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Résumé

La mémoire de travail peut être définie comme la capacité à stocker temporairement
et à manipuler des informations de toute nature. Par exemple, imaginez que l’on
vous demande d’additionner mentalement une série de nombres. Afin de réaliser
cette tâche, vous devez garder une trace de la somme partielle qui doit être mise
à jour à chaque fois qu’un nouveau nombre est donné. La mémoire de travail est
précisément ce qui permettrait de maintenir (i.e. stocker temporairement) la somme
partielle et de la mettre à jour (i.e. manipuler). Dans cette thèse, nous proposons
d’explorer les implémentations neuronales de cette mémoire de travail en utilisant
un nombre restreint d’hypothèses. Pour ce faire, nous nous plaçons dans le contexte
général des réseaux de neurones récurrents et nous proposons d’utiliser en parti-
culier le paradigme du reservoir computing. Ce type de modèle très simple permet
néanmoins de produire des dynamiques dont l’apprentissage peut tirer parti pour
résoudre une tâche donnée. Dans ce travail, la tâche à réaliser est une mémoire de
travail à porte (gated working memory). Le modèle reçoit en entrée un signal qui con-
trôle la mise à jour de la mémoire. Lorsque la porte est fermée, le modèle doit main-
tenir son état de mémoire actuel, alors que lorsqu’elle est ouverte, il doit la mettre à
jour en fonction d’une entrée. Dans notre approche, cette entrée supplémentaire est
présente à tout instant, même lorsqu’il n’y a pas de mise à jour à faire. En d’autres
termes, nous exigeons que notre modèle soit un système ouvert, i.e. un système qui
est toujours perturbé par ses entrées mais qui doit néanmoins apprendre à conserver
une mémoire stable.

Dans la première partie de ce travail, nous présentons l’architecture du modèle et ses
propriétés, puis nous montrons sa robustesse au travers d’une étude de sensibilité
aux paramètres. Celle-ci montre que le modèle est extrêmement robuste pour une
large gamme de paramètres. Peu ou prou, toute population aléatoire de neurones
peut être utilisée pour effectuer le gating. Par ailleurs, après apprentissage, nous
mettons en évidence une propriété intéressante du modèle, à savoir qu’une informa-
tion peut être maintenue de manière entièrement distribuée, i.e. sans être corrélée à
aucun des neurones mais seulement à la dynamique du groupe. Plus précisément,
la mémoire de travail n’est pas corrélée avec l’activité soutenue des neurones ce
qui a pourtant longtemps été observé dans la littérature et remis en cause récem-
ment de façon expérimentale. Ce modèle vient confirmer ces résultats au niveau
théorique. Dans la deuxième partie de ce travail, nous montrons comment ces mod-
èles obtenus par apprentissage peuvent être étendus afin de manipuler l’information
qui se trouve dans l’espace latent. Nous proposons pour cela de considérer les con-
ceptors qui peuvent être conceptualisé comme un jeu de poids synaptiques venant
contraindre la dynamique du réservoir et la diriger vers des sous-espaces partic-
uliers; par exemple des sous-espaces correspondants au maintien d’une valeur par-
ticulière. Plus généralement, nous montrons que ces conceptors peuvent non seule-
ment maintenir des informations, ils peuvent aussi maintenir des fonctions. Dans
le cas du calcul mental évoqué précédemment, ces conceptors permettent alors de se
rappeler et d’appliquer l’opération à effectuer sur les différentes entrées données au
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système. Ces conceptors permettent donc d’instancier une mémoire de type procé-
dural en complément de la mémoire de travail de type déclaratif. Nous concluons
ce travail en remettant en perspective ce modèle théorique vis à vis de la biologie et
des neurosciences.
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Introduction Générale

La notion de nombre est l’un des premiers concepts mathématiques abstraits que les
enfants apprennent à l’école. En fait, selon l’auteur de l’article, avant même d’aller
à l’école, les enfants ont déjà une notion approximative du nombre (Dehaene, 1997).
La même notion de nombre, avec les mêmes défauts, que l’on retrouve chez d’autres
espèces comme les rats ou les singes. Plus le nombre est grand, moins sa représen-
tation est précise. Cependant, il a été constaté que cette représentation des nombres
devient de plus en plus précise au cours de la scolarité. Lorsqu’on demande aux en-
fants de classer les nombres de 1 à 100 sur une ligne à l’âge de 6 ans (c’est-à-dire à la
fin de la maternelle), ils les classent de manière logarithmique, tandis qu’à l’âge de
8 ans (c’est-à-dire à la fin de la deuxième année d’école primaire), ils les classent de
manière linéaire (Siegler and Booth, 2004). De plus, en apprenant à compter, les en-
fants obtiennent une représentation vraiment précise des nombres. Chaque nombre
devient associé à un symbole (par exemple, les nombres écrits, les nombres parlés, le
nombre de doigts levés dans les mains) qui représente uniquement ce nombre. En-
suite, ils apprendront à utiliser ces représentations précises des nombres pour, par
exemple, comparer des quantités, les additionner, les soustraire ou les multiplier.
Ces apprentissages passent par différentes étapes. Les enfants apprennent d’abord
par cur quelques faits numériques. Ensuite, vu la taille des exemples à connaître, au
lieu d’apprendre des exemples par cur, ils apprendront des procédures (c’est-à-dire
des stratégies pour décomposer la tâche en sous-tâches plus faciles, et séquentialiser
la résolution). Par exemple, lorsque les enfants apprennent à compter, ils doivent ap-
prendre la séquence des nombres entiers naturels. Pour ce faire, ils commencent par
apprendre les premiers chiffres (par exemple jusqu’à 10 lorsqu’ils ont 4 ans, jusqu’à
100 lorsqu’ils ont 6 ans, ou jusqu’à 1000 lorsqu’ils ont 8 ans). Mais la séquence des
nombres naturels est infinie, il n’est donc pas possible de les apprendre tous par
cur. Même avec des nombres plus grands, les enfants de 10 ans apprendront plutôt
la décomposition des nombres en milliards, millions, milliers, centaines, dizaines,
unités, et le lien entre ces quantités (par exemple, un milliard est mille million, un
million est un mille millier, un millier est un dix centaines). De même, lorsque les
enfants apprennent l’addition, vers 6 ans, ils apprennent d’abord la somme de deux
nombres à un chiffre (aussi appelé table d’addition). Ils peuvent commencer par
compter sur leurs doigts, mais très vite, ils devront connaître par cur leur table d’ad-
dition. Compte tenu de la symétrie, cela représente quelques dizaines de faits arith-
métiques (par exemple, 1 + 1 = 2, 1 + 2 = 3, etc.) qu’ils connaîtront par cur à l’âge
de 6 ans. Cependant, pour les nombres à deux chiffres, il y aurait 100 fois plus de
faits arithmétiques à connaître, et encore 100 fois plus pour chaque chiffre supplé-
mentaire. Au lieu d’apprendre par cur, ils apprendront de nombreuses techniques.
Par exemple, pour ajouter 9 à 27, ils pourraient décomposer 9 en 10 - 1. L’ajout de
10 augmenterait les dixièmes chiffres de 1, la suppression de 1 diminuerait le chiffre
de l’unité de 1. Enfin, pour faire des sommes dans le cas le plus général, à l’âge de 8
ans, ils apprendraient un algorithme général. Par exemple, ils ajouteraient d’abord
les chiffres de l’unité, puis les dixièmes deux chiffres avec le report potentiel, puis
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les centaines de chiffres avec le report potentiel, etc.

Au début, les enfants apprennent à mettre en uvre de telles procédures en utilisant
un support externe pour la mémoire (par exemple en utilisant leurs doigts pour
compter, en utilisant un stylo et du papier pour décomposer une addition). Mais
ce qui est intéressant dans le contexte de ma thèse, c’est que plus tard, ils appren-
nent également à les faire "dans leur tête", c’est-à-dire sans aucun support externe
pour la mémoire. Par exemple, ils arrêteront d’utiliser leurs doigts pour compter,
ou ils n’auront plus besoin d’un stylo et d’un papier pour ajouter des nombres à
plusieurs chiffres. En fait, leur capacité à retenir temporairement des informations
dans leur tête ne cessera de s’améliorer tout au long de leur enfance (Gathercole,
1999). Entre 3 et 16 ans, leur performance dans diverses tâches impliquant la conser-
vation temporaire d’informations fera plus que doubler. Il est intéressant de noter
que cette amélioration cognitive coïncide avec le développement d’une de leurs ré-
gions cérébrales : le cortex préfrontal (PFC) (Uytun, 2018).

La capacité de conserver et de manipuler temporairement des informations dans
leur tête est également connue sous le nom de mémoire de travail (WM). D’une cer-
taine manière, la mémoire de travail peut être considérée comme une extension de
la mémoire à court terme. La mémoire à court terme se concentre uniquement sur
le stockage temporaire de l’information (Atkinson and Shiffrin, 1968). Cependant,
on s’est rendu compte qu’il était difficile de démêler le stockage temporaire de l’in-
formation et son traitement. Les deux sont liés et s’influencent mutuellement (Craik
and Lockhart, 1972). C’est pourquoi le concept de mémoire de travail a été inventé
par Baddeley and Hitch pour combiner à la fois le stockage temporaire et le traite-
ment (Baddeley and Hitch, 1974). Depuis lors, de nombreux chercheurs ont essayé
de comprendre son fonctionnement. Certains d’entre eux visent à identifier ses pro-
priétés/limites, et maintenant une pléthore d’effets sont connus. A tel point qu’il est
devenu difficile d’identifier quelles sont ses propriétés les plus importantes à mod-
éliser. Récemment, Oberauer et al. a rassemblé ces effets et les données les montrant
et a essayé de guider la modélisation en classant leur importance (Oberauer et al.,
2018). Afin d’aller plus loin dans la compréhension de la mémoire de travail, un
autre axe de recherche est mis en place pour identifier comment elle est mise en u-
vre dans le cerveau. En fait, il n’y a pas que les humains qui ont une mémoire de
travail, beaucoup d’autres espèces en ont une et en particulier les primates non hu-
mains. En étudiant le cerveau de ces primates non humains, une région cérébrale a
été identifiée comme cruciale pour la mémoire de travail : le cortex préfrontal (PFC)
(Funahashi, 2017a). Encore une fois, il s’agit de la même région cérébrale. En ef-
fet, il a été noté que des dommages au PFC entraînent des déficits de la mémoire
de travail (Funahashi, 2017a). De plus, des enregistrements dans le PFC ont mon-
tré des représentations de la mémoire de travail (Funahashi, 2017a). Mais le rôle
du PFC n’est pas encore complètement compris et de nombreuses autres régions
du cerveau, y compris les régions corticales et sous-corticales, semblent jouer un
rôle (Christophel et al., 2017). En outre, la manière dont le PFC maintiendrait ou
aiderait à maintenir l’information n’est pas encore totalement comprise non plus.
Une hypothèse qui est soutenue par des preuves empiriques est que pour main-
tenir l’information, les neurones le font par une activité neuronale soutenue (Leav-
itt, Mendoza-Halliday, and Martinez-Trujillo, 2017). Mais dans certains contextes,
il a été constaté que ce n’était pas le cas. Cela suggère qu’il existe des moyens de
maintenir l’information d’une manière silencieuse par rapport à l’activité. Une autre
hypothèse suggère donc que l’information pourrait être maintenue à court terme de
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manière synaptique (Mongillo, Barak, and Tsodyks, 2008a). Une autre hypothèse en-
core propose que l’information pourrait être encodée de manière plutôt dynamique,
c’est-à-dire que la représentation de l’information détenue dans les neurones change
au fil du temps (Stokes, 2015a).

La plupart des modèles de calcul de la mémoire de travail proposent de fabriquer
des attracteurs avec les neurones (par exemple, des attracteurs plans (Amari, 1977),
des attracteurs en forme d’anneau (Compte, 2000), des attracteurs en forme de ligne (Lim
and Goldman, 2013a)). Ils supposent donc implicitement que les neurones utilisent
une activité soutenue pour maintenir l’information. S’il existe quelques modèles de
calcul pour la mémoire de travail synaptique (Mongillo, Barak, and Tsodyks, 2008a),
à notre connaissance, aucun modèle de calcul n’a tenté d’expliquer comment l’en-
codage peut être dynamique, ni même comment ces différentes manières de main-
tenir (soutenu, dynamique, synaptique) peuvent coexister/interagir. De plus, la plu-
part des modèles se concentrent sur la manière dont les neurones peuvent maintenir
et non sur la manière dont les neurones décident quand et quoi maintenir, c’est-
à-dire sur l’aspect procédural de la mémoire de travail. Le seul dont nous ayons
connaissance est celui de O’Reilly and Frank qui repose sur un circuit complexe
impliquant de nombreuses régions du cerveau, dont le PFC (O’Reilly and Frank,
2006a).

Le premier objectif majeur de cette thèse est de proposer un mécanisme neuronal
qui utilise un encodage dynamique pour maintenir l’information et identifier ce qui
peut faire passer son comportement de soutenu à dynamique. Contrairement aux
modèles actuels, pour trouver le mécanisme neuronal potentiel, nous évitons de
décider a priori quel mécanisme est utilisé pour maintenir. Nous profitons de la
capacité des réseaux neuronaux récurrents (RNN) à apprendre des tâches. Nous
utilisons une classe très simple de RNN, appelés réservoirs, qui semblent avoir des
propriétés similaires à celles du PFC (Enel et al., 2016a). Nous enseignons à ces réser-
voirs comment résoudre une tâche de "gating", puis nous disséquons le mécanisme
que ce réseau utilise pour maintenir l’information. Ce "gating" pourrait être con-
sidéré comme un mécanisme générique de maintien de l’information. Il combine
deux sous-mécanismes : (1) un mécanisme de porte qui s’ouvre lorsque de nou-
velles informations doivent être stockées et se ferme dans le cas contraire, et (2) un
mécanisme qui maintient (resp. met à jour) les informations lorsque la porte est fer-
mée (resp. ouverte). Ces deux mécanismes pourraient être mis en uvre par deux
régions cérébrales différentes (O’Reilly and Frank, 2006a). Le ganglion basal (BG)
effectuerait le premier tandis que le PFC effectuerait le second. Nous explorons ici
le second mécanisme, c’est-à-dire celui qui pourrait être exécuté par le PFC. En fait,
nous allons un peu plus loin en essayant de relier une éventuelle mémoire de travail
synaptique à la mémoire de travail neurale par activité que nous avons proposée. À
cette fin, nous utilisons des concepteurs qui ont été introduits comme modèle pour
les mémoires à long terme de modèles temporels (Jaeger, 2017a).

Cette thèse est sur article et est structurée comme suit. Tout d’abord, nous faisons
une revue complète de la littérature combinant (1) les études expérimentales de la
mémoire de travail en neurosciences et en psychologie (voir Chapitre 2), (2) la de-
scription théorique de la mémoire de travail allant des abstraits comme celui de
Baddeley aux précis avec des systèmes dynamiques (voir Chapitre 3), et (3) une de-
scription historique de l’évolution des réseaux neuronaux récurrents pour surmon-
ter un problème analogue à un problème de mémoire de travail (voir Chapitre 4).
L’examen complet est directement suivi de deux chapitres de contribution. Dans
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le chapitre 5, nous nous concentrons sur un mécanisme neuronal de "gating" (pub-
lié (Strock, Hinaut, and Rougier, 2020)). Dans le chapitre 6, nous explorons une
mémoire de travail synaptique (en révision (Strock, Rougier, and Hinaut, 2020)). En-
fin, dans le chapitre 7, nous résumons les conclusions tirées de notre approche, nous
discutons ses limites ainsi que ses perspective.
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Abstract

Working memory can be defined as the ability to temporarily store and manipulate
information of any kind. For example, imagine that you are asked to mentally add
a series of numbers. In order to accomplish this task, you need to keep track of the
partial sum that needs to be updated every time a new number is given. The work-
ing memory is precisely what would make it possible to maintain (i.e. temporarily
store) the partial sum and to update it (i.e. manipulate). In this thesis, we propose
to explore the neuronal implementations of this working memory using a limited
number of hypotheses. To do this, we place ourselves in the general context of re-
current neural networks and we propose to use in particular the reservoir computing
paradigm. This type of very simple model nevertheless makes it possible to produce
dynamics that learning can take advantage of to solve a given task. In this job, the
task to be performed is a gated working memory task. The model receives as in-
put a signal which controls the update of the memory. When the door is closed, the
model should maintain its current memory state, while when open, it should update
it based on an input. In our approach, this additional input is present at all times,
even when there is no update to do. In other words, we require our model to be an
open system, i.e. a system which is always disturbed by its inputs but which must
nevertheless learn to keep a stable memory.

In the first part of this work, we present the architecture of the model and its proper-
ties, then we show its robustness through a parameter sensitivity study. This shows
that the model is extremely robust for a wide range of parameters. More or less, any
random population of neurons can be used to perform gating. Furthermore, after
learning, we highlight an interesting property of the model, namely that information
can be maintained in a fully distributed manner, i.e. without being correlated to any
of the neurons but only to the dynamics of the group. More precisely, working mem-
ory is not correlated with the sustained activity of neurons, which has nevertheless
been observed for a long time in the literature and recently questioned experimen-
tally. This model confirms these results at the theoretical level. In the second part of
this work, we show how these models obtained by learning can be extended in order
to manipulate the information which is in the latent space. We therefore propose to
consider conceptors which can be conceptualized as a set of synaptic weights which
constrain the dynamics of the reservoir and direct it towards particular subspaces;
for example subspaces corresponding to the maintenance of a particular value. More
generally, we show that these conceptors can not only maintain information, they can
also maintain functions. In the case of mental arithmetic mentioned previously, these
conceptors then make it possible to remember and apply the operation to be carried
out on the various inputs given to the system. These conceptors therefore make it
possible to instantiate a procedural working memory in addition to the declarative
working memory. We conclude this work by putting this theoretical model into per-
spective with respect to biology and neurosciences.
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Chapter 1

General Introduction

The notion of number is one of the first abstract mathematical concepts that kids
learn in school. Actually, according to Dehaene, even before going to school kids
already have an approximate notion of number (Dehaene, 1997). The same notion
of number, with the same flaws, that can be found in other species such as rats or
monkeys. The larger the number, the less accurate its representation is. However, it
has been found that this representation of numbers becomes more and more accu-
rate during schooling. When kids are asked to arrange the numbers from 1 to 100
on a line by the age of 6 (i.e. end of kindergarten), they will arrange them logarith-
mically, while by the age of 8 (i.e. end of second grade) they will arrange them lin-
early (Siegler and Booth, 2004). Moreover, as they learn to count, kids obtain a truly
precise representation of numbers. Each number becomes associated with a symbol
(e.g. written numbers, spoken numbers, number of fingers lifted in the hands) that
represents only this number. Afterward, they will learn how to use these accurate
representations of numbers to, for example, compare quantities, add, subtract, or
multiply them. These learnings go through different stages. First kids will learn
by heart a few numerical facts. Then, given the size of the examples to be known,
instead of learning examples by heart, they will learn procedures (i.e. strategies to
break down the task into easier tasks and sequentialize the resolution). For example,
when kids learn to count, they have to learn the sequence of natural numbers. To
do so, they first start by learning the first few numbers (e.g. up to 10 when they are
4 years old, up to 100 when they are 6 years old, or up to 1000 when they 8 years
old). But the sequence of natural numbers is infinite, it is thus not possible to learn
them all by heart. Even with bigger numbers 10-year-old kids will rather learn the
decomposition of number in billions, millions, thousands, hundreds, tens, units, and
the link between these quantities (e.g. one billion is thousand million, one thousand
is ten hundred). Similarly, when kids learn addition, around 6 years old they learn
first all the sum of two single-digit numbers (a.k.a. addition table). They may start
by counting on their fingers, but very soon they will have to know their addition ta-
ble by heart. Given the symmetry, that’s a few dozen arithmetic facts (e.g. 1+ 1 = 2,
1 + 2 = 3, etc.) that they will know by heart by the age of 6. However for double-
digit numbers, it would be 100 times more arithmetic fact to know, and another 100
times more for each additional digit. Instead of learning by heart, they will learn
many techniques. For instance, to add 9 to 27, they could decompose 9 into 10 - 1.
Adding 10 would increment the tenth digits by 1, removing 1 would decrement the
unit digit by 1. In the end, to make sums in the most general case, at the age of 8
they would learn a general algorithm. For instance, they would first add the unit
digits, and then add the tenth two-digits with the potential carry over, and then add
the hundreds digits with the potential carryover, etc.
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In the beginning, kids learn to implement such procedures by using external support
for memory (e.g. using their fingers to count, using pen and paper to break down
an addition). But what is interesting in the context of my thesis is that later on they
also learn to do them "in their heads", i.e. without any external support for memory.
For instance, they would stop using their fingers to count, or they wouldn’t need
anymore a pen and a paper to add multi-digit numbers. In fact, their ability to
temporarily hold information in their heads will keep improving throughout their
childhood (Gathercole, 1999). Between the ages of 3 and 16, their performance on
various tasks involving maintaining temporary information will more than double.
Interestingly, this cognitive improvement coincides with the development of one of
their brain region: the prefrontal cortex (PFC) (Uytun, 2018).

The ability to temporarily hold and manipulate information in their heads is also
known as working memory (WM). In some way, working memory can be seen as an
extension of short-term memory. Short-term memory focuses only on the temporary
storage of the information (Atkinson and Shiffrin, 1968). However, it was realized
that it was difficult to untangle the temporary storage of information, and its pro-
cessing. The two are interlinked and influence each other (Craik and Lockhart, 1972).
Hence the concept of working memory has been coined by Baddeley and Hitch to
combine both temporary storage and processing (Baddeley and Hitch, 1974). Since
then a lot of researchers have tried to understand its functioning. Some of them is
aiming at identifying its properties/limitations, and now a plethora of effects are
known. So much so that it became difficult to identify which are its most important
properties to model. Recently, Oberauer et al. collected these effects and the data
showing them and tried to guide the modeling by ranking their importance (Ober-
auer et al., 2018). In order to go further in the understanding of working memory
another line of research aimed at identifying how it is implemented in the brain. In
fact, it is not just humans who have a working memory, many other species have and
especially non-human primates. By studying the brain of such non-human primates,
a brain region has been identified as crucial for working memory: the prefrontal
cortex (PFC) (Funahashi, 2017a). Yet again the same brain region. Indeed, it has
been noted that damage to the PFC leads to working memory deficits (Funahashi,
2017a). Moreover, recordings in the PFC have exhibited working memory represen-
tations (Funahashi, 2017a). But the role of PFC is not yet completely understood and
a lot of other regions of the brain including cortical and subcortical regions seem to
play a role (Christophel et al., 2017). Beyond that, how the PFC would maintain or
help maintain information is not yet fully understood either. One hypothesis that is
supported by empirical evidence is that in order to maintain information, neurons
do it through sustained neural activity (Leavitt, Mendoza-Halliday, and Martinez-
Trujillo, 2017). But in some contexts, it has been noted that this was not the case. This
suggests that there are ways of maintaining information in an activity-silent way.
Another hypothesis therefore suggests that the information could be maintained in
the short-term in a synaptic way (Mongillo, Barak, and Tsodyks, 2008a). Alterna-
tively, yet another hypothesis proposes that the information could be encoded in a
rather dynamic way instead, i.e. the representation of the information held in the
neurons changes over time (Stokes, 2015a).

Most computational models of working memory propose how to handcraft attrac-
tors with neurons (e.g. plane attractors (Amari, 1977), ring attractors (Compte, 2000),
line attractors (Lim and Goldman, 2013a)). They will therefore implicitly assume
that neurons use sustained activity to maintain information. If there are some com-
putational models for synaptic working memory (Mongillo, Barak, and Tsodyks,
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2008a), to the best of our knowledge, not any computational model have tried to ex-
plain how the encoding can be dynamic, or even how these different ways of main-
taining (sustained, dynamic, synaptic) can coexist/interact. Moreover, most models
focus on how neurons can maintain and not on how neurons decide when and what
to maintain, i.e. on the procedural aspect of working memory. The only one we
are aware of is the one of O’Reilly and Frank which relies on a complex circuitry
involving many brain regions including PFC (O’Reilly and Frank, 2006a).

