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General Introduction

Currently, the weight lightening of aeronautical structures is a major industrial issue,
especially in terms of environmental impact. In order to reduce greenhouse gas emissions,
aeronautical structures must be lightened to lower engine fuel consumption. The use
of bonding as an assembly technique makes it possible to meet this need for weight
savings. Indeed, compared to more conventional methods such as welding or riveting,
adhesive bonding has many advantages. First of all, it does not require the addition of
rivets, which adds weight to the structure. Second, no drilling, synonymous of stress
concentration, must be performed in the parts to be assembled. Adhesive bonding then
ensures a better distribution of stresses between the assembled structures; this guarantees
a more homogeneous transmission of mechanical loads. Furthermore, it is one of the
most efficient techniques for assembling composite material structures that address the
objective of a high strength-to-weight ratio.

Although bonding has many advantages over more conventional techniques (riveting,
welding, etc.), to date there is a lack of nondestructive methods for quantifying and
certifying the mechanical strength of adhesively bonded assemblies. This lack therefore
presents real safety and certification issues with air agencies such as the Federal Aviation
Administration (FAA) or the European Aviation Safety Agency (EASA). Hence, a signif-
icant interest must be focused on the development of nondestructive evaluation (NDE)
methods of bonded aeronautical assemblies. This would make it possible to remove one of
the last technological locks currently limiting the development of this assembly technique
in the aeronautical industry.

Over the last fifty years, a significant number of nondestructive methods have been
investigated and reported in the literature concerning the NDE of adhesive bonding.
Among the wide range of developed techniques in this field, such as those based on infrared
thermography or laser-generated shock waves, ultrasonic methods are of particular interest
as elastic waves interact mechanically with the bonding without damaging it. These
methods can be classified into two principal categories depending on whether they are
based on bulk acoustic waves or guided waves. First, ultrasonic methods using bulk
acoustic waves are of real interest because these elastic waves are propagating in the
volume of the inspected structure. In conventional pulse-echo technique, the reflection of
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bulk waves from a defect, such as void, allows its detection and localization because of the
high impedance mismatch between the solid medium and the defect (air in the case of a
void). However, there is not a clear impedance discontinuity between bonding defects and
the propagation medium, which complicates the direct application of this conventional
technique to bonded assemblies. Thus, more advanced methods are investigated to detect
the signature of bonding defects in reflected or transmitted ultrasonic signals. Secondly,
other ultrasonic methods based on guided waves are studied for the NDE of adhesive
bonding. Shear horizontal modes or Lamb modes can be used to obtain an averaged
evaluation of the bonding quality along the propagation path of the guided waves. For a
better defect localization, zero-group-velocity (ZGV) Lamb modes, which are sharp local
resonances at well-defined frequencies, are of real interest for the NDE of adhesive bonding.
In addition, these modes can be generated and detected by laser, allowing non-contact
measurements particularly well suited for industrial applications.

In this PhD thesis, laser ultrasonic methods are investigated for the NDE of bonded
aeronautical assemblies. The aim of this work is to develop nondestructive methods to
identify quantitative parameters that are related to the mechanical strength of bonded
structures. For this purpose, the propagation of laser-generated and detected elastic waves
in bonded assemblies are studied. To generate ultrasounds, a pulsed laser source is used in
the thermoelastic regime in order not to locally degrade the surface of the inspected sample
(contrary to the ablation regime). The detection of ultrasounds is then performed with an
interferometric method to measure the normal displacement of a free surface. The main
advantages of such laser generation and detection of ultrasounds are: (i) the broadband
content of elastic waves that are generated and detected (frequencies between ∼1 MHz
and 40 MHz), (ii) the possibility to design the shape of the laser source (point source, line
source, ring source, etc.) to favor the generation of desired elastic waves in the medium
and (iii) the contactless nature of the measurement which is a main advantage compared
to conventional ultrasonic techniques, such as contact measurements with piezoelectric
transducers. One of the drawbacks concerning thermoelastic laser sources is the relatively
low value of signal-to-noise ratio (SNR). However, this can be easily improved by averaging
the detected signals over several acquisitions due to the high reproducibility of laser-
ultrasound measurements. Therefore, laser ultrasonic methods are great tools for the
NDE of materials, and especially the NDE of bonded assemblies in an industrial context.

The outline of this PhD dissertation is given as follows. In Chap. 1, a literature review
concerning the NDE of adhesive bonding is presented. First, bonding defects that degrade
the quality of bonded assemblies are reported and a preliminary overview of destructive
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and nondestructive evaluation methods, such as infrared thermography or laser-generated
shock waves, is given. Secondly, linear ultrasonic methods, using bulk or guided waves,
and non-linear approaches are presented and discussed.

In Chap. 2, a semi-analytic 2D model to simulate the propagation of laser-generated
elastic waves in a multilayer structure, that can model a bonded assembly, is described.
The electromagnetic, thermal and elastodynamic problems are successively solved to
model the optoacoustic source in the thermoelastic regime and to simulate the propa-
gation of elastic waves in the structure. The optical penetration of the incident tilted
laser line source, as well as thermal conduction and convection phenomena, are consid-
ered. This semi-analytic model allows to obtain fast and accurate results to solve the
direct problem, i.e., to obtain the displacement field in the structure where the electro-
magnetic, thermal and mechanical parameters are known. Then, this model is at the
basis of the developed method presented in the next chapter where inverse problems are
solved using the propagation of bulk acoustic waves in bonded assemblies.

In Chap. 3, a laser ultrasonic method is proposed and is based on the reflection of
elastic plane waves from the bonding interface. Although laser-generated plane waves are
experimentally feasible, these techniques are difficult to achieve in practice. Hence, a post-
processing method which allows to synthesize the amplitudes of the reflected plane waves
for several angles of incidence with respect to the bonding interface is used. Then, inverse
problems are solved, using the semi-analytic model presented in Chap. 2, to identify the
normal and transverse interfacial stiffnesses (KN , KT ) that model the mechanical coupling
between two bonded media. The developed method is first validated with semi-analytic
simulated input data where Gaussian noise has been added. Next, the method is applied
using signals acquired on an aluminum alloy plate (Al) and on two bonded assemblies
Al/Epoxy/Al (with and without adhesion defects), made with an aeronautical structural
epoxy adhesive film. The identified values of KN and KT enable to distinguish the three
samples and to obtain quantitative values of these two key parameters characterizing the
adhesive bonding.

In Chap. 4, another approach is proposed for the NDE of structural adhesive bond-
ing. The developed method uses the attenuation of ZGV Lamb modes. Experimental
investigations are carried out with five trilayer assemblies composed of two asymmetric
aluminum alloy plates bonded with an epoxy adhesive. ZGV resonances are generated
and detected in these bonded samples where cohesive and adhesive defects were intro-
duced to degrade the practical adhesion. The attenuation of the temporal signal of ZGV
resonances are found to provide sufficient information to discriminate between strong
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and weak bonding. Two metrics characterizing the attenuation are identified and allow
to evaluate quantitatively the differences between the manufactured samples. Finally, a
2D scan of a trilayer assembly with different bonding defects demonstrates the imaging
capability of this all-optical NDE method.

Last but not least, a conclusive part is ending this PhD thesis with a general sum-
mary of the main obtained results promoting the ability of laser ultrasonic techniques to
help evaluating/characterizing bonded assemblies in industrial contexts. The perspectives
of the results presented in the PhD dissertation are eventually discussed together with
the already achieved steps towards the successful realization of those ideas mixing laser
ultrasonics, non-linear acoustics and optical shaping techniques.
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Abstract

A literature review is presented concerning the nondestructive evaluation (NDE) of
adhesive bonding. In the first section, definitions and terminologies related to adhesive
bonding are reported. The terms: structural bonding, adhesion, adherence, (etc.) are
notably introduced. Then, the bonding defects that degrade the quality of bonded assem-
blies are listed and classified. Next, destructive tests allowing to quantify the mechanical
strength of bonded structures are provided and a preliminary overview of NDE methods,
such as infrared thermography or laser shock techniques, is given. In the second sec-
tion, NDE approaches based on ultrasonic methods are presented and discussed. Linear
ultrasonic methods, using bulk and guided waves, and non-linear methods are described.
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1.1. Introduction

1.1 Introduction

In this chapter, a state-of-the-art is provided concerning the scientific work carried out
on the nondestructive evaluation of bonded assemblies. This literature review is divided
into two main sections. In the first one, definitions and terminologies related to adhesive
bonding are given. Then, the defects likely to degrade the quality of bonded assemblies are
presented. Next, destructive tests allowing to quantify the mechanical strength of bonded
structures are introduced. Sec. 1.2 ends with an overview of nondestructive testing and
evaluation (NDT&E) methods of bonded assemblies such as infrared thermography, laser
shock techniques, etc. In the second section, NDE approaches based on ultrasonic methods
are studied. First, linear methods using bulk waves and then guided waves are given.
Finally, non-linear ultrasonic methods are exposed: harmonic generation, non-collinear
waves mixing, phase modulation, etc.

1.2 Adhesive bonding: definition, terminology, defects

and evaluation methods

Numerous methods can be used to join mechanical structures, such as riveting or weld-
ing. The assembly method studied in this bibliographical review is adhesive bonding.
In part 1.2.1, the terminology used in this field is detailed to define the terms of adhe-
sion, cohesion, etc. Then, defects encountered in bonded assemblies are introduced. In
part 1.2.2, an overview of the destructive/nondestructive methods for evaluating adhesive
bonding is reported.

1.2.1 Definition, terminology and bonding defects

Definition and terminology

Adhesive bonding is a technique for firmly joining materials (substrates) together using
an adhesive. As defined by Cognard,1 the term structural bonding is used when the
mechanical strength of the bond is of the order of magnitude of the substrates being
assembled. This kind of bonded assembly must be durable over time and must be able
to withstand high mechanical loads. Chataigner2 specified that a bond may be qualified
as “structural” when it is used in parts of the structure that are critical to its mechanical
functioning. In aeronautics, structural bonding is especially used for the assembly of parts
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constituting the primary (“vital”) structure of the aircraft. Structural bonding therefore
requires high performance adhesives in terms of mechanical strength, heat resistance, etc.
For instance, epoxy resin-based adhesives are generally used in the aeronautical industry
to manufacture such bonding.3

As previously mentioned, a bonded assembly is composed of substrates (metal, com-
posites, etc.) and an adhesive (epoxy, polyurethane, cyanoacrylate, etc.). The aim of this
part is not to present the various theories of adhesion to explain the physico-chemical
phenomena involved in bonding (mechanical anchoring, diffusion theory, thermodynamic
theory, etc.),4,5 but rather to recall the terminology that is used subsequently to present
the defects encountered in a bonded assembly, as well as the methods for testing and
evaluating it.

First, it is necessary to define the terms cohesion and adhesion. Dufour3 indicated that
these are two properties which have a direct impact on the reliability and mechanical
strength of a bonded assembly. Cohesion is the term used to designate the forces of at-
traction (ionic, covalent, metallic, hydrogen, Van der Waals)6 which unite the constituent
elements of a medium together, to enable it to resist external mechanical stresses. Ac-
cording to the definition given by Cognard,7 adhesion is the set of interactions that occur
during contact between two surfaces. In the case of a bonded assembly, the term cohesion
is generally used to refer to the adhesive. The term adhesion is used to designate the
physico-chemical interactions that occur between the substrate and the adhesive.

Secondly, it is also important to define the terms interface and interphase. As Coulaud8

pointed out, a distinction must be made between these two terms. The interface is
defined as the common surface of two materials in intimate contact; its thickness is equal
to zero. This surface delimits the boundary that exists between these two media with
different mechanical and/or physico-chemical properties. However, in the case of a bonded
assembly, there is no abrupt rupture of properties between one of the substrates and the
adhesive. In reality, the adhesion between two substrates does not occur along a surface
(interface) but in a certain volume called interphase. This volume is a transition zone of
non-zero thickness. The interphase can have a gradient of properties (physical, chemical
and mechanical) and does not admit well-defined boundaries. In other words, the interface
is equivalent to simplifying the interphase by considering that the transition zone between
the two bonded media is of zero thickness.

Finally, a clear distinction must be made between the notions of adhesion and adher-
ence (also called practical adhesion).9 Adhesion, as already mentioned, refers to the set of
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fundamental interactions that occur during contact between the substrate and the adhe-
sive.7 Thus, the term adhesion refers to the physico-chemical mechanisms that lead to the
creation of an interphase.10 On the other hand, the term adherence (or practical adhesion)
characterizes the force or energy required to successfully separate two bonded substrates.
Therefore, adherence relates to the mechanical strength of the bonded assembly. Hence,
these two terms do not have the same meaning and it is the adhesion that leads to the
adherence.

The definition of structural bonding and the terminology used in this field (cohesion,
adhesion, adherence, interface, interphase) have been defined. The defects encountered in
bonded assemblies and the types of failure caused by them are reported in the following.

Presentation of bonding defects

A large number of articles deal with the presentation and classification of bonding
defects.11–15 These classifications may vary from one paper to another. A diagram illus-
trating the different types of defects, that can degrade the quality of a bonded assembly,
is given in Fig. 1.1. The classification of the different bonding defects that is used in this
part is the one given by Jiao and Rose.16 According to these two authors, these defects
can be divided into three main categories: debonding, cohesive weakness and interface
weakness.

Firstly, debonding refers to voids and complete separations between one of the substrates
and the adhesive. Secondly, cohesive weakness indicates voids, porosities, or cracks that
can be found within the adhesive layer. Thirdly, the last kind of defect is the interface
weakness between the substrate and the adhesive, which can be divided into two cate-
gories: weak adhesive bond and kissing bond. Concerning the weak adhesive bond, this
defect causes a mechanical strength of the bonded structure that is below the one expected
by the specifications. This defect of adhesion is to be distinguished from the kissing bond.
Indeed, the definition of this other defect is presented in many scientific articles16–20 and
its definition can vary from one author to another. Nagy18 and Wood et al.20 define the
kissing bond as two surfaces in close contact but not (or very weakly) bonded to each
other. Mechanical strength is therefore practically non-existent for bonded assemblies
with this kind of defect. Jiao and Rose16 define the kissing bond as a perfect contact in
the normal direction with respect to the interface between two solid media (continuity of
the normal stress and displacement). However, no shear stress can be transmitted from
one solid to another at the interface. According to the authors, the kissing bond can be
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Figure 1.1 – Types of defects encountered in a bonded assembly. Fig. taken from
Ref. 14.

represented by an ideal mathematical model but does not exist in real structures. Broth-
erhood et al.21 define this defect as two surfaces linked to each other, regardless of the
nature of the link (slip bonds, partial bonds, etc.). Thus, this term potentially encom-
passes all adhesion defects, including the weak adhesive bond. Marty et al.22 indicate that
the kissing bond may have various origins (surface contamination, moisture infiltration,
etc.). In addition, the authors propose three criteria to qualify this defect. For instance,
one of the criteria is that the mechanical shear strength of the bonded assembly must be
less than 20% of its nominal value.

The three types of bonding defects, previously introduced,16 result in several bonded
assembly failure modes: cohesive, adhesive and mixed failures (as represented in Fig. 1.2).
Cohesive failure occurs in the adhesive layer, as shown in Fig. 1.2(a), and can be induced
by cohesive defects such as those presented above (voids, porosities, cracks, etc.). In this
case, the practical adhesion between the substrate and the adhesive is higher than the
cohesive strength of the adhesive, which means that the bonding has been performed
correctly. The adhesive failure takes place at the interface between the adhesive and the
substrate [Fig. 1.2(b)]. It means that the bonding has been poorly manufactured because
the adhesion between one of the substrates and the adhesive is weaker than the cohesion
of the adhesive. This failure can be caused either by debonding defects or by adhesion
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defects. Finally, mixed failure is a combination of these two types of cohesive and adhesive
failures [Fig. 1.2(c)]. In fact, a rupture can be initiated in the adhesive and then propagate
to the adhesive/substrate interface (and vice versa).

(a) (b) (c)

Substrate

Substrate

Substrate

Substrate

Substrate

Substrate

Cohesive failure
Adhesive failure

Mixed failure

Figure 1.2 – Illustration of the three failure modes: (a) cohesive failure, (b) adhe-
sive failure and (c) mixed failure. Fig. taken from Ref. 10 (translated from French
to English).

The bonding defects and the failure modes have been introduced. To control/evaluate
bonded structures, an overview of destructive and nondestructive methods is presented
hereafter.

1.2.2 Overview of destructive and nondestructive evaluation meth-

ods of adhesive bonding

Defects encountered in bonded assembly can have dramatic consequences on the in-
tegrity of the structure. Indeed, different types of failure modes (adhesive, cohesive,
mixed) are induced by bonding defects, as introduced previously. Hence, it is essential
to be able to control, after the manufacturing process or during maintenance stages, the
integrity of bonded assemblies. First of all, some destructive methods that allow to quan-
tify the mechanical strength of bonded assemblies are presented. Then, a preliminary
overview of nondestructive methods is given.

Destructive mechanical tests

In order to quantify the practical adhesion, i.e., the mechanical strength of the bonded
assembly, numerous standardized destructive tests (ISO, a ASTM, b AFNOR, c etc.) have

a. International Organization for Standardization: URL link [Accessed on 09/18/2020].
b. American Society for Testing and Materials: URL link [Accessed on 09/18/2020].
c. French Standardization Association: URL link [Accessed on 09/18/2020].
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been developed. The objective of this part is to present a general overview of these
various destructive mechanical tests. Interesting introductions and studies concerning
destructive tests are presented in the PhD theses of De Barros,23 Joannes,24 Mario,25

Gay,26 Chauffaille5 and Dufour.3 In addition, in-depth studies of the different mechanical
tests applied to structural adhesive bonding are given by Gleich27 and also by Mays
and Hutchinson.28 According to Petit et al.,29 a real practical adhesion test is the one
that causes a rupture of the substrate/adhesive interface and allows to quantify the force
or energy of separation. The most commonly used destructive mechanical tests for the
characterization of bonded assemblies are (non-exhaustive list):

— the peel tests;
— the cleavage tests;
— the standard shear, flexural, torsional and tensile tests;
— the tests with Arcan mountings30 (single or mixed tensile solicitations, shear stress,

compression-shear stress);
— the dynamic tests with Hopkinson bars.
First, the peel tests, described by Cognard,7 Fortier et al.31 and also Moore,32 aim

to obtain the peeling force necessary to separate two substrates by considering different
imposed conditions of angle and speed, as shown in Fig. 1.3. Several types of peel tests
can be used depending on the stiffness of the bonded substrates: 90◦ peel in “L” (soft
substrate on rigid substrate), 90◦ peel in “T” (soft substrate on soft substrate), etc. The
measured peeling force can then be related to the fracture energy (unit: J m−2 equivalent
to N m−1). The fracture energy is “the force that must be applied per unit width of adhesive
to cause fracture” (translation of the original quote d from Cognard7). For example, in the
case of a peel test involving the bonding of a thin substrate to a rigid substrate, Kendall’s
formula33 relates the peeling force to the fracture energy.

The cleavage tests are used to quantify the mechanical strength of a bonded assembly
when failure is localized at the substrate/adhesive interface. These tests, as precised by
Petit et al.,29 are studied according to an approach based on fracture mechanics. They
can be classified in two categories: those with an imposed force [example: Double Can-
tilever Beam (DCB)] and those with an imposed displacement (example: wedge cleavage).
Illustrations of these two examples of cleavage tests are provided in Fig. 1.4.

Many standardized shear, flexural, torsional and tensile tests of adhesive bonding can
be performed and some of them are presented below. To measure the shear mechanical
strength of a bonded assembly, single and double lap shear tests can be performed as

d. Ref 7, p. 62: « la force qu’il faut appliquer par unité de largeur d’adhésif pour provoquer la rupture ».
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variable angle 180° with or 
without roller

90° in L or in T roller peeling

flexible

rigid 

support

Figure 1.3 – Peel tests: presentation of the different geometries. Fig. taken from
Ref. 7 (translated from French to English).

shown in Fig. 1.5(a) and Fig. 1.5(b), respectively. Indeed, the bonded substrates are
mechanically loaded with a tensile machine to generate shear stresses along one or two
overlapping areas. A double lap shear test, rather than a single one, is preferable to
prevent substrates from bending during loading. Indeed, such a bending of the substrates
creates tensile stresses at the ends of the overlap area, in addition to shear stresses,
which complicate the mechanical loading of the bond. In addition, for destructive tests
designed to apply tensile stress to adhesive bonding, there is the butt joint test consisting
of mechanically loading two bonded substrates using a tensile machine.28 In the literature,
there is also the scarf joint test which combines tensile and shear stresses by imposing a
certain angle between the bond interface and the direction of the mechanical loading.3,34

Tensile, shear and compression loads can be applied to the bond with a destructive test
carried out on the Arcan mounting. This device was initially developed by Arcan30 in
1978. It was then modified and improved, notably by Cognard.36 The Arcan mounting was
used by Alfonso,35 especially to study metal/metal or metal/composite bonded assemblies.
As represented in Fig. 1.6, the modification of the loading angle allows to generate different
kind of stresses in the bonding. Moreover, according to Alfonso,35 the mechanical tests
carried out on this mounting make it possible to limit the edge effects compared to more
traditional methods, such as those presented previously. To conclude this non-exhaustive
list, dynamic tests on bonded assemblies have been conducted using Hopkinson bars.

13
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(a) (b)
Substrates Adhesive

Adhesive

Figure 1.4 – Cleavage tests: (a) the Double Cantilever Beam (DCB) test consisting
in imposing a mechanical loading (applied forces symbolized by arrows) and (b)
the wedge cleavage test consisting in imposing a displacement to generate the
rupture of the bonded assembly. Fig. taken from Ref. 29 (translated from French
to English).

(a)

(b)

Substrate

Adhesive

Alignment blocks

Figure 1.5 – Standardized tests of type: (a) single lap shear and (b) double lap
shear. Fig. taken from Ref. 3 (translated from French to English).

Experimental and/or modeling work have been carried out notably by Sassi,37 Bourel,38

Challita39 and Janin.40

The main destructive tests to measure the mechanical strength of bonded assemblies
have been introduced. Nondestructive methods for testing and evaluating bonded struc-
tures are now reported in the following.

Nondestructive methods

Nondestructive methods can be used to test and evaluate bonded assemblies after the
manufacturing process or during maintenance operations. NDE methods have been widely
studied in the literature. Many bibliographical reviews have been written by authors such
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Figure 1.6 – Representation of the Arcan mounting for different angular positions
to induce tensile, shear and compressive stresses in the adhesive bonding. Fig.
taken from Ref. 35.
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as Guyott et al.,11 Light et al.,41 Adams et al.,12,13,42 Ehrhart et al.14 and Bode et al.43 In
addition, a large number of PhD theses contain bibliographical studies that cover numer-
ous NDE methods to evaluate adhesive bonding: Pialucha,44 Ecault,45 Michaloudaki,46

Lourme,47 Le Crom - Levasseur,48 Baudot,49 Ehrhart,50 Siryabe,10 and Zabbal.51 The
objective of this section is to give an overview of existing methods for non-destructively
evaluating bonded assemblies. First of all, three main types of methods are presented.
First, techniques that take advantage of the rather low-frequency resonances (up to a few
tens of kHz) of the structure are introduced (tap test, membrane resonance). Secondly,
infrared thermography methods (vibrothermography, pulsed thermography, lock-in) are
presented. Thirdly, laser shock techniques, used to quantify the mechanical strength
of a structural bond, are studied [Laser Bond Inspection (LBI), Laser Adhesion Test
(LASAT)]. Finally, other methods that can be found in the literature, in particular to
detect disbonds, are briefly introduced. Concerning the ultrasonic NDE methods (linear
and non-linear), these are presented in detail in Sec. 1.3.

Firstly, methods based on structure resonances at relatively low frequencies (up to a few
tens of kHz) are generally referred to in the literature as sonic vibrations.11,13,42 The most
common one in the industry and the easiest to implement is the tap test.52 This technique
consists of impacting a structure with a calibrated hammer. If the frequency emitted after
impact is different from the reference measurement made on a healthy structure then a
void or a disbond can be detected. Indeed, the modification of the local stiffness of the
structure, caused by a defect located close to the surface, leads to a change in the resonant
properties of the sample. This control method remains qualitative, local (in generation
and detection) and relative (need for a reference acquisition on an undamaged structure).
Other methods based on structure resonances have been grouped together, notably by
Guyott et al.,11 under the name of membrane resonance. The general idea is that the
structure won’t vibrate in the same way in places with or without disbonding. Indeed,
the substrate above a disbond can be modeled as a disc, bound to the rest of the structure
by certain boundary conditions, which has a resonant frequency different from that of the
whole structure. The objective of this method is therefore to vibrate the structure at low
frequencies and to succeed in detecting the resonance frequencies characteristic of defects
(disbonds, voids). Commercial systems exploiting this phenomenon were developed before
the 1990s: Fokker Bond Tester, Harmonic Bond Tester developed by Boeing.11,53,54 How-
ever, methods based on structural resonances do not allow the detection of small defects
because the frequencies used are relatively low (up to a few tens of kHz). Moreover, these
methods are limited to the detection of voids, disbonding55 but do not allow to quantify
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the mechanical strength of bonded structures.
Secondly, many papers have been written on infrared thermography methods for non-

destructive testing. In particular, there is a detailed literature review by Ciampa et al.56

on NDT methods applied to aerospace structures. Three main techniques can be distin-
guished according to the type of heat flow generation and detection: vibrothermography,
pulsed thermography and lock-in thermography. These are all active and not passive ther-
mography methods as they require external heat flow generation. In vibrothermography,
the generation of this flow is achieved by vibrating the structure. These mechanical
vibrations dissipate energy into heat.57,58 This heat flux is then detected using an in-
frared camera. Gao et al.59 has used this technique to detect cracks in the fan blades of
aircraft engines. Zhu and Guo60 were able to visualize disbonds in a bonded assembly
(aluminum/cork) using vibrothermography. Rantala et al.61 used this technique to detect
voids, cracks and also to evaluate the quality of a CFRP/CFRP (Carbon Fiber Rein-
forced Polymer) bonded assembly. Pulsed thermography differs from vibrothermography
by the fact that the heat flow is not generated by mechanical vibrations but by strong
light pulses that heat the surface of the part by photothermal effect.62,63 Flash or halogen
lamps can be used to generate this heat flow. The pulse duration can vary from a few
hundred microseconds to a few tens of milliseconds depending on the thermal properties
of the materials inspected and the depth of the imperfections to be examined.56 Then,
an infrared camera is used to measure the surface temperature of the part in order to
detect possible defects. Indeed, temperature gradients can be caused by discontinuities in
thermal conduction due to voids, disbonds or porosities within the controlled structure.
Lock-in thermography consists in generating the heat flow no longer by a high intensity
light pulse (pulsed thermography) but by an amplitude modulation of this light energy as
a function of time. This allows to generate thermal waves of different frequencies within
the medium to be controlled. Scientific work has been carried out on bonded assemblies
using this type of thermographic methods.64–66 However, infrared thermography does not
currently make possible to quantify the mechanical strength of a bonded structure, but
allows to inspect the parts for finding defects such as cracks, voids, etc. For example, in
2017, the Safran group inaugurated an automated NDT process called “IRIS” (Infra Red
Inspection System) e which used infrared thermography. This device allowed the inspec-
tion of composite panels with complex geometries, large sizes (3 to 12 m2) and variable
thicknesses.

e. Automated NDT solution using infrared thermography (IRIS): URL link [Accessed on 08/05/2020].
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Third, a promising method for quantifying the mechanical strength of bonded assem-
blies is laser shock. This technique is based on the generation of a shock wave in the
material by a laser pulse of very high energy (above 10 J per pulse67) and duration of a
few nanoseconds. This laser pulse creates a plasma on the surface of the material which,
by expanding under pressure, generates a shock wave in the medium. This generation
can be carried out either in direct irradiation [Fig. 1.7(a)], or in confined regime [confine-
ment of the plasma by a layer of water as shown in Fig. 1.7(b)]. A significant amount
of research has been conducted from the early 1980s to evaluate the mechanical strength
of bonded assemblies with laser-generated shock waves. Two technologies, based on the
same principle, can be cited:

— Laser Bond Inspection (LBI) developed by LSP Technologies and Boeing; f

— LASer Adhesion Test (LASAT). g

The LBI technology is commercialized by LSP Technologies and allows to detect weak
adhesive bonds. Nevertheless, this method requires to glue on the surface of the structure
an EMAT sensor and a protective film. h The operator must then press the inspection
head onto the surface before performing the laser shock measurement. According to
the designer, this method alows to distinguish between good and bad bonding. LASAT
technology is also based on the generation of a laser shock wave. A literature review,
written by Berthe et al.,68 gives an interesting overview of this technology. It can be
used either to quantify the practical adhesion of a coating deposited on the surface of
a material, or to quantify the mechanical strength of a bonded assembly. Several PhD
theses have been conducted on this topic: Ecault,45 Fabre,69 Ehrhart14 and Bardy.70 In
2018, Ducousso et al.67 successfully applied this laser shock technique to quantify the
mechanical strength of bonded aeronautical assemblies (TA6V4/epoxy/3D woven com-
posite). The LASAT technology is therefore interesting because it strongly stresses the
bonded assembly to test its mechanical strength. However, it must be ensured that this
method remains nondestructive (does not degrade the substrates and the adhesive) when
used to quantify the practical adhesion of a bonded assembly.

Finally, in the scientific literature, there are still many other methods than those pre-
sented so far to try to non-destructively control adhesive bonding. Especially, it is possible
to cite the techniques of holography,71 shearography,72 acoustic emission73 or radiography

f. LSP Technologies: URL link [Accessed on 08/05/2020].
g. Demonstration video of the LASAT at the Process and Engineering in Mechanics and Materi-

als (PIMM) laboratory (2018): URL link [Accessed on 09/09/2020].
h. Demonstration video of the LBI method developed by LSP Technologies (2014): URL link [Accessed

on 08/05/2020].
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(a) (b)

Figure 1.7 – Generation of a laser shock in: (a) direct irradiation and (b) confined
regime. Fig. taken from Ref. 68.

methods (X-ray or γ).74,75 These methods can be used to detect disbonds, but none of
them has yet been able to quantify the mechanical strength of a bonded structure.

An overview of NDE methods for inspecting bonded assemblies was presented (infrared
thermography, laser shock, etc.). It can be noted that a significant amount of scientific
work has been carried out on this topic over the last few decades. This scientific activ-
ity reflects the major interest in finding a nondestructive method for inspecting bonded
structures. In the next section, the ultrasonic NDE methods are detailed.

1.3 Ultrasonic nondestructive evaluation methods for

bonded structures

A large number of nondestructive methods have been presented previously for testing
and evaluating bonded assemblies. Ultrasonic methods are detailed in this section. In-
deed, elastic waves are good candidates for testing bonded structures because of their
mechanical interactions with the adhesive bonding. Ultrasonic NDE methods can be per-
formed either in contact with the assembly to be inspected or non-contact. For contact
methods, generation and detection are most commonly performed by one or more piezo-
electric transducers (single or multi-elements) that are held in contact with the surface
through a coupling liquid or gel. This ensures good ultrasound transmission between
the transducer and the medium to be controlled. For non-contact methods, several tech-
niques can be used. The first concerns the generation and detection of ultrasound in
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immersion. The transducers and the part to be controlled are immersed, totally or par-
tially, in a tank usually filled with water. The second brings together methods using
air-coupled transducers for generation and/or detection. The third includes techniques
using ElectroMagnetic Acoustic Transducer (EMAT) transducers that allow ultrasound
to be generated or detected in materials that must necessarily be electrically conductive.
Finally, the generation and detection of ultrasound can be performed with lasers.

In the following, methods based on linear bulk waves and then on guided waves are
presented. Next, non-linear ultrasonic methods are introduced (harmonic generation,
mixing of non-collinear waves, etc.).

1.3.1 Linear ultrasonic nondestructive evaluation methods using

bulk waves

For the ultrasonic inspection of bonded structures, nondestructive methods using bulk
waves have been widely studied in the literature. The conventional NDT techniques
in pulse-echo or pitch-catch modes, which are usually used to detect cracks or voids in
parts, are difficult to apply for the detection of cohesive and adhesive defects in bonded
structures. Indeed, these methods are efficient when there is a high impedance ratio
between the medium where the wave propagates and the defect; which is not necessarily
the case for bonded assemblies. For this reason, much work has been carried out to try
to modify and adapt these methods to the NDE of adhesive bonding.

First, approaches using pulse-echo methods for monitoring bonded structures are pre-
sented. Then, pitch-catch methods in transmission (generation and detection on both
sides of the assembly to be inspected) and in reflection (generation and detection on the
same side) are introduced.

Pulse-echo

Pulse-echo methods generally involve generating and detecting ultrasound at normal in-
cidence, relative to the surface, with a single transducer. Usually, these methods are used
to detect defects such as voids, open cracks oriented parallel to the surface, etc. The calcu-
lation of the time of flight then allows to locate the defect knowing the propagation veloc-
ities of the elastic waves in the medium. This conventional approach is not directly appli-
cable to the inspection of bonded assemblies. Numerous works have therefore been carried
out to improve this technique for the NDE of adhesive bonding, in particular with contact
methods.76–80 For instance, Tattersall76 used all the information contained in the reflected
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signal (amplitude, phase) and not just the presence or absence of a reflected signal, as it is
done in conventional pulse-echo techniques. Chang et al.77 studied the frequency spectra
of signals measured in the pulse-echo mode on single-coated aluminum bonded specimens
with different mechanical properties. Mojškerc et al.80 were interested in the amplitudes
of several echoes reflected on a glass (8 mm)/adhesive (3.2 mm)/polymer (2 mm) assem-
bly to evaluate the quality of the bonded joint. These presented techniques do not allow
to quantify the mechanical strength of bonded assemblies. However, they can be used
to detect disbonds, porosities or voids using suitable signal processing methods (Fourier
transform, filtering, convolution, etc.).

Pitch-catch

Pitch-catch methods differ from pulse-echo methods in that generation and detection
are generally not performed by the same transducer. This makes it possible to perform
measurements in transmission (when generation and detection are located on opposite
sides of the part to be inspected) or in reflection (when generation and detection are
located on the same side).

Concerning the pitch-catch methods in transmission, Siryabe et al.10,81 have used an im-
mersion technique called the Ultrasonic Plane Wave Transmission Coefficient (UPWTC),
on aluminum/epoxy/aluminum bonded structures (see Fig. 1.8). Different surface treat-
ments (degreasing, sandblasting, silanisation, etc.) and different adhesive curing times
were used to modulate the mechanical strength of the bonded assemblies. Then, solving
an inverse problem from the experimental and theoretical transmission coefficients, as a
function of the frequency and angle of incidence of the plane wave on the surface, made
it possible to identify the apparent elastic coefficients of the epoxy layer. The apparent
anisotropy of the adhesive was then used as an indicator of poor practical adhesion be-
tween the substrates and the adhesive. This method was applied to bonded samples with
an adhesive thickness of about one millimeter. In the aeronautical industry, the adhesive
thicknesses are thinner (on the order of a few tens or hundreds of micrometers). In 2017,
Wu et al.82 implemented a transmission method using air-coupled transducers. The lay-
out of the experimental set-up used is quite similar to that of Siryabe et al. presented
in Fig. 1.8 (transmitter and receiver on either side of the sample with the possibility of
changing the angle of incidence of the wave by rotating the sample). The contactless
measurements were carried out in air. The bonded assemblies consisted of two compos-
ite plates bonded together with a thin layer of epoxy (20 µm). The frequency spectra
(between 0.5 and 1 MHz) of the experimental signals received after propagation in the
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sample were studied for different angles of incidence and for different curing times (from
1 to 10 hours). The authors showed, theoretically and experimentally, that it was pos-
sible to follow the polymerization time and thus the evolution of the normal KN and
transverse KT interfacial stiffnesses, that were proposed to model the bonding, by looking
at the frequency shifts of some well-chosen resonance peaks obtained on the frequency
spectra.

Figure 1.8 – Experimental transmission set-up used by Siryabe10 on an alu-
minum/epoxy/aluminum bonded assembly. Fig. taken from Ref. 81.

These transmission methods are interesting but difficult to apply in an industrial con-
text. Indeed, only one surface of the assembly to be inspected is, most of the time,
accessible. The use of pitch-catch methods in reflection is therefore relevant to non-
destructively inspect industrial bonded structures. A significant number of papers have
been published on this topic since the 1980s.16,18,19,44,83–94 These publications deal with
the study of the evolution of the reflection coefficients of longitudinal and/or transverse
waves as a function of their angles of incidence with respect to the substrate/adhesive
interface. The study of these reflection coefficients is generally carried out in the fre-
quency domain to determine the frequencies most sensitive to the mechanical strength of
the bonded assembly. In addition, normal and transverse interfacial stiffnesses are often
used to model the interface. In 2003, Baltazar et al.94 developed an inversion method,
based on the previous work of Lavrentyev and Rokhlin90 and Wang et al.,93 to determine
the acoustic, geometric and interfacial properties of an isotropic layer of adhesive between
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two known substrates. The properties of this layer included: thickness, attenuation coef-
ficients within the adhesive, Lamé coefficients, density and complex interfacial stiffnesses
(normal and transverse). The developed inversion method was based on the frequency
spectra obtained in reflection at normal and oblique incidences. The objective of this
method was to be able to detect separately cohesive defects (in the adhesive layer) and
adhesive defects (at the substrate/adhesive interface). This algorithm has been experi-
mentally tested on an aluminum/epoxy/aluminum bonded assembly whose interfaces had
been degraded in the presence of an aggressive environment (saturated solution of NaCl
at 68◦C). The normal interfacial stiffness KN was considered infinite and the imaginary
part of the transverse interfacial stiffness KT was considered null. The inversion method
was used to identify the real part of KT as well as the other parameters presented above.

NDE linear methods using bulk waves for inspecting bonded assemblies were presented
and some were detailed. Ultrasonic techniques using guided waves are now introduced
below.

1.3.2 Linear ultrasonic nondestructive evaluation methods using

guided waves

To control and evaluate bonded assemblies, guided wave methods remaining in the
linear domain, have been intensively investigated. Several types of guided waves exist
and can be used for NDE purposes. First of all, ultrasonic methods are based on the
propagation of Rayleigh waves, which were discovered in 1887 by Lord Rayleigh. These
waves are guided by a single free surface of an elastic solid and penetrate in a thickness
approximately equivalent to one wavelength. The polarization of these waves is elliptical.
Rayleigh waves are said to be non-dispersive when their propagation velocities depend
essentially on the material properties and not on the frequency. There are also elastic
waves guided by a medium bounded by two parallel free surfaces (plate-like guide): Shear
Horizontal (SH) guided waves and Lamb waves. SH guided waves are the result of the
multi-reflections on the two free surfaces of the plate of the SH bulk waves polarized
horizontally, i.e, polarized in a direction perpendicular to the wave propagation plane.
Lamb waves are the result of the multi-reflections on the two free surfaces of vertically
polarized bulk waves, i.e., polarized in the wave propagation plane. These elastic waves
can have longitudinal or transverse (shear) polarizations.
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First, NDE methods using Rayleigh waves and then SH guided waves applied to bonded
assemblies are presented. Secondly, developed techniques using Lamb waves and more
particularly zero-group-velocity (ZGV) Lamb modes are described.

Rayleigh waves and SH guided waves

Regarding methods based on Rayleigh wave propagation to inspect bonded assemblies,
Rokhlin et al.95 used an experimental device to generate a Rayleigh wave on a metal
substrate (300 mm-long, 70 mm-wide and 30 mm-thick). This Rayleigh wave then propa-
gated to a steel/epoxy (25 µm)/steel bonding interface before being detected. The authors
concluded that the phase velocity of the guided wave propagating at the interface and the
transmission loss coefficient are parameters correlated to the mechanical strength of the
bonded joint. Singher96 used an experimental set-up to generate a Rayleigh wave on the
surface of an aluminum plate using a piezoelectric contact transducer. This wave then
propagated at an aluminum/epoxy (100 µm)/aluminum bonding interface before being
detected by a Michelson interferometer (see Fig. 1.9). The modulation of the mechanical
strength of the bonded joint was obtained by different surface treatments (mechanical,
chemical, etc.) of the substrates. The author of this paper has shown that there is a good
correlation between the velocity of the guided waves at the interface and the mechanical
strength of the adhesive bonding. However, this work using Rayleigh wave generation and
detection95,96 did not allow to quantify the practical adhesion of bonded assemblies.

