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Synthèse en français

Les phénomènes d’écoulement supersonique connus sous l’intitulé de Interaction Onde
de Choc Couche Limite ou Shock Wave Boundary Layer Interaction (SWBLI) constituent
une classe de problèmes en aérodynamique supersonique très largement étudiée à la
fois sur le plan expérimental et par les approches théorique et numérique. En effet, ces
phénomènes apparaissent dans presque toutes les situations d’écoulements à grande
vitesse avec des implications dans les industries aéronautique et aérospatiale. L’écoule-
ment transsonique autour d’un profil d’aile, l’écoulement supersonique sur les surfaces
de contrôle d’un engin spatial, les écoulements à l’intérieur d’une entrée d’air ou d’une
tuyère propulsive sont autant d’exemples bien connus. Par exemple, l’interaction en-
tre une onde de choc et une couche limite provoque sous certaines conditions (angle de
choc ou de rampe, ou nombre de Mach. . . ), un décollement de la couche limite qui con-
duit à une configuration très complexe d’écoulement. La bulle de recirculation est dans
certaines circonstances instable et influe sur le système d’ondes de choc composé des
chocs de séparation et de recollement ainsi que d’un train d’ondes de détente. La bulle
de recirculation ainsi que le choc réfléchi sont connus pour être soumis à des oscillations
longitudinales de très basses fréquences. Ces oscillations peuvent s’étendre sur quelques
dizaines d’épaisseur de la couche limite initiale. La source de ces oscillations n’est pas
encore complètement connue, mais deux hypothèses principales ont été avancées qui in-
diquent que celles-ci pourraient être dues soit aux structures tourbillonnaires dans la
couche limite entrante ou soit à la création de structures cohérentes (tourbillons) dans
la couche de mélange/ cisaillement en aval du point de séparation. Dans le passé, de
nombreuses études concernant l’instationnarité de ces interactions ont été menées dans
le cas de la couche limite entrante turbulente et mais très peu ont traité de la couche
limite laminaire. Certaines des études précédentes ont conclu que le mouvement dans
le sens de l’écoulement à basse fréquence est probablement associé aux structures ir-
régulières de la couche limite entrante.

L’objectif du présent travail de thèse est de fournir une meilleure compréhension des
phénomènes physiques responsables des oscillations longitudinales à basse fréquence de
la bulle de séparation. Afin d’étudier ce mouvement à basse fréquence, des Simulations
Numériques Directes (DNS) de l’interaction entre l’onde de choc et la couche limite lami-
naire dans des géométries complexes ont été réalisées. Pour réaliser ces simulations, un
solveur DNS/LES massivement parallèle (MPI), basé sur la méthode des volumes finis et
développé au LIMSI-CNRS a été utilisé. Le solveur Chorus utilise un schéma de capture
de choc Monotonicity-Preserving d’une précision d’ordre 7 en espace et en temps basé sur
la méthode de Lax-Wendroff, pour les flux convectifs des équations de Navier Stokes. Les
flux diffusifs sont discrétisés par un schéma centré de second ordre. Le code initialement
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prévu pour les coordonnées cartésiennes rectilignes a été testé et validé pour la prise
en compte des coordonnées curvilignes pouvant ainsi traiter les écoulements dans des
géométries complexes.

La première partie du manuscrit est consacrée à la validation de l’approche numérique.
L’influence de la distorsion du maillage a été analysée à partir de plusieurs cas-test. Les
erreurs introduites par différents types de déformation pour les trois cas-test consid-
érés (advection, turbulence et écoulement avec onde de choc) ont été analysées. Dans la
mesure où les volumes de contrôle restent proches d’un parallélépipède, il a été montré
que les erreurs dues à la déformation restaient faibles. Dans certains cas, il a été observé
que l’introduction d’une non-orthogonalité du maillage entrainait une augmentation sig-
nificative de ces erreurs.

La deuxième partie du travail de thèse concerne la validation du code dans le cas de
l’écoulement supersonique autour d’une rampe de compression, qui est le cœur de la
présente étude. Les validations ont été réalisées dans le cas d’écoulements non visqueux
et visqueux sur une rampe de compression et la comparaison avec des données théoriques
et numériques a été présentée. Cette comparaison a montré que les résultats obtenus
avec le code Chorus sont en bon accord avec les données de référence. Cependant, ces
études sont assez anciennes (fin des années 1970) et de nombreux progrès ont été réal-
isés dans les méthodes numériques pour les simulations d’écoulements à grande vitesse.
Malheureusement, comme cela a été mentionnée précédemment, il y a très peu d’études
récentes concernant des simulations ou des expériences d’écoulement entièrement lami-
naire autour de rampes ou d’autres géométries complexes qui auraient pu aider à évaluer
la capacité de Chorus à calculer de tels écoulements. Il a donc été décidé de créer un cas-
test à l’aide d’un solveur d’écoulement supersonique bien documenté et largement testé,
rhoCentralFoam du package numérique open-source OpenFOAM. Les résultats obtenus
ont montré un assez bon accord au vu des différences fondamentales entre les deux ap-
proches numériques. Ceci nous a donc permis de considérer que le code Chorus pouvait
être utilisé avec une grande confiance pour réaliser des SimulationsNumériques Directes
dans le cadre d’écoulement compressibles autour de géométries complexes.

En conséquence, le dernier chapitre s’est attelé à l’analyse physique de l’écoulement
crée par le développement d’une couche limite laminaire autour de deux géométries :
une rampe de compression classique et une rampe de compression-détente. Comme il a
été dit précédemment, le but de ces simulations était de déterminer si les oscillations
basse-fréquence de la zone de recirculation pouvaient être reliées à la présence de struc-
tures cohérentes dans la couche limite incidente. Les résultats ont montré que, dans
les deux configurations testées, aucune oscillation n’est observée sur le choc de décolle-
ment ou sur la bulle de recirculation. L’analyse des spectres obtenus grâce à des sondes
situées au voisinage du choc de décollement a néanmoins mis en évidence que toutes les
fréquences associées aux oscillations étaient présentes dans ces signaux. La conclusion
de cette étude est que l’absence des oscillations n’est pas, comme pensé initialement, due
à l’absence de structures tourbillonnaires dans la couche limite incidente mais plutôt
au fait que, dans le cas laminaire, la taille de la zone de recirculation est extrêmement
importante. Ainsi, même si les perturbations responsables des oscillations dans le cas
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turbulent sont également présentes en régime laminaire, elles sont trop amorties pour
pouvoir déplacer le choc de décollement et/ou la zone de recirculation. La prochaine étape
de ce travail devra donc consister à réduire soit le nombre de Mach à l’infini, soit l’angle
de la rampe afin d’obtenir une zone de recirculation plus courte et d’observer si les oscil-
lations apparaissent dans ce cas.
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Introduction

General context
In the past, it was a dream for humans to fly faster and higher in the sky. Today, it is
possible to say, the tremendous efforts of great scientists and engineers converted this
human dream into reality such as the development of high-speed space vehicles. This
endeavour culminated in the aftermath of WWII during the 50’s and 60’s in the context
of strategic competition between the two superpowers of the time, i.e., United States (US)
and Union of Soviet Socialist Republics (USSR) to achieve the goals of setting the first
artificial satellite and sending the first man into the orbit and later landing on the moon.
These steps, in the space conquest, were taken mainly with the help of German rocket
scientists in the US and also partly in the USSR. Launch system design, calibration, and
performance were mainly obtained by analytical approaches and with the help of the lim-
ited computational capabilities. Time constraint and limited computational capabilities
resulted, in some cases, to oversize parts of systems.

After some drawdown during the 70’s and 80’s, a renewed interest in space activities
is witnessed in the past two decades. This trend corresponds to the emergence of new
competitor nations (Europe, Japan, India. . . ) in the domain and also some private com-
petitors. This new competition is mainly driven by economic interests rather than the
strategic advantage and prestige as was for the first wave. Also, it arrives in the time of
formidable progress in computational capabilities, numerical methods, and algorithms.
So, nowadays, complex physical and particularly fluid flow phenomenawith system sizing
implication could be analyzed and as a consequence, the system performances could be
optimized. It can contribute, for example, to increase payload or to use fewer propellants.

Among fluid flow phenomena, shock wave boundary layer interactions constitute a class
of problems in the supersonic/hypersonic aerodynamics (figure 1) which was extensively
investigated both theoretically and experimentally [129, 98, 62, 136, 18, 44]. Such inter-
actions feature some fundamental aspects of supersonic fluid flows such as:

� Incident shock wave interaction with a developing boundary layer

� Viscous strong and weak interactions

� Flow separation

� Flow unsteadiness

� Shock-shock interactions

9



10 INTRODUCTION

� Turbulence

� Vortex

� Etc.

Figure 1: The aerodynamics environment of a supersonic/hypersonic aircraft.

In aeronautical and aerospace industries, the interactions between a shock wave and a
boundary layer have a clear appearance almost in all high-speed flow. The supersonic
flow over a flat plate, over a compression ramp and inside an air-intake, a nozzle, and a
diffuser are well-known examples of these types of interactions. A brief explanation of
these interactions environment are discussed below:

Shock wave boundary layer interactions take place in the flap/wing or body/wing junc-
tions of a space vehicle. For some incoming flow conditions and geometry, flow can sepa-
rate locally which drastically affects the flap efficiency and vehicle performance. Also,
at the flow reattachment region on the flap, severe overheating could be expected to
put the integrity of the vehicle in danger, if not taken properly into the account. The
generic model of such flow situations known as ramp flows were extensively investigated
in the past by experimental [25, 46, 134] and numerical means [28, 104, 162]. Inci-
dent shock wave/boundary layer interactions also take place in the air intake of super-
sonic/hypersonic vehicles powered by Scramjets (figure 2) [114, 17, 91, 165, 92].
Flow separation, shock-shock interaction can affect drastically the air intake efficiency
leading to poor combustion and loss of propulsive power. Finally, as the last example,
shock wave/boundary layer and shock-shock interactions take place in the divergent of
a propulsive supersonic rocket nozzle particularly during the under-expansion regime
at the lower altitudes of a given flight mission. Associated boundary layer separation
and related shock wave (Fig. 3) impact on the inner nozzle wall can dramatically affect
the specific impulse of the engine [4, 122, 111, 110, 72]. In all these flow situations,
laboratory experiments and in-flight recorded data had shown flow unsteadiness, both
in the streamwise and spanwise directions which may provoke harmful side loads in the
case of the supersonic nozzle.
For the ramp flows, the reattachment shock wave unsteadiness was reported in the late
70’s [46, 47]. This unsteadiness in the reattachment region of the ramp flowwas reported
in presence of complex transverse vortex structures (Görtler vortex) [10, 33, 155, 105,
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Figure 2: Flow-field characteristics of scramjet engine [145].

Figure 3: Principle phenomena in a supersonic nozzle at under-expanded regime [83].

104, 68]. In the case of the incident shock wave on a boundary layer (figure 4), similar
reattachment shock unsteadiness was noticed in many studies [50, 53, 40, 95].
For some researchers, the flow, reattachment shock unsteadiness, and frequency could
be related to the upstream incoming turbulent boundary layer features while others at-
tribute the unsteady character of the separation to the downstream shear layer associ-
ated with shock-shock interaction region of the flow.

Although in some theoretical studies, stability analyses were carried out [126, 150], the
mechanism behind the flow unsteadiness in such cases is yet to be truly known. In the
early decades of the twentieth century, the experimental approach was the only source
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Figure 4: Schlieren of interaction between an incident shock wave and supersonic bound-
ary layer [53].

to understand the flow unsteadiness in SWBLI. On the numerical side, the classical nu-
merical methods such as RANS (Reynold Averaged Navier-Stokes) have no intrinsic ca-
pability to deal properly with supersonic flow unsteadiness. However, new advancements
in computational capabilities and high-resolution numerical techniques have proved the
possibilities to obtain important information from numerical simulations. Also, provide
us an opportunity to closely examine the complex physical phenomena such as SWBLI
in supersonic/hypersonic flows in recent decades. The emergence of modern numerical
methods such as Large Eddy Simulation (LES), Direct Numerical Simulation (DNS) with
high-resolution numerical schemes constitutes a powerful tool to apprehend such com-
plex unsteady flow phenomena. However, these methods are highly time and memory
consuming even with modern high-speed computers.

Study of the Subject
The interactions between shock waves and boundary layers have an interesting historical
background and great strides have been made in the field of experiments and computa-
tional simulations over the last several decades. These interactions represent all kinds
of complex fluid dynamics phenomena. The representation of these phenomena of inter-
action involves the coupling between the high-speed inviscid streams (inertial-dominated
region) and low-speed boundary layer flows (viscous dominated region). The results of
these phenomena were noticed as an adverse enlargement of the boundary layer due to
the strong variation in pressure and temperature across the shock. Moreover, these phe-
nomena generally lead to aerodynamic heating in re-entry vehicles, loss in performance
of the aerodynamic devices, and large-scale unsteadiness that could cause additional
problems such as buffeting in the aircraft’s wings, air intakes’ buzz that could be respon-
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sible for structural fatigue [29, 49]. This is the reason, these interactions are demanding
areas of study in the aeronautical/aerospace industries for both internal and external
aerodynamics.

The interaction between a shock wave and a boundary layer provokes a premature shock-
induced separation under any given circumstances such as high deflection in shock/ramp
angle or high Mach number. This separation could create an unsteady recirculation bub-
ble and, subsequently, a complex shock system consisting of the separation and reattach-
ment shocks, as well as a fan of expansion waves. The oscillations of the recirculation
bubble as well as of reflected shock were noticed around the separation point in the form
of low-frequency streamwise motion that could develop over some tenth of boundary layer
thickness [120, 9]. The source of these oscillations is still not completely understood, but
there are two strong premises which indicate that either it could be due to the random
structures in the incoming boundary layer [64] or to the shedding of coherent structures
(vortices) in the mixing/shear layer downstream of the separation point [120, 11].

There are several studies in the past three decades that concerned the SWBLI unsteadi-
ness by dealing with the turbulent boundary layer and only a few studies dealing with the
laminar boundary layer [60, 131, 126]. Previous studies concluded that the low-frequency
streamwise motion is likely to be associated with the irregular structures in the incom-
ing boundary layer. The aim of the present thesis work is, therefore, to manifest that the
streamwisemotion still appears with an incoming laminar boundary layer and provides a
better understanding of the possible source of this low-frequency streamwise motion. In
order to investigate low-frequency streamwise motion, the DNS studies are performed in
this current thesis project for the interaction between the shockwave-laminar boundary
layer in two different complex geometries: a classical compression ramp and compression-
expansion ramp.

Objective of this current study
The objective of the current thesis is to describe the physical behaviour of shockwave-
laminar boundary layer interactions in the supersonic flow by using an in-house parallel
(MPI) Finite-Volume based DNS/LES solver named as CHORUS developed at LIMSI-
CNRS. This code was initially built for a cartesian mesh. The ability of code to deal with
the curvilinear mesh system was never checked before. In order to deal with complex
geometries, we modified the original version of this code. To check the ability of this
modified code, the DNS simulations were performed on several test cases. The SWBLI
unsteadiness and the possible source of low-frequency streamwise motions in the inter-
action environment of complex geometries are of particular interest. To develop the well-
oriented framework for the current research study in order to meet the final goal, the
objective of this thesis is divided into three-part:

Primary objective
To check the ability of the numerical scheme, computational analysis of several canoni-
cal test-cases (Advection-diffusion case, Taylor-Green Vortex, and presence of a shock...)
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were performed in curvilinear coordinates. Every case has been selected for their own
peculiarities and because reference data were available.

Intermediate objective
Before innovative DNS is performed, the code needs to be validated on the framework of
supersonic flows around a compression corner, which is the core of the present disserta-
tion. The validation studies have been carried out for the case of both inviscid and viscous
flows over a compression ramp and the comparison with theoretical as well as numerical
data will be presented. However, those studies are rather old (the late 1970s) and a lot
of progress has been made in numerical methods for high-speed flow simulations. Unfor-
tunately, as it was mentioned earlier, there are very few (to say the least) recent studies
concerning simulations or experiments of fully laminar flow around ramps or other com-
plex geometries that could have helped to assess Chorus’ ability to compute such flows.
It has then been decided to create our own test case, using a well-documented and ex-
tensively tested supersonic flow solver, rhoCentralFoam of the OpenFOAM open-source
numerical package.

Final objective
Themain objective of the current thesis is to performDNS and physical analysis of three-
dimensional unsteady shock wave-boundary layer interaction for two complex geome-
tries: a classical compression ramp and compression-expansion ramp. Indeed, in order
to deeply understand the low-frequency unsteadiness of the separation bubble, we con-
sider the interaction between a shock wave and a laminar boundary layer, in which no
incoming turbulent structures are encountered. Also, check that this low-frequency lon-
gitudinal motion of the separation bubble is recovered in the laminar regime or not while
it is present in the turbulent case.

Outline of this thesis
Chapter 1 is dedicated to reviewing the important previous studies done in the field of
physical analysis of SWBLI and modeling of supersonic/hypersonic flow. The focus is
placed on studies involving various aspects of SWBLI in different interaction environ-
ments.

Chapter 2 discusses the numerical modeling of the governing equations. This numerical
modeling is discussed with regard to numerical approach, domain size and discretiza-
tion, boundary conditions and physics modeling.

Chapter 3 reviews the validation studies of the numerical scheme on distorted meshes
(curvilinearmesh) for several canonical test cases (Advection-diffusion case, Taylor-Green
vortex, and presence of a shock...).

Chapter 4 dedicated to checking the ability of the code (CHORUS) for the supersonic
flows around a 2D compression corner in both the inviscid and viscous flow.



15

Chapter 5 presents the Direct Numerical Simulation (DNS) for three-dimensional un-
steady SWLBLI in two complex geometries. A deep concentration is applied to the anal-
ysis of low-frequency longitudinal motion of the separation bubble. Also, it justified that
this low-frequency motion of the separation bubble is recovered in the laminar regime or
not while it is present in the turbulent case.
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In this chapter, we introduce an overview of the previous studies obtainable in the lit-
erature of shock wave-boundary layer interactions. We started this chapter with a dis-
cussion of the importance of the SWBLI phenomenon. The second section presents the
different geometrical configurations in which they experience this complex phenomenon.
The third section describes the SWBLI phenomenon in the laminar flow. The fourth sec-
tion is concerned about the important aspects (separation, unsteadiness) of SWBLI. The
last part of this chapter discusses different numerical methods for high-speed flow.

1.1 Importance of shock wave-boundary layer inter-
actions

As time is going on, human being’s desire to touch the sky and all its limits is also in
their mind. In order to fulfill the desire to reach the sky, one needs supersonic/hypersonic
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aircraft and that requires deep study of several important fluid dynamics phenomena.
One of the fascinating phenomena is shock wave-boundary layer interaction. The harm-
ful consequences of this phenomena have already been observed in many incidents in
the history of high-speed aerodynamics. These consequences made this topic thought-
provoking and attractive.

Due to the strong aerodynamic heating, the worst incident of damage in X-15 hypersonic
airplane was noticed on October 3rd, 1967. A hole through a surface of the pylon burnt
due to this high aerodynamic heating. Later, it was found that the biggest cause of this
aerodynamic heating was the interaction of a shock from the ramjet nacelle to the py-
lon. Moreover, the impingement of a bow shock from this pylon to the bottom surface of
the X-15 airplane caused a region of local aerodynamic heat damage figure 1.1. Another
harmful consequence of SWBLI is observed in the ramp-shaped inlet of the engine in-
takes [133]. According to the operating conditions, different arrangements of SWBLI for
a mixed ramp-shaped inlet is shown in figure 1.2. In this case, the shock waves interact
with the developing boundary layer at the inlet surface and produce an adverse pressure
gradient that separates the boundary layer from several downstream locations of the
inlet. This flow separation affects engine performance by reducing the overall pressure
recovery. An additional effect of this separation is the flow distortion that introduces the
low-frequency large-amplitude oscillations. These low-frequency oscillations are some-
times known as the inlet buzz that can lead to the engine surge and structural fatigue of
the aircraft. The occurrence of this phenomenon is also noticed when high deflection is
required in the flaps to stabilize the supersonic/hypersonic vehicles. The results of both
the high deflection and SWBLI are found in the detachment of flow upstream of the flap
due to the adverse pressure gradient [12]. This detachment consequently affects and
minimizes the maneuverability of high-speed airplanes. The combination of all these
consequences of this phenomenon results in the structural fatigue of the components
and sometimes the complete body of the aircraft. One of the positive effects of this phe-
nomenon is found in the strong mixing of the air-fuel mixture due to the enhancement
in turbulence. The literature of SWBLI concluded that the number of negative effects of
this phenomenon exceeds the positive effects. This is the reason why various researchers
are still analyzing this hazardous phenomenon to examine closely all the consequences
caused by it.

Figure 1.1: An example of aerodynamic heating due to SWBLI. X-15 hypersonic test
airplane (left) and Damage in X-15 hypersonic airplane (right). From [8].
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Figure 1.2: Different classes of SWBLI flow related to mixed ramp-shaped inlet. From
[141].

1.2 SWBLI: Different interaction environments

1.2.1 Basic geometrical configurations
To understand the concept of SWBLI, it is important to consider the role of the surface
geometries. It is because each geometry experience this harmful phenomenon but the
appearance of interactions in each geometry is different and advantageous to study. The
interaction of a shock wave with the developing boundary layer in different basic geome-
tries are shown in figure 1.3 and have an important influence on far-field.
The first example (Fig. 1.3a) shows the supersonic flow over a 2D ramp. A reflected
shock wave is reported in this type of configuration and the zone of interaction is influ-
enced only by the upstream source of the disturbance. This configuration is an example
of a short-range interaction (supersonic flow both the upstream and downstream of the
interaction) and plays an important role at the control surface or when a change in the
surface direction is required.

