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Résumé en français

Contexte

Depuis la genèse du World Wide Web à la fin des années quatre-vingt, les tech-
nologies qui l’entourent n’ont cessé de se développer. Il est aujourd’hui possible
d’écouter de la musique, de jouer à des jeux-vidéos, de regarder des vidéos en di-
rect ou en différé, et tout ceci au travers d’un simple navigateur web. En parallèle
du développement des technologies web, les services qui s’y reposent se sont aussi
développés. Il est désormais possible de réaliser des démarches administratives en
ligne, mais aussi des transactions bancaires ou des visioconférences. Malgré le fait
que les sites web soient accessibles publiquement, certains services ne devraient
êtres accessibles que par des utilisateurs désignés. Par exemple, seul le propriétaire
d’un compte bancaire devrait être autorisé à y effectuer des opérations en ligne.
Se pose alors le problème de l’authentification, qui consiste à ce que le gestionnaire
du site web, aussi appelé le vérifieur, vérifie qu’un utilisateur soit bien le détenteur
d’un compte. Pour ce faire, le vérifieur demande des éléments que seul le détenteur
du compte devrait être capable de fournir, éléments que nous appelons des fac-
teurs d’authentification. Le facteur d’authentification couramment utilisé par les
sites web est le mot de passe, grâce à sa facilité d’utilisation et de déploiement.
Cependant, les mots de passe souffrent de multiples faiblesses. Par exemple, les
utilisateurs ont tendance à utiliser les mêmes mots de passe, facilitant alors la tâche
aux pirates qui réalisent des attaques par dictionnaires. Ces attaques consistent à
déduire quels sont les mots de passe les plus courants, et à les présenter pour es-
sayer d’accéder de manière frauduleuse à un compte. Cette déduction peut se faire
à travers les mots de passe qui ont fuités ou été volés lors d’attaques informatiques.
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vi RÉSUMÉ EN FRANÇAIS

À cause des faiblesses des mots de passe, les vérifieurs intègrent désormais de
l’authentification multi-facteur. Cela consiste à utiliser plusieurs facteurs d’authen-
tification, de sorte que chaque facteur ajoute une barrière de sécurité supplémen-
taire. Cependant, le gain en sécurité des facteurs additionnels vient au prix d’une
perte de facilité d’utilisation ou de déploiement. Les utilisateurs doivent se sou-
venir d’une information supplémentaire, avoir un objet sur eux, ou effectuer une
action. Les vérifieurs doivent déployer des logiciels ou du matériel supplémentaires,
les maintenir, et apprendre aux utilisateurs à s’en servir. Selon des estimations réa-
lisées en 2015 et en 2018, moins de dix pour cent des utilisateurs s’authentifient
auprès des sites web à l’aide de plusieurs facteurs d’authentification.

Le développement des technologies web a aussi mené à une diversité des confi-
gurations de navigateurs web et à une grande quantité d’information communiquée
par ceux-ci. Effectivement, les utilisateurs ont aujourd’hui le choix entre différents
systèmes d’exploitation et modèles de navigateur. Ces logiciels étant mis à jour ré-
gulièrement, ils existent alors sous différentes versions. Les navigateurs fournissent
un accès à des informations concernant l’appareil, le système d’exploitation, le
modèle de navigateur, et leurs versions respectives. En 2010, Peter Eckersley a
lancé une expérimentation via le site Panopticlick afin de vérifier si, à partir des
informations communiquées par les navigateurs, ceux-ci ne seraient pas reconnais-
sables. Parmi les 470, 161 navigateurs qui font partie de l’expérimentation, 83.6%
étaient reconnaissables de manière unique à partir des 8 attributs collectés. La
technique utilisée est alors appelée browser fingerprinting, ou prise d’empreinte de
navigateur en français, et consiste à collecter des attributs auprès d’un navigateur
afin de constituer une empreinte de celui-ci. Les empreintes de navigateur ont été
utilisées à des fins de pistage web. En suivant un utilisateur au fil de sa navigation
via l’empreinte de son navigateur, les agences publicitaires peuvent lui proposer
des publicités ciblées. Mais cette empreinte peut aussi servir de facteur d’authenti-
fication supplémentaire à bas coût : l’utilisateur n’a rien à retenir, rien à installer,
et aucune action supplémentaire à effectuer. Il suffit de vérifier que l’empreinte de
son navigateur soit suffisamment ressemblante à l’empreinte enregistrée pour le
compte demandé, ce qui peut être fait de manière transparente.
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Adéquation des Empreintes de Navigateur pour
l’Authentification Web

La plupart des études sur l’utilisation des empreintes de navigateur à des fins d’au-
thentification se concentrent sur la conception du mécanisme d’authentification.
De plus, les études empiriques sur les empreintes de navigateur se concentrent
sur son utilisation pour du pistage web, ignorant alors des propriétés primordiales
pour l’authentification comme leur efficacité à reconnaître un navigateur. Enfin, la
capacité des empreintes à distinguer les navigateurs sur une grande population et
en utilisant un grand nombre d’attributs est, à notre connaissance, encore mécon-
nue. Les études empiriques portent soit sur une population large mais en utilisant
moins de trente attributs, sous-estimant alors la distinguabilité des empreintes,
soit sur une faible population en utilisant une centaine d’attributs.

Au travers de cette thèse, nous proposons la première étude empirique à large-
échelle des propriétés des empreintes de navigateur utilisées à des fins d’authen-
tification web. Nous nous reposons sur l’analyse de quatre jeux de données, dont
un constitué de 4, 145, 408 empreintes composées de 216 attributs initiaux et de
46 attributs déduits. Nous faisons le lien entre les empreintes digitales distinguant
les êtres humains et celles des navigateurs distinguant ces derniers, et évaluons les
empreintes de navigateur selon des propriétés de facteurs d’authentification biomé-
triques. Celles-ci comprennent la distinguabilité des empreintes, leur stabilité, leur
temps de collecte, leur taille en mémoire, l’efficacité d’un mécanisme de vérification
d’empreintes, la perte d’efficacité au fil du temps ou en fonction de populations de
navigateurs, et l’acceptabilité de la part des utilisateurs. Afin de comprendre les
résultats obtenus au sujet des empreintes, nous discutons aussi de l’apport des at-
tributs à chaque propriété, des corrélations observées entre attributs, et présentons
en annexe la liste exhaustive des attributs utilisés. En considérant nos attributs et
populations de navigateurs, nous atteignons un haut niveau de distinguabilité et
de stabilité. Ce niveau de distinguabilité et de stabilité permet d’obtenir une haute
précision en simulant un mécanisme simple de comparaison d’empreintes : nous
obtenons un taux d’erreur égal compris entre 0.61% et 4.30%. Un jeu de données
provenant de machines standardisées d’une université sort du lot et présente une
forte baisse de la distinguabilité, de la stabilité, et de la précision.
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Méthode de Sélection d’Attributs

Des centaines d’attributs sont à disposition des vérifieurs pour concevoir leur sonde
de prise d’empreinte de navigateur. L’ajout d’un attribut peut améliorer la recon-
naissance des navigateurs en apportant une information supplémentaire pouvant
distinguer deux navigateurs différents. Cependant, l’ajout d’un attribut a aussi un
coût d’utilisation : les empreintes requièrent un espace de stockage plus grand, un
temps de collecte plus long, et peuvent êtres plus difficiles à reconnaître si l’at-
tribut en question est instable. Dû aux corrélations survenant entre les attributs,
les sélectionner un par un serait peu efficace. De plus, l’apport d’un attribut dé-
pend de ceux déjà sélectionnés. Par exemple, certains attributs sont collectés en
parallèle, le temps requis pour les collecter n’est donc pas la somme de leur temps
de collecte individuel mais le temps de collecte du plus lent. Explorer toutes les
possibilités est aussi à proscrire puisque le nombre de possibilités croit de manière
exponentielle en fonction du nombre d’attributs.

Au travers de cette thèse, nous proposons une méthode de sélection d’attributs
tels qu’ils satisfassent un niveau de sécurité et réduisent les contraintes d’utilisa-
tion. Le niveau de sécurité est mesuré selon la proportion d’utilisateurs usurpés
étant donnés les attributs utilisés, une population de navigateurs, et un attaquant
modélisé. Nous considérons l’attaquant qui connaît la distribution exacte des em-
preintes des utilisateurs à protéger et qui est capable de présenter un nombre limité
d’empreintes contrefaites. Les contraintes sur l’utilisation sont mesurées selon le
temps de collecte des empreintes, leur taille, et leur instabilité. Nous comparons
notre méthode avec les méthodes courantes de sélection d’attributs reposant sur
l’entropie et l’entropie conditionnelle. Nous exécutons les méthodes sur des échan-
tillons de deux jeux de données, avec plusieurs niveaux de sécurité souhaités, et
plusieurs attaquants en fonction du nombre d’empreintes qu’ils puissent présenter.
Comparé à l’utilisation de tous nos attributs et en moyenne, les attributs sélec-
tionnés par notre méthode génèrent des empreintes qui sont de 12 à 1663 fois plus
petites, de 9 à 32330 fois plus rapide à collecter, et avec 4 à 30 fois moins d’at-
tributs changeants entre deux observations. Notre objectif de réduction du coût
d’utilisation des attributs est atteint en utilisant notre méthode. Nous obtenons
un coût jusqu’à trois ordres de grandeur plus bas comparé aux méthodes usuelles.



Abstract

Web authentication is the verification that a user claiming an account legitimately
owns this account. It widely relies on passwords, but several authentication factors
were proposed such that each factor provides an additional security barrier. Brow-
ser fingerprinting notably came out as a promising candidate. It is the collection of
attributes from a web browser to build its fingerprint which is potentially unique.
In this thesis, we provide two contributions to the field of browser fingerprinting
for web authentication :

1. We investigate the adequacy of browser fingerprints for web authentication.
We make the link between the browser fingerprints that distinguish browsers,
and the biometric fingerprints that distinguish Humans, to evaluate brow-
ser fingerprints according to properties inspired by biometric authentication
factors. We assess these properties on four real-life browser fingerprint data-
sets, which include one of nearly two million browsers. To comprehend the
properties of the fingerprints, we enrich our results with the contribution of
the attributes to the properties and the correlations between them.

2. We propose FPSelect, an attribute selection framework to find the attribute
set that satisfies a security requirement and reduces the usability cost. The
security is measured as the proportion of impersonated users given a finger-
printing probe, a user population, and a modeled attacker. The usability is
quantified by the collection time of the browser fingerprints, their size, and
their instability. We compare our framework with common baselines, based
on two real-life fingerprint datasets, and find out that it selects attribute sets
of lower usability cost in our experimental settings.
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Chapter 1

Introduction

Since the genesis of the World Wide Web – or web for short – at the end of the
eighties, the technologies surrounding the web never stopped developing. It is now
possible to hold video conferences [222], play video games1, or manipulate three-
dimensional scenes [221] using a common web browser. As the functionalities
of the web technologies evolve, a large variety of services become accessible on
the web. Examples are the social networks that help people connect each other,
the government websites that help citizens perform administrative procedures, or
the bank websites that help their clients execute financial transactions. Although
websites are usually publicly accessible, some services should be only accessible by
designated users. For example, the owner of a bank account should be the only
user that is authorized to perform transactions on her account. Therefore, website
owners have to verify that a user legitimately owns the account for which he wants
to perform an operation before authorizing him to do so. The problem that the
website owner has to solve is the authentication. It consists for the website owner,
called the verifier, to check that the user owns the claimed account.

To authenticate a user, the verifier asks him to provide pieces of evidence –
called authentication factors – that only the account owner should be able to
present. The most used authentication factor on the web is currently the pass-
word thanks to its ease of use and deployment [28]. However, passwords have been
shown to suffer from severe security flaws when used without any additional au-

1http://xproger.info/projects/OpenLara

1

http://xproger.info/projects/OpenLara
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thentication factor. Real-life users indeed use common passwords [94], which paves
the way to brute-force or guessing attacks [28]. Moreover, they tend to use similar
passwords across different websites [44], which increases the impact of successful
attacks. Phishing attacks are also a major threat to the use of passwords. Over the
course of a year, Thomas et al. [210] achieved to retrieve 12.4 million credentials
stolen by phishing kits. These flaws bring the need for supplementary security lay-
ers, primarily through multi-factor authentication [30] such that each additional
factor provides an additional security barrier. However, this usually comes at
the cost of usability (i.e., users have to remember, possess, or do something) and
deployability (i.e., verifiers have to deploy dedicated hardware or software, teach
users how to use them, and maintain the deployed solution). According to previ-
ous estimations [173, 149], the usage rate of multi-factor authentication is below
10%.

In the meantime, browser fingerprinting gains more and more attention. It is
the collection of attributes from a web browser to build its fingerprint, which is
potentially unique. In his thesis, Mayer [145] is the first to ask if "with all the
customizations now available [...] are any two web browsing environments iden-
tical?" By collecting four attributes from 1, 328 web browsers, he observes that
96.23% of them show a unique combination of these four attributes. Shortly af-
ter, Eckersley [56] published the results from the Panopticlick website [72] which
invited users to provide their browser fingerprint. Among the 470, 161 collected
fingerprints composed of 8 attributes, 83.6% were observed for a single browser.
This result showed the effectiveness of browser fingerprints to recognize browsers,
and lead the way of the research on browser fingerprinting. Since the discovery
of the technique, a plethora of attributes have been reported. They started from
the information provided by common JavaScript objects and HTTP headers [145,
56, 127], to images drawn by the browser [153, 36], to the installed fonts inferred
by the size of text boxes [65], to the technical information of a real-time commu-
nication [66], to the installed browser extensions [205, 199], and to audio signals
manipulated in the browser [179]. The first studies on browser fingerprinting focus
on the threat posed by browser fingerprinting to the privacy of web users, whether
it is about its effectiveness [56, 25, 228, 2, 96, 127], its use on the web [3, 57, 64],
or counter-measures to mitigate this threat [68, 61, 128, 211, 125]. In addition
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to being widely used for web tracking purposes (raising legal, ethical, and tech-
nical issues), browser fingerprinting is also used for web authentication. Verifiers
typically include browser fingerprints as a supplementary factor that is verified at
login. Browser fingerprints are indeed a promising candidate as an additional web
authentication factor thanks to their distinctive power, their frictionless deploy-
ment (e.g., no additional software or hardware to install), and their usability (no
secret to remember, no additional object to possess, and no supplementary action
to carry out). As a result, companies like MicroFocus [70] or SecureAuth [196]
include this technique into their authentication mechanisms.

1.1 Motivations

1.1.1 Adequacy of Browser Fingerprints for Authentica-
tion

To the best of our knowledge, no large-scale study rigorously evaluates the ad-
equacy of browser fingerprints as an additional web authentication factor. On
the one hand, most works about the use of browser fingerprints for authentica-
tion concentrate on the design of the authentication mechanism [212, 177, 79,
203, 124, 184]. On the other hand, the large-scale empirical studies on browser
fingerprints focus on their effectiveness as a web tracking tool [56, 127, 81, 178].
Such a mismatch between the understanding of browser fingerprints for authenti-
cation – currently poor – and their ongoing adoption in real-life is a serious harm
to the security of web users. The lack of documentation from the existing au-
thentication tools (e.g., about the used attributes, about the distinctiveness and
the stability of the resulting fingerprints) only adds up to the current state of
ignorance, all this whereas security-by-obscurity directly contradicts the most fun-
damental security principles. Moreover, the distinctiveness of browser fingerprints
that can be achieved when considering a wide-surface of fingerprinting attributes
on a large population is, to the best of our knowledge, unknown. On the one
hand, the studies that analyze browser fingerprints in a large-scale (more than
100, 000 fingerprints) consider fewer than thirty attributes [56, 127, 214, 81]. This
underestimates the distinctiveness of the fingerprints (e.g., [81] reports a rate of
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33.6% of unique fingerprints) as it increases the chances for browsers to share the
same fingerprint. All this whereas more than a hundred attributes are accessi-
ble. On the other hand, the studies that consider more than fifty attributes either
work on less than two thousand users [111, 178], or do not analyze the resulting
fingerprints at all [64]. The current knowledge about the hundreds of accessible
attributes (e.g., their stability, their collection time, their correlation) is, to the
best of our knowledge, also incomplete. Indeed, previous studies consider few at-
tributes [56, 153, 65, 36, 127, 199, 81, 179] or focus on a single aspect of them (e.g.,
their stability [214]). Furthermore, to the best of our knowledge, only Blake et
al. [24] studied two browser populations, but not according to the same properties
as the second population only gets the stability of their fingerprints studied. The
properties of the browser fingerprints that are collected during an experiment vary
according to the attributes that are used, but also according to the studied browser
population. To the best of our knowledge, no study compares the properties of
browser fingerprints collected from various browser populations.

1.1.2 Selection of Browser Fingerprinting Attributes

The verifiers are given a large choice of attributes2 to build their browser finger-
printing probe, and face the problem of which attributes to use. On the one hand,
the addition of an attribute to the probe can strengthen the distinctiveness of
browsers, which helps to distinguish a legitimate user from an impostor. On the
other hand, each addition comes with a usability cost that may render the probe
impractical in an online authentication context. Indeed, each attribute consumes
storage space (up to hundreds of kilobytes [36]), collection time (up to several min-
utes [152, 155, 157, 191, 193, 179]), and can increase the instability of the generated
fingerprints [214]. Moreover, some attributes are strongly correlated together, and
including them only increases the usability cost without increasing the distinctive-
ness. Due to these correlations, picking attributes one by one independently may

2Most attributes are properties accessed through the browser that are limited by its func-
tionalities. Other attributes are items which presence are checked (e.g., the fonts [83], the
extensions [199]) or the computation of specific instructions (e.g., the canvas [36]). These are
limited by the available items or instructions, which can be large (e.g., more than 2154 for the
canvas [124]).
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lead to poor distinctiveness and usability. Previous works cope with the problem of
attribute selection by considering the well-known attributes [56, 127, 81], removing
the attributes of the lowest entropy [214], picking iteratively the attribute of the
highest weight (typically the entropy) until a threshold is reached [146, 111, 65, 24,
91, 208], or evaluating every possible set [69]. The entropy measures the skewness
of the distribution of fingerprints or attribute values. As pointed out by Acar [4],
it does not take the worst cases into account (i.e., the most common values that
attackers can submit similarly to dictionary attacks on passwords [28]). Moreover,
fingerprints cannot be compared identically like passwords due to their evolution
through time. The impersonators do not need to find the exact fingerprint of a
victim, but one that is similar enough to deceive the verification mechanism. The
problem could be solved by exploring exhaustively the space of the possible at-
tribute sets, evaluating the distinctiveness and the usability cost of each set. This
is, however, infeasible as the number of attribute sets grows exponentially with
the number of attributes3.

1.2 Contributions

1.2.1 Assessing the Adequacy of Browser Fingerprints for
Web Authentication

We conduct the first large-scale data-centric empirical study of the fundamental
properties of browser fingerprints when used as an additional web authentication
factor. We base our findings on the analysis of our four fingerprint datasets, that
include a dataset of 4, 145, 408 fingerprints composed of 216 attributes plus 46
extracted attributes. In particular, this dataset includes nine dynamic attributes
of three types, which values depend on instructions provided by the verifier: five
HTML5 canvases [36], three audio fingerprinting methods [179], and a WebGL
canvas [153]. The dynamic attributes are used within state-of-the-art web authen-
tication mechanisms to mitigate replay attacks [184, 124]. Each dynamic attribute
has been studied singularly, but their fundamental properties have not yet been

3Obviously, this discards as well the manual selection of attributes.
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studied simultaneously on the same browser population. To the best of our knowl-
edge, no related work considers several datasets of this scale, in terms of both
fingerprints and attributes, together with various dynamic attributes. We formal-
ize, and assess on our datasets, the properties necessary for paving the way to
elaborate browser fingerprinting authentication mechanisms. We make the link
between the browser fingerprints that distinguish browsers, and the biological fin-
gerprints that distinguish Humans, to evaluate browser fingerprints according to
properties inspired by biometric authentication factors [139, 231, 75]. The prop-
erties aim at characterizing the adequacy and the practicability of browser finger-
prints, independently of their use within future authentication mechanisms. In
particular, we measure the size of the browser anonymity sets through time, the
proportion of identical attributes between two observations of the fingerprint of
a browser, the collection time of the fingerprints, their size, the loss of effective-
ness between device types, and the accuracy of a simple illustrative verification
mechanism. To comprehend the obtained results on the complete fingerprints, we
include an in-depth study of the contribution of the attributes to the fingerprint
properties. Moreover, we discuss the correlation between the attributes, make a
focus on the contribution of the dynamic attributes, and provide the exhaustive
list of the attributes together with their properties. To the best of our knowledge,
no previous work analyzed browser fingerprinting attributes at this scale, in terms
of the number of attributes, of the number of fingerprints, and of the variety of
properties (e.g., stability, collection time). We also present the results of a survey
about the authentication habits of users and the acceptability of an authentication
mechanism relying on browser fingerprinting.

1.2.2 Attribute Selection according to a Security and Us-
ability Trade-off

We place ourselves in the context of a verifier that aims to protect the users of
her web platform using a browser fingerprinting based authentication mechanism.
The verifier stores the fingerprint of the usual browser of each user. On each login,
the fingerprint of the browser of the user is matched against the fingerprint that
is stored for this user. The attacker tries to impersonate the users by submitting
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specially crafted fingerprints. The aim of the verifier is to limit the reach of the at-
tacker, also called sensitivity, which is measured as the proportion of impersonated
users. We propose the FPSelect framework to help verifiers choose the attributes
to include in their fingerprinting probe such that (1) the sensitivity against pow-
erful attackers knowing the fingerprint distribution of the protected users (i.e., the
worst-case distribution for the verifier) is bounded and the bound is set by the
verifier, and (2) the usability cost of collecting, storing, and using these attributes
is close to being minimal. FPSelect is parameterized with the sensitivity require-
ment, the number of submissions that the attacker is deemed able to execute, and
a representative sample of the fingerprints of the users. To design and evaluate the
FPSelect framework, we perform the following steps. We formalize the attribute
selection problem that a verifier has to solve to dimension her probe, and show that
this problem is NP-hard because it is a generalization of the Knapsack Problem.
We define the model of the dictionary attacker, whose adversarial power depends
on the knowledge of a fingerprint distribution and the number of fingerprint that
he is able to submit. We propose an illustrative measure to quantify the sensi-
tivity of a probe given a browser population and the number of fingerprints that
the attacker is able to submit. We propose an illustrative measure of the usability
cost that combines the size of the generated fingerprints, their collection time, and
their instability. We propose a heuristic algorithm for selecting an attribute set
that satisfies a higher bound on the sensitivity and reduces the usability cost. We
express this as a search problem in the lattice of the power set of the candidate
attributes. This heuristic is inspired by the Beam Search algorithm [103] and is
part of the Forward Selection algorithms [194]. We evaluate the FPSelect frame-
work on two real-life fingerprint datasets, and compare it with common attribute
selection methods based on the entropy and the conditional entropy. We show
experimentally that FPSelect finds attribute sets that have a lower usability cost
compared to both the candidate attributes and the baselines.

1.3 Scientific Publications

During this thesis, we published the papers that are listed below, from which parts
of this thesis were adapted.
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[13] Nampoina Andriamilanto, Tristan Allard, and Gaëtan Le Guelvouit.
“FPSelect: Low-Cost Browser Fingerprints for Mitigating Dictionary At-
tacks against Web Authentication Mechanisms". In: Annual Computer Se-
curity Applications Conference (ACSAC). ISBN: 978-1-4503-8858-0. DOI:
10.1145/3427228.3427297. URL: https://hal.archives-ouvertes.fr/hal-
02965948/document.

[12] Nampoina Andriamilanto, Tristan Allard, and Gaëtan Le Guelvouit.
“Guess Who? Large-Scale Data-Centric Study of the Adequacy of Browser
Fingerprints for Web Authentication". In: Innovative Mobile and Internet
Services in Ubiquitous Computing (IMIS). Ed. by L. Barolli, A. Poniszewska-
Maranda, and H. Park. 2021, pp. 161-172. ISBN: 978-3-030-50399-4. DOI:
10.1007/978-3-030-50399-4_16. URL: https://hal.archives-ouvertes.
fr/hal-02611624/document.

[15] Nampoina Andriamilanto, Gaëtan Le Guelvouit, and Tristan Allard.
“Browser Fingerprinting for Web Authentication, A Large-scale Empirical
Analysis". In: Rendez-Vous de la Recherche et de l’Enseignement de la
Sécurité des Systèmes d’Information (RESSI). National conference without
proceedings. 2019.

1.4 Outline of the Thesis

The remainder of this thesis is organized as follows.

• In Chapter 2, we present the current state of web authentication where the
usage of passwords is prevalent but flawed. We categorize the authentica-
tion methods that can supplement passwords, and remark that their usage
rate is limited due to usability and deployability costs. Then, we present
the browser fingerprinting technique, and the related works on its usage for
authentication. Finally, we position our contributions in the research axis of
browser fingerprinting for authentication. We notably make the link between
biometric authentication methods and browser fingerprinting.

https://doi.org/10.1145/3427228.3427297
https://hal.archives-ouvertes.fr/hal-02965948/document
https://hal.archives-ouvertes.fr/hal-02965948/document
https://doi.org/10.1007/978-3-030-50399-4_16
https://hal.archives-ouvertes.fr/hal-02611624/document
https://hal.archives-ouvertes.fr/hal-02611624/document
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• In Chapter 3, we present the four experiments that we performed. They are
the collection of browser fingerprints from four browser populations. The
populations are the browsers that visited one of the most visited French
website, those visiting the internal website of a company, the standardized
browsers of a university, and the browsers that participated in the test of
an authentication platform relying on browser fingerprints. As irrelevant
data appear in the collected datasets, we describe the preprocessing steps
performed to obtain the working datasets. We also introduce the survey
about the acceptability of browser fingerprinting for authentication that we
performed, by discussing respondent population and their current authenti-
cation habits.

• In Chapter 4, we present our contribution about the adequacy of browser
fingerprinting for web authentication. It takes the form of the first large-
scale data-centric empirical study of the properties of browser fingerprints
when used as an additional web authentication factor. We base our findings
on the analysis of our four fingerprint datasets. We make the link between
browser fingerprints and biometric authentication factors, and analyze the
former according to properties inspired by the latter. We complement our
results with the study of the contribution of the attributes to the properties
of the fingerprints.

• In Chapter 5, we present our contribution to the methods for selecting the
attributes to use: the FPSelect framework. This framework helps the veri-
fier select the attributes to include in his fingerprinting probe according to
a trade-off between the security and the usability of the generated finger-
prints. The security captures the robustness against a modeled attacker,
who leverages external knowledge to present specifically crafted fingerprints
to impersonate users. The usability is quantified according to the collection
time, the size, and the instability of the generated fingerprints. The frame-
work works by modeling the set of possibilities as a lattice, and by exploring
a parameterized number of paths in this lattice. We experimentally show
that the framework performs better than the common baselines.
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• Finally, Chapter 6 concludes this thesis, and discusses future works and
perspectives on browser fingerprinting for web authentication.



Chapter 2

Background and Context

In this chapter, we begin by presenting the current state of web authentication
and by defining the terms related to authentication. We show that the most
used web authentication method is the password, and argue that it suffers from
several flaws. We classify the other authentication methods that can supplement
passwords to mitigate these flaws, and remark that their usage rate is estimated as
low. Indeed, each of these methods comes with a usability cost or a deployability
cost that can prevent people from implementing or using them. We present the
related works that propose frameworks to evaluate and compare authentication
methods. Among these methods, we focus on the biometric methods as they have
the particularity of being inexact (e.g., a digital fingerprint is not matched exactly
like passwords as changes can occur through time). One important property of
authentication methods is their robustness against attacks. Hence, we highlight
the common attacks that can be executed on authentication methods.

Second, we focus on a promising candidate: browser fingerprinting. It aims
at distinguishing browsers based on attributes that can be collected transparently
from the browser. We present the history of browser fingerprinting, the attributes
discovered through time, and the usual measures of distinctiveness and stability
to evaluate them. We provide the known usages of browser fingerprinting, and ac-
knowledge that it is mainly used for web tracking purposes. Although browser fin-
gerprinting is mainly used for identification, we are interested in its contribution to
web authentication. We provide related works on the usages for both identification

11
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and authentication. The related works on the latter propose to include the browser
fingerprint as additional verified information in authentication mechanisms, study
the adequacy of browser fingerprints for authentication, propose methods to reduce
the number of collected attributes, and design challenge-response mechanisms that
leverage the dynamic attributes to thwart replay attacks. We position our contri-
butions in relation to the research axis of browser fingerprinting for authentication.
We notably make the link between biometric authentication factors and browser
fingerprints to evaluate the latter according to properties inspired by the former.
Indeed, they both consist into extracting features (e.g., a digital fingerprint, a
browser fingerprint) from a unique entity (i.e., a person, a browser) to authenti-
cate the entity. Imperfections can occur as we manipulate digital representation
of the features (e.g., two persons or two browsers can share the same fingerprint).
Some evaluated properties capture the severity of these imperfections.

This chapter is organized as follows. First, Section 2.1 presents the current state
of web authentication, the wide usage of passwords, and the candidate authenti-
cation factors to supplement them. Then, we present the browser fingerprinting
technique in Section 2.2, the known attributes, and its various uses. Section 2.3
focuses on browser fingerprinting for authentication, for which we provide related
works, and in which we position of our contributions. Finally, Section 2.4 con-
cludes.

2.1 Web Authentication

In this section, we begin by defining the terms of authentication, user authentica-
tion, and web authentication. Then, we present the current state of web authen-
tication that widely relies on passwords. Third, we present the several flaws that
passwords suffer from, which lead to the use of additional authentication factors.
We argue that the factors proposed can decrease the usability or the deployabil-
ity of the authentication mechanism. To comprehend how authentication factors
affect a mechanism, previous works have proposed frameworks to evaluate them.
Fourth, we present an overview of these frameworks, and focus on the desirable
properties of biometric factors. The biometric factors interest us, as the scheme
that integrate them have to cope with imperfections. For example, the same nu-
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merical representation of the biometric factor – called the biometric template –
can be shared by two persons, and the biometric template of a person can evolve
through time.

2.1.1 Definitions

User Authentication

According to the Merriam-Webster online dictionary1, authentication is the “act,
process, or method of showing something to be real, true, or genuine”. In computer
science, the term usually refers to the verification of the identity of a user. It
consists into a user claiming an identity (e.g., a bank account, a student account)
to a verifier (e.g., a bank, a university). The claiming user is called the claimant
for simplicity. To prove that the claimed identity belongs to the claimant, the
claimant presents credentials that are proofs that the identity belongs to him
(e.g., a password, a student card). The verifier compares the provided credentials
with the credentials associated to the claimed identity. If the verifier deems the
credentials genuine, he grants the claimed identity to the claimant. Otherwise,
the verifier does not grant the identity, and can take restrictive measures towards
this user as it can be an attempt of fraudulent access. User authentication is the
process of verifying that the claimed identity belongs to the claimant.

Authentication Factor, Scheme, and Mechanism

The credentials are more specifically called authentication factors. An authenti-
cation factor is a piece of evidence that the claimant present to the verifier, to
support his claim that the identity belongs to him. Examples of authentication
factors are passwords, phone numbers, and fingerprints.

An authentication scheme is the set of processes that are needed to verify an
authentication factor. The same authentication factor can be used by multiple
authentication schemes. For example, several authentication schemes that use the
fingerprint authentication factor have been proposed [118]. They typically differ on
the quantization of the fingerprints and on the parameters used (e.g., the threshold

1https://www.merriam-webster.com/dictionary/authentication

https://www.merriam-webster.com/dictionary/authentication
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on the matching score, the parameters of the machine learning model).
An authentication mechanism is the complete system that integrates one or

several authentication schemes and manages their combination. The verifier de-
signs the authentication mechanism that she implements in her web platform. For
example, she implements a mechanism that relies on a password and on a digital
fingerprint, which only asks for the fingerprint if the password is correct, and which
verifies the fingerprint according to a given fingerprint verification mechanism.

Difference with Identification and Authorization

As authentication is sometimes mistaken with identification or authorization, we
highlight here the differences between these terms.

Identification is, according to the Cambridge online dictionary2, the “act of
recognizing and naming someone or something”. User authentication refers to
the verification that the identity claimed by a user legitimately belongs to her,
answering the question “is this user who she claims to be?”. User identification
consists into the retrieval of the identity of a user, answering the question “who
is this user?”. Authentication is a one-to-one matching, as the verifier receives a
claimed identity, and compares the information of the claimed identity with the
information provided by the claimant. Identification is a one-to-many matching,
as the verifier searches for the identity which matches with the information of
the user to identify. We stress that authentication factors can also be used for
identification (e.g., facial or fingerprint recognition).

Authorization occurs after the claimed identity is granted to the claimant. It
consists into the verification that the identity is authorized to execute actions (e.g.,
access, modification) on resources (e.g., files, information), answering the question
“is this identity authorized to do this action on this resource?”.

Enrollment, Verification, and Recovery

An authentication mechanism is composed of three separate stages. The initial
stage is the enrollment, which is the association of the authentication factors to
an identity. For example, a user that enters his chosen password at the creation of

2https://dictionary.cambridge.org/us/dictionary/english/identification

https://dictionary.cambridge.org/us/dictionary/english/identification
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http://example.com
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Figure 2.1: Web authentication process between the verifier’s web platform and a
user.

his account, or a bank that binds a set of security codes to a customer’s account
before sending them to him. After linking the authentication factors to an identity,
users can claim this identity by presenting the factors (e.g., entering the password).
This stage is called the verification, as the verifier checks the presented factors.
Finally, the recovery is a stage during which users use another set of factors, due
to the inability to use one or many primary authentication factors. It occurs when
users are unable to present one of the required factor, e.g., when they forget their
password or lose their physical token.

Web Authentication

In this thesis, we focus on the authentication of a user in a web context, that
we call web authentication for simplicity. The verifier controls a website that
contains resources that are private to specific users. A user navigates to the
verifier’s website using a standard web browser, and claims an identity to the
verifier. The identity is typically identified by a username, an email, or a phone
number [180]. The claimant also provides authentication factors as proofs that
the identity belongs to him. If the authentication factors are deemed genuine by
the verifier, the verifier grants the identity to the claimant, and the claimant can
access the resources that are private to this identity. Figure 2.1 depicts a web
authentication process between the verifier’s web platform and a user.

A concrete example is a bank that controls a banking site, and that only
authorizes the owner of a bank account to carry out operations on it. The users
identify themselves on the banking site using their customer number, and provide
a password as credential. The bank compares the submitted password with that
of the claimed account, and grants the identity of the claimed account to the user
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only if the passwords match. Otherwise, the bank does not grant the identity to
the user, prevents any authentication attempt for a given amount of time, and
notifies the account owner about the failed attempt.

2.1.2 Wide Usage and Flaws of Passwords

Nowadays, the authentication factor most implemented by verifiers is the pass-
word [27, 180]. This is mostly due to its ease of use, its ease of deployment, and
the familiarity of users to it. Indeed, passwords are strings of characters that
are chosen by users, and submitted to the verifier through a simple form on his
website on each authentication. On the other side, verifiers only have to process a
strict comparison between the submitted password and the password stored for the
claimed account. Although passwords are widely used, they are known to suffer
from several flaws. We describe these flaws in this section.

Password Guessability

Passwords are chosen by human users and are not randomly picked in the space of
possibilities. They are usually composed of common words (e.g., common names)
or common sequences of digits (e.g., dates, zip codes). This makes them easier
for an attacker to guess, either through an offline guessing attack, or to a lesser
extent, through an online guessing attack. We describe below these two types of
guessing attack.

An offline guessing attack [223] consists into getting couples of identifier and
password hash, and retrieving the plain text of the hashed passwords. This is
done by hashing selected plain texts, and comparing the obtained hash with the
hashes to retrieve. This attack is then limited by the computational power of
the attacker. An online guessing attack [220] consists into submitting couples of
identifier and password directly to the authentication service of the website. This
is done by submitting the most probable passwords given the knowledge of the
attacker about the victims’ password. This attack is then limited by the capacity
of the verifier to limit the authentication attempts to a given identity. To execute
both of these guessing attacks, attackers need to find the passwords to try. They
can do this by brute force attacks, or more efficiently by dictionary attacks. We
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describe these two attacks below.
Brute force attacks consist into trying every possible password. Although rate

limiting policies mitigate this threat for online attacks, advances in computation
power enable the generation of every password composed of 8 characters in less
than a day in an offline attack3. Brute force attacks can be enhanced using rainbow
tables, that are precomputed lookup tables that provide a time-memory trade-off.
Already in 2003, using such tables, Oechslin managed to break 99.9% of alphanu-
merical passwords for Windows operating systems in a matter of seconds [165].

Dictionary attacks work by trying the most probable passwords first, given
knowledge about passwords or their patterns. Weir et al. [223] proposed a method
to infer the most common password patterns from a password dictionary (e.g., a
digit followed by five letters), and to generate passwords according to these com-
mon patterns. The researchers used a dataset of more than 60, 000 real passwords,
that they cut in two to form the training set, and the set of the passwords to crack
(i.e., that would have been hashed and which plaintext would be to retrieve). They
achieve an increase of the cracked passwords up to 129% compared to the state-
of-the-art tool in 2009, namely John the Ripper4, and manage to crack more than
10 thousand passwords among the 33 thousand passwords to retrieve. Most recent
dictionary attacks leverage targeted knowledge about victims (e.g., another used
password, personal information) to increase the number of cracked passwords (e.g.,
Wang et al. [220] manages to crack 77% of their passwords with 100 tries). This
effectiveness questions the robustness of websites against online guessing attacks.
Indeed, Lu et al. [136] examined the rate-limiting policies of 182 websites among
the 500 most visited websites in the United States5 at the date of December 21,
2017. They found that 131 of these websites allow more than 100 authentication
attempts.

Password Reuse and Data Leaks

Due to the guessing attacks being facilitated by the skewness of the distribution of
user-chosen passwords, verifiers enforce stricter password policies. These policies

3https://www.theregister.co.uk/2019/02/14/password_length
4https://www.openwall.com/john
5https://www.alexa.com/topsites/countries/US

https://www.theregister.co.uk/2019/02/14/password_length
https://www.openwall.com/john
https://www.alexa.com/topsites/countries/US
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typically require users to use a password longer than a specific size, and that is
composed of various characters including lowercase, uppercase, digits, and sym-
bols. However, more complex password policy hardens password creation and
recall [198]. This leads to users undergoing the process of account recovery more
often, or to wrong behavior like writing passwords on a piece of paper.

The problem of password memorability is exacerbated by users having more
and more accounts, hence more and more passwords to remember. The average
number of online accounts that a user have is not well-known, and estimations vary.
In 2014, a report from Experian stated that Britons have 19 online accounts on
average [60]. Another report from Dashlane in 2015 stated that an email address
was associated to more than 90 online accounts on average6. More recently, a
report from Okta in 2019 stated that, on average, workers have 10 passwords to
remember in their everyday professional life.

Users tend to reuse the same password for multiple online accounts, or slight
modification of an already used password. Wang et al. [218] studied the password
reuse and modification patterns of 28 million users. They found that 38% of the
users reuse at least one password on several accounts, and 21% use at least one
modification of an already used password. The leak of a user’s password can then
highly impact the security of his online accounts.

In a world where companies tend to store a large amount of data, data leaks
are common. These leaks even regularly contain passwords. The BreachAlarm
project7 keeps track of data leaks, and hardly a day goes by without a new leak
being added to the long list. The HaveIBeenPwned project8 keeps track of data
leaks in a less granular way, but allows users to check whether their email address
is present in a leak. To date, the project allows searching among 438 leaks that
concern more than 9 billion accounts. Figure 2.2 displays the visualization of the
data breaches occurring over the last three years, that were recorded by informa-
tionisbeautiful.net9 at the date of the 1st April 2020. The reuse of passwords,

6https://web.archive.org/web/20191211045559/https://blog.dashlane.com/
infographic-online-overload-its-worse-than-you-thought

7https://breachalarm.com/all-sources
8https://haveibeenpwned.com
9https://www.informationisbeautiful.net/visualizations/worlds-biggest-data-

breaches-hacks

https://web.archive.org/web/20191211045559/https://blog.dashlane.com/infographic-online-overload-its-worse-than-you-thought
https://web.archive.org/web/20191211045559/https://blog.dashlane.com/infographic-online-overload-its-worse-than-you-thought
https://breachalarm.com/all-sources
https://haveibeenpwned.com
https://www.informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks
https://www.informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks
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Figure 2.2: Data breaches that occurred over the last three years that were
recorded by informationisbeautiful.net at the date of the 1st April 2020. The
warmer the color is, the more sensitive is the data.

combined with the large amount of password leaks, increases the effectiveness of
credential stuffing attacks10, which consist into using stolen couples of identifier
and password to authenticate to websites. The reach of the dictionary attacks
based on targeted knowledge [220] is also enhanced.

Phishing Attacks

Instead of waiting for password leaks to happen, or stealing the passwords stored
by a website, an attacker can directly ask users for their password. Attackers do
not present themselves as such, but instead use subterfuges to present themselves
as an entity trusted by the victim. This is called a phishing attack, and can be
effective as deceiving unaware users is easier than attacking a well-secured website.

The Google Transparency Report11 publishes the number of detected phish-
ing websites per week. To date, around 30 thousand new phishing websites are

10https://www.wired.com/story/what-is-credential-stuffing
11https://transparencyreport.google.com/safe-browsing/overview

https://www.wired.com/story/what-is-credential-stuffing
https://transparencyreport.google.com/safe-browsing/overview
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detected every week, compared to less than 10 thousand 10 years ago. More-
over, phishing websites manage to get valid certificates [117], deceiving even more
the users as common browsers used to display a green padlock in their interface.
Since, most common browsers switched to a gray padlock instead of a green one
(see Chrome12 and Firefox [89]). Other browsers keep the green padlock when
the entity behind the website is also verified by Extended Validation, which links
the certificate with a company’s name that is then displayed in the interface (see
Edge13). However, users can still be deceived by the impression of trustfulness
induced by the padlock, and phishing websites can get an Extended Validation
certificate with a name similar to the name of the entity owning the impersonated
website [95].

Thomas et al. [210], over the period of March 2016 to March 2017, compiled
passwords stolen through leaks, keyloggers14, and phishing kits15. They managed
to retrieve 3 million victims of phishing kits, and an additional 12 million Gmail
users that were potentially victims of these kits. They explain that, although they
compiled more passwords coming from leaks than phishing kits, a password stolen
through a phishing kit is more likely to match the password currently in use by
the victim. Indeed, they report a match rate of 24.8% for the passwords stolen
through phishing kits, against 6.9% for the leaked passwords, and 11.9% for the
passwords stolen by a keylogger. They conclude that having his password stolen
through a phishing kit increases the chances of getting his account hijacked by
more than 400 times.

2.1.3 Multi-Factor Authentication

Because of the multiplicity of password flaws, verifiers need to replace or supple-
ment passwords with other ways of verifying users’ identity. We classify authenti-
cation factors into the four well-known categories that are described below, and for
which we provide examples. These factors can supplement passwords in what is

12https://blog.chromium.org/2018/05/evolving-chromes-security-indicators.html
13https://expeditedsecurity.com/blog/dv-ssl-in-microsoft-edge
14A keylogger is a malware that spies on the actions of the user on his computer, typically by

recording the pressed keys, the mouse movements, and screenshots.
15Phishing kits are packages that allow attackers to easily deploy phishing attacks. They

comprise the fake website and the tool to report the stolen passwords.

https://blog.chromium.org/2018/05/evolving-chromes-security-indicators.html
https://expeditedsecurity.com/blog/dv-ssl-in-microsoft-edge


2.1. WEB AUTHENTICATION 21

called multi-factor authentication (MFA), which is an authentication process that
relies on factors from at least two different categories. If relying on exactly two
categories, it is called two-factor authentication (2FA). According to estimations
done in 2015 [173] and 2018 [149], the usage rate of MFA is below 10%.

Classification of Authentication Factors

We provide below the well-known categories of authentication factors. We stress
that in a web context, not all authentication factors are usable (e.g., the ones
that require a specific scanner), but web browsers evolve to include more APIs
that allow implementers to access a wide range of factors (e.g., the W3C Web
Authentication standard16).

What you know Knowledge factors consist into a secret shared between the user
and the verifier. The verifier authenticates the user by verifying that he knows
the secret. Passwords are part of this category, together with unlock patterns of
mobile phones [23], and answers to personal questions [181, 29].

What you have Possession factors consist into an object or an entity that the
user possesses. The verifier authenticates the user by verifying that he has the
object or the entity. Examples are security tokens [48] or mobile phones [116].

What you are or what you can do Biometric factors comprise anatomi-
cal and behavioral factors. Anatomical factors consist into the measurements of
physical properties of the user’s body. The verifier authenticates the user by veri-
fying parts of his body. Examples are fingerprint [139], face [161], or iris recogni-
tion [119]. Behavioral factors consist into how the user interacts with the physical
world. The verifier authenticates the user by verifying that he behaves the same
way. Examples are keystroke dynamics [202], mouse dynamics [202], touch-based
gestures [189], or gait analysis [159].

When and where you authenticate Context-based factors concern the loca-
tion from where, and the time when, the user authenticates. The verifier authenti-

16https://www.w3.org/TR/webauthn

https://www.w3.org/TR/webauthn
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cates the user by verifying that the process takes place in a geographical location,
and in a time window, that is in line with the user’s usual behavior. Examples
are the hour of the day [202], and the geographical location inferred from the IP17

address of the user [224] or obtained from a GPS sensor [7].

Types of Web Authentication

Explicit and Implicit Authentication Schemes Authentication schemes can
be classified into the explicit and the implicit schemes. Explicit authentication
schemes require the user to undergo an action, and typically use authentication
factors of the first three categories. Indeed, users have to enter the secret, prove
that they possess the object or the entity, or undergo the scanning process of their
body parts. Implicit authentication schemes are executed transparently, without
the user noticing the verification [112]. They usually leverage an authentication
factor that is either a behavioral factor, or a context-based factor. For example,
the mouse movements of users can be verified during their interaction with the web
page, and their location can be inferred by their IP address that is transmitted
with their communications.

Static and Continuous Authentication Mechanisms The authentication
process can be executed at two different times. It can be done at log-in for static
authentication mechanisms. The verifier checks the identity of the user at log-
in, and assigns the claimed identity to the user for this browsing session if she is
deemed legitimate. It is typically performed by assigning a session cookie to the
user’s browser, that allows the verifier to maintain the granted identity. The au-
thentication mechanism can also be continuous, in which case the verifier assesses
the legitimacy of the user throughout his browsing session. Such mechanisms seek
to thwart account hijacking attacks by leveraging implicit authentication schemes.

Risk-Based Authentication The sensitivity of the resources to which an iden-
tified user can have access can be variable. A verifier can allow users to use

17IP stands for Internet Protocol. The IP address is a label assigned to each device, allowing
it to communicate on the Internet.
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less constraining authentication schemes for insensitive resources (e.g., solely pass-
words), and can require users to use more robust and more constraining schemes for
sensitive resources (e.g., a one-time password). This is the main idea of risk-based
authentication [224]. It consists into assigning a risk level to users depending on
how they authenticated, and requiring the risk level to be higher than a threshold
to allow the access to a specific resource. Quermann et al. [180] observed real-
world usages of risk-based authentication by German banks. The websites of the
studied banks ask users for their password when users access their transactions or
their balances, and require users to present a second factor when accessing other
functionalities like the processing of a financial transaction.

Fallback Authentication It happens that users are unable to present one of the
requested authentication factors, like when they forget their password or lose their
physical token. To allow a user to recover the access to his account, the verifier
has to authenticate the user by other factors than the ones that the user is unable
to provide. It is typically done by sending an email to the address registered to the
account, containing a code or a link that allows the user to reinitialize the primary
factors (e.g., a password). This process is called fallback authentication [181, 180],
and is more rarely executed than the primary authentication process. For example,
Brostoff and Sasse [33] estimated the rate of password recovery to 1 per 4-5 users
per month.

Low Usage of Multi-Factor Authentication

Verifiers have several candidate authentication factors to replace or to supplement
passwords. Even though websites already propose to use additional factors to
passwords [180], few users authenticate using multiple factors. Petsas et al. [173],
in 2015, examined over 100 thousand Google accounts and found that only 6.4%
of them activated two-factor authentication. Milka Grzergor, a Google engineer,
later confirmed their findings during a talk at Enigma 2018 [149]. He presented a
use rate of two-factor authentication by active Google accounts that is lower than
10%.
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2.1.4 Evaluation of Authentication Schemes

The obstacles to the wide usage of MFA stem from the lack of usability, security, or
deployability of the candidate authentication schemes [27] compared to passwords.
To select the authentication schemes to implement among the candidates, a verifier
needs a way to compare them on a common ground. In this section, we present
the related works about benchmarks to quantify or qualify the desirable properties
that an ideal authentication scheme should have.

Ruoti et al. [188] analyzed the usability of seven web authentication mecha-
nisms according to the metric of the System Usability Scale (SUS) [32]. The SUS
metric measures the perception of the usability of a system by users on a numerical
scale that goes from 0 to 100. The metric is measured by asking users 10 questions
about their perceived usability of the authentication mechanism.

