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Titre : Preuves Formelles de la Sécurité de Standards Cryptographiques

Résumé :

En cryptographie, Shannon a montré que le secret parfait n’existe pas. Ainsi, la cryp-
tographie moderne considere des propriétés de sécurité dans lesquelles un attaquant peut
briser I'algorithme cryptographique mais seulement avec une faible probabilité. Dans ce
contexte, les algorithmes cryptographiques et les propriétés/hypothéses de sécurité sont ex-
primés sous forme de programmes probabilistes. Les preuves de sécurité consistent a borner
la probabilité d'un événement dans de tels programmes. Ces preuves sont difficiles a prou-
ver et malgré le systeme de relecture académique des erreurs continuent d’étre publiées.
Nous proposons 'utilisation des preuves formelles pour assurer une fiabilité suffisante des
standards cryptographiques.

Ma these fournit les preuves formelles de sécurité de trois standards dans 'assistant de
preuve EasyCrypt. Ces schémas sont CMAC (qui fournit 'authentification et I'intégrité des
messages), SHA-3 (une fonction de hachage cryptographique), et ChaCha20-Poly1305 (un
schéma de chiffrement authentifié avec données associées). L'objectif de la thése n’est pas
seulement de formaliser la preuve de sécurité de ces standards, mais aussi de développer
des techniques génériques et des bibliothéques qui peuvent étre réutilisées. Toutefois, les
preuves formelles de sécurité n’assurent que la sécurité des algorithmes et non de leurs
implémentations. Pour contourner cette lacune, avec mes collaborateurs, nous lions formel-
lement nos implémentations stires et efficaces avec la preuve de sécurité, ceci conduit a la
premiere preuve de sécurité cryptographique d’implémentations.

Mots clés : Cryptographie, Standards, Sécurité prouvable, EasyCrypt, Preuve formelle,
CMAC, SHA-3, ChaCha20-Poly1305.
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Title: Formal Security Proofs of Cryptographic Standards

Abstract:

In cryptography, Shannon showed that perfect secrecy does not exist. Thus, modern
cryptography considers security properties in which attackers may break the cryptographic
algorithm only with a small (negligible) probability. In this context, cryptographic algo-
rithms and security properties/assumptions are expressed as probabilistic programs. Secu-
rity proofs consist of bounding the probability of an event in such programs. Such proofs
have been peer-reviewed for some decades, but since they are difficult to prove and to verify,
fallacies keep emerging. We propose to use formal proofs to provide enough trustworthiness
for crypto-systems such as cryptographic standards.

My thesis provides the formal security proofs of three standards that are formally verified
using the proof assistant EasyCrypt. The cryptographic standards I have worked on are
CMAC (that provides message authentication and integrity), SHA-3 (a cryptographic hash
function), and ChaCha20-Poly1305 (an authenticated encryption scheme with associated
data). The goal of the thesis is not only to provide formal proof of those standards, but also
to develop generic techniques and libraries that can be reused. However, the formal security
proofs only ensure the security of the algorithms and not its implementation. To circumvent
this gap, with my collaborators, we have developed fast and secure implementations of
the last two schemes that are also side-channel resistant. Furthermore, we formally link
the implementation with the security proof, leading to the first formal security proof of an
implementated standard.

Keywords: Cryptography, Standards, Provable security, EasyCrypt, Formal proof, CMAC,
SHA-3, ChaCha20-Poly1305.
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Introduction

Whenever I speak about my PhD in a non-expert context, I start talking about com-
puter security and I get simple but meaningful questions that resemble to: “Are you actually
breaking into software to exploit vulnerabilities ?”, “Do you know about this threatening
vulnerability X ?”, or “Which anti-virus should I install to protect my data ?”. This kind of
questions belongs to one particular field of computer security where the focus is on breaking
security, while I work in the field where the focus is on ensuring security.

In computer networks, data flows from places to places. Some of the data is sensitive
and attackers like hackers or spies want to find an access through vulnerabilities of the data
flow. The objective of computer security is to analyze the flow of data, to find vulnerabilities
and place barriers to prevent intruders from accessing it. Some of those barriers come from
cryptography and my work is to analyze the “robustness” of some particular barriers.

Cryptography prior to the modern age was actually synonymous with encryption, the
conversion of information from a readable meaningful state to apparent nonsense. The orig-
inator of an encrypted message shares the decoding technique (the encryption and decryption
algorithms and the secret key) only with intended recipients to preclude access from adver-
saries. Because the adversary cannot understand and know the content of the encrypted
message, this is one way of how the barriers are implemented.

There are two ways to ensure security, either the secrecy depends on hiding both the
algorithm and the secret key, or the algorithm is known to the adversary and only the secret
key needs to be hidden. History has shown that the first one is not practical, and leads to
greater security flows, as the amount of secret data to keep the secrecy is much larger if the
algorithm is included. This was first explicitly stated as a fundamental principle in 1883 by
Auguste Kerckhoffs [Kerckhoffs, 1883] and is generally called Kerckhoffs’s Principle; alter-
natively and more bluntly, it was restated by Claude Shannon, the inventor of information
theory and the fundamentals of theoretical cryptography in [Shannon, 1949]:

The enemy knows the system.

Since the development of rotor cipher machines in World War I and the advent of com-
puters in World War II, the methods used to carry out cryptology have become increas-
ingly complex and its application more widespread. In recent decades, the field has ex-
panded beyond confidentiality concerns to include techniques for message integrity check-
ing, sender/receiver identity authentication, digital signatures, interactive zero-knowledge
proofs and secure computation, among others, as shown in Figure 1.

Modern cryptography is heavily based on mathematical theory and computer science
practice. Cryptographic algorithms, or more generally cryptosystems, are based on mathe-
matical problems that are easy to state but have been found difficult to solve. If one can
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Figure 1 — Cryptography: a field composed of various security goals and techniques

reduce any adversary that efficiently breaks a cryptosystem into an efficient solution to a
hard mathematical problem, this means that breaking this cryptosystem is harder than find-
ing an efficient solution to this hard mathematical problem. This reasoning pattern is called
a security reduction proof (or reduction, or security proof) and is instrumental in the modern
approach to cryptography: provable security [Katz and Lindell, 2014].

We use a mathematical method for the basis of our work that includes the reduction of
the number of concepts, for instance by reducing the number of actors, the form of attacks,
and using probabilities. This approach makes explicit a simple model and is well accepted
in the community. For instance, the standardization institute NIST recommends: « The
review of technical merit includes a precise, formal statement of security claims, based on
minimal security assumptions and supported as far as possible by documented cryptanalysis
and security reduction proofs. » (NIST Cryptographic Standards and Guidelines Development
Process [Regenscheid, 2016])

Provable Security

Traditionally, provable security is asymptotic: it classifies the hardness of computational
problems using polynomial-time reducibility. Secure schemes are defined to be those in
which the advantage of any computationally bounded adversary to break the cryptosystem
is negligible. While such a theoretical guarantee is important, in practice one needs to know
exactly how efficient a reduction is because of the need to instantiate the security parameter
(e.g. key length). It is not enough to know that "sufficiently large" security parameters will



do. An inefficient reduction results either in the success probability for the adversary or the
resource requirement of the scheme being greater than desired.

