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A B S T R A C T

In this thesis, we focus on the multivariate inference problem in the context
of high-dimensional structured data. More precisely, given a set of explana-
tory variables (features) and a target, we aim at recovering the features that
are predictive conditionally to others, i.e., recovering the support of a linear
predictive model. We concentrate on methods that come with statistical guar-
antees since we want to have a control on the occurrence of false discoveries.
This is relevant to inference problems on high-resolution images, where
one aims at pixel- or voxel-level analysis, e.g., in neuroimaging, astronomy,
but also in other settings where features have a spatial structure, e.g., in
genomics. In such settings, existing procedures are not helpful for support
recovery since they lack power and are generally not tractable. The problem
is then hard both from the statistical modeling point of view, and from a
computation perspective. In these settings, feature values typically reflect
the underlying spatial structure, which can thus be leveraged for inference.
For example, in neuroimaging, a brain image has a 3D representation and a
given voxel is highly correlated with its neighbors. In the present work, we
notably propose the ensemble of clustered desparsified Lasso (ecd-Lasso)
estimator that combines three steps: i) a spatially constrained clustering pro-
cedure that reduces the problem dimension while taking into account data
structure, ii) the desparsified Lasso (d-Lasso) statistical inference procedure
that is tractable on reduced versions of the original problem, and iii) an
ensembling method that aggregates the solutions of different compressed
versions of the problem to avoid relying on only one arbitrary data cluster-
ing choice. Additionally, we extend this procedure to handle temporal data
corrupted with autocorrelated noise. We consider new ways to control the
occurrence of false discoveries with a given spatial tolerance. This control
is well adapted to spatially structured data. We study the behavior of the
procedures that we propose, by establishing their theoretical properties
and conducting thorough empirical validations. In this work, we focus on
neuroimaging datasets but the methods that we present can be adapted to
other fields which share similar setups.
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A C R O N Y M S
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N OTAT I O N

We denote scalars by lower-case letters, vectors by bold lower-case letters,
and matrices by bold upper-case letters.

Notation Name Definition

[p] integers from 1 to p (inclusive) {1, 2, . . . ,p}

xi i-th element of x

Xi,j Element (i, j) of X

Xi,. i-th row of X

X.,j j-th column of X

X(−j) X without its j-th column

X> Transpose of X

‖x‖ Vector euclidean norm (`2 norm)
(∑n

i=1 x
2
i )
)1/2

‖x‖p Holder norm (`p norm) (
∑n
i=1 |xi|

p)
1
p

Tr(X) Trace of X

diag(X) Diagonal of X

‖a‖2M−1 Mahalanobis norm of a for M Tr(a>M−1a)

‖A‖ Frobenius norm
√

Tr(AA>)

‖B‖2,1 (2, 1)-matrix norm
∑p
j=1‖Bj,.‖
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S Y N T H È S E E N F R A N Ç A I S

Cette thèse s’intéresse au problème de l’inférence statistique multivariée en
grande dimension en présence de données structurées. Plus précisément,
étant données une variable cible et un ensemble de variables explicatives,
nous souhaitons déterminer les variables explicatives qui sont prédictives
conditionnellement aux autres, i.e., nous cherchons à identifier le support
dans le modèle prédictif linéaire. Comme nous désirons avoir un contrôle
sur l’occurrence de faux positifs, nous nous concentrons sur les méthodes
donnant des garanties statistiques. Cette étude s’applique notamment aux
problèmes d’inférence sur des images haute-résolution dans lesquels le
signal de chaque pixel ou voxel est considéré comme une variable explicative,
c’est par exemple le cas en neuro-imagerie ou en astronomie. Cela peut
également s’appliquer à d’autres problèmes dans lesquels les variables
explicatives sont spatialement structurées comme en génomique par exemple.
Pour ce type de données, les méthodes existantes destinées à l’identification
de support ne sont pas satisfaisantes car elles manquent de puissance
et ont généralement un coût computationnel trop élevé. Par conséquent,
le problème est difficile en terme de modélisation statistique mais aussi
du point de vue computationnel. Cependant, dans ce type de problème,
les variables explicatives détiennent une structure spatiale qui peut être
exploitée. Par exemple, en neuro-imagerie, une image de cerveau possède
une représentation 3D dans laquelle un voxel est très corrélé à ses voisins.

Pour répondre à la problématique que nous venons de présenter, la thèse
écrite en anglais s’organise comme suit. Le premier chapitre est une vue
d’ensemble de la thèse décrivant chaque chapitre et mettant en avant les
publications de l’auteur. Dans le deuxième chapitre, après avoir présenté
quelques notions utiles de neuro-imagerie, nous introduisons la modélisa-
tion mathématique du problème que nous souhaitons résoudre. Il s’agit du
problème inverse en grande dimension. Dans le troisième chapitre, nous
faisons une revue des méthodes statistiques qui s’appliquent au modèle
linéaire en grande dimension. En particulier, nous montrons que la méthode
appelée "desparsified Lasso" est compétitive en terme de puissance statis-
tique et possède des propriétées statistiques désirables. Dans le quatrième
chapitre, nous introduisons la méthode "ensemble of clustered desparsified
Lasso" (ecd-Lasso) qui combine trois éléments : i) une procédure de clus-
tering avec contraintes spatiales pour réduire la dimension du problème
en tenant compte de la structure de la donnée ; ii) la méthode d’inférence
statistique "desparsified Lasso" qui peut être déployée sur le problème ré-
duit ; et iii) une méthode d’ensembling qui agrège les solutions obtenues
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sur les différents problèmes réduits afin d’éviter de dépendre d’un choix de
clustering nécessairement imparfait et arbitraire. Cette méthode est au coeur
de la thèse et les chapitres suivants visent à évaluer dans quelle mesure
elle répond correctement à notre problématique, à mieux comprendre son
fonctionnement, ses atouts et ses défauts, ou à l’étendre pour résoudre
des problèmes connexes. Dans le cinquième chapitre, nous établissons les
propriétés statistiques de ecd-Lasso : il contrôle l’occurence de faux posi-
tifs qui sont spatialement éloignés du support. Pour cela nous présentons
une nouvelle façon de contrôler l’occurrence de faux positifs qui intègre
une tolérance spatiale qui est mesurée par un paramètre correspondant à
une distance. Dans le sixième chapitre, nous analysons le comportement
empirique de ecd-Lasso en conduisant des expériences variées à partir de
différents jeux de données de neuro-imagerie. Dans le septième chapitre,
nous prolongeons ecd-Lasso afin qu’il puisse gérer des données ayant une
dimension temporelle qui nécessite la modélisation d’un bruit auto-corrélé.
Enfin, dans le huitième et dernier chapitre, nous récapitulons les contribu-
tions et proposons des axes de développement. Tout au long de cette thèse,
nous nous focalisons sur des jeux de données de neuro-imagerie, mais les
méthodes que nous présentons sont applicables à d’autres domaines qui
partagent une configuration semblable.
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1 G E N E R A L O V E R V I E W O F T H E
T H E S I S

Here, we present the context and motivations or our work, then we summa-
rize the content of the thesis highlighting our contributions. We also mention
some additional contributions that are not presented in this document as
we focus on our core contribution.

1.1 context

In many scientific fields, data-acquisition devices have benefited of hardware
improvement to increase the resolution of the observed phenomena, leading
to ever larger datasets. For example, recorded images in medical imaging,
in seismology or in astronomy can contain hundreds of thousands of pixels
or voxels. Also, in genomics, we are now able to analyse Single Nucleotide
Polymorphisms (SNPs) of a population, that typicall reach several millions.
However, while the number of explanatory variables has increased, the
number of samples remains limited, due to time, physical or financial
constraints. Additionally, signal-to-noise ratio is also often limited by the
physics of the measurement process resulting in datasets with low contrasts
and requiring advanced statistical modeling.

Multivariate statistical models are used to explain a response of interest
through a combination of measurements (pixels, voxels, SNPs). For instance,
in neuroimaging, one might predict the age of a subject from its gray matter
density map. Such an analysis may reveal i) to which extent gray matter
density maps predict age and ii) which regions of the brain carry useful
information for the prediction. Such multivariate estimators are viewed as
powerful tools because they leverage the distribution of information across
all measurements. Yet, an unavoidable difficulty is that they suffer from the
curse of dimensionality. Another key issue is to perform reliable inference
on these data, i.e., inference that comes with some statistical guarantees.
Altogether the problem is hard both from the statistical modeling point of
view, and from a computation perspective.

Yet it turns out that high-dimensional data often display some spatial
structure that can be leveraged. For example, in imaging problems, neigh-
boring voxels are generally very similar; in genomics, there exist blocs of
SNPs that tend to always occur together. Another helpful feature regarding
high-dimensional inference problems is that they often lead to sparse models
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1.2 organization of the thesis 3

since only a small proportion of the explanatory variables are truly pre-
dictive. For example, in neuroimaging, only few regions of a brain activity
maps are necessary to predict some behavioral conditions; in genomics, only
few alleles may be responsible for a disease.

In this thesis, focusing on neuroimaging datasets, we propose to address
the multivariate high-dimensional statistical problem leveraging data struc-
ture. As suggested above, the methods we present in this document adapt
to other fields which share similar setups.

1.2 organization of the thesis

The thesis is organized in two parts. In the first part we introduce the prob-
lem from the neuroimaging angle, and then we present existing statistical
tools that we will leverage to address the problem. In the second part, we
present our main contributions.

introduction to the decoding problem. In Chapter 2, we present
the core concepts that are needed to describe and formalize the problem
we are willing to solve. Mainly working with fMRI (functional Magnetic
Resonance Imaging) data, we mostly focus on the decoding problem, i.e., the
problems that lead to inferring behavioral or phenotypical information from
brain activity using brain images, generally from several subjects. We state
the mathematical formulation of the problem that we are targeting: identify
the contribution of brain regions in the prediction.

statistical inference in high dimension. In Chapter 3, we explain
why naive solutions to the conditional inference decoding problem are
bound to fail. Indeed, we show that the number of samples is too low with
regards to the number of features to perform the statistical inference we are
aiming at with standard tools. Then, we review the methods available in the
literature that are suited for a number of samples of the same order as the
number of features and benchmark them on a simulation. In particular, we
review the desparsified Lasso (d-Lasso) procedure that we will leverage in
the next chapters.

ensemble of clustered desparsified lasso. In Chapter 4, we intro-
duce two algorithms for high-dimensional multivariate statistical inference
on structured data. This chapter mainly revisits our first publication at the
2018 MICCAI conference:

CHEVALIER, Jérôme-Alexis, SALMON, Joseph, et THIRION, Bertrand. Sta-
tistical inference with ensemble of clustered desparsified lasso. In : International



1.2 organization of the thesis 4

Conference on Medical Image Computing and Computer-Assisted Intervention.
Springer, Cham, 2018. p. 638-646.

The algorithms we present, that we called clustered desparsified Lasso
(cd-Lasso) and ensemble of clustered desparsified Lasso (ecd-Lasso), are no-
tably well suited for high-dimensional structured data such as neuroimaging
data. We focus on explaining the rationale behind each step of the proposed
algorithms along with experimental results to illustrate the potential of this
approach.

statistical inference with spatial tolerance. In Chapter 5, we
give the statistical guarantees provided by cd-Lasso and ecd-Lasso. We
show that ecd-Lasso controls a generalization of the Family-Wise Error
Rate (FWER) called δ-FWER, that takes into account a spatial tolerance of
radius δ for the occurrence of false discoveries. This result is true under
realistic assumptions and for a predetermined spatial tolerance parameter δ.

empirical validation. In Chapter 6, we evaluate the statistical prop-
erties of ecd-Lasso along with three alternative standard methods by per-
forming a thorough empirical study using functional Magnetic Resonance
Imaging (fMRI) datasets. We also study the impact of the choice of the
main free parameter of ecd-Lasso: the number of clusters C. Finally, we
show that ecd-Lasso exhibits the best recovery properties while ensuring
the expected statistical control. Also note that the content of this chapter has
been submitted to the NeuroImage journal and is undergoing some revisions.

extension to temporal data with applications to meg. In Chap-
ter 7, we extend our work to the magnetoencephalography (MEG) and elec-
troencephalography (EEG) source localization setup. This chapter mainly
present our work accepted at the 2020 NeuRIPS conference:

CHEVALIER, Jérôme-Alexis, GRAMFORT, Alexandre, SALMON, Joseph, et al.
Statistical control for spatio-temporal MEG/EEG source imaging with desparsified
multi-task Lasso. In: Advances in Neural Information Processing Systems, 2020.

M/EEG source imaging requires working with spatio-temporal data and
autocorrelated noise. To deal with this, we adapt the d-Lasso estimator
to temporal data corrupted with autocorrelated noise by leveraging the
debiased group Lasso estimators and introducing the desparsified multi-
task Lasso (d-MTLasso). We combine d-MTLasso with spatially constrained
clustering to reduce data dimension and with ensembling to mitigate the
arbitrary choice of clustering; the resulting estimator is called ensemble
of clustered desparsified multi-task Lasso (ecd-MTLasso). With respect to
the current procedures, the two advantages of ecd-MTLasso are that i) it
offers statistical guarantees and ii) it trades spatial specificity for sensitivity,
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leading to a powerful adaptive method. Extensive simulations on realistic
head geometries, as well as empirical results on various MEG datasets,
demonstrate the high recovery performance of ecd-MTLasso and its primary
practical benefit: offer a statistically principled way to threshold MEG/EEG
source maps.

1.3 other contributions

collaborative work on fdr-controlling procedures. In this the-
sis, we do not present the contribution regarding the Knockoff filters
which is a False Discovery Rate (FDR) controlling procedure for high-
dimensional data. Firstly, we proposed an adaptation of this procedure
to high-dimensional structured data with application on fMRI datasets. In
that respect, we had an accepted paper at the 2019 IPMI conference (equal
contribution with Tuan-Binh Nguyen):

NGUYEN, Tuan-Binh, CHEVALIER, Jérôme-Alexis, et THIRION, Bertrand.
ECKO: Ensemble of Clustered Knockoffs for multivariate inference on fMRI data. In:
International Conference on Information Processing in Medical Imaging. Springer,
Cham, 2019. p. 454-466.

Secondly, we contributed as second author in another study presented at the
ICML 2020 conference, which aims at increasing the stability of the Knockoff
filters procedure:

NGUYEN, Tuan-Binh, CHEVALIER, Jérôme-Alexis, THIRION, Bertrand, et AR-
LOT, Sylvain. Aggregation of Multiple Knockoffs. In: 37th International Conference
on Machine Learning, PMLR 119, 2020, Vienne, Austria.

collaborative work on python implementation. Regarding the im-
plementation and testing of the procedures we designed, we propose a
package called HiDimStat developed conjointly with Tuan-Binh Nguyen that
is available at https://github.com/ja-che/hidimstat. Our algorithms are
implemented with Python = 3.6 and need the following packages Numpy
= 1.16.2 (Walt, Colbert, and Varoquaux, 2011), Scipy = 1.2.1 (Virtanen et al.,
2020), Scikit-Learn = 0.21 (Pedregosa et al., 2011), Joblib = 0.11 and Nilearn
= 0.6.0 (Abraham et al., 2014).

https://github.com/ja-che/hidimstat
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2 I N T R O D U C T I O N TO T H E
D E C O D I N G P R O B L E M

In this chapter, we present the core concepts that are needed to describe
and formalize the problem we are willing to solve. Mainly working with
fMRI (functional Magnetic Resonance Imaging) data, we mostly focus on the
decoding problem, i.e., fitting behavioral or phenotypical information from
brain activity measurements using brain images, generally from several
subjects. We state the mathematical formulation of the problem that we are
targeting: identify the contribution of brain regions in the prediction.

2.1 neuroimaging outlook

In this section, we present fundamental principles and the main modalities
that are encountered in neuroimaging. For a general review of the neu-
roimaging principles and challenges, one can refer to Zimmerman, Gibby,
and C. (2012).

2.1.1 Principle of neuroimaging

Neuroimaging consists in acquiring brain images from a human subject or
an animal. In this thesis we focus on human brain imaging.

Neuroimaging falls into two broad categories: structural imaging that
deals with the structure (matter) of the nervous system, and functional
imaging, that aims at capturing brain functional activity (i.e., brain activity
related to a state or a cognitive process). Most of our work will deal with
functional neuroimaging.

2.1.2 Neuroimaging modalities

The techniques (or modalities) used to acquire brain images are numerous.
In both functional or structural imaging, the modalities differ by their level
of invasivity (e.g. need of opening the skull or not), their spatial resolution,
their temporal resolution and the physiological mechanism they measure.

Structural imaging typically offers high spatial resolution since tissue
contrasts can be captured over long periods of time. Indeed, in general (for a
given level of invasivity), increasing the spatial resolution requires lowering

7



2.1 neuroimaging outlook 8

the temporal resolution. Additionally, in structural imaging, modalities also
differ by the types of tissue they can characterize.

In Fig. 2.1, we compare different modalities. Except Magnetic Resonance
Imaging (MRI), which can be classified as structural or functional imaging
depending on the specific MRI sequence, all the presented modalities are
functional imaging.

Figure 2.1: Comparison of neuroimaging modalities. Left: Spatial and temporal
resolution of different neuroimaging modalities. Right: Examples of T1/anatomical
MRI image (top) and fMRI image (bottom). The T1 MRI image has a high resolution
and notably observes the gray matter, white matter and skull. The fMRI image
series is used to yield the regions activated in an auditory task, represented in color.
Its spatial resolution is a bit lower.

MRI uses magnetic fields and radio-frequency pulses to produce high
quality brain images. There exist many MRI sequences —a sequence being a
given setting of radiofrequency pulses and gradients, resulting in a particular
signal, yielding specific images. We will mainly focus on functional Magnetic
Resonance Imaging (fMRI) that measures brain activity by detecting changes
in oxygen flow but also consider T1 MRI that notably recovers gray matter
regions at mm spatial resolution. We will give a brief presentation of T1

MRI in Sec. 2.2. In turn, we provide a brief description of fMRI in Sec. 2.3.
Electroencephalography (EEG) and Magnetoencephalography (MEG)

record the neural activity of the brain with a high temporal resolution
by measuring the electric or magnetic field at the cortical surface. We will
describe this technique in Sec. 2.5 and work with M/EEG datasets in Chap-
ter 7.

Finally, Positron Emission Tomography (PET) that relies on a radioac-
tive tracer to track glucose consumption is an invasive functional brain
technique. Electrocorticography (ECOG) which measures electric field with
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electrodes implanted at the surface of brain. We will not further describe
these modalities as we do not deal with such datasets.

A deeper review of the different modalities in functional imaging can be
found in Friston (2009).

2.2 magnetic resonance imaging

In the 70s, after the invention of the MRI technique by Lauterbur (1973),
the first MRI image was acquired by Damadian, Goldsmith, and Minkoff
(1977). This discovery is particularly important for neuroimaging since it
contributed to the development of a very widely used technique called
functional MRI (fMRI) developed initially by Ogawa et al. (1990).

In this section, we provide a brief review of the MRI acquisition principles.
For a thorough review of MRI, the reader may refer to Vlaardingerbroek
and Boer (2013) and Bushong and Clarke (2013).

2.2.1 MRI technique in a nutshell

During an MRI acquisition, a subject is placed in an MRI scanner. The MRI
technique consists of three main phases that are repeated during all the
acquisition process.

The first phase is the magnetization during which a constant magnetic
field is applied to the atoms of the brain —MRI targets hydrogen nuclei.
Thanks to the nuclear magnetic resonance of the atoms, it is possible to
capture the net magnetization vector which is the sum of the magnetic momenta
of all atoms —an atom magnetic momentum being induced by its energy
level. The norm of the net magnetization directly influences the intensity of
the Magnetic Resonance (MR) signal that will be recorded during the third
phase.

The second phase is the excitation, during which the atoms are excited,
i.e., loaded in energy, using a radio-frequency pulse at the resonance fre-
quency of magnetized atoms.

The third phase is the relaxation. During this phase, radio frequency pulse
ceases and atoms come back to their original magnetized state, releasing the
absorbed energy. This release is recorded as an MR signal.

They are two main components in the MR signal. The first is due to the
longitudinal relaxation, i.e., the recovery of atoms to their original magne-
tized state. The second is due to the transversal relaxation, i.e., the phase
decay that corresponds to a loss of atoms’ spin phase coherence.
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T1 recovery measures the duration of the longitudinal relaxation, while
T2 decay characterized the duration of the transversal relaxation. The T1 is
always longer than the T2, generally by a factor 10.

2.2.2 Echo-planar imaging

To map the MR signal across spatial locations, the magnetic fields are applied
in three orthogonal directions. Then, choosing the intensity of the magnetic
field properly, it is possible to recover the spatial origin of the MR signal.

In practice, we do not directly acquire a 3D image as 3D-MRI images are
reconstructed by combining sequences of 2D-slices of the brain. Echo-planar
imaging is one such 2D acquisition scheme.

2.2.3 Structural MRI

Structural imaging provides a static characterization of brain tissues. In this
thesis, we worked with T1-weighted MRI images, thus we do not assess the
whole range of techniques and applications of structural MRI and refer the
reader to Bushong and Clarke (2013).

The T1-weighted MRI images are acquired using specific echo time and
repetition time. The repetition time is the time that separates two consecutive
excitation phases, i.e., the total duration needed to record one 2D-slice. The
echo time is a shorter duration related to the excitation phase. Compared
to T2-weighted MRI images, both the echo time and the repetition time
are longer. Consequently, the two techniques observe different tissues. For
example, T1-weighted MRI images notably focus on fatty tissue while T2-
weighted MRI images focus on high water content tissues.

2.3 functional mri

Functional MRI (fMRI) is a non-invasive imaging technique that is particu-
larly adapted to the mapping of cognitive functions. In this thesis, several
experiments use fMRI datasets, thus we summarize how fMRI datasets are
obtained and analyzed. We only give the basic notions of fMRI data acquisi-
tion and primary analysis, for an extensive reference on this matter, see for
example Poldrack (2011).

2.3.1 Heamodynamic response function and BOLD signal

When a neuron is activated —one says that the neuron spikes—, it requires
oxygen, which is provided by hemoglobin. Consequently, in any volume
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of the brain, after a neuronal activity increase, we observe an increase of
oxygenated blood flow during 5 to 10 seconds and then an undershoot that
lasts 10 to 20 seconds. This phenomenon is called the Blood Oxygenation
Level Dependent (BOLD) response (or signal) and is detectable through
MRI. Recording and analyzing this signal allows for the recovery of brain
activity in any part of the brain.

As described above, the BOLD signal recorded by MRI has a specific
temporal pattern which is called the Haemodynamic Response Function
(HRF). We represent a canonical HRF pattern in Fig. 2.2.

Figure 2.2: Heamodynamic response function. This represents the BOLD reponse
following a brief neural activity event.

2.3.2 Data acquisition

During an fMRI acquisition, a subject is asked to lie in an MRI scanner. The
scanner periodically records the BOLD signal. This process allows for the
generation of a 3D image with a given periodicity that contains the BOLD
signal measurement in each brain voxel, a voxel being a small cubic volume.

With the fMRI modality and a typical strength value of the magnetic field
of 1.5 to 7 Tesla, one can expect to record an image with a spatial resolution
of 1 to 27 mm3. Thus, every volume is typically discretized into around 105

voxels. A typical value of the period, i.e., temporal resolution, goes from 0.7
seconds to 2.5 seconds.

Finally, for each voxel, we obtain one measurement per time point forming
voxel time-series. Then, the whole acquisition results in a 4D data array.
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2.3.3 Preprocessing

Before analyzing fMRI data, several preprocessing steps are performed:
i) general quality check control;
ii) spatial distortion correction, to correct scanner-related artifacts;
iii) motion correction, to correct subject movements or breathing;
iv) slice timing correction, since slices are sequentially recorded;
v) spatial normalization, to align brains of different subjects in a common

reference space called template (see, e.g., Evans et al. (2012)) in order to
allow inter-subject analysis;

vi) spatial smoothing, that can be applied to increase the signal to noise
ratio (SNR), i.e., to decrease noise, based on a spatial homogeneity assump-
tion;

vii) temporal filtering, to reduce low-frequency noise.

2.3.4 Resting-state fMRI and task fMRI

Resting-state consists in acquiring fMRI images of a subject that has been
asked to rest in the scanner, i.e., to do nothing in particular. Task fMRI
records brain activation of subjects who are asked to perform a task or are
exposed to a stimulus. The acquisition process thus yields labeled data. By
contrast resting-state fMRI leads to unlabeled data.

In this thesis both resting-state fMRI data and task fMRI data will be used
but most of the experiments rely on task fMRI data.

2.3.5 Intra-subject and inter-subject analysis

In fMRI studies, the acquisition protocol is generally performed on many
subjects and is often repeated several times by each subject. Then, fMRI data
analysis might be performed at the subject-level (intra-subject), leading to
so-called of first-level analysis, or at the group-level (inter-subject), leading to
second-level analysis. Notably, in order to perform a second-level analysis, the
results of first-level analyses of several subjects must be handled. Then, when
performing first-level analyses, it is convenient to record single-subject brain
images into a common space, e.g., the MNI template (Fonov et al., 2009).
This avoids the undesirable effects of the variability in brain shape during
the second-level analysis. In this work, when running second-level analysis,
we assume that subjects are aligned in some common spatial reference.
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2.4 task fmri analysis

Thanks to task fMRI data, it is possible to link brain activation and condition,
i.e., a behavior (task, stimuli, etc.) or a disease status. Either one may want
to predict (or infer) brain activity maps from a condition —an encoding type
of analysis—, or one may be willing to predict conditions from brain maps
—performing a decoding analysis.

In this thesis we mainly focus on decoding models. In this section we
describe the analysis of the raw preprocessed fMRI data which is required
for such analysis.

2.4.1 First-level analysis

When conducting second-level analyses, encoding and decoding models are
not directly constructed from the raw BOLD signal recorded by the MRI
scanner. Indeed, the objective of first-level analysis is to produce individual
statistical maps that will be subsequently used in second-level analyses.
Second-level analyses consider multiple subjects and may aim at produc-
ing encoding or decoding models. We now explain how to construct the
statistical maps (z-maps) from the fMRI recordings of one subject.

general linear model. A z-map corresponds to a statistical map of
the brain (with one value per brain voxel) that represents brain activity in
response to a given mental condition. To produce such maps we model the
BOLD signal as the linear combination of weighted and convolved mental
condition descriptors. A mental condition descriptor is simply a vector of the
same size as the voxel time-series that describes a condition. For example, if
we consider the condition “left-hand action”, the entries of the descriptor are
set to 1 whenever the participant actions his/her left hand, and 0 otherwise.
Given that the MRI scanner does not measure directly brain activity but the
BOLD signal which is close to a convolution of brain activity with the HRF,
condition descriptors are convolved with the HRF pattern.

To model the BOLD signal, a common practice is to link linearly each voxel
time-series independently with the convolved descriptors and confounding
variables, this model is referred to as General Linear Model (GLM) in the
literature (Friston et al., 1994). Note that the confounding variables are added
to capture nuisance effects such as movements in the scanner.

Mathematically, we denote by R ∈ RT×k the convolved descriptors and
confounding variables, where T is the length of the experiment and k is the
number of conditions and confounders. Also, S ∈ RT×p stacks the voxel
time-series, B ∈ Rk×p contains the β-maps (regression coefficients) for each
condition and confounder, where p is the number of voxels used to represent
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the brain, and Eflm ∈ RT×k denotes noise of the first-level model (flm). Then,
the GLM model yields

S = RB + Eflm . (2.1)

estimating the β-maps. To estimate the β-maps, i.e., the columns of
B, the most standard method is to use the Ordinary Least Squares (OLS)
estimator. Denoting by B̂ the estimator of B, the OLS yields

B̂ = (R>R)−1R>S . (2.2)

Then to produce the noise normalized statistics we need to estimate the
estimator variance for each voxel j ∈ [p] and each condition c ∈ [k], denoted
by V̂c,j:

V̂c,j = ĥ2j (R
>R)−1c,c , (2.3)

where

ĥ2j =

∥∥S.,j − RB̂.,j
∥∥2
2

p− k
. (2.4)

Note that this previous solution is subject to adaptations, as the BOLD
noise is autocorrelated. These adaptations are quite straightforward, and we
refer to Monti (2011) for more details.

deriving the z-maps. Finally, to compute the z-maps we first derive
the t-statistics for each voxel of each β-map. The t-statistics of the j-th voxel
and the c-th condition denoted by Tc,j is given by

Tc,j =
B̂c,j√
V̂c,j

. (2.5)

Then, those t-statistics are converted into z-scores such that the implicit
p-values remain the same. This last transformation is performed to facilitate
statistical image interpretation, as the significance of z-scores is no longer
bound to hyper-parameters, such as degrees of freedom.

2.4.2 Encoding

In second-level analyses, we aim at studying effects that statistically occur
across a group of subjects. A first type of second-level analysis, called
encoding, consists in inferring z-maps from conditions or combinations
(contrasts) of conditions. To perform such an analysis we need the z-maps
for several subjects. Say that we have m subjects available in our study.



2.4 task fmri analysis 15

First, we select two conditions c1 and c2 (in some cases we might choose
more than two conditions as soon as they can be ranked on a given scale),
and stack the z-maps Tc1,. and Tc2,. of all subjects by row in a matrix
X ∈ Rn×p where n = 2m. We also construct a vector y ∈ {−1, 1}n (or
sometimes y ∈ Rn) that contains the condition label or value —keeping the
correspondence between the rows of X and the rows of y.

Then, to tackle the encoding problem one can consider the following
linear model (see e.g., Thirion (2016)):

X = yb> + Eenc , (2.6)

where b ∈ Rp is a parameter vector that corresponds to the typical z-map
related to conditions c1 or c2 and Eenc is the noise in the encoding (enc)
model. To address this problem, a common solution is to apply the same
method as the one we used to estimate the β-maps. Since we independently
fit one model per voxel, we also refer to this analysis as mass univariate
analysis or marginal analysis.

2.4.3 Decoding

We now introduce a second type of second-level analysis, called decoding,
in which we infer conditions from z-maps.

context of decoding. Nowadays, predicting behavior or diseases sta-
tus from brain images is an important analytical approach for imaging
neurosciences, as it provides an effective evaluation of the information car-
ried by brain images (Kriegeskorte, Goebel, and Bandettini, 2006). Indeed,
supervised learning tools are often used on brain images to infer cognitive
states (Cox and Savoy, 2003; Haynes and Rees, 2006; Norman et al., 2006)
or to perform diagnosis or prognosis (Demirci et al., 2008; Fan et al., 2008).
Brain images are obtained from MRI imaging, or even EEG- or MEG-based
volume-based activity reconstruction (cf. Sec. 2.5). They are used to predict
a target outcome: binary (e.g., two-condition tasks), discrete (e.g., multiple-
condition tasks) or continuous (e.g., age). The decoding models used for
such predictions are most often linear models, characterized by a weight
map that can be represented as a brain image (Mourao-Miranda et al., 2005;
Varoquaux and Thirion, 2014).

