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ABSTRACT

In this thesis, we investigate the vibronic (de-) excitation and dissociative recombination of CH+

by low-energy electron impact.

We first develop a theoretical approach for the electron-impact vibronic (de-) excitation of CH+. In

this approach, the fixed-nuclear R-matrix method is employed to compute electron-ion scattering

matrices in the Born-Oppenheimer approximation. A vibronic frame transformation and the closed-

channel elimination procedure in a spirit of molecular quantum defect theory are employed to

construct an energy-dependent scattering matrix describing interactions between vibronic channels

of the target ion induced by the incident electron. The obtained scattering matrix accounts for

Rydberg series of vibronic resonances in the collisional spectrum. Cross sections for vibronic

excitation for different combinations of initial and final vibronic states are computed. A good

agreement between electronic-excitation cross sections, obtained using the quantum defect theory

and in a direct R-matrix calculation, demonstrates that the present approach provides a reliable tool

for determination of vibronic (de-) excitation cross sections for targets with low-energy electronic

resonances. Such targets were difficult to treat theoretically using earlier methods.

Within the same framework applied for the vibronic (de-) excitation, we further compute the

cross sections for low-energy dissociative recombination of CH+ by coupling the outgoing-wave

basis function defined by complex absorbing potential. The contribution of the three lowest

X1Σ+, a3Π and A1Π ionic states and the Rydberg series converging to those states are taken

into account. The obtained DR cross sections are quantitatively in good agreement with the

experimental measurements and exhibit a resonance feature analogous to the experimental cross-

section curve. The origination of the prominent resonances in the computed results are analyzed

through computing the DR probabilities for the partial waves of the incident electron. The d-type
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partial waves including dσ , dπ and dδ are found considerably contributing to the DR of the

ground-state CH+. This may explain the discrepancies observed between theory and experiment

in the preceding studies.
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CHAPTER 1: Introduction

The title of the thesis "Hydrocarbon molecule (CxHy) databases for waste treatment applications"

could be ambiguous at one’s first glance. To be exact, we theoretically study on the low-energy

electron collisions with hydrocarbon molecules (molecular ions) to produce key data, including

cross sections 1 and rate coefficients 2, which will be used as databases for the plasma waste

treatment modeling. We first discuss the questions that why the electron collisional processes need

to be investigated and why the cross section and rate coefficients of the collisions with hydrocarbon

molecules (molecular ions) are needed in the plasma waste treatment modeling.

Low-energy 3 electron collisions with molecules (molecular ions) are of great interest from a

pure quantum mechanical perspective. They are fundamental processes taking place in chemical

processing, discharge and plasma. In the natural world, they occur in the (planetary) ionosphere [1]

and atmosphere of earth through aurora [2] and lightning [3]. In the space, vast tracks of the

interstellar medium, including interstellar clouds and planetary nebulae, are weakly ionized cold

plasma where the electron-molecule (molecular ion) collisions predominates their chemistry [4].

In the daily life, it is now widely accepted that the processes are mainly responsible for radiation

damage in living system (which arise primarily from the interaction of low energy secondary

electrons through dissociative interaction with components of DNA or the water around them) [5].

The processes also initiate spark plug [6], lasers [7] and technological plasma used for waste

treatment, etching, cleaning, coating [8] and deposition [9–11]. The importance of low-energy

electron-molecules (molecular ions) collisions thus stimulates significant work both experimentally

and theoretically.

1A function of (electron) scattering energy which specifies a measure of probability that a specific process will take
place in a collision of two particles, and its unit is m2 in SI.

2Dependents on temperature which quantifies the rate of the specific process taking place and its unit is m3/s in SI.

3Defined as the incident electron energy is below the ionization of the target molecule’s ionization threshold
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Plasma applied for the waste treatment, as compared with traditional landfills, ocean dumpsites and

incineration, has over the past decades been a prominent technology due to its increased process

controllability, small installation size, near zero-emission and generation of salable co-product [12].

The waste feedstock to be treated, such as municipal solid waste (MSW), hazardous materials,

health care waste and organic liquid waste, is mainly consisting of carbonaceous (hydrocarbon and

halogenated hydrocarbon) materials [13–15]. The hydrocarbons to be destroyed are injected into

the chamber of plasma reactor and flow through the plasma torch with temperature up to 20000

◦C (∼ 2 eV) [16], which resulting in decomposition through bonds breaking induced by electron

collisions [13]. A detailed understanding of the physics and the resulted chemistry underlying

the electron-hydrocarbons (hydrocarbon ions) collision becomes essential to describe the plasma

dynamic and improve sophistication and effectiveness of plasma process modeling in process

control. Additional processes such as low-energy (< 2 eV) ro-vibrational excitation (RE, VE),

dissociative excitation (DE) and dissociative recombination (DR) drive the charged particles kinetics

in low-temperature plasma, as well as the production of reactive atomic and molecular species. The

cross sections and rate constants for such processes offer detailed information about the distribution

of each rotational, vibrational and electronic excited state that affect thermodynamics, transport

coefficients and kinetics of the plasma. The data are thus very critical in the so-called state-to-state

plasma modeling [17] where each excited state is considered as an independent chemical species.

Besides in the plasma for waste treatment, the hydrocarbon molecular ions are major constituents

in other cold ionized environments, such as diffuse interstellar clouds [18] and technological

plasma [19, 20]. To start our research work, we choose CH+, which is the simplest one among the

family of the hydrocarbon molecular ions (CxH+
y ), as the object of study. Collisions of the CH+

ion with electrons have been studied theoretically since, at least, 1951 [21–24]. The interest was

motivated by the detection of the ion in diffuse interstellar clouds, made initially by Douglas and

Herzberg [25] in 1941 through performing the laboratory analysis of three previously observed

2



interstellar lines as R(0) lines in the A1Π-X1Σ+ transition spectra. These and later detections by

Adams [26] confirm that CH+ is ubiquitous as a major constituent of interstellar clouds. The ion

is also an important intermediate in combustion and in the formation of large hydrocarbons in the

interstellar medium (ISM). Reactive collisions of CH+ with a low-energy electron determine the

energy balance and evolution of low-temperature hydrocarbon plasmas such as in the ISM. The

theoretical study of the e−-CH+ collision system is thus of a considerable astrophysical interest.

Processes taking place in e−-CH+ collisions are also of interest for technological plasmas: For

example, they play an important role in plasma processing of diamond films [19] and at the edge

plasma of fusion reactors [27], where graphite is used as plasma facing material.

In this thesis, we’ll focus on the vibrational (de-) excitation (see Eq. (2.58)) and dissociative

recombination processes (see Eq. (2.82)) of CH+. Rotational structures are not included here but

within our future plan. As we mentioned above, the time-resolved vibrational distribution function

(VDF) determines the vibrational-state population of the ions in the state-to-state approach of

plasma modeling. The VDF is thus very critical in the kinetic evolution of the plasma. It relies on

the rate constants of vibrational excitations and expressed by

∂nv

∂ t
= ne ∑

v′
(kv′,vnv′− kv,v′nv) (1.1)

where ne is the electron density and kv′,v specifies the rate constant for the v to v′ vibrational

transition. Only one estimation of cross sections for vibronic excitations was recently calculated

by multiplying the Franck-Condon factors between vibronic states with the electronic excitation

cross sections obtained at equilibrium [18]. The approximated results need to be improved and we

will discuss it in section 3.6. In the state-to-state modeling method, ions in each different state are

viewed as an independent species. To compute the abundance of each species, one commonly solves

time-dependent chemical rate equation as shown in Eq. (42) of Ref. [28], where rate constants for
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vibrationally resolved dissociative recombination are needed. The first quantitatively computation

of the DR cross sections of CH+ were carried out by Takagi in 1991 [29] using a multichannel

quantum defect theory (MQDT) treatment. The obtained results agree well with the experimental

measurements. However, the electron scattering energy is limited below 0.3 eV and only the

ground ionic state is considered. In 2000, Carata et al [30] performed an elaborate MQDT method

to compute the cross sections for low-energy dissociative recombination of CH+. The Rydberg

manifolds converging to the X1Σ+ ground electronic state and the next two a3Π and A1Π excited

states of the ion core are included in the treatment. They successfully reproduced the prominent

structure at low collisional energy (< 4eV), whereas the absolute value of the cross section is not

reproduced. Chakrabarti et al. [18] performed a similar MQDT calculation where the second-order

solution of the Lippmann-Schwinger equation was adopted. They obtained quantitatively accurate

DR cross section compared with the storage ring data, while the shape is not comparable.

Rydberg state CH appear in the eigenphase spectra (see section 2.3.1) in the form of abundant

Rydberg resonances as seen in Figs. 3.4 and 3.5 due to the low-lying bound excited electronic

states of CH+. This kind of resonance could be also found in many other diatomics with low-lying

bound excited electronic states [18, 31, 32]. To our best knowledge, the above mentioned MQDT

method based on earlier theory suggested by Lee [33] and Giusti [34] is the only one theoretical

approach able to treat vibrational excitation and dissociative recombination for such molecular

ions. In the method, the R-dependent quantum defects for considered Rydberg series must be

explicitly derived and used to account for non-adiabatic couplings. In the case where core-excited

Rydberg states are included, the quantum defects are used to scale the Rydberg-Rydberg coupling,

see Eq. (5) of Ref. [30] or Eq. (2) of Ref. [31]. The adiabatic potential curves of neutral

dissociative states produce numerous avoided crossings. The quantum defects of Rydberg states

corresponding to these potentials will show their adiabatic character by large variations near the

avoided crossing points. Rydberg states need to be treated in a quasi-diabatic representation, such
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that the appropriate Rydberg-Rydberg coupling around the avoided crossings could be obtained.

However, the step transforming the adiabatic Rydberg state potential to quasi-diabatic potentials

through diabatization of the coupled Rydberg states (see Fig. 1 in Ref. [31]) actually turns up to be

very complicated since numerous of Rydberg states are involved. Therefore, we aim to develop a

general theoretical approach in this thesis for computation of cross section for vibrational excitation

and dissociative recombination of CH+ where scattering matrices are used. In the approach, the

scattering matrices are obtained from the fixed-nuclear R-matrix method and will be combined to

vibronic frame transformation and MQDT close-channel elimination procedure.

The thesis is organized as follows. Chapter 2 give theories and methods used in the electronic

structure and scattering calculations. The theoretical approaches for vibronic (de-) excitations and

dissociative recombination are outlined based on the those given theories and methods and also

included in this chapter. It serves as a tool box to follow the work of this thesis. Chapter 3 is devoted

to the detailed description of the theoretical approach used for the computation of cross sections and

rate constants for vibronic (de-) excitations of CH+. The electronic structure of CH+ is computed

using the tools from chapter 2. Based on the approach developed in chapter 3, we demonstrate

the theoretical study of the dissociative recombination of CH+ by coupling the complex absorbing

potentials formalism in chapter 4. The conclusion and perspective of the these research works are

given in chapter 5.
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CHAPTER 2: Theoretical background

In this chapter, we will briefly review the theoretical tools and methods involved in the study of

vibronic (de-) excitation and dissociative recombination of CH+ by low-energy electron impact.

A good knowledge of the electronic structure of a molecular ion is the preliminary step. Therefore,

we first recall the electronic structure theory in section 2.1, where the potential energy curves (PECs)

1 are computed. Within the obtained PECs, we perform the nuclear dynamics calculating using a

discrete variable representation (DVR) method in the following section to compute the vibrational

wavefunctions. Coupling the DVR method with complex absorbing potential formalism, the

outgoing-wave basis function is derived.

After the determination of the vibrational states, we turn to the scattering calculation part. We

developed a theoretical approach that combines the fixed-nuclei R-matrix method, vibronic frame

transformation and multi-channel quantum defect theory (MQDT) to compute the cross section for

electron-induced vibronic (de-) excitation of CH+. The fixed-nuclei R-matrix method introduced

in section 2.3 is used to model the e−-CH+ collisional process and evaluate the scattering matrix. A

vibronic frame transformation is given in section 2.4 to compute the vibronic transition amplitudes

using the obtained vibrational states and scattering matrices. Multi-channel quantum defect theory

given in section 2.5 is used to determine the cross section including Rydberg series of resonances.

Dissociative recombination (DR) competes with vibronic transitions. An estimation of its cross

section is of great importance for a complete treatment. For this purpose, we combine our vibronic

theoretical model to the complex absorbing potential (CAP) formalism in section 2.6 to obtain cross

sections for DR of CH+.

1In general, it is a surface for multidimensional potential
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2.1 Electronic structure theory

2.1.1 Diatomic molecular spectral terms

Let’s first recall the way to label the molecular electronic states. These states are classified through

the value of quantum numbers associated with total orbital and spin angular momenta and the

information is condensed in the corresponding molecular term symbol [35].

In diatomic molecules, Oz with respect to the internuclear axis is a symmetry axis. Therefore, the

Hamiltonian commutes with the operator corresponding to the quantum number

Λ = ∑
i

λi, (2.1)

the sum over all Oz projection λ of Molecular orbitals’ (MOs) angular momentum l. Capital

greek letters (Σ,Π,∆,Φ, ...) are used for classification of molecular terms depending on the value

assumed by Λ in the sequence (0, 1, 2 , 3, . . . ). Moreover, each electronic term is characterized by

the total spin

S =
N

∑
j

s j (2.2)

where s is the spin of an electron and N is the number of electrons. The multiplicity (2S+ 1)

originates singlet (2S+1 = 1), doublet (2S+1 = 2), triplets (2S+1 = 3), etc., as seen for atoms.

The general term symbol assumes the form

2S+1
Λ (2.3)

In the case of diatomic molecules, the term symbol also retains information about the parity of the

electronic wavefunction with respect to some symmetry operations. In particular, the reflection
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about a plane containing the internuclear Oz returns a state with the same energy but with opposite

sign of the projection of the orbital angular momentum, thus leading to the conclusion that all

terms with Λ 6= 0 are doubly degenerate. However for Σ state (Λ = 0), which are nondegenerate,

the parity is usually specified adding the sign plus or minus as superscript to the term symbol for

even or odd states, i.e.
2S+1

Λ
+/− (2.4)

In the case of homonuclear diatomic molecules, a new symmetry arises due to the inversion center

bisecting the internuclear axis. In such situation, the subscripts g and u are used as 2S+1Λg/u for

even (gerade) and odd (ungerade) states, respectively. "X" is conventionally used to precede before

the term of a ground electronic state. For the excited states which has an identical spin with the

ground state, we put capital "A,B,. . . " before the corresponding term, while use "a,b,. . . " for the

states with a different spin.

2.1.2 Symmetry point group

We introduce point group theory for a time-saving purpose in the electronic structure calculations.

The electronic states could be classified according to its symmetry by the theory. This theory is

originally used to classify molecule with different symmetry elements (point, axis, and surface) and

operations (identity Ê, rotation Ĉn, reflection σ̂ , inversion Î, and improper rotation Ŝn). Groups of

molecular physics are related to invariance of the molecular Hamiltonian with respect to symmetry

transformations, i.e. operations of a symmetry group commute with the molecular Hamiltonian.

And the wavefunction of a given system is the basis of the system’s symmetry point group. More

details on the group theory could be seen in Ref. [36]. Here, we shall only introduce the symmetry

point group of a heteronuclear diatomic molecule for CH+.
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Figure 2.1: Schematic of C2v symmetry point group for diatomic molecule CH+.

The natural symmetry point group of CH+ is C∞v 2. However, an quantum chemistry software

only uses Abelian subgroups since the symmetry operators of such a group commute with each

other. This property greatly reduces computational cost in an electronic structure calculation since

we don’t need to compute electronic wavefunctions for a large number of symmetries. Hence, C∞v

is reduced to C2v point group for CH+ in the calculations. Here the linear structure for CH+ in

C2v group symmetry is given in Fig. 2.1. There are only 4 symmetry operations: the permutations

of identical particles E, the π rotation C2 3, and the mirror reflection upon xz and yz faces (σv(xz)

and σv(yz)). Four irreducible representations, Γ = A1,A2,B1,B2, are used to represent 4 different

symmetries of the electronic states. Here, we take C2v symmetry point group as an example to

explain the interpretation of its character table shown in Table 2.1. To know more character tables

for other symmetry point groups, one can refer to Ref. [37].

A and B are used to refer to non-degenerate symmetries which are respectively symmetric and

antisymmetric when the rotation operation C2 around the Oz axis is applied. The subscript "1"

2Characterized with infinity of reflection symmetries (σv) upon the mirror plane that contains the Oz axis and two
rotation symmetries along the Oz axis with arbitrary angle (2C∞) are included.

3The subscript designates the rotation of 2π/n
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Table 2.1: Character table for C2v symmetry point group.

C2v E C2 σv(xz) σv(yz)
A1 +1 +1 +1 +1
A2 +1 +1 -1 -1
B1 +1 -1 +1 -1
B2 +1 -1 -1 +1

or "2" are used for A and B depending on whether the irreducible representation is symmetric or

antisymmetric with respect to aC2 operation perpendicular to the Oz axis. Otherwise, we designate

"1" or "2" according to the symmetry or inverse symmetry of reflection upon the σv. "+1" and "-1"

in the table are the characters of irreducible representations Γ for the symmetry operations. "+1"

means unchanged, while "-1" inversed. It could be interpreted as the eigenvalue of the symmetry

operations on the the electronic wavefunction with a certain symmetry, for example,

Ĉ2ϕ
B1 =−1ϕ

B1. (2.5)

Real spherical harmonics are used in all primitive basis functions (see below section introducing

basis set). They are then symmetry-adapted for the C2v symmetry point group used in the calcu-

lation. However, the complex spherical harmonics are used as the basis in the channel function

definition due to the involved azimuth (see Eq. (A3) of Ref. [38]) in the further rotation study.

This is different to the case of only vibration considered. On the other hand, complex spherical

harmonics are the basis for the rotation symmetry operation of natural symmetry point group of

CH+ (C∞v). The transformation from the C2v to C∞v point group is achieved by the transformation

of the real spherical harmonics to complex ones. The real harmonics denoted by Yl,±λ , are simply
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related to the complex harmonics, denoted by Y±λ

l , by an unitary transformation

 Yl,+λ

Yl,−λ

=U

 Y+λ

l

Y−λ

l

=
1√
2

 1 (−1)λ

−i i(−1)λ


 Y+λ

l

Y−λ

l

 (2.6)

where the transformation matrix is denoted byU . The transformation of the scattering matrix from

the C2v to C∞v is through

SC∞v =U totalSC2vU
†total (2.7)

The scattering matrix describes the total symmetry of the collisional system (see section 3.3.2).

Therefore, one needs to note that the total transformation matrix should be

U total
l′λ ′i′,lλ i =Uelectron

l′λ ′,lλ U target
i′,i (2.8)

where lλ is the partial wave of the scattering electron and i numerates the symmetry of the target

states. This means the transformation is imposed to the target states byU target and the partial wave

of the scattering electron by Uelectron. According to the Eq. (2.6), we can have the transformation

matrix element

Uelectron
l′λ ′,lλ =



1 for λ ′ = λ = 0

0 for |λ ′| 6= |λ |

(−1)m
√

2
for λ ′ > 0 and λ = λ ′

1√
2

for λ ′ > 0 and λ =−λ ′

i√
2

for λ ′ < 0 and λ = λ ′

−i(−1)m
√

2
for λ ′ < 0 and λ =−λ ′

(2.9)

for the transformation of the symmetry of the scattering electron from the C2v to C∞v [39]. In
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practice, we only consider the three lowest electronic states in the case of CH+ (which will be

discussed in chapter 3)). But this part is not finished and will be continued in the further study

of the rotational excitation of CH+. For convenience of referring, we give here the the partial

correlations of these two symmetry point group in Table 2.2.

Table 2.2: Partial correlation table between C∞v and C2v.

Λ C∞v C2v
0 A1 = Σ+ A1
0 A2 = Σ− A2
±1 E1 = Π B1⊕B2
±2 E2 = ∆ A1⊕A2

With the above table, we also describe that how the symmetry of the scattering electron and the

target state constitute the total symmetry of the scattering matrix as seen in Table 2.3.

Table 2.3: Constitution of the total symmetry of the scattering matrix in C∞v and C2v.

(lλ )electron Γelectron
C∞v

Γelectron
C2v

Γ
target
C∞v

Γ
target
C2v

Γtotal
C∞v

Γtotal
C2v

00,10,20,30,40,22,32,42,44 σ ,δ a1
1Σ+ A1

2Σ+,2 ∆ 2A1
11,21,31,41,33,43 π b1

1Σ+ A1
2Π,2 Φ 2B1

1-1,2-1,3-1,4-1,3-3,4-3 π b2
1Σ+ A1

2Π,2 Φ 2B2
2-2,3-2,4-2,4-4 δ a2

1Σ+ A1
2∆,2 Σ− 2A2

00,10,20,30,40,22,32,42,44 σ ,δ a1 Π B1⊕B2
2Π,2 Φ 2B1⊕2 B2

11,21,31,41,33,43 π b1 Π B1⊕B2
2∆,2 Σ+,2 Σ− 2A1⊕2 A2

1-1,2-1,3-1,4-1,3-3,4-3 π b2 Π B1⊕B2
2∆,2 Σ+,2 Σ− 2A1⊕2 A2

2-2,3-2,4-2,4-4 δ a2 Π B1⊕B2
2Π,2 Φ 2B1⊕2 B2

...
... ... ... ... ...
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2.1.3 Basis sets

To obtain the electronic wavefunction in Eq. (2.5), we need molecular orbitals (MOs), which are

constructed through the linear combination of atomic orbitals (LCAOs)

ωi = ∑
u

cui fu (2.10)

where fu is atomic orbital type functions, cui is the combination coefficient of ith MO that is

need to be determined by variational method. The set of atomic orbital functions employed in the

calculation is referred as the basis set.

Two general classes of atomic orbital functions are typically employed in molecular orbital calcula-

tions, Slater Type Orbitals (STOs) and Gaussian Type Orbitals (GTOs). STOs are solutions of the

Schrödinger equation of hydrogen-like atoms, and decay exponentially far away from the nucleus.