Concrete security is a practice-oriented approach [Bellare, 1997] that needs a more pre-
cise estimate of the computational complexity of adversarial tasks than polynomial equiva-
lence would allow. Concrete security aims at quantifying an upper bound on the probability
of any adversary to break the system studied. More precisely, a proof of security involves
an upper bound on the advantage of the adversary to break the system as a function of
adversarial resources and of the problem size. The resource available to the adversary are
commonly running time and memory, and other resources specific to the system in question,
such as the number of plaintexts it can obtain or the number of queries it can make to any
available oracle. The problem size usually is the size of the key, but it can also include the
size of blocks when blocks are defined in the system.

There are several lines of research in provable security. One is to establish the "cor-
rect" definition of security for a given, intuitively understood task. Another is to suggest
possible solutions: cryptographic constructions and their security proofs. The cryptography
community is confronted to the difficulty to produce correct proofs. Several researchers
found mathematical fallacies in proofs; proofs that had been used to make claims about the
security of important protocols. This is illustrated in the list below where the name of a
cryptosystem is followed by the initial paper when it was claimed to be proven secure then
by the reference in which the first fallacy was reported. For some of those constructions,
successive corrections were also shown to be defective.

— OAEP [Bellare and Rogaway, 1994] [Shoup, 2002];

— HMQV [Krawczyk, 2005] [Menezes, 2007 ];

— CBC-MAC and EMAC [Bellare et al., 2005] [Jha and Nandi, 2016];
— Boneh-Franklin IBE [Boneh and Franklin, 2003] [Galindo, 2005];
— GCM [McGrew and Viega, 2004b] [Iwata et al., 2012];

— XLS [Ristenpart and Rogaway, 2007] [Nandi, 2014];

— RSA screening [Bellare et al., 1998b] [Coron and Naccache, 1999];
— XCB [McGrew and Fluhrer, 2007] [Chakraborty et al., 2015];

— Cascade encryption [Bellare and Rogaway, 2006] [Gazi and Maurer, 2009];
— RSA-FDH [Coron, 2002] [Kakvi and Kiltz, 2012];

— OCB2 [Rogaway, 2004a] [Inoue et al., 2019].

The scientific community thinks that for any claim the claimer should be the one to pro-
duce enough non-fallacious material to convince of the correctness of its logical arguments.
The referring process is here to ensure that no wrong proof is accepted. However, the list
above shows that this is not enough. Delegating the verification of a proof’s correctness to
a computer is a way to answer this issue. This is my second field of expertise which is part
of the larger field of formal verification.

Formal Verification

The verification of a mathematical proof is a tedious work, and as a lot of tedious works,
this can be eased by the use of machines. This is well explained by Thomas C. Hales in his
advocacy for formal proofs [Hales, 2008]:



4 Introduction

Traditional mathematical proofs are written in a way to make them easily un-
derstood by mathematicians. Routine logical steps are omitted. An enormous
amount of context is assumed on the part of the reader. Proofs, especially in
topology and geometry, rely on intuitive arguments in situations where a trained
mathematician would be capable of translating those intuitive arguments into a
more rigorous argument.

A formal proof is a proof in which every logical inference has been checked all
the way back to the fundamental axioms of mathematics. All the intermediate
logical steps are supplied, without exception. No appeal is made to intuition,
even if the translation from intuition to logic is routine. Thus, a formal proof is
less intuitive, and yet less susceptible to logical errors.

Formal verification involves the use of logical and computational methods to establish
claims that are expressed in precise mathematical terms. These can include ordinary mathe-
matical theorems, as well as claims that pieces of hardware or software, network protocols,
and mechanical and hybrid systems meet their specifications (expected behavior defined by
a mathematical property). Formal verification requires describing hardware and software
systems in mathematical terms, at which point establishing claims about their correctness
becomes a form of theorem proving.

Interactive theorem proving focuses on the verification aspect of theorem proving requir-
ing that every claim is supported by a proof in a suitable axiomatic foundation. This sets a
very high standard: every rule of inference and every step of a calculation has to be justified
by appealing to prior definitions and theorems, all the way down to basic axioms and rules.
HOL [Gordon, 1988], Isabelle [Paulson, 1994], PVS [Owre et al., 1992], Coq [Coq, 1984]
and Lean [Lea, 2012] are some of the most well-known interactive theorem provers, also
known as proof assistants.

Without minimizing nor dismissing their respective strengths, they primary work on
mathematical proofs and aim to reduce towards a minimum its axiomatic basis. My work in-
volves the game-based technique of provable security, a feature that is included in EasyCrypt,
a proof assistant introduced as a proof of concept to address the problem of the security of
OAEP [Barthe et al., 2011b]. It implements a model in which the game-based technique
and distributions (probabilities) set up an interactive theorem prover for the formalization
of concrete security bounds. I will describe EasyCrypt along with the methodology used for
security proofs in detail in the next part.

Cryptographers have the intuition of why a system is secure, but translating this intuition
into formal logical steps is a long and tedious work and requires expertise in both cryptogra-
phy and formal verification. Deductive verification has the disadvantage that it requires the
user to understand in detail how the system works exactly, and to convey this information
to the verification system. There exist a lot of cryptographic constructions and not so many
cryptographers are also versed into formal verification.

Contributions

My work aims at extending the number of formally proven secure schemes with two
objectives in mind:

1. for the sake of verifying concrete security bounds of cryptographic standards,

2. to extend the proof of concept into a proof of usability, so that formal verification with
EasyCrypt may be included in the process of standardization.



This extension includes the formalization of the security proof of three different cryp-
tographic standards, each of them answering a different security requirement. Because of
the downsides of formalization efforts, we have intentionally prioritized cryptographic stan-
dards. Those standards are from either NIST, or the IETF (Internet Engineering Task Force).

My first contribution is the study of the formal security bound of a standard MAC (mes-
sage authentication code) scheme named CMAC [Baritel-Ruet et al., 2018].

My second contribution is part of a joint work to produce a fast and secure implemen-
tation of a standard hash function named SHA-3 [Almeida et al., 2019b]. My personal con-
tribution on this is situated in the formal security bound.

The third contribution presented in my manuscript is the study of the formal security
bound of an authenticated symmetric encryption scheme named ChaCha20-Poly1305. This
last work has not been published yet.

Organization of this thesis

Part I explains the scientific methodology and is composed of two chapters.

— Chapter 1 explains in more details practice-oriented provable security, and the limits
and controversies of provable security.

— Chapter 2 exposes EasyCrypt.

Part II explores the notion of message authentication with the study of the security of one
standardized MAC scheme and is composed of two chapters.

— Chapter 3 explains what message authentication actually means and state the formal
security definition of a MAC scheme.

— Chapter 4 explains the security proof of the standardized MAC scheme named CMAC.

Part III explores the notion of cryptographic hash function with the study of the security of
one standardized hash function and is composed of two chapters.

— Chapter 5 states the formal security definition of a cryptographic hash function.
— Chapter 6 explains the security proof of the standardized hash function named SHA-3.

Part IV explores the notion of authenticated encryption with the study of the security of an
authenticated encryption and is composed of two chapters.

— Chapter 7 states the formal security definition of an authenticated encryption.

— Chapter 8 explains the security proof of ChaCha20-Poly1305, an authenticated en-
cryption scheme.






Part 1

Methodology






Chapter 1

Practice-Oriented Provable Security

The security of a service is its ability to be resilient against potential risks. In providing
a service, the goal is to maximize its usefulness while minimizing the risks associated with
its use. This balance between risk and efficiency is essential in IT security. However, this is
not up to cryptographers to provide such a balance in the use of a cryptosystem, but rather
the “architect” of the service. Instead, the responsibility of the cryptographers is to provide
sufficient analytical material to the “architect” so that the choice on which cryptosystems
and their parameters should be based on an informed one.

