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Professeur, Université de Delft, Pays-Bas Président

Sandro Vaienti

Professeur des universités, Aix-Marseille Université Rapporteur
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Titre : Inégalités de concentration pour des états d’équilibre sur réseau et des systèmes dynamiques symbo-

liques

Mots clés : Inégalités de concentration, formalisme thermodynamique, mesures de Gibbs, systèmes sur

réseau, transition de phase, modèle d’Ising

Résumé : Cette thèse traite des propriétés de

concentration d’états d’équilibre pour des systèmes

sur réseau.

Dans le premier chapitre, on établit une relation

entre transitions de phase sur un espace général

de configurations et la perte de la concentration

Gaussienne. Plus précisément, nous montrons que

si un état d’équilibre associé à un potentiel inva-

riant par décalage et absolument sommable satis-

fait la concentration Gaussienne alors il est à fortiori

mélangeant et unique. On prouve ce théorème de

deux manières différentes. L’une utilise les grandes

déviations et l’autre est une conséquence d’un

théorème plus abstrait qui dit que si une mesure de

probabilité ergodique satisfait GCB alors elle a la pro-

priété d’entropie relative inférieure positive.

Ensuite, dans le but de clarifier le lien entre ces

concepts, nous étudions numériquement un modèle

physique particulier autorisant une transition de

phase. Comme candidat naturel, nous choisissons

de simuler le modèle d’Ising ferromagnétique avec

premiers voisins sans champ magnétique extérieur

en dimension deux. Nous évaluons les constantes

de la concentration grâce à la simulation d’ob-

servables classiques à toute température. Grâce

au comportement de ces paramètres, nous met-

tons spécialement en lumière le comportement de

concentration Gaussienne à toute température au

dessus de la température critique. Nous obser-

vons notamment la perte de la concentration Gaus-

sienne et nous analysons la divergence en loi de

puissance de la constante de concentration Gaus-

sienne à la température critique. Dans le but de

compléter l’étude, nous quantifions les fluctuations

d’observables d’intérêts dans le régime des basses

températures dans lequel les états d’équilibre (ou

phases) ne peuvent concentrer de la même manière.

Nous renforçons aussi les résultats théoriques

démontrés par J-R. Chazottes, P. Collet, F. Redig

ou une borne de concentration stretched-exponential

a été prouvé pour les phases en dessous de la

température critique. Enfin, nous déterminons le com-

portement des constantes de concentration en fonc-

tion de la température.

Par la suite, motivés par les simulations du chapitre

précédent, nous avons pour but de prouver que le

modèle d’Ising ferromagnétique avec ou sans champ

magnétique extérieur en dimension deux satisfait

une borne de concentration Gaussienne dans tout

le régime d’unicité sauf à la température critique

lorsque h = 0. La preuve se base sur plusieurs

résultats connus que nous devons assembler. Pour

ce modèle, nous utilisons le fait dans tout le régime

d’unicité les mesures de Gibbs de volumes finis as-

sociés au potentiel satisfont la condition de weak

mixing. Ensuite, on utilise un résultat général prouvé

par F. Martinelli, E. Olivieri, and R. H. Schonmann qui

dit que weak mixing est équivalent à strong mixing

pour tous les carrés pour des systèmes de spins sur

réseau en dimension deux. Cette condition implique

que l’unique mesure de Gibbs en volume infini sa-

tisfait une inégalité logarithmique de Sobolev. Afin

de terminer la preuve, nous prouvons que la propriété

précédente implique que l’état d’équilibre satisfait une

borne de concentration Gaussienne.

Nous dédions un chapitre à l’étude d’un système

dynamique symbolique unidimensionnel sur un al-

phabet fini: les chaı̂nes à liaisons complètes. Nous

étudions en particulier les propriétés de concentration

de l’unique état d’équilibre associé à un potentiel (ou

probabilité de transition) non-Hölderien satisfaisant la

condition de Walters. Pour des potentiels Hölderien

par rapport à la distance classique ou pour des po-

tentiels à variation exponentielle, nous savons qu’il

existe un unique état d’équilibre exponentiellement

mixing. De plus, Jean-René Chazottes et Sebastien

Gouezel ont prouvé qu’il satisfait GCB. Nos résultats

disent que GCB restent vrai pour une grande classe

de potentiels φ satisfaisant la condition de Walters qui

inclut la condition de variation sous-exponentielle.

Enfin, nous traitons un autre système dynamique

important que sont les automates cellulaires pro-

babilistes de voisinage fini. Cette étude aborde les

automates cellulaires probabilistes comme une per-

turbation d’automates cellulaires déterministes dans

un régime de haut bruit dans lequel la mesure de

Gibbs spatio-temporelle associée à la dynamique est

l’unique mesure invariante par la dynamique et inva-

riante par translation et a des propriétés de mélange

exponentiel. Dans ce contexte, nous prouvons que

cette mesure satisfait aussi une borne de concentra-

tion Gaussienne.
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Abstract : This thesis deals with concentration pro-

perties of equilibrium states for lattice systems.

In the first chapter, we establish a relation between

phase transitions on a general configuration space

and the loss of the Gaussian concentration bound.

More precisely, we show that if an equilibrium state

associated to a shift-invariant and absolutely sum-

mable potential satisfies a Gaussian concentration

bound then it is à fortiori mixing and unique. We prove

this theorem in two different way. One uses large de-

viations and the other one is a consequence of a

more abstract theorem which says that if an ergodic

probability measure satisfies GCB then it has the lo-

wer positive relative entropy property.

Thereafter, in view of clarifying the link between these

concepts, we study numerically a particular physical

model which allows phase transition to occur. As a

natural candidate, we chose to compute the nearest-

neighbor ferromagnetic Ising model without exter-

nal magnetic field in two dimensions. We evaluate

concentration constants through classical estimates

at all temperatures. Thank to the behavior of these pa-

rameters, at all temperatures above the critical one,

we emphasize that the Gaussian concentration holds.

We analyze the power-law divergence of the Gaus-

sian concentration constant at the critical temperature

and observe the loss of the Gaussian concentration.

To complete the study, we quantify the fluctuations of

observables of interest in the low-temperature regime

in which the equilibrium states (or phases) cannot

concentrate in the same way. We also reinforce the

theoretical results proved by J-R. Chazottes, P. Collet,

F. Redig where a stretched-exponential concentration

bound was proven for the Gibbs measure below the

critical temperature. To achieve this, we determined

the behavior of the concentration parameters accor-

ding to the temperature.

Later on and motivated by the simulations in the pre-

vious chapter, we aim to prove that for the 2D ferroma-

gnetic Ising model with or without external magnetic

field the Gaussian concentration bound holds in the

whole uniqueness regime except at the critical tem-

perature when h = 0. The proof is based on several

known results that we have to put together. For this

model, we first use the fact that in the whole unique-

ness regime the finite-volume Gibbs measures asso-

ciated to the potential satisfies the weak mixing condi-

tion. Then, we use a general result proved by F. Mar-

tinelli, E. Olivieri, and R. H. Schonmann which says

that weak mixing is equivalent to strong mixing for all

squares for 2D lattice spin systems. This condition

implies that the unique infinite-volume Gibbs measure

satisfies a logarithmic Sobolev inequality. To com-

plete the proof, we proved that the previous property

implies that the equilibrium state satisfies a Gaussian

concentration bound.

We dedicate a chapter to the study of an unidimen-

sional symbolic dynamics on a finite alphabet: chains

with complete connections. In particular, we study the

concentration properties of a unique equilibrium state

associated to a non-Hölderian potential (or transition

probability) satisfying a Walter’s condition. For Hölde-

rian potentials with respect to the classical distance or

for potentials with an exponential variation, we know

that there exists an exponentially mixing unique equi-

librium state. Moreover Jean-René Chazottes and

Sebastien Gouezel proved that it satisfies GCB. Our

results says that GCB remains true for a large sub-

class of potentials φ satisfying Walters condition which

includes the sub-exponential variation condition.

Finally, we deal with another important dynamical sys-

tem which is probabilistic cellular automata with finite

neighborhood. This study tackles the probabilistic cel-

lular automata as a perturbation of the determinis-

tic cellular automata in a high noise regime in which

the Gibbs measure associated to the dynamics is the

unique space-time invariant shift invariant measure

and has exponential mixing properties. In this context,

we prove that this measure satisfies also a Gaussian

concentration bound.

Institut Polytechnique de Paris
91120 Palaiseau, France
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Chapter 1

Introduction

The phenomenon we are interested in, which goes under the name of “con-

centration inequalities”, is that if a function of many “weakly dependent” ran-

dom variables does not depend too much on any of them, then it is concen-

trated around its expected value. Among the various areas of applications

(see [10, 31, 53]), it plays an important role in probability theory, statistics

and for our concern in statistical mechanics. Consider independent and iden-

tically distributed random variables {Êx, x œ Λn} taking values in {≠1, +1},

where Λn = [≠n, n]d fl Z
d is the discrete cube of volume (2n + 1)d. By the

law of large numbers, the sum 1
(2n+1)d

q
xœΛn

Êx converges to its expected

value (in this case 0) and its fluctuations are obviously included in an inter-

val of size O(nd). In fact, by application of the well-know Hoeffding theorem,

such an observable concentrates sharply around its mean in an interval of

size O(nd/2) with high probability:

P

Q
a

------
1

(2n + 1)d/2

ÿ

xœΛn

Êx

------
> u

R
b Æ 2 exp

A
≠u2

2

B

for all n Ø 1 and for all u > 0 (see [10]). When this bound holds, we say that

the measure P satisfies a Gaussian concentration inequality.

Besides, this phenomenon doesn’t hold only for linear functions of Êx’s

(like the sum above) but for a large class of non-linear functions F of the Êx’s.

Another interesting feature of concentration inequalities is that, unlike central

limit theorems or large deviation inequalities, they are non-asymptotic. By

non-asymptotic we mean that we allow the number of parameters to be large

but finite.

In the general case of dependent random variables, the situation is nat-

urally more complex but one may expect to have a Gaussian concentration

bound as above for weakly dependent random variables Êx’s (see [64, 63,

62, 74] for the Markovian case). In this thesis, we are interested in Gibbs

measures on a configuration space of the form Ω = SL where S is a finite

set and L = N or Z
d with d Ø 1. For L = N, R. Fernández and G. Mail-

lard studied the link between one-dimensional Gibbs measures associated to

a potential and the generalization of Markov chains known as “chains with

complete connections” (see [36]). These chains are defined by conditional

probabilities of observing the next symbol which may depend on the whole

“past”. In symbolic dynamics, such discrete-time stochastic processes are

known as “g-measures”. Although there exist equivalence statements under

some regularity conditions, in general g-measures and Gibbs measures are

1



not equivalent. Actually, in [34], the authors constructed a non-Gibbsian g-

measure and in [7], R. Bissacot E. Endo A. van Enter and A. Le Ny identified a

Gibbs measure which is not a g-measure. In this case, we adopt a dynamical

system approach and we exhibit conditions for which the associated unique

Gibbs measures satisfies a Gaussian concentration inequality.

We will first consider Gibbs measures on d-dimensional lattices. In the

previous example, the product measure can be identified as a Gibbs mea-

sure at infinite temperature on {≠1, +1}Z
d

where K is the magnetization in-

side the cube Λn namely
q

xœΛn
Êx/|Λn|. This Gaussian concentration bound

was first proved in [50] for various types of local function K and for potentials

satisfying Dobrushin’s uniqueness condition, with a constant explicitly related

to Dobrushin’s interdependence matrix. This covers, for instance, finite-range

potentials at sufficiently high temperature. Not surprisingly, one cannot ex-

pect that a Gaussian concentration holds for the (ferromagnetic) Ising model

at temperatures below the critical one, because of the surface-order large de-

viations of the magnetization (see [14] for more details). In [14], the authors

proved that a “stretched-exponential” concentration bound holds for the “+”

phase and the “≠” phase of this model at sufficiently low temperature. In fact,

we will prove that if there exist several equilibrium states for a potential, none

of them can satisfy a Gaussian concentration bound [19].

In the ferromagnetic Ising model in two dimensions, we could quantify

numerically the speed with which the Gaussian concentration constant di-

verges, when one approaches the critical point from above; this turns out

to be a power law in the temperature. A similar behavior is found for the

stretched-exponential concentration constant when one approaches the criti-

cal point from below. We simulated various type of observables K of the Êx’s

at different temperatures and estimated the concentration constant associ-

ated.

This numerical study paved our way for proving that the Gaussian con-

centration bound holds for all temperatures above the critical one. Let us also

mention that the proof relies on different mixing properties for the Gibbs state

and is only valid for finite-range discrete spin systems on the two dimensional

lattice.

We will also study the concentration properties of the one-sided shift on

SN associated to a potential satisfying Walters condition with sub-exponential

continuity rates. It is well-known that when the potential is Hölder with respect

to the usual metric on the configuration space there exists a unique equi-

librium state ([83, 11, 70]) and it satisfies a Gaussian concentration bound

(see [17]). In this context, the Ruelle-Perron-Frobenius operator (or transfer

operator) associated to the dynamics is quasi-compact and implies an expo-

nential decay of correlations. But when the quasi-compactness doesn’t hold

anymore, we obtain a sub-exponential decay of correlation which implies the

existence of a unique equilibrium state (see [66]). We will prove under a

summability condition on the coefficient which controls the decay of corre-

lation that a Gaussian concentration bound holds for the unique equilibrium

state (see [20]).

Finally, we deal with another important dynamical system which is proba-

bilistic cellular automata with finite neighborhood (see [58]). This study tack-

les the probabilistic cellular automata as a perturbation of the deterministic

cellular automata in a high-noise regime ([52]) in which the Gibbs measure

associated to the dynamics is the unique space-time invariant measure and

2



has exponential mixing properties. In this context, we prove that the spatio-

temporal measure satisfies a Gaussian concentration bound.

3
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Chapter 2

Setting

2.1 Configuration space

In this thesis, we are interested in models made of a configuration space of

the form Ω = SL where L = Z
d with d Ø 1 or L = N, and S is a non-empty

finite set. We endow Ω with the product topology that is generated by cylinder

sets. We denote by B the Borel ‡-algebra which coincides with the ‡-algebra

generated by cylinder sets.

An element x of Z
d (hereby called a site) can be written as a vector

(x1, . . . , xd) in the canonical base of the lattice Z
d. Let ÎxÎŒ = max1ÆiÆd |xi|

and ÎxÎ1 = |x1| + · · · + |xd|. If Λ is a finite subset of Zd, denote by |Λ| its

cardinality and diam(Λ) = max{ÎxÎŒ; x œ Λ} its diameter.

We consider the following distance on Ω: For Ê, ÊÕ œ Ω, let

d◊(Ê, ÊÕ) = ◊k where k = min {ÎxÎŒ : Êx ”= ÊÕ
x}. (2.1.1)

where ◊ œ (0, 1) is some fixed number. This distance induces the product

topology and it is well-known that Ω is a compact metric space.

If Λ is a finite subset of Zd, we will write Λ b Z
d. For Λ µ Z

d, we denote

by ΩΛ the projection of Ω onto SΛ. Accordingly, an element of ΩΛ is denoted

by ÊΛ and is viewed as a configuration Ê œ Ω restricted to Λ. For σ, η œ Ω,

we denote by σΛηΛc the configuration which agrees with σ on Λ and with η
on Λ

c. We denote by BΛ the ‡-algebra generated by the coordinate maps

Ê ‘æ Êx when we restrict x to Λ. We need to define centered “cubes”: for

every n œ Z+, let

Λn = {x œ Z
d : ≠n Æ xi Æ n, i = 1, 2, · · · , d}.

Given Λ µ Z
d, an element pΛ of SΛ is called a pattern with shape Λ, or simply

a pattern. We will write pn instead of pΛn
. We will also consider elements

of SΛ as configurations restricted to Λ. We will simply write Ê instead of ÊΛ

since we will always precise to which set Ê belongs. A pattern pn œ SΛn

determines a cylinder set [pn] = {Ê œ Ω : ÊΛn
= pn}. More generally, given

Λ b Z
d and C µ SΛ, let [C] = {Ê œ Ω : fiΛ(Ê) œ C} where fiΛ is the projection

from Ω onto SΛ.

2.2 Basics of ergodic theory

We recall basic results from [44]. We denote by M (Ω) the set of probability

measures. Let us notice that since Ω is compact, then M (Ω) is also compact
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in the weak topology. Recall that in this setting, (µn)nœN weakly converges to

µ if for any Λ b Z
d and any C µ SΛ one has µn([C]) æ µ([C]). We recall

that we define the shift action (Tx, x œ L) as: for each x œ L, Tx : Ω æ Ω

and (Tx Ê)y = Êy≠x, for all y œ L. This is a continuous map. In fact, if L = N,

(Tx, x œ L) corresponds to the non-invertible shift map whereas, if L = Z
d,

it corresponds to the invertible one. For the sake of definiteness, we take

L = Z
d in the rest of this chapter. Since we will only deal with probability

measures, by “measure” we will always mean “probability measure”.

Definition 2.2.1.

A measure µ œ M (Ω) is shift-invariant or translation-invariant if µ¶T ≠1
x =

µ for all x œ Z
d, i.e., if µ(T ≠1

x A) = µ(A) for all A œ B. Equivalently

’x œ Z
d, ’f œ C (Ω)

⁄
f ¶ Tx dµ =

⁄
fdµ

where C (Ω) is the set of real-valued continuous functions on Ω. We

denote by MT (Ω) the set of shift-invariant Borel probability measures on

Ω.

The existence of such measures is ensured by the Krylov-Bogolubov the-

orem [44] which states that if T : Ω æ Ω is continuous, then MT (Ω) ”= ÿ.

We introduce some definitions for the study of measure-preserving trans-

formations and their basic properties.

Definition 2.2.2.

A measure µ œ M (Ω) is ergodic if µ(A) = 0 or µ(A) = 1 for all A œ B

such that T ≠1
x A = A for all x œ Z

d.

Ergodic measures are extreme points of MT (Ω) (see [27] Proposition 5.6

p. 24); we denote them by ex MT (Ω). The fundamental result in ergodic

theory is the following theorem.

Theorem 2.2.1 (Ergodic theorem,[44]).

Let µ œ M (Ω). For each f œ L1
µ the limit

f̄(Ê) := lim
næŒ

1

|Λn|

ÿ

xœΛn

f(TxÊ) (2.2.1)

exists µ-a.e. and in L1
µ. The function f̄ is T -invariant and for each T -

invariant set A µ Ω ⁄

A
f̄dµ =

⁄

A
fdµ. (2.2.2)

Moreover, if µ is ergodic, then

lim
næŒ

1

|Λn|

ÿ

xœΛn

f(TxÊ) =

⁄
fdµ, µ-a.e. (2.2.3)

The set of full µ-measure such that (2.2.3) holds depends on f . However,

since Ω is compact, the space C (Ω) is separable. Hence, when µ is ergodic,

there exists a measurable subset Gµ µ Ω with µ(Gµ) = 1 and such that

(2.2.3) holds for all f œ C (Ω) and for all Ê œ Gµ. (See [27, Proposition
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5.9 p. 25] for a proof.) This fact can be reformulated more compactly by

using empirical measures which are defined as follows: Given Ê œ Ω and any

n œ N, let

En(Ê) :=
1

|Λn|

ÿ

xœΛn

”TxÊ. (2.2.4)

Then, for µ-almost every Ê, one has

En(Ê)
næŒ≠≠≠æ µ (2.2.5)

where the convergence is in the weak topology on the space of probability

measures M (Ω).

One important characterization of the ergodic theorem is the following.

Proposition 2.2.1 ([44]).

For µ œ M (Ω) the following assertions are equivalent:

1. µ is ergodic.

2. For all f, h œ L2
µ

lim
næŒ

1

|Λn|

ÿ

xœΛn

⁄
(f ¶ Tx) · h dµ =

⁄
fdµ ·

⁄
h dµ. (2.2.6)

Definition 2.2.3 (Mixing).

A measure µ œ M (Ω) is mixing if ’A, B œ B the following holds

’Á > 0, ÷n > 0, ’x œ Z
d \ Λn, |µ(T ≠1

x A fl B) ≠ µ(A)µ(B)| < Á. (2.2.7)

Equivalently, one has

lim
ÎxÎŒæŒ

µ(T ≠1
x A fl B) = µ(A)µ(B). (2.2.8)

Remark 2.1. An immediate consequence is that mixing implies ergodicity.

Proposition 2.2.2 ([44]).

For µ œ M (Ω) the following assumptions are equivalent:

1. µ is mixing.

2. For all f, h œ L2
µ

lim
ÎxÎŒæŒ

⁄
(f ¶ Tx) · h dµ =

⁄
fdµ ·

⁄
h dµ. (2.2.9)

3. For all f œ L2
µ

lim
ÎxÎŒæŒ

⁄
(f ¶ Tx) · f dµ =

3⁄
fdµ

42

. (2.2.10)
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2.3 Gibbs measures and equilibrium states

We refer to [39] or [37] for details. We consider shift-invariant absolutely

summable potentials. More precisely, a potential is a family of functions

(Φ(Λ, ·)ΛbZd) such that, for each (nonempty) Λ b Z
d, the function ΦΛ : Ω æ R

is BΛ-measurable which simply means that the value of ΦΛ(Ê) is deter-

mined by ÊΛ, the restriction of Ê to Λ. By shift-invariance we mean that

Φ(Λ + x, TxÊ) = Φ(Λ, Ê) for all Λ b Z
d, Ê œ Ω and x œ Z

d (where Λ + x =
{y + x : y œ Λ}). Uniform summability is the property that

ÿ

ΛbZd

0œΛ

ÎΦ(Λ, ·)ÎŒ < Œ. (2.3.1)

We shall denote by BT the space of shift-invariant uniformly summable po-

tentials. An important subspace of BT is the space of finite-range poten-

tials. Finite-range means that there exists R > 0 such that Φ(Λ, Ê) = 0 if

diam(Λ) > R. The smallest such R is called the range of the potential. The

space of potentials of range R is denoted by BR, and the set of all finite-range

potentials is dense in BT .

Let Φ œ BT and Λ b Z
d, the associated Hamiltonian in the finite volume

Λ with boundary condition ÷ œ Ω is given by

HΛ(Ê|÷) =
ÿ

ΛÕbZd

ΛÕflΛ ”=ÿ

Φ(ΛÕ, ÊΛ÷Zd\Λ). (2.3.2)

The corresponding specification is defined as the family of probability kernels

“Φ = {“Φ

Λ
}ΛbZd such that

“Φ

Λ (Ê|÷) =
exp (≠HΛ(Ê|÷))

ZΛ(÷)
(2.3.3)

where ZΛ(÷) is the normalizing factor commonly called partition function in Λ.

We say that µ is a Gibbs measure for the potential Φ if “Φ

Λ
(Ê|·) is a version

of the conditional probability µ(ÊΛ|BΛc). Equivalently, this means that for

all A œ B, Λ b Z
d, one has the so-called “DLR equations” (in honor of

Dobrushin, Lanford and Ruelle)

µ(A) =

⁄
dµ(÷)

ÿ

ÊÕœSΛ

“Φ

Λ (ÊÕ|÷)1A(ÊÕ
Λ÷Λc). (2.3.4)

We denote by G(Φ) the set of Gibbs measures for a given absolutely

summable potential Φ. This set is never empty, but it may be not reduced

to a singleton. Let GT (Φ) = G(Φ) fl MT (Ω), that is, the set of shift-invariant

probability measures for Φ. This set is a Choquet simplex and may con-

tain several (extremal) elements. We denote by ex GT (Φ) the set of extreme

points which coincides with the set of ergodic Gibbs measures for Φ, that is,

ex GT (Φ) = GT (Φ) fl ex MT (Ω). Of course, when G(Φ) is a singleton, then the

unique Gibbs measure is shift-invariant and ergodic.

We now define relative entropy. Let µ, ‹ œ MT (Ω). For each n œ N, let

Hn(‹|µ) :=
ÿ

pnœSΛn

‹([pn]) log
‹([pn])

µ([pn])
.

We denote by log the natural logarithm.
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Definition 2.3.1.

Let µ, ‹ œ MT (Ω). The lower and upper relative entropies of ‹ with

respect to µ are defined by

hú(‹|µ) = lim inf
næŒ

Hn(‹|µ)

(2n + 1)d
, hú(‹|µ) = lim sup

næŒ

Hn(‹|µ)

(2n + 1)d
. (2.3.5)

When the limit exists, we put h(‹|µ) = hú(‹|µ) = hú(‹|µ).

It is well known that hú(‹|µ) and hú(‹|µ) are non-negative numbers. Note

that Hn(‹|µ) can be +Œ if µ([pn]) = 0 for some pn but this will not happen

when µ is fully supported. Let Φ œ BT and µ œ G(Φ). It is proved in [39] that

for any ‹ œ MT (Ω) we have

hú(‹|µ) = hú(‹|µ) = h(‹|µ) = P (Φ) +
ÿ

0œΛ

|Λ|≠1
⁄

Φ(Λ, ·)d‹ ≠ h(‹) (2.3.6)

where h(‹) is the entropy of ‹ and P (Φ) is the pressure of Φ defined as follows

h(‹) := lim
næŒ ≠ 1

(2n + 1)d

ÿ

pnœSΛn

‹([pn]) log ‹([pn])

P (Φ) := sup
‹œMT (Ω)

Q
ah(‹) +

ÿ

0œΛ

|Λ|≠1
⁄

Φ(Λ, ·)d‹

R
b .

Notice that, ‹ œ MT (Ω), h(‹|µ) is the same number for all µ œ GT (Φ), so

it is natural to define, for each ‹ œ MT (Ω),

h(‹|Φ) := h(‹|µ) where µ is any element in GT (Φ).

We recall the definition of equilibrium states.

Definition 2.3.2 (Equilibrium states).

Let Φ œ BT . A shift-invariant probability measure ‹ such that h(‹|Φ) = 0
is called an equilibrium state for Φ.

We have the following fundamental result which is usually referred to as

the variational principle for equilibrium states (see [39], Chapter 15, [72],Theorem

4.2).

Theorem 2.3.1 (Variational principle).

Let Φ œ BT . We have h(‹|Φ) = 0 if and only if ‹ œ GT (Φ). In particular,

GT (Φ) coincides with the set of equilibrium states for Φ.

Nearest-neighbor Ising model. First consider the nearest-neighbor ferro-

magnetic Ising model (S = {≠1, +1}) with d Ø 2:

Φ(Λ, Ê) =

Y
__]
__[

≠hÊx if Λ = {x}

≠JÊxÊy if Λ = {x, y} and Îx ≠ yÎ1 = 1

0 otherwise

(2.3.7)
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where J, h œ R represents respectively the interaction strength and the ex-

ternal magnetic field. We will always assume that J > 0 (the ferromagnetic

case of the Ising model). Consider the potential —Φ where — œ R+ is the

inverse temperature and the Gibbs measures µ+
—Φ

and µ≠
—Φ

obtained as the

infinite-volume limits of the corresponding specification with “+” and the “≠”

boundary conditions, respectively. There exists —c = —c(d) > 0 such that, if

— < —c then it is well-known that µ—Φ = µ+
—Φ

= µ≠
—Φ

is the unique ergodic

Gibbs measure and if — > —c then µ+
—Φ

and µ≠
—Φ

are distinct ergodic Gibbs

measures. For d = 2, for all — > —c, GT (—Φ) = {⁄µ+
—Φ

+(1≠⁄)µ≠
—Φ

: ⁄ œ [0, 1]}

(hence ex GT (—Φ) = {µ+
—Φ

, µ≠
—Φ

}).

Long-range Ising model. Consider the long-range Ising model where S =
{≠1, +1}, d = 1, and

Φ(Λ, Ê) =

Y
]
[

≠ ÊxÊy

|x≠y|– if Λ = {x, y} such that x ”= y

0 otherwise

with – > 1. If 1 < – Æ 2 then, there exists —c > 0 such that, for all — < —c,

µ+
—Φ

”= µ≠
—Φ

and ex G(—Φ) = {µ+
—Φ

, µ≠
—Φ

}. We refer to [68] for the relevant

references.

Potts model. Consider the nearest-neighbor Potts ferromagnet model for

which S = {1, · · · , N} for sufficiently large N œ N:

Φ(Λ, Ê) =

I
J1Êx=Êy if Λ = {x, y} and Îx ≠ yÎ1 = 1

0 otherwise

where J > 0 is the interaction strength. There exists 0 < —N < +Œ such that

|ex G(—N Φ)| = N +1, one of these measures being symmetric under spin flip,

|ex G(—Φ)| = N when — > —N and when — < —N , |ex G(—Φ)| = 1.

Dobrushin’s uniqueness regime. Let Φ œ BT and “Φ be the correspond-

ing specification. One says that “Φ satisfies Dobrushin uniqueness condition

if

c(“Φ) :=
ÿ

xœZd

C0,x(“Φ) < 1 (2.3.8)

where

Cx,y(“Φ) := sup
Ó

Î“Φ

{x}(·|Ê) ≠ “Φ

{x}(·|ÊÕ)ÎŒ : Ê, ÊÕ differ only at site y
Ô

.

Under this abstract condition valid in more general cases, there exists a

unique equilibrium state for Φ which we denote by µΦ (see [39], chapter 8

and [14]). An interesting sufficient condition for 2.3.8 to hold is that
ÿ

0œΛ

(|Λ| ≠ 1)”(Φ(Λ, ·)) < 2 (2.3.9)

where

”(Φ(Λ, ·)) = sup
Ê,ÊÕœΩ

|Φ(Λ, Ê) ≠ Φ(Λ, ÊÕ)|.

Condition (2.3.9) is satisfied by any finite-range potential —Φ provided that

— is small enough. This defines a “high-temperature” regime. When — is
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sufficiently small (high-temperature regime of the potential), we observe that

“—Φ satisfies Dobrushin uniqueness condition.

We now consider any potential such that Φ({x}, Ê) = ≠hÊx for all x œ Z
d

and h œ R (external magnetic field). If h is sufficiently large, then 2.3.9 also

holds. In fact the condition implying 2.3.9 reads

exp

Q
a1

2

ÿ

0œΛ:|Λ|>1

”(Φ(Λ, ·))

R
b ÿ

0œΛ

(|Λ| ≠ 1)”(Φ(Λ, ·)) < e|h| .

Finally, one can also check that this condition holds at low temperatures for

potentials with unique ground state , e.g., the nearest-neighbor Ising model

with non zero external magnetic field and sufficiently large —, or for large

enough |h| and for all —.
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Chapter 3

Concentration inequalities

3.1 Basics of concentration inequalities

We start by reviewing elementary facts about concentration inequalities. Let

(X ,A,P) be a probability space. We give several well-known inequalities to

estimate how a real-valued random variable X deviates from its expected

value E(X) , i.e., on how we can bound P(X ≠E(X) Ø u) and P(X ≠E(X) Æ
≠u) depending on the deviation u > 0.

An elementary but powerful device to quantify tail probabilities is Markov’s

inequality.

Theorem 3.1.1 (Markov’s inequality).

Let Z be a non-negative real-valued random variable and suppose that

E(Z) < +Œ. Then,

’u > 0, P(Z Ø u) Æ E(Z)

u
. (3.1.1)

A classical and easy improvement of this inequality can be achieved under

stronger integrability conditions on Z as follows.

Corollary 3.1.1.

Let „ be a non-negative and non-decreasing function defined on an in-

terval I µ R and Z a real-valued random variable taking values in I.

Then,

’u > 0, P(Z Ø u) Æ E(„(Z))

„(u)
. (3.1.2)

Chebyshev’s inequality follows directly from this corollary by taking „(u) =
u2 and Z = |X ≠ E(X)|:

’u > 0, P(|X ≠ E(X)| Ø u) Æ Var(X)

u2
.

This result applies in various cases requiring weak properties of random vari-

ables and it is a sufficient condition to prove for instance the weak law of

large numbers. For example, let’s consider independent and identically dis-

tributed random variables (Xi)1ÆiÆn and Z = X1 + · · · + Xn ≠ nE(X1) such

13



that Var(X1) < +Œ. In this case, Chebyshev’s inequality becomes

P

A-----
1

n

nÿ

i=1

Xi ≠ E(X1)

----- Ø u

B
Æ ‡2

nu2
.

where ‡2 = Var(X1). If one can prove the existence of moments of higher

order p > 2, then by setting „(u) = up, we would have a better estimate,

namely

P(|Z ≠ E(Z)| Ø u) Æ E(|Z ≠ E(Z)|p)

up
, u > 0.

If the random variable Z is such that E(|Z|p) < +Œ for all p > 0, then one

may choose the value of p which optimizes the upper bound. One can get an

improvement by using „(u) = e⁄u where ⁄ > 0. This is known as Chernoff’s

bounding method.

Proposition 3.1.1 (Chernoff’s inequality).

Let Z be a real-valued random variable such that E(e⁄Z) < +Œ for all

⁄ > 0. Then, for all u > 0

P(Z Ø u) Æ e≠⁄u
E(e⁄Z). (3.1.3)

Hoeffding inequality is an application of Chernoff’s inequality for sums of

independent bounded random variables.

Theorem 3.1.2 (Hoeffding’s inequality).

Let n Ø 1 and (Xk)1ÆkÆn be a sequence of independent real-valued

random variables such that, for all sequences (ak)1ÆkÆn, (bk)1ÆkÆn of

real numbers with ak < bk for all k Æ n, we have

’k, P(ak Æ Xk Æ bk) = 1. (3.1.4)

Letting

Sn =
nÿ

k=1

Xk (3.1.5)

we have, for all u > 0,

P (Sn ≠ E(Sn) > u) Æ exp

A
≠ 2u2

qn
k=1(bk ≠ ak)2

B
, (3.1.6)

P (Sn ≠ E(Sn) < ≠u) Æ exp

A
≠ 2u2

qn
k=1(bk ≠ ak)2

B
, (3.1.7)

P (|Sn ≠ E(Sn)| > u) Æ 2 exp

A
≠ 2u2

qn
k=1(bk ≠ ak)2

B
. (3.1.8)

Subsequently, Hoeffding and Azuma proved that the following general-

ization holds for martingales with bounded differences. Given a filtration

F = (F0 = {Ω, ÿ} µ F1 µ · · · µ Fn), let Z be a Fn-measurable real-valued

random variable. The main idea consists in writing Z as a telescopic sum of
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reverse martingale differences, i.e.,

Z ≠ E[Z] =
nÿ

i=1

Di (3.1.9)

where

Di = E[Z|Fi] ≠ E[Z|Fi≠1]. (3.1.10)

Let’s define di := supi Di ≠ infi Di. We have the following result.

Theorem 3.1.3 (Azuma-Hoeffding inequality).

Let Z be a martingale with respect to a filtration F = (F0 = {X , ÿ} µ
F1 µ · · · µ Fn). Then, for all ⁄ œ R,

E [exp (⁄(Z ≠ E(Z)))] Æ exp

A
⁄2

8

nÿ

i=1

d2
i

B
. (3.1.11)

In particular, for all u > 0,

P (|Z ≠ E(Z)| > u) Æ 2 exp

A
≠ 2u2

qn
k=1 d2

i

B
. (3.1.12)

Remark 3.1. One can always bound |di| by 2ÎDiÎŒ.

This Gaussian inequality has paved the way for the study of more general

functions than the sum of bounded random variables. The first step was real-

ized by McDiarmid who generalized Hoeffding’s inequality 3.1.2 considering

sufficiently “smooth” functions of independent random variables.

Theorem 3.1.4 (McDiarmid’s inequality).

Let n Ø 1, (Xk)1ÆkÆn be a sequence of independent random variables

taking values in some space X and K : X n æ R be a function. Assume

that there exists nonnegative constants ¸i with 1 Æ i Æ n such that for all

x1, · · · , xn, xÕ
i œ X , one has

|K(x1, · · · , xi, · · · , xn) ≠ K(x1, · · · , xÕ
i, · · · , xn)| Æ ¸i.

Then, for all ⁄ œ R,

E [exp (⁄(K(X1, · · · , Xn) ≠ E[K(X1, · · · , Xn)]))] Æ exp

A
⁄2

8

nÿ

i=1

¸2
i

B
.

In particular, for all u > 0,

P (|K(X1, · · · , Xn) ≠ E[K(X1, · · · , Xn)]| > u) Æ 2 exp

A
≠ 2u2

qn
k=1 ¸2

i

B
.

Remark 3.2. The regularity condition on K known as the bounded difference

property makes possible the application of McDiarmid’s inequality to non-

bounded random variables.

