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Titre : Optimisation énergétique pour une voiture solaire dans les conditions de l'Afrique 

du Sud 

Mots clés : gestion de l'énergie, modélisation mathématique, Sasol Solar Challenge, 

simulation, irradiation solaire, véhicule solaire 

Résumé : Les batteries généralement 

utilisées dans les véhicules électriques ont 

un rapport énergie-poids jusqu'à cent fois 

plus faible (pouvoir calorifique net, Wh / 

kg) que la plupart des combustibles fossiles 

utilisés dans les moteurs à combustion 

interne. De plus, les véhicules électriques à 

énergie solaire dépendent principalement de 

la récupération de l'énergie provenant de 

l'irradiation solaire (émise par le soleil) qui 

dépend des conditions météorologiques. La 

nécessité d'optimiser la consommation 

d'énergie des véhicules électriques à batterie 

fonctionnant à l'énergie solaire est cruciale 

pour maximiser la portée d'un tel véhicule. 

Si la distance est fixe, les conditions 

météorologiques constantes et la 

topographie plate, on peut 

approximativement optimiser la 

consommation d'énergie d'une voiture 

solaire en trouvant la vitesse, qui optimise 

en moyenne la consommation d'énergie sur 

tout un trajet. Une telle approche fournit une 

bonne estimation par exemple pour le 

Bridgestone World Solar Challenge 

(BWSC) en Australie (qui se déroule 

principalement dans les régions arides de 

l'arrière-pays) où la topographie est 

principalement plate et les conditions 

météorologiques sont relativement 

constantes et donc très prévisibles. En 

revanche, la route Sasol Solar Challenge 

(SSC) en Afrique du Sud contient une 

topographie complexe, qui comprend 

diverses régions montagneuses avec des 

pentes abruptes et des changements 

fréquents dans le gradient de la route. En 

Les premiers chapitres de l'ouvrage jettent 

les bases sur l'état actuel de la technique lors 

de l'examen de la modélisation des 

véhicules et de l'interprétation des 

prévisions météorologiques. Un modèle 

détaillé d'énergie solaire de voiture est 

conçu et des statistiques de sortie de modèle 

(MOS) sont utilisées pour améliorer la 

précision et l'intervalle de confiance des 

prévisions météorologiques locales requises 

par le modèle énergétique. De vastes 

expériences dans le monde réel ont validé la 

robustesse et la précision du modèle 

énergétique. Le problème d'optimisation est 

formulé comme un problème d'optimisation 

à deux niveaux qui utilise des techniques de 

solveur de programmation quadratique 

séquentielle (SQP) et de programmation 

dynamique (DP). Le problème 

d'optimisation à deux niveaux est mis en 

œuvre sous la forme d'une interface 

utilisateur (UI) pour une facilité d'utilisation 

par le gestionnaire d'énergie. 

     La nouvelle technique d'optimisation à 

deux niveaux à distance variable a été mise 

en œuvre pendant les huit jours du Sasol 

Solar Challenge 2018. Elle a fourni à 

l'équipe automobile solaire de TUT 

l'avantage technologique nécessaire pour 

obtenir une 1ère place locale ainsi qu'une 

4ème place au classement général 

(international ). La mise en œuvre a mis en 

évidence la supériorité de la technique à 

deux niveaux par rapport aux techniques 

classiques de gestion de l'énergie à diverses 

occasions, en particulier dans des 

conditions météorologiques extrêmes. 
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outre, des événements tels que le BWSC 

sont des itinéraires à distance fixe, alors que 

le SSC est un itinéraire à distance variable. 

     Diverses méthodes pour optimiser 

l'utilisation d'énergie d'une voiture solaire 

dans un environnement BWSC ont été 

proposées. Cependant, aucune de ces 

méthodes ne convient au contexte SSC. Ce 

travail est consacré à la fois à la recherche 

théorique et aux nouvelles applications des 

techniques d'optimisation à deux niveaux, 

pour minimiser la consommation d'énergie 

et maximiser la distance parcourue par une 

voiture solaire participant à un événement 

SSC en Afrique du Sud. 

 

     La précision et les performances de la 

technique d'optimisation à deux niveaux ont 

été soigneusement évaluées et analysées. Il 

a été constaté qu'en moyenne, 94% de la 

variation de l'erreur de simulation 

énergétique (état de charge) peut s'expliquer 

par les variables contenues dans le modèle 

énergétique dérivé. La variation restante de 

6% de l'erreur de simulation énergétique 

peut être due à la petite dynamique non 

modélisée du véhicule (y compris les forces 

de Coriolis), à la non-linéarité des cycles de 

charge et de décharge de la batterie et aux 

effets de la température. 

 

 

Title : Energy optimisation of a solar vehicle for South African conditions 

Keywords : energy management, mathematical modelling, Sasol Solar Challenge, 

simulation, solar irradiation, solar vehicle 

Abstract : Batteries typically used in 

electric vehicles have up to one hundred 

times lower energy-to-weight ratios (net 

calorific value, Wh/kg) than most fossil 

fuels used in internal combustion engines. 

Furthermore, solar-powered electric 

vehicles rely mostly on harvesting energy 

from solar irradiation (emitted by the sun) 

which is weather dependant. The need to 

optimise the energy usage of battery 

assisted solar-powered electric vehicles is 

crucial to maximise the range of such a 

vehicle. If the distance is fixed, weather 

conditions constant, and the topography 

flat, one can approximately optimise the 

energy usage of a solar car by finding the 

speed, which on average optimises energy 

usage over an entire journey. Such an 

approach provides a good guestimate for 

example for the Bridgestone World Solar 

The early chapters of the work create a 

foundation in terms of the current state-of-

the-art when considering vehicle modelling 

and interpretation of weather forecasts. A 

detailed solar car energy model is devised, 

and Model Output Statistics (MOS) are 

employed to improve the accuracy and 

confidence interval of local weather 

forecasts required by the energy model. 

Extensive real-world experiments validated 

the robustness and accuracy of the energy 

model. The optimisation problem is 

formulated as a bi-level optimisation 

problem which makes use of Sequential 

Quadratic Programming (SQP) and 

Dynamic Programming (DP) solver 

techniques. The bi-level optimisation 

problem is implemented in the form of a 

User Interface (UI) for ease of use by the 

energy manager.  
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Challenge (BWSC) in Australia (taking 

place primarily in the desolate outback 

regions) where the topography is 

predominantly flat, and the weather 

conditions are relatively constant and 

therefore very predictable. Contrastingly, 

the Sasol Solar Challenge (SSC) route in 

South Africa contains complex topography, 

which includes various mountainous 

regions with steep slopes and frequent 

changes in the gradient of the road. Also, 

events such as the BWSC, are fixed distance 

routes, where the SSC is a variable distance 

route.  

     Various methods to optimise the energy 

usage of a solar car in a BWSC setting have 

been proposed. However, none of these 

methods are not suitable for the SSC 

context. This work is devoted to both 

theoretical research and novel applications 

of bi-level optimisation techniques to 

minimise energy usage and maximise 

distance travelled by a solar car 

participating in an SSC event in South 

Africa.  

 

     The novel variable distance bi-level 

optimisation technique was implemented 

during the eight days of the Sasol Solar 

Challenge 2018. It provided the solar car 

team from TUT with the technological 

advantage required to obtain a local 1st 

place as well as a 4th place overall 

(internationally). The implementation 

highlighted the superiority of the bi-level 

technique when compared to conventional 

energy management techniques on various 

occasions, especially during extreme 

weather conditions. 

     The accuracy and performance of the bi-

level optimisation technique was 

thoroughly assessed and analysed. It was 

found that on average, 94 % of the variation 

in the energy simulation (State of Charge) 

error can be explained by the variables 

contained within the derived energy model. 

The remaining 6 % variation in the energy 

simulation error may be as a result of small 

un-modelled vehicle dynamics (including 

Coriolis forces), non-linearity of the charge 

and discharge cycles of the battery and 

temperature effects. 
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ABSTRACT 

Batteries typically used in electric vehicles have up to one hundred times lower energy-

to-weight ratios (net calorific value, Wh/kg) than most fossil fuels used in internal 

combustion engines. Furthermore, solar-powered electric vehicles rely mostly on 

harvesting energy from solar irradiation (emitted by the sun) which is weather 

dependant. The need to optimise the energy usage of battery assisted solar-powered 

electric vehicles is crucial to maximise the range of such a vehicle. If the distance is 

fixed, weather conditions constant, and the topography flat, one can approximately 

optimise the energy usage of a solar car by finding the speed, which on average 

optimises energy usage over an entire journey. Such an approach provides a good 

guestimate for example for the Bridgestone World Solar Challenge (BWSC) in 

Australia (taking place primarily in the desolate outback regions) where the topography 

is predominantly flat, and the weather conditions are relatively constant and therefore 

very predictable. Contrastingly, the Sasol Solar Challenge (SSC) route in South Africa 

contains complex topography, which includes various mountainous regions with steep 

slopes and frequent changes in the gradient of the road. Also, events such as the 

BWSC, are fixed distance routes, where the SSC is a variable distance route.  

Various methods to optimise the energy usage of a solar car in a BWSC setting have 

been proposed. However, none of these methods are not suitable for the SSC context. 

This work is devoted to both theoretical research and novel applications of bi-level 

optimisation techniques to minimise energy usage and maximise distance travelled by 

a solar car participating in an SSC event in South Africa.  

The early chapters of the work create a foundation in terms of the current state-of-the-

art when considering vehicle modelling and interpretation of weather forecasts. A 

detailed solar car energy model is devised, and Model Output Statistics (MOS) are 

employed to improve the accuracy and confidence interval of local weather forecasts 

required by the energy model. Extensive real-world experiments validated the 

robustness and accuracy of the energy model. The optimisation problem is formulated 

as a bi-level optimisation problem which makes use of Sequential Quadratic 

Programming (SQP) and Dynamic Programming (DP) solver techniques. The bi-level 

optimisation problem is implemented in the form of a User Interface (UI) for ease of 

use by the energy manager.  



 

xiii 

The novel variable distance bi-level optimisation technique was implemented during 

the eight days of the Sasol Solar Challenge 2018. It provided the solar car team from 

TUT with the technological advantage required to obtain a local 1st place as well as a 

4th place overall (internationally). The implementation highlighted the superiority of the 

bi-level technique when compared to conventional energy management techniques 

on various occasions, especially during extreme weather conditions. 

The accuracy and performance of the bi-level optimisation technique was thoroughly 

assessed and analysed. It was found that on average, 94 % of the variation in the 

energy simulation (State of Charge) error can be explained by the variables contained 

within the derived energy model. The remaining 6 % variation in the energy simulation 

error may be as a result of small un-modelled vehicle dynamics (including Coriolis 

forces), non-linearity of the charge and discharge cycles of the battery and 

temperature effects. 

 

Keywords: energy management, mathematical modelling, Sasol Solar Challenge, 

simulation, solar irradiation, solar vehicle, stochastic optimisation, weather prediction 

  



 

xiv 

ACKNOWLEDGEMENT 

The following chapters are based on peer-reviewed published work from the same 

primary author and are hereby acknowledged: 

“In reference to IEEE copyrighted material which is used with permission in this thesis, 

the IEEE does not endorse any of Tshwane University of Technology or the Université 

Paris-Saclay products or services. Internal or personal use of this material is permitted. 

If interested in reprinting/republishing IEEE copyrighted material for advertising or 

promotional purposes or for creating new collective works for resale or redistribution, 

please go to http://www.ieee.org/publications_standards/publications/rights/rights_link.html 

to learn how to obtain a License from RightsLink. If applicable, University Microfilms 

and/or ProQuest Library, or the Archives of Canada may supply single copies of the 

dissertation.” 

 

Chapter III - MODELLING 

© 2018 IEEE. Reprinted, with permission, from: 

C. Oosthuizen, B. van Wyk and Y. Hamam, "Modelling and simulation of the South 

African designed Sun Chaser II solar vehicle," 2017 IEEE AFRICON, Cape Town, 

2017, pp. 1149-1154.   

DOI: 10.1109/AFRCON.2017.8095644 

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8095644&isnumber=8095433 

 

Chapter IV - ENVIRONMENTAL CONDITIONS 

© 2020 IEEE. Reprinted, with permission, from: 

C. Oosthuizen, B. van Wyk, Y. Hamam, Y. Alayli and D. Desai, " Development of Solar 

Irradiance Forecast Confidence Intervals for Solar Electric Vehicle Energy 

Simulations," IEEE SAUPEC 2020, Cape Town, 2020, pp. 56-61.  

DOI: https://doi.org/10.1109/SAUPEC/RobMech/PRASA48453.2020.9041019  

URL: https://ieeexplore.ieee.org/document/9041019  

http://www.ieee.org/publications_standards/publications/rights/rights_link.html
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8095644&isnumber=8095433
https://doi.org/10.1109/SAUPEC/RobMech/PRASA48453.2020.9041019
https://ieeexplore.ieee.org/document/9041019


 

xv 

Chapter IV - ENVIRONMENTAL CONDITIONS 

© 2020 by the authors. Reprinted with permission, from: 

C. Oosthuizen, B. van Wyk, Y. Hamam, Y. Alayli and D. Desai, " The Use of Gridded 

Model Output Statistics (GMOS) in Energy Forecasting of a Solar Car," MDPI 

Energies, vol. 13.  

DOI: https://doi.org/10.3390/en13081984  

URL: https://www.mdpi.com/1996-1073/13/8/1984 

 

Chapter V - OPTIMISATION 

© 2019 IEEE. Reprinted, with permission, from: 

C. Oosthuizen, B. Van Wyk, Y. Hamam, D. Desai, Y. Alayli and R. Lot, "Solar Electric 

Vehicle Energy Optimisation for the Sasol Solar Challenge 2018," in IEEE Access, vol. 

7, pp. 175143-175158, 2019.  

DOI: 10.1109/ACCESS.2019.2957056 

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8918287&isnumber=8600701 

 

The author would also like to acknowledge Meteomatics AG for supplying accurate 

and reliable weather forecasts used in this work. Lastly, the author would like to 

recognise The merSETA (The Manufacturing, Engineering and Related Services 

Sector Education and Training Authority) & TUT Chair in Intelligent Manufacturing, the 

Versailles Systems Engineering Laboratory (LISV, France) and finally the Embassy of 

France in South Africa for their financial support. 

 

Finally, glory to God for His favour during this research journey!

https://doi.org/10.3390/en13081984
https://www.mdpi.com/1996-1073/13/8/1984
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8918287&isnumber=8600701


 

16 

I. RESEARCH OBJECTIVE AND PROJECT 

OVERVIEW 

PROJECT CONTEXT  

Recent developments in solar-powered electric vehicles are increasingly becoming 

more relevant and accessible as natural resources diminish and the exploration of 

alternative forms of energy becomes essential. These forms of energy can contribute 

to lowering the carbon footprint of various energy applications, especially vehicles. 

Various solar-powered electric vehicles are currently in existence, commercially, but 

may still be financially unrealistic for, and not yet trusted by the majority of the 

population. Broader economic awareness and exposure to the benefits of such 

vehicles could encourage funding contributions and other forms of financial support, 

making further research and development possible in the field of solar-powered 

electric vehicles. Furthermore, by creating awareness the demand for these vehicles 

will increase, encouraging large scale production and finally lowering the unit cost per 

“green” (renewable energy reliant) car, thereby benefitting the economy.  

Around the world, industry and academia set up engineering challenges to encourage 

graduates and industry partners to invest time, research capacity and resources in 

solar-powered electric vehicles. These challenges were founded in order to spark 

enthusiasm as well as create awareness among the general public. The challenges 

include the Shell Eco-marathon (worldwide) and the Formula Student Germany 

Electric (Europe) as well as the Bridgestone World Solar Challenge (Australia) and the 

Sasol Solar Challenge (South Africa) to name but a few. 

 

THE SASOL SOLAR CHALLENGE IN SOUTH AFRICA 

Among the many international solar challenges, the South African based Sasol Solar 

Challenge (SSC) is one of the most demanding (after the Australian Bridgestone World 

Solar Challenge (BWSC)). The SSC route offers unique and difficult geographical 

characteristics as well as an exclusive race structure, where the aim is to cover the 

longest distance possible in eight days, rather than the shortest time between two 

points of fixed distance, which seems to be the norm for solar challenges across the 

world. The SSC requires teams to design, build, manage and race their solar cars from 
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Pretoria across South Africa towards Stellenbosch (near Cape Town). Along the route 

teams will have to do careful planning as the landscape varies from vast, barren areas 

of flat topography to mountainous regions that ascend and descend by hundreds of 

meters at a time, and everything in between. The route also offers a broad spectrum 

of weather conditions as teams near the coastal towns; the challenge sees at least a 

day or two of rain, including some cloudy and very windy route locations. The SSC 

has various categories, two of which are the most prominent: Challenger and Cruiser 

class. Challenger is the most popular, requiring teams to design lightweight, 

streamlined solar vehicles carrying just one person and completing the challenge by 

solely using the sun en-route. On the other hand, the Cruiser class aims to bridge the 

gap between solar-powered cars and the commercial market by allowing multiple 

passengers, larger capacity battery packs and the ability to charge batteries not just 

from the sun alone, but also from a grid-tied power source. The typical route for the 

Sasol Solar Challenge is shown in Figure 1; this was the mandatory route for the 2018 

event in South Africa. 

 

 

Figure 1: Sasol Solar Challenge 2018 route 
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IMPORTANCE AND BENEFIT OF THE STUDY 

Tshwane University of Technology (TUT) participates in the bi-annual Sasol Solar 

Challenge and is in the process of designing a next-generation Challenger class solar-

powered vehicle for future challenges. During the 2016 Sasol Solar Challenge, the 

TUT team analysed the recorded solar vehicle data with a unique long-range telemetry 

system over the eight days of the challenge to better understand where to improve the 

design and energy management strategy. Based on the information obtained from the 

recorded data, it became evident that there was a need for better energy management 

in the form of informed driving speeds as well as aid in decision making, based on 

changing weather conditions. No framework to incorporate weather data in mission-

critical decisions existed which was in reach of the TUT solar car team. 

The need to simulate the entire race in order to refine the informed energy 

management decisions became a priority. Similar recent studies do exist, but these 

are mostly based on international events that are more concerned with managing and 

optimising driving time as opposed to maximum distance covered by a solar vehicle 

confined to a set of constraints. 

 

THE RESEARCH OBJECTIVE 

The objective of this research was to improve the energy management strategy of a 

solar vehicle operating in the South African environment by characterising a prototype 

vehicle, predicting the environmental conditions and developing a suitable 

optimisation technique to minimise the energy used for travelling variable distances. 

The principal aim was to optimise the energy-use of a solar electric car driving the 

route of a Sasol Solar Challenge in South Africa. 

 

RESEARCH QUESTIONS 

Table 1 lists the core questions as well as the sub-questions of this research work. 
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Table 1: Research questions 

No CORE QUESTIONS SUB-QUESTIONS 

1 

To derive a conceptual model to use for 

optimisation, based on vehicle characteristics 

and dynamics, solar car design methods, 

preliminary evaluation of logged vehicle data 

and other related literature and models. 

 

Which dependent, independent, and 

moderating variables need to be considered 

for the model? 

How can statistical variation in environmental 

and other variables be modelled? 

Are there any profound vehicle or 

environmental variables arising as a result of 

the South African context that might influence 

the type of optimisation method and which we 

need to consider?  

2 

Based on the literature on optimisation 

algorithms, solar car design constraints and 

preliminary research, which optimisation 

algorithms are feasible to consider when 

managing the energy usage of a solar car; 

and what can we learn about the 

effectiveness of existing optimisation 

approaches and identified vehicle 

characteristics as well as environmental 

conditions when evaluating the approaches 

for use with a solar car operating under South 

African conditions? 

Which optimisation strategies will be best 

suited to solving the problem?   

Which simulation methodologies, will be best 

suited to solving the problem?   

 

3 

Based on the effectiveness of existing 

algorithms and the use of certain 

characteristic combinations when evaluating 

their suitability for real-world constrained 

implementation, what possible contributions 

and recommendations can be made 

regarding suitable optimisation algorithms 

and the selection of the appropriate vehicle 

and environmental conditions for energy 

optimisation of a solar car operating in South 

African conditions? 

What can be recommended to the South 

African solar vehicle team regarding choice of 

vehicle and environmental factors to consider, 

to ensure accurate characterisation of the 

solar vehicle and its environment? 

 

What can be recommended to the South 

African solar vehicle team regarding real-time 

updates when minimising the energy usage of 

a solar vehicle travelling a variable distance 

under South African conditions? 
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RESEARCH METHODOLOGY, FRAMEWORK AND STRATEGY 

Methodology 

This work is mostly quantitative but contains some qualitative elements. This research 

project was undertaken in South Africa and considered the specific conditions of the 

South African roads and the varying impacts of the weather and the influence of these 

conditions on a locally designed and built solar car competing in a Sasol Solar 

Challenge event. Unlike Australia, Egypt and many parts of North America, South 

African weather conditions can vary considerably across the country. 

The non-uniformity of South African roads offer a variety of conditions such as flat 

terrain, steep inclines/declines and mountain roads that have many tight bends and 

blind turns in them, all of which may all be encountered on the same day of driving 

along the prescribed routes in a Sasol Solar Challenge event. In contrast, Australia, 

Egypt and even some American Solar Challenges (ASC), the gradient of the road is 

mostly flat with long winding curves, in many cases, the road seems wholly straight 

and flat as far as the eye can see. The weather, especially in Australia and Egypt, is 

somewhat predictable (mostly clear sky) which significantly simplifies energy 

management and planning.    

Strategy 

This research uses the 2016 and 2018 TUT solar car as a case study for modelling, 

energy simulations, application of optimisation techniques and field testing. 

Figure 2: Research strategy flow diagram 
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The research strategy was structured as follows: 

Phase 1: The research was initiated with a systematic and chronological approach and 

focused on information relevant to the context of the study. The literature was 

consulted to identify appropriate techniques that then formed part of the literature 

review. This in turn, assisted in the iterative formulation of the research’s central and 

sub- questions. 

 

Phase 2: The identified literature was used to establish the vehicle and environmental 

factors relevant by suitably characterising the behaviour of the car and its operating 

environment. Furthermore, an evaluation of historically recorded data, from previous 

Sasol Solar Challenges in South Africa, and experiments were used to help identify 

the more prominent factors that had to be considered, explicitly based on the South 

African context. A suitable model (in which non-linear components may be linearised 

around operational points) that describes the behaviour of the solar car on South 

African roads was developed. Some of the characteristics of the vehicle were also 

validated by the use of wind tunnel tests, simulations and experiments. 

 

Phase 3: a) Optimisation strategies suited to the Sasol Solar Challenge Challenger 

category were used as a guideline to set up the constraints for the optimisation 

problems. A suitable objective function based on the Sasol Solar Challenge rules and 

regulations (including national road rules) was derived by considering the model 

obtained in Phase 2. In addition, the identified constraints aided in deriving the cost 

function.  

b) The weather and other environmental variables were modelled and incorporated 

into the optimisation technique.   

 

Phase 4: Subsequently, the optimisation strategy derived in Phase 3, in conjunction 

with the model of Phase 2, was used to simulate the SSC route to obtain the optimised 

speed profile for the solar car. Various experimental performance validations were 

performed by remotely recording (Internet of Things, IoT) drive data (big data) from 

the solar car and comparing it with that of the optimisation simulation 
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recommendations. Conclusions were then drawn and appropriate recommendations 

and contributions were made to the TUT solar car team in terms of a more effective 

energy management strategy. 

 

Phase 5: Work and associated results were then documented. Although the research 

framework follows a seemingly chronological order, the research was an iterative 

process allowing for bi-directional movement between the different phases. Future 

work recommendations were made. 

 

Scope and delimitations 

Solar vehicle modelling  

• Existing characteristics of the 2016 and 2018 TUT solar car (Sun Chaser II and 

Sun Chaser III) and historical weather data was used to mathematically 

describe the solar vehicle so as to create the analytical mathematical model.  

• The aim of this research was not to develop a new vehicle, but rather to find the 

most prominent primary and secondary contributing variables that describe the 

car and its environment and identify these characteristics through analytics, 

measurements, tests and experiments. It was foreseen that the results would 

lead to better designs for the car developed in 2020 and beyond. 

• The analytical model used for this research was based on the characteristics of 

an existing solar vehicle. 

 

Environmental characterisation 

• All significant weather forecast variables identified in the literature were 

considered in this work; however, only the solar irradiance forecast received 

specific improvement and conditioning. 

 

Optimisation techniques and constraints 

• Just those optimisation techniques were explored that allowed for non-linear 

finite horizon systems to be used.  
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• The South African Sasol Solar Challenge context was used as a framework for 

testing the optimisation techniques. 

• The optimisation constraints were specifically formulated for a vehicle 

competing in the Sasol Solar Challenge on South African roads. 

 

Nature of the contribution and recommendations 

• The recommendations regarding the solar vehicle were not of an improved 

design nature, but rather focused on choosing good, relevant characteristics for 

modelling purposes and highlighting the major contributing features. That said, 

the results from this work might contribute to the improvement of future designs 

of the solar car. 

• The recommendation regarding the energy management strategy improvement 

of the solar vehicle were in the form of a user interface (UI). The Sasol Solar 

Challenge participants from TUT used the UI to help them plan, manage and 

predict their energy usage by providing them with an optimal speed profile to 

drive at throughout the planned trip. The software interface (UI) would need to 

factor in the vehicle’s physical characteristics in order to display the desired 

route distance for the day to be travelled, the time allowed for travel, the 

predicted weather forecast and various other parameters. The UI then used the 

parameters and mathematical equations describing the vehicle dynamics to 

simulate and minimise the energy usage for the route. This then enabled the UI 

to display advice for the drivers on the optimal speed to drive at, updating this 

as frequently as for every 1 km travelled. 

 

Form and nature of results 

The results of this study are presented in the form of optimal speed recommendations 

aimed at assisting the TUT solar team in making better energy management decisions 

while competing in a Sasol Solar Challenge in South Africa. The mentioned 

recommendation itself is in a User Interface (UI) format that allows the team to input 

their vehicle particulars and route data and extract weather data from on-line sources 

(IoT). The UI is able to simulate an energy model of the solar car. The optimisation 
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technique then provides the user with the required optimal speed profile at which the 

car has to travel along the entire route. In addition, the UI also provides the energy 

user with information on how to maximise distance travelled during a Sasol Solar 

Challenge event. 

 

OVERVIEW OF THE CHAPTERS  

Chapter I introduced the research strategy, established the context of the work, 

provided a project overview and emphasised the importance and benefits of the work. 

The literature review in Chapter II provides a summary of the current knowledge on 

vehicle modelling, weather forecasting techniques and an overview of solar electric 

vehicle challenges worldwide. The chapter then concludes with a summary underlining 

the current research deficiencies in the identified areas. Chapter III contains details on 

the mathematical energy model of a solar car, including a section validating the model 

in real-world conditions. The environmental conditions and forecast improvements are 

detailed in Chapter IV. Here the author details how weather forecast performance can 

be improved and tailored to the niche area of solar vehicle energy predictions and 

simulations. Chapter V focusses on the optimisation techniques used to minimise 

energy usage while maximising distance travelled of a solar electric vehicle competing 

in the SSC event in South Africa. Chapter VI is an in-depth, real-world case study 

which validates the mathematical models and optimisation techniques as well as 

providing comprehensive performance characteristics. The concluding chapter 

(Chapter VII) wraps up the work by linking the research questions to the chapter 

content and illuminating how these questions were addressed and answered 

throughout the document. The references to the consulted literature follow Chapter 

VII. The work is concluded with an annexures section. 
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II. LITERATURE REVIEW 

Although this research concerns solar vehicles, the physical nature of a solar car is 

very similar to that of an electric vehicle or even a conventional fuel or self-powered 

vehicle. Therefore, this literature review consists mainly of research published in the 

domain of electric cars and where possible, makes reference to studies focussed 

explicitly on solar vehicle research.   

 

SOLAR VEHICLE MODELLING 

Mathematical models can help us understand observed systems or phenomena by 

providing us with the means of being able to predict their reactions (output) based on 

specific actions (input stimulus) [1]. It also enables us to manipulate the world around 

us. Historically, to achieve this objective, we have used several mathematical 

methods: numbers, algebra, geometry, calculus, including differential equations, 

statistics, dynamic systems and chaos theory as well as more complicated systems. 

Mathematical modelling is used to create a mathematical description of the observed 

phenomenon which is generally too complicated to be fully described [2]. Mathematical 

modelling provides us with a recipe for simplifying the observed phenomenon and 

arriving at a computationally tractable description. We need to keep in mind that the 

model is merely a simplification of reality. There is always a possibility that the model's 

simulation output results will deviate from the actual results.  