The second example (Fig. 1.3b) is a supersonic flow inside a channel. The zone of the
interaction in this type of configuration is influenced by both the upstream and down-
stream source of the disturbances. A normal shock is reported in this configuration and
the downstream disturbances are now available to propagate in the upstream through
the subsonic region (close to the wall). This configuration is an example of medium-range
interaction (supersonic flow upstream and subsonic flow downstream of the interaction).

The third example (Fig. 1.3c) is the transonic flow over an airfoil. The zone of interaction
in this case is also influenced by both the upstream and downstream sources of the dis-
turbances. The interaction in this type of configuration is no longer confined to happen
in a closed duct so it is known as long-range interaction.
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(a) Ramp (b) Channel

(c) Transonic Airfoil (d) Nozzle

Figure 1.3: Classification of shock wave boundary layer interaction in different environ-
ments. From [43].

The fourth example (Fig. 1.3d) is the supersonic flow at the exit of an over-expanded
nozzle. An oblique shock appears due to the pressure difference at the exit of the nozzle.
In this configuration, pressure discontinuity at the exit causes a flow deflection.

So far, we discussed SWBLI in basic geometries only but in order to achieve the objective
of the current thesis, it is advantageous to analyze some other canonical configurations
such as flow over a flat plate, a bump, a compression ramp, and double compression ramp
(compression-expansion ramp).

1.2.2 SWBLI: Canonical configurations
Flat Plate

By considering this configuration, most of the literature in the past several decades pro-
vided a huge contribution to understanding the physical behaviour of SWBLI. The inter-
action of an incident shock with the developing boundary layer on the surface of a flat
plate is shown in figure 1.4. Due to this interaction, strong variations in the pressure
are notice behind the shock and performed as a strong adverse pressure gradient. This
strong adverse pressure gradient separates the developing boundary layer from the sur-
face of the flat plate.



20 CHAPTER 1. LITERATURE REVIEW

Figure 1.4: Interaction between the incident shock and the boundary layer on a flat plate.
From [5].

The separation of the boundary layer happens slightly upstream of the interaction point
of the incident shock. The high pressure across the shock feed upstream through the
subsonic part of the boundary layer and disturb the incoming flow. Moreover, this sepa-
ration of the boundary layer induces a separation shock at the separation point. As soon
as this separated boundary layer starts to recover the surface of the flat plate, a pattern of
multiple expansion waves is created. These waves turn the flow towards the surface and
finally the boundary layer reattaches with the surface of the flat plate at the reattach-
ment point. Another shock induces at the reattachment point known as the reattachment
shock. A zone of strong aerodynamic heating is noticed at the reattachment point as the
boundary layer became relatively thinner than the upstream boundary layer. A reflected
shock is formed due to the combination of both the separation and reattachment shock,
away from the surface of the plate.

Bump

The transonic interaction over the surface of a bump is shown in figure 1.5. Bumps are
a well-known example of the canonical geometries that possess fascinating effects as a
diversion system.
They play an important role in the diversion of the boundary layer due to both the favor-
able and adverse pressure gradients. The transonic flow (high speed subsonic) interacts
with the lower surface of the bump and starts to accelerate the flow up to the supersonic
speed and then decelerate the flow at the rear surface because of the bump curvature.
This deceleration separates the boundary layer and forms a lambda-shock. The front leg
of the lambda shock originates at the separation point of the boundary layer and the rear
leg originates from the reattachment region. The applications of this type of interaction
environment play an important role in the designing of transonic wings.
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Figure 1.5: Transonic flow over a bump. From [96].

Compression ramp

The interaction environment over the supersonic compression ramp is shown in figure
1.6. When the supersonic flow encounters the surface of the compression ramp, the strong
adverse pressure gradient generated by the compression ramp, enlarges the incoming
boundary layer and eventually separates this layer from the surface. This separated
boundary layer becomes a shear layer outer to a recirculation bubble around the com-
pression corner. The boundary, by reason, is called the dividing line between the shear
layer and the recirculation bubble. Further downstream, this shear layer interacts with
the ramp in the reattachment region. Then the flow in the boundary layer continues to
accelerate till the boundary layer and reaches a minimum thickness at the neck level.
This interaction environment is different from the inviscid case where the discontinuity
occurs at the deflection point by means of a single shock only.

Figure 1.6: Supersonic flow over a compression ramp. From [28].
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Compression-expansion ramp

The interaction environment of the double compression ramp (compression-expansion
ramp) in supersonic flow is shown in figure 1.7.

Figure 1.7: A schematic representation of the supersonic flow over a compression-
expansion ramp. From [167].

The amplification in the turbulence level is found as a result of the interaction between
the shock waves and the boundary layer (Inset 1). The possible relaminarization of the
reverse flow is observed within the separated region due to the turbulent diffusion (In-
set 2). The existence of the pairs of large counter-rotating streamwise vortices (Görtler
vortices) is reported in the reattachment region as well as in the reverse flow of the sep-
aration zone (Inset 3). The interaction with Prandtl-Meyer expansion waves at the ex-
pansion corner caused the damping of the turbulent fluctuations (Inset 4). The positions
of both the separation and reattachment points are indicated by S and R respectively.

1.3 SWBLI: Laminar flow
Most of the studies in the literature of SWBLI investigated the interaction of a shock with
the turbulent boundary layer and only a few studies dealing with the laminar boundary
layer. The insight flow physics of the laminar interaction made this phenomenon more
interesting than the transitional or turbulent case. An earlier experimental study [1]
investigated the laminar interaction in transonic flow, it is observed that the multiple
shock structure (compression shock) depends on the incoming velocity. As the velocity
(Mach number) increases, the multiple shock structure decreases and finally forms a
lambda shock figure 1.8. A single lambda shock is observed beyond Mach 1.223.
In a flat plate case, Liepman et. al. [102] experimented and reported that the zone
of interaction for a laminar flow can be several times longer than the turbulent case.
Moreover, the process through which a reflected shock is generated in the region close to



1.3. SWBLI: LAMINAR FLOW 23

Figure 1.8: Schlieren illustration of lambda-shock with variation in Mach number. From
[1].

the wall differs in the laminar interaction from the turbulent case and shown in figure
1.9.

(a) Turbulent flow (b) Laminar flow

Figure 1.9: Reflected shock pattern. From [102].
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Gadd et. al. [61] conducted a theoretical and experimental study for the laminar sepa-
ration in the supersonic ramp flow to understand the effects of wall heating and cooling
on the extent of separation. A tendency that the interaction extends further upstream
and the pressure gradient correspondingly decreases as shown in figure 1.10, is noticed
in the heated wall case.

Figure 1.10: Comparison of theoretically and experimentally calculated pressure distri-
butions. From [61].

Hakkinen et. al. [73] investigated the interaction between a shock wave and a laminar
boundary layer on a flat plate. This study concluded that the pressure levels related to the
separation depend only on the local conditions if the separated flow is adequately long.
Furthermore, the length of the separated zone is almost proportional to the pressure rise
that required to induce incipient separation. A study [25] based on the asymptotic triple-
deck theory of the laminar boundary layer separation and reattachment is conducted for
a supersonic compression ramp. All the triple-deck calculations in this study are based
on the Stewartson-Williams’ method [143] and reported that the regions of separation
and reattachment become distinct with a plateau region of approximately constant pres-
sure for large ramp angles shown in figure 1.11. Also, the available evidence in this study
supports the aspect of this asymptotic theory of both the laminar separation and reat-
tachment and is an adequate formulation for a practical purpose.

A similar study is carried out by Burggraf et. al. [26] for a comparison between the triple-
deck theory based on Rizzetta, Burggraf, and Jenson’s method [124] and the interacting
boundary layer model based on Werle and Vats’ method [159]. This study reported that
the deficiency of this asymptotic theory is an experience, it is quantitatively accurate only
at very high Reynolds number.

A combined experimental and numerical investigation is carried out by Degrez et. al.
[42] for the interaction between the oblique shock wave-laminar boundary layer on a flat
plate at Mach 2.25. This study closely examined the distribution of the pressure and ve-
locity profile in the vicinity of the separation and reattachment zone as shown in figure
1.12. A good agreement is observed between the experimentally and numerically com-
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(a) (b)

Figure 1.11: Laminar separation in compression ramp (a) and the theoretically calcu-
lated overall pressure distribution (b) at ramp angle 10°. From [25].

puted velocity and pressure distribution in the upstream, separation, and reattachment
region. A steeper pressure gradient at the reattachment point is observed in numeri-
cal computation than the experiment, there is no explanation for the same but a similar
presence is noticed in another computational study [28].

(a) (b)

Figure 1.12: Comparison of pressure distributions (a) and velocity profiles at different
locations (b). From [42].

A computational investigation of the oblique shock-laminar boundary layer interaction is
carried out for the range ofMach 1.4 to 3.4 and Reynolds number 1×105 to 6×105 [84]. The
numerical results of this investigation reported that the extent of the separation bubble
grows linearly with the strength of the incident shock and that in good agreement with
the free interaction theory. A comparison of this numerical data with triple-deck the-
ory shows a discrepancy in the estimation of the separation bubble’s length scale. It is
observed that the discrepancy increases with the increasing Mach number for a finite
range of Reynolds numbers.

Several recent studies closely examined the complex physics of the shock wave-laminar
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boundary layer interactions. Some aspects of the SWBLI unsteadiness are carried out
by Robinet [126] for an oblique shock-laminar boundary layer interaction on a flat plate
using DNS. This study found that the unsteadiness of the interaction region is not al-
tered by the presence of upstream perturbations related to themechanism of instabilities
in the transition process. Moreover, this low-frequency unsteadiness of the interaction
region emerges in a supercritical Hopf bifurcation associated with the passage of the sep-
arated boundary layer.

Recently, Fournier et. al. [60] performed DNS to examine the possible origins of the
streamwise motions of both the shock-induced separation bubble and the reflected shock
for the shock wave-laminar boundary layer on a flat plate. It is observed that the recir-
culation bubble moves upstream even if there are no oscillations which indicate that this
movement is more likely due to the vortex shedding downstream of the separation. More-
over, strong shedding intermittency is evidenced figure 1.13, leading to the large-vortex
free regions in the flow, responsible for very low-frequency mechanism.

Figure 1.13: A schematic of coherent structures in the interaction region by using Q-
criterion isosurfaces. From [60].

Giepman et. al. [66] conducted experiments for laminar and transitional oblique shock
wave reflections by varying the Mach number (1.6 to 2.3), Reynolds number (1.4× 106 to
3.5×106), and flow deflection angle (1° to 5°) on a flat plate. This study reported a long, flat,
and triangular recirculation region for the laminar interactions figure 1.14. Moreover, for
strong shock waves, the horizontal distance between the separation point and the top of
the bubble increases linearly, although the horizontal distance remains nearly constant
between the top of the separation bubble and the reattachment point with the shock
strength. The boundary layer rests in the average laminar state upstream part of the
recirculation bubble. However, transitions occur quickly after passing an incident shock
wave.
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Figure 1.14: The pattern of reflection shocks in both the incoming laminar boundary
layer and in the transition as well as the pressure distribution over the surafce of the
wall. From [66].

1.4 Important and remarkable concerns of SWBLI
The interaction between the shock wave and the boundary layer represents all types
of harmful fluid dynamics phenomena such as separation of the boundary layer, large
scale unsteadiness, turbulence, huge variation in pressure and temperature, etc.. These
harmful flow phenomena have a remarkable impact on both the external and internal
surface of the aircraft as well as degrade the performance and maneuverability of the
airplanes. Some of these flow phenomena are discussed here.

1.4.1 Separation of the boundary layer and formation of the re-
circulation bubble

In the past several decades, a large number of studies focused on the complex physi-
cal mechanism of SWBLI. These studies are helpful to deeply understand the complex
structures of the flow separation induced by these interactions. The structure of this flow
separation for both the laminar and turbulent cases is shown in figure 1.15.
When a strong incident shock impinges on the developing boundary layer, the strong
pressure gradient behind the shock feed upstream through the subsonic stream of the
developing boundary layer near the wall and eventually separates it from the surface
of the wall. This separation originates from the separation point, located ahead of the
impingement point of the incident shock. This separation forms a recirculation bubble
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Figure 1.15: The shock pattern and distribution of wall pressure in the supersonic sepa-
rated flow. From [156].

and proceeds from the reattachment point. The separated layer, originated from the sep-
aration point, becomes a shear layer that promotes the complex mixing caused by the
energy transfer from the outer supersonic-inviscid stream into the separation region.
This transformation of the mechanical energy, due to the complex mixing, causes the
constant increment in velocity inside the shear layer until it overcomes the pressure gra-
dient at the reattachment point. A sudden change in the pressure level at the separation
and reattachment points, as well as constant pressure in the recirculation bubble due to
the separation, is also shown in figure 1.15 [156]. Moreover, the overall increment in the
pressure or pressure gradients due to the separation induced by the laminar interaction
is lower than that of the turbulent case.

An experimental study [62] investigated the interaction between shock waves and bound-
ary layers on a flat plate in supersonic flow. The results of this study noticed the impor-
tance of the boundary layer separation process and the transition in establishing the
nature of the interaction. Moreover, the recirculation bubble is found in a triangular
shape for the laminar interaction. Another experimental study [30] noticed the effect
of Mach numbers and Reynolds numbers on the separation region. This study reported
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that for supersonic flow, pure laminar separations are steady and depend only on a rel-
atively small range of Reynolds numbers. The stability of the separated laminar shear
layer increases with an increase in Mach number. Katzer [84] numerically investigated
the interaction between an oblique shock and a laminar boundary layer for a range of
Mach number 1.4 to 3.4 on a flat plate. The results of this study concluded that the
length of the recirculation bubble is linearly dependent on the incident shock strength.
Sivasubramanian and Fasel [139] performed DNS to investigate the shock-induced lam-
inar separation bubble in the supersonic boundary layer with and without upstream
disturbances. It is noticed in this study that the laminar recirculation bubble strongly
amplified the upstream disturbances and the flow transitioned to the turbulence down-
stream of the bubble at higher shock strengths. The numerical study [131] of steady
two-dimensional laminar interaction emphasized that the size of the recirculation bub-
ble influence the motion of the low-frequency mechanism at the separation point. This
sensitive separation of the laminar boundary layer could be seen as a great challenge in
the intakes of the supersonic/hypersonic airplanes [13].

1.4.2 Characteristics of SWBLI unsteadiness
Several experimental and numerical studies in the past decades have shown the differ-
ent aspects of the unsteadiness of shock wave boundary layer interactions. It is strongly
noted that unsteadiness is an influential aspect of the separated flow. A spacious spec-
trum of frequencies and large scale motions is the evidence of this phenomenon.

Experimental predictions

Bogdonoff et. al. [19] conducted an experimental study for the interaction of a shock wave
with a turbulent boundary layer on a flat plate atMach 2.97. This study reported that the
distribution of the static pressure on the wall indicates an upstream influence of about
three boundary layer thickness while the overall interaction takes six boundary layer
thickness. The investigation of wall pressure fluctuation is carried out by Kistler [87] for
the turbulent separated regions ahead of a forward-facing step at Mach 3.40 and 4.54.
This study concluded that the pressure fluctuations generate from two specific causes:
fluctuation due to the changes in the shape of the separated region and the turbulent
free shear layer. To investigate SWBLI unsteadiness in an attached and separated flow,
Dolling and Or [47] experimented with two-dimensional compression ramp at Mach 3
and Reynolds number 1.4×106. This study emphasized that the shock wave organization
is unsteady in both attached and detached flows. Moreover, this unsteady organization
of the shock wave emerges in a region where the pressure signal is intermittent. Kussoy
et. al. [94] examined the shock wave unsteadiness of the interaction between the shock
wave and turbulent boundary layer for both the 2D and 3D geometries. It is found in this
study 1.16, as the shock wave moves forward, the recirculation zone intends to expand
and moves the separation point upward along with the cylinder and the reattachment
point downward along with the flare. The recirculation zone contracts as the shock move
backward.
Dolling [45] inspected the unsteady mechanism of the shock structure with and without
separation in the compression ramp for different ramp angles from 8° to 24°. The range
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(a) (b)

Figure 1.16: The contours of the mean velocity at two different shock angle 23° (a) and 5°
(b). From [94].

and maximum amplitude of unsteady shock oscillations at the wall versus inviscid pres-
sure rise are shown in figure 1.17. This study concluded that both the ratios of maximum
turbulent intensity and the maximum amplitude of unsteady shock motion are growing
almost linearly with the pressure rise. Moreover, this study clarifies that the turbulence
amplification is not intimately linked to the size of the separated region for ramp angles
less than 16°, as no separation occurs at all for ramp angles less than 16°.

The experiment of Andreopoulos et. al. [9] described that the unsteady shock motion
causes a large amount of turbulence amplification but the downstream turbulence prop-
erties have no direct effect of the unsteady shock motion. Moreover, they found that
the maximum turbulence intensity of mass-flux is amplified by a factor of 5 within the
boundary layer above that upstream level while the mean mass-flux rose only by a factor
of 2. Isocontours of the mass-flux/wall-pressure space-time correlation coefficients for
the upstream and downstream boundary layer are shown in figure 1.18. Similar trends
are observed in both the upstream and downstream boundary layers.

The upstream influence of the unsteadiness in the interaction environment of the lam-
inar and turbulent flow for a compression corner is shown in figure 1.19 by Dolling and
Murphy [46] using the time-averaged wall pressure distribution. It is noticed that the
amplitude of fluctuations increased about the mean. Moreover, as the time-averaged
wall pressure increases with the wall locations, the whole signal moves above the pres-
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Figure 1.17: Schematic representation of the extent and amplitude of shock oscillations
for the five ramp angles of compression corner. From [45].

sure axis. However, a single instant sketch cannot represent the downstream increase
in the time-averaged wall pressure, a time history is needed at several locations in the
intermittent case.

Plotkin [117] observed that the unsteady motion of a shock wave is directly related to the
velocity fluctuations in the upstream boundary layer. Smits and Muck [140] also found
the unsteady dynamics of shock in a spectrum of shock oscillation. Also, the studies
[140, 56] related to this unsteady motion of the shock wave found no inter-relationship
between the shock motion and the velocity fluctuations in the incoming boundary layer.
They argued that the high-frequency dynamics of the separation shock is originated by
the retaliation of this separation shock to the passage of discrete turbulent structure, al-
though the large scale oscillations of the recirculation bubble possessed the low-frequency
motion of the separation shock. The conclusion of their studies created a controversial
moment. However, the source of those low-frequency oscillations is not found in their
studies. Many of the recent investigations have been committed to finding out the possi-
ble source of these low-frequency mechanisms.

McClure [108] experimented with the unsteadiness related to the shock-induced sepa-
ration of a turbulent boundary layer over a compression ramp at Mach 5. It is noticed
that the oscillations in pitot pressure indicate substantial flapping of the separated shear
layer. Moreover, the motion of separation shock is not directly associated with the size of
the recirculation bubble. It may, although, respond to changes immediately downstream
of the separation point. Unalmis and Dolling [155] experimented with a similar setup
and found a relationship between the fluctuations of velocity in the spanwise direction
and the size of the recirculation region. They also observed that the presence of vortical
structures in the upstream boundary layer causes the low-frequency phenomena in the
recirculation region. Beresh et. al. [15] found a correlation between the motion of the
separation shock and the velocity fluctuations, present in the lower part of the upstream
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(a) (b)

Figure 1.18: Isocontours of mass flux/wall pressure space-time correlation coefficient in
upstream (a) and downstream (b). From [9].

Figure 1.19: A physical interpretation of upstream influence in laminar and turbulent
flow. From [46].

boundary layer. Also, a fuller velocity profile is found related to the downstream move-
ment of the separation shock. However, a less fuller velocity profile is found related to
the upstream movement of the separation shock. These velocity profiles are shown in
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figure 1.20.

Figure 1.20: The relationship between upstream boundary layer and the extent of the
separation zone. From [15].

Similar behaviour is observed by Hou [78] using the PIV (Particle Image Velocimetry)
technique over a compression ramp for Mach number 2. He found a correlation between
the low-frequency oscillations in the upstream boundary layer thickness and the motion
of the separation shock in both the forward and rearward directions. The validation of
this phenomenon is also carried out in another study [24] of blunt fin induced turbulent
interactions at Mach 2. They noticed that the motion of the separation shock is harmo-
nized according to the oscillations in the upstream boundary layer.
The outcome of the above important studies concluded that the motion of the separation
shock is associated with the low-frequency mechanism. The turbulent structure present
in the upstream boundary layer is not capable to define the origin of the low-frequency
mechanism. Nonetheless, some of the recent important studies noticed that the presence
of these turbulent structures in the incoming boundary layer is long enough to decide the
low-frequencymechanism. An experimental study carried out by Kim and Adrian [86] for
the turbulent boundary layer in the incompressible flow, proposed a model named VLSM
(Very Large Scale Motion) to understand the large-scale mechanisms. They found the
presence of the broad range of both the low and high speed turbulent strips, created by
the hairpin packets and related to the VLSM model, shown in figure 1.21. This study
suggested that the model may be a useful tool to understand the flow physics of oscil-
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lations of both the separation shock and recirculation region. The experimental studies
of Ganapathisubramani et. al. [63, 64] validated the above VLSM model by investigat-
ing the upstream influence on unsteady mechanism of the shock-induced separation in
turbulent flow over a ramp atMach 2. They found that the low-frequency unsteadymech-
anism of the shock-induced separation may occur due to the presence of both the low and
high speed turbulent structures in the incoming boundary layer.

