
HAL Id: tel-03151441
https://theses.hal.science/tel-03151441

Submitted on 24 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Spaces of analytic functions and reachable space of the
heat equation

Marcu-Antone Orsoni

To cite this version:
Marcu-Antone Orsoni. Spaces of analytic functions and reachable space of the heat equation. Func-
tional Analysis [math.FA]. Université de Bordeaux, 2021. English. �NNT : 2021BORD0011�. �tel-
03151441�

https://theses.hal.science/tel-03151441
https://hal.archives-ouvertes.fr


THÈSE

présentée pour obtenir le grade de

Docteur de
l’Université de Bordeaux

École Doctorale Mathématiques et Informatique

Spécialité Mathématiques Pures

par Marcu-Antone Orsoni

Spaces of analytic functions and Reachable
space of the heat equation

Sous la direction de : Andreas Hartmann

Soutenue publiquement le 14 janvier 2021 à l’Institut de Mathématiques de Bordeaux.

Membres du jury
Karine Beauchard Professeure, ENS Rennes, IRMAR Présidente du jury
Alexander Borichev Professeur, Aix-Marseille Université, I2M Rapporteur
Sylvain Ervedoza Directeur de recherche, Université de Bordeaux, IMB Examinateur
Andreas Hartmann Professeur, Université de Bordeaux, IMB Directeur
Lionel Rosier Professeur, Université du Littoral Côte d’Opale, LMPA Rapporteur
José Ángel Peláez Márquez Profesor Contratado Doctor, Universidad de Málaga Examinateur





Titre : Espaces de fonctions holomorphes et espace atteignable de l’équation de la
chaleur.

Résumé : Cette thèse est consacrée à la description de l’espace atteignable de
l’équation de la chaleur à l’aide de méthodes de l’analyse complexe moderne. Ce
problème central de la théorie du contrôle est vieux de 50 ans et a captivé de nom-
breuses recherches depuis les travaux pionniers de Fattorini et Russell en 1971. Dans
ce travail, on s’intéresse à l’équation de la chaleur 1-D sur un segment avec contrôle
de Dirichlet au bord. Dans une première partie, on démontre à l’aide d’un théorème
de type Paley-Wiener que l’espace atteignable est égal à la somme de deux espaces de
Bergman, puis qu’il contient un espace de Smirnov-Zygmund en étudiant la régularité
de la transformée de Cauchy. Dans une deuxième partie, en utilisant des méthodes de
noyaux reproduisants et de d-bar, on résout le problème de séparation de singularités
(problème de type Cousin) pour l’espace de Bergman dans plusieurs configurations.
On en déduit ainsi une caractérisation définitive de l’espace atteignable comme es-
pace de Bergman sur un carré. Enfin, la dernière partie est consacrée à l’équation
de chaleur avec un potentiel quadratique et à son espace atteignable.

Mots-clés : Espaces de fonctions holomorphes, espace atteignable, équation de la
chaleur, noyaux reproduisants, analyse complexe, théorie du contrôle.

Title: Spaces of analytic functions and reachable space of the heat equation.

Abstract: This thesis is devoted to the description of the reachable space of
the heat equation using methods of modern complex analysis. This central problem
in control theory is about 50 years old and has captivated a lot of research efforts
since the pioneering work of Fattorini and Russell in 1971. In this work, we are
interested in the 1-D heat equation on a segment with Dirichlet boundary control.
In the first part, using a Paley-Wiener theorem we prove that the reachable space is
the sum of two Bergman spaces, then that it contains a Smirnov-Zygmund space by
studying the regularity of the Cauchy transform. In a second part, using reproducing
kernels and B̄-methods, we solve the problem of separation of singularities (Cousin-
type problem) for the Bergman space in several configurations. This enables us to
deduce a definitive characterization of the reachable space as the Bergman space on
a square. Finally, the last part is devoted to the heat equation with a quadratic
potential and its reachable space.

Keywords: Spaces of analytic functions, reachable space, heat equation, repro-
ducing kernels, complex analysis, control theory.
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Introduction (Français)

Introduite par le mathématicien Joseph Fourier au début du XIXe siècle dans
le but de modéliser la propagation de la chaleur dans un milieu donné, l’équation
de la chaleur est l’une des équations différentielles les plus célèbres des mathéma-
tiques. Dans le discours introductif de son célèbre ouvrage Théorie analytique de la
chaleur paru en 1822, Fourier écrira d’elle : « Cette théorie formera désormais une
des branches les plus importantes de la physique générale ». Presque deux siècles
plus tard, l’équation de la chaleur a largement dépassé les frontières de la physique
et intervient dans de nombreux autres domaines comme la biologie, la chimie, la
mécanique des fluides, les probabilités ou la géométrie différentielle. Son importance
est due à la fois à son omniprésence en tant que prototype de l’équation parabolique,
et à la multitude d’outils très puissants que son étude systématique a permis de
développer, comme l’analyse de Fourier ou plus généralement l’analyse harmonique.
L’objectif de cette thèse est de poursuivre modestement cette étude en essayant de
l’enrichir de nouvelles approches.

La théorie du contrôle est le domaine des mathématiques qui étudie la possi-
bilité d’agir sur un système dynamique au moyen d’une commande, aussi appelée
contrôle. Un bon exemple d’un tel système est donné par l’équation de la chaleur
unidimensionnelle sur un segment avec un contrôle de type Dirichlet au bord.
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Bt
pt, xq ´

B2w

Bx2 pt, xq “ 0 t ą 0, x Ps0, πr,

wpt, 0q “ u0ptq, wpt, πq “ uπptq t ą 0,
wp0, xq “ fpxq x Ps0, πr,

Cette équation modélise l’évolution au cours du temps t de la température w sur
une barre que l’on chauffe aux deux extrémités. Ici, on agit sur le système au moyen
de la fonction u :“ pu0, uπq qui décrit notre façon de chauffer les extrémités de la
barre à chaque instant t. Si pour toute température initiale f et pour toute tem-
pérature finale g, il est possible de trouver une manière de chauffer les extrémités
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(c’est-à-dire un contrôle u) qui amène la barre de la température f (au temps t “ 0)
à la température g (au temps t “ τ), on dit que le système est (exactement) contrô-
lable. Malheureusement, cette propriété de contrôlabilité n’est pas vérifiée par notre
équation de la chaleur ci-dessus. C’est une conséquence de l’extrême régularité de
la température en la variable spatiale x. Plus précisément, il est bien connu dans
le milieu des équations aux dérivées partielles que les états atteignables g sont des
fonctions qui se prolongent de manière holomorphe sur le carré D dont l’une des
diagonales est le segment r0, πs. Cela conduit à la question naturelle suivante : quels
sont exactement les états finaux que l’on peut atteindre ? L’ensemble de ces états
finaux atteignables est appelé espace atteignable de l’équation de la chaleur et sa
description est une question centrale en théorie du contrôle qui remonte aux travaux
pionniers de Fattorini et Russell il y a 50 ans. Le but de cette thèse est de fournir
une caractérisation complète et définitive de cet espace atteignable.

L’analyse complexe moderne est la partie de l’analyse fonctionnelle qui s’occupe
des espaces de fonctions holomorphes (appelées aussi fonctions analytiques). Ces
fonctions, qui comme on vient de le voir sont liées au problème de caractérisation
de l’espace atteignable de l’équation de la chaleur, vérifient de belles et surprenantes
propriétés. Plusieurs espaces classiques de fonctions holomorphes comme les espaces
de Hardy ou de Bergman sont des cas particuliers d’espaces de Hilbert à noyaux
reproduisants (RKHS), dans lesquels on connaît la valeur d’une fonction en la testant
contre un noyau. Cela procure des outils théoriques de calcul très puissants pour,
par exemple, déterminer l’image d’une transformée intégrale de type Laplace. Cette
méthode a déjà été utilisée par Aikawa, Hayashi et Saitoh pour décrire l’espace
atteignable de l’équation de la chaleur sur une demi-droite cette fois, et nous fournit
une nouvelle approche pour notre équation de la chaleur sur un segment. En effet,
nous verrons que la description des états atteignables de l’équation de la chaleur
sur un segment se réduit à une analyse fine d’une certaine transformation de type
Fourier-Laplace. Cela nous permettra de déplacer le problème dans le champ de
l’analyse complexe et d’utiliser plusieurs techniques spécifiques à ce domaine comme
la séparation de singularités. Cette dernière technique permet d’écrire une fonction
holomorphe sur l’intersection Ω1 XΩ2 de deux domaines Ω1 et Ω2 du plan complexe
comme somme de deux fonctions holomorphes respectivement sur Ω1 et Ω2. En allant
plus loin, nous pouvons nous demander si ce résultat se généralise à des espaces de
Banach ou de Fréchet de fonctions analytiques. Autrement dit, si BpΩq désigne un
espace de Banach de fonctions analytiques sur un domaine Ω, l’égalité BpΩ1XΩ2q “

BpΩ1q ` BpΩ2q est-elle vraie ? Ce problème est connu sous le nom de problème de
séparation de singularités. Comme nous le verrons plus tard, bien que très naturel
en analyse complexe, il joue un rôle prédominant dans la description de l’espace
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atteignable qui se révèle être la somme de deux espaces de Bergman définis sur des
secteurs s’intersectant.

Dans la première partie de ce manuscrit, nous donnons le matériel de base néces-
saire pour mener à bien nos travaux, aussi bien en analyse complexe qu’en théorie
du contrôle. Du côté de l’analyse complexe, nous rappelIons la définition et les pro-
priétés classiques de quelques espaces de fonctions holomorphes classiques comme
ceux mentionnés plus haut. Nous introduisons également la théorie des noyaux re-
produisants et plusieurs théorèmes de type Paley-Wiener. Ces derniers nous seront
très utiles pour déterminer l’image de certains opérateurs de type Laplace qui sont
au coeur du problème de contrôle considéré dans le deuxième paragraphe ci-dessus.
Finalement, nous présentons le problème de séparation de singularités pour les fonc-
tions holomorphes et ses généralisations pour des espaces de Banach (ou de Fréchet)
de fonctions analytiques. Du côté de la théorie du contrôle, nous donnons quelques
bases de la théorie et nous construisons précautionneusement le cadre théorique des
systèmes de contrôle au bord bien posés dont nous avons besoin pour définir correcte-
ment notre problème. Finalement, nous introduisons le concept d’espace atteignable,
objet central de cette thèse, et nous passons en revue les résultats précédents le
concernant.

Dans une seconde partie, nous donnons nos résultats originaux sur ce problème
obtenus durant cette thèse. Ceux contenus dans les chapitres 3 et 4 ont fait l’objet
de deux articles acceptés pour publication dans des journaux, tandis que le contenu
du chapitre 5 est une partie d’un travail encore en préparation. Dans le chapitre
3, nous fournissons une caractérisation exacte de l’espace atteignable de l’équation
de la chaleur unidimensionnelle sur un segment avec contrôle de type Dirichlet au
bord, comme somme de deux espaces de Bergman sur des secteurs dont l’intersec-
tion est le carré D défini plus haut. La première idée, développée par Hartmann,
Kellay et Tucsnak est d’écrire la solution de l’équation comme une série dont les
deux termes principaux sont les solutions respectives du problème de contrôle sur
les demi-droites s0, `8r et s ´ 8, πr et les termes restant sont traités comme des
perturbations. Enfin le résultat est obtenu en appliquant un certain théorème de
Paley-Wiener pour les espaces de Bergman à une transformée de type Laplace. Dans
le chapitre 4, nous commençons pas résoudre le problème de séparation de singulari-
tés pour les espaces de Bergman sur des secteurs, des polygones ou des configurations
plus générales d’intersections de parties convexes. L’idée repose sur un résultat clé
d’égalité entre noyaux reproduisants pour le quart de plan, sur des estimées Lp de
type Hörmander pour la solution du B̄ et d’un découpage astucieux des polygones.
Puis nous appliquons nos résultats à la somme d’espaces de Bergman mentionnée
ci-dessus décrivant l’espace atteignable. Cela donne une solution définitive à notre
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problème initial : l’espace atteignable de l’équation de la chaleur est l’espace de
Bergman du carré D. Nous en déduisons également une caractérisation exacte des
espaces atteignables pour d’autres types de contrôles au bord, comme le contrôle de
type Neumann ou le contrôle unilatéral (de Dirichlet ou de Neumann). Dans le cha-
pitre 5, nous appliquons les méthodes développées dans les précédents chapitres à un
autre genre d’équation parabolique appelée équation de la chaleur de Hermite. Cette
équation consiste à remplacer le Laplacien par l’oscillateur harmonique, toujours en
une dimension d’espace sur un segment avec contrôle de Dirichlet au bord. Nous
montrons que l’espace atteignable de cette équation est encore contenu dans l’espace
de Bergman du carré D. Au passage, nous obtenons une caractérisation exacte de
l’espace atteignable pour la demi-droite s0, `8r.

Finalement, dans l’appendice B, nous résumons brièvement un autre travail effec-
tué durant ma thèse qui traite des ensembles dominants sur des espaces de Bergman.
Il consiste en une estimation optimale de la constante d’échantillonnage. Dans un
cadre étendu, ce sujet est aussi lié à la théorie du contrôle. Ces résultats ont aussi
donné lieu à un article accepté pour publication.

Une célèbre citation du mathématicien Paul Painlevé, issue de son Analyse des
travaux scientifiques paru en 1900, affirme : « Entre deux vérités réelles, le chemin
le plus facile et le plus court passe souvent par le domaine complexe ». Dans un
certain sens, par ce travail, l’auteur espère donner, s’il en était encore besoin, une
autre preuve de la véracité de cette phrase.
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Introduction (English)

Introduced by the mathematician Joseph Fourier at the beginning of the 19th century
to model the heat propagation through a given region, the heat equation is one of the
most famous differential equations of mathematics. In his famous volume Théorie
analytique de la chaleur published in 1822, Fourier wrote about it : “This theory will
henceforth form one of the most important branches of general physics”. Almost two
centuries later, the heat equation has gone far beyond the boundaries of physics and is
involved in many other fields such as biology, chemistry, fluid mechanics, probability
and differential geometry. Its central importance is due both to its omnipresence as
a prototypical parabolic equation, and to the multiplicity of powerful tools that its
systematic study has given birth to, like Fourier analysis or more generally harmonic
analysis. This thesis intends modestly to continue this study trying to develop new
approaches.

Control theory studies the possibility of acting on a dynamical system by means
of a command, also called control. A good example of such a system is given by the
one-dimensional heat equation on a segment with Dirichlet boundary control
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Bx2 pt, xq “ 0 t ą 0, x P p0, πq,

wpt, 0q “ u0ptq, wpt, πq “ uπptq t ą 0,
wp0, xq “ fpxq x P p0, πq,

It models the evolution of the temperature w on a rod depending on the time t when
we heat the rod at both ends. Here we act on the system by means of the boundary
heating function u :“ pu0, uπq at each instant t. If for any initial state f and any
final target g we can find a way to heat the rod at both ends in order to steer the
temperature from the initial state f (at time t “ 0) to the final target g (at time
t “ τ), then we say that the system is (exactly) controllable. Unfortunately, this
controllability property is not fulfilled by our heat system. This is a consequence of
the extreme regularity in the space variable x of the temperature. Actually, it is a
folklore result of PDEs that the reachable states g are holomorphic on the square
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D one diagonal of which is the interval p0, πq. This leads to the natural question:
which are exactly the targets we can reach? The set of all the reachable final states
is called reachable space of the heat equation and its description is a central question
in control theory which goes back to the pioneering work of Fattorini and Russell 50
years ago. The aim of the present work is to provide a definitive exact description
of this reachable space.

Modern complex analysis is the part of functional analysis which deals with holo-
morphic function spaces. These functions enjoy surprising and beautiful properties.
Several classical holomorphic function spaces like Hardy or Bergman spaces are par-
ticular cases of so-called Reproducing Kernel Hilbert Spaces, on which we know a
function from testing on a kernel. This provides powerful computational tools to, for
example, determine the range of an integral Laplace-type transform. This method
has been applied by Aikawa, Hayashi and Saitoh to the description of the reachable
space of the heat equation on a half-line and provides a new approach for the heat
equation on a rod. Indeed, the description of the reachable states of the heat equa-
tion on a rod reduces to a fine analysis of a certain Fourier-Laplace type transform.
This allows us to move the problem into the field of complex analysis and use several
specific technics as separation of singularities. This last technique allows us to write
an analytic function on the intersection Ω1 X Ω2 of two domains Ω1 and Ω2 of the
complex plane as the sum of two holomorphic functions respectively on Ω1 and Ω2.
Going further, we can ask if this result generalizes to Banach or Fréchet spaces of
analytical functions. In other words, if BpΩq denotes a Banach space of analytical
functions over a domain Ω, is the equality BpΩ1 X Ω2q “ BpΩ1q ` BpΩ2q true? This
problem is known as the separation of singularities problem. As we will see later,
this very natural problem in complex analysis plays a central role in the control of
the heat equation, where it appears in the setting of the sum of two Bergman spaces
defined on intersecting sectors.

In a first part of this manuscript, we shall give the basic material needed to
carry out our work, both in complex analysis and control theory. On the complex
analysis side, we remind the definition and the basic properties of some classical
spaces of analytic functions as those mentioned above. We also introduce the theory
of reproducing kernels and several Paley-Wiener type theorems. They will be useful
to determine the range of Laplace type operators which will play a prominent rôle in
the control problem we consider. Finally we present the separation of singularities
problem for holomorphic functions and its counter parts for Banach spaces. On the
control side, we give some background of the theory and we construct carefully the
framework of well-posed boundary control systems that our problem needs to be
well-defined. Finally, we introduce the concept of reachable space and we survey the
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previous results on this topic.
In a second part, we give our original results on the problem. Those contained

in Chapters 3 and 4 have been accepted for publication, the contents of Chapter 5
is a part of a work still in preparation. In Chapter 3, we provide an exact charac-
terization of the reachable space of the 1-D heat equation on a finite interval with
Dirichlet boundary control as sum of two Bergman spaces on sectors whose intersec-
tion is the square D. The first idea, developed by Hartmann, Kellay and Tucsnak is
to write the solution of the heat equation as a series with two main terms given by
the solutions on the half-lines p0, 8q and p´8, πq and to treat the remaining terms
as perturbation.The result is achieved applying a certain Paley-Wiener theorem for
Bergman spaces to a Laplace type transform. In Chapter 4, we start solving the sep-
aration of singularities problem for Bergman spaces on sectors, polygons and in more
general settings of intersections of convex sets. The proof is based on a key equality
between reproducing kernels for the quarter plane, Hörmander type Lp-estimates for
the solutions of the B̄-equation, and a clever cutting of the polygons. Then we apply
our results to the sum of Bergman spaces mentioned above. This gives a defini-
tive solution of our initial problem: the reachable space of the heat equation is the
Bergman space on the square D. We also deduce an exact characterization of the
reachable spaces for other types of boundary controls, like Neumann type or unilat-
eral (Dirichlet or Neumann) boundary control. In Chapter 5, we apply the methods
developed in the preceding chapters to another kind of parabolic equation, namely
the Hermite heat equation. It consists in replacing the Laplacian by the harmonic
oscillator, again in the one-dimensional case on a segment with Dirichlet boundary
control. It follows that the reachable space of this equation is still contained in the
Bergman space of the square D. Actually, we obtain also an exact characterization
of the reachable space of this equation on the half-line p0, 8q.

Finally, in Appendix B, we resume another work carried out during my PhD and
dealing with dominating sets on weighted Bergman spaces. It consists in giving an
optimal estimate for the sampling constant. In some extended area, this topic is also
related to control theory. These results have also been accepted for publication.

A famous quote of the mathematician Paul Painlevé, from his Analyse des travaux
scientifiques published in 1900, claims: "The easiest and shortest path between two
real truths quite often passes through the complex domain". In a certain sense, by
this work, we hope to give another proof of the veracity of this sentence.
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Preliminaries
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Chapter 1

Some spaces of analytic functions

1.1 Zoology
In this manuscript, we denote by D “ tz P C | |z| ă 1u the unit disc and by C` “
tz P C | Imz ą 0u the upper-half plane. If Ω Ă C is an open set, we write HolpΩq for
the algebra of holomorphic functions on Ω.

1.1.1 Reproducing Kernel Hilbert Spaces
Basic properties.

In this subsection we give a brief introduction to the theory of Reproducing Kernel
Hilbert Spaces. It has been mainly developed by S. Bergman and N. Aronszajn. The
material we introduce here is classical and can be found in [PR16], [Aro50].

From now on, Ω will be an arbitrary set and we will denote by FpΩ, Cq the vector
space of complex valued functions defined on Ω.

Definition 1.1.1. Let Ω be a set and let H Ă FpΩ, Cq be a Hilbert space. We say
that H is a Reproducing Kernel Hilbert Space (RKHS) if for every λ P Ω the linear
evaluation functional Eλ : H Ñ C given by

Eλpfq “ fpλq, @f P H

is bounded.

By the Riesz-Fréchet representation theorem this is equivalent to the following
condition:

@λ P Ω, D!kλ P H, @f P H, fpλq “ xf, kλy .
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The function kλ is called the reproducing kernel at λ. The function K : Ωˆ Ω Ñ C
defined by Kpz, λq :“ kλpzq is called the reproducing kernel of H. Important cases
appear when Ω is an open subset of C and H Ă HolpΩq. We shall see a few examples
of RKHS of holomorphic functions in the next subsections.

As immediate consequences of the definition, we obtain for every λ, z P Ω,

}kλ}
2
“ kλpλq,

and
kλpzq “ kzpλq.

It is also direct that the family pkλqλPΩ spans a dense subspace of H. Indeed, if f be-
longs to tkλ, λ P ΩuK, then fpλq “ xf, kλy “ 0 for every λ P Ω, so f “ 0. In addition,
since the evaluation functionals are bounded, it follows that the convergence in H
implies the pointwise convergence. Actually, when the map λ ÞÑ }kλ} is continuous
(as in the next subsections), we obtain with the Cauchy-Schwarz’s inequality that
the embedding H Ă HolpΩq is bounded. This gives us an effective way to compute
the reproducing kernel from an orthonormal basis penqnPN of H. Decomposing on
penq, we have

kλpzq “
ÿ

nPN

xkλ, eny enpzq “
ÿ

nPN

enpλqenpzq, (1.1)

where the series converge in H and hence pointwisely. Assume now that H is a
sub-Hilbert space of a Hilbert space G and let P denote the orthogonal projection
from G onto H. Then for every g P G, we have

Pgpzq “ xPg, kzy “ xg, Pkzy “ xg, kzy , @z P Ω. (1.2)

Conversely, if H is a Hilbert subspace of H, it is also obviously a RKHS. We de-
note by kH

λ its reproducing kernel and we write PHÑH for the orthogonal projection.
Therefore, for every f P H

fpλq “ xf, kλy “ xPHÑHf, kλy “ xf, PHÑHkλy .

Thus, by unicity of the reproducing kernel, we obtain kH
λ “ PHÑHkλ. Nevertheless,

this equality does not permit to compute effectively the reproducing kernel in general.
Finally, the reproducing kernel characterizes its RKHS.

Proposition 1.1.2. [see Proposition 2.3 in [PR16]] Let H1 and H2 be two RKHS
on Ω with reproducing kernel K1 and K2 respectively. If K1 “ K2 then H1 “ H2.
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Proof. Write Kpz, λq :“ K1pz, λq “ K2pz, λq. We have seen in the discussion above
that X :“ Spantkλ, λ P Ωu is dense in Hi. Moreover, for f :“

řn
i“1 αikλi P X,

we have }f}22 “
řn
i,j“1 αiαj

@

kλi , kλj
D

1 “
řn
i,j“1 αiαjKpλj, λiq and identically }f}22 “

řn
i,j“1 αiαjKpλj, λiq. Hence,

}f}1 “ }f}2, @f P X. (1.3)

Let us prove now that H1 Ă H2. Pick f P H1. By density, there exists a sequence
pfnqnPN in X which converges to f in H1 (and so pointwisely). Therefore, pfnq
is Cauchy in H1 and then in H2 by (1.3). Hence, pfnq converges in H2 (and so
pointwisely) to a function g. This implies fpλq “ limnÑ8 fnpλq “ gpλq, i.e f belongs
to H2. By the same arguments we obtain also H2 Ă H1. Thus H1 “ H2.

Finally, the norms } ¨ }1 and } ¨ }2 are equal on X which is dense, so they are equal
everywhere.

Kernel functions.

Hence, if we know a priori that K is the reproducing kernel of a Hilbert space on
Ω, this Hilbert space is necessarily unique. But, how can we recognize a reproducing
kernel? More precisely, given a map K : Ω ˆ Ω Ñ C, is there a necessary and
sufficient condition for K to be a reproducing kernel of an Hilbert space?

Definition 1.1.3. We say that a map K : Ω ˆ Ω Ñ C is a kernel function, and we
will write K ě 0, if for every finite sequence pλiq1ďiďn of Ω and every α1, . . . αn P C,
we have

n
ÿ

i,j“1
ᾱiαjKpλi, λjq ě 0,

i.e. the matrix pKpλi, λjqq1ďi,jďn is positive.

A reproducing kernel is a kernel function. Indeed,
n
ÿ

i,j“1
ᾱiαjKpλi, λjq “

n
ÿ

i,j“1
ᾱiαj

@

kλj , kλi
D

“ }

n
ÿ

i“1
αikλi}

2
ě 0.

Conversely, it turns out that every kernel function is a reproducing kernel for some
RKHS.

Theorem 1.1.4 (Moore). [see Theorem 2.14 in [PR16]] Let Ω be a set and K :
Ωˆ Ω Ñ C be a function. If K is a kernel function, there exists a unique RKHS H
on Ω such that K is the reproducing kernel of H.
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The idea of the proof is quite simple. Roughly speaking the RKHS associated
with K is the completion H of the linear span W :“ spantpkλqλPΩu with respect
to the inner product given by Bp

ř

i αikλi ,
ř

i βjkλjq :“
ř

i,j β̄jαiKpλj, λiq. The big
part of the proof consists of proving that this application defines actually an inner
product on W . It remains to identify the Hilbert space H with the Hilbert space of
functions pH :“ tĥ, h P Hu where ĥ is defined by ĥpλq “ xh, kλyH for any λ P Ω. The
uniqueness comes from Proposition 1.1.2. The interested reader can find a complete
proof with all the necessary precautions in [PR16].

From now on, given a kernel function K, we will denote by HK the RKHS asso-
ciated with.

Application to linear transforms.

Let Ω be a (non-empty) set and H be a Hilbert space (not necessarily a RKHS).
For a function h : Ω Ñ H , we denote by L : H Ñ FpΩ,Cq the linear mapping
given by

@f P H , pLfqpλq “ xf, hpλqyH , pλ P Ωq. (1.4)
An important problem is to determine the range RanpLq of the mapping L. The
following theorem gives an answer.

Theorem 1.1.5. [see Theorem 1 p.21 [Sai97]] Let L denote the operator defined by
(1.4). Endowed with the Sarason norm

}g}RanpLq :“ inft}f}H , f P H and Lf “ gu,

the space RanpLq is a RKHS with reproducing kernel

Kpz, λq “ xhpλq, hpzqyH , pz, λ P Ωq.

Furthermore, the linear mapping L is an isometric isomorphism from H onto RanpLq
if and only if the family phpλqqλPΩ is complete in H .

Proof. Note that }Lf}RanpLq “ inft}f ´ f̃}H , f̃ P KerpLqu, so that in particular L is
bounded. Hence, it is clear that L : KerpLqK Ñ RanpLq is an isometric isomorphism.
Since KerpLqK is a closed subspace of H , it is a Hilbert space and therefore RanpLq is
also a Hilbert space. Indeed, its norm verifies the parallelogram identity by isometry
(i.e. it is induced by an inner product), and again by isometry the completeness is
conserved. Finally, we have also

xLf, LgyRanpLq “ xf, gyH , @f, g P KerpLqK.
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Obviously, kλ :“ Kp¨, λq “ xhpλq, hp¨qyH “ Lrhpλqs P RanpLq. Moreover, remark
that KerpLqK is exactly the closure of the linear span of thpλq, λ P Ωu. So we have
for every f P H ,

xLf, kλyRanpLq “
A

L
”

PKerpLqKf
ı

, Lrhpλqs
E

RanpLq
“

A

PKerpLqKf, hpλq
E

H

“ L
”

PKerpLqKf
ı

pλq

“ Lfpλq.

Hence, RanpLq is a RKHS with reproducing kernel K.
Finally, if phpλqqλPΩ is complete in H , then KerpLqK “ spanthpλq, λ P Ωu “ H

and L is an isometry as seen above.

If we are able to identify the reproducing kernel of a well-known RKHS, the
previous theorem will permit to determine exactly the range of linear integral trans-
formations. We shall see in Section 1.2 how to use it in order to obtain several
Paley-Wiener theorems. This will also be the main tool of Section 2.6 where it will
be powerful in characterizing reachable spaces.

Operations on reproducing kernels.

Now, we will see how the operations on the kernel modify the RKHS. We will just
state the results. The proofs can be found in [PR16, Chapter 5].

Given two kernel functions K1 and K2 on Ω, we write K1 ď K2 to mean that
K2 ´K1 ě 0 i.e. K2 ´K1 is a kernel function. Then we have

Theorem 1.1.6 (Inclusion). For i “ 1, 2, let Ki : Ω ˆ Ω Ñ C be kernel functions.
Then HK1 Ă HK2 if and only if there exists a constant c ą 0 such that K1 ď c2K2.
Moreover, }f}2 ď c}f}1 for all f P HK1.

If K1 and K2 are kernel functions on a set Ω, then so is the function K “ K1`K2.
The next result describes the relationship between the three RKHSs.

Theorem 1.1.7 (Sum of reproducing kernels). For i “ 1, 2, let Ki : Ω ˆ Ω Ñ C be
kernel functions. If K “ K1 `K2, then

HK “ HK1 `HK2

as set equality, and the norm of HK is given by

}f}2 “ inft}f1}
2
1 ` }f2}

2
2 , fi P HKi for i “ 1, 2 and f “ f1 ` f2u.
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Let Ω0 be a set and let ϕ : Ω0 Ñ Ω be a function. Given a kernel function K, we
define the pull-back ϕ˚K : Ω0 ˆ Ω0 Ñ C of K by ϕ as

ϕ˚Kpz, λq “ Kpϕpzq, ϕpλqq, @zλ P Ω0.