The first major aim of this thesis is to propose a neural mechanism that uses a dy-
namic encoding to maintain information and to identify what can switch its behav-
ior from sustained to dynamic. Unlike current models, to find the potential neu-
ral mechanism we avoid handcrafting. We take advantage of the ability of Recur-
rent Neural Networks (RNN) to learn tasks. We use a very simple class of RNN,
a.k.a. reservoirs, which appear to have properties similar to those of PFC (Enel et al.,
2016a). We teach these reservoirs how to solve a gating task, and then we dissect
what mechanism this network takes to maintain information. This gating could be
considered as a generic mechanism for maintaining information. It combines two
sub-mechanisms: (1) a mechanism that acts as a gate, opens when new informa-
tion needs to be stored and closes otherwise, and (2) a mechanism that maintains
(resp. updates) information when the door is closed (resp. open). It has been hy-
pothesized that the two mechanisms could be carried out by two different brain
regions (O’Reilly and Frank, 2006a). The Basal Ganglia (BG) would perform the first
while the PFC would perform the second. Here we explore the second mechanism,
i.e. the one that could be performed by the PFC. In fact, we are going a little further
by making an attempt to link a possible synaptic based working memory with the
neural activity-based working memory we proposed. For this purpose, we use Con-
ceptors that has been introduced as a model for long-term memories of temporal
patterns (Jaeger, 2017a).

This thesis is article-based, and it is structured as follows. First, we make a com-
prehensive review of the literature combining (1) the experimental studies of work-
ing memory in neuroscience and in psychology (see Chapter 2), (2) the theoretical
description of working memory ranging from abstract ones like Baddeley’s to pre-
cise ones with dynamical systems (see Chapter 3), and (3) a historical description of
how recurrent neural networks evolved to overcome a problem analog to a working
memory problem (see Chapter 4). The comprehensive review is directly followed
by two contribution Chapters. In Chapter 5 we focus on a neural mechanism for
gating (published (Strock, Hinaut, and Rougier, 2020)). In Chapter 6 we explore pos-
sible synaptic mechanism for working memory (in revision (Strock, Rougier, and
Hinaut, 2020)). Finally in Chapter 7 we summarize the conclusions drawn from our
approach, we discuss its limitation as well as its perspective.
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Chapter 2

Working memory: Empirical

The primary purpose of this chapter is to clarify what is working memory (see Sec-
tion 2.1). The second is to give a global view of how working memory is studied
experimentally (see Section 2.2), and a global view of what are the most important
experimental findings concerning working memory, both behaviourally (see Sec-
tion 2.3) and neurophysiologically (see Section 2.4).

2.1 The definitions of working memory

Working memory is a concept that has evolved over the years (Cowan, 2008; Cowan,
2016). Already at the end of the 80s James proposed that, like computer memory, hu-
man memory can be categorized in two types (James, 1890): (1) the primary memory,
a small volatile memory representing the conscious present, and (2) the secondary
memory, a big and less volatile memory representing the knowledge stored over
a lifetime. Later, Atkinson and Shiffrin revisited this distinction by clarifying it in
terms that are less related to computers (Atkinson and Shiffrin, 1968). Atkinson
and Shiffrin proposed the concept of short-term memory as a memory where in-
formation is stored in a very accessible state temporarily. If primary memory and
short-term memory are similar concepts they differ in their implication of conscious-
ness/awareness. For Atkinson and Shiffrin, consciousness/awareness has no main
role in short-term memory. It is possible that information can be accessed with-
out being or having been part of the conscious present. Without distinction, strictly
speaking, with short-term memory, the term working memory has been coined in
the literature by Miller, Galanter, and Pribram (Miller, Galanter, and Pribram, 1960).
It was then popularized later by Baddeley and Hitch with a slightly different mean-
ing (Baddeley and Hitch, 1974). For Baddeley and Hitch, short-term storage of in-
formation and its processing should not be dissociated. They are two sides of the
same coin, what they call working memory.

To ground working memory to something concrete, let us illustrate its role with an
example. When a person is asked to verbally solve a mental calculation such as
27+9, many different strategies can be used. For example, she could decompose 9
into 10 − 1, and thus increase the tenth digit and decrease the unit digit. She could
also decompose 9 in 3 + 6 so that she took enough from 9 to fill 27 in 30, and the
remaining would be the unit. Alternatively, she could recognize 27 as a multiple
of 9 (i.e. 27 = 3 × 9), and interpret the question as "what is the next multiple of 9
after 27?". However, whichever strategy, before doing the math, the person must
remember the calculation she was asked to make. Concretely, this means that this
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person has to remember the audio stimulus that she experienced in the absence of
this stimulus. Then, to do the math, the person will choose a strategy. For the sake of
the example, let us say that she chooses the classical addition algorithm she learned
in school. Then, she would start by adding 7 and 9, remember 6 and the carry-
over, then add 2 and the carry-over, remember 3, and finally answer 36. During this
procedure, which takes place inside her head, we can see that the information she
maintains is evolving. Before arriving at the solution, she has to go through partial
results that she has to remember at the end in order to respond. She must also
remember intermediate information, such as the carry-over, which becomes useless
and discarded long before the final result is found. After some time, e.g. several
days, if one tries to ask that person again for the result of the calculation that she was
asked, she will probably not be able to answer. This person may not even remember
what calculation she was asked to do, or even less every step she went through to
solve that mental calculation. To sum up, (1) to do the mental calculation the person
remembered information, and (2) when it was no longer useful she forgot it. This
shows that there is information that people only maintain for a short time, e.g. when
it is useful. That is not only true for people, most animals are also capable of holding
temporary information. The information that is maintained can be as well related to
perception (e.g. visual or auditory stimuli) as abstract (e.g. intermediate calculations
required to solve some mental arithmetic).

Since the term working memory has been coined by Miller, Galanter, and Pribram
it has been used with various different definitions (Cowan, 2016). Recently, Cowan
gathered and compared nine of them (Cowan, 2016). He has highlighted five main
features that distinguish them: (1) does working memory include passive storage? ,
(2) does working memory include processing?, (3) are long-term memory interaction
part of working memory?, (4) does working memory have limited capacity?, and (5)
is working memory multi-component in nature? Let us use the former mental cal-
culation example to illustrate the first three. (1) In the mental calculation example,
all the temporary memories used to do the math are tightly linked to conscious-
ness/awareness, i.e. when the memory is retained, the person is aware that the
memory is retained. However, by using subliminal visual stimuli, i.e. that last for a
very short time (≈ 20ms), Soto, Mäntylä, and Silvanto have shown that information
can be stored temporarily and used without consciously doing so, hence without any
kind of rehearsal or reactivation (Soto, Mäntylä, and Silvanto, 2011). The question
is therefore whether the same mechanisms are used in both cases? Should a distinc-
tion be made? For a recent review on conscious/unconscious working memory see
(Velichkovsky, 2017). (2, 3) In the mental calculation example, doing the calculation
does not only involve temporary storage but also the processing of the information
that is stored (e.g. the sum algorithm used) or access to long-term memory (e.g. ad-
dition tables learned at school). Initially, when Miller, Galanter, and Pribram used
the term working memory, there was no clear difference between short-term stor-
age and working memory (Miller, Galanter, and Pribram, 1960). The distinction
was rather between long-term and short-term memories because of their different
properties, e.g. temporal decay (Cowan, 2008). However, over the years, the term
working memory has evolved to also describe the whole system that temporarily
maintains information and processes that information.

This variety of definitions of working memory results in a wide range of experimen-
tal studies. However, that is not the only reason why working memory experimental
literature is so vast. For instance, as working memory can hold information of differ-
ent nature (e.g. auditory, visual, olfactory, tactile, ...), each different nature requires
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its own experimental paradigm. Moreover, the objectives of working memory exper-
imental studies vary a lot. Some studies aim at characterizing the limits of human
working memory, and thus they will use more and more complex tasks, whereas
some others use animal models (e.g. monkeys, rats) to discover the neural founda-
tion of working memory, and they will focus first on simpler tasks. The goal of the
following section is to give an overview of the principal experimental paradigms, i.e.
tasks performed and data collected, and why they are used. To build this overview
the following three main recent reviews were used: (Oberauer et al., 2018) closer to
psychology, (Funahashi, 2017a) closer to neuroscience, (Chai, Hamid, and Abdullah,
2018) at the interface between psychology and neuroscience.

2.2 Experimental paradigms

Working memory tasks are designed such that the expected response depends on
what should be stored in/processed by working memory. Generally speaking, we
can distinguish between three different types of working memory experimental paradigm:
(1) temporary storage of a single stimulus, (2) temporary storage of a sequence of
stimuli, and (3) temporary storage of several stimuli and its internal processing. As
the name suggests, the first two types focus only on the temporary storage of infor-
mation whereas in the third type the emphasis is not only on the temporary storage
of information but also on the inner manipulation of the content that is stored.

In order to have a period where only one stimulus is maintained, an explicit delay
is added between the arrival of the first stimuli and the expected response. Indeed,
since there is a delay between the first stimulus and the response and because the
response depends on this stimulus, it is expected that something about the stimulus
will be held in memory during this delay. Moreover, during this delay, no stimuli are
given, i.e. the first stimulus is not given anymore and no other stimuli are provided.
There is thus, in theory, a moment when the first stimulus and only the first stimulus
is held in memory. That is why this paradigm is the most widely used in animal
studies. To understand how the brain holds temporary information, one can start
by understanding how within this delay the brain holds a stimulus. This paradigm
is common to several tasks such as for example the delayed match to sample task
(DMTS, see Figure 2.1) (Aggleton, Hunt, and Rawlins, 1986). In this task, a stimulus
is presented briefly, followed by a delay of several seconds to a few minutes where
no additional stimuli are received. After this delay, the same stimulus and a different
one are presented simultaneously and the animal must choose the one presented
before the delay to get a reward. In order to recognize which of the two is the correct
stimuli, the animal should somehow have held in memory something which helps
to recognize the first stimulus. There are multiple variants of these delay tasks, and
some of them are even studied in humans. For instance, in the change detection task
(CD) (Wilken and Ma, 2004) the subject receives a first stimulus, a delay is introduced
and then the subject receives a second stimulus and must determine whether or not
the second stimulus is the same than the first one. The main difference is that the
two stimuli are not presented simultaneously after the delay. However, the overall
idea is very similar.

Many types of information can be stored in memory during the delay but in the
present work, we focused on information evolving in a continuous space such as for
example in the delayed vibrotactile comparison task (see Figure 2.2) (Barak et al.,
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FIGURE 2.1: Delayed match to sample task. (Left) Sample: First, the
monkey is shown a visual stimulus on a screen, here a ladybug pic-
ture. (Middle) Delay: Then, the monkey waits in front of an empty
screen for several seconds or even a few minutes. (Right) Match: Fi-
nally, two visual stimuli are shown, and the monkey has to recognize
and select the stimuli he has seen before the delay. Here, on the left,
the monkey is shown a flower picture, and on the right a ladybug
picture, and he has to select the ladybug picture. Figure extracted

from (Curry et al., 2017).

2013). In this task, a vibrational stimulus is applied to the hand of a monkey fol-
lowed by a delay. After this delay, another vibrational stimulus is applied and the
monkey has to decide which of the first or second stimuli was vibrating at the high-
est frequency. In order to compare both stimuli, the monkey has to remember the
frequency of the first stimulus during the delay period. In theory, these frequencies
could possibly evolve continuously from 0 to infinity. That is precisely why the in-
formation the monkey has to store evolve in a continuous space. Similar vibrotactile
tasks have also been studied in humans (Bancroft, Hockley, and Servos, 2011). In
humans, color has been used as a continuous dimension. For instance, in the con-
tinuous reproduction task (CR, see Figure 2.3), a.k.a. delayed estimation, the color
is associated with a position on a ring. Many colored circles are shown at different
positions followed by a delay. After the delay, the position of one of the circles is
highlighted and the subject has to reproduce its color on a ring representing all the
colors.

FIGURE 2.2: Delayed vibrotactile comparison task. A vibrational de-
vice is put in the hand of a monkey. This device will vibrate at a given
frequency f 1 for 0.5 second, then it will stop vibrating for a delay of
3 seconds. After the delay, it will start again vibrating again but now
at a frequency f 2 for 0.5 second. In the end, the monkey has to deter-
mine whether the device was vibrating faster the first time ( f 1 > f 2)
or the second time ( f 2 > f 1). Figure adapted from (Romo and Sali-

nas, 2003).
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Select target color 

by mouse click

FIGURE 2.3: Continuous reproduction task. (Left) Several colored cir-
cles are displayed on a screen. (Middle) The circles are removed from
the screen and the screen is left empty during a delay period. (Right)
The location of one of the circle is emphasized and the participant has
to select its color on a color wheel. Figure extracted from (Oberauer

et al., 2018).

In the previous tasks, in the delay, the animal/human does not receive any stimulus.
There are, however, tasks where stimuli keep coming during the delay. In such
tasks, several stimuli are given one after the other, and the subject must maintain the
sequence of stimuli or part of it. There is thus an effective delay between the first
stimuli and the response, but no time interval without a stimulus being received.
After the presentation of the sequence of stimuli, the way the participant is asked
to recall the sequence might vary from task to task. In the serial recall task (SR),
the subject must recall the sequence of stimulus in order of presentation (forward or
backward) (Unsworth and Engle, 2006) while in the free recall task (FR), the subject
must recall the sequence of stimulus in any order (Rohrer and Wixted, 1994). In the
probed recall (PR), a retrieval cue uniquely identifying one of the stimuli (e.g. an
ordinal position) is given and the subject must recall the stimulus associated with
it (Murdock, 1968). The recall can also be requested each time a new stimulus is
given. For instance, in the n-back task (NB), each time a new stimulus is given, the
subject must identify whether or not the stimulus matches the one received n steps
back (Jonides et al., 1997).

SUN KEY FACE PIN

FIGURE 2.4: Serial recall task. A list of items are presented one af-
ter the other. After they have been all presented the participant is
asked to recollect them in order of presentation. Figure extracted

from (Oberauer et al., 2018).

h w k w s x s

FIGURE 2.5: N-back task. A long list of items is presented to the
participant. For each newly presented items, the participant must say
if it was the same than the one he or she received n step back. In this

example n = 2. Figure extracted from (Oberauer et al., 2018).

To highlight the inner manipulation of information stored, instead of having to be
recalled in some way, each stimulus can also indicate how previous memory should
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be updated. For instance, in the memory updating task (MU, see Figure 2.6) (Ober-
auer and Kliegl, 2001), a first stimulus provides an initial state (e.g. numbers) for
the memory and then all the next stimulus describes the operation to transform the
memory (e.g. adding 2 to the current memory). The exact processing to perform can
be left to the participant to decide. For instance, there are a plethora of arithmetic
tasks (e.g. addition/subtraction) that require working memory to be used (Camos,
2018; Barrouillet, 2018). Moreover, the information that subjects are asked to main-
tain can be more abstract in nature. For instance, in the Wisconsin card sorting test
(WCST, see Figure 2.7) (Monchi et al., 2001), the information that is expected to be
found and implicitly maintained in working memory is a rule to apply.

7

8 3 -3 ?
...

FIGURE 2.6: Memory update task. A few numbers are displayed
in boxes. Intuitively, each one of these boxes represents a memory
store. Afterward, a sequence of operations (e.g adding or subtract-
ing a value) will then be individually applied to update each of these
memory stores. In the end, the participant is asked what is the final

value in each box. Figure extracted from (Oberauer et al., 2018).

To find the precise neuronal mechanisms involved in working memory, most of neu-
roscience experimental studies focus on tasks where only one single stimulus should
be maintained. Whereas to find the limit of working memory, other studies exper-
iment with much more complex tasks. Even though the task and aim of the study
might vary, the first element that is considered across studies is the performance of
the people/animal in the task. To have meaningful recordings, even neuroscientists
need to know that in some context the animal is performing the task. Generally
speaking, in most tasks, it is possible to consider a frequency of success. However,
in some cases as in the continuous reproduction task, it is only possible to record
the precision in the answer, i.e. the distance between the answer given and the an-
swer expected. Moreover, other behavioral measures can be of general interest. For
instance, the reaction time, i.e. the time the subject/animal takes to respond, can
represent a mental load or a difficulty to perform the task. Various techniques, both
invasive and non-invasive, both in humans and in animals, have been used to un-
derstand the brain’s implementation of working memory. Actually, thanks to the de-
velopment of non-invasive techniques, more and more studies combine behavioral
results with brain recordings (Chai, Hamid, and Abdullah, 2018). For instance, func-
tional magnetic resonance imaging (fMRI) or functional near-infrared spectroscopy
(fNIRS) can allow identifying brain regions that are active while doing a working
memory task. More technically speaking, fMRI and fNIRS can measure a variation
in blood flow properties, such as oxygenation rate, that relates to the activity of neu-
rons. Intuitively, when neurons are more active they require more oxygen, and thus
have more oxygen supply than inactive neurons. This makes it possible to identify
which regions are more active while performing a working memory task, and there-
fore potentially the one that plays a role in working memory. However, fMRI and
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FIGURE 2.7: Wisconsin card sorting test task. Four reference cards are
shown to the participant. Each reference card contains a unique type
of shape (circle, star, square, plus), a unique color (red, green, blue,
yellow), and a unique number of repetition of the shape (1, 2, 3, 4).
The participant is repeatedly shown a new card that mixes the differ-
ent attributes of the reference cards and he or she must decide with
which reference card it should be associated. The participant is not
aware of it but a simple rule determines what is the right reference
card to choose (i.e. the one with the same shapes, color, or number of
shapes). Moreover, this rule is going to change at some point during
the experiment. In order for the participant to discover the rule, or to
realize that it has changed, each time the participant make a choice,
and he or she discovers if he or she was right or wrong. Figure ex-

tracted from (Wikipedia contributors, 2020).

fNIRS are indirect measures of what neurons are doing. In order to get closer to neu-
ron activity, two other non-invasive technique can be used: Electroencephalography
(EEG) and Magnetoencephalography (MEG). They allow recording respectively the
electric and the magnetic field generated by the brain while performing working
memory tasks. As, when a neuron is active it generates a local electromagnetic field,
the overall electric or magnetic field that is recorded in some points can be seen as
a weighted sum of the contribution of some/all neurons. In a way, EEG and MEG
allow accessing to a population level activity of the neurons. To get a precise under-
standing of how neurons implement working memory, more invasive techniques
have to be used. For instance, using implanted electrodes it is possible to record the
electric field generated by a small group of neurons, or even a single neuron.
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2.3 Behavioral evidences

On the behavioral side, a lot of studies are interested in characterizing the properties
of working memory, i.e. to find out what are the limitations in terms of capacity, and
possibly what are the influencing factors (e.g. aging). The first well-known prop-
erty of working memory is that it has a limited capacity. It is not possible to hold
an infinite number of items simultaneously, only a few can be. This phenomenon is
known as the set-size effect, where the term "set-size" refers precisely to the number
of items to be stored. The effect can be summarized by the following sentence: the
bigger the set-size the worse the accuracy of recall. In other words, the more items
hold simultaneously the harder it is to maintain them. That is precisely what has
led to consider an upper bound on the number of items that can be held simultane-
ously. This set-size effect has been highlighted by many different studies on various
different tasks (Oberauer et al., 2018). However, the upper bound of the number
of items that can be stored is still being debated (Cowan, 2010). The first bound
proposed on the number of items possibly held simultaneously was the "magical"
number seven (plus or minus two) (Miller, 1956). However later, Cowan proposed
that instead of having a bound on the number of items stored simultaneously, there
might be a bound on the number of chunks that can be held simultaneously (Cowan,
2010). Four chunks could be held simultaneously and each chunk could possibly
store several items. Moreover, the number of items held simultaneously does not
only impair accuracy, but it also has an impact on the reaction time to recall. The
bigger the set-size, the higher the latency. The accuracy of recall is also not the
same for all items. More specifically, the order in which the items to be stored is
received influences the quality of their storage. This effect is known as the serial
position effect. Surprisingly, the order in which the items must be recalled does not
monotonously determine the quality of their storage. Both a primacy and a recency
effect can be observed, i.e. the items presented at the start and at the end of the list
are better stored than the one in the middle (Madigna, 1971). Furthermore, distrac-
tions can influence the accuracy of recall. If before the recall, the subject is asked to
do a task to distract him, the recall becomes less and less good the longer the dis-
traction last (Brown, 1958; Peterson and Peterson, 1959). However, in a dual-task
paradigm, Baddeley shows that if the distraction uses different "modality", then the
distraction is not completely impairing the accuracy of recall, but still impairing the
time to recall (Baddeley and Hitch, 1974). In addition, items seem not to be encoded
in a precise way in working memory seems. The proximity of items influences how
well they are stored in working memory. For instance, the closer phonologically the
items to be memorized are, the more difficult it is for subjects to recall them accu-
rately (Conrad and Hull, 1964).

2.4 Neural evidences

Even though behavioral studies allow us to better characterize the properties of
working memory, it does not say anything about how the brain implements working
memory. Other studies precisely aim at discovering the neural mechanisms implied
in working memory. However, the functioning of working memory in the brain is
far from being fully understood. Soon after the early proposal of the term working
memory in the behavioral literature (Miller, Galanter, and Pribram, 1960), the pre-
frontal cortex (PFC) has been acknowledged to be an important region supporting
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working memory (Pribram et al., 1964). In particular, it has been shown that lesions
in the PFC can cause short-term memory deficits (Pribram et al., 1964).

The understanding of the role of PFC in working memory has dramatically evolved
since 1960 (see (D’Esposito and Postle, 2015) for a more extensive historical overview).
In the beginning, the PFC was thought to be the place where the information is main-
tained, the primary reason being the early discovery of sustained activity in the pre-
frontal cortex. To be more precise, around the same time, Fuster and Alexander (in
a delayed response task) and Kubota and Niki (in a delayed alternation task) found
PFC neurons with persistent firing during the delay (i.e. the time interval during
which a memory must be retained) coding the memory being maintained (Fuster
and Alexander, 1971; Kubota and Niki, 1971). Using fMRI, it was later demonstrated
that human PFC also exhibits the same property (Courtney et al., 1997). However, as
reminded by Constantinidis et al., persistent does not mean perfectly stationary, the
neural activity can vary during the delay (Constantinidis et al., 2018a). In fact, the
neural activity seems not to be stationary but dynamic(Stokes, 2015a). It has been hy-
pothesized that this may be caused by a transfer of neural activities to the properties
of synapses, for example using short-term synaptic plasticity even though there is no
empirical evidence yet to show this. However, in some cases, it has been shown that
even though dynamically encoded in the neurons, the information maintained can
still be decoded from a stable readout (Constantinidis et al., 2018a). Moreover, even
if experimentally observed, it is still unclear whether persistent firing of neurons is
essential for maintaining (D’Esposito and Postle, 2015). On the one hand, reversible
inactivation of the PFC through cooling diminish both persistent firing and work-
ing memory performance (Chafee and Goldman-Rakic, 2000). On the other hand,
when the duration of the maintenance (i.e. the delay) is fixed this persistent activ-
ity might appear only late in the delay (Watanabe and Funahashi, 2007). Moreover,
using fMRI (Lewis-Peacock et al., 2012) and EEG (LaRocque et al., 2013) in humans,
researchers have shown that only the item in the focus of attention was represented
by persistent activity, i.e. items maintained by working memory but not in the fo-
cus of attention are not represented by the persistent activity. Lundqvist, Herman,
and Miller even argue that this persistent firing comes because the data recorded
are averaged across time and across trials (Lundqvist, Herman, and Miller, 2018).
When looking at single trials, the activity is too sparse and transient to be called
persistent (Lundqvist, Herman, and Miller, 2018).

