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“Total obscurity. Bilbo in Gollum’s tunnel.
A mathematician’s first steps into unknown territory constitute the first phase of a famil-

iar cycle. After the darkness comes a faint, faint glimmer of light, just enough to make you
think that something is there, almost within reach, waiting to be discovered...

Then, after the faint, faint glimmer, if all goes well, you unravel the thread - and sud-
denly it’s broad daylight! You’re full of confidence, you want to tell anyone who will listen
about what you’ve found. And then, after day has broken, after the sun has climbed high
into the sky, a phase of depression inevitably follows. You lose all faith in the importance
of what you’ve achieved. Any idiot could have done what you’ve done, go find yourself a
more worthwhile problem and make something of your life. Thus the cycle of mathematical
research.”

Cédric Villani
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Abstract
Faculty of Sciences

Department of Physics

Doctor of Philosophy

by Debanuj CHATTERJEE

Fiber optic parametric amplifiers (FOPA) are promising for tomorrow’s communica-
tion systems. In particular, fiber phase sensitive amplifiers offer attractive function-
alities like low noise and high gain which makes it a potential candidate for appli-
cations in microwave photonic links. This thesis provides a theoretical investigation
of such fiber phase sensitive amplifiers aimed towards applications.

The first part of the thesis is dedicated towards development of an analytical
model for propagation of seven CW waves through a FOPA. The system was solved
exactly when nonlinear effects of the fiber are not strong. The developed model
unravelled the important role of the higher order waves in determining the amplifi-
cation performance of the FOPA. Strategies were formulated to enhance the ampli-
fication and the possibility of a phase sensitive frequency conversion with just two
pump waves was also predicted.

In the second part of this thesis, the possibility of introducing a fiber phase sen-
sitive amplifier in a microwave photonic link for analog signal distribution was in-
vestigated. A numerical model was utilized to simulate how the RF nonlinearities
in a microwave photonic link are amplified by the FOPA. The performance of the
link when the FOPA attains a gain saturation was also studied. The study revealed
the possibility of RF nonlinearity mitigation using the fiber nonlinearity. Implemen-
tation of such techniques could lead to realization of long-range and highly linear
microwave photonic links for antenna remoting applications.
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Résume
Les amplificateurs paramétriques à fibre optique (FOPA) sont prometteurs pour les
systèmes de communication de demain. En particulier, les amplificateurs sensibles
à la phase à base de fibres offrent des fonctionnalités intéressantes comme un faible
bruit et un gain élevé, ce qui en fait des candidats potentiels pour des applications
dans les liaisons photoniques micro-ondes. Cette thèse propose une étude théorique
de tels amplificateurs sensibles à la phase destinés à certaines applications.

La première partie de la thèse est consacrée au développement d’un modèle an-
alytique pour la propagation de sept ondes continues à travers un FOPA. Les sept
ondes sont : deux pompes puissantes, un signal dégénéré avec le complémentaire,
deux complémentaires d’ordre supérieur et deux pompes d’ordre supérieur. Nous
obtenons une solution analytique valable lorsque les effets non linéaires de la fi-
bre ne sont pas trop forts. Dans ce régime faiblement non linéaire, nous montrons
que le système peut être analysé en décomposant les sept ondes couplées en trois
sous-systèmes à quatre ondes. Alors que le sous-système contenant le signal et le
sous-système contenant les deux complémentaires d’ordre supérieur sont couplés
l’un à l’autre, le sous-système contenant les pompes d’ordre supérieur est découplé
des deux premiers. Ce découplage nous permet de trouver une solution analytique.
Le modèle développé révèle le rôle important des ondes d’ordre supérieur dans la
détermination des performances d’amplification du FOPA. Des stratégies sont for-
mulées pour améliorer l’amplification. La possibilité d’une conversion de fréquence
sensible à la phase avec seulement deux ondes de pompe est également prédite. Un
tel modèle analytique de la propagation des ondes dans une fibre non linéaire est
également pertinent pour le calcul du bruit quantique d’un amplificateur sensible à
la phase à fibre à double pompe.

Dans la deuxième partie de cette thèse, la possibilité d’introduire un amplifica-
teur sensible à la phase (PSA) dans une liaison photonique hyperfréquence pour la
distribution de signaux analogiques est étudiée. Un modèle numérique est utilisé
pour simuler comment les non-linéarités du signal RF dans la liaison photonique
hyperfréquence sont amplifiées par le FOPA. La non-linéarité de la liaison est quan-
tifiée par les produits d’intermodulation d’ordre 3 générés à partir de deux fréquences
RF. Le modèle numérique est d’abord validé par comparaison avec des résultats ex-
périmentaux obtenus précédemment. Nous observons que dans le cas où le signal
utile est transféré à la liaison par un modulateur d’intensité standard, le PSA non sat-
uré n’améliore ni ne dégrade la distorsion de la liaison. Dans certaines conditions,
saturer le gain du PSA permet d’améliorer la dynamique de la liaison. D’autre part,
dans le cas d’un modulateur d’intensité parfaitement linéaire, la distorsion générée
par le PSA est très faible négligeable en l’absence de saturation du gain. En revanche,
la saturation du gain mène à une distorsion significative du signal. La mise en œu-
vre de telles techniques pourrait conduire à la réalisation de liaisons photoniques
hyperfréquences à longue portée et hautement linéaires pour les applications de dé-
port d’antenne.
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1

General Introduction

Background and Motivation

In the past few decades we witnessed a revolution in communication and informa-
tion technologies. The advent of high-speed internet connectivity enabled a plethora
of customized services at our fingertips. This was a major step forward in terms
of technological progress that truly transformed our society. But needless to say,
such mammoth transformation owes a great deal to the development of modern op-
tical technologies, in particular optical fiber technology. Optical fibers, which are
specially engineered silica based cables that can carry light waves with encoded
information enabled high-speed and voluminous data-transmission links between
far-away locations of trans-oceanic scales. One of the most important and essential
components for such long distance communication systems are the optical ampli-
fiers. Optical amplifiers boost the information carrying signal periodically to com-
pensate for the incurred fiber losses along the transmission length. As one might
imagine, the optical amplification process is a key determinant of the performance
and capability of such communication systems and networks. This motivates us to
investigate the physics of optical amplifiers and identify different avenues of ap-
plications towards ameliorating modern communication systems for better perfor-
mance.

This thesis focuses on a particular kind of emerging optical amplifiers known as
the phase sensitive amplifiers (PSA), especially its implementation in optical fiber
based systems. Such kind of optical amplifiers has received considerable attention
recently due to its ability to generate the so-called "squeezed states of light" that
exhibit noiseless amplification properties. PSA’s outperform conventional optical
amplifiers and are regarded as a promising candidate for the future of optical ampli-
fiers in next generation optical and photonic systems. In this thesis we investigate
some of the basic properties of such amplifiers and evaluate their potential for im-
plementation in analog signal transmission systems.

Modern-day analog transmission links such as radio-over-fiber systems are at
the fore-front of current state-of-the-art technologies for applications such as an-
tenna remoting, internet-of-things, 5G data connectivity, high-performance radar,
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etc. These systems try to employ signal distribution using optical fibers rather than
traditional coaxial cables and are often referred to as microwave photonic links. Op-
tical fibers are preferred in these systems due to their numerous advantages over
coaxial cables such as low loss, high bandwidth, immunity to electromagnetic inter-
ference etc. However, use of optical fibers for analog signal transmission comes with
a down side. The electric to optical signal conversion at the transmitter end and sub-
sequent optical to electrical signal conversion at the receiver end accompany large
signal losses. Therefore, the possibility of integrating a PSA in such signal distri-
bution architecture is an interesting option to explore. Indeed such endeavours are
expected to meet numerous challenges. For example fiber-based PSA’s being highly
nonlinear systems hold the risk of degrading the global distortion performance of
the link when integrated within the microwave photonic link. Therefore a compre-
hensive study on the impact of PSA introduction on the performance of a microwave
photonic link is worth pursuing.

Contribution

This thesis primarily focuses on analyzing the fundamental mechanisms of light am-
plification by a PSA. To this aim, we introduce the existing theoretical models of
light propagation through a fiber phase sensitive amplifier, viz. the n-wave mod-
els (n = 3, 4, 7) and the nonlinear Schrödinger equation (NLSE) model. We use a
matrix-based approach to find an exact solution for the 7-wave model when the
PSA is weakly nonlinear. We also analyze the system in terms of coupled oscilla-
tory subsystems and project perspectives on design of optimized low-noise optical
parametric amplifiers.

To probe a PSA system under strongly nonlinear conditions, we utilize a robust
numerical model based on the NLSE approach. We use this numerical model to
investigate the effect of PSA insertion in a microwave photonic link. More precisely,
we investigate how the nonlinearities generated from the electro-optic conversion in
a microwave photonic link are amplified by the PSA. We also explore more extreme
scenarios like a PSA operating under gain saturation. Subsequently we interpret the
results and develop a physical picture for the same.

Thesis Outline

Here we provide a broad outline of the organization of this thesis. A summary of
chapter wise contents is presented below.

Chapter 1

This chapter is primarily motivated towards developing a broad overview of the
scope and goals of this thesis. In the first part of this chapter we provide a historical
perspective of development of optical fiber technologies with a focus on research
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related to fiber optic amplifiers. Then in the later part, we discuss the development
of microwave photonic links and envisage how fiber optic amplifiers can provide
the possibility of their performance enhancement.

Chapter 2

In this chapter we develop an analytical model to describe propagation of multiple
continuous wave (CW) lights through a nonlinear optical fiber. In particular, we
consider propagation of 3, 4 and 7 CW waves. The theoretical model is motivated
towards understanding the phase sensitive amplification functionality of a nonlin-
ear fiber. Using the developed 7-wave analytical model we analyze the role of higher
order waves in the optical amplification process and project some perspectives re-
lated to design optimization of low-noise and high-gain phase sensitive fiber optic
parametric amplifiers.

Chapter 3

This chapter introduces the nonlinear Schrödinger equation (NLSE) that governs
the propagation of a continuous distribution of frequencies through a nonlinear
fiber. We briefly discuss the associated theory and describe a numerical formalism
(split step Fourier method or SSFM) to simulate propagation of multiple CW waves
through a nonlinear fiber using the NLSE. We also validate the numerical approach
with experimental data and compare the results with some simple cases where ana-
lytical results are available.

Chapter 4

In this chapter, first we describe different parts of a microwave photonic link and dis-
cuss the sources of distortion in the link. We also describe the two-tone test which is
often used to evaluate how "noisy" the link is. Then we use a NLSE based numeri-
cal model to investigate how the incorporation of a PSA into a microwave photonic
link affects the effective link distortion. We validate the numerical results with avail-
able experimental data. Furthermore, we use the numerical model to investigate the
link performance under extreme situations. For example we consider a microwave
photonic link with a PSA which is gain saturated. These investigations reveal in-
teresting results showing the possibility of developing PSA-integrated microwave
photonic links with high linearity. We also try to develop a simple physical picture
to analyze the obtained results.

Chapter 5

This chapter provides a brief overview of the different perspectives generated from
the investigations performed in this thesis. For example we project some ideas re-
lated to extending the analytical 7-wave to a more generalized n-wave model. We
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also highlight the potential application of this model to calculate the noise figure of a
fiber phase sensitive amplifier. Finally we summarize the different results obtained
through the investigations in this research and provide a global conclusion of the
thesis.
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The field of fiber optics traces its transformation from a 19th century parlour trick
to the foundation of our global communication network. However this revolution-
ary technology is far from attaining its maximum potential. Exploring aspects of
nonlinear fiber optical systems and harnessing their capabilities for superior com-
munication systems represent the core motivation of this thesis.

This introductory chapter aims at providing a broad overview of the history,
characteristics, scope and applications of fiber optic parametric amplifiers (FOPA)
in modern-day communication systems with an emboldened focus on microwave
photonics applications. In Section 1.1 we first start off by discussing the historical
context of development of fiber optics in general and then fiber optical parametric
amplifiers in particular. We also briefly discuss the physical properties of a FOPA
that are key to its operation. Then in Section 1.3 we move on to microwave systems
and in particular microwave photonic links which are often employed for efficient
distribution of analog signals. Furthermore, in this section we explore the possibility
of incorporation of a FOPA within a microwave photonic link for its range improve-
ment. We also envisage the possible outcomes with respect to the link’s distortion
characteristics for such an architecture.

1.1 Historical Perspective of FOPA

Optical amplifiers play an important role in numerous scientific and technological
disciplines such as optical communication, imaging, sensing, spectroscopy, etc. The
entire digital revolution with the development of high-speed internet infrastructure
would not have been possible without optical amplifiers which are being used in
virtually all long-haul optical fiber transmission links. However the trails of this
success story trace back farther in time than one expects to imagine.

1.1.1 Total Internal Reflection of Light (17th-19th Century CE)

Optical fibers are typically made up of an optically transparent core (generally silica
or glass) and light is confined inside the core by the phenomenon of total internal
reflection which causes the fiber to act as a waveguide. Let us start by exploring the
history of understanding the phenomenon of total internal reflection of light.

The concept of total internal reflection of light was known to humankind even
back in the 17th century. Following Kepler’s and Descartes’ pioneering work on the
theory of refraction of light, Huygens was the first to discuss total internal reflection
of light with considerable comprehension in his book "Treatise on Light". Newton,
a contemporary, rejected Huygens’ wave theory of light in advocacy for his corpus-
cular theory. Nevertheless both the wave and corpuscular picture had problems of
their own. It was much later, in the first half of the 19th century that Fresnel devel-
oped a wave-based theory of polarized light that laid a firm foundation to the theory
of total internal reflection of light.
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Guiding of light by refraction, the principle that makes fiber optics work, was
first demonstrated by Daniel Colladon in Paris in the early 1840s [1]1. Ironically,
Colladon’s demonstrations were not intended to guide light, but to show how wa-
ter streams break up while falling from a height. An illustration of the setup he
used to focus light from an arc lamp into a narrow jet of leaking water is shown in
Fig. 1.1. Another contemporary physicist, Jacques Babinet also discovered this effect

Figure 1.1. Colladon’s fountain sparkles with light from an arc lamp,
illustrated in his 1884 article. (courtesy : Ref. [3])

independently [4], however he too failed to recognize the worth of the light guiding
principle. This idea caught the common eye decades later when it was used to create
gorgeous illuminated fountains at many of the great Victorian exhibitions.

1.1.2 Birth of Fiber Optic Communication Systems (1900-1979 CE)

Although the potential of fiber optics was not realized for a long time, a break-
through in the 1950s, with the advent of cladded glass fibers, led to a considerable
improvement in the light carrying capacity of glass fibers [5, 6]. During the 1960’s,
a rapid development ensued in the field of fiber optics that was centered around
development of image transmission systems using a bundle of glass fibers. At this

1John Tyndall is often given the credit for inventing light guiding by total internal reflection, how-
ever Colladon demonstrated it a dozen years before him [2].
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period, it was Kapany who popularized the term "Fiber optics" [7] and also wrote
the first book [8] on it to broaden the visibility of the new field.

Figure 1.2. Reported losses in optical fiber over time for single mode
(SM) and multimode (MM) fibers at various wavelengths (Kapron,
1970 [9]; Kaiser, 1973 [10]; French et al., 1974 [11]; Horiguchi, 1976 [12];
Kawachi, 1977 [13]; and Murata and Inagaki, 1981 [14]). (courtesy :

Ref. [15])

One big obstacle still was the high loss (> 1000 dB/km) associated with the trans-
mission. Charles K. Kao and George A. Hockham were the first to pioneer the idea
that optical fiber attenuation could be reduced below 20 dB/km making it a promis-
ing communication medium [16]2. In the next decade, developments in the fab-
rication technology led to the realization of that dream [9]. Subsequent develop-
ments even made it possible to decrease the fiber attenuation to as low as 0.2 dB/km
[11, 14, 17] in the 1.55 µm wavelength window. Evolution of the fiber losses through
time is shown in Fig. 1.2. By the end of the 70s, the losses in such fibers were only
limited by the fundamental process of Rayleigh scattering. Also developments in
chemical engineering in research centers like CSELT and Corning led to an increase
in the manufacturing speed of optical fibers making it an economically viable tech-
nology for communication systems3.

1.1.3 Growth of Nonlinear Fiber Optics (1980-1999 CE)

The increase in accessibility to low-loss silica fibers was a watershed event in the
history of optical fiber technology as it facilitated the development of a new and dy-
namic field of research related to nonlinear effects in optical fibers. Thus in the 1970s

2Kao received the Nobel Prize in Physics in 2009 for this contribution.
3Turin in Italy was the first metropolis where fiber optic cables were deployed in 1977.
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and 80s there was an emergence of research-boom in phenomena related to nonlin-
ear fiber optics. Raman and Brillouin scattering processes [18–20], optically induced
birefringence [21], parametric four-wave mixing [22–24], self-phase modulation [25],
generation of soliton pulses [26, 27], etc. were gaining significant attention during
this time. These developments cascaded into exploration of other exotic nonlinear
optical phenomena like generation and control of ultrashort optical pulses [28, 29],
pulse-compression [30–33], optical switching [34–36], etc. Major developments in
this period can also be found in Refs. [37, 38].

1.1.4 Emergence of Fiber Optic Amplifiers (1980-1999 CE)

Development of long distance fiber optic communication channels increased the de-
mand for periodic signal amplifiers or repeaters. Initially these repeaters were work-
ing in the electrical domain, meaning an optical-electrical-optical conversion was
necessary at each repeating event. This was a major bottleneck for the noise per-
formance and efficiency of the communication channels. Thus the requirement of a
better amplification technique was imminent.

• EDFA
Just before the beginning of the 90s, research on fibers doped with rare-earth el-
ements was a major focal point for building optical amplifiers and lasers. This
led to a significant breakthrough with respect to communication technologies
with the advent of erbium-doped fiber amplifiers (EDFA) in 1987 [39–41]. It
paved the way for development of broadband and highly efficient optical com-
munication systems. A remarkable property of the EDFA is that its transition
energy is coincident with the low-loss spectral window of conventional optical
fibers, leading to the simultaneous amplification of large number of waves at
different wavelengths carrying information independently, eliminating the ne-
cessity of per-channel amplification of signals. Also the requirement of optical-
electrical-optical conversion at repeaters for long distance communication was
now eliminated as the optical signal could now be amplified directly in the
optical domain (see Fig. 1.3).

Figure 1.3. Scheme of a long distance fiber optic communication sys-
tem.

• Parametric Amplifiers
In nonlinear optics, the nonlinear susceptibility of the medium leads to a cou-
pling between the different waves propagating through it. This leads to an
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exchange of photons from one wave to the other. Therefore under a suitable
configuration, a strong pump wave can provide energy to a co-propagating
signal wave leading to a signal-amplification effect. Although this effect was
demonstrated by Stolen et al. in 1974 [22], the full potential of this kind of op-
tical amplification was not realized until the advent of lasers at 1.3 µm wave-
length in the 1980s.

The first important step towards the development of fiber optic parametric
amplifiers based on four wave mixing processes was arguably4 the work by
Pocholle et al. in 1985 [43]. A cardinal property of these new class of amplifiers
was that under certain initial conditions5, the gain of the signal depended on
the relative phase between the different waves (for example signal, idler and
pump(s)) injected into the fiber (which itself acted as an amplifier). Phase sen-
sitive gain in an optical fiber was observed for the first time by Bar-Joseph et
al. in 1986 [44].

The process of optical amplification in a quantum mechanical sense is based
on stimulated emission of photons in the same quantum state as an incom-
ing photon. However, there is another process that can occur with a non-zero
probability called spontaneous emission of photons. In contrast to stimulated
emission, spontaneously emitted photons have random properties for their
quantum state. Spontaneous emission therefore becomes a key source of noise
in optical amplifiers [45].

The principles of quantum optics predict that ordinary amplifiers, which am-
plify all the quadratures of a light mode with the same gain, lead to a degrada-
tion of the signal-to-noise ratio, due to the coupling of the amplified mode with
vacuum modes [46]. EDFA is an example of such an amplifier. This degra-
dation, characterized by the amplifier noise figure, cannot be smaller than 3
dB when the gain is large. Alternatively to such phase insensitive amplifiers
(PIA’s), Caves showed that a phase sensitive amplifier (PSA) can amplify the
signal without degrading the signal-to-noise ratio [47]. Similar conclusions
were also drawn by Yamamoto and Haus in the 1980s6 [49]. This meant that
the noise figure of a PSA is supposed to be 0 dB7. These interesting insights
sparked a spontaneous awakening in the fiber optic research community [50].

Low noise figure phase sensitive amplifiers were first demonstrated in χ(2)

media by Levenson et al. in the 1980s where they broke the 3 dB noise figure
limit [51]. Also Marhic et al. [52] used a fiber Sagnac interferometer to realize

4There were similar works by Washio et al. [42].
5For example, when a non-zero signal, idler and pump is injected at the input of the fiber. A detailed

discussion on this topic is presented in Chapter 2.
6Ironically, it was found out that these results were already known by Gordon even in the 1960s

[48].
7Here we consider a homodyne detection scheme.
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parametric gain with degenerate FWM. The first χ(3)-based8 parametric am-
plification with a noise figure of 1.8 dB (with a similar structure as Marhic et
al.) was observed by Imajuku et al. in 1999 [53]9. These developments set the
stage for the emergence of a new genre of fiber optic amplifiers; ones with high
gain and ultra-low noise properties.

1.1.5 FOPA State-of-the-Art (2000-2020 CE)

Although research in the 1980s and 90s proved the potential of FOPAs, its effective
use was constrained by two challenges. First, active occurrence of SBS prevented the
use of large pump powers for signal amplification. Second, the fiber nonlinearity
was quite weak to deliver a high gain by using a short (few 100 m) length fiber.
Use of longer fibers were impractical due to the varying dispersion of longer fibers
stemming from manufacturing imperfections [59].

The solution to the second problem was achieved by the following modifications
: GeO2 doping in the fiber, reducing core radius and using a W-shaped refractive
index profile of the fiber [60]. These developments marked the emergence of a new
kind of fiber : highly nonlinear fiber (HNLF), with an order of magnitude improve-
ment in the nonlinearity. Hansryd et al. utilized HNLF’s to develop fiber-based
parametric amplifier with continuous wave pumping and a significant gain [61, 62].
The other problem, i.e. with SBS was by-passed by using a phase modulated pump
leading to an increased Brillouin threshold [63–66]. Further, alteration of the core
radius led to techniques to shift the zero dispersion wavelength of the fiber from
the value given by the material dispersion of silica [67]. The HNLF thus became an
explorable platform for FOPA research in the first and second decades of the 2000s.

High gain parametric amplification (although phase insensitive) [68] with a large
bandwidth [69] was demonstrated in 2006-7. Fundamental noise properties of these
amplifiers were investigated in Refs. [70–72].

The first decade of the 2000s also saw a growth in the research related to the
theoretical understanding of FOPA’s. Marhic et al. investigated the dependence of
FOPA gain spectrum on the medium dispersion [73]. A flatter gain spectrum of a two
pump configuration compared to a one pump case was theoretically predicted [74]
and experimentally realized [75]. The quantum properties of parametric amplifiers
were studied in the seminal work of McKinstrie et al. [76–78].

Around 2005, FOPA’s with PSA configuration started attracting the spotlight [78–
80]. Signal regeneration capabilities of a PSA was demonstrated by Crussore et al.
[81–83] and later studied by Slavík et al. [84, 85]. This led to the development of the
copier PSA setup, introduced by Tang et al. [86]. It is based on the principle : copying
of the signal to a conjugate idler wave using a parametric stage, and then at a second
stage, another parametric amplifier becomes phase sensitive due to the presence of

8Silica fiber is an example of a χ(3) medium.
9Although here we did not cover all the important developments in the field, an interested reader

can look up Refs. [54–58] for a more comprehensive overview.
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the signal and the idler waves. Such architectures were explored experimentally in
the context of quadrature phase shift keyed (QPSK) data transmission by Tong et al.
[87, 88].

Figure 1.4. Experimental results of the power spectrum of input and
output of a highly nonlinear fiber (HNLF) showing high-order waves
generated by FWM processes at the output. P1 and P2 are the two

pumps and S0 is the signal. (courtesy : Ref. [89])

One crucial challenge for PSA operation of a FOPA originates from the cascaded
FWM processes generating parasitic sidebands. In Fig. 1.4 we show the example
of two pumps (P1 and P2) and a signal (S0) being launched inside a HNLF. In the
output spectrum, we see higher order waves apart from the two pumps and the
signal being originated. These extra higher order waves deplete the available gain
of the amplifier. To reduce this detrimental effect, efforts in theoretical [76, 90] and
numerical [91, 92] investigation have been made to analyze the complex dynamics of
the different FWM processes generating these sidebands. Most of these models are
based on propagation of multiple CW waves through a HNLF. However, a complete
analytical model to deal with more than four waves is still unavailable [45]. This is
a problem that we embark on in this thesis and discuss in detail in Chapter 2.

1.2 Properties of Optical Fibers

In this section we introduce some general properties of optical fibers. We will use
some of these concepts extensively in the later chapters.

1.2.1 Profile

An optical fiber consists of a central glass core with a surrounding cladding whose
refractive index nc is slightly lower than the core index n1. These fibers are also
known as step-index fibers. Another class of fibers, commonly known as graded-
index fibers have a gradual variation of refractive index from the core to the periph-
ery [93]. In Fig. 1.5 we show the scheme of a step-index (a) and graded-index (b)
fiber.

In this discussion we confine ourselves only to step-index fibers. Two parameters
that characterize a step-index fiber are the relative core–cladding index difference ∆
defined as :

∆ =
n1 − nc

n1
, (1.1)
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Figure 1.5. Transverse refractive index variation of a step-index and
graded index fiber. (courtesy : Test and Measurement World)

where n1 and nc are the refractive indices of the core and the cladding of the fiber
respectively. The second one is V defined as :

V = k0a(n2
1 − n2

c)
1
2 , (1.2)

where k0 = 2π
λ , a is the core radius and λ is the wavelength of light. The number of

light modes supported by the fiber is given by the value of V. For a step-index fiber,
the fiber supports only one mode when V < 2.405 [58]. These fibers are called single
mode fibers. On the other hand, fibers designed to achieve a V > 2.405 can sup-
port more than one modes and hence called multimode fibers. In general, the main
difference between single and multimode fibers is core radius a (smaller for single
mode and larger for multimode fibers respectively). In this thesis all the discussions
pertain to the case of single mode fibers.

1.2.2 Loss

Transmission of optical signals inside a fiber is accompanied with losses. If Pin is the
input power launched into a fiber of length L, the transmitted power Pout is given
by :

Pout = Pine−αL, (1.3)

where α is the fiber attenuation coefficient. As one might expect, the fiber losses
are highly dependent on the wavelength of operation. In Fig. 1.6 we show the loss
spectrum of a state-of-the-art silica fiber with a low loss window of several hundred
nanometers (depending on acceptable attenuation). The losses are minimum in the
C-band reaching as low as 0.2 dB/km, whereas being much larger near the visible
spectrum.

There are several factors that contribute to the loss mechanism of a material.
Rayleigh scattering and material absorption are however the dominant contributors.
The Rayleigh scattering loss varies as λ−4 and is dominant at shorter wavelengths.
As this loss is intrinsic to the fiber, it sets the ultimate limit on fiber loss [58].

Coming to material absorption, silica glass exhibits electronic resonances in the
ultraviolet region, and vibrational resonances in the far-infrared region (beyond 2
µm). However in the 0.5 to 2 µm window it shows very low absorption. Never-
theless, even a small amount of impurity can lead to a significant absorption in this

https://www.test-and-measurement-world.com/Terminology/Advantages-and-Disadvantages-of-Step-Index-and-Graded-Index-Fiber.html
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Figure 1.6. Typical attenuation spectrum for a state-of-the-art silica
fiber. The different amplification bands (O, E, S, C, L and U) are indi-

cated. The C-band is highlighted in red. (courtesy : Ref. [45])

window. In silica fibers, a significant source of such impurities are OH- ions. They
lead to losses due to their vibrational absorption peaks. However state-of-the-art
fiber fabrication techniques can reduce such impurities significantly [94].

Among other factors that may contribute to losses are bending of the fiber and
scattering of light at the core–cladding interface.

1.2.3 Dispersion

Refractive index of a medium in general depends on the wavelength of the light.
Such wavelength dependence of the refractive index accounts for the dispersive ef-
fects of the medium. The dispersion arises from two main sources : 1. material
composition of the medium (material dispersion), and 2. geometric distribution of
refractive index of the medium (waveguide dispersion).

1.2.3.1 Material Dispersion

On a fundamental level, the frequency dependence of the refractive index is related
to the characteristic resonance frequencies for oscillation of bound electrons in the
medium driven by the external electromagnetic radiation. Far from the medium
resonance frequency, the refractive index n can be approximated by the Sellemeier
equation as [58] :

n2(ω) = 1 +
m

∑
j=1

Bjω
2
j

ω2
j −ω2

, (1.4)

where ωj is the j-th resonance frequency and Bj is its strength. ωj’s and Bj’s can be
obtained by fitting an experimentally obtained dispersion curve to Equation (1.4).
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1.2.3.2 Waveguide Dispersion

Waveguide dispersion is the result of the geometric distribution of refractive index
of the medium that leads to wavelength dependence of the propagation constant of
the optical waveguide. For example, in the case of a single mode fiber, the larger
the wavelength, the more the fundamental mode will spread from the core into the
cladding causing the fundamental mode to propagate faster. Thus by altering the re-
fractive index profile of the waveguide, we can design waveguides with a preferred
dispersion profile. For example, see Ref. [95].

1.2.3.3 Dispersion Parameter D

An alternative way to mathematically represent dispersion is through the Taylor ex-
pansion of the mode propagation constant β(ω) around a chosen central frequency
ωc.

β(ω) =
∞

∑
n=0

1
n!

(
dnβ

dωn

)
ω=ωc

(ω−ωc)
n =

∞

∑
n=0

1
n!

β(n)(ωc)(ω−ωc)
n, (1.5)

where dnβ
dωn = β(n). We note here that for a pulse, β(1)(ωc) is the inverse of the group

velocity and β(2)(ωc) is the group velocity dispersion.
Often the dispersion of a fiber is expressed in terms of the dispersion parameter

D, which is related to β as :

D =
dβ(1)

dλc
, (1.6)

where λc is the central wavelength corresponding to ωc. The variation of D with
wavelength can often be approximated as linear and the slope for the relation, i.e.
dispersion slope D′, is provided by the manufacturer. The wavelength for which
D = 0 is known as the zero dispersion wavelength of the fiber and is denoted by
λZDW . These topics are re-discussed in detail in Chapter 2. We should note here
that near the zero dispersion wavelength, cubic terms in the Taylor expansion of β

become important.

1.2.3.4 Dispersion Regimes

For wavelengths below the zero dispersion wavelength of the fiber (β2 > 0), the
fiber is said to exhibit normal dispersion. In the normal dispersion regime, high-
frequency (blue-shifted) components of an optical pulse travel slower than low-
frequency (red-shifted) components. In contrast, the opposite occurs in the anoma-
lous dispersion regime, where the wavelength is more than the zero dispersion
wavelength of the fiber (β2 < 0). The anomalous dispersion regime is interesting for
the study of nonlinear effects related to optical solitons which are generated through
a balance between the dispersive and nonlinear effects of the fiber.
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1.2.4 Nonlinearity

When an electromagnetic field is incident on a material, the material acquires an in-
duced polarization due to action of the external electric field. For a homogeneous
dielectric medium, this polarization ~P (which is the density of induced dipole mo-
ments) is related to ~E through the susceptibility χ of the medium as :

~P = ε0

∞

∑
k=1

χ(k)~Ek, (1.7)

where χ(k) models the k-th order nonlinearity of the medium10 and ε0 is the vac-
uum permittivity. Note that for a time-varying electric field, this result is true in the
frequency domain.

Maxwell’s equations in a non-magnetic, charge-free medium (like silica fiber)
leads to the following differential equation [56]:

∇2~E− 1
c2

∂2~E
∂t2 =

1
c2

∂2~P
∂t2 , (1.8)

where c is the speed of light in vacuum. It should be noted that for most practical
purposes, ~E and ~P are considered to be in the same direction. Thus using a scalar
version of Equation (1.8) often suffices. The important thing to note in Equation (1.8)
is that depending on ~P (that depends on χ), the differential equation can exhibit
linear or nonlinear dynamics. For the case of vacuum, ~P = ~0 that leads to the wave
equation which has sinusoidal solutions. For the first order case, when χ(1) 6= 0 and
χ(k) = 0 for k > 1, we have the case of a linear system. For cases when χ(2) 6= 0,
nonlinear effects such as second harmonic generation and sum frequency generation
are observed. For χ(3) 6= 0 also, the system shows nonlinearities and exhibits effects
like four wave mixing, self phase modulation and cross phase modulation [58].

From Equation (1.7) we can say that when the medium does not have an inver-
sion symmetry (for example a crystal), the nonlinearity will arise from χ(2) (and
higher even order terms), whereas when the material has an inversion symmetry
(for example an amorphous material like silica), all the even order terms will be 0,
and the nonlinearity will come from χ(3) (and higher odd order terms) [45].

In this discussion we only confine ourselves to the discussion of silica fiber,
which is a χ(3) medium. The third order nonlinearity χ(3) manifests in most cases as
a power-dependent refractive index where the intensity dependent refractive index
n(ω, I) is given by [58] :

n(ω, I) = n0(ω) + n2 I, (1.9)

where n0 is the linear part of the refractive index and n2 is the second order nonlinear
refractive index. I is the intensity of the wave. This is also known as the Kerr-
effect. If the index increases with optical power, the media is said to be self-focusing,
since an intense beam can induce its own waveguide, and thus suppress diffraction

10Note that χ(k) is a tensor of rank k + 1 in general [58].
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[96]. The intensity dependence of the refractive index leads to a large number of
interesting nonlinear effects. We will study the implications of these effects further
in Chapter 2.

1.3 Microwave Photonic Link

Microwave photonics has been defined as the study of photonic devices operating
at microwave frequencies and their application to microwave and optical systems
[97]. It combines the two worlds : microwaves (with frequency roughly a few to a
hundred GHz) and photonics (roughly a few hundred THz) [98]. In this section, we
will discuss a few aspects of microwave photonic links which are playing a crucial
role in modern-day communication systems.

1.3.1 Principle

Figure 1.7. Loss as a function of (a) frequency including only prop-
agation loss in the cable for RG-401, RG-405 and silica fiber and (b)
propagation distance for RG-401 at three frequencies. In (b), the fiber
optic loss includes a 30 dB fixed loss due to E/O and O/E conversion.

(courtesy : Ref. [15])

The core idea behind the functioning of a microwave photonics system is ex-
plained as follows. Optical fiber communication links provide numerous advan-
tages compared to its coaxial counterpart, like larger bandwidth, faster transmis-
sion, immunity to electromagnetic interference, lower loss, etc. Figure 1.7 shows the
comparison of losses between coaxial cables and optical fibers. Two kinds of coaxial
cables are considered : RG-401 (larger diameter) and RG-405 (smaller diameter). It
can be seen from Fig. 1.7 (a) that higher frequencies lead to much higher (three to
four orders of magnitude) losses for coaxial cables compared to silica fiber. From
Fig. 1.7 (b) we see that the E/O and O/E conversion accounts for a high loss in the
fiber case compared to the coaxial fibers. Nevertheless, when the propagation dis-
tance is large, the fiber easily outperforms coaxial cables.
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Figure 1.8. Illustration of a microwave photonic link in a radar-based
system to track an enemy aircraft. The radar antenna picks up a
Doppler shifted microwave signal which is sent to a receiver station

via a photonic link.

To enjoy the benefits of optical fiber links, microwave signals are used to mod-
ulate an optical carrier and the information is imprinted on the optical signal. This
process is also called the electric-to-optical (E/O) conversion. The modulated op-
tical carrier is then transmitted through a fiber optic link. At the receiver end, the
modulated optical carrier is demodulated (optical-to-electric or O/E conversion) to
retrieve back the original microwave signal [99].

Figure 1.8 shows an example of a microwave photonic link in a radar system. The
radar antenna, in order to detect an airborne threat, emits microwave radiation in all
directions in an airspace. The existence of a moving object in the airspace would
reflect back some of the microwave radiation with a Doppler shift, to the radar an-
tenna. The microwave circuitry at the antenna filters out the background and feeds
the Doppler shifted received signal to an electro-optic modulator. The modulator
modulates an optical signal utilizing Pockels effect [100]. Then this modulated sig-
nal is transmitted through a fiber optic link to a receiver station. At the receiver, a
photodetector demodulates the signal to retrieve back the original radar signal.

1.3.2 Historical Perspective and Overview

Microwave photonics is a multidisciplinary field encompassing optical, microwave,
and electrical engineering. This field originated as a result of the need to solve com-
plex radio engineering problems with the aid of optical technologies [15]. Although
the field of microwave photonics was not formally recognized until the late 1980s
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and the early 1990s [101], the development of optical communication systems in the
1960s, can arguably be called the inception period for microwave photonics tech-
nologies [102]. With the availability of laser sources, an important question floating
around at that time was, how to modulate the output of a laser source at a high
rate? The answer to this came from the development of electro-optic modulators
[100, 103]. In 1971, Standley et al. achieved modulation with frequencies as high
as 11 GHz [104]. This development opened the possibility for using information
carrying electrical signals to modulate an optical carrier that in turn can carry the
information over a distance.

Figure 1.9. A depiction of an RF towed decoy (ALE-55) with a fiber
optic link from a F/A 18 aircraft. (courtesy : Ref. [15])

For implementation in communication systems, early plans for signal transmis-
sion, were based on free-space optics and gas lenses, however with the realization of
the potential of low-loss optical fiber transmission [9, 16], fibers rapidly became the
preferred choice.

Early microwave analog transmission links had very high electrical input to elec-
trical output losses (>40 dB). However in the 1990s, using external modulation it was
possible to demonstrate microwave photonic links displaying gain without the use
of electrical amplification [105]. Further developments ensued with the introduction
of interferometric modulators using LiNbO3 and GaAs [106–108].

For detection of signals, high speed photodetectors were designed to provide the
useful microwave detection bandwidth [109, 110] in the 1960s. Later in the 70s and
80s, more advanced detectors were available [111, 112].

One instance of application of fiber optic links in microwave systems was in the
military technology. Fiber optic links were employed in an airborne towed decoy
called ALE-55, of F/A 18 fighter aircrafts (see Fig. 1.9) [113]. In the early designs, a
receiving antenna on the decoy detected a threat, amplified, and then retransmitted
a higher power return signal to the aircraft. However, due to the size limitations due
to aerodynamic constraints of the decoy, only a limited amount of signal process-
ing could be performed in the decoy. Introducing a fiber optic cable to connect the
aircraft and the decoy makes it possible to perform sophisticated signal processing,
remoting processed signals to the decoy where amplification and transmission oc-
cur. This allowed the decoy to be used effectively in defeating a threat by suppress-
ing enemy radar functionalities and seducing an approaching missile away from the
aircraft. Use of fiber optics also minimized the size of the decoy considerably making
its integration into aircrafts more robust.
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A more recent application of microwave photonics technology is in the field of
radio astronomy. The Greenbank Telescope, located in West Virginia in the USA, is
the world’s largest fully steerable single antenna (see Fig. 1.10) [114, 115]. It operates
in the range 0.1 to 115 GHz. The huge parabolic antenna, with a 100 m diameter is
used for the detection of atomic and molecular emission lines often produced near
blackholes or those where the measurement of weak, spatially extended spectral
lines can be used to detect new organic molecules in space. The facility uses an
analog fiber optic link for remoting signals to a processing station [116] which was
demonstrated to be useful by Payne et al. [117].

Figure 1.10. A picture of the Greenbank telescope, in West Virginia,
USA. (courtesy : Hauser Spouser)

The application domains of microwave photonics technology is multi-faceted
and spans military, industrial, and academic sectors. Other applications include
radio-over-fiber for wireless communications, signal routing and true time delay
beamforming in arrays, optical signal processing, filtering, waveform synthesis, op-
toelectronic oscillators for precision generation of RF signals, optical clocks for pre-
cision timing, etc. [15].

1.3.3 PSA in a Microwave Photonic Link

In a microwave photonic system, often the received RF signals by the antenna are
quite weak. Examples of such systems are radio telescopes collecting signals that
originate at astronomical distances and are thus very low power. Also high precision
radars require the capability to detect very weak reflections from enemy aircrafts at
a distance. In such systems, the RF signal requires a pre-amplification before being
sent to the processing station. This amplification can be performed in the optical
domain, i.e. in the optical link of the system. As one can expect, a high noise per-
formance optical amplifier is required for such sensitive application. Thus a FOPA
in a PSA configuration immediately comes to our mind for such a role. Further-
more, utilization of a PSA can offer the possibility of realizing other functionalities

http://www.hausergate.eu/the-great-silence-are-we-alone/
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such as optical filtering through phase sensitive amplification and de-amplification
[118], wideband photonic assisted radio-over-fiber systems [119], microwave pho-
tonic frequency measurement [120], etc. A schematic representation of a microwave
photonic link with a PSA is shown in Fig. 1.11.

The possibility of noiseless amplification in PSA’s has been extensively studied
in the context of digital optical communication systems [54, 55, 57, 62, 121]. But such
links are constrained by the bandwidth of analog-to-digital converters (ADC) and
therefore are not suitable for applications requiring a wide bandwidth. This makes
the resort to analog microwave photonic links inevitable. Preliminary studies on
performance of analog links with respect to modulation formats [122], signal multi-
casting [123] and PSA inclusion in a link [118, 124–126] were performed, however
the possibility of incorporating a PSA within an analog microwave photonic link
needs further exploration. Integration of a PSA in a microwave photonic link comes
with different challenges too. We discuss these issues and formulate a direction of
studying these problems in the following.

Figure 1.11. Scheme of a microwave photonic link with a PSA. OFC :
optical fiber cable; PSA : phase sensitive amplifier.

Apart from other implementation challenges, the first question that we ask here
is : Does the optical amplifier introduce extra distortions into the link? At first sight
this question might sound baseless, however it is relevant as we explain in the fol-
lowing.

In a microwave photonic link, the electro-optic conversion is a nonlinear process
that often leads to nonlinearities in the optical domain to be transmitted by the op-
tical link. Therefore, when we use an optical amplifier to amplify the optical signal,
the optical amplifier should also amplify the generated nonlinearities. Thus depend-
ing on the interplay between the electro-optic nonlinearities and the PSA-generated
nonlinearities, the effective distortion of the microwave photonic link is determined
[127]. Although generation and mitigation of nonlinearities by a PSA has been stud-
ied for digital links [84, 128–133], in the case of analog links, it is still a topic of
ongoing research [134].

Thus these questions about the impact of PSA inclusion, on the linearity of the
link will be addressed in a greater detail in Chapter 4 of this thesis. We will also
explore the link dynamics under PSA gain saturation and look for conditions where
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the PSA nonlinearities can be used to mitigate electro-optic nonlinearities leading to
a highly linearized link.
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2.1 Introduction

In this chapter we introduce the mechanism of continuous wave (CW) light propa-
gation through a fiber acting as an optical parametric amplifier. We discuss a multi-
wave model that can be employed to describe the dynamics of the system for dif-
ferent configurations of operation. In this discussion we confine ourselves to the
situations where all the waves are launched into the parametric amplifier with the
same linear state of polarization and remain in that state along the entire length of
the fiber. This assumption allows us to consider a single component of the electric
field vector and hence use a scalar description for the model [56].

Propagation of light in a fiber optic parametric amplifier (FOPA) is chiefly ad-
dressed through two classes of models [58] : a) n-wave models and b) nonlinear
Schrödinger equation (NLSE) based models. The n-wave models1 deal with the
propagation of n discrete CW waves, whereas the NLSE based models describe the
propagation of a pulse with a continuous distribution of frequencies. This chapter is
devoted solely for the description of n-wave models. More specifically, we focus on
the case when n = 3, 4 and 7. A NLSE based model is described in the next chapter.

The n-wave model is often used with n = 4, also known as the 4-wave model.
This model consists of four waves : two pumps, a signal and an idler. The 4-wave
model is solvable analytically under certain approximations and is well studied in
the scientific literature [45, 56, 58, 76, 135]. In the special case where the signal and
the idler waves have the same frequency, the 4-wave model becomes the 3-wave
model. This is often the preferred configuration in digital communication systems
[87]. However, the consideration of just three or four waves is often not sufficient
to describe the dynamics of a FOPA. Indeed, complex four wave mixing (FWM)
processes can lead to generation of more sideband waves than injected at the input of
the fiber. These sideband waves influence the evolution of all the other waves inside
the FOPA. Thus often the 4-wave model is extended to a higher (n > 4) number
of waves to account for the influence of the extra sideband waves. For example
a 6-wave model is investigated in [76, 136] and a 7-wave model is investigated in
[91, 137, 138]. However extending the 4-wave model for a large n is restricted by
the fact that the number of FWM terms in the coupled differential equations of the
n waves grows as ∼ n3 [90]. Thus with growing n, the n-wave model becomes
intractable very soon, the highest achieved value of n so far being n = 24 [92].

This chapter is organized as follows. In Section 2.2 we introduce the most ba-
sic analytical model to describe CW light propagation through a FOPA considering
only three waves, i.e. the analytical 3-wave model. Then in Section 2.3 we move
to an analytical 4-wave model and use a matrix approach for solving the system.
Then in Section 2.4 we consider a more complicated analytical model considering
propagation of seven waves, i.e. the analytical 7-wave model.

1The n-wave model is often referred to as multi-wave model.
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2.2 Analytical 3-Wave Model

The 3-wave model is a special case of the 4-wave model where either two of the
pumps or the signal and idler are degenerate. This model provides the simplest
description of light propagation through a χ(3) fiber capturing the physics of dis-
persive and nonlinear effects of a FOPA [56]. The 4-wave model in general and the
3-wave model in particular are quite extensively studied in the context of amplifica-
tion and wavelength conversion in digital communication systems [61, 62, 139–143].
In this section we discuss the different aspects of an analytical 3-wave model and
understand the amplification and wavelength conversion capabilities of a FOPA.

2.2.1 Configurations

Considering the allocation of frequency of the pump(s) and signal (and/or idler),
FOPA’s can be operated in different configurations. The most general scenario con-
sists of two pumps and a signal and an idler, with all the waves having different
frequencies (see Fig. 2.1). This configuration corresponds to the 4-wave model. The
different interacting frequencies are related as :

ωP1 + ωP2 = ωs + ωi, (2.1)

where ωP1 and ωP2 are the pump frequencies and ωs and ωi are the signal and idler
frequencies respectively. Equation (2.1) guarantees the energy conservation associ-
ated with the interaction processes between the different waves [144, 145].

ω
ωP1 ωs ωi ωP2

Pump 1

Signal Idler

Pump 2

Figure 2.1. General configuration of a FOPA without considering any
sidebands. ωs, ωi, ωP1 and ωP2 are the frequencies of the signal, idler,
pump 1 and pump 2 waves respectively. The height of the arrows

represent intensity of the waves (not to scale).

While Fig. 2.1 shows the most general configuration, FOPA’s are broadly oper-
ated in two common configurations [54]: a) degenerate pumps and non-degenerate
signal and idler, b) non-degenerate pumps and degenerate signal and idler (see Fig
2.2). These configurations correspond to the 3-wave model. In the field of digi-
tal communication systems, the non-degenerate pump configuration is often pre-
ferred due to its flat and broad gain spectrum when the signal is close to the zero
dispersion wavelength of the fiber [74, 75, 146–150], which is attractive for wave-
length division multiplexing (WDM) systems [151] and wavelength converters [152].
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Also, the non-degenerate pump configuration benefits from other advantages such
as non-requirement of producing an idler wave at the input of the fiber to achieve
PSA operation and obtaining the same signal gain with a lower individual pump
power compared to the degenerate pump configuration [58]. However, the degen-
erate pump configuration has a simpler dynamics compared to the non-degenerate
pump configuration but with a less flat gain spectrum [153].

ω ω
ωs ωP ωi ωP1 ωs ωP2

Signal (A−1)

Pump 1 + Pump 2 (A0)

Idler (A1)

Pump 1 (A−1)

Signal+Idler (A0)

Pump 2 (A1)

(a) (b)
Figure 2.2. Configurations of a FOPA in a 3-wave model : (a) De-
generate pumps and non-degenerate signal and idler. (b) Degenerate
signal and idler and non-degenerate pumps. We introduce a simpli-
fied notation A0 and A±1 for the different waves for convenience. ω
is frequency and the height of the arrows represents intensity (not to

scale).

2.2.2 Approximations

In this subsection we list the approximations considered for the calculation of wave
evolution through the FOPA in a degenerate wave configuration. Here first we de-
fine the real electric field E(z, t) with 2N + 1 components with indices running from
−N to N, as :

E(z, t) =
N

∑
n=−N

Anei(βnz−ωnt) + c.c., (2.2)

where An is the complex amplitude and ωn is the frequency of the wave with index
n. The corresponding propagation constant for the n-th wave is given by βn (or
β(ωn)). For the 3-wave model, N = 1. Here we have not considered the transverse
profile of the mode as we consider it to be a constant within a characteristic radius
r0 of the fiber and 0 outside that radius.

Now we list the considered approximations as [56]2:

• The attenuation of the fiber is neglected, i.e. α = 0 where α is the attenuation
coefficient of the fiber.

• The amplitudes of the electric fields Ak’s, of the considered waves are assumed
to vary little over the length scale of the wavelengths of the waves. This is also

2Here we do not mention that the waves are co-polarized as it is understood from the previous
discussion.
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called the slowly varying amplitude (SVA) approximation and is written as :∣∣∣∣d2Ak

dz2

∣∣∣∣� ∣∣∣∣βk
dAk

dz

∣∣∣∣ . (2.3)

• Along the length of the fiber, the power(s) of the pump(s) are much larger than
those of the other waves i.e. signal and/or idler in this case. This can also be
referred as the strong pump approximation.

• The pump power(s) are considered almost undepleted along the length of the
fiber. The undepleted pump powers are given by |A±1(z)|2 = P. This is also
known as the non-pump depletion approximation.

• For the case of a non-degenerate pump configuration, the input pump powers
are the same, i.e. |A1(0)|2 = |A−1(0)|2.