Theorem 1.1.8 (Pull-back of a RKHS). Let Ω0 be a set, ϕ : Ω0 Ñ Ω be a function
and K denote a kernel function on Ω. Then ϕ˚K is a kernel function and

Hϕ˚K “ tf ˝ ϕ, f P HKu

with norm given by

@g P Hϕ˚K , }g} “ mint}f}, f P HK and f ˝ ϕ “ gu.

Obviously, if the linear mapping f ÞÑ f ˝ ϕ is one-to-one, then it is also an
isometric isomorphism from HK onto Hϕ˚K . Indeed, in that case the norm of a
function g P Hϕ˚K is given by }g}Hϕ˚K

“ }f}HK
where f is the unique element of

HK such that f ˝ ϕ “ g.
When Ω0 is a subset of Ω and ϕ : Ω0 Ñ Ω denotes the inclusion, we obtain the

following result.
Corollary 1.1.9 (Restriction of a RKHS). Let Ω0 Ă Ω and let K denote a kernel
function on Ω. If we write K|Ω0 the restriction of K to Ω0 ˆ Ω0, then

HK|Ω0
“ tf|Ω0 , f P HKu

with norm given by

@f̃ P HK|Ω0
, }f̃} “ mint}f}, f P HK and f|Ω0 “ f̃u.

Again, if the restriction is one-to-one in the previous theorem, i.e. Ω0 is a set of
uniqueness for HK , then it is also an isometric isomorphism.

Finally, we will see how the reproducing kernel changes when we multiply the
RKHS by a function.
Definition 1.1.10. Let H1 and H2 be two RKHS on Ω. A function f : Ω Ñ C
is called a multiplier of H1 into H2 if fH1 :“ tfg, g P H1u Ă H2. We denote by
M pH1,H2q the vector space of all multipliers of H1 into H2. When H1 “ H2 :“ H,
we simply write M pHq :“ M pH,Hq.
Proposition 1.1.11 (Multiplication of a RKHS by a function). Let H be a RKHS
on Ω with kernel K and let f : Ω Ñ C be a function. Then the space Hf :“ fH is a
RHKS on Ω when it is endowed with the norm

@g P Hf , }g} :“ inft}h}H, h P H and fh “ gu.

Moreover, its reproducing kernel is given by Kf pz, λq “ fpzqKpz, λqfpλq.
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1.1.2 Hardy and Smirnov spaces
The Hardy space is probably one of the most famous spaces of analytic functions. We
give here the basic material which will be needed in this thesis. To go further, one
can read the numerous and complementary textbooks on this topic [Nik02], [Gar07],
[Dur70], [Koo98], [Nik19].

Let 0 ă p ă `8. Let Ω be a simply connected domain in the complex plane
with at least two boundary points. We denote by H8 the space of bounded analytic
functions on Ω. It is a Banach space under the norm }f}8 “ supzPΩ |fpzq|. We say
that f P HolpΩq belongs to the Hardy space HppΩq if the subharmonic function |f |p
admits a harmonic majorant on Ω. We say that f P HolpΩq belongs to the Smirnov
space Ep pΩq if there exists a sequence pγnqnPN of rectifiable Jordan curves eventually
surrounding each compact subdomain of Ω, such that

}f}pEp “ sup
nPN

ż

γn

|fpzq|p|dz| ă 8.

For Ω “ D, it is well-known that these two last spaces coincide, and we will simply
denote them byHp (see [Dur70, Theorem 2.12]). For an arbitrary conformal mapping
ϕ : D Ñ Ω, f P HppΩq if and only if f ˝ ϕ P Hp, and f P Ep pΩq if and only if
pf ˝ϕqϕ11{p P Hp. It is clear that the two spaces coincide if there exists a, b ą 0 such
that a ď |ϕ1| ď b. Actually, this condition is also necessary (see [Dur70, Theorem
10.2]). When 1 ď p ă `8, EppΩq is a Banach space endowed with the norm } ¨ }Ep .
When Ω “ C`, the space EppΩq consists of all the functions holomorphic on C` such
that

}f}pp “ sup
yą0

ż

R
|fpx` iyq|pdx ă 8.

This space is often called the Hardy space of the upper-half plane ([Gar07], [Nik02],
[Lev96], [Koo98]), and denoted by HppC`q. Assume now that Ω is a domain bounded
by a rectifiable Jordan curve γ. In this case, each f P EppΩq (1 ď p ă 8) admits a
non-tangential limit almost everywhere on γ (denoted again by f) which belongs to
LppBΩq, and satisfies the Cauchy formula

@z P Ω, fpzq “ 1
2iπ

ż

γ

fpuq

u´ z
du. (1.5)

We mention also the Smirnov-Zygmund space EL log`L pΩq which, at least for the
domains we consider here (so-called Smirnov domains), can be defined as the space
of functions f P HolpΩq such that f P E1pΩq and the non-tangential limit of f on γ
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belongs to L log`LpBΩq, that is
ż

γ

|fpzq| log`p|fpzq|q|dz| ă `8. (1.6)

Therefore, the following inclusions are clear

@1 ă p ă `8, Ep
pΩq Ĺ EL log`LpΩq Ĺ E1

pΩq.

For more details on the Hardy space and the Smirnov space, we refer to [Dur70,
Chap. 10 and 11]. For the cases of the disc and the upper-half plane, see also
[Rud87],[Gar07], [Nik02], [Lev96], [Koo98].

Boundedness of the Riesz projection.
In this paragraph, we restrict our attention to Ω “ D or Ω “ C`. As written above,

if Ω “ D, we can identify the Hardy space HppDq (1 ď p ă 8) with the subspace of
LppTq formed by all the non-tangential limits of its elements. Moreover, the norm
of an element f P HppDq can be computed using the Lp-norm of its non-tangential
limit: }f}Hp “ }f}LppTq. Hence it is closed subspace of LppTq. Since the Hardy space
of the half plane HppC`q is isometrically isomorphic to the Hardy space of the disc,
this result also holds for HppC`q (see [Dur70, Section 11.2]). When p “ 2, H2pΩq is a
RKHS and if we write kλ the reproducing kernel in λ P D, the orthogonal projection
P` from L2pBΩq to H2pBΩq is given by

@f P L2
pBΩq, P`fpzq “ xP`f, kzy “ xf, P`kzy “ xf, kzy,

where we have used that the orthogonal projection is self-adjoint. A famous theorem
of M. Riesz says that the orthogonal projection extends to a bounded operator from
LppBΩq to Hp for 1 ă p ă 8 (see [CMR06, Theorem 3.2.1]). However, it is not
bounded neither from L8 into H8 nor from L1 into H1. Actually, a theorem of D.
Newman shows that there does not exist any bounded projection from Lp onto Hp

for p “ 1,8 (see [Nik02, Exercise 5.7.3.e]).
In the disc case, a Zygmund result (see [CMR06, Theorem 3.2.7]) states that if we

permit a little more regularity, the projection is bounded into H1pTq: P` is bounded
from L log`L to H1pTq.

On the upper half plane, the reproducing kernel at λ P C` is given by

kλpzq “
1

iπpz ´ λ̄q
, @z P C`
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and thus the projection P` coincides with the Cauchy Transform (or Borel Trans-
form) C defined by

@f P L2
pRq, pCfq pzq “ 1

iπ

ż

R

fptq

t´ z
dt, @z P C`.

For more details on this operator, we refer to [CMR06, Section 3.8]. Unfortunately,
Zygmund’s theorem is no longer true, when the domain is unbounded. Nevertheless,
the result holds locally for compactly supported functions as stated in the following
result.

Proposition 1.1.12. Let f P L log`LpRq have compact support. Let Ω be a square
in the upper half plane, one side of which is a segment I Ă R. Let L ą 0 such that
I Ă

`

´L
2 ,

L
2

˘

and supp f Ă
`

´L
2 ,

L
2

˘

. Denote by ΩL :“ p´L,Lq ˆ p0, 2Lq the square
contained in C`. Then the Cauchy transform Cf belongs to E1pΩLq.

This result is certainly known to the experts in harmonic analysis. Since we found
no reference and since we use it in Section 3.4, we include its proof for convenience
of the reader.

We start with a first intermediate result.

Lemma 1.1.13. Let f P L log` LpRq having compact support. Then the Cauchy
Transform Cf satisfies:

sup
yą0

ż L

´L

|Cfpx` iyq|dx ă `8

This result is essentially based on the following theorem by Calderón and Zyg-
mund [CZ52, Thm 2 p.100]. Let f̃λpxq “

ş

|x´y|ąλ
fpyq{px´yqdy. Note that limλÑ0 f̃λpxq

corresponds to the Hilbert transform of f .

Theorem 1.1.14 (Calderón-Zygmund). If |f |p1` log` |f |q is integrable over R, then
f̃λ is integrable over every set S of finite measure. Moreover,

ż

S

|f̃λ|dx ď AS

ż

R
|f |p1` log` |f |qdx`BS,

where AS and BS are constants depending only on S, but neither on f nor on λ.

Proof of Lemma 1.1.13. For y ą 0, let Pypxq “ y
πpx2`y2q

and Qypxq “
x

πpx2`y2q
be

the Poisson and the conjugate Poisson kernels (Q0 corresponds to the kernel of the
Hilbert transform). Then we have

@z P C`, Cfpzq “ Pfpzq ` iQfpzq
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where we have written Pfpx ` iyq “ pPy ˚ fqpxq and Qfpx ` iyq “ pQy ˚ fqpxq. So
it suffices to show

sup
yą0

ż L

´L

|Pfpx` iyq|dx ă `8 and sup
yą0

ż L

´L

|Qfpx` iyq|dx ă `8.

The first inequality is clear from classical properties of the Poisson kernel (for this
it is even enough that f P L1pRq, see [Gar07, Thm 3.1]). Indeed, for f P L1pRq we
have

@y ą 0, }Pfp¨ ` iyq}L1p´R,Rq ď }Pfp¨ ` iyq}L1pRq

“ }Py ˚ f}L1pRq

ď }Py}L1pRq}f}L1pRq

“ }f}L1pRq ă `8.

Consider the second inequality. Recall the following estimate (see for example [Gar07,
p. 105])

@y ą 0, @x P R,
∣∣∣Qyfpx` iyq ´ rfypxq

∣∣∣ ď CMfpxq

where Mf is the Hardy-Littlewood Maximal function. This, together with the clas-
sical result on the regularity of Mf(see [Gar07, p. 23])

f P L log`L pr´L,Lsq ðñ Mf P L1
pr´L,Lsq

and Theorem 1.1.14 above yields the desired result.

We are now in a position to prove the proposition.

Proof of Proposition 1.1.12. In order to prove Cf P E1pΩLq, pick pωεq0ăεăε0 , ε0 ă

L{2, a sequence of rectifiable Jordan curves given by the sides of the squares contained
in ΩL one side of which is ωε,0 “ r´L ` ε, L ´ εs ` iε and ωε,1 corresponds to the
remaining three sides of the square (see Figure 1). Let ωε “ ωε,0_ωε,1 (concatenation
of the two Jordan curves, orientated counterclockwise). Then for any 0 ă ε ď ε0,
we have dpωε,1, supp fq ą 0. Thus, from the very definition of the Cauchy transform
and triangular inequality,

sup
0ăεăε0

ż

ωε,1

|Cf ||dz| ă `8.
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It remains to show that

sup
0ăεăε0

ż

ωε,0

|Cf ||dz| “ sup
0ăεăε0

ż L´ε

´L`ε

|Cfpt` iεq|dt ă `8.

Using Lemma 1.1.13, we conclude that Cf P E1pΩLq

ą

ą

ă

ą́
L
2

L
2

Ω

ΩL

ωε,0

ωε,1

´L L

Figure 1: The squares Ω et ΩL, and the path ωε.

1.1.3 Bergman space.
In this subsection, we focus on another classical space, namely the Bergman space.
The material of this subsection can be found in the two main textbooks on this topic
[HKZ00], [DS04] and in the lecture notes [BBG`04]. For the interested readers, a
collection of open problems is proposed in [AHR05].

Let Ω be an open subset of C. Let 1 ď p ă 8. The weighted Bergman space
Ap pΩ, ωq, where ω is a non negative measurable function on Ω, consists of all func-
tions f P HolpΩq such that

}f}pAppΩ, ωq “

ż

Ω
|fpx` iyq|pωpx` iyqdxdy ă `8.

Endowed with the norm } ¨ }AppΩ, ωq, it is a Banach space. When ω “ 1, AppΩ, ωq is
the classical Bergman space which we simply denote Ap pΩq. When p “ 2, A2pΩq is
a RKHS and we denote by kΩ

λ its reproducing kernel, i.e. for any f P A2pΩq and any
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λ P Ω, fpλq “
@

f, kΩ
λ

D

L2pΩq. Clearly, A2pΩq is a closed subspace of L2pΩq, and the
corresponding orthogonal projection, called Bergman projection, is given by

pPΩfq pλq “
@

f, kΩ
λ

D

L2pΩq, λ P Ω. (1.7)

Also, if Ω1 and Ω2 are two open subsets of C, and ϕ : Ω1 Ñ Ω2 is a conformal
mapping, we have the following conformal invariance property (see [QQ17, Chapter
VIII, Theorem 4.9, p.280] or [DS04, Chapter 1, § 1.3, Theorem 3])

kΩ1
λ pzq “ kΩ2

ϕpλqpϕpzqqϕ
1
pzqϕ1pλq (1.8)

Observe that in the last formula, A2pΩ1q is not exactly the pull-back of A2pΩ2q as
introduced in 1.1.8 since we have to take into account also the Jacobian. The most
prominent case is when Ω is the unit disk in the complex plane D “ tz P C : |z| ă 1u
and ω “ 1. Then for λ P D (see e.g. [DS04, Section 1.2]),

kDλ pzq “
1

πp1´ λzq2
, z P D. (1.9)

Regularity of the Bergman projection and density of A2 X Ap in Ap.
By definition, the Bergman projection PΩ is bounded on L2pΩq. As for the Riesz

projection, we can ask whether it extends to a bounded operator on LppΩq. This
question is closely related to the geometry of the domain Ω and can be used as a
way to classify the domains. For simply connected domains, it is linked in a sense
to the regularity of the Riemann mapping on the closure of the domain. We refer
to the survey [Zey20] for more details. When Ω “ D or C`, the boundedness can
be obtained via Schur’s lemma. In both cases, PΩ is bounded on Lp if and only if
1 ă p ă 8.

The boundedness of the Bergman projection is also related to the density of
A2pΩq X AppΩq in AppΩq. Indeed, we have seen in 1.7 that the Bergman projection
PΩ can be written as an integral operator. It follows that the reproducing property

fpλq “

ż

Ω
fpzqkΩ

λ pzqdApzq, λ P Ω

holds for f P L2pΩq X LppΩq, providing that kΩ
λ belongs to Lp1 . Hence assuming the

boundedness of PΩ on LppΩq and density of A2pΩq X AppΩq in AppΩq, this equality
extends to all the functions in LppΩq. In Chapter 4, these two properties will allow
us to obtain another kind of reproducing property. Although the density of A2pΩqX
AppΩq in AppΩq seems to be a difficult problem in general (see [Hed02, Proposition
2.2]), it is well-known in the particular case Ω “ C`.
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Proposition 1.1.15. [see [BBG`04, Proposition 1.17] For all 1 ď p ă 8, the set
A2pC`q X AppC`q is dense in AppC`q.

We will give an adaptation of this proposition for Ω “ C`` :“ tz P C; Repzq ą
0, and Impzq ą 0u in Lemma 4.2.1.

A Hardy-Littlewood Theorem. Finally we finish this subsection with the fol-
lowing interesting theorem which is due to Hardy and Littlewood [HL32, thm31] (see
also [Vuk03] or [QQ17, Thm4.11, p. 282] for a more elementary proof).

Theorem 1.1.16 (Hardy-Littlewood). The Hardy space H1pDq embeds continuously
into A2pDq.

1.2 Paley-Wiener type theorems
In this section, we give an overview of the main Paley-Wiener type theorems. They
are theorems which describe the range of the Fourier (or Laplace) transform as a space
of holomorphic functions, depending on the space on which it is taken. They show
in the extreme case of analyticity, the well-known links between decay properties of
a function and regularity of its Fourier transform, and conversely. They are named
in reference of R. Paley and N. Wiener who gave the first two theorems in this way
([PW87, Theorem V and Theorem X], see also [Rud87, Theorems 19.2 and 19.3])
which are classical today. Paley-Wiener theorem will turn out to be powerful tools
for describing the reachable spaces. Since the Laplace Transform is a particular case
of the linear transform defined in (1.4), we will do an intensive use of Theorem 1.1.5
in this section, revisiting the original proofs.

1.2.1 On a segment
Let F denote the Fourier transform formally given by pFfqpzq “ 1?

2A

ş

R e
´ixzfpxqdx.

Remind that for A ą 0 the Paley-Wiener space PWA consists of all entire functions
f of exponential type A, i.e. |fpzq| ď Aεe

pA`εq|z| for every ε ą 0 and every z P C
(as it turns out, in this context eA|z| can be safely replaced by eA|Imz|), which satisfy
}f}2PW :“

ş

R |fpxq|
2dx ă 8. It is a RKHS with reproducing kernel

kλpzq “ sinc
`

Apλ̄´ zq
˘

, pλ, z P Cq

where sincpzq :“ sinpzq
z

.
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Theorem 1.2.1 (Paley-Wiener). [see Theorem X in [PW87]] F : L2p´A, Aq Ñ
PWA is an isometric isomorphism.

We can now appreciate the power of Theorem 1.1.5 proving very easily this the-
orem.

Proof. Writing hpzq “ 1?
2Ae

iz̄¨, we have

pFfqpzq “ xf, hpzqyL2p´A,Aq .

Therefore, using Theorem 1.1.5, we obtain that the range of the Fourier transform
is a RKHS with reproducing kernel

kλpzq “ xhpλq, hpzqyL2p´A,Aq “
1

2A

ż A

´A

eipλ̄´zqtdt “
eipλ̄´zqA ´ e´ipλ̄´zqA

2Aipλ̄´ zq
“ sinc

`

Apλ̄´ zq
˘

which is the result expected. Finally, since the family peiz¨qzPC is complete in L2p´A,Aq
(it contains the Fourier basis), the Fourier transform is isometric.

Let L be the Laplace transform defined formally by pLfqpzq “
ş8

0 e´ztfptqdt. For
θ an inner function of the right half plane, i.e. a function uniformly bounded by one
having non tangential boundary values of modulus one a.e. on iR, we denote by Kθ

the associated model space, i.e. Kθ “ H2pC`q a θH2pC`q. It is a RKHS of analytic
functions on C` with kernel

kθλpzq “
1´ θpzqθpλq

2πpz ` λ̄q
.

Proposition 1.2.2. Let θA be the inner function defined by θApzq “ e´zA. L : L2p0, Aq Ñ KθA

is an isomorphism. Moreover, we have }Lf}KθA “
?

2π}f}L2.

In this particular case, we can show that Kθ is a space of entire functions. Obvi-
ously, the result can be deduced from Theorem 1.2.1 by a translation and a dilation,
but we use only Theorem 1.1.5.

Proof. The proof is similar as the one above. We give only the computation of the
reproducing kernel :

kλpzq “ xe´λ¨, e´z¨yL2p0, Aq “

ż A

0
e´pz`λ̄qtdt “

1´ e´pz`λ̄qA

z ` λ̄
,

which is precisely, up to the constant 2π, the reproducing kernel of KθA as claimed.
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In Theorem 1.2.1, if we ask for more regularity on the starting function, we have
to add a decay condition on the Fourier transform as expected. This leads to the
following Paley-Wiener theorem for test functions.
Theorem 1.2.3. [see Theorem 8.1, p. 123, [Zui02]] Let A ą 0. The following
conditions are equivalent :

1. F “ Ff with f P C8c pRq and suppf Ă r´A, As,

2. F is entire and satisfies

@N P N, DCN ą 0, |F pzq| ď CNp1` |z|q´NeA|Imz|, @z P C.

Let us give a little modification of this theorem, which can be useful for describing
the reachable space.
Theorem 1.2.4. Let A ą 0. The following conditions are equivalent :

1. F “ Lf with f P C8c p0, 8q and suppf Ă r0, As,

2. F is entire and satisfies

@N P N, DCN ą 0, |F pzq| ď CNp1` |z|q´NeAmaxp0,´Rezq, @z P C.

L. Schwartz gave an extension of the Paley-Wiener theorem to the space of com-
pactly supported distributions E 1. We recall that a distribution T P D1pRq is said of
order N P N if for every compact set K there exists CK ą 0 such that

| xT, ϕy | ď CK

N
ÿ

k“0
sup
xPK

|ϕpkqpxq|, @ϕ P C8c pKq.

In other words, the integer N P N does not depend on the compact set K. If
the previous inequality holds for a N P N, T is said to be of finite order. It is
well-known that compactly supported distributions are of finite order. The Paley-
Wiener-Schwartz theorem is the following.
Theorem 1.2.5 (Schwartz). [see Theorem 8.3, p. 123, [Zui02]] Let A ą 0. The
following conditions are equivalent :

1. F “ FT with T P E 1, T is of order N0 P N and suppT Ă r´A, As,

2. F is entire and satisfies

DC ą 0, |F pzq| ď Cp1` |z|qN0eA|Imz|, @z P C.

Remark 1.2.6. For Paley-Wiener type theorems on more general compact subset
of C, the reader can read [Lin02] and the references given there.
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1.2.2 On the half-line
We will now give the same type of results for functions which are supported on the
half-line p0,8q. Let us start with the second classical theorem of Paley and Wiener.
Let H2pC`q be the Hardy space of the right half-plane.
Theorem 1.2.7 (Paley-Wiener). [see Theorem V in [PW87]] L : L2p0, 8q Ñ
H2pC`q is an isomorphism. Moreover, we have }Lf}2H2pC`q “ 2π}f}2L2 for every
f P L2p0, 8q.
Proof. Again, the result follows essentially from Theorem 1.1.5. We compute the
reproducing kernel:

kλpzq “

ż 8

0
e´pz`λ̄qtdt “

1
z ` λ̄

,

which is the reproducing kernel of the Hardy space H2pC`q up to the constant 1
2π .

Finally, we have an isometry if and only if the family pe´λ¨qλPC` is complete in
L2p0, 8q, which is equivalent (by the change of variable s “ e´t) to the fact that
the family ptλqλPC` is complete in L2r0, 1s. This follows from the classical Müntz
theorem (see [Rud87, Theorem p. 313]).
Remark 1.2.8. In the previous proof, we have used the Müntz theorem to prove
the Paley-Wiener theorem. Conversely, the Paley-Wiener theorem can be used as a
bridge between the Müntz spaces (closure of the span of a family ptλqλPΛ) and the
Hardy (or Model) space of the right half plane. The interested reader can see the
paper [FL19] for more information.

Let ν̃ be a positive regular measure on r0,8q which is doubling at the origin, i.e

DCν̃ , @x ą 0, ν̃pr0, 2xqq ď Cν̃ ν̃pr0, xqq ă 8.

Let λ be the Lebesgue measure on R. We denote by ν the positive regular measure
on C` :“ r0, 8qˆR given by ν :“ ν̃ b λ. The Zen space A2

ν consists of all functions
f analytic on C` which satisfy

}f}2A2
ν

:“ sup
εą0

ż

C`

|fpz ` εq|2dνpzq ă 8.

These spaces have been constructed by Zen Harper in [Har09] and [Har10]. They gen-
eralize the Hardy space (which is obtained for ν̃ “ δ0) and the (weighted) Bergman
space (obtained for dν̃pxq “ xαdx and α ą ´1). The next proposition generalizes
the Paley-Wiener theorem above for weighted L2 spaces. It appeared in [JPP13,
Proposition 2.3], a big part being already known in [Har09, Section 2] and [Har10,
Section 2]. Notice that it gives only an isometry (and not an isomorphism).
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Proposition 1.2.9. [see Proposition 2.3 in [JPP13]] Let A2
ν be a Zen space, and let

w : p0, 8q Ñ R` be given by

wptq :“ 2π
ż 8

0
e´2rtdν̃, @t ą 0.

Then L : L2p0, 8; wq Ñ A2
νpC`q defines an isometric map.

The proof of this proposition is straightforward, using Plancherel’s and Fubini’s
theorems.

Proof. Note first that, since ν̃ is a doubling measure, the integral defining w converges
for all t ą 0. Indeed, this can be seen using a dyadic decomposition of the interval
r1, `8q. Let Ffpyq “

ş

R e
´iytfptqdt. For every f P L2p0, 8; wq, we have

sup
εą0

ż

C`
|pLfqpz ` εq|2dνpzq “ sup

εą0

ż

r0,8q

ż 8

´8

|pLfqpx` iy ` εq|2dλpyqdν̃pxq

“ sup
εą0

ż

r0,8q
}pLfqpx` i ¨ `εq}2L2pRqdν̃pxq

“ sup
εą0

ż

r0,8q
}pF

“

e´px`εq¨f
‰

q}
2
L2pRqdν̃pxq

“ sup
εą0

ż

r0,8q
2π}e´px`εq¨f}2L2p0,8qdν̃pxq

“ sup
εą0

ż 8

0
|fpyq|22π

ż

r0,8q
e´2px`εqydν̃pxqdy

“

ż 8

0
|fpyq|2wpyqdy.

Let RwpC`q :“ L rL2p0, 8; wqs denote the range of the Laplace transform. It
is a closed subspace of A2

νpC`q and hence a RKHS endowed with the norm of
A2
νpC`q. The following proposition gives an exact characterization of the range

RwpC`q through of its reproducing kernel.

Theorem 1.2.10. [see Theorem 1.2.4, [Kuc17]] The reproducing kernel of RwpC`q
is given by

k
RwpC`q
λ pzq :“

ż 8

0

e´tpz`λ̄q

wptq
dt, @z, λ P C`.
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As done in [Kuc17], it suffices to prove that the given function k
RwpC`q
λ belongs

to RwpC`q and satisfies the reproducing property. But, once again we will just use
Theorem 1.1.5.

Proof. We have for every z P C`,

@f P L2
p0,8; wq, Lfpzq “

ż 8

0
fptq

e´zt

wptq
wptqdt “

B

f,
e´z̄¨

wptq

F

L2p0,8;wq
.

Hence by Theorem 1.1.5, the reproducing kernel of RwpC`q is given by

k
RwpC`q
λ pzq “

C

e´λ̄¨

wptq
,
e´z̄¨

wptq

G

L2p0,8;wq

“

ż 8

0

e´tpz`λ̄q

wptq
dt.

As said above, we have RwpC`q ‰ A2
νpC`q in general. Harper gives several

counterexamples in [Har09, Section 2]. In [Har10, Theorem 2.1], he gives a sufficient
condition for the equality to hold when dν̃pxq “ vpxqdx: if for every 0 ă α ă β ă 8

there exists εpα, βq ą 0 such that
şβ

α
vpxq´εpα,βqdx ă 8, then RwpC`q “ A2

νpC`q.
There are few simple known cases in which this condition holds. Some of them
are resumed in the following folk theorem which is proved in [DGGMR07]. Let us
introduce some notations. For α ą 0, let L2

αpR`q denote the space of complex-valued
measurable functions on R` for which

}f}2L2
αpR`q :“

ż 8

0
|fptq|2t´αdt ă 8.

For β ą ´1 and dṽpxq “ xβdx, we will denote as for the disc A2
βpC`q the weighted

Bergman space on the right half plane endowed with the norm

}F }2A2
βpC`q

:“
ż

C`
|F pzq|2RepzqβdApzq.

Its reproducing kernel is given by

k
A2
β

λ “
“

Lptβ`1
q
‰

pz ` λ̄qp
Γpβ ` 2q
pz ` λ̄qβ`2

λ P C`.

The theorem states as follows.
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Theorem 1.2.11. [see [DGGMR07, Theorem 1]] Let α ą 0. L : L2
αpR`q Ñ

A2
α´1pC`q is an isomorphism. Moreover, we have }Lf}2

A2
α´1pC`q

“
2πΓpαq

2α }f}2L2
αpR`q

for every f P L2
αpR`q.

Remark 1.2.12. It seems that this theorem appears for the first time in [Rot60,
Theorem 2.7] for the (unweighted) Bergman space on tubes over self-dual cones
(e.g. the right half plane is a tube over the half line) and in [Kor62, Theorem1]
for the Bergman space of general tubes (unlike the first paper, the result is stated
explicitly). In these two papers, the theorem is used in order to obtain the expression
of the Bergman kernel. In our case, the one-dimensional setting allows us to get the
Bergman kernel from its expression on the disc using a conformal mapping. The
weighted case appears in [BBG`04, Theorem 1.22] for the upper half plane and in
[BBG`04, Theorem 3.11] for tubes over symmetric convex cones. The authors get it
as a consequence of the Paley-Wiener theorem for the Hardy space.

In our context, the proof is just a direct corollary of the Theorem 1.2.10 above.

Proof. By Theorem 1.2.10, the reproducing kernel of the range RαpC`q is given by

k
RαpC`q
λ pzq :“

ż 8

0
e´tpz`λ̄qtαdt “ rLptαqs pz ` λ̄q “ Γpα ` 1q

pz ` λ̄qα`1

which is, up to a constant the reproducing kernel of A2
α´1pC`q. In the computation

above, the last inequality is true (by changing the variable) on p0, 8q and thus holds
on C` by the identity principle.

In the proof given in [DGGMR07], the main idea is to show that there is an
orthonormal basis of A2

α´1pC`q which is in the range of the Laplace transform. For
this, remark that, if ϕ is a conformal mapping from C` to D, the operator f ÞÑ
pf ˝ϕqϕ1 is an isometric isomorphism from A2

αpDq onto A2
αpC`q, where A2

αpDq consists
of all functions holomorphic on D which satisfy

ż

D
|fpzq|2p1´ |z|2qαdApzq ă 8.