Neural activity related to information that is maintained has actually been found in
many other regions, not only the PFC, or not even only the cortex but also the sub-
cortical region (see (Christophel et al., 2017) for an extensive and recent overview).
D’Esposito and Postle argues that unlike vision or motor control, working memory
is not performed by a limited number of brain regions (D’Esposito and Postle, 2015).
Working memory would emerge from the collective behavior of several systems
(e.g. visual or motor system) aiming at reaching behavioral goals. However, PFC
lesion (Pribram et al., 1964) and reversible inactivation (Chafee and Goldman-Rakic,
2000) suggests that PFC play a central role in working memory. If each region of the
cortex seems to be specialized to maintain a certain type of information (Christophel
et al., 2017), PFC seems to maintain a mixture of multiple task-related variables (Rig-
otti et al., 2013a). In particular, it seems to represent rules and goals (D’Esposito and
Postle, 2015). The increasingly acknowledged hypothesis is that, using this represen-
tation of rules and goals, PFC would provide a top-down signal directing the atten-
tion (Curtis and D’Esposito, 2003; D’Esposito and Postle, 2015; Funahashi, 2017a).
For instance, the direct feedback from PFC to posterior cortical region processing
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sensory input could help focus on task-relevant information (D’Esposito and Postle,
2015). In fact, using a dual-task paradigm, Watanabe and Funahashi have shown
that there is a big overlap in neurons maintaining information and neurons focusing
the attention (Watanabe and Funahashi, 2014).

2.5 Summary

In many contexts, some information needs to be maintained for a short time. For
instance, when reading, at the end of a sentence it is necessary to remember its be-
ginning in order to understand its meaning. The memory that takes care of main-
taining this information for a short period of time has had several names: primary
memory, short-term memory or even working memory. The mixing of terms, their
slightly different definitions, and the imperfect knowledge on their brain implemen-
tation lead to many definitions in the literature. However, the most popular term
nowadays is working memory. In the modern vision, working memory is not just
a memory. Working memory is conceptualized as a generic component that is re-
sponsible for both temporarily storing information and processing it. Experimental
studies of working memory have had two aims: (1) understanding the properties
and the limits of working memory, and (2) understanding the brain implementa-
tion of working memory. The generic aspect and the different goals lead to various
different experimental paradigms. If at the behavioral side many effects have been
identified, e.g. a limit to the capacity of the working memory, the brain implemen-
tation is still not perfectly known. However, the prefrontal cortex seems to play a
crucial role whether by its ability to maintain information or by its ability to direct
attention. Moreover, there seems to be more than one way for the neurons to main-
tain information (e.g. sustained activity, dynamic activity, activity silent), and these
different ways could coexist.
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Chapter 3

Working memory: Theoretical

The purpose of this chapter is to provide a historical perspective on working mem-
ory and to show how both definition and modelling have evolved over the past few
decades.

3.1 Box and arrow model

The study of memory has a long history that dates back to the pioneer work of
Richard Semon (1921, who devised the term "engram") (Semon, 1921) and Karl Lash-
ley (1930, who hypothesized the cortical basis of learning) (Lashley, 1930). The term
"working memory" as such has been introduced only later by Miller to describe what
helps the execution of mental plans (Miller, Galanter, and Pribram, 1960).

One of the things that has helped to better understand memory is the character-
ization of the different types of memory. In the Multi Store Model of Memory
(MSMM) (Atkinson and Shiffrin, 1968), memory is broken down into three different
sub-systems: sensory memory, short-term memory, and long-term memory. These
memories can be distinguished by their storage capacity and the duration for which
their contents are kept without being lost. Sensory memory passively stores for less
than a second all the stimuli the body receives (e.g vision, smells, tastes, ...). Its
storage capacity is a priori very large. An attentional process selects relevant in-
formation from the sensory memory for storage in short-term memory. Only a few
information can be stored simultaneously in short-term memory, up to 7±2 chunks
of information at a time. Short-term memory content can remain for about 15 to 30
seconds. To stay longer in short-term memory, an active rehearsal process has to be
used. This rehearsal process is also the key to transfer content from short-term mem-
ory to long-term memory. Any information that has not been sufficiently rehearsed
in short-term memory and transferred in long-term memory is eventually forgotten.
There is no well known bound on long-term memory capacity. Long-term memory
can virtually store an infinite amount of information indefinitely, which can then be
retrieved in short-term memory.

In the MSMM model, transfer to long-term memory happens only through rehearsal
in short-term memory. However, experimental evidence seems to highlight that re-
hearsal might not be the key factor to transfer information to long-term memory.
The type of processing performed with the information stored in short-term memory
highly influences how it is transferred to long-term memory. For instance, seman-
tically processed words are more easily remembered than phonetically or visually
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FIGURE 3.1: Memory transfer between sensory, short-term and long-
term memory according to Atkinson and Shiffrin’s Multi Store Model

of Memory

processed words (Craik and Lockhart, 1972). This discovery revealed a profound
link between memory and information processing.

Moreover, the study of a patient with short-term memory disorders but no long-
term memory disorders also suggests that short-term and long-term memory might
behave more independently than described in the MSMM model (Shallice and War-
rington, 1970). The information transferred to long-term memory might not pass
through short-term memory, and short-term memory might not be necessary for re-
trieval from long-term memory.

Furthermore, in the MSMM model, the short-term and long-term memory are con-
sidered as a unique storage media. But, for both of them, there is evidence showing
that there are multiple storage media. For instance, long-term memory has been
dissociated into episodic, procedural, and semantic memories (Tulving, 1972), and
short-term memory into a visual and an acoustic part (Baddeley and Hitch, 1974).

Baddeley and Hitch were the first to introduce the term working memory to de-
scribe the system in charge of both the short-term information storage and its pro-
cessing (Baddeley and Hitch, 1974). In their model of memory, short-term memory
is replaced by working memory, a component that is responsible for both short-term
storage and processing. This working memory is also described as multicomponent.
For an extensive historical review on how their multicomponent model of working
memory evolved see (Baddeley, 2012). By having an auditory serial recall and a
visually presented reasoning task done simultaneously they discarded the hypothe-
sis of a single short-term memory store. Indeed, while the response time increased
slightly with the number of items to be stored, performance did not decrease. That is
precisely why they considered two components: (1) the visuospatial sketchpad that
stores and processes information in a visual or spatial form, and (2) the phonological
loop that stores and processes information in a speech-based form. If the visuospa-
tial sketchpad can be considered as an inner eye, the phonological loop would be
composed of an inner ear, the phonological store, holding information for a few sec-
onds, and an inner voice, the articulatory control process, which can rehearse and
store in the phonological store. In their model of working memory, a system inter-
faces between the different other systems, the central executive. Unlike other com-
ponents, the central executive is not considered as a memory store but as a compo-
nent that controls attentional processes. Later on, they considered another memory
store, the episodic buffer (Baddeley, 2000). It aims at storing multi-modal bindings
(a.k.a. episodes), e.g. bindings between perceptions, short-term storages, and long-
term memories. Some researchers have tried to bind the components of Baddeley’s
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model to regions in the brain (Chai, Hamid, and Abdullah, 2018; Funahashi, 2017a).
Prefrontal cortex would be the central executive, Broca’s and Wernicke’s area the
phonological loop, the occipital lobe the visuo spatial sketchpad, and the parietal
lobe the episodic buffer.

FIGURE 3.2: Baddeley’s multicomponent model of working memory

w

Interestingly the triple code of numbers in the brain proposed by Dehaene shows
a similar decomposition of the representations than Baddeley’s model (Dehaene,
1997). Dehaene claims, that in the brain numbers have a visual form, that is what
makes us able to recognize or write them. They also have a speech based form, that is
what makes us able to pronounce them and to recognize when they are pronounced.
But the biggest claim was that numbers have an even more primary form. Numbers
represent quantities and, in the brain, the numbers are also present as quantities.
However, this representation in quantitative form is not perfect. There is a distance
effect, the larger the quantities, the more distant they have to be in order to be dis-
sociated. This primary form of numbers have not been found only in humans. This
form of numbers exists for instance in primates and even in young babies who can’t
talk yet (Dehaene, 1997).

Later, to better understand the attentional process, Cowan proposes a similar mech-
anism of interaction between the central executive, short-term and long-term mem-
ory (Cowan, 1999). Cowan considers short-term memory to be an activated version
of long-term memory, and the central executive to direct the attention on a selected
few items in short-term memory. While Baddeley’s model puts forward different
short-term components, Cowan’s model puts forward a universal limit of the atten-
tional focus. In Cowan’s model, the capacity of working memory lies within this
limit, four chunks (which may contain more than a single item) can be in the focus
of attention at a time.

One of the major reasons for considering working memory in the first place was
the strong link between short-term storage of information and its processing. How-
ever, neither Baddeley’s model nor Cowan’s model explains how this processing
happens and their link with short-term memory. To fill this gap Oberauer proposes
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FIGURE 3.3: Cowan’s model of working memory.

to consider two different types of working memory (Oberauer, 2009): (1) a declar-
ative working memory responsible to make representations available for the pro-
cessing, and (2) a procedural working memory responsible for the processing. In
Obereauer’s model, while there are attentional processes, there is no explicit com-
ponent such as the central executive to guide them. As in Cowan’s model in the
declarative component, the short-term memory is first in the form of the activated
long-term memories, and the focus of attention will eventually select a few of them
to be processed. However, short-term memory goes through an intermediate rep-
resentation that can help in the selection process. This intermediate representation
is performed by the direct-access region. The direct-access region can select a few
characteristic features of short-term memory or embed short-term memories into
a structure. In Obereauer’s model the procedural short-term memories represents
potential processing to apply. They are first in the form of activated long-term mem-
ories and a response focus selects which one to apply. The bridge is what performs
the processing of the selected declarative memory. It holds task-sets, i.e. reflexes
binding selected declarative components to how it should be processed. Intuitively,
the bridge and the direct-access region are similar in the sense that they both bind
representations. Interestingly, both declarative and procedural working memory are
described in a very similar way: three sub-component embedding three successive
levels of representations.

3.2 Dynamical systems models

Another way to describe how working memory works is to use dynamical systems.
For a more thorough review on these approaches see (Durstewitz, Seamans, and
Sejnowski, 2000), (Compte, 2006) and (Barak and Tsodyks, 2014). In a dynamical
system, there are many ways to represent memories. Intuitively, a memory should
be something that is stable, thus the first immediate solution was to consider the
attractors of dynamical systems as its memory states. Attractors are regions in the
state space that are stable and resistant to local disturbances, and therefore the ideal



3.2. Dynamical systems models 19

FIGURE 3.4: Obereauer’s model of working memory. Left: The three
levels of declarative working memory. Activated long-term memory

candidate to represent memory. Attractors are especially suited to represent short-
term memories because with strong enough perturbations it is still possible to make
the dynamical system switch from one attractor to another, as short-term memory
would go from one state to another. A line of theoretical research has therefore tried
to understand how to build these attractors.

For instance, Hopfield have shown a method to build any point attractors in a binary
recurrent neural network1 (Hopfield, 1982). The most astonishing fact is that this
method is based only on a very simple Hebb’s principle. "Neurons that fire together,
wire together. Neurons that fire out of sync, fail to link." (Hebb, 1949) Given a binary
pattern2, Hopfield consider a binary recurrent neural network which has the same
number of neurons than the dimension of the pattern. Each neurons can thus be
associated to a value of the binary pattern. All the neurons are connected to other
neurons but have no self feedback, and the connections between neurons associated
with the same values are positive while those between different values are negative.
The synaptic weights thus become characteristic of the pattern. As Hebb’s principle
states, in this network, opposite states repel each other while identical states attract
each other. The neurons associated with 1 (resp. -1) tend to have the same value.
While, the neurons associated to 1 and neurons associated to -1 tend to have oposite
values. Thus, starting from a perturbed (close) version of the pattern, the network
will reconstruct the pattern in its activity. In other words, the pattern became an
attractor of the network. The exact same idea extends to several binary patterns, by
considering the average synaptic weight characteristic of the patterns. However, the
number of attractors that can be built with this method is limited by the number of
units, and therefore by the size of the patterns. This way of building attractors has
the advantage of building at the same time a content adressable memory.

Amari proposed one of the first ways to build attractors with plane neural fields (Amari,

1In this binary neural network, the activities of neurons take only the values 1 or -1.
2Similarly than the binary neural network, this binary pattern is a vector of values in {−1, 1}
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Learn

Learn

Recall

Recall

FIGURE 3.5: Hopfield network’s principle. Top left: Learning pat-
terns. The patterns are enforced one after the other in the neurons,
and the weight between simultaneously active (resp. inactive, for the
sake of visualisation only active in the Figure) neurons are sthrength-
ened, and the others are weakened. Top right: Recalling patterns.
When a pattern is partially enforced in the neurons, the faithfully ac-
tive (resp. inactive) neurons of the pattern will enforce the inactive
(resp. active) neurons that should have been active (resp. inactive) to

be active (resp. inactive).

1977). The idea was the following. If the neural field undergoes long range inhibi-
tion and short range excitation, then, when it gets locally excited in a particular point
and because of the long range inhibitions, all the activity will be concentrated at this
point. Moreover when the external excitation is gone, the short range excitation will
make the activity to last and to be localized at that point. Each point thus becomes
a potential attractor in the form of a bump. If these bump attractors were originally
considered to evolve on a plane, the same idea was later used to arrange them on
a ring. In fact, Compte proposed to use a ring structure formed of leaky integrate
and fire neurons with short range excitation and constant inhibition (Compte, 2000).
Such hypothesis, i.e. constant inhibition, still allowed the formation of the bumps
attractors on the ring. Interstingly a dedicated circuit implementing these bumps
on a ring have latter been experimentally found in the Drosophila (Kim et al., 2017).
This idea was later extended to try to better understand the conditions under which
two bumps can coexist, as two items can be simultaneously held in short-term mem-
ory (Edin et al., 2009; Wei, Wang, and Wang, 2012). Another simple way to hold mul-
tiple items simultaneously with ring attractors is simply to multiply the number of
rings, each ring holding its own item. But it is well known that short-term memory
has a limited capacity. Bouchacourt and Buschman have investigated precisely how
making these neural rings to interact through a layer of neurons limits the number
of items that can be stored simultaneously (Bouchacourt and Buschman, 2019a).

In bump attractors, what remains constant is the position of the bump. In other
words the information maintained is not really contained within the dynamics of a
particular neuron but rather in the whole dynamics of the group of neurons. The in-
formation being maintained simply resides in one neuron being active or not. Other
models consider that, what can remain constant is the firing rate of a neuron, or of
a group of neurons. For instance, Lim and Goldman proposes to use the firing rate
of a neuron to build a line attractor, i.e. an attractor in the shape of a line (Lim and
Goldman, 2013a). The idea is as follows. They model neurons using the following
dynamics: τẋ = −x + u, where x is the firing of neurons, u the input of the neurons,
and τ a time constant. In this model, the information is given in the input of the



3.2. Dynamical systems models 21

FIGURE 3.6: Two ways to build a ring attractor based on the same
idea: short-range excitation, long-range inhibition. Right: with neu-
rons that can be both inhibitory to some neurons and excitatory to
others. On the ring, neurons are more excitatory to closer and more
inhibitory to further neurons. Left: with only inhibitory/excitatory
neurons. The ring is formed of excitatory neurons which projects
stronger to closer neurons. Inhibitory interneurons are added to en-

force most neurons to remain inactive

neuron. More precisely, when the neuron receives a non-zero input its firing rates
quickly match its input. Afterward, the firing rate of the neuron gradually vanish. τ
is thus what directly influence the speed in which the information is lost, the bigger
τ the longer the information lasts. What makes these neurons naturally forgetful
is their small time constant τ, i.e. τ is in the millisecond range. In order to keep
the information longer it is possible to use an excitatory feedback. However in or-
der to be precise enough, this feedback should be very finely tuned. To increase
the duration the information remains without fine tuning Lim and Goldman makes
the following remark. If a neuron ever receives negative derivative feedback then
it directly influences its time constant, allowing then to artificially increase the du-
ration the information remains. They show how in practice it requires less precise
tuning, and how, combined with an excitatory feedback, it is still possible to main-
tain information for a longer period at the neuron level. They also show how such
negative derivative feedback can be obtained by the interaction of two populations
of excitatory and inhibitory neurons evolving at different time scales.

In the different models presented previously, whether stable fixed points, bump at-
tractors in the form of plane or ring, and even line attractor, a memory state is always
associated with one single state of the network. However there are alternative ways
to implement memory, such as for instance using a periodic attractor to represent
a memory. Intuitively, a periodic attractor is a stable region that is resistant to per-
turbations in which the dynamic is periodic. Models such as conceptors allow to
build such periodical attractors (Jaeger, 2017a). To build a periodic attractor, Jaeger
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FIGURE 3.7: Lim and Goldman’s negative derivative feedback im-
plementation. (Top) The network consists of one population of exci-
tatory neurons, and one population of inhibitory neurons. (Bottom)
From the excitatory population point of view, everything happens as
if it received both a positive feedback and a negative feedback. They
show how a negative derivative feedback emerge from the superim-
position of a slow positive feedback and a fast negative feedback of

equal strength.

proposes to feed a network with a periodical input. Indeed, under certain condi-
tions3, it is expected that when a dynamical system receives a periodic input it will
tend exponentially and rapidly towards a unique periodic trajectory. This trajectory
is precisely the candidate Jaeger chose to form the periodic attractor. In practice,
he makes learn the network learn to produce this trajectory without the input. To
build several periodic attractors he proposes to learn only one trajectory, the average
between the different trajectories. By noting that the trajectories obtained by giving
different periodic inputs can potentai:lly evolve in different spaces, Jaeger proposes
then to retrieve one or the other trajectory by continuously projecting the dynamics
of the average trajectory in the space of the selected trajectory.

If the classical notion of attractor makes it possible to represent the memory of a
dynamical system which receives sparse inputs, when these inputs are no longer
sparse it is no longer sufficient. This is why Pascanu and Jaeger introduced the
concept of input induced attractor (Pascanu and Jaeger, 2011a). An input induced

3something like the norm of the Jacobian is strictly smaller than 1 everywhere)
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attractor is defined very similarly from a classical attractor. The difference is that
an input induced attractor must not only be stable to local disturbances, but given
a description of eligible inputs, it must be stable to local disturbances regardless of
the eligible input received.

In all the models mentioned above, the notion of attractor is the key point. Most of
these models propose ways to build attractors. But the very strong stability of an
attractor might deserve it. In fact, as long as there are no perturbation, by virtue
of being an attractor, the information actively encoded in the attractor cannot be
lost. However, in short-term memory, the memory do not have to and might not
be maintained forever. Regions of the state space that are not stable but in which
activity remains for a certain time are also a good candidate. For example, it is
possible to have such candidates in delay lines or synfire chains (Abeles, 2012). The
principle of the two is similar, a chain of neurons connected in a feedforward way,
the information enters in the beginning of the chain, is transmitted along the chain
and then is lost at the end of the chain.

Most models attemps to build attractors in the spiking or firing rate neural activity.
However as shown in Chapter 2 some information might not be maintained directly
in the neural activty. Mongillo, Barak, and Tsodyks proposed that some information
can be stored for a short time in synaptic properties as well (Mongillo, Barak, and
Tsodyks, 2008a).

Most of the theories outlined above focus on how information can be maintained in
the brain and not on how the brain decides what information should be maintained.
In order to explain also how the brain decides what information to maintain O’Reilly
proposes a way to implement a gating in the brain (O’Reilly and Frank, 2006a). In
this model, basal ganglia, a brain region known for its crucial role in decision mak-
ing, plays the role of the gate which controls what information enters and leaves the
frontal cortex. He describes then how brains could act as an actor critic which learns
when to gate information in the frontal cortex.

3.3 Finding WM mechanisms by emergence

Most of the dynamical system models of working memory mentionned above are
handcrafted. Some parameters such as weight are chosen in a smart way so that a
behavior maintaining information arises. Another strategy has been used in order to
find mechanisms maintaining information without having to handcraft them. The
idea is to use recurrent neural networks (RNN) and to train them to perform working
memory tasks.

For instance, in the early 90s, Zipser et al. have trained a RNN to perform a gating
task (Zipser et al., 1993). In this task, the RNN receives two inputs, one containing
information, the other stating when the information should be loaded in. Then, by
transforming the firing rates of the neurons into spikes they could find neural repre-
sentation in the RNN very similar to the one that have been recorded in the brain in
several different studies. In a way, it shows how important this gating principle is.

More recently, in order to investigate the possibility of synaptic encoding of work-
ing memory, Masse et al. train an RNN submitted to short-term synaptic plasticity
(STSP) to do several working memory tasks (Masse et al., 2019a). They show that
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FIGURE 3.8: Summary of the PBWM model of O’Reilly and Frank.
The model is composed by an actor and a critic. The actor implements

the gating and the critic learns when to gate.

even if thanks to the STSP the memory can be decoded from the synaptic weights,
persistent activity still arises naturally when manipulation of information is required.

Yang et al. trained an RNN to perform multiple different tasks that do not depend
only on working memory but also on decision making or inhibitory control (Yang
et al., 2019). They have shown that after training, it is possible to identify in the
RNN functional clusters of neurons specialized in the different cognitive aspect of
the tasks ( e.g. working memory or decision making ).

Overall, once these RNN are able to perform a working memory task, the only thing
left to do to propose a mechanism is to figure out how the RNN does maintain.
Barak argues that handcrafted model usually use low dimensional intuitions, and
that trained RNN also end up implementing low dimensional intuitions (Barak,
2017). Recently, more and more theoretical work especially aims at discovering
what are the limits of the low dimensional solution of RNNs, and how to obtain
them (Schuessler et al., 2020a).

3.4 Summary

In this chapter, we have seen how there have been two different approach to model
working memory: (1) using box and arrow models and (2) using dynamical systems.
In a way these two approaches seek to understand/describe working memory at dif-
ferent levels. And ideally the aim would be to be able to combine them in order to
have a multi-layered understanding of the working memory. However, in practice it
is not that easy to transform box and arrow models, such as the one of Baddeley and
Hitch(Baddeley and Hitch, 1974), into dynamical system model, and dynamical sys-
tem models are not necessarily tightly linked to a box and arrow model. However,
box and arrow models such as the one of Oberauer seems promising to make such
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links more easily as the description of the model is thought along with an idea of
implementation. Moreover, if many dynamical system models have been proposed
to explain how the brains maintain information, there are no empirical findings that
would tip the balance in favour of one of them. In practice a superimposition of
all these mechanisms might take place. Most of these dynamical systems are hand-
crafted but we have shown an alternative to find model using recurrent neural net-
works trained to perform working memory tasks.
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Chapter 4

Recurrent neural networks

As mentioned earlier in this thesis, Recurrent Neural Networks (RNNs) can be used
to uncover possible mechanisms underlying working memory. The procedure is as
follows: an RNN is trained to solve a working memory task and then an in-depth
analysis of the RNN reveals what are the mechanisms supporting working mem-
ory. This chapter aims to give an introductory overview of RNNs and why solving
working memory tasks is hard. To do so, we will start by introducing sequential
supervised learning tasks, and explain that solving them implies to learn how to ex-
tract contextual information (see Section 4.1). The focus will then switch on Simple
Recurrent Networks, neural networks that have been designed to learn to extract
context (see Section 4.2), and on the difficulties they face to extract context distant
in time (see Section 4.3). Finally, we are going to present three different solutions
that have been proposed to overcome these problems: (1) the Reservoir Comput-
ing (RC) paradigm (see Section 4.4), (2) using memory cells instead of neurons such
as in Long Short Term Memory networks (LSTMs) (see Section 4.4.1), and (3) us-
ing explicit external memory mechanism as in Neural Turing Machines (NTMs) (see
Section 4.5).