Functional form of STOs depending on spherical coordinates,

s(r) = Nrn−1e−ςrYlλ (θ ,ϕ) (2.11)

where N is a normalization constant, ς is called orbital exponent, which governs the size of the

orbital. The r,θ ,ϕ are spherical coordinates of electrons, and Ylλ (θ ,ϕ) is real spherical harmonics

used as the angular wavefunction that describes the shape of orbitals. The n, l, λ are respectively

principal, angular momentum, and magnetic quantum numbers (coming from hydrogen-like atom

model). However, hydrogen-like atoms lack many-electron interactions, thus the orbitals do not

accurately describe electron state correlations 4. And functions of this kind are not suitable for fast

calculations of two-electron integrals. The integral computations could be greatly simplified by

4It is usually the Coulomb interactions between electrons in the electronic structure of a quantum system.
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using GTOs basis functions with the functional form

g(r) = Nxaybzce−ςr2
(2.12)

where

r2 = x2 + y2 + z2 (2.13)

x, y and z are Cartesian coordinate of electrons. a, b and c are not quantum number, but simply the

integral exponents. The sum of the exponents

l = a+b+ c (2.14)

is used analogously to the angular momentum quantum number for atoms, to distinguish functions

as s-type (l = 0), p-type (l = 1), d-type (l = 2), f -type (l = 3), etc. In particular, for a px-type

orbital, we would set a = 1,b = c = 0. While for dxy-type orbital, we would have a = b = 1,c = 0.

Unfortunately Gaussian functions do not match the shape of an atomic orbital very well, especially

at large r. Gaussian functions are suitable for numerical calculations especially for evaluating two-

electron integral (see next section). Whereas, Slater’s functions describe the features of MOs better

than Gaussian functions. To make a best compromise between the calculation time consuming

and a good representation of the MO asymptotic wave, we use contracted GTOs (CGTOs): a fixed

linear combination of n primitive GTO 5 with different exponential parameters ζi

G(r) =
n

∑
i

digi(r) (2.15)

to approximate a STO. di is the fixed combination coefficient. CGTOs are therefore equipped with

good convergence and MO approximation. They will be used in Eq. (2.10) to construct the MOs.

5In the jargon of chemistry a single Gaussian function is called a primitive Gaussian function, or primitive GTO.
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Beyond the specific functional form used as the basis sets, different types of basis sets had been

developed, such as People-style basis sets 6, and Dunning’s correlation-consistent basis sets. Pople

basis sets are somewhat outdated, as correlation-consistent basis sets typically yield better results

with similar resources. This is attributed that the (Dunning’s) correlation-consistent basis sets

better represent the correlation and polarization effects. While the two effects play important roles

in the electronic structure calculation of CH+. We therefore selected the Dunning’s correlation-

consistent basis sets to compute the potential energy curves of CH+ in this thesis. The basis sets

are built up by adding shells of functions to a core set of atomic Hartree-Fock functions (see in

the next section). They are usually denoted by the general nomenclature cc-pVNZ, which means

correlation-consistent polarized valence N zeta basis set. N is the number of functions used to

describe a valence orbital, N=D,T,Q,5,6,... (D=double-zeta, T=triple-zeta, etc.). For the 1st and

2nd row atoms, the cc-pVDZ basis set adds 1s, 1p, and 1d function. The cc-pVTZ set adds another

s, p, d, and an f function, etc.

Table 2.4: Basis sets used for CH+ in this thesis.

Quality C H+

DZP (Dunning-Hey) 9s5p1d→ 4s2p1d 4s1p→ 2s1p
cc-pVDZ 9s4p1d→ 3s2p1d 4s1p→ 2s1p
cc-pVTZ 10s5p2d1 f → 4s3p2d1 f 5s2p1d→ 3s2p1d
cc-pVQZ 12s6p3d2 f 1g→ 5s4p3d2 f 1g 6s3p2d1 f → 4s3p2d1 f
cc-pV5Z 14s8p4d3 f 2g1h→ 6s5p4d3 f 2g1h 8s4p3d2 f 1g→ 5s4p3d2 f 1g

The basis sets (in MOLPRO style) for C and H+ atoms used in this thesis are listed in Table 2.4.

"10s5p2d1 f → 4s3p2d1 f " means 10 s-type, 5 p-type, 2 d-type and 1 f -type Gaussian functions

are contracted to 4 s-type, 3 p-type and 2 d-type, and 1 f -type CGTOs, respectively. We take

cc-pVTZ basis set as an example shown in Fig. 2.2 to describe its details. The basis set file is taken

6The general nomenclature is N−M1G or N−M11G, where N and M are the numbers of Gaussian primitives used
for each MO.
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from Ref. [40]. The essential input data for a basis set is exponents and contraction coefficients.

Below the general information of the basis set, we see its main body starting with "basis set=".

For Carbon atom, 10s5p2d1 f is contracted to 4s3p2d1 f 7. The "s" in the next line is type of AO.

The followings are "C" Carbon and the exponents of the Gaussian functions. The three lines below

have the similar structure, where "c" is Carbon. The "1.10" next to it means the first to the 10th

s-type Gaussian function are involved in the contraction. The 10 corresponding coefficients are the

followed. The next parts of the basis are in the similar form.

Figure 2.2: cc-pVTZ basis set in Molpro form.

7The contracted orbitals are actually AOs: (1S)(2S2P)(3S3P3D)(4S4P4D4F) of Carbon
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2.1.4 Calculation methods

Once the MOs are constructed by a basis set, we now need to seek computation methods to

approximate the electronic wavefunction of CH+ using these MOs. Hartree-Fock (HF) method

provides a starting point in the electronic structure calculation and a foundation for more elaborate

theoretical methods. It is based on the very known Born-Oppenheimer (BO) approximation where

the electronic and nuclear wavefunctions are separately treated because mass of electron is much

smaller than that of the nuclei. In this method, the total electronic wavefunction ϕ of an N-electron

system is approximated by a Slater determinant

ϕHF(x1,x2, ...,xN) =
1√
N!

∣∣∣∣∣∣∣∣∣∣∣∣∣

χ1(x1) χ2(x1) · · · χN(x1)

χ1(x2) χ2(x2) · · · χN(x2)

... ... . . . ...

χ1(xN) χ2(xN) · · · χN(xN)

∣∣∣∣∣∣∣∣∣∣∣∣∣
(2.16)

where N is total number of electrons. Space-spin molecular orbital χ(x) is used. It is expressed by

χ = ωγ (2.17)

product of a spatial MOω (see Eq. (2.10)) and a spin function γ (eitherα with spin quanta sz = 1/2,

or β with sz =−1/2). x = {r,sz} is the set of space-spin coordinates of electrons. An interesting

consequence of this functional form is that the electrons are all indistinguishable, each electron is

associated with every orbital. The permutation of any two electrons corresponds to permutation of

two rows of the determinant in the above equation, which leads to the sign reversal of the electronic

wavefunction. This satisfies the antisymmetry requirement. Besides, a pair of electrons must

occupy the same spatial with different spins. This is consistent with Pauli exclusion principle. For

simplification, the determinant could be written as shorthand expression | χ1χ2 · · ·χN > if we know
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the list of the occupied spin orbitals {χ1χ2 · · ·χN}. The normalization constant is implied by noting

the subscript number N. The molecular orbitals are optimized by HF equation

f (x1)χi(x1) = εiχi(x1) (2.18)

where εi is the eigenenergy 8 of the fock operator f (x1). The operator consists of one-electron

operator hi(x1), Coulomb operator J j(x1) and exchange operator K j(x1) as

f (x1) = hi(x1)+∑
j 6=i

J j(x1)−∑
j 6=i

K j(x1) (2.19)

As we introduced before, basis set will be used to construct the initial space-spin MOs χ in

Eq. (2.18) with combination coefficients cui. Variational method is then employed to optimize

these molecular orbitals iteratively. For this reason, HF method is also called a self-consistent-

field (SCF) approach. Better approximate wavefunction is thus obtained by varying cui until we

minimize the energy ε within the given functional space. However, HF method is not flexible

enough to account for electron correlation since only the ground electronic configuration is taken

into account. Meanwhile, the instantaneous interaction between electrons is ignored due to the

mean field approximation 9.

Multiconfigurational self-consistent field method (MCSCF), a post-Hartree-Fock method, is thus

needed to generate more qualitatively correct reference states of molecules as the next step. Those

optimized molecular orbitals could be used in this method. The method is actually a Configuration

Interaction (CI) method that treats non-dynamic electronic correlations. A particularly important

MCSCF approach is the complete active space SCF method (CASSCF), where the entire possible

configuration state functions (CSFs) that arise from a particular number of electrons in a complete

8It can be also interpreted as the energy of a MOs at HF level.

9An electron is assumed moving in an averaged multi-electron electronic field.
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active space (CAS) are included in a linear combination form. CSF is a symmetry-adapted linear

combination of Slater determinants and denoted by ψ . The electronic configuration for CH+ is

shown in Fig. 2.3, the inner orbital is called core orbital. The unoccupied orbitals are called virtual

orbitals, plus the remaining two occupied orbitals construct the CAS where 4 electrons could freely

distribute.

Figure 2.3: Ground electronic configuration of CH+.

Besides the ground state configuration, singlet, doublet and multi-excitation configuration ψ
g
k , ψs

k ,

ψd
k , etc., are constructed by the corresponding determinants and finally combined represent the

trial total electronic wavefunction in the form

ϕCI = ∑
k

bkψk = bg
0ψ

g
0 +bs

1ψ
s
1 +bd

2ψ
d
2 + · · · (2.20)

where bk is expansion coefficient. In anMCSCF calculation, the set of coefficients of both the CSFs

and the molecular orbitals in LCAOs are varied by variational method to obtain the total electronic

wavefunction with the lowest possible energy. To be exact, the coefficient bk is first optimized with

the given cui obtained from HF method. The coefficient cui is then optimized with the obtained bk.
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The optimization of cui and bk proceeds to convergence in a self-consistent field (SCF).

There are two types of correlation in an electronic system: static correlation and dynamical

correlation. The first type rises from fixing an electron in a given orbital and the later one is caused

by the assumption of the averaged field of the other electrons. In reality, the motion of the electrons

depends on the instantaneous positions of all the other electrons. CASSCF method is a single-

reference method where the multi configurations are constructed referring to the MOs orbitals

optimized by HF method. The dynamical electron correlation is not considered in this method.

But it is included in the multi-reference CI (MRCI) method. The optimized multi configurations

in CASSCF method is used in MRCI method as multi reference spaces. The additional electronic

configurations created by the multiple excitations from the multi references 10 are also taken into

account in MRCI method. The resulted CSFs denoted by ψ
s,d
I are included in Eq. (2.20)

ϕMRCI = bg
0ψ

g
0 +bs

1ψ
s
1 +bd

2ψ
d
2 +∑

I
cIψ

s,d
I · · · (2.21)

where I numerates the reference configuration and cI is the expansion coefficients. s and d are single

and double excitations from the reference configuration, i.e. only one and two excited electrons are

considered. The truncation of the number of excited electrons is usually mandated due to the very

steep increase in the number of CSFs, and the consequent computational effort. The expansion

coefficients bi and cI in the above equation will be optimized by the variational method. The

potential energy curves denoted by V (R) of the electronic states of CH+ are finally determined by

this method.

10Besides the ground configuration, the configurations of excited states obtained by CASSCF method are now used
as references.
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2.2 Vibrational wavefunctions

2.2.1 Discrete variable representation method for bound vibrational states

According to BO approximation, the nuclei vibrate within the electronic potential energy. For

CH+, the nuclear motion (rotation is ignored here) is described by the Schrödinger equation

[− h̄2

2m
∇

2 +V (R)]φv(R) = Evφv(R) (2.22)

where φv and Ev are the vibrational wavefunction and vibrational energy. The subscript v is a

vibrational quantum. m is the reduced mass of CH+. As we mentioned in the above section, V (R)

is the electronic potential energy computed in the electronic structure calculation. The kinetic

energy is best represented in the momentum representation |k〉, while the potential is best treated

in the internuclear coordinate representation |R〉

−∇
2 |k〉= k2 |k〉 11,V̂ (R) |R〉=V (R) |R〉 (2.23)

To solve this problem, we employ discrete variable representation (DVR) method [41–43] to solve

the Eq. (2.22). To be exact, Fourier Grid Hamiltonian (FGH) methods [44] is used here. The

method is a special case of DVR method with the advantage of simplicity since plane wave basis is

used.

Assuming the vibration of nuclei is within the range of L, which is separated by N uniform spacing

11P̂2 =−h̄2
∇2
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between the grid points of ∆R value (L = N∆R). The bond length R varies within L as

R j = j∆R (2.24)

where j ∈ [1,N]. The wavefunction is expanded in the discrete basis by

〈
R j|φv

〉
= φv(R j) (2.25)

The grid size and spacing chosen in coordinate space determines the reciprocal grid size in mo-

mentum space. The total length N∆R determines the longest wavelength and therefore the smallest

frequency in the momentum space is

∆k =
2π

N∆R
(2.26)

which is defined as the uniform grid in momentum space.

Fourier transforms emerge naturally as the transformation between these two representations. The

transformation matrix elements between the coordinate and momentum representations is

〈
ki|R j

〉
=

1√
2π

e−ikiR j (2.27)

The Hamiltonian operator matrix elements in the coordinate representation are

Hi j =
〈
Ri|T̂ +V̂ |R j

〉
=

N

∑
j

〈
Ri|k j

〉 k2
j

2m

〈
k j|R j

〉
∆k+V (R j)δi j∆R (2.28)

Combining with Eqs. (2.26) and (2.27), we could now obtained the matrix elements

Hi j =


π2

mL2
N2+2

6 +V (Ri) for i = j,

(−1)i− j π2

mL2
1

sin2[(i− j)π/N]
for i 6= j,

(2.29)
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where N is either an odd or even number.

The expectation value of the energy Ev corresponding to the bound vibrational state function φv is

∑i j φ∗v (Ri)∆RHi j∆Rφv(R j)

∆R∑ j
∣∣φv(R j)

∣∣2 (2.30)

The eigenvectors of (2.29) are the bound vibrational wavefunctions φv(R). They give directly the

approximate values evaluated at the grid points. We will use this method to compute the bound

vibrational wavefunctions φv(R) of the lowest three X1Σ+, a3Π and A1Π electronic states of CH+.

These states are used in the calculation of cross section for vibronic excitation after normalization

by
N

∑
j
|φv(R j)|2∆R = 1 (2.31)

2.2.2 Outgoing-wave basis functions defined by the complex absorbing potential

In our theoretical approach for dissociation recombination (DR), the vibrational continua states

needs to be included. They could be discretized by the outgoing-wave basis functions defined by

a complex absorbing potential (CAP). Similar to the technique of Siegert pseudostates [45], the

CAP is actually a boundary condition as seen Eq. (1) of Ref. [46]. The artificial CAP is placed at

the end of the internuclear distance grid (see Eq. (2.24)) and is purely imaginary and added to the

adiabatic potentials V (R), which makes the Hamiltonian in Eq. (2.22) non-Hermitian

Ĥ =− h̄2

2m
∇

2 +V (R)− iηW (R) (2.32)
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whereη denotes the CAP strength andW (R) a potential function. Exponential CAP in the form [47]

W (R) =


Nexp(− 2L

R−R0
) for R > R0,

0 for R < R0.
(2.33)

is used in the present study, where N is a constant with value of 13.22 from Ref. [47]. As introduced

in the section 2.2.1, L specifies the grid length of the adiabatic potentials of the X1Σ+, a3Π and A1Π

electronic states. R0 is the starting point of a CAP on the potential. The complex eigenenergies

and vibrational basis of the Hamiltonian in Eq. (2.32) are obtained by the DVR method introduced

in the above section. But the form of the eigenenergies turns to be complex

Evi = E ′vi− i
Γ

2
(2.34)

where E ′vi and Γ are the position and width of the resonance. i stands for the ion electronic state and

v for the vibrational quantum in the ionic potential. They would keep constant if the parameters,

i.e. length (L−R0) and the strength η , of the CAP are appropriately chosen. The set of obtained

vibrational wavefunctions φvi(R) are the called CAP basis and obey orthonormality relationship

δv′i′,vi =
∫

dRφv′i′(R)φvi(R) (2.35)

where neither the bra nor ket is complex conjugated. The form in Eq. (2.35) is usually called as

c-product and could be found in Eq. (2.1) of Ref. [48]. The vibrational continua wavefunctions

obtained by the CAP correspond to c-normalized function (see Eq. (2.7) of Ref. [48]), which satisfy

the orthonormality relationship of the above equation.
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2.3 Fixed-nuclei R-matrix method

2.3.1 Principle of the method

Once the potential energy curves and vibrational states are determined, we turn to the scattering

calculation part where fixed-nuclear R-matrix method is used. Before the introduction of this

method, we first describe the e−-CH+ scattering process as shown in Fig. 2.4. In order to

formulate the this scattering process in the fixed-nuclear approximation, we adopt a frame of

reference (Body-frame reference, see subsection 2.4), where the center of the mass of the target

is taken as the origin O of the coordinate and the z-axis is conventionally chosen to lie along the

internuclear axis. The incident electron with partial wave liλi (the angular quantum number and

its Oz projection, see section 2.4) associated with channel i 12 approaches the CH+ ion core with a

sphere of r0 = a. The value of the radius a is chosen to enclose the entire electronic density of the

target states of interest. We use Fi(r) to represent the radial wavefunction of this incident electron,

in which r denotes the radial coordinate of the scattering electron. The angular wavefunctions are

also represented by real spherical harmonics (see section 2.1.3). When the electron penetrates the

sphere of the ion core, ui j(Ω,r) is used here to specify the extra continuum orbitals introduced

by the scattering electron. Ω is the angular part of the scattering electron. They are described by

a set of GTOs (see section 2.1.3) centered on the center of mass of the collisional system. The

generated extra continuum orbitals need to satisfy the orthogonalization to the target states. Then

the electron is scattering away with partial wave l jλ j associated with channel j. Note that Fi j(r)

is used to represent the radial wavefunction of the electron incident in channel i while leaving the

core after collision by channel j. This is sometimes hard for a beginner in this field to understand

the subscripts of these functions.

12A combination of target’s electronic state ϕi (see Eq. (2.41)) and partial wave liλi of the scattering electron.
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Figure 2.4: Schematic of the e−-CH+ collisional process modeled by R-matrix method. a is chosen
as 13 a0 in the e−-CH+ scattering calculation. It is tuneable in the R-matrix calculation. rasy is
usually taken as 70 a0.

Consider the e−-CH+ scatteing process represented by

CH+(i)+ e−(liλi)→ CH+( j)+ e−(l jλ j) (2.36)

where CH+(i) andCH+( j) represent CH+ in the initialϕi and finalϕ j electronic states, respectively.

We assume the target has N electrons. We reserve discussions of the vibrational excitation and

dissociative recombination processes to the section 2.5 and 2.6. The Schrödinger equation of this

process is

ĤN+1Φ(xt ;Ω,r) = EΦ(xt ;Ω,r) (2.37)

where Φ is the total wavefunction of the collisional system and E is the total energy of the scattering

system. xt represents the collective coordinate of the fixed-nuclear target ion. The Hamiltonian
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ĤN+1 is

ĤN+1 = Ĥt +Vet−
h̄2

2me
∇

2
r (2.38)

where Ĥt is the electronic Hamiltonian of the target ion, Vet is the electrostatic interaction potential

between the scattering electron and the target molecular, and the third term − h̄2

2me
∇2

r represents the

kinetic energy of the scattering electron. The task of the scattering calculation is actually solving

the Schrödinger equation (2.37). Well, there are a variety of theoretical procedures developed for

treating the low-energy (belowmolecular ionization energy with a magnitude of 10 eV) electron-ion

scattering, such as complexKohn variationalmethod [49] and Schwingermultichannelmethod [50].

The former one is based Kohn variational principle [51], where the T -matrix is chosen as the

variational quantities instead of the K-matrix [50, 52]. Some recent application of this method

could be found in Refs. [53, 54]. The later one is based on Schwinger variational principle for

the scattering amplitude [55]. Details of this approach can be found in Ref. [56] and references

therein. Both the methods are variational approaches, while R-matrix method is a bound state

approach [57, 58]. Compared with those two methods, R-matrix method has a major advantage

that the inner region problem is solved independently of the scattering energy denoted by Eel. The

dependence on the scattering energy needs only to be considered in the outer region where obtaining

solutions is relatively quick and simple. It becomes particularly appropriate for studying systems

with complicated energy dependence of the scattering observables such as problems with many

resonances. R-matrix method is thus particularly appropriate for treating electron collisions with

cations since they have compact target wavefunctions and usually display complicated resonance

structures.

Now, let’s recall the principle of R-matrix method which is used to model the e−-CH+ collisional

process of Eq. (2.36) in the present thesis. This method was originally proposed by Wigner in the

1940s [59, 60] for nuclear scattering processes. In the 1970s the R-matrix method was developed

as electron-atom collisional treatment [61–63] and electron-diatomic molecule scattering [64–67]
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technique. However, it was not until the 1990s that polyatomic codes were developed for general

electron-molecule scattering [68–72]. Nowadays, R-matrix is a generally used treatment of the

low-energy electron collision processes. The formalism for the this method has been described in

detailed by Ref. [57, 58, 68, 69, 73]. We therefore omit a detailed discussion about it, but give a

outline of the method for completeness below.

First, the configuration space is divided into two distinguishable regions: the inner region with a

sphere of a = 13 bohrs and the the outer region which is the space outside of the sphere. Within

the inner region, the scattering electron is considered to be indistinguishable from the electrons

of CH+, hence correlation and exchange effects (as introduced in sections 2.1.3 and 2.1.4) must

be taken into consideration and (N + 1)-electron collision complex behaves in a similar way to a

bound state. The Schrödinger equation of inner region is

(ĤN+1 + L̂N+1)Ψk(xt ;Ω,r) = EkΨk(xt ;Ω,r) (2.39)

where L̂N+1 is Bloch operator, see Eq. (7) of Ref. [73]. It is used to keep the hermicity of ĤN+1

which is broken by inserting the boundary r0 in the coordinate space. Ψk is used as the inner part

electronic wavefunction for (N +1)-electron system. k (note k here is a number) is determined by

the number of eigenchannel defined by the target state i and the partial wave liλi of the scattering

electron. The total wavefunction expands in the inner region by

Φ(xt ;Ω,r) = ∑
k

Ak(E)Ψk(xt ;Ω,r) (2.40)

where Ak(E) is the expansion coefficient. The wavefunction Ψk is constructed by close-coupling

expansion

Ψk(xt ,r) = Â∑
i j

ai jkϕi(xt)ui j(Ω,r)+∑
i

bikψik(xt ;Ω,r) (2.41)
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where Â is the anti-symmetrized operator, ϕi(xt) is the ith target state wavefunctions. ψi(xt ;Ω,r) is

the CSFs (see section 2.1.3) for (N +1)-electron when the penetrated electron occupied the virtual

orbital of the target ion and takes into account the polarization of the N-electron target wavefunction

in presence of the projectile electron. ai jk and bik are the coefficient expansions and are found by

diagonalizing the total Hamiltonian operator in the basis Ψk(xt ;Ω,r). The inner region calculation

is complicated but solvable. Combining Eqs. (2.39) and (2.41) and then projecting the equation

onto the channel functions ϕi to obtain an expression of the radial wavefunction F(r). Evaluating

it on the boundary of the inner region by inserting r = a, we obtain

Fi(a) =
1
a ∑

k

ρikρ jk

E−Ek

Fi

rF ′j
(2.42)

where a is the radius of the inner region. The R-matrix at the boundary of radius is defined by

Ri j(a,E) =
1
a ∑

k

ρikρ jk

E−Ek
(2.43)

where ρik are the surface amplitudes, given by

ρik = ∑
j

ui jai jk (2.44)

where ui j is referred as the continuum orbital of the scattering electron (see the beginning of this

part) and ai jk is the expansion coefficient of Eq. (2.41). For more details see Ref. [57].

