous-marin, de type flexion. Cette déformation peut s’avérer très dommageable si
la pseudo-période de la bulle est proche de la première période propre de flexion de la
structure (Zong, 2005; Zhang and Yao, 2008).

La Section 1.3 s’intéresse à la modélisation de la dynamique de bulle (en l’absence du
sous-marin). De nombreux modèles de bulle sont disponibles dans la littérature (Geers
and Hunter, 2002; Wang and Khoo, 2004; Barras et al., 2012). Pour donner une idée du
comportement de la bulle, nous présentons un modèle simple : une bulle sphérique qui
oscille dans un fluide parfait, où l’écoulement est supposé incompressible et potentiel, en
migrant vers une surface supposée infiniment éloignée (Leblond, 2007). Nous décidons de
ne pas développer de modèle de bulle, et choisissons de traiter le problème dans le cadre
simplifié d’écoulement potentiel incompressible.

Le chapitre se termine par une discussion sur le raccordement des deux phénomènes
physiques. En s’appuyant sur une méthode multi-échelles, nous justifions le traitement
séquentiel des deux perturbations dans le cas d’explosions lointaines d’une part, et montrons,
dans (1.43), que l’influence de l’onde de choc sur la phase de bulle oscillante se manifeste
par le terme d’after flow introduit dans (1.12).

Chapitre 2 : Transformée en Z et approximations hautes
fréquences pour les problèmes 3D transitoires rapides

Le Chapitre 2 se concentre sur la résolution de problèmes d’interaction fluide-structure non
couplés, qui constitue une première étape avant de s’intéresser au couplage fluide-structure
pour la phase de l’onde de choc.

Le contexte industriel, et en particulier l’application visée (interaction fluide-structure
entre un sous-marin et une explosion sous-marine), nous conduit à introduire la théorie des
équations intégrales (Lenoir, 2016; Sayas, 2016; Nédélec, 2001) pour traiter le problème fluide.
Nous rappelons donc, dans la Section 2.2, les principales étapes conduisant à l’obtention
de l’équation intégrale (2.14) qui exprime la valeur du potentiel dans le fluide par une
intégrale (sur Γ) de produits de convolutions temporelles avec les solutions fondamentales
(fonctions de Green) de l’équation des ondes.

La Section 2.3 est dédiée à la reformulation de l’équation intégrale espace-temps en
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un ensemble d’équations intégrales posées dans le domaine des fréquences complexes de
Laplace. Pour ce faire, nous proposons une dérivation simple combinant la méthode de
quadrature de convolution (CQM) (Lubich, 1988a,b) et la transformée en Z (Sayas, 2016).
D’autres approches sont disponibles dans la littérature (Betcke et al., 2017). La procédure
numérique obtenue, que nous nommons Z-BEM, est résumée dans la Section 2.3.4 : pour
un intervalle de temps discret {0,∆t, . . . , T = M∆t}, les valeurs discrètes de l’inconnue φ
sont obtenues par transformée en Z inverse numérique de sa transformée en Z. La partie
centrale de la procédure (qui concentre la quasi-totalité du temps de calcul) est la résolution
de M + 1 équations intégrales à fréquences complexes qui gouvernent la transformée en Z
de φ.

Après une rapide présentation, dans la Section 2.4, de la méthode des éléments de
frontière (BEM) (Banerjee, 1994; Bonnet, 1999) et de sa version accélérée par méthode
multipole rapide (Chaillat, 2008; Darve, 2000; Nishimura, 2002), la Section 2.5 présente
notre démarche d’amélioration de la Z-BEM pour traiter efficacement des problèmes
transitoires rapides. L’objectif est de réduire drastiquement les coûts de calcul en réduisant
le nombre de problèmes BEM à résoudre (initialement M+1). Pour ce faire, nous recourons
à une approximation haute fréquence pour traiter les problèmes BEM haute fréquence issus
de la CQM. Une de nos principales contributions est la construction d’une approximation
haute fréquence empirique pour les problèmes de diffraction d’ondes par un obstacle
immobile. La procédure obtenue, nommée HFA-enhanced Z-BEM, possède une complexité
avantageuse en O(1) par rapport à la discrétisation temporelle. La méthode est validée
dans la Section 2.6, d’abord sur le cas de rayonnement d’une onde par une sphère pulsante
en eau, puis sur le problème de diffraction de l’onde de choc d’une explosion sous-marine
par un cylindre infini. Enfin, la Section 2.7 démontre la performance de la procédure sur
un cas d’application représentatif de l’objectif industriel : un sous-marin immergé soumis
à une explosion sous-marine lointaine.

Chapitre 3 : Interaction fluide-structure pour l’onde de choc

L’objectif du Chapitre 3 est de résoudre le problème d’interaction fluide-structure (FSI)
couplé pour la phase de l’onde de choc. Dans la Section 3.1, nous introduisons les
procédures de couplage classiques itératives et monolithiques. Nous présentons ensuite
les contraintes spécifiques liées à notre sujet, et expliquons en quoi elles orientent notre
choix vers une procédure itérative FEM/BEM qui ne peut pas se faire pas-de-temps par
pas-de-temps. Ainsi, nous envisageons une procédure itérative FEM/BEM qui alterne
des résolutions FEM-structure et Z-BEM-fluide sur l’intervalle de temps complet [0, T ].
Inspirés par les méthodes de décomposition de domaines (Dolean et al., 2015; Toselli and
Widlund, 2006) et par la méthode LArge Time INcrement (LATIN) (Néron, 2004), nous
construisons un procédé itératif piloté par des conditions de transmission de type Robin
(3.13). Malheureusement, des contraintes pratiques liées au contexte industriel de la thèse
CIFRE nous obligent à utiliser le code Abaqus ® pour la partie FEM-structure, qui ne
permet pas de considérer des conditions de transmission de type Robin. Par conséquent,
nous ne pouvons pas implémenter notre procédure itérative Z-BEM/FEM qui alterne des
résolutions sur l’intervalle de temps complet.

Étant donné les contraintes pratiques rencontrées, nous adoptons, Section 3.3, une
procédure de remplacement de type monolithique FEM/FEM pour la partie couplée du
problème (pression rayonnée dans le fluide), tout en conservant la Z-BEM pour calculer la
composante réfléchie de la pression (voir Figure 2.8). La procédure résultante, nommée Hy-
brid Z-BEM/FEM/FEM, fournit des résultats satisfaisants au regard de l’objectif industriel,
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comme démontré dans la Section 3.5 sur le cas d’un cylindre infini déformable soumis à une
explosion sous-marine lointaine. En particulier, nous comparons les résultats obtenus avec
notre méthode à ceux obtenus avec une procédure semi-analytique (Rakotomalala et al.,
2021; Leblond et al., 2009; Sigrist and Leblond, 2008) et une méthodologie de couplage
entièrement FEM/FEM (Khoun, 2021) développée dans Code_Aster Open Source (2020).

Chapitre 4 : Interaction fluide-structure pour la bulle de gaz

Le but de ce quatrième chapitre est de traiter l’interaction fluide-structure pour la phase
de pulsation de bulle. Nous choisissons le modèle simplifié de Hicks (Hicks, 1970; Leblond,
2007) pour décrire la dynamique de bulle, qui fournit le champ (potentiel des vitesses)
ambiant φamb constituant la donnée d’entrée de notre procédure de couplage.

Nous décidons de traiter le problème FSI avec une procédure classique de couplage
FEM/BEM pas-de-temps par pas-de-temps (voir Figure 4.1), présentée dans la Sec-
tion 4.2. Ensuite, nous expliquons comment accélérer les résolutions BEM côté fluide
dans la Section 4.3, notamment en réutilisant les opérateurs BEM à chaque pas-de-temps.
L’indépendance vis-à-vis du temps de ces opérateurs n’est pas vraie dans le cas général,
mais s’avère être une hypothèse raisonnable dans notre contexte particulier (domaine fluide
infini isotrope, petites déformations du navire,. . . ). La méthode multipole rapide n’est alors
pas la plus efficace pour accélérer les résolutions BEM, car elle ne stocke pas les opérateurs
BEM, et donc ne permet pas de les réutiliser à chaque pas-de-temps. Nous choisissons
plutôt la technique des matrices hiérarchiques (H-matrices) (Hackbusch, 1999; Chaillat
et al., 2017b), qui fournit une forme compressée des opérateurs BEM, pour accélérer les
résolutions BEM.

Notre méthodologie de résolution du problème fluide-structure, résumée dans la
Section 4.4, est validée dans la Section 4.5 sur le cas simple d’une sphère rigide mobile
immergée dans un écoulement potentiel uniforme dont l’amplitude dépend du temps. En
particulier, nous étudions comment diminuer le nombre de sous-cycles par incrément
de temps (voir Figure 4.1) en construisant une bonne approximation de la solution à
l’incrément courant à partir des solutions des incréments précédents (voir Figure 4.14).

La Section 4.6 traite le cas d’une structure raidie (type coque de sous-marin) soumise
aux sollicitations induites par une bulle de gaz oscillante (voir Figure 4.15). Les résultats
issus de la simulation numérique sont cohérents vis-à-vis des comportements classiquement
observés : la structure se déforme principalement selon son premier mode de flexion. Une
phase de validation de la procédure par comparaison avec les résultats issus de campagnes
expérimentales a été initiée pendant cette thèse, mais n’est pas présentée dans ce document.

Chapitre 5 : Application industrielle : coque raidie soumise
à une explosion sous-marine

Le dernier chapitre présente le traitement d’un cas d’étude d’ingénierie de l’application
principale de nos travaux : une coque raidie soumise à une explosion sous-marine lointaine.
La Section 5.1 rappelle brièvement toutes les étapes de la procédure globale (pour les
deux phases : onde de choc et bulle de gaz), qui sont illustrées sur la Figure 5.4. Nous y
exposons également les modèles numériques, et proposons une méthode simple de jonction
entre les deux phases, illustrée Figure 5.2.

Les résultats numériques sont présentés dans la Section 5.2. Nous sommes très satisfaits
du calcul préliminaire de la pression réfléchie par la structure immobile qui fait face à
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l’onde de choc : le front d’onde est bien marqué et le champ total respecte la causalité
(voir Figures 5.6 à 5.8). Nous sommes également satisfaits du calcul pour la structure
déformable (voir Figures 5.10 à 5.13).

L’état final de la structure après cette phase d’onde de choc sert ensuite d’état initial
pour la phase de pulsation de bulle. Pour faciliter la transition entre les deux simulations,
nous avons essayé d’introduire un léger amortissement numérique de type Rayleigh pour
réduire l’agitation de la structure à la fin de la procédure de l’onde de choc. Cependant,
nous n’avons pas encore réussi à résoudre le problème d’interaction fluide-structure pour la
phase de bulle oscillante en prenant en compte l’état de la structure à la fin de l’interaction
avec l’onde de choc. La fin du chapitre explique les difficultés numériques rencontrées et
fournit des pistes de recherche pour les résoudre.

Conclusion et perspectives

Conclusion. Ce mémoire synthétise le traitement numérique (modélisation et simulation)
d’un problème industriel concret : l’interaction fluide-structure entre une explosion sous-
marine lointaine et un sous-marin. Nous avons tout d’abord étudié les phénomènes qui
entrent en jeu : (i) l’onde de choc, perturbation rapide dont la propagation est modélisée
dans le cadre de l’acoustique linéaire, et (ii) la bulle de gaz oscillante, perturbation plus
lente étudiée sous l’hypothèse d’un fluide potentiel incompressible. Ensuite, nous avons
développé une procédure éléments de frontière accélérée, basée sur une combinaison de la
méthode de quadrature de convolution avec une approximation haute fréquence empirique
originale. Plus largement, cette procédure permet de simuler efficacement des problèmes
transitoires rapides 3D de propagation d’ondes en milieu non-borné, et offre une complexité
très favorable : O(1) par rapport à la discrétisation temporelle et O(N logN) par rapport à
la discrétisation spatiale. Enfin, nous avons ensuite mis en place des stratégies performantes
de couplage éléments finis/éléments de frontière (FEM/BEM) pour le traitement séparé
de la phase d’interaction fluide-structure de l’onde de choc puis celle de la bulle de gaz.
La procédure globale, validée sur des problèmes académiques, fournit des résultats très
prometteurs sur des cas industriels réalistes.

Perspectives. Cette première étude sur la conception et l’implémentation d’une méthodo-
logie numérique pour résoudre le problème d’interaction fluide-structure considéré a ouvert
de nombreuses perspectives. À court terme, nous proposons d’améliorer la procédure pour
la phase de bulle oscillante, notamment au niveau numérique pour réduire les temps de
calcul. À moyen terme, nous voulons continuer notre travail sur la procédure de couplage
Z-BEM/FEM introduite pour traiter l’interaction fluide-structure pour la phase d’onde
de choc, afin de résoudre le problème complet sans recourir à un maillage volumique
du fluide. Nous avons aussi commencé une phase de validation des outils développés
par comparaison avec des campagnes expérimentales. À long terme, nous envisageons
d’améliorer le raccordement entre les deux phases du problème (onde de choc et bulle de
gaz) en proposant un traitement plus unifié.

D’autres perspectives portent sur l’amélioration des capacités numériques des codes
développés et utilisés, ainsi que leur généralisation, pour pouvoir traiter toujours plus
rapidement et précisément les diverses problématiques industrielles d’interaction fluide-
structure rencontrées dans le monde maritime.
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Annexes

Le mémoire se termine avec quatre annexes qui donnent des détails sur :

• l’analyse dimensionnelle des problèmes de l’onde de choc et de la bulle de gaz,

• une analyse complémentaire de l’onde de choc,

• des preuves et calculs de résultats énoncés dans le corps principal du document,

• des tables qui fournissent les informations et paramètres numériques de l’étude
comparative effectuée dans la Section 3.5.

Principales publications associées à ce travail

Articles. Le travail présenté dans cette thèse a fait l’objet d’une publication dans une
revue avec comité de lecture :

• D. Mavaleix-Marchessoux, M. Bonnet, S. Chaillat, B. Leblé. A fast boundary element
method using the Z-transform and high-frequency approximations for large-scale
three-dimensional transient wave problems. Int J Numer Methods Eng. 2020; 121(21):
4734 – 4767. https://doi.org/10.1002/nme.6488

et deux publications sont actuellement en préparation : (i) sur l’interaction fluide-structure
pour la phase d’onde de choc, correspondant au contenu du Chapitre 3, et (ii) sur
l’interaction fluide-structure pour la phase de bulle oscillante, correspondant au contenu
du Chapitre 4.

Conférences. Ce travail a été présenté lors d’une conférence internationale et deux
conférences nationales.
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Notations

I
n the entire document, the following notations are used:

Definitions and relations

• := : definition of a new mathematical or physical quantity;

• ≡ : attribution of a symbol to a known physical quantity or mathematical object;

• ≃ or ≈ : a ≃ b means a is approximately equal to b;

• ∼ : a ∼ 106 means the order of magnitude of a is 106.

Operations

• ∆ : spatial Laplacian;

• H : Heaviside step function;

• Let n denote the outward normal to a certain closed surface S ⊂ R
3 and f : R3 → R,

then
∂f

∂n
≡ ∇f · n .

Sets

• N : set of non-negative integers;

• R : set of real numbers; R+ := {x ∈ R|x ≥ 0} ;

• For Ω ⊂ R
3,

L2(Ω) :=
{

f : Ω → R

/∫

Ω
f2 < ∞

}

,

H1(Ω) :=
{

f : Ω → R

/

f ∈ L2(Ω),∇f ∈
(

L2(Ω)
)3
}

,

H1
0 (Ω) :=

{

f : Ω → R

/

f ∈ H1(Ω), f = 0 on ∂Ω
}

,

H1(∆; Ω) :=
{

f : Ω → R

/

f ∈ H1(Ω), ∆f ∈ L2(Ω)
}

.

Generic notations

• x : position vector;

• t : time;

• g : gravity;

• p(M) : pressure at point M in the fluid or at the fluid-structure interface;

• v(M) : fluid particle velocity at point M ;

• u(M) : projection of v(M) on a unit vector n (e.g., normal vector to a surface);

xix
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• φ(M) : velocity potential. If the flow is potential then v(M) = +∇φ(M) ;

• e(M) : specific internal energy per unit mass at point M ;

• σ : Cauchy stress tensor;

• ε : strain tensor.

Specific notations relative to underwater explosion analyses

Consider an underwater explosion occurring far from a submarine. The effects on the
structure depend on several parameters, depicted in Figure 1.

a

Fluid: Ωf , cf , ρf 

Shell: E, ρs , cs , ν

d0

ϕi , pi

W

l

ac

Figure 1: Shell submerged in water, subjected to a remote underwater explosion:
notations.

• ds : shortest distance between the shell and the explosion, termed standoff distance.
The distance to the structure centre d0 is rather used in this work (e.g., for a cylinder
of radius a, ds = d0 − a);

• W : charge mass;

• ac : charge radius;

• ξexp : positive water depth of the explosion;

• a, l : characteristic lengths of the structure (submarine);

• hs : thickness of the structure (submarine);

• E : Young’s modulus of the structure (steel);

• ν : Poisson’s ratio of the structure (steel);

• ρs : volumetric mass density of the structure (steel);

• cs : sound speed in the solid (steel);

• cf or c : sound speed in the fluid (water);

• ρf or ρ : volumetric mass density of the fluid (water);

• pm(r) : jump magnitude of the shock wave at distance r from the explosion;

• τ(r) : time characterising the temporal decline of the pressure at distance r from the
explosion;

• tr : retarded time, it expresses causality for the shock wave;

• fW : denotes the part of a total quantity f which is due to the shock wave (e.g.,
ρW , pW , . . . );

• fB : denotes the part of a total quantity f which is due to the oscillating bubble (e.g.,
ρB, pB, . . . );



Notations xxi

• ξM : positive water depth at point M ;

• ph : hydrostatic pressure;

• P0 : atmospheric pressure;

• ξatm ≡ P0/ρf g : contribution of the atmospheric pressure P0 to the hydrostatic
pressure;

• T : quasi-period of the bubble oscillation;

• Rmax : maximum radius of the oscillating gas bubble.

Numerical parameters

• N : number of spatial degrees of freedom;

• M : number of time steps;

• ∆t : time step;

• T : simulation duration.
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Introduction

C
onsider a smart trout, standing still in a narrow river of the Limousin1 (see Figure 2).
At an initial time instant t = 0, the fishing float of a clumsy fisherman enters the

water, near the fish. Consequently, a perturbation starts propagating in the fluid. After a
while, it reaches the fish and makes him vibrate. Aware of this perturbation, the prudent
trout inevitably flees. The coveted river fish is gone forever.

The problem studied in this dissertation is somehow similar to the scene depicted above.
The fish is replaced by a submarine or a ship (a submarine is used in the following), the
fishing float by an underwater explosion, bursting at t = 0, and the river by a sea or an
ocean. Resulting from the explosion, some perturbations propagate through the water and
reach the hull of the submarine after a certain time, notably depending on the sound speed
cf in the acoustic medium. Then, these perturbations affect the shell in a way depending
on the kind of the explosive material, the charge weight of the explosion, the water depth,
and the distance that separates the submarine and the initial bursting point.

The purpose of this PhD work is to model the fluid-structure coupling between a
structure (submarine) and the water, caused by an underwater explosion. More precisely,
it intends to (i) provide a comprehensive theoretical modelling of the problem, (ii) design
and implement an efficient numerical procedure that simulates the effects of a remote
underwater explosion on a submarine in deep water. It was supported by the French
institute ANRT and the industrial company Naval Group, and is part of a collaboration
between the latter and the research laboratory POEMS (ENSTA Paris – INRIA – CNRS).

What is a far-field underwater explosion? A remote (or far-field) underwater
explosion is a complex event that has two distinct effects: it sends a shock wave, then
creates an oscillating gas bubble that sets water in slower motion. The two phenomena
have quite different characteristics and time scales. The shock wave, initially sent by the
blast, is the result of a sudden release of energy, which propagates as a wave in the fluid,
namely through a transfer of energy, but no transport of matter. The typical time scales
involved are of some milliseconds. Consecutively, a bubble of burnt gases results from
the chemical reaction of the explosion. As it oscillates under water, seeking a balance
between its internal and external pressures, it generates an ebb and flow of water, with a
pseudo-period of typically half a second.

In this work, only far-field underwater explosions are considered. It consists in two
hypotheses: (i) the presence of the submarine only marginally affects the explosion, and
(ii) there is a temporal separation of the two phenomena (shock wave and oscillating
bubble), as experienced by the ship. Our overall goal is to develop, under these conditions,
a computational solution methodology for the fluid-structure interaction (FSI) problem,
taking into account both phenomena.

1One of the most beautiful regions of France, located in the centre of the country.
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Smart

trout

Clumsy

fishermanFishing

float

Unexpected

delivery

Not reckless

submarine

B
OOM

Narrow river

of the

Limousin

Figure 2: Upper part: a clumsy fisherman fails to catch a trout. Lower part: an
unexpected delivery bursts before reaching its destination.

Why simulate the effects of a far-field underwater explosion? Submarines must
withstand the effects of rapid dynamic loads induced by underwater explosions. This lends
great importance on the numerical simulation of the effects of a remote underwater blast
on a given structure, in view of the very high cost of full-scale experimental testing. Of
course, it cannot be a substitute to experimental investigations, but allows to predict, with
a certain degree of accuracy, the results of a given experiment. Thus, once a numerical
method has been validated through comparisons with experimental data, the simulation can
be used as an alternative to numerous, costly and difficult experimental tests, to validate
some specific criteria of resistance. Therefore, for Naval Group, one of the French industrial
group specialised in naval defence, that notably designs warships and submarines, the topic
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has been and will remain widely studied in its Research and Development departments.

How do we address the problem? The first step of the story is to well understand
the physical phenomena underlying the effects of an underwater explosion, because only a
sharp comprehension of the physical problem permits the choice of the most appropriate
modelling. This is the task of Chapter 1, in which both the shock wave and the oscillating
bubble are under scrutiny, in a mostly bibliographic study. The shock wave propagation
is found to be governed by the wave equation, within the framework of linear acoustics,
whereas the perturbation induced by the oscillating bubble is dealt with in the context
of incompressible potential flow, with the Laplace equation. The end of the chapter is
dedicated to the study of the junction between the two phenomena and their mutually
exclusive modelling.

Building on the knowledge gathered in this first chapter, we then address the shock wave
phenomenon. Chapter 2 lays down the foundation for a first approach, termed FEM/BEM
coupling, in which the fluid part is treated in the framework of the Boundary Element
Method (BEM), whereas the structure part is dealt with using the Finite Element Method
(FEM). We focus on the fluid part, and propose a numerical method to efficiently deal with
3D rapid transient acoustic problems set in large exterior domains. Using the Z-transform
and the convolution quadrature method (CQM), we present a straightforward way to reframe
the problem to the solving of a large amount (the number of time steps, M) of frequency-
domain BEMs. Then, taking advantage of a well-designed high-frequency approximation
(HFA), we drastically reduce the number of frequency-domain BEMs to be solved, with
little loss of accuracy. The complexity of the resulting numerical procedure turns out to
be O(1) in regards to the time discretisation and O(N logN) for the spatial discretisation
(N being the number of spatial degrees of freedom), the latter being prescribed by the
complexity of the used fast BEM solver, based on the Fast Multipole Method (FMM) in
our case. Examples of applications are proposed to illustrate the efficiency of the procedure
in the case of fluid-structure interaction: the radiation of an acoustic wave into a fluid by
a deformable structure with prescribed velocity, and the scattering of an abrupt wave by
simple then realistic geometries.

Chapter 3 deals with the FSI coupling for the shock wave part. First, inspired by
domain decomposition methods, we propose a FEM/BEM coupling using the procedure
developed in Chapter 2, and explain why it is not perfectly appropriate given the industrial
constraints tied to our problem. Then, taking advantage of the fluid decomposition into
a radiated (radiation problems) and a reflected (scattering problems) components, we
examine the characteristics of the radiated pressure, which concentrates the coupled part
of the FSI problem. As a result of this analysis, we adapt the procedure in such a way
that the coupled part of the FSI problem is now solved with a FEM/FEM coupling. Far
from being the ideal solution, the obtained computational method nonetheless efficiently
tackles the difficult FSI problem, as it is illustrated in the reference case of a long cylinder
subjected to an underwater explosion. In particular, a comparison to other numerical
methods validates our procedure, with very promising results.

Once the shock wave phenomenon considered, Chapter 4 focuses on the oscillating
bubble phase. We first stress the time-(in)dependence aspects of the fluid problem, in
contrast to the acoustic case (shock wave phase). Then, we introduce the hierarchical
matrices (H-matrices), an acceleration technique for the BEM that is efficient when dealing
with multiple right hand-sides. Thereafter, we present the step-by-step FEM/BEM coupling
procedure we choose to solve the FSI problem. We validate the method on the simple
problem of a sphere in a uniform time-dependent flow, before solving the FSI problem
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of a gas bubble impacting a stiffened submarine hull. We pay particular attention to the
numerical techniques enabling a faster convergence of the iterative FEM/BEM coupling
procedure, such as relaxation techniques and the use of well-chosen initial guesses.

This work concludes with the treatment of an industrial case: a submarine stiffened
hull subjected to a remote underwater explosion. The purpose of this Chapter 5 is to
show the efficiency of the computational method, when gathering all the results obtained
throughout this work. The engineering study conducted represents a prime example of the
target applications of this work.

The conclusion of this PhD work is divided in four parts. Firstly, we summarise all of
the content presented in this dissertation. Secondly, we stress our contributions, notably by
identifying our start and end points, both in terms of knowledge and software development.
Thirdly, we discuss the consequences of some choices made in the industrial context. Finally,
we give some prospects for future studies (some being already investigated).



Chapter 1

The shock wave and oscillating
bubble phenomena

T
his chapter is dedicated to the presentation of the characteristics of the two phenomena
resulting from an underwater explosion (UNDEX): the shock wave and the oscillating

bubble (see the Introduction). The goal is to well understand those phenomena, to
infer appropriate hypotheses and identify well suited models, hence setting the governing
equations of each event.

This chapter is composed of four sections. Section 1.1 is dedicated to an overview
of the characteristics of an underwater explosion. The shock wave phenomenon and the
oscillating gas bubble are introduced, and an energetic study shows that they both have
to be taken into account for fluid-structure interaction problems (i.e., one is a priori not
marginal compared to the other). Thereafter, a more thorough analysis is conducted in
Section 1.2 for the shock wave, and in Section 1.3 for the oscillating gas bubble. Finally,
we explain how to perform the junction between the two events in Section 1.4.

1.1 Global overview

As stated in the Introduction, only far-field underwater explosions, also termed remote
underwater explosions, are considered. For instance, an explosion of W = 100 kg of TNT,
located at a distance ds = 100 m from a submerged ship, at a water depth ξexp = 100 m,
satisfies the two conditions to be a remote underwater explosion:

• the effects of the shock wave can be temporally separated from those of the oscillating
bubble, as experienced by the ship;

• the oscillating bubble behaviour is only marginally affected by the presence of the
structure.

In the following, this set of explosion parameters (W = 100 kg, ds = 100 m, ξexp = 100 m)
is used as a reference to estimate the magnitude of the physical parameters characterising
the shock wave and the bubble phenomena.

The accurate understanding of the consequences of an UNDEX constitutes an essential
step prior to the study of the related fluid-structure couplings. Hence, in the following, we
examine the effects of an UNDEX at a point P in the fluid, in the absence of any obstacle.

5



6 Chapter 1: Shock wave and oscillating bubble

1.1.1 Brief presentation of the shock wave

An explosion is a sudden release of a high amount of energy, typically due to an exothermic
chemical reaction. Right after the explosion, the energy released creates a wave, called
shock wave or primary wave, that starts propagating in the fluid medium Ωf , approximately
(in a sense specified in Section 1.2) governed by the linear wave equation (Cole, 1948),
but at a speed v initially higher than the sound speed in the fluid. Over a very short
distance of about 20 times the charge radius ac (typically, ac ≃ 10 cm), the shock wave
speed declines and reaches the sound speed c ≡ cf ≃ 1500 m/s in water. As the shock wave
speed v converges to the sound speed c, the energy carried by the wave, corresponding to
approximately half the total energy released by the explosion, reduces before reaching a
quasi-stable value (Arons and Yennie, 1948). When the shock interacts with a structure,
during a typical duration of 10−2 s, the induced deformations are mostly localised on the
part of the shell that faces the explosion.

To study the propagation of the blast, the simplest approximation is to state that the
supersonic shock wave turns into a common acoustic wave that propagates in the fluid,
governed by the wave equation. The study of the supersonic shock wave near the explosion
is not performed in this work, since we focus on far-field explosions. The reader may refer
to (Barras, 2012) for more details about near-field underwater explosions. Even in the case
of a far-field explosion, the phenomenon is not exactly depicted by an ideal wave, in the
sense that some of the energy of the shock wave is dissipated during the propagation. This
matter is discussed in Section 1.2.2.

The characteristics of the shock wave have been studied in the middle of the past
century, notably in (Cole, 1948; Arons and Yennie, 1948; Brinkley and Kirkwood, 1947a,b).
Experimental results suggest that the expression of the incident pressure associated to the
primary wave is characterised by a sudden jump, within less than 10−7 s, to a magnitude
pm, of typically 1 to 10 MPa, followed by an exponential decay of time constant τ , with
typically τ ∼ 10−4 – 10−3 s. More precisely, at a point P within the fluid, the incident
pressure is expressed as (Cole, 1948)

pW(r, t) = pm(r) exp
(

− tr(r, t)
τ(r)

)

H(tr(r, t)) , (1.1)

where

• H is the Heaviside step function,

• pm(r) = K1

(

W 1/3

r

)a1

is the jump magnitude,

• τ(r) = K2W
1/3

(

W 1/3

r

)a2

characterises the temporal decline of the pressure,

• tr(r, t) := t− r/c is the retarded time, which expresses causality,

• r is the distance between the field point P and the initial bursting point.

K1, K2, a1, a2 are parameters that depend on the kind of the explosive material, and are
given later in Table 1.1 for some common explosive materials. The parameters pm and τ
are related to W and r, and so the wave at distance r can be characterised by either pair
of parameters. In other words, for a given experimental configuration in which W and the
kind of the explosive are known (we launch a torpedo), the form of the induced incident
pressure can be inferred at distance r; and in another experiment in which pW is measured
(they launch a torpedo), the corresponding charge weight and distance may be computed
provided that the kind of explosive material is known/guessed.
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The severity of an UNDEX at the standoff point is measured by a physical quantity,
namely the shock factor K, determined from a similitude principle (Cole, 1948; Arons and
Yennie, 1948), and expressed as1:

K =

√
W

ds
. (1.2)

Two different explosions with the same explosive material and similar shock factor are
assumed to lead to similar damages. A value of K < 0.1 kg1/2/m is said to imply limited
damages, whereas K > 1 kg1/2/m is seen as a severe shock that induces plastic deformations
of the hull (Brochard, 2018). For our reference explosion of W = 100 kg at ds = 100 m,
K ≃ 0.1 kg1/2/m. A more detailed analysis of the primary wave is given in Section 1.2.
Before that, we introduce the oscillating bubble phenomenon.

1.1.2 Brief presentation of the oscillating gas bubble

A shock wave is the phenomenon commonly considered when thinking about a blast in air,
but in water another substantial phenomenon has to be taken into account. Resulting from
the chemical reaction that releases the energy, the detonation produces large amounts of
hot gases2 that form a bubble (Brett et al., 2003). The typical pressure and temperature
in the product gases are of the order of 50 000 bar and 3 000°C, respectively (Cole, 1948).
Initially, the internal pressure of the bubble is higher than the ambient hydrostatic pressure,
so the bubble starts by expanding, pushing away the water. As it expands, its internal
pressure decreases and the velocity of the bubble surface increases. After a while, the
internal pressure is exactly equal to the water pressure, but the bubble continues growing
because of its high surface velocity. As it grows, its velocity drops. When its speed
reaches zero, the reverse phenomenon appears, the bubble collapses. After a while, the
bubble expands again and the process starts again. This oscillating phenomenon is similar
to that of a spring-mass system initially compressed. During the process, some of the
energy of the bubble is irreversibly transmitted to the water (Arons and Yennie, 1948).
Consequently, the phenomenon is not exactly periodic, but quasi-periodic. Therefore,
the bubble quasi-oscillates around an equilibrium position corresponding to the equality
between internal and external pressures. The quasi-period of this oscillation depends on
the type of the explosive material and the charge parameters (charge weight, water depth,
charge radius). The time scale of the oscillations is approximately 0.1 to 0.5 s (Snay, 1962;
Swisdak, 1978). As the bubble oscillation makes the water move, it generates a transport
of both matter and energy. Consequently, the propagation of the created perturbation
is not governed by the wave equation, but a priori by the common Euler equations of
fluid dynamics (viscous effects are neglected, see Appendix A). When affecting a slender
structure, this process, involving half the energy resulting from the explosion, generates a
quasi-periodic structural load on the hull, whose frequency may be close to the resonant
frequency of a warship. Hence, the shell globally vibrates due to this phenomenon and the
induced damages may be significant (Zong, 2005; Zhang and Yao, 2008).

In addition to the ebb and flow generated by the oscillations, secondary pressure waves
are created when the bubble is the most contracted (see Figure 1.1). These waves, also
termed bubble pulses, are less abrupt than the shock wave, namely the magnitude of the
incident pressure induced by secondary waves is (i) reached more smoothly and (ii) smaller

1Another definition takes into account the depression angle α (angle between vessel axis and charge), so

that K = (1 + sin α)/2
√

W /ds.
2The types of gases depend on the reagents involved in the chemical reaction. Common gases are CO,

N2, CO2 or CH4.
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Figure 1.1: Schematic representation of the bubble motion and the pressure history,
after (Snay, 1956).

than that of the primary wave. Therefore, some of the energy of the bubble is radiated,
and consequently not stored as reversible potential energy in the fluid. This loss of energy
implies that the maximum radius of the bubble reduces as the number of oscillations
increases.

Due to Archimedes’ principle, the bubble migrates to the surface. This vertical motion
is not linear in time and depends on the bubble oscillations. It is observed that the bubble
moves faster towards the surface when it is contracted, which is not obvious a priori since
the buoyant force linearly rises with the occupied volume. This acceleration is explained by
considering the fluid resistance, which evolves proportionally to the square of the velocity
and the square of the bubble radius.

The motion of a gas bubble formed by the detonation of 0.5 kg of composition B (60/40
RDX/TNT) is illustrated in Figure 1.2 (Brett et al., 2003). It is noticeable that the gas
bubble surface remains smooth and spherical during the first expansion, until snapshot 8.
When it fully collapses, its shape is deformed, the bubble becomes asymmetric, especially
on snapshots 12 and 13, and it may even be split in two parts (Best, 2002). This change of
shape is notably due to the formation of a high-speed liquid jet upon collapse, noticeable on
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snapshot 14. This fluid jet is caused by the variation of hydrostatic pressure, whose action
on the bubble depends on its water depth. At the time of second maximum expansion (see
snapshot 18) the bubble surface is not perfectly symmetric, as some instabilities arise.

So far, the shock wave and the oscillating bubble appear to be fundamentally different
phenomena. Their motion is not governed by the same equations and their effects on the
structure are not of the same type (one is local, the other one global). Therefore, the
modelling of their effects is mainly studied separately in the remainder of this dissertation.
However, it is important to keep in mind that the two phenomena are intrinsically linked
since they both emerge from the same explosion. Trying to deal with them strictly
separately, or considering one of them marginal compared to the other, would be a mistake
in some configurations, and nowadays it is well known that, for fluid-structure interaction
purposes involving a submarine, both phenomena have to be taken into account and unified
as much as possible (Geers and Hunter, 2002; Graham et al., 2017). The energy repartition
discussed next emphasises this point.

1.1.3 Energy repartition

The repartition of the energy of an underwater TNT explosion has been studied in (Arons
and Yennie, 1948), and is sketched in Figure 1.3. The values have been obtained through
analyses based on experimental results, notably in (Arons et al., 1948). The method was
to compute the energy flow associated to each phenomenon, and then to infer the energy
losses from a global energy balance. The computation is briefly explained in Appendix B.3.
Note that the values provided in Figure 1.3 are given with an uncertainty of at least 10%,
making the relevance of some values open to discussion. Also, the values in Figure 1.3 have
been obtained using as a zero energy reference the state of infinite adiabatic expansion
of the product gases. See (Arons and Yennie, 1948) for more details about the latter two
remarks.

Figure 1.3 shows that the energy released by the explosion is nearly evenly divided
between the shock wave and the oscillating bubble. Moreover, it stresses that the oscillating
bubble affects the submerged structure not only through the ebb and flow it generates,
but also through the secondary waves created when the bubble is fully contracted. Indeed,
on the one hand the energy carried out by the primary wave is approximately 26% of the
total energy of the explosion, while on the other hand the first secondary wave created by
the bubble carries 11% of the total energy. It is then noticeable that the first secondary
wave, produced by the first maximum contraction of the bubble, is not negligible, in terms
of energy, compared to the primary wave.

With this in mind, it is however important to stress that secondary waves are less
abrupt than the primary wave, namely they are smoother than the latter, and so the effects
on a structure could be reduced, compared to that of the shock wave. Yet, a recent paper
(Graham et al., 2017) carried out a study claiming that the bubble pulses could be “much
more damaging” than the initial shock wave. This reminds the community that the topic
is still open, and may suggest that improving the modelling of the bubble dynamics, by
considering bubble pulses as waves for instance (Leblond, 2007), and determine whether it
is relevant in the case of far-field underwater explosions, is among future prospects.
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Figure 1.2: Motion of the gas bubble formed by the detonation of 0.5 kg of
composition B (60/40 RDX/TNT) at a depth of 5 m, from t = 0 to
t = 256 ms. The maximum bubble diameter is about 2.3 m. Snapshots
from (Brett et al., 2003).
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Total energy
4400 (100%)

Shock wave energy
2400 (54.5%)

Bubble energy
2000 (45.5%)

Energy dissipated
during propagation

1250 (28.5%)

Acoustic energy
distributed over the
spherical wave front

1150 (26%)

Potential energy
stored in water
1600 (36.5%)
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gaseous products

400 (9%)

Energy dissipated
at shock front
850 (19%)

Other energy
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400 (9%)

At time of first
bubble maximum

Energy losses during
emission of first pulse

750 (17%)
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first bubble pulse

500 (11%)

Bubble energy
750 (17%)

Potential energy
stored in water

500 (11%)
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At time of second
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Energy losses during
emission of second pulse
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stored in water
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Internal energy of
gaseous products
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At time of third

bubble maximum

Total energy losses: 52% Total acoustic energy: 38%

Figure 1.3: Energy repartition of an underwater TNT explosion, from the values
obtained in (Arons and Yennie, 1948), representation inspired from
(Brochard, 2018). Energy values given in J/g. For W expressed in kg,
the acoustic radiation and the energy dissipated at the shock wave front
are evaluated at a distance r = W 1/3 × 0.665 m from the initial bursting
point.
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1.1.4 Summary: what problems are considered? What are the hypothe-
ses?

So far, two distinct phenomena (arising in far-field of explosions) have been briefly presented:
a shock wave, also termed primary wave or blast, and an oscillating gas bubble. Since their
characteristics are very different, proposing an efficient numerical method that covers the
effects of both phenomena is challenging. Instead, it is helpful to treat them separately
and find a way to combine their analysis. Again, this is possible only because far-field
underwater explosions are considered, namely explosions far enough so that

• the effects of the shock wave can be temporally distinguished from those of the
oscillating bubble, as experienced by the ship;

• the oscillating bubble behaviour is only marginally affected by the presence of the
shell.

The first hypothesis allows to decompose the global study in two sequential phases. The
second makes it reasonable to uncouple the shell behaviour from the bubble dynamics.
Also, the fluid domain (the ocean) is treated as unbounded, so that reflections of the shock
wave by the water surface and the seabed are disregarded. It corresponds fairly well to the
study of a military submarine fight in deep water3.

The study reported in Appendix A permits to specify the relevant approximations for
both the shock wave and the gas bubble. For both phenomena, the Reynolds number is
sufficiently high for viscous effects to be negligible. For the shock wave, the strains and
the displacements may be considered small. We choose to study the bubble part under
the assumption of small strains but possibly (large) finite rigid displacement. In both
cases, the water is considered as a perfect fluid, homogeneous, isotropic, where the flow is
irrotational or potential. These hypotheses, known to be relevant approximations, are also
discussed in (Cole, 1948). As they satisfactorily depict reality, these assumptions are the
basis on which the modelling is performed in Section 1.2 and Section 1.3.

1.2 The shock wave and its theory of propagation

The purpose of this section is to find and justify an adequate modelling for the shock wave
phenomenon. All the concepts and results presented therein are available in the literature,
but we try to enhance the way they are introduced. In particular we attempt to specify
and justify properly any assumption or approximation. The study proposed is not quite
comprehensive, notably because it does not analyse the behaviour of a shock wave near the
explosion. However, we believe it offers a fairly thorough examination of the characteristics
of a shock wave far from the explosion.

1.2.1 Impulsion of the shock wave, single- and double-exponential fits

As stated in Section 1.1, the shock wave stems from a sudden release of energy at the
surface of the explosive charge when detonating. Far from the explosion, the resulting
incident pressure may be represented by an exponential decay (see Section 1.1.1). Actually,
after a more detailed analysis of the experimental results presented in (Coles et al., 1946),
it was noticed that the pressure decay is better approximated by a double-exponential

3Modern nuclear attack submarines have a maximum operating depth greater than 400 meters.
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decay of the form4 (Geers and Hunter, 2002)

pW(r, t) = pm f(tr(r, t))H(tr(r, t)) , (1.3)

f(t) = α1 e
−β1 t/τ + α2 e

−β2 t/τ , ∀t ≤ 7τ , (1.4)

where α1, β1, α2, β2 are numerical coefficients, obtained from experimental data, that
depend on the type of the explosive material, and

pm(r) = K1

(

W 1/3

r

)a1

, τ(r) = K2W
1/3

(

W 1/3

r

)a2

. (1.5)

According to (Geers and Hunter, 2002), the new form (1.4) of the shock wave pressure is
fairly accurate for TNT for a retarded time smaller than 7τ , whereas a single-exponential
decay remains accurate only before τ . Also, the double-exponential fit allows a better
junction with the effects of the bubble (see Section 1.4.1). Therefore, it seems that this
double-exponential fit is to be preferable for more accurate results. On the other hand, the
single exponential fit is still widely used in the literature, and especially in industry, and
so remains of interest. If the explosive material is TNT, the numerical coefficients in (1.4)
are experimentally set to α1 = 0.8251, β1 = 1.338, α2 = 1 − α1 = 0.1749 and β2 = 0.1805.
Otherwise, since the literature mainly considers the case of TNT, it is difficult to find the
proper coefficients for other explosive materials.

So far, the fits proposed in (1.1) and (1.4) introduce a typical time scale τ and a typical
pressure pm, for a wave propagating at speed c. They characterise the exponential decay of
the wave at a point P located at distance r from the explosion locus. Another formulation
of (1.3) may be written as (Coles et al., 1946; Price, 1979; Geers and Hunter, 2002):

pW(r, t) = Pc

[
ac
r

]1+b1

f̃

(

vc
ac

[
ac
r

]b2

tr

)

H(tr) , (1.6)

where f̃(u) = α1 e
−β1u + α2 e

−β2u for u ≤ 7. The parameters Pc, vc, b1 and b2 are related
to the former parameters through

b1 ≡ a1 − 1 , b2 ≡ −a2 , (1.7a)

Pc ≡ K1

(

W 1/3

ac

)a1

, vc ≡ 1
K2

(
ac

W 1/3

)1+a2

. (1.7b)

Some authors prefer to consider the form (1.6) rather than (1.4). In this work, we adopt
(1.4). Obviously, this does not introduce any theoretical issue, since the two forms are
equivalent and (1.7) allows to move from one representation to the other.

Two very important quantities related to an acoustic wave are its impulsion and the
total acoustic energy it carries. The impulsion per unit area I of a wave is defined as
the integral over time of the associated incident pressure. For an underwater explosion,
the pulse duration of the pressure is usually chosen equal to 7τ , to avoid to take into
consideration the effects of the bubble (Cole, 1948). Hence, the impulsion per unit area of
the wave at distance r may be obtained through a time integration of (1.3) for a retarded
time tr going from 0 to 7τ . Using the single-exponential fit (1.1), the wave impulsion Is is
given by

Is :=
∫ 7τ

0
pme

−t/τ dt ≃ pm τ . (1.8)

4Setting α1 = 1, α2 = 0 and β1 = 1 provides the single-exponential fit.
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Using the double-exponential fit (1.4), the wave impulsion Id is given by

Id :=
∫ 7τ

0
pm
(

0.8251 e−1.338 t/τ + 0.1749 e−0.1805 t/τ
)

dt ≃ 1.30 pm τ . (1.9)

A difference of about 30% is observed between the impulsions produced by the single- and
the double-exponential fits. This difference is significant as regards the effects of the shock
wave on a submerged structure, and reflects the difference between the two fits. Using (1.5),
the dependence of the impulsion on r is obtained, for instance for the double-exponential
fit, as

Id(r) = 1.30K1K2W
(1+a1+a2)/3 r−(a1+a2) ,

which, using the values given in Table 1.1, approximately corresponds to a 1/r spatial
decay, which is consistent with the linear acoustic wave model.

1.2.2 Acoustic compressional energy of the shock wave

Let us compute the compressional energy carried by the primary wave. Consider a sphere
S in water, of radius r and centred at the initial bursting point. When the shock wave
goes through an elementary surface dS of S, the particles of fluid are subjected to an
elementary force dF(r, t) = pW(r, t) dS n, where n denotes the outward normal to S at the
centre of dS. The associated elementary power is:

dP = pW(r, t) n · vW dS , (1.10)

where vW is the fluid-particle velocity. The total power of the forces induced by the
primary wave on the sphere is then given by

P =
∫

S
pW(r, t) n · vW dS = S pW(r, t)uW , (1.11)

where S = 4πr2 is the surface of S and uW ≡ n · vW is independent of the considered point
on the sphere, because of the spherical symmetry of the problem. In the case of water, the
acoustic approximation (with spherical symmetry) is such that uW satisfies (Lamb, 1932;
Arons and Yennie, 1948)

uW(r, t) ≃ pW(r, t)
ρ c

+
1
r ρ

∫ t

0
pW(r, θ) dθ , (1.12)

where ρ denotes the mass density of the initially unperturbed fluid. It is then noticeable that,
though the limit lim

t→∞
pW(r, t) is zero, the limit lim

t→∞
uW(r, t) is not zero and corresponds

to the limit when t grows to infinity of the second term in (1.12). For that reason, this
second term in (1.12) is termed after flow (Arons and Yennie, 1948). The approximation
(1.12) stems from the linearised Euler momentum equation, which provides

∂uW

∂t
+

1
ρ

∂pW

∂r
≃ 0 . (1.13)

For an acoustic wave, with pW ∼ 1
re

−(t−r/c)/τ , it holds

∂pW

∂r
= −pW

r
+
pW

τ c
= −pW

r
− 1
c

∂pW

∂t
,

and then (1.13) becomes
∂uW

∂t
≃ pW

r ρ
+

1
ρ c

∂pW

∂t
. (1.14)
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(1.12) is obtained through time integration of (1.14) from 0− to t.
At the wave shock front, at t = r/c, so tr = 0, (1.12) provides

uW(r, tr = 0) =
pW(r, tr = 0)

ρ c
=
pm(r)
ρc

. (1.15)

(1.15) reminds us of the Rankine-Hugoniot condition for conservation of momentum
(Hugoniot, 1887 - 1888; Rankine, 1870), that is presented in Appendix B. We stress that the
relation uW = pW/(ρc) holds approximately for any time far from the source, where the
spherical wave front is locally approximated by a plane wave front, and then the relation
(1.12) reduces to the plane wave approximation.

More precisely, in our case, where

pW ∼ 106 Pa, r ∼ 102 m, c ∼ 1.5 103 m/s, ρ ∼ 103 kg/m3,
∫ t

0
pW(r, θ)dθ < I

(1.8)∼ pmτ ∼ 103 SI,

the first term in (1.12) is of order 1 m/s, whereas the after flow term is of order 1/r ∼ 10−2

m/s. Therefore, for remote UNDEX, where r > 50, the after flow term is negligible.
In the plane wave approximation, keeping only the first term in the right hand side of

(1.12), and using the double-exponential fit (1.4), the compressional energy carried by the
wave is obtained through integration of (1.11) over time

Ec =
4πr2

ρ c

∫ 7τ

0
p2
m

(

0.8251 e−1.338 t/τ + 0.1749 e−0.1805 t/τ
)2

dt ≃ 0.522
4πr2

ρ c
τ p2

m . (1.16)

Using a single-exponential fit, the obtained energy Esc is close to that with the double-
exponential fit (1.16) (Esc = S/(2ρ c)τ p2

m ≃ 0.96Ec). The compressional energy carried
by the primary wave is conserved if it is independent of r. Using (1.5), it comes

Ec ≃ 0.522
4π
ρ c

K2
1K2W

(1+2a1+a2)/3 r2−2a1−a2 , (1.17)

and so the compressional energy is conserved if and only if 2 − 2a1 − a2 = 0. As stated
previously, the values of a1 and a2 depend on the kind of the explosive material. For some
types of explosive materials, with a given mass density, the values of the parameters K1,
K2, a1 and a2 provided by (Swisdak, 1978) are presented in Table 1.1.

It is noticeable that the power of r in (1.17) is strictly negative for any of the explosives
presented in Table 1.1, which means that the expression of the energy obtained using
experimental results (the form of the incident pressure (1.4) and of its parameters are
obtained from experimental data) accounts for the small losses of energy during the wave
propagation.

To validate the computation, it is checked that the value obtained for the acoustic
energy distributed over the spherical wave front in Figure 1.3, and so in (Arons and Yennie,
1948), may be inferred, in terms of order of magnitude, from (1.17):

Ec ≃ 0.522
4π
ρ c

K2
1K2W

(1+2a1+a2)/3
(

0.665W 1/3
)2−2a1−a2

= 0.522
4π
ρ c

K2
1K2W (0.665)2−2a1−a2 .
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Explosive material K1 (SI) a1 K2 (SI) a2 2 − 2a1 − a2

TNT, mass density 1.6 g/cm3 5.24 107 1.13 8.4 10−5 −0.23 −0.03

Pentolite, mass density 1.71 g/cm3

5.65 107 1.14 8.4 10−5 −0.23 −0.05
(50/50 PETN/TNT)

H-6, mass density 1.76 g/cm3

5.92 107 1.19 8.8 10−5 −0.28 −0.10
(45/30/20/5 RDX/TNT/A1/D-2 Wax)

HBX-1, mass density 1.72 g/cm3

5.67 107 1.15 8.3 10−5 −0.29 −0.01
(40/38/17/5 RDX/TNT/A1/D-2 Wax)

HBX-3, mass density 1.84 g/cm3

5.03 107 1.14 9.1 10−5 −0.218 −0.062
(31/29/35/5 RDX/TNT/A1/D-2 Wax)

Table 1.1: Values of the shock wave parameters for various kinds of explosive
materials, extracted from (Swisdak, 1978), expressed in SI units.

Using the parameter values of TNT and those of water (ρ = 103 kg/m3 and c = 1.5 103

m/s), it comes, with W = 10−3 kg,

Ec ≃ 1050 J , (1.18)

which is fairly close to the value of 1150 J obtained in Figure 1.3.

Remark 1 Since the values of a1 and a2 slightly vary from one explosive material to
another, the units of K1 and K2 vary accordingly for two different explosive materials.
This is because the empirical form of the shock wave incident pressure is purely based on
fittings with experimental data, and it is shown in Section 1.2.3 that the empirical form
(1.1) does not even provide an incident pressure that satisfies the wave equation.

Remark 2 The precision of the values of a1 and a2 is not enough to accurately predict
the decay of the acoustic energy of the shock wave. Actually, such a decay is not easy to
experimentally assess, as the acoustic energy depends very weakly on r.