2.2.3 Wave Evolution Equations

The differential equations for the 2k + 1 slowly varying complex amplitudes, Aj’s
with j = −k to k are given as [56] :

dAj

dz
= iγ

[
|Aj|2Aj + 2

k

∑
l 6=j=−k

|Al |2Aj +
k

∑
m,n,p=−k,

ωm+ωn−ωp=ωj

Am An A∗pei∆βmnpjz
]
, (2.4)

where ∆βmnpj = βm + βn − βp − β j and γ is the nonlinear coefficient of the fiber.
The three terms on the right-hand side of Equation (2.4) respectively correspond to:
1. the interaction of one wave, Aj with itself, which is called self-phase modula-
tion (SPM); 2. the interaction between two waves, Al and Aj, which is called cross-
phase modulation (XPM); 3. the interaction between four waves, Am, An, Ap and
Aj, which is called four wave mixing (FWM). Here ∆βklmn’s account for the linear
phase mismatch of the four interacting waves in a FWM process. We note here that
the SPM and XPM interactions between the waves only account for a phase shift of
the waves, while the FWM interactions lead to an exchange of energy between the
different waves [56, 58]. Thus utilizing the FWM interaction, one can design high-
gain optical amplifiers where energy is pumped from a strong pump wave to a weak
signal wave [151].

Solving Equation (2.4) for all the 2k+ 1 (for degenerate wave configuration) waves
with proper initial conditions determines how the fields evolve along the FOPA.
While considering the 3-wave model, i.e. j = −1, 0 and 1, we can write down the
equations for the field evolution of the different waves as :

dA1

dz
= iγ

(
|A1|2A1 + 2(|A−1|2 + |A0|2)A1 + A2

0A−1
∗ei∆β00−11z

)
, (2.5)
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dA−1

dz
= iγ

(
|A−1|2A−1 + 2(|A1|2 + |A0|2)A−1 + A2

0A1
∗ei∆β001−1z

)
, (2.6)

dA0

dz
= iγ

(
|A0|2A0 + 2(|A1|2 + |A−1|2)A0 + 2A1A−1A0

∗ei∆β1−100z
)

. (2.7)

While considering a non-degenerate pump configuration, A±1 represent the ampli-
tudes of the pumps and A0 represents the amplitude of the degenerate signal and
idler (see Fig. 2.2 (b)). However for a degenerate pump configuration, A1 and A−1

represent the amplitudes of the signal and idler respectively and A0 represents the
amplitude of the degenerate pump (see Fig. 2.2 (a)).

2.2.4 Signal Gain : Degenerate Pump Configuration

For the degenerate pump configuration, the signal is characterized by A−1 (see
Fig. 2.2 (a)). Solving Equations (2.5), (2.6) and (2.7) we find the gain of the signal
G−1 = |A−1(L)|2

|A−1(0)|2
where L is the length of the fiber as [58, 135] (see Appendix A) :

G−1 =1 +

(
1 +

κ2 + 4γ2P2ϑ2 − 4κγPϑ cos(Θ)

4g2

)
sinh2(gL)

+
γPϑ sin(Θ)

g
sinh(2gL),

(2.8)

where P is the input (undepleted) power of the pump. Θ is the relative phase differ-
ence between the signal, pump and the idler and is given by :

Θ = 2φ0 − φ−1 − φ1, (2.9)

where φ−1, φ0 and φ1 are the phases of the signal, pump and idler respectively at the
input of the fiber (see Equation (2.2)). κ is the nonlinear phase mismatch given by:

κ = ∆β00−11 − 2γP. (2.10)

For this configuration ∆β001−1 is given by [58]:

∆β001−1 = 2β(ω0)− β(ω1)− β(ω−1) ≈ β(2)(ω−1 −ω0)
2 +

1
12

β(4)(ω−1 −ω0)
4,

(2.11)
where β(2) and β(4) are the second and fourth derivative of the propagation constant
with respect to the frequency ω0. A detailed discussion on the calculation of β(2)

and β(4) is provided in Subsection 3.1.6. This expression of ∆βklmn is derived by
truncating the Taylor series expansions of the β(ωi)’s (for i = 0, 1,−1) around ω0

after four terms. We should keep in mind that it is only valid for a ω0 close to ω−1.
ω0 is often called the central frequency denoted by ωc. Also we note that due to
the symmetrical position of ω1 and ω−1 with respect to ω0, the first and third order
terms in the Taylor series expansion of β1 and β−1 cancel out. Also in Equation (2.8),
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g, which is known as the parametric gain coefficient [58], is given by :

g2 = (γP)2 −
(

κ

2

)2

. (2.12)

The parameter ϑ is given by :

ϑ =

√
P1(0)

P−1(0)
, (2.13)

where P1(0) and P−1(0) are the powers of the idler and the signal at the input of the
fiber respectively. For ϑ = 0, the FOPA acts as a phase insensitive amplifier (PIA)
and for ϑ = 1 (or rather any other non-zero value of ϑ) it behaves as a phase sensitive
amplifier (PSA).

• ϑ = 0 :
For the case of PIA, there is no idler at the input of the fiber. Thus using ϑ = 0,
we get the PIA gain G−1

PIA from Equation (2.8) as :

G−1
PIA = 1 +

(
1 +

κ2

4g2

)
sinh2(gL). (2.14)

We should note here that the gain G−1
PIA does not depend on the relative

phase of the signal and pump (see Fig. 2.3 (in blue)).

Another important feature of this configuration is that even when there is just
the signal and the pump at the input of the fiber, an idler is generated at the
output of the fiber. This PIA-generated idler is located at the symmetrically
opposite side of the spectrum with respect to the pump and its phase is con-
jugate of the signal phase. Such spontaneous generation of an idler has many
applications such as dispersion compensation and wavelength conversion in a
WDM system [154].

• ϑ = 1 :
For the special PSA case of equal amplitudes of signal and idler at the input of
the FOPA, i.e. ϑ = 1, we get the signal gain G−1 from Equation (2.8) as :

G−1 =1 +

(
1 +

κ2 + 4γ2P2 − 4κγP cos(Θ)

4g2

)
sinh2(gL)

+
γP sin(Θ)

g
sinh(2gL).

(2.15)

We should note here that the gain G−1 depends on the relative phase of the
signal, pump and idler, i.e. Θ. A plot of the PSA gain G−1 as a function of the
relative phase Θ is shown in Fig. 2.3 (in red). In the plot, P=20 dBm, L=200
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m, γ =11.3 W−1km−1, λ−1=1546.9 nm, λ0=1547.1 nm, zero dispersion wave-
length of the fiber3. λZDW=1547 nm and dispersion slope of the fiber D1=0.017
ps/nm2/km4. Thus we see from Equation (2.8) and Fig. 2.3, that G−1 is a pe-
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Figure 2.3. PSA (red) and PIA (blue) gain of signal using the 3-wave
model as a function of the relative phase between the pump, signal
and idler Θ = θs + θi − 2θP where θs, θi and θP are the phases of
the signal, idler and pump respectively at the input of the fiber. A
degenerate pump configuration is considered. P = 20 dBm, L = 200
m, γ = 11.3 W−1km−1, λ−1 = 1546.9 nm, λ0 = 1547.1 nm, λZDW =

1547 nm and D1 = 0.017 ps/nm2/km.

riodic sinusoidal function with respect to Θ with a period of 2π. So if G−1 is
maximized for Θ = Θm, then G−1 is minimum for Θ = Θm + π. In fact one
can show that G−1,max = 1

G−1,min
where G−1,max and G−1,min are the maximum

and minimum PSA gains respectively [155, 156].

From Equations (2.14) and (2.15), we see that the PSA configuration can provide
a larger gain than the PIA configuration, however since the PSA gain is sensitive to
the relative phase between the pump, signal and idler, all the waves must be phase
locked to provide a stable gain. Such phase stabilization can be obtained by the use
of feedback loops as illustrated in Ref. [155].

2.2.5 Signal Gain : Non-Degenerate Pump Configuration

For the non-degenerate pump configuration (see Fig. 2.2 (b)), the signal gain G0 =
|A0(L)|2
|A0(0)|2 where L is the length of the fiber, is given by solving Equations (2.5), (2.6)
and (2.7) as [58, 135] (see Appendix A) :

G0 =1 +

(
1 +

κ2

4 + 4γ2P2 − 2κγP cos(Θ)

g2

)
sinh2(gL)

+
2γP sin(Θ)

g
sinh(2gL),

(2.16)

3The zero dispersion wavelength is the wavelength at which the dispersion parameter D of the fiber
becomes zero. We will revisit this in Subsection 3.1.6.

4These parameters correspond to the ones used for a standard HNLF in [155].



32 Chapter 2. Analytical 7-Wave Model

where the parametric gain coefficient g is given by :

g2 = 4γ2P2 − κ2

4
. (2.17)

In this case κ is given by :
κ = ∆β1−100 − 2γP, (2.18)

where ∆β1−100 is the linear phase mismatch given by :

∆β1−100 = β(ω1) + β(ω−1)− 2β(ω0). (2.19)

Marhic et al. showed that using a Taylor series expansion of β(ω) around ωc ≈ ω0,
we can write [140]:

∆β1−100 = 2
∞

∑
n=1

1
(2n)!

(
d2nβ

dω2n

)
ω=ωc

[
(ω0 −ωc)

2n −
(ω1 −ω−1

2

)2n
]

, (2.20)

Thus when ωc = ω0, we get :

∆β1−100 = −2
∞

∑
n=1

1
(2n)!

(
d2nβ

dω2n

)
ω=ωc

(ω1 −ω−1

2

)2n
. (2.21)

Thus tailoring ω1 − ω−1, β(2) and β(4), one can obtain a configuration with a flat
and broad gain spectrum for the FOPA when the signal wavelength is close to the
zero dispersion wavelength of the FOPA [140]. This property of the non-degenerate
pump FOPA makes it a promising candidate for WDM systems.

We note here that the degenerate and non-degenerate pump FOPA’s both have
the same form of solution for the signal gain, however they differ with respect to the
parameters κ and g. Thus the spectral dependences of the gain are different for the
two cases.

2.2.6 PIA vs PSA

We saw from Equation (2.8) that the signal gain for PIA is independent of the rela-
tive phase of the pump and the signal and for PSA it depends on the relative phase.
It turns out that this phase sensitivity has implications on the quantum noise prop-
erties of a FOPA. Caves showed that the quantum noise figure, which is the ratio
of signal to noise ratio between the input and output of the FOPA, for a FOPA in
PIA configuration is limited by 3 dB whereas for PSA it can be as small as 0 dB [47].
This means a FOPA in PSA configuration can act as a noiseless amplifier without
degrading the signal-to-noise ratio after amplification [51, 155].
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2.3 Analytical 4-Wave Model

In the previous section we dealt with the analytical 3-wave model for non-degenerate
and degenerate pump configurations. In the non-degenerate pump case, the 3-wave
model becomes a special case of the 4-wave model when the signal and the idler are
degenerate. In this section we provide a matrix based approach to solve the system
with two pumps and non-degenerate signal and idler [56].

2.3.1 Configuration

The configuration of the 4-wave model is similar to the 3-wave model however with
a non-degenerate signal and idler. In Fig. 2.4 we show such a configuration. The
two pumps are labelled A1 and A−1, the signal and idler are labelled Aqs and Aqi

respectively. ∆ωPP is the frequency separation between the pumps.

ω
Aqs A−1 ωc A1 Aqi=−qs

Signal

Pump1 Pump2

Idler

∆ωPP

Figure 2.4. Configuration of a dual pump FOPA with non-degenerate
signal and idler and non-degenerate pumps. ω is frequency. The two
pumps are labelled A1 and A−1, the signal and idler are labelled Aqs

and Aqi respectively. ∆ωPP is the frequency separation between the
pumps. (not to scale)

For reasons that we discuss later, here we treat the signal (or idler) index qs (or
qi) as a parameter, where qs/i is defined by :

qs/i =
2(ωs/i −ωc)

∆ωPP
, (2.22)

where ωs (or ωi) is the frequency of the signal (or idler), ∆ωPP is the frequency sep-
aration between the two pumps and ωc is the central frequency chosen to be the av-
erage frequency of all the considered waves. Note that since the signal and the idler
are located symmetrically with respect to the central frequency, we have qi = −qs.
Also, if we replace the signal (or idler) frequency by the pump frequencies in Equa-
tion (2.22), we get qP = 1 (or -1), which are indeed the pump indices.

2.3.2 Approximations

The considered approximations for this analytical model are the same as for the
analytical 3-wave model described previously (see Section 2.2). However, here we
impose an additional approximation :
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• Dispersion terms are kept till the second order, i.e. β(n) = 0 for n > 2.

This approximation will simplify the coupled differential equations for the Ai’s con-
siderably as we will see subsequently.

2.3.3 Linear Phase Mismatch

The linear phase mismatch ∆βklmn between four interacting waves at frequencies ωk,
ωl , ωm and ωn is given by :

∆βklmn = β(ωk) + β(ωl)− β(ωm)− β(ωn), (2.23)

where β(ωj), (j = k, l, m, n) is the propagation constant at frequency ωj. We can
also rewrite it by performing a Taylor series expansion of β(ω) around the central
frequency ωc as :

β(ω) =
∞

∑
n=0

1
n!

(
dnβ

dωn

)
ω=ωc

(ω−ωc)
n. (2.24)

Here we consider dnβ
dωn = β(n) till n = 2 in the Taylor series expansion [76, 157]. Thus

considering a second order approximation, we write :

β(ω) ≈ β(ωc) +

(
dβ

dω

)
ωc

(ω−ωc) +

(
d2β

dω2

)
ωc

(ω−ωc)2

2
. (2.25)

Next we calculate ∆βmnkj by using Equation (2.25) in Equation (2.23) as :

∆βmnkj = β(ωm) + β(ωn)− β(ωk)− β(ωj)

=

(
dβ

dω

)
ωc

(ωm + ωn −ωk −ωj)

+
1
2

(
d2β

dω2

)
ωc

(
ωm

2 + ωn
2 −ωk

2 −ωj
2 − 2ωc(ωm + ωn −ωk −ωj)

)
.

(2.26)

By imposing the energy conservation condition for the FWM between waves at fre-
quencies ωm, ωn, ωk and ωj [58], i.e. ωm + ωn −ωk −ωj = 0, we have :

∆βmnkj =
1
2

(
d2β

dω2

)
ωc

(ωm
2 + ωn

2 −ωk
2 −ωj

2)

=
β(2)(ωc)

2
(ωm

2 + ωn
2 −ωk

2 −ωj
2).

(2.27)

To simplify the calculation, we make the following change of variable as in Equa-
tion (2.22) :

q =
2(ω−ωc)

∆ωPP
, (2.28)

where ωc is the central frequency, which is chosen to be the average of all the fre-
quencies. ∆ωPP is the frequency separation of the two pumps. This variable trans-
formation makes the calculation of ∆βmnkj much easier as now the frequencies are
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expressed in terms of their relative position with respect to the central frequency ωc.
For example, in a dual pump configuration, with a degenerate signal and idler, the
signal frequency becomes the central frequency and q = 0 for the signal in such a
case.

Now we compute qm
2 + qn

2 − qk
2 − qj

2 as :

qm
2 + qn

2 − qk
2 − qj

2 =
ωm

2 + ωn
2 −ωk

2 −ωj
2 − 2ω0(ωm + ωn −ωk −ωj)(

∆ωPP
2

4

) . (2.29)

Thus we have :

ωm
2 + ωn

2 −ωk
2 −ωj

2 =
∆ωPP

2

4
(qm

2 + qn
2 − qk

2 − qj
2), (2.30)

where we have used the fact that ωm + ωn −ωk −ωj = 0. Hence we can write :

∆βmnkj =
β(2)(ωc)∆ωPP

2

8
(qm

2 + qn
2 − qk

2 − qj
2) = C(qm

2 + qn
2 − qk

2 − qj
2), (2.31)

where C is given by :

C =
β(2)(ωc)∆ωPP

2

8
=

β(2)(ωc)π2c2∆λ2
PP

2
(

λc +
∆λPP

2

)2 (
λc − ∆λPP

2

)2 . (2.32)

Here λc is the central wavelength corresponding to the central frequency ωc and
∆λPP is the pump-pump wavelength separation.

To illustrate a simple example, we consider the term ∆β1−100 which arises in
the coupled equations in the analytical 3-wave model for a non-degenerate pump
configuration (see Equation (2.7)). Using Equation (2.31) we compute :

∆β1−100 = C
(
12 + (−1)2 − 02 − 02) = 2C. (2.33)

Therefore, the linear phase mismatch terms can be evaluated conveniently when we
know C5.

2.3.4 Wave Evolution Equations

Similar to the analytical 3-wave model, using Equation (2.4) we write the evolution
equations for A1, A−1, Aqs and A−qs (or Aqi ) as :

dA1

dz
= iγ

(
|A1|2A1 + 2(|A−1|2 + |A−qs |

2 + |Aqs |
2)A1 + 2A−qs Aqs A−1

∗ei∆β−qsqs−11z
)

,

(2.34)

5The calculation of β(2) is required for evaluating C and is shown in Subsection 3.1.6 in Chapter 3.
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dA−1

dz
= iγ

(
|A−1|2A−1 + 2(|A1|2 + |A−qs |

2 + |Aqs |
2)A−1 + 2A−qs Aqs A1

∗ei∆β−qsqs1−1z
)

,

(2.35)

dA−qs

dz
= iγ

(
|A−qs |

2A−qs + 2(|A1|2 + |A−1|2 + |Aqs |2)A−qs + 2A1A−1Aqs
∗ei∆β1−1qs−qs z

)
,

(2.36)

dAqs

dz
= iγ

(
|Aqs |

2Aqs + 2(|A1|2 + |A−1|2 + |A−qs |2)Aqs + 2A1A−1A−qs
∗ei∆β1−1−qsqs z

)
,

(2.37)

where we have replaced the indices m, n, k and j in the ∆βmnkj terms with 1, -1, qs and
−qs accordingly. It is important to note here that this set of equations is valid when
|qs| 6= 3. That is because when |qs| = 3, we need to consider an extra FWM process
that leads to a slight modification of the equations. We will deal with such a special
case later while describing the analytical 7-wave model. Also note that |qs| = 0 leads
to the equations for a 3-wave model with non-degenerate pump configuration (see
Subsection 2.2.5).

Invoking the strong pump approximation, in particular, neglecting the terms that
contain less than two pump terms in Equations (2.34)-(2.37), we get :

dA1

dz
= iγ3PA1, (2.38)

dA−1

dz
= iγ3PA−1, (2.39)

dAqs

dz
= iγ

(
4PAqs + 2A1A−1A−qs

∗ei∆β1−1−qsqs z
)

, (2.40)

dA−qs

dz
= iγ

(
4PA−qs + 2A1A−1Aqs

∗ei∆β1−1qs−qs z
)

, (2.41)

where we have replaced the undepleted pump powers |A±1|2 by P.

2.3.5 Solution of Equations

The solutions to Equations (2.38) and (2.39) are given by :

A±1 =
√

Peiγ3Pz, (2.42)
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where we consider the phases of the pumps at the input of the fiber to be 06. Thus
injecting this solution into Equations (2.40) and (2.41) we can write a matrix-form
equation as :

d
dz

[
Aqs

A−qs
∗

]
= iγP

[
4 2ei(6γP+2C(1−qs

2))z

−2e−i(6γP+2C(1−qs
2))z −4

] [
Aqs

A−qs
∗

]
, (2.43)

where we have used Equation (2.31) to calculate ∆β1−1−qsqs and ∆β1−1qs−qs . The form
of Equation (2.43) is the same as used to describe the dynamics of an oscillating pen-
dulum of variable length or that of a child’s swing pumped by the squatting and
rising motion of the child [45, 158]. We note that the coefficient matrix in Equa-
tion (2.43) depends on z with oscillating terms. Thus depending on the phase of this
oscillation, Aqs will be either amplified or de-amplified.

In order to get rid of the z-dependence from the coefficient matrix in Equa-
tion (2.43), we do the following transformation of variables :

A±qs = B±qs e
i(3γP+C(1−qs

2))z. (2.44)

To simplify the notation, we now denote qs as q and we will follow this notation
henceforth. With the transformed variables B±q, Equation (2.43) can be rewritten as
:

d
dz

[
Bq

B−q
∗

]
= iγP

[
1− Fq 2
−2 −(1− Fq)

] [
Bq

B−q
∗

]
, (2.45)

where Fq is given by :

Fq =
C(1− q2)

γP
. (2.46)

Fq is basically the ratio between the dispersion and nonlinearity of the fiber. We also
note from Equation (2.45) that the trace of the coefficient matrix is 0. This means that,
after integration along z, the transfer matrix relating the input (Bq(0), B∗−q(0)) and
output (Bq(L), B∗−q(L)) modes (where L is the fiber length) has a unit determinant.
This also means that the 2×2 transfer matrix relating the input and output modes is
symplectic [159].

One way to solve Equation (2.45) is to note that the equation is of the form dB
dz =

MB where M is the coefficient matrix. Therefore the solution can be written as :

B = eMz. (2.47)

Since in this case M2 is diagonal, i.e. :

M2 = −γP(3 + 2Fq + Fq
2)I, (2.48)

where I is the identity matrix, all even powers of M (i.e. M2n) will be proportional

6This assumption is reasonable because for the case of a PSA, only the relative phase between the
pumps and the signal determines the signal gain.
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to I and all odd powers of M (i.e. M2n+1) will be proportional to M. Thus the final
solution can be expressed as :

B = cos(γPµqz)I + i
sin(γPµqz)

µq
M, (2.49)

where µq is given by :
µq = (−3− 2Fq + F2

q )
1
2 . (2.50)

Although the above approach provides an easy way to solve the system, how-
ever we introduce here a slightly more rigorous way to obtain the solution using the
traditional eigenvalue method. The eigensystem (eigenvalues : λ1 and λ2, eigenvec-
tors : V1 and V2) for the coefficient matrix in Equation (2.45) is given by :

λ1 = −iγP µq, λ2 = iγP µq, (2.51)

V1 =

[
ηq+µq

2

1

]
, V2 =

[
ηq−µq

2

1

]
, (2.52)

where µq and ηq are given by :

ηq = −1 + Fq , µq = (−3− 2Fq + F2
q )

1
2 . (2.53)

Note that for q = 0, i.e. the 3-wave model, µ0 is related to the parametric gain
coefficient introduced in the last section (see Equation (2.17)), as:

g2 = −γ2P2µ0
2. (2.54)

The solution of Equation (2.43) is given by :[
Bq(z)

B−q
∗(z)

]
=

[
cos(γPµqz)− ηq

µq
i sin(γPµqz) 2

µq
i sin(γPµqz)

− 2
µq

i sin(γPµqz) cos(γPµqz) + ηq
µq

i sin(γPµqz)

] [
Bq(0)

B−q
∗(0)

]
.

(2.55)

Obtaining the full solution, now we consider a simple case, i.e. q = 0 corre-
sponding to the 3-wave model in non-degenerate pump configuration. To visualize
the solution, in Fig. 2.5 we plot the maximum signal gain (by scanning the signal in-
put phase) as a function of δλo f s i.e. the signal wavelength offset from the zero dis-
persion wavelength of the fiber and the pump-pump wavelength separation ∆λPP.
The considered parameters are : L = 500 m, P = 20 dBm, γ = 11.3 W−1km−1, zero
dispersion wavelength λZDW = 1547.5 nm and dispersion slope of fiber D

′
= 0.017

ps/nm2/km. From Fig. 2.5 we see that for small values of ∆λPP (<10 nm), the gain
is large and the profile is flatter. However for larger values of ∆λPP (>10 nm), the
gain decreases and shows oscillating behaviour. Of course, for the system to act as
an amplifier, a large signal gain is desirable.
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Figure 2.5. Maximum signal gain vs δλo f s vs ∆λPP in a FOPA con-
sidering a 3-wave model with non-degenerate pump configuration.
δλo f s = λ0 − λZDW where λ0 is the signal wavelength and λZDW
is the zero dispersion wavelength. L = 500 m, P = 20 dBm,
γ = 11.3 W−1km−1, λZDW = 1547.5 nm and dispersion slope of fiber

D
′
= 0.017 ps/nm2/km.
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Figure 2.6. Maximum signal gain vs ∆λPP in a FOPA considering a
4-wave model with non-degenerate pump configuration for q = 0

(blue) and |q| = 2 (red). Parameters are same as Fig. 2.5.

Subsequently in Fig. 2.6, we compare the maximum PSA gains for q = 0 and
|q| = 2 as a function of ∆λPP. From Fig. 2.6 we see that unlike the flatter gain spec-
trum for the q = 0 case, when |q| = 2, the spectrum has a bulge near ∆λPP = 5
nm. In general, this peak appears where ηq = −1 + C(1−q2)

γP = 0 (η2 = 0 here). In
the anomalous dispersion region (where C is negative), this is possible only when
|q| > 1. Physically, this peak appears due to the efficient FWM process that leads
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to conversion of two pump photons into a signal and idler photon. Thus when the
signal is located between the two pumps (|q| < 1), the gain spectrum is flatter com-
pared to the bulged spectrum when the signal is outside the two pumps (|q| > 1).

2.3.6 Stability of Solution

The stability of the solutions can be related to the trace of the transfer matrix (de-
noted as T) in Equation (2.55). When |Tr(T)| > 2 the solution is unstable or hyper-
bolic and when |Tr(T)| < 2 the solution is stable or oscillatory [159]. In our case, this
means when µq is real, the solution is stable and when it is imaginary, the solution
is unstable. In the stable solution regime, the modes oscillate at a frequency γPµq.
However we should note that it is a very slow oscillation often not completing even
a half cycle for γPL < 0.5. In the unstable regime the modes grow exponentially.

Figure 2.7. State of µ0 (real (black) or imaginary (white)) vs δλo f s vs
∆λPP. Parameters are same as in Fig. 2.5.

µq depends on the dispersion, nonlinearity of the fiber and the wavelength allo-
cation of the system and therefore the stability of the solution too. In Fig. 2.7 we plot
the state (real or imaginary) of µ0 i.e. q = 0. The utilized parameters are the same as
in Fig. 2.5. Fig. 2.7 bears a striking similarity with Fig 2.5. We see from Fig. 2.7 that
the region where µ0 is imaginary, or the solution is unstable, shows a large maximum
gain for the signal in Fig 2.5. Similarly, the region where µ0 is real, or the solution is
stable, shows a smaller maximum gain for the signal in Fig 2.5.

For the more general case (i.e. not considering q = 0), we find from Equa-
tions (2.46) and (2.53) that µq is imaginary when :

F0 =
C

γP

∈ (− 1
1−q2 , 3

1−q2 ) when q < 1,

∈ ( 3
1−q2 ,− 1

1−q2 ) when q > 1.
(2.56)
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In Fig. 2.8 we show the region (blue shaded) in the F0-q plane where µq
2 < 2, or
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Figure 2.8. Plot showing the region in the F0-q plane where µq
2 < 2,

or µq is imaginary (shaded blue region).

µq is imaginary. Therefore, the signal shows a hyperbolic solution in this region.
Note that near the pumps (|q| = 1), the bandwidth of hyperbolic signal solution is
quite large compared to when the signal is away from the pumps. This provides
us an estimate of an operating bandwidth where the nonlinear fiber can efficiently
act as an amplifier with a large gain. Although the analytical 4-wave model has
been investigated extensively [56], for example Tanemure et al. provided a similar
analysis however in terms of eigenmodes of the system [160], the system stability
analysis with respect to the frequency allocation of the waves is original to the best
of our knowledge.

2.3.7 Limitations

The analytical 4-wave model does not take into account the higher order waves that
are generated due to FWM processes in the FOPA. These higher order waves can
be amplified significantly through the FOPA and often play an important role in
influencing the signal gain [91].

The solution of the analytical 4-wave model was obtained by considering the
non-pump depletion approximation. However, when the length of the FOPA is
large, this approximation breaks down. Although the differential equations, i.e.
Equations (2.34)-(2.37) are still solvable including pump depletion into the model,
but the solutions are expressed in terms of Jacobian elliptic functions [161, 162] and
are complicated to deal with. Also while taking pump depletion into account, we
can only solve for the powers of the different waves and their associated phases
cannot be obtained [56].
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In this model we neglected the higher order terms (n > 2) in the Taylor series
expansion of β(ω) in our calculation. In certain cases, for example when the wave-
length of the considered waves are close (within a few nanometers) to the zero dis-
persion wavelength, higher order treatment is solicited for accurate results [58].

A special case of the developed model arises when |q| = 3 (or |qs| = 3) i.e. the
pump-pump wavelength separation is equal to the pump-signal wavelength sepa-
ration. This specific situation was not dealt with in this discussion and it will be
addressed later in the analytical 7-wave model (see Subsubsection 2.4.10).

2.4 Analytical 7-Wave Model

When a signal and two strong pumps are launched in a FOPA, due to cascaded FWM
processes multiple sidebands are generated that deteriorate the signal gain predicted
by the analytical 3-wave model. Thus consideration of multiple waves in the model
becomes necessary [91]. In order to investigate more accurately such a situation, we
derive an analytical 7-wave model, with a configuration as depicted in Fig. 2.9.

In the scientific literature the n-wave models with n > 4 have been studied
mostly in the context of PSA noise figure investigation [76, 157]. However non-
existence of a full analytical solution of the n-wave model provides scope for further
investigation [45].

McKinstrie et al. [76] and Marhic et al. [163] analyzed the 6-wave model ana-
lytically, however for some limited cases. Their analysis does not incorporate the
dependence of signal gain on the fiber dispersion. Vedadi et al. [164] also analyzed
the 6-wave model, however did not provide a full analytical solution considering
arbitrary initial conditions for the different waves. Tanemura studied the 6-wave
model in terms of the system eignemodes [160]. We should also mention that the
system of equations for the 7-wave system turns out to be different compared to the
6-wave system due to the symmetry of the degenerate signal and idler. Numerical
approaches were also used to analyze the n-wave model for n > 6 [91, 92, 165, 166].
More recently Inoue developed a semi-analytical model to solve for the two pumps
and higher order pumps (HOP’s) numerically while incorporating their effects on
the signal and higher order idlers (HOI’s) analytically [157]. In our group, Bouas-
ria et al. computed the noise figure within the 7-wave model framework but using
a semi-quantum approach due to the absence of a full analytical solution for the
classical system with seven waves [166].

Although an analytical approach is often constrained by approximations, never-
theless, an analytical description will help us gain insight into the dynamics of the
FOPA and can be helpful in calculating the noise figure as done in Refs. [76, 157, 166].
Therefore, in this section we develop an analytical 7-wave model taking into account
the effect of fiber dispersion up to second order. Such an approach is original to the
best of our knowledge.
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2.4.1 Configuration

The 7-wave model is mostly employed considering a dual pump configuration with
degenerate signal and idler [91, 92]. The amplitudes of the two pumps are labelled
A1 and A−1, the signal is labelled A0, the two so-called higher order idlers (HOI’s)
are labelled A2 and A−2 and the two so-called higher order pumps (HOP’s) are la-
belled A3 and A−3 (see Fig. 2.9).

ω
A−3 A−2 A−1 A0 A1 A2 A3

HOP1

HOI1

Pump1

Signal

Pump2

HOI2

HOP2

∆ωPP

Figure 2.9. Configuration of a dual pump FOPA with degenerate sig-
nal and idler and non-degenerate pumps. ω is frequency. The two
pumps are labelled A1 and A−1, the signal is labelled A0, two higher
order idlers (HOI) are labelled A2 and A−2 and two higher order
pumps (HOP) are labelled A3 and A−3. The height of the arrows rep-
resent intensity. ∆ωPP is the frequency difference between the pumps.

(not to scale)

2.4.2 Approximations

The approximations for this model are exactly the same as for the analytical 4-wave
model, which are listed in Subsections 2.2.2 and 2.3.2. We just clarify the fact, that
the strong pump approximation here means that that pumps are much stronger than
all the other waves, i.e. signal, HOI’s and the HOP’s throughout the length of the
fiber.

2.4.3 Linear Phase Mismatch

The linear phase mismatch ∆βklmn between four interacting waves at frequencies ωk,
ωl , ωm and ωn was already derived in the discussion of the analytical 4-wave model
and is given by (see Subsection 2.3.3) :

∆βmnkj =
β(2)(ωc)∆ωPP

2

8
(qm

2 + qn
2 − qk

2 − qj
2) = C(qm

2 + qn
2 − qk

2 − qj
2). (2.57)

2.4.3.1 Validity of Second Order Approximation

In Subsection 2.3.3 the linear phase mismatch terms were calculated considering
a second order approximation. In this subsection we investigate the validity of
that second order approximation of β(ω) as shown in Equation (2.25) to calculate
∆βklmn’s. To do so, we plot in Fig 2.10 several ∆βklmn’s (∆β1−100 (in red), ∆β1−2−10
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(in blue), ∆β−101−2 (in magenta) and ∆β10−12 (in green)) considering second (solid
line) and fourth (dotted line) order approximation7 of the Taylor series expansion
of β(ω), as a function of ∆λPP. We considered a non-degenerate pump configura-
tion with the central wavelength λc at the signal wavelength λ0 = 1557.5 nm. A
standard HNLF was considered with a zero dispersion wavelength λZDW = 1547.5
nm and a dispersion slope D

′
= 0.017 ps.nm−2.km−1. From Fig 2.10 we see that for
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n
 (

m
-1
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1-100
 (2nd order)

1-100
 (4th order)

1-2-10
 (2nd order)

1-2-10
 (4th order)

-101-2
 (2nd order)

-101-2
 (4th order)

10-12
 (2nd order)

10-12
 (4th order)

Figure 2.10. Plot of ∆βklmn’s (∆β1−100 (in red), ∆β1−2−10 (in blue),
∆β−101−2 (in magenta) and ∆β10−12 (in green)) considering second
(solid line) and fourth (dotted line) order approximation of the Taylor

series expansion of β(ω), as a function of ∆λPP.

small values of ∆λPP (<5 nm), all the different curves are clustered around 0. How-
ever for larger values of ∆λPP (>10 nm), all the curves branch out and the values
of ∆λPP from the second order approximation deviate from that of the fourth order
approximation. We also note here, that the deviation between the second and fourth
order approaches is negligible for ∆β1−100 which corresponds to the FWM process
considered in the analytical 3-wave model.

2.4.4 Wave Evolution Equations

The evolution of the amplitudes of the seven waves along the fiber is described by
a set of seven coupled equations [58, 138] (see Equation (2.4)). For example, the
equation of evolution of the signal considering all the SPM, XPM and FWM terms,

7Liu considered a fifth order approach for ∆λPP < 50 nm [167]. However Marhic et al. in Ref. [140]
considered a fourth order approach for a similar situation.
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is given by :

dA0

dz
= iγ

{[
|A0|2 A0 + 2

3

∑
j=−3,j 6=0

|Aj|2
]
A0 + A2

−1 A∗−2ei∆β−1−1−20 + A2
1 A∗2ei∆β1120

+ 2A−1 A1 A∗0ei∆β−1100 + 2A−1 A3 A∗2ei∆β−1320 + 2A−1 A−2 A∗−3ei∆β−1−2−30 + 2A−1 A2 A∗1ei∆β−1210

+ 2A1 A−3 A∗−2ei∆β1−3−20 + 2A1 A−2 A∗−1ei∆β1−2−10 + 2A1 A2 A∗3ei∆β1230 + 2A−3 A2 A∗−1ei∆β−32−10

+ 2A−3 A3 A∗0ei∆β−3300 + 2A−2 A2 A∗0ei∆β−2200 + 2A3 A−2 A∗1ei∆β3−210
}

. (2.58)

A complete set of all the coupled differential equations for the seven waves is pro-
vided in Appendix B and can be found in Refs. [89, 168].

In the special case where the pump powers remain much higher than the other
waves all along the fiber, or in other words with the strong pump approximation,
many terms of Equation (2.58) can be neglected as they do not contain the pump
terms. In such a case, we retrieve a simpler set of differential equations governing
the evolution of the waves. Thus we can write down the equations of evolution of
the slowly varying amplitudes of the signal (A0), the HOI’s (A2 and A−2) and the
HOP’s (A3 and A−3) as :

dA0

dz
= iγ

(
2|A1|2A0 + 2|A−1|2A0 + 2A1A−1A0

∗ei∆β1−100z + 2A1A−2A−1
∗ei∆β1−2−10z

+ A−1
2A−2

∗ei∆β−1−1−20z + 2A−1A2A1
∗ei∆β−1210z + A1

2A2
∗ei∆β1120z

)
,

(2.59)

dA−2

dz
= iγ

(
2|A−1|2A−2 + 2|A1|2A−2 + 2A−1A0A1

∗ei∆β−101−2z

+ A−1
2A0

∗ei∆β−1−10−2z + 2A−1A1A2
∗ei∆β−112−2z

)
,

(2.60)

dA2

dz
= iγ

(
2|A−1|2A2 + 2|A1|2A2 + 2A1A0A−1

∗ei∆β10−12z

+ A1
2A0

∗ei∆β1102z + 2A−1A1A−2
∗ei∆β−11−22z

)
,

(2.61)

dA−3

dz
= iγ

(
2|A−1|2A−3 + 2|A1|2A−3 + A−1

2A1
∗ei∆β−1−11−3z + 2A−1A1A3

∗ei∆β−113−3z
)

,
(2.62)

dA3

dz
= iγ

(
2|A−1|2A3 + 2|A1|2A3 + A1

2A−1
∗ei∆β11−13z + 2A−1A1A−3

∗ei∆β−11−33z
)

.
(2.63)

where we have kept only those terms which contain at least two pump waves. We
have not provided the equations for the pumps here, as we already solved them
in the analytical 4-wave model. Thus we directly write down the solution for the
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pumps (A1 and A−1) as (see Equation (2.42)) :

A±1 =
√

Peiγ3Pz. (2.64)

We make a note here that although for the analytical 7-wave model, the pump equa-
tions get slightly modified compared to that of the analytical 4-wave model, we still
retrieve the same solution after neglecting terms in the differential equation that
contain less than three pump terms.

2.4.5 Subsystems of the Analytical 7-Wave Model

With the strong pump approximation as described before, the 7-wave model can be
broken down into three subsystems. They are three 4-wave models with different
values of qs, i.e. 1. qs = 0 (subsystem 1, Fig. 2.11 (a)), 2. |qs| = 2 (subsystem 2,
Fig. 2.11 (b)) and 3. |qs| = 3 (subsystem 3, Fig. 2.11 (c)). All the three subsystems
share the two common pumps.

It is important to note from Equations (2.59)-(2.63) that the HOP evolution equa-
tions get decoupled from the signal and HOI evolution equations. Therefore we can
solve subsystems 1 and 2 (signal and HOI’s) separately from subsystem 3 (HOP’s).

For convenience, we provide a table (Table 2.1) of the different approximations
and initial conditions that will consider for different cases while performing the cal-
culations.

Table of Cases for Calculation
Calculation Case ∆βklm Initial condition
Signal and HOI equations Case 1 ∆βklm = 0 A2(0) = A−2(0) = 0

Case 2 ∆βklm 6= 0 A2(0) = A−2(0) 6= 0
Case 3 ∆βklm 6= 0 A2(0) = A−2(0) = 0
Case 4 ∆βklm 6= 0 A2(0) 6= A−2(0)

Input signal phase for maxi- Case 1 ∆βklm = 0 A2(0) = A−2(0) = 0
mum signal gain Case 2 ∆βklm 6= 0 A2(0) = A−2(0) = 0
HOP equations Case 1 ∆βklm = 0 A3(0) = A−3(0)=0

Case 2 ∆βklm 6= 0 A3(0) 6= A−3(0)
Case 3 ∆βklm 6= 0 A3(0) = A−3(0) 6= 0
Case 4 ∆βklm 6= 0 A3(0) = A−3(0) = 0

Table 2.1. Table of approximations and initial conditions considered
for the respective calculations.

2.4.6 Coupled Signal and HOI Evolution (Subsystems 1 and 2)

Using Equation (2.31), we calculate all the ∆βklmn’s in Equations (2.59), (2.60) and
(2.61) as :

∆βklmn = C(qk
2 + ql

2 − qm
2 − qn

2), (2.65)

where C is given by Equation (2.32). Note that for the 7-wave model, for the signal
q = 0, for the HOI’s q = ±2 and for the HOP’s q = ±3. Thus we list here the
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q
-3 -2 -1 0 1 2 3

Pump1

Signal+Idler

Pump2

(a) Subsystem 1 (qs = 0).

q
-3 -2 -1 0 1 2 3

HOI1

Pump1 Pump2

HOI2

(b) Subsystem 2 (|qs| = 2).

q
-3 -2 -1 0 1 2 3

HOP1

Pump1 Pump2

HOP2

(c) Subsystem 3 (|qs| = 3).

Figure 2.11. (a) Subsystem 1 (|qs| = 0 in a 4-wave model) in red, (b)
subsystem 2 (|qs| = 2 in a 4-wave model) in blue and (c) subsystem
3 (|qs| = 3 in a 4-wave model) in green for describing the 7-wave
model. Dashed arrows represent the waves that are not in the sub-

system. (not to scale)

different ∆βklmn’s as :

∆β1−100 = 2C, ∆β1−210 = 4C, ∆β−1−1−20 = −2C, ∆β−1210 = 4C, ∆β1120 = −2C,

∆β−101−2 = −4C, ∆β−1−10−2 = −2C, ∆β−112−2 = −6C,

∆β10−12 = −4C, ∆β1102 = −2C, ∆β−11−22 = −6C.

(2.66)

Plugging in all the ∆βklmn’s in Equations (2.59), (2.60) and (2.61), and using |A1|2 =

|A−1|2 = P and A1 = A−1 =
√

Pei3γPz, we can write Equations (2.59), (2.60) and
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(2.61) in a matrix form as :

d
dz



A0

A0
∗

A2

A2
∗

A−2

A−2
∗


= iγP



4 2ei(6γP+2C)z 2ei4Cz ei(6γP−2C)z 2ei4Cz ei(6γP−2C)

−2e−i(6γP+2C)z −4 −e−i(6γP−2C)z −2e−i4Cz −e−i(6γP−2C)z −2e−i4Cz

2e−i4Cz ei(6γP−2C)z 4 0 0 2ei(6γP−6C)z

−e−i(6γP−2C)z −2ei4Cz 0 −4 −2e−i(6γP−6C)z 0
2e−i4Cz ei(6γP−2C)z 0 2ei(6γP−6C)z 4 0

−e−i(6γP−2C)z −2ei4Cz −2e−i(6γP−6C)z 0 0 −4





A0

A0
∗

A2

A2
∗

A−2

A−2
∗


.

(2.67)

This is an equation of the form dA
dz = M(z)A, where M represents a coefficient ma-

trix. We note here that M depends on z. However, as we show later, it is possible
to get rid of the z-dependence of M by performing an appropriate transformation
of variables. Let us call the coefficient matrix after the variable transformation M

′
.

Now, for simplicity let us assume M
′

is a linear function of C8. We also see that M
′

for the set of differential equations represented in Equation (2.67) is 6× 6 in dimen-
sion. Thus finding an expression for the eigenvalues of M

′
is equivalent to finding

the roots of a 6th degree polynomial in C. But a general closed form expression for
the roots of a polynomial with degree more than four does not exist [169]. Hence we
cannot apply the eigenvalue method [170] to solve the set of coupled linear differen-
tial equations represented in Equation (2.67) without reducing the dimension of the
transfer matrix or making some approximation.

• Case 1 : ∆βklmn = 0, A2(0) = A−2(0) = 0 :

Often in the case of PSA based microwave photonic links, the frequency sep-
aration of the pumps and the signal is small (∼ GHz) [118, 124, 125, 171]. For
such cases, using Equation (2.31) we can make the approximation C ≈ 0 and
thus ∆βklmn ≈ 0 [76]. Hence we arrive at a simpler form of Equation (2.67) as :

d
dz



A0

A0
∗

A2

A2
∗

A−2

A−2
∗


= iγP



4 2ei6γPz 2 ei6γPz 2 ei6γPz

−2e−i6γPz −4 −e−i6γPz −2 −e−i6γPz −2
2 ei6γPz 4 0 0 2ei6γPz

−e−i6γPz −2 0 −4 −2e−i6γPz 0
2 ei6γPz 0 2ei6γPz 4 0

−e−i6γPz −2 −2e−i6γPz 0 0 −4





A0

A0
∗

A2

A2
∗

A−2

A−2
∗


.

(2.68)

In order to get rid of the exponential terms from Equation (2.68), we perform a
transformation of variables as done for the analytical 4-wave model (see Equa-
tion (2.44) with C = 0)9 :

Aj = Bjei3γPz, (2.69)

8This means all the elements of M
′

are linear in C which we show later in this subsection.
9We should note here that the method shown to solve the equations for the analytical 3-wave model

in Appendix A becomes complicated to deal with in this case as now we have a large number of terms
on the right hand side of the coupled equations.
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where j = 0, 2,−2. Thus we have :

d
dz



B0

B0
∗

B2

B2
∗

B−2

B−2
∗


= iγP



1 2 2 1 2 1
−2 −1 −1 −2 −1 −2
2 1 1 0 0 2
−1 −2 0 −1 −2 0
2 1 0 2 1 0
−1 −2 −2 0 0 −1





B0

B0
∗

B2

B2
∗

B−2

B−2
∗


. (2.70)

We can write an analytical solution for this coupled set of differential equations
as :

B0(z) = a0

(
cos(θ0) cos(

√
3γPz) +

sin(θ0)√
3

sin(
√

3γPz)
)

+ ia0

(
sin(θ0) cos(

√
3γPz) +

√
3 cos(θ0) sin(

√
3γPz)

)
,

(2.71)

B2(z) = B−2(z) = a0

(
−sin(θ0)√

3
sin(
√

3γPz) + i
√

3 cos(θ0) sin(
√

3γPz)
)

,

(2.72)
where the initial conditions for A0, A2 and A−2 are given by :

A0(z = 0) = a0eiθ0 , A2(z = 0) = A−2(z = 0) = 0. (2.73)

Also we write the solution for the power of the signal P0 = |A0|2 and HOI’s
P−2 = |A−2|2, P2 = |A2|2 as :

P0(z) =a0
2
[

cos2(
√

3γPz) +
sin2(
√

3γPz)
3

(
1 + 8 cos2(θ0)

)
+

4√
3

cos(
√

3γPz) sin(
√

3γPz) sin(2θ0)

]
,

(2.74)

P2(z) = P−2(z) =
a0

2

3
sin2(
√

3γPz)
(

1 + 8 cos2(θ0)
)

. (2.75)

• Case 2 : ∆βklmn 6= 0, A2(0) = A−2(0) 6= 0 :

In the case where ∆βklmn’s are non-negligible, we can make a different assump-
tion to solve Equation (2.67). We note here that Equations (2.60) and (2.61) are
basically the same differential equation with the indices 2 and -2 exchanged.
Hence by symmetry we can say that A2 and A−2 will have the same solutions
provided they have the same initial conditions. Thus for the case of same ini-
tial conditions of A2 and A−2 we can replace A2 in Equation (2.60) with A−2.
Also, using |A1|2 = |A−1|2 = P and A1 = A−1 =

√
Pei3γPz, we can write
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Equation (2.59) and (2.60) in a matrix form as :

d
dz


A0

A0
∗

A−2

A−2
∗

 = iγP


4 2ei(6γP+2C)z 4ei4Cz 2ei(6γP−2C)z

−2e−i(6γP+2C)z −4 −2e−i(6γP−2C)z −4e−i4Cz

2e−i4Cz ei(6γP−2C)z 4 2ei(6γP−6C)z

−e−i(6γP−2C)z −2ei4Cz −2e−i(6γP−6C)z −4




A0

A0
∗

A−2

A−2
∗

 .

(2.76)

In order to remove the exponentials from Equation (2.76) we do the following
transformation of variables (see Equation (2.44) with q = 0 and q = −2) :

A0 = B0ei(3γP+C)z,

A−2 = B−2ei(3γP−3C)z.
(2.77)

Hence we get :

d
dz


B0

B0
∗

B−2

B−2
∗

 = iγP


1− F0 2 4 2
−2 −(1− F0) −2 −4
2 1 1− F2 2
−1 −2 −2 −(1− F2)




B0

B0
∗

B−2

B−2
∗

 , (2.78)

where Fq is given by (see Equation (2.46)) :

Fq =
C(1− q2)

γP
, (2.79)

where q = 0, 2. Equation (2.78) is a coupled linear differential equation of the
form :

dB
dz

= M
′
B,

where M
′

is the coefficient matrix given by :

M
′
= iγP


1− F0 2 4 2
−2 −(1− F0) −2 −4
2 1 1− F2 2
−1 −2 −2 −(1− F2)

 . (2.80)

From Equation (2.78) we can say that subsystem 1 and 2 are coupled through
the coefficient matrix M

′
. We can describe the coupling by breaking the coeffi-

cient matrix into four 2× 2 block matrices M11, M12, M21, and M22 given as :

M11 = iγP

[
1− F0 2
−2 −(1− F0)

]
, M12 = iγP2

[
2 1
−1 −2

]
,

M21 = iγP

[
2 1
−1 −2

]
, M22 = iγP

[
1− F2 2
−2 −(1− F2)

]
.

(2.81)
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The diagonal blocks M11 and M22 are the coefficient matrices for a 4-wave
model with q = 0 and |q| = 2 respectively (see Equation (2.45)). On the other
hand, off-diagonal blocks M12 and M21 describe how the two subsystems in-
teract with each other.

To simplify our expressions in the following calculations, here we define a few
parameters :

η = −1− F0 , (2.82)

νq =
√

3− 2Fq + Fq
2 , (2.83)

where |q| = 0, 2. We note here that ν0 and ν2 are always real numbers as
ν0

2 = 3− 2F0 + F0
2 > 0 and ν2

2 = 3 + 6F0 + 9F0
2 > 0 for all values of F0

10.
Hence the eigenvalues λ1, λ2, λ3 and λ4 of M

′
are given by :

λ1 = −iγP ν0, λ2 = iγP ν0, λ3 = −iγP ν2, λ4 = iγP ν2. (2.84)

The corresponding eigenvectors V1, V2, V3 and V4 of M are :

V1 =


η − ν0

η + ν0

1
1

 , V2 =


η + ν0

η − ν0

1
1

 , V3 =


−6

ν2−3η
6

ν2−3η
ν2+3η
ν2−3η

1

 , V4 =


6

ν2+3η
−6

ν2+3η
ν2−3η
ν2+3η

1

 . (2.85)

Thus, the solution of Equation (2.78) can be written as :

B(z) = C1eλ1zV1 + C2eλ2zV2 + C3eλ3zV3 + C4eλ4zV4, (2.86)

where C1, C2, C3 and C4 are constants which can be determined from the initial
conditions. We write down the initial conditions as :

B0(z = 0) = a0eiθ0 , (2.87)

B−2(z = 0) = a−2eiθ−2 . (2.88)

10It can be easily checked that the minimum values of the quadratic expressions 3− 2F0 + F0
2 and

3 + 6F0 + 9F0
2 are 2. Hence they are positive for all values of F0.
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Using these initial conditions in Equation (2.86) and solving the resulting sys-
tem of linear equations, we find :

C1 =
a0 cos(θ0)

2η
− i
(

a0 sin(θ0)

2ν0
+

a−2 sin(θ−2)

ν0η

)
,

C2 =
a0 cos(θ0)

2η
+ i
(

a0 sin(θ0)

2ν0
+

a−2 sin(θ−2)

ν0η

)
,

C3 =
−(ν2 − 3η)a0 cos(θ0)

2ν2η
+

(ν2 − 3η)a−2 cos(θ−2)

2ν2
+ i

(ν2 − 3η)a−2 sin(θ−2)

6η
,

C4 =
−(ν2 + 3η)a0 cos(θ0)

2ν2η
+

(ν2 + 3η)a−2 cos(θ−2)

2ν2
− i

(ν2 + 3η)a−2 sin(θ−2)

6η
.