It is a commonly known fact that models very often have to be numerically expressed 

to allow its interpretation to be processed by a computer. From this, it is simple to 

recognise that among all instruments used to define, predict and manipulate natural 

phenomena, mathematical modelling plays an essential role. Mathematical modelling 

is, in many cases, the only possible way to comprehend or experience a phenomenon. 

Typically, there are two distinct major methods of modelling: analytical modelling and 

statistical modelling. Both types are widely used, with the former commonly applied in 

the exact sciences and physics domains and the latter applied in economic, financial 

and biological fields. This does, however not mean that statistical modelling is not seen 

in the field of physics and mathematics. An example might be machine learning or an 

artificial intelligence which frequently relies heavily on statistically driven models or 
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mixed models. Mathematical modelling always starts by understanding the system in 

question, including its surroundings and the effect its surroundings have on it. Being 

able to understand these factors and system or phenomena characteristics is the first 

step in creating an analytical model. For this work, we focussed mainly on analytical 

modelling; whereas statistical models [3] use a different approach. 

An Electric Vehicle (EV) is surprisingly similar in physical and other characteristics to 

a regular car [4]. The list below points out the common similarities (focussing on 

physical aspects which might affect energy usage) when comparing an EV to a 

traditional internal combustion engine vehicle [5-9]: 

• Four wheels in contact with the road surface 

• Mechanical transmission system 

• Substantial vehicle mass 

• Brake booster system and power steering 

• Climate control 

• Energy storage medium  

• Safety equipment 

• Auxiliary electrical equipment 

 

The mechanical transmission system of a traditional vehicle has significant losses, 

mainly due to friction and heat. Similarly, in an EV, transmission losses play a vital role 

in energy consumption. However, the need for energy efficiency in EVs as a result of 

inferior battery technology tends to drive designs in the direction of direct drive motors 

which cuts out the transmission losses completely. In contrast, the Tesla Model 3 EV, 

for example, still makes use of an automatic transmission system, although it is quite 

efficiently designed and well suited for its purpose. Vehicles such as the newly 

launched commercial solar car Lightyear One, however, uses direct-drive in-hub 

motors to eliminate transmission losses.  

A similar comparison is that of the various energy storage mediums used. Traditional 

vehicles typically use some fossil fuel as their energy storage medium whereas EVs 

usually make use of batteries for energy storage (typically, some Li-Ion variation). 

Extracting the stored energy from these various mediums requires certain transfer 

efficiencies, which is considered a type of energy loss. The reason for pointing out the 
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similarities is to show that modelling an EV is more general than one might initially 

have thought. In the same way that there are some similarities between traditional cars 

and EVs, there are also some differences that are discussed in this chapter.  

 

Mechanical factors  

Mass and gravity 

The weight of an object has a massive impact on the energy required to displace an 

object from one place to another on a horizontal as well as a non-horizontal surface. 

This apparent parameter importance is emphasised by the inclusion [10] of mass in 

both the kinetic and the potential energy equations.  

𝐸𝑝 = 𝑚𝑔(ℎ1 − ℎ0)     (1) 

𝐸𝑘 =
1

2
𝑚(𝑣1

2 − 𝑣0
2)     (2) 

where 𝑚 is the mass of the vehicle, 𝑔 is gravitational acceleration, ℎ is the altitude of 

the location and 𝑣 is the speed of the vehicle. 

The route gradient significantly affects the gravitational component of a vehicle and is 

aggravated by its independent variable, mass [11]. The effect can be positive or 

negative, depending on the state of the gradient and the magnitude of the mass. 

Increasing the number of occupants and luggage in a vehicle further increases the 

overall weight, which in turn also increases the effects of the route gradient on the 

energy consumption of an EV. 

 

Friction or rolling resistance 

This is a result of two surfaces in contact (the wheel and the road) which deform slightly 

at the point of contact and do not recover their shape completely. Therefore, the 

contact involves a loss of elastic energy. Usually, the rolling friction is an order of 

magnitude less than the traction when solid surfaces are involved. Nonetheless, as in 

the case of most vehicle scenarios, the rolling friction is not negligible with a pliable 

rubber wheel on hard tar. Some independent variables affect the magnitude of rolling 

resistance [12]: road gradient, tyre material, tyre pressure, road surface conditions, 

bearing friction and wheel alignment. A coefficient of rolling resistance (𝐶𝑟, can 
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summarise most of these independent variables) which can be calculated, but is 

mostly experimentally determined due to the complexity of the calculation [13]. The 

experimental method is commonly referred to as the “coast down method” [14]. The 

wheel alignment is vitally important as this is normally not included in the coefficient of 

rolling resistance. Incorrect Toe, Camber and Wheel Alignment settings of a vehicle 

can increase rolling resistance, not to mention cause uneven tyre wear and unsafe 

driving conditions. Rolling resistance is described by [15]: 

𝐹𝑟 = 𝐶𝑟𝑚𝑔𝑐𝑜𝑠(𝜃)     (3) 

where 𝜃 is the gradient of the road. The following table (Table 2) presents typical 

(averaged) 𝐶𝑟 values for some common applications [16].  

 

Table 2: Coefficients of rolling resistance 

Contact surfaces 𝑪𝒓 

railroad steel wheels on steel rails 0.001 - 0.002 

low resistance tubeless tyres 0.002 - 0.005 

bicycle tyre on concrete 0.002 

bicycle tyre on asphalt road 0.004 

truck tyre on asphalt 0.006 - 0.01 

bicycle tyre on roughly paved road 0.008 

ordinary car tyres on concrete, new asphalt 0.01 - 0.015 

car tyres on tar or asphalt 0.02 

car tyres on gravel - rolled new 0.02 

car tyres on cobbles  - large worn 0.03 

car tyre on solid sand, gravel loose worn, soil medium-hard 0.04 - 0.08 

car tyre on loose sand 0.2 - 0.4 

 

The following equation shows a simple relationship between 𝐶𝑟, the tyre pressure and 

vehicle speed [17]:   

𝐶𝑟 = 0.005 +
1

𝑝𝑡
(0.01 + 0.0095 (

𝑣

100
)

2
)   (4) 

where 𝑝𝑡 is the tyre pressure and 𝑣 is the vehicle speed. 
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It is important to note that the 𝐶𝑟 coefficient is not completely independent of vehicle 

speed as can be seen in Equation (4). However, an increase in the tyre pressure (𝑝𝑡) 

decreases the quadratic relationship effect that 𝑣 has on the 𝐶𝑟  coefficient and the 

relationship becomes more linear.   

 

Aerodynamic losses 

A vehicle has three main sets of aerodynamic forces acting upon it, namely 

longitudinal forces, aerodynamic lift or down forces, and forces induced by crosswinds.  

Consider first the longitudinal force: the EV's aerodynamic shape directly impacts the 

energy required to move forward and displace the air surrounding it [18]. Furthermore, 

wind speed and wind direction are critical considerations for calculating the real 

aerodynamic drag energy. For an accurate calculation, it is necessary to take into 

account the vector component of the wind [19], which directly affects the vehicle from 

the front or the rear. Other independent variables are air density, vehicle speed, the 

frontal surface area of the car as well as the coefficient of aerodynamic drag. The 

relationship is given by [20]: 

𝐹𝑎 =
1

2
𝑝A𝐶𝑑(𝑣 +  𝑣𝑤)2     (5) 

where 𝑝 is the air density, 𝐴 is the frontal area of the vehicle, 𝐶𝑑 is the coefficient of 

aerodynamic drag and 𝑣𝑤 is the frontal wind speed.  

The losses due to aerodynamic drag also exhibit a quadratic speed relationship. It can, 

therefore, be said that the faster the vehicle is moving, the more prominent the 

aerodynamic forces become. The coefficient of aerodynamic drag (𝐶𝑑) is a measure 

of the performance of a streamlined aerodynamic shape which moves through the 

surrounding air. A low drag coefficient means that the streamlined shape of the 

vehicle's body is such that it can move effortlessly through the surrounding viscous air 

with minimal resistance. On the other hand, a high drag coefficient is produced by 

insufficient streamlining of the body profile, so that when the car is in motion there is 

elevated air resistance. In many cases, moving parts are added to performance 

vehicles to induce high aerodynamic drag (increasing the frontal area as well as the 

coefficient of aerodynamic drag) and aerodynamic downforce for short periods to allow 
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for high-speed cornering and improved manoeuvrability at high speeds without losing 

traction [21]. The following table (Table 3) provides typical 𝐶𝑑 values for vehicle types: 

 

Table 3: Coefficients of aerodynamic drag 

Vehicle type 𝑪𝒅 

Motorcycle and rider 1.5 

Typical F1 racing vehicle with dynamic rear wing for increased drag and downforce 1.2 

A modern car like Toyota Prius 0.26 

Tesla Model 3 EV 0.23 

Convertible, open top 0.6 - 0.7 

Bus 0.6 - 0.8 

Old Car like a T-ford 0.7 - 0.9 

Solar electric prototype car competing in Bridgestone World Solar Challenge or 
Sasol Solar Challenge 

0.09 - 0.22  

 

Typically, turbulent airflow at the tail of a vehicle is coupled with a high coefficient of 

aerodynamic drag. In the same way, laminar flow from the rear of a car is usually 

coupled with a low coefficient of aerodynamic drag [22].  

The second component of the aerodynamic forces is that of aerodynamic lift or 

downforce. This is of particular importance to vehicles designed for high speed, such 

as Formula 1, NASCAR and in many cases, rally cars. If the car possesses positive 

lift, this means that the normal force on the tyres become less with the increase in 

speed, which in turn results in less traction with reduced cornering and evasive 

manoeuvring abilities. The goal for energy-efficient vehicles such as solar cars, is 

generally a neutral (zero) coefficient of aerodynamic lift [23]. 

The third component of aerodynamic force is that force which is induced by 

crosswinds. The second and third components are less important when considering 

ordinary everyday vehicles and are mainly relevant to high-performance cars or 

endurance cars such as solar cars. 

These three aerodynamic coefficients are usually found employing computer 

simulation, wind tunnel experiments or other tests. 
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Transmission losses 

These are significant losses in Internal Combustion Engine Vehicles (ICEV) from 

where the power or torque is produced (the engine) to where it is applied to the shafts 

at the wheels [24]. These include components such as the transmission, transfer case, 

differentials, constant velocity joints, and universal joints. Generally, with an EV, these 

losses are minimised by reducing the distance between the power production unit 

(electric motor) and the shafts of the wheels as well as reducing the number of 

mechanical linkages [25]. Transmission losses can be eliminated by situating the 

electric motor directly into the wheel hubs to bypass all potential transmission losses. 

The latter is popularly applied by various EV manufacturers today. The transmission 

losses can typically be described by a simple constant-coefficient and are typically 

found through experimentation and measurement [26].  

 

Acceleration forces 

When a vehicle is in motion, the energy it expends to accelerate between two known 

speeds can be calculated  by the change in kinetic energy [27] as shown in Equation 

(2). 

This equation shows us that energy due to ideal acceleration is not time-dependent, 

as the variable t does not appear in it. However, in the case of an EV, the limitation on 

acceleration is a combination of the maximum discharge rate of the battery pack and 

the safe operational regions of the electric motor/s [28]. Another consideration is that 

most electrical motors used in EVs are complex 3-phase machines and typically vary 

in efficiency with a variation in torque required [29]. Luckily, with most of these special 

3-phase machines, the efficiency increases with an increase in torque demand [30] 

(limited to a specific r/min range of course). Therefore, pulling away rapidly (rapid 

acceleration) with an EV to reach a set speed will most likely use less energy than 

acceleration over a longer period of time (due to the relationship between torque and 

efficiency). Different behaviours are observed in fossil fuel cars as it has been proven 

that slower acceleration generally saves fuel. 
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Deceleration forces (regenerative braking) 

Vehicles in motion possess a lot of kinetic energy, and all this kinetic energy has to go 

somewhere when brakes are applied to slow the car down [31]. Brakes are traditionally 

based exclusively on friction and transform the vehicle's kinetic energy into waste heat 

and friction to decelerate a vehicle. Almost all of that energy is simply lost to heat and 

friction during a traditional braking cycle. Regenerative braking utilises the motor of an 

EV as a generator to transform much of the kinetic energy back into stored electrical 

energy when decelerating [32]. The next time the car accelerates, it utilises much of 

the energy stored earlier from the regenerative braking. Although the efficiency of 

regenerative braking is such that it may merely add 11-22 % in driving range [33], this 

is still much better than simply losing all of that energy to heat and friction as happens 

in traditional braking systems. 

 

Electrical factors 

Motor and inverter 

Some of the most essential components of EVs, such as drive motors, enjoy much 

attention in terms of improvement, and rightfully so. EV motors are available and range 

in efficiency from 35 % to 82 % [34] for DC motors and up to 97 % [35] for other 

technology motors, such as Permanent Magnet Synchronous Motors (PMSM). The 

efficiency also has some correlation with the technology used. Most EV motors are 

PMSM, Brushless DC (BLDC) or Switch Reluctance Motor (SRM) machines, which 

mostly boast high efficiencies. Older 3-phase AC and DC motors have lower 

efficiencies in general. The electric motor, however, cannot be more efficient than the 

drive or controller behind it. Typical methods such as square wave, trapezoidal and 

vector-based commutation methods are used. All three mentioned commutation 

methods or algorithms could drive popular motor technologies (PMSM, BLDC, and 

SRM). More advanced algorithms, such as Field Oriented Control (FOC, vector-

based) [36] are closed-loop and perform at superior efficiencies, compared to other 

less expensive and less sophisticated commutation methods. As mentioned earlier, 

the motor and controller efficiencies usually are not constants, but rather a function of 

the torque (load) and r/min (vehicle speed) required [37]. 
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Climate control, power steering and electrical peripherals 

Climate control might be one of the more prominent (up to 30 % of the total energy 

expended) electrical consumers of regular vehicles as well as on EVs [38]. Luckily, the 

climate control function is not always active and intelligent sensing within the vehicle 

cabin ensures minimum usage of climate control to achieve maximum thermal results.  

 

Vehicle communication, entertainment systems and control systems 

All modern vehicles have internal communication systems and state of the art control 

systems as well as integrated entertainment systems [39]. These vary according to 

the manufacturer and the specific model, and their power consumption can be 

estimated or measured to arrive at a suitable constant. 

 

Battery characteristics 

The most prominent battery technology used in modern EVs is Li-Ion chemistry. These 

cells have charge and discharge efficiencies as well as other capacity characterising 

parameters that influence their performance to convert stored energy into usable 

electrical energy. The specific battery efficiencies, energy density and weight to energy 

ratio of Li-Ion are relatively superior to many of its counterparts and therefore, a 

favourite in the EV industry [40, 41]. Many complex battery models exist; however, it 

has been shown that a simple constant coefficient can yield acceptable results in 

describing the efficiency and performance of a Li-Ion cell [42]. 

 

Solar panels 

Many EVs and even regular internal combustion vehicle manufacturers are leaning 

towards renewable energies and the application of these in their vehicles. Silicon-

based solar panels typically have an efficiency of between 16 % and 25 % [43], 

depending mainly on the quality of the cells, the encapsulation materials as well as the 

manufacturing process. Gallium and multi-junction based cells can reach efficiencies 

of up to 47 %, but are known to be very expensive [44]. Car manufacturers usually opt 

for making use of the silicon-based cells, except for certain prototype solar electric 
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vehicles [45] where some gallium and multi-junction technologies are incorporated in 

their solar panel arrays. The cloud cover conditions, very high temperatures and the 

accumulation of dust all decrease the output efficiency of solar panels. 

 

Environmental factors  

Condition of the air 

The air temperature, humidity, pressure and dew point temperature all affect the air 

density, which in turn directly affects all three components of the aerodynamic drag 

forces. The air density at a ground surface level can be seen to vary by up to a few 

percentiles [46] and must, therefore, be considered when modelling a vehicle.  

 

Wind 

The wind speed and direction affect the aerodynamic component, as explained before. 

These wind components need to be evaluated and included in the energy model of a 

vehicle to make the model more realistic. Wind gusts are challenging to predict and 

therefore, the average wind speed and direction for any specific hour is used to 

evaluate the forces brought to bear on a vehicle body. 

 

Solar irradiance (𝐺𝐻𝐼) 

EVs fitted with solar panels will see a change in input power based on the amount of 

solar irradiation they receive from the sun. Solar irradiance can be divided [47] into 

three main categories: Direct Normal Irradiance (𝐷𝑁𝐼), Diffuse Horizontal Irradiance 

(𝐷𝐻𝐼), and Global Horizontal Irradiance (𝐺𝐻𝐼). Equation (6) shows the relationship 

between the components where (σ) is the angle between the normal (horizontal) 

surface of the earth and the sun.  

               𝐺𝐻𝐼 = 𝐷𝑁𝐼𝑐𝑜𝑠𝜎 + 𝐷𝐻𝐼     (6) 

If a surface is held normal to the angle of the incoming sun rays, the amount of solar 

radiation received here is called the 𝐷𝑁𝐼. The application of solar photovoltaic 

installations and other installations that track the position of the sun has particular 

interest to this quantity. The 𝐷𝐻𝐼, on the other hand, is the amount of indirect solar 
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irradiance which arrives on a surface due to the scattering of molecules and particles 

in the atmosphere and is observed equally from all directions. The most useful is the 

𝐺𝐻𝐼 component as this describes what a horizontal surface on the ground might 

experience in terms of solar irradiance, which includes the effects from both the 𝐷𝑁𝐼 

and the 𝐷𝐻𝐼 components. The 𝐺𝐻𝐼 component [48] is often used to evaluate the 

available solar energy of a fixed solar installation. The same applies to a typical EV, 

hybrid or solar-powered vehicle, as in most cases they expose their integrated solar 

panels horizontally to the sun (roof, bonnet/hood and boot/trunk areas). 

 

Clouds 

Although current 𝐺𝐻𝐼 forecast attempts to account for the cloud effect, the presence 

of clouds decreases the confidence interval of the 𝐺𝐻𝐼 prediction [49, 50]. The amount 

of Total Cloud Cover (𝑇𝐶𝐶) was historically measured in Octas; however, recent 

forecasts can supply an intuitive percentage scale to describe the 𝑇𝐶𝐶. While cloud 

conditions can be described by high level, low level and other cloud parameters, 𝑇𝐶𝐶 

however, provides a holistic description of the cloudy conditions [51] and is popularly 

used in combination with 𝐺𝐻𝐼 forecasts to sharpen results. 

 

Rain 

The presence of rain might affect parameters such as traction [52], and when heavy 

rainfall is present while driving at high speeds, the rain may add resistive force to the 

front of the vehicle; possibly producing a similar effect to when the air density 

increases. This means that the car will have to exert more force to move through its 

surrounding air [53]. Heavy rain is mostly isolated and is therefore not very prominent 

when modelling a vehicle. 

 

Miscellaneous factors 

Driving behaviour and traffic 

Each driver will have a unique style of driving, which will directly impact the energy 

consumption of a vehicle. Findings from a study in Thailand demonstrated that the fuel 

consumption of an internal combustion vehicle varied by up to 30 % [54] based on 
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comparisons of the most fuel-economic driving style measured and the most 

uneconomical driving style measured. Some studies have been done on the driving 

behaviour of EVs, but as general driving behaviour (not including following a strict 

speed profile) is a delimitation of this study, it is of less importance to discuss those 

results. In principle, the kinetic energy equation is not dependent on time, which 

technically means that if one accelerated harshly or slowly, one would use a similar 

amount of energy to do so. However, the ICEV engine or EV motor would be operating 

at different operational efficiencies (coupled to r/min and load). This means one first 

has to understand the vehicles’ power plant and transmission to appreciate what 

impact the driving behaviour will have on a car. In general, the type of electric motors 

used on EVs operate at a higher efficiency under high torque, which is not always the 

case with ICEVs. The traffic component adds some variation to the driver’s behaviour 

and does not necessarily decrease efficiency. Traffic does, however, affect ICEVs 

more than it does EVs as the ICEV still has to maintain a state of idle, which consumes 

energy. When the EV is stationary in traffic, it will be the auxiliary equipment alone that 

will be consuming a small amount of energy. 
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Figure 3: Energy model parameter summary 



 

39 

WEATHER VARIABLES 

An integral part of ensuring an accurate energy model (specifically for solar electric-

powered vehicles) is by including relevant weather conditions to the energy variable 

set. Knowing what the weather conditions might be before travelling a particular route 

will be beneficial to be able to plan it effectively. For instance, a driver might be 

planning to drive the following morning to a town 300 km away from his current location 

(assuming the range of this solar vehicle is 300 km with good sunshine when travelling 

at 120 km/h). He does not know that the weather forecast until 1 pm the following day 

predicts fully overcast conditions (which would force the driver to drive slower to 

conserve energy). The driver will become frustrated when departing early, while 

having to drive slowly rather than leaving after lunch and being able to drive at a good 

pace. One can then argue that if the driver had watched the weather channel the 

previous night, he would have been able to make the necessary adjustments to the 

trip. However, when you have to consider the clouds, wind speed and direction, the 

air density, the solar irradiance forecast (such as 𝐺𝐻𝐼) and the variability of these 

parameters, its quickly becomes apparent and somewhat necessary to make the 

weather forecasts more accurate, refined and used in context to become more useful 

for a vehicle energy model used by a potential energy manager (user). 

Two prominent databases are available which supply these forecasts to the public for 

use on a global scale. These are the European Centre for Medium-Range Weather 

Forecasts Integrated Forecasting System (ECMWF-IFS) [55] and the Global Forecast 

System (GFS) [56] produced by the National Centres for Environmental Prediction. 

These two global databases provide a wide range of meteorological forecasts. Table 

4 displays the forecast specifications of each of these systems. 

 

Table 4: GFS/ECMWF specifications 

 Global spatial 

resolution (km) 

Forecast resolution 

(hours) 

Forecast horizon 

(days) 

ECMWF-IFS 9 3 10 

GFS 27 1 10 
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Although these forecast providers provide reliable and readily available data, a need 

arose for intermediary services which take data from these sources and apply certain 

techniques to improve the accuracy and reliability even further. Several of these 

intermediary weather services now exist [57] and are used by energy managers for 

solar installations and wind installations as well as by diverse professionals and 

ordinary citizens, including meteorologists, sailors, farmers, weather enthusiasts and 

many more. Recently, the data provided by these intermediary services has also 

become important to participants of solar electric powered vehicle teams in events 

such as the BWSC in Australia and the SSC in South Africa. Many researchers are 

now using this intermediary forecast data and fine-tuning the team’s performance by 

combining the data with some historical data, creating forecast ensembles and 

applying some regression methods. This is done with the aim of making the forecast 

data even more useful for specialised applications in a variety of areas [58]. 

To establish a baseline for reference purposes, the following sections briefly 

summarise the Expected Forecast Performance (EFP) of some critical weather 

variables as seen from the primary data sources (ECMWF-IFS and GFS, but ECMWF 

in particular) or intermediary data sources. 

 

𝐺𝐻𝐼  

The University of California has done an extensive study [59] where they set out to 

evaluate the performance of the 𝐺𝐻𝐼 forecast from the GFS as well as ECMWF 

models. They made use of seven weather stations across the Americas for validation. 

They evaluated the Mean Bias Error (𝑀𝐵𝐸) or Forecast Bias (𝐹𝐵) and the Root Mean 

Squared Error (𝑅𝑀𝑆𝐸) of the 𝐺𝐻𝐼 forecasts to establish a baseline for the performance 

of these forecasts. Table 5 records the results they obtained. 

 

Table 5: 𝑮𝑯𝑰 EFP 

 

 

 GFS ECMWF 

𝑴𝑩𝑬 (W.m-2)  5.2 0.5 

𝑹𝑴𝑺𝑬 (W.m-2)  84.6 106.2 
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Although these results are based on a one-day forecast evaluation, they still provide 

a baseline for the 𝐺𝐻𝐼 forecast accuracy, and under normal circumstances, one would 

expect that the accuracy would be similar or worse for forecasts with a broader time 

horizon. 

 

Wind 

The ECMWF published a wind speed verification document [60], which made use of 

633 stations across Europe for verification of the 10 m wind speed forecast with a 

horizon of up to six days. The mean 𝑅𝑀𝑆𝐸 values (as seen by over 90 % of the 

stations) were found to be 2.1 m/s for one day ahead forecast, and 2.4 m/s for six-day 

ahead forecasts. The 𝑅𝑀𝑆𝐸 values ranged between a minimum of 1.1 m/s and a 

maximum of 5.2 m/s. 

 

Air density 

The air density is calculated by using dew point temperature, surface air temperature, 

and air pressure by making use of a polynomial method [46]. The air density itself does 

not have a unique forecast, probably due to its predictability when referring to the 

previously mentioned variables. Secondly, the air density variation is highly dependent 

on the temperature, and the typical density variation with air at 5 °C and 30 °C is 

around 8 %. Although this relationship is not linear, when considering ideal operational 

points of 5 °C to 30 °C the relationship is approximately linear [61], which makes 

estimation relatively easy, which reduces the need for such a forecast (air density 

forecast).   

 

Clouds  

The cloudiness of the sky is commonly expressed as 𝑇𝐶𝐶, which is a percentage 

between zero and 100 %. Cloudiness is one of the more challenging weather 

parameters to predict. It is evident in the accuracy of the 𝑇𝐶𝐶 forecast from the 

ECMWF model [50], which ranges from an 𝑀𝐴𝐸 of 25 % for the same day forecast up 

to an 𝑀𝐴𝐸 of 36 % for a six-day forecast. This weather parameter is by far the most 

unpredictable when compared to the 𝐺𝐻𝐼, wind and air density.  
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In summary, Table 6 indicates the EFP range for the significant weather variables 

contributing to the energy model of a vehicle for a six-day forecast.  

 

Table 6: EFP summary 

 𝑴𝑨𝑬 𝑴𝑩𝑬 𝑹𝑴𝑺𝑬 

𝑮𝑯𝑰 (W.m-2) - 0.5 106.2 

Wind (m/s) - - 1.1 - 5.2 

Air density (%) 8 - - 

Clouds (𝑻𝑪𝑪, %) 25 - 36 - - 

 

Improving local weather forecasts 

An extensive forecasting technique comparison has been made [62], and the best 

forecast techniques were found to be the Artificial Neural Network (ANN) based 

methods. This work, however, simply shows results for one day ahead forecasting and 

the process of training the ANN is relatively lengthy and intricate and requires seven 

other weather variables apart from 𝐺𝐻𝐼 and 𝑇𝐶𝐶, too. Furthermore, the work does not 

apply the forecasting techniques to a real-world application to illustrate how improved 

accuracy can lead to an increase in application performance. Other techniques, such 

as Model Output Statistics (MOS) have been used since 1972 [63] for site-specific 

forecasts. MOS is a post-processing forecast method that uses data of some 

predictors (such as the 𝐺𝐻𝐼 forecast) and relates this to some historical statistical data 

of some other predictors (such as 𝐺𝐻𝐼 and 𝑇𝐶𝐶). Gridded MOS [63, 64] or GMOS is a 

type of MOS which is evaluated for a whole network of ground observation stations 

(site-specific) to create a forecast model for a larger area. The more ground 

observation stations in the grid, the better the performance of the GMOS model will 

be.   

The improvement of the 𝐺𝐻𝐼 forecast component is essential for route and speed 

planning, especially with cars such as Lightyear One and the single-seater solar cars 

designed by teams competing in the BWSC and the SSC, relying heavily on solar 

power. With a better understanding of the risk associated with the available 𝐺𝐻𝐼 

forecast, the car user and energy manager will be able to make better and more 

energy-conscious decisions. In the current literature, there is no mention of how a 
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GMOS model can benefit the design teams in a SSC event in terms of energy 

management. 

 

SOLAR ELECTRIC VEHICLE CHALLENGES 

Energy management or even energy optimisation of a solar car travelling on the 

desired route has various apparent benefits to the user. Therefore, the application of 

energy management is increasingly being applied in this context. In a solar endurance 

challenge, however, energy management or energy optimisation is not only beneficial, 

but it is also crucial in most cases. Although a super light chassis, good aerodynamic 

design, low rolling resistance tyres and super-efficient electronics are essential, a good 

energy management strategy is necessary. In an endurance challenge, a lower-

ranked solar car with a better energy management strategy can beat a better-

designed, more expensive solar vehicle.  

To encourage young academic graduates (mostly engineering graduates) as well as 

industry partners to invest time, research capacity and resources in electric and 

especially solar vehicles, various international engineering challenges were created to 

spark enthusiasm and awareness among the general public. As previously mentioned, 

some of these challenges include the Shell Eco-marathon (worldwide), Formula 

Student Germany Electric (Europe) and solar vehicle challenges such as the 

Bridgestone World Solar Challenge (BWSC, Australia), the American Solar Challenge 

(ASC, America), the Somabay Egyptian Solar Challenge (SESC, Egypt), the Sasol 

Solar Challenge (SSC, South Africa) and many more.  