4.1 Supervised sequential learning and time dependencies

From a broad perspective, we can consider that the aim of a supervised learning task
is to approximate a function f known for only a few points. Formally, a supervised
learning task can be defined as a set E of pairs (x, y) such that y = f (x). x and y
are going to be called respectively the input and the desired output. In sequential
supervised learning either the domain of f , or the codomain of f , or both are finite
sequences of variable length. For instance, when the aim is to classify time series

in two classes, the domain of f could be R∗ =
+∞⋃
k=0

Rk, and the codomain of f could

be {0, 1}. In the context of this thesis, both the domain and the codomain of f are
finite sequences of variable length. This is the case, for example, for prediction tasks.
Moreover, we assume that for all x in the domain of f , x and y = f (x) are sequences
of same length. In that case, we can define the time dependency between x and y as
the minimal length required to map contiguous subsequence of x to their associated
subsequence in y. Formally we can define TD(x, y), the time dependency between
x and y, and similarly TD(E), the time dependency of a supervised learning task E
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as:

TD(x, y) = min
{

k/∀n, n′ x[n : n + k] = x[n′ : n′ + k] ⇒ y[n : n + k] = y[n′ : n′ + k]
}

TD(E) = min
{

k
/

∀(x, y), (x′, y′) ∈ E
∀n, n′ x[n : n + k] = x′[n′ : n′ + k] ⇒ y[n : n + k] = y′[n′ : n′ + k]

}
where a[p : q] stands for the tuple (a[p], a[p + 1], ..., a[q]).

To familiarize ourselves with this notion of time dependency, let us look at two ex-
amples of tasks. Let us consider the periodic sequence x = [1, 2, 3, 2, 1, 2, 3, ...], and
two sets E and E′ corresponding respectively to the prediction of x one step ahead,
and two steps ahead. Let us denote as y and z respectively the one step and two
steps prediction of x, i.e. y = [2, 3, 2, 1, 2, 3, 2...] and z = [3, 2, 1, 2, 3, 2, 1...]. Formally
we can write E = {(x, y)} and E′ = {(x, z)} (see Figure 4.1 for a representation of
the task and of the time dependencies). We can start by noticing that TD(E′) = 0.
Indeed, for all n, given only x[n] it is possible to predict x[n + 2]. Two steps after a
1 there is always a 3, two steps after a 3 there is always a 1, and two steps after a
2 there is always a 2. Moreover we can also notice that TD(E) > 0. If 1 and 3 are
always followed by a 2, without contextual information, it is impossible to predict
the successor of 2 (1 or 3). However, with a one time step contextual information,
it becomes possible to predict the successor of 2. If 2 was preceded by a 1 (resp. 3)
then the next will be a 3 (resp. 1). In other words, for all n, given only x[n − 1 : n]
it is possible to predict x[n + 1]. That is precisely why TD(E) = 1. Literature on
experience related to working memory provides many examples where the time de-
pendency can be as big as one wants. Typically, when a sequence of stimuli is given
and the answer after the stimuli depends on the first stimulus, the time dependency
is the number of stimuli. Indeed, the first stimulus is the contextual information that
has to be remembered after all stimuli have been received. This shows how the time
dependency is directly linked to the distance in time of the contextual information
required. The further backward in time the contextual information is, the bigger the
time dependency will be.

This contextual information is actually what links working memory and time de-
pendency. Working memory is the memory that has to remember the contextual
information. However, time dependency is not directly linked to a working mem-
ory load. To see more in-depth the link between working memory and time depen-
dency let us consider an example of a task from the working memory experimental
literature: the n-back task. In this task, the subject is presented with a sequence of
stimuli and must indicate when the current stimulus matches that of the previous n
stimulus in the sequence. To perform the task the subject has to keep remembering
and updating the last n stimuli he has received. This is the property we are going to
focus on. To simplify let us consider that instead of comparing the current stimulus
with another stimulus, the participant has to recall the last n stimuli he saw each
time he receives a new stimulus. That is precisely what has been done in the litera-
ture to measure what is called the memory capacity of an RNN (Jaeger, 2002). Let us
model this task in two ways: (1) the null stimulus is considered to be a stimulus to
remember (as in (Jaeger, 2002)), (2) it is not considered to be a stimulus to remember
(see Figure 4.2 for a representation of the two tasks and of the time dependencies).
In the first case, performing the tasks means producing at each time step the last
n inputs that have been received, and the temporal dependency is n. Whereas in
the second case it requires to produce the last n non-zero inputs received, and the
temporal dependency is infinite. Indeed, the last n non-zero inputs received can be
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FIGURE 4.1: Prediction of periodic sequence x = [1, 2, 3, 2, 1, 2, 3, ...].
Lines linking blocks highlights the dependencies between x and y. A.

One step ahead. B. Two step ahead.

arbitrarily far in the past. However, in both cases, only n contextual information has
to be remembered. The time dependency is rather linked to how long the contextual
information is expected to be maintained, rather than to the number of contextual
information that has to be maintained.

One way to explicitly deal with time dependency is to spatialize the time. Indeed, it
is possible to unfold the time of the input by considering the following dynamics:

c[n] = [x[n], c[n − 1][: −1]])

where x is the input, c is the unfolded version of the input, [a, b] represents the con-
catenation of a and b, and a[: −1] represents the removal of the last component of
a. However, such unfolding have three main drawbacks: (1) in practice it increase
dramatically the dimensionality of the input, (2) the number of previous times step
that should be included (i.e. the dimension of c) has to be manually set, and (3)
it does not allow to deal with infinite time dependency. As we have seen earlier,
even remembering a single contextual information in working memory can lead to
an infinite time dependency. In this case, extracting and maintaining the contextual
information have somehow to be learned.

Most of the time in supervised learning tasks, the function f is unknown, and the
approximation of f will be used to infer new values of f , i.e. to create new potential
pairs (x′, y′) such that y′ ≈ f (x′). In the context of this thesis, in some cases, f is



30 Chapter 4. Recurrent neural networks

FIGURE 4.2: Simplification of the 1-back task. A. All stimuli should
be remembered. B. Only non-zero stimuli should be remembered.

known. In that case, the interest for us is not to predict new values for f but to find
out what mechanisms are used to approximate f .

4.2 Simple Recurrent Networks

In order to build an Artificial Neural Network (ANN) which can learn to extract the
context, Elman proposed to extend a multilayer perceptron (MLP) with contextual
units (Elman, 1990). More precisely, he considered a MLP with one hidden layer,
and added contextual units which copy the value of the previous hidden state and
provide it as input to the hidden layer. A modern way to describe it, without con-
textual units, consists in saying that Elman has added feedback connection from the
hidden states to itself. ANN with such feedback connections have been called Re-
current Neural Networks (RNNs), and Elman Network has been popularized as the
Simple Recurrent Network (SRN). The SRN dynamics can be discribed as follow:

x[n] = f (Wx[n − 1] + Winu[n])
y[n] = g(Woutx[n])

where x is the RNN state sequence, u the input sequence received by the RNN and
y the output sequence produced by the RNN, f and g are two functions, the inter-
nal activation function and the output activation function, and W, Win and Wout are
called respectively the recurrent weights, the input weights and the output weights.
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To learn to extract the context and to perform a task W, Win and Wout have to be opti-
mized. The classical optimization method used for SRN is an adaptation of the back-
propagation algorithm used in MLP. It is known as BackPropagation Through Time
(BPTT) and it consists in unfolding time, thus transforming a SRN in a MLP (Rumel-
hart, Hinton, and Williams, 1985). Even though SRNs can virtually approximate any
open dynamical systems (Schäfer and Zimmerman, 2007) and thus handle any time
dependencies, learning tasks with long time dependencies is hard in practice. The
reason is that it requires to propagate an error gradient over long period of time,
which tends to make it explode or vanish (Bengio, Simard, and Frasconi, 1994).

u

x

y

c

A

u

x

y
B

u[0]

x[0]

y[0]

u[1]

x[1]

y[1]
C

FIGURE 4.3: Simple Recurrent Network (SRN). A. Initial proposal of
Elman (Elman, 1990). B. Equivalent with feedback connections from
the hidden layer to the hidden layer. C. Unfolding in time transform-
ing the SRN in a MLP. u input, x hidden recurrent state, y output, c

contextual unit.

In Elman Network, the contextual units contains information about the hidden states.
Jordan proposed a variant where that contextual units contains information about
the output instead (Jordan, 1997). In a sense it’s like adding feedback from the out-
put to the hidden layer instead of feedback from the hidden layer to itself. The
Jordan Network dynamics can be described as follows:

x[n] = f (Wfby[n − 1] + Winu[n])
y[n] = g(Woutx[n])

where Wfb is called the feedback weights.

This idea to provide contextual units (or feedback) has been widely used ever since.
For instance variants combining Elman’s and Jordan’s ideas have been used (Pham
and Karaboga, 1999). These ANNs are called recurrent because in these networks
some neurons send feedback signals to some other neurons, which creates recurrent
loops in the network. If feedforward networks such as MLPs implement functions,
RNNs implement open dynamical systems. More precisely, RNNs are open dynam-
ical systems, i.e. they evolve in time and their dynamics are governed by the inputs
they receive. Their dynamics can be described as follows:

x[n] = f (x[n − 1], u[n])
y[n] = g(x[n])

where x is the RNN states sequence, u the input sequence received by the RNN
and y the output sequence produced by the RNN, and f and g are two functions.
Intuitively, f describes the flow of the RNN, i.e. how the states will evolve given
an input sequence. Whereas g describes how to extract a meaningful and easily
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interpretable information from the states, a.k.a. its output. It is f who is in charge of
extracting the necessary contextual information from the input.

4.3 Fading memory and vanishing gradient

Let us explain in more details the exploding/vanishing gradient problem and its in-
fluence on learning task with long-term time dependencies. For the sake of simplic-
ity, let us consider the case where there is only one neuron and the internal activation
function is the identity function. In that case the dynamics of the SRN is written as
follows:

x[n] = wx[n − 1] + winu[n] (4.1)

where x, u, w and win are scalar values.

Moreover, let us suppose that x[n] has d[n] as a target, we can thus define an error
e[n] as:

e[n] = (x[n]− d[n])2 (4.2)

First of all, if we solve the recursion, we can rewrite Equation 4.1 as follows:

x[n] =
n

∑
k=0

wn−kwinu[k] (4.3)

In Equation 4.3, we can notice the exponential factor wn−k. When |w| > 1, as |w|n
tends towards infinity, x[n] will become less and less dependant from u[k] the closer
n is from k. In fact when |w| > 1, the dynamics evolves in a chaotic way, a slight
perturbation in u will be exponentially amplified. Similarly, when |w| < 1, as wn−k

tends towards 0, x[n] will become less and less dependant from u[k] the further n is
from k. However, the closer |w| is to 1, the more u[k] in the past, x[n] will depend
on. Eventually when |w| = 1, x[n] will depend in the same way from all u[k]. In fact,
this result is more general, there is a frontier beyond which a RNN evolve chaotically,
and below which it will have a fading memory of the input.

Let us show the influence of this exponetial factor on learning. To learn by gradient
descent, the partial derivatives ∂e[n]

∂w are used to update w. More precisely, it is the
sum of the ∂e[n]

∂w that will be used to update w. Using Equation 4.3) it is easy to
compute these partial derivatives:

∂e[n]
∂w

=
∂e[n]
∂x[n]

∂x[n]
∂w

(4.4)

= 2(x[n]− d[n])win

n−1

∑
k=0

(n − k)wn−k−1u[k] (4.5)

Similarly than in Equation 4.3, in Equation 4.5 there is an exponential factor wn−k−1.
The same conclusion can thus be made for ∂e[n]

∂w than for x[n]. If |w| < 1, ∂e[n]
∂w depends

mostly on the last value of u, whereas if |w| > 1, ∂e[n]
∂w depends mostly on the first
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value of u. Moreover, when |w| > 1, it is possible that ∂e[n]
∂w grows exponentially

with n, thus causing a very big change in one single learning step. To avoid such
problems, Pascanu, Mikolov, and Bengio proposed to clip the norm of ∂e[n]

∂w (Pascanu,
Mikolov, and Bengio, 2012). Furthermore, for sufficiently large n, when |w| < 1, u[k]
will have disappeared from ∂e[n]

∂w . The change in w caused by learning will therefore
be blind to the u[k] distant in time. Intuitively, it makes it difficult to make x[n]
depend on the u[k] distant in time.

In practice, it is possible to reconsider this exponential factor in a way that is easier
to generalize to the non linear case. To do so, let us unfold the time for w by making
it artificially dependant on time.

x[n] = w[n]x[n − 1] + winu[n] (4.6)

Now let us compute all ∂e[n]
∂w[n−k] . To do so, we can use the partial derivatives in rela-

tion to the hidden states. By iterating the chain rule, we can write:

∂e[n]
∂x[n − k]

=
∂e[n]
∂x[n]

k

∏
i=1

∂x[n − k + 1]
∂x[n − k]

This brings to light the partial derivatives ∂x[n−k+1]
∂x[n−k] , and using Equation 4.6 we can

note that it has a very simple form:

∂x[n − k + 1]
∂x[n − k]

= w[n − k + 1] = w

It is thus possible to obtain the partial derivative ∂e[n]
∂x[n−k] as follows:

∂e[n]
∂x[n − k]

=
∂e[n]
∂x[n]

wk

Here appears the exponential factor again. When n grows, ∂e[n]
∂x[n−k] either shrinks to

zero when |w| < 1 , or explode when |w| > 1. In order to avoid such explosion,
Graves proposed to clip the norm of ∂e[n]

∂x[n−k] (Graves, 2013). This has a direct effect

on ∂e[n]
∂w[n−k] because:

∂e[n]
∂w[n − k]

=
∂e[n]

∂x[n − k]
∂x[n − k]
∂w[n − k]

= 2(x[n]− d[n])wkx[n − k − 1]
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Unsurprisingly, using again Equation 4.3 we can find the same result for ∂e[n]
∂w :

∂e[n]
∂w

=
n

∑
k=0

∂e[n]
∂w[n − k]

=
n

∑
k=0

2(x[n]− d[n])wkx[n − k − 1]

=
n

∑
k=0

2(x[n]− d[n])
n−k−1

∑
i=0

wn−i−1winu[i]

= 2(x[n]− d[n])win

n

∑
k=0

n−k−1

∑
i=0

wn−i−1u[i]

= 2(x[n]− d[n])win

n−1

∑
i=0

n−i−1

∑
k=0

wn−i−1u[i]

= 2(x[n]− d[n])win

n−1

∑
i=0

(n − i)wn−i−1u[i]

In summary, in this toy example, we can see that the norm of the weights (i.e. |w|)
has a strong influence on (1) the fading memory of the network, and (2) on the van-
ishing/explosion of the gradient. In order not to be on a chaotic regime we need
|w| ≤ 1. Moreover the closer to 1, the more time it takes for the memory to fade. If
|w| > 1, this makes explode the gradient to explode and lead to dramatic changes
of w in one single learning step. If |w| < 1, this makes the gradient vanish, remov-
ing thus its dependency on input far back in time. One solution that might solve all
problems is to consider |w| = 1. In practice, to get something similar to |w| = 1,
people have tried to use orthogonal recurrent matrices, i.e. matrices through which
the norm is conserved (Jing et al., 2017; Jing et al., 2019).

4.4 Reservoir Computing

In order to prevent the gradient from vanishing/exploding the easiest solution is not
to train the parameters for which the gradient would vanish/explode. Therefore,
the solution proposed by the Reservoir Computing paradigm (RC) is to not train the
recurrent weights. The basic idea is that, even though the recurrent weights are not
trained, the dynamics of the recurrent layer (a.k.a reservoir) by itself will implicitly
act as a temporal filter that will capture relevant aspects of the history of inputs. The
question becomes how do we construct reservoirs in order to better represent the
input history. Even though there is some advance in the linear case (Tio, 2020), it
remains still an open question.

The reason is that there are two conflicting but complementary intuitions that have
been followed in the literature. On the first hand, in order for the dynamic to be
stable, or robust to disturbances, we need to impose some kind of fading memory
on the reservoir. This fading memory property has been defined as the echo state
property at the very beginning of reservoir computing (Jaeger, 2001b). A reservoir
possesses the echo state property if its dynamic asymptotically depends only on the
input signal. The influence of the initial conditions should thus gradually disappear
over time. The dynamic would then be an "echo" of the input. On the second hand,
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in order to capture relevant aspects of the input, the dynamics should be complex
enough. Indeed a very easy way to ensure that the dynamics have the echo state
property is to have null recurrent weights. In that case, there is no input history
at all in the dynamic and consequently it does not represent any history at all. Here
comes the conflict: the more complex the dynamic of the reservoir, the more complex
the aspects it can capture, but also the less fading memory it will have. Choosing a
good reservoir is thus like making a tradeoff between stability and complexity of
the dynamic. One way to solve this is to choose a reservoir whose dynamic is at the
edge of chaos (Dambre et al., 2012a). The echo state property seems very important
for stability, however in its current form and by definition, reservoir exhibiting the
echo state property cannot have several attractors. In order to allow possibly sev-
eral attractors, the echo state property must be made local. A reservoir would have
a local echo state property if, starting from two close reservoir states, its dynamic
would asymptotically depend only on the input signal. However, using feedback it
is possible to build several attractors (Sussillo and Barak, 2013a; Pascanu and Jaeger,
2011a).

Originally, in the proposal of (Jaeger, 2001b), reservoirs were chosen by randomly
sampling their recurrent and input weights and the choice was: "how to scale these
weights?". For instance, the stability could be controlled by the spectral radius of
the recurrent weights. However, more structured approaches have emerged. For
instance, Rodan and Tino proposed a minimalistic approach, where the neurons in
the reservoir form a ring structure and there is a single fixed weight between the
neurons that are connected in the ring (Rodan and Tino, 2011). Even though the
structure of the reservoir is simple and involved no randomness, they have shown,
on various tasks, that the performance of these structured reservoirs was similar
from the reservoir in the initial proposal of Jaeger. Moreover, in the linear case, this
ring structure seems to be theoretically a better solution to design a reservoir (Tio,
2020). In (Voelker, Kajić, and Eliasmith, 2019), authors show how to design a linear
reservoir from which we know theoretically how to extract the input history. More
recently a layered version of echo state network has been proposed in (Gallicchio,
Micheli, and Pedrelli, 2018a).

Even though the reservoir computing approach seems "naive", there is an increasing
amount of evidence showing that it can compete with Long Short Term Memory
networks (LSTMs, explained in the next section) in synthetic tasks (Jaeger, 2012) as
well as in real-world tasks (Gallicchio, Micheli, and Pedrelli, 2018b). Moreover, there
is also a universal approximation property for Echo State Network, currently a bit
weaker than for classical recurrent neural network (Grigoryeva and Ortega, 2018).

4.4.1 Memory cells (LSTM/GRU)

In order to prevent the gradient from vanishing, Hochreiter and Schmidhuber intro-
duced the idea to use self-loops where the gradients can flow for longer duration. In
practice, it is implemented by memory cells in Long Short Term Memory networks
(LSTM), whose primary behavior reflects directly these self-loops:

c̃[n] = tanh(Wc,cc[n − 1] + Wc,uu[n] + bc)

c[n] = c[n − 1] + c̃[n]
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FIGURE 4.4: Reservoir approach. Only output weights (red) are
trained. A. Random initialization of the recurrent weights (Jaeger,
2001b). B. Deterministic ring structured initialization of the recurrent
weights (Rodan and Tino, 2011). C. Random layered initialization of

the recurrent weights (Gallicchio, Micheli, and Pedrelli, 2018b).

where c is the state of the cell, c̃ is what is added to the state of the cell, and Wc,c, Wc,u
and bc are weights.

In addition to this, they proposed to use gates to monitor the state of the cell. In a
way, the memory cells are like working memories controlled by these gates. First,
they use an input gate which will control when information should enter the cell:

c[n] = c[n − 1] + i[n]c̃[n]

where i, the state of the input gate, is a signal between 0 and 1 controlling how much
should be added to the state of the cell. Second, they use an output gate which
controls when information in the cell should be spread:

c[n] = c[n − 1] + c̃[n]
h[n] = o[n] tanh(c[n])

where the state of the cells c is decoupled from their output h, and o is the state of
the output gate which is a signal between 0 and 1 controlling how much the state of
the cell shoud be spread to other cells.

Later on, a forget gate was introduced (Gers and Schmidhuber, 2000), which allow
to control the strength of these self-loops depending on the context.

c[n] = f [n]c[n − 1] + c̃[n]
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where f , the state of the forget gate, is a signal between 0 and 1 controlling the
strength of the self-loop.

The overall dynamics of LSTM that combines all the gates is described by the fol-
lowing set of equations:

i[n] = σ(Wi,hh[n − 1] + Wi,uu[n] + bi)

f [n] = σ(W f ,hh[n − 1] + Wi,uu[n] + b f )

o[n] = σ(Wo,hh[n − 1] + Wi,xu[n] + bo)

c̃[n] = tanh(Wc,cc[n − 1] + Wc,uu[n] + bc)c[n] = f [n]c[n − 1] + i[n]c̃[n]
h[n] = o[n] tanh(c[n])

FIGURE 4.5: Long Short Term Mermory network (LSTM) architecture.
Figure extracted from (Christopher Olah, 2015)

There have been many variants of memory cells, for a recent review on these variants
and how they are used in a network see (Yu et al., 2019). For instance peephole
connections have been introduced in order to allow the gates to inspect the current
internal states of the cells (Gers and Schmidhuber, 2000). The input gate dynamic
would be re-written as:

i[n] = σ(Wi,cc[n − 1] + Wi,hh[n − 1] + Wi,uu[n] + bi)

However, this adds a lot of extra parameters to train. Other variants have been
introduced in order to reduce the number of parameters. For instance, if we rely on
the fact that, most likely, when we want to store new things, we also want to forget
others, it is possible to remove parameters by coupling the input gate and the forget
gate. That is precisely how Gated Recurrent Unit (GRU) have been proposed (Cho
et al., 2014b). In GRU, the update gate combines both the input and forget gate

c[n] = (1 − z[n])c[n − 1] + z[n]c̃[n]

where z, the state of the update gate, is a signal between 0 and 1 controlling how
much the state of the cell should be updated. In GRU, the state of the memory cell
and its output are merged, and a reset gate simplifies the output gate.

c̃[n] = tanh(Wc,cr[n]c[n − 1] + Wc,uu[n] + bc)

Applying the same intuitive idea as before, minimal gated unit reduce even further
the number of parameters and combine both update gate and reset gate, and use
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a single gate for both (Zhou et al., 2015). So far none of these variants seems to
improve significantly the performances of vanilla LSTM (Greff et al., 2017a).

4.5 Explicit memory mechanisms (Memory networks/NTM)

The memory cells in LSTMs can be largely considered as working memories that the
gates learn to use. In that regards, Weston, Chopra, and Bordes implement a work-
ing memory for the RNN (Weston, Chopra, and Bordes, 2014). More specifically,
they proposed the memory networks in which they make an RNN interact with
an external memory. This external memory can be used via an addressing mecha-
nism. Initially, this addressing mechanism required supervision in order to be used.
However, around the same time, (Graves, Wayne, and Danihelka, 2014) proposed
the Neural Turing Machines in which this addressing doesn’t require pre-training.
With a similar content addressing mechanism (Sukhbaatar et al., 2015) removed the
supervision from the memory networks.