Figure 1.9 – Experimental set-up used by Singher (Fig. taken from Ref. 96) with
(contact) generation and (non-contact) detection of Rayleigh waves on aluminum
substrates. R (Rayleigh wave), B (bulk wave), G (guided wave), B.S. (beam
splitter).
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About the NDE methods using SH guided waves, Lourme,47 Le Crom et al.48,97,98

and Castaings99 have used these waves to non-destructively evaluate adhesive bonding.
Indeed, Le Crom48 indicated that these SH guided waves are sensitive to the shear prop-
erties of bonded assemblies because of their polarization in a direction perpendicular to
the plane of wave propagation. These guided waves therefore appear to be good candi-
dates for inspecting bonded structures. Le Crom and Castaings97,98 have studied numeri-
cally [Fig. 1.10(a)] and experimentally [Fig. 1.10(b)] these SH guided waves on aluminum
(3 mm)/epoxy (0.2 mm)/composite (1.2 mm) bonded structures. Their results showed
that the SH0 and SH1 modes have a strong potential to quantify the shear stiffness of
this type of bonded assembly. On the other hand, the SH2 mode was not used to test
the cohesive properties of the bond because it was highly sensitive to the physical and
mechanical properties of the substrates (aluminum and composite) as well as their thick-
nesses. Castaings99 studied the sensitivity of SH guided waves, including the SH0 mode,
to the cohesive properties of the adhesive and the interface properties of a single lap joint
between two 3 mm-thick aluminum bonded plates. An inverse problem was then solved to
determine the shear modulus of the adhesive layer and the shear interface stiffness KT of
the bonded joint from the results of numerical modeling and experimental measurements.
Castaings stated in the conclusion of the paper that the experimental conditions were
perfect for obtaining good results (aluminum plates with known mechanical properties,
known thicknesses, etc.); which is rarely the case in an industrial context for example. In
addition, further studies need to be carried out to test this method on bonded assemblies
composed of composite material substrates.

Lamb waves and ZGV resonances

Lamb waves have been the subject of numerous research studies to evaluate non-
destructively bonded assemblies. These are waves guided in a medium bounded by two
parallel free surfaces (plate-like guide). Lamb waves are the result of the multi-reflections
of longitudinal and transverse polarized bulk waves in the medium. Symmetric (S) and
antisymmetric (A) modes, satisfying the Rayleigh-Lamb equation, can be represented by
dispersion curves linking the frequency to the wavenumber. When the group velocity
of one of these modes goes to zero, there is a resonance that can be classified into one
of two categories according to its wavenumber k: thickness resonances (k = 0) or lo-
cal resonances (k 6= 0). When the wavenumber k is zero, the wavelength is infinite, so
the whole surface vibrates in phase. When the wave number is not equal to zero, the
wavelength is finite and the resonance is therefore localized; these are zero-group-velocity
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(a) (b)

Figure 1.10 – (a) Schematic diagram of the aluminum/epoxy/composite trilayer
studied by Le Crom and Castaings using one-dimensional semi-analytical finite
element code (SAFE). (b) Picture of the experimental set-up used to generate
and detect SH guided waves and to measure the phase velocities of the different
modes. Fig. taken from Ref. 98.

(ZGV) resonances. First, methods based on Lamb waves to evaluate bonded assemblies
are presented. Secondly, techniques based on ZGV resonances are discussed.

Regarding methods using Lamb waves, Kundu et al.100 studied the detection of kissing
bond defects between two glass plates compressed together by hydraulic pressure. Ex-
periments conducted in pitch-catch mode in immersion showed that most Lamb modes
are insensitive to the kissing bond. However, in their studied case, only the A1 mode is
strongly affected by this defect for phase velocities lower than 4 km/s. Mori et al.101,102

were interested in the reflection and transmission of Lamb waves at an imperfect butt
joint. In 2013, they showed that the reflection and transmission of the A0 and S0 modes
at the joint depended on frequency and different interface stiffnesses following numerical
studies by Modal Decomposition Method (MDM) and Hybrid Finite Element Method
(HFEM). Then in 2016, experiments were carried out on two 2.5 mm-thick aluminum
plates bonded end-to-end with different bonding conditions. From the measured trans-
mission coefficients, the interfacial stiffnesses could be identified. A correlation between
these determined stiffnesses and the bonding conditions of the different prepared samples
was noted. Siryabe et al.103 studied the transmission of Lamb waves at a 0.2 mm-thick
adhesive joint and a simple overlap between two 3 mm-thick aluminum bonded plates.
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Two bonded assemblies with different mechanical properties were manufactured: a refer-
ence assembly (with surface preparation) and another sample with potentially low prac-
tical adhesion (without surface preparation). Two-dimensional finite element simulations
and experiments including air-coupled transducers were performed. The normal KN and
transverse KT interfacial stiffnesses of the numerical model were adjusted so that the
simulated transmission coefficients as a function of the frequency of the A0 and S0 modes
were in agreement with those measured experimentally. The results showed that the use
of Lamb waves in transmission can be interesting to quantify the mechanical strength
of this type of bonded structure (simple overlap). Gauthier et al.104 were interested in
classifying aluminum (5 mm)/epoxy (0.5 mm) bilayers according to their level of practi-
cal adhesion. Several samples were manufactured with different surface treatments and
different epoxy curing times. Several levels of adhesion were separated by comparing the
experimental dispersion curves with those simulated by finite element method (FEM).
However, normal and transverse interfacial stiffnesses were assumed to be equal; which
remains a hypothesis to be tested. The authors indicated that their next step was to
study an aluminum/epoxy/aluminum trilayer to be more representative of a real struc-
tural bonding and that the resolution of an inverse problem should be carried out to
determine interfacial stiffnesses more precisely.

There is a limitation to the dispersion curves of Lamb waves for the NDE of bonded
assemblies. Indeed, several authors,105–109 including Lowe and Cawley,106 specified that
these dispersion curves were very sensitive to the physical and mechanical properties as
well as to the thickness of the substrates. Moreover, Nagy et al.107 or Dewen,109 indi-
cated that these dispersion curves were relatively unaffected by the modification of: the
properties of the adhesive layer, its thickness, and the substrate/adhesive interface con-
ditions. Thus, another technique consists in using zero-group-velocity (ZGV) resonances,
of the bonded assembly, to attempt to quantify its mechanical strength. Indeed, these
ZGV resonances have several advantages. Firstly, they have a finite wavelength so they
are spatially localized. Secondly, their quality factor is high, so the ZGV resonances are
spectrally narrow.

About the scientific work on ZGV Lamb modes, Cho et al.110 have estimated the qual-
ity of a bonded structure, composed of aluminum (3 mm)/epoxy (0.09 mm)/aluminum
(3 mm), from ZGV resonance frequencies. Generation and detection of ZGV modes were
carried out experimentally using laser beams. Samples with and without surface prepara-
tion were manufactured and then mechanically tested in order to be able to compare the
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ZGV resonance frequencies between high and low mechanical strength. The lowest reso-
nance frequency showed a good sensitivity to the bond quality. In 2014, Mezil et al.111

used an analytical model to calculate Lamb modes in a symmetrical bilayer structure
where the bonding interface was modeled by normal and transverse interfacial stiffnesses
(KN and KT , respectively). This model demonstrated that the resonance frequencies of
the symmetrical ZGV modes were dependent on KN and those of the antisymmetrical
modes on KT . In addition, experiments were conducted on a glass/glass bilayer. The
bonding agents between these two plates were water, oil and salol. The thicknesses of
these layers were considered negligible compared to those of the substrates. Generation
and detection were performed by laser. This local and non-contact method allowed the es-
timation of normal and transverse interfacial stiffnesses from the calculated and measured
ZGV resonance frequencies. In 2015, Mezil et al.112 focused their work on a trilayer dura-
lumin (1.5 mm)/epoxy (0.035 mm)/duralumin (1.5 mm) in order to take the thickness of
the adhesive into account. An adhesive rheological model, shown in Fig. 1.11(a), was used
to numerically calculate the dispersion curves to derive the ZGV resonance frequencies.
Experiments with laser generation and detection on either side of the structure were car-
ried out. In a first step, the thickness of the adhesive layer was measured by time-of-flight
measurement. Then, the experimentally obtained ZGV resonance frequencies were used
to identify the values of the interfacial stiffnesses to be imposed in the model to ensure
a good theory/experiment agreement [see Fig. 1.11(b)]. This paper shows the interest
of ZGV resonances to quantify the mechanical strength of bonded structure with a local
and contactless method. However, some limitations are expressed by the authors of the
article. First, the thickness of the substrates and especially the thickness of the adhesive
layer must be known to determine the interfacial stiffnesses. Indeed, the ZGV resonances
are sensitive to the thicknesses of the different components of the assembly. Secondly, the
developed method must be extended to a larger number of samples of different natures
in terms of the materials used and/or the thicknesses taken into account. Destructive
mechanical tests could also be carried out to compare the results of this nondestructive
method with destructive one. Finally, Bruno, who participated in the elaboration of this
article,112 concludes his PhD thesis113 by indicating that it would be interesting to cou-
ple non-linear methods with ZGV resonance measurements; for example by stressing the
bonded assembly.
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(a)

(b)

Figure 1.11 – Figure and table taken from Ref. 112: (a) geometry of the trilayer
model used to compute the dispersion curves following the approach proposed
by Vlasie and Rousseau,114 (b) comparison between experimental and theoretical
ZGV resonance frequencies.

1.3.3 Non-linear ultrasonic nondestructive evaluation methods

When linear ultrasonic NDE methods are insensitive or ineffective for evaluating bonded
assemblies, non-linear ultrasonic methods are another class of methods that can be of in-
terest. Non-linear acoustics concerns the propagation of elastic waves in a non-linear
medium which causes signal distortion, pseudo-periodic behaviour or chaotic behaviour.
As Saidoun pointed out,115 there are three different non-linear mechanisms: geometric,
material and contact non-linearities. First, geometric non-linearities are usually caused
by large deformation amplitudes. Second, material non-linearities are those correspond-
ing to a non-linear stress/strain relationship (i.e., taking higher order terms into account
in the Hooke’s law). Third, there are contact non-linearities, notably refereed as Contact
Acoustics Nonlinearity (CAN) in the literature. Solodov et al.116 define CAN as an asym-
metry of interfacial stiffness (higher stiffness when the two solids are in compression with
each other and lower or zero stiffness when they tend to move apart). This phenomenon
can be activated when an elastic wave is applied to a bonding interface, which can lead
to the generation of harmonics.

In this part, different NDE methods based on non-linear ultrasound are discussed.
First, the methods of harmonic generation, second harmonic imaging and non-collinear
wave mixing are presented. Secondly, non-linear ultrasonic techniques using heat flow
modulation and phase modulation are introduced.

Harmonic generation

The principle of harmonic generation consists in exciting the bonded assembly with,
for example, a very high amplitude acoustic signal. Thus, harmonics (integer multiples of
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the excitation frequency) are generated. This non-linear method can therefore potentially
provide access to information that is not accessible by remaining in the linear domain.
Berndt and Green117 studied the generation of harmonics in transmission and immersion
at a bonding interface between two aluminum plates. Four samples were prepared under a
heated press by varying the adhesive curing time to modulate the mechanical strength of
the bonded structure. The experimental set-up consisted of a transducer with a nominal
frequency of 5 MHz followed by a lens to focus the high amplitude ultrasonic waves at
the bonding interface. A 10 MHz center frequency transducer was used to receive the
signal. The authors of the paper noticed that the more the adhesive is cured, the more
the amplitudes of the generated harmonics (especially the second harmonic) decrease.
However, Berndt and Green indicated that these non-linearities are not primarily related
to the bonding interface. Indeed, according to them, they could also be caused by wave
propagation within the adhesive. It was therefore difficult with this method to separate
the different types of the observed non-linearities. Brotherhood et al.118 sought to detect
defects, such as kissing bonds, by generating high amplitude ultrasonic waves experimen-
tally. Samples consisting of two aluminum blocks, separated by 2 mm-thick adhesive layer,
were tested at different compression loading intensities. The experiments were carried out
in transmission and immersion. Ultrasonic waves were generated at a frequency of 1.85
MHz and then detected by a transducer with a center frequency of 5 MHz. The Fast
Fourier Transform (FFT) of the received signal made it possible to plot the evolution of
the amplitude ratio between the second harmonic and the fundamental frequency as a
function of the compression loading. The authors noted that as the compression loading
decreased, the amplitude ratio (second harmonic to fundamental) increased. They ex-
plained this by the fact that there was a large asymmetry between the compressive and
tensile stiffness at the interface when the surfaces of the aluminum blocks were simply in
contact or when the compressive loading was very low. Yan et al.119 used an experimental
device quite similar to the one of Brotherhood et al.118 where two cylindrical blocks of
aluminum separated, or not, by an adhesive layer were compressed (pressures between 0.1
and 11.2 MPa). On the other hand, the generation and detection of ultrasound were not
performed in immersion but in contact, see Fig. 1.12. One of the conclusions of the paper
was that the majority of non-linearities were caused by the generation and amplification
of the acoustic signal.

Liu et al.120 went further in the search for the origins of non-linearities. Their objective
was to evaluate the influence of different experimental parameters (signal amplification,
transducers, coupling conditions, etc.) on the generation of harmonics. Indeed, in order
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Figure 1.12 – Schematic of the experimental set-up used by Yan et al. (Fig. taken
from Ref. 119) for the generation of high-amplitude ultrasonic waves.

to have access to the non-linearities essentially caused by the bonding interface, it was
necessary to identify those caused by the assembly itself and to try to minimize them if
possible. The authors of this paper used an amplified 3.6 MHz center frequency signal to
excite a piezoelectric cell bonded to the surface of a healthy aluminum block (no damage
was done). Ultrasound was received from the other side of the medium by a contact
piezoelectric transducer (using a coupling gel). In the same way as Brotherhood et al.,118

Liu et al. realized that strong non-linearities are caused by signal generation and am-
plification. They showed that the force with which the receiving piezoelectric transducer
was pressed against the workpiece had an influence on the measured non-linearities. In
addition, the alignment of the receiving piezoelectric transducer with respect to the trans-
mitting piezoelectric cell could change the measurement of the non-linearities. Finally, the
authors showed that the choice of the windowing (Hann window, Gaussian window, rect-
angular window, etc.) to perform the Fast Fourier Transform (FFT) of the time signals
had its importance in the measurement of non-linearities. Thus, this article highlighted
the difficulties encountered when measurements by harmonic generation are carried out.
Shui et al.121 have used this non-linear technique to non-destructively evaluate aluminum
(6.5 mm)/epoxy (less than 1 mm)/aluminum (6.5 mm) bonded assembly subjected to
loading cycles, as shown in Fig. 1.13.
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Figure 1.13 – Diagram of the experimental set-up used by Shui et al.121 for the
generation of harmonics on bonded specimens subjected to fatigue.

The authors found that the measured Acoustic Non-linearity Parameter (ANP) in-
creased with the number of fatigue cycles. This ANP parameter, which was noted β in
the paper, was equal to

β =
8A2

A2
1hk

2
, (1.1)

with A2 the amplitude of the second harmonic, A1 the amplitude of the fundamental,
h the propagation distance and k the wavenumber. Shui et al. have also developed a
theoretical model to calculate the evolution of the acoustic non-linearity parameter (ANP)
as a function of the number of fatigue cycles. However, the theoretical model was not
fully consistent with the experimental data. The authors pointed out that many effects
(material non-linearities, attenuation, etc.) were not taken into account in the theory,
which could explain the discrepancies observed with the experiment. Biwa and Ishii122

and then Ishii et al.123 were interested to theoretically model the generation of the second
harmonic caused by non-linearities at the interfaces of a multilayer structure. These
different interfaces were modeled by non-linear stiffnesses. The theoretical calculations
were performed by considering a monochromatic longitudinal polarized wave at normal
incidence on the multilayer structure. Thus, the expressions of the amplitudes of the
second harmonic of the reflected and transmitted waves as a function of frequency were
obtained.
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Several experimental and theoretical work on the generation of harmonics, as a non-
linear ultrasonic NDE method applied to bonded assemblies, have been presented. Interest
is now focused on second harmonic imaging techniques.

Second harmonic imaging

Concerning second harmonic imaging, the studies that are presented do not all directly
concern the examination of bonded assemblies. However, these may potentially be of
interest for the NDE of adhesive bonding. Yun et al.124 have developed a method for
evaluating Contact Acoustic Nonlinearity (CAN) at the interface between two solids. The
performed experiment consisted of two aluminum blocks compressed with each other for
different loading levels (0 MPa, 20 MPa and 40 MPa). Several reflection measurements
(in pitch-catch mode) followed by a suitable post-processing step were used to obtain an
image of the second harmonic along the interface. This method could be used to image
closed cracks that are difficult to visualize using linear ultrasonic methods.

(a) (b)

Figure 1.14 – Figures extracted from Potter et al.:125 (a) schematic of the ex-
perimental set-up consisting of the multi-element transducer in contact with the
surface of the aluminum alloy part having a closed through crack, (b) visualization
of the crack with the non-linear imaging method presented in the paper.

Potter et al.125 have imaged closed cracks using a multi-element transducer. In a first
time, the focusing of the ultrasonic waves, at several points in the medium to be imaged,
was performed at the emission by imposing different delay laws. In a second time, a
Full Matrix Capture (FMC) was performed and then delay laws were imposed in a post-
processing step. These two methods were equivalent in terms of linear acoustics because
a defect was detected with the same amplitude in both cases. However, in non-linear
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acoustics, the two methods did not give the same result. Indeed, focusing the ultrasound
at the emission generated harmonics, which was not the case when the focusing was
done in a post-processing step. Thus, the authors of the paper have plotted the difference
between the energy obtained with a focusing at emission and a focusing in post-processing.
This method made it possible to image a closed crack in an aluminum alloy sample, see
Fig. 1.14, that could not be visualized with a linear ultrasonic method.

(a) (b)

Figure 1.15 – Figures from Zabbal et al.:126 (a) representation of the chaotic
cavity transducer used to generate high amplitude plane waves, (b) Fourier trans-
forms of the signals measured on bonded assemblies [aluminum(5 mm)/epoxy
(0.1 mm)/aluminum(5 mm)] with and without defect (denoted “Defect” and “Ref-
erence”, respectively).

A second harmonic imaging technique dedicated to the NDE of bonded assemblies has
been developed by Zabbal et al.126 This method is based on a chaotic cavity transducer, as
shown in Fig. 1.15(a), to generate plane waves of high amplitudes that will interact with
the bonding. The measurement of the non-linear parameter β = A2/A1, with A1 (A2)

the maximum amplitude of the fundamental (second harmonic), has allowed to detect
bonding defects, as illustrated in Fig. 1.15(b).

Non-collinear wave mixing

The non-collinear wave mixing is another non-linear technique than those previously
discussed (generation of harmonics, second harmonic imaging). The objective is to make
two non-collinear waves of different frequencies interact in a medium with non-linear
mechanical properties where the superposition law does not apply. Thus, a third wave
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resulting from this interaction will be scattered. The non-collinear wave mixing has been
studied by Zhang et al.,127 see Fig. 1.16. They modeled analytically and numerically the
interaction of two shear waves at an imperfect interface that allowed a longitudinal wave
to scatter in a certain direction. As Escobar-Ruiz et al.128 pointed out, several advantages
exist. First of all, there is spectral separation because the frequencies of the two incident
waves and the scattered wave are different. In addition, the polarizations of the incident
and scattered waves are not the same, which ensures a mode separation. Then, there is
spatial separation because the interaction between the two incident waves is limited to a
particular area and the scattered wave propagates in a different direction from the two
incident waves. However, Zhang et al.127 specified that the mixing of non-collinear waves
can be sensitive to interface imperfections but also to non-linearities in the bulk of the
adhesive. Croxford et al.129 used this technique to detect non-linearities in a material
(here an aluminum alloy) caused by plastic deformation or fatigue defects. Blanloeuil, in
his PhD thesis,130 simulated by finite elements the mixing of non-collinear waves at: a
contact interface between two solids (pp. 111–124) and a closed crack (pp. 125–135). His
numerical work has clearly demonstrated the generation of a longitudinal wave when two
shear waves interact at oblique incidence in a zone with non-linear mechanical properties.
Demčenko et al.131 detected kissing bond between two PVC sheets (228×72.5×25 mm3)
held in contact with each other. The experiment was carried out in immersion with a lon-
gitudinal wave and a transverse wave in oblique incidence on one side of the assembly to be
controlled. The longitudinal wave scattered on the other side was then measured to detect
this interface defect. In 2017, Ju et al.132 developed a non-collinear wave-mixing technique
to monitor the degradation of a bonded joint between two aluminum blocks. The method
required access to only one surface of the bonded joint. In addition, the method was
performed with piezoelectric transducers in contact with one of the aluminum surfaces.
A longitudinal wave (5 MHz) and a shear wave (3.5 MHz) interacted in the adhesive
layer to generate a shear wave which was then detected. Experimental measurements
were performed on bonded assemblies for different levels of thermal aging (oven drying
of the bonded assemblies at a constant temperature of 170◦C and variable exposure time
ranging from 0 to 10 hours). The use of this non-collinear wave mixing technique allowed
to follow the evolution of the degradation of the adhesive joint. However, it seems that
the method detailed in the article of Ju et al. did not distinguish between disbonding
defects, interface defects (kissing bond, weak adhesive bond) and cohesive defects within
the adhesive.
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Figure 1.16 – Schematic from Zhang et al.127 on the non-collinear wave mixing at
an imperfect interface.

To conclude this first part on non-linear ultrasonic methods, harmonic generation seems
to be an interesting technique for the NDE of bonded assemblies. However, it is difficult
to separate the non-linearities generated by the assembly itself (generation, signal am-
plification, etc.) from the non-linearities generated by an imperfect bonding interface.
Concerning second harmonic imaging techniques, these have been used in particular to
visualize closed cracks in solid medium. Finally, the non-collinear wave mixing admits
many advantages compared to the generation of harmonics. Indeed, as previously men-
tioned, this technique allows spectral, modal and spatial separation because the objective
is to make two non-collinear waves (of different frequencies) interact in a medium with
non-linear mechanical properties; where the superposition principle does not apply. Thus,
a third wave resulting from this interaction will be scattered. This non-linear method can
therefore be potentially interesting for the NDE of bonded assemblies. The second part
concerning non-linear ultrasonic methods of bonded assemblies now focuses on heat flow
modulation techniques and phase modulation methods (addition of a low-frequency exci-
tation).

Heat flux modulation and phase modulation

The non-linear method that is discussed in this part is the heat flow modulation. This
technique was used by Mezil133,134 to detect cracks in a glass plate. As can be seen in
Fig. 1.17, two laser beams were focused at the same location on the crack. One of the
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beams was amplitude modulated at a rather low-frequency fL (∼ Hz) to allow the crack
to open and close successively. A second laser beam was amplitude modulated at a higher
frequency fH (∼ kHz) to generate ultrasonic waves. The fact that the crack opened and
closed regularly resulted in the frequency modulation of the reflected and transmitted
waves on either side of the crack. This allowed the crack to be detected. This non-
linear heat flow modulation technique was therefore relevant for this type of application.
However, the use of this method to evaluate bonded assemblies remains to be studied.

Figure 1.17 – Diagram of the principle of the heat flux modulation taken from the
PhD thesis of Mezil.133

The second non-linear method using a modulation is about the phase modulation.
This technique consists of performing an ultrasonic measurement at high-frequency by
adding a low-frequency modulation. The interaction between these two waves of different
frequencies can be used to detect defects that are difficult to observe with linear NDE
methods. Scientific work has been carried out with this non-linear technique to detect
cracks (Donksoy and Sutin135) but also bonding defects. Goursolle, in his PhD thesis,136

studied phase modulation on two aluminum blocks, 20 mm and 8 mm-thick, bonded
together with a 0.5 mm-thick layer of epoxy. The interaction between a high-frequency
wave (∼ 15 MHz) and a low-frequency wave (∼ 2 MHz) was used to measure the β non-
linearity coefficient of the assembled materials (see Fig. 1.18). The measurements were
performed on a healthy and degraded bonded structures. Goursolle’s objective was not
to quantify the mechanical strength of the bonded assembly but to determine the overall
non-linearity coefficient of the aluminum substrate. He noted that for a healthy bond,
the good transmission of the low-frequency wave from one aluminum block to the other
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allowed a better determination of the β coefficient than when the bond was of poorer
quality. Rokhlin et al.137 have studied aluminum/epoxy/aluminum bonded assemblies
with different levels of degradation. The picture of the experimental assembly is shown
in Fig. 1.19. Ultrasonic measurements were performed in contact with the structure and
in reflection (normal and oblique incidence) at 10 MHz. The low-frequency modulation
(∼ 50 Hz) was carried out by a shaker firmly fixed on one of the substrates of the bonded
assembly. The results obtained are shown in Fig. 1.19. The solid lines represent the
spectra obtained for measurements at normal incidence and the dashed lines for those at
oblique incidence. The amplitudes of the frequency modulation index increased as the
bonded structure became more and more degraded. Rokhlin et al.137 concluded that this
method can detect the degradation of adhesive bonding. However, few indications on the
nature of these degradations are explained in the article. This method remains qualitative
and has not been used to quantify the mechanical strength of bonded assemblies.

low freq.
transducer

high freq.
transducer

Bilayer sample

interface

Figure 1.18 – Diagram of the principle used by Goursolle136 to measure the co-
efficient of non-linearity of bonded samples using phase modulation. Fig. taken
from Ref. 136 (translated from French to English).

The non-linear methods of heat flow modulation and phase modulation have been
presented. These scientific studies, whose applications have not always been oriented
towards the evaluation of bonded assemblies, are interesting non-linear methods for the
NDE of bonded structures.
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Figure 1.19 – Extract from Rokhlin et al.:137 picture of the experimental set-up
(left) and results obtained (right) for different degradations of the bonded samples.

1.4 Conclusion

Adhesive bonding, rather than riveting or welding, makes it possible to lighten aero-
nautical structures. This weight saving leads to a reduction in engine fuel consumption
and greenhouse gas emissions. Nevertheless, the fact that there is a lack of nondestruc-
tive methods to certify the mechanical strength of bonded aeronautical assemblies raises
safety issues. This is why it is essential to develop nondestructive techniques for testing
and evaluating bonded assemblies. First of all, the objective of this bibliographical study
was to define the terminology used concerning bonded assemblies. The distinction be-
tween the terms adhesion and adherence (or practical adhesion) was introduced. Then,
the bonding defects (disbond, cohesive defect, adhesive defect) as well as the failures
generated (cohesive, adhesive, mixed) were presented. Next, an overview of destructive
(tensile tests, shear tests, etc.) and nondestructive methods (infrared thermography, laser
shock, etc.) was provided. The Laser Adhesion Test (LASAT) seems promising for quan-
tifying the mechanical strength of bonded assemblies.67 It remains to ensure that the
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latter evaluation methods is nondestructive, i.e., that the propagation of the shock wave
does not damage the substrates and the adhesive. The second part of this literature
review focused on linear and non-linear ultrasonic NDE methods. The linear methods
were classified according to the type of waves used: bulk waves or guided waves. The
studies of Siryabe et al.81 with bulk waves or Mezil et al.112 with guided waves (ZGV
resonances) were notably detailed. Finally, the last part dealt with NDE methods using
non-linear ultrasound. Several methods of the literature were introduced, e.g., harmonic
generation, second harmonic imaging, non-collinear wave mixing, heat flux modulation,
phase modulation. This literature review was an opportunity to study numerous scientific
works concerning the NDE of bonded assemblies. It also helps realizing the truly large
number of articles written on this topic as well as the numerous methods developed to
non-destructively evaluate bonded structures.

Before presenting, in the chapters 3 and 4, the two methods based on laser ultrasonic
experiments and developed during this PhD work to non-destructively evaluate bonded
structures, the next chapter presents the derivation of a semi-analytic resolution of the
laser-based generation of ultrasounds in a multilayer structure accounting for optical, ther-
mal and mechanical coupling conditions. Not only this semi-analytic simulation method
is the key to the NDE method in Chap. 3, but it is intended to be general enough to be
used for many different cases of assembly, as it is demonstrated next.
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structure

Abstract

Laser-generated elastic waves, of great interest for the nondestructive evaluation (NDE)
of material and mechanical structures, have been the subject of numerous experimental,
theoretical and numerical studies to describe the opto-acoustic generation process, involv-
ing electromagnetic, thermal and elastic fields and their couplings in matter. Among the
numerical methods for solving this multiphysical problem, the semi-analytic approach is
one of the most relevant for obtaining fast and accurate results, when analytic solutions
exist. In this chapter, a multilayer model is proposed to successively solve electromag-
netic, thermal and elastodynamic problems. The optical penetration of the laser line
source, as well as thermal conduction and convection, are accounted for. Optical, thermal
and mechanical coupling conditions are considered between the upper and lower media
of the multilayer. The simulation of laser-generated ultrasounds in multilayer structures
(presented in this chapter) is of interest for the development of nondestructive evaluation
methods of complex structures, such as bonded assemblies in aeronautics (as discussed in
Chap. 3).

This work was submitted to the J. Acoust. Soc. Am.:
R. Hodé, M. Ducousso, N. Cuvillier, V. Gusev, V. Tournat and S. Raetz, “Laser ultrasonics
in a multilayer structure: Semi-analytic model and simulated examples,” J. Acoust. Soc.
Am. (submitted on December 11, 2020).
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2.1. Introduction

2.1 Introduction

Laser-generated ultrasounds are of great interest for the nondestructive evaluation
(NDE) of material and mechanical structures. In aeronautics, the non-contact feature
of this laser inspection is a significant advantage over more conventional techniques such
as piezoelectric transducers with coupling agent. Furthermore, the opto-acoustic genera-
tion in the thermoelastic regime138,139 ensures the integrity of the structure after the laser
pulse impact. In the literature, laser-generated elastic waves140 in metals were experimen-
tally observed in the thermoelastic regime by Scruby et al.141 Then, the theoretical basis
was formulated by Rose,142 where the thermoelastic generation at the surface of a half-
space was represented by a point-source, called the surface center of expansion (SCOE)
by the author.

Following this seminal work, simulations of laser-generated ultrasounds in elastic me-
dia have been carried out using analytic or semi-analytic approaches. Dubois et al.143

reported an analytic one-dimensional model taking the optical penetration effect into ac-
count. Coulette et al.144 simulated elastic waves propagation in a bilayer of cylindrical
symmetry with a semi-analytic model. The structure was composed of two orthotropic
and homogeneous plates which were perfectly coupled [continuity of displacements and
elastic forces (stresses) at the interface between the two media]. The optical reflection
at the interface and the thermal diffusion were neglected in their numerical calculations.
Murray et al.145 used a similar approach based on the Hankel and Laplace transforms to
simulate elastic waves propagating in an isotropic plate perfectly coupled to a semi-infinite
medium. Cheng et al.146 extended the work of Murray et al.145 to isotropic layered plates,
using the transfer matrix method.147 The structure was illuminated by an axisymmetric
laser source, but the optical penetration and the thermal diffusion were not considered.
Audoin and Guilbaud,148 Meri,149 Perton,150 and Raetz151 gradually developed a semi-
analytic model, based on the Fourier transform, to simulate acoustic waves generated by
a laser line source. Specifically, Perton150 modeled a bilayer structure composed of two
orthotropic, homogeneous and viscoelastic plates perfectly coupled, with the plane strain
hypothesis. The transmission of electromagnetic waves in the two media were considered,
but reflections at the interface and the rear surface of the bilayer were neglected. Thermal
conduction was also accounted for by considering three thermal waves: two propagating
in the first medium and only one in the second (reflections at the rear surface were ne-
glected).

Other numerical approaches such as finite element152,153 or finite difference methods154
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have also been used to simulate laser-generated ultrasounds in the thermoelastic regime.
These numerical methods are well suited for the simulation of elastic waves in media
with complex geometry. However, they require more computing power than semi-analytic
calculations. This can be a drawback when numerous simulations have to be performed
for inverse problem solving, for instance. Hence, when analytic solutions can be found for
wave propagation in media with simple geometry, the semi-analytic approach is the most
appropriate choice to obtain accurate results quickly.

In this chapter, a semi-analytic model is described where electromagnetic (Sec. 2.3),
thermal (Sec. 2.4) and elastodynamic (Sec. 2.5) problems are successively solved to obtain
the displacement field in the upper and lower media of a multilayer structure. The ge-
ometry and the main assumptions about the optical, thermal and mechanical properties
of the layers are detailed in Sec. 2.2. Numerical results are presented in Sec. 2.6 to give
examples of simulations that can be performed with this semi-analytic model.

2.2 Geometry and assumptions

The geometry of the multilayer structure is illustrated in Fig. 2.1. The multilayer is
composed of two solid media I and II of thicknesses h1 and h2, respectively, and two
semi-infinite media (0 and III) which are assumed to be air. The origin of the Cartesian
coordinate system (O, x1, x2) is located at the upper-surface of the medium I. Note that
in the previous definition of the coordinate system and for the remainder, a bold letter
stands for a vector. The layers are considered to be of infinite dimension in the x2- and x3-
directions. The incident tilted laser line source is oriented along the x3-direction. Thus,
the electromagnetic, thermal and mechanical problems are solved in 2D. Sublayers, with
a total thickness of ∆h, can be inserted between media I and II and are denoted by the
uppercase letter “EM” in Fig. 2.1 for the electromagnetic problem, by “T” in Fig. 2.2 for
the thermal problem and by “M” in Fig. 2.3 for the mechanical problem. These sublayers
will be taken into account later in the coupling conditions between media I and II. The
main assumptions made for the optical, thermal and mechanical properties of the layers
are introduced below.

In Sec. 2.3, all layers are assumed electromagnetically linear, isotropic and homoge-
neous. This means that the dielectric constant ε and magnetic permeability µ are scalar
quantities and not position-dependent. The materials constituting the layers should there-
fore not be birefringent, or at least have a negligible birefringence. These constants are
also assumed to be independent of the temperature but related to the angular frequency ω0
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Figure 2.1 – The geometry of the multilayer structure is represented with the
two semi-infinite media (0 and III) and the media I and II of thicknesses h1 and
h2, respectively. The uppercase letter “EM” symbolizes the sublayers, with a total
thickness of ∆h, that can be inserted between media I and II. The black arrows
represent the k-wave vectors and the red (blue) arrows indicate the electric vectors
E (magnetic vectors H).
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of the assumed monochromatic electromagnetic field. Moreover, the electric and magnetic
polarization fields are not taken into account. In addition, the electric charge density ρq is
supposed to be zero. This is a valid assumption, especially for metals, because ρq decays
exponentially with time (relaxation time of the order of 10−18 s, see p. 736 of Ref. 155).
This hypothesis implies that the divergence of the electric displacement is zero, ∇·D = 0,
as is the convection current density: jv = 0.

In Sec. 2.4, the thermal properties of the solid media are assumed linear, homogeneous
and orthotropic, with x1 and x2 as principal axes. Thermal conduction in the solid layers
and convection phenomena at the upper surface of medium I (at x1 = 0) and the lower
surface of medium II (at x1 = H with H = h1 + ∆h+ h2) are considered.

In Sec. 2.5, the mechanical properties of solid media are assumed linear, homogeneous,
viscoelastic and orthotropic, with x1 and x2 as principal axes. Elastic waves propagating
in semi-infinite media (0 and III) are neglected. Furthermore, the plane strain hypothesis
is used ( ∂

∂x3
= 0) because the layers and the laser line source are considered to be of

infinite dimension in the x3-direction.

2.3 Electromagnetic problem

In this section, the method for solving the electromagnetic problem in the multilayer
structure, represented in Fig. 2.1, is detailed. Our work focuses on the simulation of laser-
ultrasonic experiments performed in the thermoelastic regime. Thus, the aim is to obtain
the power density Q of the energy dissipated into heat in the different media, following
the approach of Born and Wolf.155 The power density Q will then be used as the source
term for the heat equation defined in Sec. 2.4.

2.3.1 Formulation of the electromagnetic problem

Under the assumptions presented in Sec. 2.2, and using the Maxwell’s equations, the
electric vector E in the multilayer structure must satisfy the Helmholtz equation

∇2E + k2E = 0, (2.1)

with the complex wavenumber

k = k′ + k′′, k′ = <
(
ω0

c0

n

)
and k′′ = =

(
ω0

c0

n

)
. (2.2)
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In Eq. (2.2), the constant c0 is equal to the speed of light in vacuum,  is the imaginary
number, the < (=) symbol corresponds to the real (imaginary) part and n is the complex
refractive index defined by the relation

n = n′ + n′′, n′ = <(n) and n′′ = =(n). (2.3)

In the literature, n′′ is often called the extinction coefficient156 or the attenuation index.155

The complex refractive index n is also equal to

n =
√
µεc =

√
µ

(
ε+ 

4πσ

ω0

)
, (2.4)

with εc the complex dielectric constant, ε the dielectric constant, µ the magnetic perme-
ability and σ the optical conductivity.

2.3.2 Propagation of the electromagnetic waves in the multilayer

structure

In Fig. 2.1, a plane electromagnetic wave is incident on the medium I with an angle
of incidence equal to θ0. The incident electromagnetic wave is linearly polarized and the
electric vector E+

0 is in the plane (x1,x2). This implies that the magnetic vector H+
0

is in the x3-direction [case of transverse magnetic (TM) waves]. Using Snell’s laws, the
electromagnetic waves that are reflected and transmitted in the different layers can be
defined, as illustrated in Fig. 2.1. The analytic expressions of the electric vectors, in the
different media at a point of vector position x, are

E0 = E+
0 e
−(ω0t−k+

0 ·x) + E−0 e
−(ω0t−k−0 ·x), (2.5a)

EI = E+
I e
−(ω0t−k+

I ·x) + E−I e
−(ω0t−k−I ·x), (2.5b)

EII = E+
IIe
−(ω0t−k+

II·x) + E−IIe
−(ω0t−k−II ·x), (2.5c)

EIII = E+
IIIe
−(ω0t−k+

III·x). (2.5d)

with

E+
0 = E+

0

[
sin θ0

− cos θ0

]
, k+

0 = k0

[
cos θ0

sin θ0

]
, E−0 = E−0

[
sin θ0

cos θ0

]
, k−0 = k0

[
− cos θ0

sin θ0

]
,
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E+
I = E+

I

[
sin θ1

− cos θ1

]
, k+

I = kI

[
cos θ1

sin θ1

]
, E−I = E−I

[
sin θ1

cos θ1

]
, k−I = kI

[
− cos θ1

sin θ1

]
,

E+
II = E+

II

[
sin θ2

− cos θ2

]
, k+

II = kII

[
cos θ2

sin θ2

]
, E−II = E−II

[
sin θ2

cos θ2

]
, k−II = kII

[
− cos θ2

sin θ2

]
,

E+
III = E+

III

[
sin θ3

− cos θ3

]
, k+

III = kIII

[
cos θ3

sin θ3

]
. (2.6)

The analytic expressions of the magnetic vectors are obtained using the relation

H =

√
εc
µ
s× E , with s =

k

‖k‖
. (2.7)

Thus, the magnetic vectors in the different media, with i = {0, I, II}, are equal to

Hi = −ni/µi(E+
i e

k+
i ·x + E−i e

k−i ·x)e−ω0tx3, (2.8a)

HIII = −nIII/µIIIE
+
IIIe
−(ω0t−k+

III·x)x3. (2.8b)

To determine the amplitudes E−0 , E
+
I , E

−
I , E

+
II , E

−
II and E+

III, six boundary conditions are
applied, ensuring the continuity of the projected electric field along the x2-axis and the
projected magnetic field along the x3-axis at each interfaces between the different media.
At x1 = 0 and x1 = H, these boundary conditions lead to the writing of Eqs. (2.9a, 2.9b,
2.9d, 2.9e). Between media I and II, the boundary conditions are expressed in Eq. (2.9c),
using the transfer matrix method (pp. 26–60 in Ref. 157). This transfer matrix [LEM ],
defined in Appendix A.1.4, takes into account the propagation of electromagnetic waves
in the sublayers located between media I and II.