Bonneau et al. [27] proposed the Usability Deployability Security (UDS) frame-
work that embarks 25 properties qualifying the usability, deployability, and security
of authentication mechanisms. Moreover, they evaluated 35 authentication mech-
anisms according to the UDS framework. They concluded that most evaluated
mechanisms provide a better security than passwords, that some offer a better
usability, but that all of them provide a worse deployability.

Alaca et al. [7] extended the UDS framework with 2 additional usability prop-
erties and 4 additional security properties. These new properties focus on inexact
authentication schemes, like the No-False-Accepts and No-False-Rejects proper-
ties that are tied to the effectiveness of the verification mechanism, and on the
resistance against impersonation attacks.

2.1.5 Evaluation of Biometric Authentication Schemes

Biometric authentication factors and browser fingerprints share strong similarities.
They both work by extracting features from a unique entity, which is a person for
the former and a browser for the latter, that can be used for identification or au-
thentication. Although the entity is unique, the extracted features are a digital
representation of the entity, that can lead to imperfections (e.g., the fingerprints
of two different persons can show similar representations). Previous studies [139,
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231, 75] identified the properties for a biometric characteristic to be usable18 as an
authentication factor, and the additional properties for a biometric authentication
scheme to be practical. Moreover, they present the common metrics used to evalu-
ate these authentication schemes, and the visualizations to compare them. These
properties are commonly used to compare biometric or behavioral authentication
schemes [176, 231, 75, 147], so are the metrics [140, 164, 75, 147, 55] and the
visualizations [118].

Usability and Practicability Properties

Required Properties for Usability The four properties needed for an anatom-
ical or a behavioral characteristic to be usable as a biometric authentication factor
are described below.

• Universality: the characteristic should be present in everyone.

• Distinctiveness: two distinct persons should have different characteristics.

• Permanence: the same person should have the same characteristic over time.

• Collectibility: the characteristic should be collectible and measurable.

Properties for Practicability The three properties that a biometric scheme
requires to be practical are the following.

• Performance: the scheme should be accurate, consume few resources, and
be robust against environmental changes.

• Acceptability: the users should accept to use the scheme in their daily lives.

• Circumvention: it should be difficult for an attacker to deceive the scheme.

18Here, usable refers to the adequacy of the characteristic to be used for authentication, rather
than the ease of use by the users.
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Metrics and Visualizations

Metrics A user is either a genuine user (i.e., she owns the claimed identity) or
an impostor (i.e., she is claiming an identity that is not hers). The verifier stores
the numerical representation of the biometric characteristic of the user during the
enrollment process. This numerical representation is called the biometric template.
The verifier then defines a matching function that, given the template stored for the
claimed identity and the one presented by the claimant, returns a matching score.
The higher this matching score is, the higher is the confidence that the claimant
is the genuine user. The verifier defines a threshold above which the claimant is
deemed legitimate, and below which the claimant is deemed an impostor. The
four metrics are related to the ability of the verification mechanism to correctly
classify a user into her true class, depending on the configured threshold.

• False Match Rate (FMR): the proportion of impostor users that are classified
as legitimate, also called the False Acceptance Rate (FAR).

• False Non-Match Rate (FNMR): the proportion of legitimate users that are
classified as impostors, also called the False Reject Rate (FRR).

• Equal Error Rate (ERR): the rate for the threshold that provides equality19

between the FMR and the FNMR.

• Accuracy: the proportion of users classified as their true class.

Visualizations To evaluate or compare biometric authentication schemes, two
visualizations are commonly used. Increasing the threshold decreases the FMR
and increases the FNMR, as the verification mechanism considers more cases as
impostor and is stricter. The opposite also holds. It is then important to display
the results with respect to the threshold.

19If we seek to minimize the FMR, we could pick the lowest threshold. As a result, every user
is deemed an impostor, the FMR is null, and the FNMR is 1.0. On the contrary, if we seek to
minimize the FNMR, we could pick the highest threshold. As a result, every user is deemed
genuine, the FNMR is null, and the FMR is 1.0. The FMR decreases monotonically, and the
FNMR increases monotonically, with the increase of the threshold. As the value of the FMR
and the FNMR are impacted by the threshold, the measure of the EER allow us to provide a
balanced indicator.
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• Guenuine and impostor matching score distribution: this visualization dis-
plays the distribution of the matching score of the genuine and impostor
classes with respect to the threshold.

• Detection-Error Tradeoff (DET) curve: this visualization displays the FMR
and FNMR, usually in logarithmic scale, for several threshold values.

2.1.6 Robustness of Authentication Schemes against At-
tacks

One important aspect of authentication schemes is the security they provide, that
is usually expressed as their robustness against attacks. We provide here a list of
attacks against which an authentication scheme should be robust to. These attacks
consist into an attacker seeking to impersonate one or several legitimate users. We
compiled the attacks from the security properties of the UDS framework [27], and
from studies related to the evaluation of authentication schemes [164, 219, 124].

Guessing An attacker can search for a value to present to the authentication
scheme to impersonate a user (e.g., a password, a biometric template). To do so,
the attacker can try every possible value, or leverage the skewness of the value
distribution to increase his chances of impersonation. The former method is called
brute force and simply consists into trying every possible value. The reach of this
method is limited in an online context as the verifier can enforce a rate limiting
policy, whereas it can be more efficient in an offline context. The latter method
is called dictionary attack and requires the attacker to have the knowledge of a
distribution over the possible values. We note that Section 2.1.2 discusses the
sensitivity of passwords against these two attacks. To mitigate guessing attacks,
there are several requirements. The space of the possible values should be large
enough to thwart a brute force attack. The values should be distributed uniformly
to mitigate dictionary attacks. The rate limit should be low enough to reduce the
number of presentations that an attacker can perform. The reach of the attacker
is limited by his computing power for offline attacks, over which the verifier has
no control.
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Targeted Impersonation To increase his chances of impersonation, an attacker
can leverage targeted knowledge about a victim. Such attacks are called targeted
impersonation attacks or mimicry attacks [7]. The difference between the dictio-
nary attack and the targeted impersonation attack is that, for the former there
can be no information about the victim in the attacker’s knowledge, whereas in
the latter there is. The scope of targeted knowledge is large, and includes personal
information [29], behavioral information [197], and leaks from other verifiers [220].

Replay If an attacker has complete knowledge over the value taken by the au-
thentication factor of a victim, he can execute a replay attack to impersonate this
victim. It simply consists for the attacker to present the value. The credential
stuffing attack over passwords that is described in Section 2.1.2 falls within the
family of replay attacks. Presentation attacks are replay attacks that specifically
target biometric systems, and consist into presenting a spoofed anatomical feature
to the biometric sensor. For example, Matsumoto et al. [144] managed to de-
ceive fingerprint biometric systems by presenting fake fingerprints made of easily
accessible gelatin, and forged from fingerprint residue.

Relay Relay attacks are like phishing attacks with the difference that they work
in real-time. In these attacks, the attacker mounts a system that allows him to pose
as the verifier to a victim, and as the victim to the verifier. These attacks were
already analyzed outside a web context, particularly for wireless authentication
mechanisms. Kfir et al. [110] executed relay attacks on contactless smart card
systems, Francillon et al. [73] on passive keyless entry systems of cars, and Roland
et al. [185] on a mobile contactless payment system. Relay attacks are also already
used by thieves in the real-world [122]. In a web context, Amnesty International
reported relay attacks targeting privacy-conscious users [99]. The strength of these
attacks is that they manage to bypass two-factor authentication20 by relaying the
request for an SMS One-Time Password (OTP) from the verifier to the victim,
and relaying back the OTP entered by the victim to the verifier. Ways to mitigate
relay attacks are distance-bounding protocols [73, 20].

20https://blog.duszynski.eu/phishing-ng-bypassing-2fa-with-modlishka

https://blog.duszynski.eu/phishing-ng-bypassing-2fa-with-modlishka
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Internal Observation An attacker can get access to a victim’s device, typically
by tricking the victim into installing a malware. This attack is called an internal
observation attack, and allows the attacker to observe the actions of the victim,
the computations of the device, and the communications. Eavesdropping are the
internal observation attacks that focus on analyzing the communications. It can be
performed by a man-in-the-middle attack, that consists into the attacker getting
access to the network packets on the communication channel between the verifier
and the victim. However, due to the wide-usage of encryption for the exchange of
sensitive information on the web, it would be easier for attackers to compromise
the devices than the communications. A concrete example is an attacker that gets
a keylogger installed on a victim’s device, and retrieves the victim’s password by
registering the pressed keys.

Physical Attack An attacker that is physically close to the user can execute
physical attacks, that comprise shoulder surfing and theft. Shoulder surfing [23]
consists into an attacker observing a victim during the authentication phase, with
his own eyes or with observation tools (e.g., binoculars, cameras). An attacker can
simply steal the possession factors of a victim, like a physical token for example.
These two attacks are not effective on every authentication schemes, and can
be mitigated by the protection of the authentication factor (e.g., protecting the
physical token or the entry of the password). Moreover, previous works [86, 23]
proposed authentication schemes that are robust against shoulder surfing.

2.2 Browser Fingerprinting

In this section, we present the technique of browser fingerprinting, that consists
into distinguishing browsers by collecting browser attributes. An attribute is an
information that is accessible through the browser, and which can differentiate two
browsers (e.g., the UserAgent JavaScript property [186] which gives a technical
description of the browser). There is no list of the accessible attributes, as they
depend on the evolution of web technologies, and some are the result of side effects
(e.g., the drawning of a scheme [153, 36], the inference of installed fonts [65, 83] or
extensions [205, 199]). We give an overview of the attributes that were discovered,
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together with the properties against which they are usually evaluated, and the
various usages of browser fingerprinting.

2.2.1 Discovery of Browser Fingerprinting

At the start of 2020, DataReportal estimated that there are more than 4.5 billion
Internet users in the world [46], and that this number keeps increasing (it is 7%
more than what was observed in 2019 at the same period). Moreover, the place
that Internet takes in our daily lives is important. The same report states that the
average Internet user spends more than 6 hours per day online. One of the main
usage of the Internet is the access to the web, mostly through mobile applications
or web browsers.

Since the release of the first readily accessible web browser in 199121, browsers
have evolved to support more and more functionalities. This evolution stems
from the need of users to use the same platform to perform their online activi-
ties. Modern browsers allow users to watch videos, make video conference22, and
even play video games23. Moreover, users are given a large choice of browsing
platform, thanks to the diversity of device types (e.g., smartphones, desktop com-
puters, smart TVs), operating systems (e.g., Linux-based, macOS, Android), and
web browsers (e.g., Chrome, Firefox, Edge). Web developers had to adapt to this
diversity, and develop their web pages for compatibility between browsing plat-
forms (e.g., by the principles of cross-browser compatibility24 and responsive web
design25). To help web developers, browsers are built to give access to information
about the browsing platform. Examples are the HTTP26 header named UserA-
gent [187] that provides the browser family and version, and the various screen
related information provided by the screen JavaScript object [45]. Finally, users
can customize their browser, by configuring the settings (e.g., the language, the

21http://line-mode.cern.ch
22https://www.w3.org/TR/webrtc
23http://xproger.info/projects/OpenLara
24https://developer.mozilla.org/en-US/docs/Learn/Tools_and_testing/Cross_

browser_testing
25https://www.w3schools.com/html/html_responsive.asp
26HTTP stands for Hyper Text Transfer Protocol. It is the protocol that defines the way to

communicate information on the web.

http://line-mode.cern.ch
https://www.w3.org/TR/webrtc
http://xproger.info/projects/OpenLara
https://developer.mozilla.org/en-US/docs/Learn/Tools_and_testing/Cross_browser_testing
https://developer.mozilla.org/en-US/docs/Learn/Tools_and_testing/Cross_browser_testing
https://www.w3schools.com/html/html_responsive.asp
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Do Not Track signal [71]), and by installing themes, fonts27, plugins, or exten-
sions [106]. The browser functionalities, the diversity of browsing platforms, and
the user customizations all contribute to the overall diversity of browsers.

Jonathan R. Mayer is the first [145], in 2009, to ask if “with all the customiza-
tions” are there “any two web browsing environments identical”? By collecting 4
attributes from 1, 328 browsers, he found that the values of these attributes were
unique for 96.23% of the browsers. Afterward, in 2010, Peter Eckersley published
the result of the collection of 8 attributes from 470, 161 browsers [56]. He called
the technique of collecting browser attributes browser fingerprinting, and called
the obtained values browser fingerprints. The collection took place on the website
of Panopticlick [72], a project of the Electronic Frontier Foundation that explores
the diversity of browser fingerprints. Eckersley found that 83.6% of the browsers
had a unique fingerprint, and that 37.4% of the users that have multiple visits
presented different fingerprints through time.

Browser fingerprinting is the process of collecting attributes from a web browser
and aggregating their value into a single browser fingerprint, to distinguish different
browsers. The term of device fingerprinting is sometimes used to refer to browser
fingerprinting. We emphasize that even if browser fingerprinting can be included
in the notion of device fingerprinting, these are two different techniques. Indeed,
browser fingerprinting identifies the web browsing environment by ways limited to
what is offered by the browser (e.g., network communications, client-side scripts),
whereas device fingerprinting identifies a device by ways limited to what is offered
by the device [121] (e.g., native applications).

The fingerprinting term refers to the physiological fingerprints, in the way that
the latter are generally used to recognize individuals. Simon Cole argued about
fingerprints that they “may be unique in the sense that, as Gottfried Wilhelm
Leibniz argued, all natural objects can be differentiated if examined in enough
detail” [139]. The idea of fingerprinting was applied to a variety of things, from
paper sheets [39] to 3D printed objects [132].

27We stress that modern browsers do not provide a way to directly install fonts. However,
users can install a font on their operating system, and then configure this font as the default one.



32 CHAPTER 2. BACKGROUND AND CONTEXT

2.2.2 Browser Fingerprinting Attributes

Since the awareness about browser fingerprinting was raised, several studies dis-
covered new fingerprinting attributes. We give an overview of these attributes in
this section. First, we present the fixed attributes, which value only depends on
the web environment into which a browser is running. Then, we present the dy-
namic attributes, which value depends on the web environment but also on specific
instructions provided by the fingerprinter. We also give the two properties of the
attributes that are usually evaluated, namely the distinctiveness and the stability.
Finally, we discuss the evolution of accessible attributes.

Fixed Attributes

The value of fixed attributes only depends on the current web environment into
which the browser is running. The web environment is composed of the software
and hardware components that run the browser, and that impact its behavior.
It is at least composed of the browser itself, the customization of the browser,
the underlying operating system, the network connection, the graphical card, the
screen, and the peripheral drivers. Abgrall et al. [1] classified these attributes into
the passive and the active ones.

Passive attributes Passive attributes are collected passively from the behavior
of the browser, or from information that it systematically sends. Passive attributes
mostly consist of the information sent by the browser to a web server during the
web communication. They include the IP address, the HTTP headers [187, 56],
and TCP28 or ICMP29 timestamps [115].

Active attributes Active attributes need to be explicitly requested, typically
by sending a client-side script that is then executed by the browser. Modern
browsers embark a JavaScript engine that allows them to execute JavaScript
scripts. Browsers used to also support plugins (e.g., Flash Player, Java, Silverlight)

28TCP stands for Transmission Control Protocol [98]. It is the main connected protocol used
to communicate over the Internet protocol, and the one on which HTTP relies.

29ICMP stands for Internet Control Message Protocol [175]. It is the protocol that defines the
transmission of error or debugging messages of the underlying Internet protocol.
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Table 2.1: Example of HTTP headers sent during a request
Header name Header value
User-Agent Mozilla/5.0 (Macintosh; Intel Mac OS X 10.15; rv:74.0)

Gecko/20100101 Firefox/74.0
Accept text/css,*/*;q=0.1
Accept-Language en-US,en;q=0.5
Accept-Encoding gzip, deflate, br
DNT 1

that enabled them to execute scripts of other languages. However, the major
browsers started to remove the support of plugins around 2016 (see Firefox30 and
Chrome31), and the end of the support of plugins is close (see Silverlight32, Java33,
and Flash [209]). The functionalities of the now obsolete plugins are planned to be
replaced by the functionalities provided by HTML534 (e.g., real time communica-
tion [66], audio processing and player [179], rendering of two-dimensional graphics
and three-dimensional scenes [153]). These attributes are mostly composed of
the JavaScript properties [56, 127] provided by the navigator, screen, window,
and document JavaScript objects. We also find attributes related to the hard-
ware components, like the screen resolution [127], the quirks of the sensors [26, 79,
226, 141], the state of the battery [166], and information about specific compo-
nents [207, 191, 193, 192] (e.g., the CPU, the available memory, how the browser
processes mathematical functions). Specific APIs35 also provide information, typ-
ically for debugging purposes, like the WebRTC [66]36 or the WebGL37 [153, 127]

30https://blog.mozilla.org/futurereleases/2015/10/08/npapi-plugins-in-firefox
31https://blog.chromium.org/2014/11/the-final-countdown-for-npapi.html
32https://support.microsoft.com/en-in/help/4511036/silverlight-end-of-support
33https://blogs.oracle.com/java-platform-group/moving-to-a-plugin-free-web
34HTML stands for HyperText Markup Language. It is the descriptive language that tells

browsers how to render web pages. HTML5 refers to the fifth and latest version to date, that
was released in 2014. It embarks plenty of new features since the previous version that was
released in 1999.

35API stands for Application Programming Interface. The APIs are a set of interfaces offered
by browsers that provide functionalities (e.g., the audio API [179] provides functions to process
and play audio signals).

36WebRTC stands for Web Real-Time Communication. This API provides the utilities to open
a real-time communication between browsers. It is notably used for video or audio conferences.

37WebGL stands for Web Graphics Library. This API provides the utilities to render and
manipulate two-dimensional graphics or three-dimensional scenes.

https://blog.mozilla.org/futurereleases/2015/10/08/npapi-plugins-in-firefox
https://blog.chromium.org/2014/11/the-final-countdown-for-npapi.html
https://support.microsoft.com/en-in/help/4511036/silverlight-end-of-support
https://blogs.oracle.com/java-platform-group/moving-to-a-plugin-free-web
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Figure 2.3: Example of an HTML5 canvas that displays overlapping texts, rect-
angles, emojis, curves, ellipses, and a shading.

APIs. The installed components can also be retrieved, like the plugins [56], the
fonts [65, 83], or the extensions [205, 199].

Dynamic Attributes

The value of dynamic attributes depends on the web environment, but also on
instructions provided by the fingerprinter. They typically are media objects (e.g.,
a sound, an image) that are rendered by the browser, encoded (e.g., base64 encod-
ing), and sent back to the fingerprinter. The dynamic attributes can be efficient
to distinguish browsers depending on the set of instructions used, as their value
depend on the behavior of the browser which relies on its hardware and software
components. For example, the HTML5 canvas is one of the most distinctive at-
tributes (see Section 4.3.2). It is due to the generated image depending on several
components that include the fonts and the emojis used to render texts, and the
graphical components (e.g., the graphical card and its driver) used to render the
overlapping figures and colors. Below, we describe the three dynamic attributes
that, to the best of our knowledge, were discovered. We note that fingerprinting a
browser using either HTML5 canvas or WebGL canvas is more specifically called
canvas fingerprinting.

HTML5 Canvas The canvas38 API provides the functions to render and ma-
nipulate graphics within the browser. To use this API, the fingerprinter first needs
to specify a context. The 2d context provides the functionalities to draw and ma-
nipulate two-dimensional graphics. It is used to fingerprint browsers by differences

38https://html.spec.whatwg.org/multipage/canvas.html

https://html.spec.whatwg.org/multipage/canvas.html
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Figure 2.4: Example of a two-dimensional WebGL canvas that displays a succession
of connected triangles.

in the rendered graphics. Mowery et al. [153] were the first to fingerprint browsers
using the inconsistencies among graphics rendered by the canvas API, by rendering
a chosen text in a specified font. They noticed that browsers have different ways
to render a pangram, which is a sentence that contains all the alphabet letters,
in the common Arial font. Moreover, they remarked that browsers use a fallback
font when the specified font is unavailable. Laperdrix et al. [127] analyzed the
rendering of canvas images displaying two pangrams of different fonts and colors,
together with an emoji and a rectangle of another color. They acknowledged that
these images were among the most distinctive attributes of their study.

WebGL Canvas The canvas API also includes the webgl and the webgl2 con-
texts. These two contexts use the WebGL library [221] that leverages hard-
ware accelerations to render and manipulate two-dimensional graphics or three-
dimensional scenes. To differentiate the two usages of the canvas API, we call
HTML5 canvas the method that relies on the 2d context, and WebGL canvas the
method that relies on the webgl context. Mowery et al. [153] were also the first to
use the webgl context to fingerprint browsers. They render a specifically chosen
image on a hyperbolic paraboloid structure, and illuminate the scene from a spe-
cific angle with a given lighting. Finally, they extract a snapshot of the rendered
scene, and use this as a fingerprinting attribute.
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Audio Fingerprinting The counterpart of the canvas API for the manipulation
of audio signals is the Web Audio API39. It works by creating an Audio Context,
into which we manipulate Audio Nodes. These nodes are of three types. Source
nodes generate an audio signal (e.g., from a microphone or an audio stream), des-
tination nodes send the signal to be rendered (e.g., by speakers), and manipulation
nodes manipulate the signal (e.g., increasing the volume). These nodes are linked
together to form a network, that goes from source nodes to destination nodes
through manipulation nodes. Englehardt and Narayanan [57] discovered the use
of this API by fingerprinters when assessing the usage of browser fingerprinting
on the web. Queiroz et al. [179] tested various methods using this API for finger-
printing. By analyzing the fingerprints obtained from 122 devices, they found that
only 6 devices had unique fingerprints. They explain that this can come from their
use of basic features of the API, coupled with the use of the same audio rendering
engines by different browsers.

Properties of Attributes

Browser fingerprinting attributes are evaluated following two properties: their
distinctiveness, that is the ability of the attribute to distinguish two different
browsers, and their stability, that is to which extent the attribute keeps the same
value through time.

Distinctiveness The distinctiveness of an attribute is usually measured by the
entropy, the normalized entropy, the anonymity sets, and the unicity. The Shan-
non’s entropy [56] measures the quantity of information provided by a random
variable, mostly in bits. To keep it short, each additional bit of entropy divides
the population of browsers in two when searching to recognize a given browser.
The normalized entropy was introduced by Laperdrix et al. [127]. It is the ratio
between the entropy, and the maximum achievable entropy that depends on the
size of the population. The anonymity set of a fingerprint, or an attribute value,
is the set of browsers that share it. The unicity is simply the percentage of the
fingerprints that have been seen for a single browser only.

39https://www.w3.org/TR/webaudio

https://www.w3.org/TR/webaudio
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Stability The stability of an attribute is its ability to provide the same value
through time. Peter Eckersley [56] first measured the stability on complete finger-
prints as the percentage of the fingerprints that stay identical after a given time.
Alaca et al. [8] evaluated the stability of an attribute given its nature, that is
whether it is expected to change or not. Vastel et al. [214] measured the stability
of an attribute as the days that pass before a percentage of the browsers has this
attribute changed. Pugliese et al. [178] defined the stability of a fingerprint, given
the set of considered attributes, as its ability to stay stable at least between two
observations.

Evolution of Accessible Attributes

The functionalities of web browsers evolve constantly, with new ones being added,
and obsolete functionalities being removed. The attributes that can be used for
fingerprinting follow these evolutions. Most attributes are information accessed
through the browser, that are limited by the functionalities of the browser. Other
attributes are items which presence are checked (e.g., the fonts [83], the exten-
sions [205, 199]) or the computation of specific instructions (e.g., the canvas [36]).
These are limited by the available items or instructions, which can be large (at
least 2154 for the canvas [124]). We can then acknowledge that, to date, we have
more than hundreds of available attributes.

New functionalities are regularly added to browsers, some following the release
of new web standards40 published by the World Wide Web Consortium (W3C). A
functionality can be removed from browsers due to its obsolescence and replace-
ment by newer technologies (e.g., the plugin removal explained in Section 2.2.2).
The privacy threats posed by the identification of browsers, and by the leakage of
information, are also causes of removal. For example, the Battery Status API, that
gives access to the state of the battery of the device, was removed from Firefox [21]
due to the privacy threats demonstrated by Olejnik et al. [166]. The rendering of
visited links also used to leak history through a side-channel. Since, its implemen-
tation was altered in major browsers, but new attacks are still discovered [201].

40https://www.w3.org/TR/?status=rec

https://www.w3.org/TR/?status=rec
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In the crowd Of the type
Web tracking Anti-robots protection
Authentication Anomaly or intrusion detection
Anti-fraud protection Service customization
Forensic analysis User advice

Targeted attacks

Table 2.2: Usages of browser fingerprinting, classified between the usages to
recognize a browser in the crowd, and the ones to recognize the type of browser.

2.2.3 Usages of Browser Fingerprints

Abgrall et al. [1] emphasize that browser fingerprinting techniques can be used to
identify browsers, or their type (e.g., family, version). We classify the usages of
browser fingerprinting into two categories, that are the recognition of a browser
in the crowd, and the recognition of the type of a browser. This classification is
displayed in Table 2.2.

In the Crowd

Web Tracking Web tracking is the process of tracking a user’s activities on
the web, mostly by following the web pages that she visits through time. The
tracking is done either by using stateful techniques that store an identifier in one or
several storage mechanisms of the browser (e.g., cookies, evercookies41), or by using
stateless techniques that leave no trace in the browser. Browser fingerprinting is
the main, if not the only, stateless technique, raising privacy concerns42 about this
technique [56, 127, 57].

Authentication Authentication is the usage of browser fingerprinting that in-
terests us. The Section 2.3 is dedicated to discuss this usage.

Anti-fraud Protection Various companies include the browser fingerprinting
into their anti-fraud services (e.g., EarlyWarning43, Sift44). The usage of browser

41https://samy.pl/evercookie
42https://www.w3.org/TR/fingerprinting-guidance
43https://www.earlywarning.com/products/browser-iq
44https://blog.sift.com/2015/introducing-formulas-and-device-fingerprinting

https://samy.pl/evercookie
https://www.w3.org/TR/fingerprinting-guidance
https://www.earlywarning.com/products/browser-iq
https://blog.sift.com/2015/introducing-formulas-and-device-fingerprinting
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fingerprinting in such services typically works by assigning a risk level to a browser
that is recognized by its fingerprint. This risk level is afterward provided to the
customer of the service (e.g., an online store), that can make decisions based on
this knowledge (e.g., ask for more verification if the browser is of a high risk level).

Forensic Analysis Browser fingerprints, like their biometric counterparts, can
be used during investigation as a clue. Previous works [133, 100] proposed to
use browser fingerprinting to trace attackers. Moreover, investigators working
for TripAdvisor managed to create a link between a company and fake reviews
submitted on their website, by using “hundreds of review attributes such as IP
addresses, browser types and even the screen resolution of a reviewers device”45.

Of the Type

Anti-robots protection It is estimated that in 2018, 20% of the web traffic
was done by malicious robots [51]. Robots are usually running inside a headless
browser, that is a browser without graphical interface and having fewer function-
alities. As the fingerprints of these headless browsers differ from the fingerprints
of the browsers that humans use, it is possible to detect robots based on the fin-
gerprint of their browser. Vastel et al. [215] studied this usage, and found that it
is already present on the web.

Anomaly or Intrusion Detection When the population of browsers that is
expected to connect to a website is known (e.g., an intranet website expecting
browsers running on specific systems), it is possible to detect, and deny the ac-
cess to, external browsers by using browser fingerprinting. Moreover, it is also
possible to detect altered browsers (e.g., emulated browsers). Bursztein et al. [36]
proposed Picasso, a protocol that relies on HTML5 canvas to identify the browser
and operating system families of browsers. The objective of this protocol is to
detect anomalous browsers, like non-mobile browsers accessing mobile application
marketplaces.

45https://www.tripadvisor.com/TripAdvisorInsights/w4237

https://www.tripadvisor.com/TripAdvisorInsights/w4237
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Service Customization Websites can offer a personalized service depending
on the browsing environment of the user. Hupperich et al. [97] searched for price
discrimination based on browser fingerprinting on hotel and car rental websites.
They argue that even if news articles reported such cases46, they did not find any
systematic price discrimination on the studied websites.

User Advice The knowledge of the versions of the browser and the operating
system of a user can help advise him. For example, a system administrator can
warn the users to update their outdated browser or operating system. A web-
site can also warn a user that his browsing environment is not compatible with
functionalities offered by the website (e.g., YouTube that warns users that their
browser is outdated47).

Targeted Attacks Fingerprinting is commonly used in targeted attacks to infer
the targeted environment (e.g., operating system, firmware) before sending a ma-
licious payload to which the environment is sensitive. Fingerprinting tools rely on
the behavior of devices, typically by their network communication, to infer their
software or hardware stack. An example of such tool is pof48, that dates back to
2000, and uses the TCP/IP communications to infer information about a device.
Since the third version, it also embarks browser identification capabilities by the
analysis of the HTTP headers.

2.3 Authentication by Browser Fingerprinting

As most studies on browser fingerprinting focus on its use for identification, we first
present an overview of these studies. We notably focus on the analysis of browser
fingerprints for identification purpose, and show that properties necessary for their
use for authentication are not addressed. Afterward, we present an overview of the
studies that focus on browser fingerprinting for web authentication, and position
our contributions to each research axis. We argue that browser fingerprinting is a

46https://www.wsj.com/articles/SB10001424052702304458604577488822667325882
47https://support.google.com/youtube/thread/27621880?hl=en
48https://lcamtuf.coredump.cx/p0f3
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good candidate as an authentication factor thanks to its distinguishing power, its
frictionless deployment (e.g., no additional software to install), and its usability
(no secret to remember, no additional object to possess, and no supplementary
action to carry out).

2.3.1 Analysis of Browser Fingerprints for Identification

Most studies on browser fingerprinting focus on its use for identification, mostly
for web tracking purposes. These studies emphasize the threat posed to privacy
by browser accessible information [56, 153, 65, 127, 66, 205, 81, 179, 106], assess
the usage of browser fingerprinting over the web [2, 57, 43], or propose counter-
measures to defend against it [163, 128, 22, 125]. The studies that analyze browser
fingerprints for identification lack strong insights into their use for authentication
(e.g., the stability necessary for the verification of fingerprints, the accuracy of a
matching mechanism).

Peter Eckersley [56] analyzed the fingerprints of 470, 161 browsers collected
from the Panopticlick website [72]. He defines the stability as the proportion
of changing fingerprints given the time elapsed between two observations, and
proposes a simple matching algorithm. Due to this study being 10 years old,
the set of available attributes since evolved as more attributes are available and
browsers do not support plugins anymore.

Laperdrix et al. [127], and Gómez-Boix et al. [81], respectively analyzed 118, 934
and 2, 067, 942 fingerprints composed of the same set of 17 attributes. These
studies focus on the identification effectiveness of fingerprints, and on the evolution
of web technologies that would reduce this effectiveness. They only consider a small
portion of the available attributes, which does not reflect well what a fingerprinter
can really achieve. Moreover, they do not analyze the evolution of fingerprints
through time, whereas the stability of fingerprints is necessary for their verification
in an authentication context.

Vastel et al. [214] studied the evolution of 98, 598 fingerprints from 1, 905
browsers. They measure the stability of each attribute as the duration until the
attribute value changes, and propose a matching algorithm that relies on both
rules and machine learning techniques. Even if they provide a good insight on
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stability, their study only comprises 18 attributes, and the matching is different
between identification and authentication. Indeed, identification consists into link-
ing a presented fingerprint to one, or optionally none, of a set of candidate browsers
(i.e., it is a 1 to N matching). For authentication, the set of candidate browsers
is reduced to these of the claimed account, and we seek to verify whether the
presented fingerprint belongs legitimately to one of them (i.e., 1 to 1, or 1 to n

matching if multiple devices are allowed).
Pugliese et al. [178] analyzed 88, 088 fingerprints collected over three years,

performed a survey on users’ perception of browser fingerprinting, and proposed
an attribute selection method that we discuss in Section 2.3.4. They provide the
analysis of the distinctiveness and the stability of fingerprints, and use these two
parameters to select the subset of attributes to implement. However, they provide
few data on the resource consumption of fingerprints (e.g., their collection time),
and no insight into the proportion of attributes that change in the fingerprints.

2.3.2 Browser Fingerprinting into Authentication Mecha-
nisms

The first studies about the use of browser fingerprinting for security purposes pro-
posed to integrate it into authentication mechanisms. All of these mechanisms are
either continuous [212, 203], risk-based [202], or even both [177]. The adequacy of
browser fingerprinting for continuous authentication stems from the possibility to
collect the attributes transparently in the background. As for risk-based authen-
tication, browser fingerprinting allows the verifier to gain insight about the user’s
device, which is captured in the verified context.

Unger et al. [212] proposed the Session Hijacking Prevention Framework, which
is a continuous authentication framework to protect users against session hijacking.
The framework works by verifying that the fingerprint of a browser stays the same
during the authenticated session. The used attributes are the HTTP headers,
the IP address, and the supported CSS49 features. We note that the supported
features do not provide distinctiveness between two browsers of the same version,

49CSS stands for Cascading Style Sheets. It is a language designed to describe the presentation
of web pages.
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as they only depend on the version.
Preuveneers et al. [177] proposed SmartAuth, an authentication mechanism

that is continuous, risk-based50, and directed toward mobile devices. It works
by storing the information about the previous contexts into which a user has au-
thenticated. The context comprises browser fingerprinting attributes (JavaScript
properties and HTTP headers), the location, the IP address, and the time of ac-
cess. The attributes collected on the browser are hashed using similarity preserving
hash functions before being sent. This way, the value of these attributes is hidden.
They extended the open source identity management OpenAM [174] with Smar-
tAuth, and added data to the communications (e.g., a counter, a timestamp) to
counter replay and phishing attacks.

Spooren et al. [203] proposed to include the state of the battery as a factor in
a continuous authentication mechanism. They proposed two binary-classifiers to
determine the authenticity of a user. The first classifier leverages the pattern of the
battery state throughout the day. It provides the likelihood that a given user, at
a given time of the day, has his device charged to a given percentage. The second
classifier leverages previous measurements of the battery charge, and provides the
likelihood that, after a given time, the battery is charged to a given percentage.
Afterward, they evaluate the effectiveness of each classifier when considering a
naïve attacker, by constructing the attack attempts from random users. They
also evaluate the effectiveness in an adversarial context, by considering that the
attacker presents a specifically chosen spoofed value. They present four different
strategies, including the use of global knowledge to infer the most likely value at
a given time of the day, or the presentation of a completely charged battery that
they consider common in the morning. However, the first proposed classifier has
an equal error rate of 41.3%, which is a small gain compared to a random guess
(50%). As for the second classifier, they obtain an equal error rate of 27.3% when
the battery charge was observed one hour before, and of 42.8% for an observation
done two hours ago.

50SmartAuth relies on configurable scores depending on the authentication context, which
comprises the browser fingerprint among other factors (e.g., IP address, geolocation). If the
scores exceed a configured threshold, the user has to undergo additional authentication steps.
The example that the authors give is a one-time password sent by email or SMS that the user
has to provide.
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Solano et al. [202] proposed a risk-based authentication method that authen-
ticates a user by his behavior and the context from which he authenticates. The
context information that they consider comprises the location, the browser finger-
print, and the time of connection. By combining behavioral dynamics (mouse, key-
board), possession (web environment), and context-based factors (location, time
of connection), they manage to hinder the attackers that simulate the context of
a victim, or that have physical access to a victim’s device. Although the authors
argue that the duration of a password log-in is sufficient to analyze the behav-
ioral interactions, we argue that the user would have few interactions with the
log-in page. The interactions would only consist of the password entry – which
is typically less than twelve characters [28, 172, 217] – and a mouse click on the
submit button. Moreover, users can use the password auto-filling functionality of
the browser or the one of a password manager.

These studies focus on the integration of browser fingerprinting into an au-
thentication mechanism, and do not provide insight into how efficiently is browser
fingerprinting when used that way (e.g., their distinctiveness, their stability, their
resource consumption). They consider a small fraction of the hundred of avail-
able attributes, that does not include the dynamic attributes that can be used in
a challenge-response mechanism to thwart replay attacks. Moreover, some pro-
posed mechanisms require the usage of a mobile device [177, 203], putting aside
the desktop users that still constitute a significant part of the web users.

2.3.3 Adequacy of Browser Fingerprints for Authentica-
tion

Several studies assessed the adequacy of browser fingerprints for authentication.
They mostly consist into the estimations of the quality of browser fingerprints
according to desirable properties, and lack empirical analysis of actual fingerprints
to support these estimations.

Spooren et al. [204] studied the adequacy of the fingerprints of mobile browsers
for authentication. They analyzed the fingerprints of 59 mobile devices, and con-
clude that although their sample is small, these fingerprints lack distinctiveness
and are predictable. Indeed, the devices of the same model present similar fin-
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gerprints, and several attributes can be inferred directly from the device model
(e.g., the plugins are mostly empty, the screen resolution is publicly available in
the description of a model).

Alaca and van Oorschot [8] provided a classification of the fingerprinting at-
tributes that can be used for authentication, evaluated their properties, and iden-
tified the attacks on such mechanisms. The properties that they consider are the
stability, the repeatability, the resource usage, the passiveness, and the resistance
to spoofing. The attacks they identified on the mechanism include guessing attacks
that consist into presenting the most common fingerprints, and targeted attacks
that leverage knowledge over the victim. We note that the properties of attributes
are mostly qualified, or quantified from the results of previous studies that work on
different populations of different sizes. Moreover, the attackers are only identified,
and no analysis of the robustness of a supposed mechanism is presented.

Alaca et al. [7] extended the UDS framework [27] (see Section 2.1.4) to con-
sider the resistance against mimicry attacks, and evaluated implicit authentication
schemes. These schemes include several sets of fingerprinting attributes, compris-
ing the usual JavaScript properties, the dynamic attributes, and hardware sen-
sors [43]. The added properties to the UDS framework capture the resistance to
errors of the verification mechanism, the variability of the scheme that helps thwart
simple replays of previously leaked values, and its resistance to spoofing. They per-
formed an evaluation of the several sets of fingerprinting attributes following the
UDS framework and their extension.

Laperdrix et al. [124] identified various attacks that can be executed on an
authentication mechanism that includes browser fingerprinting. These attacks
notably include the submission of the most common fingerprints, and targeted
attacks using the knowledge of static attributes to infer dynamic ones.

Markert et al. [142] recently presented a work in progress about the long-term
analysis of fallback authentication methods. They plan to measure the recovery
rate of the evaluated methods, after an elapsed time of 6, 12, and 18 months. These
methods include the browser fingerprinting, for which they acknowledge that “not
much about browser fingerprinting-based security systems is known”.
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Our contribution: “Guess Who”

In Chapter 4, we present our contribution to the assessment of the adequacy
of browser fingerprinting for authentication. This contribution provides the first
large-scale empirical study of browser fingerprints with a focus on authentication,
by evaluating them according to the desirable properties of biometric authentica-
tion factors presented in Section 2.1.5 and on four fingerprint datasets. The scale
of our largest dataset is the largest to date: it was collected over six months from
nearly two million browsers, and it contains more than four millions fingerprints
that are composed of 216 attributes, which is closer to what a verifier can achieve.

2.3.4 Selection of Attributes

Due to the large number of accessible attributes, related works have focused on
reducing the number of collected attributes.

Previous studies proposed to remove the attributes of the lowest entropy [214],
or proposed greedy algorithms that iteratively pick the attributes of the highest
entropy until a threshold is reached [146, 111, 24, 91]. These methods do not take
into account the correlation between the attributes. Effectively, two attributes can
separately have a high entropy, but when taken together provide a lower entropy
than another attribute set.

To cope with the problem of correlation between attributes, several studies
weight the attributes conditionally to these already picked. The method is then
to iteratively select the attributes by taking the one that has the highest weight
at each step. Taking two correlated attributes is therefore avoided. Fifield and
Egelman [65] proposed to weight attributes by the conditional entropy. The en-
tropy of each attribute is measured according to the ones that are already picked.
Pugliese et al. [178] proposed an attribute selection method that iteratively se-
lects the best attribute given the objective function. They propose two objective
functions that capture the duration for which a fingerprint stays stable, and the
unicity of fingerprints.

Another solution is to explore exhaustively the possible set of attributes, which
requires to have enough computing power to evaluate every possible attribute set.
Although it is possible for few candidate attributes, it becomes quickly impractical
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as the number of possible sets grows exponentially with the candidate attributes.
Indeed, there are 2n possible attribute sets for n candidate attributes. Flood and
Karlsson [69] evaluated every set of their 13 attributes to find the attribute set
that provides the best classification results, and found that 7 attributes do not
higher the accuracy. An exhaustive search is feasible on a small set of candidate
attributes, but unrealistic on a larger set. Tanabe et al. [208] selected attributes
based on the classification effectiveness of an attribute set. For each size of possible
sets (i.e., from 1 to n for n available attributes), they evaluated every attribute
set of this size, and held the set that provides the highest classification effective-
ness (measured as the Area Under the Curve or AUC). Given a size, they obtain
the attribute set of this size that provides the best classification effectiveness. To
select the final attribute set, they take the most efficient one among the results ob-
tained for each size. We note that this method explores exhaustively each possible
attribute set.

Gulyás et al. [83] studied the problem of finding the set of s-items (e.g., fonts,
plugins, applications) for which to check for presence on a device, to reduce the
number of devices that share the same value. They proved that this problem is
NP-hard by reducing it to the Maximum Coverage Problem [113], and proposed
greedy algorithms to find the closest approximation in polynomial time.

Our contribution: FPSelect

In Chapter 5, we present our contribution to the methods of attribute selection.
It is the FPSelect framework that allows a verifier to select the attributes to use,
according to a trade-off between the security and the usability of the generated
fingerprints. The security captures the robustness against a modeled dictionary
attacker, who leverages external knowledge to present specifically crafted finger-
prints to impersonate users. The usability is quantified according to the collection
time, the size, and the instability of the generated fingerprints. The framework
works by modeling the set of possibilities as a lattice, and by exploring a parame-
terized number of paths in this lattice. Even if the obtained solution is not optimal,
due to the NP-hardness of the problem, we empirically show that the framework
performs better than the common baselines of entropy and conditional entropy.
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2.3.5 Challenge-response Mechanisms

Several works noted that some attributes could receive instructions from the veri-
fier, which impacts the generated result. These works proposed to leverage these
dynamic attributes to design a challenge-response mechanism that thwarts replay
attacks. Our two contributions study several instances of these dynamic attributes,
including six HTML5 canvas [36], one WebGL canvas [153], and three audio fin-
gerprinting methods [179].

To the best of our knowledge, the first work that proposes to challenge a device
for web authentication was done by Van Goethem et al. [79]. They proposed to
leverage the sensor quirks of the accelerometer as an additional authentication
method directed toward mobile devices. To do so, the enrollment consists into
making the mobile device play vibrations of different durations, and simultaneously
collecting data from the embedded accelerometer. The verifier then stores the
behavior of the device for each vibration duration. During the authentication
process, a random subset of the stored vibration durations is fetched, and sent to
the device as a challenge. The resulting accelerometer data forms the response,
and is checked against the expected behavior that was previously stored. The limit
of their method is that it can only be used on mobile devices, and requires to place
the device on a hard surface, reducing the real-life contexts into which it can be
used (e.g., it is unusable in external environments).

To the best of our knowledge, the first work that proposes to vary the instruc-
tions to draw the HTML5 canvas images is the work of Daud et al. [47]. They seek
to introduce canvas fingerprinting into the authentication service of their organi-
zation. After executing a preliminary test, they found that the obtained canvas
hashes were uniform on most of their tested browsers. Because of this uniformity,
they decided to use different set of instructions for each user, and for each authen-
tication process. The goal is to avoid using the same instructions, which prevents
users to fall on the same canvas value. However, an attacker that uses a browsing
environment similar to the one of a victim – which is included in their attack model
– would probably fall on the same canvas value as the victim’s browser. Even if
this attacker and her victim would answer different canvas values from the other
users, they would probably answer the same value.
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Rochet et al. [184] proposed a challenge-response protocol that leverages the
HTML5 canvas and deep learning techniques. The enrollment works by asking
2, 000 35x280 canvas images containing random texts to be drawn by the user’s
browser. These images form the genuine class for the training of a binary-class
Convolutional Neural Network (CNN) model, whereas the impostor class is forged
using random images of the other users. During authentication, the user’s browser
is asked to draw several images, constituting the challenge. Each of these images
are passed as input to the user’s CNN model, which outputs a prediction value per
image. Their mechanism has the drawback of consuming high resources during the
enrollment due to the generation and the storage of the 2, 000 images. Moreover,
requiring storing and training one model per user can become cumbersome when
the user base grows.

Laperdrix et al. [124] also proposed a challenge-response that leverages the
HTML5 canvas. Their canvas images are more complex than the ones of [184],
as they contain gradients, text shadows, mathematical curves, and the texts are
displayed in various sizes and rotations. At the enrollment, they only ask one
1900x30 canvas image to be drawn by the user’s browser, contrary to the 2, 000
35x280 canvas images of [184]. The instructions and the resulting image are both
stored. During the authentication, they challenge the user’s browser with two
set of instructions: the previously stored instructions and newly generated ones.
There are two resulting images corresponding to each set of instructions. If the
image generated using the previously stored instructions matches the expected
image previously stored, the challenge is considered as successful. In which case,
the newly generated instructions and the associated image are stored for the next
authentication.

2.4 Conclusion

In this chapter, we presented first the current state of the authentication on the
web, where the most used authentication factor is the password. We argued that
passwords suffer from several flaws that include their guessability, phishing attacks,
and their reuse coupled with the commonness of data leaks. We presented the cat-
egories of authentication factors that can replace or supplement passwords, and
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showed that each factor comes with a price in usability or deployability. To qualify
this price and compare various candidate factors, we provided previous works that
seek to evaluate authentication factors. We notably focus on the desirable proper-
ties of biometric factors, as these fit the factors that are inexact (e.g., both human
and browser fingerprints are not matched identically contrary to passwords). One
important property is the robustness against attacks. Hence, we highlight the
common attacks against authentication schemes. Second, we presented browser
fingerprinting, which consists into collecting several attributes from a web browser
to build its fingerprint. We unraveled the history of browser fingerprinting, the
attributes discovered over time, and the usual measures of distinctiveness and sta-
bility to evaluate them. We classified the use cases of browser fingerprinting as
depending on the objective: recognizing a browser in a crowd of browsers or recog-
nizing its type. We provided related works on the analysis of browser fingerprints
for identification, which most studies on browser fingerprinting focus on. We em-
phasized that we are rather interested in its contribution to web authentication, for
which we gave related works and in relation to which we positioned our contribu-
tions. The related works propose to include the browser fingerprint as additional
verified information in authentication mechanisms, study the adequacy of browser
fingerprints for authentication, propose methods to reduce the number of collected
attributes, and design challenge-response mechanisms that leverage the dynamic
attributes to thwart replay attacks.

Our contributions are the following. In Chapter 4, we present our contribution
to the assessment of the adequacy of browser fingerprinting for authentication. We
provide the first large-scale empirical study of browser fingerprints with a focus on
authentication, by evaluating them according to desirable properties of biometric
authentication factors on four fingerprint datasets. We assess the properties re-
quired for browser fingerprints to be usable, that include their distinctiveness and
stability. We also assess the properties for browser fingerprints to be practical,
that include the accuracy of a matching mechanism, their resource consumption,
and their acceptability by users. In Chapter 5, we present our contribution to the
methods of attribute selection. It takes the form of a framework that allows ver-
ifiers to select the attributes to use, according to a trade-off between the security
and the usability of the generated fingerprints. The security captures the robust-
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ness against a modeled dictionary attacker, and the usability captures the resource
consumption and the stability of the generated fingerprints. The framework works
by searching for a solution in the set of possibilities modeled as a lattice.





Chapter 3

Experiments and Survey

The browser fingerprints are closely dependent on the browser population being
studied. For example, browsers running on the standardized devices of a com-
pany are expected to show less distinctiveness than a population of general public
browsers which shows more diversity. To study the properties of browser finger-
prints, we conducted four experiments that consist into the collection of finger-
prints from various browser populations. The browser fingerprints also depend on
the attributes that are collected by the fingerprinting probe. We compiled a large
set of browser fingerprinting attributes, and designed a fingerprinting probe that
collects them. Due to the experimental aspect of the fingerprints combined with
the large-scale of our fingerprint collection experiments, irrelevant data appear in
the resulting datasets. Hence, we undergo four preprocessing steps. The cleaning
step removes irrelevant and erroneous data. The resynchronization step merges the
identifiers that we deem as belonging to the same browser with a high confidence.
The deduplication step removes the duplicated fingerprints of each browser. The
derivation step extracts the extracted attributes from source attributes. We also
present the acceptability survey about browser fingerprinting for authentication
that we conducted with the help of the Le Lab experimentation platform. We
focus this chapter on the preliminary questions about the current authentication
habits of the respondents, and leave the results on the acceptability of browser
fingerprinting for authentication for Section 4.2.6.

This chapter is organized as follows. First, Section 3.1 describes the browser
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fingerprinting probe used to collect the fingerprints. Second, Section 3.2 describes
the four browser fingerprinting experiments that we conducted. Third, we provide
a description of the preprocessing steps that are applied to the raw datasets in
Section 3.3. Fourth, in Section 3.4, we describe the acceptability survey in terms of
the respondents’ population, their authentication habits, and their opinion about
the current authentication methods. Finally, Section 3.5 concludes this chapter.