When studying the effects of a far-field UNDEX on a shell, the dissipation of the
acoustic energy due to propagation when the shock wave passes through the shell is usually
not taken into account. This is justified by the fact that the absolute value of the power of
r in (1.17) is less than 0.1, and so the energy of the acoustic wave is almost the same at
r = d0 and r = d0 + a or d0 + l, for a, l of the same order of magnitude or less than d0.
The acoustic energy of the wave when it reaches the shell is given by

E0c ≃ 0.522
4π
ρ c

K2
1K2W

1/3+2a1/3+a2/3d2−2a1−a2

0 , (1.19)

and the associated energy flux per unit area of surface is obtained through division by
4πd2

0. Multiplying this energy flux by the cross section of the shell provides the acoustic
energy that impacts the structure.

Remark 3 For 2a1 + a2 ≃ 2, the shock factor K defined in (1.2) is proportional to the
square root of the energy flux per unit area. Then, in FSI context, K measures the shock
severity by assessing the quantity of energy transmitted to the structure.
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The fact that the compressional energy is not conserved seems to indicate that the
incident pressure is not exactly that of an ideal wave, since the compressional energy of the
latter would be conserved. Then, two questions arise: how well the empirical form of the
incident pressure conforms with the wave equation, which is addressed next in Section 1.2.3,
and how to take into account the energy transfer between the shock wave and the fluid
during propagation, which is discussed in Appendix B.3.

1.2.3 Is the shock wave propagation governed by the wave equation?

If it is assumed that the shock wave is an ideal acoustic wave, then its propagation is
supposed to be governed by the wave equation, which may be written for both the velocity
potential and the pressure. For the incident pressure, it holds

∆pW − 1
c2

∂2pW

∂t2
= 0 . (1.20)

Regularity of the incident pressure. For the type of problems studied in this thesis,
with a fluid domain Ωf exterior to a structure bounded by the surface Γ, the typical initial
boundary value problem associated to (1.20) is

Find ψ such that







∆ψ − 1
c2

∂2ψ

∂t2
= 0 (x, t) ∈ Ωf × [0, T ] ,

ψ(x, 0) = 0 x ∈ Ωf ,

∂ψ

∂t
(x, 0) = 0 x ∈ Ωf ,

Boundary condition x ∈ Γ,

(1.21)

with T > 0 a finite duration. Usually, ψ does not need to be regular enough so that all the
derivatives written above are meaningful in the sense of functions. Instead, (1.21) is rather
to be understood in the sense of distributions (see Section 2.2). Typically, the application

[0, T ] −→ E
Ψ : t 7−→ ψ(t, ·)

is expected to have enough regularity to make the variational form of (1.21) meaningful.
For instance, with Dirichlet boundary condition ψ = 0 on Γ in (1.21), introducing the
standard function spaces

L2(Ω) ≡
{

f

/∫

Ω
f2 < ∞

}

, H1
0 (Ω) ≡

{

f

/

f ∈ L2(Ω),∇f ∈
(

L2(Ω)
)3
, f = 0 on ∂Ω

}

,

Ψ is usually sought in E ≡ C0([0, T ];H1
0 (Ω)) ∩ C1([0, T ];L2(Ω)) (Allaire, 2012), where Ω

is a regular bounded domain, exterior of the structure Γ, and large enough to prevent
any wave emitted by a point of Γ to reach the exterior boundary of Ω within the time
duration T , due to causality (both the sound speed c and the time duration T are finite,
see Section 2.2).

The discontinuous fit (1.3) chosen for pW is not in E . Then, to gain some regularity,
the wave equation should preferably be written for the velocity potential φW only, related
to the pressure through the acoustic relation pW = −ρ∂tφW (linearised form of the Euler
momentum equation (C.21)). However, the discontinuous aspect of pW is related to its
modelling, which could be slightly modified, so that the jump to the magnitude pm is
smoothly performed during a very short time (see Section 2.6.2). Then, in the rest of this
thesis, the fact that pW satisfies the wave equation or not is dealt with independently of
regularity issues.
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Wave equation for the incident pressure. In Appendix C.1, we show that the
incident pressure satisfies the wave equation if the empirical coefficients satisfy







a1 + a2
1 − 2a1 = 0 ,

a1a2 + a2(1 − a2) + a2a1 − 2a2 = 0 ,
−a1(a2 + 1) + a2(a2 + 1) − a1(a2 + 1) + 2(a2 + 1) = 0 ,

a2
2 = 0 ,

−2a2(a2 + 1) = 0 ,
(a2 + 1)2 − 1 = 0 ,

(1.22)

whose unique solution is (a1 = 1, a2 = 0). For TNT for instance, using the values provided
in Table 1.1, we find







a1 + a2
1 − 2a1 = 0.15 ,

a1a2 + a2(1 − a2) + a2a1 − 2a2 = −0.34 ,
−a1(a2 + 1) + a2(a2 + 1) − a1(a2 + 1) + 2(a2 + 1) = −0.38 ,

a2
2 = 0.05 ,

−2a2(a2 + 1) = 0.35 ,
(a2 + 1)2 − 1 = −0.41 ,

(1.23)

and therefore the wave equation is not exactly satisfied by the empirical form (1.3) of the
incident pressure for TNT, the shock wave is not an ideal wave!

This observation raises the question of a new propagation theory. In (Cole, 1948), the
Kirkwood-Bethe propagation theory is presented. This theory, summarised in Appendix B.1,
results in the propagation equation

∆φ− 1
c2

∂2φ

∂t2
=

1
c2

(

∂v2

∂t
+

1
2

(v · ∇)v2

)

, (1.24)

where v = ‖v‖ = ‖∇φ‖. (1.24) shows a correction compared to the wave equation

∆φ− 1
c2

∂2φ

∂t2
= 0 ,

since a (non-zero) right hand side is considered in (1.24). It also reflects that the wave
equation is obtained from a linearisation of the Euler equations, since the right-hand side
of (1.24) is composed of non-linear terms in v. Equation (1.24) may be used to numerically
quantify the error in considering the propagation of a far-field UNDEX as given by the
wave equation, by checking that the right-hand side is marginal compared to the term
1
c2

∂2φ
∂t2

of the left-hand side. The purpose is then not to use the Kirkwood-Bethe theory to
evaluate the propagation of the shock wave, but rather to justify that the use of the wave
equation is relevant to appreciate the shock wave propagation for far-field explosions.

1.2.4 Conclusion, choice of a model for the shock wave

In this section, the shock wave specifications were under examination. The shock wave
resulting from an underwater explosion is a supersonic wave that propagates through
the fluid and whose speed quickly drops to the sound speed in the fluid. Its associated
radiated acoustic energy decreases during a very short distance of typically 10 times the
charge radius, and then is quasi-stable during the rest of the propagation. Far from the
explosion, the pressure-time curves of the phenomenon may be fitted with a single- or
double-exponential fit, (1.1) or (1.4).
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In the middle of the 20th century, experimental studies of shock waves led to the
introduction of some parameters that depend on the type of the explosive material, and
whose values are tabulated (see Table 1.1). Theoretically, for an ideal wave, the coefficients
a1 and a2 in (1.5) are given by a1 = 1 and a2 = 0, so that the wave equation is satisfied for
the single- and double-exponential fits, and the acoustic wave energy (1.17) is conserved.
In practice, measurements provide pressure-time curves at some points located at various
distances d from the source. These measurements, together with principles of similitude,
allow to fit the curves with a chosen exponential fit and provide a value of (a1, a2) slightly
different from (1, 0). This is due to the fact that the measurements take into account the
real phenomenon, which is not an ideal wave but a shock wave whose characteristics are
not exactly that of a wave, like discussed in Section 1.2.3, Appendix B.1 and Appendix B.3.

On the one hand, considering the shock wave as an ideal acoustic wave is a theoretical
issue, because it does not satisfy the wave equation, but on the other hand the empirical
form of the incident pressure, that aims to stick to reality as best as possible, shows that,
far from the explosion, this hypothesis yields a fair approximation. Indeed, the acoustic
energy (1.17) depends very mildly on r and the low value of the numerical coefficients
computed in (1.23) suggests the experimental fit is not far from a wave. Also, the right
hand side of (1.24) may be used to assess the relevance of the wave equation.

Finally, the study carried out in Appendix B resulted in a final set of relations (B.18),
that offers a basis to the unification between the shock wave and the oscillating bubble, in
Section 1.4. Naturally, the next step of this work, before that unification, is the study of
the oscillating bubble, in Section 1.3.

1.3 The oscillating gas bubble and its various models

Several bubble models are available in the literature (Geers and Hunter, 2002; Wang and
Khoo, 2004; Barras et al., 2012). Most of them, even the most sophisticated, provide
results in accordance with experimental data only before the third oscillation. In order
to understand the overall trend of the bubble motion, we choose to present the case of
a spherical bubble, moving in an infinite perfect fluid, where the flow is assumed to be
incompressible and potential.

1.3.1 Gas bubble, physical parameters of first oscillation

As explained in Section 1.1, an explosion leads to the formation of hot gases that form an
oscillating bubble. The study of experimental results allows to establish some principles of
similitude that relate the physical parameters governing the bubble oscillation to those of
the explosion. The quasi-period and the maximum radius of the first bubble oscillation are
given by (Snay, 1962; Swisdak, 1978)

T = K3
W 1/3

(ξexp + ξatm)5/6
, Rmax = K4

W 1/3

(ξexp + ξatm)1/3
, (1.25)

where ξexp is the positive depth of the charge, ξatm ≡ P0/(ρ g) corresponds to the
contribution of the atmospheric pressure P0 to the hydrostatic pressure, and K3 and
K4 are two empirical parameters given in Table 1.2 for various kinds of explosive materials.
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Explosive material K3 (SI) K4 (SI)

TNT, mass density 1.6 g/cm3 2.11 3.50

Pentolite, mass density 1.71 g/cm3

2.11 3.52
(50/50 PETN/TNT)

H-6, mass density 1.76 g/cm3

2.52 4.06
(45/30/20/5 RDX/TNT/A1/D-2 Wax)

HBX-1, mass density 1.72 g/cm3

2.41 3.95
(40/38/17/5 RDX/TNT/A1/D-2 Wax)

HBX-3, mass density 1.84 g/cm3

2.63 4.27
(31/29/35/5 RDX/TNT/A1/D-2 Wax)

Table 1.2: Values of the first bubble oscillation parameters for various kinds of
explosive materials, extracted from (Swisdak, 1978), expressed in SI units.

After the first oscillation, the gas bubble is no longer spherical and some perturbations
appear at the bubble surface (see Figure 1.2), typically Rayleigh-Taylor instabilities (Sharp,
1984). To accurately model the phenomena, both heat and mass transfers must be taken
into account. However, it is very difficult, not to say impossible, to practically measure
such effects inside the bubble or at its surface during an experiment. On the other hand,
assuming for simplicity that the bubble remains spherical allows a simple model providing
a fair idea of the behaviour of the gas bubble.

1.3.2 Simple example of spherical bubble model

In this section, the dynamics of an oscillating bubble B that migrates toward an infinitely
remote water surface is considered. The equations of motion are obtained in the case of a
spherical bubble, moving in an infinite perfect fluid, where the flow is assumed to be
incompressible and potential. In particular, the last two hypotheses imply

v = ∇φ , ∇ · v = 0 =⇒ ∆φ = 0 , (1.26)

where φ is the velocity potential and ∆ denotes the spatial Laplacian. The computational
details are provided in Appendix C.2, and we rather focus on the physical meaning of the
results in this section.

The assumed motion is such that the bubble vertically translates along ez, toward
the (infinitely remote) water surface, while its surface oscillates with radial symmetry.
The bubble position is then provided by its radius R(t) and its centre position Z(t) (see
Figure 1.4). Under these assumptions, the solution to ∆φ = 0 is composed of only two
terms: a source term φ0 for the bubble oscillation and a dipole φ1 cos(θ) for the translation
(Landau and Lifshitz, 1987):

φ(r, θ, t) = −R2(t)Ṙ(t)
r

− R3(t)Ż(t)
2r2

cos θ . (1.27)

(1.27) means that knowing R(t) and Z(t) and their time derivatives is enough to compute
the velocity potential at any point P (r, θ) in the fluid surrounding the bubble. This remains
approximately true for more sophisticated bubble models (Leblond, 2007), and so, in the
context of FSI with remote UNDEX, the main information of interest is R(t) and Z(t).
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Figure 1.4: Cross-section of the (assumed spherical) gas bubble created by an
underwater explosion.

The time evolution of R and Z is found (see Appendix C.2.3) to be governed by the
ordinary differential equations

3
Ṙ

R
Ż + Z̈ +

3
4
CD

Ż2

R
= 2g , (1.28a)

RR̈+
3
2
Ṙ2 − κc

ρ

(
ac
R

)3γ

= −Pexp

ρ
+
Ż2

4
+ gZ , (1.28b)

that notably depend on the internal bubble gas pressure

PB = κc

(
Vc
V

)γ

= κc

(
ac
R

)3γ

,

gravity g, and a drag coefficient CD (see details in Appendix C.2.3).
The equations of motion (1.28) are solvable if suitable initial conditions are also provided.

Basic intuition would suggest to set those initial conditions to Z(0) = 0, Ż(0) = 0, R(0) = ac
and Ṙ(0) = 0. However, these initial conditions lead to numerical results that differ from
the experimental ones, notably regarding the maximum radius of the bubble (Best, 2002;
Leblond, 2007). To deal with this issue, the initial conditions are instead set such that the
maximum radius numerically predicted corresponds to the one experimentally measured,
given by (1.25). This maximum radius may be obtained via energy conservation arguments,
following the steps given in (Best, 2002) (see details in Appendix C.2.4).

Far from the explosion, the bubble pressure is obtained (see Appendix C.2.5) from the
generalised Bernoulli equation

∂φ

∂t
+

1
2

|∇φ|2 +
1
ρ
p− g ξP = 0 , (1.29)
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and is provided by

p(P (r, θ, ψ), t) ∼
r→∞

ρg ξP +
ρ

r

∂(R2Ṙ)
∂t

= ρg ξP +
ρ

4πr
∂2VB

∂t2
, (1.30)

where VB(t) = 4π
3 R

3(t) is the current bubble volume. The pressure induced by the bubble
at point P of distance d from the centre of the bubble is proportional to 1/d, like for
the shock wave, and to the second time derivative of the bubble volume. The pressure
profile (1.30) is discussed in (Geers and Hunter, 2002), where it is noticed that it does
not depend on the sound velocity in the fluid c and is therefore independent of the liquid
compressibility. This is a consequence of the assumption of incompressible flow.

The relevance of the various model hypotheses are discussed in (Leblond, 2007). For
instance, it is notably noticed that the hypothesis of an infinitely remote water surface is
not true if the maximal bubble radius (1.25) is not small compared to the water depth,
typically Rmax < ξexp/10. For example, in the experiment illustrated on Figure 1.2, the
condition Rmax < ξexp/10 is not satisfied and the pressure record given in (Brett et al.,
2003) shows the influence of the water surface. Also, the bubble must be able to oscillate
several times before it reaches the water surface, which is usually the case in deep water
because the bubble oscillates quicker than it vertically migrates to the water surface, at
least during the first oscillations (see Figure 1.2).

The hypothesis of spherical shape is not perfectly accurate, as the gas bubble shape
becomes toroidal when it is fully contracted, during the rebound (Best, 2002), and the
spherical symmetry is also broken by the formation of a vertical fluid jet when the bubble
enters the phase of first contraction. Moreover, not considering material and thermal
transfers between the bubble and water could also result in a significant error.

The simple modelling summarised in this section, with supporting derivations given in
Appendix C.2, is quite inaccurate in many cases, but it may provide a bubble dynamics
not too far from reality during the first oscillation, in the case of a far-field underwater
explosion in deep water. More refined bubble models are available in the literature (refer
to Leblond, 2007, for a detailed bibliography). We decided not to work on developing a
bubble model, considering the models available in the literature to be adequate enough as
regards the engineering purpose of this thesis. Developing or improving a bubble model
could nonetheless be an interesting outlook for future work.

1.3.3 Conclusion, choice of a model for the oscillating bubble

From the study presented in this section, two main results should be remembered. Firstly,
the dynamics of the oscillating gas bubble (when alone in the ocean, i.e., without the
ship), provided by a so-called bubble model, is not yet totally well understood today. The
literature abounds with bubble models, more or less complicated, more or less accurate,
and we do not wish to develop yet another one. Instead, a simple existing bubble model
was presented, to give an idea of the bubble behaviour. The numerical procedure we aim
to design shall be compatible with any bubble models, so that the choice of the latter
remains free for the user.

Secondly, the choice of the equation for the velocity potential of the bubble-induced
perturbation deserves attention. The hypothesis of incompressible flow leads to the Laplace
equation for the velocity potential. In the context of FSI, we choose to stick to this equation
to solve the coupling between the bubble and the submarine.
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1.4 Junction between the two phenomena

As stated in Section 1.1, dealing with the shock wave and the oscillating bubble strictly
separately, or considering one of them marginal compared to the other, would be a mistake
in some configurations. Instead, both phenomena have to be taken into account and unified
as much as possible.

During this work, we tried to link the two phenomena, notably to find a proper way to
perform the junction between their two very different theories. In near-field UNDEX theory,
the purpose is to obtain a single set of equations for the entire phenomenon, taking into
account both the primary wave and the oscillating bubble as a single unified phenomenon.
For far-field UNDEX, the goal is rather to find and justify a simple way to blend the two
events.

1.4.1 Partitioning concept for the total incident pressure

Consider an explosion in a fluid, resulting in the formation of a shock wave and an
oscillating bubble. In this section, d refers to the distance between the considered point P
and the moving bubble centre, whereas r refers to the distance between P and the initial
bursting point. The total incident pressure takes into account both the shock wave and the
oscillating bubble. For short times (milliseconds), it is provided by (1.3), whereas, after a
long enough time of typically one-tenth of a second, it is provided by the considered bubble
model. For instance, in the case of the simple model presented in Section 1.3.2, the bubble
contribution is provided by (1.30), and so the incident pressure is expressed as:

pi(r, d, t) ∼
short times

pW(r, t) = pm(r)f(tr(r, t))H(tr(r, t)) ,

pi(r, d, t) ∼
longer times

pB(d, t) =
ρ

4πd
∂2VB

∂t2
(d, t) .

Because the time constant τ of the primary wave (1.5) is much smaller than the quasi-period
T of the gas bubble (1.25), the simplest way to perform the junction consists in adding
both contributions. First the effects of the primary wave are considered, until a retarded
time trI of typically 3τ to 7τ , so a time tI of 3τ + r/c to 7τ + r/c; and only then those of
the bubble, such that

pi(r, d, t) = pm(r)f(tr(r, t))1r/c≤t≤tI +
ρ

4πd
∂2VB

∂t2
1t>tI . (1.31)

The separation (1.31) must not introduce a substantial discontinuity in the form of the
total incident pressure, and it is the role of the double-exponential fit (1.4) to reduce the
junction jump. Also, some bubble models may provide smoother junctions compared to
others. Of course, in practice, the two contributions are smoothly connected, using a
smooth step function, to avoid an unwanted discontinuity.

(1.31) was originally introduced in (Geers and Hunter, 2002), where the two authors
check the validity of what they call the partitioning concept. They consider the junction
of the two phenomena at a fixed point P in the fluid, with the retarded time being the
temporal variable. Then, the causality effect introduced by the fact that the junction time
tI depends on the distance r is not explicitly highlighted in their paper.

Applying the partitioning concept, Leblond (2007) performed the junction between his
own bubble model and the shock wave, fitted by the double-exponential. Like in (Geers
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and Hunter, 2002), the procedure was validated by checking that the value of trI = ατ
does not affect the final result when α ∈ [3, 7].

An example of incident pressure signal obtained using the procedure performed in
(Leblond, 2007) is illustrated on Figure 1.5 for an explosion of W = 100 kg of TNT, located
at distance d = 100 m, at a water depth ξP = 100 m. Figure 1.5 shows the result of (1.31)
in this case. The two pressure trends seem to be fairly compatible at the junction. We
purposely use a discontinuous step function in Figure 1.5, instead of a smooth junction, to
show the two phases.
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Figure 1.5: Illustration of the partitioning concept junction in the case of an explosion
of W = 100 kg of TNT, located at d = 100 m, at a water depth ξ = 100
m.

Regarding the comparison performed in (Leblond, 2007) between numerical simulations
emerging from the partitioning concept and experimental data from (Arons and Yennie,
1948), the simple junction with a smooth step function seems to be a possible way to unify
the shock wave and the oscillating bubble, but it lacks a reliable theoretical basis.

1.4.2 The multi time scale method

In this section, we try to find a way to perform the junction, not only based on numerical
and experimental data, contrary to the partitioning introduced in Section 1.4.1. For a
sufficiently remote UNDEX, we assume it is possible to decompose the variables in terms
of the contributions of the shock wave (W) and the oscillating bubble (B):

p = ph + pW + pB , (1.32a)

ρ = ρ0 + ρW + ρB , (1.32b)

φ = φ0 + φW + φB , (1.32c)

e = e0 + eW + eB . (1.32d)

(ph, ρ0, φ0, e0) describes the state of the fluid before the explosion, where the presence of
an initial stationary flow may be taken into account through ∇φ0. We however set φ0 to
zero for simplicity in the theoretical analyses carried out in this chapter. (pW , ρW , φW , eW)
describes the modifications of the quantities due to the shock wave, whereas (pB, ρB, φB, eB)
describes those due to the bubble phenomenon. For the shock wave phenomenon, we also
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define uW = ∇φW · OM/‖OM‖ as the radial projection of the fluid velocity relative to
the initial bursting point O.

The fluid, supposed perfect, is assumed for simplicity to be at rest before the explosion,
so that v0 = 0 and e0 does not depend on time. Then, ρ0 is assumed to be constant
with respect to space and time, and the hydrostatic pressure at point M is provided by
ph(M) = ρ0 g(ξM + ξatm). The surface is assumed to be very far from the region of interest
in the fluid, and so is not taken into account. The flow is assumed to be potential for both
phenomena, so three velocity potentials are defined as

v = ∇φ , vW = ∇φW , vB = ∇φB .

The flow created by the bubble is assumed to be incompressible, like in Section 1.3,
which implies

ρB ≪ ρ0 , ∇ · vB ≃ 0 , (1.33)

and the induced pressure is provided by the chosen bubble model. For instance, in the case
of the simple bubble model presented previously, the incident bubble pressure is provided
by (1.30).

The shock wave speed is assumed to be the common sound speed c in the fluid, which,
in view of the empirically-verified approximation (B.12) of the shock wave velocity, is valid
if the jump magnitude pm of the pressure at the considered point, at distance r from the
explosion, satisfies pm(r) ≪ 1 GPa. The pressure due to the shock wave is assumed to be
given by the double-exponential fit (1.4), for any time such that the retarded time is less
than 7τ .

Euler equations of fluid dynamics. The linear acoustic and incompressible flow
theories are two limiting cases of the Euler equations. To treat both the shock wave and
the gas bubble, we therefore go back to the Euler equations of fluid dynamics






dρ
dt

+ ρ∇ · v =
∂ρ

∂t
+ ρ∇ · v + (v · ∇)ρ = 0 conservation of mass,

dv

dt
+

1
ρ

∇p =
∂v

∂t
+ (v · ∇)v +

1
ρ

∇p = g conservation of momentum,

de
dt

+
p

ρ
∇ · v =

∂e

∂t
+ (v · ∇)e+

p

ρ
∇ · v = 0 conservation of energy.

(1.34a)

(1.34b)

(1.34c)

Using the decomposition (1.32), and the orders of magnitude (B.18e) and (B.18f), i.e.

pW ∼ 106 Pa ≪ ρ0c
2 ∼ 109 Pa , ρW ∼ 1 kg/m3 ≪ ρ0 ∼ 103 kg/m3 ,

eW ∼ 1 m2/s2 ≪ c2 ∼ 106 m2/s2 , uW ∼ 1 m/s ≪ c ∼ 103 m/s ,

together with (1.33), the set (1.34) is written as






∂

∂t
(ρW + ρB) + ρ0∇ · vW + (vW + vB) · ∇(ρW + ρB) ≃ 0 ,

∂

∂t
(vW + vB) + ((vW + vB) · ∇)(vW + vB) +

1
ρ0

∇(pW + pB) ≃ 0 ,

∂

∂t
(eW + eB) + ((vW + vB) · ∇)(eW + eB) +

pW + pB + ph
ρ0

∇ · vW ≃ 0 .

(1.35a)

(1.35b)

(1.35c)

The quantities relative to the shock wave and the oscillating bubble do not temporally
vary over the same time scales. Hence, to deal with the set (1.35), the multi scale method
(Cousteix and Mauss, 2006) may be of great use.
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Multi time scale method. In (Guillard and Abgrall, 2001), the multi time scale method
is introduced for dealing with the coexistence of acoustic and incompressible phenomena.
The method is based on the decomposition of each physical quantity into “slow” and “fast”
contributions. In the case of a far-field underwater explosion, the “slow” contribution
corresponds to that of the bubble phenomenon, and the “fast” one to the primary wave.

Two time variables are then introduced: a slow time tB, that will be chosen as the
common time variable t, and a fast time tW := t/(τ/T ) = t/T , where the small non-
dimensional parameter T := τ/T has a value of typically 10−4 to 10−3 for a far-field
UNDEX. Then, any time-dependent quantity f is described by means of a function
f̃(t = tB, tW), such that a differentiation with respect to time t is expressed as

df(t)
dt

⇐⇒ ∂tB
∂t

∂f̃(tB, tW)
∂tB

+
∂tW
∂t

∂f̃(tB, tW)
∂tW

=
∂f̃(tB, tW)

∂tB
+

1
T
∂f̃(tB, tW)

∂tW
. (1.36)

Using the assumed decomposition (1.32), a physical quantity f is decomposed in three
parts

f̃(t, tW ,x) = f̃s(t,x) + f̃f (tW ,x) = f̃0(t,x) + f̃B(t,x) + f̃W(tW ,x) ,

where the slow part f̃s does not vary over the time scale τ of the shock wave. Omitting
the tilde symbol ∼ on the various quantities, (1.35) is rewritten as, using (1.36),







1
T
∂ρW

∂tW
+
∂ρB

∂t
+ ρ0∇ · vW + (vW + vB) · ∇(ρW + ρB) ≃ 0 ,

1
T
∂vW

∂tW
+
∂vB

∂t
+ ((vW + vB) · ∇)(vW + vB) +

1
ρ0

∇(pW + pB) ≃ 0 ,

1
T
∂eW

∂tW
+
∂eB

∂t
+ ((vW + vB) · ∇)(eW + eB) +

pW + pB + ph
ρ0

∇ · vW ≃ 0 .

(1.37a)

(1.37b)

(1.37c)

To deal with (1.37), the quantities are assumed to be expandable in power of T (Cousteix
and Mauss, 2006), namely two quantities fW and fB are given as expansions

fW(tW ,x) = f0
W(tW ,x) + T f1

W(tW ,x) + T 2f2
W(tW ,x) + . . . , (1.38a)

fB(t,x) = f0
B(t,x) + T f1

B(t,x) + T 2f2
B(t,x) + . . . . (1.38b)

For the shock wave part, the pressure is of the form

pW ∼ exp(−t/τ) = exp(−tW/T ) ,

so only the first (0) component is not zero in the decomposition (1.38a). Using relations
(B.18), the same reasoning holds for ρW and eW , and therefore the decomposition (1.38a)
is not very useful for these quantities. However, for uW , if we consider the after flow term
in (1.12), the latter introduces a component of order T :

uW(tW ,x) =
pW

ρ0 c
+

1
r ρ0

∫ t

0
pW(r, θ) dθ ∼ pW

ρ0 c
+ T α T pm(r)

r ρ0
, (1.39)

where α is a numerical coefficient of typical value 1.30 for the double-exponential fit (see
(1.9)) or 1 for the single-exponential fit. In the absence of the after flow term, all the shock
wave quantities vanish when tW → ∞, and so the multi time scale method is not relevant,
because the slow and fast contributions do not really coincide (the fast contribution is zero
before the slow contribution starts).
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Introducing (1.38) into (1.37) leads to several equations corresponding to different
orders in T . The order 1/T yields

mass:
∂ρ0

W

∂tW
= 0 ,

momentum:
∂v0

W

∂tW
= 0 ,

energy:
∂e0

W

∂tW
= 0 .

(1.40a)

(1.40b)

(1.40c)

(1.40) provides a less refined approximation than (B.18). Indeed, it implies that ρ0
W(x) and

e0
W(x) do not depend on tW . We then retrieve the simplest hypotheses of linear acoustics:
ρ0

W = 0 and e0
W = 0, while (B.18) provides a more refined approximation (where the limit

when tW → ∞ is zero, but ρ0
W 6= 0 and e0

W 6= 0). Hence, any quantity f0
W is either zero or

exponentially decaying with tW .
For the order 0, it comes:

mass:
∂ρ1

W

∂tW
+
∂ρ0

B

∂t
+ v0

B · ∇ρ0
B = 0 , (1.41a)

momentum:
∂v1

W

∂tW
+
∂v0

B

∂t
+ (v0

B · ∇)v0
B +

1
ρ0

∇p0
B = 0 , (1.41b)

energy:
∂e1

W

∂tW
+
∂e0

B

∂t
+ (v0

B · ∇)e0
B = 0 . (1.41c)

Again, the quantities ρW , pW and eW are at most exponentially decaying according to
(B.18), and so the coefficients in their decomposition of power of T are zero at any non-zero
order. For the velocity vW , the after flow term in (1.12) introduces a non-zero coefficient in
(1.39), that is independent of time, so the set (1.41) simply reduces to the Euler equations
for an incompressible flow for the 0-component of the bubble quantities

mass:
∂ρ0

B

∂t
+ v0

B · ∇ρ0
B = 0 ,

momentum:
∂v0

B

∂t
+ (v0

B · ∇)v0
B +

1
ρ0

∇p0
B = 0 ,

energy:
∂e0

B

∂t
+ (v0

B · ∇)e0
B = 0 .

(1.42a)

(1.42b)

(1.42c)

The equations for the order T shows the impact of the non-zero component v1
W(x) of the

shock wave on the bubble components

mass:
∂ρ1

B

∂t
+ (v1

W + v1
B) · ∇ρ0

B + v0
B · ∇ρ1

B = 0 ,

mom.:
∂v1

B

∂t
+ ((v1

W + v1
B) · ∇)v0

B + (v0
B · ∇)(v1

W + v1
B) +

1
ρ0

∇p1
B = 0 ,

energy:
∂e1

B

∂t
+ (v1

W + v1
B) · ∇)e0

B + (v0
B · ∇)e1

B = 0 .

(1.43a)

(1.43b)

(1.43c)
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Conclusion. The three sets (1.40), (1.42) and (1.43) show that only the after flow term
of the shock wave phenomenon impacts the bubble part. This makes sense as it is the only
shock wave contribution that do not vanish when tW → ∞. (1.42) shows that, even for
a non-zero after flow term, the first order contribution of the bubble phenomenon is not
affected by the shock wave. This notably suggests that the strong assumption (1.32) is
justified for the first order of the decomposition, but it is not valid for higher orders.

In Section 1.2.2, we computed orders of magnitudes to show that the after flow term
does not need to be taken into account for the cases we study. Then, if this after flow
term is not considered, the multi scale method confirms the possibility of two separated
treatments, with a junction numerically performed when the shock wave contribution to the
pressure is almost zero, and that of the oscillating bubble has not yet reached a significant
value. In other words, if the after flow is neglected, the fluid-structure interaction problems
associated to the shock wave phenomenon and the oscillating bubble may be treated one by
one. However, they should not be treated strictly separately, in the sense that the initial
conditions for the oscillating bubble problem (in particular, the structure state) should be
set to the output of the shock wave problem.

In this work, the junction, illustrated in Figure 1.5 is rather performed once the shock
wave incident pressure has sufficiently decreased, so a bit later than on Figure 1.5. Also,
to avoid to introduce a discontinuity in the pressure, a smoothing process is used at the
junction between the two phenomena. This will be discussed later in Chapter 5.

1.5 Conclusion and outline of this thesis

The overall conclusion of this chapter may be summed up concisely: for far-field underwater
explosions, (i) the shock wave propagation is governed by the wave equation, within the
framework of linear acoustics, and (ii) the perturbation induced by the oscillating bubble is
dealt with in the context of incompressible potential flow, with the Laplace equation. For
far-field UNDEX, the transition between the two phenomena is performed once the shock
wave incident pressure is zero, and smooth step functions are used to avoid discontinuous
pressure jumps. For both phenomena, this work is restricted to the case of an infinite
ocean, i.e., the free (water) surface and the seabed are not taken into account.

Under these assumptions, the fluid-structure interaction for the shock wave part is
efficiently treated with a FEM/BEM coupling. Chapter 2 lays down the foundation for this
first approach, in which the fluid part is treated in the framework of the Boundary Element
Method (BEM), whereas the structure part is dealt with using the Finite Element Method
(FEM). We notably propose a numerical method to efficiently deal with 3D rapid transient
acoustic problems set in large exterior domains, with O(1) time complexity and O(N logN)
space complexity (N being the number of spatial degrees of freedom). The method efficiency
is illustrated on some examples of applications in the case of fluid-structure interaction:
the radiation of an acoustic wave into a fluid by a deformable structure with prescribed
velocity, and the scattering of an abrupt wave by simple and realistic geometries.

Chapter 3 deals with the FSI coupling for the shock wave part. First, inspired by
domain decomposition methods, we propose a FEM/BEM coupling using the procedure
developed in Chapter 2, and explain why it is not perfectly appropriate given the industrial
constraints tied to our problem. Then, taking advantage of the fluid decomposition into
a radiated (radiation problems) and a reflected (scattering problems) components, we
examine the characteristics of the radiated pressure, which concentrates the coupled part
of the FSI problem. As a result of this analysis, we adapt the procedure in such a way
that the coupled part of the FSI problem is now solved with a FEM/FEM coupling. Far
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from being the ideal solution, the obtained computational method nonetheless efficiently
tackles the difficult FSI problem, as it is illustrated in the reference case of a long cylinder
subjected to an underwater explosion. In particular, a comparison to other numerical
methods validates our procedure, with very promising results.

Based on the modelling we retained for the bubble part, Chapter 4 focuses on FSI
problems for incompressible flows. We first stress the time-(in)dependence aspects of the
fluid problem, in contrast to the acoustic case (shock wave phase). Then, we introduce the
hierarchical matrices (Hmat), an acceleration technique for the BEM that is efficient when
dealing with multiple right hand-sides. Thereafter, we present the step-by-step FEM/BEM
coupling procedure we choose to solve the FSI problem. We validate the method on the
simple problem of a sphere in a uniform time-dependent flow, before solving the FSI
problem of a gas bubble impacting a stiffened submarine hull. We pay particular attention
to the numerical techniques enabling a faster convergence of the iterative FEM/BEM
coupling procedure, such as relaxation techniques and the use of well-chosen initial guesses.

This work concludes with the treatment of an industrial case: a submarine stiffened
hull subjected to a remote underwater explosion. The purpose of this Chapter 5 is to
show the efficiency of the computational method, when gathering all the results obtained
throughout this work. The engineering study conducted represents a prime example of the
target applications of this work, but remains an example: the tools developed during this
work can actually address a wide variety of problems.
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Chapter 2

Z-transform and high-frequency
approximations for large-scale 3D
rapid transient wave problems

B
uilding on the available knowledge surveyed in Chapter 1, the purpose of this chapter
is to design a computational method to address the shock wave phenomenon. Most of

its content is published in (Mavaleix-Marchessoux et al., 2020).
We do not study coupled FSI problems in this chapter, this matter being deferred

to Chapter 3, but rather focus on the fluid part of the shock wave phenomenon, namely
large-scale 3D rapid transient wave problems. To do so, it is useful to first recall the
motivation and industrial constraints, as they drive the choice of the numerical method.

2.1 Motivation and industrial constraints

The overall purpose of this work is to design, implement and eventually validate a robust,
accurate, fast numerical method to appreciate fluid-structure interactions for rapid dynamic
problems (shock wave) and slower potential flows (oscillating bubble). This objective is
subject to practical industrial constraints which highly influence the design of the numerical
methods.

Analysing the effect of explosions on naval structures is one of the important topics of
Naval Group Research. Since the work of Cole (Cole, 1948), it has been extensively studied
both in Naval Group (recently: Leblond, 2007; Longère et al., 2013) and the Direction
Générale de l’Armement (DGA; English: Directorate General of Armaments) (recently:
Barras, 2012; Brochard, 2018). One goal of this work is to benefit from the previous studies
and already available procedures, and enhance them to better simulate the phenomenon.
In particular, an important industrial requirement was to use a FEM procedure to model
the structure behaviour, implemented with the industrial code Abaqus ®. In other words,
for the structure part, we must comply with previous choices of modelling platforms, that
are nonetheless relevant. At this point, it is important to stress that Abaqus ® is not an
open source software, with all the limitations this implies.

A key purpose of this thesis is to be able to deal with 3D rapid transient acoustic
perturbations in water (shock wave) that impact large structures. Typically, the procedure
must be able to model the effects of an incident field with a frequency content up to f ∼ 3
kHz, on a submarine-like structure of length L = 140 m and diameter D = 13 m. It is
instructive to evaluate some orders of magnitude, as they underscore the computational
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challenges to address.
Consider a long cylinder closed by two half-spheres, with length L = 140 m and diameter

D = 13 m. The total area of the structure is

A = πD(L−D) + πD2 ≈ 5700 m2.

The wavelength associated to a frequency of f ∼ 3 kHz in water is

λ = cf/f ≈ 0.5 m.

In order to meet the conventional rule of ten points per wavelength, the linear mesh size
for the fluid part should be h ≈ 0.05 m. Assume the fluid mechanics problem in the
unbounded domain surrounding the structure is solved with a method that requires only
the discretisation of the fluid-structure interface (like the BEM), for instance using a
triangular mesh with one degree of freedom (DOF) per node. The typical area of a triangle
is then Atri ∼ h2/2, so the typical number of triangles needed to mesh the structure is
n ∼ 2A/h2 ∼ 4.6 106. This results in approximately N ∼ 2.3 106 DOFs. Such a high
number of DOFs is beyond the capabilities of standard BEMs, but nevertheless within
reach of current fast BEMs.

Now, let assume the fluid part is rather solved with a volume method (like the FEM). A
fluid volume mesh that surrounds the cylinder has to be generated. Consider as a minimal
example a water layer of 2 m all around the structure. The exterior boundary of the 3D
mesh is then a cylinder closed by two half-spheres, with length l = 144 m and diameter
d = 17 m. Assume that the water layer is thick enough and the absorbing boundary
conditions on the exterior surface are efficient enough so that the problem does not suffer
from unphysical reflections. In this case, the main limitation of this domain-based approach
would be the number of DOFs needed for the fluid part. To estimate the number of
elements of such a mesh, the total volume of the mesh

Vtot = Vext − Vint = π(d/2)2(l − d) +
4
3
π(d/2)3 −

(

π(D/2)2(L−D) +
4
3
π(D/2)3

)

is to be divided by the typical volume of a hexahedron mesh cell. Using the previous
computed value of h ≈ 0.05 m, it holds

N ≈ Vtot/h
3 ∼ 108 ,

which appears to be quite a huge number considering the transient nature of the problem
(the time discretisation must also be considered). In that case, the cubic dependence of
N on the geometry dimensions stands as a significant limitation. This simple analysis of
order of magnitudes appears to favour surface-based discretisation methods. Hence, we
adopt a boundary integral equation (BIE) approach for solving the (linear acoustic) fluid
problem associated with the shock wave.

This chapter presents the theories and concepts applied to address the solution of
transient 3D acoustic problems using BIEs. It begins with a general introduction to
BIEs for 3D acoustics (Lenoir, 2016; Sayas, 2016; Nédélec, 2001) in Section 2.2. Then, in
Section 2.3, we introduce a numerical method, thereafter named Z-BEM, that permits a
reformulation of the time-domain BIE in terms of a set of frequency-domain BIEs. The
numerical counterpart of BIE, the Boundary Element Method (BEM) (Bonnet, 1999;
Dominguez, 1993; Banerjee, 1994; Shaw, 1966) is presented in Section 2.4, in the frequency
domain. In particular, the Fast Multipole BEM (FM-BEM) (Chaillat, 2008; Ying, 2012), an
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accelerated BEM, is presented in Section 2.4.2. Section 2.5 is dedicated to the improvement
of the Z-BEM procedure for rapid transient problems. Finally, in Sections 2.6 and 2.7, we
present examples of applications to illustrate the efficiency of the procedure in the case of
fluid-structure interaction.

2.2 Boundary Integral Equations for 3D acoustics

Boundary Integral Equations (BIEs) were initially introduced at the end of the nineteenth
century; Kirchhoff’s integral theorem (Kirchhoff, 1883) was for instance formulated in 1882.
In this section, we introduce the theory for linear 3D acoustics.

2.2.1 Transient wave propagation problems

Theoretical formulation in an exterior domain, of the form R
3 \ Ωs

We consider transient linear wave propagation problems in an exterior acoustic domain of
the form Ωf = R

3 \ Ωs, where Ωs denotes a bounded Lipschitz (Sayas, 2016, Appendix D)
domain with boundary Γ (see Figure 2.1).

Ωs
Γ

n

Figure 2.1: Acoustic unbounded domain Ωf = R
3 \ Ωs .

Both the velocity potential and the pressure satisfy the wave equation, so that ψ may
refer to either physical quantity in what follows. Assuming the fluid to be at initial rest,
the problems of interest have the form:

Find ψ such that







∆ψ − 1
c2

∂2ψ

∂t2
= 0 (x, t) ∈ Ωf × [0, T ] ,

ψ(x, 0) = 0 x ∈ Ωf ,

∂ψ

∂t
(x, 0) = 0 x ∈ Ωf ,

Boundary condition x ∈ Γ,

(2.1)

where T > 0 is the considered finite duration, and c ≡ cf is the fluid sound velocity. If
T = +∞, or in the frequency domain, the solution of (2.1) must also satisfy some radiation
conditions to ensure the uniqueness of ψ and implies that it corresponds to outward waves.
For finite T , which we assume in the following, there is no need to specify such decay
conditions because the propagation takes place in a finite domain, due to the finite speed
c, and so the support of ψ(·, t) is a bounded region of Ωf for all t ∈ [0, T ]. Therefore, in
the following, Ω ⊂ Ωf refers to a (large enough) bounded domain such that any wave
emitted from a point of Γ, or a possible fixed point source in the fluid domain (e.g., the
locus of an underwater blast), cannot reach the exterior boundary of Ω due to causality.
The spatial boundary conditions in (2.1) involve ψ or ∂ψ

∂n ≡ ∇ψ · n on the surface, where n
denotes the outward normal to Ωf (inward normal to Ωs). Examples are given later
in Section 2.5.1.

All the derivatives written in (2.1) have to be understood as derivative of distributions,
and ψ, treated as a function of time in this case, having values in some space E of functions
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defined in Ω:
[0, T ] −→ E
t 7−→ ψ(t, ·) ,

is expected to have enough regularity to make the variational form of (2.1) meaningful. For
instance, with Dirichlet boundary condition ψ = 0 on Γ in (2.1), introducing the standard
function spaces

L2(Ω) ≡
{

f

/∫

Ω
f2 < ∞

}

, H1
0 (Ω) ≡

{

f

/

f ∈ L2(Ω),∇f ∈
(

L2(Ω)
)3
, f = 0 on ∂Ω

}

,

ψ is then usually sought in E ≡ C0([0, T ];H1
0 (Ω)) ∩ C1([0, T ];L2(Ω)) (Allaire, 2012).

Solution to a point source. To solve (2.1), the problem related to a point source is
first studied. Consider a fixed point y ∈ Ω. A point source is applied at y, with a time
modulated intensity f(t), assumed to be twice continuously differentiable and such that
f(t) = ḟ(t) = 0,∀t ≤ 0. In that case, (2.1) is transformed into:

Find G such that







∆G− 1
c2

∂2G

∂t2
+ δ(y − x)f(t) = 0 ∀(x, t) ∈ Ω × [0, T ] ,

G(x, 0) = 0 ∀x ∈ Ω ,

∂G

∂t
(x, 0) = 0 ∀x ∈ Ω ,

Boundary condition x ∈ Γ.

(2.2)

The solution to (2.2), if it exists, depends on the boundary conditions on Γ.

Free space fundamental solution. In the case where Ωs = ∅, the solution to (2.2) is
called free space fundamental solution and is given by:

G(y, t,x|f) ≡ G(y − x, t|f) =
f(t− r/c)

4πr
, r ≡ ‖y − x‖ , (2.3)

∂G

∂xj
(y, t,x|f) = − 1

4πr2

∂r

∂xj

(

f(t− r/c) +
r

c
ḟ(t− r/c)

)

,

where xj is the j-component of the field point x and ḟ(u) denotes the derivative of f with
respect to its argument, evaluated at u.

Note that G(y, t,x|f) = G(x, t,y|f) and
∂G

∂xj
(y, t,x|f) = − ∂G

∂yj
(y, t,x|f) .

Impulsive fundamental solution. Consider the special case of an impulsive source,
that is when f(t) = δ(t) in (2.2). The impulsive fundamental solution

G(y, t,x) ≡ G(y, t,x|δ) =
δ(t− r/c)

4πr
, (2.4)

satisfies

G(y, 0,x) =
∂G

∂t
(y, 0,x) = 0 , ∀x 6= y ,

G(y, t,x|f) = G(y, t,x) ⋆ f , (2.5)
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where ⋆ denotes the time convolution product, defined for causal functions as

(u ⋆ v)(t) =
∫ t

0
u(t− τ)v(τ) dτ =

∫ t

0
v(t− τ)u(τ) dτ = (v ⋆ u)(t) , ∀t ≥ 0 .

The relation (2.5) is obtained noting that

∂(u ⋆ v)
∂t

=
∂u

∂t
⋆ v = u ⋆

∂v

∂t
, (2.6)

and using the property of δ

f(t) =
∫ t

0
f(t− τ)δ(τ) dτ = (f ⋆ δ)(t) ,

where “
∫ t

0 f(t−τ)δ(τ)dτ” is an abuse of notation for the application of the Dirac distribution
on the function f .

2.2.2 Integral representation formula for the interior problem

The problem (2.1) is termed at initial rest because of its initial conditions. Note also that
no known body source F appears in its first equation. The general case, with F 6= 0 and
generic initial conditions is presented in (Bonnet, 1999).

To establish the boundary integral equation linked to the problem (2.1), it is convenient
to first deal with a bounded domain Ω ⊂ R

3 without shell within (see Figure 2.2). In
the following, the representation formula is derived for this bounded domain Ω; the
corresponding problem (2.1) is then termed interior problem.

Consider a fixed point y ∈ Ω. We apply the time convolution between the equation
satisfied by the impulsive fundamental solution G and the solution ψ(x, t) to (2.1):

(∆xG(y, ·,x) ⋆ ψ(x, ·)) (t) −
(

1
c2

∂2G

∂t2
(y, ·,x) ⋆ ψ(x, ·)

)

(t) + δ(y − x)ψ(x, t) = 0. (2.7)

Using (2.6) and the wave equation satisfied by ψ, (2.7) becomes

(∆xG(y, ·,x) ⋆ ψ(x, ·)) (t) − (G(y, ·,x) ⋆∆xψ(x, ·)) (t) + δ(y − x)ψ(x, t) = 0. (2.8)

To obtain the sought integral representation, we cannot integrate (2.8) over Ω and use the
Green’s second identity

∀u ∈ H1(Ω; ∆), v ∈ H1(Ω; ∆),
∫

Ω
∆u v − ∆v udV =

∫

∂Ω

∂u

∂n
v − ∂v

∂n
u dΓ ,

because G and δ are distributions. Instead, the problem must be studied in a punctured
domain Ωε = Ω \B(y, ε) obtained by removing a ball of radius ε and centre y. The integral
representation is then obtained through a limiting process when ε → 0 (McLean, 2000)
and holds as
∫

x∈∂Ω

(
∂G

∂nx

(y, ·,x) ⋆ ψ(x, ·)
)

(t) −
(

G(y, ·,x) ⋆
∂ψ

∂nx

(x, ·)
)

(t) dΓx + ψ(y, t) = 0 . (2.9)

(2.9) is easily generalised to R
3 \ ∂Ω: ∀t ≥ 0, ∀y ∈ R

3 \ ∂Ω ,

κy ψ(y, t) =
∫

∂Ω

(
∂ψ

∂n
(x, t) ⋆ G(y, t,x) − ∂G

∂n
(y, t,x) ⋆ ψ(x, t)

)

dΓx (2.10)
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where κy = 1 if y ∈ Ω, κy = 0 if y ∈ R
3 \ Ω , and n denotes the outward normal to Ω.

(2.10) is termed boundary integral representation formula because it expresses ψ(y, t) in
terms of the variables on the boundary.

(2.10) holds for y ∈ R
3 \ ∂Ω. The next step is to obtain the counterpart of (2.10) for

y ∈ ∂Ω. This is the tricky part, because of the singular behaviour of the fundamental
solution (2.4) when x = y. All the details are not presented here, only the general steps
are depicted in the next section (see Bonnet, 1999, for a more comprehensive study).

2.2.3 Time domain Boundary Integral Equations

Boundary integral equation for the interior problem. In this subsection, Ω ⊂ R
3

still denotes a bounded domain. To formulate the counterpart of (2.10) for y ∈ ∂Ω,
a punctured domain Ωε ≡ Ω \ vε(y) is created by removing a neighbourhood vε(y) =
Ω ∩B(y, ε) of y included in a sphere of diameter ε (see Figure 2.2).
Therefore, ∂Ωε = ∂Ω − (∂Ω ∩ vε) + (Ω \ ∂Ω) ∩ ∂vε.

Figure 2.2: Geometrical notations used for the derivation of the boundary integral
equation for the interior problem.

The boundary integral equation is obtained as the limiting form of (2.10) applied to Ωε

0 =
∫

∂Ωε

(
∂ψ

∂n
(x, t) ⋆ G(y, t,x) − ∂G

∂n
(y, t,x) ⋆ ψ(x, t)

)

dΓx (2.11)

when ε → 0. To do so, (2.11) is cut into two integrals: one running over ∂Ωε \ ∂vε, and the
other one over ∂Ωε ∩ ∂vε. It is shown in (Bonnet, 1999) that the integral over ∂Ωε ∩ ∂vε
converges when ε → 0, and provides the opposite of the free term κ(y) = α/(4π), where
α is the solid angle. For a regular boundary, κ(y) = 1/2. Hence, the boundary integral
equation is obtained for the interior problem: ∀y ∈ ∂Ω ,

κ(y)ψ(y, t) =
∫

∂Ω

(
∂ψ

∂n
(x, t) ⋆ G(y, t,x) − ∂G

∂n
(y, t,x) ⋆ ψ(x, t)

)

dΓx . (2.12)

Boundary integral equation for the exterior problem

The purpose is now to obtain the boundary integral equation for the problem (2.1), for an
exterior domain Ω ⊂ Ωf = R

3 \ Ωs. Let for instance choose a domain Ω ≡ ΩR bounded by
a sphere SR of centre a point within Ωs and large enough radius R (to ensure the solution
is zero on SR), as illustrated in Figure 2.3.
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Figure 2.3: Geometrical notations used for the derivation of the boundary integral
equation for the exterior problem.

Let y be a fixed point on ∂Ωs. For ΩR, (2.12) provides

κ(y)ψ(y, t) =
∫

∂ΩR

(
∂ψ

∂n
(x, t) ⋆ G(y, t,x) − ∂G

∂n
(y, t,x) ⋆ ψ(x, t)

)

dΓx .

Using ∂ΩR = ∂Ωs + SR, it comes

κ(y)ψ(y, t) =
∫

∂Ωs

(
∂ψ

∂ns
(x, t) ⋆ G(y, t,x) − ∂G

∂ns
(y, t,x) ⋆ ψ(x, t)

)

dΓx

+
∫

SR

(
∂ψ

∂nR
(x, t) ⋆ G(y, t,x) − ∂G

∂nR
(y, t,x) ⋆ ψ(x, t)

)

dΓx .