In the Sasol Solar Challenge 2018 (SSC2018, held in South Africa over eight days in 

September), teams enrolled in the Challenger [65] category were allowed to compete 

in a long-distance engineering endurance challenge on national roads. The objective 

was to cover the mandatory daily distances between Pretoria and Stellenbosch in 

addition to being able to drive an unspecified number of additional route sections daily 

(adding variable daily distances). 

On each day, the first stage started at 08:00, followed by the number of loops 

(additional route sections) desired by the team, including a thirty-minute mandatory 

stop during the day. Finally, the last stage for that day saw the car navigated through 

to the terminus by 17:00. These distances were covered by the single-seater solar 
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electric-powered vehicles that the diverse international teams had designed. 

Competing vehicles were allowed to enter the challenge with a fully charged battery 

restricted to a maximum of 20 kg of Li-Ion, about 18 MJ (5000 Wh), and 4 m2 of a 

silicon-based solar array and were required to manage this energy throughout the 

eight days in order to maximise their distance. Although many solar challenges exist 

worldwide, the South African based Sasol Solar Challenge is notoriously challenging 

as it provides a variety of extreme landscape topographies such as severe road 

gradients as well as varying weather conditions along the entire route.  

It is not uncommon to see the more experienced teams (despite them originating from 

different corners of the world) designing solar vehicles with very similar vehicle 

characteristics. Therefore, the need to optimise the race strategy as well as energy 

management has become just as or even more important, than the design of the 

vehicle itself. Usually, these top-ranking teams cover anything up to nine loops per 

day in the SSC and even the smallest energy mismanagement or strategy mistake 

may cost them the title. Typically, basic energy predictions of the solar vehicle are 

simulated by creating a mathematical model of the car, knowing the route profile 

(gradients and distances) and the average solar power available from the sun for the 

specific day of travel. Top and medium ranking teams often incorporate more 

advanced energy predictions by including additional factors such as models of the 

battery and motor systems, acceleration losses, traffic conditions and advanced 

weather variables such as the wind speed and direction, cloud cover and air density. 

The BWSC held bi-annually in Australia possibly receives the highest number of 

single-seater solar vehicle entries for any such challenge worldwide. The BWSC is 

different from the SSC in that the distance is fixed and the aim is to cover the 

mandatory distance in the shortest time. Appropriately so, there have been various 

publications on energy optimisation techniques for these specific route conditions at 

the BWSC. Although the BWSC is arguably the largest of its kind in the world, the 

general route gradient is somewhat flat with fairly predictable (predominantly sunny) 

weather conditions.  

As early as 1997, research on the optimal driving speed of a solar car on a level road 

(referring to the rather flat topography of the BWSC route) was published [23]. The 

authors were able to predict the average optimal speed of the vehicle within 12 km/h 
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of the actual sustainable average speed by making use of classic non-linear 

programming techniques. A simplified model for the car was used, in which just gravity, 

aerodynamic forces and rolling resistance were considered and the model assumes 

perfect mechanical efficiency. The same authors published more work in 2002 [66], 

including a more realistic model of the battery and removing the restriction of an 

average optimal speed strategy. Good results were obtained, although no acceleration 

forces were considered. In 2006, a master’s thesis was published [67] in which the 

researcher used dynamic programming to solve the optimal speed profile. The work 

uses a fairly comprehensive mathematical model that considers battery and some 

motor characteristics, but negates acceleration forces. The results are, however, only 

simulative and no real-world data was used.  

In 2008, a review [68] of an energy management system for a vehicle competing in 

the BWSC highlighted some noteworthy findings in regard to existing energy 

management systems. While their model does not consider acceleration forces, it 

does recognise the three primary force components as well as the electrical motor, 

solar array and battery characteristics. Researchers from Istanbul Technical University 

determined that a theoretical Big Bang-Big Crunch optimisation approach [69] is 

realistic for use at the BWSC. Although the results are satisfactory, the methods were 

of a purely simulative nature alone. The authors of [70] used a relatively in-depth model 

of the electrical parts of the solar car (again disregarding acceleration). They 

introduced a multi-level optimisation technique customised for the BWSC by making 

use of a high-level long term (future driving days) planning strategy for the days ahead 

followed by a continuous optimal control problem for the short term (current day) 

solved through pseudo-spectral methods in MATLAB®. No real-world implementation 

was done. Nevertheless, the simulation results proved robust and reliable.  

Another multi-level optimisation technique was demonstrated by [71] in 2016, by 

making use of an exciting model which compensates for the angle of incidence of the 

sun and the effect of this angle on the solar irradiance. Acceleration forces have been 

disregarded. This time, however, the high-level long term planning was merely based 

on the users’ anticipation of the route difficulties (gradients) for each day, while the 

short term planning was done with classic non-linear programming techniques in 

MATLAB®. Only simulations were presented, and the authors did not take any weather 

variables, other than the solar irradiance into consideration. Very recent work has been 
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published by [72] in regard to a case study done on the University of Michigan Solar 

Car Team at the BWSC2015 in Australia and the ASC2016. The work makes use of a 

very similar energy model as described in this paper except for not considering the 

acceleration forces and using only raw weather forecasts (non-refined). The authors 

made use of genetic programming and machine learning techniques to search for 

optimised driving speeds along the route; these minimise the total race time. Here they 

treated the whole race (multiple days) as one problem instead of two different 

problems as has been adopted by various other authors. The authors demonstrated 

their success by implementing their systems on the solar vehicle. It is important to note 

that none of the abovementioned research can work for a solar challenge route where 

variable distance is of concern, such as in the case of the Sasol Solar Challenge route. 

Much research has been undertaken in the domain of speed optimisation of electric 

and solar cars. This is not necessarily linked to a specific route and therefore the 

analysis is more generalised. The authors of [73] demonstrated the importance of 

route planning by considering the possible shading areas on a specific route as a result 

of natural occurrences, such as mountains and artificial objects, like buildings. Here, 

the objective of the speed optimisation was aimed at relieving what is known as ‘range 

anxiety’ of the drivers when planning a trip, rather than maximising the distance 

travelled or minimising the time travelled on pre-defined routes such as the routes of 

the BWSC and the SSC. The optimal speed profile was found by using dynamic 

programming on multiple routes (the route with the least amount of shading was 

usually the preferred route). Intending to eradicate the environmental pollution crisis 

caused by global warming, the authors of [74] focused on a dynamic programming 

optimisation algorithm to create an energy management system to find the best speed 

trajectory with minimal energy consumption for a pre-defined route. The influence of 

the weather conditions on energy consumption has not been considered, although 

some real-world data was used to substantiate their theoretical findings.  

Another study [75] considered real-time traffic conditions when determining an optimal 

speed profile for an electric vehicle. This was accomplished by solving a multi-stage 

optimal control problem utilising a new proposed approximation model, which reduces 

the number of decision variables and expedites the processing. Field tests verified 

high computational efficiency and a reduction in energy consumption without incurring 

additional journey time.  
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At the time of this research, just two sets of work have been published that focus on 

an energy management strategy or speed optimisation of solar-powered vehicles 

competing in the Sasol Solar Challenge event. In 2013, the authors of [8] developed 

an energy model for their solar car and used Google Maps to retrieve the route data 

and ultimately, Mathematica®, to find the highest average speed maintainable. 

However, the method allows for the computation of just a single day and not multiple 

days (the SSC is usually an eight-day challenge). Furthermore, the air density variation 

and acceleration forces were not considered. In addition, a simple constant motor 

efficiency coefficient was used with no consideration of electrical and auxiliary losses. 

The other study mentioned was conducted by [15] and focused on the SSC making 

use of a model that considered the auxiliary electrical losses and a variety of efficiency 

coefficients. Acceleration, however, was not recognised. The authors introduced a 

fundamental energy management strategy (negating wind and other weather variables 

other than solar irradiance) to find the best average speed to drive at. Although this 

method could merely be calculated for a single day and made use of diverse averaged 

variables, the results proved reliable when implemented on non-windy days, but 

inefficient on days where considerable wind and other weather variations were 

present. 

 

LITERATURE SHORTFALL SUMMARY 

Authors very often merely estimate or use non-verified mechanical and electrical 

coefficients as part of the mathematical energy model. This introduces inaccuracies, 

mainly when the energy simulation is done for a significant time horizon. The variable 

nature of major weather parameters are rarely seen to be incorporated into energy 

models. Instead, weather constants or weather assumptions are widely adopted as a 

result of the difficulty of acquiring real-time weather data, the processing requirement 

thereof as well as the usability due to the variable nature of these forecasts. 

Furthermore, it has been recognised that weather parameters are commonly treated 

as deterministic, which disregards the importance of the inherently variable nature of 

the weather. Some research has shown to improve local forecasting, but no such 

previous work has applied the forecast improvement to a solar electric vehicle 

application in the South African region. 
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Many researchers opted for an averaged type speed optimisation method and not an 

incremental higher resolution optimal speed profile. Averaging often results in 

misleading results with decreased accuracy. Moreover, most researchers’ outcomes 

were solely based on simulations, thereby failing to deliver extensive real-world 

application comparative results. While it is correct that some researchers did develop 

methods of producing incremental higher resolution optimal speed profiles, none of 

them demonstrated their techniques as being capable of optimising speed over a 

multi-day, variable distance route. Their methods failed to involve maximising distance 

by introducing additional daily route sections to be driven (variable distance).   

For these reasons, this work undertook to satisfy the current research shortfalls by 

developing and validating a comprehensive energy model and evaluating the 

statistical forecast error variation of the significant weather parameters to improve the 

forecast accuracy. To achieve this, the research made use of optimisation techniques 

capable of incremental high-resolution output by extensively evaluating and 

determining the performance of the fully integrated system through a large-scale real-

world implementation. 
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III. MODELLING 

The energy behaviour, or mathematical model of a solar car, can be expressed by an 

analytical relationship, inferring some characteristics from statistical data or a 

combination of both. This chapter explains each of the components, which, when 

combined, form a comprehensive mathematical energy model for a typical solar 

vehicle. Throughout this chapter, specific reference is made to the parameters for the 

mathematical energy model created either for Sun Chaser II (SCII) which competed in 

the SSC2016 or Sun Chaser III (SCIII) which competed in the SSC2018. 

 

ENERGY EQUATIONS 

Chapter II described the aerodynamic, rolling resistance and gravitation forces acting 

on the car. This chapter refers to them by the symbols 𝐹1, 𝐹2 and 𝐹3 and these forces 

account for the majority of forces acting on the solar vehicle while it is in motion. The 

Equations (7) to (10) describe the aerodynamic forces (𝐹1), rolling resistance (𝐹2) and 

gravitational forces (𝐹3) due to the gradient of the road acting on the vehicle in parallel 

to the vehicle’s movement along the route. 

In the three equations 𝑘 indicates the discrete interval over which the individual forces 

are calculated for the entire route to be driven; the interval is typically to 1 km 

resolution. In Chapter V the discussion details how the optimisation algorithm 

produces a single optimal speed for each discrete interval 𝑘. Typically, the higher the 

resolution of k, the more accurate the results, but the resolution must be constrained 

by the increase in computation intensity. 

 

𝑃𝑎𝑢𝑥 contains the constant (approximated) electrical power consumption of the 

auxiliary electrical components in the vehicle. Such ancillary equipment includes, but 

is not limited to: 

• Motor controller 

• Battery Management System (BMS) 

• Contactors, relays and other power circuitry 

• Cockpit display screen  

• Wireless telemetry hardware 

• DC to DC conversion losses (high voltage to low voltage for sub-systems) 
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• Microcontrollers, regulators and other electronic circuits and sensors 

• Controller Area Network communications bus (CAN bus)  

• Reverse camera and brake lights/indicators 

• Resistive heat losses in the cabling 

Simple theoretical calculations can produce suitable values for the various auxiliary 

components; with the aid of laboratory and field experiments under real-world 

conditions, it is possible to verify and calibrate these calculated values. 

𝑃𝑙𝑜𝑠𝑠(𝑘) describes the driving power loss (negative) or gained power (positive) at any 

one of the discrete-time sampling periods. 𝑃𝑙𝑜𝑠𝑠(𝑘) can only be positive when force 𝐹3 

(effect due to gradient of a significant downward slope) is larger than the sum of 𝐹1 

and 𝐹2 or, when a fierce wind is blowing in the same direction of movement, and this 

results in 𝐹1 being more significant than the sum of 𝐹2 and 𝐹3. The former case typically 

occurs more often than the latter. 𝑃𝑙𝑜𝑠𝑠(𝑘)  is described by Equation (10) where 𝑣𝑘  is the 

speed of the car in m/s at each optimal speed interval 𝑘.       

                          𝐹1(𝑘) =
1

2
𝑝𝐴𝑐𝑎𝑟𝐶𝑑(𝑣 +  𝑣𝑤)2                          (7) 

                          𝐹2(𝑘) = 𝐶𝑟𝑚𝑔𝑐𝑜𝑠(𝜃)                                 (8) 

                          𝐹3(𝑘) = 𝑚𝑔𝑠𝑖𝑛(𝜃)                                                (9) 

                                                         𝑃𝑙𝑜𝑠𝑠(𝑘) =  
𝑣𝑘

ɳ𝑚𝑜𝑡𝑜𝑟
[𝐹1 + 𝐹2 + 𝐹3] + 𝑃𝑎𝑢𝑥                                              (10) 

 

Table 7 describes all the variables used in (7) to (10) including some additional 

variables used later in this chapter.  

 

Table 7: Sun Chaser III model parameters 

Symbol Parameter Value Units 

𝒎 Mass (including 80 kg driver) 268 kg 

𝐶𝑟  Coefficient of rolling resistance ≈0.0085 at 60km/h (Equation (4)) - 

𝐶𝑑  Coefficient of aerodynamic drag 0.162 - 

𝐴𝑐𝑎𝑟  Frontal surface area 1.03 m2 

𝐴𝑝𝑣  Solar array size 4 m2 
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ɳ𝑚𝑜𝑡𝑜𝑟 Motor and controller efficiency 0.3 – 0.938  

(range for typical operational 

conditions) 

 

- 

ɳ𝑒𝑙𝑒𝑐 The combined solar array, Maximum 

Power Point Tracker (MPPT), battery 

and charging circuit efficiency 

0.242  

(at 25 °C solar array 

temperature) 

 

- 

𝑃𝑎𝑢𝑥  Auxiliary electrical losses 13 W 

𝑒𝑐𝑎𝑝 Battery storage capacity 17.8 (4942) MJ (Wh) 

𝑣𝑤  Wind speed Variable m/s 

𝑝 Air density Variable kg/m3 

𝜃 Theta, road gradient Variable (pre-determined from 

the chosen route) 

radians 

 

Coefficient of drag and rolling resistance 

The coefficient of aerodynamic drag (𝐶𝑑) in Equation (7) should be as accurate as 

possible. Normally, calculating the 𝐶𝑑 component accurately for an arbitrary shape 

(such as the SCIII solar car, which represents the shape of a catamaran sailboat when 

viewed from the front) can be cumbersome and often results in unnecessarily complex 

mathematical equations. Modern methods include wind tunnel experiments or 

computer simulation.  

Gaining access to large wind tunnels is a further challenge and therefore scaled 

models are used. The typical operational speeds of the solar car in South Africa would 

never exceed 120 km/h, and consequently, the importance of the Mach number (object 

speed to speed of sound ratio) is not of concern. When scaling the model, however, it 

is vital to understand the fundamental Reynolds number relationship, which is equal 

to the product of the speed of the fluid (air) and the characteristic length (chord length) 

divided by the kinematic viscosity of the fluid (air). The Reynolds number needs to stay 

constant for the scaled model results to be comparable with those of the full-size 

object. As the kinematic viscosity of air is constant, and the chord length is easily 

measurable on the physical scaled model, the sole variable which needs to be adapted 

is the speed of the fluid or airspeed in our case. This means that if the scale model 

chord length is 1 m and the full-size object is 3 m, then the speed of the fluid (air) over 

the scaled model has to be three times larger (360 km/h in this case) to ensure the 
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Reynolds number stays constant. Although the solar car might be travelling at real-

world speeds of 120 km/h, the wind tunnel measurements typically reach a steady 

state at much lower rates and therefore does not always require the wind tunnel 

experiments to be conducted at maximum speed. Another critical factor to consider is 

that a rolling road should be present in the wind tunnel to ensure airflow characteristics 

underneath the vehicle are appropriately accounted for. 

Using the wind tunnel effectively typically requires the operator to run a series of tests 

in the wind tunnel, initially without the actual model, but with all the mounting hardware 

in place, which is also exposed to the flowing air when the trial takes place with the 

model present. This allows the user to arrive at a baseline to calibrate the wind tunnel 

before introducing the actual model. After this calibration has been verified, the model 

is introduced, and all the data is recorded step-wise, while increasing the airspeed in 

small intervals. These tests are conducted until an acceptable steady state (less than 

5 % output variation is observed over time) has been reached, which then signifies the 

aerodynamic drag constant, 𝐶𝑑. If a valid steady state has been achieved at a 

particular airspeed and continues to remain within this steady-state even with the 

increase of airspeed, there is no need to increase the airspeed further, even though 

the operational speed of the object might be at a higher actual speed. Figure 4 dipicts 

the 𝐶𝑑 wind tunnel results of a half-scale model of SCIII. 

Figure 4: Coefficient of aerodynamic drag of SCIII (wind tunnel) 
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The results show that the 𝐶𝑑  value reached a steady-state after 120 km/h wind tunnel 

speed (60 km/h for the actual size model) and settled at a value of approximately 

0.163. Figure 5 is a photograph of one of the early versions of SCIII in the wind tunnel 

where the rolling road is visible. The mounting hardware (three vertical steel rods) can 

also be seen in this photo. The model was suspended as close as possible to the 

rolling road to increase the accuracy of the wind tunnel experiments. Figure 6 shows 

the same model coated with a special fluid which, when illuminated with a fluorescent 

lamp visually highlights the surface airflow patterns. Unwanted turbulent airflow can 

be seen at the trailing end of the occupant canopy and on the rear left and right corners 

of the car. These wind tunnel tests not only produce the coefficient of aerodynamic 

drag, but assist the iterative design process of the car body in order to obtain a neutral 

lift (near zero lift and downforce) and other desired body shape characteristics. 

 

 

Figure 5: SCIII prototype, wind tunnel test model – rear view 

 



 

54 

 

Figure 6: SCIII prototype, wind tunnel test model – fluorescent surface flow 

 

The wind tunnel results are normally used for calibrating a software simulation 

environment to do rapid simulation and evaluation when vehicle geometry is updated 

in the design or during the manufacturing process. Figure 7 shows the ANSYS® 

simulation results (𝐶𝑑 of 0.162) which support the wind tunnel results (at a 95 % 

confidence interval) and provides confidence to the user for future rapid simulations in 

the software environment. Crosswind and lift components were not considered in this 

work. 
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Lastly, the coastdown method [14] was used to further experimentally validate the 

𝐶𝑑 value under real-world conditions. Coastdown testing is the process of accelerating 

a vehicle to a high speed on a flat, straight road and coasting in neutral down to a low 

speed. By recording the amount of time the vehicle takes to slow down, it is possible 

to obtain a model of the loss inducing forces affecting the vehicle. Obtaining valid 

coastdown results requires several steps, including experimental planning, data 

collection, and data processing. One of the secondary outcomes of using the 

coastdown method is that a very good approximation of the 𝐶𝑟 value is also found. 

 

Electric motor efficiency 

The motor and controller efficiency is a non-linear torque vs efficiency curve, usually 

described by a cubic function. Motor torque is calculated by making use of the r/min 

and the instantaneous mechanical power required. The SCIII team made use of a 2 

Figure 7: Coefficient of aerodynamic drag of SCIII prototype (ANSYS®) 
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kW PMSM with a manufacturer-specified efficiency plot, as illustrated in Figure 8. The 

red curve on the plot shows the data for the actual motor and controller efficiency 

tested under laboratory conditions. One reason for the lower overall efficiency of the 

test data compared to the manufacturer’s data is that the PMSM has aged, the coil 

sensor circuitry needed re-calibration and bearings might need servicing or 

replacement to improve efficiency. 

The motor efficiency plot only extends up to 16 N.m as the laboratory equipment 

restricted the experiment up to this point. The manufacturer’s efficiency plot originally 

supplied a plot up to 30 N.m; however, there is less than 2 % variation in efficiency 

between 16 N.m and 30 N.m of the manufacturer plot as both these values are now in 

the steady-state phase of the response plot. The maximum efficiency, reached at 16 

N.m by the manufacturer’s plot is 93.8 % and 88.3 % by the measured plot. The motor 

torque constant was experimentally found (by measuring the current flow and torque 

produced) to be approximately 0.98 N.m/A. 

 

Here it is clear to see that the torque demand, motor r/min and motor efficiency will 

play a role in the energy usage of the solar car. 

 

Figure 8: PMSM efficiency plot 
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Solar irradiance 

Equation (11) describes the useful solar power (watt) from the sun after the relative 

efficiencies, and solar collector area has been taken into consideration. 

𝑃𝑠𝑢𝑛(𝑘) = (𝐺𝐻𝐼𝑘)(ɳ𝑒𝑙𝑒𝑐)(𝐴𝑝𝑣)                                           (11) 

 

here, ɳ𝑒𝑙𝑒𝑐  is not a constant, but changes with the variation of the solar array 

temperature. The effect of the temperature variation of the MPPTs as well as the 

batteries have not been considered in this work. The temperature effect of the solar 

array on the ɳ𝑒𝑙𝑒𝑐 parameter is shown in Figure 9. The loss percentage on the right-

hand axis is a percentage of the loss in rated efficiency.  

 

The temperature of the solar array is typically a function of the ambient temperature, 

radiation heat and convection heat from the elevated temperatures inside the solar 

vehicle’s carbon fibre chassis (quickly reaching temperatures 20 °C above ambient). 

The solar array is heated by the current flow through it, but the area surrounding the 

array may improve or impair its ability to cool down (by conduction) and is therefore of 

importance. The solar array is typically much cooler when driving at reasonable 

Figure 9: Solar array - temperature vs efficiency 
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speeds (as opposed to being stationary) as the rush of air on the solar surface can 

reduce the surface temperature somewhat. Turbulent airflow on the solar surface is 

desired for better cooling results [76], although solar vehicles are designed to have a 

low Reynolds number to decrease aerodynamic drag. The laminar airflow over the 

solar array will, however, still have some effect of cooling when compared to being 

stationary. The material on which the solar array is mounted, the shape and 

configuration of these materials as well as this material’s heat transfer coefficient can 

also contribute to the rate of cooling of the solar array of a solar-powered vehicle.  

The relationship was found to be approximately linear (at least in the estimated 

operational conditions region) and as a result, Equation (11) was re-written as (12) to 

compensate for the temperature increase of the solar array. The plot (Figure 9) shows 

that for approximately every 10 °C increase in temperature, ɳ𝑒𝑙𝑒𝑐 will decrease by 0.58 

%. When solar cells are exposed to the sun for prolonged periods without forced 

cooling, as is the case with the solar array on SCIII, their surface temperature can 

reach temperatures of up to 65 °C [77] which would result in reduced efficiency of over 

17 %.  The power available from the sun is then given by  

 

𝑃𝑠𝑢𝑛(𝑘) = (𝐺𝐻𝐼𝑘)(ɳ𝑒𝑙𝑒𝑐 −
5.8𝑇𝑝𝑣(𝑘)

10000
)(𝐴𝑝𝑣)                          (12) 

 

where 𝑇𝑝𝑣(𝑘) is the temperature of the solar array above or below room temperature 

(25 °C). Thus 𝑇𝑝𝑣(𝑘) is considered zero at room temperature and at that temperature 

the power is again given by 𝑃𝑠𝑢𝑛(𝑘) = (𝐺𝐻𝐼𝑘)(ɳ𝑒𝑙𝑒𝑐)(𝐴𝑝𝑣). 

 

Battery State of Charge 

The next stage is quantifying the power flowing in and out of the battery, which can be 

described by: 

 

  𝑃𝑏𝑎𝑡𝑡(𝑘) =  𝑃𝑏𝑎𝑡𝑡(𝑘−1) + 𝑃𝑠𝑢𝑛(𝑘) − 𝑃𝑙𝑜𝑠𝑠(𝑘)                        (13) 
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where 𝑃𝑏𝑎𝑡𝑡(𝑘) is the power flowing in or out of the battery pack. The state of the energy 

stored (State of Charge, 𝑆𝑜𝐶) in the battery pack is given by (14) where 𝛼𝑑𝑎𝑦(𝑥) is the 

required energy at the start of each day expressed as a percentage (details of this 

variable are described in Chapter V), 𝑥 represents the current day and 𝑡𝑘 is the 

physical driving time between two optimal speed states (measured at discrete intervals 

of k, which is in 1 km increments). Here, the energy is expressed as a percentage of 

the total energy storage capacity 𝑒𝑐𝑎𝑝. Furthermore, 𝑘 is the total number of intervals 

of the route, typically at 1 km resolution. 

 

           𝑆𝑜𝐶day(x) = 𝛼𝑑𝑎𝑦(𝑥) + (
∑ [𝑃𝑏𝑎𝑡𝑡(𝑘)𝑡𝑘]   𝐾

𝑘=1

𝑒 𝑐𝑎𝑝
) 100                                   (14) 

 

Acceleration forces 

It has been shown [9] that the acceleration energy of the vehicle from a stationary 

starting point should not be neglected. However, this is often done to simplify an 

energy model. This study extended its energy model, which would now include the 

energy to accelerate the solar car, not just when considering accelerating from being 

stationary, but rather, from any point during the vehicle’s movement. This acceleration 

energy cannot only be assumed to be the kinetic energy component, ½ m.v2, as the 

initial speed is not necessarily zero. Equation (15) is a derived function that can 

describe the energy required to accelerate the vehicle from an initial speed to any final 

speed. The time (𝑡𝑎𝑐𝑐) over which the acceleration takes place is always smaller than 

or equal to the driving time (𝑡𝑘) between two discrete intervals, 𝑘. 

𝐹𝑎𝑐𝑐(𝑘) =  𝑚 (
𝑣𝑘+1 − 𝑣𝑘

𝑡𝑎𝑐𝑐
) 

𝑃𝑎𝑐𝑐(𝑘) =  𝑚 (
𝑣𝑘+1 − 𝑣𝑘

𝑡𝑎𝑐𝑐
) (

𝑣𝑘 +  𝑣𝑘+1

2
) 

      𝐸𝑎𝑐𝑐(𝑘) =  
1

2
𝑚[(𝑣𝑘+1)2 − (𝑣𝑘)2]                 (15) 

 

It should be noted that 𝐸𝑎𝑐𝑐(𝑘)  is independent of time and that the overall structure still 

resembles that of the classic kinetic energy equation,  ½ m.v2. Although the time 
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independency of 𝐸𝑎𝑐𝑐(𝑘) is true, the driver of the solar vehicle will always strive to 

gradually accelerate between two discrete intervals, 𝑘, such that 𝑡𝑎𝑐𝑐 =  𝑡𝑘 (the 

physical driving time between two discrete intervals). This will ensure that no sudden 

acceleration or deceleration power, which might unnecessarily heat or overload the 

motor, is required. For instance, an immediate 2 000 W acceleration requirement will 

not be feasible while already maintaining a cruising speed which is consuming a 

continuous 3 500 W, assuming a 5 000 W maximum rated motor. This might, however, 

become feasible if the acceleration is performed gradually over the entire time 𝑡𝑘 

requiring less instantaneous power (which can potentially exceed the maximum power 

rating of the motor if applied to abruptly under harsh acceleration). Appropriate 

constraints were implemented to prevent the exceptional case where the sum of the 

continuous power requirement and the acceleration power requirement exceeds the 

maximum available power from the motor (these equations are discussed in the 

optimisation chapter). Equation (14) was now re-written as (16) to include the 

acceleration energy component. 

 

𝑆𝑜𝐶day(x) = 𝛼𝑑𝑎𝑦(𝑥)  + (
∑ [𝑃𝑏𝑎𝑡𝑡(𝑘)𝑡𝑘]+ ∑ 𝐸𝑎𝑐𝑐(𝑘)

𝐾
𝑘=1    𝐾

𝑘=1

𝑒 𝑐𝑎𝑝
) 100                 (16) 

 

The expected value of 𝑆𝑜𝐶  

Although Equations (7) to (16) describe the deterministic energy model of the solar 

car, the probabilistic nature of the weather variables is of particular importance. In this 

study, we considered just the solar irradiance (𝐺𝐻𝐼) component as probabilistic; the 

air density, total cloud cover and the wind components were considered to be 

deterministic. Therefore (11) was re-written as the expected value to become (17) as 

there is a probabilistic 𝐺𝐻𝐼 component contained within 𝑃𝑠𝑢𝑛(𝑘). The Probability Mass 

Function (PMF) 𝑝, has a certain number of intervals, 𝐿. The PMF is explained in greater 

detail in the next chapter of this work. 

