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Titre : Preuves Formelles de la Sécurité de Standards Cryptographiques

Résumé :

En cryptographie, Shannon a montré que le secret parfait n’existe pas. Ainsi, la cryp-
tographie moderne considère des propriétés de sécurité dans lesquelles un attaquant peut
briser l’algorithme cryptographique mais seulement avec une faible probabilité. Dans ce
contexte, les algorithmes cryptographiques et les propriétés/hypothèses de sécurité sont ex-
primés sous forme de programmes probabilistes. Les preuves de sécurité consistent à borner
la probabilité d’un événement dans de tels programmes. Ces preuves sont difficiles à prou-
ver et malgré le système de relecture académique des erreurs continuent d’être publiées.
Nous proposons l’utilisation des preuves formelles pour assurer une fiabilité suffisante des
standards cryptographiques.

Ma thèse fournit les preuves formelles de sécurité de trois standards dans l’assistant de
preuve EasyCrypt. Ces schémas sont CMAC (qui fournit l’authentification et l’intégrité des
messages), SHA-3 (une fonction de hachage cryptographique), et ChaCha20-Poly1305 (un
schéma de chiffrement authentifié avec données associées). L’objectif de la thèse n’est pas
seulement de formaliser la preuve de sécurité de ces standards, mais aussi de développer
des techniques génériques et des bibliothèques qui peuvent être réutilisées. Toutefois, les
preuves formelles de sécurité n’assurent que la sécurité des algorithmes et non de leurs
implémentations. Pour contourner cette lacune, avec mes collaborateurs, nous lions formel-
lement nos implémentations sûres et efficaces avec la preuve de sécurité, ceci conduit à la
première preuve de sécurité cryptographique d’implémentations.

Mots clés : Cryptographie, Standards, Sécurité prouvable, EasyCrypt, Preuve formelle,
CMAC, SHA-3, ChaCha20-Poly1305.
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Title: Formal Security Proofs of Cryptographic Standards

Abstract:

In cryptography, Shannon showed that perfect secrecy does not exist. Thus, modern
cryptography considers security properties in which attackers may break the cryptographic
algorithm only with a small (negligible) probability. In this context, cryptographic algo-
rithms and security properties/assumptions are expressed as probabilistic programs. Secu-
rity proofs consist of bounding the probability of an event in such programs. Such proofs
have been peer-reviewed for some decades, but since they are difficult to prove and to verify,
fallacies keep emerging. We propose to use formal proofs to provide enough trustworthiness
for crypto-systems such as cryptographic standards.

My thesis provides the formal security proofs of three standards that are formally verified
using the proof assistant EasyCrypt. The cryptographic standards I have worked on are
CMAC (that provides message authentication and integrity), SHA-3 (a cryptographic hash
function), and ChaCha20-Poly1305 (an authenticated encryption scheme with associated
data). The goal of the thesis is not only to provide formal proof of those standards, but also
to develop generic techniques and libraries that can be reused. However, the formal security
proofs only ensure the security of the algorithms and not its implementation. To circumvent
this gap, with my collaborators, we have developed fast and secure implementations of
the last two schemes that are also side-channel resistant. Furthermore, we formally link
the implementation with the security proof, leading to the first formal security proof of an
implementated standard.

Keywords: Cryptography, Standards, Provable security, EasyCrypt, Formal proof, CMAC,
SHA-3, ChaCha20-Poly1305.
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Introduction

Whenever I speak about my PhD in a non-expert context, I start talking about com-

puter security and I get simple but meaningful questions that resemble to: “Are you actually
breaking into software to exploit vulnerabilities ?”, “Do you know about this threatening
vulnerability X ?”, or “Which anti-virus should I install to protect my data ?”. This kind of
questions belongs to one particular field of computer security where the focus is on breaking

security, while I work in the field where the focus is on ensuring security.
In computer networks, data flows from places to places. Some of the data is sensitive

and attackers like hackers or spies want to find an access through vulnerabilities of the data
flow. The objective of computer security is to analyze the flow of data, to find vulnerabilities
and place barriers to prevent intruders from accessing it. Some of those barriers come from
cryptography and my work is to analyze the “robustness” of some particular barriers.

Cryptography prior to the modern age was actually synonymous with encryption, the
conversion of information from a readable meaningful state to apparent nonsense. The orig-
inator of an encrypted message shares the decoding technique (the encryption and decryption

algorithms and the secret key) only with intended recipients to preclude access from adver-

saries. Because the adversary cannot understand and know the content of the encrypted
message, this is one way of how the barriers are implemented.

There are two ways to ensure security, either the secrecy depends on hiding both the
algorithm and the secret key, or the algorithm is known to the adversary and only the secret
key needs to be hidden. History has shown that the first one is not practical, and leads to
greater security flows, as the amount of secret data to keep the secrecy is much larger if the
algorithm is included. This was first explicitly stated as a fundamental principle in 1883 by
Auguste Kerckhoffs [Kerckhoffs, 1883] and is generally called Kerckhoffs’s Principle; alter-
natively and more bluntly, it was restated by Claude Shannon, the inventor of information

theory and the fundamentals of theoretical cryptography in [Shannon, 1949]:

The enemy knows the system.

Since the development of rotor cipher machines in World War I and the advent of com-
puters in World War II, the methods used to carry out cryptology have become increas-
ingly complex and its application more widespread. In recent decades, the field has ex-
panded beyond confidentiality concerns to include techniques for message integrity check-
ing, sender/receiver identity authentication, digital signatures, interactive zero-knowledge
proofs and secure computation, among others, as shown in Figure 1.

Modern cryptography is heavily based on mathematical theory and computer science
practice. Cryptographic algorithms, or more generally cryptosystems, are based on mathe-

matical problems that are easy to state but have been found difficult to solve. If one can
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Figure 1 – Cryptography: a field composed of various security goals and techniques

reduce any adversary that efficiently breaks a cryptosystem into an efficient solution to a
hard mathematical problem, this means that breaking this cryptosystem is harder than find-
ing an efficient solution to this hard mathematical problem. This reasoning pattern is called
a security reduction proof (or reduction, or security proof) and is instrumental in the modern
approach to cryptography: provable security [Katz and Lindell, 2014].

We use a mathematical method for the basis of our work that includes the reduction of
the number of concepts, for instance by reducing the number of actors, the form of attacks,
and using probabilities. This approach makes explicit a simple model and is well accepted
in the community. For instance, the standardization institute NIST recommends: « The
review of technical merit includes a precise, formal statement of security claims, based on
minimal security assumptions and supported as far as possible by documented cryptanalysis
and security reduction proofs. » (NIST Cryptographic Standards and Guidelines Development

Process [Regenscheid, 2016])

Provable Security

Traditionally, provable security is asymptotic: it classifies the hardness of computational
problems using polynomial-time reducibility. Secure schemes are defined to be those in
which the advantage of any computationally bounded adversary to break the cryptosystem
is negligible. While such a theoretical guarantee is important, in practice one needs to know
exactly how efficient a reduction is because of the need to instantiate the security parameter

(e.g. key length). It is not enough to know that "sufficiently large" security parameters will
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do. An inefficient reduction results either in the success probability for the adversary or the
resource requirement of the scheme being greater than desired.

Concrete security is a practice-oriented approach [Bellare, 1997] that needs a more pre-
cise estimate of the computational complexity of adversarial tasks than polynomial equiva-
lence would allow. Concrete security aims at quantifying an upper bound on the probability
of any adversary to break the system studied. More precisely, a proof of security involves
an upper bound on the advantage of the adversary to break the system as a function of
adversarial resources and of the problem size. The resource available to the adversary are
commonly running time and memory, and other resources specific to the system in question,
such as the number of plaintexts it can obtain or the number of queries it can make to any
available oracle. The problem size usually is the size of the key, but it can also include the
size of blocks when blocks are defined in the system.

There are several lines of research in provable security. One is to establish the "cor-
rect" definition of security for a given, intuitively understood task. Another is to suggest
possible solutions: cryptographic constructions and their security proofs. The cryptography
community is confronted to the difficulty to produce correct proofs. Several researchers
found mathematical fallacies in proofs; proofs that had been used to make claims about the
security of important protocols. This is illustrated in the list below where the name of a
cryptosystem is followed by the initial paper when it was claimed to be proven secure then
by the reference in which the first fallacy was reported. For some of those constructions,
successive corrections were also shown to be defective.

— OAEP [Bellare and Rogaway, 1994] [Shoup, 2002];

— HMQV [Krawczyk, 2005] [Menezes, 2007];

— CBC-MAC and EMAC [Bellare et al., 2005] [Jha and Nandi, 2016];

— Boneh-Franklin IBE [Boneh and Franklin, 2003] [Galindo, 2005];

— GCM [McGrew and Viega, 2004b] [Iwata et al., 2012];

— XLS [Ristenpart and Rogaway, 2007] [Nandi, 2014];

— RSA screening [Bellare et al., 1998b] [Coron and Naccache, 1999];

— XCB [McGrew and Fluhrer, 2007] [Chakraborty et al., 2015];

— Cascade encryption [Bellare and Rogaway, 2006] [Gaži and Maurer, 2009];

— RSA-FDH [Coron, 2002] [Kakvi and Kiltz, 2012];

— OCB2 [Rogaway, 2004a] [Inoue et al., 2019].

The scientific community thinks that for any claim the claimer should be the one to pro-
duce enough non-fallacious material to convince of the correctness of its logical arguments.
The referring process is here to ensure that no wrong proof is accepted. However, the list
above shows that this is not enough. Delegating the verification of a proof’s correctness to
a computer is a way to answer this issue. This is my second field of expertise which is part
of the larger field of formal verification.

Formal Verification

The verification of a mathematical proof is a tedious work, and as a lot of tedious works,
this can be eased by the use of machines. This is well explained by Thomas C. Hales in his
advocacy for formal proofs [Hales, 2008]:
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Traditional mathematical proofs are written in a way to make them easily un-
derstood by mathematicians. Routine logical steps are omitted. An enormous
amount of context is assumed on the part of the reader. Proofs, especially in
topology and geometry, rely on intuitive arguments in situations where a trained
mathematician would be capable of translating those intuitive arguments into a
more rigorous argument.

A formal proof is a proof in which every logical inference has been checked all
the way back to the fundamental axioms of mathematics. All the intermediate
logical steps are supplied, without exception. No appeal is made to intuition,
even if the translation from intuition to logic is routine. Thus, a formal proof is
less intuitive, and yet less susceptible to logical errors.

Formal verification involves the use of logical and computational methods to establish
claims that are expressed in precise mathematical terms. These can include ordinary mathe-
matical theorems, as well as claims that pieces of hardware or software, network protocols,
and mechanical and hybrid systems meet their specifications (expected behavior defined by
a mathematical property). Formal verification requires describing hardware and software
systems in mathematical terms, at which point establishing claims about their correctness
becomes a form of theorem proving.

Interactive theorem proving focuses on the verification aspect of theorem proving requir-
ing that every claim is supported by a proof in a suitable axiomatic foundation. This sets a
very high standard: every rule of inference and every step of a calculation has to be justified
by appealing to prior definitions and theorems, all the way down to basic axioms and rules.
HOL [Gordon, 1988], Isabelle [Paulson, 1994], PVS [Owre et al., 1992], Coq [Coq, 1984]
and Lean [Lea, 2012] are some of the most well-known interactive theorem provers, also
known as proof assistants.

Without minimizing nor dismissing their respective strengths, they primary work on
mathematical proofs and aim to reduce towards a minimum its axiomatic basis. My work in-
volves the game-based technique of provable security, a feature that is included in EasyCrypt,
a proof assistant introduced as a proof of concept to address the problem of the security of
OAEP [Barthe et al., 2011b]. It implements a model in which the game-based technique
and distributions (probabilities) set up an interactive theorem prover for the formalization
of concrete security bounds. I will describe EasyCrypt along with the methodology used for
security proofs in detail in the next part.

Cryptographers have the intuition of why a system is secure, but translating this intuition
into formal logical steps is a long and tedious work and requires expertise in both cryptogra-
phy and formal verification. Deductive verification has the disadvantage that it requires the
user to understand in detail how the system works exactly, and to convey this information
to the verification system. There exist a lot of cryptographic constructions and not so many
cryptographers are also versed into formal verification.

Contributions

My work aims at extending the number of formally proven secure schemes with two
objectives in mind:

1. for the sake of verifying concrete security bounds of cryptographic standards,

2. to extend the proof of concept into a proof of usability, so that formal verification with
EasyCrypt may be included in the process of standardization.
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This extension includes the formalization of the security proof of three different cryp-
tographic standards, each of them answering a different security requirement. Because of
the downsides of formalization efforts, we have intentionally prioritized cryptographic stan-
dards. Those standards are from either NIST, or the IETF (Internet Engineering Task Force).

My first contribution is the study of the formal security bound of a standard MAC (mes-
sage authentication code) scheme named CMAC [Baritel-Ruet et al., 2018].

My second contribution is part of a joint work to produce a fast and secure implemen-
tation of a standard hash function named SHA-3 [Almeida et al., 2019b]. My personal con-
tribution on this is situated in the formal security bound.

The third contribution presented in my manuscript is the study of the formal security
bound of an authenticated symmetric encryption scheme named ChaCha20-Poly1305. This
last work has not been published yet.

Organization of this thesis

Part I explains the scientific methodology and is composed of two chapters.

— Chapter 1 explains in more details practice-oriented provable security, and the limits
and controversies of provable security.

— Chapter 2 exposes EasyCrypt.

Part II explores the notion of message authentication with the study of the security of one
standardized MAC scheme and is composed of two chapters.

— Chapter 3 explains what message authentication actually means and state the formal
security definition of a MAC scheme.

— Chapter 4 explains the security proof of the standardized MAC scheme named CMAC.

Part III explores the notion of cryptographic hash function with the study of the security of
one standardized hash function and is composed of two chapters.

— Chapter 5 states the formal security definition of a cryptographic hash function.

— Chapter 6 explains the security proof of the standardized hash function named SHA-3.

Part IV explores the notion of authenticated encryption with the study of the security of an
authenticated encryption and is composed of two chapters.

— Chapter 7 states the formal security definition of an authenticated encryption.

— Chapter 8 explains the security proof of ChaCha20-Poly1305, an authenticated en-
cryption scheme.





Part I

Methodology





Chapter 1

Practice-Oriented Provable Security

The security of a service is its ability to be resilient against potential risks. In providing
a service, the goal is to maximize its usefulness while minimizing the risks associated with
its use. This balance between risk and efficiency is essential in IT security. However, this is
not up to cryptographers to provide such a balance in the use of a cryptosystem, but rather
the “architect” of the service. Instead, the responsibility of the cryptographers is to provide
sufficient analytical material to the “architect” so that the choice on which cryptosystems
and their parameters should be based on an informed one.

The choice of such a cryptosystem can be guided by the fact that the longer the cryptosys-
tem remains unattacked, the more secure it is believed to be. Before modern cryptography,
the common practice was to find a particular attack on a cryptographic scheme, then update
the scheme, and do it again (and again). This practice is tantamount to playing the cat and
mouse game and reveals an empirical approach that is not sufficiently relevant for computer
risk management. On the other hand, the scientific approach of provable security refers to
mathematically proven security properties that quantify on all attacking strategies.

This paradigm shift in cryptography — from empirical to mathematically proven
— was first introduced for public-key signature and encryption. The security of the
famous public-key encryption RSA [Rivest et al., 1983] relies on the fact that any ef-
ficient adversary that can break the security of RSA can be turned into an efficient
algorithm for factoring the product of two large random numbers, which is assumed
to be a hard mathematical problem.

Remark

In his 1998 survey article, Why chosen ciphertext security matters [Shoup, 1998], Shoup
explained the rationale for attaching great importance to reductionist security arguments:

This is the preferred approach of modern, mathematical cryptography. Here,
one shows with mathematical rigor that any attacker that can break the cryp-
tosystem can be transformed into an efficient program to solve the underlying
well-studied problem (e.g., factoring large numbers) that is widely believed to
be very hard. Turning this logic around: if the hardness assumption is correct as
presumed, the cryptosystem is secure. This approach is about the best we can
do. If we can prove security in this way, then we essentially rule out all possible
shortcuts, even ones we have not yet even imagined. The only way to attack the
cryptosystem is a full-frontal attack on the underlying hard problem. Period.



10 Practice-Oriented Provable Security

Classical provable safety is mainly aimed at studying the asymptotic relationship be-
tween objects. Secure schemes are then defined as those in which any algorithm capable of
breaking the cryptographic system can be asymptotically reduced to an algorithm that can
solve a difficult mathematical problem. While such a theoretical guarantee is important, in
practice it is necessary to know exactly how effective a reduction is because of the practical
need to instantiate the security parameter. It is not enough for an informed choice to know
that "sufficiently large" security parameters will suffice. Therefore, a reduction that is in
polynomial time but in an ineffective way is reflected either in the probability of success for
the adversary or in the resource requirements of the regime being greater than desired. As
Rogaway stated in [Rogaway, 2009]:

The provable-security approach begins by identifying the cryptographic prob-
lem of interest, an often ignored but crucial first step. Next, one gives a precise
definition for the problem at hand. This entails identifying what the adversary
can do and when it is deemed successful. A protocol is then given for problem,
that protocol depending on some other, hopefully-simpler protocol for solving
some other, hopefully-more-basic problem that has likewise been defined. Ev-
idence of security for the high-level protocol takes the form of a reduction, the
reduction showing how to transform an adversary attacking the high-level goal
into one for attacking the low-level goal.
[. . . ] The association of an adversary to a real number is the definition of

security.

The next sections are organized as follows.

— Section 1.1 introduces different models used in provable security.

— Section 1.2 discusses about about limitations of provable security and its models, and
then discusses related work.

1.1 Provable Security Models

A model for provable security defines “what the adversary can do” and the collection of
assumptions and proof methods in which the reduction can be expressed.

Traditionally, cryptographic protocols are analyzed with the Dolev-Yao symbolic model
[Dolev and Yao, 1983]. This model assumes perfect cryptography. Messages are assumed
to be elements of some abstract algebra, and cryptographic primitives, such as encryption,
are abstract operations on this algebra. In this model, the adversary can hear, intercept, and
synthesize any message and is limited only by the constraints of the cryptographic method
used. In other words, "the adversary carries the message." These messages consist of formal
terms that may reveal part of their internal structure, but some parts remain opaque to
the adversary. Modelled as a specific non-deterministic state machine, the only way for the
adversary to extract this internal structure is to perform some of the operations on messages
it already "knows".

This model has an extremely nice feature: simplicity, but has a disadvantage: Dolev-Yao’s
adversary is actually quite weak. Because the calculation model is symbolic and complete
knowledge of the adversary can be computed, it is possible to explicitly represent all possible
behaviors of the adversary in a compact way. Although he can choose among the allowed
operations in a non-deterministic way, the set of allowed operations is fixed and quite small.
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Therefore, the models are very well suited to be automatically analyzed to show that a pro-
tocol is broken, rather than secure, under the assumptions about the adversary’s capabilities,
e.g. [Dalal et al., 2010, Blanchet, 2013].

Dolev-Yao’s symbolic model is often compared [Herzog, 2005] to the computational model

[Goldwasser and Micali, 1984, Goldwasser et al., 1988, Yao, 1982], because the latter is
much more realistic, but complicates the proofs. Instead of defining adversarial capabili-

ties in the symbolic model, adversarial restrictions extend security claims to a larger set of
adversaries. In the computational model, a cryptographic construction exchanges messages
that are bitstrings from some distribution, an adversary is an arbitrary probabilitic algorithm
with restrictions and primitives are modeled as (tuples of) algorithms that satisfy security
and constructive assumptions (e.g. decryption and encryption are inverse to each other).

The computational model in which the adversary is limited only by time and computing
power is called the standard model. Schemes whose safety can be proven using only com-
plexity assumptions are said to be secure in the standard model. Proofs of security are known
to be difficult to achieve in the standard model. In many proofs, cryptographic primitives
are replaced by idealized versions.

In the next two subsections, I detail two other computational models used in the formal
security proofs I have worked on, namely the random oracle model and the ideal cipher model.

1.1.1 Random Oracle Model

A random oracle is an oracle — a theorical black-box — that answers to every fresh query
with a truly random response chosen from the uniform distribution on its output domain.
Random oracles are typically used as an ideal replacement for cryptographic hash functions
(see Chapter 5) where strong randomness on its output domain is needed. In the random

oracle model, a random oracle is assumed to exist and be accessible to the adversary. In
[Bellare and Rogaway, 1995], Bellare and Rogaway were the first to advocate their use in
cryptographic constructions. In their definition, the random oracle produces a bit-string of
infinite length which can be truncated to the desired length. However, the formalization of
such a random oracle would raise problems such as how to sample a value uniformly from
the output set {0, 1}∞. Therefore, a random oracle is formalized to either set the output
type to be finite or the random oralce waits for a second input: the desired length 1.

Such a model has its own limitations. In [Impagliazzo and Rudich, 1989], Impagliazzo
and Rudich showed that the existence of a random oracle alone is not sufficient for a secure
exchange of secret keys. Moreover, if a cryptographic construct proves to be secure in the
standard model, attacks against this construct must either be outside the behaviour of the
adversary considered in the model or break one of the assumptions. For example, if the
proof is based on the hardness of the factorization of large integers, in order to break it,
a fast integer factorization algorithm must be discovered. Instead, to break the random
oracle hypothesis, one must only discover an unknown and undesirable property of the
current hash function. For a good hash function when such properties are deemed unlikely
or difficult to discover by computation, the intended cryptographic construct remains secure.

Furthermore, consider a cryptographic construction built using a hash function that has
a security proof in the random oracle model. Even though some hash function is found
to be broken, e.g. SHA-1 [Stevens et al., 2017], the cryptographic construction remains
secure in the sense that one only has to change the hash function to restore security. In

1. see Chapter 6 for more details
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other words, the difficulty to find a secure hash function does not affect the overall security
of the cryptograhpic construction that has a proof in the random oracle model.

1.1.2 Ideal Cipher Model

An ideal cipher is a random permutation oracle that is used to model an idealized block
cipher (see Chapter 3). A random permutation decrypts each ciphertext block into one and
only one plaintext block and vice versa, so there is a one-to-one correspondence. Some
cryptographic proofs give to the adversary also access to the reverse permutation.

Recent works showed that an ideal cipher can be constructed from a finite ran-
dom oracle using Feistel networks, with 10 rounds [Dachman-Soled et al., 2016] or 8
rounds [Dai and Steinberger, 2016a].

Remark

1.2 Limitations and Related Work

When cryptographers publish their security analysis, often as a security proof, a non-
specialist is very unlikely to read (or even think about) the proof, hoping to find some in-
structions about how to implement the cryptosystem. This involves a certain trust in security
proofs from non-specialist communities about their credibility. Since security proofs are left
aside, the responsibility of cryptographers is to strive for clarity in security statements, in-
cluding the theoretical model, meaning of all parameters, and all assumptions (security
assumptions, independance assumptions, access granted or banned to oracles, etc. . . ).

The promise of quantifiable proof of safety on each adversarial strategy is attractive and
tight security statements are great tools to enable practitioners to make informed choices,
when they are sufficiently clear. For this reason, one of the emphasis of this manuscript is
about clear security statements and proof models. However, clarity does not guarantee the
correctness of the proof of security, as shown in the next two examples.

In [McGrew and Viega, 2004b], the AES-GCM authenticated encryption scheme was
proven secure. Eight years after [Iwata et al., 2012], the proof was found to have some
fallacies and the authors gave a procedure to break the first security bound, without
contradicting the overall security of AES-GCM. Indeed, they also proposed a repaired
security proof with a worse security bound than the incorrect one.

Example

In [Inoue et al., 2019], they found a fallacy in the security proof of OCB2, leading
to a very dangerous and powerful attack on this authenticated encryption still in use.
They propose a fix for OCB2, and argue that OCB1 and OCB3 do not share this flaw.

Example
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As Stern, Pointcheval, Malone-Lee, and Smart [Stern et al., 2002] reported:

Methods from provable security, developed over the last twenty years, have
been recently extensively used to support emerging standards. However, the
fact that proofs also need time to be validated through public discussion was
somehow overlooked. [. . . ] the use of provable security is more subtle than it
appears, and flaws in security proofs themselves might have a devastating effect
on the trustworthiness of cryptography.

This is not to claim that the correctness of a proof is a problem that stems from the lim-
its of provable safety. However, the impact on real systems that rely on the correctness of
security proofs can be extremely detrimental, as in the case of OCB2 [Inoue et al., 2019].
Instead, my thesis tackles this problem using formal proofs which gives a stronger guarantee
that the proof is correct, increasing the confidence non-specialists may have in cryptosys-
tems, when the clarity of the security statement is emphasized.

The application of formal proofs on reductionist arguments also has its limitations in
terms of the cost of such an analysis. They involve the time necessary to analyse a cryp-
tosystem and expertise in two different fields of computer science. This is a huge cost on
time and expertise, therefore an emphasis should be made when this effort is reasonably
expectable. A potential candidate would be the process of standardization (e.g. SHA-3
[Kayser, 2007], see Chapter 6), or in the process of a competition that aims to determine
the best cryptosystem, e.g. the CEASAR competition [CAE, 2013].

I also argue that for each security property about each cryptosystem, only a single formal
proof is needed. Indeed, once a result has been formally proven using a proof assistant,
this result can be trusted — at least until a flaw is found in the proof assistant. For this
reason, one could argue that a proof assistant is as trustworthy as a cryptographer, if not
less. However, pen-and-paper proofs are much more sensible to intuition shortcuts that
may lead to a fallacy. The constant requirement to formalize all of the logical steps of
every intuition is still a fastidious effort, but on the other side it gives the opportunity to
deeply understand the reductionist argument and all of the assumptions made about the
cryptosystem.

When a proof assistant is implemented so that composition of cryptosystems is pos-
sible, assumptions on independance of components are checked along the way, which
in practice are even hardly looked at. For instance, in a hybrid system that uses a cryp-
tosystem — also used elsewhere — to generate the key of another cryptosystem, no
guarantee about the security of the combinantion is provided, even if each primitive is
provably secure and their parameters are set so that security requirements are met. A
security proof of the combination needs to be provided (see Chapter 8).

Example

This discussion remains in the field of the study of the security of cryptographic algo-
rithms. The final purpose of provable security and security proofs is to guarantee the real
security of a cryptosystem’s implementation, not just of its algorithm.

Even the computational model is just a model that ignores many important aspects of re-
ality. In particular, it ignores physical attacks against devices: side-channel attacks that may
exploit for instance power consumption, timing, noise and fault attacks — an attack that
introduces faults in the system in order to break its security from provoking unexpected be-
haviour. As cryptosystems are better studied and verified formally, physical attacks become
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increasingly important and are an area of active research. Some of my collaborators have
worked in this direction, producing the Jasmin programming language whose « compiler is
designed to achieve predictability and efficiency of the output code (currently limited to x64
platforms), and is formally verified in the Coq proof assistant. » ([Almeida et al., 2017])

In [Almeida et al., 2019b], we propose both a formal security proof and an efficient
implementation of the SHA-3 hash function family:

Our implementation is written in the Jasmin programming language, and is
formally verified for functional correctness, provable security and timing attack
resistance in the EasyCrypt proof assistant. [. . . ] Concretely, our mechanized
proofs show that: 1) the SHA-3 hash function is indifferentiable from a random
oracle, and thus is resistant against collision, first and second preimage attacks;
2) the SHA-3 hash function is correctly implemented by a vectorized x86 im-
plementation. Furthermore, the implementation is provably protected against
timing attacks in an idealized model of timing leaks.

In [Almeida et al., 2019a], my collaborators propose a fast and side-channel secure im-
plementation of the authenticated encryption ChaCha20&Poly1305. In Chapter 8, I propose
a formal security proof of ChaCha20&Poly1305, that is functionally equivalent to their im-
plementation in Jasmin.



Chapter 2

EasyCrypt and General Formalization

Techniques

The interactive theorem prover EasyCrypt was first presented in [Barthe et al., 2011a]
as an implementation of a code-based game-based approach to practice-oriented provable
security in the computational model. It diverged from CertiCrypt [Barthe et al., 2009], a
Coq framework used to prove the formal semantic security of OAEP.

This chapter gives a general presentation of EasyCrypt, states clearly what an adversary

can do (i.e. adversarial strategies included in the security statements), and regroups for-
malization techniques that are used in the different proofs.

2.1 Foundations

EasyCrypt is a proof assistant that relies on the goal directed proof approach. Also de-
scribed in [Bertot, 2006] for Coq, this approach usually has the following type of scenario:

1. the user enters a statement that he wants to prove (using the command lemma) along
with a name for later reference,

2. the EasyCrypt system displays the formula as a formula to be proved, possibly giving
a context of local facts that can be used for this particular proof,

3. the user enters a command to decompose the goal into simpler ones, ideally upto
axioms or formula that evaluate to true,

4. the EasyCrypt system displays a list of formulas that still need to be proven,

5. back to step 3.

The commands used at step 3 are called tactics. Some of these tactics actually decrease
the number of goals. When there are no more goals, the proof is complete. When the user
enters the command qed, the lemma is saved with the name given at step 1.

Before stating a lemma to prove, the user may define the structures he will work on, some
axioms he assumes, or import libraries that contain such definitions. For that, EasyCrypt has
a typed expression language based on the polymorphic typed lambda calculus. In EasyCrypt,
types are non-empty sets of values and operators are typed functions on these sets. The
internal kernel of EasyCrypt provides basic built-in types such as bool, int, real, and unit (the
type inhabited by the single element tt or ()). The standard libraries includes formalization
of lists, arrays, sets, finite sets, maps, finite maps, distributions, etc. . . .
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In EasyCrypt, an integer n can be recast to the real type using the notation n%r.
Remark

The polymorphic option type encapsulates an optional value. A value of typeα option

is either Some x where x is of type α, or None.

type α option = [ None | Some of α ].

The operator oget extracts the optional value by associating to the value None a
default value named witness in EasyCrypt (as mentioned above, all types are inhabited).

op oget [α ] (o : α option) : α =
with o = None ⇒ witness
with o = Some a ⇒ a.

EasyCrypt

The system of theory in EasyCrypt allows the user to regroup related types, predicates,
operators, modules, axioms, and lemmas. EasyCrypt allows users to declare and specify their
data-types and operators, including inductive data-types and operators defined by pattern
matching. Types and operators without definitions are said abstract and can be seen as
parameters to the rest of the context. Theory parameters (types, operators, and predicates)
left abstract when proving its lemmas may be instantiated via a cloning process. For instance,
theory cloning allows the development of generic proofs that can later be instantiated with
concrete parameters.

Axioms can restrict parameters and are discharged during particular instanciation.

op σ : int.
axiom σ_gt0 : 0 < σ. (∗ we assume that σ is positive ∗)

EasyCrypt

2.1.1 Probability Distributions

To every type t is associated the type t distr of real discrete sub-distribution. In some
cases, we may use the notation D(t) to express the set of all sub-distributions on a type t. A
discrete sub-distribution over a type t is fully defined by its mass function. A mass function f

is a non-negative function from t to R and is defined over a discrete support while verifying:
∑

x:t

f (x)≤ 1

When the sum is equal to 1, the sub-distribution is called a distribution and the
keyword for this assumption is is_lossless.

type t.
op dt : t distr.
axiom dt_ll : is_lossless dt.

EasyCrypt



Foundations 17

When the mass function of the sub-distribution is positive over all of the elements
of type t, the sub-distribution is said to be full.

axiom dt_full : is_full dt.

