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Abstract

Due to the great impact of deep learning on variety fields of machine learning,
recently their abilities to improve clustering approaches have been investi-
gated. At first, deep learning approaches (mostly Autoencoders) have been
used to reduce the dimensionality of the original space and to remove possible
noises (also to learn new data representations). Such clustering approaches
that utilize deep learning approaches are called Deep Clustering. This thesis
focuses on developing Deep Clustering models which can be used for different
types of data (e.g., images, text). First we propose a Deep k-means (DKM)
algorithm where learning data representations (through a deep Autoencoder)
and cluster representatives (through the k-means) are performed in a joint
way. The results of our DKM approach indicate that this framework is able
to outperform similar algorithms in Deep Clustering. Indeed, our proposed
framework is able to truly and smoothly backpropagate the loss function
error through all learnable variables.

Moreover, we propose two frameworks named SD2C and PCD2C which
are able to integrate respectively seed words and pairwise constraints into
end-to-end Deep Clustering frameworks. In fact, by utilizing such frameworks,
the users can observe the reflection of their needs in clustering. Finally, the
results obtained from these frameworks indicate their ability to obtain more
tailored results.
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Résumé

En raison du grand impact de l’apprentissage profond sur divers domaines
de l’apprentissage automatique, leurs capacités à améliorer les approches de
clustering ont récemment été étudiées. Dans un premier temps, des approches
d’apprentissage profond (principalement des autoencodeurs) ont été utilisées
pour réduire la dimensionnalité de l’espace d’origine et pour supprimer les
éventuels bruits (également pour apprendre de nouvelles représentations
de données). De telles approches de clustering qui utilisent des approches
d’apprentissage en profondeur sont appelées deep clustering. Cette thèse se
concentre sur le développement de modèles de deep clustering qui peuvent être
utilisés pour différents types de données (par exemple, des images, du texte).
Tout d’abord, nous proposons un algorithme DKM (Deep k-means) dans
lequel l’apprentissage des représentations de données (via un autoencodeur
profond) et des représentants de cluster (via k-means) est effectué de manière
conjointe. Les résultats de notre approche DKM indiquent que ce modèle
est capable de surpasser des algorithmes similaires en Deep Clustering. En
effet, notre cadre proposé est capable de propager de manière lisse l’erreur
de la fonction de coût à travers toutes les variables apprenables.

De plus, nous proposons deux modèles nommés SD2C et PCD2C qui sont
capables d’intégrer respectivement des mots d’amorçage et des contraintes par
paires dans des approches de Deep Clustering de bout en bout. En utilisant
de telles approches, les utilisateurs peuvent observer le reflet de leurs besoins
en clustering. Enfin, les résultats obtenus à partir de ces modèles indiquent
leur capacité à obtenir des résultats plus adaptés.
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Introduction

Artificial intelligence and more specifically machine learning have drawn a lot
of attentions these days. The number of submitted papers in machine learning
conferences are increasing rapidly. Online courses of machine learning are
advertised on the internet frequently which reflects how much this field of
study is becoming more popular. Nowadays, even Hollywood is attracted
towards machine learning and the possible ways that it will influence our
future. But these attractions raise the questions that why machine learning is
becoming more popular and what is machine learning? To answer the latter
question, we provide the standard definition proposed by Tom Mitchell. He
defined machine learning as: ”the field of study which is concerned with the
question of how to construct computer programs that automatically improve
with experience”. To answer the first question, we provided below a few
examples of the usage of machine learning which reflects its importance.

Machine learning algorithms have been able to inspire our daily lives
in a variety of ways. Discriminating benign tumors from malignant ones is
a medical example of using machine learning algorithms. Nearly 93% web
traffic comes through search engines and machine learning is used by them
to identify spams, low-quality contents, etc. Recent breakthroughs in mobile
industry is formed by the help of machine learning as well. Identifying finger
prints to unlock cell phones in the most secure and fastest way is obtained
through machine learning. Recognizing the face to unlock the mobile phone
where a lot of constraints such as light, angle, changes in the face (wearing
eye glasses), etc. are present, is also one of the recent advances in mobile
industry. Converting speech to text is one of the sensational abilities that

1



2 1. INTRODUCTION

machine learning has provided as well. Moreover, machine learning algorithms
have been used for protecting smart grids from cyberattacks. Thus, due
to increasing impact of machine learning on our daily lives, performing
scientific research in this area seems to be essential. Fundamentally, machine
learning algorithms can be divided into three categories: 1) supervised, 2)
semi-supervised, and 3) unsupervised learning.

In the case of supervised learning, the input data is coupled with its
corresponding output (target) values. For instance, in the case of document
classification, the categories (e.g., politics, scientific, etc.) pertaining to each
data point are provided in advance which allows machine learning algorithms
to discriminate different classes from each other. Semi-supervised learning
embraces partially labeled datasets where the goal is to use labeled data
points to categorize unlabeled ones. Unsupervised learning algorithms are
used when no target information is available/required. In this thesis, we
concentrate on clustering and Autoencoders.

Different from supervised and semi-supervised learning tasks, in clustering,
the target values are not provided and the goal is to identify and discriminate
different categories that exist in the data. Clearly, due to the lack of target
values in clustering, this task is more difficult to deal with compared to
supervised learning tasks.

So far, variety of algorithms have been proposed in the domain of cluster-
ing but probably the most well-known and widely used one is k-means [1].

k-means starts with randomly generated cluster representatives and tries
to update them based on each observation of data points. To cluster a
data point, the distance between the data point and each of the cluster
representatives shall be computed. Then the data point will be assigned
to the nearest cluster representative. There are several benefits regarding
k-means including: 1) producing interpretable clusters (hard assignments),
2) easy to understand, 3) easy to implement, 4) efficient for large datasets,
etc. These benefits helped k-means to be widely used in different areas.

However, there are some disadvantages regarding k-means: 1) k-means
is an ill-posed problem, 2) k-means is performed in the original space of
the data while this space can be noisy and contain redundant features,
3) subjectivity is a phenomenon that exists in k-means and standard k-
means can not deal with it. To address the second problem, learning new
data representations seems to be essential. Autoencoders are one potential
candidate for learning new data representations. Indeed, representations
learned through an Autoencoder can be fed to k-means algorithm to be
clustered.

Predominantly, the representation learning phase is independent from
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the clustering phase. In this case, after training an Autoencoder, k-means
is applied on the new learned representations. Obviously, since these two
phases are entirely disconnected, there is no guarantee that the new learned
representations are adequate for clustering.

In order to combine these two disjoint phases into one joint phase where
data representations (obtained through an Autoencoder) and k-means cluster
representatives are updated simultaneously, a new objective function for k-
means shall be defined– since k-means objective function is not differentiable
and gradients can not be computed.

In this thesis we propose a Deep k-means framework where a new dif-
ferntiable objective function for k-means is proposed. This differentiability
enables gradients to be computed. Indeed, through our joint Deep Clustering
framework, Autoencoder parameters (weights and biases) and k-means clus-
ter representatives can be updated through backpropagation in a truly joint
way. Our Deep k-means framework is evaluated on various kinds of data
including image and text. The results indicate that our proposed framework
outperforms the methods in Deep Clustering which share the most similarities
to our framework.

As mentioned earlier, another important aspect of clustering is subjec-
tivity. Indeed, while in standard clustering no side information is used,
users might be interested in providing additional information to influence
the clustering. In fact, additional information can help clustering to obtain
better results. In case of document clustering, additional information can
take the form of: 1) pairwise constraints and 2) seed words. In the earlier
case, the user provides additional information about pairs of documents as
must-link and cannot-link constraints (indicating respectively whether the
documents in the pair are coming from the same cluster or not). In the latter
case, the user may provide seed words for each category of documents.

Seed words correspond to sets of words which are able to characterize
and define each cluster. For instance, {‘player’, ‘coach’, ‘stadium’} can be
considered as descriptive seed words for a sports cluster while {‘politician’,
‘congress’, ‘president’} are able to describe politics. In this thesis we discuss
our two individual frameworks which are able to include constraints. The
framework which is able to include pairwise constraints is called Pairwise-
Constrained Deep Document Clustering (PCD2C) and the one which is
able to include seed words is called Seed-guided Deep Document Clustering
(SD2C). Indeed in both PCD2C and SD2C frameworks, the algorithms are
able to bias data representations based on the constraints provided by the
user.

To evaluate our PCD2C and SD2C frameworks, we have used constraints



4 1. INTRODUCTION

obtained from an automatic constraints selection procedure and several
human constraints selection experiments. In the earlier approach, constraints
are extracted automatically from the data. In the latter approach, we
carefully designed several experiments where users were asked to participate
and provide constraints for document clustering. Indeed, we tried to replicate
a real world case scenario which enables us to obtain more accurate analysis
regarding the performance of our proposed PCD2C and SD2C frameworks
in such cases.

The results from both automatic and human constraints selection indi-
cate that our proposed PCD2C and SD2C frameworks are able to include
constraints in an end-to-end Deep Clustering framework. Finally, it is shown
that in most cases, constraints help SD2C and PCD2C to obtain better
results compared to when no constraints are used.

The organization of the thesis is as follows: in Chapter 2 we discuss the
basics of clustering (more specifically k-means) and Autoencoders. Chapter 3
includes related works in the domain of Deep Clustering and constrained
clustering. Our Deep k-means framework is proposed in Chapter 4 and
finally Chapter 5 contains our proposed PCD2C and SD2C frameworks.
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Definitions and Notations

Clustering is one of the essential tasks in machine learning where the goal is
to find existing patterns in unlabeled data points and group them into several
clusters based on their similarities or dissimilarities. Up to now, several
works tried to improve clustering algorithms from different perspectives. One
of the most important aspects of improving clustering algorithms is reducing
the dimensions of the underlying data by learning new data representations
which are adequate for clustering. Indeed, the underlying data might include
redundant and noisy features which can reduce the performance of the
clustering. Using Autoencoders is a possible solution to learn new data
representations and also helps to reduce the dimensions of the data to avoid
standard issues in machine learning such as curse of dimensionality. Since
clustering and Autoencoders are the two most important aspects of this
thesis, in this chapter we review their basic concepts.

2.1 Clustering

Learning patterns from unlabeled data can be much more challenging than
the case in which true labels are available. Clustering is one way to learn
patterns from unlabeled data and can be defined in many different ways [2]
but the standard definition is to group data points with similar patterns into
the same cluster [3]. One can define several similarities or dissimilarities such
as Euclidean distance, cosine distance, etc. Previously, several clustering
algorithms with different perspectives towards grouping data points have
been proposed but since the focus of the thesis is towards the k-means

5
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algorithm, we only discuss this algorithm and Fuzzy C-means in details.

2.1.1 k-means Clustering

k-means [1] is one of the most well-known and widely used Machine Learning
algorithms. This algorithm starts with randomly generated cluster represen-
tatives and tries to update them based on each observation of data points.
To cluster a data point, the distance between the data point and each of
the cluster representatives shall be computed. Then the data point will
be assigned to the nearest cluster representative. Afterwards, the selected
cluster representative will be updated as the mean of all its assigned data
points to optimize the so-called k-means objective function. In the remainder,
x denotes an object from a set X of objects to be clustered. K denotes
the number of clusters to be obtained, rk ∈ Rp the representative of cluster
k, 1 ≤ k ≤ K, and R = {r1, . . . , rK} the set of representatives. We use
the term representative rather than centroid here to emphasize the fact
that in case of similarity functions, or dissimilarity functions different from
the Euclidean distance, the representative of a cluster does not necessarily
coincide with its centroid. The k-means objective function can be defined as:

min
R

∑
x∈X
||x− c(x;R)||2 (2.1)

Where c(x;R) = arg minr∈R ||x− r||2 is the nearest cluster to x. Moreover,
in [4], further advantages of k-means algorithms are mentioned such as:

– Producing interpretable clusters (hard assignments);
– Easy to understand;
– Easy to implement;
– Efficient for large datasets.

Due to several advantages regarding the k-means algorithm which we
discussed above, we have used this algorithm in our proposed framework.

Despite many advantages with respect to k-means, still there are a few
drawbacks that shall be taken into account. In [5] the initialization of the
k-means has been discussed. Based on this survey, the performance of the
k-means greatly depends on the initial cluster representatives. To address
this problem k-means++ [6] has been proposed. In k-means, it is mandatory
for all data points to be categorized in one of the clusters thus k-means
can be sensitive towards noise and outliers [7]. Several other variations of
k-means have been proposed to improve the performance of k-means. In [8]
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distributed k-means has been proposed which decreases the runtime of k-
means for large datasets. More discussions about k-means shortcomings and
some proposed approaches for improving this algorithm have been discussed
in [9].

Algorithm 1: k-means algorithm

1. Randomly initialize cluster representatives
2. Assign each data point to the closest cluster representative
3. Update the selected cluster representative as the average of all data

points assigned to this cluster.
4. Repeat steps 2 and 3 until convergence
5. End

2.1.2 Fuzzy C-means

Fuzzy C-means (FCM) is an improved version of k-means algorithm which
was proposed in [10]. In this algorithm, each data point can be assigned to
more than one cluster. In other words, it introduces a new objective function
which determines how much a data point belongs to each cluster. This
function is called membership function and it can take values between 0
and 1. FCM can be formulated as below:

min
R

∑
k∈K

∑
x∈X

µ(x, rk)m||x− rk||2; 1 < m <∞

µ(x, rk) =
[
K∑
l=1

(
||x− rk||2

||x− rl||2

)]−1 (2.2)

Similarly to k-means algorithm which suffers from the initialization of
cluster representatives, FCM suffers from this issue as well but several
algorithms have been proposed to deal with this problem [11,12].

Moreover, both k-mean and and FCM are performed in the original space
of the data while it can be noisy and include redundant features. To mitigate
these issues, one potential solution is utilizing Autonecoders which are able
to learn new data representations.

In the following section, we discuss details of the Autoencoder used in
our framework.
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2.2 Autoencoders

Autoencoders are at the core of modern clustering (deep clustering) ap-
proaches. In this Chapter, we are not going to dive into deep cluster-
ing approaches but we rather give an overview of Autoencoders and their
applications– more details regarding deep clustering approaches are discussed
in Chapter 3. Autoencoders are a special kind of neural networks in which
the objective of the network is to reconstruct the input in the output layer.
These networks can be divided into two parts: 1) encoder and 2) decoder.
The encoder is the first part of an Autoencoder where the data will be passed
through several layers of neural networks and finally it will be embedded
into a new space. This new space is called embedding space. Afterwards,
the embedded input shall be fed to the decoder. The decoder is the mirrored
version of the encoder in which the number of neurons in its final layer is
equal to the number of dimensions of the input. Indeed, the final layer of
an Autoencoder yields a vector which is aimed to reconstruct the input.
Finally, after training an Autoencoder, the obtained embedded data (through
encoder) can be used for variety of purposes (supervised or unsupervised
tasks). The Autoencoder loss function takes the following form:

Lrec(X , gη◦fθ(X )) =
∑
x∈X

δI(x, gη◦fθ(x)) (2.3)

where X is a set of input samples and θ and η are respectively the encoder
and decoder parameters. δI shall be defined as dissimilarity function (e.g.,
Euclidean, Cosine, etc.). As mentioned earlier, an Autoencoder consists of two
parts, an encoder and a decoder. The encoder is formulated as fθ : Rd → Rp

and the decoder is formulated as gη : Rp → Rd where Rd represents the input
space and Rp represents the space in which learned data representations
are to be embedded. Finally, an Autoencoder is formulated as gη ◦fθ(x)
meaning that first the encoder projects the input in the embedding space and
then the decoder tries to reconstruct the original data from the embedded
representation. This loss function is trained by using backpropagation [13].

As Formula 2.3 implies, the Autoencoder loss function is optimized when
the input is well reconstructed in the output of the Autoencoder. Indeed,
while trying to reconstruct the input in the output layer, the embedding space
(fθ(x)) captures the most salient information about the input data. The
transformed data in the embedding space is the input to both supervised [14]
and unsupervised algorithms [15]. Autoencoders have been used in different
fields of studies like medical image processing [16], image classification [14],
image generation [17], speech recognition [18], speech-to-text translation [19],
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etc.

Up to now, different kinds of Autoencoders such as Variational Autoen-
coders [20], Regularized Autoencoders [21, 22], etc. have been proposed. We
have used undercomplete Autoencoders in our proposed framework which
are one of the simplest versions of Autoencoders.

Undercomplete Autoencoders: In section 2.2 we discussed that Au-
toencoders consist of an encoder and a decoder (mirrored version of the
encoder). If the dimension of the projected data in the embedding space
is less than the dimension of the original input data, the Autoencoder is
called undercomplete. In this case, the representations learned through the
embedding layer are able to describe the original input in the most distinctive
manner. In other words, not only the dimensions of the original data will
be reduced (which can be helpful to get rid of redundant features), new dis-
tinctive representations from the original data will be obtained. In this case,
one can use different types of neural network layers such as Feed Forward
Neural Networks (FFNN’s), Convolutional Neural Networks (CNN’s) [23],
etc. Figure 2.1 illustrates an example of undercomplete Autoencoders.

Input Layer

Embedding Layer

Output Layer

Figure 2.1: An example of Undercomplete Autoencoders. Blue layers represent the encoder
and green layers represent the decoder while the purple layer represents the embedding
layer.

Due to simplicity and great performance of uncercomplete Autoencoders,
we have used them in our proposed framework which is discussed in Chapter 4.
In Chapter 3 we discussed the usage of Autoencoders in other Deep Clustering
frameworks.
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2.3 Evaluation Metrics

In our experiments, the clustering performances of the different methods
are evaluated with respect to three standard measures: Normalized Mutual
Information (NMI), clustering accuracy (ACC) and the Adjusted Rand Index
(ARI).

2.3.1 NMI

NMI is an information-theoretic measure based on the mutual information
of the ground-truth classes and the clusters obtained from a clustering
algorithm [24]. Formally, let S = {S1, . . . , SK} and C = {C1, . . . , CK}
denote the ground-truth classes and the obtained clusters, respectively. Si
(resp. Cj) is the subset of data points from class i (resp. cluster j). Let N
be the number of points in the dataset. The NMI is computed according to
the following formula:

NMI(C, S) = I(C, S)√
H(C)×H(S)

(2.4)

where I(C, S) =
∑
i,j
|Ci∩Sj |
N log N |Ci∩Sj |

|Ci||Sj | corresponds to the mutual informa-
tion between the partitions C and S, and H(C) = −

∑
i
|Ci|
N log |Ci|N is the

entropy of C.

2.3.2 ACC

Different from NMI, ACC measures the proportion of data points for which
the obtained clusters can be correctly mapped to ground-truth classes, where
the matching is based on the Hungarian algorithm [25]. Let si and ci further
denote the ground-truth class and the obtained cluster, respectively, to which
data point xi, i ∈ {1, . . . , N} is assigned. Then the clustering accuracy is
defined as follows:

ACC(C, S) = max
φ

1
N

N∑
i=1

I{si = φ(ci)} (2.5)

where I denotes the indicator function: I{true} = 1 and I{false} = 0; φ is a
mapping from cluster labels to class labels.
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2.3.3 ARI

The third metric that we have used to evaluate different clustering algorithms
performances is called ARI [26]. ARI counts the pairs of data points on
which the classes and clusters agree or disagree, and is corrected for chance.
Formally, ARI is given by:

ARI(C, S) =
∑
ij

(|Ci∩Sj |
2

)
−
(N

2
)−1∑

i

(|Ci|
2
)∑

j

(|Sj |
2
)

1
2

(∑
i

(|Ci|
2
)

+
∑
j

(|Sj |
2
))
−
(N

2
)−1∑

i

(|Ci|
2
)∑

j

(|Sj |
2
) (2.6)

2.4 Tools for Implementation

Python is the main programming language that we have used to implement
our proposed methods and most of the baselines. For the methods that are
based on DNN’s, we have used Tensorflow for the implementation. Although
we have re-implemented most of the baselines, for some others we have used
the original code published by their authors (e.g., Java, Keras, etc.). More
details about the implementations and libraries can be found in the following
github link:

https://github.com/MaziarMF

https://github.com/MaziarMF
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Related Work

3.1 Overview

In Chapter 2, we reviewed basics of clustering and Autoencoders and we
discussed that Autoencoders can be used for learning new data representations
in a Deep Clustering (DC) framework. Autoencoders are a special case of
using DNNs in DC and standard DNN approaches have been utilized in DC
frameworks as well. Indeed, the usage of standard DNNs in DC frameworks
is quite similar to their usage in supervised learning tasks but the difference is
that instead of obtaining class probabilities, cluster probabilities are obtained
through a softmax layer (last layer).
In fact, we can categorize DC algorithms based on different aspects but
we propose to categorize them based on how DNNs are being used in DC
frameworks as suggested in [27]. Indeed, these approaches can be divided
into two groups: 1) Autoencoder based approaches and 2) non-Autoencoder
based approaches. In the DC frameworks where Autoencoders are used
for learning data representations, the focus is to incorporate Autoencoder
reconstruction loss in the final loss such that it can help the algorithm to
obtain more suitable representations which are apt for clustering. On the
other hand, non-Autoencoder based approaches which utilize standard DNNs
in their frameworks try to embed the data points into m (number of layers)
distinctive spaces and finally obtain the clustering probabilities. Later in
this chapter, we review papers in both categories and provide more detailed
information about them.