For a sufficiently large R (typically R = O(cT )) causality implies that
∫

SR

(
∂ψ

∂nR
(x, t) ⋆ G(y, t,x) − ∂G

∂nR
(y, t,x) ⋆ ψ(x, t)

)

dΓx = 0 . (2.13)

Then, the boundary integral equation is obtained for the exterior problem by using (2.13)
and redefining the normal n as the outward normal to Ωs:

ε(y)ψ(y, t) = −
∫

Γ

(
∂ψ

∂n
(x, t) ⋆ G(y, t,x) − ∂G

∂n
(y, t,x) ⋆ ψ(x, t)

)

dΓx ,y ∈ R
3 (2.14)

where 4πε is the solid angle: ε(P ) = 1 if P ∈ R
3 \ Ωs = Ωf , ε(P ) = 1/2 if P ∈ Γ where Γ

is regular, ε(P ) = 0 if P ∈ Ωs. Equation (2.14) is the generic form of boundary integral
equations for an exterior domain set in the time domain. It may be rewritten as

ψ(y, t) = H{ψ}(y, t) − G
{ ∂ψ

∂n

}

(y, t) y ∈ Ωf , t ∈ [0, T ]

in terms of its Dirichlet and Neumann traces on Γ, where G{f} and H{g} are the single-layer
and double-layer retarded potentials with densities f, g, defined for y ∈ R

3 \ Γ by

G{f}(y, t) =
∫

Γ
G(x − y, t) ⋆ f(x, t) dΓx, H{g}(y, t) =

∫

Γ

∂G

∂n
(x − y, t) ⋆ g(x, t) dΓx.

(2.15)
On a regular boundary Γ, it holds

1
2ψ(y, t) − H{ψ}(y, t) + G

{ ∂ψ

∂n

}

(y, t) = 0 y ∈ Γ, t ∈ [0, T ], (2.16)
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where G and H are the (weakly singular) boundary integral operators defined by formu-
las (2.15) with y ∈ Γ. Substituting the relevant boundary condition into (2.16) finally
produces a BIE governing the remaining unknown (see examples in Section 2.5.1).

Remark 4 The boundary integral equation (2.14) can be equivalently recast1 in the form
of the Kirchhoff retarded potential formula, expressed for the velocity potential φ as

4πε(P )φ(P, t) = −
∫

Γ

{
1
r

∂φ

∂n
(Q, tr) +

1
r2

∂r

∂n
φ(Q, tr) +

1
cr

∂r

∂n
φ̇(Q, tr)

}

dSQ , (2.17)

where φ̇(Q, ·) denotes the derivative of φ(Q, ·) with respect to its variable, r denotes the
distance between P and Q ∈ Γ, tr ≡ t− r/c is the retarded time, n is the outward normal
to the surface, going into the fluid, and ε is that previously introduced.

2.3 Time-domain BIE using the Z-transform, Z-BEM

The classical approach for the numerical solution of BIEs in the time domain, known as
retarded potential BEM, exploits a direct space-time discretisation (Dominguez, 1993;
Gwinner and Stephan, 2018; Antes, 1985; Ha-Duong, 2003; Abboud et al., 2001; Aimi
et al., 2009; Costabel, 2004). It is delicate to implement because the fundamental solutions
(2.3) couple the space and time variables through the retarded time, making the accurate
evaluation of space-time element integrals quite technical and intricate. Moreover, retarded
potential BEMs may experience numerical instabilities related to the choice of the time
step. These difficulties can be sidestepped by resorting to the more-recently developed
approach based on the convolution quadrature method (CQM) (Lubich, 1988a,b), which
deals with transient problems by exploiting the time convolution structure of time-domain
BIEs and combining suitably defined BEM solutions obtained in the complex frequency
domain (Banjai and Sauter, 2009; Betcke et al., 2017; Nieto Ferro, 2013; Sayas, 2016;
Falletta et al., 2012; Banjai et al., 2012; Labarca et al., 2019). CQM-based solution
algorithms, which are becoming the mainstream approach for solving time domain BIEs,
can therefore rely on the relative simplicity of frequency-domain BEMs and the availability
of existing robust and efficient BEM codes. Most importantly, applications underlying
this work need accelerated BEMs, which for frequency-domain BIEs have been extensively
studied and allow to efficiently deal with large-scale time-harmonic problems, even at high
frequencies (Chaillat et al., 2017a; Darbas et al., 2013; Darve, 2000; Fong and Darve, 2009;
Bremer et al., 2013). Hence, adopting the CQM framework allows to take direct advantage
of fast frequency-domain BEMs in dealing with transient rapid problems. Fast BEMs for
retarded potential BEMs (Ergin et al., 1998; Takahashi et al., 2004) are comparatively
harder to formulate, and thus less widespread (although they do exist).

2.3.1 Z-transform of a causal time convolution

CQM-based approaches work by reformulating the time-domain BIE (2.16) in terms of
BIEs in the (complex) frequency domain. They can conveniently be presented by focusing
on the evaluation of the single-layer integral operator G{f} for a given causal density f .
This task in turn rests on the evaluation of time convolutions of the form

q(t) ≡ (G ⋆ f)(t) =
∫ t

0
G(t− τ)f(τ) dτ =

∫ t

0
f(t− τ)G(τ) dτ = (f ⋆ G)(t) , ∀t ≥ 0 .

1The computation is detailed in Appendix C.3.
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The quantity G(t − τ) may be expressed by inverting the Laplace transform Ḡ of G
(assuming Ḡ to be well-defined, see Section 2.3.2 for details), so that

q(t) =
∫ t

0

(
1

2πi

∫ γ+i·∞

γ−i·∞
Ḡ(s)es(t−τ) ds

)

f(τ) dτ .

Assuming applicability of Fubini’s theorem, we obtain

q(t) =
1

2πi

∫ γ+i·∞

γ−i·∞
Ḡ(s)h(t; s)ds, with h(t; s) ≡

∫ t

0
es(t−τ)f(τ) dτ . (2.18)

Considering a sequence of discrete time instants tn = n∆t , n ∈ N, where ∆t is the
constant time step, the CQM is developed as a means to evaluate the sequence (qn)n≥0 of
convolution values qn ≡ q(tn), over a finite discrete time interval {0,∆t, 2∆t, . . . , T = M∆t},
given the sequence (fn) ≡

(
f(tn)

)

n≥0
and the function G. The key departure point of the

CQM consists in remarking that the function t 7→ h(t; s) introduced in (2.18) satisfies the
initial-value problem







dh
dt

(t; s) = s h(t; s) + f(t) ,

h(t ≤ 0; s) = 0 .
(2.19)

The ordinary differential equation (2.19) is numerically solved for the time-discrete
approximation hn(s) ≡ h(tn; s) of h(t; s) (with fixed s). By applying a linear k-step
method (such as the backward Euler method) to (2.19), the sequence

(
hn(s)

)
solves







dhn(s)
dt

≃ 1
∆t

k∑

j=0

αjhn+j−k(s) =
k∑

j=0

βj(shn+j−k(s) + fn+j−k) , ∀n ∈ N ,

h−p(s) = f−p = 0 , ∀p ∈ J1, kK ,

(2.20)

where the coefficients αj and βj are the constants of the multistep method (for instance, k =
1, α0 = −1, α1 = 1, β0 = 0, β1 = 1 for the backward Euler method); see e.g., (Quarteroni
et al., 2007, Secs. 11.5 and 11.6).

The next step consists in reformulating equations (2.20), which relate the sequences
(
hn(s)

)
and (fn), in terms of the Z-transforms of those sequences. We recall (Jury, 1973)

that the Z-transform Z[(xn)](ξ) of a discrete-time signal (xn) is defined by

Z : (xn) = {x0, x1, . . .} 7−→ Z[(xn)](ξ) =
∞∑

n=0

xnξ
n ≡ X(ξ) , ξ ∈ C .

The above value X(ξ) of the Z-transform is well defined for |ξ| smaller than the radius
of convergence ̺ of the above series. Multiplying the first equation of (2.20) by ∆t ξn for
some ξ ∈ C and summing over n from 0 to ∞, we obtain

( k∑

j=0

αj ξ
k−j
)

H(ξ ; s) = ∆t
( k∑

j=0

βj ξ
k−j
)

(sH(ξ ; s) + F (ξ)) ,

where ξ 7→ H(ξ ; s) and ξ 7→ F (ξ) are the Z-transforms of the sequences
(
hn(s)

)
and

(
fn
)
.

Letting p(ξ) denote the ratio

p(ξ) =

∑k
j=0 αj ξ

k−j

∑k
j=0 βj ξ

k−j
,
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we then have
H(ξ ; s) = (p(ξ)/∆t− s)−1F (ξ). (2.21)

The Z-transform Q(ξ) ≡ Z[(qn)](ξ) is readily found, from the expression (2.18) of q(t)
evaluated at instants t = tn, to be given by

Q(ξ) =
1

2πi

∫ γ+i·∞

γ−i·∞
Ḡ(s)H(ξ ; s) ds.

Using (2.21) and Cauchy’s residue theorem, Q(ξ) is finally found to be related to F (ξ)
through

Q(ξ) =
1

2πi

∫ γ+i·∞

γ−i·∞
Ḡ(s)

(
p(ξ)
∆t

− s

)−1

F (ξ) ds = Ḡ

(
p(ξ)
∆t

)

F (ξ) . (2.22)

2.3.2 Reformulation of the time-domain BIE

Since potentials and integral operators involve time convolutions of a causal fundamental
solution and a causal density, the developments of Section 2.3.1 are directly applicable
to the integral equation formulation of the transient scattering problems, with the help
of (2.22) with Ḡ taken as the Laplace transform of a fundamental solution. Since the latter
is a distribution, we first recall a few facts about the Laplace transform in time before
proceeding further.

Let f ∈ L1
loc(R) be a locally integrable function with support in R

+ (i.e., f is causal), and
for which there exists a real number ξ0 such that e−ξtf(t) ∈ L1(R) for any ξ ≥ ξ0 (possibly
ξ0 = −∞). The Laplace transform L(f)(s) of f is then defined for any s ∈ C, Re(s) > ξ0,
by

L(f)(s) ≡ f̄(s) =
∫ +∞

0
f(t)e−stdt ,

where s is the frequency parameter. More generally, for any causal tempered distribution
f , the Laplace transform is defined as (Sayas, 2016)

L(f)(s) ≡ f̄(s) =
〈
f, exp(−s · )

〉
, (2.23)

where
〈
f, ϕ

〉
denotes the value of the linear functional f applied to the (causal, smooth)

test function ϕ. In particular, the Laplace transform of the fundamental solution G(r, t)
defined in (2.4) is obtained, using (2.23), as

Ḡ(r, s) =
e−sr/c

4πr
, r ≡ ‖r‖ . (2.24)

The inverse Laplace transform may be expressed by the Bromwich integral (or Mellin’s
inverse formula)

L−1
(

f̄
)

(t) = f(t) =
1

2πi

∫ γ+i·∞

γ−i·∞
f̄(s)e+stds , ∀t ≥ 0 ,

where γ is a real number such that γ > r, where r is such that f̄(s) is analytical in the
region {s| Re(s) > r} and of polynomial growth at the most.

We begin by applying a collocation method for the time variable to the relevant BIE,
enforcing its verification at the discrete time instants tn, and seek the values ψn ≡ ψ(·, tn)
of the unknown at the same time instants. The collocation in time translates into setting
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to zero the Z-transform of the time-discrete BIE residuals. This is done by applying (2.22)
to the Z-transform of (2.16), and results in the one-parameter family of BIEs

1
2

Ψ(y, ξ) −
∫

Γ

∂Ḡ

∂n
(x − y, s)Ψ(x, ξ) dΓx +

∫

Γ
Ḡ(x − y, s)

∂Ψ
∂n

(x, ξ) dΓx = 0,

y ∈ Γ, ξ ∈ C, s = p(ξ)/∆t,
(2.25)

linking the Z-transforms of the Dirichlet and Neumann traces of solutions ψ to the original
problem (2.1).

Remark 5 The integral operators featured in the BIE (2.25) are the Laplace transforms of
the time-domain operators (2.15), evaluated at values s = p(ξ)/∆t of the complex frequency
s. The BIE (2.25) governs the Z-transform (not the Laplace transform) of the boundary
unknown associated with the original propagation problem (2.1).

Remark 6 When a boundary quantity involves a time derivative (such as in the relationship
p = −ρφ̇ between pressure and velocity potential), we use

Z[d(xn)](ξ) =
D(ξ)
∆t

Z[(xn)](ξ)

in the Z domain, where D(ξ) ≡
k∑

j=0

αjξ
k−j is the symbol of the discrete (time) differentiation

operator d embedded in the linear k-step method. When D(ξ) = p(ξ), which is the case e.g.,
for the backward Euler and BDF2 schemes, the above rule coincides with the differentiation
rule of the Laplace transform evaluated at s = p(ξ)/∆t.

Remark 7 CQM-based solution methods for time-domain BIEs may be introduced and
presented in several ways. A common approach is to first introduce the CQM (Lubich,
1988a,b), whereby a convolution f ⋆ G is expressed with a quadrature whose weights depend
on Ḡ, then apply it to the boundary integral equation (2.16), and finally take the Z-
transform of the obtained equation (Sayas, 2016). One alternatively can, following (Betcke
et al., 2017), discretise in time the wave equation (2.1) (recast in first-order form) using a
multistep scheme; the resulting PDE governing the Z-transform Ψ(·, ξ) features the wave
operator in the Laplace domain with s = p(ξ)/∆t, and can therefore be reformulated as the
BIE (2.25). This derivation of the Z-BEM avoids having to go into details of the CQM
(as in e.g., Banjai and Sauter, 2009), in particular because we do not explicitly use the
arising weights, allowing a concise presentation of the formulation that stays within the
BIE framework.

2.3.3 Solution synthesis in the time domain

Considering for example a Neumann problem (for which ψ is unknown and ∂nψ prescribed),
the time-discrete physical unknowns ψ(·, tn) are obtained by taking the inverse Z-transform
of Ψ(·, ξ), given by

ψ(·, tk) =
1

2iπ

∫

C
Ψ(·, ξ)ξ−k−1 dξ , ∀k ∈ N , (2.26)

where C is a counterclockwise closed path encircling the origin and entirely in the region of
convergence of Ψ(·, ξ). The inversion formula (2.26) uses the fact that ψ(·, tk) is the k-th
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coefficient of the power series expansion of Ψ(·, ξ), by applying Cauchy’s residue theorem to
Ψ(·, ξ). To evaluate (2.26) in practice, C is taken as the circle of radius ρ and a trapezoidal
rule approximation is considered whereby C is discretised by a set of L complex numbers
ξp = ρe2iπp/L. This provides the approximate value

ψ(·, tk) ≈ 1
L

L−1∑

p=0

Ψ(·, ξp)ξ−k
p , ∀k ∈ J0,MK , (2.27)

where M is the total number of time steps. The suitable choice of parameters L, ρ is
discussed in (Lubich, 1988b), where it is shown that setting L = 2M and ρ such that
ρL = ε is sufficient to achieve O(ε) accuracy.
Due to the approximation (2.27), for ξ = ξp = ρe2iπp/L, the Z-transforms (Xp) ≡ (X(ξp)),

X(ξp) =
M∑

n=0

xnρ
ne2iπpn/L (resp. the inverse formula) are evaluated by applying the fast

Fourier transform (resp. inverse FFT) to the finite sequence (xnρn)Mn=0

(

resp. (Xpρ
−p)L−1

p=0

)

.
Thus, evaluating and inverting the Z-transforms both entail a O(L logL) = O(M logM)
complexity.

The 2M Z-transforms Ψ(·, ξp) with ξ = ξp (0 ≤ p ≤ 2M − 1) needed in (2.27) are
governed by the BIEs (2.25) with s = p(ξp)/∆t, knowing the values ∂nΨ(·, ξp) of the
Z-transform ∂nΨ(·, ξ) of the Neumann data. A priori, this entails solving the BIE (2.25)
for all values ξ = ξp (0 ≤ p ≤ 2M − 1) of the Z-transform variable. However, it is easy to
show using (2.25) that Ψ(·, ξ) = Ψ(·, ξ); moreover we have ξ2M−p = ξp, for 1 ≤ p ≤ 2M − 1.
As a consequence, the evaluation, using (2.27), of the complete time-discrete solution needs
only M + 1 BIE solutions, instead of the expected 2M . In the sequel, references to the
number of frequency BEM problems solved take into account this symmetry.

Remark 8 For some discrete-time signal (ψn) =
(
ψ(tn)

)
, let Ψ ≡ Z[(ψn)] and Ψ(k) ≡

Z[(ψ(k)
n )], respectively, be the Z-transforms of (ψn) and its truncated version (ψ(k)

n ) ≡
(
ψ0, . . . , ψk, 0, . . .

)
. Then, applying (2.26) to Ψ or Ψ(k) yields the same value for ψ(tk).

In other words, (2.26) is consistent with causality, as the evaluation of ψ(tk) is unaffected
by the contributions to Z[(ψn)] of the time-discrete signal at later times.

2.3.4 Summary of the computational procedure

Considering again a Neumann problem for definiteness, the Z-BEM proceeds as follows:

• For each k ∈ J0,MK, find Ψ(·, ξk) by solving the BIE (2.25) with ξ = ξk and
s = p(ξk)/∆t, ∂nΨ(·, ξk) being given;

• For each k ∈ J1,M−1K, set Ψ(·, ξ2M−k) = Ψ(·, ξ̄k);
• Compute each term of the sequence ψ(tn) by the (approximate) inverse Z-trans-

form (2.27), wherein L = 2M .

Concluding, the Z-BEM allows to solve the time-domain BIE (2.16) at discrete time
instants t = 0,∆t, 2∆t, . . . ,M∆t = T , by solving M + 1 Laplace-domain BIEs, whose input
can be computed with O(M logM) complexity. The overall complexity of the Z-BEM is
mainly determined by the M + 1 frequency BIEs, to be solved using a fast BEM solver.
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2.4 Fast Boundary Element Method for frequency-domain
BIEs

The foregoing Z-BEM procedure crucially relies upon solving BIEs (2.25) in the (complex)
frequency-domain that may involve large boundary element (BE) discretisations. This has
the definite advantage of relying on well-established formulations, in particular existing fast
BEM solvers for frequency-domain problems. We summarise next the fast BEM framework
used in this work.

2.4.1 Overview of the main steps of the BEM

The BEM is based on the discretisation of boundary integral equations, thus avoiding
the discretisation of the entire domain Ω. All available BEM discretisation methods are
compatible with the Z-transform framework. We use the collocation method, in which
boundary integral equations are enforced at a finite number of points on the surface, called
collocation points (Banerjee, 1994; Bonnet, 1999); other possibilities include the Galerkin
method (Bielak and Maccamy, 1991; Bonnet et al., 1998; Aimi et al., 2009; Ha-Duong,
2003; Kallivokas et al., 2005).

Discretisation of the boundary Γ and reference element method

A boundary element representation of Γ = ∂Ω is based on the choice of a set of NN

points y 1, . . . ,yNN located on Γ, termed geometrical nodes, that construct NE elements
Γ1, . . . ,ΓNE

whose union forms the discretised representation Γd of Γ (see Figure 2.4).

ΓΓ1Γ2y2

y3

Figure 2.4: Example of discretisation of a circle.

For instance, for a 3D problem, Γ is a surface and the elements are usually triangles or
quadrilaterals. For a 2D problem, Γ is a line and the elements are segments. Hence, the
integration over Γ in (2.14) is approximated by an integration over Γd and so a sum of
integration over Γk.

Integrations over Γk are commonly computed using a simple reference element ∆e, to
make the computation of the integrals easier. If Γk is one-dimensional, the integration
domain is changed from Γk to [−1, 1]. If Γk is two-dimensional, the integration domain is
changed from Γk to a unit square or a rectangle triangle whose catheti have unit length.
Hence, a mapping of each element Γk onto ∆e is considered:

ξ ∈ ∆e −→ y(ξ) ∈ Γk , k ∈ J1, NeK .
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Interpolation of boundary variables and unknowns. Both the variables and the
unknowns are interpolated using shape functions:

y(ξ) =
Nsf∑

i=1

y iNi(ξ) and







ψ(ξ) =
Nsf∑

i=1

ψiNi(ξ) ,

q(ξ) ≡ ∂ψ

∂n
(ξ) =

Nsf∑

i=1

qiNi(ξ) ,

where ξ ∈ ∆e .

The number Nsf of shape functions depends on the chosen element type. Common shape
functions are given in Table 2.1.

Linear element Quadratic element Cubic element

N1(ξ) =
(1 − ξ)

2
N1(ξ) =

ξ(ξ − 1)
2

N1(ξ) =
9
16

(
1
9

− ξ2
)

(ξ − 1)

N2(ξ) = (1 − ξ)(1 + ξ)
N2(ξ) =

27
16

(
1
3

− ξ

)(

1 − ξ2
)

N2(ξ) =
(1 + ξ)

2 N3(ξ) =
ξ(ξ + 1)

2

N3(ξ) =
27
16

(
1
3

+ ξ

)(

1 − ξ2
)

N4(ξ) = − 9
16

(
1
9

− ξ2
)

(ξ + 1)

Table 2.1: Usual shape functions used to interpolate the variables and the unknowns.

Once discretised with the collocation approach, a boundary integral equation set in the
frequency domain, such as (2.25), leads to a system of generic form

[H]{ψψψ} = [G]{Q} , (2.28)

where the N -vectors {ψψψ} and {Q} are the discretised traces of ψ and −∂nψ on the
discretised boundary, and [G], [H] are N ×N matrix discretisations of operators G and
I/2 − H, respectively (see definition (2.15)).

Solving the system of BEM equations, limitations of standard BEM. Invoking
the boundary conditions of the problem being solved, the generic equation (2.28) is rewritten
as:

[K]{v} = {f} , (2.29)

where the N × N influence matrix [K] is related to [G] or [H], and {v}, {f} are N -
vectors collecting the DOFs that remain unknown and quantities known from the boundary
conditions, respectively. For instance, for a Neumann problem where ∂nψ is prescribed on
Γ, [K] = [H], {v} = {ψψψ} and {f} = [G]{Q}. By contrast with the FEM (see e.g., Hughes,
1987), the matrices [H], [G] and [K] are fully populated and (for the collocation approach
adopted here) non-symmetric (Dominguez, 1993; Banerjee, 1994). Applying direct solvers
to the system (2.29) entails a O(N3) complexity, which is unacceptable for large-scale
problems.

One of the most efficient techniques to deal with large BEM problems is to solve (2.28)
with an iterative algorithm, like the Generalised Minimal RESidual method (GMRES)
(Saad and Schultz, 1986) for instance. The idea of the method is to iteratively find a vector
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{ṽ} such that ‖[K]{ṽ} − {f}‖ is less than a given tolerance εGMRES. The procedure is
based on the construction of Krylov subspaces that are expanded at each new iteration.
When using this approach, the major time-consuming task becomes the evaluation of a
matrix-vector product [K]{v} at each GMRES iteration. The complexity of the matrix-
vector product is of order O(N2) if either the matrix is stored or if it is re-evaluated at each
GMRES iteration using standard BEMs, because the integrals that run over the discretised
surface (so N points) must be computed for each of the N collocation points.

In that respect, the goal of accelerated BEMs naturally arises: to accelerate each
evaluation of [K]{v} without actually forming the full matrix [K]. Available BEM
acceleration methods include the Fast Multipole Method (FMM), which has proved very
efficient and flexible for wave propagation problems (Chaillat, 2008; Darbas et al., 2013;
Darve, 2000; Nishimura, 2002). On the other hand, hierarchical matrix (H-matrix) based
solvers, which use low-rank approximations of recursively defined off-diagonal matrix
blocks (Hackbusch, 1999; Chaillat et al., 2017b), are very appropriate for problems involving
multiple right-hand sides. In this chapter, the BEM is accelerated using the multi-level
FMM, implemented in the in-house FM-BEM solver COFFEE (2020). The computational
complexity of each matrix-vector product is then O(N logN), instead of O(N2).

2.4.2 Fast Multipole accelerated Boundary Element Method

To present the FMM concept, it is instructive to go back to its original application, namely
the N -body problem in physics (Greengard, 1988; Greengard and Rokhlin, 1987). Consider
a set of many particles in mutual interaction through a cohesive force whose potential is
inversely proportional to the inter-particle distance (denoted r thereafter). This notably
describes the interaction of stars through the gravitational potential, or the interaction
of charged particles through the Coulomb’s potential. The idea is as follows (Greengard,
1988; Greengard and Rokhlin, 1987; Ying, 2012): due to the spatial decay of the potential,
the interaction between two well-separated sets {xi} and {yj} of particles can be roughly
approximated by the interaction between the set centres xg,yg carrying the net charges
(see Figure 2.5), acting as monopoles. This approximation (and its refinements involving
multipoles) in particular separates the variables x,y.

x1
x2

x3
x4

xg

x4

x3

x1 x2y1 y2

y3
y4

yg

y3
y4

y2
y1

Figure 2.5: Illustration of the FMM concept, actions of the particles in a cell Cx

(centre xg) on the particles in a cell Cy (centre yg). Left: without FMM,
right: with FMM.

For wave propagation, the fundamental solution has to be reformulated in such a
way that the x and y variables (r = ‖x − y‖) become separated. Using the notations
of Figure 2.5, the position vector r is expressed as r = rg + (y − yg) − (x − xg), where
rg = yg − xg. Then, the fundamental solution (2.24) admits the decomposition (Darve,
2000; Epton and Dembart, 1995):

Ḡ(r, s) = lim
L→+∞

∫

α̂∈S
es α̂·(x−xg)/cGL(α̂; rg; s)e−s α̂·(y−yg)/c dα̂ , (2.30)
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where S denotes the unit sphere of R3, and GL is a transfer function defined in terms of
the modified spherical Bessel functions kp (Olver et al., 2010, Chap. 10) and the Legendre
polynomials Pp (Olver et al., 2010, Chap. 18) by

GL(α̂; rg; s) =
s

16π2c

∑

0≤p≤L

(2p+ 1)ipkp(srg/c)Pp(cos(α̂, rg)) .

The decomposition (2.30) achieves the desired separation between the variables x and
y. When inserted into a boundary integral equation like (2.25), it allows to approximate
the integral. However, it is valid only for well separated sets of points x,y. The resulted
procedure is termed FM-BEM for Fast Multipole BEM, and some specific optimised
FM-BEM procedures achieve a complexity O(N log(N)) (Chaillat et al., 2008).

Now that the principle of the method has been presented, its implementation can
be explained in detail. First, the single-level FMM is presented. Then, the principle is
enhanced by recursive applications of the single-level FMM, leading to the multi-level
FMM.

Single-level FMM. Consider a structure of boundary Γ. In order to apply the FMM, it
is necessary to define a grid composed of cells embedding the boundary Γ (see Figure 2.6 for
a 2D depiction). For a chosen point y ∈ Γ, let Cy denote the cell to which y belongs. The
adjacent cell set A(Cy) comprises those cells sharing at least a common vertex with Cy that
intersect Γ. Any cell C not belonging to A(Cy) is well-separated from Cy. This single-level
algorithm solves (2.28) iteratively, with evaluations of [K]{v} combining adjacent and far
contributions. The latter are computed using the decomposition (2.30), while the former
use standard matrix-vector products.

Γ

Figure 2.6: Two-dimensional grid embedding the boundary Γ. Definition of adjacent
and far cells.

An important parameter of the method is the size cell d. This size depends on the
considered problem, and notably the value of the involved frequencies (the higher the
frequency, the smaller d is).

Actually, a single-level FMM does not offer the optimal complexity O(N log(N)), but
rather evaluates [K]{v} with a O(N3/2), sub-optimal, complexity. Though it is more
efficient than the standard BEM, a multi-level FMM has to be introduced in order to
achieve optimally-low complexity.

Principle of the multi-level FMM. The idea of the multi-level FMM is to reduce the
complexity of the single-level FMM by increasing the size of far cells whenever possible,
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while reducing the near-interaction part of the evaluation. The multi-level FMM is driven
by a recursive octree, constructed using large cells that are hierarchically subdivided into
2 × 2 × 2 = 8 children cubic cells for 3D problems. The octree is constructed such that:

• The largest cubic cell contains Γ; it defines the tree root (level ℓ = 0) of the octree.

• Level ℓ = 1: it is composed of the 8 children cells of the tree root, the latter being
their parent cell. The level-1 cells are all adjacent, so the FMM cannot yet be applied.

• Level ℓ is composed of at most 8ℓ cells (cells that do not intersect Γ being discarded).

• The last level ℓ̄, implicitly defined by a preset subdivision-stopping criterion, is made
of leaf cells.

Γ Γ

Figure 2.7: Illustration of the multi-level FMM in 2D. Both the interaction lists and
the adjacent regions reduce in size as the level number increases.

The speed-up process is applied at each level from level ℓ = 2 to level ℓ = ℓ̄. It works
by using clusters that are largest (i.e., of smallest level ℓ) whenever possible, to derive the
maximum possible benefit from the decomposition (2.30). To this purpose, the notion of
interaction list is defined. Consider a point y on Γ (see Figure 2.7). This point belongs
to a level-2 cell denoted C(2)

y . The speed-up process is then applied to the interactions
between C(2)

y and all the non-adjacent level-2 cells, the latter constituting the interaction
list I(C(2)

y ) of C(2)
y . At level 3, y belongs to a child cell C(3)

y of C(2)
y . The interaction

list I(C(3)
y ) contains the level-3 cells not adjacent to C(3)

y whose parent cell belongs to
A(C(2)

y ). Thus, interactions are carried out level by level, until interactions between leaf
cells are reached; those are computed using standard boundary element techniques. This
process ensures that all contributions to [K]{v} are accounted for, while taking maximum
advantage from the decomposition (2.30).

Remark 9 In practice, the multi-level FMM is more complex than what is presented in
this section, but the basic principle remains the same. In particular, a notion of downward
and upward passes are introduced for an efficient computation of the interactions between
the cells. A detailed exposition of the method and its implementation can be found in
(Chaillat, 2008).
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In this thesis, we use an already-developed (COFFEE, 2020) FMM procedure for solving
acoustic boundary integral equations. This procedure was dealing with equations set in
the frequency domain, and one contribution of this work was to set up a solving-process in
the time domain, designing the Z-BEM procedure presented in Section 2.3. In particular,
some improvements have been made so that the Z-BEM efficiently solves rapid transient
problems.

2.5 Improvements of the Z-BEM procedure for rapid tran-
sient problems

The Z-BEM procedure presented in Section 2.3 still lacks efficiency when dealing with rapid
transient problems involving large numbers of small time steps, even with the required
frequency-domain BIEs solved using the FM-BEM, because BIEs (2.25) need to be solved
for a large number of high complex frequencies (s(ξ) = p(ξ)/∆t becoming large for small
time steps). In this section, we present proposed improvements to the Z-BEM procedure
that specifically address this concern and are applicable to all rapid transient problems,
such as those arising in our target FSI analyses. To this end, we first introduce two types of
wave propagation problems arising in the course of solving FSI problems, namely radiation
and scattering problems.

2.5.1 Radiation and scattering problems for FSI applications

As already mentioned in this dissertation, our work is motivated by eventual applications
to FSI problems, which involve a deformable structure (or a set thereof) occupying the
bounded region Ωs and facing incoming waves in the surrounding acoustic fluid. In this
context, it is convenient to decompose the total pressure field ptot in Ω into a sum of three
components: ptot = pinc + pref + prad (Junger and Feit, 1986). The incident field pinc defines
the acoustic field in the absence of the structure. The reflected field pref is the pressure
perturbation that would arise were the structure motionless. It is a non-physical quantity,
as it has to compensate for the incident field that does not see the obstacle. The radiated
field prad is then the correction to the fluid state due to the motion of the structure, which
radiates an acoustic wave into the fluid (see Figure 2.8).

     

Figure 2.8: Decomposition of the fluid variables into incident, reflected and radiated
parts.

When considering coupled FSI problems under the assumption of small deformations
(small strains and and small displacements), the decomposition concentrates the coupled
part of the problem in the radiated contribution, as the reflected one is obtained for a
motionless structure. This leads us to focus in this chapter on the cases of (i) wave scattering
by a motionless geometry, and (ii) radiation of a wave by a given structure motion. Both
cases are formulated by invoking the kinematic boundary condition ∇φ · n = v · n ≡ u on
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Γ (where ∇φ and v are respectively the fluid and solid velocities on Γ). The respective
pressure fields pref and prad thus solve (2.1) together with the Neumann boundary condition

∂np
rad = −ρ u̇ case (i),

∂np
ref = −∂npinc case (ii).

(2.31)

Substituting these in (2.16) and using the notations introduced in Section 2.2.3, the radiated
pressure field prad for case (i) solves the boundary integral equation

1
2p

rad(y, t) − H{prad}(y, t) = G
{
ρu̇
}
(y, t) y ∈ Γ, t ∈ [0, T ].

Similarly, the reflected pressure pref for case (ii) satisfies the BIE

1
2p

ref(y, t) − H{pref}(y, t) = G
{
∂np

inc}(y, t) y ∈ Γ, t ∈ [0, T ]. (2.32)

For case (ii), another formulation, using pRef ≡ pinc + pref as unknown, is obtained by
taking advantage of the fact that the incident field pinc satisfies the interior BIE

1
2p

inc(y, t) + H{pinc}(y, t) − G{∂npinc}(y, t) = 0 y ∈ Γ, t ∈ [0, T ]. (2.33)

Then, the difference (2.32) - (2.33) leads to

1
2p

Ref(y, t) − H{pRef}(y, t) = pinc(y, t) y ∈ Γ, t ∈ [0, T ]. (2.34)

The two formulations (2.32) or (2.34) provide similar results, but (2.34) is preferred in
the following, because it does not require the computation of G nor the one of ∂npinc (in
UNDEX analyses, pinc is the input, as explained in Chapter 1).

The respective discretised BEM systems for the Z-transforms of the total field PRef in
the reflected case or Prad in the radiation case therefore have the form

H(s){Prad(ξ)} = sρG(s){U(ξ)} case (i)

H(s){PRef(ξ)} = Pinc(ξ) case (ii)

}

s = p(ξ)/∆t . (2.35)

Remark 10 Although we focus in this work on exterior Neumann problems, the methods
proposed are easily transposable to other types of exterior boundary-value problems (e.g.,
involving Dirichlet or Robin boundary conditions).

2.5.2 Reducing the number of BEM problems through a high-frequency
approximation

Using small time steps ∆t in either BEM system (2.35) means that most of the complex
frequencies s(ξ) are high. It is therefore useful to exploit any available results pertaining
to high-frequency approximations of dynamical problems. For deformable solids, the
high-frequency range is defined as the frequency band for which there is a uniform high
modal density (Ohayon and Soize, 1998). For wave scattering problems, a frequency may
be considered as high if the ratio κ/λ between the local radius of curvature κ and the
characteristic wavelength λ is large.

Here, we propose to improve our Z-BEM treatment by relying on the assumed
availability of an asymptotic high-frequency approximation (HFA) of solutions to (2.25)
which can be invoked whenever |s(ξk)| = |p(ξk)|/∆t > fHFA for some threshold frequency
fHFA. Then, BEM problems (2.28) are actually solved when |s(ξk)| ≤ fHFA whereas a
(faster to evaluate) HFA approximation is used instead when |s(ξk)| > fHFA. The main
issue then is whether and how a HFA and a threshold fHFA can be satisfactorily defined.
For the present study (and its intended applications), the answer differs according to
whether a radiation or a scattering problem is being solved.
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2.5.3 HFA for wave radiation problems

We first consider the case of waves radiated into a fluid by a moving structure (case (i)
in (2.31)). For such problems, a simple HFA consists in setting p ≈ ρcu. The physical
interpretation of this HFA lies in the fact that, if the surface Γ is smooth and vibrates
at a high frequency, the radiated pressure at y ∈ Γ is determined by interactions with
points close to y (due to causality), which approximately lie on the tangent plane to Γ at
y. Then, the radiated pressure locally resembles that of a vibrating infinite plate, which is
known to be given by p = ρcu (Leblond, 2007). This approximation may also be retrieved
in some reference configurations, e.g., the breathing sphere problem (see Appendix C.4).
In this case, where an explicit HFA is available, the procedure relies on the evaluation of
relative differences

δHFA(s) ≡
‖ψBEM(s) − ψHFA(s)‖L2(Γ)

‖ψBEM(s)‖L2(Γ)
, (2.36)

and the choice of a preset tolerance tolHFA. The steps are then the following:

• Solve BEM problems (2.28) for frequencies s(ξk) = p(ξk)/∆t of increasing modulus;

• After each solution, compare the BEM and HFA solutions, for instance in terms of
δHFA;

• Set the cut-off frequency fHFA to that value of |s(ξk)| for which δHFA ≤ tolHFA;

• Use the HFA to approximate the solution of all BEM problems with |s(ξk)| > fHFA

(i.e., do not solve (2.28) in those cases).

The efficiency of the procedure relies on the number MB of frequency-domain BEMs to
be actually solved, which depends on several parameters, such as the tolerance tol, but
more importantly on the high-frequency nature of the considered problem. This approach
is exemplified in Section 2.6.1, where numerical results are presented in the simple case of
a breathing sphere.

2.5.4 HFA for wave scattering problems

The foregoing approach may be applied whenever an explicit HFA is known. This is not
the case for scattering problems (case (ii) in (2.31)), for which in particular fHFA can no
longer simply be set against a preset tolerance. We propose instead an ad hoc treatment.

The starting point for finding approximate solutions to this class of problems is the
Kirchhoff HFA (Baker and Copson, 1950). This idea is also used in the high-frequency BEM
literature (Abboud et al., 1994; Bruno et al., 2004; Chandler-Wilde and Langdon, 2007).
Let s ∈ Ω denote a source point emitting spherical waves. Then, d(y) ≡ (y − s)/‖y − s‖ is
the propagation direction of the incident wave at y ∈ Γ. The Kirchhoff HFA for the total
pressure pref on Γ is (pRef ≡ p)

pHFA(y, t) = 0 if d(y) · n(y) > 0 , (2.37a)

pHFA(y, t) = 2pinc(y, t) if d(y) · n(y) < 0 . (2.37b)

This simple HFA is known to provide accurate results in the regions of Γ where |d(y) ·
n(y)| ≃ 1. On the other hand, in the region where |d(y) · n(y)| ≃ 0, this HFA is
discontinuous and hence imprecise.

Our purpose is to heuristically define an improved approximation of the same type,
ensuring a similarly low computation time. The idea is to find a coefficient C = C(y),
depending on the evaluation point y ∈ Γ, relating the Z-transforms through PHFA =
C(y)P inc.
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To describe our HFA, we study a HF example problem involving a long cylinder facing
a spherical wave (see details in Section 2.6.2, see Figure 2.11). BEM problems (2.28) are
solved for complex frequencies s of increasing modulus. For a point y ∈ Γ, we introduce
the complex ratio

R(y, s) ≡ P (y, s)/P inc(y, s) . (2.38)

If the obstacle is convex, it can be shown (Abboud et al., 1994; Bruno et al., 2004; Chandler-
Wilde and Langdon, 2007) that for any point y ∈ Γ, s 7→ R(y, s) becomes approximately
constant (with Im(R) small relative to Re(R)) as |s| becomes large (see Figure 2.13). On
the basis of these observations, we propose the following, empirical, HFA construction:

• Choose a cut-off frequency fHFA until which all problems (2.28) are solved; fHFA

then is the highest frequency modulus for which the BIE (2.25) is solved using the
Z-BEM procedure;

• Assume R(y, s) to remain constant for |s| > fHFA, and define the HFA approxi-
mation of P (·, s) for any |s| > fHFA by PHFA(y, s) = R(y)P inc(y, s), with R(y) ≡
R(y, fHFA).

Of course, the numerical gain lies in approximating the solution of a given frequency-
domain scattering problem by means of a simple multiplication, instead of solving a costly
BEM problem. The required number of BEM solutions in this framework depends on the
high-frequency nature of the original problem (see Section 2.6). We also tried the HFA
variant PHFA(y, s) = Re(R(y))P inc(y, s), which produced similar results.

The best value of fHFA is impossible to determine a priori. In practice, one may choose
between two alternative methods: (a) set fHFA to the highest possible value for which
the BEM problem can practically be solved by means of the available computer resources
(given that increasing |s|, and especially increasing Im(s), entails refining the BE mesh),
or (b) set an arbitrary initial guess for fHFA, then gradually increase its value until the
results in the time domain are deemed satisfactory (the errors induced by a too-low value
of fHFA are easily recognisable). Numerical experiments for this approach will be discussed
in Section 2.6.2 and Section 2.6.3.

2.5.5 HFA yields O(1) complexity in time

The spatial complexity of the FM-BEM is O(N logN). Asymptotically, the time complexity
of our procedure is given by the complexity of the Z-transform, computed with an FFT, so
O(M logM). However, performing the FFT is much faster than solving a BEM problem.
Then, in practice, for reasonable values of M (we tried up to M = 105), the time complexity
of the procedure depends on the number MB of frequency-domain BEM problems actually
solved. Without recourse to a HFA, we have MB = M + 1, see Section 2.3.4. By contrast,
the availability of a HFA, such that BEM problems are solved only when |p(ξ)|/∆t ≤ fHFA

for some threshold fHFA, has the remarkable consequence of making the overall complexity
in time constant (instead of linear). More precisely:

Proposition 1 Assume that all zeros of p(ξ), except ξ = 1, have modulus strictly greater
than 1. Let ξk = ρeikπ/M (0 ≤ k ≤ 2M − 1) with ρ such that ρM = ε, in accordance with
the synthesis formula (2.27) used for discrete times tn = n∆t (0 ≤ n ≤ M). Let M0 ∈ N.
For a given threshold fHFA and any M ≥ M0, there exists K ∈ N depending only on fHFA,
M0 and the chosen multistep method (in particular, K does not depend on ∆t) such that
we have

|p(ξk)|
∆t

≥ fHFA for all k ∈ JK, 2M −KK.
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In other words, for any large enough M , the number of complex frequencies with modulus
smaller than a chosen HFA threshold is at most 2K − 1, and independent of ∆t.

Proof Let B denote the closed unit disk in the complex plane. We begin by observing
that the consistency requirement for the linear multistep method dictates that ξ = 1 be a
single root of the symbol p(ξ) (Quarteroni et al., 2007, Secs. 11.5 and 11.6); we can then
write p(ξ) = (1 − ξ)q(ξ), with q(1) 6= 0. Having assumed that all other zeros of p have
modulus strictly greater than 1, there exists q0 > 0 such that |q(ξ)| ≥ q0 for all ξ ∈ B, and
we have |p(ξ)| ≥ q0|1 − ξ|.

Then, for the values ξk = ρeikπ/M (0 ≤ k ≤ 2M − 1) of interest, we have

|1 − ξk|2 = (1 − ρ)2 + 2ρ
(
1 − cos

(
(kπ/M)

)
. (2.39)

Moreover, letting ρ0 be defined by ρM0

0 = ε, we have 1 ≥ ρ ≥ ρ0 for any M ≥ M0.

Case 1: cos(kπ/M) ≥ 0. For this case, observing in addition that (1 − ρ)2 ≥ 0 and
1 − cosu ≥ (4/π2)u2 for any u ∈ [−π/2, π/2], we get

|p(ξk)|2 ≥ q2
0|1 − ξk|2 ≥ 8

π2
q2

0ρ0

( kπ

M

)2
.

This implies that

|p(ξk)|2
∆t2

=
M2|p(ξk)|2

T 2
≥ f2

HFA for any k, K ≤ |k| ≤ M

2
, with K ≡

⌊ fHFAT

q0
√

8ρ0

⌋

,

where ⌊x⌋ denotes the integral part of x ∈ R. Consequently, the inequality |p(ξ)|/∆t ≤ fHFA

of main interest can possibly be verified only by ξ = ξk with 1 −K ≤ k ≤ K − 1, i.e., has
at most 2K − 1 solutions such that cos(kπ/M) ≥ 0.

Case 2: cos(kπ/M) ≤ 0. In that case, (2.39) implies that |p(ξ)|2 ≥ 2ρ0q
2
0, while ∆t ≤

T/M0, so the target inequality |p(ξ)|/∆t ≤ fHFA implies

q0M0

√

2ρ0 =
√

2q0M0ε
1/2M0 ≤ fHFAT,

with the equality resulting from the definition of ρ0. Since M0ε
1/2M0 → ∞ as M0 → ∞,

M0 can be selected such that
q0M0

√

2ρ0 ≥ fHFAT

in which case any ξk such that cos(kπ/M) ≤ 0 violates the target inequality |p(ξ)|/∆t ≤
fHFA.
On combining the outcomes of cases 1 and 2, the proof is complete.

Proposition 1 and its proof mean that, after taking advantage of both the HFA and
the symmetry under conjugation of ξk mentioned in Section 2.3.3, the expected number of
actually required BEM solutions satisfies the estimate

MB ≤ 1 +
⌊ fHFAT

q0
√

8ρ0

⌋

, (2.40)

which depends only very mildly in M0 (we have e.g.,
√
ρ0 ≈ 0.75, 0.97, 0.997 for M0 =

10, 100, 1000).
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Remark 11 The assumption made on the zeros of p(ξ) in Prop 1, which is verified e.g.,
by the backward Euler and BDF2 schemes, is equivalent to assuming that all zeros of the
characteristic polynomial of the numerical differentiation operator underlying the multistep
scheme, except ξ = 1, lie outside the closed unit disk of C, i.e., that the multistep scheme
is strongly stable (see e.g., Quarteroni et al. (2007, Secs. 11.5 and 11.6) for an overview
of the properties of multistep methods).

For multistep schemes that are only zero-stable, p(ξ) has other zeros (of multiplicity 1) on
the unit circle, which would provide additional clusters of points ξk satisfying |p(ξk)|/∆t ≤
fHFA.

Remark 12 We indicate that another interesting approach having a O(1) time complexity
has recently been proposed (Anderson et al., 2020; Anderson, 2020). However, its computa-
tional gain is based on a band-limited representation of long time signals, a premise which
does not readily fit our target industrial studies featuring discontinuous incident waves.

2.5.6 Adapting the mesh refinement to the complex frequency

For a given wave propagation problem, the BEM problems (2.28) are solved with a fast FM-
BEM solver. This solver is efficient with a fixed number of nodes per wavelength (typically
10 or so) (Chaillat, 2008). This implies that using the same mesh for all frequencies is
not efficient. On the other hand, generating a mesh for each frequency is impractical. To
strike a balance, about 10 meshes of Γ are created, with uniform and decreasing mesh size.
For a given frequency s(ξk), the associated BEM problem is solved using the least refined
mesh that has at least 8 points per wavelength, and the BEM solutions obtained on that
mesh are interpolated to a master mesh (chosen for post-processing, or in the future for
fluid-structure coupling) using the software feflo.a (Loseille, 2017).

2.6 Numerical validation of the HFA-enhanced Z-BEM

In view of the industrial context of our study, we choose to validate the fast Z-BEM method
described in Section 2.3 and Section 2.5 on simple configurations that are representative
of the interaction between an underwater explosion and a submarine. The resulting blast
is a spherical wave that propagates in an unbounded acoustic medium at speed c, before
interacting with a shell whose surface is known. Two academic problems are accordingly
considered in this section to demonstrate the efficiency of the Z-BEM: a breathing sphere,
and the scattering of a spherical wave by a rigid infinite cylinder. Reference solutions
are available for both problems, see Appendices C.4 and C.5. Results on a more-complex
configuration evocative of the industrial problem will then be presented in Section 2.7.

All numerical results of this section have been obtained under the following conditions:

• The accuracy ε of the discrete inverse Z-transform (2.27) is set to 10−5;

• The number of frequencies L is set to twice the number of time steps: L = 2M ;

• The value of ρ is set according to ε, such that ρL = ε;

• The backward differentiation formula of order 2 (BDF2) is used: p(ξ) = (3−4ξ+ξ2)/2;

• The GMRES tolerance for the FM-BEM frequency-domain solver is set to 10−5;

• The fluid velocity and mass density are c = 1500 m/s and ρ = 1000 kg/m3, respec-
tively.

The two possible sources of errors when using the Z-BEM procedure are (i) the FM-
BEM procedure, and (ii) the CQM-HFA procedure. The FM-BEM procedure used here
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has already been validated (Chaillat, 2008; Chaillat et al., 2008), in terms of both its
convergence and its complexity. We will thereafter evaluate solution errors against a
reference solution pex, which reflect the cumulative effect of sources (i) and (ii), expecting
factor (ii) to be dominant.

2.6.1 First validation case: breathing sphere

Consider a spherical shell of radius a, submerged in an infinite fluid domain Ω, with mass
density ρ and sound velocity c. The shell and fluid are both at initial rest. At time t = 0,
the shell starts pulsating, or breathing, with a radially-symmetric normal velocity u = u · n;
this creates a radiated field in the surrounding fluid. We look for the induced acoustic
pressure in the fluid domain, and more specifically on the sphere surface Γ = {r = a}. This
radiation problem consists in solving (2.1) for ψ = φ with the boundary condition

∂nφ(y, t) = u(t) , y ∈ Γ = {r = a},

expressing the prescribed normal wall velocity u. The results presented in this section are
obtained with a = 1 m and u set to

u(t) = u(t;ω) = u0

5∑

i=1

ui sin(2πfit) , (2.41)

where u1 = 1, u2 = 1.2, u3 = 0.7, u4 = 2.8, u5 = 1.4, and the frequencies are set to
f1 ≡ ω/(2π) = fmax, f2 = fmax/1.7, f3 = fmax/2.4, f4 = fmax/7.6, f5 = fmax/25.4. The
angular frequency parameter ω is fixed2. The amplitude u0 is assumed to be small enough
for the linear acoustic fluid model to be correct. This problem has a closed-form analytical
solution pex, derived in Appendix C.4.

Figure 2.9 shows that the pressure prad on Γ computed using our fast Z-BEM procedure
agrees very well with the analytical solution pex, with relative errors (see (2.42)) δ(Γ) = 1.7%
and δ(Γ) = 1.3% for the two considered values fmax = 5 102 Hz and fmax = 4 103 Hz of the
prescribed frequency. The latter are typical of situations where a submarine faces a remote
underwater explosion, where T is of the order of a few milliseconds.

We now examine the influence of the HFA (P rad = ρcU in this case, see Section 2.5.3)
on both solution accuracy and computational efficiency. The BEM problems are solved
for the requisite frequencies s(ξk) = p(ξk)/∆t, taken in order of increasing modulus. Each
BEM solution is compared to its HFA approximation by way of the relative difference
δHFA (see (2.36)), with δHFA(s(ξk)) expected to decrease as |s(ξk)| increases. For a certain
frequency s = sHF, δHFA(s) becomes smaller than a preset tolerance tolHFA (typically 5 %).
Then, the high-frequency limit fHFA is set to |sHF|, and BEM solutions for |s(ξk)| > fHFA

are evaluated using the HFA.
Table 2.2 illustrates the influence of fHFA on the accuracy of the transient solution,
employing the two previously-considered values of fmax in (2.41). It also shows the
corresponding number MB of frequency-domain BEM solutions computed, the relative
BEM-HFA difference δHFA at frequency fHFA (see (2.36)) and the overall solution error

δ(Γ) ≡
‖p− pex‖L2([0,T ];L2(Γ))

‖pex‖L2([0,T ];L2(Γ))
. (2.42)

As expected, δ(Γ) decreases when fHFA is increased, while the overall solution error steadily
reduces until reaching a limiting value that is the best accuracy achievable with the
considered mesh. Therefore, the procedure appears to be both consistent and accurate.

2This is not a time-harmonic problem, since the sphere starts breathing at t = 0, a time-harmonic
steady state being reached only in the infinite-time limit.
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Figure 2.9: Breathing sphere: pressure induced on the surface (with k = ω/c).