The choice of such a cryptosystem can be guided by the fact that the longer the cryptosys-
tem remains unattacked, the more secure it is believed to be. Before modern cryptography,
the common practice was to find a particular attack on a cryptographic scheme, then update
the scheme, and do it again (and again). This practice is tantamount to playing the cat and
mouse game and reveals an empirical approach that is not sufficiently relevant for computer
risk management. On the other hand, the scientific approach of provable security refers to
mathematically proven security properties that quantify on all attacking strategies.

-@’-Remark
This paradigm shift in cryptography — from empirical to mathematically proven
— was first introduced for public-key signature and encryption. The security of the
famous public-key encryption RSA [Rivest et al., 1983] relies on the fact that any ef-
ficient adversary that can break the security of RSA can be turned into an efficient
algorithm for factoring the product of two large random numbers, which is assumed
to be a hard mathematical problem.

In his 1998 survey article, Why chosen ciphertext security matters [ Shoup, 1998], Shoup
explained the rationale for attaching great importance to reductionist security arguments:

This is the preferred approach of modern, mathematical cryptography. Here,
one shows with mathematical rigor that any attacker that can break the cryp-
tosystem can be transformed into an efficient program to solve the underlying
well-studied problem (e.g., factoring large numbers) that is widely believed to
be very hard. Turning this logic around: if the hardness assumption is correct as
presumed, the cryptosystem is secure. This approach is about the best we can
do. If we can prove security in this way, then we essentially rule out all possible
shortcuts, even ones we have not yet even imagined. The only way to attack the
cryptosystem is a full-frontal attack on the underlying hard problem. Period.
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Classical provable safety is mainly aimed at studying the asymptotic relationship be-
tween objects. Secure schemes are then defined as those in which any algorithm capable of
breaking the cryptographic system can be asymptotically reduced to an algorithm that can
solve a difficult mathematical problem. While such a theoretical guarantee is important, in
practice it is necessary to know exactly how effective a reduction is because of the practical
need to instantiate the security parameter. It is not enough for an informed choice to know
that "sufficiently large" security parameters will suffice. Therefore, a reduction that is in
polynomial time but in an ineffective way is reflected either in the probability of success for
the adversary or in the resource requirements of the regime being greater than desired. As
Rogaway stated in [Rogaway, 2009]:

The provable-security approach begins by identifying the cryptographic prob-
lem of interest, an often ignored but crucial first step. Next, one gives a precise
definition for the problem at hand. This entails identifying what the adversary
can do and when it is deemed successful. A protocol is then given for problem,
that protocol depending on some other, hopefully-simpler protocol for solving
some other, hopefully-more-basic problem that has likewise been defined. Ev-
idence of security for the high-level protocol takes the form of a reduction, the
reduction showing how to transform an adversary attacking the high-level goal
into one for attacking the low-level goal.

[...] The association of an adversary to a real number is the definition of
security.

The next sections are organized as follows.
— Section 1.1 introduces different models used in provable security.

— Section 1.2 discusses about about limitations of provable security and its models, and
then discusses related work.

1.1 Provable Security Models

A model for provable security defines “what the adversary can do” and the collection of
assumptions and proof methods in which the reduction can be expressed.

Traditionally, cryptographic protocols are analyzed with the Dolev-Yao symbolic model
[Dolev and Yao, 1983]. This model assumes perfect cryptography. Messages are assumed
to be elements of some abstract algebra, and cryptographic primitives, such as encryption,
are abstract operations on this algebra. In this model, the adversary can hear, intercept, and
synthesize any message and is limited only by the constraints of the cryptographic method
used. In other words, "the adversary carries the message." These messages consist of formal
terms that may reveal part of their internal structure, but some parts remain opaque to
the adversary. Modelled as a specific non-deterministic state machine, the only way for the
adversary to extract this internal structure is to perform some of the operations on messages
it already "knows".

This model has an extremely nice feature: simplicity, but has a disadvantage: Dolev-Yao’s
adversary is actually quite weak. Because the calculation model is symbolic and complete
knowledge of the adversary can be computed, it is possible to explicitly represent all possible
behaviors of the adversary in a compact way. Although he can choose among the allowed
operations in a non-deterministic way, the set of allowed operations is fixed and quite small.
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Therefore, the models are very well suited to be automatically analyzed to show that a pro-
tocol is broken, rather than secure, under the assumptions about the adversary’s capabilities,
e.g. [Dalal et al., 2010, Blanchet, 2013].

Dolev-Yao’s symbolic model is often compared [Herzog, 2005] to the computational model
[Goldwasser and Micali, 1984, Goldwasser et al., 1988, Yao, 1982], because the latter is
much more realistic, but complicates the proofs. Instead of defining adversarial capabili-
ties in the symbolic model, adversarial restrictions extend security claims to a larger set of
adversaries. In the computational model, a cryptographic construction exchanges messages
that are bitstrings from some distribution, an adversary is an arbitrary probabilitic algorithm
with restrictions and primitives are modeled as (tuples of) algorithms that satisfy security
and constructive assumptions (e.g. decryption and encryption are inverse to each other).

The computational model in which the adversary is limited only by time and computing
power is called the standard model. Schemes whose safety can be proven using only com-
plexity assumptions are said to be secure in the standard model. Proofs of security are known
to be difficult to achieve in the standard model. In many proofs, cryptographic primitives
are replaced by idealized versions.

In the next two subsections, I detail two other computational models used in the formal
security proofs I have worked on, namely the random oracle model and the ideal cipher model.

1.1.1 Random Oracle Model

A random oracle is an oracle — a theorical black-box — that answers to every fresh query
with a truly random response chosen from the uniform distribution on its output domain.
Random oracles are typically used as an ideal replacement for cryptographic hash functions
(see Chapter 5) where strong randomness on its output domain is needed. In the random
oracle model, a random oracle is assumed to exist and be accessible to the adversary. In
[Bellare and Rogaway, 1995], Bellare and Rogaway were the first to advocate their use in
cryptographic constructions. In their definition, the random oracle produces a bit-string of
infinite length which can be truncated to the desired length. However, the formalization of
such a random oracle would raise problems such as how to sample a value uniformly from
the output set {0,1}°°. Therefore, a random oracle is formalized to either set the output
type to be finite or the random oralce waits for a second input: the desired length !.

Such a model has its own limitations. In [Impagliazzo and Rudich, 1989], Impagliazzo
and Rudich showed that the existence of a random oracle alone is not sufficient for a secure
exchange of secret keys. Moreover, if a cryptographic construct proves to be secure in the
standard model, attacks against this construct must either be outside the behaviour of the
adversary considered in the model or break one of the assumptions. For example, if the
proof is based on the hardness of the factorization of large integers, in order to break it,
a fast integer factorization algorithm must be discovered. Instead, to break the random
oracle hypothesis, one must only discover an unknown and undesirable property of the
current hash function. For a good hash function when such properties are deemed unlikely
or difficult to discover by computation, the intended cryptographic construct remains secure.

Furthermore, consider a cryptographic construction built using a hash function that has
a security proof in the random oracle model. Even though some hash function is found
to be broken, e.g. SHA-1 [Stevens et al., 2017], the cryptographic construction remains
secure in the sense that one only has to change the hash function to restore security. In

1. see Chapter 6 for more details
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other words, the difficulty to find a secure hash function does not affect the overall security
of the cryptograhpic construction that has a proof in the random oracle model.