Hence, we can carry the orthonormal basis pznqnPN of A2
αpDq to its corresponding basis

in A2
αpC`q. Finally, it suffices roughly speaking to show that the Fourier transform

of each element of this new basis belongs to L2
αpR`q and use the Fourier inversion

theorem. It is interesting to note that the Fourier transforms of these elements are
related to with Laguerre polynomials.
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All the previous methods (including Theorem 1.1.5) used to obtain Paley-Wiener
type theorems cannot get out of the frame of the Hilbertian case. There are also
Lp-versions of the Theorems 1.2.7 and 1.2.11. They treat only the boundedness of
the Laplace transform (no isometry, no isomorphism), and are given by Rydhe in
[Ryd19]. They state as follows.

Theorem 1.2.13. [see Theorem 1.6, [Ryd19]] If 2 ă p ă 8, then

L : LpαpR`, xp´2dxq Ñ Hp
pC`q

is bounded.

Theorem 1.2.14. [see [Ryd19, Theorem 1.5]] If 2 ă p ď q ă 8 and α ă p{q1 ´ 1,
then

L : LpαpR`, xαdxq Ñ Aqq{p1´2´αq{ppC`q
is bounded.

Remark 1.2.15. For more generalizations on the spaces, the reader can take a look
at the thesis manuscript of Kucik [Kuc17, Chapter 1].

1.2.3 Discrete case
For δ ą 0, let Hδ denote the space of complex-valued functions which are continuous
on R, 2π-periodic and extend analytically to the strip Sδ :“ tz P C, |Imz| ă δu.
Write

cnpfq “
1

2π

ż 2π

0
fpxqe´inxdx, n P Z

the (complex) Fourier coefficients of a function f . The following theorem is a classical
discrete (i.e. for Fourier series) Paley-Wiener theorem and can be found in [QZ13,
Chap.IV, sect.V, Theorem V.1 vi), p. 98].

Theorem 1.2.16. If f P Hδ, then |cnpfq| “ Ope´
δ
2e |n|q when |n| Ñ 8. Conversely,

if there exists ε ą 0 such that |cnpfq| “ Ope´ε|n|q when |n| Ñ 8, then f belongs to
Hε.

In our context, we will be more interested in sine Fourier series. So, we give a
little modification of the previous theorem. For δ ą 0, denote by H0

δ the space of
continuous functions which are π-periodic on R, which extend holomorphically on
the strip Sδ and which vanish with all its derivatives of even orders in 0 and in π.
We remind that the family psinpnπ¨qqN˚ is an orthonormal basis of L2p0, πq and we
write panpfqqnPN˚ the sequence of sine-Fourier coefficients of a function f of L2p0, πq.
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Proposition 1.2.17. If f P H0
δ with δ ą 0, then |anpfq| “ Ope´

δ
2enq when n Ñ 8.

Conversely, if there exists δ ą 0 such that |anpfq| “ Ope´δnq when n Ñ 8, then f
belongs to H0

δ .

We give a proof for the sake of completeness.

Proof. Let δ ą 0 and pick f P H0
δ . Using Cauchy’s inequalities on the compact

K “ r´δ{2, π ` δ{2s ˆ r´δ{2, δ{2s, we obtain

@x P r0, πs, |f pkqpxq| ď
ˆ

2
δ

˙k

k! sup
BK
|fpzq| ď C

ˆ

2k
δ

˙k

.

Pick n P N˚. By multiple integrations by part and since the derivative of even orders
vanish, we obtain

|anpfq| “ |n
´2k
||anpf

p2kq
q ď |n´2k

| sup
r0, πs

|f p2kq|, k P N.

Combining the two previous estimates, we get

|anpfq| ď C

ˆ

4k
|n|δ

˙2k

ď exp
ˆ

2k log
ˆ

4k
|n|δ

˙˙

.

We optimize the right hand side taking k “ t
|n|δ
4e u. Then

2k log
ˆ

4k
|n|δ

˙

ď 2k logp1{eq “ ´2k ď 2´ |n|δ2e

and so |anpfq| À e´
δ
2e |n| .

Conversely, if |anpfq| À e´δn, then the series
ř

anpfq sinpnπ¨q converges normally
on each compact subset of Sδ. So, the function defined by

F pzq “
8
ÿ

n“1
anpfq sinpnπzq,

is an analytic continuation of f on Sδ. Moreover, it is clear that the function f and
all its derivatives of even orders vanish in 0 and in π.
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1.3 Separation of singularities
For Ω Ă C, an open set in the complex plane, we denote by HolpΩq the space of holo-
morphic functions on Ω. Given Ω1 and Ω2 two open subsets of C with non empty
intersection, a natural question is to know whether every function f P HolpΩ1 XΩ2q

can be written as a sum of two functions f1 P HolpΩ1q and f2 P HolpΩ2q, i.e. does the
equality HolpΩ1XΩ2q “ HolpΩ1q`HolpΩ2q hold? This problem is known as the sepa-
ration of singularities problem for holomorphic functions and has a quite long history.
A simple example is given by Ω2 “ tz P C | |z| ă r2u and Ω1 “ tz P C | |z| ą r1u with
0 ă r1 ă r2. Then Ω1 X Ω2 is a ring and the problem can be solved affirmatively
using Laurent series. Poincaré [Poi92, V, Ch. 3, § 21] discussed the solution in
the particular case when Ω1 “ Czr´1, 1s and Ω2 “ Cz pp´8, ´1s Y r1, `8qq, and
Aronszajn [Aro35] gave a positive answer for any pair pΩ1,Ω2q of open sets in C.

Theorem 1.3.1 (Aronszajn). [see [Aro35]] Let Ω1 and Ω2 be two open subsets of C
with non empty intersection. For every function f P HolpΩ1 X Ω2q, there exist two
functions f1 P HolpΩ1q and f2 P HolpΩ2q, such that

f “ f1 ` f2, on Ω1 X Ω2.

Let us give a modern proof of this theorem. For that, we introduce the standard
Wirtinger derivative

B̄ :“ B

Bz̄
:“ 1

2

ˆ

B

Bx
` i

B

By

˙

.

We recall also a classical result of complex analysis about solution of the B̄´equation
(non-homogeneous Cauchy-Riemann equation).

Theorem 1.3.2. [see [AM04, Theorem 9.3.1]] Let Ω be an open set of C and v P
C8pΩq. Then there exists a function u P C8pΩq such that B̄u “ v.

Modern proof of Aronszajn’s theorem. Pick f P HolpΩ1 X Ω2q. Take χ a bounded
C8-function on Ω1 Y Ω2 such that χ “ 1 on Ω1zΩ2 and χ “ 0 on Ω2zΩ1. So we can
define h1 “ fp1´ χq on Ω1 and h2 “ fχ on Ω2. Using the analyticity of f , we have
Bh1 “ ´fBχ “ ´Bh2 on Ω1XΩ2, which implies the existence of a C8-continuation v
on Ω1YΩ2 such that v “ Bh1 on Ω1 and v “ ´Bh2 on Ω2. By the previous theorem,
there exists u P C8pΩ1 Y Ω2q such that Bu “ v. Finally, defining f1 “ h1 ´ u on
Ω1 and f2 “ h2 ` u on Ω2, we obtain f “ f1 ` f2 on Ω1 X Ω2 and fi P HolpΩiq by
definition of u. The proof is complete.
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The separation of singularities problem is a special case of the First Cousin Prob-
lem which reduces the problem to solving a B-equation and can be reformulated in
sheaf cohomology terms (see [Hör90, Thm 1.4.5 and Thm 5.5.1]). The First Cousin
problem has been solved a few years after Aronszajn, first by Oka [Oka39] on do-
mains of holomorphy and then in the Cartan seminar [Car52] on Stein manifolds.
Today, it is well-known that the First Cousin Problem on C is equivalent to the
Mittag-Leffler theorem (see [Hör90, pp. 11-14] and [AM04, section 9.4]).

We would also like to mention two other simple proofs of the separation of singu-
larities problem. The first one, given by Havin [Hav58] (see also [Aiz14] or [MK71]),
is based on a very beautiful duality argument. We reproduce the proof here, with
additional details. See also [BKN18, p.16] for a concentrated proof.

Havin’s proof of the Aronszajn’s theorem. Let us start with a theoretic lemma.
Lemma 1.3.3. Let X0, X1, X2 be locally convex topological vector spaces (LCTVS)
such that X0 Ă X1 and X0 Ă X2 (in the sense that X0 is algebraically isomorphic
to a subset of Xi, i “ 1, 2). Let X0 be endowed with the topology generated by the
topologies induced on X0 by X1 and X2. If T0 is a bounded linear form on X0, then
there exist two linear forms T1 and T2 bounded respectively on X1 and X2 such that

T0pxq “ T1pxq ` T2pxq, @x P X0.

Proof. Let ĂX0 :“ tpx, xq |x P X0u be endowed with the topology induced by X1ˆX2.
Then the linear form defined by rT0px, xq “ T0pxq is bounded on ĂX0. By the Hahn-
Banach theorem, rT0 extends on X1 ˆ X2 as a bounded linear form. Finally, the
result is obtained setting T1px1q “ rT0px1, 0q for x1 P X1 and T2px2q “ rT0p0, x2q for
x2 P X2.

Let F1 :“ CzΩ1, F2 :“ CzΩ2 and F0 :“ F1YF2 “ CzpΩ1XΩ2q. For i P t1, 2u, let
pOi

nqnPN be a decreasing sequence of open sets which are bounded by a finite number
of rectifiable Jordan curves and such that

Ş

nPNO
i
n “ Fi. For every n P N, set

O0
n “ O1

nYO
2
n. We write H8pOi

nq the classical Banach space of bounded holomorphic
functions on Oi

n endowed with the norm

}f}H8pOinq “ sup
zPOin

|fpzq|.

Finally, let XFi :“
Ť

nPNH
8pOi

nq be endowed with the topology of inductive limit
(of the topologies of H8pOi

nq). Some reminders on this topology can be found at
Appendix A. With these notations in mind, it is an exercise to verify that the spaces
XF0 , XF1 , XF2 satisfy the hypotheses of Lemma 1.3.3. We write it in the following
lemma which is proved in the Appendix A.
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Lemma 1.3.4. The topology on X0 is the topology generated by the topologies induced
on XF0 by XF1 and XF2.

Let us now prove the theorem. Pick f P HolpΩ1 X Ω2q. We define the operator
T0 on XF0 by

@n P N, @g P H8
pO1

n YO
2
nq, T0g “

ż

γn

gpzqfpzqdz,

where γn denotes a finite union of rectifiable pairwise-disjoint Jordan curves which
forms the boundary of a domain containing F0 and such that O1

n Y O2
n includes the

closure of that domain (see Figure 2).

O1
n O2

n

γn

Ω1 Ω2

Figure 2: The Jordan curve γn.

Note that γn is contained in Ω1 X Ω2, so f is well-defined on γn for every n P N.
It turns out that T0 is a bounded linear form on XF0 . Indeed, for all n P N and for
all g P H8pO1

n YO
2
nq we have

|T0g| ď

ż

γn

|gpzqfpzq||dz| ď }g}H8pO1
nYO

2
nq

sup
zPγn

|fpzq||γn|

where |γ| means the length of γ. Hence, combining Lemma 1.3.3 and Lemma 1.3.4
together, there exist two bounded linear forms T1 and T2 respectively on XF1 and
XF2 such that T0g “ T1g ` T2g for every g P XF0 . But by Cauchy formula, we have
fpwq “ T0gw where gwpzq “ 1

z´w
. Thus fpwq “ T1gw ` T2gw :“ f1pwq ` f2pwq. By

continuity of T1 and T2, the functions f1 and f2 are holomorphic respectively on Ω1
and Ω2. This completes the proof.

The second one, given by Müller and Wengenroth [MW98, Theorem 1], uses the
open mapping theorem, Roth’s fusion lemma and Runge theorem. It establishes a
link between the separation of singularities problem and approximation theory.
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In the n´dimensional setting, Aronszajn’s theorem is no longer true. One can
read [Aiz67] and [Yuz72] for more details.

A related question is to know whether there exists a bounded linear operator
T : HolpΩ1 X Ω2q Ñ HolpΩ1q ˆ HolpΩ2q, f ÞÑ pf1, f2q, such that f “ f1 ` f2.
Mityagin and Khenkin proved in [MK71, Proposition 5.1] that such an operator does
not always exist.

The problem has attracted a lot of interest in particular in Banach spaces of
analytic functions. A challenging situation is the separation of singularities problem
in the space H8 of bounded analytic functions, which arises naturally in connec-
tion with interpolation problems [Pol83, PK90]. Havin, Nersessian [HN01], Havin
[Hav05], and Havin, Nersessian, Ortega-Cerdá [HNOC07] solved it in several general
configurations. Unlike the classical problem, they proved also that the problem has
not a positive solution for arbitrary pairs of open sets, giving a lot of instructive coun-
terexamples. The authors used an explicit Cauchy integral approach in the first two
papers cited above and a reduction to the B-equation (as in the modern proof of the
Aronszajn theorem) in the last paper. They constructed bounded linear separation
operators explicitly in both cases.

Another interesting situation previously studied concerns Smirnov spaces. Aizen-
berg solved the problem for the Smirnov space Ep (1 ă p ă `8) in the case of
the intersection of k bounded domains with regular boundaries (Ahlfors-regularity).
Bounded domains with Ahlfors-regular boundaries are particular cases of Smirnov
domains (see [Zin85, Corollaire 1]). These last domains are exactly the domains on
which the space Ep (identified with its set of non-tangential limits on the boundary)
coincides with the Lp closure of the polynomials (see [Dur70, Section 10.3]).

Theorem 1.3.5 (Aizenberg). [see [Aiz14, Theorem 2]] Let k P N˚ and let Ω1, . . . ,Ωk

be bounded domains with Ahlfors-regular boundaries such that Ω :“
Şk
i“1 Ωi is non-

empty. If f P EppΩq with 1 ă p ă 8, then there exist f1, . . . , fk such that fi P EppΩiq

for any i “ 1, . . . , k and f “
řk
i“1 fi on Ω.

The proof relies heavily on a strong result by David [Dav84, Theorem 1], who
studies the boundedness of the Hilbert transform on such regular curves. Since it is
a very short proof, we reproduce it here.

Proof. Let 1 ă p ă 8 and pick f P EppΩq. We recall that such a function satisfies the
Cauchy formula (1.5). Now, we decompose the boundary BΩ into k parts Γ1, . . . ,Γk
such that Γi Ă BΩi for any i “ 1, . . . , k. Thus we can write

fpzq “
1

2πi

ż

BΩ

fpuq

u´ z
du “

1
2πi

k
ÿ

i“1

ż

BΩi

Fipuq

u´ z
du,
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where the functions Fi are defined on BΩi by

Fipzq “

#

fpzq if z P Γi
0 if z P BΩizΓi.

Finally, the curves BΩi are also Ahlfors-regular, and as said above, the result of G.
David implies that, on such curves, the Cauchy transform is bounded from LppBΩiq

onto EppΩiq. Hence Fi P EppΩiq as required.

It can easily be generalized to finitely multiply connected domains using the
same argument (see [Dur70, p. 182] for the definition of Smirnov space on a finitely
connected domain). L. Aizenberg also gave the same kind of result (with more
regularity hypotheses) for the Hardy space in several complex variables (see [Aiz14,
Theorem 9] for the definition of this space and the theorem).

Müller and Wengenroth [MW98, Theorem 3] proved that solving the problem on
the space A of holomorphic functions which are continuous up to the boundary is
equivalent to prove a Roth’s fusion type lemma. In the same vein, Kaufman [HN94,
section 16.18] asked for a solution to the problem on the space Apnq of functions which
have their first n derivatives in A. He mentioned that a positive answer for any n ě 1
would provide information on the triviality of ApnqpΩ1 XΩ2q, where triviality means
ApnqpΩ1 X Ω2q “ HolpCq|Ω1XΩ2 .

One of the two aims of this thesis is to discuss the problem of separation of
singularities for the Bergman space. We shall do this in Chapter 4. Then we will
apply the separation of singularities to the other goal of this thesis, namely the
description of the reachable space of the heat equation.
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Chapter 2

Some background in Control
theory

In this chapter, we give the basic definitions and properties we need from control
theory, and we introduce the main object of this thesis, namely the reachable set
of a Linear Time Invariant (LTI) system. This chapter is essentially based on the
textbook [TW09].

2.1 Operator theory
Dual with respect to a pivot space. By the Riesz representation theorem, we
can identify a Hilbert space with its dual, but sometimes it can be more useful not
to do so. Especially in the theory of PDE’s, the dual with respect to a pivot space is
often a better choice of realization of the dual space. We explain shortly this concept
in this paragraph.

Let V and H be two Hilbert spaces such that V Ă H densely and continu-
ously. Let V 1 and H 1 their topological dual spaces. Then H 1 embeds densely and
continuously into V 1. The Riesz representation theorem states that the operator
J : H Q z ÞÑ x¨, zyH P H

1 is an antilinear isometric isomorphism. Now, since H 1 Ă V 1

our goal is to enlarge the space H in order to obtain an isometric isomorphism onto
V 1. For this purpose, we denote by V ˚ the completion of H with respect to the norm
} ¨ }˚ given by

}z}˚ “ sup
vPV
}v}V ď1

| xz, vyH |, @z P H.

Since H is dense and continuously embedded into V ˚ by construction, the operator
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J : H Ñ V 1 extends as a bounded linear operator from V ˚ into V 1. Moreover, this
extension is an isometric isomorphism from V ˚ onto V 1. From now on, we identify
(through J) the spaces V ˚ and V 1, i.e. we do not distinguish z and Jz for z P V ˚.
Also, for z P V ˚ and v P V , we write xz, vyV 1,V instead of xJz, vyV 1,V . Note that for
z P H, we have xJz, vyV 1,V “ xz, vyH by construction. Finally, we have

V Ă H Ă V 1

densely and continuously. Under this identification, we say that V 1 is the dual of V
with respect to the pivot space H, and V Ă H Ă V 1 is called a Gelfand triple.

Remark 2.1.1. Denote DpΩq the space of functions which are infinitely differentiable
on Ω and compactly supported. Assume that the embeddings DpΩq Ă V Ă H are
dense and continuous. Using H as pivot space, it is clear that we have DpΩq Ă
V Ă H Ă V 1 Ă D1pΩq. Thus, the dual space V 1 can be viewed as a subset of the
distribution space.

Example 2.1.2. Let d P N˚ and let Ω be an open space in Rd. Let W 1,2
0 pΩq denote

the classical Sobolev space which consists of all L2´functions with all their first order
derivatives in L2pΩq, and such that their Dirichlet trace is zero. If we take L2pΩq as
pivot space, then the dual ofW 1,2

0 pΩq is the Sobolev space of negative orderW´1,2pΩq
defined by

W´1,2
pΩq “

#

f0 `

d
ÿ

k“1
Bkfk P D1

pΩq
ˇ

ˇ

ˇ

ˇ

ˇ

@0 ď k ď d, fk P L
2
pΩq

+

.

Extension of operators. In order to define the notion of mild solution in the
next section, we need to extend an unbounded operator and its semigroup to bigger
spaces. We explain now how to do that. We insist on the fact that the following
construction can be made fairly general (see [TW09, Section 2.10]) but we focus here
on selfadjoint operators.

Let LpE,F q denote the space of bounded linear operators from a Banach space
E to another Banach space F . We write LpEq instead of LpE,Eq.

Let H be a Hilbert space. Let A : DpAq Ă H Ñ H be an unbounded self-adjoint
linear operator which generates a strongly continuous semigroup of operators pTtqtą0
(see [TW09, Definitions 2.1.1 and 2.1.4]). Let H1 denote the Hilbert space DpAq
when it is endowed with one of the equivalent norms

}x}H1 :“ }pβI ´ Aqx}H
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where β belongs to the resolvent set ρpAq of A. Note that this norm is equivalent to
the graph norm

}x}2graph :“ }x}2H ` }Ax}2H .
With one of these norms, H1 embeds densely and continuously into H (just write
x “ pβI ´Aq´1pβI ´Aqx). Let H´1 denote the dual space of H1 with respect to the
pivot space H. It can be defined alternatively as the completion of H with respect to
the norm }x}H´1 :“ }pβI´Aq´1x}H . Hence, as explained in the previous paragraph,
we have

H1 Ă H Ă H´1

densely and with continuous embeddings.

Proposition 2.1.3. [see [TW09, Propositions 2.10.3 and 2.10.4]] The operator A
has a unique bounded extension rA : H Ñ H´1 and for every t ě 0, Tt has a unique
bounded extension rTt : H´1 Ñ H´1. Moreover, p rTtqtě0 is a strongly continuous
semigroup on H´1 with generator rA.

Proof. Let β P ρpAq. By definition of the norm } ¨ }H1 , it is clear that βI ´ A is a
unitary operator from H1 onto H. Since H1 embeds continuously into H, we have
βI ´ pβI ´ Aq “ A P LpH1, Hq. Let us define rA P LpH,H´1q by

A

rAx, x1

E

H´1,H1
:“

xx,Ax1yH for all x P H and x1 P H1 (i.e. rA is the Banach-adjoint At : H 1 Q ϕ ÞÑ
ϕ ˝A P H´1 under the identification H » H 1). Hence, using that A is selfadjoint, we
have for every x P H1,

A

rAx, x1

E

H´1,H1
:“ xx,Ax1yH “ xAx, x1yH , @x1 P H1.

Therefore rA is an extension of A, and the uniqueness follows from the density of H1
in H.

Let us show that pβI ´ rAq´1 exists (and so belongs to LpH´1, Hq by the Banach
isomorphism theorem) and is the unique bounded extension of pβI ´ Aq´1. In the
same way as above, the unitary operator R :“ pβI ´ Aq´1 P LpH,H1q has a unique
extension rR P LpH´1, Hq given by

A

rRx´1, x
E

H
:“ xx´1, RxyH´1,H1

, @x´1 P H´1, @x P H.

Moreover, since }z}H´1 “ }Rz}H for every z P H´1 and using the density of H in
H´1, rR is an isometry. Finally, the equalities

pβI ´ rAq rRx “ x “ rRpβI ´ rAqx
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holds for every x P H1. Thus by density of H1 in H´1 (for the left-hand-side equality)
and in H (for the right-hand-side equality), we obtain rR “ pβI ´ rAq´1. This means
that pβI ´ rAq´1 exists and is a unitary operator which extends pβI ´ Aq´1. Now,
for every t ą 0, we define rTt P LpH´1q by

rTtz “ pβI ´ rAqTtpβI ´ rAq´1z, @z P H´1.

It is clear that rTt extends Tt (Tt commutes with A on H1) and it is bounded on H´1.
Finally, direct computations show that p rTtqtě0 is a strongly continuous semigroup
whose generator pβI ´ rAqApβI ´ rAq´1 P LpH,H´1q is a bounded extension of A, i.e.
rA generates p rTtqtě0.

Strictly positive operators and their extensions. For the boundary control
case, we will need to extend our operator (which will be the Laplacian or Schrödinger
operator) to a bigger space. This will be done using the positivity. We refer to
[TW09, Sections 3.3 and 3.4] for this paragraph. Here, H is a Hilbert space and A
is a selfadjoint operator on H.

Definition 2.1.4. We say that A is positive and we write A ě 0 if for all z P DpAq
we have xAz, zy ě 0. We say that A is stricly positive and we write A ą 0 if there
exists λ ą 0 such that A´ λI is positive.

We also write A ě λI to mean A ´ λI ě 0. As for the bounded case, we have
A ě λI for λ P R, if and only if the spectrum σpAq of A is included in rλ,`8r.

From now on, we assume that A is a strictly positive operator. So we can define
its square root A 1

2 i.e. the unique positive operator S : DpSq Ñ H satisfying S2 “ A.
Moreover, A 1

2 ą 0.
Let H1 and H´1 be defined as in the previous paragraph. In the same way,

we denote by H 1
2
the domain DpA

1
2 q with the norm }z} 1

2
:“ }A

1
2 z}. Since A

1
2

is selfadjoint, we have }z} 1
2
“

a

xAz, zyH for z P DpAq and H 1
2
can be defined

equivalently as the completion of DpAq with respect to that norm. We define also
H´ 1

2
the dual of H 1

2
with respect to the pivot space H, or equivalently the completion

of H with respect to the norm }z}´ 1
2

:“ }A´ 1
2 z} “

a

xA´1z, zyH . Thus, we have the
following dense and continuous embeddings

H1 Ă H 1
2
Ă H Ă H´ 1

2
Ă H´1.

Proposition 2.1.5. [see [TW09, Proposition 3.4.5 and Corollary 3.4.6]] If A is a
strictly positive selfadjoint operator which generates a strongly continuous semigroup
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pTtqtě0, then A has a unique strictly positive densely defined extension rA on H´ 1
2
with

domain H 1
2
, and for every t ě 0, Tt has a unique bounded extension rTt P LpH´ 1

2
q.

Moreover, prTtqtě0 is a strongly continuous semigroup on H´ 1
2
with generator rA.

Proof. By Proposition 2.1.3, A 1
2 has a unique bounded extension Ă

A
1
2 P LpH,H´ 1

2
q.

Hence, writing
rA “

Ă

A
1
2 A p

Ă

A
1
2 q
´1

we obtain the expected extension. Furthermore, noting that A 1
2 P LpH1, H 1

2
q is a

unitary operator, we obtain the domain of rA.
In a similar way, writing

rTt “
Ă

A
1
2 Tt p

Ă

A
1
2 q
´1, @t ě 0

the claim on the semigroup follows as in 2.1.3.

Remark 2.1.6. If we write rH “ H´ 1
2
, the previous proposition implies that rA is a

strictly positive operator on rH, and we have

rH1 :“ Dp rAq “ H 1
2
, rH 1

2
:“ Dp rA

1
2 q “ H, rH´ 1

2
“ H´1

with equal norms. Again, rA is a strictly positive (densely defined) operator on rH.
So, by Proposition 2.1.5 it has a unique strictly positive extension to rH´ 1

2
“ H´1

with domain rH 1
2
“ H.

Finally, for a selfadjoint bounded perturbation, if the sum is strictly positive then
the spaces involved do not change.

Proposition 2.1.7. [see [TW09, Proposition 3.4.5 and Corollary 3.4.6]] Let A ą 0
be selfadjoint and Q P LpHq be selfadjoint such that B “ A`Q ą 0. Then the space
H´1, H´ 1

2
, H 1

2
, H1 induced by A and B are the same.

Proof. It suffices to prove that the norms defined by }z}11 :“ }Bz} and }z}11
2

:“ }B 1
2 z}

are respectively equivalent to the norm } ¨ }1 and } ¨ } 1
2
. For that, let λ ą 0 be such

that A ě λI. Then for all z P DpAq,

}z}11 “ }pA`Qqz} ď }Az} ` }Q}}z} ď p1`
}Q}

λ
q}Az} “ p1` }Q}

λ
q}z}1.
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The converse inequality can be proved in a similar way. So the norms } ¨ }1 and } ¨ }11,
are equivalent.

For the remainder norms, note that

Q ď }Q}I ď
}Q}

λ
λI ď kA

where we have denoted k “ }Q}
λ
. Therefore we have for all z P DpAq,

p}z}11
2
q
2
“ xBz, zy ď xAz, zy ` xQz, zy ď p1` kq xAz, zy “ p1` kq}z}21

2
.

Again, the converse inequality can be proved in a similar way. So } ¨ }11
2
and } ¨ } 1

2
are

equivalent on DpAq.

From now on, the extension will be denoted as the initial operator.

Reminders on the Laplacian. For the convenience of the reader, we recall
quickly some well known facts about the Dirichlet Laplacian and its perturbations,
both on bounded and unbounded domains.

Let first Ω Ă Rn be a bounded domain with boundary of class C2. Then A0 “

´∆ :“ ´
řn
k“1

B2

Bx2
k
is a strictly positive selfadjoint operator on H :“ L2pΩq with

domain H1 :“ DpA0q “ W 2,2pΩq X W 1,2
0 pΩq. Since Ω is bounded, the embedding

DpA0q Ă L2pΩq is compact and thus A0 has a compact resolvent. Hence, A0 is
diagonalizable with an orthonormal basis of L2pΩq formed by eigenfunctions pϕnqnPN
and the corresponding sequence of eigenvalues pλnqnPN satisfies λn ą 0 for every
n P N and λn Ñ 8. This implies that ∆ “ ´A0 generates a strongly continuous
semigroup given by Ttf “

ř

nPN e
´λnt xf, ϕnyϕn for every t ě 0.

Following Proposition 2.1.5, A0 admits a unique strictly positive extension on
H´ 1

2
with domain H 1

2
.

Proposition 2.1.8. We have H 1
2
“ W 1,2

0 pΩq and H´ 1
2
“ W´1,2pΩq.

Proof. We remind that the Sobolev spaces W 1,2
0 pΩq and W´1,2pΩq have been intro-

duced in the first paragraph of this section. The space H 1
2
is the completion of

H1 “ W 2,2pΩq XW 1,2
0 pΩq with respect to the norm

}f}21
2
“ xA0f, fyL2pΩq “ }|∇f |}

2
L2pΩq.

Since W 1,2
0 pΩq is the completion of DpΩq with respect to the previous norm and

DpΩq Ă H1, we have H 1
2
“ W 1,2

0 pΩq. Finally, the assertion on H´ 1
2
is given in

Example 2.1.2 2.
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Depending on the context, it should be convenient to consider the operator A0 on
L2pΩq or onW´1,2pΩq. On both spaces, the operator ´A0 “ ∆ is called the Dirichlet
Laplacian. Moreover, we have seen that the semigroup pTtqtě0 extends boundedly
on H´ 1

2
. It is called Dirichlet Laplacian semigroup, or Dirichlet heat semigroup on

both spaces.

