
HAL Id: tel-03148279
https://theses.hal.science/tel-03148279

Submitted on 22 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hall algebras and localization of categories
Mikhail Gorsky

To cite this version:
Mikhail Gorsky. Hall algebras and localization of categories. General Mathematics [math.GM]. Uni-
versité Paris Cité, 2019. English. �NNT : 2019UNIP7170�. �tel-03148279�

https://theses.hal.science/tel-03148279
https://hal.archives-ouvertes.fr


Université de Paris

École doctorale 386 - Sciences Mathématiques de Paris centre

Institut de mathématiques de Jussieu-Paris Rive gauche

Algèbres de Hall et localisation des catégories

Par Mikhail GORSKY
THÈSE DE DOCTORAT DE MATHÉMATIQUES

Dirigée par Bernhard KELLER

Présentée et soutenue publiquement le 19 décembre 2019

Devant un jury composé de :
M. Bernard LECLERC Université de Caen examinateur

M. Patrick LE MEUR Institut de mathématiques de Jussieu-PRG examinateur

M. Bernhard KELLER Institut de mathématiques de Jussieu-PRG directeur

M. Olivier SCHIFFMANN Université Paris-Sud examinateur

Mme Michela VARAGNOLO Université Cergy-Pontoise examinatrice



2

Institut de mathématiques de Jussieu-Paris

Rive gauche. UMR 7586.

Boîte courrier 247

4 place Jussieu

75 252 Paris Cedex 05



Acknowledgements

I am indebted to my advisor Bernhard Keller for suggesting the topic of this thesis and many

fruitful discussions and detailed explanations ever since I was a master student. I cannot overstate

my deep gratitude for his support and patience.

I am very grateful to my wife Olga for her constant support.

When I was going through difficult times while doing the research presented in this thesis,

many people helped me by saying kind words in right times. I would like to specially thank here

Gustavo Jasso, Lara Bossinger and Giovanni Cerulli Irelli.

For various discussions that helped me in my research, I am grateful to Olivier Schiffmann,

Matthias Künzer, Hiroyuki Nakaoka, Pierre-Guy Plamondon, Ben Davison, Sven Meinhardt and

many others.

3



4



Résumé

Cette thèse concerne les algèbres de Hall. Nous définissons des algèbres de Hall étendues

tordues de catégories triangulées et montrons que, dans certains cas, elles sont bien définies même

lorsque leurs contreparties non étendues ne le sont pas. Nous montrons que chaque catégorie

exacte aux équivalences faibles avec une structure supplémentaire appropriée donne naturellement

lieu à une algèbre de Hall étendue tordue de sa catégorie homotopique. Nous montrons que cette

construction récupère la catégorification par Bridgeland des groupes quantiques via les algèbres

de Hall de complexes et sa généralisation par Lu et Peng. Nous montrons que les algèbres ainsi

définies sont fonctorielles par rapport aux foncteurs exacts respectant les équivalences faibles. Cela

nous permet de prouver l’invariance par basculement des algèbres de Bridgeland et de catégorifier

les symétries de Lusztig des groupes quantiques. Sous des conditions de finitude appropriées,

pour deux structures exactes différentes sur la même catégorie additive, l’une ayant strictement

moins de conflations que l’autre, nous définissons une filtration sur l’algèbre de Hall de cette

dernière dont le gradué associé est l’algèbre de Hall de la première. Cette construction généralise

les filtrations de type PBW quantiques.

Mots-clés

Algèbres de Hall, localisation des catégories, catégorification, groupes quantiques, dégéneres-

cences de PBW
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Hall algebras and localization of categories

Abstract

This thesis concerns Hall algebras. We define twisted extended Hall algebras of triangulated

categories and show that in some cases they are well-defined even when their non-extended coun-

terparts are not. We show that each exact category with weak equivalences with an appropriate

extra structure naturally gives rise to a twisted extended Hall algebra of its homotopy category.

We prove that this construction recovers Bridgeland’s categorification of quantum groups via Hall

algebras of complexes and its generalization due to Lu and Peng. We prove that the algebras thus

defined are functorial under exact functors respecting weak equivalences. This allows us to prove

the tilting invariance of Bridgeland’s algebras and to categorify Lusztig’s symmetries of quantum

groups. Under suitable finiteness conditions, for two different exact structures on the same additive

category with one having strictly less conflations than the other, we define a filtration on the Hall

algebra of the latter whose associate graded is the Hall algebra of the former. This construction

generalizes quantum PBW-type filtrations.

Keywords

Hall algebras, localization of categories, categorification, quantum groups, PBW degenerations.
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Introduction

0.1 Contexte historique

Les algèbres de Hall fournissent l’un des premiers exemples connus de catégorification addi-

tive. Elles sont apparues pour la première fois dans les travaux de Steinitz [74] et Hall [27] sur

des p−groupes finis commutatifs. Plus tard, elles sont réapparues dans les travaux de Ringel [64]

sur les groupes quantiques. Il a introduit la notion de l’algèbre de Hall d’une catégorie abélienne

avec des espaces de dimension finie Hom - et Ext1. En tant qu’espace vectoriel, elle a une base

paramétrisée par les classes d’isomorphisme des objets de la catégorie. La multiplication capte

des informations sur les extensions entre les objets. On peut considérer cela comme une algèbre

de fonctions constructibles sur le champ d’objets de la catégorie, avec le produit de convolution

donné par les correspondances de Hecke.

Ringel a construit un isomorphisme entre l’algèbre de Hall torduée de la catégorie de repré-

sentations d’un carquois de Dynkin simplement lacé Q sur le corps fini Fq et la partie nilpotente

du groupe quantique correspondant, spécialisé à la racine carré de q :

U√q(n+)
∼→ Htw(repFq(Q)).

Plus tard, Green [26] a généralisé ce résultat à un carquois valu Q arbitraire en montrant un iso-

morphisme entre la partie nilpotente de l’algèbre enveloppante universelle quantifiée de l’algèbre

de Kac-Moody correspondante et la “sous-algèbre de composition” dans Htw(repFq(Q)) engen-

drée par les classes des objets simples. À l’aide du groupe de Grothendieck de la catégorie des

représentations de carquois, il introduit une version étendue de l’algèbre de Hall qui récupère la

partie de Borel du groupe quantique. De plus, Green [loc. cit.] a construit la comultiplication et

Xiao [78] a donné l’antipode de cette algèbre de Hall étendue et tordue qui en a fait une algèbre

de Hopf auto-duale.

Lusztig [53] a étudié la version géométrique d’une sous-algèbre de composition dans l’algèbre

de HallHtw(repFq(Q)), en utilisant des faisceaux pervers sur le espaces de modules de représenta-

tions de carquois. Ceci est un exemple de catégorification monoïdale, où le produit tensoriel d’une

certaine catégorie monoïdale induit la multiplication dans l’algèbre. Cette approche l’a conduit

à la découverte de la base canonique dans U√q(n+) satisfaisant des propriétés de positivité très

agréables.

11



12 INTRODUCTION

D’autres exemples intéressants d’algèbres de Hall sont ceux de catégories de faisceaux cohé-

rents sur des schémas. Kapranov [34] les a examinées pour la première fois, en reliant les algèbres

de Hall de faisceaux cohérents sur des courbes à l’étude des formes automorphes. Depuis lors, les

algèbres de Hall des faisceaux cohérents ont été étudiées de manière intensive et se sont révélées

être liées à la conjecture géométrique de Langlands, aux algèbres de Cherednik, aux invariants de

noeuds, etc.

Les résultats de Ringel et de Green ont soulevé une question naturelle : est-il possible de réa-

liser le groupe quantique entier U√q(g) comme une algèbre de Hall ? On a vite compris que cette

algèbre devrait être associée d’une manière ou d’une autre à la catégorie dérivée 2-périodique ou

Z/2 de la catégorie abelienne de représentations du carquois. Dans cette construction hypothé-

tique, deux copies de repFq(Q) devraient fournir les deux parties nilpotentes du groupe quantique,

tandis que la partie Cartan devrait être récupérée le groupe de Grothendieck. L’obstacle réside

dans le fait que cette catégorie 2−périodique n’est pas abélienne, mais triangulée. Il s’est avéré

que la définition de Ringel aurait dû être modifiée afin de fournir des algèbres de Hall associatives

associées, d’une certaine manière, à des catégories triangulées.

Ces idées ont motivé plusieurs généralisations de la construction de Ringel. Peng-Xiao [59]

a récupéré des algèbres de Lie Kac-Moody à partir de catégories dérivées 2−périodiques et, plus

généralement, des algèbres de Hall de Lie à partir de catégories triangulées 2−périodiques. Mal-

heureusement, dans leur approche, la partie Cartan et la règle de sa commutation avec les parties

nilpotentes apparaissent de manière assez ad hoc. Hubery [33] a prouvé que l’algèbre définie de

la même manière que celle de Ringel, mais pour une catégorie exacte, est également unitaire et

associative. Kapranov [35] a introduit une version de l’algèbre de Hall pour la catégorie dérivée

liée à une catégorie abélienne héréditaire et pour sa partie avec des cohomologies concentrées en

degrés 0 et 1. Cette dernière fournit un double de Heisenberg de U√q(b+) qui est étroitement liée à

U√q(g) mais ne coïncide pas avec elle ; en particulier, ce double de Heisenberg n’a pas de structure

d’algèbre de Hopf ce qui est une propriété très importante de U√q(g).

Toën [75] a donné une construction de ce qu’il a appelé des algèbres de Hall dérivées pour les

catégories triangulées muniées des DG-modeles satisfaisant certaines conditions de finitude. Xiao

et Xu ont montré que cette construction donne une algèbre unitaire associative utilisant seulement

les axiomes des catégories triangulées. La construction duale , définie sur les fonctions motiviques

(au lieu de constructibles) sur le champs d’objets de modules dans une catégorie triangulée A∞
a été introduite par Kontsevich et Soibelman. Dans ces travaux, la “correction” qui convertit le

produit de Ringel en un produit associatif est obtenue en le multipliant par la forme d’Euler tron-

quée des facteurs. Malheureusement, les conditions de finitude imposées à une catégorie pour

définir son algèbre de Hall dérivée (motivique) sont assez restrictives : elles sont valables pour les

catégories dérivées bornées de catégories abéliennes Hom -finies exactes, mais elles ne sont pas

satisfaites pour toute catégorie triangulée périodique. Plus précisément, cette forme d’Euler tron-

quée est un produit infini qui ne se stabilise pas dans le cas périodique. Par conséquent, aucune

de ces techniques ne peut donner une construction satisfaisante de U√q(g) sous la forme d’une
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algèbre de Hall.

La première solution a été trouvée par Bridgeland [5]. Il a examiné la localisation d’une al-

gèbre de Hall, tordue de manière appropriée, de la catégorie des complexes 2-périodiques avec

des composantes projectives (en repFq(Q)) dans les classes de tous les complexes contractibles.

Il a défini une certaine réduction de cette localisation et l’a notée DHred(repFq(Q)). Il a construit

une intégration à partir de U√q(g) dans DHred(A), où A est la catégorie des représentations

de carquois ; c’est un isomorphisme exactement dans le cas de Dynkin. Il a supposé que cette

construction fournit le double de Drinfeld de l’algèbre de Hall étendue tordue Htw(A) pour toute

catégorie héréditaire A ayant assez de projectifs et satisfaisant conditions naturelles de finitude.

Cela a été montré par Yanagida [82].

0.2 Algèbres de Hall étendues et localisation des catégories

Nous donnons une vaste généralisation de la construction de Bridgeland et la relions aux al-

gèbres de Hall dérivées de Toën. Elle unifie les approches de [24] et de [23] qui forment les

chapitres 2 et 4. La philosophie générale est la suivante. Nous remarquons que la forme d’Euler

tronquée peut n’est pas le seul choix possible du facteur de correction : on peut formuler la res-

triction précise sur les facteurs possibles. En nous permettant de considérer les algèbres de Hall

étendues, nous obtenons plus de liberté dans ce choix. Au niveau des algèbres, nous obtenons un

module libre sur une algèbre de groupe tordue de fao̧n appropriée de certains groupes G. L’idée

est de considérer les algèbres de Hall dérivées tordues et étendues, même lorsque leurs équivalents

non étendus ou leurs torsions correspondantes ne sont pas bien définis. Plus précisément, à chaque

extension abélienne Ñ du groupe de Grothendieck additif d’une catégorie triangulée T par un

groupe abélien G et chaque forme bilinéaire φ sur la pré-imageN du cône positif satisfaisant cer-

taines conditions naturelles, nous associons une algèbre H(T ,N , φ). Nous montrons qu’elle est

associative, unitaire et se comporte naturellement sous le changement de N et φ. Nous montrons

qu’après avoir tordu sa multiplication, H(T ,N , φ) se décompose comme une déformation plate

de l’algèbre de Hall dérivée de T sur l’algèbre de groupe de G lorsque l’algèbre de Hall et le

twist sont bien définis. La modification cruciale de la construction classique des algèbres de Hall

étendues (de catégories abéliennes) est que l’algèbre non étendue, même bien définie, ne forme

qu’un quotient de Htw(T ,N , φ) et pas nécessairement une sous-algèbre : Htw(T ,N , φ) est une

déformation plate non triviale.

Notre preuve est une modification ad hoc de la preuve de l’associativité des algèbres de Hall

dérivées présentée par Xiao et Xu dans [80]. Dans leur construction, la forme d’Euler tronquée de

T apparaît d’abord de la manière suivante : leur produit alternatif pour les éléments d’un triangle

distinguéA→ B → C → ΣA en tant que premier, resp. le deuxième argument compte le nombre

d’éléments d’un certain ensemble. Nous notons que cet ensemble est fini lorsque la catégorie

triangulée en question est Hom -finie, il n’est pas nécessaire d’exiger la finitude homologique

locale à gauche (ou à droite). Il s’avère que si on considère les relèvements de classes de A,B
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et C dans N , cet ensemble peut être compté comme le produit alterné des valeurs de la forme φ.

Le reste du démonstration de Xiao-Xu fonctionne parfaitement, jusqu’au changement des formes

d’Euler tronquées dans T par la forme φ. Les éléments essentiels de la preuve sont les relèvements

des carrés cartésiens homotopiques.

Dans une certaine généralité, nous pouvons définir la forme idempotente d’une algèbre de Hall

étendue tordue. Dans le cas de catégories dérivées 2−périodiques de représentations de carquois,

elle est étroitement liée à l’algèbre
·
U de Lusztig.

Il s’avère que la considération d’une catégorie triangulée comme la localisation d’une catégo-

rie exacte (ou d’une autre catégorie triangulée) donne une source naturelle de ces versions étendues

des algèbres de Hall. La catégorie des complexes 2-périodiques avec des composantes projectives

est de Frobenius lorsqu’elle est munie d’une structure exacte naturelle. Cela signifie que cette

catégorie exacte a assez de projectifs, d’injectifs et que ces deux classes d’objets coïncident. Sa

catégorie stable (la catégorie ayant le même ensemble d’objets et les morphismes étant des quo-

tients de morphismes dans la catégorie de Frobenius par ceux que se factorisent par projectif-

injectif) est la catégorie d’homotopie 2-périodique de la sous-catégorie complète P(A) de projec-

tives dans A. Si A a assez de projectifs et est de dimension globale finie, cette dernière catégorie

est équivalente à la catégorie dérivée 2-périodique de A. La construction de Bridgeland peut donc

être vue sous l’angle suivant : nous avons une catégorie triangulée T = DZ/2(A) pour laquelle

l’algèbre de Hall dérivée n’est pas définie car les conditions de finitude ne sont pas remplies. Alors

le substitut correct, dans un certain sens, est donné par la règle suivante : on trouve une catégorie

de Frobenius CZ/2(P(A)), dont la catégorie stable est équivalente à T , et pour laquelle l’algèbre

de Hall classique (en tant que de catégorie exacte) est bien définie. Ensuite, on prend cette algèbre

de Hall et on la localise dans les classes de tous les objets projectifs-injectifs.

Dans [24], nous considérons une catégorie de Frobenius arbitraire F satisfaisant certaines

conditions de finitude. Nous définissons l’algèbre de Hall semi-dérivée SH(F ,P(F)) comme

la localisation de H(F) dans les classes de tous les objets projectifs-injectifs et établissons les

propriétés suivantes.

Theorem 0.2.1. [24]

(i) Les algèbres SH(F ,P(F)) sont fonctorielles sous les morphismes pleinement fidèles des

catégories de Frobenius.

(ii) SH(F ,P(F)) est un module libre sur l’algèbre des groupes du groupe Grothendieck de

la sous-catégorie complète P(F) desprojectifs-injectifs tordue par la forme d’Euler. Tout

choix de représentants dans F des classes d’isomorphisme d’objets de la catégorie stable

F donne une base de ce module.

(iii) SH(F ,P(F)) avec une multiplication convenablement tordue est une déformation plate

de l’algèbre de Hall dérivée de F sur l’algèbre de groupe de K0(P(F)), lorsque cette

derniere est bien définie.

La construction de Bridgeland montre que, dans certaines situations, SH(F ,P(F)) est bien
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défini, tandis que l’algèbre de Hall dérivée de F ne l’est pas. La catégorie de complexes à compo-

santes projectives n’est pas la plus appropriée : elle n’est pas une invariante dérivée. Au chapitre

4, nous montrons l’invariance dérivée des algèbres de Bridgeland (c’est le matériau de [23]). En

particulier, nous obtenons une interprétation catégorique des foncteurs de réflexion de Bernstein-

Gelfand-Ponomarev. Pour étudier les doubles de Drinfeld des algèbres de Hall de faisceaux co-

hérents, il faut travailler avec des catégories dérivées périodiques de catégories abéliennes sans

assez de projectifs. Nous montrons comment généraliser l’analogue de la construction de Bridge-

land pour les catégories dérivées bornées en une classe comprenant des catégories de faisceaux

cohérentes. Cette construction a été modifiée par Lu et Peng dans [49] : ils l’ont adaptée pour dé-

finir des algèbres de Hall pour les catégories dérivées à deux périodiques de catégories abéliennes

héréditaires, généralisant ainsi le travail de Bridgeland.

Dans le cas des catégories dérivées des catégories abéliennes héréditaires, nous observons une

observation non triviale : l’algèbre de Hall semi-dérivée (ou l’algèbre de Lu et Peng) est, modulo

une torsion, un quotient d’une algèbre de Hall localisée d’une catégorie de complexes. Cette ap-

plication de quotient peut être comprise comme une version relative de l’application d’intégration

définie par Reineke [63].

En général, les modèles de Frobenius de catégories triangulées ne sont souvent pas les plus

pratiques. Au chapitre 3, nous généralisons cette construction à d’autres modèles de catégories

trangulées. Étant donné une catégorie exacte E aux équivalences faibles W , certaines structures

supplémentaires peuvent assurer que la catégorie localisée E [W−1] est triangulée. En particulier,

cela se produit si W peut être complété à la structure d’une catégorie de modèle exacte héréditaire

M sur E , ou lorsque la catégorie sous-jacente de E a une structure exacte de Frobenius plus petite

et la sous-catégorie complète d’objets faiblement triviauxW forme une sous-catégorie Frobenius.

Ces deux classes de catégories exactes aux équivalences faibles généralisent naturellement le cas

des catégories de Frobenius. Lorsque E et W satisfont à certaines conditions de finitude, nous

construisons une algèbre associative unitaireH(E ,W) et nous montrons le théorème suivant.

Theorem 0.2.2. (i) H(E ,W) est un module libre sur l’algèbre de groupe du groupe de

Grothendieck numérique de la sous-catégorie complète des objets faiblement triviaux

Knum
0 (W) tordue par la forme d’Euler. Tout choix de représentants dans E des classes

d’isomorphismes d’objets de la catégorie E [W−1] donne une base de ce module.

(ii) H(E ,W) avec une multiplication correctement tordue est une déformation plate de l’al-

gèbre de Hall dérivée de E [W−1] sur le algèbre de groupe deKnum
0 (W), lorsque l’algèbre

de Hall dérivée est bien définie.

(iii) Les algèbresH(E ,W) sont fonctorielles sous des foncteurs exacts induisant des équiva-

lences dans E [W−1].

(iv) Quand E est Frobenius etW est la sous-catégorie complète des objets injectifs-projectifs,

nous récupérons la définition précédente :H(E ,W) = SH(F ,P(F)).

La torsion est donnée par le quotient des formes d’Euler sur E et sur E [W−1], lorsque celles-ci

sont bien définies. Nous obtenons une algèbre sur l’anneau de groupe de Knum
0 (W).
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L’idée derrière la définition de l’algèbreH(E ,W) est de considérer la sous-catégorie complète

des objets faiblement triviauxW comme si elle était scindée, ce qui se produit lorsque E est Fro-

benius etW est la sous-catégorie complète des objets projectifs-injectifs. Lorsque nous localisons

la catégorie exacte E , ces objets deviennent isomorphes à 0. Mais nous savons que la classe de

l’objet 0 est l’unité de notre algèbre. Cela suggère que les objets faiblement triviaux devraient être

inversibles dans notre algèbre et ne pas disparaître comme on pourrait s’y attendre.

En présence d’un certain type de “remplacements relatives”, nous avons une autre preuve d’as-

sociativité de notreH(E ,W). En remplaçant les facteurs par ces “remplacements”, nous pouvons

réduire le problème d’associativité de l’algèbre de Hall habituelle de la catégorie (exacte) E .Histo-

riquement, il s’agissait de la première construction d’algèbres de Hall semi-dérivées définies dans

[23] pour les catégories de complexes. Même si les algèbres ainsi définies sont, en principe, cou-

vertes par la nouvelle définition, nous présentons la deuxième construction pour souligner de plus

l’interaction entre les algèbres de Hall de catégories exactes et triangulées et leur associativité.

0.3 Propriété du coeur et son substitut

Une des propriétés importantes des algèbres de Hall dérivées est la “propriété du coeur”. Soit

T une catégorie triangulée dont l’algèbre de Hall dérivéeDH(T ) est bien définie. Si T admet une

t−structure bornée avec un coeur A, Toën [75] montre que le foncteur de plongement A → T
induit une plongement de l’algèbre de Hall du coeur en DH(T ) :

H(A) ↪→ DH(T ).

Le théoreme 0.7.2 implique que les algèbres de Hall de catégories exactes avec des équivalences

faibles peuvent être considérées comme des algèbres de Hall étendues tordues de catégories trian-

gulées. Nous avons un analogue naturel de la propriété de coeur dans ce cadre.

Corollary 0.3.1. Soit A le coeur d’une t−structure bornée d’une catégorie E [W−1]. Soit Ã la

sous-catégorie exacte de E , composée de tous les objets dont l’image sous la localisation appar-

tient à A.. Nous avons ensuite une plongement

H(Ã) ↪→ H(E ,W),

et l’algèbreHtw(Ã) est une déformation plate deH(A) sur QKnum
0 (W), où la torsion est donnée

par la forme
〈−,−〉Ã
〈−,−〉A

=
〈−,−〉E

〈−,−〉E[W−1]

.

Plus généralement, nous avons le résultat suivant.

Corollary 0.3.2. Soit E ′ une sous-catégorie entièrement exacte de E telle que E ′[W−1] soit une
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sous-catégorie fermée par rapport aux extensions de E [W−1] Ensuite, nous avons un plongement

H(E ′,W) ↪→ H(E ,W),

et l’algèbre Htw(E ′,W) est une déformation plate de H(E ′[W−1]) sur (QKnum
0 (E ′ ∩W), où la

torsion est donnée par la forme

〈−,−〉E ′
〈−,−〉E ′[W−1]

=
〈−,−〉E

〈−,−〉E[W−1]

.

Si T est périodique, elle n’a pas de t−structure bornée. Pour les catégories dérivées pério-

diques des catégories abéliennesDm(A), nous sommes toujours intéressés par la relation entre les

algèbres de Hall étendues tordues de Dm(A) et de A. Nous prouvons que pour une catégorie abé-

lienneA, les classes dem− complexes périodiques quasi-isomorphes à complexes concentrées en

degré 0 forment une sous-catégorie fermée par rapport aux extension de Dm(A) si et seulement

si gl dim(A) ≤ m. Ils forment toujours une sous-catégorie pleinement exacte de Cm(A) que nous

désignons Ã.. Nous avons des cohomologies bien définies H i, i = 0, . . . ,m− 1, avec des valeurs

dansA, et à partir de la suite exacte longue on obtiens que les complexes à cohomologies concen-

trés dans le degré 0 forment toujours une sous-catégorie exacte C0
m(A) de Cm(A) fermé sous

quasi-isomorphismes et leurs classes forment une sous-catégorie fermé par rapport aux extensions

de Dm(A). Ainsi, nous avons le résultat suivant.

Theorem 0.3.3. Soit A une catégorie abélienne Fq − linéaire de dimension globale finie

avec des espaces finis Hom− et Exti−, pour tout i > 0. Alors, les algèbres de Hall

H(A),H(Cm(A), qis),H(C0
m(A), qis) sont bien définies.

(i) Nous avons une plongement

H(Ã) ↪→ H(Cm(A), qis),

et l’algèbre

Htw(Ã)

est une déformation plate deH(A) sur

QKnum
0 (Cm,ac(A))

∼→
m⊗
i=1

Knum
0 (A),

si et seulement si gl dim(A) ≤ m.
(ii) Nous avons un plongement

H(C0
m(A), qis) ↪→ H(Cm(A), qis)
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avec des isomorphismes

Htw(C0
m(A), qis)

∼→ H(D0
m(A))⊗QKnum

0 (Cm,ac(A))
∼→ H(A)⊗

m⊗
i=1

Knum
0 (A),

pour tout A.

Geng et Peng [21] ont prouvé l’existence du plongemnet et des isomorphismes de la partie (i)

pour A ayant assez de projectifs et de gl dim ≤ 2 et m égal à 2 . Ils ont utilisé la construction de

Bridgeland d’algèbres de Hall étendues tordues de catégories dérivées périodiques.

Le théorème 0.3.3 suggère que les algèbres H(C0
m(A), qis) et leurs versions tordues peuvent

être considérées comme des substituts naturels de H(A) lorsque on songe à périodique catégo-

ries dérivées. La multiplication ici implique des extensions plus hautes dans la catégorie A. Le

cas des catégories dérivées 2-périodiques semble être le plus important pour de nombreuses rai-

sons. Il semble possible, bien que pas nécessairement probable, que les algèbresH(C2(A), qis) et

H(C0
2(A), qis) avec des torsions justes puissent avoir une structure d’algèbre de Hopf au-delà du

cas héréditaire.

0.4 Réduction des structures exactes et dégénérescence des algèbres
de Hall

Au chapitre 5.1, nous présentons les résultats du travail conjoint avec Xin Fang [25].

Une catégorie additive A peut être munie de nombreuses structures exactes différentes. Il est

donc naturel de se demander si les algèbres de Hall de ces différentes structures exactes sont

liées les unes aux autres. Le théorème suivant donne une réponse pour les catégories de type fini

(c’est-à-dire ayant un nombre fini d’indécomposables par rapport aux isomorphismes).

Theorem 0.4.1. Soit A une catégorie additive k−linéaire à idempotents scindés, Hom−finie et

de type fini. Supposons que A soit munie de deux structures exactes E ′ < E .. Alors l’algèbre

de Hall H(E ′) de E ′ est une dégénérescence de l’algèbre de Hall H(E) de E , par rapport à

une filtration donnée par une fonction sur l’ensemble Iso(A). Cette fonction est définie comme

w(M) = dim Hom(
⊕

P∈ind(P(E ′))
P,M).

Grâce aux travaux d’Enomoto [16] [17], il est possible de classer des structures exactes dans de

nombreuses situations lorsque A contient un nombre fini d’objets indécomposables. Cela couvre

les cas de la catégorie de représentations d’un carquois de Dynkin et de sa catégorie de complexes

2-périodiques. Dans le premier cas, nous montrons que les dégénérescences de l’algèbre de Hall

de la catégorie abélienne données par des structures exactes plus petites sont précisément les dégé-

nérescences définies dans [14]. En particulier, la structure exacte scindée correspond à une algèbre

polynomiale q−commutative, et nous retrouvons le théorème de PBW dans cette cas quantique.
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Ainsi, le théorème 0.9.1 peut être considéré comme une généralisation du théorème de PBW dans

le cadre des algèbres de Hall.

Au section 5.2, nous discutons de ses applications hypothetiques aux groupes quantiques et au

double de Drinfeld en modifiant les structures exactes de la catégorie des complexes 2-périodiques.

0.5 Remarques supplémentaires

Il est intéressant de noter qu’une catégorie additive A avec des équivalences faibles W peut

être munie de nombreuses structures exactes E compatibles avecW. Ainsi, elle peut a priori don-

ner lieu à de nombreuses algèbres de Hall étendues tordues de E [W−1] = A[W−1]. Pour une

telle algèbre à définir, une catégorie exacte E doivent remplir certaines conditions, restreignant

notre choix. Considérons le cas de la catégorie de complexes sur une catégorie abelienne de di-

mension globale finie, les quasi-isomorphismes étant considérés comme des équivalences faibles.

La structure exacte scindée par composants (Frobenius) ne remplit pas ces conditions, mais ils

sont valable pour la structure exacte par composants (abélienne). Plus généralement, dans tous les

exemples connus de l’auteur, il existe en réalité un choix naturel d’une structure exacte répondant

à ces conditions.

Kontsevich [42] a suggéré la construction d’une algèbre de Hall étendue tordue pour une classe

de catégories d’orbites triangulées n’utilisant pas leurs modèles exacts (des détails peuvent appa-

raître ailleurs). Il semble que chacune de ces catégories triangulées a une algèbre unique et que,

dans le cas des catégories dérivées 2-périodiques, on récupère les algèbres construites à l’aide de

catégories de complexes. Ceci suggère l’existence du choix canonique d’une extension et d’une

forme bilinéaire, définissant ainsi une algèbre de Hall étendue tordue pour chaque catégorie trian-

gulée (satisfaisant des conditions de finitude appropriées) de manière canonique.

Notons que nous pouvons associer des algèbres de Hall à des localisations de catégories trian-

gulées de la même manière que notre construction pour des localisations de catégories exactes. Ré-

cemment, Nakaoka et Palu [58] ont introduit une généralisation commune des catégories exactes

et triangulées :catégories extriangulées. Ces catégories sont définies de manière à ce que de nom-

breuses propriétés liées à la localisation dans des catégories exactes ou triangulées s’appliquent

également à elles. En particulier, il existe une version de la correspondance de Hovey entre les

structures de modèles et les paires de cotorsions pour les catégories extriangulées. Il semble que

les catégories extriangulées devraient constituer le cadre le plus naturel pour étudier des algèbres

de Hall étendues tordues via la localisation de catégories additives. Notamment, les carrés carté-

siens homotopiques qui sont les ingrédients essentiels de notre construction apparaissent dans le

cadre de catégories extriangulées faisant partie de leurs axiomatiques.

Il semble désormais bien établi que les algèbres de Hall contiennent de nombreux phénomènes

profonds de nature catégorique supérieure capturées par les espaces dits 2-Segal définis par Dycke-

rhoff et Kapranov [12]. Il est associé par la S•− construction de Waldhausen à une∞−catégorie

exacte. Cependant, comme indiqué dans [11], les algèbres de Hall ne dépendent que de la catégo-
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rie additive sous-jacente. Nous voyons que les diagrammes les plus importants que nous utilisons

dans les catégories triangulées sont des carrés cartésiens homotopiques qui sont plutôt de nature

1−catégorique. C’est l’une des raisons pour lesquelles l’auteur a fortement préféré garder cette

thèse dans le domaine des catégories additives.

Sans changer notre optique, nous pouvons également associer des algèbres de Hall étendues

tordues à des paires de localisation de catégories différentielles graduées pré-triangulées avec des

idempotents scindés en utilisant leurs catégories sous-jacentes.

En interprétant l’application de quotient de la section 3.3.5 comme une version de l’appli-

cation d’intégration, il est possible de construire des versions motiviques des algèbres de Hall

semi-dérivées, du moins dans une certaine généralité. Pour une catégorie abélienne faiblement de

Gorenstein de la dimension de Gorenstein 1, nous trouvons que l’algèbre de Hall de sa structure

de modèle de Gorenstein projective est l’image sous cette application d’intégration de l’algèbre

de Hall (classique) de la catégorie abélienne. L’algèbre de Hall motivique de la catégorie moèle

est l’image de l’application d’intégration de l’algèbre de Hall motivique de la catégorie abélienne,

lorsque cette dernière est bien définie. Nous ne présentons pas les détails dans la thèse.

Cela couvre le cas des catégories singulières de Nakajima introduites par Keller-Scherotzke

[40] et Scherotzke [67]. Ils les ont introduites afin d’étudier les variétés carquois graduées et

généralisées via les méthodes de l’algèbre homologique de Gorenstein, généralisant les travaux de

Kimura-Qin [41] et de Leclerc-Plamondon [47]. Les versions géométriques des algèbres de Hall

correspondantes (en termes de faisceaux perverses) ont été étudiées dans les travaux de Qin [61] et

de Scherotzke-Sibilla [66], voir aussi [77] [31] [47] pour la relation avec l’anneau de Grothendieck

dual (tordue) d’une catégorie tensorielle de certaines représentations de l’algèbre affine quantique

dans le cas gradué.

En généralisant la définition des groupes quantiques via des anneaux quantifiés de fonctions

sur des groupes de Poisson-Lie, les fonctions régulières sur certaines variétés de Poisson peuvent

être comprises en termes d’algèbres amassées, qui sont à leur tour liées aux algèbres de Hall.