3.1 Browser Fingerprinting Probe

We designed a browser fingerprinting probe, in the form of a JavaScript script,
that collects over a hundred attributes. The attributes are either collected from
information accessible via JavaScript or contained in the HTTP headers. No plu-
gins are used due to their obsolescence (see Section 2.2.2). We sought to obtain
browser fingerprints composed of as many attributes as possible, to estimate more
precisely their distinctive power. Hence, we compiled the attributes from previ-
ous studies and open source projects (e.g., fingerprintjs2 [67]). In addition to the
probe, we set a fingerprint collection server up, which receives the fingerprints col-
lected by the probe. As web technologies evolve through time, we made changes to
the fingerprinting probe between the experiments. These evolutions are described
in Appendix B. In this section, we give a brief overview of the attributes collected
from JavaScript and HTTP headers, together with how the encountered errors
can be used as additional information. We refer the reader to Appendix A for a
taxonomy of the attributes, and Appendix I for the complete list of the attributes
together with their properties (e.g., their number of distinct values).

3.1.1 JavaScript Attributes

The JavaScript attributes of the fingerprinting probe mostly consist of textual
properties that are collected from common JavaScript objects (e.g., navigator,
screen). They also comprise list attributes (e.g., the list of plugins [56]), the
presence of browser components (e.g., the presence of fonts [65], of extensions [205,
199]), and the properties of web page elements (e.g., the default size and origin
of a created div element). Three types of dynamic attributes are also part of
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the JavaScript attributes. They include five HTML5 canvases [36], three audio
fingerprinting methods [179], and a WebGL canvas [153]. In addition to the values
of the JavaScript attributes, we also store their collection time. We save a Unix
timestamp when the fingerprinting probe starts, and we save a timestamp each
time an attribute is collected. The difference between these two timestamps allow
us to deduce the elapsed time until the attribute is collected. Moreover, by ordering
the collected attributes by their timestamp and evaluating their difference two by
two, we can deduce the time taken to collect each attribute1.

3.1.2 Dynamic Attributes

Our fingerprinting probe includes up to nine dynamic attributes: five HTML5
canvases [36], three audio fingerprinting methods [179], and a WebGL canvas [153].
These attributes are particular as they can be integrated within challenge-response
mechanisms that mitigate replay attacks [184, 124].

HTML5 Canvases

Our fingerprinting probe includes up to five HTML5 canvases, generated following
three sets of instructions and in two image formats (PNG and JPEG). We name the
canvases given the set of instructions used and their format. We call AmIUnique
canvas the canvas generated by the set of instructions inspired by the AmIUnique2

study [127], and extracted in PNG format. We call Morellian canvas the canvas
generated by the set of instructions that is similar to the Morellian study [124],
which is extracted in PNG and JPEG formats. We call custom canvas the canvas
generated by a set of instructions that we designed, which is extracted in PNG and
JPEG formats. We collect the canvases by using the toDataURL function. The
quality parameter of this function goes from 0.0 to 1.0, and allow us to control

1Most attributes are collected sequentially (one after the other). However, some attributes are
asynchronous and are collected simultaneously with the others. These asynchronous attributes
are the first ones to get their collection process launched. Their collection time is then the
difference between the timestamp collected when the probe starts and the one when they are
collected.

2Contrarily to the AmIUnique study [127], we only have one sentence and one smiling face
emoji instead of two, we do not draw a colored rectangle, and the sentence is drawn using a color
gradient.
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the level of compression of the JPEG versions. As we seek to compare the PNG
canvases that are compressed without loss with their JPEG counterparts by using
a high level of compression, we set the quality to 0.1 for the JPEG versions. An
example of the custom canvas in PNG format is displayed in Figure 2.3. Examples
of the AmIUnique and Morellian canvases are given in Appendix A.

WebGL Canvas

The WebGL canvas is an image that is also drawn using the HTML5 API, but
within the webgl or webgl2 contexts. These contexts use the WebGL library [221]
that leverages hardware accelerations to render and manipulate two-dimensional
graphics, but also three-dimensional scenes. Canvas fingerprinting was first in-
troduced by Mowery et al. [153] by using the webgl context, but afterward most
studies focused on the 2d context [22, 36, 63, 214]. This can result from the un-
reliability of the method encountered by Laperdrix et al. [127], for which Cao et
al. [38] proposed a remedy by setting specific parameters. The WebGL canvas of
our fingerprinting probe is composed of sequential triangles drawn using a color
gradient. Figure 2.4 displays an example of our WebGL canvas.

Web Audio Fingerprinting

Web audio fingerprinting was discovered by Englehardt et al. [57] when assessing
the use of web tracking methods on the web, and more recently studied thoroughly
by Queiroz et al. [179]. It consists into processing audio data into the browser, and
getting the rendered result. Similarly to canvases, this processing relies on soft-
ware and hardware components, and variations occur between different component
stacks. Our fingerprinting probe includes three web audio fingerprinting attributes:
the audio fingerprinting simple (AFS) attribute relies on a simple process, together
with the audio fingerprinting advanced (AFA) and audio fingerprinting advanced
frequency data (AFA-FD) attributes that rely on a more advanced process. Their
concrete implementation is described in Appendix A.
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3.1.3 HTTP Headers

The HTTP headers are collected from the POST requests sent by the probe to the
server, which contain the fingerprint. Due to this collection method, we have no
fingerprint collected from browsers having JavaScript disabled. We extract specific
fields from the HTTP headers, which are stored into dedicated attributes. Among
the remaining fields, we ignore a set of fields, and store the name and the value of
the other fields into a dedicated attribute. Appendix A provides the collected and
the ignored HTTP header fields for each version of the fingerprinting probe.

3.1.4 Error and Inaccessibility Handling

If the value of an attribute is not accessible, a flag explaining the reason is stored
instead, as it is still exploitable information. Indeed, two browsers can be dis-
tinguished if they behave differently on the inaccessibility of an attribute (e.g.,
returning a null value is different from throwing an exception). We also configure
a timeout after which the fingerprint is sent without waiting for every attribute to
be collected. The attributes that were not collected are then set to a specific flag.

3.2 Browser Fingerprinting Experiments

We conducted four experiments that consisted into collecting browser fingerprints
from various browser populations that depend on the collection website. For clar-
ity, we name each experiment according to the browser population. We collected
fingerprints (1) from a general audience French website during the general audi-
ence experiment, (2) from an internal website of the Institute of Research and
Technology b<>com during the intranet experiment, (3) from standardized com-
puters of Université de Rennes 1 during the university experiment, and (4) from
a publicly accessible website where users could test an authentication mechanism
which includes browser fingerprints as an authentication factor during the enrolled
experiment. The fingerprinting probe was updated between the experiments, as
described in Appendix B. Table 3.1 displays a comparison between the browser
fingerprint datasets of the four experiments and the large-scale datasets of previous
studies. By matching the userAgent JavaScript property with manually selected
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Table 3.2: The share of browser and operating system families among the browser
populations of the four experiments. The categories are ordered from the most
common to the least for the general audience dataset.

General Audience Intranet University Enrolled

Firefox 0.268 0.342 1.000 0.337
Chrome 0.265 0.586 - 0.519
Internet Explorer 0.260 0.002 - 0.008
Edge 0.078 0.005 - 0.046
Safari 0.064 0.061 - 0.059
Samsung Browser 0.048 - - 0.013
Others 0.017 0.004 - 0.018
Windows 10 0.338 0.253 0.298 0.551
Windows 7 0.312 0.190 - 0.059
Other Windows 0.096 5.5 10−4 - -
Android 0.091 - - 0.106
Windows 8.1 0.075 0.052 - 0.011
Mac OS X 0.051 0.422 0.006 0.206
iOS 0.026 - - 0.034
Ubuntu 0.005 0.065 - 0.013
Other Linux 0.003 0.019 0.696 0.020
Others 0.003 - - 0.001
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keywords (see Appendix C), we infer the browser and operating system family
of each browser. Table 3.2 presents the share of browser and operating system
families among the browser population of each experiment.

The browsers of our four datasets mostly belong to French users. Counter-
intuitively, considering an international population may not reduce the distinc-
tiveness. Indeed, we can expect foreign users to have a combination of contextual
attributes (e.g., timezone, languages) different from the French users, making them
distinguishable even if the remaining attributes have identical values. Al-Fannah
and Li [63] found out that browser families are not equally fingerprintable (e.g.,
Safari browsers are less distinguishable than Chrome browsers). Although the
fingerprintability of the browser families of the population studied impacts the
obtained distinctiveness, studying this aspect is out of the scope of this thesis.

3.2.1 General Audience Experiment

The first experiment was done in collaboration with the authors of the Hiding in
the Crowd study [81] and an industrial partner4 that controls one of the 15 most
visited French websites5. The authors of [81] only held the 17 attributes of their
previous work [127], and focused on the issue of web tracking. On the contrary, we
consider more than one order of magnitude more attributes, and focus on the use of
browser fingerprints as a web authentication factor. We installed the fingerprinting
probe on two general audience web pages that are controlled by our industrial
partner, which subjects are political news and weather forecast. The probe was
active between December 7, 2016, and June 7, 2017. The browser fingerprints
collected during this experiment compose the general audience dataset.

3This number is displayed in Figure 11 of [127] as the number of distinct fingerprints, but it
also corresponds to the number of raw fingerprints collected. Every fingerprint would be unique
if the number of distinct and of collected fingerprints are equal. Hence, we are not confident in
this number, but it is the number provided by the authors.

4These works were done in the context of a partnership with the industrial partner that did
not go all the way, hence we do not disclose the name of this partner.

5https://www.alexa.com/topsites/countries/FR

https://www.alexa.com/topsites/countries/FR
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User and Browser Population

The website audience of the general audience experiment is mainly general French-
speaking users, which leads to biases of which we provide examples here. As
displayed in Table 3.2, Firefox browsers are the most common, followed by Inter-
net Explorer browsers, and Chrome browsers. Even if French users tend to use
Firefox as their desktop browser more than the world average [50], the share of
browsers is different from what is reported by Statcounter with Chrome being the
most common [49]. The distribution of browser and operating system families can
be explained by the population visiting the website being less technically savvy,
hence using more common web environments (e.g., a Firefox on a Windows oper-
ating system) than technical environments (e.g., Linux-based operating systems),
contrary to the population of previous studies [56, 127, 178].

The contextual attributes related to the time zone or to the configured language
are less distinctive than for previous studies (see Appendix 4.3.2). For example, the
normalized entropy of the Timezone JavaScript property is of 0.008, against 0.161
for the Panopticlick study [56], and 0.201 for the AmIUnique study [127]. These
attributes also tend towards the typical French values: 98.48% of the browsers have
a Timezone value of −1, 98.59% of them have the daylight saving time enabled,
and fr is present in 98.15% of the value of the Accept-Language HTTP header.

Privacy Concerns

We complied with the European directives 2002/58/CE [58] and 2009/136/CE [59]
in effect at the time, and took additional measures to protect the participating
users. First, the script was set on two web pages of a single domain in a first-
party manner, hence providing no extra information about users’ browsing. The
content of the web pages are generic, hence they leak no information about users’
interests. Second, we restricted the collection to the users having consented to
cookies6. Third, a unique identifier (UID) was set as a cookie with a 6-months
lifetime, corresponding to the duration of the experiment. Fourth, we deleted the
fingerprints for which the cookieEnabled JavaScript property is not set to true.
Finally, we hashed the IP addresses by passing them through a HMAC-SHA256

6As required by the European directives 2002/58/CE [58] and 2009/136/CE [59].



62 CHAPTER 3. EXPERIMENTS AND SURVEY

using a key that we threw afterward. It was done using the secret and the hmac
libraries of Python superior to version 3.6. These one-way hashed IP addresses are
only used for the UIDs resynchronization (see Section 3.3.2), and are not used as
an attribute in the working dataset.

3.2.2 Intranet Experiment

We installed the fingerprinting probe into an internal website7 of the Institute of
Research and Technology b<>com, which is only accessible to the users connected
to the internal network. In the following, we refer to this institute as the company.
The website presents news about the company and its subjects of interest to the
employees. The probe was in place from April 4, 2018, and we consider the fin-
gerprints collected up to June 30, 2020. The browser fingerprints collected during
this experiment compose the intranet dataset.

User and Browser Population

The website audience is limited to the users connected to the internal network.
The audience is mainly composed of the employees of the company, but visitors
can also access the website. The work computers are managed by the staff of the
technical support of the company, but the users are authorized to install software
(e.g., native applications, browsers, extensions, fonts). As the company is located
in France, the employees mainly speak French, but some employees are foreigners
who also speak other languages. During the experiment, we observed no mobile
browser, as the employees tend to access the website only from their workstation.

Privacy Concerns

We complied with the European directives 2002/58/CE [58] and 2009/136/CE [59]
in effect at the time, and took additional measures to protect the participating
users. First, the script is set on the home page of the internal website in a first-
party manner, hence providing no extra information about users’ browsing nor
users’ interests. Second, we display a banner asking for the consent of the user to

7As the website is accessible only from the internal network of the institute, we do not provide
its link.
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participate in the fingerprint collection experiment, and provide a link for more
information about the subject. The link points to a blog post that explains the
goal of the experiment which is to study browser fingerprints, the elements about
which we collect data (e.g., operating system, browser, plugins), the fact that we
set a cookie to follow the evolution of the fingerprints, and what we do not collect
(e.g., the IP address, the browsing history). We also provide an email address if
users have further questions. Third, we communicated about the experiment to
the employees through an internal presentation, several emails, and a blog post.
Fourth, we deleted the fingerprints for which the cookieEnabled property was not
set to true.

3.2.3 University Experiment

The fourth experiment was done in collaboration with Université de Rennes 1.
We installed the fingerprinting probe as an extension into the default browser of
the workstations located in the practical work rooms of the university, and also
proposed to the students who were lent laptops to install the extension. We use
an extension because it is easier to deploy on the workstations of the university.
Moreover, it is more convenient for the users to provide their browser fingerprint
automatically through the extension than going regularly on a collection web page.
The probe was in place from the beginning of the academic year on September 2,
2019, and we consider the fingerprints collected up to June 30, 2020. The browser
fingerprints collected during this experiment compose the university dataset.

User and Browser Population

This experiment concerns two populations of students and university staff. The
first population is the users who browse the web through the default browser of
the workstations located in the practical work rooms of the university. The de-
fault browser of these workstations is Firefox, and is shipped with the extension
containing the fingerprinting probe. There are approximately 300 concerned work-
stations, which are standardized by the support staff to have the same software
and hardware components. The second population is the students who are lent
laptops by the university. These laptops are re-initialized and are shipped with the
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extension – which is not installed – before being lent to the students. The students
are provided a flyer explaining the experiment and how to install the extension.
The extension is in the WebExtension format, which allows the students to install
it on the browsers that accept this format. These browsers are typically the most
common, and include Firefox and Chrome.

As the browsers of the first population are running in standardized web envi-
ronments, they lack diversity. Indeed, all these browsers run on Firefox either on
Windows or on Linux8. This lack of diversity can be seen by the unicity falling
down to 0.235, even on a small population of 129 browsers. However, it also shows
that differences occur even between uniformized browsers that share the same
software and hardware stacks.

Privacy Concerns

We complied to the General Data Protection Regulation [77] in effect at the time,
and took additional measures to protect the participating users. After the exten-
sion is installed, it displays a web page explaining the experimentation, and asks
for the user consent to participate in the experiment. The explanation notably
comprises the types of the collected information, the duration of the storage of
the fingerprints, and the rights held by the user (e.g., the access to their data)
together with an email address for them to assert their rights. The experiment
was launched in collaboration with Université de Rennes 1, in contact with the
supervisor of the information security, with the technical support staff, and with
the data protection officer. We notably completed a declaration form for the pro-
cessing of personal data. We communicated to the involved students and teachers
through various means that include posts on the intranet of the university, emails,
flyers, and posters.

8On browser reports running on Mac OS X. However, the workstations of the university only
consist of Linux and Windows operating systems.
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3.2.4 Enrolled Experiment

The third experiment was done through a publicly accessible website9 for experi-
menters to test an authentication mechanism that includes passwords and browser
fingerprints as authentication factors. The working of this authentication mech-
anism is described in Appendix F. The collected fingerprints, necessary for the
authentication to take place, are also stored in a fingerprint dataset. We com-
municated about this experiment to colleagues and on social networks. We also
collaborated with Le Lab10 that manages an experimentation platform to which
experimenters can subscribe to participate to experiments about new technolo-
gies. The experimenters earn points that they can exchange with gifts. Le Lab
also posted a survey about authentication to the experimentation platform (see
Section 3.4). The website is up since December 9, 2019, and we consider the fin-
gerprints collected until June 30, 2020. The browser fingerprints collected during
this experiment compose the enrolled dataset.

Canvas challenges

The authentication mechanism integrates a challenge-response mechanism [124]
based on our custom HTML5 canvas. The instructions to draw the canvas are
changed on each fingerprint collection. Due to this, the values of the canvases
obtained during this experiment are always unique. To avoid the biases that this
generates (e.g., the fingerprints are all unique), we replace the value of the HTML5
canvas by the same value for all the fingerprints.

User and Browser Population

The user population of the enrolled experiment consists of the people that have
heard of the experiment and wanted to participate. It includes colleagues, the
experimenters to which Le Lab advertised the experiment, and the people that
came across one of our posts on social media.

9The link to the experimentation website: https://demo.barbacan.irt-b-com.org.
10https://lelab.orange.fr.

https://demo.barbacan.irt-b-com.org
https://lelab.orange.fr
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Privacy Concerns

We complied to the General Data Protection Regulation [77] in effect at the time,
and took additional measures to protect the participating users. For an exper-
imenter to participate in the experiment, she has to create an account on the
authentication platform. During the activation of this account, the experimenter
is displayed the terms of service which includes an explanation of browser fin-
gerprinting, a brief description of the collected data, and the fact that browser
fingerprints are stored for statistical analysis additionally to their use by the au-
thentication mechanism. The access to the authentication phase during which the
fingerprint is collected requires the experimenter to give her consent. Finally, at
the end of the experimentation phase, we deleted the accounts that the experi-
menters created to test the authentication platform, and only held the fingerprint
dataset.

3.2.5 Comparison with Previous Large-Scale Studies

We compare the datasets using the unicity rate which is the proportion of the
fingerprints that are unique. The general audience dataset has a lower unicity rate
compared to previous studies [56, 127, 178] due to the larger browser population.
Even if its unicity rate is lower than that of AmIUnique, the gap is not extremely
wide. This is due to the fact that considering a larger browser population leads
to higher chances of collision, reducing the unicity rate. However, by considering
a wider surface of fingerprinting attributes, we reduce these chances. These two
effects produce this slight decrease of the unicity rate. Although the university
dataset has a small browser population, its unicity rate is lower than any of the
presented datasets. This is due to the browsers of the university experiment that
are uniformized. The intranet and the enrolled datasets have a slightly higher
unicity rate compared to previous studies [127, 178]. This results from the browser
population being smaller and diverse, and from the higher number of considered
attributes. We also observe a lower unicity rate for the fingerprints of mobile
browsers compared to the fingerprints of desktop browsers, confirming the findings
of previous studies [204, 127, 81].

The authors of the Hiding in the Crowd study [81] worked on fingerprints



3.3. BROWSER FINGERPRINTS PREPROCESSING 67

collected from the same experiment as the general audience experiment. However,
to stay consistent with their previous study [127], they consider the same set of
17 attributes. This explains the higher number of fingerprints, as two browsers
that have different fingerprints for a given set of attributes can come to the same
fingerprint if a subset of these attributes is considered. Hence, they remove more
duplicated fingerprints than us due to the higher chances for a browser to present
the same fingerprint for 17 attributes than for 216 attributes. The unicity rate
of the general audience dataset is also higher, being at 81.8% for the complete
dataset against 33.6% for their study. This is due to the larger set of considered
attributes that distinguish browsers more efficiently, as each additional attribute
can provide a way to distinguish browsers. Our little drops on the proportion of
desktop and mobile browsers come from a finer-grained classification, as we have
4.8% of the browsers that are classified as belonging to touchpads, smart TVs, and
game consoles.

3.3 Browser Fingerprints Preprocessing

Given the experimental aspect of browser fingerprints, the raw datasets contain
erroneous or irrelevant samples. That is why we perform several preprocessing
steps before any analysis. The datasets are composed of entries in the form of
(f, b, t) tuples so that the fingerprint f was collected from the browser b at the
time t. We talk here about entries (i.e., (f, b, t) tuples) and not fingerprints (i.e.,
only f) to avoid confusion. The preprocessing is divided into four steps that are
described below. They comprise the dataset cleaning, the resynchronization of the
unique identifiers (UIDs), the deduplication of the fingerprints, and the derivation
of the extracted attributes. The four datasets are passed through the cleaning, the
deduplication, and the derivation steps. Only the general audience dataset gets
its UIDs resynchronized. Table 3.3 displays the number of initial raw entries, and
the entries filtered out during the cleaning or the deduplication steps.
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3.3.1 Dataset Cleaning

The fingerprinting probe prepares, sends, and stores the entries in string format
consisting of the attribute values separated by semicolons. We remove the entries
that have a wrong number of fields, mainly due to truncated or unrelated data
(e.g., the body of a post request, empty string). We filter out the entries that come
from robots, by checking that blacklisted keywords are present in the UserAgent
HTTP header (see Appendix C for the list of keywords). We reduce the entries
that have multiple exact copies (down to the same moment of collection) to a
single instance. Finally, we remove the entries that have the cookies disabled, and
the entries that have a time of collection that falls outside the time window of the
corresponding experiment.

3.3.2 Unique IDs Resynchronization

The cookies are considered an unreliable browser identification solution, hence we
undergo a cookie resynchronization step for the general audience dataset, similarly
to the Panopticlick study [56]. We consider the entries that have the same (fin-
gerprint, IP address hash) pair to belong to the same browser, and assign them
the same unique identifier (UID). Similarly to the Panopticlick study, we do not
synchronize the interleaved UIDs, that are the UIDs related to the entries having
the same (fingerprint, IP address hash) pair, but showing UID values b1, b2, then b1

again. Indeed, the interleaved UIDs is a strong indicator that several browsers are
operating behind the same public IP address. The UIDs resynchronization step
is only applied to the general audience dataset due to its size and the availability
of the IP address hash. The general audience dataset gets 181, 676 UIDs replaced
with 116, 708 UIDs.

3.3.3 Deduplication

To avoid storing duplicates of the same fingerprint observed several times for a
browser, the usual way is to ignore a fingerprint if it was already seen for a
browser during the collection [56, 127]. Our script collects the fingerprint on
each visit, no matter if it was already seen for this browser or not. To stay
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consistent with common methodologies, we deduplicate the fingerprints offline.
For each browser, we hold the first entry that contains a given fingerprint, and
ignore the following entries if they also contain this fingerprint. This method
takes the interleaved fingerprints into account, that are the fingerprints so that
we observe f1, f2, then f1 again. For example, if a browser b has the entries
{(f1, b, t1), (f2, b, t2), (f2, b, t3), (f1, b, t4)}, after the deduplication step we only hold
the entries {(f1, b, t1), (f2, b, t2), (f1, b, t4)}.

We hold the interleaved fingerprints to realistically simulate the state of the
fingerprint of each browser through time. The interleaved fingerprints can come
from attributes that switch between two values. An example is the screen size
that changes when an external screen is plugged or unplugged. Previous studies
discarded the fingerprints that were already encountered for a given browser [56,
127, 81], hiding these interleaved fingerprints.

3.3.4 Extracted attributes

From the attributes that we collect, we derive extracted attributes that are parts
of the original attributes (e.g., the height and width of the screen derived from
the screen size) or inferred information (e.g., the number of plugins from the list
of plugins). For all the datasets, we derive 46 extracted attributes of two types
from 9 original attributes. First, we have the extracted attributes that are parts
of an original attribute, like an original attribute that is composed of 28 triplets of
RGB (Red Green Blue) color values that we split into 28 single attributes. Then,
we have the extracted attributes that are derived from an original attribute, like
the number of plugins derived from the list of plugins. The extracted attributes
do not increase the distinctiveness as they come from an original attribute, and
they are, at most, as distinctive as their original attribute. However, the extracted
attributes can offer a higher stability than their original attribute, as the latter
is impacted by any little change among the extracted attributes. For example, if
exactly one of the 28 RGB values changes between two fingerprint observations,
the original attribute is counted as having changed, but only one of the extracted
attributes will be.
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Table 3.3: The number of initial raw entries, together with the number of entries
having a bad format, coming from robots, having the cookies disabled, or having a
duplicated fingerprint, which are filtered out. The proportion of browsers observed
with an interleaved fingerprint is also shown.

Gen. Aud. Intranet University Enrolled

Raw entries 8,205,416 43,493 2,793 2,778
Bad format 769 28,99111 0 21
Robot entries 53,251 0 0 0
Cookies disabled 18,591 6 0 0
Duplicated entries 2,420,217 3,398 2,300 887
Remaining entries 5,714,738 11,098 493 1,870
Remaining fingerprints 4,145,408 9,422 268 1,787
Browsers with interleaved fps 0.106 0.307 0.318 0.023

3.4 Acceptability Survey

In this section, we describe the population of the respondents to the acceptability
survey published by Le Lab on its experimentation platform during the enrolled
experiment. We designed the survey in collaboration with Le Lab to measure au-
thentication factor usage, the interest in the proposed authentication mechanism,
and the user satisfaction after testing it. We discuss the preliminary questions
that were asked to the respondents about their authentication habits. We focus
here on the answers to these preliminary questions, and let the results about the
acceptability of the authentication mechanism that includes browser fingerprints
for Section 4.2.6. Appendix E lists the questions of the survey and the answers
proposed to the participants.

3.4.1 Respondents Population

The respondents of the survey are the members of the experimentation platform
of Le Lab on the enrolled experiment that accepted to participate in the survey.
The survey was posted when the enrolled experiment began on the December 9,

11The number of entries showing a bad format is very high for the intranet dataset. This is
mainly due to the fingerprinting probe that was updated through the experiment. As a result,
the fingerprints of the raw intranet dataset are in different formats. We choose to hold only the
fingerprints of the latest format, as they are the ones that embark the most attributes.
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respondents.
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Figure 3.2: The age reported by the re-
spondents.

2019. The respondents were required to have either a smartphone, a mobile phone,
a tablet, or a computer. We have a total of 1, 285 respondents, among which 682
(53%) also participated in the enrolled experiment.

Figure 3.1 presents the gender reported by the respondents, Figure 3.2 displays
the age that they reported, Figure 3.3 shows the number of people in the house-
hold that they reported, Figure 3.5 displays their socio-professional categories,
Figure 3.4 presents the technical skill level that they reported, and Figure 3.6
shows the types of the devices that they use. Most respondents are men, tech-
nically skilled, and have a higher managerial or professional occupation. This
can be explained by experimenters of Le Lab occupying higher professional occu-
pations in information technologies industry. Moreover, this population may be
more interested in participating in an experiment about testing new authentication
technologies.

3.4.2 Respondents Authentication Habits

Before surveying the experimenters about their opinion on our authentication
mechanism that leverages browser fingerprinting, we first surveyed their current
authentication habits.
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Figure 3.3: The number of people in the
household reported by the respondents.
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Figure 3.4: The level of technical skill
reported by the respondents.
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Figure 3.5: The socio-professional categories of the respondents.
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Figure 3.6: The type of the devices that the respondents use. Mobile phone does
not include the smartphones.
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Figure 3.7: The authentication methods that the respondents know and use.
Fingerprint here refers to the biometric fingerprints.



74 CHAPTER 3. EXPERIMENTS AND SURVEY

Known and Used Authentication Methods

We began by asking the participants which authentication methods do they know
and which ones do they use. Figure 3.7 shows the authentication methods that
the respondents reported knowing and using. The password, the fingerprint, and
the SMS code are the three most known authentication methods with a respective
knowledge rate of 98%, 91%, and 82%. They are also the three most used methods
with a respective usage rate of 98%, 85%, and 77%. The gap between the respon-
dents that reported knowing them, and those that reported using them is smaller
compared to the other methods. These three authentication methods are typi-
cally available on smartphones, notably the fingerprint and the SMS code. As the
respondents have a high usage rate of smartphones, this can explain the high us-
age rate of these authentication methods. The remaining authentication methods
are typically physical authentication factors (security key, NFC contactless card),
biometric authentication factors (facial and iris recognition), Mobile Connect, and
authentication methods that were rarely cited by the respondents (less than 8%
of knowledge and usage rate). Mobile Connect [90] is a standard of the Global
System for Mobile Communications Association (GSMA) to share user data be-
tween a service provider and the user’s mobile network operator. The user data
can be used for authentication [150]. The authentication methods that are rarely
cited by the respondents include Google Authenticator12, password managers13,
certificates, and one-time passwords.

Satisfaction with Current Authentication Methods

After surveying the authentication methods that the participants know and use,
we asked them if they were satisfied with these methods. Figure 3.8 displays
the satisfaction of the respondents with the current authentication methods, on a
scale from 0 to 10, with 0 being the greatest dissatisfaction and 10 the greatest
satisfaction. We measure the satisfaction of the respondents by the Net Promoter
Score (NPS) [107] that is calculated using the following methodology. It consists

12https://support.google.com/accounts/answer/1066447?hl=en
13We stress that password managers are not an authentication method, but a helping tool to

store passwords which are the actual authentication method.

https://support.google.com/accounts/answer/1066447?hl=en
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Figure 3.8: The satisfaction of the respondents with the current authentication
methods. The scores are divided between the detractors, the passives, and the
promoters according to the Net Promoter Score methodology.
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Figure 3.9: The reasons reported by the 261 unsatisfied respondents (20% of
the respondents) about why they are dissatisfied with the current authentication
methods.

into splitting the scores into three categories to identify three types of respondents:
the promoters (scores of 9 and 10), the passives (scores of 7 and 8), and the
detractors (scores of 6 or lower). The NPS is the difference between the percentage
of promoters and the percentage of detractors. The NPS is then comprised between
−100 when all the respondents are detractors, and 100 when they are all promoters.
The greater the NPS is, the more the respondents are satisfied. When asked about
their satisfaction with the current authentication methods, 26% of the respondents
are promoters, 20% of them are detractors, and 54% of them are passives. The
resulting NPS is then 6, which is a low positive value.

Reasons for Dissatisfaction

We asked the 261 respondents (20% of the respondents) that are dissatisfied with
the current authentication methods (i.e., that reported a score between 0 and
6) the reasons for this dissatisfaction. Figure 3.9 presents the reasons why the
unsatisfied respondents are dissatisfied with the current authentication methods.
Among the unsatisfied respondents, 38% found that the current authentication
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Figure 3.10: The difficulties regarding the current authentication methods that
the 489 respondents (38% of the respondents) have already encountered.

methods are unpractical. They mostly complained about the need to remember
numerous and complex passwords. They stressed that these constraints were en-
hanced by the password creation policies that differ between websites. As many
unsatisfied respondents (38%) found that the current authentication methods were
unsecure, mostly due to the lack of two-factor authentication and the risk of piracy
that remained. For 24% of the unsatisfied respondents, the current authentication
methods were too constraining. They mostly complained about the constraints on
password policies, and authentication mechanisms being too constraining. Unsat-
isfied respondents (7%) also reported the lack of a unique authentication solution
as a dissatisfaction factor. Finally, 5% of the respondents had no reasons to report.

Difficulties with Current Authentication Methods

We asked the respondents if they already encountered difficulties regarding the
current authentication methods. To this question, 489 respondents (38% of the re-
spondents) answered positively. Figure 3.10 summarizes the difficulties that these
respondents encountered. Among the respondents that encountered difficulties,
33% have already had difficulties to remember passwords, resulting in errors in
their entry or in their forgetfulness. When processing biometric authentication,
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Figure 3.11: The ways the respondents retrieve their passwords.

23% of the respondents that encountered difficulties have already been unrecog-
nized, resulting in longer connection time or in the impossibility to connect. Other
difficulties with passwords are the number of passwords to remember, and the re-
quirements regarding their creation, that 17% of the respondents that encountered
difficulties have faced. The remaining difficulties are the non-reception of an SMS
or an email (15% of the respondents that encountered difficulties), network or con-
nection issues (7%), piracy or theft (4%), and secure key issues (3%). Finally, 4%
of the respondents that encountered difficulties answered positively but reported
no difficulties.

How Respondents Cope with Memorizing Passwords

As memorizing passwords is an issue that website users face, we asked the par-
ticipants how do they cope with this issue. Figure 3.11 presents the ways the re-
spondents retrieve their passwords. Among the respondents, 41% reported using a
password manager, and as many reported relying on the default password manage-
ment functionality of their web browser. These are good practices, although using
a dedicated password manager is better than relying on the browser, as their func-
tionalities are more secure (e.g., passwords are stored encrypted and are removed
from memory after use). A non-negligible number of respondents (26%) admitted
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to always use the same password to remember it more easily. Password reuse is
known as a bad practice that users still rely on [44, 135, 134, 172], which eases the
task for a pirate to illegitimately access their accounts [220, 210, 84]. Among the
respondents, 25% reported storing their passwords in a file or a notepad. Although
this is both easy and quick, it is a bad practice as any person having access to
the files can retrieve the password. A better alternative is the use of a password
manager. More physical ways to retrieve passwords have been reported by 10% of
the respondents. They include memorizing passwords and writing them down on
a piece of paper. These rates are similar to what was reported by Das et al. [44],
being that 13% of the respondents to their survey reported storing their passwords
on their computer, and 13% of them wrote their passwords down. Finally, 11% of
the respondents reported doing nothing in particular to retrieve their passwords.

The respondents seem to have better practices than common web users, which
can be explained by their technical skills. Indeed, their password reuse rate is
of 26%, against 31.44% [84] and 51% [44] for previous studies. Moreover, they
tend to use more password managers, with a use rate of 41% against 6% [44] and
12.34% [172] for previous studies.

3.5 Conclusion

To empirically study browser fingerprints, we designed a fingerprinting probe that
embark more than a hundred attributes in the form of a JavaScript script. Using
this fingerprinting probe, we performed four experiments that consisted into col-
lecting the browser fingerprints of four browser populations. These populations are
the general public users that visited one of the most popular French website, the
employees that visited the internal website of a company, the students and univer-
sity staff that navigated on the standardized computers of a university, together
with the visitors and experimenters that participated in the testing of an authen-
tication mechanism that leverages browser fingerprints. The fingerprint datasets
obtained from these experiments contained irrelevant data, hence we passed them
through preprocessing steps before any analysis. These steps are the cleaning of
the bogus and bot-related data, the resynchronization of the unique identifiers, the
fingerprint deduplication, and the derivation of the extracted attributes. Finally,
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to study the acceptability of browser fingerprints for authentication, we conducted
a survey with the help of the Le Lab experimentation platform. We describe the
respondent population, their authentication habits, and their opinion about cur-
rent authentication methods. We let the results about the acceptability of browser
fingerprinting for authentication for the next chapter.



Chapter 4

Browser Fingerprints for
Authentication

Most studies about browser fingerprinting for authentication concentrate on the
design of the authentication mechanism [212, 177, 79, 203, 124, 184] and the large-
scale empirical studies on browser fingerprints focus on their effectiveness as a
web tracking tool [56, 127, 81, 178]. Moreover, the distinctiveness of the browser
fingerprints that can be achieved when considering a wide-surface of attributes
on a large population is, to the best of our knowledge, unknown. The studies
that analyze browser fingerprints in a large-scale (more than 100, 000 fingerprints)
consider fewer than thirty attributes [56, 127, 214, 81] and usually focus on a
single aspect of the fingerprints (e.g., their distinctiveness, their stability). This
underestimates the distinctiveness of the fingerprints (e.g., [81] reports a rate of
33.6% of unique fingerprints), as it increases the chances for browsers to share the
same fingerprint. All this whereas more than a hundred attributes are accessible.
The current knowledge about the hundreds of accessible attributes (e.g., their
stability, their collection time, their correlation) is, to the best of our knowledge,
also incomplete.

In this chapter, we conduct a large-scale data-centric empirical study of the
fundamental properties of browser fingerprints when used as an additional web
authentication factor. We base our findings on the analysis of our four fingerprint
datasets, that include a dataset of 4, 145, 408 fingerprints composed of 216 base

81
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attributes plus 46 extracted ones. We formalize, and assess on our dataset, the
properties necessary for paving the way to elaborate browser fingerprinting au-
thentication mechanisms. We make the link between the digital fingerprints that
distinguish browsers, and the biological fingerprints that distinguish Humans, to
evaluate browser fingerprints according to properties inspired by biometric authen-
tication factors [139, 231, 75]. The properties aim at characterizing the adequacy
and the practicability of browser fingerprints, independently of their use within
future authentication mechanisms. To comprehend the obtained results on the
complete fingerprints, we include an in-depth study of the contribution of the
attributes to the fingerprint properties.

This chapter is organized as follows. In Section 4.1, we formalize the properties
for evaluating the browser fingerprints. Section 4.2 provides the results of the
analysis of our four fingerprint datasets according to these properties. We break
down the analysis to the attributes in Section 4.3, discuss their correlation, and
focus on the properties of the dynamic attributes. Finally, Section 4.4 concludes
this chapter.

4.1 Authentication Factor Properties

Biometric authentication factors and browser fingerprints share strong similarities.
Both work by extracting features from a unique entity, which is a person for the
former and a browser for the latter, that can be used for identification or for au-
thentication. Although the entity is unique, the extracted features are a digital
representation of the entity, that can lead to imperfections (e.g., the biometric
fingerprints of two different persons can show similar representations [170, 55]).
Previous studies [139, 231, 75] identified the properties for a biometric character-
istic to be usable1 as an authentication factor, and the additional properties for a
biometric authentication scheme to be practical. We evaluate browser fingerprints
according to these properties, because of their similarity with biometric authenti-
cation factors. In this section, we list these properties, formalize how to measure
some, and explain why the others are not addressed in this thesis.

1Here, usable refers to the adequacy of the characteristic to be used for authentication, rather
than the ease of use by users.
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4.1.1 Studied Properties

The four properties needed for a biometric characteristic to be usable [139] as an
authentication factor are the following:

• Universality: the characteristic should be present in everyone.

• Distinctiveness: two distinct persons should have different characteristics.

• Permanence: the same person should have the same characteristic over time.
We rather use the term stability.

• Collectibility: the characteristic should be collectible and measurable.

The three properties that a biometric authentication scheme requires to be
practical [139] are the following:

• Performance: the scheme should be accurate, consume few resources, and
be robust against environmental changes.

• Acceptability: the users should accept to use the scheme in their daily lives.

• Circumvention: it should be difficult for an attacker to deceive the scheme.

The properties that we study are the distinctiveness, the stability, and the per-
formance. We consider that the universality and the collectibility are satisfied,
as the HTTP headers that are automatically sent by browsers constitute a finger-
print. The major browsers embark a JavaScript engine to run JavaScript client-side
scripts, and few users disable the execution of these scripts2. However, we stress
that a loss of distinctiveness occurs when no JavaScript attribute is accessible.

About the circumvention, we refer the reader to Laperdrix et al. [124] that an-
alyzed the security of an authentication mechanism based on browser fingerprints
that implements a challenge-response mechanism that relies on HTML5 canvases3.
They identify the attacks that can be executed on such mechanism and the reach of
each attack. They show that such mechanism is not sensible to replay attacks, that

2https://deliberatedigital.com/blockmetry/javascript-disabled
3Although they focus on HTML5 canvases, we emphasize that several dynamic attributes can

be combined to design such challenge-response mechanism.

https://deliberatedigital.com/blockmetry/javascript-disabled
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the number of possible challenges is sufficiently large (more than 2154 possibilities)
to thwart preplay attacks, and that the number of possible values is sufficiently
large to avoid blind guessing attacks. They discuss guessing attacks which can
reach 9.9% of the browser population for a strong attacker. They also explain that
configuration recovery attacks are efficient as grouping the browsers according to
their complete fingerprint leads to a unique canvas rendering for around 60% of
the groups. However, they stress that such attacks require extra works for the
attackers. Although they acknowledge that such mechanism is fallible to relay at-
tacks, we emphasize that two-factor authentication mechanisms are also sensible
to relay attacks4,5,6.

4.1.2 Distinctiveness

To satisfy the distinctiveness, the browser fingerprints should distinguish browsers.
The two extreme cases are every browser sharing the same fingerprint, which makes
them indistinguishable from each other, and no two browsers sharing the same fin-
gerprint, making every browser distinguishable. The distinctiveness falls between
these extremes, depending on the attributes and the browser population. We
consider the use of browser fingerprinting as an additional authentication factor.
Hence, we do not require a perfect distinctiveness, as it is used in combination
with other authentication factors to improve the overall security.

The dataset entries are composed of a fingerprint, the source browser, and the
time of collection in the form of a Unix timestamp in milliseconds. We denote B

the domain of browsers, F the domain of the fingerprints, and T the domain of
the timestamps. The fingerprint dataset is denoted D, and is formalized as:

D = {(f, b, t) | f ∈ F, b ∈ B, t ∈ T} (4.1)

We use the size of the browser anonymity sets to quantify the distinctiveness,
as the browsers that belong to the same anonymity set are indistinguishable. We

4https://blog.duszynski.eu/phishing-ng-bypassing-2fa-with-modlishka
5https://techcommunity.microsoft.com/t5/azure-active-directory-identity/all-

your-creds-are-belong-to-us/ba-p/855124
6https://www.csoonline.com/article/3399858/phishing-attacks-that-bypass-2-

factor-authentication-are-now-easier-to-execute.html

https://blog.duszynski.eu/phishing-ng-bypassing-2fa-with-modlishka
https://techcommunity.microsoft.com/t5/azure-active-directory-identity/all-your-creds-are-belong-to-us/ba-p/855124
https://techcommunity.microsoft.com/t5/azure-active-directory-identity/all-your-creds-are-belong-to-us/ba-p/855124
https://www.csoonline.com/article/3399858/phishing-attacks-that-bypass-2-factor-authentication-are-now-easier-to-execute.html
https://www.csoonline.com/article/3399858/phishing-attacks-that-bypass-2-factor-authentication-are-now-easier-to-execute.html
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denote B(f, D) the function that gives the browsers that provided the fingerprint f

in the dataset D. It is formalized as:

B(f, D) = {b ∈ B | ∀(g, b, t) ∈ D, f = g} (4.2)

We denote A(ϵ, D) the function that provides the fingerprints that have an
anonymity set of size ϵ (i.e., that are shared by ϵ browsers) in the dataset D. It is
formalized as:

A(ϵ, D) = {f ∈ F | card(B(f, D)) = ϵ} (4.3)

A common measure of the fingerprint distinctiveness is the unicity rate [56, 127,
81], which is the proportion of the fingerprints that were observed for one browser
only. We denote U(D) the unicity rate of the dataset D, which is formalized as:

U(D) = card(A(1, D))
card(D)

(4.4)

Previous studies measured the anonymity set sizes on the whole dataset [56,
127, 81]. We measure the anonymity set sizes on the fingerprints currently in
use by each browser, and not on their whole history. A browser that runs in a
fancy web environment (e.g., having a custom font) and that has several finger-
prints in the dataset (e.g., fifty) would bloat the proportion of unique fingerprints.
Indeed, fifty fingerprints would be unique, whereas they all come from a single
browser. Moreover, two browsers that share the same fingerprint but on different
time windows (e.g., a browser is updated before the other) would fall into the same
anonymity set. A verifier that observes the fingerprint of these two browsers would
still be able to distinguish them.

We evaluate the anonymity set sizes on the time-partitioned datasets composed
of the last fingerprint seen for each browser at a given time. Let Sτ (D) be the time-
partitioned dataset originating from D that represents the state of the fingerprint
of each browser after τ days. With tτ the last timestamp of this day, we have:

Sτ (D) = {(fi, bj, tk) ∈ D | ∀(fp, bq, tr) ∈ D, bj = bq, tr ≤ tk ≤ tτ} (4.5)
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4.1.3 Stability

To satisfy the stability, the fingerprint of a browser should stay sufficiently sim-
ilar between two observations to be recognizable. Browser fingerprints have the
particularity of evolving through time, due to changes in the web environment
like a software update or a user configuration. We measure the stability by the
average similarity between the consecutive fingerprints of the browsers, according
to the elapsed time between their observation. The two extreme cases are every
browser holding the same fingerprint through its life, and the fingerprint changing
completely with each observation. A lack of stability makes it harder to recognize
the fingerprint of a browser between two observations.

We denote C(∆, D) the function that provides the pairs of consecutive finger-
prints of D that are separated by a time-lapse comprised in the ∆ time range. It
is formalized as:

C(∆, D) = {(fi, fp) | ∀((fi, bj, tk), (fp, bq, tr)) ∈ D2, bj = bq, tk < tr, (tr − tk) ∈ ∆,

∄(fc, bd, te) ∈ D, bd = bj, fc ̸= fi, fc ̸= fp, tk < te < tr}
(4.6)

We consider the Kronecker delta δ(x, y) which gives 1 if x equals y and 0
otherwise. We consider the set Ω of the n used attributes. We denote f [a] the
value taken by the attribute a for the fingerprint f . Let sim(f, g) be a simple
similarity function between the fingerprints f and g, which is formalized as:

sim(f, g) = 1
n

∑
a∈Ω

δ(f [a], g[a]) (4.7)

We define the function avsim(∆, D) that provides the average similarity be-
tween the pairs of consecutive fingerprints7, for a given time range ∆ and a
dataset D. It is formalized as:

avsim(∆, D) =
∑

(f,g)∈C(∆,D) sim(f, g)
card(C(∆, D))

(4.8)

7More complex similarity functions can be designed (e.g., relying on machine learning tech-
niques [214]). We refer to Appendix D for a discussion about a verification mechanism that
authorizes small differences when comparing the attributes. The similarity function that we use
to evaluate the stability provides a lower bound as the identical attributes should also match
when using more advanced similarity functions.
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4.1.4 Performance

Browser fingerprinting can easily be deployed by adding a script on the authen-
tication page, and by preparing the servers to handle the reception, the storage,
and the verification of the fingerprints. The users solely rely on their regular web
browser, and do not have to run any dedicated application, nor possess specific
hardware, nor undergo a configuration step. The main additional load is on the
supplementary consumption of memory and time resources. The web environ-
ments also differ between device types (e.g., mobile browsers have more limited
functionalities than desktop browsers) and through time (e.g., modern browsers
differ from the ones from ten years ago). These differences impact the effectiveness
of browser fingerprinting. Finally, as the fingerprints evolve through time, their
verification is badly impacted by this particularity. We consider four aspects of
the performance of browser fingerprints for web authentication: their collection
time, their size in memory, the loss of effectiveness between different device types,
and the accuracy of a simple illustrative verification mechanism.

Collection Time

The browser fingerprints can be solely composed of passive attributes (e.g., HTTP
headers) that are transmitted along with the communications with the server. In
this case, the fingerprints are collected without the user perceiving any collec-
tion time, but major attributes are set aside. The client-side properties collected
through JavaScript provide more distinctive attributes, at the cost of an additional
collection time. We measure the collection time of the fingerprints considering only
the JavaScript attributes, and ignore the HTTP headers that are transmitted pas-
sively.

Size

Browser fingerprinting consumes memory resources on the clients during the buffer-
ing of the fingerprints, on the wires during their sending, and on the servers during
their storage. The memory consumption depends on the storage format of the fin-
gerprints. For example, a canvas can be stored as an image encoded in a base64
string, or shorter as a hash. A trade-off has to be done between the quantity of
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information and the memory consumption. The less memory-consuming choice is
to store the complete fingerprint as a single hash. However, the fingerprints evolve
through time – even more when they are composed of many attributes – which re-
sults in the use of a hash of the complete fingerprint being impractical. Due to the
unspecified size of the attributes (e.g., the specification of the User-Agent HTTP
header does not define a size limit [186]), we measure their size on a fingerprint
dataset.

Loss of Effectiveness

The loss of effectiveness is the loss of stability, of distinctiveness, or of perfor-
mance of the fingerprints. It can occur either for a group of browsers (e.g., mobile
browsers), or resulting from changes brought to web technologies. First, previous
works showed differences in the properties of the fingerprints coming from mobile
and desktop devices [204, 127, 81], notably a limited distinctiveness for the mo-
bile browsers. Following these findings, we compare the properties shown by the
mobile and by the desktop browsers. Second, browser fingerprinting is closely de-
pendent on the evolution of web technologies. As new technologies are integrated
into browsers, new attributes are accessible, and conversely for removal. Similarly,
functionality updates can lead to a change in the fingerprint properties. For ex-
ample, Kurtz et al. [121] detected an iOS update by the sudden instability of an
attribute that provides the iOS version. Following their finding, we verify whether
the evolution of web technologies provokes major losses in the properties of the
fingerprints.

Accuracy of a Simple Verification Mechanism

We evaluate the accuracy of a simple illustrative verification mechanism under the
evolution of fingerprints. This mechanism counts the identical attributes between
the presented and the stored fingerprint, and considers the evolution legitimate if
this number is above a threshold Θ. The simplicity of this mechanism gives us
an idea of the accuracy that can be easily achieved, without having to engineer
more complex rules. More elaborate mechanisms can obviously be designed (see
Appendix D).
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4.1.5 Acceptability

We evaluate the acceptability of the usage of browser fingerprinting for authen-
tication with the help of the Le Lab experimentation platform on the enrolled
experiment. Le Lab conducted a survey about the test authentication mechanism
that integrates browser fingerprints as an authentication factor. The questions
were asked in two phases. First, the participants were shown a brief description of
the test authentication mechanism (available in Appendix E) and were asked their
opinion about the mechanism according to the description. Then, the participants
were invited to test the authentication mechanism and give their opinion on their
experience.