Figure 1.21: A schematic of VLSM (Very Large Scale Motion) model. From [86].

Souverein et. al. [142] confirmed the low-frequency dynamics of the reflected shock by
investigating both the unsteadiness and temporal dynamics in the interaction between
the planner shock and the turbulent boundary layer at Mach 1.69. A detailed experi-
mental analysis [39] of a high Reynolds number (Re ≈ 200 × 103) shock wave-turbulent
flow interaction on a flat panel at Mach 3 is conducted for the low-frequency unsteady
dynamics of a large separation bubble. A huge increment in the low-frequency oscillation
is observed in both the separation and reattachment regions as well as the excitement of
high-frequency is also observed in the separation region.

Numerical predictions

The continuous efforts in developing the more accurate techniques for numerical simula-
tions as well as ongoing advancements in computational power have proved that the CFD
(Computational Fluid Dynamics) is a useful tool to analyze the flow physics of complex
problems like SWBLI. Hybrid LES-RANS (Large Eddy Simulation/Reynolds Averaged
Navier Stokes), LES (Large Eddy Simulation), and DNS (Direct Numerical Simulation)
are found as powerful techniques that could tackle such complex problems with a high
degree of accuracy. These techniques can help us understand the flow structure of the
steady as well as unsteady harmful aspects of the shock wave boundary layer interac-
tions. Some earlier studies [135, 90, 48] found that RANS simulations are not capable to
predict the SWBLI unsteadiness which is a very important aspect of this phenomenon.
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They noticed that the results obtained fromRANS simulations are not in good agreement
with the previous experimental studies in the strong interaction case.

The first successful attempt of LES is noticed by Hunt and Nixon [80] for a compres-
sion ramp induced shock-boundary layer interaction. Some results of this simulation
are found in a good agreement with the experimental results for the frequency dynam-
ics of the separation shock. Another numerical study [106] of the interactions between
a normal shock and entropy fluctuations found a correlation between the fluctuations
of temperature and velocity in the upstream boundary layer. Moreover, this correlation
greatly altered the growth of the turbulence across the shock.

A very narrow recirculation region is investigated by Adams [2] using DNS for the ramp
induced turbulent interaction at ramp angle 18° and Mach 3. They found no valid corre-
lation between the fluctuations of temperature-velocity in the incoming boundary layer
and the interaction region. Also, a close similarity is noticed between the oscillation fre-
quency of the separation shock and the bursting frequency of the incoming boundary
layer. The results of this DNS are also validated by Rizzetta et. al. [125] using LES
for the same configuration and the ADMmodel (approximated deconvolution model) em-
ployed to the sub-grid scale modeling.

The numerical simulations are carried out by Yan et. al. [164, 163] to investigate the
ramp induced interaction environment for different ramp angles using LES. However,
the results of these simulations are not found in good agreement with the experimental
results for the time evolution of the separation system as well as to capture the large scale
motion of the separation shock. Garnier et. al. [65] carried out LES for the interaction of
a shock wave with a turbulent boundary layer. Whereas, the analyzed results for mean
and fluctuating velocity in this study are found in a good qualitative agreement with
reference experimental data. This is another successful attempt of LES and recognized
as a predictive tool for such complex phenomena. The existence of a three-dimensional
large scale structure (Görtler-type vortices) is noticed in a numerical study [103] by per-
forming LES for the compression corner induced turbulent interaction at Mach 2.95 and
ramp angle 25°. All the results (distribution of wall pressure, skin friction, size of the
recirculation region, shock position) of this simulation are found in good agreement with
the experimental data. Knight et. al. [89] discussed the capabilities and limitations of
both LES and DNS and concluded that these highly accurate methods have a strong ca-
pacity to capture all harmful aspects of SWBLI.

A numerical study of the shock wave and laminar boundary layer interaction concluded
that the unsteadiness emerges from the presence of fluctuations in the recirculation re-
gion [20]. Moreover, this study proposed that the low-frequency mechanism may appear
in the laminar interactions without the presence of turbulent structures in the upstream
boundary layer. They investigated that the complexity occurs in the unsteadiness as the
angle of incident shock increases. Also, the organization of interaction passes through
the stage where the flow becomes stationary as well as three dimensional but seems
unstable, and finally, it may lead to unsteady three-dimensional flow. This analysis is
based on Dallman’s conjecture [35] which suggested that before the appearance of the
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unsteady vortex shedding, various regions of recirculation appear inside the elementary
bubble and finally resulted as an overall flow structure change with the structurally un-
stable saddle to saddle networks. This phenomena is shown in the figure 1.22.

Figure 1.22: The representation of conjecture for topological changes of structure of sep-
aration bubble associated with the onset of the shedding of coherent structure. From
[35].

To investigate the interaction between the shock wave and the turbulent boundary layer,
Wu et. al. [161] performed DNS for two configurations: compression ramp and reflected
shock case. The results of this simulation are found in good agreement with the ex-
periments for ramp case but have some conflicts with the experimental results for the
reflected shock case in the sense of three-dimensional structures and the pressure dis-
tribution inside the recirculation bubble.

A study of compressible turbulence for supersonic flows [53] suggested that the low-
frequencymechanism in the recirculation regionmay be a possible source of the unsteady
motion of the separation shock. At the same time, Pirozzoli and Grasso [116] performed
DNS to investigate the shock wave-turbulent interaction on a flat plate at Mach 2.25.
They suggested that the large-scale low-frequency unsteady motion of the separation
shock is related to the shedding of the coherent structure in the shear layer close to the
average separation point. The pattern of this phenomenon is recorded at different time
instants in the 2D plane and shown in figure 1.23. Moreover, the interactions of these
coherent structures with the impinging shock generate the acoustic waves. Those waves
feed upstream and produce the low-frequency unsteady mechanism in the recirculation
bubble as well as flapping motion in the reflected shock.

To analyze the shock wave-turbulent boundary interaction, DNS is performed byWu and
Martin [162] for a compression ramp at Mach 2.9 and ramp angle 24°. It is found that the
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low-frequency dynamics of the separation point and shock are correlated with and fall
behind the motion of the reattachment point. The breakdown of the recirculation bubble
due to the fluid rupture outside the bubble is shown in figure 1.24 for six consecutive
time intervals. Also, no variations are found in the mean properties of the upstream
boundary layer with both downstream and upstream positions of the shock, suggesting
that the low-frequency dynamics of the shock are dominated by the downstream flow.

Figure 1.23: 2D instantaneous flow field in sense of the modulus of pressure gradient
and the vortical structure shown by gray color patches. The instantaneous motion of the
shock foot shown by arrow and the circle represents the specific vortex. From [116].

Figure 1.24: The breakdown of the recirculation bubble represented by using stream line
and the location of the shock shown by contours of pressure gradient. From [162].
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Touber and Sandham [154] conducted several simulations, using LES, to investigate
the low-frequency unsteadiness for the interaction between oblique shock and turbulent
boundary layer on a flat plate at Mach 2.3. In this study, the analyzed results for the
low-frequency unsteady dynamics of the separation shock are found in good agreement
with the experimental data. It is also noticed that a hardly separated flow has the same
unsteady trend in the separation shock.

To investigate the origin of the low-frequency oscillations, Hadjadj [70] performed LES
for the interaction between a shock wave and a turbulent boundary layer on a flat plate at
Mach 2.28. He observed in this study that the reflected shock oscillates at low-frequencies
and those frequencies are present within the separation bubble. These results highly at-
tributed a hypothesis that the low-frequency dynamics of the coupled system (shock and
separation bubble) generated the unsteady dynamics of the reflected shock.

The unsteadiness of a shock reflection on a turbulent boundary layer is investigated by
Agostini et. al. [3] at Mach 2.3 using the data of LES. Different cases ranging from weak
to strong separation are simulated in this study. It is noticed that the low-frequency un-
steady dynamics of the shock are linked to the low-frequency motion of the mixing-layer
developed downstream of the incident shock. Also, the medium-frequency of the shock is
linked to the shedding of the large coherent structure in the mixing layer.

Priebe and Martin [120] performed DNS to analyze the low-frequency unsteadiness in
the compression ramp induced shock-turbulent interaction at the ramp angle of 24° and
Mach 2.9. They found that the flapping of the shear layer leads to the low-frequency
oscillations of the recirculation bubble. Also, the intensity of the turbulence (active tur-
bulent structures) fluctuation in the shear layer depends on the low-frequency dynamics
of the separation bubble. Figure 1.25 shows that the low intensities of the turbulence
correspond to the shrinkage in the recirculation bubble (both the upper and lower lefts)
and the high intensities correspond to the expansion in the recirculation bubble (both the
upper and lower rights). The results of this study are further validated in other numeri-
cal studies [99, 100] by performing LES on the same flow configuration. The presence of
the turbulent structures as well as the shock wave is shown in figure 1.26 for the same
flow configuration.
A computational analysis is performed by Aubard et. al. [11] to investigate the low-
frequency dynamics in the environment of shock-turbulent boundary layer interaction
using LES. It is observed that the low-frequency oscillations in the separation bubble
are linked to the forward and backward movement of the separation shock. However, the
medium-frequency of oscillation is found related to the shedding of the large coherent
structure in the mixing layer.

Grilli et. al. [68] performed LES to examine the interaction between the compression-
expansion ramp and turbulent boundary layer at Mach 2.88 and ramp angle 25°. This
investigation indicated the presence of the streamwise Görtler-type vortices in the flow
field. Those vortices are emanated from the heart of the separation zone downstream of
the compression corner and travel along the wall of the ramp. Also, those vortices die out
when interacting with the Prandtl-Meyer expansion waves originated at the expansion
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Figure 1.25: Spanwise-averaged low-pass filtered flow fields at the instants. In-plane
turbulent kinetic energy is calculated using high-pass filtered fluctuations of the velocity.
From [120].

Figure 1.26: Instantaneous flow field in a computational domain by using isosurface of
density gradient. From [99]

corner. The instantaneous flow field is found similar to another experimental study 1.27.
The incoming boundary layer (point 1) is disturbed by the separation shock (point 2). A
region of the reverse flow (point 3) as well as a free shear layer (point 4) appeared due
to the interaction. The shocklets (point 5) travel with this separated shear layer as well
as the recompression in the reattachment region generates the unsteady lambda shock
structure (point 6).
To investigate the low-frequency unsteadiness in a flat plate induced shock-laminar bound-
ary layer interaction, DNS is performed by Sansica et. al. [131] for two different forced
steady scenarios (small and large recirculation bubble) at Mach 1.5. The low-frequency
dynamics for both the scenarios are shown in figure 1.28. It is noticed that the low-
frequency dynamics grow at a lower frequency for the small separation (upper left) than
the low-frequency dynamics of the large separation (upper right). This trend indicates
that the laminar boundary layer responsible for the downstream shedding of the coherent



40 CHAPTER 1. LITERATURE REVIEW

Figure 1.27: Instantaneous flow field. Numerically computed using spanwise gradient of
density (a) and experimental schlieren visualization (b). From [68].

structure in various frequency ranges depends on the separation size. Also, the reaction
of the low-frequency dynamics of the small separation influence both the upstream and
internal forcing (upper left and lower left) while the large separation influence the in-
ternal forcing linearly (lower right). The feedback of the large separation to upstream
forcing at the separation point increases quadratically with high energy (lower right).
A strong dependent compromise is found again by Clemens and Narayanaswamy [32]
between the fluctuations in the upstream boundary and size of the separation. It is ob-
served that the influence of the fluctuations in the incoming boundary layer is reduced
with the increasing size of the separation region.
Larchevêque [95] performed LES to investigate the low-frequency unsteady dynamics of
the shock wave-boundary layer interaction with separation in transitional flow. Also,
the low-frequency motions of the recirculation bubble are not found directly linked to
the fluctuations in the incoming boundary layer. It is shown in figure 1.29 that the tran-
siently growing recirculation bubble brings some similarity of the stationary bubble with
low-frequency dynamics as far as the oblique mode with medium frequency is concerned.

Fournier et. al. [59] performedDNS for both the 2D and 3Dflat plate induced shockwave-
laminar boundary layer interaction at Mach 2.23 and shock angle 33.1°. They found that
the streamwise oscillations are recovered for the reflected shock in the 2D case whereas
no oscillations of the shock are recovered for the 3D case. In the 3D case, they found the
upstream movement of the reflected shock but no clear frequency appeared. Moreover,
an interesting phenomenon is observed for the 3D case that some vorticity-free regions
due to the non-uniformity of the vortex shedding downstream of the reattachment point
increase the three-dimensionality of the flow. To analyze the low-frequency unsteadiness
of the shock wave-turbulent interaction with the mean flow separation, Pasquariello et.
al. [113] performed LES at Mach 3. The analyzed results of this study hold the theory
that the low-frequency unsteadiness is conducted by the inherent structure of the inter-
action region in which Görtler-type vortices could be noticed as continuous forcing for
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Figure 1.28: Analysis of the low-frequency dynamics by linearity test: Weighted PSDs
normalized by forcing amplitude square at the separation point in response to upstream
forcing (a,b) and internal forcing (c,d). From [131].

strong interactions.

An Implicit Large Eddy Simulation (ILES) is performed by Vyas et. al. [157] to under-
stand the dynamic character of the interaction region based on the budget of the turbu-
lent kinetic energy. As the flow approaches the interaction region, the production term
magnifies. The isosurface of the production term at three different levels is shown in
figure 1.30. The massive rate of production is found around both the mean incident and
reflected shock while the drop in the rate is found rapidly away from the shock. Also, the
strong magnitude of the production term is noticed in the interaction region, however, it
started to moderate in the reattachment region.
To investigate the optimal spatial growth of Görtler type vortices, Dwivedi et. al. [54]
performed DNS simulation for the different shock angles in a flat plate induced lam-
inar interaction at Mach 5.92. In this simulation, it is observed that a steady three-
dimensional flow field appeared for strong interactions which indicated the existence of
the streamwise Görtler type structures that are periodic in the spanwise direction. After
analyzing those streamwise Görtler vortices, it is found that some structures are more
energetic than others. The growth of these Görtler type structures appeared near the
reattachment region as well as further downstream of the same region.

To understand the effects of the unsteadiness, DNS is performed by Khotyanovsky and
Kudryavtsev [85] for the flat plate induced transitional interaction at Mach 2. It is ob-
served that the flow oscillations in the interaction region induced by the large scale tur-
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Figure 1.29: The streamwise evolution of the phase for the wall pressure and skin friction
with respect to the separation point. From [95].

Figure 1.30: Isosurface of the production term at three different levels and colored by the
dissipation. From [157].

bulent structure appeared in the transitional boundary layer. Also, those oscillations
revealed the unsteady mechanism of impinging and reflected shock in the recirculation
region. The three-dimensional unsteady dynamics of the separated flow is shown in fig-
ure 1.31.
Poggie et. al. [118] investigated the global flow structure and unsteady dynamics in a
highly confined ramp induced interaction at Mach 2.25 and ramp angle of 24°. A symbolic
discrepancy is observed in the flowfield structurewhen the results of this simulationwith
confining sidewalls compared to the symmetric or periodic boundary conditions at the
lateral boundaries of the domain. By using conditional averages and spatial correlations,
the large scale symmetric as well as asymmetric dynamics of the recirculation regions
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Figure 1.31: Isosurface of instantaneous streamwise velocity in the interaction region.
From [85].

are observed in the instantaneous flow field. Also, the mean and unsteady flow is highly
influenced by the presence of sidewalls.

1.5 High-order numerical methods for compressible
flows

In the literature of numerical schemes, most of the developed numerical integrations can
be split into two categories, the first one is combined Spatio-temporal methods and the
second one is the methods based on the separate Spatio-temporal discretization. Over
the past few decades, more sophisticated methods have emerged with superior impact
retention properties that solve some of the problems with classical schemes.

Method of lines
The method of lines is the classical approach to obtain high-order numerical methods.
This approach mainly concerns separate Spatio-temporal methods. The majority of the
separate Spatio-temporal methods are based on multi-level, high-order Runge-Kutta
(RK) time discretization. At each time step, high-order spatial sampling is used which
sometimes involves a restriction procedure in the flow calculations to prevent spurious os-
cillations. Although more work [138] and [137] on individual space-time methods is still
ongoing, a family of ENO/WENO is a very well known classical shock-capturing approach
for spatial discretization. The global stencil is larger for these separate Spatio-temporal
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scheme since spatial sampling is applied to each sub-step of temporal discretization. It is
shown that these approaches are very accurate in smooth regions, they are well-recorded
shock waves but behave too diffusive near contact discontinuities. Various studies are
conducted to obtain more accurate forecasts using numerical techniques based onWENO
family [2, 148, 107, 161, 116, 120, 70, 157]. However, these methods are very expensive
in terms of computational cost.

One-Step (OS) schemes
In contrast to the separate Spatio-temporal schemes, combined Spatio-temporal schemes
are typically developed using the Lax-Wendroff approach. Such schemes have aminimum
global stencil and optimal non-oscillating conditions based on restrictions on the preser-
vation of monotonicity that could be easily realized. These accurate numerical schemes
offer a compromise between high precision in smooth areas and efficient shock-capturing
technique. These one-step monotonicity preserving schemes provide accurate results
that can be well compared with classical high-order separate space-time schemes at a
lower cost [36]. One-step (OS) schemes are developed first for one-dimensional scalar
equations (linear and nonlinear) and then for a multidimensional system of nonlinear
equations [148]. Various numerical studies [127, 60, 14] are performed to obtain more
accurate results by using these one-step schemes for the high-speed aerospace applica-
tions.

Shock-capturing techniques
Conventional shock approaches include a monotonic upstream centered scheme for con-
servation laws (MUSCL) and total variation diminishing (TVD). Over the past two decades,
more sophisticated techniques have emerged with superior impact detection. These tech-
niques have features that solve some of the traditional scheme problems. Whatever the
method (separate or combined), to avoid spurious oscillations near strong gradient areas,
a special limiting method should be used. To capture the sharp discontinuities without
any oscillation, TVD schemes generally considered suitable. However, it is known that
TVD constraint clips the extrema in strong gradient areas that appear to be a serious
flaw in the limiting process. To avoid excessive accuracy loss, the monotonicity preserv-
ing (MP) criteria, introduced by Suresh andHunyh [146] which extend the TVD intervals
so that the numerical flux could maintain a certain value, must be met. In particular,
to generalize the MP conditions considering the flux limitations, the initial restrictions
of MP Suresh and Hunyh [146] are rewritten in the TVD structure without CFL limita-
tions. The MP conditions that maintain accuracy can be expressed directly as limiting
function [36]. The MP constraints are written for each characteristic field and can also
be found in [36]. It is also important to note that the main difference is that the MP
restrictions apply to non-monotonic data and TVD for monotonic data, so the scheme
does not oscillate around the discontinuities. Another popular classical shock-capturing
technique is an ENO/WENO family of schemes. One of the computational studies [76]
first presented this ENO method which is well-known classified higher order numerical
method for convection dominated problems. The key advantage of these schemes is their
ability to attain promptly high order accuracy in smooth regions while preserving sta-
ble, non-oscillating, and sharp discontinuities. Therefore, these schemes are especially
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useful for tasks that contain both strong discontinuity and complex structures of smooth
solutions but very expensive in computational cost. A study [148] has made a possible
comparison between TVD, MUSCL, ENO, and the old version of a weighted essentially
non-oscillating scheme (WENO). It is noticed in this study that the TVD scheme adds
a large amount of diffusion by using the Van-Leer harmonic limiter. Also, the MUSCL
scheme led to abnormal results including induced low-frequency oscillations downstream
of the shock. However, a better agreement with the reference results is achieved using
the ENO/WENO family of schemes. The best impact resolution characteristics are ob-
tained using a 5th order WENO formulation.

A recent review [22] of high-order shock-capturing methods was motivated by the need to
address the unstable rocket launch flow. The purpose of the review is to recover the ac-
tual 2nd order-MUSCL scheme in the Launch ascent and Vehicle Aerodynamics (LAVA)
finite-difference code with a present-day substitute. A comparison between the Central-
AD (central finite differencing with artificial dissipation), LAD (localized artificial diffu-
sivity), and WENO (weighted essential non-oscillatory) schemes are made in this study.
The 6th-order Central-AD is found to be the cheapest numerical method compared to the
existing MUSCL scheme with better spectral resolution. Although, at low cost, Central-
AD worked poorly compared to the other approaches but allowed good spectral resolution
for turbulent flows and proved to be a feasible option for flows that contain weak shocks.
However, its performance against strong shocks is rated as poorly observed fluctuations;
both Central-AD and LAD are inferior to more reliable WENO systems. Shock-capturing
methods lead to excessive loss of numerical dissipation, accomplishing them observed to
be a destitute choice to deal with small-scale structures in transient and fully turbulent
flows. To obtain analogous resolution as the non-dissipative scheme, substantial fine
meshes are required. Those fine meshes are not practical for DNS and severely limit the
scope of the problem that could be solved.

Different numerical approaches for complex (SWBLI) simulations
Most of the computational studies [116, 154, 120, 11, 131] in the literature of shock wave
boundary layer interactions, based on DNS/LES simulations, used different numerical
approaches (method of lines). Those studies are listed below:

• In a numerical study of Adams [2], he used a 5th-order hybrid compact finite-
difference ENO scheme for the spatial discretization of the convective fluxes and
6th-order central compact finite difference for the diffusive fluxes. The 3rd-order
Runge-Kutta scheme is used for the time integration.

