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Abstract

This dissertation deals with the approaches for optimization and reliability analysis
of electrical machines modelled by the �nite element method. The �nite element
method is the most sophisticated tool to model the electromagnetic phenomenon.
However, it is computationally expensive. Thus, its usage for optimization and relia-
bility analysis (iterative processes) should be made with caution since only a limited
number of evaluations of the model can be tolerated. Furthermore, the impact of the
manufacturing process on the electrical machines is scarcely studied in the literature.
The integration of this aspect in the design phase is one of the contributions of this
thesis alongside the main contribution, which is the development and comparison of
optimization approaches for electrical machines.

We present the approaches adapted to the subject and develop new ones. On
the one hand, the �nite element model can be seen as a "black-box" for which we
develop a non-intrusive approach based on Kriging meta-models. On the other hand,
we consider an intrusive approach as we look inside the "black-box," we upgrade
the model to provide the derivatives of the quantities of interest. The derivatives
are essential to some optimization and reliability analysis tools. They are computed
e�ciently using the adjoint variable method. Finally, the methods are compared to
give insight into the advantages and the shortcomings of each of them.

Lastly, a real case study is considered; it consists of studying the impact of the
manufacturing process on a claw-pole machine manufactured by Valeo. From the
production line, machines are withdrawn to measure their dimensions and charac-
terize their deviation from the nominal one. Then a statistical analysis is conducted
to assess the reliability and impact on the performances.
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Résumé

Ce mémoire aborde les approches d'optimisation et d'analyse de la �abilité des ma-
chines électriques modélisées par la méthode des éléments �nis. La méthode des
éléments �nis est l'outil le plus sophistiqué pour modéliser le phénomène électro-
magnétique. Cependant, elle est coûteuse en temps de calcul. Ainsi, son utilisa-
tion pour l'optimisation et l'analyse de �abilité (processus itératifs) doit être faite
avec prudence car seul un nombre limité d'évaluations du modèle peut être toléré.
De plus, l'impact du processus de fabrication sur les machines électriques est peu
étudié dans la littérature. L'intégration de cet aspect dans la phase de conception
est l'un des apports de cette thèse aux côtés de la principale contribution, qui est
le développement et la comparaison des approches d'optimisation pour les machines
électriques.

Nous exposons les approches adaptées au sujet de la thèse et en développons de
nouvelles. D'une part, le modèle d'éléments �nis peut être considéré comme une
"boîte noire" pour laquelle nous développons une approche non intrusive basée sur
les méta-modèles de Krigeage. D'autre part, nous considérons une approche intru-
sive car nous regardons à l'intérieur de la "boîte noire", nous améliorons le modèle
pour fournir les dérivées des quantités d'intérêt. Les dérivées sont essentielles à cer-
tains outils d'optimisation et d'analyse de �abilité. Elles sont calculées e�cacement
en utilisant la méthode de la variable adjointe. En�n, les méthodes sont comparées
pour donner un aperçu des avantages et des inconvénients de chacune d'entre elles.

En�n, une étude de cas réel est abordée; elle consiste à étudier l'impact du
procédé de fabrication sur la machine à gri�es fabriquée par Valeo. Sur la chaîne de
production, les machines sont prélevées pour mesurer leurs dimensions et caractériser
leur écart par rapport aux dimensions nominales. Ensuite, une analyse statistique
est menée pour évaluer la �abilité et l'impact sur les performances.
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Résumé substantiel

Introduction

La méthode des éléments �nis est l'outil le plus sophistiqué pour modéliser le
phénomène électromagnétique. Cependant, elle est coûteuse en temps de calcul.
Ainsi, son utilisation pour l'optimisation et l'analyse de �abilité (processus itératifs)
doit être faite avec prudence car seul un nombre limité d'évaluations du modèle peut
être toléré. De plus, l'impact du processus de fabrication sur les machines électriques
est peu étudié dans la littérature. L'intégration de cet aspect dans la phase de con-
ception est l'un des apports de cette thèse aux côtés de la principale contribution,
qui est le développement et la comparaison des approches d'optimisation pour les
machines électriques.

Etat de l'art

Ce chapitre examine les algorithmes d'optimisation et la méthode des éléments �nis
pour mettre en perspective les contributions de cette thèse. Tous les algorithmes
d'optimisation ne sont pas adaptés aux modèles à base d'éléments �nis en rai-
son du coût de calcul de ces modèles. Nous présentons les principales catégories
d'algorithmes d'optimisation et leurs extensions au contexte de l'optimisation sous
incertitudes. Une brève présentation de la modélisation électromagnétique des ma-
chines électriques utilisant la méthode des éléments �nis est également présentée.
Deux approches adaptées au sujet de cette thèse sont sélectionnées pour être inves-
tiguées.

Méthode non-intrusive

Ce chapitre présente une approche non-intrusive dans laquelle le modèle éléments
�nis est considéré comme une boîte noire, et un modèle de substitution est créé en
évaluant le modèle coûteux en quelques points, puis en utilisant le modèle de sub-
stitution peu coûteux pour l'optimisation et la quanti�cation des incertitudes. Nous
présentons une introduction approfondie de l'optimisation à l'aide de méta-modèles
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et des dé�s posés par la mise en place de "bons" méta-modèles et la manière dont on
peut évaluer leur qualité, puis nous proposons une nouvelle stratégie d'exploitation
des modèles de krigeage.

Méthode intrusive

Ce chapitre examine une approche intrusive pour calculer les dérivés d'un modèle à
éléments �nis. Dans cette approche, la majeure partie du travail est e�ectuée sur le
modèle plutôt que sur l'algorithme. Les dérivées sont utilisées par les algorithmes
d'optimisation et les méthodes de quanti�cation de l'incertitude les plus e�caces.
Nous présentons la méthode de la variable d'état adjointe et la façon dont elle peut
être obtenue à partir d'un code éléments �nis. La méthode de la variable adjointe
permet de calculer e�cacement les dérivées à partir du code d'éléments �nis.

Benchmark et comparaisons

Ce chapitre est consacré aux tests numériques des approches développées dans le
cadre de l'optimisation. Pour ce faire, nous abordons deux benchmarks bien connus
traités par les chercheurs de la communauté électromagnétique. Il s'agit des cas
tests issus des workshops TEAM (Testing Electromagnetic Analysis Methods) [1] [2].
Nous présentons une comparaison entre les approches étudiées et d'autres approches
pour l'optimisation des dispositifs électromagnétiques.

Machine à gri�es

Ce chapitre traite l'impact des imperfections du processus de fabrication sur les per-
formances de la machine à gri�es. Nous étudions principalement les imperfections
géométriques. Dans ce chapitre, nous présentons la machine à gri�es et son mode
de fonctionnement puis nous introduisons la procédure de métrologie adoptée pour
les mesures métrologiques de la machine électrique. Ces mesures sont analysées, et
la variabilité de la géométrie de la machine électrique due au processus de fabrica-
tion est modélisée. Ensuite, un modèle éléments �nis paramétré de la machine est
présenté. Puis, la propagation de l'incertitude utilisant la variabilité caractérisée et
le modèle de la machine est réalisée en utilisant la simulation de Monte Carlo avec
le modèle de Krige.
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Conclusion

Cette thèse traitait des approches d'optimisation et d'analyse de la �abilité des ma-
chines électriques modélisées par la méthode des éléments �nis. La méthode des
éléments �nis est l'outil le plus sophistiqué pour modéliser les phénomènes électro-
magnétiques dans les machines électriques. Elle permet de modéliser �nement les
champs électromagnétiques dans le domaine étudié et de manipuler des géométries
complexes, comme la machine à gri�es. Cependant, elle est coûteuse en temps de
calcul à cause des matériaux non linéaires, des géométries 3D, de la dépendance au
temps. Par conséquent, son utilisation dans le cadre de l'optimisation et de l'analyse
de �abilité (processus itératifs) doit être faite avec précaution, car seul un nombre
limité d'évaluations de l'outil de simulation peut être toléré.

Les algorithmes d'optimisation générale ne peuvent pas être appliqués tels quels
; certaines modi�cations indispensables sont nécessaires pour les rendre utilisables
pour l'optimisation des machines électriques. Dans le premier chapitre, nous avons
présenté la littérature sur les algorithmes d'optimisation, et nous avons discuté de
leur adaptabilité au sujet de cette thèse. À partir des di�érentes catégories, deux
approches ont été envisagées, qui dépendent des capacités du modèle utilisé.

1. Une approche non-intrusive basée sur le méta-modèle de Krigeage

2. Une approche intrusive basée sur la méthode de la variable adjointe

L'approche non-intrusive utilisant des modèles de substitution est largement util-
isée dans le contexte de l'optimisation de modèles coûteux. De nombreux chercheurs
ont souligné les di�cultés que pose l'utilisation d'une telle stratégie. Dans cette
thèse, nous avons mis l'accent sur certains des problèmes très connus et proposé une
nouvelle méthodologie d'utilisation des méta-modèles et la manière d'accélérer les
temps d'optimisation. Nous avons souligné les inconvénients de l'approche conven-
tionnelle, qui consiste à faire tenir un seul méta-modèle sur l'ensemble de l'espace de
conception et à l'enrichir séquentiellement à l'aide de critères de remplissage. Nous
avons proposé une nouvelle stratégie qui consiste à construire de nombreux méta-
modèles sur des régions spéci�ques de l'espace de recherche Ensuite, de manière
itérative, on élague les régions qui ne sont pas prometteuses. Ce processus explore
tout l'espace de recherche ; il nous permet donc de produire des solutions �ables.

D'autre part, pour l'approche intrusive, nous proposons comment calculer les
dérivés d'un modèle d'éléments �nis. La plupart des travaux ont été e�ectués sur le
modèle plutôt que sur l'algorithme (nous avons utilisé l'algorithme SQP pour cette
thèse). Nous avons présenté la méthode de la variable adjointe et la manière dont le
gradient peut être dérivé d'un code FEM. Nous avons développé une méthode e�cace
pour calculer les dérivées des sensibilités de forme pour les paramètres géométriques,
qui sont essentiels pour le calcul du gradient. La méthode de la variable adjointe a
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été comparée à la méthode des di�érences �nies pour valider et mettre en évidence
son e�cacité en termes de précision et de temps de calcul.

Pour la comparaison entre des approches intrusives et non-intrusives pour l'optimisation
des dispositifs électromagnétiques à l'aide de la méthode des éléments �nis, nous
avons traité deux problèmes de référence bien connus de la littérature connus sous
le nom de TEAM Workshop : les problèmes 22 et 25 [1] [2]. Nous avons utilisé
deux métriques pour la comparaison, la première est la qualité de la solution, et la
seconde est le coût de calcul.

En termes de performances, l'approche intrusive surpasse les autres stratégies
pour les deux cas de test ; cela a été possible grâce au calcul du gradient en util-
isant la méthode de la variable adjointe. Cela améliore considérablement la qualité
des solutions mais s'accompagne d'un coût de manipulation intrusive du code de
la méthode des éléments �nis. L'approche non-intrusive demeure une excellente
alternative en termes de mise en ÷uvre et de qualité des solutions. L'approche
développée a permis de surmonter certains des problèmes très connus qui se posent
lors de l'utilisation de méta-modèles pour l'optimisation.

Dans le dernier chapitre, nous avons présenté une démarche complète pour ef-
fectuer une analyse de �abilité de la machine électrique ; nous avons commencé par
la présentation de la machine électrique. Ensuite, nous avons présenté les di�érentes
mesures métrologiques qui ont été e�ectuées pour caractériser la variabilité de sa
forme. Puis, nous avons présenté un modèle éléments �nis paramétrique de la ma-
chine et nous avons exposé comment la mesure peut être prise en compte dans le
modèle numérique.

L'évaluation numérique de l'impact des variables géométriques sur les perfor-
mances de la machine a été réalisée en utilisant une approche de méta-modèle pour
réduire le coût de calcul. La variabilité des performances a ensuite été caractérisée,
et les variables qui in�uencent cette variabilité ont également été identi�ées.

En résumé, les objectifs de cette thèse ont été atteints. Une comparaison des
approches appropriées pour l'optimisation des machines électriques a été e�ectuée.
Les avantages et les inconvénients de chaque méthode ont été mis en évidence.

L'intégration de l'analyse de �abilité dans la phase de conception a été évaluée
sur un cas test réel (une machine à gri�es). L'impact du processus de fabrication sur
la géométrie de la machine a été étudié, et une analyse quantitative a été réalisée.
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Introduction

The societal context

Electri�cation is gaining momentum. If the early twentieth century saw electricity
revolutionized our daily lives, especially in static applications, the beginning of the
twenty-�rst century sees electricity also profoundly modify all embedded applica-
tions. The Electricity Fairy is a very convenient way of transporting and converting
energy. The tremendous advances in power electronics has led to new solutions for
the vast majority of energy conversion systems. Not to mention, for example, the
signi�cant steps are taken with all-electric cars, e.g. Tesla, or battery-powered air-
crafts, e.g. Airbus E-FAN, making them accessible for mass usage. Nevertheless,
they are still currently limited by the storage and charging capacities of much less
energy than oil. Electricity spreads actively inside systems throughout the energy
conversion chain of embedded applications.

The car is becoming hybrid; an electric traction chain assists the internal com-
bustion engine. Naval propulsion is increasingly done by pods containing electrical
machines powered by diesel generators. Hydraulic and pneumatic energies are being
progressively replaced in aircraft by electric power, causing high expansion of the
power of the alternators driven by the engines of the plane (1.4MVA for the Boeing
787 against 300kVA for A330).

The gains are signi�cant in terms of simplicity of installation, modularity, main-
tenance, and source of failure (an electric cable never leaks). Electric actuators
multiply for the sole purpose of comfort: adjusting the electric seats, the electric
window of a car, or motorization of rear-view mirrors.

In all these more electrical systems, the ends of the electromechanical chain are
often electrical machines; either an actuator that generates electricity while driven
by an internal combustion engine or an actuator to generate mechanical energy that
is used to achieve the �nal function. These electrical machines are mostly rotating
machines. In this context, their improvement is a vital issue in terms of weight,
bulk, e�ciency, manufacturing cost, reliability and recyclability.

Furthermore, air pollution has become an urgent problem of environmental san-
itation, a�ecting both developed and developing countries. Increasing amounts of
potentially harmful gases and particles are released into the atmosphere, damaging
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human health and the environment. They also undermine the long-term resources
needed for the sustainable development of our planet.

Studies in France and around the world have shown that the share of transport
in total emissions of air pollutants has increased steadily over the last few years.
Some countries have taken initiatives to promote the use of clean or low-emission
vehicles.

The reduction of emissions requires a signi�cant e�ort in improving the e�ciency
of all energy consumers in vehicles and especially auxiliaries such as air conditioning
and alternator. The improvement of the performances of electrical devices in cars,
which this thesis examines, is in line with this spirit.

The industrial context

The automotive market is very competitive, which drives automakers to improve
their products continually. As a result, electricity and electronics are of great im-
portance in today's automobiles. The electri�cation of the passenger compartment
enhances the comfort and the pleasure of driving and riding the vehicles. Besides,
cars are becoming safer thanks to new electrical devices that improve active safety
(anti-lock braking system) and passive safety (airbags). Also, the replacement of
mechanical or hydraulic devices, such as power steering, by electric actuators can
reduce costs and be more comfortable to control.

The increasing demand for electricity in cars is due to the use of these electronic
devices. Thus requiring a more signi�cant on-board production of this energy from
the alternator on which the constraints necessary for the functioning of the electrical
systems, mainly constraints of e�ciency, compactness and low-cost manufacturing,
will be exercised.

In this context, the company Valeo has performed several studies on claw-pole al-
ternators (Figure 1). The overall goal of these studies was to design and optimize the
machine to improve speci�c performances (Power, noise, . . . ) while ensuring a low
cost and compactness. For the designer to reach these goals, it is necessary to have
models that address most of the machine's aspects (electrical, thermal, magnetic,
mechanical). Nevertheless, these models are generally expensive in computational
time, requiring the solution of large system of algebraic equations. Thus, optimizing
the machine with these models is cumbersome and takes a tremendous amount of
time.

Additionally, most of these studies did not include uncertainties introduced by
the manufacturing process. In the design phase, the variability of the electrical ma-
chine geometry and material properties has not been taken into account. This vari-
ability can impact electrical machine performances and can lead to non-compliant
products. Thus, optimization and uncertainty quanti�cation methodologies are of
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Alternator

Figure 1: Position of Claw-pole alternator and detailed view.

interest for Valeo to improve the design process by including the manufacturing
process constraints.

The complexity of the design

With the ever-growing complexity of products, modelling and simulation allow us to
create an all-digital prototype, to understand and optimize the critical performances
in order to ensure that the product will ful�ll the speci�cations correctly during its
life cycle. Therefore, the usage of high-�delity models has become mandatory.

A model is regarded as representative of a system or a phenomenon. It is a
�ctitious system, which assembles equations associated with particular physical hy-
potheses to draw speci�c conclusions. A model is oriented; from input variables, it
provides a result. To estimate the e�ect of the causes, in the same way, the inverse
model is the one that reverses this causality.

A model is ideal for design when its inversion is unique; if a single cause produces
the desired e�ect. Indeed, the reversal makes the development faster and less cum-
bersome since the work is done only once. Nevertheless, the models are generally
not invertible, and there are many degrees of freedom that allow meeting the same
speci�cations. Optimization tools can be used to improve a design whose model is
not invertible.

Using optimization tools early in the design phase of the development cycle
dramatically increases the device potential for improvement. If the designer uses
the optimization tools downstream in the development cycle, the main choices will
already be made, and the contribution of the optimization will remain moderate.
This approach is still not widespread at Valeo, where optimization is used later in
the development cycle. Thus, there is a real need for design methodologies to deal
with the complexity of the models.

THE COMPLEXITY OF THE DESIGN 3



INTRODUCTION

The computational cost

To be able to model the physics related to the studied phenomena, numerical meth-
ods are used; one of the famous and the most robust ones is the Finite Element
Method, i.e. FEM. It is a method that enables us to determine an approximate so-
lution on a spatial domain by calculating a �eld (of scalars, vectors) corresponding
to the solution of the given equation.

The method consists of splitting the space domain into small elements, also called
meshing, and looking for a simpli�ed formulation of the problem on each element,
transforming the system of any equations into a system of equations. The latter is
represented by a matrix. The matrices for all the elements are assembled, forming
a large matrix; the resolution of this global system gives the approximate solution
to the problem.

However, the time needed for a FEM simulation depends on the number of small
elements. Figure 2 shows the evolution of the computational time versus the number
of elements that compose a studied domain. It is worth noting that the data are
retrieved by running a �nite element code that we have implemented, simulating an
electromagnetic device for di�erent element sizes. We can see that the computational
time evolves polynomially to the number of elements.

101 102 103 104 105 106
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Figure 2: Computational time versus the number of elements

The claw-pole machine has a very complex geometry; consequently, a signi�cant
number of elements are needed (around two million) to be able to model its behaviour
�nely. Therefore, the time needed for the simulations is considerable. The existence
of nonlinearity or a dynamic behaviour in the physical phenomena can multiply
the computational time considerably. The designer should take this feature into
account since it will signi�cantly impact the duration of the design phase by using
methodologies that are well-suited.
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The manufacturing process

The manufacturing processes, because of their imperfections, lead to dispersions
on the characteristics of the products. In the case of electrical machines, these
imperfections can impact its geometry and properties.

These dispersions induce "variabilities" on quantities of interest and the perfor-
mances for the product. For example, it becomes crucial for an automobile alternator
to study the dispersion in�uence on the output current and e�ciency. This kind of
study aims to ensure that the product ful�lls the speci�cations contracted with the
customer.

The classical approach based on a deterministic model (in the sense that the
model entries are entirely known) to address this problem is no longer su�cient. It
is necessary to consider the quantities of inputs as uncertain quantities and to place
oneself within the conceptual framework of uncertainties.

The uncertainty in the manufacturing process can be reduced by improving the
production lines; however, this will induce a high cost. One approach consists of
knowing the uncertainty on the geometry on the material process and predict the
impact of the uncertainty on the performances of the product. This approach will
enable us to control the in�uence of the variability of the geometry or the material
characteristics to see if the design variables respect the speci�cations and if their
variability is not too high. If it is the case, this approach will also enable to determine
which parameters on the geometry or the material behaviour have the most impact
on the variability of performances, therefore to act on these parameters in order
to have a more robust product or to act on the manufacturing process in order to
reduce the variability of these in�uential parameters.

Thesis organization

The remainder of this dissertation is organized as follows.

Chapter 1 reviews optimization algorithms and the �nite element method to put
the contributions of this thesis into perspective. Not all optimization algorithms are
adapted for �nite element models because of the computational cost of these models.
We present the main categories of optimization algorithms and their extensions to
the context of optimization under uncertainty. A brief presentation electromagnetic
modelling of the electrical machines using the �nite element method is also presented.
Two approaches adapted to the subject of the thesis are selected to be investigated.

Chapter 2 deals with a non-intrusive approach where the �nite element model is
considered as a black-box, and a surrogate model is �t by evaluating the expensive
model at few points, then, use the cheap surrogate model for optimization and
uncertainty quanti�cation. We present a thorough introduction of optimization
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using meta-models and some of the challenges of �tting "good" meta-models and
how to assess their quality, then we propose a novel strategy for exploiting Kriging
models.

Chapter 3 examines an intrusive approach to compute the derivatives from a
�nite element model. In this approach, most of the work is done on the model rather
than the algorithm. The derivatives are used by the most e�cient optimization
algorithms and uncertainty quanti�cation methods. We present the adjoint state
variable method and how it can be derived from a �nite element code. The adjoint
variable method enables to compute the derivatives e�ciently from the �nite element
code.

Chapter 4 is dedicated to numerical tests of the developed approaches in the
context of optimization. For this task, we address two well-known benchmarks
treated by electromagnetic community researchers. They are ones of the TEAM
(Testing Electromagnetic Analysis Methods) workshops [1] [2]. We present a com-
parison between the investigated approaches and other approaches for optimizing
electromagnetic devices.

Chapter 5 presents the impact of manufacturing process imperfections on the
performance of the claw-pole machine. We mainly study geometry imperfections.
In this chapter, we present the claw-pole machine and its operating mode then
introduce the metrology procedure adopted for the measurement of the electrical
machine. These measurements are analyzed, and the variability of the geometry of
the electrical machine induced by the manufacturing process is modelled. After, a
parametrized �nite element model of the machine is presented. Next, the uncertainty
propagation using the variability characterized and the model of the machine is
conducted employing Monte Carlo simulation assisted by Kriging meta-model.

The �nal conclusions and considerations for future work are given in the last
chapter.

6 THESIS ORGANIZATION



Chapter 1

Literature Review

As described in the introduction, one can use optimization tools and models to im-
prove electrical machines' design. One can categorize their use by the type and how
they are integrated into the design phase. This chapter begins by brie�y describing
several deterministic optimization algorithms. The second section reviews how to
incorporate uncertainty in an optimization process. The third section focuses on the
modelling of electrical machines modelled by �nite element method. The review of
optimization tools and �nite element method is presented so that the contributions
of this thesis are put into perspective.

1.1 Deterministic Optimization

Optimization and especially numerical optimization have had a signi�cant boost in
the last �fty years with computers' advent. Optimization is a design tool that helps
designers identify the optimal solutions from several possible choices or an in�nite
set of choices. Optimization is increasingly applied in industry since it provides
engineers with a reasonable and �exible means to identify optimal designs before
physical deployment. It is often the last step of computational analysis. First,
one should start by studying the physical phenomenon, describing it by equations,
studying these equations, and having shown that they can be solved with a computer.
Next, identifying the objective, the variables, and the constraints that should be
satis�ed. Then, optimize the system by adjusting the variables to change the solution
in the desired direction.

An objective is a measure of the performance of the system that we want to
minimize or to maximize. In electrical machines, we may want to maximize the
performances or minimize production cost, or both.

The variables are the parameters of the system for which we want to �nd
values. The variables may be the parameters that de�ne the geometry or material
properties of the electrical machine.
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The constraints are the functions that de�ne the allowable values for the vari-
ables and the requirements that should be satis�ed for the system to be acceptable.

Mathematically, one can express any optimization problem as

min
p

f(p)

s.t. gi(p) ≤ 0, i = 1 . . . nc (1.1)

where p = (p1, p2, . . . , pnv) are the variables to be determined, f(p) is the objective
function to be minimized and gi(p) are nc constraints to be satis�ed. By convention,
the standard form de�nes a minimization problem. A maximization problem can be
treated by negating the objective function. Likewise for the constraints, in the case
of

� g(p) ≥ 0 then, it is transformed to −g(p) ≤ 0

� g(p) ≤ r where r is a real number, then, it becomes g(p)− r ≤ 0

� g(p) = 0 can be transformed to two constraints g(p) ≤ 0 and g(p) ≥ 0.
However, some algorithms handle equality constraints naturally.

the problem can be written in the standard form. The optimization problem should
be carefully de�ned based on the performances required and the corresponding con-
straints that are given by a model.

Model
Optimization
algorithm

f(popt)

p

g(p)

f(p)

Figure 1.1: General process of optimization.

Figure 1.1 shows the general framework of an optimization process; an opti-
mization algorithm predicts where to evaluate the model to solve the optimization
problem. It is an iterative process of model evaluation; The algorithm repeatedly
evaluates the model at a variable and gets the values of the objective function and
the constraints at this variable. Then, the optimization algorithm uses this infor-
mation to approach the optimal solution popt.

In this section, we present a brief overview of the formulation of optimization
problems and the algorithms that enable us to solve them with insight into the pros
and cons of each of them.

1.1.1 Optimization problems formulation

As noted before, an essential step in the optimization process is classifying the opti-
mization problem, since algorithms for solving optimization problems are dedicated
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to a particular type of problems. Indeed, most algorithms developed are designed
to solve speci�c types of problems and are not very e�cient for all di�erent types.
Here, we provide insights on how optimization problems are classi�ed.

A One vs many objectives

A single objective function de�nes single-objective problems. Multi-objective prob-
lems exist when a compromise is to be sought between several con�icting objectives.
For example, optimizing an electrical machine might involve minimizing bulk while
maximizing performances. In practice, problems with multiple objectives may be
reformulated as single-objective problems by either applying a weighting coe�cient
on the di�erent objectives or by replacing some of the objectives with constraints.
Nevertheless, there exist some dedicated algorithms that solve multi-objective prob-
lems.

B Unconstrained vs constrained problems

It is vital to identify problems where constraints exist on the variables. Constrained
optimization problems result from applications in which there are constraints on the
variables. The constraints on the variables can vary from simple bounds or systems
of equalities and inequalities to a more complex nonlinear relationship among the
variables. Constrained optimization problems can be reformulated and expressed
as unconstrained ones by adding a penalty term in the objective function. Natu-
rally, problems with constraints are more complicated to solve and use dedicated
algorithms.

C Continuous vs discrete problems

In some cases, the variables are discrete, most often in the form of integers or
binaries. The optimization problem is said to be discrete. On the contrary, in
continuous optimization problems, variables can take any real value. Continuous
optimization problems are usually easier to solve. An optimization problem mixing
continuous variables and discrete variables is called a mixed-integer optimization
problem.

Continuous optimization problems are more accessible to solve than discrete
ones; the values of the objective function and constraint functions at a point x can
be used to deduce information about points in a neighbourhood of x. However,
advancements in computing technology have dramatically increased the size and
complexity of discrete optimization problems that can be solved e�ciently. Contin-
uous optimization algorithms are necessary for discrete optimization because many
discrete optimization algorithms generate a sequence of continuous subproblems.

1.1. DETERMINISTIC OPTIMIZATION 9
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D Linear vs nonlinear problems

Linear optimization deals with optimization problems whose data, i.e. objective
function and constraints, are linear functions. On the opposite side, nonlinear op-
timization copes mainly with optimization problems where the objective function
or the constraints or both are nonlinear functions. Nonlinear problems are a com-
plicated matter in the �eld of optimization because it is challenging to converge to
the best solution. Quadratic optimization is a particular case of nonlinear optimiza-
tion where the objective function is quadratic, and constraints are linear functions.
Quadratic optimization is widely used to solve nonlinear problems by solving a se-
quence of quadratic problems.

E Explicit vs black-box models

Black-box optimization models are models for which the functions de�ning the ob-
jective and constraints are complex, di�cult to evaluate, or their analytical expres-
sions are unknown. For most industrial problems, this is a sophisticated computer
program that is often inaccessible. They are exploited by analyzing the responses
to given inputs; they are considered as black-boxes without any hypothesis on the
properties of the functions. The classical mathematical methods based on rigorous
hypotheses such as continuity, di�erentiability, convexity are not straightforwardly
applicable in black-box optimization.

Thus, several algorithms designed to solve this type of problems have been de-
veloped that do not require any hypothesis on the function. The use of black-box
models, as well as the application of suited algorithms, made it possible to solve
challenging optimization problems. Nevertheless, there still some challenging as-
pects that make black-box optimization a thriving research area.

F Intuitions on the classi�cations of optimization problems

It is worth noting that there are no problems that are easier to solve than others;
for example, there are some continuous linear problems that are more di�cult to
solve than nonlinear problems.

Nevertheless, there are some problems for which we can guarantee the optimality
of the solution, e.g. quadratic problems; that is to say, the solution found is a global
one. Generally, we approach hard problems with "many" of these guaranteed opti-
mality problems, such as approaching nonlinear problems with a series of quadratic
problems. These approximations generally lead to acceptable solutions.
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1.1.2 Optimization algorithms

The objective of this section is to present di�erent types of optimization algo-
rithms. We will present �ve classes of algorithms: derivative-based, heuristic-based,
population-based algorithms, exact algorithms and approximation-based algorithms.
In every class, we can �nd many algorithms that exploit di�erent ideas.

To simplify the presentation of algorithms, we focus on the presentation of single
objective unconstrained optimization algorithms, as shown in equation (1.2); then,
we present possible extensions to other types of problems such as constrained, multi-
objective and black-box problems.

min
p
f(p) (1.2)

A Derivative-based algorithms

As the name suggests, this class of algorithms needs the derivatives of the objective
function, mainly the �rst derivative, i.e. gradient ∇f , and sometimes even the
second derivative, i.e. hessian H.

∇f(p) =

(
∂f

∂p1

,
∂f

∂p2

, . . . ,
∂f

∂pnv

)
(1.3)

H(p) = [Hi,j(p)] =

[
∂2f

∂pi∂pj

]
ij

(1.4)

It should be noted that whenever the derivatives are available and are easy
to compute, a derivative-based method should be preferred. A typical algorithm
gradually improves the estimate of the solution step by step. It needs to decide
at each iteration the location of the new estimate. However, it has only very local
information about the landscape of the objective function � the current function
value and the derivatives. The derivatives express the slope of the function at a
point. Hence, it seems natural that the derivative information is used to de�ne a
search direction, and the algorithm searches along this direction for a new (better)
point. Derivative-based algorithms are summarized in the algorithm below.

The designer chooses a starting point p0 at iteration k = 0, the algorithm ex-
ploits the derivatives to �nd the "best" direction d0 and the step α0. Consequently,
the next iterate p1 is found, and the algorithm repeats the same process until con-
vergence.

The main di�erences among derivative-based algorithms are :

� How to look for the direction dk?

� What is the step length αk to take in direction dk?

1.1. DETERMINISTIC OPTIMIZATION 11
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Algorithm 1: Derivative-based algorithms

Choose p0 and initialize k = 0;
while Not converged do

Find a descent direction dk;
Determine a step length αk that reduces the function f su�ciently;
Compute the new iterate pk+1 = pk + αkdk;
Set k = k + 1;

end

� What are the convergence criteria that enable to stop the algorithm?

The direction dk has to be a descent direction, that is to say, the function f is
decreasing in the direction dk, mathematically, it is expressed as

f(pk + εdk) < f(pk)

for a su�ciently small ε or equivalently dk
T∇f(pk) < 0.

The step length αk is also a key ingredient for the success of the algorithm. In
the literature, it is referred as line search. The line search consists of determining
the step αk to be taken along the descent direction dk. It is often chosen in order
to verify the following two conditions:

1. the function f must decrease su�ciently along the descent direction;

2. the step αk should not be too small in order to avoid slowing down the con-
vergence.

To �nd the optimal step length (neither too small nor too big) an exact line
search can be performed by minimizing the following problem.

min
α≥0

f(pk + αdk) (1.5)

However, this type of line search generally requires a lot of computation time
without signi�cantly improving the convergence of the algorithm. The inexact
line search provides an e�cient way of computing an acceptable step length αk

that reduces the objective function su�ciently rather than minimizing the objective
function exactly [3]. One of the most famous inexact line search methods is the
Wolfe conditions [4].

A step length αk is said to satisfy the Armijo and Wolfe conditions if the following
two inequalities hold:

1. f(pk + αkdk) ≤ f(pk) + c1α
kdk

T∇f(pk)
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2. −dkT∇f(pk + αkdk) ≤ −c2d
kT∇f(pk)

with 0 < c1 < c2 < 1. c1 is usually chosen to be quite small, e.g. 10−4, while c2 is
much larger, e.g. 0.9.

Both conditions can be interpreted as providing an upper and lower bound on the
admissible step length values. Iterative algorithms are used to solve the inequalities;
usually, the �rst value of αk that veri�es both inequalities is chosen.