Récemment, des groupes quantiques ont été plongés dans les anneaux de fonctions régulières

sur certains espaces de modules de systèmes locaux sur des surfaces, voir [22] et les références

qui y figurent. Il semble probable que [22, Theorem 2.19] puisse être généralisée au cas des m

points spéciaux en remplaçant U√q(g) par les algèbres de Hall semi-dérivées Z/m−graduées de

représentations du carquois correspondant.
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0.6 Historical context

Hall algebras provide one of the first known examples of additive categorification. They first

appeared in works of Steinitz [74] and Hall [27] on commutative finite p-groups. Later, they reap-

peared in the work of Ringel [64] on quantum groups. He introduced the notion of the Hall algebra

of an abelian category with finite dimensional Hom- and Ext1-spaces. As a vector space, it has

a basis parametrized by the isomorphism classes of objects in the category. The multiplication

captures information about the extensions between objects. One can consider this as an algebra of

constructible functions on the moduli stack of objects in the category, with the convolution product

given by the Hecke correspondences.

Ringel constructed an isomorphism between the twisted Hall algebra of the category of repre-

sentations of a simply-laced Dynkin quiver Q over the finite field Fq and the nilpotent part of the

corresponding quantum group, specialized at the square root of q :

U√q(n+)
∼→ Htw(repFq(Q)).

Later Green [26] generalized this result to an arbitrary valued quiver Q by providing an isomor-

phism between the nilpotent part of the quantized universal enveloping algebra of the correspon-

ding Kac-Moody algebra and the so-called “composition” subalgebra inHtw(repFq(Q)) generated

by the classes of simple objects. Using the Grothendieck group of the category of quiver represen-

tations, he introduced an extended version of the Hall algebra which recovers the Borel part of the

quantum group. Moreover, Green [loc. cit.] constructed the comultiplication and Xiao [78] gave

the antipode in this twisted extended Hall algebra that made it a self-dual Hopf algebra.

Lusztig [53] investigated the geometric version of a composition subalgebra in the Hall al-

gebra Htw(repFq(Q)), using perverse sheaves on moduli spaces of quiver representations. This

is an example of monoidal categorification, where the tensor product in a certain monoidal cate-

gory gives rise to the multiplication in the algebra. This approach led him to the discovery of the

canonical basis in U√q(n+) satisfying very pleasant positivity properties.

Other interesting examples of Hall algebras are those of categories of coherent sheaves on

schemes. They were first considered by Kapranov in [34], where he linked Hall algebras of co-

herent sheaves on curves to the study of automorphic forms. Since then, Hall algebras of coherent

21
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sheaves have been studied intensively and turned out to be related to the geometric Langlands

conjecture, Cherednik algebras, knot invariants, etc.

The results of Ringel and Green gave rise to a natural question : whether one can realize the

whole quantum group U√q(g) as a certain Hall algebra? It was soon understood that this algebra

should be somehow associated to the 2-periodic, or Z/2-graded, derived category of the abelian ca-

tegory of quiver representations. In this hypothetical construction, two copies of repFq(Q) should

provide the two nilpotent parts of the quantum group, while the Cartan part should be recovered

from the Grothendieck group. The obstacle was that this 2-periodic category is not abelian, but

rather triangulated. It turned out that the definition of Ringel should have been modified in order

to provide associative Hall algebras associated, in some way, to triangulated categories.

These ideas motivated several generalizations of Ringel’s construction. Peng-Xiao [59] reco-

vered Lie Kac-Moody algebras from 2-periodic derived categories and, more generally, Hall Lie

algebras from 2-periodic triangulated categories. Unfortunately, in their approach, the Cartan part

and the rule of its commutation with the nilpotent parts appear in a quite ad hoc way. Hubery [33]

proved that the algebra defined in the same way as by Ringel, but for an exact category, is also

unital and associative. Kapranov [35] introduced a version of the Hall algebra for the bounded

derived category of a hereditary abelian category and for its part with cohomologies concentrated

in degrees 0 and 1. The latter provided a Heisenberg double of U√q(b+) that is closely related to

U√q(g) but does not coincide with it ; in particular, this Heisenberg double does not have a Hopf

algebra structure which is a very important property of U√q(g).

Toën [75] gave a construction of what he called derived Hall algebras for DG-enhanced trian-

gulated categories satisfying certain finiteness conditions. Xiao and Xu showed that this construc-

tion provides an associative unital algebra using only the axioms of triangulated categories. The

dual construction, defined on motivic functions (instead of constructible ones) on the moduli stack

of objects in a triangulated A∞ category was introduced by Kontsevich and Soibelman. In these

works, the “correction” that turns the Ringel product into an associative one is given by multi-

plying it by the truncated Euler form of the factors. Unfortunately, the finiteness conditions one

imposes on a category in order to define its (motivic) derived Hall algebra are quite restrictive :

they do hold for bounded derived categories of Hom-finite abelian or exact categories, but they are

not satisfied for any periodic triangulated category. More precisely, this truncated Euler form is an

infinite product which does not stabilize in the periodic case. Therefore, none of this techniques

can give a satisfactory construction of U√q(g) as a Hall algebra of some kind.

The first solution was found by Bridgeland [5]. He considered the localization of an appropria-

tely twisted Hall algebra of the category of 2-periodic complexes with projective (in repFq(Q))

components at the classes of all contractible complexes. He defined a certain reduction of this

localization and denoted it byDHred(repFq(Q)). He constructed an embedding from U√q(g) into

DHred(A), where A is the category of quiver representations ; it is an isomorphism exactly in

the Dynkin case. He conjectured that this construction provides the Drinfeld double of the twis-

ted extended Hall algebra Htw(A) for any hereditary category A having enough projectives and
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satisfying natural finiteness conditions. This was proved by Yanagida [82].

0.7 Extended Hall algebras and localization of categories

We give a vast generalization of Bridgeland’s construction and relate it to the derived Hall

algebras of Toën. It unifies the approaches from [24] and [23] that form chapters 2 and 4. The

general philosophy is the following. We notice that the truncated Euler form might not be the only

possible choice of the correction factor : one can formulate the precise restriction on possible fac-

tors. Permitting ourselves to consider extended Hall algebras, we get more freedom in this choice.

On the level of algebras, we get a free module over an appropriately twisted group algebra of some

group G. In Bridgeland’s algebras, the twisted group algebras realize quantum Cartan subalgebras

in Ut(g). Thus, the idea is to consider twisted and extended derived Hall algebras, even when their

non-extended counterparts or corresponding twists are not well-defined. More precisely, to each

abelian extension Ñ of the additive Grothendieck group of a triangulated category T by an abe-

lian group G and each bilinear form φ on the pre-image N of the positive cone satisfying certain

natural conditions, we associate an algebraH(T ,N , φ).We prove that it is associative, unital, and

behaves naturally under the change of N and φ. We show that after twisting its multiplication,

H(T ,N , φ) decomposes as a flat deformation of the derived Hall algebra of T over the group

algebra of G when the derived Hall algebra and the twist are well-defined. The crucial modifi-

cation of the classical construction of extended Hall algebras (of abelian categories) is that the

non-extended algebra, even if it is well-defined, forms only a quotient of Htw(T ,N , φ) and not

necessarily a subalgebra :Htw(T ,N , φ) is a non-trivial flat deformation.

Our proof is an ad hoc modification of the proof of the associativity of the derived Hall algebras

as presented by Xiao and Xu in [80]. In their construction, the truncated Euler form of T first

appears in the following way : their alternating product for elements of a distinguished triangle

A → B → C → ΣA as the first, resp. the second argument counts the number of elements of a

certain set. We note that this set is finite whenever the triangulated category in question is Hom-

finite, one does not need to require the left (or right) local homological finiteness. It turns out

that if we consider lifts of classes of A,B and C in N , this set can be counted as the alternating

product of values of the form φ. The rest of the Xiao-Xu proof works perfectly, up to the change

of truncated Euler forms in T by the form φ. The crucial elements in the proof are the lifts of

homotopy cartesian squares.

In a certain generality, we can define the idempotented form of a twisted extended Hall algebra.

In the case of 2−periodic derived categories of quiver representations, it is closely related to the

algebra
·
U of Lusztig.

It turns out that considering a triangulated category as a localization of an exact (or another tri-

angulated) category gives a natural source of such extended versions of Hall algebras. The category

of 2-periodic complexes with projective components is Frobenius when endowed with a natural

exact structure. That means that this exact category has enough projectives, enough injectives, and
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these two classes of objects coincide. Its stable category (the category with the same set of objects

and with morphisms being quotients of morphisms in the Frobenius category by those factoring

through projective-injectives) is the 2-periodic homotopy category of the full subcategory P(A)

of projectives in A. If A has enough projectives, the latter category is equivalent to the 2-periodic

derived category of A. Thus, Bridgeland’s construction can be seen from the following perspec-

tive : we have a triangulated category T = DZ/2(A) for which the derived Hall algebra is not

defined, as the finiteness conditions are not satisfied. Then the correct substitute, in some sense, is

given by the following rule : one finds a Frobenius category CZ/2(P(A)), whose stable category is

equivalent to T , and for which the classical Hall algebra (as of an exact category) is well-defined.

Then one takes this Hall algebra and localizes it at the classes of all projective-injective objects.

In [24], we consider an arbitrary Frobenius category F satisfying some finiteness conditions.

We define the semi-derived Hall algebra SH(F ,P(F)) as the localization ofH(F) at the classes

of all projective-injective objects and establish the following properties.

Theorem 0.7.1. [24]

(i) The algebras SH(F ,P(F)) are functorial under fully faithful morphisms of Frobenius

categories.

(ii) SH(F ,P(F)) is a free module over the group algebra of the Grothendieck group of

the full subcategory P(F) of projective-injective objects twisted by the Euler form. Any

choice of representatives in F of the isomorphism classes of objects in the stable category

F yields a basis of this module.

(iii) SH(F ,P(F)) with an appropriately twisted multiplication is a flat deformation of the

derived Hall algebra of F over the group algebra of K0(P(F)), when the latter is well-

defined.

Bridgeland’s construction demonstrates that in some situations SH(F ,P(F)) is well-defined

while the derived Hall algebra of F and the twist are not. The category of complexes with pro-

jective components is not the most appropriate though : it is not derived invariant. We prove the

derived invariance of Bridgeland’s algebras. In particular, we get a categorical interpretation of

Bernstein-Gelfand-Ponomarev reflection functors. In order to study Drinfeld doubles of Hall al-

gebras of coherent sheaves, one has to work with periodic derived categories of abelian categories

without enough projectives. We show how to generalize the analogue of Bridgeland’s construction

for bounded derived categories to a class including categories of coherent sheaves. This construc-

tion was modified by Lu and Peng in [49] : they adapt it to define Hall algebras for the 2-periodic

derived categories of hereditary abelian categories, generalizing the work of Bridgeland.

In the case of derived categories of hereditary abelian categories, we have a non-trivial obser-

vation : the semi-derived Hall algebra (or the algebra of Lu and Peng) is, up to a twist, a quotient

of a localized Hall algebra of the category of complexes. This quotient map can be understood as

a relative version of the integration map defined by Reineke [63].

In general, Frobenius models of triangulated categories are often not the most convenient to

work with. In chapter 3, we generalize this construction to other models, or enhancements, of
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triangulated categories. Given an exact category E with weak equivalences W, some additional

structures may ensure that the localized category E [W−1] is triangulated. In particular, this hap-

pens ifW can be completed to the structure of a hereditary exact model categoryM on E , or when

the underlying category of E has a smaller Frobenius exact structure and the full subcategoryW
of weakly trivial objects forms a Frobenius subcategory. Both of these classes of exact categories

with weak equivalences naturally generalize the case of Frobenius categories. When E andW sa-

tisfy some finiteness conditions, we construct a unital associative algebra H(E ,W) and prove the

following theorem.

Theorem 0.7.2. (i) H(E ,W) is a free module over the group algebra of the numerical Gro-

thendieck group of the full subcategory of weakly trivial objects Knum
0 (W) twisted by the

Euler form. Any choice of representatives in E of the isomorphism classes of objects in the

category E [W−1] yields a basis of this module.

(ii) H(E ,W) with an appropriately twisted multiplication is a flat deformation of the derived

Hall algebra of E [W−1] over the group algebra of Knum
0 (W), when the derived Hall

algebra is well-defined.

(iii) The algebras H(E ,W) are functorial under exact functors inducing equivalences in

E [W−1].

(iv) When E is Frobenius and W is the full subcategory of projective-injective objects, we

recover the previous definition :H(E ,W) = SH(F ,P(F)).

The twist is given by the quotient of the Euler forms on E and on E [W−1], when those are

well-defined. We get an algebra over the group ring of Knum
0 (W).

The idea behind the definition of the algebra H(E ,W) is to consider the full subcategory of

weakly trivial objects W as if it were split exact, which happens when E is Frobenius and W
is the full subcategory of projective-injective objects. When we localize the exact category E ,
these objects become isomorphic to 0. But we know that the class of the 0 object is the unit of

our algebra. This suggests that weakly trivial objects should be invertible in our algebra, and not

vanish as one might expect.

In the presence of some type of “relative replacements”, we have another proof of associativity

of our H(E ,W). By replacing the factors with these “replacements”, we can reduce the associa-

tivity problem of the usual Hall algebra of the (exact) category E . Historically, this was the first

construction of semi-derived Hall algebras defined in [23] for the categories of complexes. Even

if the algebra thus defined is, in principle, covered by the new definition, we present the second

construction to emphasize the interaction between the Hall algebras of exact and of triangulated

categories and their associativity.

0.8 Heart property and its substitute

One of the important properties of the derived Hall algebras is the so-called "heart property".

Let T be a triangulated category whose derived Hall algebraDH(T ) is well-defined. If T admits a
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bounded t−structure with a heartA, Toën [75] proved that the embedding functorA → T induces

an embedding of the Hall algebra of the heart into DH(T ) :

H(A) ↪→ DH(T ).

Theorem 0.7.2 implies that Hall algebras of exact categories with weak equivalences can be seen

as twisted extended Hall algebras of triangulated categories. We have a natural analogue of the

heart property in this setting.

Corollary 0.8.1. Let A be a heart of a bounded t−structure on a category E [W−1]. Let Ã be the

full exact subcategory of E consisting of all objects whose image under the localization belongs to

A. Then we have an embedding

H(Ã) ↪→ H(E ,W),

and the algebraHtw(Ã) is a flat deformation ofH(A) over QKnum
0 (W), where the twist is given

by the form
〈−,−〉Ã
〈−,−〉A

=
〈−,−〉E

〈−,−〉E[W−1]

.

More generally, we have the following result.

Corollary 0.8.2. Let E ′ be a fully exact subcategory of E such that E ′[W−1] is an extension closed

subcategory of E [W−1]. Then we have an embedding

H(E ′,W) ↪→ H(E ,W),

and the algebraHtw(E ′,W) is a flat deformation ofH(E ′[W−1]) over (QKnum
0 (E ′ ∩W), where

the twist is given by the form

〈−,−〉E ′
〈−,−〉E ′[W−1]

=
〈−,−〉E

〈−,−〉E[W−1]

.

If T is periodic, it does not have any bounded t−structure. For periodic derived categories of

abelian categoriesDm(A), we are still interested in the relation between the twisted extended Hall

algebras of Dm(A) and of A. We prove that for an abelian category A, the classes of m−periodic

complexes quasi-isomorphic to stalk complexes concentrated in degree 0 form an extension-closed

subcategory ofDm(A) if and only if gl dim(A) ≤ m. They always form a fully exact subcategory

of Cm(A) that we denote Ã, as in the bounded case. We have well-defined cohomologies H i, i =

0, . . . ,m−1,with values inA, and from the long exact sequence it follows that the complexes with

cohomologies concentrated in degree 0 always form a fully exact subcategory C0
m(A) of Cm(A)

closed under quasi-isomorphisms and their classes form an extension-closed subcategory D0
m(A)

of Dm(A). Thus, we have the following result.
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Theorem 0.8.3. Let A be an Fq −linear abelian category of finite global dimen-

sion with finite Hom− and Exti−space, for all i > 0. Then the Hall algebras

H(A),H(Cm(A), qis),H(C0
m(A), qis) are well-defined.

(i) We have an embedding

H(Ã) ↪→ H(Cm(A), qis),

and the algebra

Htw(Ã)

is a flat deformation ofH(A) over

QKnum
0 (Cm,ac(A))

∼→
m⊗
i=1

Knum
0 (A),

if and only if gl dim(A) ≤ m.
(ii) We have an embedding

H(C0
m(A), qis) ↪→ H(Cm(A), qis)

together with isomorphisms

Htw(C0
m(A), qis)

∼→ H(D0
m(A))⊗QKnum

0 (Cm,ac(A))
∼→ H(A)⊗

m⊗
i=1

Knum
0 (A),

for all A.

Geng and Peng [21] proved the existence of the embedding and the isomorphisms in part (i) for

A having enough projectives and of gl dim ≤ 2 and m being equal to 2. They used Bridgeland’s

construction of twisted extended Hall algebras of periodic derived categories.

Theorem 4.4.3 suggests that the algebrasH(C0
m(A), qis) and their twisted versions can be seen

as natural substitutes of H(A) when thinking of periodic derived categories. The multiplication

there involves higher extensions in the category A. The case of 2−periodic derived categories

seems to be the most important by many reasons. It seems possible, although not necessarily

probable, that the algebras H(C2(A), qis) and H(C0
2(A), qis) with aproppriate twists may have a

Hopf algebra structure beyond the hereditary case.

0.9 Reduction of exact structures and degeneration of Hall algebras

In Section 5.1, we present results of joint work with Xin Fang [25].

An additive category A can be endowed with many different exact structures. It is then a

natural question to ask whether the Hall algebras of these different exact structures are related

between each other. The following theorem gives an answer for the categories of finite type (that

is, having finitely many indecomposables up to isomorphism).
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Theorem 0.9.1. LetA be a Hom−finite idempotent complete k−linear additive category of finite

type. Suppose A is endowed with two exact structures E ′ < E . Then the Hall algebra H(E ′) of E ′

is a degeneration of the Hall algebraH(E) of E , with respect to a filtration given by a function on

the set Iso(A). This function is defined as w(M) = dim Hom(
⊕

P∈ind(P(E ′))
P,M).

Thanks to works of Enomoto [16][17], one can classify exact structures in many situations

when A has finitely many indecomposable objects. This covers the cases of the category of repre-

sentations of a Dynkin quiver and its category of 2-periodic complexes. In the first case, we prove

that the degenerations of the Hall algebra of the abelian category given by smaller exact structures

are precisely the degenerations defined in [14]. In particular, the split exact structure corresponds

to a q−commutative polynomial algebra, and we recover the famous PBW theorem in this quan-

tized setting. Thus, Theorem 0.9.1 can be though of as a generalization of PBW theorem in the

framework of Hall algebras.

In Section 5.2, we discuss the possible applications to quantum groups and Drinfeld doubles

by means of changing exact structures on the category of 2-periodic complexes.

0.10 Further remarks

It is worth to note that an additive category A with weak equivalences W can be endowed

with many exact structures E compatible withW. Thus, it can, a priori, give rise to many twisted

extended Hall algebras of E [W−1] = A[W−1]. For such an algebra to be defined, an exact category

E must satisfy certain conditions, restricting our choice. Let us consider the case of the category

of complexes over an abelian category of finite global dimension, with quasi-isomorphisms taken

as weak equivalences. The component-wise split (Frobenius) exact structure does not satisfy these

conditions, but they hold for the component-wise (abelian) exact structure. More generally, in all

the examples known to the author, there is actually a natural choice of an exact structure satisfying

these conditions.

Kontsevich [42] suggested a construction of a twisted extended Hall algebra for a class of

triangulated orbit categories that does not use their exact models (details may appear elsewhere).

It seems that to each such triangulated category one associates a unique algebra, and in the case of

2-periodic derived categories one recovers the algebras constructed via categories of complexes.

This suggests the existence of the canonical choice of an extension and a bilinear form on it, thus

defining a twisted extended Hall algebra for every triangulated category (satisfying aproppriate

finiteness conditions) in a canonical way.

Let us note that we can associate Hall algebras to localizations of triangulated categories si-

milarly to our construction for localizations of exact categories. Recently, Nakaoka and Palu [58]

introduced a common generalization of exact and triangulated categories : extriangulated catego-

ries. These categories are defined in such a way that many properties related to localization in exact

or triangulated categories hold for them as well. In particular, one has a version of Hovey’s cor-
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respondence between model structures and cotorsion pairs for extriangulated categories. It seems

that extriangulated categories should give the most natural setting to study twisted extended Hall

algebras via localization of additive categories. Notably, homotopy cartesian squares that are the

crucial ingredients of our construction appear in the setting of extriangulated categories as part of

their axiomatics.

It seems well-established by now that there is a lot of deep phenomena of higher categorical

nature behind the Hall algebras captured by so-called 2-Segal spaces defined by Dyckerhoff and

Kapranov [12]. It is associated by Waldhausen S•−construction to an exact∞−category. Howe-

ver, as noted in [11], Hall algebras themselves depend only on the underlying additive category.

We see that the most important diagrams that we use in triangulated categories are homotopy car-

tesian squares that are rather of 1−categorical nature. This is one of the reasons why the author

strongly preferred to keep this thesis in the realm of additive categories.

Without changing our optique, we can also associate twisted extended Hall algebras to locali-

zation pairs of pre-triangulated differential graded categories with split idempotents by using their

underlying categories.

By interpreting the quotient map from section 3.3.5 as a version of the integration map, one

can construct motivic versions of the semi-derived Hall algebras at least in some generality. For

a weakly Gorenstein abelian category of Gorenstein dimension 1, we find that the Hall algebra of

its Gorenstein projective model structure is the image under this integration map of the (classical)

Hall algebra of the abelian category. Then the motivic Hall algebra of the model category is the

image under the integration map of the motivic Hall algebra of the abelian category, whenever the

latter is well-defined. We do not present the details in the thesis.

This covers the case of singular Nakajima categories introduced by Keller-Scherotzke [40] and

Scherotzke [67]. They introduced them in order to study graded and generalized quiver varieties

via the methods of Gorenstein homological algebra methods, generalizing works of Kimura-Qin

[41] and Leclerc-Plamondon [47]. The geometric versions of the corresponding Hall algebras (in

terms of perverse sheaves) in some cases have been studied in works of Qin [61] and Scherotzke-

Sibilla [66], see also [77][31][47] for the relation to the (twisted) dual Grothendieck ring of a

tensor category of certain representations of the quantum loop algebra in the graded case.

Generalizing the definition of quantum groups via quantized rings of functions on Poisson-Lie

groups, regular functions on certain Poisson varieties can be understood in terms of cluster algebras

that are, in turn, related to the (dual) Hall algebras. Recently, quantum groups were embedded into

rings of regular functions on certain moduli spaces of local systems on surfaces, see [22] and

references therein. It seems probable that [22, Theorem 2.19] can be generalized to the case of

boundary components with m special points by replacing U√q(g) with the Z/m−graded semi-

derived Hall algebras of representations of the corresponding quiver.
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Chapitre 1

Preliminaries

All the categories in this thesis are assumed to be additive.

1.1 Exact categories

In an additive category A a pair of morphisms

A // i // B
p // // C,

is said to be exact or a kernel-cokernel pair, if i is a kernel of p and p is a cokernel of i. An exact

category in the sense of Quillen is an additive category A endowed with a class E of exact pairs,

closed under isomorphism and satisfying the following axioms :

[E0] For each object E ∈ A, the identity morphism 1E is an inflation.

[E0op] For each object E ∈ A, the identity morphism 1E is a deflation.

[E1] The class of inflations is closed under composition.

[E1op] The class of deflations is closed under composition.

[E2] The push-out of an inflation along an arbitrary morphism exists and yields an inflation.

[E2op] The pull-back of a deflation along an arbitrary morphism exists and yields a deflation.

Here an inflation is a morphism i for which there exists p such that (i, p) belongs to E . It

is also called an admissible monic, or an admissible monomorphism. Deflations (or admissible

epics, or admissible epimorphisms) are defined dually. We depict admissible monics by � and

admissible epics by � in diagrams. Exact pairs belonging to E are called conflations, or admissible

exact sequences. An inflation which is simultaneously a deflation is an isomorphism. By abuse of

notation, we will denote an exact category (A, E) simply by E and call A its underlying additive

category.

Remark 1.1.1. This set of axioms is not minimal, cf. [37], [7]. There are also slightly different

notions of exact categories, but in case when A is weakly idempotent complete, i.e. retractions

have kernels, all of them coincide, cf. [7]. We will always assume that A is idempotent complete,

31
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i.e. idempotents have kernels, which is an even stronger condition, cf. below.

Any abelian category has a canonical structure of an exact category. In this case, the class of

conflations coincides with the class of all exact pairs. If E and E ′ are exact categories, an exact

functor E → E ′ is an additive functor taking conflations of E to conflations of E ′. A fully exact

subcategory of an exact category E is a full additive subcategory E ′ ⊂ E which is closed under

extensions, i.e. if it contains the end terms of a conflation of E , it also contains the middle term.

Then E ′ endowed with the conflations of E having their terms in E ′ is an exact category, and the

inclusion E ′ ↪→ E is a fully faithful exact functor.

Note that one additive category may be endowed with a lot of different exact structures. One

can consider any additive category A as an exact category with a split exact structure : namely,

one can take all split exact sequences as the set of conflations. If A is an abelian category that is

not semi-simple, its split exact structure differs from the abelian one. All possible exact structures

are between these two : the class of conflations is necessarily contained in the class of all exact

pairs and contains all split exacts pairs. In other words, the split exact structure is the minimal one

and the abelian exact structure is the maximal one. More discussion and the precise statement can

be found in [13], for the case with no abelian structure see [65] and [10] and references therein.

We say that E is idempotent complete, or that idempotents split in E , if Kere exists in E for each

idempotent e : E → E . Any abelian category is idempotent complete. Note that the idempotent

completeness is a property of an additive category rather than of its exact structure. In particular,

if we take an idempotent complete exact category and endow it with a bigger exact structure (by

enlarging its class of conflations), the new exact category still will be idempotent complete. Also,

if an additive category can be endowed with an abelian structure, it is idempotent complete. One

can find a classification of exact structures on an idempotent complete additive categoryA in terms

of Serre subcategories of the category of finitely generated A−modules and its opposite category

in [16].

We will assume that E is idempotent complete, linear over some field k and essentially small.

Suppose that for all objects A,B ∈ E , we have dim(Hom(A,B)) < ∞. Then it is known that

E is a Krull-Schmidt category. That is, each object decomposes into a finite direct sum of inde-

composables in a unique way, up to permutation, and each of the indecomposables has a local

endomorphism ring.

To each essentially small exact category E , one associates its Grothedieck groupK0(E) defined

in the same way as in the case of abelian categories : it is the free abelian group on the set of

isomorphism classes Iso(E) modulo the relations [B] = [A]+[C] for all conflationsA� B � C.

In particular, to each additive category A, one associates the Grothendieck group of its split exact

structure. It is called the additive, or split Grothendieck group of A. We denote it Kadd
0 (A), it is

also often denoted Ksplit
0 (A) or K0(A,⊕). Each exact (or triangulated) category E (resp. T ) is

additive. Thus, we have an additive Grothendieck group of its underlying additive category. By

abuse of notation, we denote it Kadd
0 (E) (resp. Kadd

0 (T )). It is known that for a Krull-Schmidt

category, its additive Grothendieck group is freely generated by the classes of indecomposable
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objects. When an additive category is endowed with two different exact structures E and E ′, where

E ′ is larger than E (i.e. the class of conflations in E ′ contains the class of conflations in E), it

follows that the Grothendieck group K0(E ′) is a quotient of the Grothendieck group K0(E). In

particular, for each essentially small exact category E , its Grothendieck group K0(E) is a quotient

of Kadd
0 (E). If E can be endowed with an abelian structureA, then K0(A) is a quotient of K0(E).

One can also associate Grothendieck monoids to exact and triangulated categories. The Gro-

thendieck monoid M0(E) is defined as the quotient of the free commutative monoid on the set

Iso(E) by the congruence [B] ∼ [A] + [C] for all conflations A � B � C. For a triangulated

category, the definition is similar. The Grothendieck group is the group completion of the Gro-

thendieck monoid. The positive cone (or effective submonoid) in a Grothendieck group consists

of classes of objects. We will denote it by K0,+(E). For E non-abelian, M0(E) is not necessarily

cancellative, and K0,+(E) is isomorphic to its maximal cancellative quotient, see [18]. For any

additive category A, we have an isomorphism Madd
0 (A)

∼→ Kadd
0,+ (A).

Various diagram lemmas hold in exact categories, e.g. the 3−lemma and the five-lemma do,

[7]. We will use the second one, in the following form.

Lemma 1.1.2 ([7, Corollary 3.2]). Consider a morphism of conflations

A

a

��

// // B

b
��

// // C

c

��

A′ // // B′ // // C ′.

If a and c are isomorphisms (or admissible monics, or admissible epics) then so is b.

Given an exact category E , we define various additive categories of complexes

C(E), C±(E), Cb(E) over it as in the abelian case. Each of these categories has various exact struc-

tures, but two of them are the most natural : component-wise exact and component-wise split. If

not specified, we will use the first one and denote the corresponding exact categories simply by

C(E), C±(E), Cb(E). These exact categories are abelian. The categories with the component-wise

split exact structure will be denoted by Ccs(E), C±cs(E), Cbcs(E). The third interesting exact structure

is defined only for E = A abelian. Its class of conflations was introduced in order to construct the

Cartan-Eilenberg resolutions. The fact this defines an exact category is proved in [45, Remark 8,

Remark 9]. Following [15], we call it the Cartan-Eilenberg, or the CE exact structure 1.

Definition 1.1.3. We say that a short component-wise exact sequence A· � B· � C · of com-

plexes over an abelian category is CE exact, if at any degree i, the sequence Zi(A•)
f i→ Zi(B•)

gi→
Zi(C•) is short exact, where Zi are the i−th cycles.

1. The properties of the conflations in this structure were also considered by Maclane [54] under the name of proper
short exact sequences. Thus, calling it the Maclane exact structure would also make sense.
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We define homotopies between morphisms of complexes and the (bounded) homotopy cate-

gory Kb(E) of an exact category in the natural way. Null-homotopic complexes are also called

contractible. The category Kb(E) has a canonical triangulated structure, cf. [38].

A complex K• over E is acyclic in degree n if dn−1
K factors as

Kn−1

pn−1 ## ##

dn−1
K // Kn

Zn−1,

<< in−1

<<

where pn−1 is a cokernel for dn−2 and a deflation, and in−1 is a kernel for dn and an inflation.

The complex K is acyclic if it is acyclic in each degree. Since E is idempotent complete, any

contractible complex is acyclic. A morphism is a quasi-isomorphism if its mapping cone is acyclic.

Given this notion, we define the (bounded) derived category Db(E) as in the abelian case. We can

also define quasi-isomorphisms in Kb(E) as the morphisms s arising in triangles A→ B
s→ C →

ΣA, where Σ is the suspension (or shift) functor and A is an acyclic complex in Kb(E). Using

the category Db(E), we define derived functors as in the abelian case. The Yoneda construction of

higher extensions generalizes from the case of abelian categories to the exact case. This definition

of higher extensions agrees with that as of derived functors of the functor Hom, as in the abelian

case. An exact category E is hereditary, if all higher extensions vanish in E :

Exti(A,B) = 0, ∀i > 1, ∀A,B ∈ E .

1.2 Exact categories with weak equivalences

An exact category with weak equivalences is an exact category E together with a class

W ⊂ Mor E of morphisms in E . The morphisms in W are called weak equivalences. The set

of weak equivalences is required to contain all identity morphisms ; to be closed under isomor-

phisms, retracts, push-outs along inflations, pull-backs along deflations ; and to satisfy the “two

out of three” property for composition : if two of the three maps among a, b, ab are weak equiva-

lences, then so is the third.

For an exact category with weak equivalences (E ,W ), writeW ⊂ E for the full subcategory

of weakly acyclic, or weakly trivial objects, that is, those objects E of E for which the unique map

0 → E is a weak equivalence. The categoryW is closed under extensions in E , and thus inherits

an exact structure from E such that the inclusionW ⊂ E is fully exact.

We will consider two classes of exact categories with weak equivalences and some extra struc-

ture : Frobenius pairs with larger exact structures and hereditary exact model categories (these

notions in the following sections). In both of these cases, the category W is known to be closed
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under retracts and, in particular, under isomorphisms. Moreover, such an extra structure ensures

that the category E [W−1] is triangulated.

1.3 Frobenius and stable categories

Recall that in an exact category F an object P is called projective, if Ext1
F (P,X) = 0 for any

object X ∈ F . Injective objects are defined in the dual way. An exact category F is Frobenius, if

it has enough projectives and enough injectives and if, moreover, an object is projective if and only

if it is injective. Let F be a Frobenius category, P(F) the full subcategory of projective-injective

objects in F . We define the stable category F of F . The objects of F are the same as the objects

of F , and the morphism spaces HomF (X,Y ) are the morphism spaces in F modulo morphisms

factoring through projective-injective objects. The stable category F is a triangulated category in

a natural way [28]. By declaring weak equivalences to be morphisms that induce isomorphisms in

the stable category, we get a structure of an exact category with weak equivalences on F .
A triangulated category T is called algebraic if it is equivalent to the stable category of a

Frobenius category F . In this case, one says also that F is a Frobenius model for T .
The first and the main example of a Frobenius category is the category of complexes C]cs

with the component-wise split exact structure, where ] ∈ {b,−,+, _} . Its stable category is the

corresponding homotopy category K](E). Indeed, one can easily see that contractible complexes

and only they are projective (and injective).