• In a computational study of Pirozzoli and Grasso [116], the 7th-order finite differ-
ence WENO scheme is used for the discretization of convective fluxes. The viscous
fluxes are discretized by the 4th-order compact finite difference scheme. The 4th-
order explicit Runge-Kutta scheme is used for the time integration.

• In the numerical study of Touber and Sandham [154], they discretized the convec-
tive fluxes by using a 5th-order WENO scheme combined with a centered 4th-order
scheme, via a selective Ducros’s sensor. A centered 4th-order accurate scheme is
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used for viscous fluxes. The 3rd-order explicit Runge-Kutta scheme is used for the
temporal discretization.

• In a numerical study of Stephan andMartin [120], the inviscid fluxes are discretized
by the 4th-order WENO scheme and the viscous fluxes are discretized by using
standard 4th-order central differences. The temporal discretization is performed
by the 3rd-order low-storage Runge-Kutta scheme.

• In a computational study of Sansica et. al. [131], the 4th-order central differencing
scheme is used to discretize the internal points of the computational domain. A
4th-order boundary scheme is performed for boundary points. An entropy-splitting
approach is also used to improve numerical stability. To capture discontinuities
(shocks) accurately with the high-order central scheme, a total variation diminish-
ing (TVD) scheme is combined with an artificial compression method. A 3rd-order
low-storage Runge-Kutta schemes are used to perform the temporal discretization.

1.6 Conclusions
We carried out an overview of the previous studies obtainable in the literature of the
shockwave-boundary layer interactions. We discussed several important aspects of SWBLI
in different geometrical configurations. The center of our attention is specially dedicated
to the low-frequency unsteady mechanism of SWBLI. It is discussed in section 1.4.2 that
no studies have made any clear explanation of the physical mechanism promoting the
low-frequency unsteadiness in the whole SWBLI system. The source of low-frequency
oscillations is still not completely understood, but there are two strong premises which
indicate that either it could be due to the random structures in the incoming boundary
layer or to the shedding of coherent structures (vortices) in the mixing/shear layer down-
stream of the separation point. We also discussed different numerical approaches to solve
the governing equations in the compressible flow and specially the SWBLI phenomenon.
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2.1 The governing equations in cartesian coordinates

TheNavier-Stokes equations, resulting from the application to a fluid domain of the three
fundamental principles of mechanics, namely the conservation of mass, momentum, and
energy, can be written in their conservative form as [152]:

∂U

∂t
+∇.Fc −∇.Fv = 0 (2.1)

where U, the vector of conservative variables, Fc, the convective fluxes, and Fv, the dif-
fusive fluxes are defined by:

U =

 ρ
ρu
ρE


47
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Fc =

 ρu
ρu⊗ u + pI
(ρE + p)u

 (2.2)

Fv =

 0
Π

u.Π + λ∇T


ρ, u, E, p and T are the density, velocity vector, total energy per unit mass, thermody-
namic pressure, and temperature respectively. The fluid considered in the present study
has been supposed to verify the ideal gas hypothesis. As a consequence, the ideal gas
equation of state, defined by p = ρrT , r being the specific gas constant, as well as the
definition of the total energy per unit mass E = cvT +

1

2
u.u, with cv the heat capacity at

constant volume, have been introduced to close the system of equations.

The viscous stress tensor Π is expressed, by invoking Stokes’ hypothesis, as:

Π = µ(∇u +∇Tu)− 2

3
µ∇.u (2.3)

The dynamic viscosity µ is supposed to depend only upon the temperature through Suther-
land’s law [147]:

µ(T ) = µref

(
T

Tref

)3/2
Tref + S

T + S
(2.4)

with µref = 1.716× 10−5 Pa.s, Tref = 273.15 K and S = 110.4 K.

The Prandtl number Pr being specified as a parameter since the fluid is chosen, the
temperature-dependant thermal conductivity λ can then deduced from the equation λ =

µCp
Pr

.

2.2 Extension to curvilinear coordinates
In this section, a generalized coordinate transformation of the governing equations in
conservative form is implemented. When one wants to study the flow around a complex
geometry such as a compression ramp, one must solve the Navier-Stokes equations in the
real physical domain P = P (x, y, z). However, for numerical reasons mainly linked to the
discretization order, it is more efficient to solve those equations in a cartesian computa-
tional domain C = C(ξ, η, ζ). Consequently, all the derivatives in P must be expressed as
a combination of their computational counterparts in C.

In general, and even if the resolution is more complicated, it is easier to define the inverse
C-to-P transformation that writes:

x = x(ξ, η, ζ, t) (2.5)
y = y(ξ, η, ζ, t) (2.6)
z = z(ξ, η, ζ, t) (2.7)
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rather than the direct P -to-C transformation leading to a more straightforward resolu-
tion.

Using the the chain rule of differential calculus on 2.5,2.6 and 2.7, the partial derivatives
in the computational domain can be related to their equivalents in the physical domain
by:

∂

∂ξ
=

(
∂

∂x

)(
∂x

∂ξ

)
+

(
∂

∂y

)(
∂y

∂ξ

)
+

(
∂

∂z

)(
∂z

∂ξ

)
(2.8)

∂

∂η
=

(
∂

∂x

)(
∂x

∂η

)
+

(
∂

∂y

)(
∂y

∂η

)
+

(
∂

∂z

)(
∂z

∂η

)
(2.9)

∂

∂ζ
=

(
∂

∂x

)(
∂x

∂ζ

)
+

(
∂

∂y

)(
∂y

∂η

)
+

(
∂

∂z

)(
∂z

∂ζ

)
(2.10)

Or, in matrix notations: 
∂
∂ξ

∂
∂η

∂
∂ζ

 =


∂x
∂ξ

∂y
∂ξ

∂z
∂ξ

∂x
∂η

∂y
∂η

∂z
∂η

∂x
∂ζ

∂y
∂ζ

∂z
∂ζ




∂
∂x

∂
∂y

∂
∂z

 (2.11)

It is then possible to solve system 2.11 for ∂

∂x
, ∂

∂y
and ∂

∂z
using Cramer’s rule. The

derivatives in the P domain are then expressed as:
∂

∂x
=

1

J

[
+
∂

∂ξ

(
∂y

∂η

∂z

∂ζ
− ∂z

∂η

∂y

∂ζ

)
− ∂

∂η

(
∂y

∂ξ

∂z

∂ζ
− ∂z

∂ξ

∂y

∂ζ

)
+

∂

∂ζ

(
∂y

∂ξ

∂z

∂η
− ∂z

∂ξ

∂y

∂η

)]
(2.12)

∂

∂y
=

1

J

[
− ∂

∂ξ

(
∂x

∂η

∂z

∂ζ
− ∂z

∂η

∂x

∂ζ

)
+

∂

∂η

(
∂x

∂ξ

∂z

∂ζ
− ∂z

∂ξ

∂x

∂ζ

)
− ∂

∂ζ
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∂x
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∂z

∂η
− ∂z

∂ξ

∂x

∂η

)]
(2.13)

∂

∂z
=

1

J

[
+
∂

∂ξ

(
∂x

∂η

∂y

∂ζ
− ∂y

∂η

∂x

∂ζ

)
− ∂

∂η

(
∂x

∂ξ

∂y

∂ζ
− ∂y

∂ξ

∂x

∂ζ

)
+

∂

∂ζ

(
∂x

∂ξ

∂y

∂η
+
∂y

∂ξ

∂x

∂η

)]
(2.14)

where J is called the Jacobian of the transformation and is defined by:

J =
∂(x, y, z)

∂(ξ, η, ζ)
=

∣∣∣∣∣∣∣∣∣
∂x
∂ξ

∂y
∂ξ

∂z
∂ξ

∂x
∂η

∂y
∂η

∂z
∂η

∂x
∂ζ

∂y
∂ζ

∂z
∂ζ

∣∣∣∣∣∣∣∣∣ (2.15)

It physically represents the ratio of the volume in the physical plane to that of the compu-
tational space. The derivatives ∂ξ

∂x
, ∂η
∂x

, ∂ζ
∂x

, ∂ξ
∂y

, ∂η
∂y

, ∂ζ
∂y

, ∂ξ
∂z

, ∂η
∂z

, and ∂ζ
∂z

are known as the
metrics of the transformation and represent the ratio of arc lengths in the computational
plane to that of the physical plane.

Inserting Eq. 2.12 to 2.15 into the Navier-Stokes equations (Eq. 2.1), it is possible to
write them into their strong conservative form, in the curvilinear coordinates system
(See [6], for instance):

∂Û

∂t
+∇.F̂c −∇.F̂v = 0 (2.16)
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where

Û = JU

F̂(ξ) = F(x)

(
∂y

∂η

∂z

∂ζ
− ∂z

∂η

∂y

∂ζ

)
− F(y)

(
∂x

∂η

∂z

∂ζ
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∂η

∂x

∂ζ

)
+ F(z)

(
∂x

∂η

∂y

∂ζ
− ∂y

∂η

∂x

∂ζ

)
F̂(η) = F(x)

(
∂z

∂ξ

∂y

∂ζ
− ∂y

∂ξ

∂z

∂ζ

)
− F(y)

(
∂z

∂ξ

∂x

∂ζ
− ∂x

∂ξ

∂z

∂ζ

)
+ F(z)

(
∂y

∂ξ

∂x

∂ζ
− ∂x

∂ξ

∂y

∂ζ

)
(2.17)

F̂(ζ) = F(x)

(
∂y

∂ξ

∂z

∂η
− ∂z

∂ξ

∂y

∂η

)
− F(y)

(
∂x

∂ξ

∂z

∂η
− ∂z

∂ξ

∂x

∂η

)
+ F(z)

(
∂x

∂ξ

∂y

∂η
− ∂y

∂ξ

∂x

∂η

)
In those equations, Û and F̂ = F̂c + F̂v are the vector of conservative variables and the
fluxes in curvilinear coordinates, respectively. The superscripts (x), (y), (z), (ξ), (η) and (ζ)

represent the components of the fluxes.

In a more practical point of view, each metrics is computed using a 2d-order scheme.

2.3 Numerical methodology
In order to simulate the supersonic flow of interest in this Ph.D., around A high-order
finite volume approach has been used to solve the Navier-Stokes equations (2.1 to 2.3).
The resolution is split into an inviscid Euler part and a viscous part, through an opera-
tor splitting procedure. The One-Step Monotonicity Preserving (OSMP) scheme is used
for the discretization of the Euler part. This scheme, developed by Daru and Tenaud
[37], is based upon the Lax-Wendroff approach and ensure the same order of accuracy in
both time and space in the regular regions. In all the present study, a 7th order scheme,
denoted as OSMP7 has been used. As far as the diffusive part is concerned, a combi-
nation between a classical centered 2nd-order scheme and 2nd-order Runge-Kutta time
integration has been used. It is noteworthy than increasing the approximation order of
the viscous terms does not significantly improve the solution [14].

In this part, the OSMP7 scheme will be presented. For the sake of simplicity, the main
discussion will be held for a 1D case. The extension to the 3D case, with its peculiarity,
will then be presented. In order not to over-complicate the equations, the hatted F̂ no-
tation will be dropped but the reader has to be reminded that the fluxes considered here
are those described in equations 2.17.

In one dimension, the Euler equations write:
∂U

∂t
+
∂Fc

∂x
= 0 (2.18)

that becomes, once discretized:

Un+1
i = Un

i −
∆t

∆x
(Fn

ci+1/2
− Fn

ci−1/2
) (2.19)

Un+1
i is the value of U at time n∆t and position i∆x, ∆t and ∆x being the time step and

cell size respectively.
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A 7th-order One-Step scheme (OS7) is then used to approximate the convective flux Fn
ci+1/2

[37]:

Fn
ci+1/2

= FRoe
i+1/2 +

1

2

3∑
k=1

(
Φ7
k(1− |νk|

)
δαk |λk| .rk)i+1/2 (2.20)

In this equation, Φ7
k are the accuracy function that ensures the 7th-order of the scheme.

δαk is the kth Riemann invariant while λk and rk are the eigenvalues and right eigenvec-
tors of the Roe-averaged Jacobian matrix ∂F

∂U
, respectively. νk is defined as νk = ∆t

∆x
λk.

Finally, FRoe
i+1/2, the first-order Roe flux at the cell interface, is such that:

FRoe
i+1/2 =

1

2

(
Fn
ci

+ Fn
ci+1

)
− 1

2

∑
k

(|λk| δαk.rk)i+1/2

Following the Lax-Wendroff procedure, the 7th-order accuracy functions Φ7
ki+1/2

are split
into even, expressed by a centred scheme, and odd contributions, using upwind approxi-
mations. This then reads:

Φ7
ki+1/2

=
3∑

n=1

Ψk
2n
i+1/2 − js

3∑
n=1

Ψk
2n+1
i+1/2−js/2 (2.21)

with js = sign(λki+1/2) and where the Ψ functions are computed by:

Ψk
2n
i+1/2 =

2n−2∑
l=0

(−1)lC l
2n−2.(ck

(2n)δαk)i+1/2+n−1−l, (2.22)

Ψk
2n+1
i+1/2−js/2 =

2n−1∑
l=0

(−1)lC l
2n−1.(ck

(2n+1)δαk)i+1/2+(n−1−l).js (2.23)

In the previous formula, C l
r =

r!

(r − l)! l!
and ck(q) are coefficients that depends upon the

local CFL number through:

(ck
(q+1))i+1/2 =

|νk|j+1/2 + (−1)qb (q+1)
2
c

q + 1
.(ck

(q))i+1/2, q ≥ 2

One of the drawbacks of using high-order numerical schemes is the appearance of spu-
rious oscillations in the vicinity of discontinuities (shock). One solution to tackle this
problem is to use Total Variation Diminishing (TVD) constraints [75]. However, this
approach is known for clipping the solution’s extrema. Monotonicity-Preserving (MP)
constraints [146] must then be applied on the accuracy functions Φ in order to loosen the
TVD constraints close to extrema.

In order to limit the problems appearing when one wants to the extent a coupled time
and space scheme such as OSMP to the 2D and 3D cases, a Strang directional splitting
[144] is used. The main drawback of this strategy is that it is only second-order accurate
when directional operators do not commute. However, and even if the order of accuracy is
lowered compared to the tensorial multistage approach, the combination OSMP scheme-
Strang splitting has been shown to gives accurate results with very small error level at
low cost [37, 38].
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2.4 Computational domain and boundary conditions

The computational domain for the current study of three-dimensional interaction be-
tween a shock wave and the laminar boundary layer in both configurations (compression
and compression-expansion ramp) is shown in figures 2.1 and 2.2 respectively. All bound-
ary conditions imposed at the corresponding boundary surface are also represented.

Figure 2.1: Computational domain and boundary conditions for the simulation of com-
pression ramp.

Figure 2.2: Computational domain and boundary conditions for the simulation of
compression-expansion ramp.

In both configurations, inflow conditions are applied on the leftmost boundary, adiabatic
(insulated) solid walls are considered on the lower boundary and outflow conditions are
imposed on the upper and rightmost boundaries. All those boundary conditions will be
explained in the following parts.
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2.4.1 Inlet and outlet conditions
Both inlet and outlet conditions are based on Thompson’s method [151], that consists in
solving, for each direction, a 1D wave equation defined by:

∂Ui
∂t

+ λi
∂Ui
∂x

= 0 (2.24)

where Ui is known as the ith Riemann invariant associated to the characteristic velocity λi
corresponding to the eigenvalue of the Jacobi matrix of the Euler fluxes in the x direction.
According to the type (inlet or outlet) of conditions and the direction (sign) of λi, four cases
can be encountered:
Inlet condition and incoming wave (λi ≥ 0): the value of the characteristic fields is
imposed.
Inlet condition and outgoing wave (λi < 0): the derivatives of Ui are computed by
using a second-order upwind scheme.
Outlet condition and incoming wave (λi < 0): In order to prevent the wave from
coming into the domain, their speed is cancelled, leading to the resolution of the equation
∂Ui
∂t

= 0

Outlet condition and outgoing wave (λi ≥ 0): the derivatives of Ui are computed by
using a second-order upwind scheme.

2.4.2 Adiabatic walls and no-slip conditions
With respect to the solid walls (lower boundary), no-slip and adiabatic wall conditions
have been imposed. The no-slip conditions is obtained using:

uwall = vwall = wwall = 0 (2.25)

The equation used to compute the density at the wall is obtained by combining the con-
tinuity equation and eq. 2.25. It reads:

∂ρ

∂t
= −

(
∂ρw

∂z

)
wall

(2.26)

It is solved by approximating thewall derivativeswith a 4th-order forward finite-difference
scheme.

The adiabatic condition is obtained by cancelling the heat flux at the wall, leading to:(
∂T

∂z

)
wall

= 0 (2.27)

The temperature at the wall is then prescribed by solving equation 2.27, also discretized
by a 4th-order forward finite-difference scheme.
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2.5 Grid generation
In the present study, and more particularly in Chapter 3, several meshes have been con-
sidered in order to test Chorus in complex geometries. All non-classical meshes will
be presented in this part. In each case, the computational domain C(ξ, η, ζ) is a paral-
lelepiped of dimensions Lxmax×Lymax×Lzmax and is transformed into the physical domain
P (x, y, z) through the use of inverse relations x = x(ξ, η, ζ). Because of the transforma-
tions uses, the number of Control-Volumes (cells in 2D case) in each direction is such that
nx = nξ, ny = nη and nz = nζ . As a consequence, and for the sack of simplicity, indexes
will be denoted as i, j and k either in the computational or the physical plane.

2.5.1 Hyperbolic Tangent Distorted Mesh
The first mesh to be considered has the peculiarity to have a parallelepiped outline. Only
the interior CVs or cells are affected by the transformation, that reads:

x(i, j, k) = ξ(i)

y(i, j, k) = η(j)

z(i, j, k) = Lzmax
2

[
1 +

tanh
[
r(i)

(
ζ(k)

Lzmax
−0.5

)]
tanh ( r(i)2 )

] (2.28)

r(i) is the ξ-depending stretching coefficient, defined:

r(i) = DP cos

(
2πξ(i)

Lxmax

)
(2.29)

with DP the amplitude of the deformation.

In the present study, the distortion have only been applied to the z direction, as shown by
the x(i, j, k) = ξ(i) and y(i, j, k) = η(j) equations, but it could be easily transposed a full
3D-distortion by modifying those lines. An example of a Hyperbolic Tangent Distorted
Mesh, obtained by applying eq. 2.28 to a square regular cartesian mesh with DP = 4 is
shown in Figure 2.3.
Another advantage of this mesh is that even for large deformation amplitudes, the cells
stay rather orthogonal in most of the domain.

2.5.2 Sine-Distorted Mesh
A second mesh has been tested that does not conserve the parallelepiped aspect of the
computational domain. On the contrary, the outline has a sine-based boundary. For the
Vortex-Convection test case (section 3.1), the distortion has been only applied in the x
direction, through: 

x(i, j, k) = ξ(i) + A sin
(

2πζ(k)
Lzmax

)
y(i, j, k) = η(j)

z(i, j, k) = ζ(k)

(2.30)
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Figure 2.3: Example of a Hyperbolic Tangent Distorted Mesh with DP = 4.

Figure 2.4: Example of a 2D-Sine-Distorted Mesh with A = 0.18.

with A the amplitude of the deformation. An example of a 2D-Sine-Distorted Mesh with
A = 0.18 is represented in Figure 2.4.
For the 3D TGV case, the deformation is applied in every direction such that:

x(i, j, k) = ξ(i) + A sin
(

2πζ(k)
Lzmax

)
y(i, j, k) = η(j) + A sin

(
2πξ(i)
Lxmax

)
z(i, j, k) = ζ(k) + A sin

(
2πη(j)
Lymax

) (2.31)

An example of a 3D-Sine-Distorted Mesh with A = 0.18 is represented in Figure 2.4. It is
noteworthy that, between the 2D and the 3D cases presented here, the computational do-
main differs. It is a 1×1 square in 2D while it is a (2π)3 cube in 3D. As a consequence, the
deformation, that is directly related to the size of the computational domain, is weaker
in 3D even if the same amplitude A = 0.18 is used.
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Figure 2.5: Example of a 3D-Sine-Distorted Mesh with A = 0.18.



Chapter 3

Numerical analysis of canonical flows
on distorted meshes
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Introduction

In this chapter, the influence of the mesh distortion will be analysed for several test-
cases. Every case has been selected for their own peculiarities (Advection-diffusion case,
turbulence, presence of a shock . . . ) and because reference data are available. Those data
will be used to assess the performance of the scheme for the distorted mesh. For each
test-case, a mesh convergence study has first been performed and several types and/or
amplitudes of distortion, described in detail in section 2.5, have been tested.
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3.1 Convection of a vortex
The first test-case to be considered is the well-known example of the convection of a vor-
tex. The goal here is to quantify the diffusive and dispersive errors created by the mesh
distortion. In this section, the flow configuration and all the reference data are taken
from [148].

3.1.1 Flow configuration
In a uniform flow at Ma = 0.8 and Re = 104, a Taylor vortex is initially centred in a
square domain of dimensions [0, 1] × [0, 1] at (x0, y0) = (0.5, 0.5). The vortex is defined by
imposing a tangential velocity uθ given by:

uθ(r) = C1r e
−C2r2

where r =
√

(x− x0)2 + (y − y0)2 is the distance from the vortex centre. C1 and C2 are
two constants defining the size of the viscous core. In order to have a core radius of 0.5,
these constants are chosen such that C1 = 6.595 and C2 = 88.89. The tangential velocity
is then projected onto the (ξ, η) system of curvilinear coordinates (See section 2.2).