Additionally; in this Chapter, we discuss different kinds of constraints

13
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which are applicable in standard clustering and we review some of the papers
in this domain.

3.2 Deep Clustering

As mentioned earlier, DC approaches can be categorized based on different
aspects (loss function, type of neural network, and etc.) but in this thesis
we proposed to categorize them based on using Autoencoder. Indeed, these
approaches can be divided into Autoencoder Based and non-Autoencoder
based approaches. Following in this thesis, we discuss both approaches and
review works in these domains.

3.2.1 Autoencoder Based Deep Clustering Approaches

The DC algorithms mostly use Autoencoders to learn new representations
from raw data. Usually in these algorithms, the Autoencoder loss is added to
the clustering loss to jointly learn data representations and cluster represen-
tatives through back propagation. In this case, to stabilize the algorithms,
performing pretraining is essential [28]. Pretraining consists in training an
Autoencoder which is followed by applying k-means on the learned represen-
tations (this process shall be performed in a disjoint way). Then, the learned
Autoencoder parameters (e.g., weights and biases) and cluster representa-
tives (through applying k-means on the learned representations) are used
to initialize the Autoencoder parameters and cluster representatives before
training a DC framework.

One of the most known algorithms in this category is Deep Clustering Net-
work (DCN) [29]. This k-means based algorithm is one of the first algorithms
in Autoencoder based DC algorithms. DCN first pretrains an Autoencoder
then after initializing Autoencoder parameters and cluster representatives,
optimizes Autoencoder loss and clustering loss in an alternative way. This al-
gorithm claims to be k-means friendly meaning that the final representations
are closed to a k-means friendly space. Since our proposed method is also
based on k-means, later we will provide more details and analysis with respect
to this algorithm. Preserving local structure of the data is a challenging task
that many papers tried to address. Deep Embedding Network (DEN) [30]
is one of these algorithms which first tries to pretrain an Autoencoder and
then applies a locally preserving constraint. Improved Deep Embedding
Clustering (IDEC) [31] is another approach which tries to preserve the local
structure of the data. This soft clustering algorithm employs Autoencoders
to learn representations for the clustering as well. Moreover, the clustering
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loss contains Kullback Leibler (KL) divergence between the soft labels and
the predicted labels. Finally, the total loss function is a combination of
clustering loss and Autoencoder loss. IDEC obtained state-of-the-art results
for different types of datasets (e.g., image, text and etc.). We have selected
this algorithm as another baseline to compare our proposed framework with.
Later in this chapter, details of this algorithm will be discussed as well.

Deep Multi-Manifold Clustering (DMC) [32] is a deep learning based
multi-manifold clustering approach that proposes a loss function which
contains three elements. The first element is the clustering loss which makes
the data representations to be cluster friendly. The second term in the loss
is the Autoencoder loss which helps to obtain new data representations and
finally a locally preserving loss which makes the representations useful and
meaningful. In addition to these approaches, in [33] Gaussian Mixture Model
(GMM) [34] and k-means are used in a deep continuous framework where
cluster representatives and network parameters are updated in a joint way.
In this paper, a new relaxation funtion is introduced based on Alternating
Direction of Multiplier Method (ADMM) [35]. A GMM based deep learning
model is also proposed in [36]. In this paper, first it has been tried to decrease
intra-cluster variance by obtaining more suitable representations and finally
increase inter-cluster variance to make clusters more separable.

Figure 3.1 illustrates the general architecture of Autoencoder based DC
approaches.

Figure 3.1: General DC architecture.
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Different from approaches mentioned earlier, in [37] a new fast clustering
approach based on the denoising Autoencoders is proposed. This method is
inspired by the objective function of k-means and spectral clustering. In [38],
deep stacked Autoencoders and graph clustering are combined such that by
the help of stacked Autoencoders, the nonlinear embeddings of the graph is
obtained first. Sequentially, this algorithm performs k-means algorithm on
the learned embeddings to obtain final cluster representatives. It has been
proved that the proposed method obtains state-of-the-art results compared
to spectral clustering algorithm.

Clustering can be performed by utilizing pair-wise constraints [39] as
well. The main idea of this paper is that similar pairs should have similar
representations in the embedding space while dissimilar pairs should have
different distant embeddings. The authors have used K-Nearest Neighbor
(KNN) to obtain pairwise relations (for each data point the closes point is
the similar point). This approach can be extended when partial labels are
available (semi-supervised learning). In this case, both KNN and labels are
used to build the pairwise relations. In [40] pairwise relations are being used
in the pretraining phase. Indeed, this paper is focused more on pretraining
phase of clustering since it has been assumed that by achieving better results
in the pretraining phase, we can obtain overall better results in DC as well.
The pretrained loss contains the weighted sum of all pairwise similarities.
It has been illustrated that by utilizing this strategy, one can obtain state-
of-the-art results for MNIST dataset. An ensemble learning framework is
proposed in [41]. This paper focuses on non-linear dimensionality reduction
by using an Autoencoder and attempts to fuse different layers of Autoencoder
to capture salient information from high dimensional data. This framework
can achieve robust results especially for imbalanced clusters. In [42], different
Autoencoders have been combined to produce different representations for
each cluster. No regularization techniques are needed for this algorithm to
avoid singleton cluster. In [43] the embeddings obtained from an Autoencoder
are fed to a DNN to assign embeddings to different clusters. It has been
claimed that this approach can yield a k-means friendly space (similar
to DCN). Indeed, by applying k-means on the learned embeddings (after
training phase), more suitable results are obtained compared to similar
methods. Maximizing Inter-cluster variance and minimizing Intra-cluster
variance for image datasets has been studied in [44]. In this paper, for each
image, one related image and one non-related image are selected. The goal
is to make the representation of the input image close enough to the related
image while it is well-separated from the non-related one.

In [45] a dual deep Autoencoder has been used which maps the input
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and its noisy version of the image into a latent space then applies clustering.
The results have shown that the method is robust to noisy data as expected.
Dual-Adversarial Autoencoder is another method which uses dual adversarial
Autoencoders. This method is able to simultaneously maximize the likelihood
function and mutual information between observed examples and a subset
of latent variables [46]. A dynamic Autoencoder is designed and used in
an unsupervised framework such that the reconstruction error is gradually
eliminated from the loss function [47]. Inspired by PCA-k-means [48], an
orthogonal feature producing Autoencoder has been proposed in [49]. This
Autoencoder has been employed in a joint clustering framework.

A new definition of denoising Autoencoder for text data has been pro-
posed in [50]. In this paper, each document is not only influenced by its
own information but by the neighboring documents as well. Neighboring
documents are identified by cosine similarity. This algorithm has shown
advantageous results specially on real-world datasets where a clustering algo-
rithm is applied on the learned embeddings. The combination of the feature
selection algorithms and Autoencoders has shown promising results [51].
Since not all hidden units are beneficial to obtain a well-separable embedding
space, feature selection algorithms are used to extract only useful hidden
units.

Variational Deep Embedding [52] is an unsupervised DC framework
which employs Variational Autoencoders and GMM in its framework. In this
algorithm, first GMM picks a cluster and then a latent embedding is generated
from the chosen cluster. Finally DNNs decode the latent embedding into an
output.

Deep Adversarial Clustering (DAC) [53] is another deep clustering ap-
proach which is based on Adversarial Autoencoders [54]. This algorithm
utilizes adversarial training procedure to match the posterior of the latent
representation with the prior distribution. DAC comprises of three losses:
clustering loss, adversarial loss and reconstruction loss. Fig 3.2 illustrates
the architecture of the Adversarial Autoencoder which is used by DAC.

Categorical Generative Adversarial Network (CATGAN) [55] is another
variation of GANs which has been used for unsupervised learning representa-
tion. The proposed framework of CATGAN is slightly different from GAN.
Indeed, in this approach, the discriminator tries to classify the data into
a chosen number k categories instead of two categories (real or fake) like
GAN. In this case, the generator generates samples belonging to one of the
k clusters. Figure 3.3 illustrates the architecture of this approach.

ADEC [56] utilizes adversarial Autoencoders and k-means in a joint DC
framework where cluster representatives and network parameters are updated
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Figure 3.2: AAE architecture.
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Figure 3.3: CATGAN architecture.
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in a joint way.
Subspace clustering is another concept of deep learning which recently has

been combined with DNNs. In subspace clustering the goal is to project each
cluster into different subspaces. In [57] a novel architecture of deep subspace
clustering has been proposed. In this paper, both local and global structure
of the data have been preserved in the embedding space. Moreover, in this
paper a prior sparsity information is considered in the representation learning
phase to preserve the sparse reconstruction relations over the whole data.
Another subspace clustering based on DNN is proposed in [58] where learning
representations and clustering assignment has been done simultaneously.
Using self-expressiveness property [59,60] in deep subspace clustering was
another novelty that is presented in [61]. In this paper deep clustering is
framed as a subspace clustering problem such that mapping from the original
data space to a low-dimensional subspace is learned by an Autoencoder. The
key contribution of this paper is the self-expressive layer in junction with
encoder and decoder which have been defined to encode self-expressiveness
property. In [62] a deep generative CNN is used to preserve local information
of data.

Deep Continuous Clustering (DCC) [63] is another deep clustering al-
gorithm which is based on Robust Continuous Clustering (RCC) [64]. As
the name implies, this method also benefits from jointly optimizing an Au-
toencoder and cluster representatives. In this method, the data is embedded
into a lower dimension by an undercomplete Autoencoder and then it will be
assigned to one of the clusters. Being independent of any prior knowledge of
the number of ground-truth clusters is the highlight of the paper.

Deep Spectral Clustering (DSC) is another DC algorithm which has been
studied recently. In [65] first a few points called landmarks are used to
generate an adjacency matrix of the corresponding graph of the dataset.
Then, a deep Autoencoder is used to perform eigen decomposition through
defining the laplacian matrix of the graph. Spectral Clustering via Ensemble
Deep Autoencoder Learning (SC-EDAE) [66] is another approach which
has combined spectral clustering and DNNs. In this paper, first several
Autoencoders with different hyperparameters are used to produce different
representations. Then, these representations will be combined into a space
which is shared among Autoencoders. Finally, the ensemble representations
are fed to a subspace clustering algorithm. SpectralNet is a new approach in
DSC [67] which is proposed to address major drawbacks of spectral clustering.
In this algorithm, first an Autoencoder learns a function which maps the
input data into the eigenspace of their associated laplacian matrix then



20 3. RELATED WORK

groups them into different clusters. Additionally, in this paper, a new train-
ing procedure based on stochastic optimization is proposed. The learned
mapping function by Autoencoder allows SpectralNet to reach a better gen-
eralization while the proposed stochastic optimization improves its scalability.

3.2.2 Non-Autoencoder based Deep Clustering Approaches

In this category, instead of utilizing Autoencoders, any DNN algorithm can
be used to map the data from the original space into k separate clusters
directly.

Deep Embedded Regularized Clustering (DEPICT) [68] utilizes several
layers of CNNs which are stacked by a multinomial logistic regression function.
Also a KL divergence loss function has been used for clustering loss which
is normalized by a prior reflecting the frequency of cluster assignments.
Moreover, a regularization term has been defined which encourages balanced
clustering. This algorithms shows promising results for clustering image
data.

In the majority of the DC algorithms designed for image datasets, mostly
the attention is towards introducing new architectures of CNNs. For instance,
General Adversarial Neural Networks (GANs) [69] is one of the most popular
DNNs algorithms that have been used for both supervised and unsupervised
tasks. In this framework, a generative model and a discriminative model
compete to defeat each other. The generative model tries to capture the
distribution of the data while the discriminative model tries to estimate the
probablity that a sample comes from training samples rather than generative
model. GANs have been first studied for unsupervised learning in [70] where
they have been used to learn representations in an unsupervised way. In this
paper, a new CNN based GAN with a few constraints on the architecture
has been proposed for learning representations of image datasets in an
unsupervised manner. Although it is not guaranteed that this architecture
can be used for other types of data rather than images, this approach obtains
promising results for image datasets.

HashGan [71] is another approach which addresses the limitations of
Deep Hash Clustering [72] approaches by introducing a new loss function
and sharing discriminator and encoder parameters. This approach has
shown improvements on the real image datasets compared to similar other
approaches. A new framework of unsupervised learning which employs GAN
is proposed in [73]. In this framework, clustering is used as a final step to
solve the problem of unsupervised fine-grained object category discovery.
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In [74] a novel algorithm is proposed which uses a joint optimization
to learn cluster representatives and network parameters simultaneously. In
this algorithm, first data is embedded using NNs then a cost function is
defined such that learning cluster representatives and data representations
are performed simultaneously. Finally, an additional layer is introduced
to map the embedded data into logits which allows obtaining clustering
memberships. In [75] multiple convolutional layers are stacked on top of
each other and in the last layer, softmax is applied to obtain clustering
distributions. In this paper, a discriminative loss is applied which enables the
network to decrease intra-cluster variance and increase inter-cluster variance.
This method achieves state-of-the-art results on image datasets.

Clustering Convolutional Neural Network (CCNN) [76] is another ap-
proach which as the name implies, is strongly dependent on CNNs. This
approach first uses a pretrained model on ImageNet dataset to learn initial
data representations and cluster representatives. In each iteration of the
training phase, cluster representatives, cluster assignment and network pa-
rameters are updated (through back propagation). This algorithm reduces
memory consumption compared to other CNN-based algorithms and proposes
a novel way of updating cluster representatives. In [77] a recurrent process
has been proposed. In this algorithm a CNN has been used to map the data
from original space into several new spaces and finally hierarchical clustering
is applied on the learned representations to obtain cluster representatives.
In the forward pass, two clusters can be merged based on the predefined loss
while in the backward pass, data representations obtained from CNN will be
updated based on the merged clusters.

In [78] the clustering task has been transformed into a binary pairwise-
classification framework to determine whether pairs of images belong to
the same cluster or not. Due to the unsupervised nature of clustering, the
CNN-based classifier in this approach is only trained on the noisily labeled
examples obtained by selecting difficult-to-cluster samples in a curriculum
learning fashion.

Information Maximizing Self-Augmented Training (IMSAT) [79] is an-
other method which is a combination of NNs and regularized Information
Maximization (RIM) [80]. In this paper, the goal is to design a function
which maps the data into several discrete representations (clustering is a
special task of this approach).

Deep Nonparametric Clustering (DNC) [81] is another clustering method
which relies on Deep Belief Networks (DBN) [82]. In this algorithm first
data representations are obtained by passing the input data through a DBN.
Sequentially, a nonparametric maximum margin clustering [83] is applied
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on the learned representations. Afterwards, a fine-tuning process will be
performerd to update DBN parameters. Deep Density Clustering is another
novel approach in the domain of DC [84] which has been used for image
data. As the name implies, this method is based on density of the local
neighborhood in the feature space.

Deep Embedding Clustering (DEC) [85] is one of the most remarkable
methods in DC. In this algorithm, first an Autoencoder is pretrained by
optimizing the reconstruction loss. Then, the decoder part of the network will
be eliminated and the encoder part will be fine-tuned in the training process of
clustering. In this approach, cluster representatives will be updated based on
the KL divergence between soft labels and auxiliary target distribution. This
algorithm has become one of the main baselines among DC algorithms. DEC
with Data Augmentation (DEC-DA) [86] is an extension of DEC by using
data augmentation. In this algorithm, first an Autoencoder is pretrained by
using both original data and augmented data. Finally clustering is applied
on the original non-augmented data (similar to DEC).

Discriminatedly Boosted Clustering (DBC) [87] is another clustering
method which has exactly the same structure as DEC but instead of using
FFNNs, it benefits from CNNs. Using CNNs vividly empowers DBC for
clustering image datasets compared to DEC .

Completely different from other DC algorithms that utilize only encoder
part of an Autoencoder, in [88] partial pairwise relationships between all
samples of a given dataset are used to build a DC framework. In this paper,
the relation between each pair is identified as must-link (ML) (of the same
cluster) or cannot-link (CL) (of different clusters). The data samples and
their relationships (ML or CL) are fed to a DNN and the goal is to: 1 )
minimize KL divergence loss between ML pairs and 2) maximize the KL
divergence loss between CL pairs. In this algorithm, clustering assignments
are obtained at the output layer where a softmax function is applied. To
obtain reasonable results, this algorithm requires additional information
about pairwise relation of the samples while in real scenarios where all labels
are not available, this algorithm can not function well. Figure 3.4 illustrates
the architecture of this algorithm.

Despite interesting recent advances in DC algorithms, most of these
algorithms are designed for specific tasks or specific kinds of data (e.g.,
images, text and etc.). There are a few algorithms that have attempted to
address the imitations exist in DC. Since our proposed DC framework is
based on k-means algorithm, DCN and IDEC are the ones which share the
most characteristics with our approach. The details of these algorithms are
given below.
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Figure 3.4: Pairwise Clustering Architecture.

IDEC As mentioned earlier, IDEC is an improved version of DEC where
instead of discarding the decoder part of the Autoencoder, it benefits from
the reconstruction loss obtained through the decoder during the training.
The reconstruction loss is defined as:

Lrec(X , η, θ) =
∑
x∈X

δI(x, gη◦fθ(x)) (3.1)

Where fθ(x) is the embedding of the data and gη◦fθ(x) is the reconstructed
version of the data obtained from the output layer. δI can be defined as a
dissimilarity measure (e.g., Euclidean, cosine and etc.). After pretraining the
Autoencoder over the whole data, the clustering loss shall be computed. In
this algorithm, clustering is based on KL divergence between soft computed
labels (Q) and the target distribution (P) obtained from Q. The soft labels
can be computed as following:

qi,j = (1 + ||fθ(xi)− rj ||2)−1∑
j(1 + ||fθ(xi)− rj ||2)−1 (3.2)
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Where xi is the i’th input and rj is the j’th cluster representative. qi,j is
defined as the similarity between the i’th embedded input and j’th cluster
representative. As mentioned earlier, pi,j is computed based on qi,j . Thus
the target distribution is computed as follows:

pi,j =
q2
i,j/

∑
i qi,j∑

j(q2
i,j/

∑
i qi,j)

(3.3)

Finally the clustering loss is defined as:

Lclus = KL(P ||Q) =
∑
i

∑
j

pi,jlog
pi,j
qi,j (3.4)

Formula 3.5 represents the IDEC loss function. The IDEC loss (similar
to major DC algorithms loss functions) is a combination of reconstruction
loss and clustering loss. λ is a hyper-parameter which balances the emphasis
between reconstruction loss and clustering loss.

L = Lclus + Lrec (3.5)

In IDEC, the labels can be obtained from the following formula:

si = arg max
j

qi,j (3.6)

The whole IDEC algorithm is summarized in Algorithm 2.

DCN: This algorithm even shares more similarities with our proposed
DC algorithm compared to IDEC. Generating a k-means friendly space is
the highlight of the paper. Although in the paper it has been claimed that
DCN is able to update Autoencoder weights and cluster representatives
in a joint way, based on the proposed formulation, the learning process is
performed by alternating between optimizing reconstruction loss and k-mean
loss. The proposed objective function for DCN is similar to the one defined
in Formula 3.1 (similar to IDEC). In this algorithm, the clustering loss is
defined as:

Lclus =
∑
x∈X
||fθ(x)−Rsx||22 (3.7)
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Algorithm 2: IDEC algorithm
1 Inputs: input data: X ; Number of clusters: K; Target distribution

target interval: T ; stopping threshold: δ; Maximum iterations:
MaxIter

2 Outputs: Cluster representatives: R; Labels: S
3 for iter ∈ 0, 1, ...,MaxIter
4 if iter %T==0
5 Compute the embeddings for all points
6 Compute P using Formula 3.3
7 Save last label assignments: sold = s
8 Compute new label assignments based on Formula 3.6
9 if sum(sold 6= s)/n < δ:

10 Stop training
11 Choose a minibatch
12 Update Autoencoder parameters and cluster representatives

where R is the set of cluster representatives and sx is assignment of data
point x to one of the cluster representatives. Finally the loss can be defined
as:

L = Lclus + Lrec (3.8)

In this algorithm first an Autoencoder is pretrained and sequentially
the weights of the Autoencoder, cluster representatives (rk, k ∈ 1...K) and
cluster assignments (S) are initialized. To optimize the loss function proposed
in Formula 3.8, an alternative optimization technique is used. First the
reconstruction loss (Formula 3.1) is optimized using back propagation. Then
to optimize clustering loss (Formula 3.7), a new optimization algorithm
is proposed. In this optimization algorithm, first cluster assignments are
obtained as follows:

sx,j =

 1, ifj = arg min
k∈1...K

||fθ(x)− rk||2

0, otherwise
(3.9)

To optimize cluster representatives (R), let us denote cxk as the number
of times the algorithm assigned sample x to cluster k.
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rk = rk − ( 1
cxk

)(rk − fθ(x))sx,k (3.10)

Because of this alternative optimization scheme, DCN is not able to
update cluster representatives and Autoencoder weights in a truly joint way.
In the next chapter, we will discuss how our proposed DC framework is able
to update cluster representatives and Autoencoder weights in a truly joint
way which yields better performance and a space which is more k-means
friendly compared to DCN.

Algorithm 3 summarizes DCN algorithm.