4.2 Evaluation of Browser Fingerprints Proper-
ties

In this section, we evaluate the browser fingerprints of our four datasets according
to the distinctiveness, the stability, the performance, and the acceptability proper-
ties. We present here the results on the complete fingerprints, and let Section 4.3
provide insights on the contribution of the attributes to each property. We use the
terms of mobile fingerprints and desktop fingerprints to refer to the fingerprints
coming respectively from the mobile and from the desktop browsers.

4.2.1 Distinctiveness

In this section, we provide the results on the distinctiveness of the fingerprints of
our four datasets. Figure 4.1 presents the size of the anonymity sets alongside the
frequency of browser arrival for the time-partitioned datasets obtained from the
four datasets. Figure 4.2 presents the unicity rate through the time-partitioned
datasets obtained from the general audience and enrolled datasets, for the overall,
the mobile, and the desktop browsers. The time-partitioned datasets are designed
so that each browser has the last fingerprint observed at the end of the τ -th day.
The overall fingerprints comprise those collected from desktop and from mobile
browsers, but also those of tablets, consoles, and smart TVs.
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Figure 4.1: Anonymity set sizes and frequency of browser arrivals through the
time-partitioned datasets obtained for each of the four datasets. The new browsers
of the general audience dataset are displayed in hundreds of thousands.
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Figure 4.2: Unicity rate for the overall, the mobile, and the desktop browsers,
through the time-partitioned datasets obtained from the general audience and
enrolled datasets.
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Summary of the Distinctiveness Results

For the general audience, intranet, and enrolled datasets, more than 81.3% of the
fingerprints are unique on the long run, considering the time-partitioned datasets.
Moreover, more than 94.7% of the fingerprints of these three datasets are shared
by 8 browsers of fewer. The university dataset shows a lower distinctiveness due
to the standardized browser population. The unicity rate of the time-partitioned
datasets goes down to 11%, and stabilizes at 17.1% on the long run. Although the
browsers of the university dataset are standardized, some are still distinguishable
by their fingerprint.

The unicity rate of the time-partitioned datasets is lower than the unicity
rate of the complete datasets. The loss is lower than 5.18% of the unicity rate
of the complete datasets, at the exception of the university dataset for which it
is 53.19%. This is due to browsers having multiple unique fingerprints in the
complete dataset, which typically occurs when a browser having a unique web
environment is fingerprinted multiple times. Considering the time-partitioned
datasets removes this over-counting effect. This effect is enhanced for the univer-
sity due to few browsers having a unique web environment.

New browsers join the experiments over time, with several days for which we
observe a high number of arrival due to external events (e.g., major news for
the general audience dataset, or advertisement on social medias for the enrolled
dataset). The anonymity sets are impacted by the arrival of new browsers in
the datasets. Indeed, the more browsers there are in the dataset, the greater
the chance of collision. The COVID-19 pandemic only impacted the university
dataset. The containment that occurred in France prevented users to connect
to the university computers. As a result, no new browsers joined the university
experiment after the 187th day.

The mobile fingerprints of the general audience and enrolled datasets show a
lower distinctiveness compared to the desktop fingerprints. For the general audi-
ence dataset, the unicity rate of the mobile fingerprints goes down to 41%, whereas
the lowest unicity rate of its desktop fingerprints is two times higher (84%). The
loss is less significant for the enrolled dataset which has fewer browsers. The
enrolled dataset shows a unicity rate of 93.6% for the mobile fingerprints against
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96.5% for the desktop fingerprints. We confirm the conclusions of the previous
studies [204, 127, 81] about the fingerprints of mobile browsers being less dis-
tinctive. However, we remark that the loss is less important for the enrolled
dataset than for the general audience dataset which has a larger mobile browser
population.

Detailed Analysis of the Distinctiveness of the General Audience Dataset

The fingerprints of the time-partitioned datasets of the general audience dataset
have a stable unicity rate of more than 81.3%, and more than 94.7% of them are
shared by at most 8 browsers. The anonymity sets grow as more browsers are
encountered, due to the higher chances of collision. However, the fingerprints tend
to stay in small anonymity sets, as can be seen by the growth of the anonymity
sets of size 2 being more important than the growth of the anonymity sets of size 8
or higher. Due to the over-counting effect, the unicity rate of the time-partitioned
datasets (81.3%) is lower than the unicity rate of the complete dataset (81.8%).
The general audience experiment occurred before the COVID-19 pandemic and
was not impacted by the containment that took place in France.

New browsers are encountered continually during the general audience experi-
ment. However, starting from the 60th day, the arrival frequency stabilizes around
5, 000 new browsers per day. Before this stabilization, the arrival frequency is
variable, and has major spikes that seem to correspond to events that happened
in France. These events could lead to more visits, hence explaining these spikes.
For example, the spike on the 38th day corresponds to a live political debate on
TV, and the spike on the 43rd correlates with the announcement of a cold snap.

The mobile fingerprints are more uniform than the desktop fingerprints. For the
time-partitioned datasets, the former shows a unicity rate of approximately 41%,
against 84% for the latter. The unicity rate of the desktop fingerprints slightly
increases by 1.04 points from the 60th to the 183th day, from 84.99% to 86.03%.
On the contrary, the unicity rate of the mobile fingerprints slightly decreases by
0.29 points on the same period, from 42.42% to 42.13%.
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Detailed Analysis of the Distinctiveness of the Intranet Dataset

All the fingerprints of the intranet dataset are in anonymity sets of size 5 or
lower. In the time-partitioned datasets, no fingerprint is shared by more than two
browsers until the 295th day of the experiment. After this day, more than 97.4%
of the fingerprints are shared by at most two browsers. On the long run, more
than 93.3% of the fingerprints are shared by a single browser. Due to the over-
counting effect, the unicity rate of the time-partitioned datasets (93.3%) is lower
than the unicity rate of the complete dataset (98.4%). The intranet dataset shows
no significant impact from the containment that took place in France due to the
COVID-19 pandemic8.

When few new browsers are encountered, the size of the anonymity sets tends
to decrease. This results in the increase of the proportion of fingerprints in small
anonymity sets (e.g., of size one or two). This is caused by the fingerprints of
the new browsers falling in small anonymity sets, or by the fingerprints of the
browsers already in the population leaving their anonymity set for smaller ones.
The latter can be explained by the fingerprints of the same anonymity set evolving
differently9.

As the experiment is limited to the browsers having access to the internal
network of the company, the browser population does not grow as much as for the
general audience experiment. Through time, few new browsers are encountered.
For the majority of the experiment days, no new browser is encountered, and only
15 days have more than 3 new browsers. They comprise the first days of the
experiment, the days around 500 days after the beginning of the experiment, and
a spike on the 704th day with 14 new browsers encountered.

8The containment took place between March 17 and May 11, 2020. It corresponds to the 701st
and the 756th day of the intranet experiment. The employees continued to visit the intranet
website from their homes using the VPN of the company. The intranet website helped the
employees get news about the company and stay in touch with their colleagues. News about the
company and the employees regarding the sanitary context was published on the 704th day of
the intranet experiment, which could explain the spike of new browsers.

9For example, one fingerprint of a given anonymity set stays identical if the browser has not
been fingerprinted for a long time. If another fingerprint of this anonymity set is updated (e.g.,
the browser was updated and then fingerprinted), then it leaves this anonymity set. Another
example is two fingerprints of the same anonymity set being updated differently (i.e., their web
environments are modified in different ways).
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Detailed Analysis of the Distinctiveness of the University Dataset

Before the 9th day of the university experiment, few fingerprints have been ob-
served, and the anonymity sets are small. From the 9th to the 40th day, more than
half of the browsers of the university experiment are encountered. This results in
a drastic decrease of the proportion of the anonymity sets of small size, down to a
unicity rate of 11%. The university dataset is impacted by the containment that
took place in France due to the COVID-19 pandemic10. After the 187th day, no
new browser is encountered, but fingerprints are still collected from the enrolled
browsers. Seven days later, the anonymity set sizes stabilize at 34.9% for the
sets of 8 fingerprints or fewer, at 24.8% for the sets of 2 fingerprints of less, and
at 17.1% for the unique fingerprints. Both the lowest (11%) and the stabilized
(17.1%) unicity rates of the time-partitioned datasets are lower than the unicity
rate of the complete dataset (23.5%) due to the over-counting effect. Although
these results are not surprising due to the standardized browser population, it is
interesting to see that the fingerprints are still able to distinguish some browsers.

Detailed Analysis of the Distinctiveness of the Enrolled Dataset

All the fingerprints of the enrolled dataset are shared by at most 4 browsers. The
unicity rate of the time-partitioned datasets goes from 98.9% on the first day, to
the lowest value of 96.1% on the 85th day, and stabilizes at 96.2% from the 187th
day to the end of the experiment. No fingerprint is shared by two browsers until
the 79th day. From the 79th day to the 187th day, 99.6% of the fingerprints are
shared by two browsers or fewer. Afterward, this rate stabilizes at 99.3%. The
enrolled dataset shows no significant impact from the containment that took place
in France due to the COVID-19 pandemic11.

10The containment took place between the 198th and the 253th day of the university exper-
iment. Starting from few days before the containment, no new browser is encountered as no
student nor university staff used the computers of the university during the containment. The
end of the academic year occurred shortly after the containment was over, which explains why
no user enrolled to the experiment after the containment. Fingerprints were still collected from
the registered experimenters during the containment. They surely come from the students that
were lent a laptop by the university and installed the extension to participate in the experiment.

11The containment took place between the 100th and the 155th day of the enrolled experiment.
The experimenters had access to the website during the containment as it was up and publicly
accessible. We even observe a spike of 26 new browsers on the 114th day.



4.2. EVALUATION OF BROWSER FINGERPRINTS PROPERTIES 95

Many new browsers are encountered on the first days of the experiment, up to
185 browsers on the first day. Afterward, several spikes of 25 to 50 new browsers
occur. As we communicated several times about the experiment, these spikes can
be the result of new experimenters coming after having heard of the experiment.

The mobile fingerprints are slightly less distinctive than the desktop finger-
prints, but the difference is not as significant as for the general audience dataset.
The unicity rate of the mobile fingerprints goes down to 93.6% and stabilizes at
94.3%. The unicity rate of the desktop fingerprints goes down to, and stabilizes
at, 96.5%. This is partly explained by the lower browser population for these two
groups. The enrolled dataset has a number of browsers up to 3 orders of magnitude
lower than the general audience dataset, and fewer browsers reduces the chances
of fingerprint collision.

4.2.2 Stability

In this section, we provide the results on the stability of the fingerprints of our four
datasets. Figure 4.3 displays the average similarity between the pairs of consecu-
tive fingerprints as a function of the time difference, together with the number of
compared pairs, for the four datasets. When mobile browsers are in the dataset,
the results are displayed for the overall, the desktop, and the mobile browsers.
The ranges ∆ are expressed in days, so that day d on the x-axis represents the
fingerprints that are separated by ∆ = [d; d + 1[ days. Two consecutive finger-
prints are necessarily different as we remove the consecutive fingerprints that are
duplicated12 (see Section 3.3.3). The stability results are a lower bound, as the
consecutive fingerprints are necessarily different (i.e., their similarity is strictly
lower than 1). For each type of browser, we ignore the comparisons of the time
ranges that have less than 3 pairs, to have samples of sufficient size without putting
too many comparisons aside. We also ignore the bogus comparisons that have a
time difference higher than the duration of the experiment. These two sets of
comparisons compose the outliers.

12Considering the fingerprints (f1, f2, f3) that were collected for a browser and ordered by the
time of collection, the set of consecutive fingerprints is {(f1, f2), (f2, f3)}.
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Figure 4.3: Average similarity between the pairs of consecutive fingerprints as a
function of the time difference, together with the number of compared pairs.
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Summary of the Stability Results

Except for the university dataset, the majority of the consecutive fingerprints
have more than 91% of identical attributes on average, even when several months
have passed between their observation. For the general audience and intranet
datasets, more than 91% of the attributes are expected to stay identical be-
tween two observations of the fingerprint of a browser, even when separated by
respectively six and three months. For the enrolled dataset, the average finger-
print similarity is also above 91% when considering up to 57 days between two
fingerprint observations. However, from 58 to 78 days, the average fingerprint
similarity falls down to 84.9% for the overall browsers, and to 81.7% for the desk-
top browsers. The university dataset shows a more scattered average fingerprint
similarity, which is comprised between 68.7% and 99.6% when considering up
to 84 days elapsed between two fingerprint observations. During the university
experiment, the browser profile of the students and university staff was shared
between the computers of the campus. As a result, the browsers from which the
fingerprints were collected could run on different web environment (e.g., a Win-
dows and a Linux), resulting in this lower similarity for the university dataset.
Only the general audience dataset contains comparisons of mobile fingerprints
over several time ranges. For this dataset, the mobile fingerprints tend to be
more stable than the desktop fingerprints.

Detailed Analysis of the Stability for the General Audience Dataset

The outliers account for less than 0.01% of each type of browser for the general
audience dataset. The results are obtained by comparing 3, 725, 273 pairs of con-
secutive fingerprints, that include 2, 912, 805 pairs of desktop fingerprints, and
594, 542 pairs of mobile fingerprints. On average more than 91% of the attributes
are expected to stay identical, considering up to 178 days (nearly 6 months) be-
tween two fingerprint observations. The mobile fingerprints are generally more
stable than the desktop fingerprints as suggests their respective similarity curve.



98 CHAPTER 4. BROWSER FINGERPRINTS FOR AUTHENTICATION

Detailed Analysis of the Stability for the Intranet Dataset

The outliers account for less than 0.5% of the consecutive fingerprints for the in-
tranet dataset. The results are obtained by comparing 10, 562 pairs of consecutive
fingerprints. On average, more than 91% of the attributes are expected to stay
identical, considering up to 111 days (more than 3 months) between two fingerprint
observations.

Detailed Analysis of the Stability for the University Dataset

The outliers account for 16.29% of the consecutive fingerprints for the university
dataset. This is due to several time ranges having less than 3 comparisons. This
comes from only 61 browsers having multiple fingerprints, and from the long du-
ration of the experiment. The results are obtained by comparing 313 pairs of
consecutive fingerprints. The results are more scattered for the university dataset,
for which the consecutive fingerprints have up to 84 days between them. The low-
est average similarity is at 68.7% for 33 days between two fingerprint observations,
and the highest is at 99.6% for 8 days. We have 3 days for which the average
similarity is between 70% and 80%, 15 days for which it is between 80% and 95%,
and 5 days for which it is between 95% and 99%.

By manually checking the changes of some attributes, we remark that a unique
identifier (UID) could have been observed on different operating systems or using
different graphical cards. The explanation is the particularity of the probe used
during the university experiment, that makes it possible for two different hardware
and computer stacks to present the same UID. The probe was integrated into an
extension, that was deployed in the default browser of the computers managed
by the university. The browser profiles of the users are shared among these com-
puters, allowing a user to connect on any of them to retrieve the same browser
configuration. As these profiles contain the cookies, an experimenter that connects
on different computers then presents the same UID. The lower stability observed
for the university dataset can be linked to this bias. Indeed, among the consecutive
fingerprints of this dataset, we observe 76 changes of the UserAgent switching be-
tween a Windows and a Linux operating system. This results in a lower similarity
between the consecutive fingerprints as the attributes can show different values on
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the different web environments.

Detailed Analysis of the Stability for the Enrolled Dataset

The enrolled dataset shows more outliers about the consecutive fingerprints: 5.08%
for all the browsers13, 6.57% for the desktop browsers, and 32.69% for the mobile
browsers. This is also due to several time ranges having less than 3 comparisons, as
only 275 browsers have multiple fingerprints over the long duration of the experi-
ment. The results are obtained by comparing 847 pairs of consecutive fingerprints,
that include 761 pairs of desktop fingerprints, and 52 pairs of mobile fingerprints.
The pairs of mobile fingerprints are all separated by less than a day. On average,
more than 91% of the attributes are expected to stay identical, considering up
to 57 days between two fingerprint observations. However, when looking at the
comparisons separated by 58 days, this rate falls down to 84.9% for the overall
browsers, and to 81.7% for the desktop browsers. Afterward, it goes up to 93.7%
for the overall browsers separated by 59 days, and then goes down to 89.7% for
the overall and desktop browsers separated by 78 days.

4.2.3 Collection Time

In this section, we provide the results on the collection time of the fingerprints of
our four datasets. Figure 4.4 displays the cumulative distribution of the collection
time of the fingerprints in seconds, with the outliers removed, and for the four
datasets. When mobile browsers are in the dataset, the results are displayed for
the overall, the desktop, and the mobile browsers. We measure the collection time
by the difference between two timestamps. The first is recorded at the starting
of the script, and the second just before sending the fingerprint. Some values are
extremely high and take from several hours to days. They can come from a web
page put in background, or accessed after a long time. We limit the results to

13The outlier rate is lower for the overall fingerprints than for the mobile and desktop finger-
prints. The overall fingerprints comprise the fingerprints of all the device types, and can exceed
the required number of consecutive fingerprints for a time range. Hence, the overall fingerprints
have more chance to not be considered an outlier. We take the example of a time range that
has 2 comparisons of mobile fingerprints and 1 comparison of desktop fingerprints. The overall
fingerprints have 3 comparisons and is not deemed an outlier, whereas the two subgroups have
fewer and are deemed outliers.
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Figure 4.4: Cumulative distribution of the collection time of the fingerprints in
seconds.

the fingerprints that take less than 30 seconds to collect, and consider the higher
values as outliers. We do not expect users to wait more than 30 seconds for a web
page to load. They account for less than 0.5% for each dataset.

Summary of the Collection Time Results

The median collection time of the fingerprints of the intranet, the enrolled, and
the university datasets are below 2 seconds. Moreover, the majority (95%) of the
fingerprints of these datasets are collected in less than 3.69 seconds. The finger-
prints of the general audience dataset show a higher median collection time of
2.92 seconds, and the majority (95%) of them are collected in less than 10.42 sec-
onds. This can be explained by three factors. First, the web pages that hosted



4.2. EVALUATION OF BROWSER FINGERPRINTS PROPERTIES 101

the fingerprinting probe are heavier and require more computing power to load.
Second, browsers running on devices having less computing power are part of
the population. Third, the general audience experiment took place few years
before the other experiments. The median collection time of the fingerprints of
our datasets is less than the estimated median time taken by web pages to load
completely [18], being at 6.7 seconds for the desktop browsers, and at 18.9 sec-
onds for the mobile browsers, at the date of August 1, 2020. The mobile finger-
prints generally take more time to collect than the desktop fingerprints. Half the
mobile fingerprints of the general audience dataset take 4.44 seconds to collect,
against 2.64 seconds for the desktop fingerprints. The difference is smaller for the
enrolled dataset, for which half of the mobile fingerprints take 1.18 seconds to
collect, against 0.98 seconds for the desktop fingerprints. This higher collection
time can be explained by the limited computing power of mobile devices.

Detailed Analysis of the Collection Time for the General Audience
Dataset

The outliers account for less than 0.5% of the fingerprints of each device type for
the general audience dataset. Half of the fingerprints are collected in less than
2.92 seconds, and the majority (95%) in less than 10.42 seconds. The mobile
fingerprints are generally longer to collect than the desktop fingerprints. Half of
the desktop fingerprints are collected in less than 2.64 seconds, and the majority
(95%) in less than 10.45 seconds. These numbers are respectively of 4.44 seconds
and 10.16 seconds for the mobile fingerprints.

Detailed Analysis of the Collection Time for the Intranet Dataset

The outliers account for less than 0.1% of the entries of the intranet dataset. Half
of the fingerprints are collected in less than 0.95 seconds, and the majority (95%)
in less than 3.38 seconds.

Detailed Analysis of the Collection Time for the University Dataset

The university dataset has no outliers when it comes to the collection time, as all of
its fingerprints are collected in less than 8.83 seconds. Half of the fingerprints are
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collected in less than 2 seconds, and the majority (95%) in less than 2.95 seconds.

Detailed Analysis of the Collection Time for the Enrolled Dataset

The outliers account for less than 0.2% of the entries of each device type for the
enrolled dataset. Half of the fingerprints are collected in less than 1 second, and
the majority (95%) in less than 3.69 seconds. The mobile fingerprints are slightly
longer to collect than the desktop fingerprints. Half of the desktop fingerprints are
collected in less than 0.98 seconds, and the majority (95%) in less than 3.65 sec-
onds. These numbers are respectively of 1.18 seconds and 4.03 seconds for the
mobile fingerprints.

4.2.4 Fingerprint Size

In this section, we provide the results on the size of the fingerprints of our four
datasets. Figure 4.5 displays the cumulative distribution of the size of the fin-
gerprints of the four datasets in bytes. The fingerprints are encoded in UTF-8
(with ASCII characters only), hence one character takes exactly one byte, and the
results can be expressed in both units. The canvases are stored as sha256 hashes
of 64 bytes long. The fingerprint sizes are measured by excluding the metadata
fields (e.g., the UID, the timestamp) and the source attributes of the extracted
attributes.

Summary of the Fingerprint Size Results

Half of the fingerprints of the four datasets weigh less than 7, 776 bytes, and 95%
weigh less than 12 kilobytes. At the exception of an outlier in the general audience
dataset, all the fingerprints weigh less than 22.3 kilobytes. Such a fingerprint size
is negligible given the current storage and bandwidth capacities. The mobile
fingerprints also tend to be lighter than the desktop fingerprints. For the general
audience dataset, 95% of the mobile fingerprints weigh less than 8, 020 bytes,
against 12, 082 bytes for the desktop fingerprints. The difference is smaller for
the enrolled dataset, for which 95% of the mobile fingerprints weigh less than
8, 752 bytes, against 9, 606 bytes for the desktop fingerprints. This is due to
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Figure 4.5: Cumulative distribution of the fingerprint size in bytes.



104 CHAPTER 4. BROWSER FINGERPRINTS FOR AUTHENTICATION

heavy attributes being lighter on mobiles, like the list of plugins or of mime types
that are most of the time empty. We discuss these cases in Section 4.3.5.

Detailed Analysis of the Fingerprint Size for the General Audience
Dataset

The average fingerprint size for the general audience dataset is of µ = 7, 692 bytes,
and the standard deviation is of σ = 2, 294. We remove a desktop fingerprint
considered an outlier due to its size being greater than µ + 15 · σ. Half of the
fingerprints of the general audience dataset take less than 7, 550 bytes, 95% less
than 12 kilobytes, and all of them less than 22 kilobytes. We observe a difference
between the fingerprints of mobile and desktop browsers, with 95% of fingerprints
weighing respectively less than 8, 020 bytes and 12, 082 bytes.

Detailed Analysis of the Fingerprint Size for the Intranet Dataset

Half of the fingerprints of the intranet dataset take less than 7, 723 bytes, 95% less
than 9, 832 bytes, and all of them less than 22.3 kilobytes.

Detailed Analysis of the Fingerprint Size for the University Dataset

Half of the fingerprints of the intranet dataset take less than 5, 433 bytes, 95% less
than 5, 643 bytes, and all of them less than 9, 212 bytes.

Detailed Analysis of the Fingerprint Size for the Enrolled Dataset

Half of the fingerprints of the enrolled dataset take less than 7, 776 bytes, 95%
less than 9, 600 bytes, and all of them less than 12.17 kilobytes. We observe a
difference between the fingerprints of mobile and desktop browsers, with 95% of
fingerprints weighing respectively less than 8, 752 bytes and 9, 606 bytes.

4.2.5 Accuracy of the Simple Verification Mechanism

The accuracy of the simple illustrative verification mechanism is measured on the
four datasets according to the following methodology. First, we split the datasets
into samples of one month for the general audience dataset, and of two months



4.2. EVALUATION OF BROWSER FINGERPRINTS PROPERTIES 105

for the other datasets which have fewer fingerprints per month. We assume that
a user would spend at most two months between two connections, and otherwise
would accept to undergo a heavier fingerprint update process. Two sets of pairs
of compared fingerprints, also called comparisons, are afterward extracted from
each sample. The same-browser comparisons are composed of the consecutive fin-
gerprints of each browser, and the different-browsers comparisons are composed
of two randomly picked fingerprints collected from different browsers. After con-
stituting the same-browser comparisons for each month sample, we sample the
different-browsers comparisons to have the same size as the same-browser compar-
isons. The sampling also helps the different-browsers comparisons to be realistic
by pairing fingerprints that are separated by at most two months. We measure
the accuracy by the false match rate (FMR) which is the proportion of different-
browsers comparisons that are classified as same-browser comparisons, by the false
non-match rate (FNMR) which is the inverse, and by the equal error rate (EER)
which is the rate where the FMR and the FNMR are equal. These measures are
discussed further in Section 2.1.5.

Figure 4.6 displays the distribution of the identical attributes between the
same-browser comparisons and the different-browsers comparisons for the four
datasets. Figure 4.7 displays the false match rate and the false non-match rate for
the four datasets. The attributes include the extracted attributes without their
source attribute. The displayed results are the average for each number of identical
attributes among the month samples.

Summary of the Accuracy Results

We observe that the same-browser comparisons of the four datasets have from
154% to 248% more identical attributes on average, compared to the different-
browsers comparisons. By simulating the simple verification mechanism, we
achieve an equal error rate of 0.61% on the general audience dataset, of 2.19% on
the intranet dataset, of 4.30% on the enrolled dataset, and of 29.42% on the uni-
versity dataset. We emphasize that the lower equal error rate of the university
dataset is due to the standardized browser population, and to unique identi-
fiers being assigned to different browsers. Although the verification mechanism
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Figure 4.6: The number of identical attributes between the same-browser com-
parisons and the different-browsers comparisons. The figures on the left start from
the lowest observed value, and those on the right start from the value for which
0.5% of the same-browser comparisons are below (20% for the university dataset).
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required number of identical attributes, averaged among the month samples.
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does not have a perfect accuracy, this is acceptable. Indeed, a user getting his
browser unrecognized can undergo the fallback authentication process [180, 142].
Moreover, we consider the use of browser fingerprinting as an additional authen-
tication factor, hence the other factors can prevent a falsely recognized browser.
Both these cases are expected to rarely occur as can be seen by the low equal
error rate.

Detailed Analysis of the Accuracy for the General Audience Dataset

Each of the two sets of comparisons for the general audience dataset contains
3, 467, 289 comparisons over the six months of the experiment. We can observe
that the two sets are well separated, as 99.05% of the same-browser comparisons
have more than 234 identical attributes – over a total of 253 attributes – and
99.68% of the different-browsers comparisons have fewer. The different-browsers
comparisons have between 34 and 253 identical attributes, with an average of
127.41 attributes, and a standard deviation of 44.06 attributes. The same-browser
comparisons have between 72 and 252 identical attributes, with an average of
248.64 attributes, and a standard deviation of 3.91 attributes. Few same-browser
comparisons have fewer than 234 identical attributes. They are correctly identified
as same-browser comparisons, hence the FNMR is null for a threshold below 234
identical attributes. After exceeding this threshold, the FNMR increases as same-
browser comparisons begin to be classified as different-browsers comparisons. The
equal error rate is of 0.61% and is achieved for 232 identical attributes.

These results are tied to the distinctiveness and to the stability of the fin-
gerprints of the general audience dataset. Indeed, as more than 94.7% of the
fingerprints are shared by less than 8 browsers, two random fingerprints have little
chances to be identical. Moreover, more than 96.64% of the attributes are identical
between the consecutive fingerprints of a browser, on average and when separated
by less than 31 days.
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Detailed Analysis of the Accuracy for the Intranet Dataset

The same-browser comparisons of the intranet dataset is composed of 9, 667 com-
parisons, and the different-browsers comparisons contains 9, 206 comparisons14.
The different-browsers comparisons have between 46 and 254 identical attributes
– over a total of 255 attributes – with an average of 154.87 attributes, and a stan-
dard deviation of 37.35 attributes. The same-browser comparisons have between
110 and 254 identical attributes, with an average of 248.87 attributes, and a stan-
dard deviation of 6.23 attributes. No same-browser comparisons have fewer than
110 identical attributes, hence the FNMR is null for a threshold below 110 identical
attributes. After exceeding this threshold, the FNMR increases as same-browser
comparisons begin to be classified as different-browsers comparisons. The equal
error rate is of 2.19% and is achieved for 233 identical attributes.

Detailed Analysis of the Accuracy for the University Dataset

The same-browser comparisons of the university dataset is composed of 263 com-
parisons, and the different-browsers comparisons contains 261 comparisons15. The
two sets of comparisons are not as well-separated as for the other datasets. The
different-browsers comparisons have between 139 and 238 identical attributes –
over a total of 238 attributes – with an average of 88.05 attributes, and a standard
deviation of 32.43 attributes. The same-browser comparisons have between 157
and 238 identical attributes, with an average of 218.46 attributes, and a standard
deviation of 28.63 attributes. No same-browser comparisons have fewer than 158
identical attributes, hence the FNMR is null for a threshold below 158 identical
attributes. After exceeding this threshold, the FNMR increases as same-browser
comparisons begin to be classified as different-browsers comparisons. The equal

14The user population is the employees, and rarely the visitors, of the company. As browsers
return regularly, there are numerous same-browser comparisons. The different-browsers compar-
isons can be fewer when there are not enough different browsers for some months.

15Only 80 fingerprints were collected in March and April 2020, and most of them come from the
same browser. Due to the few diversity in terms of browser for the sample corresponding to these
months, only 38 different-browsers comparisons have been generated, against 40 comparisons for
the same-browser class. Moreover, only 18 fingerprints were collected in May and June 2020,
and they all come from the same browser. Due to this, no different-browsers comparisons can
be generated from the sample corresponding to these months, which are then ignored.
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error rate is of 29.42% and is achieved for 217 identical attributes.

These results are linked to the low distinctiveness and the low stability of
the fingerprints of the university dataset. Indeed, the unicity rate of the time-
partitioned datasets of the university dataset goes as low as 11%, and stabilizes at
17.1% on the long run. Moreover, the stability of the university dataset is sparse
and goes as low as 68.7%.

Detailed Analysis of the Accuracy for the Enrolled Dataset

Each of the two sets of comparisons for the enrolled dataset contains 755 com-
parisons over the first six months of the experiment16. The different-browsers
comparisons have between 71 and 254 identical attributes – over a total of 254
attributes – with an average of 160.23 attributes, and a standard deviation of
38.47 attributes. The same-browser comparisons have between 214 and 254 iden-
tical attributes, with an average of 248.18 attributes, and a standard deviation
of 6.67 attributes. No same-browser comparisons have fewer than 214 identical
attributes, hence the FNMR is null for a threshold below 214 identical attributes.
After exceeding this threshold, the FNMR increases as same-browser comparisons
begin to be classified as different-browsers comparisons. The equal error rate is of
4.30% and is achieved for 232 identical attributes. The EER is lower than for the
general audience dataset, as the intersection of the FMR and the FNMR curves
occur at a higher value. This is due to 5.83% of the same-browser comparisons
having 232 identical attributes or less, and to 3.97% of the different-browsers com-
parisons having 232 identical attributes or more. Although the enrolled dataset
has a high unicity rate, the fingerprints of two different browsers can share several
identical attributes. Moreover, the consecutive fingerprints of the enrolled dataset
show a lower stability for some elapsed time between two observations (e.g., down
to 84.9% identical attributes between the consecutive fingerprints separated by
58 days).

16The enrolled experiment was processed over seven months (see Section 3.2 for a description
of this dataset), and the samples have a size of two months. Due to this sampling, the seventh
month is not considered.
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Figure 4.8: Interest of the respondents in the authentication mechanism according
to its description only.

4.2.6 Acceptability

In this section, we provide the results of the survey about the acceptability of the
authentication mechanism that experimenters of the enrolled experiment tested.
The questions were put to the participants in two phases: after reading a brief
description of the authentication mechanism, and after testing the actual authen-
tication mechanism.

Opinion on the Description of the Authentication Mechanism

After reading the description of the test authentication mechanism, which is pre-
sented in Appendix E, the participants were asked about their interest in the
described mechanism. Figure 4.8 shows the level of interest of the respondents in
the described authentication mechanism. We have 1, 035 respondents (80%) that
are interested in the described mechanism, and 26% of the respondents even report
being very interested.

We asked the 1, 035 respondents that are interested which advantages do they
perceive in the described authentication mechanism. Their answers are summa-
rized in Figure 4.9. The most perceived advantage is the ease of use, which is
reported by 43% of the interested respondents. They note that the mechanism
does not require any additional software, nor any specific action. The enhance-
ment of the security is reported by 41% of the interested respondents. They note
that the mechanism provides additional security thanks to the hardware recogni-
tion. Among the interested respondents, 25% deem the mechanism trustworthy,
and 4% deem it innovative. Finally, 9% of the interested respondents report no
advantage.

For the 250 respondents that are not interested, we asked them the weaknesses
that they perceive in the described authentication mechanism. Their answers are
summarized in Figure 4.10. Among the uninterested respondents, 24% do not
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trust the described authentication mechanism. They note that the fraudulent
access or theft of the device deceive the mechanism. The fingerprint is linked
to a device, and 17% of the uninterested respondents report this as a weakness.
Some explain that they use several devices in different places (e.g., at home, at
work), and others complain about the mechanism requiring to always use the same
device. The description of the mechanism did not emphasize this aspect, but the
authentication mechanism allowed users to register several devices, as described
in Appendix F. Among the uninterested respondents, 15% have concerns about
the collection of browser fingerprints that they consider as personal or sensitive
data. The uninterested respondents also report already using a satisfying solution
(13%), finding the described authentication mechanism too complex (13%), the
solution being only available on Android platforms17 (13%), and not needing or
not convinced by the described mechanism (4%). Finally, 7 of the uninterested
respondents report no reason for their lack of interest.

Opinion on the Experience of the Authentication Mechanism

After being invited to participate in the public test of the authentication mech-
anism, 682 participants (53% of the respondents to the survey) tested it and an-
swered the questions about their experience. Figure 4.11 shows the satisfaction
score reported by the participants with their experience on the test authentication
mechanism. We measure the satisfaction of the respondents by the Net Promoter
Score (NPS) [107] as described in Section 3.4.2, and we compare the obtained re-
sults with the satisfaction about the current authentication methods presented in
this same section. When asked about their satisfaction with their experience on
the test authentication mechanism, 40% of the respondents are promoters (against
26% for the current authentication methods), 22% of them are detractors (against
20% for the current methods), and 38% of them are passives (against 54% for the
current methods). The test authentication mechanism polarizes more the respon-
dents than the current authentication methods, as can be seen by the fewer passive

17We emphasize that this refers to the description of the solution that stipulates that it is "com-
patible with most Android browsers and mobile applications". However, the testing platform is
actually compatible with any browser that supports JavaScript, but its device fingerprinting
counterpart which leverages mobile applications was developed to only support Android plat-
forms.
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Figure 4.9: The advantages of the authentication mechanism that are perceived
by the 1, 035 respondents that are interested, according to its description.
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Figure 4.10: The weaknesses of the authentication mechanism that are perceived
by the 250 respondents that are not interested, according to its description.
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Figure 4.11: The satisfaction of the respondents with their experience on the test
authentication mechanism. The scores are divided between the detractors, the
passives, and the promoters according to the Net Promoter Score methodology.

respondents. Passive respondents switch more to promoters than detractors, and
we have nearly two more times promoters than detractors. We obtain a NPS of 18,
which is three times more than the NPS of the current authentication methods.
The satisfaction of the respondents with the test authentication mechanism that
includes browser fingerprints as an authentication factor is higher18 than with the
current authentication methods19.

4.2.7 Conclusion

In this section, we analyze the fingerprints of our four datasets according to the
properties of authentication factors that we identified. Generally, the properties

18Not all the respondents to the survey tested the authentication mechanism, resulting in
the respondents to the satisfaction about the mechanism being a subset. This can bias the
results towards a higher number of promoters, as a respondent that finds the description of the
authentication mechanism interesting can tend to confirm his interest in it [160].

19The current authentication methods are these that the respondents use and are presented in
Section 3.4.2. They notably include the password, the biometric fingerprint, and the SMS code.
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of the university dataset are different from those of the three other datasets be-
cause the browsers of the university experiment are standardized and managed by
the university staff. Moreover, the browser profile of the experimenters is shared
between the computers of the university, and the same browser identifier can ref-
erence browsers running on different web environment (e.g., on a Linux and on a
Windows operating system). The intranet, university, and enrolled experiments
were still running during the containment in France due to the COVID-19 pan-
demic. Only the university experiment was impacted as no student nor university
staff used the university computers. Experimenters still accessed the fingerprint
collection websites of the intranet and enrolled experiments.

About the distinctiveness when considering the time-partitioned datasets, the
general audience, the intranet, and the enrolled datasets show a proportion of
unique fingerprints above 80%. Their lowest unicity rate are respectively of 81.3%,
of 93.3%, and of 96.1%. On the contrary, the unicity rate of the university dataset
goes down to 11%, and stabilizes at 17.1% on the long run.

About the stability, the average similarity between the consecutive fingerprints
of the general audience, the intranet, and the enrolled datasets is above 81%. At
the exception of two occurrences for the enrolled dataset, this rate is even above
91%. The average similarity between the consecutive fingerprints of the university
dataset shows a high variability and goes from 68.7% to 99.6%.

The median collection time of the fingerprints of the intranet, the enrolled, and
the university datasets are below 2 seconds. The majority (95%) of the fingerprints
of these datasets are collected in less than 3.69 seconds. The general audience
dataset shows a higher median collection time of 2.92 seconds, and the majority
(95%) of its fingerprints are collected in less than 10.42 seconds.

Half of the fingerprints of the four datasets weigh less than 7, 776 bytes, 95% of
them weigh less than 12 kilobytes, and all of them weigh less than 22.3 kilobytes
at the exception of an outlier in the general audience dataset.

By simulating the simple verification mechanism on the general audience, the
intranet, and the enrolled datasets, we achieve a respective equal error rate of
0.61%, of 2.19%, and of 4.30%. The university dataset, due to its specificities,
shows a higher equal error rate of 29.42%.

We confirm the conclusions of the previous studies [204, 127, 81] about the
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mobile fingerprints being less distinctive. Their unicity rate in the time-partitioned
datasets of the general audience dataset falls down to 41%, compared to 84% for
the desktop fingerprints. The loss is less significant for the enrolled dataset, which
shows a lower unicity rate of 93.6% for the mobile fingerprints, against 96.5% for
the desktop fingerprints. Only the general audience dataset comprises consecutive
mobile fingerprints over several time ranges. The mobile fingerprints of this dataset
tend to be more stable through time than the desktop fingerprints. About the
size and the collection time of mobile fingerprints, they are generally lighter and
take more time to collect than the desktop fingerprints. We do not remark any
significant loss in the properties offered by the fingerprints of the four datasets
through the duration of their respective experiment.

We surveyed 1, 285 experimenters about their interest in an authentication
mechanism that relies on browser fingerprints. Among them, 80% report being
interested, and 26% report being very interested. The interested respondents per-
ceive the mechanism as easy to use (43%), as enhancing the security (41%), and as
trustworthy (25%). The uninterested respondents perceive the mechanism as un-
trustworthy (24%), as tightly linked to a device (17%), and as intrusive (15%). We
also measure the satisfaction of the 682 participants who tested the test authenti-
cation mechanism that leverages browser fingerprints by using the Net Promoter
Score. The test authentication mechanism polarizes the experimenters more than
the current authentication methods. Only 38% of the experimenters are classified
as passive, compared to 54% for the current methods. This loss in the number of
passives results in an increase of both the promoters and the detractors. About the
test authentication mechanism, 40% of the experimenters are promoters and 22%
of them are detractors, compared to 14% of promoters and 20% of detractors about
the current methods. The net promoter score of the test authentication mecha-
nism is of 18, which is three times more than the score of the current methods
(6).

4.3 Attribute-wise Analysis

In this section, we discuss the contribution of the attributes to the properties of the
fingerprints. We also discuss the correlation between the attributes, and provide
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Figure 4.12: Cumulative distribution of the number of distinct values of the
attributes in logarithmic scale.

a focus on the dynamic attributes. We refer the reader to Appendix A for more
information about the implementation of each attribute, and to Appendix I for
the exhaustive list of the attributes with their properties.

4.3.1 Attributes Distinct Values

In this section, we present the number of distinct values of the attributes of the
four datasets, as it impacts the distinctiveness that they provide. Figure 4.12
displays the distribution of the number of distinct values of the attributes, for the
four datasets and considering the extracted attributes. As an attribute has at
most as many distinct values as there are distinct fingerprints in the dataset, we
provide the latter for comparison.
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Summary of the Attributes Distinct Values Results

Although thousands to millions of fingerprints were collected during the general
audience, intranet, and enrolled experiments, between 63% and 91% of their
attributes got at most 100 distinct values observed. Due to the standardized
browser population of the university experiment, its attributes got at most 12
distinct values observed. The values of the attributes are of different nature,
impacting the distinct values that can be observed among different populations
or time ranges. Some attributes have a fixed number of values, like the Boolean
attributes or the categorical attributes that have a fixed set of possibilities. Other
attributes are composed of elements having a fixed set of possibilities, but their
combination provides a high number of values. It is the case for the attributes
that are related to languages that are typically composed of language identifiers
(e.g., fr) that can be valued (e.g., q = 0.80). These attributes also comprise
the list of fonts, that is composed of Boolean values that indicates the presence
of a given font. Other attributes consist in an integer, or in a real number
represented as a floating-point number, resulting in a large set of possible values.
This category comprises the size attributes (e.g., the screen width and height),
and our audio fingerprinting method which values are floating-point numbers
with a high precision of more than 8 digits. Finally, some attributes are textual
information that can include version number, which results in them having a
high number of distinct values. Moreover, as new values appear through time
(e.g., new versions, new software components), the set of the observed values
is expected to grow over the observations. Examples are the userAgent or the
list of plugins, as these attributes are composed of the name and the version of
hardware and software components.

Detailed Analysis of the Attributes Distinct Values for the General Au-
dience Dataset

The general audience dataset has 3, 578, 196 distinct fingerprints. Among the 253
attributes, 42% have at most 10 distinct values, 63% have at most 100 distinct val-
ues, and 79% have at most 1, 000 distinct values. Only 5 attributes have more than
100, 000 distinct values. They are the WebRTC fingerprinting method (671, 254



4.3. ATTRIBUTE-WISE ANALYSIS 119

values), the list of plugins (314, 518 values), the custom canvas in the PNG format
(269, 874 values) and in the JPEG format (205, 005 values), together with the list
of mime types (174, 876 values).

Detailed Analysis of the Attributes Distinct Values for the Intranet
Dataset

The intranet dataset has 9, 342 distinct fingerprints. Among the 260 attributes,
70% have at most 10 distinct values, 91% have at most 100 distinct values, and
more than 99% have at most 800 distinct values. Two attributes have between
800 and 1, 000 distinct values: the innerWidth (844 values) and the screenX (957
values) properties of the window object. Two attributes have more than 1, 000
distinct values: the width (1, 110 values) and the position (1, 113 values) of the
created div element.

Detailed Analysis of the Attributes Distinct Values for the University
Dataset

The university dataset has 85 distinct fingerprints. All the 243 attributes of this
dataset have at most 12 distinct values. Among them, 46% have only a single value,
79% have at most 3 distinct values, and 99% have at most 10 distinct values. Only 3
attributes have between 10 and 12 distinct values: the UNMASKED_RENDERER_WEBGL
property has 11 distinct values, and the UserAgent collected from JavaScript and
from HTTP headers both have 12 distinct values.

Detailed Analysis of the Attributes Distinct Values for the Enrolled
Dataset

The enrolled dataset has 1, 761 distinct fingerprints. Among the 259 attributes,
66% have at most 10 distinct values, 91% have at most 100 distinct values, and 99%
have at most 400 distinct values. Only 3 attributes have more than 400 distinct
values: the UserAgent collected from JavaScript (419 values) and from HTTP
headers (417 values), together with the innerHeight property of the window object
(474 values).
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Figure 4.13: Cumulative distribution of the normalized entropy, and of the en-
tropy in bits, among the attributes. The dashed gray line is the entropy of the
most entropic attribute.

4.3.2 Attributes Distinctiveness

In this section, we present the distinctiveness of the attributes measured by the
normalized entropy. Figure 4.13 displays the cumulative distribution of the nor-
malized entropy, and of the entropy in bits, among the attributes of the four
datasets. Table 4.1 compares the normalized entropy of the attributes between
the studies Panopticlick [56], AmIUnique [127], Hiding in the Crowd [81], and our
four datasets.
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Normalized Entropy Measure

We measure the distinctiveness of the attributes as the normalized entropy for
comparability with previous studies. The normalized entropy was proposed by
Laperdrix et al. [127] to cope with the problem of comparing the entropy of at-
tributes between fingerprint datasets of dissimilar sizes. The normalized entropy
hn of an attribute is defined as the ratio of its entropy h to the maximum entropy
HM = log2(N) when considering N fingerprints. The entropy can be calculated
by h = hn ∗HM .

Summary of the Attributes Distinctiveness Results

A minority of the attributes provide a high distinctiveness. Looking at the at-
tributes distinctiveness figures, we observe that the 80% of the less distinctive
attributes provide a normalized entropy that is several times lower then the 20%
most distinctive attributes. This can be seen by the long tail at the top of
the figures. The most distinctive attributes are generally the UserAgent, the
canvases, the list attributes, and the attributes about the size of the browser
window. We observe that the most distinctive attributes of previous studies [56,
127] also belong to the most distinctive attributes of our datasets. We also ex-
plain the three factors that impact the normalized entropy of our attributes in
our datasets compared to the previous studies. We report four attributes that
are highly distinctive in our datasets that were not identified as such by the pre-
vious large-scale studies [56, 127, 81]. They concern the browser window and the
properties of elements drawn in the web page.

Comparison with Previous Studies

The most distinctive attributes of previous studies [56, 127] also belong to the most
distinctive attributes of our datasets. Although, three factors greatly impact the
obtained normalized entropy for our datasets, when compared with previous stud-
ies. First, the maximum entropy HM increases with the number of fingerprints.
However, an attribute that has n possibilities (e.g., a Boolean attribute has only
two possible values) is limited to a normalized entropy of at most log2(n). As the
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number N of fingerprints increases, the normalized entropy decreases due to the
entropy of the attribute being capped at log2(n), whereas the ratio is to log2(N).
Second, the contextual attributes are biased towards the French-population, as
described in Section 3.2, hence they provide a lower normalized entropy compared
to previous studies. For example, the time zone and the Accept-Language HTTP
header (named Content language in Table 4.1) provide a respective normalized en-
tropy that is comprised in [0.000; 0.008] and [0.124; 0.294] for our datasets, against
0.198 and 0.351 for the AmIUnique study [127]. The third reason is the evolution
of web technologies since the Panopticlick and the AmIUnique study. For exam-
ple, the list of plugins is less distinctive for our datasets due to the replacement of
plugins by HTML5 functionalities or extensions [209]. Another example is the list
of fonts that could be collected through plugins [56], but now has to be inferred
from the size of text elements [65].

New Distinctive Attributes

Interestingly, four attributes unreported by the previous large-scale studies [56,
127, 81] are found to be highly distinctive. We find new attributes related to
the browser window that are among the most distinctive in our datasets. The
innerWidth, innerHeight, outerWidth, and outerHeight properties collected
from the windows JavaScript object are mentioned by [195, 215] without any dis-
tinctiveness measure. They have a normalized entropy respectively comprised
in [0.263; 0.482], [0.388; 0.728], [0.293; 0.509], and [0.327; 0.613] for our datasets
excluding the university dataset due to its specific browser population. The
availWidth and availHeight properties of the screen JavaScript object are al-
ready known as they are mentioned by [145, 83, 38, 114, 214, 97], but no dis-
tinctiveness measure is provided. They have a normalized entropy respectively
comprised in [0.202; 0.328] and [0.268; 0.507] for our datasets excluding the uni-
versity dataset. The AvailTop and AvailLeft properties, for their part, are less
distinctive with a respective normalized entropy comprised in [0.060; 0.149] and in
[0.048; 0.129] for these same datasets. The size of bounding boxes is used by [65]
as a method of font fingerprinting. From the entropy reported by the authors,
we compute a normalized entropy of 0.761. In our datasets, this attribute is di-
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vided into the list of the values of widths and of heights, which have a respective
normalized entropy comprised in [0.299; 0.424] and [0.264; 0.439] for our datasets
excluding the university dataset. To the best of our knowledge, no previous study
uses the width and the position of a newly created div element as a fingerprint-
ing attribute. However, they are highly distinctive as they achieve a normalized
entropy respectively comprised in [0.316; 0.535] and [0.316; 0.536] for our datasets
excluding the university dataset.