(2.89)

Hence using Equation (2.89) in Equation (2.86) we get :

B0(z) =
[
− η

ν0
a0 sin(θ0)−

2
ν0

a−2 sin(θ−2)

]
sin(γPν0z) + a0 cos(θ0) cos(γPν0z)

+ i

(
ν0

η
a0 cos(θ0) sin(γPν0z) +

[
a0 sin(θ0) +

2
η

a−2 sin(θ−2)

]
cos(γPν0z)

+

[
− 6

ην2
a0 cos(θ0) +

6
ν2

a−2 cos(θ−2)

]
sin(γPν2z)− 2

η
a−2 sin(θ−2) cos(γPν2z)

)
,

(2.90)

B−2(z) =
[
− 1

ν0
a0 sin(θ0)−

2
ν0η

a−2 sin(θ−2)

]
sin(γPν0z) +

1
η

a0 cos(θ0) cos(γPν0z)

+
ν2

3η
a−2 sin(θ−2) sin(γPν2z) +

[
− 1

η
a0 cos(θ0) + a−2 cos(θ−2)

]
cos(γPν2z)

+ i

([
3
ν2

a0 cos(θ0)−
3η

ν2
a−2 cos(θ−2)

]
sin(γPν2z) + a−2 sin(θ−2) cos(γPν2z)

)
.

(2.91)

From the above equation, we see that the solution depends on the input ampli-
tude of the HOI’s. This means that it might be possible to have a larger signal
gain by injecting HOI’s at the input of the fiber. We also see that the solution
acquires two oscillation frequencies γPν0 and γPν2 however these frequencies
are different from the characteristic oscillation frequencies of subsystems 1 and
2 given by γPµ0 and γPµ2 (see Equation (2.55)). νq and µq are related as :

µq
2 = νq

2 − 6. (2.92)

Note that νq
2 is larger than µq

2. Since γPνq is also the parametric gain coeffi-
cient of the system, a larger value indicates a larger growth rate of the signal
compared to the 4-wave model (when µq is real). Furthermore we note that
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unlike the case of the analytical 4-wave model, where the solutions can be os-
cillatory or hyperbolic depending on µq is real or imaginary respectively, here
the solutions are always oscillatory as νq is always real.

• Case 3 : ∆βklmn 6= 0, A2(0) = A−2(0) = 0 :

For many practical scenarios, we can use A2(0) = A−2(0) = a−2 = 0. Thus we
can write down a simpler form of Equations (2.90) and (2.91) as :

B0(z) = −
η

ν0
a0 sin(θ0) sin(γPν0z) + a0 cos(θ0) cos(γPν0z)

+ i

(
ν0

η
a0 cos(θ0) sin(γPν0z) + a0 sin(θ0) cos(γPν0z)− 6

ην2
a0 cos(θ0) sin(γPν2z)

)
,

(2.93)

B−2(z) = −
1
ν0

a0 sin(θ0) sin(γPν0z) +
1
η

a0 cos(θ0) cos(γPν0z)

− 1
η

a0 cos(θ0) cos(γPν2z) + i

(
3
ν2

a0 cos(θ0) sin(γPν2z)

)
.

(2.94)

One can check for completeness that when we consider ∆βklmn = 0, Equa-
tions (2.93) and (2.94) lead to Equations (2.71) and (2.72) respectively. The cor-
responding powers P0 and P−2 are given by :

P0(z) = a0
2
[(

cos(γPν0z) cos(θ0)−
η

ν0
sin(γPν0z) sin(θ0)

)2

+
(

cos(γPν0z) sin(θ0) +
ν0

η
sin(γPν0z) cos(θ0)−

6
ην2

sin(γPν2z) cos(θ0)
)2
]

,

(2.95)

P−2(z) = a0
2
[( 1

η
cos(γPν0z) cos(θ0)−

1
η

cos(γPν2z) cos(θ0)−
1
ν0

sin(γPν0z) sin(θ0)
)2

+
( 3

ν2
sin(γPν2z) cos(θ0)

)2
]

.

(2.96)

From Equations (2.95) and (2.96) we see that the powers of the signal and the
HOI’s depend on the power and phase of the waves at the input of the fiber
ensuring its functioning as a PSA.

In Fig. 2.12 we plot the dependence of the PSA gain G0 = P0(L)
a02 on the relative

phase between the pumps and the signal Θ = 2θ0. The parameters used are :
P = 20 dBm, L = 500 m, γ = 11.3 W−1km−1, λ0 = 1557.5 nm, λ1 = 1556.5 nm,
λZDW = 1547.5 nm and D

′
= 0.017 ps/nm2/km.
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Figure 2.12. PSA gain of signal using the 3-wave model (red) and
7-wave model (blue) as a function of the relative phase between the
pump, signal and idler Θ. A non-degenerate pump configuration is
considered with ∆βklmn 6= 0, A2(0) = A−2(0) = 0 (Case 3). P = 20
dBm, L = 500 m, γ = 11.3 W−1km−1, λ0 = 1557.5 nm, λ1 = 1556.5

nm, λZDW = 1547.5 nm and D
′
= 0.017 ps/nm2/km.

We see from Fig. 2.12 that with the 2 nm pump-pump wavelength separa-
tion, the 3-wave and 7-wave analytical models differ significantly with respect
to the gain dependence on input signal phase. In particular, the two mod-
els predict different maximum signal gains. This can be more clearly seen in
Fig. 2.13 (a) where we plot the maximum signal gains from the 3- and 7-wave
analytical models as a function of ∆λPP. The parameters used are the same as
used for Fig.2.12 except for the wavelength separation of the pumps, which is
a variable for Fig 2.13. As already seen from Fig. 2.12, in Fig. 2.13 (a) we see that
for small values of ∆λPP (<10 nm), the 3- and 7-wave models differ substan-
tially. On the other hand, for large values of ∆λPP (>30 nm) the two models
converge.

Coming back to Equation (2.95), we see that the output power of the signal de-
pends primarily on the coefficients η2/ν0

2, ν0
2/η2, 36/(η2ν2

2) and 6ν0/(η2ν2)

as the other terms are all sinusoids bounded between -1 and 1. These coef-
ficients are functions of ∆λPP. To understand the dependence of the signal
gain on these coefficients, we plot their logarithms in Fig. 2.13 (b). We see from
Fig. 2.13 (b), that at 8.28 nm (shown in grey dashed line), ν0

2/η2,36/(η2ν2
2)

and 6ν0/(η2ν2) attain a large value. They become much smaller when either
∆λPP is low (<5 nm) or large (>40 nm). This divergence is due to η going to
0 which arises when the dispersion (C) and the nonlinearity (γP) of the fiber
cancel each other. This is also reflected on the maximum gain spectrum of the
signal, i.e. for lower and larger values of ∆λPP, the maximum gain is much
lower compared to that at an intermediate value (≈ 9.6 nm). Moreover we see
from Fig. 2.13 (b) that for large values of ∆λPP (>40 nm), η ≈ ν0 and 6

(ην2)
� ν0

η .
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In that limit, we can write from Equation (2.95) :

P0(z) ≈ a0
2 [cos2(γPν0z + θ0) + sin2(γPν0z + θ0)

]
= a0

2. (2.97)

Thus the maximum gain G0 (in dB) is expected to asymptotically approach 0
for large ∆λPP’s. This is what we also see in Fig. 2.13 (a).
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Figure 2.13. (a) Plot of maximum PSA gain of signal using the 3-
wave (blue) and 7-wave (red) analytical models as a function of ∆λPP.
(b) Plot of the twice log of coefficients of different terms in Equa-
tion (2.95), viz. 2 log10(ν0/η) (red dotted line), 2 log10(η/ν0) (blue dot-
ted line), 2 log10(6/(ην2)) (green dotted line) and log10(6ν0/(η2ν2))
(magenta dotted line), as a function of pump-pump wavelength sep-
aration ∆λPP. A non-degenerate pump configuration is considered
with ∆βklmn 6= 0, A2(0) = A−2(0) = 0 (Case 3). P = 20 dBm, L = 500
m, γ = 11.3 W−1km−1, λ0 = 1557.5 nm, λZDW = 1547.5 nm and

D
′
= 0.017 ps/nm2/km.

• Case 4 : ∆βklmn 6= 0, A2(0) 6= A−2(0) :

In the last discussion we had considered A2(0) = A−2(0) to obtain Equa-
tions (2.90) and (2.91). However to obtain a more general solution, we first
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look at the explicit dependence of A2 on A−2. Thus we define the quantity δ2

as :
δ2 = A−2 − A2. (2.98)

Now using Equations (2.60) and (2.61) along with |A1|2 = |A−1|2 = P we get :

dδ2

dz
=

dA−2

dz
− dA2

dz
= iγP(4δ2 − 2ei(6γP−6C)zδ∗2 ). (2.99)

This can be written down in a matrix-form as :

d
dz

[
δ2

δ2
∗

]
= iγP

[
4 −2ei(6γP−6C)z

2e−i(6γP−6C)z −4

] [
δ2

δ2
∗

]
. (2.100)

Thus when A2(0) 6= A−2(0), we can use A2(z) = A−2(z)− δ2(z) and express
Equation (2.67) as :

d
dz


A0

A0
∗

A−2

A−2
∗

 = iγP


4 2ei(6γP+2C)z 4ei4Cz 2ei(6γP−2C)z

−2e−i(6γP+2C)z −4 −2e−i(6γP−2C)z −4e−i4Cz

2e−i4Cz ei(6γP−2C)z 4 2ei(6γP−6C)z

−e−i(6γP−2C)z −2ei4Cz −2e−i(6γP−6C)z −4




A0

A0
∗

A−2

A−2
∗



+ iγP


−2ei4Czδ2 − ei(6γP−2C)zδ∗2
2e−i4Czδ∗2 + e−i(6γP−2C)zδ2

−2ei(6γP−6C)zδ∗2
2e−i(6γP−6C)zδ2

 .

(2.101)

We perform the transformation of variables (see Equation (2.44)) as :

Aq = Bqei(3γP+C(1−q2))z,

δ̃2 = B−2 − B2 = e−i(3γP−3C)zδ2,
(2.102)

where q = 0, 2,−2. Invoking these transformations in Equation (2.101) we get
:

d
dz


B0

B0
∗

B−2

B−2
∗

 = iγP


1− F0 2 4 2
−2 −(1− F0) −2 −4
2 1 1− F2 2
−1 −2 −2 −(1− F2)




B0

B0
∗

B−2

B−2
∗

+ iγP


−2δ̃2 − δ̃2

∗

2δ̃2
∗
+ δ̃2

−2δ̃2
∗

2δ̃2

 .

(2.103)

Equation (2.103) is a coupled linear inhomogeneous differential equation of the
form :

dB
dz

= M
′
B + N,

where M
′

is the coefficient matrix of the homogeneous part and N is the inho-
mogenity term. Solving Equation (2.100) we get the explicit z-dependence of
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δ̃2 as :

δ̃2(z) =
(
−iη2 sin(γPµ2z)

µ2
+ cos(γPµ2z)

)
δ̃2(0)−

(
2i sin(γPµ2z)

µ2

)
δ̃2
∗
(0),

(2.104)
where η2 and µ2 can be obtained from Equation (2.53) with |q| = 2. From
Equation (2.104) we see that when B2(0) = B−2(0) (or A2(0) = A−2(0)), i.e.
δ̃2(0) = 0 we get δ̃2(z) = 0 i.e. B2(z) = B−2(z) (or A2(z) = A−2(z)) as ex-
pected. The solution to Equation (2.103) is given by :

B(z) = F(z)F(0)−1B(0) +
∫ z

0
F(z)F(s)−1N(s)ds (2.105)

where the first term on the right hand side represents the solution when δ̃2(0) =
0 which is given by Equations (2.90) and (2.91), and the second term arises due
to the inhomogenity of the system. The full solution of the system is derived
in Appendices C and D. Thus we provide the solution for B0(z), B−2(z) and
B2(z) as :

B0(z) = B0(0)
(

cos(γPν0z) +
i(η2 + ν0

2)

2ην0
sin(γPν0z)− 3i

ην2
sin(γPν2z)

)
+ B∗0 (0)

(
i(−η2 + ν0

2)

2ην0
sin(γPν0z)− 3i

ην2
sin(γPν2z)

)
+ B−2(0)

(
1

2η
cos(γPν0z)− 1

2η
cos(γPν2z) +

i
2ν0

sin(γPν0z) +
3i

2ν2
sin(γPν2z)

)
+ B∗−2(0)

(
− 1

2η
cos(γPν0z) +

1
2η

cos(γPν2z)− i
2ν0

sin(γPν0z) +
3i

2ν2
sin(γPν2z)

)
+ B2(0)

(
1

2η
cos(γPν0z)− 1

2η
cos(γPν2z) +

i
2ν0

sin(γPν0z) +
3i

2ν2
sin(γPν2z)

)
+ B∗2 (0)

(
− 1

2η
cos(γPν0z) +

1
2η

cos(γPν2z)− i
2ν0

sin(γPν0z) +
3i

2ν2
sin(γPν2z)

)
,

(2.106)
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B−2(z) = B0(0)
(

1
2η

cos(γPν0z)− 1
2η

cos(γPν2z) +
i

2ν0
sin(γPν0z) +

3i
2ν2

sin(γPν2z)
)

+ B∗0 (0)
(

1
2η

cos(γPν0z)− 1
2η

cos(γPν2z)− i
2ν0

sin(γPν0z) +
3i

2ν2
sin(γPν2z)

)
+ B−2(0)

(
1
2

cos(γPν2z) +
1
2

cos(γPµ2z) +
i

2ην0
sin(γPν0z)

− i(3η2 + 2η + 1)
2ην2

sin(γPν2z)− i(2 + 3η)

2µ2
sin(γPµ2z)

)
+ B∗−2(0)

(
− i

2ην0
sin(γPν0z) +

i(2η + 1)
2ην2

sin(γPν2z)− i
µ2

sin(γPµ2z)
)

+ B2(0)
(

1
2

cos(γPν2z)− 1
2

cos(γPµ2z) +
i

2ην0
sin(γPν0z)

− i(3η2 + 2η + 1)
2ην2

sin(γPν2z) +
i(2 + 3η)

2µ2
sin(γPµ2z)

)
+ B∗2 (0)

(
− i

2ην0
sin(γPν0z) +

i(2η + 1)
2ην2

sin(γPν2z) +
i

µ2
sin(γPµ2z)

)
,

(2.107)

B2(z) = B0(0)
(

1
2η

cos(γPν0z)− 1
2η

cos(γPν2z) +
i

2ν0
sin(γPν0z) +

3i
2ν2

sin(γPν2z)
)

+ B∗0 (0)
(

1
2η

cos(γPν0z)− 1
2η

cos(γPν2z)− i
2ν0

sin(γPν0z) +
3i

2ν2
sin(γPν2z)

)
+ B−2(0)

(
1
2

cos(γPν2z)− 1
2

cos(γPµ2z) +
i

2ην0
sin(γPν0z)

− i(3η2 + 2η + 1)
2ην2

sin(γPν2z) +
i(2 + 3η)

2µ2
sin(γPµ2z)

)
+ B∗−2(0)

(
− i

2ην0
sin(γPν0z) +

i(2η + 1)
2ην2

sin(γPν2z) +
i

µ2
sin(γPµ2z)

)
+ B2(0)

(
1
2

cos(γPν2z) +
1
2

cos(γPµ2z) +
i

2ην0
sin(γPν0z)

− i(3η2 + 2η + 1)
2ην2

sin(γPν2z)− i(2 + 3η)

2µ2
sin(γPµ2z)

)
+ B∗2 (0)

(
− i

2ην0
sin(γPν0z) +

i(2η + 1)
2ην2

sin(γPν2z)− i
µ2

sin(γPµ2z)
)

,

(2.108)

where η is given by Equation (C.8), ν0 and ν2 are given by Equation (C.9) (with
q = 0 and 2) and µ2 is given by Equation (2.53) (with q = 2). While for the
analytical 4-wave model, the solution had hyperbolic terms (when parametric
gain coefficient iγPµq is real), in contrast, for the analytical 7-wave model, the
signal solution is always sinusoidal, and attains a resonance when η → 0. Thus
the analytical 7-wave model indicates that the mechanism of signal instability
relies on the balance between the dispersion and nonlinearity of the fiber (η =

0 =⇒ C + γP = 0) which is fundamentally different from the analytical
4-wave model.
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Thus, now we have a formalism to relate the input and output fields of A0, A2

and A−2 with a linear matrix under the strong pump approximation.

Comparing Equation (2.91) with Equation (2.107) we see that when the HOI’s
are not equal at the input of the fiber, the solution of the HOI’s acquire a third
frequency of oscillation γPµ2, apart from γPν0 and γPν2. This means, while
the signal would lead to an oscillatory stable solution always, the HOI’s have
terms in the solution that can show hyperbolic evolution with z when µ2 is
imaginary.

One important observation from this analysis is that, while for the analytical 3-
or 4-wave models, the modulation instability of the signal originates from the
hyperbolic terms in the solution, that arise only when µq is imaginary, how-
ever for the analytical 7-wave model, the signal modulation instability is a
consequence of the resonance corresponding to η → 0. Thus for the analytical
7-wave model, the mechanism of instability relies on the balance between the
dispersion and nonlinearity of the fiber (C + γP = 0).

2.4.7 Maximum Signal Gain

Using the most general case (Case 4 : ∆βklmn 6= 0, A2(0) 6= A−2(0)) of the analytical
7-wave model, in Fig. 2.14 we plot the maximum signal gain as a function of pump-
pump wavelength separation for different values of r−2 and r2, where r−2 and r2 are
the ratios of power of the HOI’s to the power of the signal at the input of the fiber.
They are given by :

r−2 =
|B−2(0)|2
|B0(0)|2

, r2 =
|B2(0)|2
|B0(0)|2

. (2.109)

We see from Fig. 2.14 that injecting the HOI’s at the input of the fiber leads to a
strong improvement of the maximum signal gain (about 5 dB with γPL = 0.5, and
r−2 = r2 = 1). This is because from Equation (2.106) we have seen that the signal
wave depends on the input amplitude of the HOI’s. Thus a non-zero value of input
HOI powers leads to an enhancement of the maximum signal gain.

2.4.8 Phase Sensitive Frequency Conversion (PSFC)

One interesting feature of this system is its phase sensitive nature. Let us consider an
example. Suppose we consider the case where only HOI1 is injected at the input. In
such a case, we can ask the question : Can we generate either the signal or the HOI2
at the fiber output depending on the input phase of HOI1? Such a functionality is
known as phase sensitive frequency conversion (PSFC) [45] and is well studied in
the scientific literature [82, 84, 133, 172].

Since from Equations (2.106)-(2.108) it is not obvious that this system is capable
of a PSFC operation, in Fig. 2.15 we plot the output powers of signal, HOI1 and HOI2
as a function of input phase of HOI1 at the fiber input. We consider only HOI1 at
the input of the fiber with a power P−1(0) = −20 dBm. We see that even if only
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Figure 2.14. Plot of maximum gain of signal using the analytical 7-
wave model as a function of ∆λPP for different values of r−2 and r2.
(a) r−2 = r2 (b) r−2 = 1. Parameters : P0 = −20 dBm, P = 20 dBm,
L = 500 m, γ = 11.3 W−1km−1, λ0 = 1557.5 nm, λZDW = 1547.5 nm

and D
′
= 0.017 ps/nm2/km.

HOI1 is launched at the input, all the three waves show phase sensitivity. The most
interesting case arises around ∆λPP = 7.5 nm (see Fig. 2.15 (c)). In this case, when the
input phase of HOI1 is near π

4 , the signal is efficiently generated at the output while
HOI2 is not. On the other hand, when the input phase of HOI1 is near 3π

4 , HOI2 is
efficiently generated at the output while not the signal (see Fig. 2.16). This implies,
the system is capable of phase sensitive frequency conversion i.e. conversion of
HOI1 to either signal or HOI2 depending on the initial phase of HOI1.

With hindsight, we note that the phase sensitive operation of our system is sub-
tle. Let us first analyze how the system evolves at the initial part of the fiber. This
means we look at the solutions of B0(z) and B2(z) when z is small. First, we ignore
all the terms with coefficients B0(0), B∗0(0), B2(0) and B∗2(0) in Equations (2.106) and
(2.108) as they are 0. We also make the approximations cos(γPν0z) ≈ 1, cos(γPν2z) ≈
1, sin(γPν0z) ≈ γPν0z, sin(γPν2z) ≈ γPν2z and sin(γPµ2z) ≈ γPµ2z since z is



2.4. Analytical 7-Wave Model 61

0 /4 /2 3 /4

-25

-20

-15
O

u
tp

u
t 

p
o
w

er
 (

d
B

m
)

(a) 
PP

=2.5nm

Signal

HOI1

HOI2

0 /4 /2 3 /4
-30

-25

-20

-15

O
u
tp

u
t 

p
o
w

er
 (

d
B

m
)

(b) 
PP

=5nm

0 /4 /2 3 /4
-30

-25

-20

-15

O
u
tp

u
t 

p
o
w

er
 (

d
B

m
)

(c) 
PP

=7.5nm

 Signal generated

 HOI2 generated

0 /4 /2 3 /4
-50

-40

-30

-20

O
u
tp

u
t 

p
o
w

er
 (

d
B

m
)

(d) 
PP

=10nm

0 /4 /2 3 /4

Input phase of HOI1 (rad)

-50

-40

-30

-20

O
u
tp

u
t 

p
o
w

er
 (

d
B

m
)

(e) 
PP

=12.5nm

0 /4 /2 3 /4

Input phase of HOI1 (rad)

-50

-40

-30

-20

O
u
tp

u
t 

p
o
w

er
 (

d
B

m
)

(f) 
PP

=15nm

Figure 2.15. Plot of output powers of signal (blue dashed), HOI1 (red
solid) and HOI2 (blue dotted) using the analytical 7-wave model as
a function of input phase of HOI1 at the fiber input. Only HOI1 is
launched at the input. Different values of ∆λPP are considered : (a)
∆λPP = 2.5 nm, (b) ∆λPP = 5 nm, (c) ∆λPP = 7.5 nm, (d) ∆λPP = 10
nm, (e) ∆λPP = 12.5 nm and (f) ∆λPP = 15 nm. Parameters : P = 20
dBm, P−1(0) = −20 dBm, L = 500 m, γ = 11.3 W−1km−1, λ0 =

1557.5 nm, λZDW = 1547.5 nm and D
′
= 0.017 ps/nm2/km.

small. After a few steps of simplifications, Equations (2.106) and (2.108) give :

B2(z) ≈ |B−2(0)|e−iθ−2
i(2η + 1)γP

2η
z, (2.110)

B0(z) ≈ |B−2(0)|γP(− sin(θ−2) + 3i cos(θ−2))z, (2.111)

where θ−2 is the initial phase of B−2. We note from the above equations that |B2(z)|
does not depend on θ−2 whereas |B0(z)| does. This means at the initial part of the
fiber, the signal is phase sensitively generated by HOI1, but not HOI2.

Let us now look at the situation when z is non negligible compared to (γPνq)
−1

and (γPµq)
−1. In such a case, to simplify the equations, we make a special choice of
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Figure 2.16. An illustration of phase sensitive frequency conversion
where either signal or HOI2 is generated at the fiber output depend-

ing on the initial phase θ = θ1 or θ = θ2 of HOI1 respectively.
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Figure 2.17. Plot of output powers of signal (dashed) and HOI2 (dot-
ted) using the analytical 7-wave model as a function of input phase of
HOI1 at the fiber input. Plots are made at different lengths of the fiber
: 50 m (blue), 200 m (green) and 500 m (red). Only HOI1 is launched
at the input. ∆λPP = 7.5 nm. Other parameters are same as Fig. 2.15

η, i.e. η ≈ 0 (which is approximately the case for Fig. 2.15 (c)). We remind the reader
that this condition also leads to a large PSA gain as we observed in Fig. 2.13 (a). In
this case, as η is small, we keep only those terms in Equations (2.106) and (2.108) that
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contain η or
√

η in the denominator. Thus we get :

B0(z) ≈ |B−2(0)|
i
η
(cos(γPν0z)− cos(γPν2z)) sin(θ−2), (2.112)

B2(z) ≈ |B−2(0)|
1
η

(
sin(γPν2z)

ν2
− sin(γPν0z)

ν0

)
sin(θ−2)

+ |B−2(0)|
2i sin(γPµ2z)
√

η
√

3η + 4
cos(θ−2),

(2.113)

where we have used µ2
2 = η(3η + 4). We clearly see from the above equations, that

both B0(z) and |B2(z)| depend on θ−2. This is also reproduced in Fig. 2.17 where we
plot the output powers of signal (dashed) and HOI2 (dotted) using the analytical
7-wave model (using Equations (2.106) and (2.108)) as a function of input phase of
HOI1 at the fiber input. Plots are made for different distances inside the fiber, i.e. 50
m (blue), 200 m (green) and 500 m (red). We see that after propagating a small length
(blue curve (z =50 m) in Fig. 2.17), the signal power shows phase sensitivity, whereas
the HOI2 power remains almost insensitive to the input HOI1 phase θ−2 (as already
seen from Equations (2.111) and (2.110)). On the other hand, at larger propagation
distances (green and red curves (z = 200 and 500 m) in Fig. 2.17) we find both the
signal and HOI2 become sensitive to θ−2 as understood from Equations (2.112) and
(2.113).

One should notice here, that even for a 500 m propagation distance, the max-
ima and minima of output powers of signal and HOI2, with respect to input phase
of HOI1, do not coincide exactly at the same value of input HOI1 phase. This im-
plies, that the PSFC process in this system is an imperfect one. However, it might be
possible to further optimize the PSFC performance utilizing Equations (2.112) and
(2.113).

PSFC functionality has also been studied for PSA systems with four pump waves
[173] and three pump waves [138]. However in our case, we predict a single stage
PSFC mechanism with just two pump waves, which opens new perspectives for
design of optical frequency converters.

2.4.9 Input Signal Phase for Maximum Signal Gain

• Case 1 : ∆βklmn = 0, A2(0) = A−2(0) = 0 :

To find the input phase of the signal that leads to a maximum PSA signal gain,
we first equate the partial derivative of P0 (as given in Equation (2.74)) with
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respect to θ0 to 0. Thus we get :

∂P0

∂θ0
= a0

2 sin(
√

3γPz)
8√
3

cos(2θ0)

(
cos(
√

3γPz)− sin(
√

3γPz)√
3

tan(2θ0)

)
= 0.

(2.114)
Assuming sin(

√
3γPz) and cos(2θ0) to be non-zero, we have :

θ0 =
1
2

tan−1

( √
3

tan(
√

3γPz)

)
. (2.115)

In order to find the condition of a maximum (and not minimum), we perform
the second partial derivative of P0 with respect to θ0 :

∂2P0

∂θ0
2 = −a0

2 16
3

sin(
√

3γPz) cos(2θ0)
(√

3 cos(
√

3γPz0) tan(2θ0) + sin(
√

3γPz)
)

(2.116)
Injecting the value of θ0 from Equation (2.115) into Equation (2.116) we get :

∂2P0

∂θ0
2 = −a0

2 16
3

cos(2θ0)(2 cos2(
√

3γPz) + 1) (2.117)

Thus for ∂2P0
∂θ0

2 to be negative, θ0 should be in the interval
(
nπ − π

4 , nπ + π
4

)
.

• Case 2 : ∆βklmn 6= 0, A2(0) = A−2(0) = 0 :

As before, we equate the partial derivative of P0 with respect to θ0 to 0 :

∂P0

∂θ0
=

[
ν2(ν0

2 − η2) sin(γPν0z)− 6ν0 sin(γPν2z)
(ν0ν2η)2

][
− 2ν0ν2η cos(γPν0z) cos(2θ0)

+

(
ν2(ν0

2 + η2) sin(γPν0z)− 6ν0 sin(γPν2z)
)

sin(2θ0)

]
= 0.

(2.118)

Here we assume :

ν2(ν0
2 − η2) sin(γPν0z)− 6ν0 sin(γPν2z)

(ν0ν2η)2 6= 0. (2.119)

Thus solving Equation (2.118) for θ0, we get :

θ0 =
1
2

tan−1
(

2ν0ν2η cos(γPν0z)
ν2(ν02 + η2) sin(γPν0z)− 6ν0 sin(γPν2z)

)
, (2.120)

where we also assumed cos(2θ0) 6= 0. In order to find the condition of a maxi-
mum (and not minimum), we perform the second partial derivative of P0 with
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respect to θ0 :

∂2P0

∂θ0
2 =

[
ν2(ν0

2 − η2) sin(γPν0z)− 6ν0 sin(γPν2z)
(ν0ν2η)2

][
4ν0ν2η cos(γPν0z) tan(2θ0)

+ 2ν2(ν0
2 + η2) sin(γPν0z)− 12ν0 sin(γPν2z)

]
cos(2θ0).

(2.121)

Replacing the value of θ0 form Equation (2.120) in Equation (2.121), we get :

∂2P0

∂θ0
2 =

[(
ν2(ν0

2 − η2) sin(γPν0z)− 6ν0 sin(γPν2z)
)

8 cos2(γPν0z)

ν2(ν02 + η2) sin(γPν0z)− 6ν0 sin(γPν2z)

+
2
((

ν2ν0
2 sin(γPν0z)− 6ν0 sin(γPν2z)

)2 − ν2
2η4 sin2(γPν0z)

)
(ν0ν2η)2

]
cos(2θ0)

= K cos(2θ0),

(2.122)

where K is the pre-factor of cos(2θ0). Thus when K is positive, cos(2θ0) should
be negative and vice versa for P0 to attain a maximum. This translates to :

θ0 ∈


(
nπ − π

4 , nπ + π
4

)
if K < 0[ 2n+1

2 π − π
4 , 2n+1

2 π + π
4

]
if K ≥ 0

(2.123)

where n ∈ Z.

2.4.10 HOP Evolution (Subsystem 3)

As we have noted before, under the strong pump approximation, or when the FOPA
is weakly nonlinear11, the HOP’s get decoupled from the signal and the HOI’s which
can be seen from the following equations (same as Equations (2.62) and (2.63)) :

dA−3

dz
= iγ

(
2|A−1|2A−3 + 2|A1|2A−3 + A−1

2A1
∗ei∆β−1−11−3z + 2A−1A1A3

∗ei∆β−113−3z
)

,
(2.124)

dA3

dz
= iγ

(
2|A−1|2A3 + 2|A1|2A3 + A1

2A−1
∗ei∆β11−13z + 2A−1A1A−3

∗ei∆β−11−33z
)

.
(2.125)

We should note here that Equations (2.124) and (2.125) are similar to the equations
of a signal and idler in the analytical 4-wave model (see Equations (2.36) and (2.37)),
except for the third term on the right hand side that accounts for a FWM process
which contains a product of three pump amplitudes. In fact this is the most impor-
tant term as all the other terms are products of less than three pump amplitudes.

11A discussion on the strength of the nonlinearity of the FOPA is provided in Subsection 2.4.12.
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This extra term arises only because in this case, the wavelength separation between
the HOP’s with its nearest pump is equal to the pump-pump wavelength separation
(see Fig. 2.11 (c)).

q
-1qs −qs1
•• ••

(a) p−11qs−qs (|qs| 6= 3).

q
-1-3 31
•• ••

(b) p−11−33 (|qs| = 3).

q
-3 3

•• ••

(c) p−1−11−3, p11−13 (|qs| = 3).

Figure 2.18. Illustrations of different symmetry axes (dashed lines)
and corresponding FWM processes (curved arrows) for : (a) 4-wave
model with |qs| 6= 3, (b,c) 4-wave model with |qs| = 3. Each
FWM process corresponds to a symmetry axis of the same color. The
FWM processes with wave indices a, b, c and d are denoted as pabcd
(p−11qs−qs in red, p−1−11−3 in blue and p11−13 in green). The arrow
directions are always opposite on different sides of the symmetry axis
but can have reverse directions depending on the direction of energy

transfer.

In fact the symmetry of the frequency allocation of the waves is important to find
out all the possible FWM processes of the system. This is because each FWM process
should respect energy conservation with respect to the four involved photons and
thus each such process corresponds to a symmetry axis that divides the four photons
on the frequency axis. To provide a simple example of such a scenario, consider the
analytical 4-wave model. The signal index is given by qs. When |qs| = 3, a FWM
between two pump1 photons, a signal photon and a pump2 photon is possible since
2h̄ω−1 − h̄ω−3 − h̄ω1 = 0 (see blue curved arrows in Fig. 2.18 (c)). However this
FWM process is not possible when |qs| 6= 3 (see Fig. 2.18 (a)). Thus depending on the
allocation of frequencies of the involved waves, some FWM processes are possible
while others are not.

• Case 1 : ∆βklmn = 0, A3(0) = A−3(0) = 0 :

In the case where ∆βklmn ≈ 0, as proceeding for the signal and HOI case, we
can simplify the equations and write the solution for the power of the HOP’s
P3 = |A3|2 and P−3 = |A−3|2 as :

P3(z) = P−3(z) =
P
9

[
cosh2(

√
3γPz)− 2 cosh(

√
3γPz) + 3 sinh2(

√
3γPz) + 1

]
,

(2.126)
where the initial conditions for A3 and A−3 are given by :

A3(0) = A−3(0) = 0. (2.127)
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• Case 2 : ∆βklmn 6= 0, A3(0) 6= A−3(0) :

In the case where the ∆βklmn’s are non-negligible, using Equation (2.31) we can
calculate all the ∆βklmn’s appearing in Equations (2.124) and (2.125) as :

∆β−1−11−3 = −8C, ∆β−113−3 = −16C, ∆β11−13 = −8C, ∆β−11−33 = −16C.
(2.128)

Now, using the pump equations and Equation (2.128), we can write Equa-
tions (2.124) and (2.125) in a compact matrix-form as :

d
dz

[
A3

A−3
∗

]
= iγP

[
4 2ei(6γP−16C)z

−2e−i(6γP−16C)z −4

] [
A3

A−3
∗

]
+

[
iγP

3
2 ei(3γP−8C)z

−iγP
3
2 e−i(3γP−8C)z

]
.

(2.129)

In order to remove the exponential terms from Equation (2.129), we do the
following transformation of variables (see Equation (2.44)) :

Aq = Bqei(3γP+C(1−q2))z, (2.130)

where q=3,-3. Thus we can write :

d
dz

[
B3

B−3
∗

]
= iγP

[
1− F3 2
−2 −(1− F3)

] [
B3

B−3
∗

]
+

[
iγP

3
2

−iγP
3
2

]
, (2.131)

where F3 is given by Equation (2.46) with |q| = 3. Thus again we have an
equation of the form :

dB
dz

= M
′
B + N. (2.132)

This is a first order inhomogeneous differential equation. Note that the ho-
mogeneous part of Equation (2.131) gives the equation that the analytical 4-
wave model would have predicted (see Equation (2.45)). Therefore we know
the solution to the homogeneous part (see Equation (2.55)). In fact, since the in-
homogeneous part is a constant, solving this system is quite straightforward.
Therefore we write the solution of this system as :[

B3(z)
B−3

∗(z)

]
=[

cos(γPµ3z)− η3
µ3

i sin(γPµ3z) 2
µ3

i sin(γPµ3z)

− 2
µ3

i sin(γPµ3z) cos(γPµ3z) + η3
µ3

i sin(γPµ3z)

] [
B3(0)

B−3
∗(0)

]

+
√

P

−(2+η3)

µ2
3

cos(γPµ3z) + 2+η3
µ2

3
+ i

µ3
sin(γPµ3z)

−(2+η3)

µ2
3

cos(γPµ3z) + 2+η3
µ2

3
− i

µ3
sin(γPµ3z)

 ,

(2.133)

where µ3 and η3 are given by Equation (2.53) with |q| = 3. We note that the
first term on the right hand side of Equation (2.133) is the solution of the ho-
mogeneous system and the second term originates due to the inhomogenity in
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Equation (2.131). It is also interesting to notice that the second term has a pre-
factor of

√
P, meaning it is the dominant term in the solution. This also means

that if we scan the signal frequency, then for |qs| = 3, suddenly we should
observe a strong increase in the wave amplitude due to the extra symmetry of
the configuration.

• Case 3 : ∆βklmn 6= 0, A3(0) = A−3(0) 6= 0 :

We now move to a simpler case where the two HOP’s are equal at the fiber
input. We use the initial conditions for B3 and B−3 as :

B3(0) = a3eiθ3 , (2.134)

B∗−3(0) = a3e−iθ3 , (2.135)

where a±3 and θ±3 are the amplitudes and phases of B±3 at the input. Thus we
have :

B3(z) = B−3(z) = i
a3

µ3

[
−η3eiθ3 + 2e−iθ3

]
sin(γPµ3z) + a3eiθ3 cos(γPµ3z)

+ i
√

P
µ3

sin(γPµ3z)−
√

P(2 + η3)

µ32 cos(γPµ3z) +
√

P(2 + η3)

µ32 ,

(2.136)

Thus from the above equation we conclude that when a3 6= 0, the output
power of the HOP’s are expected to oscillate with respect to θ3 around an av-
erage value given by the last three terms of the right hand side, that are inde-
pendent of θ3. In Fig. 2.19 we plot the output powers (left axis) of the HOP’s
as a function of their input phases θ3 for two different values of the input HOP
powers : |a3|2 = 1 mW (red solid line) and |a3|2 = 0 mW (blue dashed line).
Here we have considered a rescaled unit system where the modulus square of
the complex amplitudes give the power in Watts. The corresponding gain (for
|a3|2 = 1 mW) is shown in the right axis.

We see from Fig. 2.19 that when a3 = 0, a constant output HOP power is ob-
tained, however when a3 6= 0, we find the output HOP power to be dependent
on its input phase θ3

12. We also find from Fig. 2.19 that for a small input HOP
power of 1 mW, a gain of around 77 dB was obtained. Such a high gain can be
attributed to efficient FWM processes between the pumps and the HOP’s in the
fiber. This lets us wonder whether we can use a configuration (like subsystem
3) to achieve high gain PSA functionality. A similar strategy is also proposed

12The output power of the HOP’s depend on the phase difference between the pumps and the HOP’s
too. In our case, the HOP’s are considered to have the same phase θ3 at the input, and the pump phases
at the input are assumed to be 0.
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Figure 2.19. Plot of output power (left axis) and gain (right axis, ex-
cept for when |a3|2 = 0) of HOP’s using the analytical 7-wave model
as a function of its input phase θ3 for two different input powers :
|a3|2 = 0 mW (blue dashed line) and |a3|2 = 1 mW (red solid line).
At the fiber input, the HOP fields are considered equal. P = 20 dBm,
γ = 11.3 W−1km−1, λ0 = 1557.5 nm, λZDW = 1547.5 nm, D

′
= 0.017

ps/nm2/km and L = 500 m.

in Ref. [174]. A comprehensive analysis of the nonlinear dynamics of such a
system can be found in [175].

• Case 4 : ∆βklmn 6= 0, A3(0) = A−3(0) = 0 :

For most practical purposes we can use A3(0) = A−3(0) = a3 = 0 to get a
simpler form of the expression for B±3(z). Thus from Equation (2.136) using
a3 = 0, we have :

B3(z) = B−3(z) = i
√

P
µ3

sin(γPµ3z)−
√

P(2 + η3)

µ32 cos(γPµ3z) +
√

P(2 + η3)

µ32 .

(2.137)

The corresponding powers P±3(z) are given as :

P3(z) = P−3(z) =
P

µ32 sin2(γPµ3z)− P(2 + η3)2

µ34 cos2(γPµ3z)

+
2P(2 + η3)2

µ34 cos(γPµ3z)− P(2 + η3)2

µ34 .
(2.138)

As we have seen before in the case of the analytical 4-wave model, here also,
depending on whether µ3

2 is non-negative or negative, P3(z) will be either
sinusoidal or hyperbolic in nature respectively. Consequently in Fig. 2.20 we
plot µ3

2 as a function of ∆λPP for γ = 11.3 (W.km)−1, P = 20 dBm, λ0 = 1557.5
nm (or δλo f s = λ0 − λZDW = 10 nm), λZDW = 1547.5 nm and dispersion slope
of the fiber D

′
= 0.017 ps/nm2/km. From Fig. 2.20 we see that µ3

2 ≥ 0 for
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Figure 2.20. Plot of µ3
2 as a function of ∆λPP. The vertical grey

dashed line shows the position where µ3
2 = 0. A non-degenerate

pump configuration is considered. P = 20 dBm, γ = 11.3 W−1km−1,
λ0 = 1557.5 nm, λZDW = 1547.5 nm and D

′
= 0.017 ps/nm2/km.

∆λPP ≥ 5.06 nm and µ3
2 < 0 for ∆λPP < 5.06 nm.

Here we can also ask the question that, can there be a situation, where the
output HOP powers are zero at the output of the fiber? This also means that the
terms on the right hand side of Equation (2.137) add up to zero. Thus equating
both the real and imaginary parts to zero, we obtain the following condition to
be satisfied :

−(2+η3)
µ32

(
cos(γPµ3L)− 1

)
= 0, sin(γPµ3L)

µ3
= 0 when µ3

2 ≥ 0,
−(2+η3)

µ3
′ 2

(
cosh(γPµ3

′
L)− 1

)
= 0, sinh(γPµ3

′
L)

µ3
′ = 0 when µ3

2 < 0,
(2.139)

where µ3
′
=
√
−µ32. Hence we see that when µ3

2 < 0, Equation (2.139) does
not have a solution as sinh(aL)/L is a strictly positive function of L for an
arbitrary positive a. However, when µ3

2 > 0, we have a solution as :

γPµ3L = 2nπ, (2.140)

where n ∈ Z\{0}. We note here that, n cannot take the value 0 because that
would mean µ3 = 0, thus we have limµ3→0

sin(γPµ3L)
µ3

= γPL 6= 0. In Fig. 2.21
we plot in dashed line, γPµ3L− 2nπ (right axis) as a function of ∆λPP when
µ3

2 > 0 for n =1 (red), 2 (blue), 3 (green), 4 (magenta) and 5 (black). The roots
of all these curves correspond to a situation where B3(L) = 0 (or P3(L) = 0).
This phenomenon is also reflected in the dips in the plot of output power of
the HOP’s (left axis, shown in red solid line) in Fig. 2.21. Grey dashed lines
are used to show the concurrency of the dips of output HOP powers with the
roots of Equation (2.140).

The above discussion suggests that by tailoring the pump-pump wavelength
separation and/or γPL, it is possible to achieve a PSA with suppressed HOP’s
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Figure 2.21. Plot of output HOP powers considering ∆βklmn 6= 0,
A3(0) = A−3(0) = 0 as a function of ∆λPP (red solid line). Plot of
γPµ3L− 2nπ as a function of ∆λPP when µ3

2 > 0 in dotted line for
n = 1 (red), 2 (blue), 3 (green), 4 (magenta) and 5 (black). Grey dashed
lines are for visual aid. L = 500 m. Other parameters are same as in

Fig. 2.20.

at the output when the strong pump approximation is valid. Such an operation
might be useful due to the detrimental nature of the HOP’s often observed in
FOPA operations specially when the pump-pump wavelength separation is
small [92].

Thus so far we derived the analytical expressions of all the seven waves in a 7-
wave model to describe the CW light propagation in a FOPA. These solutions are
only valid when the pump waves are much stronger than the other waves along the
fiber. To understand the validity of this model, we will compare these results with
the corresponding 7-wave numerical model (considering all the FWM terms) in the
next subsection.

2.4.11 Comparison of Analytical 3- and 7-Wave Models with Numerical
7-Wave Model

In our approach to develop the analytical 7-wave model, we only considered the
terms that contain at least two pump amplitudes [56] to obtain a linear system of
coupled differential equations that we can solve. This limits the validity of our
model. With the increase of either the pump power, fiber length or the nonlinear
coefficient, the FOPA starts behaving more and more nonlinearly. When the nonlin-
earity becomes strong, the generated sidebands i.e. A±2 and A±3 become important
to describe the dynamics of the FOPA. In such cases the developed analytical ap-
proach becomes inapplicable.
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Figure 2.22. Plot of maximum signal gain for a dual-pump PSA as a
function of the pump-pump wavelength separation ∆λPP solving the
3- and 7-wave models (green and red solid lines respectively) ana-
lytically and 7-wave model (blue solid line) numerically for different
values of γPL : (a) 0.11, (b) 0.23, (c) 0.56 and (d) 1.13. 7wm-n : nu-
merical 7-wave model; 7wm-a : analytical 7-wave model; 3wm-a :
analytical 3-wave model. Other parameters are provided in Table 2.2.

In contrast to an analytical approach, using a numerical approach, one can solve
the set of seven coupled nonlinear differential equations13, without making any ap-
proximation [91]. In fact Qian et al. numerically solved the coupled equations for a
dual pump PSA for as large as 27 waves [92]. Nevertheless, an analytical approach
might help us gain a better insight of the physics of the system.

In order to validate our approach, we compare the dependence of maximum
signal gain (with respect to input signal phase) of a dual-pump FOPA on the pump-
pump wavelength separation, calculated using the analytical 3- and 7-wave mod-
els and numerical 7-wave model for different fiber lengths (see Fig. 2.22). For the
numerical 7-wave model we neglected the fiber attenuation and used the coupled
equations provided in Appendix B. Also note that the different fiber lengths corre-
spond to different values of γPL (0.11 for L = 100 m, 0.23 for L = 200 m, 0.56 for
L = 500 m and 1.13 for L = 1000 m) or the nonlinear phase. This quantity is a
characteristic of the nonlinearity of the system.

From Figs. 2.22 (a), (b), (c) and (d) we see that all the three models predict ap-
proximately the same signal gain for a large pump-pump wavelength separation

13The differential equation for the signal is given in Equation (2.58). A complete set of seven coupled
equations is given in in Appendix B.
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Figure 2.23. Plot of output power of the different waves |Ai|2 (sig-
nal (red), pumps (black and cyan), HOI’s (blue and green), HOP’s
(yellow and magenta)) with pump-pump wavelength separation for
different values of γPL : (a) 0.11, (b) 0.23, (c) 0.56 and (d) 1.13. The nu-
merical 7-wave model is considered. Other parameters are provided

in Table 2.2.

(∆λPP > 60 nm). The deviation between the analytical 7-wave model and the nu-
merical 7-wave model however thins out for larger pump-pump separations. We
also see, when the pump-pump wavelength separation is low (∆λPP < 10 nm), the
analytical 3-wave model deviates significantly from the 7-wave numerical model,
but for γPL < 0.5, the analytical 7-wave model predicts almost the same signal gain
as the numerical 7-wave model.

We point out here that the analytical 3- and 7-wave models described in Sec-
tions 2.2 and 2.4 respectively, do not take into account pump depletion, whereas
their numerical counterparts do. For the numerical approach, we numerically solve
the seven coupled differential equations (obtained from Equation (2.4)) for the seven
waves and scan the input signal phase to get the maximum gain14. The only ap-
proximations considered in the numerical model are : 1. fiber attenuation coefficient
α was set to zero, and 2. dispersion terms were considered till the second order
(similar to the analytical 4- and 7-wave models).

Following Xie et al. who predicted the possibility of attaining a higher signal
gain (compared to the 3-wave model) in the anomalous dispersion region [91], we
restrict our analysis to the anomalous dispersion region (δλo f s = λ0 − λZDW > 0).
The parameters used for this simulation are provided in the Table 2.2.

We also plot in Fig. 2.23, the output powers of the different waves as a function

14This numerical model is also discussed in Ref. [89].



74 Chapter 2. Analytical 7-Wave Model

System Parameter List
HNLF Parameter Value Unit
Standard Input signal power : P0 -30 dBm

Input pump power : P 20 dBm
Signal wavelength : λ0 1557.5 nm
Zero dispersion wavelength of
HNLF : λZDW

1547.5 nm

Nonlinear coefficient of HNLF : γ 11.3 (W.km)−1

Wavelength offset from zero dis-
persion wavelength : δλo f s = λ0 −
λZDW

10 nm

Dispersion slope of HNLF : D
′

0.017 ps.nm−2.km−1

Table 2.2. Table of system parameters used to compare the analytical
7-wave model with the numerical 7-wave model.

of ∆λPP for different values of γPL considering the numerical 7-wave model. From
Fig. 2.23 (a) and (b) (i.e. γPL < 0.5), we see that for the whole range of pump-pump
wavelength separation, the pumps remain undepleted at the output of the fiber as
all the other waves are much weaker than the pumps. This ensures us the validity
of the strong pump approximation. However on the other hand, in Figs. 2.23 (c)
and (d) (i.e. γPL > 0.5) we find that when ∆λPP is less than about 25 nm, the
HOP’s become comparable in power to the pumps at the fiber output. This implies
that, as γPL increases (typically >0.5), the analytical 7-wave model starts becoming
inaccurate as the HOP’s (see magenta and yellow curves in Figs. 2.23 (c) and (d))
become comparable to the pump waves at the fiber output.

2.4.12 Physical Interpretation

In this subsection we provide a physical interpretation of how the seven waves in-
teract in a nonlinear fiber in terms of FWM processes. We consider the analytical
7-wave model, and analyze the case where only the signal and the two pumps are
launched at the input of the fiber. We have seen that the differential equation of the
signal wave evolution in a FOPA, considering a 7-wave model, consists of 22 FWM
processes (see Equation (2.58)). However, when the length of the FOPA is small, we
can assume that the pumps have a much larger power than the signal, HOI’s and the
HOP’s. Thus we can neglect the terms that do not contain two pumps, and arrive
at a simpler equation that can be solved analytically (see Equations (2.59), (2.60) and
(2.61)).

As discussed before, the evolution of the HOP’s turn out to be independent of
the signal and the HOI’s under the strong pump approximation, and are well un-
derstood (see Subsection 2.4.10). The situation is however more complicated for the
signal and HOI’s, as their evolution are coupled through several FWM processes. To
analyze this, first we define the effective phase mismatch term κkmnl as [91] :

κkmnl = γPkmnl − ∆βkmnl , (2.141)
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where γPkmnl is the nonlinear phase mismatch and Pkmnl is given by :

Pkmnl = Pk + Pm − Pn − Pl , (2.142)

where Pi is the power of the wave at frequency ωi at the end of the fiber (i = k, l, m
and n). The effective phase mismatch κkmnl provides an estimate of the efficiency
of the FWM process pklmn occurring between the waves at frequencies ωk, ωl , ωm

and ωn (see Fig. 2.24) [135]. A small value (≈ 0) of the effective phase mismatch
implies a highly efficient FWM between the corresponding waves whereas larger
values indicate inefficient FWM [58].