All line search methods are carried out along descent directions. Di�erent ways
to determine these directions are discussed: the gradient descent, the conjugate
gradient method, Newton's method and its generalization, quasi-Newton methods.

Gradient descent
This method uses the opposite of the function gradient as a descent direction

dk = −∇f(pk) (1.6)

This direction is obviously a descent direction because we have

dk
T∇f(pk) = −||∇f(pk)||2 < 0

More importantly, it is the steepest descent direction at position pk.

The gradient descent method can take many iterations to compute a local min-
imum, and the line search can also be very long. Other methods, such as conjugate
gradient, can be good alternatives. Generally, such methods converge in fewer iter-
ations, but the cost of each iteration is higher [5].

Conjugate gradient
Conjugate gradient construct the descent direction by adding the opposite of the

gradient to the previous descent direction multiplied by a real scalar βk

dk = −∇f(pk) + βkdk−1 (1.7)

At the �rst iteration, there is no previous direction then the algorithm takes
simply the opposite of the gradient [6]. Several methods exist for calculating the
term βk+1, among them the Polack-Ribière method emerges [7].

βk =
∇f(pk)T (∇f(pk)−∇f(pk−1))

∇f(pk−1)T∇f(pk−1)
(1.8)

An additional issue arises for this method to ensure that dk is a descent direction,
i.e. dk

T∇f(pk) < 0

dk
T∇f(pk) = −||∇f(pk)||2 + βdk−1T∇f(pk) (1.9)

Equation (1.9) is negative if dk−1T∇f(pk) = 0. To satisfy this condition, an
exact line search is necessary. Thus, the method becomes costly.
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Newton method
Newton method constructs the descent direction based on a second-order Taylor

approximation of around the iterates [8]. The second Taylor expansion of f around
pk

f(pk + dk) ≈ f(pk) + dk
T∇f(pk) +

1

2
dk

T
H(pk)dk (1.10)

The minimum of the approximation can be found by setting the �rst derivative
to zero.

0 ≈ ∇f(pk) +H(pk)dk (1.11)

Then, the Newton descent direction can be deduced

dk = −H(pk)−1∇f(pk) (1.12)

This direction is a descent direction if H(pk) is a de�nite positive matrix.

Newton's method can guarantee convergence to local optima under mild assump-
tions, e.g. convexity, positive de�niteness, . . . . For the case where the hessian H
of the function is not positive de�nite, the algorithm may diverge. Thus, another
category of algorithms was developed to cope with this drawback, i.e. quasi-Newton
methods.

Quasi-Newton method
The quasi-newton method has the same iterates as Newton's method except for

the hessian, which is not the actual hessian of the objective function but an approx-
imation of it [9]. This method is e�cient when the actual hessian is not de�nite
positive, or it is not very easy to compute.

dk = −Bk−1∇f(pk) (1.13)

where Bk is an approximation of the hessian. There are di�erent methods to approx-
imate the hessian the most famous ones is BFGS for Broyden - Fletcher - Goldfarb
- Shanno [8]. The approximation is written as

Bk+1 = Bk +
ykyk

T

ykT sk
− Bksksk

T
Bk

skTBksk
(1.14)

where yk = ∇f(pk+1) −∇f(pk) and sk = pk+1 − pk. It has been proved that Bk+1

is de�nite positive if Bk is of the same nature and yk
T
sk > 0. Generally, B0 is set

equal to the identity matrix.
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Extension to constrained problems
In constrained optimization, the general aim is to transform the problem into

an easier subproblem that can then be solved and used as the basis of an iterative
process. The general idea relies on the solution of the Karush-Kuhn-Tucker (KKT)
conditions [10][11]. The KKT enables the transformation of the constrained problem
to an unconstrained one by including KKT multipliers (equivalent to the Lagrange
multipliers for equality constraints).

To recall, the constrained problem is written as

min
p
f(p)

s.t.gi(p) ≤ 0, i = 1 . . . nc (1.15)

Using KKT, it can be transformed

min
p,λ

L(p, λ) = f(p) +
nc∑
i=1

λigi(p) (1.16)

where L is called the Lagrangian function and λ are the KKT multipliers.

The KKT equations are necessary conditions for the optimality of constrained
optimization problems and stated as follows.

1. Stationarity ∇L(p, λ) = 0

2. Feasibility λi ≥ 0 and gi(p) ≤ 0 for all i = 1, . . . , nc

3. Complementary slackness λigi(p) = 0

The optimal solution should satisfy these conditions. These conditions are nec-
essary but not always su�cient, and additional information is required. The neces-
sary conditions are su�cient if the objective function and the constraints are convex
functions. Thus, for solving complex nonlinear problems, many algorithms solve
successive "simple" problems for which the KKT condition are su�cient to prove
optimality. From which, we will detail sequential quadratic programming (SQP),
one of the most robust derivative-based algorithms for nonlinearly constrained op-
timization problems.

SQP The SQP method can be viewed as a generalization of quasi-Newton's
method for constrained optimization [12][13]. It �nds a step away from the current
point by minimizing a quadratic model of the problem.

min
dk
f(pk) + dk

T∇f(pk) +
1

2
dk

T
Bkdk

s.t.gi(p
k) + dk

T∇gi(pk) ≤ 0, i = 1 . . . nc (1.17)
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Di�erent algorithms can solve this problem; one of the most used is the active-set.
The active-set algorithm solves the KKT conditions using "guess and check" to
�nd critical points. Guessing that each inequality constraint is inactive (gi(pk) +

dk
T∇gi(pk) < 0) is conventionally the �rst step. After solving the remaining system

for dk, feasibility can be checked. If any constraints are violated, they should be
considered active (gi(pk) + dk

T∇gi(pk) = 0) in the next iteration. If any multipliers
λi are found to be negative, their constraints should be considered inactive in the
next iteration.

The solution to the problem gives the descent direction for the iterate.

dk = −Bk−1
[∇f(pk) +

nc∑
i=1

λi∇gi(p)] (1.18)

The multipliers λi for inactive constraints are taken to be zero.

The choice of distance αk to move along the direction generated by the subprob-
lem is not as evident as in the unconstrained case, where we simply choose a step
length that approximately minimizes f along the search direction. For constrained
problems, we would like to have the next iterate not only to decrease f but also
to satisfy the constraints. Often these two aims con�ict, so it is necessary to weigh
their relative importance and de�ne a merit or penalty function, which we can use
to determine whether or not one point is better than another.

M(pk) = f(pk) +
nc∑
i=1

rki max(0, gi(p
k)) (1.19)

where rki are su�ciently positive parameters.

This merit function is used to �nd the step length αk to take in the descent
direction dk found in (1.18) and, thus, �nding the next iterate.

pk+1 = pk + αkdk (1.20)

There exist many algorithms for nonlinearly constrained problems such as interior-
point and trust-region algorithms. There is not one general algorithm that will work
e�ectively for every kind of nonlinear problems. We chose to detail SQP because it
proved to be robust for the cases that we treated.

Extension to multi-objective problems
The ideas swing around transforming a multi-objective problem into many single

objective ones. We present two methods: weighted-sum and ε-constraint.
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� weighted-sum is the most used method; it transforms the objective functions
into a weighted sum of them [14]. Then, to use a single objective optimiza-
tion algorithm. Changing the weights can lead to di�erent solutions (but not
necessarily) that form the Pareto front. This approach is straightforward to
conduct, but it cannot lead to a complete description of the Pareto front if the
latter is not convex.

� ε-constraint method only considers one objective function while subjecting
the others to constraints [15]. A Pareto front can be obtained by varying the
parameters of the constraints. ε-constraint method tackles the drawback of
the weighted-sum approach.

Extension to black-box problems
The gradient is a fundamental ingredient for derivative-based algorithms; never-

theless, this information is not always available when using black-box models. Finite
di�erence (FD) can be used to estimate the derivatives using the formula below

∂f

∂pi
(p) ≈ f(p1, . . . , pi + ε, . . . , pnv)− f(p1, . . . , pi, . . . , pnv)

ε
(1.21)

where ε is the �nite di�erence parameter. This equation is called the forward �nite
di�erence; other approximations also exist, such as backward FD and centred FD.
They exploit the same idea as forward FD nevertheless centred FD may lead to
better results than the others.

The choice of ε is essential for the success of the approximation. A very small
value will lead to signi�cant numerical roundo� errors, and high value will not lead
to the correct approximation of the gradient. Furthermore, the objective function
and/or the constraints can be noisy, which renders the derivatives' computation
using �nite di�erence not reliable.

B Derivative-free algorithms

A heuristic algorithm is one that is intended to solve a problem in a faster and
more e�cient fashion than traditional methods by sacri�cing optimality, accuracy
or precision for speed. From these, we can cite Nelder-Mead simplex, Pattern search,
DIRECT (DIviding RECTangle), . . .

Engineers and scientists widely use heuristic algorithms. They are a class of
optimization methods that are easy to implement, do not require derivatives and
are often claimed to be robust to deal with problems with discontinuities or where
the functions are noisy.

Nelder-Mead
The Nelder-Mead (NM) is a heuristic numerical method that exploits the concept
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of a simplex [16]. A simplex can be a line segment on a line, a triangle on a plane, a
tetrahedron in three-dimensional space, etc. Starting initially from such a simplex,
the simplex undergoes simple transformations during iterations: it deforms, moves
and progressively reduces until its vertices approach a point where the function is
locally minimal. The full description is shown in the algorithm below.

Algorithm 2: Nelder-Mead algorithm

set the initial simplex ;
while Not terminated do

order according to the values at the vertices:
f(p1) ≤ f(p2) ≤ · · · ≤ f(pnv+1);
calculate po the centroid of all points except pnv+1;
compute re�ected point pr = po + α(po − pnv+1);
if the re�ected point is the best point, f(pr) < f(p1) then

compute expanded point pe = po + β(po − pnv+1);
if the expanded point is better than the re�ected point, f(pe) < f(pr)

then
replace the worst point pnv+1 with the expanded point pe;

else
replace the worst point pnv+1 with the re�ected point pr;

end

else if f(pr) ≥ f(pnv) then
Compute contracted point pc = po − γ(po − pnv+1);
if the contracted point is better than the worst point,

f(pc) < f(pnv+1) then
replace the worst point pnv+1 with the contracted point pe;

else
replace all points except the best p1 with pi = p1 + δ(pi − p1);

end

else
replace the worst point pnv+1 with the re�ected point pr;

end

end

In n dimensions, the NM method maintains a set of n+1 test points arranged as
a simplex. It then extrapolates the behaviour of the objective function measured at
each test point in order to �nd a new point and to replace one of the old test points
with the new one, and so the technique progresses. α, β, γ and δ are parameters
of the algorithm, and they have a signi�cant e�ect on the performances of the
algorithm. Standard values are α = 1, β = 2, γ = 1

2
and δ = 1

2
.

The Nelder-Mead method frequently gives notable improvements in the �rst few
iterations and quickly produces satisfying results. Also, it typically requires only
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one or two objective function evaluations per iteration. This feature is needed in
applications where each function evaluation is time-consuming. Aside from being
simple to understand and use, this is the main reason for its reputation in practice.

Contrarily, the lack of convergence theory is often considered in practice as a
numerical breakdown of the algorithm, even for smooth and well-behaved functions
[17]. The constraints handling is also an issue as will be discussed in in the following.

DIRECT
The modi�cation of Lipschitzian optimization motivated the DIRECT optimiza-

tion algorithm development [18]. It was created to solve challenging global opti-
mization problems with bound constraints. DIRECT is a sampling algorithm; it
requires no knowledge of the objective function derivatives. Alternatively, the algo-
rithm samples points in the search domain and uses the information it has obtained
to decide where to search next. The name DIRECT originates from the shortening
of the expression "DIviding RECTangles," which outlines the way the algorithm
moves towards the optimal solution.

In the �rst step, DIRECT transforms the search space to be the unit hypercube.
The objective function is then sampled at the center-point of this cube. The latter is
afterwards divided into smaller hyper-rectangles whose center-points are also sam-
pled. DIRECT identi�es a set of potentially optimal rectangles at each iteration.
All potentially optimal rectangles are further divided into smaller rectangles. The
procedure described above is repeated for a prede�ned number of iterations. When
there is no limitation for the number of iteration, DIRECT will exhaustively sample
the domain, it will cluster sample points around local and global optima [19] [20].

Other algorithms
There exist other well-known algorithms that exploit di�erent ideas.

� The pattern search (PS) method samples a set of points around the current
point, looking for the one where the value of the objective function is lower
than the value at the current point. The set of points is called a mesh. The
mesh is formed by adding the current point to a scalar multiplied by a set of
vectors called a pattern. If the pattern search algorithm �nds a point in the
mesh that improves the objective function at the current point, the new point
becomes the current point at the next iteration of the algorithm [21].

� Additionally to his signi�cant contributions to the development of quasi-newton
algorithms, Michael JD Powell developed many derivative-free algorithms from
which we cite COBYLA, BOBYQA, ... [22].

Extension to constrained problems
Di�erent strategies can treat the constrained problems depending on the algo-
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rithm; one of the most used is the penalty method. The penalty method replaces a
constrained optimization problem by one or a sequence of unconstrained problems
whose solutions ideally converge to the solution of the original constrained problem.

To recall, the constrained problem is written as

min
p
f(p)

s.t.gi(p) ≤ 0, i = 1 . . . nc (1.22)

Using the penalty method, it can be transformed

min
p
f(p) + P (p) (1.23)

where P is the penalty function. In the literature, we can �nd di�erent penalty meth-
ods such as the augmented Lagrangian function, barrier function, interior point, etc.
Each of them exploits di�erent ideas with more or less complicated implementation
[23]. The exterior penalty method is commonly used because of its simple imple-
mentation. The exterior penalty function is written as

P (p) = M
nc∑
i=1

max(0, gi(p)) (1.24)

M is the penalty parameter. The idea is to start with a relatively small value of M .
Subsequently, we will solve a series of unconstrained problems with monotonically
increasing values of M chosen so that the solution of each new problem is �close� to
the previous one. This will prevent any notable di�culties in �nding the minimum
from one iteration to the next. Sometimes, a well-chosen value of M can lead to the
optimum in one iteration.

Extension to multi-objective problems
As for the derivative-based algorithms, heuristic-based algorithms can be extended

to multi-objective problems through weighted-sum or ε-constraint methods.

Extension to black-box problems
Heuristic-based are well suited for black-box problems since no additional infor-

mation is needed except the response of the model to a set of variables.

C Population-based algorithms

The previous optimization algorithms maintain a single current solution. Population-
based algorithms maintain multiple solutions. They are usually motivated by bio-
logical evolution, such as the evolution of species, behaviour of �re�ies, etc. [24] [25].
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One of the most popular is the genetic algorithm (GA), which is inspired from nat-
ural selection [26]. GA starts by creating a random initial population, then creates
a sequence of new populations. At each iteration, the algorithm uses the individuals
in the current generation to create the ones of the next population. For this goal,
the algorithm performs di�erent operations, i.e. elitism, selection, crossover and
mutation. The algorithm is detailed below.

Algorithm 3: Genetic algorithm

create a random initial population ;
while Not terminated do

evaluate the objective function at the current population ;
rank the population based on the objective function values ;
select the parents based on the ranking ;
choose an elite from the current population to pass the next one ;
produce children from the parents ;
replace the parents with the children to form the next population;

end

Extension to constrained problems
As for the heuristic-based algorithms, the penalty method can be used to handle

constraints in population-based algorithms. Nevertheless, some other strategies were
developed, such as the one developed by K. DEB [27].

Extension to multi-objective problems
Population-based algorithms are well suited to multi-objective problems; they are

sometimes dedicated to only multi-objective optimization since population-based
algorithms dominate multi-objective optimization literature. This is explained by
the fact that there are many solutions in each population. These solutions ideally
converge the desired Pareto front. NSGA-II is one of the most known optimization
algorithms to deal with multi-objective problems [27].

Extension to black-box problems
No additional modi�cations are needed for the population-based algorithms to

handle black-box problems, except that the fact that most black-box problems are
costly and special measures should be undertaken to make the optimization tractable
in a limited time.

D Exact algorithms

This category of algorithms is less addressed in the literature because of the im-
plementation complexity and the computational cost needed for solving speci�c
problems. However, exact methods are the only ones that can guarantee global
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optimality of the solution. This feature is highly needed but generally sacri�ced for
the sake of computation time by using other algorithms. Branch and bound (B&B)
is the most known of exact algorithms [28]. Initially, it was used to solve integer-
linear problems. The process of resolution is simple. First of all, the problem is
solved as if the variables are continuous (relaxed problem); if the solution variables
are integers, then it is the optimal solution. Otherwise, one variable is chosen to
split the initial problem into two sub-problems, then solve the corresponding relaxed
problems to compute the bounds. The process continues until a satisfactory solution
is found.

An extension to optimizations of the general case (nonlinear and continuous) was
introduced, it relies on the estimation of bounds using interval arithmetic [29]. The
performances of interval B&B algorithms depend on the e�cient estimation of the
lower and upper bounds on the solutions. Thus, it can be applied to only a limited
number of situations where the objective function and constraints are explicit.

Algorithm 4: Branch and bound algorithm

set the initial domain S ;
set f̃ = +∞ the lower bound of the objective function f ;
set a list L = {(+∞, S)} initialized by the space and the lower bound of f ;
repeat

extract from L the domain with the smallest lower bound;
split the element into two sub-domains V1, V2 with respect to a
dimension ;
for i = 1 to 2 do

compute the lower and upper bounds fi, fi of f on Vi;
if f̃ ≥ fi then

insert (fi, Vi) in L;
if f̃ ≥ fi then

update f̃ = fi;
eliminate from L all the domains (z, Z) for which z > f̃ ;

end

end

end

until f̃ − min
(z,Z)∈L

z < ε;

B&B is a systematic enumeration of candidate solutions by splitting the search
space into smaller spaces. The algorithm explores each smaller space then estimates
the upper and lower bounds on each one of them. A space is pruned if it cannot
produce a better solution than the best one found so far by the algorithm.

Extension to constrained problems
Constraints can be handled relatively easy by modifying the previous algorithm
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slightly. The constraints bounds need to be calculated, then the elimination will
be based on the objective function bounds and the constraints bounds. The sub-
domains with at least one of the constraints that have a lower bound higher than 0
are eliminated.

Extension to multi-objective problems
Multi-objective B&B is less addressed in the literature because of the double

complexity, �rst, for the multi-objective aspect and secondly the cost of the exact
search [30].

Extension to black-box problems
Minimal cases are presented in the literature where exact algorithms were able

to deal with black-box problems [29] [31] [32]. The estimation of the bounds of the
functions is di�cult or even impossible. Thus, the usage of exact algorithms is not
suitable since these bounds are key-ingredient for their success.

E Approximation-based algorithms

The basic idea is that if the function is noisy and likely expensive to evaluate, then
that function can be sampled at some points, and a �t of it is created. Then, the
optimization is not performed on the original function, but on the cheap to evaluate
and smooth �t [33]. These �ts are referred to by many names such as approximation
models, predictors, surrogate models, meta-models, and response surfaces. These
terms will be used synonymously throughout this dissertation. The goal of using
a surrogate model is to provide a smooth functional relationship of satisfactory
�delity to the real function with the added advantage of quick computational speed.
The approximation could be used in combination with a derivative-based algorithm
or other algorithms. The details on how to build and to exploit approximations
e�ectively are still keeping black-box optimization a thriving research area.

It is worth noting that the approximation itself is not an optimization algorithm;
however, its combination with another or many optimization algorithms aforemen-
tioned is an optimization algorithm.

Many approximation methods exist, such as polynomial approximation, radial
basis function, neural networks, etc. Nevertheless, the underlying usage procedure is
almost the same with minor discrepancies, and the abstract algorithm is presented
below.

Because the process of �tting the models and locating the new sample points
can be viewed as optimization problems themselves, the burden associated with
approximation-based algorithms can be signi�cant. On the other hand, other meth-
ods, such as genetic algorithms or derivative-based algorithms, require minimal com-
putational e�ort in determining where to evaluate the functions next. However, they
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Algorithm 5: Approximation

create a initial sample using a design of experiment ;
while Not terminated do

evaluate the objective function and the constraint at the new sample ;
�t the surrogate model ;
�nd new sample using the surrogate model;

end

require a large number of function evaluations to converge to a good solution. The
bene�t of approximation algorithms is that each iteration uses as much information
as possible in determining where to evaluate the functions next, enabling them to
locate good solutions with fewer iterations. This makes it best-suited to situations
where the functions are expensive, and the designer cannot a�ord to perform a large
number of function evaluations.

Response surface methodology
The most simple surrogate model is a second-order polynomial function; it is

used by the response surface methodology to have a local approximation of the real
function [34]. The surrogate model is written as

f̂(p) = a+
nv∑
i=1

bipi +
nv∑
i=1

nv∑
j=i

cijpipj (1.25)

where f̂ is the approximation or the predictor of the real function f . The hat nota-
tion will be commonly used throughout this dissertation to denote the predictors. a,
bi and cij are the parameters of the predictor. They are identi�ed using a regression
strategy based on nevals evaluations of the real function. The regression aims to
reduce the error between the real function and its predictor in the evaluated points.
It can be written as an optimization problem.

min
a,bi,cij

nevals∑
k=1

(f(pk)− (a+
nv∑
i=1

bip
k
i +

nv∑
i=1

nv∑
j=i

cijp
k
i p
k
j ))

2 (1.26)

The number of evaluations nevals should be at least (nv+1)(nv+2)
2

to be able to
capture the behaviour of the real function. These evaluations should be chosen
carefully to prevent numerical problems and also to enable the predictor to represent
as best as possible the real function in a local region [34].

Once the parameters are found, the predictor f̂ can be used to optimize the real
function. Generally, the second-order polynomial cannot capture the behaviour of
the real function on the whole domain; thus, multiple response surfaces can be �t in
di�erent locations to capture the maximum of information about the real function.
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Other surrogate models enable to �t only one response surface on the whole domain
and capture the global behaviour such as radial basis function and its generalization
Kriging.

Kriging
Kriging is a data interpolation scheme that has its roots in the �eld of geostatis-

tics [35]. The technique was adapted for data coming from deterministic computer
simulations. This form of data collection and approximation is known as Design
and Analysis of Computer Experiments (DACE), Kriging is based on a regression
term and a stochastic term [36]. The regression part is a polynomial function, while
the stochastic term aims to compensate for the error due to regression and is con-
structed based on the location of the sampled points. While the idea behind Kriging
is simply put here, the details are left for the next chapter.

Extensions
In recent years, numerous advances have been made in approximation-based algo-

rithms. Constraint handling strategies and extension to multi-objective optimization
have been discussed [37][38][39][40][36].

A signi�cant area where little research has been done to date is parallelization.
El Bechari et al. discussed the limitations of some of the strategies [41]. The
parallelization strategies represent one of the main contributions of this dissertation
and are discussed in the next chapter.

1.1.3 Discussion

The models of electrical machines are usually considered as computationally expen-
sive black-box; the time needed for one simulation can vary from minutes to hours
or even days for more complex phenomena. Thus, not all the algorithms are suited
for this kind of model. The choice of the algorithm is critical for the success of opti-
mization, mainly in terms of the quality of the solution and the computational e�ort
needed for obtaining a reliable solution. Additionally, these models can be noisy due
to the discrete aspect which furthermore limits the choice of the algorithms.

The ideal algorithm is the one that

� has the least cost

� leads to the global solution

� handles the constraints e�ciently

� is capable of dealing with numerical noise
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Nevertheless, such an algorithm does not exist. The No free lunch theorem
demonstrates that if an algorithm performs well on a particular class of problems
[42], then it necessarily pays for that with degraded performance on the set of all
remaining problems. Thus an inevitable compromise should be found. We consider
that the cost is a higher priority criterion than the other criteria and to choose the
algorithms that o�er a margin of improvement to the studied problem.

The derivative-based algorithms o�er the best performances in term of cost and
constraints handling, thanks to the rigorous foundations of the algorithms neverthe-
less they perform poorly for problems with many local minima due to their local
properties, and also they perform inadequately in terms the noise handling since the
derivatives are approximated by �nite di�erence. At the same time, this approxi-
mation is highly sensitive to numerical noise.

Exact and population-based algorithms are not adapted to our problem because
of the excessive computational cost needed for performing an optimization.

Heuristic-based algorithms are good at handling the numerical noise since no
derivatives are needed. However, they perform very bad at constraints handling be-
cause the choice of the penalty function highly conditions the results. This is caused
when the constraints do not have the same magnitude. If some constraints are
dominant, the algorithm will steer towards a solution that satis�es those constraints
at the expense of searching for the minimum. Similarly, the value of the penalty
parameter should be �xed so that the penalty term's magnitude is not much smaller
than the magnitude of the objective function. If an imbalance exists, the objective
function's in�uence could direct the algorithm to head towards an unbounded min-
imum, even in the presence of unsatis�ed constraints. In either case, convergence
may be exceedingly slow.

As noted before, approximation-based algorithms are very �exible since the sur-
rogate model can be combined with one or many of the algorithms mentioned above.
Their development aims to reduce the computational cost needed for optimization.
Di�erent ideas were studied in the literature. One particular optimization algorithm
is known as E�cient Global Optimization (EGO), developed by Jones et al. [43]. It
employs Kriging surrogate models as the approximation method. Other ideas, such
as genetic algorithm assisted by surrogate models, are also of interest.

1.2 Uncertainty

The optimization problem types described in the previous section implicitly assume
that the variables for the given problem are known precisely. For many actual prob-
lems, however, the problem variables cannot be known deterministically for various
reasons such as measurement error or tolerances on the manufacturing process. In
most cases, deterministic optimization without considering the uncertainties of vari-
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ables will �nd an optimum that lies on one or several constraint boundaries. With a
small deviation of the solution, this one could easily violate one or more constraints
and fall into the failure domain. Moreover, if the optimum lies on a very narrow
valley of the objective function, even a small variation in the variables could result
in a signi�cant change for the performance.

The uncertainties can be reduced but never eradicated completely. For that
reason, ways to decrease the in�uence of uncertainties with existing techniques are
entirely worth studying. Especially in engineering applications, less in�uence leads
to less cost or more stable performance, which are quite valuable in the real world.

The variability due to uncertainty is inherent in all systems, and have di�erent
natures that can be categorized as follows:

� Model uncertainty Also known as model inadequacy, or model discrepancy,
this arises from a lack of knowledge on the underlying physics in the problem.
It depends on how accurately a mathematical model represents the real-life
situation because models are always approximations of the reality.

� Numerical uncertainty This type originates from numerical errors and nu-
merical approximations in the implementation of the computer model. Most
models are complex to solve accurately. For example, the �nite element
method is used to approximate the solution of a partial di�erential equation
(which introduces numerical errors).

� Experimental uncertainty This comes from the variability of experimental
measures. The experimental uncertainty is unavoidable and can be noticed
by repeating a measurement many times using the same settings for all in-
puts/variables.

� Variable uncertainty This arises from the variability of the input variables
of the model. For example, the dimensions of a workpiece in the manufacturing
process may not be exactly as designed, which would induce variability in its
performance.

This dissertation deals with the last category of uncertainties that enables one
to get relationships between the model input variables and their impact on its re-
sponses. Thus, the uncertainty on the variables induces uncertainty on the response
of the model. This means that the uncertainty propagates through the model to gen-
erate uncertainty on the responses. This process is called uncertainty propagation,
and it is performed using simulation and numerical tools.

The models are generally deterministic in the sense that model inputs, i.e. vari-
ables, are assumed to be known. However, we have seen that this is not always
true. Deterministic models are then no longer directly adapted to handle this type
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of input data. It is necessary to use e�cient methods to propagate the uncertainties
on the input data to the model's output quantities.

One of the challenges to using models is to capture the e�ect of uncertainty
on the model output in an e�cient manner. The problem can be stated as: given
the probability density function (PDF) of the random variables (e.g. those of the
design variables and parameters), what are the statistics of a system output? The
issue is how to propagate the e�ect of uncertainty through the model. This process
is often referred to as uncertainty quanti�cation. In this section, we will start by
detailing the uncertainty propagation methods and, afterwards, the integration of
these methods in an optimization procedure is presented.

1.2.1 Uncertainty propagation

As stated before, uncertainty on the variables leads to uncertainty on performances.
Thus, the �rst stage of any uncertainty propagation procedure is to characterize
the input of the model. The input variables are considered as random variables
characterized by their PDF. Other statistics such as mean, variance, range, skewness
and covariance can also be characterized. The pdf of random variables are not always
needed but generally turn out to be useful for the variables characterization.

Once the random input variables are characterized, numerical tools are needed
for the propagation of uncertainty, that is to say, compute statistics on the indicators
of performance. In the literature, many algorithms enable to propagate uncertainty.
We cite �ve groups.

� Monte-Carlo simulation and variants [44].

� Approximations methods [45][46][47].

� Perturbation methods (�rst and second order) [48][49].

� Most probable point (MPP) [50].

� Worst case method [51].

It is worth noting that each group is adapted to the performance metric needed.
Many performance metrics describing the behaviour of output under uncertainty
have been suggested in engineering design. Perhaps the most common performance
metric is the expected value of output under probabilistic uncertainties, also known
as the mean. Another property of interest is a measure of the spread of the outputs,
since if a design has a good expected value of performance but a high spread such that
it can also give poor performance it could be undesirable. The standard measure of
the spread is the variance. If a system is being designed for reliability, or the output
is to be constrained, then the probability of failure will be of interest. A common
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measure of this sort is that the probability of failure is higher than some threshold
value.

A Monte-Carlo simulation

One of the most widely used techniques for uncertainty propagation is the Monte
Carlo (MC) sampling technique, which is based on a pseudorandom generator used to
approximate the desired distribution. MC evaluates the deterministic model at the
distribution realizations and, lastly, aggregates the model's outputs to get insights on
the uncertainty of the performance. One could compute the mean, the variance and
probability of failure with ease [44]. MC sampling is a useful propagation technique
because its convergence is independent of the dimensionality of the problem.

While this approach is attractive due to its simplicity, it has numerous deadfalls.
For example, a large number of samples must be taken in order to determine low
probability events, e.g. thousands or millions of trial design variable vectors. The
computational expense of this approach can quickly become intractable.

Other computational cost reduction techniques exist, such as Importance sam-
pling, Latin Hypercube Sampling (LHS), and Hammersley Sequence Sampling. They
enable one to sample the space in a smart way to reduce the number of sampled
points. Nevertheless, sampling methods remain costly when considering computa-
tionally expensive models, such as a �nite element analysis.

B Approximation methods

When the number of variables is low, more e�cient methods are available than MC
sampling. They primarily involve building a surrogate model as an approximation to
the actual output, as presented for deterministic optimization, using relatively few
model evaluations. Such a surrogate model can subsequently be sampled and ana-
lyzed at a negligible computational cost compared to evaluating the actual output
or sometimes computing the performance metrics analytically. Polynomial Chaos
expansion is widely used in engineering design [52] [53] [47], among other surrogate
models.

C Perturbation methods

These methods have advantages when dealing with relatively small input variability
and outputs that do not express high nonlinearity [54][48]. The model must usu-
ally be linearized by approximation to a �rst-order or second-order Taylor series
expansion.

The �rst-order expansion of a function f with respect to a random variable X
of mean µX and variance σ2

X is written.
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f(X) ≈ f(µX) + (X − µX)T∇f(µx) (1.27)

The mean value µf and the variance σ2
f of the function f are computed as follows.

µf = E(f(X))

≈ E(f(µX) + (X − µX)T∇f(µx))

= f(µx) + E(X − µx)T∇f(µx)

µf = f(µx) (1.28)

σ2
f = V(f(X))

≈ V(f(µx) + (X − µX)T∇f(µX)))

= V(X − µx)T (∇f(µX)))2

= V(X)T (∇f(µX)))2

σ2
f = σ2

X
T

(∇f(µX))2 (1.29)

The uncertainty propagation is done easily. The mean value of the function
is obtained by evaluating the deterministic function at the variable mean value.
Similarly, the variance is the product of the gradient squared of the function and
the variance of the variables.

As noted before, the gradient is not always a piece of accessible information;
thus, this method can be applied only if a gradient of good quality is available. It is
also important to note that this formula is based on the linear characteristics of the
gradient of f . Therefore, it is a reasonable estimation for the standard deviation of
f as long as σX are small enough.

D Most probable point MPP

The MPP concept is utilized to compute the whole cumulative distribution function
(CDF) of model output by evaluating the probability estimates at a serial of limit
states [50]. The MPP method was initially developed in the �eld of reliability
analysis. It requires that limit-state (constraints) functions be de�ned, and the
probability of the limit-state functions less than zero can be evaluated approximately.
Generally, the MPP method is used to estimate the probability of an inequality
function's failure and not the whole CDF. If a function of a random variable is
needed to be less than zero, then the probability of failure is written as

Pf = 1− P (g(X) ≤ 0) = P (g(X) > 0) (1.30)
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The �rst-order reliability method (FORM) has been widely used in the probabil-
ity of failure estimation. The method involves Taylor's expansion of the inequality
function, i.e. the linearization of the limit-state function, not performed around the
mean value of the function, but at the MPP. The selection of an appropriate lin-
earization point is a crucial consideration and leads to an iterative solving procedure,
i.e. an optimization algorithm.