E0|x1=0 · x2 = EI|x1=0 · x2, (2.9a)

H0|x1=0 · x3 = HI|x1=0 · x3, (2.9b)[
EI · x2

HI · x3

]
x1=h1

=
[
LEM

]
2×2

[
EII · x2

HII · x3

]
x1=h1+∆h

, (2.9c)

EII|x1=H · x2 = EIII|x1=H · x2, (2.9d)

HII|x1=H · x3 = HIII|x1=H · x3. (2.9e)

Using the Eqs. (2.5a–2.5d) and Eqs. (2.8a, 2.8b) in the calculation of the boundary con-
ditions [Eqs. (2.9a–2.9e)], it follows that the linear system to solve in order to determine
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the ratio of the amplitudes of the reflected/transmitted electromagnetic waves to the
amplitude of the incident electromagnetic wave is



AE11 AE12 AE13 0 0 0

AE21 AE22 AE23 0 0 0

0 AE32 AE33 AE34 AE35 0

0 AE42 AE43 AE44 AE45 0

0 0 0 AE54 AE55 AE56

0 0 0 AE64 AE65 AE66





R−0

R+
I

R−I
R+

II

R−II
R+

III


=



cos θ0

−n0/µ0

0

0

0

0


. (2.10)

In order to obtain a well-conditioned matrix, where the coefficients AEij are detailed in
Appendix A.1.2, the unknowns of Eq. (2.10) are written as

R−0 =
E−0
E+

0

, R+
I =

E+
I

E+
0

, R−I =
E−I
E+

0

eβI(θ1)
h1
2 , (2.11)

R+
II =

E+
II

E+
0

e−βII(θ2)
h1+∆h

2 , R−II =
E−II
E+

0

eβII(θ2)H
2 , R+

III =
E+

III

E+
0

,

with the inverse expressions of the optical penetrations which are equal to158

βI(θ1) = 2 [k′I=(cos θ1) + k′′I<(cos θ1)] , (2.12a)

βII(θ2) = 2 [k′II=(cos θ2) + k′′II<(cos θ2)] . (2.12b)

The amplitudes of the electromagnetic waves are now determined and will be used to
obtain the power density Q of the energy dissipated into heat in the media.

2.3.3 Determination of the power density Q

The power density Q is obtained by applying the Poynting theorem and by assuming
that the convection current density jv is equal to zero (see the hypothesis formulated
Sec. 2.2). Therefore,

Q = −∇· < S >, (2.13)

with the time average of the Poynting vector
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< S > =
c0

8π
<(E×H). (2.14)

In Eq. (2.14), H is the conjugate of the magnetic vector H. Finally, using the Eqs. (2.5a–
2.5d) and Eqs. (2.8a, 2.8b), the expressions of the power density Q in media I and II
are

QI(x1) = I0ΛI(θ1)
[
|R+

I |
2e−βI(θ1)x1 + |R−I |

2eβI(θ1)(x1−h1)
]
, (2.15a)

QII(x1) = I0ΛII(θ2)
[
|R+

II|
2e−βII(θ2)[x1−(h1+∆h)] + |R−II|

2eβII(θ2)(x1−H)
]
, (2.15b)

with I0 = c0|E+
0 |2/(8π) the intensity of the incident electromagnetic wave and

ΛI(θ1) = βI(θ1)< (nI cos θ1) /µI, (2.16a)

ΛII(θ2) = βII(θ2)< (nII cos θ2) /µII, (2.16b)

which, multiplied by the squared modulus of the ratio R+
i (R−i ), stands for the intensity

transmission (reflection) of an electromagnetic plane wave under oblique incidence. The
power densities QI(x1) and QII(x1) will be used in Sec. 2.4 as the source terms for the
heat equation.

2.4 Heat diffusion problem

The aim of this section is to determine the temperature fields in media I and II by
considering heat conduction. Therefore, the heat equation to be solved is

∇ · (λ∇T ) +Q(x1, x2, t) = ρcp
∂T

∂t
, (2.17)

with λ the second-order tensor of thermal conductivity, T the temperature field, Q the
power density defined in Sec. 2.3, ρ the density and cp the specific heat. Note that here
the power density Q depends on x1 and also on x2 to consider the lateral distribution of
intensity of the incident laser line source.158 Assuming that the media are homogeneous,
the tensor of thermal conductivity in Eq. (2.17) is taken out of the divergence operator
to obtain
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2.4. Heat diffusion problem

λ∇2T +Q(x1, x2, t) = ρcp
∂T

∂t
. (2.18)

In addition, each layer is assumed to be orthotropic, with x1 and x2 as principal axes, so
the thermal conductivity tensor is written as a diagonal matrix

λ =

[
λ11 0

0 λ22

]
. (2.19)

The heat equation will be solved in the Fourier domain by considering harmonic solutions.
Therefore, Eq. (2.18) gives

D11
∂2T̂

∂x2
1

− (ω +D22k
2
2)T̂ = − 1

ρcp
Q̂(x1, k2, ω), (2.20)

with thermal diffusivities D11 = λ11

ρcp
and D22 = λ22

ρcp
. The convention chosen for the double

Fourier transform in space x2 and time t (denoted by the hat “ˆ”) is given by

T̂ (x1, k2, ω) =
1

2π

∫∫ +∞

−∞
T (x1, x2, t)e

−(ωt−k2x2) dt dx2. (2.21)

The source term Q̂(x1, k2, ω), expressed in the Fourier domain in Eq. (2.20), is equal to

Q̂(x1, k2, ω) = Q(x1) F (ω) G(x1, k2), (2.22)

with Q(x1) the power density determined in Sec. 2.3. F (ω) and G(x1, k2) are the Fourier
transforms of the pulse distributions in time and space, f(t) and g(x1, x2), respectively.
Their expressions are here considered to be

F (ω) =
1√
2π

∫ +∞

−∞
f(t)e−ωt dt (2.23a)

=
1√
2π
e−τ

2
pω

2/(16 ln 2),

G(x1, k2) =
1√
2π

∫ +∞

−∞
g(x1, x2)ek2x2dx2 (2.23b)

=
1√

2π cos θ
e−a

2
sk

2
2/(16 ln 2 cos2 θ)ek2x1 tan θ,
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Thermal convection

x2

x1h1

h2

Δh

Medium I

Medium II

T

θ1

θ2

Figure 2.2 – Illustration of the multilayer structure used to solve the thermal
diffusion problem. The uppercase letter “T” denotes the sublayers that can be
inserted between media I and II. The black arrows represent the wave vectors
of the thermal waves propagating in the ±x1-direction. The two dotted arrows
indicate the thermal convection at the upper surface of medium I and the lower
surface of medium II.

with τp the pulse duration at half maximum (FWHM) of the Gaussian function f(t) and as
the source width at half maximum (FWHM) of the tilted Gaussian beam mathematically
represented by g(x1, x2).158 The angle θ refers to the angle between the x1-direction and
the direction of refraction in the medium in which the heat diffusion problem is solved.
Homogeneous and particular solutions are searched to solve Eq. (2.20) in media I and II
and are detailed in the following.

2.4.1 Homogeneous solutions of the heat equation

In each layer i = {I, II}, homogeneous solutions T̂ ih of the heat equation, expressed
without the source term − 1

ρcp
Q̂i(x1, k2, ω) in Eq. (2.20), are sought in the form

T̂ ih(x1, k2, ω) = T̂ i±h (k2, ω)e±Γi1x1 . (2.24)
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By injecting Eq. (2.24) into the homogeneous heat equation, we obtain

[
Di

11Γi1
2 −

(
ω +Di

22k
2
2

)]
T̂ i±h (k2, ω)e±Γi1x1 = 0, (2.25)

which results in

Γi1 =

√
ω +Di

22k
2
2

Di
11

. (2.26)

Therefore, the homogeneous solutions are the sum of two thermal waves that propagate
in the ±x1-direction, as illustrated in Fig. 2.2 and given by

T̂ ih(x1, k2, ω) = T̂ i+h (k2, ω)e−Γi1x1 + T̂ i−h (k2, ω)eΓi1x1 , (2.27)

with the coefficients T̂ i+h (k2, ω) and T̂ i−h (k2, ω) to be determined later using the boundary
conditions.

2.4.2 Particular solutions of the heat equation

Particular solutions T̂ ip are searched in the form of the source terms specified in Eqs. (2.15a,
2.15b) for media I and II, which gives

T̂ I
p(x1, k2, ω) =T̂ I+

p (k2, ω)e−βI(θ1)x1ek2 tan θ1x1 (2.28a)

+ T̂ I−
p (k2, ω)eβI(θ1)(x1−h1)e−k2 tan θ1x1 ,

T̂ II
p (x1, k2, ω) =T̂ II+

p (k2, ω)e−βII(θ2)[x1−(h1+∆h)]ek2 tan θ2x1 (2.28b)

+ T̂ II−
p (k2, ω)eβII(θ2)(x1−H)e−k2 tan θ2x1 .

Then, Eqs. (2.28a, 2.28b) are fed into the heat equation (2.20) to obtain the four coeffi-
cients

T̂ i+p = − Q̂
+
i

ρicip

[
Di

11[βi(θi)− k2 tan θi]
2 −

(
ω +Di

22k
2
2

)]−1
, (2.29a)

T̂ i−p = − Q̂
−
i

ρicip

[
Di

11[βi(θi)− k2 tan θi]
2 −

(
ω +Di

22k
2
2

)]−1
, (2.29b)
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with the power densities Q+
i and Q−i expressed as a function of the parameters I0, Λi(θi)

and |R±i | given in Sec. 2.3

Q̂+
i = I0 Λi(θi) |R+

i |2 F (ω) G(k2), (2.30a)

Q̂−i = I0 Λi(θi) |R−i |2 F (ω) G(k2). (2.30b)

Note that here the Fourier transform of the pulse distribution in space G(k2) [defined
in Eq. (2.23b) and in Appendix A.2.1] is only a function of k2 because the dependence
in x1 has already been taken into account in the expressions of the particular solutions T̂ ip
[Eqs. (2.28a, 2.28b)].

2.4.3 Application of the boundary conditions

As mentioned in Sec. 2.4.1, the boundary conditions are applied to determine the four
coefficients T̂ i+h (k2, ω) and T̂ i−h (k2, ω) of the homogeneous solutions. At x1 = 0 and
x1 = H, the heat fluxes are conserved and the thermal convection is taken into account
with the heat transfer coefficient hc. Hence, using the Fourier’s law and the Newton’s
law,159 it gives

λI
11

∂T̂I

∂x1

∣∣∣∣∣
x1=0

= hc

(
T̂I

∣∣∣
x1=0
− T̂∞

)
, (2.31)

λII
11

∂T̂II

∂x1

∣∣∣∣∣
x1=H

= −hc
(
T̂II

∣∣∣
x1=H

− T̂∞
)
, (2.32)

with T̂∞ the double Fourier transform of the temperature when x1 approaches infinity.
Furthermore, if heat diffusion losses are neglected in the x2-direction for each i-th sublayer
and Γi1hi � 1 is assumed, i.e., thermally-thin sublayer, with Γi1 defined in Eq. (2.26) and
hi the thickness of the i-th sublayer, the heat flux is conserved between media I and II,
resulting in

λI
11

∂T̂I

∂x1

∣∣∣∣∣
x1=h1

= λII
11

∂T̂II

∂x1

∣∣∣∣∣
x1=(h1+∆h)

. (2.33)

However, the temperature field may be discontinuous, which results in

54



2.5. Elastodynamic problem

λI
11

∂T̂I

∂x1

∣∣∣∣∣
x1=h1

=
T̂II

∣∣∣
x1=(h1+∆h)

− T̂I

∣∣∣
x1=h1

Rc

, (2.34)

with Rc the thermal resistance defined as

Rc =

Nsublayers∑
i=1

hi
λi11

, (2.35)

with Nsublayers the total number of sublayers between media I and II and λi11 the thermal
conductivity of each sublayer. By replacing the temperature field in the boundary condi-
tions [Eqs. (2.31–2.34)] by the sum of the homogeneous and particular solutions given in
Eqs. (2.27, 2.28a, 2.28b), we obtain the following linear system:


AT11 AT12 0 0

AT21 AT22 AT23 AT24

AT31 AT32 AT33 AT34

0 0 AT43 AT44



T̂ I+
h

?T̂ I−
h

?T̂ II+
h

?T̂ II−
h

 =


BT

1

BT
2

BT
3

BT
4

 . (2.36)

To obtain a well-conditioned matrix, the coefficients ATij and BT
i are detailed in Ap-

pendix A.2.2 and the unknowns of Eq. (2.36), with the symbol “?”, are written as150

?T̂ I−
h = T̂ I−

h eΓI
1h1 , ?T̂ II+

h = T̂ II+
h e−ΓII

1 (h1+∆h),

?T̂ II−
h = T̂ II−

h eΓII
1 H .

(2.37)

Finally, the temperature fields T̂ I(x1, k2, ω) and T̂ II(x1, k2, ω) are fully determined by the
expressions

T̂ I(x1, k2, ω) =T̂ I+
h (k2, ω)e−ΓI

1x1 (2.38a)

+ ?T̂ I−
h (k2, ω)eΓI

1(x1−h1) + T̂ I
p(x1, k2, ω),

T̂ II(x1, k2, ω) = ?T̂ II+
h (k2, ω)e−ΓII

1 [x1−(h1+∆h)] (2.38b)

+ ?T̂ II−
h (k2, ω)eΓII

1 (x1−H) + T̂ II
p (x1, k2, ω).
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Figure 2.3 – Representation of the multilayer structure used to solve the elasto-
dynamic problem. The uppercase letter “M” denotes the sublayers that can be
inserted between media I and II to mechanically couple these two media. The
black (red) arrows represent the wave vectors of the longitudinal (transverse) po-
larized waves propagating in the ±x1-direction.

2.5 Elastodynamic problem

The absorption of electromagnetic waves by the layers, as well as the thermal diffusion,
have been detailed in Sec. 2.3 and Sec. 2.4, respectively. These two physical phenomena
are at the origin of the elastic wave generation that occurs in the multilayer represented
in Fig. 2.3. The elastodynamic problem is addressed in this section. Under the assump-
tions presented in Sec. 2.2 and the small perturbation hypothesis, the equation of motion
is

ρ
∂2u

∂t2
(x1, x2, t) = ∇ · σ(x1, x2, t), (2.39)

with ρ the density, u the displacement vector and σ the Cauchy stress tensor. Using the
Hooke’s law, the stress tensor is equal to

σ(x1, x2, t) = C : ε(x1, x2, t)− C : α∆T (x1, x2, t), (2.40)

with C the fourth-order stiffness tensor, ε the second-order strain tensor, α the second-
order thermal expansion tensor and ∆T the elevation of temperature in the medium.
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Media I and II are assumed to be orthotropic with x1 and x2 as principal axes. In Voigt
notation, Eq. (2.40) gives

σ11

σ22

σ12

 =

C11 C12 0

C12 C22 0

0 0 C66



 ε11

ε22

2ε12

−
α11

α22

0

∆T

 , (2.41)

with εij = 1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
. Viscoelastic attenuation can be introduced by considering

complex elastic coefficients with the imaginary part related to the attenuation. For the
Kelvin-Voigt model

C∗ = C + ωη, (2.42)

with η the fourth-order viscosity tensor. To lighten the notations, the elastic coefficients

are written without the symbol “∗” in the following. The use of Eq. (2.40) in Eq. (2.39) and
the projection of Eq. (2.39) onto x1-axis and x2-axis yields the following elastodynamic
equations in the Fourier domain:

C11
∂2û1

∂x2
1

− k2 (C12 + C66)
∂û2

∂x1

(2.43a)

+
(
ρω2 − C66k

2
2

)
û1 = Cα1

∂T̂

∂x1

,

C66
∂2û2

∂x2
1

− k2 (C12 + C66)
∂û1

∂x1

(2.43b)

+
(
ρω2 − C22k

2
2

)
û2 = −k2Cα2T̂ ,

with Cα1 = C11α11 + C12α22, Cα2 = C12α11 + C22α22. In this section, the convention for
the double Fourier transform, in space x2 and time t, is the same as the one given in
Eq. (2.21). The solution of Eqs. (2.43a, 2.43b) is the sum of the homogeneous solution
ûh(x1, k2, ω) and the particular solution ûp(x1, k2, ω) as detailed in the following sections.

2.5.1 Homogeneous solutions of the elastodynamic equations

The solutions of the homogeneous elastodynamic equations, Eqs. (2.43a, 2.43b) without
the source terms Cα1

∂T̂
∂x1

and −k2Cα2T̂ , are sought in the form of
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ûh(x1, k2, ω) = Ûh(k2, ω)e−k1x1 . (2.44)

By injecting Eq. (2.44) in the homogeneous elastodynamic equations (2.43a, 2.43b), we
obtain

[
a11 − k2

1C11 −k1a12

−k1a12 a22 − k2
1C66

][
Û1h

Û2h

]
=

[
0

0

]
, (2.45)

with a11 = ρω2 − k2
2C66, a22 = ρω2 − k2

2C22, and a12 = k2 (C12 + C66). Then, by imposing
that the determinant of the 2×2 matrix of Eq. (2.45) is zero, we get the quadratic equation

aX2 + bX + c = 0, (2.46)

with X = k2
1 and the coefficients of the quadratic equation: a = C11C66, b = −(C11a22 +

C66a11 + a2
12), c = a11a22. The two solutions of Eq. (2.46) are

X± =
−b±

√
b2 − 4ac

2a
, (2.47a)

which gives four eigenvalues for the wavenumber k1. Thus, the homogeneous solution is
the linear combination of two longitudinal (L) and two transverse (T) polarized waves,
which are travelling along the positive and negative directions of the x1-axis as illustrated
in Fig. 2.3 and defined by the equation

ûh(x1, k2, ω) =
∑

n={L,T}

An+Ûn+
h (k2, ω)e−k

n
1x1 (2.48)

+An−Ûn−
h (k2, ω)ek

n
1x1 .

In Eq. (2.48), kL
1 =

√
X− and kT

1 =
√
X+ are the projections of the longitudinal and

transverse wave vectors along the x1-axis, respectively. In addition, An± refer to the wave
amplitudes that are subsequently determined by applying the boundary conditions and
Ûn±
h are the eigenvectors that are equal to

Ûn±
h (k2, ω) =

[
Ûn±

1h

Ûn±
2h

]
=

[
a22 − (kn

1 )2C66

±kn
1a12

]
. (2.49a)
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2.5.2 Particular solutions of the elastodynamic equations

The particular solutions are searched following the form of the source terms Cα1

∂T̂
∂x1

and −k2Cα2T̂ of Eqs. (2.43a, 2.43b). Therefore, using the analytic expression of the
temperature fields T̂ in media I and II, given in Eqs. (2.38a, 2.38b), the particular solutions
are

ûI
p =ÛI+

pΓ
e−ΓI

1x1 + ÛI−
pΓ
eΓI

1(x1−h1) (2.50a)

+ ÛI+
pβ
e−βI(θ1)x1ek2 tan θ1x1 + ÛI−

pβ
eβI(θ1)(x1−h1)e−k2 tan θ1x1 ,

ûII
p =ÛII+

pΓ
e−ΓII

1 [x1−(h1+∆h)] + ÛII−
pΓ
eΓII

1 (x1−H) (2.50b)

+ ÛII+
pβ
e−βII(θ2)[x1−(h1+∆h)]ek2 tan θ2x1 + ÛII−

pβ
eβII(θ2)(x1−H)e−k2 tan θ2x1 .

To obtain the four vectors ÛI+
pβ
, ÛI−

pβ
, ÛII+

pβ
and ÛII−

pβ
, which are related to the optical

penetration of the electromagnetic waves in media I and II, each term of Eqs. (2.50a,
2.50b) is injected into the elastodynamic equations (2.43a, 2.43b). Thus, four linear
systems with the form

[
ai11+Ci

11(βi−k2tan θi)
2 ±ai12(βi−k2tan θi)

±ai12(βi−k2tan θi) ai22+Ci
66(βi−k2tan θi)

2

][
Û i±

1pβ

Û i±
2pβ

]
=

[
−Ci

α1
(βi−k2tan θi)(±T̂ i±p )

−k2C
i
α2
T̂ i±p

]
,

(2.51)

have to be solved, with i = {I, II}. The same procedure is applied to calculate the four
vectors ÛI+

pΓ
, ÛI−

pΓ
, ÛII+

pΓ
and ÛII−

pΓ
of Eqs. (2.50a, 2.50b), which are linked to the thermal

diffusion in media I and II. Four other linear systems have to be solved (see Appendix A.3.2
for more detailed).

2.5.3 Application of the boundary conditions

The homogeneous and particular solutions of the elastodynamic equations (2.43a, 2.43b)
have been determined in Sec. 2.5.1 and Sec. 2.5.2. Consequently, the last step is to apply
the boundary conditions to find the eight amplitudes An±

i , with n = {L,T} and i = {I, II},
of the eight elastic waves that propagate in media I and II. In Fig. 2.3, the upper surface
of medium I (at x1 = 0) and the lower surface of medium II (at x1 = H) are considered
as free surfaces. Thus, four boundary conditions are given by

σ̂I
11

∣∣
x1=0

= σ̂I
12

∣∣
x1=0

= 0, (2.52)
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σ̂II
11

∣∣
x1=H

= σ̂II
12

∣∣
x1=H

= 0. (2.53)

Using the mechanical coupling between media I and II, four other boundary conditions
are


ûI

1

ûI
2

σ̂I
11

σ̂I
12


x1=h1

=
[
LM
]

4×4


ûII

1

ûII
2

σ̂II
11

σ̂II
12


x1=h1+∆h

, (2.54)

with [LM ] the transfer matrix (pp. 53–60 in Ref. 157) used to couple the displacements (û1,
û2) and the stresses (σ̂11, σ̂12) from medium I at x1 = h1, to medium II at x1 = h1 + ∆h.
The sublayers that can be inserted between media I and II will be taken into account
through this transfer matrix. For instance, if we assume the continuity of displacements
and stresses at the interface between media I and II (with ∆h = 0), then [LM ] is equal
to the identity matrix. For more complex cases, the expression of the transfer matrix is
detailed in Appendix A.3.4. Then, Eqs. (2.52–2.54) have to be solved to obtain the eight
amplitudes of the elastic waves, taking care that the matrices are well-conditioned [as it
was done in Eqs. (2.36, 2.37)].150 The complete solution in media I and II is equal to the
linear combination of the homogeneous and particular solutions

ûi(x1, k2, ω) = ûih(x1, k2, ω) + ûip(x1, k2, ω). (2.55)

Finally, a double inverse Fourier transform in space x2 and time t is performed to find
the temporal solutions of the displacement field ui(x1, x2, t), with i = {1, 2}. Numeri-
cally, this double integration is carried out according to the approach proposed by Bou-
chon and Aid,160 as well as Weaver et al.161,162 The complex angular frequency ω∗ = ω−δω
is used to slightly shift the analytic solutions in the imaginary plane to avoid the poles
of the Rayleigh-Lamb waves. Then, the small positive constant δω is removed after the
double integration by multiplying the final result by eδωt:

ui(x1, x2, t)=
eδωt

2π

∫∫ +∞

−∞
ûi(x1, k2, ω

∗)e(ωt−k2x2) dω dk2. (2.56)

The semi-analytic method for solving electromagnetic, thermal and elastodynamic prob-
lems was fully presented in sections 2.3, 2.4 and 2.5, respectively. Examples of numerical
results obtained with this simulation technique are presented below.
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Table 2.1 – Optical, thermal and mechanical properties of the aluminum al-
loy (Al), SCHOTT N-BK7® glass and titanium (Ti).

Al N-BK7 Ti

n′ (@ 532 nm)163 1.468 1.519 2.479

n′′ (@ 532 nm)163 8.949 7.761 10−9 3.351

µ 1. 1. 1.

λ11 (Wm−1 K−1) 1.5 102 1.1 2.0 101

λ22 (Wm−1 K−1) 1.5 102 1.1 2.0 101

cp (J kg−1 K−1) 9.0 102 8.6 102 5.0 102

α11 = α22 (K−1) 2.5 10−5 8.3 10−6 1.1 10−5

C11 (GPa) 1.10 102 9.18 101 1.62 102

C12 (GPa) 5.69 101 2.38 101 6.90 101

C22 (GPa) 1.10 102 9.18 101 1.80 102

C66 (GPa) 2.65 101 3.40 101 4.67 101

ρ (kgm−3) 2.70 103 2.51 103 4.54 103

2.6 Numerical simulation results

In this section, numerical results obtained with this semi-analytic model are reported.
Some simulation parameters are unchanged for the three examples that are presented later:
the time range t ∈ [0, 16.384] µs with the discretization step ∆t = 8.0 10−3 µs; the position
range x2 ∈ [−81.92, 81.92]mm with the discretization step ∆x2 = 8.0 10−2 mm. Hence,
the maximum angular frequency ω is equal to 3.927 102 rad µs−1 (maximum frequency of
62.5 MHz) and the maximum wavenumber k2 to 3.927 101 radmm−1. Furthermore, the
incident electromagnetic wave is defined by: the pulse duration τp = 8ns, the source
width as = 0.2mm, the intensity I0 = 0.2 Jmm−1, the angle of incidence θ0 = 0◦ and
the electromagnetic wavelength λopt = 532 nm. Concerning the thermal parameters, the
external temperature is set to T∞ = 293.15K, and the heat transfer coefficient is imposed
to hc = 25Wm−2 K−1. Using these settings, three examples of the use of the devel-
oped semi-analytic model are described hereafter. The optical, thermal and mechanical
properties of the material used for the simulations are given in Tab. 2.1.
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Figure 2.4 – Zoom views of f–k diagrams (in dB), for a 1.23mm-thick aluminum
alloy plate at x1 = 1.23mm, for two different laser sources. (a) Gaussian laser
pulse (τp = 8ns, as = 0.2mm). (b) Modulated laser source in time (tone burst
of 2.5MHz central frequency) and space (phase mask of 1.5 radmm−1 central
wavenumber). A good agreement is obtained with the dispersion curves simu-
lated with the commercial software “CIVA 2020” in dashed (dash-dotted) lines for
symmetric (antisymmetric) modes.

2.6.1 Analysis of the guided elastic waves in an aluminum alloy

plate

The first example is the frequency–wavenumber (f–k) diagrams depicting the normal-
ized spectral density in dB, ∣∣ûI1(x1, k2, ω

∗)
∣∣2

max
k2,ω∗
|ûI1(x1, k2, ω∗)|

2 , (2.57)

of a 1.23mm-thick aluminum alloy plate for two different laser sources. In Fig. 2.4(a),
the f–k diagram is obtained for a Gaussian laser pulse of duration τp = 8 ns and source
width as = 0.2mm. The Fourier transforms of the pulse distribution in time and space are
given by the expressions of F (ω) and G(x1, k2) with θ0 = 0◦ in Eqs. (2.23a) and (2.23b), re-
spectively. Before applying the double inverse Fourier transform introduced in Eq. (2.56),
the displacement ûi(x1, k2, ω

∗) can indeed be used to analyze the dispersion of the waves
guided along the x2-direction. In the case of a free plate, the modes shown in Fig. 2.4(a)
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Figure 2.5 – Normal displacements u1(x1, x2, t) simulated at t = 1 µs in: (a) a bi-
layer Al (1.5 mm)/Al (3.1 mm) and (b) a trilayer Al (1.5 mm)/Epoxy (0.1 mm)/Al
(3.0 mm).

correspond to the Lamb modes. Note that this f–k diagram contains, on top of the
dispersive features of the modes, the information about their detectability with an inter-
ferometer sensitive only to the normal component of the displacement of the free surface.
This Gaussian laser pulse allows to excite a large number of Lamb modes because of the
broadband content of F (ω) and G(x1, k2). In order to excite specific modes only, the laser
source can be modulated in time and space to select a particular area in the f–k diagram,
as shown in Fig. 2.4(b). This can be easily implemented in the model by changing the
expressions of F (ω) and G(x1, k2) by the Fourier transform of the desired laser source
modulated in time and space. To obtain the f–k diagram presented in Fig. 2.4(b), a tone
burst of 2.5MHz central frequency and a phase mask of 1.5 radmm−1 central wavenum-
ber k2 were used.

The calculation time to obtain ûi(x1, k2, ω
∗), at a given x1 position and for all the

values of ω∗ and k2 vectors, is equal to 1min 37 s±6 s (with an Intel® Core™ i7-6500U
CPU @ 2.5GHz, 16.0GBRAM). The time domain signals as a function of x2 can be
obtained by applying the double inverse Fourier transform of ûi(x1, k2, ω

∗), which only
adds 0.2 s to the previous calculation time.

Among other useful applications, the possibility, offered by the semi-analytic model
proposed here, to analyze the influence of F (ω) and G(x1, k2) on simulated f–k diagrams
is of interest to help design the temporal and spatial profiles of the laser source to excite
and detect specific Lamb modes. This type of analysis can be performed on more complex
structures such as those presented below.

2.6.2 Bilayer/trilayer with interfacial stiffnesses

The second example deals with a bilayer composed of two aluminum alloy (Al) plates
of 1.5 and 3.1 mm [Fig. 2.5(a)] and a trilayer Al (1.5 mm)/Epoxy (0.1 mm)/Al (3.0 mm)
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[Fig. 2.5(b)]. The normal displacement u1(x1, x2, t), generated by a Gaussian laser pulse
of duration τp = 8 ns and source width as = 0.2mm, is obtained by solving numerically
Eq. (2.56) for x1 ∈ [0, 4.6 mm], with the positive constant δω = 0.4 rad µs−1. The
snapshot of the normal displacement at t = 1 µs is represented in Fig. 2.5. The heat
source is located at the origin of the Cartesian coordinate system because the optical
penetration depth in aluminum is equal to 1/β = 4.7 nm (@ θ0 = 0◦ and λopt = 532nm).

In Fig. 2.5(a), two distributions of normal and transverse interfacial stiffnesses (see
Appendix A.3.4), equal to KN = KT = ∞ kNmm−3, are inserted between the two Al
plates. Thus, a perfect continuity of displacements and stresses is imposed at the interface,
which explains the full transmission of the elastic waves between media I and II. At the
free surface of the top Al plate (at x1 = 0), the Rayleigh wave with the largest normal
displacement (more than 2.5 nm in this simulation, see the color bar) is visible. In the
bulk of the bilayer, the fastest wave (in red), which is reflected at the free surface of the
lower Al plate (at x1 = 4.6 mm), corresponds to the longitudinal wave. The slowest bulk
wave is the transverse wave (in blue). The head wave is also simulated and corresponds
to the plane wave that is generated at the critical angle θcrit = arcsin(

√
C66/C11) = 29.4◦,

with the elastic coefficients C11 and C66 given in Tab. 2.1.
In Fig. 2.5(b), three sublayers are inserted between the two Al plates: two distri-

butions of normal and transverse interfacial stiffnesses (see Appendix A.3.4) equal to
KN1 = KT1 =∞ kNmm−3, a 0.1 mm-thick epoxy layer and two other interfacial stiff-
ness distributions equal to KN2 = KT2 =∞ kNmm−3. The epoxy layer is assumed to
be isotropic with a density of 2.1 103 kgm−3 and elastic coefficients C11 = 4.2GPa and
C12 = 3.3GPa. Contrary to the bilayer Al/Al in Fig. 2.5(a), elastic waves are transmitted
but also reflected by the epoxy layer.

This second example demonstrates the opportunities of the proposed model to pre-
dict/interpret the effect of imperfect bonding (by modifying the values of interfacial
stiffnesses) on the detectable elastic waves in a bonded multilayer structure. Possible
applications of this semi-analytic model could be the simulation of laser-generated ultra-
sounds in structural bonding. Indeed, quantifying the mechanical strength of bonds is
a major issue in aeronautics. These simulations could allow to understand the influence
of a weak bond on the detected ultrasonic signature. Moreover, these fast and accurate
simulations could enable the resolution of inverse problems requiring the optimization of
various key parameters related to the mechanical strength of adhesive bonding.
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Figure 2.6 – Normal displacements u1(x1, x2, t) simulated at t = 0.35 µs in a
bilayer glass (2 mm)/Ti (2 mm) with interfacial stiffnesses equal to: (a) KN =

KT = 105 kNmm−3 and (b) KN = KT =∞ kNmm−3.

2.6.3 Bilayer with the heat source at the interface

The third example, in Fig. 2.6, is about a bilayer structure composed of a 2 mm-thick
glass plate (SCHOTT N-BK7®) perfectly coupled to a 2.0 mm-thick titanium plate of
orthotropic mechanical properties. To ensure the continuity of displacements and stresses
at the interface, two distributions of normal and transverse interfacial stiffnesses are added
and equal to KN = KT = 105 kNmm−3 in Fig. 2.6(a) and KN = KT = ∞ kNmm−3 in
Fig. 2.6(b). The heat source is located at the interface between the two media because
the incident electromagnetic wave is mainly absorbed in the titanium plate. Indeed, the
complex part of the refractive index n′′ is approximately 109 times higher for the titanium
than for the glass plate (see Tab. 2.1). Moreover, the normal displacement u1 is similar in
the two cases presented in Fig. 2.6(a) and (b) because large values of interfacial stiffnesses
(KN = KT = 105 kNmm−3) are sufficient to ensure a perfect continuity of displacements
and stresses at the interface between the two media. Furthermore, longitudinal bulk
waves are mainly generated in the x1-direction and the sign of the normal displacement is
positive (negative) in the titanium (glass) plate. Transverse bulk waves and head waves
are clearly visible (in blue) in the titanium plate.

This third example illustrates the fact that this model can be used to simulate a ther-
moelastic source at the interface between two media and not only at the upper surface of
medium I, as previously shown in the first and second examples.

2.7 Conclusion

Laser-generated ultrasounds are simulated in a multilayer structure using a semi-analytic
approach detailed in this chapter. Electromagnetic, thermal and elastodynamic problems
are successively solved to obtain the displacement fields in the upper and lower media of
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the structure. A tilted laser line source, of infinite length in the x3-axis, is considered. The
optical transmission and reflection of the incident laser beam are calculated to obtain the
power densities dissipated into heat and used as source terms for solving the heat diffusion
problem. The amplitudes of the thermal waves are obtained by considering conduction
and convection phenomena. Then, analytic solutions of the displacement field due to the
thermal expansion are determined in the Fourier domain. Finally, a double numerical
inverse Fourier transform in space and time is performed to find the displacement field in
the time domain.

In this 2D model, layered plates with parallel surfaces are considered and it is assumed
that the generation of ultrasounds occurs only in the upper and lower media, i.e., the gen-
eration of ultrasounds in the sublayers should be negligible. The model has been applied
to three different cases showing just a glance of the possibilities such a model provides for
forecasting, designing or else analyzing the elastic waves generated and detected by lasers
in multilayer structures. Note that this model, as long as the thermoelastic process of
ultrasound generation is at major play, is not limited to millimetric-in-thickness structure
nor to the MHz frequency range. In addition, it can be extended to a 3D geometry in
order to simulate ultrasound generation with thermoelastic sources that are no longer as-
sumed to be of infinite length in the x3-direction. This will obviously make the formulas
presented in this chapter more complex (the wavenumber k3 must be added) and will
necessarily increase the calculation time; which is about 1min 37 s±6 s for a 2D geometry
at a given x1 position. However, this approach could be of real interest for simulating
laser-generated ultrasounds in multilayer structures with thermoelastic sources of complex
3D shape.

As pointed out in the second example above, the fast and accurate simulations with the
developed model could enable the resolution of inverse problems requiring the optimization
of various key parameters related to the mechanical strength of adhesive bonding. The
next chapter is dedicated to such applications of the semi-analytic model.
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Plane wave synthesis and inverse
problem for nondestructive evaluation
of adhesive bondings
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Abstract

A laser ultrasonic method is proposed for the nondestructive evaluation of bonded as-
semblies, based on the analysis of elastic plane waves reflected from the bonding interface.
Plane waves are numerically synthesized from experimentally detected cylindrical waves.
Several angles of incidence with respect to the bonding interface are achieved by vary-
ing the delay in the synthesis step. An inverse problem using these plane waves is then
solved to identify the normal and transverse interfacial stiffnesses that model the mechan-
ical coupling between two bonded media. The developed method is first validated with
semi-analytic simulated input data where Gaussian noise has been added (semi-analytic
model presented in Chap. 2). Next, the method is applied using signals acquired on an
aluminum alloy plate and on assemblies (with and without adhesion defects) made of two
aluminum alloy plates bonded by an aeronautical structural epoxy adhesive film. The
identified values of interfacial stiffnesses enable to distinguish the three samples and to
obtain quantitative values to characterize the adhesive bonding.

This work was submitted to the J. Acoust. Soc. Am.:
R. Hodé, S. Raetz, N. Chigarev, J. Blondeau, N. Cuvillier, V. Gusev, M. Ducousso and
V. Tournat, “Laser ultrasonics in a multilayer structure: Plane wave synthesis and in-
verse problem for nondestructive evaluation of adhesive bondings,” J. Acoust. Soc. Am.
(submitted on December 11, 2020).
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3.1 Introduction

In this chapter, a laser ultrasonic method is developed for the quantitative NDE of
adhesive bonding. This work is based on the synthesis of elastic plane waves developed
by Reverdy and Audoin.164,165 This post-processing method was originally designed to find
the elastic coefficients of isotropic or anisotropic plates using laser-generated ultrasound.
The times of flight of the synthesized plane waves were used to solve an inverse problem
based on the Christoffel equation. This method is here applied to identify the mechanical
coupling conditions between two bonded elastic media with known elastic coefficients. Not
only the times of flight but also the amplitudes of the synthesized reflected plane waves
are gathered for different angles of incidence with respect to the bonding interface. An
inverse problem is then solved to identify the normal and transverse interfacial stiffnesses
used to model the bonding.

The outline of this chapter is introduced as follows. In Sec. 3.2, the post-processing
method to synthesize plane waves is described and the application of this technique for
the NDE of adhesive bonding is presented. In Sec. 3.3, two methods are introduced to
simulate the amplitudes of the synthesized plane waves reflected from the here-investigated
interface between two bonded media. The choice of the semi-analytic approach to solve the
direct problem is justified and numerical results are provided. In Sec. 3.4, the algorithm
used to solve the inverse problem in order to identify the values of normal and transverse
interfacial stiffnesses, which model the mechanical coupling between two bonded media, is
detailed. The identification process is first validated using simulated data to which noise
has been added. Then, the inverse problem is solved using experimental data acquired
for a free-standing aluminum alloy plate and for two bonded assemblies (Al/Epoxy/Al),
with and without adhesion defects, in Sec. 3.5. The epoxy layer was, in both cases, an
industrial aeronautical adhesive. Both assemblies, similar in geometry and constituents,
yet different in adhesion level, were undistinguishable when evaluated with conventional
ultrasonic inspection techniques. The identification of the interfacial stiffnesses with the
proposed method is eventually presented. Its ability to non-destructively characterize
adhesive bondings and therefore to distinguish different adhesion levels is demonstrated.
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3.2 Plane wave synthesis for the nondestructive eval-

uation of adhesive bondings

One advantage of laser ultrasound generation in the thermoelastic regime is that the
surface of the inspected material is not locally degraded, in contrast to the ablation regime.
However, the elastic waves generated in this regime are of relatively low amplitudes,
which can make optical signal detection difficult and result in a relatively poor signal-
to-noise ratio. For these reasons, different techniques have been developed to increase
the amplitude of laser-generated ultrasound and to improve the directivity pattern of
opto-acoustic sources. Plane wave generation is one of the methods to address this issue.

For absorbing material, the easiest way to experimentally generate non-destructively
plane waves in laser ultrasonics is to use a thermoelastic source with lateral dimensions
very large compared to the achievable wavelength. The limit of that approach is that only
plane waves propagating in a direction normal to the generation surface are made possible.
Two main experimental techniques allowing to steer the propagation direction of plane
waves along any angle are reported in the literature. One approach is based on a moving
laser source that continuously sweeps the surface of a medium at subsonic, transonic
or supersonic velocities. Berthelot et al.166 applied this technique for the experimental
generation of plane waves in a freshwater tank. The mobile thermoacoustic source on
the water surface was created by the reflection of a laser beam from a rotating mirror.
Ing et al.167 used an acousto-optic cell working under the Bragg mode to generate a moving
laser source at the surface of an aluminum half-cylinder. Another approach to launch plane
waves is based on a set of photoacoustic sources separated in space and time. These laser
ultrasonic methods are close to those developed in conventional ultrasound with the use of
phased array transducers.168 Steckenrider et al.169 used the propagation of one laser pulse
in an optical delay system, consisting of a White cell cavity170 and a graded beamsplitter,
to generate up to ten spatially and temporally separated laser sources. Another technique
that requires only one laser beam was based on the redirection of a laser pulse into several
optical fibers of different lengths, resulting in phase shifts.171–173 Furthermore, multiple
laser beams were also used to design a phased array of laser sources. Noroy et al. carried
out experiments with a multiple beam Q-switched Nd:YAG laser capable of delivering
sixteen optical pulses. Laser-generated ultrasonic phased array were performed by the
authors in the ablation regime,174 and in the thermoelastic regime.175,176 Murray et al.177

followed a similar approach with ten Nd:YAG lasers cavities.