Remark 2.1.9. Note that on W 1,2
0 pΩq, the Dirichlet Laplacian ´A0 coincides with

the operator ∆ defined in the distributional sense. This follows from the fact that
DpΩq is dense in W 1,2

0 pΩq. On the contrary, they are different on rH 1
2
“ H “ L2pΩq

(see Remark 2.1.6 for an extension of´A0 on this space). This is because, if f P rH 1
2
“

L2pΩq, ´A0f is now in rH´ 1
2
“ H´1 which is the dual of H1 “ W 2,2pΩqXW 1,2

0 pΩq with
respect to the dual space H “ L2pΩq. But DpΩq is not dense in W 2,2pΩq XW 1,2

0 pΩq.
An other way to see that they do not coincide on L2 is the following: if f is a

non-zero constant, then ∆f “ 0 but ´A0f cannot be zero since A0 ą 0.

Now, we restrict our attention to the one dimensional unbounded case. If Ω “ R
or p0,8q, then ´∆ is still selfadjoint and generates a strongly continuous semigroup
which can be obtained using the Fourier transform (resp. the Laplace transform) for
Ω “ R (resp. for Ω “ p0,8q). But in these cases, ´∆ is not strictly positive any
more, as σp´∆q “ r0,8q. Nevertheless, note that the operator ´∆ ` I is strictly
positive and now the same argument as above gives Dpp´∆q 1

2 q “ W 1,2pΩq. Since for
such Ω we have W 1,2

0 pΩq “ W 1,2pΩq, ´∆ ` I extends as a strictly positive operator
on W´1,2pΩq with domain W 1,2pΩq, and so ´∆ also does.

Finally, let q be a positive and bounded real-valued function on Ω. Then, the
operator ´∆ ` q is still strictly positive and generates a strongly continuous semi-
group (see [TW09, Theorem 2.11.2]). The previous results hold with same spaces by
Proposition 2.1.7.

2.2 Well-posed Linear Time Invariant Control Sys-
tems

The notion of Linear Time Invariant (LTI) control systems provides the abstract gen-
eral framework unifying the concepts of control theory. As we shall see, it permits
also to extend rigorously the basic concepts to the case of boundary control systems.
Here, X will denote a complex Hilbert space and pTtqtě0 a strongly continuous semi-
group on X with generator A : DpAq Ñ X. We write 9z for the time derivative of a
function z.
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Solution of a Linear Time Invariant system. We introduce now the notion of
solutions we will use here.

Definition 2.2.1. Let f P L1
locpr0,8q;X´1q. Let z0 P X.

We say that z P L1
locpr0,8q;Xq X Cpr0,8q;X´1q is a (weak) solution in X´1 of the

Cauchy problem
#

9zptq “ Azptq ` fptq,

zp0q “ z0
(2.1)

if it satisfies for every ϕ P DpA˚q and every t ě 0,

xzptq ´ z0, ϕyX´1, DpA˚q
“

ż t

0
xzpsq, A˚ϕyX ` xfpsq, ϕyX´1, DpA˚q

ds.

Proposition 2.2.2. [see [TW09, Prop 4.1.4]] Let f P L1
locpr0,8q;X´1q. Let z0 P X.

If z is a solution of (2.1), then z is given by

zptq “ Ttz0 `

ż t

0
Tt´sfpsqds, @t ě 0. (2.2)

Remark that the semigroup involved in the integral is in fact the bounded exten-
sion of pTtqtět to X´1 given in Proposition 2.1.3. The previous proposition implies
that there exists at most one solution in X´1 of (2.1). The function z defined by (2.2)
is called the mild solution of (2.1). Obviously, the mild solution is not necessarily a
solution.

Admissible control operator. Let U (the input or control space) be a Hilbert
space. Let B P LpU,X´1q (the control operator). We are now interested in equa-
tions of the form 9zptq “ Azptq ` Buptq where u P L2pr0,8q;Uq. We shall see later
that a large class of partial differential equations with control on the boundary of a
domain can be written in this way. For every τ ě 0, we call input-to-state map (or
controllability operator) the bounded operator Φτ : L2pr0,8q;Uq Ñ X´1 defined by

Φτu “

ż τ

0
Tτ´sB upsqds. (2.3)

Hence, when it exists, the solution of the Cauchy problem
#

9zptq “ Azptq `Buptq, t ě 0
zp0q “ z0

(2.4)
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for z0 P X and u P L2pr0,8q;Uq is given by

zpτq “ Tτz0 ` Φτu, @τ ě 0. (2.5)

As we shall see in the next section, the operator Φτ will play a central rôle in the
rest of this thesis. We denote by RanΦτ its range.

Definition 2.2.3. The operator B P LpU,X´1q is called an admissible control oper-
ator for the semigroup pTtqtě0 if there exists τ ą 0 such that RanΦτ Ă X.
In this case, we say that pA,Bq define a well-posed control LTI system.

If B is admissible, i.e. RanΦτ Ă X for some τ ą 0, then for every t ě 0, we have
Φt P LpL2pr0,8q;Uq, Xq. Obviously, if B P LpU,Xq then B is admissible.

If I is a open interval of R, we denote by W k,ppIq (1 ď p ď 8 and k P N) the
Sobolev space which consists of all the LppIq-functions which have all their (distri-
butional) derivatives of order at most k in LppIq.

Proposition 2.2.4. [[TW09, Proposition 4.2.5]] If B is an admissible control op-
erator for pTtqtě0, then for every z0 P X and every u P L2

locpr0,8q;Uq, the Cauchy
problem (2.4) has a unique solution z in X´1. This solution is given by (2.5) and
satisfies

z P Cpr0,8q;Xq XW 1,2
loc pp0,8q;X´1q.

This means that for every z0 P X and every u P L2
locpr0,8q;Uq there exists a

unique z P Cpr0,8q;Xq such that for every ψ P DpA˚q and every t ě 0,

xzptq ´ z0, ψyX “

ż t

0
xzpsq, A˚ψyX ` xupsq, B

˚ψyU ds. (2.6)

The last writing can be useful to determine the control operator B for PDE’s with
control at the boundary of a domain.

Finally, we mention that the admissibility of a control operator B is often tested
using the duality notion of admissible observation operator. In fact, B is an admissi-
ble control operator for pTtqtě0 if and only if B˚ is an admissible observation operator
for pT˚t qtě0 (see [TW09, Definition 4.3.1 and Proposition 4.4.3]). This duality will
also appear later to test the controllability of an admissible control operator B.

Example 2.2.5. Let Ω be an open bounded and connected set with boundary of
class C2. We denote X “ L2pΩq and we consider the Dirichlet Laplacian A “ ∆ :
DpAq Ñ X where DpAq “ W 2,2pΩq XW 1,2

0 pΩq. We have already seen in the last
section that this operator generates a strongly continuous semigroup pTtqtě1.
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Let ω be an open subset of Ω and U “ L2pωq. We regard U as a closed subspace
of L2pΩq by considering functions in U to vanish on Ωzω. Let B : U Ñ X be the
inclusion operator of U into X (i.e. Bu “ u). Since we have obviously B P LpU,Xq,
the pair pA,Bq defines a well-posed control LTI system.

In terms of PDEs, the system defined by pA,Bq can be written
$

’

’

&

’

’

%

By

Bt
pt, xq ´∆ypt, xq “ 1ωpxqupt, xq t ą 0, x P Ω,

ypt, xq “ 0, t ą 0, x P BΩ,
yp0, xq “ fpxq x P Ω,

(2.7)

For u P L2
locpr0,8q;Uq and f P X, Proposition 2.2.4 implies that this equation admits

a unique solution y P Cpr0,8q;Xq.

Boundary control systems. A big part of the systems coming from PDE’s, those
with control at the boundary of a domain, appears in the following form:

$

’

&

’

%

9zptq “ Lzptq

Gzptq “ uptq

zp0q “ z0

(2.8)

where L is a differential operator and G a boundary trace operator. The aim of this
paragraph is to give sufficient assumptions in order to translate such a system into
the previous form (2.4).

Let Z (the solution space) be a Hilbert space such that Z Ă X with continuous
embedding.

Definition 2.2.6. A boundary control system on U , Z and X is a pair of operators
pL,Gq where

L P LpZ,Xq, G P LpZ,Uq,

if there exists β P C such that the following properties hold:

(i) G is onto,

(ii) KerpGq is dense in X,

(iii) βI ´ L restricted to KerpGq is onto,

(iv) KerpβI ´ Lq XKerpGq “ t0u.
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Given a boundary control system pL,Gq we can define the operator A by

X1 “ KerpGq, A “ L|X1 .

Then X1 is a Hilbert space (as a closed subspace of Z) and A P LpX1, Xq. Conditions
piiiq and pivq mean that βI ´ A is an isomorphism of X1 onto X, i.e. pβI ´ Lq´1 P

LpX,X1q. Hence, the norm on X1 is equivalent to the norm

}x}X1 :“ }pβI ´ Aqx}X

which we have already seen in the previous section. Again, X´1 is the completion of
X with respect to the norm }x}X´1 :“ }pβI ´ Aq´1x}X and A admits an extension
rA P LpX,X´1q.

Proposition 2.2.7. [[TW09, Proposition 10.1.2]] Let pL,Gq be a boundary control
system on U , Z and X. Let rA P LpX,X´1q be defined as above. There exists a
unique operator B P LpU,X´1q such that

L “ rA`BG.

Proof. Since G is onto, it has a bounded right inverse H P LpU,Zq. Set

B “ pL´ rAqH. (2.9)

By definition of H, we have GpI ´HGq “ G´GHG “ G´G “ 0. So the range of
I ´HG is contained in KerpGq “ X1. Therefore pL´ rAqpI ´HGq “ 0 and then we
obtain BG “ pL´ rAqHG “ L´ rA as required. The unicity is a direct consequence
of the surjectivity of G.

This proposition means that the system (2.8) can be rewritten in the form (2.4).
When A generates a strongly continuous semigroup and B is admissible, we say that
pL,Gq is a well-posed boundary control system. The control operator B is given by
(2.9), but this characterization is not very useful in the applications. Often, it is
more convenient to determine B˚ rather than B. We get it with the formula

xLz, ψy “ xz, A˚ψy ` xGz,B˚ψy , @z P Z, @ψ P DpA˚q (2.10)

which follows from the proposition. Indeed, the expression xLz, ψy ´ xz, A˚ψy can
often be computed using integration by parts. Otherwise, when the solution of the
boundary system is well-known and explicit, the operator B can be determined from
this solution.
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The heat equation with Dirichlet boundary control. We end this section
with a translation of the previous concepts for the Dirichlet Laplacian. We consider
here the Dirichlet Laplacian ´A0 extended to X “ W´1,2pΩq where Ω is an open
bounded and connected set with boundary of class C2. It is the good framework in
order to write the heat equation with boundary control as a well-posed boundary
control system.

First, let us focus on the case Ω “ p0, πq. Let D : C2 Ñ W 1,2p0, πq be the
Dirichlet map defined by

Dpv1, v2qpxq “
x

π
v2 `

π ´ x

π
v1, @x P p0, πq. (2.11)

Consider the Dirichlet trace γ0 defined on C8pr0, πsq by γ0z “ pzp0q, zpπqq. Using
the density of C8pr0, πsq in W 1,2p0, πq, γ0 extends uniquely as a bounded operator
from W 1,2p0, πq into C2, with kernel W 1,2

0 p0, πq (as it is the closure of C80 p0, πq in
W 1,2p0, πq). Note that for every v P C2, we have

γ0Dv “ v. (2.12)

We consider the following boundary value problem.
$

’

’

&

’

’

%

By

Bt
pt, xq ´

B2y

Bx2 pt, xq “ 0 t ą 0, x P p0, πq,

ypt, 0q “ u0ptq, ypt, πq “ uπptq t ą 0,
yp0, xq “ fpxq x P p0, πq,

(HE)

To formulate this equation as a boundary control system, take X “ W´1,2p0, πq,
U “ C2 and Z “ W 1,2

0 p0, πq ` DU and define the operators L P LpZ,Xq and
G P LpZ,Uq by

Lz “
d2z

dx2 (in the distributional sense), Gz “ γ0z. (2.13)

It is clear that L and G are well-defined and bounded since Z Ă W 1,2pΩq.
We have the following result.

Theorem 2.2.8. [see [TW09, Proposition 10.7.1]] The pair pL,Gq defined by (2.13)
is a well-posed boundary control system. Its generator A is the Dirichlet Laplacian
´A0 and its control operator is B “ A0D.

In the last equality of this theorem, A0 means the unique extension of this oper-
ator given by Proposition 2.1.5 which belongs to LpX 1

2
, X´ 1

2
q.
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Proof. Let us prove that the pair pL,Gq defines a boundary control system. Con-
dition piq in Definition 2.2.6 is satisfied in view of equation (2.12), and condition
(ii) is the density of W 1,2

0 p0, πq in W´1,2
0 p0, πq. As explained in Remark 2.1.9,

L coincides with the Dirichlet Laplacian ´A0 on W 1,2
0 p0, πq “ KerpGq. Hence,

A :“ L|KerpGq “ ´A0, and conditions piiiq ´ pivq are fulfilled for β “ 0 since A0 ą 0.
By definition, the control operator B is determined (see Proposition 2.2.7) by the

equality
L´ rA “ BG

where rA P LpX,X´1q coincides on X 1
2
with the bounded extension of ´A0 mentioned

before the proof. Therefore, for every v P U , we have LDv ´ rADv “ BGDv. Since
LDv “ 0 and GDv “ v, we finally obtain Bv “ ´ rADv “ A0Dv, which is the wanted
result.

It remains to show that this boundary control LTI system is well-posed. We have
already seen that the Dirichlet Laplacian generates a strongly continuous semigroup.
We refer to [TW09] for the admissibility of B.

In the one-dimensional case, the operator B (or B˚) is easy to compute.

Lemma 2.2.9. For g P X 1
2
“ L2p0, πq, we have

B˚g “

˜

dpA´1
0 gq

dx
p0q

dpA´1
0 gq

dx
pπq

¸

.

Proof. For v P U and g P X 1
2
, we have

xBv, gyX
´ 1

2
,X 1

2
“ xA0Dv, gyX

´ 1
2
,X 1

2
“

A

A
1
2
0Dv,A

1
2
0 g
E

X
.

Since A
1
2
0 is a unitary operator from DpA

1
2
0 q :“ X 1

2
to X and X 1

2
“ L2p0, πq, we

obtain
xBv, gyX

´ 1
2
,X 1

2
“ xDv, gyL2p0,πq . (2.14)

Now, writing g “ A0A
´1
0 g “ LA´1

0 g and using integration by parts, this leads to

xBv, gyX
´ 1

2
,X 1

2
“
@

Dv,LA´1
0 g

D

L2p0,πq

“ pDvqp0qdpA
´1
0 gq

dx
p0q ´ pDvqpπqdpA

´1
0 gq

dx
pπq
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where we have used that LDv “ 0 and A´1
0 g P W 2,2p0, πq XW 1,2

0 p0, πq. Hence, by
definition of D, it follows

xBv, gyX
´ 1

2
,X 1

2
“

C

v,

˜

dpA´1
0 gq

dx
p0q

dpA´1
0 gq

dx
pπq

¸G

C

.

Another way to see B is to replace g by the elements of the orthonormal basis
pϕnq “ p

a

π
2 sinpn¨qqnPN˚ of L2p0, πq in (2.14). This leads to

xBv, ϕnyX
´ 1

2
,X 1

2
“

ż π

0

´x

π
v2 `

π ´ x

π
v1

¯

c

π

2 sinpnxqdx “
c

π

2

´v1

n
` p´1qnv2

n

¯

.

Finally, since by the previous proposition B is admissible, the heat equation
(HE) admits a unique solution y P Cpr0,8q, Xq i.e. y satisfies (2.6). We give now
an equivalent formulation which is well-known by specialists of PDEs and which is
easier to use.
Proposition 2.2.10. [see [TW09, Proposition 10.7.3]] A function y P Cpr0,8q, Xq
is a solution of the equation (HE) if and only if for every t ě 0, and every ϕ P

W 2,2p0, πq XW 1,2
0 p0, πq such that d2ϕ

dx2 P W
1,2
0 p0, πq, it satisfies

xyptq, ϕy
´1, 1 “xf, ϕy´1, 1 `

ż t

0

B

ypsq,
d2ϕ

dx2

F

´1, 1
ds

`

ż t

0
u0psq

dϕ

dx
p0qds´

ż t

0
uπpsq

dϕ

dx
pπqds (2.15)

where x¨, ¨y
´1, 1 stands for the duality W´1,2p0, πq ´W 1,2

0 p0, πq.
Proof. Let us write equation (2.6) in our setting. It becomes

xyptq ´ f, ψyX “ ´

ż t

0
xypsq, A0ψyX ` xupsq, B

˚ψyC ds

for every ψ P DpA0q “ W 1,2
0 p0, πq and t ě 0.

Using that A
1
2
0 is a unitary operator from DpA

1
2
0 q :“ X 1

2
to X in the first two

inner products above, and lemma 2.2.9, we obtain for every t ě 0,

@

yptq ´ f, A´1
0 ψ

D

´1,1 “ ´

ż t

0
xypsq, ψy

´1,1`

C

upsq,

˜

dpA´1
0 gq

dx
p0q

dpA´1
0 gq

dx
pπq

¸G

C

ds, @ψ P DpAq.

The results follows setting ϕ “ A´1
0 ψ.
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It is worth mentioning that the previous results extend to the n´dimensional
case with some additional technical efforts. We refer to [TW09, Sections 10.6 and
10.7] for more details.

The Hermite heat equation with Dirichlet boundary control. We give now
quickly the results for a perturbation of the heat equation. More precisely, we set
qpxq “ x2 and we consider the so called Hermite heat equation.

$

’

’

&

’

’

%

Bw

Bt
pt, xq ´

B2w

Bx2 pt, xq ` x
2wpt, xq “ 0 t ą 0, x P p0, πq,

wpt, 0q “ u0ptq, wpt, πq “ uπptq t ą 0,
wp0, xq “ fpxq x P p0, πq,

(HHE)

As in the previous paragraph, we set

U “ C2, Z “ W 1,2
0 p0, πq `DU, X “ W´1,2

p0, πq

where D is the Dirichlet map defined in (2.11). We define the operators L P LpZ,Xq
and G P LpZ,Uq by

Lz “
d2z

dx2 ` x
2, Gz “ γ0z.

where d2z
dx2 is the double derivative in the sense of distributions and γ0 is the Dirichlet

trace given in the previous paragraph. Then the result is the same as for the heat
equation.

Theorem 2.2.11. [see [TW09, Theorem 10.8.3]] The pair pL,Gq defines a well-
posed boundary control system on the spaces U , Z and X.

This theorem implies that for every control u P L2pp0,8q;C2q and every initial
condition f P X, the Hermite heat equation (HHE) admits a unique solution w P

Cpr0,8q;Xq. As for the heat equation, we can reformulate this fact saying that
there exists a unique fonction w P Cpr0,8q;Xq which satisfies

xwptq, ψy
´1, 1 “

ż t

0

B

wpsq,
d2ψ

dx2 ´ x
2ψ

F

´1, 1
ds

`

ż t

0
u0psq

dψ

dx
p0qds´

ż t

0
uπpsq

dψ

dx
pπqds

for every ψ P W 2,2p0, πq XW 1,2
0 p0, πq such that d2z

dx2ψ P W
1,2
0 p0, πq and every t ě 0.
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2.3 Controllability and Reachability
In this section, we give the different notions of controllability and the definition of
the reachable set of a well-posed control LTI system. Throughout the section, U , X
and Y are complex Hilbert spaces. pTtqtě0 is a strongly continuous semigroup on X
with generator A : DpAq Ñ X. B P LpU,X´1q is an admissible control operator for
pTtqtě0. Hence, pA,Bq defines a well-posed control LTI system.

Controllability. We now give three classical notions of controllability. We consider
the system defined by pA,Bq which is

#

9zptq “ Azptq `Buptq, t ě 0
zp0q “ z0

(2.16)

and we recall that for z0 P X and u P L2
locpp0,8q;Uq the unique solution is given by

the mild solution
zpτq “ Tτz0 ` Φτu, @τ ě 0. (2.17)

where Φτ P LppL2pp0,8q;Uq;Xq is given by Φτu “
şτ

0 Tτ´sB upsqds for τ ě 0.

Definition 2.3.1. Let τ ą 0.

(i) The pair pA,Bq is exactly controllable in time τ if for any z0, z1 P X there exists
a control u P L2pp0, τq;Uq such that the solution of (2.16) satisfies zpτq “ z1.

(ii) The pair pA,Bq is approximatively controllable in time τ if for any z0, z1 P X
and any ε ą 0, there exists a control u P L2pp0, τq;Uq such that the solution of
(2.16) satisfies }zpτq ´ z1}X ď ε.

(iii) The pair pA,Bq is null-controllable in time τ if for any z0 P X, there exists a
control u P L2pp0, τq;Uq such that the solution of (2.16) satisfies zpτq “ 0.

We say that pA,Bq is exactly controllable (resp. approximatively controllable, resp.
null-controllable) if it is exactly controllable (resp. approximatively controllable,
resp. null-controllable) for some τ ą 0.

It is clear that piq implies piiq and piiiq. These three notions of controllability
can be reformulated in terms of the range of Φτ . The following proposition is an
immediate consequence of equality (2.17).

Proposition 2.3.2. Let τ ą 0.
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(a) The pair pA,Bq is exactly controllable in time τ if and only if Ran Φτ “ X.

(b) The pair pA,Bq is approximatively controllable in time τ if and only if Ran Φτ

is dense in X.

(c) The pair pA,Bq is null-controllable in time τ if and only if RanTτ Ă Ran Φτ .

These controllability concepts are often proved by duality using the so called
Hilbert Uniqueness Method (HUM): they are equivalent to observability notions for
the adjoint pair pA˚, B˚q which often consists in proving a good inequality. Since we
will not prove controllability properties, we let this part aside.

When the pair pA,Bq is not exactly controllable, it is of interest to know which
states can be attained by the solution. This leads to the following definition.

Definition 2.3.3. For f P X and τ ą 0, we will say that g P X is reachable from f
in time τ if there exists a boundary control u P L2pp0, τq,C2q such that the solution
of (2.16) satisfies zpτq “ g. We call reachable set and we denote Rf

τ the set of all
reachable functions from f in time τ .

When f ” 0, the set R0
τ is called null-reachable set and g P R0

τ is said null-
reachable in time τ .

This set is the central object of this thesis. We remind its basic properties in the
next section.

Two examples. We give now two examples of controllability results for PDEs. We
will see in the next section that they are related to the reachable set. It is standard
to say that a PDE is controllable when the pair pA,Bq associated with is.

Let Ω be an open bounded and connected set with boundary of class C2 and ω
be an open subset of Ω. We start with the heat equation with internal control that
is

$

’

’

&

’

’

%

By

Bt
pt, xq ´∆ypt, xq “ 1ωpxqupt, xq t ą 0, x P Ω,

ypt, xq “ 0, t ą 0, x P BΩ,
yp0, xq “ fpxq x P Ω,

. (2.18)

We have seen in Example 2.2.5 that it defines a well-posed control LTI system for

X “ L2
pΩq, U “ C2, A “ ´∆

and B equals to the injection of L2pωq into L2pΩq. This obviously still holds if we
replace the Dirichlet Laplacian A “ ´∆ by the harmonic oscillator A “ ´∆ ` |x|2.
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Because of the smoothing effect of the heat equation, it is clear that the solution
of (2.18) cannot reach arbitrary functions g in L2pΩq, whatever the initial condition
f P L2pΩq. This implies in particular that this equation is not exactly controllable.
However we have the following result.

Theorem 2.3.4. [see [TW09, Proposition 11.5.1] The heat equation with internal
control (2.18) is null-controllable in any time τ ą 0.

This theorem has been first proved in dimension one by [Ego63] and [FR71] using
the moment method. For the n-dimensional case, it has been proved by [LR95]
and [FI96] using the Hilbert Uniqueness Method and Carleman estimates. Finally,
it follows from an argument of analyticity of the solutions that this equation is
approximatively controllable in any time τ ą 0. The previous results hold for the
Hermite heat equation.

Now, we consider the one-dimensional heat equation and Hermite heat equation
with Dirichlet boundary control which are given respectively by

$

’

’

&

’

’

%

By

Bt
pt, xq ´

B2y

Bx2 pt, xq “ 0 t ą 0, x P p0, πq,

ypt, 0q “ u0ptq, ypt, πq “ uπptq t ą 0,
yp0, xq “ fpxq x P p0, πq,

. (HE)

and
$
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Bw

Bt
pt, xq ´

B2w

Bx2 pt, xq ` x
2wpt, xq “ 0 t ą 0, x P p0, πq,

wpt, 0q “ u0ptq, wpt, πq “ uπptq t ą 0,
wp0, xq “ fpxq x P p0, πq,

(HHE)

We have seen in the last section that they define well-posed boundary control sys-
tems. For the same reason as for the equations with internal control, they are not
exactly controllable. Nevertheless, we can obtain, as a consequence of the null-
controllability of the corresponding equations with internal control, that they are
null-controllable (and approximatively controllable) in any time τ ą 0 (see [TW09,
Proposition 11.5.4]). (See also [Jon77] and [Lit78] for other important contributions
on the null-controllability with Dirichlet boundary control). As we will see in the
next section, this null-controllability in any time will have a heavy impact on the
structure of the reachable space. All results still hold in the n´dimensional setting.

Finally, if we consider the domain p0,8q instead of p0, πq in the last two equations
with a control at the boundary x “ 0, the null-controllability does not hold. In fact,
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except the null function, there is no initial condition which can be steered to zero.
However, the approximate controllability still holds. We refer to [DE19] and the
references therein for more details.

2.4 Properties of the reachable set
We keep the same notation as in the previous section. In this last section, we have
given the definition of the reachable set Rf

τ of a well-posed control LTI system.
Here we will focus on the general properties of the reachable set. This approach is
developed in [KNT19, Section 3]. It follows that the null-controllability in any time
of the pair pA,Bq implies strong invariance properties.

Before giving these properties, let us make an obvious remark: it follows from
the definition of the reachable set and from (2.17) the equality

@f P X, @τ ą 0, Rf
τ “ Tτf ` Ran Φτ . (2.19)

The first invariance property is straightforward.
Proposition 2.4.1. If pA,Bq is null-controllable in time τ ą 0, the reachable set
Rf
τ does not depend on the initial condition f P X. Hence, it is equal to the linear

subspace Ran Φτ of X.

Proof. Let f P X. Pick g P Rf
τ . This means that there exists u P L2pp0, τq;Uq such

that g “ Tτf`Φτu. Since pA,Bq is null-controllable in time τ ą 0, we have RanTτ Ă
Ran Φτ . Hence there exists v P L2pp0, τq;Uq such that g “ Φτv`Φτu “ Φτ pu`vq, i.e.
g P R0

τ . Conversely, if g “ Φτw P R0
τ , then g “ Φτv `Φτ pw´ vq “ Tτf `Φτ pw´ vq

i.e. g P Rf
τ . The last assertion is a direct consequence of (2.19).

Hence, when the null-controllability holds, this set is Ran Φτ (we will use this
notation from now on) and we call it reachable space.

The second invariant property concerns the time. It has been first proved by
Fattorini for the heat equation (HE) in [Fat78], and then by Seidman in [Sei79]
in all generality. Before stating the result we need to introduce a notation. For
u P L2pp0, τq;Uq and v P L2pp0, tq;Uq, we define their concatenation u ˛

τ
v by

u ˛
τ
vpsq “

#

upsq if 0 ď s ă τ

vps´ τq if τ ď s ď t` τ.

With this notation, we obtain easily

Φτ`tpu ˛
τ
vq “ TtΦτu` Φtv.
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Proposition 2.4.2. If the well-posed control LTI system pA,Bq is null-controllable
in any time τ ą 0, then the reachable space Ran Φτ does not depend on time τ ą 0.

Proof. We follow Seidman’s proof [Sei79].
Let 0 ă τ ă t. If u P L2pp0, τq;Uq then 0 ˛

t´τ
u P L2pp0, tq;Uq and we have

Φtp0 ˛
t´τ

uq “ TτΦt´τ0` Φτu “ Φτu.

So Ran Φτ Ă Ran Φt.
Let us prove the converse inclusion. Take g P Ran Φt and v P L2pp0, tq;Uq such

that g “ Φtv. Remark that if

rupsq “ ups` t´ τq, @s P p0, τq

then we have u “ u ˛
t´τ

ru. Therefore with the concatenation formula we obtain

g “ Φtu “ Φpt´τq`τ pu ˛
t´τ

ruq “ TτΦt´τu` Φτru.

Finally we have RanTτ Ă Φτ by hypothesis, so the last equality implies that g
belongs to Ran Φτ . The proof is complete.

The last general result we will present has been found very recently in [KNT19,
Proposition 3.2]. It means that we can ask the control to be very flat in zero without
changing the reachable space.

Proposition 2.4.3. Let pA,Bq be a well-posed control LTI system which is null-
controllable in any positive time. Then for every α ą 0 and τ ą 0, we have

Ran Φτ “ Φτ

`

L2
pp0, τq;U ; t´αdt

˘

.

Proof. It suffices to prove that Ran Φτ Ă Φτ pL
2pp0, τq;U ; t´αdtq. Let g P Φτ . By

Proposition 2.4.2, there exists u P L2pp0, τ{2q;Uq such that Φτ{2u “ g. Then setting
ru “ 0 ˛

τ{2
u, it follows

Φτru “ Φτ p0 ˛
τ{2
uq “ Tτ{2Φτ{20` Φτ{2u “ g.

Obviously, ru P pL2pp0, τq;U ; t´αdtq, so g P Φτ pL
2pp0, τq;U ; t´αdtq. This ends the

proof.
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2.5 Overview on the reachable space of the heat
equation on a segment

We focus now on the main object of this thesis, namely the reachable space of the
heat equation on p0, πq with Dirichlet boundary control. The description of this
space is a central question in control theory which goes back to the work of Fattorini
and Russell, 50 years ago and has gained quite some renewed interest in recent years.
It turns out that this reachable space can be identified with a space of holomorphic
functions and this thesis is devoted to obtaining a complete characterization of it.

In the first paragraph, we recall the problem and resume the properties viewed
in the previous sections which are related to this specific equation. In the second
paragraph, we present a survey of the many results achieved over the years, from the
pioneer work of Fattorini and Russell to this thesis.