E Worst-case method

With the worst-case analysis, all the uncertainties are assumed to lead to the worst
possible combinations [51]. Based on this assumption, the worst-case considers
the most severe possible outcome that can occur for the uncertainty of the given
variable. It is a non-probabilistic approach that is based on the estimation of the
worst possible outcome. There is no need to determine the distributions of functions
as opposed to the MPP method that identi�es a probability of failure. In the worst
case, the probability of failure is zero.

1.2.2 Optimization under uncertainty

The formulation of an Optimization under Uncertainty (OuU) primarily concerns
how to compare the model's behaviour under uncertainty between designs. The
formulation de�nes the underlying landscape that an optimizer attempts to navi-
gate and therefore in�uences the design obtained from performing an optimization.
Therefore, the performances are related to two types of variables: �rst, the opti-
mization p, which are deterministic and secondly, the random uncertain variables
X. Often, the deterministic variables are nothing but the mean value of the random
variables. Thus for the sake of presentation simplicity, this assumption, i.e. p = µX ,
is holding throughout this dissertation unless stated otherwise.

The original development of methods for taking account of uncertainty in the
design process of engineering systems is often credited to Taguchi and his "robust
design" approach. This framework initiated an interest in controlling robustness
through the design of the system instead of trying to reduce the uncertainties on the
inputs directly. Taguchi's method is not necessarily an optimization-based approach;
instead, it makes use of the design of experiments. The design space is sampled, and
the best design from these samples is selected. Since this initial progress, a mixture
of methods for design under uncertainty has been proposed for which robustness is
the priority.

The recent growth of interest in uncertainty quanti�cation can perhaps be at-
tached to the importance of rigorously quantifying the in�uence of uncertainties for
engineering. The �eld of OuU grew from the desire to use this rigorous uncertainty
quanti�cation within design optimization. In the past few decades, OuU techniques
have been applied to various engineering applications, and therefore a variety of
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approaches for formulating an OuU problem have been proposed.

A Robustness, reliability or worst-case

The appropriate formulation depends on the application. In engineering applica-
tions, the constrained quantities can represent an extreme failure of the system, and
so the likelihood of constraint satisfaction is a key design driver; this is often known
as "reliability-based design optimization" (RBDO). RBDO formulations often make
use of the MPP method for uncertainty propagation [55][56].

min
p

µf (p)

s.t. P (gi(p,X) > 0) ≤ Pf , i = 1 . . . nc (1.31)

In contrast, "robust design optimization" (RDO) formulations focus on the like-
lihood of obtaining excellent performance [57]. Therefore RDO mainly deals with
the in�uence of uncertainties on the performances to be optimized instead of the
constrained quantities. Often, "robust design" refers explicitly to simultaneously im-
proving the expected performance represented by µf (p) and reducing the variability
represented by σf (p) and σgi(p).

min
p

[µf (p), σf (p), σgi(p)]

s.t.µgi(p) ≤ 0, i = 1 . . . nc (1.32)

These "robust" and "reliability" paradigms are not mutually exclusive and can
be combined.

On the other hand, worst-case optimization may be expressed as a minimax
problem. This means the original values of the objective function and the constraint
functions are substituted by their worst values, which is the maximum over the
uncertainty set.

min
p

max
x∈Ω(X)

f(p, x)

s.t. max
x∈Ω(X)

gi(p, x) ≤ 0, i = 1 . . . nc (1.33)

B Nested-loops to sequential

The general formulation of OuU is mathematically a nested two-level structure, con-
sisting of a design optimization loop that repeatedly calls uncertainty quanti�cation
analyses in a series of inner loops. This approach is computationally costing and
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therefore has limited applicability for real engineering problems. In order to sur-
pass the computational di�culties, many formulations have been proposed in the
literature [49].

The "sequential optimization and reliability assessment" (SORA) method decou-
ples the RBDO process into a sequence of deterministic design optimization followed
by a set of reliability evaluation loops [58]. It uses the reliability information from
the previous iteration to shift the deterministic constraints. The process continues
until convergence of both sub-problems is reached. SORA has a structure of two
iterative loops. However, the two loops are decoupled; hence it is signi�cantly more
cost-e�ective than the nested two-level process.

In the same essence, a worst-vertex-based WCO was proposed. It aims to ob-
serve the values of the bounds of Ω(X) and predicts the worst vertex value [59]. The
objective is to determine the directions of ascent in which the values of objective
function and constraints increase and then evaluate at the bounds of Ω(X). Conse-
quently, the inner maximization problems are replaced by a few evaluations on the
uncertainty space's bounds.

1.2.3 Discussions

Well-known methods for uncertainty propagation have been reviewed in this section.
Methods based on the derivatives remain the best compromise between accuracy and
e�ciency, especially when the coe�cients of variation of the random input variables
are not too large, and the model is almost locally linear.

Derivatives can be used for di�erent performance metrics, such as the perturba-
tion method, MPP and, in some cases, the worst-case method. Nevertheless, they
require models that implement the derivatives of the response quantities.

Approximation methods are preferred if the derivatives are not available, and the
model is considered a black-box, as it is often the case of commercial electromagnetic
software.

1.3 Electrical machines

An electrical machine is a broad term for machines using electromagnetic �elds,
such as motors, generators, and transformers. Some are electromechanical energy
converters: an electric motor transforms electricity into mechanical power while a
generator converts mechanical power into electricity. The moving components in a
machine can be rotating (rotating machines) or linear (linear machines). The third
category of electrical machines is transformers, which, although they do not have
any moving components are also energy converters, changing the voltage level of an
alternating current.
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Electrical machines are based on the electromagnetic principles that generate
force or induce voltages and currents. Five principles allow us to understand this
link.

1. Current �owing in a conductor will produce a magnetic �eld around the con-
ductor.

2. Magnetic materials, with high relative permeability, provide a mean to direct
and focus magnetic �ux.

3. Motor Action: if current �ows in a conductor subject to an external magnetic
�eld, a force will be exerted on the conductor.

4. Generator Action: if a conductor is moved through a magnetic �eld, a voltage
will be induced in the conductor.

5. Transformer Action: if the magnetic �ux passing through a coil changes, there
will be a voltage induced in the coil.

The ability to produce a magnetic �eld using coils and electric current can be
coupled with ferromagnetic materials to direct and concentrate magnetic �ux. Com-
bined with transformer, generator and motor actions, these concepts form the foun-
dation of electrical machine design and operation.

A rigorous physical model was given to model the electromagnetic phenomena,
i.e. Maxwell's equations. This model is expressed as partial di�erential equations
(PDE). These PDE are generally di�cult to solve analytically due to various reasons
such as a complex studied domain, nonlinear material properties and dynamic time
behaviour. Thus, numerical methods that discretize the space and time domain
are used. The most used one is the �nite element method. Such methods are
costly in computational time. In this section, we will present the physical model,
its discretization and the resolution using the �nite element method.

1.3.1 Physical model

Maxwell's equations can describe electromagnetic phenomena. They are separated
into two groups.

Firstly, fundamental equations contain only �elds.

∇× E = −∂B
∂t

(1.34)

∇ ·B = 0 (1.35)

where E is the electric �eld vector (V/m) and B is the magnetic �ux density vector
(T ).
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The second group links the �elds to the sources.

∇×H =
∂D
∂t

+ J+ Js (1.36)

∇ ·D = ρ (1.37)

where H is the magnetic �eld vector (A/m), D is the electric �ux density vector
(C/m2), J and Js are the eddy and imposed current densities respectively (A/m2)
and ρ is the electric charge density (C/m3).

For electrical machines, the quasi-static approximation is widely used. It states
that displacement currents are negligible in comparison with the imposed currents.
Moreover, electric charges are also negligible.

∣∣∣∂D
∂t

∣∣∣� |Js|, |ρ| � 1

Maxwell's equation in the quasi-static assumption are summarized as follows.

∇×H = J+ Js (1.38)

∇× E = −∂B
∂t

(1.39)

The system of equations (1.38 - 1.39) is under-determined. To solve such a
system, more equations should be given. Constitutive Laws link these quantities
throughout electromagnetic material behaviour.

We particularly de�ne two equations

B = µ(H, t, T, ε, . . . )(H+Hc) (1.40)

J = σ(t, T, . . . )E (1.41)

where Hc is the coercive �eld of magnets, µ is the magnetic permeability and σ the
electric conductivity of the material. µ and σ depend on electromagnetic �elds and
other parameters like time t, temperature T , and mechanical strain ε.

In this work, all the parameters other than electromagnetic �elds are considered
constant. Thus, these laws are written as

B = µ(H)(H+Hc) (1.42)

J = σE (1.43)

Note that equation 1.43 corresponds to the local form of Ohm law. Equation 1.42
transcribe the magnetic behaviour of materials.

The physical model of the electromagnetic phenomenon is a combination of
Maxwell's equation(1.38 - 1.39) and constitutive laws (1.42 - 1.43)

∇×H = J+ Js (1.44)

∇× E = −∂B
∂t

(1.45)

B = µ(H)(H+Hc) (1.46)

J = σE (1.47)
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1.3.2 Mathematical model

For the sake of presentation simplicity, we will only detail the two-dimensional mag-
netostatic case. The electromagnetic �elds do not change in time and are invariant
in the dimension perpendicular to the two-dimensional domain. For more informa-
tion about the general formulation, we refer the reader to [60] [61]. The resolution
of electromagnetic PDE was and still extensively studied.

Maxwell equation in the magnetostatic case decouple the magnetic and the elec-
tric �ends and are reduced to

∇×H = Js (1.48)

B = µ(H)(H+Hc) (1.49)

(1.50)

The quantities are then reduced to B = [B1, B2, 0]>, H = [H1, H2, 0]>, Hc =

[Hc1, Hc2, 0]> and J = [0, 0, Js3]>.

We denote the studied domain as D ⊂ R2. Thus the quantities depend on the
two coordinates of the two-dimensional domain. On the other hand, boundary con-
ditions should be applied to solve Maxwell equations on the domain D. Furthermore,
additional quantities are introduced to tackle issues. These quantities are called the
potentials; they enable to reduce the number of unknowns of the original Maxwell
equation and to have functionals that are su�ciently smooth since the �elds (mag-
netic and electric) in the Maxwell equation present discontinuities on the material
interfaces.

A Potential formulation

Since B is divergence-free i.e. ∇ ·B = 0, we can �nd a magnetic vector potential A
such that

B = ∇×A (1.51)

Thus, equations (1.48 - 1.49) can be combined in one equation

∇×
( 1

µ
∇×A

)
= Js +∇×Hc (1.52)

The solution A of this equation is not unique. Any quantity A′ is a solution for a
scalar function u

A′ = A+∇u (1.53)

On the other hand, we have
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B =


∂A3

∂x2
− ∂A2

∂x3
∂A1

∂x3
− ∂A3

∂x1
∂A2

∂x1
− ∂A1

∂x2

 (1.54)

A is invariant in third dimension, then ∂A2

∂x3
= 0 and ∂A1

∂x3
= 0.

Furthermore, by comparison with B = [B1, B2, 0]>, it follows that

∂A2

∂x1

− ∂A1

∂x2

= 0 (1.55)

This equation has an in�nite number of solutions, the choice of A1 and A2 to be
equal to zeros will enable reducing the number of unknowns to be solved.

The invariance in the third dimension and the last choice enable to ensure the
uniqueness of the solutions. And, the quantities are written as

A =

 0

0

A3 (x1, x2)

 (1.56)

B = ∇×A =


∂A3

∂x2

−∂A3

∂x1

0

 (1.57)

Therefore, only the third component of A (A3) is considered as an unknown.
For the sake of presentation homogeneity, we keep the notation A to denote the
unknown function.

B Boundary and interface conditions

Let Γ be the boundary of D. Boundary condition model the behaviour of the system
at the limit of the studied domains.

Boundary conditions on magnetic quantities ΓB and ΓH are complimentary on
Γ ( ΓB ∪ ΓH = Γ and ΓB ∩ ΓH = ∅)

n×H|ΓH = 0 (1.58)

n ·B|ΓB = 0 (1.59)

n is the outer normal unit normal vector to Γ.

When passing from a domain to another one of di�erent material properties, the
electromagnetic �elds present discontinuities. Thus, interface conditions ensure to
have a certain level of continuity through material interfaces [62].
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Between two domains Di and Dj, an interface denoted Γi,j is de�ned and n an
outer normal vector on Γi,j. Interface conditions are stated as follows.

n× (Hi −Hj)|Γij = 0 (1.60)

n · (Bi −Bj)|Γij = 0 (1.61)

With these conditions, the normal component of B and the tangential component
of H are continuous.

C Finite element method

As mentioned before, the equation (1.52) is a partial di�erential equation (PDE)
(Strong formulation). This equation can be solved analytically for simple systems.
For complex ones, weak formulations are used instead [63], i.e. Finite Element
Method.

The magnetostatic problem is reduced to the following equations.

∇×
( 1

µ
∇×A

)
= Js +∇×Hc in D (1.62)

n×A = 0 on ΓB (1.63)( 1

µ
∇×A

)
× n = 0 on ΓH (1.64)

These equations describe the electromagnetic �elds and the corresponding boundary
conditions.

The problem in 2D is further reduced since

∇×
( 1

µ
∇×A

)
=

 0

0

−∇ ·
[

1
µ
∇A3

]


and n×A = 0 is veri�ed if A3 = 0 and lastly
( 1

µ
∇×A

)
× n =

1

µ
∇A3 · n.

Finally, the problem is wholly reduced to 2D, and by summarizing, we have

−∇ ·
[

1

µ
∇A3

]
= Js3 +∇ ·M in D (1.65)

A3 = 0 on ΓB (1.66)

1

µ
∇A3 · n = 0 on ΓH (1.67)

with M =

(
−Hc2

Hc1

)
.

The interface conditions are implicitly veri�ed in the two-dimensional magneto-
static problems.
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Variational formulations
Multiplying the PDE from 1.65 by an arbitrary test function v such that v|ΓB = 0

and integrating over the domain leads to

−
∫
D

[
∇ ·
( 1

µ
∇A3

)]
v =

∫
D
Js3 v +

∫
D
∇ ·M v (1.68)

Applying Green formulas on the l.h.s [64].

−
∫
D

[
∇ ·
( 1

µ
∇A3

)]
v =

∫
D

( 1

µ
∇A3

)
· ∇v

−
∫

Γ

[( 1

µ
∇A3

)
· n
]
v (1.69)

since v vanishes on ΓB (Dirichlet boundary) and
(

1
µ
∇A3

)
· n vanishes on ΓH (Neu-

mann boundary), the boundary integral vanishes too.

In the same manner, Green formula is applied to the term with M.∫
D
∇ ·M v =

∫
D
M · ∇v (1.70)

This leads to the following variational formulation.

a(A, v) = 〈F, v〉 (1.71)

with

a(A, v) =

∫
D

1

µ
∇A · ∇v (1.72)

〈F, v〉 =

∫
D
Js3 v +

∫
D
M · ∇v (1.73)

Using the Lax-Milgram theorem, we can guarantee the existence and the uniqueness
of the solution of equation 1.71.

In the next section, we will show how we solve this equation using the �nite
element method.

1.3.3 Numerical model

Thanks to the Galerkin method, we assume having a �nite-dimensional space Vh,
on which a discrete problem is associated.

Find Ah ∈ Vh such that a(Ah, vh) = 〈F, vh〉 ∀vh ∈ Vh (1.74)

Since the space Vh is of �nite dimension denoted Nh, we let αi denote the basis
functions, i.e. Vh = span{αi /i = 1, . . . , Nh}. Consequently, the solution Ah is of
the form

1.3. ELECTRICAL MACHINES 39



CHAPTER 1. LITERATURE REVIEW

Ah(x) =

Nh∑
i=1

ui αi(x), x ∈ D (1.75)

Replacing Ah by 1.75 and v by the basis functions αi , the problem becomes

Find u = (ui)
Nh
i=1 such that

Nh∑
i=1

a(αi, αj)ui = 〈F, αj〉 j = 1, . . . , Nh (1.76)

We can write

Find u such that Ku = b (1.77)

with

Kij = a(αi, αj) =

∫
D

( 1

µ
∇αi

)
· ∇αj (1.78)

bj = 〈F, αj〉 =

∫
D
Js3 · αj +M · ∇αj (1.79)

Now we face the problem of how to construct the space Vh and corresponding
basis functions. In the following paragraph, we are discussing this matter.

A Special choice of Vh

The FEM is a particular case of the Galerkin method in the construction of Vh in
three main aspects:

1. A discretization Th of the domain D has to be established.

2. Vh is constructed such that for each element T ∈ Th, αi ∈ Vh is a polynomial.

3. There is a canonical basis of Vh can be easily described and have small support.

The discretization Th of the domain D is called a triangulation or mesh. Th must
satisfy the following properties

� Each T ∈ Th is a closed set with a nonempty, connected interior T̊ .

� Each T ∈ Th, its boundary ∂T is Lipschitz continuous.

� D = ∪T∈ThT .

� For each distinct T1, T2 ∈ Th, the intersection is of measure zero.
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Figure 1.2: Example of 2D square triangulation, (left) coarse triangulation, (right)
�ne triangulation.

Di�erent kinds of triangulation exist. Figure 1.2 shows possible triangulation of
a squared domain using small triangles, rectangles could also be used.

The most simple but widely used elements are the linear and quadratic elements.
The domain is meshed, e.g. triangles for 2D domains, on which the functions αi
should be linear or quadratic. The construction is as follows.

� Let the vertices of the element (called nodes) be enumerated by an index set
Idn and let xi, i ∈ Idn denote the corresponding nodes.

� We set
αi(xj) = δij, ∀i, j ∈ Idn,

and with the restriction

αi|T �rst or second order polynomial, ∀T ∈ Th

Such a basis is called the nodal basis since the unknowns are the function values on
the nodes. Likewise, we can de�ne edge basis and facet basis in 2D and 3D.

Constructing Vh in this manner enables one to make the matrix K sparse. Con-
sequently, relatively easy to solve the system 1.77.

The sti�ness matrix K and the load vector bi are assembled by summing over
the elements of the mesh.

Kij =

∫
D

1

µ
∇αi · ∇αj =

∑
T∈Th

∫
T

1

µ
∇αi · ∇αj (1.80)

bj =

∫
D
Js3 αj +M · ∇αj =

∑
T∈Th

∫
T

Js3 αj +M · ∇αj (1.81)

The appearing integrals over the elements T can be evaluated e�ciently using
the concept of the reference element.
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B Reference element

In the 2D case, an element is a triangle. Figure 1.3 shows a reference triangle Tr
and an arbitrary triangle T . Every arbitrary element can be mapped by an a�ne
transformation to the reference element as follows

Figure 1.3: The reference element (left), an arbitrary element (right).

(x, y) = (x0, y0) + (xr, yr)

(
x1 − x0 y1 − y0

x2 − x0 y2 − y0

)
(1.82)

Consequently, the integrals can be easily transformed into the reference element
using the mapping. For e�ciently evaluating these integrals, numerical integration
is used (Gauss quadrature).

Let us suppose that (xg, yg) and wg are the points and weights of a Gauss quadra-
ture of the reference element, then, the basis function and their derivatives are
evaluated and written as

αgi = αi(xg, yg) (1.83)

∇αgi = ∇αi(xg, yg) (1.84)

Consequently, the integrals in (1.80) and (1.81) are computed as

Kij =
∑
T∈Th

∑
g

1

µ
∇αgi J−1

T · ∇α
g
jJ
−1
T |JT |wg (1.85)

bj =
∑
T∈Th

∑
g

[
Js3 α

g
j +M · ∇αgjJ−1

T

]
|JT |wg (1.86)

where JT is the Jacobian of the mapping from the reference element to the element
T and |JT | is its determinant.

JT =

(
x1 − x0 y1 − y0

x2 − x0 y2 − y0

)
(1.87)
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C System resolution

Once the assembling of the sti�ness matrix and the load vector based on the contri-
bution of each element of the triangulation is done, the system of equations (1.77)
has to be solved. There exist multiple solvers. Direct solvers aim to decompose the
matrix K to the product of two or more matrices that are relatively easy to solve;
for example, we can cite Cholesky factorization. However, iterative solvers are still
the mostly used type of solvers since they usually lead to a considerable reduction
of resolution time and memory.

It is worth noting that the system 1.77 may not be linear in the existence of
ferromagnetic material, i.e. K is a function of u. Iterative solvers like Newton-
Raphson or �xed-point algorithms are then used for treating the nonlinearity of the
system.

D Results interpretation

Usually, the solution of the system of equation is not of interest; nevertheless, other
quantities computed from that solution are the ones of interest such as the magnetic
�ux density, the energy, the torque, the electromotive force, . . .

These quantities are often used to make "colourful" visualization; these are easy
to interpret and give insight about the electromagnetic phenomena in the studied
domain.

1.3.4 MagFEM - 2D magnetostatic FE code

We have developed a two-dimensional �nite element code to investigate the chal-
lenges of using such a tool to simulate electrical machines. The developed code is far
from being a complete interface for the modelling of electrical machines; however, it
will enable us to test the developed approaches on some optimization benchmarks
from the literature [1][2].

The general structure of any �nite element code is presented in Figure 1.4. At
�rst, the geometry of the device should be created, and material properties are
assigned to their corresponding parts. Then a triangulation technique is used to
subdivide the domains into small elements. Afterwards, the mathematical model is
applied to each of these small elements. The latter are then assembled into a global
system of equations. This system is solved to compute the quantities of interest.

We chose to explain these steps using a simple analysis of a device taken from
FEMM website [65]. The analysis consist in computing the inductance of the gapped
inductor shown in Figure 1.5. The electromagnetic device is composed of an E-
shaped ferromagnetic core separated from an I-shaped ferromagnetic core by an
air-gap of 0.025” (= 0.635 mm) thick and a winding of 66 turns, a current of 1A
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Start

Geometry and
material properties

Meshing

Assembling
and solving

Post-processing

stop

Figure 1.4: Conventional structure of a �nite element code

�ows in it.

Figure 1.5: Geometry of the inductor [65]

For this model, the ferromagnetic is considered to be linear with a relative per-
meability of 2500, and we consider that the current is distributed uniformally in the
slots.

A Geometry and material properties

The geometry of the electromagnetic device needs to be created, and material prop-
erties are assigned to the corresponding domains. Generally, symmetries may exist
in the studied device. In our example, we can model only half of the device since
the other half is anti-symmetric. Figure 1.6 shows half of the modelled geometry.
Additionally, a boundary domain is de�ned to impose boundary conditions.
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Figure 1.6: Modelled geometry of the inductor (left), Studied domain with bound-
aries (right)

Generally, the edges and each domain have identi�ers that enable to a�ect bound-
ary conditions, and material properties as shown in Figure 1.7. The edges and the
faces are identi�ed by the a number preceded by a letter E or F respectively.

Figure 1.7: Identi�ers of geometry

Now, the boundary conditions are assigned to edges from E1 to E8 to impose
n×A = 0. It worth noting that these conditions enable to model the anti-symmetric
property and also the boundary of the domain.

Furthermore, we assign a magnetic permeability of 2500 to faces F2 and F3

while we assign a current density of 0.8184A/mm2 to face F4.

1.3. ELECTRICAL MACHINES 45



CHAPTER 1. LITERATURE REVIEW

B Mesh

Now, we need to mesh the studied domain. In Figure 1.8, we show two meshes of the
studied domain, one with elements that are bigger than the other one. Naturally,
the one with smaller elements will lead to more accurate results than the other one.
However, it will be more expensive to evaluate.

Figure 1.8: Coarse mesh (left), Fine mesh (right)

C Assembling and solving

Once the material properties are de�ned and the domain is discretized, the assem-
bling of the matrix and the second member is conducted. Afterwards, the equation
is solved; since all the materials are linear, the solution consists in solving a linear
system and u = K−1b.

Figure 1.9 shows the distribution of the magnetic �ux density B in the studied
domain for both the meshes shown in Figure 1.8.

We recall that the �ux density B is expressed as follows.

B =


∂Ah
∂x2

−∂Ah
∂x1

0

 (1.88)

which can be computed from the solution of the linear system using equation (1.75).

D Post-processing

As noted before, the solution u is only an intermediate result; generally, other quan-
tities are computed based on u are of interest. For example, we have made the plots
in Figure 1.9 by computing the magnetic �ux density from u.
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Figure 1.9: Magnetic �ux density in the studied domain. Coarse mesh (left), Fine
mesh (right)

In this example, we are interested in computing the inductance of the magnetic
device. To do so, we use the following formula.

W =
1

2
Li2 (1.89)

where W is magnetic energy stored in the device, L is the inductance and i is the
current �owing in the coil.

We recall that the current was chosen to be equal to 1A, Thus, to compute the
inductance, we need to compute the magnetic energy using the formula.

W =
1

2

∫
D
BHdV (1.90)

This quantity is nothing but W = 1
2
u>Ku = 1

2
u>b, where K and b are resulted

from the assembling.

From the reference [65], a value of W = 0.865 mJ is found. In our analysis, we
found W = 0.779 mJ for the coarse mesh and W = 0.868 mJ for the �ne mesh.
The �ne mesh gives the closest result to the one from the reference. Then, we can
compute the inductance by equation (1.89), we �nd a value of L = 1.736mH.

As we solve numerically Maxwell equation, the discretization of the domain, i.e.
mesh, has an important impact on the solution quality. Ideally, a proper mesh is the
one that gives su�ciently acceptable results without being very �ne. Thus, some
tuning of the mesh is necessary before conducting a �nite element analysis.
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1.3.5 Discussion

In this section, we reviewed the literature related to the electromagnetic modelling of
electrical machines starting from the physical model and detailing the mathematical
one to present the numerical model �nally.

Finite element analysis (FEA) enables one to model the electromagnetic �elds
in the studied domain �nely. FEA is now undeniably the most �exible modelling
methodology that is based on a sound mathematical foundation and able to handle
di�erent phenomena such as nonlinear material properties, time-varying behaviours
and complex geometries.

However, all these advantages come with the expense of the increasing compu-
tational cost needed to handle such phenomena. Thus, its usage for optimization,
i.e. iterative processes, should be made with caution since only a limited number of
evaluations of the FEA can be tolerated.

Figure 1.10 shows an objective function f (function of the �ux density) as a
function of a geometry parameter p. An FEA was used to compute the response
f by varying the variable p. Note that the response is both noisy and has several
discontinuities. Numerically, �nding the geometry parameter that minimizes the
objective function is a design optimization problem that poses several challenges.
These discontinuities are explained by the fact that when varying the geometry
variable, the topology of the mesh is also changed.

6.4 6.8 7.2 7.6 8

·10−3

0.5

1

1.5

2

2.5

3

3.5
·10−2

p

f

Figure 1.10: Example of extreme re-meshing errors.

Some traditional design optimization techniques use gradient information com-
puted by �nite-di�erence to guide a sequential strategy towards the minimum. The
noisy nature of the response shown in Figure 1.10 may render �nite di�erence ine�ec-
tive at estimating the gradient, thereby preventing the algorithm from successfully
�nding the minimum.
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1.4 Chapter Summary

This chapter is considered as the foundation of our research work; at the begin-
ning, we presented the deterministic optimization. Afterwards, the integration of
uncertainty related to variables in an optimization loop. Finally, electromagnetic
modelling of the electrical machines using the �nite element method.

We have highlighted the thesis's main challenges related to the computational
cost of the FEA and the numerical error due to re-meshing. These two features
limit the choices of well-suited optimization algorithms. Furthermore, we have seen
that there are algorithms that are better than others in handling constraints and in
treating multi-objective problems.

Consequently, two approaches can be considered, which depend on the capabil-
ities of the model used. A non-intrusive approach where the model is considered
as a black-box and surrogate model is �t by evaluating the expensive model at
few points, then, use the cheap to evaluate surrogate model for optimization and
uncertainty quanti�cation. This approach is detailed in Chapter 2. The second
approach (detailed in Chapter 3), which is intrusive where the model evaluates not
only the outputs but also their derivatives mainly the �rst derivative, the deriva-
tives are used either by a derivative-based algorithm or a perturbation method for
uncertainty propagation.

The non-intrusive approach using surrogate models is widely used in the context
of expensive model optimization. Many researchers had highlighted the challenges
of using such a strategy. In this dissertation, we emphasize some of the very known
issues and propose new methodologies of using the meta-models and how to speed
up the optimization times.

On the other hand, for the intrusive approach, we propose how to compute the
derivatives from a �nite element model. In this approach, most of the work is
done by the model rather than the algorithm. We consider that derivative-based
algorithms are cost-e�cient, and minor adjustments are needed for improvement,
such as a multi-start strategy. The derivatives are e�ciently computed from the
FEA using the adjoint variable method.
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Chapter 2

Non-intrusive approach

The term "Black-box" has come into general use as a description or nomination
of an undisclosed process or function about which we do not need to know how
it operates - just that it does. A black-box is a device, system or object which
can be viewed in only through its inputs and outputs (or transfer characteristics),
without any knowledge of its internal workings. Its implementation is "opaque"
(black). Through this dissertation, the black-box refers to the FEA that models the
electromagnetic phenomena of a device, e.g. electrical machine.

The non-intrusive approach considers that the FEA as a black-box and all the
e�orts performed for device optimization is on the optimization algorithms. In the
�rst chapter, we detailed di�erent algorithms for solving optimization problems; all
these have pros and cons, but some are more well-suited than others for the prob-
lematic dealt with in this thesis. Approximation-based algorithms are of interest
since they consider the model as a black-box and �t a meta-model for the optimiza-
tion process. This approach decouples the black-box model and the optimization
process, which enable to reduce the number of calls to the black-box model (expen-
sive) and renders the optimization tractable in a limited time. The meta-model also
o�ers desired characteristics for the most e�cient optimization algorithms, such as
smoothness and the possibility to compute the gradients since the meta-model is an
analytic function. Thus, derivative-based algorithms will excel in optimizing such
models.

In this chapter, all the research has been done on how to exploit meta-models
in the context of black-box optimization. A discussion of the limitations of the
conventional way of usage is conducted, and we propose strategies to tackle these.

2.1 Meta-model design optimization MDO

Meta-modelling has led to new areas of research in simulation-based design opti-
mization. Meta-modelling approaches have advantages over traditional techniques

51



CHAPTER 2. NON-INTRUSIVE APPROACH

when dealing with the noisy responses and/or high computational cost characteristic
of many computer simulations. Meta-models are used in many �elds [66], mainly to
replace expensive black-box models [67] [68]. In an optimization problem, the objec-
tive function and/or constraints are not always cheaply available data. Thus these
surrogate models aim to give a model able to approximate the expensive black-box
models from a limited number of solutions.

As seen in the �rst chapter, there is a multitude of approximation techniques in
the literature; This dissertation focuses on one particular technique, Kriging. This
decision is not baseless. Other researchers such as Jones et al. [33] have made the
argument that Kriging provides a suitable approximation for computer simulations
and has led a thorough comparison between di�erent approximation techniques.

Optimization using Kriging meta-models was �rst introduced to tackle uncon-
strained optimization by Jones et al. [43]. This led to the famous EGO for the
E�cient Global Optimization algorithm that forms the basis of this chapter. EGO
is classi�ed into a general class of optimization algorithms that is referred to as
Bayesian analysis algorithms [39].

Meta-model based optimization �owchart is presented in Figure 2.1. The �rst
step aims to determine an initial set of parameter values (initial design) using a de-
sign of experiments, e.g. Latin Hypercube Sampling (LHS). The black-box(expensive)
model is solved for each set of parameters. Afterwards, a meta-model is built based
on the initial design and the output data from the black-box. The most important
part of the process is to �nd the in�ll point (Find new promising samples) in which
we look for samples that improve the actual best solution of the optimization algo-
rithm and/or increases the meta-model prediction capabilities. This sample will be
evaluated using the expensive model in the next iteration. Finally, some stopping
criteria are evaluated to terminate the optimization.

Sample Initial Design

Run FEA

Build Kriging
Meta-model

Find new promis-
ing samples

Stop ?

Figure 2.1: Flowchart of Kriging meta-model based optimization.
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In this section, we will discuss di�erent steps of the algorithm, starting from
initial sampling to stopping criteria, with the corresponding literature and our con-
tributions to the subject. We will use the one-dimensional function

f(p) = cos(0.6p) + cos(3p) + sin(6p+ 1.5) (2.1)

with p ∈ [0, 4].

The function is shown in Figure 2.2 to illustrate the major concepts of how to
minimize a black-box model using approximation methods. This function has three
local minima and one global minimum (shown as an asterisk in Figure 2.2).
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Figure 2.2: Test function

2.1.1 Design of experiment DoE

The choice of Design of Experiment (sampling points) plays a critical role in the
accuracy of the meta-model and the subsequent use in prediction. The choice of
DoE was addressed in the literature by performing empiric comparison on some test
cases [69]. Here, we detail two families of design of experiments: classical designs
and space-�lling designs; moreover, we discuss their adaptability to Kriging models.