For the simplest case, i.e. the 3-wave model, the only effective phase mismatch
term κ1−100 (see corresponding process p1−100 in Fig. 2.24 (a)) is given by :

κ1−100 = γP1−100 − ∆β1−100 ≈ γ2P− 2C, (2.143)

where we have invoked the non-pump depletion approximation considering the
output pump powers to be much larger than the power of the other waves (P1 +

P−1 − P0 − P0 ≈ 2P). We calculated ∆βklmn using Equation (2.31). In the case of the
analytical 7-wave model, the considered phase mismatch terms are given by (see
corresponding processes in Figs. 2.24 (a), (b) and (c)) :

κ1−100 ≈ γ2P− 2C, κ1−2−10 ≈ −4C, κ−1−1−20 ≈ γ2P + 2C. (2.144)

For the sake of brevity, here we have not listed κ1−1−20 and κ1120 as they are just
the symmetrically opposite processes corresponding to κ1−2−10 and κ−1−1−20 respec-
tively.

We note from Equation (2.32) that C ∝ ∆λ2
PP

(
λ0 − ∆λPP

2

)−2 (
λ0 +

∆λPP
2

)−2
. Thus

when ∆λPP is small, C ∝ ∆λ2
PP. Thus we see from Equation (2.144) that when ∆λPP

is small (< 3 nm), κ1−2−10 is also small (≈ 0) as it is independent of P (see Fig. 2.25).
Note that κ1−2−10 correspond to a FWM process involving two pumps, signal and a
HOI (see fig. 2.24 (b)). Thus we can argue, that for a small pump-pump wavelength
separation, the large difference between the maximum signal gain from the analyti-
cal 3- and 7-wave models (see Fig. 2.13 (a)) is because p1−2−10 is not accounted for in
the analytical 3-wave model. The FWM process p1−2−10 leads to conversion of one
pump1 and one signal photon into one HOI1 and one pump2 photon. Thus an effi-
cient occurrence of this process leads to depletion of the maximum gain of the signal
at low pump-pump separation (see dip in maximum signal gain in Fig. 2.13 (a) from
the analytical 7-wave model for ∆λPP ≈ 0).

The effective phase mismatch terms that were not accounted for in the analytical
7-wave model (in Equation (2.144)) but considered in the numerical 7-wave model,
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are given as (not considering symmetrically opposite terms) :

κ−1320 ≈ γP− 6C, κ−1−2−30 ≈ γP + 4C, κ−32−10 ≈ −γP− 12C,

κ−3300 ≈ −18C, κ−2200 ≈ −8C.
(2.145)

ω
A−3 A−2 A−1 A0 A1 A2 A3

(a) p1−100

ω
A−3 A−2 A−1 A0 A1 A2 A3

(b) p1−2−10

ω
A−3 A−2 A−1 A0 A1 A2 A3

(c) p−1−1−20

ω
A−3 A−2 A−1 A0 A1 A2 A3

(d) p−1320

ω
A−3 A−2 A−1 A0 A1 A2 A3

(e) p−1−2−30

ω
A−3 A−2 A−1 A0 A1 A2 A3

(f) p−32−10

ω
A−3 A−2 A−1 A0 A1 A2 A3

(g) p−3300

ω
A−3 A−2 A−1 A0 A1 A2 A3

(h) p−2200

Figure 2.24. An illustration of the different FWM processes in a FOPA.
The processes are labelled pklmn where the involved waves are at fre-
quencies ωk, ωl , ωm and ωn. (a), (b) and (c) are the processes used
in the analytical 7-wave model. The analytical 3-wave model consid-
ers only (a). The direction of the arrows show the direction of energy

flow obtained from the numerical 7-wave model simulation [91].

From Equation (2.145) we see that when the pump-pump wavelength separation
∆λPP is small (< 10 nm), i.e. C is small, the only effective phase mismatch terms that
are small (≈ 0) are κ−3300 and κ−2200 (see corresponding processes in Figs. 2.24 (g)
and (h)). But these two processes, which lead to conversion of two signal photons
into a HOI1 (HOP1) and a HOI2 (HOP2) photons, involve no pumps. Thus for a
small length of the fiber, these processes will not have a strong influence on the
signal evolution. Hence, the analytical 7-wave model converges with the numerical
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7-wave model for a short length of the fiber, when the pump-pump wavelength
separation is small (see Fig. 2.22 (a) and (b)).

In Fig. 2.25 we plot the product of the effective phase mismatch κkmnl (corre-
sponding to a FWM processe pkmnl) and the fiber length L, as a function of the pump-
pump wavelength separation ∆λPP. We consider γPL = 0.11 and δλo f s = 10 nm.
An absolute value of κkmnl L near 0 implies an efficient FWM whereas an absolute
value close to or larger than π implies low efficiency of the process pkmnl [91]. Other
parameters are same as in Table 2.2.
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Figure 2.25. Plot of κkmnl L corresponding to different FWM processes
pkmnl , as a function of the pump-pump wavelength separation ∆λPP
for L = 100 m, γ = 11.3 (W.km)−1, P = 20 dBm and δλo f s = 10
nm. κ1−100 (red solid line) corresponds to the only FWM process
considered in the 3-wave model p1−100. κ1−100, κ1−2−10 (green solid
line) and κ−1−1−20 (blue solid line) correspond to the processes con-
sidered in the analytical 7-wave model. κ1−100, κ1−2−10, κ−1−1−20,
κ−1320 (red dashed line), κ−1−2−30 (green dashed line), κ−32−10 (blue
dashed line), κ−3300 (red dotted line) and κ−2200 (blue dotted line) cor-
respond to the processes considered in the numerical 7-wave model.

The colour coding of the arrows are consistent with Fig. 2.25.

From Fig. 2.25 we see that for small values of pump-pump wavelength separa-
tion, (∆λPP < 6 nm), process p1−2−10 is the most efficient process (we neglect p−3300

and p−2200 as they do not contain pump terms). This explains the fact that at low
(< 5 nm) values of ∆λPP the 3-wave model deviates from the 7-wave analytical and
numerical models (see Fig 2.22). For 5 nm< ∆λPP < 15 nm, the most dominant pro-
cess is p−1−1−20 (and p1120) (see Fig. 2.24 (c)). Near ∆λPP ≈ 8 nm (or η ≈ 0), we see
κ−1−1−20 ≈ 0 (see blue solid line in Fig. 2.25). This process leads to an efficient gener-
ation of the signal (for ∆λPP ≈ 8 nm) and is responsible for the large gain peak seen
in Fig. 2.22 (see red curves). For ∆λPP larger than 15 nm, all the processes start to lose
efficiency. Therefore, contribution from all the FWM processes must be accounted
for to obtain an accurate signal gain. However, in the case of very large pump-pump
wavelength separation, i.e. ∆λPP > 60 nm, the HOI’s and the HOP’s are very weak
due to the inefficiency of the processes that generate them. Thus in such a case, the
analytical 3-wave model is enough to describe the dynamics.
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2.4.13 Limitations

The analytical 7-wave model developed here is valid for a limited range of scenarios.
The limitations are more or less the same as for the analytical 3- and 4-wave model.
The only advantage of the analytical 7-wave model is that it considers the effect of
the presence of the HOI’s in the signal evolution.

The analytical 7-wave model is valid only when the nonlinear phase γPL is small
(<0.5) and the pump-pump wavelength separation ∆λPP is either small (<5 nm) or
large (>60 nm). For larger values of γPL (>0.5), the signal, HOI’s and HOP’s can
have large gains (typically for small values of ∆λPP (<5 nm)) leading to a significant
depletion of the pumps and hence making the analytical 7-wave model invalid (see
Fig. 2.22 (d)).

In this model we neglected the higher order terms (n > 2) in the Taylor series
expansion of β(ω). In certain cases, for example with larger values of ∆λPP (typically
>5nm) or when the wavelength of the considered waves are close (within a few
nanometers) to the zero dispersion wavelength, higher order treatment is solicited
for accurate results [58].

2.4.14 PSA Noise Figure

A FOPA in a PSA configuration can act as an amplifier without degrading the signal
to noise ratio (SNR) [47]. Further, due to the broad gain spectrum of dual pump
FOPA’s, they are attractive candidates for low noise optical amplification [88, 155,
176]15. However, due to the non-existence of a general solution of the 7-wave model
(or n-wave model), a full quantum treatment of calculating the NF is difficult to
achieve [157]. Thus, the developed 7-wave analytical model might be useful to cal-
culate the noise figure (NF) of a dual pump PSA with a full quantum treatment
considering seven interacting waves.

2.5 Conclusion

In this chapter we developed a formalism to describe propagation of seven CW
waves through a nonlinear fiber. We considered the fiber acting as a FOPA and
considered a dual-pump with degenerate signal and idler configuration. We frag-
mented the 7-wave system into three subsystems, one with the signal, one with the
HOI’s and one with the HOP’s. The HOP subsystem decouples from the signal and
HOI’s when the pumps are strong.

The HOP’s show strong amplification due to an efficient FWM between the two
pumps to generate the HOP’s. The dynamics of the coupled signal and HOI’s turns
out to be more complex and is similar to that of two coupled oscillators.

15The 3dB limit of noise figure of a PIA was surpassed by several investigations in the context of fiber
phase sensitive amplification [53, 177]. Recently, Liu et al. demonstrated the low-noise performance of
a PSA-based hybrid optical amplifier with a noise figure lower than 3 dB [176].
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From the developed model, we found that in the analytical 7-wave model, the
maximum PSA gain of the signal shows a resonance when the dispersive and non-
linear effects of the fiber achieve a balance in the anomalous dispersion region.
Moreover we found that the solution of the analytical 7-wave model is always si-
nusoidal, however with a larger parametric gain coefficient than the 4-wave model.
This change in the gain coefficient is mediated by the coupling of the signal with the
HOIs. This is different from the analytical 4-wave model where the high PSA gain
of the signal is not due to a large gain coefficient, rather due to the hyperbolic nature
of the obtained solution.

The analytical 7-wave model predicts the maximum signal gain accurately (as
verified with a numerical approach with less stringent assumptions) when γPL is
less than 0.5. We also found that the HOI’s play an important role in the system
evolution. In particular, its coupling with the signal leads to a change in the signal
gain which is unaccounted for in the analytical 3-wave model.

Using the developed model, we explored PSA configurations with non-zero HOI
powers at the input of the fiber. We found a significant increase in the maximum
signal gain for such configurations.

We also described how the system can be used as a PSFC by launching just HOI1
at the input, to generate either signal or HOI2 at the output depending on the input
phase of HOI1.

These developments not only open new perspectives in the development of mod-
ern PSA based technologies, but also gives us a better insight into the physics of in-
teraction of multiple CW waves within a nonlinear medium.
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Chapter Highlights

From the developed analytical 7-wave model, we found out the following results.
• Decoupling of HOPs : The subsystem containing the HOPs, decouples

from the other two subsystems, i.e. from the signal and the HOIs when
the pumps are assumed to be much stronger than the other waves. Thus
the HOPs can be analyzed separately, independently of the signal and the
HOIs.

• Large Amplification of HOPs : The HOPs exhibit a very strong amplifica-
tion due to an efficient FWM mechanism that involves two pumps and a
HOP. This FWM is possible as the pump-pump wavelength separation is
equal to the pump-HOP wavelength separation.

• Phase Sensitive Frequency Conversion (PSFC) : We found that a dual-
pump PSA system can be used as a PSFC by launching just HOI1 at the
fiber input, to generate either signal or HOI2 at the output depending on
the input phase of HOI1.

• Signal Modulation Instability : While for the analytical 3-wave model,
the modulation instability of the signal originated from the solution having
hyperbolic terms (when parametric gain coefficient γPµ0 is imaginary), in
contrast, for the analytical 7-wave model, the signal modulation instability
is mainly due to the larger value of the parametric gain coefficient γPν0

compared to γPµ0, which is a result of the coupling of the HOIs with the
signal.

• Validity of the Analytical Model : The analytical 7-wave model predicts
the maximum signal gain for a dual-pump PSA accurately (as verified with
a numerical approach considering all FWM terms) when the nonlinear
phase γPL is less than 0.5 rads.
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3.1 Introduction

In the previous chapter we looked at situations where we dealt with propagation
of at most seven CW waves through a nonlinear fiber. However, with the n-wave
model, for higher number of waves, i.e. more than seven waves, the coupled set
of differential equations that determine the propagation of different waves becomes
enormously complicated. This is because with the increase in number of waves, the
number of terms originating from the four wave mixing of the different waves in-
creases as∼ n3 [90]. Thus it becomes very difficult to tackle the problem analytically
or numerically. This brings us to the requirement of an alternative approach.

In contrast to the n-wave model, the nonlinear Schrödinger equation (NLSE) can
describe the propagation of a continuous spectrum of waves through a nonlinear
fiber [56, 58, 178–181]. Thus for scenarios with large number of waves, it becomes
much more convenient to numerically simulate the wave propagation using a NLSE
based approach.

In real life, indeed there are situations which require to deal with a large number
of waves. An example of such a situation is a wavelength division multiplexing
(WDM) system [182]. Also, in the case of fiber phase sensitive amplifiers, the pump
waves are often modulated to suppress stimulated Brillouin scattering (SBS) [63–66].
Analysis of the propagation of such modulated CW waves through a nonlinear fiber
inevitably requires a NLSE based model, since it can handle simultaneous evolution
of multiple waves through a nonlinear fiber.

This chapter is organized as follows. Section 3.1 focuses on a general description
of NLSE explaining all the different terms in the equation. Then in Section 3.2 a nu-
merical model based on split-step Fourier method is discussed to solve the NLSE.
Then in Section 3.3 the numerical model is validated with analytical solutions and
experimental data for the simple case of three wave propagation through a fiber. Fi-
nally, in Section 3.4 a comparison between the n-wave models developed in Chapter
2 and the numerical NLSE model is provided with respect to their validity regimes.
Also the key points of this chapter are summarized.

3.1.1 Input Electric Field

In the most general case, when we consider N discrete frequency CW waves at the
input of the nonlinear fiber. The real electric field E(0, t) at the input can be written
as :

E(0, t) =
N

∑
k=1

Ake−iωkt + c.c. , (3.1)

where Ak is the complex amplitude of the wave component at frequency ωk and c.c.
denotes complex conjugate. When all the wave components in the input field are
centered close to a central frequency ωc, we can approximate the real electric field
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E(z, t) inside the fiber in the form :

E(z, t) = A(z, t)ei(βcz−ωct) + c.c. , (3.2)

where βc is the propagation constant at the central frequency ωc. We can also see
from the above equation that for z = 0, we can write the real electric field E(0, t) as :

E(0, t) = A(0, t)e−iωct + c.c. . (3.3)

We define the Fourier transform of the complex amplitude A(z, t) at z = 0 as :

A(0, t) =
1√
2π

∫ ∞

Ω=−∞
B(0, Ω)e−iΩtdΩ, (3.4)

where we have used Ω = ω − ωc and we have considered the symmetric version
of Fourier transform. The advantage of using the Fourier transform is the fact that
when we consider only dispersive effects of the fiber, we can evaluate the evolution
of B(0, Ω) in the fiber just by multiplying a phase to it.

3.1.2 Dispersion

In a dispersive medium, the waves at different frequencies propagate with different
speeds. We look at the dispersion of our medium given by the quantity β(ω), which
is the propagation constant of a wave at frequency ω. β(ω) can be written as a Taylor
series expansion around a central frequency ωc as :

β(ω) =
∞

∑
n=0

β(n)

n!
(ω−ωc)

n = βc +
∞

∑
n=1

β(n)

n!
Ωn, (3.5)

where βc = β(ωc), Ω = ω − ωc and β(n) = dnβ
dωn at ω = ωc. Physically, ωc/βc is

the phase velocity of the wave component at the central frequency ωc. 1/β(1) is the
group velocity of the wave. β(2) is known as the group velocity dispersion.

In the case of linear propagation, i.e. when we consider only dispersion and
no nonlinearity of the fiber, propagation of the complex amplitude in the Fourier
domain means only addition of a phase to the initial complex amplitude as we
mentioned before. The added phase of a wave at frequency Ω is the wave-vector
β(ωc + Ω) times the propagation distance z. Considering the initial form of the elec-
tric field as defined in Equation (3.2), we can write A(z, t) as :

A(z, t) =
1√
2π

∫ ∞

Ω=−∞
B(z, Ω)e−iΩtdΩ

=
1√
2π

∫ ∞

Ω=−∞
B(0, Ω)eiβ(ωc+Ω)z−iΩtdΩ.

(3.6)
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3.1.3 Derivation of NLSE

In order to solve for A(z, t), we need to find how its dependence on the position
or z, is related to its dependence on time or t. So we start off by taking the partial
derivative of A(z, t) with respect to z :

∂A
∂z

=
1√
2π

∫
B(0, Ω)iβ(ωc + Ω)eiβ(ωc+Ω))z−iΩtdΩ. (3.7)

Using Equation (3.5), we have :

∂A
∂z

= i
1√
2π

∫
B(0, Ω)

(
∞

∑
n=0

β(n)

n!
Ωn

)
eiβ(ωc+Ω)z−iΩtdΩ. (3.8)

Now if we take the mth derivative of A(z, t) with respect to t, we get :

∂m A
∂tm =

1√
2π

∫
B(0, Ω)(−iΩ)meiβ(ωc+Ω))z−iΩtdΩ. (3.9)

Comparing Equation (3.8) and Equation (3.9), we find :

∂A
∂z
−

∞

∑
n=1

in+1β(n)

n!
∂n A
∂tn = 0. (3.10)

In the case of optical fibers, β(n)’s can be neglected for n > 4 [58]. Thus we terminate
our series at n = 4.

So far we have only introduced linear propagation of light considering dispersive
effects of a fiber. However, for a nonlinear fiber, we also need to account for the Kerr
nonlinearity effects. We introduce this nonlinearity, i.e. iγ|A|2A as a perturbation
term on the right hand side of Equation (3.10) [56] 1. Thus we have :

∂A
∂z
−

4

∑
n=1

in+1β(n)

n!
∂n A
∂tn − iγ|A|2A = 0. (3.11)

In Equation (3.11), the first and second terms on the left hand side represent the space
and time dependence of the complex amplitude A respectively, while the third term
arises from the nonlinearity of the fiber.

3.1.4 Change of Reference Frame

At this point, a common technique to simplify Equation (3.11) is to make a change
of reference frame from t to T = t − β(1)z which is also known as a retarded time
frame [58]. This means we change our reference frame from the lab reference frame
to one that travels at the group velocity vg of the wave given by vg = 1

β(1) . Hence

A(z, t) should be written in terms of A(z, T = t− β(1)z). We can write equations for

1The derivation of this Kerr nonlinearity term is non-trivial and is discussed in detail in Ref. [56].
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the transformation of variables as :

∂A
∂z

=
∂A
∂T

∂T
∂z

+
∂A
∂z

∂z
∂z

= −β(1) ∂A
∂T

+
∂A
∂z

, (3.12)

∂A
∂t

=
∂A
∂T

∂T
∂t

+
∂A
∂z

∂z
∂t

=
∂A
∂T

, (3.13)

∂m A
∂tm =

∂m A
∂Tm for m = 1, 2, 3... . (3.14)

Thus with the transformed variables, Equation (3.11) can be written as :

∂A
∂z
−

4

∑
n=2

in+1β(n)

n!
∂n A
∂Tn = iγ|A|2A. (3.15)

We should note here that in the retarded time reference frame, the term with β(1) in
Equation (3.11) gets dropped. Also, this transformation makes the NLSE easier to
solve numerically as we are always looking at variations in the wave near the center
of the wave envelope.

We also note that the initial conditions for both the frames of reference, i.e. t and
T, are the same, i.e. at z = 0, we have A(z = 0, t) = A(z = 0, t− 0 = T) = A(0, T).
However, after solving the NLSE, we obtain A(z = L, T = t− β(1)L). Therefore to
retrieve the solution of the field amplitude in the t-frame, we need to change the
variable back to t from T. This means that for a given length L of the fiber, the
solution of the complex amplitude A, in the t-frame is the same solution in the T-
frame but retarded (for β(1) > 0) or advanced (for β(1) < 0) by an amount β(1)L.

3.1.5 Attenuation of the Medium

So far we did not consider any fiber attenuation in the model. However, the fiber
attenuation can be incorporated by just adding a term α

2 A on the left hand side of
Equation (3.15). α is the attenuation coefficient of the fiber. Thus we get :

∂A
∂z

+
iβ(2)

2
∂2A
∂T2 −

β(3)

6
∂3A
∂T3 −

iβ(4)

24
∂4A
∂T4 +

α

2
A− iγ|A|2A = 0. (3.16)

Equation (3.16) is the final form of NLSE that we solve numerically in the subsequent
sections.

3.1.6 Calculation of Parameters

For a given fiber, the attenuation coefficient α and the nonlinear coefficient γ are
provided by the manufacturer. Depending on the composition of the fiber, we also
know the frequency dependence of the effective refractive index, i.e. n(ω) and the
frequency dependence of the derivative of refractive index with respect to ω, i.e.
dn
dω (ω) for the fiber. The β(n)’s are given as follows :
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• β(1) :

We know that β(ω) can be expressed as :

β(ω) =
n(ω)ω

c
. (3.17)

Now we can take the derivative of Equation (3.17) with respect to ω at ω = ωc

and use Equation (3.5) to write :

β(1) =
dβ

dω

∣∣∣
ω=ωc

=
1
c

[( dn
dω

)
ω=ωc

ωc + n(ωc)

]
, (3.18)

where 1
β(1) represents the group velocity of the wave.

In our case, we have seen that by changing the reference frame from t to T, the
term with β(1) in the NLSE dropped out. Therefore for using a NLSE based
model, we do not need to calculate β(1).

• β(2) :
The dispersion parameter D(λ) of a fiber at a central wavelength λc is related
to β(1)(ωc) as :

D(λc) =
dβ(1)(ωc)

dλc
=

dβ(1)

dωc

dωc

dλc
= β(2) dωc

dλc
= −2πcβ(2)

λc
2 , (3.19)

where λc is the wavelength corresponding to the central angular frequency ωc.
Thus we get :

β(2) = −λc
2D(λc)

2πc
. (3.20)

For most practical scenarios, we can approximate a linear relation between D
and λ as (see Fig. 3.1) :

D(λ) = D′(λ− λZDW), (3.21)

where D′ is the slope of the dispersion parameter of the fiber with respect
to wavelength λ. λZDW is the wavelength corresponding to zero dispersion
(D = 0). Both D′ and λZDW are provided by the manufacturer of the fiber.
Hence we can write β(2) as :

β(2) = −λc
2D′(λc − λZDW)

2πc
. (3.22)

• β(3):
Similarly, with subsequent derivatives of β(2) with respect to ωc, we can find
β(3) and β(4). β(3) is given by the derivative of β(2) with respect to ωc. Thus we
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D = 0 λ
λZDW

Slope=D′

λc

D(λ)

•

Figure 3.1. Dependence of dispersion parameter D on wavelength λ
in an optical fiber. For a given wavelength λc, we can find D if we

know D′ and λZDW .

can write :

β(3) =
dβ(2)

dωc
=

dβ(2)

dλc

dλc

dωc
=

dβ(2)

dλc

d
dωc

(2πc
ωc

)
=
−2πc
ωc2

d
dλc

(
− λc

2D′(λc − λZDW)

2πc

)
=

λc
3D′(3λc − 2λZDW)

4π2c2 .

(3.23)

To derive this we have used the relation λc =
2πc
ωc

.

• β(4):
Similarly, we can calculate β(4) as :

β(4) =
dβ(3)

dωc
=

dβ(3)

dλc

dλc

dωc

=
−2πc
ωc2

d
dλc

(
λc

3D′(3λc − 2λZDW)

4π2c2

)
=
−6λc

4D′(2λc − λZDW)

8π3c3 .

(3.24)

Here we have considered D′ to be a constant i.e. D′′ = 0.

3.2 Numerical Model

The NLSE is a nonlinear partial differential equation. Due to the coupled existence of
the linear and the nonlinear terms, it is difficult to find a general form of an analytical
solution for the NLSE except for some special cases. These correspond to situations
where the inverse scattering method can be employed [183]. Also, some particular
classes of analytical solutions are obtainable from the Akhmediev breather theory



88 Chapter 3. Nonlinear Schrödinger Equation

[184–188]2. Moreover these solutions are mostly obtainable considering only a sec-
ond order derivative term in T, whereas for nonlinear optics, it is often instructive
to go up to fourth order derivatives in T (as in Equation (3.16)). Thus in our case, to
solve the nonlinear partial differential equation, we resort to a numerical approach.

In the literature, there exist several schemes for solving a nonlinear partial dif-
ferential equation like the NLSE [26, 56, 58, 190–216]. These methods can be broadly
classified into two kinds : 1. finite difference methods and 2. pseudospectral meth-
ods. The pseudospectral methods are generally faster up to an order of magnitude
than the finite difference methods [196]. Such computational advantage over finite
difference methods can be primarily attributed to the use of finite Fourier transform
algorithms [217] used in the pseudospectral methods.

In this section we introduce a pseudospectral algorithm, known as the split step
Fourier method (SSFM) [26, 191, 192], which we use to solve the NLSE numerically.
However there are other pseudospectral methods implementing other transforms,
such as the wavelet transform [214] that can perform better than the SSFM method
computationally, but at the cost of increased implementation complexity.

The basic idea behind the SSFM algorithm is to break down the NLSE into two
simpler differential equations, one with the linear part and the other with the nonlin-
ear part. These simpler equations can be tackled easily numerically. Thus the fiber
is divided into small segments and the output field of each segment is numerically
calculated based on the input field of that segment treating the linear and nonlinear
part separately. In the case of NLSE the linear part corresponds to dispersion and the
nonlinear part is the Kerr nonlinearity. The treatment of dispersion and nonlinear-
ity of the medium separately is a reasonable approximation as long as the segment
lengths are small. A detailed discussion on this algorithm is presented subsequently.

3.2.1 SSFM Algorithm

The SSFM algorithm is implemented as follows [56, 58, 193, 218]. First we divide the
fiber of length L, into n small segments of length L

n = dz. Then starting from the first
segment, using the input field Ein(0, T) (where T = t− β(1)z is the retarded time),
we calculate the field iteratively through each segment along the length of the fiber
to get the output field Eout(L, T) at the end of the last segment. In each segment,
we treat the dispersion D̂ and nonlinearity part N̂ of the wave evolution separately.
Note that D̂ and N̂ are considered as operators here. Thus D̂ and N̂ are given by :

D̂ = − iβ(2)

2
∂2

∂T2 +
β(3)

6
∂3

∂T3 +
iβ(4)

24
∂4

∂T4 −
α

2
, (3.25)

N̂ = iγ|A|2. (3.26)

2There are other particular solutions to the NLSE, like the Kuznetsov-Ma breather and the Peregrine
soliton [189], however such discussion is beyond the scope of this thesis.
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Hence we can write Equation (3.16) or the NLSE as :

∂A
∂z

= (D̂ + N̂)A. (3.27)

Although we know that in reality, the dispersion and the nonlinearity of the
medium act simultaneously during the evolution of the wave through a nonlinear
fiber, nevertheless for sufficiently small segment lengths, we can approximate them
to work one at a time. In order to get a numerical solution of the NLSE, we prop-
agate the wave over a small segment dz where first we consider the propagation
over a length dz

2 considering no nonlinearity. This is performed with the Fourier
transformed field amplitude which is simpler to compute, because in the Fourier
domain, this propagation only corresponds to addition of a phase. Next we revert
back to the time domain and add the effect of nonlinearity for the whole segment
in one go. Then finally for the next half of the segment of length dz

2 , we again move
to the Fourier domain and propagate the wave linearly neglecting nonlinearity (see
Fig. 3.2). This algorithm is also known as the symmetrized SSFM algorithm [193].

dz

N̂

D̂ D̂

N̂

D̂ D̂

N̂

D̂ D̂
Ein Eout

z
z = 0 z = L

Fiber

Figure 3.2. A schematic representation of the symmetrized SSFM al-
gorithm to calculate the output field at the end of a nonlinear fiber. D̂
represents the dispersion operator and N̂ represents the nonlinearity

operator.

3.2.1.1 Dispersion

In the case where we consider only dispersion D̂, the equation for the evolution of
A(z, T) can be written as :

∂A(z, T)
∂z

= D̂A(z, T) =
[ 4

∑
k=2

ik+1β(k)

k!
∂k

∂Tk −
α

2

]
A(z, T). (3.28)

Now A(z, T) and B(z, Ω) are related by the Fourier transform as :

A(z, T) =
1√
2π

∫ ∞

Ω=−∞
B(z, Ω)e−iΩTdΩ = ˆIFT(B(z, Ω)), (3.29)
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B(z, Ω) =
1√
2π

∫ ∞

T=−∞
A(z, T)eiΩTdT = F̂T(A(z, T)), (3.30)

where F̂T is the Fourier transform operator and ˆIFT is the inverse Fourier transform
operator. Using Equation (3.29) in Equation (3.28), we get :

∂A(z, T)
∂z

=
[ 4

∑
k=2

ik+1β(k)

k!
∂k

∂Tk −
α

2

]
ˆIFT
(

B(z, Ω)
)

=
[ 4

∑
k=2

ik+1β(k)

k!
∂k

∂Tk −
α

2

]( 1√
2π

∫ ∞

Ω=−∞
B(z, Ω)e−iΩTdΩ

)
=

1√
2π

∫ ∞

Ω=−∞

[ 4

∑
k=2

ik+1β(k)

k!
(−iΩ)kB(z, Ω)eiΩTdΩ− α

2

]
ˆIFT(B(z, Ω))

= ˆIFT

([ 4

∑
k=2

iβ(k)

k!
Ωk − α

2

]
B(z, Ω)

)

= ˆIFT

([ 4

∑
k=2

iβ(k)

k!
Ωk − α

2

]
F̂T(A(z, T))

)
.

(3.31)

To derive this, we have used the distributive property of the Fourier transform oper-
ator. Also we considered the commutativity of the ∂k

∂Tk operator and the ˆIFT operator
as one works on functions of T and the other on functions of Ω which are separate
variables. Then when we take the Fourier transform on both sides of Equation (3.31),
we get :

∂B(z, Ω)

∂z
=
[ 4

∑
k=2

iβ(k)

k!
Ωk − α

2

]
B(z, Ω). (3.32)

The solution of this differential equation is given by :

B(z, Ω) = B(0, Ω)exp

[( 4

∑
k=2

iβ(k)

k!
Ωk − α

2

)
z

]
, (3.33)

Thus B
(

z + dz
2 , Ω

)
can be written as :

B
(

z +
dz
2

, Ω
)
= B(z, Ω)exp

[( 4

∑
k=2

iβ(k)

k!
Ωk − α

2

)dz
2

]
. (3.34)

As we see here, in the Fourier domain, the evaluation of B(z + dz/2, Ω) is just a
multiplication by an extra phase, and thus it is computationally straightforward,
and due to this reason, the SSFM method can perform better than the finite difference
methods in solving the NLSE [196].
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3.2.1.2 Nonlinearity

In the case where we consider only nonlinearity N̂, the equation for the evolution of
A(z, T) can be written as [56] :

∂A(z, T)
∂z

= N̂A(z, T) = iγ|A(z, T)|2A(z, T). (3.35)

The solution for this differential equation is given by :

A(z, T) = A(0, T)eiγ|A(z,T)|2z. (3.36)

In this case we have considered |A(z, T)|2 is almost constant over z since we are
looking at evolution of the wave over small segments of length dz. Thus, we can
write :

A(z + dz, T) = A(z, T)eiγ|A(z,T)|2dz. (3.37)

3.2.1.3 Final Form of Algorithm

Putting everything together, we write down the final form of the symmetrized SSFM
algorithm that we use for solving the NLSE. For each segment of length dz, at a
position z, we know the input electric field characterized by the envelope of the field
A(z, T). Our aim is to find A(z + dz, T) using the SSFM method.

In the first half of the segment we are only considering dispersion. Thus AD1(z+
dz
2 , T), or the envelope of the field in the first half of the segment can be written as :

AD1

(
z +

dz
2

, T
)
= ˆIFT

(
exp

[( 4

∑
k=2

iβ(k)

k!
Ωk − α

2

)dz
2

]
F̂T(A(z, T))

)
. (3.38)

Then we add the nonlinearity and get AN

(
z + dz

2 , T
)

as :

AN

(
z +

dz
2

, T
)
= eiγ|A(z,T)|2dz AD1

(
z +

dz
2

, T
)

. (3.39)

Note that here we have added the nonlinearity for the whole segment dz at once.
Next we add the dispersion for the next half of the segment and we write the output
envelope of the field AD2(z + dz, T) = A(z + dz, T) as :

A(z + dz, T) = ˆIFT

(
exp

[( 4

∑
k=2

iβ(k)

k!
Ωk − α

2

)dz
2

]
F̂T
(

AN

(
z +

dz
2

, T
)))

. (3.40)

3.2.2 Step Size

In most numerical simulations, the step size dz is an important factor to maintain
the required accuracy of the computation [219–221]. For solving the NLSE, if we
look at the simplest form of the SSFM algorithm, considering the dispersion D̂ and
nonlinearity N̂ act independently in the segments of length dz, i.e. in the first half of
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the segment only dispersion is present and in the second half only nonlinearity3, we
can approximate the field amplitude A at z + dz as :

A(z + dz, T) ≈ edzD̂edzN̂ A(z, T). (3.41)

We should note here that, by assuming D̂ and N̂ act independently in the segments,
we have ignored the non-commuting nature of the operators D̂ and N̂. This non-
commutation is a source of error in our numerical model. This error can be com-
puted using the Baker-Hausdorff formula [222] for two non-commuting operators â
and b̂ :

eâeb̂ = exp
(

â + b̂ +
1
2
[â, b̂] +

1
12

[â− b̂, [â, b̂]] + ...
)

, (3.42)

where [â, b̂] = âb̂ − b̂â with [ , ] being the commutator. Now considering â =

dzD̂ and b̂ = dzN̂ in Equation (3.42), we get the dominant error term for the SSFM
method to be 1

2 dz2[D̂, N̂]. Thus we can say that the simplest form of SSFM algorithm
is accurate to the order of dz2.

Consequently, for the symmetrized SSFM algorithm that we use in our case, the
field envelope A at z + dz is approximated as :

A(z + dz, T) ≈ exp
(

dz
2

D̂
)

exp
( ∫ z+dz

z
N̂(z′)dz′

)
exp

(
dz
2

D̂
)

A(z, T). (3.43)

In this case, the effect of nonlinearity is provided at the middle of the segment rather
than at the boundary in contrast to the previous case. For a small dz, this can be
approximated to :

A(z + dz, T) ≈ exp
(

dz
2

D̂
)

exp
(

dzN̂
)

exp
(

dz
2

D̂
)

A(z, T). (3.44)

Now we use Equation (3.42) and write :

exp
(

dz
2

D̂
)

exp
(

dzN̂
)

exp
(

dz
2

D̂
)
= exp

(
dz
2

D̂ + dzN̂ +
dz2

4
[D̂, N̂] + ...

)
exp

(
dz
2

D̂
)

≈ exp
(

dz
2

D̂ + dzN̂ +
dz2

4
[D̂, N̂]

)
exp

(
dz
2

D̂
)

≈ exp
(

dz
2

D̂ + dzN̂ +
dz2

4
[D̂, N̂] +

dz
2

D̂ +
1
2
(dz

2
D̂ + dzN̂ +

dz2

4
[D̂, N̂]

)dz
2

D̂

− 1
2

dz
2

D̂
(dz

2
D̂ + dzN̂ +

dz2

4
[D̂, N̂]

))
= exp

(
dz
2

D̂ + dzN̂ +
dz
2

D̂ +
dz2

4
[D̂, N̂]− dz2

4
[D̂, N̂] +

dz3

16
[
[D̂, N̂], D̂

])
= exp

(
dz
2

D̂ + dzN̂ +
dz
2

D̂ +
dz3

16
[
[D̂, N̂], D̂

])
,

(3.45)

3This approach is different from the symmetrized SSFM algorithm where we added the nonlinearity
for the whole segment at the middle of the segment.
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where we have used [D̂, D̂] = 0. Thus we see that the leading error term for the
symmetrized SSFM algorithm is of the order of dz3 [58, 193, 221], which is an order of
magnitude improvement over the general SSFM algorithm. The simulation accuracy
can be further improved by considering a variable step size along the length of the
fiber [221], however for our analysis, a constant step size approach suffices.

3.2.3 Spectral Leakage

When we work with digital signals, we often come across errors arising due to spec-
tral leakage or windowing effect. These errors predominantly arise due to perform-
ing a discrete Fourier transform (DFT) [223, 224] while considering an improper win-
dow size. To explain this effect, we take the example of a discretized sine wave of
frequency f in the time domain with N data points each separated by a time interval
of ∆t :

y(m) = sin(2π f m∆t) where m = 0, 1, 2, ..., N − 1. (3.46)

Let k be the number of cycles completed by this sine wave over the total time ttot =

(N − 1)∆t. k is given by :
k = (N − 1)∆t f . (3.47)

The amplitude spectrum of the DFT of Equation (3.46), given by Γ(m) can be approx-
imated by a sinc function as [224] :

Γ(m) =
N
2

sin(π(k−m))

π(k−m)
where m = 0, 1, 2, ..., N − 1. (3.48)

Now we can consider two cases, i.e. k is an integer and k is a fraction.

• k is an integer :

If k is an integer between 0 and N − 1, then we have :

Γ(m) =

N
2 if m = k

0 if m 6= k
(3.49)

Thus we see that Γ(m) is non-zero only for a frequency k
N∆t . For all other

frequencies, i.e. m
N∆t for m = 0, 1, 2, ..., N − 1 and m 6= k, Γ(m) is zero. Hence in

this case we have a correct Fourier representation of the discrete time domain
signal as expected for the continuous case (see Fig. 3.3).

• k is a fraction :

When k is a fraction, we no longer have the sinc function going to zero at all
m except m = k. The discrete signal of Equation (3.46) with one frequency f
in the time domain leaks to other nearby frequencies when represented in the
Fourier domain (see Fig. 3.4).
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(b) Discretized Fourier domain signal.

Figure 3.3. Figure (a) shows a discrete time domain signal with a
single frequency such that an integer number of cycles (k = 4) are
completed. Figure (b) shows the corresponding discrete frequency
domain signal where all except one frequency has an amplitude zero.

N = 256, ∆t = 0.1 and k = 4.
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(b) Discretized Fourier domain signal.

Figure 3.4. Figure (a) shows a discrete time domain signal with a sin-
gle frequency such that a non-integer number of cycles (k = 4.2) are
completed. Figure (b) shows the corresponding discrete frequency

domain signal. N = 256, ∆t = 0.1 and k = 4.2.

From the above discussion we conclude that while performing our simulation,
we need to ensure that the choice of N and ∆t should be such that in Equation (3.47),
k becomes an integer for all the different frequencies that we are using.

3.3 Verification of Numerical Model

In order to check the effectiveness of our developed numerical model based on the
SSFM algorithm, we produce some sample runs numerically and compare the re-
sults with experimental data. In the first part of this section we introduce the pa-
rameters used for the simulations and experiments. Next we consider the PIA con-
figuration of a FOPA and finally we look at the PSA configuration.
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3.3.1 Parameters

Here we list the different parameters that we use in our theoretical calculations, sim-
ulations and experiments for light propagation in a FOPA. In the different tables we
provide the set of parameters for different cases that are utilized subsequently.

3.3.1.1 Numerical parameters

The numerical parameters considered in our simulation is listed in Table 3.1 :

Numerical Parameter List
Parameter Value Unit
Sampling number: N 217 = 131072
Total time considered: ttot 2.18 µs
Time resolution: dt = ttot

N 16 ps
Table 3.1. Table for the numerical parameters used in simulations.

3.3.1.2 System parameters

The system parameters used for the simulations and the experiments are listed in
the following tables. Case 1 and Case 2 refer to the parameters corresponding to
those used in Ref. [155] and Case 3 refers to the experiment performed. :

System Parameter List : Case 1
HNLF Parameter Value Unit
Standard Input signal power : P−1 -13 dBm

Input pump power : P 20 dBm
Pump wavelength : λ0 1547 nm
Pump-signal frequency separation :
∆ fPs

20 GHz

Length of the fiber : L 200 m
Zero dispersion wavelength of
HNLF : λZDW

1547 nm

Nonlinear coefficient of HNLF : γ 11.3 (W.km)−1

Dispersion slope of HNLF : D
′

0.017 ps.nm−2.km−1

Table 3.2. Table of system parameters in the case of a standard HNLF.
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System Parameter List : Case 2
HNLF Parameter Value Unit
SPINE Input signal power : P−1 -3.5 dBm

Input pump power : P 24 dBm
Pump wavelength : λ0 1547 nm
Pump-signal frequency separation :
∆ fPs

20 GHz

Length of the fiber : L 500 m
Zero dispersion wavelength of
HNLF : λZDW

1566 nm

Nonlinear coefficient of HNLF : γ 8.7 (W.km)−1

Dispersion slope of HNLF : D
′

0.083 ps.nm−2.km−1

Table 3.3. Table of system parameters in the case of a SPINE HNLF.

System Parameter List : Case 3
HNLF Parameter Value Unit
Standard Input signal power : P−1 -1 dBm

Input pump power : P 20 dBm
Pump wavelength : λ0 1552.5 nm
Pump-signal frequency separation :
∆ fPs

562 GHz

Length of the fiber : L 200 m
Zero dispersion wavelength of
HNLF : λZDW

1547 nm

Nonlinear coefficient of HNLF : γ 11.3 (W.km)−1

Dispersion slope of HNLF : D
′

0.017 ps.nm−2.km−1

Table 3.4. Table of system parameters in the case of a standard HNLF.

3.3.2 PIA

For a PIA configuration of a FOPA, at the input of the fiber, we have the pump and
the signal wave only. Note that here we use a 3-wave model and use only one pump
wave. Thus the real input field Ein(z = 0, T) can be written as :

Ein(0, T) = |A−1(0)|e−i(ωc+Ω−1)Te−iφ−1 + |A0(0)|e−i(ωc+Ω0)Te−iφ0 + c.c.

=
[
|A−1(0)|e−iΩ−1Te−iφ−1 + |A0(0)|e−iΩ0Te−iφ0

]
e−iωcT + c.c. ,

(3.50)

where A−1, A0 are the complex amplitudes of the signal and pump respectively that
depend only on z. ωc + Ω−1, ωc + Ω0 are the frequencies of the signal and pump
respectively expressed with respect to the central frequency ωc. φ−1, φ0 are the initial
phases of the signal and pump respectively. T = t− β(1)z denotes the retarded time.
We should note here that since we are considering a PIA case, we can use φ−1 and
φ0 to be 0 as the result does not depend on φ−1 or φ0. Also, we can overlook the eiωcT

term and only solve for how the complex envelope A evolves along the fiber, where
A is given by :

A = A−1e−iΩ−1T + A0e−iΩ0T . (3.51)
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Considering the pump frequency to be the central frequency, we have Ω0 = 0. Thus
A becomes :

A = A0 + A−1e−iΩ−1T . (3.52)

Considering the above definition of A, in Fig. 3.5 we show a sample input and out-
put power spectrum of the FOPA, for PIA configuration. In Appendix E we provide
a MATLAB code to generate this spectrum. The parameters of this simulation corre-
spond to the Case 3 mentioned in Table 3.4 except that we changed the length of the
fiber to 2000 m to better visualize the nonlinear effects. We can see from Fig. 3.5 that
apart from the signal getting amplified by the FOPA, four wave mixing processes
inside the fiber lead to the generation of sidebands at frequencies other than that of
the pump and the signal.
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Figure 3.5. A sample input (blue) and output (red) spectrum of a
FOPA in PIA configuration with parameters of Case 3 (Table 3.4) ex-

cept L = 2000 m.

3.3.2.1 Experiment

In order to validate our numerical approach, we perform a simple experiment of
light propagation through a FOPA considering the PIA configuration. Figure 3.6
shows a schematic representation of the experiment.

In the experiment we used two tunable wavelength lasers to generate a sig-
nal and a pump wave at frequencies 1548nm (Pure Photonics PPCL550 laser) and
1552.5nm (Yenista Tunics laser) respectively. The output of the laser at 1552.5nm
was fed into an EDFA (Keopsys) to generate a much stronger output than the sig-
nal. The outputs of the EDFA and the Pure Photonics laser were combined with a
90%/10% fiber coupler and launched inside a standard HNLF of length 200 m which
acted as the FOPA in our case. The zero dispersion wavelength λZDW of the HNLF
was 1547nm, nonlinear coefficient γ was 11.3 (W.km)−1, and the dispersion slope
D′ was 0.017 ps.nm−2.km−1. We also recorded the total power at the input of the
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Figure 3.6. Experimental scheme to measure the signal gain of a FOPA
in PIA configuration. TLS : Tunable Laser Source (Yenista Tunics ) at
wavelength 1552.5 nm. PP : Pure Photonics laser at wavelength 1548
nm. EDFA : Erbium doped fiber amplifier. HNLF : Highly nonlinear

fiber. OSA : Optical spectrum analyzer.

HNLF using a power meter (PWM). The output of the HNLF was fed into an optical
spectrum analyzer (OSA) and the spectrum of the idler was recorded for different
values of power at the input of the HNLF. For each case the spectrum of the input of
the HNLF was also recorded using the OSA.
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Figure 3.7. Dependence of signal gain in PIA on input pump power.
Blue solid line : analytical result from the 3-wave model; yellow dot-
ted line : numerical solution of NLSE; red full circles : experiment.
L = 204 m, γ = 11.3 (W.km)−1, λZDW = 1547 nm, P−1 = −1 dBm,

λ0 = 1552.5 nm and λ−1 = 1548 nm.
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3.3.2.2 Results

In the case of PIA configuration, we plot the gain of the signal G−1 as a function
of the input pump power P in Fig. 3.7. We compare three different approaches: (a)
analytical result from the 3-wave model as given by Equation (2.14) (blue solid line),
(b) numerically simulated result solving the NLSE (yellow dotted line) and (c) re-
sult from the experiment (red full circles) using the scheme shown in Fig. 3.6. The
parameters used correspond to the Case 3 as given in Table 3.4. From Fig. 3.7 we
see that the theoretical calculation, the numerical model and the experimental data
agree considerably. This validates our numerical model for the PIA configuration of
a FOPA.

3.3.3 PSA

In the case of PSA, for the numerical model we proceed similarly as for PIA, the only
differences with PIA being, now we have to consider an idler at the input of the fiber
and the phases of the input waves must be optimized to maximize the signal gain.
Thus in this case we consider an input field Ein(0, T) of the form :

Ein(0, T) = |A−1(0)|e−i(ωc+Ω−1)Te−iφ−1 + |A0(0)|e−i(ωc+Ω0)Te−iφ0 + |A1(0)|e−i(ωc+Ω1)Te−iφ1 c.c.

=
[
|A−1(0)|e−iΩ−1Te−iφ−1 + |A0(0)|e−iΩ0Te−iφ0 + |A1(0)|e−iΩ1Te−iφ1

]
e−iωcT + c.c. ,

(3.53)

where A−1, A0 and A1 are the complex amplitudes, ωc + Ω−1, ωc + Ω0 and ωc + Ω1

are the frequencies expressed with respect to the central frequency ωc and φ−1, φ0

and φ1 are the initial phases of the signal, pump and idler respectively. Note that
for our case Ω−1 = −Ω1. For the sake of simplicity we set |A−1(0)| = |A1(0)|.
As we know that for PSA, the signal gain G−1 depends on the relative phase Θ =

φ−1 + φ1− 2φ0 (see Equation (2.15)) and not the absolute phases of the waves, we set
φ0 = 0 and φ−1 = φ1 in the simulation. Thus we just scan φ−1 to get the dependence
of signal gain on Θ. An experimental analogue of such an approach to scan the
signal gain with respect to relative phase Θ is discussed in Ref. [155].

Next in Fig. 3.8 we plot the dependence of signal gain on the relative phase
Θ, both for the analytical 3-wave model (blue solid line) calculated using Equa-
tion (2.15) and the NLSE simulation (red full circles). We also plot the analytical
result for the PIA configuration from the 3-wave model (green solid line) using Equa-
tion (2.14) with the same set of parameters for comparison. In Fig. 3.8 (a) we consid-
ered parameters from Case 1 or Table 3.2, while for Fig. 3.8 (b) Case 2 or Table 3.3 was
considered.

From Fig. 3.8 we see that the numerical NLSE simulation correctly reproduces the
dependence of signal gain on the relative phase Θ as predicted by the 3-wave model
for two different HNLF’s. An experimental validation of this is shown in [155]. We
also see that as expected, the signal gain in PIA configuration is insensitive to the
relative phase Θ and the maximum PSA gain is larger than the PIA gain.
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Figure 3.8. Dependence of signal gain in PSA and PIA configuration
of a FOPA on the relative phase Θ between the signal, pump and the
idler. The blue solid line is the analytical result for PSA from the 3-
wave model. The red full circles are obtained from the numerical so-
lution of NLSE for PSA. The green solid line is the analytical solution
of PIA from the 3-wave model. Parameters of (a) : Case 1 (Standard
fiber) given in Table 3.2. Parameters of (b) : Case 2 given in Table 3.3

(SPINE fiber). Degenerate pump configuration is considered.

3.4 Discussion and Conclusion

3.4.1 Comparison of Models

In this subsection we will provide a qualitative comparison of the different models
that we described in this thesis so far. They are, analytical 3-wave model, analytical
7-wave model, numerical 7-wave model and the numerical NLSE model.

We have seen in Chapter 2 that when the nonlinearity of the fiber is not very
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Figure 3.9. An illustration of validity regions for different models to
describe CW light propagation through a FOPA with respect to the
nonlinearity parameter γPL and pump-pump wavelength separation
∆λPP, considering a dual pump configuration. 3wm-a : analytical 3-
wave model; 7wm-a : analytical 7-wave model; 7wm-n : numerical

7-wave model; NLSE : numerical NLSE model. (not to scale)

strong (or γPL < 0.2), and the pump-pump wavelength separation is large, the ana-
lytical 3-wave model can effectively describe the propagation of signal and/or idler
through the FOPA. When the pump-pump wavelength separation is small (< 10
nm) however, still with a weakly nonlinear condition, the analytical 7-wave model
remains valid whereas the analytical 3-wave model becomes invalid. This is be-
cause, for small pump-pump wavelength separation, some FWM processes become
efficient that are not accounted for in the 3-wave model.

