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Titre : Ensembles basiques et matrices de décomposition de

groupes finis de type de Lie en petite caractéristique

Résumé : Cette thèse se concentre sur les aspects modulaires de la théorie
des représentations. Plus précisément, nous nous intéressons aux ensembles
basiques des blocs unipotents des groupes finis de type de Lie qui vérifient
une propriété d’ « unitriangularité ». Dans la première partie de cette thèse ,
en nous inspirant des travaux de Lusztig sur le paramétrage des représenta-
tions unipotentes en caractéristique 0, nous introduisons une méthode pour
compter les représentations modulaires irréductibles contenues dans les blocs
unipotents. Nous conjecturons que cette méthode est valable pour tout les
groupes finis de type de Lie définis sur un corps dont la caractéristique est
bonne et nous montrons que la conjecture est vraie dans un certain nombre
de cas. La seconde partie de cette thèse a consisté à généraliser les résultats
de Geck sur l’existence d’ensemble basiques unitriangulaire pour les 2-blocs
unipotents des groupes classiques au cas ou le centre est non connexe. Le
dernier aspect de cette thèse porte sur les matrices de décomposition des
groupes finis de type de Lie dans le cas de mauvais nombres premier. Nous
obtenons des résultats pour le groupe le groupe Sp4(q) et le groupe excep-
tionnel G2(q).

Mots clefs : Deligne-Lusztig, Représentations, ensembles basiques, ma-
trices de décompositions, Représentations modulaires, groupes réductifs,
groupes réductifs finis, groupes finis de type de Lie.

Title : Basic sets and decomposition matrices of finite groups

of Lie type in small characteristic.

Abstract : This thesis is focused on the modular aspect of representation
theory. More precisely, we are interisted in basic sets for unipotent blocks
of finite groups of Lie typ which are « unitriangular ». In the first part of
the thesis, following Lusztig’s work on the parametrisation of unipotent re-
presentations in characeristic , we introduce a method to count irreducible
modular representations lying in unipotent blocks. We conjecture that our
method holds for every finite groups of Lie type defined over a field of good
characteristic and we verify our conjecture in many cases. The second part of
the thesis consists to generalize results of Geck on the existence of unitrian-
gular basic sets for unipotent 2-blocks of classical groups to the case where
the center is disconnected. The last aspect of the thesis is the computation
of decomposition matrices of finite groups of Lie type for bad primes. We
got results for Sp4(q) and G2(q).
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Introduction

Representations of finite groups

Let G be a finite group andK be a field. A representation of G overK is a
finite-dimensional K-vector space on which G acts by linear automorphisms.
Let KG be the K-algebra whose basis consists of elements of G and whose
multiplication law is induced by the group law of G. Then, representations of
G can be viewed as finitely generated KG-modules. Since a representation
is a vector space V on which G acts, it is natural to look at the non-zero
subvector spaces which are stable by G. These are the subrepresentations of
G. The representations without non-zero proper subrepresentation are said
to be irreducible.

When the field has characteristic zero (e.g. K = C), the representation
theory of G is much simpler. In that case, by Maschke’s theorem, any repre-
sentation of V over K can be written as a sum

V =
n⊕

i=1

Vi,

where V1, . . . , Vr are irreducible subrepresentations of V . In other words, the
ordinary (characteristic zero) representation theory of G is governed by the
irreducible representations. These can be studied via the Grothendieck group
RK(G) of G which is the abelian group where the :

• Generators are the finitely generated KG-modules. We denote by [V ]
the image of a KG-module V in RK(G).

• Relations are [V ] = [V1]+[V2] whenever we have a short exact sequence
0→ V1 → V → V2 → 0.

Note that we have RK(G) =
⊕

V ∈IrrK(G)

Z[V ] where IrrK(G) is a set of repre-

sentatives of isomorphism classes of irreducible representations of G over K.

7



8 Introduction

Maschke’s theorem states that, when K has characteristic zero, the isomor-
phism class of a finitely generated KG-module is completely determined by
its image in RK(G).

For representations over a field of positive characteristic (modular repre-
sentations), the situation is much more complicated. From now on, we assume
that K has characteristic 0, and we denote by k a field of characteristic ℓ.
We will assume that both K and k are algebraically closed. When ℓ divides
the order of G, the image of a representation in Rk(G) determines only its
composition factors. However, we can use connections between representa-
tions of G over K and k to deduce information on representations over k
from what we know on representations over K. The first step toward this
goal is the decomposition matrix. To a representation V over K (an ordinary
representation), we can associate some modular representation V̄ which is
constructed as a "reduction mod ℓ" of V . The ℓ-decomposition map of G
is the map d : RK(G) → Rk(G) defined by d([V ]) = [V̄ ]. Let {V1, . . . , Vn}
(resp. {W1, . . . ,Wr}) be a set of representatives of isomorphism classes of
irreducible representations of G over K (resp. over k). For j = 1, . . . , n,

let us write d([Vj]) =
r∑
i=1

di,j[Wi]. Then the matrix (di,j) is called the ℓ-

decomposition matrix of G. Let B = {E1, . . . , Er} be a set of r distinct
irreducible representations of G over K. Let us write the decomposition ma-
trix as follows :

(di,j) =

W1 . . . Wr





E1
... D
Er
... *

.

We say that B is a basic set of G if the matrix D is invertible. If in
addition D is lower unitriangular, we say that D is a unitriangular basic set
of G. If B is a unitriangular basic set, D has the following form.

D =

W1 . . . Wr





E1 1
0

... . . .
*

Er 1

.
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Then we obtain a natural parametrisation of Irrk(G) by B given byWi ↔ Ei.
It is an open problem whether any group admits a (unitriangular) basic set
of ordinary representations.

Finite groups of Lie type

Finite groups of Lie type are finite groups arising as rational points of
a connected reductive group defined over Fq where q is a power of a prime
number p. That construction allows us to transfer the geometric structure
of connected reductive groups into finite groups of Lie type : each element
has a Jordan decomposition, each finite group of Lie type has a BN-pair,
finite groups of Lie type are classified in terms of root data and graph au-
tomorphisms. Let us set the notation for finite groups of Lie type. If G is a
connected reductive group defined over Fq and F : G→ G is the correspon-
ding Frobenius map then we denote by G := G

F := {g ∈ G | F (g) = g} the
corresponding finite group of Lie type. For example, if we set G := GLn(F̄q)
and

F : G→ G, (ai,j) 7→ (aqi,j),

then G := GLn(q) is a finite group of Lie type. More generally, most finite
classical groups over finite fields are finite groups of Lie type (the special
linear groups, the special orthogonal groups, the symplectic groups, the spin
groups, . . . ). In 1976, by constructing varieties associated to finite reductive
group and by studying the ℓ-adic cohomology attached to those varieties,
Deligne and Lusztig constructed virtual representations which we now refer
to as Deligne–Lusztig representations. In 1984, Lusztig went further and
provided a parametrisation of IrrK(G). This was done as follows.

• Lusztig provided a partition of IrrK(G) parametrised by semi-simple
elements of a dual group. More precisely, to a reductive group G defined
over Fq we can associate another reductive group G

∗ defined over Fq,
said to be dual to G which has the dual root datum. We denote by G∗

the finite group of Lie type associated to G
∗. For example GLn(q) is

self-dual, the dual of SLn(q) is PGLn(q). We have a partition.

IrrK(G) =
⊔
E(G, s)

where s runs over representatives of conjugacy classes of semi-simple
elements of G∗ (for instance, if G = GLn(q), semi-simple elements are
diagonalisable matrices). The set E(G, s) is the rational Lusztig series
associated to s. Elements of E(G, 1) are called unipotent representa-
tions.
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• In [41] Lusztig classified unipotent characters of finite groups of Lie
type in terms of some unipotent classes of G (we recall that unipotent
classes are conjugacy classes containing upper unitriangular matrices).
Using the Springer correspondence, Lusztig defined the notion of special
unipotent classes. To each special unipotent class (u)G he associated a
set M(u) and showed that E(G, 1) is parametrised by pairs ((u)G, x)
where (u)G is an F -stable special unipotent conjugacy class of G and
x ∈M(u).

• Finally, in the case Z(G) is connected, Lusztig showed that the study
of irreducible characters can be reduced to the study of unipotent cha-
racters. More precisely, he constructed a bijection

E(G, s) ≃ E(CG∗(s), 1).

To summarise, when Z(G) is connected, irreducible characters can be para-
metrised by triples ((s), (u), x) where (s) is a semi-simple class of the finite
groupG∗, (u) is an F -stable special unipotent class of CG∗(s) and x ∈M(u).

Unipotent blocks and basic sets

From now on, we work in non-defining characteristic, i.e. we assume that
ℓ does not divide p. There exists a partition of both IrrK(G) and Irrk(G) into
ℓ-blocks. The decomposition map preserves the block partition. Therefore,
we can study the decomposition matrices and basic sets of G blockwise. Let
s be a semi-simple element of G∗ of order prime to ℓ. Let

Bs :=
⋃
E(G, st)

where t runs over semi-simple elements of CG∗(s) whose order is a power of
ℓ. Then Broué–Michel showed in [6] that Bs is a union of ℓ-blocks. Blocks
contained in B1 are called unipotent ℓ-blocks.

In the past 30 years, the study of decomposition matrices and basic sets
for finite groups of Lie type has been an active research area. In order to
summarise the known results on the subject, we need to introduce the no-
tion of good prime and bad prime for G. The prime number ℓ is good for G
if it does not divide the order of its fundamental group. The prime number ℓ
is bad otherwise. The behavior of the basic sets and the decomposition ma-
trices of G depends heavily on whether ℓ is good or bad for G. In [17], Dipper
showed the existence of a unitriangular basic set for G when G = GLn(q).
Then, Geck generalised the work of Dipper for GUn(q) by an entirely dif-
ferent method using generalised Gelfand–Graev representations introduced
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by Kawanaka [34]. He even showed that E(G, s) is a unitriangular basic set
for Bs. Geck–Hiss and Geck generalised partially those results in [27, 21] to
most cases by showing that E(G, s) gives a basic set of Bs whenever ℓ is
good for G and does not divide the order of (Z(G)/Z(G)◦)F where Z(G) is
the center of G. Furthermore, they conjectured in [28] that when ℓ is good,
E(G, 1) forms a unitriangular basic set for unipotent blocks.

If ℓ is bad, the situation is different. For example, ifG = SL2(3) and ℓ = 2,
there are not enough unipotent characters to form a basic set for B1. In [36],
using Clifford Theory, Kleshchev–Tiep showed the existence of a basic set
for SLn(q). Denoncin in [13] generalised this result to SUn(q). In [22], using
generalised Gelfand–Graev representations and results of Lusztig on charac-
ter sheaves, Geck showed the existence of a basic set for unipotent blocks of
classical groups whose center is connected when ℓ = 2. We generalise this
result for groups with disconnected center.

Theorem

Let G be a reductive group, defined over Fq where q is odd. Assume
that G is simple and of type B, C or D except spin of half-spin. Then
there exists a unitriangular basic set for unipotent 2-blocks of G.

The proof, following Geck’s ideas can be summarised into three steps.

• We show that the number of unipotent modular representations equals
the number of unipotent classes of G.

• Let Γ1, . . . ,Γr be the generalised Gelfand–Graev representations of G.
There exist χ1, . . . , χr ∈ IrrK(G) such that (〈χi,Γj〉)i,j is lower uni-
triangular.

• By using the fact that χ1, . . . , χr lie in Lusztig series associated to
2-elements, we note that they belong to unipotent blocks. Then, by
a classical result of modular representation theory, the scalar product
property above allows us to conclude that χ1, . . . , χr is a unitriangular
basic set for B1.

Counting unipotent modular representations

Since unipotent characters form a basic set of B1 when ℓ is good and does
not divide |(Z(G)/Z(G)◦)F |, Lusztig’s parametrisation of unipotent repre-
sentations can be used to count unipotent modular representations. If ℓ = 2
and G is classical, unipotent representations can be counted by unipotent



12 Introduction

classes of the finite group G. We introduce a method to count unipotent mo-
dular representations generalising previous cases. Then, we conjecture that
our method is effective for every finite group of Lie type. Let us give more
details about this method. We first generalise the definition of special classes.
In [41], using the Springer correspondence and j-induction of representations
of Weyl groups, Lusztig defined a surjective map Φ from the set of special
conjugacy classes of G∗ onto the set of unipotent classes of G. Let (u)G be
an F -stable unipotent class of G. The class (u)G is ℓ-special if there exists
g ∈ G

∗ with Jordan decomposition g = sv such that

• Φ((g)G∗) = (u)G,

• s is an isolated ℓ-element of G∗ (i.e. the order of s is a power of ℓ and
CG∗(s)◦ is not contained in any proper Levi subgroup of G∗),

• v is special in CG∗(s)◦.

In particular, special classes are ℓ-special since the neutral element is
an isolated ℓ-element for all prime ℓ. If ℓ is good and does not divides
|(Z(G)/Z(G)◦)F |, ℓ-special classes are the special ones. As Lusztig did with
special classes, to each ℓ-special class (u)G, we associate a setMℓ(u) which
we conjecture to parametrise a family of unipotent representations over k.

Conjecture

The number of irreducible unipotent modular representations of G is
equal to the number of pairs ((u)G, x) where (u)G is an F -stable uni-
potent ℓ-special class of G and x ∈Mℓ(u).

The conjecture holds when ℓ is good and does not divide the order of
(Z(G)/Z(G)◦)F since there exists a bijection between Mℓ(u) and M(u).
We show that the conjecture holds in the following additional cases.



13 Introduction

Theorem

Let G be a connected reductive group defined over Fq where q is the
power of a good prime number p. Assume we are in one of the following
cases.

• G is SLn(Fp) (hence, G is either SLn(q) or SUn(q)) for any ℓ ≤ n.

• G is simple of type B,C or D, for ℓ = 2.

• G is a simple exceptional group of adjoint type for any bad prime
number ℓ.

Then, the above conjecture holds.

Application to groups of small rank

The last part of the thesis has two goals :

• Use the result above to exhibit unitriangular basic sets.

• Use work of Dudas from [19], to get small upper bounds on decompo-
sition numbers.

The results of Dudas are especially effective when we have a unitriangular
decomposition matrix with a few missing coefficients. We focus on two cases :
G = Sp4(q) and G2(q). We assume that q is a power of a good prime for G.

Case G = Sp
4
(q) and ℓ = 2. For irreducible representations of G over K, we

use the notation from Srinivasan’s character table of G [61]. The above theo-
rem on basic sets for classical groups provides a basic set for unipotent blocks
of G. Moreover, we are able to detect in which Lusztig series and families
each representation of this basic set lies. Using White’s 2-decomposition ma-
trix of G [65] and Dudas’s result we are able to complete the decomposition
matrix.

Theorem. Assume ℓ = 2 and q is odd. Then, B = {1G, θ3, θ4, θ9, θ10,Φ3,Φ4}
is a unitriangular basic set for B1. The decomposition matrix of B1 with
respect to B is
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P1 P2 P3 P4 P5 P6 P7

1G 1
θ3 1 1
θ4 1 1
θ9 2 1 1 1
θ10 1
Φ3 1 x 1
Φ4 1 x 1

where 0 ≤ x ≤ 1 and x = 1 if q ≡ 3 mod 4.

Case G = G2(q) and ℓ = 2, 3. We do not have a theorem providing a unitrian-
gular basic set for G but our conjecture allows us to detect which irreducible
representations we should pick to hypothetically form a basic set for G. Using
the 2 and 3-decomposition matrices computed by Hiss–Shamash in [32] and
[31], and using the same results of Dudas we get the following result. We use
the notation of [8, §13] for irreducible characters of G.

Theorem.

1. Assume ℓ = 2. Then,

B2 = {φ1,0, φ1,6, φ
′
1,3, φ

′′
1,3, G2[1], G2[−1], G2[θ], G2[θ

2], χs,(2,2)}

is a unitriangular basic set for B1. Here, χs,(2,2) denotes a character
from a Lusztig series associated to a non-trivial isolated semi-simple 2-
element s. The characters G2[θ] and G2[θ

2] lie in blocks of defect zero
and the decomposition matrix of the principal block with respect to B2
is

P1 P2 P3 P4 P5 P6 P7

φ1,0 1
χs,(2,2) 1 1
G2[−1] 1
G2[1] 1

{φ′1,3, φ
′′
1,3} 1 1

1 1
φ1,6 1 α β 1 1 1

where

• 0 ≤ α ≤ 2 and 0 ≤ β ≤ (q + 2)/3 if q ≡ 1 mod 4,
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• 1 ≤ α ≤ 2 and 1 ≤ β ≤ (q + 2)/3 if q ≡ −1 mod 4.

2. Assume ℓ = 3. Then,

B3 = {φ1,0, φ1,6, φ
′
1,3, φ

′′
1,3, φ2,2, G2[−1], G2[1], χt,3}

is a unitriangular basic set for B1. Here, χt,3 denotes a character lying
in a Lusztig series associated to a non-trivial isolated semi-simple 3-
element t. The decomposition matrix of B1 with respect to B3 depends
on the value of q mod 3.

• Assume q ≡ 1 mod 3. Then G2[1] lies in a block of defect zero
and the decomposition matrix of the principal block is

P1 P2 P3 P4 P5 P6 P7

φ1,0 1
χt,3 1 1
G2[1] 1

{φ′1,3, φ
′′
1,3} 1 1

α 1
φ2,2 1 1
φ1,6 1 β γ 1 1

where 1 ≤ α ≤ 2, 0 ≤ β ≤ q − 2 and 1 ≤ γ ≤ 2.

• Assume q ≡ −1 mod 3. Then φ2,2 lies in a block of defect zero
and the decomposition matrix of the principal block is

P1 P2 P3 P4 P5 P6 P7

φ1,0 1
χt,3 1
G2[1] 1

{φ′1,3, φ
′′
1,3} 1 1 1

1 1 1
G2[−1] 1
φ1,6 1 1 α β 1 γ 1

where 1 ≤ α ≤ q + 1 and (β, γ) ∈ {(1, 1), (1, 2), (2, 1)}.

Outline of the Thesis

This thesis is divided into four chapters. In Chapter 1, we gather useful
definitions and results on representations of finite groups of Lie type.
We first review general results on representation theory of finite groups,
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including decomposition matrices, basic sets, blocks and Clifford Theory.
Then, we introduce connected reductive algebraic groups and we recall
the main results on their structure and their classification. That allows
us to define the Fq-structure of a connected reductive algebraic group
and define finite groups of Lie type and their main properties. We move
on to Deligne–Lusztig varieties and their ℓ-adic cohomology from which
we can define Deligne–Lusztig virtual representations. After listing their
principal properties, we define the Lusztig rational series and give the
Jordan decomposition theorem. Finally, we state two results explaining how
Deligne–Lusztig theory behaves with respect to modular representation
theory. The first one is a theorem by Broué–Michel which allows us to define
the union of blocks Bs. The second one is a theorem of Bonnafé–Rouquier
giving, under some restriction on s, a Morita equivalence between Bs and
unipotent blocks of some Levi subgroup of G. It can be viewed as a modular
version of the Jordan decomposition.

The second chapter is devoted to our conjecture. After introducing
families of representations of Weyl group and families of unipotent re-
presentations, we give Lusztig’s classification theorem in term of families.
Then, we introduce the Springer correspondence between unipotent classes
of G and irreducible characters of the Weyl group W of G. The Springer
correspondence allows us to define the special unipotent classes of G and
to interpret Lusztig’s classification theorem in terms of special unipotent
classes. Then we introduce the ℓ-special unipotent classes of G and we
conjecture that unipotent modular representations can be counted in terms
of these ℓ-special classes. We show that our conjecture holds for SLn(q)
and SUn(q) for any ℓ using results of Kleshchev–Tiep and Denoncin.
Then we focus on simple classical groups, i.e. simple groups of type B,
C or D when ℓ = 2. We show that proving our conjecture is equivalent
to proving that the number of unipotent modular representations of G
is equal to the number of unipotent classes of G. The latter is done
by generalising a result of Geck in [22]. Finally, we show, by a case-by-
case analysis that the conjecture holds for simple adjoint exceptional groups.

The aim of Chapter 3 is to show the existence of a unitriangular basic
set for unipotent blocks of classical groups when ℓ = 2. We show that
it is enough to prove the existence of some projectives and irreducible
characters such that their scalar product respects the unitriangularity
condition mentioned previously. We explain the construction of generalised
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Gelfand–Graev representations (GGGRs) and we review the properties
we will need from them. The GGGRs will give the projective characters
we need. Then, we introduce character sheaves of a connected reductive
group and local systems on unipotent classes. We give a brief review of
Geck–Hézard results [26] on character sheaves which will allow us to show
the existence of a basic set for groups with connected center. The next
section explains how Taylor generalised Hézard’s results to groups with
disconnected center using regular embeddings. Finally, in the last section
we show the existence of a unitriangular basic set for every classical group
with the exception of spin and half-spin groups.

In the last chapter, we start by introducing Dudas’s result on computation
of decomposition numbers. We first recall Rickard’s and Bonnafé–Rouquier’s
results [51, 4] on cohomology complexes of Deligne–Lusztig varieties. In [18],
to each element w of the Weyl group, Dudas attached a virtual projective
representation Pw from which we can extract information on the decomposi-
tion numbers. Then, we focus on the case G = Sp4(q) and ℓ = 2. After giving
some details on the combinatorics of representations of the Weyl group of G
and on the Jordan decomposition of some Lusztig series, we state our result
on basic sets and decomposition matrices of unipotent blocks of G. We use
Dudas’s method to get a better bound on the remaining unknown coefficient
of the decomposition matrix. Finally, we consider the case where G = G2(q).
We review information on isolated elements and irreducible characters of G.
Then, as we did for Sp4(q), we give results on basic sets and decomposition
matrices of G for ℓ = 2 and 3.
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We introduce in this chapter concepts and notation that will be used in
the rest of this thesis. This chapter consists of three sections, that we will
overview. In the first section, we begin by focusing on the positive charac-
teristic case, we define the decomposition map d and its transpose e and
we introduce the notion of blocks. Then, we finish with results on Clifford
Theory. In particular, Proposition 1.1.5 will be useful for the Jordan decom-
position for groups with disconnected center.

In the second section, we define finite groups of Lie type and give the main
results on their structure. We first give general definitions about reductive
groups and give their classification in terms of root data (Theorem 1.2.3).
Then we define Frobenius maps of an algebraic group which leads to the
definition of finite groups of Lie type. We state the Lang-Steinberg Theorem
1.2.6 and several applications. We explain how finite groups of Lie type can
be classified by their root datum and the action of the Frobenius map on the
roots. Then we state in the last part of this section the Theorem 1.2.12 on
the classification of semi-simple isolated classes for adjoint simple groups.

The last section focuses on representations of finite groups of Lie type
from the point of view of Deligne–Lusztig theory. We first give generalities
on ℓ-adic cohomology and Deligne–Lusztig varieties that allow us to define
Deligne–Lusztig induction. We give the main properties of Deligne–Lusztig
characters, in particular the scalar product formula in Theorem 1.3.10 and
the fact that every irreducible character lies in a Deligne–Lusztig character in
Theorem 1.3.12. Then, we introduce the Lusztig’s rational series and Theo-
rem 1.3.20 on the Jordan decomposition of characters and we explain that
the Jordan decomposition can be generalised to groups with disconnected
center. In the last part, we explain how the Deligne-Lusztig theory matches
with modular representation theory, in particular we give in Theorem 1.3.28
a result of Broué–Michel which explains how we can get unions of blocks by
taking unions of rational series.

1.1 Representations of finite groups

1.1.1 Modular representations of finite groups

Decomposition map. Let G be a finite group and ℓ be a prime number. We
fix an ℓ-modular system (K,O, k), that is :

• a complete discrete valuation ring O with unique maximal ideal m,

• the fraction field K := Frac(O), which we assume to have characteristic
0 and to be big enough for G (i.e. K contains all |G|-roots of unity),
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• the residue field k := O/m, of characteristic ℓ > 0.

Let Λ be either K or k. Throughout this thesis, we will only consider
finitely generated left ΛG-modules. We denote by IrrΛ(G) the set of isomor-
phism classes of irreducible ΛG-modules. As in the introduction, we write
RΛ(G) for the Grothendieck group of the category of finitely generated ΛG-
modules. In the case of characteristic zero, we can identify RK(G) with the
abelian subgroup generated by irreducible characters of the space CFK(G)
of K-valued central functions of G. We will often identify representations
over K with their character.

Let E be a KG-module, let E ′ be a finitely generated OG-submodule of
E such that E ′ ⊗O K = E (for instance E ′ can be a OG-module generated
by a basis of E over K). The reduction mod ℓ, E ′ ⊗O k is a kG-module
whose isomorphism class may depend on the choice of E ′ but according to
Theorem 32 of [53], the image of E ′ ⊗O k in Rk(G) does not depend on E ′.
Therefore, we can define a map

d : RK(G)→ Rk(G), [E] 7→ [E ′ ⊗O k]

which we call the decomposition map of G. By convention, we will call the
decomposition matrix of G the transpose of the matrix of d with respect to
the bases IrrK(G) and Irrk(G). We recall that a kG-module is projective if
it is a direct summand of a free kG-module (in particular kG is projective).
We define the Grothendieck group Pk(G) of finitely generated projective
kG-modules as follows.

• The generators are the finitely generated projective kG-modules. We
denote by [P ] the image of a finitely generated kG-module P .

• Relations are [P ] = [P1] + [P2] whenever we have an isomorphism of
kG-modules P ≃ P1 ⊕ P2.

Let V be a kG-module. According to Proposition 41 of [53], there exists (up
to isomorphism) a unique projective kG-module PV with a surjective map
pV : PV ։ V such that pV (M) 6= V for any proper submodule M of PV .
The module PV is the projective cover of V . Let {P1, . . . , Pr} be a set of
representatives of indecomposable projective kG-modules. Every projective
kG-module P is the direct sum of indecomposable projective kG-modules :

P ≃
r⊕

i=1

P ni
i

where the multiplicities ni are uniquely determined. Moreover, each inde-
composable projective kG-module is the projective cover of an irreducible
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kG-module. Therefore, the set {[PV ] | V ∈ Irrk(G)} is a Z-basis of Pk(G).
We have a bilinear form

〈 ., . 〉KG : RK(G)×RK(G)→ Z

such that
〈[V ], [W ]〉KG = dimK(HomKG(V,W ))

for two KG-modules V and W . Note that this form corresponds to the scalar
product of characters viewed as K-valued class functions. Similarly, we have
a form

〈 ., . 〉kG : Pk(G)×Rk(G)→ Z

such that
〈P,W 〉kG = dimk(HomkG(PV ,W ))

for any projective kG-module P and any kG-module W . According to Pro-
position 42 of [53], every projective kG-module lifts to a unique (up to iso-
morphism) projective OG-module P ′ such that P ′⊗O k = P . Then, we can
define a map

e : Pk(G)→ RK(G), [P ] 7→ [P ′ ⊗O K],

which is adjoint to d in the following sense. If P ∈ Pk(G) and V ∈ RK(G),
then

〈P, d(V )〉kG = 〈e(P ), V 〉KG.

In particular, the decomposition matrix of G defined above is the matrix of
e with respect to the basis of indecomposable projectives kG-modules and
irreducible KG-modules.

Example 1.1.1.

1. Assume that ℓ does not divide the order of G. Then every irreducible
kG-module is projective. Indeed, for any irreducible kG-module V and
for any free kG-module L such that V is a quotient L/M of L, consider
a k-linear projector p of L onto M . Since |G| is invertible in k, we can
define a kG-linear projector pG := 1

|G|

∑
g∈G

gpg−1 of L ontoM . Therefore,

V is isomorphic to a direct factor of the free kG-module L and is pro-
jective. Now let P be the projective OG-module such that P ⊗O k = V .
Then P ⊗OK is irreducible (if P ⊗OK is not irreducible, neither is P ),
so the decomposition matrix is the identity matrix. In particular, any
irreducible KG-module remains irreducible under ℓ-reduction.
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2. If |G| is a power of ℓ then the unique irreducible kG-module is the trivial
one ( see [53, §8.3]). Hence, the decomposition map sends a KG-module
V to dimV copies of the trivial kG-module. Let P be the unique inde-
composable projective kG-module. Then by definition of the decompo-
sition matrix, e([P ]) = KG so P = kG.

3. Assume G = S3 and ℓ = 2. There are three simple KG-modules : the
trivial representation 1G, the sign representation εG and the reflection
representation that we denote by r. The reduction mod 2 of 1G and εG
affords the trivial kG-module 1̄G. The reduction mod 2 of r remains
irreducible hence the decomposition matrix of G is



1 0
1 0
0 1


 .

Blocks. We recall thatOG has a unique decomposition into indecomposable
two-sided ideals :

OG = B1 ⊕ · · · ⊕Br.

The ideals Bi are called the ℓ-blocks of G. They have a structure of an
O-algebra and the representation theory of OG is controlled by the repre-
sentation theory of each of its ℓ-blocks. We will use the term blocks if there
is no ambiguity on the prime number ℓ. For Λ = K or k, the decomposition
into blocks of OG induces a decomposition of ΛG as follows :

ΛG = (B1 ⊗O Λ)⊕ · · · ⊕ (Br ⊗O Λ).

Given a ΛG-module V and i ∈ {1, . . . , r}, we say that V belongs to the
blocks Bi if {

(Bi ⊗O Λ).V = V,

(Bj ⊗O Λ).V = 0 if i 6= j.

The principal block is the unique block which contains the trivial repre-
sentation. Assume that V is irreducible. There is a unique i ∈ {1, . . . , r}
such that V belongs to Bi. Let us denote by IrrΛ(Bi) the set of irreducible
ΛG-modules lying in Bi. We have a partition :

IrrΛ(G) =
r⊔

i=1

IrrΛ(Bi).

We will use the term "block" indistinctly for Bi, IrrK(Bi) or Irrk(Bi).