A Classical DoE

The �rst family of DoE consists of designs based on geometric considerations. Full-
factorial designs and central-composite designs belong to this category. They have
been initially developed in the framework of linear regression, e.g. quadratic re-
sponse surface. The idea is to choose the observation points that maximize the
quality of statistical inference and minimize the uncertainty of the parameters of
the meta-model.
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For example, the samples of the full-factorial design are at the boundary of the
domain. For the problem de�ned in Figure 2.2, the samples are p1 = 0 and p2 = 4,
i.e.; borders of the design space.

In a two-dimensional space, the samples are on the corners of the design space
as shown in Figure 2.3.
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Figure 2.3: Two variables Full-factorial DoE

Although these designs remain reasonable in low dimensions, they require a large
number of observations in high dimensions (2nv , nv is the number of variables),
making them impractical for computationally expensive problems, i.e. exponential
number of evaluations is needed.

B Space-�lling DoE

A popular alternative to classical DoE is space-�lling one. As the name suggests,
they aim to spread the sample points evenly on design space. One of the most used
designs for the construction of the Kriging response surface is Latin Hypercube
Sampling (LHS) [69]. Figure 2.4 shows a two-dimensional sampling using LHS
using four samples. All dimensions are subdivided by four intervals, which produces
42 = 16 sub-spaces. The sub-spaces are sampled in a way that each column and
each row contains only one point. Each point is randomly sampled in the sub-space.
This enables one to have an acceptable spread of the points on the whole design
space. The extension of LHS to n-dimensional space LHS is relatively easy.

There exist other sampling techniques such as Halton sequence, Hammersley set
and Sobol sequence [70]. These methods o�er an a�ordable way of constructing
good space-�lling DoE, and they are suited for high dimensional problems.

Simpson has performed a comparison of di�erent DoE methods on several test
cases [69]. It was found that space-�lling designs o�er better performances than
classical design, and thus, for the rest of this dissertation, we only consider these
designs unless stated otherwise.
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Figure 2.4: Latin hypercube DoE

2.1.2 Expensive evaluations

Once the initial DoE is de�ned, the black-box model is evaluated in the points gen-
erated by the DoE. In Figure 2.5, the function was sampled at four points generated
using an LHS design.
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Figure 2.5: Sampled Test function

The evaluation of the black-box model can be performed simultaneously to take
advantage of parallel architectures of computers.

2.1.3 Fitting Kriging

Kriging has got much interest as a method of curve �tting and prediction. To show
this, Figure 2.6 exposes the annual evolution of the usage of Kriging in research
papers. The growing trend re�ects its usefulness in various engineering and science
�elds. Kriging o�ers some highly desired features such as data interpolation and the
ability to compute a prediction error.
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Figure 2.6: The evolution of the number of research papers dealing with Kriging
[source: dimensions.ai]

This section is devoted to the development of the equations found in Kriging.
We will derive the Kriging formulas using a somewhat di�erent approach. Readers
interested in the standard derivation may consult [37][71]. Much of the derivation
presented below follows the presentation of Jones [33].

A Understanding Kriging

Suppose we have two points pk and pl. Before we have sampled these points using the
black-box model f(p), we don't know the function values at these points which can
be considered as uncertain. Therefore, let us model this uncertainty by a random
variable F (p) of a normal distribution of mean µ(p) and variance σ2(p). Intuitively,
this means that we are saying that the function f(p) has a typical value of µ(p) and
is expected to vary in some range like [µ(p)− 3σ(p), µ(p) + 3σ(p)].

Furthermore, the function values f(pk) and f(pl) will tend to be close if the dis-
tance between the points pk and pl is small. Statistically, this means that F (pk) and
F (pl) will be highly correlated if the points pk and pl are close to each other. Com-
monly, the exponential function is used to express the correlation between points,
and it is given by

Corr[F (pk), F (pl)] = exp
(
−

nv∑
i=1

θi|pki − pli|α
)

(2.2)

where θk and α are the correlation parameters. Figure 2.7 illustrates the impact of
the correlation parameters on the distance between points.

On the left, α is held �x while varying θ. The value of θi determines how fast the
correlation decay as one moves in i-th dimension. Large values serve to model rapid
changes even over small distances. The higher θ, the smaller the correlation between
two points. It means that the higher θ the faster the variation of the function can
be between the two points.
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Figure 2.7: Exponential correlation function

On the right, we �x the value of θ and vary α. the value of α ( ∈ [1, 2]) determine
the smoothness of the function. The value of α = 2 leads to a Gaussian correlation
type that helps to model smooth functions while small values model rough functions.

Going back to the random variable F (p), the uncertainty about the black-box
model can be represented by sampling the random variable at N points.

Y =

 F (p1)
...

F
(
pN
)
 (2.3)

The random vectorY has a mean value equal to M (vector of N × 1) and covari-
ance matrix equal to

Cov(Y) = s2R (2.4)

where R is a N × N correlation matrix with (i, j) element given by equation (2.2)
and s2 is the variance.

The parameters M, s2, θi and α characterize how we expect the function to
vary when moving in di�erent coordinate directions. These parameters need to be
estimated in order to model the behaviour of the function.

The maximum likelihood estimation (MLE) o�ers one approach to estimate these
parameters. The likelihood function is given by

1

(2πs2)
N
2 |R| 12

exp

[
−(Y −M)TR−1(Y −M)

2s2

]
. (2.5)

One should look for the parameters that maximize the likelihood function (LF).
Practically, this means that we look for the predictor that has the same behaviour
as the sampled data.

Interestingly, one could easily deduce the values of M and s2 by setting the
derivative of the LF with respect to M and s2 to zero. The optimal values can then
be expressed as a functions of R
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s2 =
(Y −M)TR−1(Y −M)

N
(2.6)

R−1M = R−1Y (2.7)

The equation (2.7 is written in that form because, generally, the mean cannot
capture all the variations of the functions. Otherwise, s2 is equal to zero, and
consequently, there will be no covariance between the sampled random variables;
therefore, the Kriging model is meaningless. In the literature, the mean is often as-
sumed to be some polynomial function that captures the global trend of the sampled
data. By adopting this hypothesis, the mean M is written as

M(p) = fpoly(p)
>β (2.8)

where fpoly(p) is a polynomial vector (generally, polynomials of order two or less),
and β are the coe�cients of the polynomial vector. Therefore these coe�cients β
need to be estimated from equation 2.7,

R−1Fpolyβ = R−1Y (2.9)

β =
(
F>polyR

−1Fpoly

)−1
F>polyR

−1Y (2.10)

where

Fpoly =

 fpoly(p
1)>

...
fpoly(p

N)>

 . (2.11)

Substituting equation (2.6) into equation (2.5), we get the expression of the LF
that needs to be maximized.

1

(2πs2)
N
2 |R| 12

exp

[
−N

2

]
. (2.12)

Researchers usually refer to the concentrated log-likelihood function (CLLF),
in which the log function is applied on LF, and constant terms are ignored. This
function simpli�es the expression of the LF and changes its range of variation. This
will improve upon the performances of the optimization algorithm that solves the
problem. The CLLF is written as

− log(s2)− 1

N
log(|R|) (2.13)

The CLLF depends only on the correlation matrix R and, hence, on the corre-
lation parameters θi and α.

At this stage, we have modelled the sampled data by characterizing the parame-
ters of the correlation function, i.e. θ and α. To understand how we can predict at
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some point p∗, we follow the same principle as before. We assume that the parame-
ters of the correlation are known, and we add an arti�cial sample at p∗ to Y that is
the unknown predictor f̂(p∗). This predictor is found by maximizing the updated
LF and is given by

f̂(p∗) = fpoly(p
∗)>β + r(p∗)>R−1(Y − Fpolyβ) (2.14)

where r(p∗) is the correlation vector of length N between the untried p∗ and the
sampled data points (p1, . . . , pN).

The predictor f̂ is made of two terms; the �rst term is a regression model that
enables to capture the global trend of the function, and the second term compensates
the residuals produced by the regression; it is often referred as a stochastic term.
Therefore, the Kriging predictor interpolates the sampled points.

The mean squared error (MSE) of the prediction can be deduced from the fol-
lowing equation.

MSE(p∗) = E

[(
f̂(p∗)− f(p∗)

)2
]

(2.15)

The MSE is derived by developing this equation [37], and written as

MSE = s2
(

1 + u>
(
F>polyR

−1Fpoly

)−1
u− r>(p∗)R−1r(p∗)

)
(2.16)

where u(p∗) = F>polyR
−1r(p∗)− fpoly(p

∗).

Since we have no uncertainty about the point we have already sampled (because
we have calculated it using the black-box), the formula for (2.16) has the intuitive
property that it is zero at any sampled point. The MSE o�ers a metric for assessing
the meta-model accuracy and can be used to improve it. Indeed, we can sample an
additional point where the MSE is high and consequently expecting to improve the
global approximation of the function. It will often be convenient to work with the
square root of theMSE, it gives a standard error, or prediction error, for measuring
uncertainty in the prediction and referred to as

σ̂f =
√
MSE (2.17)

To illustrate the Kriging predictor and its MSE, we use the test function men-
tioned earlier (2.2). The process of �tting a Kriging model is described step-by-step
to foster a better understanding of what is involved in building a Kriging model.

After the function was sampled at the point de�ned in (2.5), we proceed to
the construction of the Kriging meta-model by adopting the following simplifying
hypotheses:

� The regression term is �rst order polynomial
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� The correlation function is exponential with parameters θ1 = 1 and α = 2

Before �tting the Kriging model to the four sampled points, the variables and
responses are scaled, as shown in table 2.1. They are scaled in a way to have
a mean of zero and a standard deviation of one, other methods of scaling could
be considered. When variables do not have the same order of magnitude, scaling
becomes very important to treat all the variables in the same manner and to avoid
numerical issues.

No. p Scaled p y = f(p) Scaled y

1 0.1 -1.1489 2.8167 1.4357
2 1.31 -0.41337 0.066438 -0.18091
3 2.65 0.40121 -1.1077 -0.87108
4 3.9 1.1611 -0.27861 -0.38372

Table 2.1: Variable and responses scaling

First of all, we will look for the regression coe�cients of β. As we considered the
�rst-order polynomial then

fpoly(p) =

(
1

p

)
. (2.18)

Using the exponential correlation function for the stochastic part of the model, the
correlation matrix is particularized for this example as:

Ri,j = exp
(
−|pi − pj|2

)
(2.19)

The resulting correlation matrix is thus

R =


1 0.58214 0.09045 0.00481

1 0.51502 0.08383

1 0.56135

sym 1

 . (2.20)

The correlation matrix is symmetric and re�ects the basic idea discussed at the
beginning of this section; close points have a signi�cant correlation, while distant
points have a lower correlation.

The regression term of the global model can now be estimated using equation
(2.10) : β = (0.2251 − 0.7847)>

Now, new points are predicted using equation (2.14), which is repeated here.

f̂(p∗) = fpoly(p
∗p∗)>β + r(p∗)>R−1(Y − Fpolyβ) (2.21)

where r(p)> is a the 4 × 1 correlation vector between an untried point and the
sampled data points
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ri(p
∗) = exp

(
−|p∗ − pi|2

)
(2.22)

Notice that p∗ needs to be scaled, as were the variables, before using the predictor,
the response also needs to be transformed.

The MSE can be computed using (2.16), once the parameters of the Kriging
model are identi�ed.

A plot of the resulting Kriging model is shown in Figure 2.8 along with the
prediction error σ̂f , the original black-box function, and the four samples.
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Figure 2.8: Kriging surrogate model

Immediately evident from the �gure is the fact that the Kriging model interpo-
lates the sampled points. Furthermore, the prediction error σ̂f (eq. 2.17) is equal
to zero at those points and increases when going far from them.

B Parameter estimation

Previously, it was noted that Concentrated Log-Likelihood Function needs to be
maximized (or minimize its opposite) to determine the parameters of the correlation
function θ and α (2.2). Therefore, an optimization algorithm needs to be chosen for
this purpose. The optimization problem is given by

min
θl,α

[
log(s2) +

1

N
log(|R|)

]
s.t. θl ≤ θl ≤ θl

1 ≤ α ≤ 2 (2.23)
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In the example above, we assigned the parameters ( θ1 = 1 and α = 2) to the
Kriging model. Here, we will look for the parameters by solving the optimization
problem (2.23). First of all, we will look to the evolution of the CLLF versus θ while
�xing α = 2 as shown in Figure 2.9.
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Figure 2.9: Evolution of CLLF with respect to θ1

We can see clearly that the CLLF monotonically decreases with θ1, then the "op-
timal" solution is the maximum allowed value of θ1, i.e. θ1. With such a large value,
the correlation between points will decrease, and the Kriging model will degenerate,
producing the behaviour shown in Figure 2.10. We can distinguish that the Kriging
model has a linear part corresponding to the �rst-order polynomial regression term
and "bell" shapes around the sampled points to interpolate these.

Obviously, this model is not well suited and should be avoided when optimizing.
Sasena explained that the points that are evenly sampled in the design space cause
this behaviour and proposed to add new samples near the ones that are already
sampled [39] to prevent this erratic behaviour. Furthermore, he proposed a metric
to assess if the CLLF is monotonic or not.

An asymptotic study was proposed when θ1 approaches in�nity. Thus, the quan-
tities mentioned earlier become:

R =I

β =
(
F>polyFpoly

)−1
F>polyY

s2 =
(Y − F>polyβ)T (Y − F>polyβ)

N
(2.24)

Then, the asymptotic value limCLLF, when θ goes to in�nity, is equal to

limCLLF = log

(
(Y − F>polyβ)T (Y − F>polyβ)

N

)
. (2.25)
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Figure 2.10: Impact of the CLLF on the Kriging model

The optimal value of the CLLF found by the optimization algorithm must be
strictly less than limCLLF. Otherwise, we conclude that the meta-model is not
suitable and special measures should be undertaken. In our example, we found that
the optimal value of CLLF is equal to limCLLF = -0.55. This explains the poor
�tting of the Kriging meta-model.

As proposed in [39], adding additional points near the already sampled ones
could improve the meta-model quality. To verify this hypothesis, we considered
three con�gurations, In con�g. 1, we add a new point p = 3.85 near the point
p = 3.9, in con�g. 2, we add a point p = 2.6 near the point p = 2.65 and in con�g.
3, we add a point p = 0.85.

Con�g. Optimal θ CLLF limCLLF

1 139.26 -0.64 -0.54

2 11.83 -0.82 -0.52

3 7.57 -0.48 -0.44

Table 2.2: Impact of adding samples on the CLLF

Table 2.2 shows the solution of the CLLF and the corresponding values of lim-
CLLF. We can see that adding points near to the sampled ones does not always
solve the problem, as stated in [39]. In con�g. 2, we can notice that indeed the
CLLF is not monotonic because the optimal value of CLLF is less than limCLLF,
and we have a minimal value at θ = 139.26. This will have the same behaviour as
observed in Figure 2.10; A large value of θ is not very desired since it produces a
model with as many local extrema as the number of samples.

Nevertheless, adding a sample point has solved the problem for the con�g. 2, it
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has produced an acceptable value of θ while verifying the condition that the optimal
value of CLLF is less than limCLLF.

The con�g. 3 shows that points other than the ones near the already sampled
point could prevent the monotonic behaviour of the CLLF.

Figure 2.11 shows the evolution of CLLF with respect to θ in con�g. 3, and the
location of the optimal value. Furthermore, Figure 2.12 shows the Kriging meta-
model that corresponds to this con�guration.
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Figure 2.11: Evolution of CLLF with respect to θ1 for con�g. 2
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Figure 2.12: Kriging surrogate model with optimized CLLF

These observations beg the questions: What can one do to prevent the mono-

64 2.1. META-MODEL DESIGN OPTIMIZATION MDO



CHAPTER 2. NON-INTRUSIVE APPROACH

tonic behaviour of the CLLF? Furthermore, where to add the sample points? Two
measures should be considered. The �rst one is to limit the upper value of the θ to
guarantee a minimal correlation between points. The second one is a diagnosis to
test the optimal value of CLLF compared to the limCLLF; Points should be added
sequentially until the diagnosis is satis�ed.

As we have shown before, adding a single point near sampled one is not su�cient
to improve upon the short-range variability, and therefore the CLLF may still be
monotonic. Hence, additional points should be added until the condition mentioned
above is veri�ed. In the next section, we will discuss how to �nd those points and
add them to the sampled ones.

On the other hand, the maximal value of θ should be imposed, but how?

Considering the correlation function, we want at least two sampled points to
be correlated with each other, and their correlation has to be higher than some
threshold as shown in the equation below

exp
(
−θ|pk − pl|

)
≥ c (2.26)

In most cases, the samples of the initial DoE are uniformly distributed on the
design space, after scaling, all the variables will be bounded between −

√
3 and√

3. Furthermore, they are almost equidistant in each dimension; thus, the distance
between two samples is around

d =
2
√

3

N + 1
(2.27)

where N is the number of samples. Thus, by �xing the strength of the correlation
c we can �nd an upper value of θ.

θ ≤ − log(c)

d
(2.28)

A reasonable choice of c = 0.003 than will lead to an upper bound of θ which is
equal to

1.68(N + 1).

It is worth noting that for nv-dimensional problem, the upper bound of θ in each
dimension should be

θ = 1.68
N + 1

nv
(2.29)

The upper bound depends only on the size N of the initial design and the di-
mensionality of the problem. Imposing an upper bound on θ will guarantee that, in
the worst case, at least some small correlations between the samples are imposed.

We can follow the same reasoning for the estimation of the lower bound on θ.
Imposing a maximal possible correlation between two samples to c = 0.997 will lead
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to the lower bound of θ in each dimension:

θ = 10−3 N + 1

nv
(2.30)

Now, we fully identi�ed the optimization problem formulated in (2.23), one should
choose an optimization algorithm to solve it. As the evaluation of CLLF requires
inverting the correlation matrix, which becomes computationally expensive for a
large number of samples (size of R is equal to the number of samples). A derivative-
based algorithm can be used, but the CLLF presents a plateau where the gradient
is quasi-null, as shown in Figures 2.9 and 2.11. This will lead to slow convergence
of derivative-based algorithms. As an alternative, we use the Nelder-Mead algo-
rithm that requires only one or two evaluations per iteration and does not require
derivatives.

The Nelder-Mead algorithm has two drawbacks; handling constraints and �nd-
ing an adequate initial point. The problem formulated in (2.23) has only bound
constraints; these can be easily integrated into the objective function by applying
a variable transformation. Nevertheless, the initial point requires more attention
since the CLLF can be multi-modal (many local minima) [72].

The main idea for �nding an adequate initial point is similar to the one used
for identifying the upper and lower bounds of θ. We de�ne the initial point, such
as the most distant samples are correlated. This will lead to an overestimation of
the correlation strength with a small value of θ, where the CLLF exhibits large
gradients.

The value of α = 2 is best suited for smooth functions but less numerically
robust [39]; that is why we choose the initial value of α = 1. Then, we assume
all the samples are correlated by at least a small factor c. This small correlation
corresponds to the most distant samples. As the variables are scaled, this distance
between the farthest points is at most equal to 2

√
3. Then, the initial point of θ0

θ0 = − log(c)

2
√

3
(2.31)

A correlation factor c = 0.25 seems a good value since our experience have shown
that underestimated values of θ0 usually gives better results than overestimated ones.

θ0 = 0.4 (2.32)

Finally the optimization problem that maximizes the CLLH to �nd the correla-
tion parameters is written as
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min
θl,α

[
log(s2) +

1

N
log(|R|)

]
s.t. 10−3 N + 1

nv
≤ θl ≤ 1.68

N + 1

nv
, l = 1, . . . , nv

1 ≤ α ≤ 2 (2.33)

where N is the size of the initial design and nv is the number of variables.

After �tting the Kriging model, additional sample points are added to improve
its quality either by looking for the optimum of the Black-box model or globally
improving its accuracy. Next, we discuss how we determine the sample points for
both approaches.

2.1.4 Finding new samples

Optimization algorithms using the Kriging model do not follow a search path as con-
ventional algorithms; it selects points from anywhere in the design space depending
on the objective; it is referred to as in�ll sampling criterion (ISC). To illustrate this,
we will start with the famous algorithm EGO developed by Jones et al. [43].

EGO exploits the Expected Improvement (EI) in�ll sampling criterion. EI was
�rst introduced to tackle unconstrained optimization. Its main advantage lies on
sampling points that o�er a good trade-o� between local exploitation and global
exploration of the design space. Indeed, It tends to choose the design points most
likely to improve the accuracy of the model and/or have a better function value than
the current best point.

Thus, EGO proposes to maximize the expected improvement function, shown in
equation ( 2.34), rather than minimizing the meta-model of the objective function.

EI(p) =
(
fmin − f̂(p)

)
Φ

(
fmin − f̂(p)

σ̂f (p)

)
+ σ̂f (p)φ

(
fmin − f̂(p)

σ̂f (p)

)
(2.34)

where f̂ and σ̂f are the Kriging meta-model and the prediction error of the objective
function respectively. fmin is the smallest sampled value of f .

Maximizing EI(p) leads to the point x∗ with the most signi�cant expected im-
provement under the uncertainty of the Kriging model, either by sampling toward
the optimum or improving the approximation of the meta-model. These characteris-
tics can be justi�ed by the fact that the derivative of EI with respect to f̂ is negative,
meaning that the smaller f̂ , the higher EI (exploitation) and the derivative EI with
respect to σ̂f is positive, meaning that the bigger σ̂f , the higher EI (exploration).

To demonstrate EGO's search strategy for unconstrained optimization problems,
the one-dimensional test function shown in Figure 2.2 is used. EI determines where
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the algorithm will evaluate the black-box function. It tends to choose the design
points most likely to improve the accuracy of the Kriging model and/or have a better
value than the current.

In Figure 2.13, The blue dashed line is the true objective function we wish to
minimize, while the solid red line is the Kriging approximation conditional to the
sample points shown as green dots. The black plot at the bottom is the sampling
criterion (EI); its y-axis is on the right.

After the initial sample of four points generated by LHS, the resulting Kriging
model is of poor �t compared to the true function. Nevertheless, the EI function
leads the algorithm to sample points where it is expected to improve the actual
smallest value of the objective function while taking into account the prediction
error. After three iterations, the model has improved in the region of the optimum
on the right. In iterations 5 and 6, EI �nds other points in regions where there is
a high probability of �nding a better point. By iteration seven, all the region on
the right has been explored. However, the left part is not accurate compared to the
true function because the Kriging model expects no-improvement from sampling in
that region. Nevertheless, the global minimum has been found quite accurately as
shown in Figure 2.13.

From this example, one can see that optimization using the Kriging model does
not follow a search path. It chooses points from di�erent regions in the design space,
depending on where the sampling criterion is the highest.

In general, ISCs have strong in�uence on how e�ciently and accurately the
algorithm locates the optimum. They can be tuned to focus either on exploitation
and exploration, or a compromise between the two. An exhaustive set of in�ll criteria
was presented in [39].

A Constraints handling

Constraints are omnipresent in most optimization problems, having ways to deal
with these is mandatory. EGO was developed for the optimization of simply bounded
problems, that is, with constraints only on the ranges of the design variable values
to be considered. Some researchers extended the EGO algorithm to constrained
problems. The probability of feasibility (PF ) criterion is one of the most signi�cant
contribution. It quanti�es the probability that a constraint is satis�ed (g(x) ≤ 0).

PF (x) = Φ
(−ĝ(x)

ŝg(x)

)
(2.35)

where ĝ(x) and ŝg(x) are the Kriging meta-model and the prediction error of the
constraint g(x) respectively.

The ISC is then adapted to consider both objectives; to sample point that im-
proves the actual solution and verify the constraints. Thus, both EI and PF should
be considered.
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Figure 2.13: Iterations of EGO
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The formulation (2.36) has a thoughtful statistical derivation (assuming that
the objective function and the constraint are statistically independent). It aims at
looking for points that maximize the expected improvement and ful�ll constraints.
However, the product of EI and PF reveals high modality and algorithms maxi-
mizing this criterion often fail to �nd the global optimum.

max
p

EI(p)PF (p) (2.36)

Thus, another formulation was proposed as in equation (2.37) that considers the
in�ll criterion as bi-objective to reduce the modality [73]. From the Pareto front
solution, the point chosen is the one that maximizes the product of EI and PF .

max
p

[EI(p), PF (p)] (2.37)

In the case of many constraints, both formulations consider the global PF as the
product of the probability of feasibility of each constraint. However, this prevents
the search close to the boundary of the constraint. So, if the optimum lies on the
constraint boundaries, these in�ll criteria may fail to �nd it. The maximization
of PF leads to points inside the feasible region and less likely on the constraint
boundaries.

Therefore, a new formulation was proposed in equation (2.38). It considers the
ISC problem as a constrained one to reduce the modality of the in�ll criterion and
to gain in precision of the solution in case of the optimum lies on the boundary of
some constraints [39].

max
p
EI(p)

s.t. PFi(p) ≥ Ptol, i = 1 . . . nc (2.38)

This formulation considers each constraint independently and calculates their
respective probabilities of feasibility, ending up with the same number of constraints
as the original problem.

A value Ptol = 0.95 was recommended but it has an e�ect on the precision. It
fails to locate the points on the constraint boundaries. In our opinion , a value
Ptol = 0.5 seems more reasonable because PF = 0.5 when ĝ(x) = 0.

To illustrate the sampling strategy for constrained problems, we will add a con-
straint to our test function. The optimization problem is now written as follows:

min
p
f(p) = cos(0.6p) + cos(3p) + sin(6p+ 1.5)

s.t. g(p) = cos(2p)− 0.4 ≤ 0

0 ≤ p ≤ 4 (2.39)
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In Figure 2.14, the problem is shown graphically. The objective function is the
blue dashed line, the infeasible region, where g(p) > 0, is highlighted by the gray
area, and an asterisk shows the global minimum at p = 3.721. On this �gure, we
can see that there are two separate feasible zones, one at the centre and the other
at the right where the optimum lies.
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Figure 2.14: Constrained test problem

This constrained test problem is used to show the iterations of the constrained
ISC presented in 2.36. In Figure 2.15, The blue dashed line is the true objective
function we wish to minimize, while the solid red line is the Kriging approximation
conditional to the sample points shown as green dots. The black plot at the bottom
is the sampling criterion 2.36; its y-axis is on the right. The Kriging model of the
constraints was not put in the �gures for better legibility. Visually, we can see
that the Kriging was able to approximate quite accurately the constraint after three
iterations.

The ISC was able to locate the global solution quite accurately as for the uncon-
strained case. The new samples are found by maximizing the ISC. In the beginning,
the algorithm explores the right region where the optimum lies. In contrast, at the
last iterations, it explores the left region where there is a high probability that a
better point can be found.

Sasena et al. have discussed that transforming the ISC to a constrained problem,
as shown in (2.40), highly improves the accuracy of the solution found [74]. The
ISC for constrained problems is then written as

min
p

EI(p)

s.t. ĝi(p) ≤ 0, i = 1 . . . nc (2.40)
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Figure 2.15: Iterations of constrained EGO
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Furthermore, they noted that the uncertainty on the constraints meta-model
does not bring any gains upon the accuracy of the solution. But, it may play an
inverse role by forcing the sampling criteria to sample either in the unfeasible or
the feasible regions rather than on the boundary itself where the optimum may be
found. They have shown this behaviour on di�erent test cases and recommended
using only the Kriging model as a measure of constraint satisfaction.

B Extensions to multi-objective optimization

Treating multi-objective problems with approximation methods is still an active
research area, as noted by Rojas et al. [75]. There exist di�erent ways to treat
multi-objective optimization using an approximation method such as Kriging. We
will distinguish here two signi�cant categories:

1. In�ll criteria-based

2. Performance indicator-based

The in�ll criteria-based category aims to extend the in�ll sampling criteria from
single-objective problems to multi-objective ones. The expected hypervolume im-
provement is commonly used; it extends the concept of the expected improvement
to multi-objective optimization [76].

On the other hand, the performance indicator-based category is used as an assis-
tant to some multi-objective optimization algorithm. For example, K-MOGA uses
the prediction error to assist a genetic algorithm [77]. At each generation, a Kriging
model is �tted to each objective and used to evaluate each point in the population.
If the prediction error is higher than some threshold for any point in this population,
the black-box model is used on that point to return the true response values.

It is worth recalling what we presented in Chapter 1, namely that a multi-
objective problem could be transformed into a single-objective one (using weighted-
sum or ε-constraint) and treat it as a single-objective problem.

C Extensions to optimization under uncertainty

Optimization under uncertainty using approximation methods is scarcely treated
in the literature because of the double complexity of optimization and uncertainty
propagation, Deng has presented a thorough state-of-the-art on the subject [49].
Most of the formulations that deal with uncertainty are extended from the deter-
ministic case. In fact, new ISCs are developed to explore only promising regions of
the design space. This research topic has been gaining importance during the last
two decades. Many researchers proposed their methods to reduce the computational
burden and improve the design while taking into account the uncertainties [78].
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D Solving the in�ll criteria problem

It was noted that new samples are found by solving the ISC optimization problem.
Although di�erent, ISCs often reveal striking similarities. One of the most common
is multi-modal behaviour. Indeed the ISC has many local optima. Finding a local
minimum is not necessarily a critical matter, but �nding the global one is very
desired. For example, in Figure 2.13, the expected improvement function has many
optima and large regions where it is equal to zero. Optimization algorithms can �nd
the optimum in the �rst iterations. However, in the last iterations, the non-zero
region is tiny, which renders �nding the global optimum a very delicate task.

Thus, the choice of the optimization algorithm is a crucial part of the success of
the whole process. As noted, the ISC can have multiple local optima and can have
zero-gradient on large parts of the design space. Thus, derivative-based algorithms
are not well-suited. Nevertheless, the meta-model has an analytic formula and
gradients can be computed with little overhead. We recall that derivative-based
algorithms are the most e�cient when the function and its derivatives are smooth
enough, as detailed in Chapter 1. Consequently, we choose to bet on these algorithms
for two main reasons:

1. The local search drawback, can be dealt with by adopting a multi-start strat-
egy. Indeed, running multiple optimization with uniformly distributed initial
points on the design space will necessary increase the chances of �nding the
global minimum.

2. Derivative-based algorithms deal e�ciently with constraints to enable us to
treat constrained ISC problems.

We choose to use the SQP implementation of MATLAB for this purpose. The
initial points are generated using an LHS to guarantee a uniform distribution. Ad-
ditional measures were taken to avoid some speci�c problems, such as scaling the
variables and the responses.

2.1.5 Stopping criteria

Proving the convergence of the approximation-based algorithm is very di�cult. For
most algorithms, the search is terminated by a limit on the number of black-box
evaluations. Other stopping criteria have been investigated that involve some statis-
tical property. For example, the expected improvement estimates how the sampled
point will improve the actual solution. Thus, a threshold can be de�ned to stop
the algorithm if the maximal value of the expected improvement is less than that
threshold.

Nevertheless, these criteria might stop the algorithm prematurely since the op-
timization algorithm can sometimes fail to �nd the global optimum of the ISC.
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In the remaining of this chapter, the termination criterion is speci�ed as the
maximum allowable number of black-box model evaluations unless we state di�erent
conditions.

2.1.6 Analytical examples

The performances of the algorithms presented above are tested on two analytical
examples.

A Example 1: Dimensionality

The �rst example is the Rosenbrock function; H. Rosenbrock introduced it in 1960,
which is used as a performance test problem for optimization algorithms. As shown
in (2.41), the problem can be extended to many variables; thus, the objective, of
using this function, is to study the impact of dimensionality on EGO.

min
p

f(p) =
nv−1∑
i=1

[
(1− pi)2 + 100

(
pi+1 − p2

i

)2
]

s.t.− 2.4 ≤ pi ≤ 2.4, i = 1 . . . nv (2.41)

Rosenbrock problem has one global minimim at po = (1, . . . , 1) and f(po) = 0.
Figure 2.16 shows the contour plot of the function and the global solution is as
asterisk.
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Figure 2.16: Two-dimensional Rosenbrock function

B Example 2: Constraints

The second example aims to study constraint handling; therefore, we consider the
optimization problem shown in (2.42). Sasena considered this problem as one of his
test problems [39].
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min
p

f(p) = (p1 − 10)2 + 100 (p2 − 15)2

s.t. g(p) =

(
p2 −

5.1

4 ∗ π2
p2

1 +
5

π
p1 − 6

)
+ 10

(
1− 1

8π

)
cos(p1)− 5 ≤ 0

− 5 ≤ p1 ≤ 10

0 ≤ p2 ≤ 15 (2.42)

The problem has a global optimum at po = (9.7775, 4.5238) and the constraint
is active g(po) = 0. Figure 2.17 represents the cost function and the contraints. The
objective function is shown as contour lines; the region inside the black curves is
the feasible region while outside is not. This problem has three minima, one in each
feasible region. A red asterisk shows the global one.
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Figure 2.17: Constrained function

2.1.7 Results assessment

We choose to consider these examples in order to test EGO algorithms and assess the
quality of the solution and the computational burden expected when treating similar
problems. Thus, some speci�c metrics are proposed to quantify the performances.

1. cost : The number of black-box function evaluations.

2. cost1%: The number of black-box function evaluations before a point is sampled
within a box with size 1% of the design space range around the true solution.

3. error : the normalized Euclidean distance from the best sampled point to the
global solution. This quantity is a scaled to design size.