The analytical 7-wave model breaks down when the non-pump depletion ap-
proximation cannot be applied which corresponds to the fiber nonlinearity being
large (or γPL > 0.5). The analytical 7-wave model also becomes inapplicable for
pump-pump wavelength separations typically between 10 nm and 40 nm, as in such
cases different FWM processes involving higher order waves needs to be considered
and are not addressed in the 7-wave analytical model. In such cases, the numerical
7-wave model describes the dynamics of a FOPA accurately as it considers all the
involved FWM processes.

Apart from these, there can be scenarios where due to cascaded FWM processes,
a large number of waves are generated in the FOPA and hence influence the signal
gain. This is typically observed in a strongly nonlinear regime (γPL > 1). In such
cases, the implementation of the n-wave model becomes complicated due to the
large number of FWM terms involved. Hence in such cases the numerical NLSE
model needs to be invoked. The validity of these different models is summarized in
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Fig. 3.9.
The above discussion provides us an overview of the different validity regimes of

the models described. The numerical NLSE model is the most robust one spanning
all the situations and therefore will become our model of choice in the later parts of
this thesis.

3.4.2 Conclusion

In this chapter we described a NLSE based model for the propagation of multiple
CW waves through a nonlinear fiber. In particular, we discussed about the sym-
metrized SSFM algorithm to solve the NLSE numerically. The key advantage of the
SSFM algorithm is that it treats the dispersive and nonlinear effects of the fiber sep-
arately in a small fiber segment. This leads to a decoupled set of equations that can
be easily solved for that segment (see Equations (3.34) and (3.37)). Thus solving the
evolution of the fields for each segment iteratively, we can find the field at the output
of the fiber.

Consequently we applied this numerical technique to simulate simple cases of
wave propagation through a nonlinear fiber. We considered a FOPA in a PIA config-
uration and obtained agreement of the simulation results with the analytical 3-wave
model and experimental data. We also validated the simulation results for a PSA
configuration which agreed with the analytical 3-wave model and with the experi-
mental data used in Ref. [155].

Chapter Highlights

• Nonlinear Schrödinger Equation (NLSE) : We introduced the nonlinear
Schrödinger equation to describe propagation of a continuous distribution
of frequencies through a nonlinear fiber. In particular, we considered the
case of an arbitrary number of CW waves.

• Numerical Model to Solve NLSE : We described an efficient algorithm
known as the split step Fourier method (SSFM) to solve the NLSE for an
arbitrary number of CW waves. We verified the numerical model with
available experimental data.

• Qualitative Comparison of Models : We compared qualitatively the
numerical NLSE approach with analytical n-wave model approaches devel-
oped in the previous chapter to describe CW wave propagation though a
nonlinear fiber. While the numerical NLSE approach is the most accurate
one, the analytical n-wave models suffice when the number of waves is
small and the pump-signal wavelength separation is not too large (<10nm).
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Microwave photonics plays a crucial role in the development of modern-day ana-
log RF systems. Its applications range from antenna remoting [225], radio-over-fiber
systems [226], phased array antennas [227], etc to name a few. The inclusion of pho-
tonic links for the transfer of analog RF signals can be advantageous in several ways
compared to traditional electrical distribution lines such as coaxial cables or waveg-
uides. For example, a photonic link for RF signal distribution leads to an increase in
processing bandwidth, decrease in signal loss, enhancement of immunity to electro-
magnetic interference, etc. [98, 102, 228, 229].

In order to further improve the performance of such links, research efforts in this
field have focused on reducing link loss, noise figure and distortion and thereby in-
creasing the available dynamic range of the link [99, 230, 231]. However, for achiev-
ing links with a longer range, optical amplifiers are necessary to boost the signal
periodically. The gain of traditional optical amplifiers, such as Erbium Doped Fiber
Amplifiers (EDFA) is independent of the phase of the signal. The noise figure of such
phase insensitive amplifiers (PIA) cannot be smaller than 3 dB [47, 232]. On the other
hand, in some fiber optic parametric amplifiers (FOPA), the signal gain depends on
the relative phase between the different waves injected in the amplifier. Such phase
sensitive amplifiers (PSA) can have a noise figure as low as 0 dB [47, 87, 155].

In the context of microwave photonic links, utilization of a PSA can offer the
possibility of realizing other functionalities such as optical filtering through phase
sensitive amplification and de-amplification [233], wideband photonic assisted ra-
dio over fiber systems [119] and microwave photonic frequency measurement [120].
Such a possibility of noiseless amplification in PSAs has been extensively studied in
the context of digital optical communication links [54, 55, 57, 62, 121, 234]. Nowa-
days digital links are widely used across communication platforms, but such links
are limited by the bandwidth of analog-to-digital converters (ADC). Although ef-
forts to overcome such limitations were made using photonics based ADCs [235],
fully analog microwave photonic links are still promising. Preliminary studies on
performance of analog links with respect to modulation formats [122], signal multi-
casting [123] and PSA inclusion in a link [118, 124–126] were performed. However,
the possibility of incorporating a PSA within an analog microwave photonic link
needs further exploration with respect to its distortion characteristics and its depen-
dence on various parameters of modulation and PSA processes.

An important factor for the performance of a microwave photonic link is the sig-
nal fidelity across the link. In a traditional microwave photonic link without PSA, the
E/O (Electric to Optic) conversion process is achieved with a Mach-Zehnder modu-
lator (MZM). This MZM, due to its nonlinear transfer function, is a source of distor-
tion in the link. Moreover, when a PSA is added in such a link, further distortions
might be generated due to nonlinear processes in the optical amplification. Genera-
tion and mitigation of nonlinearities by a PSA has been comprehensively studied for
digital links [84, 128–133]. But, in the case of analog links, it is still a topic of ongoing
research [134].
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An important question in this context is to investigate the nonlinearities coming
from the PSA process only. While it is well known that such distortions are negli-
gible in the case of an EDFA [41], the question still deserves to be investigated in
the case of a PSA. In this chapter, we use numerical modelling to find nonlinearities
that are generated solely due to the addition of a PSA and not from the nonlinear
MZM of the link. Since PSAs based on two pumps and degenerate signal and idler
exhibit cascaded four-wave mixing phenomena that make them difficult to model
[90, 91], we focus here on a PSA scheme with degenerate pumps and nondegenerate
signal and idler. The strength of the distortions induced on the signal is charac-
terized using the so-called two-tone test in which the carrier is modulated by two
nearby frequencies from which the system nonlinearities generate third order inter-
modulation products (IMD3). The amplitudes of these IMD3’s are used as a measure
of the nonlinearity of the PSA. Moreover, under certain circumstances, like high op-
tical power of the signal or larger nonlinear coefficient of the fiber or longer length
of the fiber optic amplifier1, the PSA gain can attain saturation and hence can change
several properties of the link [236–238]. We thus also investigate the distortion per-
formance of the link when the PSA gain reaches saturation.

This chapter is organized as follows. In Section 4.1 we introduce the scheme of
a microwave photonic link with a PSA and describe its different components. In
Section 4.2 we discuss about the concepts of the two-tone test and the spurious free
dynamic range (SFDR) which will be later used to evaluate the distortion perfor-
mance of our system. Then in Section 4.3 we introduce the numerical model that
we use to simulate our system i.e. a microwave photonic link with a PSA. We also
describe the experimental setup corresponding to our model and validate our nu-
merical approach with corresponding experimental data. Thereafter in Section 4.4
we compare the performance of two modulation formats : 1. Amplitude modulation
(AM) and 2. Phase modulation (PM) with respect to the PSA-based microwave pho-
tonic link. Then in Section 4.5 we consider a standard intensity modulator and study
the dependence of the system nonlinearities on several parameters like the input RF
power, input signal power and input pump power. In this section we also explore
situations when the PSA attains gain saturation. Next in Section 4.6 we show a simi-
lar analysis as in Section 4.5 but for a linearized intensity modulator. Then in Section
4.7 we propose a physical interpretation of the optical amplification of the different
waves in the PSA. Finally in Section 4.8 we discuss the conclusions and project some
perspectives of this investigation.

1This is equivalent to using a nonlinear fiber with a higher value of γPL.
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4.1 Scheme

As we have seen in Chapter 1, a microwave photonics link consists of three main
components : 1. Electro-optic converter, 2. Photonic link and 3. Opto-electric con-
verter. As the name suggests, the electro-optic converter converts an analog RF sig-
nal into an optical signal. Then this optical signal is transmitted to a different lo-
cation through the photonic link. Finally, at the receiver end, the optical signal is
converted back to the RF electrical signal. However, when the distance between the
remote antenna (where the RF signal is produced) and the receiver station is large,
the requirement of an optical amplifier becomes unavoidable. An example of such
a situation can be a radar antenna located on a mountain top with a receiver base
station at the foot of the mountain (see Fig. 4.1). As we have discussed before, in
such a scenario a FOPA with a low-noise (PSA configuration) and high-gain profile
can be installed in the photonic link connecting the remote antenna and the receiver
station. The different parts of such a microwave photonic link are explained in the
following.

Figure 4.1. An illustration of a microwave photonic link with a remote
antenna connected to a base station via a photonic link with an optical

amplifier.
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4.1.1 Electro-Optic Conversion : Phase Modulator

In a microwave photonic link, the input signal carrying information is a microwave
or RF signal2. Before it can be transmitted via optical fibers, it needs to be converted
into an optical signal. This conversion of the signal from the eletric to the optical
domain is mostly done using electro-optic modulation techniques [99].

4.1.1.1 Pockels Effect

Most electro-optic converters are based on the principle of Pockel’s effect. It is a
linear electro-optic effect which states that the refractive index of a medium under-
goes a change on application of an external electric field. This change is propor-
tional to the strength of the applied electric field [239]. Non-centrosymmetric crystal
materials such as lithium niobate (LiNbO3), lithium tantalate (LiTaO3), potassium
di-deuterium phosphate (KD*P), β-barium borate (BBO), potassium titanium oxide
phosphate (KTP), and compound semiconductors such as gallium arsenide (GaAs)
and indium phosphide (InP) are known to show this effect [240].

4.1.1.2 Phase Modulator

An optical phase modulator is fabricated by embedding an optical waveguide in an
electro-optic substrate. By utilizing the Pockel’s effect, one can change the effective
refractive index ne f f of the waveguide, by applying an external voltage via a coated
electrode, and thus the electrical field of the incoming optical carrier can be modu-
lated in phase (see Fig 4.2). Thus if we apply an external voltage of Vm(t) across an
waveguide carrying a wave at wavelength λ, with electrodes of length l, then the
modulation of the phase φ(t) of the wave and the change in the effective refractive
index ∆ne f f (t) follows [241] :

φ(t) =
2π∆ne f f (t)l

λ
∝ Vm(t). (4.1)

4.1.1.3 Input Field

The electric field of the optical carrier signal Ein(t) going inside the modulator can
be written as :

Ein = E e−iωt + c.c. , (4.2)

where E is the complex amplitude of the optical field and ω is the angular frequency.

2RF waves have frequencies roughly between 30 KHz and 300 GHz, whereas microwaves have
frequencies roughly between 300 MHz and 300 GHz. Thus we can say microwaves form a subset of
RF waves.
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Figure 4.2. Scheme of a phase modulator. (courtesy : Ref. [241])

4.1.1.4 Modulator Voltage

The time varying driving voltage Vm(t) across the waveguide is of the form :

Vm(t) = VDC + VRF(t), (4.3)

where VDC is the constant DC part of the signal, VRF(t) is the time varying voltage
determined by the RF frequencies. When the number of modulation frequencies is
one and two, the modulating voltages VRF(t) are given by :

VRF(t) =

VAC

(
cos(Ωt)

)
for one modulation frequency Ω,

VAC

(
cos(Ω1t) + cos(Ω2t)

)
for two modulation frequencies Ω1 and Ω2.

(4.4)
where VAC is the amplitude of the sinusoids. The requirement of two modulation
frequencies will be clear when we discuss the two-tone test in Section 4.2.

4.1.1.5 Input RF Power

In the case of a single frequency modulation, the average input RF power 〈PRF,in〉
can be written as :

〈PRF,in〉 =
〈VRF(t)

2〉
Rm

=

〈
VAC

2( cos2(Ωt)
)〉

Rm
=

VAC
2

2Rm
,

(4.5)

where Rm is the load of the modulator and we have considered that the average
value of cos2(Ωt) is 1

2 over large number of cycles. Similarly, when we have two
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modulating frequencies Ω1 and Ω2, 〈PRF,in〉 can be written as :

〈PRF,in〉 =
〈VRF(t)

2〉
Rm

=

〈
VAC

2( cos2(Ω1t) + cos2(Ω2t) + 2 cos(Ω1t) cos(Ω2t)
)〉

Rm

=
VAC

2( 1
2 +

1
2 + 0)

Rm
=

VAC
2

Rm
,

(4.6)

where we have considered that the beat-note frequency (Ω1 − Ω2) is much larger
than the detection bandwidth.

4.1.1.6 Half Wave Voltage Vπ

The voltage across the waveguide that leads to a π rad phase shift for the light is
known as the half wave voltage or Vπ for the phase modulator. This parameter is
generally provided by the manufacturer.

4.1.1.7 Output Field

Following the definitions of the input field and the half wave voltage, the output
field Eout(t) can be written as [241] :

Eout(t) = E e−iωteiφ(t) + c.c. = E e−iωtei Vm(t)π
Vπ + c.c. = E e−iωtei (VDC+VRF(t))π

Vπ + c.c.

= E e−iωtei(φDC+φAC(t)) + c.c. ,
(4.7)

where φDC = VDCπ
Vπ

and φAC(t) =
VRF(t)π

Vπ
. Here we can see from Equation (4.7) that

the output field acquires a constant phase φDC and a time varying phase φAC(t) that
depends on the time dependent part of the modulator voltage VRF(t).

4.1.2 Electro-Optic Conversion : Mach-Zehnder Modulator

A Mach-Zehnder modulator (MZM) is a device often used in RF-optical communi-
cation systems for the electro-optic conversion. At the input of the MZM, an optical
signal is provided and then divided into two arms. Both the arms are provided with
a phase modulator that modulates the phases of the respective arms by an amount
φ1(t) and φ2(t). At the end, the two arms are united leading to an interference be-
tween the two waves. This is depicted in Fig. 4.3. Depending on the relative phase
shifts between the two arms, the interference can vary from constructive to destruc-
tive leading to an amplitude modulated output.
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(a)

(b)

Figure 4.3. (a)Illustration of Mach-Zehnder modulator on an electro-
optic (LiNBO3) substrate. (courtesy : iXblue Photonics Inc.) (b)
Scheme of a Mach-Zehnder modulator operating in a push-pull con-

figuration. (courtesy : Ref. [241])

4.1.2.1 Output Field

For a standard MZM, with an input field as in Equation (4.2) and a phase modulation
of φ1(t) and φ2(t) in the respective arms, the output field Eout is given by [241] :

Eout = E e−iωt

(
eiφ1(t) + eiφ2(t)

2

)
+ c.c. , (4.8)

where φ1(t) and φ2(t) are given by :

φ1(t) =
Vm1(t)π

Vπ1
, (4.9)

https://photonics.ixblue.com/sites/default/files/2019-01/Introduction%20To%20iXblue%20MBC%202019.pdf 
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φ2(t) =
Vm2(t)π

Vπ2
, (4.10)

where Vm1(t) and Vm2(t) are the voltages applied across the respective arms and
Vπ1 and Vπ2 are their half wave voltages. We can see from Equation (4.8) that when
φ1(t) = φ2(t) = φ(t), we have a phase modulated output signal as given by Equa-
tion (4.7). In such a case, the MZM is said to operate in a push-push configuration.

4.1.2.2 Amplitude Modulation

In the special case when we have φ1(t) = φ(t) = −φ2(t), the output field is given
by :

Eout = cos(φ(t))Ein. (4.11)

Considering Vπ1 = Vπ2, we have Vm1(t) = Vm(t) = −Vm2(t) and in such a case the
MZM is said to operate in a push-pull configuration. We can see from the above
equation that the amplitude of Ein is modulated by the function φ(t). Hence we can
write :

Eout = cos
(

πVm(t)
2Vπ

)
E e−iωt + c.c.

= cos
(

πVDC

2Vπ
+

πVRF(t)
2Vπ

)
E e−iωt + c.c.

(4.12)

Thus the power transfer function Pout
Pin

is given as :

Pout

Pin
=

1
2

(
1 + cos

(
Vm(t)π

Vπ

))
. (4.13)

Also we note here that in this case we define Vm(t) such that Vm(t) = Vπ induces a
phase shift of π in the power transfer function of the MZM. A MZM is often operated
with a DC bias of Vπ/2 and a peak-to-peak modulation voltage of Vπ as shown in
Fig. 4.4. This type of operation is also known as quadrature point operation.

4.1.3 Opto-RF Conversion

The conversion of an optical signal into an electrical one is often done using a (some)
photodetector(s) (PD). Depending on the nature of the modulation, different schemes
of detection can be employed. For example, an amplitude modulated signal can
be detected with a direct detection scheme, whereas for phase modulated signals a
more complex coherent detection scheme is required [99]. In this chapter, we will
only focus on the simpler direct detection scheme for the down-conversion of an
amplitude modulated optical signal.

In the direct detection scheme, only a single PD is used to down-convert the
modulated signal coming from the MZM to an electrical signal. If the part of the total
optical power incident on the PD corresponding that is oscillating at a RF frequency
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Figure 4.4. Plot of field (red) and power (blue) transfer functions of a
Mach-Zehnder modulator working in push-pull configuration. OP :

operation point for quadrature point operation.

Ω is PΩ, then the current generated Idet,Ω by the PD is given by :

Idet,Ω = sPΩ. (4.14)

where s is the sensitivity of the detector. s depends on the kind of PD used and the
wavelength of the incident light. Typically at telecom wavelengths (∼ 1.5 µm), s has
a value around 0.9 A/W. s can be expressed in terms of quantum efficiency η i.e. the
ratio between the number of incident photons and the number of electron-hole pairs
generated in the PD. Thus s can be written as :

s =
ηe
hν

, (4.15)

where e is the electronic charge constant, h is the Planck’s constant and ν is the fre-
quency of the incident light. For an ideal photodetection (η = 1), at a wavelength of
1550 nm, s is found to be 1.25 A/W.

The total output RF power Pdet,Ω generated in the detector circuit corresponding
to frequency Ω is then given by :

Pdet,Ω = I2
det,ΩRdet = s2P2

ΩRdet. (4.16)

where Rdet is the load resistance of the detector.
We should note here that, a PD cannot detect optical frequencies (which oscil-

late typically at few hundreds of THz frequency) due to its limited response time
[242]. However it can detect the beating between several optical frequencies which
are often of the order of a few GHz. Thus when we have multiple optical frequencies
that beat at the same RF frequency (say Ω), the situation becomes quite complicated
to analyze, as the optical power corresponding to RF frequency Ω incident on the
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detector can have multiple beating sources with their individual phases. An exam-
ple of such a case is shown in Appendix F, where three input optical frequencies ω1

(sideband 1), ω2 (signal) and ω3 (sideband 2) with optical powers Pω1 , Pω2 and Pω3

respectively are incident on a PD. We also have |ω1 − ω2| = |ω3 − ω2| = Ω (see
Fig. 4.5). In such a case, the optical power at a frequency Ω detected by PD i.e. PΩ is

ω
ω1 ω2 ω3

sideband 1

signal

sideband 2

Ω Ω

Figure 4.5. The three optical frequencies incident on the photodetec-
tor (PD) are denoted by ω1, ω2 and ω3 which correspond to the signal
and two sidebands. The difference between the consecutive frequen-

cies are Ω. (not to scale)

given by (see Appendix F) :

PΩ = 2
√

Pω1 Pω2 cos(Ωt + Φ12) + 2
√

Pω2 Pω3 cos(Ωt + Φ23) , (4.17)

where Φij represent the relative phase difference between the waves at frequencies
ωi and ωj.

4.2 Two-Tone Test

To understand the two-tone test, first let us look at an example. Let us consider a mi-
crowave photonic link in a radar system. The microwave photonic link connects the
remotely located radar antenna to a base station. Let us suppose that the radar oper-
ates at a RF frequency Ω1. Now we consider an enemy aircraft entering into the air-
space monitored by this radar. Suppose the enemy aircraft tries jamming the radar
with an emission of a wave at a RF frequency Ω2 (which is close to Ω1). So now, the
radar will start picking up both the frequencies Ω1 (reflected from the aircraft) and
Ω2 (emitted by the aircraft for jamming). When these two signals will be fed to an
E/O converter (like a MZM), due to the nonlinearity of the E/O conversion process,
higher order inter-modulation products will be created in the optical domain. For
example optical third order inter-modulation frequencies (optical IMD3’s) will be
generated at frequencies like ωs ± (2Ω1 −Ω2) and ωs ± (2Ω2 −Ω1) where ωs is the
optical carrier frequency. Then after transmission through an optical link, at the end
an O/E conversion will down-convert these optical frequencies and will produce RF
waves at frequencies 2Ω1 −Ω2 and 2Ω2 −Ω1 (apart from the waves at other linear
combinations of Ω1 and Ω2). Note, that when Ω1 is close to Ω2, (2Ω1 − Ω2) and
(2Ω2 −Ω1) will also be close to Ω1 and Ω2. This means that it will be quite difficult
to filter out the RF IMD3 waves from the operating frequency Ω1. Thus when the
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powers of the RF IMD3 waves are high, it will cause severe distortions in the radar
system rendering the link highly ineffective.

  2Ω1-Ω2

MZM

Optical Link PD

 ωs

  Ω1
  Ω2

Frequency

Frequency

  Ω1  Ω2

  Ω1  Ω2

  2Ω2-Ω1
  Ω2+Ω1

  2Ω2  2Ω1

Figure 4.6. Illustration of a nonlinear microwave photonic link. The
different RF frequencies (fundamentals : blue, IMD3’s : red, others
: magenta) at the input and the output are shown with arrows in
boxes. MZM : Mach-Zehnder modulator, PD : photodetector, Ω1, Ω2
: fundamental RF frequencies, ωs : optical carrier frequency. (not to

scale)

From the above discussed example, we can develop a scheme to characterize the
strength of distortions in a microwave photonic link, which is also known as the two-
tone test [99, 243]. In the two-tone test, first we need to launch two closely spaced
RF modulation frequencies Ω1 and Ω2 (known as fundamental RF frequencies) with
equal amplitudes via a MZM3 (often used for E/O conversion for an amplitude
modulation format) for modulating an optical carrier signal at a frequency ωs. The
nonlinearity of the MZM will lead to production of third-order inter-modulation
products (optical IMD3’s) at optical frequencies ωs ± (2Ω1 −Ω2) and ωs ± (2Ω2 −
Ω1). Then after propagation through the optical link4, all the optical frequencies are
down-converted into RF frequencies by a PD (see Fig. 4.6). The output RF powers of
the fundamental and the IMD3’s are monitored as a function of the input RF power
of the fundamental RF frequencies. The RF powers of the output IMD3 waves can
be treated as a quantifier of the distortion of the link. This means a link with high
fidelity will have a lower output IMD3 RF power and vice versa.

4.2.1 MZM Output Power

When we use a MZM for amplitude modulation of an optical signal at frequency
ωs with RF frequencies Ω1 and Ω2, ideally we expect to see waves generated at
frequencies ωs ± Ω1 and ωs ± Ω2. However in reality, the modulation process is
nonlinear and leads to generation of more sidebands. To understand this process in

3For a phase modulation format just a phase modulator can be used.
4In this subsection we consider an optical link that does not add extra nonlinearities apart from that

produced by the MZM. Later in this chapter however, we will look at optical links that add nonlinear-
ities of their own. Introducing a FOPA in the optical link leads to such a scenario.
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more detail, let us write down the x-polarized output field ~Eout of a MZM with a
carrier frequency ωs and modulation frequencies Ω1 and Ω2 :

~Eout =
E
2

e−iωst

(
eiφeiA cos(Ω1t)eiA cos(Ω2t) + e−iφe−iA cos(Ω1t)e−iA cos(Ω2t)

)
~ex + c.c.

=
E
2

e−iωst

(
eiφ
( ∞

∑
m=−∞

im Jm(A)eimΩ1t
)( ∞

∑
n=−∞

in Jn(A)einΩ2t
)

+ e−iφ
( ∞

∑
p=−∞

ip Jp(−A)eipΩ1t
)( ∞

∑
q=−∞

iq Jq(−A)eiqΩ2t
))

~ex + c.c. ,

(4.18)

where ~ex represent the unit vector in the x-direction. The input field of the MZM is
of the form of Equation (4.2) with ω = ωs, the modulation voltage is of the form of
Equations (4.3) and (4.4). Thus φ = VDCπ

Vπ
and A = VACπ

Vπ
. For a better understanding,

we have shown the terms at the optical frequencies in red and those at RF frequen-
cies in blue. Jn represents the Bessel function of the first kind of order n. To arrive
here we have used the Jacobi-Anger expansion which is given as :

eiA cos(Ωt) =
∞

∑
n=−∞

in Jn(A)einΩt. (4.19)

Thus the amplitude of the component of the output electric field oscillating at a
frequency ωs −mΩ1 − nΩ2 is given by :

Emn =
E
2

Jm(A)Jn(A)ei π
2 (m+n)

(
eiφ + (−1)(m+n)e−iφ

)
=
E
2

Jm(A)Jn(A)i(m+n)Pm,n,
(4.20)

where Pm,n is given by :

Pm,n =

2 cos(φ) for m + n even,

2i sin(φ) for m + n odd.
(4.21)

To arrive here we have used a property of the Bessel function of the first kind, given
as (see Appendix G) :

Jn(−A) = (−1)n Jn(A). (4.22)

Thus the total output electric field ~Eout can be rewritten as :

~Eout =
∞

∑
m=−∞

∞

∑
n=−∞

Emne−i(ωs−mΩ1−nΩ2)t ~ex + c.c. . (4.23)
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Similarly the total output magnetic field ~Hout polarized in the y-direction is given
by :

~Hout =
∞

∑
m=−∞

∞

∑
n=−∞

Hmne−i(ωs−mΩ1−nΩ2)t ~ey + c.c.

=
∞

∑
m=−∞

∞

∑
n=−∞

cε0Emne−i(ωs−mΩ1−nΩ2)t ~ey + c.c. ,
(4.24)

where ~ey is the unit vector in the y-direction. Thus the output Poynting vector ~Sout is
given by :

~Sout = ~Eout × ~Hout

= cε0

(
∞

∑
m=−∞

∞

∑
n=−∞

Emne−i(ωs−mΩ1−nΩ2)t ~ex + c.c.

)

×
(

∞

∑
p=−∞

∞

∑
q=−∞

Epqe−i(ωs−pΩ1−qΩ2)t ~ey + c.c.

)
.

(4.25)

Rearranging the terms, we get :

~Sout = cε0

(
∞

∑
m,n,p,q=−∞

EmnEpqe−i(2ωs−(m+p)Ω1−(n+q)Ω2)t ~ez + c.c.

)

+ cε0

(
∞

∑
m,n,p,q=−∞

EmnE∗pqei((m−p)Ω1+(n−q)Ω2)t k̂ + c.c.

)
,

(4.26)

where ~ez is the unit vector in the z-direction. Since the first group of terms oscillate
at the order of the optical frequency ωs, the detector cannot detect its variation. Thus
on time averaging, all the high frequency terms are neglected (see Appendix F), and
we get the time-averaged Poynting vector 〈~Sout〉 as :

〈~Sout〉 = cε0

(
∞

∑
m,n,p,q=−∞

EmnE∗pqei((m−p)Ω1+(n−q)Ω2)t ~ez + c.c.

)
. (4.27)

Thus the total detected optical power, i.e. Popt,tot = a||〈~Sout〉|| (where a is the area of
the beam cross section) (see Appendix F) can be written using Equation (4.20) as :

Popt,tot = a||〈~Sout〉|| =
2aε0E2

8

∣∣∣∣∣ ∞

∑
m,n,p,q=−∞

Jm(A)Jn(A)Jp(A)Jq(A)

ei π
2 (m+n−p−q)

(
eiφ + (−1)(m+n)e−iφ

)(
e−iφ + (−1)(p+q)eiφ

)
ei((m−p)Ω1+(n−q)Ω2)t + c.c.

∣∣∣∣∣
=

Ps

8

∣∣∣∣∣ ∞

∑
m,n,p,q=−∞

Jm(A)Jn(A)Jp(A)Jq(A)ei π
2 (m+n−p−q)Pmnpqei((m−p)Ω1+(n−q)Ω2)t + c.c.

∣∣∣∣∣ .

(4.28)
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where Ps is the input carrier signal power (before the MZM). We have defined the
quantity Pmnpq as :

Pmnpq = 1 + (−1)(p+q)ei2φ + (−1)(m+n)e−i2φ + (−1)(m+n+p+q) . (4.29)

We note here that Pmnpq can be evaluated depending on whether m + n and p + q are
even or odd. Thus it can be rewritten as follows :

Pmnpq =



4 cos2(φ) for m + n even, p + q even,

−2i sin(2φ) for m + n even, p + q odd,

2i sin(2φ) for m + n odd, p + q even,

4 sin2(φ) for m + n odd, p + q odd.

(4.30)
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Figure 4.7. An illustration of some of the different frequencies gener-
ated when a signal with optical frequency ωs = ω0,0 is modulated in
a MZM with two RF frequencies Ω1 and Ω2 in a push-pull configura-
tion. 2Ω1 −Ω2 is the RF frequency corresponding to the third order
inter-modulation product. In the figure each wave is labelled with
its frequency ωi,j where ωi,j = ωs + iΩ1 + jΩ2. 0 ≤ i, j ≤ 2 for this

figure. (not to scale)

Form Equation (4.28) we can see that due to the modulation with two RF frequen-
cies Ω1 and Ω2, in the optical domain, a large number of different frequencies of the
form ωs + mΩ1 + nΩ2 are produced, where m and n are arbitrary integers. Some of
these different frequencies are shown in Fig. 4.7. Although we have not shown both
sides of the spectrum, we should note that this spectrum is symmetric with respect
to the signal frequency ωs.
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4.2.2 Part of Total Optical Power at Fundamental Frequency

As defined before, Ω1 and Ω2 are the fundamental RF frequencies. When these RF
frequencies are used to modulate an optical signal at ωs, sidebands are produced at
ω±Ω1 and ω±Ω2 frequencies. We refer to these frequencies as optical fundamental
frequencies. So if we want to find the part of the total optical power that oscillates at
a frequency Ω1

5 i.e. Popt,Ω1 , at the end of the link, we have to pick only those terms in
Equation (4.28) where the oscillating part gives eiΩ1t. This can be achieved by setting
m, n, p and q as : (a) m, n, (m− 1) and n and (b) (m− 1), n, m and n in Equation (4.28)
respectively. Both the cases will lead to the same set of terms and combining them
we get :

Popt,Ω1 =
Ps

8

∣∣∣∣∣2 ∞

∑
m,n=−∞

Jm Jn J(m−1) JniPmn(m−1)neiΩ1t + c.c.

∣∣∣∣∣ . (4.31)

Here we have changed the notation Jn(A) to Jn for brevity. We note, that when m+ n
is even, (m− 1) + n is odd and vice versa. Thus using Equation (4.30), Pmn(m−1)n can
be expressed as :

Pmn(m−1)n = (−1)(m+n+1)2i sin(2φ). (4.32)

Thus when m+ n is even, (−1)(m+n+1) = −1 and when m+ n is odd, (−1)(m+n+1) =

1. We can regroup the terms and write Popt,Ω1 as :

Popt,Ω1 =
Ps

2

∣∣∣∣∣ sin(2φ)eiΩ1t
∞

∑
m,n=−∞

Jm J(m−1) Jn
2(−1)(m+n) + c.c.

∣∣∣∣∣
=

Ps

2

∣∣∣∣∣ sin(2φ)eiΩ1t

(
0

∑
m=−∞

∞

∑
n=−∞

Jm Jm−1 Jn
2(−1)(m+n)

+
∞

∑
m=1

∞

∑
n=−∞

Jm Jm−1 Jn
2(−1)(m+n)

)
+ c.c.

∣∣∣∣∣ .

(4.33)

We know that for the Bessel functions of the first kind, the negative orders satisfy
(see Appendix G) :

J−n(A) = (−1)n Jn(A), (4.34)

where n is non negative. Using this relation we can write :

Popt,Ω1 =
Ps

2

∣∣∣∣∣ sin(2φ)eiΩ1t

(
∞

∑
m=1

∞

∑
n=−∞

(−1)2m−1 Jm Jm−1 Jn
2(−1)(−m+1+n)

+
∞

∑
m=1

∞

∑
n=−∞

Jm Jm−1 Jn
2(−1)(m+n)

)
+ c.c.

∣∣∣∣∣
= Ps

∣∣∣∣∣ sin(2φ)eiΩ1t

(
∞

∑
m=1

∞

∑
n=−∞

Jm Jm−1 Jn
2(−1)(m+n)

)
+ c.c.

∣∣∣∣∣ .

(4.35)

5Note that here we refer to the optical power that is incident on the PD and not the electrical power
generated in the detection circuit.
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Although the right hand side of the above equation is an infinite series, we can
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Figure 4.8. Comparison of individual Bessel function terms ((J0
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((−J0
3 J1 + 2J0 J1
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2 + J0

2 J1 J2− 2J1
3 J2 + 2J1 J2

3)2 : red dashed)
in the expression of power of part of the total optical power oscillating
at the fundamental frequency (see Equation (4.36)). Arbitrary units

are considered in the y-axis. Vπ = 5 V and VDC = 2.5 V.

approximate it to a few leading terms. Thus restricting the infinite series to m = 2
and |n| = 26, we get :

Popt,Ω1 = 2Ps

∣∣∣∣∣ sin(2φ) cos(Ω1t)

(
∑

m=1,2
Jm Jm−1

2

∑
n=−2

(−1)m+n Jn
2

)∣∣∣∣∣
= 2Ps

∣∣∣∣∣ sin(2φ) cos(Ω1t)

(
J1 J0

2

∑
n=−2

(−1)1+n Jn
2 + J2 J1

2

∑
n=−2

(−1)2+n Jn
2

)∣∣∣∣∣
= 2Ps

∣∣∣∣∣ sin(2φ) cos(Ω1t)

(
− J0

3 J1 + 2J0 J1
3 − 2J0 J1 J2

2 + J0
2 J1 J2 − 2J1

3 J2 + 2J1 J2
3

)∣∣∣∣∣.
(4.36)

In the above equation, the dominant term is J0
3 J1 (leaving the pre-factor). This can

also be seen from Fig. 4.8 (see cyan solid curve) where we plot the square of all the
terms in Equation (4.36) (leaving the pre-factors) in the logarithmic scale, as a func-
tion of the input RF power. In Fig. 4.8 we also plot the square of the sum of all the
terms (dashed red curve) : (−J0

3 J1 + 2J0 J1
3 − 2J0 J1 J2

2 + J0
2 J1 J2 − 2J1

3 J2 + 2J1 J2
3)2.

The parameters of the MZM used for the plot are : Vπ = 5 V and VDC = 2.5 V. From
Fig. 4.8, we see that when the input RF power is more than about 22 dBm, the higher

6This choice of indices ensures that we generate terms that only contain J0, J1 and J2 and not higher
order terms like J3.
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order terms in Equation (4.36) become important as the MZM starts showing more
and more nonlinearity. For lower input RF powers, J0

3 J1 is the most significant term.

4.2.3 Part of Total Optical Power at IMD3 Frequency

As calculated for the fundamental frequency Ω1, now we will look at the part of
the total optical power generated at the output of the MZM, oscillating at a fre-
quency 2Ω1−Ω2. To achieve this we use Equation (4.28) and set m, n, p and q as : (a)
m, n, m− 2 and n + 1 and (b) m− 2, n + 1, m and n. Thus we can write the power of
the part of the total optical power oscillating at IMD3 frequency, i.e. Popt,2Ω1−Ω2 as :

Popt,2Ω1−Ω2 =
Ps

8

∣∣∣∣∣2 ∞

∑
m,n=−∞

Jm Jn Jm−2 Jn+1iPmn(m−2)(n+1)e
i(2Ω1−Ω2)t + c.c.

∣∣∣∣∣ . (4.37)

We note here that when m + n is even, (m − 2) + (n + 1) = m + n − 1 is odd and
vice versa. Thus we can evaluate Pmn(m−2)(n+1) and write :

Popt,2Ω1−Ω2 =
Ps

2

∣∣∣∣∣ sin(2φ)ei(2Ω1−Ω2)t
∞

∑
m,n=−∞

Jm Jn Jm−2 Jn+1(−1)m+n + c.c.

∣∣∣∣∣
=

Ps

2

∣∣∣∣∣ sin(2φ)ei(2Ω1−Ω2)t

(
0

∑
m=−∞

Jm Jm−2

∞

∑
n=−∞

Jn Jn+1(−1)m+n

+ J1 J−1

∞

∑
n=−∞

Jn Jn+1(−1)1+n +
∞

∑
m=2

Jm Jm−2

∞

∑
n=−∞

Jn Jn+1(−1)m+n

)
+ c.c.

∣∣∣∣∣
= Ps

∣∣∣∣∣ sin(2φ) cos((2Ω1 −Ω2)t)

(
2

∞

∑
m=2

Jm Jm−2

∞

∑
n=−∞

Jn Jn+1(−1)m+n

− J1
2

∞

∑
n=−∞

Jn Jn+1(−1)1+n

)∣∣∣∣∣ .

(4.38)

When we truncate the series at m = 2 and n = −2 to n = 17, we have :

Popt,2Ω1−Ω2 = Ps

∣∣∣∣∣ sin(2φ) cos((2Ω1 −Ω2)t)

(
2J2 J0

(
J−2 J−1 − J−1 J0 + J0 J1 − J1 J2

)
− J1

2
(
− J−2 J−1 + J−1 J0 − J0 J1 + J1 J2

))∣∣∣∣∣.
(4.39)

7This choice of indices are to ensure that we generate terms that only contain J0, J1 and J2 and not
higher order terms like J3.
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Figure 4.9. Comparison of individual Bessel function terms
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2
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3 J1 + 2J0 J1
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2 J1 J2 − 2J1

3 J2 + 2J1 J2
3)2 : red dashed) in the expres-

sion of part of total power oscillating at IMD3 frequency (see Equa-
tion (4.40)). Arbitrary units are considered in the y-axis. Vπ = 5 V

and VDC = 2.5 V.

Using the second property of Bessel functions of the first kind (see Appendix G) we
get :

Popt,2Ω1−Ω2 = Ps

∣∣∣∣∣ sin(2φ) cos((2Ω1 −Ω2)t)

(
2J2 J0

(
− J2 J1 + J1 J0 + J0 J1 − J1 J2

)
− J1

2
(

J2 J1 − J1 J0 − J0 J1 + J1 J2

))∣∣∣∣∣
= 2Ps

∣∣∣∣∣ sin(2φ) cos((2Ω1 −Ω2)t)
(

2J0 J2 + J2
1

)(
J0 J1 − J1 J2

)∣∣∣∣∣
= 2Ps

∣∣∣∣∣ sin(2φ) cos((2Ω1 −Ω2)t)
(

2J0
2 J1 J2 − 2J0 J1 J2

2 + J0 J1
3 − J1

3 J2

)∣∣∣∣∣.
(4.40)

In Fig. 4.9 we plot the square of all the terms in Equation (4.40) (leaving the pre-
factors) in the logarithmic scale, as a function of the input RF power. In Fig. 4.9
we also plot the square of the sum of all the terms (dashed red curve) : (2J0

2 J1 J2 −
2J0 J1 J2

2 + J0 J1
3 − J1

3 J2)2. The parameters of the MZM used for the plot are : Vπ = 5
V and VDC = 2.5 V. From Fig. 4.9, we see that till 27 dBm of input RF power, the
IMD3 power shows a linear relationship with input RF power (in the log scale). For
larger input RF powers it deviates from the linear relationship.
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4.2.4 SFDR
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Figure 4.10. An illustration of dependence of output RF power of
fundamental (blue solid line) and that of IMD3 (red solid line) in a
microwave photonic link as a function of the corresponding input RF
powers. The noise floor is shown in green dashed line The SFDR and
IP3 are shown in double sided arrow and black point respectively.

(not to scale)

We have seen in Figs. 4.8 and 4.9 that the parts of the output optical powers at
fundamental and IMD3 frequencies grow linearly (in a log scale) with slopes 1 and
3 respectively with the input RF power of modulation. This linear growth persists
up to a certain limit of input RF power. Beyond this limit, we see a saturation. In
the context of microwave photonic links, this relationship between the input and
output RF powers of the fundamental and IMD3 waves leads to the determination
of the dynamic range of the link. The spurious free dynamic range (SFDR) is often
used to gauge the linearity of a link. The SFDR of a link is calculated by finding
the input RF power where the output RF power of the IMD3 is equal to the noise
floor level. The difference of the output RF power of the fundamental and the noise
floor (considering a log scale) at that input RF power gives the SFDR. For example,
in Fig. 4.10 we show the noise floor (green dashed line) along with the input-output
dependence of IMD3 (red solid line) and the fundamental (blue solid line) RF powers
of a microwave photonic link. The corresponding SFDR is shown in double sided
black arrow.8

Another widely used quantifier of link quality is the third-order intercept point
(IP3). IP3 is the point where the linear extrapolation of the fundamental and IMD3
curves intersect (in the log-log scale) as shown in Fig. 4.10.

8Note that in Fig. 4.10 we have considered the fundamental and IMD3 curves to be linear through-
out the whole range of input RF powers for simplicity. In reality the linearity breaks down for higher
values of input RF powers as shown in Figs. 4.8 and 4.9.
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In the linear regime of the curve (as in Fig. 4.10) from Equation (4.36) we can
approximate Popt,Ω1 as :

Popt,Ω1 ≈ 2Ps| sin(2φ) cos(Ω1t)(−J0
3 J1)|. (4.41)

Also from Equation (4.40), Popt,2Ω1−Ω2 can be approximated as :

Popt,2Ω1−Ω2 ≈ 2Ps| sin(2φ) cos((2Ω1 −Ω2)t)(2J0
2 J1 J2 + J0 J1

3)|. (4.42)

We remind here that J0, J1 and J2 are functions of A = VACπ
Vπ

. From the definition of
the Bessel function of the first kind, of order n, we have (see Appendix G) :

Jn(A) =
∞

∑
m=0

Kmn A2m+n, (4.43)

where Kmn is a constant independent on A. For small values of A, the series can be
approximated by terminating after finite number of terms. If we only consider terms
till A2, then J0(A), J1(A) and J2(A) can be approximated as :

J0(A) ≈ 1, (4.44)

J1(A) ≈ A
2

, (4.45)

J2(A) ≈ A2

8
. (4.46)

Hence we can write :

Popt,Ω1 ∝ J0(A)3 J1(A) ∝ A ∝ VAC ∝ 〈PRF,in〉
1
2 , (4.47)

Popt,2Ω1−Ω2 ∝ (2J0
2 J1 J2 + J0 J1

3) ∝ A3 ∝ VAC
3 ∝ 〈PRF,in〉

3
2 , (4.48)

where 〈PRF,in〉 is the average input RF power. From Equation (4.16) we know that
the detected power at Ω, i.e. Pdet,Ω ∝ P2

opt,Ω. Thus we can write the detected powers
at Ω1 and 2Ω1 −Ω2 are proportional to :

Pdet,Ω1 ∝ 〈PRF,in〉, (4.49)

Pdet,2Ω1−Ω2 ∝ 〈PRF,in〉3. (4.50)

Hence in the log-log plot of outpur RF power detected by the PD versus the input
RF power, the curve of fundamental RF should have a slope of one while the IMD3
RF curve should have a slope of three.
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4.3 Numerical Model

In the previous sections we discussed about a microwave photonic link that con-
verts an input RF signal to an optical signal with an electro-optic modulation and
transmits the modulated signal through an optical link that is down-converted to an
electrical signal at the end of the link. In this process we talked about the nonlinear-
ities generated by a MZM used for the E/O conversion. However we did not say
anything about the nonlinearities (if any) that might have originated in the optical
link. In this section we will focus on the nonlinearities that originate from the op-
tical link. Thus we describe an experimental scheme (developed previously in our
group [244]) and a corresponding numerical model to probe the effect of nonlinear-
ities from an optical link on the performance of the microwave photonic link.

4.3.1 Model Outline

As we discussed at the beginning of this chapter, in a microwave photonic link, the
optical link might be quite long to connect the remote antenna with the base station.
In such cases incorporation of an optical amplifier within the optical link is solicited.
A traditional phase insensitive amplifier (like an EDFA) is limited by a quantum
noise figure of 3 dB [47]. However fiber phase sensitive amplifiers have the potential
to outperform such phase insensitive amplifiers by reaching noise figure values as
low as 0 dB theoretically [87]. But in the context of a microwave photonic link, the
optical amplification process can induce extra nonlinearities into the link. Hence it
is worth investigating the impact of introduction of a PSA in a microwave photonic
link on the global performance of the link.

To numerically model a microwave photonic link with a PSA, we consider the
following scheme (shown in Fig. 4.11 [125, 127]). In this scheme, a signal and an
idler are fed into a MZM that operates in an amplitude modulation mode (push-pull
configuration) and modulates the input signal and idler with two RF frequencies
Ω1 and Ω2. The modulated signal and idler are then coupled with a strong pump
beam and injected in a HNLF for optical phase sensitive amplification. After the
amplification the waves are incident on a PD and subsequently fed to an electronic
spectrum analyzer (ESA) to monitor the powers of the fundamental and IMD3 RF
waves.

4.3.2 Experimental Setup

A test setup was previously developed by Ihsan Fsaifes and Tarek Labidi in our
group mimicking a microwave photonic link including a PSA following the scheme
in Fig. 4.11. A detailed scheme of the setup is shown in Fig. 4.12. The output of a
tunable laser source (TLS) is divided into two branches. On one branch, the light is
modulated by a RF signal at frequency (ωs − ωp)/2π = 20 GHz to create the sig-
nal and idler from the laser source tuned at a central frequency of 1547 nm. It is
then amplified with an EDFA and filtered with two bandpass filters (BPF) tuned at
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Figure 4.11. Principle of two-tone test of a microwave photonic link
including a PSA. The signal (ωs) and idler (ωi) waves are modulated
at two frequencies Ω1 and Ω2 and combined with a pump (ωp) wave
and launched in a HNLF (working as PSA). The spectra shown in red
(blue) correspond to optical (RF) frequencies. MZM : Mach-Zehnder

modulator; PD : Photodetector; ESA : Electrical spectrum analyzer.

the signal and idler frequencies to get rid of the central frequency. Then the signal
and idler are modulated with two RF tones (Ω1 and Ω2) using a MZM in push-pull
configuration. The other branch of the TLS is fed with several RF tones to suppress
stimulatted Brillouin scattering (SBS). Then it is amplified with an EDFA. A fiber
Bragg grating (FBG) with 0.2 nm optical bandwidth at 1547 nm along with a circu-
lator (C) are used to filter out the amplified spontaneous emission (ASE) pedestal
on the pump spectrum coming from the EDFA. A piezo-electric transducer (PZT) is
used to control the phase of the pump. Then the two branches are coupled and fed
into a HNLF which acts as a PSA. An isolator is used at the entry of the HNLF to
eliminate any unwanted back reflection. As the PSA gain depends on the relative
phase between the pump, signal, and idler, the relative phase is servo-locked such
that the PSA gain of the signal is maximized. At the exit of the HNLF, the pump
and the idler are removed using a notch filter. One part of this signal is detected by
a photodiode and fed back using a PI servo loop to the PZT to control the phase of
the pump. The other part is detected by a photodiode and is fed into an electrical
spectrum analyzer (ESA) for retrieving the power of the RF fundamental and IMD3
waves for different input modulation powers.

The different parameters used in the experiment are the following. The pump
wavelength is 1547 nm. The pump-signal frequency separation is (ωs − ωp)/2π =

20 GHz. The modulation frequencies Ω1/2π and Ω2/2π are 1 GHz and 0.998 GHz,
respectively. The half-wave voltage Vπ of the modulator is 5 V and the DC bias VDC is
adjusted at 2.5 V. The pump power at the entry of HNLF is 22 dBm and the input sig-
nal and idler powers, including their sidebands, are equal to -16 dBm. The 1000-m-
long HNLF has a nonlinear coefficient γ = 11.3 (W.km)−1, a zero-dispersion wave-
length λZDW = 1547 nm, an attenuation coefficient α corresponding to 0.9 dB/km,
and a dispersion slope equal to 0.017 ps.nm−2.km−1.
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In the experiment, the output fundamental and IMD3 RF powers are recorded
as a function of the input RF power applied to the modulator. The parameters used
in the simulations are extracted from the experiment. We only changed the RF fre-
quencies Ω1/2π and Ω2/2π to 1.567 GHz and 1.564 GHz, respectively, in order to
avoid spectral leakage errors and computational complexities (see Subsection 3.2.3).
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Figure 4.12. Experimental setup for the two tone test in a microwave
photonic link with PSA. The spectrum at different positions of the
setup are shown in yellow boxes (not to scale) where s, i and p rep-
resent signal, idler and pump waves. The feedback loops are shown
in dashed arrows. TLS : Tunable laser source; MZM : Mach-Zehnder
modulator; PM : Phase modulator; EDFA : Erbium doped fiber am-
plifier; C : Circulator; BPF : Bandpass filter; FBG : Fiber Bragg grating;
PZT : Piezo-electric transducer; I : Isolator; HNLF : Highly nonlinear
fiber; Notch : Notch filter; PD : Photodetector; RFA : RF amplifier;

ESA : Electrical spectrum analyzer.

4.3.3 Experimental Validation

In order to validate our numerical model, we compare our numerical results with
experimental data. Figure 4.13 compares the results obtained from the NLSE simu-
lation (as we developed in the previous chapter) with the experimental results. The
output fundamental RF powers are reproduced as blue symbols while the IMD3 RF
powers are plotted in red. The numerical results correspond to the circles and the
measurements to the stars. Finally, the open symbols correspond to the situation
where the PSA is off (no injected pump) while the filled symbols hold for results
obtained when the PSA is on (22 dBm input pump power) and provides an optical
gain of 10 dB.

First of all, the open symbols in this figure illustrate the well known fact that
the nonlinearity of a standard MZM induces strong IMD3’s, as already discussed in
Section 4.2. Second, by comparing the blue symbols with the red symbols, one can
see that all the RF tones, both fundamental and IMD3’s, experience a 20 dB gain, i.e.
twice the optical gain, when the PSA is on. This shows that the PSA does not add
any RF signal nonlinearity to the ones that were already created by the MZM; it just
amplifies them with the same gain as the fundamentals.