When the mass function of the sub-distribution associates every value of the support
of the sub-distribution to the same mass, the sub-distribution is said to be uniform.

axiom dt_uniform : is_uniform dt.

The keyword for a sub-distribution that is full and uniform is is_funiform.

axiom dt_funiform : is_funiform dt.

The mass function of a sub-distribution is represented by the operator mu1, while
mu dt P represents the mass of the set of all values that satisfy the proposition P. In
fact, internally, mu1 is defined using the operator mu.

op mu : t distr → t prop → real.
op mu1 (dt : t distr) (x : t) : real = mu dt (fun y ⇒ x = y).

2.1.2 Modules in EasyCrypt

Programs are formalized in EasyCrypt as modules: stateful “objects” consisting of global

variables and procedures. Global variables are visible outside the modules and define the
internal state of the module at any given time. A procedure is composed of the declarations
of local variables and a sequence of instructions. An instruction can be an assignment, a

random sampling (denoted by
$
←), a call to another procedure (possibly obtaining the return

value), a conditional branch, a while loop, or a return statement. This simple imperative
probabilistic programming language is named pWhile.

This exemple defines a module with
one global variable Multiply.factor, and
defines one procedure Multiply.mul that
outputs the product of its input to its
global variable.

module Multiply = {
var factor : int (∗ global variable ∗)
proc mul (n : int) : int = {

(∗ factor refers to Multiply.factor ∗)
return n ∗ factor;

}}.

EasyCrypt

The module system in EasyCrypt manages higher-order modules. This feature allows
a cryptographer to define a general game by taking an adversary and a cryptosystem as
parameters. Before declaring a game that takes some modules as parameters, a module type

needs to be defined for each different type of parameter.

In this example, the module type Oracle declares the interface of the cryptosystem,
Adversary declares the interface of the adversary, and the module Game defines the
cryptographic game when given an adversary and a cryptosystem.

EasyCrypt



18 EasyCrypt and General Formalization Techniques

module type Oracle = {
proc init () : unit
proc f (_: int) : bool

}.

module type Adversary (O : Oracle) = {
proc guess () : bool

}.

module Game (A : Adversary) (O : Oracle) = {
proc main () : bool = {

var b : bool;
O.init();
b ← A(O).guess();
return b;

}}.

Probability of some event in a game

Formally, an instruction operates on program memories, which map local and global
variables to values. LetM be the set of memories.

A memory is handled differently from other types. For instance, anonymous func-
tions (fun (x : t) => . . . ) and operators cannot take memories as input, while quan-
tification on memories is allowed. The quantification ∀ &m ranges over all memories
with domain equal to the set of all variables declared as global in currently declared
modules. For instance, with those declarations:

module X = { var a : int }.
module Y = { var b : int }.

the following formula is well-formed and evaluates to true:

∀ &m, X.a{m} < Y.b{m} ⇒ X.a{m} + 1 ≤ Y.b{m}

EasyCrypt

An event is a boolean expression over non-free logical variables and program variables
that are tagged with a memory. If &m is a memory and x is a program variable in the domain
of &m, then x 〈m〉 1 is the expression for the value of x in &m, and ψ 〈m〉 is the expression
where all the program variables occurring in ψ are replaced with their value in &m.

The semantics of a sequence c of instructions is a function ¹cº : M → D(M ) from
program memories to sub-distributions on program memories. If one possible execution of
c does not terminate, c generates a sub-distribution with total probability less than 1. The
probability of some event ψ in a program c when starting with initial memory &m is defined
as the sum of the masses of all memories in the distribution ¹cº 〈m〉 that satisfy ψ:

Pr[c,m :ψ]

The EasyCrypt notation Pr[c@&m :ψ] is equivalent to Pr[c,m : φ], the latter being more
readable and the former more accurate to what EasyCrypt is expecting.

Adversary as a module, Quantification over all adversaries

Adversaries are modeled in EasyCrypt as abstract modules of a defined module type. The
module type defines the type of procedures, but the code of an abstract module is unknown.

1. This notation has been chosen for text readability, even if x{m} is the notation used in EasyCrypt
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An abstract module is declared locally using quantification over a module type:
∀ (A <: Adversary). Another way to declare an abstract module is using inside a
section the declare module feature of EasyCrypt. The system of sections has the primary
goal to hide intermediate details of a proof. Inside a section, which may be named,
an abstract module can be declared so that all lemmas that appear in the section will
appear with a supplementary quantification. In the following, some notations have not
been described so far, but they are not relevant for the EasyCrypt notion of sections, so
we explain them in the following sections.

Imagine the following example of a
lemma that is declared in a section in a
context with the module Game declared
as follows and with a defined (but not
presented) module O : Oracle.

module Game (A : Adversary) (O : Oracle) = {
var i : bool
proc main () = {

A(O).guess();

i
$
←− {0,1};

}}.

section Proof.
declare module A : Adversary.
axiom A_ll : (∀ (O1 <: Oracle{A}),

islossless O1.f ⇒ islossless A(O1).guess.
lemma toto &m : Pr [ Game(A,O).main() @ &m : Game.i = true ] = 1%r / 2%r.

end section Proof.

When used outside of the section, the lemma toto looks like:

lemma toto : ∀ (A <: Adversary),
(∀ (O1 <: Oracle{A}), islossless O1.f ⇒ islossless A(O1).guess) ⇒
∀ &m, Pr [ Game(A,O).main() @ &m : Game.i = true ] = 1%r / 2%r.

EasyCrypt

In the previous example, the procedure A(O).guess may call all procedures of O,
but EasyCrypt features restrictions on which procedures can be queried. This point is
described in more details in Section 2.2.2.

Remark

Consider a module A declared with module type Adversary. Its procedures may be
referred to (in lemmas, judgments, or code) only when an oracle O is provided. The
procedure A(O).guess is correct, whereas A.guess is not well-formed.

Remark

EasyCrypt allows the user to reason about three different types of facts about probabilis-
tic programs. They are called judgments and each type specifies what it actually means for
the programs:

— HL, Hoare Logic, with probabilistic programs,

— pHL, probabilistic Hoare Logic, that allows one to carry out proofs about the probability
of a procedure’s execution resulting in a post-condition holding, and

— pRHL, probabilistic Relational Hoare Logic, that relates a pair of procedures.
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Hoare Logic

A Hoare judgment is a triplet [c : φ =⇒ ψ] composed of a (probabilistic) program c and
two predicates φ and ψ. It states that for all memory &m satisfying the precondition φ,
then all memories in the support of the sub-distribution ¹cº 〈m〉 satisfy the post-condition ψ.
When the program c is deterministic, ¹cº 〈m〉 has a support of at most one element.

The main tactic for an abstract procedure call is the tactic named proc. Consider
a Hoare judgment [A(O).g : φ =⇒ ψ] in the context of an abstract procedure named
A(O).g of the abstract module A that takes a module O as parameter. The tactic proc

takes one input: a formula I that represents an invariant.
One constraint needs to be checked for the tactic proc to work: A should have no

write access to any global variable that appears in I. The intuition is that the rule for the
adversary is analogous to the rule with the loops. If each iteration keeps the validity
of the invariant, and the invariant is valid before the loop, then the full loop respects
the invariant. Unspecified code with oracle access to some procedures is analogous to
a “loop” that “iterates” on oracle calls, with some code between calls.

The rule checks that the unspecified code of the procedure A(O).g cannot modify
the invariant I, and asks to prove that each oracle call which A(O).g can query respects
the invariant. The procedures accessible by A(O).g are from the module type of A.

∀f accessible procedure by A(O).g, [O.f : I =⇒ I]
[A(O).g : I =⇒ I]

[proc I]

EasyCrypt

Probabilistic Hoare Logic

A probabilistic Hoare judgment is a quintuplet [c : φ =⇒ ψ]⋄p composed of a program
c, two predicates φ and ψ, a relation on reals ⋄ taken from the set {≤,=,≥}, and a real p.
It states that ∀&m,φ 〈m〉 ⇒ Pr[c,m :ψ] ⋄ p.

A very useful tactic in the context of a pHL statement about a sequence of instructions
[c1; c2 : φ =⇒ ψ]⋄p is the tactic named seq i : b p1 p2 p3 p4 I. The arguments mean:

i: the line number that specify the beginning of c2,

b: a boolean formula that may be evaluated to true or false,

p1: the probability that b holds at the end of c1, i.e. [c1 : φ =⇒ b]⋄p1,

p2: the probability that ψ holds after c2 if b holds, i.e. [c2 : I∧ b=⇒ ψ]⋄p2,

p3: the probability that b does not hold at the end of c1, i.e. [c1 : φ =⇒¬b]⋄p3,

p4: the probability thatψ holds after c2 if b does not hold, i.e. [c2 : I∧¬b=⇒ ψ]⋄p4,

I: a property always satisfied at the end of c1, regardless of the evaluation of b, i.e.
[c1 : φ =⇒ I].

When applied, the tactic also asks the user to prove the goal: p1p2 + p3p4 ⋄ p.

EasyCrypt
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Probabilistic Relational Hoare Logic

A probabilistic relational Hoare judgment 2 is a quadruplet [c1 ∼ c2 : φ =⇒ ψ] composed
of two programs c1 and c2, and two relations φ and ψ. More specifically, the precondition
φ and post-condition ψ are first-order formulate built from relational expressions that are
then interpreted as a relation on program memories.

Whereas for HL and pHL judgments only one memory is considered, a pRHL judgment
distinguishes between the two memories for each side. Therefore, relational expressions
are arbitrary boolean expressions over program variables tagged with 〈1〉 or 〈2〉 (to specify
from which of the programs they are from: 〈1〉 for c1, 〈2〉 for c2) and logical variables that
only appear when quantified. By abuse of notation, e 〈i〉 stands for the expression e in which
all program variables have been tagged with 〈i〉.

The notation for the equality of a program variable X.x in both memories is ={X.x},
and the notation ={X.x,Y.y} stands for ={X.x}∧ ={Y.y}. For any module M, the set of
all the variables a module accesses is denoted glob M. The precondition ={glob A} is
particularly useful for an abstract module A when one wants to state that it will have
the same behavior in both memories.

EasyCrypt

A pRHL judgment [c1 ∼ c2 : φ =⇒ ψ] states that for any pair of initial memories m1, m2

satisfying the preconditionφ, denoted 〈m1, m2〉 ⊢ φ, the distributions ¹c1º 〈m1〉 and ¹c2º 〈m2〉
satisfy the lifting L of post-condition ψ, denoted 〈(¹c1º 〈m1〉), (¹c2º 〈m2〉)〉 ⊢ L (ψ). The
lifting of a relation on memories to a relation on memory distributions is defined as a max-
cut min-flow problem, in the style of [Jonsson et al., 2001]. Formally, let µ1 ∈ D(A) be a
probability distribution on a set A and µ2 ∈ D(B) a probability distribution on a set B. The
lifting 〈µ1,µ2〉 ⊢ L (R) of a relation R⊆ A× B to µ1 and µ2 is defined as follows:

∃µ : D(A× B),π1(µ) = µ1 ∧π2(µ) = µ2 ∧∀(a, b) ∈ A× B,µ(a, b)> 0⇒ 〈a, b〉 ⊢ R

where the projections π1(µ) and π2(µ) are defined as

π1(µ)(a)
def
=
∑

b∈B

µ(a, b) π2(µ)(b)
def
=
∑

a∈A

µ(a, b)

Claims about probabilities can be derived from valid pRHL judgments by means of the
following rules:

〈m1,m2〉 ⊢ φ [c1 ∼ c2 : φ =⇒ ψ] ∀&m′1, &m′2,


m′1,m′2
�
⊢ψ⇒
�
E1



m′1

�
⇔ E2



m′2

��

Pr[c1,m1 : E1] = Pr[c2,m2 : E2]
[PrEq]

〈m1,m2〉 ⊢ φ [c1 ∼ c2 : φ =⇒ ψ] ∀&m′1, &m′2,


m′1,m′2
�
⊢ψ⇒
�
E1



m′1

�
⇒ E2



m′2

��

Pr[c1,m1 : E1]≤ Pr[c2,m2 : E2]
[PrLe]

2. This description is from [Barthe et al., 2011a], in which more details can be found.
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The tactic proc also exists in pRHL. It is used to relate two instances of the same
abstract procedure A(·).g that may use different implementations of its oracles. The
tactic takes one input: a relation I that represents an invariant. The invariant should

not include any global variable that may be overwritten by the abstract module A (same
as for HL).

This tactic formalizes the intuition that the abstract procedure will have the same
behavior with both implementations and preserve the invariant I if the abstract module
starts with the same global state and, for every procedure, both implementations stay
in relation by the invariant I while answering the same output for the same query.

∀f accessible procedure by A, [O1.f ∼ O2.f : I∧ ={arg}=⇒ I∧ ={res}]

[A(O1).g ∼ A(O2).g : I∧ ={arg,glob A}=⇒ I∧ ={res,glob A}]
[proc I]

EasyCrypt

When an equivalence of two events in each program is lifted to relate those two
programs, then, from the definition of the projections, both must have the same termi-
nation probability. This is particularly important for the theorem about failure events
that is explained in the next paragraph.

Remark

The EasyCrypt keyword islossless is a predicate on a procedure that states that for
all input, the procedure terminates with probability 1, i.e.

islossless O.f := “ [O.f : true=⇒ true]=1”

EasyCrypt

Failure Event

A relation between games defines a transition of equivalent games in a cryptographic
security proof. However, games are not always equivalent, and a lossy transformation may
be needed. One common technique to justify such a lossy transformation is to annotate both
games with a fresh boolean flag (often named bad) that is initialized to the false value and
set to true whenever the code of games differ. Such transitions are justified using the Fun-
damental Lemma, first used and introduced in [Shoup, 2004, Bellare and Rogaway, 2006].

Lemma 2.1.1 (Fundamental Lemma [Barthe et al., 2010]). For any pair of games G1, G2 and

events E1, E2, and B, such that E1 is well-defined in G1, E2 in G2, and B in both games:

Pr[G1,m : E1 ∧¬B] = Pr[G2,m : E2 ∧¬B]

⇒ |Pr[G1,m : E1]− Pr[G2,m : E2]| ≤max(Pr[G1,m : B], Pr[G2,m : B])

When an adversary is involved in both games, then one more assumption is needed: the
adversarial computation should terminate with probability 1 in at least one game. Assuming
that G1 terminates with probability 1, then Pr[G2,m : B] ≤ Pr[G1,m : B]. In this case, the
upper bound on the loss of the transition is quantified by Pr[G1,m : B].
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The assumption on the termination
of adversarial code is generalized in
EasyCrypt; it requires the adversary to
end with probability 1 with any ter-
minating oracles. Such an hypothesis
should be manually added whenever it
is required.

The following axiom is an example
using the module types of Section 2.1.2:

declare module A : Adversary.
axiom A_ll : ∀ (O <: Oracle{A}),

islossless O.init ⇒ islossless O.f ⇒
islossless A(O).guess.

EasyCrypt

The tactic proc can also be applied for an upto-bad reasoning that relates the same
abstract procedure with different implementations of its oracles. The tactic proc B I J
takes three inputs — a failure event B (defined in the right implementation), the in-
variant I that holds as long as B does not hold, and the invariant J that holds when B
holds. The tactic proc B I is a shortcut for proc B I true.

To prove the conclusion C, EasyCrypt creates the sub-goals H1, H2, H3, H4:

H1 The adversary always terminates if its oracles terminate:

∀(O<: Oracle{A}), (∗ ∀f ∗) islossless O.f ⇒ islossless A(O).g

H2 Assuming the failure event B does not hold before a query, the relation at the end
of the query depends on the occurrence of the failure event:

∀f procedure, [O1.f ∼ O2.f : ¬B 〈2〉∧ ={arg} ∧ I =⇒ if B 〈2〉 then J else ={res} ∧ I]

H3 If the failure B event has already occurred, then, in the left implementation, the
relation J remains true with probability 1 even when the right memory is fixed:

∀f procedure,∀&m2, B 〈m2〉 ⇒ [O1.f : J 〈·,m2〉=⇒ J 〈·,m2〉]=1

where the event J 〈·,m2〉 is the predicate: &m→ 〈m,m2〉 ⊢ J.

H4 The failure event B in the right implementation remains true with probability 1:

∀f procedure, [O2.f : B=⇒ B]=1

C If all those conditions are provable, this use case for the tactic proc makes it
possible to prove the following goal:

[A(O1).g ∼ A(O2).g :={arg,glob A∧ I}=⇒ if B 〈2〉 then J else ={res,glob A} ∧ I]

EasyCrypt

2.2 Adversarial Model

All security statements in my manuscript rely on the same definition of adversaries based
on the EasyCrypt adversarial model. Therefore, any strategy that cannot be captured in this
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model is not captured by the security statements. Some restrictions on adversaries are local
to the security statements, but are expressed using the same terminology.

Cryptographic security statements are expressed by quantifying on all adversaries. In
EasyCrypt, this quantification is done using abstract modules and module types. Therefore,
all algorithms that may be expressed as an EasyCrypt module that satisfy all the restrictions
of the security statement are captured by the quantification.

2.2.1 Restrictions on Oracle Procedure Calls

In the implementation of an oracle, some of its procedures are used to initialize its in-
ternal state. This kind of procedure is meant to be accessible to the game from the security
definition, but not to the adversary. This kind of restriction can be achieved either using dif-
ferent module types between the adversary’s oracles and the game’s oracles or by restricting
the oracle procedures allowed to query directly in the module type of an adversary.

In the following example, any module A : Adversary should have a procedure named
guess that may only call the procedures f and g of its oracle O. Therefore, a module with
a procedure guess that calls its oracle’s procedure init is not of module type Adversary.

type f_input, g_input, f_output, g_output.
module type Oracle = {

proc init () : unit
proc f (x : f_input) : f_output
proc g (x : g_input) : g_output

}.
module type Adversary (O : Oracle) = {

proc guess () : bool { O.f O.g }
}.

EasyCrypt

2.2.2 Adversarial Restrictions on Program Variables

In EasyCrypt, program variables may be local to a procedure or global to the full scope.
Local program variables are inaccessible to any other procedure other than the one in which
they are defined. In a security game, the adversary should not be able to access some global
variables, e.g. the secret key of an encryption scheme. This is expressed in EasyCrypt when
an abstract module is declared either in a quantification or in a section using declare module.

Some tactics require the declared abstract module to have no access on global variables
that appear in the invariant, e.g. the proc tactic and all its declinations. This kind of restric-
tion is possible when the abstract module is declared.
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In the following example, the adver-
sary A on which the property is quanti-
fying over should never use the global
variable Enc.key, either reading or over-
writing its content.

type key.
module Enc {

var key : key
proc (∗ · · · ∗)

}.
lemma security : ∀ (A <: Adversary { Enc }),

(∗ some property ∗).

In the case of a module declared inside a section, new modules may be implemented
after this declaration. The local keyword binds the implementation of a module inside
a section and states that any abstract module previously declared may have no access to
its global variables. For instance, the two following scripts are equivalent in meaning,
except that in practice the module O is hidden in the left script when applying any
lemma from the section.

section.
declare module A : Adversary.
local module O : Oracle = { var c : int }.

end section.

module O : Oracle = { var c : int }.
section.

declare module A : Adversary { O }.
end section.

EasyCrypt

This feature restricts all accesses, both for reading and writing. If one may want an
abstract module to have reading access to a global variable without being able to alter
it, direct access to the global variable should remain restricted in the declaration of
the abstract module. Then, provide to the module type another oracle which outputs
the value of the desired global variable, this acts like a “getter”. This concept can be
extended to the inclusion of a “setter”.

Remark

2.2.3 Computation Time Restrictions

Usually, in cryptography, adversaries are probabilistic polynomial-time (PPT) algorithms 3,
i.e. their running time is upper bounded by a polynomial expression in the size of the input

of the algorithm, also named security parameter in cryptography.
Security statements are usually of the form:

∀A PPT,∃B PPT,Advxxx
X (A )≤ α+Adv

yyy
Y (B)

while security assumptions are usually:

∀B PPT, Adv
yyy
Y (B) is “negligible” in the security parameter.

3. Complexity is also bounded in terms of computation space, but we do not discuss it here.
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The PPT property for adversarial algorithms is important for the “negligibility” of
the bound. Often in cryptography, a negligible bound is about (or less than) 2−80. Of
course, this is dependent on the risks and security goals of particular applications.

Remark

Computation time, for example number of processor clock cycles, is not embedded
in the logics of EasyCrypt but can be modeled using, for example, ghost variables that
simulates computation times. Since adversaries can be any module of the specified
module type, security statements are expressed in EasyCrypt without PPT restriction:

∀A ,Advxxx
X (A )≤ α+Adv

yyy
Y (B(A ))

with a concrete implementation ofB(·) fromA that needs to be checked so that:

∀A ,A is PPT⇒B(A ) is PPT.

EasyCrypt

In certain games, there may exist a non-PPT adversary C that has a non-negligible
advantage Adv

yyy
Y (C ). For instance, consider the case of any scheme that relies on the

difficulty in finding the decomposition in prime factors of a large number, e.g. RSA, or
the discrete logarithm, e.g. ElGamal. There exists a non-PPT adversary decomposing
a large number into prime factors: the one that tests every prime inferior to the input
number for divisibility. This adversary has the maximum advantage because it always
succeeds. However, this cannot be considered to be a successful attack, since it would
take too much time and effort because of the (sub-)exponential complexity.

Example

When analyzing the security of a cryptosystem, adversarial computation time can be
restricted indirectly. For instance, a common restriction is to bound the number of queries
an adversary can make, where oracle queries formalize the computation of cryptographic
primitives. In those cases, the bound on the number of query calls often appears in the
security statement and the security bound. Counting queries may be more complex and
such an example is shown in Chapter 6.

To summarize what an adversary can do:

— It is a probabilistic program, expressible in EasyCrypt as a module from the given
module type.

— It has access to some oracles (accessible procedures).

— It is restricted in the internal states it can access and interfere with.

— Its computation space is unbounded.

— Its computation time is unbounded. If the proof involves an upto-bad argument,
it should terminate with probability 1 for any implementation of its oracles.

EasyCrypt
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2.3 Formalization Techniques

In the following chapters of my manuscript, I describe security proofs of three crypto-
graphic standards. In those proofs, a few fomalization techniques are often used, and I
choose to gather them in this autonomous section so that each proof can be followed on its
own, without pointing to another security proof.

2.3.1 PRP-PRF switching lemma

In game-based proofs, it is often useful to switch between a random permutation and
a random function (see Chapter 4 and Chapter 6). This section starts with the definition
of a random permutation and a random function. Then I describe their formalization in
EasyCrypt and state the PRP-PRF switching and the strong PRP-PRF switching lemmas.

This formalization has been done time and time again (in [Affeldt et al., 2007,
Barthe et al., 2010], to only cite a few formalizations), and is not part of my personal
contribution. However, this is a good introduction to the techniques of EasyCrypt.

Remark

Let S be a finite set, Perm(S) the set of all permutations over S, and Fun(S) be the set of

all functions over S. In this context, the sampling p
$
← Perm(S) means sampling a random

permutation p uniformly from the set of all permutations. Respectively f
$
← Fun(S) means

sampling a random function f uniformly from the set of all functions.

The formalization in EasyCrypt of
a random permutation and a random
function uses modules that are defined
over an abstract type t that represents
the set S and an abstract distribution op-
erator dt that represents the uniform dis-
tribution over the finite abstract type t.

The module Map declares the finite
map of the oracle that is visible by the
adversary. The module type Oracle de-
fines the expected oracle interface.

type t.
op dt : t distr.
axiom dt_ll : is_lossless dt.
axiom dt_funi : is_funiform dt.

Listing 2.1 – Abstract parameters.

module Map = { var m : (t, t) fmap }.
module type Oracle = {

proc init () : unit
proc f (_: t) : t

}.

The predicate rng Map.m x is true if the element x is in the range of the finite map
Map.m. The distribution dt \ rng Map.m is the uniform distribution over the set of
elements in S that do not validate the predicate rng Map.m.

EasyCrypt
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module RF : Oracle = {
proc init () : unit = { Map.m ← empty; }
proc f (x : t) : t = {

if (x \notin Map.m) {

Map.m[x]
$
←− dt;

}
return oget Map.m[x];

}}.

Listing 2.2 – Random function

module RP : Oracle = {
proc init () : unit = { Map.m ← empty; }
proc f (x : t) : t = {

if (x \notin Map.m) {

Map.m[x]
$
←− dt \ rng Map.m;

}
return oget Map.m[x];

}}.

Listing 2.3 – Random permutation

The indistinguishability advantage is
bounded by a formula that involves the
maximum number of oracle calls it can
make. Indeed, if the adversary can query
all values of the domain of its oracle,
it has a high probability to distinguish
between RP/RF. This restriction is for-
malized in the following module named
Count.

op c : int.

module Count (E : Oracle) : Oracle = {
var counter : int
proc init () : unit = {

counter ← 0;
E.init();

}
proc f (x : t) : t = {

var y : t ← witness;
if (counter < c) {

y ← E.f(x);
counter ← counter + 1;

}
return y;

}}.

An adversary may not (re-)initialize
its oracle. This is either done by re-
stricting procedure accesses in the dec-
laration of the procedures, or by declar-
ing another module type for oracles.
The second option requires module type
management and is possible, but may be
tedious.

module type Adversary (O : Oracle) = {
proc guess () : bool { O.f }

}.

The distinguishing game Dist, when
given an adversary and an oracle, initial-
izes the oracle and the counter, gives to
the adversary the restricted oracle, and
outputs the answer of the adversary.

module Dist (A : Adversary) (O : Oracle) = {
proc main () : bool = {

var b;
Count(O).init();
b ← A(Count(O)).guess();
return b;

}}.

Lemma 2.3.1 (PRP–PRF switching). For any natural number c, any lossless adversary

A distinguishes a random permutation from a random function with probability:

���Pr
h
π

$
← Perm(S);b←A π : b= 1

i
− Pr
h

f
$
← Fun(S);b←A f : b= 1

i���≤ c · (c − 1)
2 · |S|

when the oracle starts to always output a default value witness after c queries.

lemma prp_prf_switching &m :
(∗ ∀ adversary A that cannot access internal states of Map and Count ∗)
∀ (A <: Adversary { Map, Count }),

`| Pr[Dist(A,RP).main() @ &m : res] − Pr[Dist(A,RF).main() @ &m : res] | ≤
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(c∗(c−1)/2) ∗ mu dt witness.
(∗ 'mu dt witness' represents the probability a value sampled from 'dt' is equal to 'witness' ∗)

Proof. Let &m be the initial memory, and Event.bad be the failure event.

module Event = { var bad : bool }.

This proof has a simple sequence of games:

1. Pr[Dist(A,RP).main(),m : res] = Pr[Dist(A,RPbad).main(),m : res]

2. Pr[Dist(A,RF).main(),m : res] = Pr[Dist(A,RFbad).main(),m : res]

3. |Pr[Dist(A,RFbad).main(),m : res]− Pr[Dist(A,RPbad).main(),m : res]| ≤
Pr[Dist(A,RFbad).main(),m : Event.bad]

4. Pr[Dist(A,RFbad).main(),m : Event.bad]≤ c · (c − 1)/(2 · |S|)

where the oracles RFbad and RPbad are defined in the following way and are respec-
tively equivalent to RF and RP while capturing the failure event directly in their code.

module RFbad : Oracle = {
proc init () : unit = {

Map.m ← empty;
Event.bad ← false;

}
proc f (x : t) : t = {

var y : t ← witness;
if (x \notin Map.m) {

y
$
←− dt;

if (rng Map.m y) {
Event.bad ← true;

(∗ y
$
←− dt \ rng Map.m; ∗)

}
Map.m[x] ← y;

}
return oget Map.m[x];

}}.

module RPbad : Oracle = {
proc init () : unit = {

Map.m ← empty;
Event.bad ← false;

}
proc f (x : t) : t = {

var y : t ← witness;
if (x \notin Map.m) {

y
$
←− dt;

if (rng Map.m y) {
Event.bad ← true;

y
$
←− dt \ rng Map.m;

}
Map.m[x] ← y;

}
return oget Map.m[x];

}}.

1. The functional equivalence between RF and RFbad is easy to show in EasyCrypt.

2. The functional equivalence between RP and RPbad relies on the fact that sam-
pling from either of the following distributions yields the same probability:

— sample directly from ’dt \ rng Map.m’ and

— sample from ’dt’, then if the value belongs to the range of ’Map.m’, re-sample
another value from ’dt \ rng Map.m’.

3. The upto-bad step is a direct application of the Fundamental Lemma.

4. The computation of the probability of setting Event.bad← true is done using the
advanced tactic named fel for which a documentation can be found online at
https://www.easycrypt.info/documentation/refman.pdf. This tactic cap-
tures the intuition that if the adversary has a limited number of queries it can
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make, if the probability of the event for one query is bounded by some expres-
sion, then the probability the adversary triggers the event is bounded by the sum
of all those expressions.

Stronger version

The stronger version of this theorem, used in Chapter 6, gives to the adversary an access
to the inverse. Because the inverse of a random function is not defined on elements (but
mathematically on sets), it is replaced it by a random transformation. It is formalized as a
module with an internal state that keeps track of all previous queries to both the direct oracle
and its inverse, and for any fresh query to either samples an output and updates its internal
state. This last step may overwrite a previous query to the other oracle, therefore, a random
transformation does not ensure the full consistency of the output of previous queries.

Because of this instability of behavior, the set of all transformations is not well defined.

Therefore, by abuse of notation, in the next lemma the sampling f
$
← Fun(S) represents the

initialization of a random transformation, given to the adversary along with its “inverse”
f −1, and whose internal state is updated as the adversary asks its queries.

The formalization of the random
transformation involves two finite maps
that keep track of all the queries, one for
the direct oracle Map.m and one for its
inverse Map.mi.

Both maps are updated for each indi-
vidual query, and in the case of the ran-
dom transformation, no check is made
to ensure the consistency of the output
of previous queries.

module Map = {
var m : (t, t) fmap
var mi : (t, t) fmap

}.
module type Oracle = {

proc init () : unit
proc f (_: t) : t
proc fi (_: t) : t

}.

module Count (O : Oracle) = {
var counter : int
proc init () : unit = {

counter ← 0;
O.init();

}
proc f (x : t) : t = {

var y : t ← witness;
if (counter < c) {

y ← O.f(x);
}
counter ← counter + 1;
return y;

}
proc fi (x : t) : t = {

var y : t ← witness;
if (counter < c) {

y ← O.fi(x);
}
counter ← counter + 1;
return y;

}}.

EasyCrypt
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module RT : Oracle = {
proc init () : unit = {

Map.m ← empty;
Map.mi ← empty;

}
proc f (x : t) : t = {

var y : t;

if (x \notin Map.m) { y
$
←− dt; }

Map.m[x] ← y;
Map.mi[y] ← x;
return y;

}
proc fi (x : t) : t = {

var y : t;

if (x \notin Map.mi) { y
$
←− dt; }

Map.m[y] ← x;
Map.mi[x] ← y;
return y;

}}.

Listing 2.4 – Random transformation

module RP : Oracle = {
proc init () : unit = {

Map.m ← empty;
Map.mi ← empty;

}
proc f (x : t) : t = {

var y : t;

if (x \notin Map.m) { y
$
←− dt \ rng Map.m; }

Map.m[x] ← y;
Map.mi[y] ← x;
return y;

}
proc fi (x : t) : t = {

var y : t;

if (x \notin Map.mi) { y
$
←− dt \ rng Map.mi; }

Map.m[y] ← x;
Map.mi[x] ← y;
return y;

}}.