Besides the prediction accuracy achieved, this estimated weight map is
crucial to assess the information captured by the model. Indeed, it reflects
the importance of brain structures in the predictive model. Unlike standard
encoding analysis, this feature importance is tested conditional on other brain
features, i.e., it assesses whether each feature adds to information conveyed
by other features. Weichwald et al. (2015) highlights the fact that decoding
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and encoding are complementary, and that making the conditional analy-
sis (or multivariate analysis) helps for causal interpretation regarding the
implication of brain regions in the outcome of interest (see also Haufe et
al. (2014)). Typically, the produced weight maps are used to identify dis-
criminative patterns (Gramfort, Thirion, and Varoquaux, 2013; Haxby et al.,
2001; Mourao-Miranda et al., 2005) and support reverse inferences (Pol-
drack, 2011; Schwartz, Thirion, and Varoquaux, 2013; Varoquaux et al., 2018),
i.e., conclude on the implication of brain regions in the studied process.

formalizing the decoding problem. The target (condition to decode)
is observed in n samples and still denoted by y ∈ Rn (y can be binary,
discrete or continuous). The brain volume is still discretized into p voxels.
The corresponding p voxel signals are also referred to as explanatory vari-
ables, covariates or features. We denote by X ∈ Rn×p the matrix containing
(column-wise) the p covariates {X1, . . . , Xp} of several subjects, it also still
corresponds to the z-maps stacked by rows. Then, assuming a linear depen-
dency between the covariates and the response, the decoding model is the
following:

y = Xw∗ + ε , (2.7)

where w∗ ∈ Rp is the true weight map and ε is the noise vector. In the
present work, we assume that the noise is Gaussian, i.e., ε ∼ N(0,σ2εIn), but
extension to sub-Gaussian noise is possible.

In this thesis, focusing on the inverse problem introduced by (2.7), we aim
at estimating w∗ with statistical guarantees. Ideally, we would like to recover
the non-zero parameters of w∗, also called support of w∗, with a control on
the false discovery.

problem setting. At first sight, the problem described by (2.7) may ap-
pear to be quite simple. Indeed, in small dimension (n > p), with moderate
noise, a well-known solution is the OLS method. Also, we will see that there
are several procedures that work when n < p, with p of the same order as n
(see Chapter 3).

However, in the task fMRI setting, we are far from these settings, as n is
in the order of 100 and p is in the order of 105. This corresponds to the case
n� p which is hard to solve in practice.

Another important feature is the spatial structure of the data. Indeed, the
covariates in X exhibit short-and long-range correlations since neighboring
voxels are highly correlated, yet remote voxels can also be correlated due
to the connectivity of brain regions. Also, we assume that only few regions
are involved in a cognitive task, then few voxels are predictive, i.e., w∗ is
sparse, and those voxels are spatially concentrated. In general, the number
of predictive voxels is expected to be less than 10% of total number of voxels.
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2.5 magneto/electroencephalography (m/eeg)

In this section, we briefly describe the EEG and MEG modalities. These also
introduce an inverse problem that we aim at solving. For a complete review
of those modalities, the reader may refer to to Niedermeyer and Silva (2005)
for EEG and to Hämäläinen et al. (1993) for MEG.

2.5.1 MEG and EEG principles

EEG measures the electric field produced by brain activity, while MEG
modality records the magnetic field. Both techniques are non-invasive as
they capture the signal through sensors positioned at the surface of the
scalp. Since sensors directly record the electric or magnetic field, the time
resolution of M/EEG acquisitions is much better than in fMRI: between 1
and 5ms. However, the spatial resolution is poorer than in fMRI, it is around
1cm3.

2.5.2 The M/EEG inverse problem

In M/EEG, the source localization problem, a.k.a. M/EEG inverse problem,
refers to the search of the location of the brain activity from the electric or
magnetic signals recorded at sensor level. The source space corresponds to
the discretization of brain cortical surface into multiple predefined prospec-
tive source locations, modeled as dipoles. Thanks to the Maxwell’s equations,
the electric or magnetic measurements made in each sensor are linear com-
binations of the emission arising from the dipoles.

We denote by X ∈ Rn×p the forward operator given by the Maxwell’s
equation, Y ∈ Rn×T the sensors’ measurements and B ∈ Rp×T the (un-
known) emissions in the source space, where n is the number of sensors, p
is the number of dipoles and T is the number of recorded time points. Then
the M/EEG inverse problem is defined by

Y = XB + E , (2.8)

where E ∈ Rn×T is the noise of the model. In (2.8), B is also referred to
as true parameter matrix. We aim at recovering its non-zero rows with a
statistical control on the false discoveries.

The remarks made about high-dimensionality and structure of the data
with respect to the fMRI decoding problem are also applicable to this
problem; n being in the order of 100 and p in the order of 104.



3 S TAT I S T I C A L I N F E R E N C E I N H I G H
D I M E N S I O N

In this chapter, we explain why naive solutions to the conditional inference
decoding problem are bound to fail. Indeed, we show that the number
of samples is too low with regards to the number of features to perform
the statistical inference we are aiming at with standard tools. Then, we
review the methods available in the literature that are suited for a number of
samples of the same order as the number of features and benchmark them
on a simulation. In particular, we review the d-Lasso procedure that we will
leverage in the next chapters.

3.1 introduction

In this section, after reviewing the linear model formulation, we introduce
OLS (Ordinary Least Squares) and Lasso regression that are fundamental
for our problem since most of the solutions proposed by the literature rely
on these elementary procedures. Then, we show that there is no hope to
perform a powerful statistical inference when the number of samples n is
much lower than the number of features p, i.e., n� p.

3.1.1 Linear Model

We consider the following model (2.7):

y = Xβ∗ + ε ,

where y ∈ Rn denotes the response vector, X ∈ Rn×p the design matrix,
β∗ ∈ Rp the parameter vector and ε ∼ N(0,σ2εIn) the random error vector
where σε > 0 is its unknown amplitude. Our aim is to recover the support,
defined by S(β∗) = {j ∈ [p] : β∗j 6= 0}, with a statistical control on the number
of false discoveries. Additionally, we denote by s(β∗) = |S(β∗)| the support
size and assume that the true model is sparse, meaning that β∗ has a small
number of non-zero entries, i.e., s(β∗)� p.

3.1.2 Ordinary least square regression

Here, we consider the low-dimensional setting (p < n), and assume a
fixed, full rank design matrix X, i.e., rank(X) = p. The (normalized) Gram
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matrix Σ̂ = X>X/n is then invertible. Then, the OLS estimator defined by
β̂OLS = argminβ∈Rp‖y − Xβ‖22 is given by

β̂OLS = (nΣ̂)−1X>y (3.1)

= β∗ + σε(nΣ̂)
−1X>ε . (3.2)

Then, since the noise is Gaussian, we obtain

β̂OLS ∼ N(β∗,σ2ε(nΣ̂)
−1) . (3.3)

When σε is unknown, it can be estimated by

σ̂2OLS =
‖y − Xβ̂OLS‖22

n− p
, (3.4)

then, the normalized entries of β̂OLS follow a Student law with n−p degrees
of freedom. With (3.1)-(3.4), one can compute confidence intervals on the
entries of β∗. For more details about the OLS regression, one can refer to
Goldberger (1991).

3.1.3 Lasso

In this section, we study the properties of the Lasso support: we present
the compatibility condition introduced in Bühlmann and van de Geer (2011)
and the “beta-min” assumption that ensures the screening property of the
Lasso.

For a given regularization parameter λ > 0, the Lasso estimator β̂L(λ) of
β∗, notably introduced by Chen and Donoho (1994) and Tibshirani (1996), is
given by

β̂L(λ) ∈ argmin
β∈Rp

(
‖y − Xβ‖22

n
+ λ ‖β‖1

)
. (3.5)

We say that the compatibility condition (Bühlmann and van de Geer, 2011)
with constant φ0 > 0 holds if, for all β that verifies ‖βSc(β∗)‖1 6 3‖βS(β∗)‖1,
we have∥∥βS(β∗)∥∥21 6 s(β∗)

φ20
β>Σ̂β . (3.6)

This assumption is purely technical but it can be seen as a combination of a
sparsity assumption and a moderate feature correlation assumption.

Proposition 3.1.1 (Theorem 6.1 of Bühlmann and van de Geer (2011)).
Assume that the model is truly linear (2.7), the columns of X are standard-
ized, i.e., diag(Σ) = 1 and the compatibility condition is verified, then taking

λ > 4σε

√
t2+2 log(p)

n , with probability at least 1− 2 exp(−t2/2), we have∥∥∥β̂L(λ) −β∗∥∥∥
1
6 4

λs(β∗)

φ20
, (3.7)
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Adding up the “beta-min” assumption, we obtain the screening property
of the Lasso. Let us denote by β∗min the lowest non-zero entry of β∗ in
absolute value, i.e., β∗min = minj∈S(β∗) |β∗j |. Then, making the following
beta-min assumption

β∗min > 4λs(β
∗)/φ20 , (3.8)

we have, with high probability, the screening property:

S(β̂L(λ)) ⊇ S(β∗) . (3.9)

This last result means that the estimated Lasso support contains all the
predictive features. This is an interesting property for our problem. However,
the compatibility assumption and the beta-min assumption are often unmet
in practice and hard to check.

3.1.4 Curse of dimensionality

Now, we show that it is not possible to perform a powerful statistical
inference when n� p.

pedagogical examples. To give intuition, we first present four different
simulations with n = 200 and p ∈ {100; 180; 500; 5000}. In order to have a
sparse reduced setting, we have taken s(β∗) = b 3p100c ∈ {3; 5; 15; 150}. Then,
the true parameter vector β∗ is defined by β∗j = 1 for 1 6 j 6 s(β∗) and β∗j =
0 otherwise. The design matrix X contains normally distributed covariates,
where every covariate is correlated at ρ = 0.9 with two other covariates
randomly. We also set σε = 2 to reflect noise regime observed in fMRI
datasets. Defining the signal to noise ratio (SNR) by SNRy = ‖Xβ∗‖22/‖ε‖22,
we have SNRy = 1 (= 0dB) when p = 100, SNRy = 1.5 (= 2dB) when
p = 180, SNRy = 5 (= 7dB) when p = 500 and SNRy = 50 (= 17dB) when
p = 5000.

Practically, to construct X, we have drawn covariates as Gaussian vectors
with a Toeplitz covariance matrix and then shuffle the covariates to avoid
having a 1D spatial structure related to feature weights. The reason why
we do not integrate a strong spatial structure in those scenarios is that in
this chapter we mainly aim at studying the efficiency of statistical inference
procedures when applied on compressed versions of the original problem.
Then, if the dimension reduction is well realized, the original spatial struc-
ture is exploited and correlated features in the compressed problem have
less chance to share the same effects. However, we propose different level
of compression and when p = 5000 (low compression) there are still some
blocks of correlated covariates that share the same effects. Note that in Chap-
ter 4, we study the dimension reduction process; since we want to show the
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fact that we can leverage on data structure to ease inference, we propose
similar scenarios without making the shuffling, i.e., keeping a strong spatial
structure.
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Figure 3.1: Small dimension example. In (a), when p is significantly lower than n,
the OLS 95% confidence intervals yield the support accurately. However, when p
gets closer to n, the OLS solution may fail to identify the support (b). Lasso may
yield the support in this setting (c) but does not provide confidence intervals.

In Fig. 3.1, we run the example with p ∈ {100; 180}. In Fig. 3.1-(a) and
Fig. 3.1-(b), we can see that when p increases the problem gets harder and
the OLS 95% confidence intervals do not identify the support when p is close
to n. We recall that the OLS method is valid only if n > p. In Fig. 3.1-(c), we
compare with the Lasso estimator. Even when p = 180, Lasso may recover
the support however it does not provide confidence intervals.
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(a) Lasso: p=180 (b) Lasso: p=500 (c) Lasso: p=5000

Figure 3.2: High dimension example. In (a) and (b), when p is lower than n or
when p is slightly larger than n, the Lasso solution recovers the support decently.
However, when p gets significantly larger than n, the Lasso solution is not satisfac-
tory due to unfulfilled assumptions. In (c), p remains "only" 25 times larger than n,
in fMRI datasets p can be around 1000 times larger than n.

In Fig. 3.2, we run the example with p ∈ {180; 500; 5000}; the number of
features remains at least 20 times lower than in fMRI datasets. As in the
previous example (see Fig. 3.1), one can observe that the problem becomes
more difficult with a larger p. In Fig. 3.2-(a) and Fig. 3.2-(b), the Lasso
which is almost always a fundamental element in most of the statistical
inference procedures in high dimension (see Sec. 3.2) can decently recover
the support when p is lower or slightly larger than n. However, when p
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gets significantly larger than n, the estimator produced by the Lasso is not
satisfactory anymore to recover the support due to unfulfilled assumptions
(see Fig. 3.2-(c)). More precisely in that settings, to get the screening property
(3.9), noticing that we always have φ20 > s(β∗), we would need to have at
least β∗min > 10.

These two examples illustrate the fact that it is highly over-optimistic to
search for a solution of the original problem with n ≈ 100 and p ≈ 105
without preliminary dimension reduction.

theoretical arguments. In the original case where n � p, if we as-
sume that the size of the support is between 1% and 10% of p, we have
n < s(β∗). Then, without making any additional assumptions, the parame-
ter vector is not identifiable. Indeed, since rank(X) 6 n < s(β∗), it is clear
that there exist an infinity of vectors θ 6= β∗ such that Xθ = Xβ∗. Then, in
this case, there is no hope to recover the support.

Besides, most of the statistical inference procedures for the high-
dimensional setting are based on the Lasso screening property. From (3.6)
and (3.8), it is clear that at least we need that s(β∗) remains “not too large” in
front of

√
n/ log (p). In the neuroimaging setting in which

√
n/ log (p) ≈ 3,

this assumption is problematic.
Furthermore, the study of Wainwright (2009) gives an interesting impos-

sibility result on the screening properties of the Lasso. More precisely, it
provides a threshold on the sample size to ensure possibility or impossibility
to recover the support from the Lasso with high probability. In classic experi-
mental neuroimaging settings, for p in the order of 105 and s(β∗) = b0.03pc,
the threshold would be at least n > 104; since we only have n in the order
of 100, it is very unlikely that the Lasso recovers the support.

overview. We have shown that while the OLS solution produces con-
fidence intervals, it fails when p becomes close to n. Also, the Lasso can
handle the n < p regime but does not produce confidence intervals (or
p-values) and cannot handle the n� p regime. Then, knowing that almost
all the statistical inference procedures that work in high dimension leverage
the Lasso, it clearly appears that the original problem cannot be solved with-
out preliminarily reducing the dimension of the feature space. Solutions to
operate dimension reduction will be discussed in Chapter 4. In the following
sections, we consider statistical inference procedures producing p-values
that can solve compressed versions of the original problem leading to n < p
regime but avoiding the n� p regime.
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3.2 literature review

The topic of high-dimensional statistical inference has been addressed in
many recent works. In this section, we try to briefly review most of the
popular procedures available in the literature before going into a more
detailed description of the most promising ones.

3.2.1 Resampling methods

A first class of methods, probably the oldest one, is based on resampling.
Among those, the classic bootstrap procedures are generally based on Lasso-
type estimators (Bach, 2008; Chatterjee and Lahiri, 2011; Chatterjee, Lahiri, et
al., 2013; Liu, Yu, et al., 2013), but also on more refined estimators (Dezeure,
Bühlmann, and Zhang, 2017). El Karoui and Purdom (2018) provides an
interesting study about the validity of the bootstrap procedure in high
dimension, they conclude that the method tends to be anti-conservative.
In the same spirit, Minnier, Tian, and Cai (2011) proposes a perturbation
resampling-based procedure to approximate the distribution of a an estima-
tor and produce confidence intervals. Finally Meinshausen and Bühlmann
(2010) proposed the stability selection procedure that is based on the combi-
nation of subsampling with a selection algorithm and derives the probability
that a covariate is selected by the selection algorithm. This method is known
to be conservative.

A computationally efficient alternative is the single-split procedure in-
troduced by Wasserman and Roeder (2009) that combines a screening step
using the Lasso with an inference step using the OLS. It has been improved
with randomization and ensembling by Meinshausen, Meier, and Bühlmann
(2009): they propose to repeat several screening/inference operations and
refer to it as multi-sample split. Sample splitting however results in power
loss in a regime where n� p. In Sec. 3.3 and Sec. 3.4, we give more details
for two popular procedures, namely the residual bootstrap Lasso and the
multi-sample split.

3.2.2 Post selection inference procedures

In the single-split procedure, one half of the samples is used to make the
screening and the other one is used for the inference; this leads to a loss of
power. Post-selection inference procedures aim at merging the screening and
inference steps into one and then use all the samples in a screening/inference
solution. Adjustments must be made when performing the inference with
the same samples that were used to do the screening. Several solutions have
been proposed. Lockhart et al. (2014) test the significance of the predictor
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variables that enter in the Lasso estimator along the Lasso solution path. Berk
et al. (2013) propose to produce valid post-selection inference by suitably
widening conventional confidence. This results in conservative estimates.
Lee et al. (2016) and Tibshirani et al. (2016) characterize the distribution
of a post-selection estimator conditioned on the selection event. All these
methods notably apply to the Lasso.

However, they scale poorly when p becomes large. Another drawback of
such methods is that they produce confidence intervals or p-values only for
the selected variables. We aim at deriving p-values for each covariate, hence
we did not further consider such methods.

3.2.3 Debiasing procedures

Another class of procedures tries to address the projection bias of classic high
dimensional estimators for linear models. Indeed, solutions of the Lasso or
Ridge can be seen as projections on a subspace of the original feature space.
Under appropriate assumptions, debiased estimators asymptotically follow
Gaussian laws. As with the OLS procedure, it is then possible to compute
confidence intervals and p-values for all the model parameters. Bühlmann
(2013) proposes the corrected Ridge procedure which aims at debiasing the
Ridge estimator. Another procedure called “desparsified” (or “debiased”)
Lasso has recently been investigated by several authors (Javanmard and
Montanari, 2014; Zhang and Zhang, 2014; van de Geer et al., 2014), and
is still actively developed (Bellec and Zhang, 2019; Celentano, Montanari,
and Wei, 2020; Javanmard, Montanari, et al., 2018). As one could expect,
this procedure computes an estimator derived from the Lasso but having
different nature and properties, e.g., it is not sparse. In Sec. 3.5 and Sec. 3.6,
we present in detail the corrected Ridge and the desparsified Lasso (d-Lasso).

3.2.4 Procedures testing groups of covariates

Another class of methods tries to untangle the problem by testing groups of
covariates. Meinshausen (2015) provides “group bound” confidence interval,
i.e., confidence intervals on the `1-norm of several parameters, without
making any assumptions on the design matrix. This method is known to be
conservative in practice (Javanmard, Montanari, et al., 2018; Mitra and Zhang,
2016). Another procedure, referred to as hierarchical testing, developed
successively by Blanchard, Geman, et al. (2005), Mandozzi and Bühlmann
(2016), and Meinshausen (2008), makes significance tests along the tree of a
hierarchical clustering algorithm starting from the root node and descending
subsequently into children of rejected nodes. This procedure is constrained
by the clustering tree and leverages a plug-in inference procedure, then it
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does not provide a new way to compute p-values. We do not go into further
detail concerning these methods since, at this stage, we aim at building
p-values for each covariate.

3.2.5 Knockoff procedure

A recent method proposed by Barber and Candès (2015) and further devel-
oped by Candès et al. (2018) proposes to create “knockoff” variables that
mimic the original variables checking whether original variables are selected
at random or not. This procedure is quite powerful and suited to control
the False Discovery Rate (FDR), which is the number of false discoveries
divided by the total number of discover. The FDR is notably different from
the FWER (Family-Wise Error Rate) which corresponds to the probability of
making at least one false discovery. Then, it is easy to show that controlling
the FWER is more restrictive (harder) than controlling the FDR. Extension
of the Knockoff to FWER-type control was proposed (Janson and Su, 2016)
but it is not very natural and turns out to be very conservative.

Based on the knockoff technique, we have proposed two contributions
Nguyen, Chevalier, and Thirion (2019) (equal contribution with Tuan-Binh
Nguyen) and Nguyen et al. (2020) (second author). We do not present our
work on the FDR controlling procedure in this thesis since we have decided
to focus on our core contributions: procedures that yield an FWER-type of
control.

3.3 residual bootstrap lasso

We now detail the residual bootstrap Lasso method by Chatterjee and Lahiri
(2011). First, compute the Lasso estimator β̂L(λ) defined by (3.5), where
λ ∈ R is set by cross validation (see Kohavi et al. (1995) for a reference
about cross validation). Then, compute β̃ = β̂L(λ)1|β̂L(λ)|>an

where an
verifies an + (n−1/2 logn)a−1n → 0 when n → +∞. Estimated residuals ε̂
are defined by ε̂ = y − Xβ̃. The centered estimated residuals are defined by
ε̃ = ε̂− 1

n

∑n
i=1 ε̂i. Then, repeat B times, the following procedure:

• Draw n elements from ε̃, denoted as ε̃(b) where b ∈ [B]

• Construct y(b) = Xβ̃+ ε̃(b)

• Solve the Lasso for y(b) and X denoting the solution by β̂L(λ),(b)

Then the distribution of β∗ − β̂L(λ) can be approximated by β̃− β̂L(λ),(b).
For a more formal formulation of this property, one can refer to Chatterjee
and Lahiri (2011). This last result allows for the computation of confidence
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intervals and p-values. In the simulations proposed in Sec. 3.7, we have
taken B = 200.

3.4 multi-sample split

In this section, we introduce the multi-sample split technique, the two
ingredients of this procedure are single-split and ensembling.

3.4.1 Single-split

The single-split procedure was introduced by Wasserman and Roeder (2009)
and works as follows. The full sample is divided into two subsamples
denoted by Iin = (Xin, yin) and Iout = (Xout, yout), with |Iin| = bn/2c. Samples
of Iin are used to run a Lasso screening step that selects at most bn/2c
covariates (see Tibshirani et al. (2013)). Samples of Iout are used to compute
an OLS regression keeping only the selected covariates. Then, one can
derive p-values with respect to the hypothesis tests H0,j : β

∗
j = 0 for j ∈

S(β̂L(λ)(Iin)), where S(β̂L(λ)(Iin)) is the estimated Lasso support using Iin.
Finally, one can define a generalized p-value for each entry of β∗:

p̂
single
j =

p̂OLS
j , if j ∈ S(β̂L(λ)(Iin))
1, if j /∈ S(β̂L(λ)(Iin))

, (3.10)

where p̂OLS
j is the p-value obtained through the OLS procedure.

3.4.2 Multi sample-splitting

The problem with the single-split is that the solution highly depends on
the initial splitting choice. A solution that tries to address this default has
been proposed by Meinshausen, Meier, and Bühlmann (2009), the global
procedure is called the multi sample-splitting. The idea is to repeat B times
the single-split procedure using different random splits. Thanks to this
process we collect B p-values for each entry of β∗. Then, the aim is to
aggregate for every j ∈ [p], the B single-split p-values, denoted by p̂single,(b)

j

for b ∈ [B], into a final multi-split p-value p̂multi
j . The quantile aggregation

method proposed by Meinshausen, Meier, and Bühlmann (2009) is defined
by

p̂multi
j (γ) = min

(
γ-quantile

 p̂
single,(b)
j

γ
;b ∈ [B]

 , 1
)

, (3.11)
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where γ ∈ (0, 1) is an arbitrary choice of γ-quantile. Another aggregation
procedure was proposed by Meinshausen, Meier, and Bühlmann (2009). We
refer to it as adaptive quantile aggregation procedure since it tests for several
choice of γ-quantiles. The adaptive quantile aggregation p-values denoted
by p̂ada, multi

j for j ∈ [p] are defined by

p̂ada, multi
j = min

(
(1− log(γmin)) inf

γ∈(γmin,1)
p̂multi
j (γ), 1

)
, (3.12)

where γmin ∈ (0, 1). In the simulations presented in Sec. 3.7, we have taken
the adaptive quantile aggregation with γmin = 0.1 and B = 25.

3.5 corrected ridge

In this section, we introduce the corrected Ridge that was developed by
Bühlmann (2013).

3.5.1 Singular value decomposition

Before turning to the theory related to the corrected Ridge method, let us
consider the Singular Value Decomposition (SVD) of X ∈ Rn×p assuming
n < p:

X = USV> , (3.13)

where U ∈ Rn×n, S ∈ Rn×n and V ∈ Rp×n have the following properties:

U>U = In ,

V>V = In ,

S = diag(s1, s2, . . . , sn) .

(3.14)

where s1 > s2 > · · · > sn > 0 are the singular values. The projection
onto the linear space generated by the rows of X is defined by PX = VV>.
Then, θ∗ defined by θ∗ = PXβ

∗ verifies Xθ∗ = Xβ∗. Additionally, θ∗ is the
only element of {θ ∈ Rp; Xθ = Xβ∗} ∩ {θ ∈ Rp;θ = PXθ}. Then, instead of
estimating the non-identifiable β∗, one proceeds by estimating θ∗ and to
bound the quantity ‖θ∗ −β∗‖1.

3.5.2 Corrected Ridge

For a given regularization parameter λ > 0, the Ridge estimator β̂R(λ) is
defined by

β̂R(λ) = argmin
β∈Rp

(
‖y − Xβ‖22

n
+ λ ‖β‖22

)
. (3.15)
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The closed solution of this equation is the following:

β̂R(λ) = (Σ̂+ λIp)−1n−1X>y . (3.16)

One can check that β̂R(λ) = PXβ̂
R(λ). Then, Bühlmann (2013) introduce

ΩR(λ) the covariance matrix of the Ridge estimator divided by σ2ε defined
by:

ΩR(λ) = n
−1(Σ̂+ λIp)−1Σ̂(Σ̂+ λIp)−1 , (3.17)

and show that:

σ−1ε (β̂R(λ) −θ∗) = w , w L−−−−→
λ→0+

Np(0,ΩR(0+)) . (3.18)

Thanks to (3.18), we have a control on |β̂
R(λ)
j −θ∗j | for all j ∈ [p]. Then, the

authors link β∗ and θ∗. From the definition of θ∗, we have

θ∗j = (PX)j,jβ
∗
j +
∑
k6=j

(PX)j,kβ
∗
k . (3.19)

Thus, we have

θ∗j
(PX)j,j

= β∗j +
∑
k6=j

(PX)j,k
(PX)j,j

β∗k . (3.20)

Then, (3.20) shows that one can estimate β∗j from θ∗j with an error equal to∑
k6=j[(PX)j,kβ

∗
k/(PX)j,j]. Due to the estimation properties of the Lasso (see

Sec. 3.1.3), the authors proposed to estimate the error term by replacing β∗k
with β̂L(λ0)k where λ0 = 4σε

√
2 log(p)/n. Finally, we have all the ingredients

to construct a bias-corrected Ridge estimator denoted β̂CR(λ) and defined
by

β̂
CR(λ)
j =

β̂
R(λ)
j

(PX)j,j
−
∑
k6=j

(PX)j,k
(PX)j,j

β̂
L(λ0)
k . (3.21)

Then, with the additional sparsity assumptions that s(β∗) = O((n/ log(p))ξ)
for 0 6 ξ < 1/2, the following property can be shown:

σ−1ε (β̂
CR(λ)
j −β∗j ) =

wj
(PX)j,j

+σ−1ε ∆j , w L−−−−→
λ→0+

Np(0,ΩR(0+)) , (3.22)

where ∆j verifies:

|∆j| 6 max
k6=j

∣∣∣∣(PX)jk
(PX)j,j

∣∣∣∣ (log(p)/n)1/2−ξ . (3.23)

A detailed proof of this result is given in Bühlmann (2013). Then, with (3.22)
and (3.23) we can derive two-sided confidence intervals with respect to the
entry of β∗.
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3.6 desparsified lasso

In this section, we present the d-Lasso procedure that has been proposed
in parallel by several authors (Javanmard and Montanari, 2014; Zhang and
Zhang, 2014; van de Geer et al., 2014).

3.6.1 Insights from low dimension

First, we give insight about the OLS estimator properties, this will next
exhibit how d-Lasso extends the OLS procedure in Sec. 3.6.2. We assume
that p < n. Starting from model (2.7), let us define zj ∈ Rn the residual of
the OLS regression of X·,j versus X(−j) given by:

zj = X·,j − X(−j)β̂(−j) , (3.24)

where β̂(−j) refers to the estimator of the OLS regression of X·,j versus
X(−j). In particular, z>j X·,k = 0 for all k ∈ [p] \ {j}. Additionally, we have the
following result:

Proposition 3.6.1. If n > p and rank(X) = p, then, for all j ∈ [p]:

β̂OLS
j =

z>j y

z>j X·,j
, (3.25)

where β̂OLS is the parameter vector estimates obtained from the OLS regression of
y against X.

3.6.2 Desparsified Lasso

Now, we consider the high dimensional setting n < p. In this setting, it
is not possible to construct a non-zero vector family {zj, j ∈ [p]} (i.e., a
family verifying zj 6= 0 for all j ∈ [p]), such that z>j X·,k = 0 for all k 6= j.
The idea proposed by Zhang and Zhang (2014) is to construct a family
of vectors {zj, j ∈ [p]}, called score vectors, which would play the same
role as the residual of the OLS regression of X·,j versus X(−j) in (3.24) but
relaxing (slightly) the constraint z>j X·,k = 0. To do so, instead of computing
{zj, j ∈ [p]} by OLS regression, they proposed to take the residual of the
Lasso regressions1 of X·,j against X(−j). Then, from (2.7), one can derive the
following:

z>j y

z>j X·,j
= β∗j +

z>j ε

z>j X·,j
+
∑
k6=j

z>j X·,kβ∗k
z>j X·,j

. (3.26)

1 From our analysis, taking λj, the regularization parameter used in the Lasso regression
of X·,j against X(−j), equal to 0.01×maxk∈[p]\{j} |X>·,jX·,k|/n is appropriate to compute zj.
Empirically, it results in a more conservative solution than the one proposed by Zhang and
Zhang (2014) but it avoids doing computationally expensive grid-search.
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Then, noticing that the second term in the right-hand side of (3.26) is a noise
term and plugging in β̂L(λ0) instead of β∗ as done in (3.21), they propose
the desparsified Lasso (d-Lasso) estimator denoted by β̂DL and defined by:

β̂DL
j =

z>j y

z>j X·,j
−
∑
k6=j

z>j X·,kβ̂
L(λ0)
k

z>j X·,j
. (3.27)

Here, one can notice that (3.27) generalizes (3.25) to n < p. Then, from (3.26)
and (3.27) one can derive:

σ−1ε (β̂DL
j −β∗j ) = σ

−1
ε

z>j ε

z>j X·,j︸ ︷︷ ︸
ηj

+σ−1ε
∑
k6=j

z>j X·,k
z>j X·,j

(β∗k − β̂
L(λ0)
k )︸ ︷︷ ︸

µj

. (3.28)

This yields:

σ−1ε (β̂DL −β∗) = η+ µ, η ∼ Np(0,Ω) , (3.29)

where:

Ωjk =
z>j zk

(z>j X·,j)(z>kX·,k)
. (3.30)

Asymptomatically and under sparsity assumptions (see van de Geer et al.
(2014)), one can neglect the last term µ and obtain:

σ−1ε (Ωjj)
−1/2(β̂DL

j −β∗j ) ∼ N(0, 1) . (3.31)

From (3.31), one can compute the confidence intervals and p-values of the
coefficients of the estimated weight map.