Example 1.1.2.
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1. Let G = S3 and ℓ = 2 and let us write s1 = (12) and s2 = (23).
There are two blocks of G : the principal block B0 containing the trivial
and the sign representations and the block B1 containing the reflection
representation r. The blocks can be determined as follows. According
to [10, §56B], each block B has the form OGb where b is a central
primitive idempotent of OG. Moreover, according to [10, 56.25], b has
the following form :

b :=
1

|G|

∑

χ∈IrrK(B),g∈G

χ(1)χ(g−1)g.

Hence, B0 = OG.b0 where b0 = 1
3(1 + s1s2 + s2s1) and B1 = OG.b1

where b1 = 1
3(2− s1s2 − s2s1).

2. Suppose that G is an ℓ′-group. Then each irreducible character lies in
a single block. Let χ1, . . . , χr be the irreducible characters of G. Let
bχi =

1
|G|

∑
g∈G

χi(1)χi(g
−1)g and Bi = OGbχi ≃ Mχi(1)(O). Then

OG := B1 ⊕ · · · ⊕Br.

3. If G is an ℓ-group, kG is indecomposable so there is a unique block.

If I ⊂ {1, . . . , r} and B =
⊕
i∈I

Bi, then we may refer to B as a union of

blocks. We denote by IrrΛ(B) the set
⊔
i∈I

IrrΛ(Bi) and by RΛ(B) the Gro-

thendieck group of the category of ΛG-modules lying in B, it is the subgroup
of RΛ(G) generated by IrrΛ(B). Note that the decomposition map d induces
a map

RK(B)→ Rk(B).

Definition 1.1.3. A basic set of B is a subset B ⊂ IrrK(B) such that d(B) is
a Z-basis of Rk(B). Let D be the part of the decomposition matrix of B with
rows labelled by B. We say that B is unitriangular if, up to permutations of
rows and columns, D has lower unitriangular shape.

Proving the existence of a (unitriangular) basic set for a given finite group
is an open problem. However, it is expected that unipotent blocks of finite
reductive groups have a unitriangular basic set in non-defining characteristic
(see Chapter 3). This is the main problem that we look at in this thesis.

1.1.2 Clifford theory

Let Λ = K or k, H be a subgroup of G and V be a ΛH-module. The
induction operation allows us to associate to V a ΛG-module IndGHV as
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follows :
IndGHV = ΛG⊗ΛH V.

Moreover, we have naturally an adjoint functor : any ΛG-module can be
viewed as a KH-module. Let V be a ΛG-module, V viewed as a ΛH-module
will be denoted by ResGHV , it is the restriction of V .

Remark 1.1.4. Assume that H is an ℓ′-subgroup of G. According to 1.1.1,
every kH-module is projective. Since a projective kH-module V is a direct
factor of a free kH module, IndGHV = V ⊗kH kG is a direct factor of a
free kG-module and is projective. Then, the induction from any ℓ′-subgroup
provides projective kG-modules.

From now on, we assume that H is a normal subgroup of G. We are
interested in Clifford theory, that is the connection between representations
of G and representations of H when H is a normal subgroup of G. For a
KH-module W with underlying representation ρ and g ∈ G, we denote by
gW the KH-module where

• the underlying K-vector space of gW is W ,

• the underlying representation of gW is the map H → GLK(W ), h 7→
ρ(ghg−1).

If χ is the character of W , we denote by gχ the character of gW . Remark
that gW depends only on the class of g modulo H. By remarking that if V
is irreducible, gV remains irreducible, we see that there is a natural action
of G/H on IrrK(H). Let χ be an irreducible character of G and φ be an
irreducible constituent of ResGHχ. Then

ResGHχ =
∑

g∈G/H

(gφ)m

where m is the multiplicity of φ in ResGHχ.
Now, assume that G/H is abelian. Then IrrK(G/H) is an abelian group

under tensor product. Moreover, by inflation, representations of (G/H) can
be viewed as representations of G. Then the tensor product induces an action
of IrrK(G/H) on IrrK(G). We have a natural duality

G/H × IrrK(G/H)→ K (ḡ, θ) 7→ θ(ḡ).

Proposition 1.1.5 ([47, 9a]). Assume that G/H is abelian and that any
irreducible character of G restricts to H without multiplicity. We have a
bijection

(G/H)-orbits on IrrK(H)←→ (IrrK(G/H))-orbits on IrrK(G)
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with the following properties : Let (G/H).φ be a (G/H)-orbit of IrrK(H) and
(IrrK(G/H)).χ be the (IrrK(G/H))-orbit of IrrK(G) given by the bijection.
Then

IndGHφ =
∑

θ∈IrrK(G/H)

θ ⊗ χ, and

ResGHχ =
∑

g∈G/H

gφ.

Moreover, the stabiliser of φ in (G/H) and the stabiliser of χ in IrrK(G/H)
are orthogonal to each other.

1.2 Finite groups of Lie type

1.2.1 Reductive algebraic groups

We recall some elementary notions related to algebraic groups. The reader
can find more details on most of the results mentioned below in [8], [14] and
[24].

Definitions and properties. Let p be a prime number, q = pa be a power
of p. A linear algebraic group over F̄q is an affine algebraic variety over F̄q
equipped with a group structure such that the multiplication and the inverse
map are morphisms of algebraic varieties. From now on, every algebraic group
that we consider will be linear and over F̄q. A morphism of algebraic groups
is a group morphism between algebraic groups which is also a morphism of
varieties.

Example 1.2.1.

1. The group (F̄q,+) is called the additive group and is denoted by Ga =
Ga(F̄q).

2. The group (F̄q, ·) is called the multiplicative group and is denoted by
Gm = Gm(F̄q).

3. The group GLn := GLn(F̄q) is a linear algebraic group. Moreover, all
classical groups SLn, SOn, Sp2n are linear algebraic groups.

Let G be a linear algebraic group. The connected component of G contai-
ning the identity is denoted be G

◦. An element of G is semi-simple (resp.
unipotent) if its image in some embedding of G in GLn is semi-simple (resp.
unipotent). That property does not depend on the embedding. Let g ∈ G,
g has a unique decomposition g = su where s is semi-simple, u is unipotent
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and su = us = g, this is the Jordan decomposition of g. There is a unique
maximal closed connected solvable normal subgroup of G, the radical of G,
denoted by R(G). The set Ru(G) of unipotent elements of R(G) is a nor-
mal closed connected subgroup of R(G) called the unipotent radical of G.
We say that G is reductive if Ru(G) = {1}. We say that G is semi-simple
if G is connected and R(G) = {1}. Semi-simple groups are reductive. The
linear algebraic group G is simple if G is connected but has no proper closed
connected normal non-trivial subgroup.

Example 1.2.2.

1. G = GLn is reductive but not semi-simple. Indeed R(G) = Z(G) is
the subgroup of scalar matrices.

2. G = SLn is semi-simple.

A torus of G is a closed subgroup of G isomorphic to a product of copies
of Gm. A torus of G is maximal if it is not contained in any larger torus, it
can be shown that all maximal tori are conjugate under G. For any maximal
torus T, we define its Weyl group W := NG(T)/T . It is a finite group
which does not depend on the choice of T. A Borel subgroup of G is a
maximal closed connected solvable subgroup of G. Every maximal torus T

is contained in a Borel subgroup B and all pairs (T,B) where T is a maximal
torus in a Borel subgroup B are conjugate under G.

Let us fix a pair (T,B) where T is a maximal torus and B is a Borel
subgroup of G containing T and let U := Ru(B). Then U is normal in B

and B is the semidirect product of U by T.

Root subgroups and root data From now on, unless otherwise stated, we
assume that G is connected and reductive. Let X := X(T) := Hom(T,Gm)
be the group of characters of T and Y := Y (T) := Hom(Gm,T) be the
group of cocharacters of T. Those groups are isomorphic to Zn where n =
dimT. For χ ∈ X and γ ∈ Y , there exists m ∈ Z such that χ ◦ γ(t) = tm

for any t ∈ Gm. Then we can define a Z-bilinear form X(T) × Y (T) → Z

by setting (χ, γ) = m. This form provides a duality between X and Y . The
Weyl group acts on X and Y as follows :

wχ(t) := χ(wt) ∀w ∈ W,χ ∈ X, t ∈ T,

wγ(λ) :=w (γ(λ)) ∀w ∈ W, γ ∈ Y, λ ∈ Gm.

We consider the minimal connected unipotent subgroups of G normalised
by T (see [14, 0.31]). Those groups are isomorphic to Ga. Since Aut(Ga) ≃
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Gm, the action of T on one of those groups induces a character α. Distinct
subgroups will provide distinct characters. The group corresponding to α
will be denoted by Uα. We denote by Φ the set of characters obtained this
way. These are the roots of G with respect to T and Uα is the root subgroup
of G corresponding to α. Let B be a Borel subgroup of G containing T and
U = Ru(B). Then there exists a subset Φ+ of Φ such that U =

∏
α∈Φ+

Uα,

Φ+ is the set of positive roots corresponding to B. We have Φ = Φ+ ⊔−Φ+.
For α ∈ Φ, there exists a surjective morphism φ : SL2(F̄q)→ 〈Uα,U−α〉

sending upper (resp. lower) triangular matrices to Uα (resp. U−α) and dia-
gonal matrices into T. The cocharacter sending λ to

φ

((
λ 0
0 λ−1

))
,

denoted by α∨, is the coroot of α. We denote by Φ∨ := {α∨ | α ∈ Φ} the set
of coroots. The quadruple (X,Φ, Y,Φ∨) has the following properties :

• X and Y are free Z-modules in duality.

• There exists a bijection Φ → Φ∨, α → α∨ such that (α, α∨) = 2 for
each α ∈ Φ

• The maps sα : X → X, χ 7→ χ − (χ, α∨)α and sα∨ : Y → Y, γ →
γ − (α, γ)α∨ satisfy sα(Φ) = Φ and sα∨(Φ∨) = Φ∨.

We say that the quadruple (X,Φ, Y,Φ∨) is a root datum. Let
(X ′,Φ′, Y ′,Φ′∨) be another root datum. A isomorphism is a group isomor-
phism φ : X → X ′ such that φ(Φ) = Φ′ and such that φ∗(Φ′∨) = Φ∨ where
φ∗ is the adjoint map of φ.

Theorem 1.2.3 ([14, 0.45]). Two connected reductive algebraic groups are
isomorphic if and only if their root data are isomorphic. Every root datum
is the root datum of some reductive group.

Let V := ZΦ⊗ZR, we identify V ∗ with ZΦ∨⊗ZR. For v ∈ V and v∗ ∈ V ∗

we set (v, v∗) := v∗(v). Then (V,Φ) is a root system.. The set of positive
roots Φ+ gives a basis ∆ of Φ. The basis ∆ is a subset of Φ+ such that
each root can be written uniquely as a linear combination of elements of ∆
with integer coefficients all of the same sign. The roots of ∆ are said simple.
There is a faithul action of W on Φ which induces a injective morphism
W → GL(V ) whose image is generated by the s′αs for α ∈ Φ. For α ∈ Φ, we
will still denote by sα the element of W whose image in GL(V ) is sα. The
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group W is defined by generators and relations as follows. Let α1, . . . , αn be
the simple roots and mij be the order of sαisαj , then

W = 〈sαi, . . . , sαn | s
2
αi
= 1, (sαisαj)

mij = 1〉.

A root system is irreducible if there is no partition of Φ into orthogonal
subsets Φ1 and Φ2 such that Φ1 and Φ2 are root systems of the spaces
they generate. To the root system Φ, we can associate a graph called the
Dynkin diagram of Φ. The Dynkin diagram has n vertices corresponding to
simple roots α1, . . . , αn. Vertices i and j are connected by nij edges where
nij := (αi, α

∨
j )(αj, α

∨
i ). If nij = 2 or 3, we attach an arrow from i to j when

(αj, α
∨
i ) 6= −1. The root system Φ is irreducible if and only if its Dynkin

diagram is connected. We describe below all Dynkin diagrams of irreducible
root systems.

An Bn

Cn Dn

G2 F4

E6 E7 E8

We say that two reductive groups are isogenous it they have same dynkin
diagram.

Fundamental group. Assume that G is semi-simple and let Ω :=
Hom(ZΦ∨,Z). Then X can naturally be viewed as a subgroup of Ω. The
groups Ω/X is the fundamental group of G. We say that G is adjoint if
X = ZΦ, in that case the fundamental group is maximal and Z(G) = {1}.
We say that G is simply connected if the fundamental group is trivial. We
denote by Gad (resp. Gsc) an algebraic group with root system Φ which is
adjoint (resp. simply connected). For each semi-simple group G with root
system Φ, there exist morphisms whith central finite kernel

Gsc ։ G ։ Gad.

Moreover, the kernel of the second morphism if Z(G). We list below the
adjoint and simply connected groups for each Dynkin diagram of classical
type (see [8, 1.11] for the complete list).
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• Type An : Ω/ZΦ is a cyclic group of order n + 1. Moreover, Gad is
isomorphic to PGLn+1 and Gsc is isomorphic to SLn+1.

• Type Bn : Ω/ZΦ is isomorphic to Z/2Z so the only possibilities are
the adjoint and simply connected groups. We have Gad ≃ SO2n+1 and
Gsc ≃ Spin2n+1.

• Type Cn : Ω/ZΦ is isomorphic to Z/2Z so the only possibilities are
the adjoint and simply connected groups. We have Gad ≃ PCSp2n and
Gsc ≃ Sp2n.

• Type Dn :

Ω/ZΦ ≃

{
Z/2Z× Z/2Z if n is even,

Z/4Z if n is odd.

Moreover, Gad ≃ P(CO◦2n) and Gsc ≃ Spin2n.

Parabolic and Levi subgroups. Assume that G is connected and reductive.
We are now interested in a particular class of subgroups of G. Let I be a
subset of {1, . . . , n}, the parabolic subgroup of W corresponding to I is the
group :

WI = 〈(sαi)i∈I〉.

Let NI(T) be the subgroup of NG(T) containing T such that NI(T)/T =
WI . Then the standard parabolic subgroups of G are the groups of the form
PI = BNI(T)B. A parabolic subgroup of G is a subgroup of G conjugate to
a standard parabolic subgroup. It can be shown that parabolic subgroups of
G are exactly the closed subgroups of G containing Borel subgroups. Let P
be a parabolic subgroup of G. Then P has a decomposition into semi-direct
product P = L.Ru(P). Such a subgroup L is called a Levi subgroup of P. It is
a connected reductive group whose Weyl group isWI . Set ∆I := {αi | i ∈ I}.
Let VI be the subspace of V generated by ∆I and ΦI be the set of roots
contained in VI . Then (VI ,ΦI) is a root system with Weyl group WI .

1.2.2 Finite groups of Lie type

Frobenius endomorphism. Let X ⊂ F̄nq be an affine variety over F̄q. Let
I ⊂ F̄q[T1, . . . , Tn] be the ideal of polynomials vanishing on X and A :=
F̄q[T1, . . . , Tn]/I be the algebra of X .

Definition 1.2.4. Let F : X → X be a morphism of variety and F ∗ : A→
A be the corresponding algebra homomorphism. We say that X is defined
over Fq (or has an Fq-structure) if the following conditions hold. There exists
an F as above such that :
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• F ∗ is injective,

• F ∗(A) = {aq | a ∈ A},

• ∀a ∈ A, there exists m ≥ 1 such that (F ∗)m(a) = aq
m

.

We say that F is the Frobenius map corresponding to the Fq-structure of X .

LetX , Y be two affine varieties defined over Fq, FX , FY be their Frobenius
maps and ϕ : X → Y be a morphism of varieties. We say that ϕ is defined
over Fq (or rational) if ϕ ◦ FX = FY ◦ ϕ. Let G be a linear algebraic group.
We say that G is defined over Fq if the affine variety G is defined over Fq
and the Frobenius map is a group morphism. Let F be a Frobenius map of
G, we denote by G := G

F the group of fixed points of G under F . The
finite groups of the form G = G

F where G is a connected reductive group
and F is a Frobenius map of G are called finite groups of Lie type or finite
reductive groups.

Example 1.2.5.

• Let G = Gm. The Frobenius endomorphisms of G are of the form
x 7→ xεq where ε = ±1. If ε = 1, then G = F×q . If ε = −1, G is the
subgroup µq+1 of (q + 1)-th roots of unity of Gm.

• Let G = Ga, the only Frobenius endomorphisms of G are of the form
x 7→ xq. Then G is the additive group (Fq,+).

• Let G = GLn and

Fq : G→ G, (ai,j) 7→ (aqi,j).

Then G = GLn(q) is the group of invertible n by n matrices with
coefficients in Fq. More generally, classical matrix groups are usually
stable by Fq and provide finite groups of Lie type. For example, the
groups SLn(q), SO2n+1(q), Sp2n(q) can be constructed this way.

• We keep G = GLn but instead of considering the above Frobenius map
Fq, we will consider the following morphism

F : G→ G, A→ Fq(A
−1)tr.

The morphism F is the composition of Fq with the map sending a matrix
to the transpose of its inverse. Then F is a Frobenius map. The finite
group G ≤ GLn(q) denoted by GUn(q) is the general unitary group
over Fq2. If we consider G := SLn instead of GLn, then G, denoted by
SUn(q), is the special unitary group.
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Lang-Steinberg theorem and applications.

Theorem 1.2.6 (Lang-Steinberg, [14, 3.10]). Let G be a connected reductive
group and F be a Frobenius map of G. Then the map L : G → G, g 7→
g−1F (g), is surjective.

Corollary 1.2.7 ([14, 3.12,3.21]). Let G be a connected reductive group
defined over Fq, F be a Frobenius map and X be a set on which G and F
act. Assume that F (g.x) = g.F (x) for all g ∈ G and x ∈ X. Let O be a
non-empty F -stable G-orbit in X. Then

1. The set of fixed points OF is non-empty.

2. There is a well-defined map sending the G-orbit of g.x ∈ OF to the
F -conjugacy class of the image of L(g) in StabG(x)/StabG(x)

◦ and
this is a one-to-one correspondence.

Example 1.2.8.

1. Let B be the set of Borel subgroups of G. Then according to Corollary
1.2.7 1., BF is non-empty so there exists an F -stable Borel subgroup of
G.

2. Let B be an F -stable Borel subgroup of G, if we apply Corollary 1.2.7
to the set of maximal tori lying in B, we see that B contains an F -stable
maximal torus. Such a torus is said to be maximally split.

3. Let P be an F -stable parabolic subgroup of G. Then P contains an
F -stable Levi subgroup.

4. Let O = (g)G be an F -stable conjugacy class of G. Then OF is non-
empty. Using Corollary 1.2.7 2., we can parametrise the G-conjugacy
classes of OF by F -conjugacy classes of CG(g)/CG(g)

◦. In particular,
when CG(g) is connected all the elements of OF are conjugate under
G.

5. Let us fix an F -stable maximal torus T of G and letW := NG(T)/T be
the associated Weyl group. The G-conjugacy classes of F -stable maxi-
mal tori are parametrised by the F -conjugacy classes of W . Then an
F -stable maximal torus Tw corresponding to the F -class of w ∈ W has
the form g

T where g−1F (g) = nw and nw is a representative of w in
NG(T). Moreover, Tw := T

F
w is isomorphic as a finite group to

T
wF := {t ∈ T | nwF (t)n

−1
w = t}.

6. Let H be an F -stable closed and connected subgroup of G. Then,
(G/H)F ≃ G/H. Indeed, the natural map G/H → (G/H)F is injec-
tive since if g1, g2 ∈ G have the same image, g1g−12 ∈ H. By Corollary
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1.2.7 1., any left H-coset contains an F -stable element so the map is
surjective.

Classification of finite groups of Lie type. Let G be a connected reductive
group, F be a Frobenius morphism on G and (T,B) be an F -stable maximal
torus contained in an F -stable Borel subgroup of G, Φ be the corresponding
root system and ∆ the basis of Φ induced by B. Let U := Ru(B) =

∏
α∈Φ+

Uα.

According to [49, 22.2], the unipotent group U is F -stable and F induces a
permutation of the groups Uα with the following property : there exists a
permutation ρ of Φ+ such that F (Uα) = Uρ(α) if α ∈ Φ+. Then ρ induces a
graph automorphism of the Dynkin diagram of Φ and F acts on X = X(T)
and Y = Y (T) as follows :

Fχ(t) = χ(F (t)) ∀χ ∈ X, t ∈ T,

Fγ(λ) = F (γ(λ)) ∀γ ∈ Y, λ ∈ Gm.

We denote by ρX the automorphism of X induced by ρ. Then, we have
F = qρ−1X .

Theorem 1.2.9 ([49, 22.5]). Let G be a simple algebraic group, F be a
Frobenius map of G and ρ be as above. Then G is determined, up to iso-
morphism, by ρ and q.

We list below the non-trivial graph automorphisms induced by Frobenius
maps for connected Dynkin diagrams.

2An
2Dn

3D4
2E6

1.2.3 Isolated classes

Definition 1.2.10. Let G be a connected reductive group, let g ∈ G and
g = su be its Jordan decomposition. We say that g is quasi-isolated if CG(s)
is not contained in a Levi subgroup of a proper parabolic subgroup of G.
The element g is isolated if CG(s)

◦ is not contained in a Levi subgroup of a
proper parabolic subgroup of G.
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In [2], Bonnafé gave a complete description of the conjugacy classes of
quasi-isolated semi-simple elements in terms of the root datum of G. To
simplify, we only consider the case where G is adjoint and simple. Let ι :
(Q/Z)p′

∼
−→ F×q be an isomorphism and ι̃ be the composition

Q Q/Z (Q/Z)p′ F×q .
ι

We define
ι̃T : Y (T)⊗Z Q→ T, x⊗Z λ 7→ λ(ι̃(x)).

According to Proposition 25 of [5, VI], there exists a unique root α̃, the
highest root of Φ, which we decompose as

α̃ =
∑

α∈∆

nαα, nα ∈ N

such that
∑
α∈∆

nα is maximal. Let α0 := −α̃ and ∆̃ = ∆ ∪ {α0}. Let

(w∨α)α∈∆ ⊂ Y (T) ⊗Z Q be the dual basis of ∆ ⊂ X(T) ⊗Z Q. The ele-
ment w∨α is the fundamental coweight associated to α. By convention, we set
ω∨α0

= 0 and nα0
= 1. We denote by NW (∆̃) the subgroup of W normalising

∆̃, i.e. :
NW (∆̃) := {w ∈ W | w(∆̃) = ∆̃}.

Let Q be the set of subsets Ω ⊆ ∆̃ such that the stabiliser of Ω in NW (∆̃)
acts transitively on Ω and such that p does not divide |Ω|. Given Ω ∈ Q, we
define

tΩ := ι̃T

(
∑

α∈Ω

1

nα|Ω|
ω∨α

)
.

In order to state the classification theorem in a more convenient form we
need the following definition.

Definition 1.2.11. We say that p is bad for G if there exists α ∈ ∆ such
that p divides nα. We say that p is good if it is not bad.

The following table lists the bad primes for simple algebraic groups.

G An Bn Cn Dn G2 F4 E6 E7 E8

bad primes 2 2 2 2, 3 2, 3 2, 3 2, 3 2, 3, 5

Theorem 1.2.12 ([2, 5.1]). Assume that G is adjoint and simple, p is good
and does not divides |NW (∆̃)|. Then the following holds :
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• The map Q → T,Ω 7→ tΩ induces a bijection between the set of
NW (∆̃)-orbits of Q and the set of conjugacy classes of quasi-isolated
semi-simple elements in G.

• For Ω ∈ Q, we have

1. The Weyl group of CG(tΩ)
◦ is generated by the reflections sα for

α ∈ ∆̃ \ Ω.

2. nα is constant for α ∈ Ω and the order of tΩ is nα|Ω|.

3. tΩ is isolated if and only if |Ω| = 1.

We reproduce [2], Table 2, describing quasi-isolated elements in simple
adjoint classical groups. The second column describes the elements Ω of Q,
the third one gives the order o(tΩ) of tΩ. We follow the notation of [2] : we
write ∆ = {α1, . . . , αn}. For Ω := {αn/2} in type Dn, the order of tΩ in the
original table of Bonnafé is 4. However, in [62, 4.1] Taylor remarked that this
element is actually of order 2.

G Ω o(tΩ) CG(tΩ)
◦ Isolated ?

An {αj(n+1)/d | 0 ≤ j ≤ d− 1} d (A(n+1)/d − 1)d yes iff d = 1
for d | n+ 1

Bn {α0} 1 Bn yes
{α0, α1} 2 Bn−1 no
{αd}, 2 ≤ d ≤ n 2 Dd × Bn−d yes

Cn {α0} 1 Cn yes
{αd}, 1 ≤ d < n/2 2 Cd × Cn−d yes
{αn/2} (n even) 2 Cn/2 × Cn/2 yes
{α0, αn} 2 An−1 no
{αd, αn−d}, 1 ≤ d < n/2 4 (Cd)

2 × An−2d−1 no

Dn {α0} 1 Dn yes
{αd}, 1 ≤ d < n/2 2 Dd ×Dn−d yes
{αn/2} (n even) 2 Dn/2 ×Dn/2 yes
{αd, αn−d}, 1 ≤ d < n/2 4 (Dd)

2 × An−2d−1 no
{α0, α1, αn−1, αn} 4 An−3 no
{α0, α1} 2 An−1 no
{α0, αn−1} (n even) 2 An−1 no
{α0, αn} (n even) 2 An−1 no
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Remark 1.2.13. Let G be simple, Gad be the adjoint quotient of G and
π : G→ Gad the canonical morphism. By [2, 2.3], if g is quasi-isolated then
π(g) is quasi-isolated. Moreover, g is isolated if and only if π(g) is isolated.
Thus, even if the table above concerns Gad, we can deduce information on
quasi-isolated elements of G.

1.3 Deligne–Lusztig theory

1.3.1 ℓ-adic cohomology

Let G be a connected algebraic group defined over Fq andG the associated
finite group of Lie type. We fix a prime number ℓ different from p and we
consider an ℓ-modular system (K,O, k) such that K is a finite extension of
Qℓ. Let X be a quasi-projective algebraic variety defined over F̄q on which G
acts by automorphisms. There exist two bounded complexes of OG-modules
RΓ(X,O) and RΓc(X,O) defined up to quasi-isomorphism. The complex
RΓ(X,O) is the cohomology complex of X and RΓc(X,O) is the cohomology
complex with compact support of X .

We set Λ to be either K or k. By extension of scalars, we have complexes :

RΓ(X,Λ) := RΓ(X,O)⊗LO Λ,

RΓc(X,Λ) := RΓc(X,O)⊗
L
O Λ,

where ⊗LO denotes the left-derived functor of the tensor product. In parti-
cular, we have RΓc(X,K) ≃ RΓc(X,O) ⊗O K. The group H i(X,Λ) :=
H i(RΓ(X,Λ)) is the i-th cohomology group of X with coefficients in Λ,
H i
c(X,Λ) := H i(RΓc(X,Λ)) is the i-th cohomology group with compact sup-

port of X with coefficients in Λ. These constructions are functorial : if Y
is another quasi-projective variety on which G acts and if f : Y → X is a
G-equivariant morphism of algebraic varieties then it induces a morphism
in the derived category of finitely generated ΛG-modules f ∗ : RΓ(X,Λ) →
RΓ(Y,Λ). Moreover, if f is a finite morphism it also induces a morphism
between cohomology complexes with compact support f ∗ : RΓc(X,Λ) →
RΓc(Y,Λ). The following theorem introduces results from [11]. See also [52]
(or [14, §10] when Λ = K).

Theorem 1.3.1. Let d = dimX.

1. H i(X,Λ) and H i
c(X,Λ) are finitely generated over Λ for all i.
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2. H i(X,Λ) and H i
c(X,Λ) vanish if i < 0 or i > 2d. In particular

RΓ(X,Λ) and RΓc(X,Λ) are quasi-isomorphic to complexes of finitely
generated ΛG-modules with terms in degree 0, . . . , 2d.

3. Let I be the set of irreducible components of X, G acts naturally on I.
Then H2d

c (X,Λ) is isomorphic to the permutation module generated by
I.

4. H i
c(X/G,K) ≃ H i

c(X,K)G.

Example 1.3.2.

1. Assume that X is an affine variety of pure dimension d. Then
H i(X,Λ) = 0 if i > d and H i

c(X,Λ) = 0 if i < d.

2. Let An be the affine space of dimension n. Then RΓc(An,Λ) ≃ Λ[−2n].

3. Let P1 := P
1(F̄q) be the projective line over F̄q. Then

H i
c(P

1,Λ) =

{
Λ if i = 0, 2,

0 otherwise.

4. Let Gm be the multiplicative group. We have

H i
c(Gm,Λ) =

{
Λ if i = 1, 2,

0 otherwise.

1.3.2 Deligne–Lusztig induction

Bruhat decomposition. From now on, we assume that G is a connected
reductive group. We fix an F -stable pair (T,B) where B is a Borel subgroup
of G and T is a maximal torus of B. Let S = {s1, . . . , sn} be the set of simple
reflections of W . For w ∈ W , we define its length ℓ(w) to be the smallest
non-negative integer such that w is a product of ℓ(w) simple reflections. An
expression of w as the product of ℓ(w) simple reflections is said to be reduced.

Theorem 1.3.3 ([14, 1.2,1.4]).

1. We have a partition
G =

⊔

w∈W

BwB.

The spaces BwB are called the Bruhat cells.

2. Let s ∈ S and w ∈ W . Then

BsBwB =

{
BswB if ℓ(sw) > ℓ(w),

BwB ⊔BswB otherwise.

3. BwB/B is an affine space of dimension ℓ(w) called a Schubert cell.
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Deligne–Lusztig varieties. Let U = Ru(B), let us fix a set {nw}w∈W of
representatives of w in NG(T). Then the Deligne–Lusztig varieties attached
to w are

YG(w) := Yw := {gU ∈ G/U | g−1F (g) ∈ UnwU},

XG(w) := Xw := {gB ∈ G/B | g−1F (g) ∈ BnwB}.