FIGURE 4.6: Neural Turing Machine (NTM) architecture. Figure ex-
tracted from (Graves, Wayne, and Danihelka, 2014)

Let us describe in more details the neural turing machines (NTMs). With NTM,
Graves, Wayne, and Danihelka attempted to create an analog of a Turing Machine in
an RNN (Graves, Wayne, and Danihelka, 2014). A Turing machine is composed of
three components: (1) a tape of infinite length where symbols are written, (2) a tape
head placed on the tape which can move along the tape, read the content of the tape,
or write new content on the tape, and (3) a finite state machine which determines
what action to do with the head (move/read/write). As shown in Figure 4.6, each
of these components have their analog in the NTM: (1) a tape of finite length where,
instead of symbols, vectors of real numbers are written, (2) a read/write head that
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no longer has a physical position on the tape but will be able to read/write memo-
ries through an addressing mechanism, and (3) an RNN controller that not only has
access to information read by the head but also to external input, and that decides
where to read/write on the tape. In a Turing machine, all operations are performed
on the tape: the input is the initial state of the tape and the output is the final state.
Whereas in NTMs, the inputs/outputs are separated from the tape, the RNN con-
troller receives the inputs and produces the outputs. The head of an NTM combines
two addressing mechanism: a content-based mechanism and a location-based mech-
anism. To have differentiable addressing mechanisms, both rely on the same idea:
the head will read and write everywhere, but with different levels of intensity. At
each time step, each location in memory is thus associated with a weight. Reading
consists in giving as input to the RNN controller the weighted sum of the memories,
whereas writing is decomposed in two steps: (1) an erasing step, and (2) an adding
step. For writing, these weights allow focusing on where to erase and where to add.
The content-based mechanism attempts to select a memory that is the best aligned
with a key produced by the controller, whereas the location-based mechanism at-
tempts to select a memory given its location. The analogy that NTM has started to
make with computers has been extended with Neural Programmer (Neelakantan,
Le, and Sutskever, 2015). In computers we have more than reading and writing in
memory, there are processing units able to do logic/arithmetic. With Neural Pro-
grammer, Neelakantan, Le, and Sutskever proposed to incorporate such processing
units in an RNN.

4.6 Summary

In this chapter, a direct analogy has been made between working memory and long-
term time dependency. We have also seen why, in a simplified example of SRN,
learning long-term time dependencies is hard in practice for Simple Recurrent Net-
works (SRNs). Training an SRN to solve working memory tasks is therefore com-
plex. However, solutions have been proposed. It is interesting to note that two of
them actually involve incorporating working memory into the model. In the first
one, Long Short-Term Memory networks (LSTMs), the working memory mecha-
nism (i.e. gating) is added directly to the units of the network. In the second one,
an external memory is added with handcrafted read/write operations. The solu-
tion proposed by the Reservoir Computing paradigm (RC) is the least hand-crafted
because no explicit mechanism directly related to working memory is added. In
this thesis, we propose to explore how such RC models can still be used to obtain a
generic working memory mechanism.
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Chapter 5

A generic working memory
mechanism: Gating

As shown in Chapter 3, a lot of models of working memory are handcrafted, i.e. how
the model will maintain is cleverly designed. In this chapter we propose another
way to build a model for working memory. We train a recurrent neural network
(RNN) to perform a generic working memory task: Gating. What can be viewed as
handcrafted in our model is the function that will be performed by the model, i.e.
the gating task, and not how the model will implement the function, i.e. how the
model will maintain via gating.

In fact, back in the early 90s Zipser et al. have already shown how it is possible to
perform such gating using a recurrent neural network which learn through back-
propagation through time Zipser et al., 1993, and how the firing rate activity of such
model relates to neurons recorded in the prefrontal cortex (PFC) in many different
experiments. If they show that gating is a plausible candidate for a generic mech-
anism of working memory, they do not explain how the recurrent neural network
obtained is actually performing the gating.

In this chapter we show: (1) how such gating can be learned by a way simpler class
of recurrent neural networks, reservoirs, and (2) how such reservoir implement gat-
ing. As shown in Chapter 4, reservoirs are simpler because their training do not
require the use any time unfolding, i.e. there is no need for any backpropagation
through time. In fact, reservoirs are known to have dynamics similar to those of
the prefrontal cortex (PFC), a brain region essential for working memory (Enel et al.,
2016a). Moreover, despite their simplicity, reservoirs have been shown able to han-
dle long-term time dependencies, which is a key to working memory (Jaeger, 2012).
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5.1 Introduction

The prefrontal cortex (PFC), noteworthy for its highly recurrent connections
(GoldmanRakic, 1987), is involved in many high level capabilities, such as
decision making (Bechara et al., 1998), working memory (GoldmanRakic,
1987), goal directed behavior (Miller and Cohen, 2001), temporal organisa-
tion and reasoning (Fuster, 2001). In this article, we are more specifically
interested in gated working memory (O’Reilly and Frank, 2006b) that is de-
fined as the capacity of holding arbitrary information at a given random time
t0 such as to be accessible at a later random time t1 (see Figure 5.1). Between
times t0 and t1, we make no assumption on the inner mechanisms of the
working memory. The only measures we are interested in are the precision of
the output (compared to the initial information) and the maximal delay dur-
ing which this information can be accessed within a given precision range.
One obvious and immediate solution to the task is to make an explicit copy
(inside the memory) of the information at time t0 and to hold it unchanged
until it is read at time t1, much like a computer program variable that is first
assigned a value in order to be read later. Such solution can be easily char-
acterized by a fixed pattern of sustained activities inside the memory. This
is precisely what led researchers to search for such sustained activity inside
the frontal cortex (Funahashi, 2017b; Constantinidis et al., 2018b), where an
important part of our working memory capacities is believed to be located.
Romo et al. (1999) have shown that PFC neurons of non-human primates
can maintain information about a stimulus for several seconds. Their fir-
ing rate was correlated with the coding of a specific dimension (frequency)
of the stimulus maintained in memory. However, when Machens, Romo,
and Brody (2010) later re-analyzed the data of this experiment, they showed
that the stimulus was actually encoded over a sub-population using a dis-
tributed representation. Similarly, when Rigotti et al. (2013b) analyzed single
neuron activity recorded in the lateral PFC of monkeys performing complex
cognitive tasks, they found several neurons displaying task-related activity.
Once they discarded all the neurons that were displaying task-related activ-
ity, they were still able to decode task information with a linear decoder. They
proposed that the PFC hosts high-dimensional linear and non-linear mixed-
selectivity activity. The question is thus, if working memory is not encoded
in the sustained activity, what can be the alternatives?

Before answering that question, let us first characterize the type and the prop-
erties of information we consider before defining what it means to access the
information.
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FIGURE 5.1: Gated working memory is defined as the capacity of
holding arbitrary information at a given random time t0 such as to be
accessible at a later random time t1. Between times t0 and t1, we make
no assumption on the activity inside the working memory. Note that
a closed gate does not mean external activities cannot enter the mem-

ory.

The type of information that can be stored inside working memory has been
characterized using different cognitive tasks such as for example the delayed
matching-to-sample (DMTS), the N-back task or the Wisconsin Card Sorting
Task (WCST). From these different tasks, we can assume that virtually any
kind of information, be it an auditory or visual stimulus, textual or verbal
instruction, implicit or explicit cue, is susceptible to be memorized and pro-
cessed inside the working memory. From a computational point of view, this
can be abstracted into a set of categorical, discrete or continuous values. In
this work, we are only interested in the most general case, the continuous
one, which can be reduced into a single scalar value. The question we want
to address is how a neural population can gate and maintain an arbitrary
(e.g. random) value, in spite of noise and distractors, such that it can be de-
coded non-ambiguously at a later time.

To answer this question we can search the extensive literature on computa-
tional models of working memory that have been extensively reviewed by
Durstewitz, Seamans, and Sejnowski (2000), by Compte (2006) and more re-
cently by Barak and Tsodyks (2014). More specifically, Compte (2006) and
Durstewitz, Seamans, and Sejnowski (2000) explains that the retention of in-
formation is often associated with attractors. In the simplest case, a contin-
uous scalar information can be identified with a position on a line attractor.
However, this kind of memory exhibits stability issues: unlike a point at-
tractor (i.e. a stable fixed point), a line attractor is marginally stable such
that it cannot be robust against all small perturbations. Such a line attractor
can be stable against orthogonal perturbations, but not against colinear per-
turbations (i.e. perturbations along the line). Furthermore, the design (and
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numerical implementation) of a line attractor is tricky because even small im-
perfections (e.g. numerical errors) can lead to instability. Nevertheless, there
exist several models that can overcome these limitations.

This is the case for the theoretical model by Amari (1977) who proved that a
local excitation could persist in the absence of stimuli, in the form of a local-
ized bump of activity in an homogeneous and isotropic neural field model,
using long range inhibition and short range excitation. This model repre-
sents de facto a spatial attractor formed by a collection of localized bumps
of activity over the plane. A few decades later, Compte (2000) showed that
the same lasting bump property can also be achieved using leaky integrate
and fire neurons arranged on a ring, with short range excitation and constant
inhibition (ring bump attractor). This model has since then been extended
(Edin et al., 2009; Wei, Wang, and Wang, 2012) with the characterization of
the conditions allowing to have simultaneous bumps of activity. This would
explain multi-item memorization where each bump represents a different in-
formation that is maintained simultaneously with the other bumps. Sim-
ilarly, Bouchacourt and Buschman (2019a) proposed to handle multi-items
memorization by duplicating the bump attractor model. They explicitly lim-
ited the number of items to be maintained in memory through the interaction
between the different bump attractor models (using a random layer of neu-
rons). If all these models can cope with the memorization of a graded infor-
mation, this information is precisely localized in the bumps of activity and
corresponds to a sustained activity. Such patterns of activity have been iden-
tified in several cerebral structures (e.g. head direction cells (Zhang, 1996) in
mammals, superior colliculus (Gandhi and Katnani, 2011) in primates) but
it is not yet clear to what extent this can give account of a general working
memory mechanism. Such sustained activity is also present in the model of
Koulakov et al. (2002) who consider a population of bistable units that en-
codes a (quasi) graded information using distributed encoding (percentage
of units in high state). This solves both the robustness and stability issue of
the line attractor by virtue of discretization. Finally, some authors (Zipser et
al., 1993; Lim and Goldman, 2013a) consider the encoding of the value to be
correlated with the firing rate of a neuron or of a group of neurons. This is the
case for the model proposed by Lim and Goldman (2013a) who obtain sta-
bility of the firing rate by adding a negative derivative self feedback (hence
artificially increasing the time constant of neurons). They show how such
mechanism can be implemented by the interaction of two populations of ex-
citatory and inhibitory neurons evolving at different time scales. However,
independently of the encoding of the graded value, most of model authors
are interested in characterizing the mechanism responsible for the mainte-
nance property. They tend to consider the memory as an isolated system, not
prone to external perturbations, with the noticeable exception of the model
by Zipser et al. (1993) which is constantly fed by an input.

In this work, we consider working memory to be an open system under the
constant influence of external activities (i.e. even when the gate is closed).
Thus, we can not rely on a dynamical system that hosts a line attractor in
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FIGURE 5.2: Working memory tasks Each column represents a time
step (time increases from left to right), colored discs represent activity
in the input (V or Vi and T or Ti) and the output (M or Mi). A. Gated
working memory task with one gate. B. Gated working memory task
with three gates. C. Gated working memory task with one gate but
three inputs. To solve the task, it is necessary to ignore the two irrel-
evant inputs. D. Gated working memory task with one gate where
the scalar input V has been replaced by a streamed input of bitmap
digits. To solve the task, it is thus necessary to recognize the digits

and to transform them into a normalized value.

the absence of inputs. We have to design an input-dependent dynamical sys-
tem that is robust against all kinds of perturbations (input, internal, output
feedback). First, we will formalize a set of tasks that will be used to study fea-
tures and performances of the different models we have considered. Then,
we will introduce a minimal model that will help us in explaining the mech-
anism needed for a more general model. For this general one, we will con-
sider a particular instance of reservoir: namely an Echo State Network (ESN)
(Jaeger, 2001a). The analysis of this model will allow us to show that reservoir
activity is characterized by a combination of both sustained and transient ac-
tivities. Moreover, we will show that none of these activities are critical for
the decoding of the correct output. Finally, we will show that in the absence
of input the dynamics of the model implements a segment attractor (i.e. a
line attractor with bounding values).

5.2 Methods

In this section, we formalize and extend the gated working memory task
that has been described in the introduction (see Figure 5.1). We consider
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four different tasks that will illustrate the generic capacity of the reservoir
model to store continuous values or a discrete set of values. The first three
are variations of the WM task for continuous values with various number of
input values (n-value) and gating WM units (n-gate). The last task includes a
non-linear computation (i.e. digit recognition from pixels) in addition to the
gating task for discrete values.

5.2.1 The n-value p-gate scalar working memory tasks

In the 1-value 1-gate scalar version of the task, we consider at time t ∈ N an
input signal V(t) in [-1,+1], an input trigger T(t) in {0, 1} and an output M(t)
that is defined as the value of V(t∗) where t∗ is the most recent time such that
T(t∗) = 1 (see Figure 5.2A). This can be written as:

M(t) = V(t∗) with t∗ = max
0≤t′≤t

(t′ | T(t′) = 1) (5.1)

Said differently, the output is the value of the input when the gate was open
for the last time. Note that this can be also rewritten as a simple select oper-
ator between the input V and the output M:

M(t) = T(t)V(t) + (1 − T(t))M(t − 1) (5.2)

In the 1-value 3-gate version of the task, we consider at time t ∈ N an input
signal V(t) in [-1,+1], three input triggers T{1,2,3}(t) in {0, 1} and three out-
puts M{1,2,3}(t) that are respectively defined as the value of V(t∗) where t∗ is
the most recent time such that T{1,2,3}(t∗) = 1 (see Figure 5.2B). This can be
written as:

Mi(t) = Mi(t∗) with t∗ = max
0≤t′≤t

(t′ | Ti(t′) = 1), i ∈ {1, 2, 3} (5.3)

In the 3-value 1-gate scalar version of the task, we consider at time t ∈ N

three input signals V{1,2,3}(t) in [-1,+1], an input trigger T(t) in {0, 1} and an
output M(t) that is defined as the value of V1(t∗) where t∗ is the most recent
time such that T(t∗) = 1 (see Figure 5.2C). This can be written as:

M(t) = V1(t∗) with t∗ = max
0≤t′≤t

(t′ | T(t′) = 1) (5.4)

This can be easily generalized to a n-value p-gate scalar task with n input sig-
nals, p input triggers, and p outputs. Only the first input signal and the t
input triggers determines the p outputs. The other n − 1 input signals are
additional inputs irrelevant to the task.
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5.2.2 The digit 1-value 1-gate working memory task

In the digit version of the 1-value 1-gate working memory task, we define a
slightly more complex version of the V input by considering a bitmap rep-
resentation of it (see Figure 5.2D). Using a monotype font (Inconsolata Reg-
ular1) at size 11 points, we draw a grayscaled bitmap representation of a
sequence of random digits (0 to 9), each digit being of size 6 × 7 pixels (af-
ter having cropped top and bottom empty lines) and the trigger signal being
expanded to the width of a glyph. The output is defined as a discrete and
normalized value. It is to be noted that there is no possible linear interpo-
lation between the different inputs, as it was the case for the scalar version.
Formally, we can define the output as:

M(t) = f (Vi∈[1,7](t
∗), Vi∈[1,7](t

∗− 1), ..., Vi∈[1,7](t
∗− 5)) with t∗ = max

0≤t′≤t
(t′ | T(t′) = 1)

(5.5)
with f a function that maps the representation of a digit to a normalized
value. Since there are 10 values, the digit n is associated to n

10 . This function
has to be learned by the model in order to solve the task. It would have
been possible to use the MNIST database (Schaetti, Salomon, and Couturier,
2016) instead of a regular font but this would have also complexified the
task, and make the training period much longer, because a digit is processed
only when a trigger is present. If we consider for example a sequence of
25,000 digits and a trigger probability of 0.01, this represents (in average) 250
triggers for the whole sequence and consequently only 25 presentations per
digit. In comparison, MNIST train data set has 60,000 digits, which would
have required as many triggers, and a hundred times more digits.

5.2.3 The minimal model

It is possible to define a minimal degenerated reservoir model (if we consider
X1, X2 and X3 to be the reservoir) that takes explicitly advantage of the non-
linearity to perform the gating mechanism, as shown in Figure 5.3. There is
no learning in this model. It is parametrized by two values a (large enough)
and b (small enough) and it is fully defined by the following set of equations:

X1[n + 1] = tanh(b V[n])
X2[n + 1] = tanh(b V[n] + a T[n])
X3[n + 1] = tanh(b M[n] + a T[n])
M[n + 1] = (X1[n + 1]− X2[n + 1] + X3[n + 1])/b

(5.6)

1The Inconsolata font is available from https://www.levien.com/type/myfonts/inconsolata.
html

https://www.levien.com/type/myfonts/inconsolata.html
https://www.levien.com/type/myfonts/inconsolata.html
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FIGURE 5.3: A minimal gated working memory model is able to
solve the 1-value 1-gate working memory task by taking advantage
of the non-linearity and asymptotic behavior of tanh units. Perfor-
mance is controlled with parameters a and b. This architecture can be
generalized to the n-value p-gate task by adding more than one reser-
voir unit (corresponding to X3) for each supplementary trigger/out-

put couple.

In order to understand how this minimal model works, we can write the
output M[n] relatively to the value of the trigger T[n] which lies in {0, 1}:

If T[n] = 0


X1[n + 1] = tanh(b V[n])
X2[n + 1] = tanh(b V[n])
X3[n + 1] = tanh(b M[n])
M[n + 1] = tanh(b M[n])/b

(5.7)

When T[n] = 0, if we assign b a small value (e.g. b = 10−3) and considering
that tanh(x) ∼

x→0
x, from equation (5.7), we have M[n + 1] ≈ M[n].

If T[n] = 1



X1[n + 1] = tanh(b V[n])
X2[n + 1] = tanh(b V[n] + a)
X3[n + 1] = tanh(b M[n] + a)
M[n + 1] = tanh(b V[n])/b

−(tanh(b V[n] + a)− tanh(b M[n] + a))/b

(5.8)

When T[n] = 1, if we assign a to a large value (e.g. a = 1000) and con-
sidering that b is small and that lim

x→∞
tanh(x) = 1, we have tanh(b V[n] +

a) ≈ tanh(b M[n] + a) ≈ 1. From equation (5.8), we then have M[n + 1] ≈
tanh(b V[n])/b ≈ V[n].

Consequently, the trigger T[n] fully dictates the output. When T[n] = 0,
the output M[n + 1] is unchanged and corresponds to the current memory
(M[n]). When T[n] = 1, the output M[n + 1] is assigned the value V[n] of
the input. We think this model represents the minimal model that is able to
solve the gating working memory task using such simple neurons (with tanh
activation function). By taking advantage of the linear regime around 0 and
the asymptotic behavior around infinity, this model gracefully solves the task
using only two parameters (a and b). However, we have no formal proof that
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a model having only two neurons in the reservoir part cannot solve the task.

Note that this minimal model turns out to be similar to the memory cell of
a Gated Recurrent Unit (Cho et al., 2014a) (GRU) without its reset gate2, but
using only simple tanh neurons, in comparison to hand-crafted LSTM-like
cells. Without the reset gate, the dynamics of a GRU cell can be simplified to:

h[n + 1] = (1 − z[n + 1])h[n] + z[n + 1]x[n + 1] (5.9)

where h is the state of the memory cell, z is the update gate neuron, and x
is an input neuron. By using functional equations of hyperbolic functions
and classical order 1 Taylor expansions, and for the sake of simplicity by
replacing all the ob→0(b) by o(b), we can obtain a similar equation in the
minimal model:

M[n + 1] =
tanh(b M[n] + a T[n])− tanh(b V[n] + a T[n]) + tanh(b V[n])

b

=
tanh(b M[n] + a T[n])− tanh(b V[n] + a T[n])

b
+

tanh(b V[n])
b

=
sinh(b (M[n]− V[n]))

b(cosh(b M[n] + a T[n]) cosh(b V[n] + a T[n]))
+

tanh(b V[n])
b

=
sinh(b (M[n]− V[n]))

b
1

cosh(b M[n] + a T[n]) cosh(b V[n] + a T[n])
+

tanh(b V[n])
b

=
b (M[n]− V[n]) + o(b)

b

(
1

cosh(a T[n])2 + o(1)
)
+

b V[n] + o(b)
b

=
(M[n]− V[n])
cosh(a T[n])2 + V[n] + o(1)

= (M[n]− V[n])(1 − tanh(a T[n])2) + V[n] + o(1)

= (1 − tanh(a T[n])2)M[n] + tanh(a T[n])2V[n] + o(1)

If b is small enough, we have M[n+ 1] ≈ (1− tanh(a T[n])2)M[n]+ tanh(a T[n])2V[n]
and consequently, T acts as an update gate for M. The final form that is
equivalent to the GRU without reset gate (as in equation 5.9) is given by:

M[n + 1] = (1 − z[n + 1])M[n] + z[n + 1]V[n + 1] (5.10)

with z[n] ≈ (1 − tanh(a T[n])2).

5.2.4 The reservoir model

We consider an echo state network (Jaeger, 2001a) (see Figure 5.4) with leaky
neurons, and feedback from readout units to the reservoir, which is described

2 We can actually find a similar LSTM variant in Greff et al., 2017b named Coupled Input and Forget
Gate
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by the following update equations:

x[n] = (1 − α)x[n − 1]

+ α tanh
(
Winu[n] + W(x[n − 1] + ξ) + W f b(y[n − 1])

)
y[n] = Woutx[n]

(5.11)

where u[n], x[n] and y[n] are respectively the input, the reservoir and the
output at time n. W, Win, W f b and Wout are respectively the recurrent, the
input, the feedback and the output weight matrix and α is the leaking rate.
ξ is a uniform white noise term added to the reservoir: ξ is independent
for each neuron. During initialization, matrices Win and W f b are sampled
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W
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W
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ξ

FIGURE 5.4: The reservoir model receives a random signal V in
[−1,+1] and a trigger signal T in {0, 1}. The reservoir is made of
non-linear units (tanh) and the output M is fed back to the reservoir
at each iteration. For n-gate p-value task, we use n triggers, p values
and n outputs. For a generic approach, we use notation u for the in-
put, x for the reservoir and y for the output, independently of the

task.

randomly and uniformly between −1 and +1 and multiplied by the input
scaling factor and the feedback scaling factor respectively. Matrix W is sampled
randomly between −1 and +1 and we ensure the matrix enforces the defined
sparsity (ratio of non null values). The resulting matrix is then divided by its
largest absolute eigenvalue and multiplied by the specified spectral radius.
The matrix Wout is initially undefined and is learned through teacher forcing
(Lukoeviius, 2012) and a linear regression:

Wout = YXT(XXT)−1 (5.12)

where Y and X corresponds to the respective concatenation of all the desired
outputs and reservoir states during a run, each row corresponding to a time
step.
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5.3 Results

5.3.1 The reduced model

The reduced model displays a quasi-perfect performance (RMSE = 2e-6 with
a = 10 and b = 10−3) as shown in Figure 5.5 and the three neurons X1, X2
and X3 behave as expected. X1 is strongly correlated with V (Figure 5.5B),
X2 is strongly correlated with V and saturates in the presence of a tick in
T (Figure 5.5C) and X3 is strongly correlated with M and saturates in the
presence of a tick in T (Figure 5.5D). This reduced model is actually a very
good approximation of a line attractor (i.e. a line of points with very slow
dynamics) even though we can prove that, due to the tanh non-linearity, in
the absence of inputs, the model will converge to a null state (possibly after
a very long time), independently of parameters a and b and the initial state.
Nonetheless, Figure 5.5 clearly shows that information can be maintained
provided b is small enough. There is a drift, but this drift is so small that it
can be considered negligible relative to the system time constants: these slow
points can be considered as a line or segment attractor (Seung, 1996; Sussillo
and Barak, 2013b). As explained by Seung (1998), the reader should be cautioned
that the term "continuous attractor" is an idealization and should not be taken too
literally. In real networks, a continuous attractor is only approximated by a manifold
in state space along which drift is very slow. Nevertheless, it is worth mentioning
that in order to have a true line attractor, one can replace the tanh activity
function with a linear function saturated to 1 and -1 (Seung, 1996).
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FIGURE 5.5: Performance of the reduced model on the 1-gate task.
A The light gray line is the input signal and the thick black one is the
output of the model. Black dots at the bottom represents the trigger
signal (when to memorize a new value). B, C, D Respective activity

of X1, X2 and X3 units.