The fast Z-BEM procedure is seen to accurately solve rapid acoustic radiation problems
in the time domain at the cost of only a moderate number MB of frequency BEM solutions,
thanks to a HFA. The gain of the method lies in the number of frequency BEM problems
solved: as shown in Proposition 1, for a given physical problem, MB is asymptotically
independent of the time step ∆t. Indeed, selecting an overly small time step should not
artificially increase the number of BEM problems, as this does not per se mean that the
considered physical problem is a high frequency one. On the other hand, MB decreases as
the intrinsic high-frequency character of the problem increases, as more information on the
solution is then provided by the HFA. Case (b) of Table 2.2 clearly illustrates the efficiency
of the procedure: only MB = 32 BEM solutions are needed (the M +1−MB = 969 missing
frequency-domain solutions being provided by the HFA) to achieve an accuracy of 1.3%,
that is nearly the same as that obtained without HFA (at the cost of M + 1 =1001 BEM
solutions). Moreover, these MB solutions can be computed concurrently (see Section 2.7.1).
Going to the other extreme of solving case (b) using only the HFA (no BEM solution),
the obtained solution is expected to be accurate only for the first time steps, and this is
corroborated by Figure 2.10. The best compromise between accuracy and efficiency then
clearly has to combine BEM and HFA solutions.
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fmax (kHz) fHFA (kHz) kHFAa/π MB δHFA(fHFA) (%) δ(Γ) (%)

(a) 0.5

6.6 8.9 43 22.2 4.7
8.0 10.6 51 19.5 3.2
9.9 13.3 63 12.9 2.1
13.3 17.7 83 12.5 1.9
19.9 26.6 122 6.5 1.7
39.8 53.1 224 3.6 1.7

(b) 4.0

17.7 23.6 15 8.4 4.6
26.6 35.4 22 5.8 4.1
39.8 53.1 32 3.7 1.3
79.7 106.3 63 1.9 1.2

Table 2.2: Breathing sphere: influence of the choice of fHFA on time-domain solution
accuracy (with kHFA = 2πfHFA/c). Relative difference indicators δHFA and
δ(Γ) are defined by (2.36) and (2.42).
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Figure 2.10: Breathing sphere: Z-BEM solution and HFA for the radiated pressure
prad on Γ.

2.6.2 Second validation case: rigid infinite cylinder facing a spherical
wave

We now consider the scattering of a wave by an infinite cylinder, a configuration more
representative of our intended applications, which allows comparisons to a semi-analytical
reference solution. The incident wave results from the explosion of W = 100 kg of TNT at
a point s whose distance to the cylinder axis is d0 = 100 m (see Figure 2.11). As explained
in Section 1.2, the explosion generates an abrupt acoustic wave whose pressure field is
empirically expressed as (Cole, 1948)

pinc(y, t) = pm(r) exp
(

− t− r/c

τ(r)

)

H(t− r/c), r = ‖y − s‖ , (2.43)

where

• H is the Heaviside step function,



2.6 Numerical validation of the HFA-enhanced Z-BEM 57

• pm(r) = K1

(

W 1/3

r

)a1

is the magnitude of the initial pressure jump,

• τ(r) = K2W
1/3

(

W 1/3

r

)a2

characterises the pressure decay in time.

K1, K2, a1, a2 are parameters that depend on the kind of explosive material; the values

K1 = 5.24 107 SI, a1 = 1.13, K2 = 8.4 105 SI, a2 = −0.23,

were used to obtain the results presented thereafter (Swisdak, 1978). A sum of two
exponentials (Geers and Hunter, 2002) could equally well be considered in (2.43) (see
Section 1.2) without affecting our procedure, which is independent of the form of the input
pressure (as long as it is a HF solicitation).

θ

Fluid: c = 1500 m/s, ρ = 1000 kg/m3

ϕi , p i

a

L

Standoff
point, A

d0 = 100 m

Orthogonal
point, B

Shadow
point, C W = 100 kg

Figure 2.11: Infinite cylinder facing an underwater explosion.

Numerical results yielded by our fast Z-BEM, incorporating all improvements presented
in Section 2.5, are compared to those provided by an in-house implementation of the semi-
analytical approach given in Appendix C.5. The Z-BEM procedure is in particular used
with the mesh interpolation presented in Section 2.5.6, carried out with 8 meshes with
uniform decreasing mesh size. For the Z-BEM computations, a finite cylinder is considered,
axially long enough to ensure that the results obtained for the considered duration T
coincide (due to causality) to those for an infinite cylinder. The following parameters were
used for the Z-BEM computations: T = 5 ms (with results only shown for T = 3 ms to
ensure their insensitivity to the finite cylinder length), fHFA = 45 103 Hz, kHFAa/π = 30
(a = 0.5 m), kHFAL/π = 300 (L = 5 m), h = 0.0056 m (mesh size of the most refined
mesh), N ≈ 106 DOFs, M = 104. The parameters for the semi-analytical approximation
(Appendix C.5) are M = 2048, N θ

modes = 90 and N z
modes = 200. The master mesh chosen

for plots and post-processing (on which all the frequency-domain solutions are interpolated)
has 7 104 DOFs and a mesh size h = 0.022 m. The choice of the master mesh has very
little influence on the result quality.

Figure 2.12 shows the total pressure pRef at three points of the cylinder surface: the
standoff point A facing the explosion (θ = 0, z = 0 with the notations of Figure 2.11), the
shadow point C (θ = π, z = 0) opposite to A, and the orthogonal point B (θ = π/2, z = 0).
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fHFA (kHz) kHFAa/π kHFAL/π MB
δ(x) (%)

x=A x=B x=C

20.0 13.3 133 32 4.9 3.6 9.4
25.0 16.7 167 40 4.8 3.4 8.3
30.0 20.0 200 48 4.7 3.4 8.0
35.0 23.3 233 56 4.7 3.3 7.6
40.0 26.7 267 64 4.7 3.3 7.5
45.0 30.0 300 72 4.7 3.3 7.4

Table 2.3: Scattering by a small cylinder (a = 0.5 m, L = 5 m): influence of fHFA on
time-domain solution accuracy (with kHFA = 2πfHFA/c). The pointwise
relative difference indicator δ is defined by (2.44).

To avoid Gibbs phenomena associated to discontinuous inputs, the time variation of the
incident pressure is modified so as to vary smoothly from zero to its maximum during a
small time interval (typically set to τ/20 or τ/10, where τ refers to the exponential time
constant related to the explosion), a customary treatment in underwater explosion analysis.
In particular, this implies that the input is regular enough to formulate the BEM problems
for the pressure (see discussions in Section 1.2.3). The fast Z-BEM and the semi-analytical
method are seen in Figure 2.12 to provide very similar results (with the Z-BEM solution
at the shadow point C exhibiting small non-physical perturbations that slightly affect the
overall solution).

Table 2.3 illustrates the influence of fHFA on the accuracy in the time domain of the
solution at the standoff, orthogonal and shadow points, in terms of the relative pointwise
solution error

δ(x) ≡
‖p(x, ·) − pex(x, ·)‖L2([0,T ])

‖pex(x, ·)‖L2([0,T ])
(2.44)

for the acoustic time-dependent pressure response p(x, ·) evaluated at a point x ∈ Γ. The
trends are similar to those observed for the pulsating sphere example (see Table 2.2); in
particular, the solution errors decrease as fHFA increases. This indicates that the enhanced
HFA we designed for the scattering case is efficient for cylindrical geometries. Note that the
solution accuracy is estimated with pex taken as the semi-analytical solution, which also
only approximates the exact solution due to various factors such as series truncations. The
time-domain solution t 7→ pRef(A, t) at the standoff point is almost optimal with MB = 32
BEM solutions, as adding more BEM solutions only slightly reduces the solution error.
The same observation holds for t 7→ pRef(B, t). The solution appears to be most accurate
in this region (θ ≈ π/2), which makes our HFA attractive because this is precisely the case
where the classical Kirchhoff approximation is least accurate (see Section 2.5.4). At the
shadow point, non-physical oscillations appear once pinc reaches that point. The magnitude
of these oscillations reduces as fHFA increases, which makes sense since they are caused by
insufficient accuracy when using the HFA at frequencies not high enough.
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Figure 2.12: Scattering by a small cylinder (a = 0.5 m, L = 5 m, see Figure 2.11):
comparison between the Z-BEM and semi-analytical solutions for the
total field pRef on the z = 0 plane, at the standoff (a), orthogonal (b)
and shadow (c) points. The incident field at those points is also shown.
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Figure 2.13: Scattering by a small cylinder (a = 0.5 m, L = 5 m, see Figure 2.11): HFA
ratio R(y, s) at standoff (A), orthogonal (B) and shadow (C) points.

By contrast with Section 2.6.1, differences between BEM and HFA solutions are not
provided in Table 2.3, since they are zero by construction for |s| = fHFA (see Section 2.5.4).
The HFA quality in the scattering case depends on whether the ratio (2.38) is stable as |s|
increases. This behaviour varies according to the location on the surface, as illustrated
on Figure 2.13, and appears, from a comparison with Table 2.3, to be correlated with the
overall time-domain solution accuracy.

The results of this section, for a small cylinder facing an underwater explosion, validate
sufficient accuracy of the proposed HFA-enhanced Z-BEM. They also show its efficiency,
since for this case only 72 BEM solutions are needed to get satisfactory results (by
comparison, O(M) BEM problems are needed for either a time-domain BEM or the
Z-BEM without HFA).

2.6.3 Example involving premature onset of HFA

So far, we considered cases for which computational resources allowed to solve BEM
problems at any frequency below a physically reasonable HFA threshold. However, for
applications such as modelling a submarine facing an underwater explosion, the size and
complexity of the structure would make solving all the BEM problems failing a preset
tolerance tolHFA of (say) 5% too expensive. In such cases, the number of practically
solvable BEM problems results from computational constraints rather than a sensible HFA
threshold. Therefore, in practice, fHFA is set to the highest frequency that can be dealt
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with by the BEM, and all problems (2.25) for which |s(ξ)| ≥ fHFA are solved using a HFA,
even though some of those HFA solutions will have low accuracy.

This makes it important to evaluate how a forced premature recourse to a HFA affects
the accuracy of the time-domain solution. To this end, we consider a variant of the
configuration studied in Section 2.6.2 involving a larger cylinder, and use the following
parameters: T = 20 ms, fHFA = 4.5 103 Hz, kHFAa/π = 30 (a = 5 m), kHFAL/π = 300
(L = 50 m), h = 0.056 m (mesh size of the most refined mesh), N ≈ 106 DOFs, M = 104.
The parameters for the semi-analytical approximation (Appendix C.5) are, as before,
M = 2048, N θ

modes = 90 and N z
modes = 200. Again, we use the mesh interpolation, the

master mesh used for plots and post-processing having 7 104 DOFs and a h = 0.22 m mesh
size.

The total pressure pRef on Γ for this non-optimal set of parameters is presented in
Figure 2.14 and Figure 2.15. The too-small value of fHFA used results in stronger non-
physical oscillations in the shadow region, yet the overall result remains satisfactory in
view of the challenging problem dimensions considered since

• the overall trend of the solution is correct;

• in the shadow zone, the non-physical oscillations occur about a mean value that
corresponds to the correct solution.

The advantage of our method is then to obtain an accurate enough solution under challenging
conditions that might prevent other numerical methods to perform. The loss of accuracy
induced by forced premature recourse to HFA depends on the limitation of computational
resources. The influence of fHFA is in addition quantitatively illustrated in Table 2.4,
corroborating the above-mentioned trends. The O(1) complexity in time afforded by
the HFA (see Section 2.5.5) is demonstrated for this example in Table 2.5, which shows
the evolution of MB in the cylindrical cases presented in this article, obtained using the
backward differential formula of order 2.

Figure 2.16 illustrates the HFA ratio in the case of the large cylinder, it shows similar
behaviour as in the small cylinder case (see Figure 2.13).

fHFA (kHz) kHFAa/π kHFAL/π MB
δ(x) (%)

x=A x=B x=C x=D x=E x=F

2.0 13.3 133 13 18.7 4.9 38.6 11.9 4.1 36.8
2.5 16.7 167 16 13.8 4.1 23.1 9.6 3.5 22.8
3.0 20.0 200 20 9.8 3.5 22.5 7.4 3.2 21.2
3.5 23.3 233 23 7.8 3.2 18.3 6.5 3.1 16.8
4.0 26.7 267 26 6.8 3.3 15.2 5.6 3.1 14.3
4.5 30.0 300 29 6.1 3.4 13.7 5.3 3.1 12.3

Table 2.4: Scattering by a large cylinder (a = 5 m, L = 50 m): influence of fHFA on
time-domain solution accuracy (with kHFA = 2πfHFA/c). The pointwise
relative difference indicator δ is defined by (2.44).
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Cyl diameter (m) fHFA (kHz) T (ms) M MB Estimate (2.40)

1.0 45.0 5.0

102 52

80
103 76
104 77
105 77

10.0 4.5 20.0

102 25

32
103 29
104 29
105 29

Table 2.5: Scattering by a large cylinder (a = 5 m, L = 50 m, see Figure 2.11):
demonstration of the O(1) time complexity of the procedure.

To conclude, since the computational complexity of our procedure is O(N logN) with
regards to the number of spatial DOFs N , and O(1) with regards to the number of time
steps M , future improvements in computing resources will benefit our procedure more
than other procedures with higher complexity.
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Figure 2.14: Scattering by a large cylinder (a = 5 m, L = 50 m, see Figure 2.11):
comparison between the Z-BEM and semi-analytical solutions for the
total field pRef on the z = 0 plane, at the standoff (a), orthogonal (b)
and shadow (c) points. The incident field at those points is also shown.
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Figure 2.15: Scattering by a large cylinder (a = 5 m, L = 50 m, see Figure 2.11):
comparison between the Z-BEM and semi-analytical solutions for the
total field pRef on the z = 25 m plane, at the equivalent of the standoff
(a), orthogonal (b) and shadow (c) points. The incident field at those
points is also shown.
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Figure 2.16: Scattering by a large cylinder (a = 5 m, L = 50 m, see Figure 2.11): HFA
ratio.
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2.7 Scattering of a spherical wave by a rigid motionless
complex structure

This final section demonstrates the efficiency of the fast Z-BEM procedure for the three-
dimensional scattering of a spherical wave by a complex submarine-shaped structure,
referred to as BB2. Its geometry, provided in (Overpelt et al., 2015), corresponds to a
realistic submarine of length 70.2 m and height 16.4 m. It is composed of three main parts:
the beam (cylindrical hull), the sail, and the planes (2 sail planes, 4 back planes). The
propeller has been removed from the geometry and is not modelled.

Figure 2.17: Scattering by a rigid motionless submarine: Z-transform of the total
pressure P Ref(s) on the submarine surface, with sL/c ≈ 6.01 + 166i.

The BB2 is assumed to be motionless, and faces an explosion of W = 100 kg of TNT
located 100 m away from the submarine centre. The standoff point is located on the beam;
it is at the centre of the concentric ellipses in Figure 2.17. The main goal is to compute
the total pressure field pRef on the submarine surface Γ. As before, the Z-BEM procedure
entails the solution of a large number of frequency-domain problems, using either the
FM-BEM or a HFA. For the FM-BEM, 7 meshes are defined, with regular decreasing mesh
size. The master mesh, used for interpolation, has N ≈ 3 105 DOFs, corresponding to
a mesh size of h = 0.1 m. The most refined mesh has N ≈ 3 106 DOFs, corresponding
to a mesh size of h = 0.03 m. Since N is large, fHFA and MB are set as explained in
Section 2.6.3. For a given frequency s(ξk), the associated BEM problem is solved using
the least refined mesh that has at least 8 points per wavelength, except for the finest
mesh, which is used with at least 6 points per wavelength. The latter restriction results in
fHFA = 8.667 kHz (i.e., kHFAL/π = 417) and MB = 56.

2.7.1 Frequency-domain BEM performance

The characteristics of a sample of the 56 BEM solution evaluations are provided in
Table 2.6. As |s| increases, the iterative BEM procedure behaves as expected on several
respects. In particular, the number of FMM levels slowly increases (up to 8), while
the GMRES iteration count also increases with N and |s|. The latter however remains
moderate for all used frequencies, despite the geometrical complexity; this is due to the
use of complex frequencies, which implies a spatially-decaying factor e− Re(s)r/c in the
fundamental solution, thereby reducing the effect of far contributions and improving the
condition number of the BEM matrices. For GMRES, we avoided using initial guesses
that depend on previously-obtained solutions (at lower frequencies), as this allows all BEM
solutions to be computed concurrently, i.e., full parallelism for this part of the process.
The elapsed time for the whole transient analysis thus depends directly on the number of
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N Im (sL/c) # of levels GMRES iters. Pts per λ

155 083 26.43 5 20 9.0

530 021 56.63 6 28 8.8

1 048 115
64.18 7 29 11.1
86.83 7 30 8.2

2 787 749

109.49 8 31 11.4
139.70 8 32 8.9
154.80 8 33 8.1
177.47 8 34 7.0
185.02 8 35 6.8
192.57 8 36 6.5
200.12 8 37 6.2
207.68 8 38 6.0

Table 2.6: Scattering by a rigid motionless submarine: characteristics of some of the
frequency-domain BEM solution evaluations (Re(sL/c) = 6.0).

computers (nodes) available. Here, the computations were run on a single machine with a
3.5GHz Intel XEON E5-2637 v3 processor, 8 cores, 2 chips, 4 cores/chip, 2 threads/core,
and 768 GB of RAM.

2.7.2 HFA, time-domain results

We now assess the HFA proposed in Section 2.5.4 on this example, which features a complex
geometry; in particular, Γ is not convex, implying that Kirchhoff-type approximations no
longer have theoretical justification. Figure 2.18 shows the HFA ratio R(y, s) (see (2.38))
at various points y as a function of |s|. On the cylindrical hull of the submarine, the ratio
is stable (like for the cylinder case). In regions with more-complex local geometry, typically
near the submarine planes or between two plates (where waves are trapped), s 7→ R(y, s)
is oscillatory. This observation is reinforced by Figure 2.19, which reveals the regions of
the submarine surface where s 7→ R(y, s) is not stable by plotting the relative oscillation
y 7→ ∆HFA(y) over the last third of the set of MB BEM frequencies, defined by

∆HFA(y) =
1
2

max
k∈J

(
R(y, sk)

)
− min

k∈J

(
R(y, sk)

)

max
k∈I

| Re(R(y, sk))| + max
k∈I

| Im(R(y, sk))|
(2.45)

with I ≡ J1,MBK, J ≡ J2MB/3,MBK and where max(z) ≡ max(Re(z)) + i max(Im(z))
(and similarly for min(z)) for z ∈ C. By construction, 0 ≤ ∆HFA ≤ 1. Low values of
∆HFA (showing at most moderate relative variations of s 7→ R(y, s)) occur mainly on the
smooth, locally convex, parts of Γ, larger values (showing significant relative variations of
s 7→ R(y, s)) being by contrast observed near the sail and back regions, where the surface
has features with smaller length scales.

Importantly, this observed behaviour of R(y, s) is consistent with the expectation that
HFAs of Kirchhoff type are valid in locally convex regions where the radius of curvature is
moreover large relative to the characteristic wavelength. The validity of HFAs in regions
of complex geometry would entail values of fHFA well beyond the current capabilities of
the frequency-domain BEMs for this configuration. We nonetheless tried our heuristic
approach to HFA on the submarine surface, to observe its effect on the overall result.
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Figure 2.18: Scattering by a rigid motionless submarine: behaviour of the HFA ratio.

The number MB = 56 of frequency-domain BEMs to be solved is very small compared
to the M + 1 = 10001 frequency-domain BEMs that would be solved without using a HFA.
Figure 2.20 shows how the frequencies for which a BEM problem is solved are concentrated
near the origin in the complex s-plane. The real part of these frequencies (attenuation
part) is almost constant (Re(s) ≈ 6.0), whereas their imaginary part (oscillatory part)
grows from 0 to the limit fixed by fHFA.

Figure 2.21 shows the computed surface pressure field 5.4 milliseconds after the incident
wave first hits the submarine. The quality of the computation is illustrated by the smooth
wave front, propagating on the beam. In the shadow zone, the causality of the wave
is respected (the total field needs more time than the incident field to reach points in
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Figure 2.19: Scattering by a rigid motionless submarine: relative oscillation ∆HFA(y)
of y 7→ ∆HFA(y) plotted as a function of y ∈ Γ. BEM solutions for
MB = 56 complex frequencies were computed.

the shadow zone). In the back region of the submarine, planes trap waves and multiple
reflexions are accordingly observed. The quality of the computed wave front is somewhat
reduced in the trapping region, as two small unphysical spots appear, presumably as a
result of applying a HFA in a region whose complexity makes it invalid at the frequencies
used, as previously observed in cases (d,e,f) of Figure 2.18.

Figure 2.20: Scattering by a rigid motionless submarine: complex frequencies sL/c
used by the Z-BEM. The frequencies for which a BEM problem is solved
are concentrated near the origin.
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Figure 2.21: Scattering by a rigid motionless submarine: total pressure field on the
surface, 5.4 milliseconds after the incident wave first hits the submarine.

Figure 2.22: Scattering by a rigid motionless submarine: total pressure field on the
surface, 5.4 milliseconds after the incident wave first hits the submarine.
Close-up on the back part for three variants of the HFA, based on the
Kirchhoff approximation (left), R(y, sHFA) (middle) or an average of
R(y, ·) (right).
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There is obviously much room for improvement in, and deeper investigation into, the
design and justification of more elaborate and accurate HFAs, with expected benefits to
solution accuracy reachable within moderate MB . For now, we tried a simple modification
where R(y, sHFA) is replaced by its mean value over s, for |s| ∈ [0, fHFA], when ∆HFA(y) >
0.1 (see (2.45) and Figure 2.19); i.e., for the points where R(y, s) is not constant yet. We
compare in Figure 2.22 the pressure field obtained in the back region of the submarine using
three versions of the HFA, based on (i) the Kirchhoff approximation (2.37), (ii) R(y, sHFA),
and (iii) a frequency-averaged value of R(y, ·). For version (i), the total pressure field is
well represented in the trapping region, where R(y, s) = 2 defines a suitable approximation.
However, it leads to non-physical perturbations behind back planes, with pressure showing
negative and positive peaks whereas it should vanish by causality. If used for subsequent
FSI analyses, this pressure input may deteriorate overall FSI solutions in regions with
complex geometry, due to induced non-physical deformations. With version (ii), the
pressure solution in the region behind the back plane is improved. However, perturbations
appear at the wave front in the trapping region, as two non-physical (non-causal) spots
appear; they are due to a value of fHFA that is locally too low, see cases (d,e,f) of Figure 2.18.
Finally, using version (iii) in the geometrically complex regions identified in Figure 2.19
produces a correct wave front in the trapping region (its peak value being however lower
than that obtained using the Kirchhoff HFA) and removes non-physical pressure jumps
behind the back plane.

2.8 Conclusion

The main purpose of this chapter was to design and implement a BEM-based numerical
procedure that can solve large-scale 3D rapid transient acoustic problems. After an
introduction to the theory of BIEs, in Section 2.2, we presented a straightforward way to
reformulate a transient wave propagation problem into a set of frequency-domain BIEs,
by resort to the Z-transform, in Section 2.3. Then, the BEM, and one of its acceleration
method, the FMM, were briefly presented in Section 2.4. Thereafter, we enhanced the
Z-BEM procedure so that it efficiently solves rapid large-scale problems, thanks to a HFA,
in Section 2.5. We first illustrated the efficiency of our Z-BEM procedure, based on the
Z-transform and the use of a HFA, in the case of rapid transient radiation problems, in
Section 2.6.1. Then, we addressed the scattering case, where an ad hoc HFA was designed,
in Section 2.6.2. This empirically constructed HFA was shown in Section 2.7 to remain
effective for dealing with large complex geometries. Finally, since the complexity of the
Z-BEM procedure is O(1) in regards to the time discretisation and O(N logN) for the
spatial discretisation, it ranks among the most competitive available methods.

The goal of Chapter 3 is now to develop a coupled FEM/BEM approach for the complete
fluid-structure interaction (FSI) problem, a natural approach when the surrounding medium
can, as here, be considered as unbounded.
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Chapter 3

Fluid-structure interaction
coupling for the shock wave

T
he purpose of this chapter is now to solve the coupled FSI problem for the shock wave
phenomenon. The BEM is the appropriate tool to deal with the fluid part of the

problem (see Section 2.1). For that reason, we have created a BEM numerical procedure
to deal with rapid transient 3D large-scale uncoupled FSI problems in Chapter 2. On the
other hand, the possibly complex model for the structure part is better modelled using the
FEM. Hence, we design a FEM/BEM coupling procedure to solve the overall FSI problem.

This chapter is organised as follows. In Section 3.1, we introduce monolithic and
iterative procedures, and explain the constraints in the specific case we consider. Then,
in Section 3.2, we present an adapted procedure to the physics, but which we cannot
implement because of some practical constraints related to the industrial context. To
solve the FSI problem given these constraints, we therefore introduce a hybrid FEM/BEM
method in Section 3.3. Then, we review some common fluid-structure coupling strategies, in
Section 3.4, for a specific reference case of UNDEX FSI. Finally, we assess the efficiency of
our hybrid FEM/BEM procedure by comparison to other FSI procedures on this reference
case, in Section 3.5.

3.1 Step-by-step FEM/BEM procedures for fluid-structure
interaction

Fluid-structure interaction is widely studied in the literature. A FSI problem is termed
weak when only the action of the fluid on the structure or the structure on the fluid is
considered. In contrast, a FSI problem is termed strong when both the action of the fluid
on the structure and the retro-action of the structure on the fluid are considered. We focus
on strategies designed for strong FSI problems, as weak interactions are easier to solve. In
particular, we seek a procedure compatible with FEM/BEM coupling.

FEM/BEM coupling is probably the most appropriate method when modelling the
interaction between a very large (infinite) medium and a bounded structure whose part or
all of its surface is in contact with the very large medium. Indeed, it is widely used in soil-
structure interaction (Clouteau et al., 2013), with applications in earthquake engineering
(Nieto Ferro, 2013; Adnani, 2018) or in civil engineering with the calculation of the response
of a structure to traffic induced vibrations (François et al., 2005). Furthermore, BEM/FEM
coupling is of great use in fluid-structure interaction (Soares Jr. and Mansur, 2005; Véron,
2016), and has for example been applied to the study of dams behaviour (Von Estorff, 1991;
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Seghir et al., 2009) or the analysis of the interaction between a shell and an underwater
explosion (Felippa et al., 2001; Zhang and Yao, 2008). FEM/BEM coupling is also used for
applications in electromagnetism (Kurz et al., 1996; Alouges et al., 2018) and other areas.

3.1.1 Monolithic versus partitioned iterative procedures

A FSI problem is governed by a set of equations describing (i) the fluid evolution in Ω ≡ Ωf ,
(ii) the structure dynamics in Ωs, (iii) the interface conditions on the fluid-structure
boundary Γ. A possible generic form is







(S) : structure evolution equations, set in Ωs,
(F) : fluid evolution equations, set in Ωf ,
(KC) : kinematic transmission condition, set on Γ,
(DC) : dynamic transmission condition, set on Γ.

(3.1)

The set (S) determines the structure behaviour, it results from a chosen model for the
structure, such as the thin shell theory in our case. The set (F) determines the fluid
behaviour, it also results from a chosen model for the fluid, such as the linear acoustic
theory in our case. (KC) expresses the continuity of a certain kinematic quantity at the
fluid-structure interface Γ. In our case, the structure cannot be penetrated, so it expresses
the continuity of the normal velocity on the external structure surface Γ. Similarly, (DC)
expresses the continuity of a certain dynamic quantity, such as the continuity of normal
stress at the interface Γ.

A natural way to solve (3.1) is to solve all the equations as a unified set. It consists in
deriving a variational formulation from (3.1), governing the full fluid-structure interaction
problem. This approach is termed monolithic and is widely used in the field of fluid-
structure interaction (Tallec and Mouro, 2001; Sigrist, 2015; Morand and Ohayon, 1995).
Another approach, termed partitioned or staggered, consists in splitting (3.1) into two
sets of equations that are related through the equality of some mutual physical quantities
(velocity, stress,. . . ). For instance, the fluid and the structure equations are alternately
solved and the interface continuity conditions relate the solutions (Felippa et al., 2001;
Véron, 2016). A recent comparison between monolithic and partitioned methods for
fluid-structure interaction may be found in e.g., (Ha et al., 2017).

A significant part of this work is devoted to the study of partitioned procedures
because they are well adapted to the coupling between two different software in a black-box
way (Zorrilla et al., 2020). Therefore, they appear to be attractive when the fluid and
structure parts are modelled by means of a BEM and a FEM codes, respectively. However,
separately solving the inherently coupled fluid and structure equations implies the recourse
to successive problem-solving, to ensure the (separately) obtained solutions in the fluid
and the structure parts correspond to the solution of the coupled fluid-structure problem.
Typically, at a fixed time step, the fluid and structure equations are alternately solved, until
a fluid-structure solution that simultaneously satisfies both sets of equations is found, before
advancing to the next time step. These procedures are termed step-by-step. Alternatively,
some algorithms perform the successive problem-solving on the entire time interval, rather
than at each time step. In both cases, convergence issues may be encountered during the
successive problem-solving process. These numerical issues constitute the main limitation of
partitioned procedures, compared to monolithic ones. An example of partitioned procedures
is presented in the next Section 3.1.2.
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3.1.2 A transient step-by-step FEM/BEM iterative coupling procedure

The use of a partitioned FEM/BEM procedure in the context of UNDEX is not a novel
idea. Nowadays, a reference procedure used by industry to evaluate the effects of an
UNDEX on a submarine is an iterative step-by-step procedure that couples two codes,
both belonging to Livermore Software Technology Corp.: LS-DYNA ® (FEM, structure)
and USA (BEM, fluid). The overall procedure is depicted in (Felippa et al., 2001) and
corresponds to an iterative step-by-step FEM/BEM coupling, in which the BEM(-fluid)
and FEM(-structure) equations are alternately solved at each time step, as illustrated in
Figure 3.1. USA (for Underwater Shock Analysis) solves an approximation of the 3D wave
equation called Doubly Asymptotic Approximation (DAA) (Geers and Toothaker, 2000; Lee
et al., 2009; Geers and Felippa, 1983; Geers, 1978), that relates the normal fluid-particle
velocity, the surface pressure and their temporal derivatives. It is obtained from asymptotic
analysis arguments and approximation of Kirchhoff’s retarded potential formula (2.17),
and aims at providing a good order of magnitude of the solution, that is expected to be
precise right after the explosion hits the hull (small times, large frequencies) and during
the slower bubble process (long times, small frequencies), for cylindrical and spherical
geometries.

The main limitations of the coupling procedure are due to USA. Developed in the years
1980 – 2000, USA relies on a standard BEM, with complexity in O(N2) (N denotes the
number of interfacial DOFs), when today’s fast BEMs, like the one we use in the Z-BEM
(COFFEE, 2020; Chaillat, 2008), achieve O(N logN) complexity. Moreover, USA relies
on the DAA, a necessary approximation at the time the software was developed, because
it allows the BEM operators to be independent of time (frequency), and so re-usable at
each time step. We believe this approximation is no longer necessary, in view of recent
progress in fast BEMs (Chaillat, 2008; Darbas et al., 2013; Darve, 2000; Nishimura, 2002;
Hackbusch, 1999; Chaillat et al., 2017b). On the other hand, a definite advantage of this
FEM/BEM procedure is that it does not need a volume fluid mesh, as both the reflected
and the radiated parts (see Figure 2.8) are dealt with the BEM.

3.1.3 Why not using a step-by-step procedure?

Designing a procedure on the same model as USA, but with a more efficient BEM part, is
one of the path studied in this work. The scheme is as illustrated on Figure 3.1: at each time
step, a BEM procedure solves the fluid part of the problem, then a FEM procedure solves
the structure part, the two procedures exchanging information at the interface Γ. Some
sub-iterations are usually necessary to ensure convergence to the coupled fluid-structure
solution before advancing to the next time step. A procedure of this type requires at
least M (M being the number of time steps) BEM solutions, and then is efficient only if
each BEM solution is cheap. This is not the case for the shock wave phenomenon, as it
seems unrealistic, with current numerical resources, to perform M (typically M ∼ 104)
BEM problem-solving with N ∼ 106 spatial DOFs each (see Section 2.7). Therefore, a
step-by-step procedure is inadequate and a new strategy must be found.

Remark 13 The key assumption performed in USA that permits a step-by-step coupling
is the use of the DAA, as it provides re-usable BEM operators at each time step. We wish
to design a numerical procedure without relying on this strong assumption.

Remark 14 In the case of potential incompressible flow, step-by-step partitioned procedures
show great performance, notably because the BE mesh needs less refinement than for high
frequency acoustic perturbations (Véron, 2016; Le Mestre et al., 2019). Therefore, the
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Figure 3.1: Schematic illustration of step-by-step FSI partitioned procedures.

step-by-step partitioned procedure appears to be a relevant approach for the oscillating bubble
part of the UNDEX analysis, as will be shown in Chapter 4.

3.2 FEM/BEM procedures iterating over the full time in-
terval

Our interest in partitioned procedures that alternate problem-solving for the entire time
interval emerges from two ingredients: (i) step-by-step iterative procedures seem inadequate,
and (ii) the Z-BEM procedure we designed in Chapter 2 is best used in this scope. Indeed,
to preserve its attractive O(1) complexity with respect to the time discretisation, the
Z-BEM needs to solve problems on the entire time interval. The concept then consists in
performing successive transient analyses over the entire time interval, rather than enforcing
the coupling between the two solvers at each time step.

Domain decomposition methods (DDMs) (Dolean et al., 2015; Toselli and Widlund,
2006) achieve this purpose. They aim to solve a problem like (3.1) by splitting it into
boundary value problems on subdomains, and iterating between them to match the solutions
on the subdomain interface (the fluid-structure interface Γ in our case). Recent works on
DDMs may be found in, e.g., Bouajaji et al., 2015; Vion and Geuzaine, 2018; Modave et al.,
2020b; Lieu et al., 2020; Parolin, 2020. Common domain decomposition in space consists
in solving, in parallel, problems at each time step, and exchange information through the
interface Γ. Space-time domain decomposition (Gander et al., 2003) consists in solving
time-dependent problems in the subdomains, in parallel, and exchange information through
the space-time interface Γ × [0, T ]. One of the advantages of space-time DDMs is that it
allows different time steps in each subdomain, according to its physical properties (Halpern
et al., 2012; Hoang et al., 2013).

The FSI problem (3.1) is embedded with physical Neumann boundary conditions, in
our case of the form

∂φ

∂n
= uS on Γ × [0, T ], (3.2a)

σ · n = −pF n on Γ × [0, T ], (3.2b)

where φ is the fluid velocity potential, uS the structure normal velocity, σ the structure
stress tensor and pF the fluid pressure. Neumann boundary conditions are known to lead to
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convergence issues (Lecouvez, 2015; Caudron, 2018). Instead, Robin boundary conditions

pF + α1
∂φ

∂n
= (−σ · n) · n + α1uS on Γ × [0, T ], (3.3a)

σ · n + α2uS n = −pF n + α2
∂φ

∂n
n on Γ × [0, T ], (3.3b)

where α1 and α2 are algorithmic parameters, are extensively used and studied in the context
of domain decomposition (Hassan et al., 2018; Japhet et al., 2014). In particular, there
exist cases for which Robin conditions provide a convergent algorithm (whereas common
Neumann conditions lead to a non-convergent algorithm) e.g., the Schwarz algorithm
(Lions, 1990; Després, 1991).

3.2.1 FEM/BEM coupling with Robin boundary conditions

To introduce Robin boundary conditions and their related coefficients αi, we derive an
example of procedure performing successive problem-solving for the entire time interval,
inspired from both space-time DDMs and the LArge Time INcrement (LATIN) method
(Néron, 2004), which we present for our specific case of fluid-structure interaction. Consider
the set of equations (3.1)







(S) : structure evolution equations, set in Ωs,
(F) : fluid evolution equations, set in Ωf ,
(KC) : kinematic transmission condition, set on Γ,
(DC) : dynamic transmission condition, set on Γ.

The LATIN is an iterative method that is based on successive solutions of two subsets of
equations from (3.1), for large time intervals (or the full time interval [0, T ]) (Ladevèze
et al., 2010).

Separation into two subsets. The first principle of the LATIN method is to separate
the solutions of the equations in (3.1) into two subsets E and C

E : set of solutions to the evolution field equations (S) and (F); (3.4a)

C : set of solutions to the continuity conditions (KC) and (DC). (3.4b)

E is composed of the solutions that satisfy the fluid and (possibly non-linear) structure
equations. In our case, these solutions are typically represented by four quantities: field
kinematic and dynamic quantities for the structure (v+, f+) and the fluid (v−, f−). The set
C gathers the solutions to the linear continuity equations, with kinematical and dynamical
quantities (V +, F+, V −, F−) defined on the interface Γ, related to the traces on Γ of
(v+, f+, v−, f−). A typical way to define E and C is

E =
{

s ≡ (v+, f+, v−, f−) | S(v+, f+) = 0, F(v−, f−) = 0
}

, (3.5a)

C =
{

S ≡ (V +, F+, V −, F−) | V + = V −, F+ + F− = 0
}

. (3.5b)

Then, the solution se of the fluid-structure problem (3.1) is such that se ∈ E and Se ∈ C.
In the following, we consider the specific case of fluid-structure interaction for the shock

wave part of the problem. As explained in Section 2.5.1, the fluid unknown psc ≡ ptot − pinc

may be decomposed into two components: the reflected one, independent of the structure
motion, and the radiated one. Then, the uncoupled part of the problem, the reflected
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pressure, is obtained at any point and any time through a Z-BEM pre-computation, and
so the dynamic variable for the fluid part of the FSI problem reduces to prad. Therefore,
(v+, f+, v−, f−) is set to (v, t, u, p), where v is the structure velocity, t = σ · n the traction
vector, u = ∂nφ the normal fluid velocity, p is the radiated pressure, and n is the outward
normal to the structure. Let h ≡ −(pinc + pref), the set C holds as

C = {S ≡ (v · n, t, u, pn) | v · n = u on Γ, t + pn = hn on Γ} . (3.6)

Introduction of Robin boundary conditions. Like most iterative methods, the
LATIN needs an initial guess. Let consider for instance that the initial (0) iteration consists
in finding a solution in E . To solve the associated equations, two continuity equations must
be specified/guessed. The simplest (non-optimal) choice is to set u0 = 0 (and so p0 = 0) on
Γ for the fluid and t = hn on Γ for the structure. Then, two uncoupled problem-solving
are performed, and lead to a solution s0 = (v0, t0, u0, p0) ∈ E .

The idea of the LATIN is to build a solution s1/2 ∈ C from s0 ∈ E by setting (on Γ)
two relations of the form

(

t1/2 − t0

)

− k
(

v1/2 − v0

)

= 0 , (3.7a)
(

p1/2 − p0

)

− k
(

u1/2 − u0

)

= 0 , (3.7b)

where k > 0 is an algorithmic parameter with appropriate physical units. Since s1/2 ∈ C, it
holds

v1/2 · n = u1/2 , (3.8a)

t1/2 + p1/2n = hn . (3.8b)

The relations (3.7) and (3.8) form a system of 8 scalar equations with 8 scalar unknowns.
Its solution holds as

p1/2 =
1
2

(p0 − t0 · n + h− k(u0 − v0 · n)) , (3.9a)

u1/2 = − 1
2k

(p0 + t0 · n − h− k(u0 + v0 · n)) , (3.9b)

t1/2 = hn − 1
2

(p0 − t0 · n + h− k(u0 − v0 · n)) n , (3.9c)

v1/2 = v0 +
1
k

(hn − t0) − 1
2k

(p0 − t0 · n + h− k(u0 − v0 · n)) n . (3.9d)

Note that s1/2 ∈ C is obtained from s0 ∈ E via explicit formulas, without needing costly
problem-solving. Now that s1/2 ∈ C is known, we seek s1 by setting

(

t1 − t1/2

)

+ k
(

v1 − v1/2

)

= 0 , (3.10a)
(

p1 − p1/2

)

+ k
(

u1 − u1/2

)

= 0 . (3.10b)

Gathering all the unknowns in the left hand-side, (3.10) becomes

t1 + kv1 = t1/2 + kv1/2 , (3.11a)

p1 + ku1 = p1/2 + ku1/2 , (3.11b)



3.2 FEM/BEM procedures iterating over the full time interval 79

which corresponds to two Robin boundary conditions that are used to solve the fluid and
structure problems, to obtain s1 ∈ E . It is possible to relate s1 to s0, using (3.9),

t1 + kv1 = (t0 · n)n − t0 − k((v0 · n)n − v0) − p0n + ku0n + hn , (3.12a)

p1 + ku1 = h− t0 · n + k(v0 · n) . (3.12b)

Introducing the projection operator P := I − n ⊗ n, (3.12) becomes

t1 + kv1 = hn − P(t0 − kv0) − p0n + ku0n , (3.13a)

p1 + ku1 = h− t0 · n + k(v0 · n) . (3.13b)

The method then reduces to successive problem-solving of the evolution equations with
Robin boundary conditions (3.13), until convergence using a stagnation criterion of the
form ‖sk − sk+1‖ ≤ εLATIN, for a fixed tolerance εLATIN. To check whether the method
provides the correct solution to the FSI problem, the converged solution s must satisfy the
initial problem (3.1). The evolution equations are naturally satisfied, as s is a member of
E . Because s is the converged solution by stagnation, it satisfies (3.13) with s0 = s1 = s:

t + kv = hn − P(t − kv) − pn + kun , (3.14a)

p+ ku = h− t · n + k(v · n) . (3.14b)

Combining (3.14b)-(3.14a)·n provides the kinematic boundary condition u = v ·n for k 6= 0.
Using u = v · n, (3.14a) becomes

2t = hn + (t · n)n − pn. (3.15)

To obtain the sought dynamic boundary condition, we observe that (3.15) implies P(t) = 0,
i.e., t = (t · n)n, and then t = hn − pn.

The efficiency of the method heavily relies on the choice of k, that is, in view of (3.11),
interpreted as a positive artificial added damping. In the case of rapid dynamic problems,
it seems reasonable to set k according to the high frequency approximation prad − ρcu ≃ 0,
so k = ρc.

3.2.2 Limitations of Neumann boundary conditions

As stated previously, Robin boundary conditions, like (3.13), are often used in the context
of interactions between several domains. The main advantage of Robin conditions is well
illustrated in (3.13a): the coupling nature of the problem manifests itself in the fact that
t1 and v1 are obtained from the fluid data u0 and p0, but also from the tangential part of
the structure data t0 and v0. On the contrary, Neumann boundary conditions (3.6) relate
t1 to p0 and v1 to u0. Such conditions do not couple enough the variables, in particular
because a quantity at step (1) depends only on quantities at initial step (0).

In this work, we must comply with an industrial choice that is the use of Abaqus ® for
the structure FEM part. Though this choice is fully justified given the industrial context,
this has the regrettable disadvantage that only the usual Neumann boundary conditions
(3.6) are accessible. In particular, we did not (nor did the Abaqus ® hotline) find a simple
way to practically enforce Robin boundary conditions1, like (3.13). This considerably limits
the design of a procedure that alternates problem-solving on the entire time interval, like
space-time DDMs or their LATIN variant.

1It is possible for analyses performed with Abaqus ® on a stand-alone basis, but not yet with the
procedure that couples Abaqus ® to another, external, solver.
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We tried to implement some naive coupling procedures using Neumann boundary
conditions in each domain, but they all failed to converge. Indeed, solving the structure
part, for the whole interval [0, T ], with a Neumann boundary condition means getting t1

and v1 from the fluid data p0. In that case, the Neumann datum does not depend on
quantities of the current (1) iteration, but only on a quantity of the previous (0) iteration.
The solving process then evolves as illustrated on Figure 3.2. During the first time steps,
the procedure seems fine, as v0 and v1 have similar trends at the beginning. After a while,
v1 smoothly deviates from v0, and at a certain time instant v1 and v0 have opposite signs.
The radiated pressure p0 is related to a restoring force f0 that moderates the structure
motion of iteration (0). However, as v1 and v0 are opposite, f0 accentuates the structure
motion at iteration (1), instead of moderating it. Then, for the case illustrated in Figure 3.2,
the value of v1 increases at each iteration, and the procedure diverges (in other cases, the
procedure may attenuate more and more the solution until the pressure tends to zero). To
prevent this phenomenon, we tried, at a time instant tn, to replace the pressure p0(tn) by a
combination between p0(tn) and ρfcfv1(tn−1) · n, to add a contribution that is related to
the current (1) iteration, and so always opposite to the motion. This helped the procedure
convergence, but not enough.

We believe the use of Robin conditions, like (3.13), would avoid the convergence issues
we faced, as the quantities at iteration (1) are related to both quantities of iteration (0)
and (1). We are currently investigating a means to implement a convergent procedure
based on Robin boundary conditions, that would allow a full Z-BEM/FEM coupling, with
successive problem-solving on the entire time interval, which we hope to present in future
work. Meanwhile, as we had to solve the problem given the practical constraints, we
decided to go back to the study of monolithic FEM/FEM approaches.

 

 

 
Regions where the force accentuates the motion,

instead of moderating it

Figure 3.2: Illustration of the divergence observed when performing successive fluid
and structure problem-solving on the entire time interval using Neumann
boundary conditions.



3.3 Hybrid Z-BEM/FEM/FEM approach 81

3.3 Hybrid Z-BEM/FEM/FEM approach

So far, only partitioned procedures have been described. One of the main advantages of
monolithic approaches lies in the direct solving of the entire set of equations (3.1), therefore
avoiding convergence issues encountered in partitioned procedures. However, common
monolithic FEM/FEM approaches require the 3D discretisation of the fluid domain. As
explained in Section 2.1, in case of rapid transient large-scale problems, it would be too
expensive to obtain a refined enough mesh for the large-scale fluid domain. Some treatments
can nonetheless help to overcome the difficulties of the FEM, by drastically restricting the
fluid domain using non-reflecting boundary conditions for instance (Graham et al., 2017).
The purpose of those conditions is to absorb the waves at the artificial boundary Γ∞ that
truncates the fluid domain. Generally, those absorbing conditions are not ideal, in the
sense that they lead to some unwanted reflections at Γ∞. The challenge is then to find and
use, for the specific problem considered, the best possible absorbing condition (Modave
et al., 2020a; Bécache et al., 2010; Givoli, 1991).

To design an efficient procedure within the afore mentioned practical constraints,
the starting point is the fluid decomposition into reflected and radiated fields, ptot =
pinc + pref + prad (see Figure 2.8). The reflected field does not involve a fluid-structure
coupling, as the structure is motionless for this problem. In that sense, obtaining the
reflected part is easier than the radiated part. The BEM is perfectly adapted to the
reflected part, because the FEM would require a very refined mesh in a large volume of
fluid, to accurately compute (i) the incident field propagation, if it is not imposed on
the surface through a boundary condition (Khoun, 2021), (ii) the multi-reflections on the
surface, for instance in the back region of a submarine (see Section 2.7, Figure 2.22). On
the other hand, the radiated pressure is a more local phenomenon: locally, the structure
vibrates and radiates waves. The decomposition then allows to perform a FEM/FEM
coupling for the radiated part only, and the obtention of prad at the fluid-structure interface
requires only a fine mesh near the interface Γ. Of course, a volume mesh not refined far
from Γ deteriorates the solution (so prad) in these remote regions. For some FSI problems,
e.g., the study of the acoustic signature of a submarine, where the computation of the
pressure far from the submarine must be accurate, refining the fluid mesh only near the
structure would not suffice. However, this raises no issue in our case, as the quantity of
interest for the fluid part is only the pressure at the fluid-structure interface Γ, required to
compute the structure behaviour.

From this analysis emerges a procedure, which we label Z-BEM/FEM/FEM: for a
given problem (structure and input), the reflected pressure in the fluid is computed using
the Z-BEM, whereas the fluid-structure coupling, that couples the radiated pressure to
the structure motion, is solved with a common FEM/FEM procedure, using a volume 3D
mesh for the fluid that is refined only near the fluid-structure interface (see Figure 3.3).
This hybrid procedure satisfies the practical constraints (related to the industrial context),
since the BEM fluid and the FEM structure solvers may be used in a black-box manner.
We use Abaqus ® for the FEM part, and the coupling is ensured through an interface
provided by the so-called Coupling Simulation Engine (CSE) (Dassault Systèmes SIMULIA,
2017; Véron, 2016). The steps of the Z-BEM/FEM/FEM procedure are the following (see
Figure 3.3):

• Compute the reflected pressure using the Z-BEM procedure (see Chapter 2);

• Compute the nodal forces f associated to the pressure pinc + pref, on each point of
the mesh, for each time step of the whole interval [0, T ];

• For the FEM part, apply f on the interface Γ through (DC) in (3.1), and solve the
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FEM/FEM FSI problem between the structure (its whole complex model) and a
truncated 3D volume mesh for the exterior water, that is refined only near the FSI
interface.

Z-BEM Fluid
 Incident

pressure
Reflected
pressure

Monolithic
FEM for FSI

Nodal
forces

 
Total

pressure

Structure
State

Absorbing
boundary
conditions

3D FE  fluid
mesh, refined
near the FSI

interface

(2D or/and 3D)
FE structure

model

Figure 3.3: Main steps of the hybrid Z-BEM/FEM/FEM procedure.

The coupling is then all performed in the FEM part, but remains more efficient than
a volume FEM for both pref and prad, the latter being more costly to achieve the same
precision, as it is shown on a typical UNDEX FSI problem in Sections 3.4 and 3.5. In the
rest of this chapter, the hybrid Z-BEM/FEM/FEM procedure is labelled Z-BEM/FEM,
for convenience.

3.4 Definition of a comparative study of FSI strategies

This section is dedicated to a comparative study between some FSI strategies in the context
of UNDEX. Given the industrial context, we choose the reference case of a steel cylindrical
hull submerged in water, facing a remote underwater explosion (see Figure 3.4). The
purpose is to compare numerical methods based on the FEM, the BEM, or semi-analytical
approaches, to show their strengths and weaknesses. Also, the goal is to validate our
Z-BEM/FEM procedure.

3.4.1 Test problem: remote explosion on long cylindrical shell

We study the FSI problem between a submerged long cylindrical shell and a remote
underwater explosion. The physical problem parameters are provided in Figure 3.4. The
cylinder is closed by two hemispheres and the total length is 2L = 53.7 m. We study this
FSI problem in a time interval [0, T ], where T is chosen such that the strains (i.e., the
deformation that is not a rigid motion) in the cross-section (P) containing the explosion
are not influenced by the hull spherical extremities (due to causality). Also, we consider
a relatively far explosion, W = 1000 kg of TNT at d0 = 100 m from the cylinder centre,
so that the wave front hitting the hull is roughly planar (spherical with a large radius of
curvature).

The configuration is similar to Section 2.6.2, though now the cylinder is deformable. In
particular, we use again the single-exponential fit (2.43) with the same explosive material
parameters:

K1 = 5.24 107 SI, a1 = 1.13, K2 = 8.4 105 SI, a2 = −0.23. (3.16)
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Figure 3.4: Cylinder of radius a = 2.416 facing a remote UNDEX, notations and
physical parameters.

Finally, the configuration has been chosen so that the assumption of small linear deforma-
tions is relevant, the shock factor (1.2) being rather small: K ≃ 0.32.

3.4.2 FSI solution methods considered

A semi-analytical solution for infinite cylinders. In UNDEX analysis, semi-analyti-
cal approaches have historically been very useful. Indeed, before computer resources allowed
an efficient use of discretisation methods, the interaction between a spherical wave and
a cylinder (or a circle in 2D) was studied using (semi-)analytical methods (Cole, 1948).
They mainly consist in solving an equation (e.g., the wave equation) by decomposing the
solution upon an infinite base of solutions (e.g., Bessel’s functions). Then, solving the
equation satisfied by each coefficient, the solution is approximated through a truncated
reconstruction. In the FSI context, and more specifically for UNDEX analysis, the details
may be found in e.g., (Junger and Feit, 1986; Brochard, 2018; Leblond, 2007).

An in-house code of Naval Group allows to solve the FSI problem with a semi-analytical
approach. It relies on a spatial modal decomposition, to solve the 2D wave equation and
the 2D Love-Kirchhoff shell equations mode by mode, before summing modal contributions
over a (truncated) basis. The details may be found in (Leblond et al., 2009; Sigrist and
Leblond, 2008). Recent, yet unpublished, improvements of the code allow to use the
Z-transform, rather than the Laplace transform, to go to the frequency domain, which
reduces Gibbs phenomenon due to the discontinuous incident pressure (Rakotomalala et al.,
2021).

This 2D procedure provides results comparable to the 3D solution in the cross-section
(P) only subject to strong assumptions: (i) the cylinder must be long enough to be treatable
as infinite, and (ii) the remote UNDEX must be far enough to allow treating the wave
front as flat or cylindrical. As most semi-analytical modal approaches, the procedure is
efficient only if few modes are sufficient to well represent the solution. Actually, since the
2D procedure is quite fast, we were able to check the influence of the number of spatial
modes, and noticed that setting it to N θ = 65 is enough regarding the target accuracy in
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the industrial context.