Inequality 3.1.4 is the prototype of what we are going to call Gaussian

concentration bound.
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Beyond the independent case, Markov chains were considered by K. Mar-

ton [62, 63, 64] and by P-M. Samson [74] where Gaussian concentration

bounds hold. We also refer to the book of R. Douc, E. Moulines, P. Priouret

and P. Soulier [30] for further details. Another setting where people proved

Gaussian concentration bounds for partially Lipschitz functions are hyperbolic

dynamical systems [17]. They showed that for sufficiently mixing invariant

measures, GCB holds. In particular, for Young towers, they deduced Gaus-

sian/polynomial concentration from the tails of the return time on the basis of

the tower.

In this thesis, we will pay attention to the dependent aspect of bounded

random variables distributed according to Gibbs measures. Indeed, we will

discard the unbounded aspect of random variables where GCB may not hold

even for sums. One of our motivations is to understand the loss of the Gaus-

sian concentration bound when the random variables become highly depen-

dent (for example in low temperature Ising model where we can’t control uni-

formly ÎDiÎŒ because of the correlations).

3.2 Known results for Gibbs measures

Recall that Ω = SZ
d

where S is a finite set. In this context, let K : Ω æ R be

a continuous function and x œ Z
d. The oscillation of K at x is defined by

”x(K) = sup {|K(Ê) ≠ K(ÊÕ)| : Ê, ÊÕ œ Ω differ only at site x}.

This is a quite natural object since, given Λ b Z
d and two configurations

Ê, ÷ œ Ω such that ÊΛc = ÷Λc , one has

|K(Ê) ≠ K(÷)| Æ
ÿ

xœΛ

”x(K)1{Êx ”=÷x}.

We shall say that K : Ω æ R is a local function if there exists Λ b Z
d (the

dependence set of K) such that for all Ê, ÂÊ, ‚Ê, K(ÊΛ ÂÊΛc) = K(ÊΛ ‚ÊΛc). (This

means that K is BΛ-measurable.) Equivalently, this means that ”x(K) = 0
for all x /œ Λ. It is understood that Λ is the smallest such set. Local functions

are continuous, hence bounded. (In fact, continuous functions are obtained

as uniform limits of local functions.)

We write δ(K) for the infinite array (δx(K), x œ Z
d), and let

Îδ(K)Î2
2 := Îδ(K)Î2

¸2(Zd) =
ÿ

xœZd

δx(K)2.

It is convenient to define the following set of all local functions. Let

L =
€

ΛbZd

LΛ (3.2.1)

where LΛ is the set of local functions whose dependence set is Λ.

3.2.1 Gaussian concentration bound

We can now define what we mean by a Gaussian concentration bound.
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Definition 3.2.1 (Gaussian concentration bound).

Let µ be a probability measure on (Ω,B). We say that µ satisfies a

Gaussian concentration bound if there exists D = D(µ) > 0 such that,

for all functions K œ L , we have

Eµ
#
exp (K ≠ Eµ[K])

$ Æ exp
1
DÎ”(K)Î2

2

2
. (3.2.2)

For the sake of brevity, we say that µ satisfies GCB(D).

We denote by Eµ the expectation with respect to µ. A key point in this defi-

nition is that D is independent of K, in particular it is independent of the size

of the dependence set of K. Inequality (3.2.2) easily implies the following tail

inequality that we will use several times.

Proposition 3.2.1.

If a probability measure µ on (Ω,B) satisfies GCB(D) then, for all K œ L

and for all u > 0,

µ
)
Ê œ Ω : K(Ê) Ø Eµ[K] + u

* Æ exp

A
≠ u2

4DÎ”(K)Î2
2

B
. (3.2.3)

Proof. If K œ L then, for any ⁄ > 0, ⁄K obviously belongs to L . Applying

Markov’s inequality and (3.2.2) we get

µ {Ê œ Ω : K(Ê) ≠ Eµ[K] Ø u} Æ exp (≠⁄u) Eµ
#
exp (⁄(K ≠ Eµ[K]))

$

Æ exp
1
≠⁄u + DÎ”(K)Î2

2 ⁄2
2

.

Minimizing over ⁄ yields (3.2.3).

Thus, looking for a Gaussian concentration bound consists in finding the

existence of a strictly positive constant D satisfying (3.2.2). In practice, get-

ting the optimal constant is out of reach.

Proposition 3.2.2.

If a probability measure µ on (Ω,B) satisfies GCB(D), then it satisfies

the variance inequality

Varµ(K) := Eµ[K2] ≠ (Eµ[K])2 Æ 2DÎ”(K)Î2
2 (3.2.4)

for all functions K œ L.

The proof goes roughly as follows, the details are left to the reader. Take

⁄ > 0 and apply (3.2.2) to ⁄K, subtract 1 on both sides and divide out by ⁄2

the resulting inequality. Then (3.2.4) follows easily by Taylor expansion and

letting ⁄ tend to 0.

Now, let’s give some examples.

Dobrushin’s uniqueness regime. The following theorem ensures that a

Gaussian concentration bound holds under Dobrushin uniqueness condition

2.3.8. It was proved in [50].
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Theorem 3.2.1 (GCB under Dobrushin’s uniqueness condition).

Let Φ œ BT and assume that the associated specification “Φ satisfies

Dobrushin’s uniqueness condition 2.3.8. Then µΦ satisfies GCB(D) with

D = (2(1 ≠ c(“Φ))2)≠1.

This holds for instance for any finite-range potential —Φ provided that

— > 0 is small enough. As a basic example, we mention the nearest-neighbor

ferromagnetic Ising model without magnetic field at sufficiently high tempera-

ture which is such that there exists —̄ < —c such that for all — < —̄, one has,

for all K œ L and for all u > 0

µ—Φ

)
Ê œ Ω : K(Ê) Ø Eµ—Φ

[K] + u
* Æ exp

A
≠(1 ≠ tanh —J)2u2

2Î”(K)Î2
2

B
.

Note that a Gaussian concentration bound does not only hold at high-

temperature regime but it can also hold at sufficiently low-temperature regime

with sufficiently large external magnetic field (see 2.3 and [14] for more details

and examples). We will prove in chapter 6 that, in dimension two, we have a

Gaussian concentration bound for all — < —c.

Remark 3.3 (The 2D Ising model at — = —c.).

It is known (see [[33] p. 172]) that for — = —c = log (1 +
Ô

2)/2, there is a

unique Gibbs measure µ—c such that

lim
næŒ

1

Λn
Varµ—c

Q
a ÿ

xœΛn

Êx

R
b = +Œ. (3.2.5)

Therefore, µ—c cannot satisfy a Gaussian concentration bound because, by

(3.2.4), one would have

lim sup
næŒ

1

Λn
Varµ—c

Q
a ÿ

xœΛn

Êx

R
b Æ 8D (3.2.6)

which contradicts (3.2.5). To obtain (3.2.6), apply (3.2.4) to

K(Ê) =
ÿ

xœΛn

fi{0}(TxÊ),

where fi{0}(Ê) = Ê0. Then use Lemma 4.1.1 to get

Varµ—c

Q
a ÿ

xœΛn

Êx

R
b Æ 8D|Λn|

for all n. Therefore, the Gibbs measure for the Ising model in dimension 2 at

critical temperature does not satisfy a Gaussian concentration bound. It does

not even satisfy the variance inequality (3.2.4).

Now, we give some applications and refer the reader to [14] for more

details and more applications.
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Empirical magnetization The magnetization is of particular interest in the

context of Gibbs measures. Let Λ b Z
d, we define the empirical magnetiza-

tion in Λ by

MΛ(Ê) =
ÿ

xœΛ

Êx.

We have the following theorem.

Theorem 3.2.2 ([14]).

Let Φ œ BT and assume that the associated specification “Φ satisfies

Dobrushin’s uniqueness condition 2.3.8. Then, for all Λ b Z
d, we have

µΦ

3
Ê œ Ω :

----
MΛ(Ê)

|Λ|
≠ EµΦ

[Ê0]

---- Ø u

4
Æ 2 exp

A
≠(1 ≠ c(“Φ))2

8
|Λ|u2

B
.

Speed of convergence of the empirical measure. The aim is to quantify

the speed of convergence of empirical measures in 2.2.5. We endow M (Ω)
with the Kantorovich distance dK defined by

dK(µ1, µ2) = sup {Eµ1 [G] ≠ Eµ2 [G] : G : Ω æ R such that G 1-Lipshitz} .

A function G : Ω æ R is 1-Lipschitz if |G(Ê) ≠ G(ÊÕ)| Æ d(Ê, ÊÕ) where the

distance d(·, ·) is defined in 2.1.1.

Theorem 3.2.3 ([14]).

Let Φ œ BT and assume that the associated specification “Φ satisfies

Dobrushin’s uniqueness condition 2.3.8. Denote by µΦ the correspond-

ing Gibbs measure. Then

µΦ

1
Ê œ Ω :

--dK(En(Ê), µΦ) ≠ EµΦ
[dK(En(·), µΦ) ]

-- Ø u
2

Æ 2 exp

A
≠(1 ≠ c(“Φ))2

2cd
|Λn|u2

B

for all n Ø 1 and for all u > 0, where cd is a constant only depending on

d.

Remark 3.4. For convenience, we decided to deal with empirical measures

on “cubes” but this theorem remains valid for all Λ b Z
d.

Bounding d̄-distance by relative entropy. Given n œ N, we define the non

normalized Hamming distance between Ê and ÊÕ in Ωn by

d̄n(Ê, ÊÕ) =
ÿ

xœΛn

1Êx ”=ÊÕ
x
.

Let µ, ‹ œ MT (Ω) and define the d̄-distance as follows.

d̄(µn, ‹n) = inf
PnœJT (µn,‹n)

⁄

Ωn

⁄

Ωn

d̄n(Ê, ÊÕ)dPn(Ê, ÊÕ)

where JT (µn, ‹n) denotes the set of all shift-invariant couplings of µn and ‹n.

By [73], it follows that d̄(µn, ‹n) normalized by (2n + 1)d converges to a limit

that we denote by d̄(µ, ‹). This limit defines a distance on the set on MT (Ω).
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Theorem 3.2.4 ([14]).

Let Φ œ BT and assume that the associated specification “Φ satisfies

Dobrushin’s uniqueness condition 2.3.8. Then for every shift-invariant

probability measure ‹

d̄(µΦ, ‹) Æ
Ô

2

1 ≠ c(“Φ)

Ò
h(‹|µΦ).

3.2.2 Moment concentration bounds

For the Ising model (d Ø 2) without external magnetic field, at sufficiently low

temperature, one cannot expect Gaussian concentration inequalities because

it would contradict the “surface-order” large deviation for the magnetization.

However, the authors of [13] showed that one can control all moments and

deduce that moment concentration bounds hold. We give the general form of

such bound.

Definition 3.2.2 (Moment concentration bound).

Let µ be a probability measure on (Ω,B). Given p œ N, we say that µ
satisfies a moment concentration bound of order 2p with constant C2p =
C2p(µ) > 0 (abbreviated MCB(2p,C2p)) if, for all function K œ L , we have

Eµ
#
(K ≠ Eµ[K])2p $ Æ C2pÎ”(K)Î2

2. (3.2.7)

In the same vein as the proposition 3.2.1, we have for all u > 0

µ
)
Ê œ Ω : |K(Ê) ≠ Eµ[K]| Ø u

* Æ C2pÎ”(K)Î2p
2

u2p
. (3.2.8)

Theorem 3.2.5 ([13, 14]).

Let µ+
—Φ

be the plus-phase of the low-temperature Ising model. There

exists —̄ > —c, such that for each — > —̄, there exists a positive sequence

(C2p(—))pœN such that µ+
—Φ

satisfies MCB(2p,C2p(—)) for all p œ N.

For this model, one may wonder whether the previous theorem implies a

stronger statement like a Gaussian concentration bound. In fact, one cannot

infer a Gaussian concentration bound because C2p is of the form p2pGp for

some constant G > 0 depending on K but not of p (see Theorem 3 in [13,

14]). For some C2p which does not “grow too fast”, Gaussian concentration is

equivalent to moment concentration for all p œ N (see [10]).

3.2.3 Stretched-exponential concentration bound

For the Ising model at sufficiently low temperature, it turns out that the control

of all moments leads to a stretched-exponential concentration bound which

we define as follows. Let 0 < fl < 1 and define the Young function by Mfl :
R æ R

+ such that for all x œ R

Mfl(x) := e(|x|+hfl)fl ≠ ehfl
fl
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where hfl =
1

1≠fl
fl

2 1
fl
. We also define the Luxemburg norm with respect to Mfl

of a real-valued random variable K as

ÎKÎMfl = inf

;
⁄ > 0 : E

5
Mfl

3
K

⁄

46
Æ 1

<
.

Let us mention that the set of all functions K : Ω æ R such that ÎKÎMfl < +Œ
is called a Orlicz space. These spaces generalize Lp

µ spaces.

Definition 3.2.3 (Stretched-exponential concentration bound).

Let µ be a probability measure on (Ω,B). Given p œ N, we say that µ
satisfies a stretched-exponential concentration if there exists fl = fl(µ) œ
(0, 1) and a constant Dfl > 0 (abbreviated SECB(fl,Dfl)) such that, for all

function K œ L , we have

ÎK ≠ Eµ[K]ÎMfl Æ DflÎ”(K)Î2. (3.2.9)

This general definition leads to the following proposition.

Proposition 3.2.3 ([13]).

If a probability measure µ on (Ω,B) satisfies SECB(fl,Dfl) then there

exists Cfl such that for all function K œ L and for all u > 0,

µ
)
Ê œ Ω : |K(Ê) ≠ Eµ[K]| Ø u

* Æ 4 exp

3
≠ Dflufl

Î”(K)Îfl
2

4
. (3.2.10)

For the plus-phase of the low temperature Ising model, we mention the

theorem in [13, 14].

Theorem 3.2.6 ([13, 14]).

Let µ+
—Φ

be the plus-phase of the low-temperature Ising model. There

exists —̄ > —c, such that for each — > —̄, µ+
—Φ

satisfies SECB(fl,Dfl).

It is unlikely that the dependence of u is optimal. The constants fl and Dfl

appearing in this theorem are not explicit and depend on the dimension d and

the temperature. As a matter of fact, let consider K : Ω æ R as the empirical

magnetization in Λ, then one has the following.

Theorem 3.2.7 ([13, 14]).

Let µ+
—Φ

be the plus-phase of the low-temperature Ising model. There

exists —̄ > —c, such that for each — > —̄, there exist fl = fl(—) œ (0, 1) and

a constant Dfl such that for all Λ b Zd, we have

µ+
—

3
Ê œ Ω :

----
MΛ(Ê)

|Λ|
≠ Eµ+

—
[Ê0]

---- Ø u

4
Æ 4 exp

3
≠Dfl

2fl
|Λ|

fl

2 ufl

4
.

At low temperature, one has “surface-order” large deviations (see [76]). In

particular, let a, b such that

≠Eµ+
—

[Ê0] < a < b < Eµ+
—

[Ê0],
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then the probability (under µ+
— ) that MΛn

/|Λn| falls into an interval [a, b] is

exponentially small in (2n + 1)d≠1, as n goes to infinity. This result is actually

sharper than the stretched-exponential bound (since fld/2 < d≠1 for all d Ø 2)

which is valid in any finite volume and for a large class of functions. Later, we

will investigate numerically this behavior.

3.3 Known results for stochastic chains of unbounded

memory (SCUMs)

In view of Chapter 7, we give recent results on concentration inequalities

for SCUMs which are a natural generalization of Markov chains by consider-

ing the whole “past”. In the literature on stochastic processes, SCUMs are

also known as “chains with complete connections”. Such one-dimensional

systems are simultaneously studied as discrete-time processes in symbolic

dynamics under the name of “g-measures” and as Gibbs measures on the

lattice N or Z associated to a family of specifications. For further details, we

refer the reader to R. Fernández and G. Maillard [36] and S. Berghout, R.

Fernández and E. Verbitskiy [6] where they study the similarities and the dif-

ferences between these different objects. Let Ω = SN where S is a finite set.

We consider the following class of functions. Let n œ N and K : Sn æ R, and

let

”j(K) = sup
aj=bj ,’j ”=i

{|K(a0, . . . , ai, . . . , an≠1) ≠ K(b0, . . . , bi, . . . , bn≠1)|} .

(3.3.1)

Now let K : Sn æ R and

Îδ(K)Î2
2 :=

+Œÿ

j=≠Œ
δj(K)2 (3.3.2)

where δ(K) is the column vector of size n whose j-th coordinate is ”j(K). We

stress that this class of functions is analoguous to the d-dimensional case.

We will say that a measure µ on (Ω,B) satisfies a Gaussian concentration

bound if it satisfies 3.2.1 for all n œ N and K : Sn æ R. This statistical

property is derived from the control of the dependence of the past of the

probability transitions quantified by either the variation or the oscillation (see

[38, 16]). Here, we will only mention the variation of a kernel/potential defined

as follows:

varn(„) := sup{|„(x) ≠ „(y)| : xi = yi, 0 Æ i Æ n ≠ 1}.

In [38], the authors proved a Gaussian concentration bound for poten-

tials with summable variations. Recently, J.R Chazottes, S. Gallo and D.

Takahashi have generalized the previous result obtaining optimal Gaussian

concentration bounds for chains with complete connections on a countably

infinite alphabet. Their proofs rely on maximal coupling techniques and on

the tight control of the summability of its variations (see [16]).

In Chapter 7, we will obtain Gaussian concentration bounds for separately

Lipschitz functions on Ω
n. To do so, we use the spectral properties of Ruelle-

Perron-Frobenius’ operator associated to the potential and, in particular its

speed of convergence to the unique equilibrium state for Lipschitz observ-

ables. Of course, this result also holds for all K : Sn æ R. We will deduce

symbolic dynamics applications of concentration.
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3.4 On the relation between concentration and large

deviations for equilibrium states

We refer to [82] for more details and references on large deviations. An in-

teresting consequence is that it provides a statistical interpretation of relative

entropy 2.3.5 (see [82]). We will briefly explain the differences between Gaus-

sian concentration bounds and large deviations.

First, let’s consider equilibrium states for Φ, µ œ GT (Φ) and local observ-

ables K : Ω æ R. We define the Birkhoff sum of K as

SK
n :=

ÿ

xœΛn

K ¶ Tx.

Then, by Theorem 2.2.1, SK
n /|Λn| converges in probability to the expected

value
s

Kdµ. This can be reformulated as follows: If I is a closed interval of

R which does not contain
s

Kdµ then

lim
næŒ µ

I
Ê œ Ω :

SK
n (Ê)

|Λn|
œ I

J
= 0.

The aim of large deviations theory is to strengthen the ergodic theorem in

the sense that it gives asymptotically the precise rate of convergence of this

probability on the logarithmic scale. Let Ê œ Ω and K œ L , then the large

deviation principle states that for all closed interval I of R

lim sup
næŒ

1

|Λn|
log µ

Ó
Ê œ Ω :

SK
n (Ê)

|Λn|
œ I

Ô

Æ ≠ inf

;
h(‹|µ) : ‹ œ MT (Ω) with

⁄
Kd‹ œ I

<

and for all open intervals I of R

≠ inf
Ó

h(‹|µ) : ‹ œ MT (Ω) with

⁄
Kd‹ œ I

Ô

Æ lim inf
næŒ

1

|Λn|
log µ

I
Ê œ Ω :

SK
n (Ê)

|Λn|
œ I

J
.

We can formulate a more abstract large deviation principle on the level of

empirical measures (En)nœN (2.2.4). For all subsets A µ M (Ω) which do not

contain µ, if A is a closed set then

lim sup
næŒ

1

|Λn|
log µ{En œ A} Æ ≠ inf {h(‹|µ) : ‹ œ A fl MT (Ω)} (3.4.1)

and if A is an open set then

≠ inf {h(‹|µ) : ‹ œ A fl MT (Ω)} Æ lim inf
næŒ

1

|Λn|
log µ{En œ A}. (3.4.2)

If we consider µ as a product measure, the events{En œ A} are sufficient

to describe completely the measure. In the case of Gibbs measures, one

needs observables which depends on a large number of sites to describe the

dependence in between. Then, the large deviation principle describes the

relative entropy in terms of rate functions, i.e., the probability that a configu-

ration Ê distributed according to µ looks like a typical configuration from ‹ in

Λn decays exponentially fast with n with rate h(‹|µ).
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Now, we start our comparison with concentration by considering particular

events of the form
I

Ê œ Ω :
SK

n (Ê)

|Λn|
≠

⁄
Kdµ Ø u

J

where u > 0. For the sake of simplicity, let’s assume that
s

Kdµ = 0. By

Theorem 3.1.1, we have

µ
Ó

Ê œ Ω : ⁄SK
n (Ê) Ø ⁄u|Λn|

Ô
Æ e≠|Λn|⁄u

Eµ

Ë
e⁄SK

n (Ê)
È

or, equivalently

1

|Λn|
log µ

Ó
Ê œ Ω : ⁄SK

n (Ê) Ø ⁄u|Λn|
Ô

Æ ≠⁄u +
1

|Λn|
logEµ

Ë
e⁄SK

n (Ê)
È

where ⁄, u > 0. Hence, when the Gaussian concentration bound (3.2.2) holds

for the Birkhoff sum of K, we obtain

1

|Λn|
log µ

Ó
Ê œ Ω : ⁄SK

n (Ê) Ø ⁄u|Λn|
Ô

Æ ≠ sup
⁄>0

(⁄u ≠ D⁄2Î”(K)Î2
2)

=
u2

4DÎ”(K)Î2
2

.

Notice that the upper-bound only depends on K but not on n. We observe

that large deviations and concentration inequalities play complementary roles.

The first one gives an asymptotic exact result but only deals with Birkhoff

sums. Whereas, the second one provides a non-asymptotic upper-bound for

more general functions which can be in particular non-linear and implicitly

defined. For concentration inequalities the constants are typically not exact,

whereas large-deviation rate functions are exact. In that sense large devi-

ations are stronger but the non-asymptotic character and the generality of

functions K makes concentration inequalities stronger.
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Chapter 4

Gaussian concentration and

uniqueness of equilibrium

states in lattice systems

In this chapter we prove in two different ways that non-uniqueness of the

equilibrium states for a potential prevents Gaussian concentration. This is

the content of my paper [19] written in collaboration with J.-R. Chazottes, F.

Redig and E. Ugalde and it is formulated in its contrapositive form as follows.

Theorem 4.0.1.

If an ergodic equilibrium state for a shift-invariant absolutely summable

potential satisfies a Gaussian concentration bound, then it must be the

unique equilibrium state for this potential.

Let us give some examples.

Ising model Let’s consider the nearest-neighbor ferromagnetic Ising model

on Z
d with zero external magnetic field (see Section 2.3). We recall that for

all — > —c there exists two distinct ergodic Gibbs measures µ+
—Φ

and µ+
—Φ

.

Then, according to our main theorem, they cannot satisfy GCB. In fact, they

satisfies a stretched-exponential concentration bound. For d = 2, there is an

inverse temperature —c such that, for all — Æ —c, GT (—Φ) is a singleton, and,

for all — > —c, GT (—Φ) = {⁄µ+
—Φ

+ (1 ≠ ⁄)µ≠
—Φ

: ⁄ œ [0, 1]} (hence ex GT (—Φ) =

{µ+
—Φ

, µ≠
—Φ

}). For more details, we refer the reader to the following chapter.

For d = 3, the situation is more complicated at low temperatures. Indeed,

in addition to µ+
—Φ

and µ≠
—Φ

, G(—Φ) also contains, for — large enough, a fam-

ily of Gibbs measures which are not shift-invariant, the so-called Dobrushin

states. In other words, G(—Φ)\GT (—Φ) ”= ÿ. In the present chapter, we do

not deal with these non-shift invariant Gibbs measures for the Ising model

(and other models). Indeed, whereas for translation invariant Gibbs states we

obtain here a general uniqueness result, the situation becomes much more

intricate for non-translation Gibbs states, and even more for non-translation

invariant potentials. In fact, Dobrushin interface states can be shown to be

incompatible with GCB, using the volume large deviation bound (4.3.1). How-

ever, other more subtle scenarios of non-uniqueness combined with a unique

translation invariant Gibbs measure can occur, such as in [9], and with the

techniques developed here, we cannot show that GCB excludes such sce-
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narios of non-uniqueness.

Long-range Ising model For the long-range Ising model defined in Section

2.3 the situation is the same, since there exists two distinct equilibrium states

µ+
—Φ

and µ≠
—Φ

in the low-temperature regime. By the above theorem, these

two equilibrium states cannot satisfy a Gaussian concentration bound.

Potts model For the Potts model defined in Section 2.3, we recall that there

exists 0 < —N < +Œ such that |ex G(—N Φ)| = N +1 and |ex G(—Φ)| = N when

— > —N . Then they cannot satisfy a Gaussian concentration bound.

Let us comment on the two proofs. The first way is based on ideas which

were put forward in ergodic theory to study the existence of finitary codings

from a finite-valued i.i.d. process to certain ergodic processes. In the context

of g-measures, the authors in [38] proved with similar methods a character-

ization of uniqueness of the stationary chain which is a stronger statement

that Gaussian concentration implies uniqueness. Two central notions turn

out to be the “blowing-up property” and the “positive (lower) relative entropy

property”. Without going into detail, it was proved in [65] that if a process is

finitely determined then it has the blowing-up property, which in turn implies

the positive relative entropy property. Here, we use the fact that the Gaussian

concentration bound implies the blowing-up property, and then use part of the

variational principle which says that the relative entropy of two distinct equi-

librium states for the same potential is equal to zero. Hence the blowing-up

property cannot hold, therefore it is not possible to have a Gaussian concen-

tration bound. In fact, we establish an abstract result (Theorem 4.2.1) which

states that if a probability measure satisfies a Gaussian concentration bound,

then it has the positive lower relative entropy property. Technically speaking,

we follow some methods that can be found in [65]. The passage from d = 1 to

d Ø 2 (that is, going from processes to random measures) poses no difficulty.

Although these methods are known to specialists of ergodic theory, they are

probably not as well-known in the mathematical physics literature. The other

way of proving the main theorem is via large deviations which is shorter and

simpler than the first one, given that we have a large deviation principle at our

disposal.

4.1 Setting

Let Ω = SZ
d

where S is a finite set and d Ø 1. We recall that the shift

action (Tx, x œ Z
d) is defined this way: for each x œ Z

d Tx : Ω æ Ω and

(TxÊ)y = Êy≠x, for all y œ Z
d. We also recall what we mean by Gaussian

concentration bound in this chapter. Let K : Ω æ R a continuous function

and x œ Z
d. We denote by

”x(K) = sup {|K(Ê) ≠ K(ÊÕ)| : Ê, ÊÕ œ Ω differ only at site x}

the oscillation of K at x. We say that K : Ω æ R is a local function if there

exists ΛK b Z
d (the dependence set of K) such that for all Ê, ÊÕÊÕÕ œ Ω

K(ÊΛK
ÊÕ

Λc
K

) = K(ÊΛK
ÊÕÕ

Λc
K

). Equivalently, ”x(K) = 0 for all x /œ ΛK . It is

understood that ΛK is the smallest such set. Local functions are continuous,
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hence bounded since Ω is compact. (In fact, continuous functions are ob-

tained as uniform limits of local functions).

We write ”(K) for the infinite array (”x(K), x œ Z
d), and let

Î”(K)Î2
2 := Î”(K)Î2

¸2(Zd) =
ÿ

xœZd

”x(K)2.

For a local function K, it may happen that ”x(K) = +Œ for some x in its

dependence set, whence Î”(K)Î2 = +Œ. If S is finite, this cannot happen.

Recall that

L =
€

ΛbZd

LΛ (4.1.1)

where

LΛ = {K : Ω æ R : ”x(K) = 0 ’x /œ Λ},

and by using a simple telescoping argument, it can be checked that any K œ
L is bounded. We also recall what we mean by Gaussian concentration

bound.

Definition 4.1.1 (Gaussian concentration bound).

Let µ be a probability measure on (Ω,B). We say that it satisfies a

Gaussian concentration bound if there exists D = D(µ) > 0 such that,

for all functions K œ L , we have

Eµ [exp(K ≠ Eµ[K])] Æ exp (DÎ”(K)Î2
2). (4.1.2)

The next result shows that a shift-invariant probability measure which sat-

isfies GCB must be mixing.

Proposition 4.1.1.

Let µ be a shift-invariant probability measure on (Ω,B) which satisfies

GCB(D). Then µ is mixing.

Proof. First we introduce the following result that we will prove in the ap-

pendix.

Lemma 4.1.1.

Let f : Ω æ R such that Î”(f)Î1 :=
q

xœZd ”x(f) < +Œ. Then for any

Λ b Z
d we have

Î”(SΛf)Î2
2 Æ |Λ|Î”(f)Î2

1.

By this Lemma and Proposition 3.2.1, we conclude that for every se-

quence Vn, n œ N of finite subsets of Zd such that |Vn| æ Œ as n æ Œ,

and for every local function f , we have that 1
|Vn|

q
xœVn

f ¶ Tx converges to

Eµ(f) in µ-probability as n æ Œ.

We then argue by contradiction. Assume that µ is not mixing. Then there

exist local functions f, g (without loss of generality both of µ expectation zero)

and a sequence xn, with |xn| æ Œ such that

⁄
f · g ¶ Txndµ
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does not converge to zero as n æ Œ. By locality, both functions f, g are

uniformly bounded, and therefore the sequence
s

f · g ¶ Txndµ, n œ N is

a bounded sequence. Therefore, there exists a subsequence yn such that

along that subsequence

lim
næŒ

⁄
f · g ¶ Tyndµ = a ”= 0. (4.1.3)

As a consequence,

lim
næŒ

⁄
f ·

1

n

nÿ

k=0

g ¶ Tyk
dµ = a ”= 0.

However, as we saw before, 1
n

qn
k=0 g ¶ Tyk

converges to zero in probability

by GCB. Then via dominated convergence we obtain

lim
næŒ

-----

⁄
f ·

1

n

nÿ

k=0

g ¶ Tyk
dµ

----- = 0

which contradicts (4.1.3).

As direct consequence, µ is ergodic but we give another proof that a shift-

invariant probability measure which satisfies GCB must be ergodic.

Proposition 4.1.2.

Let µ be a shift-invariant probability measure on (Ω,B) which satisfies

GCB. Then µ is ergodic.

Proof. We will use the notation Snf =
q

xœΛn
f ¶ Tx for a function f : Ω æ R.

Let’s recall that by Proposition 2.2.1 a probability measure µ on (Ω,B) is

ergodic for the shift if and only if, for any pair A, B œ B, one has

lim
næŒ

1

(2n + 1)d

ÿ

xœΛn

µ(A fl TxB) = µ(A)µ(B). (4.1.4)

Moreover, this equivalence is true if we take A, B as a cylinder sets. (We

refer to [[44], Lemma 2.2.2 p. 30] for the proofs of these facts.) We use the

notation
s

fdµ instead of Eµ(K) as it is more convenient here. We are going

to prove that, for any pair A, B of cylinder sets, (3.2.3) implies

lim
næŒ

⁄
(1A ≠ µ(A))

Sn1B

(2n + 1)d
dµ = 0 (4.1.5)

which implies at once (4.1.4) since by the shift-invariance of µ

⁄
(1A ≠ µ(A))

Sn1B

(2n + 1)d
dµ =

1

(2n + 1)d

ÿ

xœΛn

⁄
1A · 1B ¶ Txdµ ≠ µ(A)µ(B).

To prove (4.1.5), we use that Sn1B/(2n + 1)d converges in probability tos
1Bdµ = µ(B). Indeed, using Lemma and (3.2.3), that we apply to F =

Sn1B/(2n + 1)d, we have

µ

;
Ê œ Ω :

----
Sn1B(Ê)

(2n + 1)d
≠ µ(B)

---- Ø u

<
Æ exp

A
≠ (2n + 1)du2

4DÎ”(1B)Î2
1

B

28



for all u > 0, where Î”(1B)Î1 is obviously finite. (More precisely, we apply

(3.2.3) to K, then to ≠F , and we finally use a union bound.) Therefore, by

Lebesgue’s dominated convergence theorem we get

lim
næŒ

⁄
(1A ≠ µ(A))

Sn1B

(2n + 1)d
dµ =

⁄
(1A ≠ µ(A))µ(B)dµ = 0.

The proof is finished.

4.2 Proof of Theorem 4.0.1

4.2.1 An abstract result

The first way to prove the theorem is to establish an abstract theorem which

is of independent interest, and can be applied to equilibrium states. To state

it, we need to define the “positive relative entropy property”.

Definition 4.2.1.

An ergodic measure µ on Ω is said to have the positive relative entropy

property if hú(‹|µ) > 0 for any ergodic measure ‹ ”= µ.

The lower relative entropy hú(‹|µ) is defined in (2.3.5). We can now state

the following result. (Recall that by Proposition 4.1.2 we only need to consider

ergodic measures.)

Theorem 4.2.1 (GCB implies positive relative entropy).

Let µ be an ergodic probability measure on Ω which satisfies GCB. Then

µ has the positive relative entropy property.

Proof. We outline the proof which consists in the following three steps. We

first prove that GCB implies the so-called “blowing-up” property (Section 4.2.2).

Then we prove that the blowing-up property implies the “exponential rate of

convergence for frequencies” (Section 4.2.3). Finally we prove that the latter

implies the positive relative entropy property (Section 4.2.4).

Corollary 4.2.1.

Let Φ œ BT and assume that GT (Φ) ”= ÿ. If |ex GT (Φ)| Ø 2 and µ œ
ex GT (Φ) then µ cannot satisfy a Gaussian concentration bound.

Proof. Fix an arbitrary µ œ ex GT (Φ). By assumption there exists µÕ œ ex GT (Φ)
such that µ ”= µÕ. But, by Theorem 2.3.1, we have h(µÕ|Φ) = hú(µÕ|µ) = 0,

whence µ does not have the positive relative entropy property. Therefore,

according to Theorem 4.2.1, µ cannot satisfy GCB. This proves that none of

the elements of ex GT (Φ) can satisfy GCB.
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4.2.2 GCB implies the blowing-up property

Let Λ b Z
d. We define the (non-normalized) Hamming distance between two

configurations Ê and ÷ in SΛ by

d̄Λ(Ê, ÷) =
ÿ

xœΛ

1{Êx ”=÷x} œ {0, 1, · · · , |Λ|}.

So we count at how many sites the configurations Ê and ÷ in SΛ differ. We

can also see d̄Λ as a local function on Ω ◊ Ω. Given C µ SΛ define

d̄Λ(Ê, C) = inf
ÊÕœC

d̄Λ(Ê, ÊÕ).

Given Á œ [0, 1], define the Á-neighborhood (or the Á-blow-up) of C as

ÈCÍÁ = {Ê œ SΛ : d̄Λ(Ê, C) < Á|Λ|} µ SΛ.

Recall that if C µ SΛ, [C] = {Ê œ Ω : fiΛ(Ê) œ C} where fiΛ is the projection

from Ω onto SΛ. We now define the blowing-up property.

Definition 4.2.2 (Blowing-up property).

An ergodic probability measure µ on (Ω,B) has the blowing-up property

if given Á > 0 there is a ” > 0 and N œ N such that if n Ø N and C µ SΛn

then

µ([C]) Ø e≠(2n+1)d” implies µ(ÈCÍÁ) Ø 1 ≠ Á.

Obviously, the blowing-up property can be formulated in terms of finite

subsets of Zd of arbitrary shape, instead of cubes, but we will not need this

generalization. The blowing-up property roughly says that any collection of

configurations on large finite box which has a total measure which is not too

exponentially small is such that most configurations are close to this collection

in the Hamming distance. We have the following result.

Proposition 4.2.1.

Let Λ b Z
d and C µ SΛ. Suppose that µ is a probability measure which

satisfies GCB(D) and such that µ([C]) > 0. Then, we have

µ(ÈCÍÁ) Ø 1 ≠ exp

S
U≠ |Λ|

4D

A
Á ≠ 2


D log (µ(C)≠1)

|Λ|

B2
T
V (4.2.1)

whenever Á >
2
Ô

D log (µ(C)≠1)Ô
|Λ|

. In particular, µ satisfies the blowing-up

property.

Note that we do not require µ to be shift-invariant. As already mentioned,

if µ is taken shift-invariant then it must be ergodic, this is enforced by the

Gaussian concentration bound.

Proof. Consider the local function K(Ê) = d̄Λ(Ê, C). One easily checks that

”x(K) Æ 1 for all x œ Λ. Applying (3.2.3) gives

µ{Ê œ Ω, : K(Ê) Ø u + Eµ(K)} Æ exp

A
≠ u2

4D|Λ|

B
(4.2.2)
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for all u > 0. We now estimate Eµ(K) from above. Applying (3.2.1) to ≠⁄K,

for some ⁄ > 0 to be chosen later on, we get

exp (⁄Eµ(K))Eµ(exp (≠⁄K)) Æ exp (D⁄2|Λ|)

Observe that by definition of K we have

Eµ(exp (≠⁄K)) Ø Eµ(1C exp (≠⁄K)) = µ([C])

Combining the two previous inequalities and taking the logarithm gives

Eµ(K) Æ inf
⁄>0

;
D⁄|Λ| +

1

⁄
ln (µ([C])≠1)

<

which gives the following estimate by taking the value of ⁄ minimizing the

right-hand side

Eµ(K) Æ 2
Ò

D|Λ| ln (µ([C])≠1) =: v0.