The Deligne–Lusztig varieties Xw and Yw are smooth, projective and of pure
dimension ℓ(w). The finite group G acts on Xw and Yw by left multiplication.
Recall that

T
wF = {t ∈ T | nwF (t)n

−1
w = t}.

Then T
wF acts on Yw by right multiplication. Indeed, let gU ∈ Yw and

t ∈ T
wF . Then

(tg)−1F (tg) = t−1g−1F (g)F (t) ∈ t−1UnwUF (t).

Since T normalises U we have t−1UnwUF (t) = Ut−1nwF (t)U. Now since
t ∈ T

wF , t−1nwF (t) = t so tgU ∈ Yw. The restriction of π : G/U → G/B

to Yw induces a G-equivariant surjective morphism πw : Yw → Xw. The
fibers of πw are exactly the orbits of the action of TwF on Yw, hence we have
a G-equivariant isomorphism of varieties Yw/TwF ≃ Xw. Hence, by Theorem
1.3.1 4. we have that H i

c(Yw, K) ≃ H i
c(Xw, K)Tw .

Remark 1.3.4. Consider an F -stable maximal torus Tw of type w. Since
Tw ≃ T

wF we have a right action of Tw on Yw.

Example 1.3.5. Assume w = 1. Then Yw = (G/U)F ≃ G/U is a finite
set. Similarly, Xw ≃ G/B.

Deligne–Lusztig induction. Let Tw be a torus of type w. Recall that Λ = K

or k. The action ofG and Tw on Yw gives to the cohomology groupsH i
c(Yw,Λ)

a structure of (ΛG,ΛTw)-bimodule. Let H∗c (Yw,Λ) =
∑

(−1)i[H i
c(Yw,Λ)] ∈

RΛ(G). We consider the following functions between Grothendieck groups of
Tw and G :

RG
Tw

: RK(Tw)→ RK(G), θ 7→ H∗c (Yw, K)⊗KTw θ,

R̄G
Tw

: Rk(Tw)→ Rk(G), θ 7→ H∗c (Yw, k)⊗kTw θ.

Those maps are known as the Deligne–Lusztig induction maps. If θ ∈
IrrK(Tw), then RG

Tw
(θ) is a virtual character of G. Virtual characters
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constructed this way are called the Deligne–Lusztig characters of G. Ac-
tually, Deligne–Lusztig induction can be defined for any F -stable Levi sub-
group of G, see [14, §11] for more details.

Let T1, T2 be F -stable tori, θ1 ∈ IrrK(T1) and θ2 ∈ IrrK(T2). If there
exists g ∈ G such that T2 =g

T1 and θ2 =g θ1 then RG
T1
(θ1) = RG

T2
(θ2).

In particular, if Tv and Tw are F -stable tori of type v and w, the virtual
characters RG

Tw
(1) and RG

Tv
(1) are equal when v and w are F -conjugate in

W .

Properties of Deligne–Lusztig characters.

Proposition 1.3.6 ([14, 4.6]). Let (T,B) be an F -stable maximal torus T

contained in an F -stable Borel subgroup B of G. If θ ∈ IrrK(T ), we denote
by θ̃ the inflation of θ to B. Then RG

T (θ) = IndGB(θ̃).

The map α 7→ IndGB(α̃) is known as the Harish–Chandra induction. This
proposition shows that the Deligne–Lusztig induction generalises the Harish–
Chandra induction.

Example 1.3.7. According to Proposition 1.3.6, RG
T (1) = IndGB(1B). The

theory of Hecke algebras provides a bijection :

IrrK(W )F → {χ ∈ IrrK(G) | 〈χ,R
G
T (1)〉KG 6= 0},

φ 7→ φq,

such that the multiplicity of φq in RG
T (1) is the degree of φ. The principal

series of G is the set of irreducible constituents of RG
T (1).

The image of 1W by the bijection above is the trivial character of G,
which appears with multiplicity 1 in RG

T (1). Let ε : w 7→ (−1)ℓ(w) be the
sign representation ofW , the image εq of ε by the above bijection is called the
Steinberg character of G and denoted St, according to the previous example
it appears with multiplicity 1 in RG

T (1). We list some results on 1G and St.

Proposition 1.3.8 ([14]).

Let Tw be an F -stable maximal torus of type w.

1. 〈RG
Tw
(θ), 1G〉KG =

{
1 if θ = 1,

0 otherwise.

2. St is a character of degree |U | = q|Φ
+| which is 0 on unipotent elements

of G. Moreover,

〈RG
Tw
(θ), St〉KG =

{
(−1)ℓ(w) if θ = 1,

0 otherwise.
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The properties of the Steinberg character can be used to compute the
degrees of Deligne–Lusztig characters, see [14, 12.9] for more details.

Proposition 1.3.9. Let Tw be an F -stable maximal torus of type w and
θ ∈ Irr(Tw). We have

RG
Tw
(θ)(1) = (−1)ℓ(w)|G|p′|Tw|

−1.

Theorem 1.3.10 ([14, 11.14]). Let Tv, Tw be F -stable maximal tori, res-
pectively parametrised by v, w ∈ W . Let θ ∈ IrrK(Tv) and θ′ ∈ IrrK(Tw).
We have

〈RG
Tv
(θ), RG

Tw
(θ′)〉KG = |Tv|

−1|{n ∈ G | nTvn
−1 = Tw and nθ = θ′}|.

Let Tv,Tw be as in Theorem 1.3.10. Then the set

{g ∈ G | gTvg
−1 = Tw}

is empty if w and v are not F -conjugate (1.2.8). Assume that w = v, then
NG(Tw)/Tw = W (Tw) is isomorphic to W . We have the commutative dia-
gram :

W W (Tw)

W W (Tw)

∼

wF F

∼

where wF (x) = wF (x)w−1. HenceW (Tw)
F ≃ W

wF and we get the following
result.

Corollary 1.3.11.

〈RG
Tv
(1), RG

Tw
(1)〉KG =

{
|W

wF | if v and w are F -conjugate,

0 otherwise.

A class function on G is said to be uniform if it is a linear combination
of Deligne–Lusztig characters. In general, class functions are not necessarly
uniform but the following result implies that all irreducible characters of G
are irreducible constituents of some Deligne–Lusztig character.

Theorem 1.3.12 ([14, 12.14]). The character of the regular representation
of G is uniform. The character χreg of KG is given by

χreg =
1

|W |

∑

w∈W

∑

θ∈IrrK(Tw)

RG
Tw
(θ)(1)RG

Tw
(θ).
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1.3.3 Rational series

Recall that T is an F -stable maximal torus contained in an F -stable Borel
subgroup B of G, X := X(T) is the character group and Y := Y (T) is the
cocharacter group. We denote by Φ and Φ∨ the set of roots and coroots.
The isomorphism class of G is completely determined by the root datum
(X,Φ, Y,Φ∨). Note that the quadruple (Y,Φ∨, X,Φ) is also a root datum.
That leads to the following definition :

Definition 1.3.13. Let G
∗ be a connected reductive group and T

∗ be a
maximal torus of G∗. We say that (G∗,T∗) is dual to (G,T) if the root
datum of G∗ with respect to T

∗ is isomorphic (Y,Φ∨, X,Φ).

According to Theorem 1.2.3, G has a unique dual group up to isomor-
phism. Let G

∗ and T
∗ be as in the definition and (X∗,Φ∗, Y ∗,Φ∗∨) be the

root datum of G∗ with respect to T
∗. The group G

∗ is dual to G if and only
if there is an isomorphism ϕ from X to Y ∗ sending Φ to Φ∗∨. From now on,
for any reductive group G we will denote by G

∗ a reductive group which is
dual to G.

Example 1.3.14. If G is simple and G = Gad, then G
∗ = Gsc excepted

for types B and C. If G is adjoint of type B (resp. C) then G
∗ is the simple

simply connected group of type C (resp. B)

Let F and F ∗ be Frobenius maps of G and G
∗, such that T and T

∗ are
stable by F and F ∗. We say that the pair (G∗, F ∗) is dual to (G, F ) if the
following diagram is commutative.

X Y ∗

X Y ∗

ϕ

F F ∗

ϕ

In that case we denote G
∗F ∗

by G∗ and we say that the finite groups G
and G∗ are in duality. For convenience, we may denote F ∗ by F when there
is no ambiguity.

Proposition 1.3.15 ([14, 13.11,13.13]). Assume that (G, F ) and (G∗, F ∗)
are in duality as above. Then we have an isomorphism T ∗ ≃ IrrK(T ) which
induces a bijection between :

1. the set of G-conjugacy classes of pairs (S, θ) where S is an F -stable
maximal torus of G and θ ∈ IrrK(S) and
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2. the set of G∗-conjugacy classes of pairs (S∗, s) where S
∗ is an F ∗-stable

maximal torus of G∗ and s ∈ S∗.

Moreover, if s ∈ Z(G∗), then the image of s via the isomorphism extends to
a linear character ŝ ∈ IrrK(G).

Let (S, θ) be in duality with (S∗, s) as in Proposition 1.3.15. Since RG
S (θ)

depends only on the G-conjugacy class of (S, θ), we can set RG
S∗(s) := RG

S (θ)
without ambiguity. We can now state this fundamental result on Deligne–
Lusztig characters.

Theorem 1.3.16 ([14, 14.41]). The virtual characters RG
T1

∗(s1) and RG
T2

∗(s2)
have no irreducible constituent in common if s1 and s2 are not G∗-conjugate.

Using Theorems 1.3.12 and 1.3.16, we can define a partition of IrrK(G) :

IrrK(G) =
⊔

(s)

E(G, s)

where (s) runs over G∗-conjugacy classes of semi-simple elements of G∗ and
E(G, s) is the set of irreducible constituents of the virtual characters RG

S∗(s)
for F ∗-stable maximal tori S∗ of G∗ containing s. The set E(G, s) is a rational
Lusztig series.

Definition 1.3.17. The character χ ∈ IrrK(G) is called unipotent if χ ∈
E(G, 1). We will sometimes denote the set of unipotent characters by U(G).

Remark 1.3.18. The character χ is unipotent if and only if it lies in a
Deligne–Lusztig character RG

S (1) for some F -stable torus S.

The following result shows that unipotent characters depend only on the
root system of the group.

Proposition 1.3.19 ([14, 13.20]). Let G and G
′ be two connected reductive

groups defined over Fq. Let f : G → G
′ be a morphism of algebraic groups

defined over Fq such that ker f ⊂ Z(G) and [G′,G′] ⊂ f(G). Then we have
a bijection :

E(G′, 1)→ E(G, 1),

χ 7→ χ ◦ f.

1.3.4 Jordan decomposition

Connected center case. One of the main achievement of Lusztig’s classifi-
cation of irreducible characters of G is to reduce the problem to unipotent
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characters. To do so, for groups with connected center, he provided a bijec-
tion between the series E(G, s) and the set of unipotent characters U(CG∗(s))
of CG∗(s). Note that by [14, 2.3, 13.15], whenever Z(G) is connected, CG∗(s)
is a connected reductive group for any semi-simple element s of G∗. We can
now state one of the main results of Lusztig.

Theorem 1.3.20 ([41, 4.23]). Assume that Z(G) is connected, let s ∈ G∗

be semi-simple. There exists a bijection

ψs : E(G, s)→ U(CG∗(s)).

Moreover, there exists a sign ε such that if we extend ψs by linearity to vir-
tual characters we have ψs(R

CG∗

S∗ (s)) = εRG∗

S∗ (1T ∗) for any F -stable maximal
torus S

∗ of CG∗(s). Moreover, if χ ∈ E(G, s),

χ(1) =
|G|p′

|CG∗(s)|p′
ψs(χ)(1).

Disconnected center case. Using Clifford theory, Lusztig generalised this
result to groups with disconnected center. The following definition will allow
us to work "as in the connected center case".

Definition 1.3.21. Let G be a connected reductive group defined over Fq,
a regular embedding of G is a connected reductive group G̃ with connected
center with a rational morphism ι : G→ G̃ such that

• ι is an isomorphism from G onto its image,

• ι(G) and G̃ have the same derived subgroup.

Any connected reductive group has a regular embedding, for example we
can take

G̃ = (G×T)/{(z, z−1) | z ∈ Z(G)}.

Let G be a connected reductive group and G̃ be a regular embedding of
G, we can view G as a closed subgroup of G̃. In that case, we have G̃ =
GZ(G̃) since G contains the derived subgroup of G̃. Let us a fix an F -stable
maximal torus T of G and an F -stablemaximal torus T̃ of G̃ containing
T. Let (G∗,T∗, F ) (resp. (G̃∗, T̃∗, F )) be in duality with (G,T, F ) (resp.
(G̃, T̃, F )).

Lemma 1.3.22 ([62, 1.71]). We have a rational surjective morphism ι∗ :
G̃
∗ → G

∗ such that ι∗(T̃∗) = T
∗ which is unique up to conjugation by an

element of T̃∗. Moreover, ker(ι∗) ⊂ Z(G̃∗).
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Example 1.3.23. Assume that G = SLn, then we can set G̃ = GLn since
SLn is the derived subgroup of GLn. We have G

∗ = PGLn and G̃
∗ = GLn,

ι∗ : GLn → PGLn is the natural morphism.

Theorem 1.3.24 (Lusztig, [7, 15.5,15.15]). Let s̃ ∈ G̃∗ be semi-simple and
s := ι∗(s̃) ∈ G∗. Let χ ∈ E(G̃, s̃). Then ResG̃Gχ is multiplicity-free and its
irreducible constituents belong to E(G, s).

Let s ∈ G∗ be a semi-simple element. Let CG∗(s)◦ := CG∗(s)◦F and let
us denote by AG∗(s) the group CG∗(s)/CG∗(s)◦ ≃ (CG∗(s)/CG∗(s)◦)F . The
natural action of AG∗(s) on IrrK(CG∗(s)) preserves unipotent characters.
Similarly, G̃/G acts naturally on IrrK(G) and preserves Lusztig series.

Theorem 1.3.25 ([47, 5.1]). There is a surjective map

ψs : E(G, s)→ {AG∗(s)-orbits on U(CG∗(s)◦)}

such that the fibres of ψs are the orbits of the action of G̃/G on E(G, s). Let
Θ be an AG∗(s)-orbit on U(CG∗(s)◦) and Γ ⊂ AG∗(s) be the stabiliser of an
element in Θ, then |Γ| = |ψ−1s (Θ)|. Let ρ ∈ ψ−1s (Θ) and S

∗ be an F -stable
torus containing s, then

〈ρ,RG
S∗(s)〉KG = ε

∑

χ∈Θ

〈χ,R
CG∗(s)
S∗ (1S∗)〉KCG∗(s)◦.

Let us explain how Lusztig constructed ψs. We fix a semi-simple element
s̃ ∈ G̃∗ such that ι∗(s̃) = s. Let I := (ker ι∗)F , the isomorphism of Propo-
sition 1.3.15 induces an isomorphism between I and IrrK(G̃/G). Hence, we
have an action of I on IrrK(G̃) and for any x ∈ I , the action of x induces
a bijection E(G̃, s̃) ≃ E(G̃, s̃x). The restriction of irreducible characters of
G̃ to G have no multiplicity, so by Proposition 1.1.5 and Theorem 1.3.24 we
have a bijection between G̃/G-orbits of E(G, s) and I-orbits of

⋃
x∈I

E(G̃, s̃x).

Lusztig showed that AG∗(s) is isomorphic to the stabiliser of E(G̃, s̃) in I .
That isomorphism provides an action of AG∗(s) on E(G̃, s̃) and we have a
bijection between G̃/G-orbits of E(G, s) and AG∗(s)-orbits of E(G̃, s̃). Mo-
reover we have a succession of bijections :

E(G̃, s̃)←→ U(CG̃∗(s))←→ U(CG∗(s)◦).

The first bijection is the Jordan decomposition for groups with connected
center. The second bijection comes from Proposition 1.3.19 by remarking
that ι∗(C

G̃∗(s̃)) = CG∗(s)◦. Lusztig showed that the composition of those
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bijections is compatible with the action of AG∗(s). Finally, ψs is the compo-
sition of the maps

E(G, s)→ {AG∗(s)-orbits on E(G̃, s̃)} ←→ {AG∗(s)-orbits on U(CG∗(s)◦)}.

To get a statement similar to Theorem 1.3.20, we need to define unipotent
characters and Deligne–Lusztig characters for non-connected groups.

Definition 1.3.26. Let G be a non-connected reductive group defined over
Fq.

1. A unipotent character of G is an irreducible character of G such that
the irreducible constituents of its restriction to G◦ are unipotent. We
denote by U(G) the set of unipotent characters of G.

2. Let S be an F -stable maximal torus of G and θ ∈ IrrK(S), we define
the Deligne–Lusztig character of G as RG

S (θ) := IndGG◦RG◦

S (θ).

Corollary 1.3.27. Let G be a connected reductive group defined over Fq
and s ∈ G be semi-simple. We have a bijection

E(G, s)←→ U(CG∗(s)).

Moreover, for any F -stable maximal torus S
∗ of CG∗(s), there is a sign ε

such that the bijection sends RG
S∗(s) to εRG

S∗(1S∗).

Proof. We can reduce the proof to the case where s is quasi-isolated.
Indeed, assume that s is not quasi-isolated. Let L∗ be a minimal proper F -
stable Levi subgroup of G∗ containing CG∗(s), then s is quasi-isolated in
L
∗ and CL∗(s) = CG∗(s). Let L be a Levi subgroup G in duality with L

∗.
According to [15, 11.37], there exists a sign ε such that the function εRG

L

induces a bijection between E(L, s) and E(G, s).
Now assume that s is quasi-isolated. According to [15, 11.51], the restric-

tion of characters from E(CG∗(s), 1) to CG∗(s)◦ has no multiplicity. Hence,
we have the following sequence of bijections

{(G̃/G)-orbits on E(G, s)}

{AG∗(s)-orbits on U(CG∗(s)◦)}

{IrrK(AG∗(s))-orbits on U(CG∗(s))}.

←
→

←
→
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The first bijection comes from Theorem 1.3.25 and the second from Propo-
sition 1.1.5. Let Θ := (G̃/G) · χ be the orbit of χ under the action of G̃/G.
Let Φ := AG∗(s) · ρ and Φ′ := IrrK(AG∗(s)) · ρ′ be its image by the above
bijections. It is enough to show that |Θ| = |Φ′|. Let Γ be the stabiliser of ρ in
AG∗s(s) and Γ′ be the stabiliser of ρ′ in IrrK(AG∗s(s)). By Theorem, 1.3.25
|Θ| = |Γ|. Moreover, by Proposition 1.1.5, Γ is orthogonal to Γ′. Hence,
|Φ′| = |AG∗(s)|

|Γ′| = |Γ| = |Θ| and we are done. �

1.3.5 Blocks and rational series

Let G be a connected reductive group defined over Fq where q is a power
of a prime number p. Let ℓ 6= p be a prime number and (K,O, k) be an
ℓ-modular system. Broué and Michel proved that the partition of IrrK(G)
into Lusztig series behaves particularly well with respect to the partition of
IrrK(G) into ℓ-blocks.

Theorem 1.3.28 (Broué–Michel [6]). Let s ∈ G∗ be a semi-simple element
of order prime to ℓ and set

Bs(G) :=
⋃

t

E(G, st)

where t runs over semi-simple ℓ-elements of CG∗(s). Then Bs(G) is a union
of blocks.

When there is no ambiguity on the underlying group, we will denote
Bs(G) by Bs. Blocks in B1 will be called unipotent blocks, elements of
Irrk(B1) are unipotent modular representations.

Theorem 1.3.29 (Bonnafé–Rouquier [4, 11.8]). Let s ∈ G∗ be a semi-
simple element of order prime to ℓ, L∗ be an F -stable Levi subgroup of G∗

containing CG∗(s) . Let L be an F -stable Levi subgroup of G dual to L
∗.

The functor RG
L induces a Morita equivalence between Bs(L) and Bs(G).

Remark 1.3.30. This theorem induces a "Jordan decomposition" for union
of blocks Bs. More precisely, assume L∗s := CG∗(s) is a Levi subgroup of G∗,
and let Ls be a Levi subgroup of G in duality with L

∗
s. Let ŝ be the linear

character of Ls corresponding to s. Since s is an ℓ′-element, ŝ can be viewed
as a character of an OG-module of O-rank 1. Then RG

Ls
(ŝ ⊗O .) induces a

Morita equivalence between B1(Ls) and Bs(G).
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The aim of this chapter is to introduce our new method for counting the
number of irreducible modular representations lying in unipotent blocks. If
ℓ is good for G and does not divide |(Z(G)/Z(G)◦)F |, Geck–Hiss and Geck
have shown that unipotent characters form a basic set for unipotent blocks
[27, 22]. Moreover, unipotent characters have been classified in terms of spe-
cial unipotent classes. Hence, using Geck–Hiss results on basic sets and Lusz-
tig’s classification, we can count unipotent modular representations in term
of special classes of G. However, when ℓ is bad or divides |(Z(G)/Z(G)◦)F |
we cannot use the result above anymore, see Example 2.3.3. Actually, in that
case, there are not enough special classes and we need to introduce a set of
unipotent classes larger than the set of special classes : the ℓ-special classes.
We conjecture in 2.3.14 that ℓ-special classes are the good objects to count
unipotent modular representations. Then, we prove the conjecture for SLn(q)
and SUn(q), for simple classical groups and for simple adjoint exceptional
groups.

In the first section, we recall some notions on representations of Weyl
groups. In particular, we introduce the notions of families and special re-
presentations and we state Lusztig’s classification theorem for unipotent
characters in terms of families. Then, we introduce the Springer correspon-
dence between unipotent classes of G and representations of the Weyl group
of G. It allows us to define special unipotent classes and to state Lusztig’s
classification in terms of those special unipotent classes.

In the second section, we introduce the notion of ℓ-special unipotent
classes which are associated to special classes of centralisers of isolated ℓ-
elements. Then, with the idea of adapting Lusztig’s approach to the modular
case, we associate to each ℓ-special class (u)G a group Ωℓ

u that we call the
ℓ-canonical quotient. Together with Ωℓ

u, we associate a set M̄ℓ(Ω
ℓ
u). Then,

we conjecture that we can use those objects to count unipotent modular
representations.

The three following sections are devoted to showing that our conjecture
holds for most simple groups.

• In the third section, interpreting results of Kleshchev–Tiep and Denon-
cin, we show that the conjecture is true for SLn(q) and SUn(q).

• In Section 4, we are interested in groups of type B, C or D. In that case,
the conjecture is equivalent to showing that the number of unipotent
modular representations is equal to the number of unipotent classes of
G. Geck proved that result for groups with connected center and we
generalise it to the case of groups with disconnected center.
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• In the last section, we prove that the conjecture holds for simple adjoint
exceptional groups. To this end, we present an algorithm that counts
the objects attached to the ℓ-special classes introduced in the second
section. By implementing it in GAP3 using the package CHEVIE [50],
and by a case-by-case analysis, we check that the numerical results we
get coincide with the number of the unipotent modular representations
of these groups computed by Geck and Hiss.
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2.1 Classification of unipotent characters

2.1.1 On representations of W

Throughout this section, G will be a connected reductive algebraic group
over F̄q, F : G → G a Frobenius map corresponding to a Fq-structure and
G := G

F the corresponding finite reductive group. We will assume that q
is a power of a good prime number. Let T be an F -stable maximal torus
contained in an F -stable Borel subgroup B of G. We denote by W the Weyl
group of G.

Fake degrees and generic degrees. Let V be the reflection representation
of W i.e. the R-vector space on which W acts naturally, and let us denote
VC := V ⊗RC. Let P := P (VC) be the algebra of polynomial functions on VC.
It is a graded C-algebra whose n-th component consists of the homogeneous
polynomials of degree n. The Weyl group W acts naturally on P via w ·
f(v) = f(w−1v) for w ∈ W , f ∈ P and v ∈ VC. Let I be the homogeneous
ideal of P generated by W -invariant polynomials vanishing at 0. Let A :=
P/I. This is a graded CW -module isomorphic to the regular representation
of W [8, 2.4.6]. Let φ ∈ IrrC(W ) be an irreducible character of W over C

and ni be the multiplicity of φ in the i-th component of A. Then the fake
degree of φ is the polynomial

Pφ(X) :=
∑

i≥0

niX
i.

The theory of Hecke algebras provides a family of unipotent characters
of G, namely the principal series which is in bijection with IrrC(W ) and
the degrees of those unipotent characters provide other polynomials. More
precisely, if we assume that F acts trivially on W , recall that there is a
bijection

IrrC(W )→ {χ ∈ IrrC(G) | 〈χ, Ind
G
B1B〉CG 6= 0},

φ 7→ φq.

Then, the degree of φq is a polynomial in q. In [41, 3.3], Lusztig generalised
the construction of φq to the case where the Frobenius map does not act
trivially on the Weyl group for φ ∈ IrrC(W )F .

Definition 2.1.1. Let φ ∈ IrrC(W )F . The generic degree of φ, denoted by
P̃φ, is the polynomial φq(1).
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Special representations and families. Consider φ ∈ IrrC(W ) and let us write
the fake and generic degree associated to φ :

Pφ(X) = γφX
aφ + · · ·+ δφX

bφ, aφ ≤ bφ,

P̃φ(X) = γ̃φX
ãφ + · · ·+ δ̃φX

b̃φ, ãφ ≤ b̃φ,

where γφ, γ̃φ 6= 0. We always have ãφ ≤ aφ [8, 11.3.4]. We are interested in
the irreducible representations for which we have an equality.

Definition 2.1.2. A character φ ∈ IrrC(W ) is called special if aφ = ãφ.

In [41], Lusztig defined a partition of IrrC(W ), into families in a recursive
way :

• If W is the trivial group, there is a unique family, containing the trivial
representation.

• Assume that families have been defined for proper standard parabolic
subgroups of W . Let us denote by εW the sign representation of W .
For φ1, φ2 ∈ IrrC(W ), we say that φ1 ≃ φ2 if there exists a standard
parabolic subgroup W ′ ( W and ϕ1, ϕ2 ∈ IrrC(W

′) in the same family
such that one of the following conditions is satisfied :

〈ϕi,ResWW ′φi〉CW ′ 6= 0 and aφi = aϕi, i = 1, 2, or

〈ϕi,ResWW ′φi ⊗ εW ′〉CW ′ 6= 0 and aφi⊗εW = aϕi, i = 1, 2.

Then we define families of W as equivalence classes for the equivalence
relation generated by ≃.

By a case-by-case verification, Lusztig noted a remarkable property of fami-
lies.

Proposition 2.1.3 ([41, 4.14.2]). Each family of W contains exactly one
special character.

Let us look at how irreducible characters fall into families in the following
examples.

• Assume W is of type An i.e. W is the symmetric group Sn+1. Its
irreducible characters are parametrised by partitions of n + 1. If α =
(α1, . . . , αr) (where α1 ≤ · · · ≤ αr) is such a partition, we denote by
χα the corresponding character of W which is uniquely determined by
the following properties :

• the restriction of χα to
r∏
i=1

Sαi contains the trivial character,
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• let α∗ be the dual partition of α. Then, the restriction of χα to
r∏
i=1

Sα∗
i

contains the sign character.

All irreducible characters of W are special and each family has one
element.

• Assume W is of type Bn or Cn. Irreducible characters of W are para-
metrised by bipartitions of n, i.e. pairs of partitions (α, β) such that
|α| + |β| = n. We denote by φα,β the corresponding character. Adding
zeros to α or β if necessary, we can assume that α has one more part
than β. To (α, β) we associate its symbol Λ defined as the array :

Λ =

(
α1 α2 + 1 . . . αm + (m− 1) αm+1 +m

β1 β2 + 1 . . . βm + (m− 1)

)

Since the number of parts can be increased at our will by adding zeros to
the partitions, we define an equivalence relation on the set of symbols.
Let

Λ′ =

(
0 α1 + 1 α2 + 2 . . . αm +m αm+1 +m+

0 β1 + 1 β2 + 2 . . . βm +m

The relation Λ ≃ Λ′ generates an equivalence relation and we denote
by [Λ] the equivalence class of Λ. Each bipartition defines a unique
equivalence class of symbols under this relation. Moreover, if

(
λ1 λ2 . . . λm λm+1

µ1 µ2 . . . µm

)

is a symbol, the character attached to this symbol is special if and only
if

λ1 ≤ µ1 ≤ λ2 ≤ µ2 ≤ · · · ≤ µm ≤ λm+1.

If Λ1 and Λ2 are two symbols, then their corresponding characters lie
in the same family if and only if the unordered sets of entries of those
symbols are the same.

Example 2.1.4. Let W be the Coxeter group of type B2. The following
table lists the bipartitions of 2 and their corresponding symbols.

(α, β) (2.−) (12.−) (1.1) (−.12) (−.2)

Symbol

(
2
−

) (
1 2

0

) (
0 2

1

) (
0 1 2

1 2

) (
0 1

2

)
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There are 3 families : {φ2.−}, {φ−.12} and {φ12.−, φ1.1, φ−.2}. The special
characters are φ2.−, φ−.12 and φ1.1.

• Assume that W is a Coxeter group of type G2. Then, W has 6 irre-
ducible characters denoted by φ1,0, φ2,1, φ2,2, φ′1,3, φ

′′
1,3, φ1,6 in [8, §13.2].

Here, a character denoted by φd,e (or φ′d,e, φ
′′
d,e) is a character of de-

gree d such that its fake degree is divisible by Xe but not by Xe+1

(i.e. e = aφe,d). The families of W are {φ1,0}, {φ2,1, φ2,2, φ′1,3, φ
′′
1,3} and

{φ1,6}. The special characters are φ1,0, φ2,1 and φ1,6.