5.3.2 The reservoir model

Unless specified otherwise, all the reservoir models were parameterized us-
ing values given in table 5.1. These values were chosen to be simple and
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do not really impact the performance of the model as it will be explained in
the Robustness section. All simulations and figures were produced using the

Parameter Value
Spectral radius 0.1
Sparsity 0.5
Leak 1.0 (no leak)
Input scaling 1.0
Feedback scaling 1.0
Number of units 1000
Noise 0.0001
Training timesteps 25,000
Testing timesteps 2,500
Trigger probability 0.01

TABLE 5.1: Default parameters Unless specified otherwise, these are
the parameters used in all the simulations.

Python scientific stack, namely, SciPy (Jones, Oliphant, and Peterson, 2001),
Matplotlib (Hunter, 2007) and NumPy (Walt, Colbert, and Varoquaux, 2011).
Sources are available at github.com/rougier/ESN-WM.

Results for the reservoir model show a very good generalization performance
with a precision of the order of 10−3 for the level of noise considered (10−4).
Better precision can be obtained for lower noise levels, as show in Figure 5.7.
Surprisingly, this generalization property stands with as few as only four
random training values where we can achieve a 10−3 level of precision.

1-value 1-gate scalar task

The model has been trained using parameters given in table 5.1. The V signal
is made of 25,000 random values sampled from a pseudo-random uniform
distribution between -1 and +1. The T signal is built from 25,000 random
binary values with probability 0.01 of having T = 1, and T = 0 otherwise.
During training, each of the input is presented to the model and the out-
put is forced with the last triggered input. All the input (u) and internal (x)
states are collected and the matrix Wout is computed according to equation
(5.12). The model has been then tested using a V signal made of 2500 ran-
dom values sampled from a pseudo-random uniform distribution between
-1 and +1. For readability of the figure (see Figure 5.6A), this signal has been
smoothed using a fixed-size Hann window filter. The corresponding T sig-
nal has been generated following the same procedure as during the training
stage. Figure 5.6A displays an illustrative test run of the model (for a more
thorough analysis of the performance, see the Robustness section) where the
error in the output is always kept below 10−2 and the RMSE is about 3 ∗ 10−3.

https://github.com/rougier/ESN-WM
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FIGURE 5.6: Performance of the reservoir model on working mem-
ory tasks. The light gray line is the input signal and the thick black
(or colored) one is the output of the model. Dots at the bottom repre-
sents the trigger signal (when to memorize a new value). For the digit
task, the input containing the value to maintain is shown as a picture
instead. A 1-value 1-gate scalar task B 1-value 3-gate scalar task C 3-value

1-gate scalar task D 1-value 1-gate digit task

1-value 3-gate scalar task

We trained the model on the 1-value 3-gate task using the same protocol as for
the 1-value 1-gate task, using a single value input, three input triggers and
three corresponding outputs. Since there are now three feedbacks, we di-
vided respective feedback scaling by 3. Figure 5.6B shows that maintaining
information simultaneously impacts the performance of the model (illustra-
tive test run). There is no catastrophic effect but performances are clearly
degraded when compared to the 1-value 1-gate task. The RMSE on this test
run increased by one order of magnitude and is about 2 ∗ 10−2. Neverthe-
less, in the majority of the cases we tested, the error does stay below 10−2.
However in a few cases, one memory (and not necessary all) degrades faster.
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3-value 1-gate scalar task

We used the same protocol as for the 1-value 1-gate scalar task but there are
now two additional inputs not related to the task and that can be considered
as noise. Adding such irrelevant inputs had no effect on the solving of the
task as illustrated in Figure 5.6C that shows an illustrative test run of the
model. The error in the output is also always kept below 10−2 and the RMSE
is about the same (3 ∗ 10−3). This is an interesting result, because it means the
network is not only able to deal with "background noise" at 10−4, but it is also
able to deal with noise that has the same amplitude as the input. This is an
important property to be considered for the modelling of the prefrontal cor-
tex: being an integrative area, the PFC is typically dealing with multimodal
information, many of which being not relevant for the working memory task
at hand (Mante et al., 2013).

1-value 1-gate digit task

The model has been trained using 25,000 random integer values between 0
and 9 sampled from an uniform distribution. Each of these values is drawn
one after the other onto an image, each character covering 6 columns of the
image. The input V consists then of the row of this image. The T signal is
sampled similarly as in the 1-value 1-gate task and then expanded 6 times to
fit the transformation of the value to the picture of the values. Which means
that trigger lasts 6 time steps. Interestingly, as we show on Figure 5.6D, even
if the value to maintain is not explicit anymore, it can still be extracted and
maintained. On the test run we show the RMSE is about 4 ∗ 10−2. It is to
be noted that the recognition of a digit is not straightforward and may re-
quire a few timesteps before the digit is actually identified. However when
the good value is maintained it seems to last, the absolute error stays below
0.05, which is the threshold from which we can distinguish between two val-
ues. The reservoir parameters that we found are robust enough to enable not
only a pure memory task (i.e. gating), but also a discrimination task (i.e. digit
recognition).

Dambre et al. (2012b) demonstrated the existence of a universal trade-off be-
tween the non-linearity of the computation and the short-term memory in the
information processing capacity of any dynamical systems, including echo
state networks. In other words, the hyperparameters used to generate an op-
timal reservoir for solving a given memory task would not be optimal for a
non-linear computation task. Here we see that even if the reservoir is made
to memorised a particular value, it is still able to do a non-linear task such
as discriminating stream of digits. Pascanu and Jaeger (2011b) initiated the
concept of such working memory (WM) units for reservoirs. They processed
streams of characters using six binary WM-units to record the deepness of
curly brackets that appeared. We made such reservoir-WM-units coupling



56 Chapter 5. A generic working memory mechanism: Gating

more general: from binary to continuous values. Instead of relying on a col-
lection of N binary WM-units to encode N values, or on the maximum encod-
ing of 2N values, we have shown that a reservoir can use only one WM-unit
to encode a continuous value with a good precision.

5.3.3 Robustness
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FIGURE 5.7: Robustness of the model to hyper-parameters (caption
on next page)
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FIGURE 5.7: The performance of the model has been measured when
a single hyper-parameter varies while all others are kept constant and
equal to the value given in table 5.1. For each plot, we ran 20 iterations
of the model using different random seeds for initialization. Most
of the time (A-GK-L), the varying parameter has been split into 20
log-uniformly spread values between the minimum and maximum
values. A-F. Model hyper-parameters. G-L. Task hyper-parameters.
A. Spectral radius ranging from 0.01 to 10. with an additional 0. B.
Leak term ranging from 0.01 to 1 (no leak). C. Number of units in
the reservoir (from 1 to 1000). D. Sparsity level ranging from 0.01
to 1.0 (fully connected). E. Input scaling ranging from 0.01 to 10. F.
Feedback scaling ranging from 0.01 to 10. G. Noise level inside the
reservoir, ranging from 10−8 to 1. H. Number of discrete values used
to train the model, ranging from 1 to 12. I. Number of input gates
and output channels, ranging from 1 to 12. (1-value n-gate scalar task,
RMSE has been divided by the square root of the number of gates) J.
Number of input values, ranging from 1 to 12. (n-value 1-gate scalar
task) K. Bound for the input value during training, ranging from 0.01
to 1. L. Maximal interval (number of steps) between consecutive ticks
during training, ranging from 10 to 1000. ?. Performance for default

parameters (Table 5.1).

We analyzed the robustness of the model first by measuring its sensitivity for
each of the hyper-parameters (Figure 5.7A-F), namely: input scaling, feed-
back scaling, spectral radius, sparsity of the reservoir weight matrix, leak
term (α) in equation (5.11) and number of units in the reservoir. We also we
measured its sensitivity to task hyper-parameters (Figure 5.7G-L): the noise
level (ξ), number of discrete values used during training (when there is a trig-
ger, V is sampled uniformly in uniformly sampled between -1 and 1 discrete
values), the temporal delay between successive gating signals in training (T
is built sampling its interval between triggers uniformly between 0 and a
bound), the bound used to sample the input value in training (V is uniformly
sampled between -b and b instead, where b is the bound), the total number
of input gates (with a corresponding number of outputs), the number of in-
put values. For most hyper-parameter, we set a minimum and maximum
value and pick 20 values logarithmically spread inside this range. For each
task and model hyper-parameter we ran 20 simulation instances for 25,000
timesteps and record the mean performance using 2,500 values. Results are
shown in Figure 5.7.

First, we can see a non-sensitivity to the sparsity (i.e. minor differences in
performances when these parameters vary). Similarly we can see a non-
sensitivity to the leak term, input and feedback scaling, as long as they are not
too small. It is to be noted that input and feedback scaling should also not be
too big. As expected, the performance increases with the number of neurons.
Surprisingly, we can note that the performance decreases with the spectral
radius. In fact, in supplementary Figure 5.17 we analysed the behavior of the
reservoir model with various spectral radii. We show that even with a bigger
spectral radius, the reservoir keeps maintaining something relevant but less
precise (the segment attractor is slowly degenerating). Globally, the reservoir
model is very robust against model hyper-parameters changes as long as it
is trained in this condition.
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Concerning the task hyper-parameters, one can see in Figure 5.7 that only
the trigger range has no impact. This means that, whatever the time elapsed
between two triggers, it does not affect the performance. Performance natu-
rally decreases with the increase of the noise level (Figure 5.7G), the number
of input gates (I) or the number of input values (J). We can note that the
number of discrete values used during training impacts the performance in a
very specific way (H). Using between 4 to 7 training values, the performance
is already good and does not improve further with supplementary training
values. This means that even if the reservoir model has been only trained to
build few stable points, it is able to interpolate and maintain the other points
on the segment attractor. Interestingly, in Figure 5.7K, we can see a similar
case of interpolation relative to the input value bound x (i.e. the interval
[−x, x] on which the output is trained). The performance reached a plateau
when the bound values reached 0.5 while the interval used for testing per-
formance is always [−1, 1].

5.3.4 Dynamics

A segment attractor Figure 5.8 shows how the model evolves after having
been trained for the 1-value 1-gate task using different starting positions and
receiving no input. This results in the formation of a segment attractor even
tough the model was only trained to gate and memorize continuous values.
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FIGURE 5.8: An approximate segment attractor The same model
trained on the 1-value 1-gate was tested for 500 iterations without
inputs, starting with an initial trigger along with values linearly dis-
tributed between -5 and +5. A and B Output trajectories. Each line
corresponds to one trajectory (output value) of the model. A is a
zoom of B on the first few time steps. C Measure of how well are
maintained the initial triggered value: the absolute difference in the
output between initial time and final time. D Measure of how stable
are the states reached by the reservoir: The maximal absolute differ-
ence between states at intermediate time (dashed line) and final time.
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If we compute the principal component analysis (PCA) on the reservoir states
and look at the principal components (PCs) in the absence of inputs, we can
observe (supplementary Figure 5.16) that all the reservoir states are orga-
nized along a straight line on the first component (the one which explains
most of the variance) and each point of this line can be associated with a cor-
responding memory value. Interestingly enough, there are points on this line
that correspond to values outside the [−1; 1] range, i.e. values for which the
model has not been trained for. However, these points are not stable and an
any dynamics starting from these points converge towards the points associ-
ated to the values 1 or -1 (see Figure 5.8).

V-like and M-like neurons Similarly to the minimal model, in the absence
of input, the inner dynamic of the reservoir model is a combination of both
sustained and highly variable activities. More precisely, in the 1-value 1-gate
task we notice two types of neurons that are similar to neurons X1 and X3 in
the reduced model: (1) neurons which solely follows the input V (i.e. V-like
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FIGURE 5.9: Most correlated reservoir units displaying various de-
grees of maintained activity. Left: in black the activities of the 20
neurons the most correlated with the output, in red the output of the
model. Right: histogram of the correlation between the neurons and
the output; y-axis represents the number of neurons correlated with
the output produced by the model within a correlation bin. Dashed
lines indicate the 20th most correlated and most anti-correlatted neu-
rons with the output. A 1-value 1-gate scalar task B 1-value 3-gate scalar
task C 3-value 1-gate scalar task D 1-value 1-gate digit task. Most corre-
lated reservoir units do not necessarily show clear sustained activity:
we can see a degradation of sustained activities from A to D accord-
ing to the different tasks. Thus, sustained activity is not mandatory

to perform working memory tasks.
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neurons), and (2) neurons that mostly follow the output M (i.e. M-like neu-
rons), respectively. We also notice that M(|w| ≤ 0.1)-like neurons average
activity is linearly linked with the M value and fluctuate around this mean
activity according to the input V. In Figure 5.9 we show M-like neurons for
the different tasks. These neurons were found by taking the most correlated
neurons with the output M3. From Figure 5.9A to D we see that the M-like
neurons link with M output goes weaker and weaker: the average sustained
activity goes from nearly flat to highly perturbed.

This “degradation” of sustained activity is explained by the change in the
distribution of correlations of the whole reservoir population with M out-
put: in Figure 5.9 (right) we see that the correlation with M output is quickly
shrinking from A to D. For the 1-value 1-gate task (5.9A) mostly all neurons
stay at the same value while maintaining the memory. However, when more
values have to be maintained (Figure 5.9B) or when more inputs are received
(Figure 5.9C), most of the activities do not stay at the same value anymore
while maintaining the memory. In fact, in the 1-value 1-gate digit task, neurons
do not display a sustained activity at all (Figure 5.9D). Interestingly, similar
behavior (no sustained activity) can be obtained by lowering the feedback
scaling (supplementary Figure 5.18) or by enforcing the input weights to be
big enough (supplementary Figure 5.20). More formally, when there is no
trigger, the activity of the neurons can be rewritten as tanh(aX + bM). The
two proposed modifications make the ratio a

b bigger and eventually when
a � b, tanh(aX + bM) ≈ tanh(aX). Consequently, tanh(aX) is highly cor-
related with X as aX stays bounded between -1 and 1, and does not depend
of M. Similarly, when a � b, tanh(aX + bM) ≈ tanh(bM) which is in turn
highly correlated with M for the same reasons.

Linear decoder To go further in the understanding of the role played by sus-
tained activities, we wanted to know how much of these sustained activities
were necessary to decode the output memory M. For the 1-value 1-gate task,
we trained a separate decoder based on a subsample of the reservoir popu-
lation. We increasingly subsampled neurons based on three conditions: ei-
ther by choosing the most correlated one first, the least correlated one first
or just randomly selecting them. In Figure 5.10 we can see two interesting
facts. First, there is no need of the whole reservoir population to decode well
enough the memory M: taking a hundred neurons among one thousand is
sufficient. Second, if we take enough neurons, there is no advantage in taking
the most correlated one first, random ones are enough. Surprisingly, it seems
better to rely on randomly selected units than most correlated ones. This sug-
gests that randomly distributed activities contained more information than
just most correlated unit activities and offers a complementary perspective
when comparing it to Rigotti et al. (2013b) decoding of neural population
recorded in monkeys: when task-related neurons are not kept for decoding,
information (but less accurate) can still be decoded.

3Because a trigger input has a substantial influence on the reservoir states, we made the categoriza-
tion by ignoring the time steps when there is a trigger.
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5.3.5 Equivalence between the minimal and the reservoir model

In order to understand the equivalence between the minimal and the reser-
voir model, it is important to note that there are actually two different regimes
as shown in Figure 5.11. One regime corresponds to the absence of a trigger
(T=0) and the other regime corresponds to the presence of a trigger (T=1).
When there is no trigger (T=0), the activities of X1 and X2 compensate each
other because they are in quasi-linear regime (b being very small) and their
summed contribution to the output is nil.

In the reservoir model, we can actually identify an equivalent population
by discriminating neurons inside the reservoir based on the strength of their
input weight relatively to V. More formally, we define R12 as the group of
neurons whose input weight from V (absolute value) is greater than 0.1. Figure 5.12
(panel H) shows that the summed output of these neurons is quasi nil while
the complementary population R3 is fully correlated with the output and is
thus equivalent to the X3 unit in the minimal model.
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FIGURE 5.10: Performance of variable size linear decoders. After
training, we ran the model on the training set and recorded all the
internal states. We selected a subset (from 1 to 1000 units) of these in-
ternal states and find the associated best linear decoder on the train-
ing data set. Finally, we measured the performance of these decoders
on the training sets. Units composing a subset have been sampled
either using the least or the most correlated units (with the output) or
simply randomly. Performance for subsets of size 1000 is equal to the

performance of the original model.
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FIGURE 5.11: The two regimes of the minimal model depending on
the absence (left) or the presence (right) of a trigger T (0 or 1).

Symmetrically, in the presence of a trigger (T=1), the activities of X2 and X3
compensate each other because they are in saturated regime (a being very
large) and their summed contribution to the output is nil. We can again
identify an equivalent population in the reservoir model by discriminating
neurons inside the reservoir based on the strength of their input weights rel-
atively to both T and V. More formally, we define R23 as the group of neurons
whose input weight from T (absolute value) is greater than 0.05 and whose input
weight from V (absolute value) is smaller than 0.1. Figure 5.12 (panel J) shows
that the summed output of these neurons is quasi nil while the complemen-
tary population R1 is fully correlated with the input V and is thus equivalent
to the X1 unit in the minimal model.

We can identify R2 by taking the intersection of R12 and R23 whose activity
is similar to X2 (see panel L in Figure 5.12). Consequently, we have identi-
fied in the reservoir disjoint sub-populations that are respectively and collec-
tively equivalent to activity of X1, X2 and X3 in the minimal model. Table 5.2
quantifies this equivalence using simple correlations. To explore further this
equivalence, we also conducted comparative lesion studies between the two
models (see Supplementary Materials). However, with the original set of pa-
rameters for the reduced model (a = 1000, b = 0.001), lesioning X2 or X3
makes the reduced model to behave in a degraded and extreme mode: out-
puts range from 0 to ±1000 whenever there is a trigger and it makes the
comparison with the reservoir difficult (see Supplementary Figure 5.21). By
choosing an alternative set of parameters (a = 1000, b = 1 that incidently
makes the reduced model unable to sustain memory), we can show a strong
correlation with the reservoir when X1/R1 (resp. X2/R2, X3/R3) are silenced
(see Supplementary Figure 5.22) and this further tighten the relationship be-
tween the two models.

Populations Output correlation
X1 / R1 (T=1) 0.9996
X2 / R2 (T=0) 0.9997
X3 / R3 (T=0) 0.9997

TABLE 5.2: Correlation between respective subpopulations in the re-
duced and reservoir models. Output is restricted to the contribution
of the considered subpopulation.Correlations are computed only at

time relevant for the subpopulation (T = 0 or T = 1).
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FIGURE 5.12: Side by side comparison of the minimal (left) and full
(right) models. A & G Output of the two models respectively. B &
H Group of neurons whose sum of activity is nil between triggers. C
& I Group of neurons whose sum of activity is equal to the output
between triggers. D & J Group of neurons whose sum of activity is
nil during triggers. E & K Group of neurons whose sum of activity
is equal to the input during triggers. F & L Group of neurons whose

sum of activity is equal to the input between triggers.

5.4 Discussion

In computational neuroscience, the reservoir computing paradigm (RC) (Jaeger,
2001a; Maass, Natschläger, and Markram, 2002; Verstraeten et al., 2007),
originally proposed independently by Dominey (1995), and Buonomano and
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Merzenich (1995)4, is often used as a model of canonical microcircuits (Maass,
Natschläger, and Markram, 2002; Hoerzer, Legenstein, and Maass, 2012; Sus-
sillo, 2014). It is composed of a random recurrent neural network (i.e. a
reservoir) from which readout units (i.e. outputs) are trained to linearly
extract information from the high-dimensional non-linear dynamics of the
reservoir. Several authors have taken advantage of this paradigm to model
cortical areas such as PFC (Hinaut and Dominey, 2013; Mannella and Bal-
dassarre, 2015; Hinaut et al., 2015; Enel et al., 2016b) because most of the
connections are not trained, especially the recurrrent ones. Another rea-
son to use the reservoir computing paradigm for PFC modelling is because
PFC also hosts high-dimensional non-linear dynamics (Rigotti et al., 2013b).
RC offers a neuroanatomically plausible view of how cortex-to-basal-ganglia
(i.e. cortico-basal) connections could be trained with dopamine: the reservoir
plays the role of a cortical area (e.g. trained with unsupervised learning), and
the read-out units play the role of basal ganglia input (i.e. striatum).

However, in many dynamical systems, reservoirs included, there exists a
trade-off between memory capacity and non-linear computation (Dambre et
al., 2012b)5. This is why some studies have focused on reservoirs with ded-
icated readout units acting as working memory (WM) units (Hoerzer, Leg-
enstein, and Maass, 2012; Pascanu and Jaeger, 2011b; Nachstedt and Tetzlaff,
2017). These WM units have feedback connections projecting to the reser-
voir and are trained to store binary values that are input-dependent. This
somehow simplifies the task and enables the reservoir to access and use such
long-time dependency information to perform a more complex task, free-
ing the system from constraining reservoir short-term dynamics. Such ideas
had already some theoretical support, for instance Maass, Joshi, and Son-
tag (2007) showed that with an appropriate readout and feedback fonctions,
readout units could be used to approximate any k-order differential equa-
tion. Pascanu and Jaeger (2011b) used up to six binary WM units to store
information in order to solve a nested bracketing levels task. Using a princi-
pal component analysis, they showed that these binary WM units constrain
the reservoir in lower dimensional “attractors”. Additionally, Hoerzer, Leg-
enstein, and Maass (2012) showed that analog WM units (encoding binary
information) also drive the reservoir into a lower dimensional space (i.e. 99%
of the variability of the reservoir activities are explained by fewer principal
components). More recently, Strock, Rougier, and Hinaut (2018), Beer and
Barak (2019) used such WM units in order to store analog values (as opposed
to binary ones) in order to build a line attractor (Seung, 1996; Sussillo and
Barak, 2013b). In particular, Beer and Barak (2019) explored how a line at-
tractor can be built online, by comparing FORCE (Sussillo and Abbott, 2009)
and LMS algorithms, using a WM unit to maintain a continuous value in the
absence of input perturbations.

In that context, the minimal model of three neurons we have proposed helps
4Earlier formulations of very similar concepts can be found in (Jaeger, 2007).
5For reservoirs this trade-off depends on the hyper-parameters (HP) chosen: some HP sets will give

more memory, others more computational capacity (Legenstein and Maass, 2007).
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to understand the mechanisms that allows a reservoir model to gate and
maintain scalar values, in the presence of input perturbations, instead of just
binary values. As explained previously, this minimal model exploits the non-
linearity and the asymptotic behavior of the three tanh units and mimics a
select operator between the input signal and the output. In the case of the
reservoir model, there is no precise architecture or crafted weights, but this
is compensated by the size of the population inside the reservoir along with
the training of the output weights. More precisely, we have shown that vir-
tually any population of randomly connected units is able to maintain an
analog value at any time and for an arbitrary delay. Taking advantage of the
non-linearity of the neuron transfer function, we have shown how such pop-
ulation can learn a set of weights during the training phase, using only a few
representative values. Given the random nature of the architecture and the
large set of hyper-parameters, for which the precision of the output remains
acceptable, this suggests that this property could be a structural property of
any population that could be acquired through learning. To achieve such
property we mainly used offline training in our analyses (for efficiency rea-
sons), but we have shown that it also works with online FORCE learning (see
supplementary materials and Figure 5.14 and 5.15).