Finally, the most important feature of Fig. 4.13 is that the agreement between
theory and experiments is very good. This means that the model developed with
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the NLSE simulation is valid and that we can use it to predict the behavior of a PSA
in more exotic configurations.
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Figure 4.13. Output fundamental (blue symbols) and IMD3 (red sym-
bols) RF powers vs. input RF power using a standard MZM. Stars:
measurements; circles: simulations. Open symbols: PSA off; filled
symbols: PSA on. Only the signal is detected. Blue (red) dashed
lines: slope 1 (3). Parameters : input pump power: 22 dBm; input

signal and idler power: -16 dBm; HNLF length: 1000 m.

4.4 AM vs PM

The electro-optic conversion of RF signals in a microwave photonic link is performed
by a modulator. As discussed at the beginning of this chapter, the most common
modulation formats are amplitude modulation (AM), which is most often performed
by a Mach-Zehnder modulator (MZM), and phase modulation (PM), generally achieved
using a single waveguide created in an electro-optic material. However the optical
gain (from a PSA) of the different waves in the optical link depends on the relative
phases between the different waves. AM and PM formats of modulation lead to dif-
ferent relative phases between the different optical waves launched into a PSA. Thus
in this Section we investigate how the PSA gain is influenced by these two formats
of operation.

4.4.1 AM

For AM, the output field of a MZM operating in push-pull configuration contains
several oscillating frequencies as shown in Equation (4.18). For convenience we
rewrite the output real electric field Eout here in a scalar form :

Eout(t) =
E
2

e−i(ωjt+θ)

(
eiφ
( ∞

∑
m=−∞

im Jm(A)eimΩ1t
)( ∞

∑
n=−∞

in Jn(A)einΩ2t
)

+ e−iφ
( ∞

∑
p=−∞

ip Jp(−A)eipΩ1t
)( ∞

∑
q=−∞

iq Jq(−A)eiqΩ2t
))

+ c.c. ,

(4.51)
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where all the symbols have their usual meanings. j = s while considering the signal
as the central wave and j = i while considering the idler as the central wave. The
terms oscillating at optical frequencies are shown in red and those at RF frequencies
in blue. The component of the complex amplitude oscillating at a frequency ωj −
mΩ1 − nΩ2 is consequently given in Equation (4.20) and is restated as :

Emn =
E
2

Jm(A)Jn(A)eiθi(m+n)Pm,n, (4.52)

where Pm,n is given by :

Pm,n =

2 cos(φ) for m + n even,

2i sin(φ) for m + n odd.
(4.53)

From the above equations it is easy to verify9 that Emn = E|m||n| for all integer m and
n. That means the phases of the waves are symmetric with respect to the carrier or
signal frequency. Thus the phase θj,mn of the complex amplitude Emn is given by :

θj,mn =

(|m|+ |n|)π
2 + θ for m + n even,

(|m|+ |n|+ 1)π
2 + θ for m + n odd,

(4.54)

where j = s for the signal branch waves and j = i for the idler branch waves.
Let us consider the amplification of a wave at the fundamental optical frequency

ωs − Ω1 i.e. m = 1 and n = 0. The gain of the phase sensitive amplification of
this wave will depend on the relative phase Θ f ,AM between the pump, the wave at
ωi + Ω1 and itself (considering a 3-wave model) [58]10. Thus Θ f ,AM is given by :

Θ f ,AM = θs,10 + θi,−10 − 2θp

= θs,00 − π + θi,00 − π − 2θp

= Θs,AM,

(4.55)

where θp is the phase of the pump and Θs,AM is the relative phase of the PSA process
involving the pump signal and idler waves. In the above equation we have used
the fact that the phase of the optical fundamental wave (m = 1, n = 0) is same as
the carrier wave (m = n = 0) following Equation (4.54) (see Fig. 4.14). The above
equation implies that the optimization of the signal phase for a maximum PSA gain
of the signal will also lead to a maximum PSA gain of the optical fundamental11.
In fact from Equation (4.54) we can further see that all the modulation sidebands
will have the same phase as the signal (or idler). Therefore under maximum PSA

9For negative values of m and n we can use the properties of Bessel functions of the first kind (see
Appendix G) to verify this.

10Note that there can be many PSA processes that can influence the gain of the waves, however the
ones containing the pump are the dominant ones in unsaturated PSA regime. Thus here we restrict
ourselves to only one process.

11In this analysis we have not considered any initial phase of the modulation voltage. However this
analysis holds true even if the MZM modulation voltage owns an initial phase [127].
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gain condition for the signal (or idler), all its sidebands (including the optical IMD3
waves) will also undergo a maximum PSA gain as long as the sidebands are close to
the signal (or idler) and the PSA is not gain saturated.

ω
ωs ωP ωi

signal

ωs −Ω1

Pump

idler

ωi + Ω1

Θs,AM, Θs,PM

Θ f ,PM = Θs,PM + πΘ f ,AM = Θs,AM,

Figure 4.14. An illustration of PSA processes that lead to the am-
plification (or deamplification) of the signal (process with the pump,
signal and idler; shown in red double sided arrows) and the optical
fundamental wave (process with the pump, optical fundamental in
the signal branch and its mirror image in the idler branch; shown in
blue double sided arrows) under a non-pump depletion approxima-
tion. The corresponding relative phases Θs,AM (or Θs,PM) and Θ f ,AM
(or Θ f ,PM) for the two processes are also indicated. Subscripts AM
and PM refer to amplitude modulation and phase modulation for-

mats respectively. (not to scale)

4.4.2 PM

Similar to the case of AM, the real output electric field Eout of a phase modulator is
given by :

Eout(t) = E e−(iωjt+θ)eiA cos(Ω1t)eiA cos(Ω2t) + c.c.

= E e−(iωjt+θ)
( ∞

∑
m=−∞

im Jm(A)eimΩ1t
)( ∞

∑
n=−∞

in Jn(A)einΩ2t
)
+ c.c. ,

(4.56)

where j = s for the signal wave and j = i for the idler wave. All other symbols have
their usual meanings. The terms oscillating at optical frequencies are shown in red
and those at RF frequencies in blue. The complex electric field amplitude Emn of a
wave at a frequency ωj −mΩ1 − nΩ2 is thus given by :

Em,n = E eiθi(m+n) Jm(A)Jn(A). (4.57)

Note that unlike the AM case, in PM, Emn = E−m−n when m + n is even and Emn =

−E−m−n when m + n is odd. The phase θj,mn of the complex amplitude Emn is given
by :

θj,mn = (m + n)
π

2
+ θ. (4.58)
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Now similar to previous case of AM, we consider the amplification of the optical
fundamental and signal waves that depend on relative phases Θ f ,PM and Θs,PM re-
spectively. Θ f ,PM is given by :

Θ f ,PM = θs,10 + θi,−10 − 2θp

= (θs,00 +
π

2
) + (θi,00 +

π

2
)− 2θp

= Θs,PM + π.

(4.59)

All symbols have their usual meanings and to arrive here we have used Equa-
tion (4.58). In contrast to the AM case, the above equation tells us that when the
relative phase Θs,PM is optimized such that the signal attains a maximum PSA gain,
the relative phase Θ f ,PM for the PSA process with the optical fundamental is π ra-
dians shifted leading to minimum PSA gain (de-amplification) for the optical fun-
damental wave (see Fig. 4.14). In general we can say that when the signal attains
a maximum PSA gain, all odd order waves (waves at frequencies ωj − mΩ1 − nΩ2

where m + n is odd) will experience a minimum PSA gain or will be de-amplified.
On the other hand, the even order waves (waves at frequencies ωj − mΩ1 − nΩ2

where m + n is even), will undergo maximum PSA gain as the signal.

4.4.3 Simulation Results

Our analysis on the PM and AM formats show that for PM format, a maximum
PSA gain for the signal and idler carriers leads to de-amplification of the first order
sidebands (optical fundamental waves), and vice-versa. On the other hand, for AM
format, a maximum PSA gain for the signal and idler leads to amplification of the
first order sidebands. This is also reinforced by our simulation results. In Fig. 4.15
we plot the evolution of optical powers of different waves (pump : red, signal : blue,
optical fundamental : green and optical IMD3 : magenta) along the length of the
HNLF obtained from the simulation. An AM format was considered in Fig. 4.15 (a)
and PM format was considered in Fig. 4.15 (b). The input pump power was 22 dBm,
input signal and idler powers were -15 dBm and input RF power was 10 dBm. The
phases of the signal and the idler waves were optimized to reach the maximum PSA
gain. A standard HNLF was used as in Subsection 4.3.3 expect the attenuation loss
was neglected in this case. From Fig. 4.15 we see that for AM, the signal, optical fun-
damental and optical IMD3 waves attain a PSA gain of about 11.6 dB, however for
the PM format, while the signal attained a positive PSA gain of 11.5 dB, the optical
fundamental and optical IMD3 waves were de-amplified with PSA gains of -10.6 dB
and -10.9 dB respectively. Since at the output of the HNLF, the strength of the out-
put fundamental RF signal mainly originates from the beating between the optical
carrier and the optical fundamental wave, one can see that a PSA is a good choice to
amplify AM signals but not PM signals. It should also be noted here that the above
analysis only holds true for a PSA that is unsaturated. A comparison between PM
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Figure 4.15. Simulation results for evolution of optical powers of dif-
ferent waves (pump : red, signal : blue, optical fundamental : green
and optical IMD3 : magenta) along the length of the HNLF for a AM
format : (a) and PM format : (b). Dashed lines are provided to in-
dicate the PSA gains. Fiber attenuation is ignored. Input signal and
idler powers : -15 dBm, input pump power : 22 dBm and input RF
power : 10 dBm. All other parameters are same as used in the simu-

lation of Fig. 4.13.

and AM under gain saturation conditions demands a more sophisticated mathemat-
ical treatment.

4.5 Saturation Behaviour : Standard Intensity Modulator

Previously in Subsection 4.3.3, the input signal and idler powers (-16 dBm each) were
small enough so that, even after having propagated through the HNLF and experi-
ences the PSA gain (10 dB), their output power would remain much smaller than
the pump power (22 dBm). Then, in these conditions, one can neglect the depletion



132 Chapter 4. PSA in a Microwave Photonics Link

of the pump, i.e. saturation of the PSA. On the contrary, in the present section, we
use our numerical model to gauge the situations where saturation of the PSA gain
occurs, in order to explore whether the RF nonlinearity of the PSA increases in the
presence of gain saturation. To this aim, we first observe the PSA behavior by scan-
ning the input RF power for several input signal and idler powers (Subsection 4.5.1)
when gain saturation occurs. Then in Subsection 4.5.2 we scan the input signal and
idler powers with the same goal in mind. Subsequently in Subsection 4.5.3 we scan
the input pump power of the PSA. After that in Subsection 4.5.4 we scan the phase
of the input signal and idler going into the PSA to find if the RF nonlinearities can
be counter balanced by the PSA nonlinearity. Finally in Subsection 4.5.5 we analyze
the impact of the PSA on the SFDR of the link for different values of input signal
powers.

4.5.1 Scan of Input RF Power

We can see from Equation (4.18) that, when the input RF power is increased, the
powers of the higher order harmonics increase, making the modulator more and
more nonlinear. We thus plot the output power of the RF fundamental (blue sym-
bols) and IMD3 (red symbols) when the PSA is off (hollow symbols) and on (filled
symbols) in Figs. 4.16 (a,b). In the simulations of Fig. 4.16 and all the following, we
suppose that the detector is perfect, and that the signal undergoes 0.9 dB losses in
the HNLF and 3 dB losses between the HNLF and the detector. Figure 4.16 (a) cor-
responds to a low (-14 dBm) signal and idler power, including all their sidebands,
at the the input of the HNLF, while Fig. 4.16 (b) corresponds to a stronger (14 dBm)
input signal and idler power. The corresponding RF gains for the fundamental (blue
squares) and IMD3 (red triangles) tones, when the PSA is tuned at its maximum
gain, are shown in Figs. 4.16 (c) and 4.16 (d), respectively. Finally, Figs. 4.16 (e) and
4.16 (f) show the corresponding PSA optical gains for the signal (magenta stars), the
pump (black circles), the optical fundamental (blue squares), and the optical IMD3
(red triangles). For each case, the relative phase between the pump, signal and the
idler is adjusted to maximize the PSA gain. The other parameters are the same as in
Subsection 4.3.3.

From these results, we see that for a low input signal power (-14 dBm, left column
in Fig. 4.16), the RF gain of fundamental and IMD3 tones is independent on the input
RF power. This is due to the fact that the powers of the signal and idler and all
their sidebands are too small to saturate the PSA gain, and thus experience the same
optical gain. For higher RF powers (> 15 dBm), the output RF powers of the RF
fundamental and IMD3 shows some saturation due to the nonlinearity of the MZM.

On the contrary, in the case of a higher input signal power (14 dBm, right column
in Fig. 4.16), gain saturation occurs, as can be seen by comparing the RF gains for the
fundamentals and the IMD3’s in Figs. 4.16 (c) and (d). For input RF powers typically
larger than 16 dBm (as indicated by the dashed line in Figs. 4.16 (d,f), a large num-
ber of strong sidebands are generated by the MZM. Then, the numerous four-wave
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Figure 4.16. (a,b) : Output fundamental (blue) and IMD3 (red) RF
powers versus input RF power with the PSA off (open symbols) and
on (full symbols). Blue and red dashed lines: guides to the eye to
stress gain saturation. (c,d) : Fundamental (blue squares) and IMD3
(red triangles) RF gains versus input RF power. (e,f) : Optical gain
of the signal (magenta stars), pump (black circles), fundamental (blue
squares) and IMD3 (red triangles) tones versus input RF power. A
standard MZM is used and only the signal is detected. Signal power
at the MZM input: -14 dBm (a,c,e) and 14 dBm (b,d,f); input pump

power: 22 dBm; HNLF length: 1000 m.

mixing processes in the PSA modify the powers of all these frequencies in a complex
manner. As an illustration, the optical spectra at the input and output of the PSA
are shown in Figs. 4.17 (a) and (b) for relatively low (10 dBm) and high (20 dBm) RF
powers, respectively. In Fig. 4.17 (b), the strong input RF power leads to the fact that
the beatnote between many different optical waves contribute to a strong IMD3 RF
tone. The dip in the IMD3 RF gain in Fig. 4.16 (d) can be attributed to the fact that
the different beatnotes contributing to the RF IMD3 are out of phase. Moreover, we
also checked in this case that this result does not critically depend on the values of
the modulation frequencies Ω1 and Ω2.

Additionally, Fig. 4.16 (f) exhibits a decrease in the optical gain of the optical
IMD3 above an input RF power of 16 dBm. This decrease is due to the presence of
a higher number of strong optical sidebands at the input of the PSA, which deplete
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Figure 4.17. Optical spectra at the input (blue) and output (red) of the
HNLF for (a) a low (10 dBm) input RF power and (b) a high (20 dBm)
input RF power. Other parameters : input signal and idler power:
14 dBm; input pump power: 22 dBm; HNLF length: 1000 m. Optical

losses : 3.9 dB. The detector is supposed to be ideal.

the available gain. Such a decrease of the IMD3 RF gain much below the RF gain of
the fundamental tone opens interesting perspectives to use the PSA to decrease the
nonlinearities of microwave photonics links, as also discussed in Refs. [134, 245].

4.5.2 Scan of Input Signal Power

As we have seen in Fig. 4.16, the increase of the input signal power leads to PSA gain
saturation. We thus plot in Fig. 4.18 the evolution of the PSA behavior as a function
of the signal and idler powers, in a manner similar to Fig. 4.16. The two columns of
Fig. 4.18 correspond to two values of the input RF power: 10 dBm (left) and 20 dBm
(right).

Figures 4.18 (e) and 4.18 (f) show that the pump depletion becomes significant, i.
e., the pump gain becomes much smaller than 0 dB, for input signal powers larger
than 0 dBm. This also corresponds to a decrease of the gain experienced by the
signal and the optical fundamental tones. However, surprisingly, this corresponds
to a strong increase, from 10 dB up to 25 dB, of the optical gain for the optical IMD3
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Figure 4.18. Same as Fig. 4.16 except the plots are shown as a function
of the input signal and idler powers, for two values of the RF input

power : 10 dBm (left column) and 20 dBm (right column).

frequencies. This can be explained by the fact that, for high enough input signal
powers, the power of the optical fundamental wave entering the HNLF is also quite
large. Moreover, these tones become even more powerful when they travel through
the fiber. Consequently, the powers of the pump, signal, and optical fundamental
become large enough to lead to a significant amplification of the optical IMD3 by
four-wave mixing among these four waves, thus enhancing the optical IMD3 gain.
However, as can be seen from Figs. 4.18 (c) and 4.18 (d), this gain enhancement for
the optical IMD3 tones does not lead to an increase of the RF gain of the RF IMD3
tones, which actually strongly decreases for input signal powers larger than 0 dBm.
This indicates that the increase of the power of the optical IMD3 wave is counter-
balanced by the influence of other PSA-generated sidebands that beat at the IMD3
RF frequency and subtract from the contribution of the beating of the signal and the
optical IMD3 in the output RF IMD3 power.
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Figure 4.19. Same as Fig. 4.16 except the plots are shown as a function
of the input pump power for two values of the input signal power :
-14 dBm (left column) and 14 dBm (right column). Input RF power :

10 dBm.

4.5.3 Scan of Input Pump Power

Similar to Figs. 4.16 and 4.18, next we scan the input pump power of the PSA in
Fig. 4.19 for two input signal powers : -14 dBm (left column) and 14 dBm (right
column) with a 10 dBm input RF power. In the case of a low (-14 dBm) input sig-
nal power, the PSA gain is not saturated and hence an increase in the pump power
leads to an increase in the PSA gain for the different optical waves (see Fig. 4.19 (e))
as predicted by the 3-wave model (see Equation (2.15) in Chapter 2). Consequently
an increase in the PSA gain of all the optical waves leads to an increase in the RF gain
of the fundamental and IMD3 RF waves as we see in Figs. 4.19 (a) and (c). On the
contrary, the situation becomes more complex when the PSA gain is saturated. We
see from Fig. 4.19 (f) that for a high input signal power, the pump undoubtedly gets
depleted, the PSA gains of the signal and optical fundamental waves are slightly
decreased compared to the unsaturated PSA case and the PSA gain for the optical
IMD3 waves increase significantly. These observations can be explained as follows.
The high input signal power at the input of the MZM implies a strong input opti-
cal fundamental at the input of the PSA. Furthermore, a large number of relatively
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stronger higher order sidebands enter the PSA. Therefore, now the pump acts as a
PSA for not only the signal, optical fundamental and IMD3 waves, but also for the
many MZM generated parasitic sidebands. So a large part of the pump energy is
invested in amplifying the parasites. This is also confirmed from the fact that in
Fig. 4.19 (d) we see a decrease in the IMD3 RF gain which is due to the generation of
beatnotes from some of the parasitic modes at the IMD3 RF frequency that cancels
out the beatnote arising from the beating of the signal and the optical IMD3 wave.
The large PSA gain of the optical IMD3 waves can be explained as following. When
the input signal power is large, the input fundamentals are also strong. In such a
scenario, the two optical fundamentals at frequencies ωs −Ω1 and ωs −Ω2 respec-
tively act as pumps for the two optical IMD3’s at frequencies ωs − (2Ω1 −Ω2) and
ωs − (2Ω2 −Ω1) respectively. This process is similar to that of a 4-wave model but
with the speciality that the frequency separation between the optical fundamentals
(pumps) is same as that between an optical fundamental and its closest optical IMD3.
In Subsubsection 2.4.10 of Chapter 2 we had discussed the dynamics of such special
four wave configurations and inferred that such processes are highly efficient due to
the presence of an extra FWM term containing three pump terms. Therefore when
we increase the input pump powers, the optical fundamentals get amplified more
efficiently along the HNLF and can act as stronger pumps for the optical IMD3’s
leading to its increased PSA gain.

In fact the effect of the above mentioned efficient four wave mixing process be-
tween the two strong optical fundamental waves (acting as pumps) and the optical
IMD3’s (acting as signal and idler) can also be seen from Figs. 4.18 (e) and (f) when
the input signal power is more than 0 dBm. We will revisit this phenomenon in
Subsection 4.7.

4.5.4 Scan of Input Signal Phase

In all our previous analysis on the PSA dynamics under saturated gain condition, we
noted an important feature : a high optical gain of the optical fundamental and IMD3
does not imply a high RF gain of the RF fundamental and IMD3. To explain this we
argued that the RF fundamental and IMD3 waves are generated from the beatnotes
between several optical frequencies. Thus often the different beatnotes do not add
up constructively leading to a diminished RF gain. This leads us to the question : can
we optimize our system such that we can have a large fundamental RF gain while a
small IMD3 RF gain at the output of the link? The answer to this question lies in the
choice of the input phase of the signal which we explain subsequently.

We know that the PSA gain depends on the input phase of the signal. In fact the
input phase of the signal determines the phases of all the MZM generated sidebands
at the input of the HNLF. Thus the effect of the PSA on all these waves depend on the
input phase of the signal. So far we always considered the input phase of the signal
that maximized the optical gain of the signal. However to achieve a link with low
distortion, further optimization of the input signal phase could be interesting. Thus
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Figure 4.20. Plot of RF gain of fundamental RF (blue) and IMD3 RF
(red) waves as a function of the input phase of the signal (and idler).
Grey dashed line shows the signal phase that maximizes signal PSA
gain. Green dashed line shows the phase corresponding to a low
IMD3 RF gain. RF power at the MZM input : 20 dBm ; input sig-
nal power : 15 dBm ; input pump power : 22 dBm; HNLF length :

1000 m.

in Fig. 4.20 we scan the signal input phase for a saturated PSA (input signal power :
15 dBm) with 20 dBm of input RF power and 22 dBm input pump power. We see
from Fig. 4.20 that a phase of π

4 rads lead to a very low (about -15 dB) IMD3 RF
gain when the fundamental RF gain is about 6 dB (see green dashed line in Fig.4.20).
However, the PSA gain of the signal is maximized for a phase of about 3π

8 rads (see
grey dashed line in Fig.4.20) where the IMD3 RF gain is about 6 dB which is much
worse than the formar case. This provides interesting prospects for the design of a
PSA-based microwave photonic link with ultra-low distortion.

4.5.5 SFDR

In Subsection 4.2.4 we discussed about the SFDR of a microwave photonic link with-
out considering a PSA in the optical link. However when we include the PSA the
SFDR is expected to change. To investigate this change of the SFDR on PSA in-
clusion, first we show in Fig. 4.21 an example of the SFDR’s (brown double-sided
arrows) when the PSA is off and on. A log-log scale is considered. The thick lines
correspond to PSA on case and thin lines are for PSA off case. The color coding is
same as in Fig. 4.10.

We see from Fig. 4.21 that when the PSA is on, the fundamental and IMD3 curves
undergo a vertical shift of GdB units from the PSA off case where GdB is the RF gain
in dB due to the presence of the PSA. For a shot-noise limited signal, the noise floor
undergoes a vertical shift of GdB

2 units (see Appendix H). Therefore the change in
SFDR, i.e. ∆SFDR (between the PSA on and off cases) is given by (see Appendix H)
:

∆SFDR = SFDRon − SFDRo f f =
GdB

3
(4.60)
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Figure 4.21. An illustration of output RF powers of fundamental (blue
solid lines) and IMD3 (red solid lines) in a microwave photonic link
with a PSA (with unsaturated gain) as a function of the input RF
power considering a log-log scale. Two cases are considered : (a)
PSA is off (thin lines) and (b) PSA is on (thick lines). The correspond-
ing noise floors are shown in green dashed lines. The corresponding
SFDR’s and IP3’s for the PSA on and off cases are shown in brown
double-sided arrows and black points respectively. GdB : RF gain in

dB due to the PSA. (not to scale)

We should note, that the above analysis only holds for a PSA that is unsaturated in
gain.

In this subsection we use the results of Fig. 4.16 to predict the achievable SFDR
of a link using a standard MZM and a PSA. All the parameters are the same as in
Fig. 4.16. Figures 4.22 (a) and 4.22 (b) show the evolution the fundamental and IMD3
RF powers as a function of the input RF power in the conditions of Figs. 4.16 (a)
and 4.16 (b), respectively, when the PSA is on and off. Moreover, these figures also
show the noise floors, supposed to be limited by the shot noise corresponding to the
photo-current generated by the detector. The vertical arrows in these plots permit to
extract the SFDR of the link.

One can see from the plots in Fig. 4.22 that the link behaves differently, in terms
of SFDR, depending on whether the PSA is saturated or not. Let us first focus on
the case where the optical power incident on the PSA (-14 dBm) is weak enough to
keep the gain unsaturated (Fig. 4.22 (a)). With the PSA off, taking into account the
0.9 dB losses of the fiber and the 3 dB losses supposed to exist between the fiber
and the detector, the detected optical power is -17.9 dBm, leading to a shot noise
level of -184.9 dBm/Hz. When the PSA is on, it amplifies all the tones by a 10 dB
optical gain. The detected optical power is then -7.9 dBm, leading to a shot noise
level equal to -174.9 dBm/Hz. Besides, the 10 dB optical gain results in a 20 dB RF
gain for the fundamentals and the IMD3’s. The SFDR of the link is then improved by
about 7 dB by the PSA as expected from Equation (4.60). On the contrary, when the
optical power incident on the PSA is equal to 14 dB, as in Fig. 4.22 (b), the saturated
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(a) Input signal power = -14 dBm
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(b) Input signal power = 14 dBm
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Figure 4.22. Characterization of the SFDR of the link. The parame-
ters of the plots (a) and (b) are the same as in Figs. 4.16 (a) and (b),
respectively. Noise floor: shot noise level for the PSA on (thick blue
line) and off (thin blue line). The corresponding SFDR’s are shown in

black arrows.

optical gain of the signal is then only 6.7 dB, increasing the shot noise level from
-156.9 dBm/Hz with the PSA off to -150.2 dB/Hz with the PSA on. As can be seen
from Fig. 4.16 (d), the RF gain for the fundamental and the IMD3’s are also of the
order of 7 dB in this region. Consequently, as can be seen from Fig. 4.22 (b), the SFDR,
which is equal to 109.3 dB with the PSA off, is neither improved nor degraded by
the PSA.

4.5.6 Discussion

To summarize, we have seen in this section that, in the case of an AM RF signal ap-
plied to the signal and idler by a standard MZM, the PSA at its maximum gain is not
at all detrimental to the linearity of the carried RF signal. On the one hand, in the
absence of saturation, i.e. when the pump depletion is negligible, the RF IMD3’s are
just amplified by the PSA with the same gain as the RF fundamental tones. The con-
tribution of the PSA to the RF nonlinearity of the link is thus completely negligible
compared to the nonlinearity of the MZM. On the other hand, the saturation of the
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PSA can lead to a lower gain for the RF IMD3’s than for the RF fundamentals, thus
leading to a mitigation of the RF nonlinearities of the MZM by the PSA.

4.6 Saturation Behaviour : Linear Intensity Modulator

ω
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Figure 4.23. Solid arrows: optical spectrum at the output of a perfectly
linear intensity modulator fed with two modulation frequencies Ω1
and Ω2. Dashed arrows: waves that would have been generated by a

standard MZM (not to scale).

We have seen in the preceding sections that the nonlinearities created by a stan-
dard MZM largely exceed those which are induced by the nonlinearities of the PSA.
Consequently, in order to determine the RF nonlinearities created by the PSA itself,
we consider in the present section the case where the RF modulation is applied to
the optical carriers using a perfectly linear intensity modulator. Such a modulator
would generate no high order sidebands while modulating the signal. Hence, only
the first order sidebands are supposed to be present, as shown in Fig. 4.23 in the case
of modulation by the two frequencies Ω1 and Ω2. In such a case, the RF IMD3’s
detected at the output is solely due to the PSA.

Figure 4.24 shows the simulation results obtained in this case. In the case of a
relatively low input signal and idler power (see Fig. 4.24 (a)), we can see that the
RF IMD3’s created by the PSA have an extremely small power level. For example,
compared with the case of a standard MZM (see Fig. 4.16 (a)), the IMD3 power ob-
tained in Fig. 4.24 (a) is reduced by about 58 dB when the input RF power is equal to
10 dBm.

However, when gain saturation enters the picture, the optical nonlinearity of the
fiber becomes strong enough to create significant nonlinearities for the RF signal.
This is particularly visible in Figs. 4.24 (b) and 4.24 (d), for relatively high input opti-
cal and RF powers. In such cases, one can see that the severe reduction by saturation
of the gain of the fundamental RF tone is accompanied by an efficient generation of
IMD3’s. The powers of the created RF IMD3’s can indeed become almost as large as
those of the RF fundamentals.
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(a) Input signal power = -14 dBm
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(b) Input signal power = 14 dBm
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(c) Input RF power = 10 dBm
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Figure 4.24. PSA nonlinearity with a linearized intensity modula-
tor. (a,b) Output fundamental (blue circles) and IMD3 (red circles) RF
powers when the PSA is off (open symbols) and on (filled symbols)
versus input RF power. Input signal power: (a) -14 dBm), (b) 14 dBm.
(c,d) Same as (a,b) versus input signal power. Input RF power: (c)
10 dBm), (d) 20 dBm. The dashed red and blue lines are guides to the

eye.

It is clear from the plots of Fig. 4.24 that the most interesting situation from the
point of view of applications is the one of Fig. 4.24 (a), where a linearized intensity
modulator is used and the PSA gain is not saturated. Indeed, in these cases, the
IMD3’s at the output of the PSA are very small, much smaller than in the case where
a standard modulator is used (see Fig. 4.16 (a)). We thus choose to investigate the
SFDR of the link in the case of Fig. 4.24 (a). The result is reproduced in Fig. 4.25. With
the PSA on, the -14 dBm signal power incident on the PSA is amplified by 10 dB.
After the 0.9 dB losses of the fiber and 3 dB extra losses, -7.9 dBm optical power
incident on the detector leads to a shot noise level of -174.9 dBm/Hz. The arrow in
Fig. 4.25 then shows that the SFDR is then equal to 116.5 dB. By comparison with
Fig. 4.22 (a), this corresponds to a 19 dB improvement. One interesting point here is
that the SFDR achieved with the linearized modulator and the PSA with a relatively
small input signal power (-14 dBm) is larger than the one obtained with a standard
modulator with a much larger input signal power (14 dBm).

4.7 Physical Interpretation

From our previous discussions, we could relatively easily analyze the dynamics of
wave propagation in a microwave photonics link with a PSA when the PSA was not
saturated. On the contrary, when the PSA was saturated, the situation turned out
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Figure 4.25. Same as Fig. 4.22 (a) with the parameters of Fig. 4.24 (a).
The input signal power is -14 dBm.

to be more complex to deal with. This is because under saturated conditions the
simple 3-wave model (with pump, modulated signal and modulated idler acting as
the three waves) ceases to work. Thus in this section we propose a slightly different
approach to capture the complex dynamics of the PSA carrying modulated signal
and idler under gain saturated conditions.

ω
ωs ωP ωi

signal (s)

(I)

(f)

Pump (p)

idler (i)

p-s
p-f
p-I
s-f
s-I
f-I

Figure 4.26. An illustration of some of the PSA processes occuring
in a HNLF when fed with a pump and a modulated signal and idler
with two modulation frequencies. Only the optical fundamental and
IMD3’s generated from the modulator are considered ignoring higher
order sidebands. The different interactions corresponding to different
PSA processes are shown in double-sided curved arrows. p-s : pump-
signal interaction (red); p-f : pump-optical fundamental interaction
(blue); p-I : pump-optical IMD3 interaction (green); s-f : signal-optical
fundamental interaction (magenta); s-I : signal-optical IMD3 interac-
tion (cyan); f-I : optical fundamental-optical IMD3 interaction (black).
ωs : signal frequency, ωP : pump frequency, ωi : idler frequency. (see

Table 4.1 for more detaills on the PSA processes) (not to scale)

As explained previously, when the signal (or idler) power is much weaker than
the pump, the pump amplifies all the waves (signal and idler with their sidebands)
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equivalently with the same PSA gain (see Fig. 4.18 (e)). However when the input
signal power and/or the optical fundamental powers are large, they can act as sec-
ondary pumps amplifying the IMD3’s. In fact the situation becomes equivalent to
a 19-wave model (pump, signal, idler, eight optical fundamentals and eight opti-
cal IMD3’s) (see Fig. 4.26) leading to a huge number of FWM terms making it quite
complicated to deal with analytically. To overcome this hurdle, we break down the
system into six different classes of PSA processes. These processes are labelled : p-s
(pump-signal interaction); p-f (pump-optical fundamental interaction); p-I (pump-
optical IMD3 interaction); s-f (signal-optical fundamental interaction); s-I (signal-
optical IMD3 interaction); f-I (optical fundamental-optical IMD3 interaction), and
the waves involved in these interactions are tabulated in Table 4.1 and illustrated in
Fig. 4.26. We should note here that while the processes p-s, p-f, p-I, s-f and s-I are
three wave interactions, the process f-I is a four wave interaction process. Moreover,
f-I is a special kind of four wave interaction where the pump-pump wavelength
separation is equal to the wavelength separation between the signal and its closest
pump. In Subsubsection 2.4.10 of Chapter 2 we have already discussed about the
dynamics of such processes in detail.

Table of PSA Processes
PSA
process

Role of signal Role of pump Role of idler Colour
coding

p-s ωs ωP ωi red
p-f ωs −Ω1 ωP ωi + Ω1 blue
p-I ωs − (2Ω1 −Ω2) ωP ωi + (2Ω1 −Ω2) green
s-f ωs −Ω1 ωs ωs + Ω1 magenta
s-I ωs − (2Ω1 −Ω2) ωs ωi + (2Ω1 −Ω2) cyan
f-I ωs − (2Ω1 −Ω2) ωs − Ω1 and

ωs −Ω2

ωs − (Ω1 − 2Ω2) black

Table 4.1. Table of different PSA processes occuring in a HNLF when
fed with a pump (ωP) with a signal (ωs) and idler (ωi) modulated
with two RF frequencies Ω1 and Ω2. Also see Fig. 4.26 for a visualiza-

tion of the PSA processes.

Let us first focus on the three wave processes. From the 3-wave model with a
degenerate pump configuration, the evolutions of the slowly varying envelope of
the complex amplitudes of the signal (A−1) and idler (A1) waves are given by (see
Appendix A) :

dA1

dz
= iγ

(
|A1|2A1 + 2(|A−1|2 + |A0|2)A1 + A2

0A−1
∗ei∆β001−1z

)
, (4.61)

dA−1

dz
= iγ

(
|A−1|2A−1 + 2(|A1|2 + |A0|2)A−1 + A2

0A1
∗ei∆β001−1z

)
, (4.62)

where γ is the nonlinear coefficient of the HNLF, A0 is the amplitude of the pump
and ∆β001−1 is the linear phase mismatch term as defined in Subsection 2.3.3 of
Chapter 2. Now multiplying Equation (4.61) by A1

∗ and adding it with the conjugate
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of Equation (4.61) multiplied by A1, we get :

dP1

dz
= 2γ(P1P−1P0

2)
1
2 sin(∆β1−100z + θ1 + θ−1 − 2θ0), (4.63)

where P1 = |A1|2 and θn is given by :

An = |An|eiθn , (4.64)

for n = 1,−1, 0. In other words, θn represents the phase of the complex amplitude
An. Similarly the evolution of P−1 = |A−1|2 is given by :

dP−1

dz
= 2γ(P1P−1P0

2)
1
2 sin(∆β1−100z + θ1 + θ−1 − 2θ0) =

dP1

dz
. (4.65)

Therefore we see from the above equation that the rate of change of power of the
signal (or idler) at a particular length in the fiber depends on two factors : (a)
2γ(P1(z)P−1(z)P0(z)

2)
1
2 , which we call the strength of growth rate and (b) sin(∆β1−100z+

θ1(z) + θ−1(z) − 2θ0(z)), which we call the sine of growth rate phase. We should
note here that the interaction strength is always a positive quantity whereas the sine
of growth rate phase can have positive and negative values however bounded by
-1 and 1. Depending on its sign, the local power of the signal (or idler) will either
increase or decrease.

Next we turn our focus to the 4-wave model representing the optical fundamen-
tals (as pumps) and the optical IMD3’s (as signal and idler). We should keep in mind
that the frequency separation between the optical fundamentals is the same as that
between a fundamental and its nearest IMD3. We denote A−1, A1, A−2 and A2 as
the amplitudes of pump1, pump2, signal and idler respectively. Thus the equation
of evolution of A−2 and A2 are given by (see Equations (2.62) and (2.63)) :

dA−2

dz
= iγ

(
2|A−1|2A−2 + 2|A1|2A−2 + A−1

2A1
∗ei∆β−1−11−2z + 2A−1A1A2

∗ei∆β−112−2z
)

,
(4.66)

dA2

dz
= iγ

(
2|A−1|2A2 + 2|A1|2A2 + A1

2A−1
∗ei∆β11−12z + 2A−1A1A−2

∗ei∆β−11−22z
)

.
(4.67)

We note here that the terms iγA−1
2A1

∗ei∆β−1−11−2z in Equation (4.66) and iγA1
2A−1

∗

ei∆β11−12z in Equation (4.67) arise only when the frequency separation between the
pumps are equal to the frequency separation of the pump and its closest sideband.
Now proceeding as before, we multiply Equation (4.66) by A−2

∗ and add it to the
conjugate of Equation (4.66) multiplied by A−2. Thus we get :

dP−2

dz
= 2γ(P−1

2P1P−2)
1
2 sin(∆β1−2−1−1z + θ1 + θ−2 − 2θ−1)

+ 4γ(P−1P1P−2P2)
1
2 sin(∆β2−21−1z + θ2 + θ−2 − θ1 − θ−1).

(4.68)
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For most practical purposes we can assume that the pumps are much stronger than
the signal and idler and ignore the second term in Equation (4.68). Thus we get :

dP−2

dz
= 2γ(P−1

2P1P−2)
1
2 sin(∆β1−2−1−1z + θ1 + θ−2 − 2θ−1). (4.69)

In fact Equation (4.69) is the same as we would have got by considering a 3-wave
model replacing the idler with a second pump. In this case the strength of the growth
rate is given by 2γ(P−1(z)

2P1(z)P−2(z))
1
2 and the sine of phase of growth rate is

given by sin(∆β1−2−1−1z + θ1(z) + θ−2(z)− 2θ−1(z)).
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Figure 4.27. (a,b) Evolution of optical power of waves (Pump (red),
signal (blue), optical fundamental (green) and optical IMD3 (ma-
genta)) along the HNLF. (c,d) Evolution of strength of growth rate
and (e,f) evolution of sine of phase of growth rate for different PSA
processes (see Table 4.1 and Fig. 4.27 for details on the PSA processes)
along the HNLF. Two input signal powers were used : -15 dBm (a,c,e)
and 15 dBm (b,d,f). Input modulation power : 10 dBm. A standard

HNLF was used as in Section 4.5 neglecting fiber attenuation.

Coming back to our model of the six different PSA processes (listed in Table 4.1),
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utilizing Equations (4.65) and (4.69) we can now monitor the strength and direction
of energy transfer (pump to signal or signal to pump) for each of the processes along
the length of the HNLF. To this aim, in Figs. 4.27 (c,d) we plot the strength of growth
rates and in Figs. 4.27 (e,f) we plot the sine of growth rate phases for the different
PSA processes (as listed in Table 4.1) as a function of the length along the HNLF
considering two different input signal powers : -15 dBm (left column) and 15 dBm
(right column). Also in Figs. 4.27 (a,b) we plot the power evolution of the pump
(red), signal (blue), optical fundamental (green) and optical IMD3 (magenta) waves
along the length of the HNLF. For the simulation, a standard HNLF was considered
as in Section 4.5 neglecting fiber attenuation loss. An input modulation power of
10 dBm was used.

We first focus on the unsaturated PSA case (left column of Fig. 4.27). From Fig. 4.27
(c) we see that the dominant processes for the growth of the signal (red curve), op-
tical fundamental (blue curve) and optical IMD3 (green curve) always involves the
pump, viz. p-s, p-f and p-I respectively. Also from Fig. 4.27 (e) we find that the sine
of the growth rate for processes s-f (magenta curve), s-I (cyan curve) and f-I (black
curve) are almost 0 throughout the fiber length. This means processes s-f, s-I and
f-I are inefficient. However the pump-involving processes (p-s, p-f and p-I) are non-
zero and positive. This suggests that when the PSA is unsaturated, the gains of the
different waves depend only on the pump.

Next we analyze the saturated PSA case (right column of Fig. 4.27). From Fig. 4.27
(b) we see that the IMD3 optical gain is greater than its counterpart (Fig. 4.27 (a))
from the unsaturated case12. From Fig. 4.27 (d) we see that the signal is chiefly am-
plified by the pump as the p-s process provides a much larger growth rate compared
to all the other processes involving the signal (s-f and s-I). However for the funda-
mental, both the processes s-f and p-f contribute comparably towards the growth
of the fundamental. From Fig. 4.27 (f) we see that s-f and p-f incur opposite signs
for a large section inside the HNLF resulting in cancellation of each others effects.
This explains the lower PSA gain of the optical fundamentals than optical IMD3’s
in Fig. 4.19 (f). Now coming to the optical IMD3’s, we find from Fig. 4.27 (d) that
all the three processes : p-I, s-I and f-I, have comparable strengths of growth rate
for the IMD3. However Fig. 4.27 (f) shows that p-I and s-I often are of the opposite
signs inside the HNLF counter-balancing each other. But the sine of growth rate for
the f-I process attains a non-zero and positive value throughout the HNLF therefore
leading to a large optical gain for the optical IMD3 wave.

To summarize, we find that for the unsaturated PSA, only the pump plays a role
in amplifying the different waves. However when the PSA is saturated, the interplay
of the different PSA processes between the waves lead to a diminished optical gain
for the signal and the optical fundamental, whereas the optical IMD3 achieves a
large gain. The dominant process leading to this large gain of the optical IMD3’s
originates from the strong pumping of the optical fundamentals.

12We already noted this feature in Figs. 4.19 (e) and (f).



148 Chapter 4. PSA in a Microwave Photonics Link

4.8 Conclusion

In this chapter, we have discussed how the insertion of a PSA inside a microwave
photonics link based on amplitude modulation alters the RF nonlinearities of the
link. To this aim we used a numerical model to evaluate the powers of the funda-
mental and IMD3 RF waves at the output of the link. We validated the model by
comparison with experimental results. We also developed a simplified theoretical
model for analyzing complicated PSA-dynamics by breaking down the wave evolu-
tion process in terms of individual PSA processes.

In the context of nonlinearity analysis different situations were considered, based
either on a standard MZM or a linearized modulator to transfer the RF signal to the
optical carriers. We have also compared the cases of weak and strong optical powers,
low and high RF powers applied to the modulator and weak and strong powers of
the pump. The phase of the input carrier was also scanned to explore the possibility
of optimization of the link SFDR. However, in this analysis we have not considered
the random fluctuations of the ZDW of the fiber that can often degrade the noise and
amplification performance of the link [59, 246].

One important conclusion of this chapter is that, in spite of its intrinsic optical
nonlinearity, a PSA used at its maximum gain can behave in a surprisingly linear
manner from the point of view of the carried RF signal. This linear behavior is
observed when the input signal and idler powers are weak enough for the pump
depletion to be negligible. Then, we have seen that, in the case of a standard MZM,
the RF nonlinearity of the PSA is completely negligible compared to the one of the
modulator. Even if one removes these latter nonlinearities by using a perfectly lin-
ear amplitude modulator, the nonlinearities induced by the PSA remain extremely
small as long as the gain is not saturated.

In terms of SFDR, the conclusions of this work are the following. On the one
hand, when one uses a standard MZM, the use of a PSA improves the SFDR when
the gain is not saturated, while it neither improves nor degrades it when the gain is
saturated. On the other hand, in case one uses a perfectly linear modulator, the RF
nonlinearities created by the PSA itself are so small that the SFDR of the link can be
significantly larger than in the case of a standard MZM. This can be useful to avoid
the use of high signal powers or in the case the detector itself cannot handle such
high powers before becoming nonlinear.

The picture becomes drastically different when the input signal power is strong
enough to induce gain saturation via pump depletion. But, in this case, the PSA
behavior is different in the case of a standard MZM and in the case of a linearized
modulator. In the first case, we have shown that the strong signal nonlinearities
created by the intrinsically nonlinear MZM can actually be strongly reduced by the
PSA. The amplifier can thus be used to mitigate the link nonlinearities and improve
its dynamic range. On the contrary, when one uses a linearized amplitude modu-
lator, the saturated PSA can create signal nonlinearities that can become extremely
detrimental to the linearity of the link. Indeed, we have seen that in some situations,



4.8. Conclusion 149

extreme gain saturation can generate RF IMD3’s with powers as large as those of the
RF fundamentals.

Here we have considered only a direct detection scheme to detect the optical sig-
nal after amplification. However, a coherent detection scheme can be used to further
improve the noise performance of the link [233]. Also, recent developments suggest
the use of few mode fibers (FMF) in a microwave photonic link to increase the link’s
optical power handling capabilities [247]. One may wonder how incorporation of a
PSA in a FMF based microwave photonic link could be achieved for further perfor-
mance improvement. In particular, the problem of the control of the relative phases
between the pump(s) and the different modes seems particularly tricky. Moreover,
this work also opens new perspectives for the investigation of link nonlinearities
using fibers exhibiting dispersion fluctuations [248–250] and dispersion oscillations
[251].

Chapter Highlights

• PSA in a Microwave Photonic Link : Microwave photonic links are often
used for analog signal distribution. However, does the introduction of a
PSA in the optical link of a microwave photonic link generate extra dis-
tortions? To address this question, we performed numerical simulations to
understand how a pump, a modulated signal and a modulated idler wave
propagate through a nonlinear fiber. We investigated how the nonlineari-
ties generated from the Mach-Zehnder modulator (MZM) used in the E/O
conversion, are further amplified by the PSA.

• Amplitude Modulation (AM) vs Phase Modulation (PM) : The E/O con-
version in a microwave photonic link can be done using an amplitude
modulation (AM) or a phase modulation (PM) format. However, for a
microwave photonic link with a PSA, the optical amplification only works
for an AM format.

• Unsaturated Gain PSA Operation : When the PSA gain is not saturated,
we show numerically, that the PSA does not add extra distortions into the
link. The linearity of the link was evaluated by the so-called two-tone test.
A linearized MZM was considered to investigate the distortions generated
solely by the PSA and was found to be orders of magnitude smaller than
those of the MZM.

• Saturated Gain PSA Operation : When the PSA gain attains satura-
tion, interplay between the MZM-generated nonlinearities and the PSA-
nonlinearities shows interesting properties. For example, although the
optical IMD3 tones are often highly enhanced by the PSA in the link, the
optimization of the phase of the optical carrier can lead to a suppressed
RF IMD3 distortion at the link output, however at the cost of reduced RF
gain.
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5.1 Perspectives

Several perspectives were generated in the course of this research. In this subsection
we note down a few of them.

5.1.1 Frequency Comb PSA

In the analytical 7-wave model developed in Chapter 2, we considered propaga-
tion of only seven waves through a nonlinear fiber. However, one can also ask the
question : Is it possible to extend this approach to an arbitrary number of waves
or in other words, to a PSA with a frequency comb? The answer to this question is
tricky. From a practical point of view, when there are many (n > 7) waves propagat-
ing through the fiber, we expect the pumps to undergo a significant depletion after
propagating a very short distance inside the fiber. Therefore finding an analytical
solution for such a system would be quite challenging. A considerable effort has
been made in Ref. [252]. Nevertheless, we can still deconstruct the system into two
sets of subsystems : 1. odd order subsystem (see blue waves in Fig. 5.1) and 2. even
order subsystem (see red waves in Fig. 5.1).

q
-3 -2 -1 0 1 2 3 4 5 6-4-5-6

HOP1

HOI1

Pump1

Signal

Pump2

HOI2

HOP2

HOI4

HOP4

HOI6HOI3

HOP3

HOI5

Figure 5.1. Illustration of a PSA configuration with generation of sev-
eral higher order waves. Waves in blue (red) form the odd (even) or-
der subsystem. The cascaded transfer of photons are shown in black
curved arrows. HOI : higher order idler, HOP : higher order pump.

In the odd order subsystem, all the waves are located at odd values of q (like the
pumps). The dynamics of this subsystem would be similar to that of the analytical 4-
wave model with q = 3 (see Subsection 2.4.10 in Chapter 2). This means, the waves
in this subsystem would be very efficiently generated due to the efficient pumping
from the two pumps. However, their generation is supposed to be a cascaded pro-
cess, meaning first HOP1 and HOP2 will be generated, then HOP3 and HOP4, and
so on (see black arrows in Fig. 5.1). This efficient generation would make them act
as secondary pumps for the weak even order subsystem waves.

The even order subsystem is similar to the odd order subsystem, but here the
waves are located at even values of q (like the signal). The dynamics of this sub-
system would be similar to that of coupled subsystems 1 and 2 described in the
analytical 7-wave model (see Subsection 2.4.6 in Chapter 2). However, now instead
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of just two pumps, we would need to consider 2n pumps, where the 2(n− 1) gen-
erated HOP’s act as secondary pumps. We also expect to see a cascaded generation
of HOI’s with a cascaded generation of the HOP’s similar to the PSFC phenomenon
discussed in Chapter 2. Therefore, the first step in this approach would be to ana-
lyze how the waves in the even order subsystem are coupled with each other in the
presence of a strong pump comb.

Analyzing the dynamics of such a system could provide further insights into the
well-known modulation instability phenomenon in nonlinear optics. It might also
lead to observation of a cascaded phase sensitive frequency conversion effect.

5.1.2 Quantum Noise using a 7-Wave Model

In Chapter 2 we have seen, that for the 3-wave model, the signal gain for a FOPA
in a PIA configuration is independent of the relative phase between the pump(s),
signal and/or idler. However for a PSA configuration, it depends on the relative
phase (see Section 2.2 in Chapter 2). It turns out that this phase sensitivity has im-
plications on the quantum noise properties of a FOPA [56]. Caves in 1982 showed
that the quantum noise figure, which is the ratio of signal-to-noise ratio between the
input and output of the FOPA, for a FOPA in PIA configuration is limited by 3 dB,
whereas for PSA it can be as small as 0 dB [47]. This means a FOPA in a PSA config-
uration can act as a noiseless amplifier without degrading the signal-to-noise ratio
after amplification [51].