Detailed Analysis of the Attributes Distinctiveness for the General Au-
dience Dataset

Among the attributes of the general audience dataset, 10% provide a normalized
entropy lower than 0.003, and another 10% provide a normalized entropy between
0.25 and 0.42. The majority of the attributes (80%) provide a normalized en-
tropy comprised between 0.003 and 0.25. The three canvases are among the most
distinctive attributes. Our designed canvas in PNG has a normalized entropy of
0.420, the canvas similar to [124] has a normalized entropy of 0.385, and the canvas
inspired by [127] shows a normalized entropy of 0.353. The UserAgent collected
from the JavaScript property is more distinctive than its HTTP header counter-
part, as they respectively have a normalized entropy of 0.394 and 0.350. Finally,
the list attributes are also among the most distinctive attributes. The list of plu-
gins has a normalized entropy of 0.394, the list of the supported mime types has
a normalized entropy of 0.311, and the list of fonts has a normalized entropy of
0.305.

Detailed Analysis of the Attributes Distinctiveness for the Intranet
Dataset

Among the attributes of the intranet dataset, 36% provide a normalized entropy
of at most 0.041, 56% provide a value between 0.041 and 0.322, and 8% provide a
value above 0.322. The userAgent properties collected from JavaScript and HTTP
header are the most distinctive attributes, and both show a normalized entropy
of 0.629. The properties related to the browser window are also among the most
distinctive. The innerHeight property provides a normalized entropy of 0.628,
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the outerHeight one shows a value of 0.517, the innerWidth one shows a value
of 0.482, and the outerWidth one provides a value of 0.442. The three canvases
are part of the most distinctive attributes. Our designed canvas in PNG has a
normalized entropy of 0.599, the canvas similar to [124] has a value of 0.471, and
the canvas inspired by [127] shows a value of 0.459. The position and the width
of a created div element follow with a respective normalized entropy of 0.536
and 0.535. The appVersion property shows a normalized entropy of 0.519, and
the combination of the width and the height of first bounding box provides a
normalized entropy of 0.455.

Detailed Analysis of the Attributes Distinctiveness for the University
Dataset

The attributes of the university dataset, due to the standardized browser popula-
tion, provide a lower distinctiveness compared to the other datasets. Among the
attributes of the university dataset, 46% have a null normalized entropy and pro-
vide no distinctiveness at all. Moreover, 74% of the attributes provide a normalized
entropy lower than 0.124, which is equivalent to 1 bit of entropy. Only 7 attributes
provide a normalized entropy above 0.185. The two most distinctive attributes of
the university dataset concern the WebGL library. Indeed, the browsers of the uni-
versity experiment are standardized, but from the collected fingerprints we observe
that several graphics drivers are reported by the UNMASKED_RENDERER_WEBGL prop-
erty. It provides a normalized entropy of 0.251, and the list of WebGL extensions
shows a normalized entropy of 0.203. The list of fonts is part of the most distinc-
tive attributes, with a normalized entropy of 0.218. Our HTML5 canvas provides
a normalized entropy of 0.199. The textual attributes that describe the browser
and its version are also part of the most distinctive attributes. The two userAgent
versions provide a normalized entropy of 0.189, and the buildID property shows
a value of 0.186.
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Detailed Analysis of the Attributes Distinctiveness for the Enrolled
Dataset

Among the attributes of the enrolled dataset, 52% provide a normalized entropy
of at most 0.093, which is equivalent to 1 bit of entropy. Most of the attributes
90% provide a normalized entropy of at most 0.361, and 10% of them show a
normalized entropy comprised between 0.361 and 0.728. Among the most distinc-
tive attributes, we retrieve the properties related to the browser window. The
innerHeight, the outerHeight, the outerWidth, and the availHeight proper-
ties respectively provide a normalized entropy of 0.728, 0.613, 0.509, and 0.507.
Then, we have the textual information about the browser and its version. The
UserAgent collected from JavaScript shows a normalized entropy of 0.657, the
one collected from HTTP headers provides a value of 0.656, and the appVersion
property shows a value of 0.559. We also have the UNMASKED_RENDERER_WEBGL
property that provides a normalized entropy of 0.538, the width of the text box
that is displayed with the fallback font (0.533), and the position of the created div
element (0.533).

4.3.3 Attributes Sameness Rate

We express the stability of the attributes as the proportion of the consecutive
fingerprints for which the value of the attribute stays identical. We call this pro-
portion the sameness rate. In this section, we present the sameness rate of the
attributes of the four datasets, as it impacts the stability of the complete fin-
gerprints. Figure 4.14 displays the cumulative distribution of the sameness rate
among the attributes.

Summary of the Attributes Sameness Rate Results

Among the attributes of the general audience, intranet, and enrolled datasets,
few are highly unstable. Indeed, there are between 3% and 6% of the attributes
of these three datasets that show a sameness rate lower than 80%. The univer-
sity dataset falls apart as 31% of its attributes have a sameness rate lower than
80%, due to the sharing of the same browser identifier among the computers



4.3. ATTRIBUTE-WISE ANALYSIS 127

0.4 0.5 0.6 0.7 0.8 0.9 1.0
General audience dataset: Sameness rate

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e 

pr
op

or
ti

on
 o

f t
he

 a
tt

ri
bu

te
s

0.4 0.5 0.6 0.7 0.8 0.9 1.0
Intranet dataset: Sameness rate

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e 

pr
op

or
ti

on
 o

f t
he

 a
tt

ri
bu

te
s

0.4 0.5 0.6 0.7 0.8 0.9 1.0
University dataset: Sameness rate

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e 

pr
op

or
ti

on
 o

f t
he

 a
tt

ri
bu

te
s

0.4 0.5 0.6 0.7 0.8 0.9 1.0
Enrolled dataset: Sameness rate

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e 

pr
op

or
ti

on
 o

f t
he

 a
tt

ri
bu

te
s

Figure 4.14: Cumulative distribution of the sameness rate of the attributes among
the consecutive fingerprints.



128 CHAPTER 4. BROWSER FINGERPRINTS FOR AUTHENTICATION

of the university. The most unstable attributes concern the size of the browser
window, the components drawn in the web page (including canvases), the pe-
ripherals connected to the device (including the screen), the network connection,
the textual information about the browser (including the UserAgent), WebRTC
fingerprinting, and list attributes. As few attributes are highly unstable, getting
rid of them would improve the stability of the fingerprints, but could reduce their
distinctiveness.

Detailed Analysis of the Attributes Sameness Rate for the General Au-
dience Dataset

Among the 253 attributes of the general audience dataset, 6% provide a sameness
rate comprised in [80; 95]%, 11% provide a sameness rate comprised in [95; 99]%,
and more than 80% of the attributes have a sameness rate higher than 99%. Only
6 attributes show a sameness rate lower than 80%. They are the bounding boxes,
three extracted attributes derived from them, the Cache-Control HTTP header,
and the WebRTC fingerprinting method.

The bounding boxes attribute is composed of the width and the height of three
rectangles, from which we extract several parts. When looking at these parts, they
have a sameness rate higher than 90%, at the exception of the height of the first
bounding box that has a sameness rate of 49.04%. This illustrates the necessity of
breaking down some attributes to parts, as removing this part from the original
attribute would drastically increase its sameness rate. The Cache-Control HTTP
header allows the browser to specify the cache policy used during requests. It
is the second most unstable attribute with a sameness rate of 70.63%. This is
due to this header not being sent sometimes, and to some values containing the
max-age parameter which can vary between requests. The third most unstable
attribute is the WebRTC fingerprinting method that has a sameness rate of 76.46%,
because of three factors. First, the experimental state of this attribute leads it to
be unsupported, undefined, or erroneous for 75.23% of the observed fingerprints.
Then, the collected information contains local IP addresses20 (i.e., the IP address

20Our script hashes these local IP addresses by the MD5 hash function directly on the client
for privacy reasons. We refer to Takasu et al. [207] for more information about how the WebRTC
API gives access to this information.
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of the device in the internal network) which can change between two observations.
Finally, it is composed of numerous information about the instance of a WebRTC
connection, and the change of any of them changes the value of the whole attribute.

Detailed Analysis of the Attributes Sameness Rate for the Intranet
Dataset

Among the 260 attributes of the intranet dataset, 4% have a sameness rate com-
prised in [56; 75]%, 18% comprised in [80; 99]%, 59% comprised in [99; 100[%, and
17% are completely stable with a sameness rate of 100%. The attributes that
present a sameness rate lower than 80% are related to the browser window, to the
network connection, and to the screen size.

Although the attributes related to the browser window provide a high distinc-
tiveness, they are highly unstable in the intranet dataset. The attributes related to
the inner and outer width or height of the browser window present a sameness rate
comprised in [56.76; 71.35]%. The width and the position of the created div ele-
ment both have a sameness rate of 68.43%, and the availHeight property shows a
sameness rate of 71.70%. The fact that the employees of the company use a laptop,
to which they plug an external screen when they are not in the move, contributes to
this instability. Some attributes related to the network connection also show a high
instability. The downlink and the rtt properties of the navigator.connection
JavaScript object have a respective sameness rate of 65.20% and 74.17%. The
value of these two attributes are estimated from recent active connections before
being rounded. Their instability can be explained by their estimation method that
is based on the recent state of the network connection. The attributes related to
the screen size are also highly unstable. The screenX and screenY properties of
the window object have a respective sameness rate of 65.49% and 73.19%.

Detailed Analysis of the Attributes Sameness Rate for the University
Dataset

Among the 260 attributes of the university dataset, 31% have a sameness rate
comprised in [37; 80]%, 17% comprised in [80; 100[%, and 52% are completely stable
with a sameness rate of 100%. Several attributes are highly unstable and show a
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sameness rate below 80%. They concern the peripherals, the WebGL properties,
the information about the browser and its version, the components of the browser
and its window, and graphical elements drawn in the browser. We emphasize that
part of the instability of these attributes is tied to the unique identifiers being
assigned to different browsers in the university dataset.

The most unstable attribute is the list of the input and output media devices
obtained from the enumerateDevices function, which shows a sameness rate of
37.36%. Several WebGL properties are part of the most unstable attributes. For
example, the UNMASKED_RENDERER_WEBGL property, which provides debugging in-
formation about the graphic driver, shows a sameness rate of 59.62%. Moreover, 17
other WebGL properties have a sameness rate between 63.19% and 72.25%. The
textual attributes that give information about the browser and its version are also
among the most unstable. For example, the two UserAgent versions have a same-
ness rate of 74.45%, the buildID property provides a sameness rate of 68.41%, and
the platform property shows a sameness rate of 76.37%. The attributes that list
browser components show a high instability. For example, the list of fonts shows a
sameness rate of 69.78%, the list of the properties of the navigator object provides
a sameness rate of 76.37%, and the list of the speech synthesis voices has a sameness
rate of 79.12%. The attributes that consist into the colors of components of the
browser window (e.g., the scroll-bar) are also among the most unstable. Among
them, only the color of the texts when applied the HighlightText style shows
a sameness rate of 99.73%. The others have a sameness rate comprised between
77.75% and 79.12%. The graphical elements that are drawn in the browser also
show instability. For example, our HTML5 canvas has a sameness rate of 70.60%,
and all the extracted parts of the size of the bounding boxes have a sameness rate
between 76.37% and 79.12%.

Detailed Analysis of the Attributes Sameness Rate for the Enrolled
Dataset

Among the 254 attributes of the enrolled dataset, 3% have a sameness rate com-
prised in [65; 80]%, 29% comprised in [80; 99]%, 35% comprised in [99; 100[%, and
33% are completely stable with a sameness rate of 100%. There are 9 attributes
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that have a sameness rate below 80%. They concern the network connection, the
browser window and components that are drawn inside it, the screen size, and the
textual information about the browser.

The downlink property of the navigator.connection object is the most un-
stable, with a sameness rate of 65.39%. The innerHeight and the outerHeight
properties of the window object have a respective sameness rate of 74.04% and
79.21%. Two attributes that consist of components drawn into the browser are
also among the most unstable. The width of the text box drawn using the default
font has a sameness rate of 74.94%, and the position of a created div element has
a value of 74.94%. Two attributes related to the screen size show a high instability.
The properties screenX and screenY have a respective sameness rate of 75.62%
and 79.55%. Finally, the two UserAgent versions both have a sameness rate of
75.84%.

4.3.4 Attributes Collection Time

Figure 4.15 displays the median collection time of the attributes that have a MCT
higher than 5ms, ranked from the slowest to the fastest to collect for the overall
browsers. We stress that most of these attributes are collected asynchronously,
hence the total collection time of the fingerprint is not their sum.

Summary of the Attributes Collection Time Results

Most of the attributes are HTTP headers or JavaScript properties that are col-
lected in a negligible amount of time. For our four datasets, less than 40 attributes
have a median collection time (MCT) above 5ms. These attributes are classified
into three categories: the detection of extensions, the browser components (e.g.,
the fonts, the speech synthesis voices, the WebGL extensions), and the attributes
related to the manipulation of a media object (e.g., the canvases, the advanced
audio fingerprinting method). The attributes that take time to collect are usually
part of the longest to collect for the four datasets. The attributes are generally
faster to collect on desktop browsers, but in some cases are faster to collect on
mobile browsers. The different versions of our script take several seconds to col-



132 CHAPTER 4. BROWSER FINGERPRINTS FOR AUTHENTICATION

0 5 10 15 20 25 30 35
General audience dataset: The i-th slowest attribute

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

M
ed

ia
n 

co
lle

ct
io

n 
ti

m
e 

in
 s

ec
on

ds

Overall
Desktops
Mobiles

0 5 10 15 20 25 30
Intranet dataset: The i-th slowest attributes

0.0

0.2

0.4

0.6

0.8

M
ed

ia
n 

co
lle

ct
io

n 
ti

m
e 

in
 s

ec
on

ds

Overall

0 5 10 15 20 25
University dataset: The i-th slowest attribute

0.0

0.2

0.4

0.6

0.8

1.0

M
ed

ia
n 

co
lle

ct
io

n 
ti

m
e 

in
 s

ec
on

ds

Overall

0 5 10 15 20 25
Enrolled dataset: The i-th slowest attribute

0.0

0.1

0.2

0.3

0.4

0.5

M
ed

ia
n 

co
lle

ct
io

n 
ti

m
e 

in
 s

ec
on

ds

Overall
Desktops
Mobiles

Figure 4.15: Median collection time of the attributes that have a median collection
time higher than 5ms, ranked from the slowest to the fastest to collect for the
overall browsers.
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lect the attributes that compose the fingerprints. However, we emphasize that
these scripts are purely experimental, and were developed to collect many at-
tributes to get closer to what a verifier can achieve in real-life. The attributes
that are longer to collect and that are less distinctive can be removed to reduce
the collection time. For example, our method to detect an advertisement blocker
waits a few seconds for a simulated advertisement to be removed, but only pro-
vides a Boolean value. Our script can also be updated to leverage the most
advanced web technologies, like the OffscreenCanvas APIa that migrates the
generation of the canvases off the main thread to another one. More generally,
we can use the Service Workers APIb to collect the attributes concurrently in
the background, reducing the perceived collection time. These APIs are available
on modern browsers, the collection time should still be monitored for the older
browsers.

ahttps://developers.google.com/web/updates/2018/08/offscreen-canvas
bhttps://developer.mozilla.org/en-US/docs/Web/API/Service_Worker_API

Detailed Analysis of the Attributes Collection Time for the General
Audience Dataset

The 34 attributes that take more than 5ms to collect for the general audience
dataset can be separated into three classes: extension detection, browser compo-
nent, and media related.

The first class of attributes that take time to collect are the methods of ex-
tension detection. The 9 slowest attributes detect an extension by the changes it
brings to the content of the web page [205]. They have a median collection time
(MCT) of approximately 2.2 seconds, due to the waiting time before checking the
changes on the web page. There is a clear difference between the desktop and the
mobile browsers, with a respective MCT of approximately 2 seconds and 3.4 sec-
onds. The 22nd to the 29th slowest attributes detect an extension based on the
web-accessible resources [199], which consist into checking if an image embarked
in an extension is accessible or not. They have a MCT of around 60ms, which is
lower than the method that relies on detecting changes brought to the web page.

The second class of attributes that take time to collect infer the availability of
browser components. The list of the speech synthesis voices is ranked 14th with

https://developers.google.com/web/updates/2018/08/offscreen-canvas
https://developer.mozilla.org/en-US/docs/Web/API/Service_Worker_API
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a MCT of 568ms. This is due to the collection method that, for some browsers,
requires to be done during an onvoiceschanged event, which takes time to be
triggered. The list of fonts, and the inference of the default font, are ranked 15th
and 19th with a respective MCT of 471ms and 103ms. This is due to the detection
method that measures the sizes of newly created text boxes [65]. The size of
bounding boxes, the colors of browser components, and the width and position of
a newly created div element are respectively ranked 18th, 20th, and 21st, with a
MCT ranging from 60ms to 200ms. This is due to their manipulation of the web
page that takes time. The WebRTC fingerprinting method is ranked 13th with a
MCT of 783ms. This is due to the creation of a dummy connection that is needed
to gather information about the WebRTC configuration. Counter-intuitively, this
attribute is faster to collect on mobile (595ms) than on desktop browsers (917ms).
This results from the WebRTC API not being implemented on most of the mobile
browsers [37] at the time of the experiment, hence avoiding creating the dummy
connection. Indeed, this attribute is either empty, undefined, or erroneous for
95.79% of the mobile browsers.

The third class of attributes that take time to collect generate a media file (e.g.,
a sound, an image). The methods of advanced audio fingerprinting are ranked
10th, 11th, and 12th, and show a MCT between 1.40 seconds and 1.64 seconds.
They take longer to collect on mobile browsers, with a MCT comprised between
2.89 seconds and 3.68 seconds, against a MCT between 1.29 seconds and 1.53 sec-
onds for desktop browsers. Our designed canvas in PNG and JPEG format are
respectively ranked 16th and 17th with a MCT of 260ms and 265ms. Our canvases
take more time to collect on mobile browsers, with a MCT of approximately 650ms
against approximately 210ms on desktop browsers. The canvases inspired by the
AmIUnique study [127] in PNG and JPEG format are respectively ranked 31st
and 33rd with a MCT of 31ms and 39ms. These canvases also show a difference
between mobile and desktop browsers, with a respective MCT of approximately
100ms and 30ms. The canvas similar to the canvas of the Morellian study [124]
is ranked 32nd with a MCT of 37ms, and shows a MCT of 137ms for the mobile
browsers against 31ms for the desktop browsers. Our designed WebGL canvas is
ranked 30th with a MCT of 41ms, with a slight difference between mobile (56ms)
and desktop browsers (37ms).
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Detailed Analysis of the Attributes Collection Time for the Intranet
Dataset

The 29 attributes that take more than 5ms to collect for the intranet dataset are
the same as for the general audience dataset, at the exception of four attributes.

The first class of attributes that take time to collect are the methods of ex-
tension detection. The 9 slowest attributes detect an extension by the changes it
brings to the content of the web page [205]. They are the same as for the general
audience dataset, and have a MCT of approximately 855ms. The 11th to the 18th
slowest attributes detect an extension based on web-accessible resources [199], and
have a MCT of 467ms.

The second class of attributes that take time to collect infer the availability of
browser components. The list of the speech synthesis voices is ranked 10th, and
has a MCT of 733ms. The list of fonts, and the inference of the default font, are
ranked 19th and 23rd with a respective MCT of 372ms and 74ms. The size of
bounding boxes, the colors of browser components, and the width and position of
a newly created div element are respectively ranked 22nd, 24th, and 25th, with a
MCT ranging from 60ms to 169ms.

The third class of attributes that take time to collect generate a media file.
Our designed canvas is ranked 21st with a MCT of 181ms, the canvas inspired
by [127] is ranked 28th with a MCT of 14ms, the canvas similar to [124] is ranked
27th with a MCT of 19ms, and the WebGL canvas is ranked 26th with a MCT of
39ms.

Two attributes are among the slowest to collect for the intranet dataset without
being in the slowest to collect for the general audience dataset. The first is the
list of WebGL extensions, which is ranked 20th and has a MCT of 267ms. This
attribute shows a MCT of 8ms in the general audience dataset. The second is the
format of date and time, that is collected through the resolvedOptions function
of an instantiated DateTimeFormat object. It is ranked 29th with a MCT of 6ms,
which is barely above 5ms.
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Detailed Analysis of the Attributes Collection Time for the University
Dataset

The 28 attributes that take more than 5ms to collect for the intranet dataset are
approximately the same as for the general audience and the intranet dataset.

We retrieve the attributes that detect an extension. The 2nd to the 10th
slowest attributes detect an extension by the changes it brings to the content of
the web page [205]. They are the same as for the general audience and the intranet
dataset, and have a MCT of 463ms, at the exception of the ad blocker detection
method that has a MCT of 396ms. The 11th to the 17th slowest attributes detect
an extension based on web-accessible resources [199] and have a MCT of 369ms.
We also retrieve the attributes that infer the availability of browser components.
The list of the speech synthesis voices is ranked 1st, and has a MCT of 1.1 seconds.
The list of fonts, and the inference of the default font, are ranked 18th and 22nd
with a respective MCT of 175ms and 39ms. The size of bounding boxes, the
colors of browser components, and the width and position of a newly created div
element are respectively ranked 21st, 23rd, and 24th, with a MCT ranging from
36ms to 62ms. We retrieve the attributes that generate a media file. Our designed
canvas is ranked 25th with a MCT of 17ms, and the WebGL canvas is ranked 27th
with a MCT of 12ms. As we removed the two canvases inspired by two previous
studies for the university experiment, we do not retrieve them here. We retrieve
the attributes that are among the slowest to collect for the intranet dataset but
not for the general audience dataset. The list of WebGL extensions is ranked 19th
and has a MCT of 154ms, and the format of date and time is ranked 28th with a
MCT of 11ms.

Two attributes are among the slowest to collect for the university dataset,
without being in these for the general audience and the intranet dataset. The list
of the input and output media devices is ranked 20th with a MCT of 119ms, and
the list of the available video codecs is ranked 26th with a MCT of 12ms.
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Detailed Analysis of the Attributes Collection Time for the Enrolled
Dataset

The 26 attributes that take more than 5ms to collect in the enrolled dataset are
approximately the same as for the other datasets. Most attributes are faster to
collect on mobile browsers than on desktop browsers, some attributes have a MCT
nearly equal between these two groups, and only three attributes are longer to
collect on mobile browsers.

We retrieve the attributes that detect an extension. The 8 slowest attributes
detect an extension by the changes it brings to the content of the web page [205].
They are the same as for the other datasets, and have a MCT of 497ms and 498ms,
at the exception of the ad blocker detection method that has a MCT of 479ms.
These attributes are faster to collect on mobile browsers than on desktop browsers,
with a respective MCT of approximately 450ms against 500ms. The 12th to the
19th slowest attributes detect an extension based on web-accessible resources [199]
and have a MCT of 229ms. These attributes are also faster to collect on mobile
devices, with a respective MCT of approximately 130ms against 260ms on desktop
browsers.

We retrieve the attributes that infer the availability of browser components.
The list of the speech synthesis voices is ranked 10th with a MCT of 320ms. A
slight difference occurs between mobile and desktop browsers, with a respective
MCT of 293ms and 328ms. The list of fonts, and the inference of the default font,
are ranked 20th and 23rd with a respective MCT of 169ms and 58ms. The list
of fonts shows a faster collection time on mobile browsers, with a MCT of 129ms
against 185ms on desktop browsers. The size of bounding boxes, the colors of
browser components, and the width and position of a newly created div element
are respectively ranked 21st, 24th, and 25th, with a MCT ranging from 52ms to
94ms. We also retrieve the list of WebGL extensions at the 22nd rank, with a
MCT of 91ms. This attribute is one of the three that is longer to collect on mobile
browsers, with a MCT of 121ms against 81ms on desktop browsers.

We retrieve the attributes that generate a media file. Our designed canvas,
which gets its instructions randomized on each fingerprinting, is ranked 26th and
has a MCT of 17ms. The WebGL canvas is ranked 11th, and shows a MCT of
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Figure 4.16: Median size of the attributes that weigh more than 100 bytes, ranked
from the heaviest to the lightest.

313ms. These two canvases are among the three attributes that are longer to
collect on mobile browsers. They show a respective MCT of 33ms and 461ms on
mobile browsers, against 17ms and 294ms on desktop browsers.

4.3.5 Attributes Size

In this section, we discuss the heaviest attributes of the four datasets, as they
impact the size of the complete fingerprint. Figure 4.16 displays the median size
of the attributes that weigh more than 100 bytes, ranked from the heaviest to the
lightest for the overall browsers, and for the four datasets.

Summary of the Attributes Size Results



4.3. ATTRIBUTE-WISE ANALYSIS 139

Between 14 and 20 attributes weigh more than 100 bytes for the four datasets.
The heaviest attributes are classified into two categories: the list attributes (e.g.,
the plugins, the WebGL extensions) and the verbose textual attributes (e.g.,
the UserAgent). List attributes are generally lighter on mobile browsers due to
the lack of support of some browser components (e.g., the plugins, the WebGL
extensions). On the contrary, the verbose textual attributes are slightly heavier on
mobile browsers due to them being more verbose (e.g., the UserAgent includes the
device model). Evolutions regarding the web technologies impact the properties
of the attributes. An example is visible when looking at the attributes size:
the list of plugins is lighter for the three most recent datasets when compared
to the general audience dataset. This is due to the ongoing disappearance of
plugins [209].

Detailed Analysis of the Attributes Size for the General Audience Dataset

The 20 attributes of the general audience dataset that weigh more than 100 bytes
are composed of list attributes and verbose textual attributes. The heaviest at-
tribute is the list of the properties of the navigator object with a MS of 502 bytes.
It is followed by the list of the colors of layout components with a MS of 492 bytes,
and the list of WebGL extensions with a MS of 401 bytes. Examples of verbose
textual attributes are the appVersion property that is ranked 18th with a MS of
107 bytes, the userAgent JavaScript roperty that is ranked 14th with a MS of
115 bytes, and its HTTP header counterpart that is ranked 19th with a MS of
108 bytes.

On mobile browsers, some list attributes are most of the time empty due to
their lack of customization (e.g., plugins are mostly unsupported). They are the
list of the speech synthesis voices which is ranked 4th, the list of the constraints
supported by the mediaDevices object which is ranked 8th, the list of plugins
which is ranked 12th, and the list of the supported mime types which is ranked
17th. On the contrary, the verbose attributes are slightly heavier on the mobile
browsers, which is explained by the presence of additional information like the
device model in the two versions of the UserAgent.
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Detailed Analysis of the Attributes Size for the Intranet Dataset

The 19 attributes of the intranet dataset that weigh more than 100 bytes are
composed of list attributes and verbose textual attributes. The heaviest attribute
is the list of the speech synthesis voices with a MS of 1, 229 bytes. It is followed by
the list of WebGL extensions with a MS of 557 bytes, and the list of the properties
of the navigator object with a MS of 549 bytes. Examples of verbose textual
attributes are the appVersion that is ranked 17th with a MS of 109 bytes, and
the two versions of the userAgent that are ranked 14th and 15th with a MS of
116 bytes.

We find two new attributes that are among the heaviest for the intranet dataset
but absent from those of the general audience dataset. They are the list of heights
and widths of the bounding boxes which have a respective MS of 121 bytes and
101 bytes. Three attributes are among the heaviest of the general audience dataset
but absent from the intranet dataset. The first is the list of the colors of layout
components, which is split into parts and removed from the intranet dataset. The
second is the list of plugins, which has a MS of 77 bytes, against 134 bytes for
the general audience dataset. This is due to the ongoing disappearance of the
plugins [209], resulting in fewer plugins collected for the intranet dataset than
for the general audience dataset. The third is the list of the name and values of
the HTTP headers that are not specifically stored in a dedicated attribute. This
attribute has a MS of 6 bytes for the intranet dataset, against 192 bytes for the
general audience dataset. This is due to the update of the fingerprinting probe,
as for the intranet experiment we ignore the headers that are automatically added
by the proxy of the collection server.

Detailed Analysis of the Attributes Size for the University Dataset

The 14 attributes of the university dataset that weigh more than 100 bytes are
only composed of list attributes. The heaviest attribute is the list of WebGL
extensions with a MS of 571 bytes. It is followed by the list of the properties of
the navigator object with a MS of 420 bytes, and the list of the media constraints
that is collected through the getSupportedConstraints function which shows a
MS of 290 bytes.
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All the heaviest attributes of the university dataset are also among the heav-
iest for the general audience and intranet datasets. However, no verbose textual
attributes are among the heaviest for the university dataset, and several list at-
tributes weigh less than 100 bytes. The verbose textual attributes are lighter,
and most browsers share the same values due to their standardization. For ex-
ample, the two UserAgent versions have a size comprised between 71 bytes and
83 bytes for all the fingerprints. As for examples of lighter list attributes, the list
of the supported mime types and of plugins are always empty. This results from
the standardized browser population and the lack of personalization allowed to
the experimenters of the university experiment (e.g., their ability to configure the
operating system or to install software is limited).

Detailed Analysis of the Attributes Size for the Enrolled Dataset

The 17 attributes of the enrolled dataset that weigh more than 100 bytes are
composed of list attributes and verbose textual attributes. The heaviest attribute
is the list of the speech synthesis voices with a MS of 1, 228 bytes. It shows a
high difference between mobile and desktop browsers, with a respective MS of
2, 177 bytes and 1, 228 bytes. The second heaviest attribute is the list of the
properties of the navigator object with a MS of 589 bytes, and the third is the
list of WebGL extensions with a MS of 579 bytes. The latter is lighter on mobile
browsers, with a MS of 391 bytes against 600 bytes for the desktop browsers. The
list of the constraints supported by the mediaDevices object is ranked 4th, shows
a MS of 492 bytes, and is heavier on mobile browsers (497 bytes) than on desktop
browsers (303 bytes). Examples of verbose textual attributes are the appVersion
that is ranked 16th with a MS of 110 bytes, and the two versions of the userAgent
that are ranked 10th and 12th with a MS of 117 bytes and 118 bytes.

Similarly to the intranet dataset and for the same reasons, the list of plugins
and of the remaining HTTP headers have a respective MS of 78 bytes and 30 bytes.
The list of the widths and of the heights of the bounding boxes are also slightly
lighter with a MS of 32 bytes and 98 bytes. Finally, the list of the properties of
the screen object is also lighter with a MS of 91 bytes.
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4.3.6 Correlation between the Attributes

We can expect correlations to occur between the attributes when considering hun-
dreds of them. In this section, we discuss the correlation between the attributes,
and refer the reader to Appendix I for the correlation of each attribute. Figure 4.17
displays the minimum, the average, and the maximum normalized conditional en-
tropy (NCE) of an attribute when the value of another attribute is known, ordered
by the average NCE, and for the four datasets. We ignore 9 source attributes from
which the extracted attributes are derived, and the comparison of an attribute
with itself. These cases are irrelevant, as the extracted attributes are completely
correlated with their source attribute, and an attribute is completely correlated
with itself. We observe that the maximum NCE of an attribute is always equal to
the normalized entropy of this attribute, due to the cookieEnabled property that
is always true. As a result, this attribute has a null entropy, and knowing its value
does not provide any information on the value of the other attributes. The min-
imum normalized conditional entropy (MNCE) is also an interesting indicator of
the effectiveness to infer the value of an attribute if the value of another attribute is
known. Indeed, it represents the NCE when the attribute which helps the most to
infer the value of another attribute is known. Table 4.2 displays the less correlated
attributes for the general audience, intranet, and enrolled datasets. They consist
of the attributes that have a minimum normalized conditional entropy higher than
the equivalent of a conditional entropy of 1 bit.

Normalized Conditional Entropy Measure

For comparability with the results of the distinctiveness of the attributes, we ex-
press the correlation by the conditional entropy of an attribute ai when another
attribute aj is known, normalized to the maximum entropy HM . We call this
measure the normalized conditional entropy (NCE). It is comprised between 0.0
if knowing ai allows to completely infer aj, and the normalized entropy of aj if
knowing ai provides no information on the value of aj (i.e., they are indepen-
dent). We denote Vi the domain of the attribute ai, and ei

v the event that the
attribute ai takes the value v. We consider the relative frequency p of the at-
tribute values among the considered fingerprints. The measure of the conditional
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Figure 4.17: Minimum, average, and maximum normalized conditional entropy of
an attribute when the value of another attribute is known, ordered by the average
normalized conditional entropy.



144 CHAPTER 4. BROWSER FINGERPRINTS FOR AUTHENTICATION

Table 4.2: The minimum normalized conditional entropy (MNCE) of the at-
tributes that have a MNCE higher than the equivalent of a conditional entropy of
1 bit, for the general audience, intranet, and enrolled datasets. W refers to the
window object, and N to the navigator object. - denotes an attribute that is not
included in, or that do not have a MNCE sufficiently high for, a given dataset.

Attribute Gen. Aud. Intranet Enrolled

W.innerHeight 0.181 0.184 0.156
WebRTC fingerprinting 0.144 - -
W.outerHeight 0.117 - -
Presence of fonts 0.110 - -
N.plugins 0.100 - -
W.outerWidth 0.074 - -
UNMASKED_RENDERER_WEBGL 0.073 - 0.113
First bounding box height 0.070 - -
S.availHeight 0.058 0.092 -
W.screenY 0.049 0.095 -
W.screenX 0.047 0.123 -
N.userAgent 0.046 - -
C.connection.downlink - 0.101 -
Our HTML5 canvas (PNG) - 0.108 -
N.[...].enumerateDevices() - - 0.121
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entropy H(aj|ai) of aj given ai is expressed as

H(aj|ai) = −
∑

v∈Vi,w∈Vj

p(ei
v, ej

w) log p(ei
v, ej

w)
p(ei

v)
(4.9)

Finally, we normalize the conditional entropy H(aj|ai) by the maximum entropy
HM .

Summary of the Attributes Correlation Results

Numerous attributes have a null conditional entropy when the value of another
attribute is known: 49 attributes for the general audience dataset, 134 for the
intranet dataset, 142 for the enrolled dataset, and 229 for the university dataset.
The large difference between the general audience dataset and the university
dataset is explained by three factors. First, the general audience dataset con-
tains 15 thousand more attributes than the university dataset, which increases
the chances to encounter more combinations of attribute values. Second, the
browsers of the university dataset are standardized, hence they tend to have the
same attribute values and combination of them. Third, the conditional entropy of
an attribute is equal to its entropy if this attribute is not correlated with another
one. As the conditional entropy of an attribute is capped by its entropy, and
the attributes of the university dataset are lowly distinctive, the obtained condi-
tional entropy are low. Few attributes provide a conditional entropy above 1 bit
when the value of another attribute is known: none for the university dataset,
3 for the enrolled dataset, 6 for the intranet dataset, and 12 for the general au-
dience dataset. These attributes concern the browser window size, the browser
components (e.g., the list of fonts), the HTML5 canvases, the verbose textual
information (e.g., the UserAgent), the network, and the hardware components
(e.g., the screen). Although the attributes are correlated with at least another,
their combination still provides distinctiveness on the fingerprint level.
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Detailed Analysis of the Attributes Correlation of the General Audience
Dataset

We can see three parts in the figure of the normalized conditional entropy of
the general audience dataset. First, 19 attributes have a low normalized entropy
of less than 10−3, and the NCE when knowing another attribute is at most as
much. Few different values have been observed for these attributes. Then, 194
attributes have an average NCE between 10−3 and 10−1. The minimum normalized
conditional entropy of these attributes is at most 0.042, hence there exists another
attribute that can be used to efficiently infer their value. Finally, 40 attributes
have an average NCE higher than 10−1, and generally have a higher MNCE. These
attributes help to efficiently distinguish browsers, and are less correlated to other
attributes.

We have 49 attributes that have a null MNCE, which can be completely in-
ferred when another attribute is known. Moreover, 192 attributes have a MNCE
comprised in the range ]0; 0.045], hence knowing the value of another attribute
helps to infer their value, but not completely. Finally, 12 attributes have a MNCE
higher than 0.045, which is equivalent to having a minimum conditional entropy
higher than 1 bit. They consist of highly distinctive attributes that concern the size
of the screen (e.g., W.screenX) or of the window (e.g., W.innerHeight), browser
components (e.g., fonts, plugins), and verbose information about the browser (e.g.,
N.userAgent) or about external components (e.g., WebRTC fingerprinting).

Detailed Analysis of the Attributes Correlation of the Intranet Dataset

We observe three parts in the figure of the normalized conditional entropy of the
intranet dataset. First, 77 attributes have a low normalized entropy of less than
0.01, and the NCE when knowing another attribute is at most as much. Then,
145 attributes have an average NCE between 0.008 and 0.17. The MNCE of these
attributes is at most 0.03, hence there exists another attribute that can be used
to efficiently infer their value. Finally, 33 attributes have an average NCE higher
than 0.17, and generally have a higher minimum normalized conditional entropy.
These attributes help to efficiently distinguish browsers, and are less correlated to
other attributes.
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We have 134 attributes that have a null MNCE, which can completely be in-
ferred when another attribute is known. Moreover, 115 attributes have a MNCE
comprised in the range ]0; 0.076], hence knowing the value of another attribute
helps to infer their value, but not completely. Finally, 6 attributes have a MNCE
higher than 0.076, which is equivalent to having a minimum conditional entropy
higher than 1 bit. They consist of highly distinctive attributes that concern the
size of the screen (e.g., W.screenX) or of the window (e.g., W.innerHeight), our de-
signed HTML5 canvas, and the downlink property of the navigator.connection
object.

Detailed Analysis of the Attributes Correlation of the University Dataset

We observe three parts in the figure of the normalized conditional entropy of the
university dataset. First, 130 attributes have a low normalized entropy of less
than 0.01, and the NCE when knowing another attribute is at most as much.
Among these attributes, only the [msW, w]ebdriver property of the navigator
object has a non-null minimum normalized conditional entropy of 0.002. Then,
62 attributes have an average NCE between 0.01 and 0.1. The MNCE of these
attributes is null, at the exception of the sampleRate property of the audio context
object which has a MNCE of 0.034. Finally, 46 attributes have an average NCE
higher than 0.1, but most of them have a null MNCE.

Due to the specificities of the university dataset, most of its attributes are
highly correlated with at least another one. Indeed, 229 attributes have a null
MNCE, and can be completely inferred when another attribute is known. Only 9
attributes have a non-null MNCE, and they all show a MNCE that is lower than
the equivalent of a conditional entropy of 1 bit. Table 4.3 lists these attributes,
their MNCE, and the equivalent minimum conditional entropy in bits. They con-
sist of highly distinctive attributes that concern the size of the window (e.g., the
availHeight property), elements of the browser (e.g., the fonts, the WebGL ex-
tensions), hardware components or configurations (e.g., the graphical card driver,
the default sample rate, the input and output media devices), and our designed
HTML5 canvas.
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Table 4.3: The minimum normalized conditional entropy and the minimum con-
ditional entropy in bits of the attributes that have a non-null MNCE for the
university dataset. A refers to an initialized audio context, N to the navigator
object, WG to an initialized WebGL context, and S to the screen object.

Attribute MNCE Min. Cond. Entropy (bits)

UNMASKED_RENDERER_WEBGL 0.067 0.540
List of fonts (inferred) 0.063 0.506
A.sampleRate 0.034 0.276
N.mediaDevices.enumerateDevices() 0.034 0.274
Our HTML5 canvas (PNG) 0.032 0.256
N.buildID 0.031 0.253
WG.getSupportedExtensions() 0.019 0.153
S.availHeight 0.014 0.115
N.[msW, w]ebdriver 0.002 0.019

Detailed Analysis of the Attributes Correlation of the Enrolled Dataset

We observe three parts in the figure of the normalized conditional entropy of the
enrolled dataset. First, 59 attributes have a low normalized entropy of less than
0.006, and the NCE when knowing another attribute is at most as much. Then,
89 attributes have an average NCE between 0.006 and 0.077. The MNCE of these
attributes is at most 0.013, hence there exists another attribute that can be used
to efficiently infer their value. Finally, 106 attributes have an average NCE higher
than 0.077, and generally have a higher minimum normalized conditional entropy.
These attributes help to efficiently distinguish browsers, and are less correlated to
other attributes.

We have 142 attributes that have a null MNCE, which can completely be
inferred when another attribute is known. Moreover, 109 attributes have a MNCE
comprised in the range ]0; 0.093], hence knowing the value of another attribute
helps to infer their value, but not completely. Finally, 3 attributes have a MNCE
higher than 0.093, which is equivalent to having a minimum conditional entropy
higher than 1 bit. They concern the graphical driver, the input and output media
devices, and the size of the browser window.
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Table 4.4: The dynamic attributes included in the four datasets. - denotes a non-
included attribute. * indicates that the attribute is generated using randomized
instructions, hence is always unique.
Dynamic attribute Gen. Aud. Intra. Univ. Enroll.

Our HTML5 canvas (PNG) 0.420 0.599 0.199 *
Our HTML5 canvas (JPEG) 0.399 - - -
HTML5 canvas similar to [124] (PNG) 0.385 0.471 - -
HTML5 canvas inspired by [127] (PNG) 0.353 0.459 - -
HTML5 canvas inspired by [127] (JPEG) 0.312 - - -

WebGL canvas 0.263 0.274 0.033 0.411

Audio FP simple 0.153 - - -
Audio FP advanced 0.147 - - -
Audio FP advanced frequency data 0.161 - - -

4.3.7 Focus on the Dynamic Attributes

In this section, we discuss the properties of the dynamic attributes that we include
in the fingerprinting probe of our experiments (see Section 3.1). As the included
dynamic attributes vary between the datasets, Table 4.4 displays the normalized
entropy of the dynamic attributes included in each dataset.

HTML5 Canvas

The HTML5 canvas consists into asking the browser to draw an image by using the
canvas API within the two-dimensional context. This method is already studied
in several works, whether it is about its effectiveness [36, 127, 81], its use on the
web [57, 129], or the distinctiveness provided by various sets of instructions [124].
However, to the best of our knowledge, no study evaluates the different properties
(e.g., distinctiveness, stability, collection time) offered by various sets of complex
instructions (i.e., mixes of texts, emojis, and mathematical curves, drawn using
different colors).

Format Comparison We observe that canvases are less distinctive in JPEG
format than in PNG format, but are more stable. The numbers given below
concern the general audience dataset, which is the only dataset which contains
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canvases in JPEG format. For example, the custom canvas has a normalized
entropy of 0.420 when exported in PNG, against 0.399 for the JPEG version.
However, the PNG version has a sameness rate of 92.16%, against 93.59% for
the JPEG version. These differences are due to distinct images in PNG format
ending up the same after the lossy compression of the JPEG format. Acar et al. [2]
assumes that a canvas generated in a lossy compression format as JPEG is not an
indicator of a fingerprinting attempt. Although the JPEG version provides a lower
distinctiveness than the PNG version, we show that it is still highly distinctive
when generated from a complex set of instructions. Indeed, it is the second most
distinctive attribute among the attributes of the general audience dataset (see
Section 4.3.2). The time overhead induced by the additional extraction in JPEG
format is negligible. For example, the custom canvas has a median collection time
(MCT) increased by 5ms for the JPEG version, compared to the PNG version
that has a MCT of 260ms. The PNG and the JPEG versions are also highly
correlated, as knowing the value in the PNG format of the custom canvas leaves
a normalized conditional entropy (NCE) of 5.28× 10−4 on the value of the JPEG
format, whereas the inverse provides a NCE of 0.021.

Instructions Comparison The properties of the three PNG canvases differ,
with the custom canvas being the most distinctive. First, the Morellian canvas
is an enhanced version of the AmIUnique canvas with additional curves. This
enhancement provides an increase of the distinctiveness, but also a decrease of the
sameness rate. The Morellian canvas shows a normalized entropy of 0.385 for the
general audience dataset and of 0.471 for the intranet dataset, against respectively
0.353 and 0.459 for the AmIUnique canvas. For these same datasets, the Morellian
canvas has a respective sameness rate of 94.71% and of 92.55%, against 98.64% and
93.64% for the AmIUnique canvas. Then, the custom canvas is more complex than
the Morellian canvas, as it includes several emojis, two strings that include Swedish
letters, many overlapping ellipses, a color gradient background, and a rotation of
all these elements if the functionality is available. These improvements provide
a higher normalized entropy of 0.420 and of 0.599 for the general audience and
intranet datasets. As for the university dataset, the normalized entropy is lower at
0.199 due to the standardized browsers, but it is still the fourth most distinctive
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attribute. The custom canvas also shows a lower sameness rate of 92.16% and of
80.58% for the general audience and intranet datasets. Due to the specificities of
the university dataset, the sameness rate of the custom canvas for it is lower at
70.60%. The main drawback of adding more complexity to the custom canvas is
the temporal cost, as it has a MCT of 260ms and 181ms for the general audience
and intranet datasets. The MCT of the Morellian canvas is respectively of 37ms
and 19ms for these datasets, and the MCT of the AmIUnique canvas is of 31ms and
14ms. Finally, knowing the value of the custom canvas leaves less variability on the
value of the two other canvases than the opposite. When knowing the value of the
Morellian canvas, the custom canvas has a normalized conditional entropy (NCE)
of 0.079 for the general audience dataset, and of 0.134 for the intranet dataset. On
the opposite, when knowing the value of the custom canvas, the Morellian canvas
has a NCE of 0.044 and of 0.006 for these datasets. As for the AmIUnique canvas,
knowing its value results in the custom canvas providing a NCE of 0.103 for the
general audience dataset, and of 0.145 for the intranet dataset. On the opposite,
knowing the value of the custom canvas results in a NCE of 0.037 and 0.005 on
the AmIUnique canvas for these datasets. To conclude, adding more instructions
for the canvas drawing usually provides more distinctiveness, as each instruction
can induce a difference between browsers, at the cost of additional computation
time. Moreover, each additional instruction can constitute an instability factor
that negatively impacts the sameness rate.

WebGL Canvas

The WebGL canvas is, for the general audience dataset, the 27th most distinctive
attribute with a normalized entropy of 0.263, the 30th for the intranet dataset
with a normalized entropy of 0.274, and the 18th for the enrolled dataset with a
normalized entropy of 0.411. However, for the university dataset, due to the stan-
dardized software and hardware configurations, it is only the 96th most distinctive
attribute, with a low normalized entropy of 0.033. It is more stable compared to
the HTML5 canvases, but is still among the most unstable attributes. For the
university dataset, it provides a sameness rate of 93.13% and is the 146th most
stable attribute. For the other datasets, it shows a sameness rate comprised be-
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tween 89.33% and 98.97%, and is ranked between the 214th and the 237th most
stable attribute. The median collection time (MCT) of the WebGL canvas for the
general audience, intranet, and university datasets is comprised between 12ms and
41ms. The WebGL canvas is ranked between the 164th and the 179th fastest to
collect for these datasets, according to the MCT. For the enrolled dataset, it shows
a higher MCT of 313ms, and is ranked as the 202nd fastest to collect.

Web Audio Fingerprinting

Only the general audience dataset includes audio fingerprinting attributes, hence
the results given below are obtained from this dataset. The most distinctive audio
attribute is the audio fingerprinting advanced frequency data (AFA-FD) attribute
that has a normalized entropy of 0.161, followed by the audio fingerprinting sim-
ple (AFS) (0.153), and the audio fingerprinting advanced (AFA) (0.147). They
all have a sameness rate of approximately 95%. Their values are the string repre-
sentations of floating-point numbers, hence they have a median size of 17 bytes.
The simple process has a median collection time (MCT) of 1.4 seconds, and the
advanced process has a MCT of 1.7 seconds. The AFA-FD is collected from the
advanced version, and has a MCT increased by 4ms compared to the AFA.

4.4 Conclusion

In this chapter, we analyze the browser fingerprints of our four datasets according
to the properties inspired by biometric authentication factors that we identified.
The general audience, intranet, and enrolled datasets show similar results. On the
contrary, the university dataset provides particular results due to the standardiza-
tion of the browser population and the browser profiles being shared between the
computers of the university. The intranet, university, and enrolled experiments
were still running during the containment in France due to the COVID-19 pan-
demic. The university experiment was impacted as no one could use the university
computers. Experimenters still accessed the websites of the intranet and enrolled
experiments, hence these two experiments were not significantly impacted by the
containment.
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We achieve a unicity rate above 81% when considering the time-partitioned
datasets, at the exception of the university dataset for which it goes down to
11%. Between two observations of the fingerprint of a browser, it is expected that
more than 81% of their attributes stay identical, even when separated by several
months. This rate falls down to 68.7% for the university dataset, mainly due
to the browser profiles being shared between various computers. The majority
(95%) of the fingerprints are collected in less than 3.7 seconds, at the exception
of the general audience dataset for which 95% of them are collected in less than
10.5 seconds. All the fingerprints of our four datasets take at most 22.3 kilobytes to
store, at the exception of an outlier in the general audience dataset. By simulating
a simple verification mechanism, we achieve an equal error rate comprised between
0.61% and 4.30%. The university dataset, due to the low distinctiveness and
stability of its fingerprints, shows a higher equal error rate of 29.42%. We confirm
the conclusions of the previous studies [204, 127, 81] about the fingerprints of
mobile browsers being less distinctive. However, the loss is dissimilar between
the datasets. The unicity rate of the time-partitioned datasets of the general
audience dataset falls down to 42% for the mobile browsers, compared to 84% for
the desktop browsers. These rates are respectively of 93.6% and 96.5% for the
enrolled dataset. Only the general audience dataset includes consecutive mobile
fingerprints over several time ranges, which tend to be more stable than the desktop
fingerprints. About the size and the collection time of mobile fingerprints, they
are lighter and take more time to collect than the desktop fingerprints.