A monolithic FEM/FEM approach. A monolithic FEM/FEM approach is imple-
mented in the French software code_aster ® (Code_Aster Open Source, 2020). The FEM
structure model is a code_aster ® shell, and the volume mesh for the exterior fluid is
refined only near the interface Γ, for the computational reasons explained previously. BGT1
absorbing conditions are used to artificially truncate the exterior fluid domain (Bayliss
et al., 1982; Leblond and Sigrist, 2016). Only implicit time schemes are considered for this
procedure.

The procedure relies on the assumption of small deformations (small strains and small
rigid displacement), so that the FEM matrices may be computed once at the first time
step, and re-used afterwards. Contrary to the Z-BEM/FEM procedure, the fluid unknown
gathers both the radiated and the reflected parts. As explained in Section 3.3, the reflected
part in not as local as the radiated part, so it requires a volume finite element (FE)
mesh refined in a larger portion of fluid, at least when dealing with complex geometries.
This FEM/FEM procedure, developed in the context of another Naval Group PhD thesis
(Khoun, 2021), cannot yet deal with large structures, which is the reason we consider small
hull dimensions (compare to a submarine) for the reference case considered.

The hybrid Z-BEM/FEM procedure with Abaqus ®. The first step of the Z-
BEM/FEM procedure consists in getting the reflected pressure, for each node of the mesh,
for each time step, with the Z-BEM, using the software COFFEE (2020) (see Chapter 2).
Then, the nodal forces f are obtained from the nodal values of pRef = pinc + pref, using
linear shape functions, and serve as input to solve the FEM/FEM coupling in Abaqus ®.
Details on how to perform a coupling between Abaqus ® and another, external, code may
be found in (Véron, 2016; Dassault Systèmes SIMULIA, 2017). For the FEM part, the FEM
structure model is an Abaqus ® shell, and the volume mesh for the exterior fluid is refined
only near the interface Γ (see Figure 3.5), to reduce the number of elements to a quadratic
function of the structure dimensions, instead of a cubic function. In particular, this is
necessary to deal with rapid transient problems involving large structures, with reasonable
computation times. Abaqus ® absorbing conditions (cylindrical and spherical acoustic
impedances) are used to artificially truncate the exterior fluid domain. At the interface
Γ, the fluid and structure meshes do not have to be compatible, the *TIE functionality of
Abaqus ® is used to enforce the two geometric surfaces to coincide. Under the assumption
of small linear deformations, the problem may be solved using either Abaqus ® explicit or
Abaqus ® implicit within reasonable computation times, so the two cases will be presented
in Section 3.5.

During the computation of pref, the structure is considered motionless. The obtained
results are then valid only under the hypotheses of (i) small strains, to ensure the shape of
the structure is well approximated by the initial shape, (ii) small rigid displacement, to
ensure the computed value of pinc(P, t) with a motionless structure remains close to the
value of pinc(P (t), t) when the geometry moves (P (0) = P ). The latter hypothesis is easily
verified for remote UNDEX because (i) pinc evolves as 1/r, and (ii) the rigid displacement is
marginal in the considered time interval. The Z-BEM/FEM procedure has the advantage
of needing very few hypotheses, compared to the other procedures (see details in Tables D.1
and D.2).
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3.5 Comparative study: validation of our coupling proce-
dure

The goal of this section is to compare our Z-BEM/FEM procedure to the other procedures
introduced in Section 3.4, on the cylindrical shell configuration presented Section 3.4.1. In
addition to validating our procedure (checking that the results are correct), it permits to (i)
assess its efficiency, and (ii) identify the scope of application of each procedure. We present
the results of four procedures: the code_aster ® FEM/FEM, the semi-analytical method,
the Z-BEM/FEM with an explicit scheme for the structure, and the Z-BEM/FEM with an
implicit scheme for the structure. The comparison between the procedures is summarised
in Appendix D, Tables D.1 to D.4. The numerical parameters of each procedure are
provided in Tables D.5 and D.6. Apart from the semi-analytical approach, the meshes of
each procedure have been chosen such that the computation runtime is about 5 days. For
instance, for the Z-BEM/explicit FEM procedure, it leads to around 107 tetrahedral linear
elements for the fluid FE mesh, and the structure shell has around 3 105 nodes (with 5
DOFs per node). To improve the results, the fluid and structure FE meshes have been
refined near the standoff point. A snapshot of the used meshes (Figure 3.5) illustrates
these refinements.

Boundary
absorbing
conditions

Standoff
point (SOP)

Fluid mesh
refined
near     

Structure
mesh

refined
near the

SOP 

Figure 3.5: 3D view of the meshes used for the FEM part in the Z-BEM/explicit
FEM procedure. Both the 3D fluid and 2D structure meshes are refined
near the standoff point.

Remark 15 It would be interesting to include the results of the LS-DYNA ® FEM/USA
BEM procedure presented in Section 3.1.2. However, due to practical issues, we do not
currently have access to these codes. The comparison will be performed in a future work,
once access is restored. We nonetheless include the procedure in the comparison tables
provided in Appendix D, as the reader could be interested to compare its characteristics to
those of the procedures we actually ran.
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3.5.1 Kinematic response of structure

We first compare the procedure results based on the kinematic response of the structure.
We report results in two forms. Firstly, line plots of the solutions (displacements, velocities,
accelerations) at the three points (A,B,C) defined in Figure 3.4 are shown in Figures 3.6
to 3.8. Secondly, snapshots of these solutions on the hull are shown in Figures 3.9 to 3.11.
For the Z-BEM/implicit FEM procedure, the computation is performed only for the first 5
ms, because of a too-large computational time. The line plots are used to compare the four
procedures, whereas the snapshots play a more illustrative role, by showing the quality of
the solutions for the Z-BEM/explicit FEM procedure.

Remark 16 In the line plots, the time instant t = 0 is set shortly before the shock wave
hits the hull, so that the acceleration discontinuity at the standoff point is well observed
(and not disturbed by the figure axes). However, in the subsequent comments, notably
concerning the maximum acceleration, we keep the convention that t = 0 corresponds to the
instant the shock wave hits the hull.

Remark 17 In the line plots, the radial and orthoradial components are respectively carried
by basis vectors er and eθ, as defined in Figure 3.4.

Figures 3.6 to 3.8 illustrate the structure dynamics at the three reference points in
the cross-section (P). A part of the observed differences on the displacements is probably
due to the rigid motion, which is more and more important as time elapses. We are not
interested in the rigid motion in this analysis, notably because we did not adapt the mass of
the structure to the mass of the corresponding volume of water (in practice, the submarine
mass is equal to the mass of the same volume of water, in order to remain still at a given
depth underwater). Some tricks allow to numerically modify the global mass of the hull,
typically by adding a surface mass all over the finite element mesh, but none were used in
the benchmark.

We now focus on the accelerations, as it is the most difficult quantity to obtain without
numerical instabilities. For the standoff point (A), all the procedures are in good agreement.
Some oscillations are noticeable for all the procedures except the semi-analytical method.
The typical frequency of these oscillations is a few kHz, so is not a priori high enough to
be confidently explainable by numerical perturbations. However, three facts support this
assumption:

• The oscillations vary according to the procedure used;

• They depend on numerical parameters such as the mesh size, the time scheme,. . .

• The mean responses provided by all procedures coincide.

At the orthogonal (B) and shadow (C) points, high oscillations deteriorate the results of
both implicit methods (Z-BEM/implicit FEM and FEM/FEM). These oscillations are
more significant for the accelerations (Figure 3.6) than for the velocities and displacements.
This is a commonly observed phenomenon: the more derivatives a quantity involves, the
more disturbed it becomes. Indeed, for a perturbation of the acceleration of the form
sin(ωt), with a large ω, the perturbation on the velocity becomes cos(ωt)/ω, and so is
reduced of a factor 1/ω. To reduce these oscillations, some numerical damping could be
introduced, as it will be explained in Section 3.5.2, but too much numerical damping also
leads to other unwanted effects, which will be commented on in Section 3.5.3.

Remark 18 The mesh used in the computation has been refined in the standoff region,
but still has a satisfactory mesh size everywhere (see Figure 3.5). This affects the result
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quality only moderately, except for the accelerations (Figure 3.9), where a loss of quality is
noticeable at the horizontal extremities of the picture obtained one millisecond after the
explosion hits the cylinder.

Remark 19 For the semi-analytical method, the orthoradial acceleration at point (B) is
a bit perturbed by oscillations. Increasing the number N θ of modes (set to 65) does not
significantly improve the results of orthoradial accelerations. Instead, the results could be
filtered.

The computed kinematic response of the structure shows a rather good agreement be-
tween the four procedures. Some differences are nonetheless noticeable for the accelerations.
The remainder of this section is dedicated to the study of the numerical perturbations
observed in the accelerations, and their consequences in the context of industrial studies.
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Figure 3.6: Accelerations at the standoff (A), orthogonal (B) and shadow (C) points, defined as in Figure 3.4.
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Figure 3.7: Velocities the standoff (A), orthogonal (B) and shadow (C) points, defined as in Figure 3.4.
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Figure 3.8: Displacements at the standoff (A), orthogonal (B) and shadow (C) points, defined as in Figure 3.4.
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Figure 3.9: Snapshots of the acceleration magnitude on the hull, expressed in m/s2, at
t = 0.5 ms (top) and t = 1 ms (bottom). Results of the Z-BEM/explicit
FEM procedure.

Figure 3.10: Snapshots of the velocity magnitude on the hull, expressed in m/s, at
t = 0.5 ms (top) and t = 1 ms (bottom). Results of the Z-BEM/explicit
FEM procedure.

Figure 3.11: Snapshots of the displacement magnitude on the hull, expressed in m, at
t = 0.5 ms (top) and t = 1 ms (bottom). Results of the Z-BEM/explicit
FEM procedure.
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3.5.2 Handling high frequencies in the incident field

As explained in Section 1.2, for a fixed point P in the fluid, the incident pressure pinc(P, ·) is
modelled as a discontinuous function of time. In the frequency domain, such an excitation
involves arbitrary large frequencies. Usual BEMs and FEMs require the use of a mesh
approximating a given geometry with elementary geometrical entities. Consider for instance
a uniform triangle 2D-mesh of the interface Γ with mesh size h and P1 Lagrange boundary
elements. Such a mesh cannot accurately solve problems involving variables that oscillate
within an element, since the solution is represented by linear shape functions. The common
rule of nλ points per wavelength suggests that the highest frequency that can accurately be
dealt with, for wave propagation problems with sound speed c, satisfies fmax = c/(nλ h),
where typically nλ ∈ [6, 10] depending of the target accuracy, in an industrial context.

We first tried to solve our FSI problem without filtering the incident pressure, other
than the natural filtering arising from the use of a discrete time interval (i.e., the excitation
involves very high frequencies related to the sampling frequency fs of the time interval
[0, T ], which is typically fs ∼ 1 MHz). In that case, the obtained results are numerically
disturbed by highly oscillating perturbations, especially for the acceleration (with similar
shape to those observed in Figure 3.6). These oscillations are due to the use of meshes that
are not fine enough for the given excitation; they are well known in the context of UNDEX
(Dassault Systèmes SIMULIA, 2009, Section 8.1.4). Since it would not be reasonable to
use meshes that can handle frequencies up to 1 MHz, for the large geometries we consider,
we need a way to attenuate these high frequencies. There are many ways to do so:

• Explicitly modify the expression of pinc, for instance by smoothing the wave front.
This is a common procedure in UNDEX analysis, where the wave front is being
smoothed during a time of typically τ/10, where τ is the time constant of the
exponential decay, defined in (2.43).

• Use a dissipative time integration scheme, such as the Hilber-Hugues-Taylor (HHT)
scheme, that attenuates high frequencies and introduce numerical damping (Géradin
and Rixen, 1997; Hughes, 1987).

• Explicitly rely on a numerical filter, e.g., the Butterworth filter (Butterworth, 1930)
(other choices are also relevant), to smooth the excitation before solving.

Each of the above methods has advantages and drawbacks. The first one is easy to
implement and is probably the most famous in the field of UNDEX, because it is the
one historically used, in particular in the reference code USA (Section 3.1.2). Its main
drawback is that it does not specify a priori a cut-off frequency until which the results
are not affected. In fact, we numerically noticed that this smoothing process is quite
harsh, because it affects medium frequencies (some KHz). This process, however, seems
consistent with the implementation means at the time the code USA was developed. In
view of current major advancements in numerical simulation, we believe we no longer need
to resort to this smoothing process.

Using dissipative time integration schemes to introduce numerical damping stands as an
attractive method, notably because it does not require the explicit use of a filter. However,
it usually relies on the choice of some parameters, that control the damping. Then, it is
important to well analyse the influence of these parameters on the overall solution, to strike
a balance between (i) preserving a satisfying solution that is not too much attenuated, and
(ii) removing unphysical perturbations arising from the use of a discontinuous input.

The explicit recourse to a numerical filter to smooth the excitation presents the
advantage of allowing to choose the cut-off frequency fc. In particular, it permits to
guarantee the validity of the obtained solution in a certain frequency range. However, the
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use of an explicit filter requires that it be well mastered, especially concerning the order of
the filter. These concerns have been extensively studied in the literature, and we refer e.g.,
to (Bianchi and Sorrentino, 2007).

Remark 20 We recall that a Butterworth filter is designed such that its gain G(ω)
(magnitude of the transfer function H(iω)) be provided by

G(ω) =
G0

√

1 + (ω/ωc)2n
,

where G0 is the gain at zero frequency, n the filter order, ωc = 2πfc, and fc is the cut-off
frequency. The filter is then approximately flat in the pass band (f < fc), reduced of 3 dB
at the cut-off frequency fc, and reduced of 20n dB per decade in the stop band (f > fc).

For the results presented in this section, the input of the Z-BEM/explicit FEM
procedure was filtered using a Butterworth of order 5, with fc = 10 kHz, whereas the
implicit methods introduced small numerical damping through their time-stepping schemes
(see Table D.6). No smoothing was performed for the semi-analytical procedure.

3.5.3 Unwanted effects of smoothing processes, shock response spec-
trum

Shock response spectrum. To assess the procedure results, and in particular the
three smoothing methods mentioned in Section 3.5.2, it is instructive to go back to our
industrial aim. One of our goals is to make sure that the equipment within the submarine
remain functional after the explosion. The equipment are linked to the hull through
mechanical systems acting like damped spring-mass systems, precisely to reduce the effects
of underwater explosions (Lalanne, 2010; Wang et al., 2019). These systems act like filters,
with a cut-off frequency that notably depends on the mass of the equipment. Based on the
knowledge of the onboard equipment, the engineers identify a frequency range of interest
for a given submarine. Then, our purpose is to accurately solve the hull behaviour in this
frequency range, and in particular the acceleration of the hull, which is coupled to the
equipment.

Therefore, we evaluate the smoothing procedures regarding their ability to accurately
infer the equipment response to the UNDEX. To do so, a first approximation is to uncouple
the hull dynamics from the equipment2, i.e., to solve the dynamics of the hull in the
absence of the equipment, and then use the acceleration of the hull (at the point where the
equipment is fixed) as input to infer the equipment dynamics. Doing so, we solve a basic
damped spring-mass system equation

ẍ+ 2 ξ ω ẋ+ ω2x = s (3.17)

for a given source excitation s, where ẋ denotes the time derivative of the system length

variation x, ξ is the damping coefficient, ω =
√

k/m is the natural pulsation, k is the
spring constant, and m is the system mass. The obtained results are called Shock Response
Spectrum (SRS).

The SRS for the pseudo-acceleration ω2x at the standoff (A) and shadow (C) points
are provided in Figure 3.12, for ξ = 0.05. At each natural frequency ω = 2πf , the equation

2This approximation is more relevant for lighter equipment.
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(3.17) is solved, with s = a/m obtained from the hull acceleration a. Then, the SRS is the
function

[fmin, fmax] −→ R

g : f 7−→ (2πf)2 max
t∈[0,T ]

x(t; f) .

The goal of Figure 3.12 is to know, for a given frequency f (so a specific on-board equipment),
the order of magnitude of the maximum acceleration experienced by the equipment, and
so to know whether it would still be operational after the explosion.

In the range [100 Hz,600 Hz], the four procedures have very similar results at the
standoff point. For the Z-BEM/implicit FEM procedure, the computation is performed
only for the first 5 ms, and therefore the SRS are obtained for a reduced range (long time
corresponds to low frequencies). At very high frequencies, the four procedures present
noticeable differences. The solution obtained with Abaqus ® explicit may be considered
as accurate up to around 7 kHz, instead of 10 kHz, because the Butterworth filter used,
with a cut-off frequency of 10 kHz, is not a perfect filter. For the two implicit methods,
the numerical damping introduced by the time-stepping scheme is expected to affect the
solution at high frequencies, but the value up which the solution is correct is not provided
a priori, contrary to when using a Butterworth filter.
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Figure 3.12: Shock response spectrum for the pseudo-acceleration at the standoff (A)
and shadow (C) points.

The SRS at the shadow point is also provided. It shows the difficulty to get proper
results at this point, as the four procedures do not provide similar results on the whole
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frequency range. Instead, the Abaqus ® explicit method corresponds to the semi-analytical
one at high frequencies, whereas the Abaqus ® implicit is close to the semi-analytical
solution at lower frequencies.

In view of the results, we advise the use of a numerical filter, because it permits to
control the frequency range affected, and allows less disturbed results for the accelerations,
as shown in Figure 3.6.

Consequences of a common smoothing process. We now study the influence of the
most common smoothing process in the context of UNDEX: modify the form (2.43) of the
incident pressure so that it linearly grows to its maximum during a time of τ/10, where τ
is the time constant of the exponential decline, defined in (2.43). In the following we refer
to this process as the τ/10 smoothing procedure.
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Figure 3.13: Accelerations at the standoff (A), orthogonal (B) and shadow (C) points,
comparison between the results obtained with and without the τ/10
smoothing process, for the semi-analytical procedure.

We compare the accelerations obtained with and without the smoothing process, for
the semi-analytical procedure, shown in Figure 3.13. The influence of the τ/10 smoothing
procedure is noticeable whenever the acceleration should be discontinuous. Instead, the
acceleration jump is smoothed, and the acceleration maximum is reduced. Also, at the
shadow point C, the smoothing process introduces an unphysical jump when the incident
pressure reaches the point (but the total pressure front has not yet reached the shadow
point, because it has to go around the obstacle), at t ≃ 3.5 ms. We believe this jump is a
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consequence of the too harsh smoothing process, which affects the wave character of the
incident pressure (i.e., it is no longer a wave), and therefore the reflected pressure (which
is supposed to compensate for the incident pressure) struggles to match the exact opposite
form of the incident pressure. The smoothing process has little influence on the velocities
and displacements, which are therefore not shown. The two SRS displayed on Figure 3.14
show the influence of the smoothing procedure: it considerably underestimates the results
at the standoff point for frequencies higher than 2 kHz. In view of the good agreement
observed in Figure 3.12, compared to the results of the τ/10 smoothing procedure, we
recommend not to use the τ/10 smoothing procedure when dealing with deformable
structures, though it has little influence on the pressure field for rigid cases (scattering
problems such as those presented in Chapter 2, see e.g., Figure 2.12).
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Figure 3.14: Shock response spectrum for the pseudo-acceleration at the standoff
(A) and shadow (C) points. Comparison between the results obtained
with and without the τ/10 smoothing process, for the semi-analytical
procedure.

Which procedure best matches the maximum acceleration? We now assess the
procedure ability to accurately match the maximum acceleration. Though less important
than the SRS, this remains an interesting performance indicator, notably because it permits
to check that the smoothing processes used are not too harsh.

When the standoff region is a regular boundary, like in our case, the maximum
acceleration at the standoff point is provided by that of an infinite Taylor plate submitted
to a plane wave front. The justification relies on two ingredients: (i) there exists an
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arbitrary small time T such that, in [0, T ], the region of Γ in which the solution (both fluid
and structure quantities) is not zero is arbitrary small, around the standoff point, because
of causality (for both the waves propagating in the fluid and in the structure), and (ii) the
regular boundary may be arbitrary close to its tangent plane, and the spherical wave front
to a plane wave front, when considering a sufficiently small area. Then, for any arbitrary
small ε, there exists Tε such that, in [0, Tε], the acceleration at the standoff point of our
cylindrical shell corresponds to that of an infinite plate. The acceleration of the plate is
obtained by applying the Newton law, after division by an elementary surface (Leblond,
2007):

ρshs a(t) = ptot(t) ,

and so, at t = 0,

a(0) =
2 pm
ρshs

,

where pm is the maximum pressure defined in (2.43), and the factor 2 comes from pref(0) =
pinc(0) and prad(0) = ρfcfu(0) = 0. Using

pm(r) = K1

(

W 1/3

r

)a1

(3.18)

and the coefficient values provided in (3.16), the maximum acceleration, obtained at t = 0,
is

amax ≃ 3.2 104 m/s2.

Figure 3.6 shows that the FEM/FEM procedure is the one reaching the closest maximum
acceleration (apart from the semi-analytical one). The Z-BEM/explicit FEM procedure
leads to the smallest value, with amax ≃ 2.8 104 m/s2. This makes sense, as it is the most
filtered one. The implicit methods, that are smoothed only because of some numerical
damping in the implicit scheme used (see Table D.6), produce better values of amax but
are more sensitive to oscillatory perturbations, as discussed previously. Then, when using
filters, the user must strike a balance between a too-disturbed solution and a too-smoothed
(and so too low maximum value) of the acceleration.

3.5.4 Summary: strengths and weaknesses of each procedure

In this section, we solved a FSI test problem using different numerical methods. The
comparison performed assesses the efficiency of a monolithic FEM/FEM procedure, a
semi-analytical approach, and the hybrid Z-BEM/FEM procedure.

First of all, the comparison performed in this benchmark validates the correct functioning
of our Z-BEM/FEM procedure for this almost realistic configuration (the cylinder radius
is a bit small compared to the industrial purpose). Secondly, it shows the key role of filters
and/or numerical damping to obtain a correct solution when dealing with a discontinuous
input (very large frequency content), using a discrete mesh (with a not arbitrary small mesh
size, limited by computer resources). To well understand the influence of the smoothing
processes, the shock response spectrum is the appropriate tool, given the industrial purpose.
In particular, we showed the limitations of the commonly used smoothing process named
“τ/10”, which we advise not to use, but rather prefer ordinary filters, such as, e.g., a
Butterworth filter. Another important conclusion concerns the choice of a procedure. The
four we studied have advantages and drawbacks, and the choice of one of them depends on
the specific configuration considered. Moreover, other procedures are potentially feasible,
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in particular based on BEM/FEM coupling, provided the FEM code used for the structure
allows Robin conditions (see Section 3.2).

The semi-analytical procedure is relevant if (i) the geometry is a cylinder, (ii) only
the results in the 2D cross-section (P) are of interest, or more specifically at the standoff
point, (iii) the explosion is sufficiently far away to approximate the spherical wave front by
a plan or cylindrical wave front, and (iv) the study takes place in a sufficiently small time
interval so that, given the cylinder dimensions, the results in (P) are not affected by the
cylinder extremities. The case study in this section is a good example of applications of
the semi-analytical procedure, where we advise to use it, because it is much faster than
the other procedures, except if you desire the 3D solution on the hull, like provided in
Figures 3.9 to 3.11.

The FEM/FEM procedure is relevant if (i) a rather small geometry (compared to a
submarine) is considered, for which a refined enough volume FE mesh may be used, or (ii)
the geometry is simple, and without trap regions in which multiple reflections appear (if it
the case, a refined volume mesh must be used in these regions, to well represent the reflected
pressure). Also, in its current form, the code_aster ® FEM/FEM procedure cannot yet
deal with high deformations, and allows only implicit schemes, but these limitations are
only practical, and will probably be removed in future work.

The hybrid Z-BEM/implicit FEM procedure is relevant if (i) implicit schemes are
preferred, to avoid the risk of error accumulation encountered with explicit schemes, and (ii)
the explosion is not too big, so that the deformations remain small and elastic (otherwise,
the computation becomes a bit costly). In all other cases, and especially when dealing
with complex large geometries, we advise the Z-BEM/explicit FEM procedure. The Z-
BEM/FEM procedure can deal with all kind of problems, as it relies on few hypotheses, but
it stands less efficient for small geometries than FEM/FEM procedures. This is explained
by two factors: (i) the volume mesh limitations affecting FEM/FEM procedures decrease
as the geometry dimensions reduce, and (ii) the Z-BEM procedure introduced in Chapter 2
does not benefit that much from small geometry dimensions. This latter remark needs
some explanations.

Consider the two cases studied in Section 2.6.2 and Section 2.6.3, that is a small (radius
a = 0.5 m) and a big (radius a = 5 m) cylinders facing a remote UNDEX. For both
problems, the most refined mesh has N ∼ 106 DOFs. Of course, it results in a mesh size
ten times smaller for the small cylinder, but it also implies that the frequencies considered
high for the small cylinder are higher than that of the big cylinder. More precisely, as
explained in Section 2.5.2, a frequency may be considered as high if the ratio κ/λ between
the local radius of curvature κ and the characteristic wavelength λ is large. In our case,
the radius of curvature (so the radius) is ten times smaller for the small cylinder, and so it
compels the procedure to actually solve, with the FM-BEM, frequency problems for higher
frequencies than in the case of the big cylinder, where the recourse to a high frequency
approximation is possible for smaller frequencies. This explains the relatively similar result
quality for the two problems, illustrated in Figure 2.12 and Figure 2.14, whereas a FEM
procedure would provide much better results in the case of the small cylinder than the big
one, for a similar number of DOFs.

3.6 Conclusion and future work

This chapter was devoted to the design, implementation and validation of a fluid-structure
coupling procedure for the FSI problem of a submarine facing a remote UNDEX. After
reviewing some coupling strategies available in the literature, we explained why a Z-BEM-
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fluid/FEM-structure coupling procedure would be an appropriate choice. However, because
of some practical constraints, this solution could not be implemented during this PhD
work. Instead, we designed a hybrid Z-BEM/FEM/FEM procedure, in which the reflected
part of the fluid is computed using the Z-BEM, and the coupled part of the FSI problem
is solved with a common monolithic FEM/FEM approach. Even though the reflected part
is solved using the BEM, and therefore the volume fluid mesh can be refined only near the
fluid-structure interface, the FEM/FEM coupling presents some drawbacks compared to a
full FEM-structure/BEM-fluid coupling:

• A non-uniform 3D volume mesh has to be generated, with a geometrically complex
internal boundary (submarine surface);

• The volume mesh must be truncated (approximation of the radiation condition),
which may entail unwanted reflections.

Because of these limitations, we are still investigating the Z-BEM/FEM procedure, with
Robin boundary conditions.

The cross-validation performed in Section 3.5 validates the hybrid Z-BEM/FEM/FEM
procedure in the case of a long cylinder. Despite its limitations, the Z-BEM/explicit
FEM procedure appears to be the most appropriate to deal with a realistic industrial case,
which will be done in Chapter 5. Before that, the procedure designed to deal with the FSI
problem associated to the gas bubble phenomenon is presented in Chapter 4.
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Chapter 4

Fluid-structure interaction for the
oscillating gas bubble

B
enefitting from the analyses of Chapter 1, the goal of this fourth chapter is to design
a computational method to address the fluid-structure interaction (FSI) problem of a

ship facing a gas bubble. We first recall the fluid model in Section 4.1. Then, in Section 4.2,
we formulate the coupled FSI problem, and present the step-by-step FEM/BEM coupling
procedure we choose to solve it. To speed up the fluid solving process, we study the time-
independence property of the BEM operators and introduce the H-matrices in Section 4.3.
We summarise our numerical methodology in Section 4.4, and validate it on the simple
problem of a sphere in a uniform flow in Section 4.5, before solving the FSI problem of a
gas bubble impacting a stiffened submarine hull in Section 4.6.

4.1 Reminders: the bubble phenomenon

In this section, we recall the conclusions of Chapter 1 and stress some differences between
the bubble and shock wave phenomena, notably concerning the non-linear aspects of the
bubble fluid response.

4.1.1 Hypotheses and modelling

We assume the fluid to be incompressible and potential. Under these hypotheses, the
velocity potential satisfies the Laplace equation (1.26), and the pressure is inferred from the
latter through the generalised Bernoulli equation (1.29) (see Section 1.3). We choose the
Hicks model (Hicks, 1970; Leblond, 2007) to describe the bubble dynamics in the absence
of the ship. Similarly to the bubble model presented in Section 1.3.2, the Hicks model
provides the bubble motion: evolution of the bubble radius R and the depth Z over time,
under some specified hypotheses. Then the velocity potential is related to R(t) and Z(t)
through the relation (1.27). We recall that the bubble model is purposely treated as an
independent part of the overall procedure. This means that any bubble model (consistent
with the assumption of incompressible and potential flow) may be used in the procedure
we design, the latter taking as input the velocity potential induced by the bubble in the
fluid in the absence of the structure.

Like for the shock wave phenomenon (Chapters 2 and 3) we choose the boundary
element method (BEM) to model the fluid part of the FSI problem, whereas the finite
element method (FEM) is best suited for the structure (it easily allows combination of
various theories, e.g., shell and beam theories, constitutive non-linearity such as plasticity,

101



102 Chapter 4: FSI for the oscillating gas bubble

complex interior of the submarine,. . . ). Our purpose is then to design a FEM/BEM
coupling to solve the coupled FSI problem, for far-field explosions.

4.1.2 Time dependence of the geometric domains

Like in the shock wave part, the FSI problem admits the generic form (3.1)







(S) : structure evolution equations, set in Ωs,
(F) : fluid evolution equations, set in Ωf ,
(KC) : kinematic transmission condition, set on Γ,
(DC) : dynamic transmission condition, set on Γ.

The main difference between the two problems lies in the fluid equations (F). For the
bubble phenomenon, the Laplace equation (1.26) for the total velocity potential

∆φ = 0 (4.1)

is time-independent, contrary to the wave equation (1.20). This reflects an important
assumption of the incompressible model: the time scales involved are high enough so
that the propagation time of the information may be neglected. In other words, the
perturbations appear to propagate at an infinite speed. In that sense, the Laplace equation
(4.1) may be seen as the limit of the wave equation (1.20) when the fluid velocity c tends to
infinity. However, the solution of an acoustic problem, e.g., the breathing sphere presented
in Section 2.6.1, is in general quite different from that of the analogous problem with the
Laplace equation (named pulsating sphere in this case). Consider for instance a sphere
pulsating in an incompressible fluid, with a time-dependent prescribed normal wall velocity
u provided by (2.41)

u(t) = u(t;ω) = u0

5∑

i=1

ui sin(2πfit) . (4.2)

The limit of the acoustic solution1 when c tends to infinity does not provide the solution to
the pulsating sphere in an incompressible fluid. Instead, it rather gives the linear part of the
latter. This is a key difference between the two modelling: in acoustics, a breathing sphere
sees its surface oscillating with a sufficiently low magnitude, so that the approximation
Γ(t) ≃ Γ(0) remains valid. A pulsating sphere in an incompressible flow oscillates more
slowly, but possibly with a larger amplitude, and then, at a time instant t > 0, Γ(t) is
different from Γ(0), and this adds a non-linear term (with respect to the solicitation, so
the prescribed normal wall velocity u) in the fluid velocity potential.

To conclude, the time-dependence of the incompressible fluid problem, analogous to
(2.1), manifests itself in the boundary condition and the time-dependent geometric domains.
With Neumann boundary conditions, the fluid problem exhibits the form

For t ∈ [0, T ], find φ such that







∆φ(x; t) = 0 x ∈ Ωf (t),
∂φ

∂n
(x; t) = h(x; t) x ∈ Γ(t),

(4.3)

where h is a given Neumann datum. (4.3) shows the fluid problem reduces to the solving,
at each time step, of a quasi-static problem with an updated boundary Γ(t).

1The solution to a breathing sphere in an acoustic fluid with the same prescribed velocity (4.2).



4.2 FEM/BEM coupling for the FSI problem 103

4.1.3 Fluid decomposition

In the acoustic case, the fluid velocity potential is decomposed into an incident, a reflected
and a radiated part (see Section 2.5.1), leading to two distinct problems, with different
boundary conditions (see (2.31)). Since the Laplace equation (4.1) is linear, a similar
decomposition is possible, into an ambient part φamb (analogous to the incident part),
that describes the flow in the absence of the structure; a rigid part φrig (analogous to
the reflected part), that would be the perturbation induced by a rigid (mobile) structure;
and a deformable part φdef, defined as φdef = φtot − φrig − φamb. In the acoustic case, the
decomposition holds true for the pressure, because of the linear relation p = −ρf∂tφ between
the pressure and the velocity potential, that permits to define ptot = pinc + pref + prad.
However, for the oscillating bubble, the pressure is related to the velocity potential through
the generalised Bernoulli equation (1.29)

∂φ

∂t
+

1
2

∇φ · ∇φ+
1
ρf
p− g ξP = 0 , (4.4)

that contains non-linear terms, so the pressure does not inherit the velocity potential
decomposition. Also, contrary to the acoustic case, the contribution φrig cannot be
computed during a pre-calculation in which the structure is supposed motionless in [0, T ],
because Γ(t) is time-dependent, and so φrig(t) must be deduced from φamb(t) on Γ(t).
Therefore, the classical decomposition φtot ≡ φ = φamb +φper is preferred for incompressible
flows, where φper is the perturbation due to the structure, so the unknown in our case,
since φamb is given (for a remote UNDEX, the bubble dynamics is not affected by the
presence of the structure).

4.2 FEM/BEM coupling for the FSI problem

Under the assumptions specified above in Section 4.1, we formulate the coupled FSI problem
using Neumann physical boundary conditions:
Find (u, σ, φ, p) such that

(S)







ρsü(x, t) − div σ(u)(x, t) = f v(x, t) ∀t ∈ [0, T ],∀x ∈ Ωs(t),

σ(u)(x, t) · n = f s(x, t) = −p(x, t)n ∀t ∈ [0, T ],∀x ∈ Γ(t),

Constitutive equation: relation between σ and u,

(4.5a)

(F)







∆φper(x, t) = 0 ∀t ∈ [0, T ],∀x ∈ Ωf (t),

∂φper

∂n
(x, t) = −∂φamb

∂n
(x, t) + u̇(x, t) · n ∀t ∈ [0, T ],∀x ∈ Γ(t),

∂φ

∂t
(x, t) +

|∇φ(x, t)|2
2

+
1
ρf
p(x, t) − g ξP = C(t) ∀t ∈ [0, T ],∀x ∈ Ωf (t),

(4.5b)

where u is the structure displacement, n the outward normal to the structure, ρs the
structure mass density, σ the Cauchy stress tensor, f v gathers the external volume force,
and f s is a given Neumann datum (surface force exerted by the fluid), obtained through
the dynamic condition of continuity:

f s = −pn on Γ, (4.6)

where p is the fluid pressure. In the fluid, φ denotes the total velocity potential, g is
the gravity, ξP is the water depth at the considered point P , and the space-independent
function C is obtained when integrating the Bernoulli equation (see Appendix C.2.5).
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4.2.1 Boundary element method for the Laplace equation

We choose to use the BEM to solve the fluid part of the problem. In Section 2.2, we
presented the theory of boundary integral equations (BIEs) for 3D acoustics. The boundary
integral equation for the Laplace equation is obtained following similar steps, except they
are a bit simpler because the equation is time-independent. In the end, the integral equation
for the velocity potential φ, on the regular boundary Γ, analogous to (2.16), for a fixed
time t ∈ [0, T ], holds as (Banerjee, 1994; Bonnet, 1999)

1
2φ(y, t) − H0{φ(t)}(y) + G0

{ ∂φ(t)
∂n

}

(y) = 0 y ∈ Γ , (4.7)

in terms of its Dirichlet and Neumann traces on Γ, where G0{f} and H0{g} are the
single-layer and double-layer potentials with densities f, g, analogous to (2.15),

G0{f}(y) =
∫

Γ
G0(x − y)f(x) dΓx, H0{g}(y) =

∫

Γ

∂G0

∂n
(x − y)g(x) dΓx.

In the above definitions, G0 is the free space fundamental solution of the Laplace equation,
given by

G0(x − y) =
1

4πr
, r := ‖x − y‖.

The BEM presented in Section 2.4.1 is compatible with the Laplace equation, and (4.7)
leads to a system of generic form (2.28)

[H0]{φφφ} = [G0]{Q} , (4.8)

where the N -vectors {φφφ} and {Q} are the discretised traces of φ and −∂nφ on the discretised
boundary, and [G0], [H0] are N×N matrix discretisations of G0 and I/2−H0, respectively.
For discrete time instants {0,∆t, . . . T = M∆t}, the fluid part of the problem then reduces
to M BEM problems (4.8), the dependence in time manifesting itself through the evolving
value of the Neumann datum.

4.2.2 Step-by-step FEM/BEM coupling procedure

To solve the FSI problem (4.5), we choose2 a rather common procedure: a FEM/BEM
step-by-step coupling. As briefly explained in Section 3.1.2, the set of coupled equations
(4.5) is divided into two sets of equations: the structure part (4.5a) and the fluid part (4.5b).
The procedure consists in solving, at each time step tn, the fluid and structure equations
in an uncoupled way. The fluid (s0

F (tn)) and structure (s0
S(tn)) solutions obtained do not

a priori correspond to the solution of the coupled FSI problem (sF (tn), sS(tn)). To find
the correct coupled FSI solution, we resort to an iterative process termed sub-cycling.

Sub-cycling. The fluid quantities at a time instant tn depend on the structure ones at
tn, and vice versa. Therefore, independently solving structure and fluid equations requires
cycling at each time step (Felippa et al., 2001; Véron, 2016). This notion is described on
Figure 4.1. It begins with an initial guess (based on the values at the previous time instants)
for the velocity at tn, denoted v0

n. Solving the fluid equations (4.5b) provides p0
n, which,

through the dynamic condition of continuity (DC), is used to solve the structure equations

2Our choice is motivated by the coupling flexibility: it easily permits to couple a BEM solver dealing
with the fluid part to any industrial FEM solver for the structure part (we use Abaqus ® in this thesis, see
Section 2.1).
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(4.5a). This provides a new value of the velocity, denoted v1
n, that may differ from v0

n. The
procedure consists in cycling, i.e., alternately solve fluid and structure equations, at the
same time instant, until a stagnation convergence criterion is satisfied, e.g., until a relative
error between the accelerations akn and ak+1

n is below a pre-fixed tolerance εsc.

 

 

 

 

Figure 4.1: Sub-cycling scheme used for the iterative procedure to solve the FSI
problem.

The initial guess v0
n is of great importance, because a good guess can drastically reduce

the number of sub-cycles, denoted Nsc, and so the computation time of the procedure.
This sub-cycling at each time step is the key part of step-by-step procedures: the gain

obtained both in terms of algorithmic complexity and ease of implementation, compared
to monolithic procedures, may be spoiled because of a difficult, perhaps impossible, sub-
convergence at each time step. Also, given the large amount M Nsc of fluid and structure
problem to be solved, the algorithm is viable only if each solution is cheap. For the fluid
part, this, in general, requires an acceleration technique.

4.3 Accelerating the fluid BEM solving

When dealing with incompressible flows, the BE mesh representing the fluid-structure
interface Γ does not need to be as refined as in the shock wave case. Indeed, in acoustics,
the characteristic element size must be small relative to the typical wavelength of the
problem, whereas in the framework of incompressible flow, where information is transmitted
instantaneously, the mesh size is not subject to such constraints. Its only requirement is
to be small enough to well represent the structure geometry (and the structure dynamic
response in the FSI context). In our context, with a submarine facing a gas bubble,
the typical order of magnitude of the number of fluid DOFs is N ∼ 104 to 105, and
M ∼ 103 to 104. Solving 103 BEM problems with 105 DOFs each is not so easy however,
and is indeed very costly if the BEM operators have to be re-computed at each time step.
Hence, it is important to avoid re-computation of BEM operators at each time step.

4.3.1 Re-using BEM operators

The purpose of this section is to explain to what extent the BEM operators may be re-used
at each time step. Let Γ ≡ Γ(t) and Γ0 ≡ Γ(0) respectively denote the current and initial
configurations of the fluid-structure interface, and let Φ be the deformation taking Γ0 to
Γ (see Figure 4.2). Using a Lagrangian description and omitting the time variable t, the
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current position x on Γ of a material point is related to its initial position x̂ on Γ0 through

x = Φ(x̂) (x̂ ∈ Γ0, x ∈ Γ).

In practice, Φ is (approximately) known by sequentially updating the interface, using the
converged kinematic response of the structure at each time step.

)Γ(t
x = Φ(x)^x̂Γ0 Γw Γ0 Γw )Γ(t

Φ

R+I w

n(R(y)) = Bn(y)^ ^

ŷ R(Γ0)

n nw

Figure 4.2: Decomposition of the displacement into rigid and deformation (strain)
motions, notations.

To cater for a potentially significant rigid-body contribution to the interface deformation,
Φ is assumed to have the form

Φ = R◦ (I +w), i.e., x = R(x̂+w(x̂)) (x̂ ∈ Γ0,x ∈ Γ), (4.9)

where w is a displacement field while R describes a rigid-body motion. Any rigid-body
motion is given by

R(x) = R[c,B](x) = c + Bx

in terms of a translation vector c ∈ R
3 and a rotation matrix B ∈ R

3×3 satisfying
BTB = BBT = I and Det(B) = 1, and is thus determined by 6 scalar parameters.

The decomposition (4.9) can be defined with R chosen arbitrarily, without particular
relation to the motion Φ. A sensible choice for R, for a given motion Φ, may be defined
by the minimisation problem

min
c,B

∫

Γ0

‖Φ(x) − R[c,B](x)‖2 dS ,

which (since ‖Φ(x) − R(x)‖ = ‖w(x)‖) aims at making the non-rigid displacement w
smallest (in the L2(Γ0) norm sense).

The current velocity potential φ = φ(·, t) is governed by the BIE (4.7) written on the
current surface Γ. To ascertain the effect of the interface motion on the BIE, we reformulate
it on the fixed (initial) surface Γ0 by setting x = (R ◦ (I + w))(x̂) and introducing the
convected versions on Γ0 of the Neumann datum and unknown potential, respectively given
by ĥ := h◦Φ and φ̂ := φ◦Φ. This reformulation relies on the key observations that we
have

n(R(ŷ)) = Bn(ŷ), dS(R(ŷ)) = dS(ŷ)

and, by virtue of the isotropy and translational invariance of the kernel G0,

G0(R(ŷ)−R(x̂)) = G0(ŷ− x̂), n(R(ŷ)) · ∇RG0(R(ŷ)−R(x̂)) = n(ŷ) · ∇G0(ŷ− x̂)

for any rigid-body motion R. As a result, the BIE (4.7) is recast as

1
2
φ̂(x̂) −

∫

Γ0

nw(ŷ) · ∇G0
(
ŷ− x̂ + w(ŷ)−w(x̂)

)
φ̂(ŷ)J(ŷ) dS(ŷ)

=
∫

Γ0

G0
(
ŷ− x̂ + w(ŷ)−w(x̂)

)
ĥ(ŷ)J(ŷ) dS(ŷ), (4.10)
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wherein J := ‖(I+∇w)−Tn‖ Det(I+∇w) is the surface Jacobian of the mapping I+w taking
Γ0 to Γw (Henrot and Pierre, 2018, Def. 5.4.2) and nw := (I+∇w)−Tn / ‖(I+∇w)−Tn‖ is
the unit normal on Γw (Henrot and Pierre, 2018, Prop. 5.4.14). Equation (4.10) is readily
seen to be the BIE formulation of the potential flow problem in the domain Ωw exterior to
the deformed surface Γw defined by

∆φ̂w = 0 in Ωw, ∂nφ̂w = ĥw on Γw, |φ̂w(x)| = O(|x|−2) at infinity, (4.11)

where φ̂w := φ̂ ◦ (I + w)−1 = φ ◦ R and ĥw := ĥ ◦ (I + w)−1 = h ◦ R are the convected
versions on Γw of φ̂ and ĥ. In other words, solving the BIE (4.7) is equivalent to solving
the BIE (4.10) or the exterior boundary-value problem (4.11), with R and w determined
from Φ on the basis of (4.9).

In practice, to allow re-usability of integral operators while Γ evolves under the time-
stepping procedure, we solve problem (4.7) approximately by setting w = 0 in (4.10),
seeking φ̂0 which satisfies

1
2
φ̂0(x̂) −

∫

Γ0

n(ŷ) · ∇G0(ŷ− x̂) φ̂0(ŷ) dS(ŷ) =
∫

Γ0

G0(ŷ− x̂) ĥ(ŷ) dS(ŷ),

and setting φ0 := φ̂0 ◦Φ as the approximate solution of (4.7), i.e., φ0 ≈ φ. The potential
φ̂0 equivalently solves the exterior boundary-value problem (4.11) with w = 0.

The issue of estimating the difference φ̂w − φ̂0, i.e., the approximation error φ − φ0

incurred by re-using the integral operators defined on Γ0, is addressed by the theory
of shape differentiation of boundary-value problems (Henrot and Pierre, 2018). Under
sufficient regularity of Γ0 and h, solutions φ̂w of interior boundary value problems similar
to (4.11) are shown to be differentiable with respect to w in a neighbourhood of w = 0 (at
which the approximation φ̂0 is evaluated), the relevant norm for w being the W 1,∞ norm
defined (on extensions to R

3 of w) by

‖w‖1,∞ := sup
x,y∈R3,y6=x

(

|w(y)| +
|w(y)−w(x)|

|y−x|

)

.

This implies an approximation error that is linear in ‖w‖1,∞, an acceptable approximation
when the non-rigid part w of the interface displacement and its strain are small.

To conclude, under the assumptions that the non-rigid displacement and its strain are
small (but no assumption on the rigid motion), the BEM operators computed at the initial
time step can be re-used to obtain the solution at the following time steps. In our context,
according to UNDEX experts, the local deformation is expected to be small (Liu et al.,
2018). However, it is known that a submarine facing an UNDEX bubble shows bending
deformation (Zhang et al., 2011). This bending could compel us to update the BE mesh.
Then, we could for instance choose to update the latter whenever the deformation (or its
strain) is greater than a user-specified tolerance. Hopefully, the mesh updates will not
occur at each time step.

Remark 21 In future work, if the free water surface or/and the sea bed are considered,
the derivation performed in this section is no longer valid for a generic rigid motion R,
and so the BEM operators should a priori be re-computed at each time step. Some specific
rigid motions (typically if the submarine translates parallel to the water surface) may all
the same allow to re-use the BEM operators.
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4.3.2 Appropriate BEM acceleration techniques

The Fast Multipole Method (FMM), introduced in Section 2.4.2, is a very efficient technique
in the context of the Helmholtz equation (linear acoustics). The Z-BEM procedure we
designed in Chapter 2 to deal with the shock wave phenomenon requires about 50-100
BEM solutions in practice. In this context, each BEM problem, involving different BEM
operators because the latter are frequency-dependent, can be efficiently solved using the
Fast Multipole BEM (FM-BEM). For the gas bubble phenomenon, a quite larger number of
BEM problems must be solved, but the BEM operators are time-independent. Under the
assumptions specified above in Section 4.3.1, using the same BEM operators for all BEM
problems is a reasonable approximation. The fluid part of the FSI problem then consists
in solving a set of problems [H0]{φφφ(t)} = [G0]{Q(t)} with fixed BEM matrices [H0] and
[G0]. Such problems are termed multiple right-hand side (Simoncini and Gallopoulos,
1995), as only the right-hand side (and of course the solution) differs from one problem to
another. An efficient way to deal with multiple right-hand side problems is to compute and
store the BEM operators once and for all when solving the first BEM system. Then, these
operators may be re-used for each problem, to compute the matrix-vector product required
in the GMRES method (we use again GMRES (Saad and Schultz, 1986) for the oscillating
bubble phenomenon). The FM-BEM is not well suited for dealing with multiple right-hand
sides, because it does not store/assemble the matrices, implying that matrix-vector product
sequences must be computed anew for each BEM problem. Standard BEMs do compute
and store the matrices, so they could be used in the context of multiple right-hand side
problems, but at prohibitive computing and memory costs. An acceleration technique
alternative to the FMM, namely the H-matrix method, turns out to be much better suited
to multiple right-hand sides.

4.3.3 H-matrix based accelerated Boundary Element Method

As just explained, the use of an H-matrix BEM solver is motivated by the time-indepen-
dence of the BEM operators. This section, largely inspired from (Chaillat et al., 2017b),
briefly presents the concept of hierarchical matrices (H-matrices) and the adaptive cross
approximation (ACA). One of the main advantage of the H-matrices, compared to the
FMM, is that a compressed representation of the BEM matrices can actually be stored.
This compressed form can notably be used for preconditioning strategies (Amlani et al.,
2019; Kpadonou et al., 2020), and also re-used when dealing with multiple systems with
the same BEM operator (Bebendorf, 2008).

In the following, the numerical rank of a matrix A ∈ R
N×N is defined as

r(ε) := min
0≤r≤N

{‖A − Ar‖ ≤ ε‖A‖} ,

where Ar denotes the truncated singular value decomposition (SVD) of A where only the
singular vectors associated to the r largest singular values are kept, and ε > 0 is a given
tolerance.

H-matrix representation. Originally introduced by Hackbush (Hackbusch, 1999), H-
matrices aim at computing a data-sparse representation of some special dense matrices (e.g.,
those resulting from discretisation of non-local operators). The principle is to (i) partition
a fully-populated matrix into blocks and (ii) perform low-rank approximations on those a
priori known (using an admissibility criterion) to be well suited for such decompositions.
Typically, the off-diagonal blocks produced by the partition process are expected to undergo
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compression (see Figure 4.3). The low-rank representations of those blocks reduce both
memory requirements and CPU times of a matrix-vector product, making the H-matrix
method a powerful tool for fast iterative solvers, where the time-consuming step is precisely
the matrix-vector product. Also, H-matrix arithmetic allows to derive fast direct solvers.

Figure 4.3: Example of computed numerical ranks of each block of the Green’s tensor
of the Navier equation, to achieve an accuracy of 10−4, i.e., if singular
values smaller than 10−4 are neglected in the singular value decomposition.
The number in a green block is its numerical rank. From (Chaillat et al.,
2017b).

Clustering of the unknowns. A prior step to the partition of the matrix (denoted A

in the following) is a re-arrangement of its row and column indices, to reflect the physical
distance in the matrix (i.e., consecutive indices of A should correspond to close geometrical
entities). To do so, a simple approach consists in building a binary cluster tree TI of indices
corresponding, at each level, to a geometric partition of the object (Hackbusch, 2015), as
illustrated in Figure 4.4.

Figure 4.4: Illustration of the clustering of the degrees of freedom: (a) partition of the
DOFs of a submarine, and (b) corresponding binary tree. After (Chaillat
et al., 2017b).

Subdivision of the matrix. Following this clustering of the unknowns, a block cluster
representation TI×I of the matrix A is defined by associating each set of indices I(l)

k of the
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cluster tree TI to the other set of indices. Hence, each node of TI×I is composed of a pair
(σ, τ) of indices of TI , so of the form

(

I
(l)
k , I

(l)
k′

)

, and defines a block of A (see Figure 4.5).

Figure 4.5: Illustration of the construction of the block cluster tree: (a) clustering of
the unknowns on the geometry and (b) corresponding block clustering in
the matrix. After (Chaillat et al., 2017b).

Considering only the leaf level L, i.e., only the nodes (σ, τ) of the form
(

I
(L)
k , I

(L)
k′

)

,
provides a uniform partition U ⊂ TI×I that defines a block structure of A with a full
pattern of 4L−1 blocks (see Figure 4.6a). However, Figure 4.3 shows this partition is not
optimal. Indeed, some parts of A, and especially off-diagonal blocks, can accurately be
approximated by a low-rank matrix at a non-leaf level (i.e., for larger clusters). Such blocks
are said to be admissible. Then, a more appropriate hierarchical representation P ⊂ TI×I

may be obtained as follows: from the highest (0) level, and its unique node
(

I
(0)
1 , I

(0)
1

)

representing the full matrix, each block is recursively subdivided until it is either admissible
or a node of the leaf level (see Figure 4.6b). For complex 3D geometries, an admissibility
condition, based on the geometry and the interaction distance between the points, is used
to determine a priori the admissible blocks.

Figure 4.6: (a) Block cluster representation TI×I for the illustrative example (full
structure); (b) hierarchical partition P ⊂ TI×I of the same matrix based
on the admissibility condition (sparse structure). From (Chaillat et al.,
2017b).