From a numerical point of view, the time step is chosen such that CFL < 0.5 and periodic
boundary conditions are applied in both directions. As a consequence, the uniform flow
will convect the vortex towards the right of the domain and the periodic conditions will
take it back to the left. The flow conditions (U∞ = 1.) and geometry (L = 1.) have been
chosen so that the time needed for the vortex to come back to its initial position is t = 1.
The total simulations have been run for a dimensionless time t = 5, corresponding to five
periods.

3.1.2 Mesh Convergence
Before considering the influence of the distortion, a mesh convergence study has been
performed. Three uniform cartesian meshes have been considered ranging from 2,500
cells to 40,000 cells. The mesh parameters are gathered in Table 3.1.

Mesh Name # of cells ∆t

M1 50× 50 2 10−3

M2 100× 100 10−3

M3 200× 200 5 10−4

Table 3.1: Mesh parameters used for the vortex convection test-case.

The streamwise evolution of the pressure and vertical velocity are represented in Figures
3.1 and 3.2, respectively. From M2, the results are in very good agreement with the
reference values for both quantities. The differences with respect to the reference values,
computed and compiled in Table 3.2, show that the error is very small (smaller than
0.19%) even for the coarsest mesh. In a will to conjugate performance and CPU time
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(and to fit the meshes used in the reference paper) the study about the influence of the
mesh distortion will then be performed withmeshes containing the same number of Cells
asM3.

Figure 3.1: Streamwise evolution of the pressure at y = 0.5 and t = 5 for three different
meshes. a: Whole domain; b: Zoom on pmax; c: Zoom on pmin.

3.1.3 Influence of Distortion

Two kinds of distorted mesh have been used in this study. The first type is the hyperbolic
tangent-distorted mesh (HTD). It has the peculiarity to only modify the interior cells of
the domain, the boundaries remaining unchanged. The second one is the so-called sine-
distorted mesh (SD), which yields a deformation on both the boundary of the domain
and the interior cells. A significant difference between those two deformations is that
the cells stay quasi-orthogonal almost everywhere with the hyperbolic tangent whereas
most of them are skewed when using the sine-distortion. Finally, in order to be resolu-
tion independent, the same number of cells (200 × 200 = 40,000) has been used for each
simulation.
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Figure 3.2: Streamwise evolution of the vertical velocity at y = 0.5 and t = 5 for three
different meshes. a: Whole domain; b: Zoom on vmax.

Case pmin vmax

Value Error % Value Error %
Tenaud et. al. [148] 1.06052 - 0.23163 -

M1 1.05987 0.06 0.23206 0.19
M2 1.06027 0.02 0.23170 0.03
M3 1.06036 0.01 0.23160 0.01

Table 3.2: Errors on the minimum pressure and maximum vertical velocity with respect
to the reference values at t = 5, for three different cartesian meshes.

3.1.3.1 Hyperbolic tangent-distorted mesh

TheHTDmeshes used in this part have been created using Eq. 2.28. Several deformation
parameters have been chosen, ranging from DP = 0.5 to DP = 4, but only the results for
DP = 1.0, DP = 1.5 and DP = 2.0 will be presented here. The subsequent meshes can be
found in Figure 3.3.

Figure 3.3: HTD meshes with DP = 1.0 (left), DP = 1.5 (center), and DP = 2.0 (right).
Every four points are shown in each direction.
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The streamwise evolutions of the vertical velocity and pressure at final time (t = 5) are
shown in figures 3.4 and 3.5 for three different deformation parameters. In this case, the
results are in perfect agreement with the reference values for every tested cases. The
errors on both pmin and vmax are really small as shown in Table 3.3. It is noteworthy
that the errors are distortion-independent up toDP = 2.0 and even for the highest tested
deformation (DP = 4.0) they stay insignificant (0.1% on pmin and 0.3% on vmax). This
observation tends to show that the errors in this case are scheme-induced rather than
distortion induced.

Figure 3.4: Streamwise evolution of the pressure at y = 0.5 and t = 5 for three different
HTD meshes. a: Whole domain; b: Zoom on pmax; c: Zoom on pmin.

The isocontours of both the vertical velocity and pressure plotted in figure 3.6, shows that
no significant differences are visible between the cases.
The present results have been shown to be in very good agreement with the reference
data when the cells are distorted but stay quasi-orthogonal almost everywhere. Another
type of deformation, that does not conserve the mesh-orthogonality has also been tested
in order to check the response of the Chorus code in such cases.

3.1.3.2 Sine-distorted mesh

In order to have very skewed, non-orthogonal cells, a sine-deformation have been created
using Eq. 2.30. Several deformation amplitudes have been chosen, ranging fromA = 0.03
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Figure 3.5: Streamwise evolutions of the vertical velocity at y = 0.5 and t = 5 for three
different HTD meshes. a: Whole domain; b: Zoom on vmax.

Case pmin vmax

Value Error % Value Error %
Tenaud et. al. [148] 1.06052 - 0.231630 -
Cartesian mesh 1.06036 0.01 0.23160 0.01

DP = 1.0 1.06037 0.01 0.231813 0.08
DP = 1.5 1.06037 0.01 0.231840 0.09
DP = 2.0 1.06037 0.01 0.231864 0.1

Table 3.3: Errors on the minimum pressure and maximum vertical velocity with respect
to the reference values at t = 5, for 3 different HTD meshes.

to A = 0.30, but only the results obtained with A = 0.03, A = 0.09 and A = 0.18 will be
presented here. The resulting meshes can be found in Figure 3.7.
The streamwise evolutions of the vertical velocity and pressure at final time (t = 5) are
shown in figures 3.8 and 3.9 for three different distortion amplitudes. It is clear that for
small and mild deformations, the results show a very good agreement with the reference
values, both for the pressure and vertical velocity (Table 3.4). For a strong deformation
(A = 0.18), the velocity and pressure profiles start to diverge from the reference data
but the relative error stays perfectly acceptable (around 1.2%). An extreme deformation
has also been tested (A = 0.30). Even in this very unfavourable case, the errors are very
limited (0.8% on pmin and 3.3% on vmax).
The influence of distortion is also illustrated by isocontours of both the vertical velocity
and pressure in figure 3.10. As suspected provided the values in Table 3.4, the differences
are very small between all the cases and are gathered in the part where the cells aremore
distorted.
The simulations for SD meshes have shown that, although the error is quite larger than
for HTDmeshes, the results are in good agreement with the reference data evenwhen the
cells are very skewed. Unlike in the hyperbolic-tangent case, the error in this case seem
to be deformation dependent since it goes from 0.02% for A = 0.03 to 1.2% for A = 0.18.
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Figure 3.6: Isocontours of the vertical velocity (left) and pressure (right)at y = 0.5 and
t = 5 for three different HTD meshes.

Figure 3.7: SD meshes with A = 0.03 (left), A = 0.09 (center), and A = 0.18 (right). Every
four points are shown in each direction.

Case pmin vmax

Value Error % Value Error %
Tenaud et. al. [148] 1.06052 - 0.231630 -
Cartesian mesh 1.06036 0.01 0.23160 0.01

A = 0.03 1.06038 0.01 0.231592 0.02
A = 0.09 1.06069 0.02 0.230922 0.3
A = 0.18 1.06266 0.2 0.228897 1.2

Table 3.4: Errors on the minimum pressure and maximum vertical velocity with respect
to the reference values at t = 5, for 3 different SD meshes.
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Figure 3.8: Streamwise evolution of the pressure at y = 0.5 and t = 5 for three different
SD meshes. a: Whole domain; b: Zoom on pmax; c: Zoom on pmin.

Figure 3.9: Streamwise evolutions of the vertical velocity at y = 0.5 and t = 5 for three
different SD meshes. a: Whole domain; b: Zoom on vmax.

In this part, two different deformations have been tested fo the canonical case of a vortex
convected by a uniform flow. The results obtained show a very good agreement with the
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Figure 3.10: Isocontours of the vertical velocity (left) and pressure (right)at y = 0.5 and
t = 5 for three different sine-distorted meshes.

reference data, even for large deformations. In addition, the conservation of the cell-
orthogonality seems to lead to smaller errors than the use of non-orthogonal meshes. A
study on the influence of the mesh orthogonality has been performed in the compression
ramp case and will be presented in section 4.4.
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3.2 Interaction between a shock wave and a tempera-
ture spot

Introduction
The second test-case to be considered is the well-known example of the interaction be-
tween a shock wave and a temperature spot. This is a canonical case based on problems
that are typically encountered when a flame is hit by a shock wave. The goal here is
to analyse the capability of the shock-capturing techniques implemented in Chorus to
correctly predict the mechanisms of vorticity production in presence of a shock wave for
distorted meshes.

Two of the most relevant quantities to check if one wants to assess a code’s ability to
predict the vorticity production are the integrals of the moduli of vorticity (IVM ) and
baroclinic torque (IBT ) over the whole domain Ω. They are defined by:

IVM =

∫
Ω

|ω| dΩ (3.1)

IBT =

∫
Ω

∣∣∣∣∇P ×∇ρρ2

∣∣∣∣ dΩ (3.2)

The flow considered here being 2D and nearly inviscid, the baroclinic torque is the only
mechanism that can create vorticity.

3.2.1 Flow configuration
A rectangular domain, of dimensions [0, 2] × [0, 1], is initially split into two regions by a
normal shock wave located at x0 = 1 (Fig. 3.11).

Figure 3.11: Illustration of the initial and boundary conditions in the case of the inter-
action between a shock wave and a temperature spot. From Tenaud et. al. [148]

For x < x0, the flow conditions (ρ0, u0, T0 and p0) are chosen such that M0 = 1.1588. Re0,
the Reynolds number based on the flow conditions upstream of the shock and on x0, is
equal to 2,000. The pressure jump through the shock wave is ∆p

p0
= 0.4. Downstream

of the shock wave, the remaining variables are initialised by using Rankine-Hugoniot



3.2. INTERACTION BETWEEN A SHOCK WAVE AND A TEMPERATURE SPOT 67

relationships. A spot of temperature, centred at (x0, y0) = (0.5, 0.5), is then superimposed
to the base flow. It is defined by:

∆T (r)

T0

=
1

α4
(r2 − α2)2e−

r2

σ2

where r =
√

(x− x0)2 + (y − y0)2 is the distance from the center of the temperature spot.
α = 7 and σ = 0.07 are two constants defining the size of the temperature spot.

From a numerical point of view, the time step is chosen such that CFL < 0.5. Periodic
boundary conditions are applied on top and bottom boundaries. The upstream bound-
ary is considered as an inlet whereas the downstream boundary is set as an outlet (See
section 2.4 for more details). All the simulations have been run for a dimensionless time
t = 1, which guarantees that the temperature spot will entirely cross the shock wave.

3.2.2 Mesh Convergence
Before considering the influence of the distortion, a mesh convergence study has been
performed. Four uniform cartesian meshes have been considered ranging from 800 to
80,000 cells. The mesh parameters and timesteps are gathered in Table 3.5.

Mesh Name # of Cells ∆t

M1 40× 20 5 10−3

M2 100× 50 2.5 10−3

M3 200× 200 10−3

M4 400× 200 5 10−4

Table 3.5: Mesh parameters

The time evolutions of IVM (Eq. 3.1) and normalised IBT (Eq. 3.2) are plotted in Figure
3.12 for four different cartesian meshes.
The observation of the reference data is really useful to understand the underlying physics
of the flow. Since the initial flow field does not introduce any vorticity, both integrals are
equal to zero up to t = 0.3. At that particular time, the temperature spot starts to in-
teract with the shock wave and vorticity is being created by the baroclinic effect. The
production sharply increases up to t = 0.5, as the first half of the spot crosses the shock
wave, and then decreases as sharply to reach a very low value after t = 0.7. This non-zero
value is due to the fact that the interaction is not entirely over.

The analysis of the results for IVM shows that it is largely over-predicted after t = 0.5 for
resolution up to M3 (Table 3.6). Those results agree with the observation from Tenaud
et. al. [148] showing that TVD schemes induce the creation of extra vorticity within
the shock after the interaction. This is confirmed by Figure 3.13 in which the residual
vorticity created within the shock can be seen. It is obvious that using a finer mesh
decrease this non-physical vorticity creation. As a consequence, all the simulations in
the following part will be carried on with a number of cells equivalent to M4 in order to
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Figure 3.12: Time evolution of IVM (left) and normalised IBT (right) for four different
cartesian meshes.

limit the influence of the TVD scheme. Concerning IBT , all meshes (except M1) are in
good agreement with the reference values.

Mesh IVM at t = 1.

Value Error %
Tenaud et. al. [148] 0.0297 -

M1 0.0320 7.7
M2 0.0325 9.4
M3 0.0306 3.0
M4 0.0295 0.7

Table 3.6: Error on the integral of the vorticity modulus at t = 1.0, for 4 different meshes.

Figure 3.13: Isocontours of vorticity at t = 1 obtained forM3 (left) andM4 (right).
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Influence of Distortion
Because of the flow geometry, andmore precisely the presence of a straight vertical shock
wave, only hyperbolic-tangent distortions (Eq. 2.28) have been used. Several deformation
parameters have been chosen, ranging from DP = 0.5 to DP = 3.5, but only the results
for DP = 1.0, DP = 2.0 and DP = 3.0 will be presented here. The subsequent meshes can
be found in Figure 3.14.

Figure 3.14: Hyperbolic tangent-distorted mesh with three different distortion parame-
ters.

For this test case, the influence of the distortion is negligible (Figure 3.15). Quantita-
tively, the error is less than 1% for all the tested deformation parameters and is identical
to the one obtained in the cartesian case (Table 3.7).

Figure 3.15: Time evolution of IVM (left) and normalised IBT (right) for three different
HTD meshes.

A qualitative study has been carried out through the comparison of several isocontours
(pressure, density, and vorticity) with the reference data for t = 0.5 and t = 1.0. t =
0.5 corresponds to the moment when the centre of the spot of temperature reaches the
position of the shock wave and therefore the maximum of vorticity production. At that
time, the flow fields are very similar between the present DNS results and the data
from Tenaud et. al. . All the characteristics of the interaction are recovered, such as
the pressure waves originating from the centre of the temperature spot, the bending of
the initially straight shock wave, and the creation of two contra-rotating vortices just
downstream of the interaction. At the final time (t = 1), the shape of the isocontours of
density and pressure near the shockwave, proving that the interaction between the shock
wave and temperature spot is still active even though the temperature spot is positioned
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Mesh IVM at t = 1.

Value Error %
Tenaud et. al. [148] 0.0297 -
Cartesian mesh 0.0295 0.7

DP = 1.0 0.0295 0.7
DP = 2.0 0.0295 0.7
DP = 3.0 0.0295 0.7

Table 3.7: Error on the integral of the vorticity modulus at t = 1.0, for 3 different distor-
tion parameters.

at (x = 1.4), are very close to the reference one. As discussed earlier, the only significant
difference comes from the presence of vorticity contours inside the shock wave that are
neither physical nor recovered by the reference simulations.
In this part, the case of the interaction between a temperature spot and a shock wave has
been studied for cartesian and HTD meshes. In the former case, the ability of Chorus
to tackle flows with shock waves in cartesian geometry has been confirmed, with a very
good agreement with the reference data. In the latter case, the influence of the mesh
distortion has been shown to be very insignificant, leading to errors equivalent to those
for a cartesian mesh, and recovering every expected features of the flows with accuracy.
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Figure 3.16: Isocontours of density (top), pressure (center) and vorticity (bottom) for
t = 0.5. Left: Reference data from [148]; right: Present results obtained with DP = 3.0.
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Figure 3.17: Isocontours of density (top), pressure (center) and vorticity (bottom) for
t = 1.0. Left: Reference data from [148]; right: Present results obtained with DP = 3.0.
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3.3 Taylor-Green Vortex

Introduction
The third test-case to be considered is the 3D case of the Taylor-Green Vortex (TGV), one
of the problems that have been intensively studied since 2012 in the framework of the
International Workshop on High Order CFD Methods [158]. The goal here is to switch to
a 3D flow and analyse the capability of the OSMP scheme to accurately predict the decay
cascade of homogeneous turbulence (but not isotropic) for distorted meshes.

Two of the mandatory results to be plotted for the benchmark are the temporal evolution
of the kinetic energy integrated on the whole computational domain (Ω) (Ek) and the
temporal evolution of the kinetic energy dissipation rate (ε), defined by:

Ek =
1

ρ0Ω

∫
Ω

ρ
v.v

2
dΩ (3.3)

ε = −dEK
dt

(3.4)

3.3.1 Flow configuration
In a three-dimensional domain of dimensions [−π, π]3, a Taylor-Green Vortex (TGV) is
created by imposing the following initial conditions:

ρ = ρ0
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)
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)
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)
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)
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+
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)
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)
where ρ0, u0, T0 and L0 are the reference density, velocity, temperature, and length, re-
spectively, and are all set equal to 1. The fluid is supposed to verify the ideal gas law
with γ = cp/cv = 1.4 and Pr = 0.71. The Mach number is chosen such that the flow is
nearly incompressible (Ma = 0.1) and therefore, the viscosity and heat conductivity are
assumed constant. The Reynolds number, based on u0 and L0, is equal to 1,600. From a
numerical point of view, the time step is chosen such as CFL = 0.5, and periodic bound-
ary conditions are applied in all three directions. The simulations have been run for 20
periods, corresponding to a dimensionless time t = 20.

The underlying physics of this flow is very interesting and complex though rather easy
to apprehend. Initially independent from one another (Fig. 3.18-left), the eight large
vortical structures start to interact with each other. Those non-linear interactions will
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force the flow to undergo the transition towards turbulence that will lead to the creation
of smaller and smaller structures until their kinetic energy is dissipated into heat at
Kolmogorov scales (Fig. 3.18-right). It is noteworthy that even if the flow is not isotropic,
this decay phase is very similar to the one observed for homogeneous isotropic turbulence.

Figure 3.18: Vortical structures evidenced by using the Q-criterion coloured by the x-
component of the velocity. Left: t = 0; right: t = 20.

3.3.2 Mesh Convergence
A mesh convergence study has been performed for uniform cartesian meshes ranging
from 323 to 5123 CVs. The mesh parameters are gathered in Table 3.8.

Mesh Name # of CVs ∆t

M1 323 5 10−3

M2 643 5 10−3

M3 1283 2 10−3

M4 2563 10−3

M5 5123 5 10−4

Table 3.8: Mesh parameters

The time evolution of the dissipation rate ε is plotted in figure 3.19-left. It could be split
into two parts. Up to t = 9, ε is sharply increasing. The dissipation occurring at the
Kolmogorov scale, this increase of ε is linked to the progressive creation of smaller and
smaller structures through the energy cascade. At this point, small structures stop to
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be created and as the flow is not fed by any kind of external energy, the decay towards
a fluid at rest starts to occur. As expected by the previous observations, the coarsest
mesh, M1, is in very poor agreement with the reference data taken from Wang et. al.
[158]. Because of the size of its cells, this mesh is unable to correctly capture the small
structures of the flow and the associated dissipation. As a consequence, the dissipation
peak appears much too early and the decay is occurring much too quickly. This behaviour
leads to a wrong profile for the kinetic energy, directly linked to ε through Eq. 3.4, with
lower-than-expected values before t = 11 and higher-than-expected values after t = 11
(Figure 3.19-right). To a lesser extent, the same phenomenon is observed forM2. A very
good agreement is found for 1283 CVs (M3), 2563 CVs (M4) and 5123 CVs (M5), even if the
dissipation peak is significantly underestimated for 1283 CVs (Table 3.9). It is noteworthy
that the reference data were obtained using a dealiased pseudo-spectral code (developed
at Université Catholique de Louvain) which is known to have spatially neither numerical
dissipation nor numerical dispersion errors. The excellent results obtained forM4 andM5

compared to the reference data (less than 1.5% for equivalent meshes) hence demonstrate
the very high efficiency of Chorus in the framework of turbulent flows.

Figure 3.19: Time evolution of the dissipation rate ε (left) and the kinetic energy of the
whole domain Ek (right) for five different cartesian meshes.

Case Ekmin εmax

Value Error % Value Error %
Wang et. al. [158] 0.02157 - 0.01286 -

M1 0.04492 108.2 0.01209 5.9
M2 0.02475 14.7 0.01241 3.5
M3 0.02263 4.9 0.01132 11.9
M4 0.02112 2.1 0.01255 2.4
M5 0.02150 0.3 0.01269 1.3

Table 3.9: Errors on the minimum of Kinetic Energy and the maximum of dissipation
rate with respect to the reference values, for five different cartesian meshes.
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Provided the very small errors occurring for M4, the influence of the distortion will be
run using the same quantity of cells (2563).

3.3.3 Influence of Distortion
Because of the rather high cost of the simulations, around 600 CPU hours per case on
IDRIS’ Ada (IBM x3750) for 2563 CVs, only one kind of deformation could have been
studied. As the very small influence of the distortion for HTD meshes has already been
demonstrated for the convection of a vortex (advection-diffusion case) and the interaction
between a shock wave and a temperature spot (flow with shock), sine-distorted meshes
will be used in this part. The intended goal is to confirm one of the first observations
that have been made for sine-distorted meshes, indicating that the error seemed to be
deformation-dependent.

As the flow here is 3D, sine-deformation has been applied in all three directions using
Eq. 2.31. Several distortion amplitudes ranging from A = 0.03 to A = 0.60 but only re-
sults for A = 0.09, A = 0.18 and A = 0.30 will be presented here. The distorted meshes
obtained with those parameters can be found in Figure 3.18-top.