1.4 Hereditary exact model categories and Hovey triples

In this subsection, we recall the definition of exact model categories (in particular, heredi-

tary) and formulate the Hovey correspondence relating them to cotorsion pairs in this setting.

The concept is mainly due to Hovey [32] for abelian categories, and it was generalized to exact

categories by Gillespie [19][20]. We also follow works of Becker [2][3].

Let A be an additive category. It is called bicomplete if it posesses all small limits and coli-

mits. A model structure on a category A is a triple of classes of morphisms (Cof,W,Fib), called

cofibrations, weak equivalences and fibrations, satisfying certain axioms. A model category is

a bicomplete category endowed with a model structure. An object X is called weakly trivial if

0 → X ∈ W (equivalently, X → 0 ∈ W ). Similarly, it is called cofibrant if 0 → X ∈ Cof , and

it is called fibrant if X → 0 ∈ Fib . It is called bifibrant if it is both fibrant and cofibrant. The

classes of cofibrant, weakly trivial, and fibrant objects will be denoted C,W and F , respectively.

There is a notion of a reasonable compatibility between exact and model structures :

Definition 1.4.1. A model structure on a (weakly) idempotent complete exact category is called

exact if cofibrations equal inflations with cofibrant cokernel and fibrations equal deflations with

fibrant kernel. An exact model category is a bicomplete exact category equipped with an exact

model structure.
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Hovey’s correspondence proved by Hovey and Gillespie for abelian, resp. weakly idempotent

complete exact categories, implies that for exact model categories, the axioms on the classes of

morphisms (Cof,W,Fib) are equivalent to certain conditions on the classes of objects (C,W,F).

This explains why we did not present here the set of axioms on (Cof,W,Fib). Instead, we will

formulate the correspondence and the conditions on (C,W,F) providing exact model structures.

To describe those, we need to recall the notion of cotorsion pairs.

Definition 1.4.2. A cotorsion pair in E is a pair of classes (X ,Y) of objects in E satisfying the

following two conditions :

(1) X =⊥ Y =:
{
X ∈ E | Ext1(X,Y) = 0

}
;

(2) Y = X⊥ =:
{
Y ∈ E | Ext1(X , Y ) = 0

}
.

The cotorsion pair is called complete if for any E ∈ E , there exists a conflation Y � X � E

with X ∈ X and Y ∈ Y , and another conflation E � Y ′ � X ′ with X ′ ∈ X and Y ′ ∈ Y .

The first sequence in the definition of complete cotorsion pairs generalizes the concept of

having enough projectives while the second generalizes the concept of having enough injectives.

To state Hovey’s correspondence, we call a class of objects thick if it is closed under direct

summands and satisfies that whenever two out of three terms in a short exact sequence are in it,

then so is the third.

Theorem 1.4.3. (Hovey’s Correspondence [32, Theorem 2.2][19][20]). Let E be a weakly idem-

potent complete exact category with the classes (C,W,F) of cofibrant, weakly trivial and fibrant

objects. ThenW is a thick class in E and both (C,W∩F) and (C ∩W,F) are complete cotorsion

pairs in E . Conversely, given a thick classW and classes C and F such that both (C,W ∩F) and

(C ∩W,F) are complete cotorsion pairs, then there is an exact model structure on E where C are

the cofibrant objects,W are the trivial, and F are the fibrant objects.

An exact model structure is called projective if every object is fibrant and injective if every

object is cofibrant.

In model categories, there is a concept generalizing projecive and injective resolutions : co-

fibrant and fibrant replacements. For an object E in an exact model category, those are given

by CE and FE, where W � CE � E and E � FE � W ′ are any conflations with

W ∈ W ∩ F , CE ∈ C,W ′ ∈ C ∩ W, FE ∈ F . FCE is called a bifibrant replacement of

E.

Model categories were introduced as a class of categories with weak equivalences where the

localization behaves reasonably well. To each model category M, one associates its homotopy

category Ho(M), defined via bifibrant replacements of objects and equivalent to the localization

of the underlying category ofM at weakly trivial objects. Whenever a model category is stable, its

homotopy category is triangulated in a natural way. For exact model categories, the natural source

of triangulated homotopy categories is defined as follows.

Definition 1.4.4. A cotorsion pair (X ,Y) is hereditary if X is closed under taking kernels of

epimorphisms between objects in X and Y is closed under taking cokernels of monomorphisms
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between objects in Y . An exact model structure is hereditary when the two associated cotorsion

pairs in Hovey’s correspondence are hereditary.

Gillespie proved that each hereditary exact model category is stable. Therefore, its homotopy

category is triangulated in a natural way. Moreover, one has the following description of this

triangulated category.

Proposition 1.4.5. [19][20] LetM be a hereditary exact model structure on a weakly idempotent

exact category E . Then the full subcategory of bifibrant objects C ∩ F , endowed with the exact

structure inherited from E , is Frobenius. Its class of projective-injective objects coincides with

the class of weakly trivial bifibrant objects C ∩ W ∩ F . The embedding of the stable category

C ∩ F ↪→ Ho(M)
∼→ E [W−1] induced by the embedding C ∩ F ↪→ E is a triangle equivalence.

Its inverse is given by the bifibrant replacement.

The following result is proved by Becker in the abelian case, but the proof works in the case

of (weakly) idempotent complete exact categories as well.

Theorem 1.4.6. [3, Proposition II.C.1.1, Corollary II.C.1.2, Corollary II.C.1.5] Each conflation

A � B � C in E induces a distinguished triangle A → B → C → ΣA in the homotopy

category Ho(M), and any distinguished triangle is isomorphic to such a triangle.

By using the calculus of fractions if necessary, for any A,C ∈ E [W−1], we can represent any

equivalence class of distinguished triangles in Ext1
E[W−1](C,A) by a diagram of the form

A // // B′ // // C ′

����

C,

(1.1)

with A� B′ � C ′ a conflation in E , C ′ � C a deflation weak equivalence.

1.5 Frobenius pairs with larger exact structure

A morphism 2 of Frobenius categories is an exact functor that preserves projective-injective

objects. A pair (F ,F0) of Frobenius categories F and F0 together with a fully exact embedding

E0 ↪→ E is called a Frobenius pair. Without loss of generality, we always assume that F0 contains

all projective-injective objects of F . A map of Frobenius pairs (F ,F0) → (F ′,F ′0) is defined

similarly : it is an exact functor E → E ′ that preserves projective-injective objects and that maps

F0 intoF ′0.Given a Frobenius pair (F ,F0),we have a fully faithful triangulated functorF0 ↪→ F .
The corresponding Verdier quotient is called the derived category D(E , E0) of the Frobenius pair

(F ,F0). The full subcategory in F of objects that become isomorphic to 0 in D(F ,F0) can be

2. It is called a map of Frobenius categories by Schlichting [70]
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easily shown to be Frobenius with P(F) as projective-injective objects, and it contains F0, so

under our assumption it is F0. Similarly to the case of Frobenius categories, we can consider F
as an exact category with weak equivalencesW whose localization is D(F ,F0). The category of

weakly trivial objects coincides with F0.

Endow the underlying category of F with larger, that is, having more conflations, exact struc-

ture E in such a way that the objects of F0 form a full exact subcategory E0. Then the class of

weak equivalences W is compatible with the exact structure E , i.e (E ,W) is an exact category

with weak equivalences as defined earlier. The category E [W−1] = F [W−1] is triangulated : it is

the derived category D(F ,F0).

Note that for each object A, we have an inflation A � W and a deflation W ′ � A, with

W,W ′ weakly trivial : by definition of Frobenius categories, we can find W injective and W ′

projective with respect to F .

Theorem 1.4.6 naturally translates to this setting.

Theorem 1.5.1. Each conflation A � B � C in E induces a distinguished triangle A →
B → C → ΣA in the category E [W−1], and every distinguished triangle is isomorphic to such a

triangle.

Proof. As we noted earlier, A fits into a conflation A�W � A′, with W weakly trivial. We can

form the push-out and complete it to a commutative diagram of the form

A // //
��

��

B // //
��

��

C

W // //

����

D // //

����

C

A′ A′

(1.2)

Then the morphism D � C becomes invertible in the localized category, and by composing its

inverse with the morphism D � A′, we get a morphism C → A′ in E [W−1]. In E [W−1], the

object A′ is isomorphic to the shift of A. Thus, the diagram 1.2 induces a triangle A → B →
C → A′ in E [W−1].

By calculus of fractions applied toF0 ↪→ F ,we see that each triangle in E [W−1] = D(F ,F0)

is isomorphic to a triangle that arises in this way, for a conflation A � B � C in F (and,

therefore, in E). �

As in the case of model categories, for any A,C ∈ E [W−1], we can represent any equivalence

class of distinguished triangles in Ext1
E[W−1](C,A) by a diagram of the form (1.1). We can actually

take A� B′ � C ′ to be a conflation in the smaller exact structure F .
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1.6 Hall algebras and Euler forms

Let E be an essentially small exact category, linear over a finite field k. Assume that E has

finite morphism and (first) extension spaces :

|Hom(A,B)| <∞, |Ext1(A,B)| <∞, ∀A,B ∈ E .

Given objects A,B,C ∈ A, define Ext1(A,C)B ⊂ Ext1(A,C) as the subset parameterizing

extensions whose middle term is isomorphic to B. We define the Hall algebra H(E) to be the

Q−vector space whose basis is formed by the isomorphism classes [A] of objects A of E , with the

multiplication defined by

[A] � [C] =
∑

B∈Iso(E)

|Ext1(A,C)B|
|Hom(A,C)|

[B].

The following result was proved by Ringel [64] for E abelian, and later by Hubery [33] for E
exact. The definition ofH(E) is also due to Ringel.

Theorem 1.6.1. The algebra H(E) is associative and unital. The unit is given by [0], where 0 is

the zero object of E .

Remark 1.6.2. The choice of the structure constants |Ext1E(A,B)C |
|HomE(A,B)| is the one that was used by

Bridgeland [5]. This choice is equivalent to that of the usual structure constants |{B′ ⊂ C|B′ ∼=
B,C/B′ ∼= A}|, called the Hall numbers and appearing in [64],[68] and [33]. See [5, §2.3] for

the details. More precisely, the usual Hall algebra carries a natural coalgebra structure. Our choice

of the structure constants actually defines the dual algebra of the Hall coalgebra. It is known that

this dual algebra and the usual Hall algebra are naturally isomorphic, see [80] for the details.

For twisted and extended Hall algebras defined below, one has to tensor H(E) with Q(ν), for

ν =
√
q, and consider it as an algebra over Q(ν). By abuse of notation, we will use the same

notationH(E) for this new algebra, and we will not usually specify which of the two we consider.

Assume that E is locally homologically finite and that all higher extension spaces are finite :

∀A,B ∈ E ∃p0 : Extp(A,B) = 0, ∀p > p0;

|Extp(A,B)| <∞, ∀p ≥ 0, ∀A,B ∈ E .

For objects A,B ∈ E , we define the Euler form

〈A,B〉 :=
∏
i∈Z
|ExtiE(A,B)|(−1)i .

It is well known and easy to check that this form descends to a bilinear form on the Grothendieck
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group K0(E) of E , denoted by the same symbol :

〈·, ·〉K0(E)×K0(E)→ Q×.

Given this bilinear form, one defines a ν−deformation of the Hall algebra. The twisted Hall

algebraHtw(E) is the same vector space over Q(ν) asH(E), with the twisted multiplication

[A] ∗ [B] :=
√
〈A,B〉 · [A] � [B], ∀A,B ∈ Iso(E). (1.3)

The twisted extended Hall algebra Hetw(E) is defined as the extension of Htw(E) obtained by

adjoining symbols Kα for all classes α ∈ K0(E), and imposing relations

Kα ∗Kβ = Kα+β, Kα ∗ [B] =
√

(α,B) · [B] ∗Kα,

for α, β ∈ K0(E) and B ∈ Iso(E). Of course, we can construct Hetw(E) from H(E) in a different

order : first adjoin symbols Kα and impose relations

Kα �Kβ =
1√
〈α, β〉

Kα+β, Kα � [B] = [B] �Kα,

defining the extended Hall algebra He(E), and then twist the multiplication by the Euler form.

Note that He(E) has by definition a module structure over the twisted group algebra of K0(E),

where the multiplication in the last one is twisted by the inverse of the Euler form.

Famous theorems due to Green and Xiao state that ifA is abelian and hereditary, thenHetw(A)

admits a structure of a self-dual Hopf algebra (see [68, Sections 1.4-1.7] and references therein).

1.7 Derived Hall algebras and Euler forms

In [75], Toën defined a version of Hall algebras for certain class of dg-enhanced triangula-

ted categories. He called these objects derived Hall algebras. This work was further generali-

zed by Xiao and Xu [79] for triangulated categories without assumptions on the existence of a

dg-enhancement. The construction is as follows. Let T be an essentially small triangulated cate-

gory, linear over a finite field k. We also assume that T has finite morphism spaces. We denote

the shift functor in T by Σ. As usual, the space of i−th extensions of X by Y is defined as

ExtiT (X,Y ) = HomT (X,ΣiY ), for X,Y ∈ T and for i ∈ Z. Assume that T is left locally

homologically finite, that is, it satisfies the following property : for each pair of objects A,B ∈ F ,
there exists N ∈ N, such that for each i > N, we have

|Ext−i(A,B)| = 0.

The derived Hall algebraDH(T ) is the Q−vector space whose basis is formed by the isomor-
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phism classes [A] of objects A of T , with the multiplication defined by

[A] � [C] =
∑

B∈Iso(T )

|Ext1
T (A,C)B|

|HomT (A,C)|
∏
i>0

|Ext−iT (A,C)|(−1)(i−1)
[B].

Here the set Ext1
T (A,C)B is defined as in the exact case.

Theorem 1.7.1. [75][79][80] The algebra DH(T ) is associative and unital. The unit is given by

[0], where 0 is the zero object of T .

As in the subsection 2.1, our choice of structure constants is not the one given by Toën but an

equivalent and slightly renormalized one. It is due to Kontsevich-Soibelman [43], cf. also [80]. In

this dual point of view, the elements of DH(T ) are interpreted as finite (signed) measures instead

of finitely supported functions.

1.8 Flat deformations

For an abelian group G, its group algebra QG is an augmented Q−algebra. Its augmentation

ideal I(G) is the subpace spanned by {g − 1|g ∈ G} . It is naturally a two-sided ideal. A flat

G-deformation of A, or a flat deformation of A over QG is an algebra B over QG which is a

free QG-module, together with an isomorphism B/I(G)→ A of algebras. Any Q−algebra has a

trivial flat deformation A⊗C QG.
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Chapitre 2

Semi-derived Hall algebras of
Frobenius categories

2.1 Semi-derived Hall algebras for stable categories

Assume that a Frobenius category F satisfies the following conditions :

(C1) F is essentially small, idempotent complete and linear over some ground field k;

(C2) F is Hom−finite. That is, for each pair of objects A,B ∈ F , we have

|Hom(A,B)| <∞.

Note that these assumptions ensure that F is Krull-Schmidt. Moreover, it is known that if F
is Krull-Schmidt, then its stable category F is also Krull-Schmidt. We prove the following lemma

similar to [28, 2.3].

Lemma 2.1.1. All extension spaces in the category F coincide with those in the stable category

F . Explicitly, for any M,N ∈ F , the canonical map :

ExtpF (M,N)→ ExtpF (M,N)

is bijective for all p > 0.

Proof. By definition of the triangulated structure on the stable category F , we have a family of

conflations

Σ−iM � P (Σ−i−1M) � Σ−i−1M, i ∈ Z,

where P (Σ−i−1M) belongs to P(F), Σ is the suspension functor in F . Thus, the complex

R(M)• = . . .→ P (Σ−2M)→ P (Σ−1M)→ P (M)→ 0

is a projective resolution of M in F . Therefore, extensions of M by N are exactly the homologies

43
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of the complex HomF (R(M)•, N), i.e. ExtpF (M,N) is the quotient of the set of morphisms

HomF (Σ−(p)M,N) by the subset of morphisms which factor through P (Σ−p−1M). This last

subset is, by definition, the full subset of HomF (Σ−(p)M,N) containing morphisms which factor

through a projective-injective object. Thus, we have an isomorphism

ExtpF (M,N)
∼→ HomF (Σ−(p)M,N).

The right hand side is nothing but HomF (M,ΣpN), that is equal to ExtpF (M,N). �

Corollary 2.1.2. If a Frobenius category F satisfies condition (C2), it is also Extp−finite, for any

p > 0. That is, for any M,N ∈ F and for any p > 0, we have

|ExtpF (M,N)| <∞.

Proof. By (the proof of) Lemma 2.1.1, we know that the set ExtpF (M,N) is a subquotient of the

set HomF (Σ−(p)M,N). The latter being finite, so is the former. �

It follows that the classical Hall algebra H(C) of the exact category F satisfying conditions

(C1) and (C2) is well-defined.

A morphism of Frobenius categories F : F ′ → F induces an exact functor between the

stable categories F : F ′ → F [28, 2.6]. If F is fully faithful then F is fully faithful as well, see,

e.g., [46, Remark 7]. Following [68], we say that an exact functor G : A → B between exact

categories is extremely faithful, if it induces isomorphisms Exti(M,N)
∼→ Exti(G(M), G(N)),

for all M,N ∈ A and all i ≥ 0. By Lemma 2.1.1, extensions in Frobenius categories are certain

morphisms in their stable categories. Therefore, we can make the following observation.

Lemma 2.1.3. Any fully faithful morphism F : F ′ → F between Frobenius categories is extre-

mely faithful.

Let F : F ′ → F be an exact functor. It induces a natural linear map of vector spaces

F∗ : H(F ′)→ H(F), [M ] 7→ [F (M)].

In general, it is not a morphism of algebras. Nonetheless, by [68, Corollary 1.16] and Lemma

2.1.3, we get the following result about the functoriality of Hall algebras.

Corollary 2.1.4. If F : F ′ → F is a fully faithful morphism between essentially small

Hom−finite Frobenius categories, then F∗ is an embedding of algebras.

Since the exact structure on the category P(F) of projective-injectives in F splits, the Euler

form on K0(P(F)) = Ksplit
0 (P(F)) is well-defined and is given on classes of objects simply as

the cardinality of morphism spaces :

〈·, ·〉 : K0(P(F))×K0(P(F))→ Q×, 〈A,B〉 = |Hom(A,B)|, for A,B ∈ P(F).
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Similarly, the Euler form is well-defined and given by the same formula on K0(P(F)) ×
K0(F) and onK0(F)×K0(P(F)).We define the quantum torus of projective-injectives T(P(F))

as the group algebra of K0(P(F)) with the multiplication twisted by the Euler form. For any

P ∈ P(F), C ∈ F , their products in the Hall algebraH(F) take very simple form :

[P ] � [C] =
1

|Hom(P,C)|
[P ⊕ C] =

1

〈P,C〉
[P ⊕ C];

[C] � [P ] =
1

|Hom(C,P )|
[P ⊕ C] =

1

〈C,P 〉
[P ⊕ C].

It follows that the set of all classes of the form [P ], for P ∈ P(F), satisfies the Ore conditions in

this algebra. Therefore, we can localizeH(F) at these classes.

Definition 2.1.5. The semi-derived Hall algebra of the pair (F ,P(F)) is the localization ofH(C)
at the classes of all projective-injective objects :

SDH(F ,P(F)) := H(F)[[P ]−1|P ∈ P(F)].

By definition, SDH(F ,P(F)) is an associative unital algebra, where the unit is given by [0],

0 being the zero object of F . Moreover, by its definition, it satisfies the following functoriality

property.

Proposition 2.1.6. If F : F ′ → F is a fully faithful morphism between essen-

tially small Hom−finite Frobenius categories, then F∗ induces an embedding of algebras

SDH(F ′,P(F ′)) ↪→ SDH(F ,P(F)).

We have natural left and right actions of T(P(F)) on SDH(F ,P(F)) given by the Hall

product. Let us denote byM(F) this bimodule structure on SDH(F ,P(F)).

Theorem 2.1.7. Assume that F satisfies conditions (C1) and (C2). Then M(F) is a free right

(resp. left) module over T(P(F)). Each choice of representatives in F of the isomorphism classes

of the stable category F yields a basis.

Proof. Assume that the images in F of two objects M,M ′ from F are isomorphic. Since the

image P(F) of P(F) in F is contained in the isomorphism class of 0, we have

F = F/P(F).

This means that there is a sequence of objects M0 = M,M1,M2, . . . ,Mn = M ′ in F , such that

for each i = 1, 2, . . . , n there is either a conflation

P �Mi−1

qis
�Mi,

or a conflation

P �Mi

qis
�Mi−1,
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with P projective. Therefore, we either have

[Mi] = [P ⊕Mi−1] = |Hom(P,Mi−1)|[P ] � [Mi−1],

or

[Mi−1] = [P ⊕Mi] = |Hom(K,Mi)|[K] � [Mi]⇒ [Mi] =
1

|Hom(K,Mi)|
[K]−1 � [Mi−1].

It follows that [M ′] ∈ T(P(F))� [M ]. Therefore, (the representatives of) the isomorphism classes

in the stable category F generate M(F) over T(P(F)). It remains to prove that they are inde-

pendent over this quantum torus.

One can decomposeM(F) into the direct sum

M(F) =
⊕

α∈Iso(F)

Mα(F),

whereMα(F) is the component containing the classes of all objects whose isomorphism class in

F is α. We claim that for each α, the T(P(F))−submoduleMα(F) is free of rank one. Let M

be an object of F . By the above argument, the map

T(P(F))→M[M ](F), [K] 7→ [K] � [M ] (2.1)

is surjective. Since T(P(F)) is the (twisted) group algebra of K0(P(F)), Lemma 2.1.8 below

shows that its composition with the natural map

M[M ](F)→M(F)→ Q[Ksplit
0 (F)]

is injective. Here, the last map is the identity on objects ; it is well-defined, since M(F) has a

natural grading by the group Ksplit
0 (F). Therefore, the map (2.1) is bijective, q.e.d. �

Lemma 2.1.8. Under conditions of Theorem 2.1.7, the natural map

i : K0(P(F))→ Ksplit
0 (F), [M ] 7→ [M ]

is injective.

Proof. Since F is Krull-Schmidt, one can define the “projective part” of an object in E : each

object M ∈ F can be decomposed in a unique way (up to a permutation of factors) into a finite

direct sum of indecomposables :

M =

m(M)⊕
i=1

Mi ⊕
k(M)⊕
j=1

M ′j ,
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where all Mi belong to P(F) while the M ′j do not. Then

φ : Ksplit
0 (F) � Ksplit

0 (P(F)) = K0(P(F)), [M ] 7→
m(M)⊕
i=1

Mi

is a well-defined group epimorphism, and we get

φ ◦ i = IdK0(P(F)).

�

Theorem 2.1.9. Let F ′,F be two Frobenius categories satisfying assumptions (C1) and (C2),

P ′,P their full subcategories of projective-injective objects. Assume that

F : F ′ → F

is a fully faithful exact functor inducing an equivalence of the stable categories

F ′
F
∼→ F

and an isomorphism of the Grothendieck groups of projective-injectives

K0(P(F ′))
F
∼→ K0(P(F)). (2.2)

Then F induces an isomorphism of algebras

F∗ : SDH(F ′,P(F ′)) ∼→SDH(F ,P(F)).

Proof. Since F is fully faithful and induces the isomorphism (2.2), it also induces an isomorphism

of the quantum tori of projective-injectives :

T(P(F ′))
F
∼→ T(P(F)).

Therefore, by Theorem 2.1.7, F induces an isomorphism

M(F ′) ∼→M(F)

of the free modules over isomorphic quantum tori with bases which are in bijection by the stable

equivalence. By the full faithfulness and Lemma 2.1.1, the multiplication is preserved as well, i.e.

F induces the desired isomorphism of algebras. �
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2.2 Semi-derived vs. derived Hall algebras

Let F be a Frobenius category satisfying conditions (C1), (C2). As before, we denote by F
its stable category. It is evidently Hom−finite, since its morphism spaces are subquotients of the

morphism spaces in F . Assume that F is left locally homologically finite.

We introduce the relative Euler form

〈·, ·〉(F ,F) : K0(F)×K0(F)→ Q

by the following rule : for each pair A,B ∈ F , we pose

〈A,B〉(F ,F) =
|HomF (A,B)|
|HomF (A,B)

·
∏
i>0

|Ext−iF (A,C)|(−1)(i−1)
.

Lemma 2.2.1. The form

〈·, ·〉(F ,F)

is a well-defined group homomorphism.

Proof. The statement follows from Lemma 2.1.1 and the comparison of long exact sequences of

extensions in F and F . Consider an arbitrary conflation

A1 � A2 � A3

in the category F . For any B ∈ F , we have two long exact sequences of extensions of elements

of this conflation by B : the sequence of extensions in F and the one of those in F :

0→ HomF (A3, B)→ HomF (A2, B)→ HomF (A1, B)
f→

Ext1
F (A3, B)→ Ext1

F (A2, B)→ Ext1
F (A1, B)→ . . . ;

(2.3)

. . .Ext−1
F (A3, B)→ Ext−1

F (A2, B)→ Ext−1
F (A1, B)

g→

HomF (A3, B)→ HomF (A2, B)→ HomF (A1, B)→ (2.4)

Ext1
F (A3, B)→ Ext1

F (A3, B)→ Ext1
F (A3, B) . . . .

By lemma 2.1.1, any term of the form ExtiF (Aj , B), with i > 0, j = 1, 2, 3, is isomorphic to

its counterpart in the second sequence. Thus, we have an isomorphism Ker(f)
∼→ Ker(g). We

have two exact sequences to the left of Ker(f) in (2.3), respectively of Ker(g) in (2.4), and find

out that the alternating products of their terms both equal 1. Hence their quotient equals 1 as well.

On the other hand, it coincides with

〈A1, B〉(F ,F) ·
1

〈A2, B〉(F ,F)

· 〈A3, B〉(F ,F) .
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The statement follows from this and from the dual result concerning 〈B,Ai〉(F ,F) , which has a

similar proof. �

It is easy to see that, by Lemma 2.2.1, one can twist the multiplication in SDH(F ,P(F)) by

the rule

A ∗B := 〈A,B〉(F ,F)A �B.

We call the result the twisted semi-derived Hall algebra SDH(F ,P(F))tw.

We are ready now to present the main result of this section comparing our construction with

derived Hall algebras.

Theorem 2.2.2. Assume that a Frobenius category F satisfies properties (C1) and (C2), and

its stable category F is left locally homologically finite. Then SDH(F ,P(F))tw is a flat

Q[K0(P(F))])−deformation of DH(F). Each choice of representatives in F of the isomorphism

classes of the stable category F yields an isomorphism

SDH(F ,P(F))tw/I(K0(P(F)))
∼→ DH(F).

Proof. As a vector space, DH(F) has the basis parameterized by the isomorphism classes of

objects inF . By Theorem 2.1.7 and by the choice of the twist, SDH(F ,P(F))tw is a free module

over Q[K0(P(F))]. Moreover, each choice of representatives in F of the isomorphism classes of

the stable category F yields a basis of this module. Therefore, SDH(F ,P(F))tw/I(K0(P(F)))

is the same Q−vector space as DH(F). It remains to show that the multiplicative structures are

the same on both sides. By lemma 2.1.1, the sets Ext1
F (A,B)C and Ext1

F (A,B)C are isomorphic

for any triple of objects A,B,C ∈ F . Now the statement follows from the form of the structure

constants in SDH(F ,P(F)) and in DH(F), by the choice of the twist. �

2.3 Examples

Example 2.3.1. F is the category of bounded (or m-periodic complexes) over an exact category

E , with the component-wise split exact structure. This is a Frobenius category, whose stable cate-

gory is the bounded (resp. m−periodic) homotopy category Hb(E) (res. HZ/m(E)). If E satisfies

conditions (C1) and (C2), so doHb(E) andHZ/m(E). There, our construction provides a Hall-like

algebra for bounded and periodic homotopy categories.

Example 2.3.2. F = Cb(P(E)), where P(E) is the full subcategory of projective objects in an

exact category E with enough projectives and where each object has finite projective resolution.

Then the stable category F is equivalent to the bounded derived category Db(E). Therefore, our

construction provides a version of the Hall algebra for the bounded derived categoryDb(E). It was

introduced by the author in [23] and called the “semi-derived Hall algebra of E”. See Chapter 4

for the detailed treatment.
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Example 2.3.3. F is the category of m−periodic complexes over P(E), for m > 1. As in the

previous example, the stable category is equivalent the m−periodic derived category DZ/m(E).

As DZ/m(E) is an m−periodic triangulated category, it is never left locally homologically finite.

Therefore, one cannot define its derived Hall algebra, and neither the twist nor the right-hand side

in the identity in Theorem 2.2.2 are well-defined. On the other hand, the construction presented in

this work provides an associative algebra. The case of m = 2 was first considered in the work of

Bridgeland [5] that provided the main inspiration to our work, see also [23]. Yanagida [82] proved

the conjecture of Bridgeland [5] that, under certain conditions and for E abelian, this algebra

with an appropriate twist provides the Drinfeld double of the twisted extended Hall algebra of E .

The generic version of such an algebra (in the abelian case, but for an arbitrary positive m) was

introduced in [9]. Zhao [83] proved that for E abelian, the category DZ/m(E) is equivalent to the

generalized root category of E , see references in [loc. cit]. Therefore, the algebra (that we call in

[23] “the Z/m−graded semi-derived Hall algebra of E”) is also the substitute of the non-defined

derived Hall algebra of the root category. See Chapter 4.

Example 2.3.4. Dually, we can take as F the category of bounded or periodic complexes over

the full subcategory of injectives in an exact category E with enough injectives and where each

object has finite injective resolution. The corresponding stable category is again equivalent to the

bounded (resp. periodic) derived category of E , so we get an algebra isomorphic to the one from

previous examples.

Example 2.3.5. Let D be a differential graded (DG) category. We freely use basic facts on DG

categories that can be found, e.g., in surveys [39] and [76]. One can define the category Cdg(D)

of DG modules over D and the derived category Ddg(D). There is a Yoneda embedding of D into

Cdg(D). One says that D is pretriangulated if the image of the Yoneda embedding is closed under

taking cones of morphisms and under the shift functor. One can show that D is pretriangulated

if and only if its underlying category Z0(D) is Frobenius ; in such a case the stable category of

the latter is the homotopy categoryH0(D). Then the Yoneda embedding induces an embedding of

H0(D) into the full subcategory per(D) of perfect (and, equivalently, compact) objects inDdg(D).

This perfect derived category is then the idempotent completion of H0(D). Thus, if H0(D) is

idempotent complete, then we have an equivalenceH0(D)
∼→ per(D).When this condition holds,

one says that D is a triangulated DG category, or that D is saturated, or Morita fibrant. The latter

notion reflects the fact that there exists a model structure on the category of DG categories, s.t.

triangulated DG categories are precisely the fibrant objects. This model structure is called the

Morita model structure. It is known that each DG category has a Morita fibrant replacement, i.e.

that it is Morita equivalent to a triangulated DG category, cf. [76].

For a triangulated category T , by an enhancement one understands a triangulated DG cate-

gory D with a triangulated equivalence T ∼→ per(D). It is known that an idempotent complete

triangulated category is algebraic if and only if it has an enhancement : if for T there exists a

Frobenius category F , s.t. T ∼→ F , then one can endow the category of the complexes with
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projective-injective components in P(F) with a natural DG category structure, such that the cor-

responding homotopy category H0(Cdg(P(F))) will be equivalent to T . If D is pretriangulated

and a Frobenius category Z0(D) is idempotent complete, then its stable category H0(D) is idem-

potent complete as well, and D is triangulated. We can apply our main theorems to the case of

such DG categories.

Corollary 2.3.6. Let D,D′ be a pair of triangulated DG categories whose underlying categories

Z0(D), Z0(D′) satisfy conditions (C1) and (C2). If a DG functor F : D′ → D induces a fully

faithful map of the underlying categories, then it induces an embedding of algebras

F∗ : SDH(Z0(D′)),P((Z0(D′))) ↪→ SDH(Z0(D)),P((Z0(D))).

If, moreover, F induces an equivalence of perfect derived categories per(D′) ∼→ per(D) and an

isomorphism of the Grothendieck groups K0(P((Z0(D′)) ∼→ P((Z0(D)), then F∗ is an isomor-

phism of algebras.
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Chapitre 3

Twisted extended Hall algebras of
triangulated categories

3.1 Twisted extended Hall algebras of triangulated categories

Let T be a Hom−finite, small, idempotent complete, Fq−linear triangulated category. In this

section, we denote its objects by underlined letters. For a pair of objects A,B ∈ T , for each

element ε of the set Ext1
T (A,B), the isomorphism class of the cone of the correspondig morphism

A → ΣB is well-defined. We denote by mt(ε) the isomorphism class of its shift by −1. Recall

that Madd
0 (T )

∼→ Kadd
0,+ (T )

∼→ (Iso(T ),⊕). Denote the canonical projection Kadd
0 (T ) � K0(T )

by πT .