2.1.2 Lusztig’s theorem

In this subsection, we introduce a theorem of Lusztig on the classification
of unipotent characters of G in terms of families of representations of the
Weyl group of G.

Families of unipotent characters. Recall that U(G) denotes the set of uni-
potent characters of G. We can derive a partition of U(G) from the one of
IrrC(W ) into families as follows. Let γ be the generator of an infinite cyclic
group and W̃ be the semi-direct product of W with the infinite cyclic group
generated by γ such that γ ·w ·γ−1 = F (w) for w ∈ W . The following result
of Lusztig tells us how F -stable characters of W extends to W̃ .

Proposition 2.1.5 ([41, 3.2]). Let φ ∈ (IrrC(W ))F . There exist exactly
two irreducible characters of W̃ which factor through a finite group, can be
realised over Q and whose restriction to W is φ.

Let φ ∈ (IrrC(W ))F and let φ̃ be such an extension of φ. For each w ∈ W ,
we fix an F -stable maximal torus Tw of type w as in §1.3.2. We define the
class function

Rφ̃ :=
1

|W |

∑

w∈W

φ̃(γ · w)RG
Tw
(1).

Theorem 2.1.6 ([41, 4.23]). Let φ1, φ2 ∈ IrrC(W ) and φ̃1, φ̃2 be extensions
to W̃ as above. Then Rφ̃1

and Rφ̃2
have a common irreducible constituent if

and only if φ1 and φ2 lie in the same family of IrrC(W ).

Let F be an F -stable family of W and let us denote by F(G) the set of
irreducible constituents of Rφ̃ where φ̃ is an extension of some φ ∈ F . Then
we have a partition
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U(G) =
⊔

F

F(G)

where F runs over F -stable families of W . We will call F(G) a family of
unipotent characters and we will use the notation F if there is no ambiguity.

Example 2.1.7.

• Assume that G = SL2(F̄q) where q is odd and F = Fq. Let us denote by
W = {e, s} the Weyl group of G. Its irreducible representations are 1
and ε. We have : R1 =

1
2(RTe+RTs) = χ1 and Rε =

1
2(RTe−RTs) = χ12.

Therefore, the two unipotents characters lie in distinct families.

• Assume that G = Sp4(F̄q) where q is odd. The table below give for
each φ ∈ IrrC(W ), the decomposition of Rφ̃ into irreducible characters.

φ Rφ

φ2.− χ2.−

φ1.1
1
2(χ12.− + χ1.1 + χ−.2 + θ)

φ12.−
1
2(χ12.− + χ1.1 − χ−.2 − θ)

φ−.2
1
2(−χ12.− + χ1.1 + χ−.2 − θ)

φ−.12 χ−.12

Here, for a bipartition (α, β), χα,β is the character of the principal series
corresponding to φα,β and θ is the cuspidal unipotent character of G.
The table gives us the partition of U(G) into families of unipotent cha-
racters of G : the family containing the trivial character χ2.−, the family
containing the Steinberg character χ−.12 and the family containing the
4 remaining characters.

Finite groups associated to families. To each family F ofW , Lusztig associa-
ted in [41, §4] a group ΩF . This is done case-by-case, starting with irreducible
Weyl groups and then generalising to any Weyl group. For each family F , ΩF
is a product of the groups Z/2Z, S3, S4 and S5. The construction of those
groups is an important step toward the classification of unipotent characters.

Definition 2.1.8. Let Ω be a finite group. Let us write M(Ω) for the set
of Ω-conjugacy classes of pairs (x, σ) where x ∈ Ω and σ ∈ IrrC(CΩ(x)).
Moreover, we define a pairing { . , . } :M(Ω)×M(Ω)→ C by

{(x, σ), (y, τ)} :=
∑

g

1

|CΩ(x)||CΩ(y)|
τ(g−1x−1g)σ(gyg−1)
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where g runs over the set of elements of Ω such that gyg−1 commutes with
x.

The setM(ΩF) plays an important role for the classification of unipotent
characters of G but is not suited for the case where F does not act trivially
on W , that is why we need to "twist" this set. Let Ω be a finite group on
which F acts, as above, we denote by Ω̃ the semidirect product of Ω with the
infinite cyclic group generated by γ such that for x ∈ Ω, γ · x · γ−1 = F (x).
We will define two sets and a pairing between those sets.

Definition 2.1.9. To Ω we can associate the following sets :

• M̃(Ω) is the set of Ω̃-conjugacy class of pairs (x, φ) where x is an
element of Ω such that CΩ̃(x) ∩ Ω.γ 6= ∅ and φ is an irreducible repre-
sentation of CΩ̃(x) which factors through a finite quotient and whose
restriction to CΩ(x) remains irreducible.

• M̄(Ω) is the set of Ω̃-conjugacy class of pairs (x, φ) where x is an
element of Ω · γ and φ ∈ IrrC(CΩ(x)).

• We can define a pairing M̄(Ω) × M̃(Ω) → C by the same formula as
in 2.1.8.

Remark 2.1.10.

1. If F acts trivially on Ω, then Ω̃ is the direct product of Ω with the infinite
cyclic group generated by γ and M̄(Ω) is in bijection withM(Ω).

2. If x = a.γ ∈ Ω̃.γ, then the Ω̃-conjugates of x are the elements of the
form b.γ where b ∈ Ω is F -conjugate to a.

Example 2.1.11.

• Assume that W is a Coxeter group of type An. Then, for each family
F , the group ΩF is trivial and the set M̄(ΩF) has only one element.

• Assume that W is a Coxeter group of type Bn or Cn. Let F be a family
of W and let φ be a character of F whose class symbol is [Λ] where

Λ =

(
λ1 λ2 . . . λm λm+1

µ1 µ2 . . . µm

)

is chosen such that m is as small as possible. Let Z be the set of entries
of Λ which appear a single time. Note that Z depends only on F and
has odd cardinality. Let us write |Z| = 2d + 1 and let V be the set
of subsets of Z of even cardinality. For M1,M2 ∈ V , we define the
operation M1 +M2 = (M1 ∪M2) \ (M1 ∩M2). This operation endows
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V with a structure of vector space over F2 of dimension 2d whose zero
element is the empty set. The function 〈M1|M2〉 = |M1 ∩ M2| mod
2 defines a symplectic form on V . Then ΩF is defined as a maximal
isotropic subspace of V . In particular, ΩF ≃ (Z/2Z)d.

Lusztig’s theorem. Let F be an F -stable family of W . Then there is an
action of F on ΩF and the constructions above can be done. Let us denote
M(ΩF),M̃(ΩF) and M̄(ΩF) byMF ,M̃F and M̄F respectively. Let F̃ be
the set of irreducible characters of W̃ whose restriction to W is irreducible
and belongs to F .

Theorem 2.1.12 ([41, 4.23]). For any F -stable family F of IrrC(W ), there
is a bijection

M̄F → UF

x 7→ χx

and an embedding
F̃ →֒ M̄F :

φ̃ 7→ xφ̃

such that given F , F ′ two F -stable families, φ ∈ F and x ∈ M̄F ′, then :

〈Rφ̃, χx〉CG =

{
εx{x, xφ} if F = F ′,

0 otherwise.

where εx ∈ {−1, 1} depends on x.

Remark 2.1.13.

1. εx = 1 except for the exceptional families of the exceptional groups E7

and E8.

2. By Remark 2.1.10, if F acts trivially on W we can replace M̄F byMF

in the theorem.

Example 2.1.14. Assume that G = Sp4(q). Let us describe how we can
parametrise unipotent characters of G using Lusztig’s theorem. If (α, β) is a
bipartition of 2, we denote by χα.β the character of the principal series corres-
ponding to φα.β ∈ IrrC(W ). We denote by θ the cuspidal unipotent character
of G. The trivial and the Steinberg character χ2.− and χ−.12 form families
of one element corresponding respectively to the special characters φ2.− and
φ−.12 of W . Let F be the family such that F(G) = {χ12.−, χ1.1, χ−.2, θ}.
Then ΩF is a group of order 2 which we identify with S2 = {e, s1}. Accor-
ding to [41, §4.5], χ1.1, χ−.2 and χ12.− correspond respectively to (e, 1), (e, ε)
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and (s1, 1) and the cuspidal character θ corresponds to (s1, ε). We give below
the corresponding Fourier matrix of F , i.e. the matrix of the form {., .}.

(e, 1) (e, ε) (s1, 1) (s1, ε)





(e, 1) 1
2

1
2

1
2

1
2

(e, ε) 1
2

1
2 −1

2 −1
2

(s1, 1)
1
2 −1

2
1
2 −1

2

(s1, ε)
1
2 −1

2 −1
2

1
2

.

Non unipotent characters. Assume that the center of G is connected. Using
the Jordan decomposition, we can apply theorem 2.1.12 to parametrise all
irreducible character of G. Recall that IrrC(G) is partitioned into rational
Lusztig series E(G, s), where (s)G∗ is a semi-simple conjugacy class of G∗.
Jordan decomposition Theorem 1.3.20 provides a bijection between E(G, s)
and E(CG∗(s), 1). Theorem 2.1.12 gives a parametrisation of E(CG∗(s), 1) by
pairs (F , x) where F is an F -stable family of the Weyl group Ws of CG∗(s)
and x ∈ M̄F . Combining this parametrisation with the Jordan decomposi-
tion, we get a parametrisation of E(G, s), i.e. we have :

E(G, s) =
⊔

F

E(G, s)F

where F runs over families of Ws and E(G, s)F is the subset of E(G, s) in
bijection with F(CG∗(s)).

2.2 Springer correspondence

2.2.1 Springer’s construction of representations of W

Springer in [60] introduced a geometric construction of all irreducible
representations of W using unipotent classes of G. The construction was
initially done when G is a simple adjoint groups over C, but Lusztig ge-
neralised it to fields of any characteristic and for any connected reductive
algebraic group. Let u ∈ G be a unipotent element and let Bu be the variety
of Borel subgroups of G containing u. Then Bu is a projective variety. Let
Hu := H2dimBu(Bu, Q̄ℓ) be the top non-vanishing ℓ-adic cohomology group
of Bu. According to Spaltenstein [58], all irreducible components have the
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same dimension hence, by 1.3.1, the dimension of Hu as a Q̄ℓ-vector space is
the number of irreducible components of Bu.

Moreover, CG(u) acts on Bu by conjugation and CG(u)
◦, the iden-

tity component of CG(u), fixes each irreducible component of Bu. Thus,
AG(u) := CG(u)/CG(u)

◦ acts on the set of irreducible components of Bu so
AG(u) acts on Hu by permutation of the basis. In [60], Springer defined an
action of W on Hu when the characteristic p is large enough. A generalisa-
tion of this action in arbitrary characteristic is given in [40]. This action of
W commutes with the action of AG(u) so we have an action of W ×AG(u)
on Hu. For an irreducible character φ of AG(u), we denote by Hu,φ the sum
of the AG(u)-submodules of Hu affording φ. Because this space is stable by
the action of W , it can be viewed as a Q̄ℓW -module. Then Springer proved
that Hu,φ is either 0 or a direct sum of isomorphic copies of an irreducible
Q̄ℓW -module that we denote by Eu,φ. By convention, we set Eu,φ := 0 when
Hu,φ = 0. In addition, Springer showed that :

• Eu,φ ∼ Ev,ψ if and only if u is conjugate to v and φ = ψ.

• Every irreducible representation of W can be obtained by the construc-
tion above.

This construction provides a parametrisation of IrrC(W ) by pairs {C, φ}
where C is a unipotent class of G, u ∈ C and φ ∈ IrrC(AG(u)). This para-
metrisation, known as the Springer correspondence, was explicitly described
when p is good for G by Springer for type An and G2 [59], by Alvis–Lusztig
for groups of type En [1]. The correspondence for F4 and the classical groups
was described by Shoji in [56] and [55].

Example 2.2.1.

• Assume G = GLn(F̄q). If u ∈ G is unipotent, the G-conjugacy class of
u is determined by its Jordan normal form, hence by a partition of n.
Therefore, unipotent classes of G are parametrised by partitions of n.
If α is a partition of n, we denote by Cα the corresponding unipotent
class. For every class Cα and uα ∈ Cα, AG(uα) is trivial and Euα,1 =
φα ∈ IrrC(Sn).

• Assume G = Sp2n(F̄q), q odd. Unipotent classes of G are parametrised
by partitions of 2n such that any odd part occurs an even number of
times. Moreover, according to [42, 10.4], if λ = (λ1, . . . , λr) is such a
partition and uλ ∈ G is a representative of the corresponding class then
AG(uλ) = (Z/2Z)a. The integer a is the number of integers appearing
an even number of times in λ. We will follow the process in [29, 2B] to
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describe Euλ,1. By adding zeros if necessary, we can suppose that λ1 = 0
and that r is odd. We can partition (λ1, . . . , λr) into blocks of length 1
or 2 such that all even parts lie in blocks of length 1 and odd parts lie
in blocks of length 2. Let us define

{
ci := λi/2 + (i− 1) if {λi} is a block,

ci := ci+1 := (λi + 1)/2 + i− 1 if {λi, λi+1} is a block.

Now let us define the symbol

Λλ :=

(
c1 c3 − 2 . . . cr − 2r

c2 − 1 . . . cr−1 − (2r − 1)

)
.

Let (α, β) be the bipartition of n such that the parts of α are the non-
zeros entries of the first row of Λλ and the part of β are the non-zeros
entries of the second row of Λλ. Then the Springer correspondence is
given by Euλ,1 = φα,β.

Remark 2.2.2. This construction is a particular case of a more general
construction on partitions. The bipartitions (α, β) constructed this way
are 2-quotients of partitions λ which have trivial 2-core (see [33, 2.7] for
more details).

Let us look at the case where G = Sp4(F̄q) and q is odd. In the following
table for each partition λ of 4 corresponding to a unipotent class Cλ, we
describe the blocks of the partitions, Λλ and the Springer correspondent
Euλ,1 for uλ ∈ Cλ.

λ blocks Λλ Euλ,1

(4) {0}, {0}, {4}

(
0 4

1

)
φ2.−

(22) {0}, {2}, {2}

(
1 1

1

)
φ1.1

(122) {0}, {0}, {1, 1}, {2}

(
0 1 1

0 0

)
φ12.−

(14) {0}, {1, 1}, {1, 1}

(
0 0 0

1 1

)
φ−.12

• Assume G = G2(F̄q) and p is good for G. Then G has 5 unipotent
classes denoted as follows : 1 (the trivial class), A1, Ã1, G2(a1) and G2.
The notation correspond to some Levi subgroup of a parabolic subgroup
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attached to the class, see [8, 5.9.6] for more details. The following table
taken from [8, §13.3] gives for each unipotent class (u)G of G, the
group AG(u) and the Springer correspondent Eu,φ for each irreducible
character φ of AG(u). The blank entry in the last column means that
Eu,φ = 0.

(u)G AG(u) IrrC(AG(u)) IrrC(W )

1 1 1 φ1,6
A1 1 1 φ1,3′′

Ã1 1 1 φ2,2
G2(a1) S3 φ3(= 1) φ2,1

φ12 φ1,3′

φ13(= ε)
G2 1 1 φ1,0

By a case-by-case verification, Lusztig noted that special representations
of W have a specific form under the Springer correspondence.

Proposition 2.2.3 ([41, 13.1.1]). Any special irreducible representation of
W is of the form Eu,1 where u is a unipotent element of G.

This proposition and the facts that the converse is not true leads to the
following definition :

Definition 2.2.4. Let u be a unipotent element of G. We say that u is
special if Eu,1 is a special irreducible representation of W . Since Eu,1 only
depends on the G-conjugacy class of u, we can say that the class (u)G is
special.

Example 2.2.5.

• Since every character is special in type An, every unipotent class is
special.

• If G = Sp4(F̄q), special characters of W are φ2.−, φ−.12 and φ1.1. So,
according to Table 2.2.1, special unipotent classes of G are the classes
corresponding to the partitions (4), (22) and (14).

• Amongst the five unipotent classes of G = G2(F̄q), three are special :
1, G2(a1) and G2.
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2.2.2 Canonical quotient

Because each family contains exactly one special character, the Springer
correspondence induces a bijection between special unipotent classes of G
and families of IrrC(W ). In [41], Lusztig attached to each special class a
finite group closely related to the group ΩF .

Definition 2.2.6. Let u ∈ G be a special unipotent element, and bu :=
dimBu where Bu is the variety of Borel subgroups of G containing u. Let
S ⊂ IrrC(AG(u)) be defined by

S := {ψ ∈ IrrC(AG(u)) | aEu,ψ = bu}.

The canonical quotient Ωu is the largest quotient of AG(u) through which
every element of S factors. In other words,

Ωu := AG(u)/
⋂

ψ∈S

kerψ.
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Remark 2.2.7.

• We may use the notation Ωu = Ωu(G) if there is an ambiguity on the
underlying group.

• For simple groups, the groups defined above can be trivial, a product
of copies of Z/2Z or the symmetric groups S3,S4 and S5.

• If C is an F -stable unipotent class of G and u ∈ CF , F acts naturally
on AG(u) so we can define M̄(Ωu). According to [41, 13.1.3], M̄(Ωu)
only depends on C.

Lusztig showed in [41, 13.1.3] that canonical quotients correspond to the
finite groups which appear in the classification of unipotent characters.

Proposition 2.2.8. Let u be a special unipotent element of G, and F be
the family of IrrC(W ) containing the character φu,1 ⊗ ε. Then, the triple
Ωu ⊂ Ω̃u ⊃ Ωu · γ is isomorphic to ΩF ⊂ Ω̃F ⊃ ΩF · γ.

Hence, there is a parametrisation of unipotent characters in terms of spe-
cial unipotent classes.

Theorem 2.2.9. Unipotent characters of G are parametrised by pairs (u, x)
where u ∈ G is a special unipotent element up to G-conjugacy and x ∈
M̄(Ωu).

Example 2.2.10. Let G = Sp4(q). The following table describes the para-
metrisation of unipotent characters of G in terms of special classes :

λ Euλ,1 ⊗ ε Ωuλ (x, σ) Unipotent character
14 φ2.− 1 (1, 1) χ2.−

22 φ1.1 S2 (1, 1) χ1.1

(1, ε) χ−.2
(s1, 1) χ12.−

(s1, ε) θ
4 φ−.12 1 (1, 1) χ−.12

2.2.3 Parametrisation of IrrC(G) by special classes

Definition 2.2.11. We say that g ∈ G is special if g has semi-simple part
s, unipotent part u and u is special as an element of CG(s)

◦.

Assume that G has connected center. Using 2.1.2 we can state a parame-
trisation of IrrC(G) in terms of special classes of G∗. Recall from §1.3.3 that
we have a partition :

IrrC(G) =
⊔
E(G, s)
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where s runs over representatives of semi-simple conjugacy classes of G∗.
Moreover, by the subsection 2.1.2 and the previous results, we have a par-
tition of E(G, s) depending on families of the Weyl group Ws of CG∗(s).
Let g be a special element of G∗ with Jordan decomposition g = su and
let F be the family of Ws corresponding to u ∈ CG∗(s). Then we denote
IrrC(G)g := E(G, s)F . By [14, 2.3, 13.15], since Z(G) is connected, CG∗(s)
is a connected reductive group for any semi-simple element s of G∗. So by
1.2.8 4., semi-simple elements of G∗ conjugate under G∗ are conjugate under
G∗. Hence, we have a partition :

IrrC(G) =
⊔

g

IrrC(G)g

where g runs over representatives of F -stable special classes of G∗. For each
special element g of G∗ with Jordan decomposition g = su, let us denote by
Ωg the canonical quotient of ACG∗(s)(u). Then, IrrC(G)g is parametrised by
M̄(Ωg).

2.3 ℓ-special classes and ℓ-canonical quotient

As in §1.1.1, let ℓ be a prime number different from p, and let (K,O, k)
be an ℓ-modular system such that K and k are big enough for G. We recall
that

B1 :=
⋃

t

E(G, t),

where t runs over semi-simple ℓ-elements of G∗, is a union of blocks. The
irreducible modular representations lying in B1 will be called unipotent. In
this section, we will stick to this problem : trying to use Lusztig’s parametri-
sation theorem 2.2.9 to count unipotent modular representations. We start
from the following observation : the cardinal of Irrk(B1) equals the cardinal
of any basic set for B1. Moreover, Geck and Hiss proved that, under some
conditions on ℓ, unipotent characters form a basic set for B1. Let us give
more details on this result. We first need to define what conditions on ℓ are
needed.

Definition 2.3.1. Let ℓ be a prime number.

• We say that ℓ is very good for G if ℓ is good for G and does not divides
|(Z(G)/Z(G)◦)F |.

When ℓ is very good for G, Geck and Hiss have shown that unipotent
characters form a basic set for unipotent blocks. More generally :
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Theorem 2.3.2 ([27, 21]). Assume that ℓ is very good for G and ℓ 6= p. Let
s be a semi-simple ℓ′-element of G∗. Then E(G, s) is a basic set for Bs.

This theorem implies that Lusztig’s parametrisation can be used to count
unipotent modular representations. However when ℓ is not very good for
G, there are cases where the number of unipotent modular representations
differs from the number of unipotent characters. The following examples show
that unipotent characters are not enough to provide a basic set or that there
can be more unipotent characters than unipotent modular representations.

Example 2.3.3.

• Assume G = SL2(q) with q odd and ℓ = 2 (ℓ is good but not very good
for G). According to [3, 9.4.9], G has 2 unipotent characters but there
are 3 unipotent modular representations.

• Assume G = G2(q) and ℓ = 2 (ℓ is bad for G). The decomposition
matrix of G was computed in [32]. In that case unipotent characters
form a generating set but do not form a basic set : there are actually
10 unipotent characters but 9 unipotent modular representations.

With the goal of adapting Lusztig’s results to the positive characteristic
framework, we will introduce "modular versions" of the notions of special
classes and canonical quotient. We conjecture that these are the good objects
to count unipotent modular representations.

Truncated induction. Recall that for φ ∈ IrrC(W ), aφ is the valuation of
the fake degree of φ.

Definition 2.3.4. Let W ′ be a subgroup of W generated by reflections and
φ ∈ Irr(W ′). We define the truncated induction (or j-induction) jWW ′(φ) of φ
as the unique irreducible summand ψ of IndWW ′(φ) such that aψ = aφ.

For the existence and the uniqueness see [8, 11.2.1,11.2.5]. This construc-
tion comes originally from Macdonald and has been generalised by Lusztig
and Spaltenstein. A more natural construction of the truncated induction
can be found in [8, §11.3]. This operation can also be used to provide an al-
ternative construction of the families of IrrC(W ), see [8, §12.4] for example.
The j-induction can be used to construct special representations of W from
special representations of parabolic subgroups, more precisely :

Theorem 2.3.5 ([39]). Let W ′ be a parabolic subgroup of W and let ψ be a
special character of W ′. Then φ := jWW ′(ψ) is a special irreducible character
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of W and aφ = aψ. Conversely, if φ is a special character of W then either
φ or φ⊗εW is of the form jWW ′(ψ) for some parabolic subgroup W ′ of W and
some special character ψ of W ′.

Example 2.3.6.

• Suppose W = Sn+1 is of type An. Let α = (α1, . . . , αr) be a partition
of n+1 and φα ∈ IrrC(W ). Let α∗ = (α∗1, . . . , α

∗
s) be the dual partition

of α and let
W ′ = Sα∗

1
× · · · ×Sα∗

s
.

Then W ′ can be naturally viewed as a parabolic subgroup of W . Then
φα = jWW ′(εW ′) where εW ′ is the sign character of W ′.

• Suppose W is of type G2 and W ′ a parabolic subgroup of type A1. Then
φ1,0 = jWW ′1, and φ2,1 = jWW ′εW ′.

ℓ-special classes. Following our strategy of mimicking Lusztig’s parametri-
sation in the context of modular representations, we will introduce a new set
of unipotent classes depending on ℓ. In [41, §13.1], Lusztig defined when p
is good a map between special classes of G∗ and unipotent classes of G as
follows : let g = su be a special element of G∗, we denote by W ◦

s the Weyl
group of CG∗(s)◦. The Springer correspondence for CG∗(s) affords a special
irreducible character Eu,1 ∈ IrrC(W

◦
s ). By applying the truncated induction

to Eu,1, we get a character χ := jW
∗

W ◦
s
Eu,1 of W ∗ which can be seen as a

character of W . According to [41, §13.3], there is a well-defined unipotent
element v of G such that χ = Ev,1. Then, the image of g is v. We summarise
the process in the following definition :

Definition 2.3.7. We denote by Φ the map defined as follows :

special G∗-classes unipotent G-classes

IrrC(W
◦
s ) IrrC(W

∗) IrrC(W )

Springer

Φ

jW
∗

W◦
s ∼

Springer .

We can now introduce the "modular version" of the special unipotent
classes :

Definition 2.3.8. A unipotent element u of G is ℓ-special if there exists a
special element g ∈ G

∗ meeting the following conditions :

• Φ((g)G∗) = (u)G,
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• the semi-simple part of g is an isolated ℓ-element of G∗.

Remark 2.3.9. From the definition, we can deduce the following informa-
tion :

• Any special class is ℓ-special. Indeed, let (u)G be a special unipotent
class, by definition Eu,1 is a special character of W . Seen as a character
of W ∗, Eu,1 is still special and is the Springer correspondent of a special
unipotent class (v)G∗ of G∗. Hence, Φ((v)G∗) = (u)G and any special
unipotent class is ℓ-special.

• If ℓ is good for G there are no non-trivial isolated semi-simple ℓ-element
so ℓ-special unipotent classes are exactly the special ones.

Image of the Springer correspondence. Let SW be the set of special charac-
ters of W and let S̄W be the image of the injective map (u)G 7→ Eu,1 from
the set of unipotent classes of G to IrrC(W ), we have SW ⊂ S̄W by Proposi-
tion 2.2.3. We can describe the set S̄W in terms of j-induction of characters
of maximal subgroups of W . More precisely, let us fix a set of roots Φ and
a set of simple roots ∆ = {α1, . . . , αn}. For α ∈ Φ, let sα ∈ W be the
corresponding reflection. We have W = 〈sαi | 1 ≤ i ≤ n〉. Let α0 =

∑
nαiαi

be the highest short root. For i ∈ {0, . . . , n}, let

Wi = 〈sαj | 0 ≤ j ≤ n, j 6= i〉.

Assume that p is good for G. It was shown by Shoji [54, 55], Springer [59] and
Alvis–Lusztig [1] that S̄W is exactly the set of irreducible characters of W
coming from j-induction of special characters of the groups Wi. Moreover,
the classification of quasi-isolated semi-simple elements by Bonnafé in [2]
shows that every group of the form Wi is the Weyl group of the centraliser
of an isolated semi-simple element si of G∗ whose order is equal to nαi. Those
facts motivate the following definition.

Definition 2.3.10. Let ℓ be a prime number, E ∈ IrrC(W ). We say that E
is ℓ-special if there exists i ∈ {1, . . . , n} such that :

• E is the j-induction of a special character of Wi,

• nαi is a power of ℓ.

The following proposition comes from the definition

Proposition 2.3.11. Let (u)G be a unipotent class of G. The character
Eu,1 is ℓ-special if and only if (u)G is ℓ-special.
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ℓ-canonical quotient. We construct an analogue of the group Ωu in charac-
teristic ℓ. The definition involves characters of projective indecomposables
kAG(u)-modules instead of complex irreducible characters of AG(u).

Definition 2.3.12.

1) Let u be an ℓ-special unipotent element of G. Let P be a projective
indecomposable kAG(u)-module and Ψ be its character. We define aΨ
as :

aΨ := min aEu,ψ

where ψ runs over the ordinary irreducible constituents of Ψ such that
Eu,ψ 6= 0. Let Sℓ be the set of indecomposable projectives Ψ such that
aΨ is maximal. We define the ℓ-canonical quotient Ωℓ

u as the largest
quotient of AG(u) such that every Ψ ∈ Sℓ factors through Ωℓ

u.

2) Let Ω be a finite group on which F acts. Recall that Ω̃ is the semidirect
product of Ω with the infinite cyclic group generated by γ such that
γxγ−1 = F (x) if x ∈ Ω. We denote by M̄ℓ(Ω) the set of Ω̃-conjugacy
class of pairs (x, φ) where x is an element of Ω.γ and φ ∈ Irrk(CΩ(x)).

Remark 2.3.13. If F acts trivially on Ω, Ω̃ is the direct product of Ω with
the infinite cyclic group generated by γ and M̄ℓ(Ω) is in bijection with the
setMℓ(Ω) consisting of Ω-conjugacy classes of pairs (x, φ) where x ∈ Ω and
φ ∈ Irrk(CΩ(x)).

If (u)G is an ℓ-special F -stable unipotent class, we denote by αℓ,u the
cardinal of M̄ℓ(Ω

ℓ
u) and by αℓ the number of pairs ((u)G, x) where (u)G is

an F -stable ℓ-special unipotent class of G and x ∈ M̄ℓ(Ω
ℓ
u) (we will use

the notation αℓ(G) if there is an ambiguity on the underlying group). We
conjecture the following :

Conjecture 2.3.14. Assume that p is good for G. Then, the number of
irreducible unipotent ℓ-modular representations of G equals αℓ.

Proposition 2.3.15. The conjecture holds whenever ℓ is very good for G.

Proof. It is enough to show that for any unipotent class (u)G, AG(u) is an
ℓ′-group. Indeed, in that case Sℓ = S so Ωℓ

u = Ωu and |M̄ℓ(Ω
ℓ
u)| = |M̃(Ωu)|

so we can conclude by 2.3.2 and 2.2.9. Let us begin by the following remark.
Let π : G1 → G2 be a surjective morphism between two algebraic groups
with central kernel. Let u1 ∈ G be unipotent and u2 = π(u1). Then, since
u1 is unipotent, the restriction of π to CG1

(u1) is a surjective morphism
CG1

(u1) ։ CG2
(u2). More precisely, if π(g) ∈ CG2

(u2) then gu1g = u1z
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where z ∈ ker π. The element z is central, then semi-simple so has to be
trivial. Then, π induces a surjective morphism AG1

(u1) ։ AG2
(u2).