Problem setting. In this paragraph we present the central problem of this thesis
and we regroup the results of control theory obtained in the previous sections which
are related to it.

Let X “ W´1,2p0, πq and U “ C2. We consider the following boundary control
problem of the heat equation.

$
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%

Bw

Bt
pt, xq ´

B2w

Bx2 pt, xq “ 0 t ą 0, x P p0, πq,

wpt, 0q “ u0ptq, wpt, πq “ uπptq t ą 0,
wp0, xq “ fpxq x P p0, πq,

(HE)

We have seen in Section 2.2 that this equation determine a well-posed control LTI sys-
tem. This implies that for any control (or input) u :“pu0, uπq P L

2
locpp0,`8q, Uq and

any initial condition f P X, this equation admits a unique solution w P C pr0,`8q, Xq
defined by

@t ą 0, wpt, ¨q “ Ttf ` Φtu (2.20)
where pTtqtě0 is the Dirichlet Laplacian semigroup and Φt P LpL2pr0, τ s,C2q, Xq is
the input-to-state map (or controllability operator) defined in (2.3). As explained in
Section 2.4, we can thus define the reachable set of the equation (HE).

We have seen in Section 2.3 that this equation is null- controllable in any time
τ ą 0. By Propositions 2.4.1 and 2.4.2, this implies that the reachable set does not
depend neither on the initial condition f P X nor time τ ą 0 and it is equal to the
linear space Ran Φτ . In the rest of this thesis we will denote the reachable space by
Ran Φτ .
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Because of the smoothing effect of the heat kernel, it is clear that for arbitrary
control u P L2pp0, τq,C2q, we cannot reach any non-regular functions g P X. So,
Ran Φτ Ĺ X.

With all these properties in mind, it is thus natural to seek for more precise
information on Ran Φτ . This question has been the source of an effervescent research.
An historical account of related results is given below.

2.5.1 Known results
Trying to be exhaustive, we give now an overview of the results obtained over the
years and which led to the starting point of this work thesis.

It seems to be known for a long time that the solutions of the heat equation (HE)
extends analytically (in the space variable) to the square (see Figure 1)

D “

!

z “ x` iy P C
ˇ

ˇ

ˇ

∣∣∣x´ π

2

∣∣∣` |y| ă π

2

)

. (2.21)

Although this result is considered as a folk result by specialists of PDEs, it seems
that it appears for the first time in the literature in the work [MRR16, Theorem 2.1]
of Martin, Rosier and Rouchon. This result is independent of the type of control
considered (e.g. u can be choosen L1 instead of L2) and generalizes a result of Gevrey
[Gev13] in which the control is assumed to be continuous. In our setting, identifying
as usual the function and the holomorphic extension, it reads as follows.

Proposition 2.5.1. We have Ran Φτ Ă HolpDq.

We give a proof1 for the convenience of the reader.

Proof. Let K denote the heat kernel on the whole line, given by

Kpt, x, yq “
1

?
4πt

e´
px´yq2

4t , @t ą 0, @x, y P R.

Pick g P Ran Φτ . Then, there exists u P L2pp0, τq;C2q such that the solution w of
(HE) satisfies wpτ, ¨q “ g on p0, πq. Let ε ą 0 and let η P C80 p0, πq be a cut-off such
that η “ 1 on Iε :“ tx P p0, πq| minpx, π ´ xq ą εu. Then v “ ηw can be extended
on R and satisfies

$

’

&

’

%

Btv ´ B
2
xv “ f, t ą 0, x P R

vp0, xq “ 0, x P R
vpτ, xq “ gpxq, x P Iε

1I would like to thank Sylvain Ervedoza for bringing this proof to my attention.
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with f :“ ´2dη
dx
Bxw ´ p∆ηqw supported in p0, πqzIε. Hence, we can write

vpτ, zq “

ż τ

0

ż

R
Kpτ ´ t, z, yqfpt, yqdydt

“

ż τ

0

ż

p0,πqzIε
Kpτ ´ t, z, yqfpt, yqdydt

“

ż τ

0

ż

p0,πqzIε

1
a

4πpτ ´ tq
e´

pz´yq2
4pτ´tq fpt, yqdydt.

This integral is holomorphic on tz P C| @y P p0, πqzIε, Reppz ´ yq2q ą 0u. But for
every y P p0, πqzIε, we have

Reppz ´ yq2q “ pRepzq ´ yq2 ´ Impzq2 ě pminp|Repzq|, |π ´ Repzq|q ´ εq2 ´ Impzq2.

Hence, z ÞÑ vpτ, zq extends holomorphically to the domain

tz P C | Repzq P p0, πq and pminp|Repzq|, |π ´ Repzq|q ´ εq2 ´ Impzq2 ą 0u.

Since g “ vpτ, ¨q on Iε and ε ą 0 is arbitrary, we obtain that g is holomorphic on

tz P C | Repzq P p0, πq and minp|Repzq|, |π ´ Repzq|q2 ´ Impzq2 ą 0u “ D.

This proof can be easily generalized to the n´dimensional setting.

0
D

π

C

Figure 1: The square D.

Remark 2.5.2. The previous proof uses the analyticity of the heat kernel for the
whole line. We refer to [Joh82, p.219] for another proof using this kernel. Make
it appear seems to be determinant in order to obtain analytic properties or more
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precisely to show a membership in a holomorphic function space. Although he uses
the heat kernel of the segment instead of that of the whole line in [Can84, Section
10.5], Cannon writes the kernel in terms of the heat kernel on the whole line. This is
the systematic strategy that we shall choose in this thesis to determine the reachable
space.

It seems that the first actual work which considers explicitly the reachable space
(or the reachable states) of the heat equation (HE) is in [FR71]. Using a moment
method, Fattorini and Russell showed that if there exists A ą 0 and B ą 0 such that

@n P N˚, |an| ď A expp´pπ `Bqnq (2.22)

then the function defined by gpxq “
ř`8

n“1 an sinpnxq is reachable. We recall from
Subsection 1.2.3 that, for δ ą 0, we denote H0

δ the space of continuous functions
which are π-periodic on R, which extend holomorphically on the strip |Imz| ă δ and
which vanish with all the derivatives of even orders in 0 and in π. Using Proposition
1.2.17, we obtain from (2.22) that for δ large enough, Hδ is included in Ran Φτ .

In a series of papers in the eighties [Sch80], [SS81], [Wec84a], [Wec84b], [Sch86],
the authors tried successively to enlarge the class of reachable states (see [Sch86]
for an overview). In particular they proved that it is not necessary to vanish at the
boundary of the interval to be reachable, and they showed that the polynomials are
reachable. In the last paper [Sch86], the author considers that "a characterization of
reachable states remains elusive".

The investigation of Ran Φτ has gained quite some renewed interest with an ac-
celeration in the last five years (2016-2020). Indeed, Martin, Rosier and Rouchon
improved substantially the previous results in [MRR16, Theorem 1.1] using the flat-
ness approach and showing that the holomorphic functions on the disk

B “
!

z P C
ˇ

ˇ

ˇ

∣∣∣z ´ π

2

∣∣∣ ă π

2 e
p2eq´1

)

are reachable. Dardé and Ervedoza improved again this latter result in [DE18, The-
orem 1.1] showing that all the functions which are holomorphic on a neighborhood
of D are reachable. Their method method is based on a Carleman type estimate
and on Cauchy’s formula. This result combined with Proposition 2.5.1 means that
Ran Φτ is a space of holomorphic functions on D.

Finally, before the works exposed in this thesis, the best known result on this
problem to our knowledge was given in [HKT20], where the authors proved that the
reachable space is sandwiched between two Hilbert spaces of holomorphic functions
on the square D. More explicitly, it satisfies the inclusions

E2
pDq Ĺ Ran Φτ Ă A2

pDq
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(see Section 1.1 for a definition of these spaces). The authors conjectured also (see
[HKT20, Remark 1.4]) that Ran Φτ should not be "too far from A2pDq". Based on this
observation, in what follows, we will call the following equality the HKT-conjecture:

Ran Φτ “ A2
pDq.

Key tools used in that paper include a unitary Laplace type integral operator studied
by Aikawa, Hayashi and Saitoh [AHS90] (see Theorem 2.6.2), as well as a Riesz basis
of exponentials in E2pDq discussed by Levin and Lyubarskii [LL75]. Writing the
solution as a series involving the heat kernel of the half-line, they identified two main
terms and treat the remaining terms as perturbation. The main terms correspond
to the solution of the boundary control solutions on half-lines.

In Chapter 3, we will follow the strategy of [HKT20], examining precisely the
integral transforms involved. We shall remind some of their arguments there. In
that Chapter we shall prove that the reachable space is exactly the sum of two
Bergman spaces. Finally, we shall see in Chapter 4 that this sum is equal to the
Bergman space on D.

The last substantial results we would mention are in [KNT19]. The authors gave
subsequently another proof of the result we obtain in Chapter 3. Using Proposition
2.4.3, they also proved that the reachable space equals the sum of two weighted
Bergman spaces. We will come back on these results in Chapters 3 and 4.

2.6 Reachable space for the half-line
In this section, we recall the situation for the reachable space of the heat equation
on the half-line p0,8q. This has been treated essentially in [AHS90] and [Sai91] (see
also the textbook [Sai97] for a survey).

Let us remind the setting. We consider the following heat equation.
$

’
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&
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%

Bw

Bt
pt, xq ´

B2w

Bx2 pt, xq “ 0 t ą 0, x ą 0,

wpt, 0q “ u0ptq, t ą 0,
wp0, xq “ fpxq x ą 0,

(2.23)

This equation defines a well-posed boundary control system for X “ W´1,2p0,8q
and U “ C. But as explained briefly at the end of Section 2.3, it is not null-
controllable. Worse, it turns out that the lack of null-controllability is maximal:
there is no non trivial initial condition f P X which can be steered to zero in
whatever time. In other words, if p pTtqtě0 denotes the heat Dirichlet semigroup on
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the half-line and rΦτ,0 the controllability operator of (2.23), then for any 0 ‰ f P X

and any τ ą 0, we have xTτf R Ran rΦτ,0. This means that the reachable space of
this equation, given by pRf

τ “
xTτf ` Ran rΦτ,0 is an affine space which is linear only

for f “ 0. Also, since the null-controllability is not fulfilled, the results of Section
2.4 are no longer true. The reachable space depends on the initial condition and on
time.

From now on we consider only the null-reachable space Ran rΦτ,0. It can be
characterized by its reproducing kernel and turns out to be a strange sum of a
Bergman space and a Hardy (Smirnov) space on the sector ∆ “ tz P C, | argpzq| ă
π
4 u.

Proposition 2.6.1. [see [Sai91, Section 2] The (null-)reachable space Ran rΦτ,0 is a
RKHS of holomorphic functions on ∆ with reproducing kernel

kλpzq “ zλ̄e´
z2
4t e´

λ2
4t

„

4
πpz2 ` λ̄2q2

`
1

τπpz2 ` λ̄2q



, z, λ P ∆. (2.24)

Proof. The unique solution of (2.23) in Cpr0,8q;Xq is given by

wpt, xq “

ż τ

0

xe
´x2

4pt´sq

2
?
πpt´ sq3{2

u0psqds.

Hence, the proposition follows from Theorem 1.1.5. Indeed, we have

rΦτ,0u0pzq “ wpτ, zq “

C

u0,
xe

´x2
4pτ´sq

2
?
πpτ ´ sq3{2

G

L2p0,8q

.

Therefore Ran rΦτ,0 is a RKHS with reproducing kernel

kλpzq “

C

λe
´λ2

4pτ´sq

2
?
πpτ ´ sq3{2

,
ze

´z2
4pτ´sq

2
?
πpτ ´ sq3{2

G

L2p0,8q

“
zλ̄

4π

ż τ

0

e´
z2`λ̄2
4pτ´sq

pτ ´ sq3
ds

“
zλ̄

4π

ż 8

1{τ
σe´

z2`λ̄2
4 σdσ

“ zλ̄e´
z2
4τ e´

λ2
4τ

„

4
πpz2 ` λ̄2q2

`
1

τπpz2 ` λ̄2q



.

It is clear that kλ extends holomorphically to the sector ∆.
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Precisely, Ran rΦτ,0 is the restriction to the half-line of a space of analytic functions
on ∆. Now, note that the reproducing kernels of the Hardy space of the right half-
plane H2pC`q and of the Bergman space of the right half-plane A2pC`q are given
respectively by

k
H2pC`q
λ pzq “

1
2πpz ` λ̄q

, λ, z P C`

and
k
A2pC`q
λ pzq “

1
πpz ` λ̄q2

, λ, z P C`.

Therefore, combining formula (1.8), Theorem 1.1.7 and Proposition 1.1.11, we obtain
that g belongs to Ran rΦτ,0 if and only if there exists g1 P H

2p∆, ω0q and g2 P A
2p∆, ω0q

such that
gpzq “

?
zg1pzq ` g2pzq

where we have denoted by ω0 the weight ω0pzq “ e´
Repz2q

2τ . In view of this weight, it
is clear now that the reachable space depends on time τ ą 0.

Moreover, if we restrict a little bit the class of controls u0 picking them in
L2 `p0, τq, dt

t

˘

, we obtain a simpler description of the (modified) reachable space.

Theorem 2.6.2. [see [AHS90, Section 2]] The operator rΦτ,0 :
`

L2 `p0, τq, dt
t

˘˘

Ñ

A2p∆, ω0q is an isometrical isomorphism.

As for the previous proposition, the proof is a direct application of Theorem 1.1.5.
This result is one of the main tools of the paper [HKT20]. Indeed, we will see

later that the controllability operator Φτ of the heat equation on p0, πq can be written
as

Φτ pu0, uπq “ rΦτ,0u0 ` rΦτ,πuπ `Rpu0, uπq

where rΦτ,π is the controllability operator for the half-line p´8, πq and R is a pertur-
bation term. This writing is fundamental in our work. It also allowed Kellay,Tucsnak
and Normand to obtain in [KNT19] another exact characterization of the reachable
space on p0, πq, using Proposition 2.4.3.

Finally, the last achievement of [AHS90] is to identify the trace of the Bergman
space A2p∆q on the half-line with a space of C8´functions whose norm is computed
on the half-line.
Theorem 2.6.3. [[AHS90, Theorem 4.1 and Corollary 4.1]] A function f belongs
to A2p∆q if and only if f belongs to C8p0,8q and satisfies

}f}2C8p0,8q :“
8
ÿ

n“0

2n
p2n` 1q!

ż 8

0
x2n`1

|f pnqpxq|2dx ă 8.
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Moreover, we have }f}2A2p∆q “ }f}
2
C8p0,8q.

This isometrical identity is derived from the heat equation and Theorem 2.6.2.
It permits to identify the reachable states of the heat equation of the half-line with
functions of class C8 on the half-line.

We mention also a generalization of these results to the n´dimensional half-space
by Saitoh in [Sai94].
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Part II

Main results
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Chapter 3

The reachable space as sum of
Bergman spaces

This chapter is based on the paper [Ors20]. Here, we shall prove our first result for
the reachable space of the heat equation. It gives an exact characterization of the
reachable space as a sum of two Bergman spaces on sectors the intersection of which
is D. Using tools from classical harmonic analysis, we will also make a first step into
the direction of a more precise information on this sum of Bergman spaces, proving
that it contains the Smirnov-Zygmund space EL log`LpDq. This result will be the
starting point of Chapter 4 where differents tools lead to a complete characterization
of this sum, even in more general geometric settings.

3.1 Main results
We remind that we consider the reachable space of the following heat equation

$
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’
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By

Bt
pt, xq ´

B2y

Bx2 pt, xq “ 0 t ą 0, x P p0, πq,

ypt, 0q “ u0ptq, ypt, πq “ uπptq t ą 0,
yp0, xq “ 0 x P p0, πq.

(HE)

It has already been discussed in Section 2.5. We recall the result of [HKT20]

E2
pDq Ĺ Ran Φτ Ă A2

pDq. (3.1)

and the HKT-conjecture
Ran Φτ “ A2

pDq. (3.2)
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Let ∆ “
 

z P C
ˇ

ˇ | argpzq| ă π
4

(

. The first central result of this thesis is the
following explicit characterization of the reachable space.

Theorem 3.1.1. We have Ran Φτ “ A2p∆q ` A2pπ ´∆q.

Wemention another characterization which was very recently observed in [KNT19].
Denote by ω0 and ωπ the weights defined by

@z P ∆, ω0pzq “
e

Repz2q
2τ

τ
and @z P π ´∆, ωπpzq “ ω0pπ ´ zq, (3.3)

then
Ran Φτ “ A2

p∆, ω0q ` A
2
pπ ´∆, ωπq, (3.4)

independently of τ ą 0. It is a direct consequence of Proposition 2.4.3, Aikawa-
Hayashi-Saitoh’s theorem 2.6.2 and the decomposition (3.6) that we shall see later.
Note that the inclusion “Ą” in (3.4) was already known in [HKT20] and was used
to prove the left inclusion in (3.1) (see the proof of Theorem 1.2 in [HKT20]). Since
it is also used in the proof of Theorem 3.1.1, we will recall some ideas leading to
this inclusion below, in Section 3.2. It should be mentioned that based on (3.4), the
authors of [KNT19] were subsequently able to produce a new proof for the unweigthed
case.

To prove Theorem 3.1.1, the main idea is to write a certain integral operator as
a Laplace type transform for which we have a Paley-Wiener type theorem. We will
also use suitable analyticity properties of this transform and the fact that functions
holomorphic in a neighborhood ofD are reachable (as proved by Dardé and Ervedoza,
see Section 2.5).

In this chapter, we will also discuss a first approach to the sum based on tools
from harmonic analysis. Our starting result in this direction is the following.

Theorem 3.1.2.
EL log`LpDq Ă A2

p∆q ` A2
pπ ´∆q.

Note that in view of Theorem 3.1.1, this result improves the left inclusion (3.1)
obtained in [HKT20] since E2pDq Ĺ EL log`LpDq. The methods involved in the
proof of Theorem 3.1.2 are for the most part harmonic and complex analysis meth-
ods. More precisely, we use essentially the Cauchy formula for Smirnov functions,
a local regularity result for the Cauchy Transform on the upper-half plane and the
embedding H1pDq Ă A2pDq due to Hardy and Littlewood. The theorem is almost
sharp in terms of growth of functions regarding the HKT-conjecture (3.2). Indeed,
a function in A2pDq cannot grow faster than 1

dpz,BDq
, while the growth of a function
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in EL log`LpDq is bounded by 1
dpz,BDq logp 1

dpz,BDq
q
. This last estimate comes from the

Cauchy formula and the Hölder inequality for Orlicz spaces.

This chapter is organized as follows. In Section 3.2, we recall some auxiliary
results on representations of solutions of (HE), in Section 3.3 we prove Theorem
3.1.1. Finally, Section 3.4 is devoted to the proof of Theorem 3.1.2.

3.2 Reminders on solutions of (HE)
We recall several central facts for our discussion from Section 2.3 and [HKT20].
For f P W´1,2p0, πq and u :“ pu0, uπq P L2pr0, τ s,C2q, the unique solution y P
Cpr0, 8q,W´1,2p0, πqq of (HE) satisfies for every t ě 0, and every ϕ P W 2,2p0, πq X
W 1,2

0 p0, πq such that d2ϕ
dx2 P W

1,2
0 p0, πq,

xyptq, ϕy
´1, 1 “

ż t

0

B

ypsq,
d2ϕ

dx2

F

´1, 1
ds

`

ż t

0
u0psq

dϕ

dx
p0qds´

ż t

0
uπpsq

dϕ

dx
pπqds (3.5)

where x¨, ¨y
´1, 1 stands for the duality W´1,2p0, πq ´ W 1,2

0 p0, πq. The operator A0
defined by

A0ϕ “ ´
d2ϕ

dx2

on L2p0, πq with domain W 2,2p0, πq XW 1,2
0 p0, πq, admits an orthonormal basis of

L2p0, πq composed of the eigenfunctions ϕnpxq “
b

2
π

sinpnxq, n P N˚ (associated
with the eigenvalues n2). Moreover, A0 has a unique strictly positive extension to
W´1,2p0, πq and the family of eigenfunctions pψnqnPN˚ given by ψn “ nϕn is an
orthonormal basis of W´1,2p0, πq. Decomposing yptq on this orthonormal basis for
each t ě 0 and replacing in (3.5) with ϕ “ ϕn, it is not difficult to check that the
reachable states of the 1-D heat equation can be represented in the following way:

pΦτuqpxq “
2
π

ÿ

ně1
n

„
ż τ

0
en2pσ´τqu0pσq dσ



sinpnxq

`
2
π

ÿ

ně1
np´1qn`1

„
ż τ

0
en2pσ´τquπpσq dσ



sinpnxq, τ ą 0, x P p0, πq
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where the series converge in W´1,2p0, πq. With the elementary formula cosu “
eiu`e´iu

2 in mind, the authors of [HKT20] showed that

pΦτuqpxq “

ż τ

0

BK0

Bx
pτ ´ σ, xqu0pσq dσ `

ż τ

0

BKπ

Bx
pτ ´ σ, xquπpσq dσ,

where

K0pσ, xq “ ´
2
π

˜

ÿ

ně1
e´n2σ cospnxq ` 1

2

¸

“ ´
1
π

ÿ

ně1
e´n2σ

`

einx ` e´inx
˘

´
1
π

“ ´
1
π

ÿ

nPZ

e´n2σeinx, σ ą 0, x P p0, πq.

and Kπpσ, xq “ ´K0pσ, π ´ xq. And finally, using the Poisson summation formula
applied to a suitable Gaussian function, they obtained

K0pσ, xq “ ´

c

1
πσ

ÿ

mPZ

e´
px`2mπq2

4σ , σ ą 0, x P p0, πq.

Hence, setting ĂK0pσ, zq “ ´

b

1
πσ

ř

mPZ˚ e
´
pz`2mπq2

4σ , we can write (see [HKT20,
equation (2.18)])

Φτ pu0, uπq “ rΦ0,τu0 ` rΦπ,τuπ `R0,τu0 `Rπ,τuπ (3.6)

where
”

rΦ0,τf
ı

psq “

ż τ

0

se´
s2

4pτ´σq

2
?
πpτ ´ σq

3
2
fpσqdσ and

”

rΦπ,τf
ı

psq “ ´
”

rΦ0,τf
ı

pπ ´ sq

(3.7)

rR0,τf s psq “

ż τ

0

BĂK0

Bs
pτ ´ σ, sqfpσqdσ and rRπ,τf s psq “ ´ rR0,τf s pπ ´ sq.

Note that the operator rΦ0,τ is the controllability operator of the heat equation
for the half-line introduced in Section 2.6.

Finally, since the inclusion

A2
p∆, ω0q ` A

2
pπ ´∆, ωπq Ă Ran Φτ (3.8)
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will be used later, we remind rapidly how the authors of [HKT20] proved it. Writing

ĂK0pσ, zq “ ´

c

1
πσ

ÿ

mě1
e´

pz`2mπq2
4σ ´

c

1
πσ

ÿ

mď´1
e´

pz`2mπq2
4σ :“ Apσ, zq `Bpσ, zq,

we can decompose R0,τ and Rπ,τ as

rR0,τf s psq “

ż τ

0

BA

Bs
pτ´σ, sqfpσqdσ`

ż τ

0

BB

Bs
pτ´σ, sqfpσqdσ :“ rRA,τf s psq`rRB,τf s psq

and

rRπ,τf s psq “ ´ rRB,τf s pπ ´ sq ´ rRA,τf s pπ ´ sq :“ rRC,τf s psq ` rRD,τf s psq.

Let us start by assuming that for some small enough τ ą 0 the matricial operator
Mτ defined by

Mτ :“
˜

rΦ0,τ `RA,τ RC,τ

RB,τ
rΦπ,τ `RD,τ

¸

“

˜

rΦ0,τ 0
0 rΦπ,τ

¸

`

ˆ

RA,τ RC,τ

RB,τ RD,τ

˙

is bounded and invertible from
`

L2pr0, τ s, dt
t
q
˘2 onto A2p∆, ω0qˆA

2pπ´∆, ωπq. Then
for every couple pϕ0, ϕπq P A

2p∆, ω0q ˆ A2pπ ´ ∆, ωπq, there exists u “ pu0, uπq P
`

L2pr0, τ s, dt
t
q
˘2 such that
ˆ

ϕ0
ϕπ

˙

“Mτ

ˆ

u0
uπ

˙

“

˜

prΦ0,τ `RA,τ qu0 `RC,τuπ
RB,τu0 ` prΦπ,τ `RD,τ quπ

¸

.

So, ϕ0 ` ϕπ “ Φτu. In other words, we have

A2
p∆, ω0q ` A

2
pπ ´∆, ωπq Ă Φτ

`

L2
pp0, τq, dt{t; C2

q
˘

Ă Ran Φτ

(it is relevant to mention that the second inclusion is in fact an equality, as proved in
[KNT19, Prop. 3.2]). Hence, it remains to prove the assertion above claiming that
there exists τ ą 0 such that Mτ is boundedly invertible from

`

L2pr0, τ s, dt
t
q
˘2 onto

A2p∆, ω0qˆA
2pπ´∆, ωπq. For that, we can use that rΦ0,τ (resp. rΦπ,τ ) is an isometric

isomorphism from L2pr0, τ s, dt
t
q onto A2p∆, ω0q (resp. A2pπ ´∆, ωπq) by a result of

Aikawa, Hayashi and Saitoh [AHS90] (see also Remark 3.3.3 for another proof) and
the Lemma 4.1 of [HKT20] which can be stated

›

›

›

›

ˆ

RA,τ RC,τ

RB,τ RD,τ

˙
›

›

›

›

L
´

pL2pr0, τ s, dt
t
qq

2
, A2p∆,ω0qˆA2pπ´∆,ωπq

¯

ÝÑ
τÑ0

0.

The proof of this lemma is essentially the one which is recalled for Lemma 3.3.2
below since for u P L2pr0, τ s, dt

t
q we have }u}L2p0, τq ď

?
τ}u}L2pr0, τ s, dt

t
q.
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3.3 Sum of Bergman spaces
We are now in a position to prove our first main result.

Proof of Theorem 3.1.1. The key of the proof is that rΦ0,τ is an isometry from L2p0, τq
to A2p∆q and we can compute its range. Indeed, let C` be the right half-plane (not to
be confused with the notation of the upper half plane C` introduced earlier). Denote
by L the normalized Laplace transform defined by Lpfqpsq “ 1?

π

ş`8

0 e´stfptqdt and
G : A2pC`q Ñ A2p∆q the unitary operator associated to the conformal mapping
z ÞÑ z2 from ∆ to C`, defined by pGfqpzq “ 2zf pz2q.

By the change of variables t “ 1
4pτ´σq , we obtain

@s P ∆,
´

rΦ0,τf
¯

psq “

ż τ

0

se´
s2

4pτ´σq

2
?
πpτ ´ σq

3
2
fpσqdσ “

s
?
π

ż `8

1
4τ

e´s
2t

?
t
f

ˆ

τ ´
1
4t

˙

dt

Define for f P L2p0, τq,

pTfqptq “

#

fpτ´ 1
4t q

2
?
t

if t ą 1
4τ ,

0 if 0 ă t ď 1
4τ .

.

It is easily seen that the operator T is an isometry from L2p0, τq to L2pR`, dt
t
q with

range L2 `` 1
4τ ,`8

˘

, dt
t

˘

. Hence
´

rΦ0,τf
¯

psq “ 2sLpTfq
`

s2˘
“ pGLTfq psq

where L denotes the normalized Laplace transform

pLfqpzq “ 1
?
π

ż 8

0
e´ztfptqdt

(note that this is not the normalization chosen in Section 1.2). The last step is the
following Paley-Wiener type theorem 1.2.11 for Bergman spaces. With the normal-
ization above of the Laplace transform, it states
Proposition 3.3.1. The Laplace transform L is a unitary operator of L2 `R`, dtt

˘

onto A2 pC`q where C` “ tz | Rez ą 0u.
So, if » means that the operator is unitary, we have the following diagram.

L2
p0, τq T

ÝÑ
»

L2
ˆˆ

1
4τ ,`8

˙

,
dt

t

˙

Ă L2
ˆ

R`,
dt

t

˙

L
ÝÑ
»

A2
pC`q

G
ÝÑ
»

A2
p∆q
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Hence, by composition, rΦ0,τ is isometric from L2p0, τq to A2 p∆q, and

Ran rΦ0,τ “ GL
„

L2
ˆˆ

1
4τ ,`8

˙

,
dt

t

˙

Ă A2
p∆q.

By (3.7), we have also RanrΦπ,τ Ă A2pπ´∆q. In order to discuss the range of Φτ we
thus have to investigate the remainder terms R0,τ and Rπ,τ , which, morally speaking,
are sums converging very quickly since they involve gaussians centered essentially at
πn, n P Z˚. For these remainder terms we will use the lemma below which is a
straightforward modification of Lemma 4.1 of [HKT20], the main difference being a
square root in the integral operator, which does not change the boundedness.
Lemma 3.3.2. Let ω0 and ωπ be the weights defined in (3.3). Then R0,τ and Rπ,τ

are bounded from L2p0, τq to A2p∆, ω0q ` A
2pπ ´∆, ωπq.

For the sake of completeness, we recall the proof which corresponds essentially
to the one given in [HKT20].