3.6.3 Debiased Lasso approach

In Sec. 3.6.2, we took the approach proposed by Zhang and Zhang (2014) to
construct the d-Lasso estimator. However, Javanmard and Montanari (2014)
take a different approach to define the d-Lasso estimator (calling it debiased
Lasso):

β̂DL = β̂L(λ0) +
1

n
MX>(y − Xβ̂L(λ0)) , (3.32)

where M is an estimate of the inverse of the covariance matrix Σ̂. Then, the
covariance of β̂DL is given by:

Cov (β̂DL) =
1

n2
σ2MX>XM> . (3.33)
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Now, taking the approach of Zhang and Zhang (2014), from (3.27) we can
derive:

β̂DL = A y − Pβ̂L(λ0) , (3.34)

where A ∈ Rp×n and P ∈ Rp×p are obtained by identification. Then, the
covariance of β̂DL is given by:

Cov (β̂DL) = σ2AA> . (3.35)

Then, assuming that M verifies diag (MΣ̂) = 1, the two approaches are
equivalent if:

A =
1

n
MX> , (3.36)

P =
1

n
MX>X − I . (3.37)

3.6.4 Degrees of freedom adjustment

d-Lasso being still actively developed, some recent works have proposed an
additional degree-of-freedom adjustment (Bellec and Zhang, 2019; Celentano,
Montanari, and Wei, 2020). Indeed, they have shown that if s(β∗) is not
negligible in front of n, then it is necessary to adjust (3.32) as follows:

β̂DL = β̂L(λ0) +
1

n− s(β̂L(λ0))
MX>(y − Xβ̂L(λ0)) , (3.38)

where s(β̂L(λ0)) = |S(β̂L(λ0))|. In the simulations proposed in Sec. 3.7, we
test both original and degrees of freedom adjusted d-Lasso.

3.6.5 Noise estimation

In practice, the noise standard deviation σε must be estimated to derive
confidence intervals with the corrected Ridge or the d-Lasso. We use the
method proposed by Reid, Tibshirani, and Friedman (2016) that we refer to
as Reid procedure. Denoting the estimator by σ̂ε, they have proposed:

σ̂ε =

∥∥∥y − Xβ̂L(λ0)
∥∥∥2
2

n− s(β̂L(λ0))
. (3.39)

For studies dedicated to the estimation of the noise standard deviation in
high dimensional linear model, one can refer to Ndiaye et al. (2017), Reid,
Tibshirani, and Friedman (2016), and Yu and Bien (2019).



3.7 empirical comparison 32

Algorithm 1: d-Lasso
input : X ∈ Rn×p, y ∈ Rn,α ∈ (0, 1)
q1−α

2
← Standard_Gaussian_Quantile(1− α

2 ) // quantile

β̂L(λ0) ← Lasso(X, y) // Lasso estimator

s(β̂L(λ0))← |S(β̂L(λ0))| // Lasso support

σ̂ε ← Reid(X, y) // noise estimator

for j ∈ [p] do
zj ← Lasso(X(−j), X.,j) // score vectors

Ω̂j,j ←
nz>j zj

|z>j X.,j||z>j X.,j|

β̂
(DL)
j ← z>j y

z>j X.,j
−
∑
k6=j

z>j X.,kβ̂
L(λ0)

k

z>j X.,j
// d-Lasso estimator

β̂
(DL),lower
j ← β̂

(DL)
j − q1−α

2
n−1/2σ̂εΩ̂

1/2
j,j // lower bound

β̂
(DL),upper
j ← β̂

(DL)
j + q1−α

2
n−1/2σ̂εΩ̂

1/2
j,j // upper bound

end
return β̂(DL), β̂(DL),lower, β̂(DL),upper

3.6.6 Algorithm

The original d-Lasso algorithm given in Algo. 1 computes the d-Lasso
estimator and its associated confidence intervals at 1 − α for α ∈ (0, 1),
e.g., for α = 0.05, we obtain the 95% confidence intervals.

3.7 empirical comparison

In this section, we benchmark the presented methods in various settings that
correspond to compressed versions of the original neuroimaging setting.

3.7.1 Experimental setting

The simulations we propose here are built similarly as the one described
in Sec. 3.1.4: covariates are Gaussian with Toeplitz covariance matrix. We
also shuffle the covariates to reproduce a compressed version of the orig-
inal problem into 500 synthetic features. In our experiments, we take
n ∈ {100, 200, 400}, p = 500, s(β∗) ∈ {5, 15, 50}, σε = 2 and ρ = 0.9. Also,
similarly as in Sec. 3.1.4, the true parameter vector β∗ is defined by β∗j = 1
for 1 6 j 6 s(β∗) and β∗j = 0 otherwise.

We organize the simulations in three types of settings: a setting with small
support where s(β∗) = 0.01p = 5, a setting with medium support where
s(β∗) = 0.03p = 15 and a setting with large support where s(β∗) = 0.1p =
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50. For each type of setting, we vary the number samples. Then, for the 9
settings, we run 100 simulations drawing the covariate with a different seed
to obtain meaningful results.

The SNR is the same for each type of settings: we have SNRy = 1.5 (= 2dB)
in the small support settings, SNRy = 5 (= 7dB) in the medium support
settings, SNRy = 28 (= 14dB) in the large support settings. However, since
σε = 2 is fixed, the noise regime does not vary and the inference should
become harder when the support size increases. This might be counter
intuitive since the SNRy also increases with the support size.

3.7.2 Results

In Fig. 3.3, we give the results obtained for the first seed in the central
scenario with a medium support size. It is difficult to get definitive con-
clusion with only one seed, and all the methods seem to be approximately
equally powerful in this setting. However, we can notice two main things:
the multi-sample split produces p-values only for few coefficients due to its
screening/inference strategy and the degrees of freedom adjusted d-Lasso
is very close to the original d-Lasso.

In Fig. 3.4, we show that all the methods control the false positive rate
(FPR), i.e., the ratio between the number of false positives and the total
number of actual negative, at the expected 5% nominal rate in all the
settings, except the residual bootstrap Lasso when s(β∗) = 50 and n = 100.
In Fig. 3.5, Fig. 3.6 and Fig. 3.7, we give the true positive rates for the small
support size, the medium support size and the large support size. The true
positive rate (or recall) is the number of discoveries divided by the size of
the true support. In terms of power, for a small support size, we can notice
that the residual bootstrap Lasso is the less powerful and the multi-sample
split is the most powerful, the other methods remain competitive except the
corrected Ridge when n = 400. For medium support size, original d-Lasso
exhibits slightly better results, corrected Ridge is also powerful except when
n = 400, multi-sample split is powerful except when n = 100, the residual
bootstrap is less powerful and the degrees of freedom adjusted d-Lasso
(DLajd) exhibits results close to the one of original d-Lasso but slightly worse
for n = 100. For a large support size, the residual bootstrap Lasso is the
most powerful when n = 100, however the FPR equals 14% in this case
which is above the expected 5% nominal rate (see Fig. 3.4). Concerning the
other methods, the original d-Lasso exhibits good recovery properties, the
multi-sample split is not powerful and the other methods remain competitive
except the corrected ridge when n = 400.

We can retain several main facts from these experiments. The residual boot-
strap Lasso method is powerful when the support size is large, otherwise it
is significantly less powerful than the other methods. The multi-sample split
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Figure 3.3: Qualitative results for the medium support size setting. We give here
the p-values obtained by the different methods for the first seed in the medium
support size scenario with n = 200. When a negative logarithm p-value is greater
than 3, it corresponds to a p-value lower than 5% and the covariate is retained in the
estimated support. It is difficult to get definitive conclusion with only one seed, and
all the methods seem to be approximately equally powerful in this setting. These
results show that the multi-sample split produces p-values only for few coefficients
due to its screening/inference strategy and that the degrees of freedom adjusted
d-Lasso is very close to the original d-Lasso.

procedure is competitive when s(β∗)� n otherwise the method becomes
significantly less powerful, this can be explained by the screening/inference
strategy of the method. The corrected Ridge behave similarly as the d-Lasso,
excepted for large sample size for which it is less powerful than the other
methods. This effect is hard to understand but we noticed that the ridge
estimator, which is the main component of the corrected ridge, does not give
a better estimate of β∗ when n goes from 200 to 400. Degrees of freedom
adjusted d-Lasso does not improve over the original d-Lasso giving very
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Figure 3.4: False positive rate control. Here we plot the empirical False Positive
Rate (FPR) for all methods and all scenarios given a nominal level of 5%. Except
for the residual bootstrap Lasso, for a large support size and a small sample size,
the empirical FPR stays below the expected 5% nominal rate meaning that the
occurrence of false positives is controlled accurately.
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Figure 3.5: Power in small support size scenarios. Here we give the true positive
rates for a support size of 1% of p. Note that since s(β∗) = 5, the true positive rate
takes value in {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}. We can notice that the residual bootstrap
Lasso (RB) is the less powerful, the multi-sample split (MS) is the most powerful
when n > 200 and the original d-Lasso (DL) is the most powerful for n = 100. The
corrected Ridge (CR), original d-Lasso and degrees of freedom adjusted d-Lasso
(DLajd) are almost as powerful as multi-sample split when n > 200 except the
corrected Ridge which fails to improve when n = 400. Note that in this scenario
the empirical FPR stays below the expected 5% nominal rate for all the methods
(see Fig. 3.4).
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Figure 3.6: Power in medium support size scenarios. Here we give the true posi-
tive rates for a support size of 3% of p. The original d-Lasso (DL) exhibits slightly
better results, corrected Ridge (CR) is also powerful except when n = 400, multi-
sample split (MS) is powerful except when n = 100 and the residual bootstrap Lasso
(RB) is less powerful. The degrees of freedom adjusted d-Lasso (DLajd) exhibits
results close to the one of original d-Lasso but slightly worse for n = 100. Note that
in this scenario the empirical FPR stays below the expected 5% nominal rate for all
the methods (see Fig. 3.4).
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Figure 3.7: Power in large support size scenarios. Here we give the true positive
rates for a support size of 10% of p. The residual bootstrap Lasso (RB) is the
most powerful when n = 100, however the FPR equals 14% in this case which is
above the expected 5% nominal rate (see Fig. 3.4). Concerning the other methods,
original d-Lasso (DL) exhibits good recovery properties, corrected Ridge (CR) is
also powerful except when n = 400, the multi-sample split (MS) is not powerful
and degrees of freedom adjusted d-Lasso (DLajd) exhibits results close to the one
of original d-Lasso but slightly worse. Note that, except for the residual bootstrap
Lasso all the methods control the FPR at the expected level.

close results. Overall, d-Lasso is competitive in terms of power in every
setting and controls the FPR as expected.

3.8 conclusion

In this chapter, we have seen that several procedures can be used to address
the statistical inference problem in high dimension. Among all the methods
that we have presented and benchmarked, the d-Lasso offers several advan-
tages. First, it is still actively developed and the scientific community seems
to acknowledge its good behavior theoretically and empirically. Second,
in our experiments, d-Lasso controlled the false positives as expected and
exhibited competitive recovery properties with respect to the other methods
in every setting. Then during the thesis we have decided to leverage the
d-Lasso procedure.



Part II

M A I N C O N T R I B U T I O N S



4 E N S E M B L E O F C L U S T E R E D
D E S PA R S I F I E D L A S S O

In this chapter, we introduce two algorithms for high-dimensional multivari-
ate statistical inference on structured data. This chapter mainly revisit our
first publication at the 2018 MICCAI conference:

CHEVALIER, Jérôme-Alexis, SALMON, Joseph, et THIRION, Bertrand. Sta-
tistical inference with ensemble of clustered desparsified lasso. In : International
Conference on Medical Image Computing and Computer-Assisted Intervention.
Springer, Cham, 2018. p. 638-646.

The algorithms we present, that we called cd-Lasso and ecd-Lasso, are no-
tably well suited for high dimensional structured data such as neuroimaging
data. We focus on explaining the rationale behind each step of the proposed
algorithms along with experimental results to illustrate the potential of this
approach.

4.1 introduction

We recall that the model that describes the neuroimaging problem we are
dealing with is given by (2.7):

y = Xβ∗ + ε ,

where the response vector is denoted by y ∈ Rn, the design matrix by
X ∈ Rn×p, the parameter vector by β∗ ∈ Rp and the random error vector
by ε ∼ N(0,σ2εIn) where σε > 0 is its unknown amplitude. In neuroimaging
contexts, n the number of samples is the number of brain images available
and p the number of covariates represents the number of voxels in each
scan —a covariate being given by the level of activation of a voxel or some
other imaging contrast. Our aim is to infer the weight map β∗ that links
the activation maps X to the conditions y with statistical guarantees on the
proposed estimator. Ideally, we would like to recover all the covariates that
are predictive with a control on the non-predictive variables selected.

For the current chapter, we only assume sample independence, sparsity
and spatial structure of the weight map; these assumptions are discussed
more in detail when we study the properties of the proposed estimators (see
Chapter 5).
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4.2 dimension reduction

Here, we show that, in the high-dimensional setting in which n � p,
statistical inference is impossible without dimension reduction. We propose
a way to compress the feature set that preserves data structure and keeps
the problem as close as possible to the original one. Finally, we describe
the clustered desparsified Lasso (cd-Lasso) algorithm for high-dimensional
statistical inference.

4.2.1 Spatially-Constrained Clustering to Preserve Data Structure

In high dimension, several methods have been proposed to obtain confidence
intervals or p-values (see Chapter 3). In particular, the d-Lasso estimator
have recently been coined by several authors Javanmard and Montanari,
2014; Zhang and Zhang, 2014; van de Geer et al., 2014 and is one of the
most promising methods to solve our problem (see Chapter 3). However,
when p � n, we see in Fig. 4.1 that the method dramatically lacks power.
Even more problematic is the fact that the number of predictive parameters
(support size) denoted s(β∗) is often greater than the number of samples
even if we consider the sparse setting in which s(β∗)� p. This leads to an
identifiability problem, hence one cannot retrieve the true parameter without
further assumptions. Note that the impossibility of performing the statistical
inference in the original setting was further discussed in Chapter 3.

Additionally, in high-dimensional inference, variables are often highly
correlated. Specifically, a brain image has a 3D representation and a given
voxel is highly correlated with its neighbors; β∗ is very likely to carry the
same structure. Then, in order to accurately compress the data and preserve
the spatial structure, we want to avoid mixing voxels "far" from each other.
A computationally attractive solution to alleviate high dimensionality, lever-
aging data structure, is to group adjacent voxels, producing a closely related,
yet compressed version of the original problem. In decoding, the grouping
of voxels via spatially-constrained clustering algorithms has already been
used to reduce the problem dimension (Gramfort, Varoquaux, and Thirion,
2012; Varoquaux, Gramfort, and Thirion, 2012; Wang et al., 2015) in the
prediction context. It is worth noting that this idea has also been successful
in other domains, such as in genomics (Dehman, Ambroise, and Neuvial,
2015). Here, we consider a data-driven and spatially-constrained hierarchical
clustering algorithm that uses Ward criterion following the conclusions by
Varoquaux, Gramfort, and Thirion (2012) and Thirion et al. (2014). Specifi-
cally, groups of contiguous voxels can be replaced by the average signal they
carry, reducing the dimensionality while improving the conditioning of the
estimation problem. Also, an interesting aspect of this dimension reduction
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method is its denoising property (Hoyos-Idrobo et al., 2018) since it averages
signal from groups of noisy voxels.

The clustering solution highly depends on the choice of the number of
groups (or clusters) which is denoted by C. Taking a small C leads to a
more aggressive compression of the data and larger bias. However, the
dimension of the problem is significantly reduced and the conditioning
greatly improved, which leads to a much easier statistical inference problem.
On the opposite, taking C large may not be sufficient to solve the issues
encountered in the original uncompressed problem (see also Chapter 3).

The combination of the clustering algorithm and d-Lasso inference pro-
cedure, i.e., the application of the d-Lasso onto the clustered problem, is
referred to as the cd-Lasso algorithm.

4.2.2 Clustered Desparsified Lasso

Here, we present in Algo. 2 the cd-Lasso algorithm that produces p-values
on the parameters of the model (2.7). In this algorithm, the function Ward

corresponds to the clustering algorithm that takes in inputs the data X
and a number of clusters and outputs a transformation matrix A to go
from the original feature space to the compressed feature space. Then, the
function d-Lasso corresponds to the d-Lasso inference that takes in inputs
the clustered data Z and the target y.

Algorithm 2: cd-Lasso algorithm

input : X ∈ Rn×p, y ∈ Rn

param :C

A = Ward(C, X) // transformation matrix

Z = XA // compressed design matrix

p̂ = d-Lasso(Z, y) // uncorrected cluster-wise p-values

q̂ = min(1,C× p̂) // corrected cluster-wise p-values

for j = 1, . . . ,p do
p̂j = p̂(c) if j in cluster c // uncorr. feature-wise p-values

q̂j = q̂(c) if j in cluster c // corrected feature-wise p-values

end

return p̂j, q̂j for j ∈ [p]

One can run the cd-Lasso algorithm on standard desktop stations —
without using parallelization— with n = 400, C = 500 and B = 25 in
less than 1 minute. In the cd-Lasso algorithm, the most expensive step
is the d-Lasso inference, then p ≈ 105 has a very limited impact on the
computation time. The complexity for solving the Lasso depends on the
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solver we choose, we then give the complexity in numbers of Lasso. The
complexity for solving cd-Lasso is given by the complexity of the resolution
of O(C) Lasso problems with n samples and C features. Note that, the
complexity for solving the d-Lasso on the original problem is given by the
complexity of the resolution of O(p) Lasso problems with n samples and
p features. Then, as in Ganjgahi et al. (2018), the dimension reduction is
not only allowing an increase of power but it is an essential feature for
computational feasibility.

4.2.3 A 1D High Dimensional Simulation

Here, we introduce a 1D simulation to show the effect of compressing by
spatially constrained clustering.

simulation. Contrarily to the simulations of Chapter 3, this simulation
has a 1D structure and we set n = 100 and p = 2 000. We construct the design
matrix X such that covariates are normally distributed and two consecutive
covariates have a fixed correlation ρ = 0.95. The parameter vector β∗ is
such that β∗j = 1 for 1 6 j 6 50 and β∗j = 0 otherwise, then s(β∗) = 50.
We also set σε = 10 giving approximately SNRy = 9 (= 10dB) where the
SNR is defined by SNRy = ‖Xβ∗‖22/‖ε‖22 and describes the noise regime in
any given experiment; this value is close to the estimated SNR in real MRI
datasets. To compute the results given by the cd-Lasso, we took 200 clusters,
reducing the dimension from p = 2 000 to C = 200 before performing the
inference.
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Figure 4.1: (a) 95% coefficient intervals given by the raw d-Lasso fail to retrieve the
true support. (b) 95% coefficient intervals given by the cd-Lasso are much narrower,
and yield a good support recovery.

results. In Fig. 4.1, we compare the results of the raw d-Lasso procedure
with the one of the cd-Lasso algorithm. In Fig. 4.1-(a), we notice that the
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raw d-Lasso fails to retrieve the true support since the confidence intervals
are too wide. In the neuroimaging setting n is of the order of a hundred
and p is around 105; here the d-Lasso is failing even with much lower p.
In Fig. 4.1-(b), we can see that the cd-Lasso improves a lot over d-Lasso
since it retrieves all the non-zero parameters with a limited number of
false discoveries. Indeed, thanks to the clustering, the estimator variance is
reduced. Then, cd-Lasso yields useful confidence intervals that could not be
reached by standard d-Lasso. The impact of the choice of the hyperparameter
C is further discussed in Chapter 6.

4.3 clustering randomization and ensembling

In this section, we propose to randomize with regard to the clustering choice
and aggregate several solutions. Then, the beneficial aspects of this ran-
domization/aggregation step is then exhibited through some experimental
results. Finally, we give another algorithm for high-dimensional statistical
inference.

4.3.1 Randomization

The compression proposed in Sec. 4.2 introduces a bias, as the patterns
are constrained by the clusters shape. It can be observed in Fig. 4.1-(b); for
example, some non-zero coefficients are mixed some zero coefficients. This
bias is problematic as there is no unique grouping (or clustering) of the
voxels (Thirion et al., 2014): many different choices of clustering capture the
signal accurately. Additionally, it is preferable not to rely on a particular
clustering as small perturbations of the input data have a dramatic impact
on the final solution. The approach presented in Varoquaux, Gramfort, and
Thirion (2012) argues in favor of the randomization over the clustering step:
to build B clusterings of the covariates, they use the same clustering method
but with B different random subsamples of size b0.7nc from the full sample.
The subsampling is only used for computing the clusters; but these grouping
choices can be applied to the full data sample and statistical inference can
be performed on each of the B compressed versions of the problem. Each
compression reduces the problem into C clusters and running the statistical
inference yields a p-value for each cluster. For all b ∈ [B] and all c ∈ [C],
we denote by p̂(b,c) the p-value for the c-th cluster in the b-th fold. The
p-value of the j-th voxel in the b-th repetition is denoted by p̂(b)

j and is taken
equal to p̂(b,c) whenever j belongs to cluster c, i.e., we attribute the same
p-value to all the covariates in a given cluster. This yields B p-values for
every coefficient of the parameter vector. In Fig. 4.5, we show that depending
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on the random subsample, the choice of clustering —and consequently the
solution given by the cd-Lasso— varies significantly, suggesting intrinsic
instability of the cd-Lasso solution.

4.3.2 Aggregation

The benefits of model aggregation are well-known (Breiman, 1996; Zhou,
2012). In neuroimaging, in the prediction context, Varoquaux, Gramfort, and
Thirion (2012) have shown empirically the beneficial aspect of randomization
followed by aggregation; notably, it improves the prediction accuracy.

Similarly, random subspace methods (Ho, 1998; Kuncheva and Rodríguez,
2010; Kuncheva et al., 2010) also improve the prediction accuracy with more
stable solutions —but in this case, subsampling is performed on the raw
features. However, such a subsampling would make aggregation of statistical
maps less straight forward and the combination with spatial clustering is
also less obvious. The popular dropout method in deep learning actually
borrows from the same idea Aydöre, Thirion, and Varoquaux, 2019.

More recently, another procedure, proposed by (Hoyos-Idrobo et al., 2018)
and called Fast Regularized Ensembles of Models (FReM), has combined
clustering and ensembling to reduce the variance of the weight map, while
ensuring high prediction accuracy. Yet, FReM weight maps do not enjoy
statistical guarantees.

Following these ideas, to mitigate the clustering bias, gain in stability and
improve the overall solution, we are willing to aggregate the B statistical
maps into one. However, in the estimation context, aggregating statistical
maps requires more involved procedures than just averaging or taking the
median of the solutions since we need to preserve the statistical properties
on the p-value maps. The ensembling procedure we have considered is
extracted from Meinshausen, Meier, and Bühlmann (2009). It consists in
looking at a particular quantile of the p-value sets of size B for each voxel.
The quantile aggregation procedure (Meinshausen, Meier, and Bühlmann,
2009) that yields the p-value p̂j of the jth voxel, for any j ∈ [p], is given by
the following formula:

p̂j = min

1,γ-quantile

 p̂(b)
j

γ
: b ∈ [B]


 , (4.1)

where γ ∈ (0, 1). A classic choice is to take γ = 0.5 which gives p̂j equals
to twice the median of the set {p̂(b)

j : b ∈ [B]}.
The combination of the randomization and the ensembling over the

cd-Lasso algorithm is referred to as ecd-Lasso. To summarize, ecd-Lasso
(Chevalier, Salmon, and Thirion, 2018) relies on three steps: a spatially
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constrained clustering algorithm for reducing data dimension, a statistical
inference procedure for deriving statistical maps, and an ensembling method
for aggregating the statistical maps. A diagram summarizing ecd-Lasso is
given in Fig. 4.2.

Data

EnsemblingDesparsified

 

     Lasso

 

Clustering #B

 

 
 

Clustering #1

Figure 4.2: ecd-Lasso combines three algorithmic steps: a spatially constrained
clustering procedure applied to images, the d-Lasso procedure to derive statistical
maps, and an ensembling method that synthesizes several statistical maps.

Note that ecd-Lasso follows a scheme similar to FReM but the inference
and ensembling procedures are different since they aim at producing p-value
maps with statistical properties. In that regard, the aim of Chapter 5 is to
treat the theoretical aspects and to show the statistical properties of cd-Lasso
and ecd-Lasso.

4.3.3 Ensemble of Clustered Desparsified Lasso Algorithm

Now, we give in Algo. 3 the ecd-Lasso algorithm that produces p-values
on the parameters of the model (2.7). In Algo. 3, the function sample corre-
sponds to a subsampling of the data without replacement. Similarly as in
Algo. 2, the function Ward derives the choice of clustering. But this time, the
choice of clustering characterized by a transformation matrix A(b) varies
since the subsampled data X(b) varies for each bootstrap b ∈ [B]. The func-
tion d-Lasso corresponds to the d-Lasso inference that takes in inputs the
clustered data Z(b) which varies for each b ∈ [B] and the target y. Once the
clustering/inference steps are completed, the function aggregation makes
the aggregation as presented in (4.1).

Computationally, to derive the ecd-Lasso solution we must solve B in-
dependent cd-Lasso problems, making the global problem embarrassingly
parallel; nevertheless, we could run the ecd-Lasso algorithm on standard
desktop stations —without using parallelization— with n = 400, C = 500

and B = 25 in less than 10 minutes. The complexity for solving ecd-Lasso is
given by the complexity of the resolution of O(BC) Lasso problems with n
samples and C features. Note that the clustering step being much quicker
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Algorithm 3: ecd-Lasso algorithm

input : X ∈ Rn×p, y ∈ Rn

param :C,B

for b = 1, . . . ,B do

X(b) = sample(X) // sampling rows of X

A(b) = Ward(C, X(b)) // transformation matrix

Z(b) = XA(b) // compressed design matrix

p̂(b) = d-Lasso(Z(b), y) // uncorrected cluster-wise p-values

q̂(b) = min(1,C× p̂(b)) // corrected cluster-wise p-values

for j = 1, . . . ,p do
p̂(b)
j = p̂(b,c) if j in cluster c // uncorr. feature-wise p-values

q̂(b)
j = q̂(b,c) if j in cluster c // corrected feature-wise p-values

end
end

for j = 1, . . . ,p do
p̂j = aggregation(p̂(b)

j ,b ∈ [B]) // agg. uncorr. feature-wise p-val

q̂j = aggregation(q̂(b)
j ,b ∈ [B]) // agg. corr. feature-wise p-val

end

return p̂j, q̂j for j ∈ [p]

than the inference step, p has a very limited impact on the total computation
time; typically p ≈ 105.

4.3.4 A 3D Simulation with Realistic Dimension

In this simulation we exhibit the improvements of ecd-Lasso over cd-Lasso
in terms of recovery properties and control of FWER —the probability of
making at least one false discovery.

simulation. The simulation we consider has a 3D structure and tries
to reproduce the setting of a standard MRI experiment. The feature space
considered is a 3D cube with edge length H = 50, then p = H3 = 125k
covariates (voxels) and we took n = 400 samples. To construct β∗, we define
a 3D weight vector β̃∗ with five Region of Interests (ROI) represented in
Fig. 4.3-(a) and then flatten β̃∗ in a vector β∗ of size p. Each ROI is a cube
of width h = 6, leading to a size of support s(β∗) = 5h3 = 1 080. Four
ROIs are situated in corners of the cubic map and the last ROI is situated
in the center of the cube. Finally, to construct X, we first construct a 3D
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design matrix X̃ by drawing p random normal vectors of size n that are
spatially smoothed with a 3D Gaussian filter (the smoothing is only made
in the feature space for each sample independently, the samples are not
mixed and remain independent), then we perform the same transformation
(flattening) to go from X̃ to X the n× p design matrix. The intensity of the
spatial smoothing is designed to achieve similar feature correlation as for
the Oasis experiment. We also set σε = 8, to approximately get SNRy = 9

(= 10dB).

results. To derive the ecd-Lasso solutions we aggregated B = 25 differ-
ent cd-Lasso solutions during the ensembling step.

In Fig. 4.3, we give qualitative results for one simulation, we observe
that the shape of the ecd-Lasso solution is more accurate than the one of
cd-Lasso.
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Figure 4.3: For the 3D simulation proposed, the shape of the ecd-Lasso solution is
more accurate than the one of cd-Lasso.

To confirm this qualitative observation, we run 100 simulations, and draw
quantitative results in Fig. 4.4. In Fig. 4.4-(a), we display the precision-
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Figure 4.4: (a) The precision-recall curve for the recovery of β∗ is much better
adding an ensembling step over cd-Lasso. (b) The empirical-FWER (for a nominal
rate at 5%) is controlled by the ecd-Lasso algorithm while for high level of SNR it
is not controlled by the cd-Lasso algorithm.
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recall curve1 —the recall being the rate of recovery and the precision being
the rate of true discoveries over the total number of discoveries— of the
solutions obtained by each algorithm with C = 500 clusters. ecd-Lasso
strongly outperforms cd-Lasso: for precision of at least 90%, the ecd-Lasso
recall is 42% while the cd-Lasso recall is only 16%.

In order to check the FWER control, we define a neutral region that sepa-
rates ROIs from the non-active region. Indeed, since the covariates are highly
correlated, the detection of a null feature in the vicinity of an active one is
not problematic from an application point of view. This spatial tolerance is
made more rigorous in Chapter 5 and further justified in Chapter 6. Here,
neutral regions enfold ROIs with a margin of 5 voxels. In Fig. 4.4-(b), the
study of the FWER control is run for several values of SNRy. One can ob-
serve that the FWER is always controlled using ecd-Lasso; the later is even
conservative since the empirical FWER stays at 0% for a 5% nominal level.
On the opposite, the FWER is not well controlled by cd-Lasso: its empirical
value goes far above the 5% nominal rate for high SNR. This is due to
the shape of the discovered regions that do not always correspond to the
exact shape and location of ROIs. This effect is also observable considering
thresholded z-score maps yielded by cd-Lasso and ecd-Lasso in Fig. 4.3. By
increasing the number of clusters, we would obtain fewer discovered regions
outside of the true ROIs, yet the statistical significance of the discovered
regions would drop and the power would collapse.

4.3.5 Experiments on MRI Datasets

In this section, working on two real MRI datasets, we show the gain of
stability produced by ecd-Lasso over cd-Lasso.

haxby dataset. Haxby is a functional MRI dataset that maps the brain
responses of subjects watching images of different objects (see Haxby et al.,
2001). In this study, we only consider the responses related to images of faces
and houses for the first subject, to identify brain regions that discriminate
between these two stimuli, assuming that this problem can be modeled as
a regression problem. Here n = 200, p = 24k, we estimated SNRy = 1.0
(= 0dB) and we took C = 500 and B = 25.

oasis dataset. The Oasis MRI dataset (see Marcus et al., 2007) provides
anatomical brain images of several subjects together with their age. The
Statistical Parametric Mapping (SPM) voxel-based morphometry pipeline
(Ashburner and Friston, 2000) was used to obtain individual gray matter

1 cf. Scikit-learn precision_recall_curve function
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density maps. We aim at identifying which regions are informative to
predict the age of a given subject. Here n = 400, p = 125k and we estimated
SNRy = 9.0 (= 10dB); we also took C = 500 and B = 25 as in Sec. 4.3.4.

results. First, following established practice, we plot the results of these
experiments in Fig. 4.5 displaying z-transform of the p-values. For clarity,
we thresholded the z-score maps at 3 (and −3) keeping only the regions
that have a high probability of being discriminative. The solutions given
by the cd-Lasso algorithm with three different choices of clustering look
noisy and unstable while the ecd-Lasso solution defines a synthesis of the
cd-Lasso results and exhibits a nice symmetry in the case of Haxby. Thus,
these results clearly illustrate that the ensembling step removes a significant
part of the arbitrariness due to the clustering.
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Figure 4.5: Results of the cd-Lasso (CDL) and ecd-Lasso (ECDL) algorithms on
Haxby (top) and Oasis (bottom) experiments. cd-Lasso algorithm outcomes are
highly dependent on the clustering, which creates a jitter in the solution. Draw-
ing consensus among many cd-Lasso results, ecd-Lasso removes the arbitrariness
related to the clustering scheme.