Suppose that we have the following datum :

(i) A short exact sequence of abelian groups

G
i
↪→ Ñ

π
� Kadd

0 (T );

(ii) A multiplicative bilinear form φ : Ñ × Ñ → Q×.
Since i is injective, we identify the elements of the group G with their images in Ñ .
LetN be the preimageN = π−1(Kadd

0,+ (T )). It is a commutative monoid, and since it embeds

into a group, it is cancellative. For elements of N , we can understand their images under π as

isomorphism classes in T .
For all A,B,C ∈ N , each ε ∈ Ext1

T (π(A), π(B)) induces linear maps

fCε : Hom(π(B), π(C))→ Ext1(π(A), π(C));

hCε : Hom(π(C), π(A))→ Ext1(π(C), π(B));

kCε : Ext1(π(A), π(C))→ Ext1(mt(ε), π(C));

lCε : Ext1(π(C), π(B))→ Ext1(π(C),mt(ε)).

53
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From the long exact sequences associated to ε and C, we get that

Im(fCε ) = Ker(kCε ); Im(hCε ) = Ker(lCε ).

Suppose that the following conditions on datum (i)-(ii) are satisfied :

(C1) For all A,B ∈ N , there is a map EA,B : Ext1
T (π(A), π(B)) → N , such that

π(EA,B(ε)) = mt(ε) and

Eg+A,g′+B(ε) = g + g′ + EA,B(ε), ∀g, g′ ∈ G;

(C2) For all A,B,C ∈ N , for all ε ∈ Ext1
T (π(A), π(B)), we have the following identities :

φ(A+B,C)

φ(EA,B(ε), C)
= |Ker(kCε )|; (3.1)

φ(C,A+B)

φ(C,EA,B(ε))
= |Ker(lCε )|. (3.2)

For N ∈ N , let us denote by Ext1
T (π(A), π(B))N the subset E−1

A,B(N) ⊂
Ext1

T (π(A), π(B)). We have a decomposition

Ext1(A,B) =
∐
N

Ext1(A,B)N .

Let V (T ,N , φ) be a Q−vector space with a basis {[N ]} parameterized by elements N ∈ N .
We define the Hall algebra H(T ,N , φ) to be the vector space V endowed with the multipli-

cation defined by the formula

[A] � [B] = φ(A,B)
∑

ε∈Ext1T (π(A),π(B))

[EA,B(ε)] =

= φ(A,B)
∑
N∈N

Ext1
T (π(A), π(B))N [N ].

Remark 3.1.1. Since Kadd
0 (T ) is a free abelian group, the short exact sequence from (i) splits.

However, we need more information than just the direct sum G ⊕ Kadd
0 (T ), so we describe our

construction this way.

Note that if one of the factors belongs to (the image of) the groupG, the multiplication is given

by the formulas :

[g] � [B] = φ(g,B)[g +B], [B] � [g] = φ(B, g)[g +B]. (3.3)

Theorem 3.1.2. H(T ,N , φ) is an associative unital algebra.
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Proof. Our proof is an easy modification of the proof of the associtiativity of derived Hall algebras ;

we follow [79][80].

Assume that we have a homotopy cartesian square in T

F
f ′ //

m′
��

H

m
��

B
f // E,

(3.4)

By the octahedral axiom, it can be completed to a commutative diagram of the following form :

C

��

C

��

F
f ′ //

m′
��

H //

m
��

A // F [1]

��

B
f //

ν
��

E //

µ
��

A
ε // B[1]

C[1] C[1],

(3.5)

for some A,C ∈ T , and with rows and columns being distinguished triangles. Fix lifts

A,B,C ∈ N of A,B and C. Let us denote EA,B(ε) by E, EB,C(ν) by F. Then we have

E = π(E), F = π(E).

This determines a lift H ∈ N of H. Namely, H = EE,F (α) − B, where α is the class of the

extension corresponding to the homotopy cartesian square 3.4. Then π(H) = H. The diagram

(3.5) can be rewritten as follows :

π(C)

��

π(C)

��

π(F )
f ′ //

m′
��

π(H) //

m
��

π(A)
δ // π(F )[1]

��

π(B)
f //

��

π(E) //

µ
��

π(A)
ε // π(B)[1]

π(C)[1] π(C)[1].

(3.6)
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Fix A,B,C,E, F and H. Slightly modifying notation of [80], denote by Ext1(A,B)FE the

subgroup of Ext1(A,B)E given by those morphisms that appear in (the third row of) diagrams of

the form (3.5), for some f, f ′,m,m′. We have a decomposition

Ext1(A,B)E =
∐
F

Ext1(A,B)FE .

For each ε ∈ Ext1(A,B)FE ,we define Ext1(E,C)ε,FH to be the subgroup of Ext1(E,C)G given by

those morphisms µ that appear in (the second column of) diagrams of the form (3.5) with ε being

the morphism A → B[1] in the third row, for some f, f ′,m,m′. In other words, Ext1(E,C)ε,FH
consists of morphisms µ that appear in (the second column of) diagrams of the form (3.5) with ε

being the morphism A → B[1] in the third row for some f, f ′,m,m′. We define Ext1(B,C)EF
and Ext1(A,F )ν,EH in a similar way. The same proof as in [80] provides the following result.

Lemma 3.1.3. [80, cf. The symmetry-II]

(i) Fix ε ∈ Ext1(π(A), π(B))FE , then there exists a surjective map

f∗ : Ext1(π(E), π(C))ε,FG → Ext1(π(B), π(C))EF

such that the cardinality of any fibre is

|(f∗)−1| = |Ext1(π(A), π(C))| × | Im(fCε )| = |Hom(π(A), π(C)[1])| φ(A+B,C)

φ(EA,B(ε), C)
.

(ii) Fix ν ∈ Ext1(π(B), π(C))
π(E)
π(F ), then there exists a surjective map

m′∗ : Ext1(π(A), π(F ))
ν,π(E)
π(H) → Ext1(π(A), π(B))

π(F )
π(E)

such that the cardinality of any fibre is

|(m′∗)−1| = |Ext1(π(A), π(C))| × | Im(hCε )| = |Hom(π(A), π(C)[1])| φ(A,B + C)

φ(A,EB,C(µ))
;

To be more precise, in [80] the authors proved the first identities in (i) and (ii) for

Ext1(π(A), π(B))
π(F )
π(E). The argument applies for our case as well, because the maps we consi-

der are restrictions of surjective maps with fibers of fixed cardianlity given in [80]. The second

identities follow from the condition (C2) on the form φ.

To prove the associativity of the algebraH(T ,N , φ), we need to show that, for all A,B,C ∈
N , we have the following identity :

([A] � [B]) � [C] = [A] � ([B] � [C]). (3.7)
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The left hand side can be rewritten as follows :

([A] � [B]) � [C] = φ(A,B)
∑

ε∈Ext1T (π(A),π(B))

([EA,B(ε)] � [C]) =

= φ(A,B)
∑
E∈N

(
∑

ε∈Ext1T (A,B)E

([E] � [C])) = φ(A,B)
∑

E,F∈N
(

∑
ε∈Ext1T (A,B)FE

([E] � [C])) =

= φ(A,B)
∑

E,F,H∈N
(

∑
ε∈Ext1T (A,B)FE

φ(E,C)
∑

µ∈Ext1T (E,C)ε,FH

[H]) =

= φ(A,B)
∑

E,F,H∈N
(

∑
ε∈Ext1T (A,B)FE

φ(E,C)|Ext1
T (E,C)ε,FH |[H])

By part (i) of Lemma 3.1.3, this can be further rewritten as follows :∑
E,F,H∈N

(φ(A,B)φ(E,C)|Ext1
T (A,B)FE ||Ext1

T (B,C)EF ||Ext1
T (A,C)|φ(A+B,C)

φ(E,C) [H]) =

=
∑

E,F,H∈N
(φ(A,B)φ(A,C)φ(B,C)|Ext1

T (A,B)
F
E ||Ext1

T (B,C)
E
F ||Ext1

T (A,C)|[H]).

(3.8)

Using part (ii) of Lemma 3.1.3, we can rewrite the right hand side of (3.7) in a similar way and

obtain the same result (3.8). This proves the associativity ofH(T ,N , φ).

It is clear that the class of 0 ∈ N is the unit ofH(T ,N , φ). �

Remark 3.1.4. Note that G is a subgroup of the group of units of the monoidN . It seems that we

can slightly generalize our construction while keeping this observation in mind. Namely, we can

take N to be only unit-cancellative and modify the datum as follows :

(i’) A unit-cancellative commutative monoid N with the group of units G = N× and an

isomorphism N/G ∼→ Kadd
0,+ (T );

(ii’) A multiplicative bilinear form φ : Ñ × Ñ → Q×, for Ñ the group completion of N .

Our proof requires the cancellativity of the monoid N (we use it to determine the lift of H in-

side N ). However, it seems that the result might stay true if we use (i’)-(i”) instead of (i)-(ii). In

particular, in the case of algebras coming from exact categories with weak equivalences, in the

construction using replacements, the (alternative) proof uses different approach and does not refer

to the short exact sequence from (i) at all. The same is true for the semi-derived Hall algebras from

Chapter 2. Since this was the definition that appeared the first, we decided to keep it unchanged

in this thesis and use Grothendieck monoids instead of their cancellative quotients. By abuse of

notation, we denote all the algebras associated to data of type (i’)-(i”) in the same manner as the

algebras associated to data of type (i)-(ii) as above.

Remark 3.1.5. As shown below, starting from a Frobenius category F , we can recover the semi-

derived Hall algebra from [24] via this construction. Since the non-localized algebra H(F) is

still an associative unital algebra, it appears that at least some of the properties of these twisted

extended Hall algebras are preserved if we consider a monoid M instead of a group G in the
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definition. However, formulating precise statements concerning exact sequences of monoids is a

very tricky subject. Since in the most important examples we do have a suitable group, we decided

not to go deep into technical issues that appear if one wants to cover the case of monoids.

From the definition, we observe that the algebras thus defined admit natural gradings :

Proposition 3.1.6. H(T ,N , φ) is naturally graded by the quotient monoid N/ ∼T , where the

congruence T is generated by the relations

A+B ∼T EA,B,ε, ∀ A,B ∈ N , ε ∈ Ext1
T (π(A), π(B)).

It is also naturally graded by the quotient group Ñ/ ∼T .

The group Ñ/ ∼T is an abelian extension of the Grothendieck group K0(T ) by a certain

quotient of the group G. Contrary to Kadd
0 (T ), K0(T ) might not be free, and this extension is not

necessarily split, cf. Remark 3.1.1.

Clearly, we recover the usual derived Hall algebras :

Proposition 3.1.7. If T is left locally homologically finite, then H(T ,Madd
0 (T ), 〈·, ·〉≤0) is just

the derived Hall algebra DH(T ).

Assume that T is left locally homologically finite. Let H(T ,N , φ)tw be the twist of

H(T ,N , φ)tw by the form 1
φ(·,·)<·,·>≤0

.

Theorem 3.1.8. (i) H(T ,N , φ) is a free module over the group algebra QG twisted by the

form φ.

(ii) If T is left locally homologically finite, then for any N , φ satisfying conditions (C1) and

(C2),H(T ,N , φ)tw is a flat G− deformation of DH(T ).

Proof. The proof of part (i) is similar to the proof of Theorem 2.1.7. The classes in Madd
0 (T )

generateH(T ,N , φ) over the twisted group algebra. As a module,H(T ,N , φ) is naturally graded

by the monoid N . Then the embedding G ↪→ N demonstrates the freeness.

The proof of part (ii) is similar to the proof of Theorem 2.1.11. Because of part (i), it is enough

to show that the multiplication in H(T ,N , φ)tw/I(G) coincides with the one in DH(T ). This

follows directly from the definitions of these two algebras. �

By comparing the definitions, we immediately check that we recover all the algebras from

Chapter 2 as well.

Theorem 3.1.9. If F is a Frobenius category satisfying conditions (C1) and (C2) from Chapter 2,

the semi-derived Hall algebra SDH(F ,P(F)) is nothing but

H(F ,Madd
0 (F)[[P ]−1|P ∈ P(F)], 〈·, ·〉F ).
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In Section 3.3, we show that, more generally, exact categories E with weak equivalences W

whose localized categores E [W−1] =: T are triangulated naturally give rise to twisted extended

Hall algebras of T .

The algebras we defined behave naturally under the change of initial data.

Theorem 3.1.10. Assume that we have a commutative diagram

G1

��

// // Ñ1

��

// // Kadd
0 (T )

G2
// // Ñ1

// // Kadd
0 (T )

(3.9)

and bilinear forms φ1, φ2 on Ñ1, resp. on Ñ1. Assume that both of these data satisfy conditions

(C1) and (C2) so that the Hall algebras are defined. Than the diagram above induces a natural

algebra homomorphism

H(T ,N1, φ1)tw → H(T ,N1, φ1),

where the twist is given by the quotient φ2
φ1
. It is injective if the vertical arrows are monic and

surjective if they are epic.

The theorem follows from the definitions as in Chapter 2.

3.2 Idempotented forms

It follows from condition (C2) that for any A,B ∈ N , g ∈ G, ε ∈ Ext1
T (π(A), π(B)), we

have the identities

φ(A+B, g) = φ(EA,B,ε, g), φ(g,A+B) = φ(g,EA,B,ε). (3.10)

In other words, the bilinear form φ descends to a form onG×(Ñ/ ∼T ) and on (Ñ/ ∼T )×G.
Assume now that the following condition is satisfied.

(C3) The restriction of φ on G×G is trivial.

When (C3) holds, the value of form φ(A,B) clearly depends only on π(A) and π(B). By

identities (3.10), φ descends to a form G×K0(T ) and on K0(T )×G.

Consider an arbitrary embedding ih : K0(T ) → H, for some group H, such that the form φ

extends to a bilinear form on G×H → Q×. Let ψ be the anti-symmetrization of φ considered as

a form on G×H :

ψ : G×H → Q×, ψ(g, λ) =
φ(g, λ)

φ(λ, g)
. (3.11)

Assume that ψ is non-degenerate. By abuse of notation, for g ∈ G,B ∈ N , we will denote

ψ(g, ih ◦ πT ◦ π(B)) simply by ψ(g,B).
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In this setting, we can define an idempotented form of the algebra H(T ,N , φ). To avoid

overlong notations, until the end of this section, we will write simply H for H(T ,N , φ). For

λ′, λ′′ ∈ H, we set

λ′Hλ′′ = H
/〈

[g] � [B] = ψ(g, λ′)[B], [B] � [g] = ψ(λ′, g)[B] | g ∈ G,B ∈ N
〉
. (3.12)

Let πλ′,λ′′ be the canonical projection. By formulas (3.3), the relations are equivalent to setting

simultaneously

[g +B] =
ψ(g, λ′)

φ(g,B)
[B]

and

[g +B] =
ψ(g, λ′′)

φ(B, g)
[B].

By rewriting, we find that [B] and [g + B] can be non-zero in the quotient if and only if

ψ(g, λ′ − λ′′) = ψ(g,B). LetN (ν) be the subset of all B ∈ N whose image in K0(T ) under the

composition

Ñ
π
� Kadd

0 (T )
πT
� K0(T )

is ν. Consider the direct sum decomposition

H =
⊕

ν∈K0(T )

H(ν),

where H(ν) is a subspace with the basis {[B]|B ∈ N (ν)} . Since ψ is assumed to be non-

degenerate, the image of [B] ∈ H(ν) in λ′Ḣλ′′ is non-zero if and only if ν = λ′ − λ′′. When

this is satisfied, we have
ψ(g, λ′)

φ(g,B)
=
ψ(g, λ′′)

φ(B, g)
=
φ(g, λ′′)

φ(λ′, g)
.

We get that

λ′Hλ′′ = λ′H(ν)λ′′ =

= H(ν)

/〈
[g +B] =

φ(g, λ′′)

φ(λ′, g)
[B] | g ∈ G,B ∈ N (ν)

〉
,

for ν = λ′ − λ′′. We define Ḣ as the direct sum

Ḣ =
⊕
λ′,λ′′,ν

λ′H(ν)λ′′ .

It has a natural associative algebra structure inherited from that of H. It does not generally
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have the unit, but it has a family of orthogonal idempotents. Namely, for λ ∈ H, we set

1λ = πλ,λ([0]).

Then we have

1λ1λ′ = δλ
′
λ 1λ

and

λ′Hλ′′ = 1λ′Ḣ1λ′′ .

Thus, we have a decomposition

Ḣ =
⊕
λ′,λ′′,ν

1λ′Ḣ(ν)1λ′′ .

Recall that the summand 1λ′Ḣ(ν)1λ′′ is zero, unless λ′ − λ′′ = ν.

3.3 Hall algebras of exact categories with weak equivalences

From now on and until the end of the chapter, we assume that the following is satisfied :

(EW1) E is an essentially small, Hom−finite, idempotent complete, Fq−linear category.

(EW2) (E ,W) is an exact category with weak equivalences ; either a Frobenius pair with a

larger exact structure, or a hereditary exact model category. Let T := E [W−1] be the

localized triangulated category.

(EW3) For each A,B ∈ E , there exists N ∈ N such that

ExtiE(A,B)
∼→ ExtiT (A,B), ∀ i > N,

dim ExtjE(A,B) <∞, dim ExtjT (A,B) <∞, ∀ 0 ≥ j ≥ N.

3.3.1 Relative Grothendieck monoids and groups

In this section, we define some variants of monoidsN appearing in the construction of twisted

extended Hall algebras from exact categories with weak equivalences. In some sense, we would

like to understand what is “the difference” between two weak equivalent objects in E . Ideally,

this would be an element of the Grothendieck group ofW, but, unfortunately, the author does not

know if one can do it in the full generality. In general, we will define it as an element of a certain

quotient ofK0(W); and under certain conditions we will show that this quotient is the entire group

K0(W). This quotient will play the role of a group G needed to define a twisted extended Hall

algebra as in Section 3.1.

Recall that for an exact category we defined its Grothendieck monoid and group, and we also

have their additive counterparts. Define the localized additive Grothendieck monoid Madd
0 (E ,W)
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to be the localization of Madd
0 (E) at classes of objects inW. Naturally, we have an embedding

Kadd
0 (W) ↪→Madd

0 (E ,W).

The group completion of Madd
0 (E ,W) is just Kadd

0 (E).

Similarly, we define the localized Grothendieck monoid M0(E ,W) to be the localization of

M0(E) at classes of objects in W, its group completion is K0(E). This time, the monoid was

not necessarily free before localization, and the homomorphism K0(W) → M0(E ,W) is not

necessarily injective.

The most important monoids for us sit somewhere between Madd
0 (E ,W) and M0(E ,W). Let

us explain this in detail.

First, we define some equivalence relations in the localized additive Grothendieck monoid

Madd
0 (E ,W) :

(i)

∼1 : 〈[B] ∼ [A] + [C] | ∃A� B � C,A ∈ W〉 ;

(ii)

∼2 : 〈[A] + [D] ∼ [B] + [C]〉 ,

whenever there exists a bicartesian commutative square

A //

��

B

��

C // D

where all morphisms areW−admissible and objects in one of the rows belong toW;

(iii)

∼3 : 〈[B] ∼ [A] + [C] | ∃A� B � C,C ∈ W〉 .

Lemma 3.3.1. These equivalence relations coincide and give a congruence on Madd
0 (E ,W).

The lemma is easy to proof using [7, Corollary 2.14].

We define the relative Grothendieck monoid M ′0(E ,W) as the quotient

Madd
0 (E ,W)/ ∼1= Madd

0 (E ,W)/ ∼2= Madd
0 (E ,W)/ ∼3 .

We define the relative Grothendieck group K ′0(E ,W) as its group completion. It can also be

understood as the quotient of Kadd
0 (E ,W) by the same congruence. We have a canonical homo-

morphism

M ′0(E ,W)→ Kadd
0 (E ,W)

and we define by K ′0,+(E ,W) its image. It is the maximal cancellative quotient of M ′0(E ,W).



3.3. HALL ALGEBRAS OF EXACT CATEGORIES WITH WEAK EQUIVALENCES 63

We do not know in which generality M ′0(E ,W) is cancellative itself and thus is isomorphic to

K ′0,+(E ,W).

The ideal IT in Madd
0 (T ) of relations of the form [G] = [F ] + [ΣE], for each distinguished

triangle E → F → G → ΣE in T , has the following natural lift to M ′0(E ,W). We define a

congruence ĨT of M ′0(E ,W), generated by relations of the form [C] ∼T [F ] + [H] for each

commutative diagram of the form

E // //
��

��

F
��

��

W // //

����

C

����

H H

where the top square is bicartesian and W ∈ W. We can also consider ĨT as an ideal of

relations in Kadd
0 (E ,W).

Proposition 3.3.2. The quotient M ′0(E ,W)/ĨT is isomorphic to M0(E ,W). Similarly, we have

an isomorphism K ′0(E ,W)/ĨT = K0(E).

Proof. Consider the quotient Madd
0 (E ,W)/ĨT . For each conflation E � W � H, with W ∈

EW , we have the diagram

E
��

��

F
��

��

W

����

W

����

H H

Therefore, in the quotient, we have [W ] ∼T [E] + [H]. Let E � F � G be a conflation in E . It

fits into a commutative diagram of the form

E // //
��

��

F // //
��

��

G

W // //

����

C // //

����

G

H H
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We have the congruences

[F ] + [W ] ∼T [F ] + ([E] + [H]) ∼T ([F ] + [H]) + [E] ∼T [C] + [E] ∼T
∼T ([W ] + [G]) + [E] ∼T ([E] + [G]) + [W ]⇔

[F ] ∼T [E] + [G].

(3.13)

Thus, the ideal IE is generated by relations and relations in ĨT . By definition, all the relations in

I1 and in ĨT belong to IE . This implies the desired isomorphism of quotients of Madd
0 (E ,W) and

of K0(E). �

Proposition 3.3.3. We have an exact sequence

0→ ker(iw)→ K0(W)
iw→ K ′0(E ,W)

πw→ Kadd
0 (T )→ 0. (3.14)

Proof. The homomorphism iw is induced by the inclusion of the subcategory W into E . The

homomorpism K ′0(E ,W)
πw→ Kadd

0 (T ) is also natural, and its kernel clearly coincides with the

image of iw. �

Denote by K ′0(W) the image of iw. Since Kadd
0 (T ) is a free abelian group, we actually get a

direct sum decomposition :

Corollary 3.3.4.
K ′0(E ,W) ∼= K ′0(W)⊕Kadd

0 (T ). (3.15)

Indeed, any set-theoretic section of the projection πw is a group homomorphism.

3.3.2 Euler forms and numerical quotients

By assumption (EW3), we can define the following bilinear form 〈·, ·〉T≥0

E on objects in E :

forA,B ∈ E , we define it to be

〈A,B〉T≥0

E =

∞∏
i=0

(
|ExtiT (E1, F )|
|ExtiE(E1, F )|

)(−1)i

.

The product has only finitely many terms different from 1.

This form clearly descends on the relative Grothendieck group K ′0(E ,W), but it does not

descend on K0(E). When one of the terms is weakly trivial, the form is simply the Euler form of

the category E , defined on K0(W)×K ′0(E ,W) and on K ′0(E ,W)×K0(W).

Let Knum
0 (W) be the quotient by left and right kernels of the form on K0(W)×K0(W). By

using the calculus of fractions, it is easy to check that it the same as the quotient by left, resp. right

kernels of the form on K0(W)×K ′0(E ,W) and on K ′0(E ,W)×K0(W).
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Let Knum
0 (E ,W) be the quotient of K ′0(E ,W) by the following congruence : [A] ∼num [B]

if π(A) = π(B) and

〈A, ?〉T≥0

E = 〈B, ?〉T≥0

E , 〈?, A〉T≥0

E = 〈?, B〉T≥0

E .

Monoids Mnum
0 (E ,W) and Knum

0,+ (E ,W) are defined similarly.

Proposition 3.3.5. The Euler form 〈·, ·〉E vanishes on ker(iw) ×K ′0(E ,W) and on K ′0(E ,W) ×
ker(iw).

Proof. It is enough to show that for any C,D,E ∈ W, if there exist conflations in E A ↪→ B � C

and A ↪→ B � D, for some A,B ∈ E , then 〈C,E〉E = 〈D,E〉E and 〈E,C〉E = 〈E,D〉E . Let us

prove the first of these identities. By our assumption, there exist N, such that for any n ≥ N, we

have ExtnE(C,E) = ExtnD(C,E) = 0 and ExtnE(D,E) = ExtnD(D,E) = 0. By taking long exact

sequences, we observe that this means that for any n > N, we have ExtnD(A,E) = ExtnE(B,E).

Therefore, the Euler forms both equal the following alternate product :

〈C,E〉E =
∏

0≤i≤N

(
|ExtiE(B,E)|
|ExtiE(A,E)|

)(−1)i

= 〈D,E〉E . (3.16)

The second identity is proved in a similar way. �

Corollary 3.3.6. We have a commutative diagram

K ′0(W)

����

// // K ′0(E ,W)

����

// // Kadd
0 (T )

Knum
0 (W) // // Knum

0 (E ,W) // // Kadd
0 (T )

(3.17)

3.3.3 Middle terms

Let us fix A,B ∈ Iso(E). An element ε of the group Ext1
T (A,B) is an equivalence class of

diagrams

B // // E′ // // A′

����

A,

(3.18)

see Chapter 1. In the case of a Frobenius pair with larger exact structure, we can find a diagram

where the horisontal row is a conflation in F ; the vertical morphism is a weak equivalence and a

deflation in F .
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Let K ′ be the kernel of the vertical deflation. Denote by EA,B,ε the element [E′]− [K ′] of the

(effective) relative Grothendieck monoid.

Lemma 3.3.7. The element EA,B,ε of K ′0,+(E ,W) is well-defined. In other words, it does not

depend on the choice of the diagram (4.18) in its equivalence class.

Proof. Assume that we have two diagrams representing the same element EA,B,ε : (4.18) and

K ′′

����

B // // E′′ // // A′′

����

A.

(3.19)

The calculus of fractions implies that we have another diagram representing EA,B,ε

K̃

����

B // // Ẽ // // Ã

����

A

(3.20)

that fits into the following diagrams :

0 // //
��

��

N ′
��

��

N ′

����

B // // Ẽ // //

����

Ã

����

B // // E′ // // A′;

(3.21)
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0 // //
��

��

N ′′
��

��

N ′′

����

B // // Ẽ // //

����

Ã

����

B // // E′′ // // A′′.

(3.22)

Then, in the relative Grothendieck group, we have

[E′]− [K ′] = [Ẽ]− [N ′]− [K ′] = [Ẽ]− ([Ã]− [A′]) + ([A′]− [A]) =

= [Ẽ]− [Ã] + [A] = [Ẽ]− ([Ã]− [A′′]) + ([A′′]− [A]) = [Ẽ]− [N ′′]− [K ′′] = [E′′]− [K ′′].

�

By using the calculus of fractions and the dual diagrams (with weak equivalences in B instead

of A), we can naturally generalize this result :

Lemma 3.3.8. Let B′ � E′ � A′ be any conflation in E representing ε. Then

EA,B,ε = E′ + (A−A′) + (B −B′) (3.23)

in K ′0,+(E ,W).

We can alternatively take the right hand side of the identity3.23 as the definition of EA,B,ε.

The subgroup Ext1
T (A,B)α consists of all the equivalence classes of diagrams 4.18 with

E belonging to the weak equivalence class α. Denote by EA,B,α the image of EA,B,ε, for

ε ∈ Ext1
T (A,B)α, in the (numerical) effective relative Grothendieck monoid K ′0,+(E ,W) and

in Knum
0,+ (E ,W).

Lemma 3.3.9. If the natural map K0(W) → K0(E) is injective, the element EA,B,α is well-

defined. In other words, it does not depend on the class ε ∈ Ext1
T (A,B)α.

Proof. Let ε1, ε2 ∈ Ext1
T (A,B)α. By using the calculus of fractions if necessary, we can represent

them by the conflations

B′ � E1 � A′ (3.24)

and

B′ � E2 � A′ (3.25)

with the same end objects. The classes of E1 and E2 in K0(E) coincide, thus, their difference

vanishes inK0(W). Then it vanishes inKnum
0 (W) as well and so [E1] = [E2] both inK ′0,+(E ,W)

and in Knum
0,+ (E ,W). �

For C ∈ K ′0,+(E ,W), denote by Ext1
T (A,B)C the subset of Ext1

T (A,B) consisting of all the

extensions ε with EA,B,ε = C. For D ∈ Knum
0,+ (E ,W), denote by Ext1

T (A,B)D the subgroup of
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Ext1
T (A,B) consisting of all the extensions ε with the image EA,B,ε in Knum

0,+ (E ,W) being equal

to D.

3.3.4 Hall algebrasH(E ,W) andHnum(E ,W)

Define the quantum torus T′(W) of the exact categoryW as the Q−group algebra of K ′0(W),

with the multiplication twisted by the inverse of the Euler form 〈·, ·〉E . Consider the Q−vector

space with basis parametrized by the elements of K ′0,+(E ,W). Define on this space a structure of

a bimoduleM(E ,W) over T′(W) by the rule

[K] � [M ] :=
1

〈K,M〉
[K ⊕M ], [M ] � [K] :=

1

〈M,K〉
[M ⊕K]

for K ∈ W,M ∈ E .

Definition 3.3.10. We endow M(E ,W) with the following multiplication : the product of the

classes of two objects A,B ∈ Iso(E) is defined as

[A] � [B] =
∑

ε∈Ext1T (A,B)

 1

|HomE(A,B)|

∞∏
i=1

(
|ExtiT (A,B)|
|ExtiE(A,B)|

)(−1)i
 [EA,B,ε]

=
∑

C∈K′0,+(E,W)

 |Ext1
T (A,B)C |

|HomE(A,B)|

∞∏
i=1

(
|ExtiT (A,B)|
|ExtiE(A,B)|

)(−1)i
 [C].

(3.26)

We call the resulting algebra the Hall algebra of (E ,W) and denote it byH(E ,W).

Theorem 3.3.11. The algebra H(E ,W) is a twisted extended Hall algebra of the category

E [W−1].

Proof. The triple (T ,K ′0,+(E ,W), 〈, 〉T≥0

E ) satisfies the conditions from Section 3.1. Then

H(E ,W) is nothing but the algebraH(E [W−1,K ′0,+(E ,W), 〈, 〉T≥0

E ). �

Corollary 3.3.12. (1) M(E ,W) is free as a left and as a right module. Each choice of repre-

sentative in K ′0,+(E ,W) of the isomorphism classes of objects in the category T yields a

basis of this module.

(2) The algebraH(E ,W) is unitary and associative.

(3) H(E ,W) with an appropriately twisted multiplication is a flat deformation of the derived

Hall algebra of E [W−1] over the group algebra of K ′0(W), when the derived Hall algebra

is well-defined.

The twist is given by the form 〈, 〉ET :=
〈,〉T<0

〈,〉
T≥0
E

.

Proposition 3.3.13. The algebra H(E ,W) is naturally graded by the group K0(E) and by the

monoid K0,+(E ,W).
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Proof. The formula for the multiplication implies that the algebra is graded by the quotient of

Kadd
0 (E) by the relations of the form [A] − [EA,B,ε] + [B], for ε ∈ Ext1

T (A,B). By the defini-

tion of EA,B,ε, these are precisely the generating relations of the ideal ĨT . By Proposition 3.3.2,

Kadd
0 (E)/ĨT = K0(E). �

We can define the numerical quotient of H(E ,W). Let Tnum(W) be the group algebra of

Knum
( W) twisted by the inverse of the Euler form,Mnum(E ,W) be the bimodule over Tnum(W)

with the underlying vector space having a basis parametrized by the elements of Knum
0,+ (E ,W)

and the action defined by the same formulas as above. We define the numerical Hall algebra

Hnum(E ,W) as this vector space equipped with the multiplication defined by the following rule :

[A] � [B] =
∑

C∈Knum
0,+ (E,W)

 |Ext1
T (A,B)C |

|HomE(A,B)|

∞∏
i=1

(
|ExtiT (A,B)|
|ExtiE(A,B)|

)(−1)i
 [C] (3.27)

Clearly, this is a quotient of H(E ,W) and the statements of Theorem 3.3.11 and Corollary

3.3.12 hold for this algebra, up to replacement of K ′0,+(E ,W) by Knum
0,+ (E ,W).

If the natural inclusion K0(W) → K0(E) is injective, we can rewrite the multiplication as

follows :

[A] � [B] =
∑

α∈Iso T

 |Ext1
T (A,B)α|

|HomE(A,B)|

∞∏
i=1

(
|ExtiT (A,B)|
|ExtiE(A,B)|

)(−1)i
 [EA,B,α]. (3.28)

3.3.5 Replacements and relation toH(E)

The following follows directly from the multiplication formula inH(E).

Proposition 3.3.14. Let A,B ∈ E be such that the natural map ExtiE(A,B) → ExtiT (A,B) is

surjective for i = 1 and an isomorphism for all i > 1. Then their product in H(E ,W) is given by

the same formula as the usual Hall product inH(E) :

[A] � [B] =
∑

C∈K′0,+(E,W)

Ext1
E(A,B)C |

|HomE(A,B)|
[C]. (3.29)

Corollary 3.3.15. Assume that for all A,B ∈ E , the natural map ExtiE(A,B)→ ExtiT (A,B) is

surjective for i = 1 and an isomorphism for all i > 1. Then the algebraH(E ,W) is isomorpic the

quotient of the localization of the Hall algebra of the exact category E :

I � H(E)[[W ]−1 | W ∈ W]
p
� H(E ,W), (3.30)

where I is the ideal defined by either of the congruences ∼1,∼2,∼3 from Section 3.3.1.