Proof. It is clear that the ranges of R0,τ and Rπ,τ are contained in Holp∆q`Holpπ´
∆q. It remains to prove the boundedness from L2p0, τq to L2p∆, ω0q`L

2pπ´∆, ωπq.
This will be done for R0,τ “ RA,τ ` RB,τ only, the boundedness of Rπ,τ follows by
symmetry. Pick u P L2p0, τq. Writing

ρm,τ psq “

ż τ

0

s`mπ

pτ ´ σq3{2
e´

ps`mπq2
4pτ´σq upσqdσ,

we have
rRA,τuspsq “

?
π

4
ÿ

mě1
ρ2m,τ psq, s P ∆ (3.9)

and analogously for RB,τ where we replace ρ2m,τ by ρ´2m,τ and s P π´∆. For m ě 1,
the norm of ρm,τ may be estimated via the triangular inequality and Cauchy-Schwarz
inequality (see [HKT20] for details) to obtain:

}ρm,τ}
2
A2p∆,ω0q

“
1
τ

ż ż

∆
e
x2´y2

2τ

ˇ

ˇ

ˇ

ˇ

ż τ

0

x` iy `mπ

pτ ´ σq3{2
e´

px`iy`mπq2
4pτ´σq upσqdσ

ˇ

ˇ

ˇ

ˇ

2

dxdy

ď
1
τ
}u}2L2p0,τq

ĳ

∆

e
x2´y2

2τ p|x`mπ|2 ` y2
q

ż τ

0

e´
px`mπq2´y2

2σ

σ3 dσdxdy
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With elementary computations, it easy to prove that

ĳ

∆

e
x2´y2

2τ p|x`mπ|2 ` y2
q

ż τ

0

e´
px`mπq2´y2

2σ

σ3 dσdxdy ď Cτp1` τq3e´m2π2{2τ .

Hence for m ě 1,

}ρm,τ}A2p∆,ω0q ď C 1}u}L2p0,τqp1` τq3{2e´m
2π2{4τ .

Using (3.9), we obtain

}RA,τu}A2p∆,ω0q ď

?
π

4 C 1}u}L2p0,τqp1` τq3{2
ÿ

mě1
e´p2mq

2π2{4τ

ď

?
π

4 C 1}u}L2p0,τqp1` τq3{2
e´π

2{τ

1´ e´π2{τ
.

RB,τ is estimated similarly using }ρm,τ}A2pπ´∆,ωπq “ }ρ|m|´1,τ}A2p∆,ω0q, for m ď ´2,
and the result follows.

Since A2p∆, ω0q ` A2pπ ´∆, ωπq Ă A2p∆q ` A2pπ ´∆q, the inclusion Ran Φτ Ă

A2p∆q ` A2pπ ´ ∆q is a direct consequence of the decomposition (3.6), the above
discussion and Lemma 3.3.2.

For the converse inclusion, we will prove A2p∆q Ă Ran Φτ and A2pπ ´ ∆q Ă
Ran Φτ . Using that G and L are unitary, we have the decomposition

A2
p∆q “ GL

„

L2
ˆ

R`,
dt

t

˙

“ GL
„

L2
ˆˆ

0, 1
4τ

˙

,
dt

t

˙

‘ L2
ˆˆ

1
4τ ,`8

˙

,
dt

t

˙

“ X0 ‘ Ran rΦ0,τ

where we wrote X0 :“ GL
“

L2 ``0, 1
4τ

˘

, dt
t

˘‰

and where, as usual ‘ means orthogonal
sum. Similarly, we have A2pπ´∆q “ Xπ ‘ Ran rΦπ,τ , where Xπ is the image of X0 by
the transformation f ÞÑ fpπ´ ¨q. Hence, it is enough to prove that X0, Xπ,Ran rΦ0,τ

and Ran rΦπ,τ are contained in Ran Φτ . For this, note that for every u0 P L
2p0, τq, we

have
rΦ0,τu0 “ Φτ pu0, 0q ´R0,τu0.

71



Since A2p∆, ω0q`A
2pπ´∆, ωπq Ă Ran Φτ (see 3.8 and discussion after), we get from

Lemma 3.3.2 that R0,τu0 P Ran Φτ . It follows that Ran rΦ0,τ Ă Ran Φτ . The case
of Ran rΦπ,τ is similar. Finally, note that L2 ``0, 1

4τ

˘

, dt
t

˘

is included in the space of
functions in L1pRq with compact support. Therefore, up to the change of variable
G which does not change the holomorphy, an element of X0 is essentially a Fourier
transform of a compactly supported integrable function, so it is entire by Theorem
1.2.5 (actually L

“

L2 ``0, 1
4τ

˘

, dt
t

˘‰

is a Model space by Proposition 1.2.2). Thus, X0
is a space of entire functions and, as such, is contained in the reachable space. The
same argument proves also that the reachable space includes Xπ, and the proof is
complete.
Remark 3.3.3. Note that the same Laplace integral method gives in a straightfor-
ward way the Aikawa-Hayashi-Saitoh Theorem 2.6.2.

3.4 Inclusion of the Smirnov-Zygmund space
We prove now Theorem 3.1.2.

Let P pzq “ z ` 2iπ. It suffices to prove the following assertion.

@f P EL log`L pDq ,
f

P
P A2

p∆q ` A2
pπ ´∆q (3.10)

Indeed, assume that (3.10) is true and let g P EL log`L pDq. Since P is bounded
analytic on sD, Pg belongs also to EL log`L pDq. Hence, by (3.10), g “ pPgq{P
belongs to A2p∆q ` A2pπ ´∆q and then to Ran Φτ by Theorem 3.1.1, which proves
the inclusion.
Remark 3.4.1. With a more refined argument, as used in [HKT20, corollary 3.6], we
can prove that EL log`L pDq Ă A2p∆, ω0q`A

2pπ´∆, ωπq where ω0 and ωπ are defined
in (3.3). This observation also follows from Thm 3.1.2 and (3.4) (see [KNT19]).

So, pick f P EL log`L pDq and let us prove (3.10).

Decomposition. Let γ be the boundary of D parameterized counterclockwise side
by side as follows (see Figure 1).

γ1,` : r0, 1s ÝÑ C
t ÞÝÑ p1´ tqπ2 p1` iq

γ1,´ : r0, 1s ÝÑ C
t ÞÝÑ p1´ iqπ2 t

γ2,` : r0, 1s ÝÑ C
t ÞÝÑ πp1´ tq ` t

´

p1` iqπ2

¯

γ2,´ : r0, 1s ÝÑ C
t ÞÝÑ p1´ iqπ2 p1´ tq ` tπ
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ą ą

ăă

0
D

γ1,´ γ2,´

π

γ2,`γ1,`

∆

Figure 1: The square D, the path γ and the sector ∆.

The key idea is to decompose f via the Cauchy formula for functions in E1pDq
(see (1.5)) :

@z P D, fpzq “
1

2iπ

ż

γ

fpuq

u´ z
du

“
1

2iπ
ÿ

kPt1, 2u
εPt˘u

ż

γk,ε

fpuq

u´ z
du

“
1
2

ÿ

kPt1, 2u
εPt˘u

fk,εpzq

where we have written

fk,εpzq “
1
iπ

ż

γk,ε

fpuq

u´ z
du, k P t1, 2u , ε P t˘u.

For the reader acquainted with Hardy spaces, the crucial observation here is that
fk,ε can be seen — modulo rotation and translation — as a scalar product between a
(compactly supported) function and a reproducing kernel of the Hardy space, which
thus yields a (Riesz-) projection on the Hardy space. It is known that this projection
is bounded when f P Lp, p ą 1, but not when p “ 1. As it is explained in Subsection
1.1.2, on the real line, this boundedness remains valid when f P L log` L and f is
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compactly supported (see Proposition 1.1.12 and Theorem 1.1.16).

The remainder part of the section will be devoted to show that f1,ε{P P A
2 p∆q

and f2,ε{P P A
2 pπ ´∆q for ε P t˘u. We cut each sector ∆ and π´∆ in two disjoint

parts, which will be treated separately. For that, given a fixed a ą 0, denote by Da

the homothetic dilation of D with center 0 and obtained by adding length a ą 0 to
the sides of D (see Figure 2). We will consider the disjoint union ∆ “ Da Y∆zDa

(and similarly for π ´∆). The proof is composed of two steps.

∆

D

Da

0 π

a

Figure 2: The squares D, Da and the sector ∆.

‚ Step 1 : In this step we prove the following claim:

f1,ε{P P A
2
p∆zDaq (3.11)

(the case f2,ε{P P A
2 ppπ ´∆q z pπ ´Daqq follows in a similar fashion).

To do so, remark that there exists a constant Ca ą 0 such that for any z R Da,
|z|` 1 ď Cadpz, BDq. Using the triangular inequality, we have for any k P t1, 2u and
ε P t˘u,

@z R Da, |fk,εpzq| ď
1
π

ż

γk,ε

ˇ

ˇ

ˇ

ˇ

fpuq

u´ z

ˇ

ˇ

ˇ

ˇ

|du|

ď }f}L1pBDq

1
πdpz, BDq

ď
C

|z|` 1 ,
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where we have used that L log` L Ă L1 on a segment.
So, since ´2iπ R ∆zDa, we obtain

ż

∆zDa

∣∣∣∣f1,εpzq

P pzq

∣∣∣∣2

dApzq ď C

ż

∆zDa

dApzq

|2iπ ` z|2 p1` |z|q2
ă `8.

This proves claim (3.11).

‚ Step 2 : This step is more delicate and uses the Cauchy (or Hilbert) transform
and the inclusion H1pDq Ă A2pDq (see Theorem 1.1.16).

We need to show the following claim

f1,ε{P P A
2
pDaq (3.12)

(and f2,ε{P P A
2 pπ ´Daq). It is enough to treat the case f1,`, the others follow in

a similar way.
We recall that for g P L1pRq, its Cauchy Transform Cg is defined by

pCgq pzq “ 1
iπ

ż

R

gptq

t´ z
dt, z P C` :“ tz P C | Impzq ą 0u .

See Section 1.1.2 for more details.
We first explain briefly how to translate f1,` to Cg for some suitable g. It is

essentially rotating and translating the line through γ1,` to R. To be more explicite,
let α1,` : z ÞÑ 1`

?
2
π
ei

3π
4 z. This is a direct similarity transformation which sends Da

to C` and in particular γ1,` onto r0, 1s (note that the orientation is preserved, e.g.
the endpoint 0 of γ1,` is sent to 1). Let fγ1,`ptq “ 1r0,1sptqfpγ1,`ptqq. For all z P Da,
we have

f1,`pzq “
1
iπ

ż

γ1,`

fpuq

u´ z
du “

1
iπ

ż 1

0

fpγ1,`ptqq

γ1,`ptq ´ z
γ11,`ptqdt

“
1
iπ

ż

R

fγ1,`ptq

p1´ tqπ2 p1` iq ´ z

´

´
π

2 p1` iq
¯

dt

“
1
iπ

ż

R

fγ1,`ptq

t´ α1,`pzq
dt

“
`

Cfγ1,`
˘

pα1,`pzqq
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So, since P does not vanish on Da, we obtain
ż

Da

∣∣∣∣f1,`pzq

P pzq

∣∣∣∣2

dApzq ď C

ż

Da

|f1,`pzq|2 dApzq

“ C

ż

Da

∣∣`Cfγ1,`˘ pα1,`pzqq
∣∣2
dApzq

“ C2

ż

α1,`pDaq

∣∣`Cfγ1,`˘ pzq∣∣2
dApzq, (3.13)

where we have used in the last step that α1,` is an affine change of variable with
constant jacobian. As already written, α1,` pDaq is a square in the upper-half plane
with a segment of the real line as one of its sides. We will next appeal to the
following regularity result of the Cauchy transform which is essentially a combination
of Proposition 1.1.12 (and so the Calderón-Zygmund theorem[CZ52, Thm 2, p.100])
and Theorem 1.1.16 of Hardy-Littlewood which gives the inclusion between H1 and
A2 on the disk.

Proposition 3.4.2. Let f P L log`LpRq have compact support. Let Ω be a square
in the upper-half plane one side of which is a segment I Ă R. Then the Cauchy
transform Cf belongs to A2pΩq.

Remark 3.4.3. Note that in this proposition, we do not need to assume any link
between the (compact) support of f and the segment I. However, we will apply later
on the result for the case when the support of f is included in I (and I “ r0, 1s).

Proof of Proposition 3.4.2. In view of Proposition 1.1.12, we already know that Cf P
E1pΩLq where Ω Ă ΩL. Now, if ϕ : D Ñ ΩL is a conformal mapping, then we will
have pCf ˝ ϕqϕ1 P H1pDq. From Theorem 1.1.16 we obtain pCf ˝ ϕqϕ1 P A2pDq, or
equivalently, by simple change of variable, Cf P A2pΩLq. Since Ω Ă ΩL, we obtain
Cf P A2pΩq which is what we want to prove.

From the preceding discussions we can now deduce the claim (3.12). Indeed,
recall from (3.13) that

ż

Da

∣∣∣∣f1,`pzq

P pzq

∣∣∣∣2

dApzq ď C

ż

α1,`pDaq

∣∣`Cfγ1,`˘ pzq∣∣2
dApzq.

Clearly, when f P L log` L with compact support, the same will be true for fγ1,`
(which is essentially a truncation of f composed with a rotation/translation). From
Proposition 3.4.2 (with Ω “ α1,` pDaq being a unit square in the upper half plane
with base on the real line we deduce (3.12) (the argument is the same for f1,´).
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Proof of Theorem 3.1.2. By (3.10) it is enough to show that f{P P A2p∆q `A2pπ ´
∆q. The decomposition will be given by F1 “ pf1,``f1,´q{P and F2 “ pf2,``f2,´q{P .
By (3.11) we have F1 P A

2p∆zDaq, and (3.12) implies that F1 P A
2pDAq. The case

F2 is treated in exactly the same way.
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Chapter 4

Separation of singularities for the
Bergman space and exact
characterization of the reachable
space

In Chapter 3 we have discussed a first approach to the description of the sum of two
Bergman spaces defined on intersecting domains (more precisely on intersecting sec-
tors). In particular we have seen that classical harmonic analysis allows to connect
this separation of singularities problem with Hilbert transforms giving some inclu-
sion relations. Pushing forward those tools led to the containment of the Smirnov-
Zygmund space in the sum.

In this chapter, based on the paper [HO20], we solve completely the separation
of singularities problem for Bergman spaces at least for certain geometries. More
precisely, we show that if P Ă C is a convex polygon which is the intersection of n
half planes, then the Bergman space on P decomposes into the sum of the Bergman
spaces on these half planes. We obtain also a theorem for more general convex
domains. This will allow us to give an affirmative answer to the HKT-conjecture
(3.2) and solves definitively the problem.
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4.1 Introduction

4.1.1 Results on separation of singularities in Bergman spaces
In Section 1.3, we presented the separation of singularities problem and its different
counter parts for some Banach spaces of analytic functions and Theorem 3.1.1 showed
its particular relevance in the setting of control problems. Following this way, we
discuss here the separation of singularities problem for the Bergman space. Note that
this problem is mentioned explicitly in [BKN18, p.17] without an exact reference.We
refer to Section 1.1.3 for the basic properties of these spaces.

Let us now turn to our first set of results concerning separation of singularities
in Bergman spaces.

The following weight will play a central role in our study: for N P N, we write

ωNpzq “ p1` |z|2pq´N . (4.1)

We start with a quasi separation of singularities theorem, in the sense that we
have to add a weight with decay at infinity. It deals with general open sets Ω1 and
Ω2 of C such that Ω1zΩ2 and Ω2zΩ1 are far away. Note that this condition already
appears in [HN01, Cor. 3.3] as an easy case for solving the separation of singularities
problem in H8.

Theorem 4.1.1. Let 1 ă p ă 8. Let Ω1 and Ω2 be open sets of C such that
Ω1 X Ω2 ‰ H. If distpΩ1zΩ2, Ω2zΩ1q ą 0, then we have AppΩ1XΩ2q Ă AppΩ1, ω1q`

AppΩ2, ω1q.

The previous theorem is based on a reduction to the B̄-equation, as in the modern
solution of Aronszajn’s theorem (see Theorem 1.3.1), and on Hörmander type Lp-
estimates for the B̄-equation. This method was already used in [Ors20, Thm 1.2] to
prove another kind of weighted separation theorem (see Corollary 4.1.10 below for an
improvement of this theorem). Using the fact that polynomials not vanishing on Ω
are invertible multipliers of the Bergman space on a bounded domain Ω, will allow us
to show our first “real” (i.e. unweighted) separation result for bounded intersections.

Corollary 4.1.2. Under the same hypotheses as in Theorem 4.1.1, if in addition
Ω1 X Ω2 is bounded and Ω1 Y Ω2 ‰ C, then AppΩ1 X Ω2q “ AppΩ1q ` A

ppΩ2q.

The case when distpΩ1zΩ2, Ω2zΩ1q “ 0 is more intricate. Let us begin with
the simplest configuration of interest for us: Ω1 and Ω2 are half planes which
intersect perpendicularly. By rotation and translation we can of course reduce
the situation to the upper and right half planes: C` “ tz P C | Impzq ą 0u and
C` “ tz P C | Repzq ą 0u. We write C`` “ C`XC` for the resulting quarter plane.
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Theorem 4.1.3. Let 1 ă p ă 8. Then AppC`q ` AppC`q “ AppC``q.

The proof of this theorem is strikingly simple when p “ 2 where it uses only the
explicit form of the reproducing kernels of the two half planes. Though the same
idea does not apply to arbitrary sectors we can reduce that general situation to right
angle sectors which leads to our next result.

Theorem 4.1.4. Let 1 ă p ă 8. Let H1, H2 be two half planes such that Σ :“
H1 XH2 ‰ H is a sector. Then AppΣq “ AppH1q ` A

ppH2q.

The main result of this part of the chapter is the separation of singularities
problem for n half planes, the intersection of which is a convex polygon.

Theorem 4.1.5. Let 1 ă p ă 8. Let H1, H2, . . . , Hn be half planes such that
P :“

Şn
k“1Hk ‰ H is a convex polygon. Then AppPq “

řn
k“1A

ppHkq.

It is worth mentioning that when Ω is a polygon it is known that Schwarz-
Christoffel mappings allow to send the upper half plane conformally onto Ω, so that
with (1.8) it is possible to determine the Bergman kernel for A2pΩq. However, al-
ready for a square, the understanding of the corresponding reproducing kernel is a
very non-trivial matter.

Let us consider a special case illustrating the above results:

Ω “ tz “ x` iy P C : 0 ă x ă 1, 0 ă y ă 1u

i.e. Ω is the unit square with lower left corner 0. Let Ω1 “ C`` and Ω2 “ p1`iq´C``.
Then Ω “ Ω1 X Ω2, and Theorems 4.1.4 and 4.1.5 yield the following immediate
consequence which will resolve the conjecture on the reachable states of the 1-D heat
equation on a finite rod with boundary controls as discussed in the next section.

Corollary 4.1.6. We have AppΩq “ AppC``q ` Appp1` iq ´ C``q.

It turns out that we can apply Theorem 4.1.5 to more general domains. More
precisely, we will consider non-empty, bounded intersections of convex domains Ω1
and Ω2. Then the boundaries BΩ1 and BΩ2 can meet in single points or along
curves. We will assume that there are only finitely many single points and arcs, i.e.
B̃pBΩ1 X BΩ2q is finite (by BΩ we mean the boundary of a two dimensional manifold
Ω, and by B̃E the boundary of a one-dimensional manifold E).

Theorem 4.1.7. Let 1 ă p ă 8. Let Ω1 and Ω2 be two open convex sets in C such
that
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(i) Ω1 X Ω2 is non-empty and bounded,

(ii) The set B̃ pBΩ1 X BΩ2q is finite.

Then AppΩ1 X Ω2q “ AppΩ1q ` A
ppΩ2q.

All these theorems have weighted versions with weights ωl (l P N). Let us mention
another direct consequence. Recall that the Dirichlet space DpΩq consists of all func-
tions f holomorphic on Ω satisfying f 1 P A2pΩq (since the formerly stated results for
Bergman spaces work for 1 ă p ă 8, we can also consider the corresponding Dirichet
type spaces which are rather called Besov spaces). Applying the above decomposi-
tions to f 1 and taking anti-derivatives yields the corresponding decompositions in
Dirichlet spaces. Note the following general results.

Proposition 4.1.8. Let Ω1 and Ω2 be two simply connected domains in C such that
Ω1XΩ2 ‰ H. If A2pΩ1XΩ2q “ A2pΩ1q`A

2pΩ2q then DpΩ1XΩ2q “ DpΩ1q`DpΩ2q.

An application of this observation solves the control problem of the heat equation
with Neumann boundary control.

Finally, we emphasize that our proofs do not work for p “ 1. This situation al-
ready occurs in Aizenberg’s result for the Smirnov space [Aiz14]. While in his work
it is the failure of boundedness of the Riesz projection which makes obstruction, here
it is the Bergman projection which is not bounded on L1. This leads to the following
open question.

Question: Is there a positive solution to the separation of singularities problem in
E1 and A1?

4.1.2 The reachable states of the 1-D heat equation
Let us now explain how we apply the preceding results to give a definitive solution
to the description of the reachable space of the heat equation.

The key result proved in Chapter 3 is the following.

Theorem 4.1.9. Let ∆ “ tz P C | |arg pzq| ă π{4u.
We have RanΦτ “ A2p∆q ` A2pπ ´∆q.

By rotation and rescaling, Corollary 4.1.6 immediately yields

A2
pDq “ A2

p∆q ` A2
pπ ´∆q, (4.2)

which gives the following characterization of the reachable space.
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Corollary 4.1.10. We have RanΦτ “ A2pDq.

Hence, this proves the HKT-conjecture (3.2). This implies also obviously the
following inclusion.

Corollary 4.1.11. We have A2pDq Ă X :“ W´1,2p0, πq.

The rest of this chapter is organized as follows. In Section 4.2 we prove the
separation of singularities results, and in Section 4.3 we give a more transparent
proof to Corollary 4.1.6 and apply the results to several related problems on reachable
spaces of the heat equation.

4.2 Proof of theorems
Proof of Theorem 4.1.3. Obviously we only have to show the reverse inclusion. So,
let us start with f P A2pC``q. Using the conformal invariance property (1.8) applied
to the kernel on D introduced in (1.9) and using the conformal map ϕ : C` Ñ D,

ϕpzq “
z ´ i

z ` i
,

we obtain first the reproducing kernel on C`,

kC
`

λ pzq “
´1

πpz ´ λ̄q2
, λ, z P C`.

The kernel for C` is deduced from this just by a suitable rotation

k
C`
λ pzq “

1
πpz ` λ̄q2

, λ, z P C`.

Finally, for the kernel on the quarter plane C``, use ϕ : C`` Ñ C`, ϕpzq “ z2 to
get

kC
``

λ pzq “
´4zλ̄

πpz2 ´ λ̄2q2
, λ, z P C``

An easy computation leads to the following key observation:

kC
`

λ ` k
C`
λ “ kC

``

λ , @λ P C``. (4.3)
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For a function f defined on C``, we write SC`f (resp. SC`f) for the trivial
extension of f by 0 on C` (resp. C`) outside C``, i.e.

SC`fpzq “

#

fpzq if z P C``

0 if z P C`zC``

and correspondingly for SC`f . Hence, since f was assumed in A2pC``q, for every
λ P C``, we have

fpλq “
A

f, kC
``

λ

E

L2pC``q
“

ż

C``
fpzqkC

``

λ pzqdApzq

“

ż

C``
fpzq

´

kC
`

λ pzq ` k
C`
λ pzq

¯

dApzq

“

ż

C`
SC`fpzqk

C`
λ pzqdApzq `

ż

C`
SC`fpzqk

C`
λ pzqdApzq

“

A

SC`f, k
C`
λ

E

L2pC`q
`

A

SC`f, k
C`
λ

E

L2pC`q
.

Finally, using the Bergman projection introduced in (1.7), we obtain on C``

f “ PC` pSC`fq ` PC`
`

SC`f
˘

P A2
pC`q ` A2

pC`q. (4.4)

The result follows.
Consider now the case p ‰ 2. We shall use the following density result.

Lemma 4.2.1. Let 1 ď p ă 8. The set A2pC``q X AppC``q is dense in AppC``q.

Proof. As explained in Subsection 1.1.3, for a general open set Ω Ă C, the density of
A2pΩq X AppΩq in AppΩq is a difficult problem (see [Hed02, Proposition 2.2]) but in
our specific case it follows from Proposition 1.1.15 which gives the result for Ω “ C`.
Indeed, moving back and forth between AppC`q and AppC``q via the change of
variables formula TpF pzq “ z2{pF pz2q, F P AppC`q, z P C``, will produce the
desired result. More precisely, in [BBG`04, Proposition 2.2] the authors regularize
the function F by shifting and multiplying with a suitable function: Fε,αpzq “ F pz`
iεqGαpεzq, where Gαpzq “ p1´ izq´p2`αq, α ě 0 and ε ą 0. Clearly Fε,αpzq Ñ F pzq,
when ε Ñ 0, for every z P C`. As observed in [BBG`04, Proposition 1.3], the
function F pz ` iεq is in the Hardy space of the upper half plane HppC`q which
allows an application of the dominated convergence theorem (actually to horizontal
p-means of Fε,α) when εÑ 0. It remains to prove that

fε,α :“ TpFε,α “ z2{pF pz2
` iεqGαpεz

2
q “

z2{p´1

p1´ iεz2qα
T2Fε,0pzq
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is in A2pC``q. Since Fε,0 ď Cε{p1 ` |z|q2, we have Fε,0 P A2pC`q, and so fε,α P
A2pC``q can now be reached by an appropriate choice of α depending on p (note that
T2Fε,0 is locally bounded at 0, so that only the case 1 ă p ă 2 needs consideration
of a suitable α).

Pick f P AppC``q. Since kC`λ (resp. kC`λ ) belongs to LqpC`q (resp. LqpC`q) for
q ą 1, the right hand side is well-defined for f P LppC``q if 1 ď p ă 8. In addition,
it is well-known (see Subsection 1.1.3) that PC` (resp. PC`) is bounded from LppC`q
(resp. LppC`q) onto AppC`q (resp. AppC`q) if and only if p ą 1. Finally, equality
(4.4) holds for all f P A2pC``q X AppC``q and this last space is dense in AppC``q
by Lemma 4.2.1, hence it holds also for every f P AppC``q by continuity . The proof
is complete.

C` C``

C`

Figure 1: The half planes C` and C`, and their intersection, the quarter plane
C``.

It should be pointed out that the above argument yields a linear bounded sepa-
ration operator.

Remark 4.2.2. Obviously, the theorem holds for every half plane the intersection
of which is a right-angle sector.

We will now move on to the proof of Theorem 4.1.4. For ´π ď a ă b ď π, we
denote by ∆b

a the angular sector ∆b
a “ tz P C | a ă argpzq ă bu.

We can of course reduce the situation to the case a “ 0, and consider ∆b
0 “

C`XH1 where H1 is the half plane ∆b
b´π. While it is very tempting now to apply the

same idea above to arbitrary sector ∆b
0, the magic decomposition of the reproducing

kernel on the right-angle sector breaks down. Indeed, with formula (1.8) in mind
one can of course explicitly compute the kernel for H1 which amounts essentially to
multiply z and λ by a suitable unimodular constant α (more precisely α “ eipπ´bq)
in the expression of kC`λ pzq. However, the same transformation formula (1.8) applied
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∆b
a

a

b

Figure 2: The sector ∆b
a.

to transform the kernel of C` to that of ∆b
0 involves a power function: ϕpzq “ zπ{b.

A computation shows that the kernels of the half planes do not add up to the kernel
of the sector.

Proof of Theorem 4.1.4. As already mentioned it is enough to prove the result for
Σ “ ∆θ

0, H1 “ C` and H2 “ Cθ :“ ∆θ
´π`θ, with 0 ă θ ă π:

App∆θ
0q “ AppC`q ` App∆θ

´π`θq. (4.5)

The heart of the proof is contained in the following lemma which shows in a way
that we can double the opening of the sector.
Lemma 4.2.3. Let a, b be real numbers such that ´π ď a ă b ď π. Then App∆b

aq “

Ap
´

∆minpπ, 2b´aq
a

¯

` Ap
´

∆b
maxp´π, 2a´bq

¯

.

Proof. Let ϕ : ∆b
a Ñ C`` be the conformal mapping given by ϕpzq “ pe´iazq

π
2pb´aq

where we have chosen the branch cut to be p´8, 0s. Let T : AppC``q Ñ App∆b
aq be

the isometric isomorphism associated with ϕ, i.e

@g P AppC``q, T g “ pg ˝ ϕqpϕ1q2{p.

Pick f P App∆b
aq. Then g :“ T´1f belongs to AppC``q. So, by Theorem 4.1.3, there

exist g1 P A
ppC`q and g2 P A

ppC`q such that g “ g1 ` g2 on C``. Hence

f “ Tg “ Tg1 ` Tg2 “ pg1 ˝ ϕqpϕ
1
q
2{p
` pg2 ˝ ϕqpϕ

1
q
2{p.
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Remark now that the branch cut has been chosen such that ϕ continues analytically
on ∆minpπ, 2b´aq

a and ∆b
maxp´π, 2a´bq. Moreover, ϕp∆minpπ, 2b´aq

a q Ă C` and ϕp∆b
maxp´π, 2a´bqq Ă

C`, so that g1 ˝ ϕ and g2 ˝ ϕ are well defined holomorphic functions. Thus, f P
Ap

´

∆minpπ, 2b´aq
a

¯

` Ap
´

∆b
maxp´π, 2a´bq

¯

, which proves the lemma.

∆θ
0

∆2θ
0

∆ θ
´θ

Figure 3: One step of the induction.