We measured the satisfaction of 682 participants who tested our test authenti-
cation mechanism that relies on browser fingerprints by the Net Promoter Score.
This method classifies the participants as detractors, passives, or promoters given
their rating. The test authentication mechanism polarizes the experimenters more
than the current authentication methods: only 38% of the experimenters are clas-
sified as passive, compared to 54% for the current methods. About the test au-
thentication mechanism, 40% of the experimenters are promoters and 22% of them
are detractors, compared to 14% of promoters and 20% of detractors about the
current authentication methods. The net promoter score of the test authentica-
tion mechanism is of 18, which is three times more than the score of the current
authentication methods being of 6.
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When breaking down the analysis to the attributes, we observe that the at-
tributes contribute differently to each property. The university dataset once again
differs from the others. The majority of the attributes have at most 100 distinct
values, the rate goes from 63% for the general audience dataset to 91% for the
intranet and enrolled datasets. As for the university dataset, its attributes have at
most 12 distinct values. About the distinctiveness, the majority of the attributes
provide a normalized entropy that is strictly higher than 0.0 and lower than 0.3.
The university dataset falls apart, as nearly half of its attributes have a null nor-
malized entropy, and all of them have a normalized entropy lower than 0.26. The
majority of the attributes provide a sameness rate above 99%. The proportion is
comprised between 57% for the university dataset, and 80% for the general audi-
ence dataset. Less than 40 attributes have a median collection time above 5ms,
they typically consist in the processing of media objects (e.g., the canvas), and in
the detection of extensions or of browser components. Few attributes are heavy,
as only between 14 and 20 attributes weigh more than 100 bytes. When looking
at the correlation between the attributes, we observe that most of the attributes
are correlated, as knowing another attribute results in their conditional entropy
being lower than 1 bit. Although attributes are correlated with each other, their
combination still provides a high distinctiveness. When focusing on the three types
of dynamic attributes that we include in our fingerprinting probe, we observe that
compared to the other attributes, they are generally more distinctive, less stable,
and take more time to collect.

Overall, considering our attributes and browser populations, we achieve a high
level of distinctiveness and stability. The university dataset constitutes an excep-
tion and shows a decrease of both distinctiveness and stability. This is due to the
standardized browser population and the browser profiles being shared between
the university computers. As already observed by previous studies, the finger-
prints of the mobile browsers are less distinctive than the ones of the desktop
browsers. Although the proportion of unique fingerprints is two times lower for
the mobile fingerprints than for the desktop fingerprints considering the general
audience dataset, the loss is nearly null for the enrolled dataset. The high level
of distinctiveness and stability results in a high accuracy when processing a sim-
ple verification mechanism on the datasets excluding the university dataset. This
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mechanism achieves an equal error rate from 0.61% to 4.30% for these datasets. As
for the resource consumption, the storage requirement of the fingerprints can be
handled by the actual storage capacities. However, their collection time is rather
high for an online authentication context. When breaking the analysis down to
the attribute level, we remark that few attributes are highly unstable or take time
to collect. We could remove these attributes to increase the stability of the finger-
prints and reduce their collection time. However, these attributes tend to provide
a high distinctiveness. The choice of the attributes to hold, and consequently to
remove, could be done using a trade-off between the distinctiveness, the instability,
and the collection time of the attributes. As a non-negligible proportion of the
attributes are highly correlated with at least another one, the choice have to be
made on complete attribute sets and not individually on each attribute. In the
next chapter, we propose an attribute selection method that takes these aspects
into account.





Chapter 5

Attribute Selection Framework

Hundreds of attributes are available for a verifier to build her fingerprinting probe.
However, including all of them is impractical as each attribute comes with a cost
(e.g., additional collection time). In this chapter, we propose a framework for
the verifier to dimension her fingerprinting probe according to a trade-off between
security and usability. The two adversarial participants are the verifier and the
attacker, as depicted in Figure 5.1. The verifier aims to protect the users of her
web platform, using an authentication mechanism based on browser fingerprinting.
The verifier stores the fingerprint of the usual browser of each user. On each
login, the fingerprint of the browser in use is matched against the fingerprint
that is stored for the claimed account. The attacker tries to impersonate the
users by submitting specially crafted fingerprints. The aim of the verifier is to
limit the reach of the attacker, also called sensitivity below, which is measured
as the proportion of impersonated users. To do so, she builds a fingerprinting
probe that integrates one or more attributes selected among the hundreds1 that
are accessible (see Chapter 4). On the one hand, the addition of an attribute
to the probe can strengthen the distinctiveness of browsers, hence reducing the
sensitivity. On the other hand, each addition comes with a usability cost that may
render the probe impractical in an online authentication context. Indeed, each

1Most attributes are properties accessed through the browser that are limited by its function-
alities. Other attributes are items which presence are checked (e.g., the fonts [83], the exten-
sions [199]), or the computation of specific instructions (e.g., the HTML5 canvas [36]). These
are limited by the available items or instructions, which can be large (e.g., more than 2154 for
the canvas [124], nearly 30 thousand detectable extensions [106]).
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http://example.com (login, password,           )Access granted Account
Database

(login, password,           )

Access denied

Knowledge

Aacker

User

Web platform

Verifier

Figure 5.1: Example of a web authentication mechanism based on browser fin-
gerprinting and a failed attack.

attribute consumes storage space (up to hundreds of kilobytes [36]), collection
time (up to several minutes [152, 155, 157, 191, 193, 179]), and can increase the
instability of the generated fingerprints [214]. For example, considering all of our
attributes leads to a fingerprint taking 9.98 seconds on average to collect, which
is impractical for the user. Moreover, some attributes are strongly correlated
together (see Section 4.3.6), and including them only increases the usability cost
without reducing the sensitivity. Due to these correlations, picking attributes one
by one independently may lead to poor sensitivity and usability scores.

Previous works only consider the well-known attributes [56, 127, 81], remove
the attributes of the lowest entropy [214], iteratively pick the attribute of the
highest weight (typically the entropy) until a threshold is reached [146, 111, 65,
24, 91, 208], or evaluate every possible set [69]. The entropy measures the skewness
of the distribution of fingerprints or attribute values. As pointed out by Acar [4],
it does not take the worst cases into account (i.e., the most common values that
attackers can submit similarly to dictionary attacks on passwords [28]). Moreover,
fingerprints cannot be compared identically like passwords due to their evolution
through time. The attackers do not need to find the exact fingerprint of a victim,
but one that is similar enough to deceive the verification mechanism.

In this chapter, we propose FPSelect, a framework that allows a verifier to
select the attributes2 to include into her fingerprinting probe such that (1) the

2We emphasize that the candidate attributes can contain dynamic attributes, which can be
used to implement challenge-response mechanisms that resist fingerprint replay attacks [124,
184]. We study nine instances of three dynamic attributes, which are the HTML5 canvas [36],
the WebGL canvas [153], and audio fingerprinting methods [179].



159

sensitivity against powerful attackers knowing the fingerprint distribution of the
protected users (i.e., the worst-case distribution for the verifier) is bounded and
the bound is set by the verifier, and (2) the usability cost3 of collecting, storing,
and using these attributes is close to being minimal. FPSelect is parameterized
with the sensitivity requirement, the number of submissions that the attacker is
deemed able to execute, and a representative sample of the fingerprints of the
users.

The problem could be solved by exploring exhaustively the space of the possible
attribute sets, evaluating the sensitivity and the usability cost of each set. This
is, however, infeasible as the number of attribute sets grows exponentially with
the number of attributes4. Moreover, we show below that the problem of finding
the optimal attribute set is NP-hard. To the best of our knowledge, this is the
first work that allows verifiers to dimension their fingerprinting probe in a sound
manner, by quantifying the security level to reach, and selecting an attribute set
that satisfies this level at a low usability cost.

Our key contributions are the following:

• We formalize the attribute selection problem that a verifier has to solve to
dimension her probe. We show that this problem is NP-hard because it
is a generalization of the Knapsack Problem. We define the model of the
dictionary attacker, whose adversarial power depends on the knowledge of
a fingerprint distribution. We propose a measure to quantify the sensitivity
of a probe given a browser population and the number of fingerprints that
the attacker is able to submit. We propose a measure of the usability cost
that combines the size of the generated fingerprints, their collection time,
and their instability.

• We propose a heuristic algorithm for selecting an attribute set that satisfies
a higher bound on the sensitivity and reduces the usability cost. We express
this as a search problem in the lattice of the power set of the candidate
attributes. This algorithm is inspired by the Beam Search algorithm [103]
and is part of the Forward Selection algorithms [194].

3Any usability cost can be plugged (e.g, the privacy cost of including an attribute) provided
that it is monotonic.

4Obviously, this discards as well the manual selection of attributes.
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• We evaluate the FPSelect framework on two real-life fingerprint datasets,
and compare it with common attribute selection methods based on the en-
tropy and the conditional entropy. We show experimentally that FPSelect
finds attribute sets that have a lower usability cost. The attribute sets
found by FPSelect generate fingerprints that are 12 to 1, 663 times smaller,
9 to 32, 330 times faster to collect, and with 4 to 30 times less changing
attributes between two observations, compared to the candidate attributes
and on average. Compared to the baselines, the attribute sets found by
FPSelect generate fingerprints that are up to 97 times smaller, are collected
up to 3, 361 times faster, and with up to 7.2 times less changing attributes
between two observations, on average.

This chapter is organized as follows. Section 5.1 defines the attack model and
the attribute selection problem. Section 5.2 describes the resolution algorithm and
the proposed illustrative measures of sensitivity and usability cost. Section 5.3
provides the results obtained by processing our framework and the baselines on
two real-life fingerprint datasets. Finally, Section 5.4 concludes.

5.1 Problem Statement

In this section, we first present the considered authentication mechanism that relies
on browser fingerprinting. Then, we describe how we model the attacker given his
knowledge and possible actions. Finally, we pose the attribute selection problem
that we seek to solve, and provide an example to illustrate the problem.

5.1.1 Authentication Mechanism

We consider the architecture and the three participants depicted in Figure 5.1.
The authentication mechanism is executed on a trusted web platform and aims
at authenticating legitimate users based on various authentication factors, includ-
ing their browser fingerprint (in addition to, e.g., a password). For the sake of
precision, we focus on the browser fingerprint and ignore the other factors.

A user is enrolled by providing his browser fingerprint to the verifier who stores
it. During the authentication of a user, the fingerprint of the browser in use is
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Aacker Web platform

Figure 5.2: Example of an attacker instantiated with his knowledge of a probabil-
ity mass function (PMF) over the fingerprints F , and a web platform protecting a
user population U with their fingerprint. We consider a limit of two submissions
and a strict comparison between the fingerprints. The attack dictionary is com-
posed of f1 and f2, resulting in the shown impersonated users.

collected by the fingerprinting probe of the verifier, and is compared with the fin-
gerprint stored for the claimed account. If the collected fingerprint matches with
the one stored, the user is given access to the account, and the stored fingerprint
is updated to the newly collected one. The comparison is done using a match-
ing function (i.e., a similarity function between two fingerprints that authorizes
differences), as fingerprints are known to evolve (see Section 4.2). Any matching
function can be used provided that it is monotonic (i.e., if two fingerprints match5

for an attribute set C, they also match for any subset of C). We explain in Sec-
tion 5.1.3 the need for the monotonicity requirement, and refer to Section 5.3.1
for an example of a matching function. We consider one browser per user, but
such authentication mechanism can be designed to support multiple browsers (see
Appendix F).

5.1.2 Attack Model

The high-level goal of the attacker is to impersonate legitimate users in a limited
number of submissions with the help of his knowledge, by forging a fingerprint
attack dictionary similarly to dictionary attacks on passwords [28]. Figure 5.2
illustrates the attack that we consider. It shows an attacker with his knowledge of

5We stress that the monotonic property does not depend on the attributes.
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a fingerprint distribution, a population of protected users with their fingerprint,
and the impersonated users. We define the attacker model in terms of background
knowledge and possible actions, which are provided below and described further
in the following subsections.

1. The attacker cannot tamper with the web platform.

2. The attacker cannot tamper with, nor eavesdrop, the communication be-
tween the users and the web platform.

3. The attacker knows the attributes of the probe.

4. The attacker knows a fingerprint distribution.

5. The attacker can submit a limited number of arbitrary fingerprints.

Background Knowledge

The attacker can retrieve the attributes of the fingerprinting probe (assumption 3)
by reverse-engineering the probe (e.g., static or dynamic analysis of the probe [19],
analysis of the network packets).

The attacker knows the domain of the fingerprints, and can infer a fingerprint
distribution (assumption 4) from documentation [186], datasets [34], or statistics6

available online. He can also leverage phishing attacks [210], a pool of controlled
browsers [171], or stolen fingerprints [143]. The weakest attacker is the one that
lacks knowledge, and considers that the values of the attributes and fingerprints
are uniformly distributed. His strategy is then to cover a space as large as possible
of the fingerprint possibilities in the number of submissions authorized by the ver-
ifier. The strongest attacker is the one that manages to infer the exact fingerprint
distribution among the users protected by the verifier. Additionally, our work can
be easily extended to the attackers that partially know the fingerprints of targeted
users7.

6http://carat.cs.helsinki.fi/statistics
7We do not consider the attackers that exactly know the fingerprint of the users they tar-

get (or their local configuration) because they are able to bypass trivially any fingerprinting
authentication mechanism.

http://carat.cs.helsinki.fi/statistics
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Actions

Tools exist for controlling the attributes8 that compose the fingerprint (assump-
tion 5), like Blink [128] or Disguised Chromium Browser [22]. Commercial so-
lutions also exist, like AntiDetect [16] or Multilogin [156]. An attacker can also
automatically alter the network packet that contains the fingerprint using tools
like BurpSuite9. As these attacks are online guessing attacks [28, 220], we assume
that the attacker is limited to a number of submissions per user. The verifier
instantiates an attacker by his knowledge of a fingerprint distribution, and by the
number of submissions to which he is limited, to measure his reach.

5.1.3 Attribute Selection Problem

The defense problem consists into selecting the attribute set that composes the
fingerprinting probe, to resist against an instantiated attacker and minimize the
usability cost. On the one hand, including an attribute can reduce the reach
of an attacker10, which we call the sensitivity and measure as the proportion of
impersonated users. On the other hand, it increases the usability cost of the
mechanism. For example, the generated fingerprints take more space to store,
can take more time to collect, and can be more difficult to recognize due to the
potentially induced instability.

Problem Formulation

The Attribute Selection Problem consists in finding the attribute set that provides
the lowest usability cost, and keeps the sensitivity below a threshold α set by
the verifier11. Let A denote the set of the candidate attributes. We consider

8These tools are able to control both the fixed and the dynamic attributes.
9https://portswigger.net/burp

10Including an attribute adds one more information to distinguish different browsers. However,
an attribute provides no additional distinctiveness if it is correlated with another one. For
example and considering the case depicted in Table 5.1, adding the attribute Timezone when the
attribute Language is already selected does not provide any distinctiveness.

11The sensitivity threshold α is defined by the verifier according to her security requirements.
These requirements depend on the type of website that is to protect (e.g., a bank, a forum)
and the contribution of browser fingerprints (e.g., the only secondary authentication factor, an
additional verification among others [202]).

https://portswigger.net/burp


164 CHAPTER 5. ATTRIBUTE SELECTION FRAMEWORK

User CookieEnabled Language Timezone Screen

u1 True fr -1 1080
u2 True en -1 1920
u3 True it 1 1080
u4 True sp 0 1920
u5 True en -1 1080
u6 True fr -1 1920

Table 5.1: Example of fingerprints shared by users.

an attribute set C ⊆ A, its usability cost c(C), and its sensitivity s(C). Any
measure of usability cost and sensitivity can be plugged in FPSelect provided that
it is monotonic. Indeed, the usability cost is required to be strictly increasing as
we add attributes to an attribute set (e.g., the additional attributes are stored,
which increases the storage cost). The sensitivity is required to be monotonically
decreasing as we add attributes to an attribute set12. Indeed, adding an attribute
to an attribute set should not higher the sensitivity because the added attribute
either adds distinguishing information to the fingerprints or adds no information
if it is strongly correlated with another attribute. For illustrative purposes, we
propose measures of sensitivity and usability cost in Section 5.2.3. The ASP is
thus formalized as searching for arg minC⊆A{c(C) : s(C) ≤ α}.

Problem Illustration

To illustrate the problem, we propose an example of a fingerprint distribution
in Table 5.1. We consider an attacker who managed to infer the exact same
distribution, and who is able to submit one fingerprint per user. If we solely include
the CookieEnabled attribute which provides no distinctiveness, this attacker can
impersonate every user by submitting the True value. Whereas including the
Language and Screen attributes leads to unique fingerprints, which reduces the
sensitivity to a sixth. Ignoring the CookieEnabled attribute reduces the usability
cost without increasing the sensitivity. There is also an example of correlation. The

12The monotonicity requirement of the matching function comes from the monotonicity re-
quirement of the sensitivity. Indeed, if the matching function was not monotonic, adding an
attribute could result in a loss of distinctiveness (i.e., it is harder for the matching function to
distinguish two browsers) and consequently in an increase of the sensitivity.
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Language is the most distinctive attribute, followed by the Timezone. In this case,
taking the two most distinctive attributes does not improve the distinctiveness
compared to considering Language alone.

5.2 Attribute Selection Framework

This section is dedicated to the description of our attribute selection framework.
First, we show that the Attribute Selection Problem (ASP) is NP-hard because
it is a generalization of the Knapsack Problem (KP), and remark that the ASP
can be seen as a lattice of partial KP. Second, and consequently, we propose a
greedy heuristic algorithm for finding solutions to the problem. Finally, we propose
illustrative measures for the sensitivity and the usability cost.

5.2.1 Similarity to the Knapsack Problem

The Knapsack Problem (KP) [108] is a NP-hard problem that consists into fitting
valued-items into a limited-size bag to maximize the total value. More precisely,
given a bag of capacity W and n items with their value vi and their weight wi,
we search for the item set that maximizes the total value and which total weight
does not exceed W . In this section, we show that the ASP is a generalization of
the KP, therefore the ASP is NP-hard. We also provide a way to model the ASP
as a lattice of partial KP.

Generalization of the KP to the ASP

First, we remark that the ASP can be solved by picking attributes until we reach
the sensitivity threshold, or by starting from the candidate attributes and remov-
ing attributes successively without exceeding the threshold. We consider the latter
and start from the set A of the candidate attributes. The value of an attribute
set C is the cost reduction compared to the candidate attributes, formalized as
v(C) = c(A)− c(C). The value of an attribute a is the cost reduction obtained
when removing a from C, formalized as v(a|C) = c(C)− c(C \ {a}). The weight
of an attribute set C is its sensitivity with w(C) = s(C). The weight of an at-
tribute a is the additional sensitivity induced by the attribute removal, formal-
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ized as w(a|C) = s(C \ {a})− s(C). The capacity W is the maximum sensitivity
allowed, hence W = α. As we remove attributes, the value increases (i.e., the
usability cost decreases), and the weight (i.e., the sensitivity) may increase.

Theorem 1. The Attribute Selection Problem is NP-hard.

Proof. We consider a simple case where the attributes are not correlated. The
weight and the value of the attribute ai does not depend on the attributes already
included in the probe, and is simply defined as wi and vi. We obtain a Knapsack
Problem consisting into picking the attributes to remove from A, to maximize the
total value and keep the weight under the threshold W . The ASP is therefore
a generalization of the KP with relative weights and costs, making it at least as
hard as the KP which is NP-hard. The Attribute Selection Problem is therefore
NP-hard.

The Attribute Selection Problem as a Lattice of Partial Knapsack Prob-
lems

The Attribute Selection Problem can be modeled as a lattice of partial Knapsack
Problems (KP). We consider the deletive way that starts from the set A of the
candidate attributes and removes attributes without exceeding the threshold. The
initial partial KP consists into picking attributes from A to increase the value
and keep the weight under W . The value and weight of each attribute a ∈ A is
v(a|A) and w(a|A). Once we pick an attribute ap, a new partial KP arises: the
item set is A \ {ap}, the capacity is W − w(ap|A), and the value and weight of
each attribute a ∈ A \ {ap} is now v(a|A \ {ap}) and w(a|A \ {ap}). Recursively,
it holds for any set R of attributes to remove. The item set is then A \R, the
capacity is W − w(R), and the value and weight of each attribute a ∈ A \R are
v(a|A \R) and w(a|A \R). Following this, we are given a lattice13 of partial KP
to solve recursively, each node being a partial solution R, until we reach unfeasible
problems (i.e., empty set of items, no more item can fit) and find a final solution
among the partial solutions that reach this limit.

13This can be seen as a tree, but some paths lead to the same node. Indeed, removing the
attributes a1 then a2 from A leads to the same partial problem as removing a2 then a1.
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Figure 5.3: Example of a lattice of attribute sets, with their cost c, their sensitiv-
ity s, and their efficiency e. The blue node satisfies the sensitivity, the white nodes
do not, and the green node with a diamond satisfies the sensitivity and minimizes
the cost. The red line is the satisfiability frontier.

5.2.2 Lattice Model and Resolution Algorithm

In this section, we present how we model the possibility space as a lattice of
attribute sets, and describe the greedy heuristic algorithm to approximately solve
the ASP.

Lattice Model

The elements of the lattice are the subsets of A (A included) and the order is the
subset relationship so that Ci ≺ Cj if, and only if, Ci ⊂ Cj. The efficiency of an
attribute set C is the ratio between its cost reduction (i.e., c(A)− c(C)) and its
sensitivity. Figure 5.3 shows an example of such lattice. The satisfiability frontier
represents the transition between the attribute sets that satisfy the sensitivity
threshold, and those that do not. The attribute sets just above this frontier satisfy
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the sensitivity threshold at a lower cost than any of their supersets. They comprise
the solution found by our resolution algorithm and the optimal solution to the
problem.

The sensitivity and the cost are bounded. The lower bound is located at the
empty set, which has a sensitivity of 1.0 and a null usability cost. It is equivalent
to not using browser fingerprinting at all. On the other end, the set composed
of the candidate attributes A is a superset of every attribute set, and provides
the lowest sensitivity and the highest usability cost. If A does not satisfy the
sensitivity threshold, there is no solution as any other subset has a higher or equal
sensitivity.

Greedy Algorithm

We propose the greedy heuristic algorithm presented in Algorithm 1 to find good
solutions to the Attribute Selection Problem. It consists into a bottom-up explo-
ration of the lattice by following k paths until reaching the satisfiability frontier.
The higher k is, the larger is the explored space, but the higher is the computing
time. This algorithm is inspired by the model of the ASP as a lattice of par-
tial Knapsack Problems, and by the Beam Search algorithm [103]. The similarity
with the latter lies in the successive expansion of a limited number of nodes, that
are chosen according to an order between partial solutions. The order is the ef-
ficiency in our case. Our proposed algorithm is part of the Forward Selection
algorithms [194], as it iteratively picks attributes according to a criterion, and
takes into account those already chosen. However, the proposed algorithm pro-
vides the ability to explore several sub-solutions instead of a single one, includes
pruning methods that help reduce the computing time, and stops when it reaches
the satisfiability frontier instead of when the criterion is not statistically improved.

Algorithm Working Algorithm 1 works by exploring k paths of the lattice.
It starts from the empty set and stops when every path reaches the satisfiability
frontier. The collection S holds the attribute sets to expand and is initialized
to k empty sets. At each stage, the attribute sets to explore are stored in the
collection E. They consist of each Si ∈ S with one additional attribute. The cost
and the sensitivity of each attribute set C ∈ E is then measured. If C satisfies
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Data: The candidate attributes A, the sensitivity threshold α, the
number of explored paths k.

Result: The attribute set of the explored paths that satisfies the
sensitivity threshold at the lowest cost.

cmin, T, I ← inf,∅,∅
S ← a collection of k empty sets
if s(A) > α then

Quit as no solution exists
end
while S is not empty do

E ← {C = Si ∪ {a} : ∀Si ∈ S, ∀a ∈ A \ Si, ∄C ′ ∈ T ∪ I, C ′ ⊂ C}
S ← ∅
for C ∈ E do

if s(C) ≤ α then
T ← T ∪ {C}
cmin ← c(C) if c(C) < cmin

end
else if c(C) < cmin then

S ← S ∪ {C}
end
else

I ← I ∪ {C}
end

end
S ← the k most efficient attribute sets C of S according to c(A)−c(C)

s(C)
end
return arg minC∈T c(C)

Algorithm 1: Greedy algorithm to find good solutions to the Attribute Selec-
tion Problem.
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the sensitivity threshold α, it is added to the collection T of the attribute sets
that reach the satisfiability frontier, otherwise it is added to the collection S of
the attribute sets to expand. Finally, the collection S is updated to only hold
the k most efficient attribute sets. The efficiency of an attribute set is the ratio
between its gain (i.e., the cost reduction compared to the candidate attributes)
and its sensitivity. All this process is repeated until S is empty, when all the k

paths have reached the satisfiability frontier. The solution is then the attribute
set of the lowest cost in T .

Pruning Methods Three properties allow us to reduce the number of attribute
sets that are explored. First, we hold the minimum cost cmin of the attribute
sets T that satisfy the sensitivity. Any explored attribute set that has a cost
higher than cmin is not added to the collection S of those to explore. Indeed, this
attribute set does not provide the lowest cost, nor do its supersets. Then, during
the expansion of two attribute sets Si and Sj of the same size, if Si satisfies the
sensitivity and Sj does not, they can have a common superset Sl. In this case, Sl

does not need to be explored as it costs more than Si. We store Si in I so that we
can check if an attribute set C has a subset in I, in which case we do not explore
C. The same holds if Si costs less than cmin and Sj costs more than cmin.

Algorithm Complexity Starting from the empty set, we have n supersets com-
posed of one more attribute. From these n supersets, we update S to hold at most
k attribute sets. The attribute sets Si ∈ S are now composed of a single attribute,
and each Si has n− 1 supersets composed of one additional attribute. At any stage,
we have at most kn attribute sets to explore. This process is repeated at most
n times, as we can add at most n attributes, hence the computational complexity
of the Algorithm 1 is of O(kn2ω), with ω being the computational complexity of
the measures of usability cost and sensitivity of an attribute set. The collection E

contains at most kn attribute sets (at most n supersets for each Si ∈ S). The
collections S, T , and I can contain more sets, but are bounded by the number of
explored nodes which is kn2. The memory complexity of the Algorithm 1 is then
of O(kn2).
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Stage E T S

1 {{1}, {2}, {3}} {} {{1}, {3}}
2 {{1, 2}, {1, 3}, {2, 3}} {{1, 2}} {{1, 3}}
3 {} {{1, 2}} {}

Table 5.2: Example of the execution of Algorithm 1 on the lattice of Figure 5.3,
with the sensitivity threshold α = 0.15 and the number of explored paths k = 2.
Stage i is the state at the end of the i-th while loop.

Example Table 5.2 displays an example of the execution of Algorithm 1 on the
lattice presented in Figure 5.3, with the sensitivity threshold α = 0.15 and the
number of explored paths k = 2. The stage i corresponds to the state at the end
of the i-th while loop. Initially, the collection S is {∅,∅}. At stage 1, the two
most efficient attribute sets of E are {1} and {3}, which are stored into S. At
stage 2, we assume that the attribute set {1, 2} is measured first as there is no
order among E. In this case, this attribute set is added to the collection T , and the
minimum cost is now 20. The attribute set {1, 3} is then added to S, but {2, 3}
is not as it has a higher cost than the minimum cost. At stage 3, the attribute
set {1, 2, 3} is not added to the collection E as it is a superset of one attribute set
of the collection T . The final solution is the less costly attribute set of T , which
is {1, 2} in this case, and happens to be the optimal solution.

5.2.3 Illustrative Sensitivity and Usability Cost Measures

In this section, we illustrate a sensitivity measure as the proportion of imperson-
ated users given the strongest attacker of our model that knows the fingerprint
distribution among the protected users. We also illustrate a usability cost mea-
sure according to the fingerprints generated by a fingerprinting probe on a browser
population.

Sensitivity Measure

We measure the sensitivity of a given attribute set according to an instantiated
attacker and a population of users sharing browser fingerprints. The attacker
knows the fingerprint distribution of the protected users, and submits orderly
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the most probable fingerprints, until reaching the threshold on the number of
submissions. The illustrative sensitivity measure evaluates the proportion of users
that are impersonated considering the matching function.

From an attribute set C, we retrieve the fingerprint domain FC such that
FC = ∏

a∈C domain(a), with domain(a) being the domain of the attribute a and∏ being the Cartesian product. We denote FA the fingerprints when considering
the set A of the candidate attributes. We denote U the set of the users that
are protected by the verifier. The setM = {(u, f) : u ∈ U, f ∈ FA} represents the
mapping from the users to their fingerprint, so that the user u has the fingerprint f

stored.

We denote project(f, C) the function that projects the fingerprint f ∈ FC′ from
the set of attributes C ′ to the set of attributes C, with the requirement that
C ⊆ C ′. Finally, the function denoted dictionary(p, FC , β) retrieves the β-most
probable fingerprints of FC given the probability mass function p. We note that it
is trivial to retrieve the distribution of the fingerprints composed of any attribute
subset C ⊂ A from the distribution of the fingerprints composed of the candidate
attributes A.

We denote f [a] the value of the attribute a for the fingerprint f , and f [a] ≈a g[a]
the matching between the value of the attribute a for the stored fingerprint f and
the submitted fingerprint g. It is true only if f [a] matches with g[a], meaning
that g[a] is deemed a legitimate evolution of f [a]. Finally, we define the set of the
matching functions of each candidate attribute as Φ = {≈a: a ∈ A}.

We measure the sensitivity as the proportion of impersonated users among
a population of protected users, against the attacker that knows the fingerprint
distribution among them, using Algorithm 2. The illustrative sensitivity measure is
monotonic as demonstrated in Appendix G. The number of submissions is defined
by the verifier according to her rate limiting policy [80] (e.g., blocking the account
after three failed attempts). This limit could be set to 1 as a user cannot mistake
his browser fingerprint. However, a user can browse from a new or a public browser,
and taking preventive action on this sole motive is unreasonable.
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Data: The attribute set C, the limit on the number of submissions β, the
mapping M from the users to their browser fingerprint, the
probability mass function p, and the set Φ of matching functions.

Result: The proportion of impersonated users.
R← {}
FC ← the fingerprint domain when considering C
V ← dictionary(p, FC , β)
forall (u, f ∗) ∈M do

f ← project(f ∗, C)
if ∃g ∈ V st. ∀a ∈ C, f [a] ≈a g[a] then

R← R ∪ {u}
end

end
return card(R)

card(U)
Algorithm 2: Illustrative sensitivity measure.

Usability Cost Measure

There is no off-the-shelf measure of the usability cost of the attributes (e.g.,
the UserAgent HTTP header [186] has no specified size, collection time, nor
change frequency). This cost also depends on the fingerprinted population (e.g.,
mobile browsers generally have fewer plugins than desktop browsers, resulting
in smaller values for the list of plugins as described in Section 4.3). As a re-
sult, we design an illustrative cost measure that combines three sources of cost
(i.e., space, time, and instability), which is computed by the verifier on her fin-
gerprint dataset. The fingerprint dataset used to measure the costs is denoted
D = {(f, b, t) : f ∈ FA, b ∈ B, t ∈ T}, with B being the set of observed browsers.

The memory cost is measured as the average fingerprint size. The attribute
values are stored and not compressed into a single hash, which is necessary due
to their evolution through time. We denote mem(C, D) the memory cost of the
attribute set C, and size(x) the size of the value x. The memory cost is defined as

mem(C, D) = 1
card(D)

∑
(f,b,t)∈D

∑
a∈C

size(f [a]) (5.1)

The temporal cost is measured as the average fingerprint collection time, and
takes into account the asynchronous collection of some attributes. Although at-
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tributes can be collected asynchronously, some require a non-negligible collection
time (e.g., the dynamic attributes [153, 179]). We denote time(C, D) the tempo-
ral cost of the attribute set C. Let Aseq be the set of the sequential attributes,
and Aasync the set of the asynchronous attributes, so that C = Aseq ∪ Aasync. We
denote ctime(b, f [a], t) the collection time of the attribute a for the fingerprint f

collected from the browser b at the moment t. The temporal cost is defined as

time(C, D) = 1
card(D)

∑
(f,b,t)∈D

max({ctime(b, f [a], t) : a ∈ Aasync}

∪ {
∑

s∈Aseq

ctime(b, f [s], t)})
(5.2)

The instability cost is measured as the average number of changing attributes
between two consecutive observations of the fingerprint of a browser. We denote
ins(C, D) the instability cost of the attribute set C. We denote C(∆, D) the func-
tion that provides the pairs of consecutive fingerprints of D that are separated
by a time-lapse comprised in the ∆ time range, as defined in Section 4.1.3. We
denote δ(x, y) the Kronecker delta being 1 if x equals y and 0 otherwise. We de-
note Ψ(D) = {|tk − tr| : ((fi, bj, tk), (fp, bq, tr)) ∈ D2)} the function that gives the
complete time range of the dataset D. The instability cost is defined as

ins(C, D) = 1
card(C(Ψ(D), D))

∑
(f,g)∈C(Ψ(D),D)

∑
a∈C

δ(f [a], g[a]) (5.3)

The three dimensions of the cost are weighted by a three-dimensional weight
vector denoted γ = [γ1, γ2, γ3], such that the weights are strictly positive numbers.
The verifier tunes these weights according to her needs (e.g., allowing fingerprints
to be more unstable, but requiring a shorter collection time). She can do this
by defining an equivalence between the three dimensions (e.g., one millisecond of
collection time is worth ten kilobytes of size), and setting the weights so that these
values amount to the same quantity in the total cost. For a concrete example, we
refer to Section 5.3.1.

Finally, we denote cost(C, D) the cost of the attribute set C given the finger-
print dataset D. The illustrative usability cost measure is monotonic as demon-



5.3. EXPERIMENTAL VALIDATION 175

strated in Appendix G, and is formalized as

cost(C, D) = γ · [mem(C, D), time(C, D), ins(C, D)]⊺ (5.4)

5.3 Experimental Validation

In this section, we describe the experiments that we perform to validate our frame-
work. We begin by describing how the usability cost and the matching function
are implemented. Then, we present the results of the attribute selection frame-
work executed with different parameters, and compare them with the results of
the common baselines. The experiments were performed on a desktop computer
with 32GB of RAM and 32 cores running at 2GHz. We use the datasets that are
described in Chapter 3 and analyzed in Chapter 4.

5.3.1 Instantiation of the Experiments

In this section, we present the instantiation of the parameters for the experiments.
We first describe how the verifier and the attacker are instantiated by presenting
the chosen user population, sensitivity thresholds, and number of submissions.
Then, we detail the implementation of the usability cost measure and the matching
function between fingerprints, alongside the value of the parameters or weights that
they use.

Verifier Instantiation

On the verifier side, we simulate a user population by randomly sampling browsers
from the first two months of each experiment. The observed fingerprint is con-
sidered as the fingerprint stored for the user who owns the browser. We have
70 browsers for the intranet dataset, 81 browsers for the university dataset, and
630 browsers for the enrolled dataset. As for the general audience dataset, we
only sample from the first month and limit the sample to 30, 000 browsers due
to its size. We configure the resolution algorithm to have 1 and 3 explored paths
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to compare the gain achieved by a larger explored space. We call ASF-1 and
ASF-3 our attribute selection method with respectively 1 and 3 explored paths.
We consider the set of sensitivity thresholds {0.001, 0.005, 0.015, 0.025}. Bonneau
et al. [27] defined the resistance against online attacks as a compromise of 1% of
accounts after a year when 10 guesses per day are allowed. Hayashi et al [86]
estimated that 0.001 is equivalent to a random guess of four-digit. However, to
the best of our knowledge, no standard value exists. Hence, we make the choice
of these values starting from 0.001 and going to 0.025 to obtain a range from a
strict security requirement to one that is less strict. We admit that 0.025 (2.5%)
is already high, but it is close to the proportion of users that share the 10 most
common passwords in previously leaked datasets [220].

Attacker Instantiation

On the attacker side, an instance is parameterized with the number of finger-
prints β that he can submit, and his knowledge over the fingerprint distribution.
We consider the strongest attacker of our attack model that knows the fingerprint
distribution among the user population.

We consider the set of number of submissions {1, 4, 16}. To the best of our
knowledge, no standard value exists. The choice of 1 is for a strict rate limiting
policy that blocks the account on any failure and asks the user to change his
password. The choice of 4 is for a policy that would require a CAPTCHA after
3 failed attempts, and would perform the blocking and password change after the
fourth failed attempt. Finally, the choice of 16 is for a policy that would let more
attempts before performing the blocking and password change. The chosen values
are close to the number of submissions allowed into policies enforced in real life [80],
and the ones estimated as reasonable values against online guessing attacks [28].

Implementation of the Usability Cost Measure

The implemented usability cost function measures the memory in bytes (a charac-
ter per byte), the time in milliseconds, and the instability as the average number of
changing attributes between the consecutive fingerprints. We configure the three-
dimensional weight vector to the values γ = [1; 10; 10, 000] to have an equivalence
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Dataset Value Cost (pts) Mem. (B) Time (s) Inst. (changes)

General Aud. Candidate 135,171 6,688 9.98 2.86
General Aud. Max. cost 99,846 1,102 9.98 0.51
General Aud. Avg. cost 8,794 26 0.87 0.01
General Aud. Min. cost 1 1 0.00 0.00

Intranet Candidate 83,078 8,297 1.29 6.18
Intranet Max. cost 13,388 1,613 1.29 0.43
Intranet Avg. cost 1,344 33 0.11 0.02
Intranet Min. cost 5 4 0.00 0.00

University Candidate 222,878 5,527 1.30 20.44
University Max. cost 15,157 532 1.30 0.63
University Avg. cost 1,736 23 0.09 0.09
University Min. cost 4 4 0.00 0.00

Enrolled Candidate 86,318 7,790 1.12 6.73
Enrolled Max. cost 10,062 1,304 0.92 0.35
Enrolled Avg. cost 1,168 31 0.09 0.03
Enrolled Min. cost 4 4 0.00 0.00

Table 5.3: The cost of the candidate attributes, together with the maximum, the
average, and the minimum cost of a single attribute for each cost dimension.

between 10 kilobytes, 1 second, and 1 changing attribute on average, which are all
equal to 10, 000 points. Table 5.3 displays the cost of the candidate attributes, to-
gether with the minimum, the average, and the maximum cost of a single attribute
for each cost dimension and each dataset.

Implementation of the Matching Function

The implemented matching function checks that the distance between the attribute
values of the submitted fingerprint and the stored fingerprint is below a thresh-
old. Appendix D provides a description of this matching function. More complex
matching functions exist (e.g., based on rules and machine learning [214]). They
can be integrated to the framework as long as they are monotonic14.

14A matching function is monotonic if two fingerprints that match for an attribute set C also
match for any subset of C.
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Baselines

We compare our method with common attribute selection methods. The entropy-
based method [146, 111, 24, 91] consists into picking the attributes of the highest
entropy until reaching an arbitrary number of attributes. The method based on
the conditional entropy [65] consists into iteratively picking the most entropic
attribute according to the attributes that are already chosen, and re-evaluating
the conditional entropy of the remaining attributes at each step, until an arbitrary
number of attributes is reached. Instead of limiting to a given number of attributes,
we pick attributes until the obtained attribute set satisfies the sensitivity threshold.
For simplification, we call entropy and conditional entropy the attribute selection
methods that rely on these two metrics.

5.3.2 Attribute Selection Framework Results

In this section, we present the results obtained on the previously presented datasets
by processing the Attribute Selection Framework on the instantiated attackers,
and compare them with the results of the baselines. The results are obtained
for the 12 cases consisting of the Cartesian product between the values of the
sensitivity threshold α and those of the number of submissions β. Due to the low
distinctiveness, stability, and browser population shown by the university dataset,
no case among the tested cases provided solution for this dataset. For this dataset,
the attacker that is given a single fingerprint submission manages to impersonate
55 among the 81 browsers, which exceeds the tested sensitivity thresholds. As for
the intranet dataset, the attacker having one submission achieves to impersonate
2 browsers among the 70, which also exceeds the tested sensitivity thresholds
due to the small browser population. Only the general audience and the enrolled
datasets have solutions for the tested parameters. They allow us to simulate two
user populations, one of a big size (30, 000 users) and one of a smaller size (630
users).
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Key Results

The attribute sets found by the Attribute Selection Framework (ASF) generate
fingerprints that are 12 to 1, 663 times smaller, 9 to 32, 330 times faster to collect,
and with 4 to 30 times less changing attributes between two observations, compared
to the candidate attributes and on average. Compared to the attribute sets found
by the baselines, the ones found by the ASF-1 generate fingerprints that are up
to 97 times smaller, are collected up to 3, 361 times faster, and with up to 7.2
times less changing attributes between two observations, on average. These gains
come with a higher computation cost, as the ASF-1 explores more attribute sets by
three orders of magnitude compared to the baselines. However, the implemented
attribute sets can be updated rarely, and the usability gain is reflected on each
authentication performed by each user.

Increasing the number of explored paths by the ASF to three does not signifi-
cantly change the results. The attribute sets found by the ASF-3 can have a lower
usability cost or a higher usability cost due to local optimum (see Section 5.3.2).
We show that even when considering all of our candidate attributes, the strongest
attacker that is able to submit 4 fingerprints can impersonate 63 users out of the
30, 000 users of the general audience dataset, and 8 users out of the 630 users of
the enrolled dataset. If this attacker is able to submit 16 fingerprints, this number
increases to 152 users for the general audience dataset, and to 22 users for the
enrolled dataset.

Results of the Attribute Selection Framework

Figure 5.4 displays the cost of the attribute sets found by the ASF with 1 explored
path (ASF-1), the ASF with 3 explored paths (ASF-3), the entropy, and the con-
ditional entropy, for the general audience and enrolled datasets. The costs are in
points, so that 10, 000 additional points increase the size of fingerprints by 10 kilo-
bytes, their collection time by 1 second, or the number of changing attributes
between observations by 1 attribute, on average. There is a solution for 9 out of
the 12 cases for the general audience dataset, and the enrolled dataset shows a
solution for 5 cases. The cases without a solution are discussed in Section 5.3.2.

For the general audience dataset, half of the attribute sets found using the
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Figure 5.4: Cost of the attribute sets found by the ASF with 1 explored path
(ASF-1), the ASF with 3 explored paths (ASF-3), the entropy, and the conditional
entropy. The gray horizontal line is the cost when considering all the candidate
attributes.
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ASF-1 generate fingerprints that, on average, have a size lower than 34 bytes (less
than 522 bytes for all sets), are collected in less than 0.59ms (less than 1.01 seconds
for all sets), and have less than 0.02 changing attributes between two observations
(less than 0.07 attributes for all sets). Compared to the candidate attributes and
on average, the generated fingerprints are 12 to 1, 663 times smaller, 9 to 32, 330
times faster to collect, and with 4 to 30 times less changing attributes between two
observations. As for the enrolled dataset, half of the attribute sets found using
the ASF-1 generate fingerprints that, on average, have a size lower than 100 bytes
(less than 654 bytes for all sets), are collected in less than 52ms (less than 52ms
for all sets), and have less than 0.03 changing attributes between two observations
(less than 0.05 attributes for all sets). Compared to the candidate attributes and
on average, the generated fingerprints are 11 to 408 times smaller, 21 to 5, 403
times faster to collect, and with 155 to 463 times less changing attributes between
two observations.

The difference in usability cost of the attribute sets found by the ASF-3 and
the ASF-1 is negligible. For the general audience dataset, the attribute sets found
by the ASF-3 are as less costly as they are more costly than the attribute sets
found by the ASF-1. This results in the median additional cost of each dimension
being zero. The average resulting fingerprint is from 198 bytes smaller to 30 bytes
larger, takes from 3ms less to collect to 0.3ms more, and has from 0.03 less changing
attributes to 0.04 more. As for the enrolled dataset, only the case with a number
of submissions of 4 and a sensitivity threshold of 0.015 shows difference between
the solution found by the ASF-1 and by the ASF-3. The solution found by the
ASF-3 is 59 bytes larger, takes 0.02ms less to collect, and has 0.02 more changing
attributes, on average. Exploring more paths can counter-intuitively provide a
higher usability cost, due to the local optimum problem described in Section 5.3.2.
Indeed, when exploring more nodes, the followed paths can diverge as we hold
more temporary solutions, which can be local optimum. The computation cost
of increasing the number of explored paths is not worth the expected gain in our
experimental setup.
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Comparison with the Baselines

For the general audience dataset, the ASF-1 finds attribute sets that consume less
resources than the baselines in all the 9 cases having a solution. The attribute sets
found by the entropy consume more resources than the attribute sets found by
the ASF-1, with a total cost from 1.8 to 14 times higher. The average generated
fingerprint by the attribute sets chosen by the entropy, compared to the attribute
sets chosen by the ASF-1, is from 1.6 to 97 times larger, has a collection time that
is from 1.5 to 1, 872 times higher, and has from 1.5 to 7.2 times more changing
attributes between the consecutive fingerprints. The attribute sets found by the
conditional entropy consume more resources than the attribute sets found by the
ASF-1, with a total cost from 1.3 to 15 times higher. The average generated
fingerprint by the attribute sets chosen by the conditional entropy, compared to
the attribute sets chosen by the ASF-1, is from 1.5 to 16 times larger, has a
collection time that is from 1.3 to 3, 361 times higher, and has from 1.1 to 4.7
times more changing attributes between the consecutive fingerprints.

As for the enrolled dataset, the ASF-1 finds attribute sets that consume less
resources than the baselines in all the 5 cases having a solution. The attribute sets
found by the entropy consume more resources than the attribute sets found by
the ASF-1, with a total cost from 2.4 to 5.3 times higher. The average generated
fingerprint by the attribute sets chosen by the entropy, compared to the attribute
sets chosen by the ASF-1, is from 0.5 to 8.6 times larger, has a collection time
that is from 0.3 to 14.4 times higher, and has from 2.8 to 4.2 times more changing
attributes between the consecutive fingerprints. The attribute sets found by the
conditional entropy consume more resources than the attribute sets found by the
ASF-1, with a total cost from 1.1 to 3.1 higher. The average generated fingerprint
by the attribute sets chosen by the conditional entropy, compared to the attribute
sets chosen by the ASF-1, is from 0.3 to 5.5 times larger, has a collection time
that is from 0.9 to 249 times higher, and has from 1.1 to 2.2 times more chang-
ing attributes between the consecutive fingerprints. Although the cost of some
dimensions can be lower for the solutions found by the baselines, the total cost of
these solutions is always higher than for the solutions found by the ASF-1. We
emphasize that the verifier can configure the cost of each dimension according to
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Figure 5.5: Number of explored attribute sets by the attribute selection methods.

her preferences, in order to process a trade-off between the cost dimensions.

Reasons for Sub-optimal Results

The sub-optimal solutions that are found by the Attribute Selection Framework are
due to a problem of local optimum. At a given step, the most efficient attribute
sets S can have supersets of higher cost than the supersets of another S ′. The
supersets of S are then explored, whereas the less costly supersets here would
have been the supersets of S ′.

Computation Cost

The attribute selection framework shows a higher computation cost. Indeed, at
each stage of the exploration, the ASF explores up to n− 1 attribute sets15 for
each temporary solution, with n being the number of candidate attributes. The
ASF-1 explores more attribute sets by three orders of magnitude compared to the
baselines. However, this is an upper bound as the baselines require preprocessing.
Indeed, the attributes has to be sorted by their entropy or by their conditional
entropy.

Figure 5.5 displays the number of attribute sets explored by the attribute
selection methods when executed on the general audience and enrolled datasets.
The number of explored attribute sets by the ASF-1 goes from 748 to 5, 522 for

15The set of the explored attribute sets can overlap as two temporary solutions can have a
common superset.
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Figure 5.6: The proportion of impersonated users when considering the candi-
date attributes, and as a function of the number of submissions. The sensitivity
thresholds α are displayed.

the general audience dataset, and from 898 to 12, 984 for the enrolled dataset.
The ASF-3 explores approximately 3 times more attribute sets than the ASF-1:
from 1, 730 to 16, 659 explored attribute sets for the general audience dataset, and
from 2, 227 to 38, 211 explored attribute sets for the enrolled dataset. The number
of attribute sets explored by the entropy ranges from 3 to 217 for the general
audience dataset, and from 5 to 26 for the enrolled dataset. As for the conditional
entropy, it goes from 3 to 10 for the general audience dataset, and from 4 to 10
for the enrolled dataset. However, the conditional entropy method requires to
sort the n attributes by their conditional entropy, which requires ∑n

i=0 n− i steps.
This difference of explored attribute sets between the entropy and the conditional
entropy is explained by the latter avoiding selecting correlated attributes.

Lower Bound on the Impersonated Users

The obtained sensitivity against our instantiated attackers ranges from the min-
imum sensitivity when considering the candidate attributes, as displayed in Fig-
ure 5.6, to the maximum sensitivity of 1.0 when considering no attribute at all.
All the possible attribute sets have their sensitivity comprised between these two
extremum. For the general audience dataset, the instantiated attackers that are
allowed 4 submissions are able to impersonate 63 users out of the 30, 000 users,
which exceeds the sensitivity threshold of 0.001. When allowed 16 submissions,
the number of impersonated users increases to 152, which exceeds the sensitivity
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threshold of 0.005 that corresponds to 150 users. As for the enrolled dataset, one
submission is enough for the instantiated attackers to impersonate 2 users, which
exceeds the sensitivity threshold of 0.001 that corresponds to no user at all. When
allowed 4 submissions, the number of impersonated users increases to 8, which
exceeds the sensitivity threshold of 0.005 that corresponds to 3 users. Finally,
the attackers that are allowed 16 submissions achieve to impersonate 22 users, ex-
ceeding the sensitivity threshold of 0.025 that corresponds to 15 users. Hence, no
solution exists for these attackers, as the number of impersonated users surpasses
all the sensitivity thresholds.