 

𝐸{𝑃𝑠𝑢𝑛(𝑘)} =  ∑ 𝑝(𝑙)𝑃𝑠𝑢𝑛(𝑘,𝑙)
𝐿
𝑙=1               (17) 
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In the same manner, (13) and (16) have been re-written as (18) and (19) respectively. 

 

𝐸{𝑃𝑏𝑎𝑡𝑡(𝑘)} = 𝐸{𝑃𝑏𝑎𝑡𝑡(𝑘−1)} + (𝐸{𝑃𝑠𝑢𝑛(𝑘)} − 𝑃𝑙𝑜𝑠𝑠(𝑘))                             (18) 

𝐸{𝑆𝑜𝐶day(x)} = 𝛼𝑑𝑎𝑦(𝑥)  + (
∑ 𝐸{𝑃𝑏𝑎𝑡𝑡(𝑘)𝑡𝑘}+ ∑ 𝐸𝑎𝑐𝑐(𝑘)

𝐾
𝑘=1   𝐾

𝑘=1

𝑒 𝑐𝑎𝑝
) 100                  (19) 

 

 

MODEL VALIDATION 

The following section will validate the mathematical model and evaluate the 

performance of the model by exposure to real-world environmental conditions. The 

experiments were performed during the SSC2016 event in September of 2016 where 

SCII traversed from Pretoria to Cape Town via national motorways over eight days. 

The same techniques were used to model both SCII as well as SCIII. Figure 10 

illustrates SCII with its support vehicle on a local test track in South Africa.   
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Figure 10: Top: SSC2016, SCII and support vehicle  

                  Bottom: SSC2016, SCII at the Graaff-Reinet Dutch Reformed Church on Day 5 
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Experimental equipment used 

All equipment was calibrated and operated according to supplier instructions. Data 

logging was done on a laptop computer (running LabVIEW® and MATLAB®) receiving 

data on all variables at a rate of 1 sample/second via a long-range wireless telemetry 

link from the solar car. Various sensors, including a Global Positioning Sensor (GPS) 

and solar irradiance sensor, were used in the solar electric vehicle to measure a variety 

of quantities of concern. The following is not an exhaustive list, but indicates some of 

the typical variables recorded during the SSC2016: 

• vehicle speed  

• motor power consumption/regeneration  

• battery current (bi-directional)  

• battery voltage  

• 𝑆𝑜𝐶 as reported by the battery management  

• MPPT power in from solar array and MPPT power out to battery  

• GPS coordinates 

• elevation  

• solar irradiance  

• ambient temperature. 

 

Experimental procedure 

During the SSC2016 the SCII solar electric vehicle covered a total of 1 478.8 km during 

Days 1, 2, 3, 4, 7 and 8. The logged data for Day 5 and Day 6 was corrupt and could 

not be recovered for analysis. Equations (7) to (16) were then used to calculate the 

estimated 𝑆𝑜𝐶 profile for each day based on the recorded data. No wind component 

was used in Equation (7) as the equipment was not available to record frontal wind 

speed. Two consecutive GPS coordinates were used to calculate the slope (theta) 

required by Equation (8) and Equation (9). The recorded speed profile, motor 

efficiency and pre-defined auxiliary losses were used in Equation (10). The useful 

power in Equation (12) is described by the power recorded on the output side of the 

MPPT where all the applicable losses between the sun and the batteries have been 

accounted for. The energy used for accelerations was calculated by Equation (15), 

making use of two consecutive vehicle speed values recorded and the 

increase/decrease times between the said speeds. Finally, we were able to calculate 
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the energy loss/gain by integrating the battery current-flow recorded over time (the 

process of Coulomb Counting represented by Equation (18)) and adding this to the 

last known value of the 𝑆𝑜𝐶 (Equation 19). This estimated 𝑆𝑜𝐶 was then compared to 

the actual 𝑆𝑜𝐶 received from the on-board Battery Management System of the solar 

car.  

If the two curves matched well, then we could say that the mathematical model 

provides a reasonable estimation of the dynamic energy behaviour of the vehicle. To 

evaluate just how well the estimated 𝑆𝑜𝐶 and the actual 𝑆𝑜𝐶 correlate, some typical 

performance metrics have been used. These include the Bias (𝐵), the Mean Absolute 

Error (𝑀𝐴𝐸), the Root Mean Square Error (𝑅𝑀𝑆𝐸) and the standard deviation (𝑠𝑡𝑑). 

𝐸𝑅𝑅𝑂𝑅𝑘 = 𝑆𝑜𝐶𝑎𝑐𝑡𝑢𝑎𝑙𝑘
− 𝑆𝑜𝐶𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑘

                   (20) 

𝑠𝑡𝑑 = √∑ (𝐸𝑅𝑅𝑂𝑅𝑘−𝑚𝑒𝑎𝑛(𝐸𝑅𝑅𝑂𝑅𝑘))
2𝑛

𝑖=1

𝑛−1
            (21) 

𝐵 =  
1

𝑛
∑ (𝐸𝑅𝑅𝑂𝑅𝑘)𝑛

𝑖=1                     (22) 

𝑀𝐴𝐸 =  
1

𝑛
∑ |𝐸𝑅𝑅𝑂𝑅𝑘|𝑛

𝑖=1                        (23) 

𝑅𝑀𝑆𝐸 = √ 
1

𝑛
∑ (𝐸𝑅𝑅𝑂𝑅𝑘)2𝑛

𝑖=1                   (24) 

 

where 𝑛 is the total number of recorded data points and 𝐸𝑅𝑅𝑂𝑅𝒌 is the 𝑆𝑜𝐶 error 

percentage between the actual and the estimated (calculated). The bias metric alone 

is not enough to evaluate the model’s precision and accuracy. However, a strongly 

biased result might serve as an early indicator that something in the model needs 

attention or adjustment. The actual amount of error is explained by the 𝑀𝐴𝐸, which is 

the average of all the absolute errors in the dataset. The 𝑅𝑀𝑆𝐸 provides a measure of 

the absolute fit between the calculated and actual data. It is important to note that this 

validation does not concern any future simulation, forecasts or predictions. Instead, it 

is a procedure to validate the mathematical model by making use of recorded data to 

verify the soundness and usefulness of the mathematical model. A lack of equipment 

meant that no wind data was recorded and was therefore not included in this 

experiment (wind was considered to be zero during calculation). However, the wind 
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will still affect the actual 𝑆𝑜𝐶, and it is anticipated that some of the error will be due to 

the wind.  

 

Experimental results and discussion 

Figures 11 to 16 show the 𝑆𝑜𝐶 comparison for the various days of the SSC2016. The 

solid black line represents the 𝑆𝑜𝐶 estimated/calculated by the model, and the dashed 

black line represents the real world recorded 𝑆𝑜𝐶 data. 

 

 

 

 

Figure 11: SSC2016 Day 1, 𝑺𝒐𝑪 comparison 
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Figure 13: SSC2016 Day 3, 𝑺𝒐𝑪 comparison 

Figure 12: SSC2016 Day 2, SoC comparison 
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Figure 14: SSC2016 Day 4, 𝑺𝒐𝑪 comparison 

Figure 15: SSC2016 Day 7, 𝑺𝒐𝑪 comparison 
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To complement the 𝑆𝑜𝐶 comparison figures, Table 8 summarises additional 

information concerning the route, the environmental as well as physical conditions per 

day. The values shown for Global Horizontal Irradiance (𝐺𝐻𝐼), cloud cover and wind 

speed were obtained from the Physical Analytics Integrated Data Repository (PAIRS) 

database maintained by International Business Machines (IBM). All averaged values 

given were considered from 06:00 to 18:00 daily, and the cloud cover values are unit-

less and range from zero to one, one being fully overcast. 

 

Table 8: Experiment route summary (SSC2016) 

 Day 1 Day 2 Day 3 Day 4 Day 7 Day 8 

Distance travelled 

(km) 

279.8 313.4 285 178.5 192.2 226.9 

Average speed 

(km/h) 

63.4 51.3 50.9 49.9 49.9 50.8 

Total route ascent 

(m) 

2220 1772 1136 2124 3262 3270 

Figure 16: SSC2016 Day 8, 𝑺𝒐𝑪 comparison 
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Total route decent 

(m) 

2198 1745 1323 2640 3160 3373 

Average 𝑮𝑯𝑰 

(W.m-2 ) 

488.9 486.3 418.8 446.2 427.0 335.4 

Average cloud 

cover ( 0 to 1 ) 

0 0 0.52 0.08 0.16 0.49 

aAverage NE wind 

speed ( km/h ) 

11.2 4.0 23.0 21.6 9.4 8.6 

aIt has to be noted that the average wind speed is in a North-Easterly direction, as the predominant 

direction of travel for the solar car from Pretoria (Day 1) to Cape Town (Day 8) is South-West. These 

average daily conditions of the route elevations, sun, clouds, and wind will aid in the interpretation of 

the calculated and the actual 𝑆𝑜𝐶 error results.  

 

Finally, Table 9 reports the performance metrics evaluated for each day, expressed 

as percentages. 

 

Table 9: Model performance metrics 

 Day 1 Day 2 Day 3 Day 4 Day 7 Day 8 Average 

a𝑩 -0.73 -0.11 0.46 0.49 -0.23 1.18 0.18 

𝑹𝑴𝑺𝑬 1.95 1.73 1.88 2.62 1.19 1.49 1.81 

𝑴𝑨𝑬 1.56 1.40 1.41 1.82 0.95 1.28 1.40 

𝒔𝒕𝒅 1.81 1.73 1.82 2.57 1.17 0.90 1.67 

aA negative bias percentage shows that the mathematical model under-predicts the 𝑆𝑜𝐶 of the vehicle, 

which means that the model estimates is larger than actual energy usage.  

 

No distinctive bias trend can be observed in the model as the bias is seen to be positive 

on some days and contrary on other days, while being reasonably close to zero (the 

desired state) with an average of 0.18 % except for Day 8. The average 𝑅𝑀𝑆𝐸 and 

standard deviation (𝑠𝑡𝑑) for the six days is 1.81 % and 1.67 % with a minimum 𝑅𝑀𝑆𝐸 

value at Day 7 of 1.19 % 𝑆𝑜𝐶 and a maximum 𝑅𝑀𝑆𝐸 value seen at Day 4 with 2.62 % 

𝑆𝑜𝐶. Although Day 4 is seen to have the largest 𝑅𝑀𝑆𝐸, it has the second-largest wind 

speed, just less than Day 3. Logically, one would have thought that the day with the 

most significant observed errors would be the day with the most substantial wind 

observed as the wind was un-modelled during this experiment. The reason for this 
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phenomenon is that on Day 3 SCII had brake pads replaced during the late evening 

(after driving ceased for the day) but was only used for the first time late morning on 

Day 4 (the drivers are instructed to use regenerative braking and only use mechanical 

brakes in an emergency) increasing the rolling resistance (𝐶𝑟) as a result of the now 

increased temporary brake pad rub. In general, the cloud cover factor affected the 

Global Horizontal Irradiance (𝐺𝐻𝐼) value negatively as expected. The higher cloud 

cover values were seen on Day 3 and Day 8.  

 

Another phenomenon, however, requires further evaluation. When comparing the 

average slope of Figure 11 with any of the other figures, one finds that Figure 11 has 

a unique negative-going slope. One noticeable difference between Day 1 (Figure 11) 

and all other days is that the average driving speed was over 20 % higher than on any 

other day. Furthermore, when comparing Days 1 and Day 2, it is seen that the driving 

conditions of these two days were very similar with near equal averages of 𝐺𝐻𝐼, cloud 

cover, and route profile characteristics. Some differences may be seen with regard to 

the wind speed where this is reflected by the higher 𝑅𝑀𝑆𝐸 found for Day 1. Ultimately, 

the only significant difference between Day 1 and Day 2 is the average driving speed, 

yet the graphs have completely different slope characteristics:  

On Day 1, Sun Chaser II used over 80 % of its stored energy (𝑆𝑜𝐶 decreased) to cover 

a specific distance. On Day 2 however, Sun Chaser II gained over 10 % stored energy 

(𝑆𝑜𝐶 increases) and managed to do over 33 km more than on Day 1. Although the 

wind played some role in adding to the additional energy losses in Day 1, the major 

contributor was the aerodynamic losses that increased with an exponential function as 

the average speed of the vehicle on Day 1 was much higher when compared to all 

other race days. 

 

Modelling conclusion 

Overall, the results are satisfactory and consistent when considering that the model 

does not contain any input from the wind speed. The small deviations seen between 

the measured 𝑆𝑜𝐶 data and the model calculated 𝑆𝑜𝐶 data are primarily the result of 

minor un-modelled components. These include Coriolis forces as well as a physical 

characteristic of the vehicle changing during the challenge (brakes temporarily binding 
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when new pads are inserted, tyre inflation, uneven wear of tyres influencing rolling 

resistance, as well as the mass differences between drivers of SCII used while 

recording data). Finally, when considering the phenomena of the large slope seen on 

Day 1, the experiment established the importance of having an optimal driving speed 

profile to conserve energy and maximise distance.    
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IV. ENVIRONMENTAL CONDITIONS 

From the literature it was found that the variable nature of major weather parameters 

are rarely incorporated into energy models. Instead, weather constants or weather 

assumptions are widely adopted as a result of the difficulty of acquiring real-time 

weather data, the processing requirement thereof as well as the usability due to the 

stochastic nature of these forecasts. Furthermore, it has been recognised that weather 

parameters are commonly treated as deterministic, which disregards the importance 

of the inherently variable nature of the weather. Some research has shown to improve 

local forecasting, but no such previous work has applied the forecast improvement to 

a solar electric vehicle application in the South African region. 

In order to create a comprehensive and realistic mathematic model of a solar car, it is 

essential to incorporate weather forecasts into the model as the amount of expected 

𝐺𝐻𝐼 forecast is fundamental to such a model. For the purpose of this work, only the 

𝐺𝐻𝐼 forecast component will be treated as stochastic and refined for accuracy and 

forecast confidence inclusion while the other weather forecast components will be 

used as they are received in their raw format from the forecaster. 

The objective of this chapter is to show how the variability of the 𝐺𝐻𝐼 forecasts can be 

made useful without adding unnecessary computational complexity and significant 

modifications to existing energy system algorithms. This is achieved through 

characterising the statistical behaviour of the 𝐺𝐻𝐼 forecasts from Meteomatics AG and 

by extrapolating the most relevant performance metrics from the forecast data. These 

𝐺𝐻𝐼 performance metrics are then made useful by incorporating them into the energy 

simulations in the form of forecast confidence intervals. Furthermore, the outcomes of 

this chapter will lead to: 

• better understanding the 𝐺𝐻𝐼 forecast performance as a function of the forecast 

horizon of nine days 

• better understanding the 𝐺𝐻𝐼 forecast performance as a function of the amount 

of cloud cover 

• better understanding the 𝐺𝐻𝐼 forecast performance as a function of the hour of 

the day 

• an improved energy forecast system for solar electric vehicles 
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We characterised the variability of the 𝐺𝐻𝐼 weather forecast from the Meteomatics AG 

API for the South African region, only.  

 

EXPERIMENTAL EQUIPMENT AND PROCEDURE 

The weather forecast for up to nine days in advance was acquired via an API available 

from Meteomatics AG (similar to PAIRS which was previously used in the chapter on 

modelling), which typically uses the ECMWF database as a raw data source. The 

variables that were requested from the Meteomatics AG API to use in the optimisation 

problem are presented in Table 10. In addition to the weather variables recorded in 

this table, the air density is calculated by using Tdew, Tair, and Pair with a polynomial 

method proposed by [78]. The minimum mandatory route (typically around 2000 km 

over the entire eight-day SSC event) for each day was divided into approximately 1-

kilometre intervals. At each of these intervals, the GPS coordinates were saved in an 

array, and all the variables in Table 10 were requested for the entire range of GPS 

coordinates. In addition to this, the weather variables were also requested at a 1-

kilometre resolution along the route for the additional loop road sections stipulated for 

each day. The distance and elevation between each GPS coordinate pair were then 

used to calculate the slope between each GPS pair. The number of optimal speed 

states, k, for a route was set at a 1-kilometre resolution. However, the energy 

calculations (lost or gained) would happen at a higher resolution to ensure that the 

road profile (gradient) is accurately characterised.  

 

Table 10: Forecasted weather variables from Meteomatics AG 

Symbol aVariable Units 

𝑮𝑯𝑰 Global Horizontal Irradiance W.m-2 

𝑻𝑪𝑪 Total Cloud Cover % 

vwind_dir Wind direction 0 ˚- 360 ˚ 

vwind_spd Wind speed m/s 

Tdew Dew point temperature (air) K 

Tair Temperature (air) K 

Pair Pressure (air) hPa 
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aAll weather variables are available in one-hour resolution as standard, but are increased by using a 

higher-order function to fit the data to an appropriate function. The final datasets have a 15-minute 

resolution with a range between 06:00 to 18:00. 

 

The variability of the 𝐺𝐻𝐼 forecast can be characterised using a PMF which is a 

probability measure that shows probabilities of the possible values for the discrete 

random variable 𝐺𝐻𝐼 with a range 𝑅 𝐺𝐻𝐼 =  {𝑔ℎ𝑖1, 𝑔ℎ𝑖2, … , 𝑔ℎ𝑖𝐿}. Equation (25) is the 

PMF of the discrete random variable 𝐺𝐻𝐼. 

𝑃𝐺𝐻𝐼(𝑔ℎ𝑖𝑙) =  𝑃(𝐺𝐻𝐼 = 𝑔ℎ𝑖𝑙),   𝑓𝑜𝑟  𝑙 = 1,2, … , 𝐿                      (25) 

 

The expected values of the usable solar power (a combination of the 𝐺𝐻𝐼 component 

and efficiencies) and their dependency on the 𝑇𝐶𝐶 was investigated. For this work, the 

𝐺𝐻𝐼 alone has been considered to be probabilistic, and only the expected values (most 

probable value occurrence for the 𝐺𝐻𝐼 sample set) were extracted from the PMF 

functions subject to various cloud conditions and forecast horizon for use in the model. 

For this reason, it was appropriate to use the PMF (Probability Mass Function, 

discrete) and not the PDF (Probability Density Function, continuous).  

The ground station data was obtained from a public data source provided by the 

Southern African Universities Radiometric Network (SAURAN) [79] and data for 2018 

to the end of 2019 was requested from this public source. This data source provides 

hourly averaged measured values for a variety of meteorological variables; however, 

just the 𝐺𝐻𝐼 and 𝑇𝐶𝐶 components were of concern for this work. 

The measured 𝐺𝐻𝐼 data was recorded by a SAURAN Weather Station mounted on 

the roof of an Engineering building at Stellenbosch University in Stellenbosch, South 

Africa. The 𝐺𝐻𝐼 forecast data was retrieved via an API made available by Meteomatics 

AG, who are experts in meteorological data processing. These 𝐺𝐻𝐼 forecasts were 

requested and saved daily for a full nine-day time horizon. Both datasets were 

processed in one-hour intervals for 24 months to ensure characteristics from all four 

seasons are included in the datasets. The only data considered was that which was 

gathered precisely between 06:00 to 18:00 each day, as the night-time data could 

have skewed the outcome of the analysis towards seemingly more accurate results. 

Generally, the 𝐺𝐻𝐼 forecast for night-time is zero and the measurement at night will 
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also be near zero. A pre-analysis of the raw 24-month forecast and recorded 𝐺𝐻𝐼 data, 

revealed that there are specific patterns in the accuracy of the prediction when 

considering the amount of 𝑇𝐶𝐶 for a specific day as well as the forecast horizon. The 

daily mean 𝑇𝐶𝐶 was used when the dataset was divided into the following four 

categories to group the most likely patterns observed: clear sky (when 𝑇𝐶𝐶 ≤ 2 % daily 

mean cloud cover), 2 % < 𝑇𝐶𝐶 ≤ 33 %, 33 % < 𝑇𝐶𝐶 ≤ 66 % and 66 % < 𝑇𝐶𝐶 ≤ 100 %.  

Performance metrics similar to those used in the modelling chapter were used to 

evaluate the 𝐺𝐻𝐼 forecast here. After the 𝐺𝐻𝐼 error data had been pre-processed, an 

appropriate distribution function was needed to represent the 𝐺𝐻𝐼 forecast error 

variation, which is shown later in Figure 18. While it is commonly found that 𝐺𝐻𝐼 

forecasts can be described by a normal distribution, this cannot however always be 

assumed. We made a visual inspection of the standard normal distribution plot 

superimposed onto the data distribution, inspected the QQ plot, found the kurtosis 

values and finally, made use of well-known normality hypothesis tests such as the 

Anderson-Darling test as well as the Kolmogorov-Smirnov test. 

 

EXPERIMENTAL RESULTS AND DISCUSSION 

The performance metrics for the 𝐺𝐻𝐼 forecast can be seen in Tables 11 to 14. The 

data has been grouped into four 𝑇𝐶𝐶 categories: clear sky, and three categories where 

the 𝑇𝐶𝐶 ranges between values just larger than zero up to 100 %. Through simple 

inspection of the rows of Table 12 to Table 14 (except for the 𝐹𝐵) ranging from clear-

sky (leftmost column) to 100 % 𝑇𝐶𝐶 (rightmost column), a noticeable and almost 

unvarying ascending error trend is visible. This shows that the 𝑀𝐴𝐸, 𝑅𝑀𝑆𝐸 and 𝑠𝑡𝑑 

error values, between the 𝐺𝐻𝐼 forecast and the actual values, generally increase with 

a rise in 𝑇𝐶𝐶, no matter if it is the next day or a nine-day- ahead forecast. A similar 

trend, although not as prominent and with less slope, can be observed upon inspection 

of the last two columns of Tables 12 and 14 (again except for the 𝐹𝐵) when looking 

from the top of each column downwards (one day ahead at the top, to 9 days ahead 

at the bottom). The first two columns (clear sky and 1/3 𝑇𝐶𝐶) exhibit much less of a 

trend and the variation seem more random. The 𝐹𝐵 table reveals that very little 

Forecast Bias is present, irrespective of the forecast horizon and the state of the 𝑇𝐶𝐶. 

No real trends can be identified in the 𝐹𝐵 results (Table 11). 
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Table 11: Forecast Bias error 

𝑭𝑩 (percentage) 

 Clear sky 0<𝑻𝑪𝑪≤1/3 1/3<𝑻𝑪𝑪≤2/3 2/3<𝑻𝑪𝑪≤3/3 

1 day ahead -0.1 0.7 -0.3 1.5 

2 days ahead 0.3 0.3 -0.1 1.8 

3 days ahead 0.2 1.0 0.4 1.0 

4 days ahead 0.1 0.6 1.2 0.5 

5 days ahead 0.1 1.0 0.5 -0.7 

6 days ahead 0.8 1.0 0.5 -0.5 

7 days ahead 0.1 0.7 1.0 -1.0 

8 days ahead 0.2 1.7 -0.1 -0.7 

9 days ahead 0.4 1.2 0.7 -2.6 

 

Table 12: Mean Absolute Error 

𝑴𝑨𝑬 (percentage) 

 Clear sky 0<𝑻𝑪𝑪≤1/3 1/3<𝑻𝑪𝑪≤2/3 2/3<𝑻𝑪𝑪≤3/3 

1 day ahead 17.7 21.4 23.7 27.4 

2 days ahead 17.0 21.0 23.1 28.9 

3 days ahead 15.4 21.6 25.3 28.5 

4 days ahead 16.8 20.7 25.6 28.1 

5 days ahead 16.3 22.0 26.9 29.0 

6 days ahead 20.3 22.3 25.7 30.7 

7 days ahead 24.1 19.1 25.2 28.9 

8 days ahead 21.3 21.3 26.9 28.8 

9 days ahead 18.8 22.6 25.8 31.1 

 

Table 13: Root Mean Squared Error 

𝑹𝑴𝑺𝑬 (percentage) 

 Clear sky 0<𝑻𝑪𝑪≤1/3 1/3<𝑻𝑪𝑪≤2/3 2/3<𝑻𝑪𝑪≤3/3 

1 day ahead 25.5 30.2 31.5 36.1 

2 days ahead 24.4 30.2 31.2 37.8 

3 days ahead 22.6 30.2 34.4 37.6 

4 days ahead 24.1 30.7 34.7 36.6 

5 days ahead 23.3 31.3 35.7 36.6 

6 days ahead 29.4 31.6 35.0 39.0 

7 days ahead 34.0 27.5 34.1 38.1 

8 days ahead 26.1 30.4 35.5 37.4 
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Table 14: Standard deviation assuming a normal distribution 

𝒔𝒕𝒅 (percentage) 

 Clear sky 0<𝑻𝑪𝑪≤1/3 1/3<𝑻𝑪𝑪≤2/3 2/3<𝑻𝑪𝑪≤3/3 

1 day ahead 25.5 30.0 31.5 35.9 

2 days ahead 24.4 30.2 31.2 37.4 

3 days ahead 22.6 29.8 34.4 37.5 

4 days ahead 24.1 30.5 34.3 36.6 

5 days ahead 23.3 30.8 35.7 36.5 

6 days ahead 29.1 31.3 35.0 39.0 

7 days ahead 34.1 27.3 33.8 37.9 

8 days ahead 34.2 29.4 35.6 37.4 

9 days ahead 26.2 30.5 34.7 37.9 

 

The 𝐺𝐻𝐼 forecast error data distribution of the combined dataset exhibit a seemingly 

similar shape to that of the bell-shaped normal distribution (Figure 18) but fail both the 

Anderson-Darling test as well as the Kolmogorov-Smirnov tests with the standard 5 % 

confidence interval rejecting the null hypothesis that the data is normally distributed 

[80]. Furthermore, the Quantile-Quantile (QQ) plot of the combined datasets (Figure 

17) reveals that the data is somewhat over-dispersed which means that the data has 

an increased number of outliers resulting in slightly heavier tails of the distribution 

function. A Kurtosis of 5.8 for the combined dataset corroborates the heavier tails as 

a positive Kurtosis [81] more significant than 3 indicates more peakedness of the data 

distribution around the mean in addition to more outliers at the tails.  

By considering the different normality test results, it was concluded that the t-

distribution function would describe the data better than a normal distribution function 

would. The t-distribution is popularly applied to data distributions with marginally 

heavier tails and more peakedness around the mean than the normal distribution. With 

a normal distribution, one standard deviation shows the confidence interval at a 68 % 

probability of the sample set, which is not necessarily the case with the t-distribution. 

The t-distribution requires the use of a t-score table or the Inverse Cumulative 

Distribution Function (ICDF) to calculate the confidence interval for a specified 

percentage probability of, for instance, 68 %.  
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Figure 17: QQ plot of 𝑮𝑯𝑰 forecast data 

 

The red line in Figure 17 represent the line which the data would follow if both the 

control data set (typically normally distributed data) as well as the data set in question 

(𝐺𝐻𝐼 forecast error) was of the same distribution type, such as a normal distribution. 

The blue markers deviate from the straight red line which tells us that the dataset in 

question is not similar to the control dataset and therefore not normally distributed. 

Figure 18: Normal vs t-distribution 
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Table 15 and 16 record the t-distribution function confidence intervals for 68 % (this 

percentage was used to easily compare with one standard deviation of a normal 

distribution; however, it can be found for any percentage interval desired) calculated 

as non-absolute percentage values to be used as upper and lower bounds. These 

upper and lower bounds are appropriate as they include the effects of the 𝐹𝐵 values 

(positive and negative forecast bias), which made them more useful for the solar car 

team. The upper and lower bounds meant that statistically, there was a 68 % chance 

that the 𝐺𝐻𝐼 forecast would take on a value with a percentage error of equal or less 

than the upper bound and equal or greater than the lower bound. It was essential to 

recognise the differences between the upper and lower bounds of the t-distribution 

(Tables 15 and 16) and the values of one standard deviation of the standard normal 

distribution (Table 14). This is why it was critical to select the distribution function that 

best described the data (before constructing the confidence intervals). In this case, it 

was not a normal distribution.  