Algorithm 3: DCN algorithm
1 Inputs: input data: X ; Number of clusters: K; R: sets of cluster

representatives, s: cluster assignments
2 Outputs: Cluster representatives: R; Labels: S
3 for i in number of epochs:
4 for j in number of batches:
5 Withdraw a minibatch
6 Compute reconstruction loss using Formula 3.1
7 Update cluster assignments (S) using Formula 3.9
8 Update cluster representatives (R) using Formula 3.10
9 Compute clustering loss (Lclus) using Formula 3.7

10 Compute total loss (L) using Formula 3.8

3.3 Constrained Clustering Approaches

Due to the subjectivity aspect of clustering, different users might impose
different constraints on clustering. For instance, to cluster a set of news
articles, one might be interested in having two clusters where one indicates
liberal views and the other one democratic views, while another user might
be interested in dividing documents into economy and environment topics.
Constraints can take different forms such as seed words and pairwise con-
straints. Seed words correspond to sets of words which are able to characterize
and define each cluster. For instance, ‘player’, ‘coach’, ‘stadium’ can be
considered as descriptive seed words for a sports cluster while ‘politician’,
‘congress’, ‘president’ are able to describe politics.

Additionally, one might use pairwise constraints where a set of must-
link and cannot-link documents are used as side information which can lead
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towards better clustering results. As the names imply, must-link pairs contain
documents coming from the same category while cannot-link pairs contain
documents coming from different categories.

Following in this Chapter, we review some of the works in these domains.
As this thesis is mainly focused on the document clustering, we concentrated
on constraints in this domain while in other domains (e.g., image clustering)
the nature of the constraints can be different [89].

3.3.1 Seed Words Based Approaches

The constrained clustering problem which includes seed words in fact bears
strong similarity with the one of seed-guided dataless text classification,
which consist in categorizing documents based on a small set of seed words
describing the classes/clusters.

The task of dataless text classification was introduced independently
in [90] and [91]. In [90], the seed words are provided by a user and exploited
to automatically label a part of the unlabeled documents. On the other
hand, in [91], seed words initially correspond to labels/titles for the classes of
interest and are extended based on co-occurrence patterns. In both cases, a
Naive Bayes classifier is applied to estimate the documents’ class assignments.
In the wake of these seminal works, several studies further investigated the
exploitation of seed words for text classification [92–94]. Both an ‘on-the-
fly’ approach and a bootstrapping approach by projecting seed words and
documents in the same space were introduced in [92]. The former approach
simply consists in assigning each document to the nearest class in the space,
whereas the latter learns a bootstrapping Naive Bayes classifier with the
class-informed seed words as initial training set. Another bootstrapping
approach is studied in [94], where two different methods are considered to
build the initial training set from the seed words: Latent Semantic Indexing
and Gaussian Mixture Models. The maximum entropy classifier proposed
in [93] instead directly uses seed words’ class information by assuming that
documents containing seed words from a class are more likely to belong to
this class.

More recently, the dataless text classification problem was addressed
through topic modeling approaches [95–98], extending the Latent Dirichlet
Allocation model [99]. The topic model devised in [95] integrates the seed
words as pseudo-documents, where each pseudo-document contains all the
seed words given for a single class. The co-occurrence mechanism underlying
topic models along with the known class membership of pseudo-documents
help guide the actual documents to be classified towards their correct class.
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In [96], the Seed-guided Topic Model (STM) distinguishes between two types
of topics: category topics and general topics. The former describe the class
information and are associated with an informed prior based on the seed
words, whereas the latter correspond to the general topics underlying the
whole collection. The category topics assigned to a document are then used
to estimate its class assignment. STM was extended in [98] to simultaneously
perform classification and document filtering – which consists in identifying
the documents related to a given set of categories while discarding irrelevant
documents – by further dividing category topics into relevant and non-
relevant topics. Similarly to STM, the Laplacian Seed Word Topic Model
(LapSWTM) introduced in [97] considers both category topics and general
topics. It however differs from previous models in that it enforces a document
manifold regularization to overcome the issue of documents containing no
seed words. If these models outperform previously proposed models, they
suffer from a lack of flexibility on the input representations they rely on.
Indeed, topic models require documents to be organized as sets of discrete
units – the word tokens. This prohibits the use of representation learning
techniques such as word embeddings (e.g., word2vec [100] and GloVe [101]).
Moreover, in these approaches, representation learning is not performed.

For a more general survey on constrained clustering, we invite the reader
to refer to [102]

In this thesis, we discuss our proposed SD2C framework which is able
to employ Autoencoders for representation learning. Indeed, SD2C is able
to bias data representations based on the seed words provided by the users.
Later in Chapter 5 we discuss our proposed framework in more details.

3.3.2 Must-link and Cannot-link Based Approaches

As mentioned earlier, additional information can help users to reflect their
needs in clustering and pairwise constraints are one of them. So far, there have
been a few studies in deep learning-based approached which address handling
this type of constraints. For instance in [103] a deep clustering framework
with a KL- divergence loss has been designed which is able to handle multiple
types of constraints simultaenously. Also, there have been many works
that utilized this information in non-deep clustering frameworks [104–109].
In [104], pairwise constraints have been used in a generative framework
where Expected Maximization (EM) and Generalized EM procedures have
been used to handle Must- link and Cannot-link constraints respectively.
A boosting clustering algorithm named BoostCluster [106] is proposed to
improve accuracy of any given clustering algorithms iteratively by using
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pairwise constraints information. Maximum Margin Clustering (MMC) [110]
which borrows from the theory of support vector machines [111] is coupled
with pairwised constraints [107] to improve the accuracy of original MMC
model. k-means objective function has been modified in [105] to utilize the
pairwise constraints information. Although in all mentioned approaches
an auxiliary term has been added to the clustering loss to improve its
performance, in [108] and [109], using pairwise constraints is investigated in
the domain of semi-supervised learning. Using pairwise constraints can be
beneficial and lead toward better results, yet these approaches suffer from
using the data in the original space and do not learn any new representations
from the data.

Similar to seed words based approaches, in none of the above approaches,
representation learning is not performed. Indeed, in Chapter 5 we introduce
our PCD2C framework which is able to bias data representations based on
the must-link and cannot-link constraints provided by users.

In the next Chapter we discuss our proposed DKM framework which is
able to learn data representations and k-means cluster representatives in a
truly joint way.
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Deep k-means Clustering

4.1 Introduction

In previous chapters we reviewed clustering and recent advances in DC.
Although there are variety of DC algorithms, yet applicability of these
algorithms for different types of data (e.g., image, text and etc.) is unknown.
Indeed, most of the proposed approaches in DC are specifically designed
for one type of data (mostly images). In this section we will propose our
Deep k-means (DKM) approach. In fact, first, we study the problem of
jointly clustering and learning representations. As several previous studies
have shown, learning representations that are both faithful to the data to
be clustered and adapted to the clustering algorithm can lead to better
clustering performance, all the more so that the two tasks are performed
jointly. We propose here such an approach for k-Means clustering based
on a continuous reparametrization of the objective function that leads to
a truly joint solution. Indeed, we have shown that one can solve k-means
non-differentiability problem simply by using a softmax function instead
of argmin. The behavior of our approach is illustrated on various datasets
showing its efficacy in learning representations for objects while clustering
them. The proposed DKM approach has been tested on variety types of data
including image and text data. The obtained results show generalizability of
our proposed approach. Later in this chapter, we provide more details on
our proposed DKM framework.

31
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4.2 Deep k-means

As mentioned earlier, due to non-differentiability of k-means objective func-
tion, jointly learning data representations and cluster representatives is not
feasible. Indeed, in order to employ k-means in a DC framework, proposing
a new k-means objective function which allows the gradients to be computed
is necessary. In DCN [29], through an alternative updating of cluster rep-
resentatives and data representations, it has been tried to address k-means
non-differentiability problem. On the contrary, our proposed framework ben-
efits from jointly updating cluster representatives and data representations.
In this section we introduce our proposed DKM framework such that all
network and clustering parameters are updated simultaneously.

In the remainder, x denotes an object from a set X of objects to be
clustered. K will denote the number of clusters to be obtained, rk ∈ Rp

the representative of cluster k, 1 ≤ k ≤ K, and R = {r1, . . . , rK} the set of
representatives. We use the term representative rather than centroid here
to emphasize the fact that in case of similarity functions, or dissimilarity
functions different from the Euclidean distance (e.g., cosine distance), the
representative of a cluster does not necessarily coincide with its centroid. δI

and δE will denote similarity or dissimilarity functions in Rp; for any vector
y ∈ Rp, cδE (y;R) will denote the closest representative of y according to δE .

The deep k-Means problem takes the form:

min
R,θ,η

∑
x∈X

δI(gη◦fθ(x), x) + λ δE(fθ(x), cδE (fθ(x);R)),

with: cδE (fθ(x);R) = arg min
r∈R

δE(fθ(x), r) (4.1)

δI(gη◦fθ(x), x) is the reconstruction loss function that measures the error
between an object x and its reconstruction by the Autoencoder gη◦fθ(X ).
θ and η represent, as before, the set of the parameters of the Autoencoder.
Figure 4.1 provides an overview of the proposed Deep k-Means approach.
However, as most Autoencoders do not use regularization, we dispense with
such a term here. δE(fθ(x), cδE (fθ(x);R)) is the clustering loss corresponding
to the generalized k-Means objective function in the embedding space. Finally,
λ in Formula 4.1 regulates the trade-off between seeking good representations
for x – i.e., representations that are faithful to the original examples – and
representations that are useful for clustering purposes.



4.2. DEEP k-MEANS 33

Standard k-Means is obtained by setting δE to the Euclidean distance,
whereas generalized k-Means with the cosine similarity is obtained by setting
δE to the cosine function. δI can also be set to Euclidean or cosine. In the
remainder, we focus on functions δI that are differentiable wrt θ and η and
functions δE that are differentiable wrt to θ, η and R, where differentiability
wrt R means differentiability wrt to all dimensions of rk, 1 ≤ k ≤ K.

We now introduce a parametrized version of the above problem that
constitutes a continuous generalization, whereby we mean here that all
functions considered are continuous wrt the introduced parameter. To do so,
we first note that the clustering objective function can be rewritten as:

δE(fθ(x), cδE (fθ(x);R)) =
K∑
k=1

δEk (fθ(x);R)

with:

δEk (fθ(x);R) =

f(fθ(x), rk) if rk = cδE (fθ(x);R)
0 otherwise

Let us now assume that we know some function Gk(fθ(x), α;R) such that:

(i) Gk is differentiable wrt to θ,R and continuous wrt α (differentiability
wrt R has the meaning as before);

(ii) ∃α0 ∈ R ∪ {−∞,+∞} such that:

lim
α→α0

Gk(fθ(x), α;R) =

1 if rk = cδE (fθ(x);R)
0 otherwise

Then, one has:

Lemma 4.2.1. ∀x ∈ X :

lim
α→α0

δE(fθ(x), rk)Gk(fθ(x), α;R) = δEk (fθ(x);R)

The proof directly derives from the definitions of δEk and Gk.

From Lemma 4.2.1, one can see that:
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Figure 4.1: Overview of our Deep k-Means approach instantiated with losses based on the
Euclidean distance.

Property 4.2.1. The problem given in (4.1) is equivalent to:

min
R,θ

lim
α→α0

F(X , α; θ,R),

with:F(X , α; θ,R) =

F(X ,α;θ,R)︷ ︸︸ ︷∑
x∈X

δI(gη◦fθ(x), x) + λ
K∑
k=1

δE(fθ(x), rk)Gk(fθ(x), α;R)

(4.2)

All functions in the above formulation are fully differentiable wrt both θ
and R. One can thus estimate θ and R through a simple, joint optimization
based on stochastic gradient descent (SGD) for a given α:

(θ, R)← (θ, R)− η 1
|X̃ |
∇(θ,R)F(X̃ , α; θ,R) (4.3)

with η the learning rate and X̃ a random mini-batch of X and ∇(θ,R) the
gradients with respect to θ and R.

4.2.1 Choice of Gk

Several choices are obviously possible for Gk. A simple choice, used through-
out this study, is based on a parametrized softmax function. The fact that
the softmax function can be used as a differentiable approximation of arg max
or arg min is well known and has been applied in different contexts, as in the
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recently proposed Gumbel-softmax distribution employed to approximate
categorical samples [112, 113]. We introduce a parametrized version here
to better control the approximation and rely on a deterministic annealing
scheme (see Section 4.2.2). The parametrized softmax function which we
adopted takes the following form:

Gk(hθ(x), α;R) = e−αδ
E(fθ(x),rk)∑K

k′=1 e
−αδE(fθ(x),rk′ )

(4.4)

with α ∈ [0,+∞). The function Gk defined by Eq. 4.4 is differentiable wrt
θ,R and α (condition (i)) as it is a composition of functions differentiable
wrt these parameters. Furthermore, one has:

Property 4.2.2. (condition (ii))
Assuming that cδE (hθ(x);R) is unique for all x ∈ X ,

lim
α→+∞

Gk(fθ(x), α;R) =

1 if rk = cδE (fθ(x);R)
0 otherwise

Proof: Let rj = cδE (hθ(x);R) and let assume that δE is a dissimilarity
function. One has:

K∑
k′=1

e−αδ
E(fθ(x),rk′ ) = e−αδ

E(fθ(x),rj) ×

1 +
∑
k′ 6=j

e−α(δE(fθ(x),rk′ )−δE(fθ(x),rj))


As δE(fθ(x), rj) < δE(fθ(x), rk′), ∀k′ 6= j, one has:

lim
α→+∞

e−α(δE(fθ(x),rk′ )−δE(fθ(x),rj)) = 0

Thus lim
α→+∞

Gk(fθ(x), α;R) = 0 if k 6= j and 1 if k = j. The case where δE

is a similarity function can be treated in the same way.
The assumption that δE(fθ(x);R) is unique for all objects is necessary for

Gk to take on binary values in the limit; it is not necessary to hold for small
values of α. In fact, when α is set to 0, then the optimization problem given
in (4.2) has a unique solution obtained by setting all representatives to the
(single) vector that optimizes

∑
x∈X f(fθ(x), r) (this vector corresponds to the

centroid of all embedded representations when δE is the Euclidean distance).
In the unlikely event that the above assumption does not hold for some x
and large values of α, then one can slightly perturbate the representatives
equidistant to x prior to updating them. We have never encountered this
situation in practice.
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Finally, under the uniqueness assumption above, Eq. 4.4 defines a valid
(according to conditions (i) and (ii)) function Gk that can be used to solve
the optimization problem given in (4.2). We adopt this function in the
remainder of this study.

Prior to studying the effect of α in Eq. 4.4, we want to mention another
possible choice forGk. AsGk(fθ(x), α;R) plays the role of a closeness function
for object x wrt representative rk, membership functions used in fuzzy
clustering are potential candidates for Gk. In particular, the membership
function of the fuzzy C-Means algorithm [10] is a valid candidate according
to conditions (i) and (ii). It takes the form, for dissimilarity functions:

Gk(fθ(x), α;R) =

 K∑
k′=1

(
δE(fθ(x), rk)
δE(fθ(x), rk′)

) 2
α−1

−1

with α defined on [1; +∞] and α0 (condition (ii)) equal to 1. However, in
addition to being slightly more complex than the parametrized softmax,
this formulation presents the disadvantage that it may be undefined when a
representative coincides with an object; another assumption (in addition to
the uniqueness assumption) is required here to avoid such a case.

4.2.2 Choice of α

The parameter α can be defined in different ways. Indeed, α can play the
role of an inverse temperature such that, when α is 0, each data point in
the embedding space is equally close, through Gk, to all the representatives
(corresponding to a completely soft assignment), whereas when α is +∞,
the assignment is hard. In the first case, for the deep k-Means optimization
problem, all representatives are equal and set to the point r ∈ Rp that
minimizes

∑
x∈X

f(fθ(x), r). In the second case, the solution corresponds to

exactly performing k-Means in the embedding space, the latter being learned
jointly with the clustering process. Following a deterministic annealing
approach [114], one can start with a low value of α (close to 0), and gradually
increase it till a sufficiently large value is obtained. At first, representatives
are randomly initialized. As the problem is smooth when α is close to
0, different initializations are likely to lead to the same local minimum in
the first iteration; this local minimum is used for the new values of the
representatives for the second iteration, and so on. The continuity of Gk
wrt α implies that, provided the increment in α is not too important, one
evolves smoothly from the initial local minimum to the last one.

In the above deterministic annealing scheme, α allows one to initialize
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Algorithm 4: Deep k-Means algorithm
Input: data X , number of clusters K, balancing parameter λ,

scheme for α, number of epochs T , number of minibatches
N , learning rate η

Output: autoencoder parameters θ (encoder parameter) and η
(decoder parameter), cluster representatives R

1 Initialize θ and rk, 1 ≤ k ≤ K (randomly or through pretraining)
2 for α = mα to Mα do . inverse temperature levels
3 for t = 1 to T do . epochs per α
4 for n = 1 to N do . minibatches
5 Draw a minibatch X̃ ⊂ X
6 Update (θ, R) using SGD (Eq. 4.3)
7 end
8 end
9 end

cluster representatives. The initialization of cluster representatives can
have an important impact on the results obtained and prior studies (e.g.,
[29–31, 85]) have relied on pretraining for this matter. In such a case, one
can choose a high value for α to directly obtain the behavior of the k-Means
algorithm in the embedding space. We evaluate both approaches in our
experiments (Section 4.3).

Algorithm 4 summarizes the deep k-Means algorithm for the determin-
istic annealing scheme, where mα (respectively Mα) denote the minimum
(respectively maximum) value of α, and T is the number of epochs per each
value of α for the stochastic gradient updates. Even though Mα is finite,
it can be set sufficiently large to obtain in practice a hard assignment to
representatives. Lastly, when using pretraining, one sets mα = Mα (i.e., a
constant α is used).

4.3 Experiments

In order to evaluate our proposed DKM framework and other clustering and
DC approaches, we conducted massive experiments on different datasets.
Following this section we discuss the details of the experiments including the
datasets that have been used for evaluation, experimental setups, etc.
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4.3.1 Datasets

Different kinds of data including text and image have been used to evaluate
different clustering and DC approaches. These datasets are detailed in the
following.

Image datasets

The datasets that are used in the experiments are standard clustering bench-
mark collections. We considered both image and text datasets to demonstrate
the general applicability of our proposed approach. Image datasets consist
of MNIST (70,000 images, 28 × 28 pixels, 10 classes) and USPS (9,298
images, 16 × 16 pixels, 10 classes) which both contain hand-written digit
images. We reshaped the images to one-dimensional vectors and normalized
the pixel intensity levels (between 0 and 1 for MNIST, and between -1 and 1
for USPS). Below more detailed information can be found about these image
data.

MNIST dataset

MNIST data is one of the most widely used datasets in the field of image
clustering which contains handwritten digits. This dataset has been also
used for training and testing multiple supervised learning algorithms as well.
MNIST is a combination of another dataset which is called NIST. Train and
test sets of NIST have been obtained by sampling from two different sources:
1) American Census Bureau and 2) American high school students. Although
in unsupervised approaches the whole MNIST data (70,000 samples) are
being used, originally the MNIST data includes 60,000 training and 10,000
test samples. Half of the training set and half of the test set were obtained
from NIST’s training samples while the other half is obtained from the
NIST’s test samples. Figure 4.2 illustrates an example of MNIST dataset.

Figure 4.2: Examples from the MNIST dataset.

USPS dataset

Similar to MNIST, this dataset contains handwritten digits (0-9). The
samples of this dataset have been collected from U.S Post Office. The
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envelopes were scanned and digits were presented as binary values of different
sizes and orientations. AT & T Research Lab (in collaboration with Yann
Le Cun) made this dataset available for research purposes. This dataset is
imbalanced and the test set has been considered as difficult to discriminate
(an error rate of 2.5% has been considered notoriously good). USPS includes
7291 training and 2007 test samples. Table 4.1 provides more detailed
information about this dataset.

Table 4.1: Detailed information about each class of USPS dataset.

Set 0 1 2 3 4 5 6 7 8 9 Total
Training 1194 1005 731 658 652 556 664 645 542 644 7291
Test 359 264 198 166 200 160 170 147 166 177 2007
Training+Test 1553 1269 929 824 852 716 834 801 708 821 9298

Text datasets

The text collections that were considered for the experiments include: 20
Newsgroups dataset (hereafter, 20NEWS), RCV1-v2 dataset (hereafter,
RCV1), REUTERS, YAHOO, DBPEDIA and AGNEWS datasets. We
used two different word representations methods in our experiments: 1)
TF-IDF [115] and 2) Word2Vec [100].

In case of using TF-IDF, for 20NEWS, we used the whole dataset compris-
ing of 18,846 documents labeled into 20 different classes. Similarly to [31,85],
we sampled from the full RCV1-v2 collection a random subset of 10,000
documents, each of which pertains to only one of the four largest classes.
Because of the text datasets’ sparsity, and as proposed in [85], we selected
the 2000 words with the highest tf-idf values to represent each document.

In case of using Word2Vec, REUTERS, 20NEWS, YAHOO, DBPEDIA
and AGNEWS are selected for the experiments. We have trained a Word2Vec
model for each collection (after applying stemming). Skip-gram version of
Word2Vec with a window size of 50 for 20NEWS and 10 for the rest of the
datasets has been used. The embedding size is 100 for all collections. Other
word representation approaches such as pretrained Word2Vec, FastText [116]
(both pretrained and non-pretrained) and Doc2Vec [117] have been used
as well. Among all word representation techniques, training the Word2Vec
seemed to obtain better results.