A well-adapted method to the Laplace Green’s function. H-matrix representa-
tions do not result in efficient algorithms for all matrices. The crucial part is to know a
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priori (i) if savings will be obtained when trying to approximate admissible blocks with
a sum of rank-one matrices (tensor products of two vectors), and (ii) which blocks are
admissible, without explicit computation of the rank of all the blocks, which would be too
expensive. For asymptotically smooth kernels G(x,y), it is proved that, under some a
priori conditions on the distance between x and y, the kernel is a degenerate function (i.e.,
it is well approximated by a finite sum of functions with separated variables) (Chaillat
et al., 2017b). This property leads, after discretisation, to the efficient approximation of
blocks of the matrix by low-rank matrices. The Laplace Green’s function, that we use
in this chapter, is an example of asymptotically smooth kernel for which the H-matrix
method is very efficient.

Low-rank approximation algorithm. Various algorithms are available to compute
the low-rank approximation of the admissible blocks previously identified. The truncated
Singular Value Decomposition (SVD) (Golub and Van Loan, 1996) gives the best low-
rank approximation (Eckart-Young theorem) for unitary invariant norms (e.g., Frobenius
or spectral norms), in the sense that it produces an approximation with the smallest
possible numerical rank for a given prescribed accuracy ε. However, the SVD requires the
computation of all the entries of A, and its complexity, of the order of O(N3) for a N ×N
matrix, hinders its use for large-scale problems.

On the other hand, the Adaptive Cross Approximation (ACA) (Bebendorf et al., 2015;
Bebendorf and Rjasanow, 2003) provides a quasi-optimal low-rank approximation without
the need to assemble the complete block. Based on the fact that a matrix of rank r is
the sum of r matrices of rank 1, the ACA is an iterative algorithm that improves an
approximation Bk of the matrix A by adding rank-1 matrices:

Bk =
k∑

l=1

ulv
∗
l = UkV

∗
k , Uk,Vk ∈ C

N×k.

The purpose is to iteratively shift the information from the residual Rk = A−Bk to the next
approximation Bk+1. A stopping criterion is used to determine the appropriate numerical
rank, for instance until

‖A − Bk‖F ≤ εACA‖A‖F ,

where ‖ · ‖F denotes the Frobenius norm, and εACA > 0 is a given parameter. We denote
rACA the numerical rank obtained by the ACA for a required accuracy εACA. Various ACAs,
that differ by the choice of the best pivot at each iteration, are available. The fully-pivoted
ACA consists in choosing the pivot as the largest entry in the residual. Similarly to the
SVD, it requires the computation of all the entries of A, and is therefore not suitable
for the practical construction of H-matrices. On the other hand, the partially-pivoted
ACA proposes an alternative approach that do not require the assembly of the complete
matrix. The idea is to maximise alternately the residual for only one of the two indices,
the other being kept fixed, so that only one row and one column are evaluated at each
iteration. The details on the resulting algorithm may be found in (Chaillat et al., 2017b).
The complexity of the partially-pivoted ACA is reduced to O

(

r2
ACA(m+ n)

)

for a m× n

matrix A, whereas the complexity of the fully-pivoted one is O (rACAmn)).

The BEM code COFFEE developed at POEMS, whose FMM accelerated part was
introduced in Chapter 2, offers an H-matrix accelerated BEM solver (Chaillat et al., 2017b;
Kpadonou et al., 2020) that uses the partially-pivoted ACA, and iteratively solve the BEM
problem with a GMRES algorithm.
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4.4 Summary: numerical methodology

We now summarise the step-by-step FEM/BEM coupling procedure.

Initialisation. The initialisation of the method concerns the first sub-cycle (k = 0) of
the first time step (n = 0). The procedure starts with the fluid part, setting the structure
normal velocity on Γ according to the initial conditions, so u0

0 = 0 for initial rest. The
H-BEM operators are computed and stored, then the coupling procedure starts.

Coupling procedure steps. At each time step tn, at sub-cycling iteration k, the
following steps are carried out:

• Estimate the structure normal velocity ukn based on previous values
{

uk−1
n , uk−2

n , . . . , un−1, un−2, . . .
}

.

• Evaluate the ambient flow and its normal derivative on the updated surface
Γkn.

• Compute the Neumann datum for the fluid part, using the ambient flow and
the structure normal velocity.

• Check whether the strains are sufficiently low, according to a pre-fixed
tolerance εΓ, and either update the fluid-structure interface and recompute
the BEM operators, or re-use the already computed BEM operators.

• Solve the H-BEM problem to get φper for a given GMRES tolerance εGMRES

and H-matrix threshold εH.

• Evaluate ∇φtot: compute the surface gradient ∇sφ
tot and add the already known

value of ∂nφtot. For the tangential part of ∇φtot, the surface gradient is obtained
through a common FEM procedure: φtot is reconstructed on the surface (from nodal
values) using linear shape functions, then the tangential part ∇sφ

tot is obtained using
the gradient of the shape functions (Schotté, 2001).

• Compute ∂tφ
tot: the numerical derivative is computed using the backward differ-

entiation formula of order 4 (bdf4), except for the first time steps, where bdf1, bdf2
or bdf3 are used, whenever enough past values are available.

• Compute p using the Bernoulli equation (4.4).

• Compute the nodal forces f : the integration over the surface is performed using
linear shape functions to reconstruct p on the surface from the nodal values (Véron,
2016).

• Solve the structure equations using the FEM.

• Check the stagnation convergence criterion, for a pre-fixed tolerance εsc. If it
is converged, advance to the next time step. Else, continue sub-cycling, i.e.,
go back to the first step.

For the numerical examples presented in this chapter, we define the relative L2(Γ) error
of a scalar function f(x, t) at a given time t by

δL2(f)(t) =

√∫

Γ(fref(x, t) − fcomp(x, t))2dS
√∫

Γ fref(x, t)2dS
,

where fref is the reference value and fcomp is the numerically computed one. To a vector
v(x, t), we associate the matrix V of dimension (M + 1) × (L), with L = 3N for a
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three-dimensional vector, whose line n contains

[v1(x1, tn), v2(x1, tn), v3(x1, tn), v1(x2, tn), . . .].

Then, we define the relative error δ(V) at discrete time tn as

δ(V)(tn) =

√
∑L
p=1(Vref[n, p] − Vcomp[n, p])2

√
∑L
p=1 Vref[n, p]2

. (4.12)

When considering a uniform mesh and a scalar function f , δL2(f) and δ(F) (with L = N)
are numerically close. For the sub-cycling, we set the stagnation convergence criterion
on both the acceleration and the velocity, using (4.12) as relative error to compare two
successive solutions.

Before dealing with a concrete industrial case in Section 4.6, we validate the FSI
BEM/FEM procedure on the problem of a rigid sphere in a uniform flow, a configuration
for which analytical solutions are available.

4.5 Validation example: rigid sphere in a uniform flow

We consider the problem of a rigid sphere immersed in an infinite fluid domain, with
ambient flow velocity ∇φamb = U(t)ex, for a given time-dependent velocity amplitude U(t),
t ∈ [0, T ]. We validate first our H-matrix based solver for the case of a motionless sphere
(Section 4.5.1), and then the step-by-step coupling procedure on the case of a mobile sphere
(Section 4.5.2).

4.5.1 Motionless sphere

We consider the potential flow around a motionless sphere Γ of centre O and radius a. Let
R be a frame with origin O and x axis in the ambient flow direction (the other axes are
arbitrary, see Figure 4.7). The ambient velocity potential is given at a point P (x, y, z) by

φamb(P, t) = U(t)x . (4.13)

Motionless sphere

Figure 4.7: Rigid motionless sphere submerged in an infinite fluid domain, with
ambient flow velocity ∇φamb = U(t)ex.

The perturbation of the flow induced by the presence of the sphere, φper = φtot − φamb,
solves the Laplace equation ∆φper = 0 with the boundary condition

∂φtot

∂n
(P, t) = 0 =⇒ ∂φper

∂n
(P, t) = −∂φamb

∂n
(P, t) = −U(t) cos θ , ∀P ∈ Γ,∀t ∈ [0, T ] ,
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where θ denotes the angle between OP and the x axis, cos θ = n · ex (see Figure 4.7).
Using the expression of the Laplacian in spherical coordinates (r, θ, ϕ), and looking for

the solution in the form φper(r, θ) = φper
r (r)φper

θ (θ), it comes:
∀(r, θ) ∈ [a,+∞[×[0, 2π[ ,∀t ∈ [0, T ],

φper(r, θ, t) =
1
2
U(t)

a2

r2
a cos θ , (4.14)

φtot(r, θ, t) =
1
2
U(t)

a2

r2
a cos θ + U(t)r cos θ ,

∇φtot(r, θ, t) =

(

1 − a3

r3

)

U(t) cos θ er −
(

1 +
a3

2r3

)

U(t) sin θ eθ .

Remark 22 The problem considered may appear “unphysical” in that the energy in the
fluid is infinite. A problem quite similar, with a finite energy, is the study of the flow
created by a sphere translating along the x axis with velocity −U(t). In that case, φtot

solves the Laplace equation with the boundary condition ∂nφ
tot = −U(t) cos θ on Γ, and is

therefore given by φtot = φper, i.e., (4.14) (Véron, 2016).

If we omit the effects of gravity, the buoyant force and the hydrostatic pressure, the
pressure created by the fluid on the sphere is provided by the Bernoulli equation

∂φ

∂t
+

1
2

|∇φ|2 +
1
ρf
p = C(t). (4.15)

To compute the net force

f(t) = f(t)ex = −
∫

Γ
p(Q, t)n(Q)dSQ

applied on the sphere, the value of the constant C(t) is irrelevant, because
∫

Γ
C(t)n dS = 0.

Then, redefining p ≡ p− C(t)ρf , it holds:
∀P (r = a, θ, ϕ) ∈ Γ,∀t ∈ [0, T ],

p(θ, t) = −ρf
(

3
2
U̇(t)a cos θ +

9
8
U(t)2 sin(θ)2

)

,

f(t) = −
∫ π

0
p(θ, t) cos θ 2πa sin θdθ = 2πρf a3U̇(t).

Results. The following parameters are used for the numerical tests:

• U(t) = U0 cos(2πft), with U0 = 15.0 m/s and f = 4 Hz.

• ρf = 1000 kg/m3, a = 3 m.

• T = 0.5 s, number of time steps M = 200 (100 time steps per period).

• For the BEM: εGMRES = 10−4; we use P1 Lagrange boundary elements; the H-matrix
threshold is set to εH = 10−4. Blocks containing less than nleaf = 50 points are
considered as leaves, and therefore no longer subdivided.

• N = 2562 DOFs (no need to use a very refined mesh, as the only requirement is to
well represent the geometry).

Figure 4.8 illustrates the fluid quantities and the net force for three different values of
θ. The good agreement between analytical and computed solutions validate the procedure.
Figure 4.9 allows a finer analysis of the errors, as it shows the relative error for each
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quantity. The relative errors are quite low (less than 1%), except for ∂tφ at the first time
steps, because (i) the time derivative is not yet computed with the bdf4, since not enough
past values are available, and (ii) the analytical value is close to zero, so the relative error
is artificially high.

This simple example of a motionless sphere allows to validate the fluid part of our
procedure. It shows the numerical approximations, and in particular the H-matrix
approximation with εGMRES = 10−4 and εH = 10−4, permit errors below 1%, the latter
being the target accuracy for our industrial purpose. The next step is to validate the
procedure in the case of a mobile structure, allowing to test the FSI component of our
procedure.
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Figure 4.8: Motionless sphere: comparison between analytical and computed solu-
tions for three different values of θ.
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Figure 4.9: Motionless sphere: relative errors as functions of time. The relative error
is not computed whenever the analytical quantity is 107 smaller than its
maximum, to avoid division by zero.

4.5.2 Mobile rigid sphere

Our procedure must deal with strong fluid-structure interaction, i.e., when considering
both the action of the fluid on the structure, and the retro-action of the latter on the
fluid. Therefore, we now study the case where the rigid sphere is allowed to move (see
Figure 4.10).

Figure 4.10: Rigid mobile sphere submerged in an infinite fluid domain, with ambient
flow velocity ∇φamb = U(t)ex.

Due to the uniaxial flow, it then moves along the x axis. In that case, we consider a
moving frame R̃(t) with the origin following the sphere centre O(t), and R̃(0) = R. The
ambient velocity potential at a point P (x, y, z) remains provided by (4.13). In the frame
R̃(t), it is expressed, at the same point P (x̃, y, z), by

φamb(x = x̃+ d(t), t) = U(t)(x̃+ d(t)) ≡ ψamb(x̃, t),

where d(t) = d(t)ex is the sphere displacement, d(0) = 0. The new variables ψtot, ψper and
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ψamb are related to φtot, φper and φamb through

ψ(P, t) = φ(P, t) ,
∂ψ

∂t
(P, t) =

∂φ

∂t
(P, t) + v(t) · ∇Rφ(P, t) ,

∇R̃(t)ψ(P, t) = ∇Rφ(P, t) , ∆R̃(t)ψ(P, t) = ∆Rφ(P, t) ,

(4.16)

where v(t) = ∂td(t) is the sphere axial velocity. Hence, ψper is solution to the Laplace
equation with the boundary condition

∂ψtot

∂n
(P, t) = v(t) · n =⇒ ∂ψper

∂n
(P, t) = (−U(t) + v(t)) cos θ̃ , ∀P ∈ Γ,∀t ∈ [0, T ] ,

where θ̃ is the analogous of θ in the moving frame R̃(t) (see Figure 4.10). Following the
same steps as in Section 4.5.1 (with any equation for ψ being set in the moving frame,
where Γ is fixed), it comes

ψper(r̃, θ̃, t) =
1
2

(U(t) − v(t))
a2

r̃2 a cos θ̃ ,

ψtot(r̃, θ̃, t) =
1
2

(U(t) − v(t))
a2

r̃2 a cos θ̃ + U(t)
(

r̃ cos θ̃ + d(t)
)

,

∇ψtot(r̃, θ̃, t) =

(

(v(t) − U(t))
a3

r̃3 cos θ̃ + U(t) cos θ̃

)

er (4.17)

+

(

1
2

(v(t) − U(t))
a3

r̃3 sin θ̃ − U(t) sin θ̃

)

eθ .

Using (4.16), the Bernoulli equation (4.15) is rewritten for ψ:

∂ψ

∂t
− v · ∇ψ +

1
2

|∇ψ|2 +
1
ρf
p = C(t), (4.18)

where again C(t) is without detriment set to zero. On the surface Γ, the pressure is found
to be expressed by

− 1
ρf
p(θ̃, t) = U̇(t)

(
3
2
a cos θ̃ + d(t)

)

+
9
8
U(t)2 sin(θ̃)2

+ v(t)2
(

5
8

− 9
8

cos(θ̃)2
)

+ U(t)v(t)
(

−9
4

sin(θ̃)2 + 1
)

− 1
2
v̇(t)a cos θ̃ , (4.19)

so that the corresponding net force is given by

f(t) = 2πρf a3U̇(t) − 2
3
πρf a

3v̇(t) . (4.20)

It is, as expected, composed of two terms: the force in the absence of motion, and the
added mass term. The structure motion is governed by the second law of Newton:

mv̇(t) = f(t) ⇐⇒ v̇(t) = mrU̇(t) , (4.21)

where the mass ratio mr = (2πρf a3)/(m+ 2πρf a3/3) is equal to 1 when the sphere mass
corresponds to the mass of the same volume of water. (4.21) provides the solution of the
structure quantities

v(t) = mr(U(t) − U(0)) + v(0) , (4.22)

d(t) = mr(P(U)(t) − U(0)t) + v(0)t , (4.23)

where P(U) is the primitive of U such that P(U)(0) = 0. By inserting (4.22) and (4.23)
into (4.17), (4.19) and (4.20), all the unknowns are expressed in terms of U , mr and v(0):
the FSI problem is solved.
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Time integration for the structure part. At a discrete time tn, the acceleration
a(tn) is computed from the nodal forces f(tn). Then, assuming a linear variation in time
of the acceleration in [tn−1, tn], the velocity and the displacement are obtained as

v(tn) =(a(tn) + a(tn−1))
∆t
2

+ v(tn−1) ,

d(tn) =(a(tn) + 2a(tn−1))
∆t2

6
+ v(tn−1)∆t+ d(tn−1) ,

where a(t−1) = v(t−1) = d(t−1) = 0.

Results. The numerical results are obtained with the same numerical parameters as for
the motionless sphere (Section 4.5.1) except for the ambient velocity, which is here set to
U(t) = A t4(T − t)4, with T = 0.5 s and A = 15(0.25)8 SI (set such that Umax = 15 m/s).
Also, v(0) = 0, m = 8/3πa3ρf , mr = 0.6.

Figures 4.11 and 4.12 illustrate respectively the fluid and structure solutions for three
different values of θ. The good correlation between analytical and computed solutions
validate the procedure when dealing with a mobile rigid structure. The relative errors,
displayed in Figure 4.13, are artificially high for the first and last time steps because the
analytical values are close to zero.

The relative error for the acceleration is dictated by εsc = 10−3. When M = 200,
though the stagnation convergence criterion takes into account both the acceleration and
the velocity, the latter does not exactly reach the desired precision εsc, especially close to
time instants for which the velocity is zero. This is due to the numerical integration of the
acceleration, needed to get the velocity, that introduces an error decreasing with ∆t. Then,
since v affects the value of φ, and so of all the fluid quantities, it deteriorates all the errors.

Figure 4.13 also shows the errors when M = 1000 time steps (all the other numerical
parameters remain unchanged). The error introduced by the numerical integration is
now reduced, and the target error level εsc can be reached, both for fluid and structure
quantities. Note that the choice of εsc must be consistent with the other tolerances set in
the procedure (notably εGMRES = 10−4 and εH = 10−4), because it would be useless to
drastically decrease one tolerance but not the others.

Figure 4.14 shows the number of sub-cycles Nsc needed at each time step to reach a
fixed precision εsc for the acceleration and the velocity. For a fixed εsc, Nsc mainly depends
on M and the quality of the initial guess used for the velocity. Indeed, the purpose is to
iteratively guess the value of vn+1, or more precisely vn+1 · n, so the choice of v0

n+1 is of
great importance. A quite simple guess is to set v0

n+1 = vn, but this leads to a too large
number of sub-cycles when M = 200. Figure 4.14 compares the results between a linear
guess, corresponding to the first-order Taylor expansion

v0
n+1 = vn + ∆tan ,

and a quadratic guess

v0
n+1 = vn + ∆tan +

∆t2

2
ȧn ,

where the numerical time derivative of the acceleration is performed with the bdf4. When
M = 200 and εsc = 10−2, the use of the quadratic guess drastically reduces Nsc, as the
latter is almost always equal to 2, which is its minimal value. For a quadratic guess when
M = 200 and εsc = 10−3, the mean value of Nsc slightly increases, compared to εsc = 10−2,
and it is a bit higher when the acceleration is close to zero. This behaviour is still observed
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Figure 4.11: Mobile sphere: comparison between analytical and computed fluid
solutions for three different values of θ. Obtained with quadratic guess
for the velocity, εsc = 10−3, M = 200.

as εsc decreases, as shown by the case εsc = 10−4. When M = 1000, the use of a quadratic
guess leads to Nsc = 2 whenever the acceleration is not close to zero, even for εsc = 10−4.
Finally, the use of the linear guess with εsc = 10−3 implies Nsc > 2 even though M = 1000,
which confirms the need for a quadratic guess.
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Figure 4.12: Mobile sphere: comparison between analytical and computed structure
solutions for three different values of θ. Obtained with quadratic guess
for the velocity, εsc = 10−3, M = 200.

Conclusion. The case of the rigid mobile sphere in an ambient flow of the form
∇φamb = U(t)ex allows to validate the FSI procedure developed. In particular, it shows
the importance of using a good guess for the velocity in the sub-cycling, and stresses that
numerical errors on the fluid quantities implies numerical errors on the structure quantities,
and vice versa.
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Figure 4.13: Mobile sphere: relative errors as functions of time. The relative error is
not computed whenever the analytical quantity is 107 smaller than its
maximum, to avoid division by zero. Obtained with quadratic guess for
the velocity, εsc = 10−3.
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Figure 4.14: Mobile sphere: number of sub-cycles per time increment.
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4.6 Fluid-structure interaction between a stiffened hull and
a gas bubble

4.6.1 Problem definition, stiffening process

This example considers the effects of the gas bubble of an UNDEX of W = 1000 kg of
TNT located at d0 = 50 m from a stiffened hull. The FSI problem is treated by means of
the procedure presented in Section 4.4: the fluid pressure is obtained from the ambient
velocity potential (1.27) using the Bernoulli equation (4.18), and provides the Neumann
datum for the structure part, through (4.6). The notations and physical parameters are
provided in Figure 4.15.

Figure 4.15: FSI between the stiffened hull and the gas bubble, notations and physical
parameters.

We consider an explosion of 1000 kg of TNT at a water depth ξexp = 100 m, that
generates a gas bubble of maximum radius and pseudo-period provided by (1.25) with
K3 = 2.11 SI and K4 = 3.50 SI, so

T ≃ 0.42 s, Rmax ≃ 7.3 m. (4.24)

Structure numerical model: stiffened cylindrical hull. The part of interest of the
submarine when studying the effects of UNDEX is the stiffened hull. Stiffening is a process
that aims at improving the hull resistance while minimising the weight. For submarines, it
consists in fixing T-shaped beams across (or along) the cylindrical shell, as illustrated in
Figure 4.16. It then increases the robustness of the hull, that has to resist to the hydrostatic
pressure and underwater explosions, while being lighter than a thicker hull having the same
resistance.
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Figure 4.16: Portion of the stiffened cylindrical hull, notations.
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Figure 4.17: Stiffener dimensions.

The geometry considered is a cylinder closed by two hemispheres, whose characteristics
are provided in Figure 4.15. The stiffener dimensions are given in Figure 4.17. The hull is
stiffened with 85 regularly spaced stiffeners (this number is related to the distance between
two stiffeners and the cylindrical part length), positioned on the cylindrical part (the
semi-spherical closing parts are not stiffened). The whole model is made of Abaqus ® shell
elements (S4R). The mesh sizes are such that the flange is meshed with 2 elements, the
web with 3 elements, and 6 elements lie between two stiffeners for the cylindrical part (see
Figure 4.16). It leads to around 3 105 nodes for the structure part (5 DOFs per nodes), of
which 105 are on the FSI interface Γ.

4.6.2 The gas bubble of an underwater explosion of 1000 kg

Before solving the coupled FSI problem, we first comment the bubble created by the
explosion. The Hicks model we use provides the bubble radius and bubble depth variation,
illustrated in Figure 4.18. The model leads to a slightly smaller value of Rmax than
expected (see (4.24)). Also, the model is known to introduce low energy losses, compared
to experimental results, which manifests itself in Figure 4.18 with a smaller than expected
decline of the maximum radius of each bubble expansion (Leblond, 2007, Section 1.4.1.3).

To study the bubble effects (notably the induced pressure), we consider the FSI problem
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Figure 4.18: Bubble radius and depth variation obtained with the Hicks model, for
an UNDEX of W = 1000 kg of TNT at water depth ξexp = 100 m.

presented Section 4.6.1 but with a rigid motionless structure. The bubble centre is initially
located at a distance d0 = 50 m from the structure centre (so the standoff distance is
ds = 46.7 m), see Figure 4.15. The considered explosion is powerful, as the shock factor
(1.2) is quite large: K ≃ 0.68.

We compute the velocity potential and pressure on the obstacle surface Γ, like in
Section 4.5.1. The ambient velocity potential is given by (1.27):

φamb(r, θ, t) = −R2(t)Ṙ(t)
r

− R3(t)Ż(t)
2r2

cos θ , (4.25)

where θ is defined as in Figure 1.4. The obstacle is meshed with N = 1890 fluid DOFs,
and TB = 1 s, M = 1000. We do not consider the effects of the weight, the buoyant force
and the hydrostatic pressure.

The results at the standoff point are illustrated in Figure 4.19. The perturbation of
the velocity potential due to the presence of the obstacle, φper, is quite small compared
to the ambient potential φamb. This is explained by the moderate spatial variation of
φamb along Γ: the remoter the explosion, the smallest the difference between two distances
rP = ‖OP‖ and rQ = ‖OQ‖, P and Q being two different points on Γ, and O the bubble
centre. In the limit case where φamb is constant along Γ, then φper = 0, which, in our
case, is reflected by the boundary integral equation (4.7), because φamb = C(t) implies
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Figure 4.19: Velocity potentials and total pressure at the standoff point of the rigid
structure.

∂φper/∂n = −∂φamb/∂n = 0, and then (4.7) implies φper = 0.
The total pressure presents an initial (at t = 0) jump, due to the bubble radius

discontinuity. We do not study the initial phase, because it is dealt with in the analysis
of the shock wave phase, and rather focus on the time interval [TW , TB], where [0, TW ] is
the time interval of the shock wave phenomenon. Therefore, we re-define the simulation
duration T = TB − TW and set t = 0 as the time instant the bubble procedure starts, so
after a duration TW from the initial burst instant. Of course, the bubble dynamics has to
be computed on the whole time interval [0, TB], though it is used only in [TW , TB].

We do not perform the junction between the two phenomena in this example. The
structure initial state is then not provided by the output state of the shock wave phase.
Instead, it is considered at initial rest. The junction between the shock wave and the gas
bubble phenomena is discussed later in Chapter 5.

We set TW = 50 ms and use a smoothing procedure to enforce a zero pressure at
t = 0, and then smoothly go back to the bubble pressure in a small time duration of
Tsmooth = 10 ms, using the smooth windowing function (Anderson et al., 2020)

η(u) = exp

(

2e−1/u

u− 1

)

, u ∈ [0, 1], (4.26)

with u = t/Tsmooth. This smoothing procedure is necessary in the context of fluid-structure
interaction, otherwise the structure is submitted to an artificial pressure jump at the first
time step, that disrupts the FSI coupling.

Figure 4.20 shows the pressure obtained on the redefined time interval [0, T ], as well as
the contribution −ρf∂φ/∂t to this pressure in the Bernoulli equation (4.15), that reflects
the inertial effects. For a rigid structure, the inertial effects are predominant, and this
remains true even if the structure is deformable (the inertial contribution then constitutes
more than 99 % of the pressure). This is a well-known fact in the naval industry (Hunter and
Geers, 2004; Leblond, 2007). In this thesis, we nonetheless wanted to compute the pressure
through the Bernoulli equation, rather than just rely on the approximation p ≃ −ρf∂φ/∂t,
to check and confirm that this approximation is valid. For engineering analyses, the user is
offered the option of using the approximation, which slightly speeds up the computation as
∇φ no longer needs to be computed on Γ.
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Figure 4.20: Total pressure and inertial contribution to the pressure on the new time
interval [TW , TB]. Smoothing process applied with Tsmooth = 10 ms.

Remark 23 The hypothesis of an infinite remote water surface is valid for the considered
time interval, because the maximum bubble depth variation, of approximately 15 m, remains
small compared to ξexp = 100 m. The standoff distance ds = 46.7 m is approximately 6
times the maximum bubble radius (4.24), so reducing the distance between the explosion and
the structure could violate the hypotheses of remote UNDEX, as the bubble dynamics should
then take into account the presence of the ship. This is why we consider an unrealistic
mass of explosive3, to increase the severity of the explosion (measured by the shock factor)
without reducing the standoff distance.

4.6.3 Numerical solution of the FSI problem

Parameters. For the fluid BEM part, the FSI interface is less refined than for the
structure (see Section 4.6.1): Nf ≃ 104 fluid DOFs. The fields are interpolated from the
BE mesh to the FE mesh (and vice versa) using the software feflo.a (Loseille, 2017). The
results of this section are obtained with the following numerical parameters:

• TW = 50 ms, Tsmooth = 10 ms, T = 0.93 s, number of time steps M = 930.

• For the BEM: εGMRES = 10−4; we use P1 Lagrange boundary elements; the H-matrix
threshold is set to εH = 10−4. Blocks containing less than nleaf = 200 points are
considered as leaves, and therefore no longer subdivided.

• For the FEM: 5 integration points along the thickness for each shell (hull, flange,
web). We set nlgeom = no (that notably assumes small strains) and use the default
direct solver of Abaqus ®. Default time-stepping scheme used by Abaqus ® implicit:
Hilber-Hugues-Taylor (HHT) with α = 0.05, β = 0.275625, γ = 0.55 (Géradin and
Rixen, 1997; Hughes, 1987; Dassault Systèmes SIMULIA, 2017).

• The sub-cycles at each time step are performed with a constant guess for the velocity,
and εsc = 10−2 (see Section 4.5.2).

Global deformation: bending. Figure 4.21 shows 9 snapshots of the structure state,
one every 100 ms. The structure deformations are magnified by a factor of 70. As expected,
the most noticeable deformation mode is bending. This bending may be explained by

3The explosive charge of a torpedo is typically around 200 kg.
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at least two (cumulative) factors. Firstly, it may be related to the dependence of the
bubble ambient flow (4.25) on the distance to the bubble centre. The cylinder extremities
being farther to the bubble centre than the cylinder centre, the pressure magnitude is
larger at the cylinder centre. This effect is more and more pronounced as the standoff
distance reduces. Secondly, the ambient flow may stimulate the natural structure mode
corresponding to bending.

The structure is driven by a back-and-forth motion, following the ebb and flow generated
by the bubble motion, alternating between positive and negative pressures (see Figure 4.20).
The stiffeners play a small role in the bending process, and more generally in the structure
response. Indeed, contrary to the shock wave case, the global deformation predominates the
local ones. For that reason, some submarine hulls are stiffened with longitudinal stiffeners
(parallel to the cylinder axis), that improve the hull resistance to bending.

Remark 24 In the Abaqus ® model used, we allowed for the possibility of plasticity, setting
the elasticity limit to σlim = 355 MPa. However, in the above the results, where the initial
state does not take into account the effects of the shock wave, we observed (a posteriori)
that the deformations remained elastic, despite the high explosion charge.

Convergence issues. For this example, the FSI iterative coupling suffered from conver-
gence issues during the sub-cycling process (at each time step). To enhance the convergence,
we introduce a relaxation coefficient α, possibly depending on the iteration k, such that
the input of the fluid procedure at iteration k + 1 is provided by

∂nφ
k+1
n = αk+1vk+1

n · n + (1 − αk+1)vkn · n ,

where the notations are defined in Section 4.5.2, see Figure 4.1. To guarantee convergence,
the relaxation parameter must be quite low. In this example, we set α = 0.1, which allows
a slow convergence, with typically Nsc ∼ 20 sub-cycles at each time step, except near the
bubble pulses, where Nsc ∼ 30. The high value of Nsc hinders a finer discretisation of
both space and time (to preserve acceptable computational times). This is the reason why
we fixed M ∼ 103 and used a rather coarse mesh for Γ. The discretisations yield smooth
displacements, but disturbed velocities after the first bubble pulse (see Figure 4.22). This
notably hinders the use of a linear or quadratic guess for the velocities, like performed
in Section 4.5.2, because the guess is too far from the sought solution. We are currently
looking for methods to reduce Nsc, so that M and/or N may be increased while preserving
a reasonable computation time (less than a week).

Comparison to rigid case. The displacement and velocity obtained for a rigid (mobile)
structure with the same procedure as in Section 4.5.2 (i.e., without using Abaqus ® for
the structure part) are also shown in Figure 4.22. It confirms, as illustrated in Figure 4.21
(see the colour scales), that the rigid displacement is high compared to the strains. This is
consistent with our modelling hypotheses (large rigid displacements, small strains), and
justifies that we re-used the same BEM operators at each time step (i.e., we never updated
the BEM operators for this example).

Computational times. Each fluid BEM solution is quite fast (around 5 seconds),
because (i) the number of BEM DOFs Nf ≃ 104 is rather low, (ii) the H-matrix operators
are computed only at the first time step, (iii) only about 7 GMRES iterations are needed,
as we use the solution of the previous time step as initial guess, (iv) the H-matrix-vector
product is parallelised on 48 CPUs. Then, all other fluid treatments (computation of p
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t = 100 ms
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Figure 4.21: Snapshots of the structure state during the FSI, for t ∈ [100 ms, 900 ms].
The deformations are magnified by a factor of 70. The colours illustrate
the magnitude of the displacement vector (m).

using the Bernoulli equation, computation of the nodal forces from the nodal pressures,
field interpolations with the software feflo.a,. . . ) last around 10 seconds. Unfortunately,
each structure problem-solving lasts around 2 minutes, and so the NscM ∼ 2 104 structure
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Figure 4.22: Displacement and velocity at the standoff point, component along OC,
where O is the explosion locus and C is the initial structure centre. The
results are not yet converged for the deformable case.

problem-solving account for the most of the overall computational cost of the FSI algorithm
(the whole computation took around 30 days). The structure solving process could in
principle be accelerated using CPU parallelisation. Unfortunately, one Abaqus ® licence
(token) is required for each new used CPU, which hinders massive parallelisation on, e.g.,
48 CPUs (we believe massive parallelisation would reduce the whole computation time to
a few days).

4.7 Conclusion and outlook

This chapter presented the FSI procedure we designed to deal with the bubble phenomenon.
After explaining the differences with the shock wave case, we introduced the H-matrix as
a tool to efficiently deal with the multiple right-hand side problems governing the fluid
behaviour in the context of a step-by-step FEM/BEM coupling, under the assumption of
small strains. We presented and validated the FSI procedure on the simple problem of a
rigid sphere in a uniform time-dependent flow. Then, we solved a concrete industrial case:
the FSI between an UNDEX and a stiffened submarine hull.

We decided to first assess our procedure without taking into account the shock wave
phenomenon. Of course, the next step, discussed in Chapter 5, is to treat the problem with
the correct initial state. Nevertheless, we observed behaviours that conform to common
expectations: (i) the global deformations are predominant compared to the local ones, (ii)
bending is the most noticeable effect, and (iii) stiffeners do not play a substantial role.
These observations suggest the structure response could be well approximated by a beam
model, and we are currently validating the obtained results against those of an in-house
procedure based on a beam model. These results will be presented in the future.

To be more realistic, the structure model (presented in Section 4.6.1) should be enhanced
with some submarine key parts that significantly affect the structure response. Typically,
adapting the submarine mass to the mass of the same volume of water would substantially
modify the rigid displacement during the bubble coupling phase. Considering a more
realistic model is then among our prospects for future work.

We are currently improving the computational procedure, so that it uses variable time
steps, to improve the time discretisation only where it is necessary: around each bubble
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pulses. Moreover, we keep studying methods for reducing the number of sub-cycles at each
time step.

Comments on the fluid model hypotheses. To be relevant, the hypothesis of
incompressible flow must be set only to model phenomena for which the fluid sound
velocity may be considered infinite. For the bubble phenomenon, the bubble period Tb is
typically of the order of 0.5 s, and the distances considered in our FSI context (length of
the submarine, distance between the bubble and the submarine) are L ∼ 100 m. A sound
wave in water (c = 1500 m/s) travels 100 m in about ts ∼ 0.07 s. Therefore, assuming
ts ≪ Tb may be to some extent an oversimplification, which motivated Geers and Hunter
(2002) to derive an integrated wave-effect model for the gas bubble. The authors use an
approximation of the 3D wave equation called Doubly Asymptotic Approximation (DAA)
(Geers and Toothaker, 2000; Lee et al., 2009; Geers and Felippa, 1983; Geers, 1978), that
aims at providing a good order of magnitude of the solution, that is expected to be precise
right after the explosion hits the hull (small times, large frequencies) and during the slower
bubble process (long times, small frequencies), for cylindrical and spherical geometries.
Two years later, in (Hunter and Geers, 2004), they proposed a modified relation (compared
to (4.25)) to compute the ambient velocity potential in the fluid. It is sought in the form

φB(r, t) = φS {r, t|Q} + φD {r, t|µ} ,

where φS {r, t|Q} is the potential of a pulsating source of strength Q, and φD {r, t|µ} is
the potential of a translating dipole with strength µ. Hunter and Geers (2004) derived an
approximation of φS and φD provided in (Leppington and Levine, 1987). Using the same
notations as in Section 1.3.6 of (Leblond, 2007), the velocity potentials are then related to
the bubble radius R(t) and bubble depth variation Z(t) through

φS {r, t|Q} = − q(t′)
r′(r, t′)

[

1 +
Ż(t′)
c

γ′(r, t′)

]

+ O(c−2), (4.27)

φD {r, t|µ} = − µ(t′)
r′2(r, t′)

{[

1 + 3
Ż(t′)
c

γ′(r, t′)

]

γ′(r, t′) − Ż(t′)
c

}

− µ̇(t′)γ′(r, t′)
cr′(r, t′)

+ O(c−2),

(4.28)

where c denotes the sound velocity and

r = z ez + x ex + y ey , r = ‖r‖ ,
z′(r, t) = z − Z(t) ,

r′ = z′(r, t) ez + x ex + y ey , r′ = ‖r′‖ ,

γ′(r, t) = cos θ′(t) =
z′(t)
r′(t)

,

t′ = t− r′(r, t)/c ,

q(t′) = R2(t′)Ṙ(t′) ,

µ(t′) =
1
2
R3(t′)Ż(t′) , µ̇(t′) =

1
2

[

R3(t′)Z̈(t′) + 3R2(t′)Ṙ(t′)Ż(t′)
]

.

In the limit c → ∞, the equation of incompressible flow (4.25) is retrieved. The
first-order correction, proportional to 1/c, permits to introduce causal effects, which allow
a better modelling for the bubble pulses (Hunter and Geers, 2004; Leblond, 2007).
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The ambient velocity potential φamb may be inferred from the bubble dynamics using
either (4.27) and (4.28) or their simpler form (4.25) when c → ∞. The relation (4.25)
is consistent with our modelling choices, as we assume that φper is solution to the time-
independent Laplace equation. Taking into account the O(1/c) corrections proposed in
(Hunter and Geers, 2004) would be interesting, since it introduces causal effects (for the
bubble pulses). However, to be consistent, this would imply to change our modelling, and
set a time-dependent equation for φper. For now, we wish to preserve the time-independence
of the BEM operators, because of the computational advantages it offers. Then we could,
like in (Geers and Hunter, 2002), use the DAA as the time-dependent equation satisfied
by φper, instead of the Laplace equation, and compute φamb using the O(1/c) corrections.
Alternatively, we believe it could be interesting to compute φamb using the first-order
corrections, but still preserve the Laplace equation for φper. Though it raises theoretical
issues, the obtained results could be compared to experimental data, to see whether
considering the O(1/c) corrections only in the ambient flow φamb improves the results.
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Chapter 5

Application to a stiffened hull
subjected to an underwater
explosion

T
his final chapter considers the main industrial application of interest in this PhD work:
the fluid-structure interaction (FSI) between an underwater explosion (UNDEX) and

a stiffened hull. The purpose is to demonstrate that the numerical tool we developed,
based on the numerical procedures presented in Chapters 2 to 4, permits to deal with
the complex phenomena introduced in Chapter 1. To this end, we follow the steps of an
engineer that desires to simulate the effects of a given UNDEX on a well-chosen (submarine)
hull. For confidentiality reasons, the explosion and the hull we consider are non-specific
but representative, and the steps remain generic.

5.1 Numerical case study: stiffened hull facing an UNDEX

In Chapters 2 to 4 we have considered the design, implementation and validation of two
numerical procedures. We briefly recall the main steps of the overall procedure (illustrated
in Figure 5.4), so the problem-solving of the full fluid-structure interaction for both the
shock wave and the oscillating bubble parts. For each step, we specify the chosen numerical
parameters.

Prior step: specify the problem. We consider a stiffened hull similar to that presented
in Section 4.6.1, but with smaller length 2L = 16.6 m, subjected to an UNDEX of W = 100
kg of TNT at a standoff distance ds = 46.7, with corresponding shock factor K ≃ 0.2. The
cylindrical hull is stiffened as illustrated on Figures 4.16 and 4.17. The case considered is
depicted in Figure 5.1.

Choose a model for the incident shock wave pressure. Deviating from the choice
performed in Section 3.5, we use this time the double-exponential fit (1.4):

pW(r, t) = pm f(tr(r, t))H(tr(r, t)) ,

f(t) = α1 e
−β1 t/τ + α2 e

−β2 t/τ ,

pm(r) = K1

(

W 1/3

r

)a1

, τ(r) = K2W
1/3

(

W 1/3

r

)a2

,
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Figure 5.1: FSI between the stiffened hull and the underwater explosion (shock wave
and gas bubble), notations and physical parameters.

for the shock wave incident pressure, because it is believed to be more accurate (Geers and
Hunter, 2002). We choose the same explosive material parameters as in Section 3.5:

K1 = 5.24 107 SI, a1 = 1.13, K2 = 8.4 105 SI, a2 = −0.23,

and consider the common TNT parameters for the coefficients of the double-exponential
decay (see Section 1.2.1):

α1 = 0.8251, β1 = 1.338, α2 = 1 − α1 = 0.1749, β2 = 0.1805.

Choose a bubble model. We assume the flow is potential and incompressible, and
choose the Hicks model to describe the bubble dynamics, similarly to Section 4.6, with the
same explosive bubble parameters: K3 = 2.11 SI and K4 = 3.50 SI.

Choose how to blend the shock wave and gas bubble phenomena. As stated in
Section 1.4, the junction between the shock wave and the gas bubble parts is a crucial step.
In the context of a remote UNDEX, we choose to end the shock wave simulation once the
input of the FEM/FEM coupling procedure pRef = pref + pinc is zero everywhere on the
interface Γ. To ensure this behaviour, and prevent from small numerical instabilities (see
for instance Figure 2.14), we smoothly enforce the pressure to be zero after a sufficiently
long time. For the considered UNDEX of W = 100 kg at ds = 46.7 m, the shock wave
simulation duration is set to TW = 25 ms, but pRef = pref + pinc is smoothly set to zero,
using (4.26), for t ∈ [18 ms, 23 ms], and pRef = 0 for t ∈ [23 ms, 25 ms]. The bubble input
is also smoothed at the beginning of the bubble procedure (see Section 4.6.2).

The two smoothing processes ensure a smooth numerical junction (in terms of induced
pressures) between the two phenomena. Of course, the junction procedure introduces
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a deviation between the numerical incident pressure experienced by the ship, and the
expected true pressure curve (i.e., that would be experimentally measured if measurement
errors are marginal), as illustrated in Figure 5.2. In particular, the closer the explosion,
the less accurate the smoothing junction.

 

Expected true

incident pressure

Figure 5.2: Schematic illustration of the smooth junction between the shock wave
and bubble phenomena. Comparison between the smoothed numerical
incident pressure and the expected true incident pressure.

Generate meshes of the fluid-structure interface Γ for the BEM. We use 10
meshes with uniform and decreasing mesh size (see Section 2.5.6). The most refined mesh
has a mesh size h ≃ 0.012 m, corresponding to N ≃ 2.6 106 DOFs. The master mesh has
a mesh size h ≃ 0.06 m, corresponding to N ≃ 105 DOFs. We use the rule of 8 points
per wavelength, except for the most refined mesh, for which we carry the computation
until 6 points per wavelength. The high frequency limit is therefore set to fHFA ≃ 21 KHz,
kHFAa/π ≃ 88, kHFAL/π ≃ 230. We recall that fHFA is related to the most refined mesh,
the latter being chosen according to the available computational resources.

Compute the reflected pressure for the shock wave part using the Z-BEM.
We set the simulation duration to TW = 25 ms and the number of time steps to M = 5 104.
Similarly to Section 2.6, we set εZ = 10−5 (precision for the inverse Z-transform), L = 2M
(number of frequencies), ρ = ε1/L (radius used in the CQM to compute the frequencies),
εGMRES = 10−5 (GMRES tolerance). We use the BDF2 (backward differential formula
of order 2) scheme. The number of BEM problems actually solved with the FM-BEM
is M = 166. The BEM input of the Abaqus ® FEM/FEM solving, pRef = pref + pinc, is
smoothed with a Butterworth filter of order 5, with cut-off frequency fc = 20 kHz (see
Section 3.5.2).
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Generate the structure and truncated fluid FEM models. The structure FEM
model is similar to that of Section 4.6.1 (see Figures 4.16 and 4.17), except it has 13
regularly spaced stiffeners, positioned on the cylindrical part (the spherical parts are not
stiffened). The whole model is made of Abaqus ® shell elements (S4R). The mesh size
(h ≃ 0.06 m) is such that the flange is meshed with 4 elements, the web with 6 elements,
and 13 elements lie between two stiffeners for the cylindrical part. It leads to around 1.5 105

nodes for the structure part (5 DOFs per node), of which 105 are on the FSI interface Γ.
The non-uniform fluid volume FE mesh is a water layer of 8 m surrounding the structure.
Near the standoff point, at the fluid-structure interface Γ, the mesh size is set to 0.05
m. Elsewhere near Γ, the mesh size is set to 0.06 m. On the exterior boundary Γ∞, the
mesh size is set to 1.5 m, and Abaqus ® absorbing conditions (cylindrical and spherical
acoustic impedances) are set to reduce unphysical reflections. We use the Abaqus ® acoustic
tetra-element AC3D4. A snapshot of the meshes is provided in Figure 5.3.

Figure 5.3: 3D view of the meshes used for the FEM/FEM coupling for the shock
wave part. Both the 3D fluid and 2D structure meshes are refined near
the standoff point.

Solve the FSI problem for the shock wave part using the hybrid Z-BEM/FEM
explicit approach, with pRef as input. The nodal forces related to pRef are computed
using linear shape functions. We set M = 5 105 and use the explicit Abaqus ® scheme with
default parameters, similarly to Section 3.5.

Use the shock wave output state as input state for the bubble model. The
practical junction between the two phenomena is performed using the *Restart and
*Import functionalities of Abaqus ® (Dassault Systèmes SIMULIA, 2017). They permit to
load the state saved at the end of the shock wave procedure and use it as initial state in
the bubble procedure.

Solve the FSI problem for the bubble model using the step-by-step coupling
procedure. We use the same procedure as in Section 4.6, with the following numerical
parameters:
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• TW = 25 ms, Tsmooth = 10 ms, TB = 0.5 s, number of time steps M = 2000.

• For the BEM: εGMRES = 10−4; we use P1 Lagrange boundary elements; the H-matrix
threshold is set to εH = 10−4. Blocks containing less than nleaf = 200 points are
considered as leaves, and therefore no longer subdivided. The FSI interface Γ is less
refined than for the FEM: h ≃ 0.1 m, Nf ≃ 4 104 fluid DOFs.

• For the FEM: 5 integration points along the thickness for each shell (hull, flange,
web). We set nlgeom = no (that notably assumes small strains) and use the default
direct solver of Abaqus ®. Default time-stepping scheme used by Abaqus ® implicit:
Hilber-Hugues-Taylor (HHT) with α = 0.05, β = 0.275625, γ = 0.55 (Géradin and
Rixen, 1997; Hughes, 1987; Dassault Systèmes SIMULIA, 2017).

• The sub-cycles at each time step are performed with a constant guess for the velocity,
and εsc = 10−2 (see Section 4.5.2).

Incident shock wave
pressure model

Z-BEM Fluid
Reflected
pressure

2D meshes of the
FSI interface

Structure and truncated
fluid FEM models

Structure
state and

FEM model

Step-by-step iterative
FEM/BEM coupling

Numerical junction
between the

two phenomena

SHOCK WAVE BUBBLE

Coupled FSI
FEM/FEM monolithic

solving

BEM Fluid FEM Structure

Bubble model

1

2

3

Figure 5.4: Main steps of the overall procedure solving the whole FSI problem (shock
wave and gas bubble).

Remark 25 We do not consider the effects of gravity, the buoyant force and the hydrostatic
pressure, which are to be considered in the structure part, with a pre-computation (performed
before the shock wave phenomenon) that sets the hull in the realistic environmental
conditions.

5.2 Results of the overall procedure, discussion

We separately comment the results of the Z-BEM procedure, the FEM/FEM solving for
the shock wave phase, and the FEM/BEM coupling for the gas bubble part.

5.2.1 Fluid-structure interaction for the shock wave phase

Uncoupled part (scattering problem). Firstly, pRef is computed using the Z-BEM
approach (step 1 in Figure 5.4). The computational time of this first step depends on
the number of CPUs available. For example, this computation takes about 2 days on a
standard computer with O(500) GB of RAM and O(100) threads. For industrial studies, it
can be reduced by considering coarser meshes (that imply a lower value of fHFA), depending
on the target accuracy.

The result quality is illustrated on Figures 5.5 to 5.8 The computed time-dependent
pressure response at the standoff (A) and orthogonal (B) points is rather smooth (not
disturbed), as shown in Figure 5.5. This behaviour is observed everywhere in the front
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region, as illustrated in Figures 5.6 and 5.7. We check that the maximum pressure at the
standoff point conforms with its analytically-predicted value (3.18):

pRef(t = 0, P = A) = 2 pm(r = ds) ≃ 7.7 MPa.

The use of the Butterworth filter of order 5 (see Section 3.5.2) slightly increases this
value, which reaches 8.3 MPa (see Figure 5.5). At the shadow (C) point, some numerical
instabilities (non-causal effects, commented in Section 2.6.3) are still noticeable, especially
on the snapshot Figure 5.7 at t = 5.5 ms. A second wave passage is noticeable at around
t = 10 ms. It is visually explained on the snapshot in Figure 5.8 at t = 9.35 ms, and
corresponds to the scattered waves coming from the structure extremities.

Remark 26 In the line plots Figures 5.5 and 5.14 and the snapshots Figures 5.6 to 5.8,
5.10 to 5.13 and 5.15, the time instant t = 0 is set 0.1 ms before the shock wave hits the
hull, so that the discontinuous jump at the standoff point is well observed (and not disturbed
by the figure axes). However, in the comments, notably concerning the maximum pressure,
we keep the convention that t = 0 corresponds to the instant the shock wave hits the hull.

We are very satisfied with the result quality for this first step of the overall procedure. It
provides a proper input for the next FEM/FEM solving, which is very important, because
the entire procedure would suffer from a poorly computed pRef.
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Figure 5.5: Scattering by the rigid hull, total field pRef in the cross-section containing
the explosion, at the standoff (a), orthogonal (b) and shadow (c) points.
The incident field at those points is also shown.
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t = 0.15 ms

t = 0.20 ms

t = 0.55 ms

Figure 5.6: Snapshots of the total field pRef on the hull surface, in the front zone.
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t = 1.65 ms

t = 4.5 ms

t = 5.5 ms

Figure 5.7: Snapshots of the total field pRef on the hull surface, in the front (top) and
shadow (middle and bottom) zones.
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t = 7.15 ms

t = 9.35 ms

t = 11.5 ms

Figure 5.8: Snapshots of the total field pRef on the hull surface, in the shadow zone.
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The role of stiffeners. Like in Section 3.5, pRef serves as input to compute the nodal
forces and then solve the coupled FSI problem (step 2 in Figure 5.4). The structure
kinematic response is illustrated by snapshots in Figures 5.10 to 5.12. As expected, the
stiffeners play a major role in the local deformations: during the first milli-seconds, they
reduce the displacement by a factor 2, compared to what is observed between two stiffeners
(see Figure 5.12). The observed displacement reduction near the stiffeners induces (not
surprisingly) stress concentrations in those regions, as illustrated by the von Mises stress
map shown in Figure 5.13. As expected for the considered explosion, the stresses remain
below the elastic limit σlim = 355 MPa.

Disturbed output state of the shock wave. When considering stiffened submarine
hulls, the shock wave phenomenon may stimulate local structure modes, with natural
frequency typically around f ∼ 100 – 500 Hz. This makes the structure vibrate and leads
to an output state that is quite disturbed. Line plots shown in Figure 5.14 illustrate these
structure vibrations at the standoff point. In our context, this implies that the bubble
FSI procedure would start with a disturbed initial state, with a typical time scale of the
structure vibrations of T ∼ 10−2 – 10−3 s. The bubble procedure is not designed to deal with
that kind of vibrations, notably because the target time step is not small enough to treat
them. To bypass this difficulty, some numerical damping may be introduced in the shock
wave procedure, or during an intermediate computation inserted between the shock wave
and the bubble phases, that aims at dissipating the structure vibrations. In Figure 5.14, we
show results obtained with and without numerical Rayleigh damping introduced using the
*Damping feature of Abaqus ®. We use a stiffness proportional damping with βR = 10−5

(Dassault Systèmes SIMULIA, 2017, Section Material Damping). This kind of damping
dissipates some of the energy of high frequency vibrations, and then provides an output
state more suitable as initial state for the bubble procedure.