Beyond the radius r0 in the outer region, the electron is treated as being distinct. This region

could be again divided into two subregions: external region where e−-CH+ interpotential includes

Coulomb potential andmultipolar potential (mainly dipolar potential) and asymptotic region located

at rasy=70 bohrs 13 where only Coulomb potential left. The total wavefunction in the external region

13The obtained R-matrix in the inner region is propagated to that far to match the asymptotic radial wavefunction of

29



is expanded in the form

Φ(xt ;Ω,r) = ∑
i

ϕi(xt)Fi(r)Y (Ω) (2.45)

where Y (Ω) is the angular function of the scattering electron. We now no longer include the

antisymmetrization operator, since the scattered electron and the target electrons occupy different

regions of space. Substituting the above equation into Eq. (2.37) and projecting onto the target

state ϕi(xt) (electronic channel i) yields the following equation

[− h̄2

2me
∇

2 +
li(li +1)

r2 − k2
i ]Fi(r) = 2

n

∑
j

Vi jFj(r) (2.46)

In this equation, the wave number of the incident electron associated with channel i is

k2
i = 2(E−Ei) (2.47)

where Ei is the energy of channel i. A channel is said to be open if k2
i ≥ 0 since it can be reached

asymptotically and closed if k2
i ≤ 0 (see section 2.5). The potential matrix element in Eq. (2.46) is

defined as

Vi j = ∑
n=0

αn
i j

rn+1 (2.48)

whereα provides coupling between the channels in the outer region, for instance Coulomb potential

(n = 0) and dipoles (n = 1). One could refers Eq. (20) and (21) of Ref. [57]) for more details.

The set of equation given in Eq. (2.46) could be solved at the boundary between the external and

asymptotic region by a number of methods available for obtaining asymptotic solutions [74–77].

The most commonly used procedure is based on the use of an asymptotic expansion introduced by

the scattering electron.
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Gailitis [77]. The resulted reduced radial wavefunction that satisfy the boundary condition is

Fi j(r→ ∞)≈


1√
ki
(sinθi + cosθiKi j) for open channel,

0 for closed channel.
(2.49)

where Ki j is the reactance matrix, called as K-matrix. θ is a diagonal matrix with elements

expressed by

θi = kir−
1
2

liπ−
Z−N

ki
ln(2kir)+σi (2.50)

and note that the Coulomb phase shift σi for an electron-ion collisional process is

σi = argΓ

(
li +1+ i

Z−N
ki

)
(2.51)

where Z is the charge of nuclei and Γ here is Euler Gamma function. Note that the asymptotic

channel i is defined by an electronic state of the separated target state and a partial wave liλi of the

scattering electron. To obtain the K-matrix (Ki j in Eq. (2.49)), we first propagate the R-matrix in Eq.

(2.44) from the boundary r0 to the asymptotic radius rasy [78, 79]. Combining Eqs. (2.42), (2.44)

and (2.49), we could finally have the No×No dimensional K-matrix Kl jλ j,liλi(E,R) determined

where No is number of open channels (see subsection 2.5). All the scattering observables can

be extracted from this matrix. Scattering matrix Sl jλ j,liλi(E,R) are then computed through the

transformation

Ŝ =
1+ iK̂
1− iK̂

(2.52)

This matrix will be used in the cross section calculations for vibronic excitations and dissociative

recombination of CH+ (see section 2.5 and 2.6). For the partial wave of the scattering electron,

l ≤ 4 is defaulted in the R-matrix calculation. Considering λ could be the value of from −l to l,

we will have 25 possible combination of lλ , i.e. 25 partial waves. These partial waves belong to
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four categories of symmetries: a1, a2, b1 and b2 as seen in Table. 2.3.

As we see in Fig. 2.4, the phase shift between the incident and the outgoing electron is defined

as eigenphase δli j . i and j are used as the subscript to specify the incoming wave in channel i,

which then outgoes in channel j. The eigenphase sum (over all channels in the same symmetry) is

obtained from the sum of the eigenvalue of the K-matrix as

δ (E,R) = ∑
i

arctan(KD
liλi,liλi

(E,R)) (2.53)

where KD
liλi,liλi

is the diagonal elements of the K-matrix. Note that we use iliλi and jl jλ j to numerate

the incident (initial) and outgoing (final) channel in this section for keeping consistent with the

description of the R-matrix in Ref. [57]. In the following parts of the thesis, we’d use ilλ and i′l′λ ′

as usually seen in literatures.

2.3.2 Brief introduction of Resonances

The eigenphase sum obtained from Eq. (2.53) for e−-CH+ is featured of resonances (see Fig. 3.19

shown in section 3.2). A resonance is known as a transient state when the target molecule captures

the incident electron. Treatment of the resonances is very important because the cross sections for

a electron collisional process including the vibronic excitation and dissociative recombination may

be increased by the presence of resonances.

There are different type of resonances. The simplest resonance is called shape resonance [80].

It occurs when an electron becomes trapped behind a centrifugal barrier in the electron-molecule

potential; as the barrier depends on l, s-wave scattering cannot lead to shape resonances. From a

chemical perspective, a shape resonance is a situation in which the scattering electron occupies the

lowest unoccupied molecular orbital. Shape resonances are often short lived and usually appear as
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broad peaks in the eigenphase sum as a function of energy.

Feshbach resonances [81, 82] occur when the scattering electron also excites the target molecule

leading to a double excitation of the target molecule. The resonances in the e−-CH+ collisional

spectrum are most of this kind (see also Fig. 3.19 in section 3.2). The target molecule is excited

into a configuration which is not its ground state, known as the parent state, and the scattering

electron is temporarily captured into an unoccupied virtual orbital. At the end of the resonance’s

lifetime the state decays to the parent state. Feshbach resonances are prevalent in ionic targets and

generally take the form of Rydberg states. There are also valence states embedded in the continuum

which appear as Feshbach resonances. Capturing into such a resonance state may lead to direct

dissociative recombination if the state is repulsive state (see section 2.6). Nuclear-excited Feshbach

resonances [83] can only occur in molecules when there is a weakly bound state just below the

ionization threshold of the molecule. The collision by an electron excites the molecule to a high

vibrational level in the weakly bound state. Resonances of this type are responsible for the indirect

process in dissociative recombination. This is particular important for CH+ due to its low-lying

excited electronic states (see section 2.6).

The position Er and width Γ 14 of a resonance could be generally determined by two approaches:

the CAP method (see section 2.2.2) and the eigenphase method. Through fitting the derivative of

the eigenphase sum δ over the total energy of the collisional system E in the Breit-Wigner form,

dδ

dE
=

Γ/2
(E−Er)2 +(Γ/2)2 (2.54)

For convenience to locate the positions of the resonances, we can also use derivative of the

eigenphase sum over total energy ( dδ

dE ). This method is used in this thesis as P. G. Burke pointed

out that it often provides an accurate procedure for analyzing the positions and widths of the

14Determines the lifetime of a resonant state [84]
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resonances [58]. On the other hand, the Rydberg resonances (Feshbach resonances) are taken

into account in our proposed approach through the energy-independent scattering matrix combined

with the quantum defect theory (QDT) (see section 2.5). We use the positions and widths of

the resonances to compare with that obtained directly from the R-matrix method. However, they

are not the necessary input data in the cross section (for vibronic excitations and dissociative

recombination of CH+, see section 2.5 and 2.6) calculations. This differs from the theoretical

methods in Refs. [31, 34] where the positions and widths of the resonance are needed to be

explicitly included to account for the electronic coupling for the study of, for instance, dissociative

recombination.

2.4 Vibronic frame transformation

We’ve already discussed how to model a fixed-nuclei electron-ion collision through the R-matrix

method. Here we will address the question that how we should take the effects of the nuclei into

accounts. In order to simplify the discussion, we only consider electronic capture by vibrational

level of the target. Chang and Fano pointed out that the interaction between the electron and the

molecule exhibits qualitatively different physical features when their distance coordinate lies in

different regions, as illustrated in Fig. 1 of Ref. [85]. The dominant terms in the Hamiltonian of

the collisional system determines which physical observables are approximately conserved. The

salient point is the relative importance of the nuclear kinetic-energy operator and the electron-ion

interaction potential which depends on the proximity of the scattering electron to the target. As

shown below in Fig. 2.5 (a), for simplicity, we accordingly divided the space into a Λ and M

region [86,87]. The radius r0(= a) is the boundary of the inner region in the R-matrix method (see

Fig. 2.4). rv is determined by kinetic energy of the scattering energy associated with v vibrational
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state of the target 15.

In the Λ region, a Body-frame of reference is more appropriate since a strong electron-molecule

interaction, rather like a strong axially symmetric electric field, is more suitably accounted for in

this reference frame. A schematic of the Body-frame coordinate system is given in Fig. 2.5 (b).

The projections µ and λ of the angular momentum j and l of the target molecular ion and the

scattering electron in the Body-frame correspondingly are conserved, as well as Λ = λ +µ . In this

representation that the orientation of the internuclear axis is fixed, channels with different values

of Λ (or we can say different symmetries) are not coupled. In practice, the Body-frame reactance

matrix is thus calculated separately for each Λ. The S-matrix or K-matrix obtained in section 2.3.1

will be block-diagonal, where each block corresponds to a given projection Λ of the electron-ion

collisional system (see Table 2.3). In the outer part of this region within rv in the Fig. 2.5 (a),

the effects of the nuclear vibrational Hamiltonian on the wavefunction of the scattering electron

should be explicitly taken into account. The total wavefunction of the ionization channels in this

part could be written as

Φ
Λ
v (R,r) = φ

N+1
v (R)ϕ(R)[ fl(ν ,r)− tan(δl(R))gl(ν ,r)] (2.55)

where φ N+1
v (R) is the wavefunction of v vibrational state of the electron-ion system, ϕ(R) is the

electronic wavefunction of the ion core. fl(ν ,r) and gl(ν ,r) are respectively the regular and

irregular Coulomb functions for a partial wave l of the scattering electron. ν is a effective quantum

number defined by ν = 1/
√
−2E (E < 0). δl(R) is a eigenphase evaluated by the R-matrix method

at R.

In the M region at a large distance, a Laboratory-frame of reference is more justified since the

coupling of the electron angular momentum to the molecular axis is no longer strong. A schematic

15It is "r2" in Fig.1 of Ref. [85]
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of the Laboratory-frame reference system is given in Fig. 2.5 (c). It is advantageous to couple

the angular momentum j and l in such a formulation, since the resultant total angular momentum

J = l+ j and its projections M = ml +m j along the lab polar axis are constants of the motion [88].

In this region, vibronic couplings vanish so that the channel wavefunction is well separated in an

electronic and vibrational part. The total wavefunction for the collisional system expressed by

Φ
M
v (R,r) = ∑

v′
φv′(R)ϕ(R)[ fl(ν

′,r)δv′,v−Kv′,vgl(ν
′,r)] (2.56)

where δv′,v is a Kronecker delta and ν ′ corresponds to 1/
√

2(E−Ev′). The Kv′,v(R) is the matrix

describing the vibrational transitions from v to v′. Note that in this thesis, the rotational structure

is neglected and will be considered in a future study.

The low-energy incident electron is generally captured in vibrational state of a high Rydberg state

within [r0,rv]. Such a Rydberg state is an adiabatic potential energy curve of a neutral molecule

(electron-ion system) that is close to its parent state. Accordingly, it looks very similar to its parent

ionic potential curve. Hence, we could consider the vibrational wavefunctions of such a Rydberg

state is in a good accordance with the corresponded ionic ones φ N+1
v (R) ≈ φv(R). We can now

relate the wavefunctions in the two regions by expanding the wavefunction ΦM
v of Eq. (2.55) over

ΦΛ
v of Eq. (2.56) on the boundary with the help of a unitary transformation

Φ
M
v = ∑

v′
av′Φ

Λ

v′ (2.57)

Assuming the regular Coulomb functions on both sides of the above equation are nearly identical

for different channels, which means that fl(ν ,r) ≈ fl(ν
′,r). It is straightforward to show that

av′ = δv′,v. Considering now the coefficient of the irregular Coulomb function on both sides, we

obtain

Kv′,vφv′(R) = tan(δl(R))φv(R) (2.58)
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Figure 2.5: (a) Partitioning of configuration space for frame transformation, (b) the Body-frame
representation used in Λ region, where the internuclear axis is taken as the z axis, and (c) the
Laboratory-frame representation used in M region, where the z axis fix along the initial momentum
vector of the incident electron.

By multiplying both sides of the equation by φ∗v′(R) and integrating over R, we finally arrive at the

desired result that

Kv′,v =
∫

φ
∗
v′(R)tan(δl(R))φv(R)dR (2.59)

Considering Eq. (2.52), we could also couple the vibrational motion to the S-matrix. This

mechanism is called the frame transformation procedure of Chang and Fano [85] that transforms

the Body-frame fixed-nuclear scattering function into the Lab reference frame at the boundary

radius. In the thesis, the additional two a3Π and A1Π excited states of CH+ are also considered.
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Thus, we used a vibronic frame transformation in the form

Sl′λ ′v′i′,lλvi(E) =
∫

φ
∗
v′i′Sl′λ ′i′,lλ i(E,R)φvidR (2.60)

to compute the vibronic (de-)excitation amplitudes for the process represented by

CH+(vi)+ e(lλ )→ CH+(v′i′)+ e(l′λ ′) (2.61)

φvi and φv′i′ numerate the initial and final vibronic state. lλ and l′λ ′ numerate the initial and final

angular momenta and their projection in the Body-frame.

But one should notice that, first, the rotational frame transformation is very different. One could

refer to Ref. [38, 89] for more details. Second, we used an assumption (of fl(ν ,r)≈ fl(ν
′,r)) that

the regular Coulomb functions are energy-independent within the space of vibrational level. This

actually means that the effective quantum number ν ≈ ν ′. In such a condition, the scattering matrix

(S = exp(2iπµ), µ is quantum defect as seen in the next section) should be energy-independent, i.

e. smooth with regards to E in the space of vibrational levels, considering the relationship between

the ν and K-matrix (considering Eqs. (2.52), (2.53), (2.63), and (2.65)). Therefore, one has to note

that adoption of the standard vibrational frame transformation of Chang and Fano [85] requires

energy-independent S-matrices. The total energy E is defined by

E = Eel +E00 (2.62)

where Eel is the electron scattering energy. E00 is vibrational energy level of the ground-state CH+.

It is the zero energy level in this thesis. Thus, we have E = Eel and we will use Eel in the rest parts

of this thesis.
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2.5 Multi-channel Quantum Defect Theory

2.5.1 Rydberg states

As we introduced in the preceding section the way to compute the vibronic amplitudes, here we

will discuss how to take into account the Rydberg resonances. A molecular Rydberg state is an

electronic state where the incident electron is captured into an excited orbital far from the molecular

ion core. The electron moves in this state is called a Rydberg electron. It is like a hydrogenic

electron, but the difference is that nuclei of the molecular ion are clamped by electrons. Hence, we

describe the Rydberg state by an effective quantum number vn,l , computed by

vn,l = n−µn,l(R) (2.63)

where µn,l(R) is a R−dependence quantum defect of the Rydberg state. n and l numerate the

principle and angular quantum number. Then the potential energy curve of a Rydberg state is given

by

En,l(R) = Eion(R)−
1

2(n−µn,l(R))2 (2.64)

When the electron bounded in the Rydberg state close nearly to the threshold, which means n goes

to infinity, the quantum defect of the Rydberg electron converges and connects with the phase shift

δl(R) of radial wavefunction for the scattering electron by

lim
n→∞

µn,l(R) = µl(R) =
δl(R)

π
(2.65)

This is firrst introduced in 1966 [90] by Seaton in his communication on Quantum Defect Theory

(QDT). We surprisingly find the connection between the scattering theory for electron-ion colli-

sional system and the QDT, that short-range scattering electron (within rv in Fig. 2.5) could be
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viewed as a Rydberg electron in the compound system. The electronic state of the collisional system

generated by the electron-ion interaction is a Rydberg state with µl(R).

Therefore, one can actually extract the scattering phase shift from the quantum defect. This is the

most important foundation of the widely used QDT in the scattering problems. As we introduced in

subsection 2.3.1, that phase shift δl(R) could be obtained through an ab initio scattering calculation

using, for instance the fixed-nuclear R-matrix method. The quantum defects represented the

electronic state of any highly excited Rydberg states, as well as low energy electron continuum

states could be sorted out by QDT. However, as we discussed in section 2.3.2, we don’t need to

extract the quantum defects (or the eigenphase) to account for the non-adiabatic couplings, such as

couplings between the Rydberg states. The couplings are included by using an energy-independent

scattering matrix coupling with the MQDT elimination procedure (see the next two sections).

2.5.2 The multi-channel approach

We now describe in more detail QDT from one-channel approach. The asymptotic radial wavefunc-

tion of a Rydberg electron is a linear superposition of regular and irregular Coulomb wavefunction

( f ,g) [91]

F(r) = Nl[ fl(ν ,r)cosπµl−gl(ν ,r)sinπµl] (2.66)

where Nl is a normalization constant. The remaining electrons and nuclei are supposed staying

within r0(= a). Inserting the expressions of Coulomb wavefunctions (see Eq. (3) of Ref. [91]) to

obtain

F(r) =

√
1

πk
(sin(β +πµl)D−1r−νekr− cos(β +πµl)Drνe−kr) (2.67)
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where the coefficients β is effective quantum number related parameter defined as

β = πν (2.68)

D are constants depending on l and total energy E of the system. We define k = (−2E)1/2 = 1
ν
.

The bound state solution is exponentially decreasing as r→∞, the constraint obtained for integer l

is

sinπ(ν +µl) = 0 (2.69)

We could thus arrive Eq. (2.64) which is used to compute the bound states energies.

Consider a general case, i.e. a multi-channel case, where there are multiple electronic channels

which are described by a discrete set of functions ϕi(x). x specifies the collected ionic coordinates

as well as the angular momentum of the scattering electron. The index i numerates N electronic

channels (states). The asymptotic solution of the Schrödinger equation for the collisional system

could be written as

Φi(x,r) =
N

∑
i′=1

ϕi(x)φv(R)[ fi′(ki′r)δi′i−Ki′i(R)gi′(ki′r)] (2.70)

where Ki′i(R) is the the reaction matrix and ki′ =
1√

E−Ei′
. It is in a similar form with Eq. (2.56) but

with a multi electronic channel cases. The incoming electron (wavefunction) in i electronic channel

is randomly scattered to outgoing i′ channel. Therefore, Ki′i represents N×N independent solutions

for N-channel problem. This matrix could be evaluated by the fixed-nuclear R-matrix method (see

section 2.3.1). More detailed description and explanation could be found in Refs. [58, 86, 90–93].
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2.5.3 Closed-channel elimination procedure

So far, we didn’t discuss about the physical significance of the solutions. We define an open or

closed channel on the basis that whether the total energy E is higher or lower than the corresponding

channel’s energy. E is the total energy of the electron-ion collisional system obtained by Eq. (2.62).

It is a sum of scattering energy Eel and the zero piont energy of the initial state of the target. We

use No and Nc to denote the number of open and closed channels (N = No +Nc). The index "o"

and "c" represent “open” and “closed”, respectively. The obtained transformed scattering matrix

by Eq. (2.60) in section 2.4 could both be partitioned in four sub-matrices

S(Eel) =

 Soo Soc

Sco Scc

 (2.71)

To be physically acceptable, the solutions corresponding to closed channels have to vanish asymp-

totically as seen by Eq. (2.49) in section 2.3.1. Thus, the Schrödinger equation has only No

independent solutions. In order to express the physical solutions in the open channels, we need to

eliminate the divergent solutions (combining Eqs. (2.47) and (2.67)) in the asymptotic region, i.e.

solutions of the closed channels. The form of the physical scattering matrix is given by

Sphys(Eel) = Soo−Soc
[
Scc− e−2iβ (Eel)

]−1
Sco (2.72)

where β (Eel) is diagonal matrix representing the effective quantum numbers (mentioned in section

2.4) in terms of energies of a channel

β (Eel) =
π√

2(Evi−E)
(2.73)
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Evi is the energy of the v vibrational state of the i ionic state. This quantity is also found in Eq.

(2.67) in section 2.5.1.

The above equation is used to account for the Rydberg states caused by the closed ionization channel

defined as a vibrational level. This is different in the electronic excitation study, where the ionization

channels are defined by the electronic states of the target. Therefore, one doesn’t need to implement

the vibronic frame transformation by Eq. (2.60). The scattering matrices Sl′λ ′i′,lλ i(E,R) obtained

directly from the R-matrix method are partitioned into four submatrices through Eq. (2.71). To

account for the electronic Rydberg resonances, we apply the electronic closed-channel elimination

procedure by Eq. (2.72). The difference is that the vibronic channel’s threshold Evi in Eq. (2.73)

is replaced by electronic state energy Ei(R).

Physical understanding of the elimination procedure is given here. The scattering process in the

short range of r < rv could be viewed as a Rydberg electron interacts with the target ion core.

When the Rydberg electron approaches to a closed channel, which means the total energy becomes

closed to a threshold of a given ionic channel, infinite Rydberg states attached to the given closed

channel could be “seen” by this Rydberg electron. Transient neutral compound will be formed as

the Rydberg electron moves in these Rydberg states. As a consequence, infinite resonances will

be seen in the collisional spectrum (see, for example, Fig. 3.5 in section 3.3). These physical

resonances caused by the closed channel could be recovered by the elimination procedure with the

quantum defect parameters (included in the quantity β of Eq. (2.73)).

Since we’ve had the physical S-matrix for the vibronic excitation in Eq. (2.72), the cross section

for this process is expressed as

σv′i′,vi(Eel) =
π h̄2

2meEel
∑

l′λ ′,lλ

∣∣∣Sphys
l′λ ′v′i′,lλvi(Eel)−δl′λ ′v′i′,lλvi

∣∣∣2 (2.74)
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whereme is themass of an electron. For the cross section of electronic excitation, the Sphys
l′λ ′v′i′,lλvi(Eel)

is replaced by Sphys
l′λ ′i′,lλ i(Eel,R).