We are now in a position to prove the theorem. We start from App∆θ
0q, where we

assume for the moment that π{2 ă θ ă π. Since minpπ, 2θq “ π, the lemma yields

App∆θ
0q “ App∆π

0 q ` A
p
p∆θ

´θq

so that f P App∆θ
0q decomposes as f “ f1`f2 (considered on ∆θ

0) with f1 P A
pp∆π

0 q “

AppC`q and f2 P A
pp∆θ

´θq. Since π{2 ă θ we have ∆θ
´θ Ą ∆θ

θ´π which yields (4.5).
We will proceed by an inductive application of the lemma. In order to better

understand this induction, let us also illustrate the case when π{4 ă θ ă π{2. In
order to not overcharge notation we will only mention the underlying sectors and not
write out the Bergman spaces, see Figure 4. We stop the procedure when we have
reached H1 “ C` or H2 “ ∆θ

θ´π.
It is clear from here that after n steps of applications of the lemma, there are

2n sectors ∆p2n´kqθ
´kθ , k “ 0, . . . , 2n ´ 1 (when p2n ´ kqθ ą π or kθ ą π it should be

replaced by π).
In the general case, let N P N˚ be the least natural number such that 2π ă 2Nθ

(in the example above, where π{4 ă θ ă π{2, we had to choose N “ 3). Observe
that when 0 ď k ď 2N´1 (which corresponds to one half of the possible k’s), then
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∆θ
0

∆θ
´θ

∆2θ
0

∆minpπ,3θq
´θ

∆θ
maxp´π,´3θq Ą H2

∆minpπ,4θq“π
0 Ą H1

∆2θ
´2θ

∆minpπ,7θq“π
´θ Ą H1

∆minpπ,3θq
maxp´π,´5θq“´π Ą H2

∆minpπ,6θq“π
´2θ Ą H1

∆2θ
maxp´π,´6θq“´π Ą H2

Figure 4: Iterative applications of Lemma 4.2.3 in the decomposition of the sector
∆θ

0.

p2N ´ kqθ ě p2N ´ 2N´1qθ “ 2N´1θ ą π, so that ∆p2N´kqθ
´kθ Ą C`, while for 2N´1 ă

k ď 2N ´ 1, we have kθ ą π so that ∆p2N´kqθ
´kθ Ą ∆θ

´π Ą ∆θ
θ´π. (We mention again

that as soon as p2N ´ kqθ ą π or kθ ą π in the procedure, it should be replaced by
π.)

Hence, any function f P App∆θ
0q will be decomposed into 2N functions, one half

of which is in AppC`q and the other one in App∆θ
´π`θq.

The next result claims that Theorem 4.1.4 also holds for Bergman spaces with
the same weight ωNpzq “ p1` |z|2pq´N (see (4.1)).

Corollary 4.2.4. Let H1, H2 be two half planes such that Sθ :“ H1 X H2 ‰ H is
an angular sector. For any N P N, we have AppSθ, ωNq “ AppH1, ωNq `A

ppH2, ωNq.

Proof. The direct inclusion is obvious, let us prove the converse one. Denote by
z0 a complex number such that distpz0, Sθq ą 0 and P pzq “ pz ´ z0q

2N . Pick f P
AppSθ, ωNq, then f

P
belongs to AppSθq, and by Theorem 4.1.4, there exists f̃1 P A

ppH1q

and f̃2 P A
ppH2q such that f

P
“ f̃1 ` f̃2. Hence, f “ P f̃1 ` P f̃2 :“ f1 ` f2 with

f1 P A
ppH1, ωNq and f2 P A

ppH2, ωNq.
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We will now prove Theorem 4.1.1 which is an almost-separation of singularities in
the simplest case. Denote by B̄ the Cauchy-Riemann operator B̄ “ 1

2p
d
dx
` i d

dy
q. The

main idea is to reduce the problem to a B-equation and to use Hörmander type Lp-
estimates for the solution of the B̄-equation. The estimates are certainly well-known
to experts but we include a proof for completeness.

Lemma 4.2.5. Let 1 ă p ă 8. Let Ω Ă C be an open connected set such that
Ω ‰ C. If f P LppΩq then there exists a solution u of the equation B̄u “ f on Ω such
that u P Lp pΩ, ω1q.

Note that we do not look for a solution in LppΩq but we allow a weight to appear
which makes the problem solvable in the setting under consideration. Still, this
solution will be sufficient for our purpose.

Proof. The case p “ 2 is a particular case of the famous Hörmander L2-estimates
[Hör07, Thm 4.2.1]. From now on, let 1 ă p ‰ 2 ă 8.

For bounded Ω the result can be found in [FS91, Sec. 2, p.134] and follows from
Young’s inequality and properties of the Cauchy kernel 1

s´z
. Indeed, the classical

solution (i.e the solution with minimal weighted L2-norm) of B̄u “ f on Ω is given
by

upzq “
1
π

ż

Ω

fpsq

s´ z
dApsq

and satisfies
}u}LppΩq ď }f}LppΩq

›

›

›

›

1
z

›

›

›

›

L1pΩ´Ωq
ď C}f}LppΩq (4.6)

where C depends only the diameter of Ω´ Ω “ tu´ v : u P Ω, v P Ωu.
For the general case, let z0 P C be such that distpz0,Ωq ą 0 and set Qpzq “ z´z0.

Denote by g the function g “ f
Q
. Clearly, ug satisfies B̄ug “ g on Ω if and only if

B̄uf “ f , where uf “ Qug. It thus suffices to prove the existence of a solution ug to
B̄ug “ g such that ug P Lp pΩ, p1` |z|pq´1q. For this, we choose ug to be the classical
solution of B̄ug “ g on Ω defined by

ugpzq “ uΩ
g pzq “

1
π

ż

Ω

gpsq

s´ z
dApsq.

Let ζ P Ω, then for every z P Ωζ :“ Dpζ, 1q X Ω we have

ugpzq “

ż

ΩzDpζ, 2q

gpsq

s´ z
dApsq `

ż

ΩXDpζ, 2q

gpsq

s´ z
dApsq :“ uΩzDpζ, 2q

g pzq ` uΩXDpζ, 2q
g pzq.
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Considering uΩXDpζ,2q
g as the solution to the B̄-problem on the bounded domain ΩX

Dpζ, 2q, we obtain by (4.6)

}uΩXDpζ,2q
g }LppΩζq ď }u

ΩXDpζ,2q
g }LppΩXDpζ, 2qq

ď C}g}LppΩXDpζ, 2qq

ď
C

1` |ζ|}f}L
ppΩXDpζ, 2qq

ď
C

1` |ζ|

where C is essentially given by
›

›

1
z

›

›

L1pDpζ, 2q´Dpζ, 2qq ď
›

›

1
z

›

›

L1pDp0, 4qq and thus indepen-
dent on ζ.

For uΩzDpζ, 2q
g , Hölder’s inequality gives for all z P Ωζ ,

∣∣uΩzDpζ, 2q
g pzq

∣∣ ď }f}LppΩzDpζ, 2qq›››
›

1
pz ´ ¨qQ

›

›

›

›

Lp1 pΩzDpζ, 2qq
ď

#

C
1`|ζ| if p ă 2
C if p ą 2

where p1 is the conjugate exponent of p, and C is independent on ζ.
Putting the above estimates together, and observing that 1 ` |ζ| » 1 ` |z| for

z P Dpζ, 1q (the symbol “»” means that both quantities are comparable up to mul-
tiplicative constants), we get for every ζ P Ω,

ż

Ωζ
|ugpzq|

pdApζq ď
Cp

p1` |ζ|qp ` π
#

Cp

p1`|ζ|qp if p ă 2
Cp if p ą 2

where the constants again do not depend on ζ. Hence, covering suitably Ω by Ωζ ’s,
we get

ż

Ω

|ugpzq|p

1` |z|p
dApzq ď

#

ş

Ω
C1

1`|z|2pdApzq if p ă 2
ş

Ω
C1

1`|z|pdApzq if p ą 2
ă 8.

Restating the previous lemma in the spirit of Hörmander’s result is to say that
the solution u of Bu “ f satisfies

ż

Ω
|upzq|pp1` |z|2qpdApzq ď Cp

ż

Ω
|fpzq|pdApzq.

In particular, this is coherent in the power of p1 ` |z|2q with Hörmander’s result
which yields exactly the above estimate for p “ 2 (with a simpler proof). However,
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our argument does not work for p “ 2.

The proof below follows essentially the argument given in the proof of Theorem
1.3.1 combined with the Lp-estimates from the previous lemma.

Proof of Theorem 4.1.1. Pick f P AppΩ1XΩ2q. Take χ a bounded C8-function such
that χ “ 1 on Ω1zΩ2 and χ “ 0 on Ω2zΩ1. Since distpΩ1zΩ2,Ω2zΩ1q ą 0, we can
assume that ∇χ is uniformly bounded (and vanishes outside Ω1 X Ω2). So we can
define h1 “ fp1´ χq on Ω1 and h2 “ fχ on Ω2. Using the analyticity of f , we have
Bh1 “ ´fBχ “ ´Bh2 on Ω1 X Ω2, which implies the existence of a C8-continuation
v such that v “ Bh1 on Ω1 and v “ ´Bh2 on Ω2. Since Bχ is bounded, v belongs to
LppΩ1YΩ2q and by Lemma 4.2.5, there exists u P LppΩ1YΩ2, ω1q such that Bu “ v.
Finally, defining f1 “ h1 ´ u on Ω1 and f2 “ h2 ` u on Ω2, we obtain f “ f1 ` f2 on
Ω1 X Ω2 and fi P AppΩi, ω1q by definition of u. The proof is complete.

Now, a multiplier argument gives us a general separation of singularities result.

Proof of Corollary 4.1.2. Let z0 be such that distpz0,Ω1 Y Ω2q ą 0, and write P pzq “
pz ´ z0q

2. Pick f P AppΩ1 X Ω2q, then g :“ Pf belongs also to AppΩ1 X Ω2q since P
is bounded on Ω1 X Ω2. So, by Theorem 4.1.1, g “ g1 ` g2 with g1 P A

ppΩ1, ω1q and
g2 P A

ppΩ2, ω1q. Therefore f “ g
P
belongs to AppΩ1q ` A

ppΩ2q.

With the same argument used in Corollary 4.2.4, we obtain the following weighted
version of Theorem 4.1.1.

Corollary 4.2.6. Let Ω1 and Ω2 be open sets of C such that Ω1 X Ω2 ‰ H. If
distpΩ1zΩ2, Ω2zΩ1q ą 0, then for any l P N, we have AppΩ1XΩ2, ωlq Ă AppΩ1, ωl`1q`

AppΩ2, ωl`1q.

Before proving Theorem 4.1.5 we need an auxiliary result on decompositions of
Bergman spaces on unbounded intersections of half planes. This is provided by the
following lemma.

Lemma 4.2.7. Let n ě 2 and H1, . . . , Hn be half planes such that Ω :“
Şn
k“1Hk is

non-empty, convex and unbounded. Then for any l P N, we have

AppΩ, ωlq Ă
n
ÿ

k“1
AppHk, ωl`pn´1qq.
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Proof. Pick f P AppΩ, ωlq. We can assume that Ω has exactly n sides, otherwise just
add the zero function. Let us prove the result by induction. If n “ 2, Ω is either a
sector or a strip. In the first case, the result follows from Corollary 4.2.4. When Ω
is a strip, then distpH1zΩ, H2zΩq ą 0 and the result follows from Corollary 4.2.6. So
the base case of the induction is established.

Assume now that the lemma is true for every 2 ď n ă N . We shall prove it for
N . Since Ω is convex and N ě 3, the boundary BΩ is path connected. Without
loss of generality we can assume that the half planes H1, . . . HN are ordered such
that the sides S1, . . . , SN of BΩ satisfy Si Ă BHi, Si X Si`1 ‰ H (1 ď i ď N ´ 1),
and S1 and SN are the unbounded sides of BΩ. Then, writing Ω “

´

ŞN´1
i“1 Hi

¯

X

SN´1

Ω Ω1

Ω2

Figure 5: The decomposition of Ω as the intersection of Ω1 and Ω2.

pHN´1 XHNq :“ Ω1XΩ2 (see Figure 5), we obtain f “ f1`f2 with f1 P A
ppΩ1, ωl`1q

and f2 P A
ppΩ2, ωl`1q. Indeed, this follows from Corollary 4.2.6 since Ω is convex,

and distpΩ1zΩ2, Ω2zΩ1q “ |SN´1| ą 0. Here |Si| means the length of Si. Finally,
using the induction hypothesis on Ω1 and Ω2, we conclude the inductive step, which
proves the lemma.

Proof of Theorem 4.1.5. Again we will prove the result by induction. If n “ 3, P is
a triangle and we make the decomposition P “ Σ3XΩ where Σ3 is the angular sector
H1XH2 and Ω is an unbounded domain, as in Figure 6. We will again denote by Si
the sides of P and Si Ă BHi. As previously, distpΣ3zΩ, ΩzΣ3q ą 0, so by Corollary
4.1.2 we have

AppPq “ AppΣ3q ` A
p
pΩq. (4.7)

(Observe that the corollary does not require any convexity assumption, and no
weights appear here.) Hence, it remains to decompose Ω which will be done writing
Ω “ Θ1 X Θ2, as in Figure 6. Again, distpΘ1zΩ, Θ2zΩq ą 0, so by Theorem 4.1.4,
we have

AppΩq Ă AppΘ1, ω1q ` A
p
pΘ2, ω1q. (4.8)
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Define Σ2 “ H1 XH3 and Σ1 “ H2 XH3. Clearly Σk Ă Θk, k “ 1, 2, and so

AppΘk, ω1q Ă AppΣk, ω1q, k “ 1, 2. (4.9)

From (4.7)-(4.9), we obtain AppPq Ă
ř3
k“1A

ppΣk, ω1q. It can be checked that
Ť3
k“1 Σk ‰ C, so that there exists z0 with distpz0,

Ť3
k“1 Σkq ą 0. Define P pzq “

pz´ z0q
2. Then, for f P AppPq, the function g “ Pf is also in AppPq (multiplication

by P is actually a norm conserving operation on AppPq), which implies that g can
be written as g “ g1 ` g2 ` g3 with gi P AppΣi, ω1q. Thus, f “ g

P
“
ř3
k“1

gk
P
. Hence,

setting fk “ gk
P
, and since }gk}AppΣk,ω1q is comparable to }fk}AppΣkq “ }gk{P }AppΣkq,

we obtain that f belongs to
ř3
k“1A

ppΣkq. This means that AppPq “
ř3
k“1A

ppΣkq

and using Theorem 4.1.4, we obtain the base case of the induction.

P

Σ3

Ω

S1 S2

S3

Θ2Θ1
Ω

z0 Θ1

Σ1 S2

S3

Figure 6: Decomposition of a triangle.

Now, assume that the result is true for every 3 ď k ă n. We have to prove
it for n. There are two cases. First suppose that P has two non-consecutive non-
parallel sides (see Figure 7). Denote by S1, . . . , Sn its ordered sides (Si X Si`1 ‰ H,
Sn X S1 ‰ H) and H1, . . . , Hn the corresponding half planes. Let Si and Sj be
two non-parallel sides with j ě i ` 2. Write Ω1 “

Şj
k“iHk and Ω2 “

Ş

kRpi,jqHk

(we denote ri, js “ ti, i` 1, . . . , ju and pi, jq “ ti` 1, . . . , j ´ 1u). Observe that
Ω1 and Ω2 have the sides Si and Sj in common. It is clear that P “ Ω1 X Ω2
and distpΩ1zΩ2, Ω2zΩ1q ““ minp|Si|, |Sj|q ą 0. So, by Corollary 4.1.2, we have
AppPq “ AppΩ1q ` AppΩ2q. Since Si and Sj are non-parallel, one of the sets Ωi is a
polygon and the other one is unbounded. Les us assume that Ω1 is a polygon. Using
Lemma 4.2.7 with l “ 0, we obtain AppΩ2q Ă

ř

kRpi, jqA
ppHk, ωn´1q, and hence

AppPq Ă AppΩ1q `
ÿ

kRpi, jq

AppHk, ωn´1q,

where Ω1 is a polygon with lower degree. By the induction hypothesis, AppΩ1q-
functions decompose in the required way into AppHkq-functions where k P ri, js.
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In order to manage the second term, we need to get rid of the weight ωn´1. This
will again be done using the multiplication by an appropriate polynomial vanishing
neither on Hk, k R pi, jq nor on Ω1. For that, observe that Ω2 is an unbounded
convex domain, and Si and Sj are non-parallel. We claim that there exists z0 R
Ť

kRpi, jqHk Y Ω1. Indeed, for every k R pi, jq, Hk Ă Hi Y Hj, and moreover Ω1 Ă

Hi Y Hj (convexity comes into play here). Since Si and Sj are non parallel, Hi Y

Hj ‰ C, and it is enough to pick z0 R Hi Y Hj with distpz0, Hi Y Hjq ą 0. The
polynomial we are looking for is P pzq “ pz ´ z0q

2pn´1q. Pick now f P AppPq. As in
the previous corollary, writing g “ Pf , we have g P AppPq and so, by the reasoning
above, g “ g1 `

ř

kRpi, jq g2,k with g1 P A
ppΩ1q and g2,k P A

ppHk, ωn´1q, and hence
f2,k “ g2,k{P P AppHkq. Also, since multiplication (and division) by P is a norm
conserving operation on AppΩ1q, we have f1 “ g1{P P A

ppΩ1q, and by the induction
hypothesis (applied to Ω1) f1 decomposes into a sum of AppHkq-functions, k P ri, js:

f “ f1 `
ÿ

kRpi, jq

g2,k

P
P

ÿ

kPri,js

AppHkq `
ÿ

kRpi,jq

AppHkq.

P
Ω1

Ω2

S2

S3. . .

S6

P
Ω1

Ω2

H2 H6

H1

z0

Figure 7: Decomposition of P as Ω1 XΩ2 with a possible numbering of Si, and the
domain Hi YHj. (S2 and S6 are two non-consecutive non-parallel sides.)

Secondly, suppose that all non-consecutive sides of P are parallel. Then n “ 4
and P is a parallelogram. We treat this case directly. As in the first case, we denote
by S1, . . . , S4 the consecutive sides of P , H1, . . . , H4 the corresponding half planes
and Σk “ Hk X Hk`1 (with H5 “ H1) the angular sectors. We make the same
decomposition : AppPq “ AppΩ1q ` AppΩ2q where Ω1 “ H1 X H2 X H3 and Ω2 “

H3XH4XH1. This time Ω1 and Ω2 are both unbounded and distpΩ1zΩ2,Ω2zΩ1q ą 0.
Using Theorem 4.1.1 we get AppPq Ă AppΩ1, ω1q`A

ppΩ2, ω1q. Next we apply Lemma
4.2.7 to each of these spaces to get AppPq Ă

ř4
k“1A

ppHk, ω3q(notice that the weight
is given by 1`pn´1q “ 3 since we intersect 3 half planes). Observe that in this case
H1 Y H2 Y H3 “ C (and similarly for H3, H4, H1), so that at this step we cannot

93



find a z0 allowing the multiplication trick by a polynomial. Instead, we use Corollary
4.2.4, to get sectors:

AppPq Ă
4
ÿ

k“1
AppHk, ω3q “ AppΣ1, ω3q ` A

p
pΣ3, ω3q,

where Σ1 “ H1 X H2 and Σ3 “ H3 X H4. Now, there exists a point z0 which
is not in Σ1 Y Σ3, so that we can use the multiplication trick as in the first case:
f P AppPq implies g “ fP P AppPq splits into g “ g1 ` g2 with g1 P A

ppΣ1, ω3q,
g2 P A

ppΣ3, ω3q. With the suitable choice of P we compensate again the weight so
that f1 “ g1{P P A

ppΣ1q and f2 “ g2{P P A
ppΣ3q. Hence AppPq Ă AppΣ1q`A

ppΣ3q,
and we conclude using Theorem 4.1.4.

Let us indicate how the above results apply to more general separation of singu-
larities problem in Bergman spaces, and not only on polygons.

Proof of Theorem 4.1.7. Assume that Ω1 Ć Ω2 and Ω2 Ć Ω1, otherwise the problem
is trivial. Let us make some additional observations.

• By assumption, Ω1 and Ω2 are convex, so that Ω1 X Ω2 is also convex (and
non-empty), hence BpΩ1 X Ω2q is the image Γ of a Jordan curve γ.

• BΩ1 X BΩ2 includes at least two points and if we write B̃ pBΩ1 X BΩ2q :“
tz1, . . . , znu pn ě 2q, we have

BpΩ1 X Ω2q “ Γ “
n
ď

k“1
Γzk,zk`1 , pzn`1 :“ z1q

where Γzk,zk`1 is the path in BpΩ1 X Ω2q connecting zk to zk`1. Moreover,
Γzk,zk`1 Ă BΩ1 or Γzk,zk`1 Ă BΩ2. Note that it can happen that Γzk,zk`1 Ă

BΩ1 X BΩ2.

• By convexity, rzk, zk`1s Ă Ω1 X Ω2.

Let us start assuming n ě 3. Pick f P AppΩ1 X Ω2q. Write

Pz1,...,zn :“ Int pConvptz1, . . . , znuqq “
n
č

k“1
Hzk,zk`1

where Hzk,zk`1 is the half plane associated with the side rzk, zk`1s of the polygon (see
Figure 8), and note that by convexity Pz1,...,zn Ă Ω1XΩ2. So f P AppPz1,...,znq and by
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Theorem 4.1.5 there exist f1, . . . , fn such that fk P AppHzk,zk`1q and f “
řn
k“1 fk. It

remains to prove that each fk belongs either to AppΩ1q or to AppΩ2q. Let ik P t1, 2u
be the index such that Γzk,zk`1 Ă BΩik (when Γzk,zk`1 is in both boundaries, we can
pick either of the values 1 or 2 for ik). Two cases may occur. If Γzk,zk`1 “ rzk, zk`1s,
then, by convexity, Ωik Ă Hzk,zk`1 and the result follows: fk P AppHzk,zk`1q Ă AppΩikq.
So, assume that Γzk,zk`1 ‰ rzk, zk`1s and write

Ozk, zk`1 :“
č

j‰k

Hzj ,zj`1 X Ωik Ă Ω1 X Ω2

(one side of the polygon has been replaced by the arc Γzk,zk`1). Since fk P AppHzk,zk`1q

it is obviously in AppHzk,zk`1XΩikq. We claim that it extends to a function in AppΩikq.
By definition Ozk, zk`1 Ă Hzj , zj`1 , j ‰ k. Therefore, we have

z1 z2

z3z4

Ω1

Ω2

Pz1,z2,z3,z4Oz4,z1

Γz4,z1

Hz2,z3

Hz3,z4

Hz1,z2

Figure 8: Intersection of two convex open sets.

fk “ f
loomoon

PAppΩ1XΩ2qĂAppOzk, zk`1 q

´
ÿ

j‰k

fj
loomoon

PAppHzj ,zj`1 qĂA
ppOzk, zk`1 q

P AppOzk, zk`1q.

Thus fk P AppHzk,zk`1 YOzk,zk`1q Ă AppΩikq.
Finally, assume that n “ 2. It is sufficient to add a point z3 which belongs to

B pΩ1 X Ω2q z tz1, z2u, and construct Pz1, z2, z3 as before. The rest of the proof is dealt
with as in the previous case.

It it worth mentioning that convex sets Ω “ Ω1 X Ω2 with B̃ pBΩ1 X BΩ2q infinite
can be constructed easily.
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4.3 Reachable states of the heat equation
As already discussed in the first section, the result of Chapter 3, which states that

RanΦτ “ A2
p∆q ` A2

pπ ´∆q (4.10)

together with our Corollary 4.1.6 yield the final characterization of the reachable
states of the 1-D heat equation with L2-boundary controls

RanΦτ “ A2
pDq, (4.11)

as stated in Corollary 4.1.10.
In this section we would like to make some additional observations on this and

related control problems. Also, the general arguments presented in Section 4.2 lead-
ing to Theorem 4.1.5 might hide the very simple ideas which are actually behind
Corollary 4.1.6 and thus leading to (4.11). For this reason, we would like to present
here a more direct proof of Corollary 4.1.6 based on Theorem 4.1.1, Corollary 4.1.2
and Theorem 4.1.3 (case p “ 2).

4.3.1 A direct proof to Corollary 4.1.10
As already mentioned several times (see for instance Remark 4.2.2), the decomposi-
tion (4.10) is invariant by rotation and dilation. So, writing Σ2 :“ p1` iq´C`` and
denoting by D1 the square D1 :“ C`` XΣ2 (see Figure 9), it is enough to show that
A2pD1q “ A2pC``q ` A2pΣ2q. Let z0 P CzpC`` Y Σ2q and P pzq “ pz ´ z0q

2 which
is bounded and non-vanishing on D1, so that multiplication by P is an isomorphism
on AppD1q. In particular f P A2pD1q if and only if g “ Pf P A2pD1q.

The proof decomposes into 3 steps. We have already met some arguments in the
proof of Theorem 4.1.5 when considering the case of a parallelogram P .

Step 1: Let S1 and S2 be the half strips S1 “ tz “ x` iy P C | y ą 0, 0 ă x ă 1u
and S2 “ p1`iq´S1. Note thatD1 “ S1XS2 (see Figure 10). SinceD1 is bounded and
distpS1zD

1, S2zD
1q ą 0, by Corollary 4.1.2, there exist g1 P A

2pS1q and g2 P A
2pS2q

such that g “ g1 ` g2 on D1. This step is complete.

Step 2: Denote by Q1,1 and Q1,2 (respectively Q2,1 “ Σ2 and Q2,2) the left
and right quarter planes the intersection of which is S1 (resp. S2) (see Figure 11).
We can repeat the same argument as in the previous step (applying Theorem 4.1.1)
and obtain g1 “ g1,1 ` g1,2 (resp. g2 “ g2,1 ` g2,2) with g1,i P A

2pQ1,i, ω1q (resp.
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D1

C``

Σ2

Figure 9: The decomposition of D1 as the intersection of C`` and Σ2.

D1

S1

S2

Figure 10: Step 1 — Decomposition of D1 as the intersection of S1 and S2.

g2,i P A
2pQ2,i, ω1q).

Step 3: Remark that Q1,2 “ C`` and Q2,1 “ Σ2. So that we already have
g1,2 ` g2,1 P A

2pC``, ω1q ` A2pΣ2, ω1q, solving the problem for g1,2 and g2,1. Let us
show the same for g1,1 and g2,2. Denote by H1,1,1 “ C` the upper half plane and
by H1,1,2 “ 1 ´ C` the left half plane translated by 1 (resp. H2,2,1 the lower half
plane translated by 1 and H2,2,2 the right half plane) the intersection of which is Q1,1
(resp. Q2,2), see Figure 12. By Corollary 4.2.4 with Remark 4.2.2, g1,1 belongs to
A2pH1,1,1, ω1q ` A

2pH1,1,2, ω1q and g2,2 belongs to A2pH2,2,1, ω1q ` A
2pH2,2,2, ω1q.

Now, observing that Q1,2 “ C`` Ă H1,1,1, C`` Ă H2,2,2, Σ2 Ă H1,1,2 and Σ2 Ă

H2,2,1, we obtain that g1,1 belongs to A2pC``, ω1q `A
2pΣ2, ω1q and the same is true

for g2,2. Thus g P A2pC``, ω1q ` A2pΣ2, ω1q. Finally, by definition of P , f “ g
P

belongs to A2pC``q ` A2pΣ2q, which concludes the proof.
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Q1,1

S1

Q1,2

Q2,1

S2

Q2,2

Figure 11: Step 2 — The decompositions of S1 and S2.

Q1,1

H1,1,2

H1,1,1

H2,2,1

H2,2,2

Q2,2

Figure 12: Step 3 — The decompositions of Q1,1 and Q2,2.

4.3.2 Remarks on related control problems
In this subsection we discuss some related control problems for the heat equation.
The first one is mentioned in [KNT19] and the others in [HKT20].

Smooth boundary control.

In [KNT19], Kellay, Normand and Tucsnak gave a characterization of the reachable
space when the control is smooth. Let s P N and denote by W s,2

L pp0, τq, C2q the
Sobolev type space given by

W s,2
L

`

p0, τq, C2˘ :“
"

v P L2 `
p0, τq, C2˘

ˇ

ˇ

ˇ

ˇ

@1ďkďs, d
kv

dtk
PL2pp0, τq,C2q

and @0ďkďs´1, d
kv

dtk
p0q“0

*

.

Write also
`

A2
p∆q ` A2

pπ ´∆q
˘psq :“

 

f P A2
p∆q ` A2

pπ ´∆q
ˇ

ˇ @1 ď k ď s, f p2kq P A2
p∆q ` A2

pπ ´∆q
(

Then, combining their propositions 5.1 and 7.1, they proved that

Ran
´

Φτ |W s,2
L pp0, τq,C2q

¯

“
`

A2
p∆q ` A2

pπ ´∆q
˘psq

. (4.12)
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Similarly as above, we let pA2qpsqpDq be the space of functions f P A2pDq such that
f p2kq P A2pDq for all 1 ď k ď s. Using Corollary 4.1.10, result (4.12) immediately
leads to

Corollary 4.3.1. We have Ran
´

Φτ |W s,2
L pp0, τq,C2q

¯

“ pA2qpsqpDq.

Neumann conditions.

It is also possible to ask for a description of the reachable space for other types of
boundary conditions. For Neumann boundary conditions, the result follows directly
from Corollary 4.1.10 and a trick used in [HKT20]. We remind that we are searching
the reachable space of the equation

$

’

’

’

’

&

’

’

’

’

%

By

Bt
pt, xq ´

B2y

Bx2 pt, xq “ 0 t ą 0, x P p0, πq,
By

Bx
pt, 0q “ u0ptq,

By

Bx
pt, πq “ uπptq t ą 0,

yp0, xq “ gpxq x P p0, πq,

(4.13)

Again, for every initial condition g P L2p0, πq and every control function u “

pu0, uπq P L2pR`,Cq, the previous equation (4.13) admits a unique solution y P
C pr0, `8q, L2p0, πqq. As for Dirichlet boundary control, the null-controllability in
any time τ ą 0 holds in this case, and so the invariance of the reachable space with
respect to the initial condition and to the time also. We denote by ΦNN

τ the con-
trollability map associated to this equation. Let DpDq be the Dirichlet space on D,
which consists of all holomorphic functions F in D such that F 1 P A2pDq. As noted
in [HKT20, Prop. 5.2], w is a solution of (4.13) if and only if y “ Bw

Bx
is a solution of

(HE) with initial condition f “ g1. Thus the next result follows.

Corollary 4.3.2. We have RanΦNN
τ “ DpDq.

Dirichlet condition at one end.

Now, we are looking for the reachable space for Dirichlet boundary condition at one
end on the interval i.e. the reachable space of the equation

$

’

’

&

’

’

%

By

Bt
pt, xq ´

B2y

Bx2 pt, xq “ 0 t ą 0, x P p0, πq,

ypt, 0q “ 0, ypt, πq “ uπptq t ą 0,
yp0, xq “ gpxq x P p0, πq.