70



3.2. Plane wave synthesis for the nondestructive evaluation of adhesive bondings

Although laser-generated plane waves are experimentally achievable, these techniques
are difficult to realize in practice and require the use of more complicated systems than
those with two laser beams, i.e., one for ultrasound generation and one for detection.
Therefore, an alternative approach, based on the synthesis of plane waves in a post-
processing step, has been chosen and is detailed in the following.

3.2.1 Description of the plane wave synthesis

To synthesize plane waves from divergent laser-generated ultrasound, a method has
been developed by Reverdy and Audoin.164,165 They have used it to measure the elastic
coefficients of anisotropic materials by solving an inverse problem based on the Christoffel
equation. The first step of this technique is the acquisition of temporal signals. A laser
line source, of infinite length in the x3-direction, is moved over the sample surface in
2N + 1 positions with a constant δx-step. At each i ∈ [−N,N ] position, laser-generated
ultrasound are emitted in the sample and the normal displacement of the surface is mea-
sured at the i = 0 position. Therefore, for each generation location, a temporal signal
si(t) is recorded. The second step deals with the post-processing of the acquired data to
synthesize plane waves. A constant time delay δt is imposed between the signals si(t) and
si+1(t). Then, a sum on all the signals is achieved to obtain:

s(t) =
N∑

i=−N

si(t+ iδt), (3.1)

where s(t) corresponds to the signal that would have been experimentally recorded, at
the i = 0 position, if a phased array of laser sources had generated plane waves in the
linear domain, i.e when the superposition principle is valid. The time delay δt is directly
linked to the steering angle ϕn, of the synthesized plane wave of n-polarization, given by

sin(ϕn) =
ks
kn
, n = {L,T}, (3.2)

with L and T denoting the longitudinal and transverse polarizations of the elastic waves,
respectively. The wavenumber ks = ω δt/δx is defined by ω the angular frequency,
δx the fixed spatial step and δt the time delay which is an adjustable parameter. The
wavenumber of the synthesized plane wave is equal to kn = ω/cn with cn the phase
velocity of the wave having a n-polarization. Then, the times of flight (TOF) and the
amplitudes of the synthesized plane waves are obtained by convolving the signal s(t) with
a complex Morlet wavelet.164 To identify the elastic coefficients of an anisotropic plate,
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Figure 3.1 – (a) Representation of the elastic plane waves that are synthesized
in the medium I. First, a laser line source, of infinite length in the x3-direction,
is moved over the sample surface in 2N + 1 positions with a constant δx-step.
Secondly, a time delay δt is applied between the laser pulses, in post-processing,
to synthesized longitudinal (L) and transverse (T) plane waves. (b) The applica-
tion of delays between the 2N + 1 sources leads to constructive and destructive
interferences between the divergent elastic waves, resulting in the generation of a
plane wave. (c) Slowness diagram of the longitudinal and transverse plane waves
that are synthesized by imposing the wave vector ks = ω δt/δx with ω the
angular frequency.
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the TOF of the synthesized plane waves was measured either in transmission164 or in
reflection.165

3.2.2 Application for the nondestructive evaluation of adhesive

bondings

In this chapter, the aim is to quantify the mechanical strength of structural adhesive
bonding using this technique. Thus, not only the arrival times, but also the amplitudes of
the plane waves reflected from the bonding interface, are considered. Indeed, the studied
structure is represented in Fig. 3.1(a) and is composed of an elastic plate of thickness
h1 bonded on a thicker medium of thickness h2. Both media are assumed to be linear,
homogeneous and isotropic. In addition, h2 is assumed to be much larger than h1; hence
the lower elastic medium is modeled acoustically as a half-space, i.e., the following treat-
ment is applied over a measurement time ensuring that no wave reflected from the bottom
surface of the lower medium is in the signal. Furthermore, the acoustic wavelengths that
are considered later are assumed to be greater than the thickness of the adhesive joint.
Thus, normal (KN) and transverse (KT ) distributions of interfacial stiffnesses, illustrated
by springs in Fig. 3.1(a), are used to model the bonding.178–180 This modeling is deduced
from the simplification of the transfer matrix formalism,147,157 detailed in the Appendix B.
It allows to couple displacements and stresses between media I and II.

The sum of all the signals si(t + iδt), in Eq. (3.1), is illustrated in Fig. 3.1(b). The
application of time delay δt, in a post-processing step, leads to constructive and destructive
interferences that result in the synthesis of plane waves. As shown in the slowness diagram
in Fig. 3.1(c), the choice of the wavenumber ks in Eq. (3.2), linked to the ratio δt/δx,
favors the generation of a longitudinal plane wave L and a transverse one T of defined
steering angles ϕn. Therefore, the synthesized plane waves that propagate in the medium I
are represented in Fig. 3.1(a). Two incident plane waves L and T are reflected from the
interface according to Snell’s laws. Thus, the longitudinal plane wave L is reflected as
a wave that retains the same polarization [which is noted 2L in Fig. 3.1(a)] and a wave
with a polarization conversion (LT). It is the same for the incident transverse plane wave
T which is reflected as a transverse (2T) and longitudinal (TL) plane waves. Then, these
four waves are reflected from the free surface of the medium I, in x1 = 0, and so on.

The interest of using this technique is that the amplitudes of the reflected waves are
related to the reflection coefficients from the bonding interface. In fact, the expressions of
these coefficients are defined by the mechanical properties of media I and II but also by
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the coupling conditions at the interface. Thus, a modification of the mechanical coupling
between two media leads to an evolution of the reflection coefficients and consequently to
a change in the amplitudes of the reflected plane waves.

The strategy adopted in this chapter is to solve an inverse problem to find the normal
(KN) and transverse (KT ) interfacial stiffnesses with the amplitudes of the reflected plane
waves. This requires the calculation of the direct problem, i.e., finding the amplitudes of
the reflected plane waves by knowing the interfacial stiffnesses. This will be detailed in
the following section.

3.3 Solving the direct problem

Two approaches were studied to solve the direct problem: one based on analytic for-
mulas taking the directivity pattern of an array of thermoelastic sources into account
and another based on semi-analytic simulations to numerically solve the electromagnetic,
thermal and elastodynamic problems. These two methods will be presented in Sec. 3.3.1
and 3.3.2, respectively. In addition, the choice of the second method rather than the first,
for the subsequent resolution of the inverse problem, will be justified.

3.3.1 Analytic formulation

The first approach to solve the direct problem was to calculate the amplitudes of the
reflected plane waves using analytic formulas, as reported in the literature.176,181,182 The
goal was to find the theoretical amplitudes, as a function of the steering angleϕn defined in
Eq. (3.2), of all plane waves reflected from the bonding interface illustrated in Fig. 3.1(a):
2L, LT, TL, 2T, etc. Assuming that both the bonding interface and the observation point
are in the far field, the amplitudes of these reflected plane waves can be obtained by
considering the directivity pattern of the array of thermoelastic sources, the propagation
path of plane waves, the reflections from the bonding interface (see Appendix C for
detailed calculations of the reflection coefficients) and the laser detection at the free surface
of medium I. However, in the cases we are studying, the observation point is in the near
field of the thermoelastic sources because the thickness of the medium I is of the order of
a millimeter. It implies that the directivity pattern of the thermoelastic sources, notably
calculated in the far field by Raetz et al.,183 cannot be used here. In addition, this analytic
approach leads to complicated formulas where a multitude of plane wave reflections have
to be accounted for. Indeed, as shown in Fig. 3.1(a), an incident plane wave is reflected
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as two plane waves of different polarization at each reflection from the bonding interface
or the upper free surface of the medium I. Hence, the number of analytic formulas to
calculate all the reflected plane waves increases rapidly with time.

For all these reasons, another approach has been selected to solve the direct problem.
The choice was made to use semi-analytic simulations to numerically solve the electro-
magnetic, thermal and elastodynamic problems. This method, presented in Sec. 3.3.2
and fully described in Chap. 2, provides fast and accurate simulated data. Moreover, it
allows solving the multiphysical problem without using the far-field assumption, unlike
the previous approach based on directivity patterns of opto-acoustic sources.

3.3.2 Semi-analytic model

The resolution of the direct problem, i.e., the simulation of laser-generated ultrasound
in the bonded structure, is achieved with the semi-analytic method presented in Chap. 2.
This numerical approach is notably inspired by the studies of Audoin et al.148,184 Our pro-
posed semi-analytic model provides accurate results in a relatively short computing time
compared to other numerical techniques, such as the Finite Element Method (FEM)152,153

or the Finite Difference Method (FDM).154 Accuracy and rapidity are two advantages of
real interest for inverse problem solving and justify this choice for the cases studied in this
chapter. Obviously, if more complex geometries than layered plates with parallel surfaces
have to be investigated, the FEM or the FDM should be preferred.

The possibilities offered by the semi-analytic model, detailed in Chap. 2, are numerous.
It is of primary importance to depict with the model the whole physics involved in the
generation and propagation of the laser-generated elastic waves, as close to reality as
possible, in order to get reliable quantitative information about the bonding. To ensure
this, the proposed model allows to consider a tilted laser line source, of infinite length in
the x3-axis. The temporal and spatial Gaussian profiles of this thermoelastic source are
taken into account. The electromagnetic transmission and reflection of the incident laser
beam in the multilayer are calculated and the optical penetration is accounted for. The
solution to the electromagnetic problem allows to obtain the power densities dissipated
into heat which is used as source terms for solving the heat diffusion problem. Conduction
and convection phenomena are considered to find the amplitudes of the thermal waves
that are diffusing in the structure. Then, analytic solutions of the displacement fields
generated by the thermal expansion are determined in the Fourier domain. Subsequently,
a double numerical inverse Fourier transform in space and time is performed to find
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the displacement field in the time domain. The thermal coupling between media I and
II is obtained with a thermal resistance which is defined from the thermal properties
of all the sublayers inserted between media I and II. Electromagnetic and mechanical
coupling conditions are taken into account with transfer matrices.147,157 This extended
semi-analytic model, although restricted to two-dimensional geometries for now, has been
thought to allow the simulation of the propagation of laser-generated elastic waves in
multilayer structures made of any materials respecting the assumptions listed in Sec. 2.2.

In sections 3.4 and 3.5, this numerical model is applied to solve inverse problems in-
volving bonded aluminum substrates. Thus, further assumptions are formulated for the
resolution of electromagnetic, thermal and elastodynamic problems.

First, perfect electromagnetic and thermal coupling between media I and II is assumed.
Indeed, the thermoelastic source remains localized at the surface of medium I because
(i) the optical penetration depth of a normal incident laser beam in aluminum is equal
to 4.7 nm along the x1-axis (@ λopt = 532 nm) and (ii) the thermal penetration depth is
equal to

√
2D11/ω = 2.0 µm with the thermal diffusivity of aluminum D11 = 62 µm2 µs−1

and the angular frequency ω = 2π f rad µs−1, with f = 5MHz. Both optical and thermal
penetration depths are negligible compared to the thickness of the medium I, which is
of the order of a millimeter. Thus, perfect conditions of electromagnetic and thermal
coupling are imposed between media I and II because none of these waves will interact
with the bonding interface.

Secondly, the mechanical coupling between two aluminum substrates is modeled with
normal (KN) and transverse (KT ) interfacial stiffnesses178 [shown in Fig. 3.1(a)]. This
model results from the simplification of the transfer matrix147,157 that links displacements
and stresses between the upper and lower surfaces of an elastic plate. For a layer with
homogeneous, linear and isotropic mechanical properties, the complete transfer matrix is
given in Appendix B. Assuming that the acoustic wavelengths are large with respect to
the adhesive joint thickness, this transfer matrix can be simplified into an identity matrix
having two extra-diagonal terms: KN and KT . It implies a continuity of stresses (σ11,
σ12) and a discontinuity of displacements (u1, u2) at the interface between media I and II
at x1 = h1 [see Fig. 3.1(a)], which gives

σI
11

∣∣
x1=h1

= σII
11

∣∣
x1=h1

= KN(uII
1

∣∣
h1
− uI

1

∣∣
h1

), (3.3)

σI
12

∣∣
x1=h1

= σII
12

∣∣
x1=h1

= KT (uII
2

∣∣
h1
− uI

2
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h1

). (3.4)
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Figure 3.2 – Results of semi-analytic simulations in three different cases.
Snapshots at t = 1.25 µs of the normalized normal displacement u1 in a bi-
layer structure with normal and transverse interfacial stiffnesses [illustrated in
Fig. 3.1(a)] equal to (a) KN = KT = 10−3 kNmm−3 for the decoupling case,
(b) KN = 103 kNmm−3 and KT = 101 kNmm−3 for the intermediate coupling,
(c) KN = KT = 105 kNmm−3 for the high mechanical coupling between me-
dia I and II.
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3.3.3 Results of semi-analytic simulations

Numerical results achieved with this semi-analytic model are plotted in Fig. 3.2. Note
that the dashed horizontal gray line stands for the interface between media I and II.
The bilayer structure is composed of an aluminum plate, of thickness h1 = 1.45 mm,
mechanically coupled to a semi-infinite aluminum medium. Both media are considered
homogeneous, linear and isotropic of density ρ = 2.7 103 kgm−3 and elastic coefficients
equal to C11 = 109.9 GPa and C66 = 26.5 GPa. Concerning the thermoelastic source, a
normal incident laser line pulse, of infinite length along the x3-axis, is considered. The
pulse duration is equal to τp = 8 ns, which corresponds to the full width at half maximum
(FWHM) of the temporal Gaussian profile. The width of the laser line source along the
x2-axis is equal to as = 0.2 mm, which corresponds to the FWHM of the spatial Gaussian
profile. Three cases are simulated for different values of normal and transverse interfa-
cial stiffnesses. The first case is the simulation of the normalized normal displacement
u1(x1, x2, t) with KN = KT = 10−3 kNmm−3. This is equivalent to a mechanical decou-
pling between media I and II, i.e., ultrasonic waves are fully reflected from the interface, as
shown in Fig. 3.2(a). The second case deals with an intermediate mechanical coupling with
KN = 103 kNmm−3 and KT = 101 kNmm−3. In Fig. 3.2(b), simulated elastic waves are
reflected from the interface at x1 = h1 and are also transmitted into the medium II. The
third case is the simulation of ultrasonic propagation when KN = KT = 105 kNmm−3,
which corresponds to a high mechanical coupling. Since the two media are the same, a
total transmission of the elastic waves at the interface is observed in Fig. 3.2(c). This
simulation is analogous to what would have been obtained in an elastic half-space.

Such numerical results obtained with the semi-analytic model are the basis of the here-
proposed method to solve the inverse problem in order to obtain quantitative estimate of
the adhesive bonding through values of KN and KT .

3.4 Resolution of inverse problems with simulated data

An inverse method is proposed to identify the values of interfacial stiffnesses, KN and
KT , using the amplitudes of the synthesized plane waves reflected from the bonding
interface. The method is illustrated in Fig. 3.3, and is based on the two previous sections:
the plane wave synthesis in Sec. 3.2 and the resolution of the direct problem in Sec. 3.3.
First of all, the plane wave synthesis is applied on a B-scan which depends on time t
and position x2. A large number of delays δt are imposed on these temporal signals to

78



3.4. Resolution of inverse problems with simulated data

Input Output

Semi-analytic simulations Database 
(KN, KT)

PWS

Ti
m

e

1/VS

B-scan

x2

Ti
m

e

PWS

Ti
m

e
1/VS

K N

KT

Cost 
function

B-scan

x2

Ti
m

e

KN, KT

Figure 3.3 – Diagram of the method to solve the inverse problem. The input
data is a B-scan where the plane wave synthesis (PWS) is applied. It is then com-
pared to a database of semi-analytic simulations for different values of interfacial
stiffnesses. The minimum of the cost function is finally searched to identify the
values of KN and KT which gives the lowest mean squared error (MSE) between
the input and the database.

synthesize plane waves with different steering angles ϕn with n = {L,T}. The adjustable
parameter to control this angle is defined as 1/VS = δt/δx in Fig. 3.3, with δx the fixed
spatial step of the B-scan along the x2-axis and δt the delay that can be modified. This
input data is then compared to a database resulting of a set of semi-analytic simulations
with different values of interfacial stiffnessesKN andKT . Thus, the normal and transverse
interfacial stiffnesses are identified by finding the minimum of a cost function which will
be defined in the following.

The algorithm presented in Fig. 3.3 is tested with simulated input data before being
used with experimental input data in Sec. 3.5. This ensures that the inverse method works
with input signals which have known interfacial stiffnesses. Furthermore, these simulated
temporal signals were noised to get closer to experimentally measured waveforms. Three
cases have been studied with different values of normal and transverse interfacial stiffnesses
to represent three main situations: low, intermediate and high mechanical coupling be-
tween media I and II. The first case deals with low values of interfacial stiffnesses equal to
KN = KT = 10−3 kNmm−3. In this specific situation, the mechanical coupling is so weak
that the elastic waves are fully reflected from the interface and no waves are transmitted
in the medium II [see simulation results in Fig. 3.2(a)]. Hence, this simulation is similar to
that obtained for laser-generated ultrasound in an aluminum plate. Concerning the input
data of the algorithm, a B-scan is simulated with the semi-analytic model (introduced in
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Chap. 2) succinctly presented in the Sec. 3.3.2. A Gaussian noise is applied to the tempo-
ral signals to be closer to an experimental case with a signal-to-noise ratio SNR ≈ 20 dB.
Then, the plane wave synthesis is applied on these temporal signals following the sum
introduced in Eq. (3.1). The delay δt, between the signals si(t) and si+1(t), is applied in
the Fourier domain by multiplying the fast Fourier transform of si(t) by eωiδt with  the
imaginary number, ω the angular frequency and i ∈ [−N,N ] the source position shown
in Fig. 3.1(b). For each steering angle imposed by the delay δt, the summed signal s(t)
is convolved with a complex Morlet wavelet having a center frequency of 5 MHz and a
bandwidth at -3 dB equal to 4 MHz. This allows to detect the time of flight and the
amplitudes of the synthesized plane waves reflected from the interface. As the laser pulse
generates wide-band ultrasonic waves, the convolution by the complex Morlet wavelet acts
as a band-pass filter to avoid considering high-frequency waves whose wavelengths are too
short for the model of the bonded assembly with interfacial stiffnesses to be accurate.
By varying the parameter 1/VS = δt/δx between ±0.2 µsmm−1 with a 3.2 10−3 µsmm−1

step, 129 steering angles are imposed. It allows to synthesize longitudinal plane waves
with steering angles ϕL up to ±90◦ and transverse plane waves with ϕT between ±40◦.
Indeed, beyond this angle, transverse waves of relatively low amplitudes are generated
according to the directivity pattern of a thermoelastic source.141 These post-processed
signals are then compared to a database composed of 1089 semi-analytic simulations with
different values of KN and KT from 10−3 to 105 kNmm−3, with a step of 100.25 kNmm−3.
It takes about 30 hours to compute this complete database on a laptop (Intel® Core™ i7-
6500U CPU @2.5GHz, 16GBRAM). Comparisons are made using a cost function based
on the mean squared error (MSE) between the results of the plane wave synthesis applied
on the input data and on the simulations of the database.

For the first studied case, where the input values are equal toKN = KT = 10−3 kNmm−3

[simulation in Fig. 3.2(a)], the cost function is provided in Fig. 3.4(a). The identified val-
ues of KN and KT are found when this function is minimum. This is represented by the
red rectangle in Fig. 3.4(a), considering an uncertainty margin of ±0.1 dB on the mini-
mum value of the cost function. This margin is chosen to account for uncertainties due to
the addition of noise to the input data, which results in very small local variations of the
cost function compared to those observed at a more global scale. The identified values
of KN and KT are reported in Tab. 3.1. In this case, the cost function is effectively the
lowest for low values of interfacial stiffnesses in the range [10−3, 10−0.5] kNmm−3 for KN

and [10−3, 10−0.75] kNmm−3 for KT . The fact that the identified values are within a given
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Figure 3.4 – Cost functions (in dB) obtained when the plane wave synthesis is
applied on simulated B-scans, with the addition of noise, for interfacial stiffnesses
equal to: (a) KN = KT = 10−3 kNmm−3, (b) KN = 103 kNmm−3 and KT =
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Table 3.1 – Results obtained by solving the inverse problem with noisy simulations
as input data. Three different cases are processed for input values of KN and
KT given in kNmm−3: low, intermediate and high mechanical coupling between
media I and II. The interfacial stiffnesses identified using the minima of the cost
functions are reported below.

Simu. data Input data Identified parameters

KN KT KN KT

Low coupling 10−3 10−3 [10−3, 10−0.5] [10−3, 10−0.75]

Int. coupling 103 101 103 101

High coupling 105 105 [104.25, 105] [103.75, 105]

range is due to the added noise, as already discussed, but also to the fact that the reflec-
tion coefficients of the interface are not sensitive enough to small variations in mechanical
coupling when interfacial stiffnesses are already low (i.e., less than 1 kNmm−3). For the in-
termediate mechanical coupling case, where the cost function is plotted in Fig. 3.4(b), it is
different. The minimum of the cost function is precisely equal to the value of the input in-
terfacial stiffnesses which are equal toKN = 103 kNmm−3 andKT = 101 kNmm−3. Thus,
the reflection coefficients are highly sensitive to a change of mechanical coupling in this
range of interfacial stiffnesses. For the high mechanical coupling case, the cost function is
represented in Fig. 3.4(c). The identified values of interfacial stiffnesses are in the range
[104.25, 105] kNmm−3 for KN and [103.75, 105] kNmm−3 for KT . This is consistent with
the input values of interfacial stiffnesses that were equal to KN = KT = 105 kNmm−3.
As in the case of low mechanical coupling, the reflection coefficients are less sensitive to
small variations of mechanical coupling when interfacial stiffnesses are already high (i.e.,
more than 1 MNmm−3); that is why the identified values are given within a particular
range in Tab. 3.1.

The results of the plane wave synthesis applied on simulated data, with the addition of
Gaussian noise, are shown in Fig. 3.5 for different values ofKN andKT . The times of flight
of the synthesized plane waves 2L, LT, TL and 2T [see Fig. 3.1(a) for the denomination]
are plotted for the different cases. The visual analysis to relate the amplitudes of the
reflected plane waves to the values of KN and KT can be difficult to perform with the
naked eye because of (i) the high number of plane waves that are reflected by the bonding
interface in some cases and (ii) the complexity of analyzing the variations from one image
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Figure 3.5 – Results of the plane wave synthesis applied on simulated data, with
the addition of Gaussian noise, for different values of KN and KT (8 different
cases). The times of flight of the reflected synthesized plane waves are identified
as: dash-dotted line for the 2L longitudinal plane wave, dashed line for the 2T
transverse plane wave and dotted line for the sum of the LT and TL plane waves.

to another without a suitable comparison tool. Therefore, the strategy adopted here is to
numerically compare the input data with all the simulations included in the database to
solve the inverse problem.

The interest of using the plane wave synthesis to compare the input data to the database
and not to directly compare the B-scans (as it could be thought by looking at Fig. 3.3) is
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justified for two main reasons. First, the application of the plane wave synthesis implies a
sum on all temporal signals [see Eq. (3.1)] of the B-scan between±16 mm (on 401 positions
in the x2-direction). Thus, the sum of these signals leads to the reduction of the noise
level, as observed experimentally when temporal signals are averaged to improve the
signal-to-noise ratio. Indeed, the noisy parts of temporal signals that do not contribute
to the synthesis of plane waves are reduced and the signals that lead to the synthesis of
plane waves are amplified.

Secondly, this post-processing technique allows to filter the contribution of surface
acoustic waves, here essentially Rayleigh waves, which propagate at the free surface of
the medium I in the ±x2-direction and do not interact with the bonding. This enables
to analyze mainly plane waves which are synthesized from bulk waves reflected from the
bonding interface and which contain the necessary information concerning the mechanical
coupling conditions between the two bonded media. The only contributions of Rayleigh
waves to the signals plotted in Fig. 3.5 are visible for the cases KN = KT = 103 kNmm−3

and KN = KT = 105 kNmm−3 (top right of Fig. 3.5). They correspond to the two
inclined lines that crossed when 1/VS = 0 at tR = 5.5 µs. They are due to the fact that
after this time tR, no Rayleigh wave is visible on the B-scan. Thus, following the sum of
all temporal signals when no delay is applied (1/VS = 0) and due to the convolution of
this sum with the complex Morlet wavelet (see p. 80) a spot is visible at the intersection of
these two inclined lines. Moreover, the slopes of these two lines are equal to the minimum
and maximum positions of the B-scan (±16 mm). Their intersections with the 1/VS-axis
(when t = 0) are equal to ±1/VR with VR the Rayleigh wave speed. In addition, the
time tR at 1/VS = 0 is equal to the absolute value of the slope of the line divided by VR.
These observations are visible only on these two cases because of the normalization of
the figures. Indeed, for really high values of KN and KT , almost no wave is reflected
from the bonding interface. Hence, the normalization is only done by the contribution
of the source at very short time which makes these two lines visible at the top right
of Fig. 3.5. The advantage of the plane wave synthesis is therefore to filter the Rayleigh
wave contributions, even if the fact that the B-scan is bounded in the direction x2 leads
to the observation of inclined lines. However, they are not critical to the study of the
synthesized plane waves reflected from the bonding interface because (i) these two inclined
lines are also visible on the signals included in the database due to the same bounded
simulated B-scans between ±16 mm in the x2-direction and (ii) the positions of these
two lines do not interfere with the reflected plane waves containing the information about
the adhesive bonding unlike the case of the B-scans where the Rayleigh waves interfere
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with reflective waves. This is why the plane wave synthesis is used to solve the inverse
problem.

In this section, the results with simulated input data have been presented and it has been
shown that the algorithm, illustrated in Fig. 3.3, allows the identification of interfacial
stiffnesses from the amplitudes of the synthesized plane waves. In the following section,
experimental input data is used to find the values of KN and KT .

3.5 Resolution of inverse problems with experimental

data

The inverse problems were solved, in Sec. 3.4, to identify the values of normal and
transverse interfacial stiffnesses from simulated signals. In this section, the algorithm
presented in Fig. 3.3 is run with experimental input data. The aim is to identify two key
parameters (KN and KT ) that model and characterize the practical adhesion between
media I and II.

3.5.1 Sample preparation

Laser ultrasonic measurements have been performed on three samples. The first speci-
men was a 1.23mm-thick aluminum alloy plate of aeronautical quality (6061 grade, Good-
Fellow, United Kingdom) of lateral dimensions 150 × 150mm2. Two other samples were
composed of a 1.45mm-thick 6061 aluminum alloy plates bonded with an aeronautical
structural adhesive film (AF 191, 3M™, United States) on a 20 mm-thick aluminum alloy
substrate. The lateral dimensions of these bonded assemblies were similar to those of
the first aluminum plate. With regard to the manufacturing process, the aluminum alloy
surfaces were first degreased with ethanol. Then, between the 1.45 mm-thick plate and
the thicker substrate, strips of material about 5mm-wide were placed on the edges of
the surfaces. These strips were used to prevent the glue from leaking during curing and
to control the thickness of the epoxy layer (equal to 150 µm). Next, a constant pressure
was applied during curing with spring clamps, calibrated at 65N, and homogeneously
distributed around the sample.67 One bonded sample was manufactured without defects
(later called “nominal”), and another with an interfacial bonding defect between the top
aluminum alloy plate (Al) and the epoxy layer. This degradation was introduced by ap-
plying one layer of release agent (R.A.) [Frekote® 44-NC™ (Henkel, Germany)], with a
clean lint-free cloth, on the degreased aluminum alloy surface.185 This R.A. layer had the
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effect of degrading the practical adhesion between the Al plate and the adhesive. This
protocol led to a significant reduction in the structural mechanical strength of the bond-
ing interface, while maintaining a mechanical coupling between two parts; they were not
detached.

(a) (b)Without Frekote With Frekote

88.5°86.7° 107.0° 107.7°

Figure 3.6 – Water droplet on an aluminum surface (a) without and (b) with one
layer of Frekote.

For instance, in Fig. 3.6, a water droplet was deposited on an aluminum surface with and
without one layer of Frekote. We can see that when the surface is not coated with Frekote,
the contact angle is less than 90◦. However, when the surface is coated with Frekote, the
contact angle is greater than 90◦. Thus, the layer of Frekote makes the aluminum surface
more hydrophobic. These two bonded samples, with and without bonding defects, were
cured simultaneously in a laboratory oven at 150◦C for 3 hours with ramps up and down
(heating and cooling) of 2◦Cmin−1. The longitudinal static strengths were measured
of the order of 20MPa for the nominal bond and 2MPa for the sample with adhesion
defects. These two bonded assemblies could not be distinguished by acoustic microscopy
measurements carried out at 30MHz.

3.5.2 Experimental set-up

A laser ultrasonic set-up, represented in Fig. 3.7, was used to acquire the experimental
B-scans of the three specimens. A Q-switched Nd:YAG laser (InnoLas Laser GmbH, Ger-
many, SpitLight Compact 400, 532 nm) delivering 8 ns pulses of 200mJ, with a repetition
rate of 10Hz, was used to generate ultrasonic waves in the samples. The laser beam
was first attenuated, using a λ/2 plate to adjust the intensity, in order to remain in the

86



3.5. Resolution of inverse problems with experimental data

2

3

4

10 cm

x1

x2

x3

1- Nd:YAG (Q-switched)
2- Aluminum enclosure
3- Moving stage A 
4- TWM interferometer 
5- Sample
6- Moving stage B  532 nm

1064 nm

2
λ

1
5

6

Figure 3.7 – Laser ultrasonic set-up for the acquisition of experimental B-scan.

thermoelastic (nondestructive) regime. It was then focused onto the surface sample with
a cylindrical lens to obtain a line source oriented along the x3-axis of about 10 mm. The
Gaussian profile along the x2-axis had a full width at half maximum (FWHM) equal to
0.2 mm. To acquire each B-scan, this laser line source was successively displaced to the
2N + 1 positions with the moving stage A, shown in Fig. 3.7. The spatial step δx along
the x2-axis was equal to 0.08 mm. Thus, the line source was moved to 401 positions over
a total length of 32 mm. The normal displacement of the surface was measured with
a two-wave mixing interferometer (Tecnar, Canada, TWM Laser Ultrasound Detector,
1064 nm, bandwidth 0.7–40MHz). The laser detection spot, with a diameter at half max-
imum (FWHM) of 0.6 mm, was always positioned at the center of the generation sources
array. Temporal signals were recorded with a Teledyne LeCroy HDO4054A oscilloscope
and transferred to a computer for post-processing. The photodiode, at the output of the
Nd:YAG laser cavity, was used to trigger the detection of the interferometer signal by the
oscilloscope. For each laser line source position, 500 temporal signals were averaged to
increase the signal-to-noise ratio (SNR ≈ 20 dB).

3.5.3 Simple case of the free-standing plate

For the aluminum alloy plate of thickness 1.23 mm, the experimental B-scan acquired
with this set-up is represented in Fig. 3.8(b). A good agreement is qualitatively observed
between the experiment and the simulation performed with the semi-analytic model, as
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Figure 3.8 – Comparisons between simulation and experiment for the 1.23 mm-
thick aluminum alloy plate. (a) Simulated B-scan obtained with the semi-analytic
model described in Chap. 2. The normalized normal displacements at the top
surface of the aluminum alloy plate are simulated as a function of time and position
x2. (b) Experimental B-scan measured with the set-up presented in Fig. 3.7. The
longitudinal wave (L) and the Rayleigh wave (R) are identified with solid lines.
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shown in Fig. 3.8(a). The plane wave synthesis was then applied on these numerical and
experimental B-scans following the same process and parameters as those presented in
the previous section. The results are plotted in Fig. 3.9(a) and (b) for the simulation and
the experiment, respectively. On these figures, the synthesized plane waves, illustrated in
Fig. 3.1(a), can be identified using their times of flight. For instance, four reflected plane
waves (2L, LT, TL, 2T) are represented in Fig. 3.9(a) and (b). As time increases, more
and more plane waves are synthesized as an incident plane wave is reflected in two waves
of longitudinal and transverse polarizations at each interface. This complicates the signal
analysis because the total number of synthesized plane waves in the medium I is equal
to 2r+1, with r the number of reflections. It is exactly for this reason that the amplitudes
of the reflected plane waves were not analyzed separately, but a strategy based on inverse
problem solving using all the reflected plane waves was adopted.

Following the same approach as presented in Sec. 3.4, inverse problems were solved to
identify the interfacial stiffnesses (KN andKT ) of these three samples: the aluminum alloy
plate and both bonded assemblies with and without adhesion defects. The experimental
B-scans acquired with the laser ultrasonic set-up, shown in Fig. 3.7, were used as input
data for the algorithm presented in Fig. 3.3. Then, the plane wave synthesis was applied
on these temporal signals and compared to the database composed of 1089 semi-analytic
simulations with different values of KN and KT from 10−3 to 105 kNmm−3, with a step
of 100.25 kNmm−3. These comparisons were based on the mean squared error (MSE) to
obtain the KN and KT dependent cost functions plotted in Fig. 3.10. The red rectangles
indicate the minimum of each cost function with an uncertainty margin of ±0.1 dB. The
identified values of KN and KT are reported in Tab. 3.2. For the aluminum alloy plate,
the identified values are comprised between 10−3 and 100.75 kNmm−3 for KN , and 10−3

and 100.5 kNmm−3 for KT . This is consistent with the case presented in Sec. 3.4 where
the algorithm was tested on simulated data with really low values of interfacial stiffnesses
equal to KN = KT = 10−3 kNmm−3. The cost function was represented in Fig. 3.4(a)
and this result is close to what is observed for the experimental case in Fig. 3.10(a). This
first result allows to validate the method on a simple experimental case (free-standing
plate) before applying the algorithm on bonded assemblies. It is important to note here
that numerous physical phenomena must be accounted for in the simulations to obtain
such results with experimental data. In particular, the thermal diffusion should be taken
into account in the simulation, otherwise the inverse problem (not shown here) does
not converge to KN and KT in low value ranges but gives values of KN and KT about
101.5 kNmm−3.
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Figure 3.10 – Cost functions obtained when experimental B-scans of (a) an alu-
minum alloy plate, bonded assemblies Al/Ep/Al (b) with and (c) without re-
lease agent, are used as input data for the algorithm shown in Fig. 3.3. The
red rectangles indicate the minimum of each cost function with an uncertainty
margin of ±0.1 dB.

3.5.4 Quantification and differentiation of two adhesive bonding

conditions: nominal and degraded

The results are plotted in Fig. 3.10(b) for the bonded sample with adhesion defects and
Fig. 3.10(c) for the nominal bonding. The identified values of KN an KT are reported
in Tab. 3.2. For the degraded bonding, with the layer of release agent at one interface,
the identified values are comprised between 100.5 and 101 kNmm−3 for KN , and 100.25

and 100.5 kNmm−3 for KT . For the nominal bonding, the identified values are higher and
comprised between 102 and 102.25 kNmm−3 for KN , and 101 and 101.5 kNmm−3 for KT .
Therefore, the method enables these two bonded samples to be distinguished, as it can
be seen from the cost functions in Fig. 3.10(b) and (c). For the bonded sample with
adhesion defects, the identified values of KN and KT are close to those achieved for the
free-standing aluminum alloy plate. This is due to the fact that the lack of adhesion caused
by the layer of release agent results in weaker mechanical coupling which has an effect on
the amplitudes of the reflected plane waves, making the method sensitive to this type of
degradation. Furthermore, in Fig. 3.10, the minimum of the cost function is higher for the
nominal bonding (-10 dB) than for the two other cases (-20 dB). A possible explanation is
that the adhesive layer has an influence on the experimental temporal signals that is not
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Table 3.2 – The interfacial stiffnesses identified by solving the inverse problem
with experimental B-scans as input data in the three different experimental cases:
aluminum alloy plate, adhesive bonding Al/Ep./Al with release agent (R.A.) and
without (called nominal bonding).

Exp. data Input data Identified parameters

KN KT KN KT

Alu. plate - - [10−3, 100.75] [10−3,100.5]

Bond. with R.A. - - [100.5, 101] [100.25, 100.5]

Nom. bond. - - [102, 102.25] [101, 101.5]

fully captured by the simulations of the database. Indeed, the modeling of the bonding was
voluntarily chosen with only two effective parameters related to the mechanical strength
of the bonding, to avoid the identification of a large set of parameters. In fact, to solve
the inverse problem with a finer modeling of the bonding,112,114 eight parameters must
be considered: two interfacial stiffnesses for the upper interface (medium I/adhesive),
two others for the lower interface (adhesive/medium II), and four parameters for the
adhesive layer [one for the thickness, two for the elastic coefficients (if the adhesive is
assumed to be isotropic), and one for the mass density]. To give an order of magnitude,
considering thirty values for each of the eight parameters, 656.1 billion simulations of laser-
generated ultrasound have to be performed to generate the database used for the algorithm
presented in Fig. 3.3 (compared to the 1089 simulations required in this chapter). By
keeping calculation time within a reasonable range, the model used here and limited to the
variation of two key parameters, KN and KT , demonstrates the ability to quantitatively
distinguish the three studied specimens from a simplified, although physically justified,
model.

3.6 Conclusion

A laser ultrasonic method has been presented for the NDE of adhesive bonding. Elastic
plane waves are synthesized with several steering angles with respect to the bonding
interface. The synthesized plane waves are used to solve an inverse problem to identify
normal and transverse interfacial stiffnesses (KN , KT ) that model the mechanical coupling
between two bonded substrates. The developed algorithm is first validated with input
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data simulated with a semi-analytic model, where Gaussian noise was added. Next,
experimental signals acquired on an aluminum alloy plate and on two bonded assemblies
(with and without adhesion defects) are used as input data. This method allows to
distinguish these three specimens by finding the minima of cost functions based on the
differences between the input data and a database composed of semi-analytic simulations
for a large set ofKN andKT . It is remarkable to note that solving inverse problems directly
by comparing simulated and experimental B-scans do not lead to accurate results. This
is due to the fact that the plane wave synthesis artificially improves the SNR and, above
all, effectively filters the Rayleigh waves out of the bulk waves that actually contain the
information about the bonding.

Concerning the limits of this approach, the mechanical properties of the bonded sub-
strates must be known to obtain accurate simulations of the ultrasound propagation
necessary for the creation of the database. Furthermore, this method provides average
values of KN and KT for the scanned area (32 mm in our experiments); no local bonding
defects can be detected. The next chapter is dedicated to propose a NDE method to
locally quantify adhesive bondings. It is important to note that, in the method proposed
in this chapter, the top plate where the laser generation and detection are performed must
be free of imperfections as it is assumed in the model. However, the imperfections can
be easily detected since the detection of elastic waves with shorter times of flight than
those reflected from the bonding interface would be a sign of such imperfections. One
way to quantify the practical adhesion even in the case with imperfections could be to
use windowed experimental and simulated B-scans where the influence of the reflections
from these imperfections would have been gated out.

In terms of prospects, other methods of comparison between the input data and the
database could be tested, such as SSIM (Structural Similarity)186,187 or others. Moreover,
this presented method could be implemented with an even more complete semi-analytic
model taking the thickness, the elastic coefficients and the mass density of the adhesive
into account. The introduction of new parameters will greatly complicate the resolution
of the inverse problem by considerably increasing the number of simulations required to
create the database (see Sec. 3.5). A thoughtful analysis of the parameter dependen-
cies/independencies in their effect to the solution of the inverse problem could eventually
permit to decrease the number of degrees of freedom in the minimization process. Suc-
ceeding in doing so would allow to consider reflected plane waves of higher frequencies
(above 5 MHz) and therefore would ensure to obtain a more accurate description of the
bonded assembly.
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Abstract

A laser ultrasonic method is proposed for the local nondestructive evaluation (NDE) of
structural adhesive bonding. Zero-group-velocity (ZGV) resonances were generated and
detected in five trilayer assemblies composed of two asymmetric aluminum alloy plates
bonded with an epoxy adhesive. Cohesive and adhesive defects were introduced to degrade
the practical adhesion. The attenuation of the temporal signal of ZGV resonances was
found to provide sufficient information to discriminate between strong and weak bonding.
Two metrics characterizing the attenuation were identified, which allow us to evaluate
quantitatively the differences between the manufactured samples. A 2D scan of a trilayer
assembly with different bond defects demonstrates the imaging capability of this all-optical
NDE method.