Listing 2.5 – Random permutation

The definition of the adversarial
module type and the game are close, but
they differ in the set of procedures the
adversary can call from its input mod-
ule. In this example, the adversary can
call both O.f and O.fi.

module type Adversary (O : Oracle) = {
proc guess () : bool { O.f O.fi }

}.

module Dist (A : Adversary) (O : Oracle) = {
proc main () : bool = {

var b;
Count(O).init();
b ← A(Count(O)).guess();
return b;

}}.

Lemma 2.3.2 (Strong PRP–PRF switching). For any natural number c, any lossless ad-

versary A can distinguish a random permutation from a random transformation with

probability:

���Pr
h
π

$
← Perm(S);b←A π,π−1

: b= 1
i
− Pr
h

f
$
← Fun(S);b←A f , f −1

: b= 1
i���

≤
c · (c − 1)

2 · |S|

when its oracle starts to always answer a default value witness after c queries.

lemma strong_prp_prf_switching &m :
∀ (A <: Adversary { Map, Count }),

`| Pr[Dist(A,RP).main() @ &m : res] − Pr[Dist(A,RT).main() @ &m : res] | ≤
(c∗(c−1)/2) ∗ mu dt witness.
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The proof of the stronger version of the PRP-PRF switching lemma is very similar
and has the same structure as previously.

2.3.2 Eager Sampling [Almeida et al., 2019b]

Eager sampling is a standard argument when working with random oracles in crypto-
graphic proofs, which consists in switching between two different views of a random oracle:

i. an eager view, in which the random oracle is sampled at random in a distribution over
the space of functions (of the appropriate type) when the game is initialized; and

ii. a lazy view, in which the random oracle’s responses are individually sampled upon
fresh requests.

Although it is clear that no adversary that can only query the random oracle can distin-
guish between these two views, this restriction is often much too strict for the argument to
be applicable directly.

In Section 6.3.2, the step in the proof that states that padding and truncation pre-
serve indifferentiability, boils down to proving that the oracles E and L shown on the
outside of Figure 2.1 cannot be distinguished — when instantiated with a random or-
acle RF with domain D × N and range {0, 1} — by any algorithm (even unbounded)
with oracle access to one of them. Note here that it is impossible to simply eagerly sam-
ple the random oracle RF, since its domain is countably infinite, preventing us from
defining a uniform distribution over the function space.

Example

E(x ∈ D, n ∈ N)

z← ǫ;

for (i = 0; i < n; i ++)

z← z ‖RF.get(x , i);

for (i = n; i < ⌈n/r⌉ · r; i ++)

RF.get(x , i);

return z;

HO(x ∈ D, n ∈ N)

z← ǫ;

for (i = 0; i < n; i ++)

z← z ‖O.get(x , i);

for (i = n; i < ⌈n/r⌉ · r; i ++)

O.sample(x , i);

return z;

L(x ∈ D, n ∈ N)

z← ǫ;

for (i = 0; i < n; i ++)

z← z ‖RF.get(x , i);

return z;

Figure 2.1 – Eager-lazy random sampling example.

Rather than forcing the EasyCrypt user to use low-level tactics to reason about this equiv-
alence, we define a new abstraction for random oracles that supports eager arguments, not
only in situations like the one of Figure 2.1 (where definitional difficulties arise from the
use of infinite domains), but also in the presence of programming queries, such as scenarios
in which answers to some queries are deterministically set or removed by the context.

Our new abstraction models a random oracle with input in set D, output in C, and out-
put distribution dC as 4 oracles that share state, and whose canonical eager and lazy im-
plementations are shown in Figure 2.2. They differ only in their sample oracle: an eager
implementation (shown on a grey background), which samples values even though they
are not returned; and a lazy implementation, which does nothing.
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Eagerm0
Lazym0

Global state: a map m ∈ D→ C, initially the empty map m0.

Common oracles
get(x)

if (x /∈ m)

m[x]
$
← dC;

return m[x];

set(x, y)

m[x]← y;

return;

rem(x)

m[x]← false;

return;

sample(x)

if (x /∈ m)

m[x]
$
← dC;

return;

sample(x)

return;

Figure 2.2 – The eager and lazy programmable random oracle

Even given this much extended interface (over the “traditional” interface which only
exposes get), we can prove the following lemma, which states that the eager and lazy
implementations are strictly equivalent.

Lemma 2.3.3 (Eager sampling for programmable random oracles). For any map m0 ∈ D→
C, and for any unbounded adversary D with unbounded oracle access to get, set, rem and

sample oracles as specified above, we have

DEagerm0 ∼ DLazym0

Proving this lemma makes heavy use of EasyCrypt’s advanced eager tactic which can be
found online at https://www.easycrypt.info/documentation/refman.pdf. This tactic
formalizes and confirms the standard intuition that, even when oracles can be externally
programmed, sampling operations whose results do not influence the adversary’s view can
safely be delayed, either until the point where they do influence the adversary’s view, or
until the end of the game’s execution.

Continuing our example, the extended interface can be used as shown in Figure 2.1
to define a hybrid oracle HO that uses O.sample as well as O.get for O ∈ {Eager,Lazy}.
Then E and HEager are equivalent, since their second loops do nothing with the values
they sample: both oracles sample ⌈n/r⌉ · r bits, returning the first n of them. Also
HLazy is equivalent to L, since the second loop in HLazy does nothing. Finally, if D is a
distinguisher for E/L, then by Lemma 2.3.3, we have that DE ∼ DHEager

∼ DHLazy

∼ DL,
considering the distinguisher DH· when applying Lemma 2.3.3.

Example

In the previous Section, the sampling p
$
← Perm(S) represents the full-eager sam-

pling whereas the EasyCrypt lemma involves the lazy representations of a random per-

Remark
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mutation and a random function. From this section, those representations are equiva-
lent and one can switch between the two as much as one’s will.

2.3.3 Split Random Oracle

A random oracle is a useful tool that cryptographers manipulate in the random oracle
model. Common random oracle manipulations involve splitting the domain of the random
oracle separated by a predicate, or splitting the co-domain when the output type is isomor-
phic to a pair. We have developed this simple yet useful library for Chapter 8.

Split Domain

In the situation of all calls to a random oracle that satisfy a predicate test may be delayed
and the rest may stay as is, the best way to delay such queries is to split the domain according
to the predicate test and then use the previous library to delay the wanted ones.

x

RO_DOM

test x ?

ROT ROF

true false

Figure 2.3 – Split domain
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The abstract theory named SplitDom

implements this idea. It uses the same
interface (module types) as the lazy-
eager theory named PROM (and de-
scribed in Section 2.3.2). It provides two
random oracles (named ROT and ROF)
and the module RO_DOM.

abstract theory SplitDom.
type from, to, input, output.
op sampleto : from → to distr.
clone import PROM.Ideal as IdealAll with

type from ← from,
type to ← to,
type input ← input,
type output ← output,
op sampleto ← sampleto.

module RO = PROM.RO.
clone IdealAll.MkRO as ROT.
clone IdealAll.MkRO as ROF.

Represented in Figure 2.3, the mod-
ule RO_DOM builds a full domain
random oracle from two random or-
acles separated by predicate named
test. Specifically it redirects queries:

RO_DOM[ROT,ROF].get(x) will either
output ROT.get(x) if x satisfies test, or
output ROF.get(x) otherwise.

op test : from → bool.
module RO_DOM(ROT:RO, ROF:RO): RO = {

proc init () = { ROT.init(); ROF.init(); }
proc get(x : from) = {

var r;
if (test x) r ← ROT.get(x);
else r ← ROF.get(x);
return r;

}
proc set(x : from, y : to) = {

if (test x) ROT.set(x, y);
else ROF.set(x, y);

}
proc rem(x : from) = {

if (test x) ROT.rem(x);
else ROF.rem(x);

}
proc sample(x : from) = {

if (test x) ROT.sample(x);
else ROF.sample(x);

}
}.

The more general lemma states that any game using RO_DOM[ROT,ROF] is equiv-
alent to the same game using a direct random oracle RO. The following lemma is a
pRHL equivalence of procedures:

section PROOFS.
declare module D: IdealAll.RO_Distinguisher { RO, ROT.RO, ROF.RO }.
lemma RO_split:

equiv [ IdealAll.MainD(D,RO).distinguish
~ IdealAll.MainD(D,RO_DOM(ROT.RO,ROF.RO)).distinguish
: ={glob D, x}
⇛ ={res, glob D} ∧ RO.m{1} = union_map ROT.RO.m{2} ROF.RO.m{2} ∧

(∀ x, x ∈ ROT.RO.m{2} ⇒ test x) ∧
(∀ x, x ∈ ROF.RO.m{2} ⇒ ¬test x) ].

proof. (∗ · · · ∗) qed.

The corrolary pr_RO_split is in the form of equality of probabilities, where some of
the information about the relations between the finite maps is lost.

lemma pr_RO_split (p: glob D → output → bool) &m x0:
Pr[ MainD(D,RO).distinguish(x0) @ &m : p (glob D) res] =
Pr[ MainD(D,RO_DOM(ROT.RO,ROF.RO)).distinguish(x0) @ &m : p (glob D) res].

proof. by byequiv RO_split. qed.
end section PROOFS.
end SplitDom.

EasyCrypt
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Split co-domain

When the output type to of a random oracle is isomorphic to a pair of two different types,
to1 and to2, one may want to split the random oracle into the pairing of two uncorrelated
random oracles with output type to1 and to2, respectively. This co-domain split allows
cryptographers to delay (or erase) one of them, making the proof of an upper bound on
some event easier, as in Chapter 8.

x

RO_Pair

RO1 RO2

Figure 2.4 – Split co-domain

The abstract theory SplitCodom im-
plements this idea. It uses the same in-
terface for module types as the theory
PROM and provides two sub theories
cloned from PROM, named I1 and I2.

abstract theory SplitCodom.
type to1, to2.
op topair : to → to1 ∗ to2.
op ofpair : to1 ∗ to2 → to.
axiom topairK: cancel topair ofpair.
axiom ofpairK: cancel ofpair topair.
op sampleto1 : from → to1 distr.
op sampleto2 : from → to2 distr.
axiom sample_spec (f:from) :

sampleto f =
dmap (sampleto1 f `∗` sampleto2 f) ofpair.

clone PROM.Ideal as I1 with

type from ← from,
type to ← to1,
type input ← input,
type output ← output,
op sampleto ← sampleto1.

clone PROM.Ideal as I2 with

type from ← from,
type to ← to2,
type input ← input,
type output ← output,
op sampleto ← sampleto2.

module RO_Pair(RO1:I1.RO, RO2:I2.RO): RO = {
proc init () = { RO1.init(); RO2.init(); }
proc get(x : from) = {
var r1, r2;
r1 ← RO1.get(x);
r2 ← RO2.get(x);
return ofpair(r1,r2);

}
proc set(x : from, y : to) = {

var y1, y2;
(y1,y2) ← to pair y;
RO1.set(x,y1); RO2.set(x,y2);

}
proc rem(x : from) = {

RO1.rem(x); RO2.rem(x);
}
proc sample(x : from) = {

RO1.sample(x); RO2.sample(x);
}}.

EasyCrypt



Formalization Techniques 37

The more general lemma states that any game using RO_pair[I1.RO, I2.RO] is equiv-
alent to the same game using a direct random oracle RO. The following lemma is a
pRHL equivalence of procedures:

section PROOFS.
declare module D : RO_Distinguisher { RO, I1.RO, I2.RO }.
lemma RO_split:

equiv [ MainD(D,RO).distinguish
~ MainD(D,RO_Pair(I1.RO,I2.RO)).distinguish
: ={glob D, x}
⇛ ={res, glob D} ∧

RO.m{1} = map (fun _ ⇒ ofpair) (pair_map I1.RO.m{2} I2.RO.m{2}) ∧
∀ x, x ∈ RO.m{1} = x ∈ I1.RO.m{2} ∧ x ∈ RO.m{1} = x ∈ I2.RO.m{2}.

proof. (∗ · · · ∗) qed.

The corrolary pr_RO_split is in the form of equality of probabilities, where some of
the information about the relations between the finite maps is lost.

lemma pr_RO_split (p: glob D → output → bool) &m x0:
Pr[ MainD(D,RO).distinguish(x0) @ &m : p (glob D) res] =
Pr[ MainD(D,RO_Pair(I1.RO,I2.RO)).distinguish(x0) @ &m : p (glob D) res].

proof. by byequiv RO_split. qed.
end section PROOFS.
end SplitCodom.
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Chapter 3

Security of a MAC Scheme

Passive attacks such as eavesdropping, can be prevented using confidentiality preserving
techniques. A different requirement is to protect against active attack, such as falsification of
data and transactions. Protection against such attacks is known as message authentication.

If you’re using Windows, all the Windows operating files on disk are the same for
each Windows operating system, and are frequently used. Even if they are public and
known to the world, it is rather important to ensure that they are not modified by a
malware or some other unauthorized entity, without having to decrypt them anytime
you access a different fonctionality of your operating system.

In the case of an ads’ banner, the ads’ provider does not care about the ads being
copied and shown to other people (in fact, it may even benefit them). There is no confi-
dentiality issue at all. What they do care about is modifying the ads in an unauthorized
way. An example would be to change the name and the logo of the ads’ provider.

Example

In both cases, the usability of the functionality should not be more difficut than
accessing the plaintext. This issue corresponds to the balance between security and
usability of systems. The importance of such a balance according to the risks in the
system’s environment cannot be emphasized enough, even if I do not discuss further
this issue in this manuscript.

Remark

Message authentication

Message authentication is a procedure that allows communicating parties to verify that
the source is authentic — the actual source can be verified to be the expected one — and
message integrity — the message content has not been altered.

The overall intent of any message integrity technique is the same: upon retrieval, ensure
the message is exactly the same as it was originally transmitted over a possibly malicious
network. In other words, message integrity aims to prevent unintentional and unauthorized
changes to transmitted information while the message itself is not encrypted and can be read
by anyone receiving the message or listening to the transmission.
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One authentication technique involves the use of a secret key to generate a small block of
data, known as message authentication code (MAC) or a tag, that is appended to the message.
This technique assumes that two communicating parties, say A and B, share a common
secret key kAB. When A has a message m to send to B, whatever the message length is, it
computes the message authentication code as a complex function of the message and the
key: tagm = MACkAB

(m). The message plus tag are transmitted to the intended recipient.
The recipient performs the same computation on the received message, using the same
secret key, to generate a new tag. The received tag is compared to the computed tag. If they
are equal, the message is authenticated, otherwise the couple message–tag can be assumed
to be falsified.

3.1 Security Definition : Forgery Resistance

Assuming the secret key is only possessed by intended parties, if any entity that does
not know the secret key is able to produce a valid tag for a message, the authentication
procedure described before does not provide authentication nor message integrity at all.
Therefore, the security of such a MAC algorithm resides in the difficulty to forge a valid tag
to a message without knowing the secret key, versus the efficiency to compute a valid tag for
any message using the secret key. A forgery is the production of (m, t) where t is a valid tag
for m when the entity providing it does not own the secret key.

A stronger definition of a forgery is to allow the entity, called adversary, to query the MAC
algorithm so that it can obtain valid tags for any message of the adversary’s choosing before
the attempt of the forgery. The adversary’s forgery attempt is successful if the tag is valid
for the message, and the message was not previously queried. In other words, even if the
adversary can obtain valid tags for any message, it should still be very difficult to produce
a valid tag that does not come from the parties knowing the secret key.

Definition 3.1.1. The forgery advantage Adv
forge

M (A ) of an adversary A against a MAC
scheme M is the probability ofA succeeding in producing a valid forgery :

Adv
forge

M (A ) := Pr

h
k

$
← K; (m, t)←A Mk(·); t∗←Mk(m) : t= t∗ ∧m 6∈ Q

Mk(·)

A

i

where Q
Mk(·)

A is the set of all queriesA made to its oracle during its computation.

Forgery Resistance of a Random Function

The forgery game is formalized in EasyCrypt as a module which takes two modules
as parameters, the advsersary A and the MAC scheme M.

The Trace module is the formalization of the restriction given to the adversary that
depends on the cryptographic game. In the forgery game, the adversary cannot win if
the message in the forge attempt has already been queried to its oracle. The module
Trace logs all the queries asked by the adversary in its global variable Trace.queries and
the game tests at the end if the forgery attempt was not previously asked. The init

procedure of Trace sets its variable to be empty at the beginning of the forgery game.
It then calls the init procedure of the MAC algorithm M. Very often, it stands for the
sampling of the MAC key that is stored in a global variable of the module M. This key

EasyCrypt
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is then used for all queries to the procedure mac.

type message, mac.

module type MAC = {
proc init () : unit
proc mac (m : message) : mac

}.

module type Adversary (O : MAC) = {
proc forge () : message ∗ mac { O.mac }

}.

module Trace (M : MAC) : MAC = {
var queries : (message, mac) fmap
proc init () : unit = {

queries ← empty;
M.init();

}
proc mac (m : message) : mac = {

if (¬ m ∈ Trace.queries) {
Trace.queries[m] ← M.mac(m);

}
return oget Trace.queries[m];

}}.

module Forge (A : Adversary, M : MAC) = {
proc game () : bool = {

var m, t, t';
Trace(M).init();
(m,t) ← A(Trace(M)).forge();
t' ← M.mac(m);
return t = t' ∧ ¬ m ∈ Trace.queries;

}}.

In EasyCrypt, to state the security of
a MAC scheme, the forgery advantage

is proven to be bounded for all adver-

saries by an explicit bound. The adver-
sary module can appear in the bound,
and, in this case, it exhibits the security
assumption on which the MAC algorithm
is secure. This is the general approach to
provide a proof of any provable secure
scheme in EasyCrypt.

In this setting, the adversary with ac-
cess to either Trace.queries or the secret
MAC key M.k has a trivial forgery at-
tack. Therefore, in the quantification
for all adversaries, the adversaries that
have access to those global variables
should not be considered. A lemma
about forgery resistance will appear in
the proof script as :

module M : MAC = {
var k : key
proc init () = { (∗ · · · ∗) }
proc mac (m : message) = {

(∗ code of the MAC scheme ∗)
}}.
section Proof.

declare module A : Adversary{M, Trace}.
(∗ intermediate lemmas ∗)
lemma forgery : ∀ &m,

Pr [ Forge(A, M).game() @ &m : res ]
≤ (∗ explicit bound ∗).

proof.
(∗ formal proof script ∗)
qed.

end section Proof.

3.2 Indistinguishability from a Random Function implies

Forgery Resistance

In this section, I state the forgery advantage of such a random oracle in order to relate
it to the forgery advantage of any MAC scheme and the advantage to distinguish this MAC
scheme from a random oracle.

3.2.1 Forgery Resistance of a Random Function



44 Security of a MAC Scheme

A random oracle (or random func-
tion) named RF is modelized as follows.

type message, mac.
op dmac : mac distr.
axiom dmac_funi : is_funiform dmac.
axiom dmac_ll : is_lossless dmac.

The type mac models the output set
F of the MAC algorithm.

module RF : MAC = {
var map : (message, mac) fmap
proc init () : unit = { map ← empty; }
proc mac (x : message) : mac = {

if (¬ x ∈ map) { map[x]
$
←− dmac; }

return oget map[x];
}}.

EasyCrypt

Theorem 3.2.1 (Forgery Advantage against a Random Function). For all adversary A that

have no access to Trace nor RF, the forgery advantage of A against RF is bounded by the inverse

of the size of the output space F.

Adv
forge
RF
(A)≤

1
|F|
=mu1 dmac witness

Proof. The forgery advantage of A against RF is:

— equal to 0 if m ∈ Trace.queries, since Trace.queries = RF.map is an invariant;

— equal to 1
|F| otherwise, since we assume that dmac is the uniform distribution on F.

lemma random_function_is_forgery_resistant :
∀ &m (A <: Adversary{Trace, RF}),
Pr [ Forge(A,RF).game() @ &m : res ] ≤ mu1 dmac witness.

EasyCrypt

Consider the adversary that samples uniformly at random its forgery attempt with
no query. This adversary has a forgery advantage of 1

|F| against every MAC scheme
that has the output space F. Therefore, when bounding the forgery advantage for all
adversaries, it can never be less than 1

|F| . As a consequence, a random function acheives
the optimal bound on the forgery advantage when quantified for all adversaries.

Remark

3.2.2 Indistinguishability

In the real world, random function does not exist. Since they achieve the best security
in terms of forgery resistance, one could want to prove that even if a MAC scheme is not
a random function, its behaviour is as close to a random function as possible so that the
forgery advantage of any adversary is close to the forgery advantage of a random function.
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In cryptography, two distributions are computationally 1 indistinguishable if no efficient
adversary can tell the difference between them except with small probability. This prob-
ability is called the distinguishing advantage of an adversary. It is called prf-distinguishing

advantage, for pseudo-random function, when one of them is a random function.

Definition 3.2.1 (Distinsguishing Advantage). Let D and E be two distributions of functions,
for any adversaryA that has access to one oracle sampled from one of the distributions and
outputs one bit guessing which distribution it was given. The distinguishing advantage of
A about D and E is defined as:

Advdist
D,E(A ) :=
���Pr
h
d

$
← D; b←A d(·) : b = 1

i
− Pr
h
e

$
← E; b←A e(·) : b = 1

i���

type t_in, t_out.
module type Function = {

proc init () : unit
proc f (x : t_in) : t_out

}.
module type Distinguisher (F : Function) = {

proc guess () : bool { F.f }
}.
module Dist (D : Distinguisher) (F : Function) = {

proc game () : bool = {
var b : bool;
F.init();
b ← D(F).guess();
return b;

}
}.
module F : Function = (∗ some function ∗).
module G : Function = (∗ some function ∗).
lemma indistinguishable :
∀ &m (D <: Distinguisher{F, G}),
`| Pr [ Dist(D,F).game() @ &m : res ] − Pr [Dist(D,G).game() @ &m : res] |
≤ (∗ some concrete bound ∗).

proof. (∗ some proof script ∗) qed.

EasyCrypt

Forgery Resistance from Indistinguishability with a Random Function

Theorem 3.2.2. Let the program B(·) build a distinguishing adversary given a forgery ad-

versary A that aims to distinguish a MAC scheme M from a random function pictured as $,

i.e. B(A )O(·) := Forge[A , O].main. For any adversary A , its forgery advantage against M

1. The specification “computationally” refers to the fact that only efficient adversaries are taken into account
in this definition of indistinguishability. In EasyCrypt, there is no analysis of complexity in time but analysis
of probabilistic terminaison. Therefore all adversaries that are considered in the proofs are not bounded in
time. Instead they are often assumed to be lossless. This is the assumption that adversaries will terminate with
probability 1. This is a stronger result on indistinguishability than computational indistinguishability.
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is bounded by the advantage of the distinguishing adversary B(A ) to distinguish M from a

random function plus the inverse of the size of the tag space B.

Adv
forge
M
(A )≤ Advdist

M,$(B(A )) +
1
|B|

Proof. By unfolding the definition ofB and the distinguishing advantage:

Advdist
M,LazyRF

(B(A )) =
���Adv

forge
M
(A )−Adv

forge
LazyRF

(A )
���≥ Adv

forge
M
(A )−

1
|B|

3.3 Block Cipher Mode of Operation

A block cipher is a deterministic algorithm operating on fixed-length group of bits, called
block, with an unvarying transformation (encryption or decryption) that is specified by a
symmetric key. The most used block cipher is the Advanced Encryption Standard (AES
[Daemen and Rijmen, 1999]), even if older block ciphers are still used: Data Encryption
Standard (DES [Morris et al., 1977]), or triple DES.

A block cipher by itself is only suitable for the secure cryptographic transformation (en-
cryption or decryption) of one block. A block cipher mode of operation is an algorithm that
uses a block cipher to provide information security such as confidentiality or authenticity.
However, the security of a mode of operation does not entirely depends on the security of
the underlying block cipher. When a block cipher is used in a given mode of operation, the
resulting algorithm should ideally be about as secure as the underlying block cipher itself.

Consider the algorithm that encrypts an arbitrary long message by encrypting each
block separately, with the same symmetric key. It is named ECB, for Electronic Code-
book. Even if the block cipher correctly hides information of each block, the pattern of
a longer message may be revealed as shown in Figure 3.1.

Example

Plaintext. Encrypted using ECB. Securely encrypted.

Figure 3.1 – ECB reveals patterns, even when using a secure block cipher.



Block Cipher Mode of Operation 47

3.3.1 Security Definition of a Block Cipher

A block cipher consists of two paired algorithms, one for encryption denoted E, and one
for decryption denoted D. Both algorithms expect two inputs: a block in B and a private
key k ∈ K; and both algorithms output a block in B. The decryption is defined to be the
inverse function of encryption, when they both use the same private key.

More formally, a block cipher is specified by an encryption function:

Ek(p) := E(k, p) :K×B→ B

which takes as input a key k ∈ K, and the plaintext, a block p ∈ B and returns the ciphertext,
a string c ∈ B. For each key k ∈ K, the function Ek(·) is required to be an invertible mapping
on B, where the inverse Dk is defined as:

Dk(c) := D(k, c) :K×B→ B

We denote Perm(B) the family of all permutations on B that is equipped with the uniform
distribution. The prp-distinguishing advantage (for pseudo-random permutation) against a
block cipher is the advantage to distinguish it, when the key is randomly sampled, from a
random permutation sampled from Perm(B).

Definition 3.3.1 (prp-distinguishing advantage). The prp-distinguishing advantage of any
adversaryA to tell apart a block cipher (E,D) equipped with a random key from a random
permutation over the same block space B is defined as follows:

Adv
prp
(E,D)(A ) :=
���Pr
h
k

$
← K;b←A Ek(·),Dk(·) : b = 1

i
− Pr
h
π

$
← Perm(B);b←A π(·),π−1(·) : b = 1

i���

3.3.2 Security Definition of a Block Cipher Mode of Operation

Some MAC algorithms are constructed using a mode of operation. A mode of operation
describes how to repeatedly apply a block cipher operation to securely transform amounts of
data larger than a block. The security of such a mode often relies on the security assumption
that the underlying block cipher is secure, so that in the analysis of the structure of the
mode, one can replace calls to a block cipher with different keys by independent random
permutations.
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In EasyCrypt, such a formalization
looks like the following.

type key.
type block.
op dblock : block distr.
axiom dblock_funi : is_funiform dblock.
axiom dblock_ll : is_lossless dblock.

module type Permutation = {
proc init () : unit
proc enc (p : block) : block
proc dec (p : block) : block

}.

module type Distinguisher
(O : Permutation) = {

proc distinguish () : bool { O.enc O.dec }
}.

module Dist (D : Distinguisher)
(P : Permutation) = {

proc game () : bool = {
var b : bool;
P.init();
b ← D(P).distinguish();
return b;

}}.

module type OperationMode
(P : Permutation) = MAC.

module RP : Permutation = {
var map : (block, block) fmap
var mapi : (block, block) fmap
proc init () : unit = {

map ← empty;
mapi ← empty;

}
proc enc (x : block) : block = {

if (¬ x ∈ map) {

map[x]
$
←− dblock \ (rng map);

mapi[oget map[x]] ← x;
}
return oget map[x];

}
proc dec (x : block) : block = {

if (¬ x ∈ mapi) {

mapi[x]
$
←− dblock \ (rng mapi);

map[oget mapi[x]] ← x;
}
return oget mapi[x];

}}.

lemma mode_of_operation_secure :
∀ &m
(OM <: OperationMode{Trace, RP})
(P <: Permutation{Trace, RP, OM})
(A <: Adversary{Trace, RP, OM, P}),
Pr [ Forge(A,OM(P)).game() @ &m : res ]
≤ Pr [ Forge(A,OM(RP)).game() @ &m : res] (∗ concrete upper bound ∗)

+ `|Pr [ Dist(B(A),P).game() @ &m : res] − Pr [ Dist(B(A),RP).game() @ &m : res ]|.
(∗ security assumption ∗)

EasyCrypt



Chapter 4

CMAC’s Formal Security Proof

[Baritel-Ruet et al., 2018]

The Cipher-based Message Authentication Code, shortened as CMAC [Song et al., 2006],
is a block cipher-based message authentication code algorithm. The structure of CMAC’s al-
gorithm is sequential and its computation does not require to know the length of the message
to authenticate.

4.1 Historical presentation

The CMAC scheme was first introduced by Iwata and Kurosawa as OMAC1, for One-key
MAC, in [Iwata and Kurosawa, 2003]. It is now a standardized MAC [Dworkin, 2016]. The
scheme is based on the CBC (chained block cipher) mode of operation [Ehrsam et al., 1978],
and more precisely on the MAC scheme derived from it. We denote CBC-MACEk

to represent
the CBC-MAC scheme using the underlying block cipher Ek.

In CBC-MAC, the message to authenticate is split into a list of blocks. The first block
is encrypted by Ek, and each next block is first xored using the last computed cipher then
encrypted by Ek. This constructs a chain linked by the output of the block cipher. This
dependence ensures that a change to any bit of a message will change the rest of the MAC
in an unpredictable way.

m1

Ek

m2

Ek

m3

Ek

m4

Ek

tag

Figure 4.1 – Representation of CBC-MACEk
(m1||m2||m3||m4)
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module type MACN = {
proc init () : unit
proc mac (m : block list) : block

}.
module CBCMAC (F : Permutation) : MACN = {

proc init = F.init
proc mac (m : block list) : block = {

var i : int ← 0;
var c : block ← zeros;
while (i < size m) {

c ← F.enc(m[i] ^+ c); (∗ ^+ denotes the xor operation ∗)
i ← i + 1;

}
return c;

}}.

EasyCrypt

Bellare, Kilian and Rogaway [Bellare et al., 1994] prove the security of the CBC-MAC
construction, by proving, as is the practice in cryptography, that any algorithm that finds
CBC-MAC forgeries with non-negligible probability can be used to break the underlying
block cipher with the same time complexity. However, their proof — and indeed the security
of CBC-MAC— is limited to the case where the length m of the message (in blocks) is fixed
in advance. Indeed, it is easy to produce a chosen message forgery as follows when the
tagging and verification algorithm accepts arbitrary length messages:

1. Through chosen-message queries, obtain t = CBC(m) and t′ = CBC(m′) for some
messages m and m′ of respective lengths m> 0 and m′ > 0.

2. Then t′ is also a valid tag for the fresh message: m1 || . . . || mm || [t⊕m′1] || . . . || m′
m′

.
Thus CBC-MAC suffers from two major issues: i. the size of messages should be a mul-

tiple of n, the block size, and ii. all messages must contain the same, fixed, number of
blocks. To overcome these restrictions, Black and Rogaway [Black and Rogaway, 2005] pro-
pose three extensions of CBC-MAC: 1i. ECBC, ii. FCBC and iii. XCBC. CMAC is a variant
of XCBC that was first proposed by Iwata and Kurosawa [Iwata and Kurosawa, 2003] as
OMAC1.

Description of ECBC

The first issue of CBC-MAC, that is being limited to computing tags for messages whose
length is a multiple of the block length, is often dealt with using some injective padding
scheme. However, such schemes require flexibility in the number of blocks that can be pro-
cessed, as their injectivity may require them to add a full block of padding onto a message.
The MAC scheme ECBC combines two ideas to: i. allow padding messages to a multiple
of the block length without overhead; and ii. securely support computing MAC tags for
messages of different lengths.