• Assume first that G is simple and has type A, B, C or D. Let
πsc : Gsc → G be a simply connected covering of G, let usc be a
unipotent element of Gsc whose image in G is u. Since we have a sur-
jective morphism AGsc

(usc) ։ AG(u), we can assume that G is simply
connected. If G has type An, |AG(u)| divides |Z(G)/Z(G)◦| according
to [42, 10.3] so ℓ ∤ |AG(u)|. If G is of type B,C or D, 2 is the only
prime number which does not satisfies the assumptions and AG(u) is a
2-group (see [37, 3.1, 3.3.5]).

• Assume that G is a simple exceptional group. The case of exceptional
adjoint groups can be checked case-by-case in [37, §22]. Let Gad be the
adjoint quotient of G and uad be the image of u in G. The kernel of the
surjective morphism AG(u) → AGad

(uad) is Z(G)/(Z(G) ∩ CG(u)
◦)

and Z(G) is an ℓ′-group so AG(u) is an ℓ′-group.

• Let us consider the general case. The restriction of the morphism
π : G → G/Z(G)◦ to CG(u) induces an isomorphism AG(u) ≃
AG/Z(G)◦(π(u)). Indeed, we know that the morphism is surjective by
the remark above and the kernel of the morphism is trivial since
Z(G)◦ ⊂ CG(u)

◦. Therefore, replacing G by G/Z(G)◦ if necessary,
we can assume that G is semi-simple. In particular, Z(G) is a finite
ℓ′-group. Using the same arguments as above, it is enough to show that
AGad

(uad) is an ℓ′-group. But since Gad is a direct product of simple
groups, AGad

(uad) is a direct product of ℓ′-groups so is an ℓ′-group and
we are done.

�

The following theorem summarise the results that will be shown in the
rest of this chapter.

Theorem 2.3.16. Let G be a connected reductive group defined over Fq
where q is the power of a good prime number p. Assume we are in one of
the following cases.

• G is SLn(Fq) (hence, G is either SLn(q) or SUn(q)) for any prime
number ℓ ≤ n.

• G is simple of type B,C or D, for ℓ = 2.

• G is a simple exceptional group of adjoint type for any bad prime num-
ber ℓ.
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Then, Conjecture 2.3.14 holds for G.

Remark 2.3.17. Our Theorem includes the twisted groups 2Dn, 3D4 for
ℓ = 2 and 2E6 for ℓ = 2, 3. Suzuki and Ree groups are not included. This
is due to the fact that we do not consider Frobenius roots (or Steinberg
morphisms) i.e. morphisms of algebraic groups whose power is a Frobenius
morphism.

• Section 2.4 contains the proof of Theorem 2.3.16 for SLn(q) and SUn(q)
for any prime number ℓ ≤ n.

• Section 2.5 contains the proof of Theorem 2.3.16 for simple groups of
type B, C or D when ℓ = 2. The proof is valid for 2Dn and 3D4.

• Section 2.6 contains the proof of Theorem 2.3.16 for adjoint exceptional
groups and any prime number ℓ. The proof is valid for 2E6.

2.4 Type An

Throughout this section, G̃ will denote GLn(Fq), F will be a Frobenius
endomorphism of G̃ and, depending on F , G̃ := G̃

F will be either GLn(q)
or GUn(q). Similarly, G will denote SLn(Fq) and G will be either SLn(q) or
SUn(q). Note that according to Theorem 2.3.15, the conjecture holds for G̃.
Actually, Dipper and Geck have shown a stronger result.

Theorem 2.4.1 ([16, 20]). The set U(G̃) is a unitriangular basic set for
unipotent blocks of G̃.

Restriction to G. Kleshchev–Tiep [36] and Denoncin [13] showed the exis-
tence of a unitriangular basic set for unipotent blocks of G. We will briefly
explain how they proceeded. Since G is of type A, any unipotent class is spe-
cial and F -stable so we can directly work with unipotent classes of G which
are parametrised by partitions of n via the Jordan normal form. For any
partition λ, we denote by uλ a representative of the corresponding unipotent
class in G and by ρλ the unipotent character corresponding to (uλ)G̃.

Example 2.4.2.

1. The class (u1n)G̃ is the class containing the unit element and ρ1n is the
Steinberg representation.

2. The class (un)G̃ is the regular class, i.e. the unique class of maximal
dimension of G̃. The representation ρn is the trivial one.
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Even if unipotent characters form a unitriangular basic set for the union
of unipotent blocks B1(G̃) of G̃, irreducible constituents of their restriction
to G do not form a basic set for B1(G). That is why, starting from U(G), we
need to construct another basic set for B1(G̃). Let λ := (λ1, . . . , λr) be a par-
tition of n, mλ := gcd(λ1, . . . , λr)p′ and mλ,F := gcd(|Z(G̃)|, λ1, . . . , λr)p′.
If the number of irreducible constituents of ResG̃G(ρλ) is different from
(mλ,F )ℓ, we replace ρλ by another character as follows. Let us choose a
semi-simple ℓ-element s as in [13, 4.4]. More precisely, if ω is a primitive
(mλ,F )ℓ-root of unity, we choose s such that the set of its eigenvalues is
{ωi | 0 ≤ i ≤ (mλ,F )ℓ−1}, each eigenvalue having multiplicity dλ := n

(mλ,F )ℓ
.

Using the Jordan decomposition and the fact that C
G̃
(s) is isomorphic

to (mλ,F )ℓ copies of GLdλ(F̄q), we can parametrise E(G̃, s) by collections
{δi | 0 ≤ i ≤ (mλ,F )ℓ − 1} of partitions of dλ. If δ is such a collection
we denote by ρs,δ the corresponding character. Let us denote by λ

(mλ,F )ℓ
the

partition ( λ1
(mλ,F )ℓ

, . . . , λr
(mλ,F )ℓ

) of n
(mλ,F )ℓ

. Then we replace ρλ, by ρs,δ where

δi := λ
(mλ,F )ℓ

, 0 ≤ i ≤ n.

Applying the above procedure for each element U(G), we obtain a set BG̃
of irreducible characters of G̃ which is a unitriangular basic set for B1(G̃).
Let BG be the set consisting of irreducible constituents of the restrictions of
characters of BG̃ to G. Using Clifford Theory, Kleshchev–Tiep and Denoncin
showed that BG is a unitriangular basic set for B1(G). Moreover, for any
partition λ of n, the restriction to G of the character of BG̃ corresponding to
λ has (mλ,F )ℓ irreducible constituents. Hence, to show that Conjecture 2.3.14
holds for G, it is enough to show that for any partition λ of n, αℓ,uλ(G) =
(mλ,F )ℓ.

ℓ-canonical quotient for G. If λ is a partition of n, AG(uλ) is a cyclic group
of order mλ [42, 10.3]. Let us now compute Ωℓ

uλ
. With the notation of 2.3.12,

recall that Ωℓ
uλ

is the smallest quotient of AG(uλ) through which every pro-
jective character in Sℓ factors. The only representation of AG(uλ) whose
Springer correspondent is non-zero is the trivial representation. Using the
fact that the decomposition of the projective indecomposable into irreducible
is given by the transpose of the decomposition map, projective characters in
Sℓ are sum of the irreducible characters whose image by the decomposition
map are trivial. Since AG(uλ) ≃ Z/(mλ)ℓZ×Z/(mλ)ℓ′Z, the only projective
representation in Sℓ is k(Z/(mλ)ℓZ) ⊗k 1Z/(mλ)ℓ′Z whose kernel is the cyclic
subgroup of AG(uλ) of order (mλ)ℓ′. Hence, Ωℓ

uλ
is a cyclic group of order
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(mλ)ℓ, in particular it is an ℓ-group so for any x ∈ Ω̃ℓ
u, |Irrk(CΩℓuλ

(x))| = 1.

Hence, |M̄ℓ(Ω
ℓ
uλ
)| is the number of F -classes of Ωℓ

uλ
, that is (mλ)ℓ. Indeed,

F acts on Ωℓ
uλ

by multiplication by εq where ε = 1 if G̃ = GLn(q) and
ε = −1 if G̃ = GUn(q). The F -conjugacy classes of Ωℓ

uλ
are of the form

x + (q + ε).Ωℓ
uλ

where x ∈ Ωℓ
uλ

. Hence, since q + ε = |Z(G̃)|, the number

of F -conjugacy classes of is
|Ωℓuλ |

|(q+ε).Ωℓuλ |
= (mλ,F )ℓ. Finally, as conjectured, the

number of unipotent modular representations of G is αℓ(G).

Example 2.4.3. Assume G = SL2(q), G̃ = GL2(q) and ℓ = 2. Let T̃ (resp.
T ) be the maximal torus consisting of diagonal matrices of G̃ (resp. G).
Since χ̃2 and χ̃12 are respectively the trivial and the Steinberg characters,
their restriction to G remain irreducible. But m2 = gcd(2, q− 1)2 = 2 so we
should replace the Steinberg character by an irreducible character lying in
E(G̃, s) where

s =

(
1 0
0 −1

)
.

Since CG̃(s) = T̃ , E(G̃, s) contains a unique character that we will denote
by χ̃s. Moreover, χ̃s = RG̃

T̃
(θ̃) where θ̃ is a character of order 2 of T̃ whose

restriction θ to T is not trivial. According to [7, 15.15], ResG̃G(χ̃s) = RG
T (θ).

Moreover, by [14, §15.9], RG
T (θ) has two irreducible constituents that we will

denote by χ+
s and χ−s . Hence, {χ12, χ

+
s , χ

−
s } form a unitriangular basic set

for the unipotent blocks of G and we can view χ12 as "attached" to u12 and
{χ+

s , χ
−
s } as "attached" to u2.

2.5 Classical types

In this section, unless otherwise stated, G will be a connected reductive
group defined over Fq with q odd whose simple components are of type B,
C or D. In that case Z(G)/Z(G)◦ is a 2-group so the only prime which is
not very good for G is 2. Hence, we suppose ℓ = 2.

A remark on the groups Ω2

u
. Since 2 is the only bad prime of G, every

unipotent class of G is 2-special (see Section 1.2.3). Let C be an F -stable
unipotent class of G and u ∈ CF . The following lemma gathers information
about AG(u).
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Lemma 2.5.1. The group AG(u) is a 2-group. Moreover if G is a simple
group which is neither spin or half-spin, AG(u) is isomorphic to a product
of copies of Z/2Z.

Proof. The fact that AG(u) is a 2-group has been shown in the proof of
2.3.15 so we just have to show the second assumption. The results in [37, 3.1,
3.3.5] show that AG(u) is of the form (Z/2Z)k if G is a simple orthogonal
or a symplectic group. The only groups left are the adjoint groups of type
C and D. If G is a simple adjoint group of type Cn (resp. Dn), then G is a
quotient of a symplectic group (resp. simple orthogonal group). Therefore,
AG(u) is the quotient of a group of the form (Z/2Z)k and the conclusion
follows. �

The group AG(u) being a 2-group, the only indecomposable projective
kAG(u)-module (resp. irreducible kAG(u)-module) is the regular represen-
tation (resp. the trivial representation). This shows that Ω2

u = AG(u) so
M̄2(Ω

2
u) corresponds bijectively to the set of F -conjugacy classes of AG(u).

By 1.2.8, the F -conjugacy classes of AG(u) parametrise the G-orbits in (u)F
G

.
Summing over all unipotent G-conjugacy classes, we have that α2 is the num-
ber of unipotent classes of G. Hence, showing that the conjecture holds for
G is equivalent to showing the following result.

Theorem 2.5.2. Assume that G/Z(G)◦ is a simple group of type B, C or
D. The number of unipotent modular representations of G for ℓ = 2 equals
the number of unipotent classes of G.

If G has connected center, that proposition was shown by Geck in [22].
The remainder of this section will be devoted to showing that we can gene-
ralise this result to simple classical groups with non-connected center.

Preliminary results. From now on, for a semi-simple element of odd order of
G∗, we will denote by ms the number of irreducible modular representations
lying in Bs (or ms(G) if we need to specify the underlying group G). In [22],
Geck showed that for G with connected center and simple components of
classical type, m1(G) is equal to the number of unipotent classes of G. We
first recall that the centraliser in G of a semi-simple element of odd order is
a rational Levi subgroup of G.

Lemma 2.5.3. Let G be a connected reductive group such that Z(G)/Z(G)◦

is a 2-group.
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(1) For any Levi subgroup L of G, Z(L)/Z(L)◦ is a 2-group.

(2) If s is a semi-simple element of odd order of G∗, then CG∗(s) is connec-
ted. Moreover, if the order of s is divisible by good primes only then
CG∗(s) is a rational Levi subgroup of G.

Proof. Let X be the group of characters of a rational torus T contained
in L, Φ be the corresponding set of roots of G and ΦL ⊂ Φ be the set of
roots of L. Given A a subgroup of X and S a subtorus of T we define :

A⊥ := {t ∈ T | χ(t) = 0 ∀χ ∈ A},

S
⊥ := {χ ∈ X | χ(t) = 0 ∀t ∈ S}.

Note that A ⊂ A⊥⊥ but there is no equality in general. The following pro-
perties can be found for example in [14, 0.24, 13.14, 13.15].

(a) Z(G)/Z(G)◦ is isomorphic to the torsion group of X/ZΦ⊥⊥.

(b) A⊥⊥/A is the p-torsion subgroup of X/A.

(c) If (G∗,T∗) is dual to (G,T), then for any s ∈ T
∗ the group

CG∗(s)/CG∗(s)◦ is isomorphic to a subgroup of Z(G)/Z(G)◦.

(d) The exponent of CG∗(s)/CG∗(s)◦ divides the order of s.

By (a), the group Z(G)/Z(G)◦ is a 2-group if and only if X/ZΦ⊥⊥ has
only 2-torsion. This is equivalent to X/ZΦ having only 2 and p-torsion by
observing that

X/ZΦ⊥⊥ ≃ (X/ZΦ)/(ZΦ⊥⊥/ZΦ)

and then applying (b) with A = ZΦ. Moreover, ZΦL is a direct summand of
ZΦ. Indeed, we can assume that we are in the setting of §1.2.1 so that ∆ is a
basis of Φ and ZΦL is generated by a subset ∆I of ∆. Therefore, X/ZΦL has
only 2-torsion and p-torsion. Indeed, suppose X/ZΦL has m-torsion where
m is an integer prime to 2 and p. Then there exists an element χ ∈ X such
that mχ ∈ ZΦL, but that implies that χ ∈ ZΦ because X/ZΦ has only 2
and p-torsion. The fact that χ ∈ ZΦ and mχ ∈ ZΦL forces χ ∈ ZΦL since
ZΦL is a direct summand of the free Z-module ZΦ. Therefore X/ZΦL has no
m-torsion. By (b), this is equivalent to Z(L)/Z(L)◦ being a 2-group. That
proves (1).

By (c), CG∗(s)/CG∗(s)◦ is isomorphic to a subgroup of Z(G)/Z(G)◦,
hence is a 2-group. But the exponent of this group divides the order of s
by (d) so CG∗(s)/CG∗(s)◦ is trivial and CG∗(s) is connected. Finally, the
connectedness of CG∗(s) and Proposition 2.1 of [27] implies that CG∗(s) is a
rational Levi subgroup of G∗ which gives (2). �
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Corollary 2.5.4. If G is a reductive group with simple components of type
B, C or D and s is a semi-simple element of odd order of G, then CG(s)
is a rational Levi subgroup of G.

Let S2′(G) be a set of representatives of G-conjugacy classes of semi-
simple elements of odd order of G. The result in [27, 4.2] gives, under some
conditions, a bijection between S2′(G) and S2′(G

∗) which is one of the main
ingredients to prove Theorem 2.5.2. We need a slight modification of the sta-
tement to be able to get the same bijection when the center is not connected.
If s ∈ S2′(G), we denote by CG(s)

∗ a Levi subgroup of G∗ dual to CG(s)
(we recall that by the lemma above and under the assumptions on G, CG(s)
is a rational Levi subgroup of G).

Proposition 2.5.5 ([7, 14.1]). Let ℓ be a prime number dividing neither q,
|(Z(G)/Z(G)◦)F | or |(Z(G∗)/Z(G∗)◦)F |. There is a one-to-one map from
the set of G-conjugacy classes of ℓ-element of G onto the set of G∗-conjugacy
classes of ℓ-elements of G∗. If the class of x ∈ Gℓ maps to the class of
y ∈ G∗ℓ , then there is a isomorphism defined over Fq between CG(x)

◦∗ and
CG∗(y)◦.

Applying this result for classical groups, we get :

Corollary 2.5.6. Assume that G is a reductive group with simple compo-
nents of type B,C or D. There is a bijection

S2′(G)→ S2′(G
∗) t 7→ t′

such that there is an isomorphism CG(t)
∗ ≃ CG∗(t′) defined over Fq. The

results still holds for any F -stable Levi subgroup of G.

Proof. Let ℓ be an odd prime number. Remark that if ℓ divides q, the
only semi-simple ℓ-element if trivial, so we can assume that ℓ does not
divides q. The group G being of type B, C or D, (Z(G)/Z(G)◦)F and
(Z(G∗)/Z(G∗)◦)F are 2-groups. Moreover, the centralisers of semi-simple
elements of odd order of G

∗ are connected by 2.5.4 (2), so we can apply
2.5.5 to G for any odd prime number to get the result. Using 2.5.4 (1) for
G and G

∗, we can use the same arguments for any F -stable Levi subgroup
of G. �

Proof of Theorem 2.5.2. We will proceed by induction on the dimension of
G : let s ∈ S2′(G

∗) and Ls be a rational Levi subgroup of G dual to the
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Levi subgroup CG∗(s) of G∗. We denote by u(Ls) the number of unipotent
classes of Ls. If s in non-central, then dimLs < dimG, so

u(Ls) = m1(Ls) = ms(G).

The first equality comes from the induction hypothesis, the second one from
the Morita equivalence between B1(Ls) and Bs(G) (see Theorem 1.3.29).
Let a be the number of 2-regular classes of G. Using the fact that a is also
the number of elements in Irrk(G), we have

a =
∑

s∈S2′(G
∗)

ms(G)

=
∑

s∈S2′(G
∗)

s/∈Z(G∗)

u(Ls) +
∑

s∈Z(G∗)2′

ms(G)

=
∑

s∈S2′(G
∗)

s/∈Z(G∗)

u(Ls) + |Z(G
∗)2′| ·m1(G).

The last equality comes from the fact that for any central element s of odd
order of G∗, tensoring by the linear character of CG∗(s) attached to s as in
[14, 13.30] provides a natural isomorphism between B1(G) and Bs(G), so
m1(G) = ms(G). By using the fact that a is the number of 2-regular classes
of G we also have :

a =
∑

s∈S2′(G)
s/∈Z(G)

u(CG(s)) + |Z(G)2′| · u(G)

=
∑

s∈S2′(G)
s/∈Z(G)

u(Ls′) + |Z(G)2′| · u(G)

where the second equality comes from the fact that the isomorphism
CG(s)

∗ ≃ CG∗(s′) is defined over Fq.

To conclude it remains to show that |Z(G)2′| = |Z(G∗)2′|. This comes
from the fact that the bijection S2′(G

∗) ≃ S2′(G) of Corollary 2.5.6 induces
a bijection between central elements of odd order of G and G∗.

�

2.6 Exceptional groups

For simple exceptional groups of adjoint type, the number of unipotent
modular representation was determined by Geck–Hiss (see [28, 6.6]).
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Type ℓ = 2 ℓ = 3 ℓ = 5 ℓ good
G2 8 9 10

F4 28 35 37

E6,
2E6 27 28 30

E7 64 72 76

E8 131 150 162 166

Using this table, we will show that Conjecture 2.3.14 holds for any ex-
ceptional adjoint group G and any prime number ℓ. The following section
introduces a method for computing αℓ.

Remark 2.6.1. By [63, 2.4], for each F -stable unipotent class C, there exists
u ∈ C such that F acts trivially on AG(u). Hence, we can replace the set
M̄ℓ(Ω

ℓ
u) of Conjecture 2.3.14 by the setMℓ(Ω

ℓ
u) according to Remark 2.3.13.

Computing αℓ. Let (T,B) be an F -stable pair where T is a maximal torus
contained in a Borel subgroup B of G. Let Φ be the root system of G

associated to T and ∆ = {α1, . . . , αn} be the set of simple roots induced
by B. Let α0 be the highest short root. Since we work with with adjoint
exceptional groups in good characteristic, we can use Theorem 1.2.12 (see
[2, 4.7]) and the groups

Wi = 〈sαj | 0 ≤ j 6= i ≤ n〉

are isomorphic to Weyl groups of neutral components of centralisers of isola-
ted semi-simple elements of G∗. Since G is adjoint, Proposition 2.3.11 states
that a unipotent class is ℓ-special if and only if its Springer correspondent is
ℓ-special. Using this property, we can sketch a strategy to compute αℓ.

First step. Finding all ℓ-special unipotent classes :

1. Determine all subgroups W ∗
i of the Weyl group W ∗ of G

∗ for i ∈
{0, . . . , n}.

2. Using j-induction tables, detect which irreducible characters of W ∗ are
ℓ-special.

3. For every ℓ-special character E, use the Springer correspondence to get
the unipotent class (u)G of G such that E = Eu,1 where E is viewed
as a representation of W via the natural isomorphism W ≃ W ∗.

Second step. Now that we have every ℓ-special class, compute αℓ :

1. For each F -stable ℓ-special class Cu, compute the ℓ-special quotient Ωℓ
u

of AG(u).
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2. For each conjugacy class (x) of Ωℓ
u, compute |Irrk(CΩℓu

(x))| by counting
the number of ℓ′-classes. Let αℓ,u be the sum over conjugacy classes of
the numbers obtained this way.

3. Then αℓ is equal to
∑

u αℓ,u where u runs over the set of ℓ-special classes.

Example 2.6.2. Assume that G = G2 and ℓ = 2, we can identify G

with G
∗. Then G has 3 special classes : 1, G2 and G2(a1) and the class

Ã1 is 2-special. Indeed, G has a unique class of non-trivial isolated semi-
simple 2-elements (s)G and the Weyl group Ws of CG(s) is of type A1×A1.
Therefore, irreducible characters of Ws are special. If u ∈ Ã1, Eu,1 = φ2,2 =
jWWs

(φ12 ⊗ φ12) is 2-special so is Ã1.
For each of those classes, AG(u) is trivial except for (u)G = G2(a1) where

AG(u) = S3, let us compute Ω2
u. Then S3 has two indecomposable projective

characters : Φ1 = φ3 + φ13 and Φ2 = φ12. The Springer correspondence
for G2 described in the Table 2.2.1 gives us Eu,φ3 = φ2,1, Eu,φ13

= 0 and
Eu,φ12 = φ1,3′. According to 2.1.1, aφ12 = aφ1,3′ = 1, so aΦ1

= aΦ2
= 1 and

S2 = {Φ1,Φ2}. Hence, Ω2
u = S3 and α2,u = 5, adding 1 for each other

2-special classes we get α2 = 8.

Computations were made for adjoint exceptional groups using CHEVIE
[50]. For each group of exceptional type G and each bad prime ℓ, we provide
in the appendix tables listing ℓ-special classes of G (we use the same labelling
as in CHEVIE) and for each special class the groups AG(u), Ωℓ

u and the
number αℓ,u. Finally, the proof of Theorem 2.3.16 is complete.
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Assume that G is a connected reductive group defined over Fq where q
is a power of a prime number p and let F be the corresponding Frobenius
map. Let us denote by G = G

F the finite group of fixed points of G under
F . Throughout this chapter, we assume that p is good for G. Let ℓ be a
prime number different from p. We are interested in finding (unitriangular)
basic sets for unipotent ℓ-blocks of G. It is to be expected that one can find a
natural basic set of characters for unipotent blocks of finite reductive groups
such that the decomposition matrix has unitriangular shape in this basic set.
The behaviour of such basic sets depends on whether ℓ is a good or a bad
prime number for G.

When ℓ is good and does not divide the order of the component group of
the center of G, the unipotent characters form a basic set for the unipotent
blocks. This was first proved for GLn(q) by Dipper [17] and GUn(q) by Geck
[20] using the so-called generalised Gelfand–Graev representations (GGGRs).
In both cases the basic set was shown to be unitriangular. The case of a
general finite reductive group was settled by Geck–Hiss [27] and Geck [21],
but the question whether the decomposition matrix has unitriangular shape
remains open in general.

When ℓ is a bad prime number, much less is known : for classical groups
with connected center and ℓ = 2 the existence of a unitriangular basic set for
the unipotent blocks was shown in [22], using again GGGRs. More recently,
Kleshchev–Tiep found a unitriangular basic set for SLn(q) [36] by studying
the restrictions of characters of GLn(q). Using this method and the results
of Geck for GUn(q), Denoncin generalised this result to SUn(q) [13].

The aim of this chapter is to show the existence of such a basic set for
classical groups by generalising results of Geck obtained in [22]. This chapter
is organised as follows : in the first section we recall results on basic sets for
finite reductive groups and state our main result (see 3.1.1). The second
section introduces GGGRs and their properties, the third section presents
results of Geck–Hézard and Taylor that we will need. The last section is
devoted to the proof of the main theorem of this chapter. Throughout this
chapter, we assume G has simple components of type B,C or D.
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3.1 Introduction to the main theorem

3.1.1 Statement of the theorem

Let G be a connected reductive group defined over Fq where q is the
power of a good prime number p. As in §1.1.1, we fix a prime number ℓ 6= p
and an ℓ-modular system (K,O, k) for G. If B is a union of ℓ-blocks, we
recall that a basic set for B is a subset B ⊂ IrrK(B) such that d(B) is a
Z-basis of Rk(B). We recall that according to Theorem 1.3.28

Bs = Bs(G) =
⋃

t

E(GF , st)

where t runs over semi-simple ℓ-elements of CG∗(s) is a union of blocks.
Under some restrictions on ℓ, Geck and Hiss proved that there is a natural
basic set for Bs. By Theorem 2.3.2, E(G, s) is a basic set for Bs when ℓ is
very good for G but we don’t know whether the basic set is unitriangular.
It was conjectured by Geck to be the case, at least for unipotent blocks.

Conjecture 3.1.1 (Geck [28, 3.4]). Assume that ℓ is good for G. Then the
unipotent characters of G form a unitriangular ℓ-basic set of B1.

Our strategy for constructing a unitriangular basic set consists in coun-
ting the number of irreducible unipotent modular representations and then
finding enough projective modules which will satisfy some unitriangularity
condition. Under the condition that the center of G is connected, Geck achie-
ved this for classical groups in [22]. Following the same strategy, we generalise
those results to cases where the center is disconnected :

Theorem. Assume that p is an odd prime number, ℓ = 2 and let G be a
simple group of type B, C or D which is neither spin or half-spin. Then
there exists a unitriangular basic set for the unipotent blocks of G.

3.1.2 Strategy of proof

The following result is valid for arbitrary finite groups and has been used
in [22] to prove that the decomposition matrix of the unipotent blocks of G
is unitriangular when the center of G is connected.

Proposition 3.1.2. Let B be a union of blocks and n := |Irrk(B)|.
Assume that there exist ordinary characters χ1, . . . , χn and projective
kG-modules P1, . . . , Pn in B such that the matrix of scalar products(
〈χi, e(Pj)〉KG

)
1≤i,j≤n

has lower unitriangular shape. Then the characters
χ1, . . . , χn form a unitriangular basic set for B.
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Proof. Let d : RK(G) −→ Rk(G) be the decomposition map. Since e
and d are in duality, we have the relation 〈χi, e(Pj)〉KG = 〈d(χi), Pj〉kG. Let
us denote by ϕ1, . . . , ϕn the irreducible modular representations lying in B.
For 1 ≤ i ≤ n, we can write d(χi) =

∑n
l=1 dχi,ϕlϕl. So we have

〈χi, e(Pj)〉KG =
n∑

l=1

dχi,ϕl〈ϕl, Pj〉kG.

In terms of matrices, this equality is :

(dχi,ϕj)1≤i,j≤n ×
(
〈ϕi, Pj〉kG

)
1≤i,j≤n

=
(
〈χi, e(Pj)〉KG

)
1≤i,j≤n

.

We want to show that (dχi,ϕj) is lower unitriangular, using the fact that
the matrix on the right side of the equality is lower unitriangular. The result
follows from the lemma below (you can find an alternative proof in [12]). �

Lemma 3.1.3. Let A, B and C be three square matrices of size n× n with
non-negative integer coefficients such that AB = C with C lower unitrian-
gular. Then, up to permutations of columns, A is unitriangular as well.

Proof. Let us write A = (ai,j)1≤i,j≤n, B = (bi,j)1≤i,j≤n and C =
(ci,j)1≤i,j≤n. The matrix C is lower unitriangular so

0 = ci,j =
n∑

k=1

ai,kbk,j ∀1 ≤ i < j ≤ n.

1 = ci,i =
n∑

k=1

ai,kbk,i ∀1 ≤ i ≤ n.

All the coefficients are non-negative so we have

1. ai,kbk,j = 0 for all 1 ≤ k ≤ n and 1 ≤ i < j ≤ n,

2. Given 1 ≤ i ≤ n, there is a unique integer ki with 1 ≤ ki ≤ n such that
ai,ki = bki,i = 1. If k 6= ki, then ai,kbk,i = 0.