 

Table 15: T-distribution upper bounds (forecast confidence) 

Upper bounds 

 Clear sky 0<𝑻𝑪𝑪≤1/3 1/3<𝑻𝑪𝑪≤2/3 2/3<𝑻𝑪𝑪≤3/3 

1 day ahead 19.5 25.5 24.3 38.7 

2 days ahead 19.3 22.8 25.2 42.9 

3 days ahead 16.9 28.0 30.0 38.7 

4 days ahead 18.8 21.3 34.0 37.5 

5 days ahead 18.1 27.8 35.4 31.3 

6 days ahead 24.6 28.0 31.2 36.7 

7 days ahead 26.0 22.7 34.2 32.3 

8 days ahead 25.0 28.0 31.4 31.9 

9 days ahead 23.6 32.0 32.5 25.6 
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Table 16: T-distribution lower bounds (forecast confidence) 

Lower bounds 

 Clear sky 0<𝑻𝑪𝑪≤1/3 1/3<𝑻𝑪𝑪≤2/3 2/3<𝑻𝑪𝑪≤3/3 

1 day ahead -18.6 -22.3 -31.6 -30.9 

2 days ahead -17.9 -21.7 -28.8 -31.5 

3 days ahead -15.7 -20.1 -28.9 -33.4 

4 days ahead -17.3 -20.8 -26.1 -34.3 

5 days ahead -17.4 -20.4 -31.2 -38.7 

6 days ahead -18.1 -20.4 -29.8 -40.8 

7 days ahead -27.5 -17.0 -25.0 -40.3 

8 days ahead -22.4 -16.1 -33.5 -39.0 

9 days ahead -17.9 -20.4 -27.8 -46.8 

 

If a normal distribution had been used for the upper and lower bounds (as in Table 

14), then the analysis would have been a poor representation of the data and forecast 

error, possibly even misleading the energy manager. For this reason, it was important 

to choose the t-distribution to represent a specific dataset. The energy manager had 

the freedom to select the upper and lower bounds for a chosen confidence interval. 

Desired values of more than 68 % would have resulted in a wider confidence interval, 

meaning that statistically, the data was more likely to fall within the interval. However, 

the wide interval made it difficult for the energy manager to accurately estimate the 

amount of risk involved in the predicted 𝑆𝑜𝐶 profile. 

Similarly, desired values of less than 68 % would have resulted in a narrower 

confidence interval; meaning that statistically, the data would have been less likely to 

fall within the interval. The narrow interval however, made it easier for the energy 

manager to accurately estimate the 𝑆𝑜𝐶 profile. This trade-off between the amount of 

risk taken and the accuracy required was left up to the energy manager to decide, 

based on their experience and intuition. 

The upper and lower bounds were now able to be used (and added to a typical 𝑆𝑜𝐶 

simulation output from the Tshwane University of Technology energy management 

strategy) to provide some confidence intervals for the energy manager to be able to 

assess the risk involved when analysing the simulation results. Although other factors 

within the model could also cause the 𝑆𝑜𝐶 to vary, we considered the model a good 

representation of the actual vehicle dynamics [15] which meant that a variation of the 
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𝐺𝐻𝐼 component would have a large effect on the 𝑆𝑜𝐶. Figure 19 represents the 𝑆𝑜𝐶 

simulation (one-day forecast) compared to actual results for the first day of the Sasol 

Solar Challenge 2018 for the Sun Chaser III vehicle’s model with the developed 𝐺𝐻𝐼 

confidence intervals. The team covered a total of 493 km over eight hours that day. 

The simulation that produced this figure is discussed in detail in the following chapters. 

The clouds on this day were initially low at about 20 % 𝑇𝐶𝐶 in the morning, descending 

until around midday, after which the cloud cover increased steadily to about 70 % at 

16:00.  

The confidence intervals in Figure 19 demonstrate room for improvement and 

sharpening of the intervals as the actual and estimated 𝑆𝑜𝐶 results are quite far from 

the interval borders. 

 

EXPERIMENTAL CONCLUSIONS 

This section presented the methodology of evaluating the forecast performance of the 

𝐺𝐻𝐼 component for the South African region. This was done by making use of 24 

months of weather station-based measured data as well as forecasted data for a 

specific location in South Africa. Some performance metrics were used to describe the 

Figure 19: 𝑮𝑯𝑰 confidence intervals 
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relationship between the predicted and the actual data. The 𝐺𝐻𝐼 forecast performance 

is shown for various cloud conditions as well as for a forecast horizon of nine days. In 

general, an increasing error trend can be seen with an increase in clouds as well as 

some trend with the increase in the forecast horizon. The t-distribution was used to 

create probability mass functions as the data was seen to be non-normally distributed. 

Upper and lower bounds were found for the 68 % confidence interval of the t-

distributions. The upper and lower limits of this confidence interval were graphically 

used to assist the energy manager in assessing the forecast and simulation risk 

involved and its effect on the vehicle energy (i.e. its’  𝑆𝑜𝐶).  

 

FORECAST BIAS CORRECTION 

To increase the 𝐺𝐻𝐼 forecast performance (that is to say, to tighten the upper and 

lower confidence bounds without losing robustness of the intervals), a forecast bias 

correction can be applied. Although Table 11 shows minimal bias present, these are 

daily averaged values evaluated for the forecasts of a whole day on average. To reveal 

a higher resolution forecast bias, it is necessary to analyse for every hour of the day 

(07:00 to 17:00). 

This was done by taking twelve random months’ data (from the sample set collected 

as explained in the previous sections) as training data and the remaining twelve 

months’ data for validation purposes. The forecast and actual data was compared on 

an hourly basis to find the average forecast bias error percentage per hour. Figure 20 

shows the 𝐺𝐻𝐼 forecast bias error percentage results on an hourly basis for the twelve 

months of random sample data. 
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The evaluation indicated that the forecast generally over-predicts in the morning, 

under-predicts in the evening and displays relatively low mean errors between 10:00 

and 14:00. It is important to note that a 50 % forecast bias in the early morning or late 

afternoon does not necessarily constitute large solar irradiance error values and might 

be as small as 10 W.m-2. The 𝐺𝐻𝐼 magnitude in the morning and afternoon are much 

lower than the 𝐺𝐻𝐼 magnitude in the middle of the day. This hourly forecast bias 

function represents the combined 𝑇𝐶𝐶 conditions, and the average of the combined 

hourly function is 0.39 % 𝐹𝐵 which is approximately equal to the average of all the 𝐹𝐵 

values of Table 11 (which is 0.37 %). This validates the results as it was expected to 

see approximately similar 𝐹𝐵 (however, not exactly the same, because Table 11 used 

24-month data and the hourly forecast bias function used only half of this data). We 

now possess a 𝐹𝐵 function, the inverse of which can be applied to all 𝐺𝐻𝐼 forecasts 

at each hour to reduce the bias in the forecast and improve (narrow down) the 

confidence interval of the prediction. 

After applying the hourly mean forecast bias correction to the resulting 12 months’ 

validation forecast data and comparing to the actual data, an average improvement of 

approximately 23 % (based on the old upper and lower bounds) is noticeable when 

comparing Table 17 and 18 (forecast bias compensated) with Table 15 and 16 (raw 

Figure 20: Forecast bias 
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performance of Meteomatics AG forecast). This improvement means that for the same 

68 % confidence interval, the 𝐺𝐻𝐼 forecast error is now on average 23 % more likely 

to fall closer to zero (the desired improvement) after making use of the hourly forecast 

bias correction method. The improved distributions and confidence intervals are still 

described by a t-distribution similar to the raw Meteomatics AG forecast data. 

 

Table 17: Upper bounds (Forecast Bias compensated) 

Upper bounds (percentage) 

 Clear sky 0<𝑻𝑪𝑪≤1/3 1/3<𝑻𝑪𝑪≤2/3 2/3<𝑻𝑪𝑪≤3/3 

1 day ahead 14.4 19.9 19.1 29.0 

2 days ahead 14.7 17.4 19.2 32.5 

3 days ahead 12.8 21.8 23.4 29.0 

4 days ahead 14.2 16.9 26.9 28.5 

5 days ahead 13.2 21.7 28.0 23.9 

6 days ahead 18.6 21.2 24.8 27.9 

7 days ahead 19.4 17.7 27.0 24.2 

8 days ahead 18.3 21.2 24.2 23.1 

9 days ahead 17.7 25.0 25.7 19.8 

 

Table 18: Lower bounds (Forecast Bias compensated) 

Lower bounds (percentage) 

 Clear sky 0<𝑻𝑪𝑪≤1/3 1/3<𝑻𝑪𝑪≤2/3 2/3<𝑻𝑪𝑪≤3/3 

1 day ahead -14.0 -17.9 -25.0 -23.0 

2 days ahead -13.0 -16.1 -22.0 -23.1 

3 days ahead -11.2 -15.3 -22.1 -25.7 

4 days ahead -13.8 -16.3 -20.1 -25.3 

5 days ahead -13.6 -15.2 -24.6 -29.5 

6 days ahead -13.9 -15.1 -23.8 -30.6 

7 days ahead -20.0 -13.3 -19.9 -30.1 

8 days ahead -16.0 -12.6 -26.5 -29.3 

9 days ahead -13.0 -15.1 -22.7 -35.9 

 

It is important to note that this hourly 𝐹𝐵 correction only applies to a particular region; 

in this case, Stellenbosch, South Africa. The results could be less accurate, although 

still acceptable, when applied to forecasts significantly further away from this location.  
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Figure 21 illustrates the narrower confidence intervals as a result of the 𝐹𝐵 

compensation. Here it may be quite distinctly seen that even though a reasonably 

trivial hourly 𝐺𝐻𝐼 forecast bias compensation has been applied, the intervals are 

narrower and provide more confidence to the energy user. It is interesting to note that 

on both Figures 19 and 21 at the very start of the 𝑆𝑜𝐶 curves, the actual 𝑆𝑜𝐶 lies 

outside the confidence interval. This may well not have anything to do with the 

accuracy of 𝐺𝐻𝐼 forecast, but rather other influences such as: driving slower than the 

optimal speed profile yielding higher actual 𝑆𝑜𝐶 than expected. 

 

 

It should also be noted that the upper and lower bound values (Tables 17 and 18) are 

very similar in magnitude (but differ in sign) and can, therefore, be combined as an 

absolute value confidence interval for ease of use. When applied as upper and lower 

bounds, the inclusion of the appropriate sign (positive or negative) has to be made. 

In the literature review chapter of this work, a baseline forecast performance for the 

𝐺𝐻𝐼 component, as seen from the ECMWF model, was given in Table 5. This baseline 

performance figure refers to one-day-ahead clear-sky-only forecast. In Table 19, the 

Figure 21: 𝑮𝑯𝑰 Confidence intervals (Forecast bias compensated) 
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first section of the table shows the forecast performance of the raw data as received 

from the Meteomatics AG API compared to the actual measured data. The forecast 

performance (𝑅𝑀𝑆𝐸) saw a significant improvement after being processed by the 

Meteomatics AG server and outperformed the baseline up to a five-day-ahead clear 

sky 𝐺𝐻𝐼 forecast. The second section of Table 19 contains the compensated forecast 

performance in terms of 𝑅𝑀𝑆𝐸. Here, a further improvement is evident for all cloud 

conditions. This forecast performance improvement validates and complements the 

improved results of the forecast correction method seen in Tables 17 and 18 and 

Figure 21.  

 

Table 19: RMSE comparison 

  

𝑹𝑴𝑺𝑬, before compensation (W.m-2) 

 CS 0<𝑻𝑪𝑪≤1/3 1/3<𝑻𝑪𝑪≤2/3 2/3<𝑻𝑪𝑪≤3/3 

1 day ahead 79.7 134.1 130.8 128.5 

2 days ahead 85.0 130.4 126.1 144.4 

3 days ahead 76.2 138.6 140.0 149.7 

4 days ahead 87.9 124.6 155.5 147.7 

5 days ahead 87.4 164.2 156.5 155.2 

6 days ahead 144.8 163.0 179.9 151.5 

7 days ahead 148.1 161.8 185.5 146.0 

8 days ahead 147.0 174.4 178.3 153.9 

9 days ahead 207.3 177.6 165.1 171.6 

𝑹𝑴𝑺𝑬, after compensation ( W.m-2) 

 CS 0<𝑻𝑪𝑪≤1/3 1/3<𝑻𝑪𝑪≤2/3 2/3<𝑻𝑪𝑪≤3/3 

1 day ahead 58.6 114.7 113.2 124.0 

2 days ahead 71.6 113.7 108.4 138.9 

3 days ahead 68.9 123.4 127.9 144.3 

4 days ahead 78.2 111.2 136.6 142.2 

5 days ahead 85.7 148.3 134.3 153.5 

6 days ahead 132.9 140.6 169.1 146.2 

7 days ahead 136.5 137.5 170.4 136.7 

8 days ahead 133.7 147.3 165.9 147.8 

9 days ahead 198.0 155.9 144.9 167.7 



 

87 

MODEL OUTPUT STATISTICS 

Further deeper analysis and characterisation in regard to the probabilistic nature of 

the 𝐺𝐻𝐼 component can also result in an improvement in forecast accuracy as well as 

more reliable confidence intervals. The aim is to use conditional probabilities (with 

multiple variables) based on the expected value of the 𝐺𝐻𝐼 in certain situations of 

clouds, time of day, forecast horizon and geographical location to achieve this goal.  

 

Experimental equipment and procedure  

Ground station measured data has been taken from strategic locations along the 

typical SSC route in South Africa. The chosen locations were Pretoria (University of 

Pretoria), Bloemfontein (Central University of Technology), Port Elizabeth (Nelson 

Mandela University) and the Cape Town area (Stellenbosch University).  

SAURAN has a total of 23 ground measurement stations across South Africa. 

However, the limitation of a maximum allowed daily data point requests imposed by 

the forecast provider (Meteomatics AG), limited the Application Program Interface 

(API) requests to four locations in South Africa per day only. All four cities are major 

stopover locations for the SSC event and span the entire route from start to finish. 

Forecast data for all four locations were made available by Meteomatics AG. An API 

script was developed and used over 24 months to request the 𝐺𝐻𝐼 and 𝑇𝐶𝐶 daily 

forecast for each of the four locations over a nine-day horizon. This data was then 

stored in a multi-dimensional matrix format (MATLAB®) with an appropriate date and 

location information stamp for identification. At the end of the API script, an email is 

daily automatically generated and sent to the researcher to verify that the data has 

been received as expected. In this study, after all the forecast data had been captured 

for the two years, the SAURAN ground station based data was imported into the 

MATLAB® environment with some initial pre-processing of the data. Night-time data of 

each day was then appropriately removed. This reduced the risk of having bias results; 

as previously mentioned, night time 𝐺𝐻𝐼 data is not statistically meaningful (near zero 

values). The forecast and the measured data for each of the four locations were then 

analysed and compared.    

To increase the local 𝐺𝐻𝐼 forecast performance (compared to the raw Meteomatics 

AG forecast as well as forecast bias correction), a Model Output Statistics (MOS) 
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correction function was developed and applied to the data in the form of a simple 

multiplication scaling function. As the 𝐺𝐻𝐼 forecast is available in a one-hour 

resolution, it is appropriate to create a MOS correction function for every hour between 

06:00 and 18:00. Twelve of the months’ data was used to develop the MOS correction 

function. In contrast, the remaining twelve-month data was used for validation and to 

test the performance of the improved MOS based 𝐺𝐻𝐼 local forecast model. With the 

initial analysis in the previous section of the raw Meteomatics AG data and the forecast 

bias correction, an initial four categories of 𝑇𝐶𝐶 was sufficient for grouping forecast 

error trends. While this section aimed to improve the accuracy further, a higher 

resolution forecast error trend grouping was appropriate and therefore increased the 

𝑇𝐶𝐶 categories to five. 

The MOS correction function is deterministic and was found by using the expected 

value of the conditional probability based on the 𝑇𝐶𝐶 (with clear sky and four 25 % 

increasing intervals, which yields five 𝑇𝐶𝐶 categories), the forecast horizon (𝑑𝑎𝑦) as 

well as the hour of the day (ℎ) as shown in Equation (26). 

                                         𝑓𝑀𝑂𝑆 = 𝐸{𝐺𝐻𝐼|𝑇𝐶𝐶, 𝑑𝑎𝑦, ℎ}                                   (26) 

 

To expand this MOS correction function to a GMOS (Gridded Model Output Statistics) 

function, we can rewrite Equation (26) to include an interpolated value of the forecast 

characteristics of the two nearest of the four sites based on the current location (𝑔𝑝𝑠)  

of the car as a further conditionality: 

                                       𝑓𝐺𝑀𝑂𝑆 = 𝐸{𝐺𝐻𝐼|𝑇𝐶𝐶, 𝑑𝑎𝑦, ℎ, 𝑔𝑝𝑠}                         (27) 

 

Equation (27) now contains the statistically improved expected value of the 𝐺𝐻𝐼 

forecast based on the cloud conditions, the forecast horizon with the time of day as 

well as the location of the car on the route. The improved GMOS 𝐺𝐻𝐼 model is based 

on statistical knowledge of the mean conditional hourly error. This does however not 

wholly ratify all error variation, and thus some of the error will still be present in the 

output results. For this reason, the energy simulation user needs to comprehend this 

remaining error variation in a simple yet useful manner. This was achieved by 

determining the improved probability or confidence interval of the expected GMOS 
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𝐺𝐻𝐼 forecast by creating a probability mass function of the remaining error variation. 

The desired confidence interval of 68 % was chosen (which is one standard deviation, 

but any range between 0 % and 100 % may be selected) and upper and lower forecast 

confidence bounds were developed. These bounds further assist the user in assessing 

the risk involved with the expected value output of Equation (27). The GMOS error 

probability mass function is given by Equation (28).                  

                                𝑒𝑃𝑀𝐹𝐺𝑀𝑂𝑆 = P(𝐺𝐻𝐼|𝑇𝐶𝐶, 𝑑𝑎𝑦, ℎ, 𝑔𝑝𝑠)                           (28) 

By applying the GMOS 𝐺𝐻𝐼 correction function in Equation (27) and the forecast 

confidence function in Equation (28) to the 𝑆𝑜𝐶 energy simulation of the solar car, the 

user is equipped with more accurate 𝑆𝑜𝐶 results in addition to robust confidence 

intervals which reveals the risk involved in the simulation. The 𝑆𝑜𝐶 error is not solely 

dependent on the accuracy of the 𝐺𝐻𝐼 forecast but it has been shown [15] that with an 

accurate electromechanical mathematical model describing the energy behaviour of 

the vehicle, the 𝑆𝑜𝐶 error is not solely dependent on the accuracy of the 𝐺𝐻𝐼 forecast 

but about 94 % of the SoC error is due to weather forecast error, in which GHI error 

predominates. 

 

Experimental results and discussion 

Tables 20 through 23 contain the results of the t-distribution standard deviation of the 

raw Meteomatics AG 𝐺𝐻𝐼 prediction error (as seen in the t-distribution values of Tables 

15 and 16) as well as the improved localised GMOS t-distribution standard deviation 

prediction error values. All the values are shown as relative error percentages. Figure 

22 contains a summary of the cloud cover days of the sample set for each of the four 

locations based on the five newly identified categories. 
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Figure 22: Cloudy days summary (GMOS) 

 

 

Table 20: Standard deviation comparison, Pretoria 

Forecast 
horizon 
(days) 

Clear Sky 0%<𝑻𝑪𝑪 ≤25% 25%<𝑻𝑪𝑪 ≤50% 50%<𝑻𝑪𝑪 ≤75% 
75%<𝑻𝑪𝑪 
≤100% 

 raw GMOS raw GMOS raw GMOS raw GMOS raw GMOS 

One  20.3 
8.1 23.2 16 25.8 17.5 29.6 21.9 31.5 26.8 

Two 
20.6 8.3 24.8 19.1 26.3 25 32 26.8 33.6 26.9 

Three 
18.2 11.5 21.7 14.4 24.3 18.1 30.5 21.4 32.3 28.8 

Four 
20.5 10.9 26.4 17.8 28.2 19.3 32.2 22.6 34.2 28.9 

Five 
19 10.8 24.7 15.2 23.7 14.5 33 24.9 34.3 22.8 

Six 
23.3 12.8 25.8 17.9 29.3 19.8 32.1 23.9 34.9 26.2 

Seven 
27.8 10.5 21 12.9 19.6 13.5 30.8 20.5 32.5 22.7 

Eight 
30.8 12.8 23.7 15.7 25.4 17.2 31.5 24.6 33.7 25 

Nine 
21.5 13 22.5 14.6 26.1 15 28.5 23.8 33.4 29.1 
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Table 21: Standard deviation comparison, Bloemfontein 

Forecast 
horizon 
(days) 

Clear Sky 0%<𝑻𝑪𝑪 ≤25% 25%<𝑻𝑪𝑪 ≤50% 50%<𝑻𝑪𝑪 ≤75% 
75%<𝑻𝑪𝑪 
≤100% 

 raw GMOS raw GMOS raw GMOS raw GMOS raw GMOS 

One  20.5 
9.3 22.7 15.6 25.9 17.4 27.4 21.6 30.4 23.7 

Two 
23.1 8.7 24.5 20.3 28.1 18.2 32.3 25.8 35.7 25.4 

Three 
16 10.2 22.9 12.3 24.8 16.9 28.7 21.8 30.2 27.1 

Four 
20.3 10.9 25 14.5 26.5 18.8 30.7 22.6 32.8 30 

Five 
18.7 11.5 24.8 15 24.8 19.4 30.5 24.9 33.7 26.3 

Six 
25.4 11.2 25.5 17.6 27.8 20.9 32.7 24.1 34.3 28.9 

Seven 
27.9 13 19.9 12.9 22 14 30.4 23.3 29.6 28.1 

Eight 
26.5 11.5 23.4 15.8 29.7 16.6 31.6 23.6 34.8 29.6 

Nine 
22.2 14.5 23.8 14.2 25.4 16.3 30.9 23.8 31.4 32.9 

 

 

Table 22: Standard deviation comparison, Port Elizabeth 

Forecast 
horizon 
(days) 

Clear Sky 0%<𝑻𝑪𝑪 ≤25% 25%<𝑻𝑪𝑪 ≤50% 50%<𝑻𝑪𝑪 ≤75% 
75%<𝑻𝑪𝑪 
≤100% 

 raw GMOS raw GMOS raw GMOS raw GMOS raw GMOS 

One  14.8 
7 16.9 12.8 24.9 15 26.8 19.2 30.7 20.2 

Two 
15.4 7.3 20.9 12.7 27 12.6 32.1 20.5 33.9 22.8 

Three 
13.2 8.9 13.8 11.5 24.8 18.9 27.4 18.3 29.9 20 

Four 
13.7 7.9 25.5 16.7 27.4 20.8 33.5 21.3 34.4 25.7 

Five 
15.9 10.1 18.9 14.8 25 17.2 30 19.6 31.4 19.1 

Six 
17.5 9.5 26.2 15.1 27.3 21.4 30.5 22.2 29.3 28 

Seven 
19 12.8 20.1 16.8 20.6 20 25.1 19.2 29.4 30 

Eight 
17.4 15 22.4 15.9 26.9 18 30.5 22 32.2 27 

Nine 
18.6 15.7 17 15.4 25.1 20.1 29.3 22.7 31 31.1 
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Table 23: Standard deviation comparison, Stellenbosch 

Forecast 
horizon 
(days) 

Clear Sky 0%<𝑻𝑪𝑪 ≤25% 25%<𝑻𝑪𝑪 ≤50% 50%<𝑻𝑪𝑪 ≤75% 
75%<𝑻𝑪𝑪 
≤100% 

 raw GMOS raw GMOS raw GMOS raw GMOS raw GMOS 

One  19.5 
10.8 21.6 14.7 20.3 15.1 27.6 21.4 38.7 27.3 

Two 
19.3 11.6 23.4 12.9 25.8 15.4 31.5 26.1 42.9 33.0 

Three 
16.9 12.1 21 13.2 23.1 17.5 27.1 22.4 38.7 24.2 

Four 
18.8 9.2 22.5 17.5 26 22.2 29.3 23.0 37.5 30.5 

Five 
18.1 13.1 14.8 17.5 19.9 10.5 30.5 18.7 31.3 23.7 

Six 
24.6 14.5 24.6 15.9 29.4 18.4 29.9 26.9 36.7 34.2 

Seven 
26.0 15.8 19.8 18.3 14.7 20.8 28.5 21.4 32.3 22.3 

Eight 
25.0 15.9 23 16.8 23.9 22.7 34.1 30.1 31.9 24.0 

Nine 
23.6 15.3 21.2 18.4 19.4 23.3 28.2 23.2 25.6 28.6 

 

The average forecast error improvement across all sites is given in Figure 23. The 

figure contains values based on the average difference between the raw 𝐺𝐻𝐼 and the 

GMOS forecast for the full forecast horizon, including the condition of the sky (the 

value of 𝑇𝐶𝐶).  

 

Figure 23: Standard deviation improvement (GMOS) 
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Significant forecast improvements were achieved with clear sky conditions, but 

decreasing in performance as the sky is covered with more clouds. It is however 

interesting to note the somewhat-out-of-trend error improvement of the 50 % < 𝑇𝐶𝐶 ≤

75 %, which may require further investigation in future work. Table 24 contains the 

average forecast performance of the four locations combined. 

 

Table 24: Standard deviation comparison, an average of all sites 

Forecast 
horizon 
(days) 

Clear Sky 0%<𝑻𝑪𝑪 ≤25% 25%<𝑻𝑪𝑪 ≤50% 50%<𝑻𝑪𝑪 ≤75% 
75%<𝑻𝑪𝑪 
≤100% 

 raw GMOS raw GMOS raw GMOS raw GMOS raw GMOS 

One  18.8 
8.8 21.1 14.8 24.2 16.3 27.9 21.0 32.8 24.5 

Two 
19.6 9.0 23.4 16.3 26.8 17.8 32.0 24.8 36.5 27.0 

Three 
16.1 10.7 19.9 12.9 24.3 17.9 28.4 21.0 32.8 25.0 

Four 
18.3 9.7 24.9 16.6 27.0 20.3 31.4 22.4 34.7 28.8 

Five 
17.9 11.4 20.8 15.6 23.4 15.4 31.0 22.0 32.7 23.0 

Six 
22.7 12.0 25.5 16.6 28.5 20.1 31.3 24.3 33.8 29.3 

Seven 
25.2 13.0 20.2 15.2 19.2 17.1 28.7 21.1 31.0 25.8 

Eight 
24.9 13.8 23.1 16.1 26.5 18.6 31.9 25.1 33.2 26.4 

Nine 
21.5 14.6 21.1 15.7 24.0 18.7 29.2 23.4 30.4 30.4 

 

 

Throughout Tables 20 to 23 it is evident that the 𝐺𝐻𝐼 forecast accuracy deteriorates 

gradually with an increase in 𝑇𝐶𝐶. This is probably due to the increasing difficulty of 

forecasting 𝐺𝐻𝐼 accurately due to the accumulation of clouds [82]. No significant error 

increment trend when observing the forecast horizon was found in this study. On 

average, the coastal location of Port Elizabeth (Table 22) is seen to have the best 

clear sky raw 𝐺𝐻𝐼 as well as GMOS forecast performance. As the same method of 

analysis and compensation was applied to all four locations, the higher forecast errors 

at the remaining three locations can only be explained by some deficiency or 

characteristic behaviour of the ECMWF source model forecast used by Meteomatics 

AG.  
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The mean forecast performance standard deviation error of the raw 𝐺𝐻𝐼, forecast bias 

corrected 𝐺𝐻𝐼 and GMOS 𝐺𝐻𝐼 model for the combination of the four sites across the 

whole forecast horizon is as follows: 

• Clear sky:    20.6 %,  15.9 %,  11.4 % 

• 0% < 𝑻𝑪𝑪 ≤ 25 %: 22.2 %,  18.1 %,  15.5 %  

• 25% < 𝑻𝑪𝑪 ≤ 50 %:    24.9 %,  22.3 %,  18.0 % 

• 50% < 𝑻𝑪𝑪 ≤ 75 %:  30.2 %,  25.3 %,  22.8 % 

• 75% < 𝑻𝑪𝑪 ≤ 100 %:            33.1 %,  27.5 %, 26.7 % 
 

Values were interpolated from sections which had just four 𝑇𝐶𝐶 categories to create 

five comparable values between the raw forecast and each of the two methods of 

improvement detailed in this chapter, namely the Forecast Bias correction as well as 

the GMOS model implementation. 

These mean forecast performance standard deviation error values subsequently 

confirm the expected increasing error trend with the increase in cloud cover [82]. An 

overall (all cloud conditions and all forecast horizon over all four locations) mean 

forecast performance standard deviation error improvement of 4.4 % is observed after 

the forecast bias correction function was applied to the raw Meteomatics AG t-

distribution data and a 7.3 % standard deviation error improvement with the application 

of the GMOS model to the raw Meteomatics AG t-distribution data. 