This work was published in Appl. Phys. Lett. (see Ref. 185):
R. Hodé, S. Raetz, J. Blondeau, N. Chigarev, N. Cuvillier, V. Tournat, and M. Ducousso,
“Nondestructive evaluation of structural adhesive bonding using the attenuation of zero-
group-velocity Lamb modes,” Appl. Phys. Lett. 116(10), 104101(2020) doi: 10.1063/1.
5143215.
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4.1. Introduction

4.1 Introduction

In industrial applications, bonded assemblies must withstand a mechanical load that is
defined by the manufacturer. In the following, if this level is satisfied, the bonding will
be qualified as strong, if not, as weak. However, even for weak bonding, the adhesion
is not null in practice. Thus, it is difficult for a nondestructive evaluation (NDE) to
differentiate between weak and strong bonding. It has already been discussed in Chap. 1
that a large number of NDE methods have been investigated to evaluate qualitatively or
quantitatively the mechanical strength (practical adhesion) of bonded assemblies.

One of the most promising quantitative techniques is based on laser-generated shock
waves, often referred to as a laser shock adhesion test (LASAT).68 In this method, a high
dynamical and mechanical tensile stress is applied to a bonded joint with shock waves.
Ducousso et al.67 succeeded in quantifying the practical adhesion of a trilayer bonded
assembly (TA6V4 titanium alloy/epoxy/3D-woven composite) thanks to this method.
One identified limitation of this technique, notably highlighted by Ehrhart et al.,188 is
that the process must be thoughtfully calibrated so that other parts of the structure
are not degraded by the propagation of the shock waves. Ultrasonic techniques, which
are absolutely nondestructive, have not yet been developed to overcome this potential
limitation of LASAT in quantifying bonded assemblies.

Of the nondestructive ultrasonic techniques discussed in Chap. 1, various approaches
based on the reflection76,77,85,94 or transmission81,82 of bulk waves at imperfect interfaces
have been proposed. However, the small impedance differences between strong and weak
bonds make the detection of imperfect interfaces difficult and force to use accurate post-
processing methods in order to identify key metrics that characterize the mechanical
strength of adhesive bonding.76,77,81,82,85,94 As the method proposed in the previous chap-
ter, other ultrasonic methods based on non-linear phenomena of bulk waves126 or on
measuring guided waves98,99,105,189,190 allow to obtain an average value for the practical
adhesion along a joint. To achieve better defect localization, zero-group-velocity (ZGV)
Lamb modes191,192 have been studied.111,193–195 Mezil et al.112 carried out theoretical and
experimental investigations of a symmetrical trilayer composed of two duralumin plates
bonded with an epoxy adhesive. They found that the frequencies of the ZGV modes are
sensitive to the quality of the bonding. Thus, these ZGV modes are good candidates for
nondestructively evaluating the interfacial stiffnesses that model the mechanical coupling
between the bonded layers. These local resonances can be applied in a wider context for
NDE.196–200
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In this chapter, the attenuation characteristics of ZGV Lamb modes, as well as their
frequencies, were used quantitatively to distinguish between strongly and weakly bonded
samples. Laser ultrasonic measurements were made of five asymmetric trilayer assemblies
(aluminum alloy/epoxy/aluminum alloy) with different mechanical strengths. The sam-
ples were clearly discriminated thanks to the frequency and the attenuation of the ZGV
modes. Quantitative metrics were obtained from the attenuation characteristics, paving
the way for a local quantified assessment of the practical adhesion using a contactless
nondestructive method.

4.2 Dispersion curves in a bilayer structure

For a thin elastic plate with two parallel free surfaces, Lamb waves can propagate and
are polarized in the sagittal plane.201 There are symmetrical and anti-symmetrical modes,
which are the solutions of the Rayleigh–Lamb equations. These propagation modes are
represented in the ω − k space by dispersion curves, where ω is the angular frequency
and k the wavenumber. In particular, ZGV Lamb modes occur when the group velocity
vanishes (i.e., dω/dk = 0) for a finite value of k 6= 0. In this case, the energy is locally
trapped under the ultrasonic source. A ZGV mode, therefore, behaves as a sharp local
resonance of the plate at a well-defined frequency.

For two elastic plates mechanically coupled through an adhesive layer, ZGV modes
may also occur and are strongly influenced by the mechanical strength of the coupling.
Simulations of the dispersion curves have been used to observe the frequencies of the ZGV
modes, which are referred to as ZGV frequencies in the following. When the acoustic
wavelength is large compared to the adhesive thickness,114,178,202 a bilayer model can
be used to represent the bonded assembly [Fig. 4.1(a)]. In our case, both plates are
considered to be homogeneous and isotropic. h1 is the thickness of the thinner plate and
h2 the thickness of the thicker one. The bonded joint is modeled by normal (KN) and
transverse (KT ) interfacial stiffnesses per unit area.

The dispersion curves were obtained numerically [Fig. 4.1(b)] for two different cases,
based on the approach of Jones and Whittier.178 First, the top aluminum alloy plate
Al1 with thickness h1 is considered alone, i.e., KN = KT = 0 kNmm−3. Symmetrical
and anti-symmetrical modes are plotted as dashed and dashed dotted lines, respectively,
in Fig. 4.1(b). Between 0 and 3MHz, a unique ZGV mode occurs at a frequency of
1.96MHz, as indicated by the white triangle. Secondly, coupling between the two plates
is imposed by choosing KN = KT = 10 kNmm−3. The dispersion curves are represented
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Figure 4.1 – (a) Schematic diagram of the generation and detection laser paths
and of the bilayer model used to simulate the dispersion curves. d.m.: dichroic
mirror. KN , KT : the normal and transverse interfacial stiffnesses per unit area.
(b) The dispersion curves of the top aluminum alloy plate alone (Al1) are repre-
sented as dashed and dashed dotted lines for symmetrical and anti-symmetrical
Lamb modes, respectively. The dispersion curves obtained for mechanical cou-
pling between Al1 and Al2, with KN = KT = 10 kNmm−3, are represented as
solid lines. ZGV resonances are indicated by white and red triangles.

as red solid lines in Fig. 4.1(b). In this example, there are more guided modes and ZGV
modes (shown by red inverted triangles) in the bilayer assembly than for the single plate.
Therefore, the theory predicts that with the higher interfacial stiffnesses, there will be
several ZGV modes with similar frequencies due to this mechanical coupling. As a result
and as already shown theoretically and experimentally in Ref. 112, any change in the
mechanical coupling between the two plates will lead to a modification of the dispersion
curves and hence, of the ZGV resonance frequencies. Here, we experimentally investigate
this ZGV feature for five different bonded samples by analyzing the attenuation of the
ZGV modes as a function of time. The samples are now introduced.
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4.3 Presentation of the samples, the laser-ultrasonic

set-up and experimental measurements

4.3.1 Presentation of the samples

The first specimen, Al1, was a 6061 aluminum alloy plate (GoodFellow, United King-
dom), 1.5mm-thick, and of lateral dimensions 150×150mm2. All the other samples were
composed of two 6061 aluminum alloy plates, 1.5mm and 3.0mm-thick. These plates, of
lateral dimensions similar to those of Al1, were bonded with a structural adhesive film
AF 191 (3M™, United States). During manufacturing, the surfaces of the aluminum alloy
plates were first degreased with ethanol. Next, strips of material about 5mm-wide were
placed on the edges of the surfaces, between the two plates, to control the thickness of
the epoxy layer (equal to 150 µm) and to prevent the glue from leaking during curing, as
previously done for the samples studied in Chap. 3. Then, 16 spring clamps calibrated at
65N were homogeneously distributed around the sample to maintain a constant pressure
during curing.67 In the nominal case, the bonded sample (subsequently referred to as
Nom) was fully cured at 150◦C for 3 hours.

To simulate cohesive and adhesive defects,16 two kinds of degradation were imple-
mented. The first was the reduction of the curing time by 50% to lower the cohesive
strength of the adhesive. This half-cured sample is labeled C.50%. The other type
of degradation was the application, with a clean lint-free cloth, of one layer of release
agent (R.A.) [Frekote® 44-NC™ (Henkel, Germany)] to a degreased aluminum alloy sur-
face, as in Chap. 3 (see Fig. 3.6). This layer of release agent disrupted the practical
adhesion between the substrate and the fully cured adhesive. The two parts did not be-
come detached, but the structural mechanical strength of the interface of the bonding
is significantly reduced using such protocol. Three samples were produced with this ad-
hesive defect. The first, R.A.1, had one layer of release agent between the first (thin)
aluminum plate and the epoxy layer. The second, R.A.2, had the release agent at the
interface between the adhesive and the second (thick) aluminum plate. For the third,
R.A.1-2, both aluminum plates were coated with one layer of Frekote, which affected both
interfaces (Table 4.1). All the bonded samples (except the half-cured sample, C.50%) were
cured simultaneously in a laboratory oven at 150◦C for 3 hours with ramps up and down
(heating and cooling) of 2◦Cmin−1. C.50% was cured at 125◦C for 1.5 hours with the same
ramps up and down. The longitudinal static strengths were measured to be of the order
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of 20MPa for the nominal bonding and 10MPa (2MPa) for a sample with cohesive (adhe-
sive) defects. The specimens were indistinguishable in conventional immersion ultrasonic
measurements in reflection at 15MHz (see the C-scan in reflection at 15 MHz of the four
samples, represented in Fig. 4.2).

Figure 4.2 – Conventional immersion ultrasonic measurements (C-scan) in reflec-
tion at 15 MHz for the bonded samples R.A.1, C.50%, R.A.2 and Nom. (from left
to right).

4.3.2 Description of the laser-ultrasonic set-up

For the evaluation of these five bonded samples, the laser ultrasonic set-up described
in the Chap.3 (see Fig. 3.7) was used. To remain in the thermoelastic (nondestructive)
regime, the pump beam was attenuated and then focused onto the surface of the thinnest
aluminum plate of the bonded samples [see Fig. 4.1(a)]. The beam diameter was adjusted
to maximize the amplitude of the S1S2-ZGV resonance, with the full width at half maxi-
mum of the excitation spot approximately equal to half the wavelength of the S1S2-ZGV
mode196 of the thin plate. The normal displacement of the surface was measured with
the same two-wave mixing interferometer.

4.3.3 Experimental measurements

For each sample, the generation and the detection laser spots were superimposed
[Fig. 4.1(a)] and swept onto 11 positions with a 1mm-step in the x-direction. For each
measurement point, 500 temporal signals were averaged to increase the signal-to-noise
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Figure 4.3 – Experimental frequency spectra in the range 0–8MHz and around
2MHz (inset) measured in reflection with the set-up presented in Fig. 4.1(a).

ratio. The fast Fourier transform algorithm was used to process these time-domain sig-
nals (Fig. 4.3). These frequency spectra are normalized with respect to the maximum
amplitude of the S1S2-ZGV resonance, around 2MHz, of the 1.5mm-thick aluminum al-
loy plate. Since the measurements are reproducible over the 11 positions of the scans
(the standard deviations of the measured ZGV frequencies are equal to 1 kHz), only one
spectrum per sample is plotted in Fig. 4.3 for clarity. In the range 0–8MHz, there are
three main peaks around 2, 3, and 6MHz. Near 3 and 6MHz, resonance frequencies are
visible only for the Al1 and R.A.1-2 samples (the orange solid line with square markers and
the brown loosely dashed dotted line, respectively). Thanks to the theoretical dispersion
curves, the resonance at ∼3MHz is identified as a thickness mode of the 1.5mm-thick
plate and the one at ∼6MHz with the S3S6-ZGV mode of the 1.5mm-thick plate. At
∼2MHz, all the samples have similar but different ZGV frequencies, as can be seen from
the inset in Fig. 4.3. The maximum amplitudes of the peaks also depend on the curing
time of the adhesive and on the release agent between the interfaces. Furthermore, notice
that for the nominal bonded sample (black solid line labeled Nom), there is not a sharp
unique ZGV peak, rather two very close resonance frequencies, as identified theoretically.
We discuss later why this observation can be extended to R.A.1, C.50%, and R.A.2.

Experimental measurements were also performed with a set-up in transmission, i.e.,
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Figure 4.4 – Experimental frequency spectra with a set-up in transmission, i.e.,
where the generation laser spot is focused on the top aluminum alloy plate Al1
and the detection laser spot is focused on the bottom aluminum alloy plate Al2.

where the generation laser spot is focused on the top aluminum alloy plate Al1 and
the detection laser spot is focused on the bottom aluminum alloy plate Al2. In this
configuration, we detect the ZGV mode around 0.9 MHz (see experimental spectra in
Fig. 4.4) that is predicted in the simulated dispersion curves represented in Fig. 4.1(b).
However, these measurements with a transmission configuration are not considered in the
following for two main reasons. First, the cut-off frequency of the high-pass filter of the
interferometer is equal to 0.7 MHz, which is close to 0.9 MHz. Thus, this can disturb the
measurements of this ZGV mode. Secondly, measurements in transmission are not always
possible in an industrial context. Therefore, we prefer to carry out measurements with a
set-up in reflection because it requires access to only one surface.

4.4 Damping of local resonances

The damping of local resonances measured with the reflection configuration (see the ex-
perimental set-up in Fig. 4.1(a) and experimental frequency spectra in Fig. 4.3) provides
sufficient information for discriminating the differently prepared samples. The magnitudes
of the ZGV modes as a function of time (to a logarithmic scale) are shown in Fig. 4.5(a).
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These curves were obtained after filtering the temporal signals with a bandpass filter
(Butterworth, order 4, lower and higher cutoff frequencies of 1.5MHz and 2.5MHz, re-
spectively) around the ZGV frequency. This filter was chosen for its flat magnitude
response in the bandwidth of interest. Typical filtered signals are plotted in Fig. 4.5(b)
for the aluminum alloy plate and for the nominal bonded sample. Then, signal envelopes
were extracted with the Hilbert transform and their magnitudes are displayed in decibels.
For each sample, the average attenuation for the 11 measurement points is plotted and the
standard deviation is represented with shaded error bars in Fig. 4.5(a). For the aluminum
alloy plate, the S1S2-ZGV resonance decreases as a function of t−1/2, which agrees with
the results of Prada et al.203, who analytically derived this power law decay:

u(t) = G0t
−1/2e−t/τ1 cos (ω0t+ φ), (4.1)

where u(t) is the normal displacement of the surface at the center of the generation laser
spot. G0 is related to the efficiency of the laser-ultrasound generation. It depends on
several parameters that are described in Ref. 203, especially the Fourier transform of the
spatial and temporal profiles of the laser pulse. ω0 and φ are the ZGV angular frequency
and the phase, respectively. The time constant τ1 is for viscoelastic losses, which lead to
the exponential decay of the amplitude. For the aluminum alloy plate, this parameter is
large (τ1 = 840 µs; Table 4.1), so that attenuation is mainly due to the t−1/2 factor. As
explained by Prada et al.,203 this power law decay is due to energy that is not trapped
under the source, which can, thus, propagate at non-zero group velocity in the medium.

When this model is used to fit the other experimental curves, there are some discrepan-
cies, notably for the bonded samples R.A.1, C.50%, R.A.2, and Nom. To address this issue,
an additional term is proposed for Eq. (4.1). It is based on the previous theoretical and ex-
perimental observations that the resonance is due to two or more ZGV modes [Fig. 4.1(b)
and inset of Fig. 4.3], particularly the black solid curve for the nominal bonded sample.
We consider here that the attenuation is due to a beating phenomenon between two close
resonances. Assuming that the frequencies have the same phase and amplitude but dif-
ferent frequencies, ω1 and ω2, their sum is equivalent to an oscillating signal modulated
in amplitude by a cosine function. The angular frequency of the oscillating signal (ωm) is
the mean of ω1 and ω2 and the decreasing term is the cosine function, which depends on
the slight difference between the frequencies δω = ω2 − ω1. Therefore, we have

u(t) = G0t
−1/2e−t/τ1 cos

(
δωt

2

)
cos (ωmt+ φ). (4.2)
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Figure 4.5 – (a) Experimental attenuation as a function of time to a logarithmic
scale. For each sample, the average attenuation for the 11 measurement points
is plotted and the standard deviation is represented with shaded error bars. The
fitting lines with Eq. (4.2) are represented with dotted lines. (b) Temporal signals
acquired from the aluminum alloy plate and from the nominal bonded sample after
filtering the data with a bandpass filter around the ZGV frequency at ∼2MHz.

The fits of the experimental data with this formula, based on a least-squares minimization
method, are represented by the dotted lines in Fig. 4.5(a). There is a relatively good
agreement [see the root-mean-square error (RMSE) of the fits in Table 4.1].

For each sample, the average values and the standard deviations of the metrics G0,
τ1, δω, and ωm for the 11 measurement points are listed in Table 4.1. The RMSEs of
the fit obtained with Eqs. (4.1) and (4.2) are similar for Al1 and R.A.1-2. However, the
RMSE is higher when the experimental attenuation is fitted with Eq. (4.1) rather than
with Eq. (4.2). For instance, the RMSE increases by +1%, +27%, +35%, and +42%,
respectively, for R.A.1, C.50%, R.A.2, and Nom when Eq. (4.1) is used instead of Eq. (4.2).
Thus, the experimental attenuation is fitted with Eq. (4.2).

To discriminate between the different samples, the metrics τ1 and δω are considered
because of their significant sensitivity to bond defects. For the Al1 and R.A.1-2 samples,
the attenuation is mainly due to the power law decay t−1/2. Moreover, note that when
Frekote is applied on both sides, the assembly behaves as a freestanding plate. For
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Table 4.1 – Properties of the samples and fitted values for the attenuation. The
bars indicate averages for 11 measurement points. σ is the standard deviation.

Al1 R.A.1-2 R.A.1 C.50% R.A.2 Nom

Adhesive curing – X X 50% X X

Interface 1 a – Frekote Frekote X X X

Interface 2 b – Frekote X X Frekote X

G0 (mmµs1/2) 0.025 0.012 0.009 0.013 0.012 0.013

σ/G0 (%) 3% 5% 7% 4% 8% 7%

τ1 (µs) 840 960 102 85 87 63

σ/τ1 (%) 23% 7% 17% 27% 34% 23%

δω/(2π) (kHz) 0.5 0.5 2.1 6.4 6.8 7.7

σ/δω (%) 96% 92% 56% 7% 9% 4%

ωm/(2π) (MHz) 1.964 1.962 2.010 1.992 2.002 1.998

σ/ωm (%) <0.1% <0.1% <0.1% <0.1% <0.1% <0.1%

RMSE (10−3) c 0.7 0.3 0.2 0.3 0.3 0.4

a Interface 1: Aluminum alloy plate Al1 (1.5mm-thick)/adhesive layer.
b Interface 2: Adhesive layer/aluminum alloy plate Al2 (3.0mm-thick).
c Root-mean-square error of the fit.

106



4.5. 2D maps of a trilayer assembly with inhomogeneously distributed defects

the samples R.A.1, C.50%, R.A.2, and Nom, the decrease of the amplitude as a function
of time is also due to viscoelastic losses, with the time constant τ1, and to the beating
phenomenon, with the parameter δω. The Nom sample has the lowest τ1 (i.e., viscoelastic
losses play a major role) and the highest δω (i.e., the beating phenomenon has a large
influence on the attenuation).

Although interface 1 is coated with Frekote for both R.A.1 and R.A.1-2, they have
different attenuation profiles. This may be because the layer of release agent does not
detach the substrate from the adhesive. The two parts are still mechanically coupled,
even if this coupling is weak compared to the nominal case. For R.A.1, only one interface
is degraded, while for R.A.1-2, two interfaces are degraded. The amount of release agent
for R.A.1-2 was twice as high than for R.A.1. This may explain why R.A.1-2 behaves more
like the top Al1 plate alone than R.A.1.

Thus, the attenuation characteristics in Fig. 4.5 combined with this identification
method allow us to distinguish the different bonded samples and to determine the key
metric values that provide a quantification of these differences.

4.5 2D maps of a trilayer assembly with inhomoge-

neously distributed defects

The method was finally tested on a trilayer assembly with two adhesive defects. It had
four 75× 75mm2 zones: two without defects (denominated as previously Nom), one with
an adhesive defect R.A.1 and another with R.A.2. 2D maps were produced for the ZGV
frequency and attenuation over an area of 80 × 48mm2, which covers the four regions.
In Fig. 4.6(a), the frequency ωm is plotted versus position. There is clearly no distinct
zone with different frequencies, as may be expected. Rather, ωm changes continuously
across the four regions. These interesting monotonous variations show that the effects of
a localized adhesive defect spread away from the defect zone. In contrast, τ1 [Fig. 4.6(b)]
and δω [Fig. 4.6(c)], vary non-monotonously across the four regions. The centers of the
Nom areas have the highest δω (as encountered previously; Table 4.1). Assuming, as
for the homogeneous samples, that δω is high where the bonding is actually nominal,
Fig. 4.6(c), thus, shows that the Nom zones are not homogeneous, which strengthens our
hypothesis that the effect of a limited adhesive defect is hardly local. Surprisingly, τ1 is
not the lowest in these parts of the Nom areas where δω is high, which is in contrast with
the results in Table 4.1. Note also that a peak is observed in the spectra at ∼1.9MHz
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[Fig. 4.6(d)], which is absent for the homogeneous samples. This peak gives rise to the
beating phenomenon [Fig. 4.6(e)] for a larger δω than assumed for the minimization.

Two possible reasons may explain why the effects of a localized adhesive defect spread
away from its initial deposition area. First, the release agent could migrate from its
initial deposition area during curing. This could explain why a continuous change of
the ZGV resonance frequency is observed in Fig. 4.6(a). Second, the differences in the
practical adhesion in the four areas could lead to residual stresses in the inhomogeneous
sample. Therefore, a localized adhesive defect could affect a wider area. Although these
unexpected results remain to be explained fully, the metrics τ1 and δω have undoubtedly
enabled the nondestructive imaging of adhesive bonds with inhomogeneously distributed
defects.

4.6 Conclusion

We have proposed a laser-based method for generating and detecting ZGV modes so
that we can locally evaluate trilayer assemblies with both cohesive and adhesive defects.
By studying the attenuation of ZGV resonances, we have been able to discriminate the
different samples thanks to the determination of quantitative metrics (τ1 and δω). Finally,
the imaging ability of this contactless method has been demonstrated with a bonded
sample with and without adhesive defects. The root causes of the differences in our
results for homogeneously and inhomogeneously distributed defects should be further
investigated, since understanding these could pave the way for quantitative assessments of
adhesive bonding with this nondestructive all-optical technique. Laser ultrasonic methods
that use non-linear interactions134,204 could be a valuable approach to improving further
the imaging of adhesive bonds.
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General conclusion

In this PhD thesis, laser ultrasonic methods have been investigated for the nondestruc-
tive evaluation (NDE) of bonded aeronautical assemblies. The main objective of this work
was to develop NDE methods to identify quantitative parameters to discriminate struc-
tural bonded structures of different mechanical strengths. To this end, laser-generated
and detected elastic waves in bonded assemblies have been studied both numerically and
experimentally. Indeed, laser ultrasonic methods are well suited to industrial applications,
especially because of the non-contact nature of the measurements.

First of all, a literature review concerning the NDE of adhesive bonding was presented in
Chap. 1. After introducing the terms related to bonding as well as the defects encountered,
an overview of destructive and non-destructive methods was given. Linear and non-linear
ultrasonic methods were presented and discussed. This part illustrates the lack of a NDE
method to quantify the mechanical strength of structural bonded assemblies despite the
strong industrial need.

Then, a semi-analytic model was described in Chap. 2 to simulate the propagation of
laser-generated ultrasounds in a multilayer structure, which is suitable for modeling a
bonded assembly. This 2D model allows to calculate the displacement fields in the up-
per and lower media (media I and II, respectively) of the multilayer when a tilted laser
line source is incident on it. Electromagnetic, thermal and elastodynamic problems are
successively solved to model the optoacoustic source in the thermoelastic regime and the
elastic waves generated by the thermal expansion of the material. The optical penetration
of the incident laser beam into the multilayer is considered. The power densities dissi-
pated by heating, which are used as source terms to solve the heat diffusion problem, are
calculated with the amplitudes of the electromagnetic waves transmitted and reflected
in the structure. The thermal problem is then solved to obtain the temperature field
by considering the phenomena of conduction and convection. The displacement field is
calculated in the Fourier domain where analytic solutions can be found. At that point,
dispersion curves can be directly evaluated in plate-like structures. A double numerical
inverse Fourier transform can also be performed to obtain the displacement field in the
temporal and space domains. Sublayers can be inserted between the upper and lower me-
dia of the structure and are modeled with the transfer matrix method which considers the
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electromagnetic, thermal and elastodynamic coupling conditions between media I and II.
This allows fast and accurate results for solving the direct problem, i.e., to obtain the
displacement fields in the upper and lower media when material properties are known.
Simulated examples are provided to show just a brief overview of the results that can
be obtained with this developed semi-analytic model. First, laser-generated elastic waves
are simulated in a bilayer structure composed of two aluminum alloy (Al) plates mechan-
ically coupled at the interface with two distributions of normal and transverse interfacial
stiffnesses (KN and KT , respectively). The optoacoustic source is localized at the free
surface of the upper medium due to the really low value of the optical penetration depth
in aluminum alloy (1/β = 4.7 nm). Secondly, simulations are also performed by taking
the thickness of an epoxy layer between two Al plates into account. Thirdly, a heat source
is simulated at the interface between two media when the incident laser beam is mainly
absorbed in the lower medium compared to the upper one. Concerning the limitations of
this developed semi-analytic approach, layered plates with parallel surfaces must be con-
sidered and the generation of ultrasounds in the sublayers should be neglected compared
to the one in media I and II. One of the main perspectives of this work is to extend this
2D model to 3D geometries. This will necessarily complicate the calculations because a
new space dimension must be taken into account. However, the methodology to solve
the electromagnetic, thermal and elastodynamic problems will be similar. This approach
could be of interest to simulate laser-generated ultrasounds when the 3D shape of the laser
source is complex (as it will be discussed in the “Perspectives” section). The semi-analytic
model described in Chap. 2 has been used in the next chapter to simulate the databases
needed to solve inverse problems.

Indeed, in Chap. 3, a laser ultrasonic method has been proposed to identify normal
(KN) and transverse (KT ) interfacial stiffnesses that model two bonded aluminum alloy
media when the wavelength is large compared to the adhesive thickness. This technique
is based on the resolution of inverse problems using the reflection of elastic plane waves
that are synthesized for several angles of incidence with respect to the bonding interface.
A post-processing method is used to synthesize plane waves, from the propagation of
laser-generated cylindrical bulk waves, because of the experimental difficulties to generate
plane wave in laser ultrasonics. A validation of the developed method is first performed
on simulated input data, obtained with the semi-analytic model presented in Chap. 2,
and where Gaussian noise has been added. Then, it is applied on an aluminum alloy (Al)
plate and on two bonded assemblies Al/Epoxy/Al (with and without adhesion defects)
which are manufactured with structural epoxy adhesive films. This method allows to
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discriminate the three samples and to identify quantitative parameters of KN and KT .
These values are obtained by finding the minima of cost functions that correspond to
the differences [measured with the mean squared error (MSE)] between the experimental
input data and the database composed of semi-analytic simulations for a large set of KN

and KT (from 10−3 kNmm−3 to 105 kNmm−3). This developed technique allows to obtain
average values of KN and KT for the scanned area (32mm in our experimental cases).
However, no local defects can be detected with such a technique and the upper propagation
medium must be free of imperfections. In addition, the optical, thermal and mechanical
properties of the bonded substrates must be known in order to obtain a database with
accurate numerical simulations to solve the inverse problem. It is remarkable to note
that solving inverse problems directly by comparing simulated and experimental B-scans
do not lead to accurate results. This is due to the fact that the plane wave synthesis
artificially improves the SNR and, above all, effectively filters the Rayleigh waves out of
the bulk waves that actually contain the information about the bonding.

Concerning the perspectives of the work presented in Chap. 3, more parameters could be
identified by solving the inverse problem (thickness of the adhesive, elastic coefficients of
the adhesive, mass density of the adhesive, etc.) in order to have a better characterization
of the bonded assembly. However, increasing the number of parameters to be identified
will greatly complicate the problem and generate a very long computation time to obtain
the database. To give an idea, with two parameters to be identified (KN and KT ),
1089 cases were simulated to generate the database (33 values for KN and the same for
KT ). It takes about 30 hours to compute this complete database on a laptop (Intel®

Core™ i7-6500U CPU @2.5GHz, 16GBRAM). Following this logic, the addition of a
single parameter multiplies by 33 the number of computation hours, which leads to more
than 40 days to calculate the database with 3 parameters. Modeling a bonded assembly
by considering: the thickness of the adhesive, its density, its two elastic coefficients (if
considered isotropic) and the normal and transverse interfacial stiffnesses at the upper and
lower interfaces leads to 8 parameters to be identified, without taking into account the
viscoelastic phenomena. It would take more than 4 million years to compute the whole
database with the same computer! Thus, to perform such calculations, three possible
options could be studied. The first one could be to parallelize the calculations of the
different cases in order to greatly reduce the computation time of the database (because
each case is independent). The second one could be to reduce the computation time of
each case (which is currently about 1 min and 45 sec): (i) by further optimizing the
numerical code and (ii) by using even more powerful computers or computing clusters.
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The last improvement could be not to compute the whole database but only the cases
necessary for the minimization algorithm to find the minimum of the cost function. The
problem that may appear with this technique is the identification of local minima and
not global minima; this does not happen when the complete database is computed. The
successful implementation of the proposed improvements would allow the identification
of more parameters related to the bonded assembly and, therefore, to describe it more
precisely.

In Chap. 4, a second approach has been proposed for the NDE of structural adhe-
sive bonding. Contrary to the NDE method presented in Chap. 3, this one allows a
local measurement by using the attenuation of zero-group-velocity (ZGV) Lamb modes,
which are sharp local resonances at well-defined frequencies. ZGV resonances are experi-
mentally generated and detected in five trilayer assemblies composed of two asymmetric
aluminum alloy plates bonded with an epoxy structural adhesive film. Cohesive and ad-
hesive defects were introduced to degrade the practical adhesion of these bonded samples.
The temporal attenuations of ZGV resonances allow to discriminate the different bonded
samples and to identify two quantitative metrics (τ1 and δω) related to these attenua-
tion profiles. Then, to demonstrate the imaging ability of this all-optical method, a 2D
scan of a trilayer assembly with and without adhesive defects is performed. This allows
to image different area on the bonded sample by looking at the temporal attenuation
parameters in addition to the ZGV resonance frequencies. Differences were observed be-
tween the measurements carried out on samples with homogeneously distributed bonding
defects and with the latter sample having inhomogeneously distributed bonding defects,
i.e., with several types of adhesive defects on the same bonding. A beat phenomenon was
observed between two resonance frequencies much more distant than those observed on
homogeneous samples, where the beat phenomenon was visible between two close reso-
nance frequencies (δω around few kHz). Concerning the perspectives, two tracks may be
investigated to explain the reason(s) for the differences observed between bonded samples
with homogeneously and inhomogeneously distributed defects. The first one concerns the
study of the migration of the release agent (Frekote® 44-NC™) which is used to create
adhesive defects during manufacturing. Research is needed to understand the behavior
of the release agent during curing and whether it could migrate from its initial area of
deposition to another part of the bond during this process. The second one is the study
of the formation of residual stresses after curing when several different bonding defects
are introduced in the same bonded assembly. This could explain the differences observed
when the bonding defects are homogeneously or inhomogeneously distributed for each
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sample. These two perspectives could be studied to obtain an even finer understanding
of the results obtained.

To conclude, a semi-analytic model and two NDE methods of bonded assemblies have
been developed during this PhD thesis. The semi-analytic model, although used in one of
its simplest form in the first NDE method for solving the inverse problem, aims at being
general for simulating the propagation of elastic waves in multilayer assemblies with the
abilities to take into account: (i) anisotropic materials, as far as the assumption of the two-
dimensional problem holds; (ii) electromagnetic, thermal and mechanical unconventional
boundary conditions (discontinuities); (iii) asymmetric volume distribution in 2D of the
absorbed electromagnetic power density. The code is shared and will be continuously
corrected, if needed, and improved/completed by me and the research team involved in the
PhD work. The two NDE methods have been demonstrated to give quantitative metrics
allowing to distinguish between, and characterize, bonded assemblies of different adhesion
levels where classic ultrasonic techniques failed to observe a difference. Each method has
its specific feature of characterization which will drive their usage: on the one hand, the
global adhesion level of an assembly is made possible from a scan of the generation laser
with the plane-wave-synthesis-based method; on the other hand, the adhesion level local
mapping of an assembly is made possible from a scan of the sample with the ZGV-mode-
based one. Regarding the more general prospects, non-linear methods also appear to be
of real interest. Preliminary work has already been started and is presented below, in the
last section of this manuscript.
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In this PhD thesis, two linear methods have been developed and are presented in this
manuscript. Concerning the perspectives, non-linear methods are also of real interest for
the NDE of bonded assemblies. Indeed, the identification of non-linear parameters could
provide access to information not accessible by linear methods in order to characterize
bonded assemblies. Preliminary work has been started during this PhD thesis and needs
to be pursued in the future. Two main classes of non-linear methods have been identified.
The first one the addition of external modulations (low-frequency modulation or pressure
modulation) to mechanically load the bonding and to couple this with laser ultrasonic
measurements. The second one is to shape the laser source to focus ultrasounds at the
bonding interface. A patent application has been filed on this latter idea. These two
non-linear approaches are introduced in the following.

External modulations

The approach concerning the addition of external modulations is divided in two pro-
posed methods: (i) low-frequency modulation and (ii) pressure modulation. These tech-
niques could be of interest for the NDE of bonded aeronautical structures such as Outlet
Guide Vanes (OGV) which are located in the secondary flow of an aircraft turbine en-
gine, behind fan blades. a A representative sample to study the bonding of a hood to the
body of the OGV is given in Fig. P.1(a) and (b). This bonded assembly is interesting
for testing non-linear NDE methods, especially because of the cavity present under the
aluminum hood [see Fig. P.1(b)]. The low-frequency and pressure modulation methods
are introduced below.

Low-frequency modulation

The approach concerning the low-frequency modulation consists of exciting the first
bending mode of the hood of the OGV sample [see Fig. P.1(c)] by means of a piezoelectric
cell and at the same time performing laser ultrasonic measurements above the bonded

a. Video to show how an aircraft engine works. URL link [Accessed on 09/17/2020]
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2.8 kHzPiezo.

Cavity (air)
Body

Hood Mounting hole

Bonding
230x160 mm2

(a)

(c)

(b)

(d)

Sectional view

Low-frequency modulation Pressure modulation

OGV sample

Area to inspect

Air pressure

Figure P.1 – (a) Picture of the Outlet Guide Vane (OGV) sample. (b) CAD of the
sectional view of the OGV sample composed of an aluminum alloy hood bonded
to an aluminum alloy body. (c) Visualization of the first resonance mode of the
aluminum alloy hood with excitation by a piezoelectric cell and measurement by
scanning laser vibrometry. (d) Picture of the OGV sample with compressed air
supply.

part. This low-frequency modulation is used to create a cyclic stress modulation at the
bonding [represented in red in Fig. P.1(b)] to mechanically load this part of the sample.
Scanning laser vibrometry measurements have been carried out on this OGV sample
to obtain the experimental resonance frequency of the first bending mode [measured at
2.8 kHz, see measured displacement field in Fig. P.1(c)]. The future plan is to perform
laser ultrasonic measurements above the bonding, with and without the addition of this
low-frequency excitation, to see if this cyclic modulation allows the observation of non-
linear phenomena.
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Pressure modulation

The approach concerning the pressure modulation consists in injecting compressed air
into the cavity of the specimen [see Fig. P.1(b) and (d)] in order to apply pressure on
the hood and thus on the bonding. The idea is to apply stages at different pressure
levels. For each pressure stage, laser ultrasonic measurements above the bonding will
be performed. The pressure regulator as well as the other pneumatic elements have
been ordered, delivered and installed. A Python script has been developed to control
the pressure level numerically. A first pressurization test of the cavity has already been
carried out. Hence, the aim is now to perform laser ultrasonic measurements, with and
without this pressurization, above the bonding [see the area to inspect in Fig. P.1(d)].

Another approach, which does not rely on the addition of external modulations but on
the focusing of laser-generated ultrasounds, is introduced hereafter.

Focusing of laser-generated ultrasounds

The aim of this technique is to focus laser-generated bulk waves at the bonding interface
to locally increase the amplitude of ultrasounds and to potentially observe non-linear
effects. A patent application has been filed on this idea. In order to focus laser-generated
ultrasounds, the laser source is proposed to be shaped. Indeed, there is a zone in the
depth of the material where all the waves generated at different points of a thoughtful-
shaped thermoelastic surface source will converge at the same time. The simplest case is
the case of an isotropic medium where the shape is a ring. In that case, the principle is
therefore to dimension the ring (inner radius, outer radius) so that the focus of ultrasounds
is achieved at the bonding. An illustration of the proposed method in the case of an
isotropic medium I is presented in Fig. P.2(a). The directivity pattern of the laser source
is needed to define the geometry of the ring in order to focus ultrasounds at angles where
the amplitudes of bulk waves are the highest. For instance, with the directivity pattern
shown in Fig. P.2(b), the amplitudes of transverse waves are the largest at ±30◦.

From a technical point of view, this ring-shaped laser source is generated using a Spatial
Light Modulator (SLM). The principle is to illuminate this diffractive optics with an
incident laser beam. This beam is then reflected and refocused using a lens. The different
phase delays imposed during the reflection from the SLM will create, in the focal plane
of the lens, an image obtained by diffraction. Examples of images obtained with this
device are presented in Fig. P.2(c) and (d). The ring-shaped laser source is also shown in
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Figure P.2 – (a) Schematic diagram of the proposed method to focus ultrasounds
with a ring-shaped laser source in an isotropic medium. (b) Directivity pattern of
a laser source in the thermoelastic regime. Figure extracted from the PhD Thesis
of S. Raetz (p. 24 in Ref. 151). Longitudinal (transverse) waves are represented
by solid (dashed) lines. (c)–(d) Images obtained with the SLM. (e) Ring-shaped
laser source obtained with the SLM.

Fig. P.2(e). The experimental set-up integrating the SLM, presented in Fig. P.3, has been
prepared. Elements such as the beam expander, the CMOS camera, the dichroic mirror,
etc. have been ordered and installed. The SLM has been calibrated and a Python script
has been developed to control it. A camera, which is connected to the computer, is used
to measure the dimensions of the ring based on a developed image processing algorithm.

The objective is now to test this technique on bonded assemblies. It is necessary to
define and experiment the appropriate ring size to focus ultrasonic waves at the bonding
interface. One of the expected results is to observe the generation of second harmonics as
experimentally detected by Zabbal et al.126 with a chaotic cavity transducer.

To conclude, preliminary work has been started during the PhD thesis concerning the
development of non-linear methods in laser ultrasonics. Further numerical and experimen-
tal studies are needed to determine the potential of the proposed approaches: (i) external
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modulations and (ii) focusing of laser-generated ultrasounds. This provides interesting
prospects concerning the development of laser ultrasonic non-linear methods for the NDE
of bonded assemblies.
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Figure P.3 – Experimental set-up with the Spatial Light Modulator (SLM).
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Résumé de la thèse

Actuellement, l’allègement des structures aéronautiques est un enjeu industriel majeur,
notamment pour des raisons environnementales. Afin de réduire les émissions de gaz à
effet de serre, celles-ci doivent devenir plus légères pour diminuer la consommation en
carburant des moteurs. L’utilisation du collage comme technique d’assemblage permet
de répondre à ce besoin de gain de masse. En effet, par rapport aux méthodes plus
conventionnelles telles que le soudage ou le rivetage, le collage présente de nombreux
avantages. Tout d’abord, l’assemblage par collage ne nécessite pas l’ajout de rivets qui
viennent alourdir la structure. De plus, aucun perçage, synonyme de concentration des
contraintes, ne doit être effectué dans les pièces à assembler. Ensuite, le collage permet
d’assurer une meilleure répartition des contraintes entre les structures assemblées ; ce
qui garantit une transmission plus homogène des efforts mécaniques. D’autre part, c’est
l’une des techniques les plus performantes pour assembler des structures fabriquées en
matériaux composites ayant un rapport résistance/masse élevé répondant à ce besoin
d’allégement.