Note that if i < j, then ki 6= kj and the map i→ ki is a bijection. Indeed
if ki = kj, then ai,kibkj ,j = 0 by 1 which is impossible. Let j ∈ {1, . . . , n}
such that j > i. By 1, we have ai,kjbkj ,j = 0. By 2, bkj ,j = 1 so ai,kj = 0.
Therefore, in the i-th row of A, there are at least n− i zero coefficients. In
particular, the first row of A has a unique non-zero coefficient whose value
is 1. If σ ∈ Sn, we have

n∑

k=1

ai,kbk,j =
n∑

k=1

ai,σ(k)bσ(k),j.
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Then, we can apply the same permutation to the columns of A and to the
rows of B without changing the equality AB = C. In particular, permuting
the columns of A and the rows of B if necessary, we can assume that a1,j =
δ1,j. Then, by 1 and 2 we also have b1,j = δi,j. Now, we just have to show
that the submatrix (ai,j)2≤i,j≤n is lower unitriangular up to permutations of
columns. We can conclude by an inductive argument since we have

(ai,j)2≤i,j≤n × (bi,j)2≤i,j≤n = (ci,j)2≤i,j≤n.

�

Consequently, in order to find a unitriangular basic set of characters for
unipotent blocks it is enough to :

• Compute the cardinal of Irrk(B1). We have seen in Theorem 2.5.2 that
the cardinal of Irrk(B1) is the number of unipotent classes of G when
G is a simple group of type B,C,D.

• Find projective and ordinary representations satisfying the assumptions
of Proposition 3.1.2. This can be done using the theory of generalised
Gelfand–Graev representations and results of Geck, Hézard and Taylor
that we will introduce in Section 3.3.

3.2 Generalised Gelfand–Graev representations

We fix an F -stable maximal torus T of G contained in an F -stable Borel
subgroup B of G. We denote by Φ a root system associated to (G,T). The
Borel subgroup B provides a set of simple roots ∆ ⊂ Φ. To any unipotent
element u of G, Kawanaka associated in [34] a projective representation Γu
which depends only on the G-conjugacy class of u, called the generalised
Gelfand–Graev representation of G associated to u (GGGR). Those repre-
sentations will allow us to show the existence of a basic set for unipotent
blocks of classical groups.

3.2.1 Weighted Dynkin diagrams

We will introduce a description of unipotent classes of G : to a unipotent
class one can attach a combinatorial object called the weighted Dynkin dia-
gram.

Definition 3.2.1. A weighted Dynkin diagram is a map d : Φ → Z such
that

• For all α ∈ ∆, d(α) ∈ {0, 1, 2},
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• For all β =
∑
α∈∆

nαα ∈ Φ, d(β) =
∑
α∈∆

nαd(α).

We review the classification of unipotent classes by weighted Dynkin dia-
grams below :

Theorem 3.2.2 ([8, 5.6.7,5.6.8]). To a unipotent class C of G, we can attach
a weighted Dynkin diagram dC. Moreover, if C ′ is another unipotent class,
we have

dC = dC′ ⇐⇒ C = C
′.

Remark 3.2.3.

• Even though the proofs in [8, 5.6] rely on the fact that p is large enough,
the result still holds whenever p is good [35, 2.1.1].

• The map C 7→ dC is not surjective.

• The weighted Dynkin diagrams for simple algebraic groups are listed in
[8, §13.1].

• The unipotent class C is F -stable if and only if dC is stable under the
action of F on Φ, see for example [62, Lem. 2.40].

Let C be a unipotent class of G. Without giving a proof of the above
result, we will explain how we can describe C from dC (we follow [35, §2.1]).
For α ∈ Φ, let Uα be the root subgroup of G attached to α. Recall that we
have an isomorphism

Ga
∼
−→ Uα, x 7→ uα(x),

and that Uα is the unique minimal closed, connected unipotent subgroup of
G normalised by T such that that tuα(x)t−1 = uα(α(t)x) for x ∈ Ga, t ∈ T.
We define the following groups :

LC := 〈T,Uα | α ∈ Φ, dC(α) = 0〉,

UC,i :=
∏

α∈Φ+

dC(α)≥i

Uα, i ∈ N.

Then C is the unique unipotent class in G such that C ∩ UC,2 is dense in
UC,2. Moreover, C ∩UC,2 is a single conjugacy class of the parabolic group
UC,1LC.

Example 3.2.4.
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1. Assume that C is the trivial class. Then dC(α) = 0 for α ∈ Φ. Indeed,
in that case UC,2 =

∏
α∈Φ

dC(α)≥2

Uα = {1} = C.

2. Assume that C is the regular class, i.e. the unique unipotent class of G
of maximal dimension. Then dC(α) = 2 for all α ∈ ∆ (see [8, §13.1] for
simple groups) so that UC,2 = U.

3.2.2 Generalised Gelfand–Graev representations

Although generalised Gelfand–Graev representations were introduced by
Kawanaka in [34] and [35], we follow the recent definition given by Taylor in
[64]. Let us introduce some further notation. Let g be the Lie algebra of G
over Fq, g also has an Fq-rational structure and is equipped with a Frobenius
map F : g→ g. Let t be the Lie algebra of T, g has a Cartan decomposition

g := t⊕
⊕

α∈Φ

gα

where t is stable under F . The spaces gα are called the root subspaces of
g and have dimension 1 so for each α we can choose eα ∈ gα such that
gα = Fqeα. Let ρ be the permutation of Φ induced by F (see 1.2.9). Then
F (gα) = gρ(α). According to [64, 5.6], there exists a G-invariant symmetric
bilinear form defined over Fq denoted by κ : g× g→ Fq such that for α ∈ Φ
we have

g⊥α = t⊕
⊕

α∈Φ\{−α}

gα

where g⊥α := {x ∈ g | κ(x, y) = 0 ∀y ∈ gα}. Moreover, according to [64, 5.2],
the map g→ g, x 7→ x∗, defined by

• t∗ = −t if t ∈ t,

• e∗α = −e−α for all α ∈ Φ,

is an Fq-opposition automorphism of g, i.e. this is an automorphism such
that t∗ = t and e∗α ∈ Fqe−α for all α ∈ Φ. The reductive group G acts on g

as follows. For g ∈ G, let Intg be the map defined by Intg(x) := gxg−1 for
x ∈ G. Let Adg : g→ g be the differential of Intg. Then g · x := Adg(x) for
g ∈ G and x ∈ g. We need the following definition.

Definition 3.2.5 ([64, 2.10, 2.15]). Let G be a connected reductive group
with root datum (X,Φ, Y,Φ∨). We say that G is proximate if Y/ZΦ∨ has
no p-torsion.
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Let Uni ⊆ G be the variety of unipotent elements of G and let Nil ⊂ g be
the nilpotent cone of g. According to [64, 3.4], if G is proximate there exists
a G-equivariant isomorphism of varieties φ : Uni → Nil which is compatible
with the Frobenius endomorphisms on G and g. Moreover, according to
[64, 2.16], for any connected reductive group G, there exists a proximate
algebraic group G

′ defined over Fq such that G′ ≃ G. Hence, we can assume
that G is proximate and that φ exists.

Let us fix a linear character χp : (Fp,+)→ K×. Let TrFq/Fp : Fq → Fp be
the field trace. Let χq := χp ◦ TrFq/Fp. Let C be an F -stable unipotent class
of G and let u be an element of C ∩UC,2. Note that u exists since C ∩UC,2 is
the orbit of some parabolic subgroup of G. Let ϕu : UC,2 → K× be the map
defined by

ϕu(x) = χq(κ(φ(u)
∗, φ(x))).

It is a linear character of UC,2 by [64, 5.10]. Moreover, according to [64, 5.14,
5.15],

γu := |UC,1 : UC,2|
−1/2IndGUC,2

(ϕu)

is a character of G and Γu. To γu, we associate a generalised Gelfand–Graev
representation, that is a representation Γu of G whose character is γu. When
F is split, i.e. if ρ acts trivially on Φ, Geck gave in [25] an alternate definition
for ϕu. In that case :

• κ(eα, eβ) ∈ Fq for any α, β ∈ Φ.

• If x ∈ U and if we write x =
∏

α∈Φ+

uα(µα), then µα ∈ Fq.

Let us write u =
∏

α∈Φ+

dC(α)≥2

uα(λα) and let x =
∏

α∈Φ+

dC(α)≥2

uα(µα) ∈ UC,2 where

λα, µα ∈ Fq. Then

ϕu(x) =
∑

α∈Φ+

dC(α)=2

χq(λαµακ(e
∗
α, eα)).

Remark 3.2.6.

• By [35, 3.1.12], |UC,1 : UC,2| is an even power of q so it has a square root
in Z≥0.

• In the original definition [35, 3.1.11], GGGRs are constructed by in-
duction of a linear character of a p-group so GGGRs are projective
kG-modules whenever p 6= ℓ.

• The character γu is unipotently supported since it is the induction of a
character of a unipotent subgroup of G.
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• According to [34, 1.3.6], Γu ≃ Γu′ if u and u′ are G-conjugate. Moreover,
according to [25, 2.2], C∩UC,2 contains a complete set of representatives
of theG-conjugacy classes of CF . Hence, we can construct a GGGR from
any unipotent class of G.

Example 3.2.7.

1. Assume that C is the trivial class. Then UC,2 = {1} and γ1 = IndG{1}1
is the character of the regular representation of G.

2. We assume that F is split for more convenience. Let C be the regular
unipotent class and let u =

∏
α∈Φ+

uα(λα) ∈ C ∩ UC,2. Then UC,2 = U

since dC(α) = 2 for all α ∈ ∆. Let U
∗ :=

∏
α∈Φ+\∆

Uα = UC,3. Then,

ϕu is trivial on U ∗. Indeed, if x :=
∏

α∈Φ+

uα(µα) ∈ UC,3, then µα = 0 if

dC(α) = 2. Moreover, ϕu is clearly non-trivial on
∏
α∈∆′

Uα for any non-

empty subset ∆′ of ∆. Hence, ϕu is regular in the sense of [14, 14.27]
and γu is a Gelfand–Graev character i.e. the induced character from U ∗

to G of a regular character.

The value of the character of a GGGR on a unipotent class is non-zero
only under some conditions. For a subset X of G, we denote by X its closure
for the Zariski topology.

Proposition 3.2.8 ([48, 6.14]). Let C, C ′ be two F -stable unipotent classes
of G, u ∈ CF and v ∈ C ′F . If γu(v) 6= 0, then C ′ ⊆ C.

3.2.3 Unipotent support and wave front set

Following [48], we can associate to ρ ∈ IrrK(G) a unique F -stable uni-
potent class Cρ of G satisfying the two following conditions :

1.
∑
x∈CFρ

ρ(x) 6= 0.

2. For any F -stable unipotent class C ′ of G,
∑
x∈C′F

ρ(x) 6= 0 implies

dim C ′ ≤ dim Cρ.

We say that Cρ is the unipotent support of ρ. Using GGGRs, we can also
associate to ρ another F -stable unipotent class C∗ρ of G, the wave front set
of ρ, which is the unique unipotent class satisfying the following conditions
(see [48, 11.2]) :

1. 〈ρ, γu〉KG 6= 0 for some u ∈ C∗Fρ .
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2. For any unipotent element v ∈ G, 〈ρ, γv〉KG 6= 0 implies dim (v)G ≤
dim C∗ρ .

Unipotent support and wave front set are closely related. More precisely, let
DG be the Alvis–Curtis duality for representations of G. This is an operator
on RK(G) with the following properties :

• DG ◦DG = Id,

• DG(1G) = StG,

• For every χ ∈ IrrK(G), there exists a sign ε such that εDG(χ) ∈
IrrK(G).

See [14, §8] for more details.

Remark 3.2.9. Note that DG(γu) is unipotently supported. Indeed, DG

is constructed as a linear combination of composition of Harish-Chandra
induction and restriction operators (see [14, 8.8]). Let L be an F -stable Levi
subgroup of G contained in an F -stable parabolic subgroup P of G. Let us
denote by RG

L (resp. ∗RG
L ) the Harish-Chandra induction (resp. restriction).

We have by Remark 8.9 of [14] that RG
L ◦

∗RG
L (γu) is the induction of a

character of P which is zero on non-unipotent elements. Therefore, RG
L ◦

∗RG
L (γu) is unipotently supported and so is DG(γu).

The following result can be viewed as dual to Proposition 3.2.8.

Proposition 3.2.10 ([48, 8.6, 6.13]). Let C, C ′ be two F -stable unipotent
classes, u ∈ CF and v ∈ C ′F . If DG(γu)(v) 6= 0, then C ⊆ C ′.

If ρ ∈ IrrK(G), we denote by ρ∗ the irreducible character of G such that
ρ∗ = ±DG(ρ). We call ρ∗ the dual character of ρ. The relation between
unipotent support and wave front set comes from this duality :

∀ρ ∈ IrrK(G) C
∗
ρ = Cρ∗,

see [64, 14.15]. Note that all these properties were first proved under the
assumption that p and q were large enough. These were later generalised to
the case where p is a good prime in [64]. Let us make an important remark
about unipotent support and wave front set in regard of the classification
of irreducible characters of G that we stated in §2.2.3 in the case Z(G)
is connected. Let g ∈ G∗ be a special element with Jordan decomposition
g = su. Recall that IrrK(G)g is the subset of E(G, s) which, by the Jordan
decomposition, corresponds bijectively to the family of unipotent characters
of CG∗(s) parametrised by (u)CG∗(s) in Theorem 2.2.9. Let ρ ∈ IrrK(G)g
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and Φ be the map defined in 2.3.7 sending a special conjugacy class of G∗

to a unipotent class of G. According to [48, 11.1, 11.2, 10.5] and the above
observations we have :

Proposition 3.2.11. The unipotent class Φ((g)G∗) is the unipotent support
of ρ.

3.2.4 GGGRs and regular embedding

We review some properties of GGGRs which will be useful later. Let
G̃ = GT̃ be a regular embedding of G as in §1.3.4. If g ∈ G̃ and χ is
a character of G, we denote by χg the central function of G defined by
χg(x) = χ(gxg−1) for x ∈ G. It is a character of G. Since G acts trivially
on χ, for any g ∈ G̃ there exists t ∈ T̃ such that χg = χt.

Proposition 3.2.12. Let u ∈ G be unipotent and t̃ ∈ T̃ . Then γ t̃u = γt̃ut̃−1.

Proof. Since γu = |UC,1 : UC,2|
−1/2IndGUC,2

(ϕu) we just need to show that

ϕt̃u = ϕt̃ut̃−1. Note that since G is a normal subgroup of G̃, the adjoint
action of G on Nil can be extended to G̃. Let g̃ = gz ∈ G̃ where g ∈ G

and z ∈ Z(G̃). Then for any x ∈ Uni (resp. n ∈ Nil), g̃ · x = g · x (resp.
g̃ · n = g · n). Hence, φ is G̃-equivariant. Let x ∈ UC,2. We have :

ϕt̃ut̃−1(x) = χq(κ(φ(t̃ut̃
−1)∗, φ(x)))

= χq(κ(t̃
−1 · φ(u)∗, φ(x)))

= χq(κ(φ(u)
∗, t̃ · φ(x)))

= χq(κ(φ(u)
∗, φ(t̃xt̃−1)))

= ϕu(t̃xt̃
−1) = ϕt̃u(x).

The second equality comes from the fact that (t̃ · n)∗ = t̃−1 · n∗ for n ∈ Nil

and t̃ ∈ T̃ . Indeed, without loss of generality, we can assume that t̃ = t ∈ T

and n ∈ gα for some root α. Then, since n∗ ∈ g−α, we have

(t · n)∗ = (α(t)n)∗ = α(t)n∗ = (−α)(t−1)n∗ = t−1 · n∗.

Finally, we have the required result. �

If u ∈ G̃ is unipotent, it also belongs to G so we can associate to u a
GGGR of G and a GGGR of G̃. We denote by Γu the GGGR of G associated
to u and by Γ̃u the GGGR of G̃ associated to u. Induction from G to G̃
provides a relation between GGGRs of G̃ and GGGRs of G.
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Proposition 3.2.13. Let u ∈ G̃ be unipotent, then

Γ̃u = IndG̃G(Γu).

Proof. That comes directly from the definition of Γu and the fact that
IndG̃UC,2

(ϕu) = IndG̃G ◦ IndGUC,2
(ϕu). �

3.3 Character Sheaves and GGGRs

We introduce in this section results of Geck–Hézard and Taylor on gene-
ralised Gelfand–Graev representations which will be essential to prove that
GGGRs satisfies the assumption of Proposition 3.1.2. After introducing some
generalities on character sheaves and local systems, we introduce a theorem
of Geck–Hézard which was proved under the assumption that G has connec-
ted center. Finally, we briefly explain how Taylor generalised the results of
Geck-Hézard for groups with non-connected center.

3.3.1 Character sheaves and local systems

We assume that the center of G is connected. Let Ĝ be the set of character
sheaves on G. Characters sheaves, introduced by Lusztig in [43], are certain
irreducible perverse sheaves which are equivariant for the action of G by
conjugation. The structure of Ĝ is in a certain sense very similar to IrrK(G) :
Lusztig gave in [44, 11.2] a partition

Ĝ =
⊔

Ĝs

where s runs over a complete set of representatives of F -stable G∗-conjugacy
class of semi-simple elements of G∗. Moreover, by [45, 17.8.3], for each class
(s)G∗, we have a partition

Ĝs =
⊔

Ĝg

where g runs over representatives of F -stable special classes of G∗ whose
semi-simple part is s.

We say that A ∈ Ĝ is F -stable if it is isomorphic to its inverse image F ∗A
under the Frobenius map F . We denote by Ĝ the set of F -stable character
sheaves. If A ∈ Ĝ, any isomorphism φ : F ∗A → A induces a class function
χA ∈ CF(G). By [46, 25.1], we can choose φ such that 〈χA, χA〉KG = 1.
According to Theorem 25.2 of [46], the set obtained {χA | A ∈ Ĝ} is an
orthonormal basis of CFK(G). In particular, there are as many F -stable
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character sheaves as irreducible characters of G over K. The structure of Ĝ
can be transfered to Ĝ, we have a partition :

Ĝ =
⊔

Ĝg

where g runs over a set of representatives of F -stable special G∗-conjugacy
classes. Moreover, according to [57, I 5.7, II 3.2] , if A ∈ Ĝg then χA is a
linear combination of irreducible characters of IrrK(G)g.

Let C be an F -stable unipotent class of G, let IC be the set of isomorphism
classes of G-equivariant irreducible local systems on C. We denote by IFC the
local systems E ∈ IC such that E ≃ F ∗E . Let E ∈ IFC , and let us fix an
isomorphism ψ : F ∗E → E . Let us define the following function YE on G :

YE(g) =

{
Trace(ψ, Eg) if g ∈ CF ,

0 otherwise.

In the proof of [46, 24.2.7], Lusztig proved the following statement about
the functions YE .

Proposition 3.3.1. The functions YE , E ∈ IFC , form a basis for the vector
space of G-invariant functions on CF .

3.3.2 The unitriangularity condition

Let C be an F -stable unipotent class of G, and g be a special element of
G∗ with Jordan decomposition g = sv. We say that g satisfies the property
(P ) with respect to C if :

• Φ((g)G∗) = C.

• |Ωg| = |Ωu|. Recall that Ωu is the canonical quotion of AG(u) and Ωu(g)
is the canonical quotient of ACG∗(s)(v).

• The image of s in the adjoint quotient of G∗ is quasi-isolated.

By a case-by-case analysis, the existence of such a g for any F -stable
unipotent class C has been proved by Geck–Hézard.

Proposition 3.3.2 ([26, 2.4]). Let C be an F -stable unipotent class of G.
There exists g ∈ G∗ special satisfying (P ) with respect to C.

Remark 3.3.3. In [26, 2.4], the semi-simple part s of g was mentioned to
be isolated. But in [62, 2.28], Taylor noted that for G of type Cn, Hézard
used in his thesis a special element g ∈ G∗ with semi-simple part s such that
CG∗(s) is a Levi subgroup of type Bn−1 of G∗.
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This result has many consequences on the restriction of character sheaves
to unipotent classes.

Theorem 3.3.4 ([26, 3.2]). Let C be an F -stable unipotent class of G.
Assume that g = sv ∈ G∗ satisfies the property (P ) with respect to C.
Then

• For any A ∈ Ĝg, A|C is either zero or an irreducible G-equivariant
local system up to shift.

• There is a bijection

{A ∈ Ĝg| A|C 6= 0} → IC,
A 7→ A|C.

Remark 3.3.5.

1. For any E ∈ IFC , the unique character sheaf A ∈ Ĝg such that A|C = E
is F -stable. Indeed, since (s)G∗ and (v)CG∗(s) are F -stable, F ∗A ∈ Ĝg

by [57, 5.5]. Moreover, F ∗A|C = F ∗E ≃ E = A|C. Hence F ∗A ≃ A
according to the theorem.

2. Let us keep the notation of the theorem. We can translate those results
as follows : for any A ∈ Ĝg we have either χA|C

= 0 or we can choose
the isomorphism φ : F ∗A→ A such that χA(g) = YE(g) for all g ∈ CF

where E = A|C.

Although the following statement only involves irreducible characters of
G, the proof relies on character sheaves and local systems. Recall that if
ρ ∈ IrrK(G), we denote by ρ∗ the irreducible character of G such that
ρ∗ = ±DG(ρ).

Proposition 3.3.6. Let C be an F -stable unipotent class of G, u1, . . . , ud be
representatives of the G-conjugacy classes of CF and g = sv ∈ G∗. Asssume
that g satisfies (P ) with respect to C. Then there exists ρ1, . . . , ρd ∈ IrrK(G)g
such that the matrix (ρi(uj))1≤i,j≤d is invertible.

Proof. By Proposition 3.3.1, IFC has d elements E1, . . . , Ed. By Theorem
3.3.4 and Remark 3.3.5 1), there exist A1, . . . , Ad ∈ Ĝg such that Ai|C = Ei.
According to Remark 3.3.5 2), we can assume that χAi = YEi on CF and
Proposition 3.3.1 tells us that (χAi(uj))1≤i,j≤d is invertible. Since each χAi
is a linear combination of characters in IrrK(G)g, there exist ρ1, . . . , ρd ∈
IrrK(G)g such that the matrix (ρi(uj))1≤i,j≤d is invertible. �

We can now state the result which will provide the unitriangularity condi-
tion for groups with connected center.
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Theorem 3.3.7 (Geck–Hézard, [26, 4.3]). Assume that the center of G is
connected and G has classical type. Let C be an F -stable unipotent class
of G and u1, . . . , ud be representatives of G-conjugacy classes of CF . Let
g = sv ∈ G∗ satisfying (P ) with respect to C. Then, there exist χ1, . . . , χd ∈
IrrK(G)g such that 〈χ∗i , γuj〉KG = δi,j for 1 ≤ i, j ≤ d.

Proof. According to Remark 3.8 of [29], for any ρ ∈ IrrK(G)g,

d∑

i=1

[AG(ui) : AG(ui)
F ]〈ρ∗, γui〉KG = n−1ρ |AG(u1)|

where nρ is the minimal integer such that nρρ(1) is a polynomial in q with
integer coefficients. More precisely, following the notation of Theorem 2.1.12,
we denote by xρ the element of M̄(Ωg) corresponding to ρ and by x ∈ M̄(Ωg)
the element corresponding to the special representation of Ws in the family
corresponding to (v)CG∗(s) (i.e. Ev,1 ⊗ ε), then nρ = {xρ, x}. Since g has
property (P ), |Ωg| = |AG(u1)| and the fact that we are in classical type
implies that Ωg is abelian (see [41, 4.5,4.6]). So nρ = |AG(u1)| according to
the definition of {., .} (see Definition 2.1.9). Hence,

d∑

i=1

[AG(ui) : AG(ui)
F ]〈ρ∗, γui〉KG = 1.

Since each term of the sum is non-negative, there is a unique i ∈ {1, . . . , d}
such that 〈ρ∗, γui〉KG = 1 and 〈ρ∗, γuj〉KG = 0 for j 6= i. For i ∈ {1, . . . , d},
let Ii the subset of IrrK(G)g consisting of characters ρ such that 〈ρ, γui〉KG =
1 and 〈ρ, γuj〉KG = 0 for j 6= i. Assume that Ir = ∅ for some r ∈ {1, . . . , d},
i.e. assume that for all ρ ∈ IrrK(G)g, 〈ρ∗, γur〉KG = 0 or, equivalently,
〈ρ,DG(γur)〉KG = 0. Writing the definition of the scalar product for the
last equality we have

|G|−1
∑

g∈G

ρ(g)DG(γur)(g) = 0.

Recall that, by Remark 3.2.9, DG(γur) is 0 on non-unipotent elements. Ac-
cording to Proposition 3.2.10, DG(γur) is non-zero only on unipotent classes
C ′ such that C ⊆ C ′. On the other hand, by Proposition 3.2.11, C is the
unipotent support of ρ. Then, according to [48, 11.2], ρ is non-zero only on
classes C ′ such that dim C ′ < dim C or C ′ = C. Hence, we only need to sum
over elements of CF and we get
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d∑

j=1

|CG(uj)|
−1ρ(uj)DG(γur)(uj) = 0.

Introducing characters ρ1, . . . , ρd of Proposition 3.3.6 in that equation, we
get a linear relation on columns of the invertible matrix (ρi(uj))1≤i,j≤d. Then,
DG(γur)(uj) = 0 for j ∈ {1, . . . , d}. According to [23, 2.4], for any E ∈ IFC ,
〈DG(γur), YE〉KG equals ζqbYE(ur) where ζ is a 4-th root of unity and b is
an integer depending on E . Hence, YE(ur) = 0 for any E ∈ IFC but this is in
contradiction with Proposition 3.3.1. That contradiction implies that Ii 6= ∅
for i ∈ {1, . . . , d} and for each i ∈ {1, . . . , d} we choose χi ∈ Ii such that
〈χ∗i , γuj〉KG = δi,j for all j ∈ {1, . . . , d}. �

3.3.3 Unitriangularity for groups with disconnected center

In [63] Taylor generalised Theorem 3.3.7 for groups with disconnected
center, we will briefly discuss this generalisation. Suppose that G is a simple
classical group with disconnected center, let G̃ = GT̃ be a regular embed-
ding of G and G̃ = G̃

F the associated finite reductive group. This property
on the regular embedding and the Alvis-Curtis duality will be needed in the
proof of the next theorem.

Lemma 3.3.8 ([63, 5.3]). Let χ̃ ∈ IrrK(G̃) and let us write

ResG̃G(χ̃) = χ1 + · · ·+ χr

where χi ∈ IrrK(G). Then ResG̃G(χ̃
∗) = χ∗1 + · · ·+ χ∗r.

Recall that for a unipotent element u ∈ G̃, we denote by γu the character
of the associated GGGR of G and by γ̃u the character of the associated
GGGR of G̃. We have γ̃u = IndG̃G(γu) by Proposition 3.2.13. Let C = (u)G
be an F -stable conjugacy class of G such that AG(u) is abelian. Let us
write the partition of CF into G-conjugacy classes : CF = C1 ⊔ · · · ⊔ Cd. For
i ∈ {1, . . . , d} let ui be a representative of Ci.

Theorem 3.3.9 ([63, 5.5]). Assume that C = (u)G with AG(u) abelian.
Then, there exists a semi-simple element s ∈ G∗ such that the image of s
under an adjoint quotient of G∗ is quasi-isolated and characters χ1, . . . , χd ∈
E(G, s) such that 〈χ∗i , γuj〉KG = δi,j for 1 ≤ i, j ≤ d.

Proof.

Let d̃ be the number of G̃-conjugacy classes of CF and let CF = C̃1⊔. . .⊔C̃d̃
be the partition of CF into G̃-conjugacy classes. For i ∈ {1, . . . , d̃}, let us
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decompose C̃i ∩ G = Ci,1 ⊔ . . . ⊔ Ci,ki into G-conjugacy classes, where ki
depends on i. For each i ∈ {1, . . . , d̃} and j ∈ {1, . . . , ki}, let ui,j be a
representative of Ci,j. According to [63, 2.8], we can choose a representative
u ∈ CF such that F acts trivially on A

G̃
(u) and

|AG(u)
F | = |ZG(u)

F ||A
G̃
(u)| (3.1)

where ZG(u) is the image of Z(G) in AG(u). Because G̃-conjugacy classes of
CF are in bijection with F -classes of A

G̃
(u) and A

G̃
(u) is an abelian group

on which F acts trivially, we have that d̃ = |A
G̃
(u)|. According to [63, 3.2],

we can chose g̃ = s̃ṽ ∈ G̃∗ such that

• the special element g̃ satisfies (P ) with respect to C,

• the restriction of any character of IrrK(G̃)g̃ to G has |ZG(u)
F | irredu-

cible constituents, without multiplicities.

Hence, we can use Theorem 3.3.7 to exhibit irreducible characters
χ̃1, . . . , χ̃d̃ ∈ IrrK(G̃)g̃ such that 〈χ̃∗i , γ̃ux,1〉KG̃ = δi,x for i, x ∈ {1, . . . , d̃}.

Since the number of irreducible constituents of ResG̃G(χ̃
∗
i ) is |ZG(u)

F |, we
can write by Lemma 3.3.8

ResG̃G(χ̃
∗
i ) = χ∗i,1 + · · ·+ χ∗i,|ZG(u)F |

where the right side is a sum of distinct irreducible characters of G. In order
to prove the theorem it is enough to prove that :

• we have ki = |ZG(u)
F | for every i ∈ {1, . . . , d̃}, and

• 〈χ∗i,j, γux,y〉KG = δi,jδx,y for 1 ≤ i, x ≤ d and 1 ≤ j, y ≤ |ZG(u)
F |.

Using Frobenius reciprocity and the fact that γ̃ux,1 = IndG̃G(γux,1) we have

that δi,x = 〈ResG̃G(χ̃
∗
i ), γux,1〉KG. Then,

δi,x =

|ZG(u)F |∑

j=1

〈χ∗i,j, γux,1〉KG.