Again, to confirm this qualitative observation, we run 25 times the
cd-Lasso and ecd-Lasso algorithms seeding differently the clustering, and
draw quantitative results in Fig. 4.6 looking at the correlation and the Jaccard
index of the solutions. Correlation between the full maps and Jaccard index
of the detected areas (here, voxels with an absolute z-score greater than 3)
show that ecd-Lasso is substantially more stable than cd-Lasso.

4.4 discussion

recapitulation. We have introduced ecd-Lasso, an algorithm for high-
dimensional multivariate inference on structured data which scales even
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Figure 4.6: Correlation (left) and Jaccard index (right) are much higher with the
ecd-Lasso (ECDL) algorithm than with cd-Lasso (CDL) across 25 replications of the
analysis of the imaging datasets.

when the number of covariates p > 105 is much higher than the number of
samples n 6 103. It can be summarized as follows: i) perform B repetitions of
the cd-Lasso algorithm, that runs d-Lasso inference on a compressed version
of the problem obtained by spatial clustering, yielding several p-values for
each predictor; ii) use an ensemble method aggregating all p-value maps to
derive a single p-value map. In Sec. 4.2.3, we have shown that the clustering
step, justified by specific data structures and locally high inter-predictor
correlation, was necessary to yield an informative inference solution when
n� p. Then, we have shown in Sec. 4.3.4, that randomizing and ensembling
the cd-Lasso solutions improves both FWER control and precision-recall
values. While the ensembling step obviously removes the arbitrariness of
the clustering choice, in Sec. 4.3.5, we showed that it also increases stability.
Also, the ensembling step helps to improve shape accuracy without loss in
sensitivity, as the combination of multiple cd-Lasso solutions recovers finer
spatial information.

open questions. The number of clusters C is the main free parameter,
and an optimal value depends on characteristics of the data (inter-predictor
correlation, SNR). It seems credible that the optimal choice for C results from
a bias/variance trade-off: a small number of clusters reduces variance and
enhances statistical power, while a greater number yields refined solutions.
This central question around the optimal choice for C is further discussed in
Chapter 6.

Another matter is the comparison with bootstrap and permutation-based
approaches e.g., Gaonkar and Davatzikos, 2012. This is also studied in
Chapter 6.

A more theoretical aspect concerns the statistical guarantees on the p-
values produced by ecd-Lasso. This question is addressed in Chapter 5.



5 S TAT I S T I C A L I N F E R E N C E W I T H
S PAT I A L TO L E R A N C E

In this chapter, we state the statistical guarantees provided by cd-Lasso and
ecd-Lasso. We show that ecd-Lasso controls a generalization of the FWER
called δ-FWER, that takes into account a spatial tolerance of radius δ for the
occurrence of false discoveries. This result holds under realistic assumptions,
for a predetermined spatial tolerance parameter δ.

5.1 introduction

high-dimensional setting. High-dimensional settings correspond to
the one where the number of covariates (or features) p exceeds the number of
samples n. This type of setting occurs in many domains nowadays, typically
to discover associations among some observations and outcomes of interest
(target). Typical examples concern inference problems on high-resolution
images, where one aims at pixel- or voxel-level analysis, e.g., in neuroimaging
(Button et al., 2013), astronomy (Richards et al., 2009), but also in other fields
where features encompass a spatial structure e.g., in genomics (Balding,
2006).

multivariate model. When fitting a target, one may want to assess
whether each feature adds information to what is conveyed by the other
features. In other words, one might try to recover features that are predictive
conditionally to the others. When n� p, the most popular approach is to
consider the multivariate linear model:

y = Xβ∗ + ε ,

where the response vector is denoted by y ∈ Rn, the random Gaussian
design matrix by X ∈ Rn×p, the parameter vector by β∗ ∈ Rp and the
random error vector by ε ∈ Rn. The aim is to infer β∗, with statistical
guarantees on the support estimate. Ideally, we would like recover all the
covariates that are conditionally predictive without selecting non-predictive
variables.

statistical inference on individual parameters. In the high-
dimensional setting, the classic statistical approach does not apply but
numerous methods have recently been proposed to recover the non-zero

50
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parameters of β∗ with statistical guarantees. Some methods rely on resam-
pling: bootstrap procedures (Bach, 2008; Chatterjee and Lahiri, 2011; Liu,
Yu, et al., 2013), perturbation resampling-based procedures (Minnier, Tian,
and Cai, 2011), stability selection procedures (Meinshausen and Bühlmann,
2010) and randomized screening/inference procedures (Meinshausen, Meier,
and Bühlmann, 2009; Wasserman and Roeder, 2009). Contrarily to the
screening/inference procedure, post-selection inference procedures gen-
erally merge the screening and inference steps into one and then use all the
samples in a screening/inference solution (Berk et al., 2013; Lee et al., 2016;
Lockhart et al., 2014; Tibshirani et al., 2016). Another family of methods
rely on debiasing procedures: the most prominent examples are corrected
Ridge (Bühlmann, 2013) and desparsified Lasso (Javanmard and Montanari,
2014; Zhang and Zhang, 2014; van de Geer et al., 2014) that is still actively
developed (Bellec and Zhang, 2019; Celentano, Montanari, and Wei, 2020;
Javanmard, Montanari, et al., 2018). Additionally, the Knockoff filters (Barber
and Candès, 2015; Candès et al., 2018) consist in creating mimicking variables
checking whether original variables are selected at random or not. Finally,
a general framework for statistical inference for sparse high-dimensional
models has been proposed recently (Ning, Liu, et al., 2017).

failure of existing statistical inference methods. In the high-
dimensional setting that we are targeting, none of these methods are helpful
for recovering the support. In particular, the number of predictive parameters
(support) denoted s(β∗) is often greater than the number of samples even in
the sparse setting, where s(β∗)� p. This leads to an identifiability problem:
in general, one cannot retrieve all the predictive parameters. Some studies
(Wainwright, 2009) have highlighted the impossibility of recovering the
support in such a setting. Beyond the fact that statistical inference is hard
when p � n, two other reasons make it even more difficult. Especially
in high-dimensional settings, feature correlation is high, challenging the
conditions for recovery given in the above publications. Second, when testing
for several multiple hypothesis, the correction cost is heavy (Benjamini and
Hochberg, 1995; Dunn, 1961; Westfall and Young, 1993); for example with
Bonferroni correction (Dunn, 1961), p-values are corrected by a factor of p
when testing every feature. This may make this type of inference method
powerless.

combining clustering and inference. In the setting we are given,
variables often depict a strong spatial structure. For example, in neuroimag-
ing, a brain image has a 3D representation and a given voxel is highly
correlated with its neighbors; in genomics, there exists blocs of Single Nu-
cleotide Polymorphisms (SNPs) that tend to occur together. Additionally,
the true parameter vector generally displays the same structure. A computa-
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tionally attractive solution to alleviate high dimensionality, leveraging data
structure, is to group correlated neighboring features, producing a closely
related, yet compressed version of the original problem.

Inference combined with a fixed clustering has notably been proposed by
Bühlmann et al. (2013) and seems to be a promising technique to overcome
the dimensionality issue, however this study does not provide procedures
that derive cluster-wise confidence intervals or p-values. Inspired by this
idea, we have proposed in Chevalier, Salmon, and Thirion (2018) the ensem-
ble of clustered desparsified Lasso (ecd-Lasso) procedure that exhibits strong
empirical performances in terms of support recovery even when p� n. The
ecd-Lasso estimator combines three steps: i)a spatially constrained clustering
procedure that reduces the problem dimension but preserves data structure;
ii)the desparsified Lasso procedure that is tractable on clustered versions of
the problem; and iii)an ensembling method that aggregates the solutions
of different compressed versions of the problem to avoid relying on a sin-
gle clustering choice. Concerning the high-dimensional statistical inference
method, this uses the desparsified Lasso (Javanmard and Montanari, 2014;
Zhang and Zhang, 2014; van de Geer et al., 2014) following the comparative
study of Dezeure et al. (2015) and noting that this procedure is actively
developed by several groups (Bellec and Zhang, 2019; Celentano, Montanari,
and Wei, 2020; Dezeure, Bühlmann, and Zhang, 2017; Javanmard, Montanari,
et al., 2018). By contrast, we do not further consider the popular Knockoff
procedure (Barber and Candès, 2015; Candès et al., 2018), that appears to
be powerful inference method, since it does not produce p-values and to
control the family-wise error rate (FWER) but only the false discovery rate
(FDR).

Additionally, Meinshausen (2015) provides "group bound" confidence
intervals, corresponding to confidence intervals on the `1-norm of several
parameters, without making any assumptions on the design matrix. How-
ever, this method is known to be conservative Javanmard, Montanari, et al.
(2018) and Mitra and Zhang (2016) in practice.

Finally, hierarchical testing (Blanchard, Geman, et al., 2005; Mandozzi and
Bühlmann, 2016; Meinshausen, 2008) also leverages this clustering/inference
combination but in a different way. It consists in performing significance
tests along the tree of a hierarchical clustering algorithm starting from the
root node and descending subsequently into children of rejected nodes. This
procedure has the drawback of being constrained by the clustering tree. The
problem with a fixed clustering choice is that in practice there does not exist
a "true" clustering of the data. Also, a small variation of the clustering choice
may significantly change the solution, leading to instability in the results.

statistical inference with spatial tolerance. Looking for groups
of covariates instead of covariates means that one is willing to accept a loss
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of accuracy on the support estimate as long as this improves statistical power.
Additionally, given the spatial structure of data, i.e., 1/the spatial structure
of the covariates —neighboring features are highly correlated— and 2/the
assumed shape of the support of the true parameter vector —predictive
features are spatially localized—, we argue that all false discoveries do not
have the same severity: a false discovery made at a small distance from the
support is more acceptable. Also, we advocate that producing a cluster-wise
inference is not completely satisfactory as it assumes implicitly that there
exists a true clustering choice. Then, to untangle the problem, we propose
instead to introduce a spatial tolerance —distance being defined relatively
to the feature space geometry— in false discovery control.

contributions. In this study, our first contribution is to introduce a
generalization of the FWER called δ-FWER, that takes into account a spatial
tolerance of length δ for the false discoveries. Consequently, in the high-
dimensional setting we are given, we aim at controlling the δ-FWER which
notably coincides with the usual FWER if δ = 0. Then, our main contri-
bution is to prove that ecd-Lasso controls the δ-FWER under reasonable
assumptions for a predetermined tolerance parameter δ. Finally, we provide
an empirical study, showing that ecd-Lasso exhibits good recovery prop-
erties and displays the expected δ-FWER control empirically in realistic
simulations.

organization. In Sec. 5.2, we bring useful model and data structure
assumptions that naturally arise in the proposed setting. In Sec. 5.3, we
introduce the δ-FWER that generalizes the FWER by incorporating a spatial
tolerance and is well suited for the recovery problem we are addressing.
In Sec. 5.4, we bring all the material to prove that ecd-Lasso controls the δ-
FWER under realistic assumptions for a predetermined tolerance parameter
δ. In Sec. 5.5, we perform numerical simulations to validate the previous
theoretical results and benchmark ecd-Lasso against two other procedures.

5.2 model and data assumptions

5.2.1 Generative models of high-dimensional data: random fields

In the settings that we consider, we assume that covariates (or features) come
with a natural representation in a discretized metric space, generally the
discretized 2D or 3D Euclidean space. In such settings, discrete random fields
are convenient to model the random variables representing the covariates.
Indeed, denoting by X = (Xi,j)i∈[n],j∈[p] the random design matrix, where
n is the number of samples and p the number of features, covariate samples
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(Xi,.)i∈[n] can be modeled as random fields operating on a common discrete
domain.

5.2.2 Gaussian random design model and high dimensional settings

We further assume that the covariates follow a centered Gaussian distri-
bution, i.e., for all i ∈ [n], Xi,. ∼ Np(0,Σ) where Σ is the covariance matrix
of the covariates. Our aim is to derive confidence bounds or p-values on
the coefficients of the parameter vector denoted by β∗, under the Gaussian
linear model:

y = Xβ∗ + ε , (5.1)

where y ∈ Rn, X ∈ Rn×p,β∗ ∈ Rp, ε ∼ N(0,σ2εIn) and σε > 0. X is the
random design matrix, y is the response vector (or target), ε is the error
vector and σε is the noise standard deviation (generally unknown). For all
i ∈ [n], the Xi,.’s are assumed independent and identically distributed. We
also assume that ε is independent of X.

5.2.3 Data structure

Let us first describe the covariates spatial structure. Since the covariates
have a natural representation in a metric space, we assume the spatial
distances between covariates to be known. With a slight abuse of nota-
tion, the distance between covariates j and k is denoted by d(j,k) for
(j,k) ∈ [p]× [p] and the correlation between covariates j and k is given
by Cor(X.,j, X.,k)

def
=Σj,k/

√
Σj,jΣk,k. We now introduce a key assumption:

two covariates at a spatial distance smaller than δ are positively correlated.
Formally, the covariates verify the spatial homogeneity assumption with param-
eter δ > 0, if:

∀(j,k) ∈ [p]2, d(j,k) 6 δ =⇒ Σj,k > 0 . (AHδ)

Now, we introduce an assumption to model the parameter spatial struc-
ture. Under model (5.1), each coordinate of the parameter vector β∗ links
one covariate to the response vector. Then, β∗ has the same underlying
organization as the covariates and is also called weight map in these settings.
Defining the true support as S(β∗) = {j ∈ [p] : β∗j 6= 0} and its cardinal as
s(β∗) = |S(β∗)|, we assume that the true model is sparse, meaning that
β∗ has a small number of non-zero entries, i.e., s(β∗) � p. The comple-
mentary of S(β∗) in [p] is called the null region and is denoted by N(β∗),
i.e., N(β∗) = {j ∈ [p] : β∗j = 0}. Additionally to the sparse assumption,
we assume that β∗ is (spatially) smooth. More precisely, to reflect sparsity
and smoothness, we introduce ASδ which states that weights associated to
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Figure 5.1: Left: Example of weight map having a 2D-spatial structure. Assuming
that all pixels have a unit side length, this map notably verifies the sparse-smooth
assumption defined in (ASδ) with δ = 2 with respect to the L1-distance. Right: For
the weight map proposed on the left, the gray squares represent the δ-null region
for δ = 2 with respect to the L1-distance.

covariates with small spatial distances have the same sign (zero being booth
positive and negative). Formally, we say that β∗ verifies the sparse-smooth
assumption with parameter δ > 0 if:

∀(j,k) ∈ [p]2, d(j,k) 6 δ =⇒ sign(β∗j ) = sign(β∗k) . (ASδ)

Equivalently, the sparse-smooth assumption with parameter δ holds if the
distance between the two closest weights of opposite sign is larger than δ.
In Fig. 5.1, we give an example of a weight map verifying the sparse-smooth
assumption with δ = 2.

5.3 statistical control with spatial tolerance

Discoveries that are not in the support but closer than δ to the support are
not considered as false discoveries, because there is no point in making
inference at a resolution finer than δ. This means δ can be interpreted as a
tolerance parameter on the shape of the regions that we aim at recovering.
In this section, we introduce a new metric closely related to the Family-Wise
Error Rate (FWER) that takes into account spatial tolerance and we call it
δ-Family Wise Error Rate (δ-FWER). To do so, we assume that we consider a
general estimator β̂ that comes with p-values denoted by p̂ = (p̂j)j∈[p], and
we also denote by S(β̂) ⊂ [p] a general support estimate.

Definition 5.3.1 (δ-null hypothesis). For all j ∈ [p], the j-th δ-null hypothesis
Hδ0(j) states that every covariate at a distance less than δ from the j-th covariate
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has an associated weight equals to zero in the true model (5.1) and the alternative
hypothesis is denoted Hδ1(j):

Hδ0(j) : "∀k ∈ [p] s.t. d(j,k) 6 δ, β∗k = 0" ,

Hδ1(j) : "∃k ∈ [p] s.t. d(j,k) 6 δ and β∗k 6= 0" .
(5.2)

Consequently, we say that a δ-type 1 error is made if a covariate j ∈ [p]

is selected, i.e., j ∈ S(β̂), while Hδ0(j) holds true. Note that, taking δ = 0

recovers the usual null-hypothesis H0(j) : "β∗j = 0" and usual type 1 error.

Definition 5.3.2 (Control of the δ-type 1 error). The p-value related to the j-th
covariate denoted by p̂j controls the δ-type 1 error if, under Hδ0(j), for all α ∈ (0, 1),
we have:

P(p̂j 6 α) 6 α , (5.3)

where P is the probability distribution w.r.t. the covariates and the error.

Definition 5.3.3 (δ-null region). The set of indexes of covariates verifying the
δ-null hypothesis is called the δ-null region and is denoted by Nδ(β∗) (or simply
Nδ):

Nδ(β∗) = {j ∈ [p] : ∀k ∈ [p],d(j,k) 6 δ =⇒ β∗k = 0} . (5.4)

When δ = 0 the δ-null region is simply the null region and N0(β∗) =

N(β∗). We also point out the nested property of δ-null regions w.r.t. δ: for
0 6 δ1 6 δ2 we have Nδ2(β∗) ⊆ Nδ1(β∗) ⊆ N(β∗). In Fig. 5.1, we draw
the δ-null region, taking δ = 2 and using the L1-distance (or Manhattan
distance), for an arbitrary initial weight map.

Definition 5.3.4 (Rejection region). Given a family of p-values p̂ = (p̂j)j∈[p]
and a threshold α ∈ (0, 1), the rejection region is the set of indexes of covariates
having a p-value lower than α, we denote it by Rα(p̂):

Rα(p̂) =
{
j ∈ [p] : p̂j 6 α

}
. (5.5)

Definition 5.3.5 (δ-type 1 error region). Given a family of p-values p̂ = (p̂j)j∈[p]
and a threshold α ∈ (0, 1), the δ-type 1 error region at level α is E δα , the set of
indexes of covariates belonging both to the δ-null region and to the rejection region
at level α. We also refer to this region as the erroneous rejection region at level α
with tolerance δ:

E δα(p̂) = N
δ ∩ Rα(p̂) . (5.6)

When δ = 0 the δ-type 1 error region is simply the type 1 error region
which is denoted by Eα(p̂). From Def. 5.3.3, Def. 5.3.4 and Def. 5.3.5, one
can verify that for 0 6 δ1 6 δ2 we have E δ2α (p̂) ⊆ E δ1α (p̂) ⊆ Eα(p̂).
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Definition 5.3.6 (δ-family wise error rate). Given a family of p-values p̂ =

(p̂j)j∈[p] and a threshold α ∈ (0, 1), the δ-FWER at level α w.r.t. the family p̂,
denoted δ-FWERα(p̂), is the probability that the δ-type 1 error region at level α is
not empty:

δ-FWERα(p̂) = P(|E δα(p̂)| > 1) = P(min
j∈Nδ

p̂j 6 α) . (5.7)

Definition 5.3.7 (δ-FWER control). We say that the family of p-values p̂ =

(p̂j)j∈[p] controls the δ-FWER if, for all α ∈ (0, 1):

δ-FWERα(p̂) 6 α . (5.8)

When δ = 0 the δ-FWER is the usual FWER. Additionally, for 0 6 δ1 6 δ2,
one can verify that δ2-FWERα(p̂) 6 δ1-FWERα(p̂) 6 FWERα(p̂). Thus,
δ-FWER control is a weaker property than usual FWER control.

5.4 δ-fwer control with clustered desparsified
lasso
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Figure 5.2: This diagram summarizes the ensemble of clustered desparsified Lasso
(ecd-Lasso), which is a statistical inference procedure suited for high dimensional
structured data. ecd-Lasso combines three algorithmic steps: a clustering procedure,
the desparsified Lasso statistical inference procedure to derive p-value maps, and
an ensembling method that synthesizes several p-value maps into one.

In this section, we focus on establishing the δ-FWER control property
of the Clustered desparsified Lasso (cd-Lasso) and ensemble of clustered
desparsified Lasso (ecd-Lasso) algorithms. The cd-Lasso algorithm, which
was introduced in Chevalier, Salmon, and Thirion (2018), consists in parti-
tioning the covariates into groups (or clusters) with diameter smaller than
δ before applying the desparsified Lasso statistical inference procedure
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introduced by Zhang and Zhang (2014). The ecd-Lasso algorithm, summa-
rized in Fig. 5.2 and also introduced in Chevalier, Salmon, and Thirion
(2018), is the ensembling of several cd-Lasso solutions —obtained by using
different choice of clustering— using the p-value aggregation proposed by
Meinshausen, Meier, and Bühlmann (2009). The detailed algorithm of the
ecd-Lasso procedure is described in Algo. 3 in Chapter 4.

5.4.1 Compressed representation

The benefit of using groups of covariates that are spatially concentrated is to
reduce the dimension while preserving the spatial structure of the data. The
number of groups is denoted by q < p and, for r ∈ [q], we denote by Gr the r-
th group. The collection of all the groups is denoted by G = {G1,G2, . . . ,Gq}
and forms a partition of [p]. Every group representative variable is defined
by the average of the covariates it contains. Then, denoting by Z ∈ Rn×q the
compressed random design matrix that contains the group representative
variables in columns and, without loss of generality, enforcing the suitable
ordering of the original covariates, i.e., of the columns of X, dimension
reduction can be written :

Z = XA , (5.9)

where A ∈ Rp×q is the transformation matrix defined by:

A =


α1 α1 0 0 . . . 0 0

0 0 α2 α2 . . . 0 0
...

...
. . .

...

0 0 0 0 . . . αq αq

 ,

where αr = 1/|Gr| for all r ∈ [q]. Consequently, the distribution of
the i-th row of Z is given by Zi,. ∼ Nq(0, T), where T = A>ΣA.
The correlation between the groups r ∈ [q] and l ∈ [q] is given by
Cor(Z.,r, Z.,l)

def
= Tr,l/

√
Tr,rTl,l. As mentioned in Bühlmann et al. (2013), due

to the Gaussian assumption in (5.1), we have the following compressed
representation:

y = Zθ∗ +η , (5.10)

where θ∗ ∈ Rq, η ∼ N(0,σ2ηIn), ση > σε > 0 and η is independent of Z.

Remark 5.4.1. Dimension reduction is not the only desirable effect produced by
clustering with regards to statistical inference. Indeed, this compression also gener-
ally improves the conditioning of the problem and eases the correlation structure in
the (compressed) feature space. Then, assumptions needed for valid statistical infer-
ence are more likely to be met. For, more details about this conditioning enhancement,
the reader may refer to Bühlmann et al. (2013).
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5.4.2 Properties of the compressed model weights
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Figure 5.3: Item a: Representation of a weight map having a 2D-spatial structure.
This is the same map as in Fig. 5.1. Item b: Arbitrary choice of spatially constrained
clustering with a diameter of 2 units with respect to the L1-distance. Also this clus-
tering choice verifies assumption (iii) of Prop. 5.4.1. Item c: Under the assumption
of Prop. 5.4.1, the cluster weights have the same sign as the feature weights they
contain. Item d: Under the assumption of Prop. 5.4.1, one can notice that all the
non-zero weight groups have no intersection with the δ-null region for δ = 2.

We now give a property of the weights of the compressed problem which
is a consequence of Bühlmann et al. (2013, Proposition 4.4).

Proposition 5.4.1. Considering the Gaussian linear model in (5.1) and assuming:

(i) ∀r ∈ [q], ∀j,k ∈ G2r , Σj,k > 0 ,

(ii) ∀r ∈ [q], ∀l ∈ [q] \ {r}, Tr,l = 0 ,

(iii) ∀r ∈ [q],
(
∀j ∈ Gr,β∗j > 0

)
or
(
∀j ∈ Gr,β∗j 6 0

)
,

then, in the compressed representation (5.10), for r ∈ [q], θ∗r 6= 0 if and only if there
exists j ∈ Gr such that β∗j 6= 0. If such an index j exists then sign(θ∗r) = sign(β∗j ).
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Proof. With assumption (ii) we can use Bühlmann et al. (2013, Proposition
4.3). Then, with the assumptions (i) and (iii), we directly obtain the claimed
property.

Assumption (i) states that the covariates in a group are all positively corre-
lated. Let us define the group diameter of Gr by the distance that separates
its two most distant covariates, i.e., Diam(Gr)

def
= max{d(j,k) : (j,k) ∈ (Gr)

2}

and the clustering diameter of G by the largest diameter of its groups,
i.e., Diam(G) def

= max{Diam(Gr) : r ∈ [q]}. In Fig. 5.3-(b), we propose a choice
of clustering of the initial weight map in Fig. 5.3-(a) for which the clustering
diameter is equal to 2 with respect to the L1-distance. Then assumption
(i) is notably established if the clustering diameter is smaller than δ and
the spatial homogeneity assumption with parameter δ defined in (AHδ) is
verified. Assumption (ii) states that the groups are independent. A sufficient
condition is to assume that the feature covariance matrix Σ is block diagonal,
where the blocks coincide with the groups; i.e., , assumption (ii) is verified
if the features of two different groups are independent. In practice, this
assumption may be unmet; then, in Sec. 5.4.6, we relax assumption (ii).
Assumption (iii) states that all the weights in a group are of the same sign.
This is notably the case when the clustering diameter is smaller than δ and
the weight map satisfies the sparse-smooth assumption with parameter δ
defined in (ASδ). For instance, a clustering-based compressed representation
of the weight map in Fig. 5.3-(a) is given in Fig. 5.3-(c).

5.4.3 Statistical inference on the compressed model

To perform statistical inference on the compressed problem (5.10), we con-
sider the desparsified Lasso developed in Zhang and Zhang (2014) and in
Javanmard and Montanari (2014) and thoroughly analyzed in van de Geer
et al. (2014). With regard to (5.10), let us define the true support in the com-
pressed model by S(θ∗) = {r ∈ [q] : θ∗r 6= 0} and its size is s(θ∗) = |S(θ∗)|.
We also denote by Ω ∈ Rq×q the inverse of the population covariance
matrix (the precision matrix) of the groups, i.e., Ω = T−1. Then, for r ∈ [q],
we denote the sparsity with respect to the r-th row of Ω (or r-th column) by
s(Ωr,.) = |S(Ωr,.)| where S(Ωr,.) = {l ∈ [q] : Ωr,l 6= 0}. We also denote the
smallest eigenvalue of T by φmin > 0. We can now state the assumptions
required for probabilistic inference with desparsified Lasso van de Geer et al.
(2014):
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Proposition 5.4.2 (Theorem 2.2 of van de Geer et al. (2014)). Considering the
compressed representation in (5.10) and assuming:

(i) 1/φmin = O(1) ,

(ii) max
r∈[q]

(Tr,r) = O(1) ,

(iii) s(θ∗) = o(
√
n/ log(q)) ,

(iv) max
r∈[q]

(s(Ωr,.)) = o(n/ log(q)) ,

then, denoting by θ̂ the desparsified Lasso estimator that can be derived from the
inference procedure described in Zhang and Zhang (2014) and van de Geer et al.
(2014), the following holds:

√
n(θ̂−θ∗) = µ+ τ ,

µ|Z ∼ Nq(0,σ2ηΩ̂) ,

‖τ‖∞ = oP(1) ,

where Ω̂ is an estimate of Ω that verifies
∥∥∥Ω̂−Ω

∥∥∥∞ = oP(1) under the previous
assumptions.

Remark 5.4.2. In Prop. 5.4.2, to compute confidence intervals, the noise standard
deviation ση in the compressed problem must be estimated. We refer the reader to
surveys (Ndiaye et al., 2017; Reid, Tibshirani, and Friedman, 2016; Yu and Bien,
2019) that are dedicated to this subject.

As argued in van de Geer et al. (2014), from Prop. 5.4.2 we obtain asymp-
totic confidence intervals for the r-th element of θ∗ from the following
equations, for all z1 ∈ R and z2 ∈ R+:

P

[√
n(θ̂r −θ

∗
r)

ση
√
Ω̂rr

6 z1

∣∣∣∣Z
]
−Φ(z1) = oP(1) ,

P

[√
n|θ̂r −θ

∗
r |

ση
√
Ω̂rr

6 z2

∣∣∣∣Z
]
− (2Φ(z2) − 1) = oP(1) ,

(5.11)

where Φ(·) is the cumulative distribution function of the standard normal
distribution. Thus, for each r ∈ [q] one can provide a p-value that assesses
whether or not θ∗r is equal to zero. In the case of a two-sided single test, for
each r ∈ [q], the p-value associated with this test is denoted by p̂Gr (since θ∗

and θ̂ depends on the initial choice of clustering G) and given by:

p̂Gr = 2

(
1−Φ

( √
n|θ̂r|

ση
√
Ω̂rr

))
. (5.12)
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Under the above assumptions, the p-values p̂Gr control type 1 errors. Indeed,
under H0(Gr) —the null hypothesis that states that θ∗r is equal to zero in
the true compressed model— and using (5.11), we have, for any α ∈ (0, 1):

P(p̂Gr 6 α|Z) = 1− P

[ √
n|θ̂r|

ση
√
Ω̂rr

6 Φ−1
(
1−

α

2

) ∣∣∣∣Z
]

= α+ oP(1) .

(5.13)

To correct for multiple comparisons, we use the Bonferroni correction (Dunn,
1961) which is a conservative procedure but has the advantage of being valid
without any additional assumptions. Note furthermore that the correction
factor is only for the number of groups, not the number of voxels. We can
thus ensure FWER control using the family of corrected p-values q̂G =

(q̂Gr )r∈[q] defined by:

q̂Gr = min{1,q× p̂Gr } . (5.14)

Let us denote by NG(θ
∗) (or simply NG) the null region in the compressed

problem for a given choice of clustering G, i.e., NG(θ
∗) = {r ∈ [q] : θ∗r = 0}.

Then, the family of corrected p-values q̂G defined in (5.14) verifies the
following equation, for all α ∈ (0, 1):

FWERα(q̂G) = P( min
r∈NG

q̂Gr 6 α|Z) 6 α+ oP(1) . (5.15)

In this section, we have shown that the desparsified Lasso applied to a
compressed version of the original problem provides cluster-wise p-value
families p̂G and q̂G that asymptotically control respectively the type 1 error
and the FWER in the compressed model. In the following sections we will
omit the term "conditionally to Z" to ease the notation.

5.4.4 De-grouping

Given the families of cluster-wise p-values p̂G and corrected p-values q̂G as
defined in (5.12) and (5.14), our next aim is to derive families of p-values
and corrected p-values related to the covariates themselves. To construct
these families, we simply set the (corrected) p-value of the j-th covariate to
be equal to the (corrected) p-value of its corresponding group:

∀j ∈ [p], p̂j =
∑
r∈[q]

1{j∈Gr} p̂
G
r = p̂G

g(j) ,

∀j ∈ [p], q̂j =
∑
r∈[q]

1{j∈Gr} q̂
G
r = q̂G

g(j) ,
(5.16)
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where the grouping function g matches the covariate index to its correspond-
ing group index:

g : [p]→ [q]

j 7→ r if j ∈ Gr .