We have shown that the reservoir model behavior is similar to the minimal
model with the presence of two “macro states” that are implemented by com-
pensatory clusters. In a nusthell, this working memory is using two distinct
mechanisms: a selection mechanism (i.e. a switch), and a line attractor. Such
mechanims have been also reported in a fully trained recurrent neural net-
work with back-propagation (Mante et al., 2013). The authors proposed a
context-dependent selective integration task and showed that “the rich dy-
namics of PFC responses during selection and integration of inputs can be
characterized and understood with just two features of a dynamical system
the line attractor and the selection vector, which are defined only at the level
of the neural population”. However in our case, not only did we rely on the
analysis of the dynamical system to understand the behavior of the system,
but we were able to design a minimal model implementing these mecha-
nisms and show these same mechanisms are also present in the reservoir
model but in a distributed way.

Finally, one important feature of the model is that it is actually an open sys-
tem and as such, it is continuously under the direct influence of external
activities. More precisely, the model is able to retain an information when
the gate is closed, but this closed gate corresponds to a functionnal state rather
than a physical state where input signals would have been blocked and infor-
mation continues to enter the system. This is illustrated quite clearly when
one looks at the internal activities inside the reservoir: a large number of
neurons are directly (and only) correlated with the input signals. This has
consequences for the analysis of the dynamics of the population: this pop-
ulation is partly driven by the (working memory) task and partly driven by
uncorrelated external activities. If we go back to biology, this makes perfect
sense: a population of neurons is never isolated from the rest of the brain.
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When studying population electrophysiological recordings, we have to keep
in mind that such activities can be fully uncorrelated with the task we are
observing. This might be one of the reasons for the variability of hypotheses
about working memory encoding mechanisms.

5.5 Supplementary

5.5.1 Reduced model

The effect of parameters a and b are of distinct nature as illustrated in Fig-
ure 5.13. b controls the time the memory takes to fade to zero whereas a con-
trols how the model will mix the previous output and the new desired one.
Interestingly, the time the information takes to fade out to zero is not directly
linked to a time constant of neurons. Moreover, the mixing factor can actually
be computed for b small enough and is equal to tanh(a)2. Consequently, by
feeding T with a (instead of 1) and fixing the input weights coming from T to
1 (instead of a), one can obtain a model which mimics the update mechanism
of a Gated Recurrent Unit (GRU) but with regular neurons.
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FIGURE 5.13: Influence of parameters a and b on the reduced model.
The parameter b controls the amount of feedback fed to the model. If
b is too high (b = 0.1, b = 1.0), the memory quickly fade to zero after
a few timesteps. The parameter a controls the gate behavior and the
ratio of the memorized and the new value that will constitute the new
memorized value. If a is too low (a = 1, a = 2), there is a systematic

undershoot.
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5.5.2 Online learning

We tested online learning by using FORCE (Sussillo and Abbott, 2009) de-
scribed by the following update equations:

Wout[n] = Wout[n − 1]− e−[n]P[n]x[n] (5.13)

P[n] = P[n − 1]− P[n − 1]x[n]xT[n]P[n − 1]
1 + xT[n]P[n]x[n]

(5.14)

where e−[n] represents the error made at time n if there were no update of
Wout and P[n] is a squared matrix computing an online inverse of XXT − αI,
α a regularization term and P initialized to P[0] = I

α .

In Figure 5.14 and 5.15 , one can see that the behavior obtain with online
learning is similar to offline learning.
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FIGURE 5.14: Performance of the reservoir model on working mem-
ory tasks with online FORCE learning. Same training/testing proto-
col than for Figure 5.9. The regularization parameter α has been fixed
to 0.0001. The light gray line is the input signal and the thick black (or
colored) one is the output of the model. Dots at the bottom represents
the trigger signal (when to memorize a new value). For the digit task,
the input containing the value to maintain is shown as a picture in-
stead. A 1-value 1-gate scalar task B 1-value 3-gate scalar task C 3-value

1-gate scalar task D 1-value 1-gate digit task.
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FIGURE 5.15: Most correlated reservoir units displaying various de-
grees of maintained activity with online FORCE learning. Same
training/testing protocol than for Figure 5.9. The regularization pa-
rameter α has been fixed to 0.0001. (Left) in black the activities of
the 20 neurons the most correlated with the output, in red the out-
put of the model. (Right) histogram of the correlation between the
neurons and the output; y-axis represents the number of neurons cor-
related with the output produced by the model within a correlation
bin. Dashed lines indicate the 20th most correlated and most anti-
correlatted neurons with the output. A 1-value 1-gate scalar task B
1-value 3-gate scalar task C 3-value 1-gate scalar task D 1-value 1-gate
digit task. Most correlated reservoir units do not necessarily show
clear sustained activity: we can see a degradation of sustained activ-
ities from A to D according to the different tasks. Thus, maintained

activity is not compulsory to perform working memory tasks.

5.5.3 More on the segment attractor

In Figure 5.16 we performed a principal component analysis on the reservoir
state obtained in Figure 5.8. We can note two interesting facts: (1) The ac-
tivity evolves in a very low dimensional space, the first component explains
more than 99% of the variance by itself, and (2) this component is linked to
the memory maintained, linearly between -1 and 1 and non-linearly outside.
With both combined together we can say that the segment attractor we built
is actually a straight line.
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FIGURE 5.16: The line attractor. The reservoir state and output ana-
lyzed are the one of Figure 5.8. x-axis: output (memory). y-axis: first

principal component of the reservoir state.

5.5.4 Influence of the spectral radius on the segment attractor

By watching in Figure 5.17 how the segment attractor is evolving against
the spectral radius, we can better explain its influence on the solving of the
1-value 1-gate task. The smaller the spectral radius the more precise is the
approximation of the segment attractor. For a 0.1 spectral radius the approx-
imate segment attractor seems continuous. The difference is quasi-null for
starting values in [-1,+1] while for values outside this range, the difference
corresponds to the difference with the nearest bound of the [-1,+1] segment.
For a 0.5 spectral radius we clearly can see that the segment attractor is dis-
cretized. In the very first step the outputs concentrates around discretized
value between -1 and 1 and is kept constant. In the extreme case for a 1.0
spectral radius it is discretized into two points corresponding to -1 and 1.

5.5.5 Killing neurons having a sustained activity

In Figure 5.18 we show how the neurons are correlated with the output (M),
the value (V) and the trigger (T) for different feedback scaling. Because some
irregularities come with triggers, we removed the trigger time steps while
computing the correlation with the output and the value. We can note that
the profile of neurons seems to change according to the feedback scaling.
When it is high (1.0), there is mostly neurons following the output, when it is
low (0.1) few neurons continue to follow the output while most of them vary
according to the value they receive as input. To better identify the neurons
which are following the output we looked at where were located the weights
of these neurons in Figure 5.19. We can note that the most correlated neurons
with the output are mainly the ones with relatively small input weights com-
ing from the value. To go further with this idea we changed the sampling of
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FIGURE 5.17: Influence of spectral radius on approximate line at-
tractor The same trained models were tested for 500 iterations with-
out inputs, only starting with an initial trigger along with values lin-
early distributed between -5 and +5. First line: Spectral radius 0.1.
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steps. C Asolute difference in the output between initial time and and
final time. D Maximal absolute difference in the neurons between in-
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the input weights to remove small values. In practice the sampling was done
uniformly in [-1,-0.5]∪[0.5,1.0] instead. The behavior of this modified model
is shown in Figure 5.20. We can note that the model is still able to perform
the task relatively well, just a little worse than before, but there is no more
neuron displaying a sustained activity. Interestingly, in Figure 5.19, the neu-
rons the most correlated with the trigger displays an intringuing property,
their output weights seems to be correlated to their feedback weights.
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FIGURE 5.19: Link between weights and behavior of the neurons
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FIGURE 5.20: Performance of the model with high input value
weights on the 1-gate task. A The light gray line is the input sig-
nal and the thick black one is the output of the model. Black dots
at the bottom represents the trigger signal (when to memorize a new
value). B Activity of 20 units that are the most correlated with the

output.

5.5.6 Comparative lesion studies

To explore further the link we established between the reservoir and the re-
duced model, we conducted comparative lesion studies by forcing a given
population output to be 0 (anytime) in both models. We first compared the
original reduced model (a = 1000, b = 0.001) with the reservoir model. How-
ever, since b is very small, and since X2 and X3 saturates, their contribution to
the output become very large in the presence of a trigger, making the compar-
ison irrelevant (see Figure 5.21). We thus considered an alternative reduced
model (a = 1000, b = 1) to prevent the output to become very large. This
alternative intact model is not able to sustain the working memory anymore
but the output lesioned model is now strongly correlated with the output of
the reservoir model (see Figure 5.22). This further tighten the link between
the different subpopulation X1/R1, X2/R2 and X3/R3 even though it is only
valid for this specific set of parameters.
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FIGURE 5.21: Side by side comparison of lesions in the minimal
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(gray) Left y-axis: Output (black)
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Chapter 6

Towards a synaptic working
memory

In Chapter 5 we proposed a model which can maintain information in its
neural activity. However tasks such as mental calculation require more than
only the maintenance of information. They also require the inner manipula-
tion of the information that is stored. In this Chapter we propose to extend
our previous model with conceptors. We build conceptors that enforce some
memory, and therefore represents that memory. By combining such concep-
tors, we show how it is possible to enforce an input-dependant behavior.
These preliminary results suggest that conceptors can be used to manipulate
the information that is stored.
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COGNITIVE COMPUTATION

IN PRESS

Latent space exploration and
functionalization of a gated working

memory model using conceptors

Abstract: Introduction. Working memory is the ability to maintain and ma-
nipulate information. We introduce a method based on conceptors that al-
lows us to manipulate information stored in the dynamics (latent space) of
a gated working memory model. Methods. This latter model is based on a
reservoir: a random recurrent network with trainable readouts. It is trained
to hold a value in memory given an input stream when a gate signal is on
and to maintain this information when the gate is off. The memorized infor-
mation results in complex dynamics inside the reservoir that can be faithfully
captured by a conceptor. Results. Such conceptors allow us to explicitly ma-
nipulate this information in order to perform various, but not arbitrary, op-
erations. In this work, we show (1) how working memory can be stabilized
or discretized using such conceptors, (2) how such conceptors can be linearly
combined to form new memories, and (3) how these conceptors can be ex-
tended to a functional role. Conclusion. These preliminary results suggest
that conceptors can be used to manipulate the latent space of the working
memory even though several results we introduce are not as intuitive as one
would expect.

Re-editing from the paper in press (Strock, Rougier, and Hinaut, 2020)
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6.1 Introduction

A recent and major enhancement of the Reservoir Computing (RC) paradigm
has been proposed by Jaeger (2014) and Jaeger (2017b) under the form of
conceptors which are able to capture the subspace of internal states of a Re-
current Neural Network (RNN). In the case of Echo State Networks (ESN),
conceptors can be used to capture the trajectory of reservoir states when the
reservoir is fed with a particular input pattern (see figure 6.1). These concep-
tors allow to extend the capacity of the original ESNs by taking advantage
of these new representations. For example, (Jaeger, 2014; Bao et al., 2016;
Bartlett et al., 2019; Gast et al., 2017) showed how to use them for the recog-
nition of temporal sequences while using them for the storage and retrieval
of multiple temporal sequences. More recently, Mossakowski, Diaconescu,
and Glauer (2019) proposed an implementation of fuzzy logic based on con-
ceptors, while Liu, Ungar, and Sedoc (2019) used conceptors for online learn-
ing of sentence representations, and He and Jaeger (2018) proposed a general
way to use conceptors during the learning of multiple tasks.

Conceptors yield several advantages when compared to classical reservoirs
since Jaeger (2014) demonstrated that conceptors can be used for perform-
ing symbolic operations in the latent space of the different input patterns.
Such symbolic operations have been already exploited in the framework of
deep learning community and they provide impressive results. For instance,
in natural language processing (NLP), Mikolov et al. (2013) showed that
arithmetic operations such as “king − men + woman” give a vector similar to
“queen”. More recently, Brock et al. (2016) proposed a method to edit global
image features based on operations performed on the latent space of genera-
tive adversarial networks (GANs). Conceptors provide similar logical oper-
ations in the framework of the reservoir computing paradigm. For instance,
Jaeger (2014) proposes an operator that quantifies if a stimulus is similar to
an already known conceptor. By associating one conceptor per class, it is
possible to measure if a stimulus belongs to a class (positive evidence) or
none (negative evidence). Beyond logical operations, linear combinations of
conceptors allow to implement continuous morphing between set of states:
they were used to create morphing between two time series corresponding
to the extended interpolation of the time series (e.g. a morphing between
two sine-waves with different frequencies is a sine-wave with an intermedi-
ate frequency).

This capacity of performing operations in the latent space resonates strongly
with the notion of working memory (WM) as found in neuroscience. It is gen-
erally defined as the capacity to hold information for a short period of time
as well as the capacity to manipulate this information in order to achieve
some task or to reach a specific goal. In this context, we have introduced
in (Strock, Hinaut, and Rougier, 2020) a reservoir with feedback connections
that implements a gated working memory, i.e. a generic mechanism to main-
tain information at a given time (corresponding to when the gate is on, see
figure 6.3). In this model, the memory is encoded in the dynamics of the
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reservoir and information can be maintained without any sustained activity.
This absence of sustained activity is precisely what makes it difficult to ma-
nipulate the underlying information and this is also the reason why some
authors (Mongillo, Barak, and Tsodyks, 2008b; Stokes, 2015b; Masse et al.,
2019b; Manohar et al., 2019) have suggested the existence of a mechanism to
temporarily store information in synaptic weights. In this context, concep-
tors provide a plausible explanation for such a transfer as well as an explicit
method for manipulating information; even if the conceptor mechanisms are
for the moment not as biologically plausible as the reservoirs themselves.

In this article, we explore the nature of operations carried on by such con-
ceptors and explore the different ways to combine them such as to explicitly
manipulate memories. Even though the results we introduce in this arti-
cle are preliminary and to some extents, counter-intuitive, this leads us to
consider the notion of functional conceptors that would allow to arbitrarily
manipulate working memory in the latent space.

6.2 Methods

6.2.1 Conceptors overview

Considering an ESN R that has been trained1 to produce the sequence O1
when presented with input sequence I1, Jaeger (2014) demonstrated that it is
possible to build an ESN R∗ that will spontaneously produce the sequence
O1, in the absence of any input (see Figure 6.1). The activity of this new R∗
can be decoded using the read-out weights of R. This is actually similar to the
principle of the full-FORCE method introduced in (DePasquale et al., 2018)
where internal weights are trained to match the internal activity of a teacher
network receiving the desired output as input. However, Jaeger (2014) prin-
ciple is applicable to multiple input patterns with the assumption that each
input pattern makes the reservoir evolve in a separable region of the internal
high dimensional space. In order to build R∗, he proposed to approximate
the activity of R when it receives any of these input patterns. Then he equips
R∗ with a set of recurrent connections (i.e. the conceptors) that are specific to
each couple of input/output and that will project the internal state into the
relevant sub-space. Jaeger (2017b) shows in particular how these conceptors
can be considered as long-term memories for temporal patterns. Conceptors
can store temporal patterns and reactivate them later with negligible loss of
recall/precision. More generally, conceptors can be considered as long-term
memories of internal states subspaces.

1offline with ridge regression
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FIGURE 6.1: Conceptors general idea A Considering an ESN R that
outputs the sequence O1 when an input I1 is presented, it is possible
to build an ESN R∗ that spontaneously outputs the sequence O1 in
the absence of any input. B Considering an ESN R that respectively
outputs the sequences O1 and O2 when input I1 and I2 are presented,
it is not possible to define R∗ as in A since we cannot define the ex-
pected output in the absence of input. C Considering an ESN R that
respectively outputs the sequences O1 and O2 when input I1 and I2
are presented – with the supplementary conditions that the inner rep-
resentation corresponding to inputs I1 and I2 are separable – it is pos-
sible to build an ESN R∗ equipped with a set of feedback weights C1
or C2 such that using C1, R∗ spontaneously outputs O1 and using C2,

R∗ spontaneously outputs O2.
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6.2.2 Models

Echo State Networks (ESN)

In this work we consider Echo State Networks (ESN) with feedback from
readout units to the reservoir (Jaeger, 2001b). The system is described by the
following update equations:

x[n] = tanh
(
Winu[n] + Wx[n − 1] + W f by[n − 1]

)
+ ξ

y[n] = Woutx[n]

where u[n], x[n] and y[n] are respectively the input, the reservoir and the
output at time n. W, Win, W f b and Wout are respectively the recurrent, the
input, the feedback, the output weight matrices and ξ is a uniform white
noise term added to reservoir units.

Controlling ESN dynamics using a conceptor

Following (Jaeger, 2014) notations, the equation for a conceptor C enforcing
some particular dynamics can be written as:

x[n] = C tanh (Wx[n − 1] + b)

where C is the conceptor (possibly changing over time), x[n] is the state of
the model at time n, W is the recurrent matrix and b is a constant bias. This
can be extended to the general case where we also have an input u[n] (with
input matrix Win) (or similarly a feedback), and writes:

x[n] = C tanh
(
Wx[n − 1] + Winu[n] + W f by[n − 1]

)
y[n] = Woutx[n]

Using a conceptor C is similar to a change of W in W̃ = WC (and Wout in
WoutC if there is feedback). In our implementation, we thus consider:

x[n] = tanh
(
(W + W f bWout) C x[n − 1] + Winu[n]

)
y[n] = Woutx[n]

Computing conceptors

In order to compute a conceptor for some given dynamics, it is necessary to
collect all the states of the reservoir and to concatenate them in a matrix X.
The conceptor C is then defined as:

C = XXT
(

XXT + α−2 I
)−1

= R
(

R + α−2 I
)−1

where R = XXT is similar to a covariance matrix, and α (a.k.a the aperture)
controls how close from the identity matrix C is.
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Aperture adaptation

Intuitively, the aperture of a conceptor controls the precision of the internal
states representation. However, no information on internal states is lost, be-
cause it is possible to change the aperture of a conceptor C without the need
to recompute the conceptor from scratch. To change the aperture, one only
need to adapt the conceptor C as follows:

φ(C, γ) = C
(

C + γ−2(I − C)
)−1

where φ(C, γ) represents the same states than C with a different aperture,
and γ is controlling how the aperture is modified. Intuitively, φ(C, γ) modi-
fies the aperture of C by a factor of γ.

Linear combination

Given two conceptors C and B and λ ∈ R, the linear combination of concep-
tor C and B is defined as:

C = λC + (1 − λ)B

In the following when λ ∈ [0, 1] we will talk about interpolation, when λ > 1
about right-extrapolation, and when λ < 0 about left-extrapolation.

Boolean operations

Boolean operations can be written as:

C ∨ B =

(
I +

(
C(I − C)−1 + B(I − B)−1

)−1
)−1

C ∧ B =
(

C−1 + B−1 − I
)−1

¬C = I − C

However, as highlighted in (Mossakowski, Diaconescu, and Glauer, 2019), ∨
and ∧ are not idempotent (i.e. C ∨ C 6= C and C ∧ C 6= C). More precisely
if C (resp. B) is a conceptor built with the covariance matrix R (resp. Q),
Jaeger proposes to build C ∨ B using the covariance matrix R + Q that is
by design not idempotent. What we propose here is to consider instead the
matrix βR + (1 − β)Q with β ∈ [0, 1] instead of R + Q, or if we want it to be
symmetric (R + Q)/2. Similar calculation gives the following new ∨β and
∧β.

C ∨β B =

(
I +

(
βC(I − C)−1 + (1 − β)B(I − B)−1

)−1
)−1

C ∧β B =
(

βC−1 + (1 − β)B−1
)−1
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This way of building the OR operation also has a data driven intuition. If
we note β = n

n+p where n (resp. p) is the number of data points used to
build R (resp. Q) then bR + (1 − b)Q is the "correlation matrix" obtained
by taking the union of all the data points. Moreover, if we choose β = 0.5
then there is a direct link between the two ways of defining the OR operator:
C ∨ B = φ(C ∨0.5 B, 2). In this study, the aperture was mostly not influencing
the results, thus we show only the results for ∨.

6.2.3 Gating task

We consider the gating task described in (Strock, Hinaut, and Rougier, 2020).
In this task the model receives an input V that is continuously varying over
time and another input being either 0 or 1 (trigger or gate T). To complete the
task, the output has to be updated to the value of the input when the trigger
is active and to remain constant otherwise (similarly to a line attractor). In
other words, the trigger acts as a gate that controls the entry of the value in
the memory (the output). Figure 6.2 describes this task.

Value (V)
Trigger (T)
Output (M)

FIGURE 6.2: Gating task. Each column represents a time step (time
increases from left to right), colored discs represent inputs (V and T)

and the output (M).

Gated Working Memory Reservoir

We consider a reservoir with feedback from readout units to the reservoir
(see Figure 6.3). In (Strock, Hinaut, and Rougier, 2020) we showed that this
gated working memory reservoir is able to learn to robustly gate information
in presence of noise and of a distracting input. The model behaves as a line
attractor even if few values are used for training (about 10 values is enough).
We also provided a minimal model version and showed an equivalence with
GRU (Gated Recurrent Unit) cells (Cho et al., 2014a), which are a simplified
version of Long-Short Term Memory (LSTM) cells.

6.2.4 Implementation details

We consider a reservoir of 1000 neurons that has been trained to solve a gat-
ing task described in Figure 5.2 A. The overall dynamics of the network we
consider are described by the following equations:

x[n] = tanh
(
(W + W f bWout) C x[n − 1] + Winu[n]

)
+ ξ

y[n] = Woutx[n]

where u[n], x[n] and y[n] are respectively the input, the reservoir and the
output at time n. W, Win, W f b, Wout and C are respectively the recurrent,
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FIGURE 6.3: The Gated Working Memory Reservoir model The
reservoir receives a random signal V in [−1,+1] and a trigger signal

T in {0, 1}. The output M is fed back to the reservoir.

the input, the feedback, the output and the conceptor weight matrices and
ξ is a uniform white noise term added to reservoir units. W, Win, W f b are
uniformly sampled between −1 and 1, and left untrained. Only W is scaled
to have sparsity level equal to 0.5 and a spectral radius of 0.1. If not stated
otherwise, the noise is selected uniformly between -10−4 and 10−4.

The major difference with Jaeger’s proposal in the way the patterns are stored
is that in our case patterns are stored implicitly when solving the gating task.
In other words, the patterns are stored by training Wout and not by explic-
itly recomputing an internal weight matrix. However as mentioned in (De-
Pasquale et al., 2018), training Wout when there is a feedback is equivalent to
recomputing the internal weight matrix W as W∗ = W + W f bWout.

When Wout is computed to solve the gating task, the conceptor C is consid-
ered to be fixed and equal to the identity matrix (C = I). Wout is trained for
25,000 time steps. At each time step there is a 0.01 probability of having a
trigger and the input value (V) is uniformly randomly sampled between -1
and 1. During training, the average holding time of the value in memory is
therefore about 100 time steps.