Therefore, inequality (4.2.2) implies that

µ{Ê œ Ω, : K(Ê) Ø v} Æ exp

A
≠(v ≠ v0)2

4D|Λ|

B

for all v > v0. To finish the proof of (4.2.1), take v = Á|Λ| and observe that, by

definition of K, µ{Ê œ Ω : K(Ê) Ø v} = µ(ÈCÍc
Á).

We now prove that µ satisfies the blowing-up property. Let Á > 0, and take C
such that µ([C]) Ø e≠(2n+1)d” for some ” to be chosen later on, subject to the

condition Á > 2
Ô

D”. We now apply (4.2.1) with Λ = Λn to get

µ(ÈCÍÁ) Ø 1 ≠ exp

A
≠(2n + 1)d

4D

1
Á ≠ 2

Ô
D”

22
B

.

Taking ” = Á2/(9D) yields

µ(ÈCÍÁ) Ø 1 ≠ Á

for all n Ø N := Â(36DÁ≠2 log Á≠1)1/dÊ/2.

4.2.3 Blowing-up implies exponential rate for frequencies

Given Ê œ Ω, n > k Ø 0, and a pattern pk œ SΛk , let

fn,k(Ê; pk) =
|{x œ Λn≠k : (TxÊ)Λk

= pk}|

(2(n ≠ k) + 1)d
. (4.2.3)

In words, this is just the frequency of occurrence of the pattern pk if we look at

the configuration Ê restricted to the cube Λn. Let µ be an ergodic probability

measure. By the multidimensional ergodic theorem, for µ-almost every Ê, we

have

lim
næŒ fn,k(Ê; pk) = µ([pk]).

Given two probability measures µ and ‹, we denote by ‹n (resp. µn) the

probability measure induced by ‹ (resp. by µ) on SΛn by projection. The total

variation distance between µk and ‹k is define by

Îµk ≠ ‹kÎT V =
1

2

ÿ

pkœSΛk

|µ([pk]) ≠ ‹([pk])|.

We can now define the property of exponential rate of convergence for fre-

quencies.
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Definition 4.2.3 (exponential rate of convergence property for frequen-

cies).

An ergodic probability measure on (Ω,B) has the exponential rate of

convergence property for frequencies if, given k and Á > 0, there is a

” > 0 and N such that

µ(Ê œ Ω : Îfn,k(Ê; ·) ≠ µkÎT V Ø Á) Æ e≠(2n+1)d”, ’n Ø N. (4.2.4)

We now prove that this property is implied by the blowing-up property.

Proposition 4.2.2.

Let µ be an ergodic probability measure on (Ω,B). Then if µ has the

blowing-up property, it has the exponential rate of convergence property

for frequencies.

Proof. We adapt a proof of [65] to our setting. Take Á > 0 and k Ø 0, and for

any n Ø 0 let

B(n, k, Á) := {Ê œ Ω : Îfn,k(Ê; ·) ≠ µkÎT V Ø Á}.

Note that we can naturally identify this subset of Ω with a subset of SΛn . We

have the following lemma whose proof is given in Appendix.

Lemma 4.2.1.

Let Á and k Ø 0, and define

fl =
2Á

5(2k + 1)d
.

There exists Ñ > k such that, if n Ø Ñ and d̄Λn
(Ê, ÷) Æ fl(2(n ≠ k) + 1)d,

then

Îfn,k(Ê; ·) ≠ fn,k(÷; ·)ÎT V Æ Á

2
.

The lemma implies

ÈB(n, k, Á)Ífl µ B(n, k,
Á

2
). (4.2.5)

Now, by the blowing-up property (Definition 4.2.2), there is a ” > 0 and N
such that, if n Ø N and C µ SΛn is so that µ([C]) Ø e≠(2n+1)d”, then µ(ÈCÍfl) Ø
1 ≠ fl Ø 1 ≠ Á. Therefore, if n Ø N and if we suppose that µ(B(n, k, Á)) Ø
e≠(2n+1)d” then we get

µ(ÈB(n, k, Á)Ífl) Ø 1 ≠ Á

This bound together with the inclusion (4.2.5) implies for all n Ø max (N, Ñ)

µ

3
B

3
n, k,

Á

2

44
Ø 1 ≠ Á.

But this contradicts the multidimensional ergodic theorem which ensures that,

for each Á > 0 and each k,

lim
næŒ µ

3
B

3
n, k,

Á

2

44
= 0.
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Indeed, we have

µ

3
B

3
n, k,

Á

2

44
Æ

ÿ

pkœSΛk

µ

A
Ê œ Ω : |fn,k(Ê; pk) ≠ µ([pk])| Ø Á

|S|(2k+1)d

B
.

where each term on the right-hand side goes to zero by the multidimensional

ergodic theorem.

4.2.4 Exponential rate for frequencies implies positive relative
entropy property

We now have the following proposition

Proposition 4.2.3.

Let µ be an ergodic measure on (Ω,B). If it has the exponential rate of

convergence property for frequencies, then, given Á > 0 and k, there is

a ” > 0 such that, if ‹ is an ergodic measure such that hú(‹|µ) < ” then

Î‹k ≠ µkÎT V < Á.

Proof. We adapt a proof of [65]. Let fl be a positive number that we will

specify later on, and suppose that

Hn(‹|µ)

(2n + 1)d
<

fl2

2
.

If n is large enough, we have by Markov inequality and lemma 4.4.1 (see

appendix below) that there exists a set Gn µ SΛn such that

‹(Gn) > 1 ≠ fl (4.2.6)

and

e≠(2n+1)dfl ‹([ÊΛn
]) Æ µ([ÊΛn

]) Æ e(2n+1)dfl ‹([ÊΛn
]), Ê œ Gn. (4.2.7)

Now, for each fixed k, and for n large enough, the multidimensional ergodic

theorem applied to ‹ tells us that there is a set G̃n µ Gn such that

‹(G̃n) > 1 ≠ 2fl (4.2.8)

Îfn,k(Ê; ·) ≠ ‹kÎT V < fl, Ê œ G̃n. (4.2.9)

If µ has the exponential rate of convergence property for frequencies then

µ{Ê œ Ω; Îfn,k(Ê; ·) ≠ ‹kÎT V Ø fl} Ø e≠(2n+1)d·

for some · > 0 and all n sufficiently large. Now condition (4.2.7) and (4.2.8)

imply that G̃n

µ(G̃n) > (1 ≠ 2fl) e≠(2n+1)dfl .

Therefore, if fl is small enough and n large enough, there exists an Ê œ G̃n

such that Îfn,k(Ê; ·) ≠ µkÎT V < fl. Indeed, it is enough to check that µ(G̃n) >
µ{Ê œ Ω : Îfn,k(Ê; ·) ≠ µkÎT V Ø fl} which implies that

G̃n fl {Ê œ Ω : Îfn,k(Ê; ·) ≠ µkÎT V Ø fl}
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has strictly positive µ-measure. Since (4.2.8) holds for the same Ê, we thus

arrive by the triangle inequality at the estimate Î‹k ≠ µkÎT V < 2fl. Therefore,

we proved that, given Á and k, if ‹ is ergodic such that hú(‹|µ) < Á2/8, then

Î‹k ≠ µkÎT V < Á, which ends the proof.

Now, we can state the main proposition of this section.

Proposition 4.2.4.

If µ has the exponential rate of convergence property for frequencies

then it has the positive relative entropy property.

Proof. Suppose that µ has not the positive relative entropy property, but sat-

isfies the exponential rate of convergence property for frequencies. We will

obtain a contradiction. By assumption there is an ergodic measure ‹̂ ”= µ
such that hú(‹̂|µ) = 0, and there is a k̂ and a Á̂ > 0 such that Îµ̂k̂ ≠µk̂ÎT V Ø Á̂.

Now, we apply the Proposition 4.2.3. By the exponential rate of convergence

property for frequencies, given Á̂ and k̂, there is a ”̂ > 0 such that if ‹ satisfies

hú(‹|µ) < ”̂ then Î‹k̂ ≠ µk̂ÎT V < Á̂. We can take ‹ = ‹̂, hence we arrive at a

contradiction Î‹̂k̂ ≠ µk̂Î < Á̂.

4.3 Another proof of Theorem 4.0.1

We present another proof of the theorem, based on large deviations. Sup-

pose that µ is an ergodic equilibrium state which satisfies a Gaussian con-

centration bound. Now assume that there exists µÕ œ ex GT (Φ) such that

µÕ ”= µ. We are going to arrive at a contradiction. Notice that we can suppose

that µÕ is ergodic without loss of generality, because of the ergodic decompo-

sition [[39], Theorem 14.17, p. 298], and the fact that the map ‹ ‘æ h(‹|Φ),
‹ œ MT (Ω), is affine (which is a consequence of [[39], Theorem 15.20, p.

318] and (2.3.6). Since µ ”= µÕ, there exists a local function f : Ω æ R such

that Eµ(f) ”= EµÕ(f). Without loss of generality, assume that Eµ(f) < EµÕ(f).
So there exists Á > 0 such that

Eµ(f) + Á = EµÕ(f).

We want to apply Proposition 3.2.1 to F = Snf , where, for each n Ø 0,

Snf =
q

xœΛn
f ¶ Tx. We claim that

Î”(Snf)Î2
2 Æ (2n + 1)dÎ”(f)Î2

1

where Î”(f)Î1 :=
q

xœZd ”x(f) (which is finite since K is local). See Lemma

4.1.1 below. Letting

En,Á :=

;
Ê œ Ω :

Snf(Ê)

(2n + 1)d
Ø Eµ(f) +

Á

3

<
,

we get

µ(En,Á) Æ exp

A
≠ (2n + 1)dÁ2

36DÎ”(f)Î2
1

B
. (4.3.1)

Now let

E Õ
n,Á :=

;
Ê œ Ω :

Snf(Ê)

(2n + 1)d
œ

6
EµÕ(f) ≠ Á

3
,EµÕ(f) +

Á

3

5<
.

34



Since

E Õ
n,Á µ En,Á

we deduce that

lim sup
næ+Œ

1

(2n + 1)d
log µ(E Õ

n,Á) Æ ≠ Á2

36DÎ”(f)Î2
1

< 0. (4.3.2)

Now we use the large deviation principle satisfied by µ (see [[39] , Section

15.5]) which implies that

lim inf
næ+Œ

1

(2n + 1)d
log µ(E Õ

n,Á) Ø ≠ inf
uœ]EµÕ (f)≠ Á

3
,EµÕ (f)+ Á

3 [
If (u) (4.3.3)

where

If (u) = inf{h(‹|µ) : ‹ œ MT (Ω),E‹(f) = u}.

The right-hand side of (4.3.3) is larger than ≠If (v) for any value of v taken in

the interval, so in particular it is larger than ≠If (EµÕ(f)), which is equal to 0
because h(µÕ|µ) = 0 by Theorem 2.3.1. Hence, we obtain

lim inf
næ+Œ

1

(2n + 1)d
log µ(E Õ

n,Á) = 0

which contradicts (4.3.2).

4.4 Appendix

4.4.1 Proof of Lemma 4.1.1

We first recall Young’s inequality for convolution . Let u = (ux)xœZd and v =
(vx)xœZd . Formally we define their convolution u ú v by

(u ú v)x =
ÿ

yœZd

ux≠yvy, x œ Z
d.

If u œ ¸p(Zd) and v œ ¸q(Zd), where p, q Ø 1, then. u ú v œ ¸r(Zd) where r Ø 1
is such that 1 + r≠1 = p≠1 + q≠1, then we have

Îu ú vÎ¸r(Z) Æ ÎuÎ¸p(Z)ÎvÎ¸q(Z).

Now we give the proof of Lemma 4.1.1.

Proof. Since ”z(SΛf) Æ q
xœΛ ”z≠x(f), we apply Young’s inequality with r =

2, p = 2, q = 1, ux = 1Λ(x), and vx = ”x(f) to get the desired estimate.

4.4.2 Proof of Lemma 4.2.1

This lemma (in its d = 1 version) is stated without proof in [68]. We fix Á > 0
and k Ø 0. The frequency of a pattern pk in Ê (see (4.2.3)) can rewritten as

fn,k(Ê, pk) =
1

(2(n ≠ k) + 1)d

ÿ

xœΛn≠k

1{(TxÊ)Λk
=pk}.
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By definition we have

Îfn,k(Ê, ·) ≠ fn,k(÷, ·)ÎT V =

1

2(2(n ≠ k) + 1)d

ÿ

pkœSΛk

------

ÿ

xœΛn≠k

1
1{(TxÊ)Λk

=pk} ≠ 1{(Tx÷)Λk
=pk}

2
------
. (4.4.1)

Letting

IÊ,÷,n =
)
x œ Λn≠k : (TxÊ)Λk

=: (Tx÷)Λk

*

we get

ÿ

pkœSΛk

------

ÿ

xœΛn≠k

1
1{(TxÊ)Λk

=pk} ≠ 1{(Tx÷)Λk
=pk}

2
------

=
ÿ

pkœSΛk

------

ÿ

xœIc
Ê,÷,n

1
1{(TxÊ)Λk

=pk} ≠ 1{(Tx÷)Λk
=pk}

2
------

Æ
ÿ

pkœSΛk

ÿ

xœIc
Ê,÷,n

---1{(TxÊ)Λk
=pk} ≠ 1{(Tx÷)Λk

=pk}

---

Æ
ÿ

pkœSΛk

ÿ

xœIc
Ê,÷,n

1
1{(TxÊ)Λk

=pk} + 1{(Tx÷)Λk
=pk}

2

=
ÿ

xœIc
Ê,÷,n

ÿ

pkœSΛk

1
1{(TxÊ)Λk

=pk} + 1{(Tx÷)Λk
=pk}

2

= 2
---Ic

Ê,÷,n

--- .

Hence we obtain from (4.4.1)

Îfn,k(Ê, ·) ≠ fn,k(Ê, ·)ÎT V Æ

---Ic
Ê,÷,n

---
(2(n ≠ k) + 1)d

. (4.4.2)

We now look for an upper bound for
---Ic

Ê,÷,n

---. If (TxÊ)Λk
= pk and (Tx÷)Λk

”=
pk, then Êy ”= ÷y for at least one site y œ Λk + x. Such a y can produce as

many as (2k + 1)d sites such that (TxÊ)Λk
= pk and (Tx÷)Λk

”= pk. Hence
---Ic

Ê,÷,n

--- Æ (2k + 1)d|{x œ Λn≠k : Êx ”= ÷x}|

Æ (2k + 1)d|{x œ Λn : Êx ”= ÷x}|

Æ (2k + 1)dd̄Λn
(Ê, ÷).

Hence (4.4.2) yields

Îfn,k(Ê, ·) ≠ fn,k(Ê, ·)ÎT V Æ (2k + 1)d

(2(n ≠ k) + 1)d
d̄Λn

(Ê, ÷). (4.4.3)

Obviously there exists Ñ > k such that for all n Ø Ñ we have
3

2k + 1

2(n ≠ k) + 1

4d

Æ 5

4

therefore, if we take

d̄Λn
(Ê, ÷) Æ 2Á

5(2k + 1)d
(2(n ≠ k) + 1)d

we finally obtain

Îfn,k(Ê, ·) ≠ fn,k(Ê, ·)ÎT V Æ Á

2

for all n Ø Ñ , which concludes the proof of the lemma.
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4.4.3 A bound on relative entropy

Recall that “log” stands for the natural logarithm.

Lemma 4.4.1.

Let ‹ and µ be probability measures on a finite set A. Then

ÿ

aœA

‹({a})

----log
‹({a})

µ({a})

---- Æ H(‹|µ) +
2

e
(4.4.4)

where

H(‹|µ) =
ÿ

aœA

‹({a}) log
‹({a})

µ({a})
.

Proof. Define

A≠ =

;
a œ A : log

‹({a})

µ({a})
< 0

<
.

Now

ÿ

aœA

‹({a})

----log
‹({a})

µ({a})

---- =
ÿ

aœA\A≠
‹({a}) log

‹({a})

µ({a})
+

ÿ

aœA≠
‹({a}) log

µ({a})

‹({a})

= H(‹|µ) + 2
ÿ

aœA≠
‹({a}) log

µ({a})

‹({a})
.

By the concavity of the logarithm function and Jensen’s inequality we get

ÿ

aœA≠
‹({a}) log

µ({a})

‹({a})
= ‹(A≠)

ÿ

aœA≠

‹({a})

‹(A≠)
log

µ({a})

‹({a})

Æ ‹(A≠) log
µ(A≠)

‹(A≠)

Æ ‹(A≠) log
1

‹(A≠)
Æ e≠1

where we used the elementary inequality ≠x log x Æ e≠1, x Ø 0. Therefore

we arrive at (4.4.4).

4.5 A final remark

We proved that (4.2.4) is a direct consequence of the Gaussian concentration

bound, so we don’t need to use the blowing-up property. The drawback is that

this proof uses the assumption |S| < Œ, whereas the one based on blowing-

up also works when S is countably infinite. Take n and k such that n > k Ø 0.

Consider the local function

Fn,k(Ê) = Îfn,k(Ê; ·) ≠ µkÎT V .

We have ”z(Kn,k) = 0 whenever z œ Z
d \ Λn≠k. We now estimate ”x(Kn,k).

Consider two configurations Ê and ÷ in Ω such that there exists x œ Λn≠k

such that Êy = ÷y for all y ”= x, and Êx ”= ÷x. It is easy to verify that

|Fn,k(Ê) ≠ Fn,k(÷)| Æ Îfn,k(Ê; ·) ≠ fn,k(÷; ·)ÎT V .
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Using (4.4.3) we obtain (since d̄Λ(Ê, ÷) = 1)

”x(Kn,k) Æ (2k + 1)d

(2(n ≠ k) + 1)d
. (4.5.1)

We plug this bound to (3.2.3) to obtain

µ{Ê œ Ω : Fn,k(Ê) Ø Eµ[Kn,k] + u} Æ exp

A
≠(2(n ≠ k) + 1)du2

4D(2k + 1)d

B
(4.5.2)

for all u > 0. We now seek for an upper bound for Eµ[Kn,k]. We start by an

upper bound for Eµ[|fn,k(·; pk) ≠ µ([pk])|]. For all ⁄ > 0, we have

Eµ

Ë
e⁄|fn,k(·;pk)≠µ([pk])|

È
Æ Eµ

Ë
e⁄(fn,k(·;pk)≠µ([pk]))

È
+ Eµ

Ë
e≠⁄(fn,k(·;pk)≠µ([pk]))

È

where we simply decomposed according to the sign of fn,k(·; pk) ≠ µ([pk])
using the indicator functions which are bounded above by one. Now we can

apply GCB (since Eµ[fn,k(·; pk)] = µ([pk])) to get

Eµ

Ë
e⁄|fn,k(·;pk)≠µ([pk])|

È
Æ 2 eD⁄2¸2

n,k

where ¸2
n,k := 1/(2(n≠k)+1)d. We use the Jensen inequality and then divide

out by ⁄ > 0 to get

Eµ[|fn,k(·; pk) ≠ µ([pk])|] Æ log 2

⁄
+ D⁄¸2

n,k.

After optimizing over ⁄ > 0 we obtain

Eµ[|fn,k(·; pk) ≠ µ([pk])|] Æ 2


D log 2¸n,k.

Therefore, we have

Eµ[Kn,k] Æ


D log 2|S|(2k+1)d

¸n,k.

After some simple algebra, we obtain from (4.5.2) that, given k and Á > 0

µ{Ê œ Ω : Fn,k(Ê) Ø Á} Æ exp

Q
a≠ (2n + 1)d

4D2d(2k + 1)d

A
Á ≠

Ô
D log 2|S|(2k+1)d

(2(n ≠ k) + 1)
d
2

B2
R
b

provided that n is large enough, which ensures in particular that the difference

inside the square is positive. Therefore, there exists ” = ”(Á, k) and N =
N(Á, k) such that

µ{Ê œ Ω : Fn,k(Ê) Ø Á} Æ exp
1
≠(2n + 1)d”

2
.

Then

Eµ[Kn,k] Æ


D log 2|S|(2k+1)d

¸n,k

for all n Ø N , which is exactly (4.2.4).
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Chapter 5

Numerical study of

concentration inequalities for

the 2D Ising model

Our goal is to explore numerically concentration inequalities for a large class

of observables. We will introduce the classical Metropolis algorithm to gen-

erate configurations according to the equilibrium distribution and thereafter

to estimate the concentration constants involved at different temperatures.

The first case was to consider the uniqueness regime in which a Gaus-

sian concentration holds in the high-temperature regime with a concentra-

tion constant depending on the Dobrushin contraction coefficient (see [14]).

Dropping down the temperature to the critical one, the model still exhibits

a unique phase which satisfies strong mixing properties (see [28, 29, 61,

81, 80]) and, for this reason we aim to illustrate the intuition that Gaus-

sian concentration bound holds for all — < —c. We know, by contraposi-

tion, that at — = —c the Ising model cannot satisfy a Gaussian concentration

bound because it does not even satisfy a variance inequality (see 3.3). In

the low-temperature regime, one cannot expect such a Gaussian concentra-

tion bound and the authors ([13]) proved in a certain low-temperature regime

that a stretched-exponential concentration bound holds (see 3.2.6). Our re-

sult confirms this concentration type by stating that non-uniqueness prevents

GCB to hold ([19]). Thanks to our simulations, we could depict the concentra-

tion constant behavior according to the temperature and envisage a possible

extension of theoretical results. Indeed, for all temperatures above Tc, the

concentration constant acts as a continuous and decreasing function of the

temperatures diverging as a power-law at Tc. Consequently, a Gaussian con-

centration bound seems to hold for all temperatures above the critical one.

When the temperatures drop down, we estimated the exponent quantifying

the concentration decay according to the deviation by simulating the size be-

havior of the probability of a fluctuation of different observable. This result

echoes the large deviation result proved by D. Ioffe in [43] in which he de-

scribes the correct asymptotic behavior of the magnetization.

5.1 Setting

Here and below, we will use the same setting. The configuration space is

Ω = SZ
2
, where S = {≠1; +1}. We define the distance between a subset
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Λ µ Z
d and x œ Z

d as

d(Λ, x) = inf{Îx ≠ yÎŒ; y œ Λ}

and we denote by ˆΛ the 1-boundary defined as follows

ˆΛ := {x œ Λ
c; Îx ≠ yÎŒ Æ 1 with y œ Λ}. (5.1.1)

Let Ê(x) œ Ω be the configuration obtained from Ê œ Ω by flipping the spin

at site x œ Z
d, that is the configuration such that (Ê(x))y = Êy if y ”= x and

(Ê(x))y = ≠Êy if y = x. Recall that we defined centered cubes this way: for

every n œ Z+, let

Λn = {x œ Z
2 : ≠n Æ xi Æ n, i = 1, 2, · · · , d}.

Finally, the shift action (Tx, x œ Z
2) is defined as follows: for each x œ Z

d,

Tx : Ω æ Ω and (Tx Ê)y = Êy≠x, for all y œ Z
2. We also recall what we mean

by Ising model.

Definition 5.1.1 (The 2D Ising model).

The Ising model refers to the nearest-neighbor ferromagnetic Ising model

in dimension two with positive external field in which the potential is de-

fined as follows

Φ(Λ, Ê) =

Y
__]
__[

≠hÊx if Λ = {x}

≠JÊxÊy if Λ = {x, y} and Îx ≠ yÎ1 = 1

0 otherwise

(5.1.2)

Later, we will rather consider the potential —Φ where — œ R+ is the inverse

temperature. (Since the Ising model potential Φ will be fixed, we will always

refer to — for the potential —Φ.) Therefore, the total energy inside Λ is given

by the Hamiltonian

HΛ(Ê|÷) = ≠
ÿ

i,jœΛ

Îi≠jÎ1=1

ÊiÊj ≠
ÿ

iœΛ,jœˆΛ

Îi≠jÎ1=1

Êi÷j ≠ h
ÿ

iœΛ

Êi.

we will denote by “— its corresponding specification (see 2.3.3 for the defini-

tion). We recall that for h = 0 there exists an inverse temperature —c such

that for all — Æ —c, G(—Φ) is a singleton, and for all — > —c there exists two

different extreme Gibbs measures µ+
— and µ≠

— obtained with the “+” and “≠”

boundary conditions. For h > 0, there exists a unique Gibbs measure at all

temperature. More generally, let Λ b Z
d, we denote by µ÷

— the Gibbs measure

obtained with the boundary condition ÷ œ ΩΛc . In this chapter, we will assume

that h = 0.

5.2 Computations and estimates

5.2.1 Introduction

In this section, we will introduce an important Monte Carlo sampling method

to evaluate the behavior of observables at every finite temperature. We will
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give a brief glimpse of the relevance and effectiveness of this stochastic ap-

proach and show up numerical limitations we can encounter. Particularly for

this model, the energy, spontaneous magnetization, magnetic susceptibility

etc can be calculated exactly giving its critical exponent. Mostly, we don’t

know the analytic expression at finite temperature but we can obtain the criti-

cal exponent close to phase transition. For more details, we refer the reader

to [51], [42].

5.2.2 Computation problems

Roughly speaking, the phase transition phenomena corresponds to an abrupt

change in the behavior of observables by moving one parameter. Few of them

are of comparable interest in the ferromagnetic Ising model in two dimensions

as magnetization and local energy because they are easy to compute and we

know analytically their expression. In fact, given a boundary condition of the

system, we can calculate the probability for the system to be in this specified

configuration and we can also derive easily the macroscopic quantities. So,

we are interested in the expected value of magnetization, the local energy,

the magnetic susceptibility and heat capacity in a finite box Λ.

Definition 5.2.1.

Let Λ b Z
2, Ê œ Ω and ÷ œ Ω the boundary condition. We denote respec-

tively the magnetization, the average magnetization, the local energy, the

average local energy, the magnetic susceptibility and the heat capacity

in Λ by

m÷
Λ

(Ê) =
ÿ

iœΛ

Êi, Eµ÷

—
(m÷

Λ
) =

ÿ

ÊœΩ

m÷
Λ

(Ê)“—
Λ

(Ê|÷),

E÷
Λ

(Ê) =
1

2

ÿ

iœΛ,jœΛfiˆΛ

Îi≠jÎ=1

ÊiÊj , Eµ÷

—
(E÷

Λ
) =

ÿ

ÊœΩ

E÷
Λ

(Ê)“—
Λ

(Ê|÷),

‰
÷
Λ

= —
Ë
Eµ÷

—
((m÷

Λ
)2) ≠ Eµ÷

—
(m÷

Λ
)2

È
, C

÷
Λ

= —2
Ë
Eµ÷

—
((E÷

Λ
)2) ≠ Eµ÷

—
(E÷

Λ
)2

È
.

For Ê œ Ω, x œ Z
2 and Λ b Z

2 we also introduce respectively, correla-

tions Eµ÷

—
(Ê0Êx) and the empirical pair correlations

ΓΛ,x(Ê) =
1

|Λ|

ÿ

yœΛ

ÊyÊx+y.

Further, if it’s sufficiently clear, we omit the size and boundary condition

indeces in observables.

Remark 5.1. In this model, there exists an analytical expression of the par-

tition function from which every observable we consider follows by derivation

(see [67]).

There are different ways to simulate the system at equilibrium and cal-

culate the average of an observable. The intuitive one is to calculate the

magnetization and the energy for each configuration and weighting them by

the probability factor to calculate the expected value. But, this method has im-

portant limiting aspects, considering boxes of very large size (thermodynamic
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limit) the calculus reveals to be impossible due to the 2|Λ| possible different

configurations. A good way to do these calculations is to choose configura-

tions with the same probability factor and give them the same weight. This is

known as the Metropolis algorithm. However, in the low-temperature regime,

this algorithm tends to freeze the system in only few configurations and es-

timating particular events becomes impossible. We tried without significant

improvement to get better access to these computational estimations by a

Modified Metropolis algorithm based on subset simulation techniques (see

[85, 5]).

5.2.3 Classical Metropolis algorithm

This algorithm works by creating a sequence of sample configurations in such

a way that, as more and more samples are produced, the distribution of con-

figuration more closely approximates the desired equilibrium state. More pre-

cisely, We generate a sample configuration from a previous one using a tran-

sition probability which depends on the energy change between the initial

configuration and the final one. In this chapter, we denote by Λ b Z
2 the

centered “square” of side length L œ 2Z+ such that |Λ| = L2. We also denote

by P ÷
Λ

(Ê, ÊÕ) the transition probability from the configuration Ê œ Ω to ÊÕ œ Ω

with boundary condition ÷ œ Ω such that ÊΛc = ÊÕ
Λc = ÷Λc . We want to be

sure that the final state corresponds to the equilibrium state, so we impose to

the probability measure to satisfy the following detailed balance equation

“
—
Λ

(Ê|÷)P ÷
Λ

(Ê, ÊÕ) = “
—
Λ

(ÊÕ|÷)P ÷
Λ

(ÊÕ, Ê).

Thus, going from the configuration Ê to ÊÕ and vice-versa depends only on

the energy difference between these two configurations ∆HΛ = HΛ(ÊÕ|÷) ≠
HΛ(Ê|÷).

P ÷
Λ

(Ê, ÊÕ)
P ÷

Λ
(ÊÕ, Ê)

= exp (≠—∆HΛ).

At this time, we need to specify uniquely the transition probability from one

configuration to another. To do that we use the Metropolis form of the transi-

tion probability:

P ÷
Λ

(Ê, ÊÕ) =

I
exp (≠—∆HΛ) if ∆HΛ < 0

1 otherwise
.

Hence, starting from an initial distribution of configurations and applying the

transition probability P ÷
Λ

generates a Markov process in which the initial dis-

tribution converges to the equilibrium state when the time step diverges to

infinity. In a computational way, we have the following algorithm

1. We choose randomly a spin from an initial configuration.

2. We flip this spin and calculate the energy difference between this con-

figuration and the previous one.

3. If the difference is negative, keep this spin flipped and restart the pro-

cess. If not go to the next step.

4. Generate a random number r œ (0, 1). If exp (≠—∆HΛ) > r, then keep

the spin flipped. If not let it in its initial state.
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5. return.

We call one step of this algorithm a micro Monte Carlo step (mMCs) and

the standard measure of one unit Monte Carlo time tMC is defined by the

mean number of mMCs needed to change every spins also called MCs. At

fixed temperature, before collecting data, we need to perform a large number

of iterations of the micro MC step in order to generate configurations with a

probability measure converging to the unique equilibrium state. The choice of

a reasonable amount of mMCs and the precision of the results depend upon

many factors as temperature, size of the lattice, boundary conditions etc and

will be discussed in the following sections.

5.2.4 Finite-size effect

Let’s recall that our main interest is to determine statistical properties of the

infinite-volume Gibbs measures. Since we can’t numerically consider infi-

nite lattices, we can rightly ask how finite-size effects act on the precision of

the measurement on observables. To observe these effects, one may com-

pute a large number of configurations distributed according to finite-volume

Gibbs measures with different size length and simulate the different behavior

of an observable with respect to the volumes (see [49]). By this method, one

can approximate and extract numerically the critical behavior of observables

according to the size of the system (or equivalently to the temperature). For

example, for very small lattices, one can miss the essential phenomena which

is a drastic change in the behavior of the system at critical temperature. For

this reason we need to choose a sufficiently large lattice. Another source of

errors might emerge from the implementation of large systems and is related

with the correlation between two successive configurations.

5.2.5 Finite sampling time effect

Due to physical limits of computing, one has to choose a convenient way of

using the computer resources by simulating systems with different size during

different time scales. Here, we give some solutions to reduce statistical errors

produced by small number of MCs considering large size lattices. We need to

consider times large enough to produce typical configurations from the equi-

librium state. We refer the reader to D. Landau and K. Binder in [51] where

they methods to study the transient “phase” evolution starting from a random

configuration and quantify the time we need to simulate these configurations.

Roughly speaking, they call relaxation time ·e, the time when the transient

phase ends. The main computational problem that we have to deal with is

that the influence of correlation between configurations intensifies close to

the critical temperature and the relaxation time behaves as:

·e ≥ Lze

where ze is a real number smaller that 2, 2. Beyond transient phase, other typ-

ical configurations and averages are produced by computing the Metropolis

algorithm but they always exhibit temporal correlations responsible for errors

if the number of MCs is too small. Since two configurations are highly cor-

related applying a micro Monte Carlo step, the author in [51] could quantify

the behavior of an autocorrelation function which indicates, for large time,
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how long we have to “wait” a decorrelation of samples to ensure its statistical

quality. Typically, far from the critical temperature, the characteristic correla-

tion time ·c depending on the temperature is attained in a few MCs but at the

critical point it diverges with the size of the lattice:

·c ≥ Lz

where z ¥ 2, 2 and in this model, ze is always smaller than z depending on the

observable. Particularly, close to the critical temperature, the number of MCs

must be larger than the square size of the lattice to decorrelate two statistical

measures. This means also, that far from this point it’s not necessary to

compute with large times because it will produce the same results.

5.3 Estimation of concentration constants

We have arrived now at the core of this chapter: the estimation of concen-

tration constants. Once the model has been simulated, we collect, from the

typical configurations, the fluctuations of different observables around their

mean to produce an histogram that we will fit with the maximum likelihood

density function. At the end, we compare our estimations about magneti-

zation, energy and concentration constants to the analytical results already

calculated.

5.3.1 Method

We need to introduce some notation to quantify numerically and clarify the

difference between the observable we measure by simulating the model and

their theoretical expectation, the expectation and the fluctuations of a local

function K : Ω æ R. Let i œ N, Ê(i) œ Ω the i-th sample configuration and

K(Ê(i)) the i-th sample of the simulated observable K (in our context, the

exponent i can also acts as a variable of time in term of MCs between each

sample). We denote by

ÈKÍs =
1

s

sÿ

i=1

K(Ê(i))

the empirical mean of the observable K which, by the ergodic theorem, con-

verges to Eµ—
(K). Then one may compute a large number of samples to ob-

tain a precise approximation of fluctuations. Typically, we computed s = 105

to get closer to the probability distribution in a convenient amount of time.

Once done, with R-studio, a classical fitting procedure provides by successive

tests, the maximum likelihood function coinciding with the empirical measure

of fluctuation. In fact, it approximates the empirical probability distribution be-

havior of fluctuations by the expected real-density function and we deduce

the simulated concentration constant D
(emp)
—,Λ,s (K) by its classical parameters.

With this notation we define the empirical susceptibility and the empirical heat
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capacity and their respective estimators by

‰
(emp)
—,Λ,s = —

1
Èm2

ΛÍs ≠ ÈmΛÍ2
s

2

‰
(est)
—,Λ,s = —(mΛ(Ê))2 ≠ Èm2

ΛÍ
C

(emp)
—,Λ,s = —2

1
ÈE2

ΛÍs ≠ ÈEΛÍ2
s

2

C
(est)
—,Λ,s = —2

1
(EΛ(Ê))2 ≠ ÈE2

ΛÍ
2

.

5.3.2 Settings and preliminary results

The program implemented gives the behavior of observables in a “small” box

Λ of different side length L = 100 contained in a box of side length L = 500
at different range of temperatures from T = 1.50 to T = 5.0 with many points

concentrated around Tc ¥ 2, 269. Far from the critical temperature, we pro-

duce configurations at equilibrium computing generously 105 Monte Carlo

steps and to decorrelate each sample we compute 10 MCs. Very close to

the critical temperature ([2.255, 2.275]), the correlation in time and in space

increases drastically and we cannot reach a very accurate result in a rea-

sonable amount of time. Nevertheless, we successfully approach theoretical

results even in this short range of temperature. To support this statement, we

plotted several classical observables below (see figures) and their expected

behavior.

Figure 5.1: This plot shows the result of Average Magnetization and Average

Energy per spin.

From the study of J. Kotze (see [49]), we observe the emergence of a

critical behavior close to Tc for the average magnetization and the average

energy per spin curves for different box sizes whenever the size increases. In

fact, for small size lattices, the curve is smooth but for L = 100, their behavior

coincides almost exactly with the theoretical expression at all temperatures

(see 5.1) :

Eµ—
(m+) =

Y
]
[

Ë
1 ≠ 1

sinh4(2—)

È 1
8

if — > —c

0 otherwise
.
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Figure 5.2: These plots show the result of Susceptibility per spin, Specific

Heat per spin and correlation at different temperature.