Corollary 3.3.15 follows immediately from Propostion 3.3.14. The only thing one needs to
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check is that the localization is well-defined in the sense that the set {[W ] | W ∈ W} satisfies

the Ore conditions. This follows from the multiplication formula.

The map p can be understood as a relative variant of the integration map defined by Rei-

neke [63]. Namely, he considers a map from the Hall algebra of an abelian category A to the

Grothendieck group K0(A) (actually, to the Grothendieck monoid) that can be understood as a

composition of 2 maps. The first is an automorphism of H(A) that sends the algebra to the dual

of the coalgebra discussed in Chapter 1. This can be understood as forgetting the automorphism

groups of objects. The second sends the class of an object to its class in the Grothendieck group.

For hereditary abelian categories, the second map, and thus the composition, is an algebra homo-

morphism. The map p is a version of the second map, sending a module over H(W) to a module

over QK ′0(W). Under assumption of Corollary 3.3.15, the category W is hereditary and the co-

rollary means that the naturally defined map from the left hand side to the right hand side is an

algebra homomorphism.

Proposition 3.3.14 can be generalized as follows.

Proposition 3.3.16. Assume that we have decompositions [A] = [Ã] + [Aw], [B] = [B̃] + [Bw]

in K0(E ,W), where [Aw], [Bw] ∈ K ′0(W) and the natural map ExtiE(Ã, B̃) → ExtiT (Ã, B̃) is

surjective for i = 1 and an isomorphism for all i > 1. Then we have the following :

[A] � [B] =

〈
Aw, Ã

〉
E

〈
Bw, B̃

〉
E

〈
Bw, Ã

〉
E〈

Ã, Bw
〉
E
〈Aw, Bw〉E

[Aw +Bw]
∑

C̃∈K′0,+(E,W)

Ext1
E(Ã, B̃)C |

|HomE(Ã, B̃)|
[C̃] =

(3.31)

=
1〈

Ã, B̃
〉
E

〈
Ã, B

〉
E

〈
A, B̃

〉
E

∑
C̃∈K′0,+(E,W)

Ext1
E(Ã, B̃)C |

|HomE(Ã, B̃)|
[Aw +Bw + C̃] (3.32)

Assume that each pair of objectsA,B ∈ E admits such a pair of decompositions. Then we can

define the H(E ,W) in an alternative way. First, we endow the underlying vector space with the

structure of a QK ′0(W)-bimodule. As before, it will be free both as the right and the left module.

Then we define the product Ã � B̃ for pairs (Ã, B̃) satisfying conditions in Proposition 3.3.16 to

be given by the same formula as in H(E). Then we define [A] � [B] as the right hand side of the

equation 3.32.

In this case, we have an alternative proof of the associativity of H(E ,W). It follows from

the associativity of H(E). Recall that the proof presented earleir was a modification of the proof

of associativity of the derived Hall algebra of T instead. We do not give this alternative proof in

the full generality here. In the case of categories of complexes with quasi-isomorphisms as the

weak equivalences, with only certain decompositions (of the first factor) allowed, this alternatitive

construction was given in [23] and we present it Chapter 4.
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3.3.6 Hereditary exact model categories

When the localization comes from a hereditary exact model category, we can take bifibrant

replacements of A and B as Ã, B̃ in Proposition 3.3.16.

LetM be a hereditary exact model structure on an exact category E withW the full subcate-

gory of weakly trivial objects. Let T := Ho(M) be the homotopy category.

Proposition 3.3.17. The homomorphism K0(W)
iw→ K ′0,+(E ,W) is injective.

We do not give the proof here ; instead we present the proof in the case of a special projec-

tive model structure from [23] in Chapter 4. It generalizes naturally by using Becker’s resolution

lemma [3].

It follows that K ′0(W) in this case is simply K0(W). By using bifibrant replacements, we can

relate the Hall algebra of the model category to the semi-derived Hall algebra of the (Frobenius)

category of bifibrant objects defined in Chapter 2.

Proposition 3.3.18. If the inclusionK0(C∩W∩F) � K0(E) is an isomorphism, the fully faithful

embedding of categories C ∩ F → E induces an isomorphism

SDH(C ∩ F , C ∩W ∩ F)
∼→ H(T ,K ′0,+(E ,W), 〈−,−〉T≥0

E ). (3.33)

This is a direct corollary of Proposition 3.3.16.

3.3.7 Functoriality and heart property

As in Chapter 2, the algebras we defined are functorial. Namely, we have the following corol-

laries of Theorem 3.1.10.

Corollary 3.3.19. Let E1 → E2 be an exact functor, preserving weak equivalences and inducing

an embedding of the localized categories. Then we have an embedding

H(T1,K
′
0,+(E1,W1), 〈−,−〉T1,≥0

E1 )tw ↪→ H(T ,K ′0,+(E2,W2), 〈−,−〉T2,≥0

E2 ),

where the twist is given by the quotient of the forms.

The following is a version of the heart property of derived Hall algebras in our setting.

Corollary 3.3.20. Let A be a heart of a bounded t−structure on a category E [W−1] =: T . Let

Ã be the full exact subcategory of E consisting of all objects whose image under the localization

belongs to A. Then we have an embedding

H(Ã) ↪→ H(E ,W),
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and the algebraHtw(Ã) is a flat deformation ofH(A) over QKnum
0 (W), where the twist is given

by the form
〈−,−〉Ã
〈−,−〉A

= 〈−,−〉ET

More generally, we have the following result.

Corollary 3.3.21. Let E ′ be a fully exact subcategory of E such that E ′[W−1] is an extension

closed subcategory of E [W−1]. Then we have an embedding

H(E ′,W) ↪→ H(E ,W),

and the algebraHtw(E ′,W) is a flat deformation ofH(E ′[W−1]) over (QKnum
0 (E ′ ∩W), where

the twist is given by the form

〈−,−〉E
′[W−1]
E ′ = 〈−,−〉TE .



Chapitre 4

Bounded and periodic complexes

In this chapter, we discuss twisted extended Hall algebras of bounded and periodic derived

categories. We begin by establishing some properties of periodic complexes in Section 4.1.

In Section 4.2, we define the semi-derived Hall algebras of exact categories and study their

properties. These are twisted extended Hall algebras of bounded derived categories. The multi-

plication is defined via replacements of the first factor, see Section 3.3.16. The proof of the as-

sociativity thus uses the associativity of the (exact) categories of bounded complexes and not the

associativity of the (triangulated) derived categories.

In Section 4.3, we describe the similar construction for 2-periodic derived categories. It is

defined for exact categories E where every object has a finite projective resolution. We find a sub-

category of CZ/2(E) admitting a hereditary projective model structure whose homotopy category

is DZ/2(E). Then we construct an algebra by methods of Section 3.3.6 and show that we recover

the algebra defined by Bridgeland in order to categorify entire quantum group. The material of

Sections 4.2 and 4.3 follows [23]. This is the original approach of the author to the problem of

the derived invariance of Bridgeland’s algebras. It can be generalized to the case of m−periodic

categories in a straightforward way.

In Section 4.4, we come back to the approach of Section 3.2 and give a more general construc-

tion without using replacements and model structures. By the results of Chapter 3, it has the same

nice properties. It also generalizes the modified Hall algebras of Lu and Peng [49].

4.1 Periodic complexes

In this section, we discuss in details 2-periodic, or Z/2−graded complexes. All of the results

generalize word for word to the m−periodic complexes, for any m ≥ 2. Since the 2−periodic

case is the most important in the framework of quantum groups and Drinfeld doubles, we write

down explicit formulas only in this case.

73
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4.1.1 Z/2−graded complexes

Let CZ/2(E) be the exact category of Z/2-graded complexes over E . Namely, an object M of

this category is a diagram with objects and morphisms in E :

M0
d0 //M1

d1
oo , d1 ◦ d0 = d0 ◦ d1 = 0.

All indices of components of Z/2−graded objects will be understood modulo 2. A morphism

s : M → N is a diagram

M0

s0 ��

d0 //
M1

d1
oo

s1��

N0
d′0 //

N1

d′1
oo

with si+1 ◦ di = d′i ◦ si. Two morphisms s, t : M → N are homotopic if there are morphisms

hi : M i → N i+1 such that

ti − si = d′i+1 ◦ hi + hi+1 ◦ di.

Denote byKZ/2(E) the category obtained from CZ/2(E) by identifying homotopic morphisms.

Let us also denote by DZ/2(E) the Z/2−graded derived category, i.e. the localization of KZ/2(E)

with respect to all quasi-isomorphisms.

The shift functor Σ of complexes induces involutions

CZ/2(E)
∗←→ CZ/2(E), KZ/2(E)

∗←→ KZ/2(E), DZ/2(E)
∗←→ DZ/2(E).

These involutions shift the grading and change the sign of the differential as follows :

M0
d0 //M1

d1
oo

∗←→ M1
−d1 //M0

−d0
oo .

We have an exact functor

π : Cb(E)→ CZ/2(E),

sending a complex (M i)i∈Z to the Z/2−graded complex

⊕
i∈Z

M2i // ⊕
i∈Z

M2i+1oo (4.1)

with the naturally defined differentials. It is easy to check that

HomCZ/2(E)(π(A), π(B)) =
⊕
i∈Z

HomCb(E)(A,Σ
2iB).
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Note that we actually have a whole family of isomorphisms

ExtpCZ/2(E)(π(A), π(B)) =
⊕
i∈Z

ExtpCb(E)
(A,Σ2iB), ∀p ≥ 0. (4.2)

Similarly, we have exact functors

Kb(E)→ KZ/2(E), Db(E)→ DZ/2(E),

satisfying analogous isomorphisms. By abuse of notation, we will also denote them by π. Assume

that M,N are stalk complexes in Cb(E) : M = M j [−j], N = N i[−i]. Then it is well-known that

HomDb(E)(A,B) =

{
0, j < i,

Extj−iE (Aj , Bi), j ≥ i.
(4.3)

Here and everywhere below we write Ext0(−,−) for Hom(−,−). Now, by simple calculations,

we get the following result.

Lemma 4.1.1. For any A,B ∈ E , for any i ≥ 0, we have

Ext2i
D2(E)( 0 // Aoo , 0 // Boo ) =

⊕
k≥0

Ext2k
E (A,B);

Ext2i
C2(E)( 0 // Aoo , 0 // Boo ) =

⊕
0≤k≤i

Ext2k
E (A,B);

Ext2i+1
D2(E)( 0 // Aoo , 0 // Boo ) =

⊕
k≥0

Ext2k+1
E (A,B);

Ext2i+1
C2(E)( 0 // Aoo , 0 // Boo ) =

⊕
0≤k≤i

Ext2k+1
E (A,B);

and similarly, we have

Ext2i
D2(E)( A

// 0oo , 0 // Boo ) =
⊕
k≥0

Ext2k+1
E (A,B);

Ext2i
C2(E)( A

// 0oo , 0 // Boo ) =
⊕

0≤k<i
Ext2k+1

E (A,B);

Ext2i+1
D2(E)( A

// 0oo , 0 // Boo ) =
⊕
k≥0

Ext2k
E (A,B);

Ext2i+1
C2(E)( A

// 0oo , 0 // Boo ) =
⊕

0≤k≤i
Ext2k

E (A,B).

Proposition 4.1.2. Assume that gldim(E) = n. Then for any A,B ∈ CZ/2(E) both being itera-

ted extensions of stalk complexes, the natural map ExtiCZ/2(E)(A,B) → ExtiDZ/2(E)(A,B) is an
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epimorphism for i = n and an isomorphism for all i > n.

Proof. By Lemma 4.1.1, for A,B stalk complexes, we have

ExtiCZ/2(E)(A,B)
∼→ ExtiDZ/2(E)(A,B),∀i ≥ n.

Indeed, for i ≥ n, the non-zero terms in the direct sum decompositions of ExtiDZ/2(E)(A,B)

given in the Lemma are precisely those extensions of A by B that appear in the decompositions of

ExtiCZ/2(E)(A,B).

Then the statement can be proved by an appropriate application of both of the four-lemmas to

the maps between the long exact sequences of extensions in CZ/2 and in DZ/2. �

Corollary 4.1.3. Assume that gldim(E) = n. If A,B ∈ CZ/2(E) both are iterated extensions of

stalk complexes and A or B is acyclic, then ExtiCZ/2(E)(A,B) vanishes for all i > n.

To each object M ∈ E , we attach a pair of acyclic (in fact, even contractible) complexes

KM := M
1 //M
0
oo , K∗M := M

0 //M
1
oo .

Let P be the full subcategory of projective objects in E . The following fact was shown in [5].

Lemma 4.1.4 ([5, Lemma 3.2]). Suppose that each object in E has a finite projective resolution.

Then for any acyclic complex of projectives M ∈ CZ/2(P), there are objects P,Q ∈ P , unique up

to isomorphism, such that M ∼= KP ⊕KQ
∗.

Remark 4.1.5. In [5] this Lemma was proved only for E abelian and of finite global dimension ;

nonetheless, the same proof works in the generality stated above.

Assume that A is hereditary and abelian and has enough projectives. Under these conditions,

every object A ∈ A has a projective resolution

0→ P
f−→ Q

g−→ A→ 0, (4.4)

and decomposing P and Q into finite direct sums of indecomposables P = ⊕iPi, Q = ⊕jQj ,
one may write f = (fij) in matrix form with fij : Pi → Qj . The resolution (4.4) is said to be

minimal if none of the morphisms fij is an isomorphism. Here we use that P is Krull-Schmidt as

an additive subcategory of the Krull-Schmidt category A.

Lemma 4.1.6 ([5, Lemma 4.1]). Any resolution (4.4) is isomorphic to a resolution of the form

0→ R⊕ P ′ 1⊕f ′−−−→ R⊕Q′ (0,g′)−−−→ A→ 0,

with some object R ∈ P and some minimal projective resolution

0→ P ′
f ′−→ Q′

g′−→ A→ 0.
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Given an object A ∈ A, take a minimal projective resolution

0→ PA
fA−→ QA

g−→ A→ 0.

We define a Z/2-graded complex

CA := PA
fA // QA
0

oo ∈ C(P).

By Lemma 4.1.6, any two minimal projective resolutions of A are isomorphic, hence the com-

plex CA is well-defined up to isomorphism.

Lemma 4.1.7 ([5, Lemma 4.2]). Every object M ∈ CZ/2(P) has a direct sum decomposition

M = CA ⊕ C∗B ⊕KP ⊕K∗Q.

Moreover, the objects A,B ∈ A and P,Q ∈ P are unique up to isomorphism.

Remark 4.1.8. Note that each of these four direct summands can be obtained as an extension of

stalk complexes. Indeed, in CZ/2(P) we have conflations

(0
0 // QA)
0

oo // // CA // // (PA
0 // 0),
0
oo

(0
0 // P )
0

oo // // KP
// // (P

0 // 0),
0
oo

and similarly for C∗B and K∗Q.

Proposition 4.1.9. Assume that either :

— E is an abelian category or

— E is the full exact subcategory of projective objects in a hereditary abelian category.

Then any object in CZ/2(E) is an iterated extension of stalk complexes.

Proof. The second statement is an immediate consequence of Lemma 4.1.7 an Remark 4.1.8. Let

us prove the first one. Consider any complex M0
d0 //M1

d1
oo in CZ/2(E), where E is abelian. Let

Z1 be the kernel of d1. Then we have a natural short exact sequence of Z/2−graded complexes :
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M0
d0 //

Z1

0
oo

_�

��

M0

����

d0 //
M1

d1
oo

����

0
0 //

M1/Z1.
0

oo

(4.5)

The bottom complex is a stalk complex, the top one is an extension of 0
0 // Z1

0
oo by

M0
0 // 0
0
oo . �

4.1.2 Grothendieck groups of Z/2−graded complexes

Define the left relative Grothendieck monoid M ′0(Ẽ) as the free monoid generated by the set

Iso(Ẽ), divided by the following set of relations :

〈
[L] = [K ⊕M ]|K � L�M is a conflation,K ∈ CZ/2,ac(E)

〉
.

Similarly, let left relative Grothendieck groupK ′0(Ẽ) be the free group generated by the set Iso(Ẽ),

divided by the following set of relations :

〈
[K]− [L] + [M ] = 0|K � L�M is a conflation,K ∈ CZ/2,ac(E)

〉
.

Let A be an abelian category.

Lemma 4.1.10. We have an isomorphism

K0(CZ/2(A))
∼→ K0(A)⊕2; [A•] 7→ ([A0], [A1]).

Proof. This is an immediate consequence of the existence of the “brutal truncations” constructed

in the proof of Proposition 4.1.9. �

Lemma 4.1.11. Any short exact sequence

A•
f•

� B•
g•

� C• (4.6)

of complexes in C, with A• being acyclic, is CE-exact.

Proof. We want to show that at any degree i, the sequence Zi(A•)
f i→ Zi(B•)

gi→ Zi(C•) is

short exact. The exactness in the first and the second term follows from the snake lemma. Let
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us prove the exactness in the third term by diagram chasing for module categories ; the result

will follow then from the Mitchell embedding theorem. Assume c ∈ Zi(C•). Then there exists

b ∈ Bi, s.t. c = gi(b). Also, diC(c) = 0. Then gi(diB(b)) = diC(gi(b)) = diC(c) = 0. Therefore,

diB(b) ∈ Ker(gi). By the exactness of the sequence 4.6, diB(b) ∈ Im(f i+1), i.e. there exists

a ∈ Ai+1, such that f i+1(a) = diB(b). Then f i+2di+1
A (a) = di+1

B (diB(b)) = 0. Since f i+2

is a monomorphism, it follows that di+1
A (a) = 0, hence a ∈ Ker(di+1

A ). But A• is acyclic ;

therefore, Ker(di+1
A ) = Im(diA). This means that there exists ã ∈ Ai, such that diA(ã) = a. Then

diB(f i(ã)) = f i+1(diA(ã)) = fi+1(a) = diB(b). We see that b− f i(ã) ∈ Ker(diB) = Zi(B•) and

c = gi(b) = gi(b)− gi(f i(ã)) = gi(b− f i(ã)). This proves the exactness in the third term. �

Corollary 4.1.12. The natural inclusion i : K0(A)⊕K0(A)→ K0(CZ/2,ac(A)) is an embedding

of a direct summand. The same holds for the inclusion K0(A)⊕K0(A)→ K ′0(CZ/2(A)).

Proof. By Lemma 4.1.11, the map

A• → ([Im d1(A•], [Im d0(A•])

defines sections for both of the inclusions, and these sections are group homomorphisms. �

The following lemma is well-known in the case of bounded complexes ; nonetheless, we

present a proof here, as we will use later the explicit quasi-isomorphisms.

Lemma 4.1.13. If A is hereditary, then every complex in CZ/m(A) is quasi-isomorphic to the

direct sum of its cohomologies.

Proof. Consider a complex A• = (Ai, di)i∈Z/m and its cohomology complex H• = (H i, 0) =

⊕H i[i]. We have families of short exact sequences of the form Ker di−1 � Ai−1 � Im di−1 and

of the form Im di−1 � Ker di � H i. The following arguments hold for all i ∈ Z/m. Since A
is hereditary, we have Ext2(H i,Ker di−1) = 0. Therefore, the natural map Ext1(H i, Ai−1) →
Ext1(H i, Im di−1) is a surjection, and we can construct the following commutative diagram, with

Si ∈ A.

Ker di−1

��

��

Ker di−1

��

��

// // 0
��

��

Ai−1

����

// f i−1
// Si

����

// // H i

Im di−1 // // Ker di // // H i.

(4.7)

We have natural maps gi : Si � Ker di � Ai, and it is easy to check that the following morphism
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of complexes is an epimorhic quasi-isomorphism.

. . . // Ai−1 ⊕ Si−1(
1 gi

)
��

0 f i−1

0 0


// Ai ⊕ Si(

1 gi
)
��

0 f i

0 0


// Ai+1 ⊕ Si+1(

1 gi+1
)
��

0 f i+1

0 0


// . . .

. . . // Ai−1 di−1
// Ai

di // Ai+1 // . . .

(4.8)

�

Explicitly, we have 2 conflations where the deflations are quasi-isomorphisms :

K•1 � E• � A• (4.9)

and

K•2 � E• � H•, (4.10)

with

H• =

m⊕
i=0

H i;

K•1 =

m⊕
i=0

(Zi(A•)
1→ Zi(A•));

K•2 =
m⊕
i=0

(Ai
1→ Ai);

E• =
m⊕
i=0

Ai
f i

� Si+1;

where the term with index i is in degree i.

Lemma 4.1.14. If A is hereditary, then for any m ≥ 1, we have an isomorphism

K0(CZ/m,ac(A))
∼→ K0(A)⊕m; A• 7→ ([Im d0], [Im d1], . . . , [Im d(m−1)]).

Proof. This map is an epimorphism by Lemma 4.1.11. From the existence of conflations (4.9) and

(4.10) for A• acyclic, it follows that it is a monomorphism. �

Lemma 4.1.15. If A is hereditary, the natural inclusion i : K0(CZ/2,ac(A)) → K
′
0(CZ/2,ac(A))

is an injection.

Proof. This is a byproduct of Lemma 4.1.14 and Corollary 4.1.12. �

If the Euler form on K0(CZ/2,ac(A)) × K0(CZ/2,ac(A)) is well-defined, we have a natural

counterpart of these lemmas for the numerical Grothendieck groups.
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Lemma 4.1.16. (i) The natural inclusion i : Knum
0 (A) ⊕Knum

0 (A) → Knum
0 (CZ/2,ac(A))

is an embedding of a direct summand. The same holds for the inclusion Knum
0 (A) ⊕

Knum
0 (A)→ K ′num0 (CZ/2(A)).

(ii) If A is hereditary, then for any m ≥ 1, we have an isomorphism

Knum
0 (CZ/m,ac(A))

∼→ Knum
0 (A)⊕m; A• 7→ ([Im d0], [Im d1], . . . , [Im d(m−1)]).

(iii) If A is hereditary, the natural inclusion i : Knum
0 (CZ/2,ac(A))→ K ′num0 (CZ/2,ac(A)) is

an injection.

4.2 Semi-derived Hall algebras

4.2.1 Finiteness conditions

In this section, we will discuss the various conditions we impose on the exact category E . We

shall always assume that

(C1) E is essentially small, idempotent complete and linear over some ground field k;

(C2) For each pair of objects A,B ∈ E and for each p > 0, we have

|Extp(A,B)| <∞; |Hom(A,B)| <∞;

(C3) For each pair of objects A,B ∈ E , there exists N > 0 such that for all p > N, we have

Extp(A,B) = 0.

(C4) For each pair of complexes A,B ∈ Cb(E), there exists a quasi-isomorphism deflation

A′ → A such that for all i > 0, the natural map

ExtiCb(E)(A,B)→ ExtiDb(E)(A,B)

is an isomorphism.

The first part of the assumption (C1) and the finiteness of the Hom− and Ext1−spaces are

important to our naive approach to Hall algebras involving counting isomorphism classes. As-

sumption (C1) and Hom−finiteness ensure that E is Krull-Schmidt. Moreover, it implies that all

contractible complexes are acyclic, cf. [38], [7]. Finiteness of Extp(A,B) and the assumption

(C3) are crucial for the multiplicative version of the Euler form that we use.

Proposition 4.2.1. Suppose that for two bounded complexes M,N ∈ Cb(E), all extensions bet-

ween their components are trivial :

ExtpE(M
i, N j) = 0, ∀p > 0,∀i, j ∈ Z. (4.11)
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Then the canonical map :

ExtpCb(E)
(M,N)→ ExtpDb(E)

(M,N)

is bijective for all p > 0.

Proof of Proposition 4.2.1. It is a classical fact that we have a family of conflations

Σ−iM � C(1Σ−iM ) � Σ−(i−1)M, i > 0,

where C(f) is a mapping cone and Σ is the shift functor. Thus, we have a complex

R(M)• := . . .→ C(1Σ−3M )→ C(1Σ−2M )→ C(1Σ−1M )→ 0, (4.12)

with a quasi-isomorphism R(M)•
qis→ M in C(Cb(M)). Consider the category of bounded graded

objects grb(E), whose objects are the Z−graded families of objects of E and morphisms are given

component-wise. There exists a natural forgetful functor

Cb(E)
forget→ grb(E),

that is known to be exact and admits an exact left adjoint forgetλ :

Cb(E)
forgetλ← grb(E).

It is known as well that

forgetλ ◦ forget(X)
∼→ C(1X),

hence we have the following isomorphisms :

ExtpCb(E)
(C(1X), Y )

∼→ ExtpCb(E)
(forgetλ ◦ forget(X), Y )

∼→ Extp
grb(E)

(forget(X), forget(Y )).

(4.13)

Clearly, by (4.11),

Extp
grb(E)

(forget(Σ−iM), forget(N)) = 0, ∀i,

hence

ExtpCb(E)
(C(1forget(Σ−iM ), N) = 0, ∀i.

Therefore, the complex R(M)• is actually a Hom(?, N)−acyclic resolution of the complex

M in Cb(E) and can be used to compute ExtpCb(E)
(M,N). Namely, these extensions are exactly

the homologies of the complex HomCb(E)(R(M)•, N), i.e. quotients of the set of morphisms

HomCb(E)(Σ
−(p)M,N) by the subset of morphisms which factor through C(1Σ−pM ). This last

subset is known to be the subset of null-homotopic morphisms. Therefore, we obtain that exten-
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sions are exactly the morphisms in the homotopy category of bounded complexes Kb(E) :

ExtpCb(E)
(M,N) = HomKb(E)(Σ

−(p)M,N).

Lemma 4.2.2. Under the condition (4.11), we have a canonical bijection :

HomKb(E)(M,N) = HomDb(E)(M,N).

The lemma uses nothing but the dévissage. The statement of the lemma holds, of course, for

shifted complexes as well ; thus, we get

ExtpCb(E)
(M,N) = HomDb(E)(Σ

−(p)M,N).

The right-hand side is nothing but HomDb(E)(M,ΣpN), that is equal to ExtpDb(E)
(M,N). �

Recall that P denotes the full subcategory of the projective objects of E .

Corollary 4.2.3. For all P ∈ Cb(P) and all M ∈ Cb(E), we have a canonical bijection :

ExtpCb(E)
(P,M) = ExtpDb(E)

(P,M), ∀p > 0.

In particular, bounded acyclic complexes of projectives are projective objects in the category

Cb(P).

Lemma 4.2.4 ([37, 4.1, Lemma, b)]). Assume that E has enough projectives, and each object of

E has a finite projective resolution. Then for each A ∈ Cb(E), there exists a deflation

P
qis
� A

that is a quasi-isomorphism, with P ∈ Cb(P).

Theorem 4.2.5. The condition (C4) holds if E is of one of the following two types :

1) E has enough projectives, and each object has a finite projective resolution ;

2) E = Coh(X) is the category of coherent sheaves on a smooth projective variety X.

Proof. Let us return to the proof of Theorem 4.2.5. For part 1), by lemma 4.2.4, in condition (C4)

we can take a deflation quasi-isomorphism with A′Cb(P).

Now, for part 2) we recall the next known facts, the first of which easily follows from Serre’s

theorem which connects the categoryCoh(X) and the category of finitely generated modules over

the homogeneous coordinate algebra of X :

Lemma 4.2.6. (a) For any F ∈ Coh(X), N ∈ N, there exists a deflation E � F, where E

is of the form

E =

n⊕
i=1

O(−ai), ai > N, ∀i = 1, . . . , n,
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for some n.

(b) [?, Theorem III.5.2.b)] For every F ∈ Coh(X), there exists a nonnegative integer n0(F ),

such that for each n > n0(F ), we have :

ExtpCoh(X)(O(−n), F ) = Hp(X,F (n)) = 0, ∀p > 0.

Objects of the above form E generate an additive category, namely the category VN (X) of

vector bundles over X which are sums of line bundles O(−j), j ≥ N.
Let us return to the proof of part 2) of Theorem 4.2.5. Similarly to Lemma 4.2.4 (cf. also [7,

Theorem 12.7]), we can show that for each N > 0 and for each A ∈ Cb(Coh(X)), there exists a

deflation quasi-isomorphismA′
qis
� A,withA′ ∈ Cb(VN (X)).Now we takeN to be the maximum

among the numbers n0(Bj),whereBj are among the (finitely many!) non-zero components ofB,

and find A′ ∈ VA′(X). As in part 1), for such A′, all the conditions (i)-(iii) hold, by Proposition

4.2.1. �

4.2.2 Euler form and quantum tori

Let Cbac(E) denote the category of bounded acyclic complexes over E .

Definition 4.2.7. The multiplicative Euler form

〈·, ·〉 : K0(Cbac(E))×K0(Cb(E))→ Q∗

is given by the alternating product :

〈K,A〉 :=

+∞∏
p=0

|ExtpCb(E)
(K,A)|(−1)p .

Using a similar product we define

〈·, ·〉 : K0(Cb(E))×K0(Cbac(E))→ Q∗.

These two forms clearly coincide on K0(Cbac(E)) ×K0(Cbac(E)), so it is harmless to denote them

by the same symbol.

By the following lemma, this alternating product is well-defined, i.e. all but a finite number

of factors equal 1. Therefore, by the five-lemma, it is bilinear. In fact, in our framework, one can

define this form on K0(Cb(E))×K0(Cb(E)); but in the Z/2−graded case, this will not be true any

more.

Lemma 4.2.8. For each pair of objectsA,B ∈ Cb(E), the property of local homological finiteness

holds, i.e. there exists n0 > 0 such that for all p > n0, we have

ExtpCb(E)
(A,B) = 0.
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Proof. Using the five-lemma and the stupid truncations (dévissage) for both arguments, we observe

that it is enough to prove the local homological finiteness only for stalk complexes A and B. For

each A, we have a conflation

Σ−1A� C(1Σ−1A) � A.

By condition (C3), the desired local homological finiteness holds for the graded objects. Thus, by

(4.13), it holds for C(1Σ−1A) and B, hence it holds for A,B if only if it holds for Σ−1A,B. By

induction, we get that it is enough to prove the statement for stalk complexesA,B both concentra-

ted in the same degree. For those, the extensions are extensions in E of their non-zero components,

and the condition (C3) implies the desired statement. �

Consider the set Iso(Cbac(E)) of isomorphism classes [K] of bounded acyclic complexes and

its quotient by the following set of relations :

〈[K2] = [K1 ⊕K3]|K1 � K2 � K3 is a conflation〉 .

If we endow Iso(Cbac(E)) with the addition given by direct sums, this quotient gives the Gro-

thendieck monoid M0(Cbac(E)) of the exact category Cbac(E). We define the quantum affine space

of acyclic complexes Aac(E) as the Q−vector space generated by elements of M0(Cbac(E)). We

endow it with the bilinear multiplication defined below.

Definition 4.2.9. For K1,K2 ∈ Cbac(E), we define their product as

[K1] � [K2] :=
1

〈K1,K2〉
[K1 ⊕K2].

By Lemma 4.2.8, this product is well-defined ; moreover, it is clearly associative. We see that

this ring has the class of the zero complex [0] as the unit. Moreover, it is clear that the set of all

elements of the form [K] satisfies the Ore conditions. This means that we can make all of them

invertible and consider the quantum torus of acyclic complexes Tac(E). It is generated by classes

[K] and their inverses [K]−1. Here are simple relations concerning the product.

Lemma 4.2.10. For K1,K2 ∈ Cbac(E), we have

[K1]−1 � [K2]−1 = 〈K2,K1〉 [K1 ⊕K2]−1; [K1]−1 � [K2] =
〈K1,K2〉
〈K2,K1〉

[K2] � [K1]−1.

Proof. The first identity is trivial, let us prove the second one.

[K1] � [K2] =
1

〈K1,K2〉
[K1 ⊕K2]⇒ [K2] =

1

〈K1,K2〉
[K1]−1 � [K1 ⊕K2]⇒

⇒ [K2] � [K1]−1 =
1

〈K1,K2〉
[K1]−1 � [K1 ⊕K2] � [K1]−1.
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Similarly, we find that

[K1]−1 � [K2] =
1

〈K2,K1〉
[K1]−1 � [K1 ⊕K2] � [K1]−1,

and the desired equality follows. �

Another way to define Tac(E) is provided by the following simple statement.

Lemma 4.2.11. The quantum torus of acyclic complexes is isomorphic to the quantum torus of

the Grothendieck group K0(Cbac(E)), twisted by the inverse of the Euler form :

Tac(E)
∼→ T(K0(Cbac(E)), 〈·, ·〉−1).

In other words, it is the Q−group algebra of K0(Cbac(E)), with the multiplication twisted by the

inverse of the Euler form.