1. A simpler fix is to be prepend the length of the input message to the message itself before processing it:
if this does indeed yield a secure MAC algorithm, it is not always possible to know the length of the payload
when the processing begins. For example, the TLS protocol computes a MAC over the concatenation of all
messages exchanged during its handshake protocol–the length of which is only known after it is over. These
engineering considerations are often kept separate from security considerations when defining the syntax and
security of cryptographic schemes. This provides abstraction but brings its own set of problems.
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First, in order to support messages with different numbers of blocks, it is possible to
apply additional treatment to the final tag before releasing it. This is to ensure that it cannot
predictably be used as a known intermediate value in the computation of a tag for a chosen
message. In ECBC, this is done, using an idea by Vaudenay [Vaudenay, 2000], which was
first proposed in the book [Bosselaers and Preneel, 1995], by computing a CBC-MAC tag
using a block cipher key k1 and encrypting this tag with a different key k2 before releasing
it.

This first idea then brings an opportunity to do padding only when needed. Indeed,
rather than ensuring the padding is injective, it is possible to apply padding to the message
only when its length is not a multiple of n, but then compute the final encryption using a
different key k3 when padding was applied.

Given some injective padding function pad : Σ∗ → B+ that pads arbitrary strings over
some alphabet Σ as non-empty sequence of blocks, and combining the two ideas above,
the ECBC scheme (also shown in Figure 4.2) can be defined as the following three-key
construction.

ECBCEk1
,Ek2

,Ek3
(m) =

¨
Ek2
(CBCk1

(m)) if m ∈ B+

Ek3
(CBCk1

(pad(m)) otherwise

m1

Ek1

m2

Ek1

m3

Ek1

m4

Ek1

Ek2

tag
when |m4|= n

m1

Ek1

m2

Ek1

m3

Ek1

totom4 10∗

Ek1

Ek3

tagwhen |m4|< n

Figure 4.2 – Representation of ECBCEk1
,Ek2

,Ek3
(m1||m2||m3||m4)
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op pad (s:bitstring) : bitstring =
if `|s| mod n = 0 then s else s || ones 1 || zeros (n − 1 − (`|s| mod n)).

op towords (s:bitstring) : block list = let indexes = iota_ 0 (`|pad s| %/ n) in

let l = map (fun (i:int) ⇒ from_bits (sub (pad s) (i∗n) n)) indexes in

mkarray l.
op ofwords (t : block list) : bitstring = let l = ofarray t in

foldr (fun a b ⇒ to_bits a || b) (ABitstring.zeros 0) l.
module type MAC = {

proc init () : unit
proc mac (_: bistring) : block

}.
module EPAD (H : MACN) (F2 F3 : BlockCipher) : MAC = {

proc init() : unit = {
H.init(); F2.init(); F3.init();

}
proc mac (m : bitstring) : block = {

var t : block;
if ((size m) mod n = 0) {

t ← H.mac(towords m);
t ← F2.f(t);

} else {
t ← H.mac(towords m);
t ← F3.f(t);

}
return t;

}}.
module ECBC (F1 F2 F3 : BlockCipher) : MAC = EPAD(CBCMAC(F1),F2,F3).

EasyCrypt

Description of FCBC

In ECBC, as shown in Figure 4.2, processing the last block of message involves two
consecutive calls to the block cipher with independent keys. This brings an opportunity for
optimization. Indeed, since block ciphers are meant to be indistinguishable from random
permutations, a single block cipher invocation is in fact sufficient for security. The FCBC
construction, shown in Figure 4.3, implements this idea.

module PartialCBCMAC (F : BlockCipher) : MACN = {
proc init = F.init
proc mac (m : word list) : word = {

var i : int ← 0;
var c : word ← zeros;
while (i < size m − 1) {

c ← F.f(m[i] ^+ c); (∗ ^+ denotes the xor operation ∗)
i ← i + 1;

}
return c +^ m[i];

}}.

EasyCrypt
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m1

Ek1

m2

Ek1

m3

Ek1

m4

Ek2

tag
when |m4|= n

m1

Ek1

m2

Ek1

m3

Ek1

totom4 10∗

Ek3

tag
when |m4|< n

Figure 4.3 – Representation of FCBCEk1
,Ek2

,Ek3
(m1||m2||m3||m4).

module FCBC (F1 F2 F3 : BlockCipher) : MAC = EPAD(PartialCBCMAC(F1),F2,F3).

Description of XCBC

Both of the above constructions do solve CBC-MAC’s main issues, with FCBC giving a
small performance advantage. However, their use of block ciphers keyed with independent
keys makes them expensive to compute using block ciphers like the AES [Daemen and Rijmen, 2013].
Indeed, AES involves a costly key expansion phase that can only be amortized if the same
key is used many times. To better suit this engineering constraint, the XCBC construction
(Figure 4.4) uses the same key k for all block cipher invocations, and uses the other two keys
(k2, k3) to mask the final block before processing it. This is done without loss of security.

module XOR2 (E : BlockCipher) = {
proc init(q : int) : unit = {}
proc f (x : word) : word = {

var y : word;
y ← E.f(x ^+ XOR.k2);
return y;

}}.
module XOR3 (E : BlockCipher) = {

proc init(q : int) : unit = {}
proc f (x : word) : word = {

var y : word;
y ← E.f(x ^+ XOR.k3);
return y;

EasyCrypt
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m1
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m3

Ek

m4

Ek

tag

k2

when |m4|= n

m1

Ek

m2

Ek

m3

Ek

totom4 10∗

Ek

tag

k3

when |m4|< n

Figure 4.4 – Representation of XCBCEk,k2,k3
(m1||m2||m3||m4)

}}.
module FCBC (F1 F2 F3 : BlockCipher) : MAC =

EPAD(PartialCBCMAC(F1),XOR2(F1),XOR3(F3)).

Description of CMAC

One final performance constraint needs dealt with: the key size for XCBC is indeed 2n

plus the key size for CBC-MAC. CMAC (also known as OMAC1) proposes to derive k2 and
k3 from k using the block cipher. We note that this makes CMAC easier to express as a
refinement of FCBC—rather than XCBC. In particular, the security of XCBC cannot be easily
used to prove the security of CMAC, as it requires that the three keys be independent.

At this stage, it is necessary to concretely instantiate the block space B = GF(2n), that is
represented as the quotient of the polynomial ring GF(2)[x] by a fixed irreductible polyno-
mial of degree n. With this choice of block space, CMAC derives k2 and k3 as:

— k2 := 2× Ek(0
n), when the constant 2 can be seen as the hexadecimal number 0x02,

or the bitstring 0 . . . 010, or the polynomial x ∈ GF(2n), and

— k3 := 4× Ek(0
n), when the constant 4 can be seen as the hexadecimal number 0x04,

or the bitstring 0 . . . 0100, or the polynomial x2 ∈ GF(2n).

module Tweak1 (E : BlockCipher) = {
proc init(q : int) : unit = {}
proc f (x : word) : word = {

var y : word;

EasyCrypt
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Figure 4.5 – Representation of CMACEk
(m1||m2||m3||m4)

y ← E.f(x ^+ tweak1 XOR.k);
return y;

}
}.
module Tweak2 (E : BlockCipher) = {

proc init(q : int) : unit = {}
proc f (x : word) : word = {

var y : word;
y ← E.f(x ^+ tweak2 XOR.k);
return y;

}
}.
module CMAC (E1 : BlockCipher) = {

proc init (σ : int, q : int) : unit = {
E1.init(σ+1); (∗ this is an artefact from the security proof about counters ∗)
XOR.k ← E1.f(AWord.zeros);

}
proc f = EPAD(CBCpartial(E1),Tweak1(E1),Tweak2(E1)).f

}.

4.2 MAC Security Proofs

This section describes a formalization verifying a concrete bound of the security of
CMAC. The proof is articulated as shown in Figure 4.6. The security of both CMAC and
XCBC relies on the security proof of FCBC, which is equivalent to the security of ECBC.
Finally, the security of ECBC relies on the unlikeliness that two different messages chosen
before the block cipher key k is sampled will have the same CBC-MACEk

value.
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Collision in
CBC-MAC

Security of ECBC Security of FCBC

Security of XCBC

Security of CMAC

Figure 4.6 – Layers of the CMAC’s security proof.

Our security proofs for ECBC, FCBC, XCBC and CMAC are in fact proofs that they cannot
be distinguished from a random function assuming that the underlying block cipher is secure.
Therefore, the block ciphers used with independent random keys can be replaced by inde-
pendent random permutations, using the lemma in section 3.3.2. Only in the last theorem
statements, the advantage of an adversary distinguishing between a block cipher instance
and a random permutation will appear. From now on, the implicit function parameters of
a parameterized MAC scheme are independent random permutations.

We provide a verified security bound on the advantage of any adversary to:
a) distinguish ECBC and a random function;
b) distinguish FCBC and ECBC (the bound is actually equal to 0);
c) distinguish XCBC and FCBC; and
d) distinguish CMAC and FCBC.
The first three statements follow those by Black and Rogaway [Black and Rogaway, 2005].

4.2.1 Indistinguishability of ECBC from a Random Function

For any independent random permutations π1,π2,π3 :

ECBC[π1,π2,π3](m) = EPAD[CBC-MAC[π1],π2,π3](m)

=

¨
π2(CBC-MAC[π1](m)) if m’s size is a multiple of n

π3(CBC-MAC[π1](pad(m)) otherwise

Idea of the proof. Since the output of ECBC is either the output ofπ2 orπ3, which are both
random permutations, it should look random if their input is fresh. This input is the output
of CBC-MAC, therefore the probability of distinguishing ECBC from a random function is
closely related to the probability to find a collision of outputs in CBC-MAC for two different
messages without knowing the values CBC-MAC produced. We call this distinguishing event
collision finding. It is unrelated to the primitive CBC-MAC, so we choose to generalize it.

Generalization. The security of ECBC is formalized by generalizing the first parameter of
EPAD. In EasyCrypt, we quantify over all modules (H <: MACN).

Definition of collision-finding probability. This probability is defined as a game-based
notion, through the following collision-finding game. The adversaryA is asked to provide a
list of messages of its choice, without access to the hash values and before the hash function
represented by the module (H<: MACN) is initialized. The success of A is defined as the
event that the list of messages contains two distinct messages that have the same image
by H. This yields the following definition of an adversary A ’s collision-finding advantage

against a probabilistic program represented by the module H.

Pr
�
l←A ;H.init() : ∃m,m′ ∈ l. m 6=m′ ∧H(m) = H(m′)

�
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Statement. If H is collision-finding resistant, then EPAD[H] is a pseudo-random function.

Proof. First, the independent random permutations π2,π3 are replaced by independent
random functions f2, f3 using twice the PRP–PRF switching lemma (Lemma 2.3.1). This
adds a term in the bound of indistinguishability of EPAD[H] from a random function.

We apply the PRP–PRF switching lemma on both π2 and π3. Following our oracle query
counting, the adversary could cause either of these to be queried at most q times, yielding
the following probability bound :

���Pr
h
h

$
← H;π2

$
← Perm(B);π3

$
← Perm(B);b←A EPAD[h,π2,π3]

σ,q : b= 1
i

− Pr
h
h

$
← H; f2

$
← Rand(B); f3

$
← Rand(B);b←A EPAD[h,f2,f3]

σ,q : b= 1
i��� ≤

q(q− 1)
|B|

From now on, we refer using EPAD[h] to the function composed of EPAD[h, f2, f3] when

f2, f3 are two independent random functions and h
$
← H.

In EPAD[h], all inputs of both f2 and f3 are the output of h. As f2, f3 are two independent
random functions, the output of EPAD[h] on fresh messages will be sampled at random
unless h maps it to an already produced output value. This corresponds to the definition
of a collision in h. Formalizing this argument, we prove that EPAD[h] is indistinguishable
from a random function unless a collision, as formally defined below, occurs in h.

Coll h(M, M′) := M 6=M′ ∧ h(M) = h(M′)

Coll h(S) := ∃(M, M′) ∈ S2,Coll h(M, M′)

This proof is a standard cryptographic reduction, whereby, given a prf–distinguishing
adversaryA , we construct a collision-finding adversaryB(A ) against h that operates with

similar time complexity. B is constructed as follows. B samples a random function f
$
←

Rand(∗,B) and runs A f . While doing so, B stores all the queries of A in a set 2, pads all
the queries whose length is not a multiple of n, then outputs the resulting set. It can then
be shown that the following inequality holds, and it remains to bound the right-hand side,
which is an instance of the collision-finding game.

Adv
prf

EPADf
H
(A )≤ Pr
h
S←B(A )σ,q; h

$
← H : Coll h(S)
i

CBC-MAC is collision-finding Resistant

The mode of operation CBC-MAC can be seen as a function family indexed by the block
cipher key space K. Sampling a key uniformly at random in K induces a distribution over
B
+→ B for the hash function family H= CBC-MACEK .

2. We note that the choice of data structure for formalizing collisions does not keep track of query order or
multiplicity (in particular, when padding maps an unpadded message to a padded message that is separately
queried to h). This relaxation is done without loss of precision since CBC f is deterministic and two consecutive
calls to CBC f can be swapped without effect on the random function – even if it is sampled lazily.
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Difference from Black and Rogaway’s proof [Black and Rogaway, 2005]. From here
on, our proof for ECBC differs from that by Black and Rogaway [Black and Rogaway, 2005],
due to the impossibility of precisely formalizing their arguments in EasyCrypt.

Using their notations, in the proof of their Lemma 3, they compute probabilities of events
of the form Pr
�
Yi−1 ⊕Mi = Yj−1 ⊕M j

�
, relying on their ability to compute the probability of

sampling a particular value for Yi−1. However, this sampling occurs in a previous iteration
of the loop, and may in fact be overwritten, losing its “randomness” for the next iteration
where the events are tested.

One may argue that every value it may be overwritten with in fact follows the same
distribution. However, EasyCrypt’s logics–and indeed entire proof methodology relies on
reasoning about values rather than distributions, and its logics cannot express the fact that
some intermediate value follows a particular distribution. On the other hand, a standard
way of dealing with similar issues would be to delay the random sampling until the value
is used, allowing a precise probability computation. However, in this case, the value could
in fact be overwritten between the point where it is initially sampled and the point where
it is used. This introduces dependencies between random values and the adversary’s view
of the system that make it impossible to delay sampling operations as desired.

Our method. If we cannot formalize precisely their argument, we can formalize a simpler
and less precise bound that does not discount internal collisions when they are caused by a
common prefix. In particular, instead of computing the collision probability for the full set
S of messages, we guess which of the couples of messages may produce a collision and use
standard arguments to bound the probability that any of them collide. We sample two of the
messages from S and only compute their collision probability. Let C (B) be the adversary
that calls the adversaryB which outputs a set S⊂ B+, then samples two distinct messages

M, M′
$
← S and outputs (M, M′). There are at most |S|(|S|−1)

2 different pairs.

Lemma 4.2.1. For any function family H ∈ {B+→ B}, any adversaryB that outputs a set of

size at most c (with 2≤ c) has a comparable collision probability to the adversary that tries to

guess where the collision may happen and only test this collision.

Pr
h
S←Bc; h

$
← H : Coll h(S)
i
≤

c(c − 1)
2

· Pr
h
m,m′←C (B)c; h

$
← H : Coll h(m, m′)

i

In the context of ECBC, the hash function family is concretely CBC-MAC, parametrized
by a random permutation π. However, the PRP–PRF switching lemma applied on π allows
to consider the collision-finding probability on CBC-MAC that is parametrized by a random
function instead of a random permutation. This makes the collision-finding probability to
be more easily bounded in CBC-MAC.

Adv
prf

ECBC(A )

≤
q(q− 1)

2n
+ Pr
h
S←B[A ]σ;π

$
← Perm(B) : Coll CBC-MACπ(S)

i

≤
q(q− 1)

2n
+
σ(σ− 1)

2n+1
+

q(q− 1)
2

· Pr
h
m,m′←C [B[A ]]q; f

$
← Rand(B) : Coll CBC-MACf

(m,m′)
i

It therefore remains to bound the probability of collisions of two different messages in
CBC-MACf when f is a random function.
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Theorem 4.2.2 (CBC-MAC collision probability of two messages). For any natural number

c, an adversary Ac that outputs two bit-strings (m,m′) whose lengths are at most cn, with

0 < c, has a low probability of producing a collision with CBC-MAC when parameterized by a

random function.

Pr
h
m,m′←Ac; f

$
← Rand(B) : Coll CBC-MACf

(m,m′)
i
≤

2c(2c − 1)
2n

+
1
2n

Proof. Let (m,m′) be two distinct messages output by the adversary Ac, and f the random
function sampled by the experiment. If there is no collision in any of the inputs of f during
the CBC chaining, CBCf(m) will collide with CBCf(m

′) only if the final call to f yields a
collision. This occurs with probability at most 1

2n .
It remains to bound the probability that a collision occurs somewhere along the chain of

inputs to f. The chaining for the longest common prefix of m and m′ is computed only once,
and collisions are only considered afterwards. We then bound the probability of a collision
occurring in one of the inputs to f by the probability of a collision occurring when those 2c

inputs are sampled.

Combining all results above allows us to conclude with a security bound for ECBC.

Theorem 4.2.3 (prf-advantage of ECBC). For any natural numbers q, l,σ, n, an adversary

A making at most q queries, each query of maximum size ln and of total size in the number

of blocks at most σ, has a low probability to distinguish ECBC from a random function, when

parameterized by independent random permutations.

Adv
prf

ECBC(A )≤
0.5σ2 + 2q2l2 + q2

2n
(4.1)

4.2.2 Indistinguishability of FCBC from ECBC

We now relate the structure of FCBC with that of ECBC. Indeed, we note that ECBC is a
particular instance of FCBC with non-independent permutations. Given three independent
permutations π1,π2,π3, we have

ECBCπ1,π2,π3
= FCBCπ1,π2◦π1,π3◦π1

The security proof for FCBC then simply relies on the fact that the composition of two
independent random permutations remains independent from the first one. In other words,
given two independent random permutations π1,π2, the distributions of (π1,π2 ◦π1) and
(π1,π2) are the same.

Lemma 4.2.4. An adversary A making an unbounded number of oracle queries cannot dis-

tinguish the composition of two independent random permutations.

Pr
h
π1,π2

$
← Perm(B)2 :A π1,π2= 1

i
= Pr
h
π1,π2

$
← Perm(B)2 :A π1,π2◦π1= 1

i

Proof of Lemma 4.2.4. It is possible to pre-sample outputs for all inputs of both π1 and π2.
This makes it clear that answers to π2 ◦π1 queries are independent from past queries to π1

and that, with π1 fixed, the distributions of π2 ◦π1 and π2 are equal.
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Theorem 4.2.5 (Security of FCBC). An adversary A cannot distinguish FCBC from ECBC,

when parameterized by independent random permutations.

Adv
prf

FCBC(A ) = Adv
prf

ECBC(A ) (4.2)

Proof. This is a direct application of Lemma 4.2.4 (applied twice).

4.2.3 Indistinguishability of XCBC from FCBC

The proof that XCBC is indistinguishable from FCBC is based on a more general lemma
from [Black and Rogaway, 2005], which states that an adversary with oracle access to two
independent random permutations π1(·) and π2(·) cannot distinguish them from oracles
π(·) and π(k ⊕ ·), when π is a random permutation and k is chosen uniformly at random
and independently from π (and remains hidden from the adversary).

We view XCBC as a particular instance of FCBC. Indeed, given a permutation π and two
blocks k2, k3, we have

XCBCπ,k2,k3
= FCBCπ,π(k2⊕·),π(k3⊕·)

We thus prove that the security of XCBC is implied by that of FCBC. The proof crucially
relies on the following lemma, which states that one can always (computationally) simulate
two independent random permutations using a unique random permutation and a random
constant.

Lemma 4.2.6. For any natural number c, an adversary A making at most c oracle queries,

with 0< c ≤ 2n

2 , has a low probability of distinguishing between two independent permutations

(π1,π2) and the pair of permutations (π,π(k⊕ ·)).
���Pr
h
π1,π2

$
← Perm(B)2; b←A π1,π2

c
: b = 1
i
−

Pr
h
π, k

$
← Perm(B)×B; b←A π,π(k⊕·)

c
: b = 1
i���≤ 1.25c2

2n

Proof of Lemma 4.2.6. The proof closely follows that of [Black and Rogaway, 2005]. LetA
be an adversary that expects two permutations (as in the given game). The adversary’s
goal here is to find which distribution the oracles it was given come from. On one hand,
there are two independent random permutations, and on the other hand there is a random
permutation that simulates two permutations with a random constant.

We prove that the distributions are equal unless the adversary makes two queries x and
y to [O]1 and [O]2 such that [O]1 (x) = [O]2 (y). When two independent permutations
are used, this may happen with low probability for any pair (x , y). On the other hand,
when the second permutation is a masked version of the first, this can only occur when
x ⊕ y = k. Once such a pair of queries has been found, the adversary can decide with very
high probability which oracles she is interacting with by simply checking, for some z 6= x

whether [O]1 (z) = [O]2 (z⊕ x⊕ y), which is very unlikely if [O]1 and [O]2 are independent,
but will hold with probability 1 otherwise.

We further prove that an adversary that makes such a pair of queries must have either:
i. queried x to [O]1 and x ⊕ k to [O]2 without knowing the value of k; or ii. queried x to
[O]1 and y 6= x⊕k to [O]2 and obtained O1(x) = O2(y). We can then bound the probability
of the first event by 0.25c2

2n , and the probability of the second event by c2

2n .
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Lemma 4.2.7 (Security of XCBC). For any natural numbers q,σ, n, an adversaryA making

at most q queries, of total size in the number of blocks at most σ, has a low probability of

distinguishing XCBC from FCBC, when XCBC is parameterized by a random permutation and

two independent random constants, and FCBC is parameterized by three independent random

permutations.

Adv
prf

XCBC(A )≤ Adv
prf

FCBC(A ) +
2.5σ2

2n
(4.3)

Proof. When an adversary succeeds in distinguishing XCBC from a random function, ei-
ther it has distinguished XCBC from FCBC, or FCBC from a random function. To bound
the distinguishing advantage of any adversary between FCBC and XCBC, let π1,π2,π3 be
three independent random permutations and k1, k2 two independent random constants.
Lemma 4.2.6 is instantiated twice with the bound σ, making FCBCπ1,π2,π3

indistinguishable
from FCBCπ1,π1(k1⊕·),π3

, and indistinguishable from FCBCπ1,π1(k1⊕·),π1(k2⊕·)
, i.e. XCBCπ1,k1,k2

.

A small flaw Note that our bound on the security of XCBC is different from Black and
Rogaway’s [Black and Rogaway, 2005]. They instantiate their lemma called Two Permuta-

tions From One (Lemma 4.2.6 in the present paper) with the wrong bound on the total
number of oracle queries. Indeed, the bound c on the number of queries in Lemma 4.2.6
is a bound on the total number of oracle queries. On the other hand, in both instantiations
of Lemma 4.2.6, Black and Rogaway only count the number of MAC queries that do not
need padding (accounting only for queries to the first oracle in Lemma 4.2.6). The flaw is
subtle, and has no effect on the security bound (which we improve below), but is present
nonetheless, adding to the body of evidence that cryptographic proofs are difficult both to
write and to evaluate.

An improvement Furthermore, to tighten the bound back, we extend Lemma 4.2.6 into
the following Lemma 4.2.8, which states that a random permutation can simulate three
independent random permutations using two independent random constants. Proving this
lemma directly, rather than relying on Lemma 4.2.6 twice allows us to improve the bound
slightly, by allowing us to count queries to the first permutation once only.

Lemma 4.2.8. For any natural number c, an adversary A making at most c total oracle

queries, with 0 < c ≤ 2n−1, has a low probability to distinguish between three independent

permutations (π1,π2,π3) and the tuple of permutations (π,π(k1 ⊕ ·),π(k2 ⊕ ·)).

���Pr
h
π1,π2,π3

$
← Perm(B)3; b←A π1,π2,π3

c
: b = 1
i
−

Pr
h
π

$
← Perm(B); (k1, k2)

$
← B2; b←A π,π(k1⊕·),π(k2⊕·)

c
: b = 1
i���≤ 1.75c2

2n

Proof. This is very similar to Lemma 4.2.6 and Lemma 4.2.9. The proof needs to bound
the events collrng (defined for Lemma 4.2.9) and another one. The bound of collrng has been
proved as a generic result and then instanciated in Lemmas 4.2.8 and 4.2.9. The probability
of the other one is bounded by 0.75σ2

2n .
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4.2.4 Indistinguishability of CMAC from FCBC

The security of CMAC cannot be easily deduced from that of XCBC, since the core lemma
of the security of XCBC imposes that the masks be independent from the permutation. Since
this is not the case for CMAC, we use ideas from [Iwata and Kurosawa, 2003] to relate the
security of CMAC to that of FCBC. Their key idea is to prevent the adversary from directly
accessing the block cipher oracle by adding an independent random variable.

Our security proof generalises CMAC slightly in that we use abstract public functions
f1, f2 : B → B to capture the derivation of k2 and k3 from π(0n). The security of CMAC
follows by instantiating f1 = x 7→ 2× x and f2 = x 7→ 4× x .

The security of this generalised CMAC (or indeed of concrete CMAC) does not immedi-
ately follow from that of XCBC, since its constants k2 = f1(π(0

n)) and k3 = f2(π(0
n)) are

not independent between themselves, and furthermore not independent from π. However,
the security of CMAC is easily implied by that of FCBC, of which it is an instance. Indeed,
given π,

CMACπ = FCBCπ,π( f1(π(0n))⊕·),π( f2(π(0n))⊕·)

Here again, our security proof is close to that of [Iwata and Kurosawa, 2003], which
relies on a more general construction, MOMAC, that generalises both CMAC and FCBC. We
provide a game-based proof and go into more details.

MOMAC

The MOMAC construction [Iwata and Kurosawa, 2003] is parameterised by 6 oracles
O1≤i≤6, which are used as follows.

MOMACO1,O2,O3,O4,O5,O6
(m) :=






O5(pad(m)) if 0≤ |m|< n

O3(m) if |m|= n

FCBCO1,O4,O6
(m) if n< |m| ≤ 2n

FCBCO2,O4,O6
(mO1

) if 2n< |m| ∧ ⌈|m|/n⌉= m

when mO1
= (O1(m1)⊕m2) || . . . || mm.

The resulting construction is also illustrated in Figure 4.7.

m1

pad

m′1

O5

tag

m1

O3

tag

m1 m2 m3

pad

m′1 m′2 m′3

O1 O2 O6

tag

m1 m2 m3

O1 O2 O4

tag

Figure 4.7 – Illustration of MOMAC, by increasing size order: |m| < n, |m| = n, 2n < |m| <
3n, |m|= 3n,
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CMAC and FCBC as instances of MOMAC

Given a random permutation π and a random n-bit string r, the following six oracles
Q1≤i≤6, where Lπ = π(0n), can be used with MOMAC to build CMAC.

Q1(x) := π(x)⊕ r Q2(x) := π(x ⊕ r)⊕ r

Q3(x) := π(x ⊕ f1(L
π)) Q4(x) := π(x ⊕ r⊕ f1(L

π))

Q5(x) := π(x ⊕ f2(L
π)) Q6(x) := π(x ⊕ r⊕ f2(L

π))

Given three independent random permutations π1,π2,π3 and a random n-bit string r, the
following six oracles R1≤i≤6 can be used with MOMAC to build FCBC.

R1(x) := π1(x)⊕ r R2(x) := π1(x ⊕ r)⊕ r

R3(x) := π2(x) R4(x) := π2(x ⊕ r)

R5(x) := π3(x) R6(x) := π3(x ⊕ r)

Security proof

For any value of r, the following functional equivalences follow from these definitions.

CMACπ ∼ MOMACQ1,Q2,Q3,Q4,Q5,Q6

FCBCπ1,π2,π3
∼ MOMACR1,R2,R3,R4,R5,R6

Therefore, distinguishing CMAC from FCBC can be reduced to distinguishing the Qi from the
Ri. In the following, for any adversaryA , expecting six oracles and making at most q oracle
queries to O3,O4,O5,O6 and at most σ total oracle queries before returning a boolean, we
name Q(A ) (resp. R(A )) the game that initializes the oracles Q1≤i≤6 (resp. R1≤i≤6), then
calls the adversaryA Qi (resp. A Ri ).

Q(A ) :=
h
π

$
← Perm(B), r

$
← B; b←A Q1≤i≤6

σ,q

i

R(A ) :=
h
π1,π2,π3

$
← Perm(B), r

$
← B; b←A R1≤i≤6

σ,q

i

Lemma 4.2.9. For any bijective f1 and f2 such that x 7→ x ⊕ f1(x), x 7→ x ⊕ f2(x), x 7→
f1(x) ⊕ f2(x), x 7→ x ⊕ f1(x) ⊕ f2(x) are also bijective, an adversary A , making at most q

oracle queries to O3,O4,O5,O6 and at most σ total oracle queries, has a low probability of

distinguishing the game with the Ri from the game with the Qi.

|Pr[Q(A ) : b = 1]− Pr[R(A ) : b = 1]| ≤
σ(σ+ 1)

2n
+

1
4(σ+ 1)2 + 1

2q2

2n
+

3
4(σ+ 1)2

2n

We first give an overview of the proof, using names that are defined later. The rest of
this section details individual steps.

We formally prove that, for any adversary A , the game Q(A ) is equivalent to R(A )
upto the event findL ∨ collrng. It is easy to bound the probability of collrng occurring, but
the probability of findL occurring in R(A ) requires additional work. We introduce two new
games S(A ) and T(A ), represented in Figure 4.8. Game S(A ) is perfectly equivalent to
R(A ), thus the probability of findL occurring is equal in both games. We then prove that
T(A ) is equivalent to S(A ) upto a third event findr.
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Game O1 O2 O3 O4 O5 O6

Q(A ) π(·)⊕r π(·⊕r)⊕r π(·⊕ f1(π(0
n))) π(·⊕r⊕ f1(π(0

n))) π(·⊕ f2(π(0
n))) π(·⊕r⊕ f2(π(0

n)))

R(A ) π1(·)⊕r π1(·⊕r)⊕r π2(·) π2(·⊕r) π3(·) π3(·⊕r)
S(A ) π1(·) π1(·⊕r) π2(·) π2(·⊕r) π3(·) π3(·⊕r)
T(A ) π1(·) π′1(·) π2(·) π′2(·) π3(·) π′3(·)

Figure 4.8 – Sequence of games.

The following sequence of inequalities shows an outline of our detailed proof, with the
justification for each non-trivial step given in the paragraph whose heading is listed beside
the step.

|Pr[Q(A ) : b = 1]− Pr[R(A ) : b = 1]| (using Q(A )∼ R(A ) upto collrng ∨ findL)

≤Pr
�
R(A ) : collrng

�
+ Pr[R(A ) : findL] (using R(A )∼ S(A ))

=Pr
�
R(A ) : collrng

�
+ Pr[S(A ) : findL]

≤Pr
�
R(A ) : collrng

�
+ Pr[T(A ) : findL] + |Pr[S(A ) : findL]− Pr[T(A ) : findL]|

(using S(A )∼ T(A ) upto findr)

≤Pr
�
R(A ) : collrng

�
+ Pr[T(A ) : findL] + Pr[T(A ) : findr]

The conclusion then only needs to bound the probability of collrng and findr in T(A ). We
now discuss individual steps in the proof, including definitions for the events. In Figure 4.8
and below, Lπ denotes the value π(0n) and Lπ

i
denotes the value fi(L

π) for i ∈ {1, 2}.