The corresponding thermally averaged rate coefficients for vibronic excitations are computed by

αv′i′,vi(T ) =
8π

(2πkbT )3/2

∫
∞

0
σv′i′,vi(Eel)e

−Eel
kbT EeldEel, (2.75)

where kb is the Boltzmann constant and T is the temperature. Similarly, for the rate coefficient

electronic excitation, the σv′i′,vi(Eel) is replaced by σi′,i(Eel,R).

Rydberg resonances contribute a lot to the dissociative recombination (DR) cross section for

electron-ion collisions. Therefore, closed-channel elimination procedure is also a very critical

MQDT tool for the modeling of a DR process. See Refs [34, 94, 95] and therein for more details.

We’ll describe the theoretical approach based on the MQDT method to compute the DR cross

section for this process in the next section.

2.6 Dissociative recombination

2.6.1 Direct DR mechanism

In a collision process, the incoming electron could be captured by the molecular ions. A doubly

excited dissociative state is formed when the electron collision energy Eel is not transferred directly

into the kinetic motion of the nuclei, but rather to the electronic ionic clouds. One of the bound

electrons is excited by the scattering electron. This state is situated in the ionization-continuum. The

potential curve of a neutral dissociative state is repulsive and intersects, or approaches very closely,

the potential curve of the ion at a nuclear separation within the extent of the vibrational motion of

the ion. The electron-electron interactions in the dissociative state give rise to the mixing of its
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configuration with the configurations where only one electron is excited. The excited electron in

the latter configuration has sufficient energy to escape from the molecule. It is therefore an unstable

state against autoionization, i.e. re-emitting the electron leading to vibronic excitations. This state

with a certain width given by the autoionization width is also called a resonance state. However,

if the dissociative process happens fast enough so that the products of dissociation are already at a

large distance from each other after a time equivalent to the order of the autoionizing lifetime, most

of the collisional energy is already converted into nuclei kinetic energy and autoionization becomes

impossible. In such a case, the system will irreversibly breakdown in one of the dissociative

channels. This is so-called direct dissociative recombination (DDR) process proposed by Bates in

1950 [96].

In this case, the rate coefficient is approaximately proportional to the square of a matrix element

between the vibrational wavefunctions for the ion and neutral states

〈
ΨN+1(r,R)φv(R)|ĤN+1(R)|Ψd(r,R)φd(R)

〉
(2.76)

Here, ĤN+1(R) is the (N+1)-electronic Hamiltonian, r and R denote the electron coordinate and

internuclear distance. ΨN+1 is the electronic wavefunction for the (N +1)-electron, Ψd(r,R) is the

neutral dissociative state wavefunction. φv(R) specifies the bound vibrational wavefunction of the

ion core. φd(R) is the continuum vibrational wavefunction in the neutral dissociative state. We

can know from the above equation that a high vibrational wavefunction overlap requires the neutral

dissociative state crosses the ion curve between the turning points of the ion vibrational level, leads

to a high direct DR rate coefficient. The cross section of the DDR is written by O’Malley [97] and

Bardsley [98]

σ
DDR(Eel) = σcapture(Eel)τ(Eel) (2.77)

whereσcapture(Eel) is the cross section for formation of the neutral dissociative state and τ(Eel) is the
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survival factor representing that this state will decay by dissociation rather than by autoionization.

Considering Eq. (2.76), the capture cross section is also expressed by

σcapture(Eel) =
π2

meEel

z
2

Γc

U ′d(Rc)
|φv(Rc)|2 (2.78)

where z represents the ratio of the multiplicity of the intermediate state to the initial state of ionic

core. Rc is the internuclear distance where the electron scattering energy Eel is the difference

between the initial ionic state and the neutral dissociative state. U ′d is the slope of the PEC of the

dissociative state and Γc is the width of the neutral dissociative (resonance) state at Rc. We usually

regard the |φv(Rc)|2
U ′d(Rc)

as the Frankon-Condon factor.

2.6.2 Indirect DR mechanism

It may happen that the resonant (dissociative) state is situated far away from the ionic ground state,

either above or below it. This is often seen in a closed shell ions, such as HeH+ [99, 100]. In

this case, a direct capture of a low energetic electron into the neutral resonant state is unlikely. An

indirect DR (IDR) mechanism was therefore predicted by Bardsley in 1968 [101]. This indirect

process can be considered as the result of two non-radiation transitions. In contrary to the direct

process, the kinetic energy of the electronwas transferred to themotion of themolecular nuclei. The

incident electron then moves in a hydrogenic-like orbital with high principle quantum number (see

Eq. (2.64)). A ro-vibrationally (but rotational structure is neglected in the this DR study) excited

Rydberg state is formed. The second transition is predissociation of the state by the resonance

(repulsive) state of the direct DR mechanism. Capture occurs by a BO approximation breakdown

mechanism. The appropriate matrix element for the capture is analogous to Eq. (2.76) but with a
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Rydberg state substituting the dissociative state

〈
ΨN+1(r,R)φv(R)|T̂n(R)|ΨRyd(r,R)φv′(R)

〉
(2.79)

where T̂n(R) is the nuclear kinetic energy operator. Alternatively, the matrix element in the above

equation can be evaluated by the quantum defects. Once capture occurs, the Rydberg electron

may autoionize or predissociate via electronic coupling in Eq. (2.76) with ΨRyd(r,R) replacing

ΨN+1(r,R) on the left side of the matrix element.

In the indirect recombination mechanism of the molecular ions with low-energy electron, the

Rydberg states are the source of structure in the DR cross section. According to Eq. (2.64) in

subsection 2.5.1, Rydberg energies are actually close to each other. Their separations become

ultimately much smaller than the separation of vibrational energies of the ion. Indeed, this is a case

of breakdown of the Born-Oppenheimer approximation. The interactions between the vibrational

motion and the electronic motion can be non-negligible. Therefore, an electron in the continuum

is able to exchange its energy with the vibrational motion of the ion and consequently be captured

in one of the Rydberg state. Then, the electron can be represented as descending in cascade from

orbitals to orbitals, exchanging energy with the ionic core until it reaches a path for dissociation.

In the above discussion, only the Rydberg states attached to the ground ionic state is considered.

However, there are other Rydberg states that having excited ionic states as the core can also play

an important role. Rydberg states with an excited core can affect the DR of the vibrational levels

of the ground ionic state for ions with low-lying (< 4.0 eV) excited electronic states [102–105].

The Rydberg states are formed by a double excitation from the ground state ion and the scattering

electron. The coulpling matrix elements for the captures are

〈
ΨN+1(r,R)φv(R)|ĤN+1(R)|Ψexcited core

Ryd (r,R)φv′(R)
〉

(2.80)
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These Rydberg states have already been included in MQDT cross section calculations [18, 102,

102–105]. The treatment of the IDR is very different from that of DDR. It is usually treated by

normal resonance theory developed for atomic and nuclear systems. The cross section is given in

form similar to the Breit-Wigner formula (see Eq. (2.54))

σ
IDR(Eel) = ∑

i

π h̄
2meEel

z
2

ΓiaΓid

(Eel−Ei)2− 1
4Γ2

i
(2.81)

where i denotes the resonances and Γ is the width of the resonance. z represents the ratio of the

multiplicity of the intermediate state to the initial state of ionic core. Γia and Γid are the width

for the autoionization and predissociation of the ith resonance. The computation of these two

parameters could be found by Eqs. (3) and (6) of Ref. [106]. This indirect DR process usually

plays a exclusively constructive role, in opposition with the numerous cases where it has destructive

role. The total process is well taken into account by Eq. (2.85) expressing a quantum interference,

which can be constructive or destructive, according to the relative importance of the predissociation

versus the vibrational autoionization.

2.6.3 Theoretical approach for DR of CH+

Through the preceding two parts, we are aware of the fundamentals of DR process for a diatomic

molecular ion. MQDT treatment for the cross section calculations has been proven to be the most

successful theoretical method. In this thesis, we will also employ the MQDT treatment for the

low-energy DR of CH+. The process is represented by

CH+(vi)+ e(lλ )→ C+H (2.82)
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It is a competition process to the vibronic transitions of Eq. (2.61). A detailed DDR and IDR

processes are given and discussed in section 4.2. Computation of this process is in the similar

framework of MQDT but coupled with additional CAP formalism as we introduced in section

2.2.2. The dissociation proceeds through a number of excited Rydberg states, which are bound

with respect to dissociation. MQDT treats such a system as a coupled vibrational states. To

describe the dissociation, the vibrational continua states of the considered PECs (the three lowest

electronic states) of CH+ should be included in the model. The states are discretized through a

CAP formalism that obey outgoing-wave boundary conditions. They are introduced as the closed

ionization channel by vibrational frame transformation [107]. The vibrational continua states of

the neutral Rydberg states attached to these outgoing-wave basis could be taken account for through

MQDT closed-channel elimination procedure. The the dissociative flux of the neutral molecule is

thus simulated to escape on the boundary.

As we introduced in section 2.4, the scattering matrix describing the vibrational excitation of fully

relaxed (ground-state) CH+ is computed by Eq. (2.60), but the used CAP basis φv′i′ of CH+ in the

equation is not conjugated. The equation is thus expressed by

Sl′λ ′v′i′,lλvi(Eel) =
∫

φv′i′Sl′λ ′i′,lλ i(Eel,R)φvidR (2.83)

The ionization channels are now a set of CAP basis for ionic PECs. Each of the channels associated

with the threshold energy of a vibrational level of the ionic electronic states. In the MQDT closed-

channel elimination procedure as shown in Eqs. (2.72) and (2.73), we need to use the threshold

energy Evi. As seen in Eq. (2.34), the eigenenergy of the CAP vibrational basis is a complex. In the

practical treatment, we sorted successively the vibrational level’s energy Evi from lower to higher

energy values according to the real part of the eigenenergies. These ranked eigenenergies are used

to represent the threshold of the ionization channels. Again, we neglect any rotational structure
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here (but will include it in the further study). The total energy E of the e−-CH+ system divides

all channels as energetically open when it situated above the corresponding ionization threshold or

otherwise closed (as mentioned in section 2.5.3). The transformed scattering matrix is thus written

as submatrices of Eq. (2.71).

The physical scattering matrix Sphys(Eel) restricted to open channels is obtained using MQDT

close-channel elimination procedure by Eq. (2.72). But the quantity β (Eel) of Eq. (2.73) becomes

complex because the higher ionization thresholds are represented by the CAP vibrational basis

with complex eigenenergies (as seen in Eq. (2.34)). This fact makes the Sphys(Eel) sub-unitary.

Physically, the lost flux is associated with an electronically closed channel attached to a vibrational

wavefunction described by a dissociative CAP basis.

To calculate the total cross section (includingDDR and IDR), we also need the conjugated scattering

matrix. To be precise, we need S†phys
l′λ ′v′i′,lλvi(Eel). We first compute the fram-transformed scattering

matrix by Eq. (2.83) with the complex-conjugate scattering matrix S†(Eel,R)

S†
l′λ ′v′i′,lλvi(Eel) =

∫
φv′i′S

†
l′λ ′i′,lλ i(Eel,R)φvidR. (2.84)

We then use MQDT elimination procedure of Eq. (2.72) to compute the conjugated physical

scattering matrix

S†phys(Eel) = S†oo−S†oc
[
S†cc− e2iβ (Eel)

]−1
S†co (2.85)

where conjugated submatrices of S†(Eel,R) are used. One needs to notice that β in e2iβ (Eel) is not

complex conjugated. The obtained S†phys(Eel) is not a simply Hermitian conjugate of the Sphys(Eel),

i.e. S†phys(Eel) could not be computed by complex conjugation of Sphys(Eel). The essential reason

is that the CAP vibrational basis is used in the DR case.

Once the scattering matrices Sphys(Eel) and S†phys(Eel) are determined, the DR cross section for a
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specific partial wave is extracted from the unitarity defect of the scattering matrix

σlλvi(Eel) =
π h̄2

2meEel

[
1− ∑

l′λ ′v′i′
Sphys

l′λ ′v′i′,lλvi(Eel)S
†phys
lλvi,l′λ ′v′i′(Eel)

]
(2.86)

where the CH+ is initially in ground state where vi = 00 representing the ground vibrational state

of X1Σ+ ground electronic state. The total cross section for the ground-state CH+ is computed by

σtotal(Eel) = ∑
lλ

σlλ00(Eel) (2.87)

So far, we reviewed the electronic structure theory for computation of the potential energy curves and

the fixed-nuclear R-matrix method used for the scattering calculations. Based on these fundamen-

tals, we described the MQDT treatment using vibronic frame transformation and closed-channel

elimination procedure for the vibronic (de-)excitation of CH+ by low-energy electron impact. We

will show more calculation details about this method in chapter 3. We also introduced an theo-

retical approach in a similar framework coupled with additional CAP vibrational basis to treat the

low-energy DR of CH+. A detailed description of this approach is found in chapter 4.
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CHAPTER 3: Vibronic (de-) excitation of CH+ by electron impact

3.1 Introduction

As stated in chapter 2, low-energy electron-impact vibronic excitation of CH+ of Eq. (2.61)

competes with the dissociative recombination represented by Eq. (2.82). Both processes will

be treated in the MQDT framework. In this chapter, we will benefit from the theoretical tools

introduced in chapter 2 to describe the details about the treatment vibronic excitation processes

induced by electron-impact.

In many fields of research and applications, it is essential to have accurate cross sections for different

processes taking place in collisions between molecular ions and electrons. Among such processes

are electron-impact rotational (RE), vibrational (VE), or electronic (EE) excitation of the ions,

dissociative recombination (DR), photoionization and its inverse process, radiative recombination.

Some cross sections could be obtained in experiments. However, for many processes, especially,

for the processes involving excited-state ions (ions here and below are assumed to be molecular

ions, not atomic) or such ions as radicals, which are unstable in collisions with other species present

nearby, an experimental approach is difficult or impossible. Even for stable ions in their ground

quantum state, an experimental approach is often very expensive.

On the other hand, for theoretical approaches a significant complication in computation of the cross

sections is the presence of vibrational and rotational degrees of freedom that have to be accounted

for an accurate description of the processes. Electronic excitation and ionization of molecules can

be treated theoretically, at least, to some extent in the Born-Oppenheimer approximation or taking

into account the Franck-Condon factor. For other processes, such as rovibrational excitation or

dissociative recombination, non-Born-Oppenheimer effects should be accounted for explicitly.

52



With modern development of electron-scattering methods and abundant computational resources,

it became possible to compute, with an acceptable uncertainty, cross sections for many processes

in electron-ion collisions. Significant progress was made for processes in diatomic ions formed by

light elements: H+
2 [108], HeH+ [108], BeH+ [109], BF+ [110], CH+ [18,30,111,112], SH+ [113],

N+
2 [31,114,115], O+

2 [116] with a few other diatomic ions, and the simplest triatomic ion H+
3 with

its isotopologues [117–121], where non-Born-Oppenheimer effects in electron-ion collisions were

accurately accounted for, typically using a quantum-defect approach combined with rotational and

vibrational frame transformations. With some additional simplifications, such processes as rovi-

brational excitation and dissociative recombination were also successfully described theoretically

for larger molecular ions: CH+
3 [122], H3O+ [122,123], NH+

4 [124], HCO+ [125–131], BF+2 [132],

N2H+ [131], HCNH+ [53, 133–135], CH2NH+
2 [136], and NH2CHOH+ [137].

Theoretically, non-Born-Oppenheimer couplings in electron-ion collisions are treated differently

for the ions with low-energy electronic resonances appearing for geometries near the equilibrium

of the target ion (in a fixed-nuclei picture) and for the ions without such low-energy electronic

resonances. In the former case, usually, the potential energy surface (PES) of the doubly-excited

neutral molecule cross the ionic PES near the equilibrium geometry; in the later case, there is no

such a resonance PES. The ions of the first type usually (not always) have the first excited electronic

state at a relatively low energy, below 5 eV; the ions of the second type have the first excited

electronic state at a higher energy.

The presence of low-energy electronic resonances in the first type of the ions increases significantly,

compared to the ions of the second type, theDR, EE, VE, RE cross sections at low collision energies.

Due to the significant difference in the physics of couplings in electron-ion collisions in the two

types of the ions, one developed two types of approaches. The first approach, developed for DR,

VE, and RE processes and originated from studies by O’Malley [97] and Bardsley [22, 101, 138],

takes into account explicitly the PES crossing. The second approach, based mainly on studies by
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Lee [33], Jungen et al. [139, 140], and Giusti [141] and employed when there is no PES crossing,

accounts for the coupling between the incident electron and the rovibronic Rydberg resonances

of the neutral molecule. In an absence of a PES crossing, such resonances are responsible for

the major contribution to the DR cross section at low energies [117, 141, 142]. This is especially

important for polyatomic ions, listed above. All these ions have a closed electronic shell, the first

excited electronic state at a high energy, and no PES crossing near the equilibrium geometry of the

ions.

There are situations, where there is a PES crossing near the ion equilibrium geometry and, in

addition, there is one or several low-energy electronic resonances in the collisional spectrum.

Many open-shell ions are of this type, for example. The two approaches mentioned above are

not able to describe satisfactory the DR and excitation processes. On the basis of an earlier

theory suggested by Giusti [34, 141], Jungen, Mezei, and Schneider have developed an efficient

approach that can deal with such a situation. The approach was applied to several diatomic ions for

which the dissociative electronic PES of the neutral molecule crosses the ionic PES near the ion

equilibrium [18,143–145]. The approach is based on the quantum-defect theory (QDT), where, in

addition to one or several electronic states of the ion, the dissociative state is explicitly included

into the coupling scheme [34, 141]. Couplings between different electronic states of the target ion

are derived from ab initio calculations of electronic (Rydberg) bound states of the neutral molecule.

Couplings between the ionic and dissociative states are obtained from the autoionization widths

of dissociative states of the neutral molecule (where autoionization is allowed). The widths are

typically obtained in electron-scattering calculations.

The above theoretical approach is the only one able to describe non-Born-Oppenheimer effects on

electron-ion collisions in a presence of coupled electronic channels of the target. One significant

limitation of the approach is the difficulty in obtaining couplings between the electronic states. The

procedure of diabatization of coupled Rydberg states obtained in ab initio calculations, used in the
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approach, is laborious, not unique and sometimes not accurate. It becomes even more ambiguous

and very complicated for polyatomic ions, such that an extension of the approach to polyatomic

ions becomes non-practical.

Here, we propose another approach which combines some of the original ideas from the molecular

quantum defect theory [139, 141, 146], more recent DR and VE studies in polyatomic ions [118,

125, 129, 131, 142], and recent progress in electron-scattering calculations. The approach can be

applied to determine EE, VE, RE, and DR cross sections for a wide range of small polyatomic ions,

including the ions with one or several low-energy excited ionic and/or resonant states of the system.

In this chapter, we focus on the VE process of CH+. However, the treatment can easily be applied

to small polyatomic ions and, with some additions similar to Refs. [34, 141], for the DR process.

3.2 Calculation of the electronic structure, vibrational dynamics and the scattering process

3.2.1 Potential energy curves calculated by Gaussian and Molpro

In this section, we provide details about ab initio calculations of the bound electronic states of

CH+. This ion is formed through a covalence bound between C atom (1s22s22p2) and H+. The

configuration of the ground electronic state is 1σ22σ23σ2. Therefore, the spectral term of the

ground electronic state is X1Σ+. We label the first and second excited states by a3Π and A1Π

due to their electronic configurations 1σ22σ23σ1π with total spin singlet (2S+1 = 1) and triplet

(2S+1 = 3), respectively.

We first made use of Gaussian [147] to compute the potential energy curves and the results are

shown in Fig. 3.1. The upper panel displays the ground electronic state. The red and blue curves

were obtained with cc-pVTZ in QCISD method and 6-311∗ in CISD method, respectively. The

X1Σ+ ground and A1π excited electronic states are both picked up from the work of Biglari et
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Figure 3.1: The ground X1Σ+ electronic state (upper panel) and the excited A1Π electronic state
obtained using CASSCF method with cc-pVTZ and CAS(4,8) (lower panel) by Gaussian
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al. [148] in 2014 as the standard theoretical results, which is obtained by ORCA suite (MRCI

method with cc-pV5Z basis set and CAS(4, 14), see Ref. [148]). The red curve matches with

the standard one of Ref. [148] at the large nuclear distance, while it mismatches in the main well

of the potential curve. On the contrary, the blue curve shows a good agreement in the main well

but has a higher dissociative limit compared with the black curve. In practice, we performed

various calculations including different methods and basis sets but failed to find a potential curve

showing good agreement with the standard one. We also tried to reproduce the potential curve

of the excited A1Π electronic state in the work of Biglari et al. [148]. As shown in the lower

panel, the red curve is obtained using CASSCF method with cc-pVTZ basis set and CAS(4, 8),

where 4 electrons distribute in a CAS with 8 active orbitals (see introduction of the CAS in section

2.1.4). Discrepancy is shown between the computed red curve and the black curve. We tried to use

different basis and method to eliminate the discrepancy but all failed.

Then we turned to Molpro [149] and successfully obtain accurate results for the scattering calcu-

lation. Molpro is a professional multi-reference calculation software package designed by Peter

Knowles and Hans-Joachim Werner [149]. Quadratically convergent MCSCF method and inter-

nally contractedMRCI program are adopted for faster convergence, reduction of computational cost

and highly accurate computations of electronic states. Gaussian is a general purpose computational

chemistry software package released by John Pople [150], in which only HF and MCSCF methods

(or we can say only single-reference methods) are included for electronic structure calculation.

One can find that they release the same results in the HF calculation and MCSCF method, but

Molpro works with higher efficiency on the electronic state calculation, especially for the excited

states, due to the adopted high-level (multi-reference) MRCI method where static and dynamical

electron correlations (see section 2.1.4) are extensively taken into account. Accurate treatments of

excited states therefore became possible. There are also differences in some details. For instance,

Gaussian uses Cartesian coordinate based function (see "Running Gaussian" of Quick Start tutorial

57



for Gaussian), while Molpro uses spherical harmonics (see section 11.2 of the manual for Molpro).