Bien que le collage présente de nombreux avantages vis-à-vis des techniques plus conven-
tionnelles (rivetage, soudage, etc.), il n’existe pas à ce jour de méthodes non destructives
permettant de quantifier et de certifier la tenue mécanique des assemblages collés. Cela
pose donc de véritables problèmes de sécurité et de certification auprès des agences aé-
riennes telles que la Federal Aviation Administration (FAA) ou encore l’Agence Euro-
péenne de la Sécurité Aérienne (AESA). Par conséquent, un fort intérêt doit être porté
au développement de méthodes d’évaluation non destructive des assemblages aéronau-
tiques collés. Cela permettrait de lever l’un des derniers verrous technologiques limitant
actuellement le développement de cette technique d’assemblage dans l’industrie aéronau-
tique.

Dans cette thèse, des méthodes ultrasons-laser pour l’évaluation non destructive (END)
des assemblages aéronautiques collés sont étudiées. En effet, le caractère sans contact de
cette technique optique pour générer et détecter des ultrasons est un atout majeur pour des
applications industrielles. L’objectif principal de ce travail est de développer des méthodes
END pour identifier des paramètres quantitatifs permettant de discriminer des collages
ayant des tenues mécaniques différentes. Pour cela, la propagation d’ondes élastiques

123



Résumé de la thèse

générées et détectées par laser dans les assemblages collés est étudiée numériquement et
expérimentalement.

Tout d’abord, une étude bibliographique est présentée dans le Chap. 1 concernant les
méthodes END d’assemblages collés existantes dans la littérature. Suite à l’introduction
des termes relatifs au collage ainsi que des défauts rencontrés dans ce type d’assemblage,
un aperçu des méthodes destructives et non destructives est donné. Les méthodes par
ultrasons dans les domaines linéaire et non linéaire sont présentées et discutées. Cette
partie illustre l’absence d’une méthode END permettant de quantifier la tenue mécanique
des collages structuraux malgré le fort besoin industriel.

Un modèle semi-analytique développé au cours de la thèse est ensuite décrit au Chap. 2.
Celui-ci permet de simuler la propagation d’ultrasons générés par laser dans une structure
multicouche, permettant de modéliser un assemblage collé. Avec ce modèle 2D, les champs
de déplacement dans les milieux supérieur et inférieur du multicouche (respectivement les
milieux I et II) sont calculés. La génération laser peut être simulée en prenant en compte
une ligne source laser avec un certain angle d’incidence par rapport à la normale à la
surface. Les problèmes électromagnétique, thermique et élastodynamique sont successi-
vement résolus pour modéliser la source optoacoustique en régime thermoélastique ainsi
que les ondes élastiques générées par l’expansion thermique des matériaux. La pénétration
optique du faisceau laser incident dans le multicouche est prise en compte. Les densités
de puissance dissipées en chaleur sont calculées à partir des amplitudes des ondes électro-
magnétiques transmises et réfléchies dans la structure. Ces densités de puissance dissipées
sont ensuite utilisées comme termes sources pour résoudre le problème thermique. La
résolution de celui-ci permet d’obtenir les champs de température en considérant les phé-
nomènes de conduction et de convection thermique. Puis, les champs de déplacement
dans les milieux I et II sont calculés dans l’espace de Fourier où des solutions analytiques
peuvent être trouvées. Enfin, une double transformée de Fourier inverse (en temps et en
espace) est effectuée numériquement pour obtenir les champs de déplacement dans les
domaines temporel et spatial. Des couches intermédiaires peuvent être insérées entre les
milieux supérieur et inférieur de la structure et sont modélisées à l’aide de matrices de
transfert qui simulent les conditions de couplage électromagnétique, thermique et élas-
todynamique entre ces milieux I et II. Ce modèle semi-analytique permet d’obtenir des
résultats rapides et précis pour résoudre le problème direct, c’est-à-dire pour obtenir les
champs de déplacement dans les milieux supérieur et inférieur lorsque les propriétés op-
tiques, thermiques et mécaniques des matériaux sont connues.

Des exemples de simulation sont fournis dans le Chap. 2 pour donner un bref aperçu
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Figure R.1 – Déplacement normal u1(x1, x2, t) simulé à t = 1 µs pour : (a)
un bicouche Al (1,5 mm)/Al (3,1 mm) et (b) un tricouche Al (1,5 mm)/Epoxy
(0,1 mm)/Al (3,0 mm).

des résultats obtenus avec le modèle semi-analytique développé au cours de cette thèse.
Premièrement, les ondes élastiques générées par laser sont simulées dans une structure
bicouche composée de deux plaques en alliage d’aluminium (Al) couplées mécaniquement
au niveau de l’interface par deux distributions surfaciques de raideurs normales (KN) et
transverses (KT ). Les déplacements normaux simulés sont représentés Fig. R.1(a) lorsque
des valeurs infinies sont choisies pour les raideurs interfaciales KN et KT . Cela implique
une parfaite continuité des déplacements et des contraintes à l’interface entre les deux
milieux. Ainsi, les ondes élastiques générées par laser à la surface du milieu supérieur sont
entièrement transmises vers le milieu inférieur. Deuxièmement, des simulations sont réali-
sées en prenant en compte l’épaisseur d’une couche de colle entre deux plaques en alliage
d’aluminium [voir Fig. R.1(b)]. Troisièmement, une source optoacoustique est simulée à
l’interface entre deux milieux lorsque le faisceau laser incident est principalement absorbé
dans le milieu inférieur par rapport au milieu supérieur. En ce qui concerne les limites
de cette approche semi-analytique, les milieux solides composant le multicouche doivent
avoir des surfaces parallèles et la génération d’ultrasons dans les sous-couches doit être
négligée par rapport à celle dans les milieux I et II. L’une des principales perspectives de
ce travail est d’étendre ce modèle 2D aux géométries 3D. Cela compliquera nécessairement
les calculs car une nouvelle dimension spatiale doit être prise en compte. Cependant, la
méthodologie pour résoudre les problèmes électromagnétique, thermique et élastodyna-
mique sera similaire. Cette approche pourrait avoir un intérêt concernant la simulation
d’ultrasons générés par laser lorsque la forme 3D de la source laser est complexe (comme
cela est introduit dans le dernier paragraphe de ce résumé). Le modèle semi-analytique
décrit dans le Chap. 2 a ensuite été utilisé dans le chapitre suivant pour simuler les bases
de données nécessaires à la résolution de problèmes inverses.

En effet, une première méthode ultrasons-laser a été développée pour l’évaluation non
destructive d’assemblages collés. Celle-ci est présentée dans le Chap. 3 de ce manuscrit.
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Figure R.2 – (a) Représentation des ondes planes synthétisées dans le milieu I.
Tout d’abord, une ligne source laser de longueur infinie dans la direction x3 est
déplacée à la surface de l’échantillon en 2N + 1 positions avec un pas constant δx
selon la direction x2. Puis, des retards à l’émission δt sont appliqués entre les diffé-
rentes impulsions laser, dans une étape de post-traitement, afin de synthétiser des
ondes planes longitudinales (L) et transversales (T). (b) L’application de retards
à l’émission entre les 2N + 1 sources conduit à des interférences constructives et
destructives entre les ondes divergentes entraînant la génération d’une onde plane.
(c) Diagramme des lenteurs des ondes planes longitudinales et transversales qui
sont synthétisées en imposant le vecteur d’onde ks = ω δt/δx avec ω la fréquence
angulaire.
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Figure R.3 – Fonctions coût obtenues lorsque les B-scans expérimentaux mesurés
sur (a) une plaque d’alliage d’aluminium et deux assemblages collés Al/Ep/Al
[(b) avec et (c) sans agent de démoulage] sont utilisés comme données d’entrée
de l’algorithme permettant de résoudre le problème inverse. Les rectangles rouges
indiquent les minima de chaque fonction coût avec une marge d’incertitude de
±0, 1 dB.

Elle permet d’identifier des raideurs interfaciales normales (KN) et transverses (KT ) qui
modélisent le collage lorsque les longueurs d’onde considérées sont grandes devant l’épais-
seur du joint de colle. La méthode développée est basée sur la résolution de problèmes
inverses à partir de la réflexion d’ondes planes synthétisées pour différents angles d’inci-
dence par rapport à l’interface de collage. Une méthode de post-traitement est utilisée pour
synthétiser ces ondes planes à partir de la propagation d’ondes de volume cylindriques
générées par laser (voir Fig. R.2). Cette étape est réalisée en post-traitement en raison des
difficultés expérimentales inhérentes à la génération d’ondes planes en ultrasons-laser. Une
validation de la méthode développée est tout d’abord effectuée sur des données d’entrée
simulées où un bruit Gaussien a été ajouté pour s’approcher d’un cas expérimental. Ces
données simulées ont été obtenues avec le modèle semi-analytique présenté au Chap. 2.
Ensuite, la méthode est appliquée sur une plaque en alliage d’aluminium (Al) et sur deux
assemblages collés Al/Epoxy/Al (avec et sans défauts d’adhérence). Ces échantillons col-
lés sont fabriqués à partir de films adhésifs structuraux en époxy. La méthode développée
permet de discriminer les trois échantillons et d’identifier des paramètres quantitatifs de
raideurs interfaciales KN et KT suite à la résolution de problèmes inverses. Ces valeurs
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Figure R.4 – (a) Atténuations expérimentales en fonction du temps selon une
échelle logarithmique. Pour chaque échantillon, l’atténuation moyenne pour les
11 points de mesure est tracée et l’écart type est représenté par des barres d’er-
reur en transparence. Les courbes obtenues suite à l’identification des paramètres
d’atténuation sont représentées par des lignes pointillées. (b) Signaux temporels
mesurés, pour la plaque en alliage d’aluminium (Al) et pour l’assemblage collé
nominal (Nom), après filtrage des données avec un filtre passe-bande centré à
∼2MHz autour de la fréquence de résonance ZGV.

sont obtenues en trouvant les minima des fonctions coût, représentées Fig. R.3, qui corres-
pondent aux différences entre les données expérimentales d’entrée et la base de données
composée de simulations semi-analytiques pour un grand nombre de valeurs de KN et
KT (de 10−3 kNmm−3 à 105 kNmm−3). Cette technique permet d’obtenir des valeurs
moyennes de KN et KT pour la zone scannée (32mm dans nos cas expérimentaux).

Une seconde approche a été proposée pour l’évaluation non destructive d’assemblages
collés. Elle est présentée dans le Chap. 4. Contrairement à la méthode précédente, dé-
taillée dans le Chap. 3, celle-ci permet une mesure locale en utilisant l’atténuation de
modes de Lamb à vitesse de groupe nulle (ZGV), qui sont des résonances locales à des
fréquences bien définies. Des mesures expérimentales sont réalisées sur cinq assemblages
tricouches composés de deux plaques asymétriques, en alliage d’aluminium, collées par
un film adhésif structural en époxy. Des défauts de cohésion, obtenus en diminuant le
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temps de polymérisation de l’adhésif, et des défauts d’adhésion, créés à l’aide d’un agent
démoulant, sont introduits pour dégrader la tenue mécanique de ces échantillons collés.
Puis, les résonances ZGV sont générées et détectées expérimentalement pour ces différents
échantillons collés. Les atténuations temporelles de ces résonances locales permettent de
discriminer les différents échantillons collés (voir Fig. R.4) et d’identifier deux paramètres
quantitatifs (τ1 et δω) liés à ces profils d’atténuation.
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Figure R.5 – Cartographies 2D des paramètres identifiés [(a) ωm, (b) τ1, et (c)
δω] sur l’assemblage collé Al/Ep/Al divisé en quatre zones : deux zones nominales
(Nom), une zone avec une couche d’agent de démoulage à l’interface supérieure
(R.A.1) et une zone avec une couche d’agent de démoulage à l’interface inférieure
(R.A.2). Lorsque le RMSE du fit est supérieur à 0, 4 × 10−3 (valeur maximale
obtenue pour les assemblages collés testés), le point est rejeté et remplacé par un
carré blanc. (d) Spectres de fréquence et (e) atténuation des signaux temporels aux
positions indiquées par les cases rouges et noires représentées sur les cartographies
(a)–(c).
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Pour démontrer la capacité d’imagerie de cette méthode entièrement optique, un ba-
layage 2D d’un assemblage collé Al/Epoxy/Al (avec et sans défauts de collage) est effectué.
Cela permet d’imager différentes zones sur l’échantillon collé en examinant les paramètres
d’atténuation temporelle en plus des fréquences de résonance ZGV [voir Fig. R.5(a)–(c)].
Des différences ont été observées entre les mesures effectuées sur des échantillons présen-
tant des défauts de collage répartis de manière homogène et sur ce dernier échantillon où
les défauts de collage sont distribués de manière inhomogène, c’est-à-dire avec plusieurs
types de défauts de collage sur le même échantillon. Un phénomène de battement a no-
tamment été observé entre deux fréquences de résonance beaucoup plus éloignées [voir
Fig. R.5(d) et (e)] que celles observées sur des échantillons homogènes, où le phénomène
de battement était visible entre deux fréquences de résonance proches (environ quelques
kHz).

Pour conclure, un modèle semi-analytique et deux méthodes END d’assemblages collés
ont été développées au cours de cette thèse. Le modèle semi-analytique, bien qu’utilisé
dans l’une de ses formes les plus simples dans la première méthode END pour résoudre
les problèmes inverses, vise à être général. En effet, celui-ci permet de simuler la propa-
gation d’ondes élastiques dans des structures multicouches avec la possibilité de prendre
en compte : (i) des matériaux anisotropes dans la mesure où l’hypothèse du problème
bidimensionnel se vérifie ; (ii) des conditions limites électromagnétiques, thermiques et
mécaniques non conventionnelles (c’est-à-dire des discontinuités) ; (iii) des distributions
volumiques asymétriques en 2D de la densité de puissance électromagnétique dissipée
sous forme de chaleur. Le code est partagé et sera continuellement corrigé, si nécessaire,
et amélioré/complété par moi et l’équipe de recherche impliquée dans ce travail de thèse.
Il a été démontré que les deux méthodes END développées donnent accès à des paramètres
quantitatifs permettant de distinguer et de caractériser des assemblages collés ayant des
tenues mécaniques différentes, lorsque les techniques ultrasonores classiques ne le per-
mettent pas. Chaque méthode a sa propre caractéristique de mesure qui déterminera son
utilisation. D’une part, le niveau d’adhérence global d’un assemblage est rendu possible
par un balayage du laser de génération avec la méthode basée sur la synthèse de fronts
plans d’ondes. D’autre part, la cartographie locale du niveau d’adhérence d’un assemblage
peut être réalisée par un balayage de l’échantillon avec la méthode basée sur la génération
de modes ZGV. En ce qui concerne les perspectives plus générales de ces travaux de thèse,
les méthodes non linéaires semblent également présenter un réel intérêt.

Des travaux préliminaires ont déjà été entrepris, notamment concernant la focalisation
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Figure R.6 – (a) Schéma de la méthode proposée pour focaliser les ultrasons
générés par laser au niveau du collage en utilisant, par exemple dans le cas d’un
matériau isotrope, une source laser en forme d’anneau. (b) Diagramme de direc-
tivité d’une source laser en régime thermoélastique. Figure extraite de la thèse
de S. Raetz (p. 24 de la Ref. 151). Les ondes longitudinales (transversales) sont
représentées par des lignes continues (pointillées). (c)–(d) Images obtenues avec le
Spatial Light Modulator (SLM). (e) Source laser en forme d’anneau obtenue avec
le SLM.

d’ondes de volume en utilisant une source laser en forme d’anneau [voir Fig. R.6(a)]. L’ob-
jectif de cette technique est de venir focaliser les ondes de volume, générées par laser, au
niveau de la zone collée. Cette focalisation permettra d’augmenter localement l’amplitude
des ultrasons et d’observer éventuellement des effets non linéaires. Une demande de brevet
a été déposée concernant ce principe de mesure pour l’END des assemblages collés. Afin
de focaliser les ultrasons générés par laser, la forme adéquate de la source optoacoustique
est obtenue à l’aide d’un modulateur spatial de lumière [Spatial Light Modulator (SLM)].
La réflexion d’un faisceau laser collimaté sur cette optique diffractive permet d’obtenir à
la surface de l’échantillon inspecté des faisceaux lasers présentant des profils géométriques
complexes [voir Fig. R.6(c) et (d)]. La source laser en forme d’anneau, à utiliser dans le
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cas d’un matériau isotrope, est quant à elle représentée Fig. R.6(e). Le but est donc de
dimensionner l’anneau (rayon intérieur, rayon extérieur) de façon à ce que la focalisa-
tion des ultrasons s’opère au niveau du collage. Cela offre des perspectives intéressantes
concernant le développement de méthodes ultrasons-laser non linéaires pour l’évaluation
non destructive des assemblages aéronautiques collés.
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Appendix A

Semi-analytic model: additional
calculations

In this appendix, additional equations are provided to complement the semi-analytic
model described in Chap. 2. Details of calculations are given concerning the resolution of
electromagnetic (Sec. A.1), thermal (Sec. A.2) and elastodynamic (Sec. A.3) problems.

A.1 Electromagnetic problem

In order to simulate laser-generated ultrasounds in a multilayer structure, the first part
of the semi-analytic model, presented in Chap. 2, is to solve the electromagnetic problem
(see Sec. 2.3). The aim is to obtain the power density Q of the energy dissipated by heat
in the different media. This term is then used as the source term for the heat equation
defined in Sec. 2.4.

A.1.1 Obtaining the Helmholtz equation

In Sec. 2.3, the Helmholtz equation (Eq. 2.1) is solved to find the electric vector E and
the magnetic vector H in the multilayer structure. To obtain this Helmholtz equation,
the Maxwell’s equations are used:

∇×H− 1

c0

∂D

∂t
=

4π

c0

j,

∇× E +
1

c0

∂B

∂t
= 0,

∇ ·D = 4πρq,

∇ ·B = 0.

(A.1a)

(A.1b)

(A.1c)

(A.1d)
with E the electric vector, D the electric displacement, H the magnetic vector, B the
magnetic induction, j the electric current density, ρq the electric charge density, c0 the
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speed of light in vacuum and t the time. The curl of a vector is denoted “∇×” and the
divergence “∇·” with “∇” the nabla operator. These four Maxwell’s equations [Eqs. (A.1a–
A.1d)] are extracted from the book of Born and Wolf (pp. 1–2 in Ref. 155), which is
written in the Gaussian unit system. a Under the assumptions introduced in Sec. 2.2, the
constitutive relations (pp. 3 and 9 in Ref. 155) are given by

j = jc + jv, (A.2a)

D = εE, (A.2b)

B = µH, (A.2c)

with jc = σE the conduction current density, σ the optical conductivity, ε the dielectric
constant and µ the magnetic permeability. In Eq. (A.2a), the convection current density
jv = 0 because the electric charge density ρq is assumed to be zero in Sec. 2.2. Hence, the
time derivative of Eq. (A.1a) gives

∇× ∂H

∂t
=

ε

c0

∂2E

∂t2
+

4πσ

c0

∂E

∂t
, (A.3)

and the curl of Eq. (A.1b):

∇× ∂H

∂t
= −c0

µ

(
∇(∇ · E)−∇2E

)
. (A.4)

The assumption that ρq = 0 also implies that ∇ · E = 0. Thus, Eqs. (A.3, A.4) lead to

∇2E =
µ

c2
0

(
ε
∂2E

∂t2
+ 4πσ

∂E

∂t

)
. (A.5)

The electromagnetic field is assumed to be monochromatic, with the angular frequency
ω0, and the convention (E = Eie

−(ω0t−ki·x)) b is used to obtain:

a. Gaussian units are widely used in electromagnetic. According to Milton and Schwinger (p. 347
in Ref. 205), one of the advantage of this unit system is that “the electric and magnetic fields, E, D,
B, H, have the same units”. Moreover, the dielectric constant ε and the magnetic permeability µ are
dimensionless in the Gaussian unit system and correspond to the relative permittivity εr and the relative
permeability µr in SI units, respectively. To convert physical quantities from Gaussian units to SI units,
one can refer to the Appendix A of Ref. 206 (pp. 673–676).

b. For electromagnetic plane waves, the convention is chosen to be e−(ωt−k·x) which is often used
in electromagnetic books. This is the only part in this manuscript where this convention is used. For
thermal and mechanical plane waves, the convention is e(ωt−k·x).
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∇2E +

(
ω0

c0

)2

µ

(
ε+ 

4πσ

ω0

)
︸ ︷︷ ︸

εc

E = 0. (A.6)

In Eq. (A.6), the term ω0

c0
is the wavenumber in vacuum and εc = ε+ 4πσ

ω0
is the complex

permittivity. Hence, the expression of the Helmholtz equation, given in Ref. 155 (p. 737)
and in Eq. 2.1, is:

∇2E + k2E = 0, (A.7)

with the complex wavenumber k = ω0

c0
n, also written

k = k′ + k′′ with k′ = <
(
ω0

c0

n

)
, k′′ = =

(
ω0

c0

n

)
, (A.8)

and n the complex refractive index given by

n = n′ + n′′ with n′ = <(n) and n′′ = =(n), (A.9)

with the < (=) symbol which corresponds to the real (imaginary) part. In the literature,
n′′ is often called the extinction coefficient156 or the attenuation index.155 The complex
refractive index n is also equal to

n =
√
µεc =

√
µ

(
ε+ 

4πσ

ω0

)
. (A.10)

Squaring these two expressions of n in Eqs. (A.9, A.10), leads to


n2 = n′2 − n′′2 + 2jn′n′′,

n2 = µ

(
ε+ 

4πσ

ω0

)
.

(A.11a)

(A.11b)

Finally, the equalization of the real and imaginary parts gives the dielectric constant ε
and the optical conductivity σ as a function of n′, n′′, µ and ω0:

ε =
n′2 − n′′2

µ
,

σ =
ω0n

′n′′

2πµ
.

(A.12a)

(A.12b)
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A.1.2 Coefficients AE
ij

In Sec. 2.3.2, the linear system to solve in order to determine the ratio of the ampli-
tudes of the reflected/transmitted electromagnetic waves to the amplitude of the incident
electromagnetic wave is



AE11 AE12 AE13 0 0 0

AE21 AE22 AE23 0 0 0

0 AE32 AE33 AE34 AE35 0

0 AE42 AE43 AE44 AE45 0

0 0 0 AE54 AE55 AE56

0 0 0 AE64 AE65 AE66





R−0

R+
I

R−I
R+

II

R−II
R+

III


=



cos θ0

−n0/µ0

0

0

0

0


. (A.13)

In order to obtain a well-conditioned matrix, the unknowns of Eq. (A.13) are written as

R−0 =
E−0
E+

0

, R+
I =

E+
I

E+
0

, R−I =
E−I
E+

0

eβI(θ1)
h1
2 , (A.14)

R+
II =

E+
II

E+
0

e−βII(θ2)
h1+∆h

2 , R−II =
E−II
E+

0

eβII(θ2)H
2 , R+

III =
E+

III

E+
0

,

with the inverse expressions of the optical penetrations which are equal to158

βI(θ1) = 2 [k′I=(cos θ1) + k′′I<(cos θ1)] , (A.15a)

βII(θ2) = 2 [k′II=(cos θ2) + k′′II<(cos θ2)] . (A.15b)

The coefficients AEij, in Eq. (A.13), are given by

AE11 = cos θ0, A
E
12 = cos θ1, A

E
13 = −e−

βI(θ1)h1
2 cos θ1, (A.16)

AE21 = n0/µ0, A
E
22 = −nI/µI, A

E
23 = −nIe

−βI(θ1)h1
2 /µI, (A.17)

AE32 = −e−
βI(θ1)h1

2 eγI(θ1)h1 cos θ1, (A.18)

AE33 = e−γI(θ1)h1 cos θ1, (A.19)

AE34 =
(
LE

11 cos θ2 + LE
12nII/µII

)
eγII(θ2)(∆h+h1), (A.20)

AE35 =
(
−LE

11 cos θ2+LE
12nII/µII

)
e−

βII(θ2)h2
2 e−γII(θ2)(∆h+h1), (A.21)

AE42 = −nIe
−βI(θ1)h1

2 eγI(θ1)h1/µI, (A.22)
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AE43 = −nIe
−γI(θ1)h1/µI, (A.23)

AE44 =
(
LE

21 cos θ2 + LE
22nII/µII

)
eγII(θ2)(∆h+h1), (A.24)

AE45 =
(
−LE

21 cos θ2+LE
22nII/µII

)
e−

βII(θ2)h2
2 e−γII(θ2)(∆h+h1), (A.25)

AE54 = −e−
βII(θ2)h2

2 eHγII(θ2) cos θ2, (A.26)

AE55 = e−HγII(θ2) cos θ2, A
E
56 = eHkIII cos θ3 cos θ3, (A.27)

AE64 = nIIe
−βII(θ2)h2

2 eHγII(θ2)/µII, (A.28)

AE65 = nIIe
−HγII(θ2)/µII, A

E
66 = −nIIIe

HkIII cos θ3/µIII. (A.29)

A.1.3 Obtaining the power density Q with Poynting’s theorem

In Sec. 2.3.3, to determine the power density Q which is the source term of the heat
equation in Eq. (2.17), the Poynting’s theorem is applied. The detailed calculation to
quickly obtain this theorem is recalled and is based on the book of Born and Wolf.155

First, the Maxwell’s equation [Eq. (A.1a)] and the constitutive relations, introduced in
Eqs. (A.2b) and (A.2a) with the conduction current density jc = σE, are considered and
result in

∇×H =
1

c0

(
ε+ 

4πσ

ω0

)
︸ ︷︷ ︸

εc

∂E

∂t
+

4π

c0

jv, (A.30)

with εc the complex permittivity. Using the identity:

H · (∇× E)− E · (∇×H) = ∇ · (E×H), (A.31)

and replacing the terms ∇ × H by Eq. (A.30) and ∇ × E by the Maxwell’s equation
[Eq. (A.1b)], with the constitutive relation given in Eq. (A.2c), we obtain the Poynting’s
theorem:

1

4π

(
µH · ∂H

∂t
+ εcE ·

∂E

∂t

)
= − c0

4π
∇ · (E×H)− E · jv (A.32)

Assuming that the convection current density jv = 0 (hypothesis defined in Sec. 2.2) and
that the time average (denoted by “<>”) of Eq. (A.32) is realized over a period which is
large compared to the fundamental optical period 2π/ω0 (see p. 34 in Ref. 155), we obtain
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Q = −∇· < S >, (A.33)

with Q the power density equals to the time average of the term on the left of Eq. (A.32):

Q =
1

4π
< µH · ∂H

∂t
+ εcE ·

∂E

∂t
>, (A.34)

and < S > the time average of the Poynting vector (p. 35 in Ref. 155) which is equal to

< S >=
c0

8π
<(E×H). (A.35)

In Eq. (A.35), < refers to the real part of E ×H, E is the electric vector and H is the
conjugate of the magnetic vector H.

A.1.4 Detailed calculation of the transfer matrix
[
LEMi

]
2×2

In Sec. 2.3.2, the transfer matrix [LEM ] associated to the electromagnetic boundary
condition between media I and II, introduced in Eq. (2.9c), is expressed as

[
LEM

]
2×2

=

Nsublayers∏
i=1

[
LEMi

]
2×2

, (A.36)

with [LEMi ] the transfer matrix of the i-th sublayer and Nsublayers the total number of
sublayers which are between media I and II. For a given sublayer of thickness hi, as the
one represented in Fig. A.1, the projections of the electric vectorEi·x2 and magnetic vector
Hi · x3 are linked between the upper and lower surfaces (of local coordinates x1 = −hi
and x1 = 0, respectively) by the relation:[

Ei · x2

Hi · x3

]
x1=−hi

=
[
LEMi

]
2×2

[
Ei · x2

Hi · x3

]
x1=0

. (A.37)

To obtain the transfer matrix
[
LEMi

]
2×2

, the methodology presented in Ref. 157 (pp. 53–
60) to find the transfer matrix for elastic waves is applied for electromagnetic waves.
For the i-th sublayer, the projections of the electric vector Ei along the x2-axis and the
magnetic vector Hi along the x3-axis, without the time t and the position x2 dependencies
(i.e., without the term e−(ω0t−ki sin θix2)), are equal to
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x2

x1

-hi

Sublayer i

θi

E+
i E-

i

hi

O

Figure A.1 – Geometry of the i-th sublayer of thickness hi. The black arrows
represent the ki-wave vectors and the red (blue) arrows indicate the electric vectors
Ei (magnetic vectors Hi).

Ei · x2 = cos θi
(
−E+

i e
ki cos θix1 + E−i e

−ki cos θix1
)
, (A.38)

Hi · x3 = −ni
µi

(
E+
i e

ki cos θix1 + E−i e
−ki cos θix1

)
, (A.39)

with θi the angle of propagation of the electromagnetic wave with respect to the x1-axis,
ki the complex wavenumber given in Eq. (2.2), ni the refractive index defined in Eq. (2.3)
and µi the magnetic permeability of the i-th sublayer. Using Euler’s formula:

−E+
i e

ki cos θix1 + E−i e
−ki cos θix1 = −

(
E+
i + E−i

)
sin(ki cos θix1) (A.40)

−
(
E+
i − E−i

)
cos(ki cos θix1),

E+
i e

ki cos θix1 + E−i e
−ki cos θix1 =

(
E+
i + E−i

)
cos(ki cos θix1) (A.41)

+ 
(
E+
i − E−i

)
sin(ki cos θix1).

Therefore, Eqs. (A.38) and (A.39) can be written in the form

Ei · x2 = − cos θi
[
 sin(ki cos θix1)

(
E+
i + E−i

)
+ cos(ki cos θix1)

(
E+
i − E−i

)]
, (A.42)

Hi · x3 = −ni
µi

[
cos(ki cos θix1)

(
E+
i + E−i

)
+  sin(ki cos θix1)

(
E+
i − E−i

)]
. (A.43)

We can now evaluate Eqs. (A.42) and (A.43) at x1 = 0, which gives the linear system:

[
Ei · x2

Hi · x3

]
x1=0

=

[
0 − cos θi

−ni
µi

0

][
E+
i + E−i

E+
i − E−i

]
, (A.44)
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and at the position x1 = −hi, which gives

[
Ei · x2

Hi · x3

]
x1=−hi

=

[
 sin(ki cos θihi) cos θi − cos(ki cos θihi) cos θi

− cos(ki cos θihi)
ni
µi

 sin(ki cos θihi)
ni
µi

][
E+
i + E−i

E+
i − E−i

]
. (A.45)

By inverting the linear system given in Eq. (A.44), we obtain[
E+
i + E−i

E+
i − E−i

]
=

[
0 −ni

µi

− cos θi 0

][
Ei · x2

Hi · x3

]
x1=0

, (A.46)

and by reinjecting this expression into Eq. (A.45), we finally get the expression of the
transfer matrix

[
LEMi

]
2×2

for the i-th sublayer:

[
Ei · x2

Hi · x3

]
x1=−hi

=

[
cos(ki cos θihi) − sin(ki cos θihi)

cos θiµi
ni

− sin(ki cos θihi)
ni

cos θiµi
cos(ki cos θihi)

]
︸ ︷︷ ︸[

LEMi
]

2×2

[
Ei · x2

Hi · x3

]
x1=0

.

(A.47)
If hi equals zero, this transfer matrix is equal to the identity matrix, as expected to ensure
perfect continuity of the projections of electric and magnetic vectors along the x2-axis and
x3-axis, respectively.

A.2 Heat diffusion problem

A.2.1 Laser pulse distributions in time and space

In Eq. (2.23a), the laser pulse distribution in time is equal to

f(t) =
2

τp

√
ln 2

π
e−4 ln 2 t2/τ2

p , (A.48)

with τp the pulse duration at half maximum (FWHM) of the Gaussian function. Hence,
the Fourier transform of f(t) is given by

F (ω) =
1√
2π

∫ +∞

−∞
f(t)e−ωt dt =

1√
2π
e−τ

2
pω

2/(16 ln 2). (A.49)
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x2

x1
θ

x'1

x'2
x1O'

x2O'O

O'

Figure A.2 – Representation of the Cartesian coordinate system (O ′, x′1, x′2)
translated and rotated through an angle θ to the Cartesian coordinate system
(O, x1, x2).

In the semi-analytic model presented in Chap. 2, an incident tilted laser line source of
infinite dimension in the x3-direction is considered (see Sec. 2.2). To model this tilted laser
line source, a Gaussian function is written in the Cartesian coordinate system (O ′, x′1, x′2),
as shown in Fig. A.2, with θ the angle between the x1-direction and the direction of
refraction in the medium in which the heat diffusion problem is solved (i.e., the x′1-
direction) and (x1O ′ , x2O ′) the coordinates of the origin O ′ in the Cartesian coordinate
system (O, x1, x2). In the Cartesian coordinate system (O ′, x′1, x′2), the laser line source
distribution in space is equal to

g(x′1, x
′
2) =

2

as(x′1)

√
ln 2

π
e−4 ln 2 x′22 /a

2
s(x
′
1), (A.50)

with as(x
′
1) the source width at half maximum (FWHM) of the tilted Gaussian beam.

The source width as(x′1) depends on x′1 and is equal to 2w(x′1) with w(x′1) the radius of
the Gaussian beam which is equal to

w(x′1) = w0

[
1 +

(
λoptx

′
1

πw2
0

)2
]
. (A.51)

In Eq. (A.51), w0 is the radius of the beam waist at x′1 = 0, λopt is the wavelength of the
monochromatic incident laser beam. Under the assumption that πw2

0

λopt
� x′1, which is a

valid hypothesis in our experimental cases because πw2
0

λopt
≈ π(0.1 mm)2

532 10−6 mm
≈ 60 mm and the

optical penetration depth in aluminum is equal to a few nanometers, the radius of the
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Gaussian beam w(x′1) is independent of x′1. Thus g(x′1, x
′
2) is only a function of x′2 and is

equal to

g(x′2) =
2

as

√
ln 2

π
e−4 ln 2 x′22 /a

2
s . (A.52)

The Fourier transform of g(x′2) is given by

1√
2π

∫ +∞

−∞
g(x′2)ek

′
2x
′
2 dx′2 =

1√
2π
e−a

2
sk
′2
2 /(16 ln 2). (A.53)

To obtain the Gaussian function in the Cartesian coordinate system (O, x1, x2), an
inverse Fourier transform of Eq. (A.53) is performed:

g(x1, x2) =
1√
2π

∫ +∞

−∞

1√
2π
e−a

2
sk
′2
2 /(16 ln 2)e−k

′
2x
′
2dk′2, (A.54)

and a variable change is realized with

x′2 = (x2 − x2O ′) cos θ − (x1 − x1O ′) sin θ, (A.55)

k′2 =
k2

cos θ
. (A.56)

Hence, the Gaussian function g(x1, x2) is given by

g(x1, x2) =
1√
2π

∫ +∞

−∞

1√
2π cos θ

e−a
2
sk

2
2/(16 ln 2 cos2 θ)ek2[(x1−x1O ′ ) tan θ+x2O ′ ]︸ ︷︷ ︸

G(x1, k2)

e−k2x2dk2,

(A.57)

with G(x1, k2) the Fourier transform of the tilted laser line source distribution in space
which is used in Eq. (2.23b) with x1O ′ = x2O ′ = 0.

A.2.2 Coefficients AT
ij and BT

i

In Sec. 2.4.3, the linear system to solve in order to determine the temperature fields in
media I and II [see Eq. (2.36)] is
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
AT11 AT12 0 0

AT21 AT22 AT23 AT24

AT31 AT32 AT33 AT34

0 0 AT43 AT44



T̂ I+
h

?T̂ I−
h

?T̂ II+
h

?T̂ II−
h

 =


BT

1

BT
2

BT
3

BT
4

 . (A.58)

To obtain a well-conditioned matrix, the unknowns of Eq. (A.58), with the symbol “?”,
are written as

?T̂ I−
h = T̂ I−

h eΓI
1h1 , ?T̂ II+

h+ = T̂ II+
h e−ΓII

1 (h1+∆h), ?T̂ II−
h = T̂ II−

h eΓII
1 H . (A.59)

This technique to obtain a well-conditioned matrix is used in Ref. 150 (p. 152). The
expressions of the coefficients ATij and BT

ij, of the linear system in Eq. (A.58), are

AT11 = −ΓI
1λ

I
11 − hc, AT12 =

(
ΓI

1λ
I
11 − hc

)
e−ΓI

1h1 ,

AT21 = −ΓI
1λ

I
11e
−ΓI

1h1 , AT22 = ΓI
1λ

I
11,

AT23 = ΓII
1 λ

II
11, AT24 = −ΓII

1 λ
II
11e
−ΓII

1 h2 ,

AT31 =
(
−RcΓ

I
1λ

I
11 + 1

)
e−ΓI

1h1 , AT32 = RcΓ
I
1λ

I
11 + 1,

AT33 = −1, AT34 = −e−ΓII
1 h2 ,

AT43 =
(
−ΓII

1 λ
II
11 + hc

)
e−ΓII

1 h2 , AT44 = ΓII
1 λ

II
11 + hc,

and

BT
1 = T̂ I−

p

[
−λI

11[βI(θ1)− k2 tan θ1] + hc
]
e−βI(θ1)h1 + T̂ I+

p

[
λI

11[βI(θ1)− k2 tan θ1] + hc
]

− T̂∞hc,

BT
2 = λI

11 [βI(θ1)− k2 tan θ1]
(
−T̂ I−

p e−k2 tan θ1h1 + T̂ I+
p e−βI(θ1)h1ek2 tan θ1h1

)
− λII

11 [βII(θ2)− k2 tan θ2]
(
−T̂ II−

p e−βII(θ2)h2e−k2 tan θ2(h1+∆h) + T̂ II+
p ek2 tan θ2(h1+∆h)

)
,

BT
3 = T̂ I−

p

[
−λI

11Rc[βI(θ1)− k2 tan θ1]− 1
]
e−k2 tan θ1h1 + T̂ II−

p e−βII(θ2)h2e−k2 tan θ2(h1+∆h)

+ T̂ I+
p

[
λI

11Rc[βI(θ1)− k2 tan θ1]− 1
]
e−βI(θ1)h1ek2 tan θ1h1 + T̂ II+

p ek2 tan θ2(h1+∆h),

BT
4 = T̂ II−

p

[
−λII

11[βII(θ2)− k2 tan θ2]− hc
]
e−k2 tan θ2H

+ T̂ II+
p

[
λII

11[βII(θ2)− k2 tan θ2]− hc
]
e−βII(θ2)h2ek2 tan θ2H + T̂∞hc.
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A.3 Elastodynamic problem

In Sec. 2.5, the solution of Eqs. (2.43a, 2.43b) is the sum of the homogeneous solu-
tion ûh(x1, k2, ω) and the particular solution ûp(x1, k2, ω). Detailed calculations of these
solutions in media I and II are given in the following.