After training, in normal mode, the conceptor C is equal to a conceptor Cm
that is generated and associated to a constant value m. In order to compute
this conceptor Cm, we impose a trigger (T = 1) as well as an input value (V =
m) at the first time step, such that the reservoir has to maintain this value
for 100 time steps. During these 100 time steps, we use the identity matrix
in place of the conceptor. The conceptor Cm is then computed according to
Cm = XXT (

XXT + I
a
)−1

, where X corresponds to the concatenation of all
the 100 reservoir states following the trigger, each row corresponding to a
time step, I the identity matrix and a the aperture. In all the experiments
the aperture has been fixed to a = 10. For the conceptors pre-computed in
Figure 6.4 and 6.6, the reservoir have been initialised with its last training
state.
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6.3 Results

6.3.1 Constant-memory conceptors

The idea behind what we named constant-memory conceptors is to capture ex-
plicitly the dynamics of a reservoir maintaining a value and to use this con-
ceptor to later constrain the dynamics of any reservoir, inducing an alterna-
tive memory in the output as represented on figure 6.4. In order to build
a constant-memory conceptor Cm, we consider the gated reservoir working
memory model that receives a trigger and an input value m at time t = 0.
We collect the states of the reservoir for 100 iterations from which we build
the conceptor Cm and apply it immediately to the model. Results of this pro-
cedure is shown on figure 6.4B where five conceptors are built (gray bands)
and applied immediately (white bands) without noticeable modification on
the output of the reservoir since the actual dynamics and the dynamics stored
in the conceptor are congruent. On figure 6.4A, we used the same procedure
to build a set of 11 conceptors whose captured dynamics correspond to 11
values uniformly spread between -1 and +1. On figure 6.4C, after 100 iter-
ations following the presentation of a new value, we apply the closest con-
ceptor (Frobenius norm, inducing a distance between conceptors) from the
previous set of 11 constant-memory conceptors. One can see that on figure
6.4C that the input value is first maintained (grey band) and jumps rapidly
to the closest discretized value when the conceptor is actually applied and
constrained the dynamics.

These constant-memory conceptors also exhibit a nice property regarding
the long term maintenance of a memory. The initial gated working mem-
ory model is already quite robust regarding the long term maintenance of
memory in the absence of internal noise (i.e. inside the reservoir). When
it is trained for a few hundreds of time steps, it is able to maintain a mem-
ory for several thousands of time steps (see figure 6.5A) before the mem-
ory starts to slowly degrade. When conceptors are applied, this slow degra-
dation vanishes (figure 6.5B): the RMSE without conceptor is of 4.21e-02 ±
1.84e-02 (mean ± std) whereas with conceptors it is 1.02e-03 ± 6.95e-04. In
the presence of internal noise (inside the reservoir), the initial gated work-
ing memory model is much less robust and memory starts to degrade after
only a few thousand time steps (see figure 6.5C). More precisely, a 10−4 noise
(std(ξ) = 10−4) prevents the model to maintain a value for a much longer
time than the time that has been used to train it (figure 6.5C). However, when
conceptors are applied, their benefit is even more obvious: after one hun-
dred thousand time steps, without conceptor the memory converge towards
a few values, whereas with conceptors the memory remains(figure 6.5D).
The RMSE without conceptor becomes 1.39e-01 ± 7.66e-02 (3.3 times greater
than without noise), whereas the RMSE with conceptors becomes 2.85e-03 ±
1.98e-03 (2.8 times greater than without noise).
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FIGURE 6.4: Approximation with conceptors and discrete conceptors.
In A, B and C the model receives the same inputs across time. Black
lines: Evolution of the reservoir readout y. Each black line in A. rep-
resents a different trial where a different conceptor is applied. Gray
lines: the discrete value considered for each conceptor. Light gray ar-
eas: time period when conceptors are computed for the current value.
A. Different trials showing various discrete conceptors applied. B-C.
Conceptors Cm are computed using the 100 time steps following a
trigger while C = I (light gray areas). B. The conceptor Cm is directly
applied during the 400 following time steps. C. The closest conceptor
among the discretized conceptor is applied during the 400 following
time steps. Dashed lines represents the memory that should have

been kept if not discretized.

6.3.2 Linear interpolation of constant-memory conceptors

In Figure 6.6, we show two main ideas: (1) how a linear interpolation be-
tween two conceptors can allow to generalize the gating of other values, and
(2) a representation of the space in which lies the conceptors and their link to
the memory they encode. (1) Interpolation and extrapolation C of conceptor
C0.1 and conceptor C1.0 has been computed as C = λC1.0 + (1 − λ)C0.1 with
31 λ values uniformly spread between -1 and 2. Even though the interpo-
lated (λ ∈ [0, 1]) conceptors obtained are not exactly equivalent to Cm con-
ceptors obtained in Figure 6.4, they seem to also correspond to a retrieved
memory value that is maintained. The mapping between λ and the value
is non-linearly encoded. For right-extrapolation (λ ∈ [1, 2]) the conceptor
seems to be linked to a noisy version of a Cm conceptor: the output activ-
ity is not constant, but its moving average is constant. For left-extrapolation
(λ ∈ [−1, 0]), the conceptor obtained does not seem to encode any informa-
tion anymore: all the output activities collapse to zero. (2) Principal Compo-
nent Analysis (PCA) have been performed using 201 pre-computed concep-
tors associated to values uniformly spread between -1 and 1. The first three
components already explain approximately 85% of the variance. The first
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FIGURE 6.5: Stability comparison with or without conceptor, with or
without noise. Black: Evolution of the readout y. lines: the discrete
value considered. Light areas: time when conceptors are computed
for the current value. A-B No noise. C-D 0.0001 noise. A and C No

conceptor used. B and D Discrete conceptor are applied.
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component seems to non-linearly encode the absolute value of the memory
(Figure 6.6B) whereas the second component seems to non-linearly encode
the memory itself (Figure 6.6C). The curved line composed of conceptors Cm
(Figure 6.6E-G) shows visually why the extrapolation does not work as we
expected.
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FIGURE 6.6: Generalisation of constant-memory conceptors Cm. Red:
two constant-memory conceptors: C0.1 and C1.0. Black: Inferred con-
ceptors, i.e. linear interpolation and extrapolation between C0.1 and
C1.0. A Temporal evolution of the readout for different conceptors.
B-G : constant-memory conceptors Cm for 201 values of m uniformly
spread between −1 and 1. B-D Link between principal components
of the conceptors and the memory they are encoding. For the inter-
polated conceptors, the memory is considered as the mean in the last
1000 time steps. E-G Representation of the conceptors in the three

principal components of the Cm conceptors.

6.3.3 Functional conceptors

In this section, we show three examples where conceptors have a functional
role: (1) constant-memory conceptors when triggers are received, (2) a con-
ceptor enforcing triggers, and (3) the conjunction/disjunction of constant-
memory conceptors. By functional we mean that conceptors do not only store
and reactivate a dynamical pattern. Conceptors can do much more than con-
strain the dynamics in an attractor. Conceptors can also constrain the dy-
namics in a space where the behavior is input-dependent, i.e. the outputs are
some function of the inputs.

Constant-memory conceptors when triggers are received. When a constant-memory
conceptor Cm is applied to the gated working memory model, it seems to
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quickly force the output y to match the value m, making it insensitive to the
input value. However, the actual behavior is a bit different as illustrated on
figure 6.7. On this figure, we can observe that the readout value of the re-
sevoir under the influence of a conceptor C0.5 is destabilized when a trigger
occurs. More precisely, the trigger induce an instanteneous readout equal to
the input until quickly relaxing to the constant value of the conceptor (0.5).
This confirms that the combination of a reservoir and a constant-memory
conceptor remains sensitive to the input. Said differently, a constant-memory
conceptor Cm is not the mere storage of the value m but rather a function that
constrains the dynamics of the reservoir such that when applied, the readout
will eventually read m after some time.
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FIGURE 6.7: Influence of trigger with constant-memory conceptors.
A constant-memory conceptor C0.5 is applied while receiving several
triggers. Gray: the input value (V). Black: Evolution of the readout y.
When a trigger occurs (indicated by dots on the Ticks line) the readout
transitorily goes to the current input value before going back to the

value memorized by the conceptor.

Conceptor enforcing triggers. This functional aspect of conceptor can be fur-
ther illustrated by building the following conceptor CT: during 100 time
steps, the reservoir receives constant triggers (T = 1) and has therefore to fol-
low the value (V) it receives as input. Conceptor CT is constructed from the
states taken by the reservoir during these 100 time steps. Figure 6.8 shows
what happens when this conceptor is subsequently applied: independently
of the trigger signal, the output of the reservoir follows the input. Every-
thing happens as if the reservoir was receiving a continuous trigger signal
and the conceptor acts as a pass-through filter that modifies the behavior of
the gated working memory as a whole (instead of modifying each individ-
ual value). This result suggests that conceptors may probably be extended to
store arbitrary functions that act in the latent space of the reservoir. We do
not know yet how to specify such arbitrary functions inside a conceptor, but
the preliminary results we introduced are encouraging even though more
theoretical work is needed.

Conjunction/disjunction of constant-memory conceptors. The last example where
we show this functional aspect of conceptors is the disjunction of conceptors.
If the conceptors Cm and Cm′ represent the subspaces when the value stored
are respectively m and m′, the disjunction of Cm and Cm′ , i.e. Cm ∨ Cm′ would
represent the union (or the sum) of such subspaces. Applying Cm ∨Cm′ might
therefore constrain the dynamics in one of these two subspaces, enforcing the
memory (i.e. the output y) to become either m or m′. Cm ∨ Cm′ could thus
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FIGURE 6.8: Pass-through conceptors. This conceptor is able to mod-
ify the behavior of the gated working model by letting all the values
to pass through the reservoir up to the output, independently of the
gating signal (time steps 1000 to 1500). Black: Evolution of the read-
out y. Gray: the input value (V). Light gray areas: no conceptor is
applied (i.e. C = I). White areas: the conceptor simulating a constant
trigger is applied (i.e. C = CT), thus the input is redirected to the

output.

store a choice function between m and m′, or in other words, a sort of condi-
tional assignment that would store m in some cases and m′ in some others.
It is not exactly what Cm ∨ Cm′ does but it still implements some conditional
assignment. When a trigger occurs the output jumps towards the value v to
be maintained and then relaxes to another value that depends on v.

In Figure 6.9, we show the values towards which the output relaxes (i.e. re-
laxation values) when the disjunction of two constant-memory conceptors is
applied. First, as the disjunction of twice the same conceptor Cm ∨ Cm is ei-
ther equivalent to the same conceptor or to an aperture adaptation of it (i.e.
Cm ∨ Cm = φ(Cm, 2) and Cm ∨β Cm = Cm), the value towards which the dis-
junction Cm ∨ Cm relaxes is the value of the conceptor itself (i.e. m). Then,
we realized that we could predict what would be the relaxation values in dif-
ferent cases: in general the relaxation value was mostly either almost zero or
the maximum of the absolute values of the two conceptors multiplied by the
sign of the new value to be maintained. We propose the following formula
to predict the value towards which Cm1 ∨ Cm2 relaxes:

vrelax(m1, m2, v) =


m1 if m1 = m2

sign(v)× max(|m1|, |m2|) if min(|m1|, |m2|) < |v|
or m1 = −m2

0 otherwise
(6.1)

where v is the initial value (V) proposed along with the trigger, m1 (resp. m2)
is the constant associated to conceptor m1 (resp. m2), vrelax(m1, m2, v) is the
ultimate value reached while applying conceptor Cm1 ∨ Cm2 . Said differently,
the conceptor Cm1 ∨ Cm2 implements a conditional assignment (modulo the
sign): if the input value at time of trigger is bigger than the minimum be-
tween m1 and m2 then it will converge towards the maximum of m1 and m2,
otherwise it will converge towards 0. The predictions made by the formula
are less accurate for extreme values such as for v = 1.00 (see Figure 6.9).
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We hypothesize a similar formula for relaxation values of n constant-memory
conceptors:

vrelax(m1, ..., mn, v) =



m1 if m1 = ... = mn

sign(v)× max(|m1|, ..., |mn|) if min(|m1|, ..., |mn|) < |v|
or (∀i, j |mi| = |mj|
and ∃i, j such that i > j and mi = −mj)

0 otherwise

where v is the initial value (V) given along with the trigger, mi is the con-
stant associated to conceptor Cmi , vrelax(m1, m2, ..., mn, v) is the ultimate value

reached while applying conceptor
n∨

i=1
Cmi .
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FIGURE 6.9: Relaxation values (i.e. values towards which the output
converges) when applying the disjunction of two constant-memory
conceptors. In other words, it corresponds to the final values reached
when applying the conceptor Cm1 ∨ Cm2 . A-C Empirical results from

experiments. D-F Predictions based on equation 6.1.

We also studied how the conjunction constant-memory conceptors were in-
fluencing the dynamics. If the disjunction of conceptors is similar to a union
(or sum), then the conjunction of conceptors is similar to an intersection.
Moreover, as the memory is represented as the output, the memory cannot
be simultaneously the value m and the value m′ present. It is thus harder to
predict what would be the behavior of such conceptor. In practice, as for the
disjunction, when a trigger occurs the output jumps towards the value v to
be maintained and then relaxes to another value. However, in that case the
value towards which it relaxes is easy to describe, it is always almost zero.
The conjunction of constant-memory conceptors acts therefore as C0.
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6.4 Discussion

Conceptors are powerful tools for performing explicit operations in the latent
space of a reservoir even though the composition of such operations remains
a difficult task. Using a reservoir model of gated working memory, we have
shown another way to enforce a particular memory through the use of ad-hoc
conceptors. These constant-memory conceptors therefore provide a synaptic
form to the memory, and we have shown how they can be used to stabilize
or discretize the memory. However, the effect of conceptors composition is
counter-intuitive and largely differs from what we would naturally expect.

For instance, we have seen that the linear interpolation of constant-memory
conceptors does not create another constant-memory conceptor, or at least
it does not correspond to one we would have computed. The reason being
that the space of constant-memory conceptors is not a straight line. Hence,
they cannot be linearly interpolated: a mere linear combination of constant-
memory conceptors could not lead to another constant-memory conceptor.
Nevertheless, we have shown empirically that in all scenarios a linear combi-
nation of two constant-memory conceptors lead to a value that is maintained.
However, this new memory is slightly oscillating around the combination of
the constant values (see Figure 6.6). This oscillation being a direct conse-
quence of the perturbation of the system (i.e. the input).

Moreover, the disjunction of constant-memory conceptors gives an example
of functional conceptor. However, it does not implement what we expected.
In the case of two conceptors with two constant values v1 and v2 such that
0 ≤ v1 ≤ v2, we would expect that the disjunction encodes the two values
simultaneously. More specifically, we expected such disjunction to imple-
ment a choice function (i.e. a conditional assignment) between the two values
stored in each conceptor. Instead, the disjunction implements another condi-
tional assignment, that does not converge towards v1 but only towards 0 or
v2 depending on the given input value. To some extent, v1 and v2 influence
the disjunction with different qualitative roles. Moreover, in the low rank
case (i.e. when the recurrent weights are the sum of a low rank matrix and a
random perturbation) only the largest fixed points can be stable (Schuessler
et al., 2020b). Therefore, we can hypothesize that in the general case of a
disjunction of n > 2 constant-memory conceptors, only the extreme value
matter in the composite conceptor.

Even though our results are preliminary and will require more work to fully
characterize how operations can be composed intuitively, this work opens
the door to another form of working memory: a procedural (or functional)
working memory. Instead of temporarily memorizing declarative informa-
tion, this kind of working memory would be able to memorize procedural in-
formation (e.g. how a task should be performed, which processes should be
applied, etc.). For instance, imagine you are given some instructions which
are to sum up a series of numbers. In order to complete this task, it is neces-
sary to keep track of the current sum (e.g. in a classical short-term declara-
tive working memory) that needs to be updated each time a new number is
given. However, it is also necessary to remember the preliminary instruction
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(i.e summing up) in another form of working memory that needs to span the
whole experiment and which is procedural in nature. This procedural nature
makes this working memory quite peculiar because instead of memorizing
a given information, it needs to memorize a procedure – here, a sequence
of operations depending on the context – that needs to be applied each time
an input is given. It is not yet clear how such memory could be encoded in
the brain (e.g. sustained activity, dynamic activity, transient weights) and we
think conceptors might be key in answering such a question, but more experi-
mental and theoretical work will be needed. Similar conceptors than the ones
we computed with our gated working memory reservoir model are likely to
be computed with other working memory models (Lim and Goldman, 2013b;
Nachstedt and Tetzlaff, 2017; Bouchacourt and Buschman, 2019b): it would
be interesting to see whether the functional conceptors obtained are similar
(i.e. our results would be generally applicable), or on the contrary, if differ-
ences occur.
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Chapter 7

General Discussion

7.1 Summary of contributions

The first goal of this work (Chapter 5) was to study gated working memory
and to design a robust neural architecture using a minimal set of hypotheses.
More precisely, we did not make any assumptions regarding the actual mech-
anism (be it at the neural or circuit level) that would provide the "working
memory property". Similarly, we did not make any assumptions regarding
the internal activity of the system since we only considered if the informa-
tion could or could not be decoded in the readout, rejecting the identification
of neural activity and information. To do so, we positioned ourselves in the
context of recurrent neural networks (RNNs) and designed a simple reservoir
model with an input stream, a gating signal, and a readout that is fed-back
to the reservoir. An extended sensitivity analysis showed that this model
is actually very robust and works for a large range of parameters. Given
our minimal set of hypotheses, this suggests that any neural population with
random connections is able to implement such gated working memory. Fur-
thermore, the model is highly resilient to noise and can be fed continuously
with an input stream that severely impacts the dynamics of the reservoir.
However, the logical gate we implemented allows for a very precise read-out
of the memory when the gate is closed, making the model quasi insensitive
to the input noise. This property has been illustrated through the design of a
minimal model made of three neurons and whose equivalence with the full
model has been demonstrated. In this minimal model, however, there exists
a unit whose sustained activity is fully correlated with the gated working
memory. Interestingly enough, such sustained activity units are not present
in the full model and this suggests the activity is instead dynamically spread
over the whole population of the reservoir. It is actually as if the memory
would have been distributed over the whole population, making it resilient
to neural damage. This model must be also considered with regards to other
recent and similar models that all reject (as we do) the sustained activity hy-
pothesis of working memory that has prevailed for a long time. This might
deeply impact the field of neuroscience.

In the second part of this work (Chapter 6), and considering the distributed
and dynamical nature of information in our gated working memory model,
we have investigated how to explicitly manipulate the information that merely
exists in the latent space of the reservoir. To do so, we extended the gated
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working memory model using conceptors that allowed us to implement a
synaptic-based working memory. Our initial idea was to use such concep-
tors in order to constrain the dynamics of the reservoir into specific sub-
spaces, corresponding to the different states of the reservoir when a value
is maintained. We thus investigated constant memory conceptors that are
able to constrain the reservoir into the maintenance of a constant informa-
tion, independently of the input value but for a much longer time compared
to the initial model. Using several such conceptors, it is thus possible to
build specific attractors towards which the initial stored value will converge.
Said differently, after a short transitory state where the input value is mem-
orized, the reservoir converge towards the nearest synaptically stored mem-
ory. This corresponds to a functional role that we can further take advantage
of. More precisely, one of the nice features of the conceptors is that they can
be combined into a new conceptor even though the behavior of the resulting
conceptor might escape common sense. For example, we have seen that the
linear combination of two constant conceptors creates a new conceptor that
is not a constant-memory conceptor, but still maintains a slightly oscillating
memory. Similarly, the disjunction of constant memory conceptors does not
result in what we would intuitively expect, even though it brings interesting
behavior such as a kind of conditional assignment. More work is needed to
understand how to combine conceptors into controlled and useful operators.
Our first intuition had been to combine using standard mathematical opera-
tors (linear combination, disjunction) but probably we need to consider new
types of combinations such as to achieve a given behavior.

7.2 Limitations of the approach

Because we made so few structural hypotheses, it is hard to relate any of our
neurons to any particular neurons in the brain. Thus, although our models
can combine several visions of working memory, it is difficult to generate hy-
potheses that can be directly tested by experimentalists. However, we believe
it is possible to extend the approach with more structure and derive similar
results that might be easier to test experimentally. For instance, the reservoir
could be formed by many regions of the brain (including for instance PFC),
and the feedback signal that is essential to maintain in our model could be
provided only to the regions which are assumed to maintain the information.

Moreover, it is not yet clear at an experimental level what generates the trig-
ger signals, or how they are learned. In a model, O’Reilly proposes that
these triggers could be generated by the Basal Ganglia that learns by trial
and error to trigger at particular times in order to solve working memory
tasks (O’Reilly and Frank, 2006a). But if PFC is in charge of attentional pro-
cesses, PFC might be the one creating these triggers. In fact, these triggers
might not need to be as explicit as they are in our model.

Furthermore, even though conceptor is a very useful theoretical concept, it
is still hard to see how it could be biologically implemented. In our second
study, we show that when a memory is enforced by a conceptor, it can still be
changed by the trigger mechanism. However, this new memory won’t last
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long and is soon replaced by the memory enforced by the conceptor. That
does not let in practice enough time to compute a new conceptor enforcing
the new memory. In order to be able to compute the new conceptor, the ap-
plied conceptor need to be reset to a "no memory" conceptor (i.e. identity). If
Jaeger shows how a conceptor can be computed online, there are not yet any
proposed mechanisms on how to trigger a more abrupt change of conceptors,
or even on how to combine online conceptors.

7.3 Perspectives

Using the reservoir computing paradigm, we have designed a simple re-
current neural architecture to implement a robust model of gated working
memory. Interestingly enough and even though the set of hypothesis we
have used is quite minimal, it can be actually further reduced using a sim-
ple rewriting rule of the inner weights. More precisely, the feedback from
the output neuron to the reservoir can be subsumed after learning in the in-
ner weights, therefore removing the feedback. In fact, this synaptic transfer
could even be done through learningDePasquale et al. (2018). It may be that
when feedback is needed, some neurons are recruited to give the feedback,
and then the feedback would be absorbed. If such a mechanism is present
in biological neurons, our model would provide another explanation of why
there might be sustained activity in some cases and not in others. Moreover,
we believe our model could be compared with an equivalent in-vitro culture
of neurons on which we could test some of our hypotheses. Of course, this
would require to translate first our rate-based model of neuron into a spik-
ing model and to re-interpret our results. The main difficulty would be to
learn and interpret the readout properly with regards to spike trains we may
observe. However, such an experimental setup is beyond our expertise and
cannot be done without cooperation with neurobiologists. Nonetheless, we
think our model would help in reinterpreting the dynamics of such a neural
population.

On the theoretical side, we have shown that the echo state property (ESP), i.e.
fading memory property, might actually be a property too strong to ask for.
When we require a memory to be extracted and maintained, possibly for a
very long time, it is not possible to assume in the meantime that the reservoir
enforces the echo state property. However, we have seen experimentally that
even if the ESP is violated, it is violated in a few directions only, i.e. in the
directions in which information is maintained, while other directions seem
to satisfy the ESP. For instance, in the three-neurons model, only the neuron
which maintains the memory does not satisfy the ESP. Similarly, in the reser-
voir when n memories are maintained, only n directions do not satisfy the
ESP. It would be thus necessary to define and characterise a weaker property.
Moreover, we have shown that this three-neurons model has a very similar
behavior than the memory cell of a gated reccurent unit (GRU). It would be
thus interesting to test if a network of such three-neurons model can solve
tasks with a success level comparable as those of GRU. This would provide
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an explanation for the real advantage of GRUs over SRNs: a well-chosen ini-
tialization of weights, and/or a well chosen set of weights to train.

Going back to our initial example regarding the neural mechanisms support-
ing simple mental calculations, we have partly answered the question by
providing a mechanism to memorize a value as well as some mechanisms for
explicitly manipulating memorized representations. We believe these latter
mechanisms are close to a form of procedural memory that would allow to
arbitrarily manipulate working memory. However, this would require more
theoretical work, especially to explain how to enforce a given operation (e.g.
addition, subtraction) in the latent space. We have started such theoretical
work and have obtained encouraging, but very preliminary, results that are
thus not introduced in this thesis. We think this last model would help us to
understand what could be the neural mechanisms that allow for arithmetic
operations to be carried out in the brain.
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