And, the core orbitals are defaulted closed for MCSCF method in Gaussian, however in Molpro,

these orbitals could be manually set to be open, closed or frozen.
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Figure 3.2: Potential energy curves for the X1Σ+ (the black curve), a3Π (the red curve), A1Π (the
blue curve), b3Σ− (the green curve) and c3Σ+ (the purple curve) electronic states of CH+. Four
lowest vibrational levels for the four lowest electronic states are shown by horizontal thin lines in
potential wells of the states. The inset displays the four vibrational states v = 0, 1, 2, 3 of the
X1Σ+ state. The 22Π resonance state for e−-CH+ collision system is plotted as dotted line using
resonance positions with respect to internuclear distance R. The resonance positions are obtained
from fixed-nuclei R-matrix calculations at R from 1.137 bohrs to 1.737 bohrs with an interval of
0.1 bohrs. The dissociation limits are also given in the figure.

The potential energy curvesV (R) of CH+ shown in Fig. 3.2were calculated using theC2v symmetry

point group with a multi-reference configuration interaction (MRCI) method and the cc-pV5Z basis

set (see table 2.4). To be exact, the calculation is carried out in three steps. First we use a HFmethod

(see the Eq. (2.18) in section 2.1.4) to obtained a set of optimized MOs, i.e. the coefficients cui in

Eq. (2.10) of MOs are optimized by variational method iteratively to convergence. These ground

configuration constructed by these MOs will be used in the CASSCF method (see Eq. (2.20) in
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section 2.1.4). We kept the 1σ orbital of carbon doubly occupied and we allow the 4 remaining

electrons to be freely distributed in 14 orbitals, i.e. 2σ -7σ , 1π-3π and 1δ in the complete active

space (CAS). The coefficients cui of the MOs and the expansion coefficients bk of Eq. (2.20) will

be optimized and used in the MRCI method (see Eq. (2.19)). The configurations included in MRCI

method are constructed by the multireference obtained in the CASSCF method using the same

CAS. The calculated potential energy curves of the X1Σ+, a3Π, A1Π, b3Σ− and c3Σ+ electronic

states are shown in Fig. 3.2. The X1Σ+, a3Π, A1Π, and c3Σ+ curves correlate with the C+(2P) +

H(2S) dissociation limit at large internuclear distances.

3.2.2 Vibrational states obtained by DVR method

As we discussed in section 2.2.1, in order to describe the vibronic excitation process of Eq. (2.61),

we determined the vibrational energies Ev and the corresponding vibrational wavefunctions φv (R)

within these electronic states of CH+, we solved the Schrödinger equation of Eq. (2.22) for

vibrational motion along R using the DVR method [43]. The lowest 4 vibrational energy levels

v = 0,1,2,3 in the X1Σ+ state are listed in Table 3.1.

Table 3.1: Comparison of the 4 lowest vibrational energy levels (in eV) of the X1Σ+ state obtained
in this study with the calculations by Biglari et al.

Ref. v = 0 v = 1 v = 2 v = 3
Biglari et al. [148] 0.175218 0.514360 0.838974 1.149288

This work 0.175189 0.514102 0.838515 1.148720
Relative error 0.017% 0.050% 0.055% 0.054%

As one can see, the present computed energies agree well with the theoretical calculations by

Biglari et al. [148]. The corresponding 4 vibrational waves of the ground X1Σ+ electronic state are

displayed in Figure 3.3 and one also in the inset of the Fig. 3.2.
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Figure 3.3: The four vibrational states v = 0, 1, 2, 3 of the ground X1Σ+ electronic state.

3.2.3 Scattering calculations for e−-CH+ collision.

In order to describe transition between a vibronic level to another one of the target, we carried

out the e−-CH+ scattering calculations using R-matrix method [57] (see section 2.3.1) through the

Quantemol-N interface [151] which provides an expert interface for driving the highly sophisticated

UK molecular R-matrix code [152]. The CAS configuration interaction (CI) method in the C2v

abelian subgroup were used in the calculations. The inner orbital 1a2
1 of CH+ was frozen, and 4

external electronswere distributed in the space of the [2a1,3a1,4a1,5a1,6a1,7a1,8a1,1b1,2b1,3b1,

1b2,2b2,3b2,1a2] orbitals (2σ ,3σ ,4σ ,5σ ,6σ ,7σ ,1π,2π,3π,1δ in C∞v symmetry group). We

chose a R-matrix sphere of radius r0 = 13 bohrs (see Fig. 2.4) and continuum Gaussian-type

orbitals with partial waves l ≤ 4. As we mentioned in section 2.3.1, this means we will have 25

partial waves, i.e. 25 possible lλ values. The two different R-matrix calculations described in the

following section 3.3; closed-coupling expansions with 3 and 14 lowest electronic states of CH+

were used for constructing the total wavefunctions for the e−-CH+ system (see Eq. (2.41)). In the

60



vibrational frame transformation of Eq. (2.60), the electron scattering calculations were performed

in the interval between 1.537 and 3.937 bohrs with a step of 0.1 bohrs along the internuclear

coordinate R. Note that the center-of-mass frame are adopted in the R-matrix calculation. Namely,

the origin of the input coordinate of the target molecular ion should locate at the center of mass of

the target. To make sure that the origin is put at the center of mass, we just need to click the button

"move to the center of mass" in the input interface of Quantemol. While for Molpro, it doesn’t

matter since the origin will be automatically moved to the center of mass. The obtained potential

energies are the same and only behaviour as a function of internuclear distance R.

3.3 Theoretical approach

3.3.1 QDT description of electronic resonances

In the theoretical method employed in the present study, one needs scattering matrices obtained

numerically for fixed geometries of the target ion. The scattering matrices are obtained using the

UK R-matrix code [57] as described in the above section, where we outlined the details of the

numerical calculations using the R-matrix code for e−-CH+ collisions.

A theoretical description of low-energy e−-CH+ collisions is complicated due to the presence of a

low energy electronic 22Π resonance (detailed discussion about this state could be seen in chapter

4) and several low-energy excited electronic states of CH+ [24, 29, 30] (see Fig. 3.2). The excited

ionic states produce series of Rydberg resonances (see section 2.5.1) that influence all collisional

processes. In this situation, the standard vibrational-frame-transformation approach by Chang and

Fano [85], used in many theoretical studies on electron-molecule collisions [91, 146], is not well

adapted: The approach requires that the scattering matrix or, alternatively, the matrix of quantum

defects, obtained for fixed inter-nuclear positions (in the Born-Oppenheimer approximation), to
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be a smooth function of the collision energy – ideally, to be energy independent. However, the

presence of the 22Π resonance and the low-energy excited electronic states makes the fixed-nuclei

scattering matrix to be strongly energy dependent. This is demonstrated in Figure 3.4 showing the

eigenphase sums of the three symmetries 2Σ+, 2Π and 2Σ− of the e−-CH+ system computed at the

equilibrium Re = 2.137 bohrs. Several series of Rydberg resonances (see section 2.5.1) converge

to the electronic states a3Π and A1Π as marked by the blue vertical lines in Fig. 3.4.

0

50

100

150

200

3 states calculation
14 states calculation

0

50

100

150

ei
g

en
p

h
as

e 
su

m
 (

ra
d

)

0 1 2 3 4
electron scattering energy (eV)

0

50

100

150

200

2
Σ

+

2
Π

2
Σ

-

a
3
Π A

1
Π

Figure 3.4: The eigenphase sum for three symmetries 2Σ+, 2Π and 2Σ− of the e−-CH+ obtained
for the equilibrium internuclear distance Re = 2.137 bohrs in two different calculations: Black solid
curves show the results obtained taking into account only three lowest electronic states of CH+

while red dashed curves are obtained with 14 states.

To describe low-energy electronic resonances, in different e−-CH+ scattering processes, we use

the MQDT approach and need an energy-independent scattering matrix. This matrix includes not

only the ground electronic state of CH+ but also a few more states because of the low-lying excited

electronic states within the energy range of interest (up to 4 eV discussed in the introduction section).

These states can produce resonances at scattering energies of the interest. In the e−-CH+ case
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low-energy resonances are well reproduced if one takes into account only three electronic states of

the ion. Figure 3.4 shows the eigenphase sums of three symmetries 2Σ+, 2Π and 2Σ− of the e−-CH+

obtained at equilibrium in 3 states (black solid curve) and 14 states (red dashed curve) calculations

(described in section 3.2.3). In one calculation (black solid curves), only the three lowest X1Σ+,

a3Π and A1Π states are included. In the other calculation (red dashed lines) 14 lowest states were

included. Numerous of low-energy resonances are on the curves in the two calculations. Below the

threshold of the A1Π state marked by bold blue curve, generally good agreement between the two

calculations could be observed. Above that threshold, the eigenphase sum in 14 states calculations

shows slight fluctuation, whereas a plateau for that in 3 states calculations.

To clearly compare the resonance structures, we make the derivatives of the eigenphase sums of

those two calculations shown in Fig. 3.4 and exhibit the derivatives in Fig. 3.5 (see section 2.3

with discussion of definition of eigenphase sum and the way of deriving the resonances used in this

thesis). As one can see, at low energies, below the A1Π ionization limit, the two calculations agree

quite well with each other. In the second calculation with a larger number of ionic states, there

are a few narrow resonances at low scattering energies that are not reproduced in the first, smaller

calculation. These resonances are attached to very excited electronic states of the ion and do not

influence significantly the low-energy spectrum.

Therefore, the electronic scattering matrix at low energies could be well represented by the three

states X1Σ+, a3Π and A1Π of the ion. With this set of electronic states, the above-mentioned 22Π

resonance is included in the scattering model. Note that the negative derivatives of the eigenphase

are eliminated. Fig. 3.6 shows the eigenphase of 2Π symmetry at the equilibrium in the upper

panel and derivative of the eigenphase of 2Π symmetry in the lower one. One can see the negative

derivative values using the straightforward derivative dσ

dE (the black curve). In our treatment, we

added π to ensure the continuity of the derivative of δ (Eel).
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In order to account for vibrational and rotational excitation (for further work) of the target, the

standard MQDT approach is to use vibrational and rotational frame transformations [85,139]. The

approach is applicable only if the electronic scattering matrix, obtained for a number of different

geometries of the ion, is energy independent. As Fig. 3.5 demonstrates, the e−–CH+ scattering

matrix depends strongly on energy below the A1Π ionization limit and its dimension changes from

1×1 to 3×3 (above the A1π state). Namely, the scattering matrix cannot be immediately used in

the frame transformation. A possible solution is to take the (almost) energy-independent scattering

matrix, obtained at an energy above the A1Π ionization limit, and use it at energies below the

limit. Therefore, the vibrational (and rotational) frame transformation is performed on a 3× 3

electronic scattering matrix (the X1Σ+, a3Π, and A1Π three electronic states), which produces a

N×N matrix with N vibronic (rovibronic) channels. Technically, N should be 25 partial waves

(as stated in section 2.3.1) multiplying 3 electronic states. Such a rovibronic scattering matrix is
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essentially energy-independent and a QDT closed-channel elimination procedure [93, 94] should

be performed to obtain the physical energy-dependent matrix, used to compute cross sections for

various processes.

0

50

100

150
ei

g
en

p
h
as

e 
(r

ad
)

0 2
electron scattering energy (eV)

-2000

-1000

0

1000

2000

3000

d
er

iv
at

iv
e 

o
f 

ei
g
en

p
h
as

e 
(r

ad
/e

V
)

straightforward derivative of eigenphase

derivative of eigenphase pluse π

2
Π symmetry

R=2.137 bohrs

Figure 3.6: The upper panel shows the eigenphase sum for 2Π symmetry of three states calculation
at Re = 2.137 bohrs. The bottom panel shows its derivative: Black solid curves show the results
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3.3.2 Electronic excitation of CH+

Before discussing the vibronic frame transformation applied to the e−-CH+ collisions, we compare

the fixed-nuclei electronic scattering matrices obtained (1) using the elimination procedure of the

closed electronic states and by (2) a direct scattering R-matrix calculation at the same internuclear

distance.

The elimination of closed electronic channels at a geometry R is given by Eq. (2.72) [93, 94].

In that equation, Eel is the scattering energy and Soo, Soc, Scc, and Sco are submatrices of the
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weakly-dependent electronic scattering matrix S(Eel,Re) (3×3 in the present case of the e−–CH+

system). Eel is used here to represent the electron scattering energy. As shown in Eq. (2.62), the

total energy of the collisional system E is the sum of the Eel and initial ground-state E00 (which

are set as the zero point energy). In the case of electronic excitation, we assume energy Ei=0(Re)

of the ground electronic state at Re as the zero point energy. Thus we have E = Eel and we will

still use Eel in the following parts of the thesis. The matrix elements are partitioned according to

Eq. (2.71) in the “o”- and “c”- parts on the basis whether the corresponding channel are open or

closed for excitation for the particular scattering energy Eel. The quantity of β (Eel) in Eq. (2.72) is

a diagonal Nc×Nc matrix and expressed by Eq. (2.73). But the Evi is substituted by Ei(Re) which

denotes the energy values of the ith electronic states at internuclear distance Re.
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Figure 3.7 shows derivatives of eigenphase sums obtained from the scattering matrices computed
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at the equilibrium distance Re. The red dashed curve is the result from the R-matrix calculation

while the black solid curve is channel elimination method using using the energy-independent 3×3

electronic scattering matrix. Overall, positions of the resonances in the two calculations are the

same but widths in the R-matrix calculation are wider as seen in the inset of Fig. 3.7. This means

that diagonal elements of the scattering matrices in the two calculations are very similar but the

non-diagonal elements, responsible for channel couplings and widths of the resonances, are slightly

different, suggesting that highly-excited electronic states, neglected in the 3×3 channel elimination

procedure, have non-negligible contributions to the coupling between the lowest channels. Note

that π was added to ensure the continuity of the derivative of the eigenphase.
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Figure 3.8: Comparison of eigenphase-sum derivatives computed for a fixed CH+ geometry using
three different energy-independent 3× 3 scattering matrices and the procedure of elimination of
closed electronic channels. The three matrices are taken at energies 3.413 eV (black solid curve),
3.563 eV (red dashed curve) and 3.713 eV (green dotted curve). The inset shows an enlarged view
for 2.1–2.4 eV energies.

The choice of the 3×3 scattering matrix used in the channel-elimination procedure is not unique,

because the matrix depends on energy, even above the A1Π electronic state. To assess the result
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of uncertainty in the choice of the energy at which the 3×3 scattering matrix is taken, we plot in

Fig. 3.8 eigenphase-sum derivatives obtained for 3×3 scattering matrices taken at three different

energies above the A1Π state: at 3.413, 3.563, and 3.713 eV. Positions and the widths of the

resonances are nearly the same in the three calculations.

An important conclusion from the results discussed above is that the e−−CH+ scattering physics

below the A1Π state can be represented using an energy independent multichannel scattering

matrix evaluated at a higher energy, above the A1Π ionization limit in a combination with the

closed-channel elimination.

A rough idea about the magnitude of cross sections for electron-impact electronic excitation of

a molecule is obtained from a fixed-geometry calculation. Here, for a comparison between the

MQDT and direct R-matrix approaches, we present such excitation cross sections. The vibrational

dynamics during the process is discussed in the next section.
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Figure 3.9: Cross sections for the X1Σ+→ a3Π electronic excitation of CH+ at a fixed geometry
Re obtained in the direct R-matrix calculations (red dashed curve) and using the QDT channel
elimination procedure (black solid curve).
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Using the physical scattering matrix Sphys (Eel,Re) of Eq. (2.72) describing electronic transitions

at the equilibrium geometry Re of CH+, cross sections σi′,i of the electronic excitation from the

X1Σ+ state to the a3Π state can be evaluated in the QDT approach as Eq. (2.74) [118]. In that

expression, element of the scattering matrix Sphys
l′λ ′v′i′,lλvi(Eel) is replaced by Sphys

l′λ ′i′,lλ i (Eel,Re) where

i and i′ refer to the initial (X1Σ+ in this case) and final (a3Π here) electronic states. The indexes lλ

and l′λ ′ numerate initial and final angular momenta and their projections in the molecular reference

frame (where ab initio calculations are performed). The cross section in the R-matrix approach is

obtained by the same formula, except that the scattering matrix in the above equation is replaced

with the one obtained directly in the R-matrix calculations at the corresponding energy Eel.

Figure 3.9 compares the cross sections for the X1Σ+ → a3Π transition obtained in the two ap-

proaches. The general agreement between the two curves is good, even for the widths of the

resonances. One noticeable difference is in the position of the minimum near 1.5 eV: In the QDT

calculations it is shifted slightly to the left. The agreement is better at energies approaching the

A1Π ionization limit.

Another difference is seen at scattering energy of∼ 2.25 eV that our computed cross section shows

double resonances. The selected S(Eel,Re) describing the collisional system is in four symmetries,

including 2Σ+ (2A1), 2Π (2B1/
2B2) and 2Σ− (2A2) of the e−-CH+ system. Its symmetry is identified

by the symmetry of target state denoted by i and the partial wave represented by lλ of the scattering

electron. For example, when the symmetry of target state is B1 and scattering electron is a1, then

the scattering matrix will be in in B1 symmetry. This is also found in Table 2.3. To locate the origin

of the double resonances, we computed the electronic excitation cross section using the selected

scattering matrix elements Sl′λ ′i′,lλ i(Eel,Re) for separate symmetries of the collisional system. The

computed results are shown in Fig. 3.10. The double-resonance part in the dashed cyan box was

enlarged in the inset. As we can clearly see the double resonances are from 2Σ+ (2A1) symmetry.
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Figure 3.10: Cross sections for the X1Σ+→ a3Π electronic excitation of CH+ at a fixed geometry
Re obtained by QDT channel elimination procedure (black solid curve) using the selected S-matrix
in four different symmetries of the collisional system. Inset shows the enlarged view of the double
resonances within 2-2.5 eV interval.

Table 3.2: Symmetries of the the involved lowestX1Σ+, a3Π andA1Π three electronic states of CH+

and the scattering electron in C2v point group. One may have a better understanding combining
Table 2.3

Symmetry of the target Γ
target
C2v

Symmetry of the scattering electron Γel
C2v

X1Σ+ A1 a1 a2 b1 b2

a3Π
B1 b1 b2 a1 a2
B2 b2 b1 a2 a1

A1Π
B2 b2 b1 a2 a1
B1 b1 b2 a1 a2

Total symmetry: Γtotal
C2v

= Γ
target
C2v

⊗
Γel

C2v
2A1

2A2
2B1

2B2

As we described above, the S(Eel,Re) is selected above the A1Π state at the equilibrium. Thus,

the lowest X1Σ+ (i = 0), a3Π (i = 1) and A1Π (i = 2) three electronic states of the target are

referred as the electronic channels and included in the selected S-matrix. Here we give symmetries

of the involved target states and the scattering electron in C2v point group as shown in Table 3.2.

The symmetries of the X1Σ+, a3Π and A1Π target states corresponds respectively to A1, B1/B2
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and B1/B2. Coupling with the symmetries of the scattering electron, the total symmetries of the

collisional system are shown in the bottom line of the table: 2A1, 2A2, 2B1 and 2B2. As we see from

Fig. 3.10, the double resonances are from the cross section computed by the S-matrix elements

of 2A1 total symmetry. And one can see that the position of the double resonances is above the

threshold of the first excited a3Π electronic state but below the threshold of the second excited A1Π

electronic state of CH+. This suggests that the double resonances are recovered by the closed A1Π

electronic channel. We thus guess that there are differences in the S-matrix elements describing

the electron-induced coupling of the X1Σ+ ground state and the degenerate states of the A1Π.
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Figure 3.11: Cross sections for the X1Σ+→ a3Π electronic excitation of CH+ at a fixed geometry
Re obtained in the direct R-matrix calculations (red dashed curve) and the QDT channel elimination
procedure (black solid curve). The selected S-matrix elements describing the electron collision
with degenerate states of the A1Π are averaged over real and imaginary parts, respectively.

To fix the problem, we made an average over the selected S-matrix elements describing the electron
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collision with degenerate states of the A1Π using

Sb1B1,a1A1 = Sb2B2,a1A1 = (Sb1B1,a1A1 +Sb2B2,a1A1)/2 (3.1)

where the subscript is the symmetry of the electron Γelectron
C2v

and the target Γ
target
C2v

(see Table 2.3).

One has to note that the average is performed over the real and imaginary parts, respectively. Then

we tried to compute the cross section using the averaged S-matrix. Figure 3.11 compares the cross

sections for the X1Σ+→ a3Π transition obtained in the two approaches. As one can see that the

double resonances are eliminated successfully. However, we didn’t use this average operation in

the calculation of the cross section for vibronic excitation because the resulted rate constants are

slightly affected. On the other hand, the average of the scattering matrix is not a robust solution

which may influence the unitarity of the transformed scattering matrix.

Differences observed in the cross sections obtained by the two methods (R-matrix and QDT

elimination procedure) are smeared out in the thermally-averaged rate coefficient αi′,i(T,Re) using

Eq. (2.75) computed from the cross sections σi′,i(Eel,Re). The obtained rate coefficients, shown

in Fig. 3.12, are matching with each other. This confirms that major couplings between electronic

channels are accurately represented in the QDT approach and validates the approach.

3.4 Cross sections and rate coefficients for vibronic excitation

Once the method validated with the R-matrix calculations, we performed scattering calculations

for different geometries of the CH+ target. The energy-dependent physical scattering matrix for

vibronic transitions is obtained in two steps. First, one computes the energy-independent vibronic

scattering matrix assuming that all vibronic channels are open. On the second step, an elimination

of closed vibronic channels is applied to produce the required energy-dependent vibronic scattering
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Figure 3.12: The rate coefficients for the X1Σ+→ a3Π electronic excitation of CH+ at Re obtained
in the direct R-matrix calculations (red dashed curve) and the QDT channel elimination procedure
(black solid curve).

matrix.

The first step is performed by the vibronic frame transformation using Eq. (2.74). An integration

runs over the vibrational coordinateR. On the second step, the energy-dependent physical scattering

matrix Sphys(Eel) is obtained by the QDT vibronic closed-channel elimination procedure, described

by Eqs. (2.72) and (2.73). The cross sections σv′i′,vi (Eel) for vibronic (de-) excitation of CH+ are

computed using Eq. (2.74).

Figure 3.13 illustrates cross sections obtained for different combinations of initial and final vibronic

states. Panel (a) shows results for pure vibrational excitations between levels of the ground electronic

state X1Σ+. As expected, the cross section for the transition with ∆v = 1 is the largest one between

inelastic processes. Panel (b) gives cross sections from the ground vibronic state X1Σ+,v = 0 to

several vibrational levels of the a3Π state. Since the potential curves of the X1Σ+ and a3Π states
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Figure 3.13: Cross sections for vibronic excitations of CH+ from the ground vibrational level
v = 0 of the X1Σ+ state to v = 1,2,3 of the X1Σ+ state (left panel) , to v = 0,1,2,3 of the a3Π state
(middle panel), and for vibronic de-excitations from the ground vibrational level v = 0 of a3Π to
v = 0,1,2,3 of the X1Σ+ state (right panel).

have similar shapes near the equilibrium, the largest X1Σ+→ a3Π cross section is expected to be

for ∆v = 0, as the present calculation indeed demonstrated. Panel (c) gives cross sections for the

de-excitation process a3Π,v = 0→ X1Σ+,v′ = 0−3.