4. ˆerror : The normalized Euclidean distance from the solution found by the
Kriging model and the global solution.
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To reduce the impact of the initial sampling on the result, we choose to use the
Hammersley sequence rather than LHS as an initial DoE; it generates well-spread
points. The size of the initial sample is chosen to be �ve times the number of
variables.

The Kriging meta-model is �t at each iteration; the parameters of the correlation
function are found using the Nelder-Mead algorithm. The upper and the lower
bounds and the initial point of the correlation function are determined using the
procedure described in the previous section mainly equation (2.33).

We consider the expected improvement criterion as an ISC for the �rst example
and for the second example, the expected improvement is subjected to the meta-
model of the constraint. We use Matlab implementation of the SQP algorithm to
solve the ISC problem. One thousand points were chosen using an LHS to run SQP
using di�erent initial points . This signi�cant number of initial points will enable us
to determine a convergence rate. The latter is determined by computing the number
of optimization that converged to the best solution (within a radius of 10−8) divided
by the total number of optimizations.

As for the stopping criterion, the iterations are kept going until the maximum
value of the expected improvement is less than a threshold for two successive itera-
tions. Imposing two iterations will prevent the algorithm from stopping prematurely
in case the optimization algorithm fails to solve the ISC problem once. The threshold
is taken to be equal to 10−6.

A Example 1

Four optimizations are considered with di�erent number of variables nv. The results
are summarized in Table 2.3.

nv cost cost1% error % ˆerror %

2 27 - 1.5 0.06
3 45 - 2.2 11.5
4 87 - 8.2 3.0
5 157 - 3.5 3.6

Table 2.3: Performances of EGO on the multidimensional Rosenbrock problem

The total number of evaluations increases as the number of the variable does.
Interestingly, for this problem, the number of evaluations is almost proportional to
the power of two (cost ≈ 6 2nv). As expected, this rate of increase is exponential.
The cost can be estimated for problems of higher dimensions.

The empty third column of the table shows that EGO could not sample points
near the global solution because the algorithm expected no improvement in doing
so. The values of error con�rm this fact, the distance from the best-sampled point
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( the sample having the minimum value of f) to the global solution is higher than
1.5% for all the cases.

In the two-dimensional case, the algorithms were pretty accurate in the neigh-
bourhood of the global optimum; this is justi�ed by the low value of ˆerror. The
minimum found by the Kriging model is very close to the global one.

For the three-dimensional case, the algorithm was misled since the best-sampled
point was not the closest to the global solution. Consequently, the solution found
by the meta-model is far from the global one - ˆerror = 11.5%.

For other cases, the solution found using the Kriging meta-model was not of
good quality, as it was far from it by at least 3% of the design space range.

This example shows two drawbacks of EGO; the global solution is not determined
reliably neither by :

1. sampling near enough to the global solution or,

2. having a good approximation near the global optimum

To investigate the causes of these drawbacks, we investigated the evolution of the
algorithm iteration-by-iteration. In Figure 2.18, at the left, we see the evolution of
the maximum value of the expected improvement (max EI) found by the algorithm,
and on the right, the convergence rate (CR) of the algorithm solving the ISC at
each iteration. The erratic behaviour in both plots is related to the change in
the correlation parameters of the meta-model. But, interestingly, after the tenth
iteration, the maximum value of the expected improvement decreases and, at the
same time, the rate of convergence.
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Figure 2.18: Evolution of the maximum expected improvement and the convergence
rate of the algorithm

The decreasing trend of the convergence rate highlights the increased complexity
of the ISC problem as the iterations progress. Indeed, we have seen for the one-
dimensional problem that the expected improvement criterion has zeros-gradient in
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the majority of the design space, and this explains why it is becoming cumbersome
to solve the ISC as iterations continue.

Putting the chosen optimization algorithm to blame is legitimate, but we have
considered one of the most e�cient algorithms for local search and enhanced it with
the multi-start strategy. In our opinion, no other algorithm could outperform the
one we propose for solving these problems except an exact algorithm (which, by the
way, explains why a branch and bound algorithm was used in the original paper for
the optimization of the ISC [43]). Nevertheless, the estimation of the bounds to be
used by an exact algorithm becomes computationally expensive as the number of
samples increases; thus, the process becomes intractable and impractical.

All that being noted, we suggest that the EGO is not able to sample points near
the global optimum because the algorithm was not able to �nd the global solution
of the ISC.

B Example 2

In this example, two Kriging models are �t one for the objective function and the
other for the constraint function. The result of the optimization is presented in Table
2.4. The algorithm failed severely to solve the problem or even to locate where the
global solution is. As shown in Table 2.4, one can see that the best-sampled point
is very far from the global solution (error = 31.6%), and even the solution found
by the meta-model is also faraway ( ˆerror = 31.6%).

cost cost1% error % ˆerror %

19 - 31.6 31.6

Table 2.4: Performances of EGO on the constrained problem 2.17

In fact, the algorithm found a local solution and got stuck with it. It kept
sampling points near to each other in one of the feasible regions found. It is worth
noting that the inaccuracy of the constraint meta-model caused this behaviour.
Admittedly, the constraint function is complicated; thus, the meta-model was not
capable of approximating it accurately.

Some research has been done on how to locate all the feasible regions before
starting optimization. We proposed to use the probability of feasibility of PF cri-
terion [41]. Maximizing PF will lead to solutions where the constraints are more
likely to be satis�ed.

We also proposed another criterion to look for multiple feasible solutions. This
ISC allows sampling points that have the highest probability of feasibility while being
distant from each other. This enables identifying multiple feasible zones (if any),
and the optimization using another ISC for the optimum search can be conducted
afterwards.
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However, our experiences have shown that the optimization algorithm, maxi-
mizing PF , has the same problems as observed for the expected improvement ISC.
Indeed, the PF function has a zero-gradient in large part of the design space; this
renders the optimization problem harder to solve.

2.1.8 Discussion

We have noted some of the di�culties that need to be dealt with when optimizing
using Kriging models. Here we will try to summarize these and cite some others
that were highlighted in the literature :

1. The ISC optimization problems are highly multi-modal, and their modality is
highly correlated to the size of the sample of the black-box model; when the
number of samples rises, the number of local optima increases too. Further-
more, some ISCs can express zero-gradient in large part of the design space.
Therefore, it becomes highly di�cult to solve these optimization problems [38].

2. The in�ll criteria that focus more on the local search tend to sample points
close to each other, which decay the conditioning of the correlation matrix
and, in consequence, the time needed for the construction of the meta-model
[79][80].

3. The number of samples exponentially increases as the dimensionality of the
optimization problem does (the curse of dimension). Thus, the size of the
correlation matrix increases and consequently the time needed to �t the meta-
model. This time can even exceed the evaluation time of the black-box model.

4. When dealing with constrained optimization, the in�ll criteria tend to sample
inside the feasible region but not on the constraint boundary which a�ects the
solution accuracy [74].

A Solving the ISC

We have seen in Figure 2.18 that solving the ISC becomes challenging as the itera-
tions progress. Even at the beginning of the process, the convergence rate did not
exceed 40% and decreased as the algorithm iterates. Solving the ISC is vital for the
success of the process of �nding a global solution. Thus, the choice of the ISC is
crucial.

B Correlation matrix conditioning

As the correlation matrix is inverted many times in the process of �tting the Kriging
model, its conditioning is an indicator of how di�cult model �tting will be. The
condition number is the quantity that measures the conditioning. A matrix with
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a low condition number is said to be well-conditioned, while a matrix with a high
condition number is said to be ill-conditioned. In Figure 2.19, we see the evolution
of the condition number as a function of the iterations for the examples treated.
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Figure 2.19: Evolution of the condition number as function of iteration

Clearly, the condition number of the correlation matrix increases as iterations
increase. The correlation matrix somewhat expresses the distances between the
samples. A large condition number exposes that there are samples that are far away
from each other, while others that are very close to each other. This shows that the
algorithm tends to sample point close to other existing samples as iterations go on.

In Example 2, the condition number is very high from the sixth iteration, as
shown in Figure 2.19.b. We have noted that the optimization algorithm was trapped
in a local minimum, and the algorithm kept sampling near it, which explains the
large value of the condition number.

For both cases, the condition number increases, which means the the construction
of the meta-model becomes since the correlation matrix is not guaranteed to be
positive-de�nite due to rounding errors.

C Fitting cost

Aside from the conditioning, the number of samples also impact the time needed
for �tting the Kriging model. To illustrate this, we took the problem of Example 1
and tested it for di�erent sample sizes and di�erent number of variables (nv). To
eliminate the impact of the conditioning, the samples are drawn using the Hammer-
sley sequence to get a space-�lling design. Figure 2.20 shows the evolution of �tting
time as a function of the sample size. The �gure reports the mean values of multiple
runs.

We can see that the time needed for model �tting increases as the sample size
grows. The dimensionality seems not to have a signi�cant impact on �tting time.
This can be explained by the fact that the inversion correlation matrix is the most
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Figure 2.20: Cost of �tting the Kriging model for Example 1

computationally expensive operation. Moreover, its size depends on the sample size
but not on the dimensionality of the problem.

Nevertheless, a problem of higher dimension needs more samples to approximate
su�ciently the black-box model (the curse of dimension). Therefore, the increased
cost related to dimensionality.

D Synthesis

The conventional way of using the Kriging model seems to be not reliable since
the meta-model �tting is a multifaceted process. Indeed, the conditioning of the
correlation matrix and size of the samples profoundly impacts the time needed for
model �tting and the quality of the �tted model. Additionally, traditional ISC
problems increase in complexity as the sample size does.

To solve the problems mentioned above, "simple" meta-models need to be �tted.
"Simple" stands for meta-models that are easier to �t and lead to ISC problems that
are tractable using classical optimization algorithms. Many optimization algorithms
discussed in Chapter 1 solve optimization problems using many relaxed forms of the
initial problem. This approach appears promising in the context of approximation-
based algorithms and still an unexplored research path.

A divide and conquer strategy appears to be a good starting point; the initial
design space is divided into sub-spaces with models easier to �t and problems faster
to solve. Then the sub-spaces are compared to further exploration for the most
promising ones. The idea is based on the branch and bound (B&B) algorithm.
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2.2 Branch and Bound assisted by Meta-models (B2M2)

To recall, B&B algorithms consist of a systematic enumeration of candidate solutions
by splitting the search space into smaller spaces. The algorithm explores each smaller
space then estimates the upper and lower bounds of the objective function on each
one of them. A space is pruned if it cannot produce a better solution than the
best one found so far by the algorithm. B&B were mainly developed for discrete
optimization by other extensions to continuous optimization were proposed. Messine
et al. developed an interval B&B algorithm (IBBA) [29] [31]. IBBA computes the
bounds of the objective function using interval arithmetic. Its performances depend
on the e�cient estimation of the lower and upper bounds on the sub-regions. The
lower and upper bounds are critical elements for IBBA, But, in the case of an
expensive black-box model, the real bounds are, in most cases, di�cult or even
impossible to compute. Thus, it can be applied to only a limited number of situations
with explicit objective function and constraints.

Nevertheless, Kriging enables us to model the uncertainty on a black-box func-
tion; This uncertainty is modelled by a random variable of a normal distribution of
mean f̂(p) and variance σ2(p) often called Gaussian process. Intuitively, this means
that we are saying that the function f(p) has a typical value of µ(p) and is expected
to vary in some range like [f̂(p)− 3σ(p), f̂(p) + 3σ(p)].

This fundamental property of the Kriging model will enable estimating the
bounds to be used by the B&B algorithm.

2.2.1 Proposed algorithm

We propose an algorithm that builds many meta-models each on a speci�ed region
of the design space; each one of them is relatively easy to �t and easy to use to
estimate the upper and lower bounds. Then, iteratively, prune the regions that are
not promising. By adopting this algorithm, the drawbacks mentioned earlier are
tackled, namely the numerical ones related to the correlation matrix. The �owchart
of the algorithm is shown in Figure 2.21.

2.2.2 Initialization

In the beginning, the initial space S is de�ned, and an empty list L is set, L will store
the potentially optimal regions. Additionally, a maximum depth level l is de�ned to
limit the exploration of the algorithm. The depth level can be seen as a metric of
how many times the initial design space S can be subdivided.
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De�ne initial
space S and set
an empty list L

Split S into K
sub-spaces sj

. . .Fit Meta-model on s1 Fit Meta-model on sK

. . .Find new samples to
improve meta-model

Find new samples to
improve meta-model

Stop ? Stop ?

. . .Find the upper
and lower bounds

Find the upper
and lower bounds

Add all sj with
bounds to L

Prune unpromising
spaces from L

Select S as the most
promising space in L

Stop ?

End

Figure 2.21: Flowchart of B&B Kriging
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2.2.3 Branching

Branching stands for subdividing the initial design space S. The most intuitive rule
is splitting each dimension of S by two. This will lead to K = 2nv sub-spaces sj.
Unfortunately, the number of sub-spaces increases exponentially as the number of
variables grows. This is not desired, and a more practical rule is proposed.

For meta-models, the purpose behind branching is to improve upon it accuracy
by reducing the size of the design space. Thus, the space S is split, such as the
produced sub-spaces are of better accuracy. Therefore, the meta-model on S is used
to identify the dimensions on which high inaccuracy is observed.

We recall that the stochastic term in the Kriging predictor enables us to model
the error not captured by the regression term. This term is characterized by the
correlation function and thus its parameters α and θ1, . . . , θnv . The value of α
characterizes the smoothness of the function while values of θ enable to model the
changes over distances. Large values serve to model rapid changes even over small
distances. Hence, the value of θ is an indicator of how the function varies.

If the value of θi, corresponding to a variable pi, is the largest. Then, the change
in the i-dimension is more important than other dimensions. Consequently, splitting
the space S by dividing its dimension i will lead to meta-models on the sup-spaces
that are better than the one on S.

A simple example is used to test this property of the Kriging model, the studied
function is a three-dimensional function but that depends on only two of them, and
one of the variables present more variation than the other 2.43. From this example,
we expect that the value of θ2 to be higher than θ1 and θ3. So, a Kriging model is
�t to a DoE of 15 samples and using a linear regression term.

f(p1, p2, p3) = p1p
2
2 , with 0 ≤ pi ≤ 10, i = 1, 2, 3 (2.43)

Indeed, the meta-model �tting led to θ = (0.072, 0.171, 0.004) which con�rms
the idea we proposed. Ordering the value of θ will lead to the variables that have
the highest variation. The function does not depend on p3 then θ3 = 0.004 which is
the smallest allowed value for θ.

More than one variable can be chosen for the branching; these variables are
picked in the decreasing order of their corresponding θ values. Then each variable
is subdivided in two part which will lead to 2d sub-space where d is the number of
variables picked.

2.2.4 Meta-modelling

Once the sub-spaces are determined using the branching rule, Kriging models are
�t on each one of them. The initial DoE, such as Hammersley, is determined, and
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the black-box-model is evaluated.

Additional samples are added using in�ll criteria to improve the meta-model
approximations and to deal with the monotonic CLLHF issue. The choice here is
crucial for the estimation of the bounds; we rely on the prediction error σ̂, new
samples are added where the prediction error is high; consequently, we improve the
meta-model globally on the sub-space. Additionally, a limited number of points are
sampled using expected improvement (EI) criterion to enhance local exploitation,
in case the CLLF is monotonic. This will also improve the global performances of
the algorithm.

The initial DoE size and number of the points added using σ̂ are speci�ed by the
designer. In contrast, the number of points added using EI is conditioned by the
monotonicity of CLLF. The algorithm slops if the CLLH function is not monotonic.

2.2.5 Bounding

Once the meta-model is �t on each of the sub-spaces, we look for the lower and
upper bounds on each of them. As Kriging is capable of giving the predictor and its
error estimation, we exploit this information for the computation of bounds using
the following formulation (2.44) and (2.45):

f = min
p

f̂(p)− kσ̂f (p)

s.t. ĝi(p)− kσ̂gi(p) ≤ 0, i = 1, . . . , nc. (2.44)

f = min
p

f̂(p) + kσ̂f (p)

s.t. ĝi(p) + kσ̂gi(p) ≤ 0, i = 1, . . . , nc. (2.45)

where f̂ and ĝi are the predictors of the objective function f and the constraints
gi respectively and σ̂f , σ̂gi are their error estimations given by the Kriging meta-
model. The parameter k can be de�ned as the con�dence level required, e.g k = 3,
it corresponds to a con�dence level assuming that the prediction distribution is
normal.

The optimization problems (2.44) and (2.45) has to be solved using appropriate
optimization algorithms due to the multi-modal behaviour introduced by the kσ̂
terms. We used sequential quadratic programming from Matlab for the task and
improved by a multi-start strategy with points uniformly spread on the design space,
the number of starting points is much higher than the number of samples of the
black-box model. Additionally, the gradient information from the meta-model is
exploited to increase the e�ciency of the algorithm.

The optimization problem (2.45) can present di�culties in solving it since the
objective function and constraints are mostly concave. Furthermore, our experience
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has shown that f is, most of the time, equal to the best-sampled point. Thus, this
optimization can be discarded, and f is set to be equal to the sample having the
smallest value of the objective function and satis�es the constraints on the sub-space.
For highly constrained problems, when no feasible sample is available, f is set to be
equal a large value.

In most constrained optimization problems, the problem (2.44) may not have a
solution on some sub-spaces. It means that these sub-spaces have no potentially
feasible solution, and therefore the values of the bounds are set to some high value.

2.2.6 Elimination

The sub-spaces are added to L with their lower f and upper f bounds. A comparison
between the newly added sub-spaces to L and the existing ones is conducted to
eliminate the ones that cannot produce a better solution.

First, we set b as the smallest upper bound of all the spaces in L, and then, we
prune the spaces from L that they have a lower bound that is bigger than b.

2.2.7 Selection

The remaining sub-spaces in L are all promising ones; thus, one of them has to be
chosen for the next iteration to be subdivided. Many strategies could be considered;
by preferring depth-�rst for prioritizing local search or breadth-�rst for prioritizing
exploration of the search space. In our work, we use the best-�rst; it is based on
the lower bound of the objective function on the sub-spaces. Indeed, the sub-space
chosen from L has the smallest lower bound, and its depth level is smaller than the
maximum speci�ed depth level.

This strategy will prioritize sub-spaces that have the maximum potential for
providing the best solution without any criteria on the size of the sub-space.

The sub-spaces that have attained the maximum allowed depth level are stored
in a list Ls.

2.2.8 Termination

The algorithm will naturally iterate until the list L is empty. It is challenging to
come up with a robust termination criterion, but a heuristic can be used to stop the
exploration of a sub-space if the di�erence between its lower bound an upper bound
is less than a small threshold speci�ed by the designer. It remains possible to stop
the algorithm by setting a maximum number of evaluations of the black-box model.

The list Ls contains the remaining sub-spaces that are at the maximum speci�ed
depth level, or their bounds are tight. One should investigate them, and search for
the optimum in one them without considering the prediction error. Otherwise, if no
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solution is apparent, the algorithm could be restarted with the list Ls and a higher
maximum depth level.

2.2.9 Analytic Examples

The problems (2.41, 2.42) treated using the conventional approach are solved using
the new algorithm. The setup of the algorithm parameters is as follows

� The maximum depth level is two times the number of variables.

� The parameter k in (2.44) and (2.45) is taken to be equal to three

� On each sub-space, the initial sample is chosen using Hammersley sequence
with two times the number of variables, the same number of samples is added
using the prediction error as an ISC and two points are added using EI.

Figure 2.22 shows the evolution of the sub-space division applied to the problem
treated in Example 1 (nv = 2). As shown, on each sub-space, we compute the lower
and upper bounds, i.e f and f , respectively, the new sub-spaces are compared with
the ones in the list L to discard unpromising ones. The shaded area shows the
sub-spaces discarded from the list L.

After only four iterations, the algorithm located the sub-space where the opti-
mum lies. The green region is the only space that was left in the list L. When
searching in this space without considering the prediction error, the solution found
is close to the the global minimum of the problem.

The results for the remaining problems are summarized in table 2.5. Two of the
metrics proposed before are not relevant here (cost1% and error) since the algorithm
itself does not aim to sample at the optimum but to have a meta-model of good
quality around the optimum.

nv cost ˆerror %

Example 1

2 115 0.05
3 515 0.007
4 2015 0.5

Example 2 2 31 0.001

Table 2.5: Performances of B2M2 on the analytic examples

The algorithm performed very well in locating the optimums for di�erent prob-
lems; the relative error between the global solution and the solution found using the
meta-model is less than 1% for all the cases.

For Example 2, where the problem is constrained, The algorithm performed
only one iteration because the di�erence between the lower and upper bounds is
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Figure 2.22: Space exploration by the algorithm

smaller than a small value. It located all feasible regions and was able to discard the
unpromising region immediately. Consequently, we expect our algorithm to perform
well for constrained optimization problems.

2.2.10 Extension to multi-objective optimization

The algorithm can treat multi-objective optimization in many ways; an ε-constraint
method transforms the multi-objective problem to multiple mono-objective ones.
Then, the algorithm could be used while storing the search tree in case one of the
sub-spaces will be used by one of the remaining mono-objective problems.

Another strategy could be based on the concept of dominance. The bounds of
each sub-space are now Pareto fronts, and a sub-space is eliminated if it cannot
produce a better Pareto front than the actual best one. Nevertheless, some e�cient
algorithm has to be used for solving multi-objective problems to �nd the bounds.

2.2. BRANCH AND BOUND ASSISTED BY META-MODELS (B2M2) 89



CHAPTER 2. NON-INTRUSIVE APPROACH

2.2.11 Extension to optimization under uncertainty

Uncertainty could be dealt with using the same algorithm by changing the bounding
problems, to make them correspond to performance needed.

For example, A worst case optimization could be integrated by using a formu-
lation from [49] (Section 1.1.1). The problems in (2.44) and (2.45) are transformed
to

f = min
p

f̂(pw,0)− kσ̂f (pw,0)

s.t. ĝi(pw,i)− kσ̂gi(pw,i) ≤ 0, i = 1, . . . ,m. (2.46)

f = min
p

f̂(pw) + kσ̂f (pw)

s.t. ĝi(pw) + kσ̂pi(pw) ≤ 0, i = 1, . . . ,m. (2.47)

pw,0 and pw,i for both problems are computed as stated in [49].

Interestingly, we have similar formulations as for the deterministic case, which
enables us to treat di�erent problems with the same algorithm an even to test
multiple levels of uncertainty with little computational overhead since the explored
sub-spaces could be reused.

2.3 Chapter Summary

In this chapter, we presented a thorough introduction to optimization using meta-
models, mainly Kriging-related. We presented some of the challenges of �tting
"good" meta-models and how to assess their quality. The likelihood functions can
sometimes lead to meta-models of lousy quality; thus, we proposed to limit the
variation of the correlation parameters in a speci�ed interval to have a minimum
and maximum allowed correlation between the samples.

Furthermore, we have highlighted the drawbacks of using the conventional ap-
proach that consists of �tting a single meta-model on the whole design space and
enrich it sequentially using in�ll criteria. This approach becomes eventually un-
reliable since problems related to the conditioning of the correlation matrix, the
complexity of �tting the meta-models and the constraints handling surge.

Thus, we proposed a novel strategy that consists of building many meta-models
each on a speci�ed region of the design space, each one of them is relatively easy
to �t and easy to use for the purpose of optimization (less modality). Then, itera-
tively, prune the regions that are not promising. This process keeps a good trade-o�
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between exploration and exploitation of the design space; thus, it enables us to pro-
duce reliable solutions. Sometimes, this algorithm can be costly because of the B&B
paradigm.

Nevertheless, the most expensive process is easily parallelizable, by either sub-
dividing each sub-space to multiple smaller ones and explore them in a parallel
manner or by taking multiple sub-spaces from the list and explore them likewise.
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Chapter 3

Intrusive approach

As noted in the previous chapters, in this chapter, we will open the black-box to
extract relevant information from the model for the optimization algorithms and un-
certainty quanti�cation methods. We have seen in the �rst chapter that optimization
algorithms based on the derivatives are the most e�cient ones when the gradient in-
formation is available. Furthermore, the gradient could also be used for uncertainty
quanti�cation using perturbation methods. This double usefulness of the gradient
is of high interest. Nevertheless, getting this information is not straightforward in
the case of �nite element analysis.

To illustrate the methodology and to point out the main di�culties, we will treat
a simple electromagnetic device shown in Figure 3.1. It consists of the model of an
in�nite solenoid powered by a coil of current density J = 0.01A/mm2. The position
and the width of the coil are respectively R = 0.7m and d = 0.3m. A Dirichlet
boundary condition is imposed on the edge shown in black.

J

y

x

modeled region

J

R

d

A = 0

Figure 3.1: In�nite solenoid model

For this device, we aim to compute two quantities of interest and their derivatives
with respect to the variables (R, d, J):

1. the magnetic energy stored by the device : W

2. the maximum magnetic �ux density in the coil : Bc
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We chose to treat this problem thanks to its simple geometry, and also because
of the explicit solutions of magnetic quantities can be easily calculated on the whole
studied domain. This will enable us to validate the quantities computed using FEA
and, most importantly, their derivatives.

The magnetic �ux density inside the solenoid can be computed as follows.

B(x) = µ0Jd , x < R (3.1)

In the coil, we have a linear decrease (in the x-direction) of the magnetic �ux
density, B is written as

B(x) = µ0J(R + d− x) , R ≤ x < R + d (3.2)

Outside of the solenoid, the magnetic �ux density is zero.

For computing Bc, we take a small distance inside the coil at position x = R+ e

(e = 10−3), then, Bc(R, d, J) = µ0J(d+ e).

The magnetic energy per unit length W is computed using the following formula

W =
1

2

∫
1

µ0

B2dx (3.3)

Therefore, the magnetic energy is reduced to the following form

W (R, d, J) =
1

2
µ0 (Jd)2

(
R +

1

3
d

)
(3.4)

Now, we have a closed-form formula for the quantities of interest Bc and W .
On the other hand, an FEA of the device is conducted, and the discrete solution is
shown in Figure 3.2. First order shape functions have been chosen to approximate
the vector potential A. The exact solution of the problem is of the second order since
the magnetic �ux density B = curlA is of the �rst order (see 3.2). Consequently,
the Finite Element model can not �t perfectly the exact solution and it will lead to
numerical errors.

A comparison of the quantities computed with the analytic and FEA is con-
ducted, and relative errors are then shown in Table 3.1. We notice that we have
fewer errors for energy than for Bc. Generally speaking, FEA leads to fewer errors
for global quantities such as energy and higher errors for local quantities.

Analytic FEA Rel. error %

Bc 3.757 mT 3.592 mT 4.39
W 4.5239 J/m 4.5225 J/m 0.03

Table 3.1: Comparison of analytic and FEA quantities

So now, we are interested in computing the gradient of the quantities of interest
with respect to the variables R, d and J . The next section shows some approaches
that are often considered for conducting this task.
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Figure 3.2: The mesh of the device (Top), and the distribution of magnetic �ux
density in T (Bottom)

3.1 How to compute the gradient?

As noted in Chapter 1 of this dissertation, one could compute the gradient using
�nite-di�erence by imposing a small perturbation on the variables.

3.1.1 �nite-di�erence

The �nite-di�erence method enables us to approximate the gradient by imposing a
small perturbation on the considered variable. For example, the derivative of the
energy with respect to the variable R can be approximated as follows

∂W

∂R
≈ W (R + ε, d, J)−W (R, d, J)

ε
(3.5)

where ε is a small value, this scheme implies running an additional FEA with the
new value R + ε, generally speaking, we need as many simulations as there are
variables. In our example, since we have three variables (R, d, J), we will need three
additional FEA for computing the gradient.

The formula in (3.5) is called forward di�erence; one could also use backward
di�erence or centred di�erence. The latter requires twice as much number of FEA
as the number of variables, but it can be more accurate than forward and backward
di�erence.

The choice of ε can be delicate, and some tuning is always necessary. In the
literature, the estimation of the optimal values of ε is quite studied [81] [82]. Some
prior knowledge of the model, such as an estimation of the second derivative, is often
necessary for estimating a good value for ε.

Figure 3.3 shows the relative error of the derivative computed with the �nite-
di�erence compared to the exact derivative while varying ε from 10−18 to 10−2. We
can see clearly that the derivatives depend on the value of ε. Small values lead to
more errors because of rounding errors. Moreover, high values can lead to some
truncation errors, as seen for ∂W

∂J
and ∂W

∂d
.
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Rounding errors are caused by the accumulation of machine precision errors when
using small values of ε, while truncation errors are related to the approximation used
in 3.5; truncation errors are related to the Taylor expansion (only �rst order term
is used for the approximation) and are proportional to ε, which explains why the
error for ∂W

∂J
and ∂W

∂d
increases when ε is big.
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Figure 3.3: Relative error of derivative computed by �nite-di�erence

We can see that high values of ε (> 10−5) have led to reasonably acceptable
results for all the derivatives in our simple example. Nevertheless, it remains risky
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to use such a scheme since the optimal value of ε depends on the quantity computed
(global or local) and the variables for which the derivatives are calculated.

Another behaviour that is seen in Figure 3.3 is the erratic variation when dealing
with geometric variables R and d; the chaotic discontinuities are related to the
change of the mesh when varying ε. In fact, when we apply the �nite-di�erence
scheme, we have to calculate two values of the quantity of interest for two geometries
(for example, geometry 1 with R and geometry 2 with R + ε). The brute approach
to obtaining the two FE solutions involves re-meshing the two geometries and then
solving the FE problem. This approach often leads to a "discontinuity" between the
two FE solutions, which are not then approximated in the same space. In Figure
3.4, we see that the same geometry could be meshed di�erently depending meshing
algorithm con�guration. Even small variations in the geometry can lead to a change
in the resulted mesh (re-meshing), which, as mentioned previously, impacts the FEA
solution.

Figure 3.4: Same geometry, di�erent meshes

To eliminate the impact of re-meshing, one would like to keep the same mesh
topology while changing the geometry, as shown in Figure 3.5. This approach is
commonly referred to as mesh morphing.

Figure 3.5: Same mesh topology, di�erent geometries

3.1.2 Mesh-morphing

Di�erent approaches for mesh morphing have been developed in order to deform
an initial mesh to take into account shape modi�cation without changing the mesh
topology. The concept consists in imposing a displacement for a set of mesh nodes
and determining the new coordinates for all other ones by an interpolation approach.
In this context, the spring analogy [83] [84], Laplacian smoothing [85], linear elas-
ticity [86] and the Radial Basis Function [87] [88] interpolation method are largely
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treated in the literature. Explaining the ideas behind each method is out of the
scope on this dissertation, we will limit ourselves to the application of the concept
to our simple electromagnetic device.

Changing the geometry of an electromagnetic device by mesh morphing stands
for moving the mesh nodes according to the change in the geometry. In our example
when changing the parameter R, we proceed by moving all the mesh nodes on the
boundary of the coil by ε in the x-direction while all the remaining nodes stand still.

In Figure 3.6, we show the resulted relative error in the derivative computation
when using the mesh morphing. We can see that the erratic behaviour seen in Figure
3.3 has disappeared. Mesh morphing gives a piece of more reliable information
about the derivatives when compared to the one given with re-meshing since its less
sensitive to the value of ε. Still, it requires further attention to the choice of the
best values of ε. Moreover, carrying out a mesh morphing is not necessarily evident
for 3D geometries, especially in areas where the mesh is �ne such as the airgap of
an electrical machine.
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Figure 3.6: Relative error of derivative computed by �nite-di�erence and mesh-
morphing
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3.1.3 Discussion

We have shown in this section how to compute the gradient of a quantity of interest
using �nite-di�erence method. The �nite-di�erence has three shortcomings

1. The choice of the step size ε is not straightforward [89].

2. Re-meshing error can highly deteriorate the information about the derivatives
and mesh-morphing is not straightforward for most of geometries.

3. The computational cost is proportional to the number of variables which can
be disadvantageous when dealing with computer expensive simulation such as
FEA.

To tackle all these issues, some researchers have proposed to use the adjoint
variable method for computing the gradient from the mathematical model of the
electromagnetic phenomena [90] [91] [92]. This approach requires an intrusive ma-
nipulation of the FE code to calculate the gradient e�ciently and accurately.

The adjoint variable method is used in many �elds that involve solving a large
system of algebraic equations. The solution to such system is computationally ex-
pensive; thus, computing quantities of interest involving this system is also compu-
tationally expensive. The adjoint variable method can compute the gradient with a
cost less or equal to the cost of solving the initial system. This last property makes
the approach very attractive when dealing with many variables in the context of an
FEA.

However, the implementation of such a method is not trivial and requires intru-
sive manipulation in the code of the simulation tool. For this reason, in this chapter,
we will start by explaining the main ideas behind that adjoint variable method for a
simple problem (an electrical circuit) before extending the concept to an FEA code.

3.2 Explanatory example

Let us consider a basic electrical circuit to explain the fundamental ideas of the
adjoint variable method. Figure 3.7 shows an RL circuit composed of a resistor of
resistance R and an inductor of reactance X driven by the sinewave voltage source
Vin.

For this circuit, we want to compute the Joule losses in the resistor. However, to
be able to get to this end, the current �owing through the circuit has to be computed
since the Joule losses are equal to the resistance times the RMS current squared.
To show this, we will adopt the complex notation for the calculation.