1.1.2 Ideal Cipher Model

An ideal cipher is a random permutation oracle that is used to model an idealized block
cipher (see Chapter 3). A random permutation decrypts each ciphertext block into one and
only one plaintext block and vice versa, so there is a one-to-one correspondence. Some
cryptographic proofs give to the adversary also access to the reverse permutation.

-\@’-Remark
Recent works showed that an ideal cipher can be constructed from a finite ran-
dom oracle using Feistel networks, with 10 rounds [ Dachman-Soled et al., 2016] or 8
rounds [Dai and Steinberger, 2016a].

1.2 Limitations and Related Work

When cryptographers publish their security analysis, often as a security proof, a non-
specialist is very unlikely to read (or even think about) the proof, hoping to find some in-
structions about how to implement the cryptosystem. This involves a certain trust in security
proofs from non-specialist communities about their credibility. Since security proofs are left
aside, the responsibility of cryptographers is to strive for clarity in security statements, in-
cluding the theoretical model, meaning of all parameters, and all assumptions (security
assumptions, independance assumptions, access granted or banned to oracles, etc...).

The promise of quantifiable proof of safety on each adversarial strategy is attractive and
tight security statements are great tools to enable practitioners to make informed choices,
when they are sufficiently clear. For this reason, one of the emphasis of this manuscript is
about clear security statements and proof models. However, clarity does not guarantee the
correctness of the proof of security, as shown in the next two examples.

4 Example
In [McGrew and Viega, 2004b], the AES-GCM authenticated encryption scheme was
proven secure. Eight years after [Iwata et al., 2012], the proof was found to have some
fallacies and the authors gave a procedure to break the first security bound, without
contradicting the overall security of AES-GCM. Indeed, they also proposed a repaired
security proof with a worse security bound than the incorrect one.

4 Example
In [Inoue et al., 2019], they found a fallacy in the security proof of OCB2, leading
to a very dangerous and powerful attack on this authenticated encryption still in use.
They propose a fix for OCB2, and argue that OCB1 and OCB3 do not share this flaw.
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As Stern, Pointcheval, Malone-Lee, and Smart [Stern et al., 2002] reported:

Methods from provable security, developed over the last twenty years, have
been recently extensively used to support emerging standards. However, the
fact that proofs also need time to be validated through public discussion was
somehow overlooked. [...] the use of provable security is more subtle than it
appears, and flaws in security proofs themselves might have a devastating effect
on the trustworthiness of cryptography.

This is not to claim that the correctness of a proof is a problem that stems from the lim-
its of provable safety. However, the impact on real systems that rely on the correctness of
security proofs can be extremely detrimental, as in the case of OCB2 [Inoue et al., 2019].
Instead, my thesis tackles this problem using formal proofs which gives a stronger guarantee
that the proof is correct, increasing the confidence non-specialists may have in cryptosys-
tems, when the clarity of the security statement is emphasized.

The application of formal proofs on reductionist arguments also has its limitations in
terms of the cost of such an analysis. They involve the time necessary to analyse a cryp-
tosystem and expertise in two different fields of computer science. This is a huge cost on
time and expertise, therefore an emphasis should be made when this effort is reasonably
expectable. A potential candidate would be the process of standardization (e.g. SHA-3
[Kayser, 2007], see Chapter 6), or in the process of a competition that aims to determine
the best cryptosystem, e.g. the CEASAR competition [CAE, 2013].

I also argue that for each security property about each cryptosystem, only a single formal
proof is needed. Indeed, once a result has been formally proven using a proof assistant,
this result can be trusted — at least until a flaw is found in the proof assistant. For this
reason, one could argue that a proof assistant is as trustworthy as a cryptographer, if not
less. However, pen-and-paper proofs are much more sensible to intuition shortcuts that
may lead to a fallacy. The constant requirement to formalize all of the logical steps of
every intuition is still a fastidious effort, but on the other side it gives the opportunity to
deeply understand the reductionist argument and all of the assumptions made about the
cryptosystem.

4 Example

When a proof assistant is implemented so that composition of cryptosystems is pos-
sible, assumptions on independance of components are checked along the way, which
in practice are even hardly looked at. For instance, in a hybrid system that uses a cryp-
tosystem — also used elsewhere — to generate the key of another cryptosystem, no
guarantee about the security of the combinantion is provided, even if each primitive is
provably secure and their parameters are set so that security requirements are met. A
security proof of the combination needs to be provided (see Chapter 8).

This discussion remains in the field of the study of the security of cryptographic algo-
rithms. The final purpose of provable security and security proofs is to guarantee the real
security of a cryptosystem’s implementation, not just of its algorithm.

Even the computational model is just a model that ignores many important aspects of re-
ality. In particular, it ignores physical attacks against devices: side-channel attacks that may
exploit for instance power consumption, timing, noise and fault attacks — an attack that
introduces faults in the system in order to break its security from provoking unexpected be-
haviour. As cryptosystems are better studied and verified formally, physical attacks become
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increasingly important and are an area of active research. Some of my collaborators have
worked in this direction, producing the Jasmin programming language whose « compiler is
designed to achieve predictability and efficiency of the output code (currently limited to x64
platforms), and is formally verified in the Coq proof assistant. » ([Almeida et al., 2017])

In [Almeida et al., 2019b], we propose both a formal security proof and an efficient
implementation of the SHA-3 hash function family:

Our implementation is written in the Jasmin programming language, and is
formally verified for functional correctness, provable security and timing attack
resistance in the EasyCrypt proof assistant. [...] Concretely, our mechanized
proofs show that: 1) the SHA-3 hash function is indifferentiable from a random
oracle, and thus is resistant against collision, first and second preimage attacks;
2) the SHA-3 hash function is correctly implemented by a vectorized x86 im-
plementation. Furthermore, the implementation is provably protected against
timing attacks in an idealized model of timing leaks.

In [Almeida et al., 2019a], my collaborators propose a fast and side-channel secure im-
plementation of the authenticated encryption ChaCha20&Poly1305. In Chapter 8, I propose
a formal security proof of ChaCha20&Poly1305, that is functionally equivalent to their im-
plementation in Jasmin.



Chapter 2

EasyCrypt and General Formalization
Techniques

The interactive theorem prover EasyCrypt was first presented in [Barthe et al., 2011a]
as an implementation of a code-based game-based approach to practice-oriented provable
security in the computational model. It diverged from CertiCrypt [Barthe et al., 2009], a
Coq framework used to prove the formal semantic security of OAEP

This chapter gives a general presentation of EasyCrypt, states clearly what an adversary
can do (i.e. adversarial strategies included in the security statements), and regroups for-
malization techniques that are used in the different proofs.

2.1 Foundations

EasyCrypt is a proof assistant that relies on the goal directed proof approach. Also de-
scribed in [Bertot, 2006] for Cogq, this approach usually has the following type of scenario:

1. the user enters a statement that he wants to prove (using the command lemma) along
with a name for later reference,

2. the EasyCrypt system displays the formula as a formula to be proved, possibly giving
a context of local facts that can be used for this particular proof,

3. the user enters a command to decompose the goal into simpler ones, ideally upto
axioms or formula that evaluate to true,

4. the EasyCrypt system displays a list of formulas that still need to be proven,
5. back to step 3.

The commands used at step 3 are called tactics. Some of these tactics actually decrease
the number of goals. When there are no more goals, the proof is complete. When the user
enters the command qed, the lemma is saved with the name given at step 1.