Proof. By the construction, Aac(E) is the monoid algebra of M0(Cbac(E)), with the multiplication,

twisted by the Euler form. Therefore, for the proof it is enough to verify that the universal pro-

perties of the monoid algebra Q[M ], localized at the elements of the monoid, and of the group

algebra Q[G] of the group G, corresponding to this monoid M by the Grothendieck construction,

are the same. Indeed, for each Q−algebra A, we have

HomQ−Alg(Q[G], A) = HomGrp(G,A×) = HomMon(M,A×);

HomQ−Alg(Q[M ][[m]−1,m ∈M ], A) =
{
f ∈ HomQ−Alg(Q[M ], A)|f(M) ⊂ A×

}
=

= HomMon(M,A×). �

4.2.3 Module structure over the quantum torus

Let us consider the vector space M1(E) over Q whose basis is formed by the isomorphism

classes [M ], where M ∈ Cb(E). OnM1(E), let us define a multiplication by classes of acyclic

complexes, generalizing the one from the previous section. Namely, for K acyclic, M arbitrary,

we define their products as follows :

[K] � [M ] =
1

〈K,M〉
[K ⊕M ]; [M ] � [K] =

1

〈M,K〉
[K ⊕M ].

We get a bimodule over Aac(E), let us call itM′
1(E).

We quotient M1(E) by the set of relations〈
[L] = [K ⊕M ]|K � L�M is a conflation,K ∈ Cbac(E)

〉
, (4.14)



4.2. SEMI-DERIVED HALL ALGEBRAS 87

to obtain the space M2(E). We will denote classes after the factorization by the same symbols

[M ]. Of course, one gets the same vector space if one starts with the quotient of Iso(Cb(E)) by

this set of relations and then considers the vector space on this basis. It is easy to check that these

relations respect the bimodule structure. Thus,M2(E) has the induced bimodule structure, let us

denote it by M′
2(E). By taking the tensor product with the quantum torus, we get a bimodule

M(E) := Tac(E)⊗Aac(E)M
′
2(E) ∼=M′

2(E)⊗Aac(E) Tac(E) over Tac(E).

4.2.4 Freeness over the quantum torus

Theorem 4.2.12. M(E) is free as a right module over Tac(E). Each choice of representatives of

the quasi-isomorphism classes in Cb(E) yields a basis.

Proof. Assume that two complexesM andM ′ are quasi-isomorphic to each other. This means that

there is a sequence of objectsM0 = M,M1,M2, . . . ,Mn = M ′, such that for each i = 1, 2, . . . , n

there is either a conflation

K �Mi−1

qis
�Mi,

or a conflation

K �Mi

qis
�Mi−1,

with K acyclic. Therefore, we either have

[Mi] = [K ⊕Mi−1] = 〈K,Mi−1〉 [K] � [Mi−1],

or

[Mi−1] = [K ⊕Mi] = 〈K,Mi〉 [K] � [Mi]⇒ [Mi] =
1

〈K,Mi〉
[K]−1 � [Mi−1].

It follows that [M ′] ∈ Tac(E) � [M ]. Therefore, the quasi-isomorphism classes of complexes

generate M(E) over Tac(E). It remains to prove that they are independent over this quantum

torus.

Since each relation in M1(E) from the definition of the underlying vector space of M(E)

identifies two elements in the same quasi-isomorphism class, one can decomposeM(E) into the

direct sum

M(E) =
⊕

α∈Iso(Db(E))

Mα(E),

whereMα(E) is the component containing the classes of all objects whose isomorphism class in

Db(E) is α. We claim that for each α, the Tac−submoduleMα(E) is free of rank one. Let M be

an object of Cb(E). By the above argument, the map

Tac(E)→M[M ](E), [K] 7→ [K] � [M ]

is surjective. Since Tac(E) is the (twisted) group algebra of K0(Cbac(E)), the following Lemma
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4.2.13 shows that its composition with the natural map

M[M ](E)→M(E)→ Q[K0(Cb(E))]

is injective. Therefore, it is bijective. This completes the proof. �

Lemma 4.2.13. The natural map

i : K0(Cbac(E))→ K0(Cb(E)), [M ] 7→ [M ]

is injective.

Proof.
Now to prove injectivity of i, it is enough to prove the injectivity of the following composed

map : ∐
Z
K0(E)

h
∼→ K0(Cbac(E))

i→ K0(Cb(E))
f
∼→
∐
Z
K0(E).

We will do it by contradiction. Assume that the element

X = (. . . ,

kn∑
i=1

xi[Xi], . . .)

of
∐
Z
K0(E) (the described term sits in n−th component), is nonzero and belongs to the kernel of

f ◦ i ◦ h. Consider the maximal m such that the mth component of X is nonzero. Following the

definitions of the homomorphisms f, i, h, one observes that then the mth components of X and of

f(i(h(X))) coincide, thus the latter is also non-zero. Contradiction. �

4.2.5 Multiplication

Consider a pair of complexes A,B ∈ Cb(E). For each class ε in the extension group

Ext1
Cb(E)(A,B) represented by a conflation B � E � A, we denote by mt(ε) the isomorphism

class of E in Cb(E). It is well-defined, i.e. it does not depend on the choice of the representative

of ε. We also consider its class [mt(ε)] inM(E).

Definition 4.2.14. We define a Q−bilinear map

� :M1(E)×M1(E)→M(E)

by the following rule :

[L] � [M ] =
1

〈K,L〉
[K]−1 �

∑
E∈Iso(Cb(E))

(
|Ext1

Cb(E)(L
′,M)E |

|Hom(L′,M)|
[E]), (4.15)
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or, equivalently, as

[L] � [M ] =
1

〈K,L〉
[K]−1 �

∑
ε′∈Ext1

Cb(E)
(L′,M)

[mt(ε′)]

|Hom(L′,M)|
, (4.16)

where K � L′
qis
� L is a conflation such that L′ satisfies

ExtpCb(E)
(L′,M) = ExtpDb(E)

(L′,M), ∀p > 0. (4.17)

By part (i) of assumption (C4), at least one such L′ always exists. We want to prove that the

definition is correct and compatible with the bimodule structure over Aac(E) and that it descends

toM(E).

Proposition 4.2.15. The map � is well-defined, i.e. it does not depend on the choice of a conflation

K � L′
qis
� L such that the isomorphism (4.17) holds.

Proof. Suppose we have two conflations whose deflations are quasi-isomorphisms

K1 � L′1
qis
� L,K � L′

qis
� L,

and isomorphism (4.17) holds for both L′ and L′1. Then for the pullback L′2 of the two defla-

tions arising in these conflations, we also have deflations which are quasi-isomorphisms L′2
qis
�

L′, L′2
qis
� L′1. By assumption (C4), there exists a deflation quasi-isomorphism L′′

qis
� L′2, with L′′

satisfying the condition (4.17) for the extensions by M. Since the set of deflations is closed under

composition, we have a deflation L′′
qis
� L. Completing all these deflations to conflations and using

the axiom of the exact category concerning push-outs, we can obtain the following commutative

diagram with H,N,K acyclic :

H
��

��

H
��

��

// // 0
��

��

N

����

// // L′′

����

// // L

K // // L′ // // L

(4.18)

Therefore, it is sufficient to prove that for an arbitrary pair of conflations

K � L′
qis
� L,N � L′′

qis
� L

satisfying the condition (4.17) and such that there exists a commutative diagram (4.18), we have
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the identity

1

〈K,L〉
[K]−1�

∑
ε′∈Ext1

Cb(E)
(L′,M)

[mt(ε′)]

|Hom(L′,M)|
=

1

〈N,L〉
[N ]−1�

∑
ε′′∈Ext1

Cb(E)
(L′′,M)

[mt(ε′′)]

|Hom(L′′,M)|
.

(4.19)

Using the conflation H � N � K, we find out that

[N ] = [K ⊕H] = 〈H,K〉 [H] � [K] ⇔ [N ] � [K]−1 = 〈H,K〉 [H] ⇔

⇔ [K]−1 = 〈H,K〉 [N ]−1 � [H].

Therefore, the right hand side of (4.19) is equal to

〈H,K〉
〈K,L〉

[N ]−1 � [H] �
∑

ε′∈Ext1
Cb(E)

(L′,M)

[mt(ε′)]

|Hom(L′,M)|
=

=
〈H,L′〉

〈K,L〉 〈H,L〉
[N ]−1 � [H] �

∑
ε′∈Ext1

Cb(E)
(L′,M)

[mt(ε′)]

|Hom(L′,M)|
=

=
〈H,L′〉
〈N,L〉

[N ]−1 � [H] �
∑

ε′∈Ext1
Cb(E)

(L′,M)

[mt(ε′)]

|Hom(L′,M)|
. (4.20)

From condition (4.17) for i = 1 for L′ and L′′ which are quasi-isomorphic to each other, we

see that the morphism Ext1
Cb(E)(L

′,M)→ Ext1
Cb(E)(L

′′,M) arising from the long exact sequence

of extensions of elements of the conflation N � L′′
qis
� L′ by M is in fact an isomorphism. That

means that for each class ε′ in Ext1
Cb(E)(L

′,M) represented by a conflation

M � E′ � L′,

there is a unique class ε′′ in Ext1
Cb(E)(L

′,M) represented by a conflation

M � E′′ � L′′

such that the following diagram commutes :

0
��

��

// // H
��

��

H
��

��

M // // E′′

����

// // L′′

����

M // // E′ // // L′.

(4.21)
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Using the conflation

H � E′ � E′′,

we see that formula (4.20) can be rewritten as follows :

〈H,L′〉
〈N,L〉

[N ]−1 �
∑

ε′′∈Ext1
Cb(E)

(L′′,M)

[mt(ε′′)]

|Hom(L′,M)| 〈H,L′〉 〈H,M〉
=

=
1

〈N,L〉 〈H,M〉
[N ]−1 �

∑
ε′′∈Ext1

Cb(E)
(L′′,M)

[mt(ε′′)]

|Hom(L′,M)|
=

=
1

〈N,L〉
[N ]−1 �

∑
ε′′∈Ext1

Cb(E)
(L′′,M)

[mt(ε′′)]

|Hom(L′′,M)|
,

as desired. In the last equation, we use nothing more than

〈H,M〉 =
|Hom(L′′,M)|
|Hom(L′,M)|

.

This identity holds, since, by assumption, in the long exact sequence of extensions of elements of

the conflation H � L′′
qis
� L′ by M all morphisms

ExtpCb(E)
(L′,M)→ ExtpCb(E)

(L′′,M)

are isomorphisms. This completes the proof. �

Proposition 4.2.16. The productsK �L and L�K, given in this section coincide with those given

in section 5.1, for an acyclic complex K and an arbitrary L.

Proof. Denote the map defined in this section by �1, the one used in the definition of

Tac(E)−action by �2. To compute the K �1 L, we consider some conflation K ′′ � K ′
qis
� K

such that

ExtpCb(E)
(K ′, L) ∼= ExtpDb(E)

(K ′, L),∀p > 0.

Since K is acyclic, so is K ′. Thus, we find that ExtpCb(E)
(K ′, L) = 0, ∀p > 0. Hence

K �1 L =
1

〈K ′′,K〉
[K ′′]−1 �2

1

|Hom(K ′, L)|
[K ′ ⊕ L] =

=
1

〈K ′′,K〉 〈K ′, L〉
[K ′′]−1 �2 [K ′ ⊕ L] =

=
1

〈K ′′,K〉 〈K ′′, L〉 〈K,L〉
[K ′′]−1 �2 [K ′ ⊕ L]. (4.22)
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Using the conflation K ′′ � K ′ ⊕ L
qis
� K ⊕ L, we get

[K ′′] �2 [K ⊕ L] =
1

〈K ′′,K ⊕ L〉
[K ′ ⊕ L].

Using this, we rewrite the expression (4.22) as 1
〈K,L〉 [K ⊕ L], which equals K �2 L by definition.

For L �K, the proof is similar. �

Proposition 4.2.17. The map � is compatible with the bimodule structure on M′
1(E) and with

relations (4.14).

Proof. It is easy to check that � is simultaneously compatible with the bimodule structure and with

the relations if and only if for any conflations K � L�M,N � P � Q with K,Q ∈ Cbac(E),

we have

1

〈K,M〉
[L] � [N ] = [K] � ([M ] � [N ]);

1

〈N,Q〉
[M ] � [P ] = ([M ] � [N ]) � [Q]. (4.23)

Thus, it is enough to check the identities (4.23). Using the pull-back as in Proposition (4.2.15), we

can construct the following diagram :

K ′′
��

��

// // L′′
��

��

M ′′
��

��

K ′

����

// // L′

����

// // M ′

����

K // // L // // M,

(4.24)

where all elements in the first row and the first column are acyclic, and the last two columns can

be used to define L �N and M �N. We have

1

〈K,M〉
[L] � [N ] =

1

〈K,M〉 〈L′′, L〉
[L′′]−1 �

∑
εL∈Ext1

Cb(E)
(L′,N)

[mt(εL)]

|Hom(L′, N)|
. (4.25)

Using the same arguments as in the proof of Proposition 4.2.15 and the diagram similar to (4.21),

we can rewrite this as follows :

〈K ′, N〉 〈K ′,M ′〉
〈K,M〉 〈L′′, L〉

[L′′]−1 � [K ′] �
∑

εM∈Ext1
Cb(E)

(M ′,N)

[mt(εM )]

|Hom(L′, N)|
=

=
〈K ′, N〉 〈K,M ′′〉 〈K ′′,M ′′〉
〈K ′′,K〉 〈M ′′,K〉 〈M ′′,M〉

[L′′]−1 � [K ′] �
∑

εM∈Ext1
Cb(E)

(M ′,N)

[mt(εM )]

|Hom(L′, N)|
=
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=
〈K ′, N〉 〈K,M ′′〉
〈M ′′,K〉 〈M ′′,M〉

[M ′′]−1 � [K] �
∑

εM∈Ext1
Cb(E)

(M ′,N)

[mt(εM )]

|Hom(L′, N)|
=

=
〈K ′, N〉
〈M ′′,M〉

[K] � [M ′′]−1 �
∑

εM∈Ext1
Cb(E)

(M ′,N)

[mt(εM )]

|Hom(L′, N)|
=

= [K] �

 1

〈M ′′,M〉
[M ′′]−1 �

∑
εM∈Ext1

Cb(E)
(M ′,N)

[mt(εM )]

|Hom(L′, N)|

 = [K] � ([M ] � [N ]).

In the last but one equation, we use that 〈K ′,M〉 = |Hom(L′,M)|
|Hom(M ′,M)| , cf. the end of the proof of

Proposition 4.2.15. We proved the first of identities (4.23) ; the proof of the second one is dual. �

Since the homomorphism � is compatible with the bimodule structure, it can be considered as

a module homomorphism

M′
1(E)×M′

1(E)→M(E).

Since it is compatible with relations (4.14), it descends onM′
2(E) and, moreover, defines a mul-

tiplication

� :M(E)×M(E)→M(E).

Definition 4.2.18. We define the semi-derived Hall algebra SDH(E) asM(E) with the multipli-

cation �.

Remark 4.2.19. It is easy to check that the product � given by formulae (4.15)–(4.16) is the unique

Tac(E)−bilinear multiplication onM(E) which coincides with that of the classical Hall algebra

H(Cb(E) on the pairs (L′,M) satisfying (4.17).

We can give an alternative definition of the multiplication, where the summation is taken over

the set of the isomorphism classes in the bounded derived category. It turns out that this gives us

the structure constants.

Definition 4.2.20. Given a complex M ∈ Cb(E), denote by M its isomorphism class in the boun-

ded derived category Db(E). For any α ∈ Iso(Db(E)) and any L,M ∈ Cb(E), define the subset

Ext1
Cb(E)(A,B)α ⊂ Ext1

Cb(E)(A,B)

as the set of all extensions of L by M whose middle term belongs to α.

Lemma 4.2.21. Assume that for E,E′ ∈ Cb(E), we have :

1) E = E′ = α and

2) there exist A,B ∈ Cb(E), such that

Ext1
Cb(E)(A,B)E 6= 0,Ext1

Cb(E)(A,B)E′ 6= 0.
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Then inM(E) these two complexes determine the same element : [E] = [E′].

Proof. By condition 1), both [E] and [E′] belong to the same componentM(E)α ofM(E). By

Theorem 4.2.12, there exists a unique element t of the quantum torus Tac(E), such that [E′] =

t � [E]. By condition 2), the classes of [E] and [E′] in K0(Cb(E)) coincide, hence the class of t

in K0(Cb(E)) equals zero. By Lemma 4.2.13, this implies that the class of t in K0(Cbac(E)) equals

zero. Therefore, we have t = [0] in Tac(E)). We finally obtain that [E′] = [0] � [E] = [E], q.e.d.

�

Corollary 4.2.22. For all objects A,B of Cb(E), we have the following identity :∑
E∈Iso(Cb(E))

(|Ext1
Cb(E)(A,B)E |[E]) =

∑
α∈Iso(Db(E))

(|Ext1
Cb(E)(A,B)α|[Eα,A,B]), (4.26)

where for each α, the complex Eα,A,B is the middle term of any extension belonging to

Ext1
Cb(E)(A,B)α.

Proof. Lemma 4.2.21 implies that the right-hand side is well-defined. Now, for any α ∈
Iso(Db(E)), we have, just by definition,∑

E∈Iso(Cb(E)),E=α

|Ext1
Cb(E)(A,B)E | = |Ext1

Cb(E)(A,B)α|

and if this number is non-zero, then for each E from the left-hand side, we have [E] = [Eα,A,B]

inM(E). �

Corollary 4.2.23. For each pair of bounded complexes L,M ∈ Cb(E), the product [L] � [M ] in

the semi-derived Hall algebra is equal to the following sum :

[L] � [M ] =
1

〈K,L〉
[K]−1 �

∑
α∈Iso(Db(E))

(
|Ext1

Cb(E)(L
′,M)α|

|Hom(L′,M)|
[Eα,L′,M ]), (4.27)

where

K � L′
qis
� L

is a conflation such that L′ satisfies

ExtpCb(E)
(L′,M) = ExtpDb(E)

(L′,M), ∀p > 0.

4.2.6 Associativity

Theorem 4.2.24. For each triple of bounded complexes A,B,C ∈ Cb(E), we have

([A] � [B]) � [C] = [A] � ([B] � [C]).



4.2. SEMI-DERIVED HALL ALGEBRAS 95

Proof. We have

([A] � [B]) � [C] = (
1

〈K1, A〉
[K1]−1 �

∑
ε∈Ext1

Cb(E)
(L1,B)

(
[mt(ε)]

|Hom(L1, B)|
)) � [C] =

=
1

〈K1, A〉
[K1]−1 �

∑
ε∈Ext1

Cb(E)
(L1,B)

(
1

|Hom(L1, B)|
([mt(ε)] � [C])).

Using part (ii) of condition (C4), we obtain that for each extension ε of L1 by B represented

by a conflation B � X � L1, there exists a unique extension ε′ of L1 by L2 represented by

L2 � Y � L1, such that the following diagram commutes :

K2
��

��

K2
��

��

// // 0
��

��

L2

����

// // Y

����

// // L1

B // // X // // L1.

(4.28)

We have

[X] =
1

〈K2, X〉
[K2]−1 � [Y ] =

1

〈K2, B〉 〈K2, L1〉
[K2]−1 � [Y ],

i.e.

[mt(ε)] =
1

〈K2, B〉 〈K2, L1〉
[K2]−1 � [mt(ε′)].

Then, by part (iii) of condition (C4), the expression above can be rewritten as follows :

1

〈K1, A〉 〈K2, B〉 〈K2, L1〉
([K1]−1 � [K2]−1) � |Hom(L1, L2)|

|Hom(L1, B)|
×

×(
∑

ε′∈Ext1
Cb(E)

(L1,L2)

1

|Hom(L1, L2)|
[mt(ε′)] � [C]) =

=
|Hom(L1, L2)|

〈K1, A〉 〈K2, B〉 〈K2, L1〉 |Hom(L1, B)|
([K1]−1 � [K2]−1) � (([L1] • [L2]) � [C]),

where • is the usual Hall product in the exact category Cb(E). Thus, by part (iii) of condition

(C4), both multiplications in the formula (([L1] � [L2]) � [C]) are the usual Hall multiplications.

Therefore, we can use the associativity property for this expression and rewrite the last formula in

the above calculations as follows :

([A]�[B])�[C] =
|Hom(L1, L2)|

〈K1, A〉 〈K2, B〉 〈K2, L1〉 |Hom(L1, B)|
([K1]−1�[K2]−1)�([L1]•([L2]•[C])).
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Using the associativity of the product with [K]−1 and the commutation rule from Lemma 4.2.10

for [L1] and [K2]−1, we obtain that this is equal to :

|Hom(L1, L2)|
〈K1, A〉 〈K2, B〉 〈K2, L1〉 |Hom(L1, B)|

[K1]−1� 1

|Hom(L1,K2)|
〈K2, L1〉 [L1]•([K2]−1�([L2]•[C])).

Just by definition (and since the two 〈K2, L1〉 cancel each other), it equals

|Hom(L1, L2)|
〈K1, A〉 |Hom(L1, B)||Hom(L1,K2)|

[K1]−1 � [L1] • ([B] � [C]) =

=
|Hom(L1, L2)|

|Hom(L1, B)||Hom(L1,K2)|
[A] � ([B] � [C]).

It is easy to check that part (ii) of condition (C4) implies that

|Hom(L1, L2)|
|Hom(L1, B)||Hom(L1,K2)|

= 1;

therefore, we have ([A] � [B]) � [C] = [A] � ([B] � [C]). �

4.2.7 Derived invariance

In this section, we prove that our algebra is invariant under some (quite big) class of derived

equivalences :

Proposition 4.2.25. An equivalence of bounded derived categories of exact categories

F : Db(E ′) ∼→ Db(E)

induces the equivalence of bounded derived categories of their categories of bounded complexes :

F : Db(Cb(E ′)) ∼→ Db(Cb(E)).

Proof. Denote by C[−N,N ](E) the category of complexes over E , concentrated in degrees

−N,−N + 1, . . . , N. Since we have

Db(Cb(E ′)) =
∞⋃
N=0

Db(C[−N,N ](E ′)),

and similarly for E , it is enough to prove that F induces an equivalence

Db(C[−N,N ](E ′))
F∼→ Db(C[−N,N ](E)),

for all N ∈ Z≥0. For this we use the same “dévissage” trick as in the proof of Proposition 4.2.8.
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We start by recalling the family of evaluation functors

evk : C[−N,N ](E)→ E , k = −N,−N + 1, . . . , N

(. . .→ 0→ A−N → . . .→ Ak → . . .→ AN → 0→ . . .)
evk7→ Ak.

Each of these functors is exact and admits an exact left adjoint evλk : E → C[−N,N ](E) :

A
evλ−N7→ (. . .→ 0→ A→ 0→ . . .→ 0→ . . .→ 0→ 0→ . . .),

A
evλk7→ (. . .→ 0→ 0→ 0→ . . .→ A = A→ . . .→ 0→ 0→ . . .),

for−N+1 ≤ k ≤ N.HereA sits in the degree−N and in degrees k−1 and k, respectively. Since

evk and evλk are exact adjoint, they induce a pair of adjoint functors between Db(C[−N,N ](E)) and

Db(E), which we will denote by the same symbols ; this holds for each k = −N,−N + 1, . . . , N.

We consider similar functors ev′k and ev′k
λ for E ′. Then for each X,Y ∈ Db(E ′), k, l ∈ [−N,N ],

we have isomorphisms

HomDb(C[−N,N ](E ′))(ev
λ
kX, ev

λ
l Y ) = HomDb(E ′)(X, evk ◦ evλl Y ) =

= HomDb(E)(FX,F (evk ◦ evλl Y )) = HomDb(E)(FX, ev
′
k ◦ ev′l

λ
(FY )) =

= HomDb(C[−N,N ](E ′))(ev
′
k
λ
FX, ev′l

λ
FY ).

It follows that it remains to show that the images of Db(E) under evλk , k = −N,−N + 1, . . . , N

generateDb(C[−N,N ](E)) by triangles, and similarly for E ′. Let us prove that these images generate

the subcategories Db(Cbk(E ′)) and Db(Cbk(E)) generated by the complexes concentrated in degree

k, for k ∈ [−N,N ]. We give the proof by induction on k, and write it only for E , since for E ′

everything is the same. For k = −N the statement is clear by the definition of evλ−N . Assume that

we have proved the statement for k ≤ l. Consider an arbitrary stalk complex

A• := . . .→ 0→ . . .→ 0→ A→ 0→ . . .→ 0→ . . . ,

with A sitting in degree l. Then there is a conflation of complexes Σ−1A• � C(1Σ−1A•) � A•

inducing a triangle in Db(C[−N,N ](E)). But Σ−1A• ∈ Db(Cbl−1(E)), hence it is in the subcategory

of Db(C[−N,N ](E)) generated by the images C(1Σ−1A•) = evλl (A). Therefore all stalk complexes

in Db(Cbl (E)) are in the subcategory generated by the images of evλk , but the stalk complexes

generate by triangles the whole Db(Cbl (E)).

Now we verify easily that the closure under extensions of the Db(Cbl (E)), for l = −N,−N +

1, . . . , N, is Db(C[−N,N ](E)), and this completes the proof. �

Proposition 4.2.26. Under the assumptions of Proposition 4.2.25, we have an equivalence of
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derived categories of the categories of acyclic bounded complexes :

Db(Cbac(E ′))
F∼→ Db(Cbac(E))

which induces an isomorphism of the Grothendieck groups

K0(Cbac(E ′))
∼→ K0(Cbac(E))

and respects the Euler form 〈·, ·〉 .

Proof. By the equivalence ofDb(Cb(E ′)) andDb(Cb(E ′)), it is sufficient to prove that the canonical

functors

Db(Cbac(E ′)) ↪→ Db(Cb(E ′)),Db(Cbac(E)) ↪→ Db(Cb(E)) (4.29)

are fully faithful and that an object A′ of Db(Cb(E ′)) lies in the essential image of Db(Cbac(E ′))
iff F (A′) lies in the essential image of Db(Cbac(E)). The functors (4.29) are fully faithful by [38,

Theorem 12.1] applied to B = Cbac(E),A = Cb(E). The followin lemma provides a functorial

characterization of complexes of complexes, isomorphic in Db(Cb(E)) to complexes of acyclics,

that gives us the desired condition on essential images and, therefore, completes the proof.

Lemma 4.2.27. A complexX ∈ Cb(Cb(E)) is isomorphic inDb(Cb(E)) to an object ofDb(Cbac(E))

if and only if its total complex Tot(X) is acyclic, i.e. the functor

Tot : Db(Cb(E))→ Db(E)

sends X to 0.

Proof. We start by an argument similar to Lemma 4.2.4 : for each complex of complexes

X ∈ Cb(Cb(E)) there exists a deflation quasi-isomorphism X ′
qis
� X, where all but one of the

components of X ′ are acyclic. Indeed, for each complex Xp ∈ Cb(E) there exists a deflation from

an acyclic complex C(1Σ−1X) to Xp. Without loss of generality, we can assume that X is of form

X : . . .→ 0→ X0 → . . .→ Xn → 0→ . . . , Xp ∈ Cb(E).

We will construct the components of X ′ step by step. Take a deflation An � Xn with An acyclic.

Then take the pullback of a morphism Xn−1 → Xn and this deflation, and define An−1 (with a
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morphism An−1 → An and a deflation An−1 � Xn−1) by an acyclic deflation to this pullback :

An−1

�� ��

%% %% **
• //

����

An

����

// 0

Xn−1 // Xn // 0

(4.30)

In similar manner we construct An−2, . . . , A1, A0. At the last step, we do not consider a deflation

from an acyclic complex, just a pullback B given by the diagram

B //

����

A0

����

0 // X0

(4.31)

By construction, we get a deflation quasi-isomorphism X ′ � X, where

X ′ = . . .→ 0→ B → A0 → . . .→ An → 0→ . . . .

Now we see that X is isomorphic in Db(Cb(E)) to a complex from Db(Cbac(E)) if and only

if X ′ is. But all Ai are acyclic, hence this last condition holds if and if B is acyclic. Clearly, in

this and only this case we have Tot(X ′) = 0. But Tot is a functor from the derived category

Db(Cb(E)), which gives us the desired criterion. �

Corollary 4.2.28. Under the assumptions of Proposition 4.2.25, we have an isomorphism of quan-

tum tori of acyclic complexes :

Tac(E ′)
∼→ Tac(E).

Theorem 4.2.29. Under the assumptions of Proposition 4.2.25, we have an isomorphism of alge-

bras :

SDH(E ′) ∼→ SDH(E).

Proof. By the Corollary 4.2.28, we have an isomorphismM(E ′) ∼→M(E) of free modules over

isomorphic quantum tori with bases which are in bijection by the derived equivalence. Since we

can consider all bounded complexes as stalk complexes inDb(Cb(E ′)) andDb(Cb(E)) respectively,

all extensions in the categories of bounded complexes are just morphisms in these derived catego-

ries, hence they are preserved under the functorDb(Cb(E ′))→ Db(Cb(E)) induced by F. It follows
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that the multiplication of the semi-derived Hall algebra is preserved as well, which completes the

proof. �

4.2.8 Case with enough projectives

Throughout this section, we assume that our category E satisfies the following conditions :

1) E has enough projectives ;

2) each object in E has a finite projective resolution.

Here we record some simple facts concerning extensions in the category Cb(E).

Lemma 4.2.30. For each complex K ∈ Cbac(E), there exists an acyclic complex of complexes

0→ Pd → Pd−1 → . . .→ P1 → P0 → K → 0, (4.32)

where d is the maximum of the projective dimensions of the components of K; and the Pi are

bounded acyclic complexes of projectives.

Proof. By Lemma 4.2.4, there exists a conflation whose deflation is a quasi-isomorphism

K0 � P0

qis
� K,

with P0 ∈ Cb(P). Then P0 is acyclic, and from the long exact sequences of extensions of compo-

nents by arbitrary objects of E , it follows that the components of K1 are of projective dimension

at most d− 1. Now we prove the statement by induction on the maximal projective dimension of

the components of our acyclic complex. �

Corollary 4.2.31. For each complex M ∈ Cb(E), there exists an acyclic complex of complexes

0→ Pd → Pd−1 → . . .→ P1 → P0

qis
�M → 0, (4.33)

where d is the maximum of the projective dimensions of the components of M and the Pi are

bounded complexes of projectives which are acyclic for i ≥ 1.

Proof. By Lemma 4.2.4 there exists a conflation whose deflation is a quasi-isomorphism

K0 � P0

qis
�M,

with P0 ∈ Cb(P). Now apply Lemma 4.2.30 toK0, whose components have projective dimension

at most d− 1. �

Corollary 4.2.32. For each acyclic complex K ∈ Cbac(E) and each L ∈ Cb(E) the following

holds :

Extp(K,L) = 0, ∀p > d,
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where d is the maximum of projective dimensions of the components of K.

Proof. By Proposition 4.2.3, the complex (4.32) is a projective resolution of K in Cb(E). �

Corollary 4.2.33. For each pair of complexes L,M ∈ Cb(E) the following holds :

ExtpCb(E)
(M,L) = ExtpDb(E)

(M,L), ∀p > d,

where d is the maximum of projective dimensions of the components of M.

Proof. Write down the long exact sequences of extensions in Cb(E) and in Db(E) induced by

morphisms from elements of a conflation K0 � P0

qis
� M, with P0 ∈ Cb(P), to L; and apply

Corollary 4.2.33 to K0 and L and the five-lemma to these two sequences. Note that the maximum

of projective dimensions of K0 is d− 1. �

With the conditions 1) and 2) on E , Proposition 4.2.4 establishes that the inclusion P ↪→ E
induces an equivalence of derived categories Db(P)

∼→ Db(E). Then Theorem 4.2.29 provides an

isomorphism

I : SDH(P)
∼→ SDH(E), [P ] 7→ [P ]. (4.34)

Proposition 4.2.34. The map

F : [M ] 7→ 1

|Hom(
⊕

k∈Z≥0

P2k+1,M)|
[
⊕
k∈Z≥0

P2k+1]−1 � [
⊕
k∈Z≥0

P2k];

[K]−1 7→ [F ([K])]−1, K ∈ Cbac(E)

provides an isomorphism

SDH(E)
∼→ SDH(P),

inverse to the isomorphism (4.34).

It is easy to check that F is inverse to I as a map. I being an isomorphism, so is F.

Note that all extensions in Cb(P) are isomorphic to those in Db(P), therefore the multiplica-

tion in SDH(P) is just the usual Hall multiplication in the exact category Cb(P). It means that

SDH(P) is the usual Hall algebra of Cb(P), localized at the classes of acyclic complexes (all of

which are contractible) :

Proposition 4.2.35. SDH(P) = H(Cb(P))[[K]−1|K ∈ Cb(P)].

If E has enough projectives and any object in E has finite projective resolution, then

SDH(E) = H(Cb(P))[[K]−1|K ∈ Cb(P)].
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4.2.9 Hereditary case

It turns out that if the category E is hereditary, i.e of global dimension 1, and has enough

projectives, then the multiplication in our algebra is given by the same formula as the usual Ringel-

Hall multiplication.

Theorem 4.2.36. Assume that E is hereditary and has enough projectives. Then forL,M ∈ Cb(E),

the product [L] � [M ] in the semi-derived Hall algebra is equal to the following sum :

[L] � [M ] =
∑

X∈Iso(Cb(E))

|Ext1
Cb(E)(L,M)X |
|Hom(L,M)|

[X],

Proof. We can choose a conflation K � L′
qis
� L with K ∈ Cbac(P), L′ ∈ Cb(P) to write down

the product [L] � [M ] (if L′ has projective components, then, by the heredity assumption, K has

projective components as well). By Proposition 4.2.3, we have

ExtpCb(E)
(K,M) = ExtpDb(E)

(K,M) = 0, ∀p > 0,

hence 〈K,M〉 = |Hom(K,M)|. Consider the part of the long exact sequence of extensions in

the category Cb(E) :

0→ Hom(L,M)→ Hom(L′,M)→ Hom(K,M)→
→ Ext1

Cb(E)(L,M)→ Ext1
Cb(E)(L

′,M)→ Ext1
Cb(E)(K,M) = 0.