As shown in figure 3.20 and confirmed by Table 3.10, the error is not sensitive to the
deformation amplitude. Indeed, as soon as a deformation is imposed to the geometry,
the errors take values close to 7% for Ekmin and 3% for εmax. This observation is to be
tempered since a more extensive study shows that the previous statement is valid only
up to a certain amplitude of deformation roughly estimated here at around A = 0.30 (Fig.
3.21). For stronger deformations, the error on the kinetic energy is quickly increasing
even if it is not the case for the dissipation.

Figure 3.20: Time evolution of the dissipation rate ε (left) and the kinetic energy of the
whole domain Ek (right) for three different SD meshes.

The errors obtained here, for all the SD meshes, are the highest noted in this chapter,
although the undistorted results are amongst the best. As stated for the vortex convection
test-case, the rather high error is more likely due to the fact that the cells are very non-
orthogonal in all directions.
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Case Ekmin εmax

Value Error % Value Error %
Wang et. al. [158] 0.02157 - 0.01286 -
Cartesian mesh 0.02112 2.1 0.01255 2.4

A = 0.09 0.02007 7.0 0.01251 2.7
A = 0.18 0.02023 6.2 0.01245 3.2
A = 0.30 0.02014 6.6 0.01244 3.3

Table 3.10: Errors on the minimum of Kinetic Energy and the maximum of dissipation
with respect to the reference values, for 5 different meshes.

Conclusion
This chapter allowed us to quantify the errors introduced by different types of deforma-
tion for three test-cases dealing with convection and/or turbulence and/or shocks. In its
cartesian version, Chorus has been shown to be a very efficient code in any situation. As
expected, the deformation of the mesh creates errors that are rather low if the control
volumes stay close to a parallelepiped (hence nearly orthogonal). If a non-orthogonality
is introduced, the errors are significantly increased.

In the following chapters, where compression ramps are to be considered, a special care
should then be taken when creating the meshes.

Figure 3.21: Evolution of the errors on Ekmin and εmax as a function of the deformation
amplitude A.
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Chapter 4

Validation for the ramp case
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Before innovative DNS are performed, the code needs to be validated on the framework of
supersonic flows around compression corner, which is the core of the present dissertation.
The validation studies have been carried out for the case of both inviscid and viscous flows
over a compression ramp and the comparison with theoretical as well as numerical data
will be presented here.

4.1 Inviscid case
The case of the steady, inviscid air flow around a compression corner has first been in-
vestigated. For this flow, theoretical solutions are available for the shock angle as well
as for the pressure/temperature/density jump across the shock (See for instance [7] for a
complete theoretical development).

79



80 CHAPTER 4. VALIDATION FOR THE RAMP CASE

4.1.1 Flow configuration
The simulations has been performed for a ramp angle and a Mach number ranging from
θ = 10◦ to θ = 20◦ and from Ma = 2 to Ma = 4, respectively. The fluid properties are
considered constant with γ = 1.4 and the Prandtl number Pr = 0.72. Air is supposed to
verify the ideal gas law. The physical domain spans from x = 0 to x = 0.22 m and from
z = 0 to z = 0.0527 m in the streamwise and wall-normal directions respectively. The
ramp corner is located at xc = 0.0610 m (Figure 4.1).

Figure 4.1: Example of a physical domain (and mesh) used for the validation in the in-
viscid case.

From a numerical point of view, a mesh of 90 × 30 cells has been chosen. An uniform
spacing of ∆x = 1.35 × 10−3 m has been used in the streamwise direction. A power law
stretching, though unnecessary since the flow is inviscid, has been applied in the wall-
normal direction resulting in cell sizes varying from of ∆zmin = 2 × 10−4 m close to the
wall to ∆zmax = 3× 10−3 m in the freestream. It was chosen to fit the mesh used for the
comparative study with Carter’s data, that will be presented in section 4.2. Concern-
ing the boundary conditions, all flowfield variables are specified at the inlet (leftmost)
boundary, outflow conditions are applied on both the top and rightmost boundaries. The
wall has been treated as adiabatic and a slip condition has been applied.

4.1.2 Results
Contours of Mach number are shown in figure 4.2 for (Ma = 2, θ = 15◦) and (Ma = 3, θ =
10◦). As expected by the supersonic aspect of the flow, the presence of the ramp induces
the creation of an oblique shock wave which has two major effects. First, the flow, origi-
nally horizontal upstream of the corner, is suddenly deviated to match the new boundary
conditions downstream of the corner, where the flow still needs to be parallel to the wall.
This results to a switch between kinetic and internal energies. As a consequence, pres-
sure, density, and temperature are highly increased through the shock, at the expense
of the velocity.
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Figure 4.2: Contours of the Mach number for a inviscid flow on a supersonic ramp. Top:
Ma = 2 and θ = 15◦. Bottom: Ma = 3 and θ = 10◦.

Mad, the Mach number downstream of the shock as well as β, the shock angle estimated
from the previous figures, are gathered in Table 4.1. The results on both quantities are
in very good agreement with the theoretical values.

Case Mad β

DNS Theory DNS Theory
Ma = 2 and θ = 15◦ 1.445 1.445 45.5◦ 45.3◦

Ma = 3 and θ = 10◦ 2.505 2.505 27.5◦ 27.4◦

Table 4.1: Comparison between DNS results and theory for two inviscid cases.

The jump conditions across the shockwave are some very important quantities tomonitor
because they determine the physical reality of the shock. The pressure, density, and
temperature profiles are shown in figure 4.3 and compared with the Rankine-Hugoniot
results for the three different Mach numbers (Ma = 2 to 4) and ramp angle (10◦ to 20◦).
For every tested case, the theoretical values of Mad and β are perfectly recovered by
Direct Numerical Simulations.
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The results obtained in the inviscid have fitted very well with the theoretical data. It
was expected since the numerical difficulties mainly come from the introduction of solid
walls that introduce strong velocity (and temperature) gradients. In order to check the
ability of Chorus to compute viscous supersonic flows in complex geometries, a reference
case, dealing with the laminar flow around a compression ramp, will be considered in the
next section.

4.2 Carter’s case
The objective of this Ph.D. being the simulation of laminar flow in complex ramp ge-
ometries and in order to be sure that the code is working in that kind of configurations, a
reference study has been searched to compare with Chorus ’ results. Unfortunately, pure
laminar cases are very scarce since most researchers superimpose small perturbations to
their laminar inflow profile, either to force the transition to turbulence [116] or to study
the reaction of the flow to specific solicitations [112, 131, 132]. A NASA study [28] that
perfectly matched the expectations and which was also used in a paper from Hung and
MacCormack [79], has finally been found.

4.2.1 Flow configuration
In this case, the flow over a heated compression ramp at θ = 10◦ and Ma = 3.0 has been
considered. The Reynolds number based on the freestream quantities and the position
of the ramp corner xc has been chosen such that Rexc = 1.68× 104. Sutherland’s law has
been used to model the variation of the viscosity with respect to the temperature and the
fluid is supposed to verify the ideal gas law, with γ = 1.4 and Pr = 0.72.

The exact same domain and mesh as those defined in section 4.1 have been used in this
case. Concerning the boundary conditions, all flowfield variables are specified at the inlet
(leftmost) boundary, outflow conditions are applied on both the top and rightmost bound-
aries. The wall has been treated as isothermal (Tw/T∞ = 2.8) and a no-slip condition has
been applied.

4.2.2 Results
The streamwise evolutions of the pressure Cp and skin-friction Cf coefficients, defined by
Eqs 4.1 and 4.2, are represented in Figure 4.4.

Cp =
pw − p∞
p∞

(4.1)

Cf =
τw

1
2
ρ∞U2

∞
(4.2)

The comparison between the present DNS and the numerical results fromCarter [28] and
Hung &MacCormack [79] shows a very good agreement for the pressure, especially with
Carter’s data. A small discrepancy occurs around the corner in Hung andMacCormack’s
simulation but, as this undershoot also appears on the friction coefficient, it can be linked
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Figure 4.4: Streamwise evolution of the pressure (left) and skin-friction (right) coeffi-
cients.

to their simulations. The comparison on the friction coefficient is a little less good as far
as Carter’s results are concerned but better for Hung’s. The underestimation of Cf by
Carter can be explained by the use of a poorly chosen domain/mesh. Indeed, as it can be
easily seen in Figure 4.5, the wall pressure is strongly dependent on the computational
box and it is expected to be the same for Cf . Nevertheless, all the curves in [28] were
obtained using box I, except Figure 4.4-left that used box IV. As a result, the following
analysis will be more qualitative than qualitative.

Figure 4.5: Influence of the computational box on the wall pressure evolution taken from
[28]. Box IV is defined as the reference in Carter’s report.

The density field is shown in Figure 4.6. In order to highlight the presence of the separa-
tion, streamlines are superimposed to the density field. The length of the bubble obtained
by visualising the streamlines is similar to the value computed through the skin-friction
coefficient LR = 0.25

x

xc
. In his study, Carter found that the separation and reattach-

ment occurred around xs
xc

= 0.84 and xr
xc

= 1.22 corresponding to a recirculation length

LR = 0.38
x

xc
. Once again, this discrepancy can be linked to Carter’s under-resolution.
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Figure 4.6: Density field and streamlines atMa = 3.0 and θ = 10◦.

The influence of the ramp angle has also been analysed. The streamwise evolutions of
the wall pressure and the density fields obtained for three different ramp angles (5◦, 7.5◦

and 10◦) at Ma = 3 are plotted in Figures 4.7 and 4.8 respectively. The DNS results
qualitatively agree well with the inviscid theory as well as the reference data. The shape
of the wall-pressure profiles shows that, as predicted by the theory, a higher ramp angle
leads to a higher pressure jump. If the subsequent adverse pressure gradient is high
enough, the boundary layer separates and a recirculation region is then created. It is
found that the boundary layer separates only for θ = 10◦ as expected from Carter’s study.
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Figure 4.7: Streamwise evolution of the wall pressure for three different ramp angles at
Ma = 3. Symbols come from [28].
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The comparison with Carter’s and Hung’s studies have shown that the results obtained
with Chorus are in good agreement with reference data. However, those studies are
rather old (the late 1970s) and a lot of progress has been made in numerical methods
for high-speed flow simulations. Unfortunately, as it was mentioned earlier, there are
very few (to say the least) recent studies concerning simulations or experiments of fully
laminar flow around ramps or other complex geometries that could have helped to assess
Chorus ’ ability to compute such flows. It has then be decided to create our own test case,
using a well-documented and well spread Open Source Solver: OpenFOAM .

4.3 OpenFOAM’s case
In this section, one of the most-used and documented solver of the last decade is used
to perform numerical simulations of a 2D compression corner flow, using the classical
numerical methods of laminar Navier-Stokes equations resolution. A specific test-case
has been created to compare with DNS results from Chorus . The aim of this work is es-
sential to highlight the classical numerical approach limitations to solve and capture the
unsteady character of shockwave-boundary layer interaction flows. A brief description of
the code is given. The computational domain, grid system and boundary condition are
also described.

4.3.1 Numerical methods and code
The rhoCentralFoam solver of the OpenFOAM (Open source Field Operation And Manip-
ulation) software package for compressible flows has been used to compute the steady
laminar solutions of 2D compression corner flows. It is a finite volume, density-based,
unsteady, time-accurate solver developed by Greenshields et. al. [67]. The presence of
discontinuities, such as irregularities and contact surfaces in high-speed flows, requires
specific numerical schemes that can fix these properties, avoiding spurious oscillations
resulting from the presence of high gradients. In this regard, the Kurganov and Tamdor
numerical scheme [93], a second-order both time and space accurate central scheme is
implemented in the solver. It can provide accurate, non-oscillatory solutions. This solver
has been successfully tested, and validated by a number of authors [166, 77, 52].

4.3.2 Computational domain and boundary conditions
The computational domain spans from x = −4.2 mm to x = 4.2 mm in the streamwise
direction. The leading edge of the flat plate and the compression corner are located at
x = −4.2 mm and x = 0 mm respectively. The required computational mesh, repre-
sented in Figure 4.9-left, is created by using the blockMesh utility of OpenFOAM . It
is divided into 2 blocks, one upstream of the compression corner (x < 0) and the other
one downstream of it. Each block contains 100 × 250 cells in the streamwise and wall-
normal directions, respectively. To accurately capture the flow physics for a ramp-induced
shockwave-boundary layer interaction, a specific care has been taken while generating
the mesh to ensure a very fine grid where large gradients are encountered (leading edge,
walls, and compression corner)
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Figure 4.9: Illustration of the mesh (left) and boundary conditions (right) used in Open-
FOAM

The boundary conditions used in OpenFOAM are represented in Figure 4.9-right. At
the inlet and upper boundaries, all the freestream conditions (Ma = 2.5, T = 288.15 K,
p = 82700 Pa and ρ = 1.0 kg.m−3) are specified. on the left boundaries. A no-slip adiabatic
wall condition is applied on the lower boundary. At the outlet, the flow variables are
extrapolated from the inner values.

4.3.3 Results
Unlike with the simulations performed with OpenFOAM , the DNS results obtained by
Chorus are, by nature, unsteady. The flow also being unsteady, as it will be shown in
Chapter 5, the DNS results used for comparison have been time-averaged. In order to
ensure the quality of the averaging, a little less than 2,000,000 samples have been taken,
spanning from Tstart ' 45 TFT to Tend ' 90 TFT . TFT is the so-called Flow-Through time
that corresponds to the time it takes for a fluid particle to go from the inlet to the outlet
boundary.

The Mach contours obtained with Chorus and OpenFOAM are represented in Figure
4.10. A first glance at this figure does not reveal any significant differences between the
two approaches. The separation zone, appearing in dark (since it is a zone of small veloc-
ity and therefore small Mach numbers), has the same global shape. In addition, All three
expected shocks (leading edge, separation, and reattachment shocks) are recovered and
have the same angles. When using Chorus, however, a slight train of waves is observed
upstream of the reattachment shock.
In order to compare more thoroughly the two codes, more quantitative analyses have
been performed. The streamwise evolutions of the wall pressure and friction coefficient
are shown in Figure 4.11. Except for small discrepancies, the results from both codes
are in good agreement with each other. Before the separation

(
x

xc
< 0.2

)
, the wall pres-
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Figure 4.10: Mach contours obtained with Chorus (left) and OpenFOAM (right).

sure is exactly the same for both cases, demonstrating that the flow and boundary con-
ditions are correct. In the separated zone

(
0.5 <

x

xc
< 1.2

)
, and after the reattachment(

x

xc
> 1.6

)
, the values of the plateaux of wall pressure are very close. The main differ-

ences concern the location of the separation and reattachment points, the recirculation
zone being slightly larger when the flow is computed using Chorus .

Figure 4.11: Streamwise evolution of the wall pressure (left) and skin-friction coefficient
(right).

With respect to the friction coefficient, the differences are slightly bigger, especially for
1.2 <

x

xc
< 1.5 which corresponds to the region just at the end of the recirculation bubble,

and around the reattachment point. Even if Cf is globally identical up to x

xc
= 1.2, they

evolve in two rather different fashions downstream.

Two phenomena can explain that discrepancy. The first one is strongly related to the
physics of the flow. As one will see in chapter 5, the flow conditions are such that the
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boundary layer transition occurs in the shear layer just above the separation bubble.
Therefore, 3D vortices are shed in this layer and will evolve into hairpin vortices after
the reattachment. The flow is highly-3D and then, it cannot be accurately predicted us-
ing 2D simulations. Many studies ([23, 58, 109]) have indeed shown that the dynamics
of the separation bubble is not recovered when using 2D-simulations and, worse, that
non-physical vortices are created in order to tackle the impossibility for the flow to go in
the non-existent spanwise direction.

The second phenomenon has to do with the different techniques implemented in the
codes. When using OpenFOAM, the steady version of the Navier-Stokes equations is
solved until a steady-state is reached. On the other hand, Chorus solves the unsteady
Navier-Stokes equations, and then, time-averaging is performed. In the case of nomi-
nally unsteady flows such as the case considered here, it is well known that those two
solutions are not the same and may significantly differ from one another (See [101] for
example). As a consequence, and since the flows computed are not exactly the same, the
wall pressure and friction coefficient should not be identical.

Those two phenomena can be seen in Figure 4.12, representing the negative contours of
the streamwise velocity in the separation bubble for both simulations. It clearly appears
that the flow in the separation bubble is not exactly the same for both approaches due
to their inherent differences. In addition, the wavy pattern of the contours obtained
with Chorus evidence the presence of the non-physical vortices as discussed earlier. It is
noteworthy that those oscillations are responsible for the train of shock that can be seen
in Figure 4.10. Moreover, because of the very long integration time used for the time-
averaging, those structures are not due to a lack of convergence in the time-averaging
process.

Figure 4.12: Negative streamwise velocity contours obtained with Chorus (left) and
OpenFOAM (right) in the recirculation zone.

For all those reasons, a perfect match should not be sought between the simulations us-
ing Chorus and OpenFOAM, but rather a concordance in the observed behaviour. Conse-
quently, it seems that under those conditions, the two approaches are in very fair agree-
ment and this indicates that Chorus is perfectly able to be used for simulating the flow
in complex geometries.
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4.4 Influence of Orthogonality
As shown in chapter 3, the matter of mesh orthogonality is of crucial importance and
has to be assessed when dealing with ramp configurations. A quick bibliographic study
on simple compression ramps showed that there is no consensus in the scientific com-
munity whether the mesh should be orthogonal to the wall or not. For example, Non-
orthogonal meshes were used in [28, 79, 41, 82] while [2, 125, 104, 119, 97] considered
orthogonal (or quasi-orthogonal) cells. In the more complicated case of compression-
expansion (or expansion-compression) ramps, however, and for the sake of simplicity,
only non-orthogonal meshes have been encountered [68, 57, 121].

The influence of the mesh orthogonality being highly numerical methods- and more glob-
ally code-dependent, a preliminary study has been performed in the Carter test-case pre-
sented in Section 4.2. Both mesh configurations are shown in figure 4.13. The number
of points, resolution, and dimensions of the domain were kept identical for each case
and only the way cells are created was changed. As the so-called orthogonal mesh is
not perfectly orthogonal, in particular in the flat plate region, it will be referred to as
quasi-orthogonal.

Figure 4.13: Representation of the quasi-orthogonal (left) and non-orthogonal mesh
(right) configurations.

The comparisons between the pressure and skin-friction coefficients for both mesh con-
figurations are shown in figure 4.14-left and 4.14-right, respectively.
As far as the ramp configuration is concerned, no noticeable differences are found between
the two meshes. Therefore the orthogonality seems to only have a very small influence
on the computations and either mesh could be chosen confidently. As a result, in the
following chapter, quasi-orthogonal and non-orthogonalmesheswill be used for the single
ramp case and compression-expansion corner, respectively.

4.5 Conclusions
In the present section, Chorus has been used to simulate the flow around a compression
corner. Three different configurations have been considered, namely the inviscid case,
the Carter case, and a special configuration used for validation with OpenFOAM . All
the presented results have demonstrated the capabilities of the code to accurately predict
the flow around a compression corner, validating both the numerical approach and the
grid generation technique. As a consequence, the code will be, from now, considered
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Figure 4.14: Streamwise evolutions of the pressure (left) and skin-friction (right) co-
efficients for the non-orthogonal and quasi-orthogonal meshes in the Carter test-case
configuration.

as validated and innovative trustworthy DNS will then be presented in the following
chapter.
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In this chapter, the results from Direct Numerical Simulations will be presented for two
different complex geometries: a classical compression ramp and a double ramp configura-
tion, known as a Compression-Expansion ramp. The main objective of those simulations
is to determine whether, in the laminar regime, the separation bubble is subjected to a
low-frequency longitudinal motion as observed in the turbulent case [120, 69, 68]. For the
interaction between an oblique shock wave and a flat plate, a very recent study [14] has
demonstrated that this motion is not recovered in the laminar regime while it is present
in the turbulent case. This study will try to show if it is also the case in the ramp config-
uration. The case of the ramp has been chosen to test the code’s ability to tackle complex
geometry, and because the unsteadiness of the separation bubble has been shown to be
independent from the source of the SWBLI [32].

5.1 Dynamics of the recirculation bubble
As stated in Chapter 1, separation can occur if the Mach number and/or the ramp angle
(or shock angle, in the case of the interaction between an oblique shock wave and a flat

94
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plate) are high enough, leading to the creation of a recirculation bubble (Figure 5.1), re-
ferred to as RB in the following sections.

The dynamics of the separation bubble is actually very complex and not fully understood.
To roughly summarize, three main unsteady phenomena take place inside the bubble.
Two of them are related to the dynamics of the shear-layer just upstream of the reattach-
ment point: the vortex shedding and the flapping. Because of the differences in velocity
between the flows inside (low velocity) and outside (high velocity) of the RB, a Kelvin-
Helmholtz instability occurs in the shear layer which leads to the formation of spanwise
vortices (represented by the green spiral in Fig. 5.1). The frequency associated to this
phenomena is Sts =

f LR
U∞

' 0.5− 0.6, LR being the length of the RB and U∞ the velocity
outside of the boundary layer. In addition, it has been evidenced [31, 88] that the vortex
shedding does not occur at the same position but that it is subjected to a vertical flapping
at Stf ' 0.12−0.15, as shown by the blue arrow in Figure 5.1. Finally, a third, more global
phenomenon has been observed by Piponniau et. al. [115]. According to the authors, the
entrainment in the shear layer is responsible for what they called the breathing of the
separation zone: successive periods of enlargement and shrinkage happening at a very
low frequency Stb ' 0.03− 0.04 (pink arrows in Figure 5.1). This flow dynamics is rather
universal and is verified either in incompressible or compressible flows.