Please note that for all word representations techniques, the hyperpa-
rameters which are not mentioned here have been set to their default values
provided by the Gensim1 library in Python.

1https://radimrehurek.com/gensim/models/word2vec.html

https://radimrehurek.com/gensim/models/word2vec.html
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20NEWS dataset

As the name implies, this dataset contains documents about news pertaining
to different topics. 20NEWS consists of almost 20,000 documents categorized
almost evenly into 20 different topics. For some topics it can be difficult to
discriminate them from each other since the contents can be quite similar. For
instance, comp.sys.ibm.pc.hardware and comp.sys.mac.hardware both cover
computer hardware documents while other topics can be discriminated in
an easier way. For instance, misc.forsale and soc.religion.christian represent
completely different topics. Table 4.2 illustrates additional information about
different topics in the 20NEWS dataset. Similar topics are grouped in the
same cell.

Table 4.2: Different topics in 20NEWS data. Similar topics are grouped in a shared cell.

comp.graphics
comp.os.ms-windows.misc
comp.sys.ibm.pc.hardware
comp.sys.mac.hardware
comp.windows.x

rec.autos
rec.motorcycles
rec.sport.baseball
rec.sport.hockey

sci.crypt
sci.electronics
sci.med
sci.space

misc.forsale
talk.politics.misc
talk.politics.guns
talk.politics.mideast

talk.religion.misc
alt.atheism
soc.religion.christian

REUTERS dataset

REUTERS is one of the most important and widely used text datasets in the
domain of text clustering. This dataset has been collected by Carnegie Group,
Inc. and Reuters, Ltd. Similar to other approaches [118–121] we have used
only the 10 largest (and highly imbalanced) categories. There are different
versions of REUTERS but the version that we used (REUTERS-21578) is
the most recent one. Table 4.3 includes detailed information about number of
documents in each category. The information presented in Table 4.3 indicate
a highly imbalanced dataset.

Table 4.3: Detailed information of REUTERS dataset .

acq coffee crude earn gold interest money-fx ship sugar trade Total
#documents 2292 112 374 3923 90 272 309 144 122 326 7964
Percentage(%) 28.7 1.4 4.6 49.2 1.1 3.4 3.8 1.8 1.5 4.0 ∼100
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YAHOO dataset

YAHOO dataset was introduced in [122]. The authors obtained Yahoo!
Comprehensive Questions and Answers (version 1.0) through the Yahoo!
Webscope program. The corpus contains 4,483,032 questions and correspond-
ing answers. The authors constructed a topic classification dataset from this
corpus using 10 largest categories. We use only the test set and the whole 10
categories which results in 60,000 documents which are uniformly distributed
over all 10 categories (6,000 documents for each category).

DBPEDIA dataset

DBPEDIA dataset is also introduced in [122]. DBPEDIA is a crowd-sourced
community effort to extract information from Wikipedia. DBPEDIA dataset
is formed by selecting 14 non-overlapping classes from DBPEDIA. In our
experiments, we only use the test set made of 70,000 documents uniformly
distributed in 14 classes (5,000 documents per category).

AGNEWS dataset

AGNEWS data is a collection of news article available on the web. We
have used 4 largest classes of the training set of this dataset resulting in
120,000 documents evenly distributed in 4 categories (30,000 documents per
category).

Table 4.4: Statistics of the datasets.

Dataset #Samples #Classes Dimensions
MNIST 70,000 10 28 × 28
USPS 9,298 10 16 × 16

20NEWS(TF-IDF) 18,846 20 2,000
RCV1 10,000 4 2,000

REUTERS 10,000 10 100
20NEWS(Word2Vec) 18,846 20 100

YAHOO 60,000 10 100
DBPEDIA 70,000 10 100
AGNEWS 120,000 4 100
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4.3.2 Baselines and Deep k-Means variants

Clustering models may use different strategies and different clustering losses,
leading to different properties. As our goal in this work is to study the
k-Means clustering algorithm in embedding spaces, we focus on the family of
k-Means-related models and compare our approach against state-of-the-art
models from this family, using both standard and deep clustering models. For
the standard clustering methods, we used: the k-Means clustering approach
[1] with initial cluster center selection [6], denoted KM; an approach denoted
as AE-KM in which dimensionality reduction is first performed using an
auto-encoder followed by k-Means applied to the learned representations. For
the joint deep clustering models, the only previous, “true” deep clustering
k-Means-related method is the Deep Clustering Network (DCN) approach
described in [29]. In addition, we consider here the Improved Deep Embedded
Clustering (IDEC) model [31] as an additional baseline. IDEC is, to the
best of our knowledge, the state-of-the-art approach in the centroid-based –
therefore related to k-Means – deep clustering family. As mentioned in
Chapter 3, IDEC is an improved version of the DEC model [85]. For both of
these approaches (DCN and IDEC), we studied two variants: with pretraining
(DCNp and IDECp) and without pretraining (DCNnp and IDECnp). The
pretraining we performed here simply consists in initializing the weights by
training the auto-encoder on the data to minimize the reconstruction loss in
an end-to-end fashion – we did not use layer-wise pretraining [123].
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Figure 4.3: Annealing
scheme for inverse temper-
ature α, following the se-
quence αn+1 = 21/ log(n)2

×
αn; α1 = 0.1.

The proposed Deep k-Means (DKM) is, as DCN,
a “true” k-Means approach in the embedding space;
it jointly learns Autoencoder-based representations
and relaxes the k-Means problem by introducing
a parameterized softmax as a differentiable surro-
gate to k-Means argmin. In the experiments, we
considered two variants of this approach. DKMa

implements an annealing strategy for the inverse
temperature α and does not rely on pretraining.
The scheme we used for the evolution of the inverse
temperature α in DKMa is given by the following
recursive sequence: αn+1 = 21/ log(n)2

× αn with mα = α1 = 0.1. The 40 first
terms of (αn) are plotted in Figure 4.3. The rationale behind the choice of
this scheme is that we want α to spend more iterations on smaller values and
less on larger values while preserving a gentle slope. Alternatively, we studied
the variant DKMp which is initialized by pretraining an auto-encoder and
then follows Algorithm 4 with a constant α such that mα = Mα = 1000. Such
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a high α is equivalent to having hard cluster assignments while maintaining
the differentiability of the optimization problem.

Implementation details
For IDEC, we used the Keras code shared by their authors.2. We used this
version instead of https://github.com/XifengGuo/IDEC as only the former
enables auto-encoder pretraining in a non-layer-wise fashion. Our own code
for DKM is based on TensorFlow. To enable full control of the comparison
between DCN and DKM – DCN being the closest competitor to DKM – we
also re-implemented DCN in TensorFlow. The code for both DKM and DCN
is available online.3

4.3.3 Experimental setup

AE description and training details
The auto-encoder we used in the experiments is the same across all datasets
and is borrowed from previous deep clustering studies [31, 85]. Its encoder is
a fully-connected multilayer perceptron with dimensions d-500-500-2000-d
where d is the original data space dimension. The decoder is a mirrored
version of the encoder. All layers except the one preceding the embedding
layer and the one preceding the output layer are applied a ReLU activation
function [124] before being fed to the next layer. For the sake of simplicity, we
did not rely on any complementary training or regularization strategies such
as batch normalization or dropout. The auto-encoder weights are initialized
following the Xavier scheme [125]. For all deep clustering approaches, the
training is based on the Adam optimizer [126] with standard learning rate
η = 0.001 and momentum rates β1 = 0.9 and β2 = 0.999. The minibatch
size is set to 256 on all datasets following [31]. We emphasize that we chose
exactly the same training configuration for all models to facilitate a fair
comparison.

The number of pretraining epochs is set to 50 for all models relying on
pretraining. The number of fine-tuning epochs for DCNp and IDECp is
fixed to 50 (or equivalently in terms of iterations: 50 times the number of
minibatches). We set the number of training epochs for DCNnp and IDECnp

to 50 and 200, respectively – in the case of DCNnp, we observed little to no
improvement in successive epochs and therefore limited its number of epochs.
For DKMa, we used the 40 terms of the sequence α given in Figure 4.3 as
the annealing scheme and performed 5 epochs for each α term. DKMp is

2https://github.com/XifengGuo/IDEC-toy
3https://github.com/MaziarMF/deep-k-means

https://github.com/XifengGuo/IDEC
https://github.com/XifengGuo/IDEC-toy
https://github.com/MaziarMF/deep-k-means
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fine-tuned by performing 100 epochs with constant α = 1000. The cluster
representatives are initialized randomly from a uniform distribution U(−1, 1)
for models without pretraining. In case of pretraining, the cluster representa-
tives are initialized by applying k-Means to the pretrained embedding space.
Fig 4.4 illustrates the encoder part of auto-encoder. As mentioned before,
the decoder is simply the mirror of the encoder.

Input
HL1=500 HL2=500

HL3=2000

HL4=#clusters

Figure 4.4: The architecture of the encoder part of the Autoencoder.

Hyperparameter selection
The hyperparameters λ for DCN and DKM and γ for IDEC, that define
the trade-off between the reconstruction and the clustering error in the loss
function, were determined by performing a line search on the set {10i | i ∈
[−5, 3]}. We can select the hyper-parameters in two different ways: 1) tune
the hyper-parameters for each collection and select the value corresponding
to the best accuracy value (one can choose NMI or ARI to select the best
hyper-parameter) or 2) use a general hyper-parameter for each approach
(DKM, DCN and IDEC) which is the same for all datasets (not tuning).
Below we have introduced these ways of selecting hyper-parameters in details.

Optimal λ and γ

To do so, we randomly split each dataset into a validation set (10% of the
data) and a test set (90% of the dataset). Each model is trained on the
whole data and only the validation set labels are leveraged in the line search
to identify the optimal λ or γ (optimality is measured with respect to the
clustering accuracy metric). The performance of different approaches by
choosing optimal λ and γ are reported in Tables 4.6 and 4.7.

General λ and γ

One can also set a fixed value for λ and γ on all datasets. To do so, for each



4.3. EXPERIMENTS 45

approach, the result of hyperparameters are computed over all collections.
Afterwards, the hyperparameter which obtains equally good results for all
collection has been selected as the general hyperparameter. Indeed, for each
hyperparameter, the average of the clustering accuracy of all datasets shall
be computed. Afterwards, the hyperparameter which obtains the highest
clustering accuracy (averaged on all datasets) will be selected as the general
hyperparameter. The results corresponding general hyperparameters are
reported in Table 4.8

Experimental protocol
We observed in pilot experiments that the clustering performance of the
different models is subject to non-negligible variance from one run to another.
This variance is due to the randomness in the initialization and in the
minibatch sampling for the stochastic optimizer. When pretraining is used,
the variance of the general pretraining phase and that of the model-specific
fine-tuning phase add up, which makes it difficult to draw any confident
conclusion about the clustering ability of a model. To alleviate this issue,
we compared the different approaches using seeded runs whenever this was
possible. This has the advantage of removing the variance of pretraining
as seeds guarantee exactly the same results at the end of pretraining (since
the same pretraining is performed for the different models). Additionally, it
ensures that the same sequence of minibatches will be sampled. In practice,
we used seeds for the models implemented in TensorFlow (KM, AE-KM,
DCN and DKM). Because of implementation differences, seeds could not
give the same pretraining states in the Keras-based IDEC. All in all, we
randomly selected 10 seeds and for each model performed one run per seed.
Additionally, to account for the remaining variance and to report statistical
significance, we performed a Student’s t-test from the 10 collected samples
(i.e., runs).

Statistics and optimal hyperparameters We summarize in Table 4.4
the statistics of the different datasets used in the experiments, as well as the
dataset-specific optimal values of the hyperparameter (λ for DKM-based and
DCN-based methods and γ for IDEC-based ones) which trades off between
the reconstruction loss and the clustering loss.

4.3.4 Clustering results

The results for the evaluation of the compared clustering methods on the
different benchmark datasets are summarized in Tables 4.6, 4.7 and 4.8.
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Table 4.5: dataset-specific optimal values of the hyperparameter (λ for DKM-based
and DCN-based methods and γ for IDEC-based ones) which trades off between the
reconstruction loss and the clustering loss

Dataset λDKMa λDKMp λDCNnp λDCNp γIDECnp γIDECp

MNIST 10−1 1 10−2 10 10−3 10−2

USPS 10−1 1 10−1 10−1 10−1 103

20NEWS (TF-IDF) 10−4 10−1 10−4 10−1 10−3 10−1

RCV1 10−4 10−2 10−3 10−1 10−4 10−3

REUTERS N/A 1 N/A 1 N/A 10−1

20NEWS(Word2Vec) N/A 10−5 N/A 10−3 N/A 100

YAHOO N/A 10−5 N/A 10−4 N/A 10−4

DBPEDIA N/A 10−1 N/A 10−5 N/A 10−3

AGNEWS N/A 10−5 N/A 10−5 N/A 10−3

The clustering performance is evaluated with respect to three standard
measures [127]: Normalized Mutual Information (NMI), Adjusted Rand Index
(ARI) and the clustering accuracy (ACC). We report for each dataset/method
pair the average and standard deviation of these metrics computed over 10
runs and conduct significance testing as described in Section 4.3.3. The
bolded result in each column of all tables corresponds to the best result for
the corresponding dataset/metric. Underlined results can be considered as
equivalent to the best as their difference thereto is not statistically significant
(p > 0.05).

Results on Image Data
The results of all approaches are illustrated in Table 4.6. Clearly, using
auto-encoder helped K-means to achieve better results by obtaining new
representations for data. This improvement is observable on all datasets and
for all metrics. Thus, the basic intuition that using auto-encoders results in
better data representations is confirmed.

DKMa achieves far better results compared to non-pretrained versions
of IDEC and DCN on all datasets and for all metrics. The considerable
difference between results of DKMa and non-pretrained versions of IDEC
and DCN indicates that having an annealing scheme which starts from soft
clustering assignment and turn into a hard clustering assignment is totally
advantageous compared to simply start by initializing randomly weights and
biases of the network and repeat the training.

IDECp achieves best results on MNIST and DKMp obtains best results
on USPS data. Also by taking a glance at the results we can notice that
generally pretrained approaches are improving in terms of results compared
to non-pretrained ones. This indicates that starting from a local optimal
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point helps all algorithms to achieve better results compared to launching the
algorithms with random initialization. Also the difference between results of
DKMp and DKMa indicates that pretraining helps DKM to achieve better
results compared to using annealing scheme. Another important aspect of
the result is that DKMp performed better than DCNa on all image datasets.

Text data with TF-IDF representation
The results of different clustering approaches on 20NEWS and RCV1 are
presented in Table 4.7. On 20NEWS, again we can notice that the results
of AE-KM are higher than KM. DKMa outperforms all non-pretrained
approaches but its results are still lower than AE-KM. by comparing the
pretrained versions vs the rest, we can notice:

– The results of IDECp on 20NEWS are worse than AE-KM.
– The results of DCNp are equal to AE-KM.
– The DKMp outperforms other approaches.

For the RCV1 dataset, we can observe that again AE-KM achieves better
results compared to KM. Among both non-pretrained and pretrained versions,
IDEC performs better than the rest.

Text data with Word2Vec representation
As mentioned earlier, since the results of pretrained versions surpassed the
results of non-pretrained versions, we only use pretrained versions for the rest
of the thesis. In case of using general hyper-parameters (without tuning),
we can note that both versions of DKMp (EC) and DKMp (CC) achieve
better results compared to other approaches in terms of Macro-average re-
sults (average results of one approach over all datasets) of ACC and ARI
while for NMI AE-KM and DKMp achieve better results. On 20NEWS data,
both variants of DKMp obtain the best results for ACC, ARI and NMI. On
REUTERS, DCNp variants seem to obtain promising results on ACC and
ARI while surprisingly KM obtains better NMI. On YAHOO, DCNp (CC)
results on ACC and NMI are superior to others while DKMp (EC) is superior
in terms of ARI. On DBPEDIA, DCNp (EC) achieves state-of-the-art results
in terms of all metrics. DCNp (CC) shows promising results on AGNEWS.

The results of different approaches with tuned hyper-parameters are
presented in Table 4.9. Similar to general hyper-parameters results, the
Macro-average results indicate that for ACC and ARI, DKMp(CC) achieves
state-of-the-art results while for NMI, DKMp(EC) and DCNp(EC) share the
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same best results. On 20NEWS, DKMp(CC) obtains remarkable results for
all metrics. On REUTERS, DKMp(EC) results are superior in terms of ACC
and ARI while similar to general hyper-parameters results, AE-KM obtains
better results on NMI. On YAHOO, the best results for ACC, ARI and NMI
belongs to DCNp(CC), DKMp(EC), DCNp(CC). On DBPEDIA, DCNp(EC)
achieves state-of-the-art results for all metrics while DCNp(CC) gets the best
results on AGNEWS.

Table 4.6: Clustering results of the compared methods on image data. Performance is
measured in terms of Accuracy, NMI and ARI (%); higher is better. Each cell contains
the average and standard deviation computed over 10 runs. The best result for each
dataset/metric is Bolded. Underlined values correspond to results with no significant
difference (p > 0.05) to the best.

Model MNIST USPS Macro-Average
ACC ARI NMI ACC ARI NMI ACC ARI NMI

KM 53.5±0.3 36.6±0.1 49.8±0.5 67.3±0.1 53.5±0.1 61.4±0.1 60.4 45.0 56.9
AE-KM 80.8±1.8 69.4±1.8 75.2±1.1 72.9±0.8 63.2±1.5 71.7±1.2 76.8 66.3 73.4

DCNnp (EE) 16.8±0.5 1.4±0.1 2.0±0.2 16.3±0.9 1.0±0.2 1.7±0.3 16.5 1.2 1.8
IDECnp (EE) 61.8±3.0 49.1±3.0 62.4±1.6 53.9±5.1 40.2±5.1 50.0±3.8 57.8 44.6 56.2
DKMa (EE) 82.3±3.2 73.6±3.1 78.0±1.9 75.5±6.8 66.3±4.9 73.0±2.3 78.9 69.9 75.5
DCNp (EE) 81.1±1.9 70.2±1.8 75.7±1.1 73.0±0.8 63.4±1.5 71.9±1.2 77.0 66.8 73.8
IDECp (EE) 85.7±2.4 81.5±2.4 86.4±1.0 75.2±0.5 68.1±0.5 74.9±0.6 80.4 74.8 80.6
DKMp (EE) 84.0±2.2 75.0±1.8 79.6±0.9 75.7±1.3 68.5±1.8 77.6±1.1 79.8 70.4 78.6

Table 4.7: Clustering results of the compared methods on text data (TF-IDF). Performance
is measured in terms of Accuracy, NMI and ARI (%); higher is better. Each cell contains
the average and standard deviation computed over 10 runs. The best result for each
dataset/metric is bolded. Underlined values correspond to results with no significant
difference (p > 0.05) to the best.

Model 20NEWS RCV1 Macro-Average
ACC ARI NMI ACC ARI NMI ACC ARI NMI

KM 23.2±1.5 7.6±0.9 21.6±1.8 50.8±2.9 20.6±2.8 31.3±5.4 37.0 17.1 26.4
AE-KM 49.0±2.9 31.0±1.6 44.5±1.5 56.7±3.6 23.9±4.3 31.5±4.3 53.3 27.4 38.0

DCNnp(EE) 7.9±0.2 0.3±0 1.1±0.1 29.2±1.6 0.5±0.2 0.6±0.2 18.5 0.4 0.8
IDECnp(EE) 22.3±1.5 9.8±1.5 22.3±1.5 56.7±5.3 28.5±5.3 31.4±2.8 39.5 19.1 26.8
DKMa(EE) 44.8±2.4 26.7±1.5 42.8±1.1 53.8±5.5 20.7±4.4 28.0±5.8 49.3 23.7 35.4
DCNp(EE) 49.2±2.9 31.3±1.6 44.7±1.5 56.7±3.6 24.0±4.3 31.6±4.3 52.9 27.6 38.1
IDECp(EE) 40.5±1.3 26.0±1.3 38.2±1.0 59.5±5.7 32.9±5.7 34.7±5.0 50.0 29.4 36.4
DKMp(EE) 51.2±2.8 33.9±1.5 46.7±1.2 58.3±3.8 26.5±4.9 33.1±4.9 54.7 30.2 39.9
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Table 4.8: The results of multiple clustering approaches obtained by general hyperparam-
eters. Bold values represent the best results and underlined values have no statistically
significant difference from the best results at α = 0.05.