Q(A )∼ R(A ) upto collrng ∨ findL

In a proof reminiscent of that of Lemma 4.2.6, we note that games Q(A ) and R(A ) are
equivalent unlessA queries some x to Oi and some y to O j, with (i, j) ∈ {(1, 3), (1, 5), (3, 5)}
and such that Oi(x) = O j(y). If this event (which we simply call bad below) occurs, then
A can distinguish the two sets of oracles with high probability by testing, for some z 6= x

whether Oi(z) = O j(z ⊕ x ⊕ y). We now prove that event bad as defined above completely
captures all cases in which the two games can be distinguished. To simplify bounding the
probability of bad occurring, we consider instead a disjunction of two disjoint events findL

and collrng, depending on the value of x ⊕ y . Event findL occurs ifA queries, for some x:
— O1(x) and O3(x ⊕ f1(L

π)); or
— O1(x) and O5(x ⊕ f2(L

π)); or
— O3(x) and O5(x ⊕ f1(L

π)⊕ f2(L
π)).

Event collrng captures the remainder of the cases in bad, and thus occurs when A queries,
for some x and y:

— O1(x) and O3(y) such that O1(x) = O3(y) and y 6= x ⊕ f1(L
π); or

— O1(x) and O5(y) such that O1(x) = O5(y) and y 6= x ⊕ f2(L
π); or

— O3(x) and O5(y) such that O3(x) = O5(y) and y 6= x ⊕ f1(L
π)⊕ f2(L

π).
We consider two games X1(A ) and X2(A ), which are respectively equivalent to Q(A )

and R(A ). X1(A ) and X2(A ) are shown in Figure 4.9, where code inside the dotted boxes
appears only in X1(A ). Figure 4.9 only shows definitions for O1, O3 and O5, which are
sufficient to define the entire games. Indeed, we note that, in both Q(A ) and R(A ), we
have O2(x) = O1(x ⊕ Lπ1 ) and that O4 and O3, and O6 and O5 obey the same relation.
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X1(A ) or X2(A )

π,π1,π2,π3← Undefined

L
$
← B

π[0n]← L

π1[0
n]← L

r
$
← B

collrng← false

findL← false

b←A O1,O3,O5
σ,q

O1(m)

if (m ∈ dom(π1))

return π1[m]

else if (m ∈ dom(π))

findL← true

π1[m]← π[m]

return π1[m]

y
$
← B \ rng(π1)

if (y ∈ rng(π))

collrng← true

y
$
← B \ rng(π)

π1[m]← y

π[m]← y

return y

O3(m)

if (m ∈ dom(π2))

return π2[m]

else if (m⊕ f1(L) ∈ dom(π))

findL← true

π2[m]← π[m⊕ f1(L)]

return π2[m]

y
$
← B \ rng(π2)

if (y ∈ rng(π))

collrng← true

y
$
← B \ rng(π)

π2[m]← y

π[m⊕ f1(L)]← y

return y

O5(m)

if (m ∈ dom(π3))

return π3[m]

else if (m⊕ f2(L) ∈ dom(π))

findL← true

π3[m]← π[m⊕ f2(L)]

return π3[m]

y
$
← B \ rng(π3)

if (y ∈ rng(π))

collrng← true

y
$
← B \ rng(π)

π3[m]← y

π[m⊕ f2(L)]← y

return y

Figure 4.9 – Games X1(A ) (including dotted boxes) and X2(A ) (excluding dotted boxes).

Figure 4.9 shows very clearly that Q(A ) (or X1) and R(A ) (or X2) cease to be equivalent
only when one of findL or collrng becomes true. Thus, we have:

|Pr[Q(A ) : b = 1]− Pr[R(A ) : b = 1]|

= |Pr[X1(A ) : b = 1]− Pr[X2(A ) : b = 1]|

≤Pr
�
X2(A ) : collrng ∨ findL

�

≤Pr
�
X2(A ) : collrng

�
+ Pr[X2(A ) : findL]

Bounding Pr
�
X2(A ) : collrng

�

We note that collrng is essentially the probability of a freshly sampled variable already
appearing in some set. This can easily be bound, knowing that the total number of oracle
queries is at most σ ≤ 2n−1.
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For any adversaryA that makes at most σ oracle queries, we have,

Pr
�
X2(A ) : collrng

�
≤
σ(σ+ 1)

2
·

1
2n − (σ+ 1)

≤
σ(σ+ 1)

2n

R(A )∼ S(A )

Event findL in game X2(A ) can also be expressed as follows.

findL⇔
∨





Lπ1
1 ∈ dom(π1)⊕ dom(π2),

Lπ1
2 ∈ dom(π1)⊕ dom(π3),

Lπ1
1 ⊕ Lπ1

2 ∈ dom(π2)⊕ dom(π3)






Its probability cannot be computed directly in X2(A ), since the collision involves Lπ, which
is not independent from the adversary’s view. We therefore need to modify X2(A ) somewhat
into a game S(A ) shown in Figure 4.10 to bound this probability. The objective of game
S(A ) is to extend the findL event to include fresh and independent randomness r in its
definition. This will then enable us to make use of it to bound the probability of findL, since
it is independent from the oracles’ outputs. It is easy to see that for any adversaryA , S(A )
is perfectly equivalent to X2(A ). We formally prove

Pr[X2(A ) : findL] = Pr[S(A ) : findL]

Event findL in game S(A )

In game X2(A ), the value of Lπ1 as it appears in event findL is equal to π1(0
n). In game

S(A ), its value is related to r is equal to r⊕π1(0
n). Event findL in game S(A ) can now be

expressed as follows.

findL⇔
∨





f1(L
π1 ⊕ r) ∈ dom(π1)⊕ dom(π2),

f2(L
π1 ⊕ r) ∈ dom(π1)⊕ dom(π3),

f1(L
π1 ⊕ r)⊕ f2(L

π1 ⊕ r) ∈ dom(π2)⊕ dom(π3)






S(A )∼ T(A ) upto findr

As it stands in game S(A ), the use of r in findL is not sufficient to allow us to bound its
probability of occurring. To do so, we wish to show that it is possible to delay sampling r

until the end of the game. However, r is correlated to the output of oracles S2, S4 and S6.
Again, we observe that r is a random value, unknown to the adversary, and independent
from the permutations. Rather than using this fact as in Lemma 4.2.6 to replace the three
permutations and their re-randomised version with six truly independent permutations, we
simply use it to replace the three permutations with six permutations that are simply inde-
pendent from the value of r.

In our formal proof, we use three pairs of incomplete functions (πi,π
′
i
) that are guar-

anteed to never output the same result for any fresh input. We implement this by sampling
each new fresh output from the uniform distribution over B\(rng(πi)∪rng(π′

i
)). The games

we use to formally prove that (π1,π′1) are equivalent to (π1,π1(· ⊕ r)) upto the event findr

are illustrated in Figure 4.10. We extend this definition to (π2,π′2) and (π3,π′3) and name
T(A ) the game that uses the corresponding definitions for O1≤i≤6 (which can be seen in
Figure 4.8).
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[O]1 (m)

if (m 6∈ dom(π1))

y
$
← B\

(rng(π1)∪ rng(π′1))

if (m⊕ r ∈ dom(π′1))

findr← true

y← π′1[m⊕ r]

π1[m]← y

y← π1[m]

return y

[O]2 (m)

if (m 6∈ dom(π′1))

y
$
← B\

(rng(π1)∪ rng(π′1))

if (m⊕ r ∈ dom(π1))

findr← true

y← π1[m⊕ r]

π′1[m]← y

y← π′1[m]

return y

Figure 4.10 – Games S(A ) (including dotted boxes) and T(A ) (excluding dotted boxes).

Thanks to this more flexible goal we need only consider a smaller event, findr, whose
occurrence allows the adversary to distinguish between the Si and the Ti. In essence, findr

corresponds in this setting to the collrng event from the first step. With this in mind, it is easy
to prove that the behaviour of S(A ) and T(A ) can only diverge if findr occurs. This allows
us to prove the following inequality.

|Pr[S(A ) : findL]− Pr[T(A ) : findL]| ≤ Pr[T(A ) : findr]

Bounding Pr[T(A ) : findr]

As when bounding findL earlier, we note that findr is the probability of a freshly sampled
value already appearing in a set. For all adversary A that makes at most q to O3, O4, O5

and O6, and at most σ total oracle queries, we have

Pr[T(A ) : findr]≤
1
4
(σ+ 1)2

2n
+

1
2

q2

2n

The proof relies on the fact that, ∀x , y, z, if 0≤ x + y ≤ z then x y ≤ z2

4 , which allows us to
clean complex bounds.

Bounding Pr[T(A ) : findL]

It now remains to bound the probability that findL occurs in T(A ). As shown in Fig-
ure 4.8, game T(A ) no longer uses the value of r, and that variable can therefore be lever-
aged to bound the probability of findL.

Therefore, we can use the randomness of r to bound the probability of findL in T(A ). The
transformation from S(A ) to T(A ) have modified findL, in the sense that every occurence
of dom(πi) is now replaced by dom(πi)∪dom(π′

i
), for i ∈ {1, 2, 3}. To simplify all this, findL

is equivalent to a disjunction of six sub-events. Denoting Di := dom(πi) and D′
i

:= dom(π′
i
),

findL can be expressed, as it appears in T(A ) as follows.
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findL⇔
∨






f1(L
π1 ⊕ r) ∈ (D1 ⊕D2)∪ (D

′
1 ⊕D′2),

r⊕ f1(L
π1 ⊕ r) ∈ (D1 ⊕D′2)∪ (D

′
1 ⊕D2),

f2(L
π1 ⊕ r) ∈ (D1 ⊕D3)∪ (D

′
1 ⊕D′3),

r⊕ f2(L
π1 ⊕ r) ∈ (D1 ⊕D′3)∪ (D

′
1 ⊕D3),

f1(L
π1 ⊕ r)⊕ f2(L

π1 ⊕ r) ∈ (D2 ⊕D3)∪ (D
′
2 ⊕D′3),

r⊕ f1(L
π1 ⊕ r)⊕ f2(L

π1 ⊕ r) ∈ (D2 ⊕D′3)∪ (D
′
2 ⊕D3)






Recall that f1, f2, x 7→ x ⊕ f1(x), x 7→ x ⊕ f2(x), x 7→ f1(x)⊕ f2(x) and x 7→ x ⊕ f1(x)⊕
f2(x) are bijective. Thus, for any adversary A that makes at most σ total queries to its
oracles, we can prove that

Pr[T(A ) : findL]≤
3
4
(σ+ 1)2

2n

This concludes the proof of Lemma 4.2.9, and we can now seek to apply it to the security
of CMAC.

Lemma 4.2.10 (Indistinguishability of CMAC and FCBC). For any natural numbers q,σ, n,

an adversary A making at most q queries, of total size in the number of blocks of at most σ,

has a low probability of distinguishing CMAC from FCBC, when CMAC is parameterized by a

random permutation and FCBC is parameterized by three independent random permutations.

Adv
prf

CMAC(A )≤ Adv
prf

FCBC(A ) +
2(σ+ 1)2

2n
+

0.5q2

2n
(4.4)

Proof. This is a direct application of the definition of MOMAC and Lemma 4.2.9. In CMAC,
the assumptions involving bijections are reduced in GF(2n) to the fact that, for every p ∈
{x,x⊕ 1,x2,x2 ⊕ 1,x2 ⊕ x,x2 ⊕ x⊕ 1}, the function q 7→ p× q is bijective.

Theorem 4.2.11 (Security of CMAC). For any natural numbers q, l,σ, n, an adversary A
making at most q queries, each query of maximum size ln and of total size in the number of

blocks of at most σ, has a low probability of distinguishing CMAC from a random function,

when parameterized by a random permutation.

Adv
prf

CMAC(A )≤
2.5(σ+ 1)2 + 1.5q2 + 2q2l2

2n
(4.5)

Proof. This is a direct application of Theorem 4.2.3, Theorem 4.2.5 and Lemma 4.2.10.
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Chapter 5

Security of a Hash Function

A hash function is a mathematical algorithm that maps data of arbitrary size (called the
message) to a fixed-size bitstring (called a hash value, hash, or message digest). A crypto-

graphic hash function — also called a one-way hash function — is an efficient deterministic
hash function that is almost infeasible to invert, i.e. given a hash h, finding a message whose
hash value is h would be so expensive that it would take millions of years to compute.

Ideally, the only way to find a message that produces a given hash is to attempt a
brute-force search of possible inputs and hope to find a match. One can use rainbow ta-
bles 1 [Oechslin, 2003] to improve brute-force techniques, but for a secure hash function, it
should still be too expensive in time and memory.

In a database that stores user passwords for authenticity, one can store them in
plaintext. However any leak may reveal all the users’ password, compromising later
authentication. As a solution (simple and not sufficient), one can store the password
hashes so that it should be difficult – nearly impossible – to anyone stealing the database
to learn user passwords.

Example

5.1 Security Definitions and Formalization

The ideal cryptographic hash function has the following main properties.

Determinism: The same message always results in the same hash.

Efficiency: The computation of a hash value for any given message is efficient.

Preimage resistance: It is infeasible to generate a message that yields a given hash value.

Second preimage resistance: It is infeasible to find another message that shares the same
hash value as a given one.

Collision resistance: It is infeasible to find two different messages sharing the same hash.

Pseudo-random: A small change to a message should change the hash value so extensively
that the new hash value appears uncorrelated with the old hash value.

I give the formalization of the three resistances in the next paragraphs. Then, using the
definition of a random function from Section 2.3.2, I give the advantage of any adversary
for each resistance against a random function, concluding that a random function is secure.

1. A rainbow table is a table that stores all computed hashes.
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In the formalization of the signature of a hash function, I use an option type to
express the validity of a query, as it answers None when the query is prohibited.

type message, hash.
module type HashFunction = {

proc init () : unit
proc get (m : message) : hash option

}.

In the formalization of the security statement in the next chapter, the number of
queries an adversary can make is bounded by a fixed value, here named bound.

op bound : int.
axiom bound_gt0 : 0 < bound.

However, only the number of queries may not be enough to express more complex
costs of queries, since some queries may be more costly than others in different mod-
els. Therefore, we generalize the function increase_counter that increases the counter
instead of only increment it. This generalization is implemented using abstract opera-
tors in the general theory, and then, when the theory is used in a more defined model,
one should clone this theory and instantiate the query cost function.

op increase_counter : int → message → int.

The module Bounder encapsulates the validity of queries in terms of the accumu-
lated cost of queries allowed. For each query, it tests if the increased counter stays
below the bound. In this case it actually increases the counter and returns the hash
value, otherwise it returns the default value None.

module Bounder (F : HashFunction) : HashFunction = {
var bounder : int
proc init () : unit = { bounder ← 0; F.init(); }
proc get(x : message) : hash option = {

var y : hash option ← None;
if (increase_counter bounder x ≤ bound) {

bounder ← increase_counter bounder x;
y ← F.get(x);

}
return y;

}}.

EasyCrypt

Preimage Advantage

module Preimage (A : AdvPreimage, F : HashFunction) = {
module O = Bounder(F)
proc main (t : hash) : bool = {

var m, t';
O.init();
m ← A(O).guess(t);
t' ← O.get(m);

EasyCrypt
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return t' = Some t;
}}.

The preimage advantage of any adversaryA making at most bound queries against
a hash function h is defined for every hash value t as:

Adv
p1
h
(A , t) := Pr[Preimage(A , h).main(t) : res]

Second Preimage Advantage

module SecondPreimage (A : AdvSecondPreimage, F : HashFunction) = {
module O = Bounder(F)
proc main (m1 : message) : bool = {

var m2, t1, t2;
O.init();
m2 ← A(O).guess(m1);
t1 ← O.get(m1);
t2 ← O.get(m2);
return m1 6= m2 ∧ ∃ h, t1 = Some h ∧ t2 = Some h;

}}.

The second preimage advantage of any adversaryA making at most bound queries
against a hash function h is defined for all message m1 as:

Adv
p2
h
(A ,m1) := Pr[SecondPreimage(A , h).main(m1) : res]

EasyCrypt

Collision Advantage

module Collision (A : AdvCollision, F : HashFunction) = {
module O = Bounder(F)
proc main () : bool = {

var m1, m2, t1, t2;
O.init();
(m1,m2) ← A(O).guess();
t1 ← O.get(m1);
t2 ← O.get(m2);
return m1 6= m2 ∧ ∃ h, t1 = Some h ∧ t2 = Some h;

}}.

The collision advantage of any adversary A making at most bound queries against
a hash function h is defined as:

Advcoll
h
(A ) := Pr[Collision(A , h).main() : res]

EasyCrypt
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5.2 Random Function Security

The ideal version of a hash function is a random function, already defined in Section
2.3.2. In this section, I only give the upper bound of each advantage against a random
function and do not describe the EasyCrypt formal proofs as the techniques are already
described in the previous chapters.

In this section, the abstract function increase_counter is instanciated by the function
that increases by 1 its first input, regardless of its second input.

clone Hash as MyHash with

op increase_counter ← fun (c : int) (_ : message) ⇒ c + 1.

EasyCrypt

Against a random function, an adversary has a low probability to find a preimage.

Theorem 5.2.1 (Preimage resistance of a random function). For any hash value t ∈ S, the

preimage advantage of any adversary A that queries its oracle at most σ times against a

random function is bounded by:

Adv
p1
F (A , t)≤

σ+ 1
|S|

Against a random function, an adversary has a low probability to find a second preimage.

Theorem 5.2.2 (Second preimage resistance of a random function). For any message m1,

the second preimage advantage of any adversary A that queries its oracle at most σ times

against a random function is bounded by:

Adv
p2
F (A ,m1)≤

σ+ 1
|S|

Against a random function, an adversary has a low probability to find a collision.

Theorem 5.2.3 (Collision resistance of a random function). The collision advantage of any

adversaryA that queries its oracle at most σ times against a random function is bounded by:

Advcoll
F (A )≤

σ2 −σ+ 2
2 |S|

5.3 Indifferentiability, not indistinguishability

A hash function is by definition publicly known, as opposed to a MAC scheme that in-
cludes a secret key. Therefore, any hash function that is built upon a permutation should
provide security (preimage, second preimage, and collision resistances) when the underly-
ing permutation is publicly known. This is translated by giving to the adversary direct access
to the permutation. Introduced by Maurer, Renner, and Holenstein in [Maurer et al., 2004],
the notion of indifferentiability generalizes over the standard notion of indistinguishability
by considering settings where the adversary has oracle access to both the construction and
its underlying primitive.
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It has been used as a way of reducing concerns in the design of block ciphers (with
proofs for Feistel networks [Dachman-Soled et al., 2016, Dai and Steinberger, 2016b] and
substitution-permutation networks [Cogliati et al., 2018]) and hash functions (with proofs
for the Merkle-Damgård construction [Coron et al., 2005] and the SPONGE construction
[Bertoni et al., 2008]). In each case, it formally captures the intuition that the construc-
tion does not introduce any structural vulnerabilities when the underlying primitive is seen
as an ideal black-box permutation.

D

C[·] F G P[·]

Figure 5.1 – Indifferentiability

Definition 5.3.1 (Indifferentiability [Maurer et al., 2004]). A construction C with oracle
access to an ideal primitive F is said to be (qD, qS,ε)-indifferentiable from an ideal function-
ality G if there exists a simulator P with oracle access to G such that for any distinguisher D

that makes queries of total cost at most qD, and P[G] makes at most qS queries to G, when:
��Pr
�
b← DC[F],F : b= 1

�
− Pr
�
b← DG,P[G] : b= 1

���< ε

type state, message, thash.
module type Primitive = {

proc init () : unit
proc f (x : state) : state
proc fi (x : state) : state

}.
module type Functionality = {

proc init () : unit
proc f (x : message) : thash list

}.
module type Construction (F : Primitive) = Functionality.
module type Simulator (P : Functionality) = Primitive.
module type Adversary (Fun : Functionality) (Prim : Primitive) = {

proc guess () : bool { Fun.f Prim.f Prim.fi } (∗ accessible oracles ∗)
}.
module Real (D : Adversary) (C : Construction) (F : Primitive) = {

proc game = A(C(F),F).guess
}
module Ideal (A : Adversary) (G : Functionality) (P : Simulator) = {

proc game = A(G,P(G)).guess

EasyCrypt
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}.

5.4 Security from Indifferentiability

When the adversary has access to the underlying permutation, it changes the security
bounds of collision resistance and first- and second-preimage resistance in the sense that
the query cost is not the number of queries the adversary calls the hash function. Instead
the query cost is defined as the number of primitive calls incurred by the combined queries
to the construction and to the primitive itself.

In this case, the abstract function increase_counter is instanciated as follows, using
an abstract operator pad, for which an instanciation is defined in Section 6.1.

type block, message.
op pad : message → block list.
clone Hash as MyHash with

op increase_counter ← fun (c : int) (l : message) ⇒ c + size (pad l).

EasyCrypt

Theorem 5.4.1 (Preimage resistance from indifferentiability). The advantage of any adver-

saryA to succeed in producing a preimage for a construction C(P) (over the primitive P) that

is (σ,σ,ε)-indifferentiable from a random oracle is bounded by:

Adv
p1
C(P)
(A )≤

σ+ 1
|S|

+ ε

Theorem 5.4.2 (Second-preimage resistance from indifferentiability). The advantage of any

adversary A to succeed in producing a second-preimage for a construction C(P) (over the

primitive P) that is (σ,σ,ε)-indifferentiable from a random oracle is bounded by:

Adv
p2
C(P)
(A )≤

σ+ 1
|S|

+ ε

Theorem 5.4.3 (Collision resistance from Indifferentiability). The advantage of any adver-

sary A to succeed in producing a collison for a construction C(P) (over the primitive P) that

is (σ,σ,ε)-indifferentiable from a random oracle is bounded by:

Advcoll
C(P)
(A )≤

σ2 −σ+ 2
2 |S|

+ ε

The results in this chapter are part of my personal contributions and are proven
generally (for all constructions and primitives).

Remark



Chapter 6

SHA3’s Formal Security Proof

[Almeida et al., 2019b]

This chapter’s content has been published at CCS 2019 in [Almeida et al., 2019b].
I am using the text of our joint work with their agreement. My contributions will be
made clear when the description matches the boundaries of my personal contributions.

Remark

A stated goal of recent competitions for cryptographic standards is to gain trust from the
broad cryptographic community through open and transparent processes. These processes
generally involve open-source reference and optimized implementations for performance
evaluation, rigorous security analysis for provable security evaluation, and, often, informal
evaluation of security against side-channel attacks.

These artifacts contribute to building trust in candidates, and ultimately in the new
standard. However, the disconnect between implementation and security analyses is a major
cause of concern. Our paper [Almeida et al., 2019b] explores how formal approaches could
eliminate this disconnect and bring together implementation (most importantly, efficient
implementations) and software artifacts, in particular machine-checked proofs, supporting
security analyses. We put forward four desirable properties for formal approaches:

— functional correctness: efficient implementations should be proved equivalent to ref-
erence implementations and to algorithmic specifications of the standardized crypto-
graphic construction that are both human-readable and interpreted by machines. Such
specifications and implementations should be proved to have the same input/output
behavior (or interactive behavior in protocols);

— provable security: rigorous security proofs should be provided both for algorithms
and for implementations. For the highest level of assurance, security proofs should
be machine-checked and establish guarantees for the (machine-readable) algorithmic
specifications. Security for both efficient and reference implementations will follow
from the functional correctness proofs, using the baseline adversarial models from
provable security;

— side-channel resistance: implementations should be provably secure against side-channel
attacks, in relevant ideal models. For instance, it is commonly required that imple-
mentations are secure in an abstract model of timing, where implementations leak
secrets if they contain secret dependent memory-accesses or control-flow instructions,
a notion known as “cryptographic constant-time”. Combined with provable security,
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it entails security in a stronger adversarial model where side-channel leakage is avail-
able to the adversary;

— efficiency: formal proofs should remain fully compatible with efficiency considerations.
They should neither constrain in any way the code of the implementations (although
constrained intermediate implementations could be used as proof artifacts) nor impact
its performance.

We demonstrate through a relevant use case of the feasibility of formal approaches con-
cerning the stated goals of functional correctness, provable security, side-channel resistance,
and efficiency. Our use case is the SHA3 standard [Dworkin, 2015], the last member of the
Secure Hash Algorithm family released by NIST in 2015. Our choice is guided by two main
considerations. Firstly, the SHA3 standard will likely be used to protect real-world applica-
tions for many years to come. Secondly, its security proof is intricate and involves techniques
that are not routinely addressed in machine-checked security proofs.

Concretely, our implementation is written in Jasmin (described in [Almeida et al., 2017],
with another use case in [Almeida et al., 2019a]), a framework that targets high-assurance
and high-speed implementations using “assembly in the head” (a mixture of high-level and
low-level, platform-specific programming) and a formally verified and predictable compiler
which empowers programmers to write highly efficient fine-tuned code. The generated
(verified) x86-64 assembly code matches in performance the best available implementa-
tions for this primitive, including for example a current OpenSSL version. Machine-checked
proofs of equivalence and provable security are developed in EasyCrypt, using the embed-
ding developed in [Almeida et al., 2019a]. More precisely, as illustrated in Figure 6.1, we
establish:

— functional correctness: the highly efficient implementations are proved functionally
equivalent to a readable Jasmin reference implementation of the SHA3 standard;

— provable security: we prove that the SPONGE 1 construction is indifferentiable from a
random oracle when the underlying permutation is modeled as a random object. From
this result we derive concrete bounds for the standard notions of collision-resistance
and resistance against first- and second-preimage attacks in the random permutation
model;

— side-channel resistance: we prove that the implementation only leaks the length of pub-
lic data, in the abstract model of timing used to reason about “cryptographic constant-
time”. This property is useful when the hash function is integrated into higher-level
primitives, say key-derivation functions, when hashed inputs are secret.

Our results are established at different levels. Our provable security analysis is based on
an EasyCrypt model of the SPONGE construction, which matches the (bit-oriented) specifica-
tion in the SHA3 standard. At this level, we adopt the standard approach for cryptographic
proofs of indifferentiability and treat the underlying permutation as an ideal object. In
contrast, constant-time security is therefore established as close to the computational plat-
form as possible. Our analysis of potential timing side-channels is carried out over highly
optimized (byte- and word-oriented) Jasmin implementations of SHA3.

We then use automatic extraction and equivalence proofs in EasyCrypt to bridge these
two levels of results. First, our optimized Jasmin implementations are proved equivalent to a
readable reference implementation of the standard, which includes the SHA3 permutation.
Finally, we also prove that the model of the SPONGE that proved theoretically secure is

1. The construction is described in more details in Section 6.1.
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Figure 6.1 – Our results. Full lines represent extraction to EasyCrypt and compilation to
assembly by the Jasmin compiler. Dashed lines represent equivalence and security proofs,
formalized in EasyCrypt.

functionally equivalent to the Jasmin reference implementation of this construction when
instantiated with the same permutation. This establishes a link between theoretical security
and implementation security.

All proof and implementation artifacts are available from https://gitlab.com/

easycrypt/sha3. The README.md file contains therein further points to be relevant
checking extraction and compilation tools and gives light instructions on how to use
them to check the proofs and compile the code.

Remark

My personal contribution is situated in the provable security level. It involves the in-
differentiability proof and the proof that indifferentiability implies collision-resistance
and resistance against first- and second-preimage attacks.

This manuscript will stop describing the Jasmin implementation, but anyone inter-
ested in this part are welcomed to read the original paper [Almeida et al., 2019b].

Remark

In section 6.1, I describe the SPONGE construction and the SHA3 functions. Then, in
section 6.2 I present the security statement for which I explain in section 6.3 the structure
of the security proof by introducing a general approach to the decomposition of indifferen-
tiability games. In section 6.3.2, section 6.3.3 and section 6.3.4, I detail the formalization
of the first, second and third layers of the indifferentiability proof.
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6.1 The SPONGE construction

m

pad

0

0

r

c
f f f f f f

Z

·|ℓ

. . .

squeezingabsorbing

Figure 6.2 – Representation of SPONGEc[ f ,pad, r](m,ℓ)

SPONGEc[ f ,pad, r](m,ℓ)

1 : m0‖ . . .‖mm−1←m‖pad(r, |m|);

2 : // absorption phase

3 : sa‖sc ← 0r‖0c;

4 : for i = 0 . . . m− 1 do

5 : sa‖sc ← f ((sa ⊕mi)‖sc);

6 : // squeezing phase

7 : Z← ǫ; done← false;

8 : while ¬done

9 : Z← Z‖sa;

10 : if |Z|< ℓ

11 : sa‖sc ← f (sa‖sc);

12 : else

13 : done← true;

14 : return Z|ℓ;

Figure 6.3 – Pseudocode for the SPONGE construction [?]

The SHA3 standard defines a family of 4 hash functions and 2 extendable-output func-
tions (XOFs). All functions rely on a generic construction, called the SPONGE, that is based
on a fixed (unkeyed) permutation. The standard also defines modularly a permutation algo-
rithm — KECCAK-p[1600, 24] — which operates over a 1600–bit-wide state and is defined
as an approved usable in other standards. In the following, we use the notation KECCAK-p
as shorthand for this permutation.

Representation and pseudocode for the SPONGE construction are respectively shown in
Figure 6.2 and 6.3. It is parametrised by: i. the permutation f , ii. the padding algorithm
pad, and iii. the rate (or block size) r. I write c for the construction’s capacity, defined
as the permutation’s bitwidth (1600 in the standard) minus r. The construction’s internal
state sa‖sc has two parts: sa (r bits) and sc (c bits). On input of a bitstring m, the SPONGE
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construction pads it to a multiple of the block size and breaks it into blocks (Line 1). The
padding scheme must be injective and length-regular (both properties are necessary in a
padding scheme used in secure cryptographic hashing) and must also guarantee that no
padded input ends with an all-zero block (which is a necessary condition for the security
of the SPONGE). The padded input is then absorbed block-by-block into the SPONGE’s inter-
nal state (initialized to all 0 bits on Line 3) by interleaving the addition of blocks into the
state with applications of the permutation (Lines 4-5). Once all input blocks have been ab-
sorbed, the permutation is used, again, to extract the output by blocks of size r (Lines 7-13),
truncating the final block to the requested ℓ bits (Line 14). 2

In the description and formal treatment, I abstract the permutation’s bitwidth (set to
1600 by the standard) to some positive integer b, refining it only in the final steps of the
proof. Thus r + c = b. sc is the part of the internal state that is not exposed to or controlled
by the adversary. For a fixed state width, the capacity serves as the main security parameter
for the SPONGE construction, and the rate as its main performance parameter. Therefore,
as illustrated in Figure 6.3, I often use c and r to specify a particular SPONGE construction,
rather than b and r.

The standard defines SHA3-224, SHA3-256, SHA3-384 and SHA3-512 — collectively
referred to as SHA3-x in the following, as approved hash functions that accept any bitstring
as input, and deterministically produce a fixed-length hash (of length x , for SHA3-x). For a
fixed output length x , these functions instantiate the SPONGE construction with KECCAK-p,
fix r = 1600− 2 · x and use the multi-rate padding scheme pad10∗1 defined as

pad10∗1(r,ℓ) := 1‖0(−ℓ−2) mod r‖1 .