Figure 5.1: Sketch of the separation bubble for compressible flows. The four main un-
steady phenomena are highlighted: shedding (green), flapping (blue), breathing (pink)
and oscillations of the shock system, known as the unsteadiness of the RB (red). Adapted
from [115].

In the framework of shockwave-boundary layer interactions (therefore compressible), a
fourth phenomenon, known as the unsteadiness of the separation bubble, represented
by red arrows in Figure 5.1, has been observed by several studies, either experimental
[51] or numerical [11, 116, 153]. It is indeed well known that, when considering an in-
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coming turbulent boundary layer, the separation shock just upstream of the RB as well
as the reattachment shock are subjected to low-frequency streamwise oscillations occur-
ring at Stu ' 0.03 − 0.04. Although the physical origins of those oscillations are still
unknown, they have been linked to two potential causes: the bubble dynamics, and more
specifically the vortex shedding in the shear layer [11, 120], and the structures in the
incoming boundary layer [64]. The conclusions from Ganapathisubramani et. al. having
been mitigated by several studies [50, 154] and the oscillation frequency Sto being very
close to the breathing frequency Stb, the bubble dynamics seems to be the best candidate.

As stated before, the goal of this study is to improve our knowledge on the RB oscillations.
Hence, in order to conclude in a more accurate fashion, only laminar incoming boundary
layer, in which no vortical structures are present, will be considered. The aim is therefore
to suppress one of the two suspected causes for the shock oscillations and check whether
the low-frequency longitudinal motion still occurs.

5.2 Compression Ramp

5.2.1 Flow parameters
In this chapter, the laminar flow around a compression corner and a compression-expansion
ramp (referred to as SingleRamp and CompExp in the following, respectively) has been con-
sidered. The freestream conditions are gathered in table 5.1.

Parameter Value
Ma∞ 2.5

U∞ (m.s−1) 850.7

p∞ (Pa) 82,700

ρ∞ (kg.m−3) 1.2

T∞ (K) 288.15

Table 5.1: Freestream conditions used in the SingleRamp and CompExp cases.

In the SingleRamp case, the domain spans over 8.4 mm, 4.2 mm and 2.1 mm in the stream-
wise, spanwise and wall-normal direction, referred to as x, y and z, respectively. The
corner is located at xc = 4.2 mm. In order to stay far away from the known value of the
transition Reynolds number Ret = 3.15 × 106 [34], the Reynolds number based on the
corner location is taken such that Rec = 200,000. Finally, in a numerical point of view,
CFL = 0.5. All the parameters are the same for the CompExp geometry, except for the
domain that is twice as long (Lx = 16.8 mm) and where the compression and expansion
corner are located at xc = 4.2 mm and xe = 8.4 mm, respectively.

5.2.2 Mesh Convergence
Before starting the physical analysis of the flow in the SingleRamp configuration, a study
on the mesh convergence has been performed. Three different meshes have been consid-
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ered and their parameters are gathered in table 5.2. The resolution in the wall normal
direction, with around 60 CVs in the boundary layer (at the end of the domain) and
∆z+

w = 0.7 is state-of-the-art when dealing with DNS [116]. As a consequence, only the
streamwise and spanwise resolutions have been varied. It is noteworthy that the fric-
tion velocity uτ , used to compute the wall units, has been evaluated at the end of the
computational domain.

Mesh Name Nx ×Ny ×Nz ∆x+ ∆y+

M1 400× 200× 100 29 29
M2 640× 320× 100 20 20
M3 800× 400× 100 17 17

Table 5.2: SingleRamp: Mesh parameters used for the mesh convergence study.

A comparison of the results obtained for the three meshes is shown in Figure 5.2. It is
clear from all three pictures thatM1, being away fromM2 andM3 in each case, is clearly
under-resolved. The largest differences are observed on the friction coefficient, where
the size of the RB is overestimated (the separation happens earlier and the reattachment
later) and where the value of Cf is highly underestimated for x

xc
> 1.2. It is not a surprise

per say since this quantity is very sensitive to the grid resolution and a fine mesh should
be use if one wants to accurately compute it. Even if the tangential velocity and wall
pressure profiles are in fairly good agreement with those obtained for M3, M1 has been
ruled out of the study for being too coarse. An intermediate mesh M2 has then been
considered and its results are in very good agreement withM3 for all quantities, even if
Cf is slightly under-resolved in the final part of the ramp. Therefore, M2 seems to be a
good candidate for our study.
However, and as it will be shown later, the flow conditions considered here are such that
the boundary layer undergoes its transition towards turbulence somewhere upstream
of the reattachment point. It, therefore, seemed interesting to assess the performances
of M2 in the framework of turbulent flows. For this kind of analysis, it is customary in
the Fluid Mechanics community to consider the Reynolds stresses tensor u′iu′j, obtained
thanks to the Reynolds’ decomposition, introduced by Osborne Reynolds in 1895 [123].
In that formalism, each instantaneous quantity f(x, y, z, t) can be written:

f(x, y, z, t) = f(x, y, z) + f ′(x, y, z, t) (5.1)

where f(x, y, z) is the ensemble average of the quantity f and f ′(x, y, z, t), its fluctuating
part defined such that f ′ = 0. In turbulence theory, the instantaneous signals can trust-
fully be considered as ergodic which enables the physicists to use the more convenient
time average rather than the ensemble average. Because of the many properties of the
averaging operator, the Reynolds stresses tensor can then be defined as:

u′iu
′
j = uiuj − ui uj (5.2)

with i and j, two components of the velocity field. The entire mathematical and physical
development can be found in [149]. A common usage is to plot the wall-normal profiles
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Figure 5.2: SingleRamp: Wall-normal profile of the tangential velocity ut at x = 8.4 mm
(top), Streamwise evolution of the spanwise-averaged wall-pressure (bottom-left) and
friction coefficient (bottom-right) for three different meshes.

of the normalized density-scaled Reynolds stresses Rij such that:

Rij =
ρ u′iu

′
j

ρw u
2
τ

(5.3)

The extraction line for the profiles is highlighted by a white line in Figure 5.3, repre-
senting the time-averaged streamwise velocity field. It is located a few boundary layer
thickness upstream of the reattachment point, in the recirculation zone, where a strong
vortex shedding occur (Cf. Fig. 5.5).
The subsequent profiles are plotted in Figure 5.4 for the three meshes,M1 being kept as
a low-resolution reference value. Qualitatively speaking, the three meshes give very sim-
ilar profiles for all the considered Reynolds stresses. The shapes of the profiles are very
close, the peak in each case happens at almost the same position and their amplitudes
are quite comparable. As expected, due to the under-resolution, the results for M1 are
not as good as those obtained with M2, meaning that the turbulent features of the flow
need a high enough resolution to be captured, that is not provided by M1. A close look
at the differences between M2 and M3 shows that M2 could be a little under-resolved as
well, which would explain the discrepancy observed for the friction coefficient (Fig. 5.2).
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Figure 5.3: SingleRamp: Time- and spanwise-averaged streamwise velocity field showing
the extraction line (white) for the u′iu′j profiles. The two yellow points are the location for
the probes used in section 5.2.3.3.

Figure 5.4: SingleRamp: Comparison of the normalized Reynolds stresses taken at x =
0.005 m for three different meshes.

In addition to the accuracy of the simulations, however, another important parameter for
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the choice of a suitable mesh is the computational time. This study has benefited from a
Genci grant for the last four years and has consequently been granted several hundred
thousand CPU hours on Idris’ supercomputers. At the beginning of this Ph.D, only Ada
was available. Its architecture was such that a maximum of 64 nodes could be efficiently
used for the computations. In spite of its rather good performances (10−7 s/CV/∆t for
64 nodes) a whole simulation on M1 took around 800 clock-hours, corresponding to ap-
proximatively a month and a half (including the queue time), to be completed. The same
simulations forM2 andM3 would then have taken 4 and 6 months respectively. As a con-
sequence, all the computations were initially performed on M1, the other options being
too expensive. Fortunately, at the end of 2019, Ada has been shut down and replaced by
Jean-Zay. It has been a really big improvement since, on this server, the code has shown
a very good scalability up to 2048 nodes and the length of the computations has been
steeply decreased. Only two weeks are indeed needed for the whole simulation, either
on M1 (using 512 nodes), M2 (1024 nodes) or M3 (2048 nodes). In order to improve the
quality of this study, it was then decided to perform the convergence study presented
here and rerun all the simulations initially performed onM1, on the better-suited mesh
M2. Even if the results are not exactly the same as those obtained with the finer mesh
M3, they are very close and the needed resources aremore than twice smaller than forM3.

As a conclusion, the convergence study has shown that a minimal resolution is needed
in order to compute accurately the more difficult-to-catch quantities such as friction co-
efficient and Reynolds stresses. The computational resources allocated to this study not
being inexhaustible, it was decided to use the M2 mesh for future computation since it
presents a very good compromise between accuracy and computational time.

5.2.3 Results
Provided the discussion held in the last section, all the following results have been ob-
tained with 640× 320× 100 CVs in the streamwise (x), spanwise (y), and wall-normal (z)
directions respectively. A regular mesh has been used in both the x and y directions and
the cell sizes are such that ∆x+ = ∆y+ = 20. However, in the wall-normal direction and
in order to save computational time, a power-law stretching has been applied, leading to
∆z+

w = 0.7. Out of the 100 CVs used in the z direction, more than 55 are gathered in the
boundary layer (at the end of the computational domain), which ensures a very accurate
representation of the flow in this region of particular interest.

The aim of the present study being to evidence the existence (or the non-existence) of
low-frequency oscillations undergone by the shock system and the recirculation zone, it
is mandatory to consider very long integration times if one wants to capture those low
frequencies. Consequently, the simulations have been run for around 135 Flow-Through
times and the time-averaging has been performed on the last 32. In addition, all the
time-averaged variables have also been spanwise-averaged.

5.2.3.1 Instantaneous fields

An example of the vortical structures can be found in Figure 5.5. They are evidenced
using the Q-criterion, initially defined by Hunt et. al. [81] and discussed in [74]. The
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Figure 5.5: SingleRamp: Vortical structures evidenced by the Q-criterion, coloured by the
streamwise velocity. The shock system is highlighted by isosurfaces of div u.

Figure 5.6: SingleRamp: Instantaneous field of streamwise velocity in the ymax-plane
clearly showing the extent of the separation bubble (dark brown area).

instantaneous streamwise velocity field in the ymax-plane has been added to highlight
the extent of the separation zone and is repeated in figure 5.6 for clarity. Isosurfaces
of div u are finally used to show the shock system. As expected, the ramp angle-Mach
Number combination leads to the creation of a large recirculation bubble. This bubble
is bounded by two shocks: the perfectly 2D separation shock upstream and the highly
3D reattachment shock downstream. Initially, and because of the laminar aspect of the
incoming boundary layer, no vortical structures are encountered. Under the influence
of the separation shock, and the subsequent adverse pressure gradient, the separated
boundary layer undergoes its transition to turbulence before the compression corner.
That transition starts with the shedding of almost perfectly spanwise aligned vortices,
that will progressively fade and switch to an oblique mode of transition and eventually
form hairpin vortices, characteristics of wall turbulence.
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The evolution of the shed vortices, going from 2D rollers to highly 3D structures, can be
emphasised by extracting a numerical schlieren visualisation from the shedding plane
(Fig. 5.7). This technique, defined by S(x, y) = 0.8 exp

(
−15

|∇ρ|
|∇ρ|max

)
was first introduced

by Hadjadj and Kudryavtsev [71].

Figure 5.7: SingleRamp: Top view of the instantaneous numerical schlieren [71] extracted
in the shedding plane.

At first, this oblique sheddingwas thought to be a numerical artefact. However, a compar-
ison of the results obtained fromM1,M2 andM3 has demonstrated that this phenomenon
is mesh-independent (Figure 5.8).
Even if the physical origin of this phenomenon is not clear, it seems that it should be
sought on the side of the main modes of transition in compressible mixing layers [130]
or of the oblique shedding observed in the case of a circular cylinder [160] rather than of
the shifting of the Tollmien-Schlichting waves in a boundary layer [16], at least by the
fact that a separated boundary layer, with its subsequent shear layer, is closer to a wake
than to a non-separated boundary layer.

The time allocated to this thesis coming to its end, it has been decided not to investi-
gate this phenomenon further. However, it is of great interest and should definitely be
pursued in the future in order to increase our knowledge of boundary layer transition in
separated flows.

Another interesting phenomenon that has been evidenced by those Direct Numerical
Simulations is the presence, in the flow, of some kind of vorticity-free patches. In a fully
turbulent boundary layer, the vortices uniformly exist everywhere. On the opposite, the
transition from a laminar to a turbulent boundary layer happens through the creation
of vorticity spots, first described by Emmons [55] and observed by Cantwell et. al. [27]
(Figure 5.9).
In the present study, it has been evidenced that, for the considered Mach number and
ramp angle, the transition occurs in the shear layer just upstream of the separation.
As a consequence, it is expected that a quasi-turbulent boundary layer would reattach
and develop along the ramp. Figure 5.10 however shows that the shedding is not uniform
around the reattachment point but instead, some large zone of structure-free flow can oc-
cur every once in a while. This phenomenon is of practical interest because it introduces
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Figure 5.8: SingleRamp: Top view of the vortical structures obtained with three different
meshes. Top: M1, Middle: M2 and Bottom: M3. It is noteworthy that the transition occurs
slightly earlier forM1 than for the other two meshes.
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Figure 5.9: Visualisation of a turbulent spot in a transitional boundary layer (From [27]).

another highly-3D aspect to the flow and, more importantly, an additional low-frequency
phenomenon that could possibly interact with the breathing, the flapping or the vortex-
shedding [59]. Unfortunately, no physical explanation could have been found during the
present study and further simulations will be undergone in the near future to tackle that
problem.

Figure 5.10: SingleRamp: Top view of the vortical structures obtained at two different
time-steps.
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5.2.3.2 Mean fields

Themean streamwise evolutions of the wall pressure and friction coefficient are gathered
in Figure 5.11. After a short adaptation time, due to strong viscous phenomena at the
leading edge of the plate, the pressure reaches a quasi-constant value up to x

xc
= 0.25

(Figure 5.11-left). It then experiences a steep increase when crossing the separation
shock and reaches a plateau value of p

pw
' 1.4. This plateau spans up to x

xc
= 1.2 where

the reattachment shock further increases the pressure value to x

xc
= 2.5. This double

plateau pattern is coherent with the inviscid theory and is recovered as soon as a two-
strong-shock system is encountered [128]. It is noteworthy that in the turbulent case,
where the separation bubble is much smaller, the reattachment shock is weaker, and
therefore, the second pressure increase is smoother, but still present [21, 120].

Figure 5.11: SingleRamp: Mean streamwise evolution of the mean wall pressure (left) and
friction coefficient (right).

The analysis of the mean skin-friction coefficient (Figure 5.11-right) confirms the very
large extent of the bubble, that has previously been evidenced by the first pressure
plateau. Additionally, it can be observed that the separation bubble has a very pecu-
liar shape, consisting in three distinct zones. The first one is characterised by its very
large extent (spanning from x

xc
= 0.3 to x

xc
= 1.0) and very slightly negative values of Cf .

On the other hand, the last zone (1.1 < x

xc
< 1.3) is subjected to a very short but intense

backflow where Cf reaches its global minimum value. Between those two, a small zone of
slightly positive friction coefficients, indicating that in this portion, the flow is from left
to right, can be seen. Instead of being a unique separation bubble, this one can be defined
as two small bubbles of distinct sizes and contrarotative vortices. This shape, that can be
recovered in Figure 5.12, representing the negative-value contours of the mean stream-
wise velocity, is similar to the one described by Ben Hassan Saïdi when considering the
interaction between an oblique shock and a laminar boundary layer developing on a flat
plate [14].
The mean-field of the turbulent kinetic energy (TKE), defined by k = 1

2

(
u′iu
′
i

)
, using

Einstein summation, is represented in Figure 5.13. As expected when analysing Figure
5.5, TKE starts to be created at high levels in the shear layer above the separation zone.
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Figure 5.12: SingleRamp : Negative-value contours of the mean streamwise velocity
around the separation bubble.

It is the location where the initially laminar boundary layer undergoes its transition
towards turbulence and it corresponds to the place where the large spanwise vortex rolls
are created through a Kelvin-Helmholtz instability. The TKE then increases up to a
maximum, occurring around the reattachment point. After this location, and due to the
subsequent shock, the boundary layer thickens, leading to a decrease of TKE levels and
progressively relax to a quasi-fully turbulent regime, characterised by the presence of
hairpin vortices.

Figure 5.13: SingleRamp: Time- and spanwise-averaged turbulent kinetic energy field.

5.2.3.3 Probes and spectra

The successive streamwise positions of the separation and reattachment points, defined
by the cell indexes is and ir respectively, have been extracted from the computations of
the friction coefficient at each time step. They are such that :

Separation: Cis−1
f > 0 and Cis

f < 0

Reattachment: Cir
f < 0 and Cir+1

f > 0

The time evolutions of is and ir are represented in Figure 5.14. As far as the separation
is concerned, the oscillations have been found to be very small. Being limited to only
2 indexes (is = 103 and is = 104), it has then been concluded that those oscillations
were a numerical artefact due to the fact that the separation actually takes place inside
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Figure 5.14: SingleRamp: Time evolution of the separation point (left) and reattachment
point (right). is and ir are the cell indexes at which the separation and reattachment
occur, respectively.

the control volume. The reattachment point, on the other hand, is subjected to high-
frequency longitudinal oscillations, spanning over more than 10 CVs.
Those observations have led to the conclusion that, unlike in the turbulent case, the
breathing of the separation bubble is not recovered when considering an incoming vortex-
free laminar boundary layer since. Indeed, if applicable, both separation and reattach-
ment points would have been subjected to in-phase oscillations which is not the case here.

The normalized power spectra density obtained from Figure 5.14-right is plotted in Fig-
ure 5.15. Three distinct zones can easily be seen. The first one corresponds to the low
frequencies (St < 10−1). Between St = 10−1 and St = 3.10−1 a mid-frequency zone is
observed, with the higher peak values. Finally, the high-frequency zone spreads from
St = 3.10−1 to St = 8.10−1. Comparing to the physical analysis of Section 5.1, it ap-
pears that those three zones match with the range of the breathing, flapping and vortex-
shedding. It has hence been demonstrated that the reattachment point, in the laminar
case, is subjected to the same solicitations as in the turbulent case, unlike the separation
point.

The biggest mistake would have been to conclude that the breathing of the separation
bubble, not being observed in the laminar case, is essentially due to the vortical struc-
tures in the incoming boundary layer. A way to disprove this conclusion is to analyse
the time evolution of any quantity at some points located in the separation bubble, close
to the separation and reattachment point. Two candidates have been chosen and their
locations can be seen in Figure 5.3. The first probe is located just downstream the sep-
aration point (x1

xc
= 0.45) at a distance from the wall z+

1 ' 15. The position of the second

probe, in the vicinity of the reattachment point, is such that x2

xc
= 1.33 and z+

2 ' 15. Both
probes are located at midspan. The time evolution of the streamwise velocity and the
subsequent Power Spectra Density are gathered in Figure 5.16. The signal from probe
2 is quite representative of a turbulent velocity signal. The oscillations contain a lot
of different frequencies and amplitudes. This is confirmed by the analysis of the power
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Figure 5.15: SingleRamp: Normalized Power Spectra Density obtained from the time
evolution of the reattachment point (Figure 5.14.right)

spectra density where, as expected from the behaviour of the reattachment point, all
the characteristic frequency of breathing, flapping and shedding are recovered. With re-
spect to Figure 5.15, it is noteworthy that the spectrum obtained with a velocity signal
is fuller than the one from the location of the reattachment point. This is due to the
turbulent aspect of the flow away from the wall and this is particularly noticeable in the
high-frequency zone corresponding to the shedding. In this part of the spectrum, much
more frequencies are indeed found, mainly because of the randomness of the shedding
in a turbulent framework.
The most interesting result concerns probe 1. As it has been written earlier, no evidence
of any oscillations of the separation point has been found. However, when studying the
spectrum coming from a probe close to this point, it is clear that all the frequency in-
formations is propagated upstream up to this peculiar point. Indeed, except for a small
attenuation of the peaks related to the vortex-shedding, all three unsteady phenomena
are recovered. This is a fundamental result in the understanding of the bubble dynamics.

5.2.3.4 Conclusion

It has been evidenced that the phenomenon known as the breathing of the separation
bubble, omnipresent in the turbulent case, is not recovered when an incoming laminar
boundary layer is considered, even if the reattachment shock has been shown to oscillate
at similar frequencies. It was first suspected that the physical phenomenon involved in
the breathing could be the presence of coherent structure in the incoming boundary layer.
A thorough study of the velocity signal coming from probes located in the vicinity of the
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Figure 5.16: SingleRamp: Time evolution of the streamwise velocity and the susbequent
Normalized Power Spectra Density obtained from two probes located in the separation
bubble, in the vicinity of the separation (top) and reattachment (bottom) points.

separation point has demonstrated that, even if this point is fixed at the same location
over time, it receives all the frequency information related to the breathing, flapping and
vortex-shedding. Besides the absence of vortical structures, the second main difference
between a laminar and a turbulent boundary layer lies in their ability to separate. It is
indeed well-known that the laminar boundary layer is more inclined to separate from the
wall than their turbulent counterpart. As a consequence, the extent of the separation
bubble in this study (several dozens of boundary layer thicknesses) is much larger than
in the classical turbulent compression ramp (only a few boundary layer thicknesses).
During its travel upstream from the reattachment point towards the separation point,
the information energy is damped through viscous dissipation. In the turbulent case,
where the distance is rather small, the damping is also small and it does not have any
consequences. On the contrary, in the laminar case, and even if it reaches the separation
point, the information does not have enough energy to make it oscillate. The origin of
the breathing is therefore to be sought in the dynamics of the shear layer instead of in
the vortical structures upstream of the compression corner.
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5.3 Compression-Expansion Ramp
In an effort to test the code’s ability to handle complex geometries, the case of a compression-
expansion ramp has been considered. In its first part (x < 8.4 mm), this test-case is in
almost every point identical to the compression ramp studied in the previous section.
All the flow parameters (Table 5.1)as well as the cell-sizes are the same, resulting in a
41-million-CV mesh (1, 280× 320× 100). The only difference comes from the use of a non-
orthogonal mesh in the inclined portion, as previously discussed in Section 4.4. In order
to create an expansion corner, a horizontal flat plate is added for 8.4 mm < x < 16.8 mm.