Before stating a lemma to prove, the user may define the structures he will work on, some
axioms he assumes, or import libraries that contain such definitions. For that, EasyCrypt has
a typed expression language based on the polymorphic typed lambda calculus. In EasyCrypt,
types are non-empty sets of values and operators are typed functions on these sets. The
internal kernel of EasyCrypt provides basic built-in types such as bool, int, real, and unit (the
type inhabited by the single element tt or ()). The standard libraries includes formalization
of lists, arrays, sets, finite sets, maps, finite maps, distributions, etc....
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-‘@’- Remark

In EasyCrypt, an integer n can be recast to the real type using the notation n%r.

,OEasyCrypt
The polymorphic option type encapsulates an optional value. A value of type a option
is either Some x where x is of type a, or None.

type a option = [ None | Some of a |.

The operator oget extracts the optional value by associating to the value None a
default value named witness in EasyCrypt (as mentioned above, all types are inhabited).

op oget [a] (o : o option) : a =
with o = None = witness
with o = Some a = a.

The system of theory in EasyCrypt allows the user to regroup related types, predicates,
operators, modules, axioms, and lemmas. EasyCrypt allows users to declare and specify their
data-types and operators, including inductive data-types and operators defined by pattern
matching. Types and operators without definitions are said abstract and can be seen as
parameters to the rest of the context. Theory parameters (types, operators, and predicates)
left abstract when proving its lemmas may be instantiated via a cloning process. For instance,
theory cloning allows the development of generic proofs that can later be instantiated with
concrete parameters.

,OEasyCrypt

Axioms can restrict parameters and are discharged during particular instanciation.

op O :int.
axiom o_gt0 : 0 < 0. (* we assume that o is positive x)

2.1.1 Probability Distributions

To every type t is associated the type t distr of real discrete sub-distribution. In some
cases, we may use the notation 2(t) to express the set of all sub-distributions on a type t. A
discrete sub-distribution over a type t is fully defined by its mass function. A mass function f
is a non-negative function from t to R and is defined over a discrete support while verifying:

> f)<1

x:t

,OEasyCrypt
When the sum is equal to 1, the sub-distribution is called a distribution and the
keyword for this assumption is is_lossless.

type t.
op dt : t distr.
axiom dt_|l : is_lossless dt.
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When the mass function of the sub-distribution is positive over all of the elements
of type t, the sub-distribution is said to be full.

axiom dt_full : is_full dt.

When the mass function of the sub-distribution associates every value of the support
of the sub-distribution to the same mass, the sub-distribution is said to be uniform.

axiom dt_uniform : is_uniform dt.

The keyword for a sub-distribution that is full and uniform is is_funiform.

axiom dt_funiform : is_funiform dt.

The mass function of a sub-distribution is represented by the operator mul, while
mu dt P represents the mass of the set of all values that satisfy the proposition P. In
fact, internally, mul is defined using the operator mu.

op mu : t distr — t prop — real.
op mul (dt : tdistr) (x:t) : real = mudt (funy = x=y).

2.1.2 Modules in EasyCrypt

Programs are formalized in EasyCrypt as modules: stateful “objects” consisting of global
variables and procedures. Global variables are visible outside the modules and define the
internal state of the module at any given time. A procedure is composed of the declarations
of local variables and a sequence of instructions. An instruction can be an assignment, a

random sampling (denoted by i), a call to another procedure (possibly obtaining the return
value), a conditional branch, a while loop, or a return statement. This simple imperative
probabilistic programming language is named pWhile.

LOEasyCrypt
This exemple defines a module with module Multiply = {
one global variable Multiply.factor, and var factor : int (* global variable *)
defines one procedure Multiply.mul that proc mul (n : int) :int = {
outputs the product of its input to its (* factor refers to Multiply.factor *)
. return n x factor;
global variable. i3

The module system in EasyCrypt manages higher-order modules. This feature allows
a cryptographer to define a general game by taking an adversary and a cryptosystem as
parameters. Before declaring a game that takes some modules as parameters, a module type
needs to be defined for each different type of parameter.

OEasyCrypt
In this example, the module type Oracle declares the interface of the cryptosystem,
Adversary declares the interface of the adversary, and the module Game defines the
cryptographic game when given an adversary and a cryptosystem.



18 EasyCrypt and General Formalization Techniques

module type Oracle = { module Game (A : Adversary) (O : Oracle) = {
proc init () : unit proc main () : bool = {
proc f (_: int) : bool var b : bool;
}. O.init();
b « A(O).guess();
module type Adversary (O : Oracle) = { return b;
proc guess () : bool 32
}.

Probability of some event in a game

Formally, an instruction operates on program memories, which map local and global
variables to values. Let .# be the set of memories.

,OEasyCrypt
A memory is handled differently from other types. For instance, anonymous func-
tions (fun (x:t) =>...) and operators cannot take memories as input, while quan-
tification on memories is allowed. The quantification ¥V &m ranges over all memories
with domain equal to the set of all variables declared as global in currently declared
modules. For instance, with those declarations:

module X = { var a : int }.
module Y = { var b : int }.

the following formula is well-formed and evaluates to true:
VY &m, X.a{m} < Y.b{m} = Xa{m} +1 < Y.b{m}

An event is a boolean expression over non-free logical variables and program variables
that are tagged with a memory. If &m is a memory and x is a program variable in the domain
of &m, then x (m) ! is the expression for the value of x in &m, and v (m) is the expression
where all the program variables occurring in 1 are replaced with their value in &m.

The semantics of a sequence c of instructions is a function [c] : # — 2(.#) from
program memories to sub-distributions on program memories. If one possible execution of
c does not terminate, ¢ generates a sub-distribution with total probability less than 1. The
probability of some event 1 in a program c when starting with initial memory &m is defined
as the sum of the masses of all memories in the distribution [c] (m) that satisfy :

Pr[c,m : ]
The EasyCrypt notation Pr[c@&m : ] is equivalent to Pr[c, m : ¢ ], the latter being more
readable and the former more accurate to what EasyCrypt is expecting.
Adversary as a module, Quantification over all adversaries

Adversaries are modeled in EasyCrypt as abstract modules of a defined module type. The
module type defines the type of procedures, but the code of an abstract module is unknown.

1. This notation has been chosen for text readability, even if x{m} is the notation used in EasyCrypt
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LOEasyCrypt

An abstract module is declared locally using quantification over a module type:
YV (A <: Adversary). Another way to declare an abstract module is using inside a
section the declare module feature of EasyCrypt. The system of sections has the primary
goal to hide intermediate details of a proof. Inside a section, which may be named,
an abstract module can be declared so that all lemmas that appear in the section will
appear with a supplementary quantification. In the following, some notations have not
been described so far, but they are not relevant for the EasyCrypt notion of sections, so
we explain them in the following sections.

Imagine the following example of a module Game (A : Adversary) (O : Oracle) = {
lemma that is declared in a section in a var i : bool
context with the module Game declared proc main () = {
as follows and with a defined (but not A(S;O)'g“ess();
presented) module O : Oracle. - i = {01}

section Proof.
declare module A : Adversary.
axiom A_Il : (V (O1 <: Oracle{A}),
islossless O1.f = islossless A(O1).guess.
lemma toto &m : Pr [ Game(A,0).main() @ &m : Game.i = true | = 1%r / 2%r.
end section Proof.

When used outside of the section, the lemma toto looks like:

lemma toto : V (A <: Adversary),
(V (01 <: Oracle{A}), islossless O1.f = islossless A(O1).guess) =
YV &m, Pr [ Game(A,0).main() @ &m : Game.i = true | = 1%r / 2%r.