Selected Attributes

In this section, we provide the list of the attributes that are selected by the at-
tribute selection framework. Table 5.4 lists the selected attributes for the gen-
eral audience dataset, and Table 5.5 lists the selected attributes for the enrolled
dataset. The nomenclature used is the same as in Appendix I. We have 9 combi-
nations of sensitivity threshold and number of submissions that show a solution
for the general audience dataset, and 5 combinations for the enrolled dataset. The
attribute selection framework is executed twice with two number of explored paths
(1 and 3), hence we respectively have 18 and 10 cases for which it found a solu-
tion. Among the selected attributes, six are selected for both the general audience
and the enrolled dataset. We discuss below the ten most selected attributes that
are selected in at least four cases for one of the dataset. The three most selected
attributes for the general audience dataset are also among the most selected for
the enrolled dataset. They concern hardware and software components that we
expect to not have a strong link together: the browser window size, the number of
logical processor cores, the graphics driver, the browser version, a scheme drawn
in the browser, the input and output peripherals, and the type of network con-
nection. The attributes that compose the selected attribute sets for each case are
less correlated with each other. For the general audience dataset, they have an
average normalized conditional entropy of 0.165 compared to 0.067 for the pairs
of candidate attributes. As for the enrolled dataset, they show an average nor-
malized conditional entropy of 0.234 compared to 0.100 for the pairs of candidate
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attributes.
The innerHeight property of the window JavaScript object provides the height

of the visible part of the browser window. It is selected in all the cases of both the
general audience and the enrolled dataset. It is the first attribute to be selected
during the exploration as it provides the highest efficiency. Indeed, its usability
cost is low with, on average and respectively for the general audience and the
enrolled dataset, a size of 3.02 bytes and 4.6 bytes, a collection time of 0.14ms and
0.03ms, and a change between 9.38% and 25.96% of the observations. Moreover, it
is the fifth most distinctive attribute of the general audience dataset and the most
distinctive for the enrolled dataset. For the general audience dataset, it shows an
entropy of 8.53 bits and the most common value is only shared by 2.70% of the
fingerprints. As for the enrolled dataset, it shows an entropy of 7.87 bits and the
most common value is shared by 6.55% of the fingerprints.

The hardwareConcurrency property that is collected from the navigator
JavaScript object provides the number of logical processor cores of the device that
runs the browser. This attribute is selected in 11 cases for the general audience
dataset and in 6 cases for the enrolled dataset. It shows a high efficiency mostly
due to the very low usability cost. Indeed, it shows, on average and respectively
for the general audience and the enrolled dataset, a size of 1 byte and 3.99 bytes,
a collection time of 0.17ms and 0.19ms, and a change between 0.11% of the ob-
servations for the two datasets. However, it shows a lower distinctiveness with an
entropy of 1.88 bits for the two datasets. The most common value is shared by
39.64% of the fingerprints for the general audience dataset, and by 46.05% of the
fingerprints for the enrolled dataset.

The UNMASKED_RENDERER_WEBGL property of an initialized WebGL Context
provides a textual description of the graphics driver. This attribute is selected in
8 cases for the general audience dataset, and in 4 cases for the enrolled dataset. It
has, on average and respectively for the general audience and the enrolled dataset,
a size of 24.51 bytes and 46.43 bytes, a collection time of 0.27ms and 0.21ms, and
a change between 0.91% and 10.79% of the observations. Although the most com-
mon value is shared by 28.27% of the fingerprints of the general audience dataset,
it still provides an entropy of 5.89 bits. As for the enrolled dataset, it has a similar
entropy of 5.81 bits and the common value is shared by 12.70% of the fingerprints.
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The appVersion property of the navigator JavaScript object provides the
version of the browser. This attribute is selected in 7 cases for the general audience
dataset. It shows, on average, a size of 101.76 bytes, a collection time of 0.13ms,
and a change between 1.57% of the observations. Although the most common value
is shared by 22.61% of the fingerprints, it still provides an entropy of 7.52 bits.

The HTML5 canvas inspired by the AmIUnique study [127] is selected in 7
cases for the general audience dataset16, mainly due to its high distinctiveness. It
has, on average, a size of 63.98 bytes, a collection time of 71.17ms, and a change
between 1.36% of the observations. It shows an entropy of 7.76 bits, and the most
common value is shared by 7.09% of the fingerprints.

The connection.type property of the navigator JavaScript object provides
the type of the network connection in use by the browser. This attribute is selected
in 6 cases for the general audience dataset, mainly due to its low usability cost. It
provides, on average, a size of 1.47 bytes, a collection time of 0.21ms, and a change
between 0.80% of the observations. It shows a lower distinctiveness compared to
the other attributes, with an entropy of 0.61 bits and the most common value
being shared by 89.52% of the fingerprints.

The enumerateDevices function of the MediaDevices API provides the list
of the input and output devices (e.g., microphones, headsets). This attribute is
selected in 6 cases for the enrolled dataset. It provides, on average, a size of
55.53 bytes, a collection time of 43.81ms, and a change between 17.87% of the
observations. It is the 11th most distinctive attribute of the enrolled dataset with
an entropy of 5.27 bits and the most common value being shared by 11.19% of the
fingerprints.

The list of plugins is selected in 5 cases for the general audience dataset. It
provides, on average, a size of 101.71 bytes, a collection time of 2.4ms, and a
change between 4.72% of the observations. The most common value is shared by
28.54% of the fingerprints, and this attribute provides an entropy of 3.82 bits.

The doNotTrack property can be collected from the navigator or the window
JavaScript object, and was developed to allow the user to express his will to be
tracked or not. Since, the working group of the W3C working on this specifica-

16The HTML5 canvas inspired by the AmIUnique study [127] is not part of the attributes of
the enrolled dataset.
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tion is closed17, and the feature begins to be removed from browsers (e.g., it was
removed from Safari18 due to its use for fingerprinting). This attribute is selected
in 4 cases for the general audience dataset, mostly due to its low usability cost. It
provides, on average, a size of 6.07 bytes, a collection time of 0.16ms, and a change
between 0.02% of the observations. The most common value is shared by 42.46%
of the fingerprints, and this attribute provides an entropy of 1.87 bits.

The list of the properties of the navigator JavaScript object is selected in 4
cases for the enrolled dataset. It provides, on average, a size of 540.97 bytes, a
collection time of 0.19ms, and a change between 17.87% of the observations. The
most common value is shared by 19.59% of the fingerprints, and this attribute
provides an entropy of 4.19 bits.

5.4 Conclusion

In this chapter, we propose FPSelect, a framework for a verifier to tailor his fin-
gerprinting probe by picking the attribute set that limits the sensitivity against
an instantiated attacker, and reduces the usability cost.

We formalize the Attribute Selection Problem that the verifier has to solve,
show that it is a generalization of the Knapsack Problem, model the potential
solutions as a lattice of attribute sets, and propose a greedy exploration algorithm
to find a solution. To compare the attribute sets, we propose an illustrative mea-
sure of their usability cost that depends on the size, the collection time, and the
instability of the generated fingerprints. We also propose an illustrative sensitivity
measure that takes as parameter the number of fingerprints that the attacker is
able to submit, and considers the worst case of the attacker knowing the distribu-
tion of the fingerprints among the protected users. Given these parameters, the
sensitivity measure evaluates the proportion of users that are impersonated by the
attacker.

We evaluate FPSelect on two real-life browser fingerprint datasets, and com-
pare it with common attribute selection methods that rely on the entropy and the

17https://www.w3.org/2011/tracking-protection
18https://developer.apple.com/documentation/safari-release-notes/safari-12_1-

release-notes

https://www.w3.org/2011/tracking-protection
https://developer.apple.com/documentation/safari-release-notes/safari-12_1-release-notes
https://developer.apple.com/documentation/safari-release-notes/safari-12_1-release-notes
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conditional entropy. The attribute sets found by FPSelect generate fingerprints
that are 12 to 1, 663 times smaller, 9 to 32, 330 times faster to collect, and with
4 to 30 times less changing attributes between two observations, compared to the
candidate attributes and on average. Compared to the baselines, the attribute sets
found by FPSelect generate fingerprints that are up to 97 times smaller, are col-
lected up to 3, 361 times faster, and with up to 7.2 times less changing attributes
between two observations, on average. These gains come with a higher computa-
tion cost, as the ASF-1 explores more attribute sets by three orders of magnitude
compared to the baselines. However, the attribute sets used can be updated rarely,
and the usability gain is reflected on each authentication performed by each user.
Increasing the number of paths explored by the ASF from one to three does not
significantly change the results in our experimental settings. The attribute sets
found can show a higher usability cost due to local optimum.

Our goal to reduce the usability cost of the attributes is reached using FPSelect.
We achieve a reduction of the usability cost of up to three orders of magnitude
compared to the baselines, and of up to four orders of magnitude compared to
the candidate attributes. Although the computation cost of FPSelect is also three
orders of magnitude higher, the reduction of the usability cost is reflected on
each authentication performed by each user. Among the hundreds of candidate
attributes, less than ten attributes suffice to reduce the sensitivity to a threshold
close to the minimum sensitivity obtained using the candidate attributes. The
attributes that compose the selected attribute sets are less correlated with each
other compared to the pairs of candidate attributes. They concern hardware and
software components that are not expected to have a strong link together, like the
browser window size and the number of logical processor cores.





Chapter 6

Conclusion

User authentication consists for a verifier to assert that a user is really who he
claims to be. When this takes place on the web (i.e., the user authenticates
through his web browser on the website of the verifier), we call this process web
user authentication or web authentication for short. The authentication of the
user has to be done through his web browser. Due to this limitation, new stan-
dards are released to extend the functionalities of web browsers. An example is
the Web Authentication API [216] which gives browsers the access to external
components (e.g., a security token) to process the authentication using asymmet-
ric cryptography. Although the Web Authentication API provides the access to
new authentication factors through web browsers, the constraints inherent to these
factors are still present. For example, using security tokens in a company requires
the technical staff to provide the security tokens to the employees, maintain the
tokens (e.g., handling lost tokens), and teach the employees how to use them.
Moreover, the employees has to constantly possess their security token. Moreover,
if the website is publicly accessible, the number of potential visitors – and con-
jointly attackers – is large compared to a physical authentication process (e.g., the
access to an office by electronic keys). Web authentication makes a great usage
of an authentication factor already well-used before the genesis of the web: the
password [151]. Indeed, passwords are easy to use (i.e., they simply have to be re-
membered and typed), to deploy (i.e., the verifier collects them through standard
HTML5 forms, stores them as character strings, and compares them identically),
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and users are familiar with them. However, passwords are fallible to many at-
tacks: brute force, dictionary [28], credential stuffing [210], or targeted knowledge
attacks [218]. Due to the many passwords that users have to remember, they tend
to use identical or similar passwords across websites [44, 84]. The leak or the theft
of one of their password can then impact the security of all their accounts. To
cope with these flaws, multi-factor authentication arises, such that each additional
factor provides an additional security barrier. However, they come at the cost of
usability or deployability [27]. The users have to remember, possess, or perform
additional actions, and the verifier has to deploy, maintain, and teach the users
how to use the authentication factor.

In the meantime, a new web tracking technique arose in 2010: browser finger-
printing [56]. It consists into collecting properties from a web browser to build
its fingerprint which can be unique. Similarly to the biometric authentication
factors that can be used for both identification and authentication (e.g., facial or
fingerprint recognition), browser fingerprints can also serve as an authentication
factor. Most works on browser fingerprinting for authentication focus on the de-
sign of the authentication mechanism [212, 177, 79, 203, 47, 124, 184], and the
large-scale empirical studies on browser fingerprints focus on their effectiveness as
a web tracking tool [56, 127, 81, 178]. Few is known on the properties of browser
fingerprints when used for authentication, like their effectiveness to recognize the
fingerprints of a browser and distinguish those of different browsers. Moreover, the
properties of browser fingerprints depend on the fingerprinted browser population
and on the attributes that compose the fingerprints. The large-scale empirical
studies on browser fingerprints (more than 100, 000 fingerprints) consider fewer
than thirty attributes [56, 127, 214, 81]. This underestimates the distinctiveness
of the fingerprints (e.g., [81] reports a rate of 33.6% of unique fingerprints), as it
increases the chances for browsers to share the same fingerprint. All this whereas
more than a hundred attributes are accessible. The studies that consider more
than fifty attributes either work on less than two thousand users [111, 178], or
do not analyze the resulting fingerprints at all [64]. In this thesis, we studied the
properties of browser fingerprints when used as an authentication factor, consider-
ing hundreds of fingerprinting attributes and four browser populations, including
a population of nearly two million browsers.
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Correlations are expected to occur between the attributes when considering
as many as hundreds of them. We can reduce the implemented attributes to a
subset to reduce the cost of using them. Indeed, attributes take up to several
minutes to collect [152, 155, 157, 191, 193, 179], which is impractical in an online
authentication context. However, removing an attribute can result in a loss of
distinctiveness. Previous works only consider the well-known attributes [56, 127,
81], remove the attributes of the lowest entropy [214], iteratively pick the attribute
of the highest weight (typically the entropy) until a threshold is reached [146, 111,
65, 24, 91, 208], or evaluate every possible attribute set [69]. In this thesis, we
proposed the FPSelect framework to select the attributes to use such that the
sensitivity against powerful attackers is bounded, and the cost of using them is
close to being minimal.

6.1 Contributions

In this thesis, we aimed at exploring the adequacy of browser fingerprinting for web
authentication. First, we evaluated browser fingerprints according to properties
inspired of biometric authentication factors. Then, we proposed a framework to
select the set of attributes to use to keep the sensitivity against attackers low and
reduce the cost of using the fingerprints (e.g., the collection time).

6.1.1 Assessing the Adequacy of Browser Fingerprints for
Web Authentication

In Chapter 4 we made the link between the digital fingerprints that distinguish Hu-
mans and the browser fingerprints that distinguish browsers, to evaluate the latter
according to properties inspired by biometric authentication factors. We formal-
ized and assessed these properties on four real-life browser fingerprint datasets.
The properties include the distinctiveness of the fingerprints, their stability, their
collection time, their size, the loss of effectiveness among browser types, the ac-
curacy of a simple illustrative verification mechanism, and the acceptability of
browser fingerprinting for web authentication. The datasets comprise a large-scale
fingerprint dataset collected over a period of six months that contains 4, 145, 408
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fingerprints composed of 216 attributes, including 9 instances of dynamic at-
tributes.

The dataset collected from the standardized computers of the University of
Rennes 1, named the university dataset, shows different properties compared to the
other three datasets. Considering the time-partitioned datasets, more than 81%
of the fingerprints are unique on the long-term (11% for the university dataset).
Between two observations of the fingerprint of a browser, more than 81% of the
attributes are expected to stay identical (68.7% for the university dataset), even
when several months elapsed between the observations. The majority (95%) of the
fingerprints take at most 10.5 seconds to collect, and all of them require less than
22.3 kilobytes storage space. By processing a simple verification mechanism, we
achieved an equal error rate of at most 4.30% (29.42% for the university dataset).
Our mobile fingerprints are less distinctive, more stable, lighter, and take more
time to collect compared to our desktop fingerprints. We measured the satisfac-
tion of 682 respondents who tested an authentication mechanism that relies on
browser fingerprinting using the Net Promoter Score methodology. Among the
respondents, 22% are detractors, 38% are passive, and 40% are promoters.

To better comprehend the results on the complete fingerprints, we broke down
the analysis to the attribute level. From 63% to 91% of the attributes have at
most 100 distinct values (all the attributes of the university dataset have at most
12 values). About the normalized entropy, the majority of the attributes show a
normalized entropy comprised between 0.0 and 0.3 excluded, at the exception of
the university dataset for which nearly half of the attributes show a null entropy.
From 57% to 80% of the attributes are expected to stay identical between 99% of
the observations. Few attributes consume high temporal or mnemonic resources.
Less than 40 attributes have a median collection time above 5ms and less than 20
attributes weigh more than 100 bytes. Most of the attributes are correlated with
another one as they provide less than 1 bit of conditional entropy when the value of
another attribute is known. The dynamic attributes are generally more distinctive,
less stable, and take more time to collect compared to the fixed attributes.
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6.1.2 Attribute Selection according to a Security and Us-
ability Trade-off

In Chapter 5 we proposed the FPSelect framework to help verifiers choose the
attributes to include in their fingerprinting probe. The choice is made according to
a trade-off between the sensitivity against a modeled attacker and the cost of using
the browser fingerprints. We formalized the Attribute Selection Problem that the
verifier has to solve, showed that it is a generalization of the Knapsack Problem,
modeled the search space as a lattice of attribute sets, and proposed a greedy
exploration algorithm to find a solution. We proposed an illustrative measure of
the sensitivity against a modeled attacker as the proportion of the protected users
that he manages to impersonate. It takes as parameter the number of fingerprints
that the attacker is able to submit, and considers the strong attackers that know
the fingerprint distribution among the protected users. As for the usability cost,
we proposed an illustrative measure that captures the size, the collection time,
and the instability of the generated fingerprints.

We evaluated FPSelect on two real-world fingerprint datasets, and compared
it with the common attribute selection methods that rely on the entropy and the
conditional entropy. In our experimental settings, FPSelect finds attribute sets of
a lower usability cost for the same sensitivity level, compared to the baselines and
the candidate attributes. Compared to the baselines and on average, the attribute
sets found by FPSelect generate fingerprints that are up to 97 times smaller, are
collected up to 3, 361 times faster, and with up to 7.2 times less changing attributes
between two observations. Compared to the candidate attributes and on average,
the attribute sets found by FPSelect generate fingerprints that are 12 to 1, 663
times smaller, 9 to 32, 330 times faster to collect, and with 4 to 30 times less
changing attributes between two observations.

We reached our goal to reduce the usability cost of the attributes using FPSe-
lect. We achieved a reduction of the usability cost of up to three orders of magni-
tude compared to the baselines, and of up to four orders of magnitude compared
to the candidate attributes. Although the computation cost of FPSelect is also
three orders of magnitude higher, the reduction of the usability cost is reflected
on each authentication performed by each user. Among the hundreds of candidate
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attributes, less than ten attributes suffice to reduce the sensitivity to a thresh-
old close to the minimum sensitivity obtained using the candidate attributes. We
also remarked that the attributes that compose the selected attribute sets are less
correlated with each other compared to the pairs of candidate attributes.

6.2 Future Works

6.2.1 Extension of FPSelect to Attackers having Targeted
Knowledge

In Chapter 5 we proposed the FPSelect framework to help verifiers select the at-
tribute set that has a low usability cost and keeps the sensitivity against attackers
bounded. The sensitivity is measured as the proportion of impersonated users
given the attacker that has the knowledge of the fingerprint distribution among
the protected users. We plan to extend the FPSelect framework to support the
attackers that have targeted knowledge about the web environment of users (e.g.,
the type of device they use) or the value of some attributes. We assume that the
attacker is able to collect the fixed attributes of a victim, but is not able to obtain
the dynamic attributes as the set of instructions can be changed on each finger-
printing. This extension can be performed by considering (1) that the attacker
knows the fingerprint distribution of a subpopulation (e.g., the mobile browsers,
the browsers that share the same value for the fixed attributes), (2) that he can link
a victim to a subpopulation (e.g., he knows that a victim uses a mobile browser),
and (3) that he submits the β most common fingerprints of the subpopulation to
which each victim belongs. Attackers can also try to infer the value of the dy-
namic attributes: if they manage to obtain pairs of challenge and response, they
can try to infer the response to an unseen challenge. To the best of our knowledge,
no study addresses the sensitivity against such attackers. Finally, the behavior of
FPSelect on other experimental setups (browser populations, attributes, measures,
parameters) would be interesting to investigate.
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6.2.2 Challenge-Response Mechanisms and Dynamic At-
tributes

The studies [124, 184] that propose to use dynamic attributes in challenge-response
mechanisms only focus on the HTML5 canvas. The value of the dynamic attributes
can change following changes of the web environment (e.g., a browser update),
resulting in the failure of the response to the challenge. These false matches can
be reduced by two ways. First, using several dynamic attributes allow the verifier
to rely on several responses instead of a single one, hence increasing the robustness
against the changes of dynamic attributes values. For example, if the verifier use
ten dynamic attributes and observes a single failed response, he could deem the
user legitimate. Retrieving the accessible dynamic attributes and the domain
of their instructions is the first step to design a challenge-response mechanism
that includes several dynamic attributes. Additionally to the HTML5 canvas,
other attributes are dynamic: the WebGL canvas [153], the audio fingerprinting
methods [179], and the installed1 extensions [199, 205] or fonts [65]. Second, the
currently known dynamic attributes are mainly media files that are processed
by the browser. In our verification mechanisms, we consider these attributes as
matching if their value for the two compared fingerprints are identical. More
complex matching mechanisms can be designed for these attributes. For example,
the response to the canvas challenge can be compared to the awaited response
using image comparison algorithms.

6.2.3 Web Environment Components Impacting Attributes

In Chapter 4 we studied the properties of millions of fingerprints composed of
hundreds of attributes, and observed that some attributes can be completely in-
ferred when the value of another attribute is known. This can come from their
value being tied to the same component of the web browser environment. For
example, the userAgent and the appVersion JavaScript properties depend on
the browser version, as well as the Accept-Language HTTP header and the tex-
tual representation of a specific date depend on the configured language. These

1The attributes that infer the presence of an extension or a font can be made dynamic by
inferring the presence of a different set of items on each fingerprinting.
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examples of attributes that depend on the same component of the web browser
environment are straightforward and easy to grasp. However, the underlying com-
ponents that impact other attributes are harder to retrieve (e.g., the evaluation
of mathematical functions, the HTML5 canvas [36, 127], the audio fingerprinting
methods [179]). To the best of our knowledge, no study identified the underlying
web environment components that impact an attribute, nor proposed methods to
retrieve these components. The studies that are the closest are the works on cross-
browser fingerprinting [53, 25, 38]. They seek to limit the attributes to the ones
that help to recognize the underlying device and operating system independently
of the browser in use. However, they do not identify which underlying components
impact the attributes. Retrieving the underlying components that impact the at-
tributes could help a verifier to link the change of the attributes to the change
of the components. For example, retrieving the attributes that evolve when the
browser is updated allow the verifier to consider the evolution of these attributes
as less suspicious than the evolution of a random set of attributes. This way, the
users would undergo the account recovery process less often, as the evolution of
the attributes that are impacted by the same component would be recognized.

6.2.4 Matching Function based on Fingerprints Evolution

In Section 4.2.5 we evaluated the accuracy of a simple verification mechanism
that checks whether the number of identical attributes between two fingerprints
are above a threshold. In Appendix D we compared this verification mechanism
with one that authorizes differences between the two attribute values by com-
paring them using a distance function. We observed that authorizing differences
helps both the fingerprints of a browser and these of different browsers to match,
which resulted in a lower accuracy compared to the simple verification mechanism.
Studying the evolution patterns of fingerprints and the accuracy of a verification
mechanism that recognizes these patterns would be interesting. These patterns
can comprise the evolution of a single attribute (i.e., how an attribute evolves),
the co-evolution of attributes (i.e, how attributes evolve together), and according
to the time elapsed between the observations. Indeed, the higher the time elapsed
between the observations of the fingerprint of a browser, the more numerous dif-
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ferences are expected to occur. An example of evolution patterns for an attribute
that would provide the version number is that it either stays identical, gets its
value incremented by 1, or incremented by 2 if the browser is updated after a long
time. These evolution patterns would be assigned different likelihood according
to the elapsed time between the observations. For example, for a short time-span
between the observations, the attribute has high chances to stay identical, has
fewer chances to get its value increased by 1, and even fewer chances to get its
value increased by 2. Moreover, the decrease of the value of this attribute would
be considered as highly unlikely. Relying on evolution patterns could also identify
the replay of an old fingerprint by an attacker. The replayed fingerprint would
be an ancestor of the fingerprint in use by the victim, and the evolution would
be unlikely. Fingerprint evolution patterns are double-edged as attackers can use
them. A powerful attacker that knows the evolution patterns, and that possesses a
dataset of old fingerprints, could make them virtually evolve to obtain up-to-date
fingerprints.

6.3 Perspectives on Browser Fingerprinting for
Authentication

In Chapter 4, we made the link between biometric authentication factors and
browser fingerprinting. We could extend this link by adapting the works on
privacy-preserving or revocable biometric authentication [182] to the authenti-
cation mechanisms that leverage browser fingerprinting. The browser fingerprint-
ing domain also lack publicly accessible datasets that researchers could work on.
This stems from the sensitive and private nature of browser fingerprints. The
anonymization of sensitive data to protect the privacy of experimenters and provide
enough information for researchers to study is already being studied [206, 130, 138,
131, 54]. Techniques coming from this field of research could be used to anonymize
browser fingerprint datasets, like the generation of synthetic datasets [229]. This
is challenging due to the several dimensions of browser fingerprints that can be
altered or lost in the anonymization: the fingerprint distribution in the browser
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population, the correlation between the attributes2, together with the evolution
and the co-evolution of the attributes through time.

2The correlation between the attributes lead to the privacy paradox [56, 162, 11] which renders
a browser more distinctive when trying to fake the value of some attributes. For example, lying
about the underlying operating system can result in a unique web environment (e.g., a Safari
mobile browser running on Windows 10). Any anonymization technique should care about this
effect which can lower the level of privacy (e.g., attributes can be inferred by others) or generate
unrealistic data (e.g., a fingerprint of a highly unlikely web environment).



Appendix A

Browser Fingerprinting
Attributes

In this appendix, we describe the 216 source attributes that are included in our
probe, and the 46 extracted attributes that are derived from source attributes.
We group these attributes into families, and provide references to related studies.
Their name is sufficient to retrieve the corresponding browser property, and when
needed, we provide a brief description of the method for reproducibility. We focus
here on the description of the method, and provide a complete list of the attributes
and their property in Appendix I.

A.1 JavaScript Properties

Most attributes are properties that are accessed through common JavaScript ob-
jects. The navigator object provides information on the browser (e.g., version),
its customization (e.g., language), the underlying system (e.g., operating system),
and supported functionalities (e.g., list of available codecs). The screen object
provides information on the screen size, the orientation, the pixel density, and the
available space for the web page. The window object provides information on the
window containing the web page, like its size or the support of storage mecha-
nisms. The document object gives access to the web page content, but also to a
few properties. Such properties are already included in previous studies [56, 127,
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81] or open source projects [67], but are usually limited to less than 20 properties.

A.2 HTTP Headers

We include up to 16 attributes that are collected from HTTP headers, most of
which are already used in previous studies [56, 127, 81]. Among these 16 at-
tributes, 15 consist of the value of a specific field of the HTTP headers. Among
the remaining headers, we ignore a set of headers, and store the name and the
value of the others into a dedicated attribute. Table A.1 presents the list of the
specific HTTP headers that are stored into a dedicated attribute, and the headers
that are ignored, for each experiment.

The base set of the specifically collected HTTP headers are the headers that
are commonly present in an HTTP request (e.g., the User-Agent). They also
include non-standard headers that are typically prefixed by the X character [213].
The base set of the ignored HTTP headers are the headers that we deem indistinct
between browsers when considering the same fingerprinting probe (e.g., the Host
header is about the server). These base sets are used for the general audience, the
intranet, and the university experiment. After analyzing the fingerprints of the
general audience dataset, we modified the fingerprinting probe to collect and ignore
different sets of headers. These new sets of headers are used for the enrolled ex-
periment only, which was the only experiment launched after these modifications
of the probe. The modifications include the placement of the collected headers
that lack distinctiveness (e.g., X-ATT-DeviceId) into the ignored headers. This
lack of distinctiveness mainly comes from these headers being almost never en-
countered. We also noticed that non-standard headers were added by the proxy
of the collection server (e.g., X-Forwarded-Server), and add them to the ignored
headers. Finally, we ignore the headers that concern the navigation of the user
(e.g., Origin, Cookie, or the Referer that contains the website that lead to the
one that is visited), which we consider as falling outside the recognition of the
environment of the browser.
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Table A.1: The HTTP headers that are stored into a dedicated attribute, and the
headers that are ignored, for each experiment.

Gen. Aud., Intranet, Univ. Enrolled

Collected

Accept
Accept-Charset

Accept-Encoding
Accept-Language

Cache-Control
Connection

TE
Upgrade-Insecure-Requests

User-Agent
Via

X-ATT-DeviceId
X-Network-Info

X-Requested-With
X-UIDH

X-WAP-Profile

Accept
Accept-Charset

Accept-Encoding
Accept-Language

Cache-Control
User-Agent

Via
X-Network-Info

X-Requested-With
X-WAP-Profile

Ignored

charset
Content-Length
Content-Type

Host

charset
Connection

Content-Length
Content-Type

Cookie
Host

Origin
Referer

TE
Upgrade-Insecure-Requests

X-Artifactory-Override-Base-Url
X-ATT-DeviceId
X-Forwarded-For

X-Forwarded-Host
X-Forwarded-Port
X-Forwarded-Proto
X-Forwarded-Server

X-Real-IP
X-UIDH
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A.3 Enumeration or Presence of Browser Com-
ponents

One attribute family that provides a high diversity is the browser components that
are installed in the browser. The presence of some components can directly be
accessed (e.g., the installed plugins1), whereas the presence of others have to be
inferred (e.g., the installed fonts). The list of components that are given in this
section have the components separated by a comma.

A.3.1 List Attributes

Previous studies already identified the list of plugins and the list of fonts as highly
distinctive [56, 127], hence we include these two attributes in our fingerprinting
script. We enumerate the list of plugins, and check the size of text boxes [65] to
infer the presence of 66 fonts. Additionally, we get the list of mime types (i.e., the
supported data format), and the list of the speech synthesis voices.

A.3.2 Support of Codecs

We infer the support of video codecs by creating a video element and checking
if it can play a given type using the canPlayType() function. The support of
audio codecs is done using the same method, but for an audio element. We infer
the support of streaming codecs by calling the isTypeSupported() function of the
window.[WebKit, moz, ms, ∅]MediaSource object, and checking the presence
of both the audio and the video codecs. We apply the same method to infer the
support of recording codecs, but on the MediaRecorder object instead.

A.3.3 List of Video Codecs

The 15 video codecs for which we infer the presence are the following: video/-
mp2t; codecs="avc1.42E01E,mp4a.40.2", video/mp4; codecs="avc1.42c00d", vi-
deo/mp4; codecs="avc1.4D401E", video/mp4; codecs="mp4v.20.8", video/mp4;
codecs="avc1.42E01E", video/mp4; codecs="avc1.42E01E, mp4a.40.2", video/mp4;

1At the exception of the Firefox browsers that now only display the Flash plugin.
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codecs="hvc1.1.L0.0", video/mp4; codecs="hev1.1.L0.0", video/ogg; codecs="the-
ora", video/ogg; codecs="vorbis", video/webm; codecs="vp8", video/webm; co-
decs="vp9", application/dash+xml, application/vnd.apple.mpegURL, audio/mpeg-
url.

A.3.4 List of Audio Codecs

The 9 audio codecs for which we infer the presence are the following: audio/-
wav; codecs="1", audio/mpeg, audio/mp4; codecs="mp4a.40.2", audio/mp4; co-
decs="ac-3", audio/mp4; codecs="ec-3", audio/ogg; codecs="vorbis", audio/ogg;
codecs="opus", audio/webm; codecs="vorbis", audio/webm; codecs="opus".

A.3.5 List of Fonts

The 66 fonts for which we infer the presence are the following: Andale Mono;
AppleGothic; Arial; Arial Black; Arial Hebrew; Arial MT; Arial Narrow; Arial
Rounded MT Bold; Arial Unicode MS; Bitstream Vera Sans Mono; Book Antiqua;
Bookman Old Style; Calibri; Cambria; Cambria Math; Century; Century Gothic;
Century Schoolbook; Comic Sans; Comic Sans MS; Consolas; Courier; Courier
New; Garamond; Geneva; Georgia; Helvetica; Helvetica Neue; Impact; Lucida
Bright; Lucida Calligraphy; Lucida Console; Lucida Fax; LUCIDA GRANDE;
Lucida Handwriting; Lucida Sans; Lucida Sans Typewriter; Lucida Sans Unicode;
Microsoft Sans Serif; Monaco; Monotype Corsiva; MS Gothic; MS Outlook; MS
PGothic; MS Reference Sans Serif; MS Sans Serif; MS Serif; MYRIAD; MYRIAD
PRO; Palatino; Palatino Linotype; Segoe Print; Segoe Script; Segoe UI; Segoe
UI Light; Segoe UI Semibold; Segoe UI Symbol; Tahoma; Times; Times New
Roman; Times New Roman PS; Trebuchet MS; Verdana; Wingdings; Wingdings
2; Wingdings 3.

A.4 Extension Detection

The list of the installed browser extensions cannot be directly accessed, but their
presence can be inferred by the changes brought to the web page by extensions [205],
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Table A.2: Extensions detected by the changes they bring to the page content.
Extension Page content change
Privowny W.privownyAddedListener[EXT] is supported
UBlock D.head has display: none !important; and :root as style
Pinterest D.body.data-pinterest-extension-installed is supported
Grammarly D.body.data-gr-c-s-loaded is supported
Adguard W.AG_onLoad is supported
Evernote Element with style-1-cropbar-clipper as id exists
TOTL W.ytCinema is supported
IE Tab W.ietab.getVersion() is supported

or by the presence of web accessible resources [199, 106]. We check the changes
that are brought to the web page by the 8 extensions that are listed in Table A.2,
and the availability of the web accessible resources of the 8 extensions that are
listed in Table A.3.

A.4.1 Detection of Ad Blockers

We also infer the presence of an advertisement blocker by creating an invisible
dummy advertisement, and by checking if it is removed or not. The dummy ad-
vertisement is a created division which has the id property set to "ad_ads_pub_-
track", the class set to "ads .html?ad= /?view=ad text-ad textAd text_ad
text_ads text-ads", and the style set to "width: 1px !important; height:
1px !important; position: absolute !important; left: -1000px !imp-
ortant; top: -1000px !important;".

A.5 Size and Color of Web Page Elements

A.5.1 Bounding Boxes

The attributes related to the bounding boxes concern a div element to which we
append a span element. The div element has his style property set to the val-
ues displayed in Table A.3. The span element contains a specifically crafted text
that is provided below. The size of the bounding boxes (i.e., the width and the
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Table A.3: Extensions detected by the availability of their web accessible resource.
C stands for chrome, and R stands for resource.

Extension Web accessible resource
Firebug C://firebug/skin/firebugBig.png
YahooToolbar R://635abd67-4fe9-1b23-4f01-e679fa7484c1/icon.png
EasyScreenshot C://easyscreenshot/skin/icon16.png
Ghostery R://firefox-at-ghostery-dot-com/data/

images/ghosty-16px.png
Kaspersky R://urla-at-kaspersky-dot-com/data/icon-16.png
VideoDownloadHelper R://b9db16a4-6edc-47ec-a1f4-b86292ed211d/data/

images/icon-18.png
GTranslate R://aff87fa2-a58e-4edd-b852-0a20203c1e17/icon.png
Privowny C://privowny/content/icons/

privowny_extension_logo.png

height of the rectangles of the div and the span elements) are then collected using
the getClientRects function. The text of the span element is composed of Uni-
code characters (e.g., emojis, letters of a non-latin alphabet) that starts with \u
and a string. This text is set to "\ua9c0 \u2603 \u20B9 \u2604 \u269b \u2624
\u23B7 \u262c \u2651 \u269d \u0601 \u0603 \uaac1 \u060e \u06dd \ud8-
3c \udfe1 mmmmmmmmmmlil \u102a".

A.5.2 Width and Position of a Created div Element

The attribute named width and position of a created div is the properties of width
and transform-origin of a newly created div element, obtained by calling the
getComputedStyle function. This created div element is afterward used to infer
the color of layout components, as described below.

A.5.3 Colors of Layout Components

The attribute colors of layout components is obtained by applying the color of
several layout components (e.g., the scroll bar) to the created div element, and by
getting the color back from the property W.getComputedStyle(new_div).color.
Each of the tested component gets its color extracted this way, and aggregated
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Table A.4: Properties of the div element measured for the attributes related to
the bounding boxes.

Property Value
position absolute
left -9999px
textAlign center
objectFit scale-down
font 68px / 83px Helvetica, Arial, Sans-serif
zoom 66%
MozTransform scale(0.66)
visibility hidden

in this attribute. The color of each element is afterward extracted as a single
attribute. They are displayed at the end of the Table I.1.

A.6 WebGL Properties

Our script collects several properties from the WebGL API. To obtain them, we
create a canvas element and get its WebGL context by calling getContext() using
any of the following parameters: webgl, webgl2, moz-webgl, experimental-webgl,
or experimental-webgl2.

The property MAX_TEXTURE_MAX_ANISOTROPY_EXT is obtained from one of the
properties [WEBKIT_EXT_, MOZ_EXT_, EXT_]texture_filter_anisotropic. To
get the attributes prefixed by UNMASKED, we first get an identifier named id
from the unmasked property of the getExtension(’WEBGL_debug_renderer_in-
fo’) object, and then get the actual value by calling getParameter(id). Finally,
to get the COMPRESSED_TEXTURE_FORMATS property, we have to load the [WEBKIT-
_]WEBGL_compressed_texture_s3tc extension first.

A.7 WebRTC Fingerprinting

We include a WebRTC fingerprinting method similar to the method proposed by
Takasu et al. [207]. The method consists into getting information about the Session
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Figure A.1: HTML5 canvas inspired by
the AmIUnique [127] study in PNG for-
mat.

Figure A.2: HTML5 canvas similar to
the Morellian [124] study in PNG for-
mat.

Description Protocol of a generated WebRTC connection. Due to the variability
of this information, we create two different connections and hold only the values
that are identical between these two. As this method leaks internal IP addresses,
we hash them directly on the client.

A.8 HTML5 Canvases

We dedicate the Section 4.3.7 to a focus on dynamic attributes, and provide here
examples of the two HTML5 canvases that are inspired by previous studies. Our
script includes a canvas inspired by the AmIUnique study [127] in both PNG
and JPEG formats (Figure A.1 displays an example of the PNG version), and
an enhanced version of it similar to the Morellian study [124] in PNG format
(Figure A.2 displays an example).

A.9 Audio Fingerprinting

We dedicate the Section 4.3.7 to a focus on dynamic attributes, and provide here
the concrete implementation and the scheme of the Audio Nodes network used in
the audio fingerprinting methods. The audio fingerprinting methods are inspired
by the methods described by Englehardt et al. [57], and are designed to form com-
plex networks of AudioNode objects to have more chances to induce fingerprintable
behaviors.
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Figure A.3: Architecture of the network of AudioNode objects for the simple audio
fingerprinting method.

A.9.1 Simple Process

The simple process consists of three OscillatorNode objects that generate a pe-
riodic wave, connected to a single DynamicsCompressorNode, and finishing to a
AudioDestinationNode. The architecture of the network of AudioNode objects
for the simple process is depicted in Figure A.3, together with the parameters set
for each node. The OscillatorNode objects are started one after the other, and
overlap at some time. The sequence of events is the following: (1) the triangle
oscillator node is started at t = 0 seconds, (2) the square oscillator is started at
t = 0.10 seconds, (3) the triangle oscillator is stopped t = 0.20 seconds, together
with the start of the sine oscillator node, (4) the square oscillator is stopped at
t = 0.25 seconds. When the rendering of the audio context is done, the complete
event is triggered, and gives access to a renderedBuffer that contains the au-
dio data encoded as a buffer of 32 bits floating-point numbers. The audio fp
simple (AFS) attribute is an integer computed as the sum of the values of the
renderedBuffer, that are first casted to absolute integers.
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A.9.2 Advanced Process

The advanced process consists of four OscillatorNode objects, two BiquadFilter-
Node objects, two PannerNode objects, one DynamicsCompressorNode object, one
AnalyserNode object, and one AudioDestinationNode object. The architecture of
the networks of AudioNode objects for the simple process is depicted in Figure A.4,
together with the parameters set for each node. The OscillatorNode objects are
started one after the other, and overlap at some time. The sequence of events is
the following: (1) the triangle oscillator node and the sine oscillator node with a
frequency of 280 are started at t = 0 seconds, (2) the square oscillator is started at
t = 0.05 seconds, (3) the triangle oscillator is stopped t = 0.10 seconds, (4) the sine
oscillator with a frequency of 170 is stopped at t = 0.15 seconds, (5) the square
oscillator is stopped at t = 0.20 seconds. When the rendering of the audio context
is done, the complete event is triggered, and gives access to a renderedBuffer
that contains the audio data encoded as a buffer of 32 bits floating-point numbers.
The audio fp advanced (AFA) attribute is an integer computed as the sum of the
values of the renderedBuffer, that are first casted to absolute integers. The audio
fp advanced frequency data (AFA-FD) attribute is the sum of the frequency data
obtained through the getFloatFrequencyData function of the Analyser Node.
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Figure A.4: Architecture of the network of AudioNode objects for the simple audio
fingerprinting method.



Appendix B

Updates of the Fingerprinting
Probe

As web technologies evolve, new attributes become accessible (e.g., these brought
by new functionalities) and others become deprecated (e.g., the Battery Status
API removed from Firefox [21]). The fingerprinting probe was updated through
time to include new accessible attributes, and to remove the attributes that threw
a lot of errors, that lack distinctiveness, or that are highly correlated to others.
In this appendix, we focus on the JavaScript attributes, and refer the reader to
Appendix A for the changes applied to the collected HTTP headers. As the finger-
printing probe was updated following the analysis of the general audience dataset,
the provided numbers are related to it (e.g., the number of browsers).

B.1 For the Intranet Experiment

The fingerprinting probe was modified between the general audience and the in-
tranet experiment to exclude 6 attributes, include 8 new attributes, and fix an
instability factor in our custom canvas. The base fingerprinting probe is the probe
used during the general audience experiment, that embark 216 attributes divided
into 200 JavaScript properties and 16 attributes collected from the HTTP headers.
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B.1.1 Attributes Removed

We remove the WebRTC fingerprinting method [207, 66] due to the many errors
that were encountered. When collecting this attribute, 41.90% of the browsers
did not support one of the functions used, 38.30% of them had a variable used
that was undefined, and 10.44% of them threw an exception. We also remove the
three audio fingerprinting attributes [179] due to errors. When collecting these
attributes, 27.95% of the browsers did not support one of the functions used, and
more than 14.16% of them had a variable used that was undefined. These errors
can be explained by the high proportion of Internet Explorer browsers into the
general audience dataset, and these two APIs being unsupported by these browsers
at the time of the experiment. Indeed, Internet Explorer never supported the
WebAudio API1, nor the WebRTC API [37], and the Microsoft browser that was
designed to replace Internet Explorer, namely Microsoft Edge, only started to fully
support the WebRTC API on January 15, 2020. Although this explains the high
amount of errors, these attributes still need to be reworked as they are among
the less stable and the most time-consuming attributes. Indeed, the WebRTC
fingerprinting method has a sameness rate of 0.765 for an average collection time
of 1.56 seconds, and the audio fingerprinting methods have a sameness rate lower
than 0.958 for an average collection time higher than 2.38 seconds.

B.1.2 Attributes Added

We add baseLatency2 to the properties collected from the initialized AudioContext.
It provides the latency between the reception of audio data by the AudioDesti-
nationNode and its playing by the audio system of the device, in seconds. We add
deviceMemory3 to the properties collected from the navigator object. It provides
the approximation of the amount of ram of a device in GiB, and is limited to a
set values that were reduced for privacy reasons4. We add the collection of the
media input and output devices (e.g., microphone, camera, speakers) through the

1https://caniuse.com/#feat=audio-api
2https://developer.mozilla.org/en-US/docs/Web/API/AudioContext/baseLatency
3https://developer.mozilla.org/en-US/docs/Web/API/Navigator/deviceMemory
4https://github.com/w3c/device-memory/commit/6317a7379a43830460178744188dbd1451816ccd

https://caniuse.com/#feat=audio-api
https://developer.mozilla.org/en-US/docs/Web/API/AudioContext/baseLatency
https://developer.mozilla.org/en-US/docs/Web/API/Navigator/deviceMemory
https://github.com/w3c/device-memory/commit/6317a7379a43830460178744188dbd1451816ccd
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enumerateDevices5 function of the navigator.mediaDevices object. We add
the collection of the FaceDetector and the BarcodeDetector properties from the
window object. This allows us to detect the support of these interfaces that belong
to the Shape Detection API6, which provide shape detection functionalities (e.g.,
barcode, face). Finally, we add downlinkMax, effectiveType, and rtt to the
properties extracted from the navigator.connection variable. These attributes
concern the network connection currently in use.

B.1.3 Instability Fix of our Custom HTML5 canvas

During the intranet experiment, we encountered a high instability in our custom
canvas, notably on Safari browsers. We identified the instruction that generated
this instability. It is the call to the transform7 instruction that downscales and
tilts the whole canvas image. As a result, we remove this instruction from the
instructions that generate our custom canvas, which are not anymore downscaled
nor tilted.

B.2 For the Enrolled Experiment

The fingerprinting probe was modified between the launches of the intranet and
of the enrolled experiment to exclude 2 attributes, include 6 new attributes, and
to fix an instability of the HTML5 canvases generated on Safari browsers.

B.2.1 Attributes Removed

As the enrolled experiment consisted into experimenters testing an authentication
platform that relies on passwords and browser fingerprinting, we sought to reduce
the collection time of the fingerprints. Some time-consuming and bogus attributes
were already removed for the intranet experiment. Moreover, we have several
canvases whereas they typically concern the same browser components (e.g., the

5https://developer.mozilla.org/en-US/docs/Web/API/MediaDevices/
enumerateDevices

6https://wicg.github.io/shape-detection-api
7https://html.spec.whatwg.org/multipage/canvas.html#dom-context-2d-transform

https://developer.mozilla.org/en-US/docs/Web/API/MediaDevices/enumerateDevices
https://developer.mozilla.org/en-US/docs/Web/API/MediaDevices/enumerateDevices
https://wicg.github.io/shape-detection-api
https://html.spec.whatwg.org/multipage/canvas.html#dom-context-2d-transform
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graphical card, the canvas API) and are correlated. As a result, we only held our
custom HTML5 canvas and removed the two canvases inspired by previous studies,
namely AmIUnique [127] and Morellian [124]. This choice was motivated by our
custom canvas being the most distinctive among the three remaining HTML5
canvases, and which knowledge allows to the most efficiently infer the value of the
others. For numbers about these two aspects, we refer the reader to Section 4.3.7.

B.2.2 Attributes Added

We add an attribute that infers the keyboard layout by getting the actual character
on the keyboard in use given what is at this place on the common US keyboard.
This is done by getting the KeyboardLayoutMap8 from the navigator.keyboard
object, and retrieving the actual keys that are at the position of the letters qwerty
on a US keyboard. Although this method is not supported by the majority of
the browsers, it is supported by Chrome9 which is the most common browser both
worldwide [50] and in France [49]. We also add onLine10 to the properties collected
from the navigator object, which informs whether the browser is connected to a
network or not. Finally, we add four attributes related to the state of the battery of
the device. They are collected from a BatteryManager interface11 that is obtained
from the navigator.getBattery() promise. They are the properties charging,
chargingTime, dischargingTime, and level.

B.2.3 Instability Fix of our Custom HTML5 canvas

During the enrolled experiment, we encountered another instability of our custom
canvas, notably on Safari browsers. We identified the instruction that generated
this instability. It is the call to the shadowBlur and to the shadowColor instruc-
tions12 that generates the red background gradient. As a result, we remove this
instruction from the instructions that generate our custom canvas, which do not
anymore have this background gradient.

8https://developer.mozilla.org/en-US/docs/Web/API/KeyboardLayoutMap
9https://caniuse.com/#search=getLayoutMap

10https://html.spec.whatwg.org/#navigator.online
11https://w3c.github.io/battery
12https://html.spec.whatwg.org/multipage/canvas.html#shadows

https://developer.mozilla.org/en-US/docs/Web/API/KeyboardLayoutMap
https://caniuse.com/#search=getLayoutMap
https://html.spec.whatwg.org/#navigator.online
https://w3c.github.io/battery
https://html.spec.whatwg.org/multipage/canvas.html#shadows
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B.3 For the University Experiment

Before launching the university experiment, we sought to reduce the amount of
collected attributes to respect data minimization. To do so without losing dis-
tinctiveness, we remove 22 attributes that can be completely inferred by another
one. Examples are the numberOfInputs and the numberOfOutputs of an initial-
ized AudioAnalyser that always share the same value, and the product property
of the navigator object that is completely inferred when knowing the value of the
vendor property.





Appendix C

Browser Classification Keywords

In this appendix, we provide the keywords used to infer the browser family, the
operating system, and whether the browser is a robot (i.e., whether it is an automa-
tized tool and not a genuine visitor). We match these keywords on the userAgent
JavaScript property, that is first set to lower case. We manually compiled the
keywords, by searching for meaningful keywords inside the collected userAgent
values.

C.1 Robot Keywords

We check that the userAgent does not contain the keywords, nor is set to the
exact values, that are listed in Table C.1.