(4.14)
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Note that if y is a solution of (4.14), then its odd extension ry to r´π, πs is a solution
of

$

’

’

&

’

’

%

Bry

Bt
pt, xq ´

B2
ry

Bx2 pt, xq “ 0 t ą 0, x P p´π, πq,

rypt,´πq “ ´uπptq, rypt, πq “ uπptq t ą 0,
ryp0, xq “ rgpxq x P p´π, πq

(4.15)

where rg means the odd extension of g to p´π, πq. Denote by D2 the square D2 “

tz “ x` iy P C | |x|` |y| ă πu. So, using Corollary 4.1.10 on r´π, πs we obtain
ry P A2pD2q and ryp´zq “ ´rypzq, @z P D2. Conversely, if ry P A2pD2q and @z P
D2, ryp´zq “ ´rypzq, then ry|r0, πs is a solution of (4.14). Thus, we have proved

Corollary 4.3.3. Denote by RanΦ0D
τ the reachable space of (4.14).

We have RanΦ0D
τ “ tf P A2pD2q | @z P D2, fp´zq “ ´fpzqu :“ A2

oddpD2q.

Neumann condition at one end.

Finally, let RanΦ0N
τ be the reachable space for Neumann boundary condition at one

end, i.e the reachable space of (4.13) with u0 “ 0. Using an even extension and with
the same kind of arguments as in the previous case, we obtain

Corollary 4.3.4. We have

RanΦ0N
τ “ tf P DpD2q | @z P D2, fp´zq “ fpzqu :“ DevenpD2q

“
 

f P HolpD2q
ˇ

ˇ f 1 P A2
oddpD2q

(

.
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Chapter 5

Reachable space of the Hermite
heat equation

Some of the tools developped in the preceding chapters apply to the case of the heat
equation with the potential x2 since in this case we know explicitly the kernel. This
equation is called the Hermite heat equation. The aim of this chapter is to present
some corresponding results for the inclusion of the reachable space in the Bergman
space.

5.1 Introduction
For u “ pu0, u1q P L

2 pp0, τq, C2q, we consider the following equation.
$

’

&

’

%

Btw ´ B
2
xw ` x

2w “ 0, t ą 0, x P p0, πq
wpt, 0q “ u0ptq, wpt, πq “ uπptq, t ą 0
wp0, xq “ 0.

(5.1)

We have seen in Section 2.2 that this equation can be formulated as a well posed
boundary control system for X “ W´1,2p0, πq and U “ C2. Therefore, for every
u P L2

locpp0,8q;Uq, it admits a unique solution w P C pr0, 8q, Xq. We recall that
w P C pr0, 8q, Xq is called solution of (5.1) if it satisfies

xwptq, ψy
´1, 1 “

ż t

0

B

wpsq,
d2ψ

dx2 ´ x
2ψ

F

´1, 1
ds

`

ż t

0
u0psq

dψ

dx
p0qds´

ż t

0
uπpsq

dψ

dx
pπqds (5.2)
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for every t ě 0 and every ψ P W 2,2p0, πq XW 1,2
0 p0, πq such that d2ψ

dx2 P W
1,2
0 p0, πq.

Here x¨, ¨y
´1,1 denotes the duality W´1,2p0, πq ´ W 1,2

0 p0, πq.
As in the classical case, the Hermite heat equation (5.1) is null-controllable in

any time. So, its reachable space does not depend on time. We denote by ΦH
τ its

controllability operator and Ran ΦH
τ its reachable space.

5.2 Computation of the solution
In this section, we compute the solution of equation (5.1). In Chapter 3, we followed
the method of [HKT20] computing the solution of the heat equation with a decompo-
sition on a Fourier basis and a use of the Poisson summation formula. This allowed
the heat kernel of the line to appear. Here we use the method of images to avoid the
Poisson formula step and obtain directly an expression involving the Mehler kernel
of the line.

Mehler kernel. Let us recall some facts about the fundamental solution of the
Hermite heat equation on R, i.e. the solution of

#

BtK1 ´ B
2
xK1 ` x

2K1 “ 0, t ą 0, x P R
K1p0, x, ¨q “ δx.

(5.3)

where δx stands for the Dirac delta distribution at x. It is given by the Mehler kernel

K1pt, x, yq “
1

a

2π sinhp2tq
exp

ˆ

´cothp2tqx
2 ` y2

2 `
xy

sinhp2tq

˙

. (5.4)

It can be obtained using the normalized Hermite functions defined by

hkpxq “
p´1qkex

2
2

2kk!π 1
2

dk

dxk
e´x

2
, x P R, k P N

which are known to form an orthonormal basis of L2p0, πq and to be the eigenfunc-
tions of the operator ´∆`x2 on L2pRq associated with the eigenvalues λk “ 2k` 1.
Thus, the solution of (5.3) can be derived decomposing on this orthonormal basis.
Finally, the above form of the Mehler kernel is obtained using the so called Mehler
formula.

More general Mehler kernels can be found in [DE19, Subsection 2.1].
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Computation of the solution using the method of images. For ϕ P DpRq :“ C8c pRq,
we denote by ϕper the function

ϕper “
ÿ

kPZ

ϕp¨ ` 2kπq ´ ϕp2kπ ´ ¨q.

Remark that the sum is finite and ϕper,
d2ϕper
dx2 P W 1,2

0 p0, πq. Hence, for T P W´1, 2p0, πq,
we can define Tper P D1pRq by duality

@ϕ P DpRq, xTper, ϕyD1pRq,DpRq :“ xT, ϕpery´1, 1 .

It is easy to check that Tper is well defined as a distribution and Tper P S 1pRq. Note
that Tper is the continuation (in the sense of distributions) of T to R, first by odd
extension to p´π, πq and then by periodic extension to R with period 2π.

Let w be the unique solution of (5.1) in the sense of (5.2). Recall that DpRtq b

DpRxq is dense in DpRtˆRxq. WriteW the tempered distribution defined on RtˆRx

by

@ζ P DpRtq, @ϕ P DpRxq, xW, ζ b ϕyD1pRtˆRxq,DpRtˆRxq :“
ż

R`
xwptqper, ϕyD1pRq,DpRq ζptqdt.

Note that
W|R˚`ˆp0, πq “ w. (5.5)

Lemma 5.2.1. The distribution W is the unique solution in S 1pRt ˆ Rxq of the
equation
#

BtW ´ B2
xW ` x2W “ ´2u01R` b

ř

kPZ δ
1
2kπ ` 2uπ1R` b

ř

kPZ δ
1
p2k`1qπ :“ F

supppW q Ă R` ˆ R.
(5.6)

Proof. Since W and F belong to S 1pRt ˆRxq (recall that the L2 Ă S 1), it suffices to
prove the equality in D1pRt ˆ Rxq. For each t ě 0 and for every ϕ P DpRq, we have
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(using (5.2))

xwptqper, ϕyD1pRq,DpRq “ xwptq, ϕpery´1, 1

“

ż t

0

B

wpsq,
d2ϕper

dx2 ´ x2ϕper

F

´1, 1
ds`

ż t

0
u0psq

dϕper

dx
p0qds´

ż t

0
uπpsq

dϕper

dx
pπqds

“

ż t

0

C

wpsq,

ˆ

d2ϕ

dx2 ´ x
2ϕ

˙

per

G

´1, 1

ds

`

ż t

0
2u0psq

ÿ

kPZ

dϕ

dx
p2kπqds´

ż t

0
2uπpsq

ÿ

kPZ

dϕ

dx
p2pk ` 1qπqds

“

ż t

0

B

wpsqper,
d2ϕ

dx2 ´ x
2ϕ

F

D1,D
ds

´ 2
ż t

0
u0psq

C

ÿ

kPZ

δ12kπ, ϕ

G

D1,D

ds` 2
ż t

0
uπpsq

C

ÿ

kPZ

δ12pk`1qπ, ϕ

G

D1,D

ds (‹)

Hence, for every ζ P DpRtq and every ϕ P DpRxq,

xBtW, ζ b ϕyD1pRtˆRxq,DpRtˆRxq “ ´xW, Btζ b ϕyD1pRtˆRxq,DpRtˆRxq

“ ´

ż

R`
xwptqper, ϕyD1pRq,DpRq

dζ

dt
ptqdt

“

ż

R`

d

dt

´

xwptqper, ϕyD1pRq,DpRq

¯

ζptqdt.
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Finally using (‹), we obtain
xBtW, ζ b ϕyD1pRtˆRxq,DpRtˆRxq

“

ż

R`

»

–

B

wptqper,
d2ϕ

dx2 ´ x
2ϕ

F

D1,D
´ 2u0ptq

C

ÿ

kPZ

δ12kπ, ϕ

G

D1,D

`2uπptq
C

ÿ

kPZ

δ12pk`1qπ, ϕ

G

D1,D

fi

fl ζptqdt

“
@

pB
2
x ´ x

2
qW, ζ b ϕ

D

D1,D ´ 2
C

u01R` b
ÿ

kPZ

δ12kπ, ζ b ϕ

G

D1,D

` 2
C

uπ1R` b
ÿ

kPZ

δ12pk`1qπ, ζ b ϕ

G

D1,D

.

Proposition 5.2.2. The solution of the Hermite heat equation (5.1) is given by

@t ą 0, @x P p0, πq, wpt, xq “ 2
ż t

0

ÿ

kPZ

BK1

By
pt´ s, x, 2kπqu0psqds

´ 2
ż t

0

ÿ

kPZ

BK1

By
pt´ s, x, p2k ` 1qπquπpsqds.

Proof. By Lemma 5.2.1, W is the unique solution of equation (5.6) in S 1 which is by
Duhamel’s formula

W pt, xq “ xF, K1pt´ ¨ , x, ¨ qyS1pRsˆRyq,SpRsˆRyq

“ ´2
ż t

0

C

ÿ

kPZ

δ12kπ, K1pt´ s, x, ¨q

G

S1,S

u0psqds

` 2
ż t

0

C

ÿ

kPZ

δ1p2k`1qπ, K1pt´ s, x, ¨q

G

S1,S

uπpsqds

“ 2
ż t

0

ÿ

kPZ

BK1

By
pt´ s, x, 2kπqu0psqds

´ 2
ż t

0

ÿ

kPZ

BK1

By
pt´ s, x, p2k ` 1qπquπpsqds

The results follows from (5.5).
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5.3 Inclusion in the Bergman space of the square
In this section we prove that the reachable space of the Hermite heat equation (5.1)
is contained in the Bergman space A2pDq. We prove also that the (null)-reachable
space of the Hermite heat equation on the half-line is included in the Bergman space
of the sector ∆. Hence, the results are similar as those proved in Chapter 3.

In view of Proposition 5.2.2, we can write the solution of (5.1) as

wpτ, xq :“ ΦH
τ pu0, uπq “ ΦH

τ, 0u0pxq ` ΦH
τ, πuπpxq `Rτ, 0u0pxq `Rτ, πuπpxq,

where ΦH
τ, 0u0 and ΦH

τ, πuπ are respectively the zero-term of the first sum and the
second sum. It can be proved easily that Rτ, 0u0, Rτ, πuπ P A

2pDq with the explicit
structure of the Mehler kernel in mind (the proof is essentially the same as the one
from [HKT20] given in Chapter 3).

In order to obtain information on the reachable space of the equation (5.1), it
suffices to describe the range of ΦH

τ, 0 and ΦH
τ, π.

Range of ΦH
τ, 0. Using a change of variable x “ αpsq :“ tanhp2pτ ´ sqq{2 (which

leads to ds “ ´ dx
1´4x2 and sinhp2pτ ´ sqq “ 2x?

1´4x2 ), we obtain

ΦH
τ, 0u0pzq :“ 2

ż τ

0

BK1

By
pτ ´ s, z, 0qu0psq ds

“
2z
?

2π

ż τ

0

e´ cothp2pτ´sqqz2{2

sinhp2pτ ´ sqq3{2u0psqds

“
z

2
?
π

ż
tanhp2τq

2

0

e´
z2
4x

x3{2 p1´ 4x2
q
´1{4u0pα

´1
pxqqdx.

Now, setting T “ tanhp2τq{2 and the change of variable x “ T ´ t leads to
“

ΦH
τ, 0u0

‰

pzq “
”

rΦ0,T ru0

ı

pzq

where rΦ0,T denotes the controllability operator of the heat equation for the half-line
defined in (3.7), and ru0 is given by

ru0ptq “ p1´ 4pT ´ tq2q´1{4u0pα
´1
pT ´ tqq.

It is clear that the operator S : L2pp0, τq;Cq Ñ L2pp0, T q;Cq defined by

Su0 “ ru0
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is boundedly invertible and we have
ż T

0
| ru0ptq|

2dt “

ż τ

0

1
coshp2pτ ´ sqq |u0psq|

2ds —

ż τ

0
|u0psq|

2ds.

Hence, we have
Ran ΦH

τ, 0 “ Ran rΦ0,T Ă A2
pDq. (5.7)

It is of interest to note that the function ypt, xq “
`

ΦH
t, 0u0

˘

pxq is the unique
solution in C pp0,8q,W´1,2p0,8qq of the Hermite heat equation on p0,8q given by

$

’

&

’

%

Bty ´ B
2
xy ` x

2y “ 0, t ą 0, x P p0, 8q
ypt, 0q “ u0ptq, t ą 0
yp0, xq “ 0, x P p0,8q.

(5.8)

Hence, we have proved the following result.

Theorem 5.3.1. For every τ ą 0, the (null-)reachable space Ran ΦH
τ, 0 of the equation

(5.8) is included in A2p∆q.

Actually, in view of Section 2.6, equality (5.7) characterizes the reachable space
Ran ΦH

τ, 0 by its reproducing kernel.

Remark 5.3.2. As for the heat equation on the half line, the Hermite heat equation
on the half-line is not null-controllable. Therefore its reachable space RH,f

τ pR˚`q
should depend on time τ and on the initial condition f . Actually, it can be proved
that the null function is not contained in RH,f

τ pR˚`q, except if f “ 0 (see [DE19] for
more details).

Range of ΦH
τ, π.

Lemma 5.3.3. We have Ran ΦH
τ, π Ă A2pDq.

Proof. Let us write the expression of ΦH
τ, πuπ.

“

ΦH
τ, πuπ

‰

pzq :“ ´2
ż τ

0

BK1

By
pτ ´ s, z, πquπpsq ds

“ ´2
ż τ

0

ˆ

´ cothp2pτ ´ sqπ ` z

sinhp2pτ ´ sqq

˙

e´ cothp2pτ´sqq z
2`π2

2 ` πz
sinhp2pτ´sqq

a

2π sinhp2pτ ´ sqq
uπpsqds.

“ ´2
ż τ

0

ˆ

´ cothp2pτ ´ sqπ ` z

sinhp2pτ ´ sqq

˙

e´
cothp2pτ´sqq

2 pπ´zq2` 1´coshp2pτ´sqq
sinhp2pτ´sqq πz

a

2π sinhp2pτ ´ sqq
uπpsqds.
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We remind that for the heat equation, the equality

prΦτ, πfqpzq “ ´prΦτ, 0fqpπ ´ zq (5.9)

holds. It is no longer true here. However, we can make ΦH
τ, 0 appear in the above

expression of ΦH
τ, πuπ. For that, remark that the function ψ defined by ψpsq “

1´coshp2pτ´sqq
sinhp2pτ´sqq is bounded on r0, τ s. Hence writing eψpsqπz “

ř8

n“0
pψpsqπzqn

n! , we ob-
tain
“

ΦH
τ, πuπ

‰

pzq

“ ´2
ż τ

0

8
ÿ

n“0

pψpsqπzqn

n!

ˆ

´ cothp2pτ ´ sqπ ` z

sinhp2pτ ´ sqq

˙

e´
cothp2pτ´sqq

2 pπ´zq2

a

2π sinhp2pτ ´ sqq
uπpsqds

“ ´2
8
ÿ

n“0

pπzqn

n!

ż τ

0
pψpsqqn

ˆ

´ cothp2pτ ´ sqπ ` z

sinhp2pτ ´ sqq

˙

e´
cothp2pτ´sqq

2 pπ´zq2

a

2π sinhp2pτ ´ sqq
uπpsqds.

Now, since ´ cothp2pτ ´ sqπ ` z
sinhp2pτ´sqq “

z´π
sinhp2pτ´sqq ` πψpsq, it follows

“

ΦH
τ, πuπ

‰

pzq

“

8
ÿ

n“0

pπzqn

n!
2
?

2π

ż τ

0
pψpsqqn

π ´ z

sinhp2pτ ´ sqq 3
2
e´

cothp2pτ´sqq
2 pπ´zq2uπpsqds

´
?

2π
8
ÿ

n“0

pπzqn

n!

ż τ

0
pψpsqqn`1 e

´
cothp2pτ´sqq

2 pπ´zq2

a

sinhp2pτ ´ sqq
uπpsqds

“

8
ÿ

n“0

pπzqn

n!
“

ΦH
τ, 0pψ

nuπq
‰

pπ ´ zq

´
?

2π
8
ÿ

n“0

pπzqn

n!

ż τ

0
pψpsqqn`1 e

´
cothp2pτ´sqq

2 pπ´zq2

a

sinhp2pτ ´ sqq
uπpsqds

:“
8
ÿ

n“0

pπzqn

n! pApzq ´Bpzqq .

We treat these two terms separately. On the first hand, we have an oscillatory
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integral that we estimate as follows

}A}A2pDq “ }
“

ΦH
τ, 0pψ

nuπq
‰

pπ ´ ¨q}A2pDq

ď }
“

ΦH
τ, 0pψ

nuπq
‰

pπ ´ ¨q}A2pπ´∆q

“ }ΦH
τ, 0pψ

nuπq}A2p∆q

À }ψnuπ}L2p0,τq

ď }uπ}L2p0,τq}ψ}
n
L8p0,8q

On the other hand, we have an integral which converges easily. Indeed, using the
Cauchy-Schwarz inequality

}B}2A2pDq ď }uπ}
2
L2p0,τq

ż τ

0

ż

D

|ψpsq|2n`1

ˇ

ˇ

ˇ

ˇ

ˇ

e´ cothp2pτ´sqqpπ´zq2

sinhp2pτ ´ sqq

ˇ

ˇ

ˇ

ˇ

ˇ

dApzqds.

So, using that |e´ cothp2pτ´sqqpπ´zq2 | ď 1 on D, we obtain

}B}2A2pDq À }uπ}
2
L2p0,τq

ż τ

0
|ψpsq|2n`1

ˇ

ˇ

ˇ

ˇ

1
sinhp2pτ ´ sqq

ˇ

ˇ

ˇ

ˇ

ds ď }uπ}
2
L2p0,τq}ψ}

2n
L8p0,8q

ż τ

0
ψpsq

1
sinhp2pτ ´ sqqds ă 8.

Finally, we have

}ΦH
τ, πuπ}A2pDq ď

8
ÿ

n“0

π2n

n!
`

}A}A2pDq ` }B}A2pDq

˘

ď

8
ÿ

n“0

π2n

n!
`

}uπ}L2p0,τq}ψ}
n
L8p0,8q ` C}ψ}

n
L8p0,8q}uπ}L2p0,τq

˘

“ p1` Cq}uπ}L2p0,τq

8
ÿ

n“0

}ψ}L8p0,8qπ2qn

n! .

Since the last sum converges (to e}ψ}L8p0,8qπ2), the proof is complete.
Remark 5.3.4. Since the potential x2 is even, one could want to take a symmetric
interval with respect to zero. In that setting, the symmetry (5.9) holds but the
difficulty of describing the ranges of ΦH

τ,0 and ΦH
τ,π does not change.

Combining the last results, we obtain the following theorem.
Corollary 5.3.5. We have Ran ΦH

τ Ă A2pDq.

The converse inclusion is more tricky if one wants to use the same kind of argu-
ments as in the case of the heat equation. While ΦH

τ, 0 is still isomorphic, the situation
for ΦH

τ, π is more complicated and awaits further investigation.
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Chapter 6

Perspectives

In this chapter, we list few open questions that we plan to investigate in future
researches.

Trace of the Bergman space on the real axis.
We have seen in Chapter 4 that the reachable states of the heat equation are ex-

actly the functions which extend holomorphically to the square D and belong to the
Bergman space of the square D. A natural and interesting question is whether we
can get a testing condition on the segment p0, πq to know whether a C8 function
is reachable or not. In other words, can we characterize the trace of the Bergman
functions on the segment p0, πq? We have seen in Theorem 2.6.3 that such a char-
acterization has been established in [AHS90] for the half-line. For the heat equation
on p0, πq, the question is still open.

Strongly continuous semigroup on the Bergman space.
The previous question is related to another important question that we expose

now. We have seen in Section 2.1 that the (one-dimensional) Laplacian d2

dx2 generates
a strongly continuous semigroup on the Sobolev space X “ W´1,2p0, πq which is
called Dirichlet heat semigroup. It can be viewed as an obvious consequence of our
results that the range of this semigroup is contained in the Bergman space A2pDq.
We formulate now the question: can the Dirichlet heat semigroup be defined as a
strongly continuous semigroup on A2pDq? A positive answer should permit to make
work fixed-point methods and obtain controllability results for non-linear parabolic
equations. Such kind of results has been obtained in [LR95] for semilinear parabolic
equations by another way.
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Higher dimensional setting.
The question of describing the reachable space can be generalized to the n´dimensional

setting considering a bounded convex open set Ω instead of p0, πq. If a general answer
seems to be difficult to obtain for now, it seems accessible to prove results for some
particular geometries. We would like to mention that very recently Strohmaier and
Waters have made in [SW20] a big step forward giving an optimal result about the
domain of holomorphy of the reachable states.

Separation of singularities.
The separation of singularities turned out to be very efficient in the above problem

of control theory. It could also become a systematic tool in the theory of holomor-
phic functions. Hence, it seems important to develop this method on more general
domains and in higher dimensions. This last point is obviously closely related to the
reachable space in dimension n.

Internal control.
Although we mentioned it as an example in 2.2.5 or in Section 2.3, we did not treat

the case of the reachable space for internal control in the present thesis. The problem
seems trickier than for boundary control but it can be interesting to investigate this
way.

More general inputs.
Finally the question of determining the reachable states has still a sense when we

choose the control in Lp or in C8c . Partial results can be given using for example
the Paley-Wiener type theorems 1.2.14 and 1.2.4 but the converse inclusion seems
difficult to obtain without the Hilbertian setting. It would be more interesting to take
the control in L8. This would permit to obtain the result for intermediate spaces by
interpolation. Finally, it would be also natural to take the control in C0r0, τ s or in
the Gevrey class G2r0, τ s since inside of the square the solution of the heat equation
is G2 in time.

Other type of equations.
The reachable space problem holds also for other evolution equations which are not

of parabolic type as the linear Korteweg- de Vries equation or the linear Zakharov-
Kuznetsov equation. For these equations, some results can be found respectively in
[MRRR19] and [CR20].
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Appendix A

Proof of Havin’s lemma

In this appendix, we give a proof of Lemma 1.3.4. Whilst it is a key result of the
Havin proof of Aronszajn’s theorem 1.3.1, this lemma is not proved in the original
paper [Hav58] nor in the papers [Aiz14] and [MK71] which reproduce the Havin’s
proof.

First, we recall some topological generalities and introduce some notations. We
conserve the definitions given in Section 1.3. We write

Ii : XF0 Ñ XFi

for the canonical embedding given by : if f P H8pO1
n Y O2

nq then Iipfq “ f|Oin . We
remind that the topology of inductive limit on XFi is the topology generated by the
family Pi of all the seminorms p such that for every n P N, p : H8pOi

nq Ñ R` is
continuous. Also, the topology generated by the topologies induced on XF0 by XF1

and XF2 is the topology generated by the family of seminorms

P1|XF0
Y P2|XF0

.

With this in mind we can start the proof.

Proof of Lemma 1.3.4. Let us start proving that the topology generated by the fam-
ily of seminorms P1|XF0

Y P2|XF0
is included in the topology induced by the family

P0. For that, we will show that the seminorms p P P1|XF0
Y P2|XF0

belong to P0.
Without loss of generalities, we can assume that p P P1, the other case is similar.
Let n P N. By definition of p, there exists Cn ą 0 such that

ppfq ď Cn}f}H8pO1
nq
, @f P H8

pO1
nq.
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So for every f P H8pO1
n YO

2
nq, we have

ppfq ď Cn}f}H8pO1
nq
ď Cn}f}H8pO1

nYO
2
nq
,

i.e. p is continuous on H8pO1
n YO

2
nq. Hence p P P0.

Conversely, we shall prove that the topology generated by the family P0 is con-
tained in the topology generated by the family P1|XF0

YP2|XF0
. For that, it is enough

to show that every p0 P P0 is continuous from pXF0 ,P1|XF0
YP2|XF0

q to R`. So, pick
p0 P P0. By definition of p0, for every n P N there exists C 1n ą 0 such that

p0pfq ď C 1n}f}H8pO1
nYO

2
nq
, @f P H8

pO1
n YO

2
nq. (A.1)

We need now the following preliminary result: the seminorm

ρ : pXF0 ,P1|XF0
Y P2|XF0

q Ñ R`

defined by ρpfq “ C 1n}f}H8pO1
nYO

2
nq

for f P H8pO1
n Y O2

nq, is continuous. To prove
this result, it suffices to write ρ “ maxpp1 ˝ I1, p2 ˝ I2q where we have denoted by
pi : XFi Ñ R` the seminorm given by pipfq “ C 1n}f}H8pOinq for f P H

8pOi
nq. Since

the seminorms pi are clearly continuous, ρ also is. Therefore the inequality (A.1)
becomes

p0pfq ď C 1n}f}H8pO1
nYO

2
nq
“ ρpfq, @f P H8

pO1
n YO

2
nq,

which means that p0 ď ρ onXF0 . Hence p0 is also continuous from pXF0 ,P1|XF0
Y P2|XF0

q

to R`.
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Appendix B

Dominating sets and sampling
constants

During my PhD, I have also worked on another kind of problems in collaboration with
Andreas Hartmann, Dantouma Kamisso and Siaka Konate. This work constitutes
a part of the PhD thesis of Siaka Konate. Here, I shall resume it briefly. For more
details, the interested reader can refer to Siaka Konate’s thesis and to the paper
[HKKO20].

A challenging question for complex and harmonic analysts is whether we can
recover the norm of an analytic function from its values on a sequence (sampling)
or on a set (dominating sets). Both settings are particular cases of reverse Carleson
measures (see [FHR17]) and they have wide applications in signal theory or control
theory.

The most famous result concerning dominating sets is probably due to Logvi-
nendo, Sereda [LS74] and Panejah [Pan66] and has been stated on the Paley-Wiener
space (see Section 1.2 for a definition). In this setting, a set E is said dominating for
the Paley-Wiener space if there exists C ą 0 such that for every f P PWπ we have

}f}2PWπ
:“

ż

R
|fpxq|2dx ď C

ż

E

|fpxq|2dx.

The Logvinenko-Sereda-Panejah result said that E is dominating for PWπ if and
only if there exists γ, r ą 0 such that for every x P R, |E X rx ´ r, x ` rs| ě γr. In
that case, we say that E is relatively dense.

The inequality of domination above can be viewed as a form of uncertainty prin-
ciple and several variants of Logvinenko-Sereda-Panejah inequality have been proved
useful in the very last years in control theory (see e.g. [LM19],[GJM19], [ES20],
[EV20]).
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The characterization of the dominating sets is known in other spaces of analytic
functions like Fock spaces, Model spaces or Bergman spaces, and also relies to relative
density type properties. Let us recall how the question is stated on Bergman spaces.

Let D be the open unit disc of the complex plane. The weighted Bergman space
Ap,αpDq consists of all the holomorphic functions on D which satisfy

}f}pAp,α :“ pα ` 1q
ż

D
|fpzq|pp1´ |z|2qαdApzq ă `8

where dA denotes the normalized planar Lebesgue measure. We say that a measur-
able set E Ă D is dominating for the (weighted) Bergman space Ap,αpDq if there
exists C ą 0 such that for every f P Ap,αpDq,

}f}pAp,α :“ pα ` 1q
ż

D
|fpzq|pp1´ |z|2qαdApzq ď Cp

pα ` 1q
ż

E

|fpzq|pp1´ |z|2qαdApzq.

Dominating sets in AppDq have been completely characterized by Luecking in [Lue81]
as the sets which are relatively dense. In this special geometric setting, this means
that there exists γ ą 0 and r ą 0 such that

@z P D,
|E XDphbpz, r0q|

|Dphbpz, r0q|
ě γ

where
Dphbpz, rq “ tw P D; |ρpz, wq| ă ru

is the pseudohyperbolic disc of center z P D and radius 0 ă r ă 1, and

ρpz, wq “

ˇ

ˇ

ˇ

ˇ

z ´ w

1´ z̄w

ˇ

ˇ

ˇ

ˇ

is the pseudohyperbolic distance.
Having precise estimates on the sampling constants C is important in applications

when one has to decide on the trade-off between the cost of the sampling and the
accuracy of the estimates. It is also important that the constant is small enough to
be useful in control theory.

In 2000, Kovrijkine [Kov01] considered the Paley-Wiener space and gave a precise
and optimal estimate on C in function of the density γ. His method is based on
Remez-type inequalities, and Bernstein’s inequalities which hold in the Paley-Wiener
space. Bernstein’s inequalities are known are no longer true in Bergman spaces or
Fock spaces.

In the work [HKKO20] in collaboration with Andreas Hartmann, Dantouma
Kamissoko and Siaka Konate, we gave an estimate on C in function of γ and r
in the case of the Bergman spaces Ap,αpDq. Our main result is the following
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Theorem B.0.1. Let 1 ď p ă `8. There exists L such that for every measurable
set E Ă D which is pγ, rq-dense, we have

}f}Lp,αpEq ě
´γ

c

¯L

}f}Ap,α

for every f P Ap,α.

The constants c and L depend on r. For L we can choose

L “ c1
1` α
p

1
p1´ rq4 ln 1

1´ r ,

where c1 is some universal constant.
To obtain this result, we used planar Remez-type inequalities established by An-

drievskii and Ruscheweyh and we avoid Bernstein’s inequalities defining "good" disks.
Our method is quite general and can be used for other spaces.
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