The solar car team from Tshwane University of Technology (TUT) participated in the 

SSC2018 with a car by the name of Sun Chaser III. The team had developed an 

energy simulation platform to assist the energy manager in making informed decisions 

in regard to the speed and distance they could travel each day. This was based on the 

dynamics of the car, the route to be driven, the weather conditions and other 

characteristics such as remaining stored battery energy. In 2018, these 𝑆𝑜𝐶 

simulations did not yet make use of the GMOS model described here. The authors 

[83] showed simulated 𝑆𝑜𝐶 results compared to recorded data during the SSC2018 

for Sun Chaser III. Figures 24 to 26 show how the GMOS model could have improved 

the 𝐺𝐻𝐼 forecast accuracy for the same data and how this relates to an improvement 

in the predicted 𝑆𝑜𝐶 for this solar car. The authors referred to three specific days (Day 

one, six and eight) in the SSC2018 where factors of weather parameters and driving 
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speed negatively influencing the 𝑆𝑜𝐶 were minimal, leaving the 𝐺𝐻𝐼 prediction 

accuracy to be one of the significant contributors to the remaining 𝑆𝑜𝐶 errors observed 

on these days. Table 25 provides a summary of the three days mentioned. 

 

Table 25: SSC2018, SCIII results (Day 1,6,8) 

SSC2018 
Day 

 
Date 

Origin and destination 
Distance 

travelled (km) 
Nearest ground 

stations 

One 

 

22/09/2018 

Pretoria to Kroonstad via 

Sasolburg 
493 

Pretoria and 

Bloemfontein 

Six 

 

27/09/2018 

Port Elizabeth to Sedgefield 

via Kareedouw 
371 

Port Elizabeth 

and Stellenbosch 

Eight 

 

29/09/2018 

Swellendam to Stellenbosch 

via Bredasdorp 
403 

Port Elizabeth 

and Stellenbosch 

 

 

 

Figure 24: SSC2018 Day 1, 𝑺𝒐𝑪 comparison (GMOS) 
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These figures, Figures 24 to 26, also contain the GMOS 𝐺𝐻𝐼 one standard deviation 

(one-sigma) upper and lower bounds (confidence intervals). These confidence 

Figure 26: SSC2018 Day 8, 𝑺𝒐𝑪 comparison (GMOS) 

Figure 25: SSC2018 Day 6, 𝑺𝒐𝑪 comparison (GMOS) 
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intervals are based on compounding forecast errors of the maximum expected GMOS 

𝐺𝐻𝐼 standard deviation errors. 𝑆𝑜𝐶 forecast improvements are observed on all days; 

the first two days the GMOS 𝐺𝐻𝐼 model followed suit and yet still over predicted; 

however, with fewer errors than the original prediction. On the last day (Day 8, Figure 

26), the original model under-predicted where the GMOS model yet again over-

predicted, however, with less absolute error. Table 26 records the GMOS performance 

results for the three days of the Sasol Solar Challenge 2018. It contains the actual, 

raw 𝐺𝐻𝐼 predicted as well as GMOS based 𝑆𝑜𝐶 final values. In addition, the 𝑅𝑀𝑆𝐸 for 

the 𝑆𝑜𝐶 is recorded here, too. 

 

Table 26: GMOS performance results 

SSC2018 
Day 

𝑺𝒐𝑪 𝑹𝑴𝑺𝑬: 

raw 𝑮𝑯𝑰 

𝑺𝒐𝑪 𝑹𝑴𝑺𝑬: 

GMOS 𝑮𝑯𝑰 
Final 𝑺𝒐𝑪: 

Actual 

Final 𝑺𝒐𝑪: 

raw 𝑮𝑯𝑰 

Final 𝑺𝒐𝑪: 

GMOS 𝑮𝑯𝑰 

One  
1.62 1.40 51.04 58.06 56.51 

Six 
1.02 0.75 45.22 53.85 49.21 

Eight 
2.01 1.16 10.10 6.18 13.31 

 

The mean 𝑆𝑜𝐶 𝑅𝑀𝑆𝐸 of the initially predicted 𝐺𝐻𝐼 forecast is 1.55 %, in contrast with 

the improved GMOS 𝑆𝑜𝐶 𝑅𝑀𝑆𝐸 at a reduced 1.10 %. Considering the final 𝑆𝑜𝐶 of 

each day, the GMOS 𝐺𝐻𝐼 model had the most significant impact on Day 6 (4 % 𝑆𝑜𝐶 

closer to the actual 𝑆𝑜𝐶) and the smallest impact (1 % 𝑆𝑜𝐶 closer to the actual 𝑆𝑜𝐶) 

on Day 8. The reason for this is that Day 6 had the lowest wind and other weather 

variable errors [83] on the day leaving the 𝐺𝐻𝐼 accuracy to have a significant impact 

on the 𝑆𝑜𝐶. Day 8, however, had significant wind forecast errors (nearly double those 

of Day 6) which resulted in the effectiveness of the improved 𝐺𝐻𝐼 accuracy to be less 

prominent on the 𝑆𝑜𝐶 for that day. In addition to the 𝑆𝑜𝐶 improvements, the energy 

simulation user is now also able to visualise the amount of statistical risk involved in a 

simulation, aiding in critical decision making regarding the energy of the vehicle. 

 

Experimental conclusion 

It is essential to mention the effectiveness of the interpolation between the MOS 

models (Equation (26), for all four locations), which gave birth to the GMOS model 
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(Equation (27)). Each of the three days evaluated in the previous section was re-

simulated with a MOS model of the nearest ground measurement location to the 

vehicle’s rear, as well as with a MOS model of the nearest ground measurement 

location to the front of the car. This was done in order to quantify the performance 

effect it would have on the 𝑆𝑜𝐶 in comparison (Table 27) to the interpolated GMOS 

model’s performance.  

 

Table 27: GMOS vs MOS performance results 

SSC2018 
Day 

𝑺𝒐𝑪 
𝑹𝑴𝑺𝑬: 

MOS 𝑮𝑯𝑰 
(rear 

location) 

𝑺𝒐𝑪 

𝑹𝑴𝑺𝑬: 

MOS 𝑮𝑯𝑰 
(front 

location) 

𝑺𝒐𝑪 

𝑹𝑴𝑺𝑬: 
GMOS 

𝑮𝑯𝑰 

Final 
𝑺𝒐𝑪: 

Actual 

Final 𝑺𝒐𝑪: 

MOS 𝑮𝑯𝑰 
(rear 

location) 

Final 𝑺𝒐𝑪: 

MOS 𝑮𝑯𝑰 
(front 

location) 

Final 
𝑺𝒐𝑪: 

GMOS 
𝑮𝑯𝑰 

One 
1.49 1.52 1.40 51.04 57.11 57.68 56.51 

Six 
0.88 0.87 0.75 45.22 51.01 49.82 49.21 

Eight 
1.32 1.06 1.16 10.10 13.93 12.89 13.31 

 

The GMOS model is a function of linear interpolation between the locations of two 

ground measurements (two MOS models) based on the current GPS location. The 

corresponding two MOS models are, however, conditional statistical models based on 

the cloud conditions as well as the forecast horizon and most importantly the time of 

day. Therefore, it is not trivial to expect a visible linear relationship in the performance 

results of the rear and front MOS models compared to their GMOS model. It is evident 

throughout Table 27 that the GMOS does produce improved outcomes; however small 

the improvement might be. There is one exception, on Day 8, where the front location 

MOS model outperformed the GMOS model by 0.42 % 𝑆𝑜𝐶 error. Furthermore, on 

every account, the individual MOS models still outperformed the raw 𝐺𝐻𝐼 predicted 

𝑆𝑜𝐶 error. 

The GMOS method to improve the 𝐺𝐻𝐼 component was only realised after the Sasol 

Solar Challenge 2018, which meant that it had not yet been implemented in the 

simulation results following in the optimisation chapter. However, the forecast bias 

compensated 𝐺𝐻𝐼 model was used in the optimisation implementation.  
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V. OPTIMISATION 

The earlier chapters explained how a comprehensive mathematical model of a solar 

car can be created which includes locally refined and useful weather forecasts of the 

most essential weather components. This chapter shows how the model developed in 

previous chapters (part analytical and part numerical) is used by optimisation 

structures to minimise energy usage while maximising distance travelled by a solar 

car. These optimisation methods are specifically focussed and used in the context of 

a Sasol Solar Challenge event in South Africa. 

Optimisation is a subfield of mathematics; the first known optimisation technique was 

formalised by Guass in the eighteen-hundreds. This gradient-based method was 

known as the Steepest Descent method. For centuries, significant optimisation 

problems were mainly treated using heuristic approaches as a result of computational 

limitations and a lack of other suitable methods. Today optimisation techniques are 

integrated into our daily lives. Optimisation is regularly applied to areas such as 

finance, economics, risk assessment, prediction of natural disasters, weather 

forecasting, avionics, communication networks and medical applications. With the 

refinement of optimisation methods and the advancement of computing power, we can 

solve many complex and unimaginably large optimisation problems with a fair amount 

of ease. Optimisation or mathematical programming is widely studied, researched and 

applied by scientists, engineers and a variety of other professionals in our modern 

technological society.  

A particular case of mathematical optimisation is known as multi-level optimisation. 

This refers to the situation where optimisation functions are nested within another, 

operating in parallel or chronological succession. Multi-level optimisation strategies 

are not limited in their number of levels; however, it is common to find two levels 

producing satisfactory results in a variety of application cases.  This strategy is called 

bi-level optimisation. Typically, these problems can be divided into two sets, the upper 

level (or leader) and the lower level (or follower). Both of these levels have their 

objective functions, constraints and variables.  

These problems follow a hierarchical structure. The upper level contains the value of 

the shared variable optimising the argument of the lower-level function. The upper 

level includes variables from both levels while the lower level contains just the 
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variables from the lower level and treats all other variables as known constants. In 

other words, the lower-level problem is a parametric optimisation problem that is 

solved for the lower-level decision vectors. In contrast, the decision vectors in the 

upper-level set act as parameters. The lower-level problem set is a constraint on the 

upper-level problem set in the following way: only the lower-level optimal solutions that 

satisfy the upper-level constraints are considered feasible. 

The general nested form of the bi-level optimisation problem is given by Equation (29). 

 

Minimise:                               𝑓1(𝑦, 𝑧∗)                  (29) 

subject to:                                  𝑏1(𝑦, 𝑧∗) = 0 

                       𝑏𝑖(𝑦, 𝑧∗) ≤ 0 

                              𝑧∗ ∈  𝑎𝑟𝑔𝑚𝑖𝑛{ 𝑓2(𝑦, 𝑧) 

subject to:                           𝑐1(𝑦, 𝑧) = 0 

                                                                  𝑐𝑗(𝑦, 𝑧) ≤ 0 } 

 

where  𝑖 ∈ {1,2,3, … , 𝐼}  and 𝑗 ∈ {1,2,3, … , 𝐽} and 𝑏𝑖 represents the upper-level (leader) 

constraints and 𝑐𝑗 represents the lower-level (follower) constraints. Furthermore, 𝑦 ∈

ℝ𝑛𝑦 for the upper-level variables and 𝑧 ∈ ℝ𝑛𝑧 for the lower-level variables. 

It is evident that a hierarchical structure is followed as the optimal value of the lower-

level problem is included in the constraints of the upper-level problem. The lower level 

treats the variables of the upper level as fixed. It is also important to define the general 

constraint region for a bi-level problem for the points, which would satisfy both levels’ 

constraints: 

  𝛺 =  {(𝑦, 𝑧) 𝜖 ℝ𝑛𝑦.𝑛𝑧 ∶ 𝑏1(𝑦, 𝑧) = 0, … , 𝑏𝑖(𝑦, 𝑧) ≤ 0,  𝑐1(𝑦, 𝑧) = 0, … , 𝑐𝑗(𝑦, 𝑧) ≤ 0}     (30) 

More practically, we would like to define the feasible upper-level region by projecting 

the constraint region just on ℝ𝑛𝑦. This is the set of upper-variables which renders the 

lower-level problem feasible: 

𝛺(𝑌)  =  {𝑦 ∈ ℝ𝑛𝑦 ∶  ∃𝑧 ∶ (𝑦, 𝑧) ∈ 𝛺}              (31) 
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The lower-level feasible region for 𝑦 is fixed by considering the upper-level variable 

as a parameter: 

𝛺(𝑦)  =  {𝑦 ∈ ℝ𝑛𝑧 ∶  𝑐1(𝑦, 𝑧) = 0, 𝑐𝑗(𝑦, 𝑧) ≤ 0}           (32) 

 

A set of optimal solutions exist for fixed feasible values of 𝑦, and this set is called the 

rational reaction set: 

          𝛱(𝑦)  =  {𝑧∗ ∈ ℝ𝑛𝑧 ∶  𝑧∗ ∈  𝑎𝑟𝑔𝑚𝑖𝑛( 𝑓2(𝑦, 𝑧) ∶  𝑧∗ ∈ 𝛺(𝑦))}             (33) 

Lastly, the induced region or feasible region of the bi-level problem is defined as the 

set of feasible upper-level variables of 𝑦 which corresponds to the lower-level optimal 

solutions as given by the set of 𝛱(𝑦): 

 

𝐼 =  {(𝑦, 𝑧) 𝜖 ℝ𝑛𝑦.𝑛𝑧 ∶ 𝑦 ∈ 𝛺(𝑌), 𝑧 ∈ 𝛱(𝑦)}           (34) 

 

Furthermore, as multiple solutions to the lower-level problem might exist, the bi-level 

problem in Equation (29) is under-defined. There are generally two approaches to 

remedy this: the pessimistic and optimistic solutions, with the optimistic solution being 

most commonly implemented. In the presence of multiple lower-level optimal 

solutions, the leader expects the follower to choose that solution from the optimal set 

𝛱(𝑦), which leads to the best objective function value at the upper-level. On the other 

hand, in a pessimistic approach (in the presence of multiple lower-level optimal 

solutions), the leader optimises for the worst case where it assumes that the follower 

may choose that solution from the optimal set which leads to the worst objective 

function value at the upper level for  𝑧∗ ∈ 𝛱(𝑦). As the optimistic approach is more 

tractable as compared to the pessimistic approach and information can be shared 

between the two levels (some cooperation is possible); this study will focus on the 

optimistic solution.  

This chapter explains the use of various optimisation methods through a multi-level 

approach to effectively find the optimal driving speed profile (minimise energy usage) 

of the vehicle as well as the optimal (maximise distance) number of loop road sections 

to be driven daily during a Sasol Solar Challenge event. The problem formulation 

makes specific reference to the characteristics and constraints typically found/seen 
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during such an event. However, with some modifications, the method can easily be 

used in a broader application area. 

Essentially, two fundamental quantities have to be optimised. The first quantity is the 

optimal speed profile (integer or fraction values) for each of the days of the SSC, which 

minimises energy usage while adhering to typical constraints: 

• Maximum and minimum 𝑆𝑜𝐶 

• Maximum and minimum speed 

• Maximum and minimum driving time per day 

• Maximum and minimum instantaneous motor power demand 

 

The second quantity is the optimal number of loop road sections (integer values only) 

to be driven daily during a SSC event to maximise the distance travelled while adhering 

to typical constraints: 

• A full loop road section must be travelled, no fractions allowed 

• Maximum loop road section quantities will be enforced for each day based on 

historical information 

• Maximum and minimum 𝑆𝑜𝐶 values per day 

 

The process by which these two quantities may be optimised can be described by a 

bi-level problem function and solved with appropriate solvers. Solvers are root-finding 

algorithms or mathematical software which aid in the computation of numerical 

mathematical problems. 

 

UPPER-LEVEL: PROBLEM FORMULATION 

The allowed driving time (𝐴𝐷𝑇𝑑𝑎𝑦) that the vehicle is allowed to drive for a specific day 

(which may be regulated by an event rule or, by the user’s needs) is found by 

subtracting the trip start time from the trip end time for any particular day. Despite the 

teams not being obliged to have a minimum driving time during an event such as the 

SSC, in this work, we assumed that the car would always be in motion except for the 
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control stops. The real driving time (𝑅𝐷𝑇𝑑𝑎𝑦) is the sum of each actual distance 

travelled for each interval divided by the optimal speed for each interval, on any 

specific day. The basic structure of the speed profile optimisation problem (the upper-

level problem) is given by the objective function in Equation (35) followed by its 

succeeding constraints. The first five rows of Table 28 report the acceptable range for 

each of the constraint variables governing the objective function of Equation (35). 

 

Maximise:                                       𝑓𝑢(𝑣𝑘, 𝑥, Ψ∗, 𝛽∗)                                               (35) 

subject to:                             𝛽∗(𝑚𝑖𝑛) ≤ 𝛽∗ ≤ 𝛽∗(𝑚𝑎𝑥) 

    𝛾𝑚𝑖𝑛 ≤  𝛾 ≤ 𝛾𝑚𝑎𝑥 

    𝜎𝑚𝑖𝑛 ≤  𝜎 ≤ 𝜎𝑚𝑎𝑥 

                𝜏𝑚𝑖𝑛 ≤  𝜏 ≤ 𝜏𝑚𝑎𝑥  

                                                 

Consider in Chapter II that: 𝛼𝑑𝑎𝑦(𝑥+1) is the minimum expected 𝑆𝑜𝐶 at the start of each 

day, which is the final State of Charge (𝑆𝑜𝐶𝑑𝑎𝑦(𝑥)) at the end of the previous day.  

The control or decision variable is 𝑣𝑘, which is the speed of the vehicle at each discrete 

period 𝑘. The objective function (𝐸{𝑆𝑜𝐶𝑑𝑎𝑦(𝑥)}) is described by 𝑓𝑢, and the nature of 

this objective function is a single variable (maximising only the expected 𝑆𝑜𝐶 of the 

battery). However, the output or controlled variable is a vector which contains a single 

optimal speed for each 1 km route section. Ψ∗ is the optimal loop section for each day 

and is considered a variable for the lower-level optimisation until the optimal value of 

the lower-level objective function has been found. Once it has been found,  the upper-

level optimisation problem can now regard the value of Ψ∗ as a constant which forms 

part of the upper-level objective function. The energy remaining in the battery pack at 

the end of each day (𝑆𝑜𝐶𝑑𝑎𝑦(𝑥)), described by constraint β*, will ensure that the vehicle 

has the required amount of energy available at the start of each day (that is, 𝛼𝑑𝑎𝑦(𝑥+1)) 

to finish the entire route without depleting the battery pack during any single day while 

maximising distance travelled. This constraint will also ensure that the battery pack 

cannot be charged to exceed its maximum rating (of not more than 100 %), nor 

discharged to below 5 %, as this is a critical safety risk. These variables are found as 
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a by-product of the lower-level optimisation computation and become part of the 

constraints of the upper-level problem. 

The real driving time (𝑅𝐷𝑇𝑑𝑎𝑦) described by constraint 𝛾, introduces a short grace 

period that has been added to the time constraint to convert what would have been an 

equality constraint, to an inequality constraint. It was observed that with this specific 

optimisation problem, the computation time decreased by using just the inequality 

constraints. 𝜎 Is the constraint for the nominal motor power required (𝑃𝑙𝑜𝑠𝑠), and, in 

most cases, these motors can operate at well over double their rating, provided that 

they are kept below a specific temperature. To ensure that the motor is sufficiently air-

cooled as well as maintaining a minimum safe driving speed (𝑣𝑘), a driving speed 

constraint is described by 𝜏. 

 

Table 28: Acceptable range for constraint variables 

Symbol Minimum Maximum Units 

Upper-level 

β* 𝛼𝑑𝑎𝑦(𝑥+1) 
NB 100 % 

𝚿∗ 0      𝜑𝑚𝑎𝑥   NB - 

𝜸 𝐴𝐷𝑇𝑑𝑎𝑦 − 300 𝐴𝐷𝑇𝑑𝑎𝑦 + 300 s 

𝝈 -5000 5000 W 

𝝉 11.11 33.33 m/s 

Lower-level 

β 𝛼𝑑𝑎𝑦(𝑥+1) 100 % 

𝚿 0 𝜑𝑚𝑎𝑥 - 

Ω 5 100 % 

NBThese values are determined by the lower-level optimisation routine 

 

LOWER-LEVEL: PROBLEM FORMULATION 

The primary function of the lower-level optimisation is to estimate informed starting 

points for the number of extra loop roads to be covered every day. As part of the 

computation needed to find the optimal number of loops, the values for 𝛼𝑑𝑎𝑦(2) to 

𝛼𝑑𝑎𝑦(8) (denoted by 𝛽) are also found, knowing that 𝛼𝑑𝑎𝑦(1) = 100 % as the teams are 

allowed to start the Sasol Solar Challenge on Day 1 with a fully charged battery. 𝐴𝑟𝑟0 
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denotes the predicted unique amount of energy used to cover each day without 

performing any loops. The predicted unique amount of energy used to cover each day 

with one loop included, is denoted by 𝐴𝑟𝑟1. By subtracting 𝐴𝑟𝑟0 from 𝐴𝑟𝑟1 it is possible 

to find the energy loss components (ε𝑑𝑎𝑦(𝑥)), which provide useful information on the 

amount of energy consumed by one loop for each day. We make use of 𝑥 (𝑥 = 1,2,…, 

𝑁) where 𝑁 is the total number of days of the Sasol Solar Challenge. 

                        ∆𝑑𝑎𝑦(𝑥)= (
∑ (𝛿𝑑𝑎𝑦(𝑥))8

𝑥=1

𝛿𝑑𝑎𝑦(𝑥)
)                         (36) 

                               e𝑑𝑎𝑦(𝑥) = (
ε𝑑𝑎𝑦(𝑥)

∑ (ε𝑑𝑎𝑦(𝑥))8
𝑥=1

)                            (37) 

 

Equations (36) and (37) provide the ratio or weight of each loop distance (∆𝑑𝑎𝑦(𝑥)) 

when compared to the sum of all the loop distances and the ratio or weight of energy 

loss for each loop (e𝑑𝑎𝑦(𝑥)) compared to the amount of the energy required for all the 

loops respectively. e𝑑𝑎𝑦(𝑥) can be considered an expected value as it depends on the 

random variable of 𝐺𝐻𝐼. Consider Equation (38) as a function that would describe the 

favourability of performing a certain number of loops on a particular day. 

 

                                        𝑓𝑙 =  
e𝑑𝑎𝑦(𝑥)∆𝑑𝑎𝑦(𝑥)

𝜑𝑑𝑎𝑦(𝑥)
                                      (38) 

 

A considerable loop distance value (𝛿𝑑𝑎𝑦(𝑥)) and a large number of loops per day 

(𝜑𝑑𝑎𝑦(𝑥)), as well as a low loop energy loss value (ε𝑑𝑎𝑦(𝑥)) tends to decrease the value 

of 𝑓𝑙. Therefore, the lower the value of 𝑓𝑙, the more favourable the loop of that specific 

day is considered to be, in terms of distance and the loop’s energy consumption. If we 

consider the number of loops for each day to be 𝜑𝑑𝑎𝑦(𝑥), then the general structure of 

the lower-level optimisation problem can be given by Equation (39). 

Minimise:                                           𝑓𝑙(𝑣𝑘, 𝑥, Ψ, 𝛽)                                             (39) 

subject to:                    Ψ𝑚𝑖𝑛 ≤  Ψ ≤  Ψ𝑚𝑎𝑥                

                                𝛽𝑚𝑖𝑛 ≤  𝛽 ≤  𝛽𝑚𝑎𝑥   
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The nature of the objective function (𝑓𝑙) is a single variable (minimising the function 𝑓𝑙) 

although the output or controlled variable is a vector, which contains the optimal 

number of additional loop sections (𝜑𝑑𝑎𝑦(𝑥)) for each of the eight days in which the 

driving should maximise the distance travelled. This vector, in turn, affects the 

objective function (𝑓𝑢) of the upper-level problem. The optimal number of loops for 

each day (𝜑𝑑𝑎𝑦(𝑥)) is represented by a constraint variable Ψ. The minimum energy 

values required at the start of each day (𝛼𝑑𝑎𝑦(𝑥+1)) is governed by 𝛽. The last rows of 

Table 28 disclose the acceptable range for each of the constraint variables governing 

the objective function of Equation (39). It is important to note that this method for loop 

quantity optimisation was not necessarily intended to achieve the highest accuracy, 

but rather for computational efficiency and to arrive at an informed starting point of 

loop quantities for the upper level to consider.  

This implies that the larger the number of loops chosen for one specific day, the less 

realistic the loop energy loss might be as the input data relies on the weather 

conditions when performing just one loop per day. If more loops were performed, then 

the weather might be different later during the day when the sun is positioned at a 

different angle. This would result in a small variation of the actual energy that would 

be used for the second, third, fourth and any more loops. The objective function of 

Equation (39) makes explicit provision for such a constraint to be imposed by the user 

through Ψ, the value of which would be chosen based on prior experience and 

historical statistics. In regard to the Sasol Solar Challenge, poorly-performing cars tend 

to do zero to one loop per day, while cars with mediocre performance may do anything 

up to three loops per day, whereas highly competitive cars (normally from international 

teams) can do anything up to nine loops per day. 

 

BI-LEVEL OPTIMISATION: PROBLEM FORMULATION 

Regarding the general form of the bi-level optimisation problem (Equation (29)) as well 

as the upper-level (Equation (35)) and lower-level (Equation (39)) structures listed, the 

following represents the nested bi-level optimisation problem, according to [84]. 
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Maximise:                                       𝑓𝑢(𝑣𝑘, 𝑥, Ψ∗, 𝛽∗)                                 (40) 

subject to:                            𝛽∗(𝑚𝑖𝑛) ≤  𝛽∗ ≤ 𝛽∗(𝑚𝑎𝑥) 

                                                         𝛾𝑚𝑖𝑛 ≤   𝛾  ≤ 𝛾𝑚𝑎𝑥 

                                                         𝜎𝑚𝑖𝑛 ≤   𝜎  ≤ 𝜎𝑚𝑎𝑥 

                                                          𝜏𝑚𝑖𝑛 ≤   𝜏  ≤ 𝜏𝑚𝑎𝑥  

                                                                           (Ψ∗, 𝛽∗) ∈  𝑎𝑟𝑔𝑚𝑖𝑛{ 𝑓
𝑙
(𝑣𝑘, 𝑥, Ψ, 𝛽) 

subject to:                               Ψ𝑚𝑖𝑛 ≤  Ψ ≤  Ψ𝑚𝑎𝑥                

                                                                       𝛽𝑚𝑖𝑛 ≤  𝛽 ≤  𝛽𝑚𝑎𝑥} 

 

SOLUTION METHODS 

 
The aim of this work was not to develop novel ways of computation, but instead, it 

sought reliable solvers capable of solving the proposed bi-level problem efficiently. 

The issue of convexity or non-convexity, one local minimum or many local minima of 

the proposed problem function [85] was not of great concern in our case. The 

constraints identified in Equation (35) and Equation (39) simplified the problem 

sufficiently to allow for a narrow optimisation space wherein the solver could 

confidently find a single optimal solution. This implies that the global optimum and the 

local optimum would essentially be the same point. Global optimisation techniques, 

such as the Differential Evolution, were not needed to solve this problem. They would 

possibly have resulted in an increase in computational time, which was unwanted in 

our case, where near real-time updates could be periodically required.  

The optimisation solver used for the upper-level problem was a gradient-based 

Sequential Quadratic Programming (SQP) method, which is well known and 

considered to be an industry preferred gradient-based method for solving non-linear 

constrained optimisation problems. At each iteration, all the constraints as well as the 

objective function are handled by successive quadratic approximations where the 

Hessian matrix provides the necessary second-order differential information. The 

Broyden-Fletcher-Goldfarb-Shanno (BFGS) method is employed to approximate the 

Hessian matrix. In turn, finite forward differences are used to approximate the objective 

function’s gradient, which supplements the BFGS method. Finally, line searches are 

used to find the solution to the approximate sub-problem. It was shown that solving bi-
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level optimisation problems are NP-hard problems [86] and that the coding of such 

problems normally involves extensive ad-hoc programming to existing solvers such as 

CPLEX from the IBM Corp as well as some built-in MATLAB® optimisation functions.   

MATLAB® employs such an SQP method for easy software integration. For this 

reason, the equation set for the SQP method is not presented  in detail as it has been 

thoroughly documented by [87]. Now, regarding the lower-level optimisation, if we 

consider eight days and limit the number of loops per day to three (based on event 

statistics of the mid-range competitors of the SSC), then the number of loop and day 

combinations or permutations to find the optimal energy usage and maximum distance 

becomes very low. By constructing a matrix of paths and costs, this data can easily be 

represented as a classical shortest path problem. For this reason, a Dynamic 

Programming (DP) approach was chosen. Because of the somewhat arbitrary nature 

of the DP method, MATLAB® does not necessarily implement DP as a standard 

function for ease of use. Therefore, the technique needs more explanation from first 

principles. Let us consider the generic structure of the finite-horizon DP method to aid 

in the interpretation of the solution algorithm. Assume a discrete-time system that is 

described by:  

𝑧𝑥+1 =  𝑓𝑥(𝑧𝑥, 𝑢𝑥 , 𝑤𝑥),          𝑓𝑜𝑟  𝑥 = 1,2, … , 𝑁 − 1                 (41) 
 

 

The horizon or, the number of times that control is applied, is denoted by 𝑁, while 𝑥 is 

the discrete-time interval between the applied control stages. 𝑧𝑥 is the current value of 

the state being optimised and 𝑢𝑥 is the decision or control variable. 𝑤𝑥 is the random 

parameter (or stochastic variable), which is commonly averaged to indicate the 

expected value of this variable. The DP method makes use of so-called optimisation 

policies. These policies can also be named feedback control laws or rules/functions. 