C.2 Device Type

To infer the device type of a browser, we match keywords sequentially with the
userAgent of the browser. The set of keywords can overlap between two device
types (e.g., the userAgent of touchpad browsers often contain keywords of mobile
browsers, like mobile for example). Due to this overlapping problem, we verify
that the userAgent of the browser contains the keyword of the device type, and
does not contain the keyword of some other device types. Table C.2 lists the
keywords that we leverage to infer each device type.

221



222 APPENDIX C. BROWSER CLASSIFICATION KEYWORDS

Table C.1: The keywords and the exact userAgent values that we consider as
indicating a robot browser. The long values are cut at a blank space and displayed
with indentations.

Blacklisted keyword Blacklisted value
googlebot mozilla/4.0 (compatible; msie 7.0; windows nt 6.1;
evaliant trident/7.0; slcc2; .net clr 2.0.50727;
bot.html .net clr 3.5.30729; .net clr 3.0.30729;
voilabot media center pc 6.0; .net4.0c; .net4.0e)
google web preview mozilla/5.0 (x11; linux x86_64) applewebkit/537.36
spider (khtml, like gecko) chrome/52.0.2743.116
bingpreview safari/537.36

mozilla/5.0 (windows nt 6.3; rv:36.0) gecko/20100101
firefox/36.0

mozilla/5.0 (macintosh; intel mac os x 10.10; rv:38.0)
gecko/20100101 firefox/38.0

The mobile devices are smartphones, and do not include touchpads. We check
that their userAgent contain a mobile keyword, and no touchpad nor miscell-
aneous keywords. To infer that a device is a touchpad, we check that their
userAgent contain a touchpad keyword, and no miscellaneous keywords. The
miscellaneous devices are game consoles and smart TVs. We simply check that
their userAgent contain a miscellaneous keyword. Finally, to infer that a de-
vice is a desktop computer, we check that their userAgent does not contain any
of the mobile, touchpad, or miscellaneous keywords. In the table, we omit a
miscellaneous keyword due to its size, which is "opera/9.80 (linux i686; u;
fr) presto/2.10.287 version/12.00 ; sc/ihd92 stb".

C.3 Browser and Operating System Families

Table C.3 lists the keywords that we leverage to infer the family of a browser, and
Table C.4 lists the keywords that we leverage to infer the operating system family
of a browser. As a keyword can be in the userAgent of two different families, we
check the keywords sequentially in the order presented in the tables, and classify
a device in the first family having a keyword that matches.
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Table C.2: The keywords that we consider as indicating each device type.
Mobile Touchpad Miscellaneous
phone ipad wii
mobile tablet playstation
android terra pad smart-tv
iphone tab smarttv
blackberry googletv
wpdesktop opera tv

appletv
nintendo
xbox

Table C.3: The keywords that we consider as indicating each browser family.
Browser Family Keywords
Firefox Firefox
Edge Edge
Internet Explorer MSIE, Trident/7.0
Samsung Browser SamsungBrowser
Chrome Chrome
Safari Safari

Table C.4: The keywords that we consider as indicating each operating system
family.

OS Family Keywords
Windows Phone Windows Phone
Android Android
iOS iPad, iPhone (but not Mac OS X)
Mac OS X Mac OS X (but not iPad, nor iPhone)
Windows 10 Windows NT 10.0
Windows 8.1 Windows NT 6.3
Windows 7 Windows NT 6.1
Ubuntu Ubuntu
Other Windows Windows NT, Windows 7, Windows 98,

Windows 95, Windows CE, Windows Mobile
Other Linux Linux, CrOS, NetBSD, FreeBSD, OpenBSD,

Fedora, Mint





Appendix D

Advanced Verification Mechanism

Section 4.1.4 describes a simple verification mechanism that checks that the num-
ber of identical attributes between the presented and the stored fingerprint is below
a threshold. In this appendix, we present the results obtained using an advanced
verification mechanism that incorporates matching functions that authorize lim-
ited changes between the attribute values of the presented and of the stored finger-
print. The methodology to obtain the datasets is the same as the one described in
Section 4.2.5. The same-browser comparisons are the same for the two verification
mechanisms, but the different-browsers comparisons are re-sampled randomly.

Figure D.1 displays the distribution of the matching attributes between the
same-browser comparisons and the different-browsers comparisons for the four
datasets. Figure D.2 displays the false match rate (FMR), which is the proportion
of the same-browser comparisons that are classified as different-browsers compar-
isons, and the false non-match rate (FNMR), which is the inverse. The displayed
results are the average for each number of matching attributes among the month
samples.

D.1 Attributes Matching

The advanced verification mechanism leverages matching functions for the com-
parison of the attributes. It counts the attributes that match between the two
compared fingerprints, given the matching functions, and considers the evolution
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Figure D.1: The number of matching attributes between the same-browser com-
parisons and the different-browsers comparisons for the four datasets. The figure
on the left starts from the lowest observed value, and the figure on the right starts
from the value for which 0.5% of the same-browser comparisons are below (20%
for the university dataset).
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Figure D.2: False match rate (FMR) and false non-match rate (FNMR) given the
required number of matching attributes, averaged among the month samples for
the four datasets.
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legitimate if this number is above a threshold. More formally, we seek to compare
the stored fingerprint f to the presented fingerprint g. To do so, we compare
the values f [a] and g[a] of the attribute a for the fingerprints f and g, using the
matching function ≈a. The matching function ≈a of the attribute a verifies that
the distance between f [a] and g[a] is below a threshold θa. Finally, we deem that
g is a legitimate evolution of f , if the total number of matching attributes between
f and g is above a threshold Θ.

Similarly to previous studies [56, 105, 214], we consider a distance measure that
depends on the type of the attribute. The minimum edit distance [102] is used for
the textual attributes, the Jaccard distance [225] is used for the set attributes, the
absolute difference is used for the numerical attributes, and the reverse of the Kro-
necker delta (i.e., 1− δ(x, y)) is used for the categorical attributes. The distance
thresholds of each attribute is obtained by training a Support Vector Machines [87]
model on the two classes of each month sample, and extract the threshold from the
resulting hyperplane. At the exception of the dynamic attributes that are required
to be identical (i.e., the distance threshold is null), as they would contribute to a
challenge-response mechanism [124, 184].

D.2 Comparison to the Simple Verification Mech-
anism

The matching functions of the advanced verification mechanism leads to more
matching attributes than identical attributes between two fingerprints, on aver-
age and for our four datasets. However, the increase is more significant for the
different-browsers comparisons than the same-browser comparisons. The different-
browsers comparisons have an average number of matching attributes that is be-
tween 105.44% and 107.75% higher than the average number of identical attributes.
The same-browser comparisons show a lower increase, which is comprised between
100.27% and 102.24%. As both sets of comparisons have a higher number of match-
ing attributes, the separation of the two sets is not facilitated by the matching
functions. Compared to the simple verification mechanism, the advanced mech-
anism shows an equal error rate that is increased by 0.05 points for the general
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audience dataset, by 0.51 points for the intranet dataset, and by 2.83 points for
the enrolled dataset. Only the university dataset shows an equal error rate that
is decreased by 0.55 points when considering the advanced mechanism. This can
be explained by the improvement in the recognition of the fingerprints coming
from the same browser that is brought by the matching functions. Indeed, the
fingerprints of the university dataset have a lower stability compared to the other
datasets.

D.3 Accuracy for the General Audience Dataset

Each of the two sets of comparisons for the general audience dataset contains
3, 467, 289 comparisons over the six months of the experiment. Table D.1 com-
pares the results of the simple verification mechanism that leverages the identical
attributes, and the advanced verification mechanism that leverages the matching
attributes, for the general audience dataset. Considering the matching functions
only increases the average number of matching attributes for the same-browser
comparisons by 0.81 attributes, whereas the increase is greater for the different-
browsers comparisons at 7.18 attributes. The equal error rate is slightly higher
for the advanced verification mechanism than for the simple one, respectively at
0.66% against 0.61%.

D.4 Accuracy for the Intranet Dataset

The set of the same-browser comparisons for the intranet dataset is composed of
9, 667 comparisons, and the set of the different-browsers comparisons contains
9, 264 comparisons. Table D.2 compares the results of the simple verification
mechanism that leverages the identical attributes, and the advanced verification
mechanism that leverages the matching attributes, for the intranet dataset. Con-
sidering the matching functions only increases the average number of matching
attributes for the same-browser comparisons by 0.67 attributes, whereas the in-
crease is greater for the different-browsers comparisons at 12 attributes. The equal
error rate is slightly higher for the advanced verification mechanism than for the



230 APPENDIX D. ADVANCED VERIFICATION MECHANISM

Table D.1: Comparison between the simple verification mechanism that uses iden-
tical attributes and the advanced verification mechanism that uses matching at-
tributes for the general audience dataset.

Result Simple Advanced
Number of attributes 253 253

Same-browser: identical/matching attributes [72; 252] [81; 253]
Same-browser: avg. identical/matching attributes 248.64 249.45
Same-browser: standard deviation 3.91 3.69

Different-browsers: identical/matching attributes [34; 253] [51; 253]
Different-browsers: avg. identical/matching attributes 127.41 134.59
Different-browsers: standard deviation 44.06 43.25

Equal error rate 0.61% 0.66%
Threshold of identical/matching attributes 232 234

simple one, respectively at 2.70% against 2.19%.

D.5 Accuracy for the University Dataset

The set of the same-browser comparisons for the university dataset is composed of
263 comparisons, and the set of the different-browsers comparisons contains 261
comparisons. Table D.3 compares the results of the simple verification mechanism
that leverages the identical attributes, and the advanced verification mechanism
that leverages the matching attributes, for the enrolled dataset. Considering the
matching functions only increases the average number of matching attributes for
the same-browser comparisons by 4.90 attributes, whereas the increase is greater
for the different-browsers comparisons at 13.14 attributes. The equal error rate is
higher for the advanced verification mechanism than for the simple one, respec-
tively at 28.87% against 29.42%.
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Table D.2: Comparison between the simple verification mechanism that uses iden-
tical attributes and the advanced verification mechanism that uses matching at-
tributes for the intranet dataset.
Result Simple Advanced
Number of attributes 255 255

Same-browser: identical/matching attributes [110; 254] [166; 255]
Same-browser: avg. identical/matching attributes 248.87 249.54
Same-browser: standard deviation 6.23 5.62

Different-browsers: identical/matching attributes [46; 254] [106; 255]
Different-browsers: avg. identical/matching attributes 154.87 166.88
Different-browsers: standard deviation 37.35 34.73

Equal error rate 2.19% 2.70%
Threshold of identical/matching attributes 233 237

Table D.3: Comparison between the simple verification mechanism that uses iden-
tical attributes and the advanced verification mechanism that uses matching at-
tributes for the university dataset.
Result Simple Advanced
Number of attributes 238 238

Same-browser: identical/matching attributes [157; 237] [178; 238]
Same-browser: avg. identical/matching attributes 218.46 223.36
Same-browser: standard deviation 28.63 21.55

Different-browsers: identical/matching attributes [139; 238] [155; 238]
Different-browsers: avg. identical/matching attributes 188.05 201.19
Different-browsers: standard deviation 32.43 25.67

Equal error rate 29.42% 28.87%
Threshold of identical/matching attributes 217 228
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Table D.4: Comparison between the simple verification mechanism that uses iden-
tical attributes and the advanced verification mechanism that uses matching at-
tributes for the enrolled dataset.
Result Simple Advanced
Number of attributes 254 254

Same-browser: identical/matching attributes [214; 253] [223; 254]
Same-browser: avg. identical/matching attributes 248.18 249.14
Same-browser: standard deviation 6.67 6.14

Different-browsers: identical/matching attributes [71; 254] [110; 249]
Different-browsers: avg. identical/matching attributes 160.23 168.94
Different-browsers: standard deviation 38.47 38.52

Equal error rate 4.30% 7.13%
Threshold of identical/matching attributes 232 238

D.6 Accuracy for the Enrolled Dataset

Each of the two sets of comparisons for the enrolled dataset contains 755 compar-
isons over the first six months of the experiment1. Table D.4 compares the results
of the simple verification mechanism that leverages the identical attributes, and
the advanced verification mechanism that leverages the matching attributes, for
the enrolled dataset. Considering the matching functions only increases the av-
erage number of matching attributes for the same-browser comparisons by 0.96
attributes, whereas the increase is greater for the different-browsers comparisons
at 8.71 attributes. The equal error rate is higher for the advanced verification
mechanism than for the simple one, respectively at 7.13% against 4.30%.

1The enrolled experiment was processed over seven months, and the samples have a size of
two months. Due to this sampling, the seventh month is not considered.



Appendix E

Acceptability Survey

You can find below the questions of the survey published by Le Lab on its exper-
imentation platform, and the brief description of the authentication mechanism
that integrates browser fingerprints as an authentication factor.

E.1 Questions and Possible Answers

As the users of the experimentation platform are French people, the questions
were asked in French, but we provide here an English translation. The questions
marked with an asterisk (*) are open-ended questions for which the participant was
provided a text field for her to write her answer. Questions 1 to 6 concern general
information about the participant. Questions 7 to 11 concern the use of and the
opinion of the participant about the current authentication methods. Questions 12
to 14 concern the opinion of the participant about the description of the authenti-
cation mechanism to test that leverages browser fingerprints. Questions 15 to 16
concern the opinion of the participant about the actual test of the authentication
mechanism.

1. Genre

• Male

• Female

2. Age

233
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• Less than 25 years old

• 25-34 years old

• 35-44 years old

• 45-54 years old

• 55 years old and more

3. Household composition

• 1 person

• 2 persons

• 3 persons

• 4 persons

• more than 5 persons

4. Socio-professional categories

• Higher managerial and professional occupations

• Employees

• Retirees

• Intermediate professions

• Craftsmen, tradesmen, and entrepreneurs

• Other categories

5. When it comes to new technologies, do you consider yourself more of ...?

• An expert

• A confirmed user

• A normal user

6. Which of the following equipment do you personally use?

• Smartphone
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• Computer

• Touchpad

• Home phone

• Mobile phone (other than smartphones)

7. Which authentication method(s) do you know? And which one(s) have you
already used?

• Login/password

• Fingerprint

• SMS code

• Facial recognition

• Mobile Connect

• NFC contactless card

• Security key (like Yubikey)

• Iris recognition

• Other(s)

8. Overall, are you satisfied with the authentication methods currently available
to you for accessing online services or applications?

• A score on a scale from 0 to 10, with 0 being the greatest dissatisfaction
and 10 the greatest satisfaction

9. For what reason(s) are you not completely satisfied?∗

10. Have you ever experienced difficulties with an authentication solution?∗

11. What do you do to memorize your password(s)?

• I use a password manager software (e.g., Keepass, 1password, etc.)

• I rely on my web browser to store my passwords

• I always use the same password to remember it easily
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• I save my passwords in a file or a notepad

• I do nothing in particular

• Other(s)

12. Overall, how interested are you in this authentication solution1?

• Not at all interested

• Somewhat interested

• Pretty interested

• Very interested

13. What do you like about this authentication solution? What do you dislike
about this authentication solution?∗

14. From that description, would you say that this authentication solution is...?

• Easy to use

• Enhances security

• Trustworthy

• Innovative

• Nothing to report

15. Did you register your fingerprint? Overall, are you satisfied with the expe-
rience you were offered?

• A score on a scale from 0 to 10, with 0 being the greatest dissatisfaction
and 10 the greatest satisfaction

16. For what reason(s)?∗

1The participant was provided the description of the authentication method that relies on
browser fingerprints, which is provided above.
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E.2 Description of the Test Authentication Mech-
anism

The brief description of the test authentication mechanism is presented to the
participants before they answer to Question 12. As the participants are French,
the description is in French, and you can find an English translation below. The
authentication mechanism has two authentication modules related to fingerprint-
ing : one that authenticates through browser fingerprints via a browser, and one
that authenticates through device fingerprints via an Android application. In this
thesis, we focus on browser fingerprinting, hence the device fingerprinting part is
omitted.

Solution [name of the solution] improves the security of your identity on websites
by supplementing your login/password with an authentication of your equipment.

Compatible with most Android browsers and mobile applications, it requires
no installation of third-party software, nor any particular actions from you.

Its operation relies on browser fingerprinting technology. Based on technical
characteristics that we collect from your browser or your mobile phone (model,
screen size, configured language...), we create an almost unique digital fingerprint
of your equipment. To identify your equipment, we compare the digital fingerprint
collected with those associated with the equipments that you have previously
registered.





Appendix F

Test Authentication Mechanism

In this appendix, we describe the working of the test authentication mechanism
that leverages browser fingerprinting as an authentication factor. The mechanism
was integrated into a web platform, which allowed users to create an account and
test the mechanism. As the web platform was developed as a proof of concept,
the users connected could solely access their account information, and no real web
application was accessible. We integrate a challenge-response mechanism by the
HTML5 canvas which instructions vary on each fingerprinting. We communicated
about the web platform on social media and to colleagues. Moreover, the respon-
dents of the acceptability survey sent by Le Lab on the enrolled experiment were
invited to test the web platform. The authentication mechanism was implemented
in the Keycloak1 open source identity and access management framework.

F.1 Enrollment

The enrollment is the initial step during which the user creates her account on the
web platform. During this step, the user provides her email address, a password,
and her browser fingerprint is collected. As we integrate a challenge-response
mechanism, the instructions used to collect the HTML5 canvas are randomized.
During this step, we store both the instructions and the hash of the generated
HTML5 canvas. An email that contains a unique link is sent to her email address

1https://www.keycloak.org
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to verify her email address.

F.2 Authentication

The authentication is the main functionality for the users to test. The user ac-
cesses the login page of the web platform, identifies with her email address, and
first authenticates using her password. If her password matches, her browser fin-
gerprint is collected and verified. Through the life of the web platform, we tested
several verification mechanisms that include a mechanism similar to the simple ver-
ification mechanism described in Section 4.2.5, and verification mechanisms that
leverage machine learning. During this step, we collect two HTML5 canvases, one
to authenticate the user, and one to use for the next authentication if the user
is authenticated. The instructions used to generate the first canvas are retrieved
from the previous fingerprinting, and the generated canvas is matched against
the previously stored canvas. If both the canvas and the other attributes match,
the second canvas and the instructions used to generate it replace the previous
information. These will be used to generate and verify the canvas on the next
authentication. After that, the user is deemed legitimate and is given access to
the account.

F.3 Account Recovery and Multi-browser Sup-
port

F.3.1 Password Recovery

The user is limited to a number of attempts on a time range when authenticating
using her password. When this limit is reached, the access to the account is
silently blocked for several minutes. During this period, the user is only displayed
the message saying that the credentials are incorrect. Moreover, whenever the
password submitted is wrong, the user is warned by an email which indicates the
time and the IP address used for the attempt. She is also asked to contact an
administrator of the platform if she is not the one who made the attempt. If the
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user has forgotten her password, a button allows her to provide her email address
to recover it. An email that contains a one-time password is sent to this email
address. After the user has entered this one-time password, she is given the ability
to enter a new password for her account.

F.3.2 Browser Fingerprint Recovery and Multi-browser

After the user has successfully authenticated by her password, she reaches the step
during which her browser fingerprint is verified. During this step, it happens that
her browser is unrecognized, due to updates to the web environment of the browser,
or due to the use of an unknown browser. In this case, the user can access the
fingerprint update step by verifying her email address similarly to the password
recovery process. After the user has verified her email address, the fingerprint of
her current browser is collected, and she is given two choice. She can either use
this fingerprint as the update of a registered browser, or she can specify that her
current browser is a new one. In the first case, the fingerprint of the registered
browser is then updated to the collected fingerprint, and in the second case a
new browser is registered with the collected fingerprint. In any case, the HTML5
canvas is generated using a new set of instructions, which are stored together
with the newly generated canvas. The user is given the ability to register up to
five browsers, and to name each browser to recognize them when she updates the
fingerprint of one of them.





Appendix G

Demonstrations of Measures
Monotony

In this appendix, we provide the demonstration of the monotony of the illustrative
sensitivity and usability cost measures.

G.1 Monotony of the Illustrative Sensitivity

Theorem 2. Considering the same limit on the number of submissions β, the
mapping from users to their browser fingerprintM, the probability mass function p,
and the set of matching functions Φ. For any couple of attribute sets Ck and
Cl so that Ck ⊂ Cl, we have s(Ck) ≥ s(Cl) when measuring the sensitivity using
Algorithm 2.

Proof Sketch. We focus on a fingerprint f ∈ FCl
when considering the attribute

set Cl, and the dictionary V used to attack f . We project f to the attribute
set Ck to obtain the fingerprint g ∈ FCk

. This fingerprint g can be attacked using
the dictionary W composed of the fingerprints of V projected to Ck. As the
matching function works in an attribute basis, if a fingerprint h ∈ V matches
with f , we have f [a] ≈a h[a] : ∀a ∈ Cl that is true. As Ck is a subset of Cl, we
also have f [a] ≈a h[a] : ∀a ∈ Ck that is true. By applying this projection to each
fingerprint and the associated dictionary of attack fingerprints, the fingerprints
spoofed when considering Cl are also spoofed when considering Ck. The sensitivity
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when considering Ck is therefore at least equal to that when considering Cl.
When projecting the fingerprints of the attack dictionaries to the attribute

set Ck, some of them can come to the same fingerprint. In which case, more fin-
gerprints can be added to these dictionaries until reaching the submission limit β.
This can lead to more spoofed fingerprints and impersonated users. The sensitivity
when considering Ck can be higher than when considering Cl.

For any attribute sets Ck and Cl so that Ck ⊂ Cl, we then have s(Ck) ≥ s(Cl)
when measuring the sensitivity using Algorithm 2.

G.2 Monotony of the Illustrative Usability Cost

Theorem 3. For a given fingerprint dataset D, and attribute sets Ck and Cl so
that Ck ⊂ Cl, we have cost(Ck, D) < cost(Cl, D).

Proof. We consider Ci and Cj two attribute sets, so that they differ by the at-
tribute ad such that Cj = Ci ∪ {ad}. We consider the fingerprint dataset D from
which the measures are obtained.

The memory cost of Cj is strictly greater than the memory cost of Ci. As Cj

and Ci differ by the attribute ad, we have

mem(Cj, D) = mem(Ci, D) +
∑

(f,b,t)∈D size(f [ad])
card(D)

(G.1)

The size of the attribute ad is strictly positive, hence we have the inequality
mem(Cj, D) > mem(Ci, D).

The temporal cost of Cj is greater than or equal to the temporal cost of Ci,
as adding an attribute cannot reduce the collection time. The attribute ad can be
sequential or asynchronous, and can take identical or more time than the current
longest attribute of Ci. Below, we explore all these cases. (1) If ad is asyn-
chronous, we have the following cases: (a) ad takes less time than the longest
asynchronous attribute al, then the collection time is either that of al or the to-
tal of the sequential attributes, so ad does not influence the collection time and
time(Cj, D) = time(Ci, D), (b) ad takes more time than the longest asynchronous
attribute, but less or equal to the total of the sequential attributes, then the
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maximum is the total of the sequential attributes and time(Cj, D) = time(Ci, D),
(c) ad takes more time than both the longest asynchronous attribute and the
total of the sequential attributes, then the collection time is that of ad, and
time(Cj, D) > time(Ci, D). (2) If ad is sequential, we have the following cases:
(a) ad increases the total collection time of the sequential attributes, but the total
stays below that of the longest asynchronous attribute, then we have the equal-
ity time(Cj, D) = time(Ci, D), (b) ad increases the total collection time of the
sequential attributes, which is then higher than that of the longest asynchronous
attribute, then time(Cj, D) > time(Ci, D)1. These are all the possible cases, hence
we have time(Cj, D) ≥ time(Ci, D).

The instability cost of Cj is greater than or equal to that of Ci, as either
ad is completely stable and ins(Cj, D) = ins(Ci, D), otherwise ad is unstable and
ins(Cj, D) > ins(Ci, D). We then have ins(Cj, D) ≥ ins(Ci, D).

As the cost weight vector γ is composed of strictly positive real numbers, the
cost of Cj is therefore strictly higher than the cost of Ci due to the memory
cost. Recursively, it holds for any Ck and Cl so that Ck ⊂ Cl, hence the cost is
monotonic. For any fingerprint dataset D, and attribute sets Ck and Cl so that
Ck ⊂ Cl, we have cost(Ck, D) < cost(Cl, D).

1Either the total collection time of the sequential attributes of Ci does not exceed that
of its longest asynchronous attribute, and adding ad results in the total collection time of
the sequential attributes surpassing that of the longest asynchronous attribute. In this case,
time(Cj , D) > time(Ci, D). Either the total collection time of the sequential attributes of Ci

exceeds that of its longest asynchronous attribute. As ad increases the total collection time of
the sequential attributes, we have time(Cj , D) > time(Ci, D).





Appendix H

Explanations to the
Experimenters

In this appendix, we provide the messages that we displayed to the users to explain
our experiments.

H.1 Intranet Experiment

Figure H.1 displays the banner asking for the consent of the user before collecting
her browser fingerprint. As the content of the banner is in French, here is its
translation:

By clicking on "Accept", you authorize the [confidential] team to collect your
browser fingerprint. For more information, visit our article on [the intranet web-
site].

The translation of the article of the intranet website that explains the intranet
experiment is shown below:

Figure H.1: Consent banner of the intranet experiment
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Help us improve our browser fingerprinting algorithms
Browser fingerprinting is a new transparent authentication method based on the
hardware and software features of your workstation. All this information is col-
lected from your web browser and allows us to create a virtually unique finger-
print.

Although our previous work has shown a high degree of uniqueness of finger-
prints, we are confronted with the evolution of these fingerprints over time. This
is why we have worked on the implementation of machine learning algorithms ca-
pable of anticipating this evolution. In order to validate their correct operation,
we are setting up a campaign to collect fingerprints from the [intranet website]
homepage.

How does it work?
You will see a banner on the [intranet website] home page. By clicking on the
"accept" link, you authorize us to collect the characteristics of your workstation
(OS, screen size, list of fonts, list of plug-ins, ...). Once you give your consent,
a script on the [intranet website] homepage will transparently collect the charac-
teristics necessary for the creation of the fingerprint. We will also place a cookie
on your computer in order to follow the evolution of your fingerprint. Of course,
we do not collect your IDs, IP addresses, or browsing history.

And if I do not agree
It would be a shame not to help us, but we respect your choice. In this case,
please click on the "decline" link. If you change your mind, simply delete the
cookie from your browser. The next time you log on to the [intranet website]
home page, you will see the collection request banner again.

I want to know more
If you are curious, feel free to contact me [email address of the project manager].
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H.2 University Experiment

Below we display a translation of the web page shown to the users of the computers
of the university when asking their consent to participate in the experiment. At
the bottom of this message, the question I authorize the collection of my browser
fingerprint is displayed to the user with a two radio buttons showing the two
options: yes or no. After the user has made a choice, she needs to validate it by
clicking on a button displaying the message: Validate my choice.

Help us improve our browser fingerprint authentication mechanisms
The Institute of Research and Technology b<>com in association with IRISA
and the University of Rennes 1 is developing new user authentication methods
based on browser fingerprinting technology.

What is browser fingerprinting?
The browser fingerprinting is a technique that consists in collecting a set of tech-
nical characteristics about a browser and aggregating them into a fingerprint.

Why we collect your fingerprints
As part of our research, we wish to study the characteristics of browser finger-
prints, including their diversity and evolution over time.

What we collect (or not)
For our experiment, we collect the following personal data:

• The date and time of collection.

• The identifier of your browser.

• Browser features, including:

– The User-Agent HTTP header contains information about the browser
and operating system used and their version.

– The screen resolution and the window size.
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– The time zone and the language configured in the browser.

– An image (canvas) generated by the browser that contains variations
depending on various software and hardware components (the oper-
ating system, the web browser, the graphical card and its driver, and
the browser settings, among others).

Storage conditions
All the data we collect is kept confidential on the local IRT b<>com servers.
Data related to the experiment are kept for 3 years from the start of the exper-
iment, and are used only for research purposes by the IRT b<>com. For legal
reasons, we are obliged to keep the technical connection data for a period of 12
months after registration.

Your Rights on the Data
You have the right to access, rectify and delete your data. To do so, please con-
tact us by email at the following address [email address of the project].

What if I do not want to participate in the experiment?
It would be a shame not to help us, but we respect your choice. We do not collect
your browser fingerprint without your explicit consent. If you change your mind,
just change your choice in the extension management menu.

To know more about it
For more information, you can visit this web page. You can also contact us by
email at the following address [email address of the project].

Consent and duration of the experiment
By clicking on the "Accept" button, you authorize the IRT b<>com to collect
your browser fingerprint on a regular basis for the duration of the experiment,
i.e., from 06/11/2019 to 10/01/2020. Your consent is the legal basis for our col-
lection of your personal data within the framework of the experimentation, you
can withdraw it at any time through the extension management menu of your
browser.
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H.3 Enrolled Experiment

The enrolled experiment took place on a public website1. Below, we provide a
translation of the explanation of the experiment that the experimenters can access
on an informational page2 and a translation of the terms and conditions of use3.
The terms and conditions of use was redacted by the legal department of the
Institute of Research and Technology b<>com in collaboration with the research
team. Additionally to this informational page, the users were informed of the
collection of their personal data during both the enrollment and the authentication
process. Their rights regarding their personal data were also recalled during the
enrollment.

H.3.1 Informational page
About the experiment

Who are we?
We are a research team from the Trust & Security laboratory of the Institute of
Research and Technology b<>com, located in Rennes. With the help of Orange,
INRIA and IMT Atlantique, we are working on new authentication methods to
connect to Internet services.

What is the purpose of our experiment?
We seek to strengthen password security by adding a supplementary authentica-
tion element, without introducing any constraint or manipulation for users.

After an initial laboratory study phase, we want to test in real conditions the
operation of two new technologies based on the fingerprinting of browsers and
mobile terminals.

1https://demo.barbacan.irt-b-com.org
2https://demo.barbacan.irt-b-com.org/about.html
3https://demo.barbacan.irt-b-com.org/cgu.html

https://demo.barbacan.irt-b-com.org
https://demo.barbacan.irt-b-com.org/about.html
https://demo.barbacan.irt-b-com.org/cgu.html
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We wish to verify both their proper functioning over time, but also their ease
of use in regular use.

How can you help us?
By registering on our experimental authentication platform, you will be able to
test our two authentication methods from your computer or Android mobile.

In order to verify that these authentication methods remain effective over time,
we would like you to log in to our platform on a regular basis.

At any time, you will be able to share your comments with us through our forum.

How long does the experiment last?
The experiment takes place from October 1, 2019 to February 26, 2020. At the
end of the experiment, the accounts created for the experiment will be deleted.

Where can I find the terms and conditions of use?
To this address: https://demo.barbacan.irt-b-com.org/cgu.html.

Where to find the mobile application?
The mobile application will soon be available on the Google Play store.

What is browser fingerprinting?
Browser fingerprinting is a technique that collects technical information about a
web browser to create a digital fingerprint.

Although this technique is already used for marketing purposes, our work con-
cerns its use for authentication.

What is device fingerprinting?
Device fingerprinting is an adaptation of browser fingerprinting to the world of
mobile devices. It is presented as a library integrated into a mobile application.
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The technique consists in collecting data directly from the operating system of
the mobile device. This data is used to create an almost unique digital fingerprint.

How can you contact us?
You can leave us a message on the forum or send us an email to terminal.auth-
entication(at)b-com.com.

About b<>com
As a technology provider for companies that seek to accelerate their competitive-
ness through digital, b<>com serves the cultural, creative, digital infrastructure,
defense, industry 4.0 and health industries.

Its laboratories mix talents from multiple disciplines and cultures in the fields
of artificial intelligence, immersive video and audio, content protection, 5G net-
works, the Internet of Things and cognitive technologies...

Coming from the industrial and academic worlds, its researchers and engineers
work on its campus of Rennes and its sites in Paris, Brest and Lannion.

Thanks to its advanced engineering team and its own scientific means, b<>com
offers its customers ingredients and solutions that make the difference.

H.3.2 Terms and conditions of use
General conditions of use of the application

PREAMBLE
The FONDATION B-COM develops new user authentication solutions based on
features of computer communication devices such as computers or smartphones.

To this end, it has developed authentication technologies based on:

• Either on the browser used by the user when he consults the Internet with
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his device;

• or on the characteristics specific to each device.

As the FONDATION B-COM seeks to experiment these solutions on a real
scale, it is offering a group of experimenters from the general public to contribute
to this test phase free of charge.

The general conditions governing this test phase are as follows.

DEFINITIONS
In this document, words and expressions that begin with a capital letter, whether
used in the singular or plural, masculine or feminine, have the meanings set out
below:

• Test Application means the Terminal Authentication application dedicated
to the experimentation phase and through which the User accesses his per-
sonal interface.

• Browser Fingerprinting refers to the algorithmic solution developed by
FONDATION B-COM which consists in collecting and analyzing a set of
characteristic data related to the Browser used by the User during his In-
ternet consultations (browser, operating system, web page resolution, list
of plug-ins, etc), in order to authenticate the latter.

• GTU means the present General Terms of Use.

• Device Fingerprinting refers to the algorithmic solution developed by FON-
DATION B-COM which consists in collecting and analyzing the character-
istic data of the User’s Equipment (screen size, installed software, operating
system, etc.) to authenticate the latter.

• Equipment refers to the User’s electronic communication equipment such
as Smartphones, tablets, computers or similar devices that enable the User
to consult the Internet with a Browser or to use a mobile application.
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• b<>com designates the Fondation de Coopération Scientifique b<>com
(FONDATION B-COM) whose headquarters location is ZAC DES CHAMPS
BLANCS, 1219, AVENUE CHAMPS BLANCS, 35510 CESSON-SÉVIGNÉ
(FR), organizer of the tests and responsible for processing the personal data
collected during these tests.

• Browser refers to any software that allows, among other things, to display
websites on a screen, to carry out searches via search engines and to down-
load files in any format, such as Microsoft Edge, Firefox, Google Chrome,
Opera, Safari, etc.

• Site means the website/web portal (https://demo.barbacan.irt-b-com.org)
or the Test Application that the User will be invited to use to test the
Solutions.

• Solutions refers to the Browser Fingerprinting and Device Fingerprinting
solutions developed by FONDATION B-COM that collect and analyze a set
of data specific to the User’s Browser (Browser Fingerprinting) or Device
(Device Fingerprinting) in order to authenticate the User.

• Third party means any person, natural or legal person, outside the GTU.

• User designates any person who is willing to participate in the test phase
of the Solutions free of charge.

SUBJECT
The purpose of these GTU is to set the terms and conditions for testing the
Solutions by Users.

The User expressly acknowledges having read and accepted without reserva-
tion these GTU, which prevail over any other document.

These GTU may be subject to subsequent modifications, the applicable version
being that in force on the date of first connection to the Site by the User.
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COMMITMENTS
The User explicitly acknowledges:

• that he has voluntarily and without constraint applied for this phase of
experimentation during a call organized by b<>com or one of its partners
or service providers;

• to have had perfect information concerning the Solutions, in particular that
a certain amount of technical data from his Browser and/or his Equipment
is collected by the Solutions in order to initiate authentication procedures.

PREREQUISITE
For any use of the Solutions, the User shall ensure that it has up-to-date and
compatible Equipment as well as access to telecommunication networks.

The User must be over 18 years of age.
Access to the experimentation phase requires the opening of a User account

via the Test Application.
A User account is personal and associated with a designated natural person,

so that the User is prohibited from sharing his or her identifiers, including with
potential employees in his or her professional capacity.

The use and preservation of login credentials is the sole responsibility of the
User.

Thus, any loss or involuntary disclosure of elements likely to allow a Third
Party to take cognizance of the User’s identifiers must be immediately reported
in writing to b<>com.

The User also undertakes to immediately change his password as soon as pos-
sible.

ACCESS TO THE EXPERIMENTATION PHASE
The User receives by email an electronic invitation containing a login link to the
Site and a temporary one-time password.

At the first connection to the Site, the User is identified by the origin of the
invitation link and the temporary password that will have been assigned to him,
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or by the Orange partner of b<>com for Orange users. After acceptance of these
GTU and personalization of his password by the User, an imprint of the data of
his Browser and/or the Equipment with which he has connected is taken.

This fingerprinting consists of collecting numerous technical characteristics of
the Equipment or information relating to the Browser used.

A cookie (i.e. a small file saved on the User’s Equipment that enables b<>com
to recognize it at each connection) is also installed in order to calculate the
performance of the Solutions.

For each subsequent connection, the User’s authentication is carried out via
the personalized password and/or the analysis of the fingerprint of the Browser
or the Equipment.

At each connection, an update of the fingerprint is performed. The User will
be systematically informed of the update of the fingerprint by a concomitant
display on the screen of the Equipment.

During any authentication, the User may refuse the scan by clicking on the
"cancel" button. This procedure cancels the authentication procedure in progress.

If authentication fails, the User may request that the fingerprint be reset or
added, via a temporary reset link sent to him/her upon first request.

The User can delete the enrolled fingerprints at any time during the test via
the user interface of the Account Management Application.

It is reminded that the cost of the mobile connection to access and use the
Test Application is the responsibility of the User.

DATA COLLECTED

Nature of the data
The data collected will be processed under the responsibility of the Fondation de
Coopération Scientifique b<>com whose address is:
1219 avenue des Champs Blancs,
ZAC Les Champs Blancs,
35510 CESSON-SEVIGNE
(SIREN 751 468 943)
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The data collected for the experimentation phase are of a personal and tech-
nical nature.

The "Personal Data" that can directly identify the User such as:

• Name,

• First name,

• Email address.

The "Technical Data" are the technical characteristics of the Equipment or
Browsers making up the fingerprints operated by the Solutions which, indepen-
dently of each other, do not make it possible to identify the User directly, but
whose combination makes it possible to identify the User of an Equipment or a
Browser with a high success rate.

These Technical Data are:

For the Browser Fingerprinting:

• Hardware features such as screen size, graphics card, etc.

• Software features such as operating system, browser, installed plugins,
fonts, etc.

• Customization features such as default language, time zone, etc.

For the Device Fingerprinting:

• Hardware features such as screen size, graphics card, etc.

• Software features such as operating system, browser, etc.

• Customization features such as default language, time zone, etc.

• Accessory data such as list of installed applications and their installation
date, list of paired wifi networks and Bluetooth devices.
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This Technical Data is collected and stored in a "pseudonymized" form, i.e.
not allowing it to be attributed to a User unless the pseudonymization key is
available.

However, the User is informed that the fingerprints deteriorate if they are not
updated, as the characteristics that constitute the fingerprints of the Browser
and/or the Equipment change.

For the purposes of User authentication when logging into his User account,
b<>com also keeps the password associated with the account as well as an Orange
identifier for Users who have applied for the tests via the Orange partner of
b<>com.

All data relating to a User is kept confidential and internal to b<>com.

Nature of the data
The processing is based on the consent of the User whose data is collected. Con-
sent is collected at the time of the first connection to the Application. The User
is informed that he may withdraw his consent at any time.

Technical Data is collected for research purposes and to improve the Solutions.
Fingerprints are the statistical data collected during the experimentation phase.
Personal Data is collected in order to organize the tests and then to facilitate
any requests for the exercise of their rights by Users. All Data will be kept for a
period of three (3) years in a pseudonymized form.

Access and user rights
The User can view the list of registered Equipment at any time through the Ac-
count Management Application.

The exercise of his rights of access, modification, rectification, limitation, porta-
bility and/or deletion of his Personal Data is carried out through the user inter-
face of the Account Management Application or by contacting the administrator
b<>com at the email address personal-data[at]b-com.com.

b<>com does not associate any sub-contractor to the processing of the Users’
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data nor will it transfer these data outside the European Union. b<>com may
however be led to transmit to its partner Orange certain data of the Users (in par-
ticular name and surname) in the hypothesis of the participation of these Users
coming from the Orange pool of experimenters for the general public within the
framework of a reward program organized by Orange, and in order to allow their
reward.

If the User considers that his rights relating to the data are not respected by
b<>com, he can address a complaint to the CNIL (Commission Nationale de
L’informatique et des Libertés – cnil.fr) or any other competent control authority.

Technical connection data
The technical data of connection of each User to the servers of b<>com are
collected and are kept by b<>com for 1 year from their registration in a non-
nominative form and decorrelated from the data of the experiment. These data
are kept for legal security reasons, in order to be able to identify a User in case
of illicit activity.

INTERRUPTION / SUSPENSION
As the experimentation is carried out by b<>com for scientific purposes, b<>com
does not guarantee the permanence, continuity and quality of authentication by
the Solutions. However, as this is an experimental phase, it is not bound to Users
by any obligation of any kind whatsoever.

b<>com reserves the right to interrupt the operation of the Solutions in or-
der to update them or for any question related to security or maintenance.

b<>com may decide unilaterally and without prior notice to discontinue the ex-
perimentation phase for any reason whatsoever. The User may inform b<>com
of any difficulty encountered during the use of the Solutions at the email address
in article 6.c.
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RESPONSIBILITY
The User agrees to use the Solutions solely for the purpose for which they are
intended.

The User acknowledges that b<>com is under no particular obligation what-
soever towards the User, the experimentation phase being undertaken graciously
by the User without expectation of any commercial consideration of any kind
whatsoever from b<>com.

In particular, b<>com is not liable for any malfunction of the Solutions, the
User may at any time withdraw from the experimentation phase and delete all
of his Personal and Technical Data.

b<>com cannot be held responsible in any way:

• Failure by the User or a Third Party to comply with the requirements of
b<>com;

• Error of manipulation of the Solutions by the User or a Third Party and
its consequences;

• Any intervention on the User’s Equipment;

• Damages having a cause external to the Solutions or arising from a case of
force majeure;

• Contamination by viruses of the User’s Data and/or tools and/or software
and/or Equipment, the protection of which is the responsibility of the User;

• Malicious intrusions by third parties on the User Account or Data piracy,
despite the reasonable security measures in place;

• In the event of damage resulting from the loss, alteration or any fraudulent
use of the Solutions, the accidental transmission of viruses or other harmful
elements, the attitude or behavior of a Third Party, the non-conclusion of
an operation;
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• Damage that could be suffered by the Equipment connected to the Solu-
tions, which is under the full responsibility of the User;

• Possible misuse of User identifiers, and more generally any information of
a sensitive nature for the User.

In any case, the User shall refrain from damaging the reputation of b<>com
and in particular from denigrating the Solutions, on any medium, including the
Internet and social networks.

The User is solely responsible for the damages that his agents and/or his Equip-
ment could cause to Third Parties and in particular for the consequences of a bad
use of the Solutions. The responsibility of b<>com is also excluded in the event
of fault or negligence of the User and/or its agents, in particular in the event of
incorrect or incomplete information transmission or use of the Solutions not in
accordance with the instructions and, where applicable, the documentation pro-
vided. The User guarantees b<>com against any recourse that the latter may
have to suffer as a result of the use of the Solutions made by the User.

INTELLECTUAL PROPERTY
The User acknowledges that the Solutions and the Site, in particular the texts,
photographs, illustrations, videos, software, content, databases, APIs, sounds,
graphics, logos, or any other information or support presented by b<>com or
made available to the User as part of the experimentation phase are protected
by copyright, trademark and patent law and any other intellectual property right.

b<>com grants the User a non-exclusive right to use the Solutions as well as
any documentation attached thereto, in the form of a license and not a sale, for
the entire duration of the experimentation phase.

The present license does not confer to the User any intellectual property right on
the Solutions or any copy thereof, which remain the full and exclusive property
of b<>com.
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Any use, reproduction, extraction not expressly authorized by b<>com under
the present terms is illicit, in accordance with article L.122-6 of the Intellectual
Property Code.

In particular, the User is not authorized to:

• Represent, distribute, market the elements of the Solutions, whether free
of charge or for a fee, without prior written authorization from b<>com;

• Use the Solution in any way whatsoever for the purpose of designing, pro-
ducing, distributing or marketing a similar, equivalent or substitute service;

• Make the Solutions available, in any way whatsoever, for the benefit of any
Third Party;

• Modify, translate, reproduce, dismantle, disassemble, or derive in any way
whatsoever the code of the Solutions or the accompanying documentation;

• The User therefore formally refrains from intervening or having a Third
Party intervene on the Solutions. Moreover, in the case of hosted Solutions,
no backup copies are permitted.

INDEPENDENCE OF CLAUSES
If any provision(s) of these GTU is (are) declared invalid pursuant to a law, a
regulation, or as a result of a court decision, the other provision(s) will retain
their full force and effect.

ABSENCE OF WAIVER
The fact that b<>com does not take advantage of the User’s failure to comply
with its obligations shall not be interpreted as a waiver of the right to invoke any
subsequent failure to comply with the same or other obligations, or as a waiver
of the right to ensure the application of said obligations.

APPLICABLE LAW - COMPETENT COURT
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These GTU are subject to French law.

The User and b<>com will make every effort to resolve amicably any disputes
that may arise relating to the validity, interpretation or execution of the present
Terms and Conditions.

In the absence of an amicable agreement, the most diligent party may bring
the dispute before the competent French jurisdiction.



Appendix I

Attributes List and Properties

In this chapter, we provide the list of our fingerprinting attributes together with
their properties. We display the initial attributes used for the general audience
dataset, and the attributes that were added for each following dataset. The ex-
haustive list of the attributes of the four attributes together with their properties
is available on the website related to this thesis1. Table I.1 lists the initial at-
tributes of the general audience dataset, together with their number of distinct
values observed during the experiment (Values), their normalized entropy (N.
Ent.), their minimum normalized conditional entropy (MNCE), their sameness
rate (% Same), their median size (Size), and their median collection time (Time).
Table I.2 presents these properties for the attributes that were added for the in-
tranet experiment, and Table I.3 displays the attributes added for the enrolled
experiment.

To stay concise, we replace the name of common JavaScript objects or of API
calls by abbreviations. We denote D the JavaScript document object, M the
Math object, N the navigator object, S the screen object, and W the window
object. Additionally, we denote A an initialized Audio Context, AA an ini-
tialized AudioAnalyser, and AD the A.destination property. Finally, we de-
note WG an initialized WebGL Context, WM the WG.MAX_ prefix, and WI the
WG.IMPLEMENTATION_ prefix.

Due to the diversity of JavaScript engines, some properties are accessible

1https://project.inria.fr/fpauth/attributes
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through different names, regularly prefixed by moz for Firefox or ms for Internet
Explorer. We use square brackets to easily denote these cases, and consider that
A.[B, C] means that the property is accessed through A.B or A.C. If there is only
one element inside these brackets, this one is optional. We denote [...] a part
that is omitted but described in the corresponding attribute family description.
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Titre : Authentification Forte par Prise d’Empreinte de Navigateur

Mots-clés : prise d’empreinte de navigateur, authentification web, authentification multi-facteur

Résumé : L’authentification web consiste à
vérifier que le visiteur d’un site web est bien
le détenteur d’un compte. Pour ce faire, plu-
sieurs informations peuvent servir de preuve
de détention, dont les empreintes de naviga-
teur. Celles-ci sont des propriétés collectées à
partir d’un navigateur permettant d’en consti-
tuer une empreinte potentiellement unique. Au
travers de cette thèse, nous proposons deux
contributions :

1. Nous étudions l’adéquation des em-
preintes de navigateur pour de l’authen-
tification. Nous faisons le lien entre les
empreintes digitales et celles des na-
vigateurs afin d’évaluer ces dernières
selon des propriétés d’informations bio-
métriques. Nous basons notre étude
sur l’analyse de quatre jeux de don-

nées d’empreintes de navigateur, dont
un comprenant presque deux millions
de navigateurs.

2. Nous proposons FPSelect, un outil de
sélection d’attributs tels qu’ils satis-
fassent un niveau de sécurité et ré-
duisent les contraintes d’utilisation. Le
niveau de sécurité est mesuré selon la
proportion d’utilisateurs usurpés étant
donné les attributs utilisés, une popu-
lation de navigateurs, et un attaquant
modélisé. Les contraintes sur l’utilisa-
tion sont mesurées selon le temps de
collecte des empreintes, leur taille, et
leur instabilité. Nous comparons les
résultats de FPSelect avec des mé-
thodes usuelles de sélection d’attributs
sur deux jeux de données.

Title: Leveraging Browser Fingerprinting for Web Authentication

Keywords: browser fingerprinting, web authentication, multi-factor authentication

Abstract: Web authentication is the verifica-
tion that a visitor claiming an account legiti-
mately owns this account. Several authenti-
cation factors were proposed such that each
one provides a supplementary security bar-
rier. Browser fingerprints notably came out
as a promising candidate. They are the ag-
gregation of properties collected from a web
browser, which compose a potentially unique
fingerprint. In this thesis, we provide two con-
tributions:

1. We investigate the adequacy of browser
fingerprints for web authentication. We
make the link between the digital fin-
gerprints that distinguish browsers, and
the biological fingerprints that distin-
guish Humans, to evaluate browser fin-
gerprints according to properties in-

spired by biometric authentication fac-
tors. We assess these properties
on four real-life browser fingerprint
datasets, which include one of nearly
two million browsers.

2. We propose FPSelect, an attribute se-
lection framework to find the attribute
set that satisfies a security requirement
and reduces the usability cost. The
security is measured as the proportion
of impersonated users given a finger-
printing probe, a user population, and a
modeled attacker. The usability is quan-
tified by the collection time of browser
fingerprints, their size, and their insta-
bility. We compare our framework with
common baselines using on two real-life
fingerprint datasets.
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