The equation of the circuit is written as

(R + jX)I = Vin (3.6)
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Vin

R

I

jX

Figure 3.7: Electrical circuit

where j represent the imaginary unit (j2 = −1).

We suppose that the voltage source has only a real component (Vin = vr) and
the current is written as I = ir + jii.

Therefore, equation (3.6) becomes

Rir −Xii = vr (3.7)

Rii +Xir = 0 (3.8)

In a more compact matrix form, we write

Ku = b (3.9)

where K =

[
R −X
X R

]
, u =

[
ir
ii

]
and b =

[
vr
0

]
This system of equation has to be solved to identify u, i.e. the values of the

current components, and then the Joule losses can computed by

Pj = R(i2r + i2i ) = Ru2 (3.10)

Thus, we could consider that R and X as the input variables of the model and
an output Pj, as shown in Figure 3.8. We denote this model as

f(p) = f̃(p, u) = Pj

where p = (R,X). f and f̃ are di�erent since the �rst one includes u implicitly in
its de�nition, while f̃ considers u as an independent variable from p. Practically, f
is the quantity of interest when looking from outside of the box, while f̃ is only seen
inside the box.

u = K−1b

Pj = Ru2
R,X, vr Pj

Figure 3.8: Model of the circuit

For the sake of simpli�cation, we will show the derivation of the gradient of the
quantity of interest using this example, and interestingly, this derivation extends to
the FE model.
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3.2.1 Derivation of gradient

We denote the partial derivative of a function h with respect to a variable x as ∂xh.
In the same manner, the total derivative is written as dxh.

We want to compute the gradient of the function f , it means, the partial deriva-
tives of the function ∇f = (∂Rf, ∂Xf).

The equation (3.11) expresses the relation between f and f̃

∂pf = dpf̃ = ∂pf̃ + ∂uf̃ dpu (3.11)

∂pf̃ shows the explicit dependence of the function f̃ on the variable p while ∂uf̃ dpu
shows the implicit dependence of p through the variable u. We can note that if u is
not dependent on p then dpu = 0. We retrieve then the fact that the total derivative
is equal to the partial derivative.

To compute the gradient of the function f , we need to compute the total deriva-
tives of f̃ , i.e. dpf̃ . In the following derivation, we will only consider f̃ rather than
f .

We rewrite the equation (3.9) as

g(u) = g̃(p, u) = Ku− b = 0 (3.12)

The dependence of u on the variable p is expressed in the equation g̃(p, u) = 0,
Thus, the last term dpu of (3.11) is computed by deriving this equation

dpg̃ = ∂pg̃ + ∂ug̃ dpu = 0 (3.13)

Then, dpu is the solution of the equation

dpu = − (∂ug̃)−1 ∂pg̃ (3.14)

By replacing dpu in (3.11), we get

dpf̃ = ∂pf̃ − ∂uf̃
[
(∂ug̃)−1 ∂pg̃

]
(3.15)

This formula enables to fully determine the gradient of the function f versus
partial derivatives of the function f̃ and the equation g̃.

For the example above f̃(p = (R,X), u) = Ru2 and g̃(p = (R,X), u) = Ku− b,
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the quantities forming the gradient are written as

∂uf̃ = 2Ru> (3.16)

∂Rf̃ = u2 (3.17)

∂X f̃ = 0 (3.18)

∂ug̃ = K =

[
R −X
X R

]
(3.19)

∂Rg̃ = ∂RKu=

[
1 0

0 1

]
u (3.20)

∂X g̃ = ∂XKu=

[
0 −1

1 0

]
u (3.21)

Thus, the derivative can be written as

dRf̃ = u2−2Ru>

[
K−1

[
1 0

0 1

]
u

]
(3.22)

dX f̃ = −2Ru>

[
K−1

[
0 −1

1 0

]
u

]
(3.23)

We can notice that we have a general formula to compute the derivative for any
value of R and X. The derivatives for each variable require solving a system of
linear equations of the initial problem as we can see in (3.22) and (3.23) where we
have to solve for XR and XX

KXR =

[
1 0

0 1

]
u (3.24)

KXX =

[
0 −1

1 0

]
u (3.25)

Solving the equations is the most expensive operation; thus, the cost for com-
puting the gradient is proportional to the time needed multiplied by the number of
variables p. The adjoint variable method enables to tackle this drawback by solving
the equations only once.

3.2.2 The adjoint variable method

As noted in the last section, the gradient of the function f is written as

∂pf = ∂pf̃ − ∂uf̃
[
(∂ug̃)−1 ∂pg̃

]
(3.26)

By inverting the order of multiplication of the terms above, we get
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∂pf = ∂pf̃ −
[
∂uf̃ (∂ug̃)−1

]
∂pg̃ (3.27)

The expression between the brackets does not depend on the parameters p; it
depends only on the solution u of the equation g̃(p, u) = 0. Thus, this operation
can be done once and be applied to all the variables p. We introduce

λ = −∂uf̃ (∂ug̃)−1 (3.28)

where λ is called the adjoint variable. Then, the previous expression becomes

∂pf = ∂pf̃ + λ∂pg̃ (3.29)

To summarize, for computing the gradient of a function f , the following steps
has to be conducted :

1. Compute the partial derivatives for u :∂uf̃ and ∂ug̃

2. Solve the linear system: λ ∂ug̃ = −∂uf̃ for λ

3. Compute the partial derivatives for p : ∂pf̃ and ∂pg̃

4. Calculate the adjoint using 3.29

Step 1 is relatively easy to conduct. In fact, the function f is calculated from the
solution u of the equation g(u) = 0; thus, its derivative should be no harder than
calculating the function itself. On the other hand, the partial derivative of g̃ with
respect to u is sometimes already provided by the original model. If the equation
g(u) = 0 is a linear system of equations, then its derivative is equal to the matrix of
this system. Otherwise, if the equations g(u) = 0 are nonlinear, ∂ug̃ = ∂ug is usually
computed to solve the equation using an iterative process, e.g. Newton-Raphson,
then the derivative is the Jacobian which are often available or at least easy to
determine.

Step 2 is the most computationally expensive since it requires solving a system
of linear equations of the same size of the system of equation de�ned by g(u) = 0.
It is worth noting that even if g(u) = 0 is a nonlinear system of equations, the
problem to solve in step 2 is linear. Therefore, solving this system will always be
less expensive than solving g(u) = 0, That is to say, that the cost of computing the
gradient will be equivalent or less than solving g(u) = 0 for any number of variables.
This property makes the adjoint variable method very attractive when dealing with
many variables.

Step 3 requires the calculation of the partial derivatives of the f̃ and g̃ with
respect to p. ∂pf̃ calculation is done as for ∂uf̃ . Nevertheless, ∂pg̃ may not be
straightforward since it involves the derivatives of the system of equations. Some-
times this link between the variables is not as obvious as it was in our example.
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Step 4 is straightforward since the total derivatives is given by 3.29 and calculated
from the product of terms determined in the previous steps.

3.3 Adjoint variable method for FEA

The development of the adjoint variable method for FEA has started in the �eld of
structural engineering, mainly in topology optimization for reducing the volume of
devices [93]. Afterwards, some researchers extend its usage for shape and topology
optimization of electromagnetic devices [91] [92] [94].

Despite the attractiveness of the method, to the author's knowledge, no commer-
cial software dedicated to electromagnetic design has developed the method. At the
same time, it has been present in almost all CFD and structural mechanics software
for almost two decades.

In the following section, we will explain how the adjoint variable method can be
implemented in a magnetostatic FEA code. The implementation can be extended
to solve any other electromagnetic formulation derived from the Maxwell equations.

3.3.1 Finite element model

As detailed in Chapter 1, Maxwell equations are solved using FEM, and the deriva-
tion ends by solving a discrete system that reads as follows:

Find u : Ku = b (3.30)

where K is a sparse matrix, u is the state variable and b is the source term de�ned
as follows (see 1.80 and 1.81)

Kij =
∑
T∈Th

∑
g

1

µ
∇αgi J−1

T · ∇α
g
jJ
−1
T |JT |wg (3.31)

bj =
∑
T∈Th

∑
g

[
Js α

g
j +M · ∇αgjJ−1

T

]
|JT |wg (3.32)

αgj and wg are, respectively, the basis functions evaluated in the Gauss quadrature
points and their weights de�ned in the reference element, µ is the permeability of
material, Js source current density, M is the magnetization of magnets and JT is
the Jacobian of the mapping from the reference element to an element T (|JT | is
determinant of JT ).

Additionally, we consider a quantity of interest f(p) for which we want to com-
pute the gradient.

As for the electrical circuit, we de�ne two functions f̃ and g̃ for FEA

g̃(p, u) = K(p, u)u− b(p) = 0 (3.33)

f(p) = f̃(p, u) (3.34)
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This representation of the problem will simplify the derivation of the gradient
using the adjoint variable method as for the electrical circuit; thus, we write

∂pf = ∂pf̃ + λ ∂pg̃ (3.35)

where λ is the adjoint variable and is solution of the linear system of equations

λ∂ug̃ = −∂uf̃ (3.36)

The solution of the linear system 3.36 is the most computationally expensive
operation, and it is independent of the variables p. Thus, the gradient computation
cost is independent of the number of variables.

Computing the gradient using the adjoint method is reduced to compute the
partial derivatives with respect to state variable u (∂uf̃ , ∂ug̃) and those with respect
to design variables p (∂pf̃ , ∂pg̃).

3.3.2 Derivatives for state variables

Derivatives with respect to the state variables are relatively simple to express. ∂ug̃
is generally always computed in the initial FEA code.

If there is no nonlinear ferromagnetic material (∂uµ = 0)

∂ug̃ = K (3.37)

Otherwise (∂uµ 6= 0)

∂ug̃ = ∂u(Ku) (3.38)

For solving g̃(p, u) = 0, the Jacobian matrix ∂ug̃ is necessary for a nonlinear
solver such as Newton-Raphson. Thus, this quantity could be retrieved without any
additional e�ort.

On the other hand, ∂uf̃ can be computed e�ciently because the function f is
given by an explicit expression of the state variable u. For example, if we consider
that the quantity of interest is the magnetic energy that is written, as shown in
Chapter 1

f̃(p, u) = W =
1

2
u>b, (3.39)

then, the derivative with respect to u is

∂uf̃ =
1

2
b>, (3.40)

For other quantities of interest f , ∂uf̃ could be derived and implemented with
ease.
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3.3.3 Derivatives for design variables

The derivatives of the quantities f̃ and g̃ with respect to the design variables could
be somewhat challenging due to the variety of parameters that could be considered.
Often, in the literature, researchers separate between geometric variables and phys-
ical variables where the �rst are often referred to as shape sensitivity analysis [91]
and the latter are mainly used in the context of topology optimization [95]. In this
dissertation, we will treat both types of variables.

A Geometric variables

Geometric variables are the ones that involve changing the geometry of the device
studied. A geometric de�nition of the problem must be made before starting op-
timization and uncertainty quanti�cation processes. The choice of variables is of
paramount importance since it is equivalent to de�ne the mathematical model of
the problem studied. Clearly, it de�nes the nature, and the dimensions of the re-
search space and possible solutions largely depend on it. The computation of the
derivatives highly depends on the way the geometry is parameterized.

Parameterization
In the most straightforward con�guration, the shape parameters can be considered

as merely a collection of points in 3D space. The analysis, in this case, involves mov-
ing each of the points in the desired direction by some small amount and determining
the e�ect on the function. This process is both complicated and computationally
expensive. Shape parameterization exists as an e�ort to overcome these complexities
and ine�ciencies.

Shape parameterization is the method of determining a set of parameters that
control the size and shape of the device to be designed. This is conducted by
determining some driving parameters and reducing the number of design variables
from the number of 3D space points to the number of parameters.

There exist many methods for geometry parameterization, such as free-form de-
formation [96], polynomial and spline (NURBS) [97], iso-geometric analysis [98],
and computer-aided design (CAD). Among these categories, CAD appears to have
some capability that makes it very attractive for design engineers such as e�ciency,
compactness and suitability for complex con�gurations. Besides, CAD-based param-
eterization methods can achieve signi�cant geometry changes. Another advantage
of CAD-based is the availability of a comprehensive set of geometric functionalities
provided by commercial CAD systems. Parameterizing a complex model is still a
challenging task with today's CAD systems.

Furthermore, they are not capable of calculating derivatives analytically. Com-
puter codes for commercial CAD systems are huge; to di�erentiate an entire system
with automatic di�erentiation tools may be a non-trivial task. Therefore, the calcu-
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lation of derivatives of geometry with respect to design variables could be challenging
within commercial CAD software.

The derivative of the quantities f̃ and g̃ with respect to a geometric design
variable p can be written as follows

∂pf̃ =
N∑
i=1

[
∂xi f̃ dpxi + ∂yi f̃ dpyi

]
(3.41)

∂pg̃ =
N∑
i=1

[∂xi g̃ dpxi + ∂yi g̃ dpyi] (3.42)

where (xi, yi) for i = 1, . . . , N are the node coordinates used for the FEA, by writing
the quantities in this form, we decouple the dependence the quantities related to the
FEA from the geometry de�nition. Furthermore, we decouple the computation cost
from the number of design variables since ∂xi f̃ , ∂yi f̃ , ∂xi g̃ and ∂yi g̃ are independent
of p.

These quantities can be computed analytically. ∂xi g̃ and ∂yi g̃ can be calculated
based on (3.31), (3.32) and (3.33). In fact, the only quantity that depends on
the mesh coordinates is the mapping from the reference element to an arbitrary
element. Thus, only the derivative of the mapping is needed for the computation of
the quantities.

We have

∂xi g̃ = ∂xi [Ku− b] (3.43)

∂yi g̃ = ∂yi [Ku− b] (3.44)

Moreover, as detailed in Chapter 1, K and b are computed using the reference el-
ement concept, as shown in Figure 3.9. Equation (3.45) shows how the reference
element coordinates (xr, yr) are transformed into the coordinates (x, y) of an arbi-
trary element using the mesh nodes (x0, x1, x2, y0, y1, y2) de�ning this element.

Figure 3.9: (left) The reference element, (right) an arbitrary element.

(x, y) = (x0, y0) + (xr, yr)JT (3.45)
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with

JT =

(
x1 − x0 y1 − y0

x2 − x0 y2 − y0

)
The derivative of the mapping with respect to x0, x1, x2, y0, y1 and y2 is easy to

compute; hence, ∂xi g̃ and ∂yi g̃ can be assembled as done for g̃.

Now, let us go up to the other part of equations (3.41) and (3.42): dpxi and
dpyi. These quantities somewhat link the variation in the node coordinates versus
the change in geometry. Hence, they represent the real link to the CAD model after
the latter has been meshed. In this dissertation, we will show how to compute these
quantities without intrusive manipulation, neither in the CAD software nor in the
mesh tool.

Geometric parameters are related to one or many edges that separate di�erent
regions (faces), as shown in Figure 3.10. This numbering is very useful for FEA
since it enables to impose external conditions. For example, we used E2 to impose a
Dirichlet boundary condition, and the face F3 is used for imposing a current density
J .

R

d

Figure 3.10: Edges and faces numbering

We use this numbering for calculating the desired quantities. In this example,
we have two geometric design variables R and d, as shown in Figure 3.10. These
variables enable the positioning and sizing of the coil modelled by the face F3; thus,
they mainly act on edges surrounding the coil, namely E3, E4, E6 and E9. Hence,
dpxi and dpyi are computed only for the mesh nodes that lie on these edges and not
on all the other nodes. Therefore, we write

dpxi =

dpxi, if node i is on E3, E4, E6 or E9.

0, otherwise.
(3.46)

dpyi =

dpyi, if node i is on E3, E4, E6 or E9.

0, otherwise.
(3.47)

The edges E3, E4, E6 and E9 de�ne a rectangle. The objective is to de�ne the
rectangle contour using a parametric equation as follows
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P (t) = (x(t), y(t)) (3.48)

In general, one could propose many ways to parameterize a shape. For the rect-
angle, we could parameterize each edge independently and compute the derivative
or use a single parametrization for the whole rectangle as below

x(t) = R +
d

2
[1 + sign(cos(t))]

y(t) =
h

2
[1 + sign(sin(t))]

and t ∈ [0, 2π[.

The derivatives of x(t) and y(t) with respect to the design variables are computed
with ease,

dRx = 1 (3.49)

dRy = 0 (3.50)

ddx =
1

2
[1 + sign(cos(t))] =

x−R
d

(3.51)

ddy = 0 (3.52)

Equations (3.49)-(3.52) are evaluated using the node coordinates previously iden-
ti�ed, then, used in equations (3.41) and (3.42) to compute ∂pf̃ and ∂pg̃.

Now, we have everything for the computation of the gradient of a quantity of
interest with respect to geometry variables using the adjoint variable method.

In this paragraph, we computed the shape sensitivities dpxi and dpyi for a rectan-
gular shape using a parametric equation. This framework is extendable to di�erent
types of geometry and design variables. In appendix A, we derive the shape sensi-
tivities for some recurrent types of geometries.

B Physical variable

The physical variables that can be considered in electromagnetic modelling are the
permeability of ferromagnetic materials, the coercive �eld of magnets, and the im-
posed current density. This kind of modelling is commonly used in the context of
topology optimization, where the objective, in general, is to reduce the volume of
material present in a device. Topology optimization was �rst introduced in the con-
text of structural optimization before being extended to other physical �elds such
as heat transfer, �uid dynamics and electromagnetism.

In this dissertation, the objective is to derive the formula that enables to compute
the gradient for parameters that act on the physical properties of electromagnetic
devices.
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Permeability
If a parameter p controls how µ varies, we can compute the derivatives ∂pf̃ , ∂pg̃

can be computed :

∂pg̃ = ∂p [Ku− b] = [∂pK]u (3.53)

with ∂pKij = Kij
−∂pµ
µ

.

The quantity ∂pµ highlights the sensitivity of µ with respect to the design variable
p. In the literature, we can �nd multiple ways of modelling. For example, the density
method uses a polynomial mapping for the parameterization [94].

µ = µair + (µiron − µair)pn (3.54)

with µair and µiron are respectively air and iron permeabilities, A3. This method
enables us to chose where in the studied domain to put iron or air. In this case, ∂pµ
is written as

∂pµ = n(µiron − µair)pn−1 (3.55)

Coercive �eld
As for the permeability, if p controls the magnetization of a permanent magnet,

one could, in a similar manner, deduce the derivatives

∂pg̃ = ∂p [Ku− b] = −∂pb (3.56)

with ∂pbj =
∑
T∈Th

∑
g

[
∂pM · ∇αgjJ−1

T

]
|JT |wg.

The quantity ∂pM is computed based on the design variable; p can be the mag-
nitude, the direction of the coercive �eld, etc.

Imposed current density
Following the same principle, the derivative with respect to a variable that controls

the current density is

∂pg̃ = ∂p [Ku− b] = −∂pb (3.57)

with ∂pbj =
∑
T∈Th

∑
g

[
∂pJs α

g
j .
]
|JT |wg.
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3.3.4 Discussion

In the precedent section, we showed the derivation of the gradient of a quantity of
interest from a �nite element code using the adjoint variable method. It is worth
noting that two approaches exist to calculate the adjoint: the continuous approach
and the discrete approach. The continuous approach aims to compute the gradient
from the governing equations (Maxwell equations) before discretization, while the
discrete approach calculates the gradient from the discrete equations. We focused
and developed the discrete approach for many important reasons :

1. Relatively simple implementation (but tedious)

2. Implementation of the derivatives of each subroutine/process individually in
analysis code

3. Build up larger components by chain rule di�erentiation of analysis code

4. Ability to check the derivatives by �nite-di�erence while debugging

The discrete adjoint approach can be implemented in a modular fashion using
the same data-structures/solution strategy as analysis as shown in Figure 3.11.

FE code

Adjoint codeStart

Geometry and
material properties

Meshing

Assembling and
solving g̃(u) = 0

Post-processing f̃(u)

Parameter setting

Assembling and
solving λ∂ug̃ = −∂uf̃

Post-processing ∇f

stop

Figure 3.11: Flowchart of a modular adjoint implementation

The adjoint is composed of three main steps, at parameter setting, one should
compute the sensitivities with respect to the design variables (geometric and physi-
cal), then, the assembling of the quantities ∂uf̃ , ∂ug̃, ∂xi f̃ , ∂xi g̃, ∂yi f̃ , ∂yi g̃ and the
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ones related to the physical variables is conducted, afterwards the adjoint problem
is solved, and �nally, the gradient of the quantity of interest is computed as

∇f =
[
∂xi f̃ + λ ∂xi g̃

]
dpxi

+
[
∂yi f̃ + λ ∂yi g̃

]
dpyi

+
[
∂µf̃ + λ ∂µg̃

]
dpµ

+
[
∂Mf̃ + λ ∂Mg̃

]
dpM

+
[
∂Js f̃ + λ ∂Js g̃

]
dpJs

In this equation, one can see that all the dependencies on the design variables p
are outside of the most computationally expensive operations, namely the solution of
the adjoint problem and the assembling of the di�erent quantities. The independence
of the number of design variables makes the adjoint variable method very attractive
for treating problems with large numbers of design variables and few numbers of
objectives.

To show the utility and e�ectiveness of the adjoint variable method, in the next
section, we treat some examples to highlight the advantages of the adjoint variable
approach over the �nite-di�erence in computational cost and precision.

3.4 Examples

3.4.1 Solenoid model

We consider the device treated at the beginning of the chapter, where we have made
a comparison between analytic and FEA computation of the quantities of interest.
We conduct the same comparison on the gradient of the quantities of interest as
shown in Table 3.2.

Analytic Adjoint Rel. error %

∂RBc 0 0.006 0.60
∂dBc 0.0126 0.0125 0.38
∂JBc 0.376 0.359 4.39
∂RW 5.655 5.655 0.00
∂dW 32.044 32.032 0.04
∂JW 904.78 904.5 0.03

Table 3.2: Comparison of analytic and and adjoint variable gradients

One can notice that the gradient of Bc and W computed by the adjoint variable
method are corresponding to the ones computed analytically with a relative error
of the same magnitude as for the quantities Bc and W .
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3.4.2 TEAM workshop 22

This example is considered as one of the benchmarks for optimization problems
of electromagnetic devices. The objective here is compare the gradient computed
�nite-di�erence to the one computed using the adjoint variable method (further de-
tails in Chapter 4). To validate the e�ectiveness of the adjoint variable method, the
approach is tested against the gradient computed using centred di�erence (CD)1

using mesh morphing technique and with remeshing technique. The mesh morphing
(MM) technique enables "small" changes of the shape while maintaining the topol-
ogy (node connectivity) of the mesh. The aim of using such a technique is to reduce
the errors due to re-meshing in the comparison (see example treated at section 1).

The results of the comparison are summarized in Table 3.3. It shows the gradient
of the problem's objective function in the optimum. For more details, the reader
may refer to reference [1].

Method ε
p

Rel. Error Time (s)
R1 R2 h1/2 h2/2 d1 d2 J1 J2

Adjoint - 24.827 -19.222 13.725 -10.619 25.852 -81.824 8.418e-07 8.444e-07 - 1.27
CD w. MM 10−5 24.803 -19.212 13.726 -10.616 25.855 -81.817 8.418e-07 8.444e-07 0.1% 4.06
CD w/ MM 10−3 36.497 -23.592 15.756 -19.098 35.757 -93.534 8.418e-07 8.444e-07 155% 7.02

Table 3.3: Gradient Comparison for TEAM workshop 22

For �nite-di�erence schemes, we tried di�erent values of ε, ranging from 10−10

to 10−2. In the table, only the values that correspond to the best results in terms
of relative error are shown.

When using mesh morphing (CD w. MM ), the gradients are coherent in less
than 1% error relative to the gradient computed with the adjoint with a speedup
of 3.2. This speedup is attained thanks to the main propery of the adjoint variable
method that solves fewer equations. However, when not using mesh morphing (CD
w/ MM), which means generating a new mesh for each geometry change, re-meshing
errors appear to perturb the gradient information highly (relative error higher than
150%).

It is worth noting that the di�erence in time for CD w. MM and CD w/ MM is
related to the overhead of regenerating a new mesh for all geometry variations.

In general, mesh morphing is not always a simple task; in this example, it was
possible to morph to mesh nodes to correspond to the geometry change thanks
to the simple shapes involved in the modelled device (rectangular regions). Thus,
without using mesh-morphing, the �nite-di�erence method may lead to signi�cant
errors when compared to the adjoint variable method. Furthermore, a speedup from
5.5 was attained for the computation of the gradient, which con�rms the e�ciency
of the approach.

1 dOF
dpi

(p) ≈ OF (p1,...,pi+ε,... )−OF (p1,...,pi−ε,... )
2ε
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3.5 Chapter Summary

In this chapter, we have presented the adjoint state variable method and how it
can be applied to a FEM code. We have developed an e�cient way to compute
the derivatives of the shape sensitivities, which are vital for the computation of
the gradient. Sometimes, �nite-di�erence could be used with a mesh-morphing
strategy for computing the gradient but it can have redhibitory e�ect since the mesh
displacement is not always straightforward and can lead to non-conforming mesh.
The adjoint variable method was compared to the �nite-di�erence one to validate
and highlight its e�ectiveness in terms of precision and computational time.

Geometric parametrization of shape variables is still one of the shortcomings of
the method. We presented an approach based on the parametric equations of the
geometric shapes, however, for very complex shapes, this can be very cumbersome.
In the following Chapter, the gradient computed using the adjoint variable method
is provided to a derivative-based optimization algorithm for the analysis of two
benchmarks from the literature and comparison of the performances to the non-
intrusive approach detailed in Chapter 2.
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Chapter 4

Applications and benchmarking

This chapter is dedicated to numerical tests of the developed approaches in the con-
text of optimization. For this task, we adress two well-known benchmarks treated
by electromagnetic community researchers. They are the ones of the TEAM (Test-
ing Electromagnetic Analysis Methods) workshops [1] [2]. Since the comparison of
results to other researchers is somewhat tricky because of the di�erences related to
the mesh and the numerical methods that can be used such as the formulation, the
integration technique, ..., we solve these benchmarks with the approaches we have
developed and some of the algorithms that are conventionally found in the literature.

The test cases are the TEAM workshop problems 22 and 25, there exist two
publications describing both of them [1] [2]. We solve both problems using four
methods; the non-intrusive approach developed in Chapter 2, an SQP algorithm
assisted by the adjoint variable method for computing the gradient, the DIRECT
algorithm [99] and the genetic algorithm (GA of [100]).

In the following of this chapter, we detail the test cases and their related optimiza-
tion problems, afterwards, we present the settings of each optimization algorithm
for both test cases, and lastly, a comparison of the results is conducted.

4.1 Test cases

4.1.1 TEAM Workshop Problem 22

The Superconducting Magnetic Energy Storage (SMES) device in Figure 4.1 con-
sists in two concentric superconducting coils fed by currents that �ow in opposite
directions [1]. The inner coil is used for storing magnetic energy E, while the outer
one has the role of diminishing the magnetic stray �eld Bstray computed on line a

and line b.
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Figure 4.1: SMES Device [1]

A FEM model

We have created a model for the benchmark with our FEA tool (MagFEM); as the
model is symmetric with respect to the r-axis (the antisymmetric case is somewhat
di�erent than the 2D case. In appendix B, we detail the corresponding formulation).
In this part, we discuss some aspect of the model mainly related to the parameteri-
zation and the FEA.

Parameterization
The geometry of the device is simple; it is composed of three rectangles, as shown

in Figure 4.2; two for the coils and one limiting the studied domain ([0, 15]× [0, 15])
which holds the two coils.

The variables considered in the optimization problem are the ones related to the
coils (position, size, current density imposed). The variables (R1, R2, h1/2, h2/2, d1, d2)

are used for the parameterization of the geometry, while the current densities (J1, J2)

are physical variables that are parametrized in the FE model.

Simulation
In the FEA, the geometry is meshed as shown in Figure 4.3 on the left. A �ne

mesh is imposed around the coils and coarse one far from them. On the right of
Figure 4.3, the distribution of the �ux density around the coils is shown.
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Figure 4.2: Modelled geometry of the SMES

B Optimization problem

The goal of the optimization problem is to �nd the design con�gurations (8 design
variables) that give a speci�ed value of stored magnetic energy and a minimal mag-
netic stray �eld while satisfying some constraints. Mathematically, this is formulated
as

min
x

OF (x) = B2
stray(p)/B

2
norm + |E(p)− Eref |/Eref (4.1)

s.t. |J|+ 6.4|B| − 54 ≤ 0 (4.2)

R1 −R2 +
1

2
(d1 + d2) < 0 (4.3)

where Eref = 180MJ , Bnorm = 200µT and p are the design variables and their
bounds are shown in Table 4.1.

p R1 R2 h1/2 h2/2 d1 d1 J1 J2

min 1.0 1.8 0.1 0.1 0.1 0.1 10 -30
max 4.0 5.0 1.8 1.8 0.8 0.8 30 -10

Table 4.1: Bounds of design variables for TEAM problem 22

The constraint (4.2) aims to limit the maximal �ux density (|B|) in the coils
to ensure the quench condition [1]. As shown in Figure 4.3, the maximal values
of |B| are located on the boundaries of the coils and speci�cally on coordinates
P1 = (R1 − d1/2, 0), P2 = (R1 + d1/2, 0) and P3 = (R2 − d2/2, 0) (shown by cross
sign in Figure 4.3 on the right). Thus, we replace this constraint by three ones
(4.5),(4.6) and (4.7).

The second constraint aims to prevent both coils from overlapping. Unfortu-
nately, optimization algorithms can sometimes during iterations violate some con-
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X X X

Figure 4.3: Mesh of studied domain (left), enlarged view of the �ux density distri-
bution around the coils (right)

straints, and this implies taking some special care of this issue that depends on the
type of algorithm used. If this constraint is violated, the model is not physically
valid; thus, the other quantities such as the objective function cannot be computed.
Some optimization algorithms can handle this issue if the model returns a high
value of the objective function, but others are not capable of dealing with this kind
of constraint.

As we are comparing di�erent approaches, we chose to de�ne another optimiza-
tion problem equivalent to the initial one that avoids the issue mentioned above.
We de�ne a variable A2 as

A2 = R2 −R1 − (d1 + d2)/2

that replaces R2. Using interval arithmetic, we compute the bounds of this new
variable [−3, 3.9]. By using the constraint (4.3) that is preventing the two coils
from overlapping, we impose A2 to be higher than 0.001. Then, the interval of
variation of A2 is [0.001, 3.9].

Introducing this new variable is somewhat relaxing the initial optimization prob-
lem by allowing the variable R2 = R1 +A2 +(d1 +d2)/2 to vary in a more signi�cant
interval [1.101, 8.7] than the one de�ned in the initial problem [1.8, 5]. There-
fore, two constraints (4.8) and (4.9) are added. Finally, the optimization problem
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becomes

min
p

OF (p) = B2
stray(p)/B

2
norm + |E(p)− Eref |/Eref (4.4)

s.t. (J1 − 54)/6.4 + |B(p, P1)| ≤ 0 (4.5)

(J1 − 54)/6.4 + |B(p, P2)| ≤ 0 (4.6)

(−J2 − 54)/6.4 + |B(p, P3)| ≤ 0 (4.7)

R1 + A2 + (d1 + d2)/2 ≤ 5 (4.8)

−R1 − A2 − (d1 + d2)/2 ≤ −1.8 (4.9)

where p are the design variables p = (R1, A2, h1/2, h2/2, d1, d2, J1, J2).

4.1.2 TEAM Workshop Problem 25

In this test case, the device is used to orient the magnetic powder and produce
anisotropic permanent magnets [2]. The magnetic powder is inserted in the cavity.
The orientation and strength of the magnetic �eld should be controlled in order to
obtain the required magnetization. A coil creates the magnetic �eld. The current
density is �xed to 1.239219A/mm2. The die press and electromagnet are made of
steel with a non-linear permeability. The geometry of the whole device is shown in
Figure 4.4.

Figure 4.4: Model of die press with electromagnet, Whole view (left), Enlarged view
(right) [2]

A FEM model

A model of the device is created. By exploiting symmetries, only a quarter of the
device is su�cient for FEA.
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Parameterization
The geometry of the device is created and parametrized on MagFEM, as shown

in Figure 4.5. The geometry is composed of six regions (F1-F6). The region F2 is
used for imposing the current density while regions F1, F4 and F5 are used for the
ferromagnetic material. Other regions are considered as air.

Figure 4.5: Modelled geometry of the die press

The variables considered in the optimization are related to the mould's shape
of the die press. The inner mould is controlled by the variable R1 while the outer
mould is controlled by the variables (L2, L3, L4). The parameterization is somewhat
more challenging than the �rst test case because of the elliptical shape of the outer
mould.

Simulation
In the FEA, the geometry is meshed as shown in Figure 4.6 on the left. A �ne

mesh is imposed around the moulds and coarse mesh far from them. At right, in
the same �gure, the distribution of the �ux density is shown.