The pad10∗1 scheme simply appends a string composed of two 1 bits around as many 0 bits
as necessary (from 0 to r −1) to the message. It is easy to see that it satisfies the properties
required by the SPONGE construction. Formally, the SHA3-x functions are defined as:

SHA3-x(m) = SPONGE2·x[KECCAK-p,pad10∗1, 1600− 2 · x](m‖01, x) ,

where 01 denote two domain separation bits.
The SHA3 standard also defines two XOFs, SHAKE128 and SHAKE256 — collectively

referred to as SHAKEx , that accept arbitrary bitstrings as input, and produce a caller-chosen-
length prefix of an infinite bitstream deterministically defined by the input. On input a
bitstring m and an output length d, the SHAKEx XOFs are defined as

SHAKEx(m, d) = SPONGE2·x[KECCAK-p,pad10∗1, 1600− 2 · x](m‖ss‖11, d) ,

where ss denote two suffix bits and 11 denote two domain separation bits. The standard
introduces suffix bits for future compatibility with coding schemes for tree hashing variants
of the SHAKEx functions. They have no effect on security; in fact, our security proof applies
for arbitrary application suffixes (of any length fixed in advance).

6.2 Security Statement

The SPONGE construction satisfies the strong security notion known as indifferentiability
from a (extendable output) random oracle, defined in Section 5.3.

2. Figure 6.3 is as close to the standard as it could be made with a structured programming language.
This specification differs slightly in that there is no squeezing at all when 0 bits of output are requested. Both
specifications are proven functionnally equivalent.
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Game RealD
c,pad,r

b
$
← DSPONGEc[p,pad,r],p+,p−

return b

Game IdealD
P

b
$
← DFℓ,S

Fℓ
+ ,S

Fℓ
−

return b

Figure 6.4 – Games defining the indifferentiability of the SPONGE construction from an (ex-
tendable output) RO.

For concreteness, we give the real experiment and ideal experiments in Figure 6.4 when
the notion of indifferentiability is applied to the SPONGE construction, as used in the SHA3
standard and formalized in our proof. In the real game, p is a permutation sampled uni-
formly at random from the set of all permutations over bit strings of length 1600. The
distinguisher is given access to oracles p+ and p− that allow it to query the permutation
backwards as well as forwards. In the ideal game, the simulator P= (S+, S−) must fake the
outputs of the p+ and p− oracles, while oblivious of the calls that the distinguisher places
to the construction (which is replaced by a random object in the ideal world). We show
the simulator as two different algorithms for clarity, but we allow them to share state. The
ideal functionality is an extendable output random oracle. This is implemented as an infi-

nite random oracle F that associates to each input an infinite (lazy) bitstring, each element
of which is sampled uniformly at random. The distinguisher and simulator are restricted
to queries to the ideal functionality of the form (m,ℓ), matching the syntax of the SPONGE

interface; these queries return prefixes of size ℓ of the random oracle F outputs (denoted
using Fℓ notation in the security games). In our formalization we consider a random func-
tion f ∈ {0,1}∗ ×N→ {0, 1} and construct the observable prefix of length ℓ of the infinite
random oracle F as follows:

F(m,ℓ) = f (m, 0)‖ f (m, 1)‖ . . .‖ f (m,ℓ− 1)

We actually implement f lazily: representing it as a finite map from {0, 1}∗ ×N to {0, 1} to
which we add new input/output pairs as needed.

Our machine-checked proof establishes the following security result for the EasyCrypt

specification of the SPONGE, which corresponds to the pseudo code described in Figure 6.3.

Theorem 6.2.1 (Indifferentiability of SPONGE). The SPONGE construction is (σ,σ, σ
2−σ

2b+1 +
σ2

2b−r−2 )-indifferentiable from an extendable output random oracle for any σ < 2b−r . Namely,

the simulator SIMULATOR exhibited in Figure 6.13 makes at most σ queries when the adversary

makes queries of total cost at most σ.

���Pr
�
RealD

b−r,pad,r = 1
�
− Pr
�
IdealD

P
= 1
����≤ σ2

2b−r−2
+
σ2 −σ

2b+1

6.3 Layered Indifferentiability

Our formalization of definitions and top-level statements is direct: we simply express
the SPONGE, its ideal functionality, and the simulator, as the indifferentiability result in
EasyCrypt is already stated in Theorem 6.2.1.

In order to carry out the proof, we layer it as shown in Figure 6.5 to account for indi-
vidual aspects of the construction. Our layers separately deal with truncation and padding
(SPONGE), and squeezing (BLOCKSPONGE) over a simplified CORESPONGE which outputs
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D

RP

CORESPONGE [·] IDEALCORE CORESIM [·]

BLOCKSPONGE [·] IDEALBLOCK BLOCKSIM [·]

SPONGE [·] IDEALSPONGE SPONGESIM [·]

SIMULATOR [·]

Figure 6.5 – A layered proof for the SPONGE construction.

only a single block. The simulator constructed by layers is not optimal in terms of query
cost, and we then show its equivalence to the top-level simulator, allowing us to conclude
with a tighter concrete security result.

Beyond the proof of indifferentiability for the bare SPONGE construction, we then show
that the functions defined in the SHA3 standard [?] inherit specialized version of this indif-
ferentiability, and formally establish concrete security bounds on an adversary’s ability to
produce collisions, preimages or second preimages on the SHA3 hash functions without first
breaking the security assumption on the KECCAK-p permutation. At the highest level, our in-
differentiability proof is instantiated to the hash functions SHA3-224, SHA3-256, SHA3-384
and SHA3-512, and extendable output functions SHAKE128 and SHAKE256 as they are de-

fined in the SHA3 standard [?].

6.3.1 General Decomposition

The decomposition outlined in Figure 6.5 is made possible by the following general ob-
servation. Suppose we have a stateless “upper-level” construction C[RP] that we want to
prove to be indifferentiable from an upper-level ideal functionality J. Furthermore, let us
assume that we already know that a stateless “lower-level” construction E[RP] is indiffer-
entiable from a lower-level ideal functionality I, where S is a lower-level simulator such that
no adversary can effectively distinguish between (E[RP],RP) and (I,S[I]).

We construct a pair of stateless converters D and U that work as follows: D (“down”)
transforms an upper-level functionality into a lower-level one; and U (“up”) transforms a
lower-level functionality into a upper-level one. We define the upper-level simulator T such
that T[J] := S[D[J]]. And, for any upper-level adversaryA that is asked to differentiate C

from J, let the lower-level adversaryB[A ] be defined asB[A ]X,Y :=A U[X],Y.
Then, to prove that C[RP] is indifferentiable from J, it will suffice to show the following
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Figure 6.6 – General decomposition argument

two equivalences, as represented in Figure 6.6.

A C[RP],RP ∼ B[A ]E[RP],RP (6.1)

A J,T[J] ∼ B[A ]I,S[I] (6.2)

Equivalence (6.1) relates the “real” games, and simply reflects that the modular construction
is correct. Equivalence (6.2), on the other hand, pertains to the “ideal” games. Since E is
indifferentiable from I for all adversaries, this holds in particular forB[A ].

Because C and E (and U) are stateless, it is clear what C[RP]∼ U[E[RP]] should mean,
and that it will be sufficient to imply that Equivalence (6.1) holds.

However the situation is more complex for the ideal equivalence (6.2), since our ideal
functionalities have persistent local state (say, query maps) of different types. Consequently
it is unclear what the statements J ∼ U[I] and I ∼ D[J] would even mean, and we must
instead prove finer-grained equivalence statements where equivalence—over the whole
game—also defines how the ideal functionalities’ states are related.

6.3.2 First Layer : SPONGE (not part of my contributions)

The BLOCKSPONGE construction is similar to SPONGE, but works on blocks rather than
bits, forgoing padding of inputs and truncation of outputs. The IDEALBLOCK ideal function-
ality is like the infinite random oracle IDEALSPONGE, except that it, too, works on blocks
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rather than bits. Both the construction and ideal functionality should only be called with
lists of blocks that can be successfully unpadded; when called with invalid arguments, they
return the empty list.

We prove that, if BLOCKSPONGE is indifferentiable from IDEALBLOCK, then SPONGE is
indifferentiable from IDEALSPONGE by instantiating the generic argument discussed in Sec-
tion 6.3.1. In this instance, C is SPONGE, E is BLOCKSPONGE, J is IDEALSPONGE, I is IDE-
ALBLOCK, and S is the block sponge simulator. We construct the transformers D and U as
follows:

— D[J′] takes in a list of blocks and a requested length n. If given an input that is not
correctly padded, it returns the empty list. Otherwise, it calls J′ with the unpadded
input and n∗ r, and then chunks the resulting bitstring into n blocks. It is represented
in Figure 6.7.

when validIDEALBLOCK

D[IDEALSPONGE]

[]
unpadding unsuccessful

unpadding successful

to bits

IDEALSPONGE

to blocks

Figure 6.7 – Representation of the construction D with message input of size 4 blocks and
asked for an ouput of size 3 blocks.

— U[I′] takes in a list of bits and a requested length n. It calls I′ on the padding of its
input and ⌈n/r⌉, and then truncates the result of turning the resulting blocks into a
list of bits. It is represented in Figure 6.8.

IDEALSPONGE

U[IDEALBLOCK]

padding

to blocks Eager IRO

Lazy IRO

IDEALBLOCK

truncation

to bits

Figure 6.8 – Representation of the construction U with message input of size m and asked
for an ouput of size ℓ such that 3r ≤ m< 4r and 2r < ℓ≤ 3r.

For the real equivalenceA C[RP],RP ∼B[A ]E[RP],RP, we simply prove that the construc-
tion and its modularly-constructed version are equivalent, as C[RP] ∼ U[E[RP]]. This
involves inlining and code rewriting, noting that U simply truncates and pads exactly as the
SPONGE does.

In contrast, and as discussed in Section 6.3.1, the proof of the ideal equivalenceA J,T[J] ∼
B[A ]I,S[I] is more complex. We carry it out in three steps, involving hybrid infinite random



86 SHA3’s Formal Security Proof [Almeida et al., 2019b]

oracles (hybrid IROs), which are midway between J and I. An input to a hybrid IRO is a
well-padded list of blocks and a desired number of output bits. Internally, they work with
finite maps from ({0, 1}r)∗×N to {0, 1}. A hybrid IRO can be raised, for comparison with J,
or lowered, for comparison with I. Two hybrid IROs are defined: a lazy one, and an eager

one. The lazy one consults/updates just enough inputs of its finite map to provide the re-
quested bits, whereas the eager one continues up to a block boundary, consulting/updating
subsequent inputs of the finite map, as if it had been asked for a multiple of r bits.

The first step of the proof transitions fromA J,T[J] to a game involving the lazy IRO. This
is done by employing a relational invariant between the maps of J and the lazy IRO.

The second step of the proof uses the eager sampling facility of Section 2.3.2 to transition
from a game involving the lazy IRO to one involving the eager IRO. A graphical represen-
tation is displayed in Figure 6.8. The bridge between these games uses the eager sampling
theory’s sample oracle to sample the extra bits needed to take one up to a block boundary.
The lazy version of sample then gives us the lazy IRO, whereas its eager version gives us
the eager IRO.

The third step of the proof takes us from the game involving the eager IRO toB[A ]I,S[I].
This is done by employing an invariant between the maps of the eager IRO and I. The
proof is rather involved, and makes use of: (a) EasyCrypt’s library’s support for showing the
equivalence of randomly choosing a block versus forming a block out of r randomly chosen
bits; and (b) a mathematical induction over a pRHL judgement.

6.3.3 Second Layer : BLOCKSPONGE

The next step in our proof is to show that squeezing, the operation through which the
SPONGE’s output is extended to any desired length, also preserves indifferentiability. Con-
sider a functionality CORESPONGE that computes only the absorption stage of BLOCKSPONGE

(lines 3-5 of Figure 6.3, taking as input a list of blocks, and outputting the final value of sa).
We prove that, if CORESPONGE is indifferentiable from IDEALCORE, then BLOCKSPONGE

is indifferentiable from IDEALBLOCK by instantiating the generic argument discussed in Sec-
tion 6.3.1. In this instance, C is BLOCKSPONGE, E is CORESPONGE, J is IDEALBLOCK, I is
IDEALCORE, and S is CORESIM. We construct the transformers D and U as follows:

— D is renamed as SQUEEZE. SQUEEZE[J′] takes a list of blocks m (a padded bitstring)
and a desired output length ℓ (in blocks). It iteratively calls J′ ℓ times, with inputs
(m‖0r· j)0≤ j<ℓ, each call producing a single block. It outputs the list of all these blocks
in order, as shown in Figure 6.9.

BLOCKSPONGE [RP]

SQUEEZE ◦CORESPONGE[RP]

: full block of 0

Figure 6.9 – BLOCKSPONGE [RP] and SQUEEZE ◦ CORESPONGE[RP] on inputs that are a list of 4
blocks and output size 3.



Layered Indifferentiability 87

— U is renamed as LAST. LAST[I′] takes in a list of blocks and outputs a single block. It
parses the list of blocks into a pair of a valid list of blocks — that terminates with a
non full-0 block — and an output size. It then calls I′ on this pair, obtaining a list of
blocks from which it outputs only the last block, as shown in Figure 6.10.

? ? ? ? ? ?

IDEALCORE

LAST[IDEALBLOCK]

? ? ? ? ? ?

IDEALBLOCK lastparse

+1

: full block of 0

Figure 6.10 – IDEALCORE and LAST[IDEALBLOCK] on input that is a 6-blocks list whose last
two blocks are full of 0.

For the real equivalence SQUEEZE ◦ CORESPONGE[RP] ∼ BLOCKSPONGE[RP], since the
primitive RP appears deterministic (and in particular returns the same output when queried
twice on the same input) it is easy to prove in EasyCrypt that this equivalence holds.

As before, the ideal equivalence here must be expressed and proved over the whole
game, and indeed requires relating the states of ideal functionalities and simulator based
on queries done on both interfaces. We thus prove in EasyCrypt for all adversariesA

A SQUEEZE[IDEALCORE], CORESIM[IDEALCORE] ∼A IDEALBLOCK, CORESIM[LAST◦IDEALBLOCK]

Once again, this proof leverages the generic lazy-eager sampling theory described in Sec-
tion 2.3.2 to prove that the intermediate blocks sampled and thrown away by LAST[IDEALBLOCK]

can instead not be sampled at all.

On the query cost

In this particular application of the decomposition, the cost in number of permutation
queries differs greatly between BLOCKSPONGE[RP] and SQUEEZE ◦ CORESPONGE[RP], re-
sulting in a lost in the security bound. Considering the example shown in Figure 6.9, the
cost of that query to BLOCKSPONGE is 6 permutation calls, but the same query to SQUEEZE ◦
CORESPONGE costs 4+5+6= 15 permutation calls. Simply applying the decomposition as
described would yield a bound dominated by O

�
σ4/2r
�
.

We therefore also use this transfer result to refine the way in which the cost of a query in
CORESPONGE is measured, to avoid double-counting common prefixes. This is done through
a construction named PREFIXES applied to BLOCKSPONGE [RP] and CORESPONGE [RP] that
stores all resulting states of the absorption phase from all queries’s prefixes. For any fresh
query, it takes the longest common prefix with all previous queries, and starts with the stored
state for this prefix. That way, all calls to RP that follow the same prefix as a previous query’s
are avoided. Then, it continues squeezing with RP for the rest of the query’s blocks.
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6.3.4 Core Layer : CORESPONGE

All proof steps discussed thus far involve transferring indifferentiability from a simple
construction to a more complex one. We now focus on the core of the SPONGE construction, a
block-oriented construction that, on input a list of blocks, produces a single block of output.

As discussed above, our notion of query cost on this CORESPONGE construction differs
from the top-level notion, and is defined instead as the length of the query without its
longest common prefix with any of the previous queries. We call this cost the prefix cost

of a query. Considering this notion of cost requires us to carefully design the CORESPONGE

by integrating the construction PREFIXES to ensure that the prefix cost and query cost of
the same query align when transferring indifferentiability to BLOCKSPONGE. We prove in
EasyCrypt that CORESPONGE is indifferentiable from IDEALCORE.

As a first simplifying step, we replace the primitive, a random permutation, with a ran-
dom function. This simplifies some of the formal reasoning—in particular by removing
internal dependencies between samplings in the random permutation—but introduces an
additional term σ2−σ

2b+1 in the bound. We note that all results discussed above transfer in-
differentiability without loss. Therefore, improving the bound for this simpler functionality
would be sufficient in improving the bound for the whole SPONGE construction at almost no
formal cost beyond that of tightening the bound for CORESPONGE.

The idea behind the simulator

Indifferentiability requires us to simulate answers to the permutation, in a way that is
consistent with what the adversary may have already observed of the ideal functionality,
without knowing which queries the distinguisher has made—or will make—to the function-
ality. To do so, the simulator CORESIM, shown in Figure 6.11, keeps track of paths—which

CORESIM[F ](x1, x2)

1 : if (x1,x2) 6∈m {

2 : y2
$
← Zb−r

2 ;

3 : if x2 ∈ paths {

4 : (p,v)← paths[x2];

5 : y1←F (p‖(v⊕ x1)) ;

6 : paths[y2]← (p ‖(v⊕ x1),y1);

7 : } else {

8 : y1
$
← Zr

2;

9 : }

10 : m[(x1,x2)]← (y1,y2);

11 : mi[(y1,y2)]← (x1,x2);

12 : }

13 : return m[(x1,x2)];

CORESIM[F ]−1(x1, x2)

if (x1,x2) 6∈mi {

y1
$
← Zr

2;

y2
$
← Zb−r

2 ;

mi[(x1,x2)]← (y1,y2);

m[(y1,y2)]← (x1,x2);

}

return mi[(x1,x2)];

Figure 6.11 – The core simulator CORESIM

are sequences of blocks that, when fed through CORESPONGE, leave its state with a partic-
ular value of the capacity—and uses the functionality to simulate its answer to any query
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that makes use of a capacity to which a path is known, that is, a query that extends a known
path through CORESPONGE. Queries that are disjoint from path are answered as if by the
ideal random function.

When the simulation fails

The indifferentiability between the real game and the ideal game mainly relies on the
unicity of capacities that appears in the different absorbtion phases. Therefore, when an
event occurs that contradicts this unicity, the simlation fails. More specifically, it fails (and
can be distinguished from the true permutation) if either one of the following events occurs:

bcol : A capacity that was previously seen as output of the permutation with a block sa has
been output again, associated with a different block s′

a
.

?

?

?

?

and 6=

Figure 6.12 – Representation of bcol.

bext : The adversary has queried the primitive or its inverse with a capacity that has already
been, or is later sampled internally by CORESPONGE, but to which the simulator does
not know a path. In other words, it guessed a value of a hidden capacity, i.e. that was
or will be an intermediate capacity in an absorbtion phase.

We show in EasyCrypt that these are the only conditions under which the distinguisher
can indeed distinguish the construction from the ideal functionality.

Bounding the probability of a simulation failure

It remains to bound the probability that these bad events occur. The collision event bcol

is straightforward since it occurs as values are sampled and its probability can be bounded
immediately.

On the other hand, bounding the probability that bext occurs in any particular run is
much more complex, as it requires identifying that the adversary has guessed a previously
sampled value, or will be sampled later on in the run. We note, however, that the event is
only triggered when the adversary guesses a value that is independent from its view of the
system: indeed CORESPONGE keeps all capacities internal, and the event does not consider
the case where the adversary has obtained the capacity’s value through a legitimate sequence
of calls to the permutation that mimics CORESPONGE’s operations. The trick is therefore to
delay the sampling of capacities that are used in CORESPONGE until the end of the game (at
which point we can sample them all, and easily bound the probability that any one of them
was used by the adversary), or until the simulator constructs a path to it, at which point
bext is no longer triggered.

In order to deploy the lazy-eager sampling theory described in Section 2.3.2, we must
first remove the dependencies between capacities and rates introduced by their joint use in
the permutation.
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A proof trick: indirection

We deploy an indirection technique similar to that used in [Backes et al., 2012] that
proves indifferentiability of Merkle-Damgård. Since only the unicity of capacities is needed
in the indifferentiability rather than their value, we deploy an isomorphism (that stays an
isomorphism if no failure event happens) that associates a counter (with type handle in
Section 6.4) to each capacity.

Concretely, each fresh permutation query (made by the adversary or the functionality)
is tagged with its indirection number. The main permutation map (G1.mh) is used to keep
track, given an input state, of the rate that was returned, and of the indirection number. An
auxiliary map is used to translate indirection numbers into capacities (FRO.m).

This auxiliary map can then be sampled lazily: on direct permutation queries, both rate
and capacities are sampled and returned to the distinguisher; on permutation queries made
by the construction, the rate is sampled and associated with an indirection number, but
the capacity is not sampled. A loop after the distinguisher has finished running samples all
remaining capacities — that is, exactly those that have been used in the construction, but
not been observed as part of a path — triggering the bad event a posteriori if any one of
them collides with an adversarial input that is not part of a path. This last transformation
makes heavy use of the lazy-eager sampling theory described in Section 2.3.2, including in
particular the use of programming queries in some cases.

6.3.5 The final SPONGE simulator

As described in Figure 6.5, the simulator resulting from the proof described above is
constructed from the modular layers as:

SPONGESIM [BLOCKSIM [CORESIM [·]]]

The final step of our proof is to collapse the layered construction into a final simulator,
shown in Figure 6.13. This allows us to reduce the cost of simulator queries, aligning them
with the announced notion of query cost, and to present the simulator as a single algorithm.
However, the layered nature of the simulator can still be seen in this final presentation: the
core simulator still appears, keeping track of paths through the simulated permutation that
could correspond to functionality calls and extending them as required, or simply simulating
the random permutation with a random function. However, the way in which paths are
extended in the layered simulator (lines 5-16 in Figure 6.13 replacing the single line 5 in
Figure 6.11) reflects the different layers required to turn a path through the core sponge (a
well-padded bitstring followed by a number of 0r blocks) into a valid query to the SPONGE

(a bitstring that the SPONGE itself pads and a number of desired output bits), also turning
the output of the SPONGE (a list of bits of the requested length) into the expected output
for the core simulator (a single block). For top-level simulator queries that would yield
invalid queries to any intermediate functionalities (for example because they correspond
to paths that do not reflect well-padded inputs), the layered simulator simply simulates an
independent random function.

In other words, our final simulator is CORESIM where the ideal functionality IDEALCORE

itself is further simulated from the top-level IDEALSPONGE ideal functionality.
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SIMULATOR[F ](x1,x2)

1 : if (x1,x2) /∈m {

2 : y2
$
← {0,1}b−r ;

3 : if x2 ∈ paths {

4 : (p,v)← paths[x2];

5 : (m,k)← parse(p‖(v⊕ x1));

6 : if unpad(m) 6= false {

7 : lb←F (unpad(m),k · r);

8 : y1← last(bits2blocks(lb));

9 : } else if 0< k {

10 : if (m,k− 1) /∈ invalid {

11 : invalid[m,k− 1]
$
← {0,1}r ;

12 : }

13 : y1← invalid[m,k− 1];

14 : } else {

15 : y1← 0r ;

16 : }

17 : paths[y2]← (p‖x1 ⊕ v,y1);

18 : } else {

19 : y1
$
← {0, 1}r ;

20 : }

21 : m[x1,x2]← (y1,y2);

22 : mi[y1,y2]← (x1,x2);

23 : }

24 : return m[(x1,x2)];

SIMULATOR[F ]−1(x1,x2)

if (x1,x2) /∈mi {

y1
$
← {0,1}r ;

y2
$
← {0,1}b−r ;

mi[x1,x2]← (y1,y2);

m[y1,y2]← (x1,x2);

}

return mi[(x1,x2)]

Figure 6.13 – The optimized SIMULATOR for SPONGE

6.4 A deeper look at the upto-bad game

In this section, instead of decribing the full formal proof that has been verified in Easy-

Crypt, I describe the formalization of the game named G1 and the invariant that are both
involved in the upto-bad formal proof of the indifferentiability. Placing G1 in the context:

— G1 is indifferentiable from the real game with CORESPONGE and RP:
���Pr
�
RealD

b−r,pad,r = 1
�
− Pr[G1= 1]
���≤ Pr[G1 : G1.bcol∨G1.bcol]≤

σ2

2b−r−2
+
σ2 −σ

2b+1

— and G1 is equivalent to the ideal game with IDEALCORE and CORESIM:

Pr[G1= 1] = Pr
�
IdealD

P
= 1
�

In this part, I first describe the meaning of G1’s global variables, then other global vari-
ables and modules, then each procedure, and finally the invariant that holds when proving
the indifferentiability upto the bad event G1.bext∨G1.bcol.
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type state = block ∗ capacity.
type smap = (state, state) fmap.
type handle = int.
type hstate = block ∗ handle.
type hsmap = (hstate, hstate) fmap.
module G1 (D : DISTINGUISHER) = {

var m, mi : smap
var mh, mhi : hsmap
var chandle : int
var paths : (capacity, block list ∗ block) fmap
var bext, bcol : bool
module M = { proc f(p : block list): block = { (∗ functionality ∗) } }
module S = {

proc f(x : state): state = { (∗ primitive ∗) }
proc fi(x : state): state = { (∗ inverse ∗) }

}
proc main(): bool = {

var b;
(∗ initialization ∗)
b ← D(M,S).distinguish();
return b;

}}.

EasyCrypt

The intuition of G1’s global variables is as follows:

— G1.chandle: is the next indirection number that is attributed to a new capacity.

— G1.m, G1.mi: represented in Figure 6.14, they are the finite maps that keep track of
the simulator’s answers to queries, with G1.m for the permutation, and G1.mi for its
inverse.

r

c

G1.m

G1.mi

Figure 6.14 – Representation of G1.m and G1.mi

— G1.mh, G1.mhi: represented in Figure 6.15, they are the finite maps that help compute
the absorbtion phase where capacities are replaced by their indirection number, with
G1.mh for the permutation, and G1.mhi for its inverse.

— G1.paths: represented in Figure 6.16, this is the finite map that keeps track of how
each computed capacity was obtained from the absorbtion phase of a block list. The
block associated is the one output at the same time as the capacity at the end of the
absorbtion.

— G1.bext, G1.bcol: are booleans that identify the triggering of bad events.

The other global variables and modules that appear in G1 or in the invariant are:
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i

r

j
G1.mh

G1.mhi

Figure 6.15 – Representation of G1.mh and G1.mhi

absorbtion
paths

Figure 6.16 – Representation of G1.paths

— C.queries: represented in Figure 6.17, this is the finite map that keeps track of all the
answers of the functionnality. It prevents the adversary to ask again its first oracle the
non-fresh queries, and helps compute the maximum size of commom prefixes with
previous queries.

absorbtion

C.queries

Figure 6.17 – Representation of C.queries

— FRO.m: is the finite map that keeps track of the value of the capacity that is associated
to each indirection number. It is also associated to the flag that states if the capacity
is in the adversary’s view: Known or Unknown.

— F.RO: is the module that represents the ideal random function IDEALCORE.

— P.m, P.mi: are the finite maps of the permutation in the real setting that keeps track
of all the permutation’s answers to queries made either by the adversary or during the
absorbtion, with m for the permutation, and mi for its inverse.

— Redo.prefixes: represented in Figure 6.18, this is the map that keeps track of all the
states that are a result of an absortion of one of the queries’ prefixes.

Invariant

The invariant that holds when none of the bad events has been triggered is a conjonction
of the following ten properties:
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0

0

r

c

[]

absorbtion

Redo.prefixes

Figure 6.18 – Representation of Redo.prefixes

1. In the map FRO.m, unique capacities are associated to each indirection number, the
indirection number 0 is associated to the full-0 capacity (Known), and all indirection
numbers are positive and less than chandle (the next indirection number to set).

2. The maps G1.mh and G1.mhi are inverse to each other.

3. The maps P.m and P.mi are inverse to each other.

4. Represented in Figure 6.19, if a state is in P.m, then the corresponding pair is in G1.mh,
following the associations of indirection number and capacity provided by FRO.m.

r

c

P.m ⇒
i j

G1.mh
i , ?

FRO.m

j , ?
FRO.m

Figure 6.19 – Representation of the first property of 4.

Inversely, if a pair is in G1.mh, the corresponding state is in P.m, following FRO.m.
This is represented in Figure 6.20.

i j
G1.mh ⇒ P.m

i , ?
FRO.m

j , ?
FRO.m

Figure 6.20 – Representation of the second property of 4.

5. Same as 4 but for P.mi, G1.mhi and FRO.m.

6. The map G1.m is included in the map P.m.

7. The map G1.mi is included in the map P.mi.
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8. This property is about building paths and is divided into a conjonction of three sub-
properties:

(a) Represented in Figure 6.21, if some pair is in G1.mh, then either the flag corre-
sponding to both input and output’s indirection numbers is Known and G1.m has
the corresponding entries, or the resulting flag is Unknown and the absorbtion
path exists upto this point.

i j
G1.mh ⇒

i , fi

FRO.m

j , ?
FRO.m

G1.m
Known

and fi = Known

i j
G1.mh is one step of an absorbtion

Unknown

Figure 6.21 – Representation of the property 8a.

(b) There is an equivalence between the belonging of a list to F.RO’s map and build-
ing the full absorbtion path with G1.mh, as represented in Figure 6.22.

. . . F.RO
⇔ . . .

0

0 ?
G1.mh

?
G1.mh

. . .

? ?
G1.mh

?
G1.mh

Figure 6.22 – Representation of the property 8b.

(c) While building paths using G1.mh, the resulting indirection number identifies a
unique list and a unique resulting block, as represented in Figure 6.23.

9. For every entry in the map G1.paths, the absorbtion path built from G1.mh exists in
full, and the resulting indirection number associated to this resulting capacity has the
flag Known in FRO.m.

10. This property is about the prefix map and is divided into a conjonction of three sub-
properties:

(a) Each computation of absorbtion through P.m are stored in Redo.prefixes.

(b) The map C.queries is a sub-map of Redo.prefixes.

(c) If a list of blocks is in Redo.prefixes, then it is a prefix a previous query stored in
C.queries.
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. . .

l1

0

0 ?
G1.mh

?
G1.mh

. . .

? i

G1.mh

. . .

l2

0

0 ?
G1.mh

?
G1.mh

. . .

? j

G1.mh

i = j ⇒ = and . . .

l1 = l2

= . . .

l1 = l2

Figure 6.23 – Representation of the property 8c.

Initialization

module G1(D:DISTINGUISHER) = {
(∗ global variables, module M, module S ∗)
proc main(): bool = {

var b;
(∗ initializing all the global variables ∗)
F.RO.m ← empty;
m ← empty;
mi ← empty;
mh ← empty;
mhi ← empty;
bext ← false;
bcol ← false;
C.queries← empty[[] ← b0];
(∗ the empty path is initially known by the adversary to lead to capacity 0^c ∗)
FRO.m ← empty[0 ← (c0, Known)];
paths ← empty[c0 ← ([<:block>],b0)];
chandle ← 1;
(∗ call the distinguisher and outputs its answer ∗)
b ← D(M,S).distinguish();
return b;

}
}.