The instantaneous coherent structures are represented in Figure 5.17, using the Q-
criterion coloured by the streamwise velocity. All the features described in the previ-
ous section are recovered here: the transition occurring in the shear layer, the oblique
shedding, the highly 3D reattachment shock, the relaxation towards a fully turbulent
boundary layer. . . .

Figure 5.17: CompExp: Vortical structures evidenced by the Q-criterion, coloured by the
streamwise velocity. The shock system is highlighted by isosurfaces of div u.

Because of the outwards angle located at xe = 8.4 mm, the flow experiences a smooth
deviation through a fan of expansion waves. As a result, the velocity is progressively in-
creased at the expense of all the thermodynamic variables (pressure, density, and tem-
perature). This phenomenon is clearly visible in Figure 5.18, representing a zoom of
the vortical structures around the expansion corner, where the lighter colour indicates
a higher velocity. That acceleration also leads to the elongation of the vortices in the
streamwise direction.

The mean streamwise velocity contours (Fig. 5.19) show the complete shock system, con-
sisting in a weak leading edge shock, followed by the separation shock, the reattachment
shock, and finally the fan of expansion waves. The recirculation zone (in dark brown),
very similar to the one obtained in the SingleRamp configuration, is well defined. The
thickening of the boundary layer, in the second half of the domain, is also clearly visible,



5.3. COMPRESSION-EXPANSION RAMP 111

Figure 5.18: CompExp: Vortical structures evidenced by the Q-criterion, coloured by the
streamwise velocity. Zoom on the expansion corner.

as the turbulent boundary layer develops along the flat part of the compression-expansion
ramp.

Figure 5.19: CompExp: Time- and spanwise-averaged streamwise velocity contours.

Themean, spanwise-averaged, streamwise evolution of thewall-pressure and skin-friction
coefficient are gathered in figure 5.20. The result for the SingleRamp case have been in-
cluded for comparison. As expected by the highly supersonic aspect of the flow, the pres-
ence of the expansion corner has no influence whatsoever on the upstream wall pressure
distribution. The flow being supersonic everywhere, except in the thin subsonic part of
the boundary layer, very close to the wall, it is not possible for the flow to have any in-
formation about the upcoming expansion corner. As a consequence, the flow in the first
half of the domain is almost identical to the one observed in the SingleRamp case. It is
noteworthy that the friction coefficient is in excellent agreement for x < xc but exhibits
a larger, yet small, difference from the SingleRamp results in the ramp part. As a first
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guess, this has been linked to the use of a non-orthogonal mesh but this should be in-
vestigated further. On the other hand, the steep peak located at x = xe is due to a poor
treatment of the expansion corner in the computation of the wall-normal derivatives.
Finally, it seems obvious from the shape of the friction coefficient for x > xe that the
turbulent, zero-pressure-gradient regime has not been entirely reached by the boundary
layer. Again, further investigations, involving for instance the plots of mean velocity pro-
files, Reynolds stresses or spectra, are needed in order to conclude with respect to those
turbulent aspects.

Figure 5.20: CompExp: Streamwise evolution of the spanwise-averaged wall-pressure (left)
and friction coefficient (right). The results from the SingleRamp configuration have been
plotted for comparison.

5.4 Conclusion
In this chapter, Chorus has been used to performed Direct Numerical Simulations of the
laminar flow around two geometries: a compression ramp (SingleRamp) and a compression-
expansion ramp (CompExp). Those two cases have been chosen for their real practical in-
terest since they can be found in almost every supersonic configurations.

Thanks to those highly-resolved, high-order simulations, it has been evidenced that in
the SingleRamp configuration, and unlike in the turbulent case, the separation bubble in-
duced by the ramp is not subjected to the breathing phenomenon, a succession of global
shrinkage and enlargement phases. Alternatively, the separation shock is fixed in space
while only the reattachment shock oscillates. It has been however demonstrated, that
even if the separation shock does not move, all the frequency information associated to
the breathing reaches it. As a consequence, the old mystery of the physical cause of the
low-frequency streamwise oscillations of the separation zone have been solved since all
the physical analysis performed in this study relates those oscillations to the vortex shed-
ding in the shear layer.

Even if the physical analysis has not yet been finished, the simulations on the CompExp

geometry has shown the ability of Chorus to simulate the supersonic turbulent flow in
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complex geometries with the presence of shocks. As expected, in the part of the flow
shared with the SingleRamp case, the results are very close to each other. Nevertheless,
further analysis is needed to improve our knowledge on the effect of the expansion corner
on the flow.



Conclusions and perspectives

Summary of the work and concluding comments

In aeronautical and aerospace applications, the supersonic flow phenomena know as
shock wave/boundary layer interactions have a clear appearance in almost all high-speed
flow situations. The transonic flow over an airfoil, supersonic flow over a flat plate, over
a compression ramp, and inside an air-intake, a nozzle, and a diffuser are well-known
examples of these types of interactions. The interaction between a shock wave and a
boundary layer provokes, under certain circumstances (high deflection angle or Mach
number) a premature separation. The separation could create an unsteady recirculation
bubble and, subsequently, a complex shock waves system consisting of the separation
and reattachment shocks as well as a fan of expansion waves as well as shear layer. The
interaction can also promote an early transition from laminar to turbulent flow. The os-
cillations in the recirculation bubble as well as in the subsequently reflected shock were
noticed around the separation point in the form of low-frequency streamwise motion that
could develop over some tenth of boundary layer thickness. The source of these oscilla-
tions is still not completely understood, but there are two strong premises which indicate
that either it could be due to the random structures in the incoming boundary layer or
to the shedding of coherent structures (vortices) in the mixing/shear layer downstream
of the separation point. There are several studies in the past that concerned the SWBLI
unsteadiness by dealing with the turbulent boundary layer and only a few studies deal-
ing with the laminar boundary layer. Some of the previous studies concluded that the
low-frequency streamwise motion is likely to be associated with the irregular structures
in the incoming boundary layer.

The objective of the present thesis work was to provide a better insight into the SWBLI
unsteadiness due to the low-frequency streamwise oscillations of the separation bub-
ble. In order to investigate this low-frequency motion, the numerical simulation of the
interaction between the shock wave and the laminar boundary layer in complex geome-
tries has been carried out. To perform those simulations, a modified numerical approach
for curvilinear coordinate, implemented in an in-house parallel (MPI) Finite-Volume
based DNS/LES solver (Chorus ) developed at LIMSI-CNRS is used. A Monotonicity-
Preserving shock-capturing scheme, based on the Lax-Wendroff method through a 7th
order accurate coupled space and time approximations, is used for the convective fluxes
of the Navier-Stokes equations. The diffusive fluxes are discretized by a classical second-
order centered scheme. The code was initially built for simple geometries discretized
with regular cartesian coordinates. The ability of the code dealing with curvilinear co-
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ordinates for treating supersonic flows in relatively "complex geometries" with regard to
high time and memory consuming DNS calculations were never tested before.

The first part of the thesis work was dedicated to the validation of the modified numer-
ical approach employing high order scheme. The influence of the mesh distortion (hy-
perbolic tangent-distorted mesh and sine-distorted mesh) has been analysed for three
well-documented test cases (Advection-diffusion case, Taylor-Green vortex, and the in-
teraction between a weak shock and a temperature spot). The errors introduced by dif-
ferent types of deformation for the three test cases dealing with advection, turbulence,
and shock wave were quantified. The errors created by the deformation of the mesh were
found comparatively low if the control volumes stay close to a parallelepiped. A signif-
icant rise has been seen due to the introduction of the non-orthogonality of the mesh.
All the results indicated that the modified numerical scheme accurately predicts the tur-
bulent aspects and the strong capacity of the monotonicity-preserving (MP) method to
capture discontinuity without any unrealistic oscillations in the solution.

The second part of the thesis work was the validation of the code in the framework of su-
personic flows around a compression corner, which is the core of the present dissertation
before innovative DNS is performed. The validation studies have been carried out for the
case of both inviscid and viscous flows over a compression ramp and the comparison with
theoretical as well as numerical data has been presented. This comparison has shown
that the results obtained with Chorus code are in good agreement with the reference
data. We also validated this Chorus code with our own test case using extensively tested
supersonic flow solver, rhoCentralFoam of the OpenFOAM open-source numerical pack-
age. The results obtained have shown a rather good agreement, provided the differences
in the two numerical approaches and it has allowed us to considered Chorus as validated
for Direct Numerical Simulations of compressible flows with shocks in complex geome-
tries.

Consequently, the last part of the thesis deals with the physical analysis of the flow cre-
ated by an incoming laminar boundary layer and developing around two geometries: a
classical compression ramp and a compression-expansion ramp. As said earlier, the goal
of those simulations was to determine whether the low-frequency oscillations of the recir-
culation zone can be related to the coherent structures in the incoming boundary layer.
The results have demonstrated that, for both the configurations, the separation shock IS
NOT subjected to the longitudinal oscillations.

By analysing the instantaneous fields, it was found that the large recirculation bubble is
bounded by two shocks: the perfectly 2D separation shock upstream and the highly 3D
reattachment shock downstream. Also, two important phenomena have been evidenced
in the present study. The first one is the shedding of almost perfectly spanwise aligned
vortices at the beginning of the transition, that will progressively fade and switch to
an oblique mode of transition and eventually form hairpin vortices. However, no physi-
cal explanation could have been found in the present study but it seems that it should be
sought on the side of themainmodes of transition in the compressiblemixing layers [130].
Another important phenomenon is the zone of vorticity-free flow in the vortical shed-
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ding that occurs in the shear layer around the reattachment point. This phenomenon
is of practical interest because it introduces another highly-3D aspect to the flow and,
more importantly, an additional low-frequency phenomenon that could interact with the
breathing, the flapping, or the vortex-shedding [59]. Unfortunately, no physical explana-
tion could have been found in the present study.

The analysis of the mean skin-friction coefficient confirms the large extent of the recir-
culation bubble. Also, it can be observed that the separation bubble has a very peculiar
shape, consisting of three distinct zones. Instead of being a unique separation bubble,
this one can be defined as two small bubbles of distinct sizes and contrarotative vortices.
The similar shape of the recirculation bubble is described by Ben Hassan Saïdi [14] when
considering the interaction between an oblique shock and a laminar boundary layer de-
veloping on a flat plate. The analysis of mean turbulent kinetic energy confirms the pres-
ence of the large spanwise vortex rolls which are created through a Kelvin-Helmholtz
instability in the shear layer above the recirculation bubble. Also, the same analysis
confirms the relaxation towards a fully turbulent boundary layer characterized by the
presence of hairpin vortices downstream of the reattachment point.

Three distinct frequency zones have been seen in the normalized power spectra density
analysis. The first one corresponds to the low frequencies (St < 10−1), the second one
corresponding to medium-frequency zone is observed between St = 10−1 and St = 3.10−1,
and the final one corresponding to the high-frequency zone spreads from St = 3.10−1 to
St = 8.10−1. It appears that those three zones match with the range of the breathing,
flapping, and vortex-shedding after comparing with the dynamics of the recirculation
bubble. It has hence been demonstrated that the reattachment line, in the laminar case,
is subjected to the same solicitations as in the turbulent case, unlike the separation line.
However, a thorough study of the velocity signal coming from probes located in the vicin-
ity of the separation point has demonstrated that, even if this point is fixed at the same
location over time, it receives all the frequency information related to the breathing, flap-
ping, and vortex-shedding. Besides the absence of vortical structures, the second main
difference between a laminar and a turbulent boundary layer lies in their ability to sepa-
rate. It is indeed well-known that laminar boundary layers are more inclined to separate
from the wall than their turbulent counterpart.

Finally, this study concluded that the absence of oscillations in the laminar case is not, as
originally thought, due to the absence of coherent structures in the incoming boundary
layer but rather to the fact that, in the laminar case, the separation bubble extent is too
large. As a consequence, even if the perturbations that make the bubble oscillate in the
turbulent case are present for the laminar boundary layer, they are damped in such a
way that they are not able to move the shock system and/or the recirculation zone. Also,
the simulations for the compression-expansion ramp has shown the ability of Chorus to
simulate the supersonic laminar/turbulent flow in complex geometries with the presence
of shocks and flow expansion. However, the physical analysis has not yet been finished,
as expected, in the part of the flow shared with the single-ramp case, the results are very
close to each other.
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Perspectives
Further simulations of the SWLBLI must be performed with smaller separation bubbles
(smaller Mach number or smaller ramp angle) in order to check if a smaller separation
zone is oscillating as expected from the conclusion of physical analysis in chapter 5. More-
over, further laminar simulations are needed with different Reynolds numbers (larger or
smaller ramps) to check if the transition process is involved in any way in the breathing.
In the present study, two interesting phenomena related to the instantaneous coherent
structures have been evidenced which are known as oblique shedding and the presence of
regions of vortex free flow in the flow-field. Unfortunately, no physical explanation could
have been found during the present study and further simulations will be undertaken in
the near future to tackle that problem. In the context of turbulent flow, simulations will
be performed by using Synthetic Eddy Method developed by Ben Hassan Saïdi [14] for
the single ramp case. As it is difficult to perform experiments with a laminar boundary
layer in the ramp case, the implementation of the SEM will also be used to validate the
code with experiments in the turbulent case.
It would be also interesting to perform the simulations of more complex geometries, to
check if the same dynamical behaviour (Görtler vortices) is present and could be repli-
cated using the numerical approach used in this present study. In addition, direct nu-
merical simulation will be carried out for over-expanded generic nozzle flows.
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Titre: Simulations numériques de l’interaction onde de choc-couche limite en géométrie
complexe

Mots clés: Mécanique des fluides, Ecoulements compressibles, Simulations Numériques Di-
rectes, Simulations des Grandes Echelles, Calcul Haute Performance, Maillages curvilignes

Résumé: L’objectif du présent travail de
thèse est de fournir une meilleure compréhen-
sion des phénomènes physiques responsables des
oscillations longitudinales basse fréquence de la
bulle de séparation observées dans les écoule-
ments supersoniques. Afin d’étudier ce mouve-
ment à basse fréquence, des calculs (DNS) de
l’interaction entre l’onde de choc et la couche
limite laminaire dans des géométries complexes
ont été réalisés. Pour effectuer ces simulations,
la prise en compte des coordonnées curvilignes
a été implémentée dans le solveur CHORUS
massivement parallèle (MPI), basé sur la méth-
ode des volumes finis et développé au LIMSI-
CNRS. La première partie manuscrit est la val-
idation de l’approche numérique. L’influence
de la distorsion du maillage a été analysée à
partir de plusieurs cas-test. Les erreurs intro-
duites par différents types de déformation pour
les trois cas-test considérés (advection, turbu-
lence et écoulement avec onde de choc) ont été
analysées. Dans la mesure où les volumes de
contrôle restent proches d’un parallépipède, il a
été montré que les erreurs dues à la déformation
restaient faibles. Dans certains cas, il a été ob-
servé que l’introduction d’une non-orthogonalité
du maillage entrainait une augmentation signi-
ficative de ces erreurs. La deuxième partie con-
cerne la validation du code dans le cadre de
l’écoulement supersonique autour d’une rampe
de compression, qui est le cœur de la présente
étude. Les validations ont été réalisées dans
le cas d’écoulements non visqueux et visqueux
sur une rampe de compression et la comparai-
son avec des données théoriques et numériques
a été présentée. Cette comparaison a montré
que les résultats obtenus avec le code CHO-
RUS sont en bon accord avec les données de
référence. Cependant, ces études sont assez an-
ciennes et de nombreux progrès ont été réalisés
dans les méthodes numériques pour les simu-
lations d’écoulements à grande vitesse. Mal-
heureusement, il n’y a que peu d’études ré-

centes concernant des simulations ou des expéri-
ences d’écoulement entièrement laminaire au-
tour de rampes ou d’autres géométries com-
plexes qui auraient pu aider à évaluer la capacité
de Chorus à calculer de tels ´écoulements. Il a
donc été décidé de créer notre propre cas-test à
l’aide d’un solveur de flux supersonique large-
ment testé, rhoCentralFoam d’OpenFOAM. Les
résultats obtenus ont montrés un assez bon ac-
cord au vu des différences fondamentales entre
les deux approches. Ceci nous a donc permis
de considérer que le code Chorus était validé et
pouvait, avec une grande confiance, être utilisé
pour réaliser des DNS dans le cadre d’ écoule-
ment compressibles autour de géométries com-
plexes. En conséquence, le dernier chapitre
s’est attelé à l’analyse physique de l’écoulement
crée par le développement d’une couche lim-
ite laminaire autour de deux géométries: une
rampe de compression classique et une rampe
de compression-détente. Le but de ces simula-
tions était de déterminer si les oscillations basse
fréquence de la zone de recirculation pouvaient
être reliées à la présence de structures cohérentes
dans la couche limite incidente. Les résultats
ont montré que, dans les deux configurations
testées, AUCUNE oscillation n’est observée sur
le choc de décollement ou sur la bulle de recir-
culation. L’analyse des spectres obtenus grâce
à des sondes situées au voisinage du choc de
décollement a néanmoins mis en évidence que
toutes les fréquences associées aux oscillations
étaient présentes dans ces signaux. La conclu-
sion de cette étude est que l’absence des oscilla-
tions n’est pas, comme pensé initialement, due à
l’absence de structures tourbillonnaires dans la
couche limite incidente mais plutôt au fait que,
dans le cas laminaire, la taille de la zone de re-
circulation est extrêmement importante. Ainsi,
même si les perturbations responsables des os-
cillations dans le cas turbulent sont également
présentes en régime laminaire, elles sont trop
amorties pour pouvoir déplacer le choc de dé-
collement et/ou la zone de recirculation.
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Title: Numerical simulation of shock wave-boundary layer interaction in complex geome-
tries

Keywords: Fluid Dynamics, Direct Numerical Simulations, Large-Eddy Simulations, HPC,
Curvilinear meshes

Abstract: The objective of the present the-
sis work is to provide a better insight of the
SWBLI unsteadiness due to the low-frequency
streamwise oscillations of the separation bubble.
To investigate this low frequency motion, DNS
of the interaction between the shock wave and
laminar boundary layer in complex geometries
has been carried out. To perform those simula-
tions, a modified numerical approach for curvi-
linear coordinate, implemented in an in-house
parallel (MPI) Finite-Volume based DNS/LES
solver (CHORUS) developed at LIMSI-CNRS is
used. The first part of the thesis is the validation
of the modified numerical approach. The influ-
ence of the mesh distortion has been analyzed
from several test cases. The errors introduced
by different types of deformation for the three
test cases dealing with advection, turbulence,
and shock wave were identifiable. The errors
created by deformation of the mesh are found
comparatively low if the control volumes stay
close to a parallelepiped. In some cases, a signif-
icant rise has been seen due to the introduction
of the nonorthogonality of the mesh. The sec-
ond part is the validation of code in the frame-
work of supersonic flows around a compression
corner which is the core of the present disser-
tation. The validation studies have been car-
ried out for the case of both inviscid and viscous
flows over a compression ramp and the compar-
ison with theoretical as well as numerical data
has been presented. This comparison has shown
that the results obtained with CHORUS code
are in good agreement with the reference data.
However, those studies are rather old and a lot
of progress has been made in numerical methods
for high-speed flow simulations. Unfortunately,
there are only a few recent studies concerning
simulations or experiments of fully laminar flow
around ramps or other complex geometries that

could have helped to assess Chorus’ ability to
compute such flows. It has then been decided
to create our own test case using an extensively
tested supersonic flow solver, rhoCentralFoam of
the OpenFOAM open-source numerical package.
The results obtained provided the difference in
the two numerical approaches and allowed us to
consider Chorus as validated for DNS of com-
pressible flows with shocks in complex geome-
tries. Consequently, the last chapter deals with
the physical analysis of the flow created by a
laminar boundary layer developing around two
geometries: a classical compression ramp and
a compression-expansion ramp. As said earlier,
the goal of those simulations was to determine
whether the low-frequency oscillations of the re-
circulation zone can be related to the coher-
ent structures in the incoming boundary layer.
The results have demonstrated that, for both
configurations, the separation shock IS NOT
subjected to longitudinal oscillations. However,
when analysing the spectra from probes in the
vicinity of the separation point, it has appeared
that all the frequency information is contained
in those temporal signals. The conclusion of this
study is that the absence of oscillations in the
laminar case is not, as originally thought, due to
the absence of coherent structures in the incom-
ing boundary layer but rather to the fact that, in
the laminar case, the separation bubble extent
is too large. As a consequence, even if the per-
turbations that make the bubble oscillate in the
turbulent case are present for laminar boundary
layer, they are damped in such a way that they
are not able to move the shock system and/or
the recirculation zone. The next step to this
study would be to reduce either the freestream
Mach number or the ramp angle in order to have
a smaller recirculation bubble and check if the
motion appear in that case.
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