Figure 5.2. Signal power evolution versus fiber length z calculated
using a numerical 7-wave model. Full black line : only signal is in-
jected. Filled circles : signal, HOP1 and HOP2 injected. Full red line :
signal, HOI1 and HOI2 injected. Open squares : signal, HOI1, HOI2,
HOP1 and HOP2 injected. P = 0.1 W, P0 = 1 µW, P±2 = P±3 = 1 nW
(when injected), fiber attenuation coefficient α = 0.9 dB/km, γ = 11.3
W−1km−1, D

′
= 0.017 ps km−2 nm−2, L = 1011 m, δλo f s = 0 nm,

∆λPP = 0.32 nm. Reproduced from Ref. [166].
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Although initial investigations in this area was based on 3- or 4-wave models,
future developments considered the cases with larger number of waves [76, 157].
McKinstrie et al. [76] and Marhic et al. [163] analyzed the 6-wave model analytically,
however ignoring dispersive effects of the fiber. More recently Inoue developed a
semi-analytical model to solve for the two pumps and higher order pumps (HOP’s)
numerically while incorporating their effects on the signal and higher order idlers
(HOI’s) analytically [157]. However, Inoue’s approach does not incorporate all the
important FWM processes that influence the signal propagation through a FOPA. In
our group, Bouasria et al. computed the noise figure considering a 7-wave model
but using a semi-quantum approach which predicts the role of the HOI’s in impact-
ing the signal evolution (see Fig. 5.2) and in turn the noise figure of the amplifier
[166]. However unavailability of a full analytical solution of the n-wave model turns
out to a difficult challenge to develop a fully quantum model for the noise figure
calculation.

In our development of the analytical 7-wave model, we incorporated the effect of
fiber dispersion and solved the classical system exactly in the presence of the HOI’s.
Although our model is valid when the system is weakly nonlinear (γPL < 0.5), still
the results can be used to calculate the quantum noise figure following the approach
described in Ref. [76]. In fact this work is in progress currently.

5.2 Conclusion

Finally, here we provide a general conclusion of the research presented in this thesis.
This thesis provides a broad overview of the mechanisms of CW wave propagation
through a nonlinear fiber. An analytical model with seven CW waves propagat-
ing through a fiber was developed. The system was analyzed by breaking it down
into smaller subsystems and studying their interactions. Key insights were obtained
with respect to the role of higher order idlers in the parametric amplification process
in such systems. Using the analytical model, we predicted the possibility of signal
gain enhancement by injecting the higher order idlers at the input of the fiber in
a phase sensitive amplification scheme. We also predicted the phase sensitive fre-
quency conversion capability of a five wave system using the developed analytical
model.

In the second part of the thesis, the possibility of using a fiber phase sensitive
amplifier in a microwave photonic link for analog signal distribution was investi-
gated. A SSFM based numerical model was used to solve the nonlinear Schrödinger
equation describing propagation of multiple CW waves through a nonlinear fiber.
The numerical model was validated with available experimental data. The system
was studied with respect to amplitude and phase modulation formats and the the
effective operation of a fiber phase sensitive amplifier was shown to be possible only
under amplitude modulation operation. The numerical model was further utilized
to investigate the link linearity using the two-tone test, under gain saturation of the
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FOPA. The numerical simulation results indicated, that under gain saturation, miti-
gation of the RF nonlinearities by the fiber nonlinearities is possible.

These findings project interesting perspectives with respect to development of
fiber phase sensitive amplifiers with superior capabilities. It also generates the pos-
sibility of realizing highly linearized long-range microwave photonic links for an-
tenna remoting applications.

In a world with a rapidly growing connectivity, the demand for higher perfor-
mance communication systems is omnipresent. We believe, our research would con-
tribute positively in the global effort to meet such demands.
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Appendix A
Solution of the Analytical 3-wave
Model

Following the approximations listed in Subsection 2.2.2 (except for the non-pump
depletion approximation), the equations governing the evolution of the slowly vary-
ing amplitudes Ai’s (i = 1, 0,−1) of the three waves are given by (also given in
Equations (2.5), (2.6) and (2.7)) :

dA1

dz
= iγ

(
|A1|2A1 + 2(|A−1|2 + |A0|2)A1 + A2

0A−1
∗ei∆β00−11z

)
, (A.1)

dA−1

dz
= iγ

(
|A−1|2A−1 + 2(|A1|2 + |A0|2)A−1 + A2

0A1
∗ei∆β001−1z

)
, (A.2)

dA0

dz
= iγ

(
|A0|2A0 + 2(|A1|2 + |A−1|2)A0 + 2A1A−1A0

∗ei∆β1−100z
)

, (A.3)

where the symbols have their usual meanings. We note here that, depending on
the configuration of the FOPA (either degenerate pump or non-degenerate pump),
the indices of A will have different meanings. More precisely, for a non-degenerate
pump configuration, A±1 represent the amplitudes of the pumps and A0 represents
the amplitude of the degenerate signal and idler (See Fig. A.1 (b)). However for a
degenerate pump configuration, A1 and A−1 represent the amplitudes of the signal
and idler, respectively, and A0 represents the amplitude of the degenerate pump (See
Fig. A.1 (a)).

A.1 Degenerate Pump Configuration

For the degenerate pump configuration, the index 0 is for the pump, -1 for the signal
and 1 is for the idler. Invoking the approximation that the pump is much stronger
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ω ω
ωs ωP ωi ωP1 ωs ωP2

Signal (A−1)

Pump 1 + Pump 2 (A0)

Idler (A1)

Pump 1 (A−1)

Signal+Idler (A0)

Pump 2 (A1)

(a) (b)
Figure A.1. Configurations of a FOPA in a 3-wave model : (a) De-
generate pumps and non-degenerate signal and idler. (b) Degenerate
signal and idler and non-degenerate pumps. We introduce a simpli-
fied notation A0 and A±1 for the different waves for convenience. ω
is frequency and the height of the arrows represent intensity (not to

scale).

than the signal and the idler, the equation for the pump is given as :

dA0

dz
= iγ|A0|2A0 = iγPA0, (A.4)

where P is the undepleted pump power. Considering a zero phase of the pump at
the input of the fiber, the solution for A0 is given by :

A0(z) =
√

PeiγPz. (A.5)

Injecting A0 into Equations (A.1) and (A.2) and also considering the pump power to
be much stronger than the signal and idler, we write the equations for the signal and
the idler as :

dA1

dz
= iγP

(
2A1 + A−1

∗ei(∆β00−11+2γP)z
)

, (A.6)

dA−1

dz
= iγP

(
2A−1 + A1

∗ei(∆β001−1+2γP)z
)

. (A.7)

We know from Equation (2.23) that ∆βklmn is given by :

∆βklmn = β(ωk) + β(ωl)− β(ωm)− β(ωn). (A.8)

Thus ∆βklmn = ∆βklnm or ∆β00−11 = ∆β001−1. From Equations (A.6) and (A.7) we see
that the coefficient of the first term is 2iγP. Thus we make the following transforma-
tion of variables to eliminate the first terms as :

B1 = A1e−2iγPz,

B−1 = A−1e−2iγPz.
(A.9)

Thus Equations (A.6) and (A.7) can be rewritten in terms of the transformed vari-
ables as :

dB1

dz
= iγPB−1

∗eiκz, (A.10)
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dB−1
∗

dz
= −iγPB1e−iκz, (A.11)

where κ is given by :
κ = ∆β00−11 − 2γP. (A.12)

Taking the double derivative with respect to z, we arrive at :

d2B1

dz2 − iκ
dB1

dz
− γ2P2B1 = 0, (A.13)

d2B−1
∗

dz2 + iκ
dB−1

∗

dz
− γ2P2B−1

∗ = 0. (A.14)

The general solution to the above differential equations can be expressed in the form
[135] :

B1 =

(
a1egz + a2e−gz

)
ei κ

2 z, (A.15)

B−1
∗ =

(
a3egz + a4e−gz

)
e−i κ

2 z, (A.16)

where g is given by :

g =

(
γ2P2 − κ2

4

) 1
2

, (A.17)

and a1, a2, a3 and a4 are arbitrary constants to be determined from the initial condi-
tions. Imposing the initial condition, we have :

B1(0) = a1 + a2, (A.18)

B−1
∗(0) = a3 + a4. (A.19)

Taking the derivative of Equation (A.15) with respect to z and imposing z = 0 and
then equating it with Equation (A.10) at z = 0, we get :

iγPB−1
∗(0) = (a1g− a2g) + (a1 + a2)

iκ
2

= (a1g− (B1(0)− a1)g) + B1(0)
iκ
2

. (A.20)

Thus solving for a1 and a2, we get :

a1 =
B1(0)(g− iκ

2 ) + iγPB−1
∗(0)

2g
, (A.21)

a2 =
B1(0)(g + iκ

2 )− iγPB−1
∗(0)

2g
. (A.22)

Let us say the input fields B1(0) and B−1(0) are given by :

B1(0) = b1eiθ1 , (A.23)
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B−1(0) = b−1eiθ−1 , (A.24)

ϑ =
b1

b−1
, (A.25)

where bi’s and θi’s are the amplitudes and phases of the respective waves at the input
of the fiber with i = 1,−1. Using Equations (A.21) and (A.22) in Equation (A.15), we
calculate the signal gain G1 = |B1(L)|2

|B1(0)|2
as :

G1 =1 +

(
1 +

κ2 + 4γ2P2ϑ2 − 4κγPϑ cos(Θ)

4g2

)
sinh2(gL)

+
γPϑ sin(Θ)

g
sinh(2gL),

(A.26)

where Θ is the relative phase Θ = 2θ0 − θ−1 − θ1. Here for simplicity we considered
θ0 = 0.

A.2 Non-degenerate Pump Configuration

For the degenerate pump configuration, the index 0 is for the degenerate signal and
idler, -1 and 1 are for the non-degenerate pumps. Invoking the approximation that
the pump is much stronger than the signal and the idler, the equations for the pumps
are given as :

dA1

dz
= iγ(|A1|2A1 + 2|A−1|2A1), (A.27)

dA−1

dz
= iγ(|A−1|2A−1 + 2|A1|2A−1). (A.28)

Considering that the two pump waves have the same power P = |A1|2 = |A−1|2,
we can write :

dAj

dz
= iγ(PAj + 2PAj) = iγ 3PAj , (A.29)

where j = 1,−1. Solving for Aj and considering that the pumps have zero phase at
the input of the fiber, we get :

Aj(z) = Aj(0)eiγ3Pz =
√

Peiγ3Pz, (A.30)

where j = 1,−1. Injecting A1 and A−1 into Equation (A.3) and also considering the
pump powers to be much stronger than the signal and idler, we write the equation
for the signal as :

dA0

dz
= iγP

(
4A0 + 2A0

∗ei(∆β1−100+6γP)z
)

(A.31)
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To eliminate the first term of Equation (A.31), we perform a transformation of vari-
able :

B0 = A0e−4iγPz. (A.32)

Invoking this transformation in Equation (A.31) we get :

dB0

dz
= 2iγPB0

∗eiκz, (A.33)

where κ is given by :
κ = ∆β1−100 − 2γP. (A.34)

The complex conjugate of Equation (A.33) is given by :

dB0
∗

dz
= −2iγPB0e−iκz. (A.35)

Differentiating Equation (A.33) with respect to z and using Equation (A.35) we get :

d2B0

dz2 − iκ
dB0

dz
− 4γ2P2B0 = 0. (A.36)

The general solution to the above differential equation can be expressed in the form
[135] :

B0 =

(
a1egz + a2e−gz

)
ei κ

2 z, (A.37)

where g is given by :

g =

(
4γ2P2 − κ2

4

) 1
2

, (A.38)

and a1 and a2 are arbitrary constants to be determined from the initial conditions.
We note here that although the solutions have a similar functional form for the de-
generate pump and non-degenerate pump cases, the definitions of κ and g differ for
them. For z = 0 we have :

B0(0) = a1 + a2. (A.39)

Taking the derivative of Equation (A.37) with respect to z and imposing z = 0 and
then equating it with Equation (A.33) at z = 0, we get :

2iγPB0
∗(0) = (a1g− a2g) + (a1 + a2)

iκ
2

= (a1g− (B0(0)− a1)g) + B0(0)
iκ
2

. (A.40)

Thus solving for a1 and a2, we get :

a1 =
B0(0)(g− iκ

2 ) + 2iγPB0
∗(0)

2g
, (A.41)

a2 =
B0(0)(g + iκ

2 )− 2iγPB0
∗(0)

2g
. (A.42)
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Inserting the values of a1 and a2 in Equation (A.37) we calculate the signal gain G0 =
|B0(L)|2
|B0(0)|2 as :

G0 =1 +

(
1 +

κ2

4 + 4γ2P2 − 2κγP cos(Θ)

g2

)
sinh2(gL)

+
2γP sin(Θ)

g
sinh(2gL),

(A.43)

where Θ is the relative phase Θ = 2θ0 − θ−1 − θ1. Here for simplicity we considered
θ−1 = θ1 = 0.
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Appendix B
Coupled Equations for the 7-Wave
Model

ω
A−3 A−2 A−1 A0 A1 A2 A3

HOP1

HOI1

Pump1

Signal

Pump2

HOI2

HOP2

∆ωPP

Figure B.1. Configuration of a dual-pump FOPA with degenerate sig-
nal and idler and non-degenerate pumps. ω is frequency. The two
pumps are labelled A1 and A−1, the signal is labelled A0, two higher
order idlers (HOI) are labelled A2 and A−2 and two higher order
pumps (HOP) are labelled A3 and A−3. ∆ωPP is the frequency dif-

ference between the pumps. (not to scale)

The coupled differential equations governing the evolution of the slowly varying
complex amplitudes Aj’s of the 2k + 1 waves (see Fig. B.1) along the fiber can be
derived from the general equation (see Equation (2.4))[56] :

dAj

dz
= iγ

[
|Aj|2Aj + 2

k

∑
l 6=j=−k

|Al |2Aj +
k

∑
m,n,p=−k,

ωm+ωn−ωp=ωj

Am An A∗pei∆βmnpjz
]
, (B.1)

where ∆βmnpj = βm + βn − βp − β j and γ is the nonlinear coefficient of the fiber.
Here we have ignored the fiber attenuation.
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When k = 3, we have seven waves, and the coupled equations considering all
the FWM terms from Equation (B.1) are given by [89, 168] :

dA0

dz
= iγ

{[
|A0|2 A0 + 2

3

∑
j=−3,j 6=0

|Aj|2
]
A0 + A2

−1 A∗−2ei∆β−1−1−20 + A2
1 A∗2ei∆β1120

+ 2A−1 A1 A∗0ei∆β−1100 + 2A−1 A3 A∗2ei∆β−1320 + 2A−1 A−2 A∗−3ei∆β−1−2−30 + 2A−1 A2 A∗1ei∆β−1210

+ 2A1 A−3 A∗−2ei∆β1−3−20 + 2A1 A−2 A∗−1ei∆β1−2−10 + 2A1 A2 A∗3ei∆β1230 + 2A−3 A2 A∗−1ei∆β−32−10

+ 2A−3 A3 A∗0ei∆β−3300 + 2A−2 A2 A∗0ei∆β−2200 + 2A3 A−2 A∗1ei∆β3−210
}

. (B.2)

dA−1

dz
= iγ

{[
|A−1|2 A−1 + 2

3

∑
j=−3,j 6=−1

|Aj|2
]
A−1 + A2

1 A∗3ei∆β113−1 + A2
0 A∗1ei∆β001−1

+ A2
−2 A∗3ei∆β−2−2−3−1 + 2A0 A1 A∗2ei∆β012−1 + 2A1 A−3 A∗−1ei∆β1−3−1−1 + 2A−3 A3 A∗1ei∆β−331−1

+ 2A0 A−3 A∗−2ei∆β0−3−2−1 + 2A2 A−3 A∗0ei∆β2−30−1 + 2A0 A2 A∗3ei∆β023−1 + 2A1 A−2 A∗0ei∆β1−20−1

+ 2A0 A−2 A∗−1ei∆β0−2−1−1 + 2A−2 A3 A∗2ei∆β−232−1 + 2A−2 A2 A∗1ei∆β−221−1
}

. (B.3)

dA1

dz
= iγ

{[
|A1|2 A1 + 2

3

∑
j=−3,j 6=1

|Aj|2
]
A1 + A2

−1 A∗−3ei∆β−1−1−31 + A2
0 A∗−1ei∆β00−11

+ A2
2 A∗3ei∆β2231 + 2A0 A−1 A∗−2ei∆β0−1−21 + 2A−1 A3 A∗1ei∆β−1311 + 2A−1 A2 A∗0ei∆β−1201

+ 2A0 A3 A∗2ei∆β0321 + 2A0 A−2 A∗−3ei∆β0−2−31 + 2A0 A2 A∗1ei∆β0211 + 2A−2 A3 A∗0ei∆β−2301

+ 2A−3 A3 A∗−1ei∆β−33−11 + 2A2 A−3 A∗−2ei∆β2−3−21 + 2A−2 A2 A∗−1ei∆β−22−11
}

. (B.4)

dA−2

dz
= iγ

{[
|A−2|2 A−2 + 2

3

∑
j=−3,j 6=−2

|Aj|2
]
A−2 + A2

−1 A∗0ei∆β−1−10−2 + A2
0 A∗2ei∆β002−2

+ 2A−1 A1 A∗2ei∆β−112−2 + 2A0 A−1 A∗1ei∆β0−11−2 + 2A−1 A−3 A∗−2ei∆β−1−3−2−2 + 2A−1 A2 A∗3ei∆β−123−2

+ 2A2 A−3 A∗1ei∆β2−31−2 + 2A−3 A3 A∗2ei∆β−332−2 + 2A0 A−3 A∗−1ei∆β0−3−1−2 + 2A1 A−3 A∗0ei∆β1−30−2

+ 2A0 A1 A∗3ei∆β013−2
}

. (B.5)

dA2

dz
= iγ

{[
|A2|2 A2 + 2

3

∑
j=−3,j 6=2

|Aj|2
]
A2 + A2

0 A∗−2ei∆β00−22 + A2
1 A∗0ei∆β1102

+ 2A−1 A1 A∗−2ei∆β−11−22 + 2A0 A−1 A∗−3ei∆β0−1−32 + 2A−1 A3 A∗0ei∆β−1302 + 2A0 A1 A∗−1ei∆β01−12

+ 2A1 A3 A∗2ei∆β1322 + 2A1 A−2 A∗−3ei∆β1−2−32 + 2A0 A3 A∗1ei∆β0312 + 2A−3 A3 A∗−2ei∆β−33−22

+ 2A−2 A3 A∗−1ei∆β−23−12
}

. (B.6)
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dA−3

dz
= iγ

{[
|A−3|2 A−3 + 2

3

∑
j=−2
|Aj|2

]
A−3 + A2

−1 A∗1ei∆β−1−11−3 + A2
0 A∗3ei∆β003−3

+ A2
−2 A∗−1ei∆β−2−2−1−3 + 2A−1 A1 A∗3ei∆β−113−3 + 2A0 A−1 A∗2ei∆β0−12−3 + 2A−1 A−2 A∗0ei∆β−1−20−3

+ 2A0 A−2 A∗1ei∆β0−21−3 + 2A1 A−2 A∗2ei∆β1−22−3 + 2A−2 A2 A∗3ei∆β−223−3
}

. (B.7)

dA3

dz
= iγ

{[
|A3|2A3 + 2

2

∑
j=−3
|Aj|2

]
A3 + A2

1A∗−1ei∆β11−13 + A2
0A∗−3ei∆β00−33

+ A2
2 A∗1ei∆β2213 + 2A−1A1A∗−3ei∆β−11−33 + 2A−1A2A∗−2ei∆β−12−23 + 2A0A1A∗−2ei∆β01−23

+ 2A−2A2A∗−3ei∆β−22−33 + 2A1A2A∗0ei∆β1203 + 2A0A2A∗−1ei∆β02−13
}

. (B.8)
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Appendix C
Signal and HOI Evolution in
Analytical 7-wave Model

Considering the analytical 7-wave model, in the case of arbitrary initial conditions
for the waves A0, A2 and A−2, the input and output waves can be related as (as
given in Equation (2.101)) :

d
dz


A0

A0
∗

A−2

A−2
∗

 = iγP


4 2ei(2ξ+2C)z 4ei4Cz 2ei(2ξ−2C)z

−2e−i(2ξ+2C)z −4 −2e−i(2ξ−2C)z −4e−i4Cz

2e−i4Cz ei(2ξ−2C)z 4 2ei(2ξ−6C)z

−e−i(2ξ−2C)z −2ei4Cz −2e−i(2ξ−6C)z −4




A0

A0
∗

A−2

A−2
∗



+ iγP


−2ei4Czδ2 − ei(2ξ−2C)zδ∗2
2e−i4Czδ∗2 + e−i(2ξ−2C)zδ2

−2ei(2ξ−6C)zδ∗2
2e−i(2ξ−6C)zδ2

 ,

(C.1)

where P is the undepleted pump power, γ is the nonlinear coefficient of the fiber. ξ,
C and δ2 are given by :

ξ = 3γP,

C =
β(2)(ωc)∆ωPP

2

8
δ2 = A−2 − A2.

(C.2)

In order to remove the exponential terms from the Equation (C.1), we perform the
following transformation of variables (as given in Equation (2.102)) :

A0 = B0ei(ξ+C)z,

A−2 = B−2ei(ξ−3C)z,

A2 = B2ei(ξ−3C)z,

δ̃2 = B−2 − B2 = e−i(ξ−3C)zδ2.

(C.3)
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Invoking these transformations we get :

d
dz


B0

B0
∗

B−2

B−2
∗

 = iγP


1− F0 2 4 2
−2 −(1− F0) −2 −4
2 1 1− F2 2
−1 −2 −2 −(1− F2)




B0

B0
∗

B−2

B−2
∗

+ iγP


−2δ̃2 − δ̃2

∗

2δ̃2
∗
+ δ̃2

−2δ̃2
∗

2δ̃2

 ,

(C.4)

where Fq is given by :

Fq =
C(1− q2)

γP
, (C.5)

where |q| = 0, 2. Equation (C.4) is a coupled linear inhomogenious differential equa-
tion of the form :

dB
dz

= M
′
B + N,

where M
′

is the transfer matrix and N is the inhomogenity term. The eigenvalues
(λ1, λ2, λ3 and λ4) and eigenvectors (V1, V2, V3 and V4,) of M

′
are given as (also

given in Equations (2.84) and (2.85) respectively) :

λ1 = −iγP ν0, λ2 = iγP ν0, λ3 = −iγP ν2, λ4 = iγP ν2, (C.6)

V1 =


η − ν0

η + ν0

1
1

 , V2 =


η + ν0

η − ν0

1
1

 , V3 =


−6

ν2−3η
6

ν2−3η
ν2+3η
ν2−3η

1

 , V4 =


6

ν2+3η
−6

ν2+3η
ν2−3η
ν2+3η

1

 , (C.7)

where η, ν0 and ν2 (as given by Equations (C.8)and (C.9)) are :

η = −1− F0 , (C.8)

νq =
√

3− 2Fq + Fq
2 , (C.9)

where |q| = 0, 2. Also using Equation (2.104) we can write δ̃2(z) as :

δ̃2(z) =
(
−iη2 sin(γPµ2z)

µ2
+ cos(γPµ2z)

)
δ̃2(0)−

(
2i sin(γPµ2z)

µ2

)
δ̃2
∗
(0), (C.10)

where η2 and µ2 are given by (see Equation (??)) :

η2 = −1 + F2 = −1− 3F0 = 2 + 3η, (C.11)

µ2 = (−3− 2F2 + F2
2)

1
2 = (−3 + 6F0 + 9F0

2)
1
2 . (C.12)
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We can also define the fundamental matrix F of M
′

as :

F =

[
eλ1zV1 eλ2zV2 eλ3zV3 eλ4zV4

]

=


(η − ν0)e−iγPν0z (η + ν0)eiγPν0z −6

ν2−3η e−iγPν2z 6
ν2+3η eiγPν2z

(η + ν0)e−iγPν0z (η − ν0)eiγPν0z 6
ν2−3η e−iγPν2z −6

ν2+3η eiγPν2z

e−iγPν0z eiγPν0z ν2+3η
ν2−3η e−iγPν2z ν2−3η

ν2+3η eiγPν2z

e−iγPν0z eiγPν0z e−iγPν2z eiγPν2z

 ,

(C.13)

The solution to Equation (C.4) is given by :

B(z) = F(z)F(0)−1B(0) +
∫ z

0
F(z)F(s)−1N(s)ds

= B̄(z)B(0) + ∆B(z)B̃(0)

= B̄(z)B(0) +


b11 b12 b13 b14

b21 b22 b23 b24

b31 b32 b33 b34

b41 b42 b43 b44




B−2(0)
B−2

∗(0)
B2(0)
B2
∗(0)

 ,

(C.14)

where the first term on the right hand side of the above equation represents the
solution when δ2 = 0 (or δ̃2 = 0) (as N = 0 when δ2 = 0) which is given by Equa-
tions (2.90) and (2.91). The second term arises due to the inhomogenity of the system.
We should note here that the second term is independent of B0(0), which means any
input fluctuations in the signal mode will not contaminate the mode produced by
the beating between B−2 and B2 modes. Using Mathematica [253], we find F(s)−1 as
:

F(s)−1 =


ν0−η
4ν0η eiγPν0s ν0+η

4ν0η eiγPν0s −1
2ν0η eiγPν0s 1

2ν0η eiγPν0s

ν0+η
4ν0η e−iγPν0s ν0−η

4ν0η e−iγPν0s 1
2ν0η e−iγPν0s −1

2ν0η e−iγPν0s

−(ν2−3η)
4ν2η eiγPν2s −(ν2−3η)

4ν2η eiγPν2s (ν2+3η)(ν2−3η)
12ν2η eiγPν2s −(ν2−3η)2

12ν2η eiγPν2s

−(ν2+3η)
4ν2η e−iγPν2s −(ν2+3η)

4ν2η e−iγPν2s −(ν2+3η)(ν2−3η)
12ν2η e−iγPν2s (ν2+3η)2

12ν2η e−iγPν2s

 .

(C.15)
In Equation (C.4), in the second term, we can pull F(z) out of the integral as the
integral is on s. Thus we can write :∫ z

0
F(z)F(s)−1N(s)ds = F(z)

∫ z

0
F(s)−1N(s)ds. (C.16)

We perform the computation in Mathematica [253] and first find the solutions for the
bij coefficients in Equation (C.14) (see Appendix D)1. Note that we just need to find
the elements in the first and third row of the bij matrix since the second and fourth
rows are related to the first and third rows respectively. After that we find the final

1A different notation was used for the code : ν0 → µ0, ν2 → µ2, µ2 → µ2o, η → η0
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solution for B0(z), B−2(z) and B2(z) as :

B0(z) = B0(0)
(

cos(γPν0z) +
i(η2 + ν0

2)

2ην0
sin(γPν0z)− 3i

ην2
sin(γPν2z)

)
+ B∗0 (0)

(
i(−η2 + ν0

2)

2ην0
sin(γPν0z)− 3i

ην2
sin(γPν2z)

)
+ B−2(0)

(
1

2η
cos(γPν0z)− 1

2η
cos(γPν2z) +

i
2ν0

sin(γPν0z) +
3i

2ν2
sin(γPν2z)

)
+ B∗−2(0)

(
− 1

2η
cos(γPν0z) +

1
2η

cos(γPν2z)− i
2ν0

sin(γPν0z) +
3i

2ν2
sin(γPν2z)

)
+ B2(0)

(
1

2η
cos(γPν0z)− 1

2η
cos(γPν2z) +

i
2ν0

sin(γPν0z) +
3i

2ν2
sin(γPν2z)

)
+ B∗2 (0)

(
− 1

2η
cos(γPν0z) +

1
2η

cos(γPν2z)− i
2ν0

sin(γPν0z) +
3i

2ν2
sin(γPν2z)

)
,

(C.17)

B−2(z) = B0(0)
(

1
2η

cos(γPν0z)− 1
2η

cos(γPν2z) +
i

2ν0
sin(γPν0z) +

3i
2ν2

sin(γPν2z)
)

+ B∗0 (0)
(

1
2η

cos(γPν0z)− 1
2η

cos(γPν2z)− i
2ν0

sin(γPν0z) +
3i

2ν2
sin(γPν2z)

)
+ B−2(0)

(
1
2

cos(γPν2z) +
1
2

cos(γPµ2z) +
i

2ην0
sin(γPν0z)

− i(3η2 + 2η + 1)
2ην2

sin(γPν2z)− i(2 + 3η)

2µ2
sin(γPµ2z)

)
+ B∗−2(0)

(
− i

2ην0
sin(γPν0z) +

i(2η + 1)
2ην2

sin(γPν2z)− i
µ2

sin(γPµ2z)
)

+ B2(0)
(

1
2

cos(γPν2z)− 1
2

cos(γPµ2z) +
i

2ην0
sin(γPν0z)

− i(3η2 + 2η + 1)
2ην2

sin(γPν2z) +
i(2 + 3η)

2µ2
sin(γPµ2z)

)
+ B∗2 (0)

(
− i

2ην0
sin(γPν0z) +

i(2η + 1)
2ην2

sin(γPν2z) +
i

µ2
sin(γPµ2z)

)
,

(C.18)

B2(z) = B0(0)
(

1
2η

cos(γPν0z)− 1
2η

cos(γPν2z) +
i

2ν0
sin(γPν0z) +

3i
2ν2

sin(γPν2z)
)

+ B∗0 (0)
(

1
2η

cos(γPν0z)− 1
2η

cos(γPν2z)− i
2ν0

sin(γPν0z) +
3i

2ν2
sin(γPν2z)

)
+ B−2(0)

(
1
2

cos(γPν2z)− 1
2

cos(γPµ2z) +
i

2ην0
sin(γPν0z)

− i(3η2 + 2η + 1)
2ην2

sin(γPν2z) +
i(2 + 3η)

2µ2
sin(γPµ2z)

)
+ B∗−2(0)

(
− i

2ην0
sin(γPν0z) +

i(2η + 1)
2ην2

sin(γPν2z) +
i

µ2
sin(γPµ2z)

)
+ B2(0)

(
1
2

cos(γPν2z) +
1
2

cos(γPµ2z) +
i

2ην0
sin(γPν0z)

− i(3η2 + 2η + 1)
2ην2

sin(γPν2z)− i(2 + 3η)

2µ2
sin(γPµ2z)

)
+ B∗2 (0)

(
− i

2ην0
sin(γPν0z) +

i(2η + 1)
2ην2

sin(γPν2z)− i
µ2

sin(γPµ2z)
)

,

(C.19)
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Fz = Exp[-ⅈ * γ * P * μ0 * z] * η0 - μ0, Exp[ⅈ * γ * P * μ0 * z] * η0 + μ0,

Exp[-ⅈ * γ * P * μ2 * z] * -6  μ2 - 3 * η0, Exp[ⅈ * γ * P * μ2 * z] * 6  μ2 + 3 * η0,

Exp[-ⅈ * γ * P * μ0 * z] * η0 + μ0, Exp[ⅈ * γ * P * μ0 * z] * η0 - μ0,

Exp[-ⅈ * γ * P * μ2 * z] * 6  μ2 - 3 * η0, Exp[ⅈ * γ * P * μ2 * z] * -6  μ2 + 3 * η0,

Exp[-ⅈ * γ * P * μ0 * z], Exp[ⅈ * γ * P * μ0 * z], Exp[-ⅈ * γ * P * μ2 * z] *

μ2 + 3 * η0  μ2 - 3 * η0, Exp[ⅈ * γ * P * μ2 * z] * μ2 - 3 * η0  μ2 + 3 * η0,

{Exp[-ⅈ * γ * P * μ0 * z], Exp[ⅈ * γ * P * μ0 * z], Exp[-ⅈ * γ * P * μ2 * z],

Exp[ⅈ * γ * P * μ2 * z]};(*F(z)*)

Fs = Exp[-ⅈ * γ * P * μ0 * s] * η0 - μ0, Exp[ⅈ * γ * P * μ0 * s] * η0 + μ0,

Exp[-ⅈ * γ * P * μ2 * s] * -6  μ2 - 3 * η0, Exp[ⅈ * γ * P * μ2 * s] * 6  μ2 + 3 * η0,

Exp[-ⅈ * γ * P * μ0 * s] * η0 + μ0, Exp[ⅈ * γ * P * μ0 * s] * η0 - μ0,

Exp[-ⅈ * γ * P * μ2 * s] * 6  μ2 - 3 * η0, Exp[ⅈ * γ * P * μ2 * s] * -6  μ2 + 3 * η0,

Exp[-ⅈ * γ * P * μ0 * s], Exp[ⅈ * γ * P * μ0 * s], Exp[-ⅈ * γ * P * μ2 * s] *

μ2 + 3 * η0  μ2 - 3 * η0, Exp[ⅈ * γ * P * μ2 * s] * μ2 - 3 * η0  μ2 + 3 * η0,

{Exp[-ⅈ * γ * P * μ0 * s], Exp[ⅈ * γ * P * μ0 * s], Exp[-ⅈ * γ * P * μ2 * s],

Exp[ⅈ * γ * P * μ2 * s]};(*F(s)*)

MatrixForm[

Fz]

FsI = FullSimplify[Inverse[Fs]];(*F(s)^-1*)

MatrixForm[FsI]

d2[s_] := d20 * Cos[γ * P * s * μ2o] - ⅈ * -η2 - 2  μ2o * Sin[γ * P * s * μ2o] -

d2c0 * 2 * ⅈ * Sin[γ * P * s * μ2o]  μ2o;(*δ2(s)*)

d2c[s_] := d2c0 * Cos[γ * P * s * μ2o] + ⅈ * -η2 - 2  μ2o * Sin[γ * P * s * μ2o] +

d20 * 2 * ⅈ * Sin[γ * P * s * μ2o]  μ2o;(*Conjugate(δ2(s))*)

Ns = ⅈ * γ * P * {{-2 * d2[s] - d2c[s]}, {2 * d2c[s] + d2[s]}, {-2 * d2c[s]}, {2 * d2[s]}};

(*N(s)*)

MatrixForm[Ns]

FsINs = FullSimplify[FsI.Ns];(*F(s)^-1.N(s)*)

MatrixForm[FsINs]

IntFsINs = FullSimplify[Integrate[FsINs, {s, 0, z}]];

(*IntegralF(s)^-1.N(s)ds from s=0 to s=z*)

MatrixForm[IntFsINs]

B0inhomo = Fz[[1, 1]] * IntFsINs[[1]] + Fz[[1, 2]] * IntFsINs[[2]] +

Fz[[1, 3]] * IntFsINs[[3]] + Fz[[1, 4]] * IntFsINs[[4]] /.

4 + 3 η0 + η2 → 0, 11 + 6 η0 + 2 η2 → 3, μ2^2 - μ2o^2 → 6,

μ2 - μ2o μ2 + μ2o → 6, η2 → -3 η0 - 4, d20 → bm2 - b2, d2c0 → bm2c - b2c;

(*F(z).IntegralF(s)^-1.N(s)ds [[1]]*)

In[ ]:= B0inhomosort = Collect[B0inhomo, {b2, b2c, bm2, bm2c} ]
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B0inhomobm2c = FullSimplify

3 ⅇ-ⅈ P z γ μ0 4 + 3 η0 η0 - μ0

4 μ0 μ0 - μ2o μ0 + μ2o
-

ⅇ-ⅈ P z γ μ0 η0 - μ0 μ0

4 η0 μ0 - μ2o μ0 + μ2o
-
3 ⅇⅈ P z γ μ0 4 + 3 η0 η0 + μ0

4 μ0 μ0 - μ2o μ0 + μ2o
+

ⅇⅈ P z γ μ0 μ0 η0 + μ0

4 η0 μ0 - μ2o μ0 + μ2o
-

3 ⅇ-ⅈ P z γ μ2

2 η0 μ2 - μ2o μ2 + μ2o
-

3 ⅇⅈ P z γ μ2

2 η0 μ2 - μ2o μ2 + μ2o
-
3 ⅇ-ⅈ P z γ μ2 -4 - 3 η0 1 + 2 η0

2 η0 μ2 μ2 - μ2o μ2 + μ2o
+

3 ⅇⅈ P z γ μ2 -4 - 3 η0 1 + 2 η0

2 η0 μ2 μ2 - μ2o μ2 + μ2o
-

ⅇ-ⅈ P z γ μ2 μ2

η0 μ2 - μ2o μ2 + μ2o
+

ⅇⅈ P z γ μ2 μ2

η0 μ2 - μ2o μ2 + μ2o
-
3 4 + 3 η0 η0 - μ0 Cos[P z γ μ2o]

4 μ0 μ0 - μ2o μ0 + μ2o
+

η0 - μ0 μ0 Cos[P z γ μ2o]

4 η0 μ0 - μ2o μ0 + μ2o
+
3 4 + 3 η0 η0 + μ0 Cos[P z γ μ2o]

4 μ0 μ0 - μ2o μ0 + μ2o
-

μ0 η0 + μ0 Cos[P z γ μ2o]

4 η0 μ0 - μ2o μ0 + μ2o
+

3 Cos[P z γ μ2o]

η0 μ2 - μ2o μ2 + μ2o
+

3 ⅈ 4 + 3 η0 η0 - μ0 Sin[P z γ μ2o]

4 μ0 - μ2o μ2o μ0 + μ2o
-
ⅈ -4 - 3 η0 η0 - μ0 μ0 Sin[P z γ μ2o]

4 η0 μ0 - μ2o μ2o μ0 + μ2o
+

3 ⅈ 4 + 3 η0 η0 + μ0 Sin[P z γ μ2o]

4 μ0 - μ2o μ2o μ0 + μ2o
+
ⅈ -4 - 3 η0 μ0 η0 + μ0 Sin[P z γ μ2o]

4 η0 μ0 - μ2o μ2o μ0 + μ2o
-

ⅈ η0 - μ0 μ2o Sin[P z γ μ2o]

4 η0 μ0 - μ2o μ0 + μ2o
-
ⅈ 4 + 3 η0 η0 - μ0 μ2o Sin[P z γ μ2o]

4 η0 μ0 μ0 - μ2o μ0 + μ2o
-

ⅈ η0 + μ0 μ2o Sin[P z γ μ2o]

4 η0 μ0 - μ2o μ0 + μ2o
+
ⅈ 4 + 3 η0 η0 + μ0 μ2o Sin[P z γ μ2o]

4 η0 μ0 μ0 - μ2o μ0 + μ2o
-

3 ⅈ -4 - 3 η0 1 + 2 η0 Sin[P z γ μ2o]

η0 μ2 - μ2o μ2o μ2 + μ2o
-

2 ⅈ μ2o Sin[P z γ μ2o]

η0 μ2 - μ2o μ2 + μ2o
/.

η0 → -1 - F0, μ0 → 3 - 2 F0 + F0^2^1  2, μ2 → 3 + 6 F0 + 9 F0^2^1  2,

μ2o → -3 + 6 F0 + 9 F0^2^1  2(*b12*)

Out[ ]=

1

2

-Cos 3 + -2 + F0 F0 P z γ + Cos 3 + 6 F0 + 9 F02 P z γ

1 + F0
+

ⅈ
Sin 3 + -2 + F0 F0 P z γ

3 + -2 + F0 F0
-
3 Sin 3 + 6 F0 + 9 F02 P z γ

3 + 6 F0 + 9 F02
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B0inhomobm2 = FullSimplify -
3 ⅇ-ⅈ P z γ μ0 4 + 3 η0 η0 - μ0

4 μ0 μ0 - μ2o μ0 + μ2o
+

ⅇ-ⅈ P z γ μ0 η0 - μ0 μ0

4 η0 μ0 - μ2o μ0 + μ2o
+

3 ⅇⅈ P z γ μ0 4 + 3 η0 η0 + μ0

4 μ0 μ0 - μ2o μ0 + μ2o
-

ⅇⅈ P z γ μ0 μ0 η0 + μ0

4 η0 μ0 - μ2o μ0 + μ2o
+

3 ⅇ-ⅈ P z γ μ2

2 η0 μ2 - μ2o μ2 + μ2o
+

3 ⅇⅈ P z γ μ2

2 η0 μ2 - μ2o μ2 + μ2o
-
3 ⅇ-ⅈ P z γ μ2 -4 - 3 η0 1 + 2 η0

2 η0 μ2 μ2 - μ2o μ2 + μ2o
+

3 ⅇⅈ P z γ μ2 -4 - 3 η0 1 + 2 η0

2 η0 μ2 μ2 - μ2o μ2 + μ2o
-

ⅇ-ⅈ P z γ μ2 μ2

η0 μ2 - μ2o μ2 + μ2o
+

ⅇⅈ P z γ μ2 μ2

η0 μ2 - μ2o μ2 + μ2o
+
3 4 + 3 η0 η0 - μ0 Cos[P z γ μ2o]

4 μ0 μ0 - μ2o μ0 + μ2o
-

η0 - μ0 μ0 Cos[P z γ μ2o]

4 η0 μ0 - μ2o μ0 + μ2o
-
3 4 + 3 η0 η0 + μ0 Cos[P z γ μ2o]

4 μ0 μ0 - μ2o μ0 + μ2o
+

μ0 η0 + μ0 Cos[P z γ μ2o]

4 η0 μ0 - μ2o μ0 + μ2o
-

3 Cos[P z γ μ2o]

η0 μ2 - μ2o μ2 + μ2o
-

3 ⅈ 4 + 3 η0 η0 - μ0 Sin[P z γ μ2o]

4 μ0 - μ2o μ2o μ0 + μ2o
-
ⅈ -4 - 3 η0 η0 - μ0 μ0 Sin[P z γ μ2o]

4 η0 μ0 - μ2o μ2o μ0 + μ2o
-

3 ⅈ 4 + 3 η0 η0 + μ0 Sin[P z γ μ2o]

4 μ0 - μ2o μ2o μ0 + μ2o
+
ⅈ -4 - 3 η0 μ0 η0 + μ0 Sin[P z γ μ2o]

4 η0 μ0 - μ2o μ2o μ0 + μ2o
+

ⅈ η0 - μ0 μ2o Sin[P z γ μ2o]

4 η0 μ0 - μ2o μ0 + μ2o
-
ⅈ 4 + 3 η0 η0 - μ0 μ2o Sin[P z γ μ2o]

4 η0 μ0 μ0 - μ2o μ0 + μ2o
+

ⅈ η0 + μ0 μ2o Sin[P z γ μ2o]

4 η0 μ0 - μ2o μ0 + μ2o
+
ⅈ 4 + 3 η0 η0 + μ0 μ2o Sin[P z γ μ2o]

4 η0 μ0 μ0 - μ2o μ0 + μ2o
-

3 ⅈ -4 - 3 η0 1 + 2 η0 Sin[P z γ μ2o]

η0 μ2 - μ2o μ2o μ2 + μ2o
-

2 ⅈ μ2o Sin[P z γ μ2o]

η0 μ2 - μ2o μ2 + μ2o
/.

η0 → -1 - F0, μ0 → 3 - 2 F0 + F0^2^1  2, μ2 → 3 + 6 F0 + 9 F0^2^1  2,

μ2o → -3 + 6 F0 + 9 F0^2^1  2(*b11*)

Out[ ]=

1

2

Cos 3 + -2 + F0 F0 P z γ - Cos 3 + 6 F0 + 9 F02 P z γ

1 + F0
-

ⅈ
Sin 3 + -2 + F0 F0 P z γ

3 + -2 + F0 F0
+
3 Sin 3 + 6 F0 + 9 F02 P z γ

3 + 6 F0 + 9 F02
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B0inhomob2 = FullSimplify

3 ⅇ-ⅈ P z γ μ0 4 + 3 η0 η0 - μ0

4 μ0 μ0 - μ2o μ0 + μ2o
-

ⅇ-ⅈ P z γ μ0 η0 - μ0 μ0

4 η0 μ0 - μ2o μ0 + μ2o
-
3 ⅇⅈ P z γ μ0 4 + 3 η0 η0 + μ0

4 μ0 μ0 - μ2o μ0 + μ2o
+

ⅇⅈ P z γ μ0 μ0 η0 + μ0

4 η0 μ0 - μ2o μ0 + μ2o
-

3 ⅇ-ⅈ P z γ μ2

2 η0 μ2 - μ2o μ2 + μ2o
-

3 ⅇⅈ P z γ μ2

2 η0 μ2 - μ2o μ2 + μ2o
+
3 ⅇ-ⅈ P z γ μ2 -4 - 3 η0 1 + 2 η0

2 η0 μ2 μ2 - μ2o μ2 + μ2o
-

3 ⅇⅈ P z γ μ2 -4 - 3 η0 1 + 2 η0

2 η0 μ2 μ2 - μ2o μ2 + μ2o
+

ⅇ-ⅈ P z γ μ2 μ2

η0 μ2 - μ2o μ2 + μ2o
-

ⅇⅈ P z γ μ2 μ2

η0 μ2 - μ2o μ2 + μ2o
-
3 4 + 3 η0 η0 - μ0 Cos[P z γ μ2o]

4 μ0 μ0 - μ2o μ0 + μ2o
+

η0 - μ0 μ0 Cos[P z γ μ2o]

4 η0 μ0 - μ2o μ0 + μ2o
+
3 4 + 3 η0 η0 + μ0 Cos[P z γ μ2o]

4 μ0 μ0 - μ2o μ0 + μ2o
-

μ0 η0 + μ0 Cos[P z γ μ2o]

4 η0 μ0 - μ2o μ0 + μ2o
+

3 Cos[P z γ μ2o]

η0 μ2 - μ2o μ2 + μ2o
+

3 ⅈ 4 + 3 η0 η0 - μ0 Sin[P z γ μ2o]

4 μ0 - μ2o μ2o μ0 + μ2o
+
ⅈ -4 - 3 η0 η0 - μ0 μ0 Sin[P z γ μ2o]

4 η0 μ0 - μ2o μ2o μ0 + μ2o
+

3 ⅈ 4 + 3 η0 η0 + μ0 Sin[P z γ μ2o]

4 μ0 - μ2o μ2o μ0 + μ2o
-
ⅈ -4 - 3 η0 μ0 η0 + μ0 Sin[P z γ μ2o]

4 η0 μ0 - μ2o μ2o μ0 + μ2o
-

ⅈ η0 - μ0 μ2o Sin[P z γ μ2o]

4 η0 μ0 - μ2o μ0 + μ2o
+
ⅈ 4 + 3 η0 η0 - μ0 μ2o Sin[P z γ μ2o]

4 η0 μ0 μ0 - μ2o μ0 + μ2o
-

ⅈ η0 + μ0 μ2o Sin[P z γ μ2o]

4 η0 μ0 - μ2o μ0 + μ2o
-
ⅈ 4 + 3 η0 η0 + μ0 μ2o Sin[P z γ μ2o]

4 η0 μ0 μ0 - μ2o μ0 + μ2o
+

3 ⅈ -4 - 3 η0 1 + 2 η0 Sin[P z γ μ2o]

η0 μ2 - μ2o μ2o μ2 + μ2o
+

2 ⅈ μ2o Sin[P z γ μ2o]

η0 μ2 - μ2o μ2 + μ2o
/.

η0 → -1 - F0, μ0 → 3 - 2 F0 + F0^2^1  2, μ2 → 3 + 6 F0 + 9 F0^2^1  2,

μ2o → -3 + 6 F0 + 9 F0^2^1  2(*b13*)

Out[ ]=

1

2

-Cos 3 + -2 + F0 F0 P z γ + Cos 3 + 6 F0 + 9 F02 P z γ

1 + F0
+

ⅈ
Sin 3 + -2 + F0 F0 P z γ

3 + -2 + F0 F0
+
3 Sin 3 + 6 F0 + 9 F02 P z γ

3 + 6 F0 + 9 F02
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B0inhomob2c = FullSimplify -
3 ⅇ-ⅈ P z γ μ0 4 + 3 η0 η0 - μ0

4 μ0 μ0 - μ2o μ0 + μ2o
+

ⅇ-ⅈ P z γ μ0 η0 - μ0 μ0

4 η0 μ0 - μ2o μ0 + μ2o
+

3 ⅇⅈ P z γ μ0 4 + 3 η0 η0 + μ0

4 μ0 μ0 - μ2o μ0 + μ2o
-

ⅇⅈ P z γ μ0 μ0 η0 + μ0

4 η0 μ0 - μ2o μ0 + μ2o
+

3 ⅇ-ⅈ P z γ μ2

2 η0 μ2 - μ2o μ2 + μ2o
+

3 ⅇⅈ P z γ μ2

2 η0 μ2 - μ2o μ2 + μ2o
+
3 ⅇ-ⅈ P z γ μ2 -4 - 3 η0 1 + 2 η0

2 η0 μ2 μ2 - μ2o μ2 + μ2o
-

3 ⅇⅈ P z γ μ2 -4 - 3 η0 1 + 2 η0

2 η0 μ2 μ2 - μ2o μ2 + μ2o
+

ⅇ-ⅈ P z γ μ2 μ2

η0 μ2 - μ2o μ2 + μ2o
-

ⅇⅈ P z γ μ2 μ2

η0 μ2 - μ2o μ2 + μ2o
+
3 4 + 3 η0 η0 - μ0 Cos[P z γ μ2o]

4 μ0 μ0 - μ2o μ0 + μ2o
-

η0 - μ0 μ0 Cos[P z γ μ2o]

4 η0 μ0 - μ2o μ0 + μ2o
-
3 4 + 3 η0 η0 + μ0 Cos[P z γ μ2o]

4 μ0 μ0 - μ2o μ0 + μ2o
+

μ0 η0 + μ0 Cos[P z γ μ2o]

4 η0 μ0 - μ2o μ0 + μ2o
-

3 Cos[P z γ μ2o]

η0 μ2 - μ2o μ2 + μ2o
-

3 ⅈ 4 + 3 η0 η0 - μ0 Sin[P z γ μ2o]

4 μ0 - μ2o μ2o μ0 + μ2o
+
ⅈ -4 - 3 η0 η0 - μ0 μ0 Sin[P z γ μ2o]

4 η0 μ0 - μ2o μ2o μ0 + μ2o
-

3 ⅈ 4 + 3 η0 η0 + μ0 Sin[P z γ μ2o]

4 μ0 - μ2o μ2o μ0 + μ2o
-
ⅈ -4 - 3 η0 μ0 η0 + μ0 Sin[P z γ μ2o]

4 η0 μ0 - μ2o μ2o μ0 + μ2o
+

ⅈ η0 - μ0 μ2o Sin[P z γ μ2o]

4 η0 μ0 - μ2o μ0 + μ2o
+
ⅈ 4 + 3 η0 η0 - μ0 μ2o Sin[P z γ μ2o]

4 η0 μ0 μ0 - μ2o μ0 + μ2o
+

ⅈ η0 + μ0 μ2o Sin[P z γ μ2o]

4 η0 μ0 - μ2o μ0 + μ2o
-
ⅈ 4 + 3 η0 η0 + μ0 μ2o Sin[P z γ μ2o]

4 η0 μ0 μ0 - μ2o μ0 + μ2o
+

3 ⅈ -4 - 3 η0 1 + 2 η0 Sin[P z γ μ2o]

η0 μ2 - μ2o μ2o μ2 + μ2o
+

2 ⅈ μ2o Sin[P z γ μ2o]

η0 μ2 - μ2o μ2 + μ2o
/.