Model KM AE DKMp (EC) DKM p (CC) DCN p (EC) DCNp (CC) IDEC p

20NEWS
ACC 68.3±1.8 75.2±1.4 77.4±1.4 77.0±1.7 76.0±1.7 67.8±2.4 73.3±3.0
ARI 51.9±1.3 60.6±1.4 64.6±1.1 61.8±1.8 61.4±1.4 52.0±2.1 56.9±3.9
NMI 68.8±0.5 0.8±0.7 1.9±0.7 72.0±0.5 70.9±0.7 66.2±1.3 69.7±1.6

REUTERS
ACC 39.8±1.0 39.7±1.2 42.2±1.1 41.9±4.5 40.5±0.9 42.6±5.3 42.4 ±1.1
ARI 30.9±1.1 32.3±1.3 32.0±1.2 32.3±4.2 32.4±1.0 33.1±4.3 32.3±0.8
NMI 54.3±1.4 56.1±1.3 54.7±1.1 54.3±1.8 55.8±1.3 55.2±1.8 5.4 ±0.7

YAHOO
ACC 52.5±2.1 53.8±2.6 56.3±2.7 54.4±3.1 54.3±2.7 58.7±2.7 53.2± 2.0
ARI 27.7±0.8 29.9±1.4 32.8±1.2 31.4±1.6 30.6±1.6 32.7±1.4 27.3±3.4
NMI 37.4±0.5 37.5±0.7 38.2±0.8 37.5±1.0 37.6±0.7 39.9±0.9 36.3±0.6

DBPEDIA
ACC 61.1±1.8 7.2±3.0 67.0±2.6 68.5±3.2 69.0±2.2 68.0±3.4 68.0±2.2
ARI 51.9±2.1 57.6±4.0 58.0±4.0 57.8±3.4 58.9±3.6 54.5±3.4 56.6±3.2
NMI 70.6±1.0 72.5±2.0 71.1±1.9 71.8±1.6 73.3±1.4 69.6±1.5 72.1±1.3

AGNEWS
ACC 84.1±0.0 84.4±0.7 84.9±0.3 83.1±1.7 84.2±0.5 85.4±0.5 84.0±1.0
ARI 64.7±0.0 63.8±1.5 64.7±0.6 61.2±3.7 63.3±1.0 65.7±1.1 62.3±2.3
NMI 64.0±0.0 59.6±1.1 60.3±0.5 57.7±3.4 59.1±0.8 61.3±0.9 58.7±1.6

Macro-average
ACC 61.1 64.0 65.5 65.0 64.8 64.5 64.1
ARI 45.4 48.8 50.4 48.9 49.3 47.6 47.0
NMI 59.0 59.3 59.2 58.6 59.3 58.4 58.4

Table 4.9: The results of multiple clustering approaches obtained by best hyperparameters.
Bold values represent the best results and underlined values have no statistically significant
difference from the best results at α = 0.05.

Model KM AE DKM p (EC) DKM p(CC) DCNp (EC) DCNp (CC) IDEC p

20NEWS
ACC 68.3±1.8 75.2±1.4 77.4±1.4 79.5±0.6 76.0±1.7 67.8±2.4 73.3±3.0
ARI 51.9±1.3 60.6±1.4 64.6±1.1 64.8±0.7 61.4±1.4 52.0±2.1 56.9±3.9
NMI 68.8±0.5 70.8±0.7 71.9±0.7 71.9±0.5 70.9±0.7 66.2±1.3 69.7±1.6

REUTERS
ACC 39.8±1.0 39.7±1.2 46.9±3.6 64.3±6.0 40.5±0.9 43.4±6.3 42.4 ±1.1
ARI 30.9±1.1 32.3±1.3 37.0±3.4 50.3±10.4 32.4±1.0 33.5±5.2 32.3±0.8
NMI 54.3±1.4 56.1±1.3 55.1±1.9 54.4±6.8 55.8±1.3 55.2±1.8 55.4 ±0.7

YAHOO
ACC 52.5±2.1 53.8±2.6 56.3±2.7 55.1±2.8 54.7±3.0 58.7±2.7 53.4± 2.4
ARI 27.7±0.8 29.9±1.4 32.8±1.2 31.9±1.6 30.6±1.6 32.7±1.4 27.4±1.3
NMI 37.4±0.5 37.5±0.7 38.2±0.8 37.7±1.0 37.8±0.7 39.9±0.9 36.4±0.6

DBPEDIA
ACC 61.1±1.8 67.2±3.0 67.0±2.6 68.5±3.2 69.0±2.2 68.0±3.4 68.0±2.2
ARI 51.9±2.1 57.6±4.0 58.0±4.0 57.8±3.4 58.9±3.6 54.5±3.4 56.6±3.2
NMI 70.6±1.0 72.5±2.0 71.1±1.9 71.8±1.6 73.3±1.4 69.6±1.5 72.1±1.3

AGNEWS
ACC 84.1±0.0 84.4±0.7 84.9±0.3 83.1±1.7 84.6±0.4 85.4±0.5 84.0±1.0
ARI 64.7±0.0 63.8±1.5 64.7±0.6 61.2±3.7 64.0±0.8 65.7±1.1 62.3±2.3
NMI 64.0±0.0 59.6±1.1 60.3±0.5 57.7±3.4 59.1±0.6 61.3±0.9 58.7±1.6

Macro-average
ACC 61.1 64.0 66.5 70.1 64.9 64.6 64.1
ARI 45.4 48.8 51.4 53.2 49.4 47.6 47.0
NMI 59.0 59.3 59.3 58.7 59.3 58.4 58.4
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Figure 4.5: Accuracy evolution of different deep clustering methods with respect to
hyper-parameter values (10−N ) on Reuters.
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Figure 4.6: Accuracy evolution of different deep clustering methods with respect to
hyper-parameter values (10−N ) on 20news.
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Figure 4.7: Accuracy evolution of different deep clustering methods with respect to
hyper-parameter values (10−N ) on Yahoo.
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Figure 4.8: Accuracy evolution of different deep clustering methods with respect to
hyper-parameter values (10−N ) on DBPedia.
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Figure 4.9: Accuracy evolution of different deep clustering methods with respect to
hyper-parameter values (10−N ) on AGnews.
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Table 4.10: Clustering results for k-Means applied to different learned embedding spaces
to measure the k-Means-friendliness of each method. Performance is measured in terms
of NMI and clustering accuracy (%); higher is better. Each cell contains the average and
standard deviation computed over 10 runs. The best result for each dataset/metric is
bolded. Underlined values correspond to results with no significant difference (p > 0.05) to
the best.

Model MNIST USPS 20NEWS RCV1

ACC NMI ACC NMI ACC NMI ACC NMI

AE-KM 80.8±1.8 75.2±1.1 72.9±0.8 71.7±1.2 49.0±2.9 44.5±1.5 56.7±3.6 31.5±4.3
DCNp + KM 84.9±3.1 79.4±1.5 73.9±0.7 74.1±1.1 50.5±3.1 46.5±1.6 57.3±3.6 32.3±4.4
DKMa + KM 84.8±1.3 78.7±0.8 76.9±4.9 74.3±1.5 49.0±2.5 44.0±1.0 53.4±5.9 27.4±5.3
DKMp + KM 85.1±3.0 79.9±1.5 75.7±1.3 77.6±1.1 52.1±2.7 47.1±1.3 58.3±3.8 33.0±4.9

4.3.5 k-Means-friendliness of the learned representations
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Figure 4.10: t-SNE visualization of the embedding spaces learned on USPS.

In the previous experiment, we investigated the clustering ability of the
different models. While the quality of the clustering results and that of
the representations learned by the models are likely to be correlated, it is
relevant to study to what extent learned representations are distorted to
facilitate clustering – in other words, how they are biased towards “clustering-
friendliness”. More specifically, we focus on the representations learned by the
deep clustering approaches related to k-Means: DCNp, DKMa, and DKMp

(DCNnp was discarded due to its poor clustering performance). We analyze
how effective applying k-Means to these representations is in comparison to
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applying k-Means to the AE-learned representations (i.e., AE-KM).
We can observe that on most datasets the representations learned by

k-Means-related deep clustering approaches lead to significant improvement
with respect to AE-learned representations. This confirms that all these
deep clustering methods truly bias their representations. Interestingly, we
note that applying k-Means to the representations learned by DCNp yields
substantial improvements in comparison to the results. Overall, although
the difference is not statistically significant on all datasets/metrics, the
representations learned by DKMp are shown to be the most appropriate to
k-Means. This goes in line with the insight gathered from Section 4.3.4.

To further support this latter finding and to bring a more interpretable
view of the learned representations, we illustrate the embedded samples
provided by AE, DCNp, DKMa, DKMp on USPS in Figure 4.10 (best viewed
in color). We used for that matter the t-SNE visualization method [128] which
projected embeddings into a 2D space. We observe that the representations
for points from different clusters are clearly better separated and disentangled
in DKMp than in other models. This once again supports the superior ability
of DKMp to learn k-Means-friendly representations.

4.4 Conclusion

We have presented in this chapter a new approach for jointly clustering
with k-Means and learning representations by considering the k-Means
clustering loss as the limit of a differentiable function. To the best of
our knowledge, this is the first approach that truly jointly optimizes, through
simple stochastic gradient descent updates, representation and k-Means
clustering losses. In addition to pretraining, that can be used in all methods,
this approach can also rely on a deterministic annealing scheme for parameter
initialization. Based on the results, deterministic annealing scheme can be
useful in some cases and even working better than DCNp in some cases. We
further conducted careful comparisons with previous approaches by ensuring
that the same architecture, initialization and sequence minibatches are used.
The experiments conducted on several datasets (image and text datasets)
confirm the good behavior of the proposed approach. At the first glance
at the results presented earlier, we can conclude pretraining is an essential
step in DC which shall not be neglected. On the other hand, the proposed
deterministic annealing scheme can be improved or one can introduce a new
scheme to outperform current results. On image datasets, both DKM and
IDEC can be chosen as the best approaches. On text datasets using TF-IDF,
except for 20NEWS where all the DC methods perform equally (including
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AE-KM), on RCV1 our proposed DKM method can outperform IDEC and
DCN.
The results obtained by applying general hyper-parameters indicates that
DKM variations obtain the best Macro-average results of ACC and ARI
results while other approaches can achieve better NMI results. In the detailed
results we can notice that on each collection different methods can achieve
the best results but as mentioned earlier on average DKM variants perform
the best on ACC and ARI.
The results obtained by the tuned hyper-parameters indicate that DKMp

(CC) outperforms other approaches on Macro-average results of ACC and
ARI. DKMp (EC) and DCNp (EC) share the same best Macro-average result
for NMI.
In the next chapter we will investigate different deep clustering approaches
while enforcing constraints.
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Constrained Deep Document
Clustering

Different users may be interested in different clustering views underlying a
given collection (e.g., topic and writing style in documents). Enabling them
to provide constraints reflecting their needs can then help obtain tailored
clustering results. For document clustering, constraints can be provided
in the form of seed words, each cluster being characterized by a small set
of words. This seed-guided constrained document clustering problem was
recently addressed through topic modeling approaches. Another form of
constraints is the Must-links (MLs) and Cannot-links (CL) where given a
pair of document, one can annotate the documents based on their relatedness.
Meaning that if a pair of documents are related then they will be considered
as ML otherwise CL. In this paper, we jointly learn deep representations
and bias the clustering results through the seed words or MLs and CLs,
respectively leading to Seed-guided Deep Document Clustering [129] and
Pairwise-Constrained Deep Document Clustering [130] approaches.

5.1 Introduction

Clustering traditionally consists in partitioning data into subsets of similar
instances with no prior knowledge on the clusters to be obtained. However,
clustering is an ill-defined problem in the sense that the data partitions
output by clustering algorithms have no guarantee to satisfy end users’
needs. Indeed, different users may be interested in different views underlying

59
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the data [131]. Also due to the subjectivity aspect of clustering, including
constraints in the clustering seems essential. Indeed, by including constraints
in a deep clustering framework, more suitable and tailored partitions can
be obtained. In deep clustering, including constraints can be done through
biasing the representations.

Figure 5.1: Different vehicle types and colors.

As can be seen in Fig 5.1, one can separate the vehicles based on their
colors (blue or red) or based on vehicle types (car or bicycle). That is
why expert external knowledge can be important to be integrated in the
clustering. As another example, considering either the topics or the writing
style in a collection of documents leads to different clustering results. In
this study, we consider a setting where clustering is guided through user-
defined constraints, which is known as constrained clustering [102]. Enabling
users to provide clustering constraints in the context of an exploratory task
can help obtain results better tailored to their needs. Typically, ML and
CL constraints are considered (e.g., see [104, 132]), which state whether
two data instances should be (respectively, should not be) in the same
cluster. However, important manual annotation efforts may still be required
to provide such constraints in sufficient number. In the specific case of
document clustering, constraints can otherwise be provided in the form of
seed words: each cluster that the user wishes to obtain is described by a small
set of words (e.g., 3 words) which characterize the cluster. For example, a
user who wants to explore a collection of news articles might provide the set of
seed words {‘sport’, ‘competition’, ‘champion’}, {‘finance’, ‘market’, ‘stock’},
{‘technology’, ‘innovation’, ‘science’} to guide the discovery of three clusters
on sport, finance, and technology, respectively. Recent studies which include
seed word constraints for document clustering are mostly focused on topic
modeling approaches [95–98], inspired by the Latent Dirichlet Allocation



5.2. SEED-GUIDED DEEP DOCUMENT CLUSTERING 61

model [99].
In the previous chapter we introduced our DKM framework and thor-

oughly analyzed its results with respect to IDEC and DCN. One advantage
of deep clustering approaches lies in their ability to leverage semantic repre-
sentations based on word embeddings, enabling related documents to be close
in the embedding space even when they use different (but related) words.

The main contributions of this chapter can be summarized as follows: (a)
We introduce the Seed-guided Deep Document Clustering (SD2C) frame-
work, the first attempt, to the best of our knowledge, to constrain clustering
with seed words based on a deep clustering approach. (b) We introduce the
Pairwise-Constrained Deep Document Clustering (PCD2C) framework. (c)
We validate these frameworks through experiments based on automatically
selected seed words on five publicly available text datasets with various
sizes and characteristics; and (d) We conducted human experiments that
involved users to participate in the selection of seed words and ML/CL
documents leading to a close to realistic experiments where we can analyze
SD2C and PCD2C approaches in details and measure their performance,
time consumption, etc. in a real case scenario.

5.2 Seed-guided Deep Document Clustering

Deep clustering consists in jointly performing clustering and deep represen-
tation learning in an unsupervised fashion (e.g., with an Autoencoder). All
deep clustering approaches aim at obtaining representations that are both
faithful to the original data and are more suited to clustering purposes than
the original representation. To do so, Autoencoder-based deep clustering
approaches trade off between a reconstruction loss, denoted Lrec, and a clus-
tering loss, denoted Lclust, through a joint optimization problem of the form:
Lrec + λ0Lclust, where λ0 is an hyperparameter balancing the contribution of
the reconstruction and clustering losses.

In the remainder, X will denote the set of documents to cluster. Each
document x ∈ X is associated with a representation x in Rd – thereafter,
the input space – defined as the average of the (precomputed) embeddings of
the words in x, where d is the dimension of the word embedding space. Each
word w is thus represented as a d-dimensional vector w corresponding to its
embedding. Let fθ : Rd → Rp and gη : Rp → Rd be an encoder and a decoder
with parameters θ and η, respectively; gη◦fθ then defines an Autoencoder.
Rp denotes the space in which we wish to embed the learned document
representations – thereafter, the embedding space. Lastly, we denote by R
the parameters of the clustering algorithm. With a slight abuse of notations
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Figure 5.2: Illustration of SD2C-Doc (left) and SD2C-Rep (right). Thick double arrows
indicate the computation of a distance between two vectors.

in which fθ(X ) corresponds to the application of the function fθ to each
element of the set X , the overall deep clustering (DC) optimization problem
takes the form:

arg min
θ,η,R

Lrec(X , gη◦fθ(X )) + λ0Lclust(fθ(X ),R)︸ ︷︷ ︸
Ldc(X ,θ,η,R)

. (5.1)

We propose to integrate constraints on seed words in this framework by
biasing the embedding representations, which guarantees that the information
pertaining to seed words will be used in the clustering process. This can
be done by enforcing that seed words have more influence either on the
learned document embeddings, a solution we refer to as SD2C-Doc, or on
the cluster representatives, a solution we refer to as SD2C-Rep. Note that
the second solution can only be used when the clustering process is based on
cluster representatives (i.e., R = {rk}Kk=1 with K the number of clusters),
which is indeed the case for most current deep clustering methods [133].

In addition to the notations introduced previously, we will denote by sk
the subset of seed words corresponding to cluster k, and by S = {sk}Kk=1 the
complete set of seed words defining the prior knowledge on the K clusters
to recover. We further define S =

⋃K
k=1 sk, the set of seed words from all

clusters.

5.2.1 SD2C-Doc

To bias the document representations according to the seed words, we first
define, for each document, a masked version of it that is based on seed words.
This can be done aggressively, by retaining, in the masked version, only
the words that correspond to seed words and by computing an average of
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their word embeddings, or smoothly by reweighing all words in the original
document according to their proximity with seed words. A weighted average
of their embeddings then defines the smooth, masked version of the documents.
The equation below formalizes these two approaches:

mS(x) =


1∑

w∈S tfx(w)

∑
w∈S

tfx(w) ·w

1
|S|·|x|

∑
w′∈x

∑
w∈S

1 + cos(w,w′)
2 ·w′

(5.2)

where cos denotes the cosine similarity. If a document x does not contain
any seed word, mS(x) is ill-defined when using the first version of Eq. 5.2
as
∑
w∈S is null in that case. To address this issue, one can simply discard

the documents without seed words. In practice, the two masked versions of
Eq. 5.2 yielded the same results in our experiments. Because of its simplicity,
we rely on the first one in the remainder of the paper. One can then force
the embedding representation of documents to be close to the embedding
of their masked version by minimizing the dissimilarity in the embedding
space, denoted by δE , between fθ(x) and fθ◦mS(x), leading to:

arg min
θ,η,R

Ldc(X , θ, η,R) + λ1
∑
x∈X

δE
(
fθ(x), fθ◦mS(x)

)
, (5.3)

where λ1 is an hyperparameter controlling the importance of the deep clus-
tering loss Ldc and the loss associated to seed words. Fig. 5.2 (left) illustrates
the global architecture corresponding to this problem.

5.2.2 SD2C-Rep

The other bias one can consider in the embedding space is the one related to
cluster representatives. Here, one can naturally push cluster representatives
towards the representation of seed words, in order to ensure that the discov-
ered clusters will account for the prior knowledge provided by them. For
that purpose, we first build a representation for each subset of seed words
by averaging the word embeddings of the seed words it contains:

sk = 1
|sk|

∑
w∈sk

w.

sk thus corresponds to the seed word-based representation of cluster k in Rd.
The optimization problem solved by SD2C-Rep, depicted in Fig. 5.2 (right),
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then takes the form:

arg min
θ,η,R

Ldc(X , θ, η,R) + λ1

K∑
k=1

δE(rk, fθ(sk)) (5.4)

As before, δE denotes a dissimilarity in the embedding space. The last term
in Eq. 5.4 forces cluster representatives to be close to subsets of seed words,
the alignment between the two being defined by the initialization of the
cluster representatives performed after pretraining.

5.2.3 SD2C-Att

The last approach directly operates on the input representations of the
documents that are fed to the model to account for the seed words. Indeed,
allocating different weights to the words in a document according to their
proximity to seed words might help provide input representations which are
better tailored to the constrained clustering problem we wish to solve. We
here propose to learn those weights based on an attention mechanism [134].1
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Figure 5.3: Illustration of SDC2-Att. The function h denotes the seed words-based attention
module applied to the documents’ input representations. Thick double arrows indicate the
computation of a distance between two vectors.

In addition to the biasing of document representations (as in SD2C-Doc)
or the biasing of cluster representatives (as in SD2C-Rep), this approach
would consist in operating on the input representations directly.

1An alternative parameter-free attention mechanism simply consists in fixing those
weights based on the similarity between words in a document and the seed words. This is
however only a special case of the learned attention mechanism we study here.
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The seed words from different clusters are used to compute different ‘views’
of each document (one view per cluster). These different views are then
integrated in the k-Means clustering loss. Note that, in this version, no term
is added to the formulation in Problem 5.1 – only the input representation fed
to the clustering module is changed. The resulting model, which we denote
as SDC2-I, is illustrated in Fig. 5.3. Its optimization problem corresponds
to:

arg min
θ,η,ζ,R

∑
x∈X

δI(x, gη◦fθ(x)) + λ
∑
x∈X

min
1≤k≤K

δE(fθ◦hζ(x, sk), rk) (5.5)

where hζ(x, sk) learns a new input representation for document x biased by
the k-th seed word cluster representation sk through an attention mecha-
nism. We define hζ(x, sk) as follows, introducing the attention score exjk and
attention weight αxjk for j = 1, . . . , |x|, k = 1, . . . ,K:

hζ(x, sk) =
|x|∑
j=1

αxjkwx
j , αxjk =

exp
(
exjk

)
|x|∑
j′=1

exp
(
exj′k

) , exjk = aζ(wx
j , sk) (5.6)

where wx
j is the word embedding for the j-th word of document x, |x| is the

length of document x, and aζ is a map parameterized by ζ. Here, we use an
additive attention mechanism and define aζ as a neural network with one
hidden layer as follows:

aζ(wx
j , sk) = u> tanh

(
W [wx

j ; sk]
)

(5.7)

where ζ = {u,W} are the parameters to learn (u ∈ Rh, W ∈ Rh×2d with h

the dimension of the hidden space) and [wx
j ; sk] ∈ R2d denotes the vertical

concatenation of wx
j and sk. Note that because of the attention mechanism,

which has to compute weights αxjk for every word j in x, every cluster k,
and every document x, SDC2-Att is computationally more expensive than
the two previous variants. Further, as the results for SDC2-Att were less
promising than those of SDC2-Doc and SDC2-Rep in our preliminary study,
we essentially focus on the latter approaches in the experiments.
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5.3 Pairwise-Constrained Deep Document Cluster-
ing

In case of document clustering, the relevance in topic can be used for
measuring the similarity between documents while it is expected that similar
documents fall into the same category. Due to the subjectivity aspect of
clustering, different users might impose different constraints on clustering.
For instance, to cluster a set of news articles, one might be interested in having
two clusters where one indicates liberal views and the other one democratic
views, while another user might be interested in dividing documents into
economy and environment topics. Constraints can take different forms such as
seed words (discussed earlier) and pairwise constraints. In this section, we will
study pairwise constraints where a set of must-link and cannot-link documents
are used as side information which can lead towards better clustering results.
As the names imply, must-link pairs contain documents coming from the
same category while cannot-link documents contain documents coming from
different categories. This additional information is provided by the user
before applying clustering and will be taken into account while clustering
the underlying data.