The susceptibility, heat capacity and correlations also emphasize this phe-

nomenon. For these three curves, we notice that the divergence would occur

at a phase transition but, with finite-size lattices, there emerges a peak value

at the hypothetic divergence point. Even if this limitation leads to some errors,

the critical behavior follows, as expected, the power-law divergence with the

right critical exponent (see 5.2). The following sections deal with the estima-

tion of such quantities and the behavior of concentration constants at all finite

temperature.

5.3.3 Gaussian concentration constant estimation

Let’s recall that a Gaussian concentration property holds under a sufficiently

high-temperature condition (see 3.2.1).

Theorem 5.3.1 ([13, 50]).

For all — < — = 1
2 ln 5

3 , the unique Gibbs measure µ— satisfies GCB(D)
with D = 2(1 ≠ tanh(—))≠2.

In this section, we fix the side length of the box L = 100. At high tem-

perature, one expects a Gaussian concentration bound for every sufficiently

regular observable K : Ω æ R. For this reason, we fit numerically the his-

togram of fluctuations at different temperature until the critical one (see figure

5.3) with a Gaussian density function. More precisely, we fit

1

s

sÿ

i=1

1{ÊœΩ: K(Ê(i))(Ê)≠ÈKÍs)Øu}
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by the maximum likelihood function, namely

exp

A
≠ (u ≠ ÈKÍs)2

2(ÈK2Ís ≠ ÈKÍ2
s)

B
.

Figure 5.3: These graphs show qualitatively the fitting procedure of the fluc-

tuations of the magnetization at different temperature (T = 2.29, 2.40, 3.00).

By simple relations, we derive the expression of D
(emp)
—,Λ,s (K) from the vari-

ance ÈK2Ís ≠ ÈKÍ2
s and its behavior for different observables at finite temper-

atures (see 5.3) as follows

D
(emp)
—,Λ,s (K) =

ÈK2Ís ≠ ÈKÍ2
s

2Î”(K)Î2
2

.

Remark 5.2. For our estimations, we will need the following values of Î”(K)Î2
2.

Î”(m)Î2
2 = 4|Λ|, Î”(m2)Î2

2 = 16(|Λ| ≠ 1)2|Λ|,

Î”(E)Î2
2 = 16|Λ|, Î”(E2)Î2

2 = 16(|Λ| ≠ 1)2|Λ|,

Î”(Γ)Î2
2 =

16

|Λ|
.

In figure 5.4, we computed the concentration constants of classical ob-

servables in a finite box of length L = 100. We represented by a vertical red

lines, the critical temperature Tc and by a vertical yellow line the temperature

T above which Theorem 3.2.1 holds. We also computed the theoretical (when

T < T ) and hypothetical (when T < T ) behavior of the Gaussian concen-

tration constant and observe that GCB
!
2(1 ≠ tanh(—))≠2

"
holds for a larger

range of temperature with an optimal constant. In addition to illustrating that

GCB(D—) holds until the critical temperature, we also depict the divergence

of concentration constants of interest. In fact, by this calculation method, we

expect that the characteristic divergence as a power-law at critical temper-

ature extends to all concentration constants as it does for the susceptibility
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Figure 5.4: This plot shows the differing results of concentration constants

depending on each observables and the hypothetical one.

and the concentration constant of the magnetization. In the next section, we

analyze the power-law divergence of concentration constants by estimating

their critical exponents.

5.3.4 Determination of concentration constant behavior

As we mentioned before in the finite-size effect section, it would be useful to

introduce critical exponents to understand the nature of the divergence close

to Tc. Let’s introduce the critical exponent definition ’ = limT æTc

KT ≠Tc

|T ≠Tc| or by

abuse of notation KT ≠Tc ≥ |T ≠ Tc|
’ . To each concentration constant, we

associate its critical exponent as follows:

D
(emp)
—,Λ,s (mΛ) ≥ |T ≠ Tc|

≠a, D
(emp)
—,Λ,s (EΛ) ≥ |T ≠ Tc|

≠b,

D
(emp)
—,Λ,s (m2

Λ) ≥ |T ≠ Tc|
≠c, D

(emp)
—,Λ,s (E2

Λ) ≥ |T ≠ Tc|
≠d.

By extrapolating these behaviors with a large size length, the classical study

of divergence consists in plotting the log-log graph which should provide a

straight line with a coefficient slope equal to the critical exponent (see figures

5.5). To be sure of the reliability of this method, we gave precise estimations

of known exponent values in the sense that the theoretical value belongs to

the confidence interval of the estimation.

We collect all the calculation results we made in the following table.
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Figure 5.5: These plots show the linear fitting of the log-log concentration

constant of the magnetization and energy with temperature.

Quantity Exponent Estimation Theoretical value

Magnetization ” 0.1260 ± 0.0052 1/8

Susceptibility “ 1.7877 ± 0.1611 7/4

Heat capacity – 0 /

Correlations ‹ 1.0474 ± 0.1247 1

Dmagn a 0.7503 ± 0.089 3/4

Dener b 0.8456 ± 0.0531 ?

Dsusc c 1.0195 ± 0.1886 ?

Dcap d 2.0833 ± 0.1745 ?

Dcorr f 0.69470 ± 0.07052 ?

From the best of my knowledge, the theoretical values of the concentration

constants are not known. For this reason, we denote by “?ÕÕ the correspond-

ing theoretical value. A special case in this table concerns Heat capacity in

which the graph is not fitted by a straight line. The reason is because the

exponent value – is zero and its behavior has to be interpreted as logarith-

mic function of T ≠ Tc. One may not be surprised by the susceptibility value

and the concentration constant value of magnetization because there exists

a direct relation of proportionality between them:

D
(emp)
—,Λ,s (mΛ) =

‰
(emp)
—,Λ,s

8—
.

To sum up, we provided numerically that a GCB
1
D

(emp)
—,Λ,s

2
holds for linear

observables (magnetization) and non-linear ones (local energy, susceptibil-

ity, heat capacity) at all temperatures above Tc. Considering D
(hyp)
— as the

supremum of all concentration constants, it may behave as the concentration

constant of the magnetization.

49



5.3.5 Stretched-exponential concentration constant estimation

In the low-temperature regime, because of the existence of multiple Gibbs

states, the Gaussian concentration cannot hold. Nevertheless, at sufficiently

low temperature, one can control all moments 3.2.7 and deduce that the mea-

sure µ+
— satisfies a stretched-exponential concentration bound (see [13]). For

the reader’s convenience we recall Theorem 3.2.6.

Theorem 5.3.2 ([13]).

Let µ+
— be the “+”-phase of the low-temperature Ising model defined as

above. There exists —̄ > —c such that for all — > —̄ there exist fl = fl(—) œ
(0, 1) and a constant Dfl > 0 such that, for all K œ L , one has for all

u > 0

µ+
—

3
Ê œ Ω : |K(Ê) ≠ Eµ+

—
(K)| Ø u

4
Æ 4 exp

A
≠ ufl

DflÎ”(K)Îfl
2

B
.

The goal of this section is to estimate the parameters of the stretched-

exponential concentration below the critical temperature. Thus, we follow

optimistically the same path by making histograms of observables of interest.

By comparison with classical density functions, the Weibull density function

seems to have the maximum likelihood fit with the probability to observe a

fluctuation of an observable. It’s governed by two parameters: a shape pa-

rameter corresponding to the exponent in the concentration function and a

scale parameter corresponding to the concentration constant. Unfortunately,

fitting with such distributions generate exponents which do not agree with

large-deviation results concerning the magnetization. In fact, the concentra-

tion bound, valid for all observables, might be overly pessimistic. So, instead

of fixing the size of the box and calculating the deviation, we figure out the

best exponent for every observable fixing the deviation parameter and com-

pute the large-deviation function with respect to the size of the box. Formally,

for fixed observables K : Ω æ R and deviations u œ R we want to evaluate

the large-deviation exponent q œ R+ such that

lim
LæŒ

1

Lq
log µ+

—

3
K(Ê) ≠ Eµ+

—
(K) Ø u

4
= ≠C(K, u) (5.3.1)

where C(K, u) : R
2 æ R. Thus, the determination of the optimal concen-

tration exponent fl relies totally on the large and moderate deviation analysis

and its corresponding stretched-exponential expected behavior. Technically,

we compute the number of occurrences of fluctuations of observables with

respect to different sizes of the box and by an homogeneity argument of the

concentration bound, we will guess its hypothetic value.

Fixing T = 1.50 and T = 2.26, we plot the log-deviation probability of the

magnetization, energy and correlations with respect to the the size length of

the box up to a varying exponent. By a linear regression according to L0.1,

L0.5, L, L1.5 or L2 and by fixing the intercept coefficient to 0, we adjusted the

slope of each curve and selected the one with the smallest standard error.

We collect the coefficient of determination or the “Rsquare” value in tables

and denote by “•” the highest value for the corresponding deviation and Lq

with q = 0.1, 0.5, 1, 1.5, 2. Finally, with the same simulation techniques and for

fixed deviations and the adjusted Lq, we evaluate the concentration constant

Dfl in this range of temperatures.
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Concentration exponent of the magnetization

For the plus-phase, Schonmann in [76] gave the correct asymptotic exponen-

tial decay to zero of the probability that the block spin magnetization deviates

from its mean for sufficiently low temperature. This large deviation principle

was refined by D. Ioffe who proved in [43] that a large and moderate devi-

ation principle holds for small deviations. Let Ê œ Ω and Λ b Z
2, we set

M+
Λ

(Ê) = m+
Λ

(Ê)/|Λ| be the magnetization per spin. These results are as

follows.

Theorem 5.3.3 ([76],[43]).

Let —c < — large enough. For u > 0 we have

lim
LæŒ

1

L2
log µ+

—

3
M+

Λ
(Ê) ≠ Eµ+

—

1
M+

Λ

2
Ø u

4
= ≠I(u) (5.3.2)

where I : R æ R is the rate function defined as the Legendre-Fenchel

transform of

p(h) := lim
LæŒ

1

L2
log

ÿ

ÊœSΛ

exp

Q
aHΛ(Ê| + 1) + h

ÿ

ÊœSΛ

Êi

R
b.

For u œ
5
≠Eµ+

—

1
M+

Λ

2
,Eµ+

—

1
M+

Λ

26
we have

lim
LæŒ

1

L
log µ+

—

1
M+

Λ
(Ê) Æ u

2
= ≠C (–(u))1/2 (5.3.3)

with –(u) =

3
Eµ+

—

1
M+

Λ

2
≠ u

4
/

3
2Eµ+

—

1
M+

Λ

24
.

u
T=1.50

L0.1 L0.5 L1 L1.5 L2

-0.009 0.9127405 0.9556466 0.9874373 • 0.9973909 0.9903635

-0.008 0.9190758 0.9611203 0.9912486 • 0.9990756 0.9896748

-0.007 0.9368466 0.9733068 0.9962118 • 0.9971406 0.9815893

-0.006 0.9486626 0.9808296 • 0.9983899 0.9944041 0.9746247

0.005 0.9329949 0.971329 0.9959632 • 0.9978508 0.9825328

0.006 0.9363763 0.9735209 0.996925 • 0.9979399 0.9821095

0.007 0.8985363 0.9462002 0.9835563 • 0.9981665 0.9946289

u
T=2.00

L0.1 L0.5 L1 L1.5 L2

-0.03 0.9499033 0.9818769 • 0.9990378 0.9945031 0.9740661

-0.02 0.9663745 0.991229 • 0.9995210 0.9868271 0.9593728

-0.01 0.9866349 • 0.9991084 0.9925001 0.9665669 0.9280966

-0.005 0.9973652 • 0.9982964 0.9778755 0.9397386 0.8911712

0.005 0.9919304 • 0.9996971 0.9874712 0.9565912 0.9140434

0.01 0.9731002 0.994557 • 0.9985993 0.9819703 0.9510996

0.02 0.9390434 0.9750328 0.9972354 • 0.9973867 0.9810323
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u
T=2.24

L0.1 L0.5 L1 L1.5 L2

-0.1 0.997434 • 0.9975708 0.976049 0.9367774 0.8871148

-0.02 • 0.9987025 0.9941566 0.9675034 0.9241475 0.8714876

-0.01 • 0.9991225 0.9919115 0.9623082 0.9165803 0.8621642

-0.005 • 0.9993307 0.9896280 0.9574631 0.9098901 0.8543193

0.09 0.9616109 0.9885029 • 0.9987808 0.9873458 0.9604515

0.1 0.9542204 0.9844559 • 0.9989513 0.9914519 0.9679959

u
T=2.26

L0.1 L0.5 L1 L1.5 L2

-0.7 0.9407818 0.9640303 • 0.9723747 0.9618152 0.9381304

-0.6 0.9815318 • 0.9903771 0.9799396 0.9511663 0.9108743

-0.01 • 0.9984209 0.9855914 0.9493846 0.8979563 0.8389526

-0.005 • 0.9981291 0.984627 0.9476863 0.8956756 0.836245

0.1 0.9825165 • 0.9943309 0.9869233 0.9602785 0.9212302

0.15 0.960083 0.984179 • 0.9917334 0.9785711 0.950919

0.2 0.9445357 0.9753598 • 0.9909604 0.9848538 0.9629509

These tables describe the evolution of the order of the exponential decay

5.3.3 at low temperature in different regions of deviations. Despite the lack

of information about extremely rare events, we could evaluate this probability

for low temperatures T = 1.50 until T = 2.26.

Close to Tc, for large deviations, the general behavior is a function of L1.0

while for small deviations it acts as a function of L0.1 and L0.5. In fact, in this

narrow range of deviation, we do not observe a clear difference between the

L0.1 and L0.5- dependence with respect to each other.

At T = 2.00, for small absolute values of u, the L0.5-dependence domi-

nates whereas for large u the simulation indicates a L1 and L1.5 dependence

of the deviation probability.

Figure 5.6: This plot shows the log-deviation probability of the magnetization

at T = 2.00 for u = 0.01 with respect to L.

Dropping the temperature to T = 1.50, there is an apparent difference.

First of all, we notice the expected decay of large fluctuations due to the dif-

ficulty of the algorithm to create diversified configurations. In this range of

small deviations, we observe a surface-order large deviations which remind

the theoretical large deviation result for the magnetization (see 5.3.3). For

larger u, the L1.5-dependence dominates. If we now were to think about
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lower temperatures, regarding the complete evolution in these tables, the

L2-dependence increases more and more when the absolute value of u in-

creases and the temperature goes down. Such an observation echoed the

classical large deviation result for the magnetization (see 5.3.3). Combining

the previous results for all low temperatures, it seems that the lowest ex-

ponent for the magnetization is q = 0.1. For sufficiently low temperatures,

this value increases and corresponds to the expected large deviation results

namely q = 0.5. It follows that, for sufficiently low temperature, the optimal

value of the stretched-exponential concentration exponent might be valid for

all deviations and is given by a relation with the lowest size-exponent of these

tables namely fl = 2q = 1.
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Concentration exponent of the energy

The large deviation principle 5.3.3 is only valid for functions having an addi-

tivity property like the magnetization. For general functions, such a theorem

may be difficult to prove but we can illustrate a large deviation property for en-

ergy by computation without extra effort. Following the same path, we com-

pute large and moderate deviation probabilities for the energy to determine

the concentration exponent fl.

u
T=1.50

L0.1 L0.5 L1 L1.5 L2

-0.035 0.9580257 0.986614 • 0.9995497 0.991098 0.9672438

-0.025 0.9804676 • 0.9976540 0.9963408 0.9747378 0.9395377

-0.01 0.9965219 • 0.9987139 0.9798727 0.9431922 0.8958744

-0.005 • 0.9991771 0.9957245 0.9700556 0.9272674 0.874827

-0.0025 • 0.9996904 0.9936813 0.9651976 0.9201781 0.8661303

0.025 0.9957684 • 0.9992405 0.9817242 0.9460219 0.8993549

0.05 0.9885047 • 0.9996988 0.9913282 0.963605 0.9234442

0.075 0.9837442 • 0.9985359 0.9944841 0.9706104 0.9336852

u
T=2.00

L0.1 L0.5 L1 L1.5 L2

-0.15 0.9653277 0.9905494 • 0.9993034 0.987054 0.9600147

-0.1 0.980303 • 0.9976033 0.9964384 0.9749778 0.9399052

-0.01 • 0.9999690 0.9924332 0.9623015 0.9159827 0.86098

-0.005 • 0.9999635 0.9905023 0.9582055 0.9101062 0.8537426

-0.0025 • 0.9998490 0.9892065 0.9555697 0.9063559 0.8491291

0.2 0.9865098 • 0.9993602 0.9929177 0.9668479 0.9280141

0.25 0.9850756 • 0.9990349 0.9939231 0.9690299 0.9311679

0.3 0.9831376 • 0.9982978 0.9946785 0.9711792 0.9345584

u
T=2.24

L0.1 L0.5 L1 L1.5 L2

-0.45 0.961725 0.9886012 • 0.9993348 0.9887889 0.9630712

-0.4 0.9670276 0.9915858 • 0.9994338 0.9862419 0.9582635

-0.01 • 0.9999011 0.9914629 0.9604081 0.9134132 0.8579591

-0.005 • 0.9998932 0.9906908 0.9587665 0.9110468 0.8550308

-0.0025 • 0.9998822 0.9904110 0.9581804 0.9102054 0.8539919

0.35 0.9922145 • 0.9997601 0.9871122 0.9556938 0.9125437

0.4 0.9912382 • 0.9997059 0.9881811 0.957769 0.9154593

0.45 0.9898673 • 0.9994782 0.9893621 0.960233 0.9190164

u
T=2.26

L0.1 L0.5 L1 L1.5 L2

-0.6 0.9506218 0.9814776 • 0.9966774 0.9897603 0.9667559

-0.5 0.9568687 0.9849517 • 0.9967782 0.9868322 0.9612827

-0.005 • 0.9994303 0.9927852 0.9637359 0.9183629 0.8641096

-0.0025 • 0.9994673 0.992608 0.9633178 0.9177465 0.8633411

1 0.9481525 0.9776994 • 0.9919403 0.9847581 0.9620304

1.1 0.9395303 0.9721972 • 0.9901206 0.9861035 0.9658824

1.75 0.9207909 0.9591684 0.984003 • 0.9861142 0.9709395

The size-dependence of probabilities of large deviations for energy are

shown in these tables. In this range of temperatures, for almost every u, the

log-probability behaves noticeably in the same way. For small deviations, it
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acts as linear function of L0.1 or L0.5 and for large deviations, the L0.5 or L1.0

dependence dominates with a really small difference in the R-squared values.

Assuming that a large deviations principle holds for energy and coincide to

its concentration bound, we deduce the concentration exponent for energy

fl = 2q = 1 at sufficiently low temperature by the relation proved in [14].

Concentration exponent of the correlation

The concentration estimate for empirical correlations follows from the analo-

gous techniques simulation and from the empirical pair correlation result in

[14].

u
T=1.50

L0.1 L0.5 L1 L1.5 L2

-0.013 0.9579837 0.986654 • 0.9996252 0.9911834 0.9673597

-0.012 0.956192 0.9854338 • 0.9993181 0.9919055 0.969125

-0.011 0.9651491 0.9905979 • 0.9995904 0.987495 0.9605089

-0.01 0.9638664 0.9899496 • 0.9997198 0.9883385 0.9619746

-0.005 0.9872596 • 0.9993066 0.9921019 0.9655708 0.9265579

0.007 0.9711726 0.9935154 • 0.9987168 0.9832262 0.9534157

0.008 0.9567664 0.9860005 • 0.9996266 0.991695 0.9681842

0.009 0.9476749 0.9805373 • 0.9987365 0.995099 0.9753938

u
T=2.00

L0.1 L0.5 L1 L1.5 L2

-0.07 0.941429 0.9751481 • 0.9952521 0.9942282 0.9775659

-0.06 0.9535059 0.9834213 • 0.9983730 0.9921847 0.9706888

-0.05 0.9631681 0.9894328 • 0.9995522 0.9886158 0.9627462

-0.01 0.9968279 • 0.9985737 0.9792138 0.9420948 0.8944357

-0.005 • 0.9996782 0.9943578 0.9667085 0.9224207 0.8689583

0.03 0.9609639 0.988227 • 0.9995925 0.9898018 0.9649148

0.04 0.9475861 0.9804369 • 0.9987193 0.9952427 0.9757364

0.05 0.9362537 0.9729062 0.9961561 • 0.9974934 0.9823594

u
T=2.24

L0.1 L0.5 L1 L1.5 L2

-0.5 0.9499842 0.9772916 • 0.9881121 0.9771421 0.9505674

-0.4 0.9765177 • 0.9836301 0.9693372 0.9352589 0.8887684

-0.3 0.9913134 • 0.9927382 0.9720664 0.9328405 0.8825777

-0.01 • 0.9996856 0.9892367 0.9559746 0.907232 0.8505173

-0.005 • 0.9993529 0.9874119 0.9525241 0.9024956 0.8448433

0.09 0.9800776 • 0.9972137 0.99583 0.9741677 0.9389354

0.1 0.9760887 0.9955789 • 0.9970681 0.9779979 0.9449574

0.15 0.9581648 0.9867022 • 0.9992893 0.9902613 0.9657128

u
T=2.26

L0.1 L0.5 L1 L1.5 L2

-0.5 0.9565648 0.9817033 • 0.9908962 0.9796137 0.9539393

-0.4 0.9656315 0.985999 • 0.9894572 0.9730881 0.9431873

-0.01 • 0.9980849 0.9820646 0.9423537 0.8881065 0.8269874

-0.005 • 0.9976174 0.9807158 0.940031 0.8849999 0.8232974

0.18 0.9561101 0.983561 • 0.9953543 0.9861828 0.962064

0.2 0.9476055 0.9781697 • 0.9939331 0.9885157 0.9677283

0.22 0.944489 0.9765406 • 0.9940297 0.9900656 0.9704004
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In this tables, we treat the concentration properties of the correlations be-

tween two pairs of spins at range x = 40. At T = 1.50, we observe mainly a

surface-order dependence of the “asymptotic” exponential decay of the prob-

ability for sufficiently large deviations. For higher temperatures, the interval of

“small” absolute deviations gets wider and wider and the log-probability tends

to behave like L0.1 or L0.5. Actually, this low order of growth emphasizes the

phase transition phenomenon in which the correlation becomes more and

more sensitive to the system and diverges at Tc. Such a simulation produces

an optimal exponent for the correlation fl = q = 1 for lowest temperature and

corresponds to the expected concentration result (see [14]).

Concentration constants

In order to complete the study of stretched-exponential concentration, we

illustrate the concentration constant behavior Dfl. For each observable, we fix

the concentration exponent fl = 1, the large deviation u (for the magnetization,

energy, correlation and suceptibility we choose respectively u = 0.007, u =
0.075, u = 0.009 and u = 0.009) and plot the corresponding curve according

to the temperature (see 5.7).

Figure 5.7: These plots represent the concentration constant for the magne-

tization (on the top left hand side), for the energy (on the top right hand side),

for the correlation (on the bottom left hand side) and the susceptibility (on the

bottom right hand side).

At this point, it is prudent to recall that these plots only give a qualitative

representation of the concentration constants for one deviation u according

to the temperature and the exponent. Even in this case, we observe a diver-

gence of each concentration constant up to Tc which confirms the expected

loss of the stretched-exponential bound at critical temperature (see 3.2.5).
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5.4 Conclusion

In this chapter, we analyzed numerically the concentration parameters of the

ferromagnetic Ising model in different temperature regimes. We were mo-

tivated by existing large deviation and concentration results which confront

the correct asymptotic behavior of estimates with an upper bound for the log-

arithm of the exponential moment of all sufficiently smooth observables in

every finite volume. In order to illustrate these results, we decided to mea-

sure observables from a configuration in a small size box inside an infinite

(larger) one by simulating the Ising model with the classical Metropolis al-

gorithm. This method produces accurate typical configurations according

to the equilibrium state with a reasonable amount of time or Monte Carlo

steps. Unfortunately, for rare events, this algorithm is not efficient and we

tried without significant improvement a modified method to refine the study of

concentration. Of course, this simple model can be more efficiently treated

by different simulation strategies. In the high-temperature regime, we could

relate the empirical Gaussian concentration constant to the variance of the

concerned observable by fitting the histograms of fluctuations by a Gaus-

sian density function at different temperature and compare their hypothetic

divergence as power-laws. This result depicted the expected Gaussian con-

centration bound at very high temperature with the constant depending on

the Dobrushin uniqueness condition and illustrated that a Gaussian concen-

tration may hold until the critical temperature. Actually, these simulations

motivated the study of concentration property in this range of temperatures

in which we prove that Gaussian concentration bound for all — < —c. At suf-

ficiently low temperature, one expects a stretched-exponential concentration

bound governed by a concentration exponent and a concentration constant.

Unfortunately, this bound might be pessimistic and fitting histograms by the

maximum likelihood density function in this case does not lead to the optimal

stretched-exponential concentration parameters. We preferred calculating

each temperature-dependent parameter independently starting by the con-

centration exponent. By fixing large-deviation events and the temperature, we

computed the occurrences of fluctuations of estimates according to the size

length of the box up to a concentration-related exponent and we deduced its

value by a linear regression. At very low temperatures, we observed that the

smallest exponent of all observables coincides with the stretched-exponential

concentration bound. Close to the critical temperature, the smallest exponent

drops down drastically and allows large deviations to occur more frequently.

The second parameter describes qualitatively this behavior and shows the

expected divergence occurring at critical temperature for each considered

observables.

5.5 Code

To complete this computational chapter, we present the FORTRAN code we

use to generate statistics on magnetization at different temperatures. Other

observables can be simulated easily modifying the the subroutines mean and

calculus.

1 program IsingModel

2

3

57



4 i m p l i c i t none

5 ! Var iab les

6 i n t e g e r : : i , j

7 charac te r ( len =64) : : f i lename

8 i n t e g e r : : n=100

9 ! Spins

10 rea l , a l l o c a t a b l e , dimension ( : , : ) : : M ! Spin mat r i x

11 i n t e g e r : : np = 10 ! Number o f sp ins i n the smal l box

12 i n t e g e r : : nMC, iMC ! Steps f o r the MC a lgor i t hm

13 i n t e g e r : : neq , ieq ! Steps to reach the e q u i l i b r i u m

14 i n t e g e r : : nmoy , imoy ! Number o f averaging

15 i n t e g e r : : ntps , i t p s ! Steps f o r d i f f e r e n t temperatures

16 i n t e g e r : : a , amc

17 r e a l : : r i g h t , l e f t , up , down ! Spin r i g h t / l e f t / up / down

18 r e a l : : x , y , z

19 r e a l : : T , dT , maxT, minT ! Temperature

20 r e a l : : dE ! D i f f e rence of energy

21 r e a l : : magn , ener ! Magnet izat ion and energy

22 r e a l : : moymagn, moyener ! Average magnet izat ion and average energy

23 charac te r ( len =64) : : i n p u t f i l e = ’ i npu t . i n ’

24 namel is t / i nva rs / n , np , ntps , maxT, minT , neq , nmoy ;

25

26

27 open ( UNIT=23 , s ta tus = ’ o ld ’ , f i l e = i n p u t f i l e )

28 read ( u n i t =23 ,NML= inva rs )

29 c lose (23)

30 w r i t e (∗ , i nva rs )

31

32 c a l l random seed ( )

33

34

35 a l l o c a t e (M( n+2 ,n +2) )

36

37 ! np=100

38 nMC=n∗n

39 ! ntps=2

40 ! neq=100000

41 ! nmoy=50000

42

43 ! maxT=2.29

44 ! minT=2.24

45 dT=(maxT−minT ) / f l o a t ( ntps −1)

46 T=minT

47

48

49 c a l l C o n f i g I n i t ( )

50

51 do i =1 ,n+2

52 M(1 , i )=1.0

53 M( i ,1 )=1 .0

54 M( i , n+2)=1.0

55 M( n+2 , i )=1.0

56 end do

57

58

59 do i t p s =1 , ntps

60 ! w r i t e ( f i lename , ’ ( a6 , I3 .3 , a4 ) ’ ) ’ T1= ’ , i t p s , ’ . t x t ’

61 w r i t e ( f i lename , ’ ( a , F8 .6 , a ) ’ ) ’ T1= ’ , T , ’ . t x t ’

62 open ( u n i t =31 , f i l e = f i lename )

63 c a l l equi ( )

64 c a l l MC step ( )

65 c a l l mean ( )

66 c a l l ca l cu lus ( )

58



67 c lose (31)

68

69 w r i t e ( f i lename , ’ ( a , F8 .6 , a ) ’ ) ’MoyenmagnT1= ’ , T , ’ . t x t ’

70 open ( u n i t =32 , f i l e =f i lename , STATUS= ” rep lace ” , FORM= ” format ted ” , ACTION= ” w r i t e ” )

71 w r i t e (32 ,∗ ) T , moymagn

72 c lose (32)

73

74 w r i t e ( f i lename , ’ ( a , F8 .6 , a ) ’ ) ’M. T1= ’ , T , ’ . t x t ’

75 open ( u n i t =33 , f i l e =f i lename , STATUS= ” rep lace ” , FORM= ” unformatted ” , ACTION= ” w r i t e ” )

76 w r i t e (33) M

77 c lose (33)

78

79

80 T=T+dT

81 enddo

82

83

84

85 dea l l oca te (M)

86

87

88 conta ins

89

90 ! I n i t i a l c o n f i g u r a t i o n

91

92 subrou t ine C o n f i g I n i t

93

94 c a l l random number (M)

95 do j =2 ,n+1

96 do i =2 ,n+1

97 i f (M( i , j )>0.5) then

98 M( i , j )=1.0

99 else

100 M( i , j )=−1.0

101 end i f

102 end do

103 end do

104

105 end subrou t ine C o n f i g I n i t

106

107 ! Wai t ing f o r e q u i l i b r i u m

108

109 subrou t ine Equi

110

111 do ieq =1 ,neq

112 c a l l MC step ( )

113 enddo

114

115 end subrou t ine Equi

116

117 ! Averaging

118

119 subrou t ine mean

120 moymagn=0.0

121 do imoy=1 ,nmoy

122 magn=0.0

123 do a=1 ,2

124 c a l l MC step ( )

125 end do

126 do j =(n+2−np ) / 2 , ( n+2+np ) / 2

127 do i =(n+2−np ) / 2 , ( n+2+np ) / 2

128 magn=magn+M( i , j )

129 end do
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130 end do

131 moymagn=moymagn+magn / ( f l o a t ( ( np +1)∗ ( np +1))∗nmoy)

132 end do

133 end subrou t ine mean

134

135 ! F l u c t u a t i o n ca l cu lus

136

137 subrou t ine ca l cu lus

138 do imoy=1 ,nmoy

139 magn=0.0

140 do a=1 ,2

141 c a l l MC step ( )

142 end do

143 do j =(n+2−np ) / 2 , ( n+2+np ) / 2

144 do i =(n+2−np ) / 2 , ( n+2+np ) / 2

145 magn=magn+M( i , j )

146 end do

147 end do

148 p r i n t ∗ , T , moymagn−magn / f l o a t ( ( np +1)∗ ( np +1) )

149 w r i t e (31 ,∗ ) moymagn−magn / f l o a t ( ( np +1)∗ ( np +1) )

150 end do

151 end subrou t ine ca l cu lus

152

153 ! Monte Carlo method

154

155 subrou t ine MC step

156

157 do iMC=1 ,nMC

158 c a l l random number ( x )

159 i = f l o o r ( f l o a t ( n−1)∗x )+2

160 c a l l random number ( y )

161 j = f l o o r ( f l o a t ( n−1)∗y )+2

162

163 r i g h t = i +1; l e f t = i −1

164 up= j +1; down= j −1

165

166 dE=2∗M( i , j ) ∗ (M( r i g h t , j )+M( l e f t , j )+M( i , up)+M( i , down ) )

167 c a l l random number ( z )

168 i f (−dE / T>l og ( z ) ) M( i , j )=−M( i , j )

169

170 end do

171

172 end subrou t ine MC step

173

174

175 end program IsingModel
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Chapter 6

Gaussian concentration bound

for the 2D Ising model

In the Dobrushin uniqueness regime, we recall that a Gaussian concentra-

tion bound holds for Gibbs measures associated to shift-invariant uniformly

summable potentials on lattice systems. Here, motivated by the simulations

in the previous chapter, we aim to prove that for the 2D ferromagnetic Ising

model this result holds in the whole uniqueness regime except at the criti-

cal temperature when h = 0 (see Remark 3.3). We can now state the main

theorem of this chapter.

Theorem 6.0.1.

1. For all — < —c and h = 0, the 2D Ising model satisfies a Gaussian

concentration bound.

2. For all — Ø 0 and h > 0, the 2D Ising model satisfies a Gaussian

concentration bound.

Sketch of proof. We sketch the proof which is based on several known results

that we have to put together and we hope that there exists a more direct proof.

We first use the fact that weak mixing implies strong mixing for all squares

for 2D lattice spin systems (Section 6.1.1). Then we make use that strong

mixing for all squares implies a logarithmic Sobolev inequality “LS” (Section

6.1.2) and we prove that a logarithmic Sobolev inequality implies a Gaussian

concentration bound “GCB” (Section 6.1.3). Since the Ising model satisfies

the weak mixing condition (for all — < —c and h = 0) or (for all — Ø 0 and

h > 0), the theorem follows.

6.1 Proof of Theorem 6.0.1

6.1.1 Weak mixing implies strong mixing for 2D lattice spin sys-
tems

In view of the proof of the main theorem, we need to define several notions

of mixing, similar to the Dobrushin-Shlosman complete analyticity property,

quantifying the sensitivity to boundary conditions. Here, we define the “weak”
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and “strong” mixing properties of the Gibbs measure and mention their re-

lation for 2D lattice spin systems. For more details, we refer the reader to

[61].

Let Λ b Z
2. We recall the definition of total variation distance between

two probability measures µ and ‹ on SΛ:

Îµ ≠ ‹ÎT V =
1

2

ÿ

ÊœΩΛ

|µ(Ê) ≠ ‹(Ê)| = sup
BµSΛ

|µ(B) ≠ ‹(B)|. (6.1.1)

This distance estimates the largest possible difference between two prob-

ability measures associated to the same event. The mixing criteria will be

formulated in terms of maximal difference in expectation of a local observ-

able, depending on the distance between the finite volume we consider and

the support of a local perturbation on the boundary. To express this influence,

we introduce the following measure

“Φ

Λ,∆(Ê∆|÷) :=
ÿ

ÊœΩΛ\∆

“Φ

Λ (Ê|÷) (6.1.2)

where ∆ µ Λ b Z
2 and Φ œ BR. We are now able to define two mixing

conditions.

Definition 6.1.1 (Strong and weak mixing).

Let Φ œ BR. We say that “Φ satisfies the “strong” mixing condition if

there exist C, M > 0 such that for all Λ b Z
d, ∆ µ Λ and for each x œ Λ

c

we have

sup
Ê,Ê(x)œΩ

Î“Φ

Λ,∆(·|Ê) ≠ “Φ

Λ,∆(·|Ê(x))ÎT V Æ C e≠Md(∆,x) . (6.1.3)

We say that “Φ satisfies the “weak” mixing condition if there exist C, M >
0 such that for all Λ b Z

d and all ∆ µ Λ we have

sup
Ê,ÊÕœSΛc

Î“Φ

Λ,∆(·|Ê) ≠ “Φ

Λ,∆(·|ÊÕ)ÎT V Æ C
ÿ

zœ∆,yœˆΛ

e≠MÎz≠yÎŒ . (6.1.4)

Recall that BR is the set of potential of finite-range R > 0. The following

theorem gives an equivalence between these two notions.

Theorem 6.1.1 ([61]).

Let Φ œ BR. In dimension two, the following are equivalent:

1. The Gibbs measures “Φ

Λ
satisfy the weak mixing condition for all

Λ b Z
2.

2. The Gibbs measures “Φ

Λn
satisfy the strong mixing condition for all

squares Λn with n > 0.

Remark 6.1. We note that the theorem ensures a strong mixing condition

only for “regular” regions and may fail to arbitrarily shaped regions. This

condition is also called Restricted Complete Analyticity and is stronger than

weak mixing (see [4]). By regular regions, we mean surface built up from

large enough squares. This argument restricts a boundary region to be one-

dimensional and prevents “the boundary phase transition effect” to occur in
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which the influence of a local perturbation of the boundary condition propa-

gates in a half-space infinite-volume Gibbs measure only close to the bound-

ary (see [60]).

Remark 6.2. We do not state the full version of Theorem 6.1.1. Regarding

the proof, in the lattice Z
d with d Ø 2, the authors showed by a sequence of

intermediate results that strong mixing implies weak mixing (see Theorem 3.2

in [60]). Taking d = 2 is necessary to ensure that weak mixing implies strong

mixing.