(4.35)

We find out that Ext1
Cb(E)(L,M) surjects onto Ext1

Cb(E)(L
′,M) = Ext1

Db(E)(L,M). That means

that for each extension ε ∈ Ext1
Cb(E)(L,M) represented by

M � X � L

there exists a unique extension ε′ ∈ Ext1
Cb(E)(L

′,M) represented by

M � E � L′

such that the following diagram commutes :

0
��

��

K
��

��

K
��

��

M // // E

����

// // L′

����

M // // X // // L

(4.36)
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and for each ε′ there are exactly
|Ext1

Cb(E)
(L,M)|

|Ext1
Cb(E)

(L′,M)| of ε corresponding to ε′. We see that for each

such pair (ε, ε′), we have

[mt(ε′)] = 〈K,M〉 〈K,L〉 [K] � [mt(ε)],

cf. proofs of Proposition 4.2.15 and Theorem 4.2.24. We get

[L] � [M ] =
1

〈K,L〉
[K]−1 �

∑
ε′∈Ext1

Cb(E)
(L′,M)

[mt(ε′)]

|Hom(L′,M)|
=

=
1

〈K,L〉
[K]−1

|Ext1
Cb(E)(L

′,M)|
|Ext1

Cb(E)(L,M)|
�

∑
ε∈Ext1

Cb(E)
(L,M)

〈K,M〉 〈K,L〉 [K] � [mt(ε)]

|Hom(L′,M)|
=

= (|Hom(K,M)|
|Ext1

Cb(E)(L
′,M)|

|Ext1
Cb(E)(L,M)|

|Hom(L,M)|
|Hom(L′,M)|

)
∑

ε∈Ext1
Cb(E)

(L,M)

[mt(ε)]

|Hom(L,M)|
=

= (|Hom(K,M)|
|Ext1

Cb(E)(L
′,M)|

|Ext1
Cb(E)(L,M)|

|Hom(L,M)|
|Hom(L′,M)|

)
∑

X∈Iso(Cb(E))

|Ext1
Cb(E)(L,M)X |
|Hom(L,M)|

[X].

It follows from the long exact sequence (4.35) that

|Hom(K,M)|
|Ext1

Cb(E)(L
′,M)|

|Ext1
Cb(E)(L,M)|

|Hom(L,M)|
|Hom(L′,M)|

= 1,

and we find out the desired formula. �

Corollary 4.2.37. Assume that E is hereditary and has enough projectives. Then there exists an

algebra homomorphism

p : H(Cb(E))→ SDH(E).

The homomorphism p induces an algebra isomorphism

(H(Cb(E))/I)[S−1]
∼→ SDH(E), (4.37)

where I is the two-sided ideal generated by all differences [L]− [K ⊕M ], where K � L � M

is a conflation in Cb(E) with acyclic K, and S is the set of all classes [K] of acyclic complexes.

The following known result is useful for us to give a set of generators of SDH(A) :

Lemma 4.2.38. Suppose that A is a hereditary abelian category. Then each object in Cb(A)

is quasi-isomorphic to the direct sum of its homology objects, where H i is concentrated in the

degree i. Equivalently, each object in Db(A) is isomorphic to a direct sum of indecomposable

stalk complexes.
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The proof can be found, e.g., in [35]. Let us denote by uA,m a stalk complex with non-zero

component A, concentrated in the degree m. Let us also define the complexes vA,m, A ∈ A, by

vA,m := . . .→ 0→ 0→ A
1A−→ A→ 0→ 0→ . . . ,

where A sits in degrees m and (m + 1). For any class α ∈ K0(A) and for any integer m, let us

define the class vα,m as the product

[vA,m] � [vB,m]−1,

for any A,B ∈ A such that α = A−B in the Grothendieck group K0(A).

From now on up to the end of the section, we suppose that A is a hereditary abelian category

with enough projectives, satisfying all the conditions (C1)-(C3).

Proposition 4.2.39. SDH(A) is generated by the classes of complexes uA,m and the classes vα,m.

Proof. From Theorem 4.2.12, it follows that SDH(A) has a basis over Q, each of whose elements

can be presented as the product of an element of the quantum torus by the class of an object in

Db(A). It is easy to verify that for any acyclic bounded complex M and any integer i, we have

[M ] = ai[τ≥iM ] � [τ<iM ],

for a certain ai ∈ Q. Recall that τ≥iM, τ<iM are the intelligent truncations of M. By induction,

we prove that Aac(A) is generated by the classes of the complexes vA,m. Then it is clear that

Tac(A) is generated by the vα,m. Similarly, we prove that the class of any direct sum
⊕

n1≤i≤n2

Ai,

where Ai is a stalk complex concentrated in the degree i, equals, up to a rational multiplicative

coefficient, the product

[An1 ] � [An1+1] � · · · � [An2 ],

i.e. a product of classes of uAi,i.By Lemma 4.2.38, any quasi-isomorphism class in Cb(A) contains

such a direct sum. �

Lemma 4.2.40. There is a family of injective ring homomorphisms

Im : H(A) ↪→ SDH(A), [A] 7→ [uA,m].

Proof. It is enough to prove that, for any A,B ∈ A, we have

∑
C

|Ext1
A(A,B)C |

|HomA(A,B)|
uC,m =

∑
X

|Ext1
Cb(A)(uA,m, uB,m)X |

|HomCb(A)(uA,m, uB,m)|
X,

which is easy to check. �

Let us write down some simple relations on generators in SDH(A).
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Lemma 4.2.41. Assume that for A,B ∈ A, we have Hom(A,B) = 0. Then in SDH(A) we have

[uA,m] � [uB,n] = [uA,m ⊕ uB,n],

for any m 6= n ∈ Z.

Lemma 4.2.42. Assume that for A ∈ A, we have dim Hom(A,A) = 1. Assume also that A is

linear over a finite field k = Fq. Then in SDH(A) we have

[uA,m] � [uA,n] = [uA,m ⊕ uA,n] + (q − 1)δn−1
m [vA,n],

for any m 6= n ∈ Z. As a corollary, we have

[vA,n] = (q − 1)−1([uA,n] � [uA,(n+1)]− [uA,(n+1)] � [uA,n]), ∀n ∈ Z.

To prove both of these lemmas, one should use the form of the product given in Theorem

4.2.36. Note that

HomCb(A)(uA,m, uB,n) = 0, ∀A,B ∈ A,∀m 6= n ∈ Z,

and Ext1
Cb(A)(uA,m, uB,n) can be easily computed.

We can also calculate the value of the Euler form on pairs of generators.

Lemma 4.2.43. For any A,B ∈ A and any m,n ∈ Z, we have

〈vα,m, uB,n〉 = δnm 〈α,B〉A ; 〈vα,m, vβ,n〉 = (δnm + δn+1
m ) 〈α, β〉A ;

〈uB,n, vα,m〉 = δn−1
m 〈B,α〉A .

Corollary 4.2.44. For any A,B ∈ A and any n > m ∈ Z, we have

〈uA,m, uB,n〉 = (〈A,B〉A)(−1)(n−m)
; 〈uA,m, uB,m〉 = 〈A,B〉A ;

〈uB,n, uA,m〉 = 1.

One may twist the multiplication in SDH(A) in different ways. Since the classes of the stalk

complexes yield the full set of generators, we can define the twist of their products and then extend

it by bilinearity. Here are some natural twists :

1) [uA,m] ∗1 [uB,n] := 〈uA,m, uB,n〉 [uA,m] � [uB,n]. With this twist, the quantum torus be-

comes commutative ;

2) [uA,m]∗2 [uB,n] :=
√
〈uA,m, uB,n〉[uA,m]� [uB,n]. This twist is probably the most natural

analogue of Ringel’s twist ;

3) [uA,m] ∗3 [uB,n] := (
√
〈A,B〉A)δ

n
m [uA,m] � [uB,n]. This twist is a Z−graded analogue of

the twist used in [5] ;
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4) [uA,m]∗4 [uB,n] := (
√
〈A,B〉A)(−1)(n−m)

[uA,m]� [uB,n]. Note that here we take arbitrary

n,m ∈ Z, which need not satisfy n > m. This twist is similar to the one used in [31],

[73].

In any of cases 2), 3) and 4), we get a family of embeddings ofHtw(A) into SDHtw(A), with

the twist thus defined. It is easy to show that all of these twisted algebras are invariant under the

same class of derived equivalences as in Theorem 4.2.29, cf. Theorem 4.3.18 below.

4.2.10 Example : quiver representations

Let Q be a simply-laced Dynkin quiver on the vertices 1, . . . , n. Let A be the category of

finite-dimensional representations of Q over the field k = Fq. This abelian category satisfies all

the assumptions (C1)-(C3) ; moreover, it is hereditary and has enough projectives. For each vertex

i of Q, we denote the corresponding one-dimensional simple module by Si ∈ A. Two objects

associated to a quiver Q, the Hall algebra H(A) and the quantum group U√q(g) are related to

each other by the following important result.

Theorem 4.2.45 (Ringel, [64, Sch]). There are isomorphisms of algebras

R : U√q(n
+)
∼→ Htw(repFq(Q)), Re : U√q(b

+)
∼→ He

tw(repFq(Q)),

defined on generators by

R(Ei) = Re(Ei) =
[Si]

(q − 1)
, Re(Ki) = KSi .

In the algebra SDH(A), we choose a set of generators consisting of elements of two types,

according to Proposition 4.2.39 : generators of the quantum torus Tac(E) and classes of stalk

complexes. Let ui,m := uSi,m, for i = 1, . . . , n and m ∈ Z.

Proposition 4.2.46. The algebra SDH(A) is generated by the classes [ui,m], [vα,m], subject only

to the following relations : for every p > m+ 1 ∈ Z and all 1 ≤ i, j ≤ n and α, β ∈ K0(A), we

have

(U) the relations in Im(H(A)) for the ui,m, i = 1, . . . , n;

ui,muj,m+1 = uj,m+1ui,m + δji (q − 1)vSi,m; ui,muj,p = uj,pui,m;

(V)

vα,mvβ,m =
〈β, α〉
〈α, β〉

vβ,mvα,m; vα,mvβ,m+1 = 〈β, α〉vβ,m+1vα,m; vα,mvβ,p = vβ,pvα,m;

(UV)

vα,muj,m+1 = 〈Sj , α〉uj,m+1vα,m; ui,mvβ,m = 〈β, Si〉vβ,mui,m;

ui,mvβ,m+1 = vβ,m+1ui,m; ui,mvβ,p = vβ,pui,m; vα,muj,p = uj,pvα,m.
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Proof. Let B be the algebra generated by the classes [ui,m], [vα,m], subject only to the above

relations. We have a natural map

φ : B → SDH(A), [X] 7→ [X].

Due to Theorem 4.2.45, we know that the classes [ui,m] give a basis of Im(H(A)), for any integer

m. Therefore, by Proposition 4.2.39, the classes [ui,m], [vα,m] generate SDH(A). Applying lem-

mas 4.2.40-4.2.43 and Theorem 4.2.45, one easily proves that all the relations in the statement are

satisfied in the algebra SDH(A), i.e. the map φ is a surjective homomorphism. Let us prove its

injectivity. Being the twisted group algebra of K0(Cb(A)), the quantum torus has a basis consis-

ting of the elements of this Grothendieck group. We know (cf. the proof of Lemma 4.2.13) that

K0(Cbac(E)) ∼=
∐
Z
K0(E). From here it immediately follows that the elements of the form

[vα1,m1 ] � [vα2,m2 ] � . . . � [vαk,mk ],m1 > m2 > . . . > mk,

form a basis of Tac(A) over Fq. The set formed by the elements

([ui1,l1 ] � [vi2,l2 ] � . . . � [vik,lk ]) � ([vα1,m1 ] � [vα2,m2 ] � . . . � [vαk,mk ]),

where l1 > l2 > . . . > lk,m1 > m2 > . . . > mk, spans B. Thanks to the above argument

and the freeness of the algebra SDH(A) over the quantum torus, this set is mapped to a basis of

SDH(A). Thus, the homomorphism φ is injective, i.e. it is an isomorphism. �

Note that with any of the twists 2), 3) and 4), the relations (U1) will be transformed into the

quantum Serre relations.

4.2.11 Tilting objects and derived equivalences

We say that T is a tilting object in an exact category E satisfying conditions (C1) - (C4), if the

following conditions hold :

(T1) the groups Exti(T, T ) vanish for i > 0;

(T2) the full exact category addT containing all finite direct sums of indecomposable sum-

mands of T generates Db(A);

(T3) the algebra A = End(T ) is of finite global dimension.

Note that the exact structure on addT splits. Therefore, the inclusion IT : add(T ) → E
induces an equivalence

Db(add(T ))
∼→ Db(E)

by conditions (T1) and (T2). Moreover, we have an exact fully faithful functor

Hom(T, ?) : add(T )→ mod(A).
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This functor induces an equivalence from add(T ) onto the subcategory proj(A) of finitely gene-

rated projective A-modules. Therefore, by condition (T3), Hom(T, ?) also induces an equivalence

Db(add(T ))
∼→ Db(mod(A)).

Theorem 4.2.47. We have the following isomorphisms between the semi-derived Hall algebras :

SDH(mod(End(T )))
∼← SDH(addT )

IT∼→ SDH(E).

We will consider a special case of these tilting equivalences - namely, BGP-reflections, - in

Section 9.6.

4.3 Z/2-graded version of SDH(E)

In this section, we will develop a Z/2-graded version of the construction from the previous

section. We should point out once again that the whole concept of the semi-derived Hall algebras

SDH(E) was inspired by the work [5] of Bridgeland where he considered Z/2-graded complexes

with projective components. When we try to generalize this construction to arbitrary exact catego-

ries with enough projectives we encounter a major obstacle : the stupid truncation functors σ≥n are

no longer defined. Recall that these truncations have been an important ingredient of our construc-

tion : we used them in the proofs of Propositions 4.2.8 and 4.2.26 and of Lemmas 4.2.2, Lemma

4.2.13 and Lemma 4.2.21. Another difficulty is that neither the Z/2-graded analogue of Lemma

4.2.4, nor its analogue for vector bundles seem to work in full generality. These difficulties can be

resolved and we can construct a Z/2-graded analogue of SDH(E). The key point is to replace the

category CZ/2(E) with a suitable subcategory.

4.3.1 Choice of a subcategory

From now on, we assume that the exact category E satisfies conditions (C1) and (C2) from

Section 3 and the following condition :

(C4’) E has enough projectives, and each object has a finite projective resolution.

Note that (C4’) implies condition (C3) from Section 3. We are interested in a subcategory

Ẽ of CZ/2(E), where each object admits a deflation quasi-isomorphism from a complex P with

projective components such that, moreover, for each complex M ∈ Ẽ , we have :

ExtpCZ/2(E)(P,M) = ExtpDZ/2(E)(P,M), ∀p > 0. (4.38)

Definition 4.3.1. For any exact category E , denote by Ẽ the closure with respect to extensions and

quasi-isomorphism classes of the full subcategory of all stalk complexes inside CZ/2(E).

We consider the category P̃. Note that it coincides with the intersection Ẽ ∩ CZ/2(P). Indeed,
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the inclusion P̃ ⊂ Ẽ ∩ CZ/2(P) follows from the definition. The inclusion in the other direction

will follow from Proposition 4.3.5 below. The following lemmas will be very useful for us.

Lemma 4.3.2. For any acyclic complex K ∈ CZ/2,ac(E), there exists a deflation quasi-

isomorphism PK
qis // // K, with PK ∈ P̃.

Proof. Given an acyclic complex K = K0
f0 // K1

f1
oo ∈ CZ/2(E), we get two conflations

Z0 i0 // K0 π1
// Z1, Z1 i1 // K1 π0

// Z0.

By (C4’), we have deflations P 0 p0 // // Z0 , P 1 p1 // // Z1 , with P 0, P 1 ∈ P. Now we lift p0 to

a morphism g0 : P 0 → K1, such that i0 ◦ g0 = p0, and similarly we get g1 : P 1 → K0. This

determines two commutative diagrams :

P 1

����

// // P 0 ⊕ P 1

��

// // P 0

����

P 0

����

// // P 0 ⊕ P 1

��

// // P 1

����

Z1 // // K0 // // Z0 Z0 // // K1 // // Z1

(4.39)

By the five-lemma, the two middle vertical arrows are deflations. Also, we get another two com-

mutative diagrams :

P 1

����

P 1

��

// // 0

����

P 0

����

P 0

��

// // 0

����

K1 // // K0 // // K1 K0 // // K1 // // K0

(4.40)

Consider the complex

PK = P 0
1 // P 0

0
oo ⊕ P 1

0 // P 1

1
oo .

Since diagrams (4.40) are commutative, we get a deflation PK
p′→ K that is clearly a quasi-

isomorphism. By Lemma 4.1.4, all acyclic complexes with projective components lie in P̃. �

Lemma 4.3.3. Any Z/2−graded complex in the image π(Cb(E)) can be obtained by a finite se-

quence of extensions of stalk complexes. In particular, π(Cb(E)) is contained in Ẽ .

Proof. The statement follows from the principle of finite dévissage for bounded complexes and

from the exactness of the functor π. �

Now we can verify that P̃ and Ẽ have the desired properties.

Lemma 4.3.4. For any P ∈ P̃,M ∈ Ẽ , the isomorphism (4.38) holds.
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Proof. All the arguments of the proof of Proposition 4.2.1, except for Lemma 4.2.2, work for

P ∈ CZ/2(P),M ∈ CZ/2(E). It remains to prove that, for any P ∈ P̃,M ∈ Ẽ , we have

HomKZ/2(E)(P,M) = HomDZ/2(E)(P,M). (4.41)

It is easy to check that for P,M stalk complexes, concentrated in degrees i and j respectively,

both sides of (4.41) are isomorphic to HomE(P
i,M j) if i = j and vanish if i 6= j. By Lemma

4.1.4, any P ∈ CZ/2,ac(P) is an iterated extension of stalk complexes with projective components,

thus, by the five-lemma, the identity (4.41) holds for any such P and stalk M. In all the following

steps we will apply the five-lemma in an appropriate way. Firstly, we prove that the identity (4.41)

holds for stalk complexes M and any P from the closure with respect to extensions and quasi-

isomorphisms of the full subcategory of stalk complexes in CZ/2(P), i.e. for any P ∈ P̃ and stalk

complex M. Then, using once again Lemma 4.1.4, we prove it for any P ∈ P̃,M ∈ CZ/2,ac(P).

By Lemma 4.3.2 and induction, we prove the identity for any P ∈ P̃,M ∈ CZ/2,ac(E). Applying

the five-lemma once more, we prove it in the desired generality, i.e. for any P ∈ P̃,M ∈ Ẽ . �

Proposition 4.3.5. For any object A ∈ Ẽ , there exists a deflation quasi-isomorphism P
qis
� A,

with P ∈ P̃.

Proof. To prove the statement, it is enough to show the following :

(i) for any Z/2−graded stalk complex there exists such a deflation ;

(ii) the condition of the existence of such a deflation is closed under extensions ;

(iii) this condition is stable under quasi-isomorphism.

We first prove (i). Without loss of generality, one can consider a stalk complex of the form

M• = M
0 // 0
0
oo . Then π(P •)

qis
�M• is a desired deflation quasi-isomorphism, for

P • := . . .→ 0→ P−d → P−(d−1) → . . .→ P 0 → 0→ . . . ,

where 0→ P−d → P−(d−1) → . . .→ P 0 → M → 0 is a finite projective resolution of M in E .
Point (iii) is an easy consequence of (ii). Thus, it remains to prove point (ii).

Lemma 4.3.6. Assume given a conflation L � M � N in Ẽ , whose end terms L,N admit

deflation quasi-isomorphisms

PL
qis
� L, PN

qis
� N,

with PL, PN ∈ P̃. Then the middle term M also admits a deflation quasi-isomorphism P (M)
qis
�

M, with P (M) ∈ P̃.

Proof. Since Σ = Σ−1, we have a conflation ΣPN � C(1ΣPN )
qis
� PN . Since C(1ΣPN )

is contractible with projective components, it is projective in P̃. In particular, the composi-

tion C(1ΣPN ) � PN
qis
� N lifts, with respect to the deflation M � N, to a morphism
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C(1ΣPN ) → M. We have an induced map of kernels ΣPN
f→ L, completing the commutative

diagram

ΣPN

��

// // C(1ΣPN )

��

// // PN

����

L // // M // // N.

(4.42)

Consider the conflation AL � PL
qis
� L, where AL is acyclic. Since PN belongs to P̃, so does

ΣPN . Thus,

Ext1
CZ/2(E)(ΣPN , AL) = Ext1

DZ/2(E)(ΣPN , AL) = 0,

and f can be lifted to a morphism f ′ : ΣPN → PL. The cone C(f ′) of the morphism f ′ coin-

cides with the push-out of the diagram PL ΣPN
f ′oo // // C(1ΣPN ) . Thus, we get

morphisms C(f ′)→ PN and C(f ′)→M such that the following diagram commutes :

ΣPN

��

// // C(1ΣPN )

��

// // PN

PL

����

// // C(f ′)

��

// PN

����

L // // M // // N.

(4.43)

The morphism C(f ′) → M is a deflation, by the five-lemma applied to the last two rows. The

second row is the conflation induced from the first row by the morphism f ′. The category P̃ being

closed under extensions, C(f ′) lies in P̃. Since C(1ΣPN ) is acyclic, we find that the deflation

C(f ′) � M is a quasi-isomorphism. This completes the proof of the lemma and of the proposi-

tion. �

Now we can prove the inclusion Ẽ ∩ CZ/2(P) ⊂ P̃, mentioned above. We have just shown

that for any P ∈ Ẽ , in CZ/2(E), there exists a conflation K � P ′
qis
� P, with P ′ ∈ P̃. If P has

projective components, so does K. Thus, this conflation belongs to CZ/2(P) and induces a quasi-

isomorphism in this category. But P̃ is closed with respect to such quasi-isomorphisms, therefore,

P also lies in P̃. We proved the desired inclusion. Thus, Ẽ ∩ CZ/2(P) = P̃.
In fact, in the two most motivating cases, the category Ẽ coincides with the entire category

CZ/2(E).

Proposition 4.3.7. Assume that either :

— E is an abelian category or

— E is the full exact subcategory of projective objects in a hereditary abelian category.

Then the category Ẽ equals CZ/2(E).
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Proof. This is a rephrasing of Proposition 4.1.9. �

Proposition 4.3.8. The triple (P̃, CZ/2,ac(E), Ẽ) endows the category E with a hereditary projec-

tive exact model stucture.

Proof. By Lemma 4.3.4, ((P̃, CZ/2,ac(E) and (CZ/2,ac(P)), Ẽ) are cotorsion pairs. By the existence

of deflation quasi-isomorphsims from Proposion 4.3.5and their mapping cones, we find that the

first pair is complete. Completeness of the second pair is proved similarly in the usual way. By

recalling that P̃ = Ẽ ∩ CZ/2(P), we easily show that both of the pairs are hereditary. �

4.3.2 Grothendieck monoids and groups

Recall that the left relative Grothendieck monoid M ′0(Ẽ) was defined as the free monoid gene-

rated by the set Iso(Ẽ), divided by the following set of relations :

〈
[L] = [K ⊕M ]|K � L�M is a conflation,K ∈ CZ/2,ac(E)

〉
.

Similarly, the left relative Grothendieck groupK ′0(Ẽ) is the free group generated by the set Iso(Ẽ),

divided by the following set of relations :

〈
[K]− [L] + [M ] = 0|K � L�M is a conflation,K ∈ CZ/2,ac(E)

〉
.

Lemma 4.3.9. The natural map

i : K0(CZ/2,ac(E))→ K ′0(Ẽ), [M ] 7→ [M ]

is injective.

Proof. We will define a map Φ : K ′0(Ẽ)→ K0(CZ/2,ac(E)), such that

Φ ◦ i = IdK0(CZ/2,ac(E)). (4.44)

We start by constructing such a map for complexes with projective components, i.e. we construct

a retraction ΦP for

iP : K0(CZ/2,ac(P))→ K ′0(P̃), [M ] 7→ [M ].

Since acyclic complexes with projective components are projective objects in P̃, all relations in

K ′0(P̃) come actually from direct sums. This yields a natural projection map

p : K ′0(P̃) � Ksplit
0 (P̃), [M ] 7→ [M ].

Since P is Krull-Schmidt category, so is CZ/2(P) and, therefore, P̃. Therefore, one can define an

“acyclic part” of a complex with projective components : each object M ∈ P̃ can be decompo-

sed in a unique way (up to a permutation of factors) into a finite direct sum of indecomposable
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complexes :

M =

m(M)⊕
i=1

Mi ⊕
k(M)⊕
j=1

M ′j ,

where all Mi are acyclic while the M ′j are not. Then

φ : Ksplit
0 (P̃) � Ksplit

0 (CZ/2,ac(P)) = K0(CZ/2,ac(P)), [M ] 7→
m(M)⊕
i=1

Mi

is a well-defined group epimorphism, and for ΦP := φ ◦ p we get

ΦP ◦ iP = IdK0(CZ/2,ac(P)).

Given any complex M ∈ Ẽ , by Proposition 4.3.5, we have at least one deflation quasi-

isomorphism PM
qis
� M, with PM ∈ P̃; consider also the kernel of this deflation AM . We define

the left inverse to the inclusion i as

Φ([M ]) := [ΦP(PM )]− [AM ].

We should verify two things :

1) The element Φ(M) thus defined does not depend on the choice of a deflation quasi-

isomorphism PM
qis
�M ;

2) The map Φ is additive on conflations K � L�M of Ẽ with K acyclic, i.e. it is actually

a well-defined group homomorphism.

We prove part 1) in the same manner as Proposition 4.2.15 concerning the well-definedness of the

multiplication in SDH(E). Namely, using suitable pull-backs, we reduce the problem to the case

where we have two resolutions of M linked by a deflation quasi-isomorphism PM
qis
� P ′M . For

these two resolutions, we construct a commutative 3× 3−diagram, similar to diagram (4.18) :

H
��

��

H
��

��

// // 0
��

��

N

����

// // PM

����

// // M

K // // P ′M
// // M.

(4.45)

Here H,N,K are acyclic complexes. By considering the second column we see that H has pro-

jective components. Since ΦP is well-defined on K ′0(P), we have ΦP([PM ]) − ΦP([P ′M ]) =
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ΦP([H]). But ΦP([H]) = [H] = [N ]− [K], and it follows that

ΦP([PM )])− [N ] = ΦP([P ′M ])− [K],

proving the desired independence.

Let us prove the additivity of the map Φ. We should show that for any conflation K �

L � M, with K acyclic, we have Φ(K) − Φ(L) + Φ(M) = 0. Take a pair of conflations

AK � PK
qis
� K and AM � PM

qis
� M. Since Ext1(PM ,K) = 0 (by Lemma 4.3.4), the

morphism PM � M can be lifted along the deflation L � M and we can find a deflation

quasi-isomorphism PK ⊕ PM
qis
� L with the kernel AL. With the induced conflation of kernels

AK � AL � AM , we get the commutative diagram

AK
��

��

// // AL
��

��

// // AM
��

��

PK

����

// // PK ⊕ PM

����

// // PM

����

K // // L // // M.

(4.46)

Using the well-definedness of Φ and the additivity of ΦP , it is easy to check now that

Φ(K)− Φ(L) + Φ(M) = 0.

It remains to check identity (4.44). Take an acyclic complex M ∈ CZ/2,ac(E). By Lemma

4.3.2, there exists a deflation quasi-isomorphism PM
qis
� M with kernel AM . Since M is acyclic,

so is PM . Therefore, ΦP(PM ) = [PM ] and

Φ ◦ i([M ]) = Φ(M) = [PM ]− [AM ] = [M ].

By the additivity proved above, we get the desired identity of homomorphisms. �

4.3.3 Euler forms

In order to construct SDHZ/2(E), we first define the Euler form

〈·, ·〉 : K0(CZ/2,ac(E)×K0(Ẽ)→ Q×

via

〈[K], [A]〉 :=

+∞∏
p=0

|ExtpCZ/2(E)(K,A)|(−1)p .
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By the same rule, we define the form

〈·, ·〉 : K0(Ẽ)×K0(CZ/2,ac(E)→ Q×.

These two forms coincide on K0(CZ/2,ac(E) × K0(CZ/2,ac(E), thus we can denote them by the

same symbol and call each of them the Euler form.

Proposition 4.3.10. Each of the Euler forms 〈·, ·〉 defined above is a well-defined group homo-

morphism.

Proof. If such an Euler form is well-defined, it is clearly a group homomorphism, by the five-

lemma; thus, we should verify only that in both of these two alternating products all but a finite

number of factors vanish, for all K,A. This does hold by Corollary 4.1.3. �

Warning 4.3.11. The canonical map i′ : K0(CZ/2,ac(E))→ K0(Ẽ) is not injective. E.g., we have

i′([ X
1 // X
0
oo ]) = [ X

0 // 0
0
oo ] + [ 0

0 // X
0

oo ] = i′([ X
0 // X
1
oo ]). (4.47)

Cf. the proof of Theorem 4.3.16. Moreover, the Euler form cannot be defined as before on the whole

product K0(Ẽ)×K0(Ẽ), if E has non-trivial Euler form.

Indeed, assume that we have a group homomorphism

〈·, ·〉 : K0(Ẽ)×K0(Ẽ)→ Q×, 〈[K], [A]〉 :=
+∞∏
p=0

|ExtpCZ/2(E)(K,A)|(−1)p .

If 〈Z, Y 〉E 6= 0, for certain Z, Y ∈ E , it is easy to check that〈
[ Z

1 // Z
0
oo ], [ Y

1 // 0
0
oo ]

〉
= 〈Z, Y 〉E 6= 0 =

〈
[ Z

0 // Z
1
oo ], [ Y

1 // 0
0
oo ]

〉
,

but the classes of Z
1 // Z
0
oo and Z

0 // Z
1
oo in K0(Ẽ) coincide, cf. (4.47). Here by 〈·, ·〉E we

mean the Euler form of the category E .

4.3.4 Construction of the algebra SDHZ/2(E)

Define the quantum torus of Z/2−graded acyclic complexes TZ/2,ac(E) as the Q−group al-

gebra of K0(CZ/2,ac(E)), with the multiplication twisted by the inverse of the Euler form, i.e. the

product of classes of acyclic complexes K1,K2 ∈ CZ/2,ac(E) is defined as follows :

[K1] � [K2] :=
1

〈K1,K2〉
[K1 ⊕K2].
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Define the quantum affine space of Z/2−graded acyclic complexes AZ/2,ac(E) as the

Q−monoid algebra of the Grothendieck monoid M0(CZ/2,ac(E)), with the multiplication twis-

ted by the inverse of the Euler form.

Consider the Q−vector space with basis parametrized by the elements of M ′0(Ẽ). Define on

this space a structure of a bimoduleM′Z/2(E) over AZ/2,ac(E) by the rule

[K] � [M ] :=
1

〈K,M〉
[K ⊕M ], [M ] � [K] :=

1

〈M,K〉
[M ⊕K]

for K ∈ CZ/2,ac(E),M ∈ Ẽ . Then MZ/2(E) := TZ/2,ac(E) ⊗AZ/2,ac(E) M′Z/2(E) ⊗AZ/2,ac(E)

TZ/2,ac(E) is a bimodule over the quantum torus TZ/2,ac(E).

Theorem 4.3.12. MZ/2(E) is free as a right and as a left module over TZ/2,ac(E). Each choice

of representatives of the quasi-isomorphism classes yields a basis.

Proof. The proof of Theorem 4.2.12 would work if Lemma 4.2.13 did not fail : the natural map

i′ : K0(CZ/2,ac(E))→ K0(CZ/2(E)) is not injective ; cf. the above warning. Note that nonetheless,

this injectivity has been used only to prove that there is a grading on the whole module compa-

tible with the grading of any quasi-isomorphism componentMα(E) (if we fix a representative E

such that E = α) by K0(Cbac(E)). Note that the grading we have chosen in the Z−graded case

can be now refined : indeed,MZ/2(E) is naturally graded by K ′0(Ẽ). Lemma 4.3.9 provides the

compatibility of theK0(CZ/2,ac(E))−grading of any quasi-isomorphism component with this one.

With these two compatible gradings at hand, we can mimic the proof of Theorem 4.2.12, replacing

everywhere bounded complexes by the Z/2−graded and K0(Cb(E)) by K0(Ẽ). �

Definition 4.3.13. We endow MZ/2(E) with the following multiplication : the product of the

classes of two complexes L,M ∈ Ẽ is defined as

[L] � [M ] =
1

〈AL, L〉
[AL]−1 �

∑
ε∈Ext1

Ẽ
(PL,M)

[mt(ε)]

|Hom(PL,M)|
, (4.48)

or, equivalently, as

[L] � [M ] =
1

〈AL, L〉
[AL]−1 �

∑
X∈Iso(Ẽ)

(
|Ext1

Ẽ(PL,M)X |
|Hom(PL,M)|

[X]), (4.49)

where AL � PL
qis
� L is an arbitrary conflation with AL ∈ CZ/2,ac(E), PL ∈ P̃. We call the

resulting algebra the Z/2−graded semi-derived Hall algebra SDHZ/2(E).