-‘@’- Remark

In the previous example, the procedure A(O).guess may call all procedures of O,
but EasyCrypt features restrictions on which procedures can be queried. This point is
described in more details in Section 2.2.2.

-@’-Remark
Consider a module A declared with module type Adversary. Its procedures may be
referred to (in lemmas, judgments, or code) only when an oracle O is provided. The
procedure A(O).guess is correct, whereas A.guess is not well-formed.

EasyCrypt allows the user to reason about three different types of facts about probabilis-
tic programs. They are called judgments and each type specifies what it actually means for
the programs:

— HL, Hoare Logic, with probabilistic programs,

— pHL, probabilistic Hoare Logic, that allows one to carry out proofs about the probability
of a procedure’s execution resulting in a post-condition holding, and

— pRHL, probabilistic Relational Hoare Logic, that relates a pair of procedures.
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Hoare Logic

A Hoare judgment is a triplet [c : $ = )] composed of a (probabilistic) program c and
two predicates ¢ and . It states that for all memory &m satisfying the precondition ¢,
then all memories in the support of the sub-distribution [c] {m) satisfy the post-condition .
When the program c is deterministic, [c] (m) has a support of at most one element.

LOEasyCrypt

The main tactic for an abstract procedure call is the tactic named proc. Consider
a Hoare judgment [A(O).g : @ = ] in the context of an abstract procedure named
A(O).g of the abstract module A that takes a module O as parameter. The tactic proc
takes one input: a formula I that represents an invariant.

One constraint needs to be checked for the tactic proc to work: A should have no
write access to any global variable that appears in 1. The intuition is that the rule for the
adversary is analogous to the rule with the loops. If each iteration keeps the validity
of the invariant, and the invariant is valid before the loop, then the full loop respects
the invariant. Unspecified code with oracle access to some procedures is analogous to
a “loop” that “iterates” on oracle calls, with some code between calls.

The rule checks that the unspecified code of the procedure A(O).g cannot modify
the invariant I, and asks to prove that each oracle call which A(O).g can query respects
the invariant. The procedures accessible by A(O).g are from the module type of A.

Vf accessible procedure by A(0).g,[O.f : I = 1] [ I
[A(O)g:1=>1] proc

Probabilistic Hoare Logic

A probabilistic Hoare judgment is a quintuplet [c: ¢ = ] op composed of a program
¢, two predicates ¢ and 1, a relation on reals ¢ taken from the set {<,=,>}, and a real p.
It states that Y&m, ¢ (m) = Pr[c,m : ] op.

,OEasyCrypt
Avery useful tactic in the context of a pHL statement about a sequence of instructions
[cq;Cy : @ =>p]op is the tactic named seq i : b p; p, p; ps |I. The arguments mean:

i: the line number that specify the beginning of c,,
b: a boolean formula that may be evaluated to true or false,
p,: the probability that b holds at the end of ¢,, i.e. [¢; : § = b]op,,
p,: the probability that v holds after c, if b holds, i.e. [c, : A b= ] op,,
ps: the probability that b does not hold at the end of ¢4, i.e. [¢; : $ = —b]ops,
p,: the probability that 1 holds after c, if b does not hold, i.e. [c, : | A =b = 1] op,,

I: a property always satisfied at the end of c,, regardless of the evaluation of b, i.e.
[c;: 0 =1].

When applied, the tactic also asks the user to prove the goal: p;p, + p3p4 ¢ p-
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Probabilistic Relational Hoare Logic

A probabilistic relational Hoare judgment ? is a quadruplet [c, ~ ¢, : = 1] composed
of two programs c¢; and c,, and two relations ¢ and ). More specifically, the precondition
¢ and post-condition 1 are first-order formulate built from relational expressions that are
then interpreted as a relation on program memories.

Whereas for HL and pHL judgments only one memory is considered, a pRHL judgment
distinguishes between the two memories for each side. Therefore, relational expressions
are arbitrary boolean expressions over program variables tagged with (1) or (2) (to specify
from which of the programs they are from: (1) for c;, (2) for c,) and logical variables that
only appear when quantified. By abuse of notation, e (i) stands for the expression e in which
all program variables have been tagged with (7).

LOEasyCrypt
The notation for the equality of a program variable X.x in both memories is ={X.x},
and the notation ={X.x, Y.y} stands for ={X.x}A ={Y.y}. For any module M, the set of
all the variables a module accesses is denoted glob M. The precondition ={glob A} is
particularly useful for an abstract module A when one wants to state that it will have
the same behavior in both memories.

A pRHL judgment [c; ~ ¢, : & = ] states that for any pair of initial memories m;, m,
satisfying the precondition ¢, denoted (m,, m,) I ¢, the distributions [ ¢, ] (m;) and [c, ] (m,)
satisfy the lifting % of post-condition 1, denoted (([c,](m;)), ([c, ] (m,))) F £ (). The
lifting of a relation on memories to a relation on memory distributions is defined as a max-
cut min-flow problem, in the style of [Jonsson et al., 2001]. Formally, let u, € 2(A) be a
probability distribution on a set A and p., € 2(B) a probability distribution on a set B. The
lifting (wy, Wy) F Z(R) of a relation R € A x B to W, and ., is defined as follows:

EI“‘ : @(AX B)’ ﬂl(“’) =M A TCZ(“’) = “’ZAV(aa b) €EAX B:U’(a: b) >0= <as b) FR

where the projections m,(u) and m,(u) are defined as

T ()(@) = > p(a, b) m,()(6) = > u(a, b)

beB acA

Claims about probabilities can be derived from valid pRHL judgments by means of the
following rules:

(m,my) Fd [c~cy:d =] V&m&,&mé,(m&,mé) F= (E1 (m’1> = E2<m’2>)
Prlc,,m; : E;] =Pr[c,,m, : E, ]

(m,my)Fod [c;~c:d =] V&m’l,&m’z,<m’1, m'2> F = (E, (m’1> = E2<m’2>)
Pr[c,,m; :E;] < Pr[cy,m, : E,]

[PrEq]

[PrLe]

2. This description is from [Barthe et al., 2011a], in which more details can be found.
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LOEasyCrypt

The tactic proc also exists in pRHL. It is used to relate two instances of the same
abstract procedure A(-).g that may use different implementations of its oracles. The
tactic takes one input: a relation I that represents an invariant. The invariant should
not include any global variable that may be overwritten by the abstract module A (same
as for HL).

This tactic formalizes the intuition that the abstract procedure will have the same
behavior with both implementations and preserve the invariant I if the abstract module
starts with the same global state and, for every procedure, both implementations stay
in relation by the invariant I while answering the same output for the same query.

Vf accessible procedure by A, [O1.f ~ O2.f : IA ={arg} = I A ={res}]
[A(O1).g ~ A(02).g : TA ={arg, glob A} = T A ={res, glob A}]

[proc I]

-‘@’-Remark
When an equivalence of two events in each program is lifted to relate those two
programs, then, from the definition of the projections, both must have the same termi-
nation probability. This is particularly important for the theorem about failure events
that is explained in the next paragraph.

LOEasyCrypt
The EasyCrypt keyword islossless is a predicate on a procedure that states that for
all input, the procedure terminates with probability 1, i.e.

islossless O.f :=“[O.f : true = true]=1"

Failure Event

A relation between games defines a transition of equivalent games in a cryptographic
security proof. However, games are not always equivalent, and a lossy transformation may
be needed. One common technique to justify such a lossy transformation is to annotate both
games with a fresh boolean flag (often named bad) that is initialized to the false value and
set to true whenever the code of games differ. Such transitions are justified using the Fun-
damental Lemma, first used and introduced in [Shoup, 2004, Bellare and Rogaway, 2006].