Listing 6.1 – Initialization of global variables

EasyCrypt
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Functionality

The submodule M implements the functionnality that is functionnally equivalent to the
ideal random function previously named IDEALCORE and implemented by F.RO. It keeps an
absorbtion structure with the indirection described in the previous section. The map that
associates states to states P.m is replaced by the indirection map G1.mh that associates a pair
composed of a block and a indirection number to a pair composed of a block and another
indirection number.

module G1(D:DISTINGUISHER) = {
(∗ global variables ∗)
module M = {

proc f(p : block list): block = {
var sa, sa', sc;
var h, i, counter ← 0; (∗ all three variables are initialized to 0 ∗)
(sa,sc) ← (b0,c0); (∗ initial state ∗)
while (i < size p) {

if ((sa +^ nth witness p i, h) ∈ mh) (∗ if the path is already known ∗) {
(sa, h) ← oget mh[(sa +^ nth witness p i, h)]; (∗ follow it ∗)

} else {
(∗ check if the prefix cost is respected (helpful when proving the invariant) ∗)
if (counter < size p − prefix p (get_max_prefix p (elems (fdom C.queries)))) {

sc
$
←− cdistr; (∗ sample the next capacity ∗)

(∗ does it triggeres a bad event ? ∗)
bcol ← bcol ∨ hinv FRO.m sc 6= None;
(∗ ask to the random oracle for the next block ∗)
sa' ← F.RO.get(take (i+1) p);
(∗ xors the message's block with the last block of the absorbtion ∗)
sa ← sa +^ nth witness p i;
(∗ updates the indirection map and its inverse ∗)
mh[(sa,h)] ← (sa', chandle);
mhi[(sa',chandle)] ← (sa, h);
(∗ adds the correspondance of the indirection number to its capacity ∗)
FRO.m[chandle] ← (sc,Unknown);
(∗ updates iterative variables ∗)
(sa,h) ← (sa',chandle);
chandle ← chandle + 1;
counter ← counter + 1;

}
} (∗ end if (· · ·, h) ∈ mh ∗)
i ← i + 1;

} (∗ end while ∗)
(∗ ask for the block associated to the full message ∗)
sa ← F.RO.get(p);
return sa;

}
}
(∗ module S ∗)
(∗ proc main ∗)

}.

Listing 6.2 – Algorithm of the functionnality in G1

EasyCrypt



98 SHA3’s Formal Security Proof [Almeida et al., 2019b]

In this procedure, the bad event bcol can be triggered using the operator hinv. It looks
into the map given as its first argument to find a indirection number that may be associated
to the capacity given as its second argument, that may be associated with the flag Known

or Unknown. If the bad event is triggered, this means that either there is a collision of
capacities with two different messages (two different absorbtion paths), or the adversary
correctly guessed a capacity before it was sampled.

Simulation of the permutation

The other sub-module of G1 is named S and is given to the adversary as the primitive.
We show in EasyCrypt that the sub-module S is equivalent to the simulator in Figure 6.11.
The next EasyCrypt’s code outlines the inverse permutation that is simpler than the direct
permutation, followed by the direct permutation.

module G1(D:DISTINGUISHER) = {
(∗ global variables ∗)
(∗ module M ∗)
module S = {

proc f(x : state): state = { (∗ · · · ∗) }
proc fi(x : state): state = {

var y, y1, y2, hx2, hy2;
if (x \notin mi) {

(∗ has the adersary guessed one of the sampled non−revealed capacities ∗)
bext ← bext ∨ rng FRO.m (x.`2, Unknown);
(∗ updates the maps associating indirection numbers to capacities (and knwledgable flags) ∗)
if (¬(rng FRO.m (x.`2, Known))) {

FRO.m[chandle] ← (x.`2, Known);
chandle ← chandle + 1;

}
(∗ obtain the indirection number ∗)
hx2 ← oget (hinvK FRO.m x.`2);
(∗ sample the output ∗)

y1
$
←− bdistr;

y2
$
←− cdistr;

y ← (y1,y2);
(∗ if the input block is associated to the obtained indirection number, and the capacity
associated to the next indirection number is unknown to the adversary, follow the path ∗)
if ((x.`1,hx2) ∈ mhi ∧ in_dom_with FRO.m (oget mhi[(x.`1,hx2)]).`2 Unknown) {

(y1,hy2) ← oget mhi[(x.`1, hx2)];
y ← (y.`1, (oget FRO.m[hy2]).`1);
FRO.m[hy2] ← (y.`2, Known);
(∗ update the maps of the simulator with the computed values ∗)
mi[x] ← y;
m[y] ← x;

} else {
(∗ the bad event is triggered if the capacity sampled already has appeared ∗)
bcol ← bcol ∨ hinv FRO.m y.`2 6= None;
(∗ update the maps to keep the absorbing structure ∗)
hy2 ← chandle;
chandle ← chandle + 1;
FRO.m[hy2] ← (y.`2, Known);
mi[x] ← y;

EasyCrypt
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mhi[(x.`1, hx2)] ← (y.`1, hy2);
m[y] ← x;
mh[(y.`1, hy2)] ← (x.`1, hx2);

}
} else {

y ← oget mi[x];
}
return y;

}
}
(∗ proc main ∗)

}.

Listing 6.3 – Inverse permutation that is equivalent to the simulator

The direct permutation is the only procedure that uses the global variable paths. That
way, if the adversary asks a query that is part of an absorbtion computation, the variable
paths will keep track of the message from which it is a absorbtion, and the simulator will
asks F.RO for the next block. In any case, the capacity is sampled in the same way as for
the inverse procedure.

module G1(D:DISTINGUISHER) = {
(∗ global variables ∗)
(∗ module M ∗)
module S = {

proc f(x : state): state = {
var p, v, y, y1, y2, hy2, hx2;
(∗ has this state not already been queried to S.f or was an output of S.fi ? ∗)
if (x \notin m) {

(∗ is this capacity output from an absorbing phase ? ∗)
if (x.`2 ∈ paths) {

(∗ if so, get the message and output block associated to this capacity ∗)
(p,v) ← oget paths[x.`2];
(∗ call the ideal random function as if this query was part of an absorbtion phase ∗)
y1 ← F.RO.get (rcons p (v +^ x.`1));
(∗ sample the capacity normally ∗)

y2
$
←− cdistr;

} else {
(∗ sample both block and capacity normally ∗)

y1
$
←− bdistr;

y2
$
←− cdistr;

}
y ← (y1, y2);
(∗ bad event : was the queried capacity part of a previous absorbtion phase ? ∗)
bext ← bext ∨ rng FRO.m (x.`2, Unknown);
(∗ updates the map associating indirection numbers to capacities and knowledgable flags ∗)
if (¬(rng FRO.m (x.`2, Known))) {

FRO.m[chandle] ← (x.`2, Known);
chandle ← chandle + 1;

}
(∗ obtain the indirection number associated to the queried capacity ∗)
hx2 ← oget (hinvK FRO.m x.`2);
(∗ test if the indirection number that is next after (y.`1,hx2) is already associated to a capacity ∗)

EasyCrypt
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if ((x.`1, hx2) ∈ mh ∧ in_dom_with FRO.m (oget mh[(x.`1,hx2)]).`2 Unknown) {
(∗ then erase the sampled capacity and output the associated capacity ∗)
hy2 ← (oget mh[(x.`1, hx2)]).`2;
y ← (y.`1, (oget FRO.m[hy2]).`1);
FRO.m[hy2] ← (y.`2, Known);
m[x] ← y;
mi[y] ← x;

} else { (∗ otherwise, associate this capacity to the indirection number with the flag Known ∗)
(∗ bad event triggered if the capacity is already associated to a previous indirection number ∗)
bcol ← bcol ∨ hinv FRO.m y.`2 6= None;
(∗ update the maps and global variables ∗)
hy2 ← chandle;
chandle ← chandle + 1;
FRO.m[hy2] ← (y.`2, Known);
m[x] ← y;
mh[(x.`1, hx2)] ← (y.`1, hy2);
mi[y] ← x;
mhi[(y.`1, hy2)] ← (x.`1, hx2);

}
(∗ same test as the beginning ∗)
if (x.`2 ∈ paths) {

(∗ update the known path of a given capacity ∗)
(p,v) ← oget paths[x.`2];
paths[y.`2] ← (rcons p (v +^ x.`1), y.`1);

}
} else {

y ← oget m[x];
}
return y;

}
proc fi(x : state): state = { (∗ · · · ∗) }

}
(∗ proc main ∗)

}.

Listing 6.4 – Permutation that is equivalent to the simulator
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Confidentiality and Authentication





Chapter 7

Security of Authenticated Encryption

In cryptography, encryption is the process of encoding information, often encoded as
a message, in such a way that only authorized parties can access it while non-authorized
others cannot. In an encryption scheme, the intended message, referred to as plaintext,
is encrypted using an encryption algorithm — a cipher — generating a ciphertext that can
be read — whose meaning can be retrieved — only if decrypted. Sender and recipient
share keys that can encrypt and decrypt messages. When the encryption key is the same
as the decryption key, the scheme is called symmetric encryption (or private key encryption),
otherwise it is called asymmetric encryption (or public key encryption). In my manuscript, I
focus on the security of symmetric encryption.

The objective of encryption is to deny the intelligible content to a would-be interceptor.
This security property is called data confidentiality. This means that any entity that does not
possess the secret key is unable to retrieve information on plaintext from ciphertext.

7.1 Authenticated Encryption

Data confidentiality has been one of main goals of cryptography for quite a long time,
while the need to combine data integrity with confidentiality came from the banking field.

Integrity of banking transactions, e.g. the price agreed upon, is a main concern,
especially when using substitution ciphers. In this setting, an attacker does not need
to decrypt the ciphertext, but just flip a coin and change the amount in the transaction
without knowing the secret key. This concern may be extended to any encryption
scheme, even without the malleability of substitution ciphers; banks did not want to
transmit encrypted data that would allow an attacker to change messages undetected.

Example

Authenticated encryption (AE) and authenticated encryption with associated data (AEAD)
are forms of encryption which simultaneously aim to provide the confidentiality and au-
thenticity of data, the associated data being a non-encrypted part of the message that is
nonetheless authenticated (e.g. packet header for transportation across the network).

The easiest way to create a AE scheme is to combine an existing encryption scheme
with an existing message authentication code (MAC) scheme with two different secret keys.
In [Bellare and Namprempre, 2000], Bellare and Namprempre analyze the security of three
general compositions of encryption schemes and MAC schemes: 1. Encrypt-then-MAC 2. En-
crypt-and-MAC 3. MAC-then-Encrypt. In their work, they prove that, under the security
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assumption that the encryption scheme and the MAC scheme are secure, only the general
approach Encrypt-then-MAC provides a secure authenticated encryption scheme.

This means that the other two are in general insecure. Indeed, securely combining sep-
arate confidentiality and authentication block cipher operation modes can be difficult and
error prone. « In fact, efficient integration of encryption, authentication, and message in-
tegrity using a single shared key is an important and intensely studied problem in network
security [Kaufman et al., 1995, Perlman et al., 2016, Preneel, 1998] which is solved by the
use of [an authenticated] encryption scheme. » ([Katz and Yung, 2000b]) This issue has
been raised for decades, and a recent example of an attempt to answer it is the CAESAR
competition [CAE, 2013] that aimed to determine the best AE scheme through a long pro-
cess of public competitive peer review.

7.2 Security Definitions

Against a secure encryption scheme, any adversary should learn no information from
seeing a ciphertext. Therefore, the adversary should be able to do no better than if it guessed
randomly. The following definition encompasses this security notion.

An encryption scheme is considered secure if no adversary, given an encryption of a
message randomly chosen from a two-element message space determined by the adversary,
can identify the message choice with probability significantly better than that of random
guessing (1

2). If any adversary can succeed in distinguishing the chosen ciphertext with a
probability significantly greater than 1

2 , then this adversary is considered to have an advan-

tage in distinguishing the ciphertext, and the scheme is not considered secure.
Security in terms of indistinguishability has several definitions, depending on assump-

tions made about the adversary’s capabilities. The most common definitions used in prov-
able security — first in the public-key setting [Bellare et al., 1997, Bellare et al., 1998a],
then extended into the private-key setting [Katz and Yung, 2000a]— are indistinguishabil-

ity under chosen plaintext attack (IND-CPA), indistinguishability under (non-adaptive) chosen

ciphertext attack (IND-CCA1 [Naor and Yung, 1990]), and indistinguishability under adap-

tive chosen ciphertext attack (IND-CCA2 [Rackoff and Simon, 1991]).
Security under either of the latter definition implies security under the previous ones: a

scheme which is IND-CCA1 secure is also IND-CPA secure, and a scheme which is IND-CCA2
secure is both IND-CCA1 and IND-CPA secure. Thus, IND-CCA2 is the strongest of the three
definitions of security.

Intuitively, the IND-CPA security is the security definition relative to data confidential-
ity; information about plaintexts cannot be retrieved from ciphertexts without knowing the
secret key. Whereas the IND-CCA2 security also includes data integrity and authentication;
that is, in addition, no valid ciphertext can be produced without the secret key.

In [Garman et al., 2016], Garman et al. found an adaptive chosen ciphertext attack
(showing the IND-CCA2 insecurity) against Apple’s iMessage in which they achieve to
break the security of a ciphertext if they have access to 218 decryption oracle queries
after the ciphertext they want to break is obtained. « The practical implication of these
attacks is that any party who gains access to iMessage ciphertexts may potentially de-
crypt them remotely and after the fact. » ([Garman et al., 2016])

Example
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7.2.1 IND-CPA

A chosen-plaintext attack (CPA) is an attack model for cryptanalysis which presumes
that the attacker can obtain the ciphertexts for arbitrary plaintexts. The goal of the attack
is to gain information that reduces the security of the encryption scheme.

In a chosen-plaintext attack, the adversary can adaptively ask for the encryption of ar-
bitrary plaintext messages. This is formalized by allowing the adversary to interact with an
encryption oracle, viewed as a black box that encrypts plaintexts using the secret key. The
attacker’s goal is to retrieve any information or pattern about encrypted plaintexts.

The game IND-CPA is works as follows.

1. The game initializes the secret key of the encryption scheme.

2. The adversary interacts with the encryption oracle by querying adaptive plaintexts.

3. The adversary submits a challenge that consists of a pair of two plaintexts m0,m1.

4. The game randomly samples a bit b ∈ {0, 1} and sends to the adversary the ciphertext
associated to mb.

5. The adversary may ask for new queries to the encryption oracle.

6. The adversary outputs a bit b′ that represents its guess of the bit b.

The adversary has won if it guessed correctly, i.e. b= b′.

module type Enc = {
proc key_gen () : key
proc enc (_: key ∗ plaintext) : ciphertext
proc dec (_: key ∗ ciphertext) : plaintext

}.

module type CPA_Oracles = {
proc enc (_: plaintext) : ciphertext

}.

module Mem (E : Enc) : CPA_Oracles = {
var key : key
proc enc (m : plaintext) = {

var c;
c ← E.enc(Mem.key, m);
return c;

}}.

module type Adv_CPA (E : CPA_Oracles) = {
proc challenge() : plaintext ∗ plaintext { E.enc }
proc guess(_: ciphertext) : bool { E.enc }
(∗ remove E.enc when the adversary is not

allowed to ask for further encryptions ∗)
}.

module IND_CPA (A : Adv_CPA, E : Enc) = {
proc game() : bool = {

var b, b', m0, m1, c;
Mem.key ← E.key_gen();
(m0, m1) ← A(Mem(E)).challenge();

b
$
←− {0,1};

c ← Mem(E).enc(b ? m1 : m0);
b' ← A(Mem(E)).guess(c);
return b = b';

}}.

EasyCrypt

The IND-CPA advantage of an adversaryA against an encryption scheme E is defined as

Adv
ind−cpa
E (A ) :=

����Pr[b← IND_CPA(A , E).game() : b = 1]−
1
2

����

7.2.2 IND-CCA1 and IND-CCA2

Indistinguishability under non-adaptive and adaptive Chosen Ciphertext Attack (IND-
CCA1, IND-CCA2) uses a definition similar to that of IND-CPA. However, in addition to
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the encryption oracle, the adversary is given access to a decryption oracle which decrypts
arbitrary ciphertexts at the adversary’s request, returning either the plaintext or an error
message stating that the ciphertext provided is not well-formed. In the non-adaptive def-
inition, the adversary is allowed to query the decryption oracle only up to receiving the
challenge ciphertext. In the adaptive definition, the adversary may continue to query the
decryption oracle even after receiving the challenge ciphertext, with the caveat that it may
not ask the challenge ciphertext for decryption (otherwise, the definition would be trivial).

The game IND-CCA works as follows, where the difference between IND-CCA1 and IND-
CCA2 is respectively either the absence or presence of the decryption oracle in step 5.

1. The game initializes the secret key of the encryption scheme.

2. The adversary interacts with both the encryption and decryption oracles by querying
adaptative plaintexts and ciphertexts.

3. The adversary submits a challenge that consists of a pair of two plaintexts m0,m1.

4. The game randomly samples a bit b ∈ {0, 1} and sends to the adversary the ciphertext
associated to mb.

5. The adversary may ask for new queries to the encryption (and decryption) oracles
(with the restriction of not asking for the decryption of the challenge’s ciphertext).

6. The adversary outputs a bit b′ that represents its guess of the bit b.

The adversary has won if it guessed correctly, i.e. b= b′.

IND-CCA1

The IND-CCA1 advantage of an adversaryA against an encryption scheme E is defined as

Advind−cca1
E (A ) :=

����Pr[b← IND_CCA1(A , E).game() : b = 1]−
1
2

����

module type CCA_Oracles = {
proc enc (_: plaintext) : ciphertext
proc dec (_: ciphertext) : plaintext option

}.
module Mem (E : Enc) : CPA_Oracles = {

var key : key
proc enc (m : plaintext) = {

var c;
c ← E.enc(Mem.key, m);
return c;

}
proc dec (c : ciphertext) = {

var p;
p ← E.dec(Mem.key, c);
return p;

}}.

module type Adv_CCA1
(E : CCA_Oracles) = {

proc challenge()
: plaintext ∗ plaintext { E.enc E.dec }

proc guess(_: ciphertext)
: bool { E.enc } (∗ E.dec is absent ∗)

}.
module IND_CCA1 (A : Adv_CCA1, E : Enc) = {

proc game() : bool = {
var b, b', m0, m1, c;
Mem.key ← E.key_gen();
(m0, m1) ← A(Mem(E)).challenge();

b
$
←− {0,1};

c ← Mem(E).enc(b ? m1 : m0);
b' ← A(Mem(E)).guess(c);
return b = b';

}}.

EasyCrypt
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IND-CCA2

The IND-CCA2 advantage of an adversaryA against an encryption scheme E is defined as

Advind−cca2
E (A ) :=

����Pr[b← IND_CCA2(A , E).game() : b = 1]−
1
2

����

module Mem (E : Enc)
: CPA_Oracles = {

var key : key
var cipher : ciphertext option
proc enc (m : plaintext) = {

var c;
c ← E.enc(Mem.key, m);
return c;

}
proc dec (c : ciphertext) = {

var p;
if (Some c = Mem.cipher) { p ← None; }
else { p ← E.dec(Mem.key, c); }
return p;

}}.
module type Adv_CCA2 (E : CCA_Oracles) = {

proc challenge()
: plaintext ∗ plaintext { E.enc E.dec }

proc guess(_: ciphertext): bool { E.enc E.dec }
}.

module IND_CCA2 (A : Adv_CCA2, E : Enc) = {
proc game() : bool = {

var b, b', m0, m1, c;
Mem.key ← E.key_gen();
Mem.cipher ← None;
(m0, m1) ← A(Mem(E)).challenge();

b
$
←− {0,1};

c ← Mem(E).enc(b ? m1 : m0);
Mem.cipher ← Some c;
b' ← A(Mem(E)).guess(c);
return b = b';

}}.

EasyCrypt

In the following, whenever we talk about IND-CCA, we refer to IND-CCA2 unless
stated otherwise.

Remark

7.2.3 INT-CTXT : Integrity of the CipherTeXT

First named unforgeable encryption in [Katz and Yung, 2000b], integrity of ciphertexts

(INT-CTXT) is a security requirement necessary for any protocol that wants to detect any
unauthentic ciphertext. That is, no one without the secret key should be able to produce
a ciphertext that can be successfully decrypted, even if valid ciphertexts can be asked for
chosen plaintexts and several attempts can be made to forge a valid ciphertext.

In the INT-CTXT game, the adversary can ask for encryption queries and it wins if it
succeeds in querying the decryption query with a ciphertext that was not an output of the
encryption oracle that can be successfully decrypted. The advantage of such an adversary
is defined as the probability of winning this particular game:

Advint−ctxt
E (A ) := Pr[INTCTXT(A , E).main() : ∃c, c ∈Mem.lc∧ decE(Mem.k, c) 6= None]

Here, Mem.lc is the list that keeps track of all decryption queries and decE refers to the
decryption algorithm of the scheme E.
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In EasyCrypt, an event in a probability formula cannot contain procedures, but it may
contain operators and global variables. While procedures are more expressive than op-
erators — they allow random sampling and updates of internal states — EasyCrypt can
prove equivalences between operators and stateless deterministic procedures. Since
symmetric encryption generally has stateless deterministic procedures, they can be ex-
pressed as operators.

type key, plaintext, ciphertext.
op enc : key → plaintext → ciphertext.
op dec : key → ciphertext → plaintext option.

module type StLOrcls = {
proc ∗ init () : unit
proc kg () : key

}.

module Mem = {
var k : key
var log : (ciphertext, plaintext) fmap
var lc : ciphertext list

}.

module type INTCTXT_Oracles = {
proc enc(_: plaintext): ciphertext
proc dec(_: ciphertext): plaintext option

}.

module type Adv_INTCTXT
(O : INTCTXT_Oracles) = {

proc main(): bool
}.

module INTCTXTOrcls (S : StLOrcls)
: INTCTXT_Oracles = {

proc init () = {
S.init();
Mem.log ← empty;
Mem.lc ← [];
Mem.k ← S.kg();

}
proc enc (p : plaintext) = {

var c;
c ← enc Mem.k p;
Mem.log[c] ← p;
return c;

}
proc dec (c : ciphertext) = {

(∗ note that the operator dec is not used in
the ''decryption oracle'' ∗)

Mem.lc ← if c ∈ Mem.log then Mem.lc
else c :: Mem.lc;

return Mem.log[c];
}}.

module INTCTXT
(A : Adv_INTCTXT, StL : StLOrcls) = {

module O = INTCTXTOrcls(StL)
proc main () = {

var b;
O.init();
b ← A(O).main();
return b;

}}.

EasyCrypt

7.3 Relations between IND-CCA, IND-CPA and INT-CTXT

In EasyCrypt, the difference between the games IND-CPA and IND-CCA is the set of
procedures accessible by the adversary. In particular, the decryption oracle is only accessible
in the IND-CCA game.

When in the game IND-CCA the encryption scheme is modified so that the decryption al-
gorithm always answers None unless the query was the output of a previous encryption, then
IND-CCA security is equivalent to IND-CPA security for this scheme. Using this observation,
we define a module that transforms an IND-CCA adversary into an IND-CPA adversary.
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The formalization uses the global
variables from the module Mem. It
transforms a module of module type Enc

into the module type accepted by an
IND-CCA adversary and hides the secret
key inside Mem.k.

module Mem (S : Enc) = {
var k : key
var log : (ciphertext, plaintext) fmap
proc init () = { Mem.k ← S.keygen(); }
proc enc(p:plaintext) = {

var c;
c ← S.enc(Mem.k,p);
return c;

}
proc dec(c:ciphertext) = {

var p;
p ← S.dec(Mem.k,c);
return p;

}}.

Given an IND-CCA adversaryA and
an IND-CPA encryption oracle, we built
the IND-CPA adversary by giving to A
a direct acces to the encryption oracle,
and by simulating the decryption oracle
using the information contained in the
state of Mem.

module CPA_CCA_Orcls(O:CPA_Oracles)
: CCA_Oracles = {

proc init () = {
Mem.log ← empty;

}
proc enc(p:plaintext) = {

var c;
c ← O.enc(p);
Mem.log[c] ← p;
return c;

}
proc dec(c:ciphertext) = {

return Mem.log[c];
}}.

Finally, the construction of an IND-
CCA adversary is named CPA_CCA_Adv.

module CPA_CCA_Adv
(A:CCA_Adv, O:CPA_Oracles) = {

proc main () = {
var b;
CPA_CCA_Orcls(O).init();
b ← A(CPA_CCA_Orcls(O)).main();
return b;

}}.
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7.3.1 IND-CCA from IND-CPA and INT-CTXT

The game IND-CPA is equivalent to IND-CCA when the decryption procedure always
answers None. Therefore, when in IND-CCA the adversary asks for a decryption query that
is correctly decrypted (and was not an output from the encryption oracle), this event dis-

tinguishes IND-CPA from IND-CCA. This distinguishing event is exactly what INT-CTXT ac-
counts for. This means that the IND-CCA advantage is bounded by the IND-CPA advantage
plus the INT-CTXT advantage, as first stated in [Bellare and Namprempre, 2000].

Theorem 7.3.1. For all IND-CCA adversary A , its IND-CCA advantage is bounded by the

IND-CPA advantage of CPA_CCA_Adv(A ) plus the INT-CTXT advantage of C (A ):

Advind−cca
E (A )≤ Adv

ind−cpa
E (CPA_CCA_Adv(A )) +Advint−ctxt

E (C (A ))

when the adversary C (A )O is defined as the simulation of the game IND-CCA withA and O,

and outputs the result of the game.

Proof. The proof is a simple application of a failure event: the forgery of a valid decryption.
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Furthermore, this remains true for more general games than IND-CPA and IND-
CCA, that plays two rounds challenge and guess. We name them CCA and CPA, that
use the module Mem from Section 7.3. The main difference between those games is
the module type of the adversary that differs in the procedures allowed.

module type CCA_Adv (O: CCA_Oracles) = {
proc main () : bool { O.enc O.dec }

}.
module CCA (A : CCA_Adv, E : Enc) = {

proc game () : bool = {
var b;
Mem(E).init();
b ← A(Mem(E)).main();
return b;

}}.

module type CPA_Adv (O: CCA_Oracles) = {
proc main () : bool { O.enc }

}.
module CPA (A : CPA_Adv, E : Enc) = {

proc game () : bool = {
var b;
Mem(E).init();
b ← A(Mem(E)).main();
return b;

}}.
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Theorem 7.3.2. For all CCA adversary A , its CCA probability is bounded by the CPA proba-

bility of CPA_CCA_Adv(A ) plus the INT-CTXT advantage ofA .

Pr[b← CCA(A , E).game() : b= 1]

≤Pr[b← CPA(CPA_CCA_Adv(A ), E).game() : b= 1] +Advint−ctxt
E (A )

Proof. The proof is a simple application of a failure event: the forgery of a valid decryption.

7.3.2 Ideal Encryption Scheme

The encryption scheme described in the next chapter in a nonce-based AEAD scheme
[Rogaway, 2004b]. This means that the user supplies not only a symmetric key k, the mes-
sage m, and associated data a, but also a nonce n. The concept of a nonce is something that
takes on a new value with every message one encrypts. This idea was introduced (partly)
in order to randomize the encryption of the same message over time.

The module we name Ideal is the unrealistic module that captures this idea that every
fresh encryption query will output a truly random ciphertext, and every non-encrypted ci-
phertext will never be authenticated and decrypted. The IND-CPA, IND-CCA and INT-CTXT
advantages of this “scheme” are proven to be equal to 0:

∀A , Pr[b← IND_CPA(A , Ideal).game() : b= 1] =
1
2

∀A , Pr[b← IND_CCA(A , Ideal).game() : b= 1] =
1
2

∀A , Advint−ctxt
Ideal

(A ) = 0

Therefore, any nonce-based AEAD scheme that is indistinguishable from Ideal, is IND-
CPA, IND-CCA and INT-CTXT secure, under some nonce-respecting condition expressed in
further details in Chapter 8.
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In the case of an encryption scheme
that operates on a message space that
can be interpreted as the set of lists of
bytes, the Ideal scheme ressembles to the
following.

The decryption always answers
None, and the encryption outputs a list
of random bytes that has the same over-
all size as the plaintext given as input,
and a random tag.

type key, nonce, associated_data, tag, block,
byte.

type ad = associated_data.
type message = byte list.
type bytes = byte list.
type plaintext =

nonce ∗ associated_data ∗ message.
type ciphertext =

nonce ∗ associated_data ∗ message ∗ tag.

op bytes_of_block : block → byte list.
op dtag : tag distr.
op dblock : block distr.

module Ideal : Enc = {
proc key_gen () : key = { return witness; }
proc cc(n:nonce, p:message) : bytes = {

var z, c;
p ← List.map (fun _ ⇒ witness<:byte>) p;
c ← [];
while (p 6= []) {

z
$
←− dblock;

c ←
c ++ take (size p) (bytes_of_block z);

p ← drop block_size p;
}
return c;

}
proc enc (k: key, nap : plaintext)

: ciphertext = {
var n, a, p, c, t;
(n,a,p) ← nap;
c ← cc(n,p);

t
$
←− dtag;

return (n,a,c,t);
}
proc dec (_: key ∗ ciphertext)

: plaintext option = {
return None;

}}.
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Figure 7.1 – Representation of the encryption of Ideal.





Chapter 8

ChaCha20-Poly1305’s Formal Proof

The Internet Engineering Task Force (IETF) is an open standard organization, which
develops and promotes voluntary Internet standards, in particular the standards that com-
prise the Internet protocol suite (TCP/IP). Due to concern over the reliance of existing IETF
protocols on AES and the risk that advances in the cryptanalysis of AES could leave users
without a good choice for a symmetric cryptographic primitive, there has been a proposal
to the CFRG (Crypto Forum Research Group of the Internet Research Task Force (IRTF)) to
consider a combination of ChaCha20 and Poly1305 for inclusion in future IETF protocols
[Nir and Langley, 2015].

A similar concern led to the SHA-3 competition; improvements to attacks against
SHA-1 [Stevens et al., 2017, Leurent and Peyrin, 2019] lead NIST to transition to the
SHA-2 family of hash functions and to announce the SHA-3 competition, with the aim
of choosing an alternative hash function to SHA-2, so that it improves the robustness
of NIST overall hash algorithm toolkit’ [Kayser, 2007].

Remark

Furthermore, ChaCha20 [Bernstein, 2008a] and Poly1305 [Bernstein, 2005] have both
been designed for high performance in software implementations. They typically admit a
compact implementation that uses few resources and inexpensive operations, which makes
them suitable on a wide range of architectures. They have also been designed to minimize
leakage of information through side-channels. Some attacks [Al Fardan and Paterson, 2013]
used the particularities of the CBC-mode cipher suites in TLS, as well as issues with the only
supported stream cipher RC4 [Isobe et al., 2013]. While the existing AEAD cipher suites
—based on AES-GCM [McGrew and Viega, 2004a], whose security proof was flawed and
repaired in [Iwata et al., 2012]— address some of these issues, there are concerns about
their performance and ease of software implementation.

Therefore, a new stream cipher to replace RC4 and address all the previous issues has
been proposed. The construction named ChaCha20-Poly1305 [Langley et al., 2016] aims
to provide a secure stream cipher for TLS [Nir and Langley, 2015] that is comparable to
RC4 in speed on a wide range of platforms and can be implemented easily without being
vulnerable to software side-channel attacks. Indeed, in [Almeida et al., 2019a], Almeida et
al. proposed a fast implementation of ChaCha20-Poly1305 that is resistant to some side-
channel attacks. My contribution is to provide a IND-CCA security proof of the AEAD scheme
that is functionally equivalent to the one implemented in [Almeida et al., 2019a].
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8.1 Description of ChaCha20-Poly1305

The confidentiality of the AEAD scheme is provided by ChaCha20 [Bernstein, 2008a], a
stream cipher based on the Salsa family [Bernstein, 2008b]. The encryption ressembles the
counter mode of operation for which the block cipher is replaced by a PRF with signature
CC : {0, 1}256 × {0, 1}128→ {0, 1}512, i.e. 32-byte key, 16-byte input, and 64-byte output.

As opposed to a MAC scheme, the data intregrity is provided by a one-time authenticator

named Poly1305, meaning that keys should only be used once. Poly1305 is a universal hash
function based on polynomial evaluation [Carter and Wegman, 1977, Bernstein, 2005].
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1‖n
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. . .
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cm

m+ 1‖n
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a c len(a) len(c)
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+

tEnck(n,a,m) = (n,a, c, t)

Figure 8.1 – Representation of the encryption algorithm of ChaCha20-Poly1305.