In the high-temperature regime without external field, F. Martinelli, E. Olivieri

and R.H. Schonmann also proved the following.

Theorem 6.1.2 ([61]).

For the Ising model one has: for all — < —c and h = 0 there exist positive

constants C, M > 0 such that the Gibbs measures “
—
Λ

satisfy the weak

mixing condition for all Λ b Z
2.

In fact, for the Ising model in arbitrary dimension d Ø 2 one has: for all

— < —c there exist positive constants C, M > 0 such that the Gibbs measures

“
—
Λ

satisfy the weak mixing condition for all Λ b Z
d (see [61]).

Using the previous theorems, we deduce the following result for the Ising

model.

Corollary 6.1.1.

For the Ising model one has: for all — < —c and h = 0 there exist positive

constants C, M > 0 such that the Gibbs measures “
—
Λn

satisfy the strong

mixing condition for all squares Λn with n > 0.

For our purpose, we did not state the above result in its strongest ver-

sion; namely that it remains valid for finite-range ferromagnetic Ising model

in dimension two (in particular for all h > 0) (see [61]) in which the potential

Φ œ BR is defined as follows.

Φ(Λ, Ê) =

Y
__]
__[

hÊx if Λ = {x}

≠J(x ≠ y)ÊxÊy if Λ = {x, y}

0 otherwise

where J : Z
2 æ R is an even function such that J(0) = 0, J(x) Ø 0 if

ÎxÎŒ Æ R and J(x) = 0 if ÎxÎŒ > R.

In the whole uniqueness regime with a strictly positive external field, the

authors of [77] generalized results of [61] concerning the low-temperature

regime and proved the following.

Theorem 6.1.3. [77]]

For the Ising model one has: for all — Ø 0 and h > 0 there exist positive

constants C, M > 0 such that the Gibbs measures “
—
Λn

satisfy the weak

mixing condition for all squares Λn with n > 0.

We think it is worth to mention that for the ferromagnetic Ising model in

arbitrary dimension, weak mixing implies that the pressure is analytic as a

function of — and h (see [69]).
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For the long-range case, these theorems may fail and we refer the reader

to [25] for further details and examples.

6.1.2 Strong mixing implies the logarithmic Sobolev inequality

Let µ be a probability measure on (Ω,B) and K : Ω æ R be a positive

integrable function such that
s

K| log K|dµ < +Œ. We define the entropy of

K by

Entµ(K) =

⁄
K log Kdµ ≠

⁄
Kdµ log

3⁄
Kdµ

4
.

For further details on this definition and consequences, we refer the reader to

[1]. We now introduce the logarithmic Sobolev inequality.

Definition 6.1.2.

We say that µ satisfies a logarithmic Sobolev inequality LS(D) if there

exists D > 0 such that for all K œ L ,

Entµ(K2) Æ 2D

⁄ ÿ

xœZ2

---K(Ê) ≠ K
1
Ê(x)

2---
2

dµ(Ê). (6.1.5)

For the sake of brevity, we say that µ satisfies LS(D). We define the

logarithmic Sobolev constant D(µ, Λ) < Œ as the smallest D such that

µ satisfies LS(D).

An important aspect of logarithmic Sobolev inequalities is linked with the

spectral gap properties of Markov stochastic dynamics converging to the

equilibrium state. In fact, such estimates provide a relationship between mix-

ing properties of the specification corresponding to the shift invariant, finite-

range Gibbs potential Φ and the unique Gibbs measure µΦ (see [80, 81]).

Theorem 6.1.4 ([61]).

Let Φ œ BR. The following are equivalent:

1. “Φ

Λn
satisfies the strong mixing condition for all squares Λn with

n > 0.

2. “Φ

Λn
satisfies LS(D) with finite constant D = supΛnbZd D(µ, Λn) <

+Œ.

Here we only need a weaker version of this theorem.

Corollary 6.1.2.

Let Φ œ BR. If “Φ

Λn
satisfies the strong mixing condition for all squares Λn

with n > 0 then µΦ satisfies LS(D) with finite constant supΛnbZd D(µ, Λn) <
+Œ.

Therefore, the Ising model satisfies LS(D) for all — < —c with the constant D
depending only on — and the dimension.
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6.1.3 Logarithmic Sobolev inequality implies GCB

The last step consists in connecting the logarithmic Sobolev inequality and

the Gaussian concentration property. The implication relies on a famous

method known as the Herbst argument that we adapt to our case (see [1,

p. 252]). We stress that we are not dealing with Lipschitz functions but with

local functions.

Proposition 6.1.1.

If µ satisfies LS(D), then µ satisfies GCB(D).

Proof. Let assume that K œ L . We aim to apply the LS(D) property to

the function ⁄ ‘æ e⁄K/2 œ L for every ⁄ œ R+.We introduce the function

Z : [0, 1] æ R and its derivative Z Õ defined by

Z(⁄) =

⁄
e⁄K dµ and Z Õ(⁄) =

⁄
K e⁄K dµ.

We emphasize the following useful bound whose proof is given in the ap-

pendix

Lemma 6.1.1.

For all ⁄ œ R+ and all functions K : Ω æ R, we have

--- e
⁄
2

K(Ê) ≠ e
⁄
2

K(Ê(x))
--- Æ ⁄

2
e

⁄
2

max (K(Ê);K(Ê(x))) ”x(K).

Therefore, by this lemma and by integration of the function ⁄ ‘æ e⁄K/2 over

all configurations Ê œ Ω, we can express (6.1.5) by a differential inequality

involving the function Z and ⁄ as follows

⁄Z Õ(⁄) Æ D
⁄2

2
Î”(K)Î2

2 Z(⁄) + Z(⁄) log Z(⁄). (6.1.6)

The last step consists in integrating this inequality. To do so, we define g(⁄) =
1
⁄

log Z(⁄) with g(0) =
s

Ω
Kdµ. We observe that, for all ⁄ > 0

gÕ(⁄) = ≠ 1

⁄2
log Z(⁄) +

Z Õ(⁄)

⁄Z(⁄)
Æ D

2
Î”(K)Î2

2

which implies

g(⁄) Æ D

2
Î”(K)Î2

2⁄ + g(0).

Taking ⁄ = 1 gives the expected Gaussian concentration bound (3.2.2).

We can now conclude the proof of the Theorem 6.0.1. By Theorem 6.1.1,

for two dimensional lattice systems and for all Λ b Z
2, the probability kernel

“Φ

Λ
corresponding to the potential Φ satisfying the weak mixing condition im-

plies that it satisfies the strong mixing condition for all squares Λn with n > 0.

Therefore, by Corollary 6.1.1 the specification associated to the 2-D Ising po-

tential satisfies the strong mixing condition (for all — < —c with h = 0) or (for

all — Ø 0 with h > 0) and all Λn with n > 0. By Theorem 6.1.4 the Ising model

admits a unique Gibbs measure µ— which satisfies LS(D). By Proposition

6.1.1, it follows that for all (for all — < —c with h = 0) or (for all — Ø 0 with

h > 0), the Ising model satisfies a Gaussian concentration bound.
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6.1.4 Is Logarithmic Sobolev inequality equivalent to complete
analyticity?

Let ÷ be a fixed boundary condition. It is possible to integrate a measur-

able function K œ L with respect to “Φ

Λ
(·|÷). We denote by “Φ

Λ
K the BΛc-

measurable function defined by

“Φ

Λ K(÷) :=

⁄
K(Ê) “Φ

Λ (dÊ|÷). (6.1.7)

In particular, one can compute the probability of any event in A œ B by

summing over all the possible configurations and taking K as the indicator

function of the event. This ingredient allows Dobrushin and Shlosman to in-

troduce another mixing property equivalent to complete analyticity for Φ (see

[29]) and defined as follows.

Definition 6.1.3.

We say that “Φ satisfies the Dobrushin-Shlosman mixing condition if

there exists M > 0 such that, for all Λ b Z
d there exists C > 0 with

the property that for all ∆ µ Λ, for all x œ ˆΛ and for all K œ L

sup
÷,÷(x)œΩ

|“Φ

Λ K(÷) ≠ “Φ

Λ K(÷(x))| Æ CÎδ(K)Î1 e≠Md(∆,x) . (6.1.8)

Lemma 6.1.2 ([81]).

Let Φ œ BR. The following are equivalent:

1. “Φ

Λ
satisfies LS(D) with finite constant D = supΛbZd D(µ, Λ) < +Œ.

2. “Φ

Λ
satisfies the Dobrushin-Shlosman mixing condition.

The argument to prove this lemma deals with the exponential decay of

Markov semigroups for two different configurations (see Corollary 2.2 and

Theorem 1.8 in [81]).

Finally, if complete analyticity holds for Φ then the specification “Φ

Λ
satis-

fies a Gaussian concentration bound for all Λ b Z
d. For the Ising model, it

seems that the reciprocal implication also holds. Beyond this case, we sug-

gest that it may hold in any dimension and for any finite-range potential but

we are not able to prove this at present. Precisely,

CONJECTURE 1. Let Φ œ BR. The following are equivalent:

1. “Φ

Λ
satisfies GCB(D) with finite constant D = supΛbZd D(µ, Λ) < +Œ.

2. Complete analyticity holds for Φ.

6.2 Appendix: Proof of Lemma 6.1.1

We aim to prove that f⁄(a, b) = ⁄ e⁄ max (a,b) |a ≠ b| ≠
---e⁄a ≠ e⁄b

--- is positive for

all ⁄ œ R+ and all a, b œ R. Assume without loss of generalities that b < a
then max (a, b) = a and

f⁄(a, b) = ⁄ e⁄a(a ≠ b) ≠
1
e⁄a ≠ e⁄b

2
.
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We set u = ⁄a and v = ⁄b then we obtain

f1(u, v) = eu(u ≠ v ≠ 1) + ev .

Hence, by the classical inequality on the exponential one has

v ≠ u + 1 Æ ev≠u

1 ≠ ev≠u Æ u ≠ v

eu ≠ ev Æ (u ≠ v) eu .

Then f⁄(a, b) Ø 0. Finally, if we set a = ⁄
2 K(Ê) and b = ⁄

2 K(Ê(x)) for all

⁄ œ R+ we obtain the expected result.
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Chapter 7

Gaussian concentration for

potentials on S
N with

subexponential variations

7.1 introduction

In this chapter, we study the concentration properties of equilibrium states on

full shift spaces in dimension one associated with a potential with subexpo-

nential variations. Unlike the statistical mechanics point of view where the

shift map is defined as the spatial translation on the lattice Z
d, here we adopt

the symbolic dynamics approach and consider the full-shift map as a tem-

poral evolution of all possible sequences of symbols. Such discrete-time

processes are known as chains with complete connections in the theory of

stochastic processes. Our concentration result describes the fluctuations of

observables of the form K(x, Tx, . . . , T n≠1x) around their average. The only

restriction on K is that it has to be separately Lipschitz. By this we mean that,

for all i = 0, . . . , n ≠ 1, there exists a constant Lipi(K) with

|K(x0, . . . , xi, . . . , xn≠1) ≠ K(x0, . . . , xÕ
i, . . . , xn≠1)| Æ Lipi(K) d(xi, xÕ

i).

for all points x0, . . . , xi, . . . , xn≠1, xÕ
i in Ω, where d is the usual distance on Ω

(see (7.2.1)). So K can be nonlinear and implicitly defined. Of course, such

a class contains partial sums of Lipschitz functions, namely functions of the

form K(x0, . . . , xn≠1) = f(x0) + · · · + f(xn≠1) for which Lipi(K) = Lip(f)
for all i. Beside considering very general observables, the other essential

characteristics of concentration inequalities is that they are valid for all n.

More precisely, we shall prove the following “Gaussian concentration bound”.

There exists a constant C such that, for all n and for all separately Lipschitz

functions K(x0, . . . , xn≠1), we have

⁄
exp

1
K

1
x, Tx, . . . , T n≠1x

22
dµ„(x)

Æ exp

3⁄
K

1
x, Tx, . . . , T n≠1x

2
dµ„(x)

4
exp

Q
aC

n≠1ÿ

j=0

Lipj(K)2

R
b . (7.1.1)
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The crucial point is that C is independent of n and K. By a standard argument

(see below), the previous inequality implies that for all u > 0

µ„

3
x : K

1
x, Tx, . . . , T n≠1x

2
≠

⁄
K

1
y, Ty, . . . , T n≠1y

2
dµ„(y) Ø u

4

Æ exp

A
≠ u2

4C
qn≠1

i=0 Lipi(K)2

B
. (7.1.2)

We insist on the fact that we consider functions K on Ω
n with a classical

Lipschitz condition different of the ”’s condition (3.3.2). The Gaussian con-

centration bound (7.1.1) is known for Lipschitz potentials [17]. We shall prove

that it remains true for a large subclass of potentials „ satisfying Walters con-

dition. For instance, the bound holds for a potential whose variation is O(n≠–)
for some – > 2. Of course, different types of concentration inequalities have

been obtained for more general potentials, and for more general “chaotic”

dynamical systems, in particular the authors in [17] obtained different types

of concentration properties for nonuniformly hyperbolic dynamical systems

modeled by Young towers.

We apply the Gaussian concentration bound and its consequences, like

(7.1.2), to various observables. On the one hand, we obtain concentration

bounds for previously studied observables. We get the same bounds but

they are no more limited to equilibrium states with Lipschitz potentials. On

the other hand, we consider observables not considered before. Even when

K(x, . . . , T n≠1x) = Snf(x), we get a non-trivial bound. We then obtain a

control on the fluctuations of the empirical frequency of blocks a0, . . . , ak≠1

around µ([a0, . . . , ak≠1]), uniformly in a0, . . . , ak≠1 œ Ak. We then consider

an estimator of the entropy µ„ based on hitting times. The next application

is about the speed of convergence of the empirical measure (1/n)
qn≠1

i=0 ”T ix

towards µ„ in Wasserstein distance. Then we obtain an upper bound for the

d̄-distance between any shift-invariant probability measure and µ„. This dis-

tance is bounded by the square root of their relative entropy, times a constant.

A consequence of this inequality is a bound for the speed of convergence of

the Markov approximation of µ„ in d̄-distance. Then we quantify the “shad-

owing” of an orbit by another one which has to start in a subset of Ω with

µ„-measure 1/3, say. Finally, we prove an almost-sure version of the central

limit theorem. This application shows in particular that concentration inequal-

ities can also be used to obtain limit theorems. This result may also hold for

the more general case of subshifts of finite type which are described by a

finite list of forbidden patterns or words. The result was published in [20] and

follows from the speed of convergence of the iterates of the Ruelle-Perron-

Frobenius operator to the unique equilibrium state [66] in sup-norm. In this

thesis, a minor mistake has been corrected in the estimation of the Lipschitz-

norm.

7.2 Settings

Let Ω = SN where S is a finite set so that Ω is a compact set. Let M (Ω)
be the set of all probability measures on the Borel ‡-algebra B of Ω. This

set is convex and compact in the weak topology. We denote by x = x0x1 . . .
the elements of Ω (hence xi œ S), and by T the shift map: (Tx)k = xk+1,

k œ N. (We use upper indices instead of lower indices because we will need

70



to consider bunches of points in Ω, e.g., x0, x1, . . . , xp, xi œ Ω.) Recall that

we use the classical distance

d◊(x, y) = ◊inf{k:xk ”=yk} (7.2.1)

where ◊ œ (0, 1) is some fixed number. Probability measures are defined on

the Borel sigma-algebra of Ω which is generated by cylinder sets.

Definition 7.2.1.

We say that „ : Ω æ R is a continuous potential, if

varn(„) := sup{|„(x) ≠ „(y)| : xi = yi, 0 Æ i Æ n ≠ 1}
næŒ≠≠≠æ 0.

The sequence (varn(„))nØ1 is the modulus of continuity of „ and it is

called the ‘variation’ of „.

By the way, we denote by C (Ω) the Banach space of real-valued continu-

ous functions on Ω equipped with the supremum norm Î · ÎŒ. Let „ œ C (Ω).
We put further restrictions on „, namely that it must satisfy the Walters con-

dition [84]. For x, y in Ω let

W („, x, y) = sup
nœN

sup
aœAn

|Sn„(ax) ≠ Sn„(ay)| .

We assume that W („, x, y) exists and that there exists W („) > 0 such that

sup
x,y œ Ω

W („, x, y) Æ W („) . (7.2.2)

Now for p œ N let

Wp(„) := sup{W („, x, y) : xi = yi, 0 Æ i Æ p ≠ 1} .

Definition 7.2.2.

„ is said to satisfy Walters’ condition if (Wp(„))pœN is a strictly positive

sequence and decreases to 0 as p æ Œ.

We now make several remarks on Walters’ condition. First, observe that

locally constant potentials do not satisfy this condition because Wp(„) = 0 for

all p larger than some p0. But one can in fact work with any strictly positive

sequence (ÊWp(„))pœN decreasing to zero such that Wp(„) Æ ÊWp(„) for all p,

e.g., max(Wp(„), ÷p) for some fixed ÷ œ (0, 1). Second, one easily checks

that

varp+1(„) Æ Wp(„) Æ
Œÿ

k=p+1

vark(„) , p œ N. (7.2.3)

Hence the set of potentials satisfying Walters’ condition contains the set of

potentials with summable variation. In particular, (Wp(„))p is bounded above

by a geometric sequence if and only if (varp(„))p is also bounded above by

a geometric sequence. This corresponds to the case of Lipschitz or Hölder

potentials (with respect to d◊).

Now define the transfer operator P„ or commonly Ruelle’s Perron-Frobenius

operator P„ : C (Ω) æ C (Ω) as

P„f(x) =
ÿ

T y=x

f(y) e„(y)
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and we denote by P ú
„ : M (Ω) æ M (Ω) the dual operator of P„ as

’f œ C (Ω),

⁄
P„fdµ =

⁄
fd(P ú

„µ). (7.2.4)

The next step is to define a function space preserved by P„ and on which

it has good spectral properties. The study of such operators is important

because it relates its spectral properties to the measure (see [54]). We take

the space of Lipschitz functions with respect to a new distance d„ built out of

„ as follows.

Definition 7.2.3 (The distance d„).

For x, y œ Ω let

d„(x, y) = Wp(„) if d◊(x, y) = ◊p

and d„(x, x) = 0.

Now define

L„ = {f œ C (Ω) : ÷M > 0 such that varn(f) Æ MWn(„), n = 1, 2, . . .}

and

Lip„(f) = sup

I
|f(x) ≠ f(y)|

d„(x, y)
: x ”= y

J
= sup

;
varn(f)

Wn(„)
: n œ N

<
.

One can then define a norm on L„, making it a Banach space, by setting

ÎfÎL„
= ÎfÎŒ + Lip„(f).

Remark 7.1. The usual Banach space of Lipschitz functions is defined as

follows. Let

L◊ = {f œ C (Ω) : ÷M > 0 such that varn(f) Æ M◊n, n = 1, 2, . . .}

and

Lip◊(f) = sup

;
|f(x) ≠ f(y)|

d◊(x, y)
: x ”= y

<
= sup

;
varn(f)

◊n
: n œ N

<
.

The canonical norm making L◊ a Banach space is ÎfÎL◊
= ÎfÎŒ + Lip◊(f).

In view of (7.2.3), if we have Wn(„) = O(◊n), then L◊ = L„. If we now

have, for instance, Wn(„) = O(n≠q) for some q > 0, then we get a bigger

space which contains in particular all functions f such that varn(f) = O(n≠r)
with r Ø q.

For the one-sided subshift of finite type associated to a Lipschitz poten-

tial, P. Walters and D. Ruelle proved in [83, 11, 72] the quasi-compactness of

the transfer operator. Imposing to the subshift of finite type to be aperiodic

it follows that the operator has a spectral gap property, i.e., there exists a

gap between the first eigenvalue and the second one of the transfer opera-

tor. For more details on spectral theory of quasi-compact operators, we refer

the reader to [41, 2]. This gap implies the existence of an exponentially mix-

ing unique equilibrium state which satisfies a Gaussian concentration bound
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(see [17]). This property is derived from the estimation of the speed of con-

vergence of the transfer operator. Once the condition of quasi-compactness

lost, cones method and projective metrics introduced by Birkhoff would esti-

mate the sub-exponential decay of correlation depending on the contraction

coefficient of cones for a given considered potential. In her thesis, V. Maume

gave such estimation for potential with subexponential variations and proved

that the central limit theorem holds by using relevant set of cones. Up to this

point, one may ask for conditions about the unique equilibrium state associ-

ated to such potential in which the Gaussian concentration bound holds. To

do so, a classical recipe is implemented and relies on two main ingredients.

The first is to decompose the difference between the observable and its mean

as a telescopic sum of martingale differences and the second uses the spec-

tral gap of the Ruelle-Perron-Frobenius operator in order to obtain a uniform

estimate of the martingale difference. Then, we use the classical Azuma-

Hoeffding inequality 7.5.7 to prove that the measure satisfies the Gaussian

concentration bound.

7.3 Speed of convergence of the transfer operator

The following result is instrumental to this chapter. In brief, it tells us that a

potential „ satisfying Walters’ condition has a unique equilibrium state, which

will be denoted by µ„, and gives a speed of convergence for the properly nor-

malized iterates of the associated Ruelle’s Perron-Frobenius operator acting

on an initial Lipschitz function. The first part of the theorem is due to Wal-

ters, while the second one is due to Maume-Deschamps and can be found in

her PhD thesis in french [66, Chapter I.2]. Unfortunately, her result was not

published even though it is much sharper than the result in [46]. Hence, for

completeness we provide the proof in appendix.

Theorem 7.3.1 ([84], [66]).

Let „ : Ω æ R satisfying Walters’ condition as above. Then the following

holds.

A. There exists a unique triplet (h„, ⁄„, ‹„) such that h„ œ L„ and

is strictly positive, Î log h„ÎŒ < Œ, ⁄„ > 0, ‹„ a fully supported

probability measure such that
s

h„ d‹„ = 1. Moreover, P„h„ =
⁄„h„ and P ú

„‹„ = ⁄„‹„, and „ has a unique equilibrium state µ„ =
h„‹„ which is mixing.

B. There exists a positive sequence (‘n)nœN converging to zero, such

that, for any f œ L„,

.....
P n

„ f

⁄n
„

≠ h„

⁄
fd‹„

.....
Œ

Æ C(7.3.1) ‘nÎfÎL„
, ’n œ N . (7.3.1)

Morover, one has the following behaviors:

1. If Wn(„) = O(÷n) for some ÷ œ (0, 1), then there exists ÷Õ œ
(0, 1) such that ‘n = O(÷Õn).

2. If Wn(„) = O(n≠–) for some – > 0, then ‘n = O(n≠–).

73



3. If Wn(„) = O(◊(log n)–
) for some ◊ œ (0, 1) and – > 1, then, for

any ‘ > 0, ‘n = O(◊(log n)–≠‘
).

4. If Wn(„) = O(e≠cn–
) for some c > 0 and – œ (0, 1), then there

exists cÕ > 0 such that ‘n = O
!

e≠cÕn
–

–+1 "
.

We recall that µ„ is an equilibrium state means that it maximizes the func-

tional µ ‘æ h(‹)+
s

„ d‹ over the set of shift-invariant probability measures on

Ω, where h(‹) is the entropy of ‹, and the maximum is equal to the topological

pressure P („) of „ (see e.g. [44]), and we have P („) = log ⁄„.

The first behavior corresponds to a geometric or Hölderian potential with

respect to the usual distance and implies an exponential speed of conver-

gence to the equilibrium state and exponential mixing properties.

Let us give examples of potentials. First consider A = {≠1, 1} and p > 1,

and define

„(x) = ≠
ÿ

nØ2

x0xn≠1

np
.

One can check that Wn(„) = O(n≠p+2). This is the analogue of the so-

called long-range Ising model on N. Let us now take A = {0, 1} and let

[0k1] = {x œ Ω : xi = 0, 0 Æ i Æ k ≠ 1, and xk = 1}. Let (vn) be a monotone

decreasing sequence of real numbers converging to 0 and define

„(x) =

Y
__]
__[

vk if x œ [0k1]

0 if x = (0, 0, . . .)

0 otherwise .

One can check that varn(„) = vn. This example is taken from [71].

Remark 7.2. Let us briefly explain how we can interpret an equilibrium state

for a non-Lipschitz potential as an absolutely continuous invariant measure of

a piecewise expanding map of the unit interval with a Markov partition. It is

well-known that a uniformly expanding map S of the unit interval with a finite

Markov partition which is piecewise C1+÷, for some ÷ > 0, can be coded by

a subshift of finite type (Ω, T ) over a finite alphabet. Then, ≠ log |SÕ| induces

a potential „ on Ω which is Lipschitz (with respect to d◊). The pullback of

µ„ is then the unique absolutely continuous invariant probability measure for

S. In [23], the authors showed that, given „ which is not Lipschitz, one can

construct a uniformly expanding map of the unit interval with a finite Markov

partition which is piecewise C1, but not piecewise C1+÷ for any ÷ > 0, and

such that the pullback of µ„ is the Lebesgue measure.
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7.4 Gaussian concentration bound

In this sub-section we prove the following result:

Theorem 7.4.1.

Suppose that „ satisfies one of the following conditions:

1. Wn(„) = O(◊n) (that is, „ is d◊-Lipschitz);

2. Wn(„) = O(n≠–) for some – > 1;

3. Wn(„) = O(◊(log n)–
) for some ◊ œ (0, 1) and – > 1;

4. Wn(„) = O(e≠cn–
) for some c > 0 and – œ (0, 1).

Then the process (x, Tx, . . .), with x distributed according to µ„, satisfies

the following Gaussian concentration bound. There exists C(7.4.1) > 0
such that for any n œ N and for any separately d◊-Lipschitz function

K : Ω
n æ R, we have

⁄
exp

1
K

1
x, Tx, . . . , T n≠1x

22
dµ„(x)

Æ exp

3⁄
K

1
x, Tx, . . . , T n≠1x

2
dµ„(x)

4
exp

Q
aC(7.4.1)

n≠1ÿ

j=0

Lip◊,j(K)2

R
b .

(7.4.1)

Three remarks are in order. First, we conjecture that this theorem is valid

under the condition
q

n varn(„) < Œ. Second, it would be useful to have an

explicit formula for C(7.4.1) in (7.4.1). Unfortunately, this constant is propor-

tional to C(7.3.1) (see Theorem 7.3.1) which is cumbersome since it involves

the eigendata of P„ . Third, for the sake of simplicity, we considered the full

shift SN. In fact, our results remain true if Ω µ SN is a topologically mixing

one-sided subshift of finite type. Moreover, one can extend Theorem 7.4.1 to

bilateral subshifts of finite type by a trick used in [17].

We now give some corollaries of our main theorem that we will be used

in the section on applications. First, by (7.2.3) we immediately obtain the

following corollary.

Corollary 7.4.1.

If there exists – > 2 such that

varn(„) = O

3
1

n–

4

then we have the Gaussian concentration bound (7.4.1).

Next, we get the following concentration inequalities from (7.4.1).
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Corollary 7.4.2.

For all u > 0, we have

µ„

3
x œ Ω : K

1
x, Tx, . . . , T n≠1x

2
≠

⁄
K

1
y, Ty, . . . , T n≠1y

2
dµ„(y) Ø u

4

Æ exp

A
≠ u2

4C(7.4.1)
qn≠1

i=0 Lip◊,i(K)2

B
(7.4.2)

and

µ„

3
x œ Ω :

----K
1
x, Tx, . . . , T n≠1x

2
≠

⁄
K

1
y, Ty, . . . , T n≠1y

2
dµ„(y)

---- Ø u

4

Æ 2 exp

A
≠ u2

4C(7.4.1)
qn≠1

i=0 Lip◊,i(K)2

B
. (7.4.3)

Proof. Inequality (7.4.2) follows by Chernoff’s bounding method 3.1.1. Let

us give the proof for completeness. Let u > 0. For any random variable Y ,

Markov’s inequality tells us that P(Y Ø u) Æ e≠›u
E

1
e›Y

2
for all › > 0. Now

let

Y = K
1
x, Tx, . . . , T n≠1x

2
≠

⁄
K

1
y, Ty, . . . , T n≠1y

2
dµ„(y) .

Using (7.4.1) and optimizing over ›, we get (7.4.2). Inequality (7.4.3) follows

by applying (7.4.2) to ≠K and then summing up the two bounds.

The last corollary we want to state is about the variance of any separately

d◊-Lipschitz function.

Corollary 7.4.3.

We have

⁄ 3
K

1
x, Tx, . . . , T n≠1x

2
≠

⁄
K

1
y, Ty, . . . , T n≠1y

2
dµ„(y)

42

dµ„(x)

Æ 2C(7.4.1)

n≠1ÿ

i=0

Lip◊,i(K)2 . (7.4.4)

Proof. To alleviate notations, we simply write K instead of K
!
x, Tx, . . . , T n≠1x

"
,s

K instead of
s

K
!
y, Ty, . . . , T n≠1y

"
dµ„(y), and so on and so forth. Apply-

ing (7.4.1) to ›K where › is any real number different from 0, we get

⁄
exp

3
›
1
K ≠

⁄
K

24
Æ exp

Q
aC(7.4.1)›

2
n≠1ÿ

j=0

Lip◊,j(K)2

R
b .

Now by Taylor expansion we get

1 +
›2

2

⁄ 1
K ≠

⁄
K

22
+ o(›2) Æ 1 + C(7.4.1)›

2
n≠1ÿ

j=0

Lip◊,j(K)2 + o(›2) .

Dividing by ›2 on both sides and then taking the limit › æ 0, we obtain the

desired inequality.
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Although we were not able to prove the Gaussian concentration bound

for separately d„-Lipschitz functions, for many applications separately d◊-

Lipschitz functions are more natural. Furthermore there is a notable class

of separately d„-Lipschitz functions, namely Birkhoff sums of the potential

itself, for which our theorem holds. Actually, when „ œ L„, the function

K(x, . . . , T n≠1x) = Sn„(x) is obviously separately d„-Lipschitz and Lip„,j(K)
= Lip„(„) for all j. We have the following result.

Theorem 7.4.2. Under the hypotheses of Theorem 7.4.1, there exists

C(7.4.2) > 0 such that, for any Â œ L„, for all u > 0, and for all n œ N, we

have

µ„

3
x œ Ω :

1

n
SnÂ(x) ≠

⁄
Â dµ„ Ø u

4

Æ exp

A
≠ nu2

4C(7.4.2)Lip„(Â)2

B
. (7.4.5)

The proof is left to the reader. The main (simple) modification lies in the

proof of Lemma 7.5.3 in which considering a Birkhoff sum of a d„-Lipschitz

function works fine, whereas we are stuck for a general separately d„-Lipschitz

function.

We will apply this result with Â = ≠„ to derive concentration bounds for

hitting times. Note that under the assumptions of this theorem, {Â(T nx)}nØ0

satisfies the central limit theorem [66, Chapter 2].

7.4.1 Related works

The novelty here is to prove a Gaussian concentration bound for potentials

with a variation decaying subexponentially. For „ is Lipschitz, Theorem 7.4.1

was proved in [17]. The main goal of [17] was then to deal with nonuniformly

hyperbolic systems modeled by a Young tower. For a tower with a return-

time to the base with exponential tails, the authors of [17] proved a Gaussian

concentration bound. For polynomial tails, they proved moment concentration

bounds. For C1+÷ maps of the unit interval with an indifferent fixed point,

which are thus nonuniformly expanding, we are in the latter situation. In view

of Remark 7.2 above, we deal here with maps whose derivative is not Hölder

continuous, but which are still uniformly expanding.

Let us also recall that the authors in [38] prove a Gaussian concentra-

tion bound for „ of summable variation (whereas we need a bit more than

summable). Their proof is based on coupling. However, they consider func-

tions K on Sn, not on
!
SN

"n
= Ω

n as in our case. For such functions, the

analogue of Lip◊,i(K) is

”i(K) = sup{|K(a0, . . . , ai, . . . , an≠1)≠K(b0, . . . , bi, . . . , bn≠1)| : aj = bj , ’j ”= i}.

It is clear that a Gaussian concentration bound for functions K :
!
SN

"n æ R

implies a Gaussian concentration bound for functions K : Sn æ R, but the

converse is not true. We also recall that a Gaussian concentration bound

holds in the more general case of chains with complete connections on count-

able alphabets (see [16]).
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7.5 Proof of Theorem 7.4.1

We follow the proof given in [17] with the appropriate modifications to go

beyond Lipschitz potentials.

7.5.1 Some preparatory results

It is convenient to normalize the potential „ or, equivalently, the operator P„

in the following way. We use the notations of Theorem 7.3.1. Let

ÂP„f = ⁄≠1
„ h≠1

„ P„(fh„).

Thus
ÂP„1 = 1 and ÂP ú

„µ„ = µ„. (7.5.1)

Let g denote the inverse of the Jacobian of T , and g(k) the inverse of the

Jacobian of T k, that is,

g =
h„

⁄„h„ ¶ T
exp(„) and g(k) =

h„

⁄k
„h„ ¶ T

exp
1 k≠1ÿ

i=0

„ ¶ T i
2

.

(Of course g = g(1).) Therefore we have

ÂP„f(x) =
ÿ

T y=x

g(y)f(y) and ÂP k
„ f(x) =

ÿ

T ky=x

g(k)(y)f(y) . (7.5.2)

Estimate (7.3.1) now takes the form

.... ÂP n
„ f ≠

⁄
fdµ„

....
Œ

Æ C(7.3.1) ÎfÎL„
‘n, n Ø 1, (7.5.3)

for any f œ L„. Finally, we will need the following distortion estimate. Let

x, y œ Ω such that xi = yi for i = 0, . . . , n≠1 and xÕ, yÕ œ Ω such that T kxÕ = x
and T kyÕ = y. Then it is easy to check (see [66, Chapter 2]) that, for any k,

-----1 ≠ g(k)(xÕ)
g(k)(yÕ)

----- Æ c(7.5.4) d„(x, y) (7.5.4)

for some constant c(7.5.4) > 0 depending only on „.

We will use the following inequality relating the distances d◊ and d„.

Lemma 7.5.1.

Suppose that Wn(„) = O(◊n), n Ø 1, or

lim
n

Wn(„)

Wn+1(„)
= 1 . (7.5.5)

Then there exists c(7.5.1) > 0

sup
n

◊n

Wn(„)
Æ c(7.5.1)

or, equivalently,

d◊(x, y) Æ c(7.5.1)d„(x, y)
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for all x, y.

Proof. The statement is trivial when Wn(„) = O(◊n). if (7.5.5) holds, then

there exists n0 such that for all n Ø n0

Wn(„)

Wn+1(„)
Æ 1

◊
,

hence Wn(„) Ø ◊n≠n0Wn0(„). Then the desired inequalities follow easily from

the definitions.

7.5.2 Proof of Theorem 7.4.1

Fix a separately d◊-Lipschitz function K : Ω
n æ R. It is convenient to

think of it as a function on Ω
N depending only on the first n coordinates,

therefore Lip◊,i(K) = 0 for i Ø n. We endow Ω
N with the measure µŒ

obtained as the limit when k æ Œ of the measure µŒ
k on Ω

k given by

dµŒ
k (x0, . . . , xk≠1) = dµ„(x0)”x1=T x0 · · · ”xk≠1=T xk≠2

. On Ω
N, let Fp be the

‡-algebra of events depending only on the coordinates (xj)jØp (this is a de-

creasing sequence of ‡-fields). We want to write the function K as a sum of

reverse martingale differences with respect to this sequence. Therefore, let

Kp = E(K|Fp) and Dp = Kp ≠ Kp+1. More precisely,

Kp(xp, xp+1, . . . ) = E(K|Fp)(xp, xp+1, . . . )

= E(K(X0, . . . , Xp≠1, xp, . . . )|Xp = xp)

=
ÿ

T p(y)=xp

g(p)(y)K(y, . . . , T p≠1y, xp, . . . ).

The function Dp is Fp-measurable and E(Dp|Fp+1) = 0. Moreover

K ≠ E(K) =
ÿ

pØ0

Dp. (7.5.6)

We then apply the Azuma-Hoeffding inequality (see e.g. [53, Page 68]) which

says that

E

3
e
qP ≠1

p=0
Dp

4
Æ e

1
2

qP ≠1

p=0
ÎDpÎ2

Œ . (7.5.7)

Therefore, the point is to obtain a good bound on Dp. This is the claim of the

following lemma.

Lemma 7.5.2.

There exists C(7.5.2) > 0, depending only on „, such that for any p œ N

one has

ÎDpÎŒ Æ C(7.5.2)

pÿ

i=0

‘p≠i

iÿ

j=0

Lip◊,j(K) ◊i≠j + Lip◊,p(K) .
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Using this lemma and applying Young’s inequality for convolutions [12, p.