A.3.1 Homogeneous solutions of the elastodynamic equations

The homogeneous solution is the linear combination of two longitudinal (L) and two
transverse (T) polarized waves, which are travelling along the positive and negative di-
rections of the x1-axis as illustrated in Fig. 2.3 and defined by the equation

ûh(x1, k2, ω) =
∑

n={L,T}

An+Ûn+
h (k2, ω)e−k

n
1x1 + An−Ûn−

h (k2, ω)ek
n
1x1 , (A.60)

with kL
1 and kT

1 the projections of the longitudinal and transverse wave vectors along the
x1-axis:

kL
1 =

√
X− and kT

1 =
√
X+, (A.61a)

and X± defined in Eq. (2.47a). In Eq. (A.60), An± refer to the wave amplitudes that are
subsequently determined by applying the boundary conditions and Ûn±

h are the eigenvec-
tors that are equal to

Ûn+
h (k2, ω) =

[
Ûn+

1h

Ûn+
2h

]
=

[
a22 − (kn

1 )2C66

kn
1a12

]
, (A.62a)

Ûn−
h (k2, ω) =

[
Ûn−

1h

Ûn−
2h

]
=

[
a22 − (kn

1 )2C66

−kn
1a12

]
. (A.62b)

According to Eqs. (A.62a) and (A.62b), we obtain the following equality:

[
Ûn+

1h

Ûn+
2h

]
=

[
Ûn−

1h

−Ûn−
2h

]
. (A.63a)
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In medium I, the homogeneous solution ûI
h is written in terms of symmetric and anti-

symmetric modes as introduced in Ref. 150 (p. 155) and Ref. 151 (p. 207). Thus, the
eigenvectors for symmetric (S) and antisymmetric (A) modes are given by

ÛI,nS
h =

1

2

[
ÛI,n−
h ek

I,n
1 (x1−h1

2 ) + ÛI,n+
h e−k

I,n
1 (x1−h1

2 )
]
, (A.64a)

ÛI,nA
h =

1

2j

[
ÛI,n−
h ek

I,n
1 (x1−h1

2 ) − ÛI,n+
h e−k

I,n
1 (x1−h1

2 )
]
. (A.64b)

Using Euler’s formula

cos

[
kI,n

1

(
x1 −

h1

2

)]
=
ek

I,n
1 (x1−h1

2 ) + e−k
I,n
1 (x1−h1

2 )

2
, (A.65a)

sin

[
kI,n

1

(
x1 −

h1

2

)]
=
ek

I,n
1 (x1−h1

2 ) − e−k
I,n
1 (x1−h1

2 )

2j
, (A.65b)

and Eq. (A.63a), the symmetric and antisymmetric eigenvectors, given in Eqs. (A.64a)
and (A.64b), are equal to

ÛI,nS
h =

 Û I,n−
1h cos

[
kI,n

1

(
x1 − h1

2

)]
Û I,n−

2h sin
[
kI,n

1

(
x1 − h1

2

)]
 , (A.66a)

ÛI,nA
h =

 Û I,n−
1h sin

[
kI,n

1

(
x1 − h1

2

)]
−Û I,n−

2h cos
[
kI,n

1

(
x1 − h1

2

)]
 . (A.66b)

The homogeneous solution in medium I is written as the sum of symmetric and antisym-
metric modes:

ûI
h =

∑
n={L,T}

ξnS
I ÛI,nS

h + ξnA
I ÛI,nA

h . (A.67)

with ξnS
I and ξnA

I the amplitudes of the symmetric and antisymmetric modes in medium I,
respectively. These amplitudes are then determined by applying the boundary conditions.
The projections of ûI

h onto x1-axis and x2-axis are equal to

ûI
1h =

∑
n={L,T}

Û I,n−
1h

[
ξnS

I cos

[
kI,n

1

(
x1 −

h1

2

)]
+ ξnA

I sin

[
kI,n

1

(
x1 −

h1

2

)]]
, (A.68a)
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ûI
2h =

∑
n={L,T}

Û I,n−
2h

[
ξnS

I sin

[
kI,n

1

(
x1 −

h1

2

)]
− ξnA

I cos

[
kI,n

1

(
x1 −

h1

2

)]]
, (A.68b)

with Û I,n−
1h and Û I,n−

2h that are determined in Eq. (A.62b). In medium II, the homogeneous
solution ûII

h is written as in Eq. (A.60):

ûII
h =

∑
n={L,T}

An+
II ÛII,n+

h e−k
II,n
1 x1 + An−

II ÛII,n−
h ek

II,n
1 x1 . (A.69)

Using Eq. (A.63a), the projection of ûII
h onto x1-axis and x2-axis gives

ûII
1h =

∑
n={L,T}

Û II,n−
1h

(
An+

II e
−kII,n

1 x1 + An−
II e

kII,n
1 x1

)
, (A.70a)

ûII
2h =

∑
n={L,T}

Û II,n−
2h

(
−An+

II e
−kII,n

1 x1 + An−
II e

kII,n
1 x1

)
, (A.70b)

with An+
II and An−

II the amplitudes of the wave that are propagating along the positive
and negative direction of the x1-axis, respectively. They are determined afterwards by
applying the boundary conditions.

A.3.2 Particular solutions of the elastodynamic equations

The particular solutions are searched following the form of the source term Cα1

∂T̂
∂x1

and −k2Cα2T̂ of Eqs. (2.43a, 2.43b). Therefore, using the analytic expression of the
temperature fields T̂ in media I and II, given in Eqs. (2.38a, 2.38b), the particular solutions
are

ûI
p(x1, k2, ω) =ÛI+

pΓ
e−ΓI

1x1 + ÛI−
pΓ
eΓI

1(x1−h1) (A.71a)

+ ÛI+
pβ
e−βI(θ1)x1ek2 tan θ1x1 + ÛI−

pβ
eβI(θ1)(x1−h1)e−k2 tan θ1x1 ,

ûII
p (x1, k2, ω) =ÛII+

pΓ
e−ΓII

1 [x1−(h1+∆h)] + ÛII−
pΓ
eΓII

1 (x1−H) (A.71b)

+ ÛII+
pβ
e−βII(θ2)[x1−(h1+∆h)]ek2 tan θ2x1 + ÛII−

pβ
eβII(θ2)(x1−H)e−k2 tan θ2x1 .

Each term of Eqs. (A.71a) and (A.71b) are injected into the elastodynamic equations
(2.43a) and (2.43b) to obtain Ûi+

pΓ
, Ûi−

pΓ
, Ûi+

pβ
and Ûi−

pβ
, with i = {I, II}. To obtain ÛI+

pΓ
,

ÛI−
pΓ
, ÛII+

pΓ
and ÛII−

pΓ
, which are linked to the thermal diffusion in medium I and II, we

have to solve these four linear systems
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[
aI

11 + CI
11ΓI

1
2

aI
12ΓI

1

aI
12ΓI

1 aI
22 + CI

66ΓI
1

2

][
Û I+

1pΓ

Û I+
2pΓ

]
=

[
−CI

α1
ΓI

1T̂
I+
h

−k2C
I
α2
T̂ I+
h

]
, (A.72)

[
aI

11 + CI
11ΓI

1
2 −aI

12ΓI
1

−aI
12ΓI

1 aI
22 + CI

66ΓI
1

2

][
Û I−

1pΓ

Û I−
2pΓ

]
=

[
CI
α1

ΓI
1
?T̂ I−
h

−k2C
I
α2

?T̂ I−
h

]
, (A.73)

[
aII

11 + CII
11ΓII

1
2

aII
12ΓII

1

aII
12ΓII

1 aII
22 + CII

66ΓII
1

2

][
Û II+

1pΓ

Û II+
2pΓ

]
=

[
−CII

α1
ΓII

1
?T̂ II+
h

−k2C
II
α2

?T̂ II+
h

]
, (A.74)

[
aII

11 + CII
11ΓII

1
2 −aII

12ΓII
1

−aII
12ΓII

1 aII
22 + CII

66ΓII
1

2

][
Û II−

1pΓ

Û II−
2pΓ

]
=

[
CII
α1

ΓII
1
?T̂ II−
h

−k2C
II
α2

?T̂ II−
h

]
, (A.75)

with

ai11 = ρiω2 − k2
2C

i
66, (A.76a)

ai22 = ρiω2 − k2
2C

i
22, (A.76b)

ai12 = k2

(
Ci

12 + Ci
66

)
. (A.76c)

It is the same procedure to obtain ÛI+
pβ
, ÛI−

pβ
, ÛII+

pβ
and ÛII−

pβ
, which are linked to the

optical penetration of the laser beam in medium I and II. We have to solve four other
linear systems that have the form

[
ai11+Ci

11(βi−k2tan θi)
2 ±ai12(βi−k2tan θi)

±ai12(βi−k2tan θi) ai22+Ci
66(βi−k2tan θi)

2

][
Û i±

1pβ

Û i±
2pβ

]
=

[
−Ci

α1
(βi−k2tan θi)(±T̂ i±p )

−k2C
i
α2
T̂ i±p

]
.

(A.77)

A.3.3 Application of the boundary conditions

The complete solution in media I and II is equal to the linear combination of the
homogeneous and particular solutions

ûi(x1, k2, ω) = ûih(x1, k2, ω) + ûip(x1, k2, ω). (A.78)
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Therefore, in the medium I, the complete solution is equal to

ûI =
∑

n={L,T}

(
ξnS

I ÛI,nS
h + ξnA

I ÛI,nA
h

)
+ ûI

p, (A.79)

with ÛI,nS
h , ÛI,nA

h and ûI
p given in Eqs. (A.66a), (A.66b) and (A.71a), respectively. In the

medium II, the complete solution is equal to

ûII =
∑

n={L,T}

(
An+

II ÛII,n+
h e−k

II,n
1 x1 + An−

II ÛII,n−
h ek

II,n
1 x1

)
+ ûII

p , (A.80)

with ÛII,n+
h , ÛII,n−

h and ûII
p given in Eqs. (A.62a), (A.62b) and (A.71b), respectively.

Therefore, eight amplitudes (ξnS
I , ξnA

I , An+
II and An−

II with n = {L,T}) remain to be
determined by applying the eight boundary conditions introduced in Eqs. (2.52, 2.53 and
2.54) and reminded below:

σ̂I
11

∣∣
x1=0

= σ̂I
12

∣∣
x1=0

= 0, (A.81)

σ̂II
11

∣∣
x1=H

= σ̂II
12

∣∣
x1=H

= 0, (A.82)
ûI

1

ûI
2

σ̂I
11

σ̂I
12


x1=h1

=
[
LM
]

4×4


ûII

1

ûII
2

σ̂II
11

σ̂II
12


x1=h1+∆h

, (A.83)

with [LM ] the transfer matrix (pp. 53–60 in Ref. 157) used to couple the displacements (û1,
û2) and the stresses (σ̂11, σ̂12) from medium I at x1 = h1, to medium II at x1 = h1+∆h (see
Sec. A.3.4). First, we need to determine the stress expressions σ̂i11 and σ̂i12 in media I and II
using the Hooke’s Law. Secondly, two 4×4 linear systems are solved to find the eight
amplitudes. Finally, the displacement fields (û1 and û2) are obtained in media I and II.

Determination of σ̂i11 and σ̂i12 in media I and II

In medium i = {I, II}, the stress expressions σ̂i11 and σ̂i12 are divided into three parts,
those associated with: homogeneous solutions (denoted h), particular solutions (p) and
the source term (s). Hence, the expressions are

σ̂i11 = σ̂i11h + σ̂i11p − σ̂i11s, (A.84a)
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σ̂i12 = σ̂i12h + σ̂i12p, (A.84b)

with σ̂i11s = Ci
α1
T̂ i. Each of these terms are detailed in the following.

Homogeneous solutions σ̂i11h and σ̂i12h

In medium I, according to Hooke’s law [Eq. (2.40)], the stress expressions σ̂I
11h and σ̂I

12h

are equal to

σ̂I
11h = CI

11

∂ûI
1h

∂x1

− k2C
I
12û

I
2h, (A.85a)

σ̂I
12h = CI

66

(
−k2û

I
1h +

∂ûI
2h

∂x1

)
. (A.85b)

Using Eqs. (A.68a) and (A.68b), the expressions of ûI
1h,

∂ûI
1h

∂x1
, ûI

2h and ∂ûI
2h

∂x1
of Eqs. (A.85a)

and (A.85b) are given by

ûI
1h =

∑
n={L,T}

Û I,n−
1h ζI,n

12 (x1), (A.86a)

∂ûI
1h

∂x1

=
∑

n={L,T}

kI,n
1 Û I,n−

1h ζI,n
11 (x1), (A.86b)

ûI
2h =

∑
n={L,T}

−Û I,n−
2h ζI,n

11 (x1), (A.86c)

∂ûI
2h

∂x1

=
∑

n={L,T}

kI,n
1 Û I,n−

2h ζI,n
12 (x1), (A.86d)

with

ζI,n
11 (x1) = −ξnS

I sin

[
kI,n

1

(
x1 −

h1

2

)]
+ ξnA

I cos

[
kI,n

1

(
x1 −

h1

2

)]
, (A.87a)

ζI,n
12 (x1) = ξnS

I cos

[
kI,n

1

(
x1 −

h1

2

)]
+ ξnA

I sin

[
kI,n

1

(
x1 −

h1

2

)]
. (A.87b)

Therefore, the expressions of σ̂I
11h and σ̂I

12h are

σ̂I
11h =

∑
n={L,T}

(
CI

11k
I,n
1 Û I,n−

1h − CI
12k2Û

I,n−
2h

)
︸ ︷︷ ︸

Rn
I

ζI,n
11 (x1), (A.88a)
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σ̂I
12h =

∑
n={L,T}

CI
66

(
kI,n

1 Û I,n−
2h − k2Û

I,n−
1h

)
︸ ︷︷ ︸

Mn
I

ζI,n
12 (x1). (A.88b)

These expressions are now evaluated at x1 = 0:

σ̂I
11h

∣∣
x1=0

=
∑

n={L,T}

Rn
I

[
ξnS

I sin

(
kI,n

1

h1

2

)
+ ξnA

I cos

(
kI,n

1

h1

2

)]
, (A.89a)

σ̂I
12h

∣∣
x1=0

=
∑

n={L,T}

Mn
I

[
ξnS

I cos

(
kI,n

1

h1

2

)
− ξnA

I sin

(
kI,n

1

h1

2

)]
, (A.89b)

and at x1 = h1:

σ̂I
11h

∣∣
x1=h1

=
∑

n={L,T}

Rn
I

[
−ξnS

I sin

(
kI,n

1

h1

2

)
+ ξnA

I cos

(
kI,n

1

h1

2

)]
, (A.90a)

σ̂I
12h

∣∣
x1=h1

=
∑

n={L,T}

Mn
I

[
ξnS

I cos

(
kI,n

1

h1

2

)
+ ξnA

I sin

(
kI,n

1

h1

2

)]
. (A.90b)

Following the same approach for medium II, the stresses σ̂II
11h and σ̂II

12h are equal to

σ̂II
11h = CII

11

∂ûII
1h

∂x1

− k2C
II
12û

II
2h, (A.91a)

σ̂II
12h = CII

66

(
−k2û

II
1h +

∂ûII
2h

∂x1

)
. (A.91b)

Using Eqs. (A.70a) and (A.70b), the expressions of ûII
1h,

∂ûII
1h

∂x1
, ûII

2h and ∂ûII
2h

∂x1
of Eqs. (A.91a)

and (A.91b) are given by

ûII
1h =

∑
n={L,T}

Û II,n−
1h ζII,n

12 (x1), (A.92a)

∂ûII
1h

∂x1

=
∑

n={L,T}

kII,n
1 Û II,n−

1h ζII,n
11 (x1), (A.92b)

ûII
2h =

∑
n={L,T}

Û II,n−
2h ζII,n

11 (x1), (A.92c)

∂ûII
2h

∂x1

=
∑

n={L,T}

kII,n
1 Û II,n−

2h ζII,n
12 (x1), (A.92d)
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with

ζII,n
11 (x1) = −An+

II e
−kII,n

1 x1 + An−
II e

kII,n
1 x1 , (A.93a)

ζII,n
12 (x1) = An+

II e
−kII,n

1 x1 + An−
II e

kII,n
1 x1 . (A.93b)

Therefore, the expressions of σ̂II
11h and σ̂II

12h are

σ̂II
11h =

∑
n={L,T}


(
CII

11k
II,n
1 Û II,n−

1h − CII
12k2Û

II,n−
2h

)
︸ ︷︷ ︸

Rn
II

ζII
11(x1), (A.94a)

σ̂II
12h =

∑
n={L,T}

CII
66

(
kII,n

1 Û II,n−
2h − k2Û

II,n−
1h

)
︸ ︷︷ ︸

Mn
II

ζII
12(x1). (A.94b)

These expressions are now evaluated at x1 = h1 + ∆h:

σ̂II
11h

∣∣
x1=h1+∆h

=
∑

n={L,T}

Rn
II

(
−An+

II e
−kII,n

1 (h1+∆h) + An−
II e

kII,n
1 (h1+∆h)

)
, (A.95a)

σ̂II
12h

∣∣
x1=h1+∆h

=
∑

n={L,T}

Mn
II

(
An+

II e
−kII,n

1 (h1+∆h) + An−
II e

kII,n
1 (h1+∆h)

)
, (A.95b)

and at x1 = H:

σ̂II
11h

∣∣
x1=H

=
∑

n={L,T}

Rn
II

(
−An+

II e
−kII,n

1 H + An−
II e

kII,n
1 H

)
, (A.96a)

σ̂II
12h

∣∣
x1=H

=
∑

n={L,T}

Mn
II

(
An+

II e
−kII,n

1 H + An−
II e

kII,n
1 H

)
. (A.96b)

Particular solutions σ̂i11p and σ̂i12p

In medium I, the stress expressions σ̂I
11p and σ̂I

12p are calculated with Hooke’s law
[Eq. (2.40)] and with the particular solutions of the elastodynamic equations which are
obtained in Sec. A.3.2. In medium I, the evaluations of σ̂I

11p and σ̂I
12p at x1 = 0 are equal

to

σ̂I
11p

∣∣
x1=0

= CI
11

∂ûI
1p

∂x1

∣∣∣∣∣
x1=0

− k2C
I
12 û

I
2p

∣∣
x1=0

, (A.97a)

σ̂I
12p

∣∣
x1=0

= CI
66

(
−k2 û

I
1p

∣∣
x1=0

+
∂ûI

2p

∂x1

∣∣∣∣∣
x1=0

)
, (A.97b)
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with

ûI
1p

∣∣
x1=0

= Û I−
1pβ
e−βI(θ1)h1 + Û I−

1pΓ
e−ΓI

1h1 + Û I+
1pβ

+ Û I+
1pΓ
, (A.98a)

∂ûI
1p

∂x1

∣∣∣∣∣
x1=0

= [βI(θ1)− k2 tan θ1] Û I−
1pβ
e−βI(θ1)h1 − [βI(θ1)− k2 tan θ1] Û I+

1pβ
(A.98b)

+ ΓI
1Û

I−
1pΓ
e−ΓI

1h1 − ΓI
1Û

I+
1pΓ
,

ûI
2p

∣∣
x1=0

= Û I−
2pβ
e−βI(θ1)h1 + Û I−

2pΓ
e−ΓI

1h1 + Û I+
2pβ

+ Û I+
2pΓ
, (A.98c)

∂ûI
2p

∂x1

∣∣∣∣∣
x1=0

= [βI(θ1)− k2 tan θ1] Û I−
2pβ
e−βI(θ1)h1 − [βI(θ1)− k2 tan θ1] Û I+

2pβ
(A.98d)

+ ΓI
1Û

I−
2pΓ
e−ΓI

1h1 − ΓI
1Û

I+
2pΓ
.

Then, the evaluations of σ̂I
11p and σ̂I

12p at x1 = h1 are equal to

σ̂I
11p

∣∣
x1=h1

= CI
11

∂ûI
1p

∂x1

∣∣∣∣∣
x1=h1

− k2C
I
12 û

I
2p

∣∣
x1=h1

, (A.99a)

σ̂I
12p

∣∣
x1=h1

= CI
66

(
−k2 û

I
1p

∣∣
x1=h1

+
∂ûI

2p

∂x1

∣∣∣∣∣
x1=h1

)
, (A.99b)

with

ûI
1p

∣∣
x1=h1

= Û I−
1pβ
e−k2 tan θ1h1 + Û I−

1pΓ
+ Û I+

1pβ
e−βI(θ1)h1ek2 tan θ1h1 + Û I+

1pΓ
e−ΓI

1h1 , (A.100a)

∂ûI
1p

∂x1

∣∣∣∣∣
x1=h1

= [βI(θ1)− k2 tan θ1] Û I−
1pβ
e−k2 tan θ1h1 (A.100b)

− [βI(θ1)− k2 tan θ1] Û I+
1pβ
e−βI(θ1)h1ek2 tan θ1h1 + ΓI

1Û
I−
1pΓ
− ΓI

1Û
I+
1pΓ
e−ΓI

1h1 ,

ûI
2p

∣∣
x1=h1

= Û I−
2pβ
e−k2 tan θ1h1 + Û I−

2pΓ
+ Û I+

2pβ
e−βI(θ1)h1ek2 tan θ1h1 + Û I+

2pΓ
e−ΓI

1h1 , (A.100c)

∂ûI
2p

∂x1

∣∣∣∣∣
x1=h1

= [βI(θ1)− k2 tan θ1] Û I−
2pβ
e−k2 tan θ1h1 (A.100d)

− [βI(θ1)− k2 tan θ1] Û I+
2pβ
e−βI(θ1)h1ek2 tan θ1h1 + ΓI

1Û
I−
2pΓ
− ΓI

1Û
I+
2pΓ
e−ΓI

1h1 .
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In medium II, the evaluations of σ̂II
11p and σ̂II

12p at x1 = h1 + ∆h are equal to

σ̂II
11p

∣∣
x1=h1+∆h

= CII
11

∂ûII
1p

∂x1

∣∣∣∣∣
x1=h1+∆h

− k2C
II
12 û

II
2p

∣∣
x1=h1+∆h

, (A.101a)

σ̂II
12p

∣∣
x1=h1+∆h

= CII
66

(
−k2 û

II
1p

∣∣
x1=h1+∆h

+
∂ûII

2p

∂x1

∣∣∣∣∣
x1=h1+∆h

)
, (A.101b)

with

ûII
1p

∣∣
h1+∆h

= Û II−
1pβ
e−βII(θ2)h2e−k2 tan θ2(h1+∆h) + Û II−

1pΓ
e−ΓII

1 h2 (A.102a)

+ Û II+
1pβ
ek2 tan θ2(h1+∆h) + Û II+

1pΓ
,

∂ûII
1p

∂x1

∣∣∣∣∣
h1+∆h

= [βII(θ2)− k2 tan θ2] Û II−
1pβ
e−βII(θ2)h2e−k2 tan θ2(h1+∆h) (A.102b)

− [βII(θ2)− k2 tan θ2] Û II+
1pβ
ek2 tan θ2(h1+∆h) + ΓII

1 Û
II−
1pΓ
e−ΓII

1 h2 − ΓII
1 Û

II+
1pΓ
,

ûII
2p

∣∣
h1+∆h

= Û II−
2pβ
e−βII(θ2)h2e−k2 tan θ2(h1+∆h) + Û II−

2pΓ
e−ΓII

1 h2 (A.102c)

+ Û II+
2pβ
ek2 tan θ2(h1+∆h) + Û II+

2pΓ
,

∂ûII
2p

∂x1

∣∣∣∣∣
h1+∆h

= [βII(θ2)− k2 tan θ2] Û II−
2pβ
e−βII(θ2)h2e−k2 tan θ2(h1+∆h) (A.102d)

− [βII(θ2)− k2 tan θ2] Û II+
2pβ
ek2 tan θ2(h1+∆h) + ΓII

1 Û
II−
2pΓ
e−ΓII

1 h2 − ΓII
1 Û

II+
2pΓ
.

Finally, the evaluations of σ̂II
11p and σ̂II

12p at x1 = H are equal to

σ̂II
11p

∣∣
x1=H

= CII
11

∂ûII
1p

∂x1

∣∣∣∣∣
x1=H

− k2C
II
12 û

II
2p

∣∣
x1=H

, (A.103a)

σ̂II
12p

∣∣
x1=H

= CII
66

(
−k2 û

II
1p

∣∣
x1=H

+
∂ûII

2p

∂x1

∣∣∣∣∣
x1=H

)
, (A.103b)

with

ûII
1p

∣∣
x1=H

= Û II−
1pβ
e−k2 tan θ2H + Û II−

1pΓ
+ Û II+

1pβ
e−βII(θ2)h2ek2 tan θ2H + Û II+

1pΓ
e−ΓII

1 h2 , (A.104a)

∂ûII
1p

∂x1

∣∣∣∣∣
x1=H

= [βII(θ2)− k2 tan θ2] Û II−
1pβ
e−k2 tan θ2H (A.104b)

− [βII(θ2)− k2 tan θ2] Û II+
1pβ
e−βII(θ2)h2ek2 tan θ2H + ΓII

1 Û
II−
1pΓ
− ΓII

1 Û
II+
1pΓ
e−ΓII

1 h2 ,
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ûII
2p

∣∣
x1=H

= Û II−
2pβ
e−k2 tan θ2H + Û II−

2pΓ
+ Û II+

2pβ
e−βII(θ2)h2ek2 tan θ2H + Û II+

2pΓ
e−ΓII

1 h2 , (A.104c)

∂ûII
2p

∂x1

∣∣∣∣∣
x1=H

= [βII(θ2)− k2 tan θ2] Û II−
2pβ
e−k2 tan θ2H (A.104d)

− [βII(θ2)− k2 tan θ2] Û II+
2pβ
e−βII(θ2)h2ek2 tan θ2H + ΓII

1 Û
II−
2pΓ
− ΓII

1 Û
II+
2pΓ
e−ΓII

1 h2 .

Source term σ̂i11s

The stress expression associated with the source term σ̂i11s = Ci
α1
T̂ i is obtained in

media I and II with the expressions of the temperature field T̂ i determined in Eqs. (2.38a)
and (2.38b). This stress σ̂i11s is evaluated below at x1 = 0, x1 = h1, x1 = h1 + ∆h and
x1 = H:

σ̂I
11s

∣∣
x1=0

= CI
α1

(
?T̂ I−
h e−ΓI

1h1 + T̂ I+
h + T̂ I−

p e−βI(θ1)h1 + T̂ I+
p

)
, (A.105a)

σ̂I
11s

∣∣
x1=h1

= CI
α1

(
?T̂ I−
h + T̂ I+

h e−ΓI
1h1 + T̂ I−

p e−k2 tan θ1h1 + T̂ I+
p e−βI(θ1)h1ek2 tan θ1h1

)
,

(A.105b)

σ̂II
11s

∣∣
x1=h1+∆h

= CII
α1

(
?T̂ II−
h e−ΓII

1 h2 + ?T̂ II+
h (A.105c)

+T̂ II−
p e−βII(θ2)h2e−k2 tan θ2(h1+∆h) + T̂ II+

p ek2 tan θ2(h1+∆h)
)
,

σ̂II
11s

∣∣
x1=H

= CII
α1

(
?T̂ II−
h + ?T̂ II+

h e−ΓII
1 h2 + T̂ II−

p e−k2 tan θ2H + T̂ II+
p e−βII(θ2)h2ek2 tan θ2H

)
.

(A.105d)

All the terms necessary to solve the elastodynamic problem have been introduced. The
resolution of two 4 × 4 linear systems to find the amplitudes of the eight elastic waves
propagating in media I and II (four in medium I and four in medium II) is presented in
the following.

Resolution of the linear systems

In this section, the determination and the resolution of two 4 × 4 linear systems to
determine the amplitudes of the eight elastic waves propagating in media I and II are
detailed. This approach is based on the one presented in Ref. 150 (pp. 159–162). First,
the boundary condition introduced in Eqs. (A.81), (A.82) and (A.83) are written in matrix
form. Then, two 4 × 4 linear systems are determined to calculate the amplitudes of the
eight elastic waves propagating in media I and II.

Boundary conditions in matrix form
In medium I, the boundary conditions at x1 = 0 are given in Eq. (A.81). These
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two boundary conditions are written in matrix form using the stress expressions σ̂I
11 and

σ̂I
12 evaluated at x1 = 0 and associated with the homogeneous solutions [Eqs. (A.89a)

and (A.89b)], the particular solutions [Eqs. (A.97a) and (A.97b)] and the source term
[Eq. (A.105a)]. We obtain

[
RL

I s
L
I RT

I s
T
I cL

I R
L
I cT

I R
T
I

cL
I M

L
I cT

I M
T
I −ML

I s
L
I −MT

I s
T
I

]
︸ ︷︷ ︸[

?ψI
0

]
2×4


?ξLS

I

?ξTS
I

?ξLA
I

?ξTA
I


︸ ︷︷ ︸[
?ξnS,A

I

]
4×1

+ σ̂I
p,s

∣∣
x1=0

=

[
0

0

]
, (A.106)

with

sn
I =

1

2j

(
1− e−h1k

I,n
1

)
, cn

I =
1

2

(
1 + e−h1k

I,n
1

)
, (A.107a)

?ξnS
I = ξnS

I ek
I,n
1 h1/2, ?ξnA

I = ξnA
I ek

I,n
1 h1/2, (A.107b)

σ̂I
p,s

∣∣
x1=0

=

[
σ̂I

11p

∣∣
x1=0
− σ̂I

11s

∣∣
x1=0

σ̂I
12p

∣∣
x1=0

]
. (A.107c)

To avoid diverging exponentials and to obtain a well-conditioned matrix [ ?ψI
0]2×4, the

amplitudes ξnS
I and ξnA

I are multiplied by the diverging exponential in Eq. (A.107b) and
are written with the symbol “?”. This technique to obtain well-conditioned matrices has
already been used in Eq. (A.59) to solve the heat diffusion problem and is also used in
the following.

In medium II, the boundary conditions at x1 = H are given in Eq. (A.82). These
two boundary conditions are written in matrix form using the stress expressions σ̂I

11 and
σ̂I

12 evaluated at x1 = H and associated with the homogeneous solutions [Eqs. (A.96a)
and (A.96b)], the particular solutions [Eqs. (A.103a) and (A.103b)] and the source term
[Eq. (A.105d)]. We get

[
RL

II −RL
IIe
−h2k

II,L
1 RT

II −RT
IIe
−h2k

II,T
1

ML
II ML

IIe
−h2k

II,L
1 MT

II MT
IIe
−h2k

II,T
1

]
︸ ︷︷ ︸[

?ψII
H

]
2×4


?AL−

II

?AL+
II

?AT−
II

?AT+
II


︸ ︷︷ ︸[

?An±
II

]
4×1

+ σ̂II
p,s

∣∣
x1=H

=

[
0

0

]
, (A.108)
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with

?An−
II = An−

II e
kII,n

1 H and ?An+
II = An+

II e
−kII,n

1 (h1+∆h), (A.109)

σ̂II
p,s

∣∣
x1=H

=

[
σ̂II

11p

∣∣
x1=H

− σ̂II
11s

∣∣
x1=H

σ̂II
12p

∣∣
x1=H

]
. (A.110)

Between media I and II, the boundary conditions are given in Eq. (A.83). These four
boundary conditions are written in matrix form using the stress expressions σ̂I

11 and σ̂I
12

evaluated at x1 = h1 and x1 = h1 + ∆h. These expressions are associated with the homo-
geneous solutions [Eqs. (A.90a), (A.90b), (A.95a) and (A.95b)], the particular solutions
[Eqs. (A.99a), (A.99b), (A.101a) and (A.101b)] and the source terms [Eqs. (A.105b) and
(A.105c)]. We obtain

[
?ψI
h1

]
4×4

[
?ξnS,A

I

]
4×1

+

[
ûI
p

∣∣
h1

σ̂I
p,s

∣∣
h1

]
=
[
LM
]

4×4

([
?ψII
h1+∆h

]
4×4

[
?An±

II

]
4×1

+

[
ûII
p

∣∣
h1+∆h

σ̂II
p,s

∣∣
h1+∆h

])
,

(A.111)

with

[
?ψI
h1

]
4×4

=

cL
I Û

I,L−
1h cT

I Û
I,T−
1h sL

I Û
I,L−
1h sT

I Û
I,T−
1h

sL
I Û

I,L−
2h sT

I Û
I,T−
2h −cL

I Û
I,L−
2h −cT

I Û
I,T−
2h

−RL
I s

L
I −RT

I s
T
I cL

I R
L
I cT

I R
T
I

cL
I M

L
I cT

I M
T
I ML

I s
L
I MT

I s
T
I





[ ?ψI
h1,u

]
2×4[ ?ψI

h1,σ

]
2×4

,

(A.112a)

ûI
p

∣∣
h1

=

[
ûI

1p

∣∣
h1

ûI
2p

∣∣
h1

]
, σ̂I

p,s

∣∣
h1

=

[
σ̂I

11p

∣∣
h1
− σ̂I

11s

∣∣
h1

σ̂I
12p

∣∣
h1

]
, (A.112b)

[
LM
]

4×4
=

LM11 LM12 LM13 LM14

LM21 LM22 LM23 LM24

LM31 LM32 LM33 LM34

LM41 LM42 LM43 LM44





[LMu ]2×4[LMσ ]2×4

, (A.112c)
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[
?ψII
h1+∆h

]
4×4

=


Û II,L−

1h e−h2k
II,L
1 Û II,L−

1h Û II,T−
1h e−h2k

II,T
1 Û II,T−

1h

Û II,L−
2h e−h2k

II,L
1 −Û II,L−

2h Û II,T−
2h e−h2k

II,T
1 −Û II,T−

2h

RL
IIe
−h2k

II,L
1 −RL

II RT
IIe
−h2k

II,T
1 −RT

II

ML
IIe
−h2k

II,L
1 ML

II MT
IIe
−h2k

II,T
1 MT

II

 , (A.112d)

ûII
p

∣∣
h1+∆h

=

[
ûII

1p

∣∣
h1+∆h

ûII
2p

∣∣
h1+∆h

]
, σ̂II

p,s

∣∣
h1+∆h

=

[
σ̂II

11p

∣∣
h1+∆h

− σ̂II
11s

∣∣
h1+∆h

σ̂II
12p

∣∣
h1+∆h

]
. (A.112e)

The eight boundary conditions have been written in matrix form. The two 4× 4 linear
systems to be solved in order to find the amplitudes of the eight elastic waves propagating
in media I and II are presented below.

Determination of the linear systems to find the eight amplitudes
To find the eight amplitudes of the eight elastic waves propagating in media I and II,

the first step consists in writing in a matrix form the two boundary conditions between
media I and II (concerning the stresses) at x1 = h1 and x1 = h1 + ∆h [Eq. (A.111)] and
the two boundary conditions in medium I at x1 = 0 [Eq. (A.106)], which gives

[
?Γξh

]
4×4

[
?ξnS,A

I

]
4×1

=
[
?ΓAh

]
4×4

[
?An±

II

]
4×1

+
[
?ΓAp

]
4×1

, (A.113)

with

[
?Γξh

]
4×4

=


[
?ψI
h1,σ

]
2×4[

?ψI
0

]
2×4

,

 (A.114a)

[
?ΓAh

]
4×4

=

[LMσ ]2×4

[
?ψII
h1+∆h

]
4×4

[0]2×4

 , (A.114b)

[
?ΓAp

]
4×1

=


[
LMσ

]
2×4

[
ûII
p

∣∣
h1+∆h

σ̂II
p,s

∣∣
h1+∆h

]
4×1

− σ̂I
p,s

∣∣
h1

− σ̂I
p,s

∣∣
0

 . (A.114c)

Then, the two boundary conditions between media I and II (concerning the displacements)
at x1 = h1 and x1 = h1 + ∆h [Eq. (A.111)] are also written in matrix form:

[
?ψI
h1,u

]
2×4

[
?ξnS,A

I

]
4×1

=
[
LMu

]
2×4

[ ?ψII
h1+∆h

]
4×4

[
?An±

II

]
4×1

+

[
ûII
p

∣∣
h1+∆h

σ̂II
p,s

∣∣
h1+∆h

]
4×1

− ûI
p

∣∣
h1
.

(A.115)
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The second step consists in replacing the vector of amplitudes [ ?ξnS,A
I ]4×1 in Eq. (A.115)

by the one obtained in Eq. (A.113) and to use the boundary condition in medium II at
x1 = H [Eq. (A.108)] to obtain the 4× 4 linear system:

[
?ΦAh

]
4×4

[
?An±

II

]
4×1

=
[
?ΦAp

]
4×1

, (A.116)

with

[
?ΦAh

]
4×4

=

[ ?ψI
h1,u

]
2×4

[
?Γξh

]−1

4×4

[
?ΓAh

]
4×4
−
[
LMu

]
2×4

[
?ψII
h1+∆h

]
4×4[

?ψII
H

]
2×4

 , (A.117a)

[
?ΦAp

]
4×1

=

−
[
?ψI
h1,u

]
2×4

[
?Γξh

]−1

4×4

[
?ΓAp

]
4×1

+
[
LMu

]
2×4

[
ûII
p

∣∣
h1+∆h

σ̂II
p,s

∣∣
h1+∆h

]
4×1

− ûI
p

∣∣
h1

− σ̂II
p,s

∣∣
H

 .
(A.117b)

This 4 × 4 linear system in Eq. (A.116) is solved numerically to obtain the four ampli-
tudes ?An±

II , with n = {L, T}. Finally, Eq. (A.113) is solved numerically using the four
amplitudes ?An±

II calculated in the previous step. Thus, the amplitudes of the four elas-
tic waves that are propagating in medium I ( ?ξnS,A

I ) and the four elastic waves that are
propagating in medium II ( ?An±

II ) are fully determined.

Complete solutions of the elastodynamic equations

In medium i = {I, II}, the complete solution is equal to the linear combination of the
homogeneous and particular solutions

ûi(x1, k2, ω) = ûih(x1, k2, ω) + ûip(x1, k2, ω). (A.118)

Hence, in medium I, the linear combination of the homogeneous and particular solutions
is equal to

ûI(x1, k2, ω) = ûI
h(x1, k2, ω) + ûI

p(x1, k2, ω), (A.119)
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with ûI
p(x1, k2, ω) the particular solution given in Eq. (A.71a). The homogeneous solution

ûI
h, projected onto the x1- and x2-axes, is provided by

ûI
1h =

∑
n={L,T}

Û I,n−
1h

[
?ξnS

I cn
I (x1) + ?ξnA

I sn
I (x1)

]
, (A.120a)

ûI
2h =

∑
n={L,T}

Û I,n−
2h

[
?ξnS

I sn
I (x1)− ?ξnA

I cn
I (x1)

]
, (A.120b)

with Û I,n−
1h and Û I,n−

2h given in Eq. (A.62b), ?ξnS
I and ?ξnA

I the four amplitudes obtained
in the previous part and

cn
I (x1) =

1

2

(
ek

I,n
1 (x1−h1) + e−k

I,n
1 x1

)
, (A.121a)

sn
I (x1) =

1

2j

(
ek

I,n
1 (x1−h1) − e−k

I,n
1 x1

)
. (A.121b)

In medium II, the complete solution is equal to

ûII(x1, k2, ω) = ûII
h (x1, k2, ω) + ûII

p (x1, k2, ω), (A.122)

with ûII
p (x1, k2, ω) the particular solution given in Eq. (A.71b). The homogeneous solution

ûII
h , projected onto the x1- and x2-axes, is given by

ûII
1h =

∑
n={L,T}

Û II,n−
1h

(
?An+

II e
−kII,n

1 [x1−(h1+∆h)] + ?An−
II e

kII,n
1 (x1−H)

)
, (A.123a)

ûII
2h =

∑
n={L,T}

Û II,n−
2h

(
− ?An+

II e
−kII,n

1 [x1−(h1+∆h)] + ?An−
II e

kII,n
1 (x1−H)

)
, (A.123b)

with Û II,n−
1h and Û II,n−

2h given in Eq. (A.62b) and ?An±
II the four amplitudes obtained by

solving Eq. (A.116).

A.3.4 Coupling matrix
[
LMi
]
4×4

In Sec. 2.5.3, the transfer matrix [LM ] (pp. 53–60 in Ref. 157) associated to the elastic
boundary conditions between media I and II, introduced in Eq. (2.54), is given by

[
LM
]

4×4
=

Nsublayers∏
i=1

[
LMi

]
4×4

, (A.124)
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with [LMi ] the transfer matrix of the i-th sublayer and Nsublayers the total number of
sublayers which are between media I and II.

x2
x1

hi

Sublayer i
hi

0

ki, L-
ki, T-ki, T+

ki, L+

Figure A.3 – Representation of the i-th sublayer of thickness hi. The wave
vectors of the longitudinal (transverse) elastic waves are represented with black
(red) arrows.