η0 → -1 - F0, μ0 → 3 - 2 F0 + F0^2^1  2, μ2 → 3 + 6 F0 + 9 F0^2^1  2,

μ2o → -3 + 6 F0 + 9 F0^2^1  2(*b14*)

Out[ ]=

1

2

Cos 3 + -2 + F0 F0 P z γ - Cos 3 + 6 F0 + 9 F02 P z γ

1 + F0
-

ⅈ Sin 3 + -2 + F0 F0 P z γ

3 + -2 + F0 F0
+
3 ⅈ Sin 3 + 6 F0 + 9 F02 P z γ

3 + 6 F0 + 9 F02

Bm2inhomo = Fz[[3, 1]] * IntFsINs[[1]] + Fz[[3, 2]] * IntFsINs[[2]] +

Fz[[3, 3]] * IntFsINs[[3]] + Fz[[3, 4]] * IntFsINs[[4]] /.

4 + 3 η0 + η2 → 0, 11 + 6 η0 + 2 η2 → 3, μ2^2 - μ2o^2 → 6,

μ2 - μ2o μ2 + μ2o → 6, η2 → -3 η0 - 4, d20 → bm2 - b2, d2c0 → bm2c - b2c;

(*F(z).IntegralF(s)^-1.N(s)ds [[3]]*)

Bm2inhomosort = Collect[Bm2inhomo, {b2, b2c, bm2, bm2c} ];
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Bm2inhomobm2c = FullSimplify

3 ⅇ-ⅈ P z γ μ0 4 + 3 η0

4 μ0 μ0 - μ2o μ0 + μ2o
-

3 ⅇⅈ P z γ μ0 4 + 3 η0

4 μ0 μ0 - μ2o μ0 + μ2o
-

ⅇ-ⅈ P z γ μ0 μ0

4 η0 μ0 - μ2o μ0 + μ2o
+

ⅇⅈ P z γ μ0 μ0

4 η0 μ0 - μ2o μ0 + μ2o
-

ⅇⅈ P z γ μ2 -3 η0 + μ2

4 η0 μ2 - μ2o μ2 + μ2o
+

ⅇⅈ P z γ μ2 -4 - 3 η0 1 + 2 η0 -3 η0 + μ2

4 η0 μ2 μ2 - μ2o μ2 + μ2o
+

ⅇⅈ P z γ μ2 μ2 -3 η0 + μ2

6 η0 μ2 - μ2o μ2 + μ2o
+

ⅇ-ⅈ P z γ μ2 3 η0 + μ2

4 η0 μ2 - μ2o μ2 + μ2o
+
ⅇ-ⅈ P z γ μ2 -4 - 3 η0 1 + 2 η0 3 η0 + μ2

4 η0 μ2 μ2 - μ2o μ2 + μ2o
+

ⅇ-ⅈ P z γ μ2 μ2 3 η0 + μ2

6 η0 μ2 - μ2o μ2 + μ2o
+
-3 η0 + μ2 Cos[P z γ μ2o]

4 η0 μ2 - μ2o μ2 + μ2o
+

1 + 2 η0 4 + 3 η0 -3 η0 + μ2 Cos[P z γ μ2o]

4 η0 μ2 μ2 - μ2o μ2 + μ2o
-
μ2 -3 η0 + μ2 Cos[P z γ μ2o]

6 η0 μ2 - μ2o μ2 + μ2o
-

3 η0 + μ2 Cos[P z γ μ2o]

4 η0 μ2 - μ2o μ2 + μ2o
+
1 + 2 η0 4 + 3 η0 3 η0 + μ2 Cos[P z γ μ2o]

4 η0 μ2 μ2 - μ2o μ2 + μ2o
-

μ2 3 η0 + μ2 Cos[P z γ μ2o]

6 η0 μ2 - μ2o μ2 + μ2o
+
3 ⅈ 4 + 3 η0 Sin[P z γ μ2o]

2 μ0 - μ2o μ2o μ0 + μ2o
-

ⅈ μ2o Sin[P z γ μ2o]

2 η0 μ0 - μ2o μ0 + μ2o
-

ⅈ -4 - 3 η0 1 + 2 η0 -3 η0 + μ2 Sin[P z γ μ2o]

4 η0 μ2 - μ2o μ2o μ2 + μ2o
-
ⅈ μ2 -3 η0 + μ2 Sin[P z γ μ2o]

2 μ2 - μ2o μ2o μ2 + μ2o
+

ⅈ -4 - 3 η0 1 + 2 η0 3 η0 + μ2 Sin[P z γ μ2o]

4 η0 μ2 - μ2o μ2o μ2 + μ2o
-
ⅈ μ2 3 η0 + μ2 Sin[P z γ μ2o]

2 μ2 - μ2o μ2o μ2 + μ2o
-

ⅈ -3 η0 + μ2 μ2o Sin[P z γ μ2o]

6 η0 μ2 - μ2o μ2 + μ2o
+
ⅈ 1 + 2 η0 -3 η0 + μ2 μ2o Sin[P z γ μ2o]

4 η0 μ2 μ2 - μ2o μ2 + μ2o
+

ⅈ 3 η0 + μ2 μ2o Sin[P z γ μ2o]

6 η0 μ2 - μ2o μ2 + μ2o
+
ⅈ 1 + 2 η0 3 η0 + μ2 μ2o Sin[P z γ μ2o]

4 η0 μ2 μ2 - μ2o μ2 + μ2o
/.

η0 → -1 - F0, μ0 → 3 - 2 F0 + F0^2^1  2, μ2 → 3 + 6 F0 + 9 F0^2^1  2,

μ2o → -3 + 6 F0 + 9 F0^2^1  2(*b32*)

Out[ ]= -

ⅈ
Sin 3+(-2+F0) F0 P z γ

3+(-2+F0) F0
+

2 (1+F0) Sin -3+6 F0+9 F02 P z γ

-3+6 F0+9 F02
+

(1+2 F0) Sin 3+6 F0+9 F02 P z γ

3+6 F0+9 F02

2 1 + F0
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Bm2inhomobm2 = FullSimplify

-
3 ⅇ-ⅈ P z γ μ0 4 + 3 η0

4 μ0 μ0 - μ2o μ0 + μ2o
+

3 ⅇⅈ P z γ μ0 4 + 3 η0

4 μ0 μ0 - μ2o μ0 + μ2o
+

ⅇ-ⅈ P z γ μ0 μ0

4 η0 μ0 - μ2o μ0 + μ2o
-

ⅇⅈ P z γ μ0 μ0

4 η0 μ0 - μ2o μ0 + μ2o
+

ⅇⅈ P z γ μ2 -3 η0 + μ2

4 η0 μ2 - μ2o μ2 + μ2o
+

ⅇⅈ P z γ μ2 -4 - 3 η0 1 + 2 η0 -3 η0 + μ2

4 η0 μ2 μ2 - μ2o μ2 + μ2o
+

ⅇⅈ P z γ μ2 μ2 -3 η0 + μ2

6 η0 μ2 - μ2o μ2 + μ2o
-

ⅇ-ⅈ P z γ μ2 3 η0 + μ2

4 η0 μ2 - μ2o μ2 + μ2o
+
ⅇ-ⅈ P z γ μ2 -4 - 3 η0 1 + 2 η0 3 η0 + μ2

4 η0 μ2 μ2 - μ2o μ2 + μ2o
+

ⅇ-ⅈ P z γ μ2 μ2 3 η0 + μ2

6 η0 μ2 - μ2o μ2 + μ2o
-
-3 η0 + μ2 Cos[P z γ μ2o]

4 η0 μ2 - μ2o μ2 + μ2o
+

1 + 2 η0 4 + 3 η0 -3 η0 + μ2 Cos[P z γ μ2o]

4 η0 μ2 μ2 - μ2o μ2 + μ2o
-
μ2 -3 η0 + μ2 Cos[P z γ μ2o]

6 η0 μ2 - μ2o μ2 + μ2o
+

3 η0 + μ2 Cos[P z γ μ2o]

4 η0 μ2 - μ2o μ2 + μ2o
+
1 + 2 η0 4 + 3 η0 3 η0 + μ2 Cos[P z γ μ2o]

4 η0 μ2 μ2 - μ2o μ2 + μ2o
-

μ2 3 η0 + μ2 Cos[P z γ μ2o]

6 η0 μ2 - μ2o μ2 + μ2o
-
3 ⅈ 4 + 3 η0 Sin[P z γ μ2o]

2 μ0 - μ2o μ2o μ0 + μ2o
+

ⅈ μ2o Sin[P z γ μ2o]

2 η0 μ0 - μ2o μ0 + μ2o
-

ⅈ -4 - 3 η0 1 + 2 η0 -3 η0 + μ2 Sin[P z γ μ2o]

4 η0 μ2 - μ2o μ2o μ2 + μ2o
+
ⅈ μ2 -3 η0 + μ2 Sin[P z γ μ2o]

2 μ2 - μ2o μ2o μ2 + μ2o
+

ⅈ -4 - 3 η0 1 + 2 η0 3 η0 + μ2 Sin[P z γ μ2o]

4 η0 μ2 - μ2o μ2o μ2 + μ2o
+
ⅈ μ2 3 η0 + μ2 Sin[P z γ μ2o]

2 μ2 - μ2o μ2o μ2 + μ2o
-

ⅈ -3 η0 + μ2 μ2o Sin[P z γ μ2o]

6 η0 μ2 - μ2o μ2 + μ2o
-
ⅈ 1 + 2 η0 -3 η0 + μ2 μ2o Sin[P z γ μ2o]

4 η0 μ2 μ2 - μ2o μ2 + μ2o
+

ⅈ 3 η0 + μ2 μ2o Sin[P z γ μ2o]

6 η0 μ2 - μ2o μ2 + μ2o
-
ⅈ 1 + 2 η0 3 η0 + μ2 μ2o Sin[P z γ μ2o]

4 η0 μ2 μ2 - μ2o μ2 + μ2o
/.

η0 → -1 - F0, μ0 → 3 - 2 F0 + F0^2^1  2, μ2 → 3 + 6 F0 + 9 F0^2^1  2,

μ2o → -3 + 6 F0 + 9 F0^2^1  2(*b31*)

Out[ ]=

1

2
Cos -3 + 6 F0 + 9 F02 P z γ - Cos 3 + 6 F0 + 9 F02 P z γ +

ⅈ
Sin 3+(-2+F0) F0 P z γ

3+(-2+F0) F0
+

(1+F0) (1+3 F0) Sin -3+6 F0+9 F02 P z γ

-3+6 F0+9 F02
-

(2+F0 (4+3 F0)) Sin 3+6 F0+9 F02 P z γ

3+6 F0+9 F02

1 + F0
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Bm2inhomob2 = FullSimplify

3 ⅇ-ⅈ P z γ μ0 4 + 3 η0

4 μ0 μ0 - μ2o μ0 + μ2o
-

3 ⅇⅈ P z γ μ0 4 + 3 η0

4 μ0 μ0 - μ2o μ0 + μ2o
-

ⅇ-ⅈ P z γ μ0 μ0

4 η0 μ0 - μ2o μ0 + μ2o
+

ⅇⅈ P z γ μ0 μ0

4 η0 μ0 - μ2o μ0 + μ2o
-

ⅇⅈ P z γ μ2 -3 η0 + μ2

4 η0 μ2 - μ2o μ2 + μ2o
-

ⅇⅈ P z γ μ2 -4 - 3 η0 1 + 2 η0 -3 η0 + μ2

4 η0 μ2 μ2 - μ2o μ2 + μ2o
-

ⅇⅈ P z γ μ2 μ2 -3 η0 + μ2

6 η0 μ2 - μ2o μ2 + μ2o
+

ⅇ-ⅈ P z γ μ2 3 η0 + μ2

4 η0 μ2 - μ2o μ2 + μ2o
-
ⅇ-ⅈ P z γ μ2 -4 - 3 η0 1 + 2 η0 3 η0 + μ2

4 η0 μ2 μ2 - μ2o μ2 + μ2o
-

ⅇ-ⅈ P z γ μ2 μ2 3 η0 + μ2

6 η0 μ2 - μ2o μ2 + μ2o
+
-3 η0 + μ2 Cos[P z γ μ2o]

4 η0 μ2 - μ2o μ2 + μ2o
+

-4 - 3 η0 1 + 2 η0 -3 η0 + μ2 Cos[P z γ μ2o]

4 η0 μ2 μ2 - μ2o μ2 + μ2o
+
μ2 -3 η0 + μ2 Cos[P z γ μ2o]

6 η0 μ2 - μ2o μ2 + μ2o
-

3 η0 + μ2 Cos[P z γ μ2o]

4 η0 μ2 - μ2o μ2 + μ2o
+
-4 - 3 η0 1 + 2 η0 3 η0 + μ2 Cos[P z γ μ2o]

4 η0 μ2 μ2 - μ2o μ2 + μ2o
+

μ2 3 η0 + μ2 Cos[P z γ μ2o]

6 η0 μ2 - μ2o μ2 + μ2o
+
3 ⅈ 4 + 3 η0 Sin[P z γ μ2o]

2 μ0 - μ2o μ2o μ0 + μ2o
-

ⅈ μ2o Sin[P z γ μ2o]

2 η0 μ0 - μ2o μ0 + μ2o
+

ⅈ -4 - 3 η0 1 + 2 η0 -3 η0 + μ2 Sin[P z γ μ2o]

4 η0 μ2 - μ2o μ2o μ2 + μ2o
-
ⅈ μ2 -3 η0 + μ2 Sin[P z γ μ2o]

2 μ2 - μ2o μ2o μ2 + μ2o
-

ⅈ -4 - 3 η0 1 + 2 η0 3 η0 + μ2 Sin[P z γ μ2o]

4 η0 μ2 - μ2o μ2o μ2 + μ2o
-
ⅈ μ2 3 η0 + μ2 Sin[P z γ μ2o]

2 μ2 - μ2o μ2o μ2 + μ2o
+

ⅈ -3 η0 + μ2 μ2o Sin[P z γ μ2o]

6 η0 μ2 - μ2o μ2 + μ2o
+
ⅈ 1 + 2 η0 -3 η0 + μ2 μ2o Sin[P z γ μ2o]

4 η0 μ2 μ2 - μ2o μ2 + μ2o
-

ⅈ 3 η0 + μ2 μ2o Sin[P z γ μ2o]

6 η0 μ2 - μ2o μ2 + μ2o
+
ⅈ 1 + 2 η0 3 η0 + μ2 μ2o Sin[P z γ μ2o]

4 η0 μ2 μ2 - μ2o μ2 + μ2o
/.

η0 → -1 - F0, μ0 → 3 - 2 F0 + F0^2^1  2, μ2 → 3 + 6 F0 + 9 F0^2^1  2,

μ2o → -3 + 6 F0 + 9 F0^2^1  2(*b33*)

Out[ ]=

1

2
-Cos -3 + 6 F0 + 9 F02 P z γ + Cos 3 + 6 F0 + 9 F02 P z γ -

ⅈ
Sin 3+(-2+F0) F0 P z γ

3+(-2+F0) F0
+

(1+F0) (1+3 F0) Sin -3+6 F0+9 F02 P z γ

-3+6 F0+9 F02
-

(2+F0 (4+3 F0)) Sin 3+6 F0+9 F02 P z γ

3+6 F0+9 F02

1 + F0
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Bm2inhomob2c = FullSimplify

-
3 ⅇ-ⅈ P z γ μ0 4 + 3 η0

4 μ0 μ0 - μ2o μ0 + μ2o
+

3 ⅇⅈ P z γ μ0 4 + 3 η0

4 μ0 μ0 - μ2o μ0 + μ2o
+

ⅇ-ⅈ P z γ μ0 μ0

4 η0 μ0 - μ2o μ0 + μ2o
-

ⅇⅈ P z γ μ0 μ0

4 η0 μ0 - μ2o μ0 + μ2o
+

ⅇⅈ P z γ μ2 -3 η0 + μ2

4 η0 μ2 - μ2o μ2 + μ2o
-

ⅇⅈ P z γ μ2 -4 - 3 η0 1 + 2 η0 -3 η0 + μ2

4 η0 μ2 μ2 - μ2o μ2 + μ2o
-

ⅇⅈ P z γ μ2 μ2 -3 η0 + μ2

6 η0 μ2 - μ2o μ2 + μ2o
-

ⅇ-ⅈ P z γ μ2 3 η0 + μ2

4 η0 μ2 - μ2o μ2 + μ2o
-
ⅇ-ⅈ P z γ μ2 -4 - 3 η0 1 + 2 η0 3 η0 + μ2

4 η0 μ2 μ2 - μ2o μ2 + μ2o
-

ⅇ-ⅈ P z γ μ2 μ2 3 η0 + μ2

6 η0 μ2 - μ2o μ2 + μ2o
-
-3 η0 + μ2 Cos[P z γ μ2o]

4 η0 μ2 - μ2o μ2 + μ2o
+

-4 - 3 η0 1 + 2 η0 -3 η0 + μ2 Cos[P z γ μ2o]

4 η0 μ2 μ2 - μ2o μ2 + μ2o
+
μ2 -3 η0 + μ2 Cos[P z γ μ2o]

6 η0 μ2 - μ2o μ2 + μ2o
+

3 η0 + μ2 Cos[P z γ μ2o]

4 η0 μ2 - μ2o μ2 + μ2o
+
-4 - 3 η0 1 + 2 η0 3 η0 + μ2 Cos[P z γ μ2o]

4 η0 μ2 μ2 - μ2o μ2 + μ2o
+

μ2 3 η0 + μ2 Cos[P z γ μ2o]

6 η0 μ2 - μ2o μ2 + μ2o
-
3 ⅈ 4 + 3 η0 Sin[P z γ μ2o]

2 μ0 - μ2o μ2o μ0 + μ2o
+

ⅈ μ2o Sin[P z γ μ2o]

2 η0 μ0 - μ2o μ0 + μ2o
+

ⅈ -4 - 3 η0 1 + 2 η0 -3 η0 + μ2 Sin[P z γ μ2o]

4 η0 μ2 - μ2o μ2o μ2 + μ2o
+
ⅈ μ2 -3 η0 + μ2 Sin[P z γ μ2o]

2 μ2 - μ2o μ2o μ2 + μ2o
-

ⅈ -4 - 3 η0 1 + 2 η0 3 η0 + μ2 Sin[P z γ μ2o]

4 η0 μ2 - μ2o μ2o μ2 + μ2o
+
ⅈ μ2 3 η0 + μ2 Sin[P z γ μ2o]

2 μ2 - μ2o μ2o μ2 + μ2o
+

ⅈ -3 η0 + μ2 μ2o Sin[P z γ μ2o]

6 η0 μ2 - μ2o μ2 + μ2o
-
ⅈ 1 + 2 η0 -3 η0 + μ2 μ2o Sin[P z γ μ2o]

4 η0 μ2 μ2 - μ2o μ2 + μ2o
-

ⅈ 3 η0 + μ2 μ2o Sin[P z γ μ2o]

6 η0 μ2 - μ2o μ2 + μ2o
-
ⅈ 1 + 2 η0 3 η0 + μ2 μ2o Sin[P z γ μ2o]

4 η0 μ2 μ2 - μ2o μ2 + μ2o
/.

η0 → -1 - F0, μ0 → 3 - 2 F0 + F0^2^1  2, μ2 → 3 + 6 F0 + 9 F0^2^1  2,

μ2o → -3 + 6 F0 + 9 F0^2^1  2(*b34*)

Out[ ]=

ⅈ
Sin 3+(-2+F0) F0 P z γ

3+(-2+F0) F0
+

2 (1+F0) Sin -3+6 F0+9 F02 P z γ

-3+6 F0+9 F02
+

(1+2 F0) Sin 3+6 F0+9 F02 P z γ

3+6 F0+9 F02

2 1 + F0

7wmsolappendix.nb     9
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Appendix E
MATLAB Code to Simulate Input
and Output Spectrum of a HNLF

1

1 c l c
2 c l o s e a l l
3 c l e a r a l l
4

5 %% Propagation of a PIA input through a nonl inear f i b e r cons ider ing upto
6 %second order d i s p e r s i v e e f f e c t s . The equat ions are solved in the group
7 %v e l o c i t y r e f e r e n c e frame of the pulse
8

9 %% parameters ( d e f a u l t values )
10

11 c =299792458; %(299792458) speed of l i g h t in vacuum (m/s )
12 n=2^17; %(2^17) number of sampling points
13 l s i g =1547.0 e−9; %( 1 5 4 7 . 0 e−9)wavelength of s i g n a l (m)
14 lpump=1552.5 e−9; %( 1 5 5 2 . 5 e−9)wavelength of pump(m)
15 f s i g =c/ l s i g ; %frequency of s i g n a l (Hz)
16 fpump=c/lpump ; %frequency of pump(Hz)
17 ps_frq_sep=abs ( f s i g−fpump ) ;%pump−s i g n a l frequency separa t ion (Hz)
18 fspan =6; %v a r i e s span of Four ier domain
19 dt =1/(2^ fspan∗ps_frq_sep ) ;%spacing in time domain ( s )
20 T_tot=n∗dt ; %t o t a l time in the time domain ( s )
21 t =(−(n / 2 ) : 1 : ( n/2)−1)∗dt ;%vector of time points
22 f =(−(n / 2 ) : 1 : ( n/2)−1)/ T_tot ;%vector of frequency points
23 om=(−(n / 2 ) : 1 : ( n/2)−1)∗2∗pi/T_tot ;%vector of angular frequency points
24 P_s_dbm=−1; %(−1) input power of s i g n a l (dBm)
25 P_s =1.0 e−3∗10^(P_s_dbm / 1 0 ) ;%input power of s i g n a l (W)
26 As= s q r t ( P_s ) ; %input amplitude of s i g n a l (W^ 0 . 5 )
27 P_p_dbm=20; %( 2 0 ) input power of pump(dBm)
28 P_p =1.0 e−3∗10^(P_p_dbm / 1 0 ) ;%input power of pump(W)
29 Ap= s q r t ( P_p ) ; %input amplitude of pump(V/m)

1MATLAB Version 2015a was used for this code.
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30 l c =lpump ; %we consider the pump wavelength as c e n t r a l
31 lzdw =1547.0 e−9; %( 1 5 4 7 . 0 e−9) zero dispers ion wavelength (m)
32 z =2∗1. e3 ; %( 1 . 0 e3 ) length of the f i b e r (m)
33 dz =1.0 e1 ; %( 1 0 ) s tep s i z e along the f i b e r (m)
34 gamma=11.3 e−3; %( 1 1 . 3 e−3) nonl inear c o e f f i c i e n t of f i b e r (1 / (W.km) )
35 l o f f =lc−lzdw ; %o f f s e t of the c e n t r a l wavelength (m)
36 D1= 1 7 . 0 ; %( 1 7 ) d i spers ion slope of the f i b e r ( s/m^3)
37 D=D1∗ l o f f ; %dispers ion of the f i b e r ( s/m^2)
38 beta2=− l c ^2∗D/(2∗ pi ∗c ) ; %second order d ispers ion parameter ( s^2/m)
39 proplen =0; %i n i t i a l i z a t i o n of propagation length
40

41 %% d e f i n i t i o n of input e l e c t r i c f i e l d without the c a r r i e r
42

43 Ein=Ap+As∗exp (1 i ∗2∗pi ∗ps_frq_sep ∗ t ) ;
44

45 %% Invers ion of v e c t o r s f o r DFT
46

47 Ein_inv ( 1 : n/2)= Ein ( ( n/2)+1 :n ) ; %s h i f t of vec tor f o r DFT
48 Ein_inv ( ( n/2)+1 :n)= Ein ( 1 : n / 2 ) ; %s h i f t of vec tor f o r DFT
49

50 om_inv_sq ( 1 : n/2)=om( ( n/2)+1 :n ) . ^ 2 ;%s h i f t of vec tor f o r DFT
51 om_inv_sq ( ( n/2)+1 :n)=om( 1 : n / 2 ) . ^ 2 ;%s h i f t of vec tor f o r DFT
52

53 f r e a l =(−1)∗ f +fpump ; %r e a l frequency vec tor adding the c a r r i e r
54 lamvec=c ./ f r e a l ; %r e a l wavelength vec tor
55

56 %% Propagation of f i e l d
57

58 Einput =( f f t s h i f t ( abs ( i f f t ( Ein_inv ) ) ) ) ;%input f i e l d in Four ier domain
59 Edisp1 =( i f f t ( Ein_inv ) ) ; %i n i t i a l f o u r i e r domain f i e l d
60

61 while proplen <z %loop on z to propagate f i e l d
62 Edisp1=Edisp1 .∗ exp (1 i ∗ ( beta2 /2)∗om_inv_sq∗dz / 2 ) ;%l i n e a r propagation
63 Enonl= f f t ( Edisp1 ) ; %moving to time domain
64 Enonl=Enonl . ∗ exp (1 i ∗gamma∗abs ( Enonl ) . ^ 2∗dz ) ;%nonl inear propagation
65 Edisp2= i f f t ( Enonl ) ; %moving to Four ier domain
66 Edisp2=Edisp2 .∗ exp (1 i ∗ ( beta2 /2)∗om_inv_sq∗dz / 2 ) ;%l i n e a r propagation
67 Edisp1=Edisp2 ;
68 proplen=proplen+dz ; %length increment
69 end
70

71 %% P l o t t i n g of f i e l d
72

73 Einplot =10.∗ log10 (1000∗ Einput . ^ 2 ) ;%Watts to dBm of input f i e l d
74 Eoutplot =10.∗ log10 ( 1 0 0 0∗ ( f f t s h i f t ( abs ( Edisp1 ) ) ) . ^ 2 ) ;
75 %Watts to dBm of output f i e l d
76

77 f1= f i g u r e ( ’name ’ , ’ Input and output power spectrum ’ ) ;
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78 hold on
79

80 f i g 1 (1 )= p l o t ( lamvec ∗1 . 0 e9 , Eoutplot , ’ r ’ , ’ LineWidth ’ , 1 . 5 ) ;%p l o t of output f i e l d
81 f i g 1 (2 )= p l o t ( lamvec ∗1 . 0 e9 , Einplot , ’ b ’ , ’ LineWidth ’ , 1 . 5 ) ;%p l o t of input f i e l d
82

83 s e t ( gca , ’yLim ’ ,[−25 , 2 5 ] , . . .
84 ’FontName ’ , ’ Times New Roman ’ , . . .
85 ’ FontSize ’ , 1 2 . 0 , ’ FontWeight ’ , ’ normal ’ ) ;
86 grid on ;
87 x l a b e l ( [ ’ Wavelength , \lambda ’ , ’ (m) ’ ] , . . .
88 ’FontName ’ , ’ Times New Roman ’ , ’ FontSize ’ , 1 8 . 0 , ’ FontWeight ’ , ’ Normal ’ ) ;
89 y l a b e l ( [ ’ Opt ica l power ’ , ’ (dBm) ’ ] , . . .
90 ’FontName ’ , ’ Times New Roman ’ , ’ FontSize ’ , 1 8 . 0 , ’ FontWeight ’ , ’ Normal ’ ) ;
91 t i t l e ( ’ Input and output o p t i c a l power spectrum f o r PIA ( s imulat ion ) ’ , . . .
92 ’FontName ’ , ’ Times New Roman ’ , ’ FontSize ’ , 1 8 . 0 , ’ FontWeight ’ , ’ Normal ’ ) ;
93 legend ( [ f i g 1 ( 1 ) , f i g 1 ( 2 ) ] , { ’ Input spectrum ’ ; . . .
94 ’ Output spectrum ’ } , ’FontName ’ , ’ Times New Roman ’ , . . .
95 ’ FontSize ’ , 1 6 , ’ FontWeight ’ , ’ Normal ’ , . . .
96 ’ Locat ion ’ , ’ Northeast ’ ) ;
97 saveas ( f1 , ’ iospectrum . png ’ ) ;%saves the f i g u r e
98 hold o f f
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Appendix F
Optical Power in an Electromagnetic
Field

In this appendix we calculate the optical power in an electromagnetic field consisting
of (a) one frequency (Subsection F.1) and (b) three frequencies (Subsection F.2). In
both the cases we will also find out the power detected by a photodetector (PD)
when these waves are incident on it. Note that a PD cannot detect frequencies of
the order of few hundreds of THz, which correspond to typical optical frequencies
[242].

F.1 One Erequency

• Field :

Let us consider the general case of an electromagnetic field of angular fre-
quency ω and wave-vector ~k. We can write the electric ~E and magnetic ~H
fields in such an electromagnetic wave as :

~E = ~E e−i(ωt−~k.~r) + c.c. , (F.1)

~H = ~H e−i(ωt−~k.~r) + c.c. , (F.2)

where ~E and ~H are the complex electric and magnetic field amplitudes and c.c.
means complex conjugate.

• Poynting Vector :

In order to find the optical power, first we need to calculate the Poynting vector
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~S of the field, which represents the directional energy flux of an electromag-
netic wave. In vacuum, it is given by :

~S =~E× ~H

=(~E e−i(ωt−~k.~r) + c.c.)× ( ~H e−i(ωt−~k.~r) + c.c.)

=(~E × ~H e−2i(ωt−~k.~r) + c.c.) + (~E × ~H∗ + c.c.) .

(F.3)

Since in a real experiment we are limited by the response time of the detector,
thus we need to take the time average of ~S to account for the terms that oscillate
with high frequencies and hence are not detected by the detector. Thus we get
〈~S〉 as :

〈~S〉 =〈~E × ~H e−2i(ωt−~k.~r) + c.c.〉+ 〈~E × ~H∗ + c.c.〉
= ~E × ~H .0 + (~E × ~H∗ + c.c.)

= ~E × ~H∗ + c.c. .

(F.4)

Here we have used the fact that the time average of a cosine function over
large number of cycles is 0. We also know from electromagnetism that~k× ~E =

ωµ0 ~H, where µ0 is the magnetic permeability of vacuum. Thus we can rewrite
the time-averaged Poynting vector 〈~S〉 as :

〈~S〉 =~E ×
(

1
ωµ0

~k× ~E
)∗

+ c.c.

=
1

ωµ0
~E × (~k× ~E∗) + c.c.

=
1

ωµ0

(
~k
(
~E .~E∗ − ~E∗(~k.~E)

))
+ c.c.

=
~k(~E .~E∗)

ωµ0
+ c.c. ,

(F.5)

where we have used the fact that~k is a vector with real components and thus
~k = ~k∗. Also, since we know~k, ~E and ~H are mutually perpendicular to each
other, thus~k.~E = 0. Without loss of generality, we consider~k = kẑ and ~E = E x̂.
Then we can write :

〈~S〉 =2k|E |2

ωµ0
ẑ =

2|E |2

cµ0
ẑ = 2cε0|E |2ẑ , (F.6)

where ε0 is the dielectric permittivity of vacuum. c is the speed of light in vac-
uum. Here we have also used, c = ω

k = 1√
ε0µ0

.

• Detected Optical Power :

The detected optical power Popt is the average energy that is incident on the PD
per unit time. We know, that the norm of the time-averaged Poynting vector
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Area=a

Figure F.1. Illustration of a beam profile of a so-called top-hat beam,
with arbitrary units. The beam is propagating in the z-direction. a is

shown as the beam cross-section. (not to scale)

||〈~S〉|| is the total energy that is incident per unit time, per unit area of the
detector. Thus to compute the total optical power, we just need to integrate
||〈~S〉|| over the beam cross-section. For the sake of simplicity, we considered a
beam profile which is a box-function i.e. constant over the beam cross-section
and 0 everywhere else (see Fig. F.1). Thus Popt is expressed as :

Popt =

∞∫
x,y=−∞

||〈~S〉||dxdy = a2ε0c|E |2 , (F.7)

where a is the total beam cross-section.

F.2 Three Frequencies

• Field :

When we have a field with three different optical frequencies ω1, ω2 and ω3,
propagating along the direction of ~r, as the previous case, we can write our
electric and magnetic fields as :

~E = ~E1 e−i(ω1t−~k1.~r) + ~E2 e−i(ω2t−~k2.~r) + ~E3 e−i(ω3t−~k3.~r) + c.c. , (F.8)

~H = ~H1 e−i(ω1t−~k1.~r) + ~H2 e−i(ω2t−~k2.~r) + ~H3 e−i(ω3t−~k3.~r) + c.c. , (F.9)

where the indices correspond to the respective frequencies (see Fig. F.2). With-
out loss of generality, we consider the z-direction as the propagation direction
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ω
ω1 ω2 ω3

sideband 1

signal

sideband 2

Ω Ω

Figure F.2. The three optical frequencies are denoted by ω1, ω2 and
ω3 which correspond to the signal and two sidebands. The difference

between the consecutive frequencies are Ω. (not to scale)

of the beam. Thus we have :

~k.~r = (kẑ).(zẑ) = kz . (F.10)

• Poynting Vector :

As discussed in the previous case, the Poynting vector ~S can be written as :

~S = ~E× ~H

= (~E1 × ~H1
∗
+ c.c.) + (~E2 × ~H2

∗
+ c.c.) + (~E3 × ~H3

∗
+ c.c.)

+ (~E1 × ~H2
∗

e−i(ω1t−k1z)+i(ω2t−k2z) + c.c.) + (~E1 × ~H3
∗

e−i(ω1t−k1z)+i(ω3t−k3z) + c.c.)

+ (~E2 × ~H1
∗

e−i(ω2t−k2z)+i(ω1t−k1z) + c.c.) + (~E2 × ~H3
∗

e−i(ω2t−k2z)+i(ω3t−k3z) + c.c.)

+ (~E3 × ~H1
∗

e−i(ω3t−k3z)+i(ω1t−k1z) + c.c.) + (~E3 × ~H2
∗

e−i(ω3t−k3z)+i(ω2t−k2z) + c.c.)

+ (~E1 × ~H1 e−2i(ω1t−k1z) + c.c.) + (~E2 × ~H2 e−2i(ω2t−k2z) + c.c.) + (~E3 × ~H3 e−2i(ω3t−k3z) + c.c.)

+ (~E1 × ~H2 e−i(ω1t−k1z)−i(ω2t−k2z) + c.c.) + (~E1 × ~H3 e−i(ω1t−k1z)−i(ω3t−k3z) + c.c.)

+ (~E2 × ~H1 e−i(ω2t−k2z)−i(ω1t−k1z) + c.c.) + (~E2 × ~H3 e−i(ω2t−k2z)−i(ω3t−k3z) + c.c.)

+ (~E3 × ~H1 e−i(ω3t−k3z)−i(ω1t−k1z) + c.c.) + (~E3 × ~H2 e−i(ω3t−k3z)−i(ω2t−k2z) + c.c.) .

(F.11)

As we have seen before, if we do a time averaging, then all the terms with
frequencies that are of the order of ω1, ω2, ω3 or higher can be approximated
to 0 as they oscillate too fast to be detected by the detector. Thus we have :

〈~S〉 = (~E1 × ~H1
∗
+ c.c.) + (~E2 × ~H2

∗
+ c.c.) + (~E3 × ~H3

∗
+ c.c.)

+ (~E1 × ~H2
∗

e−i(ω1t−k1z)+i(ω2t−k2z) + c.c.) + (~E1 × ~H3
∗

e−i(ω1t−k1z)+i(ω3t−k3z) + c.c.)

+ (~E2 × ~H1
∗

e−i(ω2t−k2z)+i(ω1t−k1z) + c.c.) + (~E2 × ~H3
∗

e−i(ω2t−k2z)+i(ω3t−k3z) + c.c.)

+ (~E3 × ~H1
∗

e−i(ω3t−k3z)+i(ω1t−k1z) + c.c.) + (~E3 × ~H2
∗

e−i(ω3t−k3z)+i(ω2t−k2z) + c.c.) .

(F.12)

To simplify this expression, we can evaluate ~Ei × ~Hj
∗

(where i, j = 1, 2, 3) as
we did in the last section as :

~Ei × ~Hj
∗
=

1
ωjµ0

~Ei × (~k j × ~Ej)
∗
=

~k j(~Ei.~Ej
∗
)− ~Ej

∗
(~Ei.~k j)

ωjµ0
=

~k j(~Ei.~Ej
∗
)

ωjµ0
. (F.13)
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Without loss of generality, we consider ~k j = k j ẑ. We can replace k j
ωjµ0

by cε0. We

also consider all the electric fields are polarized in the x-direction, i.e. ~Ei = Ei x̂
for i = 1, 2, 3. Thus, if i = j we can use the expression of optical power derived
in the previous section as :

~Ei × ~Hi
∗
+ c.c. = 2cε0|Ei|2ẑ =

Pωi

a
ẑ . (F.14)

where Pωi is the part of the optical power of the field that oscillates at a fre-
quency ωi. a is the beam cross-section. If we have i 6= j, then we can write :

~Ei × ~Hj
∗

e−i(ωit−kiz)+i(ωjt−k jz) + c.c. = cε0 ~Ei.~Ej
∗

e−i(ωit−kiz)+i(ωjt−k jz)ẑ + c.c.

= cε0 EiEj
∗ e−i(ωit−kiz)+i(ωjt−k jz)ẑ + c.c. .

(F.15)

Writing Ei as Ei = |Ei| e−iφi we have :

~Ei × ~Hj
∗

e−i(ωit−kiz)+i(ωjt−k jz) + c.c. = cε0 |Ei||Ej
∗| e−i(ωit−kiz)+i(ωjt−k jz)−i(φi−φj)ẑ + c.c.

= 2cε0 |Ei||Ej| cos
(
− (ωit− kiz) + (ωjt− k jz)− (φi − φj)

)
ẑ

=
√

Pωi Pωj cos
(
(ωj −ωi)t + (ki − k j)z + (φj − φi)

)
=
√

Pωi Pωj cos
(
Ωjit + Φij(z)

)
,

(F.16)

where Ωji = ωj − ωi and Φij(z) = (ki − k j)z + (φj − φi). In our case, Ω21 =

Ω32 = Ω and Ω31 = 2Ω. Also note, Ωjit + Φij = −(Ωijt + Φji). Using Equa-
tions (F.14) and (F.16), we can write the time-averaged Poynting vector 〈~S〉 as :

〈~S〉 = 1
a
(Pω1 + Pω2 + Pω3 +

√
Pω1 Pω2 cos(Ω21t + Φ12)

+
√

Pω1 Pω3 cos(Ω31t + Φ13) +
√

Pω2 Pω1 cos(Ω12t + Φ21)

+
√

Pω2 Pω3 cos(Ω32t + Φ23) +
√

Pω3 Pω1 cos(Ω13t + Φ31)

+
√

Pω3 Pω2 cos(Ω23t + Φ32))ẑ

= (Pω1 + Pω2 + Pω3 + 2
√

Pω1 Pω2 cos(Ωt + Φ12)

+ 2
√

Pω2 Pω3 cos(Ωt + Φ23) + 2
√

Pω1 Pω3 cos(2Ωt + Φ13))ẑ .

(F.17)

• Detected Optical Power :

The total optical power Ptot can be written as :

Ptot = a||〈~S〉|| = Pω1 + Pω2 + Pω3 + 2
√

Pω1 Pω2 cos(Ωt + Φ12)

+ 2
√

Pω2 Pω3 cos(Ωt + Φ23) + 2
√

Pω1 Pω3 cos(2Ωt + Φ13) .
(F.18)
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Here we can see that the part of the detected optical power oscillating at a
frequency Ω, i.e. PΩ is :

PΩ = 2
√

Pω1 Pω2 cos(Ωt + Φ12) + 2
√

Pω2 Pω3 cos(Ωt + Φ23) . (F.19)
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Appendix G
Properties of Bessel Functions of the
First Kind

The Bessel function of the first kind Jn(x) (of order n), is defined as :

Jn(x) =
∞

∑
m=0

(−1)m

m!Γ(m + n + 1)

( x
2

)2m+n
, (G.1)

where Γ() represents the standard Gamma function defined as :

Γ(z) =
∫ ∞

0
xz−1e−xdx. (G.2)

• Property 1 :

We want to evaluate Jn(−x). If we replace x with−x in Equation (G.1), we get :

Jn(−x) =
∞

∑
m=0

(−1)m

m!Γ(m + n + 1)

(−x
2

)2m+n

=
∞

∑
m=0

(−1)2m+n (−1)m

m!Γ(m + n + 1)

( x
2

)2m+n

= (−1)n Jn(x).

(G.3)

• Property 2 :

Let us consider n to be a positive integer. Now we want to evaluate J−n(x) in
terms of Jn(x). Thus replacing n by −n in Equation (G.1), we get :

J−n(x) =
∞

∑
m=0

(−1)m

m!Γ(m− n + 1)

( x
2

)2m−n

=
∞

∑
m=0

(−1)m

m!(m− n)!

( x
2

)2m−n
,

(G.4)
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where we have used the property of the Gamma function :

Γ(n) = (n− 1)!, (G.5)

where n is a positive integer. Now, let us make a change of variable as :

m′ = m− n. (G.6)

Thus substituting it in Equation (G.4) we get :

J−n(x) =
∞

∑
m′+n=0

(−1)(m
′+n)

(m′ + n)!m′!

( x
2

)2m′+n

=
−1

∑
m′=−n

(−1)(m
′+n)

(m′ + n)!m′!

( x
2

)2m′+n
+

∞

∑
m′=0

(−1)(m
′+n)

(m′ + n)!m′!

( x
2

)2m′+n
.

(G.7)

But m′! = ∞ for m′ = −n, ...,−1, so the denominator is infinite for the first set
of terms and thus all these terms are zero. We therefore have :

J−n(x) =
∞

∑
m′=0

(−1)(m
′+n)

(m′ + n)!m′!

( x
2

)2m′+n

=
∞

∑
m′=0

(−1)(m
′+n)

m′!Γ(m′ + n + 1)

( x
2

)2m′+n

= (−1)n
∞

∑
m′=0

(−1)m′

m′!Γ(m′ + n + 1)!

( x
2

)2m′+n

= (−1)n Jn(x).

(G.8)
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Appendix H
SFDR of a Microwave Photonic Link
with PSA

In this appendix we calculate the SFDR’s of a microwave photonic link with and
without a PSA operating in the unsaturated gain regime. For a better understanding,
in Fig. H.1 we show an example of the output power (denoted as y) relationship of
the fundamental (blue) and IMD3 (red) RF waves with the input RF power (denoted
as x) when the PSA is on (thick solid line) and off (thin solid line) considering a log-
log scale. The noise floors for the PSA on (thick dashed line) and off (thin dashed
line) cases are shown in green dashed lines. When the PSA is on, the fundamental
and IMD3 curves undergo a vertical shift of GdB units from the PSA off case. GdB

is the RF gain due to the PSA in dB’s. Similarly the noise floor undergoes a vertical
shift of aGdB units, where a is a scaling factor used to express the noise floor shift in
terms of GdB. The SFDR’s for the PSA on and off cases are shown in brown double-
sided arrows. The fundamental and IMD3 curves are supposed to have slopes of 1
and 3 following Equations (4.49) and (4.50). The corresponding geometric equations
for the different curves are shown in their respective colors.

Let us first consider the case when the PSA is off. The equations for the input
and output powers of the fundamentals, IMD3’s and the noise floor are given by (in
the same order) (see Fig. H.1) :

y = x + C f ,o f f , (H.1)

y = 3x + CI,o f f , (H.2)

y = No f f , (H.3)

where C f ,o f f , CI,o f f and No f f are the intercepts for the fundamental, IMD3 and noise
floor curves. When the PSA is on, we can write down the equations for the funda-
mentals, IMD3’s and the noise floor as before just adding the extra gain as (in the
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y

x

y = Nof f + ag
y = No f f

y = 3x + CI,o f f

y = 3x + CI,of f + g

y = x + C f ,o f f

y = x + C f ,of f + g

•CI,o f f

•C f ,o f f

•No f f
aGdB

GdB

GdB

SFDRof f

SFDRon
•

(x2, y2)

•(x1, y1)

Figure H.1. An illustration of output RF powers (denoted as y in fig-
ure) of fundamental (blue solid lines) and IMD3 (red solid lines) in
a microwave photonic link with a PSA (with unsaturated gain) as a
function of the corresponding input RF powers (denoted as x in fig-
ure). A log-log scale is considered. The noise floors are shown in
green dashed lines. Two cases are considered : (a) PSA is off (thin
lines) and (b) PSA is on (thick lines). The corresponding SFDR’s for
the PSA on and off cases are shown in brown double sided arrows.
The geometric equations of the lines for the fundamentals (slope=1),
IMD3’s (slope=3) and noise floors (slope=0) are also shown in their
corresponding colours. No f f : noise floor for PSA off, CI,o f f : inter-
cept of IMD3 for PSA off, C f ,o f f : intercept of fundamental for PSA
off, GdB : RF gain due to PSA in dB and aGdB : gain of the noise floor

in dB’s. (not to scale)

same order) (see Fig. H.1) :

y = x + C f ,o f f + GdB, (H.4)

y = 3x + CI,o f f + GdB, (H.5)

y = No f f + aGdB. (H.6)

Let us consider the point (x1, No f f ) which is the intersection of the IMD3 curve (see
Equation (H.2)) and the noise floor when the PSA is off. Using Equations (H.2) and
(H.3) we find :

x1 =
No f f − CI,o f f

3
. (H.7)

Now let us suppose (x1, y1) is the point where the line x = x1 intersects the funda-
mental curve (see Equation (H.1)) for PSA off. Thus using Equation (H.1) we get :

y1 =
No f f − CI,o f f

3
+ C f ,o f f . (H.8)
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The SFDR for the PSA off case i.e. SFDRo f f is nothing but the distance between the
points (x1, No f f ) and (x1, y1) and is given by :

SFDRo f f = −
2
3

No f f −
CI,o f f

3
+ C f ,o f f . (H.9)

For the PSA on case, we proceed as before and first consider the point (x2, No f f +

aGdB) which is the intersection of the IMD3 curve (see Equation (H.5)) with the noise
floor (see Equation (H.6)). Thus we get x2 as :

x2 =
No f f − CI,o f f − aGdB

3
. (H.10)

Now let (x2, y2) be the point where the line x = x2 intersects the fundamental curve
(see Equation (H.4)) for PSA on. Thus using Equation (H.4) we get :

y2 =
No f f − CI,o f f − aGdB

3
+ C f ,o f f + GdB. (H.11)

The SFDR for the PSA on case i.e. SFDRon is nothing but the distance between the
points (x2, No f f + aGdB) and (x2, y2) and is given by :

SFDRon = −2
3

No f f −
CI,o f f

3
+ C f ,o f f + GdB

(
1− 4a

3

)
. (H.12)

Therefore we see from Equations (H.9) and (H.12) that the change in the SFDR i.e.
∆SFDR between the PSA on and off conditions is given by :

∆SFDR = SFDRon − SFDRo f f = GdB

(
1− 4a

3

)
. (H.13)

Thus when a is less than 3
4 , the PSA should increase the SFDR of the link.

In the case of a shot-noise limited signal, the noise floor Nsh is given by :

Nsh = 2ResPopt, (H.14)

where R is the impedance of the detection circuit, e is the electronic charge constant,
s is the sensitivity of the PD and Popt is the total optical power incident on the PD.
We considered 1 Hz bandwidth of detection. Form Equation (4.16) we know that the
gain of the optical waves is half the RF gain GdB. Thus when the PSA is off or on, the
shot noise levels Nsh,o f f and Nsh,on are respectively given by :

Nsh,o f f = 2ResPopt,o f f , (H.15)

Nsh,on = 2Res
GdB

2
Popt,o f f , (H.16)

where Popt,o f f is the optical power incident on the detector when the PSA is off.
Therefore in the log scale, the noise floor will have a shift of GdB

2 units upon turning
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on the PSA. This means for a shot-noise limited signal, a = 1
2 . Therefore ∆SFDR is

given by :

∆SFDR =
GdB

3
. (H.17)
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Titre : Etude Théorique des Amplificateurs Sensibles à la Phase des Fibres pour
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Résumé : Les amplificateurs paramétriques
à fibre optique (FOPA) sont prometteurs
pour les systèmes de communication de de-
main. En particulier, les amplificateurs sensi-
bles à la phase des fibres offrent des fonction-
nalités intéressantes comme un faible bruit et
un gain élevé, ce qui en fait des candidats
potentiels pour des applications dans les li-
aisons photoniques micro-ondes. Cette thèse
propose une étude théorique de tels amplifi-
cateurs sensibles à la phase destinés à cer-
taines applications.
La première partie de la thèse est consacrée
au développement d’un modèle analytique
pour la propagation de sept ondes contin-
ues à travers un FOPA. Le système est ré-
solu lorsque les effets non linéaires de la
fibre ne sont pas trop forts. Le modèle
développé révèle le rôle important des on-
des d’ordre supérieur dans la détermination
des performances d’amplification du FOPA.
Des stratégies sont formulées pour améliorer

l’amplification. La possibilité d’une conver-
sion de fréquence sensible à la phase avec
seulement deux ondes de pompe est égale-
ment prédite.
Dans la deuxième partie de cette thèse, la
possibilité d’introduire un amplificateur sen-
sible à la phase dans une liaison photonique
hyperfréquence pour la distribution de sig-
naux analogiques est étudiée. Un mod-
èle numérique est utilisé pour simuler com-
ment les non-linéarités RF dans une liaison
photonique hyperfréquence sont amplifiées
par le FOPA. Les performances de la liai-
son lorsque le FOPA atteint la saturation
du gain sont également étudiées. L’étude
révèle la possibilité d’une atténuation de la
non-linéarité RF en utilisant la non-linéarité
de la fibre. La mise en œuvre de telles
techniques pourrait conduire à la réalisation
de liaisons photoniques hyperfréquences à
longue portée et hautement linéaires pour les
applications de déport d’antenne.
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Keywords : fiber optics, parametric amplification, phase sensitive amplifier, mi-
crowave photonics

Abstract : Fiber optic parametric ampli-
fiers (FOPA) are promising for tomorrow’s
communication systems. In particular, fiber
phase sensitive amplifiers offer attractive
functionalities like low noise and high gain
which makes it a potential candidate for ap-
plications in microwave photonic links. This
thesis provides a theoretical investigation of
such fiber phase sensitive amplifiers aimed
towards applications.
The first part of the thesis is dedicated to-
wards development of an analytical model
for propagation of seven CW waves through
a FOPA. The system was solved exactly
when nonlinear effects of the fiber are not
strong. The developed model unravelled the
important role of the higher order waves in
determining the amplification performance
of the FOPA. Strategies were formulated to

enhance the amplification and the possibil-
ity of a phase sensitive frequency conver-
sion with just two pump waves was also pre-
dicted.
In the second part of this thesis, the possi-
bility of introducing a fiber phase sensitive
amplifier in a microwave photonic link for
analog signal distribution was investigated.
A numerical model was utilized to simulate
how the RF nonlinearities in a microwave
photonic link are amplified by the FOPA. The
performance of the link when the FOPA at-
tains a gain saturation was also studied. The
study revealed the possibility of RF nonlin-
earity mitigation using the fiber nonlinear-
ity. Implementation of such techniques could
lead to realization of long-range and highly
linear microwave photonic links for antenna
remoting applications.
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