As pointed out in section 3.2.3 that one has to pay attention that center-of-mass frame should be

used in the R-matrix calculations. Since the computed results using center-of-Carbon frame may

show big differences, as seen in Fig. 3.14. The cross section for the vibronic excitation from v = 0

of the X1Σ+ state to v = 2 and v = 3 of the a3Π state exhibit more than 20% discrepancies.

Cross sections for vibronic excitations were recently estimated by Chakrabarti et al. [111] using an

approximated theoretical approach, inwhich cross sections for electronic excitations computed at the

CH+ equilibrium geometry were multiplied with Franck-Condon overlaps for various combinations

of initial and final vibrational levels to obtain the cross sections for vibronic transitions. In that

study, electronic differences in vibrational excitation energies were neglected as well as the vibronic

Feshbach resonances. The cross sections obtained in Ref. [111] differ significantly – more than an

order of magnitude for several transitions – from the present results as shown in Fig. 3.15.
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Figure 3.14: Comparision of the computed cross sections by center-of-mass frame (in bold curves)
and center-of-Carbon frame (in dashed thin curves). For clarity, Fig. 3.14 only shows the cross
sections of the middle panel of Fig. 3.13.

We give the comparison between cross sections of v = 0 of the X1Σ+ state to v = 1,2,3 of the a3Π

state obtained by Chakrabarti et al. and the computed results using our approach in this thesis.

Big difference is clearly observed. The cross sections for the three excitations initiate from an

identical electron scattering energy about 1.14 eV. This seems hard to understand physically since

thresholds of different vibrational excitations shift (increase or decrease). Furthermore, the shapes

of the three cross section curves remain unchanged. This is due to a straightforward multiplying

the cross sections for electronic excitation of the X1Σ+ state to the a3Π state with Franck-Condon

factors between the considered vibrational states. We attribute the disagreement to the mentioned

approximations employed in [111]: (1) neglected differences in vibrational excitation threshold

energies, (2) neglected dependence of e−–CH+ scattering parameters with the internuclear distance,

and (3) the neglected resonances in closed vibronic channels.
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Figure 3.15: Comparision of the cross sections of v = 0 of the X1Σ+ state to v = 1,2,3 of the a3Π

state obtained by Chakrabarti et al. and the present results.

10
2

10
3

10
4

temperature (K)

10
-13

10
-12

10
-11

10
-10

10
-9

10
-8

10
-7

ra
te

 c
o
e
ff

ic
ie

n
t 

(c
m

3
/s

)

ν’=1
ν’=2

ν’=3

X
1
Σ

+
,ν=0 → ν’=0-3

(a)

10
3

10
4

temperature (K)

10
-13

10
-12

10
-11

10
-10

10
-9

10
-8

10
-7

ν’=1

ν’=2

ν’=3

X
1
Σ

+
,ν=0 → a

3
Π,ν’=0-3

ν’=0

(b)

10
2

10
3

10
4

temperature (K)

10
-9

10
-8

10
-7

10
-6

ν’=0

ν’=1

ν’=2

a
3
Π,ν=0 → X

1
Σ

+
,ν’=0-3

ν’=3

(c)

Figure 3.16: Rate coefficients for same vibronic transitions as shown in Fig. 3.13.

Thermally-averaged rate coefficients αv′i′,vi (T ) of these vibronic (de-) excitations from 10 K to

40000 K are then computed using Eq. (2.75). Figure 3.16 shows computed rate coefficients for the

same transitions as the cross sections in Fig. 3.13.

As previous studies [38,89,100,153] and for convenience of use, the computed thermally-averaged
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rate coefficients αv′i′←vi were fitted using the following analytical formula,

α
f it

v′i′←vi(T ) =
1√
T

e−
∆v′i′,vi

T P f it
v′i′,vi(x) (3.2)

where P f it
v′i′,vi(x) is a quadratic polynomial

P f it
v′i′,vi (x) = a0 +a1x+a2x2 and x = ln(T ) (3.3)

with P f it
v′i′,vi (x)≈ P f it

vi,v′i′ (x). This quantity could be viewed as the (de-)excitation probability. ∆v′i′,vi

in Eq. (3.2) is the threshold energy defined as

∆v′i′,vi =


Ev′i′−Evi > 0 for excitation,

0 for de-excitation.
(3.4)

Numerically fitted parameters for vibronic transitions are given in Tables A.1-A.6 in the Appendix

A. When the parameters given in the tables are used in the fitting formulas of Eqs. (3.2) and (3.3)

with T in K, obtained numerical values of rate coefficients will be in units of cm3/s. In the tables,

the electronic states are numerated with index i (or i′) with i = 0 corresponding to X1Σ+, i = 1 to

a3Π, and i = 2 to A1Π.

3.6 Uncertainty estimations: choice of basis sets and CAS in the R-matrix method

The scattering matrix is the main uncertainties resource for the resulted cross sections. In section

3.3, we underlined that the selection of the S-matrix is not unique and we could have very close

resonance structures reproduced by MQDT elimination procedure as shown in Fig. 3.8. Here

we estimate the uncertainties of the results through showing the convergence of the scattering
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calculation. The basis set and CAS are varied to test the convergence of the calculations. We

performed the calculations in the frame of (1) 4 active electrons are distributed in a fixed number

of active orbitals with increased basis sets:cc-pVDZ, DZP, cc-pVTZ, and cc-pVQZ, and (2) 4

active electrons are distributed in the increased active orbitals: CAS(4, 5), CAS(4, 6), CAS(4, 7),

CAS(4, 9), CAS(4, 10), CAS(4, 12) and CAS(4, 14) with a same basis set, at the fixed equilibrium

geometry Re. The primary step for a scattering calculation is the description of electronic structure

for the target ion. Therefore, we need first find out the accurate (close to experimental values) and

convergent electronic structure calculation. The CAS and Basis set used in the this calculation are

considered for the R-matrix calculations for e−-CH+ collisional system.
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Figure 3.17: Potential energy for the ground electronic state obtained fromUKR-matrix calculation
at the equilibrium geometry Re.

As displayed in Fig. 3.17, the potential energy values for theX1Σ+ ground electronic state decreased

with the increasing CAS and converged from CAS(4, 12) for all the used basis sets. The dipole

moment value of CH+ has the same behavior that converged from CAS(4, 12) as depicted in Fig.

3.18, suggesting that CAS(4, 12) and CAS(4, 14) are suitable for the final calculation.
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Table 3.3: Comparison of the vertical transition energies for the lowest three electronic states
obtained by Quantemol. The comparison of the ground state dipole moment at the equilibrium Re
are also shown.

States cc-pVDZ DZP cc-pVTZ cc-pVQZ Theory [148] Exp. [154]
X1Σ+ 0.00 0.00 0.00 0.00 0.00 0.00
a3Π 1.06 eV 1.05 eV 1.12 eV 1.19 eV 1.20 eV 1.21 eV [155]
A1Π 3.23 eV 3.25 eV 3.34 eV 3.42 eV 3.00 eV 3.00 eV

Dipole moment 1.659 1.633 1.607 1.617 1.653 [156] 1.683 [154]
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Figure 3.18: Dipole moment of CH+ obtained with different CAS and basis set at the equilibrium
geometry Re.

We further give the vertical transition energies as seen in the Table 3.3, our results obtained with

cc-pVTZ and cc-pVQZ basis sets in CAS(4, 12) are in good agreement with those of Biglari’s [148]

and experimental data. Considering the dipole moment 1.617 D obtained with cc-pVQZ is closer

to the experimental value of 1.683 D, cc-pVQZ and CAS(4, 12) are thus selected for the scattering

calculation.
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Figure 3.19: Eigenphase sum for 2A1 symmetry of e−-CH+ system obtained by cc-pVTZ and
cc-pVQZ with the same CAS(4, 12) at Re (left panel). The resonance structure at the low-energy
part is enlarged in the right panel.

Consistence of the resonance position is another demonstration of the stability of the scattering

model. Figure 3.19 displayed the eigenphase sum for 2A1 symmetry of e−-CH+ system in the left

panel. Two basis sets cc-pVTZ and cc-pVQZ with a same CAS(4, 12) are used. The calculations

are performed at fixed equilibrium geometry Re. As we can see in the enlarged picture of the right

panel, peaks are on two curves. The density of peaks increases when the electronic scattering

energy approaches to the first excited threshold energy.

For the sake of visibility, the resonance positions on the curves were determined by derivative

of the eigenphase sum over the scattering energy ∂δ

∂Eel
as shown in Fig. 3.20 for 2A1 symmetry.

As outlined by the black dashed line, the positions of the resonance at low energy are generally

consistent for the two basis sets. The scattering model with cc-pVQZ basis set in CAS(4, 14) was

therefore used to produce reliable K-matrix.
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Figure 3.20: Resonance position of 2A1 symmetry at Re.

3.7 Conclusions

In this chapter, cross sections and rate coefficients for vibronic excitation and de-excitation of

CH+ by electron impact were computed using first principal theoretical approach. The theoretical

approach combines the fixed-nuclei scattering matrices obtained for a number of internuclear

distances using the UK R-matrix code, the vibronic frame transformation, and the QDT closed-

channel elimination procedure. The approach is validated for electronic excitation processes, where

calculations were performed for a single fixed internuclear distance of the target, and compared to

the results obtained with the UK R-matrix code. The approach could be applied to the ions with

low-lying electronic excited states. Such ions were known to be difficult to treat theoretically using

previous theoretical methods. There is a large number of radicals that could be, in principle, be

considered using the suggested approach. The approach is quite general and can be applied for a

number of different processes, taking place in collisions of molecular ions with electrons, including

rovibronic excitation, dissociative excitation (DE), photoionization and dissociative recombination

(DR).
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In this chapter, we took into account only electronic and vibrational structure of the target ion. The

rotational structure of each vibrational level was neglected. Therefore, the obtained cross sections

and rate coefficients should be viewed as averaged over initial rotational states and summed over

final rotational states of the corresponding vibrational states. A better treatment of the vibronic

excitation process accounting for the rotational structure is possible and will be considered in a near

future. As seen in Eq. (1.1), the cross sections and rate constants for vibronic excitation of CH+ are

the necessary data for the kinetic modeling of the plasma. This is actually the first quantitatively

computation of the vibronic excitation of CH+ by electron impact.
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CHAPTER 4: Dissociative recombination of CH+ by electron impact

4.1 Introduction

As we stated in the introduction of chapter 3, dissociative recombination (DR) competes with

vibrational transition and both the processes could be treated in the same MQDT framework that

has been described in chapter 3. However, to evaluate the DR cross sections, we have to introduce

the outgoing-wave basis functions defined by CAP to account for the dissociation flux in the DR

process. The flux lost through the vibrational continua states of the neutral Rydberg state that are

associated with the outgoing-wave basis introduced as closed ionization channels. In this chapter,

we will present the theoretical approach for low-energy DR of CH+ in details.

Electron-molecular ion collisional systems in a DR treatment could be theoretically divided into

two catalogs, the curve crossing and non-crossing system [157]. In the former case, the potential

energy curve (PEC) of the doubly excited neutral molecule crosses the ionic PEC. The direct DR

is generally dominant. This is the often case, but one also needs to note that indirect process

may play a important role in enhancing the DR with respect to direct pathway. The stepwise

MQDT method based on the treatment presented by Giusti-Suzor and Guberman [34, 158] has

shown to be the most successful way in description of the DR for such systems, e. g. N+
2 [31],

O+
2 [116], NO+ [32, 159], CO+ [144], BF+ [160], CF+ [161], BeH+ [162, 163], SH+ [113],

OH+ [164], CH+ [18, 29, 30, 112]. The least inputs for this approach are PEC of the ionic ground

electronic state with vibrational states and the crossed dissociative states of the neutral molecule,

electronic couplings between these neutral dissociative states and the Rydberg series converging

to the ground ionic state, and R-dependent quantum defects of the considered Rydberg states. For

a DR calculation including multiple ionic states, the Rydberg-Rydberg couplings describing the

coupling between different ionization channels are also needed. In the later type, the crossing does
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not occur where non-Born-Oppenheimer interactions drive the DR through excited states. In such

case, the indirect DR is normally dominant. The above mentioned method could not be properly

applied due to the failed description in terms of quasi-diabatic states. A convenient Siegert MQDT

method was introduced by Hamilton and Greene in 2002 [46] to compute the DR rate for the

non-crossing systems based that Siegert pseudostates allow the description of the outgoing flux in

predissociation. They applied the method to H+
2 and accurately reproduced results compared with

that of O’Malley [97]. Several years later, they developed an alternative MQDT method with a

CAP defining the outgoing-wave vibrational states [107]. Compare with Siegert pseudostate [45],

CAP eigenstates obey a simpler orthonormality relationship and work better on preservation of the

eigenphases of the MQDT transformed scattering matrix. The methods has also found success in

applying on LiH+ [165], HeH+ [166], and even triatomic molecular ions H+
3 [118, 119].

For various molecular ions with low-lying bound excited electronic state that usually belong to the

first type, the stepwise MQDT method serves currently as the only available treatment. However,

one significant limitation of the treatment is the difficulty in obtaining the electronic couplings.

The procedure through diabatization of coupled Rydberg states (i.e. using the quasi-adiabatic

states [167]) obtained in ab initio calculations, used in the approach, is laborious, not unique, and

sometimes not accurate. It becomes even more ambiguous and very complicated for polyatomic

ions, such that an extension of the approach to polyatomic ions becomes impractical.

Therefore, we aim to make an attempt to develop a simple approach to compute the DR cross

sections of the curve crossing systems in this chapter. In chapter 3, we developed the theoretical

approach in the MQDT framework to describe the electron collision with such molecular ions and

successfully applied to the study of the vibronic excitations of CH+. In particular, the neutral

doubly excited dissociative state in the electron collision with molecular ions of this type is usually

of Rydberg character, especially at a short internuclear distance. This fact suggests that the

neutral dissociative state may appear as Rydberg resonances in the electron-ion collisional process.
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This kind of resonances could be, as we know, reproduced by MQDT electronic close-channel

elimination procedure. The electronic coupling between the initial continuum state of electron-ion

collisional system and the neutral dissociative (resonance) state could thus be included in scattering

matrix with the help of elimination procedure. In other word, we don’t need to explicitly obtain

the PECs of neutral dissocitive (resonance) states as the method introduced above for the curve

crossing system. Particularly, we applied this approach using the MQDT treatment in conjunction

with CAP basis 1 based on our previous study in chapter 3 to the low-energy DR of ground-state

CH+.

The DR process of CH+ has been repeatedly studied over the years in theory and experiment.

It is the main destructive way of CH+, which serves as a cornerstone in the formation chain of

other complex interstellar molecule, especially polyatomic hydrocarbon. On the other hand, a good

knowledge of the rate for the process is the key to reconcile the calculated and observed abundance

of the interstellar CH+.

In the early studies, Bardsley and Junker [22] and Krauss and Julienne [23] calculated the adiabatic

PECs of CH and CH+ with different theoretical techniques. They found that the PEC of the

repulsive “2Π(3)” state of CH (see Fig. 1 of Ref. [22, 23]) intersects the PEC of the ground

electronic state of CH+ near the equilibrium internuclear distance. CH in the "2Π(3)" state formed

by low-energy e−-CH+ collision would finally dissociate to C(1D)+H(2S) through a coupling to

"2Π(2)" state by the avoided crossing (see Fig. 1 of Ref. [22]). Both groups evaluated a rapid

DR occurred with a rate of > 10−7 cm3s−1 at 100 K. The conclusion brought the problem that the

calculated equilibrium intensity of interstellar CH+ in the steady-state chemistry model of Smith,

Liszt, and Lutz [168] is over 100 times smaller than observed. A few years later, Giusti-Suzor

and Lefebre-Brion [24] offered an opposite estimation of a considerably reduced DR rate. They

1The outgoing-wave basis functions defined by a CAP
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considered Rydberg-type orbitals in the PECs calculations of CH. The resulted PECs showed no

cross between "2Π" dissociative states and the ionic ground state. A better agreement between the

predictions and measurements could be deduced with this small DR rate.

However, the fast DR rate conclusion seems to be supported by the preliminary experimental

values of CH+ DR rate with about 3×10−7 cm3 at 120 K measured by a merged electron-ion beam

method [169,170].

The remained controversy was carefully investigated by Takagi et al. in 1991 [29] using self-

consistent field and the multi-configuration mixing methods. They pointed out that the Rydberg

character basis functions used by Giusti-Suzor and Lefebre-Brion [24] are inadequate to represent

the highly excited states around the ionization threshold. Slater-type orbitals (STOs), describing

better the diffuse states than theGaussian, are used in the calculations of theRydberg series. Diabatic

PEC of a neutral anti-bonding state in "2Π" symmetry was appointed as the main dissociative

channel for CH+ at low scattering energy. The crossing point with PEC of the ionic ground state

is at R = 1.832 a0, within the main Frank-Condon region. The DR rate was for the first time

quantitatively computed by a two-step MQDT treatment. The obtained results agree well with the

experimental measurements [169]. The calculation of CH+ DR cross section, however, is limited

to the electron scattering energy below 0.30 eV.

With the improved heavy-ion storage-ring technique, a very detailed experimental study on the DR

of the fully-relaxed CH+ was carried out by Amitay et al. in 1996 [155]. Branch ratio of the DR

fragments was also reported with the help of two-dimensional fragment imaging. The measured

DR cross section is in line with previous estimations and of rich resonance. The fast DR rate

was attributed to the crossing between the "22Π" dissociative state of CH and the ionic ground

state. However, unusual broad resonance structures presented in the DR cross section. Considering

the low-lying excited states of CH+, they tentatively assigned the resonances to the core-excited
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Rydberg states.

To identify the observed broad resonances, Carata et al. [30] performed an elaborate MQDT

calculation of CH+ DR at low energy. The Rydberg manifolds converging to the X1Σ+ ground

electronic state and the next two a3Π and A1Π excited states of the ion core are included in the

treatment. They successfully reproduced the prominent structure at low collisional energy (< 4

eV), confirming the assignment of Amitay et al. [155]. Whereas the absolute value of the cross

section is not reproduced as the interactions of the ionization channels computed with only first

order perturbative solution of the Lippman-Schwinger equation. To improve the agreement of

DR cross section in magnitude with experimental measurements, Chakrabarti et al. [18] recently

performed a similar MQDT calculation where the second order solution of the Lippman-Schwinger

equation was derived. They obtained quantitatively accurate DR cross section compared with the

storage ring data, while the shape is not comparable. One year later, the rotationally resolved DR

cross section was considered by the same team [112].

The current chapter is organized in the following way: we first discuss the description of the

neutral 22Π dissociative state by the selected energy-independent scattering matrix combined with

the MQDT electronic close-channel elimination procedure in section 4.2. Second, the calculation

details of the outgoing vibrational basis functions defined by CAP boundary conditions are given

in section 4.3. Section 4.4 exhibits the theoretical approach of the DR cross-section calculation

using MQDT and the computed results, and section 4.5 conclude the chapter.

4.2 MQDT description of 22Π resonant state

The presently accepted low-energy dissociation pathway for e−-CH+ system is the 22Π dissociative

(resonance) state of neutral CH. This resonance state is started to be labeled as 22Π from the study
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of Amitay et al. [155] and proved as the dominant dissociation pathway at low energy through

analysis of the branch ratio of CH+ DR fragments. For convenience to follow the discussion in

this chapter, we here recall the computed PECs of the electronic states of CH+ obtained in chapter

3 as shown in Fig. 4.1. The PEC of the 22Π resonance state crosses that of the X1Σ+ ground

ionic state near the left turning point of the first excited vibrational state [171], giving rise to a

fast DR rate. The PEC of the resonance state below the ionic ground state is obtained through

an extrapolation. Here, we plot the 35 vibrational levels for each electronic state involved in the

calculation of DR cross section in the figure. The energy values of those vibrational levels are the

real part of the eigenenergies obtained using a CAP formalism (see section 2.2.2 and 4.3). These

vibrational levels will be used as vibrational ionization thresholds in the MQDT closed-channel

elimination procedure (we will discuss in section 4.4).

This curve of the 22Π resonance state shown in Fig. 4.1 is actually the diabatic potential (see

Fig.4 of Ref. [29]). In the adiabatic representation, it was divided into two parts due to the avoided

crossing. Within the small nuclear distance, i.e. before the avoided crossing point, it is marked

as "32Π" state in the Fig.1 of Ref. [23] and "2Π(3)" in the Fig.1 of Ref. [22]. In the long-range

nuclear distance part, it is "2Π(2)" in the Fig.1 of Ref. [22] and "D2Π" in the Fig.2 of Ref. [172]

and it correlates with the C(1D)+H(2S) dissociation limit.

The main electronic configuration of the resonance state is 1σ22σ23σ1π4σ due to the large

distance correlations 3σ → 1sH , 1π → 2pC, 4σ → 2pC. The 4σ orbital has Rydberg character at

small nuclear distance. This character is caused by the coupling between the 3σ1π(1Π)4σ and

3σ1π(3Π)4σ of CH, i.e. incident electron in 4σ Rydberg orbital plus the a3Π and A1Π parent

states of CH+. Near and to the left of the crossing of the resonance and ionic ground PEC, the

character of the resonance state is mainly the 3σ1π(1Π)4σ (see Fig. 1 of Ref [24]). Therefore, the

22Π resonance state could be included in the MQDT description of e−-CH+ system if we take the

two excited a3Π and A1Π states into consideration in the low-energy scattering calculations.
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Figure 4.1: Potential energy curves shown are the same in Fig. 3.2. The PEC of the 22Π resonance
state (violet dotted curve) is obtained by R-matrix method. An extrapolation is used to plot the
PEC of the this state below the ionic ground state (violet solid curve). 35 vibrational levels for
each of the three lowest electronic states are shown by horizontal thin lines and of the same color
with the corresponding state. The values of the vibrational level energies are the real part of the
eigenenergies obtained by the CAP formalism (see see section 2.2.2 and section 4.3). The CAP
basis function of v = 30, X1Σ+ (black solid curve) is used to illustrate the absorption of the CAP
(orange dashed curve). The strength of the CAP is enhanced by a factor of 25 and the position of
the CAP state is slightly up displaced for clarity of the illustration. The black bold arrow points to
R0 = 20 a0 where the CAP begins. The inset shows the enlarged view of the CAP used in the thesis
starting from R0.