So far, there have been several studies about using pairwise constraints in
clustering [105, 106, 135] which investigated the efficiency of side information
(pairwise constraints) but none of them have explored the impact of pairwise
constraints in an end-to-end Autoencoder-based deep clustering framework.
To answer this problem in an end-to-end deep clustering framework, we
propose the Pairwise-Constrained Deep Document Clustering (PCD2C)
model [130] which benefits from a fully differentiable objective function.

PCD2C Formulation
Based on prior deep clustering and SD2C definitions, we can consider pairwise
constraints as additional information for deep clustering framework as well
which yield in proposing a new objective function. In order to integrate the
pairwise constraints in a deep clustering framework, we can simply integrate
them in 5.1. This can be done by minimizing the distance between must-link
documents and maximizing the distance between cannot-link documents
(both in the learned document embedding space). In this case, pairwise
information can be used to bias data representations which yields improved
clustering results. CL can be considered as the list containing all cannot-link
document pairs and ML can be considered as the list containing all must-link
document pairs. To involve pairwise constraints, the following formulation is
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proposed:

arg min
θ,η,R

Ldc(X , θ, η,R) + λ1

( 1
|ML(minibatch)|

∑
(i,j)∈ML(minibatch)

δE(fθ(xi), fθ(xj))

+ 1
|CL(minibatch)|

∑
(i,j)∈CL(minibatch)

max(0, µ− δE(fθ(xi), fθ(xj))
)

(5.8)

Thus, one can minimize the dissimilarity – denoted by δE– between
must-link documents and maximize the dissimilarity between cannot-link
documents to utilize pairwise constraints information. λ1 is an hyperparam-
eter which controls the importance of clustering loss and pairwise constraint
loss. In this formulation, if a pair of documents linked by an ML or CL con-
straint occurs in the current minibatch during training, then the constraint
loss will be activated otherwise it will not affect the total loss (set to zero).

5.3.1 Choice of Deep Clustering Framework

In practice, we use fully differentiable formulations of Problems 5.3, 5.4 and
5.8. In the context of the k-Means algorithm, a popular clustering method,
such differentiable formulations can be directly developed on top of the
algorithms provided in [29] (called DCN) and [136] (called DKM), the latter
proposing a truly joint formulation of the deep clustering problem. Other
state-of-the-art deep clustering approaches, as IDEC [31], also based on
cluster representatives, could naturally be adopted as well. The comparison
between these approaches performed in [136] (shown in the previous chapter
as well) nevertheless suggests that DKM outperforms the other approaches.
This difference was confirmed on the text collections retained in this study.
We thus focus here on the DKM algorithm introduced in [136] with:

Lrec(X , gη◦fθ(X )) =
∑
x∈X

δI(x, gη◦fθ(x)) , (5.9)

where δI denotes a dissimilarity in the input space, and:

Lclust(fθ(X ),R) =
∑
x∈X

K∑
k=1

δE(fθ(x), rk)Gk(fθ(x), α;R) (5.10)
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where α is an inverse temperature parameter and Gk(fθ(x), α;R) is a softmax
function parameterized by α defined as follows:

Gk(fθ(x), α;R) =
exp

(
−α · δE(fθ(x), rk)

)
K∑
k′=1

exp
(
−α · δE(fθ(x), rk′)

) . (5.11)

The k-means solution is recovered when α tends to +∞.

5.4 Experiments

In this section, we discuss thoroughly the way we conducted the experiments
and provide all of the required information.

5.4.1 Datasets

The experiments we performed to evaluate the proposed SD2C and PCD2C
frameworks are based on five publicly available datasets with various sizes
and characteristics that have been extensively used in the context of text
classification and clustering: The 20 Newsgroups2 dataset, referred to as
20NEWS ; the Reuters-215783 dataset, referred to as REUTERS, from which,
similarly to [95–98], we use only the 10 largest (and highly imbalanced)
categories; the Yahoo! Answers dataset introduced in [122], referred to as
YAHOO, from which we use only the test set comprising 60,000 documents
evenly split into 10 classes; the DBPedia dataset curated in [122], referred
to as DBPEDIA, from which we also only use the test set made of 70,000
documents uniformly distributed in 14 classes; and the AG News dataset,
introduced as well in [122] and referred to as AGNEWS, from which we use
the training set, composed of 120,000 documents evenly split into 4 classes.

5.4.2 SD2C Baselines and Variants

For both SD2C-Doc and SD2C-Rep, different dissimilarities can be adopted
for δI and δE . As the cosine distance performed consistently better for δE

than the Euclidean distance in our preliminary experiments, it is adopted
here. We nevertheless did not observe such a clear trend for δI , and we
indicate here the results obtained both for the cosine distance and Euclidean

2http://qwone.com/˜jason/20Newsgroups/
3http://www.daviddlewis.com/resources/testcollections/reuters21578/

http://qwone.com/~jason/20Newsgroups/
http://www.daviddlewis.com/resources/testcollections/reuters21578/
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distance. This yields two versions for each method, which we denote as SD2C-
Doc-e/SD2C-Rep-e and SD2C-Doc-c/SD2C-Rep-c, depending on whether
the Euclidean or the cosine distance is used for δI , respectively.

To compare against SD2C, we considered the following baseline methods:

– KM, AE-KM and different deep clustering frameworks: KM corre-
sponds to k-Means [1] applied on the same input for documents as the
one used for SD2C (average of documents’ word embeddings); AE-KM
first trains an Autoencoder on the collection and then applies k-Means
to the document embeddings learned by the Autoencoder; DKM is
the deep k-Means algorithm4 presented in [136] which we also study
under the two variants DKM-e and DKM-c. Also, other deep cluster-
ing frameworks such as DCN [29] and IDEC [31] can be used in this
framework and their results are compared versus DKM algorithm. 5

– NN : This method is similar to the ‘on-the-fly’ nearest neighbor-like
classification described in [92]. Each document, represented by its
word embeddings average, is assigned to the nearest class, in terms
of the cosine distance, which outperformed the Euclidean distance,
represented by the class’ average seed word embeddings (denoted as
{sk}Kk=1 in Sec 5.2).

– STM : In our experiments, we ran the Java implementation of the
Seed-guided Topic Model [96] provided by the authors6 and used the
standard hyperparameters indicated in the paper. Given that this
approach was not scalable when the whole vocabulary is used, we
only kept the 2000 most frequent words (after preprocessing) for each
dataset7.

5.4.3 PCD2C Baselines and Variants

Similar to SD2C, in this case, KM, AE-KM and different Deep Clustering
frameworks such as DKM, DCN and IDEC are being used for evaluating the

4https://github.com/MaziarMF/deep-k-means
5seed words are not utilized in these approaches.
6https://github.com/ly233/Seed-Guided-Topic-Model
7Very recently, another topic modeling approach, the Laplacian seed word Topic Model

(LapSWTM), was proposed in [97]. However, firstly, LapSWTM counts 8 hyperparameters
that were empirically optimized in the original paper, and it is not straightforward how
these hyperparameters should be tuned on the additional datasets used here. Secondly,
LapSWTM shares a lot with the STM model in its construction and performance. Thirdly,
the code for LapSWTM is, as far as we are aware, not publicly available. For these different
reasons, we simply chose STM to represent the state of the art in topic modeling-based
dataless text classification.

https://github.com/MaziarMF/deep-k-means
https://github.com/ly233/Seed-Guided-Topic-Model
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effectiveness of the pairwise constraints.8

5.4.4 Constraints Selection

To evaluate the proposed SD2C and PCD2C algorithms, we followed two
approaches to select constraints: 1) Automatic Approach and 2) Manual
Approach which are detailed below.

5.4.4.1 SD2C: automatic seed words selection

Recent works on dataless text classification [95–98] only considered the
20NEWS and REUTERS datasets in their experiments, relying respectively
on the seed words induced by the class labels and on the manually curated
seed words from [95]. To perform an evaluation on all the collections retained
here, we devised a simple heuristics based on tf-idf to propose seed words.
For a given collection and for each class k of the collection, all words w in
the vocabulary are scored according to:

score(w, k) =

tfk(w)− 1
K − 1

K∑{
k′=1
k′ 6=k

tfk′(w)

× idf(w), (5.12)

where idf(w) is the inverse document frequency computed on the documents
of the whole collection and tfk(w) is the term frequency for class k, which
we define as the sum of tfx(w) for all documents x in class k. The rationale
for this score is that one wishes to select words that are frequent in class
k and unfrequent in other classes, hence the penalization term inside the
brackets. Based on this score, one can then select the top words for each
class as seed words. We emphasize that such heuristics is only adopted for
the purpose of simulating seed words during the evaluation: it is not destined
to be used to identify seed words in a real-world application, where ground
truth is unknown. In our preliminary studies, we have generated five seed
words per cluster while in most cases we have used only three seed words
per cluster. The rest of seed words have been used for more evaluations and
analysis towards our proposed framework. Table 5.1 shows SD2C: Manual
seed words selection the obtained seed words for each dataset.

8Pairwise constraints are not utilized in these approaches.
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Table 5.1: Automatically selected seed words for each dataset. Each row corresponds to
each class of the dataset while seed words pertaining to one class are sorted from the most
relevant ones to the less relevant ones.

Dataset seed words

20NEWS

atheist god moral islam livesey
graphic imag file format program
window file driver microsoft ms
drive card scsi ide monitor
mac appl monitor drive quadra
window motif server widget xterm
sale offer ship sell condit
car engin ford auto oil
bike dod ride motorcycl bmw
game basebal pitch player team
game team hockey play player
key encrypt clipper chip secur
circuit batteri electron wire power
pitt doctor medic gordon food
space nasa orbit henri moon
god christian church jesu sin
gun fbi stratu atf weapon
israel armenian arab jew muslim
cramer optilink gay homosexu clayton
christian sandvik god jesu moral

REUTERS

share compani dlr acquir pct
coffe quota export ico bag
oil crude barrel price opec
net shr loss dlr rev
gold ounc ton feet coin
rate pct bank prime cut
bank stg currenc market dollar
ship port strike vessel gulf
sugar tonn white trader intervent
trade japan billion export japanes

YAHOO!

god peopl christian jesu believ
water earth number answer time
doctor weight eat day pain
school word colleg mean answer
comput yahoo file download window
team win game play cup
job compani money work busi
song movi music love favorit
love guy girl friend feel
peopl countri bush presid state

DBPEDIA

compani base oper servic product
school high colleg univers locat
born singer american known music
footbal play born leagu profession
politician repres member born serv
navi class ship built aircraft
histor church build hous locat
river lake mountain tributari romania
villag district popul counti provinc
famili speci moth genu snail
speci plant famili genu flower
album releas record band studio
film direct star drama comedi
publish novel book journal seri

AGNEWS

kill iraq presid minist afp
game win team season night
oil stock price compani profit
new microsoft softwar internet compani

5.4.4.2 SD2C: manual seed words selection

Evaluating algorithms in real case scenarios can be useful to analyze them
better. Selecting seed words manually and comparing its results versus other



72 5. CONSTRAINED DEEP DOCUMENT CLUSTERING

algorithms provides us enough insights towards SD2C. Manually selecting
seed words from thousands of documents can be difficult and frustrating.
Also, since selecting seed words from different datasets can become a tedious
task, we decided to focus only on DBPEDIA dataset and design two different
user experiments tasks to withdraw seed words with the help of different
users. In order to perform the task, we selected only five classes of this
dataset (containing 25,000 documents in total) to make the user experiments
more feasible. We have designed two different experiments which are detailed
below.

Using K-means for subsampling the documents. Presenting 25,000
already-selected documents for users to extract seed words from seems
impossible. To deal with this problem, we have used the k-means algorithm
to select the most discriminative and informative documents. Indeed, without
using any class information, K-means has been applied on the whole collection
(containing 25,000 documents) where K (number of clusters) has been set
to 20 (the value of K is an hyperparameter and one can choose a different
value). Then, the n closest documents to each cluster center have been
selected. Finally, by setting n = 10, we ended up with 200 documents. In
our preliminary studies we noted that this approach yields representative
documents where all classes have been covered. Moreover, this approach
can lead towards an imbalance in choosing different classes. In fact, in the
beginning of experiments, the input contained 25,000 documents equally
distributed in five different classes while utilizing this approach yields K × n
(in this case 200) documents which are not equally distributed among all
classes. Moreover, since documents can be quite long, we kept only the
first sentence of each document to present them to the users. Finally, these
documents have been presented to different users for selecting seed words. In
this experiment, five users participated in this case study and were asked to
first identify different classes and second provide three seed words per class.
More detailed information about the seed words that have been selected from
each user and the time consumption of the experiment for different users are
given in Table 5.2. Note that to avoid biasing the users by the order of the
presented documents obtained from K-means, we shuffled the documents for
each user.

Using Latent Dirichlet Allocation (LDA) for extracting seed words.
Instead of presenting the first sentence of each document and present them
to the users, one might use LDA on the original collection (containing 25,000
documents) and use LDA to extract relevant seed words for each detected
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Table 5.2: The obtained seed words by presenting the documents obtained by K-means for
each user alongside the dedicated time (in seconds) to finish the experiment. Please note
that the provided seed words for each users are shown such that each line of seed words
pertains to one class.

Users seed words Time (in Seconds)

#1

book newspaper,journal
company,business technology
film comedy history
school,university college
aircraft navy war

594

#2

car motor automotive
Film cinema drama
navy ship war
education school college
newspaper novel,book

600

#3

film movie direct
school university college
company,industry job
ship aircraft tank
write publish book

623

#4

newspaper book journal
company,business,industry
flim hollywood bollywood
university college school
navy ship aircraft

698

#5

school college university
book newspaper magazin
fiction comedy movie
technology business industry
airplane submarine car

1061

Average Time Consumption N/A 715.2

topic. LDA is one of the most well-known and widely used algorithm in
topic modeling [137] which is mostly used in unsupervised settings. In our
experiments, we fed the whole collection to LDA to extract the relevant seed
words. In this case, we can simply get rid of documents and present seed
words to the users instead. The number of topics has been set to 20 and the
number of seed words for each topic is set to 10. Finally, LDA will produce
200 seed words in total to be presented to participants. Similarly to the
K-means solution mentioned above, we asked the users to first get through
all seed words and identify five different classes and then provide three
seed words pertaining to each class. Again, similar to K-means approach
mentioned above, five users participated in this case study as well. Table 5.3
shows more detailed information about selected seed words and required time
for each user to finish the experiment. Note that to avoid biasing the users
by the order of the presented seed words obtained from LDA, we shuffled
the seed words for each user.
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Table 5.3: The obtained seed words by providing seed words from LDA for each user
alongside the dedicated time (in seconds) to finish the experiment. Note that the provided
seed words for each users are shown such that each line of seed words pertains to one class.

Participants Seed words Time (in seconds)

#1

film drama comedy
publish journal novel
class school college
navy ship uss
company technology produce

1502

#2

film play series
school university faculty
book novel journal
cars train ship
war aircraft navy

554

#3

film comedy series
boston virginia vegas
car volvo airplane
college elementary university
company found public

302

#4

company samsung volvo
school college university
film action comedy
japanese american english
dockyard navy ship

581

#5

united american state
american german bangladeshi
book stories publish
aircraft airline international
college university class

384

Average Time Consumption N/A 664.6

5.4.4.3 PCD2C: Automatic Pairwise Constraints Selection

To provide pairwise constraints, we have assumed that there are few labeled
data that can be used in the experiments such that pairs with the same
labels are considered to be must-link pairs and pairs with different labels
are considered to be cannot-link pairs. In this case, we have used different
numbers of pairs to measure the effectiveness of increasing this number in
our experiments. In our experiments we have used 50, 100, 200, 500 and
1000 pairs. We started by randomly selecting 50 pairs of documents and
assigning them to must-link or cannot-link (by using the true cluster labels).
Then, to obtain 100 pairs, 50 already generated pairs are used as a base and
50 more pairs are randomly selected and added to the current 50 pairs. The
same process is repeated iteratively to obtain 200, 500 and 1000 pairs.
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5.4.4.4 PCD2C: Manual Pairwise Constraints Selection

In order to validate our proposed framework in a real case scenario, we have
designed a user-based experiment including pairwise constraints. Similar to
the automatic pairwise constraints selection described above, we started the
process of randomly selecting the pairs of documents with 50 pairs. Then
the same iterative process has been used to generate 100 and 300 pairs of
documents. These pairs are shown to users for further annotation. Again,
five users participated in this experiments and they were asked to assign
must-link or cannot-link constraints to each pair. The pairs of documents
have been shuffled for each user to avoid biasing the users based on the order
of pairs. More details can be found in Table 5.4.

Table 5.4: Detailed information about number of must-link and cannot-link pairs for each
user. The dedicated time to finish the experiment for each number of pairs is shown in
seconds.

Users #Pairs #Must-links #Cannot-links Time (in Seconds)

#1
50 4 46 600
100 11 89 1140
300 28 272 2940

#2
50 4 46 584
100 6 94 1129
300 21 279 3012

#3
50 2 48 739
100 7 93 1433
300 16 284 3697

#4
50 5 45 671
100 12 88 1295
300 21 279 3442

#5
50 7 43 660
100 17 83 1380
300 37 273 3540

Using True Labels (No User Experiments)
50 10 40 N/A
100 19 81 N/A
300 53 247 N/A

Average time consumption
50 N/A N/A 650.8
100 N/A N/A 1275.4
300 N/A N/A 3326.2

5.4.5 Experimental Setup

Following prior deep clustering works [29,31,85,136], we initialize the Au-
toencoder parameters through pretraining by first only optimizing the recon-
struction loss of the Autoencoder. In the pretraining of SD2C-Doc, we also
include the contraint-enforcing term (second term in Problem 5.3) so that
learned representations are impacted by seed words early in the training.
At the end of pretraining, the cluster centers are initialized by the seed
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words cluster embeddings {sk}Kk=1.9 Then, in the fine-tuning phase, the
whole loss – including the clustering loss and the constraint-enforcing loss
(for SD2C-Doc and SD2C-Rep) – is optimized. The same pretraining has
been done for PCD2C except that the cluster representatives are initialized
by performing k-means on the learned representations obtained from the
Autoencoder (similar to [29,31,85,136]).

Architecture and hyperparameters. The Autoencoder used in our
experiments on all datasets is similar to the ones adopted in prior deep
clustering works [29, 31, 85, 136]. The encoder and decoder are mirrored
fully-connected neural networks with dimensions d-500-500-2000-50 and
50-2000-500-500-d, respectively – d is the input space dimension and 50
corresponds to the dimension p of the Autoencoder embedding space. Neural
networks’ weights are initialized based on the Xavier scheme [125]. The
SD2C, DKM, and AE-KM models are trained with the Adam optimizer [126]
with standard hyperparameters (η = 0.001, β1 = 0.9, and β2 = 0.999) and
minibatches of 256 documents. The number of epochs for the Autoencoder
pretraining and model finetuning are fixed to 50 and 200, respectively, as
in [136]. We also use the inverse temperature α = 1000 from [136] for the
parameterized softmax-based differentiable reformulations of SD2C models.
The balancing hyperparameters λ0 and λ1 of SD2C-Doc and SD2C-Rep
(e.g., DKM-Doc/Rep, IDEC-Doc/Rep, DCN-Doc/Rep) were both set to
10−5–noted as general hyperparameters.

As mentioned in the previous chapter, we trained a Word2Vec model on
each collection individually.

5.4.6 Clustering Results

5.4.6.1 SD2C with Automatic Seed Word Selection

We measure the clustering performance in terms of clustering accuracy (ACC),
normalized mutual information (NMI) and adjusted rand index (ARI), which
are standard clustering metrics [127]. Table 5.5 first provides the macro-
average (over the 5 datasets) of these measures for all methods, using the
top 3 automatically selected seed words per cluster. As one can note, the
use of seed words is beneficial to the clustering. Indeed, the approaches
which use seed words (NN, STM, SD2C (DKM-based)) have markedly higher

9This is especially important for SD2C-Rep which is based on the assumption that the
clusters defined by the seed words and those defined by the cluster representatives are
aligned.
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ACC, NMI and ARI than those which do not (KM, AE-KM, DKM, DCN
(e/c), IDEC (e/c)). Among these latter methods, DKM is the best one (as a
comparison, DCN and IDEC, mentioned in Section 5.2, respectively obtain
64.8 and 64.1 for ACC, and 49.3 and 47 for ARI). Among the methods
exploiting seed words, SD2C methods are the best ones, outperforming the
baseline NN and the STM method by up to 2.6 points for ACC and 3.5
points for ARI. DKM-based SD2C approaches obtain quite higher results
compared to DCN-based and IDEC-based SD2C approaches. Indeed, adding
constraints and using general hyperparameters for these approaches seem
ineffective.