These feedback rules provide information on what the decision/control variable (𝑢𝑥) 

should be, given the current value of the state (𝑧𝑥). These policies (𝑢𝑥) or functions 

are described by Equation (42) and map states 𝑧𝑥 into controls 𝑢𝑥= 𝑢𝑥 (𝑧𝑥). 

 

               𝑢𝑥 =  𝜇𝑥(𝑧𝑥),        𝑓𝑜𝑟  𝑥 = 1, . . . , 𝑁 − 1                        (42) 

 

In this manner, the decision variables are chosen and adapted based on what has 

happened in the past (this is an example of feedback laws in operation) by optimising 
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these sequences of policies or functions:  𝜋 =  {µ0, µ1, … , µ𝑁−1}. A generic cost 

function of these policies is shown by:  

 

   𝐽𝜋(𝑧0) = 𝐸{𝑔𝑁(𝑧𝑁) +  ∑ 𝑔𝑥(𝑧𝑥, 𝑢𝑥, 𝑤𝑥)𝑁−1
𝑥=0 }                                 (43) 

 

Here, 𝑔𝑥 is the cost incurred, 𝑔𝑁 is the cost at the terminal state, and 𝑧𝑁 is the value 

of the final (terminal) state. In some cases, the cost at the terminal state is not unique 

and may be made zero. The terminal cost will then be calculated as part of the 

summation term (second term) in Equation (43). The DP now aims to compute the 

optimal cost function at state zero by minimising all the policies as shown by: 

 
                                     𝐽∗(𝑧0) =  𝐽𝜋(𝑧0)𝜋  

𝑚𝑖𝑛                 (44) 

                                          𝐽𝜋∗(𝑧0) = 𝐽∗(𝑧0)                  (45) 

 

Furthermore, because we are dealing with functions, typically, an optimal policy 𝜋∗ 

exists, which satisfies Equation (45) for all the values of the zero state 𝑧0 while still 

being independent of this initial state. This phenomenon of the existence of optimal 

policy is a consequence of the DP algorithm. In 1957, Richard Bellman [88] explained 

the principle of optimality, which states that an optimal policy has the property that 

whatever the initial state and initial decision is, the remaining decisions must constitute 

an optimal policy concerning the state resulting from the first decision. In other words, 

the tail policy is optimal for the sub-problems of the entire tail. The DP, in turn, solves 

all the tail sub-problems in a given time length, using the solution of the tail sub-

problem of a shorter time length. This results in solving the problem from the tail side 

to the front and is called ‘backward induction’. Initially, we start one step from the end 

(𝑁 − 1) and solve that specific tail sub-problem, and, as a result, the third last step 

(𝑁 − 2) is now simplified based on the knowledge of the second final step, and soon 

this too can easily be solved. This process is repeated until the initial state is reached.  

To use the DP method in MATLAB®, we would need to re-write the generic structure 

of the lower-level problem previously defined by Equation (39) to arrive at a suitable 

DP algorithm, which we would be able to implement pragmatically in code: 

Let 𝐽𝑥(𝑧𝑥) be the optimal cost of the tail problem starting at 𝑧𝑥 with initial condition 

𝐽𝑁(𝑧𝑁) =  𝐺𝑁(𝑧𝑁) beginning at the last state tail sub-problem.  
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From here we move backwards, starting at the end, such that 𝑥 =  𝑁 − 1, … ,0 by 

making use of: 

 

   𝐽𝑥(𝑧𝑥) =    {𝑔𝑥(𝑧𝑥 , 𝑢𝑥, 𝑤𝑥) + 𝐽𝑥+1(𝑓𝑥(𝑧𝑥, 𝑢𝑥, 𝑤𝑥))}𝑤𝑥
  𝐸 

𝑢𝑥∈𝑈𝑥(𝑧𝑥) 
min                     (46) 

 

where 𝑈𝑥 is the set of constraints as stipulated in Equation (39) and 𝑤𝑥 is the random 

variable (𝑒𝑑𝑎𝑦(𝑥)) of the discrete-time system in Equation (39). 𝑔𝑥 is the cost of the 

terminal state and 𝑓𝑥 is some cost function. 

Solve all the tail sub-problems (all the values of 𝐽𝑥) at time 𝑥 by minimising the sum of 

the 𝑥𝑡ℎ  stage cost and the cost of the next tail problem starting from the next state at 

time 𝑥 +  1.  

When the last step is generated, 𝐽0(𝑧0), this will be equal to the optimal cost 𝐽∗(𝑧0) as 

well as the optimal policy 𝜋 ∗ =  {µ0
∗, µ1

∗, … , µ𝑁−1
∗} where µ𝑘

∗(𝑧𝑥) minimises the right-

hand side of the 𝐽𝑥(𝑧𝑥) at each 𝑧𝑥 and 𝑥. 

Now we are ready to apply the lower-level optimisation problem formulation in this 

thesis to the DP algorithm as described above. The discrete-time system will be given 

by Equation (47) with 𝑁 representing the number of days (𝑁 =  8 in the context of the 

SSC2018): 

              𝑧𝑥+1 =  𝑧𝑥 + 𝑢𝑥𝛿𝑑𝑎𝑦(𝑥),   𝑓𝑜𝑟  𝑥 = 1,2, … , 𝑁                (47) 

 
In Equation (47), 𝑧𝑁 is the total number of kilometres travelled as a result of the sum 

of loop sections of each day. It is important to note that this distance does not include 

the mandatory driving distances for each day. 𝑢𝑥 is the decision or control variable, 

which is the optimal number of loops to travel each day while adhering to the constraint 

set (𝑈𝑥), as seen in Equation (39). Furthermore, 𝑢𝑥 is also a function of the random 

variable (expected value) of  𝑒𝑑𝑎𝑦(𝑥), resulting in Equation (47) being rewritten as 

𝑧𝑥+1 =  𝐸{𝑧𝑥 +  𝑢𝑥𝛿𝑑𝑎𝑦(𝑥)|e𝑑𝑎𝑦(𝑥)}. The cost function is simplified as the terminal state 

does not have any unique cost requirements, but rather, it is treated in a similar 

manner to the rest of the series of states. This means that the first term in 𝐽𝑥(𝑧𝑥) falls 

away. The cost function can now be given by:   

  𝐽𝑥(𝑧𝑥) =     { 𝐽𝑥+1 (𝑓𝑥(𝑧𝑥, φ𝑑𝑎𝑦(𝑥), e𝑑𝑎𝑦(𝑥)))} e𝑑𝑎𝑦(𝑥)
  𝐸      

𝑢𝑥∈𝑈𝑥(𝑧𝑥)
min                       (48) 
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Here, 𝑓𝑥 refers to Equation (39) and 𝐽𝑥+1 is the cost of the next state based on the 

current state. 𝜑𝑑𝑎𝑦(𝑥) is the decision or control variable (number of loops per day) and 

𝑒𝑑𝑎𝑦(𝑥) is the expected value of the random variable. By minimising 𝐽𝑥(𝑧𝑥) over the 

horizon of 𝑁, we can find the optimal number of loops for each day ((𝜑𝑑𝑎𝑦(𝑥)), 

represented by the constraint Ψ(𝑥) in Equation (39)) based on the expected energy to 

be consumed during each loop on each day and the importance of the loop distance 

(favourability of loop) of each day. Another secondary result of the minimisation will be 

the minimum amount of energy needed at the start of each day (𝛼𝑑𝑎𝑦(𝑥), represented 

by the constraint 𝛽(𝑥) in Equation (39)); this information is essential to the upper-level 

and energy manager and serves as validation of the results of the daily number of 

loops. Finally, the outcome of the DP optimisation is to select the optimal number and 

combination of loops that use the least energy and yield the most significant distance. 

In this manner, we can maximise the distance travelled indirectly. This optimal 

information then provides information to the objective function of the upper-level’s 

optimisation objective function as well as its constraint set. 

By providing the necessary input data from the various sensors, solar car telemetry, 

and API based weather forecast, these algorithms in combination are able to predict 

the optimal speed profile for any day of the SSC for any solar vehicle in high resolution. 

Furthermore, the target loop quantities found (from the lower-level optimisation results) 

will be used to re-construct the route input data used by the upper-level optimisation 

structure for all eight days to verify the validity and feasibility of the loop quantities 

proposed. The progress of each day can now be calculated and re-calculated in high 

resolution. 

 

IMPLEMENTATION 

The implementation was approached with IoT and 4IR in mind. The implemented 

system is connected to various external sensors, inputs and Cloud-Based data 

sources and was developed to be flexible to make future improvements/modifications 

possible. 
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This bi-level optimisation is applied to a mobile context (on-the-road use) where just 

limited hardware and internet connectivity is available. The interface used by the 

energy manager is in the form of a User Interface (UI). This UI makes it possible for 

the user to effortlessly interact with the complex mathematical functions and data 

matrices, which through bi-level optimisation are able to generate the required 

optimised profiles required.  

This section explains the code workflow, which makes the mathematical energy model 

and bi-level optimisation useful for the solar car team.  

Annexure A contains a summary of the main variables/parameters used by the UI. The 

lengthy pages of physical code are not included. Instead, sequential bullet form coding 

workflow are supported by flow diagrams for ease of interpretation. All the code was 

developed in a MATLAB® environment. 

The UI consists of one primary interface and three function scripts. The code workflow, 

as well as flow charts of each section, are presented in this section. 

 

Primary script 

1. Main UI 

1.1  Part I (Pre-processing and preparing for upper-level optimisation) 

• Calls lower-level optimisation function 

1.2  Part II (Pre-processing operations) 

• Calls weather API function 

• Calls upper-level optimisation function 

1.3  Part III (Post-optimisation operations) 

 

Function scripts 

2. Upper-level optimisation script (contains an objective function, calculations and 

constraint information) 

3. Lower-level optimisation script (contains an objective function, calculations and 

constraint information) 
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4. Weather forecast API (requests weather forecasts from Meteomatics AG) 

 

Methods of skilled programming have been employed throughout the coding process 

to ensure efficient execution of code, which included vectorisation, size and dimension 

pre-allocation of all variables, using of vectors and matrices where possible, making 

use of functions and minimising the use of global variables. 

 

Main UI  

1.1 Part I (Pre-processing and preparing for upper-level optimisation) 

The first part of the pre-processing operations is responsible for gathering the required 

information from the lower level which the upper level might need, and vice versa. This 

part of the programme is run just once per day. Before the bi-level optimisation can be 

solved, the lower level requires some information from the upper level to be able to 

optimise its own objective function (maximise distance). This, in turn, allows the upper 

level to finally optimise its objective function (minimise energy usage). Here a modified 

version of the upper-level optimisation is called, after which the lower-level 

optimisation function is called and executed. 

 

1.2 Part II (Pre-processing operations) 

The second part of the pre-processing operations is to gather the data required for the 

mathematical model, get additional energy manager inputs, read stored variables, 

request and import weather forecasts, construct route data matrices and finally, call 

the optimisation solver. This part is run every time the user requests an update. This 

might be several times per hour or as required. The program flow is given in bullet 

point form below: 

• The user chooses to do a calculation for the full-time horizon (all remaining days of 

the challenge) or only for a specific day/s 

• All the mathematical model parameters are shown, and the user can modify if 

desired (Annexure A). Additional variables that can be modified here: 

o Optimisation resolution (default 1 km) 
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o Start and finish times for a specific day (default 8:00 to 17:00) 

o Mandatory control stops (default 30 minutes) 

o Amount of loops for each day (default as recommended by the lower-level 

optimiser) 

o Minimum and maximum speed (default national motorway limits) 

• Import live GPS and date/time information 

o This is requested from a mobile weather station 

• Import live 𝑆𝑜𝐶 as reported by the solar car wireless telemetry system (only used 

when doing on-route calculations for increased accuracy, not applicable when doing 

initial calculations before departure) 

• Load pre-saved route data of planned route such as distance, elevation, GPS 

locations, and bearing, all according to the resolution specified (Annexure A). 

• Request weather forecast API for all GPS locations of the desired route 

• Use the number of loops for each day to construct matrices of the complete route  

o All matrices have to be the same dimensions for computational consistency 

• Calculate air density with the coefficients method [46] by making use of the 

forecasted air temperature, dew point temperature and air pressure. 

o Also, consider the loops of each day and construct the air density matrix with 

the same dimensions as before 

• Calculate the current location on the route 

o This data is used for knowing what sections of the route have already been 

passed 

o Trim (delete) all route data matrices to have the first value in all matrices 

correspond to the current location and time, and the last values in the matrix 

correspond to the terminus location and estimated time on the route. If the 

current location is found to be zero (not yet departed), no modifications are 

made to route data matrices 
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• Apply efficiency constant and forecast bias correction functions to 𝐺𝐻𝐼 data matrix 

for improved accuracy; the GMOS function (as explained in the last part of Chapter 

IV) can be applied here in future versions of the code 

• Based on the current GPS location and real-world time, the distance and time 

remaining to get to the mandatory 30-minute control stop are calculated as the 

speed needs to be zero during the control stop. This is added as an additional 

constraint to the upper-level optimisation problem to ensure that this zero speed is 

taken into consideration while creating an optimal speed profile 

• Finally, the upper-level optimisation function is called and executed by sending all 

the pre-processed matrices and data to this function. 

 

1.3 Part III (Post-optimisation operations) 

When all the required information has been returned from the bi-level optimisation 

problem, the final section of the main script is data validation, user feedback reporting 

and construction of meaningful plots and graphical data.  

• The following plots are generated from the data received back from the bi-level 

optimisation. These are typically the plots that are used in the results section of this 

work (Chapter VI). All outputs are based on time of day and distance at that time as 

calculated by the solvers. 

o Optimal speed profile vs time 

o 𝑆𝑜𝐶 vs time profile 

o Route elevation profile vs time 

o 𝑇𝐶𝐶 profile vs time 

o Air density profile vs time and rain probability profile vs time 

o Frontal wind profile vs time and Useful solar power vs time 

• In addition to the graphical plots, the following information and validations are 

presented to the user for inspection to ensure that the solver adhered to the 

constraints and to verify the integrity of the results 

o Total calculated driving time and total calculated driving distance 
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o Minimum, mean and maximum information about the optimal speed, the motor 

power, motor efficiency, 𝐺𝐻𝐼 component and air density 

o The losses due to aerodynamics, road graded as well as rolling resistance  

o Distance validation for each of the optimal speed intervals 

o Time validation for each of the optimal speed intervals 

o Motor power validation for each of the optimal speed intervals 

o 𝑆𝑜𝐶 validation to ensure the values never exceed the critical parameters 
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Figure 27: Implementation: Main UI Part I & II - flow diagram 
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Lower-level optimisation function workflow 

Variables such as 𝐴𝑟𝑟0, 𝐴𝑟𝑟1 and ε𝑑𝑎𝑦(𝑥) are required before the lower-level 

optimisation can commence.  

• 𝐴𝑟𝑟0 is found by calling a modified version of the upper-level optimisation (executed 

before this lower-level optimisation) for all eight days with zero loop sections. Next, 

 𝐴𝑟𝑟1 is found by duplicating the process with one loop section for each day. These 

two vector variables are then subtracted and ε𝑑𝑎𝑦(𝑥) is found. For these two 

Figure 28: Implementation: Main UI Part III - flow diagram 
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operations taking place in the modified upper-level function, Ψ∗ is a vector 

containing zeros when finding  𝐴𝑟𝑟0 and ones when finding  𝐴𝑟𝑟1. The variable 𝛽∗ is 

disregarded during these two operations. Values are sent back to the lower-level 

function for processing 

• The function now has the required information to assemble 𝑓𝑙 (the lower-level 

objective function) as shown in Equation (39) 

• The solver is implemented to solve Equation (39) as was described by the Dynamic 

Programming implementation section and Equation (47) to (48) 

• The following outcomes result from the successful lower-level problem optimisation 

(the outcomes can be matrices or vectors depending on whether a single day or 

full-time horizon (all remaining days of the challenge) was requested for calculation)  

o Optimal loop road sections for each day (𝜑𝑑𝑎𝑦(𝑥), a function of Ψ) 

o Required minimum 𝑆𝑜𝐶 at the start of each day (𝛼𝑑𝑎𝑦(𝑥+1), as a function of 𝛽) 

 Figure 29: Implementation: lower-level optimisation - flow diagram 
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Upper-level optimisation function workflow 

Throughout this function the optimal speed 𝑣𝑘 is treated as the decision variable and 

is not given a definite value by the user; instead, the solver uses this decision variable 

throughout the objective function and constraints to arrive at a suitable optimal 

solution. 

• Receive all prepared data from the main function as well as initialise some local 

variables 

• Compute wind component (𝑣𝑤) affecting car front from the front or from the rear by 

making use of trigonometry, the bearing matrix as well as the wind northbound and 

wind eastbound forecast matrix. This is used in Equation (7) of the energy model  

• Air density variation (𝑝) in Equation (7) is applied by making use of the calculated 

air density matrix  

• The power loss equation (Equation (10)) 𝑃𝑙𝑜𝑠𝑠(𝑘) is constructed and extended 

• The efficiency of the motor has to be applied to Equation (10) and requires the wheel 

rpm and torque, which are both a function of the decision variable 𝑣𝑘. This efficiency 

is then used as shown in Equation (10)  

• The route matrix is evaluated for areas where the force due to gravity (𝐹3(𝑘) in 

Equation (9)) is larger than the sum of the other forces. If these forces become so 

large that 𝑣𝑘 surpasses its constraints, it is expected that regenerative braking will 

be used to brake and recover some energy to the extent of keeping 𝑣𝑘 at the 

maximum speed set out in the constraints 

• Construct objective function (𝐸{𝑆𝑜𝐶𝑑𝑎𝑦(𝑥)}) by making use of model Equation (7) to 

(19) of Chapter III  

• Each of the energy calculations in this function is done in sections of the required 

resolution as specified by the user (default 1 km intervals)  

• All the constraints in Equation (35) are defined and the SQP solver within MATLAB® 

is initialised 

• The following outcomes result from the successful upper-level problem optimisation 

(can be matrices or vectors depending on whether a single day or full-time horizon 
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was requested for the calculation). All outputs are based on time of day and distance 

at that time as calculated by the solver 

o Optimal speed profile 

o Corresponding 𝑆𝑜𝐶 profile  

o Corresponding solar irradiation profile 

o Corresponding 𝑇𝐶𝐶 profile 

o Corresponding wind profile 

o Corresponding motor torque profile 

• Return all optimised results to main function. 
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Figure 30: Implementation: upper-level optimisation - flow diagram 
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Weather API function 

• The time and date stamp is received from the main function 

• The API data supplier subscription account username and password are made 

available to the Representational State Transfer (REST) web-based communication 

protocol structure in MATLAB® 

• Data is requested from 06:00 to 18:00 and received in a raw format in 1-hour 

intervals. A cubic interpolation function is used to estimate a continuous 

function in order to increase the resolution and re-construct into a vector format 

of 15-minute intervals (by default) 

• Weather data is saved in individual files for use when internet service is not 

available 

 

Figure 31: Implementation: weather API - flow diagram 
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Annexure B contains additional information on the UI in terms of computation time, 

length of code, number of memory locations used and other supplementary 

information on the development of the optimisation and other code. 

 

FIELD TEST SETUP 

The bi-level optimisation strategy was implemented during the eight days of the 

SSC2018, and all the data from the solar vehicle was transferred via long-range Wi-Fi 

to the support vehicle where it was recorded in a LabVIEW® and MATLAB® software 

environment at a rate of 1 sample/second. Weather data was collected and recorded 

(1 sample/second) with a calibrated Gill MaxiMet® GMX501. This sensor was mounted 

high above the roof of the support vehicle to eliminate any aerodynamic interference 

that the support vehicle itself might have on the wind speed and direction recordings, 

as illustrated in Figure 32.  

The support vehicle was equipped with two portable laptop computers: one for 

monitoring the solar car systems and recording data and the other to execute the bi-

level optimisation routines. This setup served as a mobile command centre. It ensured 

IoT connectivity with the solar car as well as a stable internet link for weather forecast 

retrieval and other real-time web or Cloud-Based requirements. The mobile command 

centre was able to display as well as record all data from the solar car and sensors. 

Additional data, such as battery cell temperatures, tyre pressures, electrical sub-

system voltages, MPPT feedback and any other data registers available on the solar 

car CAN bus system were also able to be retrieved. The solar car CAN bus enables 

component-level communication between all parts of the solar car and is the primary 

communications backbone of the solar car. Typically, the energy manager of the team 

(also the author of this thesis) was in charge of the mobile command centre equipment. 

The bottom part of Figure 32 shows the TUT team energy manager in the command 

centre seat. 

The results section summarises all eight days, followed by an in-depth look at the first, 

seventh and last day of the SSC2018. 
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Figure 32: Top: Support vehicle with IoT, radio and weather sensors.  

                  Bottom: Mobile data acquisition and command centre 
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VI. CASE STUDY RESULTS 

 

The Tshwane University of Technology (TUT) entered their third-generation solar-

powered vehicle (Sun Chaser III) into the Challenger category of the SSC2018, which 

took place in South Africa during September 2018. The car is shown in Figure 33.  

 

 

Figure 33: SSC2018, Sun Chaser III solar vehicle 

 

The team placed 4th overall and 1st among the local participants. The Sun Chaser III 

team managed to cover approximately 2400 km over eight days, and much of its 

success was attributed to the implemented optimisation technique and the advantage 

it provided to the team from TUT. The physical characteristics of the Sun Chaser III 

are presented in Table 7. The official event results of Sun Chaser III during the 

SSC2018 challenge are recorded in Table 29.  
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Table 29: SSC2018, SCIII results (all days) 

 

Date during 2018 

 

Locations in South Africa 

Distance 

covered 

(km) 

Loop quantity 

and distance 

(amount, km) 

22 September (Day 1) Pretoria to Sasolburg via Kroonstad 493 3, 74 

23 September (Day 2)b Kroonstad to Bloemfontein via Winburg 117 0a, 73 

24 September (Day 3)b Bloemfontein to Gariep Dam via Edenburg 164 1a, 82  

25 September (Day 4) Gariep Dam to Graaff Reinet via 

Middelburg 

291 1, 36  

26 September (Day 5)b Graaff Reinet to Port Elizabeth via 

Jansenville 

249 0a, 65  

27 September (Day 6) Port Elizabeth to Sedgefield via 

Kareedouw 

371 1, 59  

28 September (Day 7) Sedgefield to Swellendam via Mosselbay 308 2, 29  

29 September (Day 8) Swellendam to Stellenbosch via 

Bredasdorp 

403 2, 75  

a These loop quantities are not the optimal loop quantities as the vehicle’s performance was 

compromised due to technical issues, which made it impossible to adhere to the speed as well as loop 

recommendations. After each of these days, a re-calculation for the coming days was done to update 

the optimal speed profiles and optimal loop quantities. 

b On these days the car suffered mechanical or telemetry difficulties, which compromised the recorded 

data for these days, rendering it unusable for most of the formal analysis. 

  

PERFORMANCE METRICS 

To measure the performance of the optimisation technique, similar performance 

metrics to those used in the earlier chapters were employed here, and the summary 

of results is provided in Table 30. In addition to these performance metrics, the total 

useful solar irradiation energy from the sun (including solar panel area and all transfer 

efficiencies to the battery), as well as the total energy consumed from the battery 

during each day (given in Table 31), ensures a comprehensive description of the 

performance of the optimisation technique’s simulation predictions and weather 

forecast performance for each day. All values expressed in Table 30 are given as 

relative error percentages. 
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Table 30: SSC2018, optimisation performance metrics 

Day 1 

 𝑹𝑴𝑺𝑬 𝑴𝑨𝑬 𝑭𝑩 𝒔𝒕𝒅 aCoD 

𝑺𝒐𝑪 error 1.62 1.17 0.47 0.05 - 

Speed error 16.46 10.11 6.04 4.99 0.38 

Wind error 78.80 72.12 -32.32 22.52 0.18 

rhob error 2.92 2.82 -0.78 0.48 0.05 

𝑮𝑯𝑰 error 34.25 19.41 -14.85 6.43 0.35 

DAY 4 

 𝑹𝑴𝑺𝑬 𝑴𝑨𝑬 𝑭𝑩 𝒔𝒕𝒅 aCoD 

𝑺𝒐𝑪 error 5.53 4.54 -2.79 0.19 - 

Speed error 41.67 29.38 27.55 16.14 0.3 

Wind error 65.74 53.76 48.52 25.91 0.23 

rhob error 1.67 1.35 -1.23 1.12 0.07 

𝑮𝑯𝑰 error 193.22 132.65 -74.52 40.47 0.34 

DAY 6 

 𝑹𝑴𝑺𝑬 𝑴𝑨𝑬 𝑭𝑩 𝒔𝒕𝒅 aCoD 

𝑺𝒐𝑪 error 1.02 1.17 0.29 0.16 - 

Speed error 14.46 9.33 4.12 3.89 0.33 

Wind error 42.83 40.12 19.36 12.56 0.23 

rhob error 1.23 2.52 1.63 1.44 0.03 

𝑮𝑯𝑰 error 29.11 20.18 -12.34 6.43 0.40 

DAY 7 

 𝑹𝑴𝑺𝑬 𝑴𝑨𝑬 𝑭𝑩 𝒔𝒕𝒅 aCoD 

𝑺𝒐𝑪 error 5.33 3.5 1 1.91 0.89 - 

Speed error 62.32 38.11 37.45 19.11 0.39 

Wind error 32.51 31.44 15.34 7.31 0.30 

rhob error 5.22 3.35 1.83 2.62 0.02 

𝑮𝑯𝑰 error 24.11 21.41 14.66 13.01 0.24 

DAY 8 

 𝑹𝑴𝑺𝑬 𝑴𝑨𝑬 𝑭𝑩 𝒔𝒕𝒅 aCoD 

𝑺𝒐𝑪 error 2.01 1.97 1.19 1.13 - 

Speed error 16.56 11.43 6.22 5.25 0.25 

Wind error 71.34 66.12 50.33 14.52 0.37 

rhob error 3.27 3.01 1.01 0.95 0.03 

𝑮𝑯𝑰 error 29.11 20.18 12.34 4.43 0.27 

a CoD is the Coefficient of Determination between the 𝑆𝑜𝐶 error and the corresponding error parameter. 

All values except CoD are expressed as relative error percentages. b rho refers to the air density 
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Table 31: SSC2018, energy prediction summary 

Daya Predicted 
𝑮𝑯𝑰 (kWh) 

Actual 𝑮𝑯𝑰 
(kWh) 

Predicted 
battery usage 

(%) 

Actual battery 
usage (%) 

Initial and final 
𝑺𝒐𝑪 (%) 

Day 1 2.95 2.8 45 52 100 – 48 

Day 2 - - - -30b 48 – 78 

Day 3 - - - -22b 78 – 100 

Day 4 2.17 1.9 5 20 100 - 80 

Day 5 - - - 17 80 - 63 

Day 6 2.1 2 24 18 63 – 45 

Day 7 1.65 1.7 5 25 45 – 20 

Day 8 2.19 2.3 14 10 20 - 10 

a These days refer to the days during the SSC2018, similairly to Table 30 

b Negative values refer to the energy gained 

 

The data sets collected on Days 2 and 3 was not usable as the Sun Chaser III team 

had a major mechanical failure due to a strong gust of wind leading to damage to the 

car at the end of the first day. The repairs took place during the first part of Day 2. 

Nevertheless, the car managed to increase the battery charge by 30 % whilst repairs 

were undertaken and subsequently, it covered 117 km without following any optimised 

speed profile. Likewise, on Day 3, the data was not usable as the team only completed 

the first stage of the day with one loop, after which the solar car had to be put on a 

trailer for the rest of the day. This was due to continuing technical issues arising from 

the damage sustained on the first day. The team still managed to cover 164 km and 

fully charge the battery while on the trailer, gaining about 22 %, which meant starting 

with a full battery on Day 4. On Day 5, the telemetry recording system on the support 

vehicle failed and no data was recorded for this day. Day 5 used 17 % of the battery 

pack. Usable data was recorded for Day 1, Day 4 and Day 6, Day 7 and Day 8. 

Optimisation re-calculations were done daily to compensate for the various 

inconsistencies arising from the technical equipment failures and other factors. 