For a given sublayer of thickness hi (see Fig. A.3), the displacement and stress vectors
are linked between the upper and lower surfaces (of local coordinates x1 = 0 and x1 = hi,
respectively) by the relation


ûi1

ûi2

σ̂i11

σ̂i12


x1=0

=
[
ψi0

] [
ψihi

]−1

︸ ︷︷ ︸[
LMi

]
4×4


ûi1

ûi2

σ̂i11

σ̂i12


x1=hi

. (A.125)

Assuming that there is no source term in the sublayers, which means that the generation
of elastic waves in the sublayers is neglected, the transfer matrix [LMi ] is equal to the
product of [ψi0] and the inverse of [ψihi ]. The former matrix is


ûi1

ûi2

σ̂i11

σ̂i12


0

=


Û i,L−

1h αML Û i,L−
1h Û i,T−

1h αMT Û i,T−
1h

Û i,L−
2h αML −Û i,L−

2h Û i,T−
2h αMT −Û i,T−

2h

RL
i α

M
L −RL

i RT
i α

M
T −RT

i

ML
i α

M
L ML

i MT
i α

M
T MT

i


︸ ︷︷ ︸[

ψi0

]
4×4


AL−
i

AL+
i

AT−
i

AT+
i

 , (A.126)

and relates the amplitudes of the backward and forward longitudinal and shear elastic
waves in the sublayer to the displacement and stress components at its upper surface.
The latter matrix of the product is given by
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
ûi1

ûi2

σ̂i11

σ̂i12


hi

=


Û i,L−

1h Û i,L−
1h αML Û i,T−

1h Û i,T−
1h αMT

Û i,L−
2h −Û i,L−

2h αML Û i,T−
2h −Û i,T−

2h αMT
RL
i −RL

i α
M
L RT

i −RT
i α

M
T

ML
i ML

i α
M
L MT

i MT
i α

M
T


︸ ︷︷ ︸[

ψihi

]
4×4


AL−
i

AL+
i

AT−
i

AT+
i

 , (A.127)

with Ûi,n−
h given in Eq. (2.49a) and

αMn = e−k
i,n
1 hi , with n = {L,T}, (A.128a)

Rn
i = 

(
Ci

11k
i,n
1 Û i,n−

1h − Ci
12k2Û

i,n−
2h

)
, (A.128b)

Mn
i = Ci

66

(
ki,n1 Û i,n−

2h − k2Û
i,n−
1h

)
. (A.128c)

These two matrices, [ψi0] and [ψihi ], are obtained by writing the four waves (of longitudinal
and transverse polarizations) propagating in the i-th sublayer as a function of the ampli-
tudes An±

i and evaluating these expressions at x1 = 0 and x1 = hi. Then, by replacing
the amplitudes An±

i of Eq. (A.126) with those obtained by inverting the linear system
in Eq. (A.127), the transfer matrix of Eq. (A.125) is determined. Note that in the case
where the elastic wavelength can be considered large relative to the thickness of the i-th
sublayer, the transfer matrix simplifies to178,202

[
LMi

]
4×4
≈


1 0 − 1

KN
0

0 1 0 − 1
KT

0 0 1 0

0 0 0 1

 , (A.129)

with the normal and transverse interfacial stiffnesses (KN and KT ) equal to

KN =
Ci

11

hi
, KT =

Ci
66

hi
. (A.130)

The latter approximation could be of interest, when adapted, to lower the number of
parameters to retrieve in an inverse problem, e.g., for the nondestructive evaluation of
adhesive bonding.
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Appendix B

Coupling matrix [LMi ] expressed with
the angles

The transfer matrix147,157,179 is used to model the adhesive sublayer, which is assumed
homogeneous and linear. Following the approach of Brekhovskikh,157 the transfer matrix
[LMi ], detailed below, couples the displacements (ui1, ui2) and stresses (σi11, σi12) of the
upper and lower surfaces of the i-th sublayer:


ui1

ui2

σi11

σi12


x1=h1

=


LM
i,11 LM

i,12 LM
i,13 LM

i,14

LM
i,21 LM

i,22 LM
i,23 LM

i,24

LM
i,31 LM

i,32 LM
i,33 LM

i,34

LM
i,41 LM

i,42 LM
i,43 LM

i,44



ui1

ui2

σi11

σi12


x1=h1+hi

. (B.1)

When isotropic mechanical properties are assumed, the expressions of each terms of [LMi ]

are equal to

LM
i,11 =

[
1− cos

(
2θT

i

)]
cos
(
αT
i hi
)

+ cos
(
2θT

i

)
cos
(
αL
i hi
)
,

LM
i,12 =−  (1− ai) sin

(
αT
i hi
)

tan θT
i + 

Ci
66

Ci
11

sin
(
2θL

i

)
sin
(
αL
i hi
)
,

LM
i,13 =

− sin θL
i sin

(
αT
i hi
)

tan θT
i − sin

(
αL
i hi
)

cos θL
i

Ci
11k

L
i

,

LM
i,14 =LM

i,23 =
 sin θT

i

Ci
66k

T
i

[
cos
(
αL
i hi
)
− cos

(
αT
i hi
)]
,

LM
i,21 =

[
− sin

(
2θT

i

)
sin
(
αT
i hi
)

+ sin
(
αL
i hi
)

cos
(
2θT

i

)
tan θL

i

]
,

LM
i,22 =ai cos

(
αL
i hi
)

+ (1− ai) cos
(
αT
i hi
)
,

LM
i,24 =

− sin θT
i sin

(
αL
i hi
)

tan θL
i − sin

(
αT
i hi
)

cos θT
i

Ci
66k

T
i

,
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LM
i,31 =

Ci
11k

L
i (1− ai) sin

(
αL
i hi
)

cos
(
2θT

i

)
cos θL

i

+ kT
i

(
Ci

11 − Ci
12

)
sin θT

i sin
(
2θT

i

)
sin
(
αT
i hi
)
,

LM
i,32 =kT

i (1− ai)
(
Ci

11 − Ci
12

)
sin θT

i

[
cos
(
αT
i hi
)
− cos

(
αL
i hi
)]
,

LM
i,42 =2aiC

i
66k

L
i sin

(
αL
i hi
)

cos θL
i + Ci

66k
T
i (1− ai)

cos
(
2θT

i

)
cos θT

i

sin
(
αT
i hi
)
, (B.2)

with  the imaginary number, hi the thickness of the i-th sublayer, ai = 1− cos
(
2θT

i

)
a parameter defined with θT

i the angle of T-polarized waves with respect to x1. The
parameter αni = kni cos θni is determined with the wavenumber kni and the angle θni
(n = {L,T} for longitudinal and transverse polarizations, respectively). Due to the
isotropic mechanical properties, the following equalities stand: for the elastic coefficient
Ci

66 =
Ci11−Ci12

2
and for the LMi coefficients LM

i,11 = LM
i,33, LM

i,12 = LM
i,43, LM

i,21 = LM
i,34,

LM
i,22 = LM

i,44 and LM
i,32 = LM

i,41.
Furthermore, if the thickness of the i-th sublayer is assumed small compared to the

wavelength, the coupling matrix can be simplified as follows

[
LM
i

]
4×4
≈


1 0 − 1

KN
0

0 1 0 − 1
KT

0 0 1 0

0 0 0 1

 , (B.3)

with KN =
Ci11

hi
and KT =

Ci66

hi
the normal and transverse interfacial stiffnesses, respec-

tively.
To obtain the transfer matrix introduced in Eq. (B.1), the method presented in Ref.

157 (pp. 53–60) is used and detailed in the following. The i-th sublayer of thickness hi is
shown in Fig. B.1.

This sublayer is assumed linear, homogeneous and isotropic. The origin of the local
coordinates is placed at the upper surface of this sublayer. The displacement vector
ui(x1, x2, t) is written in this medium and is equal to

ui(x1, x2, t) =
(
AL+
i e−k

L
i cos θL

i (x1−hi)nL+
i + AT+

i e−k
T
i cos θT

i (x1−hi)nT+
i (B.4)

+AL−
i ek

L
i cos θL

i (x1−hi)nL−
i + AT−

i ek
T
i cos θT

i (x1−hi)nT−
i

)
e(ωt−k2x2),

with AL±
i (AT±

i ) the amplitudes of the longitudinal (transverse) elastic waves that are trav-
elling along the positive and negative directions of the x1-axis, as illustrated in Fig. B.1.
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x2

hi

Sublayer i

hi

O

θT
i

θL
i

ki
T+

ki
L+

x1

ki
T-

ki
L-

Figure B.1 – Illustration of the i-th sublayer of thickness hi. The wave vectors of
the longitudinal (transverse) elastic waves are represented with black (red) arrows.

The angles θL
i and θT

i are also represented in Fig. B.1 and are the angles between the wave
vectors of longitudinal and transverse elastic waves, respectively, and the x1-direction.
Due to Snell’s laws, the projections of these wave vectors along the x2-axis are equal to

k2 = kL
i sin θL

i = kT
i sin θT

i . (B.5)

Furthermore, in Eq. (B.4), the polarization vectors of longitudinal (L) and transverse (T)
waves are given by

nL+
i =

[
cos θL

i

sin θL
i

]
,nT+

i =

[
sin θT

i

− cos θT
i

]
,nL−

i =

[
− cos θL

i

sin θL
i

]
and nT−

i =

[
sin θT

i

cos θT
i

]
. (B.6)

The first step is to evaluate the displacements (ui1, ui2) and the stresses (σi11, σi12) at
x1 = hi. To obtain the stresses σi11 and σi12, Hooke’s law is applied and leads to

σi11

∣∣
x1=hi

= Ci
11

∂ui1
∂x1

∣∣∣∣
x1=hi

+ Ci
12

∂ui2
∂x2

∣∣∣∣
x1=hi

, (B.7a)

σi12

∣∣
x1=hi

= Ci
66

(
∂ui1
∂x2

∣∣∣∣
x1=hi

+
∂ui2
∂x1

∣∣∣∣
x1=hi

)
, (B.7b)

with the partial derivative terms written below without the e(ωt−k2x2) dependency to
lighten the equations:

∂ui1
∂x1

∣∣∣∣
x1=hi

= 
[
−kL

i cos2 θL
i

(
AL+
i + AL−

i

)
− kT

i cos θT
i sin θT

i

(
AT+
i − AT−

i

)]
, (B.8a)
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∂ui1
∂x2

∣∣∣∣
x1=hi

= 
[
−kL

i cos θL
i sin θL

i

(
AL+
i − AL−

i

)
− kT

i sin2 θT
i

(
AT+
i + AT−

i

)]
, (B.8b)

∂ui2
∂x1

∣∣∣∣
x1=hi

= 
[
−kL

i cos θL
i sin θL

i

(
AL+
i − AL−

i

)
+ kT

i cos2 θT
i

(
AT+
i + AT−

i

)]
, (B.8c)

∂ui2
∂x2

∣∣∣∣
x1=hi

= 
[
−kL

i sin2 θL
i

(
AL+
i + AL−

i

)
+ kT

i cos θT
i sin θT

i

(
AT+
i − AT−

i

)]
. (B.8d)

Thus, the first linear system at x1 = hi is equal to


ui1

ui2

σi11

σi12


x1=hi

=


0 Lhi12 Lhi13 0

Lhi21 0 0 Lhi24

Lhi31 0 0 Lhi34

0 Lhi42 Lhi43 0



AL+
i + AL−

i

AL+
i − AL−

i

AT+
i + AT−

i

AT+
i − AT−

i

 , (B.9)

with

Lhi12 = cos θL
i , Lhi13 = sin θT

i ,

Lhi21 = sin θL
i , Lhi24 = − cos θT

i ,

Lhi31 = −kL
i

(
Ci

11 cos2 θL
i + Ci

12 sin2 θL
i

)
, Lhi34 = −kT

i sin
(
2θT

i

)Ci
11 − Ci

12

2
,

Lhi42 = −Ci
66k

L
i sin

(
2θL

i

)
, Lhi43 = Ci

66k
T
i cos

(
2θT

i

)
. (B.10)

Then, the linear system in Eq. (B.9) is inverted to obtain the amplitudes as a function
of displacements and stresses evaluated at x1 = hi:


AL+
i + AL−

i

AL+
i − AL−

i

AT+
i + AT−

i

AT+
i − AT−

i

 =


0 L−1,hi

12 L−1,hi
13 0

L−1,hi
21 0 0 L−1,hi

24

L−1,hi
31 0 0 L−1,hi

34

0 L−1,hi
42 L−1,hi

43 0



ui1

ui2

σi11

σi12


x1=hi

, (B.11)

with

L−1,hi
12 =

(Ci
11 − Ci

12) sin θL
i

Ci
11

, L−1,hi
13 =



Ci
11k

L
i

,

L−1,hi
21 =

cos
(
2θT

i

)
cos θL

i

, L−1,hi
24 =

 sin θT
i

Ci
66k

T
i cos θL

i

,
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L−1,hi
31 = 2 sin θT

i , L−1,hi
34 = − 

Ci
66k

T
i

,

L−1,hi
42 =

sin2 θL
i (Ci

11 − Ci
12)− Ci

11

Ci
11 cos θT

i

, L−1,hi
43 =

 sin θL
i

Ci
11k

L
i cos θT

i

. (B.12)

The second step is to evaluate the displacements (ui1, ui2) and the stresses (σi11, σi12) at
x1 = 0. Hooke’s law is applied to obtain the stresses σi11 and σi12 evaluated at x1 = 0,
which gives

σi11

∣∣
x1=0

= Ci
11

∂ui1
∂x1

∣∣∣∣
x1=0

+ Ci
12

∂ui2
∂x2

∣∣∣∣
x1=0

, (B.13a)

σi12

∣∣
x1=0

= Ci
66

(
∂ui1
∂x2

∣∣∣∣
x1=0

+
∂ui2
∂x1

∣∣∣∣
x1=0

)
. (B.13b)

with the partial derivative terms written below without the e(ωt−k2x2) dependency to
lighten the equations:

∂ui1
∂x1

∣∣∣∣
x1=0

= 
[
−kL

i cos2 θL
i

(
?AL+

i + ?AL−
i

)
− kT

i cos θT
i sin θT

i

(
?AT+

i − ?AT−
i

)]
, (B.14a)

∂ui1
∂x2

∣∣∣∣
x1=0

= 
[
−kL

i cos θL
i sin θL

i

(
?AL+

i − ?AL−
i

)
− kT

i sin2 θT
i

(
?AT+

i + ?AT−
i

)]
, (B.14b)

∂ui2
∂x1

∣∣∣∣
x1=0

= 
[
−kL

i cos θL
i sin θL

i

(
?AL+

i − ?AL−
i

)
+ kT

i cos2 θT
i

(
?AT+

i + ?AT−
i

)]
, (B.14c)

∂ui2
∂x2

∣∣∣∣
x1=0

= 
[
−kL

i sin2 θL
i

(
?AL+

i + ?AL−
i

)
+ kT

i cos θT
i sin θT

i

(
?AT+

i − ?AT−
i

)]
, (B.14d)

and

?AL+
i = AL+

i ek
L
i cos θL

i hi , ?AL−
i = AL−

i e−k
L
i cos θL

i hi , (B.15a)
?AT+

i = AT+
i ek

T
i cos θT

i hi , ?AT−
i = AT−

i e−k
T
i cos θT

i hi . (B.15b)

Using Euler’s formula, sums and differences of the terms ?An±
i (with n = {L, T}) which

are obtained in Eqs. (B.14a–B.14d), are equal to

?An+
i + ?An−

i =
(
An+
i + An−

i

)
cos (αn

i hi) + 
(
An+
i − An−

i

)
sin (αn

i hi), (B.16a)
?An+

i − ?An−
i = 

(
An+
i + An−

i

)
sin (αn

i hi) +
(
An+
i − An−

i

)
cos (αn

i hi), (B.16b)
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with αn
i = kn

i cos θn
i . Then, we end up with the linear system:


ui1

ui2

σi11

σi12


x1=0

=


L0

11 L0
12 L0

13 L0
14

L0
21 L0

22 L0
23 L0

24

L0
31 L0

32 L0
33 L0

34

L0
41 L0

42 L0
43 L0

44



AL+
i + AL−

i

AL+
i − AL−

i

AT+
i + AT−

i

AT+
i − AT−

i

 , (B.17)

with

L0
11 =  cos θL

i sin
(
αL
i hi
)
, L0

12 = cos θL
i cos

(
αL
i hi
)
,

L0
13 = sin θT

i cos
(
αT
i hi
)
, L0

14 =  sin θT
i sin

(
αT
i hi
)
,

L0
21 = sin θL

i cos
(
αL
i hi
)
, L0

22 =  sin θL
i sin

(
αL
i hi
)
,

L0
23 = − cos θT

i sin
(
αT
i hi
)
, L0

24 = − cos θT
i cos

(
αT
i hi
)
,

L0
31 = −kL

i

(
Ci

11 cos2 θL
i + Ci

12 sin2 θL
i

)
cos
(
αL
i hi
)
, L0

32 = kL
i

(
Ci

11 cos2 θL
i + Ci

12 sin2 θL
i

)
sin
(
αL
i hi
)
,

L0
33 = kT

i

(Ci
11 − Ci

12)

2
sin
(
2θT

i

)
sin
(
αT
i hi
)
, L0

34 = −kT
i

(Ci
11 − Ci

12)

2
sin
(
2θT

i

)
cos
(
αT
i hi
)
,

L0
41 = Ci

66k
L
i sin

(
2θL

i

)
sin
(
αL
i hi
)
, L0

42 = −Ci
66k

L
i sin

(
2θL

i

)
cos
(
αL
i hi
)
,

L0
43 = Ci

66k
T
i cos

(
2θT

i

)
cos
(
αT
i hi
)
, L0

44 = −Ci
66k

T
i cos

(
2θT

i

)
sin
(
αT
i hi
)
.

(B.18)

Finally, replacing sums and differences of the terms ?An±
i in Eq. (B.17) by the ones

obtained in Eq. (B.11), leads to the expression of the transfer matrix
[
LMi

]
4×4

:


ui1

ui2

σi11

σi12


x1=0

=


LM
i,11 LM

i,12 LM
i,13 LM

i,14

LM
i,21 LM

i,22 LM
i,23 LM

i,24

LM
i,31 LM

i,32 LM
i,33 LM

i,34

LM
i,41 LM

i,42 LM
i,43 LM

i,44


︸ ︷︷ ︸[

LMi

]
4×4


ui1

ui2

σi11

σi12


x1=hi

(B.19)

with

LM
i,11 =

[
1− cos

(
2θT

i

)]
cos
(
αT
i hi
)

+ cos
(
2θT

i

)
cos
(
αL
i hi
)
,

LM
i,12 = − (1− ai) sin

(
αT
i hi
)

tan θT
i + 

(Ci
11 − Ci

12)

2Ci
11

sin
(
2θL

i

)
sin
(
αL
i hi
)
,
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LM
i,13 =

− sin θL
i sin

(
αT
i hi
)

tan θT
i − sin

(
αL
i hi
)

cos θL
i

Ci
11k

L
i

,

LM
i,14 = LM

i,23 =
 sin θT

i

Ci
66k

T
i

[
cos
(
αL
i hi
)
− cos

(
αT
i hi
)]
,

LM
i,21 = 

[
− sin

(
2θT

i

)
sin
(
αT
i hi
)

+ sin
(
αL
i hi
)

cos
(
2θT

i

)
tan θL

i

]
,

LM
i,22 = ai cos

(
αL
i hi
)

+ (1− ai) cos
(
αT
i hi
)
,

LM
i,24 =

− sin θT
i sin

(
αL
i hi
)

tan θL
i − sin

(
αT
i hi
)

cos θT
i

Ci
66k

T
i

,

LM
i,31 =

Ci
11k

L
i (1− ai) sin

(
αL
i hi
)

cos
(
2θT

i

)
cos θL

i

+ kT
i

(
Ci

11 − Ci
12

)
sin θT

i sin
(
2θT

i

)
sin
(
αT
i hi
)
,

LM
i,32 = kT

i (1− ai)
(
Ci

11 − Ci
12

)
sin θT

i

[
cos
(
αT
i hi
)
− cos

(
αL
i hi
)]
,

LM
i,33 = ai cos

(
αT
i hi
)

+ (1− ai) cos
(
αL
i hi
)
,

LM
i,34 =  (1− ai) sin

(
αL
i hi
)

tan θL
i − 

(Ci
11 − Ci

12)

2Ci
66

sin
(
2θT

i

)
sin
(
αT
i hi
)
,

LM
i,41 = 2Ci

66k
T
i sin θT

i cos
(
2θT

i

) [
cos
(
αT
i hi
)
− cos

(
αL
i hi
)]
,

LM
i,42 = 2aiC

i
66k

L
i sin

(
αL
i hi
)

cos θL
i + Ci

66k
T
i (1− ai)

cos
(
2θT

i

)
cos θT

i

sin
(
αT
i hi
)
,

LM
i,43 = − sin

(
αT
i hi
)

cos
(
2θT

i

)
tan θT

i + 
Ci

66

Ci
11

sin
(
2θL

i

)
sin
(
αL
i hi
)
,

LM
i,44 =

[
1− cos

(
2θT

i

)]
cos
(
αL
i hi
)

+ cos
(
2θT

i

)
cos
(
αT
i hi
)
, (B.20)

and ai =
(Ci11−Ci12)

Ci11
sin2 θL

i . Due to the isotropic mechanical properties, the following equal-

ities stand: for the elastic coefficient Ci
66 =

Ci11−Ci12

2
and for the parameter ai = 1− cos

(
2θT

i

)
.

Thus, the LM
i coefficients given in Eq. (B.20) can be simplified and are equal to

LM
i,11 = LM

i,33 =
[
1− cos

(
2θT

i

)]
cos
(
αT
i hi
)

+ cos
(
2θT

i

)
cos
(
αL
i hi
)
,

LM
i,12 = LM

i,43 = − cos
(
2θT

i

)
sin
(
αT
i hi
)

tan θT
i + 

Ci
66

Ci
11

sin
(
2θL

i

)
sin
(
αL
i hi
)
,

LM
i,13 =

− sin θL
i sin

(
αT
i hi
)

tan θT
i − sin

(
αL
i hi
)

cos θL
i

Ci
11k

L
i

,

LM
i,14 = LM

i,23 =
 sin θT

i

Ci
66k

T
i

[
cos
(
αL
i hi
)
− cos

(
αT
i hi
)]
,

LM
i,21 = LM

i,34 = 
[
− sin

(
2θT

i

)
sin
(
αT
i hi
)

+ sin
(
αL
i hi
)

cos
(
2θT

i

)
tan θL

i

]
,

LM
i,22 = LM

i,44 =
[
1− cos

(
2θT

i

)]
cos
(
αL
i hi
)

+ cos
(
2θT

i

)
cos
(
αT
i hi
)
,
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LM
i,24 =

− sin θT
i sin

(
αL
i hi
)

tan θL
i − sin

(
αT
i hi
)

cos θT
i

Ci
66k

T
i

,

LM
i,31 =

Ci
11k

L
i sin

(
αL
i hi
)

cos2
(
2θT

i

)
cos θL

i

+ kT
i 2Ci

66 sin θT
i sin

(
2θT

i

)
sin
(
αT
i hi
)
,

LM
i,32 = LM

i,41 = 2kT
i cos

(
2θT

i

)
Ci

66 sin θT
i

[
cos
(
αT
i hi
)
− cos

(
αL
i hi
)]
,

LM
i,42 = 2

[
1− cos

(
2θT

i

)]
Ci

66k
L
i sin

(
αL
i hi
)

cos θL
i + Ci

66k
T
i

cos2
(
2θT

i

)
cos θT

i

sin
(
αT
i hi
)
. (B.21)
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Appendix C

Reflection/transmission coefficients

In this Appendix, the reflection/transmission coefficients are calculated when a plane
wave of longitudinal or transverse polarization is incident on one or more sublayers
of total thickness ∆h. These sublayers are located between two semi-infinite media
(media I and II), as shown in Fig. C.1. They are modeled with the transfer matrix
method,147,157 as described in Appendix B. Hence, the transfer matrix [LM ] is equal to

[
LM
]

4×4
=

Nsublayers∏
i=1

[
LMi

]
4×4

, (C.1)

with [LMi ] the transfer matrix of the i-th sublayer and Nsublayers the total number of
sublayers which are located between media I and II. In the following, media I and II
and all sublayers are assumed linear, homogeneous and isotropic. Furthermore, the total
thickness ∆h, in Fig. C.1, is equal to

∆h =

Nsublayers∑
i=1

hi, (C.2)

with hi the thickness of the i-th sublayer.
In Sec. C.1, the reflection/transmission coefficients are calculated for an incident plane

wave of longitudinal polarization. The reflection coefficients (RLL, RLT) and the trans-
mission coefficients (TLL, TLT) are obtained.

In Sec. C.2, the reflection/transmission coefficients are calculated for an incident plane
wave of transverse polarization. The reflection coefficients (RTT, RTL) and the transmis-
sion coefficients (TTT, TTL) are determined.
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C.1 Incident plane wave: longitudinal polarization

To calculate the reflection/transmission coefficients for an incident plane wave of lon-
gitudinal polarization, the method is divided into three steps. First, the displacement
vector uI(x1, x2, t) = [uI

1, u
I
2] and the stress vector σI(x1, x2, t) = [σI

11, σ
I
12] are determined

in medium I and evaluated at x1 = 0 (see Sec. C.1.1). Secondly, the displacement vector
uII(x1, x2, t) and the stress vector σII(x1, x2, t) are determined in medium II and evalu-
ated at x1 = ∆h (see Sec. C.1.2). Thirdly, the boundary conditions are applied with the
transfer matrix [LM ] to find the reflection/transmission coefficients by solving a 4 × 4

linear system (see Sec. C.1.3).

x2

x1

Δh

Medium I

Medium II

kI
L+

θL
1

θT
1

θT
2

θL
2

O

kI
L-

kI
T-

kII
L+

kII
T+

Figure C.1 – Schematic diagram of a longitudinal plane wave incident on one or
more sublayers of total thickness ∆h which are located between two semi-infinite
media I and II. The wave vectors of the longitudinal (transverse) plane waves are
represented with black (red) arrows.

C.1.1 Displacement/stress vectors in medium I

In medium I, the displacement vector uI(x1, x2, t) is equal to

uI(x1, x2, t) =
(
AL+

I e−k
L+
I ·xnL+

I + AL−
I e−k

L−
I ·xnL−

I + AT−
I e−k

T−
I ·xnT−

I

)
eωt, (C.3)
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C.1. Incident plane wave: longitudinal polarization

with AL+
I the amplitude of the incident longitudinal plane wave, AL−

I the amplitude of
the reflected longitudinal plane wave and AT−

I the amplitude of the reflected transverse
plane wave. The associated wave vectors (represented in Fig. C.1) are:

kL+
I = kL

I n
L+
I = kL

I

[
cos θL

1

sin θL
1

]
, (C.4a)

kL−
I = kL

I n
L−
I = kL

I

[
− cos θL

1

sin θL
1

]
, (C.4b)

kT−
I = kT

I

[
− cos θT

1

sin θT
1

]
and nT−

I =

[
sin θT

1

cos θT
1

]
, (C.4c)

with nL+
I , nL−

I and nT−
I the polarization vectors of the incident and reflected planes

waves. Then, Eq. (C.3) is written as a function of the reflection coefficients RLL =
AL−

I

AL+
I

and RLT =
AT−

I

AL+
I

:

uI = AL+
I

(
e−k

L
I cos θL

1 x1nL+
I +RLLe

kL
I cos θL

1 x1nL−
I +RLTe

kT
I cos θT

1 x1nT−
I

)
e(ωt−k2x2). (C.5)

According to Snell’s laws, the projections of the wave vectors kL+
I , kL−

I and kT−
I along the

x2-axis are equal to

k2 = kL
I sin θL

1 = kT
I sin θT

1 . (C.6)

Hence, the angle θT
1 , shown in Fig. C.1, is equal to
θT

1 = arcsin

(
kL

I

kT
I

sin θL
1

)
, if

∣∣∣∣kL
I

kT
I

sin θL
1

∣∣∣∣ ≤ 1,

cos θT
1 = 

√
−1 +

(
kL

I

kT
I

sin θL
1

)2

, if
∣∣∣∣kL

I

kT
I

sin θL
1

∣∣∣∣ ≥ 1.

(C.7a)

(C.7b)

Next, the stresses σI
11 and σI

12 are obtained with Hooke’s law and are evaluated at x1 = 0,
which gives

σI
11

∣∣
x1=0

= CI
11

∂uI
1

∂x1

∣∣∣∣
x1=0

+ CI
12

∂uI
2

∂x2

∣∣∣∣
x1=0

, (C.8a)
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σI
12

∣∣
x1=0

= CI
66

(
∂uI

1

∂x2

∣∣∣∣
x1=0

+
∂uI

2

∂x1

∣∣∣∣
x1=0

)
, (C.8b)

with the partial derivative terms written below without the e(ωt−k2x2) dependency to
lighten the equations

∂uI
1

∂x1

∣∣∣∣
x1=0

= AL+
I

(
−kL

I cos2 θL
1 − kL

I cos2 θL
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, (C.9c)

∂uI
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C.1.2 Displacement/stress vectors in medium II

In medium II, the displacement vector uII(x1, x2, t) is equal to

uII(x1, x2, t) =
(
AL+

II e
−kL+

II ·xnL+
II + AT+

II e
−kT+

II ·xnT+
II

)
eωt, (C.10)

with AL+
II the amplitude of the transmitted longitudinal plane wave and AT+

II the amplitude
of the transmitted transverse plane wave. The associated wave vectors (represented in
Fig. C.1) are:

kL+
II = kL

IIn
L+
II = kL

II

[
cos θL

2

sin θL
2

]
, (C.11a)

kT+
II = kT

II

[
cos θT

2

sin θT
2

]
and nT+

II =

[
sin θT

2

− cos θT
2

]
. (C.11b)

with nL+
II and nT+

II the polarization vectors of the transmitted longitudinal and transverse
planes waves, respectively. Then, Eq. (C.10) is written as a function of the transmission
coefficients TLL =

AL+
II

AL+
I

and TLT =
AT+

II

AL+
I

:

uII = AL+
I

(
TLLe

−kL
II cos θL

2 x1nL+
II + TLTe

−kT
II cos θT

2 x1nT+
II

)
e(ωt−k2x2). (C.12)
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C.1. Incident plane wave: longitudinal polarization

According to Snell’s laws, the projections of the wave vectors kL+
II and kT+

II along the
x2-axis are equal to

k2 = kL
II sin θL

2 = kT
II sin θT

2 = kL
I sin θL

1 . (C.13)

Hence, the angles θL
2 and θT

2 , shown in Fig. C.1, are equal to
θL

2 = arcsin

(
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I
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II

sin θL
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)
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∣∣∣∣kL
I

kL
II

sin θL
1

∣∣∣∣ ≤ 1,

cos θL
2 = 

√
−1 +

(
kL

I

kL
II

sin θL
1

)2

, if
∣∣∣∣kL

I

kL
II

sin θL
1

∣∣∣∣ ≥ 1,

(C.14a)
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(C.15a)

(C.15b)

Next, the stresses σII
11 and σII

12 are obtained with Hooke’s law and are evaluated at x1 = ∆h,
which gives

σII
11

∣∣
x1=∆h

= CII
11

∂uII
1

∂x1
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x1=∆h

+ CII
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, (C.16a)
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+
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)
, (C.16b)

with the partial derivative terms written below without the e(ωt−k2x2) dependency to
lighten the equations
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(C.17c)
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∂uII
2
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II cos θT
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(C.17d)

C.1.3 Application of the boundary conditions

Finally, the boundary conditions between media I and II are applied to obtain the
reflection/transmission coefficients RLL, RLT, TLL and TLT. The transfer matrix [LM ]

introduced in Eq. (C.1) is used to couple the displacements and stresses in medium I
(see Sec. C.1.1) evaluated at x1 = 0 to the displacements and stresses in medium II (see
Sec. C.1.2) evaluated at x1 = ∆h, as shown below


uI

1

uI
2

σI
11

σI
12


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=


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σII
12
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x1=∆h

. (C.18)

The linear system for calculating the reflection/transmission coefficients is determined by
replacing the displacements and stresses in Eq. (C.18) by those obtained in Sec. C.1.1 and C.1.2.
Then, by rewriting the four equations as a function of RLL, RLT, TLL and TLT, the linear
system to be solved is


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 , (C.19)

with

V11 = cos θL
1 , V12 =− sin θT

1 ,
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)
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, (C.20)

and for i = {1, 2, 3, 4}
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Vi3 =
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LMi1 cos θL
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C.2 Incident plane wave: transverse polarization

To calculate the reflection/transmission coefficients for an incident plane wave of trans-
verse polarization, the method is similar to the previous one. First, the displacement
vector uI(x1, x2, t) = [uI

1, u
I
2] and the stress vector σI(x1, x2, t) = [σI

11, σ
I
12] are determined

in medium I and evaluated at x1 = 0 (see Sec. C.2.1). Secondly, the displacement vector
uII(x1, x2, t) and the stress vector σII(x1, x2, t) are determined in medium II and evalu-
ated at x1 = ∆h (see Sec. C.2.2). Thirdly, the boundary conditions are applied with the
transfer matrix [LM ] to find the reflection/transmission coefficients by solving a 4 × 4

linear system (see Sec. C.2.3).

C.2.1 Displacement/stress vectors in medium I

In medium I, the displacement vector uI(x1, x2, t) is equal to

uI(x1, x2, t) =
(
AT+

I e−k
T+
I ·xnT+

I + AL−
I e−k

L−
I ·xnL−

I + AT−
I e−k

T−
I ·xnT−

I

)
eωt, (C.22)

with AT+
I the amplitude of the incident transverse plane wave, AT−

I the amplitude of the
reflected transverse plane wave and AL−

I the amplitude of the reflected longitudinal plane
wave. The associated wave vectors (represented in Fig. C.2) are:

kT+
I = kT

I

[
cos θT

1

sin θT
1

]
and nT+

I =

[
sin θT

1

− cos θT
1

]
, (C.23a)
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I n
L−
I = kL

I

[
− cos θL

1

sin θL
1

]
, (C.23b)

kT−
I = kT

I

[
− cos θT

1

sin θT
1

]
and nT−

I =

[
sin θT

1

cos θT
1

]
, (C.23c)
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x2

x1

Δh

Medium I

Medium II

θL
1

θT
1

θT
2

θL
2

O

kI
L-

kI
T-

kII
L+

kII
T+

kI
T+

Figure C.2 – Schematic diagram of a transverse plane wave incident on one or
more sublayers of total thickness ∆h which are located between two semi-infinite
media I and II. The wave vectors of the longitudinal (transverse) plane waves are
represented with black (red) arrows.

with nT+
I , nT−

I and nL−
I the polarization vectors of the incident and reflected planes waves.

Then, Eq. (C.22) is written as a function of the reflection coefficients RTT =
AT−

I

AT+
I

and

RTL =
AL−

I

AT+
I

:

uI = AT+
I

(
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1 x1nT+
I +RTLe
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1 x1nL−
I +RTTe

kT
I cos θT

1 x1nT−
I

)
e(ωt−k2x2).

(C.24)

According to Snell’s laws, the projections of the wave vectors kT+
I , kT−

I and kL−
I along

the x2-axis are equal to

k2 = kL
I sin θL

1 = kT
I sin θT

1 . (C.25)
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C.2. Incident plane wave: transverse polarization

Hence, the angle θL
1 , shown in Fig. C.2, is equal to
θL

1 = arcsin

(
kT

I

kL
I

sin θT
1

)
, if

∣∣∣∣kT
I

kL
I

sin θT
1

∣∣∣∣ ≤ 1,

cos θL
1 = 

√
−1 +

(
kT

I

kL
I

sin θT
1

)2

, if
∣∣∣∣kT

I

kL
I

sin θT
1

∣∣∣∣ ≥ 1.

(C.26a)

(C.26b)

Next, the stresses σI
11 and σI

12 are obtained with Hooke’s law and are evaluated at x1 = 0,
which gives

σI
11

∣∣
x1=0

= CI
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∂uI
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∂x1
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+ CI
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, (C.27a)
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66
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2

∂x1
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x1=0

)
, (C.27b)

with the partial derivative terms written below without the e(ωt−k2x2) dependency to
lighten the equations
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, (C.28a)
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C.2.2 Displacement/stress vectors in medium II

In medium II, the displacement vector uII(x1, x2, t) is equal to

uII(x1, x2, t) =
(
AL+

II e
−kL+

II ·xnL+
II + AT+

II e
−kT+

II ·xnT+
II

)
eωt, (C.29)
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with AL+
II the amplitude of the transmitted longitudinal plane wave and AT+

II the amplitude
of the transmitted transverse plane wave. The associated wave vectors (represented in
Fig. C.2) are:

kL+
II = kL

IIn
L+
II = kL

II

[
cos θL

2

sin θL
2

]
, (C.30a)
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]
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II =

[
sin θT

2

− cos θT
2

]
, (C.30b)

with nL+
II and nT+

II the polarization vectors of the transmitted longitudinal and transverse
planes waves, respectively. Then, Eq. (C.29) is written as a function of the transmission
coefficients TTT =

AT+
II

AT+
I

and TTL =
AL+

II

AT+
I

:
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)
e(ωt−k2x2). (C.31)

According to Snell’s laws, the projections of the wave vectors kL+
II and kT+

II along the
x2-axis are equal to

k2 = kL
II sin θL

2 = kT
II sin θT

2 = kT
I sin θT

1 . (C.32)

Hence, the angles θL
2 and θT

2 , shown in Fig. C.2, are equal to
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(C.33a)
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(C.34a)

(C.34b)

Next, the stresses σII
11 and σII

12 are obtained with Hooke’s law and are evaluated at x1 = ∆h,
which gives

σII
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, (C.35a)
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σII
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)
, (C.35b)

with the partial derivative terms written below without the e(ωt−k2x2) dependency to
lighten the equations
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(C.36d)

C.2.3 Application of the boundary conditions

Finally, the boundary conditions between media I and II are applied to obtain the
reflection/transmission coefficients RTL, RTT, TTL and TTT. The transfer matrix [LM ]

introduced in Eq. (C.1) is used to couple the displacements and stresses in medium I
(see Sec. C.2.1) evaluated at x1 = 0 to the displacements and stresses in medium II (see
Sec. C.2.2) evaluated at x1 = ∆h, as shown below
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. (C.37)

The linear system for calculating the reflection/transmission coefficients is determined by
replacing the displacements and stresses in Eq. (C.37) by those obtained in Sec. C.22 and C.29.
Then, by rewriting the four equations as a function of RTL, RTT, TTL and TTT, the linear
system to be solved is
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with
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and for i = {1, 2, 3, 4}
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Titre : Développement de méthodes ultrasons-laser pour l’évaluation non destructive des 
assemblages aéronautiques collés 

Mots clés :  Ultrasons laser ; Assemblages collés ; END ; Modélisation semi-analytique ; ZGV 

Résumé :  Actuellement, l’allègement des 
structures aéronautiques est un enjeu industriel 
majeur afin de réduire la consommation en 
carburant des moteurs et diminuer les émissions 
polluantes. L’assemblage par collage répond à 
ce besoin d’allègement et possède de nombreux 
avantages comparé aux techniques plus 
conventionnelles comme le soudage ou le 
rivetage. En effet, cette méthode ne nécessite 
pas l’ajout de rivets et permet d’assembler des 
matériaux composites ayant un rapport 
résistance/masse élevé. Néanmoins, aucune 
méthode d’évaluation non destructive (END) ne 
permet à ce jour de certifier la tenue mécanique 
des assemblages collés. Lever ce dernier verrou 
technologique permettrait un déploiement 
important du collage dans l’industrie.  
L’objectif de cette thèse est de développer 

des méthodes ultrasons-laser pour l’END des 

assemblages collés. Cette technique optique 
pour générer et détecter des ultrasons dans un 
matériau offre l’avantage d’être totalement 
sans contact. Un modèle semi-analytique 
permettant de simuler la propagation d’ondes 
générées par laser dans un multicouche est 
tout d’abord présenté. Puis, deux méthodes de 
contrôle capables de distinguer 
expérimentalement des collages industriels 
avec et sans défauts sont introduites. La 
première porte sur la résolution d’un problème 
inverse à partir d’ondes planes synthétisées et 
réfléchies par le collage. La seconde est basée 
sur l’atténuation de résonances locales des 
modes de Lamb à vitesse de groupe nulle 
(ZGV). Ces deux méthodes permettent 
d’identifier des paramètres quantitatifs pour 
distinguer des collages structuraux ayant des 
tenues mécaniques différentes. 

 

Title: Development of laser ultrasonic methods for the nondestructive evaluation of bonded 
aeronautical assemblies 

Keywords:  Laser ultrasonics; Bonded assemblies; NDE; Semi-analytic modeling; ZGV 

Abstract: Currently, the weight lightening of 
aircraft structures is a major industrial issue in 
order to reduce engine fuel consumption and 
greenhouse gas emissions. Adhesive bonding 
addresses this need for lighter structures and 
has many advantages compared to more 
conventional techniques such as welding or 
riveting. Indeed, this method does not require 
the addition of rivets and allows to assemble 
composite materials with a high strength-to-
weight ratio. However, to date there is no 
nondestructive evaluation (NDE) method to 
certify the mechanical strength of bonded 
assemblies. Overcoming this last technological 
limitation would enable a significant deployment 
of adhesive bonding in the industry.  
The objective of this thesis is to develop laser  

 
 
 

ultrasonic methods for the NDE of bonded 
assemblies. This optical technique to generate 
and detect ultrasound in a material has the 
advantage of being fully contactless. A semi-
analytic model to simulate the propagation of 
laser generated waves in a multilayer structure 
is first presented. Then, two control methods 
which can experimentally discriminate between 
industrial bonds with and without defects are 
introduced. The first one concerns the 
resolution of an inverse problem using 
synthesized plane waves reflected from the 
bonding. The second one is based on the 
attenuation of local resonances of zero-group-
velocity (ZGV) Lamb modes. These two 
methods allow the identification of quantitative 
parameters to distinguish structural bonds of 
different mechanical strengths. 
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