We can assume for more convenience that 〈χ∗i,j, γui,1〉KG = δj,1. Since the

characters χ∗i,j are irreducible constituents of ResG̃G(χ̃
∗
i ), we can choose ti,1 =

1, . . . , ti,|ZG(u)F | ∈ T̃ such that χ∗i,j = (χ∗i,1)
ti,j . Using 3.2.12, we have

1 = 〈χ∗i,1, γui,1〉KG = 〈(χ∗i,1)
ti,j , (γui,1)

ti,j〉KG = 〈χ∗i,j, γti,jui,1t−1
i,j
〉KG.
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Moreover, if j 6= k, ti,jui,1t−1i,j and ti,kui,1t
−1
i,k lie in distinct G-conjugacy

classes. Indeed, if ti,jui,1t−1i,j and ti,kui,1t−1i,k are in the same G-conjugacy class
then γui,1 = γt−1

i,j ti,kui,1t
−1
i,k ti,j

and

1 = 〈χ∗i,1, γt−1
i,j ti,kui,1t

−1
i,k ti,j
〉KG = 〈χ∗i,j, (γui,1)

t−1
i,j ti,k〉KG = 〈(χ∗i,1)

t−1
i,k ti,j , γui,1〉KG.

The character (χ∗i,1)
t−1
i,k ti,j is one of the characters χ∗i,1, . . . , χ

∗
i,|ZG(u)F | but

amongst those characters χi,1 is the only one satisfying the above equality.
Then, χ∗i,1 = (χ∗i,1)

ti,jt
−1
i,k and ti,j = ti,k. Therefore, ki ≤ |ZG(u)

F | and we can
use the inequality below to deduce that ki = |ZG(u)

F | :

|AG(u)
F | = |ZG(u)

F ||A
G̃
(u)| = d|ZG(u)

F | ≤
d̃∑

i=1

ki = |AG(u)
F |

where the first equality comes from equality (3.1). Now, by changing
the numbering if necessary, we can assume that ux,y = tx,yux,1t

−1
x,y for

x ∈ {1, . . . , d̃} and y ∈ {1, . . . , |ZG(u)
F |}. We have 〈χ∗i,j, γux,y〉KG =

〈(χ∗i,j)
t−1
x,y , γux,1〉KG. Since (χ∗i,j)

t−1
x,y is an irreducible constituent of ResG̃G(χ̃

∗
i,1),

we have that 〈χ∗i,j, γux,y〉KG = 0 if i 6= x. We can prove similarly that
〈χ∗i,j, γui,y〉KG = 0 if j 6= y. Hence, we can take the characters χ∗i,j for

0 ≤ i ≤ d̃ and 0 ≤ j ≤ |ZG(u)
F |. Let s be the image of s̃ in G∗, then

the characters χ∗i,j belong to the rational series E(G, s) according to Theo-
rem 1.3.24. Moreover, since s and s̃ have the same image under an adjoint
quotient and g̃ satisfies the property (P ), the image of s under an adjoint
quotient is quasi-isolated. �

3.4 Main result

Theorem 3.4.1. Let G be a simple group of type B, C or D except spin
of half-spin. Then there exists a unitriangular basic set for the unipotent
2-blocks of G.

Proof. Let m be the number of unipotent modular representations of
G. By Theorem 2.5.2, m is the number of unipotent classes of G so we can
choose the GGGRs to be the projectives we need to use Proposition 3.1.2.
Let us set some notation : let C1, . . . , Cr be the F -stable unipotent classes of
G ordered such that i < j whenever dim Ci < dim Cj. For each class Ci, let
ui,1, . . . , ui,ri be representatives of the G-conjugacy classes of CFi . We denote
by γui,j the character of the GGGR corresponding to ui,j where 1 ≤ i ≤ r and
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1 ≤ j ≤ ri. According to Lemma 2.5.1, if C is a unipotent class of a simple
group of type B,C,D which is not a spin group nor a half-spin group and
u ∈ C, then the group AG(u) is abelian. Then, we can apply Theorem 3.3.9
and for each i there exists a semi-simple element si ∈ G∗ and irreducible
characters χi,j ∈ E(G, si) such that

(
〈χ∗i,j, γui,j′〉KG

)
1≤j,j′≤ri

is the identity
matrix. We will show that those characters form a basic set for unipotent
blocks.

We first need to show that all the characters of the statement lie in a
unipotent 2-block. By definition of B1, it is enough to show that they all
belong to rational Lusztig series associated to a semi-simple 2-element. The
characters χi,j all belongs to E(G, si) and the image of si in the adjoint
quotient of G

∗ is a quasi-isolated element. For adjoint groups of type B,
C or D, all quasi-isolated elements are 2-elements. Therefore, there is an
integer k such that s2

k

i belongs to Z(G∗) which is a 2-group, so si is a 2-
element. We havem ordinary and projective characters in B1 so, according to
Proposition 3.1.2, we simply have to ensure that the matrix whose coefficients
are

(
〈χ∗i,j, γui′,j′〉KG

)
(i,j),(i′,j′)

is lower unitriangular. Using the fact that for

each class Ci,
(
〈χ∗i,j, γui,j′〉KG

)
1≤j,j′≤ri

is the identity matrix, we just have to
check that 〈χ∗i,j, γui′,j′〉KG = 0 whenever i < i′.

Let G̃ a regular embedding of G, and let us fix i and i′ such that 1 ≤
i, i′ ≤ r. Assume that there exists (j, j′) ∈ {1, . . . , ri}×{1, . . . , ri′} such that
〈χ∗i,j, γui′,j′〉KG 6= 0. According to the proof of Theorem 3.3.9, there exists

g̃i ∈ G̃
∗ special such that Φ((g̃i)G∗) = Ci and χ̃i ∈ IrrK(G̃)g̃i such that χi,j

is an irreducible constituent of ResG̃G(χi). Moreover, by Proposition 3.2.11,
χ̃i has unipotent support Ci (so Ci is the wave front set of χ̃i∗). Since χ∗i,j is

an irreducible constituent of ResG̃Gχ̃
∗
i , we have 〈ResG̃Gχ̃

∗
i , γui′,j′〉KG 6= 0. Using

Frobenius reciprocity, we get 〈χ̃∗i , γ̃ui′,j′〉KG̃ 6= 0 so we have i′ ≤ i since Ci is
the wave front set of χ̃∗i . �
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This chapter focuses on basic sets and decomposition matrices for uni-
potent blocks of groups of small rank. Our first goal is to exhibit basic sets
for unipotent blocks by using Theorem 2.3.16 and Theorem 3.4.1. The se-
cond goal is to apply the methods developed by Dudas in [18] to compute
decomposition numbers.

In the first section, we begin by reviewing results on the complex of mo-
dules provided by the cohomology of Deligne–Lusztig varieties. Following
the work of Rickard and Bonnafé–Rouquier, we can choose a representative
consisting of a complex of projectives modules satisfying many properties
(see 4.1.3). Then, going back to modular representation theory, we explain
the consequences of this result on numerical conditions for decomposition
numbers in Proposition 4.1.6.

In the second section, we apply the aforementioned results to unipotent
2-blocks of G = Sp4(q) when q is odd. We first explain how the basic set
mentioned in Theorem 3.4.1 can be constructed in the case of symplectic
groups. For that, we introduce results of Hézard [30] on combinatorics of Weyl
groups of type C. These results, combined with the Jordan decomposition
of irreducible characters of Sp4(q) allow us to determine which characters
should be in the basic set of Theorem 3.4.1. Then, using the 2-decomposition
matrix of Sp4(q) computed by White in [65], we give the decomposition
matrix for unipotent blocks with respect to this basic set. This matrix has
an unknown coefficient 0 ≤ x ≤ (q − 1)/2. We use methods of the first
sections to show that x ∈ {0, 1}.

In the last section, we are interested in ℓ-unipotent blocks of G = G2(q)
when q is the power of a good prime number and ℓ = 2 or 3. Theorem 2.3.16
provides a method to count unipotent modular representations but that me-
thod does not provide a parametrisation. However, since that theorem is
based on Lusztig’s parametrisation of unipotent characters, we can "guess"
which characters should be chosen to get a basic set. After explaining how
we proceed to select the characters, we use the decomposition matrix of G
to check that the chosen set of characters indeed provides a basic set. The
decomposition matrix of G was computed by Hiss–Shamash for ℓ = 2 [32]
and ℓ = 3 [31]. Finally, we use again the result of Section 4.1 to get better
bounds on decomposition numbers.

4.1 Cohomology complexes

Let G be a connected reductive group defined over Fq where q is a power
of p, F be the corresponding Frobenius map and W be its Weyl group. Let T
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be an F -stable maximal torus of G contained in an F -stable Borel subgroup
B of G. As in Section 1.3, for w ∈ W , we fix a an F -stable torus of type w,
which we denote by Tw. Let ℓ be a prime number different from p, we fix
an ℓ-modular system (K,O, k) where Qℓ ⊆ K and such that K and k are
big enough for G. We denote by d the decomposition map of G and by e its
transpose (see Section 1.1.1). Let Λ = K or k. We denote by

• C(ΛG) the category of complexes of ΛG-modules,

• Ho(ΛG) the homotopy category of ΛG-modules,

• D(ΛG) the derived category of ΛG-modules.

Decomposition map and Deligne–Lusztig Induction. For w ∈ W , we de-
note by Xw and Yw the Deligne–Lusztig varieties associated to w (1.3.2).
We recall that G × T opw acts on Yw so that by §1.3.1, RΓc(Yw,Λ) is quasi-
isomorphic to a bounded complex of (ΛG,ΛTw)-bimodules. Let H∗c (Yw,Λ) =∑
i

(−1)i[H i
c(Yw,Λ)]. We denote by RG

Tw
and R̄G

Tw
the Deligne–Lusztig induc-

tion maps defined in Section 1.3. Let C be a bounded complex of (OG,OTw)-
bimodules representing RΓc(Yw,O) whose terms are free as O-modules. In
particular, H i

c(Yw,Λ) = H i
c(C ⊗O Λ). Let ∂i : Ci → Ci+1 be the differentiel

map. By noting that [Ci] = [H i
c(Yw,Λ)] + [Im ∂i−1⊗O Λ] + [Im ∂i⊗O Λ], we

have H∗c (Yw,Λ) =
∑
i

(−1)i[Ci ⊗O Λ]. Let E be a KTw-module and E ′ be a

OTw-submodule such that E = K ⊗O E
′. Then

H∗c (Yw, K)⊗KTw [E] =

(
∑

i

(−1)i[Ci ⊗O K]

)
⊗KTw [E]

=
∑

i

(−1)i[Ci ⊗O K]⊗KTw [E]

=
∑

i

(−1)i[(Ci ⊗OTw E
′)⊗O K],

and the following diagram commutes

RK(Tw) RK(G)

Rk(Tw) Rk(G).

RGTw

d d

R̄GTw
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Complex of projective modules. We can represent RΓc(Yw,Λ) by a complex
whose non-zero terms are in degrees ℓ(w) to 2ℓ(w).

Theorem 4.1.1 ([38, 3.10c]). H i
c(Yw,Λ) = H i

c(Xw,Λ) = 0 if i < ℓ(w).

Moreover, RΓc(Yw,Λ) can be represented by a complex whose termes are
finitely generated projective ΛG-modules.

Theorem 4.1.2 ([51, 3.2]). Let X be a quasi-projective variety defined over
Fq on which G acts. If |StabG(x)| is invertible in Λ for every x ∈ X, then
RΓc(X,Λ) is quasi-isomorphic to a bounded complex of finitely generated
projective ΛG-modules.

Corollary 4.1.3. RΓc(Yw,Λ) can be represented by a complex of finitely
generated projective ΛG-modules.

Proof. Let x = gU ∈ Yw. The order of StabG(x) = (gUg−1)F is a power
of p so is invertible in Λ. Hence, we can apply Theorem 4.1.2 and represent
RΓc(Yw,Λ) by a complex

0→ Pℓ(w) → Pℓ(w)+1 → · · · → P2ℓ(w) → 0

where Pi is a finitely generated projective ΛG-module in degree i. �

We denote by RHomΛG the right-derived functor of the Hom-functor
HomΛG. We recall that if C and D are two bounded complexes and if P
is a projective resolution of C, then RHomΛG(C,D) is quasi-isomorphic to
the total Hom complex Hom•ΛG(P,D).

The Bruhat order onW is a partial order defined as follows. For v, w ∈ W ,
we have v ≤ w if some substring of some reduced word for w is a reduced
word for v.

Theorem 4.1.4 ([4, 8.10]). Let M ∈ IrrΛ(G) and w ∈ W be minimal
for the Bruhat order such that RHomΛG(RΓc(Yw,Λ),M) 6= 0. Then, the
cohomology of RHomΛG(RΓc(Yw,Λ),M) vanishes outside the degree ℓ(w).

Corollary 4.1.5. Let M ∈ IrrΛ(G) and PM be its projective cover. Let w ∈
W be minimal for the Bruhat order such that RHomΛG(RΓc(Yw,Λ),M) 6= 0.
Then RΓc(Yw,Λ) can be represented by a complex

0→ Pℓ(w) → · · · → P2ℓ(w) → 0

such that

• Pi is a finitely generated projective ΛG-module in degree i.
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• PM is a direct summand of Pi for i = ℓ(w) only.

Proof. If M is an ΛG-module, we denote by M [i] the complex of ΛG-
modules where M is concentrated in degree i. Since RΓc(Yw,Λ) can be re-
presented by a complex of finitely generated projective ΛG-modules we have,
by definition of RHomΛG,

H i(RHomΛG)(RΓc(Yw,Λ),M)) ≃ HomD(ΛG)(RΓc(Yw,Λ),M [i])

≃ HomHo(ΛG)(RΓc(Yw,Λ),M [i]).

Since the cohomology of RHomΛG(RΓ(Yw,Λ),M) vanishes outside the de-
gree ℓ(w), we have HomHo(ΛG)(RΓc(Yw,Λ),M [i]) = 0 for i 6= ℓ(w).

Let P := 0 → Pℓ(w) → · · · → P2ℓ(w) → 0 be a representative of
RΓc(Yw,Λ) with finitely generated projective terms. By removing them if
necessary, we can suppose that this complex has no null-homotopic direct
summand. We have to show that PM is a direct summand of Pi for i = ℓ(w)
only. Let i be maximal such that PM is a direct summand of Pi, in particu-
lar we have a surjective map Pi ։ PM . Assume that i > ℓ(w).We have two
cases

• The composition Pi−1 → Pi ։ PM is non-zero.

Then the composition is surjective and the complex · · · 0 → PM ≃
PM → 0→ · · · (PM is in degree i− 1 and i) is a null-homotopic direct
summand of P . Since we assumed that P has no null-homotopic direct
summand, this is impossible.

• The composition Pi−1 → Pi ։ PM is zero.

Then, the map Pi ։ M induces a map in
HomHo(ΛG)(RΓc(Yw,Λ),M [i]). Since i > ℓ(w), the map must be
null-homotopic so it must factorise through Pi+1, which is impossible
by the assumption on i.

Hence, we must have i = ℓ(w) and we are done. �

Application to computation of decomposition numbers. We introduce a pro-
position giving numerical conditions on decomposition numbers which is a
consequence of the previous results. We recall that Pk(G) is the Grothendieck
group of finitely generated projective kG-modules. Let Pw := [H∗c (Yw, k)] =
R̄G
Tw
(kTw) ∈ Pk(G). For M ∈ Irrk(G), we denote by W (M) the set of ele-

ments of W minimal for the Bruhat order such that 〈Pw,M〉kG 6= 0 (i.e.
such that [PM ] occurs in the decomposition of Pw in the basis of projective
indecomposable modules).
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Proposition 4.1.6 ([18, 1.5]). Let M be a simple kG-module and w ∈
W (M). Then

(−1)ℓ(w)〈Pw,M〉kG > 0.

Moreover, if N is a simple kG-module such that (−1)ℓ(w)〈Pw, N〉kG < 0,
there exists v < w such that 〈Pv, N〉kG 6= 0.

Proof. Since 〈Pw,M〉kG 6= 0, we have RHomΛG(RΓc(Yw, k),M) 6= 0. Let
v ≤ w be minimal for that property. Then, by Corollary 4.1.5, RΓc(Yv, k)
can be represented by a complex of projective ΛG-modules 0 → Pℓ(v) →
· · · → P2ℓ(v) → 0 such that PM occurs only in Pℓ(v). Hence, 〈Pv,M〉kG 6= 0
and we must have v = w. We have

〈(−1)ℓ(w)Pw,M〉kG = 〈Pℓ(w),M〉kG > 0.

Let N ∈ Irrk(G) such that 〈(−1)ℓ(w)Pw, N〉kG < 0. Then, PN can not only
occur in P2ℓ(w) so w /∈ W (N) according to the first part and there exists
v < w such that 〈(−1)ℓ(v)Pv, N〉kG 6= 0. �

We can use Proposition 4.1.6 to compute decomposition numbers when
G has small rank and most of the decomposition numbers are known. Let
B1 be the union of unipotent ℓ-blocks of G and B := {χ1, . . . , χr} be a uni-
triangular basic set of B1. Let P1, . . . , Pr be the indecomposable projective
kG-modules of B. We order χi and Pi such that the decomposition matrix

is unitriangular (i.e. e(Pj) = χj +
r∑

i=j+1

di,jχj). Let b (resp. b̄) be the idem-

potent of KG (resp. kG) associated to B1. By definition of Pw and e, we

have e(b̄Pw) = bRw(KTw). If we write (−1)ℓ(w)b̄Pw =
r∑
i=1

aiPi, we have

(−1)ℓ(w)bRw(KTw) =
r∑

i=1

aie(Pi).

From the unitriangularity of the decomposition matrix and the decomposi-
tion of bPw on the basic set B we can easily deduce the coefficients ai from
the decomposition numbers. Conversely, in the case where few decomposi-
tion numbers are missing, we can have bounds on them since we know that
if w is minimal such that Pi appears in Pw, we have ai > 0. That method
will be used in the following section to compute decomposition numbers of
Sp4(q) (when q is odd and ℓ = 2) and G2(q) (when p > 3 and ℓ = 2, 3).
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4.2 Basic set and decomposition matrix of Sp4(q)

4.2.1 Description of the basic set of Sp2n(q)

Let G = Sp2n(F̄q) with q odd and let ι : G→ G̃ be a regular embedding
of G (we can take G̃ = CSp2n(F̄q)). Let B1 be the union of unipotent
blocks of G. There exists, according to Theorem 3.3.9 a unitriangular basic
set for B1. We want to give enough details on this basic set to be able to
exhibit it for n = 2. Let us denote by B a basic set satisfying the hypothesis
of Theorem 3.4 and for each F -stable unipotent class C = (u)G of G, let
us denote by d the number of G-conjugacy classes of CF . Then, B has the
following property : there exists g̃ ∈ G̃∗ special such that Φ((g̃)G̃∗) = C and
d characters χ1, . . . , χd which are restrictions of characters of IrrK(G̃)g̃ such
that χ∗1, . . . , χ

∗
d ∈ B. Each character of B can be constructed this way. We

denote by s̃ the semi-simple part of g̃, by s the image of s̃ in G
∗. Let AG∗(s)

be the group CG∗(s)/CG∗(s)◦.
Let us make a remark about the Jordan decomposition for E(G, s). We

recall that the Jordan decomposition of characters for groups with discon-
nected center is given by the following bijection (see Theorem 1.3.25)

{(G̃/G)-orbits on E(G, s)} ←→ {AG∗(s)-orbits on E(CG∗(s)◦, 1)}.

Assume that χ1, . . . , χd are the irreducible constituents of ResG̃Gχ̃ ∈ E(G̃, s̃)
so they form a single G̃/G orbit. Recall that, by Proposition 1.3.19, ι∗ induces
a bijection between U(CG̃∗(s̃)) and U(CG∗(s)◦). Let ρ̃ ∈ U(CG̃∗(s̃)) be the
Jordan correspondent of χ̃ and let ρ be the image of ρ̃ in U(CG∗(s)). Then
the Jordan correspondents of {χ1, . . . , χd} are the characters of U(CG∗(s))
whose restriction to CG∗(s)◦ lies in the AG∗(s)-orbit of ρ. Let W ◦

s be the
Weyl group of CG∗(s)◦ (it is isomorphic to the Weyl group of C

G̃∗(s̃)). We
denote by F the family of W ◦

s corresponding to g̃. Then, if χ1, . . . , χd are ir-
reducible constituent of the restriction of a character of E(G, g̃), their Jordan
correspondents in E(CG∗(s), 1) are irreducible constituent of the induction
to CG∗(s) of a character in U(CG∗(s)◦)F . So to be able to describe χ1, . . . , χd
by the Jordan correspondence, we need to know :

• What is the quasi-isolated class (s)∗
G

. Since G
∗ is adjoint, this is

an isolated class.

• To which family of W ◦
s the special element g̃ corresponds.

(Q)

Hézard answered those questions in his thesis [30, §4]. We will describe how
he proceeded. We recall that unipotent classes of G are in bijection with
partition of 2n such that any odd part occurs an even number of time. For
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such a partition we denote by Cλ = (uλ)G the corresponding class. Let δ be
defined by

δ(Cλ) =

{
1 if there exists i even such that λ has an odd number of parts equal to i,

0 otherwise.

Let c1, . . . , cr be the integers constructed from λ in Example 2.2.1. Let
m := (r − 1)/2 and let [Λ] be the symbol

[Λ] =

(
c1 c3 . . . cr

c2 . . . cr−1

)
=

(
a1 a2 . . . am+1

b1 . . . bm

)
.

We have two cases :

• δ(Cλ) = 0. Then the answer to Q is

• (s)G∗ is the trivial class, so χ1, . . . , χd are unipotent characters.

• The symbol Λ parametrise a special irreducible character of W . Let
F be the family of [Λ]. Then F is the family corresponding to g̃
and χ1, . . . , χd ∈ U(G)F .

• δ(Cλ) = 1. Then W ◦
s is a group of type Da × Bb with a + b = n. Let

s ∈ G
∗ = SO2n+1 be the following semi-simple element :

(s)G∗ = (diag(
a times︷ ︸︸ ︷
−1, . . . ,−1,

2b times︷ ︸︸ ︷
1, . . . , 1 ,

a times︷ ︸︸ ︷
−1, . . . ,−1))G∗.

We construct a symbol [ΛD] corresponding to an irreducible character
of Da.

ΛD :=

(
α1 . . . αm
β1 . . . βm

)

where {
αi = ai+1 − ⌊ai+1/2⌋ − 1 for i ∈ {1, . . . ,m}

βi = bi − ⌊bi/2⌋ − 1 for i ∈ {1, . . . ,m}
.

Similarly we construct a symbol corresponding to an irreducible cha-
racter of Bb.

ΛB :=

(
α′1 α′2 . . . α′m+1

β′1 . . . β′m

)
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where {
α′i = ⌊ai/2⌋ for i ∈ {1, . . . ,m+ 1}

β′i = ⌊bi/2⌋ for i ∈ {1, . . . ,m}

and [ΛD]⊗ [ΛB] parametrises a special representation of W ◦
s correspon-

ding to a family F of Ws. Finally, we can answer to Q as follows :

• We can choose the class (s)G∗ where s is the semi-simple element
constructed above. This is an isolated class according to [30, 4.2.3].

• The family of W ◦
s corresponding to g̃ is the family F .

4.2.2 Semi-simple elements of order 2 of Sp4(q)

We suppose from now on that G = Sp4(F̄q) and

G
∗ = SO5(F̄q) := {A ∈ SLn(k) | A

trQA = Q}

where

Q :=




0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0



.

We want to describe G∗-conjugacy classes of the semi-simple element of G∗

involved in the previous part and their centralisers. It is enough to describe
G∗-conjugacy classes of element of order 2. We need to fix some notation,
we set

T
∗ = {diag(λ1, λ2, 1, λ

−1
2 , λ−11 ), λ1, λ2 ∈ F̄×q }.

The maximal torus T∗ of G∗ has 3 elements of order 2 :

r1 := diag(−1,−1, 1,−1,−1), r2 := diag(−1, 1, 1, 1,−1), r3 := diag(1,−1, 1,−1, 1)

Let us denote by a and b the generators of the Coxeter system W , we take
the following representative na and nb in NG∗(T∗) :

na :=




0 1 0 0 0
1 0 0 0 0
0 0 1 0 0
0 0 0 0 1
0 0 0 1 0



, nb :=




1 0 0 0 0
0 0 0 1 0
0 0 −1 0 0
0 1 0 0 0
0 0 0 0 1



.
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The element r1 is stable under the action ofW . We have ar2 = r3, br2 = r2,
ar3 = r2, br3 = r3. We now compute the centralisers of r1, r2 and r3 in G

∗.

CG∗(r1) =








A 0 B

0 ε 0

C 0 D




∣∣∣∣∣∣

(
A B

C D

)
∈ O4(F̄q), ε = det

(
A B

C D

)
 ,

so CG∗(r1) ≃ O4(F̄q). The centraliser of r2 in G
∗ is

CG∗(r2) =








λ 0 0

0 A 0

0 0 λ−1




∣∣∣∣∣∣
A ∈ SO3(F̄q), λ ∈ F̄×q



 . 〈Q〉

so CG∗(r1) ≃ (SO3 × F̄×q ).2. Let us fix w ∈ W and s ∈ T ∗w be an element
of order 2. Let g ∈ G

∗ such that T
∗
w = g

T
∗. Conjugation by g induces an

isomorphism T
∗wF ≃ Tw where

T
∗wF = {t ∈ T

∗ | nwF (t)n
−1
w = t}

and we have g−1F (g) = nw. Let r′ ∈ T
∗wF such that r′ = gr. Then CG∗(r) ≃

CG∗(r′)wF . Let us give more details about the sign ε occurring in Jordan
decomposition Theorem 1.3.25 on Lusztig’s series E(G, s). We have ε =
εGεCG∗(s) where εG = (−1)Fq−rank(G), see [14, 8.3] for the definition of the
Fq-rank. The following tables describe, for each ri, if ri ∈ T

∗wF , the group
CG∗(ri)

wF and εCG∗(r1)wF . We denote by µq+1 ⊂ F̄×q the group of (q+1)-roots
of unity.

w r1 ∈ T
∗wF? CG∗(r1)

wF εCG∗(r1)wF

{e, a, bab, abab} yes O+
4 (q) 1

{a, ab, ba, aba} yes O−4 (q) −1

w r2 ∈ T
∗wF? CG∗(r2)

wF εCG∗(r2)wF

{e, b} yes (SO3(q)× F×q ).2 1

{aba, abab} yes (SO3(q)× µq+1).2 −1
{a, ab, ba, bab} no

Since r3 = nar2na and na is F -stable, we have CG∗(r3)
wF ≃ CG∗(r3)

awaF

and the table for r3 can be deduced from the table for r2.

w r3 ∈ T
∗wF? CG∗(r3)

wF εCG∗(r3)wF

{e, b} yes (SO3(q)× µq+1).2 −1
{aba, abab} yes (SO3(q)× F×q ).2 1

{a, ab, ba, bab} no
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4.2.3 Unitriangular basic set and decomposition numbers for uni-

potent blocks of Sp4(q)

Recall that unipotent classes of G are parametrised by partitions of 4
such that any odd part occurs an even number of times. The following table
gives, for each class Cλ corresponding to a partition λ, the eigenvalues of the
corresponding semi-simple element s, the type of W ◦

s , the special character
of W ◦

s constructed, the corresponding family in E(G, s) and the number of
characters d in this family which lie in the basic set B. We use notation of
Srinivasan [61] for the irreducible characters of G and Table A1 of [65] for
the Jordan decomposition.

λ δ(Cλ) eigenvalues W ◦
s Char. of W ◦

s Char. of E(G, s)F⊗ε d

(14) 1 1 W ε {1G} 1
(22) 1 1 W φ1,1 {θ9, θ10, θ11, θ12} 2
(4) 1 (−1, 1, 1, 1,−1) D1 × B1 1 {Φ7,Φ8} or 2

{Φ3,Φ4}
(12, 2) 1 (−1− 1, 1,−1,−1) D2 ε {θ3, θ4} or 2

{θ7, θ8}

Hence, to construct a basic set for B1 satisfying the hypothesis of Theorem
3.3.9, we should

• Take the trivial character.

• Take 2 characters amongst {θ9, θ10, θ11, θ12}.

• Take {θ3, θ4} or {θ7, θ8}.

• Take {Φ3,Φ4} or {Φ7,Φ8}.

Then, we set B to be

B := {1G, θ3, θ4, θ9, θ10,Φ3,Φ4}.

By checking the decomposition matrix of G in [65], we can see to B is indeed
a unitriangular basic set for the unipotent 2-blocks. Indeed, up to applying
the permutation (26375) to the columns of the decomposition matrix of the
principal block in [65, 3.1], we can check that the decomposition matrix of
B1 with respect to B has the following shape :
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P1 P2 P3 P4 P5 P6 P7

1G 1
θ3 1 1
θ4 1 1
θ9 2 1 1 1
θ10 1
Φ3 1 x 1
Φ4 1 x 1

where 0 ≤ x ≤ (q − 1)/2 and x ≥ 1 if q ≡ 3 mod 4. We will now use
methods explained in 4.1 to determine x.

Proposition 4.2.1. We have 0 ≤ x ≤ 1 and x = 1 if q ≡ 3 mod 4.