Proposition 5.4.3. Under the assumptions of Prop. 5.4.1 and Prop. 5.4.2 and
assuming that the diameter of all clusters is smaller than δ, then:

(i) elements of the family p̂ defined as in (5.16) asymptotically control the δ-type 1
error:

∀j ∈ Nδ, ∀α ∈ (0, 1), P(p̂j 6 α) 6 α ,

(ii) the family q̂ defined as in (5.16) asymptotically controls the δ-FWER:

∀α ∈ (0, 1), P(min
j∈Nδ

(q̂j) 6 α) 6 α .

Proof. See Sec. 5.6.1 in Appendix for a formal proof.

The previous de-grouping properties can be guessed from Fig. 5.3-(d).

5.4.5 Ensembling

Let us consider B families of corrected p-values that asymptotically control
the δ-FWER, such as the corrected p-values provided by the cd-Lasso algo-
rithm with B different choices of clustering. For any b ∈ [B], we denote by
q̂(b) the b-th family of corrected p-values. Then, in this section, we show that
the ensembling method proposed in Meinshausen, Meier, and Bühlmann
(2009) yields a family that also enforces δ-FWER control.

Proposition 5.4.4. Assume that we have B families (q̂(b)j )j∈[p], where b ∈ [B] is
the family index, that control the δ-FWER. For γ in (0, 1), let us define the family
(q̃j(γ))j∈[p] by the following equation:

∀j ∈ [p], q̃j(γ) = min

1,γ-quantile

 q̂
(b)
j

γ
: b ∈ [B]


 . (5.17)

Then (q̃j(γ))j∈[p] also controls the δ-FWER.

Proof. See Sec. 5.6.2 in Appendix.

With this last proposition, we have all the ingredients to state our main
result: ecd-Lasso asymptotically controls the δ-FWER.
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Proposition 5.4.5. Assume the model given in (5.1) and that assumptions AHδ
and ASδ are verified. Consider B clustering choices into q clusters such that the
largest cluster diameter is always smaller than δ. Assume that for every choice of
clustering the assumptions of Prop. 5.4.1 and Prop. 5.4.2 are verified. Then the
p-value family constructed following the ensemble of clustered desparsified Lasso,
i.e., using 1/ the inference on the compressed problem as presented in Sec. 5.4.1,
Sec. 5.4.2 and Sec. 5.4.3, 2/ the de-grouping method proposed in Sec. 5.4.4 and 3/
the ensembling technique of Sec. 5.4.5, controls the δ-FWER asymptotically.

Proof. Directly follows from Prop. 5.4.1, Prop. 5.4.2, Prop. 5.4.3 and
Prop. 5.4.4.

5.4.6 Relaxing the uncorrelated clusters assumption

In this section, we relax the assumption (ii) of Prop. 5.4.1 and show that
we can compute an adjusted corrected p-value that asymptotically controls
the δ-FWER. First, we replace Prop. 5.4.1 by the next proposition that is a
consequence of Bühlmann et al. (2013, Proposition 4.4).

Proposition 5.4.6. Considering the Gaussian linear model in (5.1) and assuming:

(i) ∀r ∈ [q], ∀j,k ∈ G2r , Cov(X.,j, X.,k|{Z.,l : l 6= r}) > 0 ,

(ii.a) ∀r ∈ [q], ∃νr ∈ R+, ∀j ∈ Gr, ∀k /∈ Gr,
|Cov(X.,j, X.,k|{Z.,l : l 6= r})| 6 νr ,

(ii.b) ∀r ∈ [q], ∃Cr > 0, Var(Z.,r|{Z.,l : l 6= r}) > Cr ,

(iii) ∀r ∈ [q],
(
∀j ∈ Gr,β∗j > 0

)
or
(
∀j ∈ Gr,β∗j 6 0

)
,

then, in the compressed representation (5.10), θ∗ admits the following decomposi-
tion:

θ∗ = θ̃+ κ , (5.18)

where, for r ∈ [q], |κr| 6 (νr / Cr)‖β∗‖1 and θ̃r 6= 0 if and only if there exists
j ∈ Gr such that β∗j 6= 0. If such an index j exists then sign(θ̃r) = sign(β∗j ).

Proof. Use (ii.a) and (ii.b) to get the first statement of Bühlmann et al. (2013,
Proposition 4.4). Then use (i) and (iii) to directly obtain the result.

The assumptions (i) and (ii) in Prop. 5.4.1 are replaced by (i), (ii.a) and
(ii.b) in Prop. 5.4.6. More precisely, instead of assuming that the covariates
of a same group are positively correlated, we assume that they are positively
correlated conditionally to all other groups. Also, we relax the more ques-
tionable assumption of groups independence; we assume instead that (ii.a)
the conditional (same conditioning as in (i)) covariance of two covariates of
different groups is bounded above and that (ii.b) the conditional variance
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of the group representative variable is nonzero. In practice, except if groups
are linearly dependent (very unlikely), we can always find values for which
(ii.a) and (ii.b) are verified, but we would like the upper bound of (ii.a) as
low as possible and the lower bound of (ii.b) as high as possible. Finally,
assumption (iii) remains unchanged.

Then, similarly as done in Sec. 5.4.3, we can build θ̂. Under the same
assumptions, Prop. 5.4.2 is still valid and θ̂ still verifies (5.11). However, here
we want to estimate θ̃, not θ∗. Combining Prop. 5.4.2 and Prop. 5.4.6, we
can see θ̂ as a biased estimator of θ̃. To take this bias into account, we need
to adjust the definition of the p-values given by (5.12). Let us assume that:

max
r∈[q]

(
νr

Cr
√
Ω̂rr

)
6

aσε

‖β∗‖1
, (5.19)

where a ∈ R+ is a constant that is discussed at the end of this section. Then,
for all r ∈ [q], the adjusted p-values are given by:

p̂Gr = 2

(
1−Φ

(
√
n

[
|θ̂r|

ση
√
Ω̂rr

− a

]
+

))
. (5.20)

Let us denote by q1−α
2

the 1 − α
2 quantile of the standard Gaussian

distribution, i.e., q1−α
2
= Φ−1(1− α

2 ). Then, under H0(Gr) —the hypothesis
which states that β∗j = 0 for j ∈ Gr implying that θ̃r = 0—, we have, for any
α ∈ (0, 1):

P(p̂Gr 6 α|Z) = 1− P

[
√
n

[
|θ̂r|

ση
√
Ω̂rr

− a

]
+

6 q1−α
2

∣∣∣∣Z
]

6 1− P

[
√
n

[
|θ̂r|

ση
√
Ω̂rr

−
νr ‖β∗‖1
σεCr

√
Ω̂rr

]
+

6 q1−α
2

∣∣∣∣Z
]

6 1− P

[
√
n

[
|θ̂r|− |κr|

ση
√
Ω̂rr

]
+

6 q1−α
2

∣∣∣∣Z
]

= 1− P

[
√
n

[
|θ̂r|− |θ∗r |

ση
√
Ω̂rr

]
+

6 q1−α
2

∣∣∣∣Z
]

6 1− P

[
√
n
|θ̂r −θ

∗
r |

ση
√
Ω̂rr

6 q1−α
2

∣∣∣∣Z
]

= α+ oP(1) .
(5.21)

Finally, we have built a cluster-wise adjusted p-value family which (asymp-
totically) exhibits, with low probability (< α), low value (< α) for the clusters
which contain only zero weight features.
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Now, let us come back to the interpretation and choice for the constant
a. In Prop. 5.4.6, we have shown that, when groups are not independent, a
group weight in the compressed model can be non-zero even if the group
only contains zero weight features. However, the absolute value of the weight
of a such group is upper bounded. Then, we introduced a ∈ R+ in (5.20) to
increase the p-values by a relevant amount and keep statistical guarantees
concerning the non-discovery of a such group. The value of a depends on
the physics of the problem and on the choice of clustering. While the physics
of the problem is fixed, the choice of clustering has a strong impact on the
left term of (5.19) and a "good" choice of clustering results in a lower a (less
correction). To estimate a, we need to find an upper bound of ‖β∗‖1, a lower
bound of σε and to estimate the left term of (5.19). In practice, to compute
p-values, we took a = 0 since the formula in (5.12) was already conservative
for all the problems we considered.

To complete the proof in the case of correlated clusters, one can proceed
as in uncorrelated cluster case taking (5.20) instead of (5.12).

5.5 numerical simulations

In this section, we run several simulations in order to give empirical evi-
dence of the theoretical properties of ecd-Lasso and compare its recovering
properties with two other procedures.

5.5.1 3D Simulations
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Figure 5.4: 3D representation of the true parameter vector β∗. The support is
composed of five connected regions, four are situated in corners of the cubic map
and the last region is situated in the center of the cube.

The proposed simulations have a 3D structure and aim at approximat-
ing the characteristics of image volumes dataset, such as MRI scans (see
e.g., (Marcus et al., 2007)). The feature space considered is a 3D cube with
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edge length H = 50, then p = H3 = 125k covariates (voxels) and we took
n = 400 samples. To construct β∗, we define a 3D weight vector β̃∗ with five
non-zero regions represented in Fig. 5.4 and then flatten β̃∗ in a vector β∗

of size p. Each non-zero region is a cube of width h = 6, leading to a size
of support s∗ = 5h3 = 1 080 (around 1% of p). Four regions are situated in
corners of the map and the last region is situated in the center of the cube.
Then, to construct X, we first construct a 3D design matrix X̃ by drawing
p random normal vectors of size n that are spatially smoothed with a 3D
Gaussian filter to create a feature correlation structure related to the feature
space geometry, then we reuse the same flattening to go from X̃ to X the
n× p design matrix. The intensity of the spatial smoothing is designed to
achieve similar feature correlation as that measure from the Oasis dataset
(Marcus et al., 2007); namely the correlation between two adjacent voxels is
around 0.8. We also set σε = 8.5, to approximately get SNRy = 10 (= 10dB),
where the signal to noise ratio (SNR) is defined by SNRy = ‖Xβ∗‖22/‖ε‖22.
We also try two other scenarios with higher level of noise: σε = 12 leading
to SNRy = 5 (= 7dB) and σε = 19 leading to SNRy = 2 (= 3dB). When
running ecd-Lasso, we took q = 500, which is relevant for medical imaging
contexts. Note that a small q generally improves the recovery properties of
ecd-Lasso, it entails a high tolerance. Also, we took the number of bootstraps
B equal to 100.

5.5.2 Alternative methods

In such settings, there are almost no existing powerful procedures that
provide statistical guarantees. The only dedicated method we found was
proposed by Gaonkar and Davatzikos (2012) and its assumptions could be
problematic in practice. The second method we propose is a permutation
test made over SVR weights. This procedure is theoretically valid assuming
a pivotality property of estimated weights. Both method are related to the
SVR formulation (Cortes and Vapnik, 1995; Smola and Schölkopf, 2004).

approximative permutation threshold svr. Here, we introduce Ap-
proximative Permutation Threshold SVR, a statistical inference procedure
that produces a weight map and confidence intervals around it; it is also
almost equivalent to thresholding the SVR weights non-uniformly. This
procedure was first presented by Gaonkar and Davatzikos (2012). First, the
authors derived an estimated weight ŵAPT linearly related to the target by
approximating the hard margin SVM formulation, their estimator is given
by the following equation:

ŵAPT = L y , (5.22)
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where y is the target variable and L ∈ Rp×n only depends on the design
matrix X:

L = X>
[
(XX>)−1 − (XX>)−11(1>(XX>)−11)−11>(XX>)−1

]
, (5.23)

where 1 ∈ Rn is a vector of ones. The approximation made by (5.22) is
notably valid under the assumption that all the data samples are support
vectors, which might hold at least if n� p. Then, if y is standardized and if
n is large enough (so that the central limit theorem holds), one expects that
under the null hypothesis for the j-th covariate:

ŵAPT
j ∼ N(0,

n∑
k=1

L2j,k) . (5.24)

From (5.24), p-values can be computed and corrected by applying a Bonfer-
roni correction (multiplying the raw p-values by a factor p).

permutation test svr. Now, we introduce a uniform thresholding
strategy of SVR weights based upon the Westfall-Young permutation test
procedure. To derive corrected p-values from a permutation test, we first
regress the design matrix against the response vector using a linear SVR to
obtain an estimate ŵSVR of the weights map similarly as made in the Thr-
SVR procedure. Then, permuting randomly R times the response vector and
regressing the design matrix against the permuted response by a linear SVR,
we obtain R maps (ŵSVR,(r))r∈[R]. We can now apply the Westfall-Young
step-down maxT adjusted p-values algorithm (Westfall and Young, 1993,
p. 116-117) taking the raw SVR weights instead of the usual t-statistics to
derive the corrected p-values. A sufficient assumption to ensure the validity
of the p-values is the pivotality of the SVR weights. Keeping the corrected
p-values that are less than a given significance level —equal to 10% in this
study— this procedure is equivalent to thresholding the SVR weight map.
We call this procedure Permutation Test SVR. To perform the permutation
test procedure, we use R = 1000 permutations.

5.5.3 Results

In Fig. 5.5, we study the FWER and δ-FWER control for all the methods
presented, for δ = 5 voxels. Under appropriate assumptions, ecd-Lasso
theoretically controls the δ-FWER for δ equal to the largest cluster diameter
which is around 15 voxels in average over the 100 simulations for each setting.
However, by ensembling several solution (p-value maps), the probability of
making false discoveries at this theoretical distance (upper-bound) is greatly
reduced. Then, in practice the control is generally even effective for δ equal
to the average cluster radius, here around δ = 5.
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Figure 5.5: Empirical FWER control. Left: Excepted ecd-Lasso, all methods should
control the FWER. For those methods, the empirical FWER remains below the
10% nominal rate as expected. Right: Under appropriate assumptions, ecd-Lasso
theoretically controls the δ-FWER for δ equal to the largest cluster diameter. In
practice the control is generally even effective for δ equal to the average cluster
radius, here around δ = 5 voxels. Concerning ecd-Lasso, while the FWER was not
controlled, the empirical δ-FWER remains below the nominal rate as expected; this
means that mistakes are made close to the support which is more acceptable in
many experimental settings.
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Figure 5.6: True positive rate. Here, we exhibit the recovery rate when control-
ling the FWER (or δ-FWER in the case of ecd-Lasso) at 10%. One can notice that
ecd-Lasso is clearly improving over all other methods for all noise regimes.

In Fig. 5.6, we plot the recovery rate when controlling the FWER (or δ-
FWER in the case of ecd-Lasso) at 10%. In every setting ecd-Lasso clearly
improves over all other methods. Additionally, for all methods, increasing
the SNR makes the inference problem easier and the true discovery rate
increases; this effect was expected.

5.5.4 Discussion

In this chapter, we have established the theoretical properties of ecd-Lasso
and exhibited that they hold on a given simulation.

In theory, the required spatial tolerance is equal to the largest cluster di-
ameter. In practice, since we compress the problem with different clustering
choices that contain clusters of different sizes and aggregate the solutions,
the required spatial tolerance is generally lower than the average cluster
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radius. Also, we have observed that ecd-Lasso is conservative even with this
reduced spatial tolerance. This is mainly due the fact that the Bonferroni
correction and the aggregation procedure are conservative.

In Chapter 6, we conduct a thorough empirical validation to support the
theoretical claims and show the sustainability of the assumptions.

5.6 supplementary material

5.6.1 Proof of Prop. 5.4.3

Proof. (i) Suppose that Hδ0(j) is true. Since the diameters of the groups are
all smaller than δ, all the covariates in Gg(j) have a corresponding weight
equal to zero. Thus, using Prop. 5.4.1, we have θ∗g(j) = 0, i.e., we are under
H0(Gg(j)). Under this last null-hypothesis, using (5.13) and (5.16), we have
asymptotically:

∀α ∈ (0, 1), P(p̂G
g(j) 6 α) = P(p̂j 6 α) = α .

This last result being true for any j ∈ Nδ, we have shown that the elements
of the family p̂ asymptotically control the δ-type 1 error.

(ii) As mentioned in Sec. 5.4.3, we know that, the family q̂G asymptotically
controls the FWER, i.e., for α ∈ (0, 1) we have P(minr∈NG

q̂Gr 6 α) 6 α. Let
us denote by g−1(NG) the set of indexes of covariates that belong to the
groups of NG, i.e., g−1(NG) = {j ∈ [p] : g(j) ∈ NG}. Again, given that all the
diameters of the groups are smaller than δ and using Prop. 5.4.1, if j ∈ Nδ
then g(j) ∈ NG. That is to say Nδ ⊂ g−1(NG). Then, we have the following
result:

min
j∈Nδ

(q̂j) > min
j∈g−1(NG)

(q̂j) .

We can also notice that:

min
j∈g−1(NG)

(q̂j) = min
j∈g−1(NG)

(q̂G
g(j))

= min
g(j)∈NG

(q̂G
g(j)) .

Replacing g(j) ∈ [q] by r ∈ [q], and using (5.15), we obtain the following
asymptotic result:

∀α ∈ (0, 1), P(min
j∈Nδ

(q̂j) 6 α) 6 P( min
r∈NG

q̂Gr 6 α) 6 α .

This establishes that the family (q̂j)j∈[p] asymptotically controls the δ-FWER.
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5.6.2 Proof of Prop. 5.4.4

The proof of Prop. 5.4.4 is inspired by the one proposed by Meinshausen,
Meier, and Bühlmann (2009). However, it is quite different since we can not
remove the term minj∈Nδ and have to work with it to obtain the desired
inequality; this makes the proof a bit more difficult. First, we start by making
a short remark about the γ-quantile quantity.

Definition 5.6.1 (empirical γ-quantile). For a set V of real numbers and γ ∈
(0, 1), let

γ-quantile(V) = min

{
v ∈ V :

1

|V |

∑
w∈V

1{w6v} > γ

}
. (5.25)

Remark 5.6.1. For a set of real number V and for a ∈ R, let us define the quantity
π(a,V) by the following:

π(a,V) =
1

|V |

∑
v∈V

1{v6a} . (5.26)

Then, for γ ∈ (0, 1), the two events E1 = {π(a,V) > γ} and E2 =

{γ-quantile(V) 6 a} are identical.

Now, we give the proof of Prop. 5.4.4.

Proof. First, one can notice that, from (5.17), we have:

min
j∈Nδ

(q̃j(γ)) > min

1,γ-quantile

min
j∈Nδ

 q̂(b)j
γ

 : b ∈ [B]


 .

Then, for α ∈ (0, 1):

P

(
min
j∈Nδ

(q̃j(γ)) 6 α

)

6 P

min

1,γ-quantile

min
j∈Nδ

 q̂(b)j
γ

 : b ∈ [B]


 6 α


= P

γ-quantile

min
j∈Nδ

 q̂(b)j
γ

 : b ∈ [B]


 6 α

 .

Using Rem. 5.6.1, for γ ∈ (0, 1), with:

V =

min
j∈Nδ

 q̂(b)j
γ

 : b ∈ [B]

 and a = α ,
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and noticing that:

π

α,

min
j∈Nδ

 q̂(b)j
γ

 : b ∈ [B]


 =

1

B

B∑
b=1

1{
min

j∈Nδ(q̂
(b)
j )6αγ

} ,

then, we have:

P

γ-quantile

min
j∈Nδ

 q̂(b)j
γ

 : b ∈ [B]


 6 α


= P

(
1

B

B∑
b=1

1{
min

j∈Nδ(q̂
(b)
j )6αγ

} > γ

)
.

Then, the Markov inequality gives:

P

(
1

B

B∑
b=1

1{
min

j∈Nδ(q̂
(b)
j )6αγ

} > γ

)
6
1

γ
E

[
1

B

B∑
b=1

1{
min

j∈Nδ(q̂
(b)
j )6αγ

}
]

.

Then, using the assumption that the B families (q̂
(b)
j )j∈[p] control of the

δ-FWER (last inequality), we have:

1

γ
E

[
1

B

B∑
b=1

1{
min

j∈Nδ(q̂
(b)
j )6αγ

}
]
=
1

γ

1

B

B∑
b=1

P

(
min
j∈Nδ

(q̂
(b)
j ) 6 αγ

)
6 α .

Finally, we have shown that, for α ∈ (0, 1):

P

(
min
j∈Nδ

(q̃j(γ)) 6 α

)
6 α .

This establishes that the family (q̃j(γ))j∈[p] controls the δ-FWER.

Remark 5.6.2. Using the aggregation formula of (5.17), we could also construct a
family that controls the δ-type 1 error from B families controlling the δ-type 1 error.



6 E M P I R I C A L VA L I DAT I O N

In Chapter 4, we presented ecd-Lasso, a multivariate statistical inference
procedure well suited for very high dimensional structured data such as
neuroimaging data. In Chapter 5, we give the statistical guarantees provided
by ecd-Lasso.

In this chapter, we evaluate the statistical properties of ecd-Lasso along
with three alternative standard methods by performing a thorough empirical
study using fMRI datasets. We also study the impact of the choice of the
main free parameter of ecd-Lasso: the number of clusters C. Finally, we
show that ecd-Lasso exhibits the best recovery properties while ensuring the
expected statistical control. Also note that, the content of this chapter has
been submitted to the NeuroImage journal and has received a very positive
first feedback.

6.1 introduction

In Chapter 2, we introduced decoding and explained that, while it produces
weight maps used to predict diseases or behaviors from brain activation
maps, little or nothing can be concluded about the significant features of
these weight maps. Indeed, those maps do not come with well-controlled sta-
tistical properties, making decoding models hard to interpret. For instance,
considering linear Support Vector Machines (SVM) (Cortes and Vapnik, 1995)
or linear Support Vector Regression (SVR) (Smola and Schölkopf, 2004), that
are very popular in neuroimaging (Pereira, Mitchell, and Botvinick, 2009;
Rizk-Jackson et al., 2011), a natural way to recover predictive regions is to
threshold the estimated weight maps. However, this approach is problematic
for two reasons: there exists no clear way to choose the threshold as a func-
tion of a desired significance, and it is unclear whether such a thresholded
map is still an accurate predictor of the outcome.

The main goal of the present work is to conduct an empirical study in
order to benchmark standard procedures that are used for source localization
in the neuroimaging context and more specifically when dealing with fMRI
data. Then, our first contribution is to show that the natural procedure
which consists in thresholding standard decoders, such as SVR, is not a
relevant solution. In this respect, we consider two thresholding strategies:
one that computes a threshold through a parametric approach, and another
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one that derives the threshold by performing a permutation test. These two
thresholding strategies can be derived from statistical testing considerations
—yet, these statistical properties are not assumption free.

Another procedure, developed by Gaonkar and Davatzikos (2012) and
referred to as Ada-SVR, derives decoder maps that come with confidence
intervals around the estimated weights. Ada-SVR was specifically designed
for this neuroimaging source localization problem then we also consider
this procedure in this chapter. Similarly to the thresholding procedures,
Ada-SVR relies on algorithmic shortcuts, approximations and assumptions
that are more or less problematic in practice.

Finally, the ecd-Lasso algorithm that was presented in Chapter 4 produces
maps which verify interesting statistical properties derived in Chapter 5;
then we benchmark the procedure and validate empirically its theoretical
properties. Consequently, our second contribution is to compare and validate
the theoretical results obtained in Chapter 5 in several real fMRI scenarios.

For all methods considered, the control of false detections is only achieved
within a certain theoretical framework, and given a series of assumptions
that are not always checked. It is thus fundamental to analyze their statis-
tical behavior with an extensive empirical study. We present here a set of
experiments assessing the accuracy of the error rate control and support
recovery on real and semi-synthetic brain-imaging data. In particular, we
consider standard experiments adapted from the seminal work of Eklund,
Nichols, and Knutsson (2016) to highlight the properties and limitations of
these statistical models.

The present chapter is organized as follows: in Sec. 6.2, we briefly recall
the underlying model and useful quantities for statistical inference with
spatial tolerance, that we introduced in Chapter 5, taking a more practical
approach; in Sec. 6.3, we describe thoroughly the methods that be tested to
address the source localization problem; Sec. 6.4 and Sec. 6.5 follow with
extensive experiments on simulations and large-scale fMRI datasets that
study the behavior of the benchmarked solutions regarding false positive
control and recovery.

6.2 model formulation and statistical tools

In this section, we restate the noise model and introduce the δ-FWER taking
a more practical approach than in Chapter 5.
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6.2.1 Formal problem setting

We recall that the model that describes the neuroimaging problem we are
dealing with is given by (2.7):

y = Xβ∗ + ε ,

where the response vector is denoted by y ∈ Rn, the design matrix by
X ∈ Rn×p, the parameter vector by β∗ ∈ Rp and the random error vector
by ε ∼ N(0,σ2εIn) where σε > 0 is the unknown standard deviation. We
also recall that in the neuroimaging context, n the number of samples is the
number of brain images available and p, the number of covariates, represents
the number of voxels in each scan —a covariate being given by the level
of activation of a voxel. Our aim is to infer the weight map β∗ that links
the activation maps X to the conditions y with statistical guarantees on the
proposed estimator. We also assume sample independence, sparsity and
spatial structure of the weight map; for further details we refer the reader to
Chapter 5.

6.2.2 δ-Family Wise Error Rate (δ-FWER)

In Chapter 2, we have explained that it was quite natural to incorporate a
spatial tolerance in the sought statistical control in order to untangle this
hard source localization problem. Then, to control the occurrence of false
discoveries, we use the generalization of the FWER (Hochberg and Tamhane,
1987a) proposed in Chapter 5 called δ-FWER. This control is particularly
well adapted for the problem we are given since it does not take into account
the false discoveries made at a distance larger than δ from the support. In
this section, we take another approach to define the δ-FWER, it is more
practical and complementary to the approach taken in Chapter 5 since we
do not consider p-value families but simply a general estimated support.

true support under linear model assumption. For the current
chapter only, to ease notation, we use simply S to denote the true support. In
the setting we are given, S is the subset of voxels that explains the outcome
y, while the null region N is its complementary N = [p] \ S. More precisely, S
is the set of voxels that are associated with y, given all the other voxels:

∀j ∈ S, Xj 6⊥⊥ y | {Xk,k ∈ [p] \ {j}} ,

∀j ∈ N, Xj ⊥⊥ y | {Xk,k ∈ S} ,
(6.1)

where the sign ⊥⊥ denotes the (conditional) independence. Then, under the
linear assumption made in (2.7), β∗j = 0 holds for any j ∈ N and β∗j 6= 0 for
any j ∈ S.
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δ-neighborhood. The variables X1, X2, . . . , Xp can also be characterized
by the spatial proximity of their underlying voxels in brain space: given
δ > 0, a voxel k ∈ [p] is in the δ-neighborhood of a voxel (or a set of voxels)
if their distance is less than δ.

δ-null region. For δ > 0, we denote by S(δ) the δ-dilation of the support
S, i.e., the set of voxels in S or in its δ-neighborhood. By definition, S ⊂ S(δ).
We denote by Nδ the δ-erosion (inverse operation of a δ-dilation) of the
null region N, implying that Nδ ⊂ N. From the definition of N we have
immediately:

Nδ = [p] \ S(δ) , (6.2)

We refer to Nδ as the δ-null region. As shown in Fig. 6.1, we interpret the
δ-null region as the subset of the covariates which are at a distance less than
δ from the support covariates.

Negative weight

Null weight 

Positive weight

-Null region (  = 2)

  -Null region frontier

Right hand side only:

Boths sides:

Figure 6.1: Spatial tolerance to false discoveries. Left: example of 2D-weight map,
small squares represent voxels. The map is sparse. Right: representation of the
δ-null region for the associated map with δ = 2. The covariates in the δ-null region
are "far" from non-null covariates, discoveries in this area are highly undesired.
Discovering a null covariate "close" to a non-null covariate is tolerated.

δ-family wise error rate (δ-FWER). If we have an estimate of the
support Ŝ ⊂ [p], we recall that the FWER is defined as the probability of
making a false detection (Hochberg and Tamhane, 1987a):

FWER(Ŝ) = P(Ŝ∩N 6= ∅) . (6.3)

Similarly, given δ > 0 , we defined the δ-FWER to be

δ-FWER(Ŝ) = P(Ŝ∩Nδ 6= ∅) , (6.4)

i.e., the probability of making a detection at distance more than δ from the
true support. The δ-FWER control is thus weaker than the FWER control,
except when δ = 0 and when the true support is empty (i.e., N = [p]), in
which case the δ-FWER coincides with the classical FWER.
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δ-precision. Given an estimate of the support Ŝ ⊂ [p], its precision is
defined as the proportion of true discoveries within Ŝ:

precision(Ŝ) =
|Ŝ∩ S|
|Ŝ|

. (6.5)

Similarly, given δ > 0 , we defined the δ-precision as

δ-precision(Ŝ) =
|Ŝ∩ S(δ)|

|Ŝ|
, (6.6)

i.e., the proportion of discoveries at distance less than δ from the true support.
Notice that δ-precision(Ŝ) > precision(Ŝ).

6.3 methods

In this section, we provide a bit of context regarding the current practices
for solving the source localization problem, we then describe thoroughly the
benchmarked procedures with their assumptions and statistical guarantees.

6.3.1 Current practices

naked eye criteria. Probably the most natural procedure used to re-
cover discriminative patterns is to threshold decoders with high prediction
performance —a popular choice is the linear SVM/SVR decoder (Pereira,
Mitchell, and Botvinick, 2009; Rizk-Jackson et al., 2011). Thresholding de-
coder maps at a uniform value —i.e., the threshold is the same for all
weights— is probably the most common practice in neuroimaging; threshold
value being generally arbitrary: "naked-eye criteria". It is not thought of as a
statistical operation, and is sometimes left to the reader, who is presented
unthresholded maps and yet told to interpret only the salient features of
these maps.

permutation test. Permutation testing can also be used to derive a
uniform threshold with explicit guarantees. The classical Westfall-Young
permutation test procedure (Westfall and Young, 1993) is well-known in the
univariate context to control the FWER (Anderson, 2001), but its application
to multivariate testing is not as straightforward. Then, instead of considering
the usual t-statistics, a permutation test can use the linear SVR weights. An
estimated weight map must be computed for the original problem and for
several permuted problems before performing the Westfall-Young procedure;
this method is detailed in Sec. 6.3.3.
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Under some assumptions (see Sec. 6.3.2 and Sec. 6.3.3) that are more
or less problematic in practice, these two previous uniform thresholding
strategies might recover the predictive patterns with FWER control.

approximated permutation test. The issues with the previous per-
mutation testing procedure is i/the pivotality assumption —which is not
verified for SVR weights— and ii/the computational cost. A method pro-
posed by Gaonkar and Davatzikos (2012), specifically designed for neu-
roimaging settings, relies on the analytic approximation of a permutation
test performed over a linear SVM/SVR estimator. This method produces
confidence intervals around the weights of the proposed estimator. Then,
under some assumptions (see Sec. 6.3.4) that are not always met in practice,
this procedure controls the FWER. It is almost equivalent to thresholding
the SVR weights with a non-uniform threshold —i.e., the threshold is spe-
cific to each weight. We refer to it as Adaptive Permutation Threshold SVR
(Ada-SVR) from now on.