The DR of the ground-state CH+ through 22Π involves a direct process

CH+(vi)+ e−(lλ )→ CH∗∗(22
Π)→ C(1D)+H(2S) (4.1)

where the incident electronwith partial wave lλ in themolecular reference frame is directly captured

by ground-state CH+ into to the 22Π doubly excited neutral dissociative state (see section 2.6.1),
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and an indirect process

CH+(vi)+ e−(lλ )→ CH∗→ CH∗∗(22
Π)→ C(1D)+H(2S) (4.2)

where the incident electron is temporarily captured into a vibrational levels of bound Rydberg states

CH∗ attached to the ionic ground or low-lying excited electronic states (see explanation of IDR

in section 2.6.2). i stands for the ion electronic state and v for the vibrational quantum number

in the ionic potential. The ground-state CH+ is in ground vibrational level of the X1Σ+ ground

electronic state, i.e. vi = 00. The rotational structures are neglected in this study. An alternative

type of indirect DR process for CH+ proceeds through trapping the electron in one of the Rydberg

states converging to the low-lying a3Π and A1Π ionic excited states (see Fig. 4.1). Then the

predissociation is followed along the coupled neutral 22Π dissociative state. This is actually widely

seen in DR of molecular ions with low-lying bound excited electronic states [102–105]. Therefore,

three lowest X1Σ+, a3Π and A1Π electronic states should be at least included in the MQDT

treatment for an accurate description of the CH+ DR.

Here, we perform the R-matrix calculations and select the resulted 3× 3 energy-independent

scattering matrix according to the procedure described in the previous chapter, more details on the

calculations could be found in the section 3.2.3. Fig. 4.2 displays the eigenphase of 2Π symmetry

of e−-CH+ collisional system obtained at R=1.337, 1.437, and 1.537 bohrs. Different coluors are

used to distinguish the three different nuclear distances. The eigenphase below scattering energy

of 0.34 eV is zoomed and presented in the inset. We can see a left shift of the eigenphase with

the increasing of the internuclear distance. To locate the position and width of the resonance,

we evaluate the derivatives of the eigenphase sum of 2Π symmetry taken directly from R-matrix

calculation at R=1.337, 1.437, and 1.537 bohrs. As we can observe with the solid curves in Fig. 4.3,

low-energy resonance is detected. The position of the resonance decreases with the internuclear
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Figure 4.2: Eigenphase of 2Π symmetry of e−-CH+ collisional system obtained at R=1.337 (black),
1.437 (red), and 1.537 bohrs (green). The inset show the enlarged energy range from 0.01 to 0.32
eV. Details of the R-matrix calculations could be found in section 3.2.3.

distance moving far and disappears at R=1.837 bohrs. The resonance is referred as the 22Π state

and plotted in the PECs of CH+ in Fig. 4.1.

The two excited electronic states are closed for the ionization at low scattering energy. The

lower-lying (compared with the two excited states as displayed in Fig. 4.1) neutral 22Π resonance

state with Rydberg character could be therefore accounted for using the MQDT electronic closed-

channel elimination procedure. Similarly to the manner described in section 3.3.2, we performed

the elimination procedure using the 3×3 electronic scattering matrices of 2Π symmetry selected

above the A1Π threshold at R=1.337, 1.437, and 1.537 bohrs. The low-energy resonances are

reproduced as shown with dashed curves in Fig. 4.3. For clarity, we listed the positions of these

low-energy resonances in Table. 4.1. The position of the resonance is a little left shifted and the

width is slightly narrower compared to that of the R-matrix calculation. As pointed out in the

preceding chapter, this behaviour was also observed in Fig. 3.7. The shift of the resonance position
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complex. They are obtained by derivative of the eigenphase sum for 2Π symmetry taken directly
from R-matrix calculation (solid curves) and MQDT channel elimination (dashed curves). Each
color refer to different the resonances obtained at R=1.337 (black), 1.437 (red), and 1.537 bohrs
(green). Details of the R-matrix calculations could be found in section 3.2.3.

may be related to the energy point where we selected the scattering matrix.

Table 4.1: Positions of the low-energy resonances (in units of eV) obtained fromthe R-matrix
calculation compared to those obtained from channel elimination at different nuclear distance R (in
units of bohrs).

R 1.137 1.237 1.337 1.437 1.537 1.637 1.737 1.837
R-matrix 0.388 0.336 0.269 0.207 0.139 0.061 0.42 -

Channel elimination 0.253 0.247 0.230 0.166 0.064 0.036 0.020 -

An important conclusion here is that with the 3×3 energy-independent scattering matrix, the 22Π

dissociative state can be described by the MQDT electronic closed-channel elimination procedure.

Therefore, the electronic couplings between the initial electronic continuum of e−-CH+ and the

neutral dissociative state (responsible for DDR) are included in the scattering model. The Rydberg-
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Rydberg couplings between Rydberg series converging to the three electronic states and the neutral

dissociative state (responsible for IDR) are also contained in the selected scattering matrix.

4.3 Outgoing-wave basis functions defined by complex absorbing potential

As we pointed out in section 2.6, the dissociation proceeds through a number of excited Rydberg

states, which are bound with respect to dissociation. MQDT treats such a system as a set of coupled

vibrational states. To describe the dissociation, the vibrational continuum of the considered PECs

should be included in the model. The continua states could be discretized by the outgoing-wave

basis defined by the CAP (see section 2.2.2). They were called as CAP basis (states) in Ref. [174].

The introduced basis, on one hand generates a Rydberg series of neutral states, and on the other

hand enables the dissociative flux escape if it reaches the boundary. Namely, the DR process is

simulated by the absorption of the dissociative flux of the neutral molecule by using the introduced

CAP basis.

The artificial complex absorbing potential (CAP) is purely imaginary and added to the adiabatic

potentialsV (R) using Eq. (2.32). Exponential CAP in the form of Eq. (2.33) is used in the present

thesis. L specifies the grid length of the adiabatic potentials of the X1Σ+, a3Π and A1Π electronic

states. These PECs are taken from chapter 3 and the calculation details could be found in section

3.2.2. R0 (as seen in Fig. 4.1) is the starting point of a CAP on the potential. The parameters, i.e. the

strength η of Eq. (2.32) and length of Eq. (2.33), of the three lowest X1Σ+, a3Π and A1Π electronic

states are appropriately chosen according to Ref. [47]. The CAP should be far away from the main

well of the PECs of CH+. We use L = 35.0 bohrs and R0 = 20.0 bohrs for the three electronic

states in this thesis. Using Eq. (20) and Table VI of Ref. [47], we compute the CAP strength η

with value of 2.835× 10−4. This CAP computed by ηW in Eq. (2.32) is drawn in the inset of

Fig. 4.1. The absorption of the vibrational dissociative state (v = 30, X1Σ+) by the CAP is also
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Figure 4.4: Left panel shows the vibrational wavefunction in terms of R for v=30, X1Σ+ (in black),
v=26, a3Π (in red), and v=20, A1Π (in green) obtained with (solid curve) and without CAP (dashed
curve). While the right panel displays the FT vibrational wavefunctions in momentum k space for
the same vibrational states. The arrow in the left panel points to the R0.

demonstrated in the figure. The complex eigenenergies Evi of Eq. (2.34) and the CAP basis φvi of

the Hamiltonian in Eq. (2.32) are obtained by the standard discrete variable representation (DVR)

method [43] (see section 2.2.2). The set of obtained vibrational basis φvi(R) obey orthonormality

relationship of Eq. (2.35). Note that neither the bra nor ket is complex conjugated.

Fourier transformation (FT) technique is used to verify the absorption of the CAP through trans-

ferring wavefunctions of vibrational states from R representation to momentum space denoted by

k. As seen in the left panel of Fig. 4.4, we plot the wavefunctions of dissociative vibrational states
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(vibrational continua states), for instance, v=30, X1Σ+ (black curve), v=26, a3Π (red curve), and

v=20, A1Π (green curve) as functions of internuclear distance R. The wavefunctions of the CAP

basis are represented by solid curves. These wavefunctions with complex energies asymptotically

increasing at large internuclear distance [107] and decrease when they approach the CAP (see Fig.

4.1). They have considerable amplitude in the asymptotic part, whereas small inside the potential-

well region. The wavefunctions of the vibrational continua states for the three electronic states of

CH+ obtained without the CAP are in dashed curve. They behaviour nearly as sine function at

R > 20 a0. This means the kinetic energies of the waves are constant, which implies that the CAP

could be appropriately placed at R = 20 a0 and will not perturb the vibrational states in the main

well region. The right panel of Fig. 4.4 displays the FT wavefunctions of the vibrational states

presented in the left panel. The wavefunctions of the vibrational continua states in momentum k

space (dashed curve) present two identical peaks in both positive and negative momentum space.

This can be explained by the fact that the wavefunction of a steady state is a linear combination of

outgoing/transmitted wave and incoming/reflected wave. As we use the CAP to simulate an infinite

grid, it thus results in no reflections, leading to a missing negative component of k. The disappeared

peak in the negative k space clarifies the parameters of the CAP are appropriately chosen.

The resulting eigenenergies of vibrational wavefunctions obtained with (curves with star) and

without the CAP (curves with circle) for the three electronic states of Fig. 4.1 are shown in Fig.

4.5. As we see in the left panel, The CAP spectrum contains a branch vibrational states whose

eigenenergies are below the dissociation limit. They coincides with 23, 19 and 13 bound vibrational

states of the X1Σ+, a3Π and A1Π states obtained without CAP, respectively. The added CAP does

not affect the positions of the bound states. The states obtained with CAP above the dissociation

limits represent the continuum states. Positions and widths of the continuum states depend on the

CAP parameters [175]. The right panel shows the enlarged energy region around the dissociation

limit. The linear eigenvalues with a slope of 60◦ corresponds to the converged non-resonant states
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as called in Ref. [176]. The eigenvalues parallel to the horizontal axis are indifferent states as called

in Ref. [176]. The three vibrational states v = 30, v = 26 and v = 20 of the three electronic states

were singled out and their wavefunctions were analyzed in Fig. 4.4.

Below parallel eigenvalues, we can also see divergent states as called in Ref. [176] due to an

incomplete finite grid used in DVR method. The wavefunctions of such states are shown in Fig.

4.6. Their wavefunctions are more localized out of the main potential well which differ from the

other CAP basis. The amplitude inside the potential-well region is negligible compared with that

in the asymptotic part.
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4.4 Theoretical approach and the computed results

Since the neutral 22Π dissociative state is proved to be included in the 3× 3 energy-independent

electronic scattering matrix S(Eel,R) in section 4.2 and the optimal parameters are determined for

the CAP in the Section 4.3, the scattering matrix describing the electron collision with the vibrating

CH+ could be constructed using the vibronic frame transformation of Eq. (2.60) in section 2.4.

Sl′λ ′v′i′,lλvi(Eel) =
∫

φv′i′(R)Sl′λ ′i,lλ i(Eel,R)φvi(R)dR (4.3)

Here, the CAP basis functions φv′i′ are not conjugated. Eel is the electron scattering energy.

The Sl′λ ′v′i′,lλvi(Eel) is obtained by integrating the selected Sl′λ ′i,lλ i(Eel,R) over the internuclear

distance R from 1.137 bohrs to 4.937 bohrs with a interval of 0.1 bohrs. To compromise correct

implementation of the above equation in practical calculations in the code, we need to sort the target
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states in accordance with the below Table 4.2. Another treatment is averaging the K-matrix over

20 steps right above the threshold (the A1Π electronic state) at different R. This is to alleviate the

influence of broad shape resonance situated scattering energy above the A1Π state. The unitarity

of the S-matrix are verified to be maintained in the treatments. The averaged scattering matrices

are obtained by Eq. (2.52) and selected to be used in the computation of the cross sections.

Table 4.2: The arrangement of the the involved lowest X1Σ+, a3Π and A1Π three electronic states
of the target in C2v point group.

Symmetry of the target
X1Σ+ (i = 0) A1

a3Π (i = 1)
B1
B2

A1Π (i = 2)
B2
B1

Through the transformation, the sets of CAP basis of three electronic states of CH+ are now

incorporated as the ionization channels. Each of the channels associates with the threshold energy

of a vibrational level of the ionic electronic states (as seen in Fig. 4.1). The energies Evi for the

CAP basis are complex as discussed in the above section (and also see Eq. (2.34) section 2.2.2).

They are sorted successively according to the real part of Evi in Fig. 4.1. The electron scattering

energy Eel in our calculation is restricted within the range of 0.01 eV-3.00 eV as the energy range

being of interest is below 4 eV. In the same manner (as we introduced in 3.4), it divides all channels

as energetically open when it situated above the corresponding ionization threshold or otherwise

closed, termed by "o" or "c". No and No are used to numerate the number of open and close

channels, respectively. The transformed scattering matrix is thus written as submatrices in Eq.

(2.71). The physical scattering matrix Sphys(Eel) restricted to open channels is obtained by MQDT
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close-channel elimination procedure

Sphys (Eel) = Soo−Soc
[
Scc− e−2iβ (Eel)

]−1
Sco , (4.4)

where β (Eel) quantities represents the effective quantum numbers as defined in Eq. (2.73) in

section 2.5.3). Its form in terms of the vibrational threshold Evi of the ion is

β (Eel) =
π√

2(Evi−Eel)
δv′i′,vi. (4.5)

They become complex because the higher ionization thresholds Evi are represented in the CAP

formalism with complex eigenenergies. This leads to a sub-unitary Sphys(Eel). Physically, the lost

flux is associated with the vibrational dissociative states attached to the vibrational closed channels

represented by the CAP basis with outgoing-wave characters.
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Figure 4.7: Convergence tests of the DR cross section of ground-state CH+. The results are
computed using (1) L = 35 a0, R0 = 20 a0, η = 2.835× 10−4, vmax = 34 (black) (2) L = 35 a0,
R0 = 20 a0, η = 2.835× 10−4, vmax = 29 (red) (3) L = 35 a0, R0 = 25 a0, η = 2.835× 10−4,
vmax = 34 (green) (4) L = 35 a0, R0 = 20 a0, η = 3.704×10−4, vmax = 34 (blue).

To calculate the cross section, we also need the conjugated physical scattering matrix S†phys(Eel).
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It is computed in a same manner with Sphys(Eel), but with the complex-conjugate scattering matrix

element S†
l′λ ′,lλ (Eel,R). The conjugate transformed scattering matrix S†(Eel) is obtained through

Eq. (2.84). The channel elimination procedure in Eq. (4.5) should also use the complex-conjugate

submatrices by Eq. (2.72) As pointed out by Kokoouline [142], the above equation also account

for the complex conjugation by changing the sign of the quantity beta.

Once the scattering matrices elements Sphys
l′λ ′v′i′,lλvi(Eel) and S†phys

l′λ ′v′i′,lλvi(Eel) are determined, the DR

cross section for a specific partial wave of the scattering electron is extracted from the unitarity

defect of the scattering matrix by using Eq. (2.86). The CH+ is assumed initially in the ground

state which means v = 0 and i = 0. The total DR cross section for the ground-state CH+ is obtained

by Eq. (2.87). We include 35 vibrational states for each of the involved electronic state in the

DR cross section calculation as seen in Fig. 4.1. The convergence of the computed results are

tested by varying the maximum vibrational states (vmax), the starting point of the CAP (R0), the

damping strength (η). We used four sets of parameters to compute the cross section as seen in the

following Fig. 4.7. A good agreements of these results could be seen in the figure which indicates

the convergence of our computed cross section. The results computed with the set of parameters

(1) are used for the final cross section calculation of CH+ in our thesis.

We perform convolution for the computed DR cross sections of CH+ initially in the lowest vibra-

tional level of the ground electronic state (vi = 00) with parallel electron energy E‖ = 0.5 meV

and transverse energy spread E⊥ = 17 meV. The energy values are taken from Ref. [155]. The

convolution is performed according Eq. (2) of Ref. [177] written as

σ(Eel) =
σ((
∣∣√2Eel

∣∣+u‖)2/2+E⊥)√
2Eel

1
(2π)1/2E⊥

√
∆E‖

∫
∞

−∞

du‖exp(−
u2
‖

2∆E‖
)
∫

∞

0
dE⊥exp(− E⊥

∆E‖
)(4.6)

where u‖ is defined as velocity that describes the parallel distribution. It represents the deviation of

the total velocity (
∣∣√2Eel

∣∣+u‖) from the center of the distribution. The obtained results compared
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with experimental and theoretical data as shown in Fig. 4.8. Since our interest is in the low-

energy DR as we introduced in the introduction, we thus restricted the energy in our calculations

in the range of 0.01-3.0 eV. Numerous Rydberg resonances are seen in the figure. These narrow

resonance are usually interpreted as the capture of electron in the vibrationally Rydberg states

attached to the ground ionic state. They are partly washed out in the convolution process, and

only the prominent resonances survive. The broad ones are tentatively assigned to various bound

Rydberg states that converge to the excited ionic states [30, 155]. Overall, the computed results

agree well with the experimental data of Amitay et al. and decrease as slightly larger than the slope

of the experimental curve from a value of 3.55×10−13 cm2 at Eel = 0.01 eV. Up to Eel = 0.1 eV,

the calculation overestimates the experimental cross section with about a factor of 4. Although

some unexpected spikes appear, the shape is well reproduced. We are still seeking for the reasons

behind the difference. This may be explained by the heavier resonances recovered by MQDT

method as seen in Fig. 3.7, where a higher outgoing flux is provided. Another possibility for

the difference is ignorance of the rotational structure in the DR cross sections and this will be

confirmed in the further study. The results are clearly close to the experimental values for electron

scattering energy above 0.10 eV. They are nearly convoluted along the experimental curve. The

prominent resonances detected in experiment centered at, for instance 0.08 eV, 0.20 eV, and 0.50

eV, are all well reproduced. The broad resonance located at Eel between 0.7 and 1.2 eV is not well

represented, instead three dominant peaks show up in the calculated results. This may be due to a

weaker statistics in higher energy range in the experiment. The lower energy resolution prevents

the resonance structure appear clearly.

The part in the square brackets of Eq. (2.86) could be regarded as the DR probability Plλ00 of the

ground-state CH+ induced by the incident electron with partial wave lλ

Plλ00(Eel) = 1− ∑
l′λ ′v′i′

Sphys
l′λ ′v′i′,lλ00(Eel)S

†phys
lλ00,l′λ ′v′i′(Eel). (4.7)
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Figure 4.8: Comparison of the DR cross section of the fully relaxed CH+. The present work in
black thin dashed curve and convoluted results in black solid curve compared with experimental
measurements of Amitay et al. in 1996 (red solid curve), theoretical results of Takagi et al. in 1991
(green solid curve), Carata et al. in 2000 (blue solid curve) and Chakrabarti et al. in 2018 (pink
solid curve), and rotationally resolved DR cross section obtained by Mezei et al. in 2019 (violet
solid curve). Partial waves of the incident electron are assigned to the prominent resonances by
arrows pointing to peaks.

Fig. 4.9 displays the partial waves of the incident electron that make dominant contribution to the

DR probabilities of ground-state CH+. Combined target states of CH+, they could be classified

into three type as Takagi did in Ref. [29] (1) σ Rydberg states: lλ = 00 (sσ ), lλ = 10 (pσ ) and

lλ = 20 (dσ ) (2) π Rydberg states: lλ = 1−1 (pπ) and lλ = 2−1 (dπ), and (3) δ Rydberg state:

lλ = 2−2 (dδ ). Note that the partial waves with λ 6= 0 are double-degenerate. For instance, the

lλ = 11 and lλ = 1− 1 partial waves contribute equally to the DR. As we discussed above, the

low-energy neutral dissociative state is of 2Π symmetry and dominantly contribute to the CH+ DR.

Therefore, the σ and δ Rydberg states are conjectured to represents the manifolds converging to

the 1,3Π first and second excited electronic states of CH+. The π Rydberg states are the Rydberg

manifolds attached to the ground state of the 1Σ+ ground electronic state of CH+. As we see from
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(a)-(d) of Fig. 4.9, dissociation through σ and π Rydberg states below 0.10 eV are dominant.

A prominent peak at about 0.08 eV occurs on the pπ partial wave, which is responsible for the

corresponding broad resonance in Fig. 4.8. For the scattering energy within the range of about

0.10 eV to 1.50 eV, all the partial waves presented in the figure contribute to the DR comparably.

The prominent resonances located at around 0.20 eV in the DR cross sections are mainly from sσ

and dπ . The one at about 0.50 eV could be assigned to the spike of pπ partial wave and another

one at about 1.4 eV is consisting of pσ , dσ and dπ partial waves. The dδ partial wave contributes

considerably to three adjacent resonances located at 0.73 eV, 0.87 eV and 1.04 eV. The dσ partial

waves dominant the dissociation of CH+ while the scattering energy is above about 1.50 eV as we

see from (c) of Fig. 4.9. The great contribution to the DR cross sections from the dδ is unexpected

since this partial wave was never considered in preceding studies. The big discrepancies between

the computed results and experimental measurements observed in the DR cross sections within

0.01-3.00 eV in Ref. [30] might be related the neglect of d-type partial waves, including dσ , dπ

and dδ .

4.5 Conclusions

In this chapter, we implemented a MQDT method (developed in chapter 3 for vibronic excitation

of CH+ by electron impact) coupled with the CAP formalism to treat the DR process of molecular

ions with low-lying excited electronic states. This theoretical approach was applied the method to

CH+ with success. The low-lying bound excited electronic states and the corresponding Rydberg

states are also taken into accounted. As we described in chapter 3, the fixed-nuclei R-matrix

method is first used to evaluate the multichannel energy-independent electronic scattering matrix.