Lemma 2.1.1 (Fundamental Lemma [Barthe et al., 2010]). For any pair of games Gy, G, and
events E;,E,, and B, such that E, is well-defined in G,, E, in G,, and B in both games:
Pr[G;,m:E; A =B] =Pr[G,, m : E; A =B]
= |Pr[Gy,m: E;]—Pr[G,,m: E,]| < max(Pr[G;,m : B],Pr[G,,m : B])

When an adversary is involved in both games, then one more assumption is needed: the
adversarial computation should terminate with probability 1 in at least one game. Assuming
that G, terminates with probability 1, then Pr[G,,m : B] < Pr[G;,m : B]. In this case, the
upper bound on the loss of the transition is quantified by Pr[G;, m : B].
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LOEasyCrypt
The assumption on the termination The following axiom is an example
of adversarial code is generalized in using the module types of Section 2.1.2:
Eazycrylif; It I];)ec]l;;,res o e'lclllversary to declare module A : Adversary.
en_ Wlt probability 1 with any te?' axiom A_Il : ¥V (O <: Oracle{A}),
minating oracles. Such an hypothesis islossless O.init = islossless O.f =
should be manually added whenever it islossless A(O).guess.

is required.

,OEasyCrypt
The tactic proc can also be applied for an upto-bad reasoning that relates the same
abstract procedure with different implementations of its oracles. The tactic proc B1J
takes three inputs — a failure event B (defined in the right implementation), the in-
variant I that holds as long as B does not hold, and the invariant J that holds when B
holds. The tactic proc B I is a shortcut for proc B I true.
To prove the conclusion C, EasyCrypt creates the sub-goals H;, H,, H;, H,:

H, The adversary always terminates if its oracles terminate:
V(O <: Oracle{A}), (x Vf %) islossless O.f = islossless A(O).g

H, Assuming the failure event B does not hold before a query, the relation at the end
of the query depends on the occurrence of the failure event:

Vf procedure, [O1.f ~ O2.f : =B (2) A ={arg} Al => if B(2) then J else ={res} A 1]

H; If the failure B event has already occurred, then, in the left implementation, the
relation J remains true with probability 1 even when the right memory is fixed:

Vf procedure, Y&m,, B (m,) = [O1.f : J(:,m,) = J(-,m,)]=1

where the event J (-, m,) is the predicate: &m — (m, m,) I J.

H, The failure event B in the right implementation remains true with probability 1:

Vf procedure,[02.f : B=— B] =1

C If all those conditions are provable, this use case for the tactic proc makes it
possible to prove the following goal:

[A(O1).g ~ A(02).g : ={arg,glob AAT} = if B(2) then J else ={res, glob A} AT]

2.2 Adversarial Model

All security statements in my manuscript rely on the same definition of adversaries based
on the EasyCrypt adversarial model. Therefore, any strategy that cannot be captured in this
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model is not captured by the security statements. Some restrictions on adversaries are local
to the security statements, but are expressed using the same terminology.

Cryptographic security statements are expressed by quantifying on all adversaries. In
EasyCrypt, this quantification is done using abstract modules and module types. Therefore,
all algorithms that may be expressed as an EasyCrypt module that satisfy all the restrictions
of the security statement are captured by the quantification.

2.2.1 Restrictions on Oracle Procedure Calls

In the implementation of an oracle, some of its procedures are used to initialize its in-
ternal state. This kind of procedure is meant to be accessible to the game from the security
definition, but not to the adversary. This kind of restriction can be achieved either using dif-
ferent module types between the adversary’s oracles and the game’s oracles or by restricting
the oracle procedures allowed to query directly in the module type of an adversary.

,OEasyCrypt
In the following example, any module A : Adversary should have a procedure named
guess that may only call the procedures f and g of its oracle O. Therefore, a module with
a procedure guess that calls its oracle’s procedure init is not of module type Adversary.

type f_input, g_input, f_output, g_output.
module type Oracle = {

proc init () : unit

proc f (x : f_input) : f_output

proc g (x : g_input) : g_output

module type Adversary (O : Oracle) = {
proc guess () : bool { O.f O.g }

}.

2.2.2 Adversarial Restrictions on Program Variables

In EasyCrypt, program variables may be local to a procedure or global to the full scope.
Local program variables are inaccessible to any other procedure other than the one in which
they are defined. In a security game, the adversary should not be able to access some global
variables, e.g. the secret key of an encryption scheme. This is expressed in EasyCrypt when
an abstract module is declared either in a quantification or in a section using declare module.

Some tactics require the declared abstract module to have no access on global variables
that appear in the invariant, e.g. the proc tactic and all its declinations. This kind of restric-
tion is possible when the abstract module is declared.
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LOEasyCrypt
In the following example, the adver- type key.
sary A on which the property is quanti- module Enc {
fying over should never use the global var key : key
variable Enc.key, either reading or over- }proc (@ eee )

R S lemma security : V (A <: Adversary { Enc }),

(* some property *).

In the case of a module declared inside a section, new modules may be implemented
after this declaration. The local keyword binds the implementation of a module inside
a section and states that any abstract module previously declared may have no access to
its global variables. For instance, the two following scripts are equivalent in meaning,
except that in practice the module O is hidden in the left script when applying any
lemma from the section.

section. module O : Oracle = { var c : int }.
declare module A : Adversary. section.
local module O : Oracle = { var c : int }. declare module A : Adversary { O }.
end section. end section.
-¢"Remark

This feature restricts all accesses, both for reading and writing. If one may want an
abstract module to have reading access to a global variable without being able to alter
it, direct access to the global variable should remain restricted in the declaration of
the abstract module. Then, provide to the module type another oracle which outputs
the value of the desired global variable, this acts like a “getter”. This concept can be
extended to the inclusion of a “setter”.

2.2.3 Computation Time Restrictions

Usually, in cryptography, adversaries are probabilistic polynomial-time (PPT) algorithms 2,
i.e. their running time is upper bounded by a polynomial expression in the size of the input
of the algorithm, also named security parameter in cryptography:.

Security statements are usually of the form:

V.o PPT,398 PPT, Advi*(.&/) < a + Advy” (5)
while security assumptions are usually:

V 8 PPT, Advy"”(48) is “negligible” in the security parameter.

3. Complexity is also bounded in terms of computation space, but we do not discuss it here.
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-‘@’-Remark
The PPT property for adversarial algorithms is important for the “negligibility” of
the bound. Often in cryptography, a negligible bound is about (or less than) 278, Of
course, this is dependent on the risks and security goals of particular applications.

,OEasyCrypt
Computation time, for example number of processor clock cycles, is not embedded
in the logics of EasyCrypt but can be modeled using, for example, ghost variables that
simulates computation times. Since adversaries can be any module of the specified
module type, security statements are expressed in EasyCrypt without PPT restriction:

Vo ,Advi™ (/) < o+ Advy”Y (B(.))
with a concrete implementation of 43(-) from .« that needs to be checked so that:

V.o, .of is PPT = %B(.«f) is PPT.

Example
4

In certain games, there may exist a non-PPT adversary C that has a non-negligible
advantage Advy” (). For instance, consider the case of any scheme that relies on the
difficulty in finding the decomposition in prime factors of a large number, e.g. RSA, or
the discrete logarithm, e.g. ElGamal. There exists a non-PPT adversary decomposing
a large number into prime factors: the one that tests every prime inferior to the input
number for divisibility. This adversary has the maximum advantage because it always
succeeds. However, this cannot be considered to be a successful attack, since it would
take too much time and effort because of the (sub-)exponential complexity.