We further provide in Table 5.6 a detailed account of the performance of
the methods based on seed words. The results have been averaged over 10 runs
and are reported with their standard deviation. We furthermore performed
an unpaired Student t-test with a significance level of 0.01 to study whether
differences are significant or not (all results in bold are not statistically
different from the best result). As one can note, the proposed DKM-based
SD2C models compare favorably against STM, the strongest baseline. Indeed,
all DKM-based SD2C approaches significantly outperform STM on 20NEWS,
and DKM-Doc-e/c as well as DKM-Rep-e also significantly outperform STM
on YAHOO and AGNEWS. On the other hand, STM obtained significantly
better results in terms of both ACC and ARI on REUTERS and DBPEDIA,
the difference on these collections (and especially on DBPEDIA) being
nevertheless small. Among the DKM methods, DKM-Doc-c yields the best
performance overall (as shown in Table 5.5). Again, we can notice that
DKM-based SD2C approach obtains significantly better results compared to
DCN-based and IDEC-based approaches.

Impact of the number of seed words. In our general setting used to
report the previous results, the number of seed words per class was arbitrarily
set to 3. For comprehensiveness, we study the clustering results of the DKM-
based SD2C models when the number of (automatically selected) seed words
per cluster is varied from 1 to 5. The evolution of the performance for
the SD2C models in terms of accuracy is illustrated in Figure 5.4. We
observe that using more seed words leads to notable improvements in most
cases. This trend is particularly apparent when the number of seed words is
increased from 1 to 2. Although slight performance gain is observed between
2 and 5 seed words, the results exhibit greater stability. This suggests that
providing as few as 2 seed words per cluster – which constitutes a modest
annotation effort for humans – can prove highly beneficial for the clustering
results obtained by our DKM-based SD2C approaches.
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Table 5.5: Macro-average results in terms of accuracy (ACC), normalized mutual informa-
tion (NMI) and adjusted rand index (ARI). The double vertical line separates approaches
which leverage seed words (right) from approaches which do not (left). Bold values
correspond to the best results.

Model ACC ARI NMI
KM 61.4 45.4 59.0

AE-KM 64.0 48.8 59.3
DKM-e 65.5 50.4 59.2
DKM-c 65.0 48.9 58.6
DCN-e 64.8 49.3 59.3
DCN-c 64.5 47.6 59.0
IDEC 64.1 47.0 58.4
NN 72.6 50.9 58.1

STM 73.3 53.6 57.6
DKM-Doc-e 73.6 56.2 61.5
DKM-Doc-c 75.9 57.1 61.0
DKM-Rep-e 75.6 55.7 59.1
DKM-Rep-c 74.1 53.5 58.5
DCN-Doc-e 56.1 37.4 51.7
DCN-Doc-c 61.4 43.8 54.2
DCN-Rep-e 52.7 33.0 44.5
DCN-Rep-c 63.8 46.9 58.8
IDEC-Doc-e 45.1 19.6 34.7
IDEC-Doc-c 45.8 18.8 34.8
IDEC-Rep-e 46.1 18.4 35.0
IDEC-Rep-c 37.5 17.2 32.3

Table 5.6: Seed-guided constrained clustering results on DBPEDIA and AGNEWS with 3
seed words per cluster. Bold results denote the best, as well as not significantly different
from the best, results. Italicized SD2C results indicate a significant improvement over
STM.

Model DBPEDIA AGNEWS
ACC ARI NMI ACC ARI NMI

NN 79.9±0.0 64.7±0.0 75.7±0.0 77.3±0.0 51.9±0.0 51.1±0.0
STM 80.9±0.4 72.7±0.4 79.1±0.2 79.7±0.2 55.8±0.3 52.5±0.2

DKM-Doc-e 76.1±0.2 63.0±0.2 72.8±0.3 84.8±0.2 64.4±0.5 60.1±0.4
DKM-Doc-c 79.4±1.9 66.3±2.1 76.0±0.8 84.1±1.1 63.3±2.3 59.9±1.5
DKM-Rep-e 80.3±0.5 67.0±0.6 75.0±0.4 81.1±0.3 58.1±0.5 54.7±0.4
DKM-Rep-c 79.8±1.4 66.1±1.8 74.9±0.9 79.4±2.0 55.0±3.6 53.4±2.0
DCN-Doc-e 52.7±4.5 34.4±3.8 55.6±2.4 80.1±1.3 58.8±3.2 58.4±2.3
DCN-Doc-c 66.2±3.5 54.1±3.2 69.4±1.2 84.2±1.1 63.1±2.4 59.1±1.9
DCN-Rep-e 53.1±3.4 38.6±3.0 56.7±2.3 71.7±4.0 41.3±6.9 39.4±6.0
DCN-Rep-c 68.0±3.2 57.1±4.1 73.2±1.5 85.1±0.8 65.0±1.8 61.1±1.5
IDEC-Doc-e 39.5±7.0 19.5±5.8 40.5±4.5 39.8±6.5 6.2±5.5 16.5±5.4
IDEC-Doc-c 41.1±5.7 20.6±5.7 42.1±3.5 46.7±7.6 12.6±10.2 23.0±6.8
IDEC-Rep-e 41.8±6.1 21.2±4.7 42.9±3.4 48.5±6.3 13.1±7.0 24.1±5.9
IDEC-Rep-c 27.4±5.9 14.3±6.4 29.3±4.1 44.2±8.3 10.5±9.2 19.7±7.1
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Table 5.7: Seed-guided constrained clustering results on 20NEWS, REUTERS and YAHOO
with 3 seed words per cluster. Bold results denote the best, as well as not significantly
different from the best, results. Italicized SD2C results indicate a significant improvement
over STM.

Model 20NEWS REUTERS YAHOO
ACC ARI NMI ACC ARI NMI ACC ARI NMI

NN 72.3±0.0 53.2±0.0 67.2±2.0 79.0±0.0 58.3±0.0 61.3±0.0 54.7±0.0 26.5±0.0 35.0±0.0
STM 65.7±0.9 47.5±1.0 58.3±0.9 83.0±0.7 66.3±1.2 64.4±0.6 57.1±0.1 29.3±0.2 33.8±0.1

DKM-Doc-e 80.5±0.6 66.4±0.7 73.0±0.5 66.3±3.7 53.0±3.2 62.1±1.2 60.4±0.3 34.3±0.3 39.5±0.2
DKM-Doc-c 77.0±1.5 61.7±2.2 70.0±1.3 78.1±1.8 60.2±1.1 58.7±0.9 61.1±0.8 34.4±1.3 40.4±0.3
DKM-Rep-e 76.1±0.3 60.1±0.5 68.3±0.2 80.2±0.8 59.9±0.8 59.8±1.1 60.2±0.3 33.5±0.4 37.8±0.3
DKM-Rep-c 72.1±1.5 55.7±1.7 65.8±1.0 81.4±0.7 61.1±0.9 62.0±1.0 57.8±1.7 29.7±2.7 36.8±0.7
DCN-Doc-e 53.8±5.1 34.1±3.9 52.8±2.7 41.1±3.3 30.4±2.6 54.1±1.9 53.1±2.8 29.4±1.7 37.6±0.8
DCN-Doc-c 60.4 ±4.3 42.2±3.4 57.9±2.2 40.9±4.3 29.5±4.0 47.2±2.6 55.6±3.1 30.2±1.3 37.8±0.9
DCN-Rep-e 55.9±2.1 36.6±1.9 53.1±1.1 38.5±2.0 28.1±2.4 46.1±2.1 44.6±2.6 20.7±2.0 27.4±1.5
DCN-Rep-c 66.4±2.7 48.5±2.4 65.4±1.2 41.9±4.7 32.3±4.7 54.6±2.7 57.7±3.8 31.6±1.9 39.8±1.1
IDEC-Doc-e 44.1±.9 26.9±2.8 47.1±1.8 69.6±2.9 36.1±5.3 49.3±2.4 32.9±3.8 9.5±3.1 20.1±3.2
IDEC-Doc-c 36.9±7.1 13.7±5.5 39.9±4.4 69.2±3.0 35.3±4.7 47.2±3.0 35.3±4.7 11.8±3.8 21.8±3.3
IDEC-Rep-e 36.3±7.0 13.4±5.4 39.3±4.5 68.4±2.8 33.5±6.5 46.9±3.0 35.6±3.6 11.0±4.1 21.8±3.1
IDEC-Rep-c 32.5±5.9 11.2±6.1 38.7±5.5 38.8±3.1 29.2±4.8 46.3±3.7 44.9±3.4 21.2±2.6 27.5±1.1
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Figure 5.4: Clustering results in terms of ACC for SD2C-Doc-e, SD2C-Doc-c, SD2C-Rep-e
and SD2C-Rep-c with 1 to 5 seed words.

5.4.6.2 SD2C with Human Selected Seed Words

The results of different SD2C approaches on the subset of DBPEDIA (includ-
ing 25,000 documents equally distributed into 5 different classes) are shown
in Table 5.9 and Table 5.11 (on this subset, the results of multiple clustering
and Deep Clustering algorithms are shown in Table 5.8). The results indicate
that using DKM as the choice of clustering method leads towards more
beneficial results compared to DCN and IDEC. Moreover, the DKM-Doc-e
approach is able to obtain better results compared to the case where seed
words are not being used in the framework (e.g., DKM). The results of using
seed words obtained by presenting LDA-seed words to different users also
indicate that DKM-Doc-e outperforms other baselines. They however suggest
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Table 5.8: Results of different clustering approaches on selected documents from DBPEDIA
dataset–without using constraints. Bold results represent the best results.

Metric KM AE-KM DKM-e DKM-c DCN-e DCN-c IDEC
ACC 83.0±0.0 84.3±0.3 83.6±0.5 84.1±1.0 84.0±0.4 84.0±0.6 83.2±0.3
ARI 65.9±0.0 68.5±0.6 66.4±0.8 67.6±1.5 67.8±0.6 67.8±1.1 67.1±0.5
NMI 70.7±0.0 71.6±0.5 68.3±0.7 69.9±1.1 70.3±0.6 70.3±0.8 69.9± 0.7

that the improvement gained by using these seed words compared to the case
where no seed words are used (e.g., DKM) is quite negligible. In fact, the
results obtained from presenting selected documents (through K-means) to
the users outperform the results obtained from presenting LDA-seed words to
the users. Based on the time consumption required to fulfill the experiments
for these two approaches which are presented in Table 5.2 and Table 5.3, there
are no significant difference in terms of required time to extract seed words
from these approaches but presenting the documents (through K-means)
obtains significantly better results compared to presenting LDA-seed words.

Table 5.9: Results of different deep clustering with the constraints obtained by presenting
the first sentence of each document (obtained by applying k-means). Bolded results
represent the best results and italicized results are statistically equivalent to the best
results (p=0.01).

Model kw1 kw2 kw3
ACC ARI NMI ACC ARI NMI ACC ARI NMI

DKM-Rep-e 84.9±1.2 67.4±2.3 66.1±2.0 76.3±2.6 55.9±3.7 58.6±3.4 80.4±1.4 61.7±1.8 62.0±1.8
DKM-Rep-c 84.5±2.2 66.7±3.8 66.3±2.9 74.1±2.9 52.7±3.6 57.0±3.0 81.4±2.2 61.9±3.8 62.5±2.9
DKM-Doc-e 85.2±1.6 69.2±2.6 69.3±2.0 85.1±1.7 69.0±2.5 69.1±1.7 85.0±1.6 68.8±2.4 69.0±2.1
DKM-Doc-c 85.8±2.3 69.3±4.1 69.2±2.6 74.7±4.7 54.8±5.6 60.1±3.7 86.3±1.6 70.6±2.4 70.2±1.7
DCN-Rep-e 40.3±0.4 6.7±0.3 6.9±0.3 36.9±0.6 5.3±0.3 5.6±0.3 39.0±0.5 6.3±0.2 6.6±0.2
DCN-Rep-c 40.0±0.4 6.5±0.2 6.8±0.2 36.9±0.8 5.2±0.4 5.6±0.4 39.2±0.8 6.4±0.3 6.7±0.3
DCN-Doc-e 38.3±1.6 6.1±0.6 6.3±0.3 35.9±2.3 5.1±0.8 5.4±0.8 37.0±1.7 6.2±0.6 6.3±0.6
DCN-Doc-c 86.0±1.9 69.7±3.3 69.5±2.3 73.6±5.3 53.9±6.3 59.5±4.4 86.1±1.6 70.2±2.1 69.7±1.7
IDEC-Rep-e 39.1±8.1 6.9±6.7 22.6±8.1 44.6±5.4 14.9±6.7 30.3±5.6 35.2±5.3 4.9±4.3 20.9±4.3
IDEC-Rep-c 37.1±9.0 8.1±8.3 20.4±7.6 40.0±4.1 9.8±5.0 24.8±4.2 28.1±2.6 1.6±1.2 15.3±3.5
IDEC-Doc-e 34.6±5.6 4.1±3.2 19.5±4.7 47.8±7.3 20.3±9.6 33.7±6.4 39.5±7.1 9.8±7.5 26.8±6.3
IDEC-Doc-c 43.0±8.1 12.1±8.4 25.0±6.8 41.1±7.5 11.6±8.7 25.9±7.4 27.5±2.2 1.3±0.8 15.0±3.1

Table 5.10: Results of different deep clustering with the constraints obtained by presenting
the first sentence of each document (obtained by applying K-means). Bolded results
represent the best results and italicized results are statistically equivalent to the best
results (p=0.01).

.

Model kw4 kw5 Macro-AV
ACC ARI NMI ACC ARI NMI ACC ARI NMI

DKM-Rep-e 83.0±1.7 63.9±3.3 62.9±2.7 79.5±2.2 59.7±3.2 61.7±2.2 80.8 61.7 62.2
DKM-Rep-c 81.5±2.4 60.9±3.8 61.2±2.7 77.6±2.3 57.4±2.6 60.4±1.5 79.8 59.9 61.4
DKM-Doc-e 84.4±1.6 68.2±2.5 68.9±1.9 84.6±1.1 68.4±1.5 69.0±1.2 85.0 68.7 69.0
DKM-Doc-c 85.4±1.1 68.8±2.0 69.2±1.2 83.1±2.7 65.2±4.5 66.5±3.4 83.0 65.7 67.0
DCN-Rep-e 39.5±0.4 6.2±0.5 6.5±0.2 38.1±0.7 5.9±0.3 6.2±0.3 38.7 6.0 6.3
DCN-Rep-c 38.8±0.6 5.9±0.3 6.1±0.3 37.7±0.4 5.8±0.1 6.0±0.1 38.5 5.9 6.2
DCN-Doc-e 37.9±2.3 6.1±0.8 6.3±0.8 36.1±1.1 5.8±0.8 6.0±0.6 37.0 5.8 6.0
DCN-Doc-c 84.9±1.7 67.9±2.8 68.6±1.6 83.5±3.2 66.2±5.0 67.3±3.6 82.8 65.5 66.9
IDEC-Rep-e 29.4±3.3 1.3±1.0 14.3±3.7 49.7±0.7 22.8±8.2 32.8±5.8 39.6 10.1 24.1
IDEC-Rep-c 33.4±4.9 4.8±5.1 15.4±4.3 41.1±9.5 16.0±12.4 25.8±11.3 35.9 8.0 20.3
IDEC-Doc-e 26.7±1.9 0.8±0.5 12.6±2.7 48.9±5.5 23.0±4.9 33.7±3.8 39.5 11.6 25.2
IDEC-Doc-c 36.5±3.9 6.8±4.4 18.7±3.7 44.5±6.5 20.0±9.8 29.1±9.3 38.5 10.3 22.7



5.4. EXPERIMENTS 81

Table 5.11: Results of different deep clustering approaches with the constraints obtained
by presenting the seed words obtained from LDA. Bolded results represent the best results
and italicized results are statistically equivalent to the best results (p=0.01).

.

Model kw1 kw2 kw3
ACC ARI NMI ACC ARI NMI ACC ARI NMI

DKM-Rep-e 83.3±1.1 65.0±2.1 64.2±2.3 76.1±2.9 55.7±2.9 58.6±2.3 60.5±1.4 40.0±1.0 44.4±1.3
DKM-Rep-c 83.5±1.6 65.2±2.6 65.5±1.9 76.4±3.1 56.3±3.4 59.8±2.7 59.3±2.3 41.7±2.1 47.4±1.8
DKM-Doc-e 84.6±1.3 68.3±2.1 68.9±1.7 84.3±1.4 67.9±2.3 68.7±2.0 82.7±5.4 66.2±7.0 67.7±5.0
DKM-Doc-c 83.8±1.9 66.8±3.2 68.0±2.5 84.3±2.1 67.3±3.3 68.2±2.0 63.0±7.3 48.3±6.7 56.1±4.4
DCN-Rep-e 39.9±0.5 6.4±0.3 6.7±0.3 36.6±0.6 5.3±0.2 5.6±0.2 32.7±0.5 3.9±0.2 4.3±0.2
DCN-Rep-c 40.1±0.7 6.5±0.4 6.8±0.3 38.6±0.6 5.8±0.6 6.1±0.2 32.3±0.7 4.1±0.3 4.5±0.3
DCN-Doc-e 38.4±1.4 5.9±0.6 6.2±0.6 36.4±2.1 5.8±0.9 6.0±0.8 34.0±1.2 4.9±0.5 5.1±0.5
DCN-Doc-c 83.5±1.0 66.6±1.7 68.2±1.4 83.8±3.8 65.8±5.0 66.9±3.3 63.9±6.2 49.2±5.0 56.7±3.4
IDEC-Rep-e 59.0±7.8 26.8±9.4 38.0±7.1 55.8±6.8 31.3±9.0 41.1±6.7 46.1±5.1 20.2±5.9 27.0±4.3
IDEC-Rep-c 44.6±5.2 13.1±7.4 24.6±5.0 39.5±7.4 11.8±8.7 25.5±7.8 31.8±4,2 3.9±2.5 10.7±2.9
IDEC-Doc-e 59.3±9.8 29.9±11.3 39.3±9.0 54.0±7.8 29.1±8.4 38.9±6.0 46.4±5.3 20.3±6.6 28.4±4.9
IDEC-Doc-c 40.1±9.5 9.5±8.9 23.1±8.4 43.0±9.8 16.8±10.6 28.2±10.1 32.3±2.8 3.8±1.8 12.5±2.7

Table 5.12: Results of different deep clustering approaches with the constraints obtained
by presenting the seed words obtained from LDA. Bolded results represent the best results
and italicized results are statistically equivalent to the best results (p=0.01).

Model kw4 kw5 Macro-AV
ACC ARI NMI ACC ARI NMI ACC ARI NMI

DKM-Rep-e 78.0±2.3 56.7±3.6 58.4±3.7 59.2±6.1 33.6±6.4 37.0±6.0 71.4 50.2 52.5
DKM-Rep-c 74.3±4.6 52.3±4.9 55.8±3.7 59.2±3.7 37.5±3.5 42.9±2.6 70.5 50.6 54.2
DKM-Doc-e 85.0±1.2 68.9±1.7 69.4±1.3 81.8±6.9 65.2±8.9 67.1±5.7 83.6 67.3 68.3
DKM-Doc-c 83.7±1.3 66.8±2.1 68.1±1.9 74.8±7.6 56.7±8.2 59.6±6.4 77.9 61.1 64.0
DCN-Rep-e 37.9±0.7 5.6±0.3 5.9±0.3 30.3±0.9 2.6±0.3 2.9±0.4 35.4 4.7 5.0
DCN-Rep-c 37.4±0.8 5.4±0.4 5.7±0.4 31.3±1.2 3.1±0.6 3.5±0.5 35.9 4.9 5.3
DCN-Doc-e 36.4±2.0 5.7±0.7 5.9±0.7 32.6±2.4 4.5±0.8 4.8±0.8 35.5 5.8 5.6
DCN-Doc-c 84.1±1.8 67.0±3.0 68.0±2.2 78.4±5.2 59.8±6.7 61.9±5.2 79.6 61.6 64.3
IDEC-Rep-e 49.8±5.2 20.6±5.2 30.4±5.3 36.9±6.5 8.7±5.2 17.9±5.7 49.5 21.5 30.8
IDEC-Rep-c 38.1±4.7 8.7±4.2 20.8±4.1 34.0±6.8 6.6±5.8 14.6±5.5 37.6 8.8 19.2
IDEC-Doc-e 49.9±5.5 18.4±0.5 30.3±3.9 31.8±5.2 4.6±4.0 13.8±3.9 48.2 20.4 30.1
IDEC-Doc-c 36.9±4.0 8.1±4.6 20.7±3.9 32.8±5.2 5.9±4.3 13.0±4.9 37.0 8.8 19.5

5.4.6.3 PCD2C Using Groundtruth-based ML/CL Constraints

Table 5.13: Results of PCD2C framework (using DKM) on 20NEWS, REUTERS and
YAHOO with general hyperparameters.