To evaluate potential unwanted effects of this artificially-introduced damping in
our industrial context, we focus on the Shock Response Spectrum (SRS) introduced in
Section 3.5.3. We recall that the purpose of the SRS is to provide an order of magnitude
of the maximum acceleration experienced by an on-board equipment during the explosion.
On-board equipment are sometimes attached to the flange, rather than the hull (see
Figure 4.16). Therefore, the SRS is computed at the point in the middle of the flange (in
the cross-section containing the explosion) instead of the standoff point. The SRS, provided
in Figure 5.9, confirms that the main effect of the damping is to cut high frequencies.
Under these conditions, SRS results remain reliable for equipment with natural frequencies
below about 1 kHz.

Simulation duration. After only 25 ms of simulation, the structure vibrates too much
(even with Rayleigh damping) for its state to be used as initial input for the bubble
procedure. We could introduce stronger damping, but it could (i) affect too much the
solution, (ii) imply a too-small stable time increment (Dassault Systèmes SIMULIA, 2017,
Section Material Damping). Therefore, we continue the simulation until TW = 100 ms, to
obtain a more stabilised state. This implies that we change the time parameters for the
bubble procedure. We set TW = 100 ms, Tsmooth = 20 ms, TB = 0.5 s, and M = 2000. For
the shock wave procedure, this has the consequence that the simulation is 4 times longer,
but the computational time remains below that of the preceding Z-BEM procedure: about
40 hours divided by the number of CPUs (we used 4 CPUs). The consequences for the
bubble part are discussed in the next section.
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Figure 5.9: Shock response spectrum at the point in the middle of the flange, in the
cross-section containing the explosion.

Efficiency of the boundary absorbing conditions. Figure 5.15 illustrates the prop-
agation of the radiated pressure prad in the truncated 3D fluid domain. It permits to check
that the Abaqus ® boundary absorbing conditions do not introduce noticeable unphysical
reflections. As expected, the result quality is poor in the fluid. This is due to the non-
uniform mesh considered (see Figure 5.3), that is refined only near the FSI interface Γ. As
explained in Section 3.3, this has no adverse effect in our FSI context, as a correct value of
prad is required only on Γ.

Conclusion. We are mostly satisfied with the results obtained for the shock wave part.
Though they are not perfect yet, they seem very promising and so we believe our method
is quite competitive compared to other numerical methods (typically those presented in
Section 3.4.2) on this specific case.
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Figure 5.10: Snapshots of the acceleration magnitude |a| on the hull surface, in the
front zone.
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Figure 5.11: Snapshots of the velocity magnitude |v| on the hull surface, in the front
zone.
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t = 0.5 ms

t = 1.0 ms

t = 1.5 ms

Figure 5.12: Snapshots of the displacement magnitude |u| on the hull surface, in the
front zone.
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Figure 5.13: Snapshots of the Von Mises stress on the hull surface, in the front zone.



5.2 Results of the overall procedure, discussion 151

−20000

−15000

−10000

−5000

0

5000

10000

0 0.02 0.04 0.06 0.08 0.1

a
(m

/s
2
)

Time (s)

Without damping

With damping

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

0 0.02 0.04 0.06 0.08 0.1

v
(m

/s
)

Time (s)

Without damping

With damping

−0.018

−0.016

−0.014

−0.012

−0.01

−0.008

−0.006

−0.004

−0.002

0

0 0.02 0.04 0.06 0.08 0.1

d
(m

)

Time (s)

Without damping

With damping

Figure 5.14: Acceleration, velocity and displacement at the standoff point, effects of
the Rayleigh damping.



152 Chapter 5: Submarine stiffened hull subjected to an UNDEX

Pressure (MPa)

0.5

-1.2

-2.9

-4.6

Pressure (MPa)

1.5

-0.5

-2.6

-4.6

t = 1 ms t = 2 ms

Pressure (MPa)

1.2

-0.2

-1.6

-3.0

Pressure (MPa)

1.2

0.2

-0.8

-1.8

t = 3 ms t = 4 ms

Pressure (MPa)

1.6

0.6

-0.4

-1.4

Pressure (MPa)

1.4

0.6

-0.3

-1.1

t = 5 ms t = 6 ms

Pressure (MPa)

1.0

0.2

-0.7

-1.5

Pressure (MPa)

1.1

0.3

-0.5

-1.3

t = 7 ms t = 8 ms

Figure 5.15: Snapshots of the radiated pressure prad in the FE fluid domain, in the
cross-section containing the explosion. Illustration of the efficiency of
the absorbing boundary conditions set on the exterior fluid surface Γ∞.



5.2 Results of the overall procedure, discussion 153

5.2.2 Fluid-structure interaction for the gas bubble part

We now discuss the bubble part of the FSI problem (step 3 in Figure 5.4), and in particular
the numerical junction with the shock wave phase.

The gas bubble of an UNDEX of 100 kg. Similarly to Section 4.6.2, we first study
the effects of the bubble on the structure treated as rigid. The obstacle is meshed with
Nf ≃ 4.4 103 fluid DOFs, h ≃ 0.3 m (we do not need a very refined mesh for the rigid
motionless case), and TB = 0.5 s, M = 2000. The explosion of 100 kg of TNT at a water
depth ξexp = 100 m generates a gas bubble of maximum radius and pseudo-period provided
by (1.25) with K3 = 2.11 SI and K4 = 3.50 SI, so

T ≃ 0.19 s, Rmax ≃ 3.4 m. (5.1)

The Hicks model we use provides the time-dependent bubble radius and bubble depth
shown in Figure 5.16. The model leads to a slightly smaller value of Rmax than expected
(see (5.1)), and underestimates energy losses (see Section 4.6.2).
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Figure 5.16: Bubble radius and depth variation obtained with the Hicks model, for
an UNDEX of W = 100 kg of TNT at water depth ξexp = 100 m.

We compute the velocity potential and pressure at the obstacle surface Γ like in
Section 4.5.1. The ambient velocity potential is given by (1.27) under our assumption of a
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purely incompressible flow:

φamb(r, θ, t) = −R2(t)Ṙ(t)
r

− R3(t)Ż(t)
2r2

cos θ ,

where θ is defined as in Figure 1.4. Figure 5.17 shows the pressure obtained on the time
interval [0, T = TB − TW ]. The high value of TW (100 ms, instead of 25 ms, for the reasons
previously explained in Section 5.2.1) implies that the beginning of the first bubble period
is not taken into account. It also entails that the pressure varies significantly during the
smoothing process, and compels us to increase the value of Tsmooth (set to 20 ms instead of
10 ms).
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Figure 5.17: Total pressure on the time interval [0, T = TB − TW = 400 ms].
Smoothing process applied with Tsmooth = 20 ms.

Coupled FSI part (work in progress). As of this writing, we have not obtained the
results of the FSI coupling for the bubble phase, with the input state provided by the
shock wave part. As explained in Sections 4.6.3 and 4.7, the bubble procedure is still
a work in progress. In particular, we are facing convergence issues in the sub-cycling
procedure, which we managed to overcome using relaxation techniques when the structure
is at initial rest (see Section 4.6.3). Our procedure still needs refinement when applied
with a disturbed initial state. We nonetheless achieved to get results when using a very
short time step. However, a too-short time step implies a too-short time duration TB (less
than one bubble expansion), because we cannot consider more than M ∼ 2000 time steps
to preserve acceptable computational times.

We are currently working on a way to overcome this problem, i.e., make the procedure
converge, by investigating numerical techniques, as well as modifications of the structure
model. Typically, we are examining the influence of the overall structure model mass on
the procedure convergence.

Alternatively, we could present results of the bubble phase without considering the shock
wave part, like in Section 4.6, but they would not be very interesting for the specific case
(structure and explosion) considered. Indeed, given the small structure length compared
to the case studied in Section 4.6, we expect we would observe mostly rigid displacement,
and less bending than in Section 4.6.

Though we cannot perform the junction yet, our procedure achieves the industrial goals.
Indeed, in the case of elasticity (no plasticity), the results obtained by starting the bubble
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procedure with a structure at initial rest (like in Section 4.6) are seen as satisfactory. When
the shock wave induces plasticity, we can recourse to an ad hoc treatment in the wake of
the shock wave procedure, to steady the structure response, and then use the deformed
(but steady) structure state as input for the bubble procedure.

5.3 Conclusion and outlook

This chapter presented a typical engineering application of the numerical tool developed
during this work, based on the numerical procedures presented in Chapters 2 to 4. We
considered the example of a short (compared to a submarine) cylindrical stiffened hull
closed by two half-spheres that is subjected to an explosion of 100 kg of TNT at a standoff
distance ds = 46.7 m. We first illustrated the efficiency of the Z-BEM procedure to compute
the reflected field induced by the shock wave. Then, we simulated the behaviour of the
deformable stiffened hull during the shock wave phase. As expected, the stiffeners limit
local deformations. The structure locally vibrates due to the high-frequency excitations.
We had to introduce some numerical damping to reduce these vibrations before starting
the bubble procedure. Despite the smoothing processes, we did not yet achieve to solve
the FSI coupling during the bubble phase, when performing the junction with the shock
wave phase. We are currently working on overcoming this problem. However, we stress
that, even without the junction, the overall procedure achieves the industrial goals.

We are very satisfied with the results obtained for the shock wave part, especially given
the rather challenging problem considered. To treat even more realistic (longer) geometries,
we need to recourse to mesh interpolation.

Mesh interpolation between the two phenomena. Apart from the issues discussed
in Section 5.2.2, our first prospect is to consider an industrial application with a realistic
submarine hull, with dimensions similar to those presented in Section 4.6 (length 2L = 73.3
m), enhanced with some submarine parts, notably in order to consider a realistic mass
of the model (see Section 4.7). With current procedure developments, it is possible to
separately treat the shock wave and bubble parts for this realistic industrial case. However,
one improvement is required to treat the bubble part in the wake of the shock wave phase.

The bubble procedure can work with meshes coarser than those needed in the shock
wave part. Therefore, an efficient way to perform the junction is to use meshes fine enough
for the shock wave part, then interpolate the fields on coarser meshes for the bubble
procedure. We are currently investigating the mesh-to-mesh solution mapping of Abaqus ®.
We did not yet achieve to set up the interpolation step, and therefore use the Abaqus ®
standard restart options (Dassault Systèmes SIMULIA, 2017). This compels us to use
the same structure model (same meshes) for both procedures. As it is impossible (due to
computational resource limitations) to treat the bubble phenomenon with too-fine meshes,
we would have no choice but to use coarse meshes in the shock wave part, so that the
following bubble procedure may be performed. This would lead to less precise results in
the shock wave procedure, hence the need for mesh interpolation.
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Conclusion and prospects

I
t is now time to conclude this PhD work. Firstly, we summarise all of the content
presented in this dissertation. Secondly, we stress our contributions, notably by

identifying our start and end points, in terms of both knowledge and software development.
Thirdly, we discuss the consequences of some choices made in the industrial context. Finally,
we give some prospects for future studies (some being already investigated).

Recalling initial question: how do we address the problem?

Our entire work was driven by the question raised in the introduction: how do we address
the problem of the fluid-structure interaction between a submarine and a remote underwater
explosion?

To answer this question, we first had to fully understand the physical phenomena
taking part in the problem. In Chapter 1, we focused on the fluid component of the
interaction, so the effects of an underwater explosion. We introduced the shock wave
and gas bubble events, and showed that they both have to be taken into account in the
context of fluid-structure interactions. For remote explosions, the shock wave propagation
is approximately governed by the wave equation, in the framework of linear acoustics,
whereas the gas bubble is modelled under the assumptions of potential and incompressible
flow. At the end of the chapter, we proposed a way to perform the junction between the
two mutually exclusive models, based on the multi-scale method, that turned out to reduce
to a simple numerical junction for remote underwater explosions.

Chapter 2 was dedicated to the design, implementation and validation of an efficient
numerical method for large-scale 3D rapid transient wave problems. Such problems are
tricky because numerical methods based on geometry discretisation (mesh), such as the
boundary element method (BEM) or the finite element method (FEM), often require to
solve a linear system (from the spatial discretisation) for each time step. We proposed a
numerical method to efficiently deal with 3D rapid transient acoustic problems set in large
(infinite) exterior domains. Using the Z-transform and the convolution quadrature method
(CQM), we first presented a straightforward way to reframe the problem to the solving of
a large amount (the number of time steps, M) of frequency-domain BEMs. Then, taking
advantage of a well-designed high-frequency approximation (HFA), we drastically reduced
the number of frequency-domain BEMs to be solved, with little loss of accuracy. The
complexity of the resulting numerical procedure, labelled Z-BEM, turns out to be O(1) in
regards to the time discretisation and O(N logN) for the spatial discretisation, the latter
being prescribed by the complexity of the fast multipole-based BEM solver used by the
Z-BEM. Finally, we demonstrated the efficiency of the method on some examples of FSI
applications, notably the scattering problem of an underwater explosion shock wave by a
full-scale submarine.

The shock wave fluid-structure coupling was studied in Chapter 3. After a brief
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presentation of monolithic and partitioned fluid-structure interaction (FSI) procedures,
we presented the Z-BEM/FEM coupling we intended to perform. Inspired by space-time
domain decomposition methods (DDMs), it consists in alternately solving structure and
fluid problems on the entire time interval [0, T ], instead of exchanging information at each
time step. That kind of iterative procedures is known to be more efficient with Robin
boundary conditions than Neumann ones. Unfortunately, a major practical constraint
prevented us from using Robin boundary conditions in this work, and compelled us, for
the time being, to design and switch to a hybrid Z-BEM/FEM/FEM method in which the
coupled part of the FSI problem is solved with a common monolithic FEM/FEM coupling.
This hybrid method, that takes advantage of the fluid decomposition into a radiated
(radiation problems) and a reflected (scattering problems) components, is nonetheless
rather efficient – compared to the solutions produced using other methods –, as it was
shown on the reference case of the FSI between a long cylinder and an underwater shock
wave.

Chapter 4 focused on the subsequent oscillating bubble event. We first stressed the
time-dependence of the geometric domains, by contrast to the shock wave case. Given
the specificities of the fluid problem, that reduces to multiple right-hand side problem-
solving (under the assumption of re-usable BEM operators), we adopted a step-by-step
FEM/BEM coupling. In this context, the hierarchical matrices (H-matrices) permit an
efficient (fast and accurate) solving of the fluid equations, by re-using, at each time-step,
already computed BEM operators. The procedure was validated on the simple problem
of a rigid sphere in a uniform time-dependent flow, and we showed the importance of
sub-cycling at each time step to guarantee the convergence to the correct FSI solution,
while performing uncoupled fluid and structure problem-solving. Finally, we studied the
FSI between a submarine stiffened hull and a powerful explosion (W = 1000 kg of TNT
at d0 = 50 m). As expected, the results showed that the gas bubble mainly causes rigid
motion and bending, but very little local deformations, when the previous shock wave
phenomenon is not considered.

This work concluded with the treatment of an industrial case: a stiffened hull subjected
to a remote underwater explosion. The purpose of Chapter 5 was then to show the
efficiency of the computational method, when gathering all the results obtained throughout
Chapters 2 to 4. It demonstrated the capabilities of the shock wave procedure to deal
with the realistic problems encountered in the naval industry. We are still working on the
bubble phase, to solve the associated FSI problem in the wake of the shock wave phase.
We explained the convergence issues we are facing in the FEM/BEM sub-cycling process
for the bubble phase, and gave some insights on how to resolve them.

Review of our contributions

Given the industrial context of this work (supported by a mixed public-private funding
in the French CIFRE doctorate framework), we would like to stress and summarise our
contributions, in terms of both knowledge and practical software developments.

The content of Chapter 1 largely summarises available literature. However, we tried
to enhance the way the concepts and results are introduced, notably by justifying any
assumption or approximation. For instance, we paid particular attention to the validity of
the linear acoustic model for the shock wave propagation, notably through computation of
the associated acoustic energy in Section 1.2.2. Also, we tried to outline a theoretical basis
to the unification between the bubble and shock wave phases, using the multi time scale
method, in Section 1.4.
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Chapter 2 (and its article version, Mavaleix-Marchessoux et al., 2020) presents a
significant part of our contribution. Based on the (already known) convolution quadrature
method (CQM) and the Z-transform, we designed a procedure that can deal with large-
scale rapid transient wave propagation problems by recourse to an ad hoc high frequency
approximation (HFA). Contrary to traditional CQM-based BEMs, our procedure exhibits
O(1) time complexity (see Section 2.5.5). Once designed, we implemented our HFA-
enhanced Z-BEM in the frequency-BEM solver COFFEE developed at POEMS. We proved
the feasibility of the method for uncoupled FSI on the simple problems of a pulsating
sphere (radiation problem) and the scattering of a spherical wave by a small geometry.
Then, we implemented some numerical improvements:

• Mesh interpolation (see Section 2.5.6) using the software feflo.a (Loseille, 2017).

• Efficient computation of the FFT required in the CQM on GPUs (CUDA cores).

• Optimised parallel computation of the frequency problems solved with the FM-BEM.

These improvements made possible a concrete application of the method: the scattering
of an UNDEX shock wave by a complex submarine-shaped obstacle (see Section 2.7).
Solving this challenging problem, we tuned the HFA to improve the results in the case of
non-convex obstacles (see Section 2.7.2).

We now focus on our contribution in the case of coupled FSI problems, starting with the
shock wave part in Chapter 3. We designed a coupling procedure, namely Z-BEM/FEM
procedure, inspired from domain decomposition methods (DDMs), that alternates fluid and
structure solving on the entire time interval [0, T ] (see Section 3.2). We checked that the
Z-BEM/FEM coupling procedure is not well suited to Neumann boundary conditions in
Section 3.2.2, but we did not have the opportunity to implement the procedure with Robin
boundary conditions, because of practical constraints. Thereafter, we designed the hybrid
Z-BEM/FEM procedure presented in Section 3.3, that satisfies the industrial requirements,
and proved its efficiency in the reference case of a long (infinite) cylinder subjected to an
UNDEX shock wave. This latter numerical test is the result of a team work1: the analytical
solution was obtained by Rakotomalala et al. (2021) and the FEM/FEM solution by Khoun
(2021). We defined the reference case, obtained the solution of our hybrid Z-BEM/FEM
procedure, post-processed the results of all procedures, and carried out the result analyses.
For the practical coupling with Abaqus ®, we used the basis of the C++ coupling simulation
engine provided by Abaqus ®, enhanced by the authors of (Véron, 2016), which we adapted
to efficiently transfer data (in RAM memory) with the software COFFEE. We carried out
the industrial application presented in Chapter 5, to confirm the efficiency of the hybrid
Z-BEM/FEM procedure.

We then used a rather straightforward step-by-step FEM/BEM coupling procedure to
solve the FSI problem for the bubble part, in Chapter 4. The use of H-matrices in the
context of multiple right-hand sides is also known. Our contribution then rather lies in
the efficient numerical implementation in the context of High Performance Computing.
In particular, we developed a Python interface to connect the Abaqus ® coupling engine
to COFFEE. Similarly to the procedure developed for the shock wave phase, the python
interface permits data transfers in RAM memory. Also, it allows to keep in RAM memory
the time-independent BEM operators computed and stored at the first time step. A simpler
(naive) procedure that would couple the fluid and structure codes without this Python

interface would need to store in disk memory the BEM operators before leaving the fluid
code, and then the saving/loading times would be detrimental. We validated the FSI
coupling procedure in the simple case of a rigid sphere in a uniform time-dependent flow

1We thank again all the participants!
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in Section 4.5, and demonstrated the procedure efficiency for the bubble FSI problem, in
the case where the structure is at initial rest, in Section 4.6.

In the industrial context of this work, a useful practical contribution concerns the
version control of the numerical tools we developed. We used Git for an efficient numerical
development of our tools. Also, we thoroughly studied the numerical performance of our
codes with two complementary set of tools recommended by the Performance Optimisation
and Productivity (POP) institute (see https://pop-coe.eu/partners/tools):

• Extrae (captures information during the execution) and Paraver (visualises the traces
generated by Extrae);

• Score-P (captures information during the execution) and Cube (incorporated in
Score-P, visualises the traces).

Then, we deployed a clean stable version of our software on a cluster for industrial purposes,
added simple configuration files so that engineers may use the code easily, and wrote a
documentation for both installation and usage.

Comments on an important industrial choice

In this section, we summarise the consequences of an important industrial choice: the
use of Abaqus ® for the structure FEM part of the FSI. We believe it is important to
objectively expose these consequences, so that future studies may be carried out in full
knowledge of the facts.

The industrial context. The choice of Abaqus ® is motivated by the industrial context.
Abaqus ® offers a user friendly interface that permits to easily design a model, using various
available features, and solve common engineering problems. It is a very adequate tool
in production engineering, which has to deal with various constraints, e.g., cost issues,
deadlines,. . . The use of Abaqus ® in this thesis offers the substantial advantage of a fast
deployment of the numerical code we developed in production engineering units. Also, it
permitted to take advantage from previous (PhD) works, e.g., (Véron, 2016).

Limitations of black-box uses. Abaqus ® is not an open source software. This compels
us to use it in a black-box manner, that leads to practical limitations. First, we were not
able to implement the Z-BEM/FEM procedure we designed in Section 3.2 for the shock
wave FSI part, which requires the use of Robin boundary conditions (see Section 3.2.2).
Unfortunately, these conditions could not be used in Abaqus ® invoked in black-box fashion.
Moreover, the CSE interface that allows to couple Abaqus ® to an external code is very
limited and not as user friendly as the common Abaqus ® interface.

Limitations for massive parallel computing. The FSI bubble procedure we devel-
oped hit severe efficiency limitations caused by the licencing policy of Abaqus ®. As
explained in Section 4.6.3, the need for one “token” for each CPU hinders massive
parallelisation, making the overall procedure computational time unattractive.

Our numerical tool in industry. Despite all the practical constraints and limitations
induced by the choice of a not-open-source software to handle the structure part of the
FSI problem, we conclude by stressing that it helped to quickly fulfil (within three years)
the industrial goal: a numerical tool that can be used in production engineering (at least

https://pop-coe.eu/partners/tools
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for the shock wave part). We are glad we were able to achieve this ambitious target, and
we reckon it is partly thanks to the industrial choices.

What’s next?

As explained above, this PhD work results in the first version of a numerical tool to solve
underwater explosion FSI problems. We see many prospects, which we now present in the
natural order of short-term to longer-term objectives.

Short-term improvements of the bubble procedure. There remain some basic
numerical improvements of our procedures, especially regarding the gas bubble part.
Indeed, as explained in Chapters 4 and 5, the CPU time may be reduced by (i) using
a variable time step and (ii) improving the sub-cycling convergence. We are currently
investigating some methods available in the literature to improve the convergence of
iterative methods, and hope to present in the near-future a bubble procedure made more
efficient by faster sub-cycling. Once this is achieved, we will study the difference between
the incompressible model and the model with O(1/c) corrections presented in Section 4.7.
Also, the bubble procedure results presented in Section 4.6 will be compared against a
simple beam model. Lastly, we will solve the convergence issues faced when using the
output shock wave state as input for the bubble FSI procedure (see details in Section 5.2.2).

Mid-term improvements of the shock wave procedure. As explained in Chapter 3,
the hybrid Z-BEM/FEM/FEM method we developed to solve the shock wave FSI part
requires an arbitrary truncated volume FE fluid mesh. In contrast, the Z-BEM/FEM
coupling we initially intended to perform, presented in Section 3.2, is a purely FEM/BEM
coupling that does not require any volume mesh of the exterior fluid. The collaboration
between the POEMS laboratory and Naval Group continues with a new PhD thesis that
notably aims to define and implement an algorithm performing the fluid-structure coupling
on the basis of full BEM treatment of the fluid. Moreover, both the shock wave and bubble
procedures will be improved to take into account the free surface and the sea bed, thus
enlarging the scope to any kind of vessels and configurations.

Another interesting prospect concerns the FM-BEM solving process used in the Z-BEM.
The MB BEM problems actually solved with the FM-BEM constitutes the most time-
consuming task of the Z-BEM. We considerably reduced the CPU time of the Fast Multipole
Method (FMM) steps using parallel computing. While optimising the code performance
using the tools of the POP institute (see https://pop-coe.eu/partners/tools), we
realised that, when considering complex geometries, as in Section 2.7, there exist some
FMM boxes that encapsulate a lot of geometrical nodes (e.g., near the back planes of a
submarine). This effect is accentuated when considering non-uniform meshes, which is
common for complex geometries. In that case, the near contribution part of the FMM
process, usually dealt with using standard BEM techniques, becomes costly. A possible
way to overcome this difficulty could be to artificially increase the number of levels of the
FMM, but this leads to numerical errors and unwanted behaviours, as the number of levels
must be set against a criterion related to the input frequency (Chaillat et al., 2017a, 2008).
To speed up the near contribution part, we suggest to investigate a hybrid method in
which the near contributions are dealt with using H-matrices rather than standard BEM
techniques.

https://pop-coe.eu/partners/tools
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Mid-term comparison with experimental data. To validate the tools we developed
for industry, we must treat a concrete industrial configuration (full-scale submarine),
following similar steps to those of Chapter 5, and compare the simulation results against
(available) experimental data. This will notably allow to assess several available bubble
models, and determine whether a new bubble model should be derived.

Long-term improvements of the junction between the two phenomena. In this
work, we chose to separately treat the shock wave and bubble phases. If this offers many
advantages, such as re-usable BEM operators for the fluid part of the bubble phase (see
Section 4.3.1), it also compels us to artificially re-connect the shock wave and bubble phases.
Despite the numerical (hence artificial) smoothing procedures we used, we did not yet
succeed to practically blend the two phases (see Section 5.2.2) for realistic configurations.
Then, we believe it could be interesting to investigate a unified numerical treatment of
the shock wave and the bubble phenomena. Consider for instance the historical approach
of the Doubly Asymptotic Approximation (DAA) (see Sections 3.1.2 and 4.7). The use
of the same (approximate) equation for both the shock wave and bubble parts is a key
advantage. Along the same lines, we could design a unified procedure that accounts for
wave effects at small times (but more accurately than the DAA, given the advent and
tremendous progress in fast BEMs since 1980) and smoothly turns to incompressible flows
for larger times. A FEM-structure/BEM-fluid coupling procedure is well suited to this
kind of treatment. This constitutes another argument in favour of implementing a full
BEM-fluid/FEM-structure coupling, as outlined in Section 3.2.

Long-term prospect: an efficient tool for fluid-structure interaction in the naval
industry. During this PhD, we had the great opportunity to discuss with experts of
the naval industry, and discover a wide range of topics. Doing so, we realised that the
scope of the Z-BEM we developed is broader than expected. For instance, in addition to
the study of underwater explosions, we may apply our method in the context of stealth
technology, to solve the problem of a submarine subjected to acoustic sonars (that may
use high frequencies), or to compute the submarine acoustic signature.

A very interesting prospect is then to adapt our code so that it may be used in any
context for which the BEM is appropriate for the fluid part. Naval Group could then operate
a unique BEM code whose improvements would simultaneously benefit the simulations of
many fluid-structure problems and stealth analyses.
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Glossary

Boundary Element Method (BEM) – méthode des éléments de frontière – Numerical
method based on boundary integral formulations, that only requires the discretisation
of a surface when dealing with 3D problems. 3, 28

Doubly Asymptotic Approximation (DAA) – approximation doublement asympto-
tique – Approximative relation between the normal fluid-particle velocity, the surface
pressure and their temporal derivatives. It is obtained from asymptotic analysis
arguments and approximation of Kirchhoff’s retarded potential formula (2.17). 75,
132, 162

Equation of state – équation d’état – Thermodynamic equation relating state variables
such as pressure, mass density, temperature or internal energy. 187

Equilibrium – équilibre – Rest state used as a reference. Usually, an object is termed at
equilibrium if it is motionless and/or not subjected to any stress. 7

Euler equations – équations d’Euler – Set of quasilinear hyperbolic equations governing
adiabatic and inviscid flow. It expresses conservation of mass, momentum and energy.
7, 176

Far-field/remote underwater explosion – explosion sous-marine en champ lointain –
When considering a structure affected by an underwater explosion, the explosion is
qualified as far-field or remote if (i) the presence of the structure only marginally
affects the explosion, especially the behaviour of the bubble of hot gases, and (ii) the
influence of the shock wave can be temporally separated from that of the bubble. 1,
12

Finite Element Method (FEM) – méthode des éléments finis – Numerical method
used to solve problems governed by partial differential equations, based on the
discretisation of the continuous domains involved. 3, 28

Homogeneous medium – milieu homogène – A medium is qualified as homogeneous if
its mass density ρ is constant. 12

Irrotational/potential flow – écoulement irrotationnel/potentiel – A flow is qualified
as irrotational if the curl of its velocity vector vanishes at any point, at any time.
Then, it may be expressed as the gradient of a function termed velocity potential,
and the flow may also be qualified as potential. 12

Isotropic medium – milieu isotrope – A medium is qualified as isotropic if it shows the
same properties in all directions. 12
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Oscillating gas bubble – bulle de gaz oscillante – Bubble of hot gases resulting from
the chemical reaction of an explosion. Seeking a balance between its internal pressure
and the surrounding water pressure, the bubble surface oscillates. It also migrates
towards the water surface. 12

Perfect fluid – fluide parfait – A fluid is qualified as perfect fluid if it has no viscosity and
is adiabatic (no heat conduction). Flows are then described by the Euler equations.
12

Quasi-periodic – quasi-périodique – An evolution is qualified as quasi-periodic when
it displays an irregular periodicity, typically a slightly variable period or a slightly
diminishing amplitude. This often occurs when dealing with dissipative systems. 7

Shock factor – facteur de choc – Figure estimating the severity of an underwater explosion,
as experienced by a naval target, as a function of explosive charge weight and standoff
distance. 7

Shock Response Spectrum (SRS) – spectre de réponse aux chocs – Plot showing the
maximum displacement, velocity or acceleration, as a function of the natural frequency,
of damped spring-mass systems for a given solicitation. 93, 145

Shock wave/primary wave/blast – onde de choc/onde primaire/souffle – Destructive
wave spreading outwards from an explosion. The name primary wave is given by
analogy with the P-waves in seismology, defined as the first waves resulting from an
earthquake to arrive at a seismograph. 6, 12

Standoff distance and standoff point – Shortest distance between a considered struc-
ture Ωs (submarine) and an explosion locus O, denoted ds. The standoff point
A ∈ ∂Ωs is the closest point to the explosion, such that ds = ‖AO‖. xx

Wave – onde – Propagating perturbation accompanied by a transfer of energy, but no
transport of matter, that travels through a medium. 1, 6

Wave equation – équation des ondes – Second-order linear hyperbolic partial differential
equation governing the propagation of acoustic waves. 6



Acronyms

H-matrices hierarchical matrices. 3

BE boundary element. 43

BEM boundary element method. 3

BIE boundary integral equation. 32

CPU central processing unit. 109

CQM convolution quadrature method. 3

CSE coupling simulation engine of Abaqus ®. 81

DAA doubly asymptotic approximation. 75

DDM domain decomposition method. 76

DOF degree of freedom. 32

FE finite element. 84

FEM finite element method. 3

FFT fast Fourier transform. 42

FM-BEM fast multipole-based boundary element method. 32

FMM fast multipole method. 3

FSI fluid-structure interaction. 1

GPU graphics processing unit. 159

HFA high frequency approximation. 3

LATIN large time increment (method). 77

RAM random-access memory. 67

SRS shock response spectrum. 93

TNT trinitrotoluene. 5

UNDEX underwater explosion. 5

USA underwater shock analysis (software). 75
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Appendix A

Dimensional analysis for
fluid-structure interaction

F
luid-structure interaction is surely one of the most important notions when investigating
the coupling caused by a far-field underwater explosion. This appendix, dedicated to

the dimensional analysis for fluid-structure interaction problems, is largely inspired from
the course on fluid-structure interaction conducted by E. de Langre at École Polytechnique
(de Langre, 2001).

The purpose is to perform dimensional analyses for the shock wave and bubble
phenomena. For a given problem, the values of some well-chosen dimensionless physical
parameters indicate the relevant approximations and assumptions to be performed, and
therefore highlight the proper method to be used to deal with the problem. We first define
these numbers, as we recall the notion of fluid-structure coupling using the Buckingham
π theorem. In the case of a submarine submerged in water and submitted to a far-field
UNDEX, we show that the primary wave and the oscillating bubble are two different
phenomena whose values of the various dimensionless physical parameters differ.

A.1 Hypotheses

The study of the fluid-structure interaction between submerged shell and water requires
some hypotheses:

• The fluid and solid domains do not intersect;

• There is no mass exchange between the two domains;

• The temperature is assumed to be uniform and constant over time within each
domain, and so there is no heat exchange between solid and fluid.

In particular, the first hypothesis implies that the structure does not rupture under the
load induced by the far-field underwater explosion.

A.2 Variables and parameters

The independent variables are the coordinates of the current point x = (x, y, z) and time
t. The denomination “current point” refers to a point in either Lagrangian or Eulerian
specification. The dependent variables are the following:

• For the fluid: velocity v, pressure p, density ρf ;

• For the solid: displacement u, Cauchy stress tensor σ, mass density ρs.
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The fluid-structure interaction also depends on some material parameters:

• Physical parameters of fluid: dynamic (shear) viscosity µ, sound speed cf ;

• Physical parameters of solid: Young’s modulus E, Poisson’s ratio ν.

These parameters are known and linked to the types of fluid and solid. Some other
quantities have to be taken into account, depending on the considered situation:

• Quantities for both the solid and the fluid: characteristic length L, gravity g;

• Quantities for the fluid: reference velocity v0, reference mass density ρ0
f , reference

pressure p0;

• Quantities for the solid: reference displacement u0, reference mass density ρ0
s.

These quantities depend on the problem considered, and are often determined using
boundary conditions.

A.3 Coupling between a solid and a fluid

The fluid-structure coupling hypothesis stipulates that dependent variables defined in the
fluid domain and in the solid domain depend on the physical parameters and the quantities
related to both domains. For instance, it implies that the fluid velocity is expressed as a
function of all the parameters:

v = fv(x, t ; g, µ, cf , L ; v0, p0, ρ
0
f ;E, ν ;u0, ρ

0
s) . (A.1)

A similar relation to (A.1) holds for each dependent variable: p, ρf , u, σ, ρs. The
Buckingham π theorem states that (A.1), involving a number n = 14 of physical variables,
can be rewritten in terms of a set of p = n− r dimensionless parameters constructed from
the original variables, where r is the number of physical dimensions involved, namely the
rank of the dimensional matrix:

Length
Mass
Time





v x t µ cf L g v0 p0 ρ0
f E ν u0 ρ0

s

1 1 0 −1 1 1 1 1 1 −3 −1 0 1 −3
0 0 0 1 0 0 0 0 1 1 1 0 0 1

−1 0 1 −1 −1 0 −2 −1 −2 0 −2 0 0 0





(A.2)

The dimensional matrix (A.2) is of rank r = 3, so the relation (A.1) may be rewritten as a
relation between p = 14 − 3 = 11 non-dimensional parameters, for instance:

v

v0
= Fv

(

x

L
,
v0t

L
;
ρ0
fv

2
0

p0
,
ρ0
fv0L

µ
,
v0√
Lg

,
v0

cf
; ν ,

u0

L
,
ρ0
sgL

E
; A
)

, (A.3)

where

• v0t/L is the reduced time, and Tf ≡ L/v0 is the order of magnitude of the time the
fluid takes to travel the distance L;

• Π ≡ ρ0
fv

2
0/p0 is the reduced dynamic pressure, inverse of the Euler number ;

• RE ≡ ρ0
fv0L/µ is the Reynolds number, it quantifies the relative magnitudes of

convection and viscous diffusion velocities;

• FR ≡ v0/
√

Lg is the Froude number, it assesses the relative magnitudes of inertial
and gravitational forces;

• Mach ≡ v0/cf is the Mach number, it measures compressibility effects;
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• D ≡ u0/L is the reduced displacement, it quantifies the effects of large displacements;

• G ≡ ρ0
sgL/E is the gravity number, it assesses the deformations induced by the

structure weight;

• A is a dimensionless number that compares characteristic quantities of the solid and
the fluid. For instance, either the mass number M ≡ ρ0

f/ρ
0
s, or the Cauchy number

CY ≡ ρ0
fv

2
0/E, that quantifies the deformations due to the dynamic pressure ρ0

fv
2
0,

may be used for A.

A similar equation to (A.3) holds for each dependent variable, for instance the solid
displacement is written as

u

u0
= Gu

(

x

L
,
v0t

L
;
ρ0
fv

2
0

p0
,
ρ0
fv0L

µ
,
v0√
Lg

,
v0

cf
; ν ,

u0

L
,
ρ0
sgL

E
; A
)

. (A.4)

Remark 27 The dimensionless numbers chosen in (A.3) and (A.4) are not unique, other
numbers could be obtained through a combination of the chosen ones. For instance, the
gravity number G could be replace by the reduced velocity VR = FR

√
G = v0/cs , where

cs =
√

E/ρ0
s is the wave speed in the solid; or the reduced time could be defined using cs

instead of v0 : Ts = L/cs. Another interesting physical parameter is the ratio between cs
and cf , denoted as UR ≡ cs/cf = Mach/VR.

The fluid-structure coupling is expressed in the relations set in this section. Indeed,
the involvement of the dimensionless numbers ν, D ,G ,A in (A.3); and Π, RE , FR ,A in
(A.4) reveals the influence of the solid on the fluid and vice versa.

A.4 Fluid-structure coupling caused by the shock wave

When the primary wave goes through the submarine, the global motion of water due to
the oscillating bubble is not taken into account, and the reference fluid velocity v0 is set
to cf . The reference pressure p0 is set to the magnitude pm of the pressure discontinuity,
defined in (1.1). Typically, a detonation of W = 100 kg of TNT located at a distance
of ds = 100 m from the structure corresponds to p0 = 1 MPa. To compute the global
displacement of the structure, the typical length L is set to the submarine length, typically
100 m, and the material parameters are set to those of steel. Hence, the reduced time of
the solid is Ts = L/cs ≃ 2 10−2 s, with cs ∼ 5 103 m/s.

The order of magnitude of the typical displacement is obtained using the second law of
Newton: the shell is submitted to both the incident pressure forces, and an inertial force
due to the water resistance, that the submarine has to push away. The drag force is not
considered because the global shell motion is slow and so it is marginal compared to the
inertial force. For a cylinder of radius R and length L, it holds

ρsπR
2L ü ≃ −ρfπR2L ü

︸ ︷︷ ︸

added mass of fluid

+ 2πRLpm
︸ ︷︷ ︸

shock wave pressure

,

so that the order of magnitude of u0 is evaluated as

u0 ≃ 2
R

pm
ρs + ρf

T 2
s ∼ 10−2 m.

The resulting orders of magnitude of the values of the various dimensionless parameters
are given in Table A.1, as powers of 10.
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Dimensional parameter g µ cf L v0 ρf E u0 ρs p0

Order of magnitude 1 −3 3 2 3 3 11 −2 4 6

Table A.1: Orders of magnitude of the various physical parameters for the shock wave,
expressed in SI units. Explosion of W = 100 kg of TNT located at ds =
100 m from the shell, at a water depth of ξexp = 100 m. Values in powers
of 10.

Dimensionless parameter RE Mach F2
R VR CY M G D UR Π

Order of magnitude 11 0 3 0 −2 −1 −4 −4 0 3

Table A.2: Orders of magnitude of the various dimensionless parameters for the shock
wave. Explosion of W = 100 kg of TNT located at ds = 100 m from the
shell, at a water depth of ξexp = 100 m. Values in powers of 10.

Using Table A.1, the orders of magnitude of the values of the various dimensionless
parameters are given in Table A.2, in powers of 10.
The high value of the Reynolds number in Table A.2 confirms that the viscous effects can
be neglected. The other values are typical of those for a wave. Table A.2 also stresses a
low value of the Euler number, inverse to Π, which will be of use in Appendix B. Finally,
D = u0/L ∼ 10−4 m indicates that the approximation of small displacements is valid.

A.5 Fluid-structure coupling caused by the bubble oscilla-
tions

For the bubble oscillation phenomenon, the order of magnitude of v0 is obtained using
(1.27), considering only the oscillating part

v0 = ‖∇φ‖ =
R2Ṙ

r2
.

Hence, for R ∼ Rmax and Ṙ ∼ 0.05 cf , it holds

v0 =
(0.05 cf )R2

max

r2
∼ 10−1 m/s ,

for an explosion of W = 100 kg of TNT, at a water depth of ξexp = 100 m, at a distance
ds = 100 m. The reference pressure p0 corresponds to the hydrostatic pressure at a water
depth of 100 m. The typical displacement u0 due to the bubble oscillation is usually larger
than the one due to the primary wave, because the shell globally vibrates due to the
periodic loading. For the typical explosion considered, it is set to u0 ∼ 10−1 m. Table A.3
provides an order of magnitude for each value of the various physical parameters, in powers
of 10.
Using Table A.3, the orders of magnitude of the values of the various dimensionless
parameters are given in Table A.4, also in powers of 10.
Like for the shock wave phenomenon, the Reynolds number is high enough to allow
neglecting viscous effects. The other parameters are quite different from the ones obtained
for the shock wave, in Table A.2. This confirms that the two phenomena behave differently,
though emerging from the same physical phenomenon, namely an underwater explosion.
For typical displacements u0 ∼ 10−1 m, D indicates that the approximation of small
displacements remains relevant.
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Physical parameter g µ cf L v0 ρf E u0 ρs p0

Order of magnitude 1 −3 3 2 −1 3 11 −1 4 5

Table A.3: Orders of magnitude of the various physical parameters for the bubble
oscillation, expressed in SI units. Explosion of W = 100 kg of TNT located
at ds = 100 m from the shell, at a water depth of ξexp = 100 m. Values in
powers of 10.

Dimensionless parameter RE Mach F2
R VR CY M G D UR Π

Order of magnitude 6 −5 −4 −5 −12 −1 −4 −3 0 −6

Table A.4: Orders of magnitude of the various dimensionless parameters for the
bubble oscillation. Explosion of W = 100 kg of TNT located at ds = 100 m
from the shell, at a water depth of ξexp = 100 m. Values in powers of 10.
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Appendix B

Additional study of the shock
wave phenomenon

T
his appendix presents a complementary study to Section 1.2, using the notations defined
in Notations. In Appendix B.1, we introduce a crucial theory for near-field UNDEX:

the Kirkwood-Bethe theory of propagation of shock waves. For far-field UNDEX, this theory
in not used, as the linear acoustic theory is adequate enough. However, it is instructive
to stress the differences between the two models, and especially check that the Kirkwood-
Bethe theory of propagation reduces to linear acoustics under certain assumptions. Then,
in Appendix B.2, we introduce the Rankine-Hugoniot conditions, which provide three
equations relating the fluid quantities at the shock front. We show that extending these
conditions during the relaxation phase (after the shock wave front has passed) is relevant
for far-field UNDEX. This extension at any time permits the computation of the total
energy related to the shock wave, in Appendix B.3.

B.1 Kirkwood-Bethe theory of propagation of shock waves

In Section 1.2.3, we showed that the shock wave propagation is not exactly governed by
the common wave equation. Then, a question naturally arises: what are the propagation
equations for the shock wave produced by an underwater explosion? To obtain these
equations, the starting point is the Euler equations of fluid dynamics: for a perfect fluid
whose state is described at any time t and point M by mass density ρ(M, t), total pressure
p(M, t), velocity v(M, t), internal energy per unit of mass of fluid e(M, t), the conservations
of mass, momentum and energy lead to the following set of equations:







dρ
dt

+ ρ∇ · v =
∂ρ

∂t
+ ρ∇ · v + (v · ∇)ρ = 0 conservation of mass,

dv

dt
+

1
ρ

∇p =
∂v

∂t
+ (v · ∇)v +

1
ρ

∇p = g conservation of momentum,

de
dt

+
p

ρ
∇ · v =

∂e

∂t
+ (v · ∇)e+

p

ρ
∇ · v = 0 conservation of energy,

(B.1a)

(B.1b)

(B.1c)

where g is the gravity. These equations are more general than the wave equation (1.20),
since the latter equation may be obtained from (B.1) by considering a small perturbation
(δρ, δp, δv, δe) with respect to an unperturbed reference state, and then linearising the
system (B.1).
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The Kirkwood-Bethe theory is an analytical approach to shock wave propagation in
water that relies on fundamental equations, such as (B.1) or the laws of thermodynamics.
First, instead of manipulating the total pressure p in the fluid, the enthalpy H is used,
defined as

H := e+
p

ρ
.

Only the variation ω of enthalpy is relevant: ω ≡ ∆H = H −H0, where H0 = e0 + ph/ρ0

is the enthalpy of the unperturbed state. An elementary variation of ω is provided by

dω = de+
dp
ρ

+ pd
(

1
ρ

)

− dH0 ,

where the term −dH0 is kept because ∇H0 = ∇ph/ρ0 = g 6= 0 . Using the second law of
thermodynamics

de = TdS − p d
(

1
ρ

)

,

it comes

dω = TdS +
1
ρ

dp− dH0 .

Behind the shock wave front, the relaxation is assumed to be isentropic, namely dS = 0.
This implies

∇p = ρ∇ω + ρg ,
dp
dt

= ρ
dω
dt

, (B.2)

dρ
dt

=
dρ
dp

dp
dt

=
1
c2

dp
dt

=
ρ

c2

dω
dt

, (B.3)

where c2 =
(

dp
dρf

)

S
is not necessary constant. Using (B.2) and (B.3), (B.1a) and (B.1b)

are rewritten as

∇ · v = − 1
c2

dω
dt

, (B.4)

dv

dt
=
∂v

∂t
+ (v · ∇)v = −∇ω . (B.5)

A new function of the variation of enthalpy ω and the velocity v may be introduced, named
kinetic enthalpy, defined as

Ω := ω +
1
2
v2. (B.6)

Assuming the flow is potential, the velocity is expressed using a velocity potential φ as
v = ∇φ, and so ∇ × v = 0 . This notably implies

∇ω = ∇Ω − (v · ∇)v .

(B.5) then becomes
∂∇φ
∂t

= −∇Ω =⇒ Ω = −∂φ

∂t
+ φ̃ ,

where φ̃ depends only on time t. Redefining the velocity potential φ → φ+ F(φ̃), where
F (φ̃) is an antiderivative of φ̃, allows to write

Ω = −∂φ

∂t
. (B.7)
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Note that the velocity potential is now defined up to an additive constant with respect to
both spatial coordinates and time. Eventually, (B.4) provides

∆φ
(B.6)
= − 1

c2

(
∂Ω
∂t

+ v · ∇Ω − v · dv

dt

)
(B.7)
= − 1

c2

(

−∂2φ

∂t2
− v ·

(
∂v

∂t
+

dv

dt

))

,

∆φ− 1
c2

∂2φ

∂t2
=

1
c2

(

∂v2

∂t
+ v · (v · ∇)v

)

,

∆φ− 1
c2

∂2φ

∂t2
=

1
c2

(

∂v2

∂t
+

1
2

(v · ∇)v2

)

, (B.8)

where v = ‖v‖ = ‖∇φ‖. (B.8) clearly shows a correction compared to the wave equation
for the velocity potential

∆φ− 1
c2

∂2φ

∂t2
= 0 ,

since a (non-zero) right hand side is considered in (B.8). It also reflects that the wave
equation is obtained from a linearisation of the Euler equations, since the right-hand side
of (B.8) is composed of terms of order at least O(v2). (B.8) may be used to numerically
quantify the error in considering the propagation of a far-field UNDEX as given by the
wave equation, by checking that the right-hand side is marginal compared to the term
1
c2

∂2φ
∂t2

of the left-hand side.

So far, the analyses carried out in this thesis focused on the incident pressure induced by
the shock wave, and the variation of fluid velocity uW through the acoustic approximation
(1.12). The other physical quantities related to the shock wave, namely the variation of
density ρW , and specific internal energy eW have not been studied yet. Appendix B.2 aims
to relate the quantities ρW , uW and eW to the incident pressure pW , because the latter is
the quantity that is effectively measured in experiments, and characterised using (1.4).

B.2 Approximated relations for the physical quantities of
the shock wave

In view of the analysis carried out so far, it seems interesting to obtain a relation – at least
an approximated relation – between the variation of density ρW and the incident pressure
pW . Such a relation is commonly termed equation of state. In fluid mechanics, a common
equation of state is the adiabatic Tait equation (Cole, 1948)

p =
ρ0c

2
f

m

(
ρf
ρ0

)m

−
ρ0c

2
f

m
, (B.9)

where m ≃ 7 and ρ0c
2
f/m ≃ 3.2 108 Pa in water. The water depths considered in this

thesis are those of submarine immersions, and so do not exceed 500 meters. Therefore
ph < 5 106 Pa and ph + ρ0c

2
f/m ≃ ρ0c

2
f/m. Then, (B.9) may be approximated by

pW =
ρ0c

2
f

m

(
ρ0 + ρW

ρ0

)m

−
ρ0c

2
f

m
. (B.10)

To check whether the equation of state (B.10) is consistent with the shock wave analysis,
the Rankine-Hugoniot conditions are useful (Hugoniot, 1887 - 1888; Rankine, 1870). These



188 Appendix B: Additional study of the shock wave phenomenon

conditions express the conservations of mass, momentum and energy between the states
on both sides of a shock wave, that is, between the unperturbed fluid, ptot = ph, and the
perturbed one at the shock front, where ptot = pW(t = tr) + ph = pm + ph. The Rankine-
Hugoniot conditions are, at distance R and time t=R/cf, (Hugoniot, 1887 - 1888;
Rankine, 1870; Cole, 1948; Brinkley and Kirkwood, 1947a,b)

pm = ρ0UuW conservation of momentum, (B.11a)

ρ0U = ρf (U − uW) conservation of mass, (B.11b)

eW =
1
2

(pm + 2 ph)

(

1
ρ0

− 1
ρf

)

conservation of energy, (B.11c)

where U is the shock wave velocity. As stated previously, the shock wave is highly supersonic
near the explosion, and so it is likely that, far from the initial bursting point, the shock
wave propagates slightly quicker than a classical wave. Empirically, the shock wave velocity
is approximated by the linear relation (Arons and Yennie, 1948)

U(R) ≃ cf
(

1 + 7.7 10−8pm(R)
)

, (B.12)

where the magnitude pressure, defined in (1.5), is expressed in Pa. (B.12) remains correct
for values of pm up to approximatively 300 MPa. Given the orders of magnitude of the
pressure considered in the case of far-field underwater explosions, it is a fair approximation
to set U ≃ cf , and so (B.11) becomes, at distance R and time t=R/cf,

pm = ρ0 cf uW , (B.13a)

ρ0 cf = (ρ0 + ρW)(cf − uW) , (B.13b)

eW =
1
2

(pm + 2 ph)
(

1
ρ0

− 1
ρ0 + ρW

)

. (B.13c)

These conditions (B.13) do not provide a relation between the quantities during the
relaxation, after the shock front passed through the fluid, but only at the shock front.
Therefore, (B.13) provides a relation between maximum pressure, maximum particle velocity
and maximum density. Arons and Yennie (1948) proposed to extend the Rankine-Hugoniot
conditions during the relaxation, after the shock wave front, as an approximation, at
distance R, at any time

pW ≃ ρ0 cf uW , (B.14a)

ρ0cf ≃ (ρ0 + ρW)(cf − uW) , (B.14b)

eW ≃ 1
2

(pW + 2 ph)
(

1
ρ0

− 1
ρ0 + ρW

)

. (B.14c)

The extension of (B.13a) at any time, (B.14a), results in the plane wave approximation,
which is a relevant approximation in our case, as it corresponds to (1.12), because the after
flow term in (1.12) is negligible (see Section 1.2.2). Assuming the validity of (B.14b) at
any time must be consistent with the Tait equation (B.10), because only one equation of
state can be set. For the shock wave phenomenon, the Tait equation (B.10) provides

ρW = ρ0

(

1 +m
pW

ρ0c2
f

)1/m

− ρ0 . (B.15)
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In the plane wave approximation, (B.14b) is rewritten at any time as

ρW ≃ ρ0

(

1 − pW

ρ0c2
f

)−1

− ρ0 . (B.16)

For pW ≪ ρ0c
2
f (≃ 2 GPa in water), namely at low value of the Euler number, the Tait

equation (B.15) coincides with the extension of the Rankine-Hugoniot condition (B.16) in
the plane wave approximation, leading to the approximate relation

ρW ≃ pW

c2
f

. (B.17)

Finally, (B.14c) at any time provides

eW ≃ 1
2
pW + 2 ph

ρ0

(

1 −
(

1 +
ρW

ρ0

)−1
)

,

using (B.17) and the fact that pW ≪ ρ0c
2
f , it comes

eW ≃ 1
2
pW + 2 ph

ρ0

(

pW

ρ0c2
f

)

.