 

CASE STUDY SUMMARY 

Day 1 and 6 (Figures 34 and 35 respectively) display similar performance metrics with 

their speed errors comparably small on both days. 
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Figure 35: SSC2018 Day 6, 𝑺𝒐𝑪 comparison 

Figure 34: SSC2018 Day 1, 𝑺𝒐𝑪 comparison 
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The only noticeable difference in the performance metrics between Day 1 and Day 6, 

is that on Day 1, on average, the car, experienced more wind from the front (Figure 

36) than predicted and on Day 6, on average, the car experienced more wind from the 

rear (Figure 37) than predicted. Here, the wind was the primary contributor, which 

yielded 7 % higher and 6 % lower energy usage respectively, despite roughly a 5 % 

over-prediction of the 𝐺𝐻𝐼 component on both these days, as seen in (Table 31). 

On both of these days, a strong coefficient of determination (CoD) between the 𝑆𝑜𝐶 

error and both the speed and 𝐺𝐻𝐼 errors, may be seen. This was expected, as the 

remaining energy-consuming variables for these two days have relatively low 

prediction errors, allowing most of the 𝑆𝑜𝐶 error variance to be described by the 𝐺𝐻𝐼 

and speed error components. Day 4 and Day 7 (Figure 38 and Figure 39, respectively) 

compared well as both had much larger speed errors (Figure 40) than Day 1 and Day 

6. As a result of driving at a higher speed than predicted on Day 4, an apparent phase 

shift can be seen in the 𝑆𝑜𝐶 plot (Figure 38) as the predicted plot lags the actual plot 

by over an hour. The team stopped driving at around 14:00 on Day 4 and used the 

remaining hours for charging their batteries by the sun, which can be seen by a steady 

𝑆𝑜𝐶 increase from 14:00 to 16:00 in Figure 38. 

 

 

Figure 36: SSC2018 Day 1, wind comparison 



 

132 

 

 

 

Figure 38: SSC2018 Day 4, 𝑺𝒐𝑪 comparison 

Figure 37: SSC2018 Day 6, wind comparison 
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Figure 40: SSC2018 Day 4, speed profile comparison 

Figure 39: SSC2018 Day 7, SoC comparison 
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Day 4 did, however, see significant 𝐺𝐻𝐼 prediction errors (Figure 41) most likely as a 

result of scattered and unpredictable cloud movement (as observed on that day). This 

day (Day 4) experienced the largest 𝐺𝐻𝐼 𝑅𝑀𝑆𝐸 of 193.22 % (Table 30). 

 

 

As a result, Day 4 recorded much less energy from the sun than was predicted (12 % 

less, Table 31) and on average, the day also experienced more wind (Figure 42) from 

the rear of the car than predicted. The under-prediction of the 𝐺𝐻𝐼 component coupled 

with the poor adherence to the optimal speed profile (Figure 40) resulted in an 

astounding three times more energy (Table 31) than predicted being used to cover the 

same distance. 

Similarly to Day 1 and 6, Day 4 and Day 7 had reasonably high coefficients of 

determination between the 𝑆𝑜𝐶 and the 𝐺𝐻𝐼 and speed errors, even though the 

adherence to the optimal speed profile is the opposite for the two sets of days. 

 

 

 

Figure 41: SSC2018 Day 4, solar power comparison 
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Most of Day 7’s metrics demonstrated low error values resulting in a high coefficient 

of determination between the 𝑆𝑜𝐶 error and the 𝐺𝐻𝐼 and speed error components, 

except for the speed error (62.32 % 𝑅𝑀𝑆𝐸), which was the largest error in all eight 

days. 

During this day on average, the wind was recorded as coming more from the rear of 

the car. However, the rest of the error parameters were relatively low and comparable 

with Days 1 and 6. By the end of this day (which was the end of the Sasol Solar 

Challenge 2018) 4 % less battery energy was used than had been predicted. After 

summing all the portions of battery energy used each day (including gained battery 

energy on Day 2 and 3), Sun Chaser III ended up with a battery 𝑆𝑜𝐶 of about 10 % 

upon completion of the challenge. 

 

 

 

Figure 42: SSC2018 Day 4, wind comparison 
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After evaluating the performance of the five days of usable data, it is clear that 

deviating from the speed profile (in other words, driving faster or slower than the 

optimised speed profile recommendation) is detrimental to the stored battery energy 

and usefulness of the simulations; likewise, when significant errors were observed 

among the weather forecast parameters.  

On rare occasions, errors of forecasted parameters resulted in a positive effect on the 

battery pack. These were mostly seen in situations of more wind from the rear than 

predicted and in cases of 𝐺𝐻𝐼 underprediction. 𝑆𝑜𝐶 error coefficients of determination 

are observed to be the highest with the 𝐺𝐻𝐼 errors and speed errors, which confirms 

that these parameters have the best linear relationship with the 𝑆𝑜𝐶 error. 

Foreseeably, errors in other parameters reduce the quality of the linear relationship 

between the 𝑆𝑜𝐶 errors and the 𝐺𝐻𝐼 and speed errors.  

Considering the five days of useful data, the optimisation technique was able to predict 

the battery 𝑆𝑜𝐶 to within an absolute value of 8 %, providing the forecasts are within 

typical meteorological expected upper and lower bounds (referring to Day 1, 6 and 8) 

as well as speed 𝑅𝑀𝑆𝐸 errors below 17 % (user driving behaviour dependent). More 

Figure 43: SSC2018 Day 8, 𝑺𝒐𝑪 comparison 
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significant weather forecast accuracy deviations (Day 4) and speed deviations (Day 7) 

resulted in three to four times more energy used than expected to cover the same 

distance in the same time. 

Certainly, one of the most significant results is that the average sum of the coefficients 

of determination for each day adds up to 0.94. This establishes that on average, 94 % 

of the variation in the energy simulation (State of Charge - 𝑆𝑜𝐶) error can be explained 

by the variables contained within the derived energy model. The remaining 6 % 

variation in the energy simulation error may have occurred as a result of small un-

modelled vehicle dynamics (including Coriolis forces), non-linearity of the charge and 

discharge cycles of the battery and temperature effects. 

Furthermore, the 𝐺𝐻𝐼 confidence intervals proved useful in defining upper and lower 

𝑆𝑜𝐶 limits on days where the speed profile was adhered to (Days 1, 6 and 8), leaving 

the 𝐺𝐻𝐼 as the primary variable that would influence the actual 𝑆𝑜𝐶. On days where 

the speed profile was not adhered to (Day 4 and 7), the 𝐺𝐻𝐼 confidence intervals were 

less useful since the actual 𝑆𝑜𝐶 already deviates significantly from the estimated 𝑆𝑜𝐶 

which the 𝐺𝐻𝐼 confidence intervals are centred around. 

The following section covers a more focussed examination of the first, seventh and 

last day of the SSC2018. This section discusses the specific route characteristics and 

the weather conditions on these days and the significance of these results to this work.  
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Detailed case study of Day 1 

The significance of this day is that TUT managed to travel the third furthest distance 

overall (in relation to all the participants) on this day, and the furthest in relation to the 

local participants. The 493 km TUT travelled on this day is an unofficial record for the 

furthest distance travelled in any Sasol Solar Challenge by a local team with 4 m2 of 

silicon solar panels. Figure 44 shows the official leader board results for this day.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 44: SSC2018 Day 1, official results 
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The elevation profile in Figure 45 depicts the re-occurrence of three distinctive peaks, 

that is, the three loop sections covered on Day 1 as recommended by the optimisation 

simulation output.  

 

 

Apart from one or two hills, the road gradient was predominantly flat. The clouds on 

this day were initially low at about 20 % 𝑇𝐶𝐶 in the morning descending until around 

midday, after which the cloud cover increased nearly linearly to about 70 % at 16:00. 

The air density for the day had a mean value of 1 kg.m-3 and a mean deviation of less 

than 5 % during the day. The accuracy of the wind predictions was fair overall 

compared to the recorded wind on the day except for the period 14:30 to 16:00 as 

depicted in Figure 36. The real recorded data of the useful solar power plot (Figure 

47) contained a few high-frequency anomalies that were observed throughout the day. 

This was possibly due to the trees, bridges, and other significant obstacles 

momentarily casting shade onto the solar vehicle and onto the roof-mounted solar 

irradiance sensor. Overall, the useful solar power prediction, with the aid and 

application of the PMFs to increase accuracy, performed well, even during a day of 

varying cloud cover conditions.  

Figure 45: SSC2018 Day 1, route elevation 
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Figure 47: SSC2018 Day 1, solar power comparison 

Figure 46: SSC2018 Day 1, speed profile comparison 
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During the first day of the SSC2018, the team realised that it was somewhat 

impractical to follow the exact optimal speed profile suggested by the optimisation 

technique. Traffic conditions on national roads often compelled the driver to deviate 

from the optimal speed profile as illustrated in Figure 46, where the dotted line in the 

graph tracks the driver’s actual variations in speed. However, the maximum 

acceleration necessary to adhere to this optimal speed profile was less than 0.5 m.s-

2, which is entirely safe and acceptable for the driver as well as the solar-powered 

electric vehicle. Thus, no extra constraints were included to remedy this behaviour. 

The team followed the speed recommendations as far as practically possible and 

chose the best average speed to try to satisfy the mean of a few consecutive speed 

points where it was deemed impractical to follow the optimal speed profile 

wholeheartedly. The mandatory control-stop occurred at around 10:30 to 11:00, which 

is well in line with the original prediction. A few brief stops had to be made along the 

route just after 09:00, 12:00, and 13:00, which had not been accounted for in the 

forecast. These stops were mainly due to traffic conditions and driver changes.  

When examining the actual and predicted 𝑆𝑜𝐶 curves in Figure 35, a reasonable 

correlation between the two curves could be seen up until approximately 13:00, at 

which point the actual 𝑆𝑜𝐶 decreased more than had been predicted. This 

miscorrelation was most likely caused by the deviations of the various actual weather 

conditions from those that were predicted.  In addition to this, the electric vehicle did 

not adhere as precisely to the speed profile as was recommended by the UI. Overall, 

this caused an overprediction of about 7 % 𝑆𝑜𝐶 by 16:00 on Day 1 of the SSC2018. 

Another compelling correlation was that the three distinctive peaks seen in the curve 

of the optimal speed profile (Figure 46) after 11:00, were roughly inversely proportional 

to the peaks in the elevation profile (Figure 45). This indicates that the optimisation 

technique is greatly affected by the road profile as this is one of the more significant 

consumers of energy and subsequently, an area where energy could potentially be 

optimised. Fortunately, the elevation profile of the desired route is known and constant, 

which means that although the elevation profile is seen to affect energy usage 

significantly, it is effectively and robustly predictable.   
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Detailed case study of day 7 

At the start of this day, the Sasol Solar Challenge teams found themselves in a 

morning rainstorm. All local solar car teams (except TUT) opted not to drive in the rain. 

TUTs energy management system indicated that distance would be maximised when 

driving through the fully overcast rainstorm as opposed to loading the solar car on a 

trailer and travelling to a point further on the route where the rain had subsided.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 48: SSC2018 Day 7, official results 
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On this day, TUT completed 308 km, which once again topped the leaderboard (Figure 

48) among local teams. Although team NWU is seen to have 325.9 km for this day, 

the asterisk indicates that this distance was obtained outside of the rules of the 

Challenge and hence was not a valid result. Figure 49 shows the unfavourable rainy 

conditions of the first few hours of this day. 

 

 

 

 

 

 

 

 

 

 

 

 

 

None of the other local teams had any formal energy management strategies and 

therefore relied on their intuition for making decisions. At first, the TUT team was 

sceptical about the energy strategy recommendations of the UI, which suggested that 

maximising distance for this day meant driving through the morning rainstorm. The 

outcome is proof of the superiority of the optimisation technique.  

Even though the TUT team opted to follow the recommendations of the optimisation 

technique to drive in the rain, it was deemed unsafe to travel at the optimal speeds 

(Figure 50) during the rain period. The road was extremely slippery, and the route had 

severe road grades which required additional caution. Figure 51 reveals the steep hills 

which the driver had to traverse in the rainstorm as well as the two-loop road sections, 

which are the two visible repeating patterns. It is important to note that the elevation 

Figure 49: SSC2018 Day 7, weather conditions 
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profile and useful solar power plots (Figure 53) are for reference only and are based 

on the speed profile as in Figure 50. These plots do not necessarily correlate with the 

real-world time of day due to the intentional speed variations imposed by the energy 

manager for the sake of safety.  

Figure 51: SSC2018 Day 7, route elevation 

Figure 50: SSC2018 Day 7, speed profile comparison 
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The morning weather conditions contributed to high driver fatigue which meant a driver 

change was needed at 09:30, and it was decided to take the mandatory 30-minute 

break at that stage too. By this time the rain started to subside and the cloud cover 

reduced to about 70 % 𝑇𝐶𝐶. 

At around 10:30 the team once again re-entered the challenge. As a result of the slow 

driving during the morning, the energy manager decided to increase the optimal speed 

recommendations by approximately 25 % for the rest of the day. The effect of deviating 

from the optimal speed (Figure 50) is evident in the 𝑆𝑜𝐶 plot (Figure 52). This effect is 

observed as an under-estimation in the morning with the crossover point at around 

11:30 after which an over-estimation is observed. Hence, Day 7 has the most 

significant speed 𝑅𝑀𝑆𝐸 error of all the days (Table 30). The energy manager could 

have opted to re-calculate the optimal speed profile during the day. However, it was 

intentionally not done in order to be able to document the statistical and graphical 

significance of a case where the optimal speed profile calculation could only be 

executed once, prior departure in the morning. 

 

Figure 52: SSC2018 Day 7, 𝑺𝒐𝑪 comparison 
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The useful solar power plot, Figure 53, depicts the predicted solar energy curve 

skewed to the right as a result of the severe rain and cloud reducing the 𝐺𝐻𝐼 magnitude 

during the morning. Overall, the 𝐺𝐻𝐼 prediction was still favourable for this day, which 

correlates well with the statistics in Table 30. 

 

 

 

 

 

 

 

 

 

 

Figure 53: SSC2018 Day 7, solar power comparison 
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Detailed case study of day 8 

This was the final day of the SSC2018, which took teams from Swellendam to 

Stellenbosch. The leaderboard results are shown in Figure 54.  

 

 

 

Figure 54: SSC2018 Day 8, official results 
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The weather conditions for this day were in complete contrast to the previous day as 

seen in Figure 55 where the TUT team is seen at their mandatory 30-minute control 

stop at the southernmost tip of Africa, Cape Agulhas Lighthouse. 

 

 

A comparison between the magnitude and shape of the useful solar power plots of 

Day 7 (Figure 53) and Day 8 (Figure 56) further reveals the favourable weather 

conditions of Day 8.  Although the weather conditions seemed ideal for solar 

harvesting, the route of Day 8 is notorious and known to be one of the most challenging 

in the Sasol Solar Challenge, due to the mountain range which is an integral part of 

the route (Figure 57) for this day. This route boasts the locally renowned mountain 

road, Sir Lowry's Pass. This pass puts even the best of cars and trucks to the test with 

a 450 m accent to its summit. 

Figure 55: SSC2018 Day 8, weather conditions 
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Figure 57: SSC2018 Day 8, route elevation 

Figure 56: SSC2018 Day 8, solar power comparison 
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By the last day of the challenge, most teams would have expended a large portion of 

their stored energy over the previous seven days in an attempt to maximise distance. 

Day 8 of the Sasol Solar Challenge is by far the most stressful for any team energy 

manager. The additional loop section opportunity (seen from 10:00 to 12:30 in Figure 

57) is situated before the mountainous region which requires careful planning to 

maximise distance while still being able to reserve enough energy to summit the 

massive hills reached from 12:30 to 15:45 in Figure 57. When observing Figure 58, 

the minimum value of the 𝑆𝑜𝐶 was predicted to be 5 % at about 13:30. This is where 

the optimiser reached the battery safety-critical constraint (𝛽) as contained in Equation 

(35). With every significant downhill, the regenerative braking can be seen to increase 

the stored energy, which helps to alleviate the energy impact of the next hill. 

 

To an ordinary energy manager with no assistance from a formal optimisation strategy, 

the sunny conditions seemed like the ideal opportunity to do many additional loop road 

sections. This turned out to be a dangerous assumption as none of the other local 

teams conserved enough energy to navigate to the summit of Sir Lowry's Pass 

successfully, which followed the loop road sections. These intuitive energy decisions 

Figure 58: SSC2018 Day 8, 𝑺𝒐𝑪 comparison 
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of the other local teams, uninformed by a data-driven system to optimise energy use, 

ensured that TUT was the only local team that finished the final day without penalty 

and without having to load the solar car on a trailer, which was the case with all other 

local teams. The speed profile for Day 8 is not shown as it does not add significant 

value to this section. 

 

CASE STUDY CONCLUSION 

During the Sasol Solar Challenge 2018, the optimisation technique benefitted the TUT 

solar car team immensely. The optimisation technique was shown to be robust on 

days of extreme weather conditions as well on days with complex mountain terrain. 

The superiority of the optimisation technique was highlighted on several occasions 

where the recommendations from the simulation trumped team intuition and 

experience-based decision-making processes. Furthermore, the optimisation 

technique proved that it was able to maximise the performance of Sun Chaser III and 

advise the energy manager on how to expend energy optimally over an eight-day 

horizon with accurate predictions. 

Lastly, the results showed that deviating from the optimal speed profile is severely 

detrimental to the outcome. Therefore, it is advised that the team do whatever it takes 

within safe and legal limits to keep to the optimal speed profile to maximise 

performance. 
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VII. CONCLUSIONS, RECOMMENDATIONS AND 

FUTURE WORK 

RESEARCH QUESTIONS 

The aims and objectives of this work have been addressed by answering the research 

questions set out in Chapter I (Research Objective and Project Overview). The 

research questions of this work were addressed in the following manner: 

 

Research Question 1 and its sub-questions, was addressed in Chapter II (Literature 

Review), Chapter III (Modelling), Chapter IV (Environmental Conditions) and in 

Chapter V (Optimisation). 

 The variables influencing the mathematical model of the solar car were 

comprehensively described in Chapter II and extended and formalised in the form of 

usable equations and functions in Chapter III. All the dependent (such as the 𝑆𝑜𝐶), 

independent (electromechanical energy model parameters) and moderating (weather 

conditions) variables have been identified and their relationships established. The 𝐺𝐻𝐼 

forecast and speed of the car was found to have the most significant effect on the 

simulation accuracy of the 𝑆𝑜𝐶.  

It was shown that the statistical variation in the environmental variables 

(especially the 𝐺𝐻𝐼 component) could be characterised and used to improve the 

forecast accuracy as well as the forecast confidence interval. This was achieved by 

making use of forecast bias compensation and a Gridded Model Output Statistics 

method.  

 It was found that a specific focus on the weather conditions is called for in the 

energy model in the South African context as is an optimisation method capable of 

producing an optimal speed profile (in regular intervals) in contrast to the regularly 

employed average speed methods. These requirements are in answer to the 

frequently varying road conditions (hills and mountainous regions) as well as 

challenging weather conditions, especially near the coastal regions. 
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Research Question 2, and its sub-questions, was addressed in Chapter II (Literature 

Review) and Chapter V (Optimisation). 

 Chapter II reveals that many different kinds of deterministic as well as 

stochastic optimisation methods can be used to optimise the speed profile. However, 

no literature could be identified in regard to best practice for maximising distance 

travelled as in the case of the Sasol Solar Challenge. Chapter V showed that low 

computational intensity deterministic optimisation algorithms such as SQP and DP, 

are highly effective in solving the optimal speed profile and loop road quantities, 

respectively. The South African context requires a smart optimisation structure 

capable of using Cloud-Based information (with weather forecasts available on-the-

fly) to increase the accuracy of the energy simulations. It was shown that a bi-level 

optimisation technique with a SQP structure for the upper-level and a DP structure for 

the lower-level was effective at optimising the energy as well as the driving distance 

of a solar electric vehicle competing in a Sasol Solar Challenge. The bi-level 

optimisation technique also displayed satisfactory performance in terms of its 

computational ability.  

 

Research Question 3, and its sub-questions, was addressed in Chapter II (Literature 

Review), Chapter III (Modelling), Chapter IV (Environmental Conditions), Chapter V 

(Optimisation) and Chapter VI (Case Study Results). 

 The early chapters of this work identified the critical vehicle and environmental 

conditions to be considered when robust and accurate optimisation is required. 

Unfortunately, no existing optimisation applications could be used for comparison as 

none currently exist that provide both the optimal speed profile as well as the optimal 

loop quantities for a Sasol Solar Challenge event. Performance metrics were used 

throughout this work to analyse and quantify the amount of error in the model 

simulations, weather forecasts and optimisation outputs (optimal speed profiles and 

loop road quantities). 

 This work has further shown how the optimisation technique could be used in 

near real-time to provide accurate and robust updates in regard to optimal driving 

speeds and strategies for maximising distance travelled.  
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SIGNIFICANCE OF THE FINDINGS        

The significance and implications of the findings in this work culminated in the SCIII 

team from TUT obtaining a never-before-achieved 1st place among local solar car 

teams and a 4th place overall at the SSC2018 international event. The key to their 

achievements and exceptional performance was in having an optimal speed profile as 

well as having access to the optimal loop road sections for each day.  

Firstly, the scientific contributions of this work have resulted in four internationally 

recognised peer-reviewed published papers (as mentioned in Chapter I). Another 

outcome is a re-usable optimisation environment suitable for the SSC context to be 

used by future solar car teams from TUT.  

Finally, the most significant contribution of this work is the presentation of a novel 

application of a bi-level optimisation technique. This technique is able to 

simultaneously optimise solar car energy usage as well as make recommendations 

regarding the optimal number of loop road sections to be driven each day. This is done 

by creating an optimal speed profile, which will maximise the total distance covered 

(variable distance). The application mentioned above has not as yet been formalised 

elsewhere at the time of this work.  

 

FUTURE WORK AND RECOMMENDATIONS 

Although the mathematical energy model of the solar car proved able to provide an 

accurate and robust representation of the actual energy consumed while driving, 

refining the energy model will improve its accuracy even further: 

a) How can the aerodynamic lift and cross-winds be included in the energy 

model? What would be the performance benefit of including these variables in 

the energy model? 

b) What would the benefit be of incorporating a dynamic model of the Li-Ion 

battery to represent the physical phenomena occurring in the battery’s cells 

through an equivalent electrical circuit? How would this addition of a battery 

model significantly affect the estimation of the 𝑆𝑜𝐶? 

c) Can exploiting phenomena such as Wake Energy Retrieval (vehicles travelling 

in the slipstream of another vehicle) improve energy predictions? 
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The coefficient of drag (a constant) and the coefficient of rolling resistance (a function) 

are currently being determined through extensive simulation and traditional 

experiments. Other techniques for finding these values also exist: 

a) How can machine learning be used to find the coefficients by only making use 

of recorded vehicle data? Or, how can these coefficients be found by means of 

an optimisation routine? 

 

In this work, it was established that it is essential to statistically enhance the weather 

forecast to a specific application for improved performance. The impact on the 

accuracy, performance and computation time of characterising the statistical variability 

of all the weather variables used in the optimisation technique is of importance for 

future work: 

a) By what degree will statistically enhancing all weather forecast variables 

improve the overall performance similar to the 𝐺𝐻𝐼 component in this work? 

b) How can the simulation confidence interval become more realistic by making 

use of all the weather variables to construct the interval bounds? 

 

The optimisation technique expounded in this work provides adequate computational 

performance (measured in execution time); however, full real-time simulation updates 

will be advantageous to the energy manager of a solar racing team: 

a) What techniques can be used to further increase the computational efficiency 

of the proposed optimisation technique without making use of higher 

performance computer hardware? 

b) What computational improvement can be achieved by decreasing the 

resolution of the variables (vectors and matrices) used in the energy model? 

What is the break-even point between reducing the energy model variable 

resolution and gaining computation performance when considering its effect on 

the output accuracy of the simulations? 
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Variable name Symbol Function or description Units Resolution 

General 

Time and date - Used by the weather 

forecast API and rest of UI 

- - 

Start time of day - Used by the weather 

forecast API and rest of UI 

- - 

Finish time of day - Used by the weather 

forecast API and rest of UI 

- - 

Mathematical energy model 

Coefficient of 

aerodynamic drag 

𝐶𝑑 Used by the energy model - - 

Coefficient of rolling 

resistance 

𝐶𝑟 Used by the energy model - - 

Car and driver mass 𝑚 Used by the energy model kg - 

Car frontal area 𝐴𝑐𝑎𝑟 Used by the energy model m2 - 

Car wheel diameter - Used by the energy model m - 

Solar array size  𝐴𝑝𝑣 Used by the energy model m2 - 

Sun to battery 

efficiency 

ɳ𝑒𝑙𝑒𝑐 Used by the energy model - - 

Battery capacity 𝑒𝑐𝑎𝑝 Used by the energy model Wh - 

Air density 𝜌 Used by the energy model Kg/m3 - 

Electric motor efficiency ɳ𝑚𝑜𝑡𝑜𝑟 Polynomial function, used by 

the energy model 

- - 

Route information 

 

Distance 1 

- Distance matrix containing 

day route distances up to 

the mandatory 30 minute 

stop  

m 50m  

Distance loop - Distance matrix for the loop 

road of that day 

m 50m 
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Distance 3 

- Distance matrix containing 

day route distances from the 

mandatory 30 minute stop to 

the terminus of that day 

m 50m 

 

Latitude/Longitude 1 

- Lat/Lon matrix containing 

day route location 

information up to the 

mandatory 30 minute stop  

DMM for 

North and 

East 

50m 

Latitude/Longitude loop - Lat/Lon matrix for the loop 

road of that day 

DMM for 

North and 

East 

50m 

 

 

Latitude/Longitude 1 

- Lat/Lon matrix containing 

day route location 

information from the 

mandatory 30 minute stop to 

the terminus of that day 

DMM for 

North and 

East 

50m 

 

Elevation 1 

- Elevation matrix containing 

day route elevations up to 

the mandatory 30 minute 

stop 

m 50m 

Elevation loop - Elevation matrix for the loop 

road of that day 

m 50m 

 

Elevation 3 

- Elevation matrix containing 

day route elevations from 

the mandatory 30 minute 

stop to the terminus of that 

day 

m 50m 

 

Bearing or heading 1 

- Bearing matrix containing 

day route bearings up to the 

mandatory 30 minute stop 

compass 

directions, 

0° to 359° 

50m 

Bearing or heading 

loop 

- Bearing matrix for the loop 

road of that day 

compass 

directions, 

0° to 359° 

50m 

 

Bearing or heading 3 

- Bearing matrix containing 

day route Calculation from 

the mandatory 30 minute 

compass 

directions, 

0° to 359° 

50m 



Annexure A 

168 

stop to the terminus of that 

day 

 

Current GPS location 

- Current GPS location 

measured by mobile 

weather station 

Lat/Lon 5m 

Route weather 

Solar irradiance 𝐺𝐻𝐼 Requested via the 

Meteomatics AG API 

w/m2 15 minutes 

Wind to N - Requested via the 

Meteomatics AG API 

m/s 15 minutes 

Wind to E - Requested via the 

Meteomatics AG API 

m/s 15 minutes 

Total Cloud Cover 𝑇𝐶𝐶 Requested via the 

Meteomatics AG API 

% 15 minutes 

Temperature: dew point - Requested via the 

Meteomatics AG API 

°C 15 minutes 

Temperature: surface 

air 

- Requested via the 

Meteomatics AG API 

°C 15 minutes 

Air pressure - Requested via the 

Meteomatics AG API 

hPa 15 minutes 

Rain probability - Requested via the 

Meteomatics AG API 

% 15 minutes 

Rain amount - Requested via the 

Meteomatics AG API 

mm 15 minutes 
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MATLAB® 

During the development of the code for this research work, the following MATLAB® 

toolboxes were utilised. 

a. communication_toolbox 

b. curve_fitting_toolbox 

c. optimization_toolbox 

d. signal_blocks 

e. signal_toolbox 

f. statistics_toolbox 

 

Code length and variables used 

a. Main UI (I, II & III): ≈450 memory locations & ≈3000 MATLAB® lines of code 

b. Lower-level:           ≈80 memory locations & ≈250 MATLAB® lines of code 

c. Upper-level:           ≈200 memory locations & ≈600 MATLAB® lines of code 

d. Weather API:         ≈40 memory locations & ≈150 MATLAB® lines of code 

 

Computation time specifications 

For reference purposes, the laptop used to execute the code en-route had the 

following specifications: HP ZBook 15u G3 (Intel Core i7-6500U), 16 GB DDR4 with 

256 SSD, AMD FirePro W4190M (2GB GDDR5) GPU, Windows 10 Enterprise (x64). 

a. Full computation of all eight days:  ≈1200 seconds 

b. Computation of one day:  average ≈150 seconds 

 

 

 