Model 20NEWS REUTERS YAHOO
ACC ARI NMI ACC ARI NMI ACC ARI NMI

DKM-e(50) 75.0 ±2.0 62.5±1.4 71.6 ± 0.6 42.7 ±1.3 33.6±0.8 55.8 ± 1.3 54.7 ±2.5 31.6±1.1 37.8 ±0.7
DKM-e(100) 73.5 ±1.8 61.7±1.4 71.1 ± 0.9 43.3 ±1.7 33.9±1.0 56.3 ± 1.1 56.0 ±3.1 32.2±1.5 38.1 ±0.9
DKM-e (200) 73.7 ±3.1 61.8±1.6 71.0 ± 1.1 43.8 ±3.6 34.2±3.0 56.1 ± 1.3 56.4 ±2.7 32.5±1.3 38.4 ± 0.8
DKM-e(500) 73.8 ±4.2 61.7±1.1 71.2 ± 1.2 42.5 ±0.9 33.6±0.9 55.9 ± 1.0 55.7 ±2.8 32.1±1.1 38.1±0.7
DKM-e(1000) 74.2 ±2.8 62.0±1.3 71.2 ± 0.9 42.6 ±2.0 33.0±1.5 55.5 ± 0.9 55.5±2.9 31.9±1.4 38.0±0.8

Table 5.14: Results of PCD2C framework (using DKM) on DBPEDIA and AGNEWS with
general hyperparameters.

Model DBPEDIA AGNEWS Macro-average
ACC ARI NMI ACC ARI NMI ACC ARI NMI

DKM-e(50) 67.9±2.6 58.7±3.2 72.3±1.5 85.2±0.4 65.4±0.7 61.0±0.6 65.1 50.3 59.7
DKM-e(100) 68.2±3.4 59.5±3.7 72.9±1.5 85.5±0.4 65.9±0.7 61.4±0.6 65.3 50.6 59.9
DKM-e (200) 67.8±2.2 58.9±3.5 72.6±1.7 85.3±0.5 65.6±1.0 61.3±0.8 65.4 50.6 59.8
DKM-e(500) 66.1±2.5 56.9±3.3 71.7±1.6 85.3±0.5 65.6±1.0} 61.2±0.9 64.6 49.9 59.6
DKM-e(1000) 67.5±1.7 58.0±3.0 72.3±1.3 85.4±0.5 65.9±1.0 61.5±0.8 65.0 50.1 59.7

Similar to the SD2C approach, one may select different deep clustering
algorithms in PCD2C framework. The proposed PCD2C framework has been
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Table 5.15: Results of PCD2C framework (using DKM) on 20NEWS, REUTERS and
YAHOO by tuning λ1 hyperparameter (λ0 has been set to 10−5).

Model 20NEWS REUTERS YAHOO
ACC ARI NMI ACC ARI NMI ACC ARI NMI

DKM-e(50) 75.6 ±3.1 62.5±1.4 71.7 ± 0.9 80.8 ±4.6 83.1±3.0 69.1 ± 2.5 54.7 ±2.5 31.6±1.1 37.8 ±0.7
DKM-e(100) 75.3 ±3.5 62.5±2.9 71.8 ± 1.0 82.7 ±2.7 84.2±2.4 69.8 ± 3.2 56.0 ±3.1 32.2±1.5 38.1 ±0.9
DKM-e(200) 74.3 ±2.3 62.1±1.7 71.9 ± 0.7 84.4 ±2.0 86.4±2.4 70.8 ± 2.7 56.4 ±2.7 32.5±1.3 38.4 ± 0.8
DKM-e(500) 73.9 ±2.1 61.9±2.1 71.6 ± 0.7 83.7 ±3.6 86.5±4.6 72.1 ± 3.4 55.7 ±2.8 32.1±1.1 38.1±0.7
DKM-e(1000) 74.8 ±3.6 62.2±1.8 72.0 ± 1.1 85.2 ±1.8 89.9±1.4 76.3 ± 2.1 55.5±2.9 31.9±1.4 38.0±0.8

Table 5.16: Results of PD2C framework (using DKM) on DBPEDIA and AGNEWS
datasets by tuning λ1 hyperparameter (λ0 has been set to 10−5).

Model DBPEDIA AGNEWS Macro-average
ACC ARI NMI ACC ARI NMI ACC ARI NMI

DKM-e(50) 67.9±2.6 58.7±3.2 72.3±1.5 85.2±0.4 65.4±0.7 61.0±0.6 72.8 60.1 62.3
DKM-e(100) 68.2±3.4 59.5±3.7 72.9±1.5 85.5±0.4 65.9±0.7 61.4±0.6 73.5 60.8 62.8
DKM-e(200) 67.8±2.2 58.9±3.5 72.6±1.7 85.3±0.5 65.6±1.0 61.3±0.8 73.6 61.1 63.0
DKM-e(500) 66.1±2.5 56.9±3.3 71.7±.16 85.3±0.5 65.6±1.0 61.2±0.9 72.9 60.6 62.9
DKM-e(1000) 67.5±1.7 58.0±3.0 72.3±1.3 85.4±0.5 65.9±1.0 61.5±0.8 73.6 61.5 64.0

evaluated by using different deep clustering algorithms. In this thesis, we
have used DKM [136], DCN [29] and IDEC [31] and performed 10 individual
seeded runs to measure the effectiveness of the model. Table 5.13 includes
the results of different variants of PCD2C framework on 5 publicly available
datasets using general hyperparameters while Table 5.15 includes the results
of different PCD2C variations by tuning λ1 hyperparameter (λ0 has been set
to 10−5). As the results in Table 5.13 indicate, using pairwise constraints with
general hyperparameters does not result in improvements over deep clustering
approaches (DKM, DCN and IDEC) when no constraints is integrated into
the framework. Moreover, as opposed to our expectations, adding more
constraints (e.g., from 50 to 100) does not necessarily yield in better results.
On the contrary, the improvements in the results by tuning λ1 hyperparameter
is more clear. Indeed, in terms of Macro-average results, the proposed
framework outperforms DKM, DCN and IDEC where no pairwise constraints
are used. Moreover, similar to the case where general hyperparameters are
used, except on REUTERS, there are no clear trends in terms of adding
more constraints to the proposed framework. Thus, we can conclude that
if a few labeled data points are available, by tuning hyperparameter/s we
can obtain state-of-the-art results. Figure 5.5 and Figure 5.6 illustrate the
change in the clustering accuracy (ACC) by changing the λ1 hyperparameter
for 20NEWS and REUTERS datasets.

5.4.6.4 PCD2C User Constraints

We discussed the details of the user experiment that have been conducted and
in this section we provide more details about the performance of the proposed
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Figure 5.5: Evolution of PCD2C in the case of clustering accuracy (ACC) for REUTERS
with respect to different values for λ1 for different number of pairs–when pairwise constraints
are used.

Figure 5.6: Evolution of PCD2C in the case of clustering accuracy (ACC) for 20NEWS with
respect to different values for λ1 for different number of pairs–when pairwise constraints
are used.

PCD2C algorithm. Similar to using true labels for aligning must-link and
cannot-link documents, we have used DKM [136], DCN [29] and IDEC [31]
as our proposed candidates for evaluating the performance of the proposed
PCD2C framework. In order to simulate a real case scenario when (possibly)
there are no already-labeled documents, no hyperparameter tuning has been
perform (similar to user experiments with SD2C approach) and both λ0 and
λ1 has been set to 10−5 for all variants of PCD2C framework (DKM, DCN
and IDEC). The results are presented in Table 5.17 and indicate that using
DKM as the choice of deep clustering for the proposed PCD2C framework
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leads towards outperforming DCN and IDEC in PCD2C framework. Indeed,
only selecting DKM as the deep clustering algorithm in PCD2C leads to-
wards better results compared to when no pairwise constraints are being
used (original DKM). Here, similar to the case where true labels are used
for obtaining pairwise constraints, no clear trends are observed in case of
increasing the number of constraints.

Table 5.17: Results of different versions of PD2C algorithm (DKM, DCN and IDEC) on
subset of DBPEDIA (including 25,000 documents) dataset with human selected seed words.
λ1 and λ0 have been set to 10−5 (general hyperparameters).

Model User 1 User 2 User 3
ACC ARI NMI ACC ARI NMI ACC ARI NMI

DKM-e(50) 86.0±1.1 71.4±1.5 72.7±0.7 86.3±1.0 71.8±1.3 72.9±0.9 84.3±6.0 71.6±3.6 72.8 ±0.7
DKM-e(100) 86.0±1.3 71.4±1.8 72.7±1.1 85.8±0.7 70.9±0.8 72.3±0.8 85.8±1.0 71.0±1.4 72.4±0.9
DKM-e(300) 85.9±1.2 71.1±1.7 72.4±1.2 85.9±1.2 71.2±1.6 72.5±1.1 86.2±1.1 71.7±1.6 72.9±0.9
DKM-c(50) 80.3±9.0 64.8±9.9 68.6±5.5 81.8±8.8 67.0±8.6 69.7±4.6 80.3±8.9 64.7±10.2 68.6±5.7
DKM-c(100) 82.6±8.4 67.8±8.9 70.4±4.9 83.6±6.5 68.3±6.6 70.5±3.8 83.4±6.8 68.2±7.3 70.4±4.3
DKM-c(300) 84.1±6.1 68.9±6.8 70.9±4.0 83.8±7.2 68.8±7.5 70.8±4.4 82.2±8.1 67.0±8.8 69.9±5.0
DCN-e(50) 83.7±1.3 67.4±1.5 71.0±1.3 83.6±0.8 67.4±1.2 70.8±0.9 83.4±1.3 67.4±1.7 70.8±1.3
DCN-e(100) 83.7±1.0 67.6±1.7 71.0±1.4 83.5±0.8 67.4±1.3 70.7±1.0 83.5±1.0 67.4±1.6 70.8±1.3
DCN-e(300) 83.9±1.5 67.9±2.2 71.0±1.4 84.0±1.3 68.1±1.9 71.2±1.2 83.7±1.4 67.5±2.0 70.7±1.2
DCN-c(50) 83.7±1.1 67.6±1.8 71.0±1.4 83.4±1.3 67.2±2.1 70.7±1.5 83.9±1.3 67.9±1.8 71.1±1.0
DCN-c(100) 84.0±1.2 67.9±1.7 71.0±1.2 83.8±1.5 67.6±2.2 70.8±1.3 83.8±1.4 67.6±2.1 70.7±1.4
DCN-c(300) 83.4±1.0 67.2±1.7 70.7±1.2 83.6±0.9 67.5±1.4 71.0±1.2 83.7±1.0 67.7±1.7 71.1±1.3
IDEC-e(50) 83.7±1.5 67.7±2.3 71.2±1.5 83.7±1.5 67.6±2.4 71.2±1.6 83.7±1.5 67.6±2.4 71.2±1.5
IDEC-e(100) 83.7±1.5 67.6±2.3 71.1±1.5 83.7±1.5 67.6±2.4 71.2±1.6 83.7±1.5 67.6±2.4 71.2±1.6
IDEC-e(300) 83.7±1.5 67.7±2.4 71.2±1.5 83.7±1.5 67.6±2.4 71.2±1.6 83.7±1.5 67.6±2.4 71.2±1.6
IDEC-c(50) 75.8±8.3 56.8±9.1 64.0±5.6 74.2±10.3 55.2±10.5 63.5±6.7 74.9±10.0 55.9±11.2 63.8±6.9
IDEC-c(100) 74.5±9.9 55.7±10.3 63.6±6.3 74.4±9.9 55.6±11.0 63.5±7.1 78.0±8.4 60.3±9.0 66.1±5.6
IDEC-c(300) 77.9±8.1 59.8±8.1 65.8±5.2 75.3±10.2 57.2±10.2 64.4±6.3 74.2±10.1 55.9±10.6 63.9±6.5

Table 5.18: Results of different versions of PD2C algorithm (DKM, DCN and IDEC) on
subset of DBPEDIA (including 25,000 documents) dataset with human selected seed words.
λ1 and λ0 have been set to 10−5 (general hyperparameters).

Model User 4 User 5 Macro-average
ACC ARI NMI ACC ARI NMI ACC ARI NMI

DKM-e(50) 86.3±1.3 71.7±1.8 72.8±1.0 86.0±1.0 71.2±1.4 72.5±0.9 85.7 71.5 72.7
DKM-e(100) 86.3±0.9 71.6±1.2 72.7±0.8 86.1±0.9 71.3±1.2 72.5±1.0 86.0 71.2 72.5
DKM-e(300) 85.8±0.9 70.9±1.2 72.2±0.9 85.9±1.0 71.2±1.3 72.6±0.9 85.9 71.2 72.8
DKM-c(50) 82.2±7.1 67.0±8.6 69.8±4.9 81.9±8.9 67.0±8.9 69.7±5.1 81.3 66.1 69.2
DKM-c(100) 82.4±8.3 67.3±9.0 70.1±5.0 81.5±8.7 66.8±8.2 69.8±4.6 82.7 67.6 70.2
DKM-c(300) 82.0±8.8 67.3±8.7 70.0±4.8 84.2±6.2 69.2±7.5 71.0±4.4 83.2 68.2 70.5
DCN-e(50) 83.5±1.1 67.8±1.8 70.8±1.6 83.6±0.9 67.2±1.8 70.7±1.0 83.3 67.4 70.8
DCN-e(100) 83.8±1.4 67.8±2.1 70.9±1.3 83.7±1.5 67.6±2.1 70.8±1.2 83.6 67.5 70.8
DCN-e(300) 83.5±0.9 67.3±1.5 70.7±1.2 83.7±1.6 67.6±2.3 70.8±1.4 83.7 67.6 70.8
DCN-c(50) 83.6±0.8 67.5±1.3 70.8±1.1 84.0±1.5 68.1±2.0 71.1±1.3 83.7 67.6 70.9
DCN-c(100) 84.0±1.5 68.0±2.2 70.9±1.5 83.6±1.6 67.5±2.3 70.7±1.4 83.8 67.7 70.8
DCN-c(300) 83.3±1.1 67.0±1.8 70.6±1.3 83.8±1.6 67.7±2.3 70.7±1.4 83.5 67.4 70.8
IDEC-e(50) 83.7±1.5 67.6±2.3 71.2±1.6 83.7±1.5 67.6±2.3 71.2±1.6 83.7 67.6 71.2
IDEC-e(100) 83.7±1.5 67.6±2.4 71.2±1.6 83.7±1.5 67.6±2.3 71.2±1.6 83.7 67.6 71.2
IDEC-e(300) 83.7±1.5 67.6±2.4 71.2±1.6 83.7±1.5 67.6±2.3 71.2±1.6 83.7 67.6 71.2
IDEC-c(50) 76.1±9.3 57.0±10.1 64.4±6.2 73.8±10.7 56.0±11.4 63.8±6.5 74.9 56.0 64.1
IDEC-c(100) 77.4±7.5 59.3±7.3 65.6±6.5 73.8±10.6 55.1±11.7 63.0±7.5 75.6 57.1 64.3
IDEC-c(300) 76.3±9.3 58.2±9.9 65.1±6.1 73.4±9.9 54.3±10.9 62.8±6.6 75.4 57.8 64.4

5.5 Conclusion

In this chapter we proposed two frameworks named SD2C and PCD2C
which are able to include constraints in end-to-end deep clustering methods.
SD2C-Rep, SD2C-Doc and SD2C-Att are able to include seed words in deep
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clustering methods while PCD2C is able to include pairwise constraints in
deep clustering methods.

Moreover, we discussed that one can use any deep clustering methods such
as DKM, DCN and IDEC in SD2C and PCD2C frameworks. To evaluate our
proposed frameworks, we designed two different experiments: 1) automated
constraints selection and 2) human constraints selection.

The results of both automated and human constraints selection indicate
that using constraints in an end-to-end deep clustering framework helps to
obtain better results compared to when constraints are not used. Indeed,
SD2C and PCD2C are able to bias the data representations (learned by an
Autoencoder) through utilizing constraints in their frameworks.

Moreover, the results also indicate that in most cases, using DKM as the
deep clustering algorithm in SD2C and PCD2C can help to obtain better
results compared to when DCN and IDEC are used.
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Conclusion

6.1 Summary

In this thesis we proposed the DKM algorithm where learning data represen-
tations and cluster representatives are performed in a truly joint way. The
results indicate that our proposed DKM approach is able to outperform DCN
and IDEC in the most cases. In fact, the results showed that optimizing
Autoencoder weights and cluster representatives in a truly joint way yields
better performance. In fact, DKM objective function allows the gradients to
be computed smoothly which yields better optimization. On the contrary,
similar methods such as DCN are not able to compute the gradients smoothly.
To validate our approach, we tested our DKM framework, DCN and IDEC
on variety types of data including text and images. The obtained results
confirmed our intuition that optimizing Autoencoder weights and cluster
representatives in a joint way leads toward better results.

Moreover, we tried to address the subjectivity aspect of clustering (more
precisely, in deep clustering) by proposing two different approaches named as
SD2C and PCD2C. In fact, we provided two deep clustering frameworks which
can reflect user needs. Users can provide seed words (SD2C case) or pairwise
constraints (PCD2C case) as additional information. All these provided
additional information can be handled by these two proposed frameworks.

SD2C is able to include seed words constraints into any deep document
clustering approaches. In fact, through biasing data representations (learned
by an Autoencoder) towards the provided seed words, we can obtain suitable
results which can satisfy user needs. The results of this framework indicate
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that including such constraints are useful for obtaining more tailored results.
In fact, if the provided seed words per cluster are able to define the clusters
well (e.g., football for sport cluster) then the representations will be biased
and the algorithm is able to obtain better results. Otherwise, if the quality
of seed words is not good, we may not obtain better results.

Moreover, we devised two different ways of obtaining seed words which are
names as automatically selected seed words and manually selected ones. For
the case of manually selecting seed words, we performed several experiments
with multiple participants who were asked to withdraw seed words through
reading variety of sentences. In these experiments, users did not receive any
external help from computers and tools to select the seed words. The results
of both manually and automatically selected seed words approved our unique
way of extracting automatic seed words. Moreover, the results of manually
selected seed words indicate that our proposed framework is able to handle
real world case scenarios.

We also discussed that another type of constraints are pairwise constraints
where if a pair of documents are similar (belong to the same cluster) then
they are labeled as ML and otherwise, if they belong to the different clusters,
they are labeled as CL. PCD2C approach has been designed to be able to
include pairwise constraints provided by the users into any deep document
clustering approaches. In this case, by including ML and CL constraints into
the PDC2C framework, we tried to bias the data representations learned by
an Autoencoder (similar to SD2C).

Similar to the SD2C, we also performed several experiments where differ-
ent participants where asked to assign ML and CL labels to multiple pairs of
documents. Then, the manually selected pairwise constraints were fed into
the PCD2C framework to measure the performance of the algorithm.

The results of the both manually selected pairwise constraints and au-
tomatically selected ones showed that PCD2C is able to integrate pairwise
constraints in an useful way where we can obtain better tailored results.
Compared to the SD2C, PCD2C is less affected by the wrong choice of
the user. In another words, the variance of the results of PCD2C are less
compared to SD2C.

Another strong aspect of all the proposed frameworks including DKM,
SD2C and PCD2C is that for the Autoencoder part, no hyperparameters
tuning has been performed. Certainly, through hyperparameters tuning, we
can obtain better results.
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6.2 Future work

In this section, we discuss about the future works that might be considered
for this thesis. First, we discuss future works about DKM and in general
deep clustering approaches without the seed words and then discuss the
possible future works of deep clustering approaches which try to integrate
the seed words.

6.2.1 Deep Clustering Without Seed Words

In the case of deep clustering approaches (without constraints), other clus-
tering algorithms rather than k−means can be used and tested. Indeed, In
this thesis, we focused on designing an alternative objective function for
k−means which allows gradients to be computed. There are tremendous
amounts of other clustering algorithms which can be re-designed to be used
in an end-to-end deep clustering framework.

Moreover, the capability of memory-based neural network algorithms can
be investigated. In this case, different representations per cluster can be
defined and these representations can place in a virtual memory (matrix).
Similar to the [138] reading from the memory and writing to the memory
can be defined.

Also, different types of Autoenocoders can be explored as well. Due to the
infrastructure limitations, we were not able to explore Seq2Seq Autoencoders
(similar to Machine Translation) as these networks tend to process the
input sequence one-by-one (in case of using RNN based neural networks in
the Autoencoder architecture). Since such Autoencoders seem to be more
beneficial when the input data is text, trying and testing such models are
recommended.

Moreover, we used Word2Vec method for word representations. As
mentioned in the previous chapters, we used fastText as well but the results
of Word2Vec were quite better copmpared to the fastText. In the future,
more modern techniques such as Bert [139] can be used. Since in this
method, the representation of the document can be obtained (along with
the representation of each word in the document), it is highly possible that
utilizing this method yields better results.

6.2.2 Deep Clustering Including Seed Words

In the case of using seed words in the deep clustering architecture, we can
try the same possible future works mentioned for the case of deep clustering
without seed words.



90 6. CONCLUSION

Moreover, in this case, a combination of SD2C-Doc and SD2C-Rep will
be investigated. Their losses can be summed or a new formulation based on
their losses can be defined. Moreover, using attention mechanism in such
frameworks can be explored. In this thesis, we tried a single version of atten-
tion based model but this model suffers from complexity and not producing
good results. Reformulating the current model and solving complexity is a
direction that we can explore as well.
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