6.3.2 Thresholded SVR (Thr-SVR)

Thresholded SVR (Thr-SVR) is a procedure that thresholds uniformly the
estimated SVR weight map, keeping extreme weights; this method corre-
sponds to the most standard and simple approach to recover predictive
patterns. The first step is to derive the SVR weights ŵSVR. Then, assuming
that the estimated weights of the null region are sampled from a given
distribution centered on 0, the corresponding standard deviation σSVR can
be approximated with the following estimator:

σ̂SVR =

√√√√ 1

p

p∑
j=1

(ŵSVR
j )2 . (6.7)

We could also consider other estimators to approximate this quantity
(e.g., Schwartzman et al., 2009) but the former is simple and at worst bi-
ased upward when the support is not empty. Now, assuming a Gaussian
distribution for the SVR weights in the null region, i.e., for j ∈ N:

ŵSVR
j ∼ N

(
0,σ2SVR

)
, (6.8)

we can produce (corrected) p-values by applying a Bonferroni correction.
The produced p-values are at worst conservative under the two assumptions
discussed in Sec. 6.6. In this procedure, the regression method considered
is a linear SVR but similar results were obtained with other procedures
(e.g., Ridge regression).
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6.3.3 Permutation Test SVR (Perm-SVR)

The other uniform thresholding strategy of SVR weights we consider is
the method described in Chapter 5. It is based upon the Westfall-Young
permutation test procedure and we refer to this procedure as Permutation
Test SVR (Perm-SVR). The only difference between Perm-SVR and the
Thr-SVR procedure is the way of computing the threshold. Please refer to
Sec. 5.5.2 for a detailed presentation of the method.

6.3.4 Adaptive Permutation Threshold SVR (Ada-SVR)

Adaptive Permutation Threshold SVR (Ada-SVR) is a statistical inference
procedure that produces a weight map and confidence intervals around it; it
is also almost equivalent to thresholding the SVR weights non-uniformly.
This procedure was first presented by Gaonkar and Davatzikos (2012). Please
refer to Sec. 5.5.2 for a detailed presentation of the method.

6.3.5 Ensemble of Clustered Desparsified Lasso Algorithm (ecd-Lasso)

Data

EnsemblingDesparsified

 

     Lasso

 

Clustering #B

 

 
 

Clustering #1

Figure 6.2: Ensemble of Clustered Desparsified Lasso (ecd-Lasso) algorithm.
ecd-Lasso combines three algorithmic steps: a clustering (or parcellation) procedure
applied to images, the Desparsified Lasso procedure (statistical inference) to derive
statistical maps, and an ensembling method that synthesizes several statistical maps.
In the first step, B clusterings of voxels are generated using B random subsamples
of the original sample. Then, for each grouping-based data reduction, a statistical
inference procedure is run resulting in B z-score maps (or p-value maps). Finally,
these maps are ensembled into a final z-score map using an aggregation method
that preserves statistical properties.

ecd-lasso in a nutshell We recall that ecd-Lasso is a multivariate
statistical inference procedure designed for high dimensional spatial data
introduced in Chevalier, Salmon, and Thirion (2018). As illustrated in Fig. 6.2,
ecd-Lasso relies on three steps: a spatially-constrained clustering algorithm
for reducing the problem dimension, a statistical inference procedure for
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deriving statistical maps, and an ensembling method for aggregating the
statistical maps. The reader can refer to Chapter 4 for a comprehensive
description of the method.

choosing δ for δ-fwer control Under assumptions given in Chap-
ter 5 —notably sparsity and smoothness of the true weight map and i.i.d.
data samples— ecd-Lasso gives statistical guarantees, namely it controls the
δ-FWER. Theoretically, the minimal spatial tolerance δ that guarantees a con-
trol of the δ-FWER with ecd-Lasso is the largest parcel diameter. However, in
practice, we aggregate many statistical maps obtained from different choices
of voxel grouping, reducing this tolerance to the average radius. Then, the
value of δ for which we observe the δ-FWER control varies approximately
linearly with the cubic root of the average number of voxels per cluster. In
standard fMRI settings, we propose the following formula for δ:

δ0 =
( p
2C

)1/3
, (6.9)

the ratio p/C being the average number of voxels per cluster, δ0 is a distance
in voxel size unit. However, when the setting is particularly favorable for
inference, e.g., if log(n)/C is large, or σε is small, the choice of δ given by
(6.9) might be slightly too liberal. We have found empirically that a suitable
multiplicative factor, denoted by τ > 0, that could be used to correct δ0 is
given by:

τ = −45 log
(

σε

std(y)

)
log(n)
C

, (6.10)

where σε is the standard deviation of the noise ε. In practice σε has to be
estimated; in the fMRI datasets we studied, estimates of σε

std(y) were close
to 0.1. However, given the heuristic derivation of this quantity and the
uncertainty about the value of τ, we do not recommend correcting δ0 with a
factor lower than 1 as it could lead to a dramatic under estimation of the
valid δ. Then, the final formula to compute the δ such that δ-FWER control
is ensured, is:

δ∗ = max(1, τ) δ0 . (6.11)

Note that the formula given by (6.9) and even (6.11) are not bullet proof but
rather give reasonable estimates of practical value to take for δ.

ecd-lasso hyper parameters. The number of clusters C is a crucial
hyperparameter of ecd-Lasso. Generally, a suitable C depends on intrinsic
physical properties of the problem and on the targeted spatial tolerance
δ. Decreasing C increases the statistical power while reducing the spatial
precision. When working with fMRI data, taking C = 500 is a fair default
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value achieving a suitable trade-off between spatial precision and statistical
power when the number of samples is a few hundreds. With this choice, the
spatial tolerance should be close to δ = 10mm when working with masked
fMRI data.

As a more adaptive approach, we recommend to tune C according to n
e.g., C ∈ [n/2,n]. This choice should still ensure the δ-FWER control with δ
given by (6.9) and is justified by the results given in Sec. 6.5.6 (experiment
being described in Sec. 6.4.6).

The parameter B, the number of cd-Lasso solutions to be aggregated, is
discussed in Sec. 6.3.5. The larger B the more stable the solution, yet the
heavier the computational cost. In our experiments, we have set B = 25 (see
Hoyos-Idrobo et al. (2018) for a more complete discussion on this parameter).

6.3.6 Implementation

The Python code that implements Thr-SVR, Perm-SVR, Ada-SVR and
ecd-Lasso can be found on https://github.com/ja-che/hidimstat. Our
algorithms are implemented with Python = 3.6.8 and need the following
packages Numpy = 1.16.2 (Walt, Colbert, and Varoquaux, 2011), Scipy = 1.2.1
(Virtanen et al., 2020), Scikit-Learn = 0.21 (Pedregosa et al., 2011), Joblib =
0.11 and Nilearn = 0.6.0 (Abraham et al., 2014).

6.4 experimental procedures

In this section, we describe datasets and experiments used to benchmark the
methods described in Sec. 6.3.

6.4.1 Data

To validate empirically the statistical guarantees of the four algorithms —
Thr-SVR, Perm-SVR, Ada-SVR and ecd-Lasso— described in Sec. 6.3, we
perform several experiments on resting-state fMRI and task fMRI data.
We focus on three datasets: Human Connectome Project (HCP) S900 (900
subjects) resting-state fMRI, HCP S900 task fMRI and Rapid-Serial-Visual-
Presentation (RSVP) task fMRI.

hcp resting-state fmri data. HCP S900 resting-state fMRI dataset
(Van Essen et al., 2012) contains 4 runs of 15 minutes resting-state recordings
with a 0.76s-repetition time (corresponding to 1200 frames per run) for 796
subjects. We use the MNI-resampled images provided in the HCP S900
release. For this dataset the number of samples is equal to 1200 (only one

https://github.com/ja-che/hidimstat
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run is used) and the number of voxels is 156k after gray-matter masking
(the spatial resolution being 2mm isotropic).

hcp task fmri data. We also use the HCP S900 task-evoked fMRI
dataset (Van Essen et al., 2012), in which we take the masked 2mm z-maps
of the 796 subjects from 6 tasks to solve 7 binary classification problems:
emotion (emotional face vs shape outline), gambling (reward vs loss), language
(story vs math), motor hand (left vs right hand), motor foot (left vs right
foot), relational (relational vs match) and social (mental interaction vs random
interaction). We consider the fixed-effect maps for each condition, yielding
one image per subject per condition (which corresponds to two images per
subject for each classification problem). Then, for each problem, the number
of samples available is 1592 (= 2× 796) and the number of voxels is 156k
after gray-matter masking.

unmasked rsvp task fmri data. We also use activation maps obtained
from a RSVP task of the the individual brain charting dataset (Pinho et al.,
2018), augmented with 9 additional subjects performing the same task, under
the same experimental procedures and scanning parameters. No masking
is used for this dataset, so that out-of-brain voxels are not withdrawn from
preprocessing. We consider the unmasked 3mm-resolution statistical z-maps
of the 6 sessions of the 21 subjects for a reading task with 6 different contrasts
that have been grouped into 2 classes: language (words, simple sentences,
complex sentences) vs pseudo-language (consonant strings, pseudo-word
lists, jabberwocky). The images are all registered to MNI space and per-
condition effects are estimated with Nistats v0.0.1 library (Abraham et al.,
2014). For this dataset the number of samples available is equal to 756
(21 subjects× 6 runs× 6 images per run) and the number of voxels is 173k
(unmasked images resampled at 3-mm resolution). We run the inter-subject
experiment described in Sec. 6.4.5 with this dataset.

6.4.2 Statistical control on semi-simulated data

A first series of experiments study whether the four different methods
exhibit the expected δ-FWER control and are competitive in terms of support
recovery, as measured with the δ-precision-recall curve. To do so, we have
to construct the true weight map β∗. We generate “semi-simulated” data:
generating signals from estimates on real data. To avoid circularity in the
definition of the ground truth, we used two different tasks: one to build β∗

and another one to define X.

building a reference weight map from hcp motor hand. To con-
struct an underlying weight map, we use the motor hand (MH) task of the
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HCP S900 task fMRI dataset described in Sec. 6.4.1. Specifically, we build a
design matrix XMH ∈ Rn×p from the motor hand task z-maps of all subjects
associated with a binary condition index yMH. To obtain an initial weight
map βSVC

MH we regress XMH against yMH by fitting a linear Support Vector
Classifier (SVC) (Cortes and Vapnik, 1995). From βSVC

MH we only kept the 10%
most extreme values ensuring that the connected groups of non zero-weight
voxels have a minimal size of 1 cm3 by removing small clusters. We chose
this map (represented in Fig. 6.3 and Fig. 6.4) to be the true weight map
β∗ ∈ Rp for the whole simulated experiments.

X

*

X

y = X   + 
Generative model:

β

*β

*β

Figure 6.3: Generating a hybrid dataset with known ground truth and actual
fMRI data. To generate the response for a given sample we multiply the corre-
sponding brain activation map by the true weight map and add a Gaussian noise
with fixed variance. To highlight the predictive regions, we circle them in pink for
positive coefficients and in light blue for negative coefficients. As an illustration, we
take four different data samples with negative or positive output value.

simulating responses with hcp motion dataset. We then take X
to be the set of z-maps from the emotion task of the HCP S900 task fMRI
dataset described in Sec. 6.4.1. To generate a continuous response vector y,
we draw a Gaussian random noise vector ε ∼ N(0,σ2εIn) and use the linear
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model introduced in (2.7), where σε = 0.2 to reach SNRy = 10, where SNRy
is given by:

SNRy =
‖Xβ∗‖2
nσ2ε

. (6.12)

The way we simulate y is summarized in Fig. 6.3.

quantification of error control and detection accuracy. To
obtain representative results, we then run the procedures described in
Sec. 6.3 for 100 different response vectors y generated from different random
samples of subjects and different draws of ε. We let the number of samples
vary from n = 100 (50 random subjects taken among the 796) to n =

1200 (600 subjects), the exact number of voxels being p = 156 374. For
each simulation, we record the empirical δ-FWER and the δ-precision-recall
curves.

binary version of the semi-simulated experiment. In the above
experiment the response vector y is continuous, hence we also benchmark
the inference procedures for a binary response. For that, we simply take as
response vector the signs of the continuous y generated as in the previous
paragraph.

6.4.3 Statistical control under global null with i.i.d. data

In this experiment, we test whether the procedures control the FWER under
a global null model. ecd-Lasso only controls the δ-FWER theoretically but,
when the true weight vector β∗ is null, the δ-FWER and the classical FWER
are identical. Then, all procedures should control the FWER. Here, we
considered the tasks of the HCP S900 task fMRI dataset described in Sec. 6.4.1
keeping all the subjects (n = 1592). Then, to get a noise-only response, we
(uniformly) randomly permute the original response vector. Similarly as in
Sec. 6.4.2, the i.i.d. assumption is legitimate, since the data correspond to z-
maps of different subjects. For each task, we draw 100 different permutations
of the response and check if the different methods enforce the chosen
nominal FWER of 10%.

6.4.4 Statistical control under global null with autocorrelated data

In this experiment, we study how the different procedures control the
FWER when the data are temporally autocorrelated; hence violating the
i.i.d. assumption. Notably, this is the case if the data correspond to fMRI
signal recordings of one given subject during an acquisition. We consider
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data from the HCP S900 resting-state fMRI dataset described in Sec. 6.4.1
with full samples (n = 1200), the design matrix X containing the 15-minutes
fMRI signal registration. As in Eklund, Nichols, and Knutsson (2016), we
construct y such that it corresponds to two activity paradigms: block or event
responses, with several frequencies: 10s on/off, 20s on/off, 30s on/off, 2s-
activation/6s-rest, 4s-activation/8s-rest. Thus, y is temporally autocorrelated.
In these simulations β∗ = 0 so the δ-FWER and the classical FWER are
identical. To better assess the impact of correlation, we also generate y as
an i.i.d. —uncorrelated— Bernoulli or standard Gaussian random variable
(here again β∗ = 0), breaking spurious correlations between X and y. These
two cases enable to check if the procedures still control the FWER at the
targeted nominal level on this dataset under the i.i.d. assumption. For each
kind of response, we repeat the experiment 100 times, using data from 100

different subjects.

6.4.5 Statistical control of out-of-brain detections

In this experiment we test the four procedures on an unmasked task fMRI
dataset to verify that no spurious detection is made outside of the brain
—up to the allowed error rate. Indeed, the non-null coefficients of the weight
vector β∗ should all be contained in the brain since there is no informative
signal in out-of-brain voxels. To do so, we take the unmasked RSVP task
fMRI dataset, described in Sec. 6.4.1 (with design matrix X containing
n = 756 unmasked z-maps). Then, we report how frequently some voxels
are detected outside the brain volume.

6.4.6 Insights on the choice of number of clusters

In this experiment, we assess empirically the impact of C, the number
of clusters used in the ecd-Lasso algorithm. We use the same generative
method as in Sec. 6.4.2 to produce an experiment with known ground truth.
Then, we run the ecd-Lasso algorithm varying the numbers of clusters C
from C = 200 to C = 1000. We also vary the number of samples n from 100

to 1200. As in Sec. 6.4.2, we run the experiment for 100 different response
vectors and report aggregated results. We report two statistics: the empirical
δ-FWER and the AUC of the δ-precision-recall curve for every value of C
and n.

6.4.7 Face validity on HCP

In this experiment, we consider the output of the procedures in terms of
brain regions that are conditionally associated with the task performed by
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the subjects. Similarly as in Sec. 6.4.3, we consider the tasks of the HCP S900
task fMRI dataset described in Sec. 6.4.1, keeping this time the true response
vector. We run all the procedures on every task and report the statistical
maps thresholded such that the FWER < 10% or the δ-FWER < 10% (for
ecd-Lasso). For this, we use all the available samples (n = 1592).

6.4.8 Prediction performance

Even if it is not the purpose of this study, we also checked the prediction
performance of the decoders produced by each method. Since Thr-SVR and
Perm-SVR rely on the same predictive function, there are three different
decoders: SVR, Ada-SVR and ecd-Lasso. To perform this experiment, we
consider the tasks of the HCP S900 task fMRI dataset described in Sec. 6.4.1.
We run all the procedures on every task using a sample size n = 400, keeping
the rest of the samples to test the trained model. For each task and each
method, we take 100 different random subsamples to produce the results.

6.5 results

In this section, after setting the value of the tolerance parameter δ in the
different datasets, we present the experimental results.

6.5.1 Estimating δ in HCP and RSVP datasets

In all the experiments, unless specified otherwise, we run ecd-Lasso with
the default choice C = 500. Reversing (6.9), we obtain a tolerance parameter
of δHCP = 5.4 voxels for HCP S900 and δRSVP = 5.6 voxels for RSVP, corre-
sponding to δHCP = 12mm and δRSVP = 18mm respectively after rounding
up.

6.5.2 Statistical control with known ground truth

Here, we describe the results obtained from the experiment described in
Sec. 6.4.2.

qualitative comparison of the model solutions. In Fig. 6.4, we
present a qualitative comparison of the model solutions when n = 400. None
of the methods yields false discoveries for the chosen threshold —taken
such that δ-FWER < 10%. ecd-Lasso recovers more active regions than the
other procedures, which makes it the most powerful procedure, followed by
Ada-SVR. The other two procedures do not discover the expected patterns.
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Figure 6.4: Qualitative comparison of the model solutions. Here, we show the
solutions (z-maps) given by the four inference procedures, for a single random draw
of the noise vector in the experiment described in Sec. 6.4.2. The weight maps are
thresholded such that δ-FWER < 10% theoretically. We can observe that none of the
methods yield false discoveries but the Ensemble of Clustered Desparsified Lasso
(ecd-Lasso) procedure is the most powerful followed by Adaptive Permutation
Threshold SVR (Ada-SVR).

These results displayed are obtained for a single random draw of the noise
vector, but similar results holds for different draws.

δ-fwer control. In this experiment, we check if Thr-SVR, Perm-SVR,
Ada-SVR and ecd-Lasso control the δ-FWER at the targeted nominal level
(here being 10%). Fig. 6.5 shows that Perm-SVR and ecd-Lasso procedures
control the δ-FWER for all sample sizes since their empirical δ-FWER remain
below the targeted nominal level, whereas Thr-SVR and Ada-SVR fail to
control the δ-FWER in every setting. In particular, the empirical δ-FWER
for Ada-SVR is above the targeted nominal level for n > 800. This might
occur since the approximation made by ?? is valid only if n remains “suffi-
ciently low” (Gaonkar and Davatzikos, 2012). Also, Thr-SVR fails to control
empirically the δ-FWER for any value of n. This might be due to the two
assumptions made in Sec. 6.3.2 not being satisfied —it is indeed unlikely
that the SVR weights of the null region follow the same distribution. We
further discuss this point in Sec. 6.6. We obtain similar results for the binary
version of the experiment (see Fig. 6.13).

δ-precision-recall. In this experiment, we also evaluate the recovery
properties of the four methods by comparing the δ-precision-recall curve for
different value of n. Fig. 6.5 shows that ecd-Lasso has the best δ-precision-
recall curve for n = 400. We recall that the perfect precision-recall curve is
reached if the precision is equal to 1 for any value of recall between 0 and 1.
Similar results were obtained for the other sample sizes tested (see Fig. 6.12).
Indeed, when n = 400, for a 90% δ-precision, ecd-Lasso gives a recall of
23% and Ada-SVR a recall of 16%. Thr-SVR and Perm-SVR share the same
δ-precison-recall curve since they both produce p-values arranged in the
reverse order of the absolute SVR weights. These thresholding methods were
not able to reach the 90% δ-precision; their recovery properties are much
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Figure 6.5: δ-FWER control and δ-precision-recall curve on semi-simulated data
(known ground truth). Left: The results of the experiment described in Sec. 6.4.2
show that the permutation test (Perm-SVR) and Ensemble of Clustered Desparsified
Lasso (ecd-Lasso) are the only procedures that correctly control the δ-FWER at
the nominal level (10%). This is not the case for Adaptive Permutation Threshold
SVR (Ada-SVR) and Thresholded SVR (Thr-SVR) procedures. Right: For the same
experiment, ecd-Lasso has the best performance in terms of δ-precision-recall curve.
For n = 400, and ensuring 90% δ-precision, ecd-Lasso obtains a recall of 23% and
Ada-SVR a recall of 16%. Thr-SVR and Perm-SVR share the same δ-precison-recall
curve and were not able to reach 90% δ-precision.

weaker. The binary version of the experiment yields similar conclusions (see
Fig. 6.13).

6.5.3 Statistical control under global null with i.i.d. data

fwer control under global null (permuted response). Here, we
summarize the results of the experiment testing control of the FWER in a
global null setting (Sec. 6.4.3). Fig. 6.6 shows that, when samples are i.i.d.,
all the procedures control the FWER, except Thr-SVR. ecd-Lasso is even
conservative since the empirical FWER remains at 0 for all the different tasks
tested. This result is not surprising since at least two steps of the ecd-Lasso
procedure are conservative: the Bonferroni correction and the ensembling of
the p-values maps.

face validity (original response). Additionally, we run the proce-
dures with the original (not permuted) response vector to check whether the
methods can recover predictive patterns; this corresponds to the experiment
described Sec. 6.4.7. We plot the results for the two first tasks (emotion and
gambling) in Fig. 6.7; see Fig. 6.14 for the five other tasks. Qualitatively,
ecd-Lasso recovers the most plausible predictive patterns, Ada-SVR some-
times makes dubious discoveries: patterns are too wide and implausible.
The two other methods exhibit a very weak statistical power.
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Figure 6.6: FWER control under global null with i.i.d. data vs with autocorre-
lated data. Left: The results of the experiment with i.i.d. data under global null,
described in Sec. 6.4.3, show that, only the Thresholded SVR (Thr-SVR) fails to
control the FWER empirically in this context. ecd-Lasso makes no detection: it is a
conservative approach, as one could expect from theory. Right: The results of the
experiment with correlated data under global null, described in Sec. 6.4.4, show
that, when the data are temporally autocorrelated, all the procedures fail to control
the FWER. Indeed, for all the fictitious block response paradigms, the empirical
FWER exceeds the targeted nominal level of 10% for every procedure. This result is
not surprising as the procedures control the δ-FWER under the assumption that
the samples are i.i.d.; this is not the case for the block or event response paradigms.
However, when the fictitious response breaks the temporal dependency (binary
or Gaussian random responses), the i.i.d. assumption is met and the FWER is
empirically well controlled except for the Thr-SVR procedure.

6.5.4 Statistical control under global null with autocorrelated data

Here, we report the results of the experiment testing the statistical control
properties of the procedures with data correlated across samples, hence
violating the i.i.d. assumption (Sec. 6.4.4). In Fig. 6.6 right, we observe that
for all the fictitious block response paradigms, for every procedure, the
empirical FWER exceeds the targeted nominal level (10%), as one would
expect. This result is not surprising since independence across samples
is a key assumption for a valid statistical inference with any of the four
procedures. Notably, concerning ecd-Lasso, Desparsified Lasso needs the
i.i.d. assumption (Zhang and Zhang, 2014; van de Geer et al., 2014) to
produce valid confidence intervals or p-values. This assumption is not
verified for the block or event response paradigms due to the temporal
dependency in the data. However, when the target y is i.i.d. —i.e., without
temporal dependency (Bernoulli or Gaussian random responses)— the
FWER is controlled (except for Thr-SVR). Indeed, the model is no longer
confounded by the correlation structure underlying the data.
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Figure 6.7: Estimated predictive patterns on standard task fMRI dataset. Here,
we plot the results for the emotion and gambling tasks of the experiment described
in Sec. 6.4.7 thresholding the statistical maps such that the δ-FWER stays lower
than 10% for δ = 12mm. Qualitatively, ecd-Lasso discovers the most plausible
patterns, Ada-SVR sometimes makes dubious discoveries, patterns are too wide
and implausible, while the two other methods exhibit a very weak statistical power.
The results of the five other tasks are available in Fig. 6.14.

6.5.5 Statistical control of out-of-brain discoveries

We now report the results from the unmasked RSVP task data experiment
(Sec. 6.4.5). Here, we check whether out-of-brain detections are made. In
Fig. 6.8, the z-score maps are thresholded such that the FWER (for Perm-SVR,
Thr-SVR, and Ada-SVR) or the δ-FWER (for ecd-Lasso) are at most 10% for
δ = 6 voxels (or 18mm). We observe that Ada-SVR makes some out-of-brain
discoveries, and it does not control the FWER empirically. Thr-SVR and
Perm-SVR do not yield spurious detections but very few detections are
made, hence these methods have low statistical power. ecd-Lasso does not
make any out-of-brain detections and it outlines predictive regions in the
temporal lobe and Broca’s area, expected for a reading task.
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Figure 6.8: Statistical maps for unmasked RVSP data. The results of the unmasked
task-fMRI experiment, described in Sec. 6.4.5, show that ecd-Lasso, Thresholded
SVR (Thr-SVR) and the permutation test (Perm-SVR) do not return out-of-brain
discoveries, while the Adaptive Permutation Threshold SVR (Ada-SVR) does. Here
z-score maps are thresholded such that the δ-FWER is at most 10% for δ = 6 voxels
(or 18mm). Thr-SVR and the Perm-SVR do not yield spurious detections but very
few detections are made, hence these method have low statistical power. ecd-Lasso
does not make any spurious detection; rather it makes detections in the temporal
lobe and Broca’s area, which are expected for a reading task.

6.5.6 Insights on choosing the number of clusters

Here, we report the results obtained of the experiment task-fMRI data
(Sec. 6.4.6) studying the impact of C (number of clusters) on the δ-FWER
control and the recovery properties of ecd-Lasso for various sample sizes.
These results are obtained with 100 repetitions for every sample and cluster
sizes. In Fig. 6.9, we notice that a lower C leads to improved recovery,
according to the area under the δ-precision-recall curves. However, when
the number of clusters is lower, the average cluster radius increases and
overcomes the spatial tolerance of δ, leading to inflated error rates. More
precisely, for δ = 6 voxels (or 12mm), the δ-FWER is controlled only when
C > 500. However, for C < 500, it is possible to control the δ-FWER, provided
a larger spatial tolerance δ > 6 voxels. To compute the requested δ, one can
use (6.9). Besides, we observe that the recovery score of ecd-Lasso improves
when n increases, as expected. We also notice that the empirical δ-FWER
increases with n. To explain this effect, we first recall that theoretically the
δ-FWER is controlled for δ equal to the largest cluster diameter, likely to
be too large in practice. In this study, we have taken δ equal to the average
radius of the clusters, since in practice this choice ensures the δ-FWER
control. However, when the setting is particularly favorable for inference
(e.g., if log(n)/C > 1.5× 10−2), some false discoveries can be made at a
distance greater than the average radius from the support. The choice of δ is
further discussed in Sec. 6.3.5.

Additionally, we can notice from Fig. 6.9 and Fig. 6.10 that for a fixed
C/n ratio the recovery capability is almost stable. We proposed C = 500 as a
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Figure 6.9: Influence of the number C of clusters on δ-FWER control and the re-
covery properties of ecd-Lasso. The results of the experiment described in Sec. 6.4.6
show the impact of C on the δ-FWER control and the recovery score of ecd-Lasso.
When C > 500, clusters are smaller, hence the δ-FWER is controlled for δ = 12mm
(and potentially lower values of δ) since all the empirical δ-FWER’s are lower than
the 10% nominal rate. Conversely, when C < 500, clusters are wider and the spatial
tolerance is overcome by the model inaccuracy, hence the δ-FWER is not controlled
for δ = 12mm. However, it remains controlled for higher values of δ. Concerning
the recovery properties we see that reducing the number of clusters improves the
δ-precision-recall curves. Thus, the more spatial uncertainty is tolerated, the best
recovery properties ecd-Lasso offers.
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Figure 6.10: Influence of the C/n ratio on the δ-precision-recall AUC. The results
of the experiment described in Sec. 6.4.6 show that the δ-precision-recall AUC
depends almost linearly on log(n/C) except when C is critically low creating very
wide clusters and deteriorating the precision-recall curve. This limit depends on the
physical properties of the problem; here, C should not be lower than 50. Keeping
this limit in mind, we advise to take C ∈ [n/2,n] to recover most of the predictive
regions.
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default choice in Sec. 6.3.5, yet intuitively, C should adapt to the the amount
of data available: larger samples size lead to better estimation, allowing
refined localization, hence higher C. Then, as discussed in Sec. 6.3.5, we
advise to take C of the same order as n (e.g., C ∈ [n/2,n]) when the goal is
to recover most of the predictive regions without strong requirements on
the accuracy of their shapes —since the value of δ given by (6.9) might be
not small with regards to the predictive region itself.

6.5.7 Prediction performance

In this section, we give results with respect to the prediction performance of
the methods. In Fig. 6.11, we plot the results of the experiment described
in Sec. 6.4.8. We notice that the classification error rate is almost the same
for SVR (the weight map of Thr-SVR and Perm-SVR) and Ada-SVR, their
prediction performance is slightly better than the one of ecd-Lasso. Hence
we do not recommend to use ecd-Lasso to achieve state-of-the art prediction
accuracy, but only for statistical inference purpose.
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Figure 6.11: Prediction performance. Here we plot the results for the experiment
described in Sec. 6.4.8. The classification error rate is almost the same for SVR
and Ada-SVR. Their prediction performance is slightly better than the one of
ecd-Lasso. Hence we do not recommend to use ecd-Lasso to achieve state-of-the
art prediction accuracy, but only for statistical inference purpose. For all the task,
"chance" classification error rate is 50%.
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6.6 discussion

Decoding models are fundamental for causal interpretation of the implica-
tion of brain regions for an outcome of interest, mental process or disease
status (Weichwald et al., 2015). They produce weight maps that are needed to
support this type of inference (Poldrack, 2011; Varoquaux et al., 2018). These
weight maps capture how brain regions relate to the outcome, conditional
on the other regions, which is a key difference with respect to standard
brain mapping based on mass univariate models. However, the weight maps
produced by the common decoders come without good statistical properties.
Indeed, decoders optimize the quality of their prediction, but give no control
on conditional feature importance. This is difficult due to the large number
of covariates —voxels— as well as the severe multi-collinearity: voxel-level
inference is untenable. On the other hand, given the spatial structure of the
data, a spatial tolerance in the statistical control is natural, as in Gaussian
random field theory used in standard analysis (Nichols, 2012).

In this chapter, we leveraged on the spatial statistical control introduced in
Chapter 5 called δ-FWER control, a control of false discoveries up to a spatial
slack δ. This definition uncovers a fundamental trade-off between accuracy
in the localization of the brain structures involved and statistical power: here
we deliberately degrade spatial accuracy, acknowledging current concerns
on statistical power in neuroimaging studies (Button et al., 2013; Noble,
Scheinost, and Constable, 2019).