316] twice we obtain

P ≠1ÿ

p=0

ÎDpÎ2
Œ

Æ 2C2
(7.5.2)

P ≠1ÿ

p=0

Q
a

pÿ

i=0

‘p≠i

iÿ

j=0

Lip◊,j(K) ◊i≠j

R
b

2

+ 2
P ≠1ÿ

p=0

Lip◊,p(K)2

Æ 2C2
(7.5.2)

Q
aÿ

kØ1

‘k

R
b

2
P ≠1ÿ

p=0

Q
a

pÿ

j=0

Lip◊,j(K) ◊p≠j

R
b

2

+ 2
P ≠1ÿ

p=0

Lip◊,p(K)2

Æ 2

Q
caC2

(7.5.2)(1 ≠ ◊)≠2

Q
aÿ

kØ1

‘k

R
b

2

+ 1

R
db

Pÿ

p=0

Lip◊,p(K)2.

Remark 7.3. If u = (un)n and v = (vn)n are sequences of reals, their convo-

lution u ı v is given by (u ı v)n =
qn

k=0 ukvn≠k. Young’s inequality tells us that

if u œ ¸p(N), u œ ¸q(N) and 1 Æ p, q, r Æ Œ with r≠1 + 1 = p≠1 + q≠1, then

Îu ı vÎr Æ ÎuÎpÎvÎq .

We used it twice with r = 2, p = 2 and q = 1.

Notice that by assumption and by Theorem 7.3.1 we have
q

kØ1 ‘k < +Œ.

Therefore, using (7.5.7) at a fixed index P and then letting P tend to infinity,

we get by the dominated convergence theorem

E

3
e
q

pØ0
Dp

4
Æ e

1
2

q
pØ0

ÎDpÎ2
Œ

which is, in view of (7.5.6), exactly (7.4.1) with

C(7.4.1) = 1 + C2
(7.5.2)(1 ≠ ◊)≠2

Q
aÿ

kØ1

‘k

R
b

2

.

Now we are going to prove Lemma 7.5.2 by proving that Kp is close to an

integral quantity. This is the content of the following lemma which is the core

of the proof.

Lemma 7.5.3.

There exists C(7.5.3) > 0, depending only on „, such that, for all p œ N,

----Kp(xp, . . . ) ≠
⁄

K(y, . . . , T p≠1y, xp, . . . ) dµ„(y)

----

Æ C(7.5.3)

p≠1ÿ

i=0

‘p≠i

iÿ

j=0

Lip◊,j(K) ◊i≠j

where

C(7.5.3) = C(7.3.1)(c(7.5.4) + 2c(7.5.1) + 1).
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Proof of Lemma 7.5.2. Applying Lemma 7.5.3 yields

|Kp(xp, xp+1, . . . ) ≠ Kp(xÕ
p, xp+1, . . . )|

Æ 2C(7.5.3)

p≠1ÿ

i=0

‘p≠i

iÿ

j=0

Lip◊,j(K) ◊i≠j + Lip◊,p(K) .

Averaging Kp(xÕ
p, xp+1, . . . ) over the preimages of xÕ

p we get exactly Kp+1(xp+1, . . . ),
hence the previous bound holds for |Dp|, proving the lemma.

Proof of Lemma 7.5.3. Let us fix a point xú in Ω and decompose Kp as

Kp(xp, . . . ) =
p≠1ÿ

i=0

ÿ

T p(y)=xp

g(p)(y)(K(y, . . . , T i≠1y, T iy, xú, . . . , xú, xp, . . . )

≠ K(y, . . . , T i≠1y, xú, . . . , xú, xp, . . . ))

+ K(xú, . . . , xú, xp, . . . ).

For fixed i, we can group together those points y œ T ≠p(xp) which have the

same image under T i, splitting the sum
q

T p(y)=xp
as

q
T p≠i(z)=xp

q
T i(y)=z.

Since the Jacobian is multiplicative, one has g(p)(y) = g(i)(y)g(p≠i)(z). Let us

define two functions fi and H as follows:

fi(z) =
ÿ

T iy=z

g(i)(y)(K(y, . . . , T i≠1y, T iy, xú, . . . , xú, xp, . . . )

≠ K(y, . . . , T i≠1y, xú, . . . , xú, xp, . . . ))

=
ÿ

T iy=z

g(i)(y)H(y, . . . , T iy).

Bearing in mind (7.5.2), we obtain

Kp(xp, . . . ) =
p≠1ÿ

i=0

ÂP p≠i
„ fi(xp) + K(xú, . . . , xú, xp, . . . ).

Now we want to prove that fi œ L„ to use (7.5.3). First observe that for any

z œ Ω

|fi(z)| Æ
ÿ

T iy=z

g(i)(y) Lip◊,i(K) d◊(xú, T iy) Æ Lip◊,i(K)

since d◊(xú, T iy) Æ 1 and
q

T iy=z g(i)(y) = 1. Hence

ÎfiÎŒ Æ Lip◊,i(K) .

We now estimate the d„-Lipschitz norm of fi. We write

fi(z) ≠ fi(z
Õ) =

ÿ
(g(i)(y) ≠ g(i)(yÕ))H(y, . . . , T iy)

+
ÿ

g(i)(yÕ)(H(y, . . . , T iy) ≠ H(yÕ, . . . , T iyÕ))
(7.5.8)

where z and zÕ are two points in the same partition element, and their re-

spective preimages y, yÕ are paired according to the cylinder of length i they

belong to. Using the distorsion control (7.5.4) we have

|g(i)(y) ≠ g(i)(yÕ)| Æ c(7.5.4) g(i)(y) d„(z, zÕ)
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hence the first sum in (7.5.8) is bounded in absolute value by

c(7.5.4) Lip◊,i(K) d„(z, zÕ) .

For the second sum, substituting successively each T jy with T jyÕ, we have

|H(y, . . . , T iy) ≠ H(yÕ, . . . , T iyÕ)| Æ 2
iÿ

j=0

Lip◊,j(K) d◊(T jy, T jyÕ)

Æ 2
iÿ

j=0

Lip◊,j(K) ◊i≠jd◊(z, zÕ)

Æ 2c(7.5.1)

iÿ

j=0

Lip◊,j(K) ◊i≠jd„(z, zÕ)

where we used Lemma 7.5.1 for the third inequality.

Summing over the different preimages of z, we deduce that

ÎfiÎL„
Æ (c(7.5.4) + 2c(7.5.1) + 1)

iÿ

j=0

Lip◊,j(K) ◊i≠j .

Remark 7.4. In the published article, the previous inequality didn’t consider

the complete L„-norm as the sum of two terms: the sup-norm and the Lips-

chitz constant. We correct this mistake which did not affect our final result by

majoring the sup-norm.

Therefore we can apply (7.5.3) to get

.... ÂP p≠i
„ fi ≠

⁄
fi dµ„

....
Œ

Æ C(7.3.1)

!
c(7.5.4) + 2c(7.5.1) + 1

"
‘p≠i

iÿ

j=0

Lip◊,j(K) ◊i≠j .

Summing those bounds, one obtains

---Kp(xp, . . . ) ≠
p≠1ÿ

i=0

⁄
fi dµ„ ≠ K(xú, . . . , xú, xp, . . . )

---

Æ C(7.3.1)

!
c(7.5.4) + 2c(7.5.1) + 1

" p≠1ÿ

i=0

‘p≠i

iÿ

j=0

Lip◊,j(K) ◊i≠j .

Finally, when one computes the sum of the integrals of fi, there are again

cancellations, leaving only
s

K(y, . . . , T p≠1y, xp, . . . ) dµ„(y).

7.6 Applications

7.6.1 Birkhoff sums

Let f : Ω æ R be a d◊-Lipschitz function and define

K(x0, . . . , xn≠1) = f(x0) + · · · + f(xn≠1)

whence K(x, Tx, . . . , T n≠1x) = f(x) + f(Tx) + · · · + f(T n≠1x) := Snf(x) is

the Birkhoff sum of f . Clearly, Lip◊,i(K) = Lip◊(f) for all i = 0, . . . , n ≠ 1.

Applying Corollary 7.4.2 we immediately get

µ„

3
x :

----
Snf(x)

n
≠

⁄
fdµ„

---- Ø u

4
Æ 2 exp

1
≠c(7.6.1)nu2

2
(7.6.1)
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for all n Ø 1 and u œ R+, where

c(7.6.1) =
1

4C(7.4.1)Lip◊(f)2
.

This bound can be compared with the large deviation asymptotics:

lim
næŒ

1

n
log µ„

3
x :

Snf(x)

n
Ø

⁄
fdµ„ + u

4
= ≠I(u +

⁄
fdµ„)

where u Ø 0 and I(u) Ø 0 is the rate function which is (strictly) convex, such

that I(
s

fdµ„) = 0, and equal to +Œ outside a certain finite interval (uf , ūf ).
We see that it has the right behavior in n. Replacing u by u/

Ô
n in (7.6.1) we

get

µ„

3
x :

----Snf(x) ≠ n

⁄
fdµ„

---- Ø u
Ô

n

4
Æ 2 exp

1
≠c(7.6.1)u

2
2

for all n and u > 0. This can be compared with the central limit theorem which

holds for µ„:

lim
næŒ µ„

3
x :

Snf(x) ≠ n
s

fdµ„Ô
n

Æ +u

4
=

1

‡
Ô

2fi

⁄ u

≠Œ
e≠ ›2

2‡2 d›

for all u œ R, where ‡2 = ‡2
f is the variance of the process {f(T nx)}nØ0

where x is distributed according to µ„. We can see that the previous bound

is consistent with that theorem. Note that the central limit theorem is about

convergence in law, whereas here we obtain a (non-asymptotic) bound from

which one cannot deduce a convergence in law.

7.6.2 Empirical frequency of blocks

Take f(x) = 1[a0,k≠1](x) where

[a0,k≠1] = {x œ Ω : xi = ai, i = 0, . . . , k ≠ 1}

is a given k-cylinder. Let

fn(x, a0,k≠1) =

qn≠k
k=0 1[a0,k≠1](T

kx)

n ≠ k + 1
.

This is the “empirical frequency” of the block a0,k≠1 œ Sk in the orbit of x
up to time n≠k. By Birkhoff’s ergodic theorem, we know that, for each a0,k≠1,

fn(x, a0,k≠1) goes to µ„([a0,k≠1]) for µ„-almost all x. The next theorem quan-

tifies this asymptotic statement. Notice that we can control the fluctuations of

fn(x, a0,k≠1) around µ„([a0,k≠1]) uniformly in a0,k≠1.

Theorem 7.6.1.

For all n œ N, for all 1 Æ k Æ n and for all u > 0 we have

µ„

A
x : max

a0,k≠1

---fn(x, a0,k≠1) ≠ µ„([a0,k≠1])
--- Ø (u + c

Ô
k ) ◊≠k

Ô
n ≠ k + 1

B
Æ e

≠ u2

4C(7.4.1)

where c = 2
Ò

2C(7.4.1) log |S|. Moreover, if k = k(n) = ’ log n for some
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’ > 0, then

µ„

A
x : max

a0,k(n)≠1

---fn(x, a0,k(n)≠1) ≠ µ„([a0,k(n)≠1])
--- Ø (u + cÕÔlog n )n’| log ◊|


n ≠ k(n) + 1

B

Æ e
≠ u2

4C(7.4.1)

where cÕ = 2
Ò

2’C(7.4.1) log |S|.

Proof. Define the function K : Ω
n≠k+1 æ R by

K(x0, . . . , xn≠k) = max
a0,k≠1

Z(a0,k≠1; x0, . . . , xn≠k)

where

Z(a0,k≠1; x0, . . . , xn≠k) =

-----

qn≠k
j=0 1[a0,k≠1](xj)

n ≠ k + 1
≠ µ„([a0,k≠1])

----- .

It is left to the reader to check that Lip◊,j(K) = Lip◊(f)
n≠k+1 = 1

◊k(n≠k+1)
, so we get

immediately from 7.6.1

µ„

3
x œ Ω : K(x, Tx, . . . , T n≠kx) Ø u +

⁄
K

1
y, Ty, . . . , T n≠ky

2
dµ„(y)

4

Æ exp

A
≠ ◊2k

4C(7.4.1)
(n ≠ k + 1)u2

B

for all n Ø 1 and u > 0. To complete the proof, we need a good upper

bound for
s

K
1
y, Ty, . . . , T n≠k≠1y

2
dµ„(y). Actually, this can be done by us-

ing again the Gaussian concentration bound. Using (7.4.1) and Jensen’s

inequality we get for any › > 0

exp

3
›

⁄
K

1
x, Tx, . . . , T n≠kx

2
dµ„(x)

4

Æ
⁄

exp

3
› max

a0,k≠1
Z(a0,k≠1; x, Tx, . . . , T n≠kx)

4
dµ„(x)

Æ
ÿ

a0,k≠1œSk

⁄
exp

1
›Z(a0,k≠1; x, Tx, . . . , T n≠kx)

2
dµ„(x)

Æ 2|S|k exp

A
C(7.4.1)◊

≠2k›2

n ≠ k + 1

B
.

The third inequality is obtained by using the trivial inequality

emaxp
i=1 ai Æ

pÿ

i=1

eai .

Taking logarithms on both sides and then dividing by ›, we have

⁄
K

1
x, Tx, . . . , T n≠kx

2
dµ„(x) Æ log 2 + k log |S|

›
+

C(7.4.1)◊
≠2k›

n ≠ k + 1
.

There is a unique › > 0 minimizing the right-hand side, hence

⁄
K

1
x, Tx, . . . , T n≠kx

2
dµ„(x) Æ 2◊≠k

Û
C(7.4.1)(k + 1) log |S|

n ≠ k + 1

where we used that log 2 Æ log |S|. Hence we get the desired estimate.

Note that log |S| is the topological entropy of the full shift with alphabet S.
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7.6.3 Hitting times and entropy

For x, y œ Ω, let

Tx0,n≠1(y) = inf{j Ø 1 : yj,j+n≠1 = x0,n≠1} .

This is the first time that the n first symbols of x appear in y. We assume that

„ satisfies

varn(„) = O

3
1

n–

4
for some – > 2 . (7.6.2)

One can prove (see [22]) that

lim
næŒ

1

n
log Tx0,n≠1(y) = h(µ„) , for µ„ ¢ µ„-almost every (x, y) .

Roughly, this means that, if we pick x and y independently, each one accord-

ing to µ„, then the time it takes to see the first n symbols of x appearing in y
for the first time is ¥ enh(µ„).

Theorem 7.6.2.

If „ satisfies (7.6.2), then there exist strictly positive constants c1, c2 and

u0 such that, for all n and for all u > u0,

(µ„ ¢ µ„)
Ó

(x, y) :
1

n
log Tx0,n≠1(y) Ø h(µ„) + u

Ô
Æ c1 e≠c2nu2

and

(µ„ ¢ µ„)
Ó

(x, y) :
1

n
log Tx0,n≠1(y) Æ h(µ„) ≠ u

Ô
Æ c1 e≠c2nu .

These bounds were obtained in [18] when „ is Lipschitz. Observe that the

probability of being above h(µ„) is bounded above by c1 e≠c2nu2
, whereas

the probability of being below h(µ„) is bounded above by c1 e≠c2nu. The

proof of this theorem being very similar to that given in [18], we omit the

details and only sketch it. We cannot directly deal with Tx0,n≠1(y) but we

have log Tx0,n≠1(y) = log
!
Tx0,n≠1(y)µ„([x0,n≠1])

" ≠ log µ„([x0,n≠1]). Then we

use Theorem 7.4.2 for Â = ≠„, assuming (without loss of generality) that

P („) = 0, that is, h(µ„) = ≠ s
„ dµ„, because we can control uniformly in x

the approximation ≠ log µ„([x0,n≠1]) ¥ Sn(≠„)(x). To control the other term,

we use that the law of Tx0,n≠1(y)µ„([x0,n≠1]) is well approximated by an expo-

nential law.

Another estimator of h(µ„) is the so-called plug-in estimator. We could

also obtain concentration bounds for it in the spirit of [18].

7.6.4 Speed of convergence of the empirical measure

Instead of looking at the frequency of a block ak
1 we can consider a global

object, namely the empirical measure

En(x) =
1

n

n≠1ÿ

j=0

”T jx .

For µ„-almost every x, we know that

1

n

n≠1ÿ

j=0

”T jx
næŒ≠≠≠æ µ„
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where the convergence is in the weak topology on the space of probability

measures M (Ω) on Ω. This is a consequence of Birkhoff’s ergodic theorem.

The natural question is: how fast does this convergence takes place? We can

answer this question by using the Kantorovich distance dK which metrizes

weak topology on M (Ω):

dK(‹1, ‹2) = sup

;⁄
fd‹1 ≠

⁄
fd‹2 : f : Ω æ R such that Lip◊(f) = 1

<
.

We have the following result.

Theorem 7.6.3.

For all u > 0 and all n Ø 1 we have

µ„

3
x :

--dK(En(x), µ„) ≠
⁄

dK(En(y), µ„) dµ„(y)
-- Ø u

4
Æ 2 e≠c(7.6.3)nu2

(7.6.3)

where c(7.6.3) = (4C(7.4.1))
≠1.

Proof. Let

K(x0, . . . , xn≠1) = sup

Y
]
[

1

n

n≠1ÿ

j=0

f(xj) ≠
⁄

fdµ„ : f : Ω æ R with Lip◊(f) = 1

Z
^
\ .

Of course, K(x, Tx, . . . , T n≠1x) = dK(En(x), µ„). It is left to the reader to

check that

Lip◊,i(K) Æ 1

n
, i = 0, . . . , n ≠ 1 .

The result follows at once by applying inequality (7.4.3).

It is natural to ask for a good upper bound for
s

dK(En(y), µ„)dµ„(y) be-

cause this would give a control on the fluctuations of dK(En(x), µ„) around 0.

Getting such a bound turns out to be difficult. In [14, Section 8] it is proved

that ⁄
dK(En(y), µ„) dµ„(y) ∞ 1

n
1

2(1+log |A|)

.

For two positive sequences (an), (bn), an ∞ bn means that lim supn
log an

log bn
Æ 1.

One could in principle get a non-asymptotic but messy bound.

7.6.5 Relative entropy, d̄-distance and speed of Markov approxi-
mation

Given n œ N and x0,n≠1, y0,n≠1 œ An the (non-normalized) Hamming distance

between x and y is

d̄n(x0,n≠1, y0,n≠1) =
n≠1ÿ

i=0

1{xi ”=yi} . (7.6.4)

Now, given two shift-invariant probability measures µ, ‹ on Ω, denote by µn

and ‹n their projections on An, and define their d̄n-distance by

d̄n(µn, ‹n) = inf
ÿ

x0,n≠1œAn

ÿ

y0,n≠1œAn

d̄n(x, y)Pn(x0,n≠1, y0,n≠1)
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where the infimum is taken over all the joint shift-invariant probability distribu-

tions Pn on An ◊ An such that
q

y0,n≠1œAn Pn(x0,n≠1, y0,n≠1) = µn(x0,n≠1) andq
x0,n≠1œAn Pn(x0,n≠1, y0,n≠1) = ‹n(y0,n≠1). By [78, Theorem I.9.6, p. 92], the

following limit exists:

d̄(µ, ‹) := lim
næŒ

1

n
d̄n(µn, ‹n) (7.6.5)

and defines a distance on the set of shift-invariant probability measures. It

induces a finer topology than the weak topology and, in particular, the d̄-limit

of ergodic measures is ergodic, and the entropy is d̄-continuous on the class

of ergodic measures.1

Next, given n œ N and a shift-invariant probability measure ‹ on Ω, define

the n-block relative entropy of ‹ with respect to µ„ by

Hn(‹|µ„) =
ÿ

x0,n≠1œ An

‹n(x0,n≠1) log
‹n(x0,n≠1)

µ„,n(x0,n≠1)
.

One can easily prove that the following limit exists and defines the relative

entropy of ‹ with respect to µ„:

lim
næŒ

1

n
Hn(‹n|µ„,n) =: h(‹|µ„) = P („) ≠

⁄
„ d‹ ≠ h(‹) (7.6.6)

where P („) is the topological pressure of „:

P („) = lim
næŒ

1

n
log

ÿ

a0,n≠1œAn

esup
)

Sn„(x):xœ[a0,n≠1]
*

.

This limit exists for any continuous „. (To prove (7.6.6), we use that there

exists a positive sequence (Án)n going to 0 such that, for any a0,n≠1 œ An and

any x œ [a0,n≠1], µ„([a0,n≠1])/ exp(≠nP („) + Sn„(x)) is bounded below by

exp(≠nÁn) and above by exp(≠nÁn).) By the variational principle, h(‹|µ„) Ø 0
with equality if and only if ‹ = µ„ (recall that µ„ is the unique equilibrium state

of „). We refer to [83] for details. We can now formulate the first theorem of

this section.

Theorem 7.6.4.

For every shift-invariant probability measure ‹ on Ω and for all n œ N, we

have

d̄n(‹n, µ„,n) Æ c(7.6.4)

Ò
nHn(‹n|µ„,n) (7.6.7)

where c(7.6.4) =
Ò

2C(7.4.1). In particular

d̄(‹, µ„) Æ c(7.6.4)

Ò
h(‹|µ„) . (7.6.8)

Proof. For a function f : Sn æ R, define for each i = 0, . . . , n ≠ 1

”i(f) = sup{|f(a0,n≠1) ≠ f(b0,n≠1)| : aj = bj , ’j ”= i} .

We obviously have that for all a0,n≠1, b0,n≠1 œ Sn

|f(a0,n≠1) ≠ f(b0,n≠1)| Æ
n≠1ÿ

j=0

1{aj ”=bj}”j(f) .

1These two properties are false in the weak topology.
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A function f : Sn æ R such that ”j(f) = 1, i = 0, . . . , n ≠ 1 is 1-Lipschitz for

the Hamming distance (7.6.4). We now consider the set of functions

H(n, „) =

;
f : Sn æ R : f 1-Lipschitz for d̄n ,

⁄

An
f dµ„,n = 0

<
.

We can identify a function f œ H(n, „) with a function f̃ : Ω
n æ R in a natural

way: f̃(x0, . . . , xn≠1) = f(fi(x0), . . . , fi(xn≠1)) where fi : Ω æ S is defined

by fi(x) = x0. We obviously have
s

f̃ dµ„ = 0 and it is easy to check that

Lipj(f̃) = ”j(f) = 1, j = 0, . . . , n ≠ 1. Therefore we can apply the Gaussian

concentration bound (7.4.1) to get
⁄

An
e›f dµ„,n Æ eC(7.4.1)n›2

, for all f œ H(n, „) and for all › œ R . (7.6.9)

We now apply an abstract result [8, Theorem 3.1] which says that (7.6.9) is

equivalent to

d̄(‹n, µ„,n) Æ
Ò

2C(7.4.1)nHn(‹n|µ„,n) for all probability measures ‹n on Sn .

Hence (7.6.7) is proved. To get (7.6.8), divide by n on both sides and take the

limit n æ Œ and use (7.6.5) and (7.6.6).

We now give an application of inequality (7.6.8). Let

„1(x) = log µ„(x0) and „n(x) = log µ„(xn≠1|x0,n≠2), n Ø 2.

The equilibrium state for „n is a (n≠1)-step Markov measure. One can prove

that in the weak topology (µ„n)n converges to µ„, but one cannot get any

speed of convergence. We get the following upper bound on the speed of

convergence of (µ„n)n to µ„ in the finer d̄ topology.

Corollary 7.6.1.

Assume, without loss of generality, that „ is normalized in the sense that

ÿ

aœS

e„(ax) = 1, ’x œ Ω.

Then there exists n„ Ø 1 such that, for all n Ø n„, we have

d̄(µ„n , µ„) Æ fl„ varn(„) (7.6.10)

where

fl„ =
Ò

2|S| C(7.4.1) (e ≠1) e
3
2

Î„ÎŒ .

We explained how to normalize a potential in Subsection 7.5.1.

Proof. Using (7.6.6) and the variational principle we get

h(µ„n |µ„) = ≠
⁄

„ dµ„n ≠ h(µ„n) =

⁄
(„n ≠ „) dµ„n . (7.6.11)

Indeed, since „ and „n are normalized, we have in particular that P („) =
P („n) = 0, and by the variational principle h(µ„n) = ≠ s

„ndµ„n . Now

⁄
(„n ≠ „) dµ„n =

⁄
log

A
e„n

e„

B
dµ„n =

⁄
log

A
1 +

e„n ≠ e„

e„

B
dµ„n

Æ
⁄

e„n ≠ e„

e„
dµ„n (7.6.12)
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where we used the inequality log(1 + u) Æ u for all u > ≠1. Now using the

shift-invariance of µ„n and replacing e„n by e„n ≠ e„ + e„ we get

⁄
e„n ≠ e„

e„
dµ„n =

⁄
dµ„n(x)

ÿ

aœS

e„n(ax) e„n(ax)≠e„(ax)

e„(ax)

=

⁄
dµ„n(x)

ÿ

aœs

!
e„n(ax) ≠ e„(ax)

"2

e„(ax)
+

⁄
dµ„n(x)

ÿ

aœS

!
e„n(ax) ≠ e„(ax) "

Æ |S| eÎ„ÎŒ (Î e„n ≠ e„ ÎŒ)2 (7.6.13)

where we used that
q

aœS(e„n(ax) ≠ e„(ax)) = 0. Combining (7.6.8), (7.6.11),

(7.6.12) and (7.6.13) we thus obtain

d̄(µ„n , µ„) Æ
Ò

2|S| C(7.4.1) eÎ„ÎŒ Î e„n ≠ e„ ÎŒ.

It remains to estimate Î e„n ≠ e„ ÎŒ in terms of varn(„). We have

Î e„n ≠ e„ ÎŒ =
.. e„n ≠ e„

..
Œ Æ eÎ„ÎŒ

.. e„≠„n ≠1
..

Œ Æ (e ≠1) eÎ„ÎŒ Î„≠„nÎŒ

provided that Î„≠„nÎŒ < 1, where we used the inequality | eu ≠1| Æ (e ≠1)|u|
valid for |u| < 1. Finally, since Î„ ≠ „nÎŒ Æ varn(„), we define n„ to be the

smallest integer sucht varn(„) < 1 and we can take

fl„ =
Ò

2|S| C(7.4.1) (e ≠1) e
3
2

Î„ÎŒ .

We thus proved (7.6.10).

Let us mention the paper [35] in which the authors obtain the same bound

for the speed of convergence of Markov approximations, up to the constant.

Their approach is a direct estimation of d̄(µ„n , µ„) by using a coupling method.

The point here is to obtain the same speed of convergence as an easy corol-

lary of inequality (7.6.8). Let us remark that from (7.5.8) we get a worse result

since we end up with a bound proportional to


varn(„). The trick which leads

to the correct bound was told us by Daniel Takahashi.

7.6.6 Shadowing of orbits

Let A be a Borel subset of Ω such that µ„(A) > 0 and define for all n œ N

SA(x, n) =
1

n
inf
yœA

n≠1ÿ

j=0

d◊(T jx, T jy)

A basic example of such a set A is a cylinder set [a0,k≠1]. The quantity

SA(x, n), which lies between 0 and 1, measures how we can trace, in the best

possible way, the orbit of some initial condition not in A by an orbit starting in

A.

Theorem 7.6.5.

For any Borel subset A µ Ω such that µ„(A) > 0, for any n œ N and for

any u > 0

µ„

;
x œ Ω : SA(x, n) Ø uA + uÔ

n

<
Æ e

≠ u2

4C(7.4.1)
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where

uA = 2
Ò

≠ C(7.4.1) ln µ„(A) .

We give a shorter and simpler proof than in [24].

Proof. Let K(x0, . . . , xn≠1) = 1
n infyœA

qn≠1
j=0 d◊(xj , T jy). One can easily check

that

Lip◊,i(K) =
1

n
, ’i = 0, . . . , n ≠ 1.

It follows from (7.4.2) that

µ„

;
SA(x, n) Ø

⁄
SA(y, n) dµ„(y) +

uÔ
n

<
Æ e

≠ u2

4C(7.4.1)

for all n Ø 1 and for all u > 0. We now need an upper bound for
s

SA(y, n)dµ„(y).
We simply observe that by (7.4.1) and the definition of SA(·, n)

µ„(A) =

⁄
e≠›SA(x,n)

1A(x) dµ„(x) Æ
⁄

e≠›SA(x,n) dµ„(x)

Æ e≠›
s

SA(y,n) dµ„(y) e
C(7.4.1)›2

n

for all › > 0. Hence

⁄
SA(y, n) dµ„(y) Æ C(7.4.1)›

n
+

1

›
ln(µ„(A)≠1)

Optimizing this bound over › > 0 gives

⁄
SA(y, n) dµ„(y) Æ 2

Û
C(7.4.1) ln(µ„(A)≠1)

n
.

The theorem follows at once.

7.6.7 Almost-sure central limit theorem

It was proved in [66, Chapter 2] that (Ω, T, µ„) satisfies the central limit theo-

rem for the class of d◊-Lipschitz functions f : Ω æ R such
s

fdµ„ = 0, that is,

for any such f the process {f ¶ T n}nØ0 satisfies

µ„

1
x :

Skf(x)Ô
k

Æ u
2

=

⁄
1)

Skf(x)Ô
k

Æt
*dµ„(x)

kæŒ≠≠≠æ G0,‡2(f)((≠Œ, t])

(7.6.14)

where

‡2(f) =

⁄
f2 dµ„ + 2

ÿ

iØ1

⁄
f · f ¶ T i dµ„ œ [0, +Œ) .

If ‡2(f) > 0, G0,‡2 denotes the law of a Gaussian random variable with mean

0 and variance ‡2(f), that is,

dG0,‡2(f)(u) =
1

‡
Ô

2fi
e

≠ u2

2‡2(f) du, u œ R .

When ‡2(f) = 0 we set G0,0 = ”0, the Dirac mass at zero.

Remark 7.5. In fact, a more general statement was proved in [66, Chapter

I.2]. Namely, (7.6.14) holds when „ is such that
q

k ‘k < +Œ and f œ L„.
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Now, for each N Ø 1 and x œ Ω, define the probability measure

AN (x) =
1

LN

Nÿ

n=1

1

n
δSnf(x)Ô

n

(7.6.15)

where LN =
qN

n=1
1
n and where, as usual, ”u is the Dirac mass at point u œ R.

Of course, LN = log N + O(1). Notice that AN is a random probability mea-

sure. Finally, the Wasserstein distance between two probability measures ‹,

‹ Õ on the Borel sigma-algbra B(R) is

W1(‹, ‹ Õ) = inf
fiœΠ(‹,‹Õ)

⁄
d◊(x, xÕ) dfi(x, xÕ)

where the infimum is taken over all probability measures such that
⁄

fi(B, xÕ) dxÕ = ‹(B) and

⁄
fi(x, B) dx = ‹ Õ(B)

for any Borel subset of R. By the Kantorovich-Rubinstein duality theorem,

W1(‹, ‹ Õ) is equal to the Kantorovich distance which is the supremum ofs
¸ d‹ ≠ s

¸ d‹ Õ over the set of 1-Lipschitz functions ¸ : R æ R. We refer

to [32] for background and proofs.

Now we can formulate the almost-sure central limit theorem.

Theorem 7.6.6.

Let f : Ω æ R be a d◊-Lipschitz function. Then, for µ„ almost every

x œ Ω, we have

W1(AN (x), G0,‡2(f)) ≠≠≠≠≠æ
Næ+Œ

0 .

We make several comments. Recall that the Wasserstein distance metrizes

the weak topology on the set of probability measures ‹ on B(R). Moreover,

if (‹n)nØ1 is a sequence of probability measures on B(R) and ‹ a probability

measure on B(R), then

lim
næŒ W1(‹n, ‹) = 0 ≈∆ ‹n

law≠≠æ ‹ and

⁄
|u| d‹n(u)

næ+Œ≠≠≠≠≠æ
⁄

|u| d‹(u)

where “
law≠≠æ” means weak convergence of probability measures on B(R).

To compare with (7.6.14), observe that Theorem 7.6.6 implies that for µ„-

almost every x, AN (x)
law≠≠æ G0,‡2(f), which in turn implies that

⁄
1{uÆt}dAN (u) =

1

LN

Nÿ

n=1

1

n
1{Snf/

Ô
nÆt} ≠≠≠≠≠æ

Næ+Œ
G0,‡2(f)((≠Œ, t]).

Therefore, the expectation with respect to µ„ in (7.6.14) is replaced by a

pathwise logarithmic average in the almost-sure central limit theorem.

Proof. The proof follows from an abstract theorem proved in [15]. In words,

that theorem says the following. Let (Xn)nØ0 be a stochastic stationary pro-

cess where the Xn’s are random variables taking values in Ω. Assume that

if f : Ω æ R is d-Lipschitz and such that E[f(X0)] = 0, then it satisfies the

central limit theorem, that is, for all u œ R,

P

Aqn≠1
j=0 f(Xj)

Ô
n

Æ u

B
næŒ≠≠≠æ G0,‡2(f)((≠Œ, u])
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where ‡2(f) := E[f2(X0)] + 2
q

¸Ø1 E[f(X0)f(X¸)] is assumed to be ”= 0.

Moreover, assume that the process (Xn)nØ0 satisfies the following variance

inequality: There exists C > 0 such that for all separately d-Lipschitz functions

K : Ω
n æ R for some distance d on Ω,

E
#
(K(X0, . . . , Xn≠1) ≠ E[K(X0, . . . , Xn≠1)])2$ Æ C

n≠1ÿ

i=0

Lipi(K)2 .

Then, the conclusion is that, almost surely,

1

LN

Nÿ

n=1

1

n
” X0+···+Xn≠1Ô

n

converges in Wasserstein distance (or, equivalently, in Kantorovich distance)

to G0,‡2(f)((≠Œ, u]). We apply this abstract theorem to the process (x, Tx, . . .)

where x œ Ω is distributed according to µ„ with Ω = SN and d = d◊. Since we

have (7.6.14) and (7.4.4), the theorem follows.

Remark 7.6. The previous result relies only upon the variance inequality

(7.4.4), which is much weaker than the Gaussian concentration bound of

Theorem 7.4.1. On the one hand, the variance inequality (7.4.4) should be

true for less regular potentials than the ones we consider here. On the other

hand, the Gaussian concentration bound should provide a strengthening of

Theorem 7.6.6, namely a speed of convergence.

7.7 Appendix

7.7.1 Cones and projective metrics

Here, we recall the definitions and properties of the powerful method initi-

ated by Birkhoff to study linear operators and we give the detailed proof of

V. Maume’s thesis written in french ([66]). (In her thesis, she estimated more

precisely the speed of convergence of the transfer operator to the equilibrium

state than in [47].) Like the classical coupling approach, this strategy was

widely applied to estimate decays of correlation of dynamical systems. She

constructed a sequence of cones of Lipschitz functions in which she obtained

a non-uniform contraction of the Ruelle-Perron-Frobenius operator.

Definition 7.7.1. [Cone set]

Let B be a vector space and C µ B a convex cone, i.e.,

1. Let x œ C then ’⁄ > 0, ⁄x œ C,

2. C is a convex set,

3. C fl ≠C = ÿ,

4. For all sequences of real numbers (–n)nØ0 converging to – and if

’n œ N, x ≠ –ny œ C then x ≠ –y œ C.

We define the pseudo-metric ◊ associated to this cone this way
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Definition 7.7.2.

Let (x, y) œ C and

µ(x, y) = sup{— > 0, —x ≠ y œ C},

⁄(x, y) = inf{– > 0, y ≠ –x œ C}.

Assuming that µ(x, y) = Œ and ⁄(x, y) = 0 if the corresponding sets are

empty. We define the pseudo-metric OC in the following way

OC(x, y) = log
µ(x, y)

⁄(x, y)
. (7.7.1)

It’s a pseudo-metric because ◊(x, y) is not necessarily finite. Let C, C Õ be

two cones and P : C æ C Õ be a a linear operator such that PC µ C Õ. We

denote by ∆ the diameter of PC into C Õ as follows

∆ := sup
f,gœC

OCÕ(Pf, Pg).

Proposition 7.7.1.

For all functions f, g œ C we have

OCÕ(Pf, Pg) Æ tanh(
∆

4
)OC(f, g). (7.7.2)

Proof. Let f, g œ C. First, if OC(f, g) = Œ then (7.7.2) is trivial. Let us

assume that OC(f, g) = log µ
⁄

< Œ, then µ < Œ and ⁄ ”= 0. By 4 and the

linearity property of P , the following holds for µ and ⁄

µPf ≠ Pg œ C Õ and Pg ≠ ⁄Pf œ C Õ.