Proof. We just have to show that x ≤ 1. Let b be the idempotent of OG
associated to B1. In order to be able to use Proposition 4.1.6, we need to
compute (−1)ℓ(w)bRw(KTw) for w ∈ W . Characters of B are either unipotent
or lie in a rational Lusztig series associated to an element of order 2. Hence,
we only need to compute

RG
T ∗
w
(1) +

∑

s

RG
T ∗
w
(s)

where T ∗w is a torus of G∗ dual to Tw and s runs over semi-simple elements
of order 2 of Tw. We can decompose the characters RG

T ∗
w
(s) into irreducibles

using the Jordan decomposition of characters. We can apply Theorem 1.3.25
and the tables of [65, A1] to decompose (−1)ℓ(w)bRG

Tw
(KTw) into irredu-

cibles. Using the unitriangularity of the decomposition matrix, we can de-
duce the decomposition of (−1)ℓ(w)b̄Pw into the indecomposable projectives
P1, . . . , P7. The following table gathers this information.

w (−1)ℓ(w)bRG
Tw
(KTw) (−1)ℓ(w)b̄Pw

{e} 1 + 2θ9 + θ3 + θ4 [P1]
{s, tst} −1G − θ3 − θ4 −[P1] + 2[P4]
{t, sts} −1G + Φ3 + Φ4 −[P1] + [P2] + [P3]
{st, tst} 1G − θ9 + θ10 [P1]− [P2]− [P3]− [P4] + [P5] + (1− x)[P6] + (1− x)[P

The projectives P6 and P7 do not appear in Pv when v < st. Hence,
according to Proposition 4.1.6, we should have (1 − x) ≥ 0 which gives
x ≤ 1. �
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4.3 Basic sets and decomposition matrices for G2(q)

4.3.1 Unitriangular basic set for G2(q)

Isolated elements of G2(q)

Let G := G2(F̄q) and assume that q = pα where p > 3. We want to
compute isolated elements of G and their centralisers. Let Φ be the root
system associated to T and ∆ be the basis of Φ associated to B. All the
following information about the root system comes from [2]. With ∆ =
{α1, α2} we have :

Φ := ±{α1, α2, α1 + α2, 2α1 + α2, 3α1 + α2, 3α1 + 2α2} .

Let w∨α1
, w∨α2

be, as in §1.2.3, the fundamental coweights associated to α1 and
α2 respectively. Let α̃ := nα1

α1+nα2
α2 be the highest root and α0 = −α̃. We

have w∨α1
= 2α∨1 +α

∨
2 , w∨α2

= 3α∨1 +2α∨2 and α0 = −α̃ = −3α1− 2α2. Let ∆̃
be as in Section 1.2.3. Since G is simple, both adjoint and simply connected
and p > 3, Theorem 1.2.12 gives a bijection between ∆̃ and the set of G-
conjugacy classes of isolated elements of G. More precisely, let ι̃ : Q→ k be
as in §1.2.3. Then the bijection is induced by the map

∆̃ → T

α 7→ tα := w∨α(ι̃(
1
nα
))

.

Since p > 3 we have
∆̃ = {α1, α2, α0} .

Let us describe the elements tα for α ∈ ∆.

• tα0
is the identity and its centraliser is G.

• CG(tα1
) has type A2 and its root system is Φ1 :=

±{α2, 3α1 + α2, 3α1 + 2α2}. The element tα1
has order 3.

• CG(tα2
) has type A1 × A1 and its root system is Φ2 :=

±{α1, 3α1 + 2α2}. The order of tα is 2.

We will denote tα1
by t and tα2

by s.

Notation for irreducible characters of G2(q)

Chang–Ree in [9] classified irreducible characters of G2(q), and Hiss–
Shamash computed an approximation of the decomposition matrix of G2(q)
for ℓ = 2, 3 in [32] and [31] using Chang–Ree notation. Our aim is to find a
basic set satisfying the following properties :



109 4.3. Basic sets and decomposition matrices for G2(q)

• This basic set should, in some sense, be parametrised by the objects of
Conjecture 2.3.14.

• We should know in which Lusztig series lies each character of this basic
set in order to be able to use Proposition 4.1.6 to compute decomposi-
tion numbers.

In order to do this, we want to make a correspondence between notation
of Chang–Ree and notation of Chevie. The table below gives information
about unipotent characters of G2(q). The first column give the Chang–Ree
notation, the second the Chevie notation and the third the degree of the
character. The fourth column gives the unipotent class (u)G associated to
the parametrisation of Theorem 2.2.9, the fifth the associated canonical quo-
tient and the last column provides the pair (x, σ) of M(Ωu) parametrising
the character. We know that the pair (X13, X14) corresponds to the pair
(φ′1,3, φ

′′
1,3) but we are not able to say which character corresponds to the

other. That is why we put them indistinctly in the table. We denote by Φd

the d-th cyclotomic polynomial.

Chang–Ree Chevie Degree Unipotent class Ωu Pair (x, σ)

X11 φ1,0 1 G2 1 (1, 1)

X12 φ1,6 q6 1 1 (1, 1)

{X13, X14} {φ′1,3, φ
′′
1,3}

1
3qΦ3(q)Φ6(q) G2(a1) S3 {(1, r), (g3, 1)}

X15 φ2,2
1
2qΦ2(q)

2Φ6(q) − − (g2, 1)

X16 φ2,1
1
2qΦ2(q)

2Φ3(q) − − (1, 1)

X17 G2[−1]
1
2qΦ1(q)

2Φ3(q) − − (g2, ε)

X18 G2[1]
1
6Φ1(q)

2Φ6(q) − − (1, ε)

{X19, X̄19} {G2[θ], G2[θ
2]} 1

3Φ1(q)
2Φ2(q)

2 − − {(g3, θ), (g3, θ
2)}

Since G is both adjoint and simply connected, G is isomorphic to its
dual group G

∗ so we can parametrise the Lusztig series by semi-simple ele-
ments of G. The following tables describe the characters of the series E(G, s)
and E(G, t). The Jordan decomposition provides a natural bijection between
E(G, s) and E(CG(s), 1). Since CG(s) is of type A1 ×A1, its unipotent cha-
racters are parametrised by pairs of partition of 2. We denote by χ2,2, χ11,2,
χ2,11 and χ2,2 the unipotent characters of CG(s). Then χ2,2 is the trivial
character and χ11,11 is the Steinberg character. The table below lists the
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characters of E(G, s) according to the Chang–Ree notation and provides the
Jordan correspondent for each of those characters.

Characters of E(G, s)
Chang–Ree Degree Jordan correspondent

X21 q2(q4 + q2 + 1) χ11,11

X22 q4 + q2 + 1 χ2,2

{X23, X24} q(q4 + q2 + 1) {χ2,11, χ11,2}

We provide the same table for E(G, t), CG(t) is of type A2 and we have 3
unipotent characters parametrised by partitions of 3 : χ3 (trivial), χ21 and
χ111 (Steinberg). Let ǫ ≡ q mod 3 ∈ {±1}.

Characters of E(G, t)
Chang–Ree Degree Jordan correspondent

X31 q3(q3 + ǫ) χ111

X32 q3 + ǫ χ3

X33 q(q + ǫ)(q3 + ǫ) χ21

Basic set for unipotent blocks

We want to get a basic set for unipotent blocks of G2(q) which would be
parameterised in the same way as unipotent Brauer characters are counted
in Conjecture 2.3.14. Here is how we will proceed : let (u)G be an ℓ-special
class. Note that we always have AG(u) = Ωu = Ωℓ

u (see Table 4.3.2).

• We construct a subset ofM(Ωu) in bijection withM(Ωℓ
u) as follows : for

each Ωu-conjugacy class (x)Ωu, we choose an ℓ-basic set {σx,1, . . . , σx,k}
of CΩu(x). We choose the unipotent characters in IrrK(G)u correspon-
ding to this subset according to Lusztig’s parametrisation.

• If u is ℓ-special but not special then AG(u) = 1 and there is a unique
character to pick in E(G, s).

Basic set for ℓ = 2. There are four 2-special classes : 1, G2, G2(a1) and
Ã1. The last one is not special. The groups corresponding to 1 and G2 are
trivial and their corresponding unipotent characters are respectively φ1,1 and
φ1,6. We have, as explained above, to choose characters lying in the family
corresponding to G2(a1). If (u)G = G2(a1), Ωu is the symmetric group S3

and we denote by e the trivial element, by g2 the transposition (12) and by
g3 the 3-cycle (123).
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• Since CΩu(e) = S3, we should have two unipotent characters corres-
ponding to {(1, σ1), (1, σ2)} where σ1, σ2 is a basic set of S3. We can
have two such basic sets {1, r} where r is the reflection representation
and {ε, r}. So we can have either the pair of characters {φ2,1, φ′1,3} or
the pair {G2[1], φ

′
1,3}.

• Since CΩu(g2) ≃ Z/2Z, we have to choose one character between φ2,2
and G2[−1].

• Since CΩu(g3) ≃ Z/3Z, we have to take φ′′1,3, G2[θ] and G2[θ
2].

It remains to look at the class Ã1. Its component group is trivial so there is
only one character from E(G, s) to add. The Jordan correspondent χ of that
character should have the following property. Let (v)CG(s) be the unipotent
class of CG(s) corresponding to χ by the Lusztig parametrisation. Then the
image of (v)CG(s) by Lusztig’s map Φ should be Ã1. Using CHEVIE [50],
we can deduce that (v)CG(s) is the class parametrised by (11, 11). Hence, χ
should correspond to the trivial representation, that is χ2,2. According to
the table above, we should take the characters X22 that we will denote by
χs,(2,2).

With the goal of having a basic set respecting the above requirements and
giving the "nicest" decomposition matrix possible we chose the following 2-
basic set for unipotent blocks :

{φ1,0, φ1,6, φ
′
1,3, φ

′′
1,3, G2[1], G2[−1], G2[θ], G2[θ

2], χs,(2,2)}.

Except for G2[θ] and G2[θ
2], all characters of the basic set lie in the princi-

pal block. The characters G2[θ] and G2[θ
2] lie in blocks containing a single

modular representation so we just need to work on the principal block. The
following table provides the decomposition matrix of the principal block in
respect with our basic set, the first two columns give the ℓ-special class (u)G
and the corresponding pair as above. The decomposition matrix of Hiss–
Shamash [32] uses the Chang–Ree notation so we are unable to distinguish
the line corresponding to φ′1,3 from the line corresponding to φ′′1,3.
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2-special class Pair (x, σ) Character P1 P2 P3 P4 P5 P6 P7

G2 (1, 1) φ1,0 1

Ã1 (1, 1) χs,(2,2) 1 1
G2[a1] (g2, ε) G2[−1] 1

(1, ε) G2[1] 1
(1, r) {φ′1,3, φ

′′
1,3} 1 1

(g3, 1) 1 1
G2 (1, 1) φ1,6 1 α β 1 1 1

We have upper and lower bounds on α and β depending on the value of
q.

1. 0 ≤ α ≤ q − 1 if q ≡ 1 mod 4 and 1 ≤ α ≤ q − 1 if q ≡ −1 mod 4.

2. 0 ≤ β ≤ (q + 2)/3 if q ≡ 1 mod 4 and 1 ≤ β ≤ (q + 2)/3 if q ≡ −1
mod 4.

Basic set for ℓ = 3. The 3-special classes are : 1, G2, G2(a1), and A1, all of
them are special except A1. For all of those classes (u)G, Ωu is trivial except
for G2(a1) where Ωu is S3.

• The characters φ1,1 and φ1,6 correspond respectively to G2 and 1 by the
Springer correspondence.

• Let (u)G = G2(a1). The possible 3-basic sets of Ωu are (1, ǫ), (1, r) and
(ǫ, r) so we have to choose 2 characters among φ2,1, G2[1], φ

′
1,3. Then

CΩu(g2) ≃ Z/2Z so we have to take φ2,2 and G2[−1]. The group CΩu(g3)
has order 3 so we have to take one character from φ′′1,3, G2[θ], G2[θ

2].

• It remains to look at the class A1. Its component group is trivial so there
is only one character from E(G, t) to add. This character should have
the following property : let χ ∈ E(CG(t), 1) be its Jordan correspondent.
Since CG(t) is of type A2, each familly contains exactly one unipotent
character. Let (v)CG(t) be the unipotent class of CG(t) corresponding
to the familly F of χ. Then the image of (v)CG(t) by Lusztig’s map Φ

should be Ã1. By CHEVIE, (v)CG(t) is the class parameterised by (111)
so χ should be in the familly corresponding to the trivial representation,
that is χ3. Then, we should take the characters X22 that we will denote
by χt,3.

Finally, using the 3-decomposition matrix computed in [31] by Hiss and
Shamash we choose the following characters for our basic set :

{φ1,0, φ1,6, φ
′
1,3, φ

′′
1,3, φ2,2, G2[−1], G2[1], χt,3}.
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For the decomposition matrix, we have to distinguish the cases q ≡ 1
mod 3 and q ≡ −1 mod 3 :

• q ≡ 1 mod 3

The character G2[−1] lies in a block containing a unique modular re-
presentation, the other characters lie in the principal block. Here is the
decomposition matrix of the principal block according to our basic set :

3-special class Pair (x, σ) Character P1 P2 P3 P4 P5 P6 P7

G2 (1, 1) φ1,0 1
A1 (1, 1) χt,3 1 1

G2[a1] (1, ε) G2[1] 1
(1, r) {φ′1,3, φ

′′
1,3} 1 1

(g3, 1) α 1
(g2, 1) φ2,2 1 1

G2 (1, 1) φ1,6 1 β γ 1 1

.

We have 1 ≤ α ≤ 2, 0 ≤ β ≤ q − 2 and 1 ≤ γ ≤ q + 1.

• q ≡ −1 mod 3

The character φ2,2 lies in a block containing a unique irreducible mo-
dular representation. The other characters lie in the principal block.
Here is the decomposition matrix of the principal block according to
our basic set :

3-special class Pair (x, σ) Character P1 P2 P3 P4 P5 P6 P7

G2 (1, 1) φ1,0 1
A1 (1, 1) χt,3 1

G2[a1] (1, ε) G2[1] 1
(1, r) {φ′1,3, φ

′′
1,3} 1 1 1

(g3, 1) 1 1 1
(g2, 1) G2[−1] 1

G2 (1, 1) φ1,6 1 1 α β 1 γ 1

.

We have 1 ≤ α ≤ q + 1, 1 ≤ β ≤ q − 1 and 1 ≤ γ ≤ q/2.

4.3.2 Decomposition numbers

Let a and b be the generators of the Weyl group W of G. Let Pw be the
projective modules defined as in 4.1. Since the methods of §4.1 are easier
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to apply to unipotent characters, we will replace the basic sets of the pre-
vious section by basic sets consisting of unipotent characters for the principal
blocks. Moreover, throughout this section we will use Chang-Ree notation.
The following table provides the decomposition of (−1)ℓ(w)bPw in terms of
the characters of the basic sets of the decomposition matrices below.

w (−1)ℓ(w)Pw
1 X11 +X12 +X13 +X14 + 2X15 + 2X16 + . . .
a −X11 +X12 −X13 +X14 + . . .

b −X11 +X12 +X13 −X14 + . . .
(ab) X11 +X12 −X16 +X17 +X19 + . . .

(ab)2 X11 +X12 −X15 +X18 −X19 + . . .

(ab)3 X11 +X12 −X13 −X14 − 2X17 − 2X18 + . . .

Case ℓ = 2. The decomposition matrix of the principal block in [32] provides
us the following basic set of unipotent characters with the corresponding
decomposition matrix :

P1 P2 P3 P4 P5 P6 P7

X11 1
X17 1
X18 1
X13 1 1
X14 1 1
X15 1 1
X12 1 α β 1 1 1

We have to decompose the projectives (−1)ℓ(w)Pw in terms of the basis
(P1, . . . , P7) by using the unitriangularity of the decomposition matrix. We
get Pe = P1 + 2P6, −Pa = −P1 + 2P5 and −Pb = −P1 + 2P4. Let us write

Pab =
7∑

i=1

aiPi.

Since P7 does not appear in Pw for w < ab, we must have a7 ≥ 0 by
Proposition 4.1.6. Using the unitriangularity of the decomposition matrix,
and the decomposition of Pab into the basic set we get a1 = a2 = 1, a3 =
0, a4 = a5 = a6 = −1. Studying the coefficients of X12 for each side of the
equality we get a1 + αa2 + βa3 + a4 + a5 + a7 = 1, hence α = 2− a7. Since
a7 ≥ 0, we have
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α ≤ 2 .

Case ℓ = 3, q ≡ 1 mod 3. We start from the following decomposition matrix
of the principal block :

P1 P2 P3 P4 P5 P6 P7

X11 1
X18 1
X19 1
X14 α 1
X15 1 1
X16 α− 1 1 1
X12 β γ 1 1

Using the unitriangularity of the decomposition matrix, we have Pe = P1 +
P4+P5+P6, and −Pa = −P1+P4+P5−P6 and −Pb = −P1−P4+P5+P6.
If we write

Pab =
7∑

i=1

aiPi,

we have a1 = a3 = 1, a2 = a4 = 0, a5 = a6 = −1, hence we deduce
γ = 2 − a7. Using the same argument as above, we have a7 ≥ 0 and we
deduce

γ ≤ 2 .

Case ℓ = 3, q ≡ −1 mod 3. We start from the following decomposition matrix
of the principal block :

P1 P2 P3 P4 P5 P6 P7

X11 1
X18 1
X19 1
X14 1 1 1
X17 1
X16 2 1 1
X12 1 α β 1 γ 1 1

Using the unitriangularity of the decomposition matrix as above, we get
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Pe = −P1, −Pa = −P1 + 2P4 and −Pb = −P1 + 2P6. Writing

Pab =
7∑

i=1

aiPi,

we have a1 = a3 = a5 = 1, a2 = 0, a4 = −1 and a6 = −2. Looking at the
coefficients of X12 on each side of the equality we get β + γ = 3− a7. Since
P7 does not appear in any Pw for w < ab we have a7 ≥ 0 and we deduce
that

β + γ ≤ 3 .
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Appendix A : ℓ-special unipotent classes for exceptional

groups (ℓ bad)

Here AG(u) denote the component group of CG(u), Ωℓ
u denote the ℓ-

special quotient and αℓ, u the cardinal of M̄ℓ(Ω
ℓ
u) (see Definition 2.3.12).

Having blank entries for Ωℓ
u and αℓ,u means that the corresponding class is

not ℓ-special.

Type G2

Classes AG(u) Ω2
u α2,u Ω3

u α3,u

1 1 1 1 1 1
A1 1 1 1

Ã1 1 1 1
G2(a1) S3 S3 6 S3 5
G2 1 1 1 1 1

117
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Type F4

Classes AG(u) Ω2
u α2,u Ω3

u α3,u

1 1 1 1 1 1
A1 1 1 1

Ã1 S2 S2 2 S2 4

A1 + Ã1 1 1 1 1 1

Ã2 1 1 1 1 1
A2 S2 S2 2 1 1

A2 + Ã1 1 1 1

Ã2 + A1 1 1 1
B2 S2 S2 2

C3(a1) S2 S2 2
F4(a3) S4 S4 8 S4 18
C3 1 1 1 1 1
B3 1 1 1 1 1

F4(a2) S2 S2 2 1 1
F4(a1) S2 S2 2 S2 4
F4 1 1 1 1 1
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Type E6

Classes AG(u) Ω2
u α2,u Ω3

u α3,u

1 1 1 1 1 1
A1 1 1 1 1 1
2A1 1 1 1 1 1
3A1 1 1 1
A2 S2 S2 2 S2 4

A2 + A1 1 1 1 1 1
A2 + 2A1 1 1 1 1 1

2A2 1 1 1 1 1
2A2 + A1 1 1 1

A3 1 1 1 1 1
A3 + A1 1 1 1
D4(a1) S3 S3 6 S3 5
A4 1 1 1 1 1
D4 1 1 1 1 1

A4 + A1 1 1 1 1 1
D5(a1) 1 1 1 1 1
A5 1 1 1

E6(a3) S2 S2 2 S2 4
D5 1 1 1 1 1

E6(a1) 1 1 1 1 1
E6 1 1 1 1 1
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Type E7

Classes AG(u) Ω2
u α2,u Ω3

u α3,u

1 1 1 1 1 1
A1 1 1 1 1 1
2A1 1 1 1 1 1
3A′1 1 1 1
3A′′1 1 1 1 1 1
A2 S2 S2 2 S2 4
4A1 1 1 1

A2 + A1 S2 S2 2 S2 4
A2 + 2A1 1 1 1 1 1
A2 + 3A1 1 1 1 1 1

A3 1 1 1 1 1
2A2 1 1 1 1 1

2A2 + A1 1 1 1
(A3 + A1)

′′ 1 1 1 1 1
(A3 + A1)

′ 1 1 1
A3 + 2A1 1 1 1
D4(a1) S3 S3 6 S3 5

D4(a1) + A1 S2 S2 2 S2 4
A3 + A2 S2 S2 2 1 1
A4 S2 S2 2 S2 4

A3 + A2 + A1 1 1 1 1 1
D4 1 1 1 1 1

A4 + A1 S2 S2 2 S2 4
D4 + A1 1 1 1
D5(a1) S2 S2 2 S2 4
A′′5 1 1 1 1 1

A4 + A2 1 1 1 1 1
A5 + A1 1 1 1

D5(a1) + A1 1 1 1 1 1
A′5 1 1 1

E6(a3) S2 S2 2 S2 4
D6(a2) 1 1 1
D5 1 1 1 1 1

E7(a5) S3 S3 6 S3 5
D6(a1) 1 1 1 1 1
D5 + A1 1 1 1 1 1
A6 1 1 1 1 1

E7(a4) S2 S2 2 1 1
D6 1 1 1

E6(a1) S2 S2 2 S2 4
E (a ) S S 2 S 4
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Type E8

Classes AG(u) Ω2
u α2,u Ω3

u α3,u Ω5
u α5,u

1 1 1 1 1 1 1 1
A1 1 1 1 1 1 1 1
2A1 1 1 1 1 1 1 1
3A1 1 1 1
A2 S2 S2 2 S2 4 S2 4
4A1 1 1 1

A2 + A1 S2 S2 2 S2 4 S2 4
A2 + 2A1 1 1 1 1 1 1 1
A2+3A1 1 1 1
2A2 2 2 2 S2 4 S2 4
A3 1 1 1 1 1 1 1

2A2+A1 1 1 1
A3+A1 1 1 1
2A2+2A1 1 1 1
D4(a1) S3 S3 6 S3 5 S3 8
A3 + 2A1 1 1 1
D4(a1) + A1 S3 S3 6 S3 5 S3 8
A3+A2 S2 S2 2 1 1 1 1

A3+A2+A1 1 1 1
D4(a1)+A2 S2 S2 2 S2 4 S2 4

A4 S2 S2 2 S2 4 S2 4
D4 1 1 1 1 1 1 1
2A3 1 1 1

A4+A1 S2 S2 2 S2 4 S2 4
D4+A1 1 1 1
A4+2A1 S2 S2 2 S2 4 S2 4
A4+A2 1 1 1 1 1 1 1
D5(a1) S2 S2 2 S2 4 S2 4

D5(a1)+A1 1 1 1 1 1 1 1
A4+A2+A1 1 1 1 1 1 1 1

A5 1 1 1
D4+A2 S2 S2 2 1 1 1 1
A4+A3 1 1 1

D5(a1)+A2 1 1 1
A5+A1 1
E6(a3) S2 S2 2 S2 4 S2 4
D6(a2) S2 S2 2

E6(a3)+A1 S2 S2 4
D5 1 1 1 1 1 1 1

E7(a5) S3 S3 6
D +A 1 1 1
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Type E8 -continued

Classes AG(u) Ω2
u α2,u Ω3

u α3,u Ω5
u α5,u

D5+A2 S2 S2 2 1 1 1 1
E6(a1) S2 S2 2 S2 4 S2 4
D7(a2) S2 S2 2 S2 4 S2 4
A7 1 1 1

E6(a1)+A1 S2 S2 2 S2 4 S2 4
D6 1 1 1

E8(b6) S3 S3 2 S3 5 S2 4
E7(a3) S2 S2 2 S2 4 S2 4
E6 1 1 1 1 1 1 1

D7(a1) S2 S2 2 1 1 1 1
E6 + A1 1 1 1
E8(a6) S3 S3 6 S3 5 S3 8
E7(a2) 1 1 1
D7 1 1 1

E8(b5) S3 S3 6 S3 5 S3 8
E8(a5) S2 S2 2 S2 4 S2 4
E7(a1) 1 1 1 1 1 1 1
E8(b4) S2 S2 2 1 1 1 1
E8(a4) S2 S2 2 S2 4 S2 4
E7 1 1 1

E8(a3) S2 S2 2 S2 4 S2 4
E8(a2) 1 1 1 1 1 1 1
E8(a1) 1 1 1 1 1 1 1
E8 1 1 1 1 1 1 1

Appendix B : Computation of ℓ-special classes and quo-

tients

lspec:=function(W, l) #Give the list of l-special unipotent

→֒ classes

local C,spec,jind,M,lspec,u,sgmax,k,n;

lspec:=[];

n:=PositionProperty([1..Length(W.roots)],i ->Sum(W.roots[W

→֒ .N])=Sum(W.coroots[i]));

#position of the longest coroot
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sgmax:=List([1..W.rank],

i->[ReflectionSubgroup(W,Concatenation([[1..i-1],[i+1..W.rank

→֒ ],[HighestS

hortRoot(W)]])),W.coroots[n][i]]);#List maximal subgroups of

→֒ the dual and give the order of the associated isolated

→֒ element

Add(sgmax,[W,1]);

C:=List(sgmax,i -> ChevieCharInfo(i[1]));

for k in [1..Length(sgmax)] do

spec:=Filtered([1..Length(C[k].a)],i->C[k].a[i]=C[k].b

→֒ [i]);

jind:=jInductionTable(sgmax[k][1],W);

M:=Transposed(Transposed(jind.scalar){spec});

u:=Filtered([1..Length(M)],i->Sum(M[i])>0);

Add(lspec, [sgmax[k][2],List(UnipotentClasses(W).

→֒ springerSeries[1].locsys{u},i -> i[1])]);

od;

lspec:=Filtered(lspec,j -> ((j[1] mod l =0) and

→֒ IsPrimePower(j[1])) or j[1]=1);

return Set(Flat(List(lspec, j->j[2])));

end;

lprimeConj:=function(G,l)#Give the list of conjugacy classes

→֒ of l'-elements.

return Filtered(ConjugacyClasses(G), i -> Gcd(Order(G,

→֒ Representative(i)),l)=1);

end;

lnumber:=function(G,l)#Count the number of l-modular

→֒ representations of centralisers of l'-elements.

return Sum(ConjugacyClasses(G),i -> Length(lprimeConj(

→֒ Centraliser(G,Representative(i)),l)));

end;

Quotient:= function(G, L)#G is a group and L a list of

→֒ representations parametrised as in CharTable. Retour

→֒ the quotient of G by the intersection of kernels of

→֒ representations in L.
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local e, C, T, K, H;

if L=[] then

return G;

else

e:=Elements(G);

C:=ConjugacyClasses(G);

T:=Transposed(CharTable(G).irreducibles);

C:=C{Filtered([1..Length(C)], i -> T[i]{L}=T[1]{L})};

H:=Flat(List(C, i->Elements(i)));

return G/H;

fi;

end;

lQuotient:= function(G, L, l)#Same as Quotient but take only

→֒ the l'-part of the intersection of kernels.

local e, C, T, K, H;

if L=[] then

return G;

else

e:=Elements(G);

C:=ConjugacyClasses(G);

T:=Transposed(CharTable(G).irreducibles);

C:=C{Filtered([1..Length(C)], i -> T[i]{L}=T[1]{L})};

H:=Flat(List(C, i->Elements(i)));

H:=Filtered(H,i -> Gcd(Order(G,i),l)=1);

return G/H;

fi;

end;

lAubar:=function(W,x,l)#Return the group Gamma_x^l

local ucl,u,locsys,C, Au,Pos, i,j,a, D,Fil, Max,E,L;

ucl:=UnipotentClasses(W);

u:=ucl.classes[x];

locsys:=ucl.springerSeries[1].locsys;

C:=ChevieCharInfo(W);

Au:=u.Au;

Pos:=List([1..Length(ConjugacyClasses(Au))], i ->

→֒ PositionProperty(locsys,j -> j[1]=x and j[2]=i));#
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→֒ Give the position of the Springer correspondent E_{x

→֒ ,i}

D:=Transposed(DecompositionMatrix(Au,l));

a:=List([1..Length(D)], i -> -1);

for i in [1..Length(D)] do

Fil:=Filtered([1 .. Length(Pos)], j -> Pos[j] <> false

→֒ and D[i][j]<>0);

if Fil <> [] then

a[i]:=Minimum(List(Pos{Fil}, j->C.a[j]));

fi;

od;

Max:=Maximum([0,Maximum(a)]);

E:=Transposed(D{Filtered([1..Length(D)], i -> a[i]=Max)});

L:=List(E, i->Maximum(i));

return Quotient(Au,PositionsProperty(L,i -> i<>0));

end;

countublock:= function(W,l) # Return the number unipotent l

→֒ modular representations of the simple adjoint

→֒ exceptionnal group of type W.

local i,ls;

ls:=lspec(W,l);

return Sum(ls, i -> lnumber(lAubar(W,i,l),l));

end;



Index of notation

Bs(G) . . . . . . . . . . . . . . . . . . . . . . . . . .45
Eu,φ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Pk(G) . . . . . . . . . . . . . . . . . . . . . . . . . . 20
RK(G) . . . . . . . . . . . . . . . . . . . . . . . . . . 7
ZG(u) . . . . . . . . . . . . . . . . . . . . . . . . . .93
IrrC(G)g . . . . . . . . . . . . . . . . . . . . . . . 62
Ωu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Ωℓ
u . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Φ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

αℓ,u, αℓ . . . . . . . . . . . . . . . . . . . . . . . . . 66
M̄ℓ(Ω) . . . . . . . . . . . . . . . . . . . . . . . . . 66
γu,Γu . . . . . . . . . . . . . . . . . . . . . . . . . . 84
E(G, s)F . . . . . . . . . . . . . . . . . . . . . . . 56
M(Ω). . . . . . . . . . . . . . . . . . . . . . . . . .53
Ω̃ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
M̃(Ω),M̄(Ω) . . . . . . . . . . . . . . . . . . 54
ms(G) . . . . . . . . . . . . . . . . . . . . . . . . . 71
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