Proposition 4.3.14. The multiplication � of SDHZ/2(E) is well-defined and compatible with the

module structure.

Proof. The proof follows the lines of the proofs of Propositions 4.2.15 and 4.2.16. �
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We do not know, whether the Z/2−graded versions of Lemma 4.2.21, Corollary 4.2.22 and

Corollary 4.2.23 do hold, since their proofs use Lemma 4.2.13.

In [5], Bridgeland uses a non-trivial twist. Let us construct a similarly twisted version of the

algebra SDHZ/2(E). We define a bilinear form

〈·, ·〉cw : Iso(CZ/2(E))× Iso(CZ/2(E))→ Q×, 〈M,N〉cw :=
√
〈M0, N0〉 · 〈M1, N1〉,

whereM has the form M0 //M1oo , and similarly forN. This form descends to a bilinear form

(denoted by the same symbol)

〈·, ·〉cw : A×B → Q×,

where A and B are some of the Grothendieck groups considered above, i.e.

A,B ∈
{
K0(CZ/2(E)),K0(CZ/2,ac(E)),K0(Ẽ),K ′0(Ẽ)

}
.

Lemma 4.3.15. On the Grothendieck group of acyclic complexes, the bilinear form 〈·, ·〉cw coin-

cides with the usual Euler form :

〈α, β〉cw = 〈α, β〉 , ∀(α, β) ∈ K0(CZ/2,ac(E))×K0(CZ/2,ac(E)).

Proof. The statement is trivial for α, β ∈ {[KP ], [K∗P ]|P ∈ P} . We know (cf. the proof of Pro-

position 4.3.10) that these classes generate the whole Grothendieck group K0(CZ/2,ac(E)). �

We define the twisted Z/2−graded semi-derived Hall algebra SDHZ/2,tw(E) in the same

way as the non-twisted version, but with replacing AZ/2,ac(E) and TZ/2,ac(E) by the monoid and

the group algebras QM ′0(CZ/2,ac(E)) and QK0(CZ/2,ac(E)), respectively. The multiplication in

SDHZ/2,tw(E) is given by the rule

[M1] ∗ [M2] := 〈M1,M2〉cw [M1] � [M2], [M1], [M2] ∈ K ′0(Ẽ).

It is easy to check that this is a free bimodule over QK0(CZ/2,ac(E)), with the same type of bases

as in theorem 4.3.12. We define the reduced twisted version of the Z/2−graded semi-derived Hall

algebra by setting [K] = 1 whenever K is an acyclic complex, invariant under the shift functor :

SDHZ/2,tw,red(E) := SDHZ/2,tw(E)/([K]− 1 : K ∈ CZ/2,ac(E),K ∼= K∗).

Due to isomorphism (4.51), this is the same as setting

Kα ∗K∗α = 1, ∀α ∈ K0(E), (4.50)

where

Kα := [KA] ∗ [KB]−1, K∗α := [KA
∗] ∗ [KB

∗]−1,
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for any A,B ∈ E such that α = A − B. It is easy to check (cf. [5]) that these two elements are

well-defined, i.e. they do not depend on choice of A,B.

4.3.5 Associativity and derived invariance

Theorem 4.3.16. SDHZ/2(E) is an associative unital algebra.

Proof. The class [0] is clearly the unit of SDHZ/2(E). One can check that the proof of Theorem

4.2.24 concerning the associativity works in this Z/2−graded case without any changes. �

Theorem 4.3.17. Suppose that F : E ′ → E is an exact functor between exact categories satisfying

conditions (C1), (C2) and (C4’), inducing an equivalence of bounded derived categories

F : Db(E ′) ∼→ Db(E)

Then F induces an isomorphism in the Z/2−graded semi-derived Hall algebras :

F : SDHZ/2(E ′) ∼→ SDHZ/2(E).

Proof. Since F induces an equivalence of the bounded derived categories, it induces an isomor-

phism of their Grothendieck groups and preserves the Euler form. But K0(Db(E)) = K0(E),

hence F induces an isomorphism K0(E ′) ∼→ K0(E). It easily follows from the existence of re-

solutions (??), that K0(CZ/2,ac(P))
∼→ K0(CZ/2,ac(E)). By Lemma 4.1.4 and because the exact

structure of K0(CZ/2,ac(P)) is split, we have a canonical isomorphism

K0(CZ/2,ac(P))
∼→ K0(P)⊕K0(P).

But K0(P)
∼→ K0(E) by our assumptions. By composing all these isomorphisms, we finally find

that K0(CZ/2,ac(E))
∼→ K0(E)⊕K0(E). In other words, the natural homomorphism :

K0(E)⊕K0(E)→ K0(CZ/2,ac(E)), ([M ], [N ]) 7→ [ M
1 //M
0
oo ] + [ N

0 // N
1
oo ] (4.51)

is an isomorphism, and similarly for E ′. These two isomorphisms are compatible with F ; there-

fore, F induces an isomorphism of the Grothendieck groups of acyclic Z/2−graded complexes.

It clearly preserves the Euler form. It follows that F induces an isomorphism

TZ/2,ac(E ′)
∼→ TZ/2,ac(E).

Since F induces an equivalence Db(E ′) ∼→ Db(E), it induces an equivalence between the

images of the bounded derived categories under the natural map π into the Z/2−graded derived

categories and also an equivalence of the extension closures of these images. Let D′Z/2(E) denote

this extension closure of π(Db(E)), and similarly for E ′.Note that stalk complexes lie in the image
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of π and, therefore, in D′Z/2(E ′) and D′Z/2(E), respectively. We have natural fully faithful functors

ψE : Ẽ [qis−1]→ D′Z/2(E), ψE ′ : Ẽ ′[qis−1]→ D′Z/2(E ′),

which are both the identity on objects (in fact, both of them are equivalences). Therefore, F in-

duces a bijection between the sets of quasi-isomorphism classes of objects in Ẽ and Ẽ ′ i.e., by

Theorem 4.3.12, between the bases of SDHZ/2(E ′) and SDHZ/2(E) as modules over the (iso-

morphic to each other) quantum tori. By property (4.2) and Proposition 4.2.25, all homomor-

phism and extension spaces in Ẽ are preserved under F. By the same reasons, the Euler form on

K0(CZ/2,ac(E)) × K0(Ẽ) is preserved by F. Since ψE ′ and ψE are equivalences and F induces

an equivalence between D′Z/2(E ′) and D′Z/2(E), the multiplication (in particular, the action of the

quantum torus) in SDHZ/2(E ′) is preserved under F, hence F : SDHZ/2(E ′) ∼→ SDHZ/2(E).

�

Theorem 4.3.18. The algebras SDHZ/2,tw(E) and SDHZ/2,tw,red(E) are associative and unital.

Each derived equivalence F from Theorem 4.3.17 induces an isomorphism of the twisted and

reduced twisted Z/2−graded semi-derived Hall algebras.

Proof. The first part follows from Theorem 4.3.16 and the well-definedness of the form 〈·, ·〉W as

a homomorphism K ′0(Ẽ)×K ′0(Ẽ)→ Q×. To prove the invariance of SDHZ/2,tw(E), it is enough

to prove that this form is preserved under the functor F. Since F is induced by an exact functor

between exact categories, it sends the i−th component of a complex in Ẽ ′ to the i−th component

of its image in Ẽ , for i = 0, 1. The Euler form on the Grothendieck group K0(E ′) is sent by

F to the Euler form on K0(E), since all extension spaces are certain homomorphism spaces in

(equivalent) derived categories. By these two arguments, the form 〈·, ·〉W is preserved under F.

Isomorphism (4.51) being compatible with F, so is condition (4.50). �

As in the Z−graded case, we get the following corollaries of Theorems 4.3.17 and 4.3.18.

Corollary 4.3.19. We have the following isomorphisms of algebras :

H(P̃)[[K]−1|H•(K) = 0] ∼= SDHZ/2(P)
I
∼→ SDHZ/2(E); (4.52)

where the isomorphism I is induced by the inclusion functor P ↪→ A. These isomorphisms are

compatible with the twist and the reduction considered above. The isomorphism F, inverse to I, is

defined as in Proposition 4.2.34.

Corollary 4.3.20. Let T be a tilting object in an exact category E satisfying conditions (C1),

(C2) and (C4’). We have the following isomorphisms between the Z/2-graded semi-derived Hall

algebras :

SDHZ/2(mod(End(T )))
∼← SDHZ/2(addT )

IT∼→ SDHZ/2(E),
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where IT is induced by the inclusion functor IT : addT ↪→ E . These isomorphisms are compatible

with the twist and the reduction considered above.

4.3.6 Hereditary case : Bridgeland’s construction, Drinfeld doubles and quantum
groups

As in the Z−graded case, we have an alternative formula for the product in SDHZ/2(E), if E
is hereditary. The proof is the same as for Theorem 4.2.36.

Theorem 4.3.21. Assume that E is hereditary and has enough projectives. Then for L,M ∈ Ẽ ,
the product [L] � [M ] is equal to the following sum :

[L] � [M ] =
∑

X∈Iso(Ẽ)

|Ext1
Ẽ(L,M)X |

|Hom(L,M)|
[X], (4.53)

Corollary 4.3.22. Assume that E is hereditary and has enough projectives. Then there exists an

algebra homomorphism

p : H(Ẽ)→ SDHZ/∈(E).

The homomorphism p induces an algebra isomorphism

(H(Ẽ)/IZ/2)[S−1
Z/2]

∼→ SDHZ/∈(E), (4.54)

where IZ/2 is the two-sided ideal generated by all differences [L]−[K⊕M ], whereK � L�M

is a conflation in Ẽ with acyclic K, and SZ/2 is the set of all classes [K] of acyclic Z/2−graded

complexes.

Corollary 4.3.23. Assume that E is hereditary and has enough projectives. There is an embedding

of algebras

Je+ : Hetw(E) ↪→ SDHZ/2,tw(E)

defined by

[A] 7−→ [ 0 // Aoo ], Kα 7−→ Kα,

where A ∈ E , α ∈ K0(E). By composing Je+ and the involution ∗, we also have an embedding

Je− : Hetw(E) ↪→ SDHZ/2,tw(E)

defined by

[A] 7−→ [ A // 0oo ], Kα 7−→ K∗α.

Let nowA be a hereditary abelian category satisfying conditions (C1) and (C2) and having en-

ough projectives. By Proposition 4.1.9, we have Ã = CZ/2(A); similarly, we have P̃ = CZ/2(P).
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By Corollary 4.3.19, we have an isomorphism

I : Htw(CZ/2(P))[[K]−1|H•(K) = 0]
∼→ SDHZ/2,tw(A). (4.55)

The algebra on the left hand side is the algebra DH(A) from Bridgeland’s work [5]. It has a set of

generators {EA, FA,Kα,K
∗
α|A ∈ Iso(A), α ∈ K0(A)} , cf. [5].

Proposition 4.3.24. (i) The isomorphism

F : SDHZ/2,tw(A)
∼→ DH(A),

inverse to I, is defined on the generators in the following way :

[ 0 // Aoo ] 7→ EA, [ A // 0oo ] 7→ FA, [Kα] 7→ [Kα], [K∗α] 7→ [K∗α]. (4.56)

(ii) The multiplication map

m : a⊗ b 7−→ Je+(a) ∗ Je−(b)

defines an isomorphism of vector spaces

m : Hetw(A)⊗C Hetw(A)
∼→ SDHZ/2,tw(A).

Point (i) can be easily checked by hand (it is enough to show that F and I are inverse to each

other as maps). Point (ii) follows from [5, Lemmas 4.6, 4.7].

Combining Yanagida’s theorem [82, Theorem 1.26] with the isomorphism (4.55), we get ano-

ther point of view on the semi-derived Hall algebras.

Theorem 4.3.25. The algebra SDHZ/2,tw(A) is isomorphic to the Drinfeld double of the bialge-

braHetw(A).

This fact combined with Theorem 4.3.18 yields a new proof of the following theorem of Cra-

mer.

Theorem 4.3.26 ([8, Theorem 1]). Suppose for two hereditary abelian categoriesA′,A satisfying

conditions (C1) and (C2) and having enough projectives, an exact functor F : A′ → A induces

an equivalence of bounded derived categories

F : Db(A′) ∼→ Db(A).

Then F induces an algebra isomorphism of the Drinfeld doubles of the bialgebras Hetw(A′) and

Hetw(A).

In fact, Cramer proved a more general result : he did not assume that A′ and A have enough

projectives, and the derived equivalence did not have to be induced by an exact functor of abelian
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categories. By Happel-Rickard-Schofield result [30, Theorem 1] and our Theorem 4.3.20 on tilting

invariance, we recover many cases of Cramer’s more general statement.

Now consider an acyclic quiver Q, a field k = Fq with q elements, and the corresponding

quantum group U√q(g). Thanks to Bridgeland’s theorem [5, Theorem 4.9], we have the following

corollary of Theorem 4.3.25.

Proposition 4.3.27. There is an injective homomorphism of algebras

R′ : U√q(g) ↪→ SDHZ/2,tw,red(repkQ),

defined on generators by

R′(Ei) = (q − 1)−1 · [ 0 // Sioo ], R′(Fi) = (−√q)(q − 1)−1 · [ Si // 0oo ],

R′(Ki) = [KSi ], R′(K−1
i ) = [K∗Si ].

The map R′ is an isomorphism precisely when the graph underlying Q is a simply-laced Dynkin

diagram.

4.3.7 Reflection functors and the braid group action on U√q(g)

A source of a quiverQ is a vertex without incoming arrows, a sink is a vertex without outgoing

arrows. Let i be a sink and let Q′ be the quiver obtained from Q by reversing all arrows starting

in i. Let us denote by Sj and S′j the simple objects concentrated at a vertex j in repk(Q) and

repk(Q
′), respectively. Let τ−(Si) be the cokernel of the natural monomorphism

Si = Pi ↪→
⊕
j→i

Pj .

Then

T :=
⊕
j 6=i

Pj ⊕ τ−(Si)

is a tilting object in repk(Q), and the indecomposable objects of the category FacT of all quotients

of finite direct sums of copies of T are all the indecomposables of repk(Q), except for Si. In [72],

this category is denoted by repadm(Q). Define T ′ = repadm(Q′) in a similar way, i.e. as the

full exact subcategory containing all the indecomposables of repk(Q
′), except for S′i. There is an

equivalence of categories

si : repadm(Q)
∼→ repadm(Q′),

cf. [72]. The functors si are called reflection functors, since si induces the action of a simple

reflection in the Weyl group ofQ on the lattice Zn which can be identified with both Grothendieck

groups K0(repk(Q) and K0(repk(Q
′)). For different i, these functors generate the action of the
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whole Weyl group on the lattice. We have a diagram of functors

repk(Q)←↩ FacT
∼→ T ′ ↪→ repk(Q

′). (4.57)

All of them induce derived equivalences, and we can finally define an equivalence of the bounded

derived categories

sdi : Db(repk(Q))
∼→ Db(repk(Q

′))

to be their composition (from left to right). These functors are the derived versions of the

Bernstein-Gelfand-Ponomarev reflection functors [4]. By computing the effect of the functors

(4.57) in the semi-derived Hall algebra we obtain the following theorem.

Theorem 4.3.28. There is a unique algebra isomorphism

ti : SDHZ/2,tw,red(repk(Q))
∼→ SDHZ/2,tw,red(repk(Q

′)),

satisfying

∗ ◦ ti = ti ◦ ∗;

ti([ Si
// 0oo ]) = q−1/2 · [ 0 // S′ioo ] ∗K∗S′i ; (4.58)

ti([ A
// 0oo ]) = [ si(A) // 0oo ], ∀A ∈ FacT ;

ti(Kα) = Ksiα.

This isomorphism is induced by the derived equivalence sdi .

Proof. Only equation (4.58) is not straightforward. To prove this, note that we have a triangle

Si ↪→
⊕
j→i

Pj → τ−(Si)→ ΣSi

in the derived category Db(repk(Q))
∼→ Db(repk(Q

′)). The first three objects here belong to the

category repk(Q), while the images of the last three under sdi belong to repk(Q
′). We thus have

conflations

(Si
// 0)oo // // (

⊕
j→i

Pj
// τ−(Si))

0
oo // // Kτ−(Si) ,

Ksi(
⊕
j→i

Pj)
// // (si(

⊕
j→i

Pj)
// si(τ

−(Si)))
0

oo // // (0 // S′i)oo

in repk(Q) and repk(Q
′), respectively. Formula (4.58) follows by simple calculations. �

Sevenhant-Van den Bergh [72] consider the reduced Drinfeld double U(Q) of the algebra

Hetw(repk(Q)), where reduction is given by imposing (4.50). By our results, the algebra U(Q)

is isomorphic to SDHZ/2,tw,red(repk(Q)). Therefore, Theorem 9.1 of [72] is a corollary of the
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above theorem.

As shown in [72] and [81], by combining the isomorphisms ti with an appropriate Fourier

transform, one gets an induced action of the braid group of the quiver Q on the quantum group

U√q(g), identified with a subalgebra of SDHZ/2,tw,red(repk(Q)) by Proposition 4.3.27. This Fou-

rier transform sends Sj to S′j [81], and its action on the Z/2−graded semi-derived Hall algebras

is naturally induced. As shown on [72] and [81], this braid group action coincides with the one

defined by Lusztig by different methods [53].

4.4 Twisted extended Hall algebras of derived categories

The approach of Chapter 3 allows us to generalize results of the previous 2 sections to the case

when replacements of objects might not exist. The results here are direct applications of theorems

from Chapter 3 and computations from Section 4.1, so we present them without detailed proofs.

Let E be an exact category such that the following conditions are satisfied :

(C1) E is essentially small, idempotent complete and linear over some ground field k;

(C2) For each pair of objects A,B ∈ E and for each p > 0, we have

|Extp(A,B)| <∞; |Hom(A,B)| <∞;

(C3) For each pair of objects A,B ∈ E , there exists N > 0 such that for all p > N, we have

Extp(A,B) = 0.

By Proposition 4.2.1, the form 〈−,−〉D
b(E)≥0

Cb(E)
is well-defined. Then we have the following.

Theorem 4.4.1. (i) The algebra H(Db(E), qis) is well-defined. It is a twisted extended Hall

algebra of Db(E). Therefore, it is a free module over the quantum torus of acyclics.

(ii) Whenever SDH(Cb(E)) is well-defined, we have an isomorphism

H(Db(E), qis)
∼→ SDH(Cb(E)).

(iii) H(Db(E), qis) is functorial up to twist under exact functors preserving quasi-

isomorphisms and tilting invariant.

(iv) If E is hereditary, we have an isomorphism

H(Db(E), qis)
∼→ (H(E)[[K]−1,K ∈ Cbac(E)])/I.

(v) We have an embedding

H(E)→ H(Db(E), qis)

and an embedding of the extended algebra.

Similarly, the form 〈−,−〉Dm(E)≥0

Cm(E) is well-defined, for eachm ≥ 2, and we have the following.
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Theorem 4.4.2. (i) The algebra H(Dm(E), qis) is well-defined. It is a twisted extended Hall

algebra of Db(E). Therefore, it is a free module over the quantum torus of acyclics.

(ii) Whenever SDHZ/m(E) is well-defined, we have an isomorphism

H(Dm(E), qis)
∼→ SDHZ/m(E).

(iii) H(Dm(E), qis), is functorial p to twist under exact functors preserving quasi-

isomorphisms and tilting invariant.

(iv) If E is hereditary, we have an isomorphism

H(Dm(E), qis)
∼→ (H(E)[[K]−1,K ∈ Cm,ac(E)])

/
I .

The right hand side in (iv) was considered by Lu and Peng [49] under the name of modified

Ringel-Hall algebras.

The periodic derived categories of abelian categoriesDm(A) do not have t−structures, but we

are still interested in the relation between the twisted extended Hall algebras of Dm(A) and of A.

It follows from the computations in Lemma 4.1.1, that for an abelian category A, the classes

of m−periodic complexes quasi-isomorphic to stalk complexes concentrated in degree 0 form

an extension-closed subcategory of Dm(A) if and only if gl dim(A) ≤ m. They always form a

fully exact subcategory of Cm(A) that we denote Ã. We have well-defined cohomologies H i, i =

0, . . . ,m−1,with values inA, and from the long exact sequence it follows that the complexes with

cohomologies concentrated in degree 0 always form a fully exact subcategory C0
m(A) of Cm(A)

closed under quasi-isomorphisms and their classes form an extension-closed subcategory D0
m(A)

of Dm(A). Thus, we have the following result.

Theorem 4.4.3. Let A be an Fq −linear abelian category of finite global dimen-

sion with finite Hom− and Exti−space, for all i > 0. Then the Hall algebras

H(A),H(Cm(A), qis),H(C0
m(A), qis) are well-defined.

(i) We have an embedding

H(Ã) ↪→ H(Cm(A), qis),

and the algebra

Htw(Ã)

is a flat deformation ofH(A) over

QKnum
0 (Cm,ac(A))

∼→
m⊗
i=1

Knum
0 (A),

if and only if gl dim(A) ≤ m.
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(ii) We have an embedding

H(C0
m(A), qis) ↪→ H(Cm(A), qis)

together with isomorphisms

Htw(C0
m(A), qis)

∼→ H(D0
m(A))⊗QKnum

0 (Cm,ac(A))
∼→ H(A)⊗

m⊗
i=1

Knum
0 (A),

for all A.

Geng and Peng [21] proved the existence of the embedding and the isomorphisms in part (i) for

A having enough projectives and of gl dim ≤ 2 and m being equal to 2. They used Bridgeland’s

construction of twisted extended Hall algebras of periodic derived categories.

Lu and Peng [49] proved that for hereditary abelian category A, the algebra

((H(C2(A)), qis))[[K]−1,K ∈ C2,ac(A)])/I)cw

is the Drinfeld double of the algebra Hetw(A), generalizing the rezult of Yanagida. The multipli-

cation in H(C0
2(A), qis) involves higher extensions in A and it might be interesting to check the

relation between the multiplication and the comultiplication in it.

After the twist be the form 〈−,−〉cw , we can take a reduction as we did in Section 4.3. This

algebra satisfies conditions of Section 3.2 and we can take its idempotented form. When A =

modFqQ, the natural group H is the root lattice, and we recover the subalgebra of Lusztig’s

algebra
·
U, where we take the root lattice instead of the weight lattice.



Chapitre 5

Reduction of exact structures and
degeneration of Hall algebras

5.1 Exact structures and degenerations of Hall algebras

Let A be an additive category. As in the previous chapters, we assume that A is essentially

smal, Hom−finite, idempotent complete and linear over some field k. We know (see Chapter 1)

thatA can be endowed with many different exact structures. Assume that E ′ and E are two different

Ext1−finite exact structures. Then their Hall algebras H(E ′) and H(E) are both well-defined. It

is then natural to ask whether there is any sensible relation between these algebras. In this chapter,

we find such a relation in the case when E is larger than E ′, i.e. it has more conflations. We denote

it by E ′ < E . Note that in this case, E ′ has more projective objects than E and, in particular,

more indecomposable projectives : Ind(P(E)) ⊂ Ind(P(E ′)), where Ind(−) denotes the set of

indecomposable objects in a category. We denote by E\E ′ the class of conflations in E that are not

conflations in E ′. Proceeding from E to E ′ is called the reduction of exact structures in [6], see the

reference for motivation.

5.1.1 General result

Generalizing a definition from [14] from the category of quiver representations (considered as

an abelian category), we introduce the following notions.

Definition 5.1.1. A function w : Iso(A)→ N is called

(i) normalized if w(M) = 0 only for M = 0,

(ii) weakly E−admissible if w(X) ≤ w(M) + w(N) whenever there exists a conflation

N � X �M

in E ;
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(iii) E−additive if w(X) = w(M) + w(N) whenever there exists a conflation

N � X �M

in E ;

(iv) E−admissible if it is weakly E−admissible and Eadd−additive, i.e. we havew(M⊕N) =

w(M) + w(N) for all M and N ;

(v) E-characteristic if it is normalized, E−additive and w(X) < w(M) + w(N) whenever

there exists a conflation

N � X �M

in Emax\E .

Note that, for E ′ < E , any (weakly) E−admissibe function is (weakly) E ′−admissible and any

E ′−characteristic function is E−admissible. Eadd−characteristic functions were called strongly

admissible in [14].

Proposition 5.1.2. (i) If w is a weakly E−admissible function, there exists a filtration F• on

H(E) where Fn is spanned by the [M ] such that w(M) ≤ n, which is normalized if w is

so.

(ii) If w is E ′−characteristic, the associated graded algebra of H(E) with respect to this

filtration isH(E ′).

Proof. The proof of [14, Corollary 1] applies here word for word. It uses only [14, Lemma 3]. �

Corollary 5.1.3. If w is Eadd−charateristic, the associated graded algebra of H(E) with respect

to this filtration is H(Eadd). It is a skew polynomial algebra in variables in Iso(A), namely, the

monoid algebra of (Iso(A),⊕), twisted by the form 1
|HomA(−,−)| .

5.1.2 Categories of finite type

In this section, we assume that the additive category A is of finite type, that is, it has

only finitely many indecomposable objects up to isomorphism. As before, we assume that A
is Hom−finite and linear over a field k. In this case, we can consider its Auslander algebra

Γ := EndA(M), where M is the direct sum of all non-isomorphic indecomposables in A. It

is finite-dimensional over k and thus artinian. Then all exact structures on A are admissible in the

sense of Enomoto [17] and can be classified via Auslander-Reiten (AR) theory. We do not need an

explicit definition of admissible exact structures in what follows, so we do not give it here.

Recall the basic notions of the AR theory. A morphism g : X → Z is called right almost

split if it is not a retraction and any non-retraction h : W → Z factors through g. Left almost

split are defined dually. A conflation X
f
� Y

g
� Z in an exact category E is an AR conflation

if f is left almost split and g is right almost split. We say that E has AR conflations if for every
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indecomposable non-projective object Z there exists an AR conflation ending at Z, and for every

indecomposable non-injective object X there exists an AR conflation starting at X.

Let AR(E) be the subgroup of Kadd
0 (E) generated by

{[X]− [Y ] + [Z] | there exists an AR conflationX � Y � Z inE} ,

Ex(E) the subgroup generated by

{[X]− [Y ] + [Z] | there exists a conflationX � Y � Z inE} .

Let us summarize those results of Enomoto that we will need.

Theorem 5.1.4 (Enomoto). Let A be a Hom−finite idempotent complete k−linear additive ca-

tegory of finite type. Let E be an exact structure on A. Then the following holds.

(i) [17, Corollary 3.15] E has enough projectives and enough injectives.

(ii) [17, Corollary A.4] E has AR conflations.

(iii) [17, Proposition 3.8] E is Ext1−finite.

(iv) [17, Corollary 3.10] There is a one-to-one correspondence between the exact structures

on A and the subsets of the (finite) set ind(A)\ ind(P(Emax)). For an exact structure E ,
the corresponding subset coincides with the set ind(P(E))\ ind(P(Emax)). In particular,

ind(P(Eadd)) = ind(A).

(v) [17, Corollary 3.18] Ex(E) = AR(E). Moreover, any element of Ex(E) is a non-negative

linear combination of elements of AR(E).

The following result was proved in [14] for the categories of representations of Dynkin quivers,

but the proof uses only the existence of AR conflations and the statement of Theorem 5.1.4(v), and

thus applies in the general situation.

Theorem 5.1.5. [14, Theorem 4 (1)] Let A be a Hom−finite idempotent complete k−linear

additive category of finite type. A function w is Emax−admissible if and only if it is of the form

w(M) = dim Hom(V,M) for an object V ∈ A.

In the proof, it is first shown that any Eadd−additive function decomposes as w =∑
X∈indA

aXwX , where wX(M) = dim Hom(X,M), for some aX ∈ Z. Then it is shown that

for X ∈ ind(A)\ ind(P(Emax)), the coefficient aX is given by the formula

aX = wX(X)− wX(T ) + wx(τX),

where

τX � T � X

is the AR conflation in Emax ending at X . For this, [14] uses the categories of A−modules, that

is, additive k−linear functors from A to the category of finite-dimensional k−vector spaces.
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Theorem 5.1.6. LetA be a Hom−finite idempotent complete k−linear additive category of finite

type. Let E be an exact structure on A. Then the function

wE : Iso(A)→ N, w(M) = dim Hom(
⊕

P∈ind(P(E))

P,M) (5.1)

is E−characteristic.

Proof. By Theorem 5.1.5, the function wE is Emax−admissible. It is also clearly E−additive. In

its decomposition wE =
∑

X∈indA
aXwX , we have aS = 1, for S simple projectives in Emax. By

the proof of [14, Theorem 4 (2)], this implies that wE is normalized.

Let X � Y � Z be a conflation in Emax. By Theorem 5.1.4(v), we have a decomposition

[X]− [Y ] + [Z] =
∑

U∈ind(A)\ ind(P(Emax))

([τU ]− [C] + [U ])bU ,

for some bU ∈ Z+, where

τU � C � U

is the AR conflation in Emax ending at U.

Then we have

wE([X]− [Y ] + [Z]) =
∑

U∈ind(A)\ ind(P(Emax))

wE([τU ]− [C] + [U ])bU =

=
∑

U∈ind(A)\ ind(P(Emax))
P∈ind(P(E)))\ ind(P(Emax))

wP ([τU ]− [C] + [U ])bU =

=
∑

U∈ind(A)\ ind(P(Emax))
P∈ind(P(E)))\ ind(P(Emax))

bUδ
U
P =

=
∑

P∈ind(P(E)))\ ind(P(Emax))

bP .

Since all bP ≥ 0, we have

wE([X]− [Y ] + [Z]) = 0

if and only if bP = 0, ∀P ∈ ind(P(E)))\ ind(P(Emax)). This happens if and only if we have a

decomposition

[X]− [Y ] + [Z] =
∑

U∈ind(A)\ ind(P(E))

([τU ]− [C] + [U ])bU ,

for some bU ∈ Z+. Applying Theorem 5.1.4(v), we find that this happens if and only if the
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conflation

X � Y � Z

is a conflation in E . Then if this conflation is in Emax\E instead, we have

wE([X]− [Y ] + [Z]) > 0,

or, equivalently,

wE(Y ) < wE(X) + wE(Z).

This finishes the proof. �

Corollary 5.1.7. For any E > E ′, the function wE ′ defines a filtration on H(E) whose associated

graded isH(E ′).

Corollary 5.1.8. Let A be a Hom−finite idempotent complete k−linear additive category of

finite type. The function wV defined by wV (M) = dim(V,M), where V is the direct sum of

several pairwise different indecomposable objects and V contains each simple Emax−projective,

is a Emax−admissible function on Iso(A). It induces a filtration on H(Emax) whose associated

graded isH(E), where E is a unique exact structure whose set of projectives is the union of the set

of the indecomposable summands of V and ind(P(Emax)).

Proposition 5.1.9. For A being (the additive) category of representations of a Dynkin quiver

Q over Fq, all the linear degenerations defined in [14] are precisely the Hall algebras of all

possible exact structures onA. In particular, a strongly admissible function inducing the quantum

PBW degeneration to q−symmetric polynomials corresponds to Eadd. The non-degenerate algebra

(isomorphic to U√q(n)) corresponds to the abelian exact structure.

Remark 5.1.10. WhenA is the category of representations of a Dynkin quiver, Emax−admissible

functions bijectively correspond to the lattice points of the quantum degree cone considered in [1].

Results of Enomoto and Corollary 5.1.8 imply that the objects in the set ind(A)\ ind(P(Emax))

bijectively correspond to the generators of this cone and the exact structures on A bijectively

correspond to the faces.

5.2 2-periodic complexes and generalized quantum doubles

The following lemma is not difficult to prove by checking that the condition on the exact

structure implies that all CE-projective objects must be projective in E .

Lemma 5.2.1. Let A be a Hom−finite k−linear abelian category of finite type. Then the CE-

exact structure on CZ2(A) is the minimal exact structure E on the underlying additive category,

such that all the abelian conflations in each degree are in E and all the conflations with acyclic

first term are in E . Its projective objects are the acyclic complexes with projective components and

the stalk complexes with projective components.
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We know that the entire quantum group U√q(g) is the quotient of the twisted localized Hall

algebra of 2-periodic complexes over mod kQ with the abelian exact structure. On the other hand,

it is the reduced Drinfeld double of the twisted extended Hall algebra of mod kQ. Each Hopf

pairing on this twisted extended Hall algebra defines a Hopf algebra structure on its tensor square.

It is called a generalized quantum double, see, e.g. [36]. The most degenerate case provides the

product Hopf algebra (on the tensor square).

Conjecture 5.2.2. Hopf pairings ofHetw(mod kQ) with itself bijectively correspond to exact stuc-

tures on C2(mod kQ) sitting between the CE exact structure and the abelian exact structure. The

associated quotient by I of the twisted localized Hall algebra for each such exact category is the

corresponding generalized quantum double of Hetw(mod kQ). CE exact category corresponds to

the product Hopf algebra, the maximal exact structure gives the usual Drinfeld double.

The quotient of the twisted localized Hall algebra H(C2(mod kQ), CE) is isomorphic to the

extended Hall algebra of the (hereditary) category grZ/2 mod kQ. The comultiplication on it is the

usual Hall multiplication on the first factor and the opposite on the second. Since the comultipli-

cation on all the generalized quantum doubles is the same, this also defines the comultiplication

on the Drinfeld double SDHZ/2(mod kQ).
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