When analyzing the security of a cryptosystem, adversarial computation time can be
restricted indirectly. For instance, a common restriction is to bound the number of queries
an adversary can make, where oracle queries formalize the computation of cryptographic
primitives. In those cases, the bound on the number of query calls often appears in the
security statement and the security bound. Counting queries may be more complex and
such an example is shown in Chapter 6.

,OEasyCrypt

To summarize what an adversary can do:

— Itis a probabilistic program, expressible in EasyCrypt as a module from the given
module type.

— It has access to some oracles (accessible procedures).
— It is restricted in the internal states it can access and interfere with.
— Its computation space is unbounded.

— Its computation time is unbounded. If the proof involves an upto-bad argument,
it should terminate with probability 1 for any implementation of its oracles.
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2.3 Formalization Techniques

In the following chapters of my manuscript, I describe security proofs of three crypto-
graphic standards. In those proofs, a few fomalization techniques are often used, and I
choose to gather them in this autonomous section so that each proof can be followed on its
own, without pointing to another security proof.

2.3.1 PRP-PRF switching lemma

In game-based proofs, it is often useful to switch between a random permutation and
a random function (see Chapter 4 and Chapter 6). This section starts with the definition
of a random permutation and a random function. Then I describe their formalization in
EasyCrypt and state the PRP-PRF switching and the strong PRP-PRF switching lemmas.

-‘@’-Remark
This formalization has been done time and time again (in [Affeldt et al., 2007,
Barthe et al., 2010], to only cite a few formalizations), and is not part of my personal
contribution. However, this is a good introduction to the techniques of EasyCrypt.

Let S be a finite set, Perm(S) the set of all permutations over S, and Fun(S) be the set of
. . . $ .
all functions over S. In this context, the sampling p < Perm(S) means sampling a random

permutation p uniformly from the set of all permutations. Respectively f & Fun(S) means
sampling a random function f uniformly from the set of all functions.

,OEasyCrypt

The formalization in EasyCrypt of
a random permutation and a random
function uses modules that are defined
over an abstract type t that represents
the set S and an abstract distribution op-
erator dt that represents the uniform dis-
tribution over the finite abstract type t.

The module Map declares the finite
map of the oracle that is visible by the
adversary. The module type Oracle de-
fines the expected oracle interface.

type t.

op dt : t distr.

axiom dt_Il : is_lossless dt.
axiom dt_funi : is_funiform dt.

Listing 2.1 — Abstract parameters.

module Map = { var m : (t, t) fmap }.
module type Oracle = {

proc init () : unit

procf(_:t):t

}.

The predicate rng Map.m x is true if the element x is in the range of the finite map
Map.m. The distribution dt \ rng Map.m is the uniform distribution over the set of
elements in S that do not validate the predicate rng Map.m.
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module RF : Oracle = {
proc init () : unit = { Map.m < empty; }
procf(x:t):t=/{
if (x \notin Map.m) {

Map.m[x] & dt;

return oget Map.m[x];

1

Listing 2.2 — Random function

The indistinguishability advantage is
bounded by a formula that involves the
maximum number of oracle calls it can
make. Indeed, if the adversary can query
all values of the domain of its oracle,
it has a high probability to distinguish
between RP/RE This restriction is for-
malized in the following module named
Count.

op c : int.

module Count (E : Oracle) : Oracle = {
var counter : int
proc init () : unit = {
counter « 0;
E.init();
}
procf(x:t):t=/{
var y : t « witness;
if (counter < c) {
y — Ef(x)
counter « counter + 1;

}

return y;

1

module RP : Oracle = {
proc init () : unit = { Map.m < empty; }
procf(x:t):t=/{
if (x \notin Map.m) {

Map.m[x] & gt \ rng Map.m;

return oget Map.m[x];

1

Listing 2.3 — Random permutation

An adversary may not (re-)initialize
its oracle. This is either done by re-
stricting procedure accesses in the dec-
laration of the procedures, or by declar-
ing another module type for oracles.
The second option requires module type
management and is possible, but may be
tedious.

module type Adversary (O : Oracle) = {
proc guess () : bool { O.f }

The distinguishing game Dist, when
given an adversary and an oracle, initial-
izes the oracle and the counter, gives to
the adversary the restricted oracle, and
outputs the answer of the adversary.

module Dist (A : Adversary) (O : Oracle) = {
proc main () : bool = {
var b;
Count(0).init();
b < A(Count(0O)).guess();
return b;

1

Lemma 2.3.1 (PRP-PRF switching). For any natural number c, any lossless adversary
.o/ distinguishes a random permutation from a random function with probability:

Pr['rt & Perm(S);b— A" : b= 1]—Pr[f & Fun(S);b— o/ :b= 1]‘

< c-(c—1)
2-18|

when the oracle starts to always output a default value witness after ¢ queries.

lemma prp_prf_switching &m :

(* ¥V adversary A that cannot access internal states of Map and Count *)

Y (A <: Adversary { Map, Count }),
*| Pr[Dist(A,RP).main() @ &m :

res] — Pr[Dist(A,RF).main() @ &m :

res] | <
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(cx(c—1)/2) * mu dt witness.
(* 'mu dt witness' represents the probability a value sampled from 'dt' is equal to 'witness' *)

Proof. Let &m be the initial memory, and Event.bad be the failure event.

module Event = { var bad : bool }.

This proof has a simple sequence of games:
1. Pr[Dist(A, RP).main(), m : res] = Pr[Dist(A, RPbad).main(), m : res]
2. Pr[Dist(A, RF).main(), m : res] = Pr[Dist(A, RFbad).main(), m : res]

3. |Pr[Dist(A, RFbad).main(), m : res] — Pr[ Dist(A, RPbad).main(), m : res]| <
Pr[Dist(A, RFbad).main(), m : Event.bad]

4. Pr[Dist(A, RFbad).main(),m : Event.bad] <c-(c—1)/(2-|S])

where the oracles RFbad and RPbad are defined in the following way and are respec-
tively equivalent to RF and RP while capturing the failure event directly in their code.

module RFbad : Oracle = { module RPbad : Oracle = {
proc init () : unit = { proc init () : unit = {
Map.m < empty; Map.m < empty;
Event.bad « false; Event.bad « false;
proc f (x :t) :t={ proc f (x :t) :t={
var y : t « witness; var y : t « witness;
if (x \notin Map.m) { if (x \notin Map.m) {
$ $
y « dt; y « dt;
if (rng Map.my) { if (rng Map.my) {
Event.bad « true; Event.bad « true;
(xy E gt \ rng Map.m; x) y E gt \ rng Map.m;
} }
Map.m[x] < vy; Map.m[x] < vy;
} }
return oget Map.m[x]; return oget Map.m[x];
32 32

1. The functional equivalence between RF and RFbad is easy to show in EasyCrypt.

2. The functional equivalence between RP and RPbad relies on the fact that sam-
pling from either of the following distributions yields the same probability:

— sample directly from ’dt \ rng Map.m’ and

— sample from ’dt’, then if the value belongs to the range of ’"Map.m’, re-sample
another value from ’dt \ rng Map.m’.

3. The upto-bad step is a direct application of the Fundamental Lemma.

4. The computation of the probability of setting Event.bad < true is done using the
advanced tactic named fel for which a documentation can be found online at
https://www.easycrypt.info/documentation/refman.pdf. This tactic cap-
tures the intuition that if the adversary has a limi