Thanks to this, we performed an empirical study of the statistical control
of four procedures computing decoding maps, ranging from thresholding
procedures applied to SVR weights, to a dedicated decoding procedure,
ecd-Lasso. Experiments show that the Thr-SVR procedure, thresholding
SVR weights, fails to achieve useful statistical control. Exact permutation
testing yields the expected statistical control but with very poor statistical
power for all experimental settings we have studied. On the other hand,
Adaptive Permutation Threshold SVR (Ada-SVR) (Gaonkar and Davatzikos,
2012), does not control the FWER as it should, though it exhibits a fair
δ-precision-recall curve in our semi-simulated experiments. This shows how
difficult it is to identify a statistically valid threshold for SVR weight maps.
This is due to the fact that under the null hypothesis, estimated weights
are not distributed according to a fixed distribution —notably because of
the dependency structure of the data— and more precisely, the variance of
these distributions differs. Then, thresholding linear decoders (SVR, logistic
regression) based on their estimated weights amplitudes is not a principled
approach to control false discoveries.

ecd-Lasso uses a different decoding procedure to estimate the weight
maps (Chevalier, Salmon, and Thirion, 2018), and as a result comes with
theoretical statistical guarantees: it controls the δ-FWER for a predetermined
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tolerance parameter δ equal to the largest diameter of the clusters, assuming
that the observed samples are i.i.d. and that the weight maps are homoge-
neous and sparse. The experiments show that, indeed, for i.i.d. scenarios,
ecd-Lasso controls the δ-FWER for δ equal to the average radius of the
clusters. Though, in some very high SNR or high sample size regimes, it
might be necessary to take δ larger than the average radius (see Sec. 6.3.5). In
practice, our choice of δ is conservative, and with current fMRI datasets, δ-
FWER control holds for smaller δ, even in relatively large cohorts (n = 1200).
In addition, ecd-Lasso exhibits the best support recovery performance in
the proposed semi-simulated experiments with fMRI data but also finds
patterns with good face validity in more qualitative experiments plotted
in Fig. 6.7. On the other hand, we also notice that ecd-Lasso tends to be
over-conservative.

Although it is not the main purpose of this study, we also checked the
prediction performance of the decoders produced by each method. It is
important to note that ecd-Lasso has been designed for the recovery of
conditional statistical associations, not for prediction. In practice, the predic-
tion performance is almost the same for SVR and Ada-SVR, and is slightly
better than the one of ecd-Lasso (see Fig. 6.11). For prediction purpose, we
recommend using Fast Regularized Ensembles of Models (FReM) (Hoyos-Idrobo
et al., 2018), which is a stable and computationally efficient decoder with
state of the art prediction performance.

For pedagogical purpose, we have also considered a dataset where
cross-sample independence is violated due to serial correlation, reproduc-
ing an experiment of Eklund, Nichols, and Knutsson (2016). The ensu-
ing loss of statistical control underlines the importance of the i.i.d. as-
sumption. Hence, ecd-Lasso should not be used to make inference from
intra-subject dataset recorded over one session. With these warnings in
mind, we think that ecd-Lasso can be used safely in neuroimaging con-
text. Our code, implemented with Python 3, can be found on https:

//github.com/ja-che/hidimstat along with some examples.
We have not considered the method proposed by Nguyen, Chevalier,

and Thirion (2019) based on the Knockoff filters (Barber and Candès, 2015;
Candès et al., 2018) that yet appear to be an appealing procedure, as it can
only control the FDR. In this study we have focused on δ-FWER control,
and hence defer the analysis of FDR-controlling procedures to future work.
Also, we have not benchmarked post-selection inference procedures (Berk
et al., 2013; Lee et al., 2016), as we found them challenging to run in high
dimensional settings and prone to numerical underflows.

Our empirical results clearly show that standard thresholding procedures,
including classical permutation tests, are not reliable to infer regions im-
portance on decoder maps, due to the high number of covariates. Since, in

https://github.com/ja-che/hidimstat
https://github.com/ja-che/hidimstat
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neuroimaging studies, these maps are used to give evidence on the brain
regions that supports an outcome, it is crucial to use a procedure with statis-
tical control on the brain maps. Our study shows that ecd-Lasso provides
such a control.

6.7 supplementary material

6.7.1 Statistical control with known ground truth: additional plots

In this section, we provide additional experimental results to assess the
detection accuracy of the multivariate estimators, to complement the results
in Sec. 6.4.2. Fig. 6.12 shows additional δ−precision-recall curves, obtained
for different values of n: these different settings preserve the relative per-
formance of the methods, while larger n results in better curves. Fig. 6.13
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Figure 6.12: δ-precision-recall curves on semi-simulated data with continuous
response vector. The results of the experiment described in Sec. 6.4.2 show that
ecd-Lasso has the best performance in terms of δ-precision-recall curve; these results
are similar to the one observed Fig. 6.5.

displays the performance of the methods in terms of δ-FWER control and
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δ-precision-recall curves on semi-simulated data where y is binary. This
induces a violation of the ecd-Lasso model that reduces its performance in
terms of δ precision-recall. Yet, unlike Ada-SVR, it still controls the δ-FWER
accurately.
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Figure 6.13: δ-FWER control and δ-precision-recall curves on semi-simulated
data with binary response vector. The results of the experiment described in
Sec. 6.4.2 with binary response show that the permutation test (Perm-SVR) and
ecd-Lasso are the only procedures that empirically control the δ-FWER. In terms
of statistical power, Ada-SVR and ecd-Lasso have the best δ-precision-recall curve.
These results are quite similar to the one presented in Fig. 6.6.
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6.7.2 Face validity on HCP dataset: additional plots

In Fig. 6.14, we plot the results for five tasks taken from the HCP dataset,
besides of the two described in Sec. 6.4.7. For all methods, the statistical maps
are thresholded such that the δ-FWER stays lower than 10% for δ = 12mm.
Qualitatively, ecd-Lasso discovers the most plausible patterns, Ada-SVR
often makes dubious discoveries, patterns are too wide and implausible,
while the two other methods exhibit a very weak statistical power.

L R

z=30

L R

z=50

L R

z=-10

Thr-SVR L R

z=30

L R

z=50

L R

z=-10

Perm-SVR

L R

z=30

L R

z=50 -20

-10

0

10

20L R

z=-10

Ada-SVR L R

z=30

L R

z=50 -20

-10

0

10

20L R

z=-10

ecd-Lasso

(c) Language

L R

z=-20

L R

z=50 -20

-10

0

10

20L R

z=-50

Thr-SVR L R

z=-20

L R

z=50 -20

-10

0

10

20L R

z=-50

Perm-SVR

L R

z=-20

L R

z=50 -20

-10

0

10

20L R

z=-50

Ada-SVR L R

z=-20

L R

z=50 -20

-10

0

10

20L R

z=-50

ecd-Lasso

(d) Motor Hand



6.7 supplementary material 99

L R

z=20

L R

z=70 -20

-10

0

10

20L R

z=-20

Thr-SVR L R

z=20

L R

z=70 -20

-10

0

10

20L R

z=-20

Perm-SVR

L R

z=20

L R

z=70 -20

-10

0

10

20L R

z=-20

Ada-SVR L R

z=20

L R

z=70 -20

-10

0

10

20L R

z=-20

ecd-Lasso

(e) Motor Foot

L R

z=10

L R

z=50 -20

-10

0

10

20L R

z=-20

Thr-SVR L R

z=10

L R

z=50

L R

z=-20

Perm-SVR

L R

z=10

L R

z=50 -20

-10

0

10

20L R

z=-20

Ada-SVR L R

z=10

L R

z=50 -20

-10

0

10

20L R

z=-20

ecd-Lasso

(f) Relational

L R

z=0

L R

z=30

L R

z=-20

Thr-SVR L R

z=0

L R

z=30

L R

z=-20

Perm-SVR

L R

z=0

L R

z=30 -20

-10

0

10

20L R

z=-20

Ada-SVR L R

z=0

L R

z=30 -20

-10

0

10

20L R

z=-20

ecd-Lasso

(g) Social

Figure 6.14: Estimated predictive patterns on standard task fMRI dataset. Here,
we plot the results for five tasks of the experiment described in Sec. 6.4.7 threshold-
ing the statistical maps such that the δ-FWER stays lower than 10% for δ = 12mm.
Qualitatively, ecd-Lasso discovers the most plausible patterns, Ada-SVR often
makes dubious discoveries, patterns are too wide and implausible, while the two
other methods exhibit a very weak statistical power. The results of emotion and
gambling tasks are available in Fig. 6.7.



7 E X T E N S I O N TO T E M P O R A L DATA
W I T H A P P L I C AT I O N S TO M E G

In this chapter, we extend our work to the magnetoencephalography (MEG)
and electroencephalography (EEG) source localization setup. This chapter
mainly present our work (Chevalier et al., 2020) accepted at the 2020 NeuRIPS
conference:

CHEVALIER, Jérôme-Alexis, GRAMFORT, Alexandre, SALMON, Joseph, et al.
Statistical control for spatio-temporal MEG/EEG source imaging with desparsified
multi-task Lasso. In: Advances in Neural Information Processing Systems, 2020.

M/EEG source imaging requires to work with spatio-temporal data and
autocorrelated noise. To deal with this, we adapt the d-Lasso estimator
to temporal data corrupted with autocorrelated noise by leveraging on
debiased group Lasso estimators and introducing the desparsified multi-
task Lasso (d-MTLasso). We combine d-MTLasso with spatially constrained
clustering to reduce data dimension and with ensembling to mitigate the
arbitrary choice of clustering; the resulting estimator is called ensemble
of clustered desparsified multi-task Lasso (ecd-MTLasso). With respect to
the current procedures, the two advantages of ecd-MTLasso are that i)it
offers statistical guarantees and ii) it trades spatial specificity for sensitivity,
leading to a powerful adaptive method. Extensive simulations on realistic
head geometries, as well as empirical results on various MEG datasets,
demonstrate the high recovery performance of ecd-MTLasso and its primary
practical benefit: offer a statistically principled way to threshold MEG/EEG
source maps.

7.1 introduction

Source imaging with magnetoencephalography (MEG) and electroen-
cephalography (EEG) delivers insights into brain activity with high temporal
and good spatial resolution in a non-invasive way (Baillet, Mosher, and
Leahy, 2001). It however requires to solve the bioelectromagnetic inverse
problem, which is a high-dimensional ill-posed regression problem. Various
approaches have been proposed to regularize the estimation of the regression
coefficients that map activity to brain locations. Historically, `2 regulariza-
tion was considered first (Hämäläinen and Ilmoniemi, 1994), with successive
improvements known as dSPM (Dale et al., 2000) and sLORETA (Pascual-

100
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Marqui, 2002) that are referred to as “noise normalized” solutions. The
reason is that the coefficients are standardized with an estimate of the noise
standard deviation, producing outputs that are comparable to T or F statis-
tics, yet not statistically calibrated. These latter techniques have since become
standard when using `2 approaches.

More recently, alternative approaches based on sparsity assumptions have
been proposed with the ambition to improve the spatial specificity of M/EEG
source imaging (Gramfort, Kowalski, and Hämäläinen, 2012; Haufe et al.,
2009; Lucka et al., 2012; Matsuura and Okabe, 1995; Wipf and Nagarajan,
2009). The output of such methods consists of focal sources as opposed to
blurred images obtained with `2 regularization. However, obtaining statistics
(“noise normalized”) from sparse or non-linear estimators seems challenging,
especially since M/EEG data are spatio-temporal data with complex noise
structure. A natural way to deal with the temporal dimension is to consider
a multi-task estimator and structured sparse priors based on `1/`2 mixed
norms (Gramfort, Kowalski, and Hämäläinen, 2012; Ou, Hämaläinen, and
Golland, 2009).

In the statistical literature, some attempts to obtain an estimate of both
regression coefficients and their variance have been proposed for linear mod-
els in high dimension (Bühlmann, 2013; Meinshausen, Meier, and Bühlmann,
2009; Wasserman and Roeder, 2009). These estimates can then be translated
to p-value maps, i.e., maps of p-values associated with each covariate. Some
methods adapted for sparse scenarios have then proposed to debias the
Lasso to obtain p-values or confidence intervals (Javanmard and Montanari,
2014; Zhang and Zhang, 2014; van de Geer et al., 2014). We refer to such vari-
ants as desparsified Lasso. Recently, desparsified extensions of group Lasso
have also been considered (Mitra and Zhang, 2016; Stucky and van de Geer,
2018). However, all these previous methods generally lack of power when
p� n. Here, we propose to address a multi-task setting in the presence of
correlated noise, and to deal with high-dimensional when p� n leveraging
on data structure as done by Chevalier, Salmon, and Thirion (2018). All these
challenges need to be considered for M/EEG source imaging.

Our first contribution is to propose the desparsified multi-task Lasso
(d-MTLasso), an adaptation of the desparsified Lasso (d-Lasso) (Zhang and
Zhang, 2014; van de Geer et al., 2014) to multi-task setting (Obozinski, Taskar,
and Jordan, 2010). This contribution is complementary to Mitra and Zhang
(2016), since taking the multi-task approach allows for i)a simple statistic
test formula with ii)a natural integration of auto-correlated noise and iii)a
simplification of mathematical assumptions since they reduce mainly to the
Restricted Eigenvalue (RE) assumption (cf. Sec. 7.2.4). Our second contri-
bution is to introduce ensemble of clustered desparsified multi-task Lasso
(ecd-MTLasso), which has two advantages compared to current methods:
i)it offers statistical guarantees and ii)it trades spatial specificity for sensi-
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tivity, leading to a powerful adaptive method. Our third contribution is an
empirical validation of the theoretical claims. In particular, we run extensive
simulations on realistic head geometries, as well as empirical results on
various MEG datasets to demonstrate the high recovery performance of
ecd-MTLasso and its primary practical benefit: offer a statistically principled
way to threshold MEG/EEG source maps.

7.2 theoretical background

In this section, we give the noise model in the multi-task setting, we provide
standard tools for solving the source localization problem and, mainly, we
present three new methods with their assumptions and statistical guarantees.

7.2.1 Model and notation

Similarly as in the previous chapters (e.g., Chapter 4), we assume that the
underlying model is linear. However, in M/EEG the treatment of the time
dimension leads to a multi-task setting:

Y = XB + E , (7.1)

where Y ∈ Rn×T is the signal observed on M/EEG sensors, X ∈ Rn×p

the design matrix representing the M/EEG forward model, B ∈ Rp×T the
underlying signal in source space and E ∈ Rn×T the noise. We assume
that there exist ρ ∈ [0, 1) and σ > 0 such that all t ∈ [T ], E.,t ∼ N(0,σ2In)
and that for all i ∈ [n] and all t ∈ [T − 1], Cor(Ei,t, Ei,t+1) = ρ. For all
i ∈ [n], Ei,. is Gaussian with Toeplitz covariance, i.e., defining M ∈ RT×T by
Mt,u = σ2ρ|t−u| for all (t,u) ∈ [T ]2, we have:

Ei,. ∼ N(0, M) . (7.2)

We further assume that X has been column-wise standardized and denote
by Σ̂ ∈ Rp×p the empirical covariance matrix of X, i.e., Σ̂ = X>X/n with
Σ̂j,j = 1. Finally, the (row) support of B is defined by Supp(B) = {j ∈ [p] :

Bj,. 6= 0}. All proofs are given in Sec. 7.5.

7.2.2 Metrics for statistical inference in M/EEG

To quantify the ability of a M/EEG source imaging technique to obtain a
good estimated B̂, a commonly reported quantity is the Peak Localization
Error (PLE) (Hauk, Wakeman, and Henson, 2011). It consists in measuring
the distance (in mm) along the cortical surface between the true simulated
source and the location with maximum amplitude in the estimator. By
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contrast, spatial dispersion (SD) measures how much the activity is spread
out by the inverse method (Molins et al., 2008).

To quantify the control of statistical errors, we consider a generalization
of the Family Wise Error Rate (FWER) (Hochberg and Tamhane, 1987b):
the δ-FWER. As illustrated in Fig. 7.1, it is the FWER taken with respect
to a ground truth dilated spatially by an amount δ —in the present study
a distance in mm. A rigorous definition of δ-FWER is given in Chapter 5

and a more practical approach is proposed in Chapter 6. The rationale is
that detections made outside of the support, but less than δ away from
the support should count as slight inaccuracies of the methods, not as
false positives. In an analogous manner, δ-FDR = (1 − δ-precision) has
been proposed recently as an extension of the False Discovery Rate (FDR)
(Benjamini and Hochberg, 1995) to include a spatial tolerance (Gimenez and
Zou, 2019; Nguyen, Chevalier, and Thirion, 2019). We thus characterize the
selection capabilities of the methods through a δ-precision/recall curve.

Figure 7.1: Illustrating spatial tolerance of size δ = 20mm and δ = 40mm. The
true source in red has a 10 mm radius (distance measured on the cortical surface)
and the spatial tolerance extend this region by 20 mm on the left side and 40 mm on
the right side in yellow. The δ-FWER is the probability of making false discoveries
outside of the extended region. Then, a false discovery made in the yellow region is
not counted neither as an error nor a true positive.

7.2.3 Classical Solutions

The sLORETA and dSPM estimators are derived from the ridge estimator
(Hoerl and Kennard, 1970):

B̂Ridge = KY where K = X>(XX> + λI)−1 . (7.3)
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They are obtained by scaling each row j in B̂Ridge by an estimate of the
noise level at location j. It reads (Lin et al., 2006) B̂dSPM

j,t = B̂Ridge
j,t /σdSPM

j and

B̂sLORETA
j,t = B̂Ridge

j,t /σsLORETA
j , where σdSPM

j =
√
σ2[KK>]j,j and σsLORETA

j =√
[K(σ2I + XX>)K>]j,j. Interestingly, it can be proved that in the absence of

noise and when only a single coefficient is non-zero, the sLORETA estimate
has its maximum at the correct location (Pascual-Marqui, 2002). Assuming
B.,t ∼ N(0, I), the covariance of Y reads σ2I + XX>. Hence, one can consider
that sLORETA adds to dSPM an extra term in the sensor covariance matrix
that comes from the sources. Note that these methods treat each time instant
independently, hence ignoring source and noise temporal autocorrelations.

7.2.4 Desparsified multi-task Lasso (d-MTLasso)

Let us first recall the definition of the multi-task Lasso (MTLasso) estimator
(Obozinski, Taskar, and Jordan, 2010) in our setting. For a tuning parameter1

λ > 0, it is defined as

B̂MTL ∈ argmin
B∈Rp×T

{
1

2n
‖Y − XB‖2 + λ ‖B‖2,1

}
. (7.4)

It is well known that similarly to the Lasso, MTLasso is biased: it tends
to shrink rows with large amplitude towards zero. Below, we provide an
adaptation of the Desparsified Lasso following the approach by Zhang and
Zhang (2014), see also Mitra and Zhang, 2016, to ensure statistical control.
The approach relies on the introduction of score vectors z1, . . . , zp in Rn

defined by

zj = X·,j − X(−j)β̂
(−j)
αj , (7.5)

where, for j ∈ [p], β̂(−j)
αj is the Lasso solution (Chen and Donoho (1994) and

Tibshirani (1996)) of the regression of X·,j against X(−j) with regularization
parameter2 αj. Note that these score vectors are independent of Y and their
computation is then equivalent to solving the node-wise Lasso (Meinshausen
and Bühlmann, 2006). For such vectors, the noise model in (7.1) yields

z>j Y

z>j X.,j
= Bj,. +

z>j E

z>j X.,j
+
∑
k6=j

z>j X.,kBk,.

z>j X.,j
. (7.6)

1 λ is set by cross-validation on a logarithmic grid going from λmax
100 to λmax, where λmax =∥∥X>Y

∥∥
2,∞.

2 In (Zhang and Zhang, 2014, Table 1) an algorithm for choosing αj is proposed. We noticed
that taking for all j ∈ [p], αj = cαmax,j := c‖X(−j)X·,j‖∞/n with c = 0.5% for M/EEG data
leads to a significant computation gain and yields adequate residuals for C = 1000 (see
Sec. 7.2.6).
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Discarding the noise term and plugging B̂MTL
k,. as a preliminary estimator

of Bk,. in (7.6), we coin the desparsified multi-task Lasso (d-MTLasso), a
debiased estimator of B̂MTL defined for all j ∈ [p] by

B̂(d-MTLasso)
j,. =

z>j Y

z>j X.,j
−
∑
k6=j

z>j X.,kB̂MTL
k,.

z>j X.,j
. (7.7)

To derive d-MTLasso statistical properties, we need the extended Restricted
Eigenvalue (RE) property (Lounici et al., 2011, Assumption 3.1), detailed in
Sec. 7.5.2. More precisely, we assume that

(A1) RE(X, s) is verified on X for a sparsity parameter s > |Supp(B)| and a
constant κ = κ(s) > 0.

Roughly, A1 can be seen as a combination of sparsity and "moderate"
feature correlation assumptions.

Proposition 7.2.1. Considering the model in (7.1), assuming A1 and for a choice
of λ large enough3 in (7.4), then with high probability:

√
n(B̂(d-MTLasso) − B) = Λ+∆ , (7.8)

Λj,. ∼ Np(0, Ω̂j,jM), for all j ∈ [p], where Ω̂j,k =
nz>j zk

|z>j X.,j||z>kX.,k|

‖∆‖2,1 = O
(

sλ√
nκ2

)
(7.9)

Then, under the j-th null hypothesis H(j)
0 : “Bj,. = 0” and neglecting the

term ∆ (see Sec. 7.5.4 for more details) in (7.8) as done by van de Geer
et al. (2014), B̂(d-MTLasso)

j,. is Gaussian with zero-mean. Finally, using standard
results on χ2 distributions (see Sec. 7.5.3), we obtain

n
∥∥∥B̂(d-MTLasso)
j,.

∥∥∥2
M−1

∼ Ω̂j,jχ
2
T .

If M is known, the quantity n‖B̂(d-MTLasso)
j,. ‖2M−1/Ω̂j,j can be used as a de-

cision statistic to obtain a p-value testing the importance of source j by
comparison with the χ2T distribution. In practice we need to estimate M
by M̂. Notably, assuming that we have an estimator σ̂ of σ that verifies
approximately (n− ŝ)σ̂2/σ2 ∼ χ2n−ŝ, where ŝ = |Supp(B̂MTL)| (see Sec. 7.2.5),
we take

f̂j :=
n‖B̂(d-MTLasso)

j,. ‖2
M̂−1

T Ω̂j,j
, (7.10)

as statistic to compare with a Fisher distribution with parameters T and
n− ŝ, to compute the p-values. The full d-MTLasso algorithm is given in
Algo. 4.

3 See the proof of (Lounici et al., 2011, Theorem3.1).
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Algorithm 4: d-MTLasso
input : X ∈ Rn×p, Y
B̂MTL ←MTL(X, Y) // cross-validated multi-task Lasso

Ê← Y − XB̂MTL // Residuals

ŝ← |Supp(B̂MTL)|

for t ∈ [T ] do // Noise level estimation

σ̂2t = ‖Ê.,t‖2/(n− ŝ)

end
σ̂2 = median({σ̂2t , t ∈ [T ]})

Get M̂ thanks to Sec. 7.2.5
for j ∈ [p] do

zj ← Lasso(X(−j), X.,j) // cross-validated Lasso

Ω̂j,j ←
nz>j zj

|z>j X.,j||z>j X.,j|

B̂(d-MTLasso)
j,. ← z>j Y

z>j X.,j
−
∑
k6=j

z>j X.,kB̂MTL
k,.

z>j X.,j
// Desparsified multi-task

Lasso

f̂j ←
n‖B̂(d-MTLasso)

j,. ‖2
M̂−1

T Ω̂j,j
// Inference statistics

end
return f̂1, . . . , f̂p

7.2.5 Noise parameters estimation

In Sec. 7.2.1 noise is assumed homogeneous across sensors, this helps to
obtain a robust estimator. Extending Reid, Tibshirani, and Friedman (2016)
to multi-task regression, we consider the residuals Ê = Y − XB̂MTL, and
the estimated support size ŝ. Defining, for t ∈ [T ], σ̂2t = ‖Ê.,t‖2/(n− ŝ), an
estimate of σ2 is:

σ̂2 = median({σ̂2t , t ∈ [T ]}) .

Taking the median instead of the mean avoids depending on prospective
under-fitted time steps and turns out to be more robust empirically. Similarly,
defining for all t ∈ [T − 1], ρ̂t = corn(Ê.,t, Ê.,t+1) (where corn(., .) is the
empirical correlation), ρ is estimated by taking ρ̂ = median({ρ̂t, t ∈ [T − 1]}).
Then, an estimator M̂ of M is given by M̂t,u = σ̂2ρ̂|t−u|.

7.2.6 Clustering to handle spatially structured high-dimensional data

Similarly as in the fMRI setting (see Chapter 2), in the M/EEG setting, the
number of sensors is more than one order of magnitude smaller than the
number of sources: n� p. Therefore, estimators of conditional association
between sources and observations struggle to identify the solution. The
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setting is even more difficult due to the presence of very high correlation
between sources as illustrated in Fig. 7.2.
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Figure 7.2: Illustrating correlation in MNE sample MEG data. (left): Distribution
of the maximum correlation between a feature (resp. cluster) and another connected
feature (resp. cluster). (Top) the maximum connected feature correlation is close
to 0.98 in average. (Bottom) the maximum connected cluster correlation is lower,
close to 0.9 on average. Clustering improves conditioning significantly. (right): The
density of the inter feature correlation (top) looks similar to the density of the inter
cluster correlation (bottom). By focusing the extreme values of correlation, we see a
little decrease of extreme values for the clustered data.

As argued in Chapter 4, further gains can however come from a com-
pression of the design matrix (Bühlmann, 2013; Mandozzi and Bühlmann,
2016). Again, we propose to perform a spatially-constrained clustering to re-
duce data dimensionality while leveraging spatial structure. More precisely,
we consider the hierarchical clustering algorithm described by Varoquaux,
Gramfort, and Thirion (2012) that uses Ward criterion4. Other clustering
schemes might be considered, as long as they yield spatially contiguous
regions of the cortical surface. The combination of this clustering algorithm
with the d-Lasso or d-MTLasso algorithms will be respectively referred to as
clustered desparsified Lasso (cd-Lasso) and clustered desparsified multi-task
Lasso (cd-MTLasso).

The number of clusters is denoted by C and, for r ∈ [C], we denote by Gr
the r-th group. Every cluster representative variable is given by the average

4 A typical choice is C = 1000 clusters for M/EEG data.
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Data

Ensembling    desparsified

multi-task Lasso
 

Clustering #B

   Clustering #1

Figure 7.3: ecd-MTL overview diagram. While cd-MTLasso applies d-MTLasso to
clustered data, ecd-MTLasso aggregates several cd-MTLasso solutions.

of the covariates it contains. Then, reordering conveniently the columns of
X, the compressed design matrix Z ∈ Rn×C is given by:

Z = XA , A =


1

|G1|
1

|G1|
0 0 . . . 0 0

0 0 1
|G2|

1
|G2|

. . . 0 0
...

...
...

...
...

...
. . .

...
...

...

0 0 0 0 . . . 1
|Gr|

1
|Gr|

 ,

(7.11)

where A ∈ Rp×C.
We say that the compression of X is of good quality if:
(A2) there exists Γ ∈ RC×T such that Γr,. =

∑
j∈Gr wjBj,. with wj > 0 for

all j ∈ [p], and the associated compression loss XB − ZΓ is "small enough"
with respect to the model noise (see Sec. 7.5.5 for more details).

(A3)5 RE(Z, s′) is verified on Z for sparsity parameter s′ > |Supp(Γ)| and
constant κ′ = κ′(s′) > 0.

Proposition 7.2.2. Assume (7.1), A2, A3, a choice of regularization parameter in
the MTLasso regression of Z against Y that is large enough, and that the largest
cluster of the compression is of size δ, then cd-MTLasso controls the δ-FWER.

7.2.7 Ensemble of clustered desparsified multi-task Lasso (ecd-MTLasso)

Similarly as in Chapter 4, to reduce the sensitivity of cd-MTLasso to small
data perturbations, we propose to randomize over the clustering. We build
several clustering solution, considering B = 100 different random subsam-
ples of size 10% of the full sample; then we aggregate the p-value maps
output by cd-MTLasso. To aggregate the B cd-MTLasso solutions, we use

5 |Supp(Γ)| 6 |Supp(B)| and Z is generally better conditioned than X making A3more plausible
than A1.
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the adaptive quantile aggregation proposed by Meinshausen, Meier, and
Bühlmann (2009) detailed in Chapter 5. The full procedure of ensembling B
cd-MTLasso (resp. cd-Lasso), solutions is called ecd-MTLasso for ensemble
of clustered desparsified multi-task Lasso (resp. ecd-Lasso).

Proposition 7.2.3. Assume that for each of the B compressions the assumptions of
Prop. 7.2.2 are verified, then ecd-MTLasso controls the δ-FWER.

This result is conservative and mixing several cd-MTLasso usually reduces
the spatial tolerance δ.

We give an overview diagram to clarify the nesting structure of the
proposed solutions in Fig. 7.3 and we give the full algorithm of ecd-MTLasso
in Algo. 5.

Algorithm 5: ecd-MTLasso
input : X ∈ Rn×p, Y

param :C = 1000,B = 100

for b = 1, . . . ,B do

X(b) = sample(X)
A(b) = Ward(C, X(b))

Z(b) = XA(b)

q(b) = min(1,C× d-MTLasso(Z(b), Y)) // corr. cluster-wise p-val

at bootstrap b

for j = 1, . . . ,p do
p
(b)
j = q

(b)
r if j ∈ Gr // corrected feature-wise p-values at

bootstrap b

end
end

for j = 1, . . . ,p do
pj = aggregation(p

(b)
j ,b ∈ [B]) // aggregated corrected

feature-wise p-values

end

return pj for j ∈ [p]

7.2.8 Computational aspects

For solving Lasso or multi-task Lasso problems, we rely for additional speed-
up on celer6 (Massias, Gramfort, and Salmon, 2018; Massias et al., 2019), a

6 https://github.com/mathurinm/CELER

https://github.com/mathurinm/CELER
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solver which is much more efficient than the standard coordinate descent
(speed up by more than 10x on our experiments).

To compute d-MTLasso, we must solve p Lasso of size (n, (p− 1)), and
1 multi-task Lasso with cross-validation on a dataset of size (n,p, T). For
n = 200, p = 7500 and T = 10, the algorithms can be run on a standard
laptop in around 10 hours (using only 1 CPU). However, the algorithm is
embarrassingly parallel and requires around 15 minutes if run on a machine
with 50 CPUs. To compute cd-MTLasso, we must solve C Lasso of size
(n, (C− 1)). and 1 multi-task Lasso with cross-validation on a dataset of size
(n,C, T). For n = 200, C = 1000 and T = 10, it can be run on a standard
local device in less than 1 minute (using only 1 CPU). Finally, to compute
ecd-MTLasso, we must solve B cd-MTLasso. For B = 100 (25 is already a
good value to get most of the advantages of ensembling), n = 200, C = 1000

and T = 10, it can be run on a standard laptop in around 1 hour (using only
1 CPU) and around 1 minute on a machine with 50 CPUs.

Although, when using coordinate-descent-like algorithms, the complexity
depends on solver parameters such as tolerance on stopping criteria, the
complexity in C (or p) appears empirically to be cubic, while it is linear in n
and T . It is also linear in B.

The code for running the different methods, implemented with Python
3, will be released on https://github.com/ja-che/hidimstat along with
some examples.

7.3 experiments

In this section, after describing the M/EEG datasets, we evaluate the pre-
sented methods for source localization. First, in a typical point source
simulation, we compare the methods with respect to the standard PLE
metric; notably, we study the effect of i/clustering and ii/integrating time
dimension. In a second simulation with more realistic features, we examine
the δ-FWER control property and compare the support recovery properties
of all methods. Lastly, working on real MEG data, we show that, contrary
to sLORETA, ecd-MTLasso retrieves expected patterns using a universal
threshold.