Conclusion. In a configuration such that pm(r) ≪ ρ0c
2
f (≃ 2 GPa in water), which is

the case in this work, the quantities characterising the shock wave are approximated, at a
distance r from the explosion, for any time such that t− r/cf ≤ 7τ(r), by

pW(r, t) = pm(r)
(

α1 e
−β1 tr/τ(r) + α2 e

−β2 tr/τ(r)
)

H(tr) , (B.18a)

ρW ≃ pW

c2
f

, (B.18b)

uW ≃ pW

ρ0 cf
, (B.18c)

eW ≃ 1
2
pW + 2 ph

ρ0

(

pW

ρ0c2
f

)

, (B.18d)

pW ∼ 106 Pa ≪ ρ0c
2
f ∼ 109 Pa , ρW ∼ 1 kg/m3 ≪ ρ0 ∼ 103 kg/m3 , (B.18e)

eW ∼ 1 m2/s2 ≪ c2
f ∼ 106 m2/s2 , uW ∼ 1 m/s ≪ cf ∼ 103 m/s , (B.18f)

where tr ≡ t − r/cf is the retarded time. The set of relations (B.18) permits the
computation of the total energy related to the shock wave. This computation is performed
in Appendix B.3, where, for once, we do not assume the UNDEX to be remote.

B.3 Computation of the total energy related to the shock
wave

In this section, we summarise the steps carried out in (Arons and Yennie, 1948) to compute
the total energy flow related to the shock wave (see Figure 1.3), based on the Rankine-
Hugoniot conditions. In the whole section, we do not assume the explosion to be remote.
The total energy flow due to the shock wave that goes through a sphere of radius R and
centre the initial bursting point is composed of three terms:
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• the compressional acoustic energy, computed in Section 1.2.2, that corresponds to an
energy travelling through the fluid, not stored in the latter but radiated at infinity;

• the kinetic energy of the mass of fluid moving past the point of observation;

• the elevation of internal energy of the mass of fluid relatively to the initially
unperturbed state. This elevation notably manifests itself in the variation of
temperature of the fluid.

Using the notations defined in Notations, the total energy flux F due to the shock wave,
through a sphere of radius R and centre the initial bursting point, is then given by

F (R) =
∫ t1

0

(
pW(R, t)
ρf (R, t)
︸ ︷︷ ︸

acoustic

+
1
2
uW(R, t)2

︸ ︷︷ ︸

kinetic

+ eW(R, t)
︸ ︷︷ ︸

internal

)

ρf (R, t)uW(R, t) dt , (B.19)

where eW denotes the increase in internal energy per unit of mass of fluid relatively to the
unperturbed state, and t1 is an arbitrary upper limit of integration, that is, for instance,
set such that the retarded time t1 − R/cf is equal to 7τ (see Section 1.2.1). Note that
the dependence of the fluid density on R and t is taken into account. The density of the
initially unperturbed fluid is denoted ρ0 in the following. The acoustic approximation
(1.12) is rewritten as

uW(R, t) =
pW(R, t)
ρ0 cf

+
1

Rρ0

∫ t

0
pW(R, θ) dθ ≡ pW(R, t)

ρ0 cf
+
I(R, t)
Rρ0

, (B.20)

where the second term in (B.20) is often referred to as the after-flow term in the particle
velocity (Arons and Yennie, 1948). Using (B.20), the total flow of energy associated to the
flux (B.19) holds as

E = 4πR2

[
∫ t1

0

(

pW

ρf
+
u2

W

2
+ eW

)

ρfpW

ρ0cf
dt+

1
R

∫ t1

0

ρf
ρ0

(

pW

ρf
+
u2

W

2
+ eW

)

I(R, t) dt

]

.

(B.21)
(B.21) is composed of two terms that depend on the incident pressure pW = p− ph, the
particle velocity uW and the increment eW . The extension of the Rankine-Hugoniot
conditions (B.11) at any time is then useful: at distance R and time t=R/cf,

pW ≃ ρ0UuW conservation of momentum, (B.22a)

ρ0U ≃ ρf (U − uW) conservation of mass, (B.22b)

eW ≃ 1
2

(pW + 2 ph)

(

1
ρ0

− 1
ρf

)

conservation of energy. (B.22c)

Using (B.22), the term u2
W/2 + eW is compared to pW/ρf in (B.21):

pW/ρf
u2

W/2
(B.22a)≃ 2

ρ0

ρf

ρ0 U
2

pW
, (B.23)

eW

(B.22c)≃ pW + 2 ph
2

(

1
ρ0

− 1
ρf

)

(B.22b)≃ pW + 2 ph
2

uW

Uρ0

(B.22a)≃ pW + 2 ph
2

pW

(Uρ0)2
, (B.24)

pW/ρf
eW

≃ 2
ρ0

ρf

ρ0 U
2

pW + 2 ph
. (B.25)

It is noticeable that the extension of the Rankine-Hugoniot conditions implies that eW ≃
u2

W/2 when pW ≫ ph. At low values of pW compared to ρ0U
2 ≃ ρ0c

2
f (≃ 2 GPa in water),
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i.e., at low values of the Euler number, the ratios (B.23) and (B.25) show that u2
W/2 + eW

is marginal compared to pW . Then, the contribution u2
W/2 + eW in (B.21) has to be taken

into account only for very high values of pW .
Therefore, the second term in the right-hand side of (B.21) does not need to take into

account the sum u2
W/2 + eW , because the quantity I(t, R) is initially 0 and does not have

an appreciable value before a certain amount of time, during which the pressure pW is
exponentially plummeting, and so after which it is reasonable to consider pW ≪ ρ0c

2
f .

When the shock wave velocity U may be associated to cf , the total flow of energy holds
as, in the approximation eW ≃ u2

W/2 ≃ pW
2/(2 c2

fρ
2
0) and ρf ≃ ρ0 ,

E(R) ≃ 4πR2

ρ0

[
∫ t1

0

(pW)2

cf

(

1 +
pW

ρ0c2
f

)

dt+
1
R

∫ t1

0
pWI(t, R) dt

]

. (B.26)

The right-hand side of (B.26) is composed of two terms: the first one is a radiated energy,
whereas the second one represents an energy stored reversibly in the region covered by the
shock wave. This second term shows that the shock wave is not an ideal wave, an issue
discussed in Section 1.2.3. Obtaining (B.26) is the first step to be performed to get the
values presented in Figure 1.3. We will not go further into the theoretical partitioning of
the energy for the shock wave, and we kindly suggest the reader to refer to (Arons and
Yennie, 1948) for more details.
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Appendix C

Proofs and calculations

C.1 Wave equation for the shock wave incident pressure

This section checks to what extent the shock wave incident pressure (1.3) satisfies the wave
equation (1.20). We consider only the regular exponential part, so the pressure discontinuity
is not taken into account. For the double-exponential fit, the incident pressure is written
in the form

pW(r, t) = Pr−a1 (α1 exp (−Ara2(t− r/cf )) + α2 exp (−B ra2(t− r/cf ))) ,

pW(r, t) ≡ pW1(r, t) + pW2(r, t) ,

where some new letters have been introduced to ease the notations:

P ≡ K1W
a1/3 , A ≡ β1K

−1
2 W−(1+a2)/3 , B ≡ β2K

−1
2 W−(1+a2)/3 .

First, the Laplacian is computed in spherical coordinates:

∆pW =
2
r

∂pW

∂r
+
∂2pW

∂r2
,

∂pW

∂r
= −a1

r
pW +

(

−a2 t r
a2−1 + (a2 + 1)

ra2

cf

)

(ApW1 +B pW2) ,

∂2pW

∂r2
=
a1

r2
pW − a1

r

∂pW

∂r
+

(

a2(1 − a2)t ra2−2 + a2(a2 + 1)
ra2−1

cf

)

(ApW1 +B pW2)

+

(

−a2 t r
a2−1 + (a2 + 1)

ra2

cf

)(

A
∂pW1

∂r
+B

∂pW2

∂r

)

.

For k ∈ {1, 2} ,

∂pWk

∂r
= −a1

r
pWk +

(

−a2 t r
a2−1 + (a2 + 1)

ra2

cf

)

γk pWk , γk ≡ Aδ1k +B δ2k .

The time derivatives of pW are

∂pW

∂t
= −ra2(ApW1 +B pW2) ,

∂2pW

∂t2
= r2a2(A2 pW1 +B2 pW2) .
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The left-hand side of the wave equation is composed of a sum of terms of different powers
of r. This sum is zero for all r if and only if the coefficient of each power is zero, that is

pW r−2
(

a1 + a2
1 − 2a1

)

= 0 , (C.1a)

(ApW1 +B pW2) ra2−2 (a1a2 + a2(1 − a2) + a2a1 − 2a2) t = 0 , (C.1b)

(ApW1 +B pW2) ra2−1 (−a1(a2 + 1) + a2(a2 + 1) − a1(a2 + 1) + 2(a2 + 1))
1
cf

= 0 ,

(C.1c)
(

A2 pW1 +B2 pW2

)

r2a2−2
(

a2
2

)

t2 = 0 , (C.1d)
(

A2 pW1 +B2 pW2

)

r2a2−1 (−2a2(a2 + 1))
t

cf
= 0 , (C.1e)

(

A2 pW1 +B2 pW2

)

r2a2

(

(a2 + 1)2 − 1
) 1
c2
f

= 0 , (C.1f)

and so the system to be satisfied is







a1 + a2
1 − 2a1 = 0 ,

a1a2 + a2(1 − a2) + a2a1 − 2a2 = 0 ,
−a1(a2 + 1) + a2(a2 + 1) − a1(a2 + 1) + 2(a2 + 1) = 0 ,

a2
2 = 0 ,

−2a2(a2 + 1) = 0 ,
(a2 + 1)2 − 1 = 0 ,

(C.2)

whose unique solution is (a1 = 1, a2 = 0).

C.2 Derivation of a simple spherical bubble model, incom-
pressible flow

C.2.1 Hypotheses of the modelling

In this section, the dynamics of an oscillating bubble B that migrates toward an infinitely
remote water surface is considered. The equations of motion are obtained in the case of a
spherical bubble, moving in an infinite perfect fluid, where the flow is assumed to be
incompressible and potential. In particular, the last two hypotheses imply

v = ∇φ , ∇ · v = 0 =⇒ ∆φ = 0 ,

where φ is the velocity potential and ∆ denotes the spatial Laplacian. For a function
f(r, θ, ϕ), it is recalled that

∆f =
1
r2

∂

∂r

(

r2∂f

∂r

)

+
1

r2 sin θ
∂

∂θ

(

sin θ
∂f

∂θ

)

+
1

r2 sin2 θ

∂2f

∂ϕ2
.

To take advantage of the spherical and axial symmetries, the study is performed in a
vertical plane section containing the bubble centre, and so the initial bursting point (see
Figure C.1). The velocity potential φ must satisfy







φ(r, θ, 0) = 0 ∀r > ac ,∀θ ∈ [0, π] ,

lim
r→∞

φ(r, θ, t) = 0 ∀t ≥ 0 ,∀θ ∈ [0, π] .
(C.3)
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Figure C.1: Cross-section of the (assumed spherical) gas bubble created by an
underwater explosion.

The first condition of (C.3) reflects the fact that the system is at initial rest, when the
explosion occurs. The second condition, termed decay condition, means that, very far away,
the fluid is not affected by the explosion.

The equations of motion of the bubble can be obtained either using a Lagrangian
formalism, like e.g., in (Doinikov, 2002), or directly from the principle of conservation of
the total energy. In both methods, the velocity potential φ must be specified beforehand.

C.2.2 Velocity potential

The system considered is a spherical gas bubble that moves vertically, along ez, toward
the water surface, and whose surface oscillates. In spherical coordinates (r, θ, ϕ), with a
moving origin at the centre of the bubble, the continuity of the normal velocity at the
bubble surface implies, at any non-negative time t,

∇φ · er|r=R(t) =
∂φ

∂r

∣
∣
∣
∣
r=R(t)

=
(

Ṙ(t)er + Ż(t)ez
)

· er = Ṙ(t) + Ż(t) cos(θ) , (C.4)

with R(t) being the bubble radius and Z(t) the bubble centre position, defined as Z(t) =
ξexp − ξB(t), where ξexp is the positive depth of the original bursting point, and ξB(t) is
the positive depth of the bubble centre. For now, we set a priori Z(0) = 0 and Ż(0) = 0.
Because of the axial symmetry, it is useful to decompose the velocity potential in the form

φ(r, θ, t) =
∞∑

n=0

φn(r, t)Pn(cos θ) ,
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where Pn are Legendre polynomials, defined as solutions to Legendre’s differential equations:

(1 − x2)
d2Pn(x)

dx2
− 2x

dPn(x)
dx

+ n(n+ 1)Pn(x) = 0 , ∀x ∈ [−1, 1] , ∀n ∈ N . (C.5)

The Laplacian of φ is then given by

∆φ =
1
r2

∂

∂r

(

r2∂φ

∂r

)

+
1

r2 sin θ
∂

∂θ

(

sin θ
∂φ

∂θ

)

=
∞∑

n=0

(

∂2φn
∂r2

Pn(cos θ) +
2
r

∂φn
∂r

Pn(cos θ) +
1

r2 sin θ
φn

∂

∂θ

(

−(sin θ)2P ′
n(cos θ)

)
)

=
∞∑

n=0

(

∂2φn
∂r2

Pn(cos θ) +
2
r

∂φn
∂r

Pn(cos θ)

+
1
r2
φn
(

(1 − (cos θ)2)P ′′
n (cos θ) − 2 cos θP ′

n(cos θ)
))

,

using (C.5) with x = cos θ, it holds

∆φ =
∞∑

n=0

(

∂2φn
∂r2

Pn(cos θ) +
2
r

∂φn
∂r

Pn(cos θ) − n(n+ 1)
r2

φnPn(cos θ)

)

. (C.6)

(C.6) provides a set of uncoupled equations:

r2∂
2φn
∂r2

+ 2r
∂φn
∂r

− n(n+ 1)φn = 0 , ∀n ∈ N . (C.7)

The solutions of (C.7) that allow φ to satisfy (C.3) are

φn =
an(t)
rn+1

.

The coefficients an are obtained using the equation of continuity (C.4):

∂φ

∂r

∣
∣
∣
∣
r=R(t)

=
∞∑

n=0

∂φn
∂r

(R, t)Pn(cos θ) = Ṙ(t) + Ż(t) cos θ , ∀t ≥ 0 .

The Legendre polynomials are L2([−1, 1])-orthogonal functions, so using P0(X) = 1 and
P1(X) = X, it comes

− 1
R2(t)

a0(t) = Ṙ(t) , − 2
R3(t)

a1(t) = Ż(t) , an(t) = 0 , ∀n ≥ 2 ,

and then

φ(r, θ, t) = −R2(t)Ṙ(t)
r

− R3(t)Ż(t)
2r2

cos θ . (C.8)

This result is obtained under the hypothesis that the water surface is remote, and hence
disregarded. (C.8) shows that in the case of a spherical oscillating bubble, vertically
translating towards a surface located infinitely far away, the solution to ∆φ = 0 is
composed of only two terms: a source term φ0 for the bubble oscillation and a dipole
φ1 cos(θ) for the translation (Landau and Lifshitz, 1987). In the following, the total energy
of the system is obtained using (C.8), and the equations of motion are inferred from the
law of conservation of this total energy.
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C.2.3 Equations of motion from the energy conservation law

The kinetic energy of the fluid is defined as

Ek :=
ρf
2

∫

V
|v|2 dV =

ρf
2

∫ ∞

R

∫ π

0
|∇φ|2 2πr2 sin θ dθ dr .

Using (C.8), it comes

Ek =
ρf
2

2π
∫ ∞

R
2
R4(t)Ṙ2(t)

r2
+

2
3
R6(t)Ż2(t)

r4
+

4
3
R6(t)Ż2(t)

4r4
dr

=
1
2

(
4
3
πR3ρf

)(

3 Ṙ2 +
Ż2

2

)

. (C.9)

Since Ṙ is the velocity of the oscillation and Ż that of the translation, the quantities
4πρfR3 and (2π/3)ρfR3 correspond to the added masses of oscillating and translational
motions, respectively. The purpose is now to compute the power of the various forces.
First, the power of the pressure forces, derivative of the work Wp with respect to the time,
is computed:

dWp

dt
= −

∫

Γf

v · n p dS ,

where p is the fluid pressure, Γf is the boundary of the fluid domain Ωf , and n is the
outward normal to Ωf . Considering a large enough sphere Sr of radius r > sup

t>0
[R(t)],

centred at O, the time derivative of the work Wb is

dWp

dt
=
∫

SR

∂φ

∂r
PB dS − lim

r→∞

∫

Sr

∂φ

∂r
p dS ,

where SR and PB denote the bubble surface and the pressure on this surface, respectively.
The pressure p at point M(r, θ, ψ) ∈ Sr, far away from the bubble, is the hydrostatic
pressure: p = ρfgξM + P0 where ξM is the water depth at M and P0 is the atmospheric
pressure. Using ξM = ξexp − Z(t) − r cos θ, it comes p = ρfg(ξatm + ξexp − Z(t) − r cos θ),
with ξatm ≡ P0/(ρfg) , ξair ≃ 10 m. Therefore, using (C.8),

dWp

dt
= 4πR2ṘPB − 4πR2Ṙρfg(ξatm + ξexp − Z) +

2
3

2πR3ρfgŻ

= 4πR2Ṙ(PB − Pexp) + 4πR2ṘρfgZ +
4
3
πR3ρfgŻ ,

where Pexp ≡ ρfg(ξatm + ξexp) is the hydrostatic pressure at the initial bursting point. The
associated work is then simply given by

Wp =
4
3
πR3(PB − Pexp + ρfgZ) + C ,

where C is a constant independent of time t. In order to be closer to the experimental
results, a force reflecting the fluid resistance has to be taken into account: a drag force
of magnitude FD = (1/2)ρfπR2CDŻ

2, opposed to the motion, proportional to the cross
section area of the sphere and to the square of the vertical migration velocity. CD is termed
drag coefficient, and is set to 2.25 on the basis of experimental results. According to (Geers
and Park, 2005) this value of CD was first obtained in (Hicks, 1970). The power of the
drag force is

dWD

dt
= FD · Żez = −1

2
ρfπCDR

2Ż3 .
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If the energy losses due to both thermal exchanges and radiation of secondary waves are
not taken into account, the conservation of the total energy of the fluid over time provides
(denoting by U the potential energy):

d
dt

(Ek + U) =
d
dt

(Ek −WP −WD) = 0 .

After division by 2/3πR3ρf , it comes

0 =
6
R
Ṙ

(

3
2
Ṙ2 +

Ż2

4

)

+ 6ṘR̈+ ŻZ̈ − 6
Rρf

Ṙ(PB − Pexp) − 6
R
Ṙ gZ − 2gŻ +

3
4
CD

Ż3

R
.

(C.10)

Actually, (C.10) does not suffice to obtain the equations of motion of the bubble. It is
then useful to also consider the momentum pz of the bubble in the direction ez:

pz =
dEk
dŻ

=
2
3
πR3ρf Ż , (C.11)

and then, applying the second law of Newton to the bubble subjected to the buoyancy and
drag forces, it comes

dpz
dt

=
4
3
πR3ρfg − 1

2
ρfπCDR

2Ż2 . (C.12)

Combining the time derivative of (C.11) and (C.12), it holds, after division by 2/3πR3ρf ,

3
Ṙ

R
Ż + Z̈ = 2g − 3

4
CD

Ż2

R
. (C.13)

Hence, some terms in (C.10) vanish, and the latter becomes, after division by 6Ṙ/R ,

RR̈+
3
2
Ṙ2 =

1
ρf

(PB − Pexp) +
Ż2

4
+ gZ . (C.14)

Equations (C.13) and (C.14) are the coupled equations of motion for the spherical sphere
under the hypotheses of perfect fluid, incompressible and potential flow. To solve (C.14),
it is necessary to specify PB, the pressure at the bubble surface. For a perfect fluid, PB

is linked to the internal pressure within the gas Pg and the surface tension σ. For an
underwater explosion, the pressure values are so high that the effects of surface tension are
marginal, and so PB is simply set to the internal pressure of the gas. In the simplest case,
considering the pressure within the gas as uniform and the process expansion/contraction
as adiabatic, the relation of a polytropic process holds

PB = κc

(
Vc
V

)γ

= κc

(
ac
R

)3γ

, (C.15)

where γ is the ratio of the heat capacity at constant pressure to heat capacity at constant
volume, and κc is a coefficient related to the charge. For instance, for TNT, the empirical
values of these coefficients are (Best, 2002; Arons and Yennie, 1948) (assuming a typical
TNT density of 1.654 g/cm3)

γ ≃ 1.23 to 1.25 , κc ≃ 1.35 109 Pa .
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Finally, the equations of motion are:

3
Ṙ

R
Ż + Z̈ +

3
4
CD

Ż2

R
= 2g , (C.16a)

RR̈+
3
2
Ṙ2 − κc

ρf

(
ac
R

)3γ

= −Pexp

ρf
+
Ż2

4
+ gZ . (C.16b)

To be numerically implemented, the set of equations (C.16) must be supplemented with
initial conditions.

C.2.4 Initial conditions of the bubble model

The equations of motion (C.16) are solvable if suitable initial conditions are also provided.
Basic intuition would suggest to set those initial conditions to Z(0) = 0, Ż(0) = 0,
R(0) = ac and Ṙ(0) = 0. However, these initial conditions lead to numerical results that
differ from the experimental ones, notably regarding the maximum radius of the bubble
(Best, 2002; Leblond, 2007).

To deal with this issue, the initial conditions are instead set such that the maximum
radius numerically predicted corresponds to the one experimentally measured, given by
(1.25). This maximum radius may be obtained via energy conservation arguments, following
the steps given in (Best, 2002).

If the vertical motion is not taken into account during the first oscillation, the velocity
potential and the kinetic energy of the fluid are given by (C.8) and (C.9) with Ż = 0 :

φ(r, θ, t) = −R2(t)Ṙ(t)
r

, Ek = 2πρfR3Ṙ2 .

The potential energy of the bubble when it has a radius R corresponds to the work done
in expanding radius from zero to R, against the hydrostatic pressure,

Wp =
4
3
πR3Pexp ,

where Pexp is the hydrostatic pressure at the initial bursting point. The internal energy of
the gas within the bubble is equal to the work done in compressing this gas from infinite
volume, zero pressure, to the bubble volume VB at radius R adiabatically:

Ui = −
∫ VB

∞
Pg dV .

Using (C.15) and recalling that PB = Pg because surface tension effects are marginal, it
comes

Ui = −
∫ VB

∞
κc

(
Vc
V

)γ

dV =
(

4
3
π

)1−γ κc(Vc)
γ

γ − 1
R3(1−γ) .

It is noticed in (Best, 2002) that photographic records of underwater explosions suggest that
the explosive mass is not totally converted to gas upon detonation, some solid remnants
being observed. Assuming that a given proportion l of the explosive mass is converted to
gas, the internal energy is written as

Ui =
(

4
3
π

)1−γ κW γ

γ − 1
R3(1−γ) ,
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where κ ≡ κc(ρ−1
e l)γ and ρe denotes the mass density of the explosive material. If ε denotes

the (unknown) amount of energy provided to the bubble per unit of explosive mass, then
the total energy in the bubble oscillation is εW , and we have

Ek +Wp + Ui = εW (C.17)

The dimensionless form of (C.17) is obtained using distance and time scales

Rsc =

(

3εW
4πPexp

)1/3

, Tsc = Rsc

(

3ρf
2Pexp

)1/2

,

and is then given by
R̃3 ˙̃R2 + R̃3 + µR̃−3(γ−1) = 1 , (C.18)

where R̃ ≡ R/Rsc and µ ≡ κP γ−1
exp ε

−γ/(γ − 1) . The maximum and minimum radii solve

(C.18) with ˙̃R = 0 ; i.e.:
R̃3 + µR̃−3(γ−1) = 1 . (C.19)

In the case where µ ≪ 1, an approximation of R̃min and R̃max is given by (Best, 2002)

R̃min ≃ µ1/(3(γ−1)) , R̃max ≃ 1 − µ/3 + (2 − 3γ)µ2/9 , (C.20)

and so the values of R̃min and R̃max may be obtained by numerically solving (C.19) with a
fixed-point iteration method with initial guesses given by (C.20). Then, once the value of
R̃max has been obtained, the value of ε is set so that the maximum radius Rmax matches
that observed experimentally. For TNT, the values of κ, ε and γ are approximately (Best,
2002; Arons and Yennie, 1948)

γ ≃ 1.25 , ε ≃ 2.05 106 J/kg , κ ≃ 1.45 105 SI.

Remark 28 At a water depth ξexp = 100 m, the order of magnitude of µ is

µ ≃ 1.5 105 ·
(
106
)0.25 ·

(
2 106

)−1.25

0.25
≃ 0.25 ,

so the approximation µ ≪ 1 is not exactly valid, which implies that the initial guess would
not be very efficient.

Now that the initial conditions have been set, the bubble model developed in this
section can be numerically computed using e.g., an explicit Runge-Kutta fourth-order
algorithm (Leblond, 2007). This numerical solution notably allows to compute the pressure
induced by the oscillating bubble.

C.2.5 Pressure induced by the oscillating sphere

The effect of the gas bubble on a remote submarine hull is characterised by the pressure
load pB it generates. At a given point P (r, θ, ψ) in the fluid, the usual Euler momentum
equation provides, in terms of total quantities,

∂v

∂t
+ (v · ∇) v = − 1

ρf
∇p+ g , (C.21)
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which becomes, since the flow is potential,

∇
(

∂φ

∂t
+

1
2

v · v +
1
ρf
p− g ξP

)

= 0 ,

and so the generalised Bernoulli equation holds as

∂φ

∂t
+

1
2

v · v +
1
ρf
p− g ξP = C(t) , (C.22)

where the constant C does not depend on the spatial coordinates and the limit of (C.22)
for r → ∞ provides C(t) = 0. Note that the partial time derivative ∂/∂t in (C.22) is
expressed in a fixed coordinate system. In the bubble frame (r, θ, ϕ), the convected time
derivative

[
∂φ
∂t

]

B
is linked to ∂φ

∂t through

∂φ

∂t
=
[
∂φ

∂t

]

B

− Ż ∇φ · ez.

Hence, (C.22) is rewritten

p

ρf
= −

[
∂φ

∂t

]

B

+ Ż
∂φ

∂Z
− 1

2
|∇φ|2 + g ξP .

The various terms are computed using (C.8):

−
[
∂φ

∂t

]

B

=
1
r

∂(R2Ṙ)
∂t

+
1

2r2

∂(R3Ż)
∂t

cos θ ,

∇φ · ez =
∂φ

∂r
cos θ − 1

r

∂φ

∂θ
sin θ ,

where it was used that ez = cos θer − sin θeθ . Finally, the pressure is expressed as

p

ρf
= g ξP +

R

r

(

2Ṙ2 +RR̈
)

+
R2

2r2

(

3ṘŻ +RZ̈
)

cos θ

+ Ż

(

R2Ṙ

r2
+
R3Ż

r3
cos θ

)

cos θ − Ż

r

R3Ż

2r2
sin2 θ

− 1
2

(

R4Ṙ2

r4
+ 2

R5ṘŻ

r5
cos θ +

R6Ż2

r6
cos2 θ +

R6Ż2

4r6
sin2 θ

)

. (C.23)

What is of interest in the following is the behaviour of the pressure far from the explosion,
namely for r ≫ sup

t>0
[R(t)]. In that case, (C.23) provides the approximation

p(P (r, θ, ψ), t) ∼
r→∞

ρfg ξP +
ρf
r

∂(R2Ṙ)
∂t

= ρfg ξP +
ρf

4πr
∂2VB

∂t2
,

where VB(t) = 4π
3 R

3(t) is the bubble volume.

C.3 Kirchhoff’s retarded potential formula

In this section, it is shown that the Kirchhoff retarded potential formula (2.17)

4πε(P )φ(P, t) = −
∫

Γ

{
1
r

∂φ

∂n
(Q, tr) +

1
r2

∂r

∂n
φ(Q, tr) +

1
cr

∂r

∂n
φ̇(Q, tr)

}

dSQ ,
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corresponds to the BIE (2.14)

ε(P )φ(P, t) = −
∫

Γ

{(

G(r, ·) ⋆ ∂φ
∂n

(Q, ·)
)

(t) −
(
∂G

∂n
(r, ·) ⋆ φ(Q, ·)

)

(t)
}

dSQ , (C.24)

the fundamental solution G being given by (2.4), i.e.:

G(y, t,x) ≡ G(r, t) =
δ(t− r/c)

4πr
.

Going back to a mathematical formalism, we recall that a causal distribution S is a
member of D′(R+), dual space of D(R+), the latter denoting the space of smooth (infinitely
differentiable) functions with compact support in R

+. We also recall that the convolution
product S ⋆ T of two causal distributions is a causal distribution defined by

〈S ⋆ T, ϕ〉 := 〈S, 〈T, ϕ(x+ y)〉x〉y ∀ϕ ∈ D(R+) ,

where 〈T, ϕ〉 denotes the application of the distribution T on the test function ϕ. Then,
(C.24) is to be understood in the sense of distributions, and the first term in its right-hand
side is directly computed using the property of the δ distribution

δ ⋆ T = T ∀T ∈ D′(R+) ,

which leads to

G(r, t) ⋆
∂φ

∂n
(Q, t) =

1
4πr

∂φ

∂n
(Q, t− r/c) . (C.25)

For the second term in the right-hand side of (C.24), it comes:

∂G

∂n
(r, t) ⋆ φ(Q, t) =

∂r

∂n

∂G

∂r
(r, t) ⋆ φ(Q, t)

=
∂r

∂n

(

−δ(t− r/c)
4πr2

+
1

4πr
∂L

∂r
(r)
)

⋆ φ(Q, t), (C.26)

where
]0,∞] −→ D′(R+)

L : r 7−→ δ(t− r/c) .

We then compute:

∂L

∂r
(r) ⋆ φ(Q, t) =

(

lim
h→0

L(r + h) − L(r)
h

)

⋆ φ(Q, t)

= lim
h→0

(
δ(t− (r + h)/c) − δ(t− r/c)

h

)

⋆ φ(Q, t)

= lim
h→0

(
φ(Q, t− (r + h)/c) − φ(Q, t− r/c)

h

)

=
∂Kt

∂r
(r) , (C.27)

where, for any t ∈ R
+,

]0,∞] −→ R

Kt : r 7−→ φ(t− r/c) .

Then, if φ̇(·) denotes the derivative of φ(·) with respect to its variable,

∂Kt

∂r
(r) =

∂(t− r/c)
∂r

φ̇(t− r/c) = −1
c
φ̇(t− r/c) . (C.28)
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Combining all the previous results (C.25), (C.26), (C.27), (C.28), the sought equation is
obtained:

ε(P )φ(P, t) = −
∫

Γ

1
4πr

∂φ

∂n
(Q, tr) +

∂r

∂n

(
1

4πr2
φ(Q, tr) +

1
4πcr

φ̇(Q, tr)
)

dSQ ,

which is meaningful in the sense of functions, and precisely corresponds to (2.17).

C.4 The acoustic breathing sphere: analytical solution

In this appendix, the (radially symmetric) analytical solution of the breathing sphere is
derived in a convenient format, following classical techniques (see e.g., Junger and Feit,
1986). The notations defined in Section 2.6.1 are used. The prescribed velocity (2.41)
being a linear combination of data u(t) of the form u(t) = u(t;ω) = u0 sin(ωt) (t ≥ 0), it is
sufficient here to consider one of such data. The Laplace transform φ̄(r, s) of the velocity
potential solves the radially symmetric wave equation

1
r2

∂

∂r

(

r2∂φ̄

∂r

)

=
s2

c2
φ̄ ,

with boundary condition
∂φ̄

∂r
(a, s) = ū(s) = u0

ω

s2 + ω2
,

and vanishes as r → ∞; a straightforward derivation yields the solution

φ̄(r, s) = − a2 esa/c

1 + sa/c

e−sr/c

r
ū(s;ω) .

The pressure field is then

p̄(r, s) = −ρcφ̄(r, s) = ρc
sa2

(c+ sa)r
es(a−r)/c ū(s;ω) .

In particular, we have on the surface

p̄(a, s) = ρc
sa

c+ sa
ū(s;ω) . (C.29)

The solution in the time domain can then be retrieved by inverse Laplace transformation.
In particular, the pressure on the surface is

p(a, t) = ρcaL−1
(

1
c+ sa

)

⋆ (u̇(t;ω) + u(0;ω)) = ρcu0 ω e
−ct/a ⋆ cos(ωt) , (C.30)

where ⋆ denotes the time convolution of causal functions, defined by

(u ⋆ v)(t) =
∫ t

0
u(t− τ)v(τ) dτ =

∫ t

0
v(t− τ)u(τ) dτ = (v ⋆ u)(t) , t ≥ 0 .

After effecting two integrations by parts, we finally obtain

p(a, t) = ρcu0
κ

1 + κ2

(
κ sin(ωt) + cos(ωt) − e−ωt/κ ) , κ :=

ωa

c
. (C.31)

For a fixed value of ω, the analytical expressions (C.29) and (C.31) allow to assess the
accuracy of the frequency-domain FM-BEM and the Z-BEM procedure, respectively.
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Remark 29 The analytical expression of p(a, t) can be obtained for any prescribed velocity
u(t) provided the convolution in (C.30) can be computed analytically. In particular, the
accuracy of the Z-BEM procedure presented in Chapter 2 was checked with various choices
for u(t), such as a combination of cosines and sines or a delayed unit step function.

Remark 30 The limiting case κ → ∞ in (C.31) yields the high-frequency behaviour of
the surface pressure. We find p(a, t) = ρcu(t) + o(κ−1), which is the expected behaviour for
a radiation problem.

C.5 Semi-analytical solution for a rigid infinite cylinder

This section briefly summarises the steps to obtain the semi-analytical solution for a rigid
infinite cylinder, see e.g., (Iakovlev, 2004) for more details. Consider a rigid infinite cylinder,
of radius a and axis ez, facing the wave generated by a remote underwater explosion. The
plane perpendicular to the cylinder containing the explosion locus is denoted P ≡ {z = 0}
(see Figure C.2).

θ

Fluid: c = 1500 m/s, ρ = 1000 kg/m3

ϕi , p i

a

L

Standoff
point, A

d0 = 100 m

Orthogonal
point, B

Shadow
point, C W = 100 kg

Figure C.2: Infinite cylinder facing an underwater explosion.

The problem is studied for z ∈ [−L,L], using cylindrical coordinates (r, θ, z). Using
a classical separation of variables approach in (2.1), the incident (known) and reflected
(unknown) pressures are expressed as Fourier series in z and θ:

pref(r, θ, z, t) =
∞∑

m=0

∞∑

n=0

pref
m,n(r, t) cos(nθ) cos(m̂z) , (C.32a)

pinc(r, θ, z, t) =
∞∑

m=0

∞∑

n=0

pinc
m,n(r, t) cos(nθ) cos(m̂z) , (C.32b)

where m̂ ≡ πm/L. The above decomposition implicitly assumes the pressures to be
2L-periodic in z. For underwater explosions, the incident pressure, obtained by expressing
(2.43) in cylindrical coordinates, is not 2L-periodic (since it is a spherical wave). To
bypass this difficulty, the problem is artificially set as periodic by considering simultaneous
explosions with sources along the z direction separated by a distance 2L and of identical
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strength. Then, for a short enough duration T , the solution for z ∈ [−L,L] results only
from the source located in the z = 0 plane, because of the finite wave velocity. Conversely,
for a chosen time interval [0, T ], the length L, which may be arbitrarily chosen, must be
set large enough so that the solution for z ∈ [−L,L] is not influenced by the other sources.

Using the expression of the Laplacian in cylindrical coordinates

∆f =
1
r

∂

∂r

(

r
∂f

∂r

)

+
1
r2

∂2f

∂θ2
+
∂2f

∂z2
,

the wave equation for the Laplace transforms p̄ref
m,n(·, s) of the reflected pressure reads

[

∂2

∂r2
+

1
r

∂

∂r
−
(

n2

r2
+ k2

m

)]

p̄ref
m,n = 0 , m, n ≥ 0 , (C.33)

with km :=
√

m̂2 + s2/c2. The solution to (C.33) that decays as r → ∞ and satisfies the
boundary condition

∂p̄ref
m,n

∂r
(a, s) = −

∂p̄inc
m,n

∂r
(a, s)

is given by

p̄ref
m,n(r, s) = − 1

km

∂p̄inc
m,n

∂r
(a, s)

Kn(kmr)
K ′
n(kma)

, (C.34)

where Kn denotes the modified Bessel function of the second kind, of order n (Olver et al.,
2010, Chap. 10). The semi-analytical expression of p̄ref is then obtained by inserting (C.34)
into (C.32a). The semi-analytical solution does not in practice provide exact values: its
accuracy is often much lower than the machine precision and depends on many factors.
The steps of the semi-analytical method are

• Perform a fast numerical Laplace transform of pinc, or use an analytical expression;

• Decompose p̄inc as a truncated series (with finite numbers N θ
modes, N

z
modes of modes);

• Compute the Fourier components of p̄ref using (C.34);

• Reconstruct p̄ref using the truncated Fourier basis;

• Perform a fast numerical inverse Laplace transform to get pref in the time domain
(Brančik, 1999).

Numerical errors arise from both the fast numerical inverse Laplace transform and the
fact that the Fourier basis is truncated. While not yielding an exact solution for those
reasons, the semi-analytical method provides results that are accurate enough to serve as a
reference for checking the validity (if not the precision) of the Z-BEM procedure on this
configuration.

Remark 31 The incident pressure given by (2.43) is discontinuous in time, and a Gibbs
phenomenon arises near that discontinuity. To avoid nonphysical oscillations, a typical
procedure, implemented in the Naval Group code that evaluates the above solution, consists
in setting to zero quantities (e.g., pref(x, t)) that are known to vanish due to causality. This
improves the overall quality of the results.
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Appendix D

Summary tables for the FSI problem of Section 3.5

This appendix gathers summary tables for the FSI problem studied in Section 3.5, providing information on the numerical methods used,
and the numerical parameter values. For details on Abaqus ®, code_aster ® or LS-DYNA ®, refer to (Dassault Systèmes SIMULIA, 2017),
(Code_Aster Open Source, 2020), (Livermore Software Technology Corp., 2020), respectively.
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3.5

Z-BEM/Abaqus ® FEM/FEM Semi-analytical code_aster ® FEM/FEM LS-DYNA ® FEM/USA BEM

Method

Z-BEM to get pref from pinc, then
FEM/FEM to solve the fluid-
structure interaction.

Semi-analytical approach to solve
the 2D fluid-structure interaction.

FEM/FEM to solve the fluid-
structure interaction.

USA-BEM to solve the fluid part
of the problem, and FEM for the
structure part.

Monolithic/iterative

Once pRef is obtained from the Z-
BEM, it becomes an input for the
monolithic FEM/FEM solving.

Modal decomposition. Fluid and
structure components obtained
for each mode, then reconstruc-
tion on a truncated basis.

Monolithic FEM/FEM solving. Iterative procedure. Successive
solving of the BEM-fluid and the
FEM-structure equations at each
time step.

Equations solved
Fluid: 3D linear wave equation.
Structure: any equation, related to
the modelling.

Fluid: 2D linear wave equation.
Structure: 2D equations of the
Love-Kirchhoff shell theory.

Fluid: 3D linear wave equation.
Structure: any equation, related
to the modelling.

Fluid: approximation of the 3D
linear wave equation, DAA1 or
DAA2.
Structure: any equation, related
to the modelling.

Solvers
Z-BEM: FM-BEM with Krylov
iterative solver.
Abaqus ® implicit solver.
Abaqus ® explicit: diagonal
lumped mass matrix.

Use of Bessel’s functions to obtain
an analytical form of the solution
for each mode. When considering
equipment, small linear systems
are solved by computing an in-
verse matrix (not too costly).

MUMPS implicit solver. Standard BEM and LS-DYNA ®
solvers.

Time-stepping schemes
Z-BEM: related to the one chosen
for the CQM, typically bdf2.
Abaqus ® implicit: HHT with α =
−0.05 by default.
Abaqus ® explicit: central differ-
ence + small damping.

Related to the one chosen for the
CQM, typically bdf2.

θ-Wilson, or Newmark with co-
efficients set to introduce some
numerical damping, or HHT.

Those available in LS-DYNA ®.

Table D.1: Comparison between the three used methods and LS-DYNA ®/USA. Part I: modelling.
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Z-BEM/Abaqus ® FEM/FEM Semi-analytical code_aster ® FEM/FEM LS-DYNA ® FEM/USA BEM

Smoothness of the input pressure
Z-BEM: handle discontinuous inputs.
Abaqus ® explicit: the input pRef must be
smoothed, either using a (Butterworth) filter
or with common UNDEX procedure (with
τ/10).
Abaqus ® implicit: need to use a time-
stepping scheme that naturally filters the
signal.

Handle discontinuous inputs.
The Z-transform is used to
reformulate the problem in the
frequency domain, rather than
the Laplace transform. It then
reduces Gibbs phenomena.

Need to use a time-stepping
scheme that naturally filters
the signal to improve the re-
sults.

Need to smooth the input sig-
nal with the common UNDEX
procedure (with τ/10).

Hypotheses on the deformations
Z-BEM: naturally solves the problem in the
mobile referential following the rigid structure
motion, so allows rigid displacement (as long
as pinc remains correct) and small strains.
Abaqus ® implicit: small strains and small
rigid displacement.
Abaqus ® explicit: no limitation. Elasticity
or plasticity.

Small strains, possibly large
2D rigid displacement. Elas-
ticity only.

Small strains and small rigid
displacement. Elasticity only.

USA BEM: naturally solves
the problem in the mobile
referential following the rigid
structure motion, so allows
rigid displacement (as long as
pinc remains correct) and small
strains.
LS-DYNA ®: no limitation a
priori. Elasticity or plasticity.

Far-field explosions

Valid as long as the model used for pinc is
correct. So near- and far-field explosions.

Only far-field explosions, be-
cause the 2D solution is repre-
sentative of the 3D behaviour
only when the wave front is
almost cylindrical (not spheri-
cal).

Valid as long as the model used
for pinc is correct. So near- and
far-field explosions.

Valid as long as the model used
for pinc is correct. So near- and
far-field explosions.

Sea bed and water surface
The Z-BEM procedure could take into ac-
count the sea bed or the water surface using
the image technique.
Abaqus ®: theoretically possible but not yet
tested.

Not implemented in the proce-
dure.

Not implemented in the proce-
dure.

Can be taken into account.
The sea bed is a wall (pure
reflections).

Table D.2: Comparison between the three used methods and LS-DYNA ®/USA. Part II: hypotheses.
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3.5

Z-BEM/Abaqus ® FEM/FEM Semi-analytical code_aster ® FEM/FEM LS-DYNA ® FEM/USA BEM

Structure model complexity
Z-BEM: no limitation. Can han-
dle full-scale submarine.
Abaqus ®: no limitation other
than the number of DOFs.

Shell theory. Stiffened shell with
equivalent model. Use of a spring-
mass system to model an equip-
ment fixed on the shell.

No limitation other than the num-
ber of DOFs.

USA-BEM: standard BEM, so
important limitation on the num-
ber of DOFs. LS-DYNA ®: no
limitation other than the number
of DOFs.

Structure shape
Any. Only cylinders. Infinite in theory,

large in practice (causality).
Any. Only cylinders or spheres, be-

cause of the DAA approximation
of the USA-BEM.

Complexity

Z-BEM: - space: O(N logN)
- time: O(1)
Abaqus ®: - space: depends on
the structure model, for surface
shells, 5 DOFs per nodes, for
volume mesh, 1 DOF per node
- time: O(M)

- time: O(M)
For complex model (equipment),
the complexity regarding the
number of spatial modes N θ is
related to the way the linear sys-
tem is solved (at worse: (N θ)3).
Anyway, N θ ∼ 50, so the whole
time of the procedure does not
exceed a few minutes.

- space: the complexity of the LU-
factorisation of a sparse matrix
- time: O(MN2)

USA-BEM: - space: O(N2)
- time: O(M)
LS-DYNA ®: - space: depends on
the structure model
- time: O(M)

Dimensions of the structure
Can handle full-scale industrial
cases with acceptable time com-
putation and result precision. For
a fixed mesh size, if the structure
dimensions are multiplied by 2,
the number of elements for the
fluid is multiplied by 4. Same for
the structure.

No limitation, because 2D model. Difficult to handle full-scale indus-
trial cases with acceptable time
computation and result precision.
For a fixed mesh size, if the struc-
ture dimensions are multiplied by
2, the number of elements for the
fluid is multiplied by 4. Same for
the structure.

Limitations coming from the stan-
dard BEM of USA prevent from
dealing with full-scale industrial
cases with acceptable time com-
putation and result precision. It
nonetheless provides a good order
of magnitude with an acceptable
time computation.

Table D.3: Comparison between the three used methods and LS-DYNA ®/USA. Part III: limitations.



211

Z-BEM/Abaqus ® FEM/FEM Semi-analytical code_aster ® FEM/FEM LS-DYNA ® FEM/USA BEM

Type of elements
Z-BEM: P0, P1 and P2 triangle
elements.
Abaqus ® explicit: linear (re-
duced) shell elements, triangles
and quadrangles, linear tetra and
hexa fluid elements.
Abaqus ® implicit: linear and
quadratic shell elements, trian-
gles or quadrangles, linear and
quadratic tetra and hexa fluid
elements.

2D discretisation related to the θ
discretisation.

Linear and quadratic shell ele-
ments, triangles and quadrangles,
linear and quadratic tetra and
hexa fluid elements. At the
interface Γ, the fluid mesh and
the structure mesh must be com-
patible.

Any element type available in LS-
DYNA ®.

Mesh generation
Z-BEM: 2D uniform mesh.
Abaqus ® structure: 2D or 3D
meshes.
Abaqus ® fluid: 3D mesh refined
only near Γ. Difficult to gener-
ate when dealing with complex
interface shapes Γ.

No mesh. Structure: 2D or 3D meshes.
Fluid: 3D mesh refined only near
Γ. Difficult to generate when
dealing with complex interface
shapes Γ.

Structure: 2D or 3D meshes.
Fluid: 2D mesh.

Table D.4: Comparison between the three used methods and LS-DYNA ®/USA. Part IV: some numerical characteristics.
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3.5

Z-BEM/Abaqus ® FEM/FEM code_aster ® FEM/FEM

Fluid
Z-BEM: P1 triangle elements. Most refined mesh: uniform mesh size
h ≈ 0.027 m, 106 DOFs.
Abaqus ® explicit: linear tetra elements (AC3D4), mesh refined near Γ,
and near the standoff point, where h ≈ 0.04 m. Fluid domain truncated,
6 m of water encapsulates the shell. Near Γ∞, h ≈ 1 m. See Figure 3.5.
Abaqus ® implicit: quadratic tetra elements (AC3D10), mesh refined
near Γ, and near the standoff point, where h ≈ 0.08 m. The fluid domain
is truncated so that 6 m of water encapsulates the structure. Near Γ∞,
h ≈ 2 m.
On Γ∞, the absorbing conditions are the cylindrical or spherical acoustic
impedances of Abaqus ®.

Quadratic tetra elements, mesh refined near Γ,
where h ≈ 0.1 m. Model 3D_FLUID. The
fluid domain is truncated so that 7.5 m of water
encapsulates the structure. Near Γ∞, h ≈ 5 m. On
Γ∞, the absorbing condition is BGT1 (Bayliss et al.,
1982; Leblond and Sigrist, 2016).

Structure
Abaqus ® explicit: linear triangle shell elements (S3), 5 integration points
in the thickness. Mesh refined near Γ, and near the standoff point, where
h ≈ 0.03 m.
Abaqus ® implicit: linear triangle shell elements (S3), 5 integration points
in the thickness. Mesh refined near Γ, and near the standoff point, where
h ≈ 0.06 m.

Quadratic triangle shell elements. Model
COQUE_3D. Uniform mesh with h ≈ 0.1 m.

Table D.5: Numerical parameter values for the case of validation. Part I.
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Z-BEM/Abaqus ® FEM/FEM code_aster ® FEM/FEM

Time-stepping scheme

Z-BEM: bdf2. T = 20 ms, dt = 2 10−3 ms.
Abaqus ® explicit: default central difference, T = 20 ms, dt = 1 10−3 ms.
Abaqus ® implicit: HHT with α = −0.05, T = 5 ms, dt = 10−2 ms.

Newmark with γ = (1−α)/4 and β = 1/2−α, with
α = −0.2. dt = 1.6 10−2 ms, T = 8 ms.

Table D.6: Numerical parameter values for the case of validation. Part II.

For the semi-analytical approach, the number of spatial nodes of the truncated basis is set to N θ = 65, and T = 20 ms, dt = 2 10−3 ms.

Apart from the semi-analytical approach, the meshes of each procedure have been chosen so that the computations last around 5 days. For
instance, for the Z-BEM/Abaqus ® FEM/explicit FEM procedure, it leads to around 107 tetra linear elements for the fluid FE mesh, and the
structure shell has around 3 105 nodes (with 5 DOFs per node). To improve the results, the fluid and structure FE meshes have been refined
near the standoff point. A screenshot of the used meshes illustrates these refinements, Figure 3.5.
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Résumé : Les sous-marins militaires doivent résister

aux sollicitations induites par une explosion sous-

marine. Pour s’en assurer, la simulation numérique

est d’une importance capitale, compte tenu du coût

très élevé des campagnes expérimentales. Une

explosion sous-marine lointaine est un événement

complexe qui a deux effets distincts : elle libère

une onde de choc, puis crée une bulle de gaz

oscillante qui pousse une grande quantité d’eau

plus lentement. Les deux phénomènes ont des

caractéristiques et des échelles de temps assez

différentes. Dans ce travail, nous supposons que

l’explosion est suffisamment éloignée pour (i) que

la présence du navire affecte peu l’explosion, et

(ii) permettre une séparation temporelle des deux

phénomènes, tels que perçus par le navire. Dans

ces conditions, notre objectif est de concevoir,

implémenter (dans le cadre du calcul haute perfor-

mance) puis valider une méthodologie de simulation

numérique pour le problème d’interaction fluide-

structure prenant en compte les deux phénomènes.

Pour ce faire, nous commençons par étudier les

deux perturbations en l’absence du sous-marin,

pour déduire une modélisation et des méthodes

numériques adaptées. Nous développons en-

suite une procédure éléments de frontière (BEM)

accélérée, basée sur une combinaison de la

méthode de quadrature de convolution avec une

approximation haute fréquence empirique originale.

Plus largement, cette procédure permet de simuler
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Abstract: Submarines must withstand the effects

of rapid dynamic loads induced by underwater

explosions. Due to the very high cost of ex-

perimental campaigns, numerical simulations are

very important. A remote underwater explosion is

a complex event that has two distinct effects: it

sends a shock wave, then creates an oscillating gas

bubble that sets water in slower motion. The two

phenomena have quite different characteristics and

time scales. In this work, we consider remote enough

underwater explosions so that (i) the presence of

the submarine only marginally affects the explosion,

and (ii) there is a temporal separation of the two

phenomena, as experienced by the ship. Under

these conditions, our overall goal is to design,

implement (in the context of high performance com-

puting) then validate a computational methodology
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first study the two perturbations without considering

the submarine, to propose appropriate modelling

and numerical methods. Then, we design a fast

boundary element (BEM) procedure, based on the
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and an original empirical high frequency approxima-

tion. The procedure allows to efficiently simulate

3D rapid transient wave propagation problems set
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we implement adequate finite element/boundary
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shock wave fluid-structure interaction phase (linear
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flow). The overall procedure, validated on academic

problems, provides very promising results when
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