The neutral resonance (dissociative) state is proved to be contained in such scattering matrix in

the MQDT description due to the Rydberg character of the resonance state. The CAP basis is
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Figure 4.9: DR probabilities of the ground-state CH+ for six dominant partial waves (a) lλ = 00,
sσ (black), (b) lλ = 10, pσ (red), (c) lλ = 20, dσ (green), (d) lλ = 1−1, pπ (blue), (f) lλ = 2−1,
dπ (pink), and (e) lλ = 2−2, dδ (violet).

introduced by vibrational frame transformation as the vibrational ionization channel of CH+. The

actual dissociation to the fragments following the electron capture into the Rydberg states are

represented by the complex part of the basis. The computed results show a good agreement with

the storage-ring experimental measurements. Considering the limitation of the only treatment

available for the DR of such molecular ions, we developed an relatively simplified and general

theoretical approach in this chapter. Furthermore, this general theoretical approach sheds light on

the extension to the treatment for polyatomic ions. However, discrepancies between the computed

results and the experimental measurements are observed within electron scattering energy range of

0.01 eV to 0.10 eV. The difference maybe due to neglecting the rotational structure. Therefore, we
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include the rotational structure by rotational frame transformation in a further study. The S-matrix

needs to be transformed from C2v to C∞v symmetry point group since complex harmonics should

be used in the C∞v symmetry point group. The transformation was discussed in section 2.1.2. A

better treatment of the DR process accounting for the rotational structures could be developed in

a further study. The d-type partial waves of the incident electron including dσ , dπ and dδ are

found considerably contributing to the DR of CH+. This may explain the discrepancies observed

between theory and experiment in the preceding studies.
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CHAPTER 5: Conclusion and perspectives

We successfully developed a simple and efficient theoretical approach to compute the cross sections

and rate constants for vibronic excitations of CH+ by low-energy electron impact. The rotational

structure of each vibrational level is neglected in the present approach such that the obtained

cross sections and rate coefficients should be viewed as averaged over initial rotational states

and summed over final rotational states of the corresponding vibrational level. In this approach,

fixed-nuclear R-matrix method is employed to evaluate the Body-fixed scattering matrices. The

three lowest X1Σ+, a3Π and A1Π electronic states are included in the scattering calculations. 3×3

electronic scatteringmatrices above the threshold ofA1Π state at different internuclear distanceR are

selected to compute the vibronic transition amplitudes by vibronic frame transformation. Vibronic

Rydberg resonances below the A1Π state are taking into account through theMQDT closed-channel

elimination procedure. CH+ is a typical case among the type of diatomic molecular ions with low-

lying bound excited electronic states which are actually of large numbers, such as N+
2 , NH

+, SH+,

OH+. Previous theoretical methods treating the electron-induced non-adiabatic couplings of such

diatomicmolecular ions is laborious and impractical to extend to a polyatomicmolecular ions. In the

approach developed in this thesis, the non-adiabatic couplings are included in the vibronic-frame-

transformed 3×3 scattering matrix. The method is quite general and straightforward to implement

numerically and to spread over the other diatomic molecular ions with low-lying bound excited

electronic states, even polyatomic molecular ions using additional normal mode approximation for

the vibrational states of the target molecules.

Furthermore, the approach is promise to describe a number of different processes taking place in

the electron collisions with molecular ions. The dissociative recombination of CH+ is treated with

additional CAP formalism based on this approach. Again, taking the 3× 3 electronic scattering

matrices to include the interaction of electron with the target’s X1Σ+, a3Π and A1Π electronic
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states. The Rydberg-Rydberg and Rydberg-valence (molecular dissociative state) couplings could

be totally represented by the constructed physical scatting matrix by the MQDT closed-channel

elimination procedure. This is very different from previous treatments where the quantum defects

are used to construct the interaction matrix. Vibronic ionization channels of CH+ are introduced

by a vibronic frame transformation. The outgoing vibrational basis defined by the CAP is used

to simulate the dissociation flux in the low-energy e−-CH+ collisions. The cross sections for

dissociative recombination of CH+ is thus determined and found to agree well with the storage-

ring measurements. The combination of the CAP formalism and MQDT treatment was originally

developed for non-crossing system (no crossing between the molecular dissociative state and ionic

ground state). Applying this method to CH+ is based the fact that the neutral dissociative state is

of Rydberg character, which means the resonance state of CH that crosses with the ionic ground

electronic state is essentially a Rydberg state. As we know, a Rydberg state could be recovered

by the MQDT electronic closed-channel elimination procedure. The question that whether the

molecular dissociative states of the other molecular ions with low-lying bound excited electronic

states are also of Rydberg character needs further discuss and explore to be answered. However, the

attempt for the dissociative recombination of CH+ here is effective and significant. Every step of

the method is clear because the burdensome computation of the electronic coupling is eliminated.

Therefore, it ought to be possible to generalize to polyatomic molecular ions, for instance C2H+,

which plays an important role in the plasma waste treatment modeling. It will be a revolution of

our ability to compute the cross sections for dissociative recombination of molecular ions with

low-lying bound excited electronic states.

As pointed out in the manuscript, a better treatment of the vibronic excitation and dissociative

recombination processes accounting for rotational resonances is possible. To do this, further

development are needed, in particular, transformation of the scattering matrix from C2v to C∞v

symmetry. Besides, inclusion of the rotational structure in the dissociative recombination may

107



improve the agreement between the computed cross sections and the experimental measurements.

The computation of the cross section for dissociative excitation of CH+ is our another plan since

it could be treated within our approach. The storage-ring measurements are available to compare

with the computed results. The most challenge work is extending our approach to the polyatomic

molecular ions with low-lying bound excited electronic states, since the normal approximation is

valid near the equilibrium, i.e. the approximation works at very low vibrational levels and the

studies on the vibronic excitations are hardly found so far.
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APPENDIX A: The fitting parameters of the rate coefficients for the vibronic

excitations of CH+

Table A.1: Parameters a0, a1, and a2 of the polynomial P f it
vi,v′i′(x) of Eq. (3.2) and (3.3) for several

pairs of initial and final vibrational levels of the ground electronic state X1Σ+ of CH+. We specify
the threshold energy ∆v′i′,vi for the excitation process in the pair v′i′,vi in the second column of each
table. For the de-excitation process, ∆vi,v′i′=0.

v′i′↔ vi ∆v′i′,vi(K) a0 a1 a2
10↔ 00 3934 2.90×10−6 −1.20×10−7 2.30×10−9

20↔ 00 7700 1.10×10−6 1.60×10−8 −6.60×10−9

30↔ 00 11299 2.90×10−7 5.00×10−8 −5.10×10−9

20↔ 10 3766 7.85×10−7 2.17×10−7 −1.22×10−8

30↔ 10 7365 4.57×10−7 1.02×10−7 −8.64×10−9

30↔ 20 3599 2.39×10−6 2.51×10−8 −5.26×10−9

Table A.2: Same as table A.1 for the electronic state a3Π.

v′i′↔ vi ∆v′i′,vi(K) a0 a1 a2
11↔ 01 3633 5.43×10−6 4.68×10−7 −4.41×10−8

21↔ 01 7039 2.01×10−6 5.14×10−9 −3.18×10−9

31↔ 01 10216 1.17×10−6 −3.37×10−8 −2.65×10−9

21↔ 11 3405 7.53×10−6 6.95×10−8 −2.30×10−8

31↔ 11 6583 2.99×10−6 3.58×10−8 −2.48×10−9

31↔ 21 3178 6.55×10−6 2.04×10−7 −8.40×10−9
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Table A.3: Same as table A.1 for the electronic state A1Π.

v′i′↔ vi ∆v′i′,vi(K) a0 a1 a2
12↔ 02 2290 5.44×10−6 1.74×10−7 −1.09×10−8

22↔ 02 4271 2.16×10−6 −1.24×10−8 −6.08×10−10

32↔ 02 5971 1.49×10−6 −8.82×10−9 5.33×10−10

22↔ 12 1981 1.33×10−5 −1.13×10−7 −3.47×10−10

32↔ 12 3680 7.74×10−6 8.39×10−9 −8.35×10−10

32↔ 22 1699 3.48×10−6 −1.17×10−8 6.50×10−10

Table A.4: Same as table A.1 for vibronic transitions vX1Σ+↔ v′a3Π.

v′i′↔ vi ∆v′i′,vi(K) a0 a1 a2
01↔ 00 13572 5.10×10−6 −1.20×10−8 2.30×10−9

11↔ 00 17205 3.50×10−7 2.70×10−7 −2.20×10−8

21↔ 00 20610 5.00×10−7 3.80×10−9 −3.80×10−10

31↔ 00 23788 2.00×10−7 5.70×10−8 −5.70×10−9

01↔ 10 9638 4.90×10−7 2.57×10−7 −1.84×10−8

11↔ 10 13271 4.30×10−6 5.30×10−8 −2.80×10−9

21↔ 10 16677 7.13×10−7 1.72×10−8 −6.09×10−10

31↔ 10 19854 6.00×10−7 1.98×10−8 −5.12×10−10

01↔ 20 5872 7.06×10−7 1.55×10−7 −1.78×10−8

11↔ 20 9505 1.93×10−6 −3.01×10−8 −5.86×10−9

21↔ 20 12910 3.97×10−6 −7.95×10−8 6.09×10−9

31↔ 20 16088 9.13×10−7 2.49×10−8 −2.09×10−9

01↔ 30 2273 3.24×10−7 4.24×10−8 −2.23×10−9

11↔ 30 5906 8.23×10−7 1.61×10−8 −3.03×10−9

21↔ 30 9311 1.77×10−6 −1.22×10−8 −4.08×10−9

31↔ 30 12489 3.31×10−6 −4.24×10−8 3.17×10−10
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Table A.5: Same as table A.1 for vibronic transitions vX1Σ+↔ v′A1Π.

v′i′↔ vi ∆v′i′,vi(K) a0 a1 a2
02↔ 00 34147 3.30×10−6 −2.10×10−7 9.90×10−9

12↔ 00 36437 1.70×10−6 −7.70×10−8 2.90×10−9

22↔ 00 38418 6.70×10−7 −1.20×10−8 4.70×10−10

32↔ 00 40117 3.40×10−7 −2.70×10−9 1.50×10−10

02↔ 10 30213 1.21×10−6 4.41×10−8 −3.94×10−9

12↔ 10 32503 8.20×10−7 −2.90×10−8 −9.71×10−10

22↔ 10 34484 1.01×10−6 2.69×10−9 −3.61×10−10

32↔ 10 36183 7.74×10−7 1.83×10−8 −9.69×10−10

02↔ 20 26446 4.39×10−7 2.69×10−8 −1.11×10−9

12↔ 20 28737 1.17×10−6 −2.14×10−8 7.31×10−10

22↔ 20 30718 2.36×10−7 8.67×10−10 −5.88×10−11

32↔ 20 32417 3.82×10−7 −5.63×10−9 3.06×10−10

02↔ 30 22847 4.27×10−7 −1.51×10−8 −5.84×10−11

12↔ 30 25138 1.46×10−6 2.16×10−8 −2.89×10−9

22↔ 30 27119 7.21×10−7 1.48×10−9 −3.23×10−10

32↔ 30 28818 1.19×10−6 −1.90×10−8 1.04×10−9

Table A.6: Same as table A.1 for vibronic transitions va3Π↔ v′A1Π.

v′i′↔ vi ∆v′i′,vi(K) a0 a1 a2
02↔ 01 20575 3.28×10−6 4.81×10−8 −7.56×10−9

12↔ 01 22865 7.02×10−7 2.32×10−9 −1.11×10−9

22↔ 01 24846 5.83×10−7 −4.73×10−9 −2.56×10−11

32↔ 01 26545 4.43×10−7 2.81×10−9 −1.53×10−10

02↔ 11 16941 5.03×10−6 2.61×10−7 −1.85×10−8

12↔ 11 19232 1.08×10−6 1.17×10−8 −3.14×10−9

22↔ 11 21213 1.52×10−6 −4.00×10−9 −3.32×10−10

32↔ 11 22912 6.47×10−7 −3.27×10−9 1.69×10−10

02↔ 21 13536 1.39×10−6 1.24×10−7 −6.56×10−9

12↔ 21 15826 3.69×10−6 −1.94×10−8 9.08×10−10

22↔ 21 17807 7.26×10−7 −2.50×10−8 1.19×10−9

32↔ 21 19507 5.32×10−7 6.38×10−9 −3.78×10−10

02↔ 31 10358 1.30×10−6 −9.89×10−8 2.13×10−9

12↔ 31 12649 2.41×10−6 7.13×10−8 −5.00×10−9

22↔ 31 14630 1.54×10−6 9.42×10−9 −6.05×10−10

32↔ 31 16329 1.08×10−6 −1.35×10−9 4.25×10−11
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APPENDIX B: La synthèse

La thèse est consacrée à l’étude des collisions d’électrons à basse énergie avec des molécules

d’hydrocarbures et des ions moléculaires (CxHy) afin de produire des données importantes et

cruciales, notamment des sections transversales et des coefficients de vitesse, qui pourraient être

utilisées comme base de données pour la modélisation du traitement des déchets par plasma.

Parmi la famille des ions moléculaires d’hydrocarbures, nous avons sélectionné l’ion CH+ le plus

simple présentant un intérêt astrophysique et technologique comme travail de départ. Nous avons

développé des traitements théoriques pour calculer les sections transversales pour la (dé)excitation

vibronique et la recombinaison dissociative du CH+ par impact d’électrons à basse énergie. Ces

recherches serviront de prototype pour notre future étude sur les ions moléculaires d’hydrocarbures

polyatomiques.

Nous étudions la (dés)excitation vibronique et la recombinaison dissociative (DR) deCH+ produites

par la collision d’électrons de faible énergie. Nous développons d’abord une approche théorique de

la (dés)excitation vibronique de CH+ par collision d’électrons. Dans cette approche nous utilisons

la méthode de la matrice R à noyaux fixes afin de calculer les matrices de diffusion électron-ion

dans l’approximation de Born-Oppenheimer. Nous appliquons ensuite la méthode connue comme

« vibronic frame transformation » et la procédure d’élimination des canaux de diffusion fermés

dans l’esprit de la théorie des défauts quantiques moléculaires pour construire une matrice de

diffusion dépendant de l’énergie qui décrit les interactions entre les canaux vibroniques de l’ion

cible induits par l’électron incident. La matrice de diffusion obtenue tient compte de la série de

résonances vibroniques de Rydberg dans le spectre de collision. Nous avons calculé les sections

efficaces de diffusion pour différentes combinaisons d’états vibroniques initiaux et finaux. Nous

avons trouvé un bon accord entre les sections efficaces de diffusion obtenues par la théorie des

défauts quantiques et par un calcul direct de la matrice R, ce qui indique que l’approche que
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nous avons suivie est un outil fiable pour la détermination des sections efficaces de (dés)excitation

vibronique pour des cibles avec des résonances électroniques de faible énergie. L’approche pourrait

être appliquée aux ions ayant des états excités électroniques de faible altitude. Ces ions étaient

connus pour être difficiles à traiter théoriquement en utilisant les méthodes théoriques précédentes.

Il existe un grand nombre de radicaux qui pourraient, en principe, être considérés en utilisant

l’approche suggérée. L’approche est assez générale et peut être appliquée à un certain nombre de

processus différents, ayant lieu lors de collisions d’ions moléculaires avec des électrons, y compris

l’excitation rovibronique, l’excitation dissociative (DE), la photoionisation et la recombinaison

dissociative (DR).

Dans lemême cadre que celui appliqué aux (dés)excitations vibroniques, nous tentons de développer

une approche théorique utilisant ce cadre de traitement MQDT en conjonction avec la base CAP

pour calculer la section efficace de diffusion pour la recombinaison dissociative à basse énergie

de CH+ en couplant la fonction de base de l’onde sortante définie par le potentiel d’absorption

complexe. Un calcul ab initio utilisant cette approche est appliqué à l’état-sol CH+. Cela a été fait

en prenant en compte la contribution des trois états ioniques X1Σ+, a3Π and A1Π de plus basse

énergie et les séries de Rydberg convergeant vers ces états. Les trois états électroniques les plus

bas de CH+ sont inclus dans les calculs de la matrice R. Les couplages Rydberg-Rydberg entre

les séries de Rydberg attachées à ces trois états électroniques sont contenus dans la matrice de

diffusion 3× 3 dépendante de l’énergie de e−-CH+, contrainte par la procédure d’élimination à

canal fermé MQDT. Les sections efficaces de DR que nous avons obtenues sont en bon accord

quantitatif avec les résultats des expériences et présentent notamment une résonance analogue à

celle qu’on observe dans la courbe de la section efficace de diffusion expérimentale. L’origine des

principales résonances que nous avons obtenues est analysée par le calcul des probabilités de DR

pour les ondes partielles de l’électron incident. On constate que les ondes partielles de type d,

notamment dσ , dπ et dδ , contribuent considérablement à la DR de l’état fondamental de CH+.
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Cela peut expliquer les écarts observés entre la théorie et l’expérience dans les études précédentes.

Le développement de cette approche théorique est basé sur un point très critique, à savoir que l’état

dissociatif neutre doublement excité dans la collision d’électrons avec des ions moléculaires de ce

type est généralement de type Rydberg, surtout à courte distance internucléaire. Ce fait suggère

que l’état dissociatif neutre peut apparaître comme des résonances de Rydberg dans le processus de

collision électron-ion. Ce type de résonances pourrait être, comme nous le savons, reproduit par la

procédure d’élimination électronique à canal fermé MQDT. Le couplage électronique entre l’état

continu inital du système de collision électron-ion et l’état dissociatif neutre (résonance) pourrait

ainsi être également inclus dans la matrice de diffusion à l’aide de la procédure d’élimination.

En d’autres termes, nous n’avons pas besoin d’obtenir explicitement les PEC des états dissociatifs

neutres (résonance) comme la méthode introduite ci-dessus pour le système de croisement des

courbes. CH+ est un cas typique parmi les types d’ions moléculaires diatomiques ayant des états

électroniques excités liés à faible distance qui sont en fait en grand nombre, commeN+
2 , NH+, SH+,

OH+. Les méthodes théoriques précédentes traitant les couplages non-adiabatiques induits par les

électrons de tels ions moléculaires diatomiques sont laborieuses et peu pratiques pour les étendre

aux ions moléculaires polyatomiques. Dans l’approche développée dans cette thèse, les couplages

non adiabatiques sont inclus dans la matrice de diffusion 3×3 transformée en cadre vibratoire. La

méthode est assez générale et simple à mettre en œuvre numériquement et à répartir sur les autres

ions moléculaires diatomiques avec des états électroniques excités liés à basse altitude, même les

ions moléculaires polyatomiques en utilisant une approximation supplémentaire en mode normal

pour les états vibratoires des molécules cibles.
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Titre: Bases de données sur les molécules d’hydrocarbures pour les applications de traitement des
déchets
Mots clés: Méthode R-matrice, diffusion d’ions électron-CH+, théorie des défauts quantiques multi-
canaux, excitation vibronique, recombinaison dissociative, section transversale
Résumé: Dans cette thèse, nous étudions la
(dés)excitation vibronique et la recombinaison dis-
sociative (DR) de CH+ produites par la collision
d’électrons de faible énergie. Nous développons
d’abord une approche théorique de la (dés)excitation
vibronique de CH+ par collision d’électrons. Dans
cette approche nous utilisons la méthode de la ma-
trice R à noyaux fixes afin de calculer les matri-
ces de diffusion électron-ion dans l’approximation
de Born-Oppenheimer. Nous appliquons ensuite la
méthode connue comme « vibronic frame transfor-
mation » et la procédure d’élimination des canaux
de diffusion fermés dans l’esprit de la théorie des
défauts quantiques moléculaires pour construire une
matrice de diffusion dépendant de l’énergie qui décrit
les interactions entre les canaux vibroniques de l’ion
cible induits par l’électron incident. La matrice de
diffusion obtenue tient compte de la série de réso-
nances vibroniques de Rydberg dans le spectre de
collision. Nous avons calculé les sections efficaces
de diffusion pour différentes combinaisons d’états vi-
broniques initiaux et finaux. Nous avons trouvé un
bon accord entre les sections efficaces de diffusion
obtenues par la théorie des défauts quantiques et
par un calcul direct de la matrice R, ce qui indique
que l’approche que nous avons suivie est un outil fi-

able pour la détermination des sections efficaces de
(dés)excitation vibronique pour des cibles avec des
résonances électroniques de faible énergie. De telles
cibles étaient difficiles à traiter par voie théorique
avec les méthodes précédentes. Dans le même cadre
que celui appliqué aux (dés)excitations vibroniques,
nous avons calculé la section efficace de diffusion
pour la recombinaison dissociative à basse énergie de
CH+ en couplant la fonction de base de l’onde sor-
tante définie par le potentiel d’absorption complexe.
Cela a été fait en prenant en compte la contribu-
tion des trois états ioniques X1Σ+, a3Π and A1Π
de plus basse énergie et les séries de Rydberg con-
vergeant vers ces états. Les sections efficaces de DR
que nous avons obtenues sont en bon accord quanti-
tatif avec les résultats des expériences et présentent
notamment une résonance analogue à celle qu’on ob-
serve dans la courbe de la section efficace de diffu-
sion expérimentale. L’origine des principales réso-
nances que nous avons obtenues est analysée par le
calcul des probabilités de DR pour les ondes par-
tielles de l’électron incident. On constate que les
ondes partielles de type d, notamment dσ, dπ et dδ,
contribuent considérablement à la DR de l’état fon-
damental de CH+. Cela peut expliquer les écarts ob-
servés entre la théorie et l’expérience dans les études
précédentes.

Title: Hydrocarbon molecules databases for waste treatment applications
Keywords: R-matrix method, electron-CH+ scattering, multichannel quantum defect theory, vibronic
excitation, dissociative recombination, cross section
Abstract: In this thesis, we investigate the vi-
bronic (de-) excitation and dissociative recombina-
tion of CH+ by low-energy electron impact. We
first develop a theoretical approach for the electron-
impact vibronic (de-) excitation of CH+. In this
approach, the fixed-nuclear R-matrix method is em-
ployed to compute electron-ion scattering matrices
in the Born-Oppenheimer approximation. A vi-
bronic frame transformation and the closed-channel
elimination procedure in a spirit of molecular quan-
tum defect theory are employed to construct an
energy-dependent scattering matrix describing in-
teractions between vibronic channels of the target
ion induced by the incident electron. The obtained
scattering matrix accounts for Rydberg series of vi-
bronic resonances in the collisional spectrum. Cross
sections for vibronic excitation for different com-
binations of initial and final vibronic states are
computed. A good agreement between electronic-
excitation cross sections, obtained using the quan-
tum defect theory and in a direct R-matrix calcu-
lation, demonstrates that the present approach pro-
vides a reliable tool for determination of vibronic

(de-) excitation cross sections for targets with low-
energy electronic resonances. Such targets were dif-
ficult to treat theoretically using earlier methods.
Within the same framework applied for the vibronic
(de-) excitations, we further compute the cross sec-
tion for low-energy dissociative recombination of
CH+ by coupling the outgoing-wave basis function
defined by complex absorbing potential. The con-
tribution of the three lowest X1Σ+, a3Π and A1Π
ionic states and the Rydberg series converging to
those states are taken into account. The obtained
DR cross sections are quantitatively in good agree-
ment with the experimental measurements and ex-
hibit a resonanc feature analogous to the experi-
mental cross-section curve. The origination of the
prominant resonances in the computed results are
analyzed through computing the DR probabilities
for the partial waves of the incident electron. The
d-type partial waves including dσ, dπ and dδ are
found considerably contributing to the DR of the
ground-state CH+. This may explain the discrepan-
cies observed between thoery and experiment in the
preceeding studies.
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