7.3.1 Data description

In our experiments we use two different datasets: the sample dataset and
the somatosensory dataset that are publicly available from the MNE soft-
ware (Gramfort et al., 2014).

https://github.com/ja-che/hidimstat
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In the sample dataset, checkerboard patterns were presented to the subject
the left and right visual field, interspersed by tones to the left or right
ear. Then the sample data is divided in two datasets: an auditory evoked
fields (AEF) corresponding to the stimuli in the left ear and a visual evoked
field (VEF) corresponding to the stimuli in the left visual hemifield. In the
somatosensory dataset, the somatosensory evoked fields (SEF) are obtained
following electrical stimulation of the left median nerve on the wrist.

The design matrix X is computed with a three-shell boundary element
model with p = 7498 candidate cortical locations with fixed orientation (nor-
mal to the cortical surface). For the AEF and VEF datasets, data contained
one artifactual channel leading to n = 203, while for the somatosensory
evoked fields (SEF) data were preprocessed for removal of environmental
noise leading to an effective number of samples of n = 64 (Taulu, 2006).

For the AEF and VEF datasets, the analysis window for source estimation
was chosen from 50 to 100ms based on visual inspection of the evoked
data to capture the dominant component, leading to T = 6. For the SEF
dataset, we analyzed SEFs evoked by bipolar electrical stimulation (0.2ms
in duration) of the left median nerve. Then, to capture the main peaks of
the evoked response and exclude the strong stimulus artifact, the analysis
window was chosen from 30 to 40ms based on visual inspection of the
sensor signal.

Preprocessing was done following the standard pipeline from the MNE
software (Gramfort et al., 2014). Baseline correction using pre-stimulus data
was used. Epochs with peak-to-peak amplitudes exceeding predefined rejec-
tion parameters (3 pT for magnetometers and 400 pT/m for gradiometers,
and 150µV for EOG on AEF and VEF and 350µV for SEF) were assumed to
be affected by artifacts and discarded. This resulted in 55 (AEF), 67 (SEF)
and 111 (SEF) artifact-free measurements which were average to produce
the target matrix Y.

7.3.2 Simulation study

In a first simulation we aim to study how well the proposed estimators
perform compared to standard `2 regularized approaches in terms of local-
ization accuracy, and assess whether time-aware statistical analysis improves
upon static d-Lasso, as it is essential for M/EEG source imaging results.

We use the head anatomy and the recording setup from the sample dataset.
We consider here only gradiometers and remove one defective sensor leading
to n = 203. Also p = 7498. When considering multiple consecutive time
instants to demonstrate the ability of the solver to leverage spatio-temporal
data, the source is fixed and the temporal noise autocorrelation is set to
ρ = 0.3.
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Figure 7.4: Peak Localization Error (PLE) histograms. (left): PLE on a fixed time
point (T = 1), sLORETA is outperformed by desparsified Lasso; cd-Lasso and
ecd-Lasso are more concentrated and exhibit a smaller number of very low PLE
but also a smaller number of extreme PLE values. (right): PLE for desparsified
multi-task Lasso (d-MTLasso) with T = 6 compared to d-Lasso (T = 1). More time
points improve the results by reducing the PLE.
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Figure 7.5: Spatial Dispersion (SD) histograms. (left): SD on a fixed time
point (Hauk, Wakeman, and Henson, 2011). All methods lead to comparable spa-
tial dispersion. (right): SD for desparsified multi-task Lasso (d-MTLasso) with
increasing time points. See Fig. 7.4 for PLE histograms on the same experiments.

Fig. 7.4 reports the normalized histograms of PLE for the 7498 locations
for the different methods investigated. While it might seem simplistic to
consider a single source, this experiment demonstrates that d-Lasso improves
over sLORETA in the presence of noise (see Fig. 7.4, left). In the same figure,
one can observe that clustering degrades this performance, as it carries an
intrinsic spatial blur. However, even in this adversarial scenario (Dirac-like
source location), cd-Lasso and ecd-Lasso remain competitive w.r.t. sLORETA,
avoiding extreme PLE values. Note that, here, a single time point was used
(T = 1).

The right panel in Fig. 7.4 shows that d-MTLasso (T = 6) significantly out-
performs d-Lasso (T = 1) in terms of PLE. Leveraging spatio-temporal data
indeed increases the signal-to-noise ratio, which enhances spatial specificity.

Effects in terms of spatial dispersion (SD) are minor as exhibited Fig. 7.5.
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Figure 7.6: δ-FWER, Precision-Recall. (top): δ-FWER control of the different d-
MTLasso methods. δ-FWER control is hard for d-MTLasso and cd-MTLasso, as
some detections are made far from the true sources, due to remote correlations.
Ensembles of clusters mitigates these false detections. (bottom): Precision-recall
and δ-precision-recall curves: sLORETA outperforms d-MTLasso AR0 and AR1,
because the problem is too high dimensional for the d-MTLasso to work properly.
Clustering improves the outcome, and ensembling brings further benefits: ecd-
MTLasso outperforms sLORETA.

7.3.3 Experiments on FWER control

We now investigate whether the different versions of d-MTLasso control
the δ-FWER on a realistic simulation, and compare their support recovery
properties. The data are the same as in Sec. 7.3.2. To simulate the sources,
we randomly draw 3 active regions by selecting parcels from a subdivided
cortical Freesurfer parcellation with 448 parcels (Khan et al., 2018). For
each selected parcel we take as sources all the dipoles at a 10-mm geodesic
distance from the center of the parcel (around 10 dipoles per region), fixing
the amplitude at 10 nAm. To evaluate how the methods control the δ-FWER,
we perform 100 simulations and count how often active sources are found
outside the δ-dilated ground truth.

At the top of Fig. 7.6, we see that d-MTLasso does not control the δ-FWER,
due to the violation of some assumptions of proposition 1, in particular
those regarding source correlation. However, we notice that handling noise
autocorrelation reduces the empirical δ-FWER. Using clustering, assump-
tions of Prop. 7.2.2 are more easily met, in particular the conditioning of
the problem is improved (Mattout et al., 2005). Yet cd-MTLasso does not
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control the δ-FWER for δ = 40mm, because the δ-FWER is controlled if δ is
smaller than the largest cluster diameter, which may not hold. Finally, ran-
domization via ecd-MTLasso further improves FWER control. Empirically,
we observe that the δ-FWER is controlled for δ around twice the average
cluster diameter. Then, with the limitation of having a compressed design
matrix well conditioned (C not too large), we can reduce the tolerance δ by
increasing C as shown in Fig. 7.7. We have excluded sLORETA from this
study since it does not provide guarantees on the false discoveries.

At the bottom of Fig. 7.6 we show the δ-precision recall curve of the
different methods. We first notice that d-MTLasso cannot compete with
sLORETA, because the high dimensionality of the problem makes the com-
putation of the source importance overly ill-posed. cd-MTLasso improves
detection accuracy, but still does not perform as well as sLORETA when
looking at the δ-precision-recall curve. However, adding the ensembling
step, the δ-precision improves strongly, making ecd-MTLasso much better
than sLORETA.
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Figure 7.7: ecd-MTLasso empirical δ-FWER and precision recall for different
choice of cluster sizes. (left): Running the same simulation as in Sec. 7.3.3, we
observe that the spatial tolerance δ can be reduced to 20 mm by increasing the
number of clusters up to 4000. With C = 1000 clusters (resp. C = 2000, C = 4000),
the average cluster diameter is around 18 mm (resp. 13 mm and 9 mm). It turns out
that the δ-FWER is controlled for around twice the diameter (if the compressed
design matrix verifies assumption A1). (right): We see that this decrease in spatial
tolerance comes with a price regarding support recovery: the precision-recall curve
declines with when C is increased. (both): Note that we need to set the hyper-
parameter c that is used to compute the regularization parameters α (see note
coming with (7.5)). We found empirically that it should be inversely proportional
to C: for C = 1000, c = 0.5%; for C = 2000, c = 0.25%; for C = 4000, c = 0.15%.
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7.3.4 Results on three MEG datasets

Figure 7.8: Empirical comparison on 3 MEG datasets. From left to right one can
see sLORETA, d-MTLasso without AR modeling (assuming non-autocorrelated
noise), d-MTLasso with an AR1 noise model and the ecd-MTLasso using also an
AR1. Results correspond to auditory (top), visual (middle) and somatosensory
(bottom) evoked fields. Colormaps are fixed across datasets and adjusted based on
meaningful statistical thresholds in order to qualitatively illustrate FWER control
issues.

We now report results on three MEG datasets spanning three types of
sensory stimuli: auditory, visual and somatosensory (cf. Sec. 7.3.1). The main
results are presented in Fig. 7.8. Additional results, notably concerning EEG
data, are presented in Sec. 7.5.7.

Among the many methods for M/EEG source imaging present in the
literature, the methods that are compared here have in common to output
a statistical map. The `2 regularized sLORETA method is compared to the
debiased sparse estimators presented and evaluated above. The input for
all solvers is a time window of data: from t = 50 to t = 100ms for AEF and
VEF, and from t = 30 to t = 40ms for SEF. During such time intervals one
can expect the sources to originate primarily from the early sensory cortices
whose locations are anatomically known for normal subjects.

Analyzing Fig. 7.8, one can see that all methods manage to highlight the
proper functional sensory units (planum temporale for AEF, calcarine region
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for VEF and central sulcus for SEF). However, considering sLORETA results,
one can observe that at a common threshold of 3.0 on the Student statistic,
the estimator is quite spatially specific for VEF, but is overly conservative
for AEF and clearly leading to many false positives for SEF. By inspection
of the d-MTLasso solution, one can observe that taking into account the
autocorrelation of the noise leads to a better calibrated noise variance, and
therefore fewer dubious detection. Considering ecd-MTLasso results, while
all maps are also thresholded with a single level, one can see that it retrieves
expected patterns without making dubious discoveries.

7.3.5 Summary, guidelines and limitations

summary of experiments. In Sec. 7.3.2, we have shown that taking into
account the time dimension improve the results in terms of PLE. Also, we
have seen that even in this adversarial point source scenario (cf. Sec. 7.3.2),
clustered methods remain competitive. In Sec. 7.3.3, while no control of
false discoveries is proposed by sLORETA, ecd-MTL is the only method
that offers statistical control in practice. Namely, it controls the δ-FWER
for δ equals to twice the average cluster diameter. Additionally, in this
realistic simulation, ecd-MTL exhibits the best support recovery properties.
In Sec. 7.3.4, working on real MEG data, we show that, contrary to sLORETA,
ecd-MTLasso produces calibrated statistics with universal threshold and
retrieves expected patterns without making dubious discoveries. Overall,
ecd-MTL offers statistical guarantees and is our privileged method.

guidelines for running ecd-mtlasso on m/eeg data. First, we try
to give guidelines concerning the number of clusters C. Hoyos-Idrobo et al.
(2015) exhibit that clustering improves problem conditioning, this means
that the Restricted Eigenvalue (RE) property (see assumptions A1 and A3)
is more likely to be verified. Complementary, we argue that, keeping C
over a hundred (limiting compression loss), the fewer clusters, the more A3
is likely to be verified for Prop. 7.2.2 and Prop. 7.2.3 to hold but also the
better the sensitivity of ecd-MTL. However, small C also requires a higher
spatial tolerance. We then hit a fundamental trade-off for statistical inference
between sensitivity and spatial specificity. Then, C can be chosen depending
on the problem setting: if it is difficult (noisy), it seems natural to lower
spatial tolerance expectations (diminish C); in that sense ecd-MTL is an
adaptive method (cf. Fig. 7.7). For the present use case, taking C = 1000

seems an adequate trade-off to ensure δ-FWER control with reasonable
spatial tolerance.

Now, we give recommendation concerning the window size and the
time sampling to use. Choosing too short windows complicate AR model
estimation due to the lack of data while choosing too large windows may
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lead to non stationary support. Then, we recommend taking windows of 20
to 50ms with a time sampling at 5 or 10ms since keeping T < 10 reduces
computation time and should not decrease sensitivity significantly.

Finally, when working with M/EEG data, we recommend to use only
10% of the full data to compute several clustering solutions with spatial
constraint and Ward criteria to ensure enough diversity.

limitations. The main limitation is the fact that mixing different types
of sensors violates modeling assumptions both on temporal correlations
and on spatial correlations, that is why we had to treat MEG and EEG
sensors separately. A possibility to handle heterogeneous sensors is to follow
Massias et al. (2018), but for the temporal part further developments are
required and left for future work.

Also left for future work, is the possibility of studying windows larger
than 50ms. A simple solution is to slide a window of 20 to 50ms over the
considered period of time.

Finally, a more common limitation is the fact that assumptions are hard to
test in practice.

7.4 conclusion

The MEG source imaging problem poses a hard statistical inference chal-
lenge: namely that of high-dimensional statistical analysis, furthermore with
high correlations in the design. We have proposed an estimator that cali-
brates correctly the effects size and variance, up to a number of assumptions,
that are not easily met: some level of sparsity, mild correlation across sensors,
homogeneity and heteroscedasticity of the noise. Up to these assumptions,
and up to a spatial tolerance on the exact location of the sources, we provide
the first method with statistical guarantees for source imaging. This is made
possible by bringing several improvements to the original desparsified lasso
solution: a multi-task formulation that increases power by basing inference
on multiple time steps, a clustering step that renders the design less ill-posed
and an ensembling step that mitigates the (hard) choice of clusters. Finally,
our privileged method, ecd-MTLasso, runs in less than 10 mn on a real
dataset on non-specialized hardware, making it usable by practitioners.
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7.5 supplementary material

7.5.1 Statement of broader impact

Magnetoencephalography (MEG) and electroencephalography (EEG) offer a
unique opportunity to image brain activity non-invasively with a temporal
resolution in the order of milliseconds. This is relevant for cognitive neu-
roscience to describe the sequence of active areas during certain cognitive
tasks, but also for clinical neuroscience, where electrophysiology is used for
diagnosis (e.g., sleep medicine, epilepsy presurgical mapping). Yet, doing
brain imaging with M/EEG requires to solve a challenging high-dimensional
inverse problem for which statistical guarantees are crucially important. In
this work, we address this statistical challenge when using sparsity promot-
ing regularization and when considering the specificity of M/EEG signals:
data are spatio-temporal and the noise is temporally autocorrelated. The
proposed algorithm is built on very recent work in optimization to speed up
Lasso-type solvers, as well as work in mathematical statistics on desparsified
Lasso estimators. We believe that this work, whose contribution is both on
the modeling side and on the inference aspects, brings sparse estimators
close to a wide adoption in the neuroscience community.

We also would like to emphasize that the inference framework can be
adapted to many other high-dimensional problems where data structure
can be leveraged: biomedical data and physical observations (cardiac or
brain monitoring, genomics, seismology, etc.), especially those that involve
severely ill-posed inverse problems.

7.5.2 Extended Restricted Eigenvalue assumption

Here, we rewrite (Lounici et al., 2011, Assumption 3.1), adjusting it for
the multi-task lasso case (particular case of the more general group Lasso).
Notice that for a given value of T , the assumption is equivalent to (Lounici
et al., 2011, Assumption 4.1). Let 1 6 s 6 p be an integer that gives an
upper bound on the sparsity |Supp(B)|. The extended Restricted Eigenvalue
assumption RE(X, s) is verified on X for sparsity parameter s and constant
κ = κ(s) > 0, if:

min
{ ‖XΘ‖√

nT ‖ΘJ‖
: |J| 6 s,Θ ∈ Rp×T \ {0},

∥∥ΘJC∥∥2,1 6 3 ‖Θ‖2,1

}
> κ ,

(7.12)

where J ⊂ [p] and JC denotes its complementary i.e., JC = [p] \ J, and ΘJ
refers to the matrix Θ without the rows JC.
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7.5.3 Probability lemma

Lemma 7.5.1. Let ε ∈ RT be a centered Gaussian random vector with (symmetric
positive definite) covariance M ∈ RT×T . Then, the random variable ε>M−1ε

follows a χ2T distribution.

Proof. Note first that since M is symmetric positive definite, its square-root
N ∈ RT×T exists and is a symmetric positive definite matrix satisfying
N2 = M. Hence, this leads to the following displays

ε>M−1ε = (N−1ε)>(N−1ε).

We have that N−1ε is a centered Gaussian random vector, and its covariance
matrix reads:

E
[
(N−1ε)(N−1ε)>

]
= E

[
N−1εε>N−1

]
= E

[
N−1εε>N−1

]
= N−1E

[
εε>

]
N−1

= N−1MN−1

= N−1N2N−1

= IdT .

To conclude N−1ε ∈ RT is a centered Gaussian vector with covariance IdT ,
hence its squared Euclidean norm

∥∥N−1ε
∥∥2 = (N−1ε)>(N−1ε) follows a

χ2T distribution.

7.5.4 Proof of Prop. 7.2.1

Now, we give a proof of Prop. 7.2.1:

Proof. First, let us fix an index j ∈ [p]. Then, using (7.7) we have:

√
n(B̂(d-MTLasso)

j,. − Bj,.) =
√
n

z>j E

z>j X.,j
−
∑
k6=j

√
n z>j X.,k(B̂MTL

k,. − Bk,.)

z>j X.,j

= Λj,. +∆j,. ,
(7.13)

where Λj,. =
√
n

z>j E
z>j X.,j

and ∆j,. =
√
n
∑
k6=j Pj,k(Bk,. − B̂MTL

k,. ) with

Pj,k =
z>j X.,k

z>j X.,j
.
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Now, we show that Λj,. ∼ Np(0, Ω̂j,jM), or equivalently we show that
E>zj ∼ N(0,n

∥∥zj
∥∥2M). It is clear that E>zj is a centered Gaussian vector.

Then, its covariance denoted by V(j), can be computed as follows:

V(j) = E(E>zjz>j E) ∈ RT×T ,

whose general term is given for t, t ′ ∈ [T ] by

V(j)
t,t ′ = E(E>.,tzjz

>
j E.,t ′)

= E(z>j E.,t ′E>.,tzj) (scalar values commute)

= z>j E(E.,t ′E>.,t)zj

= z>j E(

n∑
i=1

Ei,t ′E>i,t)zj

= z>j
n∑
i=1

E(Ei,t ′E>i,t)zj .

Then, the noise structure in (7.2) yields V(j)
t,t ′ = z>j nMt,t ′zj = n

∥∥zj
∥∥2Mt,t ′ .

Now, we show that with high probability ‖∆‖2,1 = O
(

sλ√
nκ2

)
. First, notice

that:

‖∆‖2,1 6
√
nmax
k6=j

|Pj,k|
∥∥B̂MTL − B

∥∥
2,1 .

For a convenient choice of the regularization parameters α, using Bühlmann
and van de Geer (2011, Lemma 2.1) and following the same approach as
Dezeure et al. (2015, Appendix A.1), we obtain, with high probability:

√
nmax
k6=j

|Pj,k| = O
(
1√
n

)
.

Bounds on ‖B̂MTL − B‖2,1 are also available in the literature (Lounici et al.,
2011) for ρ = 0 and can be extended to ρ > 0 similarly. Notably, provided
ρ = 0, assuming A1 for a sparsity parameter |Supp(B∗)| 6 s, a given constant
κ = κ(s) > 0, and a choice of λ large enough in (7.4), (Lounici et al., 2011,
Theorem 3.1) gives directly the following bound, with high probability:

∥∥B̂MTL − B
∥∥
2,1 = O

(
sλ

κ2

)
.

Remark 7.5.1. Following van de Geer et al. (2014), to neglect ∆ we need to have
‖∆‖∞ = o(1). This condition is verified if s = o(

√
nκ2

λ ).
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7.5.5 Proof of Prop. 7.2.2

Before starting the proof, let us give more precision on assumption A2, the
complete assumption is the following:

(A2) there exists Γ ∈ RC×T such that Γr,. =
∑
j∈Gr wjBj,. with wj > 0 for

all j ∈ [p], so that the associated compression loss XB − ZΓ is bounded as
follows:

‖XB − ZΓ‖22,2 6 ξ
Tφ2min(M)

n
= ξ

Tφ2min(R)σ2

n
, (7.14)

where ξ > 0 is an arbitrary small constant, φ2min(M) > 0 is the smallest
eigenvalue of M and φ2min(R) > 0 is the smallest eigenvalue of R, the tem-
poral correlation matrix of the noise defined by R = M/σ2. The assumption
plainly means that the noise induced by design matrix compression is small
enough with respect to the model noise.

Now we give a proof of Prop. 7.2.2:

Proof. First, we derive the d-MTLasso for the compressed problem, for
r ∈ [C]:

Γ̂
(d-MTLasso)
r,. =

a>r Y
a>r Z.,r

−
∑
l 6=r

a>r Z.,lΓ̂
MTL
r,.

a>r Z.,r
, (7.15)

where ar’s are the residuals obtained by nodewise Lasso on Z playing the
same role as the zj’s in (7.7). Then, as done in Sec. 7.5.4, we derive:

√
n(Γ̂

(d-MTLasso)
r,. − Γr,.) =

√
n

a>r E
a>r Z.,r

−
∑
l 6=r

√
n a>r Z.,l(Γ̂

MTL
l,. − Γl,.)

a>r Z.,r

+

√
n a>r (XB − ZΓ)

a>r Z.,r

= Λ′r,. +∆
′
r,. +Πr,. ,

(7.16)

We treat Λ′ and ∆′ as in Sec. 7.5.4, assuming that the assumptions that
are used to bound (hence, neglect) ∆′ are verified (notably A3).

Next, for r ∈ [C], we want to establish that
n‖Πr,.‖2M−1

TΩ̂′r,r
is negligible, i.e., that

Π has a negligible effect on all decision statistics, where the covariance Ω̂′

has the following generic diagonal term:

Ω̂′r,r =
n ‖ar‖2
|a>r Z.,r|2

.
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Given that

‖Πr,.‖2M−1 =
n
∥∥a>r (XB − ZΓ)

∥∥2
M−1

|a>r Z.,r|2
(7.17)

6 n

∥∥a>r
∥∥2

|a>r Z.,r|2

‖XB − ZΓ‖22,2

φ2min(M)
, (7.18)

where ‖·‖2,2 denotes the spectral norm. Then, we obtain that

n ‖Πr,.‖2M−1

TΩ̂′r,r
6
n

T

‖XB − ZΓ‖22,2

φ2min(M)
6 ξ . (7.19)

Then, if A2 is verified for ξ small enough, we can also neglect Π in front
of Λ′.

Then, by neglecting Π and ∆′, we have:
√
n(Γ̂(d-MTLasso) − Γ) ∼ NC(0, Ω̂′r,rM) . (7.20)

Then we can construct p-values that test the r-th null hypothesis H(r)
0 :

“Γj,. = 0”, applying the same technique as in Sec. 7.2.4. By correcting these
p-values —e.g., using the Bonferroni correction (Dunn, 1961), we multiply
by C the initial p-values—, we obtain cluster-wise corrected p-values that
control the FWER.

Since, for all r ∈ [C], Γr,. is a linear combination of Bj,. for j ∈ Gr, then
Γr,. 6= 0 if at least there exist j ∈ Gr such that Bj,. 6= 0.

Then, defining the feature-wise corrected p-values by the corrected p-
values of the corresponding cluster, and assuming that clusters are at most
of size δ, such corrected p-values control the δ-FWER.

Remark 7.5.2. In assumption A2, having a positive linear combination is not
necessary, a simple linear combination is sufficient. However, we assumed
that Γr,. was a positive linear combination of Bj,. for j ∈ Gr, to get the
following desired properties:

If additionally for r ∈ [C], for all (j,k) ∈ G2r , we have sign(Bj,.) = sign(Bk,.),
then sign(Γr,.) = sign(Bj,.).

This means that if all the features’ weights in a cluster have the same
sign, there exists a compression verifying A2 such that the cluster weight
preserves the sign.

7.5.6 Proof of Prop. 7.2.3

Proof. Assuming the assumptions of Prop. 7.2.3 and applying Prop. 7.2.2,
we can, for each of the B compression of the problem in (7.1), construct a
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corrected p-value family that control the δ-FWER. Applying the quantile
aggregate method of Meinshausen, Meier, and Bühlmann (2009), we de-
rive a corrected p-value family taking into account for each compression
choice; this aggregated corrected p-value family also controls the δ-FWER
(cf. Chapter 5).



7.5 supplementary material 124

7.5.7 Supplementary figures

Figure 7.9: Comparison on audio dataset on both hemispheres. From left to right
are compared sLORETA, d-MTLasso without AR modeling (noise is assumed non-
autocorrelated), d-MTLasso with an AR1 noise model and the ecd-MTLasso using
also an AR1. Results correspond to auditory evoked fields.

Figure 7.10: Results on real data keeping only EEG sensors. Auditory activations
(top) have historically been hard to infer with EEG sensors: sLORETA produces
only false discoveries while ecd-MTL and d-MTL make no discoveries. In the visual
experiment (bottom): sLORETA and ecd-MTL produce expected patterns, d-MTL
produces expected patterns plus one false discovery in the frontal lobe. In our work,
we have emphasized MEG experiments: they offer more sensors compared to EEG
leading to improved statistical power.
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summary of the contributions. The aim of this thesis was to pro-
pose multivariate statistical inference procedures that can handle high-
dimensional data with spatial structure such as task fMRI data. The proce-
dures we have proposed leverage state-of-the-art high-dimensional inference
procedures, on spatially constrained clustering algorithms, and on ensem-
bling techniques. A critical point was to establish their theoretical properties
and conduct a thorough empirical validation. We have notably revealed the
existence of a trade-off between strong power and high spatial accuracy.
Indeed, a key step was to propose to integrate a spatial tolerance in the
statistical control of the false discoveries. This brings two benefits: an ef-
fective statistical control for spatially-structured data, and some power to
detect true positives. Finally, we have been able to adapt the method initially
calibrated for fMRI datasets to spatio-temporal data and autocorrelated
noise, leading to an application to MEG source imaging.

future directions. We have several directions in mind to complete or
improve the solutions we have proposed. First, we would like to extend
our work to binary classification, to do so, it would require to investigate
the existing adaptations of the d-Lasso procedure (or other procedures) to
this binary setup. So far, we considered that the regression model could
properly approximate this setup, and we preferred to focus on the extension
to spatio-temporal data first. But this is clearly needed to make the method
more useful for practitioners. Second, regarding computational aspects, we
believe that the d-Lasso and the d-MTLasso can be accelerated. Indeed, a first
lead to optimize the algorithm is to use a warm start technique for solving
the Lasso problems necessary to compute the score vectors. Third, having
in mind that we need homogeneous cluster diameters to minimize spatial
tolerance, strong clustering variance to increase the effect of ensembling but
also a decent data-fitting capacity to limit the compression loss, we think
that it is possible to provide or improve the spatially constrained clustering
algorithm. A first idea would be to add up a criterion to the clustering
algorithm we are currently using: it would consist in ensuring that the ratio
of the largest cluster diameter over the smallest cluster diameter is upper
bounded by a given value. Finally, it seems natural to extend the scope of
application of the algorithms we introduced to other fields, especially to
genomics.
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Titre : Contrôle statistique de modèles parcimonieux en grande dimension
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Résumé : Cette thèse s’intéresse au problème
de l’inférence statistique multivariée en grande di-
mension en présence de données structurées. Plus
précisément, étant données une variable cible et
un ensemble de variables explicatives, nous souhai-
tons déterminer les variables explicatives qui sont
prédictives conditionnellement aux autres, i.e., nous
cherchons à identifier le support dans le modèle
prédictif linéaire. Comme nous désirons avoir un
contrôle sur l’occurrence de faux positifs, nous nous
concentrons sur les méthodes donnant des garan-
ties statistiques. Cette étude s’applique notamment
aux problèmes d’inférence sur des images haute-
résolution dans lesquels le signal de chaque pixel
ou voxel est considéré comme une variable explica-
tive, c’est par exemple le cas en neuro-imagerie ou
en astronomie. Cela peut également s’appliquer à
d’autres problèmes dans lesquels les variables ex-
plicatives sont spatialement structurées comme en
génomique par exemple. Pour ce type de données,
les méthodes existantes destinées à l’identification de
support ne sont pas satisfaisantes car elles manquent
de puissance et ont généralement un coût computa-
tionnel trop élevé. Par conséquent, le problème est
difficile en terme de modélisation statistique mais

aussi du point de vue computationnel. Dans ce type
de problème, les variables explicatives détiennent
une structure spatiale qui peut être exploitée. Par
exemple, en neuro-imagerie, une image de cerveau
possède une représentation 3D dans laquelle un
voxel est très corrélé à ses voisins. Nous propo-
sons notamment la méthode ”ensemble of cluste-
red desparsified Lasso” qui combine trois éléments:
i) une procédure de clustering avec contraintes spa-
tiales pour réduire la dimension du problème en te-
nant compte de la structure de la donnée; ii) une
méthode d’inférence statistique appelée ”desparsified
Lasso” qui peut être déployée sur le problème réduit;
et iii) une méthode d’ensembling qui agrège les so-
lutions obtenues sur les différents problèmes réduits
afin d’éviter de dépendre d’un choix de clustering
nécessairement imparfait et arbitraire. Nous propo-
sons également une nouvelle façon de contrôler l’oc-
currence de faux positifs en intégrant une tolérance
spatiale dans ce contrôle. Dans cette étude, nous
nous focalisons sur des jeux de donnée de neuro-
imagerie, mais les méthodes que nous présentons
sont applicables à d’autres domaines qui partagent
une configuration semblable.

Title : Statistical control of sparse models in high dimension

Keywords : Statistical inference, high dimension, neuroimaging

Abstract : In this thesis, we focus on the multivariate
inference problem in the context of high-dimensional
structured data. More precisely, given a set of expla-
natory variables (features) and a target, we aim at re-
covering the features that are predictive conditionally
to others, i.e., recovering the support of a linear pre-
dictive model. We concentrate on methods that come
with statistical guarantees since we want to have a
control on the occurrence of false discoveries. This
is relevant to inference problems on high-resolution
images, where one aims at pixel- or voxel-level analy-
sis, e.g., in neuroimaging, astronomy, but also in other
settings where features have a spatial structure, e.g.,
in genomics. In such settings, existing procedures are
not helpful for support recovery since they lack power
and are generally not tractable. The problem is then
hard both from the statistical modeling point of view,
and from a computation perspective. In these settings,
feature values typically reflect the underlying spatial
structure, which can thus be leveraged for inference.

For example, in neuroimaging, a brain image has a 3D
representation and a given voxel is highly correlated
with its neighbors. We notably propose the ensemble
of clustered desparsified Lasso (ecd-Lasso) estima-
tor that combines three steps: i) a spatially constrai-
ned clustering procedure that reduces the problem di-
mension while taking into account data structure, ii)
the desparsified Lasso (d-Lasso) statistical inference
procedure that is tractable on reduced versions of the
original problem, and iii) an ensembling method that
aggregates the solutions of different compressed ver-
sions of the problem to avoid relying on only one ar-
bitrary data clustering choice. We consider new ways
to control the occurrence of false discoveries with a
given spatial tolerance. This control is well adapted
to spatially structured data. In this work, we focus
on neuroimaging datasets but the methods that we
present can be adapted to other fields which share
similar setups.
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