As represented in Figure 8.1, the counter mode for ChaCha20 is used with the initial
counter 1, instead of the usual counter 0 which is used for the single use authentication
key for Poly1305. The polynomial to be evaluated for Poly1305 is an interpretation of the
composition of the associated data and ciphertext as a sequence of polynomial coefficients:
integers modulo 2130 − 5. This polynomial is evaluated in F2130−5 at the key r ∈ {0, 1}128:
the first 128-bits of the ChaCha20 block derivation with the counter 0. The final tag of the
AEAD scheme is the addition modulo 2128 of the polynomial evaluation’s output plus the
next 128-bits of the same ChaCha20 block derivation with the counter 0. The decryption
algorithm is analogous to the encryption, with a check on the validity of the tag.

In the following, CC refers to the function described in the standard ChaCha20 that
given a ChaCha20 key ({0, 1}256), a nonce ({0, 1}96) and a counter ({0, 1}32) outputs
a block ({0, 1}512). The computation of c from m, the nonce N and the ChaCha20 key
is called ChaCha (parametrized by the underlying CC function), whereas the authenti-
cated encryption scheme — also parametrized by the CC function — is called CCPoly.

EasyCrypt
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The formalization of the formal se-
curity proof of ChaCha20-Poly1305 is
based on a general finite type named
byte that represents what is commonly
called with the same name.

We give here a simplified version,
since the objective is not to argue that
this is a strong formalization, but to ex-
plain as clearly as possible our formal se-
curity proof.

type key, nonce, byte, tag, associated_data,
block, polynomial, poly_key.

type message = byte list.
type plaintext =

nonce ∗ associated data ∗ message.
type ciphertext =

nonce ∗ associated data ∗ message ∗ tag.
op dkey : key distr.
op dtag : tag distr.
op dpoly_key : poly_key distr.
op bytes_of_block : block → byte list.
op extend : message → block.
op (+^) : block → block → block.
op block_size : int.
op parse_block : block → poly_key ∗ tag.
op topol : associated_data → message → polynomial.
op eval_poly : poly_key → polynomial → tag.
op (+) : tag → tag → tag.
theory C.

type counter.
op ofint : int → counter.

end C.
module type CC = {

proc cc (k:key, n:nonce, c: C.counter) : block
}.
module type FCC = {

proc ∗ init () : unit
include CC

}.

module ChaCha(CC:CC) = {
proc enc(k:key, n:nonce, p:message)

: message = {
var z, c, l;
c ← [];
while (p 6= []) {

z ← CC.cc(k, n, C.ofint i);
l ← bytes_of_block (extend p +^ z);
c ← c ++ take (size p) l;
p ← drop block_size p;

}
return c;

}
}.

module CCPoly (CC : CC) : Encryption = {
proc keygen () : key = {

var k;

k
$
←− dkey;

return k;
}
proc enc (k : key, nap : plaintext) = {

var n, a, p, c, b, r, s, t;
(n,a,p) ← nap;
c ← ChaCha(CC).enc(k,n,p);
b ← CC.cc(k,n,C.ofint 0);
(r,s) ← parse_block b;
t ← (eval_poly r (topol a c)) + s;
return (n,a,c,t);

}
proc dec (k : key, nact : ciphertext) = {

var n, a, c, t, b, r, s, p, ret;
(n,a,c,t) ← nact;
b ← CC.cc(k,n,C.ofint 0);
(r,s) ← parse_block b;
if (t = (eval_poly r (topol a c)) + s) {

p ← ChaCha(CC).enc(k,n,c);
ret ← Some p;

} else { ret ← None; }
return ret;

}
}.

The formal proof may be found (as of December 15, 2020) in the branch deploy− chachapoly

in the GitHub repository at https://github.com/EasyCrypt/easycrypt.git.

8.2 Security of ChaCha20-Poly1305

This work extends the work of [Almeida et al., 2019a] in which Almeida et al. present an
optimized implementation of ChaCha20 and Poly1305. Their work uses EasyCrypt to prove
in particular the functional correctness of their implementation according to the reference.

ChaCha20-Poly1305 is a slightly modified version of Encrypt-then-MAC with the schemes
ChaCha20 and Poly1305. In [Bellare and Namprempre, 2000], the security proof of Encrypt-
then-MAC assumes the keys of the cipher and MAC scheme to be sampled independently.
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In Chacha20&Poly1305, since the key of Poly1305 is derived from ChaCha20, Bellare and
Namprempre’s proof cannot be applied in this setting.

In [Procter, 2014], Procter proposes a simple security reduction for ChaCha20-Poly1305
in the nonce-respecting adversarial model. In the effort to formalize their proof, we noticed
that some reasoning flaws and corrected them in our proof. We first present the nonce-
respecting adversarial model, then we state our verified security bound and present our
formal security proof.

8.2.1 Adversarial Model

The security proof of ChaCha20-Poly1305 is placed in the nonce-respecting adversarial
model. This means that the adversary respects the uniqueness of nonces in its encryption
queries. Moreover, there is no restriction on nonces asked with decryption queries.

Along with the formalization in EasyCrypt of a nonce-respecting adversary, we include
bounds in the number of oracle queries it can make: at most qe encryption queries and at
most qd decryption queries.

We formalize this adversarial model by restricting oracle access using a module
named BNR (Bounded Nonce-Respecting) which provide an interface that restricts or-
acle calls from the adversary. A bounded nonce-respecting adversary is formalized
using the module BNR_Adv.

op check_plaintext (lenc:nonce list) (p:plaintext) =
let (n, a, m) = p in ¬ n ∈ lenc ∧ valid_topol a m ∧ size lenc < qenc.

op check_cipher (ndec:int) (c:ciphertext) =
let (n, a, m, t) = c in valid_topol a m ∧ ndec < qdec.

The variable BNR.lenc is the list of
all nonces already queried by the ad-
versary and it encodes both nonce re-
specting and the number of encryption
queries. The variable BNR.ndec encodes
the number of decryption queries.
module BNR (O:CCA_Oracles) = {

var lenc : nonce list
var ndec : int
proc init () = { lenc ← []; ndec ← 0; }
proc enc (p:plaintext) = {

var c ← witness;
if (check_plaintext lenc p) {

c ← O.enc(p);
lenc ← p.`1 :: lenc;

}
return c;

}

proc dec (c:ciphertext) = {
var p ← None;
if (check_cipher ndec c) {

p ← O.dec(c);
ndec ← ndec + 1;

}
return p;

}}.

module BNR_Adv(A:CCA_Adv,
O:CCA_Oracles) = {

proc main() = {
var b;
BNR(O).init();
b ← A(BNR(O)).main();
return b;

}}.
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8.2.2 Security Statement

The AEAD scheme named ChaCha20-Poly1305 is secure under the assumption that the
ChaCha20 function is indistinguishable from a random function when the ChaCha20 key
is randomly sampled and kept secret. A few papers have attacked reduced round versions
for ChaCha20 (e.g. [Aumasson et al., 2008, Ishiguro, 2012, Shi et al., 2012]). This analysis
has not contradicted the security assumption about the PRF security of the full round version
for ChaCha20.

Theorem 8.2.1. For any nonce-respecting adversaryA making at most qd decryption queries

and at most qe encryption queries, its advantage in CCA to distinguish ChaCha20-Poly1305

from Ideal is bounded by a small probability plus the distinguishing advantage of B(A ) be-

tween CC and a random function $, where the algorithm B(A )O runs once A CCPoly(O) and

outputs the same result.

Advdist
CCPoly(CC),Ideal

(A )≤ qd ·max(p0, p1) + qd · p1 +Advdist
CC,$(B(A ))

Let L be the maximum byte length of messages, when we instantiate all the specifications
of the standard ChaCha20-Poly1305: p0 = 2−128 and p1 =

8⌈L/16⌉
2106 .

8.3 Security Proof

First Step - Security Assumption - ChaCha20 is a PRF

The first step of the security proof is to transform ChaCha20-Poly1305 into the same
construction built upon a random function instead of CC. This transformation introduces
a particular instance of an adversary playing the game to distinguish CC (when the key is
sampled randomly) from a truly random function PRF. Therefore, the security of the scheme
ChaCha20-Poly1305 relies on the indistinguishability of CC from a random function.

Advdist
CCPoly(CC),Ideal

(A ) ≤ Advdist
CCPoly(CC),CCPoly(PRF)

(A ) +Advdist
CCPoly(PRF),Ideal

(A )

= Advdist
CC,PRF

(B(A )) +Advdist
CCPoly(PRF),Ideal

(A )

HereB(A )O is defined as the algorithm that, given O, returns the output ofA CCPoly(O).

Second Step - IND-CCA from IND-CPA and INT-CTXT

The second step is the application of the general lemma 7.3.2 that states that any prob-
ability of a CCA game can be bound by the probability of a CPA game plus the INT-CTXT
advantage with the same AE scheme.

Advdist
CCPoly(PRF),Ideal

(A ) = |Pr[b← CCA(A ,CCPoly(PRF)) : b]− Pr[b← CCA(A , Ideal) : b]|

≤ |Pr[b← CPA(CPA_CCA_Adv(A ),CCPoly(PRF)) : b]

− Pr[b← CCA(A , Ideal) : b]|+Advint−ctxt
CCPoly(PRF)

(A )

The third step modifies the calls to PRF in CCPoly(PRF), in both the games CPA and
INT-CTXT. In CPA, the final goal is to prove that CCPoly(PRF) is equivalent to Ideal under
the assumption that the adversary is bounded and nonce-respecting. For INT-CTXT, those
manipulations are aimed at bounding the event.
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Third Step - Modifications of PRF

In CPA and INT-CTXT, all decryption queries output None, whether the tag is valid or not.
Therefore, all calls to PRF in the decryption oracle can be delayed in both games without
changing the behavior of the adversary. This first modification is done using the lazy-eager
library described in Section 2.3.2, and has different implications for CPA and INT-CTXT:

— In CPA, calls can be erased, since they do not affect the event of the probability we
are interested in.

— In INT-CTXT, the event of the probability we are interested in is affected by those
calls. This modification also delays the update of the event to after the end of the
interactions with the adversary. This operation is achieved by archiving all decryption
queries in a list when interacting with the adversary, and then afterwards, iterating
on each decryption query to test if the event is triggered for this particular query.

The loop after the interactions with the adversary iterates on each unique nonce
that was asked in a decryption query. This is motivated by the fact that one random
sampling is involved for all decryption queries that share the same nonce: the first is
random, whereas the others are fixed values. When several decryption queries share
the same nonce, we choose to group them into only one iteration.

op get_nonce (x : α ∗ β ∗ γ ∗ 'd) = x.`1.
op same_nonce (a : α ) (x : α ∗ β ∗ γ ∗ 'd) : bool = x.`1 = a.
op compute_s (r : poly_key) (c:ciphertext) = c.`4 − poly_eval r (topol c.`2 c.`3).

local module G1 (A : CCA_Adv) = {
var forged : bool
proc distinguish () = {

var b, ns, i, n, bl, r, s;
forged ← false;
b ← CPA(CPA_CCA_Adv(BNR_Adv(A)),CCPoly(PRF)).main();
if (size Mem.lc ≤ qdec) {

ns ← undup (List.map get_nonce Mem.lc);
i ← 0;
while (i < size ns) {

n ← nth witness ns i;
bl ← PRF.get(n,C.ofint 0);
(r,s) ← parse_block bl;
forged ← forged || s ∈ List.map (compute_s r) (List.filter (same_nonce n) Mem.lc)
i ← i + 1;

}}
return b;

}}.

We have:

Advint−ctxt
CCPoly(PRF)

(A ) = Pr[b← G1(A ).distinguish() : G1.forged]

and

Pr[b← CPA(CPA_CCA_Adv(A ),CCPoly(PRF)) : b] = Pr[b← G1(A ).distinguish() : b]
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The second modification of PRF separates its domain into the encryption domain and the
authentication domain using the library SplitDom described in Section 2.3.3. The random
oracle PRF is split into two random oracles : PRF1 and PRF2, as shown in Figure 8.2.
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Figure 8.2 – Split Dom of PRF

The third modification of PRF transforms the co-domain of PRF1 into three parts : the
r part, the s part, and the non-used part. We use the library SplitCodom (twice) described
in Section 2.3.3, as shown in Figure 8.3 :

1. split the co-domain into the useful part PRFu and the useless part PRF;,

2. split the useful PRFu into PRFr and PRFs.
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Figure 8.3 – Split Codom of PRF1

The last PRF modification erases all calls to PRF;, since its outputs are never used or
shown to the adversary.
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local module G2 (A : CCA_Adv) = {
module O = {

proc keygen = CCPoly(PRF2).keygen
proc enc (k : key, nap : plaintext) = {

var n, a, p, c, t, r, s;
c ← ChaCha(PRF2).enc(k,n,p);
r ← PRFr.get(n,C.ofint 0);
s ← PRFs.get(n,C.ofint 0);
t ← (poly_eval r (topol a c)) + s;
return (n,a,c,t);

}
proc dec (k : key, nact : ciphertext) = { return None; }

}
proc distinguish () = {

var b, ns, i, n, r, s;
G1.forged ← false;
PRFs.init(); PRFr.init(); PRF2.init();
b ← CCA(BNR_Adv(A),O).main();
if (size Mem.lc ≤ qdec) {

ns ← undup (List.map get_nonce Mem.lc);
i ← 0;
while (i < size ns) {

n ← nth witness ns i;
r ← PRFr.get(n,C.ofint 0);
s ← PRFs.get(n,C.ofint 0);
G1.forged ← G1.forged || s ∈ List.map (compute_s r) (List.filter (same_nonce n) Mem.lc)
i ← i + 1;

}}
return b;

}}.

We have:

Advint−ctxt
CCPoly(PRF)

(A ) = Pr[b← G2(A ).distinguish() : G1.forged]

and

Pr[b← CPA(CPA_CCA_Adv(A ),CCPoly(PRF)) : b] = Pr[b← G2(A ).distinguish() : b]

EasyCrypt

Fourth Step - Application of the BNR restriction in CPA

A nonce-respecting adversary may only ask fresh nonces for its encryption queries. There-
fore, in G2 with a BNR adversary, inputs to PRFs,PRF2 are fresh in the encryption oracle,
and calls to those random functions may be replaced by direct random samplings (when we
are only interested in the return value of the adversary, not in the value of G1.forged).

When the encryption oracle is queried in G2, say with input (n,a,p) (the secret key being
hidden to the adversary), each portion of c is computed by xoring the corresponding portion
of p with a uniform random value. Using the bijectivity of the xor operation (⊕), the value
of each portion of c may be directly sampled from the uniform distribution.

Furthermore, the output tag t is computed from the values of r and s which are now
uniform random samplings. Since the function a + · is bijective (for all values of a) and
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the intermediate value s is not revealed to the adversary, the output tag t can be directly
sampled and output to the adversary, without using r.

Both modifications of the computation of the output of the encryption oracle prove that
under the BNR restrictions, both the encryption oracle and decryption oracle of the game
G2 have the same distribution as Ideal in CCA, as represented in Figure 8.4:

Pr[b← CPA(CPA_CCA_Adv(A ),CCPoly(PRF)) : b] =Pr[b← G2(A ).distinguish() : b]

=Pr[b← CCA(A , Ideal) : b]

r s

PRFr $

0‖N

$

m1

c1

. . .
$
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Figure 8.4 – Forth step

We can conclude from this transition that:

Advdist
CCPoly(CC),Ideal

(A )≤Advdist
CC,PRF

(B(A )) + Pr[b← G2(A ).distinguish() : G1.forged]

This transition changes the polynomial used in the computation of the event G1.forged.
Therefore, the application of the BNR restriction cannot replace calls to the random func-
tions by direct random samplings to formally bound the event G1.forged.

Fifth step - Modify G2 to bound G1.forged using the BNR restrictions

To bound the event G1.forged, we need to be more careful about how we use the bijec-
tions and the BNR restrictions. We do not care about calls to PRF2, since they do not appear
in the computation of G1.forged, so they may be replaced by direct random samplings. How-
ever, the calls to PRFr,PRFs cannot be replaced by direct random samplings since their is
no restriction on the nonces asked to the decryption, we cannot ensure that the occurrences
that happen in the loop have fresh inputs or that they remain consistent with oracle outputs.
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The event of finding a polynomial root can be easily bounded when the point of
evaluation is sampled uniformly at random. But, when a decryption query is asked
with a nonce already used in a previous query, the key r of the polynomial is already
set and is not random anymore. Therefore, the probability of the forgery event for this
decryption query can only be bounded by 1 (very far from being negligible).

Generally, this absence of randomness that comes from the BNR adversarial model
(nonce-repeating in decryption queries) is often forgotten, as in [Procter, 2014]. Our
formal analysis has shown this reasoning flaw in their security proof, but this does
not lead to any security issue. Indeed, the technique we use (that is presented in the
following) allows us to bound the INT-CTXT advantage with a similar bound.

Remark

We still want to modify G2 into a game G3 in which all the calls to PRFs,PRFr in G2 are
replaced by random samplings. We need to specify the event(s) in G3 that fully capture the
event G1.forged in G2. We end up with a disjonction of three events that capture more than
the event G1.forged in G2, but since we want an upper bound, this is still relevant.

The first event that we split is for the case when the nonce iterated on (after the inter-
action with the adversary) has not been asked to the encryption oracle. We call G3.e2 the
event that is the conjonction of this case with the event G1.forged.

Left with all the nonces that were asked at some point to the encryption oracle, the event
needs further treatment to be bounded. We want to delay all the calls to PRFr in the encryp-
tion oracle, so that all the calls in the loop have fresh inputs, and then use the probability of
sampling a root of a non-zero polynomial. In order to ensure that all polynomials we test in
G1.forged are non-zero, we ensure that all outputs (n,a, c, t) of the encryption oracle have
never been asked to the decyption oracle by introducing a failure event named G3.e1. The
rest of the event G1.forged that is not covered by G3.e1 or G3.e2 is called G3.e3.

The event G3.e1 is defined as the event in which the tag t computed in an encryption
query in the game G3 is equal to one of the previous inputs for decryption contained
in Mem.lc that share the same nonce.

local module G2 (A : CCA_Adv) = {

module O = { (∗ · · · keygen · · · ∗)
proc enc (k : key, nap : plaintext) = {

(∗ · · · ∗)
r ← PRFr.get(n,C.ofint 0);
s ← PRFs.get(n,C.ofint 0);
t ← (poly_eval r (topol a c)) + s;

return (n,a,c,t);
}
proc dec (∗ · · · ∗)

}

local module G3 (A : CCA_Adv) = {
var e1 : bool
var e2 : bool
var e3 : bool
var log : (nonce,

associated_data ∗ message ∗ tag) fmap
module O = { (∗ · · · keygen · · · ∗)

proc enc (k : key, nap : plaintext) = {
(∗ · · · ∗)

t
$
←− dtag;

e1 ← e1 || t ∈ map get_tag
(List.filter (same_nonce n) Mem.lc);

log[n] ← (a,c,t);
return (n,a,c,t);

}
proc dec (∗ same as G2 ∗)

}

EasyCrypt
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proc distinguish () = {
var b, ns, i, n, r, s;
G1.forged ← false;
PRFs.init(); PRFr.init(); PRF2.init();
b ← CCA(BNR_Adv(A),O).main();
if (size Mem.lc ≤ qdec) {

ns ← undup (List.map get_nonce Mem.lc);
i ← 0;
while (i < size ns) {

n ← nth witness ns i;
r ← PRFr.get(n,C.ofint 0);
s ← PRFs.get(n,C.ofint 0);
G1.forged ← G1.forged ||

s ∈ List.map (compute_s r)
(List.filter (same_nonce n) Mem.lc)

i ← i + 1;
}}
return b;

}}. (∗ end G2 ∗)

proc distinguish () = {
var b, ns, i, n, r, s;
e1 ← false; e2 ← false; e3 ← false;
log ← empty; PRF2.init();
b ← CCA(BNR_Adv(A),O).main();
if (size Mem.lc ≤ qdec) {

ns ← undup (List.map get_nonce Mem.lc);
i ← 0;
while (i < size ns) {

n ← nth witness ns i;
if (n ∈ BNR.lenc) {

r
$
←− dpoly_key;

e3 ← e3 ||
test_poly_key n Mem.lc r (oget log[n])

} else {

r
$
←− dpoly_key;

s
$
←− dtag;

e2 ← e2 || s ∈ map (compute_s r)
(List.filter (same_nonce n) Mem.lc);

}
i ← i + 1;

}}
return b;

}}. (∗ end G3 ∗)

op valid_topol_cipher (c : ciphertext) = valid_topol c.`2 c.`3.
op test_poly_key (n : nonce) (lc : ciphertext list) (r : poly_key)

(amt: associated_data ∗ message ∗ tag) =
let (a,m,t) = amt in

let p = topol a m in

let pts =
List.map (fun (c : ciphertext) ⇒ (topol c.`2 c.`3, c.`4))

(List.filter (same_nonce n) (List.filter valid_topol_cipher lc)) in

valid_topol a m ∧
List.has (fun (pt : polynomial ∗ tag) ⇒

pt.`1 6= p ∧ pt.`2 = t + (poly_eval r pt.`1 − poly_eval r p)) pts.

We have:

Advint−ctxt
CCPoly(PRF)

(A ) =Pr[b← G2(A ).distinguish() : G1.forged]

≤Pr[b← G3(A ).distinguish() : G3.e1]+

Pr[b← G3(A ).distinguish() : G3.e2∨G3.e3]

Let us recall that all values that are added into the list of decryption queries Mem.lc
are checked for not having been answered by the encryption oracle up to this point.
Therefore, the only remaining possibility to trigger G3.e1 is that the encryption query
is asked after the decryption queries. We use the randomness in the encryption oracle
to bound G3.e1 in G3.

Remark
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The event G3.e1 is larger than only ensuring that the tested polynomial in G1.forged

is non-zero. In our formal analysis, we obtain a smaller bound for G3.e1 than for the
disjonction G3.e2∨G3.e3. This is sufficient to conclude of the security of the scheme,
but someone interested in making the bound more accurate may use the randomness
of the parts of c. This would introduce the use of some restriction encryption calls,
whether it is qe or a maximum communication complexity on encryption queries.

Remark

At first, we have bounded those events in a very loose way that have yielded in a
quadratic bound in the number of oracle calls. The short argument is the following. Since
the size of the list Mem.lc is bounded by qd , and there are at most qe calls to trigger G3.e1,
and qd calls to trigger either G3.e2 or G3.e3, we can bound the probability of these event by:

— Pr[b← G3(A ).distinguish() : G3.e1]≤ qeqd · p1,

— Pr[b← G3(A ).distinguish() : G3.e2]≤ q2
d
· p1, and

— Pr[b← G3(A ).distinguish() : G3.e3]≤ q2
d
· p0.

We noticed that each event does not use the full list Mem.lc, but only the part filtered
by the nonce value. Furthermore, a nonce used to trigger each event may not be used to
trigger the same event a second time. Therefore, for each event, each nonce may only
trigger once each event, reducing the quadratic bound to a linear one. The following
explains our argument a little further.

Remark

We choose to bound the events G3.e2 and G3.e3 together. They are located in the loop
that iterates on each unique nonce that appears in Mem.lc, which have a fixed value after
the interaction with the adversary that we name lc. The formula to obtain n from lc and the
iteration counter i is n := nth witness ulc i, where ulc := List.undup (List.map get_nonce lc).
The probability of each iteration to trigger either G3.e2 or G3.e3 is bounded by

size (List.filter (same_nonce n) lc) ·max(p0, p1)

where n is the unique nonce iterated on. We use the fel tactic 1 to bound the event G3.e2∨
G3.e3 by :

Pr[b← G3(A ).distinguish() : G3.e2∨G3.e3]

≤

size ulc−1∑

i=0

size (List.filter (same_nonce n) lc) ·max(p0, p1)

≤max(p0, p1) ·

size ulc−1∑

i=0

size (List.filter (same_nonce n) lc)

We prove that size lc =
∑size ulc−1

i=0 size (List.filter (same_nonce n) lc). Then, using the
bound size lc≤ qd , we can bound the full event G3.e2∨G3.e3 in G3 by:

Pr[b← G3(A ).distinguish() : G3.e2∨G3.e3]≤ qd · max(p0, p1)

1. Refer to the manual of EasyCrypt for more details.
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Sixth step - Bound G3.e1 in G3

We would use the same technique to bound G3.e1, but the list that appears in the expres-
sion of the bound to trigger G3.e1 is not constant. Indeed, the list Mem.lc has no fixed value
during the interation with the adversary, preventing us to use the tactic fel in this context.
Therefore, we use another technique that splits the event G3.e1 into qd parts. The definition
of these parts comes with the game G4.

In the game G4, we build the list
composed of all the couples of tags that
are tested to trigger G3.e1. This list
is named G4.lt and the way it is con-
structed enforces the following invari-
ants. For each element (t, t′) of G4.lt:

— it is associated to a nonce n,

— a decryption query has been
recorded in Mem.lc that contains
both n and t′, and,

— at the end of the encryption, t is
the tag associated to n in G3.log.

local module G4 (A : CCA_Adv) = {
var lt : (tag ∗ tag) list
module O = { (∗ · · · keygen · · · ∗)

proc enc (k : key, nap : plaintext) = {
(∗ · · · ∗)

t
$
←− dtag;

lt ← List.map (fun c ⇒ (t, get_tag c))
(List.filter (same_nonce n) Mem.lc)

return (n,a,c,t);
}
proc dec (∗ same as G3 ∗)

}
proc distinguish () = {

var b, ns, i, n, r, s;
lt ← [];
PRF2.init();
b ← CCA(BNR_Adv(A),O).main();
(∗ the loop is not relevant for G3.e1 ∗)
return b;

}}.

We prove in EasyCrypt that:

Pr[b← G3(A ).distinguish() : G3.e1]

≤Pr
�
b← G4(A ).distinguish() : ∃(t, t′) ∈ G4.lt, t= t′

�

EasyCrypt

Using the invariants of G4, we prove that the size of G4.lt is bounded by qd . Therefore,
we can partition the event ∃(t, t′) ∈ G4.lt, t= t′ into qd parts, where each part is indexed
by 0 ≤ i < qd and says that this event is triggered at the position i of the list. The library
EventPartitioning allows us to use apply this partitioning and obtain the following result:

Pr
�
b← G4(A ).distinguish() : ∃(t, t′) ∈ G4.lt, t= t′

�

≤

qd−1∑

i=0

Pr[b← G4(A ).distinguish() : (nth witness G4.lt i).‘1= (nth witness G4.lt i).‘2]

We have defined another game that only triggers the bad event for the i-th position in
the list. Then we have proven the equivalence of this game and G4 when in relation to this
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event. Then we proved that for all indexes, the probability in this new game to set bad is
bounded by p1:

∀i, Pr[b← G4(A ).distinguish() : (nth witness G4.lt i).‘1= (nth witness G4.lt i).‘2]≤ p1

Finally, we have:

Pr
�
b← G4(A ).distinguish() : ∃(t, t′) ∈ G4.lt, t= t′

�
≤

qd−1∑

i=0

p1 ≤ qd · p1

which concludes the security proof of ChaCha20-Poly1305.



Conclusion

In this thesis, we formalize and prove concrete security bounds for several cryptographic
constructions: a standard MAC scheme named CMAC [Baritel-Ruet et al., 2018], a standard
hash function named SHA-3 [Almeida et al., 2019b], and a standard nonce-based AEAD
scheme named ChaCha20-Poly1305.

For the last two standards, the formal security proof is accompanied by an implementa-
tion [Almeida et al., 2019a, Almeida et al., 2019b] in Jasmin [Almeida et al., 2017] that in-
cludes formal functional correctness, an optimized implementation, and protection against
some side-channel attacks. Even though I did not participate in the Jasmin developments,
this collaboration proposes an approach that not only delivers an optimized version of the
standard that is functionally secure and side-channel resistant but also links the functional
correctness with the formal security proof.

In a related work [Protzenko et al., 2019], Protzenko et al. expose EverCrypt and fast
implementation of a library of cryptographic primitives in C and/or assembly code that in-
cludes functional correctness and side-channel resistance. It is based on F∗ [Swamy et al., 2016]
and HACL∗ [Zinzindohoué et al., 2017] and represents an extensive work. It is an important
step in the direction of high-assurance high-speed cryptography, but the link with formal se-
curity proofs is still missing. The combination of EasyCrypt and Jasmin is (for now) the only
one that provides end-to-end security to implement cryptographic schemes.

Standardization

The final product of the work in this thesis has many advantages for cryptography and
the process of standardization, but its development has some downsides to consider when
such a formalization effort is considered. Computer security is generally about evaluating
the risks versus the cost to deploy a security solution. I do not argue that every user should
use only formally proven cryptographic constructions. My argument is that, in a standard-
ization process, which aims at providing the best cryptosystems in terms of security and/or
efficiency, organizers should consider including a phase in which formal security proofs are
required so that no more cases like OCB2 [Inoue et al., 2019] happen in the future.

To emphasis this argument a little further, in each security proof that we formalized from
an existing pen-and-paper proof, we spotted a few fallacies in the reasoning. They do not
question the overall security of the constructions, since for each, we found another formal
argument to make the security bound hold. However, no construction is free from such a
fallacy to effectively harm its security, unless they are formally verified.

Indeed, once a formal security proof is provided, all reasoning steps have been carefully



128 Conclusion

described and related to simple axioms and local security assumptions. There is no leap of
faith to convince of the correctness of a formal security proof, except for the correctness of
the proof assistant itself. In my point of view, the level of detail and the verification provided
by the tool both increase the trustworthiness of security proof that are formalized.

Furthermore, the verification provided by the proof assistant allows the costs of veri-
fying each reasoning to be offloaded. This cognitive discharge allows scientific reviewers
to redirect their attention from checking the accuracy of evidence to the definitions of se-
curity, from adversarial models and security assumptions. Since cognitive effort is limited,
this improves the quality of criticism, which in turn improves the quality of the peer-review
process. In the long term, security proofs will hopefully be more critical, more accurate and
more practical for real-world applications.

The high value of formal proofs of security must be mitigated because the cost of the
formalization effort is also high. The time and work needed to formalize and prove the se-
curity of a cryptographic construction are much more expensive than for its pen-and-paper
equivalent, even for an expert. The EasyCrypt user needs to know how to communicate to
the proof assistant the properties he needs to prove and how he is going to do it. Such work
requires the understanding and mastery of both cryptography and formal proofs, two dif-
ferent high-level fields in each of which a research career is commonplace. The lack of such
experts in both fields is one of the challenges of producing libraries composed exclusively
of formally secure cryptographic implementations.

Perspectives

EasyCrypt is very expressive in terms of the results it can prove. It should be possible
to extend the domain of applications of EasyCrypt, e.g. post-quantum cryptography, and
to model stronger security properties, e.g. other side-channel resistances. Its application
domain is not restricted to cryptography or computer security and may include the study of
more general randomized algorithms, provided that the cost of formalization is worth the
effort. Indeed, formalization effort remains an issue and future work may also include the
reduction of its cost, e.g. by including more automation in EasyCrypt.

For the implementation of cryptographic standards, the link between formal security
proofs and secure fast implementation that includes formal functional security and resis-
tance against side-channel attacks should be encouraged and reinforced. A first approach
has been implemented using EasyCrypt and Jasmin, and future work may extend each
framework, their link, or may introduce alternatives.
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