Then, one has ◊CÕ(Pf, Pg) Æ OC(f, g) which implies ∆ = Œ. Now, if ∆ < Œ,

then

OCÕ(P (µf ≠ g), P (g ≠ ⁄f)) Æ ∆.

By definition, there exist positive real numbers –, — such that log —
–

∆ and

—P (µf ≠ g) ≠ P (g ≠ ⁄f) œ C Õ,

P (g ≠ ⁄f) ≠ –P (µf ≠ g) œ C Õ.

On the other hand, one has

—µ + ⁄

— + 1
Pf ≠ Pg œ C Õ,

Pg ≠ ⁄ + –µ

– + 1
Pf œ C Õ.
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Hence, by the projective metric definition, Pf and Pg satisfy

OCÕ(Pf, Pg) Æ log
(—µ + ⁄)(– + 1)

(⁄ + –µ)(— + 1)

= log
— + e≠OC(f,g)

– + e≠OC(f,g)
≠ log

— + 1

– + 1

=

⁄
OC(f,g)

0

(— ≠ –) e≠x

(e≠x +–)(e≠x +—)
dx

Æ OC(f, g) sup
0ÆtÆ1

(— ≠ –)t

(t + –)(t + —)

Æ OC(f, g)
1 ≠ –

—

(1 +
Ò

–
—

)2

Æ OC(f, g) tanh
∆

4
.

Definition 7.7.3.

We say that a norm Î · Î on B is adapted to C, if for all f, g œ B such

that f + g œ C and f ≠ g œ C then ÎfÎ Æ ÎgÎ. We say that fl is an

homogeneous form adapted to C if fl : C æ R
+ satisfies: For ⁄ > 0,

fl(⁄f) = ⁄fl(f) and if f ≠ g œ C then fl(f) Æ fl(g).

Proposition 7.7.2.

Let Î·Î and fl be respectively a norm and an homogeneous form adapted

to a cone C. Let f, g œ C such that fl(f) = fl(g) ”= 0 and satisfy

Îf ≠ gÎ Æ (eOC(f,g) ≠ 1) min(ÎfÎ, ÎgÎ). (7.7.3)

Proof. Let f, g œ C such that fl(f) = fl(g) ”= 0. First, let’s notice that the

inequality is trivial if OC(f, g) = Œ. Now, let assume that OC(f, g) = log µ
⁄

where µ < Œ and ⁄ ”= 0 and

µf ≠ g œ C Õ and g ≠ ⁄f œ C.

Then, by definition of the homogeneous form fl, the following holds

⁄fl(f) Æ fl(g) Æ µfl(f),

and ⁄ Æ 1 Æ µ. Since ⁄ is the smaller positive real number such that g ≠ ⁄f œ
C, it implies that

g ≠ f ≠ (⁄ ≠ µ)f œ C

and (µ ≠ ⁄)f ≠ (g ≠ f) œ C.

Since the norm Î · Î is adapted to a cone, then

Îf ≠ gÎ Æ (µ ≠ ⁄)ÎfÎ

Æ µ ≠ ⁄

⁄
ÎfÎ

Æ
1
eOC(f,g) ≠1

2
ÎfÎ.

By exchanging the role of f and g, we obtain the result.
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We denote by C +(Ω) the set of all continuous and positive functions on Ω

and we define Ĉ +(Ω) = {f œ C +(Ω) :
s

fdµ = 1}.

Proposition 7.7.3.

Let f œ C +(Ω) then fi(g) = {f œ Ĉ +(Ω),
OC +(Ω)(f, g) < Œ} is a complete metric space for the metric OC +(Ω)

associated to the cone of positive functions.

Proof. Let g œ C +(Ω), ◊ be the metric defined on fi(g) and let (fn)nœN be a

Cauchy sequence of fi(g). This sequence satisfies the following properties:

• By 7.7.2,

Îfn ≠ f0ÎŒ Æ (eOC(fn,f0) ≠1)Îf0ÎŒ

and Îfn ≠ fn+mÎŒ Æ (eOC(fn,fn+m) ≠1)ÎfnÎŒ.

• OC(fn, f0) is bounded and OC(fn, fn+m) converges to 0 when n goes

to infinity.

Thus, (fn)nœN is a Cauchy sequence for the uniform norm on Ω and f its limit.

Therefore, f œ C +(Ω) because it’s closed for the uniform norm and satisfiess
fdm = 1 (since,

s
fndm = 1 for all n œ N). In the end, we show that fn

converges to f for the ◊ metric. By definition of the projective metric, one has

µ(fn, f) = sup
xœΩ

f(x)

fn(x)
.

Since, fn converges to f according to the uniform norm, then µ(fn, f) con-

verges to 1. The same argument can be applied to prove that ⁄(fn, f) con-

verges to 1. Then, OC(fn, f) goes to 0 and fi(g) is a complete space.

7.7.2 Proof V. Maume’s theorem

We recall that the normalized operator P̃Φ is defined as follows (see 7.5.1).

ÂP„f = ⁄≠1
„ h≠1

„ P„(fh„).

Thus
ÂP„1 = 1 and ÂP ú

„µ„ = µ„.

We also recall that g is the inverse of the Jacobian of T , and g(k) the inverse

of the Jacobian of T k, that is,

g =
h„

⁄„h„ ¶ T
exp(„) and g(k) =

h„

⁄k
„h„ ¶ T

exp
1 k≠1ÿ

i=0

„ ¶ T i
2

.

(Of course g = g(1).) Therefore we have

ÂP„f(x) =
ÿ

T y=x

g(y)f(y) and ÂP k
„ f(x) =

ÿ

T ky=x

g(k)(y)f(y) .
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Since h„ œ L„, g(k) satisfies the bounded distortion property: There exists

K > 0 such that for all k œ N, and all x
n≥ y with n Ø 1

-----1 ≠ g(k)(xÕ)
g(k)(yÕ)

----- Æ Kvarn„. (7.7.4)

In fact,

g(k)(xÕ)
g(k)(yÕ)

=
h„(xÕ)
h„(yÕ)

h„(y)

h„(y)
e
qk≠1

i=0
„(T ixÕ)≠„(T iyÕ),

and

h„(xÕ)
h„(yÕ)

Æ Lip„(h„)

inf h„
varn+k„ + 1,

h„(y)

h„(x)
Æ Lip„(h„)

inf h„
varn„ + 1,

e
qk≠1

i=0
„(T ixÕ)≠„(T iyÕ) Æ e

qk≠1

i=0
varn+i„ Æ ekvarn„ .

These inequalities imply the bounded distortion property (7.7.4). Since the

measure µ is mixing, for all finite partitions P of Ω defined by non-empty open

sets, for all – < 1 < –Õ, there exists k0 such that ’k > k0,

’A, B œ P, – Æ µ(T ≠kA fl B)

µ(A)µ(B)
Æ –Õ. (7.7.5)

Remark 7.7. For all A œ P, µ(A) > 0 because the support of µ is Ω and h is

strictly positive.

Recall that a pattern ps œ SΛs determines a cylinder set [ps] = {Ê œ Ω :
ÊΛs

= ps}. For s œ N
ú, we denote by Ps the finite partition of Ω into cylinder

set [ps]. Let a, b be real numbers and Λa,b be the cone of functions which

satisfies:

’A œ Ps, 0 <
1

µ(A)

⁄

A
fdµ Æ a

⁄
fdµ,

Lip„(f) Æ b

⁄
fdµ.

We notice that Ca,b is a good cone.

Construction of cones

Now, let ¸ œ N. We construct a sequence of metrics d¸, a sequence of integers

k¸ and a sequence of cones C¸ such that ÂP kl

„ C¸ µ C¸+1 and such that the

diameter ∆l of ÂP kl

„ C¸ in C¸+1 is uniformly bounded in ¸.

Let’s first study the action of ÂP k
„ on the function of Ca,b. We denote by D0

the diameter for the metric d0 of the partition Ps defined as above,

D0 = sup
AœPs

sup
x,yœP

d0(x, y) = vars„.
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We will use the following notation, for a, b, c œ R, a = b ± c means that b ≠ c Æ
a Æ b+ c. We can prove easily that all functions Â œ L„ satisfy: For all A œ Ps

and all x œ P , one has

1

µ(A)

⁄

A
Âdµ ≠ Lip„(Â)D0 Æ Â(x) Æ 1

µ(A)

⁄

A
Âdµ ≠ Lip„(Â)D0. (7.7.6)

Indeed, let x, y œ A, then

Â(y) ≠ Lip„(Â)d0(x, y) Æ Â(x) Æ Â(y) + Lip„(Â)d0(x, y).

Integrating over y, one has (7.7.6). Let f œ Ca,b, and x
n≥ y, n Ø 1,

--- ÂP k
„ f(x) ≠ ÂP k

„ f(y)
--- =

------

ÿ

T kxÕ=x

f(xÕ)g(k)(xÕ) ≠ f(yÕ)g(k)(yÕ)

------

Æ
ÿ

T kxÕ=x

g(k)(xÕ)|f(xÕ) ≠ f(yÕ)| +
ÿ

T kxÕ=x

|g(k)(xÕ) ≠ g(k)(yÕ)||f(yÕ)|

Æ ÂP k
„ 1(x)Lip„(f)varn+k„ + sup |f |

ÿ

T kxÕ=x

g(k)(xÕ)

-----1 ≠ g(k)(yÕ)
g(k)(xÕ)

-----

Æ Lip„(f)varn+k„ + sup |f |Kvarn„.

Thus, using Inequality (7.7.6) and the definition of Ca,b we obtain

| ÂP k
„ f(x) ≠ ÂP k

„ f(y)| Æ b

⁄
fdµ

5
varn+k„ + varn„K

a + bD0

b

6
. (7.7.7)

For k1 œ N
ú which will be fixed later on and D > 1, we consider

V1(n) = D[varn+k1„ + varn].

The sequence (V1(n))nN defines a new metric d1 on Ω as follows: d1(x, y) =

V1(n) if d(x, y) = ◊n. Let Lip
(1)
„ (f) be the Lipschitz constant for the metric d1.

Equation (7.7.7) shows that if D0 is sufficiently small and b sufficiently large

then

Lip
(1)
„ ( ÂP k1

„ f) Æ b

D

⁄
fdµ.

On the other hand, for A œ Ps, (7.7.6) implies:

1

µ(A)

⁄

A

ÂP k
„ fdµ =

1

µ(A)

⁄

T ≠kA
fdµ =

1

µ(A)

ÿ

B

⁄

T ≠kAflB
fdµ

=
ÿ

B

µ(T ≠kA fl B)

µ(A)µ(B)

⁄

B
fdµ ± D0Lip„(f)

ÿ

BœP1

µ(T ≠kA fl B)

µ(A)µ(B)
µ(B).

Thus, if k satisfies (7.7.5), we have:

[– ≠ –ÕbD0]

⁄
fdµ Æ 1

µ(A)

⁄

A

ÂP k
„ fdµ Æ –Õ[1 + bD0]

⁄
fdµ. (7.7.8)

Let C1
a,b the cone of functions of L„ which satisfies:

’A œ Ps, 0 <
1

µ(A)

⁄

A
fdµ Æ a

⁄
fdµ,

Lip
(1)
„ (f) Æ b

⁄
fdµ.

The following lemma shows that if the parameters are well-chosen, ÂP k1
„ is a

contraction of Ca,b into C1.
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Lemma 7.7.1.

It exists D > 1, k1 œ N
ú, a > 0, b > 0 and s œ N

ú such that, ÂP k1
„ Ca,b µ C1

a,b.

Moreover, the diameter ∆1 of ÂP k1
„ Ca,b in C1

a,b is bounded from above by

2 log D+1
D≠1 .

Proof. We fix 0 < ’ < 1, – < 1 < –Õ and k0 such that (7.7.5) is satisfied for –

and –Õ. Let

1. a be such that a Ø ’≠1(–Õ + –/2),

2. b be such that b > K(a + 1),

3. D > 1 be such that D+1
D≠1 Ø max

Ë
2–Õ+–

–
, 1

1≠’

È
,

4. s œ N be such that b(D + 1)vars„ < –
2–

,

5. k1 be such that (7.7.5) is satisfied and Dvars+k1„ Æ vars„.

Let f œ Ca,b and assume that the previous conditions hold. Then, bD0 =
bvars„ < –

2–Õ < 1, Equation (7.7.8) implies:

–

2

⁄
ÂP k

„ fdµ Æ 1

µ(A)

⁄

A

ÂP k
„ fdµ Æ

3
–Õ +

–

2

4 ⁄
ÂP k

„ fdµ Æ ’a

⁄
ÂP k

„ fdµ

(7.7.9)

where a satisfies Condition 1 and Equation (7.7.7), Lip
(1)
„ ( ÂP k

„ f) Æ b
D

s
fdµ.

Then, ÂP k1
„ Ca,b µ C1

a,b.

Now, we have to estimate the projective diameter. Let f, g œ ÂP k1
„ Ca,b and

÷ > 0 such that ÷f ≠ g œ C1
a,b and satisfies:

’A œ Ps, 0 Æ ÷

µ(A)

⁄

A
fdµ ≠ 1

µ(A)

⁄

A
gdµ Æ a÷

⁄

A
fdµ ≠ a

⁄

A
gdµ,

and for x and y in the same cylinder set [p1],

≠b÷

⁄
fdµ ≠ b

⁄
gdµ Æ ÷(f(x) ≠ f(y)) ≠ (g(x) ≠ g(y))

d1(x, y)

Æ b÷

⁄

A
fdµ ≠ b

⁄

A
gdµ.

To satisfy Condition 1, we need

÷ Ø sup
AœPs

a
s

gdµ ≠ 1
µ(A)

s
A gdµ

a
s

fdµ ≠ 1
µ(A)

s
A fdµ

et ÷ Ø sup
AœPs

s
A gdµs
A fdµ

.

Since (7.7.9), we have for all A œ Ps:

s
gdµ ≠ 1

µ(A)

s
A gdµ

s
fdµ ≠ 1

µ(A)

s
A fdµ

Æ 1

1 ≠ ’

s
gdµs
fdµ

et

s
A gdµs
A fdµ

Æ 2–Õ + –

–

s
gdµs
fdµ

.
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Thus, to obtain Condition 1, it is enough that ÷ satisfies:

÷ Ø
s

gdµs
fdµ

max

3
1

1 ≠ “
,
2–Õ + –

–

4
.

To satisfy Condition 2, we need, for x and y in the same cylinder set [p1],

÷ Ø
b

s
gdµ ≠ g(x)≠g(y)

d1(x,y)

b
s

fdµ ≠ f(x)≠f(y)
d1(x,y)

÷ Ø
b

s
gdµ + g(x)≠g(y)

d1(x,y)

b
s

fdµ + f(x)≠f(y)
d1(x,y)

,

since Lip
(1)
„ (f) Æ b

D

s
fdµ and Lip

(1)
„ (g) Æ b

D

s
gdµ, it is enough to have:

÷ Ø
s

gdµs
fdµ

1 + D

D ≠ 1
.

In the same way, let ’ > 0 be such that g ≠ ’f œ C1
a,b. It is enough that ’

satisfies:

’ Æ
s

gdµs
fdµ

min

3
1 ≠ “,

D ≠ 1

D + 1
,

–

2–Õ + –

4
.

Since D satisfies D+1
D≠1 Ø 2–Õ+–

–
and D+1

D≠1 Ø 1
1≠’

, the diameter ∆1 of P kCa,b in

C1
a,b is bounded by above by 2 log D+1

D≠1 .

Remark 7.8. In the proof of Lemma 7.7.1, we used bD0 < –
2–Õ < 1. Condition

5 implies that the diameter D1 = V1(s) of Ps for the metric d1 is bounded by

(D + 1)vars„. Condition 4 allows us to use a recurrence procedure. Indeed,

we obtain bD1 Æ –
2–Õ .

Fix a, b, D and s such that Lemma 7.7.1 is satisfied. Let

k0 = inf{k œ N : Lemma 7.7.1 is satisfied}

et k1 = inf {k > k0 : Dvark+s„ Æ vars„}

We proceed in the same vein as (7.7.7). We obtain, for x and y such that

x
n≥ y, n Ø 1 and f œ C1

a,b:

| ÂP k
„ f(x) ≠ ÂP k

„ f(y)| Æ b

⁄
fdµ

5
V1(n + k) + varn„K

a + bD1

b

6
.

Thus, we define k¸ and V¸(n) by the following induction:

• k¸+1 = inf {k > k0 : DV¸(s + k¸+1) Æ vars„},

• the sequence (V¸(n))nN is defined by induction by

V¸(n) = D[V¸≠1(n + k¸) + varn„].

Each sequence (V¸(n))nN defines a metric on Ω denoted by d¸. For f œ L„,

we denote by Lip
(¸)
„ (f) the Lipschitz constant of f for the metric d¸ and D¸

the partition diameter of Ps for the metric d¸. By construction, D¸ = V¸(s) Æ
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(D + 1)vars„ and thus, bD¸ Æ –
2–Õ . Let C¸

a,b the cone of functions of L„ which

satisfies

’A œ Ps, 0 <
1

µ(A)

⁄

A
fdµ Æ a

⁄
fdµ,

Lip
(¸)
„ (f) Æ b

⁄
fdµ.

Denote C0
a,b = Ca,b. Following the same path of the proof of Lemma 7.7.1, we

obtain the following result.

Proposition 7.7.4.

The sequence of integers (k¸)¸œN and the sequence of cones (C¸
a,b) sat-

isfy:

•
ÂP k¸

„ C¸≠1
a,b µ C¸

a,b, ¸ Ø 1,

• The diameter ∆¸ of ÂP k¸

„ C¸≠1
a,b in C¸

a,b is bounded by 2 log D+1
D≠1 := ∆.

Let C be the cone of functions f œ L„ such that 0 < supxœΩ |f(x)| Æ
(a + 1)

s
fdµ. The following properties are derived directly from Definition

7.7.1 of C.

1. C fl ≠C = 0,

2. C is a convex cone,

3. C is closed for the uniform norm topology.

In order to use this result, we need an adapted norm to C. Let d > 0, we

consider the norm

ÎfÎd = max

3
d

----
⁄

fdµ

---- , ÎfÎŒ

4
.

Remark 7.9. For all d > 0, the norm Î · Îd is equivalent to the uniform norm

on Ω.

Lemma 7.7.2.

For all d Ø a + 1, the norm Î · Îd is adapted to the cone C.

Proof. If f and g are such that f + g œ C and f ≠ g œ C, then

f(x) ≠ g(x) = ±(a + 1)

⁄
(f ≠ g)dµ

et f(x) + g(x) = ±(a + 1)

⁄
(f + g)dµ.

This implies the following

|g(x)| Æ (a + 1)

⁄
fdµ.

Moreover, if f ≠ g œ C and f + g œ C then |
s

gdµ| Æ s
fdµ. Thus, for x œ Ω

and d Ø a + 1 one has, ÎgÎd Æ ÎfÎd.
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By the choice of a, b, s and k¸, the cones C¸
a,b are sub-cones of C. Indeed, if

f œ C¸
a,b, f satisfies the following inequalities.

’a œ Ps, 0 <
1

µ(a)

⁄

a
fdµ Æ a

⁄
fdµ,

Lip
(¸)
„ (f) Æ b

⁄
fdµ.

Using the metric d¸ instead of d0 in the proof of Proposition 7.7.4, we

obtain

sup |f | Æ supE(f |Ps) + Lip¸(f)D¸,

sup |f | Æ a

⁄
fdµ + bD¸

⁄
fdµ,

sup |f | Æ (a + 1)

⁄
fdµ car bD¸ Æ b(D + 1)vars„ < 1.

Proposition 7.7.1 on the cones implies that OC Æ OC¸
a,b

for all ¸ œ N. Let

” = tanh ∆

4 and f œ C0, P k1+···+k¸f œ C¸
a,b, then one has,

OC( ÂP k1+···+k¸

„ f,1) Æ OC¸
a,b

( ÂP k1+···+k¸

„ f,1) Æ OC¸≠1
a,b

( ÂP k1+···+k¸≠1

„ f,1) Æ · · · Æ ”¸≠1
∆.

For n œ N, there exists a unique integer ¸(n) such that

k1 + · · · + k¸(n) Æ n Æ k1 + · · · + k¸(n)+1.

Thus, by Proposition 7.7.2 applied to Î · Îd and the homogeneous form µ, we

can estimate the speed of convergence of ÂP nf to µ(f) for all f œ C0. Let

n = k1 + · · · + k¸(n) + u with u Ø 0, one has

Î ÂP n
„ f ≠ µ(f)Îd = Î ÂP u

„ [P k1+···+k¸(n)f ≠ µ(f)]Îd

Æ Î ÂP u
„ ÎdÎ ÂP k1+···+k¸(n)

„ f ≠ µ(f)]Îd

Æ Cte”¸(n)µ(f). (7.7.10)

The following lemma gives an estimation of the speed of convergence of ÂP n
„ f

to µ(f) for all f œ L„.

Lemma 7.7.3.

For all functions f œ L„, there exists R(f) Ø 0 such that f + R(f)1 œ C0

and R(f) Æ CteÎfÎL„
.

Proof. Let f œ L„. R(f) has to satisfy

R(f) Ø sup
AœPs

1
µ(A)

s
A fdµ ≠ a

s
fdµ

a ≠ 1
,

and R(f) Ø Lip„(f) ≠ b
s

fdµ

b
.

Thus, we choose R(f) such that

R(f) = max

C
Lip„(f)

b
+

⁄
fdµ, sup |f |

a + 1

a ≠ 1

D
Æ CteÎfÎL„

.
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Let f œ L„ and fC0 = f + R(f)1 œ C0. The equation (7.7.10) and Lemma

7.7.2 imply

Î ÂP n
„ f ≠ µ(f)Îd = Î ÂP n

„ fC0 ≠ µ(fC0)Îd + ÎR(f) ÂP n
„ 1 ≠ R(f)µ(1)Îd

Æ Cte”¸(n)ÎfÎL„
.

Since the norm Î · Îd is equivalent to the uniform norm on Ω, we obtain the V.

Maume’s result. For all functions f œ L„,

Î ÂP n
„ f ≠ µ(f)ÎŒ Æ Cte”¸(n)ÎfÎL„

.
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Chapter 8

Probabilistic cellular automata

8.1 Introduction

Probabilistic cellular automata (PCA) are Markov chains on shift spaces, such

that the probability transition rule is local and shift-invariant. These models

have been extensively studied as they represent a paradigm of complex spa-

tiotemporal behavior. They can be seen as both, stochastic perturbations of

deterministic cellular automata (CA), as well as lattice statistical mechanics

models. This last point of view, allowing the use of techniques from statisti-

cal mechanics, has led to results concerning the so called high-noise regime,

where ergodicity and decay of correlations can be derived from results in

high-temperature regimes for the corresponding statistical mechanical model.

For further details on PCA seen as Gibbs measures on histories (in space-

time) we mention [40]. This approach has also furnished examples of loss

of ergodicity via phase transitions in the corresponding statistical mechanical

model. The high-noise regime has been mainly studied using the Dobrushin

approach for high temperature statistical mechanical models, leading to pro-

gressively finer and more explicit conditions on the noise strength, ensuring

ergodicity, decay of correlations and the large deviation property. A few al-

ternative approaches have been tried, among which the coupling method. In

this chapter we prove that, under the classical Dobrushin-Shlosman condi-

tions, the evolution is a contraction in d̄-distance which ensures uniform ex-

ponential ergodicity. In a second part we prove that under those conditions,

the spatio-temporal process defined by the PCA has the Gaussian Concen-

tration Bound for space-time observables whose Lip-vector has bounded ¸2

norm.

8.2 Setting

The configurations of our PCA belong to the product space Ω := SL. We

recall that the shift action (Tx, x œ L) is defined as: for each x œ L, Tx : Ω æ Ω

and (Tx Ê)y = Êy≠x, for all y œ L. Let us denote by B the Borel sigma-algebra

on Ω. For a œ SΛ, with [a] we denote the cylinder set {÷ œ Ω : ÷Λ = a}.

A PCA is a discrete-time Markov process (Êt)tœN on Ω, defined by a prob-

ability kernel Φ : B ◊ Ω æ [0, 1] (the definition of probability kernel can be

found in [39] for instance) with this structure: there exists 0 œ U b L (a finite

subset containing 0), and a probability transition function „ : S ◊ SU æ [0, 1]
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such that for each Λ µ L finite, a œ SΛ, and Ê œ Ω we have

Φ([a], Ê) =
Ÿ

xœΛ

„(ax, ÊU+x). (8.2.1)

Notice that „(·, ÷U ) is a probability vector in [0, 1]S .

A deterministic cellular automata (CA) is a T -invariant continuous trans-

formation Φ̄ : Ω æ Ω, which by virtue of the Curtis-Hedlund-Lyndon theorem

is necessarily defined by a local transition rule „̄ : SU æ S in the following

way. For each x œ L we have

1
Φ̄ Ê

2
x

= „̄(ÊU ). (8.2.2)

A CA can be seen as a degenerated PCA by considering a probability tran-

sition function of the kind „(a0, bU ) = ”a0

„̄(bU )
, with ”a

b denoting the Kronecker

delta.

The space-time configurations of the PCA belong to the product space

X := Ω
N for which we consider the product topology and the Borel sigma-

algebra F generated by the sets in B ◊ B. Let M 1(X) and M 1(Ω) be the

Banach spaces of signed measures in X and Ω respectively, and let M (X)
and M (Ω) be the corresponding simplices of probability measures. Given

F b L◊N, and a œ SF , with [a] we will denote the corresponding space-time

cylinder {Ê œ X : Êt
s = at

s, ’ (s, t) œ F}. With aF we denote the restriction of

a to the coordinates of F . When F = Λ◊{t} µ L◊N, aF will also be denoted

by at
Λ

.

A particular class of cylinders we will distinguish are the one defined by

space-time funnels. For Λ b L and T œ N, let

F T
Λ = fiT

t=0 (Λ + UT ≠t) ◊ {t}, (8.2.3)

where U· is defined recursively as follows: U0 = U , and for each · Ø 0,

U·+1 = U· + U . The set F T
Λ

is the time-T funnel with base Λ. The funnel F T
Λ

contains all the sites in space-time, required to determine the distribution of

configurations Λ b L at time T . When the base of the funnel is a singleton

Λ = {x}, we will use the notation F T
x to simplify. Cylinder sets supported by

space-time funnels suffice to generate all the measurable sets in F.

The opposite structure of a funnel is a light cone. The light cone emerging

from (x, t) œ L ◊ N, is the set

L(x,t) := fiŒ
·=0(x + U· ) ◊ {t + ·}. (8.2.4)

Given initial probability distribution µ œ M (Ω), the PCA defines a space-

time distribution Pµ œ M (X) as follows. Let Λ b L, T œ N and a œ SF T
Λ

then

Pµ[a] = µ
Ë
a0

Λ+UT

È TŸ

t=1

Φ

1Ë
at

Λ+UT ≠t

È
, Êt≠1

2

= µ
Ë
a0

Λ+UT

È TŸ

t=1

Ÿ

xœΛ+UT ≠t

„
1
at

x, at≠1
x+U

2
, (8.2.5)

for any choice Êt œ
Ë
at

Λ+UT ≠t

È
.
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The PCA induces the transformation PΦ : M (Ω) æ M (Ω) given by

PΦ‹ (B) =

⁄

X
Φ(B, Ê) d ‹(Ê), (8.2.6)

for all B œ B. Since Φ is T -invariant (recall that it means that Φ(T ≠1
x A, Ê) =

Φ(A, TxÊ) for each A œ B, Ê œ Ω and x œ L), then PΦ preserves the sim-

plex MT (Ω) of T -invariant probability measures. Since PΦ is continuous in

the weak-* topology, the Schauder fixed-point theorem ensures the existence

of at least one stationary measure, i.e., a measure µ œ MT (Ω) such that

PΦ µ = µ. The PCA is said to be ergodic if there exists a unique attractive

probability measure µú œ M (Ω), i.e., such that for each probability measure

µ œ M (Ω), P·
Φ

µ æ µú in the weak-* topology. Evidently µú has to be T -

invariant. If PΦ happens to be a contractive map with respect to a distance

D compatible with the weak-* topology, Banach’s contracting map theorem

ensures ergodicity. Furthermore, in this case the PCA is not only ergodic, but

uniformly ergodic, which means that P·
Φ

µ [a] æ µŒ[a] for each a œ S, uni-

formly on µ. It is unknown whether uniform ergodicity is a stronger condition

than simple ergodicity.

The PCA also defines a non-negative linear action PΦ on the set of con-

tinuous functions C (X),

(PΦK)(Ê) :=

⁄

X
K(÷) Φ(d÷, Ê). (8.2.7)

Exponential convergence of PΦµ in distance D does not ensure that the

unique stationary distribution µú is ergodic with respect to T , much less mix-

ing [59]. Mixing requires more than just D-contractiveness. For instance, if

for some f : N æ [0, Œ) such that lim·æŒ f(·) = 0, and for some product

measure µ œ M (Ω) we have

|P·
Φµ [a] ≠ µú[a]| Æ |Λ| f(·), ’ Λ b L, a œ SΛ and · œ N, (8.2.8)

then the unique stationary measure µú has to be mixing with respect to T .

This is the way mixing of µú is proved in [57, Corollary 1]. Proposition 2.1

in [59] synthesizes the rationale behind this approach. This kind of uniform

convergence is obtained for instance when PΦ is a contraction with respect

to the d̄-distance, a distance finer than D.

As mentioned in the previous paragraph, the ideal situation arrives when

PΦ is a contraction with respect to the d̄-distance. We recall that this dis-

tance is defined as follows. Given two probability measures µ, ‹ œ M 1
T (Ω),

a coupling between them is a probability measure ⁄ œ M (Ω ◊ Ω) such that

⁄(B ◊ Ω) = µ(B) and ⁄(Ω ◊ B) = ‹(B) for each B œ B. Let us denote by

JT (µ, ‹) be the of all the T -invariant couplings between the µ, ‹ œ M 1
T (Ω),

then d̄ : M 1
T (Ω) ◊ M 1

T (Ω) æ [0, 1] given by

d̄(µ, ‹) = inf
⁄œJT (µ,‹)

⁄

Q
a €

a0 ”=b0

[a0] ◊ [b0]

R
b . (8.2.9)

This distance makes M 1
T (Ω) a complete, non-compact, metric space. In this

topology, limits of converging sequences of ergodic measures are ergodic.

Similarly for sequences of mixing measures. Furthermore, entropy is contin-

uous with respect to this topology (see [78]). It is not hard to prove that when-

ever PΦ is a contraction in distance d̄, then the PCA defined by PΦ is uniformly
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exponentially convergent, i.e., Inequality (8.2.8) holds with f(·) = exp(c≠“ ·)
for some c and “ > 0.

It is worth mentioning that, according to [56, Theorem 1], for the class

of attractive PCA i.e., for all increasing functions K, PΦK is still increasing

(which is a notion related to the attractiveness of potentials in the theory of

Gibbs/g-measures), T -mixing of the unique PCA stationary distribution µú

implies (8.2.8) with f(·) æ 0 exponentially fast.

The uniform exponential convergence (Equation (8.2.8) with f(·) = exp(c≠
“ ·) for some c and “ > 0), when it happens, ensures a wealth of nice

limit properties for the process Pµ, and ensures the Gaussian concentration

bound. And conversely, non-ergodicity or even not fast enough convergence

towards the unique stationary measure leads to the violation of the Gaussian

concentration bound.

Let us recall these notions in this context. Let K : X æ R be a continuous

function and (x, t) œ L ◊ N. We denote by

∆(x,t)(K) := sup
Ó

|K(Ê) ≠ K(÷)| : Ê(s,·) = ÷(s,·), ’(s, ·) ”= (x, t)
Ô

(8.2.10)

the spatio-temporal oscillation of K at (x, t). An observable K : X æ R is

local if there exists ΛK b L ◊ N such that for all Ê, ÊÕ, ÊÕÕ œ X, K(ÊΛÊÕ
Λc) =

K(ÊΛÊÕÕ
Λc). Let’s denote by ΛK := supp(K) the support of K. We will refer to

observables K : X æ R satisfying

Î∆(K)Î2
2 :=

ÿ

(x,t)œL◊N

∆
2
(n,t)K < Œ, (8.2.11)

as Lip-bounded and will denote by LB the set of all Lip-bounded observables.

Clearly the set of local observables forms a dense set, with respect to the sup-

norm, inside LB, which in its turn is dense inside the Banach space C (X) of

continuous observables. We recall what we mean by Gaussian concentration

bound.

Definition 8.2.1.

Let Pµ œ M (X) be a space-time distribution with an initial probability

measure µ œ M (Ω) . We say that the PCA satisfies a Gaussian concen-

tration bound if there exists D = D(Pµ) > 0 such that for all functions

K œ LB, we have

E
#
exp (K ≠ E[K])

$ Æ exp
1
DÎ∆(K)Î2

2

2
. (8.2.12)

The expectation in (8.2.12) is taken with respect to the process Pµ, and

should hold for each initial distribution µ œ M (Ω).

Summarizing, if PΦ : M (Ω) æ M (Ω) has a unique stationary probability

measure µú, which necessarily is T -invariant, and if µú uniformly attracts (in

the sense of contraction) all initial distributions as in (8.2.8), then µú is mix-

ing with respect to T . If this convergence is exponential, then the space-time

measure Pµ defined by the PCA and an initial distribution µ œ M (Ω) satis-

fies what we call the space-time Gaussian Concentration Bound (8.2.12). A

standard way to obtain this convergence is to ensure that the transition prob-

ability „ satisfies a condition ensuring the contractiveness of the operator P„.

As mentioned above, under this kind of high-noise conditions, limit properties

such as the Central Limit Theorem and the Large Deviation Principle hold.
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These limit properties have been already established in previous works. In

the present chapter we will be mainly concerned with the GCB.

8.3 High-noise regime

The high-noise regime corresponds to a situation where the transition proba-

bility function „ : S ◊ SU æ [0, 1] is so close to equidistribution that the PCA

is a contraction in the d̄-distance and therefore satisfies uniform exponential

convergence. The first and most natural condition ensuring this contractive-

ness is the CV condition by Dobrushin and Shlosman (see [28]). Taking into

account that in the literature the computations usually refer to the action of the

PCA on regular functions (either local or having finite Lip norm), we present

our own formulation of the contractiveness result, referred to the d̄-distance.

It is nevertheless equivalent and the proof follows the standard reasoning:

The convergence in d̄-topology could be deduced from the fact that, under

Dobrushin’s type conditions as those used in [52, 57, 79], the action of P is

a contraction in MT

1
SZ

2
with respect to the Wasserstein distance as it is

presented in [48].

Theorem 8.3.1.

Let PΦ be a PCA with transition probability function „ : S ◊ SU æ [0, 1].
If

“„ :=
ÿ

xœU

max
Ó

|„(·, c) ≠ „(·, d)ÎTV : c, d œ SU , cs = ds ’s ”= x
Ô

< 1,

then d̄(P„µ, P„‹) Æ “„ d̄(µ, ‹) for all µ, ‹ œ M 1
T (Ω).

Recall that Îp ≠ qÎTV := 1/2
q

aœS |p(a) ≠ q(a)| =
q

aœA(p ≠ q)+(a) is the

total variation distance between the probability vectors p and q œ S[0,1]. This

theorem holds for any lattice L we consider, and ensures the following.

Corollary 8.3.1.

Under the hypotheses of Theorem 8.3.1, the PCA defined by Φ is uni-

formly exponentially ergodic, i.e., there exists a unique µú œ M 1
T (Ω) such

that PΦµú = µú and

|Pt
Φµ[a] ≠ µú[a]| Æ |Λ|

1 ≠ “„
“t

„,

for each Λ b L and a œ SΛ. Furthermore µú is mixing.

Proof. Under the hypotheses of Theorem 8.3.1, P„ is a contraction in d̄-

distance. The set M 1
T (Ω) with the d̄-topology is complete. Banach’s fixed

point theorem ensures the existence and uniqueness of µú œ M 1
T (Ω) such

that PΦµú = µú. Furthermore, the theorem establishes that

d̄(Pt
„µ, µú) Æ d̄(PΦµ, µ)

1 ≠ “„
“t

„.
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Clearly d̄(PΦµ, µ) Æ 1, since d̄(PΦµ, µ) Æ q
a,bœS, a ”=b ⁄([a] ◊ [b]) for each

coupling ⁄ œ JT (PΦµ, µ). The coupling inequality (see [55] for details) estab-

lishes that for each Λ b L

max
aœSΛ

|Pt
Φµ[a] ≠ µú[a]| Æ

ÿ

a,bœSΛ,a ”=b

⁄([a] ◊ [b]),

for each coupling ⁄ œ JT (Pt
Φ

µ, µú). Taking into account that

ÿ

a,bœSΛ,a ”=b

⁄([a] ◊ [b]) Æ
ÿ

xœΛ

ÿ

ax ”=bx

⁄([ax] ◊ [bx]),

optimizing over the T -invariant couplings, we obtain

max
aœSΛ

|Pt
Φµ[a] ≠ µú[a]| Æ

ÿ

xœΛ

d̄(Pt
Φµ, µú) Æ |Λ|

1 ≠ “„
“t

„.