B Optimization problem

The objective of the shape optimization is to obtain a �ux density that is radial in
the cavity space and with a constant magnitude of 0.35T. The objective function W
is the squared error between the Bx and By values sampled in 10 positions along
the arc e-f shown in Figure 4.4.

min
p
W (p) =

10∑
i=1

(Bxip −Bxio)
2 + (Byip −Byio)

2 (4.10)

where p = (R1, L2, L3, L4) are the design variables (their bounds are shown in Table
4.2) and Bxio = 0.35 cos( π

40
i), Byio = 0.35 sin( π

40
i) and Bxip and Byip are computed

by the FEA of the device.
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Figure 4.6: The mesh of studied domain (left), The �ux density distribution in the
studied domain (right)

p R1 L2 L3 L4

min 5.0 12.6 14 4
max 9.4 18 45 19

Table 4.2: Bounds of design variables for TEAM problem 25

4.2 Algorithms settings

In this section, we present the con�guration of the optimization algorithms. A set
of parameters are de�ned based on our experience from using each algorithm.

4.2.1 B2M2 algorithm

The branch and bound based meta-model (B2M2) algorithm is detailed in Chapter
2, Section 2. Some options need to be con�gured, mainly the depth level and the
number of FEA evaluations needed for �tting the meta-models.

Initial design : The initial design of each sub-space is created using a space-
�lling LHS of size two times the number of variables. This may seem few, but as
the algorithm progresses, the sample points of a parent space will be added to the
initial design of its sub-spaces. Thus, the sample will grow as the sub-division of the
space continues.

In�ll points : Additional sample points are added in two di�erent manners;
the �rst one aims to further explore the design space by adding points where the
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prediction error is high, while the second one enables the exploitation of the best
solution by adding new sample points that maximize the expected improvement
ISC.

The number of sample points to be added by each ISC (in�ll sampling criterion)
is set to twice the number of variables. However, for expected improvement, it may
be stopped before this limit if there is no improvement in sampling additional points.

Globally, in each sub-space, there will be sampled at most six times the number
of variables.

Stopping criteria : The algorithm is set to stop if it attains a prede�ned
depth level. The maximum depth level is set to 10.

4.2.2 SQP algorithm assisted by adjoint variable method

We use SQP algorithm from the Matlab Optimization toolbox with the gradient of
the quantities of interest computed using the adjoint variable method.

Multi-start : To cope with the local search of the SQP method, we use a
multi-start strategy. We perform 100 runs with di�erent initial points; These points
are sampled using an LHS design to obtain a uniform distribution on the whole
design space.

Stopping criteria : The stopping criterion is based on the StepTolerance op-
tion, meaning iterations end when the relative change in the solution is less than
10−8.

4.2.3 DIRECT

We use DIRECT implementation of [99]. The default options are maintained except
for the number of iterations.

Constraints : The constraints are handled by penalty method by minimizing
the penalized objective function

OF (p) +
∑
i

λ max(0, gi(p))

where λ is the penalty factor and has been chosen to be equal to 10.

Stopping criteria : As the algorithm does not have an appropriate stopping
criterion except the number of iterations and the number of evaluations. We stop
the algorithm manually when there is no improvement in the objective function in
50 successive iterations.
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4.2.4 Genetic algorithm

We use GA from Matlab Global Optimization toolbox [100].

Multi-run : As the randomness inherent in genetic algorithm, meaning solving
twice the same problem may not lead to the same solution, we adopted a multi-run
strategy by performing 50 runs of the algorithm.

Population : The population options are set as follows

1. Size : 100 individual for unconstrained case and 200 for constrained one.

2. Selection function is uniform

3. Crossover function is "scattered"

4. Crossover fraction is 80% of the population

5. Mutation function is Gaussian

6. Elite fraction is 5% of the population

Constraints : The constraints are handled by the penalty method as de�ned
in [27].

Stopping criteria : The algorithm is stopped if the value of the �tness func-
tion did not change during 50 generations.

4.3 Results and comparison

4.3.1 Comparison protocol

The comparison of the performance of di�erent algorithms will be based on two
criteria: the cost and the quality of the solution.

The quality of the solution stands for the value of the objective function found.
The smaller, the better.

On the other hand, the cost of the optimization stands for the number of evalua-
tions needed to attain the solution. As we compare di�erent approaches, we propose
a probabilistic metric to measure the cost.

The convergence rate (CR) is the percentage of the number of runs that converged
to the best solution. The convergence rate concerns mainly SQP and GA since we
perform multiple runs and the number of runs needed is unknown beforehand. To
compute CR, we look, among the solutions of each run, for the best one (smallest
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value), then we count the number of runs that converged to that solution within a
tolerance of 1% of the design range.

Once the convergence rate is determined, we write the probability that at least
one optimization lead to the best solution is

P = 1− (1− C.R.)n

where n is the number of optimization runs to be considered.

If we want to consider a high probability -(P = 99.73%) of �nding the best
solution, we can compute the expected number of runs needed n

n =
ln(1− P )

ln(1− CR)
(4.11)

Then, the expected total number of evaluations (Expected # FEM evals) is n
times the total average number of evaluations performed.

Expected # FEM evals = n average(# FEM evals) (4.12)

A particular property related to SQP is the computation of the gradient using
the adjoint variable method. The cost of computing the gradient is equivalent to
evaluating the FEA once; thus, the # FEM evals are doubled for the SQP method.

4.3.2 TEAM Workshop Problem 22

The TABLE 4.3 summerizes the optimization results

Table 4.3: TEAM Workshop problem 22 optimization results

Approach SQP GA DIRECT B2M2

R1 1.336 1.457 1.543 1.369
A2 0.027 0.481 0.229 0.054
h1/2 1.011 1.209 0.951 0.888
h2/2 1.452 1.800 1.526 1.394
d1 0.677 0.347 0.374 0.791
d2 0.269 0.121 0.217 0.203
J1 15.579 19.834 22.346 14.099
J2 -15.069 -17.305 -13.441 -18.273

OF 0.00197 0.03502 0.04881 0.00510

# FEM evals 1902 160201 421995 106308
CR 1 % 2 % 100 % 100 %

Expected # FEM evals 529640 94276389 421995 106308

We notice that SQP is largely outperforming the other approaches in term solu-
tion quality, actually, 17% of the solutions found by this approach has an objective
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function value less than 0.05 while being distinct in term of the variables, this ex-
plains the low CR of the method and, thus, the high expected number of evaluations.

The genetic algorithm performed better than DIRECT in terms of quality of the
solution, but the former somewhat su�ers from its inherent randomness and thus
the low convergence rate.

B2M2 approach was able to get a solution of better quality than GA and DI-
RECT but less than SQP.

Discussion
TEAM Workshop Problem 22 is one of the most treated benchmarks for the

optimization of electromagnetic devices. In the literature, researchers have reported
their results in many papers. However, due to the di�erences in the FE solver used
by each researcher, the comparison to their results is not possible.

It is worth noting that some results from literature were taken into account and
compared to ours [25]. Nevertheless, those from literature, when evaluated in our
FE model, have bigger values of the objective function .

Another characteristic that can be deduced from this problem is the multi-
modality. The low convergence rate of SQP highlights this fact, indeed, the so-
lutions found tend to have similar values of the objective function while having
design variables that are entirely di�erent.

The SQP assisted the adjoint variable method was able to get the best solution.
However, due to multi-modality, the cost of obtaining this solution is high when
compared to the one found by B2M2, which is of inferior quality and with a lower
cost.

Two facts can explain GA and DIRECT failure; �rst, the multi-modal behaviour
of the problem treated, which rendered locating the best solution very delicate, and
secondly, the constraint handling strategy. Indeed, the penalty approach used may
not be best-suited, and the penalty factors may not be very adequate. Thus, the
tuning of these factors will induce additional cost.

4.3.3 TEAM Workshop Problem 25

The results are summarized in TABLE 4.4.

GA could not get reliable results; only one optimization converged to the so-
lution shown in the table. Furthermore, this one is not competitive compared to
other solutions. SQP and DIRECT algorithms gave the best results, while B2M2
outperforms all the others in terms of computational cost.

Discussion
TEAM Workshop Problem 25 is having a convergence rate (CR) of is 34% when
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Table 4.4: TEAM Workshop problem 25 optimization results

Approach SQP GA DIRECT B2M2

R1 7.31 7.51 7.31 7.28
L2 14.21 14.64 14.20 14.17
L3 14.11 14.39 14.08 14.06
L4 14.37 14.44 14.39 14.34

W 7.62e-5 12.44e-5 7.61e-5 9.73e-5

# FEM evals 280 10100 24255 2575
CR 34 % 2 % 100 % 100 %

Expected # FEM evals 3585 2146501 24255 2575

using the SQP method. This suggests that the optimization problem is less multi-
modal than the TEAM Workshop Problem 22.

In terms of solution quality, SQP and DIRECTmethods lead to the best solutions
(smaller value ofW ), while SQP has a cost of almost seven times less than DIRECT.

B2M2 approach led to a competitive solution, even though the value of the
objective function is a little bit higher. However, the design variables are very close
to the ones found by SQP (di�erence of less than 1% of the design range). Most
importantly, B2M2 cost is the most e�ective.

4.4 Chapter Summary

This Chapter presents a comparison between intrusive and non-intrusive approaches
for the optimization of electromagnetic devices using FEM. We treated two well-
known benchmarks from the literature [1] [2]. Then we used two metrics for the
comparison, the �rst one is the quality of the solution, and the second is the com-
putational cost.

The choice of the algorithm from each category is based on what we can generally
�nd in the literature, the choice of a particular algorithm or implementation was
based on what we are working on, i.e. SQP and meta-model approaches, and the
availability and simplicity of usage. These are usually the challenges that designers
are facing when doing optimization.

The genetic algorithm (GA) is one of the most used algorithms to deal with noisy
data. For both test cases, GA did not perform well. These performances might be
slightly improved by doing some parameter tuning or using other implementations.

DIRECT performed very well for the second test case, but it was ine�ective for
the �rst one; this can be explained by the constraints handling strategy, the penalty
method implemented in the algorithm may not be the best, and additional tuning
is required.
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In terms of performances, the SQP approach outperforms other strategies for
both test cases; this was possible due to the computation of the gradient using the
adjoint variable method. This improves the quality of the solutions drastically, but
this comes with the expense of intrusive manipulation of the FEM code.

The B2M2 approach remains a good alternative in terms of implementation and
solution quality. The developed approach was able to overcome some of the very
well-known issues when using meta-models for optimization.
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Chapter 5

Claw-pole machine

This last Chapter �rst presents the main characteristics of the claw machine, the
subject of this study. This machine di�ers from conventional electrical machines, in
particular by the geometry of its rotor, which generates a three-dimensional magnetic
�ux and by its mechanical structure as the stator is enclosed in two brackets.

In this Chapter, we will focus on another aspect of the thesis related to the
reliability of an electrical machine but closely related to the other aspects. The
manufacturing processes, due to their imperfections, lead to dispersion in the ma-
terial properties and the dimensions of the products. We focus on the impact of
imperfections on the performance of the machine. The study presented here enables
to characterize the imperfections and to conduct, for example, a robust optimization
using the tools proposed in the previous Chapters.

The dispersion related to the manufacturing process induce "variability" on
quantities of interest, which must be chosen among the preponderant performance
factors for the product. For example, for a claw-pole machine (automotive alter-
nator), the in�uence of the dispersion on the output current or acoustic response
must be studied. The aim is obviously to ensure that the product complies with the
speci�cations that are contractual between the supplier and the customer. Claw-
pole machines are commonly used as automotive generators due to their simplicity
and low manufacturing cost. This machine is produced in mass. Deviations on the
dimensions of the machines parts and also on the parts relative position versus the
nominal values can occur due to the imperfections of the manufacturing and assem-
bling processes. Moreover, these deviations are also subject to dispersions in mass
production due to the variability of the processes with time.

The classical approach based on a deterministic model (the model inputs are
entirely known) to address this problem is no longer su�cient. It is necessary to
consider the input quantities as uncertain quantities and to place oneself within
the conceptual framework of uncertainties [46]. The approach to uncertainties in-
troduced by Taguchi and extended to various uncertainty propagation methods (as
shown in Chapter 1) is today commonly used in di�erent engineering domains.
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In this Chapter, we present the claw-pole machine and its operating mode then
introduce the metrology procedure adopted for the measurement of the electrical
machine. These measurements are analyzed, and the variability of the manufac-
turing process is characterized. Afterwords, a parametrized �nite element model of
the machine is presented. Next, the uncertainty propagation using the variability
characterized and the model of the machine is conducted employing Monte Carlo
simulation assisted by a Kriging meta-model.

5.1 Electrical machine

The claw-pole alternator is a synchronous electrical machine with a wound rotor
which aims to supply the on-board network and charge the vehicle battery. It is
placed on the combustion engine's accessory side and is driven by a belt connected
to the crankshaft pulley, as shown in Figure 5.1. The ratio between the rotation
speed of the alternator and that of the combustion engine is generally between 2.5
and 3.

Alternator

Figure 5.1: Position of claw-pole alternator

5.1.1 Structure of the Claw-pole machine

Figure 5.2 shows the structure and the main parts of a claw alternator. As with all
rotating electrical machines, there are a rotor and a stator enclosed in two brackets.
The diode bridge and its heatsink, as well as the brushes and the regulator, are
attached to the rear bearing. A plastic cover is �tted to protect these components.

Therefore, the alternator is a complicated assembly comprising parts whose ge-
ometries are also complex, such as the rotor. The role and features of each part are
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Cover

Front bracket

Stator
Rotor

Pulley

Rear bracket

Brushes & regulator

Figure 5.2: Detailed view of the claw-pole alternator

detailed in the following Sections.

A The stator

The stator of the claw-pole machine is a helical assembly of steel sheet lamination
obtained by a manufacturing process called "Slinky" (left of Figure 5.3). In our
case , the sheet lamination used for manufacturing the stator is of type M800-50A.
The �rst number in this denomination means that the iron losses are 8 W/kg at
1.5 T and 50 Hz. The second number corresponds to the thickness of the sheet in
hundredths of a millimetre, i.e. 0.50 mm.

Figure 5.3: Stator of claw-pole machine

The stator winding can be single, with one slot per pole and per phase, or
double with two slots per pole and per phase. The stator phases can be star or
delta coupled. Delta coupling is sometimes preferred since it does not require the
connection of a neutral point. However, there is a third harmonic current �owing in
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the delta in relation to the electrical frequency in contrast to star connection. This
current generates additional Joule losses.

After the stator winding operation, the stator is impregnated with a varnish in
order to improve the mechanical strength of the winding and to improve the thermal
conduction between the stator and the winding (Figure 5.3).

B The rotor

The rotor consists in two main parts; the claws that form the machine's magnetic
poles and an excitation coil. The machine contains 12 claws (6 in the front and 6
in the rear), each claw corresponds to a pole. These steel parts, of type SAE 1005,
are obtained by forging. Surrounded by the claws, a coil of copper wire creates a
magnetic �eld in the axial direction (i.e. the direction of the axis of rotation). This
magnetic �eld is directed by ferromagnetic steel to the stator core.

Figure 5.4: Rotor of claw-pole machine

C The brackets

The brackets refer to the parts on each side of the stator. The geometries of the two
bearings ("front" side pulley and "back" on the heatsink side) are generally di�erent
(Figure 5.5). They ensure the containment of the stator by enclosing it in the axial
direction (so-called "sandwich" con�guration) with the help of four screws. The
brackets also enable the alternator to be mounted on the combustion engine using
mounting brackets. The brackets are die-cast aluminum alloy (EN AC-46200).

D The brushes and regulator

The excitation current of the rotor coil is supplied via two brushes (Figure 1.9),
sliding on two rings placed on the shaft (see Figure 1.6). The brush holder is
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Shaft housing Bearing housing

Figure 5.5: The brackets of claw-pole machine

usually located in the regulator whose role is to adapt the excitation current of the
alternator in order to maintain the voltage at the battery terminals at a given level.

E Bridge recti�er

The bridge recti�er enables to transform, using a diode bridge (Figure 5.6), the three
phase AC currents (iA, iB, iC) to a DC current supplied to the battery.

Stator phases

Diode bridge

Battery

iA
iB

iC

Figure 5.6: Electrical diagram of claw-pole machine

5.1.2 Operating mode and electrical characteristic

The rotor, to which the pulley is attached, is driven by the belt. The magnetic
�eld is created at the rotor by the current �owing through the excitation coil. The
magnetic �ux then follows a three-dimensional path. When the rotor is in rotation,
it induces a time-varying magnetic �ux in the winding of the three phases leading
to the creation of alternative three-phase ElectroMotive Force (EMF). The diode
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bridge recti�es these EMF to create a DC, i.e. connected to the battery (see Figure
5.6)). The variation of the recti�ed output current (the main characteristic of the
alternator) as a function of rotation speed is shown in Figure 5.7.
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Figure 5.7: Measured output current as a function of rotation speed

It can be seen on this curve that the alternator only provides current from a
certain speed (>1000RPM), which corresponds to the battery voltage exceeding the
voltage at the terminals of the diode bridge.

In their speci�cations, car manufacturers generally require a minimum output
current and e�ciency for di�erent RPM (typically 1800, 3000, 6000 RPM). Various
electrical tests for alternators are de�ned in ISO 8854 and internal Valeo speci�ca-
tions.

5.1.3 Variability of output current in claw-pole machine

The curve shown in Figure 5.7 is obtained by measuring a machine issued from the
production line. For our study, we collected three batches; each batch containing
ten machines, and then we measured the outputs current. Figure 5.8 shows the
bounds of variation (minimum and maximum) of the measured output current of
30 alternators. The gray area represents the possible values that the output current
takes for di�erent rotation speeds.

The variability in the measured current can attain 4 A; this leads to more than
5% of deviation at low speed. This variability is explained by the imperfection
of the manufacturing process. In the next Section, we discuss the impact of the
manufacturing process on the electrical machines' performances.
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Figure 5.8: Variation of measured output current on 30 machines

5.1.4 Impact of manufacturing process

There is a great deal of research into the design and optimization of electrical ma-
chines. New machine structures are emerging as well as new procedures to optimize
their performance. Thus, the claw-pole machine's performance is analyzed and op-
timized by analytical and/or �nite element methods. The in�uence of magnetic
materials on the behaviour of the claw machine has also been studied.

However, it is noted that, in general, the manufacturability and imperfections
of the electrical machine are not, or only to a limited extent, considered in most of
these studies. Nevertheless, in the literature, there is some research on the impact
of process imperfections and their e�ects, which we will summarize in the following
Section.

A Impact on material properties

Di�erent studies were conducted on the impact of the manufacturing process on
the claw-pole machine's material properties. Some of the latest are studying the
magnetic properties of the stator and the rotor [101] [102]. In [101], El Youssef et al.
classify the impact of di�erent operations in the manufacturing process (straighten-
ing, punching, rolling, ...) on the magnetic properties of the stator. They charac-
terize qualitatively how each operation impacts the permeability and the iron losses
of the stator. On the other hand, Borsenberger et al. highlighted how to measure
the magnetic properties of a massive material (such as the rotor of the claw-pole
machine) [102]. They revealed that the forging operation leads to disparities within
the magnetic properties within the rotor.

Most manufacturing processes deteriorate the magnetic properties of materials.
However, it may not always be the case; some can be bene�cial, El Youssef et al.
showed that compacting can improve the magnetic properties.
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B Impact on geometry

The impact of the manufacturing process on the geometry of the machine is less
addressed in the literature except on some limited studies dedicated to eccentric-
ities. The tolerances induced by mass production can lead to variabilities on the
performances of the electrical machine. In [45], S. Liu has applied a statistical ap-
proach for quantifying the impact of variability on the electromotive force and the
torque of the claw-pole machine. He used a parametric �nite element model with an
approximation method (sparse approximation) to highlight the impact of geometry
variability on the performances of the machine.

5.1.5 Summary

Our work can be seen as a succession of S. Liu Ph.D. thesis; We are interested in
the geometry and its impact on the electrical machine's performances. We aim at
studying how the manufacturing process induces variability on the electrical ma-
chine by performing metrological measurement series on machines withdrawn from
the production line, then, using the metrology data, to model the variability using
random variables. Afterwards, these variables are used in collaboration with a para-
metric �nite element model of the machine to perform an uncertainty propagation
using an approximation method to quantify the in�uence of the variability of the
geometry on the quantities of interest.

In the following Sections, we start with the metrology protocol to highlight how
the electrical machine geometry is measured. Afterwards, we proceed by the vari-
ability modelling presentation. Then we present the parametric �nite element model
before explaining how we use the Kriging approximation for the uncertainty propa-
gation to quantify the in�uence of the variability of the geometry on the quantities
of interest.

5.2 Metrology

In this Section, the aim is to measure the geometry of the claw-pole machine manu-
factured by VALEO. Metrology is performed using a Coordinate Measuring Machine
(CMM). This device measurements the geometry of physical objects by detecting
discrete points on the surface of the object using a probe. Di�erent types of sensors
are used in CMMs, including mechanical, optical, laser, ... In our case, we use a
ZEISS UPMC CARAT machine, which has a mechanical probe (as shown in 5.9),
The uncertainties on our machines due to this CMM are less than a few micrometers.

The main objective is to metrologically determine the geometry of air-gap zone
between the stator and the rotor. The air-gap plays a key role in electromagnetic
behaviour; the nominal size of the air-gap is equal to 325µm, which is inaccessible
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Figure 5.9: The Coordinate Measuring Machine

to a probe. The measurements can, therefore, only be carried out on parts after the
machine has been disassembled. Once measured, the parts are virtually reassembled
to evaluate the air gap variation. The machines are measured at the Metrology
Laboratory of the MSMP (Mechanics Surfaces and Materials Processing) at Lille,
France.

The position of the probe can be controlled manually or using a computer. CMMs
typically specify a probe's position as a function of its movement relative to a ref-
erence position in a three-dimensional Cartesian coordinate system (XYZ axes). In
addition to move the probe along the X, Y and Z axes, many machines also allow the
angle control to measure surfaces that would otherwise be inaccessible. Figure 5.10
shows how the measurements are performed; indeed, the contact point is computed
mathematically from the measured point in the CMM scale and the direction of the
contact force. A surface can be reconstructed from limited measured points.

Figure 5.10: The measurement procedure using the CMM
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5.2.1 Methodology

As noted before, the machines are disassembled to measure the air-gap. However,
some referencing elements are kept to virtually reassemble the measured data and
then fully characterize the air-gap. This methodology was initially developed during
S. Liu thesis in collaboration T. Coorevits of the MSMP lab [103] [46] [45]. We
adopted the a similar procedure for our thesis.

A Machine disassembling

The claw-pole machine is called a sandwich machine since the stator is maintained
between the two brackets. To reduce the number of parts to be reassembled virtually,
one of the brackets is glued to the stator (Figure 5.11 at left), then the pulley is
removed using a tool as shown in Figure 5.11 at right. Furthermore, since the stator
sti�ness is low, gluing it into a bracket makes it possible (as far as possible) to
preserve its shape.

Figure 5.11: Claw-pole machine disassembling

Once the pulley and the clamping screws are removed, the machine is disassem-
bled, as shown in Figure 5.12. This leads us to three parts to be measured

� The bracket on the right denoted front bracket in the rest of this dissertation.

� The rotor and the shaft

� The bracket and the stator on the left

For measuring a workpiece using a CMM, a reference frame needs to be de�ned
on that workpiece. In the following, we detail how these references are de�ned for
each part and how the measurements are performed.

B Stator

In the stator, we are interested in measuring its internal surface to determine its
deformation according to its nominal shape that is cylindrical. The stator teeth
de�ne the internal surface. However, before proceeding with this measure, some
preliminary ones are done to de�ne the workpiece's reference frame.
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Figure 5.12: Claw-pole machine disassembled

Reference frame
Figure 5.13 shows the reference frame adopted for the stator measurements.

X

Z

X

Y

Figure 5.13: Reference frame of the stator

The reference frame is de�ned in the following manner

� The XY -plane is de�ned by using the plane on the top of the stator. Then
the orthogonal vector Z is de�ned.

� The center of the frame is de�ned using some measurement in the teeth of the
stator by a least square method. We use the least square method because the
aim is to simulate the assembly, not to verify a conformity in accordance with
a standard.

� The orientation of XY is de�ned by pointing the X -axis in the direction of
the plastic positioning pin shown in Figure 5.13.
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Measurement process
The measurement of the inner surface of the stator is carried out on the 36 stator

teeth (Figure 5.14). On each tooth, 15 points are measured, which leads to 540
points that characterize the stator's inner surface.

15 equidistant

points

2mm

Figure 5.14: Measurement points of the inner surface of the stator

These measurement points are de�ned by their coordinate in the reference frame
of the stator de�ned before.

C Rotor

For the rotor, we want to measure its external surface to de�ne the second surface
de�ning the air-gap (the �rst one is de�ned by the previous measurement of the
stator). The surface of the claws de�nes the desired surface.

Reference frame
Figure 5.15 shows the reference frame adopted for the rotor measurement.

X

Z
X

Y Z

Figure 5.15: Reference frame of the rotor

The reference frame is de�ned in the following manner

� The Z axis is de�ned as the axis of the shaft and the ball bearing
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� The XY -plane is de�ned by the surface (shoulder) retaining the axial move-
ment of the rotor (as shown in Figure 5.15 at right).

� The orientation of XY is de�ned by pointing the X -axis in a direction between
two claws.

Measurement process
The measurement of the outer surface of the rotor is carried out on the 12 claws

(Figure 5.16). As the claws from each side of the rotor are not identical, the number
of measurement points is not the same; indeed, twelve points are performed on each
claw of the upper ones and eight on the lower ones.

Figure 5.16: Measurement points of the outer surface of the rotor

D Virtual assembly

We now have dealt with the measurements of the inner surface of the stator and the
outer surface of the rotor. In order to be able to reconstruct the air-gap, we have to
locate the stator versus the rotor. The air-gap is theoretically a zone of two coaxial
cylinders, can be represented in a plane perpendicular to the axis as a curve in polar
coordinates, which depends on the angular position of the rotor with respect to the
stator.

First, we locate the front bracket versus the stator, then the frames of these two
parts are confounded. Afterwards, the rotor is located in the frame de�ned on the
stator.

Between stator and brackets
The bracket on which the stator is glued is positioned on the other bracket using

the interface between the two parts. The center of the pin and the bore is then used
for locating (Figure 5.17).

The assembling is done virtually by confounding the reference frame de�ned on
the bracket with the one de�ned on the stator.
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Pin
Bore

Figure 5.17: Virtual assembly of the stator and the bracket

Between rotor and brackets
To locate the position of the rotor with respect to the stator, we measure contact

surfaces of the bearings and the shaft. By these measurements, we characterize the
centre of the cylindrical surfaces. Then we confound the centers to obtain a virtual
assembling of the rotor and the stator.

Assembling
When all the virtual assembling is done, we get the coordinate of the rotor axis in

the stator reference frame. Figure 5.18 shows these axes, the z-direction of the rotor
reference frame is confounded with the rotation axis and de�ned by the coordinates
at the extremities of the red segment.

Stator axis Rotation axis

Figure 5.18: Virtual assembly of the stator and the rotor

142 5.2. METROLOGY



CHAPTER 5. CLAW-POLE MACHINE

5.2.2 Summary

In this Section, we presented how the geometry of the claw-pole machine is mea-
sured. Because of a lack of accessibility to the air-gap, we disassembled the electrical
machines and proceeded to measure the part individually. We showed how the ref-
erence frames are de�ned in each part. Reference frames are essential for the virtual
assembly of the disassembled machine. It allows us to assemble the machine using
measurement and calculation; this enables us to characterize the air-gap size and
shape, although its small size.

5.3 Raw data and variability modelling

In this Section, we show the measurement data of each part of the claw-pole machine.
We propose a methodology to construct a stochastic model of the geometry from
the measured points to exploit it in the context of uncertainty quanti�cation.

Stochastic modelling aims to reduce the number of degrees of freedom; for ex-
ample, on the internal surface of the stator, we measure 540 points. These points
represent the degrees of freedom that describe the internal surface; however, all
these cannot be taken into account for practical reasons (very chaotic surface) and
computation (the curse of dimension). Thus, we deduce some variables representing
the maximum information about the surface while being of small size.

5.3.1 Stator

A measurementsmentss

As noted before, we measure the internal surface of the stator; In Figure 5.19, we
show the measured data of one of the stators. The colours highlight the deviation
from the nominal radius of the stator to the measured one.

Rmeasured = Rnominal +D (5.1)

where D is the deviation.

One can see the following

1. The deviation is not homogeneous on the surface.

2. The deviation varies between -50 µm and 20 µm.

3. The mean measured radius is smaller than the nominal one.

4. The surface tends to have an elliptic shape.

These observations are relatively the same for all the measured machines but with
orders of magnitude that are slightly di�erent.
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Figure 5.19: Deviation to nominal of the internal surface of the stator in mm

B Variable modelling

The purpose here is to propose a modelling technique for the shape of the stator's
internal surface. As we have seen in (5.1), the measured radius of the stator is
the di�erence between the nominal radius and the deviation D, then, to model the
internal surface of the stator we need to �nd an appropriate model for the deviation
D.

From the observations mentioned above, we can deduce a simple model for the
deviation. The �rst part of this model is dedicated to the variation of the radius
and the second part dedicated to the elliptic shape. This model is written as follows

D ≈ a0 + a2 cos(2θ) (5.2)

where a0 model the variability in the radius, θ is the angular coordinate, a2 is the
amplitude of the elliptic deformation.

The parameters a0 and a2 can be calculated using the least square method.
The resulted shape is shown in Figure 5.20. One can visually see that this model
reasonably approximates the deformation.

We adopt this approach since it reduces drastically the number of degrees of
freedom to be taken into account in the numerical evaluation. These two variables
(a0, a2) model the shape of the stator's internal surface.

The same procedure is applied to all the machines to determine these variables
for each one. Since we have made the measurement on 30 machines, we get at the end
30 values of a0 and a2. Table 5.1 show the values of the variable for some machines
and Figure 5.21 shows the statistical distribution of the values of the parameters.
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Figure 5.20: Model of deviation to nominal of the internal surface of the stator

Machine a0 a2

1 -0.016 -0.021
2 -0.019 -0.013
3 -0.016 -0.021
4 -0.019 -0.012
...

...
...

Table 5.1: Variables modeling the stator shape for some machines

Figure 5.21-a and 5.21-b show the histograms of the values of parameter a0 and
a2 respectively while 5.21-c shows the distribution of variable a2 with respect to
variable a0. The variables a0 and a2 seem to be independent.

5.3.2 Rotor

A measurementsments

Rotor measurements are somewhat tricky to represent graphically since they are
performed on the twelve claws, six from the front of the rotor and six of its rear.
Figure 5.22 shows the deviation of the radius of the external surface of the rotor to
the nominal one.

In Figure 5.22-a, we highlight the measure points (triangles) by colour with the
scale shown on the colour bar. In contrast, in Figure 5.22-b, we show the deviations
and compared to the nominal radius and the manufacturing tolerance allowed on
the external surface of the rotor.
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Figure 5.21: Synthesis of the measurements of the internal surface of the stator

B Variable modelling

In Figure 5.22, one can notice two phenomena; there is variability in measurement
points on the same claw; another variability is when going through claws on the same
machine. Moreover, another kind of variability is related to the rotor as a whole
when measuring rotors of di�erent machines. These three sources of variability
contribute to the global one.

To quantify the impact of each type on the global variability, we carry out an
analysis of variance (ANOVA) study. ANOVA enables us to characterize the most
signi�cant sources of variances and, most importantly, to eliminate the sources that
do not contribute much in the total variability. The presentation of ANOVA is out
of the scope of this dissertation; we refer the reader to the literature for further
information [104].

The factors of the ANOVA are :

1. Measurement point (the positions along the claw. If this factor is important,
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Figure 5.22: Deviation from nominal of the external surface of the rotor

it means that the variation on a claw along the axis direction is signi�cant)

2. Claw (if this factor is important, it means that the variation of dimension
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along the angle position is signi�cant)

3. Rotor (if the factor rotor is signi�cant, it means that the mean of rotor radius
changes from a machine to another)

The results of the analysis are summarized as follows:

� Around 33% of variability is related to the factor "rotor"

� Around 27% of variability is related to the factor "claw"

� Less than 3% of variability is related to the factor "measurement point"

� The remaining is related to the interactions between factors.

From these results, we notice that the variability related to the factor "mea-
surement point" does not contribute much in the global variability; thus, it can
be eliminated without a signi�cant impact on the analysis. It means that we do
not need to develop a model accounting for position along the claw, i.e. along the
z-direction.

The factor "measurement point" is responsible for the variability of measurement
points on each claw independently. By eliminating this factor, we can consider that
there is no variability on each claw. Using this argument, we can say that the radius
of the rotor is constant for each claw but varies when going from a claw to another
and from a rotor to another. From the ANOVA, we can see that the factor "rotor"
and "claw" have an in�uence, meaning that the mean radius will change signi�cantly
from one machine to another and that the angular position also has an in�uence.

In other words, based on the visual observation in Figure 5.22, One can notice
that the measured cylindrical surface presents some eccentricity; in fact, the axis
computed using a least square method is shifted from the axis that de�nes the
nominal cylindrical surface (see the de�nition of the reference frame of the rotor).
Furthermore, the measured surface radius is smaller than the nominal one. Simply,
we want to �nd the deviation, which is the di�erence between the measured radius
and the nominal radius.

Rmeasured = Rnominal +D (5.3)

where Rmeasured and Rnominal are the measured and the rotor nominal radius respec-
tively and D is the deviation.

Based on the observations above, we can write D as follows.

D ≈ b0 + bx cos(θ) + by sin(θ) (5.4)

where b0 models the o�set to nominal radius while bx and by model the dynamic
eccentricity.
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We characterize these variables for the whole set of machines, and their distri-
bution is shown in Figure 5.23.
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Figure 5.23: Synthesis of the measurements of the outer surface of the rotor
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5.3.3 Virtual assembly

A measurementsments

As detailed in the previous Section, the virtual assembly leads to de�ne the rotation
axis in the reference frame of the stator, as shown in Figure 5.24.

Stator axis

Xr

Rotation axis
Xf

Xn
f

Xn
r

Figure 5.24: Virtual assembly of the stator and the rotor

The rotation axis is de�ned by the coordinate of the extremities Xf and Xr.
Each extremity is de�ned by three coordinate (x,y,z). Thus, we have six degrees of
freedom for de�ning this axis. We can eliminate the z coordinate if we consider the
x and y coordinates at the limit of the rotor at Xn

f and Xn
r .

B Variable modelling

We consider the x and y coordinates of the points addressed before as the variables
to be controlled; they are de�ned as follows :

� x and y coordinates at Xn
f are denoted cx and cy respectively

� x and y coordinates at Xn
r are denoted dx and dy respectively

In Figure 5.25 and 5.26, we show the distribution of these variables.

5.3.4 Variability modelling

The measured data enables us to model the parameters that represent the variability
of the electrical machine's shape. These parameters are calculated for each machine,
and then we need to identify the probability distribution of each parameter. We
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Figure 5.25: Synthesis of the measurements of of virtual assembling (Part 1)

consider the parameters as random variables with normal distribution. We have
identi�ed the best parameters (mean and standard deviation) that are the best �tted
to represent the sample of each parameter. We have also carried some Normality
tests in order to validate our assumption. We used the toolbox developed by M.
Öner et al. to conduct ten of the most used Normality tests. As a result, at least �ve
out of the ten tests have shown that the normality hypothesis cannot be rejected
(for a p-value of 0.05) for all the parameters. Figure 5.27 shows all the variable
histograms with their relative normal distributions.

5.3.5 Summary

In this Section, we have shown the protocol developed for measuring the electrical
machines; the machines were �rst disassembled into three parts.

1. The stator glued to one of the brackets

2. The remaining bracket
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Figure 5.26: Synthesis of the measurements of of virtual assembling (Part 2)

3. The rotor and the shaft

Each part was measured individually to characterize the variability on the ge-
ometry of the machine. Afterward, the machine was assembled virtually using the
reference frames de�ned on each part. The virtual assembling enabled us to locate
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Figure 5.27: Synthesis of the all measurements on claw-pole machines

each part with respect to the others and therefore have a sophisticated protocol for
measuring the air-gap although its small size (325 µm).

The measurements were exploited to get intuitions of the parameters that model
the variability. Each measurement point represents a degree of freedom of the geome-
try of the machine. Treating all the degrees of freedom is impractical and intractable
due to their high number (540 in the stator, 120 in the rotor, ...). Therefore, we
proposed some key parameters (a0, a2, b0,...) to capture the maximum information
about the shape of the measured surfaces. These parameters were mainly deduced
using graphical representation and some statistical methods such as ANOVA.

Once the variables were de�ned for all the claw-pole machines and the variabil-
ity were modelled as random variables by determining their marginal probability
density function (these variables are considered to be independent), the probabil-
ity distributions are considered as input for the FEA model that is used for the
variability (uncertainty) propagation.
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5.4 FEA model

The modelling of the claw pole machine using �nite element analysis is cumber-
some, primarily because of the tridimensional geometry. The di�culty related to
the creation of the model is dealt with gradually to be able to run the uncertainty
propagation. The robustness of the model is a key-ingredient to the success of this
task. We start by creating a parameterized model of the electrical machine with
its nominal geometry, material property, electrical circuit and functioning condi-
tions (temperature, excitation current, ...). Then, the variables introduced in the
previous Section are also added to extend the capabilities of the model.

For this analysis, we use JMAG as a �nite element tool for the machine's elec-
tromagnetic modelling. Thanks to its numerous advantages in terms of geometry
modelling, mesh morphing, eccentricity handling, etc

5.4.1 Geometry

The geometry of the electrical machine is built based on the 2D technical drawings
(as shown in Figure 5.28) describing its di�erent parts. The idea is to have a
geometry the closest to the nominal one.

Figure 5.28: Technical drawing of the electrical machines

The geometry is then parametrized; more than 50 parameters are used to con-
trol the shape of the geometry (some parameters are shown in Figure 5.29). The
parameters enable to change the shape of the machine by changing the values of
these parameters.

The parameterization is not a straightforward task due to the complexity of the
geometry and the invalid shapes generated when varying the parameters. Thus, the
robustness of the model is critical when parameterizing a geometry.

154 5.4. FEA MODEL



CHAPTER 5. CLAW-POLE MACHINE

Figure 5.29: Some parameters of the geometry

5.4.2 Material properties

The materials used in electrical machines are speci�ed by their BH -curves. The
stator and the rotor are of di�erent materials, thus the curves are di�erent, as shown
in Figure 5.30. The stacked lamination in the stator leads to a better performance
than the massive rotor.
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Figure 5.30: B(H) curves of the machine materials

5.4.3 Electrical circuit

The terminals of the stator winding are connected to a recti�er, which is itself
connected to a battery. In Figure 5.31, we show the component of the circuit;
the stator winding, the diode bridge, and the battery. We add a current probe to
measure the electrical current transferred to the battery.

5.4.4 Model validity

Before using our model for uncertainty quanti�cation, we assess a model validity step
to compare the simulation result with respect to the experimental measurement on
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Battery

Current probe
Stator winding

Diode bridge

Figure 5.31: Electrical circuit of the claw-pole machine.

the output current. For this purpose, we choose three functioning points at 1800
RPM, 3000 RPM and 6000 RPM.

For experimental results (I exper. : measured output current), the values taken
are the means of the measured output currents for all machines. These current
are compared to the ones computed using simulation (I simul. : simulated output
current). The comparison is summarized in Table 5.2.

RPM I exper. (A) I simul. (A)

1800 69.5 70.1
3000 104.7 106.0
6000 120.4 120.1

Table 5.2: Comparison of simulation result with respect to experimental one

We can notice that the simulation results are in good agreement with the mean
of the experimental measurements with a relative error of less than 1.3 %. It worth
noting that the variability on the measured machines is around 4A for all the func-
tioning points.

5.4.5 Variability parameters

In the following we aim at quantifying the e�ect of the random input parameter
de�ned in the previous Section on the current. We proceed to take into account
the variability that was identi�ed using the metrology. We present how each of
the parameters is taken into account using the developed model of the claw pole
machine.
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Variables a0 and a2

The parameters a0 and a2 are used to model the interior surface of the stator;
thus, these variables used to deform the mesh of the teeth of the stator. On each
tooth, we apply a radial deformation (as shown in red for one tooth in Figure 5.32)
of amplitude de�ned by

Di = a0 + a2 cos(2θi) , i = 1, . . . , 36 (5.5)

with i is the number of the tooth and θi = 10i

Figure 5.32: Radial deformation of stator teeth

Variable b0

The variable b0 models the variation of the radius of the rotor. Thus, as the rotor
radius is already de�ned in the initial parameterization of the machine geometry, no
mesh deformation is needed is this case (as for the stator teeth).

Variables bx, by, cx, cy, dx and dy
The variables bx and by are used to represent the rotation axis eccentricity (dy-

namic eccentricity) while the variables cx, cy, dx and dy model the static eccentricity.
JMAG is equipped with an eccentricity module (shown in Figure 5.33) that enables
us to take into account these variables at once. The parameterization of the eccen-
tricity on JMAG is somewhat di�erent from the variables we use. Nevertheless, the
transformation that links both of them is not very di�cult (geometrical transforma-
tions such as translations and rotations).

5.4.6 Summary

In this Section, we presented the developed �nite element model of the electrical ma-
chine with all the aspects of the geometry, the material properties and the electrical
circuit. We veri�ed the model validity with respect to experimental measurements.
We have shown how the parameters determined from the analysis of the metrol-
ogy were taken into account in the numerical model. Due to the complexity of the
deformations involved, such as eccentricity, the symmetries of the machine cannot
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Figure 5.33: Eccentricity module of JMAG software

be exploited; therefore, the whole machine needs to be modelled. Therefore, this
increases the evaluation time of the FEA, which is close to 10 hours. For this dis-
sertation, we choose only a operating point at 4000 RPMs. The point is chosen
because it presents the largest variability in the experimental data.

5.5 Uncertainty propagation

The uncertainty propagation aims to propagate the variability that we have charac-
terized on the shape of the electrical machine and then compute the variability on
the output current. For this purpose, we use a meta-model approach. The meta-
model is constructed based on a small sample from the computer expensive FEA
then the meta-model is used for statistical inferencing.

5.5.1 Sampling

The sampling aims at evaluating the model of the electrical machine at some sample
points that represent the distribution of the variables that have been characterized.
As we considered the variables to be normally distributed, we use an LHS method
adapted to normal distributions [105], also implemented in MATLAB as lhsnormal.
We sample 30 points and ran the simulations for all the points. As each simulation
take around 10 hours to complete, all the simulations were performed in around 13
days on a Windows core i7, 4 cores of 2.71Ghz.
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5.5.2 Meta-modelling

After the evaluation of the FEA, we proceed to �t a meta-model on the computed
data; the Kriging model is used for this purpose.

5.5.3 Statistical inference

As the Kriging model is cheap to evaluate, we deem tractable to use a Monte Carlo
simulation for the uncertainty propagation. We generate a sample of considerable
size (1 million points) then we evaluate the Kriging model to get a corresponding
value of the output current of each evaluated point. The resulted distribution is
shown in the histogram of Figure 5.34. One can see that the current can vary
between 114.5A and 117.5A. This distribution is similar to a normal distribution
shown as the orange curve of Figure 5.34.
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Figure 5.34: Variability of the output current resulted from variability on geometry

This variability needs to be reduced; therefore, identifying the variables that
led to this variability is of high interest. In the following, we present a sensitivity
analysis for this task.

5.5.4 Sensitivity analysis

In order to determine which input parameters in�uence the most the variability of
an output parameter, a sensitivity analysis is carried out. It involves estimating
sensitivity indices that quantify the in�uence of one input or group of inputs on the
output. In our case, we want to study the impact of the variables that represent
the deformation of the geometry on the output current of the machine. There exist
many methods for sensitivity analysis [106]. One of the most known is the Sobol
indices, which based on the decomposition of variance.

We compute Sobol indices using a Monte Carlo simulation by evaluating the
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previously �tted Kriging model. The results are summarized in Figure 5.35. We
notice that more than 90% of the variance is related to only two variables (a0 and
b0) while the other variables do not contribute much in the variability of the output
current.

a0 a2 b0 bx by cx cy dx dy
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Figure 5.35: Sobol indices of the variables

If we want to reduce the variability on the output current, it will have almost no
impact if we reduce the variability of other parameters than a0 and b0. The variable
a0 models the deviation of the stator radius from the nominal one, and the variable
b0 models the deviation of the rotor radius from the nominal one. By reducing
the variability on these two variables, the variability of the output current will be
reduced. The other variables seem not to impact the output current, but they may
have a signi�cant impact on other performances of the machine, such as acoustic
noise.

5.6 Chapter Summary

In this Chapter, we presented a complete procedure of conducting a reliability anal-
ysis of the electrical machine; we started with the presentation of the electrical
machine. Then, we proceeded by presenting di�erent metrological measurements
that were conducted to characterize the variability on the geometry. From these
measurements, we have derived a simple stochastic model representing the devia-
tion of the machine's geometry according to the nominal geometry. This model
is de�ned by several random parameters, and their probability density functions
have been identi�ed. Afterwards, we presented a parametric �nite element model of
the machine and how the measurement can be taken into account in the numerical
model.

The numerical evaluation of the impact of geometry variables on the perfor-
mances of the machine was conducted using a meta-model approach to reduce the
computational cost. The variability of the performance was then characterized, and
the variables that in�uence this variability were also identi�ed.
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Optimization under uncertainty of the electrical machine was not considered
in this dissertation. Nevertheless, the �nite element model is developed for this
purpose. Other variables (shape, functioning temperatures, diode characteristics, ...)
can be considered; thus, the optimization can be performed if further computational
power is available.
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Conclusion

This dissertation dealt with the approaches for optimization and reliability analysis
of electrical machines modelled by �nite element method. The �nite element method
is the most sophisticated tool to model electromagnetic phenomena in electrical ma-
chines. It enables the �ne modelling of the electromagnetic �elds in the studied
domain and handling complex geometries, such as the claw-pole machine. However,
it is computationally expensive because of nonlinear materials, 3D geometries, time
dependency. Thus, its use for optimization and reliability analysis (iterative pro-
cesses) should be made with caution since only a limited number of evaluations of
the simulation tool can be tolerated.

General optimization algorithms cannot be applied as they are; some necessary
modi�cations are needed to make them usable for optimizing electrical machines. In
the �rst chapter, we presented the literature about optimization algorithms, and we
discussed their adaptability to this dissertation's subject. From the categories, two
approaches were considered, which depend on the capabilities of the model used.

1. A non-intrusive approach based on the Kriging meta-model

2. An intrusive approach based on the adjoint variable method

The non-intrusive approach using surrogate models is widely used in the context
of expensive model optimization. Many researchers had highlighted the challenges
of using such a strategy. In this dissertation, we have emphasized some of the
very well-known issues and proposed a new methodology of using the meta-models
and how to speed up the optimization times. We have highlighted the drawbacks
of using the conventional approach, which consists in �tting a single meta-model
on the whole design space and enriching it sequentially using in�ll criteria. We
proposed a novel strategy that consists in building many meta-models on speci�ed
regions of the design space; each one of them is relatively easy to �t and easy to use
for optimization (less modality). Then, iteratively, prune the regions that are not
promising. This process explores all the design space; thus, it enables us to produce
reliable solutions.
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On the other hand, for the intrusive approach, we propose how to compute the
derivatives from a �nite element model. Most of the work has been done on the model
rather than on the algorithm (we used the SQP algorithm for this dissertation). We
have presented the adjoint variable method and how the gradient can be derived
from a FEM code. We have developed an e�cient way to compute the derivatives
of the shape sensitivities for geometric parameters, which are vital for the gradient's
computation. The adjoint variable method was compared to �nite-di�erence to
validate and highlight its e�ectiveness in terms of precision and computational time.

For the comparison between intrusive and non-intrusive approaches for opti-
mizing electromagnetic devices using FEM, we treated two well-known benchmarks
from the literature known as TEAM Workshop problems 22 and 25 [1] [2]. We used
two metrics for the comparison, the �rst one is the quality of the solution, and the
second is the computational cost.

In terms of performances, the intrusive approach outperforms other strategies
for both test cases; this was possible due to the computation of the gradient using
the adjoint variable method. This improves the quality of the solutions drasti-
cally but comes with the expense of intrusive manipulation of the FEM code. The
non-intrusive approach remains a good alternative in terms of implementation and
solution quality. The developed approach was able to overcome some of the very
known issues when using meta-models for optimization.

In the last Chapter, we presented a complete procedure for conducting a reliabil-
ity analysis of the electrical machine; we started with the presentation of electrical
machines. Then, we proceeded by presenting the di�erent metrological measure-
ments that were conducted to characterize the variability on its shape. Afterwards,
we presented a parametric �nite element model of the machine and how the mea-
surement can be taken into account in the numerical model.

The numerical evaluation of the impact of geometry variables on the perfor-
mances of the machine was conducted using a meta-model approach to reduce the
computational cost. The variability of the performance was then characterized, and
the variables that in�uence this variability were also identi�ed.

In summary, the goals of this dissertation have been met. A comparison of the
approaches appropriate for the optimization of electrical machines has been carried
out. The advantages and shortcomings of each method have been highlighted.

The integration of reliability analysis in the design phase has been assessed on a
real test case (a claw-pole machine). The impact of the manufacturing process on
the geometry of the machine has been studied, and quantitative analysis has been
accomplished.
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Perspectives

Further work is currently underway to enhance the abilities of the non-intrusive
approach. The multi-objective strategy is further enhanced for reducing the com-
putational burden. The Pareto front can overlap many sub-spaces, which increases
the computational cost of the method. A new technique for space division is being
tested to tackle this issue.

The calculation of the gradient with respect to geometrical variables using the
adjoint variable method relies mainly on the shape sensitivities. The geometric pa-
rameterization of shape variables is still one of the shortcomings of the method.
We have presented an approach based on the parametric equation of the geomet-
ric shapes; however, for very complex shapes, this can be very cumbersome. Some
researchers use dedicated tools that couples the CAD software with the optimizer,
such as The Computational Analysis PRogramming Interface (CAPRI) [107] [108].
CAPRI serves the purpose of providing custom communications from a computa-
tional software suite to the preferred CAD system. This allows designer access to
the CAD system's geometry de�nitions and functionalities, providing the ability to
query the CAD system whenever needed. Using this tool will enable us to compute
the shape sensitivities related to variables automatically from the CAD software.

Another use of the adjoint variable method will be dedicated to topology opti-
mization, where the number of variables is signi�cant. The gradient of the quantities
of interest is computed at a minimal cost. Di�erent methods might be considered,
such as the SIMP method and the level-set method.

For the claw-pole machine, optimization under uncertainty will be considered to
exploit the model full capabilities developed during the thesis. Taking into account
the uncertainty related to the geometry of the machine while varying its shape
can lead to highly e�cient, while reliable, machines when considering the actual
manufacturing process.
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Appendix A

Shape sensitivities

In this appendix, we derive the shape sensitivities for some recurrent types of ge-
ometries.

A.1 Rectangle

A parametric equation of the rectangle can be writ-
ten as

x(t) = a+
d

2
sign(cos(t))

y(t) = b+
h

2
[1 + sign(sin(t))] , t ∈ [0, 2π[

Then, the shape sensitivities are calculated with
respect to the variable de�ning the rectangle are

dax = 1

day = 0

dbx = 0

dby = 1

ddx =
1

2
sign(cos(t)) =

x− a
d

ddy = 0

dhx = 0

dhy =
1

2
[1 + sign(sin(t))] =

y − b
h

d

h

x

y

b

a
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A.2 Circle

A parametric equation of a circle arc E1 can be
written as

x(t) = a+ r cos(t)

y(t) = b+ r sin(t) , t ∈ [0, θ]

Then, the shape sensitivities are calculated with
respect to r are

drx = cos(t) =
x− a
r

dry = sin(t) =
y − b
r

r
θ

E1

x

y

b

a

A.3 Other shapes

In a general manner, one can compute the shape sensitivities if the considered shape
can be written as parametric equations of the edges de�ning it. We showed the
shape sensitivities for the circular arc and the rectangle since there will be used in
the application of the end of this chapter and the following chapter, where we will
treat some optimization benchmarks.
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Appendix B

FEM formulation in cylindrical

coordinates

This Appendix deals with the variational formulation for axisymmetric electromag-
netic devices. There is few researchers who addressed this aspect. Here we present,
the formulation that we used in MagFEM. The formulation is used for the modelling
of the SMES device of the TEAM Workshop problem 22.

B.1 General equations

As detailed in Chapter 1, Maxwell equations are partial di�erential equations (PDE)
(Hard formulation). These equations can be solved analytically for simple systems.
For complex ones, numerical methods are best suited using weak formulations, i.e.
variational formulation.

The magnetostatic problem is written as follows.

∇×
( 1

µ
∇×A

)
=Js in D (B.1)

n×A =0 on ΓB (B.2)( 1

µ
∇×A

)
× n =0 on ΓH (B.3)

These equations describe the electromagnetic �elds and the corresponding bound-
ary conditions.
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B.2 Variational Formulation

Multiplying the PDE from B.1 by an arbitrary test function v such that n×v|ΓB = 0
and integrating over the domain leads to∫

D

[
∇×

( 1

µ
∇×A

)]
· v =

∫
D
Js · v (B.4)

Applying Green-Ostrogradski formulas on the l.h.s

∫
D

[
∇×

( 1

µ
∇×A

)]
· v =

∫
D

( 1

µ
∇×A

)
· ∇ × v

−
∫

Γ

[( 1

µ
∇×A

)
× n

]
· v (B.5)

Since v vanishes on ΓB (Dirichlet boundary) and
(

1
µ
∇×A

)
×n vanishes on ΓH

(Neumann boundary), the boundary integral vanishes too.
This leads to the variational formulation

a(A,v) = 〈F,v〉 (B.6)

with

a(A,v) =

∫
D

( 1

µ
∇×A

)
· ∇ × v (B.7)

〈F,v〉 =

∫
D
Js · v (B.8)

In axisymmetric case, the potential vector A and the �ux density B are reduced
to the following thanks to the invariance around the symmetry axis.

A =

 0

Aθ (r, z)

0

 (B.9)

B = ∇×A =

 −
∂Aθ
∂z

0
1
r
∂rAθ
∂r

 (B.10)

Then, the problem is reduced to

a(A,v) =

∫
D

( 1

µr
∇c(rAθ)

)
· 1

r
∇c(rvθ) rdrdθdz (B.11)

〈F,v〉 =

∫
D
Jsθvθ rdrdθdz (B.12)

where ∇cf =


∂f
∂r
∂f
∂θ
∂f
∂z

 is the gradient of f in the Cartesian coordinates.
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The variational formulation can be further simpli�ed by putting it in a form
similar to the 2D case; thus, we set a new test function

w = rvθ

and replace the unknown potential by setting

u = rAθ

Then the variational formulation becomes

a(u,w) =

∫
D

( 1

µr
∇cu

)
· ∇cw drdθdz (B.13)

〈F, w〉 =

∫
D
Jsθw drdθdz (B.14)

Except for the term 1
r
in a(u,w), this formulation is similar to the 2D. Thus, the

discretization is the same and the quantities of interest can be computed from the
u, for example, the �ux density is calculated as follows.

B =
1

r

 −∂u
∂z

0
∂u
∂r

 (B.15)
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Appendix C

Adjoint equation derivation for

TEAM Workshop problem 25

This appendix treats the derivation of the gradient equations using the adjoint
variable method for the TEAM Workshop problem 25 [2].

C.1 Gradient equations

In general, Finite element model solve a set of equations g(u, p) = K(u, p)u−b(p) = 0

for u parameterized by variables p (design parameters) and compute a quantity of
interest f(u, p)

To recall from Section 3.2.2, for computing the gradient of a function f , the
following steps has to be conducted :

1. Compute the partial derivative for u :∂uf̃ and ∂ug̃

2. Solve the linear system: λ ∂ug̃ = −∂uf̃ for λ

3. Compute the partial derivatives for p : ∂pf̃ and ∂pg̃

4. Calculate the gradient using

∂pf = ∂pf̃ + λ∂pg̃ (C.1)

p : Design variables
u : State variables
g̃(u, p) : State equation
f̃(u, p) : Quantity of interest
λ : Adjoint variables

C.2 TEAM Workshop problem 25

The full description of the problem is detailed in Section 4.1.2.
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C.2.1 Design variables

Figure C.1: Molds of the Die press (design region)

p = (R1, L2, L3, L4) are the design variables. The design variables are geometric
ones, then, from Section 3.3.3, the partial derivatives ∂pf̃ and ∂pg̃ are decomposed
as follows

∂pf̃ =
N∑
k=1

[
∂xk f̃ dpxk + ∂yk f̃ dpyk

]
(C.2)

∂pg̃ =
N∑
k=1

[∂xk g̃ dpxk + ∂yk g̃ dpyk] (C.3)

where (xk, yk) for k = 1, . . . , N are the node coordinates used for the FEA.

The qualtities ∂xk f̃ , ∂yk f̃ , ∂xk g̃ and ∂yk g̃ are computed independently for p and
will be detailed later. Here, we focus on the computation of dpxk and dpyk.

A Variable R1

The variable R1 parameterize a circle arc (gh in Figure C.1), then, from Appendix
A, we can computed the quantities dR1xk and dR1yk for the mesh node coordinates
on the arc.

dR1xk =
xk
R1

dR1yk =
yk
R1

It is worth noting that these quantities are equal to 0 on all the other nodes.
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B Variables L2 and L3

The variables L2 and L3 parameterize an ellipse arc (ij in Figure C.1). The equation
of an ellipse is written as

( x

L2

)2

+
( y

L3

)2

= 1 (C.4)

Then, the arc ij can be parameterized by the following equations.

x(t) = L2

√
1−

(
t

L3

)2

y(t) = t , t ∈ [0, ym]

where ym = 10.5mm is y-coordinate of the vertex j in Figure C.1.

dL2xk =

√
1−

(
t

L3

)2

=
xk
L2

dL2yk = 0

dL3xk =
L2t2

L33

√
1−

(
t
L3

)2
=
L22y2

k

L33xk

dL3yk = 0

C Variable L4

The variable L4 parameterize the segment km in Figure C.1. The parametric equa-
tion of this segment can be written as

x(t) = 20− L4

y(t) = t , t ∈ [10.5, 12.5]

Then, the derivatives on the segment km are deduced:

dL4xk = −1

dL4yk = 0

C.2.2 State equations

The device modeled as a 2D planar nonlinear magnetostatic problem, The state
equations are detailed in Section 1.3.3
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g(u, p) = K(u, p)u− b(p) = 0 (C.5)

where

Kij =
∑
T∈Th

∑
g

1

µ
∇αgi J−1

T · ∇α
g
jJ
−1
T |JT |wg

bj =
∑
T∈Th

∑
g

Js3 α
g
j |JT |wg

A Derivatives w.r.t mesh nodes

The derivatives ∂xk g̃ and ∂yk g̃ are computed as follows

∂xk g̃ = ∂xkKu− ∂xkb (C.6)

∂yk g̃ = ∂ykKu− ∂ykb (C.7)

such as

∂xkKij =
∑
T∈Th

∑
g

[ 1

µ
∇αgi ∂xk(J−1

T ) · ∇αgjJ−1
T |JT |wg

+
1

µ
∇αgi J−1

T · ∇α
g
j∂xk(J

−1
T ) |JT |wg

+
1

µ
∇αgi J−1

T · ∇α
g
jJ
−1
T ∂xk(|JT |)wg

]
∂xkbj =

∑
T∈Th

∑
g

Js3 α
g
j∂xk(|JT |)wg

∂ykKij =
∑
T∈Th

∑
g

[ 1

µ
∇αgi ∂yk(J−1

T ) · ∇αgjJ−1
T |JT |wg

+
1

µ
∇αgi J−1

T · ∇α
g
j∂yk(J

−1
T ) |JT |wg

+
1

µ
∇αgi J−1

T · ∇α
g
jJ
−1
T ∂yk(|JT |)wg

]
∂ykbj =

∑
T∈Th

∑
g

Js3 α
g
j∂yk(|JT |)wg

These formula may seem intimidating, however, there are similar to the ones in
the FE code. Only the derivatives of the jacobian JT are needed to be computed
and then put into the formulas.

B Derivatives w.r.t state variables

The derivative ∂ug̃ is computed as follows
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∂ug̃ = ∂uKu+K (C.8)

such as

∂uKij =
∑
T∈Th

∑
g

−∂uµ
µ2
∇αgi J−1

T · ∇α
g
jJ
−1
T |JT |wg

The quantity ∂ug̃ is often computed in the �nite element code. the subroutine
could be reused in the adjoint variable code.

C.2.3 Quantity of interest

The aim is to minimize the function W (p)

W (p) =
10∑
i=1

(Bxip(p)−Bxio)
2 + (Byip(p)−Byio)

2 (C.9)

where Bxio = 0.35 cos( π
40
i), Byio = 0.35 sin( π

40
i). The quantities Bxip(p) and Byip(p)

are �ux densities computed by the FEA of the device, thus, we need to compute
the derivatives of these quantities w.r.t. the mesh node coordinates (xi, yi) and the
state variables u.

The �ux density at position i is computed as follows

Bi =

(
Bxip

Byip

)
=

(
0 1

−1 0

)∑
j

∇αijJ−1
Ti
uj (C.10)

where ∇αij is the gradient of the base functions evaluated in the reference element
and JTi is the jacobian of transformation from the reference element to the element
Ti where the the point i is located.

Now, the derivatives of these quantities w.r.t. mesh node coordinates and state
variables are detailed.

A Derivatives w.r.t mesh nodes

The derivatives ∂xkBxip, ∂ykBxip, ∂xkByip and ∂ykByip are easily computed since the
dependence is only limited to the jacobian of transformation. Only the derivative
of the jacobian JT is needed to be computed and then put into the formulas.

B Derivatives w.r.t state variables

The derivative ∂uBi is computed as follows
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∂ukBi =

(
0 1

−1 0

)∑
j

∇αijJ−1
Ti
δjk (C.11)

such as δjk is the Kronecker delta.

C Calculation of gradient

The objective function is written as follows

W (p) =
10∑
i=1

(Bxip(p)−Bxio)
2 + (Byip(p)−Byio)

2 (C.12)

Its gradient is written as

dpW = ∂pW + λ∂pg̃

=
N∑
k=1

[∂xkW + λ∂xk g̃] dpxk

+
N∑
k=1

[∂ykW + λ∂yk g̃] dpyk (C.13)

where

∂xkW =
10∑
i=1

2(∂xkBxip(p))(Bxip(p)−Bxio) + 2(∂xkByip(p))(Byip(p)−Byio)

∂ykW =
10∑
i=1

2(∂ykBxip(p))(Bxip(p)−Bxio) + 2(∂ykByip(p))(Byip(p)−Byio)

λ =

[
10∑
i=1

2(∂uBxip(p))(Bxip(p)−Bxio) + 2(∂uByip(p))(Byip(p)−Byio)

]
(∂ug̃)−1
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Optimisation et analyse de �abilité des machines électrique modélisées
par la méthode des éléments �nis

La méthode des éléments �nis est l'outil le plus sophistiqué pour modéliser le phénomène

électromagnétique. Cependant, elle est coûteuse en temps de calcul. Ainsi, son utilisation pour

l'optimisation et l'analyse de �abilité (processus itératifs) doit être faite avec prudence car seul

un nombre limité d'évaluations du modèle peut être toléré. De plus, l'impact du processus de

fabrication sur les machines électriques est peu étudié dans la littérature. L'intégration de cet

aspect dans la phase de conception est l'un des apports de cette thèse aux côtés de la principale

contribution, qui est le développement et la comparaison des approches d'optimisation pour les

machines électriques. Nous exposons les approches adaptées au sujet de la thèse et en développons

de nouvelles. D'une part, le modèle d'éléments �nis peut être considéré comme une "boîte noire"

pour laquelle nous développons une approche non intrusive basée sur des méta-modèles. D'autre

part, nous considérons une approche intrusive, nous améliorons le modèle pour fournir les dérivées

des quantités d'intérêt. Les dérivées sont calculées e�cacement en utilisant la méthode de la

variable adjointe. Finalement, les méthodes sont comparées pour donner un aperçu des avantages

et des inconvénients de chacune d'entre elles. En�n, une étude de cas réel est abordée ; elle consiste

à étudier l'impact du procédé de fabrication sur la machine à gri�es fabriquée par Valeo. Sur la

chaîne de production, les machines sont prélevées pour mesurer leurs dimensions et caractériser

leur écart par rapport aux dimensions nominales. Ensuite, une analyse statistique est menée pour

évaluer la �abilité et l'impact sur les performances.

Mots-clefs : Machines électriques, Meta-modèles, Méthode de la variable adjointe, Propagation

d'incertitudes, Méthode des éléments �nis.

Optimization and Reliability Analysis for Electrical Machines modeled
by Finite Element Method

This dissertation deals with the approaches for optimization and reliability analysis of electrical

machines modelled by the �nite element method. The �nite element method is the most sophisti-

cated tool to model the electromagnetic phenomenon. However, it is computationally expensive.

Thus, its usage for optimization and reliability analysis (iterative processes) should be made with

caution since only a limited number of evaluations of the model can be tolerated. Furthermore, the

impact of the manufacturing process on the electrical machines is scarcely studied in the literature.

The integration of this aspect in the design phase is one of the contributions of this thesis alongside

the main contribution, which is the development and comparison of optimization approaches for

electrical machines.

We present the approaches adapted to the subject and develop new ones. On the one hand, the

�nite element model can be seen as a "black-box" for which we develop a non-intrusive approach

based on Kriging meta-models. On the other hand, we consider an intrusive approach as we

look inside the "black-box," we upgrade the model to provide the derivatives of the quantities of

interest. The derivatives are essential to some optimization and reliability analysis tools. They are

computed e�ciently using the adjoint variable method. Finally, the methods are compared to give

insight into the advantages and the shortcomings of each of them.

Lastly, a real case study is considered; it consists of studying the impact of the manufacturing

process on a claw-pole machine manufactured by Valeo. From the production line, machines are

withdrawn to measure their dimensions and characterize their deviation from the nominal one.

Then a statistical analysis is conducted to assess the reliability and impact on the performances.

Keywords : Electrical machines, Meta-models, Adjoint variable method, Uncertainty propagation,

Finite element method.
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