Finally, since in d̄-distance converging limits of mixing measures are mix-

ing (see [78] for details), taking µ œ M 1
T (Ω) a mixing measure, necessarily

µú = limtæŒ Pt
„µ is mixing. Alternatively we can use the previous inequality,

which establishes uniform exponential ergodicity of the PCA, to directly prove

the mixing. Indeed, by taking µ œ M 1
T (Ω) a product measure and t œ N and

ÎxÎŒ > t diam(U) + diam(Λ), we have

|µú([a] fl Tx[b]) ≠ Pt
„µ([a] fl Tx[b])| Æ

2|Λ|“t
„

1 ≠ “„

Pt
„µ([a] fl Tx[b]) = (Pt

„µ[a])(Pt
„µ[b])

|(Pt
„µ[a])(Pt

„µ[b]) ≠ µú[a] µú[b]| Æ
|Λ|“t

„

1 ≠ “„
(µú[a] + µú[b]) +

|Λ|2“2t
„

1 ≠ “„
.

Hence, for all ÎxÎŒ sufficiently large, we have

|µú([a] fl Tx[b]) ≠ µú[a] µú[b]| Æ
4|Λ|“

ÎxÎŒ/diam(U)
„

(1 ≠ “„)“
(diamΛ+1)/diam(U)
„

.

As we show in the next section, under the conditions of Theorem 8.3.1,

the process has space-time GCB.

Proof of Theorem 8.3.1. To ease the notation, for each c œ SU let us denote

by „c the probability vector „( · , c). Now, let P
Φ̄

be the PCA on Ω ◊ Ω defined

by the local transition probability function „̄ : (S ◊ SU ) ◊ (S ◊ SU ) æ [0, 1]
such that

„̄(a, c; b, d) =

Y
_]
_[

(„c ≠ „d)+(a) („d ≠ „c)
+(b)

Î„c ≠ „dÎTV
+ ”b

a „c · „d(a) if „c ”= „d,

”b
a „(a, c) if „c = „d,

(8.3.1)

where, as usual, p+ denotes the positive part of p while p·q = min(p, q). This

transition probability function is nothing but the maximal coupling between „c

and „d seen as probability distributions. It is easy to verify that

ÿ

aœS

„̄(a, c; b, d) = „(b, d), and
ÿ

bœS

„̄(a, c; b, d) = „(a, c),
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which ensures that „̄ correctly defines a probability kernel. Now, let ⁄ œ
JT (µ, ‹) and consider its image ⁄Õ = P

Φ̄
⁄. For each Λ b L and a œ SΛ we

have,

⁄Õ([a] ◊ X) =
ÿ

bœSΛ

ÿ

c,dœSΛ+U

⁄([c] ◊ [d])
Ÿ

xœΛ

„̄(ax, cx+U ; bx, dx+U )

=
ÿ

c,dœSΛ+U

⁄([c] ◊ [d])
Ÿ

xœΛ

Q
a ÿ

bxœS

„̄(ax, cx+U ; bx, dx+U )

R
b

=
ÿ

c,dœSΛ+U

⁄([c] ◊ [d])
Ÿ

xœΛ

„(ax, cx+U ) =
ÿ

cœSΛ+U

µ([c])
Ÿ

xœΛ

„(ax, cx+U )

= PΦµ[a].

Since „̄ is symmetric, following the analogous computation we obtain P
Φ̄

(X ◊
[b]) = PΦ‹[b] for each b œ SΛ+U . Hence, ⁄Õ œ JT (PΦµ, PΦ‹), and therefore

d̄(PΦµ, PΦ‹) Æ
ÿ

a,bœS, a ”=b

⁄Õ([a] ◊ [b]) =
ÿ

c,dœSU

ÿ

a ”=b

„̄(a, c; b, d) ⁄([c] ◊ [d])

=
ÿ

c ”=d

⁄([c] ◊ [d])

Î„c ≠ „dÎTV

ÿ

aœS

(„c ≠ „d)+(a)
ÿ

b”=a

(„d ≠ „c)
+(b)

=
ÿ

c ”=d

⁄([c] ◊ [d])

Î„c ≠ „dÎTV

ÿ

aœS

((„c ≠ „d)+(a))
1
Î„c ≠ „dÎTV ≠ („d ≠ „c)

+(a)
2

Æ
ÿ

c ”=d

⁄([c] ◊ [d]) Î„c ≠ „dÎTV.

Let n : {1, 2, . . . , |U |} æ U be a numbering of the coordinates in U . For each

c, d œ SU with c ”= d we have

⁄([c] ◊ [d]) Î„c ≠ „dÎTV

= ⁄([c] ◊ [d])

|U |ÿ

k=1

Î„( · , cnÆn(k)dn>n(k)) ≠ „( · , cn<n(k)dnØn(k))ÎTV,

where cnÆn(k)dn>n(k) œ SU is the configuration whose first k coordinates co-

incide with c and the rest with d. Similarly for cnÆn(k)dn>n(k). Notice that

cnÆn(k)dn>n(k) and cnÆn(k)dn>n(k) differ at most in the site n(k). With this, and

taking into account that ⁄ is T -invariant, we have
ÿ

c ”=d

⁄([c] ◊ [d])Î„c ≠ „dÎTV

Æ
ÿ

c ”=d

⁄([c] ◊ [d])
ÿ

cn(k) ”=dn(k)

max{Î„c ≠ „dÎT V : cs = ds s ”= n(k)}

Æ
|U |ÿ

k=1

max{Î„c ≠ „dÎT V : cs = ds s ”= n(k)}
ÿ

c,d: cn(k) ”=dn(k)

⁄([c] ◊ [d])

= “„

ÿ

c,d: cn(k) ”=dn(k)

⁄([c] ◊ [d])

= “„

ÿ

a,bœS, a ”=b

⁄([a] ◊ [b]).

Since the inequality holds for each ⁄ œ JT (µ, ‹), we finally obtain

d̄(PΦµ, PΦ‹) Æ “„ inf

Y
]
[

ÿ

a,bœA, a ”=b

⁄([a] ◊ [b]) : ⁄ œ JT (µ, ‹)

Z
^
\ = “„ d̄(µ, ‹).
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8.4 Gaussian Concentration Bound

In the regime of high noise the PCA has a Gaussian concentration bound.

We have the following.

Theorem 8.4.1.

Let PΦ be a PCA whose transition probability function „ : S ◊ SU æ [0, 1]
is such that „(a, b) > 0 for all a œ S and b œ SU , and such that

“„ :=
ÿ

xœU

max
Ó

Î„(·, c) ≠ „(·, d)ÎTV : c, d œ SU , cs = ds ’s ”= z
Ô

< 1.

Then, for each µ œ M (Ω) the PCA satisfies a Gaussian concentration

bound.

In the proof we will use the classical Azuma-Hoeffding approach, which

we think is the more appropriate for this case. We will also make use of the

following lemma.

Lemma 8.4.1.

Let µ œ M (Ω) and for each a œ S and x œ L, let µx
a := µ(·|Êx = a) œ

M (Ω). Under the hypotheses of Theorem 8.3.1 there exists a coupling

⁄x
a,b œ JT (Pµx

a
,Pµx

b
) satisfying

⁄x
a,b(Ê

t
s ”= ÷t

s) Æ “t
„ 1L(x,0)

(s, t),

for all t œ N and s œ L.

Here 1L(x,0)
denotes the characteristic function of the light cone L(x,0) and

Ê, ÷ are random variables in Ω distributed according to the marginals of ⁄x
a,b.

Proof. We follow the same lines as in Theorem 8.3.1. The coupling ⁄x
a,b is a

PCA on Ω ◊ Ω, defined by the probability transition function „̄ given in (8.3.1).

The PCA starts with the coupling ⁄ œ JT (µx
a, µx

b ) with support in ∆
x
a,b :=

{(Ê, ÷) œ X ◊ Ω : Ês = ÷s ’s ”= x, Êx = a and ÷x = b}, defined as follows. For

each Λ b L, and a, b œ SΛ we have

⁄([a] ◊ [b]) =
I

(µa[a] ≠ µb[b])+ + (µb[b] ≠ µa[a])+ + min(µa[a], µb[b]) if [a] ◊ [b] fl ∆
x
a,b ”= ÿ,

0 otherwise.

It is easy to check that ⁄([a]◊Ω) = µa[a] and ⁄(Ω◊ [b]) = µb[b]. Let us denote

by ⁄· œ M1(Ω ◊ Ω) the marginal of ⁄x
a,b on the coordinates in (L ◊ L) ◊ {·},

by ⁄·
1 œ M (Ω) the marginal of ⁄· on the coordinates of the first copy of L,
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and similarly for ⁄·
2 œ M (Ω). Now, for each Λ b L and · œ N we have

⁄·+1
1 [a] = ⁄·+1([a] ◊ X) =

ÿ

bœSΛ

ÿ

c,dœSΛ+U

⁄· ([c] ◊ [d])
Ÿ

xœΛ

„̄(ax, cx+U ; bx, dx+U )

=
ÿ

c,dœSΛ+U

⁄· ([c] ◊ [d])
Ÿ

xœΛ

Q
a ÿ

bxœA

„̄(ax, cx+U ; bx, dx+U )

R
b

=
ÿ

cœSΛ+U

⁄·
1 [c]

Ÿ

xœΛ

„(ax, cx+U ) = PΦ⁄·
1 [a].

An analogous computation gives us ⁄·+1
2 [a] = PΦ⁄·

2 [a] for each b œ SΛ+U .

Since ⁄0 = ⁄ œ JT (µx
a, µx

b ), by induction on · we readily deduce that ⁄· œ
JT (P·

Φ
µ, P·

Φ
‹).

At time · = 0, s ”= x is equivalent to (s, 0) /œ L(x,0) and for such s we have

⁄0(Ê0
s ”= ÷0

s) = 0. Let us assume that for · œ N and (s, ·) /œ L(x,0), we have

⁄· (Ê·
s ”= ÷·

s ) = 0. Then at time · + 1,

⁄x
a,b(Ê

·+1
s ”= ÷·+1

s ) =
ÿ

a,bœS{s}, a ”=b

⁄·+1([a] ◊ [b])

=
ÿ

c,dœSU+s

ÿ

a ”=b

„̄(a, c; b, d) ⁄· ([c] ◊ [d])

=
ÿ

c,dœSU+s c ”=d

⁄· ([c] ◊ [d])

Î„c ≠ „dÎTV

ÿ

aœA

(„c ≠ „d)+(a)
ÿ

b”=a

(„d ≠ „c)
+(b)

Æ
ÿ

c,dœSU+s c ”=d

⁄· ([c] ◊ [d]) Î„c ≠ „dÎTV.

If (s, · + 1) /œ L(x,0) then necessarily (U + s) ◊ {·} fl L(x,0) = ÿ and therefore

⁄· ([c] ◊ [d]) = 0 for each c, d œ SU+s such that c ”= d. Otherwise, if ((U + s) ◊
{·}) fl L(x,0) ”= ÿ, following the computations in the proof of Theorem 8.3.1,

for each c, d œ SU+x with c ”= d we have

⁄· ([c]◊ [d]) Î„c ≠„dÎTV Æ ⁄· ([c]◊ [d])
ÿ

sœU

max{Î„e ≠„eÕÎT V : e’ = eÕ
’ , ’ ”= s}.

Let “s := max{Î„e ≠ „eÕÎT V : e’ = eÕ
’ , ’ ”= s}, then

ÿ

c,dœSU+s c ”=d

⁄· ([c] ◊ [d])Î„c ≠ „dÎTV Æ
ÿ

c,dœSU+s c ”=d

⁄· ([c] ◊ [d])
ÿ

c’+s ”=d’+s

“’

Æ
ÿ

’œU

“’

ÿ

c,dœSU+s: c’+s ”=d’+s

⁄· ([c] ◊ [d])

=
ÿ

’œU

“’⁄· (Ê·
’+s ”= ÷·

’+s)

Æ “„ sup
(’,·)œL(x,0)

⁄x
a,b(Ê

·
’ ”= ÷·

’ ).

In this way we obtain

⁄x
a,b(Ê

·+1
s ”= ÷·+1

s ) Æ “„ sup
(’,·)œL(x,0)

⁄x
a,b(Ê

·
’ ”= ÷·

’ )1L(x,0)
(s, t).

Since this inequality holds for all an arbitrary s œ L, it follows by induction in

· that

⁄x
a,b(Ê

t
s ”= ÷t

s) Æ “t
„ sup

(s,0)œL(x,0)

⁄x
a,b(Ê

0
s ”= ÷0

s)1L(x,0)
(s, t) Æ “t

„ 1L(x,0)
(s, t)

for each t œ N and s œ L.
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We can now proceed to the proof of Theorem 8.4.1.

Proof of Theorem 8.4.1. Let us fix K œ LB. For each ‘ > 0 let Λ b L and

T œ N be such that in the funnel F = F T
Λ

we have

Î∆ KÎ2
2 ≠

ÿ

(x,t)œF

|∆ K|2 < ‘.

With this we define the local observable K : X æ R given by

K(Ê) = max{K(÷) : ÷ œ [ÊF ]}.

From now on we will consider the local observable K approaching the orig-

inal space-time observable K. The proof follows the classical argument

which consists of decomposing K ≠ E(K) as a martingale sum (see [21]

for instance). Let n : F æ {1, 2, . . . , |F |} be an ordering of F . For each

1 Æ k Æ |F |, let DkK : Sk æ R be such that

DkK
1
ÊnÆn(k)

2
:= E

1
K|ÊnÆn(k)

2
≠ E

1
K|Ên<n(k)

2
,

where by convention E

1
K|Ên<n(1)

2
© E(K) and E

1
K|ÊnÆn(|F |)

2
© K (ÊF ) =

K(Ê). With this,

K(Ê) ≠ E(K) =

|F |ÿ

k=1

DkK
1
ÊnÆn(k)

2
. (8.4.1)

In order to prove the theorem, we will use Azuma-Hoeffding (see [53, Page.

68]), which ensures that

E

1
eK≠E(K)

2
Æ e

1
2

q|F |

k=1
ÎDkKÎ2

Œ . (8.4.2)

In order to bound DkK we note that

DkK
1
ÊnÆn(k)

2
= E

1
K|ÊnÆn(k)

2
≠ E

1
E

1
K|ÊnÆn(k)

2
|Ên<n(k)

2

Æ max
Ên(k)

E

1
K|ÊnÆn(k)

2
≠ E

3
min
Ên(k)

E

1
K|ÊnÆn(k)

2
|Ên<n(k)

4

= max
Ên(k)

E

1
K|ÊnÆn(k)

2
≠ min

xn(k)

E

1
K|ÊnÆn(k)

2
=: ∆kK

1
Ên<n(k)

2
.

It is now convenient to express the max-min difference ∆kK
1
Ên<n(k)

2
in

terms of a coupling. For this, we have to consider the spatiotemporal decom-

position of the coordinates in F and we have to impose a monotonicity condi-

tion for the ordering n. For each 1 Æ k Æ |F |, let n(k) = (x(k), t(k)) œ L ◊ N.

We require from n to be time-increasing, i.e., t(k) Ø t(k≠1) for all 2 Æ k Æ |F |.
For each a œ S and 1 Æ k Æ |F |, let µa œ M (Ω) be such that

µa[ÊE ] := P
t(k)
Φ

µ
1
[ÊE

---
Ë
Ên<n(k),t=t(k) a

È2

for each E b L. To be more clear, µa is obtained at time t(k) by the action of

the PCA on µ, and then conditioning the resulting distribution on the cylinder

[Ên<n(k)a]. For a ”= b œ S and 1 Æ k Æ |F | let ⁄k
a,b œ JT (Pµa ,Pµb

) be the

coupling between µa and µb œ M (Ω) described in Lemma 8.4.1. The cou-

pling ⁄k
a,b is a PCA on Ω◊Ω whose marginals are precisely realizations of the

original PCA starting at µa and µb respectively, hence,

DkK
1
Ên<n(k)

2
= max

a,bœS

⁄

Ω

1
K

1
Ên<n(k)a u

2
≠ K

1
Ên<n(k)b w

22
d ⁄k

a,b(u, v).

(8.4.3)
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We follow now the standard trick consisting in reducing the difference

K(Ên<n(k)a u) ≠ K(Ên<n(k)b w)

to a sum of differences involving a change in a single site. For each v, w œ
S{n>n(k)} we have

K
1
Ên<n(k)a u

2
≠ K

1
Ên<n(k)b w

2

=

|F |ÿ

j=k+1

K
1
Ên<n(k)a unÆn(j) wn>n(j)

2
≠ K

1
Ên<n(k)b un<n(j) wnØn(j)

2
.

Here unÆn(j) wn>n(j) denotes the configuration in S{n>n(k)} which coincides

with u at the first j ≠ k coordinates and with w at the rest of the coordinates.

Similarly for un<n(j) wnØn(j). From this we have

---K
1
Ên<n(k)a u

2
≠ K

1
Ên<n(k)b w

2--- Æ ∆n(k)K +

|F |ÿ

j=k+1

”
1
vn(j), wn(j)

2
∆n(j)K,

where ”(·, ·) denotes the Kronecker’s delta. Then, the integral in (8.4.3) can

be bounded as follows,

---DkK
1
Ên<n(k)

2--- Æ ∆n(k)K +

|F |ÿ

j=k+1

max
a,bœS

⁄k
a,b

1
un(j) ”= vn(j)

2
∆n(j)K.

According to Lemma 8.4.1, the coupling ⁄k
a,b satisfies

⁄k
a,b(un(j) ”= vn(j)) Æ “

t(j)≠t(k)
„ sup

xœL

⁄a,b(Ê
t(k)
x ”= ÷t(k)

x ), if n(j) œ Ln(k),

⁄k
a,b(un(j) ”= vn(j)) = 0, otherwise.

Here Ln(k) is the light cone emerging from n(k) œ F , as defined in (8.2.4).

With this,
---DkK

1
Ên<n(k)

2--- Æ ∆n(k)K +
ÿ

n(j)œLn(k)

“
t(j)≠t(k)
„ ∆n(j)K

=

|F |ÿ

j=k

“
t(j)≠t(k)
„ 1Ln(k)

(n(j)) ∆n(j)K, (8.4.4)

where 1Ln(k)
denotes the characteristic function of the light cone Ln(k). Now,

the summation in the right-hand side of this inequality can be seen as the k-th

coordinate of a vector ’ œ R
{1,2,...,|F |} which is obtained as a matrix product

’ := Γ„ ∆K, (8.4.5)

where Γ„ : {1, 2, . . . , |F |} ◊ {1, 2, . . . , |F |} æ R is the upper triangular matrix

Γ„(k, ¸) =

I
“

t(¸)≠t(k)
„ 1Ln(k)

(n(¸)) if ¸ Ø k,

0 otherwise

and ∆K œ R
{1,2,...,|F |} has coordinates (∆K)k := ∆n(k)K. Hence, we can

rewrite (8.4.4) as ÎDkKÎŒ Æ Γ„ ∆K, and from this we obtain

1

2

|F |ÿ

k=1

ÎDkKÎ2
Œ Æ 1

2
ÎΓ„ ∆KÎ2

2 Æ ÎΓ„Î2
2

2

|F |ÿ

k=1

|∆n(k)K|2, (8.4.6)
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where ÎΓ„Î2 is the ¸2 induced norm of the matrix Γ„. It is well-known that

for a matrix M , ÎMÎ2
2 coincides with the largest eigenvalue of the product

(M M †). On the other hand, the maximal eigenvalue of a non-negative matrix

is bounded by the maximum of its row sums, thus,

ÎΓ„Î2
2 Æ max

1ÆkÆ|F |

|F |ÿ

¸=1

|F |ÿ

j=1

“
2 t(j)≠t(k)≠t(¸)
„ 1Ln(k)

(n(j))1Ln(¸)
(n(j))

= max
1ÆkÆ|F |

ÿ

Ln(k)flLn(¸) ”=ÿ

ÿ

n(j)œLn(k)flLn(¸)

“
2 t(j)≠t(k)≠t(¸)
„ .

Taking into account that the largest light cones emerge at time t = 0, and that

all other cones emerging at points in the funnel F have to intersect a light

cone emerging at t = 0, then

ÎΓ„Î2
2 Æ max

t(k)=0

|F |ÿ

¸=1

ÿ

n(j)œLn(¸)flLn(k)

“
2 t(j)≠t(¸)
„ .

At this point it is convenient to point out some easily verifiable facts about the

light cones and funnels:

a) If (’, ·) œ L(x,t) then · Ø t and (x, t) œ F ·
’ .

b) For each (x, t) œ L ◊ N we have

L(x,t) = fi(’,·)œL(x,t)
L(’,·).

c) For each (’, ·) œ L ◊ N and t Æ · we have

|F ·
’ fl L ◊ {t}| Æ (· ≠ t) diam(U) + 1.

d) For each (x, t) œ L ◊ N and · Ø t we have

|L(x,t) fl L ◊ {·}| Æ (· ≠ t) diam(U) + 1.

Taking all this into account, if t(k) = 0 then

|F |ÿ

¸=1

ÿ

n(j)œLn(¸)flLn(k)

“
2 t(j)≠t(¸)
„ Æ

ÿ

n(j)œLn(k)

ÿ

(x,t)œF ·
’

“
2 (t(j)≠t(¸))
„ “

t(¸)
„

Æ
Tÿ

·=0

“·
„(· diam(U) + 1)

·ÿ

t=0

“
2 (·≠t)
„ ((· ≠ t) diam(U) + 1)

Æ
Œÿ

·=0

“·
„(· diam(U) + 1)

Œÿ

t=0

“2 t
„ (t diam(U) + 1)

Æ diam(U)

(1 ≠ “2
„)2

Œÿ

·=0

“·
„(· diam(U) + 1) Æ diam(U)2

(1 ≠ “„)2(1 ≠ “2
„)2

.

This upper bound does not depend on k, as long as t(k) = 0. Hence

ÎΓ„Î2
2 Æ diam(U)2

(1 ≠ “„)2(1 ≠ “2
„)2
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With this we can rewrite (8.4.6) as

1

2

|F |ÿ

k=1

ÎDkKÎ2
Œ Æ diam(U)2 q|F |

k=1 |∆n(k)K|2

2 (1 ≠ “„)2(1 ≠ “2
„)2

.

Applying (8.4.2) we obtain

E

1
eK≠E(K)

2
Æ e

diam(U)2

2 (1≠“„)2(1≠“2
„

)2

q|F |

k=1
|∆n(k)K|2

Æ e

diam(U)2

2 (1≠“„)2(1≠“2
„

)2 Î∆KÎ2
2

.

So far we have proved that for each observable K œ LB and for each ‘ > 0,

there exists a local function K : X æ R such that

0 Æ Î∆KÎ2
2 ≠ Î∆KÎ2

2 < ‘

and

E

1
eK≠E(K)

2
Æ e

diam(U)2

2 (1≠“„)2(1≠“2
„

)2 Î∆KÎ2
2

.

Now, if ÊF = ÷F then

|K(Ê) ≠ K(÷)| Æ
ÿ

(x,t) ”œF

∆(x,t)K = Î∆KÎ2
2 ≠

ÿ

(x,t)œF

|∆(x,t) K|2 < ‘.

Hence ÎK ≠ KÎŒ < ‘, which implies

K ≠ E(K) Æ K ≠ E(K) + 2‘.

From this it follows

E

1
eK≠E(K)

2
Æ e

diam(U)2

2 (1≠“„)2(1≠“2
„

)2 Î∆KÎ2
2

e2‘

for each ‘ > 0. The theorem follows from this, by taking

C =
diam(U)2

2 (1 ≠ “„)2(1 ≠ “2
„)2

.
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Chapter 9

Perspectives

We list some questions we would like to think about in the near future.

9.1 Concentration inequalities for marginal distribu-

tions of the joint distribution of the PCA

In the high-noise regime, we could prove that an ergodic PCA satisfies a

spatio-temporal Gaussian concentration bound for all initial distributions. This

is due to the weakly dependent interaction nature of the system in this range

of “noise”. This regime only considers the variations of transition probabilities

by changing a spin value in the past and, for this reason, it does not corre-

spond exactly to the Dobrushin uniqueness regime (see 2.3) for the spatio-

temporal measure. In this sense, even if, the high-noise condition does not

ensure the Gibbsianity of the unique invariant shift-invariant marginal mea-

sure, one may ask if it satisfies a spatial Gaussian concentration bound. Thus,

we formulate the following open question.

CONJECTURE 2. Assume that µú is the unique invariant shift-invariant measure

for the PCA and Pµ satisfies 8.2.12 for all initial distribution µ œ M (Ω). Then

there exists D = D(µú) > 0 such that for all functions K : Ω æ R in L , we

have

Eµú [exp (K ≠ Eµú [K])] Æ exp (DÎ”(K)Î2
2).

Other situations might be interesting to study and correspond to the non-

ergodic cases of PCAs where there exists a unique non-attractive probability

measure and where there exist several invariant measures. For those cases,

we expect the following results.

CONJECTURE 3. Assume that there exist several invariant measures for the

PCA, then the PCA does not satisfy a spatio-temporal Gaussian concentra-

tion bound

CONJECTURE 4. Assume that there exist a unique non-attractive measure for

the PCA, then the PCA does not satisfy a spatio-temporal Gaussian concen-

tration bound

9.2 Coupled map lattices

This is about multidimensional lattices of weakly coupled piecewise expand-

ing interval maps. Given I µ R compact interval, we will consider a dis-
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crete time dynamics on the phase space Ω = IZ
d
. It is composed of in-

dependent chaotic actions on each component and of some weak interac-

tion between the components that does not destroy the chaotic character of

the whole system. More precisely, let · : I æ I be the single site dynam-

ics. We assume this application to be C 2 from I to I with singularities at

’1, . . . , ’N≠1 œ (0, 1) in the sense that · is monotone and C 2 on each compo-

nent of I \{’0 = 0, ’1, . . . , ’N≠1, ’N = 1}. Moreover, we assume that · Õ, · ÕÕ are

bounded and inf |· Õ| > 2 (uniformly expanding). We define the unperturbed

dynamics T0 : Ω æ Ω by [T0(x)]p = ·(xp).

Now we define the perturbed dynamics introducing a coupling Φ‘ : Ω æ Ω

of the form Φ‘(x) = x + A‘(x). We say that such coupling has a range r and

strength ‘ if for all k, p, q œ Z
d

|(A‘)p|Œ Æ 2‘, |(DA‘)qp|Œ Æ 2‘, |ˆk(DA‘)qp|Œ Æ 2‘, (9.2.1)

and ˆpΦ‘,q = 0 whenever |p ≠ q| > r. We want to study the dynamics T‘ :
Ω æ Ω defined by

T‘ := Φ‘ ¶ T0. (9.2.2)

We are interested in the concentration properties of the process (x, T‘x, . . . )
with x distributed according to the unique T‘-invariant measure µ‘. In [45,

3] the authors proved the following Ruelle-Perron-Frobenius theorem which

quantifies the exponential convergence of the iterates of the transfer operator

on the space of Lipschitz functions L.

Theorem 9.2.1 ([45, 3]).

For all r œ N, there exists ‘1(r) > 0 such that, if Φ‘ is a coupling with

range r and strength 0 Æ ‘ Æ ‘1(r), Then we have:

• there exists un unique pair (h‘, µ‘) such that h‘ is a bounded vari-

ation function and is strictly positive,
s

h‘dm = 1. Moreover P‘h‘ =
h‘ and P ú

‘ µ‘ = µ‘.

• Let Λ b Z
d. There exists a constant C(Λ) and “ œ (0, 1), C(9.2.1) >

0 such that for every function f œ L depending on a finite number

of coordinates in Λ,

ÎP n
‘ f ≠ µ‘(f)ÎŒ Æ C(9.2.1) C(Λ)“nÎfÎL, ’n œ N . (9.2.3)

They also proved a central and local limit theorem for this system.

Theorem 9.2.2 ([3]).

For all r œ N, there exists ‘1(r) > 0 satisfying the following properties.

If Φ‘ is a coupling with range r and strength 0 Æ ‘ Æ ‘1(r) and µ‘ is the

unique invariant measure. Let f œ L depending on a finite number of

coordinates in Λ with
s

fdµ‘ = 0.

Then there exists ‡2 Ø 0 such that 1Ô
n

qn≠1
k=0 f ¶ T k

‘ converges in dis-

tribution to N (0, ‡2) with respect to the measure µ‘. Moreover, ‡2 = 0
if and only if there exists a measurable function u : Ω æ R such that

f = u ≠ u ¶ T‘ µ‘-almost everywhere.
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If we also assume that, whenever u : Ω æ R is measurable and

⁄ œ R
ú, the function f ≠ u + u ¶ T‘mod⁄ is not µ‘-almost everywhere

constant - we say that f is aperiodic. In particular, the variance ‡2 in the

central limit theorem is nonzero. Then, for any compact interval I µ R,

‡
Ô

2finµ‘{x : Snf(x) œ I} æ |I|

where |I| is the length of the interval I.

We may ask for which condition on the interaction, the unique Lebesgue

measure satisfies a Gaussian concentration bound. Thus, we present the

following conjecture.

CONJECTURE 5. If Φ‘ is a coupling with range r and strength 0 Æ ‘ Æ ‘1(r) and

µ‘ is the unique invariant measure. Then, there exists D > 0 such that for all

functions K : Ω
t æ Œ in LB, one has

EPµ‘

Ë
eK(x[0:t≠1])≠EPµ‘ [K(x[0:t≠1])]

È
Æ eDÎ∆(K)Î2

2 (9.2.4)

with D > 0 a positive constant depending only on ‘ and d.

9.3 Countable Markov shifts

Here, we present the study of the thermodynamic formalism for countable

Markov chains introduced by O. Sarig (see [75]). More precisely, it concerns

the statistical properties of the equilibrium states associated to the shift map

on sequences on a countable alphabet and a sufficiently regular potential

Φ : Ω æ R. He proved that the potential satisfies a condition of positive recur-

rence is a necessary and sufficient condition for a Ruelle-Perron-Frobenius

theorem to hold. He also showed that under big image property condition of

the topological Markov shift i.e.

÷b1, · · · , bn œ S ’a œ S ÷i[a, bi] ”= 0.

the convergence of the iterate of the transfer operator is uniform exponential.

In addition, in her Ph.D. thesis Veronique Maume (see [66]) proved a similar

result by using Birkhoff cones technics with the following condition on Φ:

÷k1, n1 œ N such that ’k > k1, ÷flk < 1 such that ’n > n1, P k
„1n Æ flk

where P„ is the Ruelle-Perron-Frobenius operator associated to Φ. Such con-

vergence echoes the Gaussian concentration inequalities conditions in the

case of sub-shift of finite type studied by Jean-René Chazottes and Sébastien

Gouezel in [17]. We conjecture the following result.

CONJECTURE 6. Under these conditions, there exists D > 0 such that for any

separately Lipschitz observables K : Ω
n æ R, we have

Eµ

Ë
eK(x,T x,··· ,T n≠1x)≠Eµ[K(x,T x,··· ,T n≠1x)]

È
< exp

Q
aD

n≠1ÿ

j=0

Lipj(K)2

R
b .

For countable Markov chains J. Dedecker and S. Gouëzel proved in [26]

that an irreducible aperiodic Markov chain is geometrically ergodic if and only
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if it satisfies GCB for separately bounded functions. One may ask if there

exists a similar criteria of GCB for countable Markov shifts or if there exist

conditions on the Markov chains (non-uniqueness of the measure, null recur-

rent measure) which prevents GCB to hold.

9.4 Relationship between GCB and complete analyt-

icity

In Chapter 6, we could prove that complete analyticity of the potential im-

plies that the associated unique measure satisfies a Gaussian concentration

bound. We think that there exists a more direct proof of such a result that we

were not able to prove it. We expect the following.

CONJECTURE 7. Let Φ œ BR. The Gibbs measures “Φ

Λ
satisfy the weak mixing

condition for all Λ œ Z
d then µΦ satisfies a Gaussian concentration bound.

We also think that there might exist an equivalence between complete

analyticity and Gaussian concentration bound for all specifications.

CONJECTURE 8. Let Φ œ BR. The specification “Φ

Λ
satisfies GCB(D) with finite

constant D = supΛbZd D(µ, Λ) < +Œ implies that Complete analyticity holds

for Φ.

For potentials Φ œ BT , one may ask if there exist equivalence theorems

or modestly implications between the notions of weak mixing, complete an-

alyticity, restricted complete analyticity, logarithmic Sobolev inequalities and

Gaussian concentration bounds.
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Ann. Inst. H. Poincaré Probab. Statist., 33(6):675–695, 1997.

[47] A. Kondah, V. Maume, and B. Schmitt. Vitesse de convergence vers

l’état d’équilibre pour des dynamiques markoviennes non höldériennes.
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[81] D. W. Stroock and B. Zegarliński. The logarithmic Sobolev inequality for

discrete spin systems on a lattice. Comm. Math. Phys., 149(1):175–193,

1992.

[82] A. C. D. van Enter, R. Fernández, and A. D. Sokal. Regularity prop-

erties and pathologies of position-space renormalization-group transfor-

mations: Scope and limitations of Gibbsian theory. Journal of Statistical

Physics, 72(5-6):879–1167, Sep 1993.

[83] P. Walters. Ruelle’s operator theorem and g-measures. Trans. Amer.

Math. Soc., 214:375–387, 1975.

[84] P. Walters. Invariant measures and equilibrium states for some map-

pings which expand distances. Trans. Amer. Math. Soc., 236:121–153,

1978.

[85] K. M. Zuev. Subset Simulation Method for Rare Event Estimation: An In-

troduction, pages 1–25. Springer Berlin Heidelberg, Berlin, Heidelberg,

2021.

126




	Introduction
	Setting
	Configuration space
	Basics of ergodic theory
	Gibbs measures and equilibrium states

	Concentration inequalities
	Basics of concentration inequalities
	Known results for Gibbs measures
	Gaussian concentration bound
	Moment concentration bounds
	Stretched-exponential concentration bound

	Known results for stochastic chains of unbounded memory
	On the relation between concentration and large deviations for equilibrium states

	Gaussian concentration and uniqueness of equilibrium states in lattice systems
	Setting
	Proof of Theorem 4.0.1
	An abstract result
	GCB implies the blowing-up property
	Blowing-up implies exponential rate for frequencies
	Exponential rate for frequencies implies positive relative entropy property

	Another proof of Theorem 4.0.1
	Appendix
	Proof of Lemma 4.1.1
	Proof of Lemma 4.2.1
	A bound on relative entropy

	A final remark

	Numerical study of concentration inequalities for the 2D Ising model
	Setting
	Computations and estimates
	Introduction
	Computation problems
	Classical Metropolis algorithm
	Finite-size effect
	Finite sampling time effect

	Estimation of concentration constants
	Method
	Settings and preliminary results
	Gaussian concentration constant estimation
	Determination of concentration constant behavior
	Stretched-exponential concentration constant estimation

	Conclusion
	Code

	Gaussian concentration bound for the 2D Ising model
	Proof of Theorem 6.0.1
	Weak mixing implies strong mixing for 2D lattice spin systems
	Strong mixing implies the logarithmic Sobolev inequality
	Logarithmic Sobolev inequality implies GCB
	Is Logarithmic Sobolev inequality equivalent to complete analyticity?

	Appendix: Proof of Lemma 6.1.1

	Gaussian concentration for potentials on SN with subexponential variations
	introduction
	Settings
	Speed of convergence of the transfer operator
	Gaussian concentration bound
	Related works

	Proof of Theorem 7.4.1
	Some preparatory results
	Proof of Theorem 7.4.1

	Applications
	Birkhoff sums
	Empirical frequency of blocks
	Hitting times and entropy
	Speed of convergence of the empirical measure
	Relative entropy, -distance and speed of Markov approximation
	Shadowing of orbits
	Almost-sure central limit theorem

	Appendix
	Cones and projective metrics
	Proof V. Maume's theorem


	Probabilistic cellular automata
	Introduction
	Setting
	High-noise regime
	Gaussian Concentration Bound

	Perspectives
	Concentration inequalities for marginal distributions of the joint distribution of the PCA
	Coupled map lattices
	Countable Markov shifts
	Relationship between GCB and complete analyticity

	Bibliography

